
HAL Id: tel-00265549
https://theses.hal.science/tel-00265549v1

Submitted on 19 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing with sequents and diagrams in classical logic
- calculi *X, dX and ©X

Dragisa Zunic

To cite this version:
Dragisa Zunic. Computing with sequents and diagrams in classical logic - calculi *X, dX and ©X.
Computer Science [cs]. Ecole normale supérieure de lyon - ENS LYON, 2007. English. �NNT : �.
�tel-00265549�

https://theses.hal.science/tel-00265549v1
https://hal.archives-ouvertes.fr

N◦ d’ordre: 447
N◦ attribue par la bibliothèque: 07ENSL0 447

THÈSE

en vue d’obtention le grade de

Docteur de l’École Normale Supérieure de Lyon

spécialité : Informatique

Laboratoire de l’Informatique du Parallélisme
École Doctorale de Mathématiques et Informatique Fondamentale

présenté et soutenue publiquement le 21 decembre 2007 par monsieur

Dragǐsa Žunić

Computing with Sequents and Diagrams in

Classical Logic - Calculi ∗X , dX and c©X

Directeur de theèse : Monsieur Pierre Lescanne

Après avis de : Monsieur Steffen van Bakel

Monsieur Hugo Herbelin

Devant la commission d’examen formèe de :

Monsieur Steffen van Bakel Membre/Rapporteur

Monsieur Hugo Herbelin Membre/Rapporteur

Madam Delia Kesner Membre

Monsieur Yves Lafont Membre

Monsieur Pierre Lescanne Membre

Monsieur Christian Urban Membre

ii

Contents

Abstract vii

Résumé ix

Rezime xi

Acknowledgements xiii

1 Introduction 1

1.1 Outline of the thesis . 4

1.2 The main contributions . 5

I Computing with Classical Sequents 7

2 Introduction 9

3 From sequents to terms 15

3.1 Classical sequent calculus . 15

3.2 The variants of classical systems 17

4 Related computational interpretations 23

4.1 The X calculus . 23

4.1.1 The syntax . 24

4.1.2 The computation . 24

4.1.3 The type system . 27

4.2 The λlxr-calculus . 28

4.2.1 The syntax . 29

4.2.2 Congruence equations for λlxr-terms 30

4.2.3 The reduction relation 31

iii

iv CONTENTS

4.2.4 Typing rules . 32

4.3 The λ̄µµ̃-calculus . 33

5 Erasure and duplication: the ∗X calculus 37

5.1 The syntax . 37

5.1.1 Free and bound names 39

5.1.2 Definitions and notations 40

5.1.3 Linearity . 42

5.2 Reduction rules . 48

5.2.1 Activation rules . 50

5.2.2 Structural actions . 51

5.2.3 Deactivation rules . 51

5.2.4 Logical actions . 53

5.2.5 Propagation rules . 54

5.3 Operational properties . 58

5.4 The type assignment system 60

5.5 Examples of implementations 71

5.5.1 Booleans . 71

5.5.2 Natural numbers . 72

5.6 Extension of the ∗X -calculus 73

6 The encoding of related calculi 79

6.1 Relation between X calculus and ∗X calculus 80

6.1.1 From X to ∗X . 80

6.1.2 From ∗X to X . 88

6.2 Relation with the λ̄µµ̃-calculus 89

6.3 Encoding the intuitionistic calculi 91

6.3.1 Encoding the λ-calculus 91

6.3.2 Encoding the λx-calculus 93

6.3.3 Encoding the λlxr-calculus 95

II Diagrammatic Classical Computing 97

7 Introduction 99

8 Diagrammatic calculus: dX 103

8.1 The syntax . 104

8.2 The reduction rules . 107

8.2.1 Activation rules . 108

CONTENTS v

8.2.2 Deactivation rules . 109
8.2.3 Structural actions . 110
8.2.4 Logical actions . 112

8.3 Generalization of activation and deactivation rules 113
8.4 Diagram simplification . 114
8.5 Operational properties . 116
8.6 The typing rules . 117
8.7 Implementing data types . 119

8.7.1 Booleans . 119
8.7.2 Natural numbers . 120

8.8 Extension of the dX calculus 124
8.9 Notes . 126

III Equivalent Terms in Classical Computation 131

9 Introduction 133

10 One-dimensional vs. two-dimensional computation 135

11 Computing and equivalent terms: the c©X calculus 139
11.1 The syntax . 139
11.2 The congruence relation . 140
11.3 Restructuring terms . 146
11.4 The reduction rules . 152
11.5 Operational properties . 154
11.6 The typed language . 154
11.7 Interpreting terms as diagrams 159
11.8 Simulating c©X -reduction . 159

Conclusion and future work 165

Bibliography 166

vi CONTENTS

Abstract

This Ph.D. thesis addresses the problem of giving computational interpreta-
tion to proofs in classical logic. As such, it presents three calculi reflecting
different approaches in the study of this area.

The thesis consists of three parts.

The first part introduces the ∗X calculus, whose terms represent proofs
in the classical sequent calculus, and whose reduction rules capture most of
the features of cut-elimination in sequent calculus. This calculus introduces
terms which enable explicit implementation of erasure and duplication and
to the best of our knowledge it is the first such calculus for classical logic.

The second part studies the possibility to represent classical computation
diagrammatically. We present the dX calculus, the diagrammatic calculus
for classical logic, whose diagrams originate from ∗X -terms. The principal
difference lies in the fact that dX has a higher level of abstraction, capturing
the essence of sequent calculus proofs, as well as the essence of classical
cut-elimination.

The third part relates the first two. It presents the c©X calculus, a one-
dimensional counterpart of the diagrammatic calculus. We start from ∗X ,
where we explicitly identify terms which should be considered the same.
These are the terms that code sequent proofs which are equivalent up to
permutations of independent inference rules. They also have the same dia-
grammatic representation. Such identification induces the congruence rela-
tion on terms. The reduction relation is defined modulo congruence rules,
and reduction rules correspond to those of dX calculus.

vii

viii Abstract

Résumé

Cette thèse de doctorat étudie l’interprétation calculatoire des preuves de
la logique classique. Elle présente trois calculs reflétant trois approches
différentes de la question.

Cette thèse est donc composée de trois parties.

La première partie introduit le ∗X calcul, dont les termes représentent
des preuves dans le calcul des séquents classique. Les règles de réduction
du ∗X calcul capture la plupart des caractéristiques de l’élimination des
coupures du calcul des séquents. Ce calcul introduit des termes permettant
une implémentation implicite de l’effacement et de la duplication. Pour
autant que nous sachions, c’est le premier tel calcul pour la logique classique.

La deuxième partie étudie la possibilité de représenter les calculs clas-
siques au moyen de diagrammes. Nous présentons le dX calcul, qui est
le calcul diagrammatique de la logique classique, et dont les diagrammes
sont issus des ∗X -termes. La différence principale réside dans le fait que
dX fonctionne à un niveau supérieur d’abstraction. Il capture l’essence des
preuves du calcul des séquents ainsi que l’essence de l’élimination classique
des coupures.

La troisième partie relie les deux premières. Elle présente le c©X calcul
qui est une version unidimensionnelle du calcul par diagramme. Nous com-
mençons par le ∗X , où nous identifions explicitement les termes qui doivent
l’être. Ceux-ci sont les termes qui encodent les preuves des séquents qui
sont équivalentes modulo permutation de règles d’inférence indépendantes.
Ces termes ont également la même représentation par diagramme. Une telle
identification induit une relation de congruence sur les termes. La relation
de réduction est définie modulo la congruence, et les règles de réduction
correspondent à celle du dX calcul.

ix

x Résumé

Rezime

Ova doktorska teza bavi se problemom davaǌa novih raqunarskih

interpretacija za dokaze u klasiqnoj logici. Kao takva, pred-

stavǉa tri nova formalna raquna koji oslikavaju razliqite pris-

tupe u studiraǌu ove oblasti, a pri tome qine jednu celinu.

Teza se sastoji iz tri dela.

Prvi deo uvodi ∗X raqun, kalkulus qiji termi predstavǉaju

dokaze u klasiqnom sekventnom raqunu, dok redukcijska pravila

predstavǉaju ponaxaǌe dokaza prilikom transformacije poznate

pod nazivom - eliminacija rezova. Ovaj raqun uvodi nove terme

koji sluжe za implementaciju operacija brisaǌa i dupliraǌa i,

koliko nam je poznato, ovo je prvi takav raqun za klasiqnu logiku

predstavǉen do sada.

Drugi deo studira mogu�nost uvo�eǌa diagramatske interpre-

tacije za raqunaǌe koje odgovara klasiqnoj logici. Predsavǉamo
dX raqun, diagramatki raqun za klasiqnu logiku, qiji diagrami

vode poreklo od ∗X -terma. Osnovna razlika leжi u qiǌenici da

je dX raqun vixeg nivoa apstrakcije, hvataju�i upravo suxtinski

deo, kako klasiqnih dokaza, tako i ǌihove transformacije putem

eliminisaǌa rezova.

Tre�i deo predstavǉa c©X raqun, jednodimenzionalni parǌak

diagramatskog raquna. Poqiǌemo od ∗X -a, gde vrximo eksplic-

itnu identifikaciju terma koje bi trebalo smatrati suxtinski

jednakim, poxto odgovaraju dokazima u sekventnom raqunu koji

su ekvivalentni do na permutaciju nezavisnih pravila izvo�eǌa.

Relacija redukcije je definisana modulo kongruentni termi, a re-

dukcijska pravila odgovaraju onima u dX raqunu.

xi

xii Rezime

Acknowledgements

First of all I thank my thesis adviser Pierre Lescanne, for his patience and
generous support and for sharing his knowledge with me. For his always positive
energy which helped me try use the chance I had been given.

I thank Steffen van Bakel and Hugo Herbelin for accepting to be the referees
for my thesis and for the valuable comments on how to improve it. Delia Kesner,
Yves Lafont and Christian Urban for accepting to be the members of the thesis
committee, and for their valuable comments.

I thank Silvia (Silvia Ghilezan) for giving me the chance to come to France.
For introducing me to logic and computation in an interesting way and for her
support. My niece Anastazia for entertaining me here for a few months.

My brother Jovǐsa, for always believing in me and initiating me into this
this world of maths when I was still young. I guess it was not a mistake. For
inspiring me with his talent you don’t see every day.

I thank my parents Sara and Dragomir to whom I can not express the
gratitude with words.

I thank my girlfriend Iona for her love and support and for proving that
London and Lyon are not so far away.

Members of the “equipe Plume” Daniel, Philippe, Jean, Tom, Stéphane,
Damien, Aurelien, Romain, Samuel and Sébastien for always enjoyable time.

Oriol, Shinsuke, Pushpinder, David, Dino, Myriam and the rest of the stu-
dent crew from and around the ENS.

Silvia Likavec for welcoming me in Lyon and introducing me to many things
in a few months, from how to open the main door to how to write a thesis.

All my teachers and professors during more than 20 years.

Finally I thank everyone, and there are many people, with whom I shared the
good moments in Yugoslavia, Serbia and France.

xiii

xiv Acknowledgements

Chapter 1

Introduction

The history of attempts to understand and model the way we reason is
over two thousand years old. One of the most significant fields of theory
of reasoning is known as classical logic, initiated by a Greek philosopher
Aristotle who lived in the fourth century BC. He formulated the notion
of logical consequence and the law of non-contradiction similarly to their
modern definition [AriBC].1 Gottlob Frege (1848-1925) is considered to be
the first to formalize the notion of logical consequence, using only purely
syntactic manipulations. The style he used is today known as Hilbert-style
after David Hilbert (1862-1943). Then it was Gerhard Gentzen (1909-1945)
who introduced two new formalisms, namely the sequent calculus and the
natural deduction calculus which can be used to represent classical logic. His
concept of cut-elimination is still one of the central points of investigations
in proof theory.

The fundamental connection between formal proof theory and program-
ming language theory is known as the Curry-Howard correspondence, in
tribute to Haskell B. Curry and William A. Howard, who were among
the first to observe it [CF58, How80]. Originally discovered as a relation
between the intuitionistic logic (represented in natural deduction formal-
ism) and simply typed λ-calculus, it successfully relates logical concepts
proof/normalization/proposition with computational concepts term/reducti-
on/type. This type of correspondence was later studied for other logics, and

1There are also much older documents indirectly related to logic, such as the “Code
of Hammurabi”, a Babylonian law which dates back to 1760 BC. It is a collection of
rules, each rule presented by one sentence, where all sentences have the same grammatical
structure “If crime, then punishment”. The Code of Hammurabi is related to an older
Sumerian document known as the “Code of Ur-Nammu” which has the same form and
dates back to 2100 BC, [AS03].

1

2 CHAPTER 1. INTRODUCTION

therefore we have a notion of a Curry-Howard paradigm.
For a long time, it was considered not possible to include classical logic in

to the Curry-Howard paradigm. However, around 1990 Tim Griffin made an
important discovery, which showed that classical logic has something to offer
in this sense. In his seminal work [Gri90], he noted the connection between
functional programming languages with control operators and classical logic,
which opened the door for the continuation of research in the field.

Classical computation was first studied in the framework of natural de-
duction. One of the first calculi to be designed is λµ-calculus of Parigot
[Par92], in 1992. There are certain technical reasons which make natural
deduction less suitable then sequent calculus for the study of classical logic,
and since then several calculi based on the sequent calculus formalism have
been designed. For example, one of the first was λ̄µµ̃-calculus of Curien
and Herbelin [CH00], a calculus which describes classical computation in
only several reduction rules, and exhibits various symmetries and dualities.
It corresponds to a formulation of sequent calculus where sometimes one
formula in the sequent is distinguishable, which still has a flavor of intu-
itionistic logic.

This thesis’ research started by studying the X calculus [vBLL05], which
is a somewhat new term-language, directly associated to sequent calculus
for classical logic. It uses the basic concept of name instead of that of
variable, and captures the structure of sequent proofs as well as the process
of cut-elimination. The X calculus as a model is very close to Bierman and
Urban’s term-notation for classical sequents [UB01a], studied in great detail
in [Urb00]. The properties and results presented in the framework of X
calculus have been a starting point for this work.

Another source of inspiration comes from intuitionistic logic. The com-
putational aspects of erasure and duplication of explicit substitution were
studied more in the intuitionistic framework. Although there are numerous
works in this field, the main influence comes from Kesner and Lengrand’s
design of λlxr-calculus [KL07], which introduces terms for erasure and du-
plication of explicit substitution, without loosing good properties of its un-
derlying calculi.

As a result of these investigations, combining the ideas from λlxr and X ,
we developed three new calculi that reflect different views on the classical
computation. Therefore the thesis itself consists of three parts, each part
presenting one calculus.

The first part presents the ∗X calculus, which captures the structure of
sequent proofs, even more comprehensively than it was the case with X cal-
culus. Namely, ∗X has been designed to provide a correspondence “à la”

3

Curry-Howard with Gentzen’s sequent system G1 for classical logic. The
specific feature of the system G1 is explicit presence of the structural in-
ference rules weakening and contraction. The design of the calculus reveals
the role of the structural rules (weakening and contraction) in the process of
proof-transformation, i.e., on the computational side they appear as terms
called eraser and duplicator, respectively, as they are used to implement era-
sure and duplication. A computation in ∗X corresponds to a cut-elimination
in the sequent calculus. To the best of our knowledge, it is the first calculus
for classical logic which explicitly implements erasure and duplication. The
fact that ∗X carries even higher level of details than X is justified since it
provides us with detail on how exactly erasure and duplication work. The
existing classical calculi are not entirely explicit about the operations of
erasure and duplication of terms, although these operations are important
in both, the theory and the implementation. A second justification is that
by having all the detail explicit in the calculus, we could catch the syntax
and the rules of proofs seen as diagrams, which leads to another calculus we
designed.

The second part presents the diagrammatic calculus for classical logic,
called dX . In some sense this is the natural continuation of the first part;
thanks to linearity and the presence of erasers and duplicators, ∗X -terms
can be seen as two dimensional diagrams. This means that we define a
diagrammatic syntax and the reduction relation is given by the rewriting
rules over those diagrams. The static aspects of this calculus have recently
been defined by Robinson [Rob03] as proof-nets for classical logic, but the
dynamic aspects (computation) have not yet been presented. The diagrams
have been inspired by Girard’s proof-nets for linear logic [Gir87], although
there is a difference in a sense that we search for a system which is in direct
relation with standard sequent system for classical logic. dX is a higher level
abstraction calculus, as it abstracts away from unessential details which are
unavoidable in a formalism like a sequent calculus. Although it might seem
unexpected, it was necessary to dive into detail (∗X) to be able to derive
a more abstract model (dX), which captures only the essential features of
the classical computation. If we also have in mind the importance of visual
images to human cognitive activities, it is not difficult to motivate the study
of dX . The calculi ∗X and dX are not in one-to-one correspondence, since
more than one term can correspond to one diagram.

The third part deepens the relation between one-dimensional, namely ∗X ,
and two-dimensional, namely dX calculi. And the result is the c©X -calculus,
which is a one-dimensional counterpart of the diagrammatic calculus. It is
obtained from ∗X by stating which (syntactically different) terms should be

4 CHAPTER 1. INTRODUCTION

considered the same. This induced a congruence relation on terms, and the
reduction relation in c©X is defined modulo the congruence rules. Notice
that this is an explicit attempt to say which syntactically different terms
(sequent proofs) are, in fact, essentially the same. This would have been
difficult to infer directly, using sequent calculus formalism. But having at
hand both terms of ∗X and diagrams of dX , yields the result naturally. Thus
this thesis also addresses the very old problem of proof identity, caused by
the lack of understanding of the essence of a proof, which is in turn caused
by the “bureaucracy” involved in the syntactic presentation of proofs (see
for example [Str06]).

The three calculi are non-deterministic and non-confluent. The reduction
rules satisfy free names preservation (interface preservation), type preserva-
tion (computation can be seen as proof-transformation). The computation
also preserves the linearity of terms.

So one of the main aspects of this work is revisiting the proof theory of
classical logic, where proofs are identified up to trivial rule permutations.

1.1 Outline of the thesis

This thesis is composed of three parts. Each part presents one formal lan-
guage through which we study different aspects of classical computation.

• Part I presents a way to implement both, explicit erasure and dupli-
cation in the framework of classical computation. We study this by
introducing the ∗X calculus.

– In Chapter 2 we give an introduction to the ∗X calculus. We also
recall the basic philosophy behind the its predecessors, X and
the λlxr-calculus.

– Chapter 3 reviews Gentzen’s sequent calculus LK, with its basic
variants with respect to the treatment of structural rules.

– In Chapter 4 we present in more detail the related calculi, namely
the X calculus, the λlxr-calculus and λ̄µµ̃-calculus.

– Chapter 5 presents the ∗X calculus. We present the syntax, the
reduction rules and the basic operational properties. Then we de-
fine the typing rules, and we show that the computation preserves
types. The chapter ends by showing how we can implement data
types in ∗X calculus.

– In Chapter 6 we show how we can encode the related calculi in ∗X .

1.2. THE MAIN CONTRIBUTIONS 5

• Part II presents the diagrammatic calculus dX . It comes as a result
of studying the ∗X calculus, which has all ingredients for the diagram-
matic representation.

– Chapter 7 gives an introduction to diagrammatic reasoning. We
recall some old and some of the recent works.

– Chapter 8 presents the diagrammatic calculus dX , with its syntax
and reduction rules. Besides that, we introduce the so-called
simplification rules for diagrams and basic operational properties.
We end the chapter by defining the type assignment system for
the language, with the property of type-preservation.

• Part III shows the relation between one-dimensional ∗X -terms and
dX -diagrams. Moreover, we relate the computational aspects of the
two approaches. The result is the c©X calculus, where reducing is
defined modulo congruence.

– Chapter 9 is an introduction to the c©X calculus.

– In Chapter 10 we illustrate the principal differences between one-
dimensional and diagrammatic computing.

– Chapter 11 presents the c©X calculus. We introduce the con-
gruence relation on terms. After that, we define reduction rules
as reduction modulo congruence rules. We show that propaga-
tion rules are not needed. Then we give the basic operational
properties and define the typed language. Furthermore, we show
that c©X and dX are closely related; each reduction step of c©X
corresponds to a reduction step of dX .

1.2 The main contributions

Here we will summarize the main contributions of this thesis’ research.

I Classical erasure and duplication (∗X calculus)

– A calculus for classical logic is presented with name as basic no-
tion. It provides a correspondence “à la” Curry-Howard to se-
quent calculus where the structural rules weakening and contrac-
tion are made explicit. We consider only the linear terms, since
non-linear terms can be encoded into linear ones.

6 CHAPTER 1. INTRODUCTION

– To the best of our knowledge, this is the first classical calcu-
lus which explicitly implements both erasure and duplication of
terms.

II The diagrammatic computation (dX calculus)

– A diagrammatic calculus for classical logic is presented with a port
as a basic notion. Both static and dynamic aspects are defined.

– Static aspects and relation with sequent proofs were studied by
Robinson, in the work which presents the proof-nets for classical
logic, but not the dynamics of those nets. We show (in the third
part) that the reduction steps of diagrammatic calculus corre-
spond to reduction steps performed on sequent proofs, modulo
restructuring by permuting the independent rules.

III Equivalent programs in classical computation (c©X calculus)

– A one-dimensional calculus as counterpart of the diagrammatic
calculus is presented. Reduction rules are defined modulo the
congruence relation on terms.

– We explicitly define which terms should be identified in ∗X , in
order to move towards the two-dimensional dX calculus. This is
done by introducing congruence rules.

– We use this result to go further. We show that the reduction
steps in the diagrammatic framework correspond to c©X -reduction
steps, modulo the congruence rules defined in the previous point.

In the case of all three calculi, the computation preserves the set of free
names/ports (interface preservation). For the typed versions of these calculi
we have the property of type preservation.

Part I

Computing with Classical

Sequents

7

Chapter 2

Introduction

The ∗X calculus has been designed to provide a correspondence ‘a là’ Curry-
Howard for the standard formulation of classical sequent calculus, with ex-
plicit structural rules (weakening and contraction). The direct correspon-
dence between proofs and terms is achieved by using the technique of label-
ing formulas by names. These names are used to build terms so that the
structure of a term captures the original structure of a corresponding proof.
Furthermore, the computation of terms is defined in a way that mirrors the
proof-transformation, that is, the cut-elimination.

The inspiration for ∗X calculus comes from two sources. On the one hand,
the direct predecessor is the classical term language called the X calculus.
On the other hand, a very strong influence comes from the intuitionistic
field and most notably the work on the λlxr-calculus.

X λlxr

∗X

In our study we try to respect the underlying principles of these works, and
implement them in a way that preserves their good properties too.

About the X calculus

The X calculus is a relatively new term language, introduced in [vBLL05]
and studied in more detail in [vBL07]. It is a low level language and it has

9

10 CHAPTER 2. INTRODUCTION

been shown that it can easily encode various other calculi. It captures the
structure of classical proofs represented in the sequent calculus, as well as
cut-elimination. Some of its properties are non-determinism, non-confluence
and strong normalization (see [UB01a]) for typed terms.

Some closely related computational interpretations have been presented
earlier. First of them is the so-called local cut-elimination procedure pre-
sented in [UB01a]. It is one of the three cut-elimination procedures studied
in detail in [Urb00]. A term assignment is given for proofs in the classi-
cal sequent calculus (formulated with completely implicit structural rules).
Then this term language was used as a tool to show the properties of clas-
sical sequent calculus. Most importantly, it enabled the authors to use the
term-rewriting techniques in order to prove the strong normalization of cut-
elimination in classical logic.

A second computational interpretation, very close to X , has been pre-
sented by Lengrand in [Len03], under the name λξ-calculus. There it was
studied in relation with λ̄µµ̃-calculus [CH00], and it was used to infer the
strong normalization for λ̄µµ̃.

Although there are differences these three formulations are very close
to each other. The syntaxes of λξ and X are the same (there are minor
differences such as the use of †v in the first, instead of † in the second).
Both the syntax and the reduction rules of λξ are said to be (in [Len03])

the subsystems of Urban’s local cut-elimination procedure (T ↔,
loc
−→) (see

[Urb00]). However, some differences at the level of reduction systems do
exist. The so-called logical rules are identical in λξ,X , and those which
specify the logical cut with an axiom differ from Urban’s approach (which
we addopt in ∗X). Urban also includes the rule for garbage collection, which
does not appear in neither λξ nor X . Then, there is also a rule for cut-
propagation over a capsule (as an exception rule from general propagation
philosophy) which appears in Urban’s work and λξ, but this time it is not
included in the X calculus. Finally there is a subtle difference at the level
of activation rules as presented by Urban, namely he has an extra condition
which does not allow activation towards a term which has an active cut at
the top level.

We recall here the philosophy behind these calculi.

The study of Christian Urban [Urb00] is partially inspired by the work
of Danos et al. presented in [DJS97] which considers Gentzen’s sequent
calculus as a programming language. The cut-elimination procedure is called
LKtq and it has properties of strong normalization, confluence and it is
strongly connected to linear logic’s proof nets. The confluence is obtained

11

by assigning color annotations to formulas, which restricts cut-reductions so
that the critical pair does not arise. Confluence is essential in LKtq because
it enabled the authors to exploit the strong normalization result of proof
nets in linear logic. However Urban’s work is impressive as it reveals all
the details of the complex classical cut-elimination, by developing a term-
notation for proofs which is used as a tool, whereas in LKtq many things are
presented informally.

Moreover, it has been shown in [Urb00, UB01b], using the results of [BBS97],
that not all normal forms are reachable using the LKtq interpretation. Sec-
ondly, the restrictions introduced by using the colors are not needed to
ensure strong normalization.

A departure was made from the traditional doctrine coming from intu-
itionistic logic, where computation is an equality preserving operation on
proofs. Instead, the view was accepted that cut-elimination may or may
not preserve the equality between proofs, and that the non-determinism is a
natural property of classical logic. Urban’s term language has been designed
in accordance with the following principles:

• The cut-elimination procedure should not restrict the collection of nor-
mal forms (more precisely, essential normal forms) that are reachable.

• The cut-elimination procedure should be strongly-normalizing.

• The cuts should be allowed to pass over other cuts (that is, over other
inactive cuts).

There are however a few restrictions. Namely, active cuts are not allowed
to pass over other active cuts, and once the cut is activated it can not be
deactivated at will (the propagation has to continue in the same direction).

About the λlxr-calculus

Although mainly concerned with computational aspects in the framework
of classical logic, the inspiration for the results presented in this thesis came
partially from the intuitionistic field. Primarily, it was the experience of
studying λlxr-calculus presented in [KL05, KL07] which had a significant
influence.

The way λlxr-calculus introduces terms for erasure and duplication into
the calculus of explicit substitution - λx [BR95] is similar to the way the ∗X
calculus introduces those terms with respect to the X -calculus. According

12 CHAPTER 2. INTRODUCTION

to what has been said one may notice that the intuitionistic calculi, λx
and λlxr, stand in the similar relation as the classical calculi X and ∗X .
Moreover, if we consider the so-called propagation rules (which exist in X
and ∗X) to be a classical analog to explicit substitution, then the calculi
which do not have propagation rules, namely diagrammatic calculus (see
Part II) and the c©X (see Part III) could be related to λ-calculus which
has an implicit substitution. This should not be taken strictly because the
erasure and duplication are explicit in dX and dX , which is not the case with
the λ-calculus

The λlxr-calculus was created as an attempt to relate the two elementary
decompositions. Namely, the decomposition of intuitionistic connectives in
linear logic, and the decomposition of a meta-level λ-calculus substitution.
The meta-substitution can be decomposed into more atomic steps, repre-
sented within the language [ACCL91], thus bringing the theoretical work
closer to the actual implementations. It has been shown in [KL05] that
there exists a very strong relation between λlxr-calculus and linear logic
proof-nets.

The λlxr-calculus is a simple term language which extends the calculus
of explicit substitutions λx [BR95] with new operators for both erasure and
duplication. The basic features of the λlxr-calculus are:

• Simple syntax which introduces explicit eraser and duplicator, and an
intuitive operational semantics via equations and reduction rules.

• Sound and complete correspondence with a proof-net model. More-
over, reductions and equations have a natural correspondence with
those of proof nets.

• Preservation of linearity and free variables. Preservation under re-
duction of assignable types. Step-by-step simulation of β-reduction.
Preservation of strong normalization and strong normalization of typed
terms. Confluence.

Many calculi implementing explicit substitutions were presented over the
past years. It has been shown for some explicit versions of the λ-calculus
that they did not preserve the good properties of its predecessors. For
example, there are strongly normalizable terms in the λ-calculus, that are
not strongly normalizable in λσ presented in [ACCL91]. Although it is a
low level language, λlxr-calculus attempts to retain the good properties of
its predecessors. The comparison of various approaches with respect to the
calculi of explicit substitutions is elaborated by Kesner in [Kes07]. The
λlxr-calculus is presented in more detail in Section 4.2 (page 28).

13

X λlxr

∗X

dX c©X

The ∗X calculus is the core of this thesis research. From it, we will later
derive the diagrammatic dX calculus, and also its one-dimensional counter-
part, the c©X calculus.

14 CHAPTER 2. INTRODUCTION

Chapter 3

From sequents to terms

The ∗X calculus (presented in Chapter 5) has been designed to be in the
closest correspondence with classical propositional logic represented in the
sequent calculus formalism. This means that the ∗X calculus captures both
the structure and the dynamics of classical sequent proofs. Therefore, the
first sections of this chapter are dedicated to the sequent calculus. We first
recall the basic notions related to sequent calculus, as well as the main
sequent systems for classical logic.

3.1 Classical sequent calculus

The Sequent calculus has been introduced by Gerhard Gentzen [Gen35] as
a formalism more suitable for mathematical treatment than natural deduc-
tion. He also developed the cut-elimination procedure - a technique of proof
transformation directed towards eliminating cut-rules. Gentzen introduced
the sequent calculi for both intuitionistic and classical logic, denoted as LJ
and LK, respectively. We will recall here some basic concepts of the sequent
calculus for classical logic.

The central notion is this of sequent. A sequent in LK is a formal expres-
sion of the form Γ ⊢ ∆, where Γ and ∆ are called contexts and, technically,
they can be treated either as lists, multisets or sets of formulas, depend-
ing on the particular formulation of the system. The sequents are usually
written as

P1, ..., Pm ⊢ Q1, ..., Qn, m, n ≥ 0

The zone on the left hand side of the turnstyle ⊢ is called antecedent and
on the right-hand side the succedent. The formulas are of the first-order

15

16 CHAPTER 3. FROM SEQUENTS TO TERMS

predicate logic (one may also restrict this to propositional logic). We will
focus on studying only the implicative fragment of the system.

Sequent calculus is supposed to consist of pure symbol manipulation, but
there is, however, an intuition behind. The above sequent has an intuitive
meaning that from the conjunction of the formulas in the antecedent, follows
the disjunction of the formulas in the succedent, or even simpler “if all of
P1, ..., Pm are true, at least one of Q1, ..., Qn is true”:

P1 ∧ ... ∧ Pm ⊢ Q1 ∨ ... ∨Qn, m, n ≥ 1

This interpretation extends to the case when m = 0, n = 0, by regarding the
conjunction of zero formulas as true, and the disjunction of zero formulas
as false.

Inference rules consist of sequents forming premises (above the horizon-
tal line) and a conclusion (below the line). There can be zero, one, or two
premises and there is always a single conclusion. There are three kinds of in-
ference rules, namely logical, structural and cut-rule. We also distinguish left
and right rules, depending on the side they act on in the concluding sequent.
An example of a logical inference rule is arrow introduction to the right:

Γ, A ⊢ B,∆
(R→)

Γ ⊢ A→ B,∆

It has a single premise and a single conclusion. It introduces the formula
A→B on the right-hand side of the conclusion, and this formula is called the
principal formula of that inference rule. Formulas that are shown explicitly
in the premise, A and B, are called active formulas1 and they are involved
in forming the principal formula. The other formulas in the contexts are
called side formulas.

The proofs in the sequent calculus formalism are tree-structures2, having
inference rules as nodes, while the leaves are axiom rules, i.e., inference
rules with no premises. There are three kind of inference rules: logical rules
(axiom and left and right-introduction rules), structural rules (weakening,
contraction and exchange rules) and a cut-rule.

Gentzen proved that a sequent calculus satisfies a cut-elimination prop-
erty [Gen35], which states that any sequent provable using the cut-rule, can
be proved without use of this rule. The cut-elimination theorem is the cen-
tral result establishing the significance of the sequent calculus. In particular,

1Gentzen uses the notion “side formulas” instead, which rather suggests an element of
the context.

2According to Gentzen [Gen35], they are in fact directed acyclic graphs.

3.2. THE VARIANTS OF CLASSICAL SYSTEMS 17

we have that the cut-free proofs in the sequent calculus satisfy the subfor-
mula property : the premises of the inference rules contain only subformulas
of their respective conclusions. As a consequence, the consistency of classi-
cal logic is shown by the following simple method: the empty sequent, which
corresponds to true implies false, can not be inferred by applying any rule
but cut-rule, and therefore is not derivable.

3.2 The variants of classical systems

It is possible to define many variants of Gentzen sequent systems. Although
it might seem confusing, there is a method on how these variants are ob-
tained, and in general no particular variant is to be preferred over the oth-
ers. The basic Genzen systems for classical and intuitionistic logic denoted
as G1, G2 and G3 are formalized in [Kle52] and later revisited in [TS96]. In
brief, the essential difference between G1 and G3 is the presence or absence
of explicit structural rules. The distinguishing point in the case of G2 is the
use of the so-called mix instead of a cut rule. Although here we focus on
the classical systems, we remark that the intuitionistic systems are obtained
from classical ones by restricting sequents to having only one formula in
the succedent.

Originally Gentzen presented a two-sided variant with explicitly given
so-called structural rules, namely weakening, contraction and exchange. The
exchange rule is explicit because the contexts are treated as lists.

Γ′, A, B,Γ′′ ⊢ ∆
(L-exchange)

Γ′, B, A,Γ′′ ⊢ ∆

Γ ⊢ ∆′, C, D,∆′′

(R-exchange)
Γ ⊢ ∆′, D, C,∆′′

Structural rules can be hidden by reformulating the other rules in the system.
We may define different representations by manipulating the presence of
structural rules and the treatment of contexts. In general, if we wish to hide
the exchange rule while keeping other structural rules, then the contexts
should be treated as multisets. And if we decide to hide all structural rules,
then it is reasonable to to treat contexts as sets.

In what follows we will revisit the G-systems in greater detail, taking
into account only their implicative fragments.

The system G1 Among the three systems, G1 as presented by Kleene is
the closest to the original formulation of Gentzen. Here we will keep the
name G1, but the system will have exchange rules built-in the system3 and

3In [Gen35, Kle52] exchange rules are presented explicitly.

18 CHAPTER 3. FROM SEQUENTS TO TERMS

contexts as multisets. This system is of importance for this thesis since, as it
represents a logical setting for ∗X calculus, the first calculi to be presented.
The system G1 is given by Figure 3.1.

(ax)
A ⊢ A

Γ ⊢ A,∆ Γ′, B ⊢ ∆′

(L→)
Γ,Γ′, A→ B ⊢ ∆,∆′

Γ, A ⊢ B,∆
(R→)

Γ ⊢ A→ B,∆

Γ ⊢ A,∆ Γ′, A ⊢ ∆′

(cut)
Γ,Γ′ ⊢ ∆,∆′

Γ ⊢ ∆
(weak-L)

Γ, A ⊢ ∆

Γ ⊢ ∆
(weak-R)

Γ ⊢ A,∆

Γ, A, A ⊢ ∆
(cont-L)

Γ, A ⊢ ∆

Γ ⊢ A,A, ∆
(cont-R)

Γ ⊢ A,∆

Figure 3.1: Sequent system G1

To summarize, Figure 3.1 presents the classical system where symbols
A,B, ... are used to denote formulas and Γ,∆,Γ′,∆′, ... are contexts, that
are in this framework, multisets of formulas. Structural rules weakening and
contraction are explicitly given. The axiom rule does not involve contexts.
Inference rules with two premises are given in the context-splitting style.
It has been shown [TS96] that we get the equivalent system in terms of
provability if we apply context-sharing style.

The system G2 The system G2, as presented in [Kle52] is obtained
from G1, the main difference being the replacement of cut rule with the
mix rule. The mix is sometimes referred to as multicut and represents the
generalization of a cut rule. The mix rule is given in the following way

Γ ⊢ An,∆ Γ′, Am ⊢ ∆′

(mix)
Γ,Γ′ ⊢ ∆,∆′

The systems obtained in this way are equivalent as proven in [TS96] by
showing that the rules mix and cut are interderivable in the presence of the
explicit structural rules.

3.2. THE VARIANTS OF CLASSICAL SYSTEMS 19

The system G3 The sequent system G3 is obtained from G1 by absorbing
all structural rules into the remaining rules, by giving the remaining rules
the appropriate form. In other words, there is no explicit structural rules.
Structural rules are hidden in the form of the logical rules and cut-rule, and
thus performed automatically.

This system has been mentioned as G3a in [Kle52] and formalized as
classical G3 in [TS96]. It is presented by Figure 3.2, where A,B, ... range
over formulas, while contexts Γ,∆, ... are finite sets of formulas.

(ax)
Γ, A ⊢ A,∆

Γ ⊢ A,∆ Γ, B ⊢ ∆
(L→)

Γ, A→ B ⊢ ∆

Γ, A ⊢ B,∆
(R→)

Γ ⊢ A→ B,∆

Γ ⊢ A,∆ Γ, A ⊢ ∆
(cut)

Γ ⊢ ∆

Figure 3.2: Sequent system G3

Inference rules with two premises are given in the context-sharing style.
The definition of the axiom rule involves contexts, thus allowing arbitrary
formulas to be introduced at that level, i.e., weakening rule is hidden in the
form of the axiom.

System G1 with names We will introduce the non-standard variant of a
sequent system G1, having as a principal difference the use of pairs (name,
formula) to build contexts, instead of pure formulas. A similar variant was
presented in [UB01a, Urb00], only there it was inspired by the G3 system.

The idea is to label formulas, that is, to assign names to formulas and
then use those names to form the terms of the calculus. If the formula is
in the antecedent of a sequent then it is labeled by an inname (x, y, z, ...)
and otherwise by an outname (α, β, γ, ...). Innames and outnames in general
will be called simply names4. So the contexts on the left-hand side of the
turnstile are built from (inname, formula) pairs and on the right-hand style
by (outname, formula) pairs. For example, contexts are

Γ = {(x,A), (y, B), (z, C)} and

∆ = {(α, E), (β : F)}

4More about the notions of name, inname and outname will be said in Chapter 5

20 CHAPTER 3. FROM SEQUENTS TO TERMS

We say that {x, y, z} is the domain of the context Γ, denoted dom(Γ), and
{α, β} is the domain of ∆. In order to simplify the notation for contexts,
instead of {(x,A), (y, B), (z, C)} we will write simply x : A, y : B, z : C. The
inference rules for this variant of the sequent calculus are given in Figure 3.3.

(axiom)
x : A ⊢ α : A

Γ ⊢ α : A,∆ Γ′, y : B ⊢ ∆′

(L→)
Γ,Γ′, x : A→ B ⊢ ∆,∆′

Γ, x : A ⊢ α : B,∆
(R→)

Γ ⊢ β : A→ B,∆

Γ ⊢ α : A,∆ Γ′, x : A ⊢ ∆′

(cut)
Γ,Γ′ ⊢ ∆,∆′

Γ ⊢ ∆
(L-weakening)

Γ, x : A ⊢ ∆

Γ ⊢ ∆
(R-weakening)

Γ ⊢ α : A,∆

Γ, x : A, y : A ⊢ ∆
(L-contraction)

Γ, z : A ⊢ ∆

Γ ⊢ α : A, β : A,∆
(R-contraction)

Γ ⊢ γ : A,∆

Figure 3.3: The system G1 with pairs

The system presented by Figure 3.3 needs to be explained in more detail.
One of the most important things is how the formulas are labeled. To start,
we do not want to allow the situation where one name is used to label two
distinctive formulas. For example context x : A, x : B is ill-formed. This
restriction is referred to as the context convention.

In this framework we introduce the naming convention, which simply
means that we label every occurrence of a formula with a different, fresh
name. Recall that we start from the system G1, where contexts are multisets
and one formula may occur several times in a context. Thus by assigning
names to formulas in that way we get the system contexts are sets, that is,
every pair (name, formula) occurs at most once.

We also have a convention on commas. The commas in both, premise
and conclusion, are used to denote the disjoint set union. For example in
the rule

Γ, x : A ⊢ α : B,∆
(R→)

Γ ⊢ β : A→ B,∆

3.2. THE VARIANTS OF CLASSICAL SYSTEMS 21

the comma in the conclusion is disjoint set union since β is chosen to be a
fresh name, and therefore there is no implicit contraction. In the premise,
commas denote the disjoint set union, since it is assumed that there is no
repetition of elements.

Two-premise inference rules in our calculus are given in the context-
splitting style. Take as an example the rule

Γ ⊢ α : A,∆ Γ′, y : B ⊢ ∆′

(L→)
Γ,Γ′, x : A→ B ⊢ ∆,∆′

When joining contexts we have to be careful not to break the context-
convention, which would be the case when for example z : C, z : D occur in
the same context, and this can always be achieved by appropriate renam-
ing. Another case to think about when joining the contexts, say Γ, and Γ′,
is the possibility to get two identical pairs, say z : C, z : C, in the conclu-
sion. We avoid this by appropriate renaming before making the disjoint set
union Γ,Γ′.

From sequent proofs to terms

Names that have been used to label formulas are employed to build terms
of the ∗X calculus. These terms capture the structure of proofs given in
the sequent calculus as formulated previously. Moreover the computation
in ∗X calculus corresponds to proof-transformation (cut-elimination) in the
sequent calculus (see Chapter 5).

22 CHAPTER 3. FROM SEQUENTS TO TERMS

Chapter 4

Related computational

interpretations

4.1 The X calculus

This section presents the X calculus which is, together with the λlxr-calculus,
a predecessor of ∗X . The design of ∗X calculus has been directly inspired by
the X calculus, while the other two calculi presented in the thesis (called dX
and c©X) are indirectly influenced by X through the ∗X calculus.

The X calculus is presented is van Bakel, Lescanne and Lengrand in
[vBLL05]. The origin of the language is in the notations for classical sequent
proofs by Urban [Urb00], introduced as a tool to express the cut-elimination
procedure as a term rewriting system, which later allowed him to prove
strong normalization of cut-elimination. A close variant of the language has
been studied by Lengrand in relation with the λ̄µµ̃-calculus, via the calculus
there called λξ [Len03].

It is argued in [Urb00] that non-determinism, although it leads to non-
confluence, should be considered as an intrinsic property of classical logic.
This point of view was taken in some earlier works, for example [BB94,
Her95, BBS97] and more recently in [Gir01, Hyl02]. This means that, in
classical logic, we depart from the traditional intuitionistic (and linear)
logic doctrine, where cut-elimination is an equality preserving operation on
proofs.

23

24 CHAPTER 4. RELATED COMPUTATIONAL INTERPRETATIONS

4.1.1 The syntax

The X calculus corresponds to a sequent system with implicit structural
rules (Figure 3.2, page 19). Since we consider only the implicative fragment,
the only inference rules are axiom, cut, left-arrow introduction and right-
arrow introduction. Therefore, in the X calculus there are four constructors.
The syntax is presented by Figure 4.1.

P,Q ::= 〈x.α〉 capsule

| x̂ P β̂ . α exporter

| P α̂ [x] ŷ Q importer

| Pα̂ † x̂Q cut

Figure 4.1: The syntax of X

The term capsule corresponds to an axiom rule, cut corresponds to a
cut-rule, importer corresponds to left-arrow introduction rule and exporter
corresponds to right-arrow introduction rule.1 The syntax is then extended
by two active cuts that reflect the non-deterministic choice which exists in
the sequent calculus.

P,Q ::= · · ·
| Pα̂ † x̂Q left-active cut
| Pα̂ † x̂Q right-active cut

In Urban’s work where term annotation for proofs are defined, his raw terms
correspond to X -terms in the following way:

〈x.α〉 = Ax(x, α)

x̂ P β̂ . α = ImpR((x)〈β〉M,α)

P α̂ [x] ŷ Q = ImpL(〈α〉P, (y)Q, x)

Pα̂ † x̂Q = Cut(〈α〉P, (x)Q)

He latter adds labeled cuts: C
←−
ut(〈α〉P, (x)Q) to denote left-active version

and C
−→
ut(〈α〉P, (x)Q) to denote right-active version of the Cut(〈α〉P, (x)Q).

4.1.2 The computation

The reduction procedure defined on X -terms corresponds to the process of
cut-elimination in the sequent calculus. There are 20 reduction rules, which

1In the original papers importer and exporter were called import and mediator.

4.1. THE X CALCULUS 25

are split into logical, activation and propagation groups. The way the rules
are grouped differs slightly from the approach in [vBLL05, vBL07]. Also,
the naming of rules is adjusted so as to ease the comparison with ∗X -rules.

Logical rules

Logical rules define how to eliminate a cut, when both names cut is referring
to are freshly introduced.

Definition 1 (Fresh introduction) The notion of fresh introduction is
defined as follows:

– The term P freshly introduces x if P = 〈x.α〉 or P = Qα̂ [x] ŷ R,
with x /∈ N(Q), x /∈ N(R).
– The term P freshly introduces α if P = 〈x.α〉 or P = x̂ Q β̂ . α,
with α /∈ N(Q).

Informally, names are freshly introducesd if they appear once and only once,
at the top level of their corresponding terms.2 The cut in this position can
not be activated. Logical rules are shown by Figure 4.2.

(cap-ren) : 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉

(exp-ren) : (ŷ P β̂ . α)α̂ † x̂〈x.γ〉 → ŷ P β̂ . γ, α /∈ N(P)

(imp-ren) : 〈y.α〉α̂ † x̂(Q β̂ [x] ẑ R) → Q β̂ [y] ẑ R, x /∈ N(Q), x /∈ N(R)

(ei-insert) : (ŷ P β̂ . α)α̂ † x̂(Q γ̂ [x] ẑ R) → either

{
(Qγ̂ † ŷP)β̂ † ẑR

Qγ̂ † ŷ(P β̂ † ẑR)

α /∈ N(P), x /∈ N(Q), x /∈ N(R)

Figure 4.2: Logical rules in X

The first three rules specify a renaming. The last rule is called insertion
and defines an interaction between an importer and an exporter. It inserts
an immediate subterm of an exporter between two immediate subterms of
an importer.

2This is more complex then in ∗X , where the linearity condition guarantees that if a
name occurs at the top level, then it does not occur elsewhere.

26 CHAPTER 4. RELATED COMPUTATIONAL INTERPRETATIONS

Activation rules

The activation rules describe the non-deterministic choice which exists in
classical cut-elimination. If a cut refers to names which both do not occur in
their corresponding terms, then the choice is also a source of non-confluence.
This choice has usually been bypassed in the earlier interpretations, either
by restricting the reduction procedure (a very common one is not to allow
cuts to pass over other active cuts), or by giving priority to a certain strategy
(as in [DJS96], by assigning colors to formulas).

Here, the cut can be activated in both directions only if both conditions
are fulfilled at the same time, as shown by Figure 4.3.

(act-L) : Pα̂ † x̂Q → Pα̂ † x̂Q, if α not freshly introduced by P

(act-R) : Pα̂ † x̂Q → Pα̂ † x̂Q, if x not freshly introduced by Q

Figure 4.3: Activation rules in X

Remark The activation is followed by some of the propagation rules (see
Figures 4.4 and 4.5).

Propagation rules

Left and right propagation rules are given in Figures 4.4 and 4.5, respectively.
Numerous propagation rules describe how a cut is being pushed through the
structure of terms, but also define situations when deactivation, erasure and
duplication occurs. This means that in the X calculus several actions can be
defined by a single reduction rule. Take for example the rule from Figure 4.5
which involves propagation, duplication and deactivation:

(† -prop-dupl-deact) :

Pα̂ † x̂(Q β̂ [x] ẑ R)→ Pα̂ † x̂((Pα̂ † x̂Q) β̂ [x] ẑ (Pα̂ † x̂R))

In the ∗X calculus these operations are strictly separated, in a sense that
one reduction rule only describes one action. The rule above is split into
three cases, due to linearity which allows at most one occurrence of a free
name in a term. Therefore, instead of the above rule, in ∗X we have:

4.1. THE X CALCULUS 27

(† -deact) : Pα̂ † x̂(Q β̂ [x] ẑ R) → Pα̂ † x̂(Q β̂ [x] ẑ R)

(† imp-prop1) : Pα̂ † x̂(Q β̂ [y] ẑ R) → (Pα̂ † x̂Q) β̂ [y] ẑ R, x 6= y, x ∈ N(Q)

(† imp-prop2) : Pα̂ † x̂(Q β̂ [y] ẑ R) → Q β̂ [y] ẑ (Pα̂ † x̂R), x 6= y, x ∈ N(R)

Left propagation rules define computation when a cut is left-activated. There
is a special rule to describe propagation over a capsule (whose both names
are bound by cuts), labeled († -(c)-prop-deact). This rule is introduced to
prevent possible infinite reductions, for which the reasons are of syntactic
nature.

(† -eras) : 〈x.α〉β̂ † ŷR → 〈x.α〉, α 6= β

(† -deact) : 〈x.β〉β̂ † ŷR → 〈x.β〉β̂ † ŷR

(† -prop) : (x̂ P γ̂ . α)β̂ † ŷR → x̂ (P β̂ † ŷR) γ̂ . α, α 6= β

(† -prop-dupl-deact) : (x̂ P γ̂ . β)β̂ † ŷR → (x̂ (P β̂ † ŷR) γ̂ . β)β̂ † ŷR

(† -prop-dupl1) : (P α̂ [x] ẑ Q)β̂ † ŷR → (P β̂ † ŷR) α̂ [x] ẑ (Qβ̂ † ŷR)

(† -(c)-prop-deact) : (Pα̂ † x̂〈x.β〉)β̂ † ŷR → (P β̂ † ŷR)α̂ † ŷR

(† -prop-dupl2) : (Pα̂ † x̂Q)β̂ † ŷR → (P β̂ † ŷR)α̂ † x̂(Qβ̂ † ŷR), Q 6= 〈x.β〉

Figure 4.4: Left propagation (erasure/duplication/deactivation) in X

(† -eras) : Pα̂ † x̂〈y.β〉 → 〈y.β〉, x 6= y

(† -deact) : Pα̂ † x̂〈x.β〉 → Pα̂ † x̂〈x.β〉

(† -prop) : Pα̂ † x̂(ŷ Q γ̂ . β) → ŷ (Pα̂ † x̂Q) γ̂ . β

(† -prop-dupl1) : Pα̂ † x̂(Q β̂ [y] ẑ R) → (Pα̂ † x̂Q) β̂ [y] ẑ (Pα̂ † x̂R), x 6= y

(† -prop-dupl-deact) : Pα̂ † x̂(Q β̂ [x] ẑ R) → Pα̂ † x̂((Pα̂ † x̂Q) β̂ [x] ẑ (Pα̂ † x̂R))

(† -(c)-prop-deact) : Pα̂ † x̂(〈x.β〉β̂ † ŷR) → Pα̂ † ŷ(Pα̂ † x̂R)

(† -prop-dupl2) : Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q)β̂ † ŷ(Pα̂ † x̂R), Q 6= 〈x.β〉

Figure 4.5: Right propagation (erasure/duplication/deactivation) in X

4.1.3 The type system

The type assignment system for the X calculus is given by Figure 4.6.

28 CHAPTER 4. RELATED COMPUTATIONAL INTERPRETATIONS

(axiom)
〈x.α〉 ··· Γ, x : A ⊢ α : A,∆

P ··· Γ ⊢ α : A,∆ Q ··· Γ, x : B ⊢ ∆
(→L)

P α̂ [y] x̂ Q ··· Γ, y : A→ B ⊢ ∆

P ··· Γ, x : A ⊢ α : B,∆
(→R)

x̂ P α̂ . β ··· Γ ⊢ β : A→ B,∆

P ··· Γ ⊢ α : A,∆ Q ··· Γ, x : A ⊢ ∆
(cut)

Pα̂ † x̂Q ··· Γ ⊢ ∆

Figure 4.6: The type system for X

4.2 The λlxr-calculus

In this section we present the intuitionistic λlxr-calculus [KL06, KL07], with
its syntax, congruence relation and reduction relation. Besides X , this cal-
culus was another starting point for the design of ∗X calculus. The approach
which was taken in λlxr when introducing terms for erasure and duplication
is similar to the the one taken when adding those terms to X .

The λlxr-calculus was created as an attempt to relate the two elementary
decompositions. On the one hand, there exists a decomposition of intuition-
istic connectives in linear logic [Gir87]. On the other hand, the principal
reduction rule of λ-calculus [Chu85], can be decomposed into more elemen-
tary steps. This is due to a fact that β-reduction includes a meta-level
substitution, which, by assigning it a syntactic representation, can be ma-
nipulated explicitly [ACCL91], thus breaking β-reduction into more atomic
steps. This decomposition of a meta-level substitution brings the theoreti-
cal work closer to practical implementations. The deep connection between
these decompositions is shown by relating this calculus to linear logic proof-
nets [Gir87].

The λlxr-calculus is a simple term language which extends the calculus of
explicit substitutions λx [BR95], with new operators for both erasure and du-
plication. This calculus has been designed to provide a sound and complete
correspondence with the intuitionistic fragment of linear logic proof-nets.
The basic features of λlxr-calculus are:

• Simple syntax which introduces explicit eraser and duplicator, and
intuitive operational semantics via equations and reduction rules.

• Sound and complete correspondence with a proof-net model. More-
over, reductions and equations have a natural correspondence with

4.2. THE λLXR-CALCULUS 29

those of proof nets.

• Preservation of linearity and free variables, and for typed language
preservation of types.

• Full composition of explicit substitutions.

• Preservation of strong normalization.

• Strong normalization of typed terms.

• Step-by-step simulation of β-reduction.

• Confluence.

Many calculi implementing explicit substitutions were presented over the
past years. The result of Melliès [Mel95] has shown that there are strongly
normalizable terms in the λ-calculus that are not strongly normalizable in
some explicit versions of the λ-calculus; for example see [ACCL91]. Moti-
vated to avoid this phenomenon, various approaches were taken to impose re-
strictions, which usually lead to losing some of the desirable properties. The
ideas presented in the work of David and Guillaume on λws-calculus [DG01],
were of particular importance for λlxr-calculus, which tries to implement its
underlying language without loosing its good properties. Kesner [Kes07]
presents a very simple calculus of explicit substitutions which preserves
strong normalization and faithfully implements implicit substitution.

4.2.1 The syntax

The syntax for raw terms is given by the grammar presented in Figure 4.7.

t ::= x variable

| λx.t abstraction

| t t application

| t〈x = t〉 closure

| Wx(t) weakening

| Cy,z
x (t) contraction

Figure 4.7: The syntax of the λlxr-calculus

A set of variables x, y, z, ... is assumed to be in bijection with natural
numbers and thus equipped with a total order.

30 CHAPTER 4. RELATED COMPUTATIONAL INTERPRETATIONS

The variable x is bound in the terms λx.t and t〈x = t〉, whilst Cy,z
x (t)

binds the variables y and z in t. In the terms Wx(t) and Cy,z
x (t), the variable

x is free. fv(t) is used to denote a set of free variables of t.

The notion of linearity The term is said to be linear if it satisfies the
following two conditions:

• in every subterm, every variable has at most one free occurrence, and

• every binder does bind a free occurrence of a variable (and therefore
only one, if we take into consideration the first point).

In general, every non-linear term produced by the syntax can be translated
into linear one. This has been shown in Section 4 of [KL07], which studies
the relation between λ-calculus and λlxr-calculus.

4.2.2 Congruence equations for λlxr-terms

A congruence relation is defined on terms, denoted ≡. It is the smallest
reflexive, symmetric, transitive and context-closed relation induced by the
rules given in Figure 4.8.

Cx,v
w (Cy,z

x (t)) ≡AC
Cx,y

w (Cz,v
x (t))

Cy,z
x (t) ≡Cc

Cz,y
x (t)

Cy′,z′

x′ (Cy,z
x (t)) ≡PC

Cy,z
x (Cy′,z′

x′ (t)) if x 6= y′, z′ and x′ 6= y, z

Wx(Wy(t)) ≡Pw
Wy(Wx(t))

t〈x = u〉〈y = v〉 ≡Ps
t〈y = v〉〈x = u〉 if y /∈ fv(u) and x /∈ fv(v)

Cy,z
w (t)〈x = u〉 ≡Pcs

Cy,z
w (t〈x = u〉) if x 6= w and y, z /∈ fv(t)

Figure 4.8: Congruence axioms for λlxr-terms

The rule Ac describes the internal associativity of contraction. Similarly,
the rule Cc expresses the internal commutativity of contraction. Weaken-
ings, contractions and substitutions can also be commuted on their own;
this is referred to as permutability. The equations Pc, Pw and Ps express the
permutability of independent contractions, weakenings, and substitutions,
respectively. The equation Pcs expresses the permutability between inde-
pendent contraction and substitution. Notice that the equation Ac needs
the side condition x 6= y, v, while Pcs needs x 6= y, but these cases are in the
scope of Barendregt’s convention which is assumed.

4.2. THE λLXR-CALCULUS 31

General properties of ≡ The congruence relation ≡ satisfies the follow-
ing properties. It preserves the set of free variables and linearity. It also
preserves types if we speak about typed calculus (see Figure 4.9). Besides
that, each congruence rule induces a congruence class, and each congruence
class contains finitely many terms. For more details see Sections 2.3 and 2.5
in [KL07].

4.2.3 The reduction relation

The reduction relation of the λlxr-calculus is the relation generated by the
reduction rules presented on the next page, modulo the congruence relation
presented in Figure 4.8.

The notation The notation Φ,Υ,Σ,Ψ... is used to denote finite lists of
variables (each of the symbols denotes a list), with no repetition. There
exists a renaming operation denoted as RΦ

Ψ(t), which is defined as renaming
of Ψ by Φ on a term t. This means, if we assume that Φ = (x1, ..., xn),
Ψ = (y1, ..., yn), that we perform simultaneous substitutions of every free
occurrence of yi by xi, for i = 1, ..., n. In the case of ∗X , a renaming
operation is used in the same situations, but it is implemented by indexing
names in order to simplify the notation.

The notation CΨ,Υ
Φ (t) and WΨ(t) is introduced to generalize contraction

and weakening from variables to lists of variables. This is done for simplicity
reasons. In the case of empty lists we have C∅,∅

∅ (t) = t and W∅(t) = t.

Sometimes a set of variables is used in places where a list is expected
in order to make formulation of the primarily reduction rules more under-
standable. There is no ambiguity, as a set of variables can always be viewed
as a list, according to the total order that exists on the set of variables.

General properties of reduction relation Similarly to congruence rules,
the reduction rules satisfy the preservation properties: the reduction rules
preserve the set of free variables and linearity. Then there are properties
of confluence, step-by-step preservation of β-reduction and, for the typed
language (see Figure 4.9), preservation of strong normalization, strong nor-
malization and subject reduction property.

32 CHAPTER 4. RELATED COMPUTATIONAL INTERPRETATIONS

B (λx.t)u −→ t〈x = u〉

System x

Abs (λy.t)〈x = u〉 −→ λy.(t〈x = u〉)

App1 (tv)〈x = u〉 −→ t〈x = u〉v x ∈ fv(t)

App2 (tv)〈x = u〉 −→ tv〈x = u〉 x ∈ fv(u)

Var x〈x = u〉 −→ u

Weak1 Wx(t)〈x = u〉 −→ Wfv(u)(t)

Weak2 Wy(t)〈x = u〉 −→ Wy(t〈x = u〉) x 6= y

Cont Cy,z
x (t)〈x = u〉 −→ CΨ,Υ

fv(u)(t〈y = u1〉〈z = u2〉)

where Ψ,Υ are fresh, u1 = R
fv(u)
Ψ , u2 = R

fv(u)
Υ

Comp t〈y = v〉〈x = u〉 −→ t〈y = v〈x = u〉〉 x ∈ fv(v)

System r

WAbs λx.Wy(t) −→ Wy(λx.t) x 6= y

WApp1 Wy(u)v −→ Wy(uv)

WApp2 uWy(v) −→ Wy(uv)

WSubs t〈x = Wy(u)〉 −→ Wy(t〈x = u〉)

Merge Cy,z
w (Wy(t)) −→ Rz

w(t)

Cross Cy,z
w (Wx(t)) −→ Wx(Cy,z

w (t)) x 6= y, x 6= z

CAbs Cy,z
w (λx.t) −→ λx.Cy,z

w (t)

CApp1 Cy,z
w (tu) −→ Cy,z

w (t) u y, z ∈ fv(t)

CApp2 Cy,z
w (tu) −→ t Cy,z

w (u) y, z ∈ fv(u)

CSubs Cy,z
w (t〈x = u〉) −→ t〈x = Cy,z

w (u)〉 y, z ∈ fv(u)

4.2.4 Typing rules

This section presents the simply-typed λ-calculus. Types are defined by the
following grammar, where σ ranges over a countable set of atomic types.

A ::= σ | A→ A

4.3. THE λ̄µµ̃-CALCULUS 33

An environment Γ is a finite mapping from variables to types, i.e., a
finite set of pairs x : A. Comma in the expression Γ,∆ denotes the disjoint
union of the environments Γ and ∆. A judgement is an object of the form
Γ ⊢ t : A, where Γ is an environment, t is a λlxr-term and A is a type.

The typing rules of the simply-typed λlxr-calculus are shown in Fig-
ure 4.9.

(axiom)
x : A ⊢ x : A

Γ, x : B ⊢ t : A ∆ ⊢M : B
(subs)

Γ,∆ ⊢ t〈x = M〉 : A

Γ ⊢ t : A→ B ∆ ⊢ v : A
(app)

Γ,∆ ⊢ (tv) : B

Γ, x : A ⊢ t : B
(lambda)

Γ ⊢ λx.t : A→ B

Γ, x : A, y : A ⊢M : B
(cont)

Γ, z : A ⊢ Cx,y
z (M) : B

Γ ⊢ t : A
(weak)

Γ, x : B ⊢Wx(t) : A

Figure 4.9: Typing rules for the λlxr-terms

4.3 The λ̄µµ̃-calculus

The λ̄µµ̃-calculus is introduced by Curien and Herbelin [CH00] as one of the
first calculi to provide a Curry-Howard correspondence with the Gentzen’s
sequent calculus for classical logic. It can be seen as a symmetric variant
of Parigot’s λµ-calculus [Par92], which is a natural deduction calculus, ex-
tended to classical framework by enabling to deal with multiple conclusions.

The symmetries are expected to exist in calculi related to sequent cal-
culus, and in λ̄µµ̃ they are of two kinds: term/evaluation context and call-
by-name/call-by-value. They can be seen as dualities, the former being the
static, and the later dynamic duality. Computational symmetries were ex-
hibited in some earlier works [BB94, Fil89].

There exists a version of λ̄µµ̃-calculus with explicit substitution, intro-
duced first in [Her01] and later studied in the context of strong normalization
in [Pol04].

The syntax The basic constructs are called commands, terms, and con-
texts. The syntax of λ̄µµ̃ is given by Figure 4.10, where c ranges over the
set of commands, v ranges over the set of terms and e ranges over the set of
contexts:

34 CHAPTER 4. RELATED COMPUTATIONAL INTERPRETATIONS

c ::= 〈v ‖ e〉
v ::= x | λx.v | µα.c
e ::= α | v · e | µ̃x.c

Figure 4.10: The syntax of λ̄µµ̃-calculus

There are two kinds of variables: term variables, denoted by x, y, . . .
and context variables, denoted by α, β, Term variables can be bound
by λ-abstraction or by µ̃-abstraction, whereas the context variable can be
bound by µ-abstraction (λ, µ and µ̃ are binders). The sets of free term and
context variables are defined as usual, respecting Barendregt’s convention
[Bar84] that no variable can be both bound and free in the term.

Reduction rules There are only three rules that characterize the reduc-
tion in λ̄µµ̃: The above substitutions are defined as to avoid variable cap-

(→′) 〈λx.v1 ‖ v2 · e〉 → 〈v2 ‖ µ̃x.〈v1 ‖ e〉〉
(µ) 〈µα.c ‖ e〉 → c[e/α]
(µ̃) 〈v ‖ µ̃x.c〉 → c[v/x]

Figure 4.11: The reduction rules of λ̄µµ̃-calculus

ture [Bar84].
The calculus has a critical pair 〈µα.c1 ‖ µ̃x.c2〉 where both rules (µ)

and (µ̃) can be applied at the same time, producing two different results.
For example,

〈µα.〈y ‖ β〉 ‖ µ̃x.〈z ‖ γ〉〉 →µ 〈y ‖ β〉

〈µα.〈y ‖ β〉 ‖ µ̃x.〈z ‖ γ〉〉 →µ̃ 〈z ‖ γ〉

Hence, the calculus is not confluent. But if the priority is given to one of
the rules, we obtain two confluent subcalculi. In other words, there are two
possible reduction strategies in the calculus that depend on the orientation
of the critical pair. If the priority is given to (µ) redexes, call-by-value
reduction is obtained, whereas giving the priority to (µ̃) redexes simulates
call-by-name reduction.

It is also possible to give two reduction rules for η reduction:

(ηµ) µα.〈v ‖ α〉 → v if α 6∈ fv(v)
(ηµ̃) µ̃x.〈x ‖ e〉 → e if x 6∈ fv(e)

4.3. THE λ̄µµ̃-CALCULUS 35

(axR)

Γ, x : A ⊢

☛

✡

✟

✠
x : A ∆

(axL)

Γ

☛

✡

✟

✠
α : A ⊢ α : A,∆

Γ, x : A ⊢

☛

✡

✟

✠
v : B ∆

(→R)

Γ ⊢

☛

✡

✟

✠
λx.v : A→ B ∆

Γ ⊢

☛

✡

✟

✠
v : A ∆ Γ

☛

✡

✟

✠
e : B ⊢ ∆

(→L)

Γ

☛

✡

✟

✠
v · e : A→ B ⊢ ∆

c : (Γ ⊢ α : A,∆)
(µR)

Γ ⊢

☛

✡

✟

✠
µα.c : A ∆

c : (Γ, x : A ⊢ ∆)
(µ̃L)

Γ

☛

✡

✟

✠
µ̃x.c : A ⊢ ∆

Γ ⊢

☛

✡

✟

✠
v : A ∆ Γ

☛

✡

✟

✠
e : A ⊢ ∆

cut
〈v ‖ e〉 : (Γ ⊢ ∆)

Figure 4.12: The type system for λ̄µµ̃-calculus

The type system λ̄µµ̃-terms correspond to proofs in a system denoted
by LKµµ̃. This is a particular formulation of classical Gentzen’s system LK,
as one formula in a sequent can be distinguished. Therefore, besides regular
sequents Γ ⊢ ∆, there are two other kinds of sequents, which have one
distinguishable formula either in the premise, or in the conclusion: 3

Γ
✄
✂

�
✁A ⊢ ∆ and Γ ⊢

✄
✂

�
✁A ∆

This actually determines where the computation had happend and where it
will continue.

Simple types of the form A,B ::= p | A→B are assigned to the terms
of the calculus, where p ranges over type variables. The type assignment
system for the λ̄µµ̃-calculus is given in Figure 4.12. The relation between
the λ̄µµ̃-calculus and ∗X calculus is studied in Section 6.2 (page 89).

3Here a distinguished formula is denoted by putting an oval box around it.

36 CHAPTER 4. RELATED COMPUTATIONAL INTERPRETATIONS

Chapter 5

Erasure and duplication: the
∗X calculus

In this chapter we give the syntax and reduction rules of the untyped
∗X calculus, followed by the basic operational properties and the defini-
tion of typing rules. Although it is presented here as a counterpart of the
implicative segment of the sequent calculus for classical logic, the system
can naturally be extended to encompass other connectives as well. This
extension is presented in Section 5.6.

5.1 The syntax

Terms are built from names. This concept differs essentially from the one
applied in λ-calculus, where variable is the basic notion. The difference lies
in the fact that a variable can be substituted by an arbitrary term, while a
name can be only renamed (that is, substituted by another name). In our
calculus the renaming is explicit, which means that it is expressed within
the language itself and is not defined in the meta-theory. The reader will
notice the presence of hats on some names. This notation has been borrowed
from Principia Mathematica [WR25] and is used to denote the binding of
a name.

Definition 2 (∗X -syntax) The syntax of ∗X -calculus is presented in Fig-
ure 5.1, where x, y, z... range over an infinite set of innames and α, β, γ...
range over an infinite set of outnames.

37

38CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

P,Q ::= 〈x.α〉 capsule

| x̂ P β̂ . α exporter

| P α̂ [x] ŷ Q importer

| Pα̂ † x̂Q cut

| x⊙ P left-eraser

| P ⊙ α right-eraser

| z<
bx
by〈P] left-duplicator

| [P 〉
bα
bβ >γ right-duplicator

Figure 5.1: The syntax of ∗X

Elements of syntax

There are eight constructors introduced in the syntax. To start with, we
may distinguish the ground element (a capsule) from the higher order ones
(that is, compound ones - the rest of the terms).

〈x.α〉 : A capsule - is the only ground term, as it can not be decomposed
into smaller elements. This is the starting component to build any term. It
codes the axiom of the sequent calculus. It has one free inname x and one
free outname α.1

ŷ P β̂ . α : An exporter - is a higher order term, obtained by binding an
inname y and an outname β of the subterm P and exporting this function-
ality on the new outname α. An exporter corresponds to the right arrow
introduction rule of the sequent calculus (see Figure 5.10 on page 61).

P β̂ [x] ŷ Q : An importer - is a term built from two subterms P and Q
by binding an outname β of the first and an inname y of the second and
making this functionality available on the free inname z. An importer cor-
responds to a left arrow introduction rule in the sequent calculus. The
interaction between an exporter and an importer is specific and leads to one
of the most important reduction rules in the calculus.

Pα̂ † x̂Q : A cut - is a term which originates from the cut rule in the
sequent calculus. A cut is constructed by binding an outname α of a term P
and an inname β of a term Q, as shown by the syntax. The process of
computation will go towards eliminating cuts from terms.

x⊙ P : Left eraser - is obtained by adding a fresh inname x to an arbi-
trary term P. This term will be used to implement one of two (symmetric)

1See Definition 3 on page 39 for free innames and free outnames.

5.1. THE SYNTAX 39

kinds of erasure in the calculus. Left-eraser codes left-weakening of the
sequent calculus (see Figure 5.10 on page 61).

P ⊙ α : Right eraser - is constructed by adding a fresh outname α to
an arbitrary term P . Its use is in implementing the other kind of erasure
in the calculus. Right eraser originates from the right-weakening rule of the
sequent calculus.

z<
bx
by〈P] : Left duplicator - is used to implement duplication, i.e., one of

the two symmetric kinds of duplication. It is obtained by binding the two
innames x, y of the term P and introducing a single fresh free inname z.
Left duplicator originates from the left-contraction rule (see Figure 5.10 on
page 61).

[P 〉
bα
bβ >γ : Right duplicator - is used to implement the second kind of

duplication in the calculus. It is obtained by binding the two outnames
α, β of the term P and introducing a fresh free name γ. Right duplicator is
inspired by the right-contraction rule.

5.1.1 Free and bound names

Names can be free or bound.

Definition 3 (Free Names) The sets of free innames and free outnames
are defined in Figure 5.2.

S I(S) O(S)

〈x.α〉 x α

x̂ P β̂ . α I(P)\{x} (O(P)\{β}) ∪ {α}

P α̂ [x] ŷ Q I(P) ∪ (I(Q)\{y}) ∪ {x} (O(P)\{α}) ∪O(Q)

Pα̂ † x̂Q I(P) ∪ (I(Q)\{x}) (O(P)\{α}) ∪O(Q)

x⊙ P I(P) ∪ {x} O(P)

P ⊙ α I(P) O(P) ∪ {α}

x<
cx1
cx2
〈P] (I(P)\{x1, x2}) ∪ {x} O(P)

[P 〉cα1
cα2

>α I(P) (O(P)\{α1, α2}) ∪ {α}

Figure 5.2: Free names

We write N(P) for the set of free names of P , I(P) the sets of free
innames of P , and O(P) the set of free outnames of P . Thus N(P) =

40CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

I(P) ∪ O(P). A name which occurs in P and which is not free is called a
bound name.

Notice that some term-constructors bind two names. It can be either
two innames, two outnames or an inname and an outname. Moreover, these
names sometimes belong to different subterms, as in the case of an exporter,
or a cut. Independently from [UB01a], multiple binders were also proposed
by [CH00] for dealing with the right implication rule.

5.1.2 Definitions and notations

The notation introduced in [KL07] to describe the λlxr reduction rules is
rather complex (although reduction rules are rather simple), due to manip-
ulation with lists of free variables when erasing and duplicating terms. This
also incorporates the need for renaming operation. In the case of ∗X calcu-
lus, it gets even more complex, due to the fact that we use names of two
kinds, in contrast to the use of only variables in λlxr. Moreover, erasure and
duplication come in two symmetric forms, which requires additional care.

Sets and lists of free names The notation I(P), O(P) and N(P) is
used to define sets of free innames, free outnames and free names of P , re-
spectively. If we wish to see those sets as lists, we use the following notation:
IP , OP and N P , respectively. It is sometimes needed to use I(P) instead
of IP , and similarly for outnames O(P), and names in general N(P). The
bar is used to denote that we see the given set of names as a list, according
to the total order which can be defined for the set of names. To exclude a
name from a list, say outname α, we write OP \α.

To denote a set of free innames in common for terms P,Q we use I(P∩Q).
Similarly for the free innames occurring in P but not in Q we use I(P\Q),
the union of free innames is I(P ∪ Q). Similarly for names and outnames.
In terms of lists, the notation used is the following: IP∩Q, IP∪Q, IP\Q for
lists of free innames, and similarly for names and outnames.

The concatenation of lists IP and IQ is simply IP , IQ. To denote the
binding of all names in one list, we use simply Î, Ô.

Indexing Indexing is in fact a renaming operation, defined on free names,
and used as side mechanism when implementing reduction rules.2 We have

2Indexing is primarily used to implement duplication, as it will be presented in sub-
section 5.2.2.

5.1. THE SYNTAX 41

chosen to use indexing, denoted ind, to make the syntax as simple as possi-
ble. We define indexing of free names for terms, lists and sets. For example
ind(P, x, 1) means that the free name x in P is renamed by x1. This op-
eration is primarily introduced to manipulate sets and lists of names, so
Pi = ind(P,N(P), i) means that Pi is obtained by indexing free names in P
by index i, where i ∈ N . Simple notation Pi for cases such as this one will be
used when possible. We assume that indexing always creates fresh names.
As we use it indexing preserves linearity.

Lists of free names can be indexed. We use Ii (Oi,Ni) to denote that all
innames (outnames, names) in the list I (O,N) are indexed by i. Accord-
ingly, to denote an indexed list (with index i) of free innames (outnames,
names) of a term P we use: IP

i (OP
i ,N P

i). Similarly for sets of free names.

Renaming We define a renaming operation . It is a meta-operation which
stands for the replacing of one free name in a term by another free name. Un-
like in λ-calculus where a variable can be substituted by an arbitrary term,
in X -like calculi one can only replace a name by another name (Section 6.3.2
shows how explicit substitution of λ-calculus can be encoded in ∗X). Let y
be a free name in P , then P{x/y} denotes the renaming in P of y by a fresh
name x.

If the free innames of P are given by IP = (x, y, ...), and IP
1 = (x1, y1, ...)

is an indexed list, then P{I1/I} denotes the term P in which all free innames
were simultaneously substituted by their indexed (by an index 1) variant.
This notation allows us to build more subtle expressions. For example, given
the terms P,Q we may construct P{IP∩Q

1 /IP∩Q}, to denote P in which only
the free innames occurring in both, P and Q, are indexed by an index 1.
Similar combinations are possible for outnames and names, with respect to
also P ∪Q and P\Q.

Convention on names We adopt a convention on names, which is a
Barendregt-style convention as defined in [Bar84]. We will consider that “a
name is never both bound and free in the same term”. We also assume that
terms are defined up to α-conversion, that is, that the renaming of bound
innames or outnames does not change them.

Modules We define the notion of a module based on the definition of
terms. A module is a part of a term (not a subterm) which can be per-
meated through the structure of that term (and its subterms) during the
computation. This is defined by the so-called propagation rules. In some

42CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

sense it resembles the explicit substitution in the intuitionistic logic. There
are two symmetric forms of modules, namely left-module and right-module.
They are of the form:

α̂ † x̂Q and P β̂ † ŷ

We say that α and y are the handles of α̂ † x̂Q and P β̂ † ŷ, respectively.
We say that two modules are independent if the handle of one module does
not bind a free name inside the other module, and vice-versa, as follows:

independent modules condition

α̂ † x̂Q, β̂ † ŷR α /∈ N(R), β /∈ N(Q)

Pα̂ † x̂, Qβ̂ † ŷ x /∈ N(Q), y /∈ N(P)

Pα̂ † x̂, β̂ † ŷR x /∈ N(R), β /∈ N(P)

We extend the definition of independent modules to a set of modules. We
say that M is a set of independent modules if every pair of modules in M is
independent.

5.1.3 Linearity

In the ∗X calculus we consider only linear terms. We say that a term is
linear if it satisfies the following:

• Every name has at most one free occurrence, and

• Every binder does bind an actual occurrence of a name
(and therefore only one)

Linearity can be formally represented.

Definition 4 (Linear terms) Formal definition of linear terms is given
in Figure 5.3.

Although the ∗X -syntax in general produces non-linear terms, every non-
linear term can be translated into a linear one. Going from non-linear to
linear proofs as we define them, using duplicators and erasers, is natural.
This simply means that we analyze a proof, and if there are implicit contrac-
tions or weakenings, we make them explicit in a way that does not change
the meaning of the original proof.

We present the transformation from non-linear to linear terms in Sec-
tion 6.1. This is because the study of the relation between non-linear and

5.1. THE SYNTAX 43

〈x.α〉 linear

P linear , x , β ∈ N (P), α /∈ N (P)

x̂ P β̂ . α linear

P,Q linear , α ∈ N (P), x ∈ N (Q), y /∈ N (P ,Q), N (P) ∩N (Q) = ∅

P α̂ [y] x̂ Q linear

P,Q linear , α ∈ N (P), x ∈ N (Q), N (P) ∩N (Q) = ∅

Pα̂ † x̂Q linear

P linear , x /∈ N (P)

x⊙ P linear

P linear , α /∈ N (P)

P ⊙ α linear

P linear , x , y ∈ N (P), z /∈ N (P)

z<
bx
by〈P] linear

P linear , α, β ∈ N (P), γ /∈ N (P)

[P 〉
bα
bβ >γ linear

Figure 5.3: Linear terms

linear terms is in fact the study of the relation between the X calculus and
the ∗X calculus.

Here we give an illustration using the examples:

〈x.α〉 ⊙ α,

which is not linear since the outname α has two free occurrences. It can be
represented in ∗X by the term

[〈x.α1〉 ⊙ α2〉
ca1
cα2

>α

(notice the role of a duplicator). The other typical case of non-linearity is
when we have a binder which binds no free name, as for example, in the
term

x̂ 〈x.α〉 β̂ . γ

This is solved by using a linear term

x̂ (〈x.α〉 ⊙ β) β̂ . γ

instead (notice the role of an eraser).

44CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

Thus, the linearity is achieved thanks to the presence of terms repre-
senting weakening and contraction. In some sense they are used to mimic
non-linear terms; duplicator - when there are multiple occurrences of a name,
and eraser - when there is a binder but the free name is missing, i.e., a binder
does not bind anything.

A cut is an operation which binds two names, one inname and one out-
name. Names that are involved in a cut will be frequently mentioned and
therefore the following definition.

Definition 5 (Cut names) In a term Pα̂ † x̂Q names x and α are called
cut names.

Definition 6 (Principal name) We define the principal name of a term Q
in the following way:

Q principal names of Q

〈x.α〉 x, α

x̂M β̂ . α α

M α̂ [x] ŷ N x

Mα̂ † x̂N none

x⊙M x

M ⊙ α α

x<
cx1
cx2
〈M] x

[M〉cα1
cα2

>α α

Notice that most of the terms have only one principal name, with excep-
tions of cut and capsule, which have zero and two, respectively.

Remark Sometimes it is convenient to say: a term introduces3 the name,
instead of: the name is principal for a term.

Definition 7 (Logical and structural names) We say that a name is
logical if it is introduced by either: a capsule, an importer or an exporter.
We say that a name is structural if it is introduced by either an eraser or a
duplicator.4

3And therefore freshly introduces, due to linearity.
4Depending on whether a term codes logical or a structural inference rule.

5.1. THE SYNTAX 45

Thus a principal name can be also logical or structural and therefore we
have the following definition. This is important because it will be essential
to distinguish those two kinds of principal names in the reduction procedure.

Definition 8 (L-principal and S-principal names) We say that the name
is L-principal (S-principal) for the term P if it is a logical name (a structural
name) and principal name for P .

Lemma 9 Every term has at least a free logical outname.

Proof: The proof goes by routine induction on the structure of terms. �.

Remark This would be no longer true if we were to extend the system with
negation.

Definition 10 (Contexts) Contexts are formally defined as follows:

C{ } ::= { } | x̂ { } β̂ . α

| { } α̂ [x] ŷ Q | P α̂ [x] ŷ { }

| { }α̂ † x̂Q | Pα̂ † x̂{ }

| x⊙ { } | { } ⊙ α

| z<
bx
by〈{ }] | [{ }〉

bα
bβ >γ

| C{C{ }}

Remark A context is a term with a hole in which another term can be
placed. Therefore C{P} denotes placing the term P in the context C{ }.

Remark We use P = Q to denote that the terms P and Q are syntacti-
cally equal.

Definition 11 (Subterm relation 4) A term Q is a subterm of a term P ,
denoted as Q 4 P if there is a context C{ } such that P = C{Q}.

Lemma 12 The subterm relation is reflexive, antisymmetric and transitive
(i.e., is an order):

1. Reflexivity P 4 P

2. Antisymmetry If P 4 Q and Q 4 P then P = Q

3. Transitivity: If P 4 Q and Q 4 R then P 4 R

Remark The symbol = stands for syntactic equality.

46CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

Proof:

1. The first point is straightforward. If P 4 P , then by the subterm
definition we have ∃ C{ } such that P = C{P}. This stands if we
choose C{ } to be { }.

2. Let P 4 Q and Q 4 R. By definition ∃ C ′{ }, C ′′{ } such that
C ′{P} = Q and C ′′{Q} = P . From C ′{C ′′{Q}} = Q we derive C ′{ } =
C ′′{ } = { }. Finally we can conclude P = Q.

3. On the one hand, from P 4 Q by definition we have: ∃ C ′{ } such
that C ′{P} = Q. On the other hand, from Q 4 R by definition we
have: ∃ C ′′{ } such that C ′′{Q} = R. Thus, C ′′{C ′{P}} = R and
therefore by definition we have P 4 R. �

The following definition introduces the notion of a simple context, i.e., a
context which is not composed of other contexts. Notice that it is similar to
the definition of context, with the exception of the cases { } and C{C{ }}
which are omitted.

Definition 13 (Simple context) A context C{ } is called a simple con-
text if C{ } is one of the following:

C{ } := x̂ { } β̂ . α |

| { } α̂ [x] ŷ Q | P α̂ [x] ŷ { }

| { }α̂ † x̂Q | Pα̂ † x̂{ }

| x⊙ { } | { } ⊙ α

| z<
bx
by〈{ }] | [{ }〉

bα
bβ >γ

Using the definition of a simple context we will formulate the notion of
immediate subterm as follows.

Definition 14 (Immediate subterm) A term Q is an immediate sub-
term of P if P = C{Q} and C{ } is a simple context.

Example 15 A term can have either one, two, or zero immediate subterms.
For example, Qα̂ [x] ŷ R has two immediate subterms (these are P and Q),
x̂ Q β̂ . α has one (a term P), whilst 〈x.α〉 has zero immediate subterms.

Using the definition of a simple context we will formulate the notion of
immediate subterm as follows.

5.1. THE SYNTAX 47

Definition 16 (Immediate subterm) A term Q is an immediate sub-
term of P if P = C{Q} and C{ } is a simple context.

Definition 17 (Context with two holes) Using the definition of a con-
text C{ }, we specify the notion of a context with two holes in the follow-
ing way:

C{ , } ::= { } α̂ [x] ŷ { } | { }α̂ † x̂{ }

| C{C{ }, C{ }} | C{C{ , }}

Like for contexts (with one hole) we define the notion of a simple context
with two holes.

Definition 18 (Simple context with two holes)

C{ , } ::= { } α̂ [x] ŷ { } | { }α̂ † x̂{ }

Using this definition, the notion of immediate subterm can be naturally
extended as to encompass the cases when we speak about two immediate
subterms.

Lemma 19 The following holds:

1. If α ∈ N(P) then there exists a unique term Q 4 P such that α is a
principal name for Q.

2. If x ∈ N(P) then there exists a unique term R 4 P such that x is a
principal name for R.

Remark We will use the notation Qα to specify that Q has α as a principal
name. Similarly, we use Rx to emphasize that R has x as a principal name.

Proof: We prove the first point. The proof goes by induction on the
structure of a term P and case analysis.

Let α ∈ P .

• Case: α is a principal name for P . Then Q = P .

• Case: α is not a principal name for P . Then, either P = C{R} or
P = C{R1, R2}, where R,R1 and R2 denote immediate subterms of P .

48CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

– P = C{R}. By induction hypothesis, and since by linearity α ∈
R, we have: ∃Q 4 R such that α is a principal name for Q. By
using transitivity (lemma 12), from Q 4 R and R 4 P we infer
Q 4 P .

– P = C{R1, R2}. By the linearity condition we know that α
belongs to either N(R1) or N(R2) (not to both). Thus we have
two subcases, which correspond to the previous case. In the first
case C{R1, R2} is seen as C ′{R1}, where C ′{ } = C{{ }, R2},
and in the second case as C ′′{R2}, where C ′′{ } = C{R1, { }}.
Recall that R1, R2 are immediate subterms of P by definition.

The second point of the lemma refers to innames instead of outnames, and
the proof goes similarly. �

5.2 Reduction rules

In this section we define the reduction relation, →. Like classical cut-
elimination, this system has many rules. For convenience we split them
into groups, which are themselves split into symmetrical “left” and “right”
subgroup, with the exception of the logical group.

Reduction rules are grouped into

• Activation rules (left and right)

• Structural actions (left and right)

• Deactivation rules (left and right)

• Logical actions

• Propagation rules (left and right)

Some abbreviations We introduce some abbreviations in order to rep-
resent the reduction rules in a convenient form.

instead of we write

x1⊙(... (xn ⊙ P)...) x1 ⊙ ... xn ⊙ P

(...(P ⊙ α1) ...)⊙αn P ⊙ α1 ... ⊙ αn

x1<
by1
bz1
〈...xn<

cyn

czn
〈P]...] (x1, ..., xn)<

(by1,...,cyn)
(bz1,...,czn)〈P]

[...[P 〉
cβ1

cγ1
>α1...〉

cβn

cγn
>αn [P 〉

(cβ1,...,cβn)
(cγ1,...,cγn) >(α1, ..., αn)

5.2. REDUCTION RULES 49

Congruence rules At this point, we also assume some simple congru-
ence rules on terms. We do not devote special attention to them here, since
these rules represent a small fragment of what is studied in Part III. They
originate from the sequent calculus where independent weakening and con-
traction rules can be permuted. Also we have the commutativity of bound
names of a contraction, and an associativity of names when two contractions
are combined in a specific way.

• Commuting the names inside of a duplicator:

x<
cx1
cx2
〈P] ≡ x<

cx2
cx1
〈P]

[P 〉cα1
cα2

>α ≡ [P 〉cα2
cα1

>α

• Permuting independent duplicators:

x<
cx1
cx2
〈y<

by1
by2
〈P]] ≡ y<

by1
by2
〈x<

cx1
cx2
〈P]]

[[P 〉cα1
cα2

>α〉
cβ1

cβ2
>β ≡ [[P 〉

cβ1

cβ2
>β〉cα1

cα2
>α

[x<
cx1
cx2
〈P]〉cα1

cα2
>α ≡ x<

cx1
cx2
〈[P 〉cα1

cα2
>α]

the conditions in the first rule are y /∈ {x1, x2} and x /∈ {y1, y2} and
in the second β /∈ {α1, α2} and α /∈ {β1, β2}. These congruence rules
say that, provided they are not related, duplicators can be freely com-
muted. The third rule allows us drop parenthesis and use a simplified
notation

x <
cx1
cx2
〈P 〉cα1

cα2
> α

and more generally

I <

cI1
cI2
〈P 〉

cO1
cO2

>O

where I and O are lists of names. In the simple case when I = (),

we write simply [P 〉
cO1
cO2

>O. The case when O = () is not possible as
stated by Lemma 9.

• When the names are triplicated, one can do it in any order:

z<
by

cx3
〈y<

cx1
cx2
〈P]] ≡ z<

cx1
by 〈y<

cx2
cx3
〈P]]

[[P 〉cα1
cα2

>β〉
bβ

cα3
>γ ≡ [[P 〉cα2

cα3
>β〉

cα1
bβ >γ

50CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

This can be seen as an associativity of names bound by a ternary
duplicator.

• Permuting the erasers:

y ⊙ x⊙ P ≡ x⊙ y ⊙ P
P ⊙ α⊙ β ≡ P ⊙ β ⊙ α

(x⊙ P)⊙ α ≡ x⊙ (P ⊙ α)

The third rule suggests that we may drop parenthesis and write:

x ⊙ P ⊙ α,

and more generally we may write:

I ⊙ P ⊙O

We now present the reduction rules of ∗X calculus.

5.2.1 Activation rules

We now present activation rules which describe the non-deterministic choice
of classical cut-elimination. More precisely, during the process of cut-elimination
sometimes we have to choose the left or the right subtree to push the cut
further. This choice is captured by the activation rules. But before defining
the reduction rules, we have to introduce new symbols for active cuts into
the syntax.

Definition 20 (Active Cuts) The syntax is extended with two active cuts:

P,Q ::= . . . | Pα̂ † x̂Q | Pα̂ † x̂Q

A cut can be activated only towards an eraser or a duplicator. This
means it can be left-activated only if one has either an eraser or a dupli-
cator on the left, and similarly, it can be right-activated only if one has an
eraser or a duplicator on the right. See Figure 5.4. Eraser and duplicator
are terms which originate from structural inference rules of weakening and
contraction. It is not possible to activate a cut towards the terms corre-
sponding to logical inference rules, but in all other cases the activation is
possible. Understanding of this group is easier if it is considered together
with a dual group called deactivation rules. See Section 5.2.3 in this chapter.

Activation rules are a potential source of non-confluence, wich is illus-
trated by Example 21.

5.2. REDUCTION RULES 51

Left :

(act-L) : Pα̂ † x̂Q → Pα̂ † x̂Q, if α not L-principal for P

Right :

(act-R) : Pα̂ † x̂Q → Pα̂ † x̂Q, if x not L-principal for Q

Figure 5.4: Activation rules

Example 21 Terms Pα̂ † x̂Q and Pα̂ † x̂Q are essentially different. This
becomes obvious if we take the example when both α and x are introduced by
erasers. Take

P = M ⊙ α and Q = x⊙N,

where M and N are arbitrary terms. Then we have:

(M ⊙ α)α̂ † x̂(x⊙N) → IN\x ⊙M ⊙ON

(M ⊙ α)α̂ † x̂(x⊙N) → IM ⊙N ⊙OM\α

This simple example is equivalent to the one pointed out by Lafont [GLT89].
It will be revisited in a diagrammatic framework (in Section 8.2.1 on page 108).

Remark By constantly giving priority to either left or right activation,
we may remove the non-confluence from the calculus and thus obtain two
confluent subcalculi. In the λ̄µµ̃-calculus, if one gives priority to one of two
sides, then one obtains a call-by-name or a call-by-value calculus. We suspect
in accordance to was noted for X (seen as Urban’s calculus) in [Urb01], that
this does not extend to ∗X .

5.2.2 Structural actions

Structural actions consist of four reduction rules, specifying erasure and du-
plication by referring to the situation when an active cut faces an eraser
or a duplicator. Structural actions are given in Figure 5.5. These compu-
tational features were studied more in the framework of intuitionistic logic
[DG01],[KL07].

5.2.3 Deactivation rules

Active cuts are introduced into the system by activation rules. There are
other groups of rules dealing with active cuts; they can be propagated, dupli-

52CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

Left :

(† -eras) : (P ⊙ α)α̂ † x̂Q → IQ ⊙ P ⊙OQ

(† -dupl) : ([P 〉cα1

cα2
>α)α̂ † x̂Q → IQ

<

c
I

Q
1

c
I

Q
2

〈
(Pα̂1

† x̂1Q1)α̂2
† x̂2Q2

〉 d
O

Q
1

d
O

Q
2

>OQ

where:
IQ = I(Q) \ x, OQ = O(Q) and Qi = ind(Q, N(Q), i) for i = 1, 2.

Right :

(† -eras) : Pα̂ † x̂(x⊙Q) → IP ⊙Q⊙OP

(† -dupl) : Pα̂ † x̂(x<
cx1

cx2
〈Q]) → IP

<

c
IP
1

c
IP
2

〈
P2α̂2 † x̂2(P1α̂1 † x̂1Q)

〉 d
OP

1

d
OP

2

>OP

where:
IP = I(P), OP = O(P) \ α and Pi = ind(P, N(P), i) for i = 1, 2.

Figure 5.5: Structural actions

cated, erased or deactivated. In this subsection we speak about deactivation
of previously active cuts. Deactivation rules are given in Figure 5.6.

Left :

(† -deact) : Pα̂ † x̂Q → Pα̂ † x̂Q, if α is L-principal for P

Right :

(† -deact) : Pα̂ † x̂Q → Pα̂ † x̂Q, if x is L-principal for Q

Figure 5.6: Deactivation rules

The deactivation is defined for terms originating from logical inference
rules of the sequent calculus. That is, in case of a capsule or an exporter
for left-deactivation and, in the case of capsule and importer for right-
deactivation. There is no deactivation for an eraser and a duplicator.

There exists a duality between activation and deactivation rules. One
can be obtained from the other by reversing the arrow, and negating the side
conditions. The design of activation and deactivation rules is such that it
does not enable looping, that is, the side conditions do not allow activation
followed by deactivation of a cut, or vice versa.

It is possible to define deactivation more explicitly, removing the side

5.2. REDUCTION RULES 53

conditions:

Left :

(† -deact1) : 〈x.β〉β̂ † ŷR → 〈x.β〉β̂ † ŷR

(† -deact2) : (x̂ P γ̂ . β)β̂ † ŷR → (x̂ P γ̂ . β)β̂ † ŷR

Right :

(† -deact1) : Pα̂ † x̂〈x.β〉 → Pα̂ † x̂〈x.β〉

(† -deact2) : Pα̂ † x̂(Q β̂ [x] ŷ R) → Pα̂ † x̂(Q β̂ [x] ŷ R)

5.2.4 Logical actions

The purpose of logical actions is to define reduction when L-principal names
are involved in a cut. See Figure 5.7.

(ren-L) : 〈y.α〉α̂ † x̂Q → Q{y/x}

(ren-R) : Pα̂ † x̂〈x.β〉 → P{β/α}

(ei-insert) : (ŷ P β̂ . α)α̂ † x̂(Q γ̂ [x] ẑ R) → either

{
(Qγ̂ † ŷP)β̂ † ẑR

Qγ̂ † ŷ(P β̂ † ẑR)

Figure 5.7: Logical actions

First two logical rules define merging of a capsule with another term
by using the renaming operation. The operation {y/x} is a meta opera-
tion, which resembles the λ-calculus meta-substitution. But here it simply
denotes rewriting an occurrence of a free name (unique by linearity) by
another name, which means that it does not essentially change the term.

The merging of a capsule with another element is defined following Ur-
ban’s local cut-elimination procedure (page 50, [Urb00]), whereas a different
approach was taken in [vBLL05] (see logical rules in Section 2) and in [Len03]
(see logical rules in Section 4). It may seem that merging of a capsule with
another term can be simulated by rules which do not involve meta opera-
tion [Len03, vBLL05], but in general this is not true since propagation over
active cuts is not enabled (see the next section for propagation rules).

The third logical action describes the direct interaction between an ex-
porter and an importer, which results in inserting the (immediate) subterm
of an exporter between the two (immediate) subterms of an importer.

54CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

5.2.5 Propagation rules

Propagation rules describe the propagation of a cut through the structure
of terms. This is a step-by-step propagation (the reduction rules “describe”
propagation). It is important to note that propagation of a cut over an-
other inactive cut is possible, which allows an elegant representation of β-
reduction. The rules are divided into “left” and “right” symmetric groups,
see Figures 5.8 and 5.9.

(exp † -prop) : (x̂ P γ̂ . α)β̂ † ŷR → x̂ (P β̂ † ŷR) γ̂ . α, α 6= β

(imp † -prop1) : (P α̂ [x] ẑ Q)β̂ † ŷR → (P β̂ † ŷR) α̂ [x] ẑ Q, β ∈ O(P)

(imp † -prop2) : (P α̂ [x] ẑ Q)β̂ † ŷR → P α̂ [x] ẑ (Qβ̂ † ŷR), β ∈ O(Q)

(cut(c) † -prop) : (Pα̂ † x̂〈x.β〉)β̂ † ŷR → Pα̂ † ŷR

(cut † -prop1) : (Pα̂ † x̂Q)β̂ † ŷR → (P β̂ † ŷR)α̂ † x̂Q, β ∈ O(P), Q 6= 〈x.β〉

(cut † -prop2) : (Pα̂ † x̂Q)β̂ † ŷR → Pα̂ † x̂(Qβ̂ † ŷR), β ∈ O(Q), Q 6= 〈x.β〉

(L-eras † -prop) : (x⊙ P)β̂ † ŷR → x⊙ (P β̂ † ŷR)

(R-eras † -prop) : (P ⊙ α)β̂ † ŷR → (P β̂ † ŷR)⊙ α, α 6= β

(L-dupl † -prop) : (x<
cx1

cx2
〈P])β̂ † ŷR → x<

cx1

cx2
〈P β̂ † ŷR]

(R-dupl † -prop) : ([P 〉cα1

cα2
>α)β̂ † ŷR → [P β̂ † ŷR〉cα1

cα2
>α, α 6= β

Figure 5.8: Left propagation

Observe for example the first rule in the left group. The rule is denoted
as (exp † −prop) and it shows how an active cut (in fact, a module β̂ † ŷR)
enters from the right-hand side through an exporter, up to its immediate
subterm. The rules which define propagation over an exporter or a cut re-
quire some side conditions to decide to which of the two immediate subterms
the module will go.

The rules which require additional explanations are (cut(c) † -prop) and
(†cut(c)-prop). These are the rules which define an exception when per-
forming propagation rules. They handle the case of propagation over a cut
with a capsule whose both names are cut-names. If we exclude these rules
from the system, we could construct an infinite reduction sequence.

5.2. REDUCTION RULES 55

(†exp-prop) : Pα̂ † x̂(ŷ Q β̂ . γ) → ŷ (Pα̂ † x̂Q) β̂ . γ

(† imp-prop1) : Pα̂ † x̂(Q β̂ [y] ẑ R) → (Pα̂ † x̂Q) β̂ [y] ẑ R, x ∈ I(Q)

(† imp-prop2) : Pα̂ † x̂(Q β̂ [y] ẑ R) → Q β̂ [y] ẑ (Pα̂ † x̂R), x ∈ I(R)

(†cut(c)-prop) : Pα̂ † x̂(〈x.β〉β̂ † ŷR) → Pα̂ † ŷR

(†cut-prop1) : Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q)β̂ † ŷR, x ∈ I(Q), Q 6= 〈x.β〉

(†cut-prop2) : Pα̂ † x̂(Qβ̂ † ŷR) → Qβ̂ † ŷ(Pα̂ † x̂R), x ∈ I(R), Q 6= 〈x.β〉

(†L-eras-prop) : Pα̂ † x̂(y ⊙Q) → y ⊙ (Pα̂ † x̂Q), x 6= y

(†R-eras-prop) : Pα̂ † x̂(Q⊙ β) → (Pα̂ † x̂Q)⊙ β

(†L-dupl-prop) : Pα̂ † x̂(y<
by1

by2
〈Q]) → y<

by1

by2
〈Pα̂ † x̂Q], x 6= y

(†R-dupl-prop) : Pα̂ † x̂([Q〉
cβ1

cβ2
>β) → [Pα̂ † x̂Q〉

cβ1

cβ2
>β

Figure 5.9: Right propagation

Example 22 An example of an infinite reduction sequence in absence of
(cut(c) † -prop) and (†cut(c)-prop) rules:

(Pα̂ † x̂〈x.β〉)β̂ † ŷR

→ (Pα̂ † x̂〈x.β〉)β̂ † ŷR

→ Pα̂ † x̂(〈x.β〉β̂ † ŷR)

→ Pα̂ † x̂(〈x.β〉β̂ † ŷR)

→ Pα̂ † x̂(〈x.β〉β̂ † ŷR)

→ (Pα̂ † x̂〈x.β〉)β̂ † ŷR

→ (Pα̂ † x̂〈x.β〉)β̂ † ŷR

Besides that, the solution offered is intuitive as we would expect the
terms

(Pα̂ † x̂〈x.β〉)β̂ † ŷR and Pα̂ † x̂(〈x.β〉β̂ † ŷR)

to reduce to the same term (which is in this case Pα̂ † ŷR).

56CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

Structural rules and convergence

Let us have a close look at the structural rules of duplication. For example
the rule († -dupl) :

([P 〉cα1
cα2

>α)α̂ † x̂Q → IQ
<

c
IQ
1

c
IQ
2

〈
(Pα̂1

† x̂1Q1)α̂2
† x̂2Q2

〉 d
OQ

1
d
OQ

2

>OQ

yields the term (Pα̂1
† x̂1Q1)α̂2

† x̂2Q2 in the context of a certain num-
ber of left and right contractions. Notice that this term contains two left
modules, namely

α̂1
† x̂1Q1 and α̂2

† x̂2Q2,

which are independent since α1, α2 ∈ P (and therefore α2 /∈ Q1, α1 /∈ Q2).
One may wonder whether the order of modules is relevant, that is, whether
the two terms

S1 = (Pα̂1
† x̂1Q1)α̂2

† x̂2Q2 and S2 = (Pα̂2
† x̂2Q2)α̂1

† x̂1Q1

should be considered the same. Intuitively, in a given situation, there is no
reason to prefer using one term over another.

Definition 23 (Convergent reductions) We say that the two terms P
and Q have convergent reductions if they share the set of normal forms,
denoted

P =NF Q

In the following theorem we prove that S1 and S2 (see above) can be
consided to be equivalent, in a sense that they share the same set of normal
forms, i.e., they have convergent reductions, that is:

S1 =NF S2

Theorem 24 (Convergence) Let P, Q, P1, . . . Pn, Q1, . . . Qn be arbi-
trary terms and φ an arbitrary permutation of (1, ...n), then

(a) (. . . (Pα̂1
† x̂1Q1) . . .)α̂n

† x̂nQn =NF

(. . . (Pα̂φ(1)
† x̂φ(1)Qφ(1)) . . .)α̂φ(n)

† x̂φ(n)Qφ(n)

where {α̂1
† x̂1Q1, . . . α̂n

† x̂nQn} is a set of independent modules.

(b) P1α̂1 † x̂1(. . . (Pnα̂n † x̂nQ) . . .) =NF

Pφ(1)α̂φ(1) † x̂φ(1)(. . . (Pφ(n)α̂φ(n) † x̂φ(n)Q) . . .)

where {P1α̂1 † x̂1, . . . Pnα̂n † x̂n} is a set of independent modules.

5.2. REDUCTION RULES 57

Proof: The parts (a) and (b) of the property can be shown by case anal-
ysis and induction on the structure of terms P and Q, respectively. The
technique is similar and therefore it suffices to prove one of them; in this
case we prove (a). Thus the proof goes by case analysis and induction on the
structure of P . We assume that the property holds for any subterm P ′ 4 P .
For simplicity reasons we analyze the variant with two modules instead of
looking at the case for n in general.

(Pα̂ † x̂Q)β̂ † ŷR =NF (P β̂ † ŷR)α̂ † x̂Q

Remark that the side condition is α, β ∈ N(P). Due to linearity it follows
that α /∈ N(R) and β /∈ N(Q). Moreover it follows that P is not a capsule
and Q 6= 〈x.β〉, which are the conditions relevant for the proof.

(1) Case: neither α nor β are principal for P .
There are two cases to consider here, depending whether P has one
immediate subterm, P ′, or it has two, P ′ and P ′′.

– P = C[P ′] : this case obviously follows by induction.

– P = C[P ′, P ′′] : if both names, α, β, belong to the same subterm,
this case is equivalent to the previous. Otherwise, if they belong
to different subterms, for example α ∈ P ′, β ∈ P ′′ then, on the
one hand we have
((C{P ′, P ′′})α̂ † x̂Q)β̂ † ŷR
→ (C{P ′α̂ † x̂Q, P ′′})β̂ † ŷR
→ C{P ′α̂ † x̂Q, P ′′β̂ † ŷR} and on the other hand

((C{P ′, P ′′})β̂ † ŷR)α̂ † x̂Q
→ (C{P ′, P ′′β̂ † ŷR})α̂ † x̂Q
→ C{P ′α̂ † x̂Q, P ′′β̂ † ŷR}.
We may notice that the resulting terms are syntactically equal.

(2) Case: α is L-principal for P (yields β is not principal for P)
On one hand we have
(Pα̂ † x̂Q)β̂ † ŷZ → (Pα̂ † x̂Q)β̂ † ŷR, Q 6= 〈x.β〉
→ (P β̂ † ŷR)α̂ † x̂Q → (P β̂ † ŷR)α̂ † x̂Q.
This is exactly the term on the right-hand side of the =NF sign.

(3) Case: β is L-principal for P (yields α is not principal for P)
The proof goes similarly as for the previous case, only here the term
on the right-hand side of the =NF reduces to the term on the left-hand
side.

58CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

(4) Case: α is S-principal for P (yields β is not principal for P)
There are two possibilities: either P is an eraser, or P is a duplicator.

– P is an eraser P = P ′ ⊙ α
The reductions are the following. On the one hand we have
((P ′ ⊙ α)α̂ † x̂Q)β̂ † ŷR
→ (IQ\x ⊙ P ′ ⊙OQ)β̂ † ŷR, β ∈ N(P ′)
→+ IQ\x ⊙ (P ′β̂ † ŷR)⊙OQ.
On the other hand:
((P ′ ⊙ α)β̂ † ŷR)α̂ † x̂Q →+ ((P ′β̂ † ŷR)⊙ α)α̂ † x̂Q
→ IQ\x ⊙ (P ′β̂ † ŷR)⊙OQ

– P is a duplicator P = [P ′〉cα1
cα2

>α
On the one hand we have
(([P ′〉cα1

cα2
>α)α̂ † x̂Q)β̂ † ŷR

→ (IQ\x
<

cI1
Q\x

cI2
Q\x〈(P ′α̂1

† x̂1Q1)α̂2
† x̂2Q2〉

cO1
Q

cO2
Q >OQ)β̂ † ŷR,

β ∈ N(P ′)

→+ IQ\x
<

cI1
Q\x

cI2
Q\x〈((P ′α̂1

† x̂1Q1)α̂2
† x̂2Q2)β̂ † ŷR〉

cO1
Q

cO2
Q >OQ

On the other hand:
(([P ′〉cα1

cα2
>α)β̂ † ŷR)α̂ † x̂Q

→ ([P ′β̂ † ŷR〉cα1
cα2

>α)α̂ † x̂Q

→ IQ\x
<

cI1
Q\x

cI2
Q\x〈((P ′β̂ † ŷR)α̂1

† x̂1Q1)α̂2
† x̂2Q2〉

cO1
Q

cO2
Q >OQ.

By induction the two are convergent.

(5) Case: β is S-principal for P (yields α is not principal for P)
The proof for this case goes similarly to the previous one.

Thus we are done with the proof. �

5.3 Operational properties

The reduction system enjoys some desirable properties as expressed by the
following lemma.

5.3. OPERATIONAL PROPERTIES 59

Theorem 25 (Basic properties of →)

1. Preservation of free names (interface preservation):
If P → Q then N(P) = N(Q)

2. Preservation of linearity:
If P is linear and P → Q then Q is linear

Proof: These properties can be confirmed by checking carefully each rule.
�

Free names preservation holds in ∗X due to the use of erasers and duplicators
in rewrite rules (there is a similar situation in λlxr [KL07]). The situation
is different in the λ-calculus and in the λlxr-calculus where free variables
may be lost during computation. This property is sometimes referred to as
“interface preservation” as in the framework of interaction nets [Laf95b].
The preservation of linearity is a minimal requirement, since ∗X has been
designed as a linear model of computation.

Simplification rules We define the simplification rules, denoted 99K,
which can be seen as an efficient way to simplify terms. They are not
reduction rules as they do not involve cuts. The point is that applying a
duplicator to an eraser is of no interest and can be avoided by using simpli-
fication rules, as defined by:

(sL) : x<
by
bz〈z ⊙ P] 99K P{x/y}

(sR) : [P ⊙ γ〉
bβ
bγ >α 99K P{α/β}

They are applied before the reduction rules, that is, we give them high pri-
ority during computation. One can see them as a kind of garbage collection,
as they simplify computation by preventing the situation when we duplicate
a term to erase one or both copies in the next step.

It is easy to see that the simplification rules preserve the set of free
names, linearity and types. The rules can be given in a more general way:

(sg
L) : I<

cI1
cI2
〈I2 ⊙ P] 99K P{I/I1}

(sg
R) : [P ⊙O2〉

cO1
cO2

>O 99K P{O/O1}

60CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

5.4 The type assignment system

We only consider here linear terms to which we will add type information.
Given a set T of basic types, a type is given by

A,B ::= T | A→ B.

In order to assign terms to the sequent proofs of the system given in
Figure 3.3 (page 20), we will introduce expressions

P ··· Γ ⊢ ∆

which represent the type assignment5, where P is an ∗X -term, Γ is a con-
text (antecedent) whose domain consists of free innames of P and ∆ is a
context (succedent) whose domain consists of free outnames of P . Comma
in the expression Γ,∆ stands for the set union. For example Γ as a set of
type declarations for innames could be x : A, y : B, while ∆ as a set of
declarations for outnames could be α : A, β : A→ B, γ : C.

We will say that a term P is typable if there exist contexts Γ and ∆ such
that P ··· Γ ⊢ ∆ holds in the system of inference rules given by Figure 5.10.

If we remove the term decoration in the type system of Figure 5.10, we
get the classical sequent calculus as presented in Figure 3.1 (page 18).

Example 26 We show here how the types are assigned to a term which
codes the Peirce’s law.

(ax)
〈x.α1〉 ··· x : A ⊢ α1 : A

(weak-R)
〈x.α1〉 ⊙ β ··· x : A ⊢ α1 : A, β : B

(→R)
x̂ (〈x.α1〉 ⊙ β) β̂ . γ ··· ⊢ α1 : A, γ : A→ B

(ax)
〈y.α2〉 ··· y : A ⊢ α2 : A

(→L)
(x̂ (〈x.α1〉 ⊙ β) β̂ . γ) γ̂ [z] ŷ 〈y.α2〉 ··· z : (A→ B)→ A ⊢ α1 : A,α2 : A

(cont-R)
[(x̂ (〈x.α1〉 ⊙ β) β̂ . γ) γ̂ [z] ŷ 〈y.α2〉〉

cα1

cα2
>α ··· z : (A→ B)→ A ⊢ α : A

(→R)
ẑ ([(x̂ (〈x.α1〉 ⊙ β) β̂ . γ) γ̂ [z] ŷ 〈y.α2〉〉

cα1

cα2
>α) α̂ . δ ··· ⊢ δ : ((A→ B)→ A)→ A

This example will be revisited in the framework of diagrams (page 117).

5Technically we assign contexts, which are sets of pairs (name, formula), to terms. If
we forget about labels and consider only types, we are going back to the system G1 where
contexts are multisets of formulas.

5.4. THE TYPE ASSIGNMENT SYSTEM 61

(ax)
〈x.α〉 ··· x :A ⊢ α :A

P ··· Γ ⊢ α :A,∆ Q ··· Γ′, y :B ⊢ ∆′

(L→)
P α̂ [x] ŷ Q ··· Γ,Γ′, x :A→ B ⊢ ∆,∆′

P ··· Γ, x :A ⊢ α :B,∆
(R→)

x̂ P α̂ . β ··· Γ ⊢ β :A→ B,∆

P ··· Γ ⊢ α :A,∆ Q ··· Γ′, x :A ⊢ ∆′

(cut)
Pα̂ † x̂Q ··· Γ,Γ′ ⊢ ∆,∆′

P ··· Γ ⊢ ∆
(weak-L)

x⊙ P ··· Γ, x :A ⊢ ∆

P ··· Γ ⊢ ∆
(weak-R)

P ⊙ α ··· Γ ⊢ α :A,∆

P ··· Γ, x :A, y :A ⊢ ∆
(cont-L)

z<
bx
by〈P] ··· Γ, z :A ⊢ ∆

P ··· Γ ⊢ α :A, β : A,∆
(cont-R)

[P 〉
bα
bβ >γ ··· Γ ⊢ γ :A,∆

Figure 5.10: The type system for ∗X

Example 27 We show here how to assign contexts to the term which corre-
sponds to λxyz.xz(yz) known as the S-combinator of λ-calculus. The proof-
tree for the S-combinator is given at the end of this chapter, on page 77.
The corresponding ∗X -term is:6

ω̂ (û (x̂ (x<
cx1
cx2
〈〈x2.ǫ〉 ǫ̂ [w] v̂ ((〈x1.δ〉 δ̂ [u] ŷ 〈y.β〉) β̂ [v] ẑ 〈z.γ〉)]) γ̂ . η) η̂ . θ) θ̂ . α

In addition this example will be revisited in a diagrammatic framework
(page 118).

The witness reduction property

Since the beginning, the work on ∗X calculus is strongly related to the se-
quent calculus. In that sense, if we want to see computation as proof-
transformation, the property of witness reduction is essential.

We first formulate the lemma which proves the admissibility of renaming.

Lemma 28 The following rules are admissible in the typing system of the
∗X calculus:

6Some parts of terms are underlined to make the reading easier.

62CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

P ··· Γ, x : A ⊢ ∆
(R-l)

P{y/x} ··· Γ, y : A ⊢ ∆

P ··· Γ ⊢ α : A,∆
(R-r)

P{β/α} ··· Γ ⊢ β : A,∆

Proof: The admissibility of rules is proved by induction on the structure
of terms. We give the proof for R-r. In the simple case we have

〈x.α〉 ··· x : A ⊢ α : A
(R-r)

〈x.α〉{β/α} ··· x : A ⊢ β : A

since by definition of renaming 〈x.α〉{β/α} = 〈x.β〉. It is easy to check that
this also stands for other terms who have α as a principal name, namely for

P = x̂ Q γ̂ . α, P = [Q〉cα1
cα1

>α and P = Q⊙α, using the condition of linearity
which guarantees that α /∈ N(Q).

On the other hand, if α is not a principal name for P , then by Lemma 19,
there exists a context C{ } such that P = C{Q} where α is principal
for Q. By linearity condition we have C{Q}{β/α} = C{Q{β/α}}. Thus,
by induction, the rule

P ··· Γ ⊢ α : A,∆
(R-r)

P{β/α} ··· Γ ⊢ β : A,∆

is admissible. �

This can be generalized to accommodate renaming of multiple names.

Lemma 29 The following rule is admissible:

P ··· Γ,Γ′ ⊢ ∆,∆′

(Rs)
P{dom(Γ′

1)/d(Γ′)}{dom(∆′

1)/dom(∆′)} ··· Γ,Γ′

1 ⊢ ∆,∆′

1

where Γ′
1 = ind(Γ′, 1) and ∆′

1 = ind(∆′, 1).

Proof: Follows directly from the previous lemma.

The following lemma shows the derivability of rules which are used in
the proof of witness reduction theorem.

Lemma 30 The following rules are derivable in the typing system of the
∗X calculus:

P ··· Γ ⊢ ∆
(Ws)

dom(Γ′)⊙ P ⊙ dom(∆′) ··· Γ,Γ′ ⊢ ∆,∆′

P ··· Γ,Γ′

1,Γ
′

2 ⊢ ∆,∆′

1,∆
′

2
(Cs)

dom(Γ′) <

̂dom(Γ′

1
)

̂dom(Γ′

2
)〈P 〉

̂dom(∆′

1
)

̂dom(∆′

2
) > dom(∆′) ··· Γ,Γ′ ⊢ ∆,∆′

5.4. THE TYPE ASSIGNMENT SYSTEM 63

Proof: By induction on the cardinals of dom(Γ′) and dom(∆′). �

Theorem 31 (Witness reduction) Let S be an ∗X -term and Γ,∆ con-
texts. Then the following holds:

If S ··· Γ ⊢ ∆ and S → S′, then S′
··· Γ ⊢ ∆

Remark The linearity and free names of S are preserved (Theorem 25).

Proof: The proof is straightforward and goes by inspecting the reduction
rules, and by induction on the structure of terms. We first write the typing
derivation for the term on the left-hand side of the reduction rule, and then
for the term on the right-hand side.

Logical actions:

• Take the (ren-L) rule: 〈y.α〉α̂ † x̂Q → Q{y/x}.
On the one hand we have:

(ax)
〈y.α〉 ··· y : A ⊢ α : A Q ··· Γ, x : A ⊢ ∆

(cut)
〈y.α〉α̂ † x̂Q ··· Γ, y : A ⊢ ∆

On the other hand,

Q ··· Γ, x : A ⊢ ∆
(R-l)

Q{y/x} ··· Γ, y : A ⊢ ∆

• Take the (ren-R) rule: Pα̂ † x̂〈x.β〉 → P{β/α}.
On the one hand we have:

P ··· Γ ⊢ α : A,∆
(ax)

〈x.β〉 ··· x : A ⊢ β : A
(cut)

Pα̂ † x̂〈x.β〉 ··· Γ ⊢ β : A,∆

On the other hand,

64CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

P ··· Γ ⊢ α : A,∆
(R-r)

P{β/α} ··· Γ ⊢ β : A,∆

• Take the (ei-insert) rule: (ŷ P β̂ . α)α̂ † x̂(Q γ̂ [x] ẑ R) → either

{
(Qγ̂ † ŷP)β̂ † ẑR

Qγ̂ † ŷ(P β̂ † ẑR)
,

with the condition y, β ∈ N(P).
On the one hand, for S we have:

P ··· Γ, y : A ⊢ β : B,∆
(→ R)

ŷ P β̂ . α ··· Γ ⊢ α : A→ B,∆

Q ··· Γ′ ⊢ γ : A,∆′ R ··· Γ′′, z : B ⊢ ∆′′

(→ L)
Q γ̂ [x] ẑ R ··· Γ′,Γ′′, x : A→ B ⊢ ∆′,∆′′

(cut)

(ŷ P β̂ . α)α̂ † x̂(Q γ̂ [x] ẑ R) ··· Γ,Γ′,Γ′′ ⊢ ∆,∆′,∆′′

On the other hand, for S′, this time we have to consider two cases because
the rule has two possible results. The first case is:

Q ··· Γ′ ⊢ γ : A,∆′

P ··· Γ, y : A ⊢ β : B,∆ R ··· Γ′′, z : B ⊢ ∆′′

(cut)

P β̂ † ẑR ··· Γ,Γ′′, y : A ⊢ ∆,∆′′

(cut)

Qγ̂ † ŷ(P β̂ † ẑR) ··· Γ,Γ′,Γ′′ ⊢ ∆,∆′,∆′′

The second case is:

Q ··· Γ′ ⊢ γ : A,∆′ P ··· Γ, y : A ⊢ β : B,∆
(cut)

Qγ̂ † ŷP ··· Γ′,Γ ⊢ β : B,∆′,∆ R ··· Γ′′, z : B ⊢ ∆′′

(cut)

(Qγ̂ † ŷP)β̂ † ẑR ··· Γ,Γ′,Γ′′ ⊢ ∆,∆′,∆′′

Structural actions - left subgroup:

• Take the rule († -eras): (P ⊙ β)β̂ † ŷR → IR ⊙ P ⊙OR.
On the one hand we have:

5.4. THE TYPE ASSIGNMENT SYSTEM 65

P ··· Γ ⊢ ∆
(weak-R)

P ⊙ β ··· Γ ⊢ β : B,∆ R ··· Γ′, y : B ⊢ ∆′

(cut)

(P ⊙ β)β̂ † ŷR ··· Γ,Γ′ ⊢ ∆,∆′

On the other hand,

P ··· Γ ⊢ ∆
(Ws)

IR ⊙ P ⊙OR
··· Γ,Γ′ ⊢ ∆,∆′

• Take the († -dupl) rule:

([P 〉
cβ1

cβ2
>β)β̂ † ŷQ → IQ

<

c
IQ
1

c
IQ
2

〈
(P β̂1

† ŷ1Q1)β̂2
† ŷ2Q2

〉 d
OQ

1
d
OQ

2

>OQ,

with IQ = I(Q) \ y and OQ = O(Q). On the one hand we have:

P ··· Γ ⊢ β1 : B, β2 : B,∆
(cont-R)

[P 〉
cβ1

cβ2
>b ··· Γ′ ⊢ β : B,∆′ Q ··· Γ, y : B ⊢ ∆′

(cut)

([P 〉
cβ1

cβ2
>β)β̂ † ŷQ ··· Γ,Γ′ ⊢ ∆,∆′

On the other hand,

P ··· Γ ⊢ β1 : B, β2 : B,∆

Q ··· Γ′, y : B ⊢ ∆′

(Rs)
Q1 ··· Γ′

1, y1 : B ⊢ ∆′

1
(cut)

P β̂1
† ŷ1Q1 ··· Γ,Γ′

1 ⊢ β2 : B,∆,∆′

1

Q ··· Γ′, y : B ⊢ ∆′

(Rs)
Q2 ··· Γ′

2, y2 : B ⊢ ∆′

2

(cut)

(P β̂1
† ŷ1Q1)β̂2

† ŷ2Q2 ··· Γ,Γ′

1,Γ
′

2 ⊢ ∆,∆′

1,∆
′

2
(Cs)

IQ
<

c
I

Q
1

c
I

Q
2

〈
(P β̂1

† ŷ1Q1)β̂2
† ŷ2Q2

〉 d
O

Q
1

d
O

Q
2

>OQ
··· Γ,Γ′ ⊢ ∆,∆′

where dom(Γ) = I(P) and dom(∆) = O(P) \ α.

66CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

Structural actions -right subgroup:

• Take the rule († -eras): Pα̂ † x̂(Q⊙ x) → IP ⊙Q⊙OP .
On the one hand we have:

P ··· Γ ⊢ α : A,∆

Q ··· Γ′ ⊢ ∆′

(L-weak)
Q⊙ x ··· Γ′, x : A ⊢ ∆′

(cut)
Pα̂ † x̂(Q⊙ x) ··· Γ,Γ′ ⊢ ∆,∆′

On the other hand,

Q ··· Γ′ ⊢ ∆′

(weak)
IP ⊙Q⊙OP

··· Γ,Γ′ ⊢ ∆,∆′

• Take the right-duplication rule († -dupl):

Pα̂ † x̂(x<
cx1
cx2
〈Q]) → IP

<

cIP
1

cIP
2

〈
P2α̂2 † x̂2(P1α̂1 † x̂1Q)

〉 dOP
1

dOP
2

>OP ,

with IP = I(P) and OP = O(P) \ α. On the one hand we have:

P ··· Γ ⊢ α : A,∆

Q ··· Γ′, x1 : A, x2 : A ⊢ ∆′

(cont-L)

x<
cx1

cx2
〈Q] ··· Γ′, x : A ⊢ ∆′

(cut)

Pα̂ † x̂(x<
cx1

cx2
〈Q]) ··· Γ,Γ′ ⊢ ∆,∆′

On the other hand,

P ··· Γ ⊢ α : A,∆
(Rs)

P2 ··· Γ2 ⊢ α2 : A,∆2

P ··· Γ ⊢ α : A,∆
(Rs)

P1 ··· Γ1 ⊢ α1 : A,∆1 Q ··· Γ′, x1 : A, x2 : A ⊢ ∆′

(cut)
P1α̂1

† x̂1Q ··· Γ1,Γ
′ ⊢ ∆1,∆

′

(cut)
P2α̂2 † x̂2(P1α̂1 † x̂1Q) ··· Γ2,Γ1,Γ

′ ⊢ ∆2,∆1,∆
′

(Cs)

IP
<

c
IP
1

c
IP
2

〈
P2α̂2 † x̂2(P1α̂1 † x̂1Q)

〉 d
OP

1

d
OP

2

>OP
··· Γ,Γ′ ⊢ ∆,∆′

where dom(Γ) = I(P) and dom(∆) = O(P) \ α.

5.4. THE TYPE ASSIGNMENT SYSTEM 67

Propagation rules - left subgroup:

• Take the (exp † -prop) rule: (x̂ P γ̂ . α)β̂ † ŷR → x̂ (P β̂ † ŷR) γ̂ . α,
where α 6= β, and by linearity β ∈ N(P). On the one hand we have:

P ··· Γ, x : A ⊢ γ : B, β : C,∆
(→R)

x̂ P γ̂ . α ··· Γ ⊢ α : A→ B, β : C,∆ R ··· Γ′, y : C ⊢ ∆′

(cut)

(x̂ P γ̂ . α)β̂ † ŷR ··· Γ,Γ′ ⊢ α : A→ B,∆,∆′

On the other hand,

P ··· Γ, x : A ⊢ γ : B, β : C,∆ R ··· Γ′, y : C ⊢ ∆′

(cut)

P β̂ † ŷR ··· Γ,Γ′, x : A ⊢ γ : B,∆,∆′

(→R)

x̂ (P β̂ † ŷR) γ̂ . α ··· Γ,Γ′ ⊢ α : A→ B,∆,∆′

• Take the (imp † -prop1) rule: (P α̂ [x] ẑ Q)β̂ † ŷR → (P β̂ † ŷR) α̂ [x] ẑ Q,
when β ∈ P. On the one hand we have:

P ··· Γ ⊢ α : A, β : C,∆ Q ··· Γ′, z : B ⊢ ∆′

(→L)
P α̂ [x] ẑ Q ··· Γ,Γ′, x : A→ B ⊢ β : C,∆,∆′ R ··· Γ′′, y : C ⊢ ∆′′

(cut)

(P α̂ [x] ẑ Q)β̂ † ŷR ··· Γ,Γ′,Γ′′, x : A→ B ⊢ ∆,∆′,∆′′

On the other hand,

P ··· Γ ⊢ α : A, β : C,∆ R ··· Γ′′, y : C ⊢ ∆′′

(cut)

P β̂ † ŷR ··· Γ,Γ′, x : A→ B ⊢ β : C,∆,∆′ Q ··· Γ′, z : B ⊢ ∆′

(→L)

(P β̂ † ŷR) α̂ [x] ẑ Q ··· Γ,Γ′,Γ′′, x : A→ B ⊢ ∆,∆′,∆′′

• For the other rule (imp † -prop2): (P α̂ [x] ẑ Q)β̂ † ŷR → P α̂ [x] ẑ (Qβ̂ † ŷR),
when β ∈ Q, the proof proceeds likewise .

• Take the (cut(c) † -prop) rule: (Pα̂ † x̂〈x.β〉)β̂ † ŷR → Pα̂ † ŷR.
On the one hand we have:

68CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

P ··· Γ ⊢ α : A,∆
(ax)

〈x.β〉 ··· x : A ⊢ β : A
(cut)

Pα̂ † x̂〈x.β〉 ··· Γ ⊢ β : A,∆ R ··· Γ′, y : A ⊢ ∆′

(cut)

(Pα̂ † x̂〈x.β〉)β̂ † ŷR ··· Γ,Γ′ ⊢ ∆,∆′

On the other hand,

P ··· Γ ⊢ α : A,∆ R ··· Γ′, y : A ⊢ ∆′

(cut)
Pα̂ † ŷR ··· Γ,Γ′ ⊢ ∆,∆′

• Take the (cut † -prop1) rule: (Pα̂ † x̂Q)β̂ † ŷR → (P β̂ † ŷR)α̂ † x̂Q,
with β ∈ N(P). On the one hand we have:

P ··· Γ ⊢ α : A, β : B,∆ Q ··· Γ′, x : A ⊢ ∆′

(cut)
Pα̂ † x̂Q ··· Γ,Γ′ ⊢ β : B,∆,∆′ R ··· Γ′′, y : B ⊢ ∆′′

(cut)

(Pα̂ † x̂Q)β̂ † ŷR ··· Γ,Γ′,Γ′′ ⊢ ∆,∆′,∆′′

On the other hand,

P ··· Γ ⊢ α : A, β : B,∆ R ··· Γ′′, y : B ⊢ ∆′′

(cut)

P β̂ † ŷR ··· Γ,Γ′ ⊢ β : B,∆,∆′ Q ··· Γ′, x : A ⊢ ∆′

(cut)

(P β̂ † ŷR)α̂ † x̂Q ··· Γ,Γ′,Γ′′ ⊢ ∆,∆′,∆′′

• For (cut † -prop2) rule: (Pα̂ † x̂Q)β̂ † ŷR → Pα̂ † x̂(Qβ̂ † ŷR),
when β ∈ Q, the proof is similar.

• Take the (L-eras † -prop) rule: (x⊙ P)β̂ † ŷR → x⊙ (P β̂ † ŷR).
On the one hand we have:

5.4. THE TYPE ASSIGNMENT SYSTEM 69

P ··· Γ, β : B ⊢ ∆
(weak-L)

x⊙ P ··· Γ, x : A ⊢ β : B,∆ R ··· Γ′, y : B ⊢ ∆′

(cut)

(x⊙ P)β̂ † ŷR ··· Γ,Γ′, x : A ⊢ ∆,∆′

On the other hand,

P ··· Γ, β : B ⊢ ∆ R ··· Γ′, y : B ⊢ ∆′

(cut)

P β̂ † ŷR ··· Γ,Γ′ ⊢ ∆,∆′

(weak-L)

x⊙ (P β̂ † ŷR) ··· Γ,Γ′, x : A ⊢ ∆,∆′

• For (R-eras † -prop) rule: (P ⊙ α)β̂ † ŷR → (P β̂ † ŷR)⊙ α,
with α 6= β, the proof is similar.

• Take (L-dupl † -prop) rule: (x<
cx1
cx2
〈P])β̂ † ŷR → x<

cx1
cx2
〈P β̂ † ŷR].

On the one hand we have:

P ··· Γ, x1 : A, x2 : A ⊢ β : B,∆
(contr-L)

x<
cx1

cx2
〈P] ··· Γ, x : A ⊢ β : B,∆ R ··· Γ′, y : B ⊢ ∆′

(cut)

(x<
cx1

cx2
〈P])β̂ † ŷR ··· Γ,Γ′, x : A ⊢ ∆,∆′

On the other hand,

P ··· Γ, x1 : A, x2 : A ⊢ β : B,∆ R ··· Γ′, y : B ⊢ ∆′

(cut)

P β̂ † ŷR ··· Γ,Γ′, x1 : A, x2 : A ⊢ ∆,∆′

(contr-L)

x<
cx1

cx2
〈P β̂ † ŷR] ··· Γ,Γ′, x : A ⊢ ∆,∆′

• For (R-dupl † -prop) rule: ([P 〉cα1
cα2

>α)β̂ † ŷR → [P β̂ † ŷR〉cα1
cα2

>α,
with α 6= β, the proof is similar to the previous case.

70CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

Propagation rules - right subgroup:
The proof goes similarly as for the left subgroup of propagation rules. �

Theorem 32 (99K preserves types) Simplification rules preserve types.

If S ··· Γ ⊢ ∆ and S 99K S′, then S′
··· Γ ⊢ ∆

Proof: By analyzing the proof trees corresponding to S and S′, for both
simplification rules.

• Observe the (sL) rule: x<
by
bz〈z⊙P] 99K P{x/y}. On the one hand, for S

we have:

P ··· Γ, y : A ⊢ ∆
(L-weak)

z ⊙ P ··· Γ, y : A, z : A ⊢ ∆
(L-cont)

x<
by
bz〈z ⊙ P] ··· Γ, x : A ⊢ ∆

On the other hand, for S′ we have:

P ··· Γ, y : A ⊢ ∆
(R-l)

P{x/y} ··· Γ, x : A ⊢ ∆

• Observe the (sR) rule: [P ⊙ γ〉
bβ
bγ >α 99K P{α/β}. On the one hand,

for S we have:

P ··· Γ ⊢ β : A,∆
(R-weak)

P ⊙ γ ··· Γ ⊢ β : A, γ : A,∆
(R-cont)

[P ⊙ γ〉
bβ
bγ >α ··· Γ ⊢ α : A,∆

On the other hand, for S′ we have:

P ··· Γ ⊢ β : A,∆
(R-r)

P{α/β} ··· Γ ⊢ α : A,∆

�

5.5. EXAMPLES OF IMPLEMENTATIONS 71

5.5 Examples of implementations

In this section we show how some of the data types can be implemented in
this calculus, which is needed if one wants to see ∗X calculus as a program-
ming language.

5.5.1 Booleans

We choose the terms for booleans true and false to be the following:

true , ŷ (x̂ (y ⊙ 〈x.α〉) α̂ . β) β̂ . γ

false , x̂ (ŷ (y ⊙ 〈x.α〉) α̂ . β) β̂ . γ

Then the term representing the conditional is a defined in a rather simple
way

Cond{B, P, Q} , B γ̂ † ẑ(Q δ̂ [z] t̂ (P ǫ̂ [t] û 〈u.σ〉))

where B is a boolean, while P and Q are two arbitrary terms. Notice that,
due to linearity, they must contain free names ǫ and δ respectively, otherwise
the above term would not be linear.

Remark We have to assume that δ and ǫ are L-principal names of P and Q,
respectively. For simplicity we also assume that P and Q are closed, i.e., they
do not have other free names. It is necessary to introduce these conditions
which restrict the non-determinism in order to have the behavior we want.

The behavior we expect is the following; the computation should result
in P if we choose B = true, otherwise it should result in Q (if we take
B = false).

Example 33 On the one hand, for B = true, the computation proceeds as
follows:

Cond{true, P, Q} ,

(ŷ (x̂ (y ⊙ 〈x.α〉) α̂ . β) β̂ . γ)γ̂ † ẑ(Q δ̂ [z] t̂ (P ǫ̂ [t] û 〈u.σ〉))

72CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

ei-insert
−−−−−→ (Qδ̂ † ŷ(x̂ (y ⊙ 〈x.α〉) α̂ . β))β̂ † t̂(P ǫ̂ [t] û 〈u.σ〉)

act-R
−−−→ (Qδ̂ † ŷ(x̂ (y ⊙ 〈x.α〉) α̂ . β))β̂ † t̂(P ǫ̂ [t] û 〈u.σ〉)

† -prop
−−−−−→ (x̂ (Qδ̂ † ŷ(y ⊙ 〈x.α〉)) α̂ . β)β̂ † t̂(P ǫ̂ [t] û 〈u.σ〉)

† -eras
−−−−−→ (x̂ 〈x.α〉 α̂ . β)β̂ † t̂(P ǫ̂ [t] û 〈u.σ〉)
ei-insert
−−−−−→ (P ǫ̂ † x̂〈x.α〉)α̂ † û〈u.σ〉

ren-R
−−−−→ (P{α/ǫ})α̂ † û〈u.σ〉
ren-R
−−−−→ P{α/ǫ}{σ/α} = P{σ/ǫ}

Remark Absent the condition δ is L-principal for Q, we could have decided
to perform act-L in the second step (on the same cut). And if we choose Q
to be of the form Q′⊙δ we can construct a reduction sequence which results
in Q. We may try to justify the introduction of those conditions by saying
that it does not make much sense to plug in a component over an eraser.

Example 34 On the other hand, for B = false, we have the following
computation:

Cond{false, P, Q} ,

(x̂ (ŷ (y ⊙ 〈x.α〉) α̂ . β) β̂ . γ)γ̂ † ẑ(Q δ̂ [z] t̂ (P ǫ̂ [t] û 〈u.σ〉))

ei-insert
−−−−−→ (Qδ̂ † x̂(ŷ (y ⊙ 〈x.α〉) α̂ . β))β̂ † t̂(P ǫ̂ [t] û 〈u.σ〉)

act-R
−−−→ (Qδ̂ † x̂(ŷ (y ⊙ 〈x.α〉) α̂ . β))β̂ † t̂(P ǫ̂ [t] û 〈u.σ〉)

† -prop
−−−−−→

+

(ŷ (y ⊙ (Qδ̂ † x̂〈x.α〉)) α̂ . β)β̂ † t̂(P ǫ̂ [t] û 〈u.σ〉)

† -cap-deact
−−−−−−−−→ (ŷ (y ⊙ (Qδ̂ † x̂〈x.α〉)) α̂ . β)β̂ † t̂(P ǫ̂ [t] û 〈u.σ〉)

ren-R
−−−−→ (ŷ (y ⊙Q{α/δ}) α̂ . β)β̂ † t̂(P ǫ̂ [t] û 〈u.σ〉)
ei-insert
−−−−−→ (P ǫ̂ † ŷ(y ⊙Q{α/δ}))α̂ † û〈u.σ〉

act-R
−−−→ (P ǫ̂ † ŷ(y ⊙Q{α/δ}))α̂ † û〈u.σ〉

† -eras
−−−−−→ (Q{α/δ})α̂ † û〈u.σ〉

ren-R
−−−−→ Q{α/δ}{σ/α} = Q{σ/δ}

5.5.2 Natural numbers

A natural number is a term with two free innames and a single free outname.
It is composed of capsules, importers and contractions.

5.6. EXTENSION OF THE ∗X -CALCULUS 73

Definition 35 We use x,yVnUα to denote interpretation of a natural number
n in ∗X . The interpretation has free innames x, y and a free outname α and
it is defined as follows

x,yV0Uα := y ⊙ 〈x.α〉

x,yVn + 1Uα := y<
by1
by2
〈(x,y1VnUα2) α̂2 [y2] x̂3 〈x3.α〉], n ≥ 0

Example 36 We can derive

x,yV1Uα , 〈x.α1〉 α̂1 [y] x̂2 〈x2.α〉

x,yV2Uα , y<
by1
by2
〈(〈x.α1〉 α̂1 [y1] x̂2 〈x2.α2〉) α̂2 [y2] x̂3 〈x3.α〉]

...

Remark Another way to write x,yV2Uα is by changing the position of paren-
thesis7

x,yV2Uα , y<
by1
by2
〈〈x.α1〉 α̂1 [y1] x̂2 (〈x2.α2〉 α̂2 [y2] x̂3 〈x3.α〉)],

but we will not go into detail here. More about equivalent terms will be said
in Part III.

The basic operations are defined as follows:

x,yVn + mUα := y<
by1
by2
〈(x,y1VnUα2)α̂2 † x̂2(x2,y2VmUα)]

x,yVn×mUα := (x̂1 (x1,yVnUα2) α̂2 . β)β̂ † ŷ1(x,y1VmUα)

The implementation of natural numbers will be revisited in the diagram-
matic framework in Section 8.7 (page 119).

5.6 Extension of the ∗X -calculus

The ∗X calculus has been presented as a counterpart of implicational frag-
ment of classical logic. Its can be simply extended to cover other connectives.
We extend the system to encompass negation, conjunction and disjunction.
The same can be done in the diagrammatic setting (see Appendix 8.8).

7Underlining is used to make the comparison of terms easier.

74CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

The syntax

The extension of the syntax is defined as follows:

P,Q ::= . . .

| x ¬ Pα̂ left-negation

| x̂P ¬ α right-negation

| x △ ŷẑP left-conjunction

| Pα̂Qβ̂ △γ right-conjunction

| x ▽ ŷP ẑQ left-disjunction

| Pα̂β̂ ▽ γ right-disjunction

The notions of linearity and free and bound names naturally extend to this
system. Principal names of new constructors (respectively x, α, x, γ, x, γ)
are considered as L-principal. This is natural since these terms code logical
rules.

The reduction rules

Since new constructors correspond to logical inference rules of sequent calcu-
lus, we extend the groups of logical actions. Also, the propagation group has
to be extended to describe the cut-propagation for new constructors. Acti-
vation and deactivation groups remain the same with respect to extended
notion of L-principal name.

Logical rules These rules define the cut-elimination for new constructors,
when both cut names are L-introduced:

(notR-notL) : (ŷP ¬ α)α̂ † x̂(x ¬ Qβ̂) → Qβ̂ † ŷP

(andR-andL) : (P β̂Qγ̂ △α)α̂ † x̂(x △ ŷẑR) →

{
P β̂ † ŷ(Qγ̂ † ẑR)

Qγ̂ † ẑ(P β̂ † ŷR)

(orR-orL) : (P β̂γ̂ ▽ α)α̂ † x̂(x ▽ ŷQẑR) →

{
(P β̂ † ŷQ)γ̂ † ẑR

(P γ̂ † ẑR)β̂ † ŷQ

Notice that in the second and the third rule the conditions y, z ∈ N(R) and
β, γ ∈ N(P) hold, respectively. For more intuition see the diagrammatic
view given in the next chapter.

5.6. EXTENSION OF THE ∗X -CALCULUS 75

Propagation rules Propagation rules define cut-propagation through the
structure of new constructors. We will introduce rules for both, left-propagation
and right-propagation. Left-propagation is defined as:

(notL
† -prop) : (x ¬ Pα̂)β̂ † ŷR → x ¬ (P β̂ † ŷR)α̂

(notR
† -prop) : (x̂P ¬ α)β̂ † ŷR → x̂(P β̂ † ŷR)¬ α, α 6= β

(andL
† -prop) : (x △ ẑt̂P)β̂ † ŷR → x △ ẑt̂(P β̂ † ŷR)

(andR
† -prop1) : (Pα̂Qγ̂ △δ)β̂ † ŷR → (P β̂ † ŷR)α̂Qγ̂ △δ, δ 6= β, β ∈ N(P)

(andR
† -prop2) : (Pα̂Qγ̂ △δ)β̂ † ŷR → Pα̂(Qβ̂ † ŷR)γ̂ △δ, δ 6= β, β ∈ N(Q)

(orL
† -prop1) : (x ▽ ẑP t̂Q)β̂ † ŷR → x ▽ ẑ(P β̂ † ŷR)t̂Q, β ∈ N(P)

(orL
† -prop2) : (x ▽ ẑP t̂Q)β̂ † ŷR → x ▽ ẑP t̂(Qβ̂ † ŷR), β ∈ N(Q)

(orR
† -prop) : (Pα̂γ̂ ▽ δ)β̂ † ŷR → (P β̂ † ŷR)α̂γ̂ ▽ δ, δ 6= β

Right-propagation is defined as:

(†notL-prop) : Pα̂ † x̂(y ¬ Qβ̂) → y ¬ (Pα̂ † x̂Q)β̂, x 6= y

(†notR-prop) : Pα̂ † x̂(ŷQ¬ β) → ŷ(Pα̂ † x̂Q)¬ β

(†andL-prop) : Pα̂ † x̂(y △ ẑt̂Q) → y △ ẑt̂(Pα̂ † x̂Q), x 6= y

(†andR-prop1) : Pα̂ † x̂(Qβ̂Rγ̂ △δ) → (Pα̂ † x̂Q)β̂Rγ̂ △δ, x ∈ N(Q)

(†andR-prop2) : Pα̂ † x̂(Qβ̂Rγ̂ △δ) → Qβ̂(Pα̂ † x̂R)γ̂ △δ, x ∈ N(R)

(†orL-prop1) : Pα̂ † x̂(y ▽ ẑQt̂R) → y ▽ ẑ(Pα̂ † x̂Q)t̂R, x 6= y, x ∈ N(Q)

(†orL-prop2) : Pα̂ † x̂(y ▽ ẑQt̂R) → y ▽ ẑP t̂(Pα̂ † x̂R), x 6= y, x ∈ N(R)

(†orR-prop) : Pα̂ † x̂(Qβ̂γ̂ ▽ δ) → (Pα̂ † x̂Q)β̂γ̂ ▽ δ

The type assignment

We define the type assignment for the other connectives by extending the
type system defined in Figure 5.10, by the following:

76CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

P ··· Γ ⊢ α : A,∆
(¬ L)

x ¬ Pα̂ ··· Γ, x : ¬A ⊢ ∆

P ··· Γ, x : A ⊢ ∆
(¬ R)

x̂P¬ α ··· Γ ⊢ α : ¬A,∆

P ··· Γ, y : A, z : B ⊢ ∆
(∧L)

x △ ŷẑP ··· Γ, x : A ∧B ⊢ ∆

P ··· Γ ⊢ β : A,∆ Q ··· Γ′ ⊢ γ : B,∆′

(∧R)
P β̂Qγ̂ △α ··· Γ,Γ′ ⊢ α : A ∧B,∆,∆′

P ··· Γ, y : A ⊢ ∆ Q ··· Γ′, z : B ⊢ ∆′

(∨L)
x ▽ ŷQẑR ··· Γ,Γ′, x : A ∨B ⊢ ∆,∆′

P ··· Γ ⊢ β : A, γ : B,∆
(∨R)

P β̂γ̂ ▽α ··· Γ ⊢ α : A ∨B,∆

Computational content of a system in which some non-standard con-
nectives were chosen as primitives (such as for example ‘if and only if’ and
‘exclusive or’) has been studied in [RS07], with the X calculus as an un-
derlying language. An investigation in of various approaches of employing
quantifiers in the X calculus has been studied in [SvB06].

5
.6

.
E

X
T

E
N

S
IO

N
O

F
T

H
E

∗X
-C

A
L
C

U
L
U

S
77

(ax)
〈x2.ǫ〉 ··· x2 : A ⊢ ǫ : A

(ax)
〈x1.δ〉 ··· x1 : A ⊢ δ : A

(ax)
〈y.β〉 ··· y : B ⊢ β : B

(→L)
〈x1.δ〉 δ̂ [u] ŷ 〈y.β〉 ··· x1 : A, u : A→ B ⊢ β : B

(ax)
〈z.γ〉 ··· z : C ⊢ γ : C

(→L)
(〈x1.δ〉 δ̂ [u] ŷ 〈y.β〉) β̂ [v] ẑ 〈z.γ〉 ··· v : B → C, x1 : A, u : B → C ⊢ γ : C

(→L)
〈x2.ǫ〉 ǫ̂ [w] v̂ ((〈x1.δ〉 δ̂ [u] ŷ 〈y.β〉) β̂ [v] ẑ 〈z.γ〉) ··· x1 : A, x2 : A, u : A→ B,w : A→ B → C ⊢ γ : C

(cont-L)
x<

cx1

cx2
〈〈x2.ǫ〉 ǫ̂ [w] v̂ ((〈x1.δ〉 δ̂ [u] ŷ 〈y.β〉) β̂ [v] ẑ 〈z.γ〉)] ··· x : A, u : A→ B,w : A→ B → C ⊢ γ : C

(→R)
x̂ (x<

cx1

cx2
〈〈x2.ǫ〉 ǫ̂ [w] v̂ ((〈x1.δ〉 δ̂ [u] ŷ 〈y.β〉) β̂ [v] ẑ 〈z.γ〉)]) γ̂ . η ··· u : A→ B,w : A→ B → C ⊢ η : A→ C

(→R)
û (x̂ (x<

cx1

cx2
〈〈x2.ǫ〉 ǫ̂ [w] v̂ ((〈x1.δ〉 δ̂ [u] ŷ 〈y.β〉) β̂ [v] ẑ 〈z.γ〉)]) γ̂ . η) η̂ . θ ··· w : A→ B → C ⊢ θ : (A→ B)→ A→ C

(→R)
S ··· ⊢ α : (A→ B → C)→ (A→ B)→ A→ C

Figure 5.11: The proof tree for S-cominator

78CHAPTER 5. ERASURE AND DUPLICATION: THE ∗X CALCULUS

Chapter 6

The encoding of related

calculi

The ∗X calculus is a low-level language whose syntax is an extension of that
of the X calculus, and therefore its reduction steps decompose reduction
steps of X , which on its own is also a low level language.

The expressive power of X has been illustrated in [vBLL05], by encod-
ing various calculi, such as: λ, λx and λµ. Also the X calculus is encoded
into λµ in [AvB07]. The first hint on how to relate λ̄µµ̃ and Gentzen’s
sequent calculus for classical logic LK (which corresponds to X) was al-
ready given by Curien and Herbelin in [CH00]. It was studied in detail
through the λξ-calculus [Len03], where mutual embedings are presented.
These results were used to give an elegant proof of strong normalization for
the λ̄µµ̃-calculus.

Some works have considered the relation between X and the π-calculus.
The π-calculus, [Mil95, SW01], is able to describe concurrent computa-
tions, including the communication between processes. The configurations
of the interacting processes may change during the computation. The rela-
tion of X and π-calculus has been recently presented in [vBCV07], where
the X calculus is encoded into π. This paper seeks for the intuition to what
is computational meaning of cut-elimination from the point of view of π.

Some remarks aiming at essential points related to concurrency were
given earlier by Urban [Urb00]. He suggested how a form of weak commu-
nication can be implemented, using quantifiers, into the classical sequent
calculus. Besides that, it was noted that the approach where reduction is
not seen as an equality preserving operation, is a standard approach in the
calculi of concurrency. Take for example the non-deterministic choice opera-

79

80 CHAPTER 6. THE ENCODING OF RELATED CALCULI

tor, +, and the reduction: P + Q → P or Q. Moreover, the substitution
mechanism in X -like calculi in which only names may participate, is closer
to the π-calculus than the substitution mechanism defined in the λ-calculus
which involves terms.

Our view is that most of the features of the X calculus can also be shown
for ∗X . Since the ∗X calculus has a lower level of granularity, is expected to be
at least as expressive as the X calculus. In case of potential implementation
this model is better suited, since it introduces the possibility of controlling
both duplication and erasure of parts of a program. In this chapter we study
the relation between ∗X and the following calculi; intuitionistic: λ, λx and
λlxr, and classical: X and λ̄µµ̃.

6.1 Relation between X calculus and ∗X calculus

In this section we show the relation between X -terms and ∗X -terms. We
present the encodings in both directions, and study the relation between
the computations. It is shown that X -reduction steps are decomposed into
more atomic steps of ∗X , due to the linearity and the presence of explicit
terms for erasure and duplication. Finally, we study the relation between
typing of X -terms and typing of ∗X -terms.

6.1.1 From X to ∗X

We now describe how to encode X -terms, which are possibly not linear,
into terms of the ∗X calculus. Before doing that we will introduce two
operations to help us formulate the encoding. They will be used in the
formal definition and their only purpose is to make definitions easier to
read. The first operation, denoted by ⊚, adds erasers where needed.

Definition 37 (Potential eraser: ⊚) The operation ⊚ is defined as fol-
lows:

x ⊚ P ⊚ α =

P, x, α ∈ N(P)

x⊙ P, x /∈ N(P), α ∈ N(P)

P ⊙ α, x ∈ N(P), α /∈ N(P)

x⊙ P ⊙ α, x, α /∈ N(P)

The second operation, denoted by ⊳ ()⊲, adds contractions where needed.
Typically this will happen when encoding terms which have two immediate
subterms, denoted by C{P,Q}, and it will be used to prevent the multiple

6.1. RELATION BETWEEN X CALCULUS AND ∗X CALCULUS 81

occurrences of names. This operation also improves the readability of the
encoding, although we could have used actual contractions.

Definition 38 (Potential contractions: ⊳()⊲) The operation ⊳()⊲ is
defined as follows:

I⊳
(
C{P,Q}

)
⊲O =

C{P,Q}, N(P) ∩N(Q) = ∅

I <

cI1
cI2
〈C{P,Q}〉

cO1
cO2

>O when N(P) ∩N(Q) 6= ∅,
where I = I(P) ∩ I(Q)

O = O(P) ∩O(Q)

Definition 39 The encoding of X -terms in ∗X is defined by induction, as
presented by Figure 6.1.

V〈x.α〉U
∗X := 〈x.α〉

Vx̂ P β̂ . αU
∗X :=

(
x̂ (x ⊚ VPU

∗X ⊚ β) β̂ . α
)

⊲ α,

VP α̂ [x] ŷ QU
∗X := I⊳

(
(VPU

∗X ⊚ α) α̂ [x] ŷ (y ⊚ VQU
∗X)

)
⊲O,

for x /∈ N(P), x /∈ N(Q)

VP α̂ [x] ŷ QU
∗X := I⊳

(
x<

cx1
cx2
〈(VP{x1/x}U

∗X ⊚ α) α̂ [x2] ŷ (y ⊚ VQU
∗X)]

)
⊲O,

for x ∈ N(P), x /∈ N(Q)

VP α̂ [x] ŷ QU
∗X := I⊳

(
x<

cx1
cx2
〈(VPU

∗X ⊚ α) α̂ [x1] ŷ (y ⊚ VQ{x2/x}U
∗X)]

)
⊲O,

for x /∈ N(P), x ∈ N(Q)

VP α̂ [x] ŷ QU
∗X := I⊳

(
x<

bt
cx3
〈t< cx1

cx2
〈(VP{x1/x}U

∗X ⊚ α) α̂ [x2] ŷ (y ⊚ VQ{x3/x}U
∗X)]]

)
⊲O,

for x ∈ N(P), x ∈ N(Q)

VPα̂ † x̂QU
∗X := I⊳

(
(VPU

∗X ⊚ α)α̂ † x̂(x ⊚ VQU
∗X)

)
⊲O,

Figure 6.1: Encoding the X -terms into ∗X

82 CHAPTER 6. THE ENCODING OF RELATED CALCULI

Figure 6.1 defines the encoding of pure X -terms in ∗X . Active cuts can be
encoded in the following way:

VPα̂ † x̂QU
∗X := I⊳

(
(VPU

∗X ⊚ α)α̂ † x̂(x ⊚ VQU
∗X)

)
⊲O

VPα̂ † x̂QU
∗X := I⊳

(
(VPU

∗X ⊚ α)α̂ † x̂(x ⊚ VQU
∗X)

)
⊲O

Remark Notice that if the X -term is linear, i.e., if there is no need to use
the operations ⊚ and⊳()⊲, we get simply

V〈x.α〉U
∗X = 〈x.α〉

Vx̂ P β̂ . αU
∗X = x̂VPU

∗X β̂ . α

VP α̂ [x] ŷ QU
∗X = VPU

∗X α̂ [x] ŷ VQU
∗X

VPα̂ † x̂QU
∗X = VPU

∗X α̂ † x̂VQU
∗X

Remark The encoding is defined in such a way that none of the free names
is lost. Notice that this is not the case with occurrences of free names. If a
free name has multiple occurrences in X -term, it will occur only once after
the encoding.

Lemma 40 The encoding V U
∗X preserves the set of free names.

N(P) = N(VPU
∗X)

Proof: By inspection of the encoding rules. �

Example 41 Take for example P = (x̂ 〈x.α〉 β̂ . γ) γ̂ [z] ŷ 〈y.α〉, where α as
a free name occurs twice, and β̂ does not bind an occurrence of a free name.
The encoding gives:

VPU
∗X = [(x̂ (〈x.α1〉 ⊙ β) β̂ . γ) γ̂ [z] ŷ 〈y.α2〉〉

cα1
cα2

>α

where α has only one occurrence, and β̂ does bind an occurrence of a free
name.

Remark We will sometimes annotate the arrow, →, in order to ease the

reading. We use
∗X
−−→ to denote ∗X -reduction and

X
−−→ to denote X -reduction.

6.1. RELATION BETWEEN X CALCULUS AND ∗X CALCULUS 83

Simulation of X -reduction In what follows we show that the reduction
rules of X can be simulated in ∗X . Initially we show that the notion of
introduced name in X corresponds to the notion of L-principal name in ∗X .

Lemma 42 The notion of introduced name by a term in X , and that of
L-principal name of a term in ∗X , correspond to each other.

1. If α freshly introduced by S, then α is L-principal for VSU
∗X

2. If α L-principal for S, then α is freshly introduced by VSUX

Proof:

1. Case: S = 〈x.α〉. We have VSU
∗X = V〈x.α〉U

∗X = 〈x.α〉, and thus α is
L-principal for 〈x.α〉.

Case: S = x̂ P β̂ . α. Since α is freshly introduced α /∈ N(P). We have
VSUX = Vŷ P β̂ . αU

∗X= ŷ (y ⊚ VPU
∗X ⊚ β) β̂ . α, and thus by definition

α is L-principal for VSU
∗X .

2. Case: S = 〈x.α〉. We have VSUX = V〈x.α〉UX = 〈x.α〉, where α is
freshly introduced by 〈x.α〉, by definition.

Case: S = x̂ P β̂ . α. By linearity it stands that α /∈ N(P). We have
S = Vŷ P β̂ . αUX= ŷ VPUX β̂ . α, and thus α is freshly introduced by
VSUX .

It is not difficult to check that the same holds for innames. �

In the proof for simulation property we use slightly modified X -propagation
rules. The idea is to set the side conditions in a way that will prevent
unnecessary duplication. The right-propagation rules of X are given in Fig-
ure 4.4 (page 27), whereas the modified version for left-propagation is given
in Figure 6.2 (page 84). Modified right-propagation can be defined simi-
larly. Remark that the last rule, namely († -prop-dupl2) assumes the side
condition Q 6= 〈x.β〉.

Theorem 43 (Simulation of X -reduction) Let P and P ′ be X -terms.
Then the following holds:

If P
X
−−→ P ′ then VPU

∗X
∗X
−−→+ (IP\P ′

)⊙ VP ′U
∗X ⊙ (OP\P ′

)

Proof: The proof goes by inspecting the reduction rules and by induction
on the structure of terms. We give the proof for some reduction rules.

84 CHAPTER 6. THE ENCODING OF RELATED CALCULI

(† -eras) : 〈x.α〉β̂ † ŷR → 〈x.α〉, α 6= β

(† -deact) : 〈x.β〉β̂ † ŷR → 〈x.β〉β̂ † ŷR

(† -prop) : (x̂ P γ̂ . α)β̂ † ŷR → x̂ (P β̂ † ŷR) γ̂ . α, α 6= β

(† -prop-dupl-deact) : (x̂ P γ̂ . β)β̂ † ŷR →

{
(x̂ P γ̂ . β)β̂ † ŷR, β /∈ N(P)

(x̂ (P β̂ † ŷR) γ̂ . β)β̂ † ŷR, β ∈ N(P)

(† -prop-dupl1) : (P α̂ [x] ẑ Q)β̂ † ŷR →

(P β̂ † ŷR) α̂ [x] ẑ Q,
β ∈ N(P), β /∈ N(Q)

P α̂ [x] ẑ (Qβ̂ † ŷR),
β /∈ N(P), β ∈ N(Q)

(P β̂ † ŷR) α̂ [x] ẑ (Qβ̂ † ŷR),
β ∈ N(P), β ∈ N(Q)

(† -(c)-prop-deact) : (Pα̂ † x̂〈x.β〉)β̂ † ŷR →

{
Pα̂ † ŷR, β /∈ N(P)

(P β̂ † ŷR)α̂ † ŷR, β ∈ N(P)

(† -prop-dupl2) : (Pα̂ † x̂Q)β̂ † ŷR →

(P β̂ † ŷR)α̂ † x̂Q,
β ∈ N(P), β /∈ N(Q)

Pα̂ † x̂(Qβ̂ † ŷR),
β /∈ N(P), β ∈ N(Q)

(P β̂ † ŷR)α̂ † x̂(Qβ̂ † ŷR),
β ∈ N(P), β ∈ N(Q)

Figure 6.2: Modified left propagation in X

Logical rules:

• Take the (cap− ren) rule: 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉. We have:

V〈y.α〉α̂ † x̂〈x.β〉U
∗X , V〈y.α〉U

∗X α̂ † x̂V〈x.β〉U
∗X

, 〈y.α〉α̂ † x̂〈x.β〉
→ 〈y.b〉

, V〈y.β〉U
∗X

• Take the (exp− ren) rule: (ŷ P β̂ . α)α̂ † x̂〈x.γ〉 → ŷ P β̂ . γ, α /∈ N(P).
We have (assuming for simplicity that γ /∈ N(P)):

V(ŷ P β̂ . α)α̂ † x̂〈x.γ〉U
∗X , Vŷ P β̂ . αU

∗X α̂ † x̂V〈x.γ〉U
∗X

, (ŷ (y ⊚ VPU
∗X ⊚ β) β̂ . α)α̂ † x̂〈x.γ〉

→ ŷ (y ⊚ VPU
∗X ⊚ β) β̂ . γ

, Vŷ P β̂ . γU
∗X

6.1. RELATION BETWEEN X CALCULUS AND ∗X CALCULUS 85

• Take the (imp− ren) rule: 〈y.α〉α̂ † x̂(Q β̂ [x] ẑ R)→ Q β̂ [y] ẑ R, where
x /∈ N(Q), x /∈ N(R). We have:

V〈y.α〉α̂ † x̂(Q β̂ [x] ẑ R)U
∗X , V〈y.α〉U

∗X α̂ † x̂VQ β̂ [x] ẑ RU
∗X

, 〈y.α〉α̂ † x̂(I⊳
(
(VQU

∗X ⊚ β) β̂ [x] ẑ (z ⊚ VRU
∗X)

)
⊲O)

→ I⊳
(
(VQU

∗X ⊚ β) β̂ [y] ẑ (z ⊚ VRU
∗X)

)
⊲O

, VQ β̂ [y] ẑ RU
∗X

For simplicity we assumed that y /∈ N(Q) and y /∈ N(R).

Activation rules

• Take the (act − L) rule: Pα̂ † x̂Q → Pα̂ † x̂Q, if α not freshly
introduced by P . We have:

VPα̂ † x̂QU
∗X , IP∩Q ⊳

(
(VPU

∗X ⊚ α)α̂ † x̂(x ⊚ VQU
∗X)

)
⊲OP∩Q

Lem.42
−−−−→ IP∩Q ⊳

(
(VPU

∗X ⊚ α)α̂ † x̂(x ⊚ VQU
∗X)

)
⊲OP∩Q

, VPα̂ † x̂QU
∗X

Similarly for the rule (act−R).

Propagation rules

• Take the († − eras) rule: 〈x.α〉β̂ † ŷR → 〈x.α〉, where α 6= β.
We will take into consideration the possibility that x, α ∈ N(R). Thus we
have:

V〈x.α〉β̂ † ŷRU
∗X , x⊳

(
(V〈x.α〉U

∗X ⊙ β)β̂ † ŷ(y ⊚ VRU
∗X)

)
⊲α

→ x⊳
(
IR ⊙ V〈x.α〉U

∗X ⊙OR
)

⊲α

99K (IR \ x)⊙ V〈x.α〉U
∗X ⊙ (OR \ α)

• Take the († − deact) rule: 〈x.β〉β̂ † ŷR → 〈x.β〉β̂ † ŷR. We have:

V〈x.β〉β̂ † ŷRU
∗X , x ⊳

(
V〈x.β〉U

∗X β̂ † ŷ(y ⊚ VRU
∗X)

)

, x ⊳
(
〈x.β〉β̂ † ŷ(y ⊚ VRU

∗X)
)

→ x ⊳
(
〈x.β〉β̂ † ŷ(y ⊚ VRU

∗X)
)

, V〈x.β〉β̂ † ŷRU
∗X

• Take the († −prop) rule: (x̂ P γ̂ . α)β̂ † ŷR → x̂ (P β̂ † ŷR) γ̂ . α, α 6= β.
We assume for simplicity N(x̂ P γ̂ . α) ∩N(R) = ∅. We have:

86 CHAPTER 6. THE ENCODING OF RELATED CALCULI

V(x̂ P γ̂ . α)β̂ † ŷRU
∗X , (Vx̂ P γ̂ . αU

∗X ⊚ β)β̂ † ŷ(y ⊚ VRU
∗X)

, ((x̂ (x ⊚ VPU
∗X ⊚ γ) γ̂ . α) ⊚ β)β̂ † ŷ(y ⊚ VRU

∗X)

≡ (x̂ ((x ⊚ VPU
∗X ⊚ γ) ⊚ β) γ̂ . α)β̂ † ŷ(y ⊚ VRU

∗X)

→ x̂ (((x ⊚ VPU
∗X ⊚ γ) ⊚ β)β̂ † ŷ(y ⊚ VRU

∗X)) γ̂ . α

≡ x̂ (x ⊚ ((VPU
∗X ⊚ β)β̂ † ŷ(y ⊚ VRU

∗X)) ⊚ γ) γ̂ . α

, x̂ (x ⊚ (P β̂ † ŷR) ⊚ γ) γ̂ . α

, Vx̂ (P β̂ † ŷR) γ̂ . αU
∗X

• Take the first case of († -prop-dupl-deact) rule:
(x̂ P γ̂ . β)β̂ † ŷR → (x̂ P γ̂ . β)β̂ † ŷR, where β /∈ N(P). We assume
N(P) ∩N(R) = ∅, then we have:

V(x̂ P γ̂ . β)β̂ † ŷRU
∗X , Vx̂ P γ̂ . βU

∗X β̂ † ŷ(y ⊚ VRU
∗X)

, (x̂ (x ⊚ VPU
∗X ⊚ γ) γ̂ . β)β̂ † ŷ(y ⊚ VRU

∗X)

→ (x̂ (x ⊚ VPU
∗X ⊚ γ) γ̂ . β)β̂ † ŷ(y ⊚ VRU

∗X)

, V(x̂ P γ̂ . β)β̂ † ŷRU
∗X

• Take the second case of († -prop-dupl-deact) rule:
(x̂ P γ̂ . β)β̂ † ŷR → (x̂ (P β̂ † ŷR) γ̂ . β)β̂ † ŷR, where β ∈ N(P). We
assume for simplicity N(P) ∩N(R) = ∅, then we have:

V(x̂ P γ̂ . β)β̂ † ŷRU
∗X , Vx̂ P γ̂ . βU

∗X β̂ † ŷ(y ⊚ VRU
∗X)

, ([x̂ (x⊙ (VPU
∗X {β1/β})⊙ γ) γ̂ . β2〉

cβ1

cβ2
>β)β̂ † ŷ(y ⊚ VRU

∗X)

→ IR ⊳
(
((x̂ (x⊙ (VPU

∗X {β1/β})⊙ γ) γ̂ . β2)β̂1
† ŷ(y ⊚ VRU

∗X))β̂2
† ŷ(y ⊚ VRU

∗X)
)

⊲OR

→ IR ⊳
(
(x̂ (x ⊚ (VPU

∗X {β1/β}β̂1
† ŷ(y ⊚ VRU

∗X)) ⊚ γ) γ̂ . β2)β̂2
† ŷ(y ⊚ VRU

∗X)
)

⊲OR

→ IR ⊳
(
(x̂ (x ⊚ (VPU

∗X {β1/β}β̂1
† ŷ(y ⊚ VRU

∗X)) ⊚ γ) γ̂ . β2)β̂2 † ŷ(y ⊚ VRU
∗X)

)
⊲OR

, V(x̂ (P β̂ † ŷR) γ̂ . β)β̂ † ŷRU
∗X

The proof goes similarly for other propagation rules. �

Preservation of types We now show that the encoding preserves types.
In the typed X calculus contexts Γ and ∆ may contain some auxiliary pairs
(name,type). This is due to the fact that weakening is implicit in X , i.e., it
is not controlled explicitly. We have to keep that in mind when formulating
the lemma.

6.1. RELATION BETWEEN X CALCULUS AND ∗X CALCULUS 87

Lemma 44 (Preservation of types) If P is an arbitrary X -term such
that P ··· Γ ⊢ ∆, then

((dom(Γ)) \ I(P))⊙ VPU
∗X ⊙ ((dom(∆)) \O(P)) ··· Γ ⊢ ∆

Proof: The proof works by case analysis and induction on the structure
of terms. We give the detail for encoding of capsule and exporter, whereas
the other cases work the same way.

• Rule: V〈x.α〉U
∗X := 〈x.α〉.

If 〈x.α〉 ··· Γ ⊢ ∆ where x : A ∈ Γ and α : A ∈ ∆, then, in ∗X we have:
〈x.α〉 ··· x : A ⊢ α : A, which is equivalent to:

(dom(Γ) \ x)⊙ 〈x.α〉 ⊙ (dom(∆) \ α) ··· Γ ⊢ ∆

• Rule: Vx̂ P β̂ . αU
∗X :=

(
x̂ (x ⊚ VPU

∗X ⊚ β) β̂ . α
)

⊲ α.

If we assume the most generic case, namely for x, β /∈ N(P) and α ∈ N(P),
then the encoding gives:

Vx̂ P β̂ . αU
∗X := [x̂ (x⊙ (VPU

∗X {α1/α})⊙ β) β̂ . α1〉
cα1
cα2

>α

On the one hand we have:

P ··· Γ ⊢ α : A→ B,∆
(→ R)

x̂ P β̂ . α ··· Γ ⊢ α : A→ B,∆

where, as stated previously, x : A ∈ Γ, β : B ∈ ∆.

On the other hand,

VPU
∗
X

··· Γ ⊢ α : A→ B,∆
(ren)

VPU
∗
X {α1/α} ··· Γ ⊢ α1 : A→ B,∆

(weak-L)
x⊙ VPU

∗
X {α1/α} ··· Γ, x : A ⊢ α1 : A→ B,∆

(weak-R)
x⊙ VPU

∗
X {α1/α} ⊙ β ··· Γ, x : A ⊢ α1 : A→ B, β : B,∆

(→ R)
x̂ (x⊙ VPU

∗
X {α1/α} ⊙ β) β̂ . α ··· Γ ⊢ α1 : A→ B,α2 : A→ B,∆

(cont-R)
[x̂ (x⊙ VPU

∗
X {α1/α} ⊙ β) β̂ . α〉cα1

cα2
>α ··· Γ ⊢ α : A→ B,∆

�

88 CHAPTER 6. THE ENCODING OF RELATED CALCULI

6.1.2 From ∗X to X

Now we investigate the opposite direction. We show how to represent
∗X -terms by X -terms and then we show how ∗X -reductions are simulated by
X -reductions.

Definition 45 (Encoding ∗X into X) The encoding of ∗X -terms in X cal-
culus is defined inductively as shown by Figure 6.2.

V〈x.α〉UX := 〈x.α〉

Vx̂ P β̂ . αUX := x̂VPUX β̂ . α

VP α̂ [x] ŷ QUX := VPUX α̂ [x] ŷ VQUX

VPα̂ † x̂QUX := VPUX α̂ † x̂VQUX

Vx<
by
bz〈P]UX := VPUX {x/y}{x/z}

V[P 〉
bβ
bγ >αUX := VPUX {α/β}{α/γ}

Vx⊙ PUX := VPUX

VP ⊙ αUX := VPUX

Figure 6.3: Encoding the ∗X -terms into X

Encodings are defined without considering the active cuts but it is not dif-
ficult to extend it:

VPα̂ † x̂QUX := VPUX α̂ † x̂VQUX

VPα̂ † x̂QUX := VPUX α̂ † x̂VQUX

The encoding V UX does the opposite to V U
∗X . Namely, it simply removes

erasers and duplicators from terms (some renamings are also performed).
That is the reason for a possible decrease of free names after the encoding.

Lemma 46 The encoding V UX preserves or decreases the set of free names.

N(P) ⊆ N(VPUX)

Proof: This can be checked by analyzing the encoding rules. The set of
free names is preserved by most of the encoding rules, and decreased when
encoding erasers. �

6.2. RELATION WITH THE λ̄µµ̃-CALCULUS 89

6.2 Relation with the λ̄µµ̃-calculus

In this section we present the encoding of λ̄µµ̃-calculus into ∗X calculus.

Terms (v) :

VxU
∗X
α := 〈x.α〉

Vλx.vU
∗X
α := x̂ (x ⊚ VvU

∗X
β) β̂ . α

Vµβ.cU
∗X
α := (VcU

∗X ⊚ β){α/β}

Contexts (e) :

VαU
∗X
x := 〈x.α〉

Vv · eU
∗X
x := I⊳

(
VvU

∗X
α α̂ [x] ŷ VeU

∗X
y

)
⊲O

Vµ̃y.cU
∗X
x := (y ⊚ VcU

∗X){x/y}

Commands (c) :

V〈v ‖ e〉U
∗X := I⊳

(
VvU

∗X
α α̂ † x̂VeU

∗X
x

)
⊲O

Figure 6.4: Encoding λ̄µµ̃-calculus into ∗X

Remark Notice that V U
∗X
α is used for terms, V U

∗X
x is used for contexts,

and V U
∗X - for commands.

Remark Meta substitution of λ̄µµ̃-calculus is represented in the following
way:

Vc[e/α]U
∗X := (VcU

∗X ⊚ α)α̂ † x̂VeU
∗X
x

Vc[v/x]U
∗X := VvU

∗X
α α̂ † x̂(x ⊚ VcU

∗X)

This encoding relies on that presented in [Len03] and [vBLL05], where
the λ̄µµ̃-calculus was studied in relation with λξ and X , respectively. The
encoding is given in Figure 6.4. The operations ⊚ and ⊳ () ⊲ are given in
Definitions 37 and 38, respectively.

Lemma 47 (Simulation of the λ̄µµ̃-reduction)

If P
λ̄µµ̃
−−→ P ′ then VPU

∗X
∗X
−−→+ VP ′U

∗X

90 CHAPTER 6. THE ENCODING OF RELATED CALCULI

Proof: By case analysis and induction on the structure of terms.

• Consider the first reduction rule: 〈λx.v1 ‖ v2 · e〉 → 〈v2 ‖ µ̃x.〈v1 ‖ e〉〉.
– On the one hand, the encoding of the left-hand side gives:

V〈λx.v1 ‖ v2 · e〉U
∗X ,

, I ′⊳
(
Vλx.v1U

∗X
β β̂ † ŷVv2 · eU

∗X
y

)
⊲O′

, I ′⊳
(
(x̂ (x ⊚ Vv1U

∗X
γ) γ̂ . β)β̂ † ŷ(I ′′⊳

(
Vv2U

∗X
δ δ̂ [y] ẑ VeU

∗X
z

)
⊲O′′)

)
⊲O′

where the possible contractions are with I ′ = IVv1U
∗X
γ ∩Vv2U

∗X
δ ∩VeU

∗X
z and

I ′′ = IVv2U
∗X
δ ∩VeU

∗X
z (notice that these lists can also be empty). Similar def-

inition is for outnames. By the condition of linearity y /∈ I ′′. If I ′′,O′′ are
not empty, we have to perform right activation followed by propagations
and deactivation, in order to apply ei-insert rule:

act−R
−−−−→ I ′⊳

(
(x̂ (x ⊚ Vv1U

∗X
γ) γ̂ . β)β̂ † ŷ(I ′′⊳

(
Vv2U

∗X
δ δ̂ [y] ẑ VeU

∗X
z

)
⊲O′′)

)
⊲O′

†−prop
−−−−−→

+
I ′⊳

(
I ′′⊳

(
(x̂ ((x ⊚ Vv1U

∗X
γ)) γ̂ . β)β̂ † ŷ(Vv2U

∗X
δ δ̂ [y] ẑ VeU

∗X
z)

)
⊲O′′

)
⊲O′

†−deact2
−−−−−−→ I ′⊳

(
I ′′⊳

(
(x̂ ((x ⊚ Vv1U

∗X
γ)) γ̂ . β)β̂ † ŷ(Vv2U

∗X
δ δ̂ [y] ẑ VeU

∗X
z)

)
⊲O′′

)
⊲O′

ei−insert
−−−−−−→ I ′⊳

(
I ′′⊳

(
Vv2U

∗X
δ δ̂ † x̂((x ⊚ Vv1U

∗X
γ)γ̂ † ẑVeU

∗X
z)

)
⊲O′′

)
⊲O′

– On the other hand we have:

V〈v2 ‖ µ̃x.〈v1 ‖ e〉〉U
∗X ,

, I ′⊳
(
Vv2U

∗X
δ δ̂ † ŷVµ̃x.〈v1 ‖ e〉U

∗X
y

)
⊲O′

, I ′⊳
(
Vv2U

∗X
δ δ̂ † ŷ((x ⊚ V〈v1 ‖ e〉U

∗X){y/x})
)

⊲O′

= I ′⊳
(
Vv2U

∗X
δ δ̂ † ŷ(y ⊚ V〈v1 ‖ e〉U

∗X)
)

⊲O′

= I ′⊳
(
Vv2U

∗X
δ δ̂ † x̂(x ⊚ V〈v1 ‖ e〉U

∗X)
)

⊲O′

, I ′⊳
(
Vv2U

∗X
δ δ̂ † x̂(x ⊚ (I ′′′⊳

(
Vv1U

∗X
γ γ̂ † ẑVeU

∗X
z

)
⊲O′′′))

)
⊲O′

where I ′ has already been defined, and I ′′′ = IVv1U
∗X
γ ∩VeU

∗X
z . Due to liearity

we have x /∈ I ′′′, and therefore we may consider the variant of a term when
contraction are pulled at the top level. Thus we obtain the two resulting
terms which are equivalent modulo congruence rules:

z<
by

cx3
〈y<

cx1
cx2
〈P]] ≡ z<

cx1
by 〈y<

cx2
cx3
〈P]] and [[P 〉cα1

cα2
>β〉

bβ
cα3

>γ ≡ [[P 〉cα2
cα3

>β〉
cα1
bβ >γ

6.3. ENCODING THE INTUITIONISTIC CALCULI 91

• Consider the second reduction rule: 〈µα.c ‖ e〉 → c[e/α].
– On the one hand, the encoding of the left-hand side gives:

V〈µα.c ‖ e〉U
∗X ,

, I⊳
(
Vµα.cU

∗X
β β̂ † ŷVeU

∗X
y

)
⊲O

, I⊳
(
(VcU

∗X ⊚ α{β/α})β̂ † ŷVeU
∗X
y

)
⊲O

= I⊳
(
(VcU

∗X ⊚ β)β̂ † ŷVeU
∗X
y

)
⊲O

act−R
−−−−→ I⊳

(
(VcU

∗X ⊚ β)β̂ † ŷVeU
∗X
y

)
⊲O

= I⊳
(
(VcU

∗X ⊚ α)α̂ † ŷVeU
∗X
y

)
⊲O

– On the other hand:

V〈µα.c ‖ e〉U
∗X ,

, I⊳
(
(VcU

∗X ⊚ α)α̂ † ŷVeU
∗X
y

)
⊲O

where I = IVcU
∗X∩VeU

∗X
y , and similarly for outnames.

• The proof goes similarly for the third rule: 〈v ‖ µ̃x.c〉 → c[v/x].
�

6.3 Encoding the intuitionistic calculi

In this section we define the encoding of the λ-calculus in ∗X . In addition
we also define the encodings of λx-calculus and λlxr-calculus.

The results we present in this section rely on the encodings of various
calculi in the X -calculus, as presented in [vBLL05].

6.3.1 Encoding the λ-calculus

Before giving the encoding, we define an operation ⊚ which adds erasers
where needed. This will simplify the definition of encoding.

x ⊚ VMUα =

{
x⊙ VMUα, x /∈ fv(M)

VMUα, x ∈ fv(M)

Notice that P is a λ-calculus term, and that x is here a variable of the
λ-calculus (hence the use fv for “free variables”). The same letters are used
for variables as for innames in ∗X . Moreover, they correspond to each other

92 CHAPTER 6. THE ENCODING OF RELATED CALCULI

in the sense that a free variable in λ-calculus becomes a free inname in ∗X
after the encoding.

The encoding of λ-calculus in ∗X calculus is defined by induction as
presented:

VxUα := 〈x.α〉

Vλx.MUα := x̂ (x ⊚ VMUβ) β̂ . α

VMNUα := I<

cI1
cI2
〈VM1Uγ γ̂ † x̂(VN2Uβ β̂ [x] ŷ 〈y.α〉)],

where:

I = fv(M) ∩ fv(N)
VM1Uγ = ind(VMUγ , I, 1)
VN2Uβ = ind(VNUβ, I, 2)

Figure 6.5: Encoding the λ-calculus

Notice that the encoding V Uα preserves the set of free variables, which
appear as free innames after the encoding. Since free variables correspond to
free innames, we can conclude that λ-terms are represented by ∗X -terms with
zero or more free innames and one free outname (obtained by construction
as the result of encoding).

Example 48 We wish to illustrate how the general definition works, and
therefore we show the encoding of several simple λ-terms:

Vλx.MUα , x̂VMUβ β̂ . α,
when x ∈ fv(M)

VMNUα , VMUγ γ̂ † x̂(VNUβ β̂ [x] ŷ 〈y.α〉),
when fv(M) ∩ fv(N) = ∅

VMNUα , z<
bz1
bz2
〈VM1Uγ γ̂ † x̂(VN2Uβ β̂ [x] ŷ 〈y.α〉)],

when fv(M) ∩ fv(N) = z
where M1=ind(M, z, 1) and N2=ind(N, z, 2)

VzzUα , z<
bz1
bz2
〈VzUγ{z1/z}γ̂ † x̂VzUβ{z2/z} β̂ [x] ŷ 〈y.α〉]

, z<
bz1
bz2
〈Vz1Uγ γ̂ † x̂(Vz2Uβ β̂ [x] ŷ 〈y.α〉)]

, z<
bz1
bz2
〈〈z1.γ〉γ̂ † x̂(〈z2.β〉 β̂ [x] ŷ 〈y.α〉)]

→ z<
bz1
bz2
〈〈z2.β〉 β̂ [z1] ŷ 〈y.α〉]

6.3. ENCODING THE INTUITIONISTIC CALCULI 93

V(λt.u)vUα , Vλt.uUγ γ̂ † x̂(VvUβ β̂ [x] ŷ 〈y.α〉)

, (t̂ (t⊙ 〈u.δ〉) δ̂ . γ)γ̂ † x̂(〈v.β〉 β̂ [x] ŷ 〈y.α〉)

→ (〈v.β〉β̂ † t̂(t⊙ 〈u.δ〉))δ̂ † ŷ〈y.α〉
→ v ⊙ 〈u.α〉

6.3.2 Encoding the λx-calculus

It is easy to extend the encoding to the calculus of explicit substitution,
namely for λx-calculus [BR95, LLD+04]. To do that it suffices to add to the
definition of encoding λ-calculus the following:

VM〈x = N〉Uα := I<

cI1
cI2
〈VN1Uββ̂ † x̂(x ⊚ VM2Uα)]

where:

I = fv(M) ∩ fv(N)
VN1Uβ = ind(VNUβ, I, 1)
VM2Uα = ind(VMUα, I, 2)

Figure 6.6: Encoding the λx-calculus

These results rely on the interpretation of λx in X presented in [vBLL05].

In what follows we show that the encoding preserves the reduction of
the λx-calculus. We first recall the reduction rules of the λx-calculus:

(B) (λx.M)N → M〈x = N〉
(var) x〈x = N〉 → N
(gc) M〈x = N〉 → M, x /∈ fv(M)
(abs) (λy.M)〈x = N〉 → λy.(M〈x = N〉), x ∈ fv(M)
(app) (M1M2)〈x = N〉 → M1〈x = N〉M2〈x = N〉

Notice that we use the variant λxgc with the rule for garbage collection which
has a global criterion.

Lemma 49 (Simulation of the λx-reduction)

If P
λx
−→ P ′ then VPUα

∗X
−−→+ (fv(P) \ fv(P ′))⊙ VP ′Uα

Proof: By case analysis and induction on the structure of terms.

94 CHAPTER 6. THE ENCODING OF RELATED CALCULI

• Rule (B) : (λx.M)N → M〈x = N〉.

V(λx.M)NUα ,

, I ⊳
(
Vλx.MUγ γ̂ † ŷ(VNUβ β̂ [y] ẑ 〈z.α〉)

)

, I ⊳
(
(x̂ (x ⊚ VMUδ) δ̂ . γ)γ̂ † ŷ(VNUβ β̂ [y] ẑ 〈z.α〉)

)

→ I ⊳
(
(VNUββ̂ † x̂(x ⊚ VMUδ))δ̂ † ẑ〈z.α〉

)

→ I ⊳
(
VNUββ̂ † x̂(x ⊚ VMUα)

)

→ I ⊳
(
VNUββ̂ † x̂(x ⊚ VMUα)

)

, VM〈x = N〉Uα

• Rule (var) : x〈x = N〉 → N .

Vx〈x = α〉Uα ,

, VNUββ̂ † x̂VxUα

, VNUββ̂ † x̂〈x.α〉

→ VNUββ̂ † x̂〈x.α〉
→ VNUα

• Rule (gc) : M〈x = N〉 → M, x /∈ fv(M).

VM〈x = N〉Uα ,

, I<

cI1
cI2
〈VNUββ̂ † x̂(x⊙ VMUα)], where I = fv(N) ∩ fv(M)

→ I<

cI1
cI2
〈(fv(N))⊙ VMUα]

99K (fv(N) \ fv(M))⊙ VMUα

• Rule (abs) : (λy.M)〈x = N〉 → λy.(M〈x = N〉), x ∈ fv(M).

V(λy.M)〈x = N〉Uα ,

, I<

cI1
cI2
〈VNUββ̂ † x̂Vλy.MUα], where I = fv(N) ∩ fv(M)

→ I<

cI1
cI2
〈(fv(N))⊙ VMUα]

99K (fv(N) \ fv(M))⊙ VMUα

• As for the rule (app), we would have to modify it in a way that it checks if
x appears in both M1 and M2 before unnecessarily duplicating the explicit
substitution. The proof is then straightforward. �

6.3. ENCODING THE INTUITIONISTIC CALCULI 95

6.3.3 Encoding the λlxr-calculus

Furthermore, it is possible to encode λlxr-calculus [KL07], a calculus which
can be seen as an extension of λx with explicit terms corresponding to weak-
ening and contraction (see Section 4.2, page 28). Due to the linearity con-
straints in the λlxr-calculus its interpretation in λlxr is somewhat simpler:

VxUα := 〈x.α〉

Vλx.tUα := x̂VtUβ β̂ . α

VtuUα := VuUγ γ̂ † ŷ(VtUβ β̂ [y] ẑ 〈z.α〉)

Vt〈x = u〉Uα := VuUββ̂ † x̂VtUα

VWx(t)Uα := x⊙ VtUα

VCx,y
z (t)Uα := z<

bx
by〈VtUα]

Figure 6.7: Encoding the λlxr-calculus

In particular, the terms representing weakening and contraction are encoded
in a natural way, which is not a surprise, since λlxr-calculus was one of the
sores of inspiration for ∗X calculus.

Simulation of λlxr-reduction

If we assume the freedom to permute the independent erasers and dupli-
cators with other terms in ∗X , we can encode easily most of the reduction
rules of λlxr-calculus. We can not encode the rule Comp (see Section 4.2.3,
page 31) which represents the composition of explicit substitutions, and in
our understanding would correspond to allowing active cuts to pass over
other active cuts, which we do not have in ∗X .

Nevertheless it is important to show the relation between the reducing

in these two calculi. We denote by
λlxr

′

−−−→ the reduction relation which is
obtained by excluding the rule Comp from the set of reduction rules of the
λlxr-calculus.

Lemma 50 (Simulation of the λlxr-reduction)

If P
λlxr

′

−−−→ P ′ then VPUα

∗X
−−→* VP ′Uα

96 CHAPTER 6. THE ENCODING OF RELATED CALCULI

Proof: By case analysis and induction on the structure of terms. We give
the proof for the rules: Weak1, Cont and Merge which appear in both calculi.
• Rule Weak1 : Wx(t)〈x = u〉 −→WFV(u)(t).

VWx(t)〈x = u〉Uα ,

, VuUββ̂ † x̂VWx(t)Uα

, VuUββ̂ † x̂(x⊙ VtUα)

→ fv(u)⊙ VtUα

, VWfv(u)(t)Uα

• Rule Cont : Cy,z
x (t)〈x = u〉 −→ CΨ,Υ

fv(u)(t〈y = u1〉〈z = u2〉), where Ψ,Υ

are fresh lists of names, u1 = R
fv(u)
Ψ , u2 = R

fv(u)
Υ . We assume for simplicity

that the renaming operation is performed by indexing, i.e. that Ψ,Υ are in
fact fv(u1), fv(u2), respectively; where ui := ind(u, fv(u), i), i = 1, 2. Thus
we have:

VCy,z
x (t)〈x = u〉Uα ,

, VuUββ̂ † x̂VCy,z
x (t)Uα

, VuUββ̂ † x̂(x<
by
bz〈VtUα])

→ fv(u)<
f̂v(u1)

f̂v(u2)〈Vu2Uββ̂ † ẑ(Vu1Uγ γ̂ † ŷVtUα)]

, fv(u)<
f̂v(u1)

f̂v(u2)〈Vu2Uββ̂ † ẑVt〈y = u1〉Uα]

, fv(u)<
f̂v(u1)

f̂v(u2)〈Vt〈y = u1〉〈z = u2〉Uα]

, VCΨ,Υ
fv(u)(t〈y = u1〉〈z = u2〉)Uα

• Rule Merge : Cy,z
w (Wy(t)) −→ R

z
w(t).

VCy,z
w (Wy(t))Uα ,

, w<
by
bz〈VWy(t)Uα]

, w<
by
bz〈y ⊙ VtUα]

99K VtUα{w/z}

, VRz
w(t)Uα

Thus we are done with the proof. �

Part II

Diagrammatic Classical

Computing

97

Chapter 7

Introduction

Diagrams and pictures are among the oldest means of human communica-
tion. They are usually used for simple representation, but they also have
the potential to express more complex features, such as to carry out certain
types of reasoning. Therefore they can have an important role in logic and
mathematics. However, diagrams are playing a secondary role, since the sen-
tential style of representation was dominant in the history of modern logic.
Inference was usually seen as a manipulation with pure symbols according
to formal rules.

The ideas about other possible ways to model reasoning existed before,
but recently they are becoming more popular, especially the diagrammatic
systems. This trend exists not only in logic, but also among philosophers,
cognitive scientists and computer scientists. Although its nature is not clear,
there should be a relation between the external diagrammatic representa-
tions, which interest logicians and computer scientists, and visual images as
internal mental representations, which are considered by cognitive scientists
and philosophers. Not all scientists agree on the relevance of mental images
in the process of thinking, some consider the symbols to play the key role.
Among the scientists who were in favor of images over symbols were Albert
Einstein1 and Nikola Tesla2.

It is important to say that even before the era of modern logic, several
well known diagrammatic systems were introduced to illustrate reasoning.
For example, Euler diagrams (dating back to 1768, [Eul68]), a system of

1“The words or the language, as they are written or spoken, do not seem to play any
role in my mechanism of thought.”, in [Ghi87].

2“When I get a new idea, I start at once building it up in my imagination ... and
when I see no fault anywhere, I put into concrete form the final product of my brain.”,
in [Joh82].

99

100 CHAPTER 7. INTRODUCTION

closed curves used to illustrate the syllogistic reasoning, which is at the core
of deductive reasoning. We might also mention Venn diagrams, as a related
system. Besides that, a very important diagrammatic system for mathemat-
ical logic was developed by Frege, in Begriffsschrift (in 1879) [vH67], where
he introduces his concept notation.

Recent developments and related work

Proof nets, as a graphical representation of proofs in linear logic, were intro-
duced by Girard [Gir87]. They came as a solution to a problem of describing
the identity of proofs in linear logic. Thus, proof nets can be seen as presen-
tation of proofs that is free from the so-called syntactic bureaucracy. They
also have a dynamic aspect, the cut-elimination. Although primarily de-
signed for linear logic, their structure is universal and they were adapted for
other logics.

The notion of a proof-net is extended to standard classical logic by Robin-
son [Rob03], where some of the issues dating back to [Gir91] were resolved.
For example, extending the correctness criterion was done in rather natural
way. Classical proof nets were later studied in [LS05], in relation with cal-
culus of structures (see for example [Gug04]). The calculus of structures has
also been an inspiration for the three-dimensional representation of proofs,
recently presented by Giraud [Gui06]. There has been some earlier work on
two-dimensional objects in the classical framework, for example logical flow
graphs [Bus91].

In this second part of this thesis, we present a diagrammatic calculus
which is closely related to classical proof nets, as formulated in [Rob03].
Robinson arrived to his diagrammatic formulation directly from classical
proofs presented in two-sided Gentzen’s sequent calculus. On the other
hand, we arrived to our formulation of the diagrammatic calculus in three
steps. Starting point is the study of classical sequent calculus with explicit
structural rules with incorporated notion of linearity, followed by the design
of the ∗X calculus which captures the structure and the dynamics of such
proofs, and then we derive the diagrammatic calculus as a two-dimensional
view on ∗X -terms.

There are some differences between our formulation and that of Robin-
son. We addopt the convention which says that, if we see diagrams as
circuits, entering wires are coming from the left-hand side of the circuit,
while the exiting wires are are going towards the right-hand side. That
way we have a natural correspondence between free entering/exiting wires

101

of a circuit and the premise/conclusion formulas in a sequent that is being
proved.

The result presented by Robinson can be applied to this work. He pro-
vides an analysis of the connection between conventional sequent calculus
and diagrams, i.e., proof nets. Moreover, he defines the correctness condi-
tion for those nets. His work deals mainly with static aspects, whereas we
are more interested in computational aspects of diagrams.

Interaction nets are a programming paradigm which represents the gen-
eralization of proof nets. They were discovered after an attempt to im-
plement the reduction of proof nets. Interaction nets were introduced and
studied by Lafont [Laf90, Laf95b]. In general, a net consists of finite num-
ber of cells which are labeled, and ports through which the cells interact.
One port is defined as principal, whilst the others are auxiliary ports. It
is assumed that all cells labelled by a same symbol have the same num-
ber of ports. The dynamic behavior is specified by rewriting rules which
are local, and which preserve the set of free ports. Moreover, the computa-
tion with interaction nets is parallel and asynchronous. Interaction nets are
Turing complete.

Interaction combinators [Laf97] are a fixed system of interaction nets
which consists of three agents (combinators) and only six reduction rules.
It has been shown that this rewriting system is universal, that is, it can
simulate any other system of interaction nets.

102 CHAPTER 7. INTRODUCTION

Chapter 8

Diagrammatic calculus: dX

This chapter presents the diagrammatic calculus dX , with its syntax and
reduction rules (including the simplification rules). We formulate the basic
operational properties and define the type system for diagrams.

Introduction

After designing and studying the ∗X calculus, it was natural to think about
the diagrammatic representation of its terms. This is due to a fact that
∗X is a linear model of computation which introduces explicit terms for
implementing erasure and duplication. Therefore we derive from it a two-
dimensional calculus for classical logic called dX . Although ∗X -terms are not
in one-to-one correspondence with dX -diagrams, the syntax and reduction
rules of the two calculi are closely related.

The basic notion in the framework of dX is port and it corresponds to
the notion of a name in the ∗X calculus. Ports represent the interface of
a diagram. Similarly as for names, there are two kinds of ports - entering
ports, called in-ports, and exiting, called out-ports. Port are labelled by
placing a name above the line.1 We imagine a diagram as a circuit with
entering and exiting wires:

x

y P
α

β

.
.
.

.
.
.

1Labels on the ports is not essential, they are primarily used to establish intuitive
relation with the one-dimensional model.

103

104 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

where P is an actual diagram. By convention in-ports are always coming
from the left-hand side of a component, and out-ports are always going
towards right-hand side. Latin letters x, y, z, . . . are used to denote in-ports
and Greek α, β, γ, . . . to denote out-ports. See the syntax given in Figure 8.1
for the description of constructors.

8.1 The syntax

The syntax of the diagrammatic calculus dX is defined inductively in Fig-
ure 8.1. It consists of eight basic diagram constructors. Notice that there is
only one ground element (the first one) which can not be decomposed. The
other syntactic elements are built from smaller diagrams.2 The system we
present here can be naturally extended as to encompass the other classical
connectives (see Appendix 8.8).

P ,
Q ::= αx

(1)

|

P

E

x β

α

(2)

| P
I

Qα y

x

(3)

|

P Qα x

(4)

|

x

P

(5)

| α

P

(6)

|

z

x

y P
(7)

|
α

β

γ
P

(8)

Figure 8.1: The diagrammatic syntax

Remark The higher order constructs are always built from smaller com-
ponents. We assume that, when constructing the diagrams (3) and (4), we
use two not connected (separate) diagrams P and Q. Similarly, in case of
diagrams (2), (5), (6), (7) and (8), we assume that P is a unique diagram.

2Remark that P should be simple read as - diagram P , and does not relate to proof
net boxes in linear logic.

8.1. THE SYNTAX 105

Example 51 We can not construct, for example an importer, using only
one subdiagram. Therefore, we can not obtain a diagram such as this one:

I

y α

x

The diagrams of dX calculus are directly inspired by ∗X -terms, and can
be seen as their two-dimensional view. There is however more to this, and
the relation between these two approaches is studied in Part III of this thesis.
The terminology we use to denote diagrams is different to the one for ∗X (see
Figure 8.3). This is because they are principally different, as one diagram
represents a class of terms.

Convention on ports We assume the convention which says that the ports
of a diagram in general are explicitly presented only when they are relevant.
For example we always present the ports which are involved in the process
of reducing. The presence of other ports may be assumed.

We assume that ports which are used for building higher order diagrams
from smaller diagrams do exist. In what follows we introduce terminology
used for diagrams and comment on the element of the syntax.

(1) The first element listed is called in-out. It is a ground element and it
corresponds to an axiom rule in the sequent calculus. This diagram
introduces one free in-port (here x) and one free out-port (here α).

(2) An E-fan is built upon a diagram P , by taking an in-port x and an
out-port β and creating another free out-port α.

(3) An I-fan is constructed from two not connected diagrams, P and Q,
linked over their ports α and y respectively, and creating a new in-
port x.

(4) A cut is built from two separate diagrams, P and Q, over their ports
α and x respectively, and the link obtained in such way contains a
dagger (†). The process of computation proceeds towards elimination
of daggers from diagrams. It is the only diagram which does not
introduce new ports.

(5) A left-eraser corresponds to a left-weakening inference rule in the se-
quent calculus. It enables us to add a fresh in-port (here x) to an
arbitrary term P .

106 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

(6) A right-eraser is symmetric to left-eraser. It originates from a right
weakening rule in the sequent calculus. It enables us to add a fresh
out-port (here α) to an arbitrary diagram P .

(7) A left-duplicator corresponds to a left contraction. It takes two in-
ports of the diagram P (here x, y) and merges them into one (here z).

(8) A right-duplicator is related to a right contraction rule in the sequent
calculus. It represents a merging of two out-ports (here α, β), into one
(here γ).

Definition 52 (Ports) The set of ports P of a diagram is defined induc-
tively as presented in Figure 8.2.

Diagram Ports (P)

αx

{x, α}

P

E

x β

α

{α} ∪ P(P)

P
I

Qα y

x

{x} ∪ P(P) ∪ P(Q)

P Qα x P(P) ∪ P(Q)

x

P {x} ∪ P(P)

α

P {α} ∪ P(P)

z

x

y P {z} ∪ P(P)

α

β

γ
P {γ} ∪ P(P)

Figure 8.2: The ports

Definition 53 (Logical and structural ports) A port is said to be log-
ical if it is created by an in-out, I-fan, or an E-fan. Structural ports are

8.2. THE REDUCTION RULES 107

created by black holes and forks.3

Lemma 54 Each diagram has at least one logical out-port.

Proof: By routine induction on the structure of ports. �

The diagrams with minimal number of ports, i.e., with no in-ports and a
single out-port are of interest, and we will call them closed diagrams.

Example 55 The simplest example of such a closed diagram is presented
here:

E

α

Terminology For clarity we summarize the terminology used.

dX -diagrams ∗X -terms Logic
in-out capsule axiom

E-fan exporter →R-intro

I-fan importer →L-intro

fork duplicator contraction

black hole eraser weakening

dagger cut cut

port name named proposition

Figure 8.3: The terminology

8.2 The reduction rules

In this section we formulate the set of reduction rules over diagrams intro-
duced by the syntax.

Reduction rules are divided into four main groups. These are logical
and structural actions and also activation and deactivation rules. Each
group (except logical) can itself be split into two symmetric left and right

3This terminology is used because forks and black holes code the so-called structural

sequent calculus rules, whilst other constructors code logical inference rules.

108 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

subgroups, in the sense of direction. The way of grouping suggests that
symmetries are very common in the calculus. Furthermore, the activation
and deactivation groups are dual.

The diagrammatic calculus has a restricted number of reduction rules in
comparison with ∗X calculus. Namely the group called “propagation rules”
does not exist in this framework. The basic purpose of this group of reduc-
tion rules in ∗X was to propagate the cut through the structure of terms,
until it reaches a point where the propagation ends. In general, propagation
ends in the moment when a module, for example α̂ † x̂Q, reaches an actual
place where a free name α occurs in the syntactic representation. In dX ,
since we are in two-dimensional space, there is no need for propagations.

The reduction procedure is directed towards the elimination of †’s (dag-
gers). It captures the essential features of the classical cut-elimination, like
for proof nets for linear logic [Gir87]. Therefore it is non-deterministic and
non-confluent, like classical cut-elimination.

Following the convention on ports, we draw only relevant ports in reduc-
tion rules, i.e., the ones which are involved in reducing, or created by the
reduction rule. The existence of other ports may be assumed.

Following the reduction rules of ∗X calculus, and the way they are for-
mulated, we formulate the rules of the diagrammatic calculus.

8.2.1 Activation rules

This group of rules captures the non-deterministic choice, i.e., the rules
define the conditions for the so-called activation of the dagger. This choice
is one of the sources of non-confluence in the calculus. The direction of
activation is expressed by bending (or activating) the dagger. If the dagger
is bent to the position † (left-dagger), it means that the future actions will
be performed towards the left-hand side, and similarly for † (right-dagger).
There are four possible activations:

• Left-activation. Left-activation rules define when the dagger can be
left-activated. Thus we have:

(act-L-eras) : Qx Qxα

P
α

P

(act-L-dupl) : Qx QxαP αP

8.2. THE REDUCTION RULES 109

• Right-activation. Right-activation rules define when the dagger can
be right-activated. Thus we have:

(act-R-eras) : QxQx αα

P P

(act-R-dupl) :
x Q x Qαα

P P

Notice that it is not always possible to choose the side of activation. But,
having the situation when both directions of activation are possible, is a
potential source of non-confluence in the calculus.

Example 56 This brings us back to Lafont’s example which can be dia-
grammatically represented as:

P Q
I O

P

Q Q

and

P Q Q
I O

P P

Active cuts are introduced into the system to express non-deterministic
choice. We assume that as soon as a dagger is activated, it is treated by
some other reduction rule. It was allowed in X calculus to have more active
cuts in a term, but a restriction was introduced, saying that an active cut
can not be propagated over another active cut. Otherwise, it would break
strong normalization. Since there is no explicit propagation in dX , keeping
active cuts non-evaluated would not have a particular meaning.

8.2.2 Deactivation rules

Deactivation rules define when active dagger can be deactivated. In other
words, they are bringing † and † into a vertical position. This group is
dual to activation rules.

• Left-deactivation. Left-deactivation rules define when we are sup-
posed to deactivate a left-dagger.

110 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

(caps † -deact) :
αy αy QxQx

(exp † -deact) :
E

α

P

E

α

P

Qx Qx

• Right-deactivation. Right-deactivation defines when we should de-
activate a right-dagger.

(†caps-deact) : P
α α βxβx

P

(† imp-deact) : P
αα

I RQ I RQ

x
P

x

y β yβ

The duality between activation and deactivation rules exists in a sense that
by negating the condition and changing the direction of an arrow in the
activation rules, we get deactivation rules, and vice versa. A more general
formulation of these rules makes the duality more obvious. This is shown in
Section 8.3.

8.2.3 Structural actions

Structural actions define duplication and erasure of diagrams. These oper-
ations are implemented using new constructors, forks and a black holes4.
We have the pairs of symmetric rules: († -erasure) and († -erasure), and
(† -duplication) and († -duplication).

• Left structural actions. The rule († -duplication) defines an action
which occurs when a left-activated dagger faces a right fork. The result
is the duplication of a term on the right-hand side of a dagger. This
is performed in a way that preserves a set of both in-ports and out-
ports. This preservation of ports is also implemented using forks. The
(† -duplication) is presented here:

4They correspond to an eraser and a duplicator in ∗X , and to weakening and contraction
in sequent calculus.

8.2. THE REDUCTION RULES 111

(† -dupl):

P

I
Q{

O} QQα x

β

γ

P
Q

1

Q
2

I
Q{

O} Q

β

γ x

x

The rule († -erasure) defines a computational step performed in the
situation when left-active cut is facing right black hole. As presented
bellow, the term on the right-hand side (here Q) is being erased, but
the ports are preserved. The ports preservation is implemented using
black holes, namely by attaching them to the remaining term (here
P). The († -erasure) is presented here:

(† -eras):
Q

I

P x Q O
Q

}

{

α

P
Q

I
O

Q{ }

• Right structural actions. The rule († -duplication) is symmetric
with respect to († -duplication). It is given by the following diagram
modification:

112 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

(† -dupl):
P

I {

O
P}

P Qα

y

z

x

P
I {

O
P}

Q
P

P1

2

α

α

y

z

The rule († -erasure) is symmetric to the († -erasure) and it is given
by the following diagram reduction rule

(† -eras):

Q

QP
α

O

I

I

O

P

P

P

P

{ }

}

{ x

Structural reduction rules are not local transformations as they involve du-
plication or erasure of arbitrary parts of digrams. This also stands for proofs
in the sequent calculus, where parts of proofs are being erased or duplicated
in a similar manner. Moreover they are non-deterministic, in the sense that
the part of a diagram duplicated or deleted is not uniquely determined.

8.2.4 Logical actions

Logical actions define the way to eliminate the daggers when logical ports
are involved.

• Merging. The first two rules specify merging of an in-out with an-
other diagram:

8.3. GENERALIZATION OF ACTIVATION AND DEACTIVATION RULES113

(mer-L) :
y

Q
y α x Q

(mer-R) : P
xα β

P
β

Notice that diagrams P and Q are arbitrary. This means that they
are not necessarily connected to an in-out over a logical port.

• Inserting. The last rule is called insertion and describes how to
reduce a diagram that connects an E-fan with an I-fan through a
dagger. The term P is inserted between the terms Q and R. Notice
that one dagger is substituted by two more atomic daggers.

(EI-insert) :
z

I
Q R

γ

R
y β

PQ γ z

y

E

α x

βP

8.3 Generalization of activation and deactivation

rules

In this section we show that the activation and deactivation rules of dX
calculus, can be presented in a more general way, by using the notions of L-
principal and S-principal name. That way the duality activation/deactivation
becomes obvious. Thus for activation we have:

Left-activation:

PQx Qxαα

P
,

when α is S-principal for P .

Right-activation:

114 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

PQx Qxαα

P
,

when x is S-principal for Q.

On the other hand, for deactivation rules we have:

Left-deactivation:

PQx Qxαα

P
,

when α is L-principal for P .

Right-deactivation:

PQx Qxαα

P
,

when x is L-principal for Q.

Notice that the condition “α is not L-principal for P” is equivalent to “α is
S-principal for P”. The duality is in a sense that if we negate the condition
and reverse an arrow of a rule, we get a rule from a dual group.

8.4 Diagram simplification

In this section we define the simplification rules, denoted by 99K. They are
used to simplify diagrams when it is possible, but they are not reduction
rules as they do not involve cuts. Simplification rules are given in Figure
8.4.

Left simplification:

P 99K P

Right simplification:

P 99K P

Figure 8.4: Diagram simplification

8.4. DIAGRAM SIMPLIFICATION 115

These rules basically state that the construction such as fork applied to a
black hole, does not have a computational meaning with respect to reduction
procedure. Furthermore, the idea to rewrite in an arbitrary diagram all
branches of the form

and as

is also motivated by optimizing computation, in a sense that we do not wish
to perform numerous duplications of a term, if we are going to erase all those
copies afterwards. This situation is avoided by introducing the simplification
rules. They are performed with priority, that is, whenever possible before
and during the computation.

When both branches of a fork end in black holes gives a special case of the

previous. For the right fork we have: is rewritten by ,

and similarly for the left fork: is rewritten by .

Example 57 The following example illustrates the difference between, on
the one hand, computation with simplification and, on the other hand, com-
putation without the use of simplification. Observe first the sequence of
reductions:

QP

P

P

Q

116 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

P

P

P

P
Q

Q

The diagram P is duplicated two times, and then all four copies are
erased. Notice that in the result, as a sideproduct, we get a certain number
of forks applied to black holes. Instead of dealing with this complex dia-
gram modifications, by adopting the simplification rules, our approach is the
following:

QP QP

QP Q

Simplification rules can be seen as a kind of garbage collection.

8.5 Operational properties

The reduction system in dX satisfies the property of interface preservation,
that is, preservation of the set of ports.

8.6. THE TYPING RULES 117

Theorem 58 (Preservation of ports) The set of ports is preserved by
reductions and simplification rules:

1. If P → Q then P(P) = P(Q)

2. If P 99K Q then P(P) = P(Q)

Proof: This property can be easily checked by inspection of reduction rules
and simplification rules. �

8.6 The typing rules

In this section we show how to assign types to diagrams. It is done in way
similar to that for ∗X -terms.

Given a set T of basic types, a type is given by

A,B ::= T | A→ B.

The type assignment of a diagram P is given by an expression P ··· Γ ⊢ ∆.
Here Γ stands for a set of type declarations for in-ports, while ∆ stands for
a set of declarations for out-ports. If P is a diagram, an expression

P ··· Γ ⊢ ∆

is used to denote a type assignment. The type system is presented in Figure
8.5.

Theorem 59 (Subject reduction)

1. If D1 ··· Γ ⊢ ∆ and D1 → D2 then D2 ··· Γ ⊢ ∆

2. If D1 ··· Γ ⊢ ∆ and D1 99K D2 then D2 ··· Γ ⊢ ∆

Proof: The proof goes similarly to that in the one-dimensional framework
(Theorems 31 and 32 on page 63). �

Example 60 As an example we will take the diagram which represents the
proof for Peirce’s law. Thus we revisit the example on page 60, where this
was studied in one-dimensional case. We recall here the term representing
the Peirce’s law:

ẑ ([(x̂ (〈x.α1〉 ⊙ β) β̂ . γ) γ̂ [z] ŷ 〈y.α2〉〉
cα1
cα2

>α) α̂ . δ

The diagram with types is represented as follows:

118 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

E

E

((A B) A)

(A

Aα1 :

I

B) A

Aδ:

z:

α: A

γ: A B

y: A

Ax:

Bβ: Aα :2

Example 61 Another example is a diagram for the S-combinator. We re-
call the ∗X -term which corresponds to this operator (given in the example on
page 61):

ω̂ (û (x̂ (x<
cx1
cx2
〈〈x2.ǫ〉 ǫ̂ [w] v̂ ((〈x1.δ〉 δ̂ [u] ŷ 〈y.β〉) β̂ [v] ẑ 〈z.γ〉)]) γ̂ . η) η̂ . θ) θ̂ . α

The typed diagram representing this term is as follows:

E

E

E

I

B)(A A C

B(A C) A C

A C

I

I

α:

θ:

B C

B)(A

η:

B Cv:ε: A

Ax :

Aw:

Ax:

Aδ: y: B β: B C Cγ:z:

Ax :2

1

8.7. IMPLEMENTING DATA TYPES 119

8.7 Implementing data types

In this section we show how the diagrammatic calculus dX can be used to
implement some standard data types. This is needed if we wish to think of
the dX calculus as a programming language. The implementation is done in
an analogous way as for the ∗X calculus.

8.7.1 Booleans

In a programming language a very common construction is a conditional (or
if). We show here how it is implemented in dX . A conditional should be
a construction with two places to plug in arbitrary diagrams, and a third
place to plug in a boolean. The behavior we expect is the following:

- if we plug in two diagrams, P and Q, and a boolen True, the result
of the computation should be P , otherwise,

- if we plug in P , Q and False, the result should be Q.

Because of the non-confluence of the calculus, we have to assume that P
and Q are closed diagrams, i.e., that they have only one port - a logical
out-port. The other solution would be to introduce priority on either left or
right-activation. The booleans are defined in the continuation.

True:

E

E

False:

E

E

The conditional:

B

P

Q

I

I

Example 62 The computation, when B = True and P,Q are closed dia-
grams, yields the result P . This was already studied in the one-dimensional
framework, and thus we are revisiting the example given on page 71. The
steps of the computation are given here:

120 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

E

E

P

Q

I

I

E

Q P I

Q P

Q P

Q P

Q P

P{ }
I

P O
P

The order of applying reduction rules, i.e., the order of eliminating cuts
is not relevant in this example. The computation goes similarly if we take
B=False, yielding the diagram Q as a result.

8.7.2 Natural numbers

The diagrammatic representation of natural numbers is rather simple and
intuitive. Every natural number is a diagram with two in-ports and a single
outport. Numbers n and zero are represented as:

8.7. IMPLEMENTING DATA TYPES 121

n and

The successor (succ(n))
of a natural number n is
defined as presented by
the diagram:

n
I

Addition (add(n, m)) and multiplication (mul(n, m)) are implemented in an
elegant way, as follows. The first diagram represents an addition of natural
numbers m and n, and the second is multiplication.

n m
n m

E

Example 63 To provide the reader with more intuition, we illustrate how
these operations work. In what follows we list several very simple examples.

• succ(0):

I I

Notice that the computation is done by applying only a simplification
rule; the result is 1.

• succ(1):

I I

This is by definition.

• add(0, 1):

122 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

I

I

I

The result is computed by applying one reduction and one simplification
rule; the resulting diagram corresponds to 1.

• times(0, 1):

I

E

The result is computed by applying reduction rules; the resulting dia-
gram is zero.

Thus the natural numbers are composed of I-fans, in-outs and forks. Notice
that a natural number N = n consists of n E-fans (and also n + 1 in-outs
and n left forks).

An example of computing We study the computation by taking an
example 2 × 3 = 6. In some cases several reductions can be (and are)
applied simultaneously, which suggests that the computation is essentially
parallel. The reader may also notice that the diagram transformations are
non-local, because of the duplication which takes place during computation.

8.7. IMPLEMENTING DATA TYPES 123

+

+

We can simplify the representation of the last diagram. Thus we obtain:

which, as expected, is a diagrammatic representation of natural number 6.

124 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

8.8 Extension of the dX calculus

The syntax First we extend the syntax of dX (given in Figure 8.1 on
page 104) with new diagrammatic constructors. Negations are the most
important. Left negation is represented by a diagram which simply trans-
forms an out-port into an in-port. Right negation does the opposite. The
constructors notL and notR are given respectively:

x β y α
P P

L R

The other constructors: andL, andR, orL and orR are represented as follows:

>L >R

and
R

:and
L

:

z

y

x

γ

α

βP

Q
P

L

>

>

R

or
L

: or
R

:

z

y

x

P

β

γ

α

Q

P

Adding only the negation to the system is sufficient to express other
connectives. We illustrate how conjunctions and disjunctions can be repre-
sented by negation and implication; by using the formulas

A ∧B ↔ ¬(A→ ¬B) and A ∨B ↔ ¬A→ B

Thus we have:

8.8. EXTENSION OF THE DX CALCULUS 125

and
L

:

E

y

z P

x

or
L

:

P Q
y z

x

I

Qβ γ
IP

α

and
R

:

or
R

:

P

E

β

γ

α

L

L

L

R

R

R

For example in the case of andL, we transform an in-port z into an out-port,
by using the negation notR. Then we construct an E-fan using the in-port
y and the previously constructed out-port. The result is an out-port, which
we convert into an in-port by using the left negation. In the case of andR:
we transform the second out-port into an in-port, using notL. As a result we
get an in-port which we convert into an out-port by using the right negation.
Similar approach is taken when representing left and right disjunction.

The reduction rules The diagrammatic view on the new reduction rules
is as follows:

(notR-notL) :
QP

R

y xα β

L

Q Pβ y

(andR-andL) :

P

>R

Q
R

P

Q
R>L

γ

α

β

z

y

x

β

γ

y

z

(orR-orL) : L

>>

R

yβ

γ z
P

Q

R
P

Q

R

β

zγ

y

α x

126 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

We show that the decompositions of andL and andR by negation and
impliciation, as previously presented, are well behaved. This can be checked
similarly for orL and orR.

L

Q

L

R

R

R

E

y

z R

σ

L

Q

L

Q
R

βP
y

z R

σ γ

δ

Q
R

βP
y

γ z

β γ
IP

E

y

z

xα

R
δ

ε

u
σ

uε

β γ
IP

8.9 Notes

A calculus of non-determinism The situation with respect to non-
determinism in the diagrammatic calculus is rather complex. There are
several sources of non-determinism.

• The direction of activation. Sometimes one can choose between left
and right-activation of a dagger. Activation rules are a novelty, in-
troduced by the name “commuting cuts” in [UB01a], where it was
demonstrated that restrictions used before are not necessary to have
strong normalization. The non-determinism reflected by activation
rules is a source of non-confluence.

• Actual boundaries of diagrams. Diagrams are represented by P .
But when working with actual diagrams one may notice another non-
determinism. Structural actions define erasure and duplication of di-
agrams, but the choice which diagram is exactly erased/duplicated is
non-deterministic. It can be any subdiagram whose port is bound by
a dagger. As in [Rob03] we do not use boxes. They were used in the
framework of proof nets for linear logic, where a box is a unit for eras-
ing and duplicating fragments of nets. A solution to partially avoid
boxes was proposed in [GAL92].

8.9. NOTES 127

• The order of applying the daggers. Some authors think of this as an
angelic non-determinism, but it should be formally proven that it does
not lead to non-confluence. A possible way to examine this would be
to assume congruence rules (in ∗X) which do not involve cuts, and then
show that using them one can derive congruence rules which involve
cuts (the list of congruence rules is assembled in Section 11.2).

• The point of attachment of a black hole. So called black holes are al-
ways associated by an already existing diagram, but it is not uniquely
determined to which part exactly. It can be attached to an arbitrary
subdiagram, which is perhaps too much liberty, as it is difficult to trace
the consequences of such non-determinism. Also, during the compu-
tation the point of attachment changes when a diagram is erased, as
defined by erasure rules. During computation this point has to move,
but in general it should be attached to one component (or its subcom-
ponent), and if that component is erased than it should be attached
to another diagram, as defined by erasure rules.

Deactivating daggers after duplication One of the few restriction in
X calculus (elaborated in [Urb00]), which in some sense violates the per-
fect symmetry of the sequent calculus, is that active cut can not change its
direction of activation at will. This restriction is kept in the calculus be-
cause removing it would break strong normalization. However, it has been
shown that tis restriction does not restrict the collection of “essential” nor-
mal forms. In the framework of dX we do not have propagation rules. The
only moment where we keep the cuts active is in the duplication rules, for
example:

P

P
Q

1

Q
2

Qα x

β

γ

β

γ x

x

The cuts remain activated in the same direction after performing duplica-

128 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

tion, and this is also a restriction in dX . We assume that if the rule was
formulated without this restriction:

P

P
Q

1

Q
2

Qα x

β

γ

β

γ x

x

it would not break the strong normalization, but we do not study this here.
It seems that, using this approach would mean removing the remaining re-
strictions, and would capture the full symmetry of the sequent calculus.
Also, if this was done, there would be no reduction rules whose result in-
cludes active cuts. This is in accordance with how we imagine the cuts to be
evaluated straight after activation (thus clearly by some structural action).

8.9. NOTES 129

(ax)
αx

··· x :A ⊢ α :A

P
x β

··· Γ, x :A ⊢ α :B,∆
(L→)

P

E

x β

α

··· Γ ⊢ β :A→ B,∆

P
α

··· Γ ⊢ α :A,∆
y Q ··· Γ′, y :B ⊢ ∆′

(R→)
P

I
Qα y

x

··· Γ,Γ′, x :A→ B ⊢ ∆,∆′

P
α

··· Γ ⊢ α :A,∆
x Q ··· Γ′, x :A ⊢ ∆′

(cut)

P Qα x

··· Γ,Γ′ ⊢ ∆,∆′

P ··· Γ ⊢ ∆
(weak-L)

x

P

··· Γ, x :A ⊢ ∆

P ··· Γ ⊢ ∆
(weak-R)

α

P

··· Γ ⊢ α :A,∆

P
x

y

··· Γ, x :A, y :A ⊢ ∆
(cont-L)

z

x

y P ··· Γ, z :A ⊢ ∆

P

α

β

··· Γ ⊢ α :A, β : A,∆
(cont-R)α

β

γ
P ··· Γ ⊢ γ :A,∆

Figure 8.5: The type system for dX

130 CHAPTER 8. DIAGRAMMATIC CALCULUS: DX

Part III

Equivalent Terms in

Classical Computation

131

Chapter 9

Introduction

The third part of this thesis presents another calculus, called c©X , which is
created as a result of studying the relation between the ∗X calculus, pre-
sented in Part I, and the dX calculus, presented in Part II.

c

Sequents: G1 *

Diagrams:
d

χ

χ χ

The c©X calculus is a one-dimensional counterpart of the diagrammatic
calculus. It is obtained from ∗X by introducing a congruence relation on its
terms. The congruence rules define which syntactically different ∗X -terms
should be considered the same. Since ∗X codes the sequent calculus terms,
this means that we define which syntactically different classical sequent
proofs should be considered the same.

We were researching the permutation of independent inference rules in
the framework of ∗X -terms instead of sequent proofs. Later on, an analogy
with another work has been discovered. Namely, the study we present in
this part is related to the results presented by Robinson in the framework
of proof nets for classical logic [Rob03], where, in Section 5, the problem of
permutation of inference rules was addressed. It has been shown that “two
proofs give the same net if and only if each one can be derived from the
other by a sequence of trivial rule permutations”. But the details of how
the transposition of rules should be managed and when the rules can be
transposed were not presented.

133

134 CHAPTER 9. INTRODUCTION

In Robinson’s opinion “...there are numerous (largely irrelevant) subcases
depending on exactly which bits of proofs different formulae come from,
and it would be tedious and unilluminating to provide the definition in full
detail”. Instead some illustrative examples are given.

Our viewpoint is different. On the one hand, this task is important be-
cause it is relevant for the next step in our study, how dynamics of diagrams
relates to the dynamics of ∗X -terms (proofs).1 We will try to show that there
is a strong relation between the dynamics of diagrams and the dynamics of
∗X -terms, in a sense that diagram reductions correspond to ∗X -reductions
modulo restructuring which corresponds to permuting independent rules. To
show this we need to know when and how we can perform the restructuring
of terms.

On the other hand, this task was not too complicated. Indeed, if one is
to present these rules using sequent calculus, it would be very difficult. But
since we already have both calculi at hand, the one-dimensional ∗X which
codes sequent proofs, and the diagrammatic dX , the idea to collect all terms
which are represented by the same diagram came naturally as a consequence
of studying the relation between these two calculi.

In that sense the third part of this thesis also addresses the very old
problem of proof identity, which is caused by the lack of understanding of
the essence of a proof, which is in turn caused by the bureaucracy involved
in the syntactic presentation of proofs.

1We are mainly concerned by the dynamics of the calculi. We use the results presented
by Robinson which deal with static aspects of proof nets, and their relation with actual
proofs.

Chapter 10

One-dimensional vs.

two-dimensional computation

Having both calculi at hand, the one-dimensional one of ∗X and the diagram-
matic of dX , we may compare them to better understand the differences as
well as the similarities.

One of the principal differences is illustrated by the following situation.
If we want to reduce the term of the form Pα̂ † x̂Q, where the names α and
x are somewere deep inside in the structure of P and Q, respectively, then
we have to do cut-propagations. To propagate a cut means to push a cut
through the structure of terms, in order to reach one of the names involved,
α or x. This process is similar to the explicit substitution propagation, as
defined in the λx calculus [BR95], and even more similar to the one de-
scribed for λlxr [KL05, KL07] where weakening and contraction are explicit.
Unlike in these intuitionistic calculi, propagations in ∗X can be done in both
directions, which is shown by bending the cut:

Pα̂ † x̂Q

act−L act−R

Pα̂ † x̂Q P α̂ † x̂Q

In the first case, the module α̂ † x̂Q is going to be propagated through
the structure of P (if P does not introduce α), and the same stands for the
module Pα̂ † x̂, which can be propagated through S.

If there is no need to do cut-propagation, that is, if α and x are already

135

136CHAPTER 10. ONE-DIMENSIONAL VS. TWO-DIMENSIONAL COMPUTATION

introduced (at the top level) by P and Q, there is no essential difference in
one-dimensional and two-dimensional computation, i.e., between ∗X and dX .
In other words, if we neglect propagation rules, the core of the computation
engine, i.e., activation, deactivation, logical and structural rules, works the
same for diagrams and terms.

Example 64 The following example illustrates two facts. Firstly, it shows
that the number of reduction steps is smaller in the case of diagrammatic
computing. Secondly, it shows the discrepancy between a one-dimensional
and a two-dimensional syntax. Indeed, there are two different resulting terms
in the one-dimensional case and only one in the two-dimensional case. We
will argue that two resulting one-dimensional terms are syntactically differ-
ent, but essentially the same, and that both correspond to the unique resulting
diagram.

(x̂ (〈x.α〉 ⊙ β) β̂ . γ)α̂ † ŷ(ẑ (z ⊙ 〈y.δ〉) δ̂ . η)

−propexp

−properas

−propexp

−properas

act−L act−R

L−deact

act−R

L−deact

R−deact

act−L

R−deact

ren−R ren−L

exp−prop

eras−prop

exp−prop

eras−prop

ẑ (x̂ (z ⊙ 〈x.δ〉 ⊙ β) β̂ . γ) δ̂ . η or x̂ (ẑ (z ⊙ 〈x.δ〉 ⊙ β) δ̂ . η) β̂ . γ

There are nine reduction steps between the starting term and each of
the two resulting terms. Two branches are possible due to non-determinism
in the reduction procedure. For us, in the framework of the dX calculus, the
two resulting terms will be essentially the same, since they represent sequent
proofs which differ only in the trivial permutation of inference rules.

Example 65 Diagrammatically, the same computation is done in one step,
as presented by the following reduction:

137

δx α

β

γ η

y

z

E E

η

z

δx

β

γ

E E

This is because free ports in diagrams are always directly accessible, which
is not the case with free names in terms, where it is often necessary to do
propagations in order to reach certain free names.

In the one-dimensional example above, the resulting terms are clearly
syntactically different. But it also stands that they correspond to the same
diagram, which suggests that they should be seen as equivalent. Thus we
may define a congruence rule

ẑ (x̂ (z ⊙ 〈x.δ〉 ⊙ β) β̂ . γ) δ̂ . η ≡ x̂ (ẑ (z ⊙ 〈x.δ〉 ⊙ β) δ̂ . η) β̂ . γ

Notice that the conditions γ 6= δ and η 6= β are fulfilled because of Baren-
dregt’s convention. However, if one is interested in details, the diagrammatic
representation of the two terms can be given in two styles:

E

E

η

δx

z β

γ
E

E

η

δx

z β

γ

The above story, which relates terms and diagrams, refers in fact to a
sequent calculus proof which is presented in what follows. Notice that the
cut formulas (in oval boxes) are introduced at the level of axioms (marked
with a star):

(ax)
A ⊢ A∗

(wr)
A ⊢ A,B

(→R)
⊢

✄
✂

�
✁A , A→ B

(ax)
A∗ ⊢ A

(wl)
A,C ⊢ A

(→R)✄
✂

�
✁A ⊢ C → A

(cut)
⊢ A→ B, C → A

This proof normalizes to either

138CHAPTER 10. ONE-DIMENSIONAL VS. TWO-DIMENSIONAL COMPUTATION

(ax)
A ⊢ A

(wr, wl)
A,C ⊢ A,B

(→R1)
C ⊢ A→ B, A

(→R2)
⊢ A→ B, C → A

or

(ax)
A ⊢ A

(wr, wl)
A,C ⊢ A,B

(→R2)
A ⊢ B, C → A

(→R1)
⊢ A→ B, C → A

where the two resulting proofs differ in the order of applying the two inde-
pendent (→R) inference rules.1

It is quite common in ∗X (and the same stands for sequent calculus
proofs) that some terms are syntactically different, whereas there is no es-
sential difference between them. That is why we have a large number of con-
gruence rules in the system. As said, the congruence relation is introduced
to come closer to a diagrammatic calculus. It is also significant because we
present a collection of congruence rules, so that we can actually see which
terms should be identified. As ∗X -terms directly code sequent proofs, this
also means identifying sequent calculus proofs.

1The two weakening rules can also be permuted, but we do not address them in this
example.

Chapter 11

Computing and equivalent

terms: the c©X calculus

In this chapter we present the c©X calculus. It is obtained from the ∗X cal-
culus by introducing congruence relation on its terms. They have the same
syntax, but there are differences at the level of reduction rules. Although
closely related, the two calculi differ in that the reduction relation in c©X is
defined modulo congruence rules. One of the consequences of this approach
is that propagation rules are superfluous, which is a step in a positive direc-
tion, considering that we wish c©X to mirror the diagrammatic calculus.

11.1 The syntax

The syntax of c©X calculus is the same as that of ∗X calculus.

P,Q ::= 〈x.α〉 capsule

| x̂ P β̂ . α exporter

| P α̂ [x] ŷ Q importer

| Pα̂ † x̂Q cut

| x⊙ P left-eraser

| P ⊙ α right-eraser

| z<
bx
by〈P] left-duplicator

| [P 〉
bα
bβ >γ right-duplicator

Figure 11.1: The syntax of c©X

139

140CHAPTER 11. COMPUTING AND EQUIVALENT TERMS: THE c©X CALCULUS

11.2 The congruence relation

In this section we define a congruence relation on terms, denoted by ≡. It is
defined in what follows by a list of equations. The relation ≡ is a reflexive,
symmetric and transitive relation closed under any context [Ter03], which
contains the equations given in this section. The motivation for introduc-
ing it into the system is to bring the one-dimensional syntax closer to the
diagrammatic calculus.

Congruence rules are listed below and they induce the congruence re-
lation on terms. They define which syntactically different terms have the
same diagrammatic represention, that is, which syntactically different terms
should be considered the same. Every rule is associated with the corre-
sponding diagram. A name is assigned to every congruence rule, and they
are presented in the form: name : P ≡ Q.

✄
✂

�
✁exp-exp

E

E

P
γ

x

y

β

δ

α

ee : by (bx P bβ . α) bγ . δ ≡ bx (by P bγ . δ) bβ . α

✞

✝

☎

✆exp-imp

(1)
I QP

E

x β

γ y

α z

I

z

QP

E

β

α

x

γ y(2)

ei1 : bx (P bγ [z] by Q) bβ . α ≡ (bx P bβ . α) bγ [z] by Q with x, β ∈ N(P)

ei2 : bx (P bγ [z] by Q) bβ . α ≡ P bγ [z] by (bx Q bβ . α) with x, β ∈ N(Q)

11.2. THE CONGRUENCE RELATION 141

✞
✝

☎
✆exp-cut

E

x

(1)
β

γ y

α

P Q

E

β

(2)

α

γ y

xP Q

ec1 : bx (P bγ † byQ) bβ . α ≡ (bx P bβ . α)bγ † byQ with x, β ∈ N(P)

ec2 : bx (P bγ † byQ) bβ . α ≡ P bγ † by(bx Q bβ . α) with x, β ∈ N(Q)

✞

✝

☎

✆imp-imp

(1)

Q

R

P

I

t

β

I

α y

z
x

Q

(2)

P R
I I

β tα y

z
x

(3)

P

β

α

y

t RQ

I

I

z
x

ii1 : (P bα [x] by Q) bβ [z] bt R ≡ (P bβ [z] bt R) bα [x] by Q with α, β ∈ N(P)

ii2 : (P bα [x] by Q) bβ [z] bt R ≡ P bα [x] by (Q bβ [z] bt R) with y, β ∈ N(Q)

ii3 : (Q bβ [z] bt R) ≡ Q bβ [z] bt (P bα [x] by R) with y, t ∈ N(R)

✄
✂

�
✁cut-cut

(1)

Q

R

P

β

y

α x

P Rα x Q β y

(2)

P
x

α

Q Ryβ

(3)

cc1 : (P bα † bxQ)bβ † byR ≡ (P bβ † byR)bα † bxQ with α, β ∈ N(P)

cc2 : (P bα † bxQ)bβ † byR ≡ P bα † bx(Qbβ † byR) with x, β ∈ N(Q)

cc3 : P bα † bx(Qbβ † byR) ≡ Qbβ † by(P bα † bxR) with x, y ∈ N(R)

✞

✝

☎

✆cut-imp

(1)

I

yα

β

z

x

P Q

R

(2)

β

I

y

x

α zQP R

142CHAPTER 11. COMPUTING AND EQUIVALENT TERMS: THE c©X CALCULUS

ci1 : (P bα [x] by Q)bβ † bzR ≡ (P bβ † bzR) bα [x] by Q with α, β ∈ N(P)

ci2 : (P bα [x] by Q)bβ † bzR ≡ P bα [x] by (Qbβ † bzR) with y, β ∈ N(Q)

(3)

R
I

zβxα

y

QP

(4)

x

α

β z

I

y

P

Q R

ci3 : P bα † bx(Q bβ [y] bz R) ≡ (P bα † bxQ) bβ [y] bz R with x, β ∈ N(Q)

ci4 : P bα † bx(Q bβ [y] bz R) ≡ Q bβ [y] bz (P bα † bxR) with x, z ∈ N(R)

✞
✝

☎
✆exp-cont

E

P βy

x1

x2

x

γ

(1)

E

(2)

P βy
2

1α

α
α

γ

ect1 : x<
cx1

cx2
〈by P bβ . γ] ≡ by (x<

cx1

cx2
〈P]) bβ . γ with y 6= x

ect2 : [by P bβ . γ〉cα1

cα2
>α ≡ by ([P 〉cα1

cα2
>α) bβ . γ with α 6= β, α1, α2 6= γ

✞

✝

☎

✆imp-cont

x1

x2

(1)

x

y

I

z

αP Q
x1

x2

(2)

QP
I

z

yα

x

ict1 : x<
cx1

cx2
〈P bα [z] by Q] ≡ (x<

cx1

cx2
〈P]) bα [z] by Q with x1, x2 ∈ N(P)

ict2 : x<
cx1

cx2
〈P bα [z] by Q] ≡ P bα [z] by (x<

cx1

cx2
〈Q]) with x1, x2 ∈ N(Q), y 6= x

11.2. THE CONGRUENCE RELATION 143

(3)

I

β z

1α

2α
α

y

P Q
1α

2α
α

I

β z

y

(4)

P Q

ict3 : [P bβ [z] by Q〉cα1

cα2
>α ≡ ([P 〉cα1

cα2
>α) bβ [z] by Q with α1, α2 ∈ N(P), α 6= β

ict4 : [P bβ [z] by Q〉cα1

cα2
>α ≡ P bβ [z] by ([Q〉cα1

cα2
>α) with α1, α2 ∈ N(Q)

✄
✂

�
✁cut-cont

x1

x2

x

QP yα

(1)
x1

x2

(2)

yαP
x

Q

cct1 : x<
cx1

cx2
〈P bα † byQ] ≡ (x<

cx1

cx2
〈P])bα † byQ with x1, x2 ∈ N(P)

cct2 : x<
cx1

cx2
〈P bα † byQ] ≡ P bα † by(x<

cx1

cx2
〈Q]) with x1, x2 ∈ N(Q), y 6= x

(3)
1α

2α
yβ

α

QP
1α

2α
α

QP yβ

(4)

cct3 : [P bβ † byQ〉cα1

cα2
>α ≡ ([P 〉cα1

cα2
>α)bβ † byQ with α1, α2 ∈ N(P), α 6= β

cct4 : [P bβ † byQ〉cα1

cα2
>α ≡ P bβ † by([Q〉cα1

cα2
>α) with α1, α2 ∈ N(Q)

✞
✝

☎
✆weak-weak

x

y

(1)

P

(2)

x α

P
α

β

(3)

P

ww1 : y ⊙ (x ⊙ P) ≡ x ⊙ (y ⊙ P)

ww2 : x ⊙ (P ⊙ α) ≡ (x ⊙ P) ⊙ α

ww3 : (P ⊙ α) ⊙ β ≡ (P ⊙ β) ⊙ α

144CHAPTER 11. COMPUTING AND EQUIVALENT TERMS: THE c©X CALCULUS

✄
✂

�
✁cont-cont

x1

x2

x

P
y

1

2

y

y

(1)

α

2

1α

α

x1

x2

x

(2)

P P
β

α
2

1α

α

1

2

β

β

(3)

ctct1 : y<
cy1

cy2
〈x<

cx1

cx2
〈P]] ≡ x<

cx1

cx2
〈y<

cy1

cy2
〈P]] with y /∈ {x1, x2} and x /∈ {y1, y2}

ctct2 : [x<
cx1

cx2
〈P]〉cα1

cα2
>α ≡ x<

cx1

cx2
〈[P 〉cα1

cα2
>α]

ctct3 : [[P 〉cα1

cα2
>α〉

cβ1

cβ2
>β ≡ [[P 〉

cβ1

cβ2
>β〉cα1

cα2
>α with β /∈ {α1, α2} and α /∈ {β1, β2}

✄
✂

�
✁cont-comm

x

x

x

1

2
P

(1)

α1

α2
P

α

(2)

ctcm1 : x<
cx1

cx2
〈P] ≡ x<

cx2

cx1
〈P]

ctcm2 : [P 〉cα1

cα2
>α ≡ [P 〉cα2

cα1
>α

✄
✂

�
✁cont-assoc

x x2

1x

Px3

(1)

α2

α1

α3

(2)

P
α

ctas1 : z<
by

cx3
〈y<

cx1

cx2
〈P]] ≡ z<

cx1

by
〈y<

cx2

cx3
〈P]]

ctas2 : [[P 〉cα1

cα2
>β〉

bβ
cα3

>γ ≡ [[P 〉cα2

cα3
>β〉

cα1

bβ
>γ

✞

✝

☎

✆weak-general

x
P

C

(1)

P
C α

(2)

wg1 : x ⊙ (C{P}) ≡ C{x ⊙ P} x /∈ N(C{P})

wg2 : (C{P}) ⊙ α ≡ C{P ⊙ α} α /∈ N(C{P})

11.2. THE CONGRUENCE RELATION 145

The rules are divided into eighteen groups, making all possible combi-
nations among the terms introduced by the syntax. Each group usually has
two or three rules.

The relation ≡ induces congruence classes on terms. We use cl(P) to
denote the congruence class of a term P with respect to a relation ≡. Notice
that each congruence class has finitely many terms. Since it is obvious that
the two congruent terms have the same size, it is not difficult to prove that
there is finitely many possibilities to pick up a representative of a class.

Congruence rules satisfy some standard properties such as preservation
of linearity, preservation of free names and preservation of types.

While the majority of the congruence rules only describe the different
views we may have of the same diagram, namely from (exp-exp) to (cont-
cont), the last three congruence rules are of slightly different nature. There-
fore they are separated from the rest by a thicker line. In what follows we
will describe their intended meaning.

cont-comm: In the cont-comm group, the rules say that we can commute
parts under a contraction. At the level of diagrams we could have two

representatives for
ctcm1
≡ , say:

x

x

x

1

2
P and

x2

x1

P
x

but since the above-below order does not play a role, we will consider the
two diagrams to be the same. This is one of the points which suggests that
there is a flavor of a third dimension in our diagrammatic model.

cont-assoc: The rules in this group speak about associativity under contrac-

tion. At the diagrammatic level, for example for
ctas1
≡ , there are two possible

representatives, but we implicitly decide to see them as one. These are

x x2

1x

Px3
and x

1x

x3

x2

P

which means that for us order of successive forks is not relevant. This prac-
tically means that we are are considering forks of higher arity, but formally
we will stay at arity 2. Finally, by combining cont-comm and cont-assoc we
get that the following fork combinations are viewed as the same:

146CHAPTER 11. COMPUTING AND EQUIVALENT TERMS: THE c©X CALCULUS

weak-general : The last congruence rule is general, in the sense that C can
be any context. It says that the weakening (black-hole) is related to a whole
component, i.e., we can choose to which exactly part a component to attach
it (this approach was taken in [Rob03]). The component is like one magnet
which, in its total, attracts the black-hole. It is also possible to introduce the
the explicit link (dotted line), which connects a black hole with a component
it refers to. But, as said, this is non-deterministic, since we may attach it
to any part of the component, as illustrated.1

x
P

C
P

Cx

11.3 Restructuring terms

It has been shown in [Rob03] that two sequent proofs induce the same proof
net if and only if one can be obtained from the other by a sequence of
transpositions of independent rules. In this thesis we proceed further to
study the dynamic level of this relation. In what follows we show that
the congruence rules allow us to perform restructuring of ∗X -terms (i.e.
sequent proofs), so that the cut-names are brought to the top level. This
will allow us to to show (in terms of relating dX and c©X -reductions), that
a reduction steps of diagrams correspond to reduction steps performed on
sequent proofs, modulo restructuring by permuting the independent rules
(see Chapter 11.6).

When we analyze the computation in the diagrammatic calculus, we notice
that free ports are always accessible. This is due to the fact that in the
two-dimensional space we do not have sequentialization, which exists in the
one-dimensional models, and which in the case of the ∗X calculus originates
from the sequent calculus. In the sequent calculus this shows at the level of
dynamics - it is needed to do step-by-step cut propagation in order to reach
the cut formula, and more importantly at the static level - it allows only
one inference rule to be applied at a time. All these features are captured
by the ∗X calculus.

1There is always a pre-existing component. This comes from the sequent calculus,
where the empty sequent is not provable.

11.3. RESTRUCTURING TERMS 147

Take for example an arbitrary ∗X -term of the form:

Pα̂ † x̂Q

Here, the name α might not be directly accessible (that is, α is maybe not
introduced by P). Furthermore, this might hold for both names involved
in the cut, α and x, which may occur deeply inside of their corresponding
terms. We prove that it is possible to transform the above term - using only
congruence rules defined in Section 11.2 - to the form

C{Pαα̂ † x̂Qx}

where C is a context, and α and x are principal names of Pα 4 P and Qx 4
Q, respectively. In other words we can always pick at least one representative
of a congruence class cl(Pα̂ † x̂Q), which allows us to continue the reduction
process.

Recall that 4 stands for a subterm relation (Definition 11). Recall also
that cl(P) denotes the congruence class of a term P with respect to a con-
gruence relation ≡.

In what follows we first formulate two lemmas which focus only on one
cut-name (either x or α) at a time. Then we give the main theorem, which
refers to both names. In proving the results we will use the transitivity of 4
relation: If P 4 Q and Q 4 R then P 4 R.

Lemma 66 (Left-propagation lemma) For every term of the form Pα̂ †
x̂Q, there exists a context C and a term Pα, where α is a principal name
for Pα and Pα 4 P , such that

Pα̂ † x̂Q ≡ C{Pαα̂ † x̂Q}

Proof: By induction on the structure of P and case analysis.

• The base case is when α is a principal name for P .
Then we have Pα = P and C = { }.

• Assume that the property holds for the immediate subterms of P .

• The possible cases for P are

1. P = ŷ M β̂ . γ, γ 6= α

2. P = M β̂ [y] ẑ N

3. P = Mβ̂ † ŷN

4.&5. P = x<
cx1
cx2
〈M] and P = [M〉

cβ1

cβ2
>β, β 6= α

6.&7. P = x⊙M and P = M ⊙ α, β 6= α

148CHAPTER 11. COMPUTING AND EQUIVALENT TERMS: THE c©X CALCULUS

We analyze all the cases:

1. (ŷ M β̂ . γ)α̂ † x̂Q
ec1
≡ ŷ (Mα̂ † x̂Q) β̂ . γ
i.h.
≡ ŷ (C ′{Mαα̂ † x̂Q}) β̂ . γ

, C{Mαα̂ † x̂Q},

with C{ } = ŷ (C ′{ }) β̂ . γ

2. (a) Case α ∈M.

(M β̂ [y] ẑ N)α̂ † x̂Q
ci1
≡ (Mα̂ † x̂Q) β̂ [y] ẑ N
i.h.
≡ (C ′{Mαα̂ † x̂Q}) β̂ [y] ẑ N

, C{Mαα̂ † x̂Q},

with C{ } = (C ′{ }) β̂ [y] ẑ N

(b) Case α ∈ N.

(M β̂ [y] ẑ N)α̂ † x̂Q
ci2
≡ (Mα̂ † x̂Q) β̂ [y] ẑ N
i.h.
≡ (C ′{Mαα̂ † x̂Q}) β̂ [y] ẑ N

, C{Mαα̂ † x̂Q},

with C{ } = M β̂ [y] ẑ (C ′{ })

3. (a) Case α ∈M.

(Mβ̂ † ŷN)α̂ † x̂Q
cc1
≡ (Mα̂ † x̂Q)β̂ † ŷN
i.h.
≡ (C ′{Mαα̂ † x̂Q})β̂ † ŷN

, C{Mαα̂ † x̂Q},

with C{ } = (C ′{ })β̂ † ŷN

(b) Case α ∈ N.

(Mβ̂ † ŷN)α̂ † x̂Q
cc2
≡ Mβ̂ † ŷ(Nα̂ † x̂Q)
i.h.
≡ Mβ̂ † ŷ(C ′{Nαα̂ † x̂Q})

, C{Nαα̂ † x̂Q},

with C{ } = Mβ̂ † ŷ(C ′{ })

4. (y<
by1
by2
〈M])α̂ † x̂Q

cct1
≡ y<

by1
by2
〈(Mα̂ † x̂Q)]

i.h.
≡ y<

by1
by2
〈(C ′{Mαα̂ † x̂Q})]

, C{Mαα̂ † x̂Q},

with C{ } = y<
by1
by2
〈C ′{ }]

11.3. RESTRUCTURING TERMS 149

5. ([M〉
cβ1

cβ2
>β)α̂ † x̂Q

cct3
≡ [(Mα̂ † x̂Q)〉

cβ1

cβ2
>b

i.h.
≡ [(C ′{Mαα̂ † x̂Q})〉

cβ1

cβ2
>β

, C{Mαα̂ † x̂Q},

with C{ } = [C ′{ }〉
cβ1

cβ2
>β

6. (y ⊙M)α̂ † x̂Q
wg1
≡ y ⊙ (Mα̂ † x̂Q)
i.h.
≡ y ⊙ (C ′{Mαα̂ † x̂Q})

, C{Mαα̂ † x̂Q},
with C{ } = y ⊙ (C ′{ })

7. (M ⊙ β)α̂ † x̂Q
wg2
≡ (Mα̂ † x̂Q)⊙ β
i.h.
≡ (C ′{Mαα̂ † x̂Q})⊙ β

, C{Mαα̂ † x̂Q},
with C{ } = (C ′{ })⊙ β

Thus we are done with the first lemma. �

Lemma 67 (Right-propagation lemma) For every term of the form Pα̂ †
x̂Q, there exists a context C and a term Qx, whose principal name is x and
Qx 4 Q, such that

Pα̂ † x̂Q ≡ C{Pα̂ † x̂Qx}

Proof: By induction on the structure of Q and case analysis.

• Case x is a principal name for Q. Then Qx = Q and C = C{ }.

• We assume that the property holds for the immediate subterms of Q.

• The possible cases for Q are

1. Q = ŷ M β̂ . γ

2. Q = M β̂ [y] ẑ N

3. Q = Mβ̂ † ŷN, y 6= x

4.&5. Q = x<
cx1
cx2
〈M] and P = [M〉

cβ1

cβ2
>β, y 6= x

6.&7. Q = x⊙M and P = M ⊙ α, y 6= x

We analyze these seven cases:

150CHAPTER 11. COMPUTING AND EQUIVALENT TERMS: THE c©X CALCULUS

1. P α̂ † x̂(ŷ M β̂ . γ)
ec2
≡ ŷ (Pα̂ † x̂M) β̂ . γ
i.h.
≡ ŷ (C ′{Pα̂ † x̂Mx}) β̂ . γ

, C{Pα̂ † x̂Mx},

with C{ } = ŷ (C ′{ }) β̂ . γ

2. (a) Case x ∈M.

Pα̂ † x̂(M β̂ [y] ẑ N)
ic3
≡ (Pα̂ † x̂M) β̂ [y] ẑ N
i.h.
≡ (C ′{Pα̂ † x̂Mx}) β̂ [y] ẑ N

, C{Pα̂ † x̂Mx},

with C{ } = (C ′{ }) β̂ [y] ĉ N

(b) Case x ∈ N.

P α̂ † x̂(M β̂ [y] ẑ N)
ic4
≡ M β̂ [y] ẑ (Pα̂ † x̂N)
i.h.
≡ M β̂ [y] ẑ (C ′{Pα̂ † x̂Nx})

, C{Pα̂ † x̂Nx},

with C{ } = M β̂ [y] ĉ (C ′{ })

3. (a) Case x ∈M.

Pα̂ † x̂(Mβ̂ † ŷN)
cc2
≡ (Pα̂ † x̂M)β̂ † ŷN
i.h.
≡ (C ′{Pα̂ † x̂Mx})β̂ † ŷN

, C{Pα̂ † x̂Mx},

with C{ } = (C ′{ })β̂ † ŷN

(b) Case x ∈ N.

P α̂ † x̂(Mβ̂ † ŷN)
cc3
≡ Mβ̂ † ŷ(Pα̂ † x̂N)
i.h.
≡ Mβ̂ † ŷ(C ′{Pα̂ † x̂Nx})

, C{Pα̂ † x̂Nx},

with C{ } = Mβ̂ † ŷ(C ′{ })

4. P α̂ † x̂(y<
by1
by2
〈M])

cct2
≡ y<

by1
by2
〈(Pα̂ † x̂M)]

i.h.
≡ y<

by1
by2
〈(C ′{Pα̂ † x̂Mx})]

, C{Pα̂ † x̂Mx},

with C{ } = y<
by1
by2
〈C ′{ }]

5. P α̂ † x̂([M〉
cβ1

cβ2
>β)

cct4
≡ [(Pα̂ † x̂M)〉

cβ1

cβ2
>b

i.h.
≡ [(C ′{Pα̂ † x̂Mx})〉

cβ1

cβ2
>β

, C{Pα̂ † x̂Mx},

with C{ } = [C ′{ }〉
cβ1

cβ2
>β

11.3. RESTRUCTURING TERMS 151

6. P α̂ † x̂(y ⊙M)
wg1
≡ y ⊙ (Pα̂ † x̂M)
i.h.
≡ y ⊙ (C ′{Pα̂ † x̂Mx})

, C{Pα̂ † x̂Mx},
with C{ } = y ⊙ (C ′{ })

7. P α̂ † x̂(M ⊙ β)
wg2
≡ (Pα̂ † x̂M)⊙ β
i.h.
≡ (C ′{Pα̂ † x̂Mx})⊙ β

, C{Pα̂ † x̂Mx},
with C{ } = (C ′{ })⊙ β

Thus we are done with the proof of the second lemma. �

The following theorem confirms that the reduction procedure is com-
plete. It shows that, if arbitrary term contains a cut, then there exists a
representative of its congruence class which can be treated by some reduc-
tion rule.

The following theorem also shows that in the presence of congruence
rules we do not need propagation rules. Propagation rules in the ∗X calculus
represent another approach to perform restructuring of the terms. However,
thecongruence rules are more general in a sense that, unlike the propagation
rules, they also define restructuring of normal forms (that is, the terms which
do not contain cut).

Theorem 68 For every term of the form Pα̂ † x̂Q there exists a context
C and terms Pα and Qx whose principal names are α, x respectively. and
Pα 4 P , Qx 4 Q, such that

Pα̂ † x̂Q ≡ C{Pαα̂ † x̂Qx}

Proof: By using the two previous lemmas, we can construct the proof in
two symmetric ways. This illustrates in practice our point of view about
symmetry and equivalence of classical proofs.

Pα̂ † x̂Q
lemma 66
≡ C1{P

αα̂ † x̂Q}
lemma 67
≡ C1{C2{P

αα̂ † x̂Qx}}

, C ′{Pαα̂ † x̂Qx}, with C ′{ } = C1{C2{ }}

The other way would be:

152CHAPTER 11. COMPUTING AND EQUIVALENT TERMS: THE c©X CALCULUS

Pα̂ † x̂Q
lemma 67
≡ C2{Pα̂ † x̂Qx}

lemma 66
≡ C2{C1{P

αα̂ † x̂Qx}}

, C ′′{Pαα̂ † x̂Qx}, with C ′′{ } = C2{C1{ }}

And thus we are done. �

11.4 The reduction rules

The reduction relation in c©X , denoted by →, is generated by the reduction
rules (presented in Figures 5.5 , 5.7, 11.2 and 11.3) modulo the congruence
relation (presented in Section 11.2).

The reduction rules are closely related to those of ∗X . Clearly, as we in-
troduced the congruence relation to come closer to the diagrammatic frame-
work, there is no need for propagation rules. This is proven in the previous
section. Thus reduction system of the c©X calculus includes activation rules,
deactivation rules, logical actions and structural actions.

Structural and logical actions The formulation of structural and
logical actions is identical to that given in Figures 5.5 and 5.7 on pages 52
and 53, respectively.

Activation and deactivation rules These rules in c©X and ∗X are
principally the same. The difference is that activations in c©X refer to more
specific cases, as the cut-names are always introduced. Activation and de-
activation is defined in Figures 11.2 and 11.3, respectively.

Left :

(act-L-eras) : (P ⊙ α)α̂ † x̂Q → (P ⊙ α)α̂ † x̂Q

(act-L-dupl) : ([P 〉cα1

cα2
>α)α̂ † x̂Q → ([P 〉cα1

cα2
>α)α̂ † x̂Q

Right :

(act-R-eras) : Pα̂ † x̂(x⊙Q) → Pα̂ † x̂(x⊙Q)

(act-R-dupl) : Pα̂ † x̂(x<
cx1

cx2
〈Q]) → Pα̂ † x̂(x<

cx1

cx2
〈Q])

Figure 11.2: Activation rules for c©X

11.4. THE REDUCTION RULES 153

Left :

(cap † -deact) : 〈x.β〉β̂ † ŷR → 〈x.β〉β̂ † ŷR

(exp † -deact) : (x̂ P γ̂ . β)β̂ † ŷR → (x̂ P γ̂ . β)β̂ † ŷR

Right :

(†cap-deact) : Pα̂ † x̂〈x.β〉 → Pα̂ † x̂〈x.β〉

(† imp-deact) : Pα̂ † x̂(Q β̂ [x] ŷ R) → Pα̂ † x̂(Q β̂ [x] ŷ R)

Figure 11.3: Deactivation rules for c©X

There exists a duality between activation and deactivation groups. If we
formulate the activation and the deactivation rules in the following way

Activation :

(act-L) : Pα̂ † x̂Q → Pα̂ † x̂Q, α is S-principal for P

(act-R) : Pα̂ † x̂Q → Pα̂ † x̂Q, x is S-principal for X

Deactivation :

(† -deact) : Pα̂ † x̂Q → Pα̂ † x̂Q, α is L-principal for P

(† -deact) : Pα̂ † x̂Q → Pα̂ † x̂Q, x is L-principal for X

we may notice that by negating the conditions and reversing the arrow we
go from left and right-activation to left and right-deactivation, respectively,
and vice versa.

Example 69 Let us now revisit in the framework of c©X Example 64 (given
on page 136). The computation goes as follows:

(x̂ (〈x.α〉 ⊙ β) β̂ . γ)α̂ † ŷ(ẑ (z ⊙ 〈y.δ〉) δ̂ . η)

≡ x̂ (ẑ (z ⊙ (〈x.α〉α̂ † ŷ〈y.δ〉)⊙ β) δ̂ . η) β̂ . γ

→ x̂ (ẑ (z ⊙ 〈x.δ〉 ⊙ β) δ̂ . η) β̂ . γ

This one-dimensional computation closely mirrors the corresponding dia-
grammatic reduction (shown in Example 65 on page 136), and that is what

154CHAPTER 11. COMPUTING AND EQUIVALENT TERMS: THE c©X CALCULUS

we wanted to achieve. Indeed, reduction rules (modulo congruence rules)
in c©X correspond to reduction rules of dX . This is formally proven in Sec-
tion 11.8.

11.5 Operational properties

The congruence and reduction relations enjoy the properties of free names
preservation and linearity preservation.

Theorem 70 (Basic properties of ≡ and →)

1. Preservation of free names (interface preservation):
• If P ≡ Q then N(P) = N(Q)
• If P → Q then N(P) = N(Q)

2. Preservation of linearity:
• If P is linear and P ≡ Q then Q is linear
• If P is linear and P → Q then Q is linear

Proof: They can be checked by treating carefully each rule. �

11.6 The typed language

The type system for c©X calculus is the same as for ∗X calculus, and it is
presented in Figure 5.1 on page 38.

Type preservation

Besides the fact that these two calculi have the same syntax, the set of
reduction rules of c©X is a subset of that of ∗X . Therefore it is assured by
Theorem 31 that the reduction rules preserve types. There is however the
need to prove that congruence rules preserve types.

Theorem 71 (≡ preserves types) Let S be an c©X -term and Γ,∆ con-
texts. Then the following holds:

If S ··· Γ ⊢ ∆ and S ≡ S′, then S′
··· Γ ⊢ ∆

11.6. THE TYPED LANGUAGE 155

Proof: The proof goes by checking that the property holds for all equations
defining ≡. We first write the typing derivation for the term on the left-hand
side, and then for the term on the right-hand side of the equation. We prove
the cases which do not involve cuts and which are not tivial. As for the
cases with cuts, the analysis is similar as for propagation rules of ∗X (see
Theorem 31 on page 63).

• Observe the (exp-exp) group.

– The only congruence rule is: ŷ (x̂ P β̂ . α) γ̂ . δ
ee
≡ x̂ (ŷ P γ̂ . δ) β̂ . α, with

α 6= γ, β 6= δ. On the one hand we have:

P ··· Γ, x : A, y : C ⊢ β : B, γ : D,∆
(→R)

x̂ P β̂ . α ··· Γ, y : C ⊢ γ : D,α : A→ B,∆
(→R)

ŷ (x̂ P β̂ . α) γ̂ . δ ··· Γ ⊢ α : A→ B, δ : C → D,∆

On the other hand,

P ··· Γ, x : A, y : C ⊢ β : B, γ : D,∆
(→R)

ŷ P γ̂ . δ ··· Γ, x : A ⊢ β : B, δ : C → D,∆
(→R)

x̂ (ŷ P γ̂ . δ) β̂ . α ··· Γ ⊢ α : A→ B, δ : C → D,∆

• Observe the (exp-imp) group.

– Take the first rule: x̂ (P γ̂ [z] ŷ Q) β̂ . α
ei1
≡ (x̂ P β̂ . α) γ̂ [z] ŷ Q, with

x, β ∈ N(P), x 6= z. On the one hand we have:

P ··· Γ, x : A ⊢ β : B, γ : C,∆ Q ··· Γ′, y : D ⊢ ∆′

(→L)
P γ̂ [z] ŷ Q ··· Γ,Γ′, x : A, z : C → D ⊢ β : B,∆,∆′

(→R)

x̂ (P γ̂ [z] ŷ Q) β̂ . α ··· Γ,Γ′, z : C → D ⊢ α : A→ B,∆,∆′

On the other hand,

156CHAPTER 11. COMPUTING AND EQUIVALENT TERMS: THE c©X CALCULUS

P ··· Γ, x : A ⊢ β : B, γ : C,∆
(→R)

x̂ P β̂ . α ··· Γ ⊢ α : A→ B, γ : C,∆ Q ··· Γ′, y : D ⊢ ∆′

(→L)

(x̂ P β̂ . α) γ̂ [z] ŷ Q ··· Γ,Γ′, z : C → D ⊢ α : A→ B,∆,∆′

– Take the second rule: x̂ (P γ̂ [z] ŷ Q) β̂ . α
ei2
≡ P γ̂ [z] ŷ (x̂ Q β̂ . α), with

x, β ∈ N(Q), x 6= z. On the one hand we have:

P ··· Γ ⊢ γ : C,∆ Q ··· Γ′, x : A, y : D ⊢ β : B,∆′

(→L)
P γ̂ [z] ŷ Q ··· Γ,Γ′, x : A, z : C → D ⊢ β : B,∆,∆′

(→R)

x̂ (P γ̂ [z] ŷ Q) β̂ . α ··· Γ,Γ′, z : C → D ⊢ α : A→ B,∆,∆′

On the other hand,

P ··· Γ ⊢ γ : C,∆

Q ··· Γ′, x : A, y : D ⊢ β : B,∆′

(→R)

x̂ P β̂ . α ··· Γ′, y : D ⊢ α : A→ B,∆′

(→L)

P γ̂ [z] ŷ (x̂ Q β̂ . α) ··· Γ,Γ′, z : C → D ⊢ α : A→ B,∆,∆′

• Observe the (imp-imp) group.

– Take the first rule: (P α̂ [x] ŷ Q) β̂ [z] t̂ R
ii1
≡ (P β̂ [z] t̂ R) α̂ [x] ŷ Q, with

α, β ∈ N(P). On the one hand we have:

P ··· Γ ⊢ α : A, β : C,∆ Q ··· Γ′, y : B ⊢ ∆′

(→L)
P α̂ [x] ŷ Q ··· Γ,Γ′, x : A→ B ⊢ β : C,∆,∆′ R ··· Γ′′, t : D ⊢ ∆′′

(→L)

(P α̂ [x] ŷ Q) β̂ [z] t̂ R ··· Γ,Γ′,Γ′′, x : A→ B, z : C → D ⊢ ∆,∆′,∆′′

On the other hand,

11.6. THE TYPED LANGUAGE 157

P ··· Γ ⊢ α : A, β : C,∆ R ··· Γ′′, t : D ⊢ ∆′′

(→L)

P β̂ [z] t̂ R ··· Γ,Γ′′, z : C → D ⊢ α : A,∆,∆′′ Q ··· Γ′, y : B ⊢ ∆′

(→L)

(P β̂ [z] t̂ R) α̂ [x] ŷ Q ··· Γ,Γ′,Γ′′, x : A→ B, z : C → D ⊢ ∆,∆′,∆′′

– Take the second rule: (P α̂ [x] ŷ Q) β̂ [z] t̂ R
ii2
≡ P α̂ [x] ŷ (Q β̂ [z] t̂ R), with

y, β ∈ N(Q). On the one hand we have:

P ··· Γ ⊢ α : A,∆ Q ··· Γ′, y : B ⊢ β : C,∆′

(→L)
P α̂ [x] ŷ Q ··· Γ,Γ′, x : A→ B ⊢ β : C,∆,∆′ R ··· Γ′′, t : D ⊢ ∆′′

(→L)

(P α̂ [x] ŷ Q) β̂ [z] t̂ R ··· Γ,Γ′,Γ′′, x : A→ B, z : C → D ⊢ ∆,∆′,∆′′

On the other hand,

P ··· Γ ⊢ α : A,∆

Q ··· Γ′, y : B ⊢ β : C,∆′ R ··· Γ′′, t : D ⊢ ∆′′

(→L)

Q β̂ [z] t̂ R ··· Γ,Γ′, y : B, z : C → D ⊢ ∆,∆′

(→L)

P α̂ [x] ŷ (Q β̂ [z] t̂ R) ··· Γ,Γ′,Γ′′, x : A→ B, z : C → D ⊢ ∆,∆′,∆′′

– Take the third rule: P α̂ [x] ŷ (Q β̂ [z] t̂ R)
ii3
≡ Q β̂ [z] t̂ (P α̂ [x] ŷ R), with

y, t ∈ N(R). On the one hand we have:

P ··· Γ ⊢ α : A,∆

Q ··· Γ′ ⊢ β : C,∆′ R ··· Γ′′, y : B, t : D ⊢ ∆′′

(→L)

Q β̂ [z] t̂ R ··· Γ,Γ′, y : B, z : C → D ⊢ ∆,∆′

(→L)

P α̂ [x] ŷ (Q β̂ [z] t̂ R) ··· Γ,Γ′,Γ′′, x : A→ B, z : C → D ⊢ ∆,∆′,∆′′

On the other hand,

Q ··· Γ′ ⊢ β : C,∆′

P ··· Γ ⊢ α : A,∆ R ··· Γ′′, y : B, t : D ⊢ ∆′′

(→L)
P α̂ [x] ŷ R ··· Γ,Γ′′, x : A→ B, t : D ⊢ ∆,∆′

(→L)

Q β̂ [z] t̂ (P α̂ [x] ŷ R) ··· Γ,Γ′,Γ′′, x : A→ B, z : C → D ⊢ ∆,∆′,∆′′

158CHAPTER 11. COMPUTING AND EQUIVALENT TERMS: THE c©X CALCULUS

• Observe the (exp-cont) group.

– Take the first rule: x<
cx1
cx2
〈ŷ P β̂ . γ]

ect1
≡ ŷ (x<

cx1
cx2
〈P]) β̂ . γ, with y 6= x.

On the one hand we have:

P ··· Γ, x1 : A, x2 : A, y : B ⊢ β : C,∆
(→R)

ŷ P β̂ . γ ··· Γ, x1 : A, x2 : A ⊢ γ : B → C,∆
(cont-L)

x<
cx1

cx2
〈ŷ P β̂ . γ] ··· Γ, x : A ⊢ γ : B → C,∆

On the other hand,

P ··· Γ, x1 : A, x2 : A, y : B ⊢ β : C,∆
(cont-L)

x<
cx1

cx2
〈P] ··· Γ, x : A, y : B ⊢ β : C,∆

(→R)

ŷ (x<
cx1

cx2
〈P]) β̂ . γ ··· Γ, x : A ⊢ γ : B → C,∆

– Take the second rule: [ŷ P β̂ . γ〉cα1
cα2

>α
ect2
≡ ŷ ([P 〉cα1

cα2
>α) β̂ . γ, with α 6=

β, α1, α2 6= γ. On the one hand we have:

P ··· Γ, y : B ⊢ α1 : A,α2 : A, β : C,∆
(→R)

ŷ P β̂ . γ ··· Γ ⊢ α1 : A,α2 : A, γ : B → C,∆
(cont-R)

[ŷ P β̂ . γ〉cα1

cα2
>α ··· Γ ⊢ α : A, γ : B → C,∆

On the other hand,

P ··· Γ, y : B ⊢ α1 : A,α2 : A, β : C,∆
(cont-R)

[P 〉cα1

cα2
>α ··· Γ, y : B ⊢ α : A, β : C,∆

(→R)

ŷ ([P 〉cα1

cα2
>α) β̂ . γ ··· Γ ⊢ α : A, γ : B → C,∆

11.7. INTERPRETING TERMS AS DIAGRAMS 159

• In the case of (imp-cont) group the proofs goes similarly to the previous.

• Observe the (cont-assoc) group.

– Take the first rule: z<
by

cx3
〈y<

cx1
cx2
〈P]]

ctas1
≡ z<

cx1
by 〈y<

cx2
cx3
〈P]]. On the one hand

we have:

P ··· Γ, x1 : A, x2 : A, x3 : A ⊢ ∆
(cont-L)

y<
cx1

cx2
〈P] ··· Γ, y : A, x3 : A ⊢ ∆

(cont-L)

z<
by

cx3
〈y<

cx1

cx2
〈P]] ··· Γ, z : A ⊢ ∆

On the other hand,

P ··· Γ, x1 : A, x2 : A, x3 : A ⊢ ∆
(cont-L)

y<
cx2

cx3
〈P] ··· Γ, x1 : A, y : A ⊢ ∆

(cont-L)

z<
cx1

by 〈y<
cx2

cx3
〈P]] ··· Γ, z : A ⊢ ∆

– As for the second rule: [[P 〉cα1
cα2

>β〉
bβ

cα3
>γ

ctas2
≡ [[P 〉cα2

cα3
>β〉

cα1
bβ >γ, a similar

proof to the previous case can be given. � This section presents the
relation between c©X and dX in a formal way.

11.7 Interpreting terms as diagrams

c©X calculus has been designed to stand in full correspondence with the
diagrammatic calculus. Therefore it is not a surprise that we can define
a simple translation from c©X -terms into dX -diagrams. This translation is
denoted by D and it is defined inductively on the structure of terms, as
presented in Figure 11.4. Similar approach was taken in [KL05, KL07],
when interpreting λlxr-terms into proof-nets.

11.8 Simulating c©X -reduction

The following properties are satisfied by the translation D.

160CHAPTER 11. COMPUTING AND EQUIVALENT TERMS: THE c©X CALCULUS

D(〈x.α〉) :=

αx

D(Pα̂ † x̂Q) :=

)P(D
α x)Q(D

D(x̂ P β̂ . α) :=

)P(D

E

x β

α

D(P α̂ [x] ŷ Q) :=

)P(D (D Q)
I

α y

x

D([P 〉cα1
cα2

>α) :=

)P(D
α2

1α

α

D(x<
cx1
cx2
〈P]) :=

)P(D

1

x2

x

x

D(P ⊙ α) :=

α)P(D

D(x⊙ P) :=

x)P(D

Figure 11.4: Encoding the terms into diagrams

Theorem 72 (Simulation of reduction in c©X) Let P and Q be c©X terms.
Then the following holds:

• P1 ≡ P2 then D(P1) = D(P2)
• P1 → P2 then D(P1)→ D(P2)

Proof: The first part is satisfied since the congruence rules are introduced
to identify terms who share the same diagrammatic representation. The
second part of the proof goes by analyzing all reduction rules.

Activation rules:

• For the (actL-eras) rule: (P ⊙ α)α̂ † x̂Q → (P ⊙ α)α̂ † x̂Q, we have:

Qx Qxα

P
α

P

11.8. SIMULATING c©X -REDUCTION 161

• For the (actL-dupl) rule: ([P 〉cα1
cα2

>α)α̂ † x̂Q → ([P 〉cα1
cα2

>α)α̂ † x̂Q, we
have:

Qx QxαP αP

• For the (actR-eras) rule: Pα̂ † x̂(x⊙Q) → Pα̂ † x̂(x⊙Q), we have:

QxQx αα

P P

• For the (actR-dupl) rule: Pα̂ † x̂(x<
cx1
cx2
〈Q]) → Pα̂ † x̂(x<

cx1
cx2
〈Q]), we

have:

x Q x Qαα

P P

Structural actions:

• For the († -eras) rule: (P ⊙ α)α̂ † x̂Q → IQ ⊙ P ⊙OQ, with
IQ = I(Q) \ x, OQ = O(Q), we have:

I
Q

O} Q

I
Q{

P{
O} Q

P x Qα

• For the († -dupl) rule: ([P 〉cα1
cα2

>α)α̂ † x̂Q → IQ
<

c
IQ
1

c
IQ
2

〈
(Pα̂1

† x̂1Q1)α̂2
† x̂2Q2

〉 d
OQ

1
d
OQ

2

>OQ,

with IQ = I(Q) \ x, OQ = O(Q), we have:

P

I
Q{

O} QQα x

β

γ

P
Q

1

Q
2

I
Q{

O} Q

β

γ x

x

• For the († -eras) rule: Pα̂ † x̂(x⊙Q) → IQ ⊙ P ⊙OQ, with
IP = Ī(P), OP = Ō(P) \ α, we have:

162CHAPTER 11. COMPUTING AND EQUIVALENT TERMS: THE c©X CALCULUS

O
P}P

I {

P
I {

O
P}

Q

QP α

x

• For the († -dupl) rule: Pα̂ † x̂(x<
cx1
cx2
〈Q]) → IP

<

cIP
1

cIP
2

〈
P2α̂2 † x̂2(P1α̂1 † x̂1Q)

〉 dOP
1

dOP
2

>OP ,

with IP = Ī(P), OP = Ō(P) \ α, we have:

P
I {

O
P}

P Qα

y

z

x

P
I {

O
P}

Q
P

P1

2

α

α

y

z

Deactivation rules:

• For the (cap † -deact) rule: 〈y.α〉α̂ † x̂Q → 〈y.α〉α̂ † x̂Q, we have:

αy αy QxQx

• For the (exp † -deact) rule: (ŷ P β̂ . α)α̂ † x̂Q → (ŷ P β̂ . α)α̂ † x̂Q, we
have:

E

α

P

E

α

P

Qx Qx

• For the (†cap-deact) rule: Pα̂ † x̂〈x.β〉 → Pα̂ † x̂〈x.β〉, we have:

P
α α βxβx

P

• For the († imp-deact) rule: Pα̂ † x̂(Q β̂ [x] ŷ R) → Pα̂ † x̂(Q β̂ [x] ŷ R),
we have:

P
αα

I RQ I RQ

x
P

x

y β yβ

11.8. SIMULATING c©X -REDUCTION 163

Logical actions:

• For the (ren-L) rule: 〈y.α〉α̂ † x̂Q → Q{y/x}, we have:

αy QyQx

• For the (exp-ren) rule: Pα̂ † x̂〈x.β〉 → P{β/α}, we have:

P
α βx β

P

• For the (ei-insert) rule: (ŷ P β̂ . α)α̂ † x̂(Q γ̂ [x] ẑ R) → either

{
(Qγ̂ † ŷP)β̂ † ẑR

Qγ̂ † ŷ(P β̂ † ẑR)
,

we have:

z

I
Q R

γ

R
y β

PQ γ z

y

E

α x

βP

Thus we are done with the proof. �

164CHAPTER 11. COMPUTING AND EQUIVALENT TERMS: THE c©X CALCULUS

Conclusion and future work

This dissertation presents three formal languages through which a compu-
tational interpretation of classical logic was studied. The core of this work
and the source of inspiration was the ∗X calculus, presented in the first part
and created by applying to the X calculus ideas at the origin of the intu-
itionistic λlxr calculus. This was done smoothly and naturally in such a way
that essential properties were preserved.

The ∗X calculus is a finest grain computational language, which stands
in a direct Curry-Howard correspondence with classical logic. It is a tool
which allows us to study the role of structural rules in proof-transformation.
On the computational side, this means that it provides us with an insight of
how erasure and duplication can be implemented, in contrast with computa-
tional models which have implicit erasure and duplication, and are therefore
distant from the actual implementations. On the one hand, we have a high
level of details carried by the syntax, but on the other hand, the fact that
everything is revealed lead to a design of a more abstract model, namely the
diagrammatic calculus for classical logic.

Instead of focusing only on ∗X calculus, we decided to present the other
two models derived from it, namely the dX and the c©X calculus. This
allowed us to relate the different approaches reflected by these three calculi.
As a result we reveal both, the part which can be considered the essential
part of classical computation, but also the part which represents unessential
details (originating from the sequent calculus), and how these details are
manipulated in the computation.

The dX calculus is a diagrammatic calculus for classical logic, whose
diagrams are derived from ∗X -terms. It captures the essence of the classical
computation, while abstracting away from unessential details.

The c©X calculus is a one-dimensional counterpart of the diagrammatic
calculus, and thus it makes a clear distinction between essential and unessen-
tial parts - in the one-dimensional framework. Essential part is represented
by reduction rules, whilst the unessential part is given by the congruence

165

166 CONCLUSION

rules. c©X is obtained by deepening the understanding of the relation be-
tween the first two calculi, namely ∗X and dX . By introducing the congru-
ence relation we identify the ∗X -terms which have the same diagrammatic
representation, and which can be considered as computationally equivalent.
Reduction rules are defined modulo congruence rules.

In some sense this thesis is a journey from one-dimensional to two-
dimensional classical computation, and back. It represents a step towards
revisiting classical proof theory in a framework where proofs are identified
up to trivial rule permutations. It also suggests that X -like calculi, that
is, the calculi which code the structure of classical proofs using the syntax
similar to that of X calculus [vBLL05, vBL07], should be considered as a
relevant tool for the study of different aspects of classical computation.

Future works There are several areas where it is possible to continue the
work presented in this thesis.

• An interesting direction for future work is to reconsider the one and
two-dimensional classical computation in the three-dimensional frame-
work. The three-dimensional proofs have been studied in [Gui06],
where calculus of structures is an underlying formalism.

• Exchange rule is the third structural rule. What is the role of this rule
in the computation? Clearly, the term-language which would take into
consideration all three structural rules (exchange, besides weakening
and contraction) would be even more complex syntactically, but one
should investigate how this would affect the two-dimensional variant
of that calculus.

• We have not considered the strong normalization issues. The ∗X cal-
culus has been derived from X calculus for which the strong normal-
ization is proven in [UB01a]. We expect that this property is not lost,
and that it is preserved not only in ∗X , but also in dX and c©X .

• The diagrammatic calculus, dX , exhibits several sources of non-determinism.
Some of them are known to lead to non-confluence, but for the others
it should be formally investigated.

Bibliography

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit
substitutions. Journal of Functional Programming, 1(4):375–
416, 1991.

[AriBC] Aristotle. Organon, circa 350 BC.

[AS03] B. André-Salvini. Le code de Hammurabi. Musée du Louvre,
Paris, 2003. Collection Solo, n. 27.

[AvB07] P. Audebaud and S. van Bakel. A completeness result for λµ.
Preprint, 2007.

[Bar84] H. Barendregt. The Lambda Calculus: its Syntax and Seman-
tics. North-Holland, Amsterdam, revised edition, 1984.

[BB94] F. Barbanera and S. Berardi. A symmetric lambda calculus for
”classical” program extraction. In TACS, pages 495–515, 1994.

[BBLRD96] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ,
a calculus of explicit substitutions which preserves strong nor-
malisation. Journal of Functional Programming, 6(5):699–722,
1996.

[BBS97] F. Barbanera, S. Berardi, and M. Schivalocchi. ”Classi-
cal” programming-with-proofs in λsym: an analysis of non-
confluence. In TACS, pages 365–390, 1997.

[BR95] R. Bloo and K.H. Rose. Preservation of strong normalisation
in named lambda calculi with explicit substitution and garbage
collection. In CSN’95 Computer Science in the Netherlands,
pages 62–72, 1995.

[Bus91] S. R. Buss. The undecidability of k-provability. Annals of Pure
and Applied Logic, 53(1):75–102, 1991.

167

168 BIBLIOGRAPHY

[CF58] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North-
Holland Publishing Co., Amsterdam, 1958.

[CH00] P.-L. Curien and H. Herbelin. The duality of computation. In
Proc. 5 th ACM SIGPLAN Int. Conf. on Functional Program-
ming (ICFP’00), pages 233–243. ACM, 2000.

[Chu85] A. Church. The Calculi of Lambda Conversion. (AM-6) (An-
nals of Mathematics Studies). Princeton University Press,
Princeton, NJ, USA, 1985.

[CKP03] R. Di Cosmo, D. Kesner, and E. Polonovski. Proof nets and
explicit substitutions. Mathematical Structures in Computer
Science, 13(3):409–450, 2003.

[dG94] P. de Groote. On the relation between the λµ-calculus and the
syntactic theory of sequential control. In 5th Int. Conf. LPAR,
volume 822 of Lecture Notes in Computer Science, pages 31–43,
1994.

[DG01] R. David and B. Guillaume. A lambda-calculus with explicit
weakening and explicit substitution. Mathematical Structures
in Computer Science, 11(1):169–206, 2001.

[DJS96] V. Danos, J.-B. Joinet, and H. Schellinx. Computational iso-
morphisms in classical logic (extended abstract). Electronic
Notes in Theoretical Computer Science, 3, 1996.

[DJS97] V. Danos, J.-B. Joinet, and H. Schellinx. A new deconstructive
logic: Linear logic. Journal of Symbolic Logic, 62, 1997.

[Eul68] L. Euler. Lettres à une Princesse d’Allemagne. l’Académie
Impériale des Sciences, St. Petersburg, 1768.

[Fil89] A. Filinski. Declarative continuations: an investigation of du-
ality in programming language semantics. In Category The-
ory and Computer Science, pages 224–249, London, UK, 1989.
Springer-Verlag.

[GAL92] G. Gonthier, M. Abadi, and J.-J. Lévy. Linear logic without
boxes. In LICS, pages 223–234, 1992.

[Gen35] G. Gentzen. Untersuchungen über das logische Schließen. Math.
Z., 39:176–210, 405–431, 1935.

BIBLIOGRAPHY 169

[Ghi87] B. Ghiselin, editor. The creative process: Reflections on inven-
tion in the arts and sciences. University of California Press,
Berkeley, CA, 1987. (The original manuscript written in 1952).

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[Gir91] J.-Y. Girard. A new constructive logic: classical logic. Mathe-
matical Stuctures in Computer Science, 1(3):255–296, 1991.

[Gir01] J.-Y. Girard. Locus solum: From the rules of logic to the
logic of rules. Mathematical Structures in Computer Science,
11(3):301–506, 2001.

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, vol-
ume 7 of Cambridge Tracts in Theoret Computer Science. Cam-
bridge University Press, 1989.

[Gri90] T. Griffin. A formulae-as-types notion of control. In Proceed-
ings of the 17th ACM symposium on Principles of programming
languages, POPL, pages 47–58, 1990.

[Gug04] A. Guglielmi. A system of interaction and structure. ACM
Transactions on Computational Logic, 2004. (The manuscript
was written in 1999).

[Gui04] Y. Guiraud. Présentations d’opérades et systèmes de réécriture.
Thèse de doctorat, Université Montpellier II, Juin 2004.

[Gui06] Y. Guiraud. The three dimensions of proofs. Annals of Pure
and Applied Logic, 141(1-2):266–295, 2006.

[Her95] H. Herbelin. Séquents qu’on calcule: de l’interprétation du cal-
cul des séquents comme calcul de λ-termes et comme calcul de
stratégies gagnantes. Thèse de doctorat, Université Paris VII,
Janvier 1995.

[Her01] H. Herbelin. Explicit substitution and reducibility. Journal of
Logic and Computation, 11(3):431–451, 2001.

[Her05] H. Herbelin. C’est maintenant qu’on calcule, au cœur de la
dualité. Habilitation à diriger les recherches, Université Paris
XI, Décembre 2005.

170 BIBLIOGRAPHY

[How80] W. A. Howard. The formulae-as-types notion of construction.
In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formal-
ism, pages 479–490. Academic Press, 1980. (The unpublished
manuscript is written in 1969).

[Hyl02] J. M. E. Hyland. Proof theory in the abstract. Annals of Pure
and Applied Logic, 114(1-3):43–78, 2002.

[Joh82] B. Johnston, editor. My Inventions: The Autobiography of
Nikola Tesla. Barnes and Noble, New York, 1982.

[Kes07] D. Kesner. The theory of calculi with explicit substitutions
revisited. In Proceedings of the 16th EACSL Annual Confer-
ence on Computer Science and Logic, pages 238–252, Septem-
ber 2007.

[KL05] D. Kesner and S. Lengrand. Extending the explicit substitution
paradigm. In RTA, pages 407–422, 2005.

[KL06] D. Kesner and S. Lengrand. Explicit operators for λ-calculus.
Information and Computation, 2006. Extended version of a
communication at RTA-05.

[KL07] D. Kesner and S. Lengrand. Ressource operators for lambda-
calculus. Information and Computation, 205(4):419–473, 2007.
Long version.

[Kle52] S. Kleene. Introduction to Metamathematics. Number 1 in Bib-
liotheca mathematica. North-Holland, 1952. Revised edition,
Wolters-Noordhoff, 1971.

[Laf90] Y. Lafont. Interaction nets. In Proceedings of the 17th ACM
symposium on Principles of programming languages, POPL,
pages 95–108. ACM Press, 1990.

[Laf95a] Y. Lafont. Equational reasoning with 2-dimensional diagrams.
In Term Rewriting, volume 909 of Lecture Notes in Computer
Science, pages 170–195. Springer-Verlag, 1995.

[Laf95b] Y. Lafont. From proof-nets to interaction nets. In Advances in
linear logic, pages 225–247. Cambridge University Press, 1995.

BIBLIOGRAPHY 171

[Laf97] Y. Lafont. Interaction combinators. Information and Compu-
tation, 137(1):69–101, 1997.

[Len03] S. Lengrand. Call-by-value, call-by-name, and strong normal-
ization for the classical sequent calculus. In Electronic Notes
in Theoretical Computer Science, volume 86, 2003.

[Les94] P. Lescanne. From λσ to λυ: a journey through calculi of ex-
plicit substitutions. In Proceedings of the 21st ACM symposium
on Principles of programming languages, POPL, pages 60–69.
ACM Press, 1994.

[LLD+04] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-
Ciancaglini, and S. van Bakel. Intersection types for explicit
substitutions. Information and Computation, 189(1):17–42,
2004.

[LS05] F. Lamarche and L. Straßburger. Naming proofs in classical
propositional logic. In TLCA, pages 246–261, 2005.

[Mel95] P.-A. Melliès. Typed lambda-calculi with explicit substitutions
may not terminate. In TLCA, pages 328–334, 1995.

[Mil95] R. Milner. Communication and concurrency. Prentice Hall
International (UK) Ltd., Hertfordshire, UK, 1995.

[OS97] C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundation
for functional computation with control. In Proc.24th Annual
ACM Symp. on Principles Of Programming Languages, pages
215–227, 1997.

[Par92] M. Parigot. An algorithmic interpretation of classical natural
deduction. In Int. Conf. LPAR, volume 624 of Lecture Notes
in Computer Science, pages 190–201, 1992.

[Par97] M. Parigot. Proofs of strong normalisation for second or-
der classical natural deduction. Journal of Symbolic Logic,
62(4):1461–1479, December 1997.

[Pol04] E. Polonovski. Strong normalization of λ̄µµ̃-calculus with ex-
plicit substitutions. In FoSSaCS, pages 423–437, 2004.

[Rob03] E. Robinson. Proof nets for classical logic. Journal of Logic
and Computation, 13(5):777–797, 2003.

172 BIBLIOGRAPHY

[RS07] J. Raghunandan and A. J. Summers. On the computational
representation of classical logical connectives. Electronic Notes
in Theoretical Computer Science, 171(3):85–109, 2007.

[Str06] L. Straßburger. Proof nets and the identity of proofs. CoRR,
abs/cs/0610123, 2006.

[SvB06] A. J. Summers and S. van Bakel. Approaches to polymorphism
in classical sequent calculus. In ESOP, pages 84–99, 2006.

[SW01] D. Sangiorgi and D. Walker. π-Calculus: A Theory of Mobile
Processes. Cambridge University Press, New York, USA, 2001.

[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge
Tracts in Theoretical Comuter Science. Cambridge University
Press, 2003.

[TS96] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory.
Cambridge University Press, New York, NY, USA, 1996.

[UB01a] C. Urban and G. M. Bierman. Strong normalisation of cut-
elimination in classical logic. Fundamenta Informaticae, 45(1-
2):123–155, 2001. (appeared also at TLCA in 1999).

[UB01b] C. Urban and G. M. Bierman. Strong normalisation of cut-
elimination in classical logic. Fundam. Inf., 45(1,2):123–155,
2001.

[Urb00] C. Urban. Classical Logic and Computation. PhD thesis, Univ.
of Cambridge, October 2000.

[Urb01] C. Urban. Strong normalisation for a Gentzen-like cut-
elimination procedure. In Typed Lambda Calculus and Appli-
cations, volume 2044 of Lecture Notes in Computer Science,
pages 415–429, 2001.

[vB05] S. van Bakel. Intersection and union types for X . Electronic
Notes in Theoretical Computer Science, 136:203–227, 2005.

[vBCV07] S. van Bakel, L. Cardelli, and M. G. Vigliotti. From X to
π. Representing the classical sequent calculus in π-calculus.
Preprint, 2007.

BIBLIOGRAPHY 173

[vBL07] S. van Bakel and P. Lescanne. Computation with classical se-
quents. Mathematical Stuctures in Computer Science, 2007. To
appear.

[vBLL05] S. van Bakel, S. Lengrand, and P. Lescanne. The language X :
circuits, computations and classical logic. In Proc.9th Italian
Conf. on Theoretical Computer Science (ICTCS’05), volume
3701 of Lecture Notes in Computer Science, pages 81–96, 2005.

[vBR05] S. van Bakel and J. Raghunandan. Implementing X . Electronic
Notes in Theoretical Computer Science, 127(5):171–195, 2005.

[vH67] J. van Heijenoort, editor. From Frege to Godel. A Source Book
tn Mathematical Logic, 1879-1931. Harward University Press,
Cambridge, Massachusetts, USA, 1967.

[WR25] A. N. Whitehead and B. Russell. Principia Mathematica. Cam-
bridge University Press, 2nd edition, 1925.

174 BIBLIOGRAPHY

List of Figures

3.1 Sequent system G1 . 18

3.2 Sequent system G3 . 19

3.3 The system G1 with pairs . 20

4.1 The syntax of X . 24

4.2 Logical rules in X . 25

4.3 Activation rules in X . 26

4.4 Left propagation (erasure/duplication/deactivation) in X . . 27

4.5 Right propagation (erasure/duplication/deactivation) in X . 27

4.6 The type system for X . 28

4.7 The syntax of the λlxr-calculus 29

4.8 Congruence axioms for λlxr-terms 30

4.9 Typing rules for the λlxr-terms 33

4.10 The syntax of λ̄µµ̃-calculus 34

4.11 The reduction rules of λ̄µµ̃-calculus 34

4.12 The type system for λ̄µµ̃-calculus 35

5.1 The syntax of ∗X . 38

5.2 Free names . 39

5.3 Linear terms . 43

5.4 Activation rules . 51

5.5 Structural actions . 52

5.6 Deactivation rules . 52

5.7 Logical actions . 53

5.8 Left propagation . 54

5.9 Right propagation . 55

5.10 The type system for ∗X . 61

5.11 The proof tree for S-cominator 77

6.1 Encoding the X -terms into ∗X 81

175

176 LIST OF FIGURES

6.2 Modified left propagation in X 84
6.3 Encoding the ∗X -terms into X 88
6.4 Encoding λ̄µµ̃-calculus into ∗X 89
6.5 Encoding the λ-calculus . 92
6.6 Encoding the λx-calculus . 93
6.7 Encoding the λlxr-calculus . 95

8.1 The diagrammatic syntax . 104
8.2 The ports . 106
8.3 The terminology . 107
8.4 Diagram simplification . 114
8.5 The type system for dX . 129

11.1 The syntax of c©X . 139
11.2 Activation rules for c©X . 152
11.3 Deactivation rules for c©X . 153
11.4 Encoding the terms into diagrams 160

