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Synopsis 
 
 
 
 

 
 Les particules ribonucléoprotéiques (ou RNP) sont à la base de nombreuses fonctions cellulaires 
fondamentales. La formation de ces particules RNP est un processus très complexe qui nécessite de nombreuses 
étapes de maturation et de multiples facteurs d'assemblage. Par ailleurs, une structure correcte des particules 
RNP est essentielle à leur fonction. Il est donc critique de comprendre comment ces particules sont formées dans 
la cellule. Au cours de ma carrière, je me suis intéressée à plusieurs aspects de ces mécanismes. 
 Au cours de ma thèse dirigée par Chantal Ehresmann (1990-1994), dans l’équipe de Bernard 
Ehresmann (UPR 9002 du CNRS) j’ai étudié le mode d’interaction de la protéine ribosomique S8 sur l’ARNr 
16S d’E. coli.  
  Mon travail post-doctoral dans l’équipe de David Tollervey (EMBL, Heidelberg (1994-1996) et 
Université d’Edimbourg (1996-2001) a porté sur l’étude des mécanismes de maturation, d’assemblage et de 
dégradation de diverses RNP. J’ai notamment contribué à la caractérisation de l’exosome, un complexe 
d’exonucléases 3’-> 5’ impliqué dans la maturation et la dégradation de divers ARN chez la levure. J’ai 
également étudié le rôle de protéines chaperons dans la biogenèse des snoARN (biogenèse des ribosomes), des 
ARN ribosomiques et des ARNt.  

En 2001, j’ai été recrutée au grade de chargée de recherche au CNRS dans l’équipe d’Alain Krol où 
nous étudions les mécanismes de synthèse des sélénoprotéines. L’incorporation de sélénocystéine dans les 
sélénoprotéines fait appel au recodage co-traductionnel d’un codon UGASec en phase. Chez les eucaryotes, ce 
mécanisme implique l’assemblage d’un complexe ARN-protéine au niveau d’une structure en tige-boucle ou 
ARN SECIS (Selenocysteine Insertion Sequence) située dans la région 3’non codante de l’ARNm des 
sélénoprotéines. La protéine SBP2 se fixe spécifiquement à l’ARN SECIS et recrute les facteurs de la 
machinerie de biosynthèse. Elle fait également partie de complexes supramoléculaires dans le cytoplasme et le 
noyau, suggérant un possible assemblage nucléaire de la mRNP SECIS. Nous avons montré que la protéine 
SBP2 présentait une origine évolutive commune avec des protéines de la famille L7Ae. Ces protéines partagent 
un domaine de liaison à l'ARN similaire et participent à la construction de plusieurs RNP essentielles telles les 
sous-unités ribosomiques, les snoRNP (biogenèse des ribosomes), les snRNP (épissage), et les mRNP codant 
pour les sélénoprotéines. Nos objectifs sont d’élucider les principes d’interaction SBP2/SECIS, d’identifier les 
composants moléculaires des complexes qui se forment autour du SECIS et de comprendre leur assemblage. 

En collaboration avec Edouard Bertrand (Montpellier) et Bruno Charpentier et Christiane Branlant 
(Nancy) nous avons identifié une machinerie d’assemblage des RNP L7Ae conservée de la levure à l’homme et 
d’importance fondamentale pour la cellule. Elle est constituée d’une protéine adaptatrice et d’un complexe de 
protéines chaperons. Notre objectif est de comprendre son rôle dans l’assemblage des mRNP de sélénoprotéines. 
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Introduction générale 
 

 Les particules ribonucléoprotéiques (ou RNP) sont à la base de nombreuses fonctions 

cellulaires fondamentales chez les eucaryotes. Au sein de ces particules, des ARN non 

codants participent à des mécanismes aussi variés que la traduction (ARNr, ARNt), l'épissage 

des ARN pré-messagers (UsnARN), la biogenèse des ribosomes et d’ARN non codants, la 

modification de bases des ARN (snARN, snoARN, scaARN), la réplication des télomères 

(télomérase) et la sécrétion des protéines (SRP). Enfin, ces dernières années ont vu 

l’émergence de microRNPs, contenant des ARN non codants (ARNsi, ARNmi) capables de 

moduler l’efficacité de la transcription, la stabilité des ARNm et vraisemblablement la 

structure de la chromatine.  

 La plupart des petits ARN non codants accomplissent leurs fonctions en association 

avec des protéines sous la forme de ribonucléoparticules (ou RNP). La formation des 

particules RNP est un processus très complexe qui nécessite de nombreuses étapes de 

maturation et de multiples facteurs d'assemblage (Fatica & Tollervey, 2002; Matera et al., 

2007 ; Yong et al., 2004). En effet, le nombre de facteurs requis pour l’assemblage de RNP 

fonctionnelles dépasse souvent le nombre de protéines présentes au sein de la particule 

mature. Ainsi, les ribosomes sont constitués d’environ 80 protéines, mais n’utilisent pas 

moins de 140 facteurs pour leur assemblage (Fatica & Tollervey, 2002). Ces facteurs 

semblent non seulement importants pour faciliter l'assemblage de la particule, mais aussi pour 

exercer un contrôle strict sur la qualité des particules produites. Au niveau cellulaire, 

l’assemblage des RNP est également synonyme de mécanismes complexes de trafic 

intracellulaire car il peut avoir lieu dans des compartiments cellulaires différents du site 

fonctionnel. C’est le cas des particules UsnRNP impliquées dans les mécanismes d’épissage 

(Bertrand E & R., 2004; Carmo-Fonseca et al., 2002; Yong et al., 2004) : elles sont tout 

d’abord exportées dans le cytoplasme, où leur assemblage fait appel au complexe SMN (Yong 

et al., 2004) ; puis réimportées dans le noyau vers leur site final de maturation et enfin leur 

site fonctionnel. En plus des RNP non codantes qui agissent en trans, la régulation de 

l’expression des gènes chez les eucaryotes est souvent dépendante de la formation de 

complexes RNP directement sur l’ARNm au niveau d’éléments structuraux régulateurs 

capables d’agir en cis.  

Dans chacun des cas, la structure correcte des particules RNP est essentielle à leur 

fonction. Il est donc critique de comprendre comment ces particules sont formées dans la 

cellule. Au cours de ma carrière, je me suis intéressée à plusieurs aspects de ces mécanismes. 
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 Durant ma thèse dirigée par Chantal Ehresmann (1990-1994), j’ai étudié le mode 

d’interaction de la protéine ribosomique S8 sur l’ARNr 16S d’E. coli. Cette protéine primaire 

joue un rôle central dans l’assemblage coordonné de la petite sous-unité ribosomique ainsi 

que dans la régulation de son propre opéron chez les procaryotes. Nous avons proposé un 

modèle de repliement tridimensionnel de son site ARN par analyse structurale en solution et 

modélisation. 

 

 Mon travail dans l’équipe de David Tollervey (1994-2001) a plus directement porté 

sur l’étude des mécanismes de maturation, d’assemblage et de dégradation de diverses RNP. 

J’ai notamment contribué à la caractérisation de l’exosome, un complexe d’exonucléases 3’-> 

5’ impliqué dans la maturation et la dégradation de divers ARN chez la levure. Notre travail a 

permis d’élucider les fonctions de l’exosome, notamment dans le noyau où ce complexe 

participe à la synthèse des ARN ribosomiques, des petits ARN nucléolaires (snoARN) et 

nucléaires (snARN) mais joue également un rôle dans les mécanismes de dégradation et de 

surveillance des ARN. La majorité des ARN stables qui constituent les RNP non codantes 

sont maturés à partir de précurseurs. Leur maturation ou dégradation implique en plus des 

exonucléases et endonucléases, une série de cofacteurs, d’hélicases et de protéines chaperons. 

Nous avons montré qu’un jeu limité de ces facteurs pouvait être recruté sous différentes 

combinaisons pour la synthèse de presque tous les ARN cellulaires. Deux types de protéines 

chaperons (Lhp1 et Lsm) ont été plus particulièrement analysées pour leur rôle dans la 

biogenèse du snoARN U3, des ARN ribosomiques et des ARNt. Ces protéines contribuent à 

faciliter les interactions ARN/protéines ainsi que les réarrangements structuraux lors de 

l’assemblage des particules ribonucléoprotéiques.  

 

En 2001, j’ai été recrutée au grade de chargée de recherche au CNRS dans l’équipe 

d’Alain Krol qui étudie les mécanismes de synthèse des sélénoprotéines. L’incorporation de 

sélénocystéine dans les sélénoprotéines fait appel au recodage co-traductionnel d’un codon 

UGASec en phase. Chez les eucaryotes, ce mécanisme implique l’assemblage d’un complexe 

ARN-protéine au niveau d’une structure en tige-boucle ou ARN SECIS (Selenocysteine 

Insertion Sequence) située dans la région 3’UTR de l’ARNm des sélénoprotéines (Allmang & 

Krol, 2006b). La protéine SBP2 se fixe spécifiquement à l’ARN SECIS et recrute les facteurs 

de la machinerie de biosynthèse. Elle fait également partie d’un complexe supramoléculaire et 

est soumise au transport nucléocytoplasmique suggérant un possible assemblage nucléaire de 

la mRNP SECIS (de Jesus et al., 2006 ; Small-Howard et al., 2006). Nous avons montré que 

la protéine SBP2 présentait une origine évolutive commune avec des protéines de la famille 
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L7Ae. Ces protéines partagent un domaine de liaison à l'ARN similaire et participent à la 

construction de plusieurs RNP essentielles telles les sous-unités ribosomiques, les snoRNP à 

boites C/D et H/ACA (biogenèse des ribosomes), la snRNP U4 (épissage), et comme nous 

l’avons montré dans les mRNP codant pour les sélénoprotéines. Nous étudions les principes 

d’interaction SBP2/SECIS et tentons d’identifier les composants moléculaires du complexe 

qui se forme autour du SECIS afin de comprendre quelle est l’origine de la diversité de 

fonctions apparues au cours de l’évolution pour les RNP L7Ae. Des déterminants de 

spécificité pour le SECIS et les ARN cibles des protéines L7Ae ont ainsi été identifiés en 

collaboration avec l’équipe de Christiane Branlant (Nancy).  

Enfin, notre objectif est d’élucider le mécanisme d’assemblage de la mRNP SECIS et 

de comprendre comment il s’intègre dans le schéma d’assemblage général des RNP de la 

famille L7Ae mais aussi dans le mécanisme traductionnel des sélénoprotéines. En 

collaboration avec Edouard Bertrand (Montpellier) et Bruno Charpentier (Nancy) nous avons 

identifié une machinerie conservée destinée à l’assemblage des particules RNP stables de la 

famille L7Ae ainsi que de la RNP SECIS que nous caractérisons.  
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Projet de thèse : Le site de fixation de la protéine ribosomique S8  
sur l’ARNr 16S  

  
Equipe du Pr. Bernard et du Dr. Chantal Ehresmann. IBMC, UPR 9002 du CNRS, Université 
Louis Pasteur, Strasbourg 
 

Mon travail de thèse a été effectué avec Marylène Mougel dans l’équipe de Bernard et 

Chantal Ehresmann. Il a consisté en l’ingénierie et l’étude structurale d’ARN en solution. En 

particulier, nous avons étudié le site de fixation de la protéine ribosomique S8 sur l’ARNr 

16S d’E. coli. Cette protéine primaire se fixe dans le domaine central de l’ARNr 16S et 

permet la fixation coopérative de protéines secondaires par induction d’une modification 

conformationnelle de leur site ARN. La région de fixation de S8 représente l’un des sites de 

nucléation lors de l’assemblage de la sous-unité ribosomique 30S (Held et al., 1974; 

Mizushima et al., 1970). La protéine S8 intervient également dans la régulation de son propre 

opéron (spc). En se liant sur son ARNm, elle en inhibe la traduction et régule ainsi sa propre 

synthèse et celle des autres protéines ribosomiques de son opéron. En 1990, lorsque j’ai 

débuté ma thèse, il était admis que le site de fixation de S8 situé au sein d’une structure en 

tige boucle de l’ARNr 16S, était centré sur une région hélicoïdale irrégulière à la base de 

l’hélice et dont un nombre limité de nucléotides dictait la conformation. Le repliement de 

cette région était cependant très controversé et plusieurs modèles étaient en vigueur, dont l’un 

proposé par notre laboratoire (Mougel et al., 1987). Nos travaux ont contribué à affiner la 

connaissance de ce site et à définir le site minimum d’ARN reconnu par S8 (Mougel et al., 
1993). Par la combinaison de techniques de mutagenèse dirigée, d’analyses structurales en 

solution et de modélisation graphique nous avons construit un nouveau modèle 

tridimensionnel de ce site avec Eric Westhof (Allmang et al., 1994). Cette étude a révélé la 

présence de contraintes structurales importantes, conférant une géométrie et accessibilité 

particulière à certains résidus spécifiques du site ainsi qu’au squelette sucre-phosphate de 

l’ARN. Nous avions notamment proposé l’existence d’interactions non canoniques et d’un 

réseau important de liaisons hydrogènes. Depuis, ce modèle s’est avéré incorrect quant à la 

nature exacte des connections prédites, mais il avait mis en valeur la complexité du site. 

Prédire de telles interactions reste un défi dans l’étude du repliement des ARN et ce système 

modèle nous a mené aux limites des méthodologies employées. Après ma thèse, l’étude du 

site s’est poursuivie à l’aide de techniques plus adaptées à la détection d’interactions non 

canoniques multiples telle que le SELEX (Moine et al., 1997) et enfin la résolution de la 

structure cristallographique du complexe S8-ARNr chez Methanococcus jannashii 
(Tishchenko et al., 2001). La résolution de la structure du ribosome de Thermus thermophilus 
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a quant à elle permis de replacer ces interactions dans le contexte de la particule RNP du 

ribosome (Brodersen et al., 2002 ; Yusupov et al., 2001). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Le site de fixation de la protéine S8 sur l’ARNr 16S. a. Structure secondaire du site sur l’ARNr 16S 

b. Modèle de structure tridimensionnelle proposé en 1994 (Allmang et al., 1994). Les trois adénines A595, A640 

et A642 sont proposées en bulge et U641.U598 sont en interaction c. Structure cristallographique du site de 

fixation chez Methanococcus jannashii d’après Tishchenko et al. (2001). Deux plateformes nucléotidiques se 

font face. La première est constituée de l’appariement A595-A596, elle joue un rôle important dans 

l’empilement de bases. La seconde plateforme (U641-A642) est spécifiquement reconnue par S8. A642 joue un 

rôle essentiel dans la cohésion du complexe car elle est impliquée dans un réseau de liaisons hydrogènes 

important notamment avec l’interaction triple G597-C643.U641. 
 

Un autre volet de ma thèse a constitué à mettre au point les techniques de synthèse 

chimique d’ARN à grande échelle, alors en plein développement, en vue d’études structurales 

par RMN ou cristallographie. L’ARN ribosomique 5S de Xenopus laevis possède plusieurs 

boucles de structure intrinsèque particulièrement stable. Elles ont été choisies comme système 

modèle. Nous avons synthétisé chimiquement deux tige-boucles de cet ARN et réalisé leur 

étude par RMN. Il est apparu que celles-ci établissaient des interactions intermoléculaires 

pour former un duplex. 

Enfin, les techniques de cartographie m’ont permis, en collaboration avec David 

Gilmer dans l’équipe de Gérard Jonard (IBMP, Strasbourg), de proposer un modèle de 

structure secondaire de la région 5’ non codante de l’ARN du virus des nervures jaunes et 

nécrotiques de la betterave (BNYVV). Ces résultats ont confirmé l’existence de trois 

domaines appariés dans l’ARN, importants pour sa réplication. 

a b c 
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0 
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2 
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Stage post-doctoral (1994-1996) : Mécanismes de maturation des pré-
ARNr 

 
Equipe de David Tollervey. Département d’Expression Génétique, EMBL, Heidelberg, 
Allemagne 
 

La biogenèse des ribosomes eucaryotes est un mécanisme complexe et dynamique qui a 
lieu successivement dans le nucléole, le nucléoplasme et le cytoplasme. Ce processus englobe 
les étapes de transcription, maturation, modifications des précurseurs d'ARN ribosomiques (pré-
ARNr), leur assemblage en sous-unités ribosomiques et enfin leur transport. Plus d’une centaine 
de petits ARN nucléolaires (snoARN) servent de guides pour les modifications de l’ARN et 
environ 140 protéines non-ribosomiques sont impliquées dans les étapes de maturation (Fatica 
& Tollervey, 2002).  

L’ARNr 18S de la petite sous-unité et les deux ARNr 5,8S et 25S de la grande sous-
unité ribosomique sont transcrits par l'ARN polymérase I sous la forme d'un long précurseur 
unique: le pré-ARNr 35S. Les régions correspondant aux ARN matures du pré-ARNr 35S sont 
flanquées d'espaceurs externes en 5' et en 3' (5' et 3' ETS) et séparées par des espaceurs internes 
(ITS1 et ITS2). Les différentes étapes de maturation des pré-ARNr ainsi que les enzymes 
impliquées sont représentées Figure 2 (pour une revue voir Venema & Tollervey, 1999). Il 
existe une séparation entre la voie de synthèse de l’ARN 18S, qui implique quatre coupures 
successives par des endonucléases, et la voie de synthèse des ARN 5,8S et 25S, plus complexe 
et qui fait appel à une coupure endonucléolitique suivie par des étapes multiples de digestion 
par des exonucléases. Une fois modifiés les ARNr matures s’assemblent avec les 80 protéines 
ribosomiques et l’ARNr 5S qui est transcrit indépendamment.  

Le laboratoire du Pr. David Tollervey, dans lequel j'ai effectué mon stage post-doctoral, 
a largement contribué à l’élucidation des étapes de maturation des pré-ARNr chez la levure et à 
l’identification d’un nombre important de facteurs impliqués dans le mécanisme. Mon travail 
post-doctoral dans cette équipe a contribué à identifier certains des signaux de coupures sur le 
pré-ARNr mais aussi à caractériser plusieurs facteurs de maturation et à analyser leur fonction. 
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Figure 2 : Schéma de maturation des pré-ARNr chez Saccharomyces cerevisiae d’après Fatica et al. (2002). 

L’ARNr 18S de la petite sous-unité et les deux ARNr 5,8S et 25S de la grande sous-unité ribosomique sont 

transcrits par l'ARN polymérase I sous la forme d'un long précurseur unique: le pré-ARNr 35S. Les régions 

correspondant aux ARN matures du pré-ARNr 35S sont flanquées d'espaceurs externes en 5' et en 3' (5' et 3' ETS) 

et séparées par des espaceurs internes (ITS1 et ITS2). Afin de générer les ARNr matures, le pré-ARNr 35S subit 

une série de clivages séquentiels. Le processus de maturation est initié par le clivage du site B0 en 3’ETS par 

l’endonucléase Rnt1p, générant le pré-ARNr 35S. Celui-ci subit trois clivages successifs aux sites A0, A1 et A2 

pour aboutir aux pré-ARNr 20S et 27SA2 qui formeront respectivement les sous-unités 40S et 60S. Le pré-ARNr 

20S est exporté dans le cytoplasme où il conduira à l’ARNr 18S après coupure en 3’. Deux voies alternatives 

permettent la formation des ARNr 25S et 5,8S. Dans la voie majeure, le pré-ARNr 27SA2 est clivé au site A3 par 

la RNase MRP. Les exonucléases 5’-3’ Rat1p et Xrn1p digèrent l’ARN côté 5’ jusqu’au site B1S. L’extrémité 3’ 

de l’ARNr 25S est obtenue par l’exonucléase 3’-5’ Rex1p (de B0 à B2). Après coupure au site C2, l’extrémité 5’ de 

l’ARNr 25S est générée par les exonucléases 5’-3’ Rat1p et Xrn1p, alors que la maturation de l’extrémité 3’ de 

l’ARN 5,8S se fait en plusieurs étapes et implique l’exosome, un complexe d’exonucléases 3’-5’, Rex1p et Rex2p. 
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1- Mise en évidence d'une coordination de la maturation des pré-ARNr  

Je me suis particulièrement intéressée aux mécanismes de maturation au sein de deux 
espaceurs (ITS1 et 3’ETS). ITS1 contient deux sites de clivage importants : A2 et A3. Le 
clivage au niveau du site A2 est une étape cruciale dans la maturation du pré-ARNr 35S qui 
permet de scinder le pré-ARNr en deux fragments 5' et 3' destinés respectivement à former les 
ARN de la petite et de la grande sous-unité ribosomique. Il est dépendant de signaux en cis à 
proximité de A2 mais également dans la région 5’ETS, tel que le site de fixation du snoARN 
U3 (Beltrame et al., 1994; Venema et al., 1995). Le clivage du site A2 dépend d’un complexe 
de maturation composé de snoRNP. Le clivage au niveau du site A3, assuré par la RNase MRP, 
permet quant à lui de générer l'extrémité 5' de la forme majeure de l'ARN 5,8S. La région 
3’ETS est coupée par Rnt1 (homologue de la RNase III), ce clivage initie l’ensemble du 
mécanisme de maturation du pré-ARNr 35S. Mon travail a contribué à identifier les signaux 
requis en cis pour le clivage des régions ITS1 et 3’ETS (Allmang et al., 1996b; Allmang & 
Tollervey, 1998). Cette analyse a permis de révéler un lien tout à fait inattendu entre les sites de 
clivage A2 et A3 (Allmang et al., 1996a), suggérant que le complexe de maturation du site A2 
et 5’ETS (snoRNP) interagissait avec celui du site A3 (RNase MRP). Par ailleurs, nous avons 
montré qu’une structure en tige-boucle en 3’ETS est nécessaire et suffisante pour la coupure par 
Rnt1p, mais également pour le clivage à distance du site A3 par la RNase MRP. La maturation 
des régions 3’ETS et ITS1 apparaît donc, elle aussi, couplée (Allmang & Tollervey, 1998). 
L’ensemble de nos résultats a suggéré une coordination de la maturation des pré-ARN qui peut 
être mise en parallèle avec les mécanismes de maturation bactériens (voir Figure 3). Chez les 
eubactéries, les extrémités non codantes situées en 5' et 3' des ARNr matures s’apparient et sont 
coupées par la RNase III. Un ARNt présent dans l’espaceur fournit un site de clivage pour la 
RNase P. Chez la levure, des tiges-boucles en 5’ et 3’ETS constituent les sites de clivage de 
Rnt1p. Des complexes de snoRNP remplacent les appariements intramoléculaires afin d’assurer 
la coordination de la maturation en 5’ et 3’. La RNase MRP assure un rôle comparable à celui 
de la RNase P dans l’espaceur ITS1, mais interagit également avec les complexes de maturation 
en 5’ et 3’ ETS. 

 
2- Démonstration de l'activité endonucléolytique de la RNase MRP in vitro 

En accord avec sa localisation nucléolaire, de nombreux arguments génétiques 
suggéraient que la RNase MRP intervenait dans la maturation du pré-ARNr in vivo. Le rôle de 
la RNase MRP était cependant controversé car elle fut initialement identifiée comme une 
endonucléase mitochondriale (Chang & Clayton, 1987). En collaboration avec Bertrand 
Séraphin (alors à l’EMBL), un système capable de reproduire avec précision la coupure au site 
A3 par la RNase MRP in vitro a été mis au point. Ces expériences nous ont permis de 
démontrer que la RNase MRP était bien directement responsable de la coupure du site A3 et de 
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confirmer son rôle dans le nucléole. C'est la première endonucléase pour laquelle nous avons pu 
démontrer sa capacité à couper un précurseur d'ARNr in vitro et in vivo (Lygerou et al., 1996). 

 
Figure 3 : Coordination de la maturation des pré-ARNr d’après Allmang et Tollervey (1998). Modèle 

comparant les mécanismes de maturation chez la levure (A) et E. coli (B). 

 
La vision du mécanisme de maturation des pré-ARNr a beaucoup évolué depuis le 

travail réalisé au cours de mon stage post-doctoral. Pour autant, tous les enzymes de maturation 
et de modification des pré-ARNr ne sont toujours pas identifiés mais ces dernières années ont 
vu des avancées spectaculaires dans la compréhension des mécanismes d’assemblage des pré-
ARN et des ARNr. En effet, la combinaison des méthodes de purification de complexes 
protéiques en tandem et d’analyses protéomiques à haut débit a permis l’analyse de la 
composition des particules pré-ribosomiques (Gavin et al., 2006; Gavin et al., 2002 ; Ho et al., 
2002). Ces études ont permis de dresser une carte d’assemblage des particules pré-ribosomiques 
qui révèle un processus dynamique et d’une complexité inattendue.  
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Poste de chargée de recherche l’Université d’Edimbourg (1996-

2001) : L’exosome et la synthèse des ARN stables 
 

Research Fellow dans l'équipe du Pr. David Tollervey. Wellcome Trust Centre for Cell Biology, 
Université d’Edimbourg. Ecosse. 

 
Dans la continuité du travail amorcé à l’EMBL (Heidelberg), notre équipe, une fois 

installée au «Wellcome Trust Center for Cell Biology» de l’Université d’Edimbourg (Ecosse) a 
continué à s’intéresser aux mécanismes de maturation des ARN. La recherche d’enzymes 
impliquées dans la maturation des pré-ARNr a conduit à l’identification d'un complexe 
d’exonucléases multifonctionnel : l’exosome. J’ai participé à sa caractérisation et à son analyse 
fonctionnelle. 

 
1- L’exosome et le complexe PM-Scl humain 

L’exosome est un complexe d’exonucléases 3’->5’ impliqué dans la maturation et la 
dégradation de divers ARN chez la levure. Il fut initialement identifié par Phil Mitchell dans 
notre équipe comme un complexe de 5 exonucléases essentielles, toutes impliquées dans la 
maturation de l’extrémité 3’ de l’ARNr 5,8S (Mitchell et al., 1997). La combinaison d’analyses 
biochimiques et génétiques nous a conduit à identifier six nouveaux composants du complexe 
décrits Tableau I (Allmang et al., 1999b). A notre grande surprise, à l’exception de Rrp6p, tous 
étaient essentiels et participaient à la maturation de l’ARN 5,8S. La majorité des composants 
identifiés sont des homologues d’exonucléases 3’->5’ bactériennes. L’activité d’un certain 
nombre d’entre eux a été démontrée in vitro (voir Tableau I).  

Nous avons par ailleurs identifié les homologues humains de 9 des composants de 
l’exosome. Deux des exonucléases identifiées chez la levure sont homologues de protéines du 
complexe PM-Scl humain (voir Tableau I). Le complexe PM-Scl comporte onze à seize 
polypeptides reconnus par les anticorps de malades souffrant de la maladie auto-immune de 
polymyosite (Polymyositis-scleroderma overlap syndrome). Des sérums de patients atteints de 
polymyosite, fournis par le Pr. van Venrooij (Université de Nimègue, Pays-Bas), m’ont permis 
d’établir le lien entre le complexe PM-Scl humain et l’exosome. Nous avons montré que 
l’homologue du composant Rrp4p de l’exosome faisait partie du complexe PM-Scl humain et 
démontré que ce dernier était bien l’homologue fonctionnel de l’exosome (Allmang et al., 
1999b). Nous l’avons confirmé en clonant et identifiant trois autres composants du complexe 
humain (Brouwer et al., 2001). Ces expériences ont, pour la première fois, conduit à 
l’identification de la cible des auto-anticorps de patients atteints de polymyosite dont la nature 
était inconnue.  
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En examinant la distribution cellulaire des composants de l’exosome et du complexe 
PM-Scl par immunolocalisation et fractionnement biochimique nous avons mis en évidence 
deux formes du complexe, l’une dans le noyau, l’autre dans le cytoplasme. Ces complexes 
partagent 10 composants communs, mais diffèrent par la présence de Rrp6p/PM-Scl-100 
(Allmang et al., 1999b) et Rrp47 (travaux ultérieurs Mitchell et al., 2003) dans le complexe 
nucléaire ; et de la GTPase Ski7 dans le complexe cytoplasmique (Araki et al., 2001). Ces deux 
complexes assurent des fonctions différentes dans les deux compartiments cellulaires (voir ci-
dessous).  

 
Exosome de 

levure 
Exosome 

humain 
Domaine conservés / Commentaires 

Rrp41p* hRrp41p 
35% (55%) 

RNase PH. Homologue de la PNPase 
d’E. coli 

Rrp42p hRrp42p 
25% (51%) 

RNase PH. 

Rrp43p  RNase PH. 

Rrp45p PM-Scl 75 
38% (64%) 

RNase PH. 

Rrp46p hRrp46p 
35% (48%) 

RNase PH. 

Mtr3p*  RNase PH. 

Rrp4p* hRrp4p  
43% (52%) 

domaine S1; domaine KH. Présent dans 
la PNPase d’E. coli 

Rrp40p hRrp40p  
35% (48%) 

domaine S1: domaine KH 
 

Csl4p hCsl4p 
48% (56%) 

domaine S1 
 

Rrp44p/Dis3p* hDis3p 
45%  

RNase R (RNase II) 

Rrp6p* PM-Scl 100 
32% (52%) 

RNase D. Composant exclusivement 
nucléaire. 

Rrp47  Protéine de liaison à l’ARN Composant 
exclusivement nucléaire 

Ski7  GTPase putative. Composant 
exclusivement cytoplasmique. 

Tableau 1 : Les composants de l’exosome. Les protéines dont l’activité catalytique a été démontrée in vitro sont 

marquées par un astérisque. Pour les homologues humains, les pourcentages d’identité (de similarité) sont 

indiqués. Les composants communs aux complexes nucléaires et cytoplasmiques sont surlignés en gris. Les 

exonucléases que j’ai contribué à identifier sont indiquées en rouge.  

 
Des composants de l’exosome ont maintenant été trouvés chez la drosophile, les plantes, 

le trypanosome et les archae (Raijmakers et al., 2004). Par ailleurs, la structure 
cristallographique de l’exosome de l’archae Sulfolobus solfataricus a été résolue. Il s’agit d’un 
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anneau hexamérique composé de 3 RNases PH actives et de trois RNases PH inactives 
surmonté d’un trimère de protéines de liaison à l’ARN (Buttner et al., 2005; Lorentzen et al., 
2007; Lorentzen et al., 2005). Les importantes similitudes de séquence avec les composants de 
l’exosome eucaryote et les similarités structurales avec les exonucléases bactériennes 
permettent de proposer une origine commune pour les machineries de dégradation des ARN 
dans les trois domaines du vivant.  

 
2- Les fonctions de l’exosome 

L’existence d’un complexe composé d’un si grand nombre d’exonucléases, n’avait pas 
manqué de soulever de nombreuses questions. Pourquoi de si nombreuses activités sont-elles 
présentes au sein du complexe ? Différentes exonucléases ont-elles différentes fonctions ou 
sont-elles impliquées dans la maturation d’un même substrat ? Existe-t-il plusieurs substrats? 
Nous avons pu apporter une série de réponses afin d’étayer chacune de ces hypothèses.  

Dans le noyau, il apparaît que tous les composants de l’exosome sont requis pour la 
synthèse de l’extrémité 3’ d’un même substrat: l’ARNr 5,8S. Mais, au cours de ce processus, 
trois étapes peuvent êtres résolues, impliquant deux changements d’exonucléases. Différentes 
exonucléases ont donc différentes fonctions au sein du complexe. L’hélicase putative Dob1p 
(Mtr4) (de la Cruz et al., 1998) fonctionne avec l’exosome dans chacune de ces étapes. Dans le 
cytoplasme, nous avons montré que l’exosome co-sédimentait avec l’hélicase Ski2p impliquée 
dans les mécanismes de dégradation des ARNm (Anderson & Parker, 1998). 

 

 
Figure 4 : Modèle de mécanisme de maturation de l’ARNr 5,8S par l’exosome. La première étape de 
maturation en 3’ du pré-ARN 7S nécessite tous les composants de l’exosome. Rrp6p prend le relais et est 



 24 

spécifiquement requise pour l’obtention du pré-ARNr 6S. Enfin, la maturation finale en ARNr 5,8S implique à 
nouveau l’ensemble des exonucléases. Chacune des étapes est dépendante de l’hélicase putative Dob1p/Mtr4p. 

  

Nous avons également identifié de nouveaux substrats nucléaires de l’exosome, en 
démontrant qu’il était impliqué dans la synthèse des snoARN et des snARN (Allmang et al., 
1999a) ainsi que dans diverses étapes de la maturation du pré-ARNr (Allmang et al., 2000). 
Chez les eucaryotes, les petits ARN nucléolaires (ou snoARN) jouent un rôle majeur dans la 
maturation et la modification des pré-ARNr. La plupart des snoARN sont codés par des introns 
ou synthétisés sous la forme d’un précurseur polycistronique. Dans chacun des cas, leur 
excision requiert des mécanismes de maturation par des endonucléases et exonucléases. Rnt1p 
clive les précurseurs polycistroniques; l’épissage initie la synthèse des snoARN introniques. 
J’ai montré que la synthèse de leur extrémité 3’ était alors dépendante de l’action de l’exosome. 
L’extrémité 5’ est générée par l’exonucléase 5’ -> 3’ Rat1p (Petfalski et al., 1998). Ce 
processus est multiphasique et plusieurs exonucléases du complexe ont des fonctions distinctes. 
Le composant Rrp6p de l’exosome est spécifiquement impliqué dans l’étape finale de 
maturation en 3’ (Allmang et al., 1999a). Le pré-snoARN U3 et les pré-snARN U1, U4 et U5, 
bien que synthétisés à partir de leurs propres promoteurs, sont maturés en 3’ par les mêmes 
enzymes.  

Un équilibre entre maturation et dégradation a pu être mis en évidence pour tous les 
substrats de l’exosome. L’exosome joue en effet un rôle important dans les mécanismes de 
dégradation des ARN, comme celle des précurseurs d’ARNr aberrants (Allmang et al., 2000). 

D’autres travaux ont révélé que l’exosome fonctionnait également dans la dégradation 
nucléaire de pré-ARNm (Bousquet-Antonelli et al., 2000) suggérant un rôle potentiel dans la 
régulation de l’expression des gènes. Plus récemment, une partie du travail que j’avais initié a 
été poursuivie et complétée par Laura Milligan et Claire Torchet. Elle a conduit à démontrer 
que le composant exclusivement nucléaire de l’exosome (Rrp6) était impliqué dans les 
mécanismes de surveillance des ARN. En effet, dans une souche mutée au niveau la poly(A) 
polymérase et qui conduit à un ralentissement de polyadénylation des ARNm, les ARNm sont 
détectés par l’activité de surveillance de Rrp6p, déadénylés et rapidement dégradés par 
l’exosome (Milligan et al., 2005). 

De nombreux autres travaux réalisés par la suite dans l’équipe de David Tollervey et 
ailleurs ont imposé l’exosome comme un acteur clé de la machinerie de surveillance des ARN. 
L’exosome intervient dans tous les types mécanismes de surveillance cytoplasmique des 
ARNm, tels la dégradation des ARNm sans codon de terminaison (non-stop decay), des ARNm 
à codon non-sens (non-sense-mediated decay) et des ARNm sujets à des arrêts prématurés de 
traduction (no-go decay) (pour une revue voir Houseley et al., 2006). 
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3- Mécanismes de synthèse des ARN stables 

La quasi-totalité des ARN de la cellule est synthétisée à partir de précurseurs. L’une des 
observations les plus frappantes de notre étude est que la maturation ou dégradation de ces 
ARN implique un jeu bien défini mais limité d’enzymes et de cofacteurs. Les enzymes 
majeures sont le complexe de l’exosome, les exonucléases 5’->3’ Rat1p, Xrn1p et les 
endonucléases RNaseP/MRP et Rnt1p. Les cofacteurs incluent les hélicases Dob1p et Ski2p 
ainsi que des protéines chaperons telles que Lhp1p et le complexe Lsm. Nous avons analysé 
systématiquement le rôle de chacun de ces facteurs dans la synthèse des ARN stables (snoARN, 
snARN, ARNr et ARNt). Notre objectif était de comprendre le rôle relatif de ces facteurs, 
notamment dans la détermination de l’équilibre entre maturation et dégradation des ARN par 
l’exosome.  

 

 
Figure 5 : Modèle simplifié du mécanisme de synthèse du snoARN U3. Le précurseur de U3 se caractérise par 

la présence de séquences poly(U), d’une structure en tige boucle en 3’ et d’un intron. Le précurseur est initialement 

clivé par Rnt1p. Les protéines Lhp1p et Lsm se lient aux séquences poly(U), protégeant le précurseur de la 

dégradation par l’exosome. Elles sont vraisemblablement déplacées au moment de la fixation des protéines de la 

snoRNP U3. 
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Avec Joanna Kufel, nous nous sommes notamment intéressés à la synthèse du snoARN 
U3. Le snoARN U3 est transcrit par l’ARN polymérase II; son précurseur est alors clivé par 
Rnt1p et maturé en 3’ par l’exosome (Kufel et al., 2000). Nous avons établi que d’autres 
facteurs étaient impliqués, notamment Lhp1p et le complexe Lsm. Lhp1p est une protéine 
chaperon qui se fixe sur la région poly (U) en 3’ des transcrits de l’ARN polymérase III 
(Pannone et al., 1998; Rinke & Steitz, 1982; Yoo & Wolin, 1997). Nous avons montré que 
Lhp1p stabilisait l’extrémité 3’ du pré-ARN U3 en s’y fixant. Le complexe Lsm, composé d’un 
anneau de 7 protéines (Achsel et al., 1999; Bouveret et al., 2000; Mayes et al., 1999) joue lui 
aussi ce rôle en coordination avec Lhp1 (Kufel et al., 2003b). Ces deux facteurs favorisent la 
maturation de l’extrémité 3’ en protégeant le précurseur de la dégradation par l’exosome tant 
que les protéines de la snoRNP mature ne sont pas fixées. Les protéines de la particule U3 
déplaceraient les protéines chaperons, permettant la maturation finale de l’ARN (Kufel et al., 
2000). Ce type de mécanisme est vraisemblablement ubiquitaire, car nous avons montré que les 
protéines chaperons Lhp1p et Lsm fonctionnaient également dans la synthèse de nombreux 
autres ARN, tels les ARNt et pré-ARNr (Kufel et al., 2003a; Kufel et al., 2002). Il en va de 
même pour l’exosome, les exonucleases 5’->3’ et les hélicases. Ces différents facteurs semblent 
pouvoir être recrutés sous différentes combinaisons et vers différents substrats pour en assurer 
la maturation et la dégradation. 

Une question restait en suspens, à savoir comment se fait la discrimination des différents 
substrats et leur orientation vers les voies de maturation ou de dégradation. Ces dernières 
années ont vu d’importants développements dans la compréhension de ces mécanismes, en 
particulier en ce qui concerne la connaissance des signaux et mécanismes d’activation et de 
régulation de l’exosome. Plusieurs cofacteurs ont été identifiés, le plus impressionnant est 
certainement le complexe TRAMP dont la fonction semble être de diriger les précurseurs 
d’ARN défectueux vers l’exosome en les polyadénylant (Houseley et al., 2006; LaCava et al., 
2005).  
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Activité de recherche et projets scientifiques actuels : Le mécanisme 
de synthèse des sélénoprotéines 

 
Equipe du Dr. Alain Krol. Unité Architecture et Réactivité de l’ARN, CNRS, Université Louis 
Pasteur, IBMC, Strasbourg. 
 
A- Introduction 

Le sélénium est un oligo-élément essentiel. Son importance physiologique n’a été 
appréciée à sa juste valeur que depuis les années 1970 avec l’identification de la forme 
biologique majeure du sélénium, l’acide aminé sélénocystéine qui est incorporé dans les 
sélénoprotéines par une machinerie de traduction spécialisée (Flohe et al., 2000). 

Les premières sélénoprotéines identifiées étaient essentiellement des enzymes utilisant le 
potentiel d’oxydoréduction du sélénium dans leur site actif pour la lutte contre les radicaux 
libres oxygénés, telles les glutathion peroxydases (Flohe et al., 1973 ; Rotruck et al., 1973). 
L’identification récente de nouvelles sélénoprotéines montre qu’elles sont impliquées dans une 
grande variété de fonctions telles que le transport, la signalisation, la structure ou le 
développement musculaire (pour une revue voir Moghadaszadeh & Beggs, 2006). Celles-ci 
peuvent être intracellulaires, transmembranaires ou sécrétées et leur expression est tantôt 
ubiquitaire, tantôt tissu spécifique. On trouve des sélénoprotéines chez les archae, les bactéries 
et les eucaryotes mais elles ne sont pas représentées de façon égale dans ces trois règnes 
(Castellano et al., 2004; Kryukov & Gladyshev, 2004). Des mécanismes de biosynthèse 
différents sont mis en jeu chez les bactéries, les archae et les eucaryotes (pour une revue voir 
Allmang & Krol, 2006b).  

L’équipe d’Alain Krol, que j’ai rejointe en 2001, a contribué à l’identification de 
nouvelles sélénoprotéines mais également à l’élucidation du mécanisme de synthèse des 
sélénoprotéines chez les eucaryotes. J’ai intégré cette dernière thématique et développé un 
nouveau sujet en étudiant le rôle de facteurs d’assemblage dans le mécanisme. 

 
La sélénocystéine (Sec) est considérée comme le 21e acide aminé. Cet analogue de la 

cystéine dont le groupement thiol est remplacé par un groupement sélénol est incorporé dans la 
chaîne peptidique de façon co-traductionnelle en réponse à un codon UGA habituellement 
reconnu comme l’un des trois codons de terminaison. Deux étapes majeures peuvent êtres 
résolues : la biosynthèse de la sélénocystéine et son incorporation par recodage du codon 
UGASec. Chez les eucaryotes, ces mécanismes sont particulièrement complexes et coordonnés 
par des facteurs capables de s’organiser en complexes supramoléculaires (Figures 6 et 7). 

 
La biosynthèse de la sélénocystéine 

La sélénocystéine n’existe pas en tant qu’acide aminé libre et c’est la sérine qui est, dans 
un premier temps, chargée sur l’ARNtSec par la sérine-ARNt synthétase conventionnelle avant 
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d’être convertie en sélénocystéine directement sur l’ARNtSec par une sélénocystéine synthase 
(Hendrickson, 2007). Deux équipes viennent d’élucider ce mécanisme longtemps controversé 
(voir Figure 6). Les travaux de (Xu et al., 2007b) et de (Yuan et al., 2006) ont démontré que la 
sélénocystéine synthase (SecS ou SepSecS) est la protéine SLA/LP (Soluble Liver 
Antigen/Liver Pancreas) identifiée précédemment en complexe avec l’ARNtSec chez des 
patients souffrant d’hépatite chronique autoimmune (Costa et al., 2000; Kernebeck et al., 
2001). Cette protéine, de la famille des transférases à phosphate de pyridoxal, utilise du 
sélénophosphate et un intermédiaire O-phosphoseryl-ARNtSec pour générer le Sec-tRNASec. 
L’intervention d’une O-phosphoséryl-tRNA(Sec) kinase (PSTK) dans la production de cet 
intermédiaire a également été démontrée (Carlson et al., 2004 ; Xu et al., 2007b). Enfin, la 
synthèse du sélénophosphate est assurée par la sélénophosphate synthétase (ou SPS2) à partir 
de sélénite et d’ATP (Xu et al., 2007a). SPS2 est elle-même une sélénoprotéine, suggérant 
l’existence d’une régulation du mécanisme de biosynthèse en fonction de la biodisponibilité du 
sélénium. Une autre sélénophosphate synthétase (SPS1) identifiée précédemment (Low et al., 
1995) aurait pour fonction de générer un niveau basal de sélénocystéine nécéssaire à la 
synthèse de SPS2. 
 Plusieurs enzymes du mécanisme de biosynthèse ont été trouvées associées sous forme 
de complexe. De façon étonnante, la protéine SECp43 impliquée dans la 2’O-méthylation de la 
base mcm5U34 de l’ARNtSec (Ding & Grabowski, 1999), a été trouvée associée à SLA/LP et à 
l’ARNtSec in vivo (Xu et al., 2005). SLA/LP et SPS1 sont également en interaction et SEC43p 
servirait de chaperon pour localiser SLA/LP et SPS1 dans le noyau (Small-Howard et al., 
2006). Le rôle de cette redistribution cellulaire reste à être élucidé. 

 
Figure 6 : Mécanisme de biosynthèse de la sélénocystéine chez les eucaryotes. L’ARNtSec est aminoacylé avec 

de la sérine par la séryl-ARNt synthétase. Le Ser-ARNtSec est phosphorylé par la phosphoséryl-ARNt kinase. La 

sélénocystéine synthase (SecS ou SLA/LP) assure la conversion de la sérine phosphorylée en sélénocystéine. La 
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synthèse du sélénophosphate nécessaire à cette étape est catalysée par une sélénophosphate synthétase. L’ARNtSec 

est pris en charge par le facteur d’élongation spécialisé eEFsec. 

 
Le mécanisme d’incorporation de sélénocystéine 

Chez les eucaryotes, le recodage du codon UGASec dépend de l’interaction de plusieurs 
complexes ARN-protéine (voir Figure 7). Le premier est constitué par l’ARNtSec et le facteur 
d’élongation spécialisé mSelB/eEFsec (Fagegaltier et al., 2001). Un second complexe est formé 
directement sur l’ARNm des sélénoprotéines au niveau d’une tige-boucle ou élément SECIS 
pour SElenocysteine Insertion Sequence située dans la région 3' non traduite (3' UTR) (Berry et 
al., 2001). La protéine SBP2 (Secis Binding Protein 2) se lie à l’élément SECIS (Copeland et 
al., 2000 ; Lescure et al., 2002) et recrute les facteurs de la machinerie d’incorporation. SBP2 
interagit notamment avec eEFsec lorsque celui-ci est lié à l’ARNtSec (Zavacki et al., 2003) pour 
le canaliser vers le codon UGASec. SBP2 est également capable d’interagir avec le ribosome 
(Copeland et al., 2001). La protéine ribosomique L30 est, quant à elle, capable de se lier à 
l’élément SECIS (Chavatte et al., 2005). L30 entre en compétition avec SBP2 pour la liaison au 
SECIS et stimule le recodage du codon UGASec in vivo, constituant de ce fait un composant de 
la machinerie de recodage. Il est probable qu’en se liant au SECIS, L30 déplace SBP2 lui 
permettant de délivrer le complexe eEFsec/Sec-ARNtSec près du site de décodage du ribosome.  

 
 

Figure 7 : Mécanisme postulé pour la synthèse des sélénoprotéines chez les eucaryotes  
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Plusieurs modèles ont été proposés pour expliquer ce mécanisme selon que SBP2 est 
initialement associée au ribosome ou à l’ARN SECIS (Chavatte et al., 2005; Kinzy et al., 
2005). 

Des résultats récents ont montré que SBP2 faisait partie de complexes supramoléculaires 
et est présente à la fois dans le cytoplasme et le noyau. En effet, il apparaît que la protéine 
SECp43 trouvée associée à l’ARNtSec et aux facteurs de la biogenèse de la sélénocystéine (voir 
paragraphe précédent) est également capable de promouvoir l’interaction entre eEFsec et SBP2 
in vivo (Small-Howard et al., 2006). SECp43 influence par ailleurs la localisation nucléaire de 
ces protéines. Des signaux de localisation et d’export nucléaire ont pu être identifiés pour 
eEFsec et SBP2 et un assemblage nucléaire précoce des facteurs du mécanisme d’incorporation 
de sélénocystéine sur l’ARN SECIS a été proposé (de Jesus et al., 2006). La séquestration 
nucléaire de SBP2 peut être induite par un stress oxydatif et l’oxydation de cystéines 
essentielles qui la rendent incapable d’interagir avec le facteur d’export nucléaire CRM1 (Papp 
et al., 2006). Ceci a pour conséquence une diminution de l’incorporation de sélénocystéine et 
pourrait également représenter un moyen de régulation de l’expression des sélénoprotéines en 
fonction du statut redox de la cellule. Il est également vraisemblable que l’assemblage du 
complexe dans le noyau permet d’éviter que les ARNm de sélénoprotéines ne soient soumis 
aux mécanismes de dégradation des ARN à codon non-sens ou nonsense-mediated decay 
(NMD) (de Jesus et al., 2006).  
 

B- Les interactions autour de l’ARN SECIS  
 
 L’interaction entre SBP2 et l’ARN SECIS est au cœur du processus de synthèse des 
sélénoprotéines. La combinaison d’analyses structurales en solution et d’analyses 
bioinformatiques a permis de proposer un modèle de structure secondaire de l’élément SECIS 
(Fagegaltier et al., 2000b ; Fletcher et al., 2001; Walczak et al., 1997). Il s’agit d’une hélice-
bulle interne - hélice surmontée d’une boucle apicale de taille variable (voir Figure 8). A 
l’exception d’une succession d’adénines/cytosines dans la boucle apicale, tous les nucléotides 
conservés se situent dans l’hélice supérieure. Celle-ci comporte quatre paires de bases non 
Watson-Crick, dont des appariements en tandem G.A/A.G de type sheared. Un coude important 
au niveau de l’axe de l’hélice dû à la présence de ces appariements a pu être proposé par 
modélisation graphique par Eric Westhof à partir des résultats d’analyses structurales en 
solution (Walczak et al., 1996). Les appariements G.A conservés sont essentiels à la fonction 
de SBP2 in vivo (Fagegaltier et al., 2000b; Walczak et al., 1996). Des expériences d’empreintes 
chimiques et enzymatiques ont montré que SBP2 reconnaissait précisément l’ARN SECIS au 
niveau de ces appariements (Fletcher et al., 2001). 
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Figure 8 : L’ARN SECIS d’après Allmang et Krol (2006). A. Modèles de structure secondaire des ARN SECIS 

eucaryotes de forme 1 et 2. Les séquences et caractéristiques structurales conservées sont indiquées. N, n’importe 

quel nucléotide ; A/g et A/c indique que A est le nucléotide majoritaire. B. Représentation de la structure en K-turn 

potentielle de l’ARN SECIS de l’iodotyronine désiodase de rat de type 1 d’après la nomenclature de Leontis et 

Westhof (2001). 

 
 Notre objectif a été d’analyser plus précisément les détails de cette interaction en 
identifiant les acides aminés de SBP2 importants pour la liaison à l’ARN SECIS par dissection 
fonctionnelle, sélection d’ARN in vitro et résolution de la structure cristallographique du 
complexe SBP2/SECIS. De façon plus générale, nous avons également tenté de dégager les 
principes d’interaction des protéines de la famille L7Ae avec leurs ARN cibles. 
 
1- La protéine SBP2 humaine et son mode d’interaction avec l’élément SECIS 

Lorsque j’ai rejoint l’équipe d’Alain Krol en octobre 2001, l’ADNc de la protéine SBP2 
humaine venait d’être cloné au laboratoire par Alain Lescure (Lescure et al., 2002). J’ai été 
associée à ce travail en montrant que la liaison de SBP2 à l’ARN SECIS était stimulée par le 
facteur d’élongation spécialisé eEFsec sans qu’il ne s’associe pour autant au complexe. Ces 
résultats suggéraient que eEFsec était capable d’induire une conformation de SBP2 plus 
propice à la reconnaissance de l’ARN SECIS. Ceci nous a conduit à entamer une dissection 
fonctionnelle de SBP2 afin d’affiner la compréhension de ses différents domaines et plus 
particulièrement son domaine de liaison à l’ARN.  

Le domaine de liaison à l’ARN de SBP2 se situe entre les acides aminés 500 et 750 
(Allmang et al., 2002 ; Copeland et al., 2000 ; Lescure et al., 2002). Nous avons montré qu’il 
s’agissait d’un domaine bipartite constitué de séquences spécifiques à SBP2 et d’un module 
structural conservé. Par alignement de séquences, nous avons découvert au sein du domaine de 
liaison à l’ARN un module appartenant à la famille des protéines ribosomiques L7Ae (Allmang 
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et al., 2002). Cette famille comprend, en plus de nombreuses protéines ribosomiques, la 
protéine Nhp2p des snoRNP à boîte H/ACA, la protéine 15.5 kD (ou Snu13p chez la levure) 
des snoRNP à boite C/D et son orthologue archaebactérien L7Ae (voir Figure 9A). Ces 
protéines reconnaissent toutes des ARN cibles capables de se structurer en « K-turn ». Ce motif 
fut identifié initialement lors de la résolution de la structure du snARN U4 lié à la protéine 15.5 
kD (Vidovic et al., 2000b) et celle des sous-unités ribosomiques de H. marismortui et T. 
thermophilus (Klein et al., 2001). Il s’agit d’une hélice-bulle interne qui se caractérise par la 
présence de deux paires de bases consécutives G.A/G.A et d’un résidu protubérant (voir Figure 
9B). La structure locale du squelette sucre-phosphate se caractérise par la présence d’un coude 
important résultant en une différence d’orientation de 120° entre les axes des hélices 
adjacentes. L’élément SECIS présente un repliement secondaire très similaire et nous 
proposons qu’il s’agit vraisemblablement d’un variant de K-turn (voir la revue Allmang & 
Krol, 2006a).   

A 

 
B 

 
Figure 9 : A- Alignements de séquences entre le domaine de liaison à l’ARN de SBP2 et les protéines de la 

famille L7Ae. B- Structure secondaire des ARN cibles des protéines de la famille L7Ae. 
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Les structures cristallographiques des complexes 15.5kD-U4, L30e-pre-ARNm et L7Ae-

sRNA à boîte C/D, représentées Figure 8A, ont révélé une interface ARN-protéines commune 
(Chao & Williamson, 2004 ; Moore et al., 2004; Vidovic et al., 2000a). Elle se caractérise par 
l’interaction d’un nucléotide en bulge U (snARN U4, ARNr, sARN) ou A (pré-ARNm de 
L30e) avec une poche d’acides aminés hydrophobes au sein de la protéine, et par les contacts 
spécifiques de quelques acides aminés avec les deux paires de bases G.A. Des prédictions 
structurales basées sur les homologies de SBP2 avec les protéines de la famille L7Ae nous sont 
permis de prédire et d’identifier les acides aminés conservés de SBP2 impliqués dans 
l’interaction avec l’ARN SECIS (Allmang et al., 2002). Ces résultats ont mis en évidence 
l’existence de modes d’interactions vraisemblablement très similaires pour les complexes 
15.5kD/U4 et SBP2/SECIS (voir Figure 10B). Ceci suggère l’existence d’une origine commune 
pour les domaines de liaison à l’ARN des protéines SBP2/15.5kD ainsi que pour les structures 
des ARN SECIS et U4. 

 
Figure 10 : Mode d’interaction entre les protéines de la famille L7Ae et leur ARN cible en K-turn. A- 

Structures cristallographiques des complexes 15.5kD-U4, L30e-pre-ARNm et L7Ae-sRNA à boîte C/D (Chao & 

Williamson, 2004 ; Moore et al., 2004; Vidovic et al., 2000a). Les figures ont été générées par PyMol à partir des 

coordonnées respectives de PDB 1E7K, 1T0K et 1RLG. B- Schémas d’interaction similaires pour les complexes 
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15.5kD-snARN U4 et SBP2-SECIS. 4 acides aminés de SBP2 sont essentiels à l’interaction : Gly676 et Glu679 

postulés en contact avec les guanines des paires G.A ; Glu699 et Arg731 postulés en contact avec le U en bulge. 
 

Par ailleurs, avec David Schmitt (étudiant en DEA de Biologie Moléculaire en 2002) nous 

avons délimité plus précisément le domaine de liaison à l’ARN et montré qu’il s’étendait bien 

au-delà du module conservé L7Ae et comprenait une séquence conservée riche en lysines. Ces 

résultats suggèrent que des contacts additionnels existent entre SBP2 et l’ARN SECIS par 

rapport aux autres protéines de la famille L7Ae.  

 

2- Principes de reconnaissance entre protéines de la famille L7Ae et les ARN en K-turn 

En collaboration avec Antoine Cléry et Christiane Branlant (UMR 7567 CNRS-UHP, Nancy) 

 Au vu du degré de similitude élevé entre les modes d’interaction des protéines de la 

famille L7Ae avec leurs ARN cibles, se posait la question de l’existence de déterminants de 

spécificité pour la discrimination des cibles. En collaboration avec Antoine Cléry de l’équipe 

de Christiane Branlant (UMR 7567, Nancy) nous avons analysé les principes de reconnaissance 

entre les protéines de la famille L7Ae et les ARN en K-turn (Cléry et al., 2007). De façon 

surprenante, nous avons montré que 15.5kD/Snu13p et L7Ae étaient capables de reconnaître 

l’ARN SECIS in vitro. En revanche, SBP2 est incapable de reconnaître les motifs en K-turn des 

ARN U4 et U3B/C. La reconnaissance des cibles par SBP2 répond donc à des critères de 

spécificité plus stricte. Pour identifier les déterminants requis au niveau de l’ARN pour la 

reconnaissance par SBP2, nous avons utilisé la méthode de SELEX combinée à la mutagenèse 

dirigée. A notre grande surprise, tous les ARN sélectionnés par SBP2 ont la capacité de se 

replier en K-turn canoniques avec un nucléotide U en bulge et répondent à des contraintes 

structurales fortes (Cléry et al., 2007). Nous avons comparé les propriétés de liaison à l’ARN 

de SBP2 et de la protéine Snu13p de S. cerevisiae qui se fixe à la fois sur le K-turn du snARN 

U4 et du snoARN U3 (voir Figure 11). Il apparaît que, contrairement à Snu13p, SBP2 reconnaît 

préférentiellement des K-turn à grande boucle interne. L’identité des nucléotides 2 et 3 de la 

boucle est importante pour la reconnaissance par SBP2. Par ailleurs, de nouveaux déterminants 

de spécificité, uniques à SBP2, ont été mis à jour au sein de l’hélice II (voir Figure 11). Snu13p 

a montré une capacité à s’adapter à une plus grande variété d’ARN cibles. L’ensemble de ces 

résultats est en accord avec nos données de dissection fonctionnelle qui montrent que des 

contacts ARN-protéine additionnels sont mis en jeu dans le complexe SBP2-SECIS (voir 

paragraphe B-1). 
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Figure 11 : Déterminants de spécificité reconnus par SBP2 et Snu13p/15.5kD au niveau des ARN en K-turn. 

A gauche : Structure secondaire de l’ARN obtenu par SELEX et reconnu par SBP2 avec la meilleure affinité. Des 

variants de cet ARN (mutations au sein des hélices I, II et de la boucle interne) ont été testées pour leur capacité à 

être reconnus par SBP2 et Snu13p. Les déterminants de spécificité identifiés pour chacune des protéines sont 

représentés en rouge.  

 
L’assemblage de la machinerie de synthèse des sélénoprotéines est vraisemblablement initiée 
par la fixation de SBP2 aux éléments SECIS dans le noyau (voire le nucléole) où la protéine 
15.5kD/Snu13p est très abondante. Les différences importantes au niveau des déterminants de 
spécificité des ARN cibles de SBP2 et 15.5kD/Snu13p contribuent vraisemblablement à la 
spécificité d’association des complexes SBP2-SECIS dans ce compartiment cellulaire. 
 
3- Objectif : Résolution de la structure cristallographique des complexes SBP2-SECIS, L30-

SECIS 

Travail de thèse de Vincent Olieric dirigé par Philippe Dumas (UPR 9002 du CNRS) et 
d’Akiko Takeuchi (Doctorante au laboratoire depuis 2006). 

Afin d’établir définitivement si l’ARN SECIS possède un repliement en K-turn nous avons 
entrepris de résoudre la structure aux rayons X du complexe SBP2/ARN SECIS en 
collaboration avec l’équipe de P. Dumas (UPR 9002 du CNRS). La résolution de cette structure 
permettrait également de valider nos prédictions structurales (Allmang et al., 2002) ainsi que de 
comprendre le rôle du motif de liaison à l’ARN additionnel par rapport aux autres protéines de 
la famille L7Ae.  
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Ce travail a fait l’objet de la thèse de Vincent Olieric dans l’équipe de Philippe Dumas. Des 
protocoles d’expression et de purification de SBP2 ont été optimisés et une grande variété 
d’ARN SECIS a été synthétisée. Il n’a pas été possible d’obtenir de cristaux du complexe, ni de 
la protéine isolée. En revanche, la caractérisation biophysique de SBP2 par RMN et 
ultracentrifugation analytique a révélé une absence de structuration. Ceci est en accord avec des 
analyses bioinformatiques prédisant une prédominance de zones non repliées, en dehors du 
module L7Ae. SBP2 semble répondre à plusieurs critères caractéristiques des protéines 
intrinsèquement non structurées ou « IUP » (Intrinsically Unstructured Proteins) (Dosztanyi et 
al., 2005). Chez les eucaryotes supérieurs, bon nombre de protéines impliquées dans des 
mécanismes de régulation ou de transduction des signaux ne se replient de façon stable qu’en 
présence de leurs partenaires moléculaires (pour des revues voir Dunker et al., 2005; Tompa, 
2005). SBP2 sert de plateforme pour le recrutement des autres partenaires de la machinerie de 
biosynthèse des sélénoprotéines. Des résultats récents obtenus au laboratoire montrent que 
SBP2 interagit avec un complexe de protéines chaperons lié à la protéine HSP90, et que cette 
association joue un rôle fonctionnel important dans le repliement de SBP2 et son interaction 
avec ses cibles (voir paragraphe C). La possibilité que SBP2 soit partiellement non structurée 
est donc compatible avec les interactions multiples qu’elle doit assurer et nos nouvelles 
données. Il n’est cependant pas possible d’exclure que l’absence de structuration résulte de 
l’expression de SBP2 dans E.coli qui ne permet pas d’assurer les modifications post-
traductionnelles. Afin de vérifier cette hypothèse, la protéine SBP2 sera produite dans des 
cellules eucaryotes à partir de vecteurs de type baculovirus. Ce travail a été initié par Akiko 
Takeuchi étudiante en thèse dans notre laboratoire depuis septembre 2006 avec l’aide de la 
plateforme de biologie génomique et structurales (CEBGS-Illkirch) et du service baculovirus 
de l’IGBMC (Illkirch). Nous tenterons également de co-cristalliser SBP2 en présence de 
HSP90, car il est vraisemblable que l’interaction SBP2-HSP90 facilite la structuration de SBP2 
afin de la rendre apte à interagir avec ses partenaires finaux.  

Enfin, nous tenterons de surproduire et de cristalliser la protéine SBP2 issue d’un autre 
organisme, en particulier celle de Drosophila melanogaster qui présente la particularité d’être 
dépourvue du domaine N-terminal présent dans la protéine humaine (voir paragraphe B-4). 
Nous évaluerons sa capacité à se lier spécifiquement à l’élément SECIS et à se replier de façon 
stable. 

La fixation de la protéine ribosomique L30 sur l’ARN SECIS a également été identifiée 
comme l’une des étapes du mécanisme de recodage des sélénoprotéines (Chavatte et al., 2005). 
Nous tenterons de cristalliser le complexe L30/SECIS. La comparaison des structures des deux 
complexes SBP2/SECIS, L30/SECIS devrait nous donner de précieux renseignements quant au 
rôle central de l’ARN SECIS dans l’étape de translecture, c'est-à-dire s’il existe une 
compétition des protéines pour les mêmes sites au niveau du SECIS, ou des changements 
allostériques permettant interaction avec le ribosome. 
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4- La protéine SBP2 de drosophile 

Avec Akiko Takeuchi (Doctorante au laboratoire depuis 2006) 

L’analyse de banques de données nous a permis d’identifier et de cloner l’ADNc de la 

protéine SBP2 de Drosophila melanogaster. Cette protéine de 314 acides aminés est dépourvue 

de la région N-terminale de fonction inconnue présente chez la protéine humaine. Elle possède 

un motif de liaison à l’ARN de type L7Ae, mais le domaine de liaison à l’ARN additionnel 

riche en lysine que nous avons identifié chez la protéine humaine n’est pas présent chez la 

drosophile. De façon surprenante, nos résultats préliminaires semblent indiquer que la protéine 

de drosophile ne soit capable de reconnaître qu’une seule forme d’ARN SECIS : les ARN 

SECIS à boucle apicale structurée (ou type 2, voir Figure 8). C’est la seule conformation 

d’ARN SECIS trouvée chez Drosophila melanogaster (Castellano et al., 2001). Par ailleurs, 

des mutations au sein du motif riche en lysine abolissent la liaison de SBP2 humaine aux ARN 

SECIS de type 1 mais pas de type 2. La fonction du motif riche en lysines est 

vraisemblablement de permettre d’accommoder des ARN SECIS de type 1 qui sont apparus 

plus tard au cours de l’évolution. Nous testerons cette hypothèse en échangeant les motifs des 

deux protéines et en évaluant leur capacité à reconnaître les différents types d’ARN SECIS. 

Une collaboration a été engagée avec l’équipe de bioinformatique de Roderic Guigo 

(Barcelone) pour vérifier s’il existe une corrélation entre la présence du motif lysine riche et la 

nature des ARN SECIS présents chez divers organismes par analyse comparative de génomes 

entiers. Enfin, nous déterminerons si la protéine SBP2 de Drosophila melanogaster est capable 

de stimuler à elle seule l’incorporation de sélénocystéine au sein d’une sélénoprotéine 

rapporteur dans un système de traduction in vitro, comme c’est le cas pour SBP2 humaine, ou 

s’il faut envisager la participation d’un facteur additionnel.  

La séquence de toutes les protéines de D. melanogaster impliquées dans la synthèse des 

sélénoprotéines a été recherchée par analyse comparative dans les génomes de drosophiles par 

C. Chapple dans l’équipe de R. Guigo. Cette étude a révélé que l’essentiel de ces facteurs était 

absent chez D. Willistoni. C’est le cas par exemple de eEFsec et de SPS2. La machinerie de 

synthèse des sélénoprotéines semble être absente chez cet organisme. La protéine SBP2 de D. 

Willistoni présente quant à elle la particularité d’avoir un acide aminé additionnel au sein de 

son domaine de liaison à l’ARN (Figure 12). Par ailleurs, la présence de reliques d’ARN 

SECIS (R. Guigo, communication personnelle) suggère que SBP2 a perdu sa capacité de 

liaison à l’ARN SECIS et a été maintenue pour assurer une autre fonction. Nous testerons cette 

hypothèse en évaluant l’impact de l’insertion d’un acide aminé dans la protéine humaine sur la 

reconnaissance du SECIS et la synthèse des sélénoprotéines.  
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B  

 
Figure 12 : A. La protéine SBP2 humaine. Les différents domaines sont représentés: le domaine de liaison à 

l’ARN SECIS (violet, acides aminés 526-777), le site putatif d’interaction au ribosome (jaune) et le domaine N-

terminal de fonction inconnue (bleu). En plus du module L7Ae (bleu), les acides aminés conservés 515-545 sont 

impliqués dans la liaison à l’ARN SECIS. Un alignement de cette région est représenté pour les protéines 

humaines (hSBP2), de rat (rSBP2) de drosophile (dSBP2) et d’anophèle. Les mutations par alanine scanning dans 

cette région de hSBP2, qui abolissent la liaison au SECIS de type 1 (531-542), sont surlignées en rouge. Cette 

région n’est pas conservée chez D. melanogaster. Les mutations d’acides aminés surlignés en vert sont sans effet.  

B. Alignements du domaine de liaison à l’ARN de SBP2 chez les drosophiles d’après C. Chapple et R. Guigo 

(communication personnelle). Une caractéristique générale du site de liaison à l’ARN des protéines de la famille 

L7Ae est la conservation d’une distance constante de 19 acides aminés entre les résidus strictement conservés E/D 

(région encadrée). Chez D.willistoni, cette distance est de 20 acides amines. 
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C- Les complexes supramoléculaires impliqués dans la synthèse des sélénoprotéines 
Avec Laurence Wurth (Doctorante depuis octobre 2005). 

 La famille des protéines L7Ae, à laquelle appartient SBP2, participe à la construction de 

plusieurs RNP essentielles et leur liaison à l’ARN conditionne le recrutement des autres 

protéines. Nos objectifs sont, d’une part de comprendre les mécanismes d’assemblages 

généraux mis en jeu pour la construction de ces RNP et d’autre part, d’identifier les composants 

encore inconnus du complexe moléculaire qui est recruté spécifiquement par SBP2 sur l’ARN 

SECIS.  

 

1- Un mécanisme commun pour l’assemblage des RNP L7Ae (manuscrit soumis)  

En collaboration avec Edouard Bertrand (CNRS UMR 5535, Montpellier), Bruno Charpentier 

et Christiane Branlant (UMR 7567 CNRS-UHP, Nancy), Tamas Kiss (LBME, Toulouse) et 

Barbara Bardoni (Université de Nice-Sophia antipolis) dans le cadre d’un contrat de l’Agence 

Nationale pour la Recherche. 

 Nous avons identifié une machinerie d’assemblage des RNP L7Ae conservée de la 

levure à l’homme et d’importance fondamentale pour la cellule. Elle est constituée d’une 

protéine adaptatrice Nufip (Rsa1 chez la levure) et d’un complexe de protéines chaperons. 

 

Nufip, un facteur d'assemblage des particules de la famille L7A 

 Nous avons utilisé des cribles double et triple hybrides pour caractériser de nouveaux 

facteurs impliqués dans la biogenèse des snoARN à boîte C/D. Chez Saccharomyces 

cerevisiae, ceux-ci ont permis de détecter la protéine Rsa1 (Kressler et al., 1999) et de montrer 

qu’elle interagissait avec Snu13p in vitro (Bruno Charpentier, Nancy). Parallèlement, la 

protéine humaine Nufip a été trouvée en interaction avec 15.5kD (Edouard Bertrand, 

Montpellier). Cette interaction a été confirmée in vivo. Nufip est une protéine nucléaire qui se 

lie à l’ARN. Elle fut initialement identifiée en interaction avec la protéine FRMP qui est 

impliquée dans le transport et la localisation d’ARNm (Bardoni et al., 1999). Des comparaisons 

de séquences ont révélé que Nufip et Rsa1 présentent un motif conservé de 32 acides aminés 

(ou motif PEP). Nous avons démontré que Nufip et Rsa1 étaient capables d’interagir 

respectivement avec 15.5kD et Snu13p, par l’intermédiaire du motif PEP et que Nufip était 

l’homologue fonctionnel de Rsa1.  

 De façon intéressante, Nufip reconnaît deux autres membres de la famille L7Ae, 

hNhp2p qui fait partie des snoRNP à boîte H/ACA et SBP2. Nous avons notamment pu 

confirmer l’interaction entre Nufip et SBP2 in vivo en co-purifiant les protéines endogènes à 
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partir d’extraits nucléaires de cellules HeLa. Cependant, le domaine PEP seul de Nufip 

n’interagit que faiblement avec SBP2 et pas du tout avec hNhp2p. Les déterminants de 

l’interaction semblent par conséquent différents de ceux qui sont utilisés pour la reconnaissance 

de 15.5kD.  

 Afin de déterminer si Nufip était associée in vivo aux RNP L7Ae, nous avons réalisé 

une série d’immunoprécipitations après co-transfection de Nufip et des divers ARN cibles des 

protéines L7Ae dans des cellules eucaryotes. Nos résultats ont démontré que Nufip était 

capable de s’associer aux snoARN à boîte C/D et H/ACA, au snARN U4 et même aux ARNm 

de sélénoprotéines. Nous avons par ailleurs établi que Nufip était capable d’interagir avec 

d’autres protéines core des RNP telles que hPRP31 (protéine de la snRNP U4), U3-55K 

(composant de la particule U3) et la fibrillarine (composant des snoARN à boîte C/D) ; il en va 

de même pour Rsa1. Nufip est également capable de stimuler l’interaction entre 15.5kD et ces 

protéines. En effet, dans des tests d’interaction double-hybride où aucune de ces protéines 

isolée n’interagit directement avec 15.5kD, l’ajout d’un vecteur codant pour Nufip permet la 

formation d’un complexe ternaire. Nufip semble donc jouer le rôle d’adaptateur pour recruter 

les autres protéines core vers les complexes 15.5kD/ARN des RNP U4, à boîte C/D et B/C 

(voir Figure 13). 

 
Figure 13 : Résumé des interactions entre Nufip et les protéines core spécifiques des snoARN à boîte C/D, 

de U3 (B/C RNA), U4 et de l’ARN SECIS. Les interactions double-hybride sont représentées par des flèches. 

Les interactions directes obtenues par GST pull-down sont représentées par des traits. 

 

HSP90 et le complexe de co-chaperons R2TP participent à l’assemblage des RNP U3, U4 et de 

la mRNP SECIS 

 Bien que l’assemblage des RNP nécessite le repliement correct de l’ARN et des 

protéines, aucun chaperon protéique n’a été impliqué jusqu’à présent dans ce mécanisme. Chez 
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la levure, certains facteurs requis pour la biogenèse des snoARN ont cependant été identifiés 

par ailleurs comme co-chaperons d’HSP90. Cette protéine conservée à travers l’évolution est 

un chaperon important de la cellule, impliquée notamment dans le contrôle des récepteurs 

nucléaires et des protéines kinase (pour revues voir Caplan et al., 2007 ; Pearl & Prodromou, 

2006). 

 HSP90 est associée à un complexe de co-chaperons appelé R2TP (Zhao et al., 2005). 

Celui-ci se compose de deux ATPase AAA+ (Rvb1 et Rvb2) et des protéines Pih1 et Tah1. De 

façon intrigante, l’accumulation des snoRNP à boîtes C/D chez la levure requiert l’ATPase 

essentielle AAA+ Rvb2 (King et al., 2001) et la protéine Pih1 (ou Nop17 ;  Gonzales et al., 

2005). Ceci suggère qu’HSP90 et le complexe R2TP sont impliqués dans la biogenèse des 

snoRNP à boîte C/D. Nous avons testé cette hypothèse. Une analyse protéomique récente de 

cellules humaines a révélé que des homologues de Rvb1, Rvb2 et de Pih1 étaient également 

associés à HSP90 (Te et al., 2007). Par analyse systématique de banques de données, nous 

avons identifié l’homologue de Tah1 que nous avons appelé hSpagh (par référence à son 

homologue Spaghetti chez la drosophile). Nous avons démontré, par immunoprécipitation, que 

hSpagh était associée à hRvb1, hRvb2 et hPih1, suggérant que le complexe R2TP est également 

présent et conservé chez l’homme. Pour compléter cette analyse, nous avons vérifié le réseau 

d’interaction protéique au sein du complexe R2TP chez la levure et l’homme par des tests 

d’interaction double hybride systématiques. Nos équipes ont testé collectivement 471 

interactions, les résultats sont représentés Figure 14. Enfin, nous avons démontré qu’HSP90 et 

les protéines du R2TP étaient capables de s’associer aux ARN U3 et U4 ainsi qu’à SBP2.  

 
Figure 14 : Résumé des interactions entre Rsa1, Nufip et les protéines du R2TP chez la levure et l’homme. 

Les interactions double-hybride sont représentées par des flèches vertes, les interactions directes par GST pull-

down par des traits bleus.  
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 L’ensemble de nos résultats suggère qu’il existe un lien entre la machinerie de 

repliement des protéines et l’assemblage des RNP de la famille L7Ae. Les homologues 

humains des protéines du R2TP semblent jouer le rôle de co-chaperons d’HSP90 pendant 

l’assemblage de ces RNP. 

 

Nufip sert d’adaptateur entre les protéines L7Ae et le complexe R2TP  

Nous avons pu montrer qu’en présence de Nufip, les protéines 15.5kD et hNhp2p étaient 

capables d’interagir avec le composant hPih1 du complexe R2TP. Nufip joue donc le rôle 

d’adaptateur pour amener le complexe de chaperons vers les complexes L7Ae/ARN. De façon 

surprenante, SBP2 est capable d’interagir directement avec ce composant du R2TP (Figure 15).  

 
Figure 15 : Interactions de Nufip et du complexe R2TP avec SBP2 sur l’ARN SECIS. Les interactions sont 

représentées comme sur la Figure 14. 

 

Nous avons étudié le rôle fonctionnel de ces interactions, pour déterminer si elles permettaient 

de connecter les protéines L7Ae à HSP90 afin de participer à leur repliement. Pour cela, nous 

avons traité des cellules eucaryotes en culture par la geldanamycine. Cette molécule est capable 

de se fixer au site ATPase d’HSP90 et d’inhiber le repliement de ses protéines cibles qui 

deviennent instables (Stebbins et al., 1997). En effet, nous avons pu montrer que 15.5kD, 

hNhp2p et SBP2 devenaient instables après inhibition d’HSP90 alors que Nufip et les protéines 

du R2TP n’étaient pas affectées. Ceci a également pour conséquence de déstabiliser les ARN 

U3, U4 et de la télomérase (autre cible de hNhp2p).  

 Nous avons donc confirmé le rôle essentiel d’HSP90 dans la biogenèse des RNP L7Ae. 

Il semble que l’assemblage des RNP soit plus fortement dépendant du repliement des protéines 

que ce qui avait été initialement imaginé. Il est vraisemblable que les protéines core des RNP 

sont instables à l’état isolé et ne sont stabilisées qu’en présence de leurs partenaires dans le 
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complexe final. Dans le cas de SBP2, nos résultats d’analyse structurale prédisent en effet 

qu’elle présente toutes les caractéristiques d’une protéine intrinsèquement non repliée (voir 

paragraphe B- 3).  

 HSP90 est directement impliqué dans les mécanismes du cancer chez l’homme et 

apparaît comme un acteur clé de la régulation de la prolifération cellulaire car elle contrôle 

plusieurs cascades de signalisation cellulaire. Nos travaux enrichissent cette vision, puisqu’ils 

établissent qu’HSP90 peut également contrôler la croissance cellulaire en influant sur la 

biosynthèse des ribosomes, la réplication via la production de l’ARN de la télomérase et la lutte 

contre les radicaux libres via la synthèse des sélénoprotéines. 

 

2- Projets à court terme: l’assemblage de la mRNP SECIS  

 Notre objectif est maintenant de mieux comprendre comment est assuré le contrôle de 

l’assemblage des RNP L7Ae par HSP90, le complexe R2TP et l’adaptateur Nufip en disséquant 

ces mécanismes in vivo et in vitro. Les équipes d’Edouard Bertrand, de Bruno Charpentier et 

Christiane Branlant étudieront ces mécanismes dans le cas des sn et snoRNP. Notre équipe 

s’attachera à élucider ces aspects dans le cas de la mRNP SECIS.  

 

Localisation subcellulaire de Nufip et SBP2 

 Bien que majoritairement cytoplasmique, SBP2 est capable de transiter entre le noyau et 

le cytoplasme et sa localisation conditionne celle du facteur d’élongation eEFsec (Small-

Howard et al., 2006). L’existence d’une interaction entre SBP2 et Nufip renforce l’hypothèse 

d’un mécanisme d’assemblage nucléaire des facteurs sur l’ARN SECIS. Il est de ce fait crucial 

d’examiner les distributions cellulaires respectives de Nufip et SBP2 par immunolocalisation et 

celle d’un ARNm de sélénoprotéine tel que celui de la glutathion peroxydase (GPx) par 

hybridation in situ. Ces expériences seront également réalisées dans différentes conditions 

notamment en présence de geldanamycine (inhibiteur d’HSP90) qui devrait affecter la 

formation du complexe, ou de stress oxydant qui conduit à l’accumulation de SBP2 dans le 

noyau (Papp et al., 2006).  

 Un assemblage nucléaire précoce pourrait également servir à diriger les ARNm de 

sélénoprotéines vers une voie d’export spécialisée. L’export nucléaire de SBP2 semble être 

dépendant du facteur CRM1 (Papp et al., 2006). De façon intéressante, CRM1 et une ATPase 

du complexe R2TP (Rvb2) ont été trouvés associés au snoARN U3 mature (Watkins et al., 

2004). CRM1 est impliqué dans le transport nucléolaire d’U3, mais il a été suggéré qu’il 
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pourrait également jouer un rôle dans l’assemblage de la RNP U3 (Boulon et al., 2004). Au vu 

de similitudes entre les mécanismes d’assemblage des RNP U3 et des mRNP SECIS, nous 

vérifierons le rôle exact de CRM1 dans le mécanisme de synthèse des sélénoprotéines. Nous 

testerons si CRM1 est associé aux mRNP de sélénoprotéines et à SBP2 par des expériences de 

co-transfections et immunoprécipitations en présence ou en absence de leptomycine B 

(inhibiteur de CRM1).  

 

Influence de Nufip et HSP90 sur stabilité des ARNm de sélénoprotéines et la synthèse des 

sélénoprotéines 

 Nous avons montré que Nufip et HSP90 étaient associés aux mRNP SECIS. En 

favorisant l’assemblage de protéines sur l’ARN SECIS, il est vraisemblable que ces facteurs 

permettent d’éviter la dégradation des ARNm de sélénoprotéines par les mécanismes du NMD. 

Nous testerons l’effet de l’invalidation du gène de Nufip par RNA interférence, et celui de 

l’inhibition HSP90 par la geldanamycine, sur la stabilité des ARNm de sélénoprotéines 

endogènes in vivo par RT-PCR quantitative. Par transfections transitoires d’ARNm de 

sélénoprotéines rapporteurs, nous évaluerons l’impact de l’inhibition de Nufip et HSP90 sur la 

synthèse de la sélénoprotéine correspondante. Un défaut d’association de SBP2 devrait inhiber 

la synthèse de sélénoprotéines et conduire à l’arrêt prématuré de la traduction au niveau du 

codon UGASec et la production d’une protéine tronquée. Ceci devrait nous aider à mieux 

comprendre le rôle fonctionnel de Nufip et HSP90 dans le mécanisme de synthèse des 

sélénoprotéines.  

 

Etude in vitro de l’interaction Nufip/SBP2 

 L’interaction de Nufip avec la protéine 15.5kD se fait par l’intermédiaire du motif PEP 

mais nous avons montré que celui-ci ne semblait pas suffisant pour interagir efficacement avec 

SBP2. Nous affinerons l’analyse du domaine d’interaction de Nufip par mutagenèse. Nous 

tenterons également d’identifier le domaine de SBP2 impliqué dans l’interaction avec Nufip. Il 

est vraisemblable que cette interaction ait lieu par l’intermédiaire du domaine conservé L7Ae. 

Nous le vérifierons à l’aide de protéine SBP2 tronquées, puis déterminerons la nature des 

acides aminés impliqués par mutagenèse, GST-pull down et co-immunoprécipitations. Des 

études similaires seront réalisées par nos collaborateurs en ce qui concerne Rsa1 et Snu13p 

(Bruno Charpentier, Nancy), Nufip et 15.5kD (Montpellier). L’ensemble de ces travaux devrait 

nous permettre d’établir si les modes d’interaction entre Nufip (Rsa1) et de ses différentes 
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cibles font appel aux mêmes surfaces d’interactions protéine-protéine. A plus long terme, nous 

pourrons également envisager la cristallisation de ces complexes. 

 

Quelles protéines core pour l’ARN SECIS ? 

 Si l’assemblage des facteurs sur l’ARN SECIS est au cœur du mécanisme de synthèse 

des sélénoprotéines, la composition de la mRNP SECIS reste mal connue. Certaines pistes 

directes s’offrent cependant à nous. En effet, des expériences d’immunopurification de SBP2 

nous ont permis d’isoler la protéine NSEP1 et de démontrer qu’elle interagissait in vivo avec 

SBP2. NSEP1 est une protéine capable de se lier à l’ARN SECIS in vitro (Fagegaltier et al., 

2000a). Son rôle dans la synthèse des sélénoprotéines, longtemps controversé, vient récemment 

d’être démontré (Qichang Shen, 2006). Nos résultats préliminaires montrent que NSEP1 

interagit également avec Nufip in vivo. Par des tests double-hybride et GST-pull down in vitro, 

nous vérifierons si ces interactions sont directes ou si Nufip sert d’adaptateur entre SBP2 et 

NSEP1.  

 De façon surprenante, nous avons détecté une interaction entre SBP2, Nop58 et Nop56 

par co-transfection et co-immunoprécipitation. Ceci pose la question de savoir si certaines des 

protéines core des snoRNP à boîte C/D sont également recrutées vers l’ARN SECIS. Nous 

examinerons cette possibilité.    

 

Assemblage in vitro des mRNP de sélénoprotéines 

 Notre étude in vitro sera complétée par des essais de reconstitution in vitro de la RNP 

SECIS. Dans un premier temps, nous déterminerons si Nufip est capable de se lier directement 

à l’ARN SECIS par des expériences de retard sur gel, ou s’il stimule l’assemblage des autres 

facteurs sur l’ARN SECIS comme dans le cas des autres RNP (voir paragraphe C-1). Nous 

testerons la capacité de Nufip à favoriser la reconstitution d'un complexe entre les protéines 

recombinantes SBP2, NSEP1 et l’ARN SECIS. Le facteur d’élongation eEFsec sera également 

inclus dans les expériences de reconstitution ; nous avions montré qu’il est capable de stimuler 

la liaison de SBP2 au SECIS sans pour autant s’associer au complexe (Lescure et al., 2002). Il 

sera intéressant de vérifier si Nufip stabilise ou non ce complexe ou s’il s’agit d’une interaction 

transitoire qui n’est stimulée que par la présence de l’ARNtSec (Zavacki et al., 2003). 

 Le rôle des protéines du complexe R2TP sur l’assemblage, et notamment des deux 

ATPases Rvb1 et Rvb2, sera également testé en présence ou en absence d’ATP. Il est 

vraisemblable que ces protéines participent au remodelage de la RNP, voire au transfert des 

protéines core recrutées par Nufip vers l’ARN, et à la dissociation de Nufip du complexe. Des 
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expériences de reconstitution in vitro similaires seront réalisées pour la snRNP U4. Pour tester 

le rôle des ATPases, une collaboration sera engagée entre notre réseau de laboratoires et 

l’équipe de M. Grigoriev (LBME, Toulouse) qui s’intéresse au rôle de ces protéines dans la 

translocation des jonctions Hollyday le long de l’ADN et possède l’expertise nécessaire à cette 

analyse.  

 

3- Projets à plus long terme : Purification des complexes associés à SBP2 

 La protéine SBP2 est présente au sein de complexes supramoléculaires dans le noyau et 

le cytoplasme (Small-Howard et al., 2006). A l’aide d’anticorps anti-peptide de SBP2, 

Laurence Wurth, étudiante en thèse dans notre équipe, a mis au point les conditions 

d’immunopurification des complexes endogènes nucléaires et cytoplasmiques associés à SBP2 

dans des cellules HeLa (voir Figure 16). Des résultats préliminaires ont conduit à 

l’identification d’interactants potentiels par spectrométrie de masse (Philippe Wolff et 

Plateforme protéomique de l’Esplanade, Strasbourg). Une stratégie complémentaire sera 

développée, basée sur la surexpression de SBP2 fusionnée à une double étiquette structurale 

TAP dans cellules HeLa suivie de la purification du complexe en tandem par des méthodes 

biochimiques.  

 
Figure 16 : Immunopurification des complexes cytoplasmiques et nucléaires associés à SBP2. Les protéines 

purifiées, isolées et identifiées par spectrométrie de masse sont indiquées. En gris : facteurs de traduction (dans le 

cytoplasme) et de transcription (dans le noyau). En vert : protéines du méthylosome, complexe d’assemblage des 

snRNP, en bleu : facteurs d’épissage et d’assemblage des hnRNP. Des interactants connus de SBP2 ont été 
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détectés, notamment la protéine NSEP1, le chaperon HSP70 (voir paragraphes C-1 et C-2). SBP2 et Nufip ont été 

détectées par Western blot (panneaux inférieurs).  

 

 Notre objectif sera d’évaluer la validité des interactions mises au jour et d’établir si ces 

protéines font partie de façon stable ou transitoire des complexes supramoléculaires de la 

machinerie de synthèse des sélénoprotéines. Si tel est le cas, ces facteurs seront caractérisés 

fonctionnellement, et leur mode de liaison avec l'ARN SECIS et leurs protéines cibles seront 

analysés. Notre objectif sera de comprendre comment ceux-ci s’insèrent dans le contexte global 

du mécanisme traductionnel des sélénoprotéines. 

 

Plusieurs complexes d’assemblage pour la RNP SECIS?  

 De façon surprenante, deux protéines du complexe du méthylosome ont été co-purifiées 

avec SBP2 (voir Figure 16). Le méthylosome est impliqué avec le complexe SMN dans les 

mécanismes d’assemblage des snRNP (Yong et al., 2004). En effet, il permet la méthylation de 

protéines Sm qui sont prises en charge par le complexe SMN et fonctionnent comme chaperon 

d’assemblage des snARN. Une hypothèse possible stipule qu’il existerait un lien entre le 

complexe d’assemblage que nous avons caractérisé (Nufip, HSP90 et le complexe R2TP) et 

l’autre grande machinerie d’assemblage de la cellule, le complexe SMN. Nous examinerons 

dans un premier temps si les protéines du méthylosome et du complexe SMN forment un 

complexe avec SBP2 ou Nufip mais également si les protéines Sm sont capables de se lier à 

l’ARN SECIS et participent à son assemblage. En fonction des résultats de ces expériences 

préliminaires, nous vérifierons si le complexe R2TP et le complexe SMN collaborent pour 

l’assemblage de la RNP SECIS. 

 L’ensemble de ces expériences devrait nous apporter une vision globale du mécanisme 

de synthèse des sélénoprotéines et nous aider à comprendre la composition mais également la 

dynamique d’assemblage et de désassemblage des complexes multi protéiques impliqués dans 

le processus. 
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Abstract

It is well established that the beneficial effects of the trace element selenium are mediated by its major biological product, the amino acid
selenocysteine, present in the active site of selenoproteins. These fulfill different functions, as varied as oxidation-reduction of metabolites in
bacteria, reduction of reactive oxygen species, control of the redox status of the cell or thyroid hormone maturation. This review will focus on the
singularities of the selenocysteine biosynthesis pathway and its unique incorporation mechanism into eukaryal selenoproteins. Selenocysteine
biosynthesis from serine is achieved on tRNASec and requires four proteins. As this amino acid is encoded by an in-frame UGA codon, otherwise
signaling termination of translation, ribosomes must be told not to stop at this position in the mRNA. Several molecular partners acting in cis or
in trans have been identified, but their knowledge has not enabled yet to firmly establish the molecular events underlying this mechanism. Data
suggest that other, so far uncharacterized factors might exist. In this survey, we attempted to compile all the data available in the literature and to
describe the latest developments in the field.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The element selenium was discovered by the Swedish che-
mist Berzelius in 1817 and named after Sêlenê, the goddess of
moon. This non-metal was long considered as a potent toxic
substance, especially to grazing animals that would eat sele-
nium accumulator plants of the genus Astragalus during peri-
ods of drought in arid or desert regions of western USA and
China. Between 1930 and the mid-1950s, selenium attracted
the attention of animal nutritionists who eventually defined it
as an essential micronutrient endowed with a number of signif-
icant health benefits [reviewed in 1,2]. In the 1970s, the biolo-
gical activity of selenium could be attributed to selenocysteine,
a then novel amino acid found in selenoproteins. The majority
of selenoproteins whose function is known are oxidation-re-
duction enzymes using selenocysteine in the active site. The
chemical structure of selenocysteine differs from cysteine only
by the selenium instead of the sulfur atom; however, the elec-
tronic structure of the selenium atom renders the selenolate an-
@ibmc.u-strasbg.fr (A. Krol).
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ion, the conjugated base of selenocysteine, more stable than the
corresponding cysteine thiolate. The selenol proton is thus
more acidic than in the cysteine thiol (pKa of 5.2 versus 8.5
for the thiol), hence ionization of selenocysteine at physiologi-
cal pH.

A further breakthrough appeared in the mid-1980s with the
discovery that selenocysteine is encoded by UGA, a codon
otherwise specifying termination of protein synthesis. Immedi-
ately, this finding aroused the interest of the scientific commu-
nity who aimed at challenging this novel alternate reading of
the genetic code. It is largely the pioneering work in E. coli, by
the group of August Böck, that helped solve how selenocys-
teine is biosynthesized and specifically incorporated into sele-
noproteins in response to UGA [reviewed in 3]. Selenoproteins
have been found in the three kingdoms of life, but not in all
species of bacteria, archaea and eukarya. For example, neither
fungi nor higher plants can incorporate selenocysteine at spe-
cific locations. How ribosomes are told not to stop at UGA Sec
codons results from the combined action of several partners,
acting in cis or in trans. The underlying mechanisms in archaea
and eukarya present similarities but also dissimilarities to bac-
teria that will be discussed in this review. Focus will be put

mailto:a.krol@ibmc.u-strasbg.fr
dx.doi.org/10.1016/j.biochi.2006.04.015
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primarily on eukarya with comparisons to the bacterial and ar-
chaeal systems wherever needed. Two aspects will be ad-
dressed, biosynthesis of selenocysteine in the first place, fol-
lowed by its co-translational incorporation into selenoproteins.

2. Biosynthesis of selenocysteine

Selenocysteine does not occur as a free amino acid. Thus,
the first step of its biosynthesis consists in the charge of serine
on the specific tRNASec by the conventional seryl-tRNA
synthetase. The Ser-tRNASec is next converted into Sec-
tRNASec by selenocysteine synthase that utilizes monoseleno-
phosphate as the substrate. This compound is produced from
sodium selenite or more likely selenide by a reaction catalyzed
by selenophosphate synthetase. We will describe in this para-
graph the characteristic features of tRNASec and the selenocys-
teine biosynthesis pathway.

2.1. Structure-function of the tRNASec

Secondary structure models for tRNAsSec are shown in
Fig. 1, arising from experimental determination in bacteria
and eukarya [4–6], or structure-based sequence alignments in
archaea [6]. Two main characteristic features distinguish
tRNAsSec from canonical tRNAs. First, they share the hallmark
of having a 6 bp D-stem, instead of 3–4 bp in other tRNAs.
This extended D-stem was shown to be a major identity deter-
minant for serine phosphorylation [7], a likely intermediate in
selenocysteine biosynthesis in eukarya (see below). Second,
the amino acid acceptor arm (A-T), resulting from coaxial
stacking of the A and T-stems, is longer in tRNAsSec (13 bp)
than in canonical tRNAs where it is 12 bp long (7 + 5 bp). In
bacteria, the 13 bp A-T arm is formed by coaxial stacking of
the 8 bp A-stem and 5 bp T-stem whereas the same length is
obtained in archaea and eukarya by stacking of the longer A-
stem (9 bp) and shorter T-stem (4 bp) [5,6,8–14]. This evolu-
tionary conservation is obviously a signal for one or more li-
Fig. 1. Secondary structure comparisons of canonical tRNAs versus selenocysteine tR
T stand for the amino acid, D, anticodon and T stems, respectively. 7/5, 8/5, 9/4 indi
Dashes in the canonical tRNA structure signify that the extra arm is of variable le
bacterial and eukaryal tRNAsSec. They were omitted in the canonical tRNA. The a
gand(s). In bacteria, the extra length of the A-T arm is a deter-
minant for binding to the specialized translation elongation
factor SelB whereas it is required for serine to selenocysteine
conversion in eukarya [15,16].

The position and nature of post-transcriptional modifica-
tions have been investigated in the vertebrate tRNASec [17,
18]. It contains only four modified bases, thus fewer than ca-
nonical tRNAs. Apart from pseudo-U55 and m1A58 in the T-
loop, mass spectrometry identified 6-isopentenyl-A37 (i6A37)
and mcm5Um34, the 5-methylcarboxymethyl-2′-O-methyluri-
dine modification, in the anticodon loop. The 2′ O-ribose mod-
ification, associated to mcm5U, has been found so far in
tRNASec only and its yield is a function of the dietary selenium
status [17]. Formation of mcm5U34 depends on the tRNASec

tertiary structure and completion of all the other base modifica-
tions [19]. Interestingly, protein SECp43 identified earlier in a
complex with the tRNASec [20], might be involved directly or
indirectly in the 2′-O-methylation of mcm5U34 [21]. Modifica-
tion of i6A37 has also a great importance as its absence pro-
duced a severe down effect on selenoprotein synthesis [22].
However, as conversion of A37 to i6A37 occurs before U34
is modified to mcm5Um and is indeed required for obtaining
the latter, it was difficult to assign the observed effect to the
lack of one or the other modification. To address the issue,
knock-out transgenic mice were obtained wherein the
tRNASec was replaced by the wt or a mutant transgene produ-
cing a tRNA that lacked both the U34 and A37 modified bases
[23]. This study concluded that U34 modification has a greater
influence than i6A37 in regulating the expression of various
mammalian selenoproteins.

2.2. The Ser-tRNASec to Sec-tRNASec conversion step

Neither in eukarya nor in archaea has been isolated mono-
selenophosphate, the biological donor of selenium in bacteria.
Two enzymes catalyzing formation of this compound have
however been described. A human cDNA of selenophosphate
NAsSec. The various secondary structure elements are indicated: A, D, AC, and
cate the number of base pairs forming the coaxial A-T arm in the tRNAs shown.
ngth in different tRNAs. Modified bases are indicated where identified in the
rchaeal tRNASec was not investigated for its base modification content.
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synthetase 1 (SPS1) was initially cloned, showing only 32% of
amino acid sequence similarity with its bacterial homolog [24].
Both the bacterial and SPS1 enzymes are active in mammalian
cells but SPS1 is unable to complement an inactive bacterial
gene. Another selenophosphate synthetase cDNA was later
cloned in mammals, called SPS2 to differentiate it from the
former one [25]. A very interesting key feature of this enzyme
is the presence of a selenocysteine residue, suggesting that it
possesses a higher catalytic activity than SPS1. As selenocys-
teine, and thus monoselenophosphate, is needed prior to SPS2
synthesis, it has been proposed that SPS1 contributes to man-
ufacture basal levels of this amino acid. SPS2 could then func-
tion as a privileged effector under stimulatory conditions.

Fig. 2 summarizes the essential steps leading to Sec-
tRNASec, implying the identified factors and their established
or putative function. No specific Sec-tRNA synthetase has
been identified so far and it is likely that the Ser-tRNA synthe-
tase serylates the tRNASec in vivo, as it does in vitro [26]. In
E. coli, selenocysteine synthase, a pyridoxal phosphate en-
zyme, catalyzes the Ser-tRNASec to Sec-tRNASec conversion
on the tRNASec. So far, no protein has been isolated in archaea
or eukarya carrying a selenocysteine synthase activity. A can-
didate, showing blocks of amino acid sequence similarity to the
Fig. 2. Putative selenocysteine biosynthesis pathways in eukarya. The tRNASec is
residue of Ser-tRNASec is phosphorylated by the phosphoseryl-tRNA kinase. The ser
directly. The phosphoseryl residue could also harbor a regulatory function. The selen
SECp43 complex. The specialized translation elongation factor EFsec binds the
synthetase SPS2 catalyzes formation of monoselenophosphate from selenite (SeO3

2-)
of SPS1 is still elusive.
E. coli selenocysteine synthase, was isolated in the archeon
M. jannaschii [27]. Its crystal structure revealed a multimeric
organization reminiscent of the E. coli enzyme. However, this
protein was unable to ensure the Ser to Sec conversion in vitro.
On the eukaryal front, a protein identified more than twelve
years ago is now attracting attention. It was discovered as part
of a ribonucleoprotein particle containing a 48 kDa protein
generating autoantibodies in a group of patients with a severe
form of autoimmune chronic active hepatitis; the autoantibo-
dies precipitated the tRNASec in human whole cell extracts
[28]. In further investigations, cDNAs encoding this protein,
now called SLA/LP for Soluble Liver Antigen/Liver Pancreas,
were obtained and sequenced [29,30]. A theoretical study with
a bioinformatic approach predicted that the SLA/LP sequence
is compatible with the architecture of the superfamily of pyri-
doxal phosphate-dependent transferases [31], indicating that it
might possess a selenocysteine synthase function. Recent data
indicated that SLA/LP indeed participates in the pathway of
selenoprotein synthesis. The same authors established that
SECp43 and SLA/LP co-exist in a complex in vivo with the
tRNASec and that the former protein may act as a chaperone to
address SLA/LP to the nucleus [21]. Moreover, other investi-
gators reported that SLA/LP and SPS1 interact in vitro and in
charged with serine by the conventional Seryl-tRNA synthetase and the seryl
yl to selenocysteyl conversion occurs either via the phosphoseryl intermediate or
ocysteine synthase activity could be borne by SLA/LP alone or by the SLA/LP-
tRNASec alone or the SLA/LP-SECp43-tRNASec complex. Selenophosphate
or more likely from an unstable selenide compound depicted as (Se2-). The role
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vivo and that SECp43 indeed helps redistributing these pro-
teins to the nucleus [32]. However, full characterization of
SECp43 and SLA/LP must await further studies, in particular
to ascertain whether SLA/LP does possess the selenocysteine
synthase activity. In this regard, both the M. jannaschii and
SLA/LP proteins exhibit local amino acid sequence similarity
to the E. coli selenocysteine synthase, in particular in the vici-
nity of an essential active site lysine in the E. coli enzyme [33].
Indeed, the pathway of selenocysteine biosynthesis appears
more sophisticated in archaea and eukarya than in bacteria.
This is exemplified by the identification and characterization
of a specific phosphoseryl-tRNASec kinase (PSTK) in archaea
and mammals [27,34]. Such a kinase activity was detected
more than 30 years ago [34 and references therein]. Interest-
ingly, finding the PSTK gene only in those archaea and eukar-
ya that possess the capacity of synthesizing selenoproteins,
strongly argues in favor of the important role that this enzyme
must play in selenocysteine synthesis.

Whether phosphoseryl-tRNASec is an obligatory intermedi-
ate in selenocysteine biosynthesis or participates in its regula-
tion is still a matter of debate. In any event, a strikingly similar
mechanism was discovered recently for cysteine biosynthesis
in several methanogenic archaea, such as M. jannaschii, that
lack cysteinyl-tRNA synthetase [35]. The alternative route that
was described to provide Cys-tRNACys consists in aminoacyla-
tion of the tRNACys with O-phosphoserine by an O-phospho-
seryl-tRNA synthetase (SepRS). The Sep-tRNACys is further
converted to Cys-tRNACys by a Sep-tRNA:Cys-tRNA
synthase. This puzzling similarity to selenocysteine biosynth-
esis suggests the interesting possibility that a common mechan-
ism was shared for cysteine and selenocysteine biosynthesis in
the primordial times.

3. Molecular partners for co-translational incorporation
of selenocysteine into selenoproteins

In bacteria, the pathway is now well elucidated and pro-
ceeds as follows. Two molecular partners are involved. The
cis-acting one is a stem-loop structure, called SECIS (SEleno-
Cysteine Insertion Sequence), embedding the UGA codon and
residing in the open reading frame of selenoprotein mRNAs.
The factor acting in trans is protein SelB, a translation elonga-
tion factor dedicated to selenoprotein synthesis. As a matter of
fact EF-Tu, the general translation elongation factor, is unable
to recognize the Sec-tRNASec [3]. SelB is composed of two
domains. The N-terminal one is highly sequence-similar and
functionally homologous to EF-Tu; the smaller, additional C-
terminal domain binds the SECIS stem-loop by recognizing a
very limited number of nucleotides at its apex. The Sec-
tRNASec, harbored by SelB, is thus conveyed to the A site of
the ribosome to decode the UGA Sec codon. Eukarya, and to a
lesser extent archaea, have been also investigated for their abil-
ities to biosynthesize and incorporate selenocysteine. A higher
degree of complexity arose in these two kingdoms as a conse-
quence of the localization of the SECIS element outside of the
coding region. In contrast to bacteria, not all the components
are identified and the major mechanistic steps of this process
are still unclear [reviewed in 1,3,36–39].

3.1. SECIS RNA structures in eukarya and archaea

Fig. 3A shows the secondary structure model of the eu-
karyal SECIS elements, derived from extensive structure prob-
ing studies and site-directed mutagenesis [40–42, reviewed in
43]. Only the conserved sequences are displayed. The foot of
helix II is constituted by four consecutive non-Watson-Crick
base pairs — the quartet — which is a motif essential to sele-
nocysteine incorporation in vivo [40,41]. Within the quartet,
the tandem of G●A base pairs with the sheared geometry is
of prime importance [41]. The presence of such a tandem of
G●A base pairs was detected earlier in other RNAs such as
ribosomal and snRNAs, constituting a recurrent motif called
the kink-turn, or K-turn motif, and we recently proposed that
SECIS RNAs can also adopt a K-turn motif [43]. The predicted
structure of the SECIS RNA K-turn is depicted in Fig. 3B,
using the scheme proposed for K-turn RNAs in [44] and the
graphical nomenclature of non-Watson-Crick base pairs de-
scribed in [45].

A more detailed sequence and structure analysis established
that there exists in fact two slightly different SECIS RNA sec-
ondary structure models, only varying at the apex, and giving
rise to Forms 1 and 2 [46,47]. Form 2 SECIS possesses an
additional helix III but a shorter apical loop, compared to Form
1 (Fig. 3A). As a consequence, the conserved run of As lies in
an internal loop (Form 2) instead of the apical loop (Form 1).
More systematic identification of a variety of novel selenopro-
tein mRNAs including vertebrates, invertebrates and green al-
gae clearly indicated that Form 2 SECIS are more widespread
than Form 1. However, swapping experiments could not assess
that Form 2, although preponderant, provides a functional ad-
vantage to selenocysteine incorporation. It is even remarkable
that mRNAs encoding the same selenoprotein can harbor either
a Form 1 or a Form 2 SECIS, depending on the animal species
[reviewed in 43]. NMR and UV melting data are consistent
with the 2D models and the existence of Form 1 and Form 2
SECIS but the authors did not find evidence in favor of the
existence of the sheared G●A base pairs [48]. One possibility
to explain the absence of the sheared G●A base pair signature
may reside in the choice of the investigators for short SECIS
hairpins lacking helix I, thus less stable and prone to adopt a
different fold.

Selenoprotein mRNAs in archaea also contain a functional
SECIS element in the untranslated regions [49,50]. It resides in
the 3′ UTR in the vast majority of the cases, but was surpris-
ingly found once in the 5′ UTR. The 2D structure of the ar-
chaeal SECIS RNA was derived by structure probing and se-
quence comparisons [50,51], leading to the consensus structure
[51] shown in Fig. 3C. The archaeal SECIS differs from eukar-
ya by the remarkable absence of the non-Watson-Crick quartet.
Given the prime importance of this motif in eukaryal SECIS, it
is unlikely that the archaeal and eukaryal SECIS can function-
ally substitute for each other.



Fig. 3. Structure models for SECIS RNAs. (A). Secondary structures of eukaryal Forms 1 and 2 SECIS. The conserved sequence and structural features are indicated.
N, any nucleotide; A/g and A/c indicate that A is the prevalent base. (B). Representation of the putative eukaryal SECIS K-turn with the sequence of the rat type 1
iodothyronine deiodinase SECIS RNA. The 5′ and 3′ strands are depicted in green and red, respectively. The model is from [43]; the geometric nomenclature,
classification and graphical conventions for displaying non-Watson-Crick base pairs were described in [45]: black arrows ending with a square indicate Trans
Hoogsteen/Sugar Edge G●A sheared base pairs, the open gray arrow heads depict Trans Sugar Edge/Sugar Edge and the black circles are Cis non-Watson-Crick base
pairs. (C). Consensus secondary structure model of the archaeal SECIS RNA, adapted from [51]. S stands for G or C.
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3.2. SECIS-binding proteins

Two major proteins have been described to bind the eu-
karyal SECIS RNA specifically, the SECIS Binding Protein 2
and ribosomal protein L30. Interestingly, as described below,
they both share the same RNA binding domain.

3.2.1. The SECIS Binding Protein 2
SBP2 proteins have been characterized so far only in rat and

humans [52,53]. They are about 850 amino acid long. The
functional importance of this protein in humans has been rein-
forced by the recent description that patients, carrying muta-
tions in the SBP2 gene, display a specific thyroid phenotype
associated with reduction in type 2 iodothyronine deiodinase
activity, a selenoenzyme involved in thyroxine maturation
[54]. The SBP2 amino acid sequence can be grossly divided
into two equal parts (Fig. 4A). The N-terminal domain could
not be assigned a well-defined function yet. The lack of se-
quence similarity to proteins in databases is obviously a strong
impediment towards elucidating its role. Recent data, however,
identified a predicted nuclear localization signal and demon-
strated that SBP2 undergoes nuclear shuttling, suggesting a
mechanism for the nuclear assembly of the selenocysteine in-
corporation machinery [55]. The C-terminal section contains
the ribosomal and SECIS RNA binding domains, and a region
identified as important to selenocysteine incorporation in vitro



Fig. 4. Proteins involved in eukaryal selenoprotein synthesis. (A) Representation of the SECIS binding protein 2 with the SECIS RNA binding domain, the L7A/L30
module and the putative ribosome interaction domain. The N-terminal (1-408) and very C-terminal (777-854) portions have unknown function. (B) Schematic
drawings of the specialized translation elongation factors in E. coli (EcSelB), Methanococcus jannaschii (MjSelB) and eukarya (EFsec), in comparison with the
general elongation factors EF-Tu or EF1-A. The C-terminal extensions carry the SECIS binding activity in EcSelB and the SBP2 interaction domain in EFsec; the
role of the MjSelB C-terminal extension has not been assigned yet. The GTP binding domains are depicted (G1-G5); Δ1-Δ5 are the deletion regions relative to EF-
Tu/EF1-A. The predicted nuclear export and localization signals in SBP2 and EFsec (filled and open rectangles, respectively) are from [55].
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[reviewed in 39]. It is puzzling that a database search for in-
vertebrate SBP2 sequences yielded only putative SBP2 lacking
the N-terminal domain [A.K., unpublished data]. This could be
connected to the finding that this domain was not essential for
selenoprotein synthesis in rabbit reticulocyte lysates [52],
pointing to a possible regulatory or fine-tuning function in ver-
tebrates. Amino acid sequence comparisons showed that the
SECIS RNA binding domain contains the L7A/L30 module,
shared by other functionally unrelated proteins such as riboso-
mal proteins L7A(e) and L30, U4 small nuclear RNP protein
15.5 kD/Snu13p, small nucleolar RNP Nhp2p, all of which
bind K-turn RNAs [52,56, reviewed in 43]. Two aspects of
the SECIS RNA-SBP2 interactions were investigated. The first
one aimed at delineating the SECIS RNA regions interacting
with SBP2, the second one looking for SBP2 amino acids im-
portant for binding. Footprinting and site-directed mutagenesis
experiments established that the non-Watson-Crick quartet of
the SECIS RNA, as well as phosphates distributed along helix
I, are important sequence and structural determinants for SBP2
binding [57]. The invariant U residing 5′ to the G●A sheared
base pairs (Fig. 3A,B) has very recently revealed its impor-
tance for SBP2 binding [58]. Indeed, patients carrying a homo-
zygous point mutation in the gene encoding selenoprotein N
(SEPN), converting this U to a C, developed congenital mus-
cular dystrophies known as SEPN1-related myopathies. This
leads to impairment of selenoprotein N synthesis, very likely
caused by the inability of SBP2 to bind the SECIS mutant in
vivo, as shown in vitro by a gel shift assay.

Taking advantage of the crystal structure of the U4 snRNA-
15.5 kD complex, a structure-guided strategy followed by ex-
perimental validation proposed a biochemical model describing
putative SECIS RNA-SBP2 contacts [56]. Although awaiting
confirmation from the crystal structure of the complex, the
model indicated that similar RNA-protein interaction principles
exist between the U4 snRNA-15.5 kD and the SECIS RNA-
SBP2 complexes. Up to now, a bunch of proteins of the
L7A/L30 family and a number of diverse RNAs containing
the K-turn motif have been identified, the majority of the K-
turns being localized in the small and large ribosomal RNAs.
Altogether, these findings suggest that the L7A/L30 fold and
the K-turn are ancient structural motifs that have evolved spe-
cialized roles in many different biological processes.
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Attempts to find a SECIS binding activity have not been
successful so far in archaeal extracts. Given the absence of
sheared base pairs in archaeal SECIS RNAs, one cannot expect
proteins of the L7A/L30 family to bind, rendering difficult an
in silico search.

3.2.2. Ribosomal protein L30
This protein is specific to the eukaryal and archaeal king-

doms, although not all archaeal ribosomes possess it. Its role in
translation is still elusive. Interestingly, the rat L30 protein was
reported to be a novel component of the selenoprotein synth-
esis machinery [59]. It binds the SECIS RNA in vivo and in
vitro, and competes efficiently with SBP2 for the SECIS RNA
in vitro. In addition, the ribosome-associated L30 interacts with
a higher affinity to the SECIS RNA than the recombinant ver-
sion. This observation prompted the authors to propose a mod-
el in which L30 displaces transiently SBP2 to bring the SECIS
RNA to the vicinity of the ribosomal A site. L30, however,
was localized by another group at the interface between the
large and small subunits in the cryo-EM map of the 80S wheat
germ ribosomes, in a region distant from the A site [60]. How
to reconcile the two sets of data will undoubtfully emerge from
further experiments.

The interaction of SBP2 and L30 at the SECIS RNA raised
the question of whether other L7A/L30 proteins could recog-
nize it as well. The answer was positive for L7Ae (the archaeal
version of L7A) and 15.5 kD/Snu13p but SBP2 was unable to
interact with U4 snRNA or an L7Ae RNA target [A.Cléry, C.
A., A.K and C.Branlant, manuscript in preparation]. This ex-
periment indicated that the SBP2 RNA binding domain is more
complex than in the other proteins of the family, the SECIS
RNA binding specificity being very likely provided by amino
acids flanking the L7A/L30 module. In fact, our unpublished
data support this hypothesis.

3.2.3. Other SECIS-binding proteins
The existence of SECIS-binding protein activities was re-

ported before the discovery of SBP2 [61–63]. The same cDNA
was obtained independently by two groups and by two differ-
ent methods using either northwestern cloning or the three-hy-
brid system [64,65]. Surprisingly, it corresponded to the se-
quence of a cold-shock protein known in databases as dbpB
or Y-box binding protein, a transcriptional activator in bacteria.
The predicted amino acid sequences showed also perfect simi-
larity with the eukaryotic p50. Protein p50 was detected in free
and polysomal mRNPs and associates very tightly with all
kinds of mRNA nucleotide sequences, very likely to ensure
mRNA storage. Further experiments established that the re-
combinant dbpB was unable to bind the SECIS RNA, suggest-
ing that it was not a bona fide SECIS-binding protein [65].
Very recent data, however, pointed to a possible role for dbpB
in selenoprotein synthesis. Indeed, renamed as NSEP1 standing
for nuclease sensitive element binding protein 1, it was found
associated to the SECIS RNA in vivo and its knock-down by
RNAi induced reduction of the activity of a chimeric reporter
gene [66]. NSEP1 may therefore function either in direct sup-
port of the selenoprotein synthesis machinery or as a more gen-
eral mRNA stabilizing element.

3.3. The specialized translation elongation factors

The archaeal M. jannaschii (MjSelB) and mouse selenocys-
teine-specialized elongation factors were characterized [67–
69]. The mouse protein was called either EFsec [68] or mSelB
[69] but, for reason of convenience, we will designate it here-
after as EFsec. Similarly to bacterial SelB, MjSelB and EFsec
are composed of two domains (Fig. 4B), the N-terminal one
being functionally homologous to the corresponding conven-
tional elongation factor EF1-A. The bacterial SelB C-terminal
extension possesses the SECIS RNA binding activity. In con-
trast, the C-terminal extensions in MjSelB and EFsec show no
amino acid sequence similarity to SelB and are unable to bind
specifically the cognate SECIS RNA, indicating another role
than in bacteria [67–69]. Indeed, EFsec co-immunoprecipitated
with SBP2 from mammalian cells overexpressing both pro-
teins, in an RNA-dependent complex [68]. The RNA is in fact
tRNASec, in the absence of which complex formation between
both proteins is impaired [70]. EFsec-SBP2 interaction can oc-
cur in vitro independently of tRNASec only with shortened ver-
sions of the isolated SBP2 interaction domain of EFsec. In this
way, EFsec amino acids involved in the SBP2 interaction
could be mapped at the very C-terminal end. Thus, the C-term-
inal extension of EFsec, and very likely that of MjSelB, makes
protein-protein and not RNA-protein interactions. Functional
nuclear localization and export signals were mapped in both
EFsec and SBP2 [55]. Besides, SBP2 levels and localization
were shown to influence EFsec localization, suggesting that
the fate of the two proteins could be linked.

An earlier communication reported that a conserved non-
Watson-Crick base pair in the tRNASec amino acid acceptor
arm is critical for binding to the specialized elongation factor
[71]. However, the structural determinants required for EFsec
binding to tRNASec have not been investigated in detail yet. In
contrast, a larger body of structural studies were carried out
with the bacterial and archaeal SelB. Determination of the crys-
tal structure of the complex between the bacterial SECIS and
SelB revealed the existence of a winged-helix (WH) domain in
SelB, a motif usually found in DNA binding proteins and dis-
covered recently in RNA binding proteins [72]. This structure
is the first example of a complex between an RNA and a
winged-helix domain. A new mode of RNA recognition en-
abling the complex to wrap around the small ribosomal subunit
was proposed by the authors. Another group solved the crystal
structure of the SelB factor from the archeon M. maripaludis
[13]. The global shape of the protein resembles a chalice ob-
served so far only for the translation initiation factors IF2/
eIF5B. This raises the interesting issue that mechanistic simila-
rities may exist between selenocysteine incorporation and in-
itiation of translation. Besides this evolutionary aspect, knowl-
edge of the protein structure allowed identification of important
amino acids. In the aminoacyl-binding pocket, two positively
charged amino acids, an arginine and an histidine, replace the
EF1-A asparagine and aspartic acid residues, presumably to
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compensate for the negatively charged selenium. In the same
region, a phenylalanine (histidine in EF1-A) protrudes from
another domain and it was suggested that this hydrophobic re-
sidue could serve as a lid to protect the highly reactive seleno-
cysteine selenol from oxidation. Another feature of SelB fac-
tors is the necessity to contact the extended 13 bp long amino
acid acceptor arm of tRNAsSec. By docking the structure of a
modeled tRNA, the authors concluded that an extended loop in
the archaeal SelB is able to contact a large area of the tRNASec

13 bp amino acid acceptor arm. This loop is strictly conserved
among archaea and is also present in eukarya and bacteria, but
absent in EF-Tu and EF1-A, suggesting a unified tRNASec-
SelB/EFsec recognition pattern. Once again, this interaction
principle represents an appealing adaptive evolution of two li-
gands.

4. How does the ribosome know that UGA is not the end?

This is obviously the burning question in the field. With the
available set of data, two groups have recently come up with
distinct models describing the steps prior to Sec-tRNASec de-
livery to the ribosomal A site [reviewed in 39]. Based on its
finding that SBP2 sediments with ribosomes under low-salt
conditions, but cannot bind simultaneously the SECIS RNA
Fig. 5. Current models for selenocysteine incorporation. (A) SBP2 travels with ribos
complex to the A site of the ribosome [73]. L30 displaces the SECIS-bound SBP2.
Ribosome-bound L30 displaces SBP2 [59]. In both models, L30 must leave the SE
unidentified factors, possibly involved in the mechanism, are indicated with the qu
[73], one group proposed that a subset of ribosomes with pre-
bound SBP2 are somehow determined for selenoprotein
mRNA translation (Fig. 5A). To interact with a distant SECIS
RNA, SBP2 takes advantage of the ribosome stalling at the
UGA codon, the close proximity of the 5′ and 3′ ends of the
mRNA facilitating the folding back of the SECIS RNA in
proximity to the UGA codon. The movement of the ribo-
some-bound SBP2 triggers a conformational change at the ri-
bosomal A site, allowing delivery of the EFsec/Sec-tRNASec.
Ribosomal protein L30 would displace SBP2 from the SECIS
RNA to relocate it to its original position on the ribosome. In
the other model, SBP2 does not travel with the ribosome [59].
Instead, it binds the SECIS RNA and serves as a platform to
recruit the EFsec/Sec-tRNASec complex, prior to UGA decod-
ing. An approaching ribosome will lead L30 to displace SBP2,
the binding of L30 to the SECIS RNA inducing a more closed
conformation of the SECIS K-turn. This movement triggers the
release of the Sec-tRNASec and GTP hydrolysis.

How to distinguish the two possibilities? Experimental va-
lidation currently suffers from the bitter lack of knowledge
whether all the factors of the system are identified, and of an
in vitro reconstitution assay recapitulating selenoprotein synth-
esis. Whereas the precise function of L30 is still unknown and
requires its location on the ribosome to be confirmed by higher
omes, interacts with the SECIS RNA and the EFsec/Sec-tRNASec to deliver this
(B) The EFsec/Sec-tRNASec complex is recruited at the SECIS RNA by SBP2.
CIS RNA to reset the system. Black arrows indicate factor reshuffling; as yet
estion mark.
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resolution data, both models converge to propose that this pro-
tein displaces SBP2 from the SECIS RNA. The L30-SBP2 re-
shuffling hypothesis, however, does not consider that SBP2
was found to dissociate very slowly or not at all in vivo, once
binding to SECIS RNA has taken place [74]. Another central
question asks how the SECIS RNA-bound complex folds back
at an approaching ribosome and competes with the release fac-
tor: no need to say that mechanistic issues are here of prime
importance. In this regard, the recent discovery of stem-loop
structures different from SECIS RNAs, lying in the open read-
ing frame at the 3′ vicinity of the UGA selenocysteine codon in
some eukaryal selenoprotein mRNAs, added a missing piece to
our knowledge [75]. Such stem-loops were found in some but
not all selenoprotein mRNAs and they do not share a con-
served secondary structure in the different selenoprotein
mRNAs. This observation may legitimately lead to ask whether
the function of these stem-loops is pivotal to selenoprotein
synthesis. One possibility is their requirement under certain
circumstances to favor ribosome pausing in much the same
way as stem-loops or pseudoknots contribute to frameshifting.

We are left with the take-home message that a clearer pic-
ture of selenoprotein synthesis is popping up but, at the same
time, a number of questions remain unsolved. It looks as if a
single supramolecular complex could achieve sequentially (or
simultaneously) selenocysteine biosynthesis and its incorpora-
tion into selenoproteins [32; reviewed in 38]. The cornerstone
in this complex is protein SECp43 that establishes RNA-pro-
tein and protein-protein contacts with several partners, notably
facilitating the interaction between tRNASec, EFsec and SBP2
in vivo. SECp43 thus appears as a key player in orchestrating
multiple interactions and redistributing the nucleocytoplasmic
localization of other components involved. Taking into account
that EFsec and SBP2 undergo nucleocytoplasmic shuttling
[55], assembly of this supramolecular complex in the nucleus
is an appealing model that could help circumvent nonsense-
mediated decay at UGA Sec codons [55]. Another advantage
would be to provide ribosomes with SBP2-pre-bound seleno-
protein mRNAs, fueling the hypothesis of the existence of a
fraction of ribosomes pre-determined for selenoprotein synth-
esis [37]. Extremely dynamic contacts must exist to enable
multiple conformational changes to occur. There is obviously
room for future directions of research in this actively evolving
field.
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Summary: The SelenoCysteine Insertion Sequence (SECIS) is a stem-loop 
structure residing in the 3' untranslated region of all selenoprotein mRNAs. 
Its presence is mandatory to allow the ribosome to readthrough the UGA 
selenocysteine codon. The SECIS RNA possesses a well-defined secondary 
structure. Four consecutive non-Watson-Crick base pairs, with a central 
tandem of sheared G.A/A.G base pairs, constitute the functional motif of the 
SECIS RNA which is recognized by the SECIS binding protein SBP2. The 
tandem of sheared base pairs is part of a recurrent motif, the kink-turn (K-
turn), occurring in a variety of different RNAs. The K-turn is a helix-internal 
loop-helix composed of a non-Watson-Crick stem containing the G.A base 
pairs and a canonical stem. The internal loop between the stems is always 
asymmetrical and usually contains three unpaired nucleotides on one strand 
and none on the other. We propose here that the SECIS RNA must represent 
a K-turn variant with regard to the limited structural differences that 
distinguish it from consensus K-turns. Work by others showed that ribosomal 
protein L30 also binds the SECIS RNA in a specific manner. L30 and SBP2 
are members of a family of proteins sharing the same RNA-binding domain 
called L7A/L30. All proteins possessing this fold recognize K-turn RNAs. 
Three structures of RNA-protein complexes containing the L7A/L30 protein 
fold and cognate K-turn RNAs have been solved. In light of the interaction 
principles governing these RNA-protein complexes, we discuss how L30 can 
recognize the SECIS RNA. Collectively, all the findings suggest that the 
L7A/L30 protein fold and the K-turn are ancient structural motifs that have 
evolved various functions, from pre-mRNA splicing to protein synthesis. 
 
Introduction 
The field of eukaryotic selenoprotein research is fascinating in several 
respects. First, the existence of taxa-specific selenoproteins altered the initial 
perception that mammals recapitulate the eukaryotic selenoproteome. 
Second, it becomes increasingly apparent that the number of molecular 
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partners involved in selenoprotein synthesis is larger than previously 
thought. Relocation of the SECIS element, from the coding frame in bacteria 
to the 3'-untranslated region (3’UTR) of selenoprotein mRNAs in 
eukaryotes, may be responsible only in part for this complexification. Indeed, 
even selenocysteine biosynthesis itself seems to take a more sophisticated 
pathway in eukaryotes. 
   The SECIS stem-loop contains a well defined structural motif composed of 
four consecutive non-Watson-Crick base pairs, with a central tandem of 
sheared G.A base pairs [1]. This motif (Figure 1A) also ensures a functional 
role as it is essential to selenocysteine incorporation in vivo [2,3] and 
constitutes the binding site of SBP2, a protein binding specifically to the 
SECIS RNA [4,5]. The SBP2 RNA-binding domain contains a region 
sharing a high degree of amino acid sequence similarity to the L7A/L30 
protein family containing ribosomal proteins L7Ae and L30, the 
15.5kD/Snu13p spliceosomal protein and other functionally unrelated 
proteins [6,7]. Cocrystal structures of the L7Ae, L30 and 15.5 kD proteins in 
complex with their cognate RNAs revealed that the proteins fold into a 
highly conserved compact globular domain, the L7A/L30 domain, that binds 
specifically to RNAs possessing a kink-turn (K-turn) motif. The canonical K-
turn is a recurrent element, occurring notably in ribosomal RNAs, U4 
snRNA, and box C/D regions of snoRNAs and archaeal sRNAs. It contains a 
tandem of sheared G.A/A.G base pairs that have an important structural role 
in forming and stabilizing the turn [8]. In earlier studies, we proposed a 3D 
model for the SECIS RNA where the phosphodiester backbone is bent at the 
non-Watson-Crick base pairs [1]. Combined with the presence of sheared 
base pairs, the proposed folding of the SECIS RNA suggests that it could be 
a canonical K-turn or a K-turn related RNA. From all these findings emerges 
the important issue of how different RNAs harboring K-turn motifs can 
selectively discriminate proteins sharing the same RNA-binding domain. 
This is a particularly burning question in light of the finding that ribosomal 
protein L30 is another SECIS-binding protein [9]. This chapter will describe 
the SECIS RNA structure with comparison to canonical K-turn RNAs, then 
highlight the similarities/differences between protein-RNA complexes 
formed with proteins of the L7A/L30 family and K-turn RNAs. 
 
The SECIS RNA: a K-turn variant 
An experimental secondary structure model for SECIS RNAs (Figure 1A) 
was proposed about ten years ago based on structure probing in solution [1]. 
It was next discovered that certain SECIS RNAs can adopt a slightly 
different 2D structure at their apex [10]. Called Form 2 SECIS (Figure 1A), 
they possess an additional helix III but a shorter apical loop, compared to 
Form 1 SECIS. Besides the non-Watson-Crick quartet, Form 2 shares with 
Form 1 the other conserved features characterizing SECIS RNAs, i.e. the run 
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of As in the apical (Form 1) or internal loop II (Form 2) and the 13-15 bp 
long helix II. More systematic identification of a variety of novel 
selenoprotein mRNAs including vertebrates, invertebrates and green algae 
[11-20] clearly established that Form 2 SECIS are more widespread than 
Form 1. However swapping experiments could not establish that Form 2, 
although preponderant, provides a functional advantage to selenocysteine 
incorporation [10].   

 
Figure 1. Structure models for the SECIS RNA. (A) Secondary structure models of Forms 1 
and 2 SECIS. The conserved sequence and structural features are indicated. N, any nucleotide; 
A/G and A/C indicate that A is the prevalent base. (B) Secondary structure diagrams of the U4 
snRNA and consensus K-turns adapted from [22,26] and the putative SECIS K-turn of the rat 
type I iodothyronine deiodinase (DIOI). BP1 to BP5 stands for base pairs 1 to 5. Circled bases 
are discussed in the text. NC-stem: non-Watson-Crick stem; C-stem: Watson-Crick stem. 
Broken lines in U4 snRNA stand for hydrogen bonds between N6A30 and 2'OH of A44, 
N1A44 and 2'OH of A29 [22]; the latter interaction differs from that proposed at the 
homologous position in the consensus K-turn. The graphical conventions for displaying non-
Watson-Crick base pairs are from [28]. 
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   It is remarkable that mRNAs encoding the same selenoprotein can harbor 
either a Form 1 or a Form 2 SECIS, depending on the animal species. This is 
well exemplified by the SelM mRNA where Form 2 occurs in mammals 
while zebrafish harbors Form 1 SECIS [14]. 
   Remarkably, chemical probing experiments indicated that the conserved 
As are single stranded and well accessible whatever the SECIS form [21]. In 
a few cases, especially in the mammalian SelM and some Chlamydomonas 
Form 2 SECIS, Cs are found instead of As without apparently altering the 
SECIS function [14,15]. Thus the universal conservation of the As, which 
was taken for granted at the time when the number of available SECIS 
sequences was too little to make statistically valid comparisons, is called into 
question. The mechanistic role of these unpaired A/Cs is still unknown, but 
their functional importance has been experimentally proven in vivo by site-
directed mutagenesis. Along the same lines, the nucleotide 5' to the non-
Watson-Crick quartet is A in the vast majority of SECIS RNAs. However, 
compilation of selenoprotein mRNA sequences in other organisms led to the 
conclusion that G can sometimes be found instead, an interesting example 
being provided by the single selenoprotein mRNA in nematodes [11,20,21]. 
This correlates with in vivo experiments and mobility shift assays with SBP2 
and SECIS RNAs concluding that an A is preferred but not mandatory 
[5,21]. In conclusion, it emerges from phylogenetic studies that SECIS 
RNAs exhibit a remarkable conservation of the 2D structures but few 
invariant nucleotides. Clearly, elucidation of the function of the single 
stranded A/C and conserved length of helix II is a necessary step toward an 
in-depth understanding of the function of the SECIS RNA. 
   The non-Watson-Crick quartet at the foot of helix II is a characteristic 
feature recognized by SBP2 (Figure 1B). The central G.A tandem was shown 
by structure probing experiments and computer modeling to adopt the 
sheared geometry [1]. Tandem sheared base pairs were initially discovered in 
the crystal structure of the 5' stem-loop of U4 snRNA in complex with the 
15.5 kD protein [22]. The prevalence of this RNA motif was in fact revealed 
by the analysis of the atomic structures of the large and small ribosomal 
subunits where it occurs six times in H.marismortui 23S rRNA and twice in 
T.thermophilus 16S rRNA [8]. Its presence was further identified in the 
crystal structures of three other RNA-protein complexes: the yeast ribosomal 
protein L30e with its pre-mRNA, and the archaeal ribosomal protein L7Ae in 
complex with box C/D or box H/ACA sRNAs [23-25]. A two-dimensional 
representation of the tertiary structure of a consensus K-turn is diagrammed 
in Figure 1B, which was adapted from [26]. In this publication, the authors 
derived the consensus from examination of K-turns in crystal structures and 
compared them with the sequence alignments of rRNAs from the three 
kingdoms of life. The K-turn is a two-stranded, helix-internal loop-helix 
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motif comprising about 15 nucleotides. The first stem (canonical or C-stem) 
ends at the internal loop with two Watson-Crick base pairs, mostly G-C. The 
non-canonical stem (NC-stem) starts typically with the sheared G.A base 
pairs. The internal loop is always asymmetrical with three unpaired 
nucleotides on one strand and none on the other. Because of the cross-strand 
stacking of the sheared base pairs, a sharp bend of the sugar-phosphate 
backbone occurs between the C and NC-stems. Five base pairs characterize 
the K-turn motif (Figure 1B): the Watson-Crick C-G base pair 1, the sheared 
G.A base pairs 2 and 3, the triple A.C-G base pair 4, and G.A base pair 5. 
The adenine of base pair 4 mediates the minor groove interaction with the C-
stem (A-minor motif; see reference 27) and is crucial for K-turn folding. 
Figure 1B shows the 2D structure model of the non-Watson-Crick quartet of 
the rat type I iodothyronine deiodinase (DIOI) SECIS RNA [1] compared to 
the structure of the U4 snRNA K-turn motif adapted from [22]. Visual 
inspection of the SECIS 2D structure identified an important K-turn 
characteristic feature: the C-stem separated by an internal loop from the NC-
stem comprising the invariant sheared base pairs. Despite the similarity, a 
few SECIS specific structural features led us to ask whether they form 
genuine K-turns. The non-Watson-Crick U.U base pair 3' to the sheared base 
pairs will not be discussed further because it displays sequence variation in 
SECIS and other RNAs and does not participate directly in the K-turn 
interactions [26]. The first question concerns the U residue (circled in Figure 
1B) 5' to the sheared base pair 2. Chemical probing experiments detected that 
it forms a non-Watson-Crick U.U base pair in the naked SECIS RNA [1]. In 
contrast, the homologous position is unpaired in U4 snRNA and in the 
consensus K-turn (Figure 1B; see also Figure 2B). Moreover, data from 
crystal structures of RNA-protein complexes showed that the base at this 
position protrudes away from the RNA chain and is tightly bound in a pocket 
of the protein [22-25]. However, one cannot exclude the possibility that an 
SBP2-promoted induced fit leads to unpairing and flipping out of the U 
residue. It could thus be the positional analog of the protruding base in the 
other K-turns (Figures 1B and 2B). The second question asks whether the 
counterparts to base pairs 4 and 5 of the consensus K-turn also exist in the 
SECIS RNA as chemical probing cannot detect them. Formation of base pair 
4 in the SECIS RNA will only depend on the sequence of base pair 1 since A 
is invariant in base pair 3 (Figure 1B). Base pair 1 is U-A in the SECIS RNA 
shown, very often C-G and G-C but rarely A-U or G.U in others [1,11-21]. 
Interestingly, tables of sequence variation in [26] show the prevalence of C-
G, G-C or U-A at base pair 1 in K-turns, indicating that formation of base 
pair 4 is theoretically possible in SECIS RNAs. Likewise, base pair 5 could 
form in SECIS RNAs as tables in [26] established that base pairing is 
permitted in canonical K-turns between the invariant A of base pair 2 and 



 6 

any nucleotide. Lastly, one could argue that the size of internal loop I of 
SECIS RNAs is larger than in canonical K-turns.  

 
 
Figure 2. K-turn motifs and amino acid sequence alignments of L7A/L30 RNA-binding 
domains. (A) The secondary structures of the U4 snRNA, L30e pre-mRNA, L7Ae rRNA, 
L7Ae box C/D sRNA were taken from the crystal structures of the corresponding RNA-
protein complexes, those of the SECIS RNA and U3 snoRNA result from structure probing 
(see text). In bold are the sheared G.A base pairs. Numbering is from the original publications, 
except that of the SECIS RNA which is arbitrary. The dotted line between A248 and U265 in 
L7Ae rRNA represents the hydrogen bond giving rise to the base triple A.U.G [30]. (B) 
Amino acid sequence alignment of L7A/L30 proteins. hSBP2, human SBP2; h15.5 kD, human 
15.5 kD; Snu13p, the yeast 15.5 kD ortholog; Nhp2p, the yeast core protein of box H/ACA 
snoRNPs; yRPL30, yeast ribosomal protein L30; hRPL7A, human ribosomal protein L7A. 
Identical and similar amino acids are displayed in black and gray backgrounds, respectively. 
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However, the structures in [26] showed that the increased length of the 5' and 
3' strands in loop I versus the consensus K-turn is not a major obstacle to K-
turn formation as variable lengths do exist in the 5' strands of various K-
turns. Regarding the 3' strand, examination of the K-turn crystal structures 
pointed to the possibility of accommodating its extra length.  
   In conclusion, we propose that the core of SECIS RNA is a K-turn like 
motif where the bend occurs at the internal loop I, providing less structural 
constraint than canonical K-turns. As a consequence, the SECIS RNA must 
be endowed with a greater flexibility enabling it to switch easily from an 
open to a closed kinked conformation, thus triggering a major 
conformational change of the SBP2 bound complex [9].  
 
A phylogenetically conserved RNA-protein interface at work for 
selenoprotein synthesis 
Proteins containing the L7A/L30 RNA-binding domain include ribosomal 
proteins L7A (L7Ae in Archaea) and L30, human 15.5kD (Snu13p in yeast) 
in box H/ACA snoRNPs. Archaea contain neither 15.5 kD nor Nhp2p, L7Ae 
being the surrogate in box C/D and box H/ACA sRNPs. Crystal structures 
attested to the presence of a K-turn motif in the yeast L30e pre-mRNA, 
L7Ae rRNA and box C/D sRNA, in addition to U4 snRNA discussed above 
(Figure 2A). 
   In this series, the only K-turn sequence variant is the L7Ae rRNA where 
U.G substitutes for the A.G (top) base pair. U.G can nevertheless form base 
pair 4 described in Figure 1B [26,30]. U3 snoRNA contains one B/C and one 
C'/D box instead of the classical box C/D, both recognized by 15.5 
kD/Snu13p; the B/C box structure shown was derived from probing 
experiments [31]. Figure 3A shows views of the crystal sructures of the 15.5 
kD-U4 snRNA, L30e-pre-mRNA and L7Ae-box C/D sRNA complexes, 
adapted from [22-24]. A detailed description of the RNA-protein contacts 
fall beyond the scope of this review. Inspection of Figure 3A, however, 
reveals that the three structures form analogous protein-RNA interfaces 
despite the differential orientation of some helices (compare for example the 
bottom right helix in L30e with the proteins in the other two complexes). 
   The interface is provided by the flipped-out bases U31 (U4 snRNA), U263 
and U18 (rRNA and sRNA), A57 (L30e pre-mRNA) protruding into an 
electrostatically neutral pocket of the cognate protein, and by a few amino 
acids that make base-specific contacts with the guanines of the sheared G.A 
base pairs. Yet differences can be found. For example, binding of 15.5 kD is 
highly susceptible to mutations of U31 while changing A57 and U18 is less 
deleterious to L30e and L7Ae interaction [22-24]; the angle of the kink 
shows subtle variations in each complex; finally, it is worth noting that L30e 
and the pre-mRNA interact through a mutually induced fit [32] whereas only 
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the RNA component (U4 snRNA or sRNA) undergoes an induced fit upon 
binding to 15.5 kD and L7Ae, respectively [31, 33-37]. 
   Earlier work localized the SBP2 RNA-binding domain in a region lying 
approximately between positions 500 and 750 [4,7,29, and our unpublished 
results]. Within this area, database searches [4,6,7] identified a subdomain 
homologous to the L7A/L30 RNA-binding domain (Figure 2B), SBP2 and 
15.5 kD/Snu13p sharing the highest amino acid sequence similarity [7]. The 
RNA-binding domain of SBP2 is thus bipartite, composed of the conserved 
L7A/L30 module flanked by SBP2-specific sequences. A structure-guided 
strategy, based on the similarities between SBP2/15.5 kD and SECIS 
RNA/U4 snRNA, and the crystal structure of the 15.5 kD-U4 snRNA 
complex, predicted SBP2 amino acids that should contact the SECIS RNA 
[7]. Changing them to alanines led to the identification of eight amino acids 
critical for SECIS binding, four of them being crucial: Gly676 and Glu679 
are postulated to contact the guanines of the sheared base pairs, Glu699 and 
Arg731 being very likely part of the pocket accommodating the SECIS RNA 
U2 (Figure 3B). These findings established that the recognition principles 
governing the 15.5 kD-U4 snRNA interaction must be similar in the SBP2-
SECIS RNA complex especially at the guanines of the G.A base pairs and at 
U2 (SECIS RNA) and U31 (U4 snRNA). Another member of the L7A/L30 
family, the rat ribosomal protein L30, was recently shown to be a novel 
SECIS-binding protein [9]. As a follow-up, determination of the molecular 
basis underlying this interaction would be instructive in particular to 
understand how L30 can recognize the SECIS K-turn and compete with 
SBP2. In the absence of a structural model though, comparison of the 
structures of the L30e, 15.5 kD, L7Ae and SBP2 RNA-protein complexes [7, 
22-25, 37] provided some clues that may explain the L30 versatility. In all of 
the complexes, mutations of the bases comprising the sheared G.A base pairs 
resulted in the complete loss of protein binding in vitro. Together with the 
high amino acid sequence similarity between yeast L30e and rat L30, these 
findings strongly suggest that rat L30 in complex with the SECIS RNA 
should also interact at the G.A tandem of the SECIS RNA, most likely at the 
guanines. An interesting difference between 15.5 kD and SBP2 on the one 
hand, and L7Ae and L30e on the other, occurs at the flipped-out base. In the 
15.5 kD and SBP2 complexes, mutations of U31 and U2 to any nucleotide is 
detrimental to binding in vitro and function in vivo (for the SECIS RNA). In 
contrast, L7Ae can accommodate a C instead of U18 and there is little 
sequence preference at A57 for the binding in vitro of L30e which can 
tolerate G or even C [38]. Remarkably, a correlation can be made at the 
protein level. In the 15.5kD-U4 snRNA and SBP2-SECIS RNA complexes, 
five (almost) identical amino acids contact U31 and probably U2, 
respectively (Figure 3B). Instead, only two L7Ae amino acids make base 
specific contacts with U18, L30e showing the simplest interaction scheme 
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with one single contact between A57 and Asn47 (or Asn74, depending on 
whether the NMR or X-ray structures are considered). Given that G or C 
may substitute for A57, it is conceivable that U can also fit. 

 
 
Figure  3. RNA-protein interfaces at various L7A/L30 protein-K-turn RNA complexes. (A) 
Overall crystal structures of the human h15.5 kD-U4 snRNA, L30e-mRNA and L7Ae-box 
C/D sRNA complexes adapted from [22-24]. The ribbon plots of the proteins with the bound 
RNA fragments are shown. Figures were generated with PyMOL in an orientation expliciting 
structural similarities. (B) Similar interaction principles govern the 15.5 kD-U4 snRNA and 
SBP2-SECIS RNA complexes [7]. 
 



 10 

Taking into account that a single contact forms between L30e and A57, we 
propose that the SECIS RNA U2 could also hydrogen bond with L30e Asn47 
or Asn74 upon repositioning of the base to offer the appropriate hydrogen 
bond donor and acceptor groups. 
   As rat L30 binds the SECIS RNA, we assayed other L7A/L30 proteins for 
their abilities to recognize the SECIS RNA. Snu13p and L7Ae indeed bound 
the SECIS RNA but the reverse did not happen since SBP2 was unable to 
interact with U4 snRNA or an L7Ae RNA target (A.Cléry, C.A, A.K and C. 
Branlant, manuscript in preparation). We concluded from this experiment 
that the SBP2 RNA-binding domain is more complex than in the other 
proteins of the family, the SECIS RNA binding specificity being very likely 
provided by amino acids flanking the L7A/L30 subdomain. In fact, our 
unpublished data support this hypothesis.  
   The analogous protein-RNA interface formed between L7A/L30 proteins 
and various K-turn RNAs suggests a conformational adaptability of the RNA 
upon binding to its cognate protein. Such a dynamic process could 
potentially confer the binding specificity for different K-turns, as 
exemplified by rat L30. This adaptability could be facilitated by the 
dimorphism of K-turn RNAs that are in dynamic equilibrium between a 
tightly kinked-turn and a more open structure [39]. A bunch of proteins of 
the L7A/L30 family and a large number of diverse RNAs containing the K-
turn motif have been identified, with the majority of the K-turns residing in 
the small and large ribosomal RNAs [8]. Altogether, these findings suggest 
that the L7A/L30 fold and the K-turn are ancient structural motifs that have 
evolved specialized roles in many different biological processes. 
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The SBP2 and 15.5 kD/Snu13p proteins share the
same RNA binding domain: Identification of SBP2
amino acids important to SECIS RNA binding

CHRISTINE ALLMANG, PHILIPPE CARBON, and ALAIN KROL
Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance,
Unité Propre de Recherche 9002 du Centre National de la Recherche Scientifique–Université Louis Pasteur,
Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France

ABSTRACT

Selenoprotein synthesis in eukaryotes requires the selenocysteine insertion sequence (SECIS) RNA, a hairpin in the
39 untranslated region of selenoprotein mRNAs. The SECIS RNA is recognized by the SECIS-binding protein 2 (SBP2),
which is a key player in this specialized translation machinery. The objective of this work was to obtain structural
insight into the SBP2-SECIS RNA complex. Multiple sequence alignment revealed that SBP2 and the U4 snRNA-binding
protein 15.5 kD/Snu13p share the same RNA binding domain of the L7A/L30 family, also found in the box H/ACA
snoRNP protein Nhp2p and several ribosomal proteins. In corollary, we have detected a similar secondary structure
motif in the SECIS and U4 RNAs. Combining the data of the crystal structure of the 15.5 kD-U4 snRNA complex, and
the SBP2/15.5 kD sequence similarities, we designed a structure-guided strategy predicting 12 SBP2 amino acids that
should be critical for SECIS RNA binding. Alanine substitution of these amino acids followed by gel shift assays of
the SBP2 mutant proteins identified four residues whose mutation severely diminished or abolished SECIS RNA
binding, the other eight provoking intermediate down effects. In addition to identifying key amino acids for SECIS
recognition by SBP2, our findings led to the proposal that some of the recognition principles governing the 15.5 kD-U4
snRNA interaction must be similar in the SBP2-SECIS RNA complex.

Keywords: L7A/L30 RNA binding domain; RNA–protein interactions; SECIS-binding protein 2; selenocysteine;
U4 snRNA

INTRODUCTION

Selenium is mostly found in the active site of seleno-
proteins, in the form of the amino acid selenocysteine+
In mammals, selenoproteins participate in several gluta-
thione- or thioredoxin-dependent oxidation–reduction
reactions, or in the maturation of the thyroid hormone
(reviewed in Köhrle et al+, 2000; Gladyshev & Kryukov,
2001)+ The importance of selenium and selenoproteins
was further underscored by two recent discoveries+ The
first one refers to the capital roles for sperm maturation
of the phospholipid hydroperoxide glutathione peroxi-
dase (Ursini et al+, 1999) and protamine thiol crosslink-
ing glutathione peroxidase (Pfeifer et al+, 2001), two
splice variants of the same pre-mRNA+ It is remarkable

that these findings provided the molecular basis for
earlier observations linking selenium deficiencies and
male infertility+ The second discovery is that patients
developing a form of congenital muscular dystrophy
carry mutations in the gene encoding selenoprotein
SePN1 (Moghadaszadeh et al+, 2001)+ This finding con-
stituted the first report establishing a direct correlation
between the occurrence of a genetic disease and mu-
tations in a selenoprotein gene+ Eukaryotic selenocys-
teine biosynthesis and cotranslational incorporation in
response to a redefined UGA Sec codon are achieved
by a complex molecular machinery containing RNA
and protein partners (reviewed in Fagegaltier et al+,
2001; Lescure et al+, 2002b)+ This amino acid is syn-
thesized from the seryl residue of the Ser-tRNASec,
generating the Sec-tRNASec that is loaded onto the
selenocysteine-specialized translation elongation fac-
tor mSelB/eEFsec (Fagegaltier et al+, 2000a; Tuje-
bajeva et al+, 2000)+ Decoding of UGA Sec codons
necessitates not only the presence of this elongation
factor but also the SECIS element, an RNA hairpin in
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the 39 UTR of selenoprotein mRNAs (Berry et al+, 1991)+
Structure–function studies proposed secondary and
three-dimensional structure models for the SECIS ele-
ment (Walczak et al+, 1996, 1998; Martin et al+, 1998;
Grundner-Culemann et al+, 1999; Fagegaltier et al+,
2000b)+ The core of the hairpin consists of a quartet of
non-Watson–Crick base pairs containing a tandem of
sheared G-A base pairs that are pivotal for mediating
UGA Sec decoding (Walczak et al+, 1996, 1998)+ SBP2,
the SECIS binding protein 2, interacts with the SECIS
element (Copeland et al+, 2000; Lescure et al+, 2002a)
and most likely with mSelB/eEFsec (Fagegaltier et al+,
2000a; Tujebajeva et al+, 2000)+ From these and other
functional data (Low et al+, 2000), it is obvious that
SBP2 is a key player in the machinery+ Two major stud-
ies were previously undertaken to delineate the SECIS
RNA and SBP2 domains important for the interaction+
In the first one, structural investigations of the SECIS
RNA-SBP2 complex revealed that the phosphate back-
bone and the non-Watson–Crick base pairs at the core
of the SECIS RNA are important features governing
the interaction (Fletcher et al+, 2001)+ The other study
dealt with the functional dissection of SBP2+ It was
discovered that it belongs to the family of proteins con-
taining the L7A/L30 RNA-binding domain (Copeland
et al+, 2001)+ This domain comprises several ribosomal
proteins of the large and small subunits, Nhp2p that is
the core component of the yeast H/ACA family of small
nucleolar ribonucleoprotein particles (Henras et al+,
1998), and the eRF1 subunit of the translation termi-
nation release factor+ Interestingly, the existence of such
an RNA-binding domain was hypothesized several years
ago, based on amino acid sequence comparisons of
the limited number of proteins available at the time
(Koonin et al+, 1994)+

An extensive study of the amino acids required for
the binding of SBP2 to the SECIS RNA has not been
published yet+ The issue is especially crucial because
the various proteins of the L7A/L30 family can specif-
ically recognize their cognate RNA yet share identical
or similar sequences in their homologous RNA-binding
domains+ The objective of the work reported here was
precisely to identify amino acids in the RNA-binding
domain of SBP2 that are important for recognition of
the SECIS RNA+ The strategy that was taken stemmed
from our two initial findings described in this report:
(1) the RNA-binding domain of SBP2 displays amino
acid sequence identity to another member of the L7A/
L30 family, the human 15+5 kD protein (ortholog of
the yeast Snu13p) that binds the 59 stem-loop of
spliceosomal U4 snRNAs but also box C/D snoRNAs
(Nottrott et al+, 1999; Gottschalk et al+, 1999; Stevens
& Abelson, 1999; Watkins et al+, 2000); (2) the SECIS
RNA and the 59 stem-loop of U4 snRNA possess com-
mon structural features+Combining the data of the crys-
tal structure of the 15+5 kD-U4 snRNA complex (Vidovic
et al+, 2000) and the sequence alignment between the

15+5 kD and SBP2 proteins, we designed a structure-
guided strategy to identify SBP2 amino acids that should
be important for the SECIS RNA interaction+ The pre-
diction was tested in the human SBP2 by alanine sub-
stitution of the relevant amino acids followed by RNA
binding assays of the SBP2 mutant proteins+ This en-
abled the identification of amino acids critical for the
SBP2-SECIS RNA interaction+

RESULTS

The RNA-binding domain of SBP2 and
spliceosomal 15.5 kD/Snu13p proteins
exhibits striking sequence similarities

To identify amino acids conserved in the RNA-binding
domain (RBD) of various SBP2 and that could be in-
volved in SECIS RNA interaction, databases were
searched for SBP2 sequences from distantly related
species+ Various attempts were carried out to minimize
the many hits engendered by ribosomal proteins pos-
sessing the L7A/L30 RBD+ The best procedure for dis-
carding ribosomal protein sequences was to perform
Blastp searches of the nonredundant database with a
84-amino-acid-long subdomain of the human SBP2 RBD
encompassing residues 673–756, and not with the en-
tire domain+ This 84-amino-acid sequence was ob-
tained after proceeding by trial and error with several
overlapping sequences of the hSBP2 RBD, seeking
the largest sequence that did not match ribosomal pro-
teins+ Two hits, which were not included in a previously
reported sequence alignment (Copeland et al+, 2001),
drew our attention: They corresponded to the human
spliceosomal 15+5 kD protein (Nottrott et al+, 1999) and
its Snu13p ortholog in yeast (Gottschalk et al+, 1999;
Stevens & Abelson, 1999)+ This incited us to obtain
more information on the degree of sequence similarity
between SBP2, the 15+5 kD protein, and other members
of the L7A/L30 family+ A multiple sequence alignment
was performed between the human SBP2 (hSBP2),
15+5 kD, Snu13p, Nhp2p, yeast ribosomal protein L30
(yRPL30), and human ribosomal protein L7A (hRPL7A)+
Figure 1 shows the region of maximum homology that
was obtained between 79 amino acids of the hSBP2
RBD (positions 672–750) and the RBDs of the other
proteins+ From the alignment, we found that hSBP2
and 15+5 kD/Snu13p possess 47% amino acid similar-
ity (26% identity) over the homologous sections+ The
similarity between hSBP2 and Nhp2p is 43% (20% iden-
tity), the value dropping to 30% (16% identity) with
yRPL30 and hRPL7A+ Identical results were obtained
when the sequence of the rat SBP2 RBD was used in
the alignment (data not shown)+ Thus, the RBD se-
quences in the mammalian SBP2 and 15+5 kD/Snu13p
are closer to each other than to other members of the
L7A/L30 family+
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Similar structural features in the SECIS RNA
and 59 stem-loop of spliceosomal U4 snRNA

We next asked whether the sequence conservation of
the hSBP2 and 15+5 kD/Snu13p RBD correlates with
structural features that could be shared by the SECIS
and U4 RNA targets+ Experimental secondary struc-
ture models for a variety of SECIS RNAs (Walczak
et al+, 1996, 1998; Fagegaltier et al+, 2000b; reviewed
in Krol, 2002) proposed that the core of the SECIS
RNA is formed by four consecutive non-Watson–Crick
base pairs containing the invariant tandem of G3-A8/
G7-A4 sheared base pairs (Fig+ 2)+ Indeed, this quartet
of base pairs represents an important functional motif
for selenoprotein synthesis and a critical recognition
site for SBP2 (Walczak et al+, 1998; Fletcher et al+,
2001)+ Striking similarities were detected in the core
structures of the SECIS RNA and the 59 stem-loop of
U4 snRNA (Fig+ 2): Helices 1 and 2 are separated by
an asymmetrical internal loop; helix 2 contains a tan-
dem of sheared G-A base pairs shown to be the major
functional motif of the SECIS RNA (Walczak et al+, 1998)+
Whereas the size of the internal loop is invariant in U4
snRNA, it is variable in the different SECIS RNAs+ How-
ever, despite this difference, it is remarkable that the
similar sequences R1U2 (SECIS RNA) and A30U31
(U4 snRNA) reside 59 to the G3-A8 and G32-A44 base
pairs in the SECIS and U4 RNAs, respectively (Fig+ 2)+
In the crystal structure of the 15+5 kD-U4 snRNA com-
plex, U31 is flipped out (Vidovic et al+, 2000), whereas
our structure probing experiments favored the U2-N9
base pairing in the SECIS RNA (Walczak et al+, 1996)+

Worth noting were the findings that substitutions of U2
in the SECIS RNA and U31 in U4 snRNA, or those
aiming at debilitating the sheared G-A base pairs in
both RNAs, compromised the in vitro binding of SBP2
and 15+5 kD to their cognate RNAs (Nottrott et al+, 1999;
Fletcher et al+, 2001)+ As reported by Watkins et al+
(2000), Vidovic et al+ (2000), and Klein et al+ (2001), it
is very likely that the internal loop of box C/D snoRNAs
adopts the same asymmetrical structure as in U4 snRNA
(Fig+ 2)+ Thus, the U4 snRNA/box C/D snoRNAs and
the SECIS RNA possess similarities in their core struc-
tures interacting with the 15+5 kD/Snu13p and SBP2
proteins, respectively+

Structure-guided prediction of
SBP2 amino acids involved in the
interaction with the SECIS RNA

In a further step, we reasoned that the sequence sim-
ilarities between the hSBP2 and 15+5 kD RBDs and the
common structural features in the SECIS RNA and
U4 snRNA could be exploited to identify hSBP2 amino
acids contacting the SECIS RNA+ We first tested the
ability of the hSBP2 RBD to fold into a similar domain
structure as the 15+5 kD protein by secondary structure
predictions using the PHDSec program (Rost & Sand-
ers, 1993)+ Predictions schematized in Figure 3A re-
veal striking similarities with the secondary structure of
the 15+5 kD+Differences occur at the edges of the SBP2
RBD, which is not surprising, as the RBD only repre-
sents one domain of the 854-amino-acid full-length

FIGURE 1. Multiple sequence alignment of the RNA binding domain of human SBP2 (hSBP2), human 15+5 kD (h15+5 kD),
yeast Snu13p (Snu13p), yeast Nhp2p (Nhp2p), yeast ribosomal protein L30 (yRPL30), and human ribosomal protein L7A
(hRPL7A)+ The alignment was made with ClustalW and manually refined with MegAlign (DNASTAR)+ Identical amino acids
are shown in reverse, similar residues are shaded in gray+ The sequences are from: hSBP2 (Lescure et al+, 2002a); Snu13p,
accession number NP010888; Nhp2p (Henras et al+, 1998); yRPL30 (Mao et al+, 1999); hRPL7A, accession number
AAH05128+
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protein+ Another difference concerns the b2-a3 junc-
tion (see Fig+ 3A) where helix a3 is predicted to be
slightly extended in hSBP2, resembling more the ribo-
somal protein L30 in this respect (Mao et al+, 1999)+
The good overall conservation of the secondary struc-
ture elements between the 15+5 kD and hSBP2 pro-
teins suggests that the three-dimensional folding and
the positioning of amino acids involved in RNA binding
are likely to be similar in the two proteins+ Having es-
tablished this, we examined the crystal structure of the
15+5 kD-U4 snRNA complex+ It revealed that 14 amino
acids in the 15+5 kD RBD participate in the interaction
with U4 snRNA (Vidovic et al+, 2000)+ They are marked
by dots above the 15+5 kD sequence (Fig+ 3A) and the
15+5 kD-U4 snRNA interactions are represented in Fig-
ures 3B and 4A+We hypothesized that the homologous
hSBP2 residues (Fig+ 3A) could fulfill similar roles in

the hSBP2-SECIS RNA complex+ We therefore pro-
posed the putative interaction scheme (Fig+ 4B) in which:
Gly676SBP2, Arg678SBP2, Glu679SBP2, and Lys682SBP2

could contact the bases or the phosphodiester back-
bone of the SECIS RNA at G3 and/or G7; Leu677SBP2,
Glu699SBP2, Asp709SBP2, Arg731SBP2, and Ile749SBP2

could interact with U2; and Val744SBP2 could interact
with A1+ To test the hypothesis, we made the corre-
sponding alanine replacements and assayed the abil-
ities of the mutant proteins to bind the SECIS RNA+
Additionally, Lys732SBP2 was substituted to determine
whether Arg731SBP2 or Lys732SBP2 is homologous to
Lys8615+5+ Ser745SBP2 was mutated because it resides
within a block of conserved sequences found only in
nonribosomal proteins (see Fig+ 1)+ In the 15+5 kD-U4
snRNA complex,Arg3615+5, Lys3715+5, and Arg4815+5 con-
tribute essentially to electrostatic interactions with the
phosphates at positions 41–44 in U4 snRNA+ Because
the corresponding residues Val674SBP2, Leu675SBP2,
and Leu686SBP2 are hydrophobic, their interaction with
the SECIS RNA was hardly predictable and they were
not mutated+ Likewise, Val746SBP2 was not substituted
because its Arg9715+5 counterpart interacts with A29
in U4 snRNA, a nucleotide that has no identified ho-
molog in the internal loop of the SECIS RNA+ In sum-
mary, 12 amino acids were substituted and are
represented in Figure 3A+ The mutations were engi-
neered in the hSBP2/512 cDNA, a construct that en-
codes the C-terminal 512 amino acids containing the
RBD of the protein and that was shown previously to
display SECIS RNA binding activity in vitro (Lescure
et al+, 2002a)+ This protein will be considered as the
wild-type (wt) hSBP2+

Identification of SBP2 residues important
for the interaction with the SECIS RNA

The [35S]-methionine-labeled hSBP2 proteins used in
this study were generated by in vitro coupled tran-
scription/translation in rabbit reticulocyte lysates+ This
system offers the advantage of containing limiting
amounts of endogenous SBP2 (Copeland et al+, 2000)
that will not interfere with the assay, rendering it suit-
able for studying the effects of the hSBP2 mutations+
The translation efficiencies of the wild-type and mutant
hSBP2 proteins were verified and quantitated by gel
electrophoresis (data not shown) and their abilities to
bind the [32P]-labeled human SePN1 SECIS RNA(Fage-
galtier et al+, 2000b) were assessed by electrophoretic
mobility shift assays (Fig+ 5A, B)+ As anticipated, no
SBP2-SECIS RNA complex could form with the unpro-
grammed reticulocyte lysate in which SBP2 is limiting
(Fig+ 5A, B, lanes 2)+ The band marked by an asterisk,
appearing also in the other lanes, corresponds to an-
other SECIS RNA–protein complex that we previously
characterized (Hubert et al+, 1996)+ It contains a SECIS-
binding protein that differs from SBP2 and does not

FIGURE 2. Secondary structure models displaying the similar fea-
tures between the consensus SECIS RNA, the 59 stem-loop of the
human U4 small nuclear RNA, and the consensus Box C/D small
nucleolar RNAs+ The structures were adapted from Walczak et al+
(1996), Vidovic et al+ (2000), Klein et al+ (2001), and Krol (2002)+
Numbering of the consensus SECIS RNA sequence started arbi-
trarily at R1 to position the base pairing partners at the non-Watson–
Crick quartet; only a portion of the SECIS helices 1 and 2 is depicted+
Sheared G-A base pairs are in bold; the putative G–A base pairs in
Box C/D snoRNA are represented by dashed lines+ R stands for A or
G, N for any nucleotide+
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FIGURE 3. See caption on facing page.
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share the same binding site on the SECIS RNA+ Addi-
tion of the in vitro translated wild-type hSBP2 to the
SECIS RNA led to the formation of two retarded com-
plexes containing monomeric and homodimeric forms
of hSBP2 (Fig+ 5A, B, lanes 3 and 4), as previously
reported for the recombinant hSBP2 produced in Esch-
erichia coli (Lescure et al+, 2002a)+ The yield of the
monomeric and homodimeric forms of complexes was
24% and 9%, respectively+

The RNA binding activities of the hSBP2 mutants
are shown in Figure 5A,B, lanes 5–12 and 5–20, re-
spectively, and quantitated in Table 1+ All the mutants
affected hSBP2 binding to various extents, strongly sug-
gesting that the residues designed by the structure-
guided strategy contribute to SECIS RNA binding+
Identical results were obtained with the SECIS RNA of
the rat glutathione peroxidase mRNA (data not shown)+
The most drastic effects were produced by E699A and
R731A and led to a complete or almost complete
(E699A) loss of RNA recognition (Fig+ 5B, lanes 7, 8
and 11, 12)+ Interestingly, the homologous amino acids
Glu6115+5 and Lys8615+5 are the only two residues es-
tablishing hydrogen bonds with the bulged U31 base in
U4 snRNA (see Figs+ 3B and 4A)+ The G676A and
E679A mutations were severely deleterious to SECIS
RNA binding, entailing 19–28% of residual binding ac-
tivity (Fig+ 5A, lanes 5, 6 and 9, 10)+ The homologous
residues Gly3815+5 and Glu4115+5 contact the sheared
G-A base pairs of U4 snRNA at G32 and G43, respec-
tively (Figs+ 3B and 4A)+ The deleterious effects of
E699A, R731A, G676A, and E679A did not originate
from a subsequent loss of protein solubility because
we could establish that the four mutant proteins are still
soluble when expressed in E. coli BL21 (DE3) RIL (data
not shown)+ Moderate effects for the other eight sub-
stitutions were observed+ In this regard, the result of
the K732A mutation strengthens the prediction that
Arg731SBP2, rather than Lys732SBP2, is the homolog of
Lys8615+5+ S745A provoked a drop of about 50% in the
RNA binding activity+ Surprisingly, the R678A mutation
had a rather benign effect, whereas we anticipated it to
be more harmful as the homologous Asn4015+5 residue
establishes hydrophobic and hydrogen bond contacts
in U4 snRNA with G32 at the sheared G32-A44 (Figs+ 3B

FIGURE 3. Structure-guided mutagenesis+ A: Folding predictions and positions of the alanine-substituted amino acids in
the hSBP2 sequence+ Substitutions are positioned by the arrows below the hSBP2 sequence+ The secondary structure
elements of the h15+5 kD protein (shown in black) and the residues involved in the 15+5 kD-U4 snRNA interaction (marked
by dots above the sequence) are from Vidovic et al+ (2000)+ The secondary structure prediction of hSBP2 shown in gray was
generated with the Predict Protein program PHDSec (Rost & Sander, 1993)+ The sequence alignment is from Figure 1+
B: Sketch of the three-dimensional structure of the 15+5kD-U4 snRNA complex solved by Vidovic et al+ (2000)+ Only the
regions of the protein and the RNA predicted to be conserved between 15+5 kD/U4 and hSBP2/SECIS are represented+
Ribbon plot of the 15+5 kD residues 38 to 105 is shown in blue+ The amino acids involved in RNA recognition and targeted
for mutagenesis are highlighted: strictly conserved residues are in red, others are in pink+ The U4 snRNA backbone, U31,
and A30 are in green, the sheared G-A pairs are in yellow+ The graphic representation was generated with the program
SETOR (Evans, 1993) using the Protein Data Bank coordinates 1E7K+

FIGURE 4. Scheme of RNA–protein interactions in the h15+5 kD-U4
snRNA and hSBP2-SECIS RNA complexes+ A: Contacts between
15+5 kD amino acids and the human U4snRNA, adapted from data of
the crystal structure of the complex (Vidovic et al+, 2000)+ Only the
contacts at A30, U31, and G32-A44/G43-A33 base pairs are repre-
sented+Underlined amino acids: hydrophobic interactions with bases;
residue with an asterisk: hydrogen bonds involving bases; italicized
residues: hydrogen bond involving phosphates or ribose+ B: Putative
contacts between hSBP2 amino acids and the SECIS RNA+ The
amino acid residues are homologous to those in A+ The SePN1
SECIS RNA positions were arbitrarily numbered, as in Figure 2+ Only
a portion of helices 1 and 2 is displayed+ Sheared G-A base pairs are
in bold+
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and 4A)+ Among the remaining mutants, V744A and
I749A affected more the monomer formation whereas
L677A reduced more the homodimeric than the mono-
meric complexes (Table 1)+ At this stage of the work, it
is difficult to rationalize this finding, but we can hypoth-
esize that the RNA binding and dimerization domains
of hSBP2 partially overlap+ Assuming that homodimer-
ization stabilizes the binding to the SECIS RNA, the
mutations would be less detrimental, and the homo-
dimer would attenuate the down effects of V744A and
I749A that are otherwise more harmful to monomer
formation+

We conclude from these experiments that we have
identified 12 hSBP2 amino acids important to SECIS

RNA binding+ This includes those derived directly from
the sequence comparison and the structure-guided strat-
egy, as well as Lys732SBP2 and Ser745SBP2,which could
not be predicted+ The four amino acids Gly676SBP2,
Glu679SBP2, Glu699SBP2, and Arg731SBP2 appear to be
crucial; the other eight residues contribute to the SECIS
RNA binding activity but to a lower extent+

DISCUSSION

A previous report identified the structural determinants
of the SECIS RNA necessary for the interaction with
SBP2 (Fletcher et al+, 2001)+ The objective of this study
was to obtain a better understanding of the principles

FIGURE 5. Gel retardation assays of the hSBP2 mutant proteins with the human SePN1 SECIS RNA+ In each lane, the
[35S]-methionine-labeled hSBP2 protein obtained by in vitro translation in rabbit reticulocyte lysates was added to 150,000
cpm of [32P]-labeled human SePN1 SECIS RNA and the complexes were resolved on 4% nondenaturing polyacrylamide
gels+ A: Effects of alanine substitutions at positions predicted to interact with the G3-A8/G7-A4 base pairs (lanes 5–12)+
B: Effects of alanine substitutions at positions predicted to interact with U2 (lanes 5–12, 19, and 20), A1 (lanes 17 and 18),
or nonpredicted positions (lanes 13–16)+ Lanes 1: SePN1 SECIS RNA alone (2); lanes 2: unprogrammed rabbit reticulocyte
lysate (Retic); odd and even lanes contained 20 and 120 fmol of in vitro translated wild-type (wt hSBP2) or mutant hSBP2
protein, respectively+ The asterisk indicates the position of the complex formed between the SECIS RNA and another
SECIS-binding protein (Hubert et al+, 1996)+
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governing the SBP2-SECIS RNA interaction, in partic-
ular the identification of the amino acids important for
SECIS RNA recognition+ Three main findings emerged
from our investigations+ The first one was the discovery
that SBP2 shares the same RBD as the mammalian
15+5 kD protein (or the Snu13p ortholog in yeast) that
binds the 59 stem-loop of the spliceosomal U4 snRNA+
In corollary, the second finding concerned the similar-
ities detected in the core structures of the SECIS RNA
and U4 snRNA bound by the SBP2 and 15+5 kD pro-
teins, respectively+ It is precisely these protein and RNA
similar features, combined with secondary structure pre-
diction of hSBP2 and the information from the crystal
structure of the U4 snRNA-15+5 kD complex (Vidovic
et al+, 2000), that enabled the prediction of amino acids
in the human SBP2 protein that should be critical to
SECIS RNA binding+ In the absence of a structural
model for the SBP2-SECIS RNA complex, the structure-
guided strategy offers the advantage of targeting amino
acids that contribute to the interaction with the RNA,
rather than those participating in the overall folding of
the protein+ This was verified by in silico investigation of
the 15+5 kD three-dimensional structure; indeed the
side chains of the amino acids corresponding to those
mutated in hSBP2 do not establish intramolecular con-
tacts important to the overall folding of the 15+5kD+
Gly3815+5 (corresponding to Gly676SBP2) is particular in
that it adopts a conformation that is not allowed to any
other amino acid at the b1-a2 junction+ This invariant
amino acid is thus important for folding the RBD, but is
also in close contact to the G-A pairs+ Assays of the
RNA-binding activities of the hSBP2 mutants allowed
the identification of 12 amino acids whose substitu-
tion led to a complete or partial loss of RNA binding+
From this data, we inferred that the four amino acids
Gly676SBP2, Glu679SBP2, Glu699SBP2, Arg731SBP2 are

primordial to the interaction and that the other eight
participate in SECIS RNA binding, constituting the third
finding of this report+

Our structure-guided strategy allowed the identifica-
tion of hSBP2 amino acids important for recognition of
the SECIS RNA (Fig+ 4B)+Obviously, the detailed RNA–
protein contacts cannot be predicted by this type of
study+However, solution structure probing of the SECIS
RNA and SECIS RNA-SBP2 complex (Walczak et al+,
1996; Fletcher et al+, 2001), combined with the work
presented here, suggest the putative interaction scheme+
Gly676SBP2 and Arg678SBP2 could interact with G3;
Glu679SBP2 with G3 and G7; Lys682SBP2 with G7;
Leu677SBP2,Glu699SBP2,Asp709SBP2,Arg731SBP2, and
Ile749SBP2 with U2; and Val744SBP2 with A1+ Interest-
ingly, the solution structure of the complex between the
yeast ribosomal protein L30 and its autoregulatory site
in the L30 mRNA was solved by NMR spectroscopy
(Mao et al+, 1999)+ L30 binds to an internal loop con-
stituted by a complex array of non-Watson–Crick base
pairs whose three-dimensional structure differs from
that of the U4 snRNA+ In this RNA–protein complex,
it is remarkable that Gly26L30, which corresponds to
Gly3815+5 and Gly676SBP2 (see Fig+ 1), is central to
the interaction with the mRNA+ Substitution of the
Gly676SBP2 homologs in the rat SBP2 and 15+5 kD
proteins led to detrimental effects as well (Nottrott et al+,
1999; Copeland et al+, 2001), in good agreement with
the important role of this amino acid in the L7A/L30
family for both the structure of the RNA binding domain
and recognition of the sheared G-A base pairs+ Addi-
tionally, important roles were established in the L30-
mRNA complex for Tyr27L30 (corresponding to Ala3915+5

and Leu677SBP2) and Lys28L30 (corresponding to
Asn4015+5 and Arg678SBP2)+ This is consistent with our
results for Leu677SBP2+ However, our data did not sug-
gest a major role for Arg678SBP2, highlighting subtle
variations in the RNA–protein recognition schemes+We
found that substitution of Lys732SBP2 and Ser745SBP2

affected the SECIS RNA binding, although the 15+5 kD
homologous residues do not establish contacts with
the U4 snRNA (Vidovic et al+, 2000)+ It is unlikely that
the mutations led to misfolding of hSBP2 because we
could verify in silico that the corresponding amino acids
Gln8715+5 and Ser9615+5 do not establish intramolecular
contacts (Fig+ 3B)+ One explanation could arise from
the intimate RNA structure of the core and its vicinity
that may not be strictly identical in both RNAs, partic-
ularly at the asymmetrical loop+ Lys732SBP2 and
Ser745SBP2 could thus be involved in the specialization
for the SECIS RNA interaction+

The results of our mutagenesis study are in good
agreement with a previous work assaying mutant SECIS
RNAs for their ability to bind SBP2 (Fletcher et al+,
2001)+ It was found that the U2C mutation, or the G3-
A8/A4-G7 changes to A3-G8/G4-A7 or A3-A8/G4-A7,
impaired formation of the SBP2-SECIS RNA complex+

TABLE 1 + Quantitation of the binding activities of the hSBP2 mutant
proteins from the gels shown in Figure 5+a

hSBP2 Mutants Monomer Dimer

Wild-type 100 100
E699A 13+5 0
R731A 0 0
G676A 19 16
E679A 19 28
L677A 57 27
R678A 64 67
K682A 56 78
D709A 46 76
K732A 57 46
S745A 56 51
V744A 51 100
I749A 47 100

aThe percentage of monomeric and dimeric complexes was cal-
culated as the ratio of the values obtained with the highest amount of
hSBP2 (even lanes in Fig+ 5A, B) to those of the wild-type monomeric
and dimeric complexes taken as 100% (lanes 4)+
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This underscored the importance of U2 as well as of
G3 and G7 in the sheared G3-A8/G7-A4 base pairs+
Altogether, the data presented may suggest that SBP2
recognizes the SECIS RNA sheared G-A base pairs in
a manner similar to the 15+5 kD protein in the 15+5
kD-U4 snRNA complex+ It is worth mentioning that U31
is flipped out in the crystal structure (Vidovic et al+,
2000; Fig+ 3B) whereas structure probing of the SECIS
RNA proposed that U2 is not bulged out but rather
base paired with U9 (Walczak et al+, 1996; see also
Fig+ 2)+ Indeed, one could envisage the unpairing of U2
by an induced fit of the SECIS RNA upon SBP2 binding+

It was recently reported that U4 snRNA, RNase MRP
RNA, human SRP 7SL RNA, and several ribosomal
RNA regions contain a new secondary structure motif
called the kink-turn, or K-turn motif (Klein et al+, 2001)+
These authors proposed that the L30 mRNA binding
site can also adopt the K-turn motif+ It is characterized
by an asymmetrical internal loop flanked by a regular
helix on one side and an irregular helix containing
sheared G-A base pairs on the other (Fig+ 2)+ A kink
occurs at the internal loop, causing a sharp turn in the
RNA helix+ Interestingly, the K-turn in U4 snRNA and
L30 mRNA is the binding site for the 15+5 kD/Snu13p
and yeast L30 proteins, respectively+ It was proposed
that box C/D snoRNAs also contain a K-turn motif (Klein
et al+, 2001), in line with the binding of 15+5 kD/Snu13p
to this type of snoRNA (Watkins et al+, 2000)+ Structure
probing data combined with computer modeling led to
a three-dimensional structure model for the SECIS RNA
where a kink occurs at the internal loop, showing the
G-A base pairs well accessible to the solvent (Walczak
et al+, 1996)+ Considering this particular structural fea-
ture of the SECIS RNA and the binding of SBP2 at the
G-A base pairs (Fletcher et al+, 2001), we speculate
that the SECIS RNA is another member of the RNA
family containing a K-turn motif+

We observed the formation of hSBP2-SECIS RNA
complexes containing monomeric and homodimeric
forms of hSBP2+ This observation is in line with our
earlier report using the recombinant hSBP2 protein pro-
duced in E. coli (Lescure et al+, 2002a)+ Using glycerol
gradient centrifugation, Copeland et al+ (2001) also ob-
served homodimerization of the rat SBP2 protein+ Tak-
ing into account that SBP2 binds not only the SECIS
RNA but also the 28S ribosomal RNA via a ribosome-
binding domain located N-ter to the RBD, these au-
thors hypothesized that homodimers could represent
the functional form of SBP2+ It has not been reported
yet that other members of the L7A/L30 family possess
the capacity to homodimerize, but SBP2 could be unique
in this respect: it is a rather large protein (854 amino
acids for the full-length protein and 512 amino acids in
the hSBP2 fragment used in this study) compared to
the relatively small size of the 15+5 kD (128 amino
acids) and other proteins of the L7A/L30 family+ Actu-
ally, homodimerization of RNA-binding proteins is not

unprecedented, and was already reported for RRM-
containing proteins such as U1A, hnRNP A1, the La
autoantigen and eIF4B (reviewed in Méthot et al+, 1996;
Craig et al+, 1997; Puglisi, 2000)+

There is a growing importance of functionally diverse
eukaryotic proteins containing the L7A/L30 RBD+ In
fact, this domain was recently renamed Pelota
(Anantharaman et al+, 2002) after the name of a locus
that encodes a protein required for meiotic cell division
in Drosophila (Eberhart & Wasserman, 1995)+ How-
ever, our amino acid sequence alignment of the L7A/
L30 family of proteins with Pelota orthologs indicated
that the latter contain sequence similarity to only the
first 28 amino acids (with respect to hSBP2) at the
N-terminus of the L7A/L30 RBD (data not shown)+
Therefore, the blocks of homology in the C-terminal
half of the L7A/L30 domain (Fig+ 1), lacking in Pelota
proteins, may provide different binding opportunities+

Some of the members of the L7A/L30 protein family
bind, or potentially bind, RNAs with K-turn motifs+ We
have shown here that the 15+5 kD/Snu13p-U4 snRNA
and SBP2-SECIS RNA complexes exhibit structural sim-
ilarities, raising the question of how each protein can
specifically identify its cognate RNA+ This is especially
crucial in light of the following recent reports adding
evolutionary aspects to the issue+ It was found that the
archaeal ribosomal protein L7A possesses the other
function of binding the archaeal box C/D small RNA
and mammalian box C/D snoRNAs+ The archaeal L7A
protein is therefore the functional homolog to the eu-
karyotic 15+5 kD/Snu13p (Kuhn et al+, 2002; Tang et al+,
2002)+ Additionally, the Nhp2p protein that contains an
L7A/L30 RBD and is a constituent of box H/ACA
snoRNAs can also bind box C/D snoRNAs in vitro (Hen-
ras et al+, 2001)+ Distinct features in the structures of
each K-turn-containing RNA can account for the spec-
ificity of binding+ Another straightforward and not mu-
tually exclusive possibility is that every L7A/L30 RBD
contains nonconserved amino acids, specifically dedi-
cated to recognizing each individual RNA target+ Elu-
cidation of this question represents the route for future
investigations+

MATERIALS AND METHODS

cDNA constructs and site-directed
mutagenesis

To allow in vitro transcription/translation of hSBP2 wild-type
and mutant constructs, the hSBP2 cDNA was subcloned down-
stream of the T7 promoter of pBluescript II KS (2)+ To do this,
the 2+1 kb XbaI-HindIII fragment arising from phSBP2/512
(Lescure et al+, 2002a), containing an N-terminal Strep-tag II
(IBA, Germany) fused to the 512 C-terminal amino acids of
hSBP2, was inserted into pBluescript II KS (2)+ The resulting
plasmid was termed pKS-hSBP2/512+ Alanine substitution
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mutants were generated in pKS-hSBP2/512 by site-directed
mutagenesis+ Mutant constructs were entirely sequenced by
automated DNA sequencing+

Oligonucleotides used for mutagenesis were as follows:

G676A: 59-GAGAACCTCCCTCAAGGCCAACACAAGTCG
ACG-39;

L677A: 59-TTTGAGAACCTCCCTGGCCCCCAACACAAG
TCG-39;

R678A: 59-GTGTTTGAGAACCTCGGCCAACCCCAACAC
AAG-39;

E679A: 59-CAGGTGTTTGAGAACGGCCCTCAACCCCAA
CAC-39;

K682A: 59-TTTGAGCTTCAGGTGGGCGAGAACCTCCCT
CAA-39;

E699A: 59-TTTTGACTGTATCTTGGCACAGTTGGGAGA
AAT-39;

D709A: 59-TAATTGTGTGCAAAGTGGCATCCAGCCCACC
TTT-39;

R731A: 59-GCGCCCCAGAGCTTTGGCGTTGAGAGCAAA
CAC-39;

K732A: 59-ACTGCGCCCCAGAGCGGCGCGGTTGAGAG
CAAA-39;

V744A: 59-GATCCCCACCACACTGGCAGGAACTGCCTT
ATT-39;

S745A: 59-GAAGATCCCCACCACGGCGACAGGAACTGC
CTT-39;

I749A: 59-CCCATCATAGCTGAAGGCCCCCACCACACTG
AC-39+

In vitro translation

Wild-type and mutant hSBP2 proteins were generated in vitro
using TNT coupled Reticulocyte Lysate Systems (Promega)+
One microgram of each of the pKS-hSBP2/512 wild-type or
mutant plasmid DNAs was used as the template in 50 mL in
vitro transcription/translation reactions in the presence of 25 mL
rabbit reticulocyte lysate and 20 mCi of [35S]-methionine (1,175
Ci/mmol)+ The yield of [35S]-methionine incorporation was
determined by 5% TCA precipitation of 2-mL aliquots of the
reactions, followed by scintillation counting and calculation
with respect to the [35S]-methionine input+ Obtaining of the
translation products was verified by electrophoresis on 12%
SDS-PAGE+ The amount of each hSBP2 protein was quan-
titated with a Fuji BioImage BAS2000 analyzer+ To assay the
solubility of the hSBP2 mutant proteins that affected SECIS
RNA binding, constructs were transformed into E. coli BL21
(DE3) RIL+ After induction of protein synthesis, the soluble
and insoluble fractions were loaded on SDS-PAGE and an-
alyzed by western blotting using an anti-Strep-tag II antibody
(IBA, Germany)+

Electrophoretic mobility shift assays

For in vitro transcription of the human SePN1 and rat GPx
SECIS RNAs, plasmids pT7BcKSelN and pRGPxBcK were
linearized by EcoRI (Walczak et al+, 1998; Fagegaltier et al+,
2000b)+ Internally labeled SePN1 and GPx SECIS RNAs were
obtained by T7 transcription with [a-32P]-ATP (3,000 Ci/
mmol) according to Hubert et al+ (1996)+ Formation of the
SePN1 SECIS RNA-hSBP2 and GPx SECIS RNA-hSBP2

complexes were conducted as described in Copeland et al+
(2001) and Fletcher et al+ (2001)+ Routinely, 150,000 cpm
(2+4 fmol) of 32P-labeled SECIS RNAwere incubated for 30 min
at 30 8C with 20 or 120 fmol of in vitro translated wild-type or
mutant hSBP2 protein, in 20 mL of phosphate buffer saline
pH 7+4, 10 mM DTT+ RNA–protein complexes were sepa-
rated by 4% nondenaturing polyacrylamide gel electropho-
resis in Tris-glycine, pH 8 (Fletcher et al+, 2001)+ The intensities
of free and bound RNAs were quantitated with a Fuji Bio-
Image BAS2000 analyzer+Two independent experiments were
performed for both SePN1 and GPx SECIS RNAs+ Quanti-
tation of the results varied within 15%+
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ABSTRACT

By binding to SECIS elements located in the 30-UTR
of selenoprotein mRNAs, the protein SBP2 plays
a key role in the assembly of the selenocysteine
incorporation machinery. SBP2 contains an
L7Ae/L30 RNA-binding domain similar to that of
protein 15.5K/Snu13p, which binds K-turn motifs
with a 3-nt bulge loop closed by a tandem of
G.A and A.G pairs. Here, by SELEX experiments,
we demonstrate the capacity of SBP2 to bind such
K-turn motifs with a protruding U residue. However,
we show that conversion of the bulge loop into
an internal loop reinforces SBP2 affinity and to
a greater extent RNP stability. Opposite variations
were found for Snu13p. Accordingly, footprinting
assays revealed strong contacts of SBP2 with
helices I and II and the 50-strand of the internal
loop, as opposed to the loose interaction of Snu13p.
Our data also identifies new determinants for SBP2
binding which are located in helix II. Among the
L7Ae/L30 family members, these determinants
are unique to SBP2. Finally, in accordance with
functional data on SECIS elements, the identity of
residues at positions 2 and 3 in the loop influences
SBP2 affinity. Altogether, the data provide a very
precise definition of the SBP2 RNA specificity.

INTRODUCTION

Based on ribosomal subunit 3D-structure analysis,
K-turn motifs were found to be frequent protein-
recognition motifs in ribosomal RNAs (1). A total of

8 K-turn motifs were detected in the 23S rRNA from
Haloarcula marismortui and the 16S rRNA from Thermus
thermophilus (1–4). K-turn motifs are all characterized by
a helix I-loop-helix II structure, and the formation of two
non-Watson–Crick base pairs (most frequently G.A and
A.G) within the internal loop extends helix II (1,5). Due to
the stacking onto helix I or helix II of residues in the
internal loop, one of the RNA strand forms a sharp angle
(1,5). Only one of the residues in the loop is projected out
of the K-turn structure and is located in a pocket of
the protein in RNA–protein complexes. In addition to
their presence in rRNAs, K-turn motifs are also found in
the U4 and U4atac spliceosomal snRNAs (5,6) and
in the numerous C/D box snoRNAs (7), that guide
20-O-methylation and cleavages in pre-ribosomal RNA
(for review, 8). K-turn motifs were also recently found
in both C/D and H/ACA sRNAs, that guide rRNA
modifications in archaea (9–11). They are thus very
ancient RNA-binding motifs. Both in eukarya and in
archaea, small RNAs containing K-turn motifs assemble
into RNP particles and the K-turn motifs play a central
role in protein assembly (7,9–15). More specifically,
the ribosomal L7Ae protein in archaea or its eukaryal
homolog, the Snu13p (yeast)/15.5K (human) protein,
first recognizes the K-turn structure and the complex
formed then serves as a platform for assembly of the other
proteins (9,10,12–19).

The Snu13p/15.5K and L7Ae proteins belong to
the L7Ae/L30 protein family, which is characterized by
the presence of an L7Ae/L30 RNA-binding domain
(6,20). The founding member of this protein family, the
yeast L30 ribosomal protein recognizes a peculiar K-turn
motif in its own pre-mRNA (21–23). One difference
between the yeast L30 RNA–protein complex, and the
Snu13p/15.5K or L7Ae RNA–protein complexes is the
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identity of the nucleobase located in the protein pocket.
Whereas, a strong preference for an U residue is observed
for proteins Snu13p/15.5K and L7Ae (7,24–26), C and
A residues are preferentially accommodated in the
yeast L30 protein pocket (27). The possibility to bind
a G residue was however recently observed (28).

In vertebrates, SECIS-binding protein 2, another
member of the L7Ae/L30 protein family, binds SECIS
elements in mRNAs (29,30). The SECIS elements contain
determinants needed for selenocysteine incorporation
into selenoproteins (31,32). Selenocysteine incorporation
involves reprogramming of a nonsense UGA codon into a
codon recognized by the selenocysteine specific tRNASec.
Understanding the mechanism of selenocysteine incor-
poration into proteins is important as they are key players
in the antioxidant defense system (for review, 33).
They are also key participants in a variety of other
systems including thyroid hormone metabolism, muscle
function, transportation and distribution of selenium
to remote tissues and can have roles as structural proteins
(for reviews, 34–37). In eukarya, the SECIS elements and
SBP2 are two essential components of the selenocysteine
incorporation machinery. All SECIS elements consist
of a hairpin structure composed of two helices I and II,
separated by an internal loop. A highly conserved cluster
of four non-Watson–Crick base pairs is located in helix II.
It contains a tandem of G.A and A.G pairs, which
is needed for SBP2 binding (29,30). This cluster of
non-Watson–Crick pairs is an essential determinant for
selenocysteine incorporation (31,32). A highly conserved
AAR sequence present in a loop of all SECIS elements
is also important for selenoprotein synthesis in vivo,
but not for binding of SBP2 in vitro (30,38). As SBP2
also binds the specific mSelB/EFSec elongation factor,
it is proposed to recruit this dedicated elongation factor
in a complex formed with the selenocysteyl-tRNASec to
the ribosomes (39–41). Additionally, according to a recent
investigation on the selenocysteine incorporation machin-
ery (42), the ribosomal protein L30 is able to bind the
SECIS motif by displacing protein SBP2. This substitution
would facilitate the interaction of the Sec-tRNASec

with ribosomes.
A prerequisite to fully understand the SBP2 activity is

thus to obtain a more complete picture of the RNA
sequence and structural determinants required for SBP2
binding. To this end, we combined the SELEX approach
and site-directed mutagenesis experiments. As the RNAs
recovered after SELEX experiments could form canonical
K-turn motifs with a protruding U residue, we compared
the RNA-binding properties of the human SBP2
protein with those of a well-characterized member of the
L7Ae/L30 protein family, the S. cerevisiae Snu13p
protein. This protein recognizes K-turn motifs in U4
snRNA, the C/D box snoRNAs and U3 snoRNA.
Altogether, we show here that in contrast to protein
Snu13/15.5K, SBP2 preferentially binds RNA motifs
with a large internal loop. In addition, we demonstrate
the existence of previously undetected important determi-
nants for RNA recognition by SBP2 that are located
in helix II.

MATERIALS AND METHODS

Strains and growth conditions

The Escherichia coli TG1 strain was used as the host
strain for plasmid construction. Growth was performed
at 378C in Luria Broth medium, complemented with
100 mg/ml of ampicillin when necessary. The E. coli strain
BL21-CodonPlus (Stratagene) was the host strain for
production of the recombinant GST/Snu13p, GST/L7Ae
and GST/C-SBP2 proteins.

Recombinant DNA

Plasmids pT7SelN (40), pUC18::U3A�2,3,4 (26) and
pyU4 (43) were used for the production of matrices for
in vitro transcription of the SelN, yU3B/C and yU4
RNAs, respectively. The yU3B/C and yU4 matrices were
obtained by PCR amplification, under conditions
previously described (26). Oligonucleotides yU3B/C-50,
yU3B/C-30, yU4-50 and yU4-30, given in Table 1 of the
Supplementary Data, were used as primers. Plasmids
pGEX-6P-1::SNU13, pGEX-6P-1::L7AE (44) and
pGEX-6-P1::C-SBP2 (this work) were used for production
of the recombinant GST/Snu13p, GST/L7Ae and
GST/C-SBP2 proteins, respectively. Plasmid pA11 was
used for amplification of the PCR fragment coding for
region 515–854 of human SBP2 protein (45). DNA
fragments amplified by RT-PCR from RNAs obtained
after the fourth cycle of the SELEX experiment were
cloned into plasmid pCR2.1 (Invitrogen). Mutagenesis
of the RNA Se1 coding sequence was performed by the
PCR-based site-directed strategy (primers are listed in
Table 1 in the Supplementary Data).

In vitro transcription

The EcoRI linearized pT7::SelN plasmid was used as
the template for SelN RNA transcription. The yU3B/C,
yU4, Se1-Se7 and Se1 variant RNA-coding sequences
were transcribed from PCR amplified DNA fragments
obtained as described above. Transcriptions were carried
out on 1 mg of plasmid DNA linearized with EcoRI or
500 ng of PCR product, in a 15 ml reaction as described
in Marmier-Gourrier et al. (26).
RNAs were 50-end labeled using 10 units of T4 poly-

nucleotide kinase (MBI-Fermentas), 20 pmol of RNA,
5 pmol of [g-32P] ATP, in a 10-ml reaction mixture
containing 10mM MgCl2; 5mM DTT; 0.1mM spermi-
dine; 0.1mM EDTA; 50mM Tris-HCl pH 7.6 at 378C.
The 50-end labeled RNAs were purified on a 10%
denaturing polyacrylamide gel.

Recombinant protein preparation

The recombinant GST/Snu13p and GST/L7Ae fusion
proteins were produced in E. coli as described in Marmier-
Gourrier et al. (26). The same procedure was used for the
production of C-SBP2. For purification of untagged
proteins, they were bound on glutathione-sepharose 4B
as previously described (44) and cleaved on the beads
using 80 U of PreScission protease (Pharmacia) per ml
of glutathione-sepharose bead suspension, under pub-
lished conditions (44). The purified proteins were dialyzed

Nucleic Acids Research, 2007, Vol. 35, No. 6 1869



against buffer D (150mM KCl; 1.5mM MgCl2; 0.2mM
EDTA; 20mM HEPES, pH 7.9; 10% glycerol) and
aliquots were stored at �808C.

SELEX experiment

The starting DNA matrix containing a 18-nt-long
degenerated sequence was produced by PCR amplifica-
tion, using two partially complementary oligonucleotides
(Table 1 in Supplementary Data): SELEX N18 with a 18-
nt-long degenerated sequence and SELEX-50, that gener-
ated a T7 RNA polymerase promoter. PCR amplification
was as previously described (26), except that MgCl2 was
added at a 4mM concentration in the incubation buffer.
About 500 ng of amplified DNA was used for in vitro
transcription with T7 RNA polymerase (26). Transcripts
were purified by electrophoresis on a 6% denaturing
polyacrylamide gel as in Mougin et al. (46). About
0.2 nmol of transcripts were used for the first round of
selection. To eliminate RNA molecules having an affinity
for the glutathione-sepharose beads, the RNA mixture
was first incubated with 30 ml of beads in the absence
of the GST/C-SBP2. For RNP complexes, 0.1 nmol of
treated RNAs was incubated with 0.01 nmol of purified
GST/C-SBP2 for 30min at 48C, in 20 ml of buffer D, in the
presence of 2 mg of a yeast tRNA mixture (Roche). The
mixture was then incubated with 15 ml of glutathione-
sepharose beads (Amersham) equilibrated in buffer
D. After extensive washing with buffer D, the selected
RNAs were released by a 30-min incubation at 378C, with
20 mg of proteinase K in buffer D. They were extracted
with a phenol–chloroform mixture, ethanol precipitated,
dissolved in sterile water, hybridized with 50 pmol of
SELEX-30 primer, ethanol precipitated, and finally
reverse-transcribed with 25 U of AMV Reverse transcrip-
tase (Q.Biogene) for 30min at 428C. Next, 30 cycles
of PCR amplification were performed in the presence
of primers SELEX-50 and SELEX-30 (50 pmol each).
The amplified DNA fragments were gel purified
and used as the matrix for in vitro transcription.
At each cycle of the SELEX experiment, a filter-binding
assay was performed after incubation of the uniformly
labeled transcripts produced from the DNA pool with
the GST/C-SBP2 protein. At the fourth cycle of the
amplification-selection experiment, DNA fragments were
cloned into plasmid pCR2.1 (Invitrogen). Plasmids were
prepared from 30 randomly selected clones and sequenced
by the dideoxysequencing method.

Electrophoretic mobility shift assay

About 5 fmol of in vitro transcribed 50-end labeled RNAs,
mixed with 2 mg of yeast tRNAs (Roche), were denatured
during 10min at 658C in 15 ml of buffer D containing
1.5mM of MgCl2, followed by a slow cooling to
room temperature for renaturation. To test for the effect
of Mgþþ on complex formation, the Mgþþ concentration
was adjusted to 1.5, 5, 10, 15 or 20mM by addition
of MgCl2, without modification of the final volume of
incubation and a control experiment was performed in
the absence of Mgþþ. The Snu13p or C-SBP2 recombi-
nant proteins were added at various concentrations

(from 0 to 4 mM) and the mixture was incubated for
30min at 48C. RNA–protein complexes were fractionated
by electrophoresis on 6% non-denaturing polyacrylamide
gel as in Marmier-Gourrier et al. (26). The amount of
radioactivity in the bands, corresponding to the free and
complexed RNA, was estimated using a PhosphorImager
and the ImageQuant Software. Using these values,
apparent Kds were determined with the SigmaPlot
Software (SPSS Science Software). For competition
assays with an excess of cold RNA or protein, protein–
RNA complexes were preformed as mentioned above,
and various amounts of cold competitor RNAs or
competitor proteins were added, followed by a 30-min
incubation at 48C. The remaining complexes were
subjected to gel electrophoresis.

RNA secondary structure analysis

In vitro transcribed 50-end labeled RNAs (25 fmol)
were pre-incubated in buffer D for 5min at 658C, in the
presence of 2 mg of tRNA followed by a slow cooling
for renaturation. The renatured RNAs were then incu-
bated for 30min at 48C in the absence or presence of
C-SBP2 (100, 50 and 30 pmol, respectively), Snu13p
(10, 100 and 30 pmol, respectively) or L7Ae (10 pmol),
in 10 ml of buffer D. Digestion was for 6min at 208C,
in the presence of 0.8 U of T1 RNase (Roche), 2.4 U of
T2 RNase (Gibco) or 0.001 U of V1 RNase (Kemotex).
V1 RNase reactions were stopped by addition of 100mM
EDTA, followed by phenol extraction. T1 and T2 RNase
digestions were stopped by addition of 20 mg of tRNA,
followed by phenol extraction and ethanol precipitation.
For production of a ladder, an alkaline hydrolysis of
the naked RNA was performed for 5min at 968C, using
10 fmol of RNA dissolved in 1 ml of 100mM sodium
bicarbonate. The cleavage products were fractionated by
electrophoresis on a 10% polyacrylamide–8M urea gel.

The free energies of the 2D structures of the selected
RNAs were calculated at 378C and in 1M NaCl with the
M-fold software (46).

RESULTS

Protein C-SBP2 does not interact with K-turn motifs
recognized by Snu13p

As ribosomal protein L30 was shown to displace SBP2
from SECIS motifs, our first goal was to test whether
SBP2 can bind RNA targets of members of the L7Ae/L30
protein family. The large human SBP2 protein (854 aa)
has a low solubility. As we wanted to study the RNA-
binding property of its L7Ae/L30 domain, we used a
truncated version containing this domain. This human
SBP2 fragment encompassing residues 515–854 was
produced in a soluble form in E. coli. It will be hereafter
designated as C-SBP2. To test its capacity to bind SECIS
RNAs, we used the well-characterized SECIS RNA motif
from the human selenoprotein N mRNA (SelN RNA)
(Figure 1A) (30). RNP complexes were formed by
incubation of uniformly labeled SelN RNA (5 fmol) with
C-SBP2, at concentrations ranging from 50 to 500 nM,
in the presence of 2 mg of tRNAs (see the Materials and
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Methods section for the incubation conditions).
As evidenced by gel electrophoresis performed under
non-denaturing conditions (Figure 1B), C-SBP2 formed
an RNP complex with the SelN RNA and the apparent

Kd was of 160 nM. Next, we tested the capacity of this
protein to bind K-turn motifs targeted by Snu13p.
Two well-characterized RNAs were used: RNA yU3B/C
containing the B/C motif of yeast U3 snoRNA (26), and
RNA yU4 containing the K-turn motif of yeast U4
snRNA (see the Materials and Methods section for
their production). Complexes were formed under the
same conditions as for SelN RNA. As a control, the same
experiment was performed with Snu13p. Gel electropho-
resis revealed the absence of binding of C-SBP2 to both
Snu13p RNA targets, even at a high protein concentration
(Figure 2). As in contrast, Snu13p was found to bind
the SelN RNA with an apparent Kd similar to that of
C-SBP2 (Figure 1B), we concluded that to bind C-SBP2,
the RNA should have sequence or structure peculiarities,
which are not required for association with Snu13p.

A limited diversity of RNAs selected by C-SBP2
in SELEX experiments

To progress in the understanding of how the SBP2
L7Ae/L30 domain recognizes RNA, we used the
yU3B/C RNA, and tried to define by SELEX experiments
which kinds of mutations can convert this RNA into a
C-SBP2 target. To this end, we degenerated a 18-nt long
fragment in the central part of the yU3B/C coding region.
The transcripts produced from this degenerated
matrix (N18 RNA) were subjected to selection with a
GST/C-SBP2 protein fusion that was bound to
glutathione-sepharose beads. In spite of the degenerated
sequence, all the RNAs were expected to contain the
long-terminal stem of RNA yU3B/C (Figure 2A). As the
same kind of experiment has previously been performed
with Snu13p (47), we also expected to compare the RNA
motifs selected by C-SBP2 and by Snu13p. To initiate
the selection cycles, we used 5 mg of degenerated RNA
mixture, so that each possible RNA sequence was
expected to be present 2300 times (47). As a first step,
RNAs that might have an affinity for the matrix were
eliminated from the RNA pool by incubation with the
glutathione-sepharose beads in the absence of protein.
Following each selection cycle, the interaction of the
pool of selected RNAs with the GST/C-SBP2 fusion was
tested by gel-shift assays (conditions for the amplification–
transcription–selection cycles are described in the
Materials and Methods section). A strong increase of
the amount of RNAs showing an affinity for the fusion
protein was observed after the fourth cycle of selection.
After this cycle, the totality of the selected RNAs was
subjected to gel electrophoresis under non-denaturing
conditions, and the RNA mixture contained in the slice
of gel corresponding to RNPs was extracted, converted
into cDNAs, and cloned into plasmid pCR2.1. After
transformation of E. coli TG1 cells, thirty colonies were
randomly selected among4100 colonies obtained.
Several of them contained plasmids with identical

inserts (Figure 3A). Only seven distinct sequences
were found (RNAs denoted Se1 to Se7) (Figure 3A).
In addition, three of the sequences that corresponded to
the most abundant clones were very similar, suggesting
that their small differences were most probably generated
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Figure 1. C-SBP2 and Snu13p interact with SelN RNA.
(A) The secondary structure of the SelN RNA motif is according
to Fagegaltier et al. (52). The G.A sheared base pairs are shown in
gray and helices I and II are indicated. (B) The affinity of C-SBP2
and Snu13p for SelN RNA was tested by gel-shift assay using
5 fmol of labeled SelN RNA and protein concentrations ranging from
0 to 500 nM, as indicated below the lanes. Incubation conditions are
described in the Materials and Methods section. RNP formation was
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The apparent Kd values (indicated above the autoradiograms)
were calculated with the SigmaPlot Software (SPSS Science Software),
by measuring the radioactivity signals corresponding to the free and
bound RNAs.
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by RT-PCR errors in the course of the amplification.
Therefore, only four main classes of Se RNAs were
selected in the experiment (Figure 3A). This limited
diversity of the selected sequences was one major differ-
ence, compared to the SELEX experiment performed with
Snu13p (31 very different sequences were obtained starting
from the same initial RNA mixture). This suggested the
existence of strong sequence and/or structural constraints
for SBP2 recognition. Three of the less frequent Se RNAs
had a different length as compared to the initial RNAs:
RNA Se2 (Figure 3A) contained an additional residue in
the degenerated sequence, whereas RNA Se1 and Se3
lacked two residues compared to the initial RNAs.
In addition, all the Se RNAs had a G instead of a
U residue at position 38 in the conserved sequence.
The same U38G base substitution was also found in
several of the RNAs selected by the GST/Snu13p protein
(47). By using gel-shift experiments, we verified that
the seven distinct Se RNAs, that were selected, showed
an affinity for the untagged C-SBP2 protein (Figure 3C).
A wide range of apparent Kd values was observed
(from 500 nM to42000 nM) (Figure 3C).

The selected RNAs all form canonical K-turn motifs

In order to understand the structural reasons for these
different affinities, the possible folding of the seven
selected RNAs was investigated. Remarkably, each of
them could form a canonical K-turn structure with
tandem G.A and A.G base pairs and a 3-nt bulge
including a U residue at position 3. Most of the proposed
structures were verified by enzymatic probing (Figure 4A).

They are represented in Figure 4B, where they are
classified according to the values of the established
apparent Kds. The free energies of the proposed 2D
structures at 378C in 1M NaCl were also calculated by
using the M-Fold software. Based on these structures,
nts 17–21 and 38–39 correspond to residues 1–5 and 6-7
of the K-turn motif. Hence, residues 1 and 2 in the bulge,
the A residue of the first G.A pair in stem II and one
U residue of the third pair in this stem corresponded
to invariant residues in the starting RNA mixture.
The G residue of the A.G pair corresponded to the
above-mentioned U to G mutation at position 38 in
the constant region. This G residue might have been
generated by misincorporation in the course of the
amplification cycles. Its selection in all the RNAs is
in agreement with the high functional importance of
the A.G pair in K-turn formation. All the selected RNAs
had an identical UGAU sequence from position 19 to 22
in the randomized segment, which demonstrated a strong
pressure for the selection of a perfectly canonical K-turn
structure with two A.G and G.A pairs, and a U residue at
position 3 in the bulge. In all the selected RNAs, except
RNA Se3 which contains a G.U pair, the constant U37

residue was always facing a U or a C residue in helix II.
Interestingly, a U.U pair was almost always selected at
this position of helix II in the SELEX experiment
performed with Snu13p (47). Requirement of a non-
Watson–Crick pair on top of the G.A and A.G pairs
for binding of C-SBP2 may explain the absence of binding
of C-SBP2 to yU4 RNA which has a G–C pair at this
position in helix II (Figure 2B). Finally, in all the selected
Se RNAs, helix II contained at least two Watson–Crick
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base pairs. They are most frequently (RNAs Se3, 4, 5, 6
and 7) stacked on the three non-Watson–Crick base pairs.
In agreement with the absence of binding of C-SBP2 to
yU3B/C RNA (Figure 2A), none of the selected RNAs

had a bulge in the 30 strand and a short helix I. In contrast,
no restriction on the size of the bulge, or on the length
of helices I and II, was found in the SELEX experiment
performed with Snu13p (47). Altogether, the data

Pool 0 RNA

N18 5′ -GGACCUUUGUACCCCAGANNNNNNNNNN.NNNNNNNNUUAUGGGUACAAAUGGCAG-3′ 

WT  5′ -GGACCUUUGUACCCCAGAGUGAGAAACG.CGAUGAUCUUAUGGGUACAAAUGGCAG-3′ 

N˚ Selected Sequences:
1   5′ -GGACCUUUGUACCCCAGAUGAUGGCUUC...ACUGCUUGAUGGGUACAAAUGGCAG-3′ (1)
2   5′ -GGACCUUUGUACCCCAGAUGACGGCUCAUUUCGUGCUUGAUGGGUACAAAUGGCAG-3′ (1)
3   5′ -GGACCUUUGUACCCCAGAUGAUGCUUUA..UCAGGCG.GAUGGGUACAAAUGGCAG-3′ (3)
4   5′ -GGACCUUUGUACCCCAGAUGAUAGUAAA.GCGCGGCUUGAUGGGUACAAAUGGCAG-3′ (2)
5   5′ -GGACCUUUGUACCCCAGAUGAUAGUGAG.GCGCGGCUUGAUGGGUACAAAUGGCAG-3′ (8)
6   5′ -GGACCUUUGUACCCCAGAUGAUAGUAAG.GCGCGGCUUGAUGGGUACAAAUGGCAG-3′ (13)
7   5′ -GGACCUUUGUACCCCAGAUGAUCCGACG.CGCUUUGGUGAUGGGUACAAAUGGCAG-3′ (2)

10 20 30 40 50

Se1   5′ -GGACCUUUGUACCCCAGAUGAUGGCUUC...ACUGCUUGAUGGGUACAAAUGGCAG-3′ (1)
h SelN 5′ -...GCCCAUGAUGGCUG.....CAGCUUGAUGUCUU...-3′ 
r GPx 5′ -...UUCCAUGACGGUGU.....ACACCUGAUUUCCA...-3′ 
r 5′ DI          5′ -...GUUUAUGAUGGUCA.....UGACUUGAUUUUUA...-3′ 
r PHGPx 5′ -...ACUCAUGACGGUCU.....AGUCCCGAGGACCU...-3′ 
r SelP 5′ -...AUUGAUGAGAACAG.....CUGUUGGAUAGCUC...-3′ 
m Sel15         5′ -...AUUAAUGAGGAUUA.....AGAUCUGAUAAUUG...-3′ 
h SelD 5′ -...GUUAAUGACGUCUC.....GAGGCAGAGCAAGC...-3′ 
d SelD 5′ -...ACUUAUGAGGAUUA.....UAGUCUGAACCUUA...-3′ 
m SelD 5′ -...GAUAAUGAUGUCUC.....GAGGCUGAACAAAC...-3′ 
h SelX 5′ -...CUGCAUGAUCCGCU.....AGUGGGGAUGGUCU...-3′ 
h SelT 5′ -...CAUUAUGAAGGCCU.....AGACCAGAUGCUUU...-3′ 
h SelZ 5′ -...GAUGAUGACGACCU.....AUGUCCGAGCCCCC...-3′ 
b TrxR2         5′ -...GAUGAUGAGGACCU.....AUGUCUGAACCCCU...-3′ 
h TR3           5′ -...GAUGAUGACGACCU.....AUGUCCGAGCCCCC...-3′ 
m TrxR1         5′ -...GUCCAUGAAGUCAC.....GUGACAGAAGAGCU...-3′ 
C.e. TrxR 5′ -...CUUUGUGACGACCU.....UGGUCUGAUGCGCC...-3′ 
z SelW 5′ -...AACAAUGAUGGUGA.....UUGCUUGAUGCUCU...-3′ 
m Sel15         5′ -...AUUAAUGAGGAUUA.....AGAUCUGAUAAUUG...-3′ 
h Sel15         5′ -...GUUAAUGAAGACUA.....GGAUCAGAUACAUA...-3′ 
h SelY 5′ -...GCGGAUGAUAACUA.....UGGUUGGAUGUAGU...-3′ 
m D12           5′ -...GCGAAUGAUAACUA.....UGGUUGGAUGUAGU...-3′ 
c D12           5′ -...GUUUAUGAAGAGCA.....UGUUCAGAUGCUCU...-3′ 
X.l. D13        5′ -...GCAAAUGACGACCG.....GUGUCCGACAUCAA...-3′ 
c D13           5′ -...CUUUGUGAUGACCG.....GUGUCUGAUGUUGU...-3′ 
O.n. D13        5′ -...CUCUGUGAAGUUCG.....GACACUGAUGUUUC...-3′ 
r PHGPx 5′ -...ACUCAUGACGGUCU.....AGUCCCGAGGACCU...-3′ 
p PHGPx 5′ -...ACCCAUGACAGUCU.....AGACUCGAGAACCU...-3′ 

Consensus       5′ -........UGAPyGPu........PyCUGA........-3′ 

d: drosophila, m: mouse, b: bovine, c: chicken, c.e.: c. elegans, 
z: zebrafish, X.l.: X. laevis, o.n.: O. niloticus, r: rat, p: porcine

A

B

Helix II

123 45 6 5 4321

Figure 3. Sequences of the RNAs recovered from the SELEX experiment and test of their affinities for C-SBP2. (A) Alignment of the WT yU3B/C
RNA sequence with the degenerated N18 RNA and the selected Se1-Se7 RNAs sequences. Nucleotides in Se1-Se7 RNA, are numbered according to
the positions of the homolog nucleotides in the WT yU3B/C RNA. The number of sequenced plasmids encoding each selected RNA is indicated in
brackets on the right of the sequences. The nucleotides corresponding to the constant sequence are shown in gray, nucleotides in the degenerated
sequence and nucleotides mutated during the RT-PCR cycles are shown in black. The GA dinucleotides are underlined. (B) The nucleotide sequences
of a series of SECIS motifs from various genes and species (30,52) were aligned with the Se1 RNA sequence taking as references the UGA and GA
conserved nucleotides of the K-turn structure (bold characters). A consensus sequence of the SECIS K-turn motifs is deduced from the alignment
and indicated below. The positions of the conserved nucleotides in the two strands of helix II are indicated (C) Estimation of the affinity of C-SBP2
for the Se1, Se2, Se3, Se5 and Se7 RNAs by gel-shift assays. RNA–protein complexes formed with 5 fmol of labeled RNA and increasing
concentrations of C-SBP2 (as indicated below the lanes) were fractionated by gel electrophoresis as in Figure 1. The apparent Kd values are indicated
above the autoradiograms.
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suggested that C-SBP2 binding requires a higher stability
of the helices I and II compared to Snu13p binding.
Surprisingly, the three selected RNAs, which showed
the highest stabilities and also the strongest affinities for
C-SBP2, were encoded by DNA sequences that were
underrepresented among the cloned DNA sequences. This
apparent discrepancy may be explained by the fact that
RNAs Se1, 2 and 3 all have different lengths compared to
the initial RNAs. They might have been generated in a late
step of the selection procedure. The very low affinity found
for RNA Se7, which has a stability slightly higher than
those of RNAs Se4, Se5 and Se6, might be explained
by sequence differences in stem II.

Specific requirements in helix II for efficient binding
of protein C-SBP2

Prior to site-directed mutagenesis of Se1 RNA, we tested
the influence of Mgþþ concentration on C-SBP2 binding
to this RNA. Indeed, previous data (42) established
the influence of the concentration of this divalent cation
on the binding of recombinant SBP2 in vitro. C-SBP2
binding was found to be more sensitive to the presence
of Mgþþ ions than Snu13p binding. However, the 1.5mM
Mgþþ concentration present in the experimental buffer
was found to be sufficient to ensure an efficient binding of
C-SBP2 on Se1 RNA (Figure 1 in Supplementary Data).
Thus subsequent experiments were performed under these
conditions. To test the importance of the sequence of helix
II for SBP2 binding, we mutated helix II in the winner Se1
RNA. The Se1 RNA variants produced are shown in
Figure 5A. Their affinities for C-SBP2 and Snu13p were
compared by gel-shift assays. Complexes were formed
at different protein concentrations in order to define the
apparent Kd values (Figure 5B). Interestingly, Snu13p had
a very high affinity for RNA Se1. The estimated Kd

(35 nM) was similar to that found for the winner RNAs in
the Snu13p SELEX experiment (47). A lower affinity was
found for C-SBP2 (Kd of 500 nM). Most of the base

substitutions in helix II had no marked effect on Snu13p
affinity. Only the strong destabilization of helix II
generated by substitution of the fifth Watson–Crick base
pair (G-C)5 by a G.G pair had a marked deleterious effect
on Snu13p affinity (factor of 20). In contrast, several base
substitutions in helix II, (U.U)3 to (G-C)3, (G-C)5 to
(G.G)5 and (C-G)6 to (G.G)6 almost abolished C-SBP2
binding. The (G.U)4 to (C-G)4 and, to a lesser extent,
the (G.U)4 to (U.U)4 substitutions, also had a marked
negative effect. Hence, we concluded that C-SBP2 can
interact with canonical K-turn structures, provided that
helix II contains a triplet of non-Watson–Crick base pairs
including the G.A and A.G sheared pairs and at least
two consecutive Watson–Crick base pairs in helix II.
In addition, the base pairs on top of the triplet of
non-Watson–Crick base pairs should be a Pu.Py pair
(G.U, G–C or A–U). This may explain why the Se7 RNA,
which has a Py.Pu pair at this position, has a low affinity
for protein C-SBP2.

The presence of a large internal loop instead of the
bulge increases C-SBP2 affinity

The apparent Kd of the complex formed by C-SBP2
and the winner Se1 RNA was 3-fold lower than that found
for the natural SelN RNA (Figures 1 and 5B). Inspection
of the 2D structures of these two RNAs suggested
two possible explanations for the observed difference
of affinity. The presence of a long stem II in SelN RNA,
and/or the presence of a large internal loop instead
of a bulge in this RNA might increase C-SBP2 affinity.
We tested whether the insertion of two Watson–Crick base
pairs in helix II of RNA Se1 (RNA Se1:Ins) might increase
the affinity of C-SBP2 (Figure 6A). Based on the observed
affinities of RNA Se1:Ins for C-SBP2 and Snu13p
(apparent Kds of 300 and 25 nM, respectively), the 2 bp
insertion only had a limited positive effect on C-SBP2
affinity and no marked effect on Snu13p affinity. When, in
addition to the extension of stem II, the bulge of RNA Se1
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Figure 3. Continued
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Figure 4. All the selected RNAs that recognize C-SBP2 can form a K-turn structure. (A) Secondary structure analysis of RNAs Se1, Se3, Se5, Se6
or Se7 by enzymatic probing. The RNAs were 50-end labeled with 32P, renatured and digested with V1 (0.001 U, lane 2), T1 (0.8 U, lane 3) or T2
(2.4 U, lane 4) RNases, under conditions described in the Materials and Methods section. As a control, undigested RNA was fractionated in parallel
(lane 1). Lane L corresponds to the alkaline hydrolysis of the RNA used for localization of the RNase cleavage sites. Electrophoresis was performed
on a 10% 8M urea–polyacrylamide gel. Nucleotide positions are indicated on the left. (B) Secondary structure models proposed for the
selected RNAs. Models were proposed based on thermodynamic considerations and the results of the enzymatic digestions are shown in A.
Regions corresponding to the degenerated sequences are shown by gray characters. For RNAs Se1, 3, 5, 6 and 7, V1, T1 and T2 RNase cleavages are
represented by arrows surmounted of squares, dots and triangles, respectively. The color of symbols reflects the intensity of cleavages (gray, dark
gray and black for low, medium and strong, respectively). Nucleotide numbering is as in Figure 3A. The apparent Kd values established for each
RNA by gel retardation are indicated. The free energies of the proposed secondary structures, expressed in kcal/mol, were calculated by using the
M-Fold software.
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was converted into a large internal loop (RNA
Se1:Insþ loop), the affinity for C-SBP2 was increased by
a factor of 4 as compared to RNA Se1. In contrast, the
affinity for protein Snu13p was decreased by a factor of 18
(Figure 6B). Hence, the presence of a large internal loop is
favorable for C-SBP2 binding, but not for Snu13p
interaction.
Having selected an RNA (Se1:Insþ loop RNA) with an

affinity for C-SBP2 similar to that of the authentic SBP2
RNA target (SelN RNA) (Figure 1B), we then tested

the effect on C-SBP2 affinity of mutations at positions 2
and 3 in the internal loop of this RNA (Figure 6C).
The results obtained revealed a preference for an A and to
a lesser extent a U residue at position 2. The strongest
negative effect on C-SBP2 affinity was observed for an
A to C substitution at position 2 and a U to G substitution
at position 3 (Figure 6C). Therefore, the identity of
residues at positions 2 and 3 in the internal loop has a
strong influence on C-SBP2 affinity.

A large internal loop in the RNA confers a higher
stability to C-SBP2–RNA complexes

Based on gel-shift experiments, Snu13p and C-SBP2 were
found to have similar affinities for RNA SelN (Kds of 180
and 160 nM, respectively) (Figure 1B). However, such
apparent Kds, established by gel-shift assays, mostly reflect
the capacity of the RNA and protein partners to form a
complex which is stable under electrophoresis conditions.
Thus, for a better estimation of the stability of the RNP
complexes, we used competition experiments. Complexes
were formed, as above, with radiolabeled RNA and a
protein concentration about twice that of the apparent Kds
(300 nM for C-SBP2 and 1000 nM for Snu13p, for assays
on Se1:Insþ loop RNA, and two identical protein
concentrations, 300 nM, for assays on SelN RNA). Cold
RNA was added in excess to destabilize the complex.
When complexes were formed with the Se1:Insþ loop
RNA (Figure 7), a larger excess of cold Se1:Insþ loop
RNA was required to dissociate C-SBP2–RNA complexes
compared to Snu13p–RNA complexes and this in spite of
the higher Snu13p concentration used to form the initial
complex (Figure 7A). Furthermore, a much stronger
difference was observed when complexes were formed
with the SelN RNA: whereas a 1000-fold molar excess of
SelN RNA was sufficient to destabilize the SelN–Snu13p
complexes, dissociation of the SelN–C-SBP2 complexes
required as much as a 40 000-fold excess of cold SelN
RNA (Figure 7B). These observations revealed the high
stability of complexes formed with C-SBP2.

Another approach to verify the high stability of
the SelN RNA–C-SBP2 complexes was to destabilize
the RNA–protein complex by addition of an excess of
a competitor protein (C-SBP2 for complexes formed
with Snu13p and vice versa). As seen in Figure 7C, even
when added in large excess (65-fold) to the preformed
SelN–C-SBP2 complex, Snu13p could not dissociate
this complex. In contrast, when C-SBP2 was added at
the same concentration as the Snu13p protein used to
form the SelN–Snu13p complex, this complex was
completely converted into a SelN RNA–C-SBP2 complex.
This observation argues in favor of a strong specificity
of C-SBP2 for the SECIS RNAs.

C-SBP2 protects a larger region of the Se1:Insþ loop
and SelN RNAs than Snu13p

One possible explanation for the strong stability of
complexes formed by protein C-SBP2 and the
Se1:Insþ loop and SelN RNAs was the occurrence of
more extended RNA–protein contacts in these complexes
compared to those formed with Snu13p. To answer this
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Figure 5. Mutations in helix II of RNA Se1 are more deleterious for
C-SBP2 than for Snu13p binding. (A) Positions of base substitutions in
the Se1 RNA are represented in gray on the proposed secondary
structure. The nature of the mutations in the variant Se1 RNAs is
shown on the right of helix II. (B) The affinities of C-SBP2 and Snu13p
for Se1 RNA and its variants were estimated by gel-shift assays
using 50-end labeled RNAs and protein concentrations ranging from
0 to 4000 nM. The apparent Kd values obtained for each of the
RNA–protein complexes are indicated.
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question, we probed the RNA accessibilities in the
six RNP complexes formed by the Se1, Se1:Insþ loop
and SelN RNAs and each of the C-SBP2 and Snu13p
proteins. We used T1 and T2 RNases under conditions
such that they cleaved single-stranded regions, and V1
RNase that cleaves specifically double-stranded and
stacked RNA regions. Very similar RNA protections
were obtained for complexes formed by RNA Se1 and
each of the proteins (Figure 8). Both proteins protected
the bulge sequence, part of helix II and the 50 strand of
helix I. In contrast, protections of RNAs Se1:Insþ loop
and SelN by Snu13p were very limited compared to those
found for C-SBP2. Thus, with RNAs containing an

extended internal loop, the architecture of C-SBP2
allows tight RNA–protein contacts with both helices and
the 50 strand of the internal loop, which is not the case for
Snu13p. Interestingly also, the sensitivity to V1 RNase of
the 30 strand of helix I was strongly increased by binding
of C-SBP2 or Snu13p to RNA Se1. The same situation
was observed upon binding of C-SBP2 to RNA
Se1:Insþ loop (Figure 8). This effect was quite less
marked upon Snu13p binding on this RNA. Altogether,
this suggested the occurrence of a profound RNA
conformational change when Snu13p or C-SBP2 bind
RNA Se1 and when C-SBP2 binds RNA Se1:Insþ loop.
This strong RNA conformational change is probably not
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Figure 6. A K-turn motif with an extended internal loop increases C-SBP2 affinity. The variant Se1:Ins (A) and Se1:Insþ loop RNAs (B and C)
are shown. The additional residues in these variant RNAs compared to Se1 RNA are shown in gray. The affinities of C-SBP2 and Snu13p for Se1:Ins
(A) and Se1:Insþ loop (B) were tested by gel-shift assays. Complex formation was performed as described in Figure 1, using 5 fmol of 50-end labeled
RNA and increasing concentrations of C-SBP2 or Snu13p proteins. In Panels A and B, the apparent Kds are indicated above the autoradiograms.
(C) The base substitutions generated at positions 2 and 3 in the internal loop of the Se1:Insþ loop RNA are indicated in gray. The table gives the
apparent Kd values established by gel-shift assays for complexes formed between C-SBP2 and the variant Se1:Insþ loop RNAs.
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induced upon binding of Snu13p to an RNA with a large
internal loop. Binding of C-SBP2 to SelN RNA also
induced a hypersensitivity to V1 RNase, but the RNA
segment concerned was different (extremity of the 50

strand of helix II). No significant hypersensitivity to V1
RNase was observed upon Snu13p binding to SelN RNA,
which reinforces the idea that only C-SBP2 can establish
tight contacts with RNAs containing a large internal loop
and as a consequence remodel their conformation. The
archaeal protein L7Ae is known to interact with both
canonical K-turn and K-loop structures formed in
terminal loops (9–11,15,25,48). Thus, by footprinting
assays, we tested whether L7Ae can establish a tight
interaction with the SelN RNA, as does C-SBP2 (Figure
8). The apparent Kd established by gel-shift assays for the
SelN–L7Ae complex revealed a high affinity (Kd of 35 nM,
not shown). According to enzymatic footprinting assays
(Figure 8), this high affinity may be due to the presence of
two L7Ae-binding sites in SelN RNA: one of them
corresponds to the quartet of non-Watson–Crick base

pairs, the other one to the terminal loop. Due to the
presence of two G.A dinucleotides in this loop, a K-loop
recognized by protein L7Ae can be formed. Interestingly,
the protections found in the 50 strand of the internal loop,
helix I, and the quartet of non-Watson–Crick base pairs,
are very similar in the C-SBP2–SelN and L7Ae–SelN
complexes. Protein L7Ae protects two additional residues
in the 30 strand of the internal loop as compared to C-
SBP2. Hence, concerning the recognition of RNAs with
an internal loop, the behavior of protein L7Ae is closer to
that of C-SBP2 than that of Snu13p.

Mutations in helix II of SelN RNA limit C-SBP2 affinity

Since our data suggested a functional importance of helix
II for C-SBP2 binding, we tested the effects of mutations
in helix II of the authentic SelN SECIS motif on C-SBP2
binding. Substitution of the fifth G.U pair in helix II by
a C–G pair as well as substitution of the sixth G–C pair by
C–G pair, had less negative effects on C-SBP2 binding
(factor of 2) (Figure 9) compared to those found for the
corresponding substitution in RNA Se1 (factor of 4)
(Figure 5). However, substitutions of the sixth G–C pair
and of the seventh C–G pair by G.G pairs had strong
negative effects on C-SBP2 binding (Kds of 800 and
780 nM instead of 160 nM for the WT RNA). Therefore,
mutations in an authentic SECIS RNA confirmed our
observation of the importance of the stability and the
sequence of helix II for C-SBP2 binding. Accordingly,
Pu–Py pairs are the most frequently observed base pairs
at the fifth and sixth positions in helix II of SECIS
elements (Figure 3B).

DISCUSSION

The present data based on SELEX and site-directed
mutagenesis experiments improve our understanding of
the sequence and structural features required for efficient
interaction of SBP2 with RNA. These findings bring
new insights that will facilitate the understanding of its
mechanism of action in the selenocysteine incorporation
machinery.

When used for studying RNA–protein interactions,
the SELEX approach most generally leads to the estab-
lishment of an RNA consensus sequence. Here, despite the
wide diversity of the initial RNA mixture (184), only seven
different sequences were selected, and several of them
were very similar. All of them folded into very similar 2D
structures that contained a canonical K-turn motif.
This limited diversity of the selected sequences indicated
narrow RNA structure requirements for efficient binding
of SBP2. We confirmed this hypothesis by several
experimental approaches.

DualMg
þþ

dependence of SBP2 binding
to different RNA substrates

Earlier work (49) established that SBP2 contained in
testis extracts displayed high sensitivity to Mgþþ concen-
tration for SECIS binding, the IC50 being around
4mM. This sensitivity was however less pronounced
(IC50420mM) with a shorter, recombinant version of
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SBP2, and PHGPx SECIS RNA as the RNA partner (42).
Interestingly, here we found that binding of C-SBP2 to the
Se1 RNA, which forms a canonical K-turn structure,
requires a 1.5mM Mgþþ concentration, higher concentra-
tions being innocuous. At first glance, the two series of
results may appear contradictory. Nevertheless, these
differential behaviors toward Mgþþ are likely explained
by the use of different RNA partners. Se1 RNA is a
genuine K-turn RNA, and it is known that divalent
cations favor the closed conformation of canonical K-turn
motifs (50). SECIS RNAs possess a large internal loop
and thus contain a K-turn like motif (32). A high Mgþþ

concentration may induce a conformational change into
SECIS RNAs, which is not favorable for SBP2 binding.
For instance, based on our data, we can imagine that a

high Mgþþ concentration promotes closing of the internal
loop, and we show that a large internal loop is needed
for maximum binding efficiency of SBP2. The Se1 RNA is
a typical Snu13p partner. As expected, no marked Mgþþ

requirement is observed for Snu13p binding to this RNA.
In contrast, as Se1 RNA does not contain an internal
loop, a prior stabilization of the kink structure may be
needed to reinforce SBP2 binding. Altogether, the previous
and present data strongly suggest that each member
of the L7A/L30 family is perfectly suited for binding to
its authentic partner at the physiological concentration
of divalent cations. When RNA partners are exchanged
in in vitro experiments, the Mgþþ ion concentration has
to be adapted in order to form the heterologous
interaction. Accordingly, a high Mgþþ ion concentration
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was found to be required for efficient in vitro binding
of protein L30 to a SECIS element, in the presence of
SBP2 (42).

Specific sequence requirements in helix II

Site-directed mutagenesis, performed on the winner Se1
RNA obtained by SELEX experiments, demonstrated
that binding of C-SBP2 requires the presence of a stable
helix II containing at least two Watson–Crick base pairs.
In agreement with this observation, all the SECIS
elements identified so far contain a series of Watson–
Crick base pairs on top of the non-Watson–Crick base-
pair quartet (30,51–53; A.K., unpublished data).
Accordingly, we showed that their individual disruption
in SelN RNA decreases C-SBP2 affinity. Not only helix II
stability but also its sequence has an influence on C-SBP2
affinity. The presence of a Pu–Py pair at the fourth
position in helix II was found to be of high importance
for C-SBP2 binding to Se1 RNA, a Pu–Py pair at this
position being also more favorable for C-SBP2 binding to
SelN RNA. This is in contrast with the absence of
sequence requirement in helix II, except for the G.A and
A.G base pairs and the adjacent U.U pair found for
proteins Snu13p/15.5K and L7Ae (6,7,16,24,47,54–56).
Up to now, little attention was given to the importance
of the identity of base pairs in the upper part of helix II of
SECIS elements. However, at position 4 of helix II, a Pu
residue (most frequently a G residue) is almost always
found in the 50 strand and a Py residue (most frequently a
C residue) is observed in the 30 strand (30,51–53; A.K.,
unpublished data). Although less strictly conserved, the
fifth base pair in helix II is predominantly a Pu–Py pair
(Figure 3B). Together with our experimental data, these
phylogenetic observations strongly suggest a functional
importance of these conserved Pu.Py base pairs at
positions 4 and 5 in helix II. In accordance with this
hypothesis, the G–C pair at the fourth position in RNA
Se1 was protected against V1 RNase digestion in the
complex formed with C-SBP2, but not in the complex
formed with Snu13p (Figure 8). Accordingly, the very
limited V1 RNase cleavage, which is located between
residues G13 and G14 in free SelN RNA, disappeared in
the presence of C-SBP2, but not with Snu13p.
Remarkably, this V1 RNase cleavage was also abolished
in the presence of protein L7Ae.

Comparison of the Se1 to Se7 RNAs and site-directed
mutagenesis of the Se1 RNA also show the importance
for a non-Watson–Crick base pair on top of the A.G
and G.A pair tandem (Figures 4 and 5). Accordingly,
U.U pairs are frequently encountered pairs at this position
in SECIS elements (30,51–53; A.K., unpublished data)
and a U.U pair was also preferentially selected at this
position of helix II, in the SELEX experiment performed
with Snu13p. The presence of a U.U base pair at
this position, with a C10–C10 distance of the ribose ring
close to that in G.A pairs, is very likely required to
favor the smooth transition from the non-Watson–Crick
to the Watson–Crick section of helix II. Noticeably also,
in K-turn structures found in ribosomal RNAs, the
nucleobase of one of this unpaired couple of nucleotides

was proposed to interact with one nucleobase in helix I,
and thus to reinforce the inter-helical angle between helix I
and helix II (57).

Importance of a large SECIS internal loop

Increasing the size of both helix II and the internal loop
of the winner Se1 RNA obtained by SELEX, yielded
an RNA with an affinity similar to that of SelN RNA
(Figure 6B). Such an RNA could not be obtained in the
SELEX experiment, because of limitation in size of the
degenerated sequence that can be used (18 nt) in these
experiments. Indeed, due to the necessity to cover all
the possible sequences during the screening, one cannot
use largely extended degenerated sequences (58,59).
In agreement with the importance of the size of helix II,
all the identified SECIS elements contain a long helix II.
Based on our footprinting data, the high affinity of
C-SBP2 for RNAs with an internal loop, as well as the
stability of the complexes formed, are due to its capacity
to contact helices I and II and the 50 strand of the internal
loop in these RNAs (Figure 8). Interestingly, Martin et al.
(38) showed that closing of the internal loop of the rat
D1 SECIS element almost completely abolished seleno-
cysteine incorporation in vivo. In agreement with the
observed requirement of at least one base pair closing
the 3-nt bulge loop of K-turn motifs for efficient binding
of Snu13p (44), Snu13p establishes very loose contacts
with RNAs containing an internal loop. The presence of
a closing base pair is not required for L7Ae and this
protein is able to bind open K-loop structures (9,44,48).
The presence of an arginine at position 95 in the 15.5K/
Snu13p protein, that forms a salt bridge with the
50 phosphate of the residue at position 1 in the bulge,
and its replacement by a valine in L7Ae, were proposed to
explain this difference between proteins 15.5K/Snu13p
and L7Ae (60). Interestingly, like L7Ae, SBP2 contains
a valine at the corresponding position in the L7A/L30
domain (29). This may explain our observation of similar
binding properties of proteins SBP2 and L7Ae on RNAs
containing a large internal loop.
In free RNAs containing a canonical K-turn structure

with a bulge loop, helices I and II form a 768 angle. Upon
Snu13p/15.5K binding, the RNA undergoes further
folding, so that the helix I–helix II angle is reduced to
488 (56,61). This folding likely explains the tight contact of
Snu13p with both helices of RNA Se1 that we detected by
footprinting assay. As very similar footprinting results
were obtained with C-SBP2, it probably also induces a
folding of this RNA. However, C-SBP2 but not Snu13p
may induce a similar folding in both the Se1:Insþ loop
and SelN RNAs.

Sequence requirement in the internal loop

Our site-directed mutagenesis experiments on the
Se1:Insþ loop RNA revealed the importance of the
identity of residues at positions 2 and 3 in the internal
loop for C-SBP2 binding. The most deleterious base
substitution at position 2 was the A to C replacement.
Interestingly, a 66% decrease of selenocysteine incorpora-
tion was observed when the same A to C substitution

Nucleic Acids Research, 2007, Vol. 35, No. 6 1881



was generated in the SECIS element of the rat GPx
mRNA while A to G and A to U changes only led to a loss
of 30 and 22% of the incorporation, respectively (52). In
accordance with the decrease of the C-SBP2 affinity upon
U to G substitution at position 3 in RNA Se1:Insþ loop,
selenocysteine incorporation was decreased by 88%
when this base substitution was generated in the SECIS
element of the rat GPx mRNA (38). In addition, a U to
C substitution at this position abolished the binding of
SBP2 to SelN RNA and is responsible for a human genetic
disease, the rigid spine muscular dystrophy (62). As the
residue at position 3 in canonical K-turns is located in
the protein pocket, its mutation also has a deleterious
effect on 15.5K/Snu13p and L7Ae binding (6,24–26).
Residues E61 and K86 in 15.5K, and D54 and K79 in
Archaeoglobus fulgidus L7Ae, are involved in the interac-
tion with the nucleobase at position 3. Their counterparts
in SBP2 (E699 and R730) probably play a similar role,
since they are crucial for binding to SECIS RNAs
(5,29,56). The specificity of L7Ae/L30 protein members
towards the residue at position 2 in the K-turn motif
is variable. Whereas an A or G residue at position 2
increases 15.5K/Snu13p affinity, substitutions at position
2 have no marked effect on L7Ae affinity (25). Concerning
position 2, SBP2 exhibits a behavior closer to that of
15.5K/Snu13p than to L7Ae.
The ribosomal protein L30 was recently shown

to compete with SBP2 for binding to SECIS RNA (42).
L30 was found to recognize a K-turn structure of its
pre-mRNA that contains a protruding A residue in a small
internal loop (21–23). SELEX experiments performed
with L30 revealed its preference for K-turn motifs with
protruding C or A residues (27). Later, it was shown that
L30 also has the ability to accommodate K-turn structures
with a protruding G (28). However, its interaction with
K-turn motifs containing a protruding U residue has
not been demonstrated yet. Consequently, the binding
of L30 to SECIS elements, that all contain a U residue at
position 3, raises the question of how it can achieve this.

CONCLUSION

Assembly of the selenocysteine incorporation machinery
is proposed to be initiated by SBP2 association to
SECIS elements in the nucleus, and more likely in the
nucleolus (63). Protein 15.5K/Snu13p is abundant in
the nucleolus and SBP2 shares several common features
with Snu13/15.5K. However, our data reveal important
differences in RNA specificities that may ensure the
specific association of SBP2 to SECIS elements in
the nuclear compartment.
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2.4 Å resolution. Science, 289, 905–920.

5. Vidovic,I., Nottrott,S., Hartmuth,K., Luhrmann,R. and Ficner,R.
(2000) Crystal structure of the spliceosomal 15.5kD protein bound
to a U4 snRNA fragment. Mol. Cell, 6, 1331–1342.

6. Nottrott,S., Hartmuth,K., Fabrizio,P., Urlaub,H., Vidovic,I.,
Ficner,R. and Luhrmann,R. (1999) Functional interaction of a
novel 15.5kD [U4/U6.U5] tri-snRNP protein with the 50 stem-loop
of U4 snRNA. EMBO J., 18, 6119–6133.

7. Watkins,N.J., Segault,V., Charpentier,B., Nottrott,S., Fabrizio,P.,
Bachi,A., Wilm,M., Rosbash,M., Branlant,C. et al. (2000) A
common core RNP structure shared between the small nucleoar box
C/D RNPs and the spliceosomal U4 snRNP. Cell, 103, 457–466.

8. Terns,M.P. and Terns,R.M. (2002) Small nucleolar RNAs: versatile
trans-acting molecules of ancient evolutionary origin. Gene Expr.,
10, 17–39.

9. Charpentier,B., Muller,S. and Branlant,C. (2005) Reconstitution
of archaeal H/ACA small ribonucleoprotein complexes active in
pseudouridylation. Nucleic Acids Res., 33, 3133–3144.

10. Omer,A.D., Ziesche,S., Ebhardt,H. and Dennis,P.P. (2002) In vitro
reconstitution and activity of a C/D box methylation guide
ribonucleoprotein complex. Proc. Natl. Acad. Sci. U.S.A., 99,
5289–5294.

11. Rozhdestvensky,T.S., Tang,T.H., Tchirkova,I.V., Brosius,J.,
Bachellerie,J.P. and Huttenhofer,A. (2003) Binding of L7Ae protein
to the K-turn of archaeal snoRNAs: a shared RNA binding motif
for C/D and H/ACA box snoRNAs in Archaea. Nucleic Acids Res.,
31, 869–877.

12. Granneman,S., Pruijn,G.J., Horstman,W., van Venrooij,W.J.,
Luhrmann,R. and Watkins,N.J. (2002) The hU3-55K protein
requires 15.5K binding to the box B/C motif as well as flanking
RNA elements for its association with the U3 small nucleolar RNA
in Vitro. J. Biol. Chem., 277, 48490–48500.

13. Nottrott,S., Urlaub,H. and Luhrmann,R. (2002) Hierarchical,
clustered protein interactions with U4/U6 snRNA: a biochemical
role for U4/U6 proteins. EMBO J., 21, 5527–5538.

14. Watkins,N.J., Dickmanns,A. and Luhrmann,R. (2002) Conserved
stem II of the box C/D motif is essential for nucleolar localization
and is required, along with the 15.5K protein, for the hierarchical
assembly of the box C/D snoRNP. Mol. Cell. Biol., 22, 8342–8352.

15. Baker,D.L., Youssef,O.A., Chastkofsky,M.I., Dy,D.A., Terns,R.M.
and Terns,M.P. (2005) RNA-guided RNA modification: functional
organization of the archaeal H/ACA RNP. Genes Dev., 19,
1238–1248.

16. Tran,E.J., Zhang,X. and Maxwell,E.S. (2003) Efficient RNA
20-O-methylation requires juxtaposed and symmetrically assembled
archaeal box C/D and C0/D0 RNPs. EMBO J., 22, 3930–3940.

1882 Nucleic Acids Research, 2007, Vol. 35, No. 6



17. Rashid,R., Aittaleb,M., Chen,Q., Spiegel,K., Demeler,B. and Li,H.
(2003) Functional requirement for symmetric assembly of archaeal
box C/D small ribonucleoprotein particles. J. Mol. Biol., 333,
295–306.

18. Bortolin,M.L., Bachellerie,J.P. and Clouet-d0Orval,B. (2003)
In vitro RNP assembly and methylation guide activity of an
unusual box C/D RNA, cis-acting archaeal pre-tRNA(Trp).
Nucleic Acids Res., 31, 6524–6535.

19. Schultz,A., Nottrott,S., Hartmuth,K. and Luhrmann,R. (2006)
RNA structural requirements for the association of the spliceosomal
hPrp31 protein with the U4 and U4atac small nuclear ribonucleo-
proteins. J. Biol. Chem., 281, 28278–28286.

20. Koonin,E.V., Bork,P. and Sander,C. (1994) A novel RNA-binding
motif in omnipotent suppressors of translation termination,
ribosomal proteins and a ribosome modification enzyme?
Nucleic Acids Res., 22, 2166–2167.

21. Vilardell,J. and Warner,J.R. (1994) Regulation of splicing at an
intermediate step in the formation of the spliceosome. Genes Dev.,
8, 211–220.

22. Chao,J.A. and Williamson,J.R. (2004) Joint X-ray and NMR
refinement of the yeast L30e-mRNA complex. Structure, 12,
1165–1176.

23. Mao,H., White,S.A. and Williamson,J.R. (1999) A novel loop-loop
recognition motif in the yeast ribosomal protein L30 autoregulatory
RNA complex. Nat. Struct. Biol., 6, 1139–1147.

24. Kuhn,J.F., Tran,E.J. and Maxwell,E.S. (2002) Archaeal ribosomal
protein L7 is a functional homolog of the eukaryotic 15.5kD/
Snu13p snoRNP core protein. Nucleic Acids Res., 30, 931–941.

25. Charron,C., Manival,X., Clery,A., Senty-Segault,V., Charpentier,B.,
Marmier-Gourrier,N., Branlant,C. and Aubry,A. (2004) The
archaeal sRNA binding protein L7Ae has a 3D structure very
similar to that of its eukaryal counterpart while having a broader
RNA-binding specificity. J. Mol. Biol., 342, 757–773.

26. Marmier-Gourrier,N., Clery,A., Senty-Segault,V., Charpentier,B.,
Schlotter,F., Leclerc,F., Fournier,R. and Branlant,C. (2003) A
structural, phylogenetic, and functional study of 15.5-kD/Snu13
protein binding on U3 small nucleolar RNA. RNA, 9, 821–838.

27. Li,H. and White,S.A. (1997) RNA apatamers for yeast ribosomal
protein L32 have a conserved purine-rich internal loop. RNA, 3,
245–254.

28. White,S.A., Hoeger,M., Schweppe,J.J., Shillingford,A., Shipilov,V.
and Zarutskie,J. (2004) Internal loop mutations in the ribosomal
protein L30 binding site of the yeast L30 RNA transcript. RNA, 10,
369–377.

29. Allmang,C., Carbon,P. and Krol,A. (2002) The SBP2 and 15.5
kD/Snu13p proteins share the same RNA binding domain:
identification of SBP2 amino acids important to SECIS RNA
binding. RNA, 8, 1308–1318.

30. Fletcher,J.E., Copeland,P.R., Driscoll,D.M. and Krol,A. (2001)
The selenocysteine incorporation machinery: interactions between
the SECIS RNA and the SECIS-binding protein SBP2. RNA, 7,
1442–1453.

31. Walczak,R., Carbon,P. and Krol,A. (1998) An essential non-
Watson–Crick base pair motif in 30UTR to mediate selenoprotein
translation. RNA, 4, 74–84.

32. Allmang,C. and Krol,A. (2006) Selenoprotein synthesis: UGA does
not end the story. Biochimie, 88, 1561–1571.

33. Krol,A. (2002) Evolutionarily different RNA motifs and
RNA-protein complexes to achieve selenoprotein synthesis.
Biochimie, 84, 765–774.

34. Gladyshev,V.N. (2001). Selenium in biology and human health:
controversies and perspectives. In Hatfield,D.L. (ed), Selenium:
Its Molecular Biology and Role in Human Health. Kluwer, Boston,
pp. 313–317.

35. Flohe,L., Andreesen,J.R., Brigelius-Flohe,R., Maiorino,M. and
Ursini,F. (2000) Selenium, the element of the moon, in life on earth.
IUBMB Life, 49, 411–420.

36. Rayman,M.P. (2000) The importance of selenium to human health.
Lancet, 356, 233–241.

37. Rederstorff,M., Krol,A. and Lescure,A. (2006) Understanding
the importance of selenium and selenoproteins in muscle function.
Cell Mol. Life Sci., 63, 52–59.

38. Martin,G.W.III, Harney,J.W. and Berry,M.J. (1998) Functionality
of mutations at conserved nucleotides in eukaryotic SECIS elements

is determined by the identity of a single nonconserved nucleotide.
RNA, 4, 65–73.

39. Tujebajeva,R.M., Copeland,P.R., Xu,X.M., Carlson,B.A.,
Harney,J.W., Driscoll,D.M., Hatfield,D.L. and Berry,M.J. (2000)
Decoding apparatus for eukaryotic selenocysteine insertion.
EMBO Rep., 1, 158–163.

40. Fagegaltier,D., Hubert,N., Yamada,K., Mizutani,T., Carbon,P. and
Krol,A. (2000) Characterization of mSelB, a novel mammalian
elongation factor for selenoprotein translation. EMBO J., 19,
4796–4805.

41. Zavacki,A.M., Mansell,J.B., Chung,M., Klimovitsky,B.,
Harney,J.W. and Berry,M.J. (2003) Coupled tRNA(Sec)-dependent
assembly of the selenocysteine decoding apparatus. Mol. Cell, 11,
773–781.

42. Chavatte,L., Brown,B.A. and Driscoll,D.M. (2005) Ribosomal
protein L30 is a component of the UGA-selenocysteine
recoding machinery in eukaryotes. Nat. Struct. Mol. Biol., 12,
408–416.

43. Mougin,A., Gottschalk,A., Fabrizio,P., Luhrmann,R. and
Branlant,C. (2002) Direct probing of RNA structure and
RNA-protein interactions in purified HeLa cells and yeast
spliceosomal U4/U6.U5 tri-snRNP particles. J. Mol. Biol., 317,
631–649.

44. Charron,C., Manival,X., Charpentier,B., Branlant,C. and Aubry,A.
(2004) Purification, crystallization and preliminary X-ray diffraction
data of L7Ae sRNP core protein from Pyrococcus abyssii. Acta
Crystallogr. D Biol. Crystallogr., 60, 122–124.

45. Lescure,A., Allmang,C., Yamada,K., Carbon,P. and Krol,A. (2002)
cDNA cloning, expression pattern and RNA binding analysis of
human selenocysteine insertion sequence (SECIS) binding protein 2.
Gene, 291, 279–285.

46. Mathews,D.H., Sabina,J., Zuker,M. and Turner,D.H. (1999)
Expanded sequence dependence of thermodynamic parameters
improves prediction of RNA secondary structure. J. Mol. Biol., 288,
911–940.

47. Clery,A., Senty-Segault,V., Leclerc,F., Raue,H.A. and Branlant,C.
(2007) Analysis of sequence and structural features that identify the
B/C motif of U3 small nucleolar RNA as the recognition site for
the Snu13p-Rrp9p protein pair. Mol. Cell. Biol., 27, 1191–1206.

48. Nolivos,S., Carpousis,A.J. and Clouet-d’Orval,B. (2005)
The K-loop, a general feature of the Pyrococcus C/D guide RNAs,
is an RNA structural motif related to the K-turn. Nucleic Acids
Res., 33, 6507–6514.

49. Copeland,P.R. and Driscoll,D.M. (1999) Purification, redox
sensitivity, and RNA binding properties of SECIS-binding protein
2, a protein involved in selenoprotein biosynthesis. J. Biol. Chem.,
274, 25447–25454.

50. Matsumura,S., Ikawa,Y. and Inoue,T. (2003) Biochemical char-
acterization of the kink-turn RNA motif. Nucleic Acids Res., 31,
5544–5551.

51. Kryukov,G.V., Castellano,S., Novoselov,S.V., Lobanov,A.V.,
Zehtab,O., Guigo,R. and Gladyshev,V.N. (2003) Characterization
of mammalian selenoproteomes. Science, 300, 1439–1443.

52. Fagegaltier,D., Lescure,A., Walczak,R., Carbon,P. and Krol,A.
(2000) Structural analysis of new local features in SECIS RNA
hairpins. Nucleic Acids Res., 28, 2679–2689.

53. Lescure,A., Gautheret,D., Carbon,P. and Krol,A. (1999) Novel
selenoproteins identified in silico and in vivo by using a conserved
RNA structural motif. J. Biol. Chem., 274, 38147–38154.

54. Szewczak,L.B., DeGregorio,S.J., Strobel,S.A. and Steitz,J.A. (2002)
Exclusive interaction of the 15.5 kD protein with the terminal box
C/D motif of a methylation guide snoRNP. Chem. Biol., 9,
1095–1107.

55. Szewczak,L.B., Gabrielsen,J.S., Degregorio,S.J., Strobel,S.A. and
Steitz,J.A. (2005) Molecular basis for RNA kink-turn recognition
by the h15.5K small RNP protein. RNA, 11, 1407–1419.

56. Moore,T., Zhang,Y., Fenley,M.O. and Li,H. (2004) Molecular
basis of box C/D RNA-protein interactions; cocrystal
structure of archaeal L7Ae and a box C/D RNA. Structure, 12,
807–818.

57. Razga,F., Spackova,N., Reblova,K., Koca,J., Leontis,N.B. and
Sponer,J. (2004) Ribosomal RNA kink-turn motif – a flexible
molecular hinge. J. Biomol. Struct. Dyn., 22, 183–194.

Nucleic Acids Research, 2007, Vol. 35, No. 6 1883



58. Tuerk,C. and Gold,L. (1990) Systematic evolution of ligands by
exponential enrichment: RNA ligands to bacteriophage T4 DNA
polymerase. Science, 249, 505–510.

59. Klug,S.J. and Famulok,M. (1994) All you wanted to know about
SELEX. Mol. Biol. Rep., 20, 97–107.

60. Hamma,T. and Ferre-D’Amare,A.R. (2004) Structure of protein
L7Ae bound to a K-turn derived from an archaeal box H/ACA
sRNA at 1.8A resolution. Structure, 12, 893–903.

61. Wozniak,A.K., Nottrott,S., Kuhn-Holsken,E., Schroder,G.F.,
Grubmuller,H., Luhrmann,R., Seidel,C.A. and Oesterhelt,F. (2005)
Detecting protein-induced folding of the U4 snRNA kink-turn by

single-molecule multiparameter FRET measurements. RNA, 11,
1545–1554.

62. Allamand,V., Richard,P., Lescure,A., Ledeuil,C., Desjardin,D., Petit,N.,
Gartioux,C., Ferreiro,A., Krol,A. et al. (2006) A single homozygous
point mutation in a 30untranslated region motif of selenoprotein N
mRNA causes SEPN1-related myopathy. EMBO Rep., 7, 450–454.

63. de Jesus,L.A., Hoffmann,P.R., Michaud,T., Forry,E.P.,
Small-Howard,A., Stillwell,R.J., Morozova,N., Harney,J.W. and
Berry,M.J. (2006) Nuclear assembly of UGA decoding
complexes on selenoprotein mRNAs: a mechanism for eluding
nonsense-mediated decay? Mol. Cell. Biol., 26, 1795–1805.

1884 Nucleic Acids Research, 2007, Vol. 35, No. 6



 



The yeast exosome and human
PM–Scl are related complexes
of 3* → 5* exonucleases
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We previously identified a complex of 3* → 5* exoribonucleases, designated the exosome, that is expected to
play a major role in diverse RNA processing and degradation pathways. Further biochemical and genetic
analyses have revealed six novel components of the complex. Therefore, the complex contains 11 components,
10 of which are predicted to be 3* → 5* exoribonucleases on the basis of sequence homology. Human
homologs were identified for 9 of the 11 yeast exosome components, three of which complement mutations in
the respective yeast genes. Two of the newly identified exosome components are homologous to known
components of the PM–Scl particle, a multisubunit complex recognized by autoimmune sera of patients
suffering from polymyositis–scleroderma overlap syndrome. We demonstrate that the homolog of the Rrp4p
exosome subunit is also a component of the PM–Scl complex, thereby providing compelling evidence that the
yeast exosome and human PM–Scl complexes are functionally equivalent. The two complexes are similar in
size, and biochemical fractionation and indirect immunofluorescence experiments show that, in both yeast
and humans, nuclear and cytoplasmic forms of the complex exist that differ only by the presence of the
Rrp6p/PM–Scl100 subunit exclusively in the nuclear complex.
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The RRP4 gene was identified initially in the yeast Sac-
charomyces cerevisiae, via a mutation that resulted in
defective pre-rRNA processing (Mitchell et al. 1996). Bio-
chemical analyses revealed that Rrp4p is a component of
a protein complex that was designated the exosome
(Mitchell et al. 1997). Initial characterization identified
five components of the exosome; Rrp4p, Rrp41p (Ski6p),
Rrp42p, Rrp43p, and Rrp44p (Dis3p). Of these, recombi-
nant Rrp4p, Rrp41p, and Rrp44p were each demonstrated
to have 38 → 58 exonuclease activity in vitro (Mitchell et
al. 1997). The in vitro activities shown by the recombi-
nant proteins were not, however, identical. Rrp4p is a
distributive, hydrolytic enzyme, Rrp44p is a processive,
hydrolytic enzyme, and Rrp41p is a processive, phospho-
rolytic enzyme. Consistent with this activity, Rrp44p is
homologous to Escherichia coli RNase R (vacB), a mem-
ber of the RNase II family of processive, hydrolytic exo-
nucleases (Cheng et al. 1998), whereas Rrp41p is ho-
mologous to E. coli RNase PH, a phosphorolytic exo-
nuclease (Mian 1997; Mitchell et al. 1997). Rrp42p and
Rrp43p are also homologous to RNase PH (Mian 1997;
Mitchell et al. 1997), and, therefore, the five initial mem-

bers of the complex were all known or strongly predicted
to be 38 → 58 exonucleases. It was, however, notable that
the purified exosome complex exhibited only a distribu-
tive, hydrolytic activity in vitro; no processive or phos-
phorolytic activities were observed (Mitchell et al. 1996,
1997). This observation suggested that a reason for the
assembly of multiple activities into one complex might
be to allow their coordinate repression in the absence of
activation by specific cofactors.

In all eukaryotes, the mature 5.8S, 18S, 25S/28S
rRNAs are generated from a single large pre-rRNA by
post-transcriptional processing. The five components of
the exosome that were identified initially were all
shown to be required for the 38 processing of the 7S pre-
rRNA to the mature 5.8S rRNA; genetic depletion of
each gave a very similar processing defect, which closely
resembled that seen in the original rrp4-1 mutation
(Mitchell et al. 1996, 1997). Subsequent analyses re-
vealed that the exosome functions not only as an RNA
processing complex but is also required for specific RNA
turnover pathways. The degradation of the excised
spacer fragment extending from the 58 end of the 35S
primary transcript to cleavage site A0 within the 58 ex-
ternal transcribed spacer (58 ETS) region is defective in
the rrp4-1 strain and in strains depleted of Rrp4p,
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Rrp41p, Rrp42p, Rrp43p, or Rrp44p (de la Cruz et al.
1998). A wider role for the exosome in RNA metabolism
was revealed by analyses that showed that Rrp4p and
Rrp41p (Ski6p) both function in the 38 → 58 pathway of
mRNA degradation (Anderson and Parker 1998). From
these observations, the exosome complex, or related
complexes, were predicted to be present in both the
nucleolus and the cytoplasm.

Expression of the human homolog of Rrp4p, hRrp4p, in
yeast was shown to complement a rrp4-1 mutation and
glycerol gradient centrifugation indicated that hRrp4p
was present in HeLa cell lysates in a complex of similar
size to the yeast exosome (Mitchell et al. 1997). These
data suggested that a complex homologous to the exo-
some was present in human cells.

A large number of human autoimmune diseases have
been identified. Some of these, notably scleroderma, are
associated with the development of antibodies directed
against nucleolar epitopes (for review, see Reimer 1990).
In a relatively rare autoimmune disease, polymyositis–
scleroderma overlap syndrome (Reimer et al. 1986), pa-
tients frequently develop antibodies directed against a
100-kD protein, PM–Scl100 (Bluthner and Bautz 1992;
Ge et al. 1992). Less frequently another protein, PM–
Scl75 (Alderuccio et al. 1991), is also targeted. These two
proteins are components of a large complex, designated
the PM–Scl complex, that was estimated to have be-
tween 11 (Reimer et al. 1986) and 16 (Gelpi et al. 1990)
components. Interestingly, PM–Scl100 is homologous to
the E. coli 38 →58 exoribonuclease, RNase D (Briggs et al.
1998), whereas PM–Scl75 shows homology to RNase PH
(Mian 1997).

Here, we report the identification of six new compo-
nents of the yeast exosome and characterize distinct
nuclear and cytoplasmic forms of this complex. Two of
the newly defined exosome subunits are homologous to
the human PM–Scl100 and PM–Scl75 autoantigens, and
these proteins are associated with the human homolog of
another exosome component. Moreover, like the yeast
exosome, related human complexes are localized in
nucleus and cytoplasm. Together, these data provide
strong evidence that the PM–Scl complex is directly ho-
mologous to the yeast exosome.

Results

Identification of new components
of the exosome complex

The initial characterization of components that copre-
cipitated with protein A-tagged Rrp4p (ProtA–Rrp4p)
identified four proteins (Mitchell et al. 1997). Three of
these proteins, Rrp41p, Rrp42p, and Rrp43p, were ho-
mologous to E. coli RNase PH. However, the yeast ge-
nome contains three other putative open reading frames
(ORFs) with homology to RNase PH; YDR280w (RRP45),
YGR095c (RRP46; Mian 1997), and YGR158c (MTR3).
The RRP45 and RRP46 ORFs were each precisely deleted
in diploid strains of yeast (see Materials and Methods).
On sporulation of each diploid, only two viable spores

were recovered per tetrad and in each case the viable
spores carried the wild-type allele. We conclude that
RRP45 and RRP46 are both essential, at least for spore
viability. Conditional alleles were constructed by plac-
ing RRP45 and RRP46 under the control of a repressible
GAL10 promoter (see Materials and Methods). In each
case, the strains formed only microcolonies on solid me-
dium containing 2% glucose (data not shown) and ceased
growth following transfer from liquid RSG (raffinose/su-
crose/galactose) medium to liquid glucose medium (Fig.
1). We conclude that Rrp45p and Rrp46p are essential for
viability.

The strains depleted of Rrp45p or Rrp46p showed an
accumulation of 38 extended forms of the 5.8S rRNA that
extended in a ladder to the size of the 7S pre-rRNA but
not beyond (Fig. 2). This phenotype is essentially identi-
cal to that seen in strains depleted for Rrp4p (Fig. 2a) or
the four other components of the exosome identified pre-
viously (Mitchell et al. 1997). Mtr3p is essential for vi-
ability (Kadowaki et al. 1995), and a strain carrying a
temperature-sensitive lethal mtr3-1 allele (generously
provided by A.M. Tartakoff, Case Western Reserve Uni-
versity, Cleveland, OH) was analyzed. This strain also
accumulated 38 extended forms of the 5.8S rRNA after
transfer to the nonpermissive temperature (37°C; Fig.
2a). The mtr3-1 strain rapidly ceases growth following
transfer to 37°C, and little pre-rRNA was recovered at
the 24 hr time point, presumably because of the very low
growth rate. In addition, the strains depleted of Rrp4p,
Rrp45p, or Rrp46p or carrying mtr3-1 each accumulated
the excised 58 ETS region of the pre-rRNA, extending
from the 58 end of the primary transcript to cleavage site

Figure 1. The newly identified components of the exosome
complex are required for viability. Growth curves of GAL-regu-
lated constructs following transfer to glucose medium. Strains
were pregrown in permissive, RSG medium and transferred to
repressive, glucose medium for the times indicated. Strains
were maintained in exponential growth by dilution with pre-
warmed medium. Cell densities measured by OD600 are shown
corrected for dilution. (L) Wild type; (s) GAL::rrp45; (h)
GAL::rrp46; (l) GAL:csl4; (j) GAL::rrp40.
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A0 (Fig. 2c; 58 ETS), as well as degradation intermediates
(see also de la Cruz et al. 1998). We conclude that the
RNase PH homologs Rrp45p, Rrp46p, and Mtr3p are
each required for the function of the exosome complex.

These observations prompted us to re-examine the
biochemical purification of the exosome complex. A
whole-cell extract from a strain expressing ProtA–Rrp4p
under the control of the endogenous RRP4 promoter
from a low-copy-number CEN plasmid (Mitchell et al.
1997) was passed over an IgG–Sepharose column, and
proteins were eluted from the bound IgG–ProtA–Rrp4p
complex by use of a gradient of Mg2+ (Görlich et al.
1996). Proteins were separated by SDS-PAGE, and bands
were excised and subjected to sequencing analysis by
mass spectroscopy (see Kuster and Mann 1998;
Shevchenko et al. 1996). Most bands were identified by
high mass accuracy peptide mass mapping as described
by Jensen et al. (1996). Several of the bands contained
more than one gene product that were, however, identi-
fied without recourse to mass spectrometric peptide se-
quencing. In these cases, an iterative approach was used.
First all tryptic peptide masses were searched against a
comprehensive protein database, identifying one yeast
protein. The peptide masses remaining after detailed
comparison of the spectrum against the found sequence
(second pass search), were again searched in the database,

yielding another yeast protein. In some cases MALDI
peptide mapping did not unequivocally identify the com-
ponents in a band. In these cases, nanoelectrospray on a
novel quadrupole Time of Flight instrument was per-
formed (Shevchenko et al. 1997a; Wilm et al. 1996). Two
broad peaks of eluted proteins were observed; Rrp44p
eluted at around 500 mM MgCl2 (Fig. 3A, lanes 4–6)
whereas Rrp41p, Rrp42p, Rrp43p, Rrp45p, Rrp46p, and
Mtr3p coeluted at around 1.6–1.8 M MgCl2 (Fig. 3A, lanes
16–18). Two other proteins observed in the 1.6–1.8 M

MgCl2 fractions were identified as Rrp6p (YOR001w)
and Rrp40p (YOL142w). The coelution of these compo-
nents supports their presence in a single complex.
ProtA–Rrp4p was eluted only in the acid wash of the
column (Fig. 3A, lane HAc).

Following immunoprecipitation of ProtA–Rrp4p, all of
the components were recovered with apparent stoichi-
ometry, with the exception of Rrp6p, which was esti-
mated from Coomassie staining to be approximately
fivefold less abundant than the other components (data
not shown). Because Rrp6p was eluted only at 1.6–1.8 M

MgCl2, along with most other exosome components, it
seemed unlikely that this low abundance was due to a
weaker association with the exosome complex. There-
fore, Rrp6p might be associated with only a subfraction
of the exosome complex. To test this model, a whole-cell

Figure 2. The newly identified compo-
nents of the exosome complex are required
for pre-rRNA processing. Northern analysis
of processing of the 5.8S and degradation of
the 58ETS region of the pre-rRNA in exo-
some mutants. RNA was extracted from
strains carrying GAL-regulated constructs
following transfer from permissive, RSG
medium to repressive, glucose medium for
the times indicated, or from the mtr3-1
strain following transfer from 25°C to 37°C
for the times indicated. RNA was separated
on an 6% polyacrylamide gel and hybrid-
ized with: (a) oligonucleotide 020 (comple-
mentary to the 5.8S/ITS2 boundary), (b) oli-
gonucleotide 017 (hybridizing to the mature
5.8S rRNA), (c) oligonucleotide 033 (hybrid-
izing to the 58ETS around position +278). (d)
oligonucleotide 041 (hybridizing to the 5S
rRNA). The position of migration of the pre-
rRNA species is indicated. The species la-
beled 58 ETS extends from the transcription
start site to site A0 (+610). Also shown is a
cartoon of the rDNA (not to scale) with the
mature rRNA regions as rectangles and the
transcribed spacers as lines. The 18S, 5.8S,
and 25S rRNAs are cotranscribed, separated
by the internal transcribed spacers (ITS1
and ITS2) and flanked by the external tran-
scribed spacers (58ETS and 38ETS). The 5S
rRNA is independently transcribed in the
opposite direction. The mature 5.8S rRNA is synthesized from the 7S pre-rRNA, which is 38 extended to site C2 in ITS2. The 58 end
of the 5.8S rRNA is generated by processing at sites at B1L and B1S, which lie about 8 nucleotides apart, generating 5.8SL and 5.8SS,
respectively. Because this event precedes 38 processing, the 7S, 6S, and 5.8S + 30 pre-rRNAs all show 58 heterogeneity, generating, e.g.,
6SL and 6SS.
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extract from the ProtA–Rrp4p strain was fractionated by
column chromatography (see Fig. 3B). Three fractions
containing ProtA–Rrp4p were recovered (Fig. 3C). The

most abundant complex was recovered in fraction 1; this
complex probably corresponds to the major complex pu-
rified previously by glycerol gradient centrifugation and
immunoprecipitation (Mitchell et al. 1997). In addition
to the previously characterized components of the exo-
some, fraction 1 contained Rrp40p, Rrp46p, and Mtr3p.
Other protein bands in fraction 1 were identified as
Csl4p (YNL232w) and the cytoplasmic Hsp70-like pro-
tein Ssa1p (YAL005c), but Rrp6p was not present. Frac-
tion 3 contained the same exosome components as frac-
tion 1, but lacked Ssa1p and contained Rrp6p. Rrp43p,
which comigrates with ProtA–Rrp4p and the IgG heavy
chain (Mitchell et al. 1997), was identified in fraction 3
but not in fraction 1 (Fig. 3C). Csl4p and Rrp45p also
appear to comigrate in SDS-PAGE; from the band
marked Csl4p + Rrp45p, only Rrp45p was identified
from the preparation shown in Figure 3A, whereas only
Csl4p was identified from the preparations shown in Fig-
ure 3C. It is, however, very likely that Rrp43p and
Rrp45p are components of both complexes (see also be-
low). Consistent with the recovery of Rrp6p in the total
immunoprecipitate (Fig. 3A), approximately threefold
less ProtA–Rrp4p was recovered in fraction 3 than in
fraction 1 (twofold less of the material recovered in frac-
tion 1 was loaded onto the gel in Fig. 3C than of the
material in fractions 2 and 3). Fraction 2 comprises only
ProtA–Rrp4p with Ssa1p, and was approximately four-
fold less abundant than fraction 1. Consistent with glyc-
erol gradient centrifugation (Mitchell et al. 1997), no free
ProtA–Rrp4p was recovered. The ProtA–Rrp4p–Ssa1p
complex was detected in variable yield on glycerol gra-
dients (typically 5%–10% of total ProtA–Rrp4p; Mitchell
et al. 1997) and may be due to dissociation of ProtA–
Rrp4p from the complex during purification, possibly re-
lated to the presence of the protein A tag.

CSL4 was identified previously in a screen for syn-
thetic lethality with the chromatin protein Cep1p and is
essential for viability (Baker et al. 1998). Conditional al-
leles of CSL4 and RRP40 were constructed by placing
their expression under the control of a GAL10 promoter
(see Materials and Methods). In each case, the strains
formed only microcolonies on solid medium containing
2% glucose (data not shown). Following transfer from
liquid RSG medium to liquid glucose medium (Fig. 1) the
strains ceased growth and 38 extended forms of the 5.8S
rRNA accumulated (Fig. 2a), showing a pattern of inter-
mediates similar to other exosome mutants. Depletion
of Rrp40p or Csl4p also led to the accumulation of the 58
ETS pre-rRNA spacer fragment (Fig. 2c). Therefore, ge-
netic depletion of any of the 10 essential components
identified by copurification results in very similar de-
fects in the processing of the 5.8S rRNA, showing that
they form a single complex.

RRP6 is not essential for viability (Briggs et al. 1998),
and a strain carrying a precise deletion of RRP6 was con-
structed (see Materials and Methods). This strain was
impaired in growth at all temperatures and was nonvi-
able at 37°C (temperature-sensitive lethal; data not
shown). The rrp6-D strain was defective in the 38 pro-
cessing of the 5.8S rRNA, but differed from the other

Figure 3. Fractionation of the exosome complex and identifi-
cation of new components. (A) Proteins associated with IgG–
Sepharose via binding to ProtA–Rrp4p were eluted using a gra-
dient of MgCl2 and analyzed by SDS-PAGE. (Lanes 1–20) Mate-
rial eluted with a 100 mM step gradient of MgCl2 concentration
from 100 mM (lane 1) to 2 M (lane 20). (HAc) Proteins eluted by
the acid wash. Proteins are visualized by silver staining. The
strong bands specifically seen in lane 8 were not observed in
other experiments. (B) Purification scheme. A whole-cell ex-
tract (CXT) was batch-bound to DEAE–Sepharose FF. Bound
material was eluted (E300) with TMN buffer containing 300 mM

NaCl/10% glycerol (TMN-300). The eluate, in TMN-100, was
passed through a Mono Q column and bound material was
eluted stepwise with TMN-150, TMN-200 (E200), TMN-320
(E320), and TMN-500. Material that failed to bind to DEAE–
Sepharose FF (FT) was passed through a Mono S column and
bound material was eluted with TMN-500 (E500). Each sample
was immunoprecipitated on IgG–Sepharose. (C) Proteins pre-
sent in fractions 1, 2, and 3, obtained as outlined in B, were
separated by SDS-PAGE. Approximately twofold more of the
material recovered in fractions 2 and 3 was loaded onto the gel,
as compared with fraction 1. Proteins positively identified by
mass spectroscopy are indicated. Species in brackets were not
identified in the preparations shown but are predicted to be
present from other analyses. Molecular weight markers are also
shown. Proteins are visualized by Coomassie staining.
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components of the exosome insofar as it accumulated a
discrete species, 5.8S + 30, that was 38 extended by ∼30
nucleotides (Fig. 2a; Briggs et al. 1998). The rrp6-D strain
also accumulated the 58 ETS region of the pre-rRNA (Fig.
2c). We conclude that the exosome includes at least 11
components, all of which are required for normal 38 pro-
cessing of the 5.8S rRNA and degradation of the 58 ETS
region. Ten of these are essential for viability, whereas
the absence of Rrp6p results in temperature-sensitive le-
thality (see Table 1).

It is unclear whether Ssa1p is a genuine component of
the complex or associates with the exosome as a conse-
quence of the protein A tag present on Rrp4p. In either
event, because Ssa1p is predominantly cytoplasmic
(Chirico et al. 1988; Deshaies et al. 1988), one obvious
possibility was that fractions 1 and 3 contained cytoplas-
mic and nuclear forms of the exosome, respectively. To
test this possibility, a ProtA–Rrp6p fusion was con-
structed (see Materials and Methods). The ProtA–Rrp6p
construct complemented the temperature-sensitive le-
thal growth phenotype of the rrp6-D mutation, largely
suppressed the accumulation of the 5.8S + 30 species in
this strain, and cosedimented with ProtA–Rrp4p through
glycerol gradients (data not shown). Therefore, we con-
clude that the protein A epitope does not grossly impair
the ability of Rrp6p to associate with the exosome or to
function in the cell.

Immunolocalization of the ProtA–Rrp6p and ProtA–
Rrp4p (Mitchell et al. 1996) fusion proteins was com-
pared to the nucleolar marker ProtA–Nop1p (Grandi et
al. 1993) and staining of the nucleoplasm with DAPI.
ProtA–Rrp6p gave a nuclear signal, with nucleolar en-

richment and a punctate nucleoplasmic staining. ProtA–
Rrp4p was also observed in the nucleoplasm and nucleo-
lus, but was additionally detected in the cytoplasm (Fig.
4). Notably, a GFP–Rrp43p fusion protein has recently
been reported to be localized to both the nucleus and
cytoplasm (Zanchin and Goldfarb 1999).

We conclude that two major forms of the exosome can
be purified that contain at least 10 common compo-
nents, Rrp4p, Rrp40–Rrp46p, Mtr3p, and Csl4p, all of
which are essential for viability and are required for exo-
some function. Rrp6p is present only in a subfraction of
the complex that is confined to the nucleus.

Characterization of the human PM–Scl complex

Rrp6p shows substantial homology to the human protein
PM–Scl100 (Briggs et al. 1998), whereas Rrp45p is ho-
mologous to PM–Scl75 (Mian 1997), both of which are
targets of autoimmune antibodies in patients suffering
from polymyositis–scleroderma overlap syndrome (Al-
deruccio et al. 1991; Bluthner and Bautz 1992; Ge et al.
1992). Moreover, human orthologs have been identified
for the Rrp4p, Rrp44p and Csl4p components of the exo-
some (Mitchell et al. 1997; Baker et al. 1998; Shiomi et
al. 1998). Strikingly, expression of each of these cDNAs
can suppress the phenotypes of mutations in the corre-
sponding yeast genes, demonstrating their functional
conservation (Mitchell et al. 1997; Baker et al. 1998;
Shiomi et al. 1998). Translational searches of the human
EST banks (see Materials and Methods) allowed virtual
cDNAs to be assembled for hRrp40p, hRrp41p, hRrp42p,
and hRrp46p; in each case, the putative human protein

Table 1. Components of the exosome

Protein Gene Phenotype
E. coli

homolog
Mammalian

homolog Comments

Rrp4p YHR069c essential S1 RNA BD hRrp4p
43% (52%)

hRrp4p complements
rrp4-1

Rrp40p YOL142w essential S1 RNA BD hRrp40p
35% (48%)

homologous to Rrp4p

Rrp41p/Ski6p YGR195w essential RNase PH hRrp41p
35% (55%)

Rrp42p YDL111c essential RNase PH hRrp42p
25% (51%)

Rrp43p YCR035c essential RNase PH
Rrp45p YDR280w essential RNase PH PM-Scl75

38% (64%)
human KIAA0116 and OIP2

also homologous
Rrp46p YGR095c essential RNase PH hRrp46p

35% (48%)
Mtr3p YGR158c essential RNase PH
Rrp44p/Dis3p YOL021c essential RNase R hDis3p hDis3p complements

(RNase II family) 45% dis3-81
Cs14p YNL232w essential S1 RNA BD hCs14p

48% (56%)
hCs14p complements

csl4-1
Rrp6p YOR001w ts lethal RNase D PM-Scl100

32% (52%)
component only of nuclear complex

Rrp4p, Rrp40p, and Cs14p are not clearly homologous to known exonucleases from E. coli but are predicted to include regions
homologous to the S1 RNA-binding domain (S1 RNA BD). For the human homologs numbers represent the percentage identity
(similarity). In the case of Cs14p (Baker et al. 1998), Rrp40p, Rrp41p, Rrp42p, and Rrp46p, the numbers are based on consensus cDNAs
assembled from ESTs and may not be fully accurate. (See text for references.)
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showed high homology to the yeast protein (Table 1). In
addition, two other genes, KIAA0116 and OIP2, were
found to be homologous to Rrp45p, although less so than
PM–Scl75. For hRrp40p and hRrp46p, apparent products
of alternative splicing were evident when the EST se-
quences were assembled into contigs (data not shown).
In some cases, these alternative forms may have led to an
overestimation of the number of discrete protein species
in the PM–Scl complex.

Previous analyses showed that hRrp4p is present in a
large complex (Mitchell et al. 1997). To determine
whether the human homologs of other exosome compo-
nents are present in the same complex, HeLa cell nuclear
and cytoplasmic extracts (generously provided by Juan
Valcárcel, EMBL, or prepared as described in Materials
and Methods) were fractionated by glycerol gradient cen-
trifugation. Fractions were analyzed by Western blotting
with human autoimmune serum (generously provided
by Walter van Venrooij, University of Nijmegen, The

Netherlands) or antibodies raised against recombinant
hRrp4p (Mitchell et al. 1997; Fig. 5). In the nuclear ex-
tract, PM–Scl75 and an uncharacterized protein of ∼25
kD that is also a target of the autoimmune serum (PM–
Scl25) cosedimented with hRrp4p, with a peak in frac-
tions 13 and 14. PM–Scl100 also showed substantial
cosedimentation (Fig. 5A). The band at 45 kD is likely to
be the species previously reported to cross-react with
anti-PM–Scl75 antibodies (Alderuccio et al. 1991). PM–
Scl100 was not detected in the cytoplasmic extract, but
PM–Scl75 and hRrp4p cosedimented (Fig. 5B), as did
PM–Scl25 (data not shown), with a peak in fractions 13
and 14.

To confirm the association between PM–Scl100 and
hRrp4p in the HeLa cell nuclear extract, immunoprecipi-
tation was performed (Fig. 6). Three different autoim-
mune sera (sera 1–3) were used, each of which reacted

Figure 4. Rrp4p and Rrp6p differ in their nuclear-cytoplasmic
distribution. (A) Strains expressing ProtA–Rrp4p, ProtA–Rrp6p,
or ProtA–Nop1p were examined by indirect immunofluores-
cence using an anti-protein A antibody coupled to Texas Red.
Also shown is the position of the DNA, visualized by DAPI
staining. The combined image is pseudocolored with DAPI in
green and Texas Red in red. For each tagged strain an otherwise
isogenic wild-type control strain was also analyzed. The wild-
type strain shown (P51) is isogenic with the ProtA–Rrp4p strain
(see Table 2). (B) Higher resolution images are shown for the
ProtA–Rrp4p and ProtA–Rrp6p to show the punctate staining
pattern.

Figure 5. Cosedimentation of hRrp4p and the PM–Scl com-
plex. (A) HeLa cell nuclear extract. (B) HeLa cell cytoplasmic
extract. Cell extracts were fractionated by glycerol gradient cen-
trifugation. Samples were analyzed by Western blotting deco-
rated with human autoimmune antisera reactive against PM–
Scl100, PM–Scl75, and a previously uncharacterized human
protein (PM–Scl25) or with rabbit antiserum raised against re-
combinant hRrp4p. The serum also cross-reacts with an unre-
lated 45-kD protein. Also shown is the sedimentation of mo-
lecular weight markers on a gradient run in parallel with the
nuclear extract. Markers: (A) alcohol deyhdrogenase from yeast
(7.4S); (B) bovine serum albumin (4.3S); (C) bovine catalase
(11.3S; Siegel and Monty 1966).
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specifically with PM–Scl100 on Western blots of the to-
tal nuclear extract (Fig. 6B). Following immunoprecipi-
tation, hRrp4p was recovered in the immune precipitate
(P) with each PM–Scl100 serum (Fig. 6A), but was not
coprecipitated with a control human serum. In contrast,
another human nucleolar protein, hPop1p, a component
of RNase mitochondrial RNA processing (MRP) (Lygerou
et al. 1996), was recovered exclusively in the immune
supernatant (S; Fig. 6A). We conclude that hRrp4p is as-
sociated physically with PM–Scl100 in a human nuclear
extract. The efficiency of precipitation of PM–Scl100 and
PM–Scl75 could not be assessed in this experiment, be-
cause the secondary, anti-human antibody reacted very
strongly with the human antibodies present in the im-
munoprecipitate.

The subcellular localization of the PM–Scl complex
was assessed by nuclear–cytoplasmic fractionation.
Western blotting (Fig. 6C) showed that PM–Scl75 and
hRrp4p were partitioned between the nuclear and cyto-
plasmic fractions. In contrast, PM–Scl100 was detected
exclusively in the nuclear fraction (Fig. 6B,C). Rabbit an-
tibodies directed against actin (Sigma A2066) decorated a

band exclusively in the cytoplasmic fraction (Fig. 6C).
Approximately equal quantities of PM–Scl75 and hRrp4p
were recovered in the cytoplasmic and the nuclear frac-
tions. Only very low amounts of PM–Scl100, PM–Scl75,
and hRrp4p were detected in the residual nuclear pellet
(data not shown).

We conclude that there are at least two forms of the
human PM–Scl complex: a nuclear complex that in-
cludes PM–Scl100 and a cytoplasmic complex that lacks
PM–Scl100. These are very likely to be directly equiva-
lent to the nuclear and cytoplasmic forms of the yeast
exosome, that similarly differ by the presence of Rrp6p,
the yeast homolog of PM–Scl100, only in the nuclear
complex.

Discussion

Here, we report the identification of 11 components of
the nuclear exosome complex (Table 1). Remarkably, six
of the components are homologous to E. coli RNase PH;
Rrp41p, Rrp42p, Rrp43p, Rrp45p, Rrp46p, and Mtr3p. Of
the remaining exosome components, Rrp6p is homolo-
gous to E. coli RNase D (Briggs et al. 1998), and Rrp44p
is homologous to E. coli RNase R/vacB (Mitchell et al.
1997), an RNase II family member (Cheng et al. 1998).
Rrp40p shows homology to Rrp4p, which was shown
previously to be a 38 → 58 exonuclease in vitro (Mitchell
et al. 1997), and, therefore, Rrp40p is also predicted to be
an exonuclease. The only component of the exosome
complex that does not show homology to a known exo-
nuclease is Csl4p. It is, however, notable that both yeast
Csl4p and human hCsl4p include sequences homologous
to the S1 RNA-binding domain (Bycroft et al. 1997; S.
Mian, pers. comm.), strongly indicating that it too inter-
acts directly with RNA substrates. Rrp4p and Rrp40p are
also predicted to contain S1 RNA-binding domains (S.
Mian, pers. comm.).

We previously identified the human homolog of Rrp4p
and showed that expression of the hRRP4 cDNA in yeast
could suppress the temperature-sensitive lethality of the
rrp4-1 allele (Mitchell et al. 1997). Subsequently, the
cDNA encoding the human homolog of Rrp44p/Dis3p
has been shown to partially complement a temperature-
sensitive lethal dis3 allele (Shiomi et al. 1998), and the
cDNA encoding hCsl4p has been shown to complement
the synthetic-lethal phenotype of a csl4-1, cep1-D double
mutant strain (Baker et al. 1998). Sequence comparisons
indicate that human homologs exist for 9 of the compo-
nents of the yeast exosome complex (see Table 1). Nota-
bly, Rrp6p is homologous to PM–Scl100 (Briggs et al.
1998) whereas Rrp45p is homologous to PM–Scl75. Both
of these proteins are the targets of autoimmune antibod-
ies in human patients suffering from polymyositis–
scleroderma overlap syndrome (Alderuccio et al. 1991;
Ge et al. 1992). The PM–Scl complex was reported to
contain between 11 (Reimer et al. 1986) and 16 (Gelpi et
al. 1990) proteins, as judged by SDS-PAGE analysis of
immunoprecipitated proteins. We have shown by copre-
cipitation that hRrp4p is associated with PM–Scl100 in
HeLa cell nuclear extracts, and hRrp4p cosedimented

Figure 6. Characterization of the PM–Scl complex. (A) Three
different human autoimmune sera with specificity for PM–
Scl100 were used for immunoprecipitation from a HeLa nuclear
extract. The total HeLa nuclear extract, supernatant (S), and
pellet (P) fraction are shown. Each lane represents an equivalent
quantity of lysate. Western blots were decorated with rabbit
sera raised against recombinant hRrp4p or hPop1p, a compo-
nent of the RNase MRP complex. (B) Western blots of total
HeLa nuclear (N) and cytoplasmic (C) extracts decorated with
the anti-PM–Scl100 sera used for immunoprecipitation, demon-
strating the specificity of the sera. (C) Western blots of total
HeLa nuclear (N) and cytoplasmic (C) extracts decorated with
rabbit sera raised against recombinant hRrp4p or human actin,
or with a human autoimmune serum reactive against both PM–
Scl100 and PM–Scl75. Cell equivalent volumes of the nuclear
and cytoplasmic fractions were loaded.
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with PM–Scl75 and PM–Scl25 in both nuclear and cyto-
plasmic extracts. Homologs of at least three components
of the exosome are present in the PM–Scl complex, pro-
viding strong evidence that these complexes are directly
homologous.

Six human homologs of RNase PH were identified.
These do not, however, have a 1:1 relationship with the
six RNase PH homologs in the exosome. No clear hu-
man homologs were identified for Rrp43p or Mtr3p.
Searches of the EST banks with these proteins identified
ESTs related to KIAA0116 and OIP2; these sequences
are, however, more homologous to Rrp45p than to the
other yeast PH homologs (although less so than PM–
Scl75). A probable interpretation is that yeast and hu-
mans have the same number of RNase PH homologs, but
that some drift has occurred with duplicates of the
RRP45/PM–Scl75 gene replacing other species.

Mutations in individual components of the yeast exo-
some inhibited both nucleolar pre-rRNA processing and
cytoplasmic mRNA turnover (Anderson and Parker
1998), indicating that related complexes are present in
the nucleus and the cytoplasm. Moreover, a mutation in
Mtr3p leads to nuclear accumulation of poly(A)+ RNA
(Kadowaki et al. 1995), as does a mutation in Dob1p/
Mtr4p (de la Cruz et al. 1998; Liang et al. 1996), a puta-
tive RNA helicase required in addition to the exosome
for 5.8S rRNA 38 end maturation and degradation of the
58 ETS fragment (de la Cruz et al. 1998). These observa-
tions suggest that the exosome may also play some role
in nucleoplasmic RNA turnover or processing. Consis-
tent with this hypothesis, GFP–Rrp43p (Zanchin and
Goldfarb 1999) and ProtA–Rrp4p were detected in the
nucleolus, nucleoplasm, and cytoplasm. In contrast,
ProtA–Rrp6p was found to be exclusively nuclear, with a
nucleolar enrichment. Two complexes could also be
separated biochemically; these include 10 common com-
ponents and differ in the presence of either Ssa1p, a cy-
toplasmic Hsp70-like protein (Chirico et al. 1988; De-
shaies et al. 1988), or Rrp6p. The form lacking Rrp6p is
presumed to be the cytoplasmic exosome complex, a pro-
posal supported by the presence of Ssa1p. Approximately
threefold more of this complex was recovered than the
putative nuclear exosome that includes Rrp6p. Human
PM–Scl100 was also restricted to the nucleus, while PM–
Scl75, PM–Scl25, and hRrp4p partition between the
nucleus and cytoplasm. The reported nucleolar enrich-
ment of the human PM–Scl complex is probably a con-
sequence of the immunodominance of PM–Scl100 in au-
toimmune sera (Ge et al. 1992; Gelpi et al. 1990). In fact,
approximately equal amounts of the human nuclear and
cytoplasmic complexes were recovered following subcel-
lular fractionation.

We conclude that there are two forms of the exosome/
PM–Scl complex in the nucleus and the cytoplasm that
can be distinguished by the presence of Rrp6p/PM–
Scl100 specifically in the nuclear form.

Rrp6p is not essential for viability, in contrast to the
other 10 components of the exosome complex, although
rrp6-D strains are severely impaired in growth and are
temperature sensitive. Therefore, the exosome is there-

fore predicted to retain at least partial function in the
absence of Rrp6p, a view supported by the observation
that the major form of the complex lacks this protein.
Conversely, all of the PM–Scl100 present in Hela cell
lysates appeared to be associated with the PM–Scl com-
plex, suggesting that Rrp6p/PM–Scl100 may not func-
tion independently of the complex in vivo.

In E. coli, the homologs of the exosome components
are not present in a related complex. However, the de-
gradosome complex includes another 38 → 58 exonucle-
ase, PNPase, together with the endonuclease and exo-
nuclease RNase E and the putative RNA helicase RhlB
(Carpousis et al. 1994; Py et al. 1996; Mackie 1998;
Vanzo et al. 1998). It appears that throughout evolution,
major activities involved in RNA processing and degra-
dation have been assembled into large complexes, possi-
bly to allow their coordinate regulation. The composi-
tion of these complexes are, however, very different in
bacteria and eukaryotes.

Materials and methods

Strains and media

Except where stated, strains were grown in liquid or on solid
minimal medium containing 0.67% yeast nitrogen base
(DIFCO) and 2% glucose with appropriate supplements. For
depletion, strains carrying GAL-regulated constructs were
pregrown in RSG (2% peptone, 1% yeast extract, 2% raffinose,
2% sucrose, 2% galactose) and transferred to YPD (2% peptone,
1% yeast extract, 2% glucose).

Yeast strains used and constructed in this study are listed in
Table 2. Gene disruptions of RRP45 and RRP46 were generated
by a PCR strategy in the diploid strain BMA38 (Baudin et al.
1993) resulting in the replacement of the complete ORF by an
auxotrophic marker (see Table 2). Successful disruption was
confirmed by Southern hybridization. Chromosomal DNA from
the RRP45/rrp45::TRP1 and RRP46/rrp46::HIS3 strains was di-
gested by EcoRI–HindIII or KpnI–EcoRI, respectively, and hy-
bridized with a probe derived from the PCR products that were
used for transformation. Twelve tetrads from the RRP45/
rrp45::TRP1 strain and eight tetrads from RRP46/rrp46::HIS3
strain were dissected on YPD plates and incubated for 6 days at
23°C. Each showed 2:2 segregation for spore viability. All viable
spores were auxotrophic for tryptophan or histidine, respec-
tively, indicating that the disrupted alleles were lethal. The
nonessential RRP6 gene was disrupted in the haploid strain
YBD38 (see Table 2) by use of the Kluyveromyces lactis TRP
marker, obtained by PCR amplification from plasmid pBS1408
(generously provided by Bertrand Séraphin, EMBL, Heidelberg,
Germany).

The oligonucleotides used to construct and test the gene dis-
ruptions were 58RRP45::TRP1 (807); 38RRP45::TRP (808); 58

RRP46::HIS3 (809); 38RRP46::HIS3 (810); 58RRP6::Kl TRP (811);
38RRP6::Kl TRP (812). Test oligonucleotides were 38RRP45
(813); 38RRP6 (815); Sc TRP (816); HIS (817); Kl TRP (818) (full
sequences are available from the authors).

Conditional mutants under the control of the inducible
GAL10 promoter were generated for the RRP40, RRP45, RRP46,
and CSL4 genes by a one-step PCR strategy in the YDL401
strain (Lafontaine and Tollervey 1996). Transformants were se-
lected for His+ prototrophy and screened by PCR.

The oligonucleotides used to construct the conditional mu-
tants were 58GAL-RRP45 (819); 38GAL-RRP45 (820); 58GAL-
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RRP46 (821); 38GAL-RRP46 (822); 38GAL-ProtA–RRP46 (823);
58GAl-RRP40 (824); 38GAl-RRP40 (825); 58GAL-CSL4 (826);
38GAL-CSL4 (827). The amplification of RRP6::TRP was done
with oligonucleotides 58RRP6 (834) and 38RRP6 (835) (full se-
quences are available from the authors).

Construction of the ProtA–Rrp6p fusion

To construct the ProtA–RRP6 fusion gene, the RRP4 ORF was
excised from plasmid pPM46 (Mitchell et al. 1997) by restriction
cleavage at sites EcoRI and HindIII and replaced by the RRP6
ORF amplified by PCR from wild-type genomic DNA and
flanked by the same restriction sites. The resulting plasmid was
transformed into the haploid RRP6::TRP strain and shown to
complement fully the RNA processing and growth phenotypes
of the deleted strain. The oligonucleotides used for the PCR
were 58PRS (836) and 38PRS (837).

Fractionation of ProtA–Rrp4p complexes

Lysate from 5-liter YPD cultures of strain P49 was prepared in
TMN buffer [10 mM Tris-HCl (pH 7.6), 5 mM MgCl2, 0.1% NP-
40] containing 150 mM NaCl, 1 mM PMSF, and 10% glycerol, as
described (Mitchell et al. 1996). ProtA–Rrp4p complexes were
purified by immunoprecipitation with IgG–Sepharose, either
from clarified lysates or after fractionation by low-pressure col-
umn chromatography. Purification procedures were carried out
at 4°C in buffers containing 0.5 mM PMSF and fractions were
screened for the presence of ProtA–Rrp4p by Western blot analy-
ses, using peroxidase-antiperoxidase rabbit antibody (Sigma).

Cleared lysate was applied directly to a 100-µl IgG–Sepharose
6 FF column (Pharmacia) and washed with 100 ml of TMN-150,
bound material was eluted with a 0.1–2 M MgCl2 gradient
(Görlich et al. 1996) in TMN-150 buffer (20 fractions of 150 µl at
increments of 100 mM MgCl2). Aliquots of 5 µl were resolved by
SDS-PAGE and visualized by silver staining. Fractions contain-
ing the proteins of interest were precipitated with 9 vol of iso-
propanol, pooled, and analyzed on 10% polyacrylamide gels
containing SDS.

For fractionation, cleared lysate (30 ml) diluted to 100 mM

NaCl was batch-bound to DEAE–Sepharose FF (Pharmacia).

Bound material was washed three times with 30 ml of TMN
buffer containing 100 mM NaCl (TMN-100), eluted with 5 × 30
ml TMN-300/10% glycerol (E300) and then frozen at −80°C.
The pooled eluates were diluted to 100 mM NaCl and passed
through a 10-ml Q-Sepharose FF column (Mono Q; Pharmacia).
Bound material was eluted stepwise with 50 ml of TMN-150,
TMN-200 (E200), TMN-320 (E320), and TMN-500. Material
that failed to bind to DEAE–Sepharose FF (FT) was passed
through a 10-ml SP–Sepharose FF column (Mono S; Pharmacia).
After washing with 50 ml of TMN-300, bound material was
eluted with 50 ml of TMN-500 (E500). Eluates from the Mono Q
and Mono S columns were diluted to 150 mM NaCl and passed
through small (100 µl) IgG–Sepharose 6 FF columns. Bound ma-
terial was washed with 100 ml of TMN-150, and retained pro-
teins were eluted with 1 ml of 0.5 M acetic acid. The eluates
were concentrated by centrifugation under vacuum and ana-
lyzed by SDS-PAGE and nanospray mass spectrometry, as
above.

Mass spectrometric analysis

Proteins bands were excised from the gel, digested in the gel,
and analyzed according to the strategy described elsewhere
(Shevchenko et al. 1996). High mass accuracy MALDI peptide
mapping (Jensen et al. 1996) was performed on a Bruker Reflex
III mass spectrometer (Bruker Daltonics, Bremen, Germany). To
resolve protein mixtures an iterative approach (Jensen et al.
1997) was used. In case of uncertainty identifications were con-
firmed by nanoelectrospray tandem mass spectrometry on a pi-
lot QqTOF instrument (SCIEX, Toronto, Canada; Shevchenko
et al. 1997b). PeptideSearch software, developed in house, was
used for protein database searching.

Glycerol gradient analysis of a HeLa cell extracts

HeLa cell lysates were prepared according to standard proce-
dures (Dignam et al. 1983; Lee et al. 1988). Nuclear and cyto-
plasmic extracts were centrifuged through 12-ml glycerol den-
sity gradients as described previously (Mitchell et al. 1997). Gra-
dient fractions were analyzed by Western blotting analysis with
rabbit anti-hRrp4p serum or sera of patients suffering from poly-

Table 2. Strains used in this study

Strain Genotype Reference/Note

BMA38 MATa/a ade2-1/ade2-1 his3-D200/his3-D200 leu2-3,112/leu2-3,112 trp1-1/trp1-1
ura3-1/ura3-1 can1-100/can1-100 Baudin et al. (1993)

YCA10 as BMA38 but RRP45/RRP45<TRP1 this study
YCA11 as BMA38 but RRP46/RRP46<HIS3 this study
YCA12 MATa ade2-1 his3-D200 leu2-3,112 trp1-1 ura3-1 can1-100 RRP6<Kl TRP1 this study
YTK100 MATa mtr3-1 ura3-52 Kadowaki et al. (1995)
YDL401 MATa his3D200 leu2D1 trp1 ura3-52 gal2 galD108 Lafontaine and

Tollervey (1996)
YCA20 as YDL401 but GAL10<RRP45 this study
YCA21 as YDL401 but GAL10<RRP46 this study
P79 as YDL401 but GAL10<protA–RRP4 Mitchell et al. (1997)
P147 as YDL401 but GAL10<RRP40 this study
P170 as YDL401 but GAL10<CSL4 this study
GAL<DOB1 MATa ura3-1 ade2-1 his3-11,15 leu2-3,112 trp1-1 dob1<HIS3MX6 + [pAS24–DOB1] de la Cruz et al. (1998)
P49 MATa ade2-1 his3-11 leu2-3 trp1-1 ura3-52 can1-100 rrp4D<HIS3 + [pRS416/protA–RRP4] Mitchell et al. (1996)
P51 MATa ade2-1 his3-11 leu2-3 trp1-1 ura3-52 can1-100 rrp4D<HIS3 + [pRS415/RRP4] Mitchell et al. (1996)
YCA40 MATa ade2-1 his3-D200 leu2-3,112, trp1-1 ura3-1 can1-100 RRP6<Kl TRP1 +

[pRS416/protA–RRP6] this study
ProtA–Nop1 MATa ade leu trp lys ura3 nop1<URA3 + [pUN100–protA–NOP1] Jansen et al. (1993)
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myositis–scleroderma overlap syndrome [kindly provided by
Dr. W. van Venrooij and obtained from the University Hospital
(St. Radboud) of Nijmegen].

Immunofluorescence

Cells were grown in selective medium to mid-exponential
phase, fixed by incubation in 4% (vol/vol) formaldehyde for 1 hr
at room temperature, and spheroplasted. Then immunofluores-
cence was then performed as described previously (Bergès et al.
1994; Grandi et al. 1993). Protein A fusions were detected with
a rabbit anti-protein A antibody (Sigma) and a secondary goat
anti-rabbit antibody coupled to Texas Red (Dianova) at a 1:100
and 1:200 dilution, respectively. To stain nuclear DNA, DAPI
was included in the mounting medium (Vectashield, Vector
Laboratories).

Immunoprecipitation of the PM–Scl complex with
patient sera

Patient sera directed specifically against PM–Scl100 (kindly pro-
vided by Dr. W. van Venrooij) were used for the immunopre-
cipitation experiments. HeLa cell lysates were prepared as de-
scribed above. A 50% solution of protein A–Sepharose beads
(10µl; Pharmacia) was washed three times in IPP 500 [500 mM

NaCl, 10 mM Tris-HCl (pH 8), 0.1% NP-40, 0.5 mM PMSF] and
incubated for 1 hr at room temperature with 5 µl of human
autoimmune sera. Beads were washed three times with IPP500,
transferred in 10 µl of IPP150 ([50 mM NaCl, 10 mM Tris-HCl
(pH 8), 0.1% NP-40, 0.5 mM PMSF] and then added to 10 µl of
HeLa cell nuclear extract. After incubation for 2 hr at 4°C, the
supernatant was recovered and beads were washed four times
with IPP150. Bound proteins were eluted from the beads by a 5
min boiling in protein gel loading buffer. Total, supernatant,
and pellet proteins were analyzed by SDS-PAGE and Western
blotting analysis with anti-hRrp4p serum or affinity-purified
anti-hPop1 antibodies (Lygerou et al. 1996; Mitchell et al. 1997).

RNA analysis

RNA isolation and Northern blot hybridization were performed
as described previously (Beltrame and Tollervey 1992; Tollervey
1987). Oligonucleotides used for rRNA and pre-rRNA analysis
were 58-TGAGAAGGAAATGACGCT (oligonucleotide 020),
58-GCGTTGTTCATCGATGC (oligonucleotide 017), 58-CGC-
TGCTCACAATGG (oligonucleotide 033), and 58-CTACTCG-
GTCAGGCTC (oligonucleotide 014).

Database searches

The human EST banks were searched using the EFEAME p2n
program for translational frame-shifting, on the Bioaccelerator
of the European Molecular Biology Laboratory (http://ww-
w.embl-heidelberg.de). Contigs were assembled from the re-
trieved ESTs by use of the Gene JockeyII program. Homology
was calculated by use of using the Bestfit program [Wisconsin
Package Version 9.1, Genetics Computer Group (GCG), Madi-
son, WI.].

The ESTs used for the alignments were hRRP40: HS103148,
AA916866, AA715297, AA909843, AA829746, AA760696,
AA748308, AA747303, HSA01383, HS479237, HS417169,
HS1213865, HS1191331, HS1186630, AA937191, AA741488,
HSA57832, HSA01383, HS620247, HS617138, AA736510,
HS1300540, HS1273716, HS1269362, HS1229711, HS1198690,
HS1191331, and HS1174014; hRRP41: HS0229, HSZZ84720,
HS462881, HS1210855, HS060127, and HSAA29848; hRRP42:

AA654791, HS599371, HSZZ85135, HS20834, AA581010,
HS414162, HS979316, and HSZZ84357; hRRP46: HS078341,
HS84856, HS1255212, HS1226957, HSZZ41259, HS1256223,
HS1225454, HS1249336, and HS1172072.
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The yeast nuclear exosome contains multiple 39→59
exoribonucleases, raising the question of why so many
activities are present in the complex. All components
are required during the 39 processing of the 5.8S rRNA,
together with the putative RNA helicase Dob1p/Mtr4p.
During this processing three distinct steps can be
resolved, and hand-over between different exonucleases
appears to occur at least twice. 39 processing of
snoRNAs (small nucleolar RNAs) that are excised from
polycistronic precursors or from mRNA introns is also
a multi-step process that involves the exosome, with
final trimming specifically dependent on the Rrp6p
component. The spliceosomal U4 snRNA (small nuclear
RNA) is synthesized from a 39 extended precursor that
is cleaved by Rnt1p at sites 135 and 169 nt downstream
of the mature 39 end. This cleavage is followed by
39→59 processing of the pre-snRNA involving the
exosome complex and Dob1p. The exosome, together
with Rnt1p, also participates in the 39 processing of
the U1 and U5 snRNAs. We conclude that the exosome
is involved in the processing of many RNA substrates
and that different components can have distinct
functions.
Keywords: pre-rRNA/RNA processing/Saccharomyces
cerevisiae/snoRNA/snRNA

Introduction

Eukaryotic cells contain a large number of stable RNA
species, nearly all of which are synthesized by post-
transcriptional processing from larger precursors. This has
long been known for the highly abundant cytoplasmic
RNAs, tRNAs and rRNAs, but more recently it has
become clear that this is also the case for the small nuclear
RNAs (snRNAs), which participate in pre-mRNA splicing,
and the small nucleolar RNAs (snoRNAs), which particip-
ate in rRNA processing and modification.

Analyses of 39 processing of the 5.8S rRNA inSaccharo-
myces cerevisiaeled to the identification of the exosome

© European Molecular Biology Organization 5399

complex of 39→59 exonucleases (Mitchellet al., 1996,
1997; Allmanget al., 1999). Originally reported to contain
five different 39→59 exonucleases, it is now likely that
the exosome contains at least 10 exonucleases (Allmang
et al., 1999). These include six homologues ofEscherichia
coli RNase PH (Rrp41p, Rrp42p, Rrp43p, Rrp45p, Rrp46p
and Mtr3p), a homologue ofE.coli RNase R and RNase
II (Rrp44p/Dis3p), and a homologue ofE.coli RNase D
(Rrp6p). Two other components, Rrp4p and Rrp40p, are
homologous to each other, and Rrp4p has been shown to
be a 39→59 exonuclease (Mitchellet al., 1997). The
remaining component is Csl4p, which has not been
reported to have nuclease activity but does contain a
potential S1 RNA binding domain (S.Mian, personal
communication), indicating that it is also likely to bind
RNA directly. All components of the exosome are essential
for viability (Mitchell et al., 1996, 1997; Noguchiet al.,
1996; Bakeret al., 1998; Allmanget al., 1999) with the
exception of Rrp6p, the absence of which results in
temperature-sensitive (ts) lethality and impaired growth
at all temperatures (Briggset al., 1998). Normal processing
of the 7S pre-rRNA to the mature 5.8S rRNA requires all
components of the exosome, but the phenotype of the
rrp6-∆ strain differs substantially from that of the other
mutants, making it unclear whether these function in the
same or parallel pathways. In addition to the components
of the exosome, the yeast genome contains at least six
other open reading frames that are predicted to encode
39→59 exonucleases, based on sequence comparisons with
E.coli enzymes (Mian, 1997; Moseret al., 1997).

59 processing of the 5.8S rRNA requires the activity of
two homologous 59→39 exonucleases, Rat1p and Xrn1p,
with the major role probably being played by Rat1p
(Henry et al., 1994). The same exonucleases are required
for the 59 processing of several snoRNA species, many
of which are either synthesized from polycistronic pre-
snoRNA transcripts, or are excised from the introns of
pre-mRNAs following intron lariat debranching (Ooiet al.,
1998; Petfalskiet al., 1998). All characterized yeast
polycistronic snoRNAs are initially processed by endo-
nuclease cleavage by Rnt1p (Chanfreauet al., 1998a,b;
Qu et al., 1999), the yeast homologue ofE.coli RNase III
(Abou Elelaet al., 1996), which separates the individual
pre-snoRNAs. Rnt1p also processes the pre-rRNA in the
39 external transcribed spacer (39-ETS) (Abou Elelaet al.,
1996; Kufel et al., 1999) and cleaves 39 extended pre-
cursors to the U1, U2 and U5 snRNAs (Chanfreauet al.,
1997; Abou Elela and Ares, 1998; Seipeltet al., 1999).
In the absence of Rnt1p cleavage, polyadenylated forms
of U1 and U2 are synthesized (Abou Elela and Ares,
1998; Seipeltet al., 1999). Inrnt1-∆ strains the processing
of the 39-ETS and polycistronic pre-snoRNAs is almost
completely inhibited, with severe effects on rRNA and
snoRNA synthesis. However, 39 processing of the snRNAs
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continues, indicating the existence of alternative pro-
cessing pathways or activities. The existence of alternative
39 processing pathways has also been shown for yeast
tRNAs (Yoo and Wolin, 1997) and multiple activities can
carry out 39 processing of many small RNAs inE.coli
(see Liet al., 1998 and references therein).

Here, we investigate the roles of the different exosome
components in the 39 processing of the 5.8S rRNA and
pre-rRNA spacer degradation, and present data indicating
that the exosome also participates in the 39 processing of
many snRNA and snoRNA species.

Results

The pathway of 5.8S 39 processing
Three different 39 extended forms of the 5.8S rRNA can
be detected in wild-type strains of yeast. The 7S pre-
rRNAs are 39 extended by ~134 nt to site C2 in ITS2
(Veldmanet al., 1981), while the 6S pre-rRNAs represent
5.8S species with short, probably heterogeneous, 39 exten-
sions of ~8 nt (Mitchellet al., 1996) (see Figure 1 for a
schematic showing the pre-rRNA and processing sites).
In addition, the 5.8S1 30 species (Briggset al., 1998)
can be detected at low levels in the wild type (Figure
1D). The 59 end of the 5.8S rRNA is heterogeneous, with
two major forms that differ by 8 nt, designated 5.8SL and
5.8SS (Henry et al., 1994). Since 59 processing of the
5.8S rRNA precedes 39 processing, the 7S pre-rRNA, 6S
pre-rRNA and 5.8S1 30 species all show long and short
forms, e.g. 5.8S1 30L and 5.8S1 30S (Figure 1A and D).

Processing of the 5.8S rRNA was compared in strains
carrying conditional mutations for the 10 essential com-
ponents of the exosome, using the ts-lethalmtr3-1 allele
andGAL-regulated constructs allowing depletion of Rrp4p,
Rrp40p, Rrp41p, Rrp42p, Rrp43p, Rrp44p, Rrp45p,
Rrp46p or Csl4p (Figure 1A). As previously reported
(Mitchell et al., 1997; Allmanget al., 1999), similar 39
extended intermediates were observed in each case, form-
ing a ladder up to the position of the 7S pre-rRNAs. The
GAL::rrp41 strain underexpresses Rrp41p in permissive,
RSG medium, and therefore shows some accumulation of
the extended species in the 0 h sample. Strong accumula-
tion of the 6S pre-rRNA was seen in the strains depleted
of Rrp40p or Rrp45p, while 6S was reduced in the
Rrp41p-, Rrp44p- or Rrp46p-depleted and mtr3-1 strains
and little altered in strains depleted of Rrp4p or Csl4p.
Moreover, in strains depleted of Rrp41p, Rrp42p or Rrp43p
the position of the 6S pre-rRNA appeared to be displaced
up the gel, corresponding to an increase in size of ~3 nt.
We conclude that different components of the exosome
do not play identical roles in processing of the 6S
pre-rRNA.

In rrp6-∆ strains, a distinctly different pattern of pro-
cessing was observed (Figure 1A and D) (Briggset al.,
1998) with accumulation of high levels of the 5.8S1 30
pre-rRNAs. To determine whether Rrp6p and the other
exosome components act on the same pre-rRNA pro-
cessing pathway or function in independent parallel path-
ways, double-mutant strains were constructed carrying the
rrp6-∆ allele and either theGAL::rrp41 (Mitchell et al.,
1997) or theGAL::rrp45 allele. Depletion of either Rrp41p
or Rrp45p from a strain lacking Rrp6p led to the progress-
ive loss of the 5.8S1 30 processing intermediate, clearly
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Fig. 1. Northern analysis of processing of the 5.8S rRNA and
degradation of the 59 ETS region of the pre-rRNA in exosome
mutants. (A andD) Hybridization with probe 020, complementary to
the 5.8S–ITS-2 boundary. (B andF) Hybridization with probe 033,
complementary to the 59-ETS region around1 270. (E) Hybridization
with probe 017, complementary to the 59 region of the mature 5.8S
rRNA. (C) Hybridization with probe 250, complementary to SCR1
RNA. (G) Hybridization with probe 041, complementary to the mature
5S rRNA. Probe names are indicated in parentheses on the left. RNA
was extracted from strains carryingGAL-regulated constructs
following transfer from permissive, RSG medium to repressive,
glucose medium for the times indicated. Themtr3-1 strain was grown
in glucose medium at 25°C or transferred to 37°C for 6 h. Therrp6-∆
strain was grown on glucose medium at 30°C.

showing that Rrp41p and Rrp45p act epistatically to Rrp6p
in the 5.8S processing pathway (Figure 1D). Metabolic
labelling of an rrp6-∆ strain also indicated that Rrp6p
participates in the major 5.8S rRNA processing pathway
(Briggs et al., 1998).

Mutations in the putative ATP-dependent RNA helicase
Dob1p (Mtr4p) also interfere with 39 processing of the
5.8S rRNA (de la Cruzet al., 1998). A GAL::dob1
strain genetically depleted of Dob1p accumulated both the
5.8S1 30 species and larger intermediates that are seen
in other exosome mutants (Figure 1D). The 6S pre-rRNAs
accumulated in theGAL::dob1 strain 2 and 6 h after
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transfer to glucose medium but were reduced after 24 h.
This probably occurred because processing of the pre-
rRNA is strongly inhibited prior to synthesis of 6S, as
shown by the high accumulation of the 7S and 5.8S1
30 pre-rRNAs.

Strains depleted of exosome components or Dob1p, or
carrying themtr3-1or rrp6-∆ mutations, accumulated the
excised 59 ETS region and degradation intermediates
(Figure 1B and F) (de la Cruzet al., 1998; Allmanget al.,
1999). The levels of the degradation intermediates were
quite variable among the exosome mutants. This indicates
that, while degradation of the 59 ETS involves the entire
exosome complex, different components do not have
identical functions during this activity.

Pre-snoRNA processing
Many yeast snoRNAs are synthesized by post-transcrip-
tional processing, either from the excised introns of pre-
mRNAs or from polycistronic transcripts that include
multiple snoRNAs. In higher eukaryotes, both 59 and 39
processing of pre-snoRNAs involves exonuclease activities
(Caffarelliet al., 1994, 1996; Cecconiet al., 1995; Cavaille´
and Bachellerie, 1996; Kisset al., 1996). 59 processing
of several yeast pre-snoRNAs was shown to require the
59→39 exonucleases Rat1p and Xrn1p, with the major
role being performed by Rat1p (Larimeret al., 1992;
Kenna et al., 1993; Petfalskiet al., 1998; Villa et al.,
1998). Northern analysis of RNA extracted from the
rrp6-∆ strain showed many species with a discrete shift
in gel mobility that would correspond to an increase in
length of 3 nt (Figure 2A). This was observed for the
intronic snoRNAs U18, U24 and snR39, as well as
U14 and snR41, which are encoded in dicistronic and
polycistronic transcripts, respectively (Figure 2A). In con-
trast, the gel mobilities of snoRNAs that are transcribed
from their own promoter and terminator, snR10 (Figure
2A) and U3 (data not shown), were unaffected by deletion
of RRP6. The dicistronic snoRNA, snR190, which is
cotranscribed with U14, was also not affected (Figure 2A).

Primer extension revealed that the position of the 59
end was unaffected for each of these snoRNAs (Figure
2B) indicating that the altered gel mobility represents a
failure in the 39 trimming of the snoRNA. For U24 the
presence of a 39 extension was confirmed by RNase
protection (data not shown).

Strains individually depleted for each of the other
exosome components or Dob1p, or carrying therrp4-1,
mtr3-1ordob1-1mutations at non-permissive temperature,
were analysed for processing of U14, U18, U24 and
snR190 (shown forGAL::rrp41 andGAL::rrp45 in Figure
2C anddob1-1 in Figure 2A). No clear alteration in the
length of the mature snoRNAs was observed, showing
that depletion or mutation of other individual components
of the exosome or Dob1p does not inhibit snoRNA 39
end trimming. Double-mutant strains lacking Rrp6p and
depleted of either Rrp41p or Rrp45p were also analysed
(shown forGAL::rrp41/rrp6-∆ in Figure 3I). The length
of the ‘almost-mature’ snoRNAs in these strains was the
same as in strains lacking only Rrp6p. We conclude that
39 trimming of the snoRNAs requires specifically the
Rrp6p component of the exosome complex. In addition,
longer extended forms were observed for U14, U18 and
U24, but not for snR190 (Figure 3 and data not shown).
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Fig. 2. Deletion ofRRP6inhibits 39 trimming of pre-snoRNAs.
(A andC) Northern hybridization of snoRNAs. (B) Primer extension
on snoRNAs. RNA was extracted from theRRP6and rrp6-∆ strains
following growth at 30°C, from thedob1-1strain 6 h after transfer to
37°C and from theGAL::rrp41 andGAL::rrp45 strains following
growth for 24 h on glucose medium. The gel migration shown for
snR10 and snR190 in (A) is longer than that shown for the other,
smaller RNA species to confirm that these were not extended in the
rrp6-∆ strain.

Yeast U18 and U24 are intron encoded (Maxwell and
Fournier, 1995; Quet al., 1995; Kiss-La´szló et al., 1996)
and are synthesized predominantly from the debranched
intron lariats (Ooiet al., 1998; Petfalskiet al., 1998). As
previously reported (Petfalskiet al., 1998), the species
corresponding to the introns that are 39 unprocessed but
59 processed to the end of the mature snoRNAs [U18-39
(253 nt) and U24-39 (192 nt)] are detected in the wild-
type strain (Figure 3IIB and IIC, lanes 1, 3, 5 and 7).
Both U24-39 and U18-39 can be detected on Northern
blots with probes that hybridize specifically with 39
extended species (Figure 3II, lanes 7 and 8) and both are
lost in strains carrying mutations in the 59→39 exonucle-
ases Rat1p and Xrn1p (Petfalskiet al., 1998). In strains
lacking Rrp6p, the level of U24-39 was increased and
ladders of intermediates appeared both below and above
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Fig. 3. Long 39 extended forms of snoRNAs accumulate in exosome
mutants. (I and II ) Northern hybridization with probes directed against
(A) mature U14 (202); (B) mature U18 (215); (C) mature U24 (204).
RNA was extracted from theRRP6and rrp6-∆ strains following
growth at 30°C, from theGAL::rrp41 strain following growth for 24 h
on glucose medium and from theGAL::rrp41/rrp6-∆ strain following
transfer from RSG medium (0 h) to glucose medium for the times
indicated. The positions of migration of SCR1 (525 nt), 7S pre-rRNA
(288 nt), snR10 (246 nt) and 5.8S1 30 pre-rRNA (188 nt) determined
by hybridization of the same filters are indicated as size markers.
Mature U18 is 102 nt, U24 is 89 nt and U14 is 126 nt. (II) RNase H
treatment of RNA samples. Lanes 1 and 2, untreated samples; lanes 3
and 4, samples treated with RNase H and oligo(dT); lanes 5 and 6,
samples treated with RNase H in the absence of added oligo(dT);
lanes 7 and 8, the samples shown in lanes 3 and 4 were rehybridized
with probes across the ends of the mature snoRNAs that hybridize
specifically with 39 extended species (210, 206, 213). RNA from the
wild type (WT) andGAL::rrp41rrp6-∆ 2 h samples shown in (I) was
used.

this species (Figure 3IC, lane 2). To test the possibility
that the species observed above U24-39 correspond to
polyadenylated forms, RNA from the wild-type and the
GAL::rrp41/rrp6-∆ strain 2 h after transfer to glucose
medium was deadenylatedin vitro with oligo(dT) and
RNase H. On deadenylation the heterogeneous species
observed above the U24-39 band were lost and the U24-
39 signal was increased (Figure 3IIC, compare lanes 4
and 6). Strains depleted of Rrp41p (Figure 3IC, lane 3)
did not clearly accumulate U24-39, whereas accumulation
of U24-39 and a ladder of smaller intermediates were
detected on depletion of Rrp45p and in arrp4-1 strain
(data not shown), demonstrating that processing of U24-
39 is not specific for Rrp6p. Extended forms of U24-39
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Fig. 4. Transcriptional inhibition leads to the loss of the 39 extended
snoRNA species. RNA was extracted from therpb1-1 strain pre-grown
at 23°C following transfer to 37°C for the times indicated. Northern
hybridization was performed with oligonucleotide probes directed
against mature U18 (205), mature U24 (214), U18-39 (206) and
U24-39 (213).

were not observed in these strains, and the formation of
polyadenylated species may be specific forrrp6-∆. It is
notable thatRRP6was originally identified as a mutation
that suppressed a defect in polyadenylation (Briggs
et al., 1998).

For U18, heterogeneous 39 extended species were
observed in therrp6-∆ strain, and these were longer and
more discrete in theGAL::rrp41/rrp6-∆ double mutant
(Figure 3IB). These were estimated to be in the range
250–300 nt. Following deadenylation, the U18-39 RNA is
clearly seen to be strongly accumulated in theGAL::rrp41/
rrp6-∆ strain, with a ladder of intermediates extending up
to this position (Figure 3IIB, lanes 4 and 8). The same
species are detected in the non-deadenylated sample
(Figure 3IIB, lane 6), but are less clear.

snR190 and U14 are cotranscribed, separated by Rnt1p
cleavage and then 59 processed by Rat1p (Zagorskiet al.,
1988; Chanfreauet al., 1998b; Petfalskiet al., 1998).
Extended forms of U14 were observed inrrp6-∆ strains
but were both more abundant and longer inGAL::rrp41/
rrp6-∆ strains that were also depleted of Rrp41p (Figure
3A). On deadenylation these species formed a ladder up
to the U14-39 RNA, which was estimated to be ~525 nt
in length. It seems probable that U14-39 extends to the
transcription termination site, which has not yet been
located. Extended snoRNAs were not observed in strains
depleted of Dob1p (data not shown).

To determine whether U18-39 and U24-39 species are
processing intermediates or dead-end products, a transcrip-
tion inhibition experiment was performed (Figure 4). RNA
was recovered from arbp1-1strain, carrying a ts mutation
in RNA polymerase II, at time points after shift to
the non-permissive temperature. Following transcription
inhibition, U18-39 and U24-39 were progressively lost,
indicating that they are normal processing intermediates.

We conclude that the exosome participates in the 39
processing of snoRNAs, processing the primary transcript
of the dicistronic snR190-U14 snoRNAs and the
debranched intron lariats containing the U18 and U24
snoRNAs. As seen for 5.8S synthesis, snoRNA processing
is at least biphasic. Initial processing is partially inhibited,
but not blocked, by different mutations in the exosome,
whereas trimming of the final 3 nt specifically requires
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Rrp6p. The additive effect of therrp41 andrrp6 mutations
on U18 and U14 synthesis is, however, in contrast to the
epistatic interactions observed for 5.8S processing. In the
absence of Rrp6p some polyadenylation of processing
intermediates also occurs.

snRNA synthesis
Since a number of snRNAs have been shown to undergo
39 processing we analysed snRNA species for alterations
in exosome mutants.

Analysis of the U4 snRNA showed the existence of
low levels of two longer forms (U4-39I and U4-39II ) in
the wild type (Figure 5, lanes 1 and 12). Both species
were detected with either the internal U4 probe (oligo
243) (Figure 5B) or a probe complementary to the sequence
across the 39 end of the mature U4 (oligo 246), which
hybridizes only to 39 extended species (Figure 5A). U4-
39I is a set of heterogeneous species carrying short 39
extensions similar in length to those detected in the 6S
pre-rRNA. Oligo 246 detects only the longer forms of
U4-39I. The U4-39II species is ~140 nt larger than mature
U4 and is presumably a normal processing intermediate
since it is detected in wild-type cells. In strains depleted
of the exosome components Rrp41p (Figure 5, lanes 2
and 3) or Rrp45p (Figure 5, lanes 7 and 8), or lacking
Rrp6p (Figure 5, lane 15), the levels of U4-39I and U4-
39II were increased and a ladder of intermediates was
observed that extended from the size of U4-39I to that of
U4-39II . TheGAL::rrp41 strain shows some accumulation
of the extended species in the 0 h sample due to under-
expression of Rrp41p (Figure 5, lane 2). The same species
were accumulated in a strain depleted of Dob1p (data not
shown). The accumulation of these intermediates was not
stronger in therrp6-∆ strain that was also depleted of
Rrp41p or Rrp45p than in therrp6-∆ single-mutant strain
(data not shown). In strains lacking Rnt1p, U4-39II RNA
was absent whilst the levels of the U4-39I species were
increased. These observations suggested that the U4-39II

is generated by Rnt1p cleavage and acts as an entry site
for the exosome complex.

Strains lacking Rnt1p also accumulated longer 39
extended forms of U4 (Figure 5, lanes 13 and 14; 4-fold
more RNA was loaded in lane 14 to allow visualization
of the longer 39 extended species). These were more
abundant inrnt1-∆ strains that were also depleted of
Rrp41p (Figure 5, lanes 4–6), Rrp45p (Figure 5, lanes 9–
11) or Rrp6p (Figure 5, lane 16). Particularly in thernt1-∆/
rrp6-∆ strain (Figure 5B, lane 16) these were seen to
extend to a distinct species (U4-39III ) of ~590 nt. It
seems likely that these represent intermediates in the 39
processing of U4 from U4-39III , which most probably
extends to the transcription termination site. Little effect
on the 39 extended forms of U4 was seen on treatment
with RNase H and oligo(dT) (data not shown).

Rnt1p cleaves on both sides of extended, imperfect
stems with closing AGNN tetraloops (Chanfreauet al.,
1998a). Inspection of the U4 39 flanking region identified
good consensus Rnt1p cleavage sites (Figure 6D). To
determine whether this represented a genuine substrate
for Rnt1p, cleavage was assayedin vitro. The region of
the U4 39 flanking sequence from positions149 to1235,
which includes the putative cleavage sites, was transcribed
in vitro (see Materials and methods). The sites cleaved
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Fig. 5. Northern analysis of processing of U4 snRNA inrnt1-∆ and
exosome mutants. RNA was extracted from strains carryingGAL-
regulated constructs following transfer from permissive, RSG medium
to repressive, glucose medium at 30°C for the times indicated, or from
the wild-type (WT),rnt1-∆ and rrp6-∆ strains grown on glucose
medium at 30°C. RNA was separated on a 6% polyacrylamide gel and
hybridized with oligonucleotide probes. (A) Oligo 246 complementary
to the region across the 39 end of the mature U4 snRNA.
(B andC) Oligo 243 complementary to the mature U4 snRNA.
(D) Oligo 250 complementary to the mature SCR1 RNA; the panels
show successive hybridizations of the same filter. Probe names are
indicated in parentheses on the left and the positions of detected RNA
species are indicated on the right. (C) presents a weaker exposure of
the same gel as (B). (C and D) present only relevant regions of the
Northern blots. The species marked with * in (A) probably results
from a cross-hybridization with another RNA since it was not detected
in (B). The amount of total RNA loaded in lane 14 is 4-fold higher
than in lane 13 and other lanes. The positions of migration of SCR1
(525 nt), MRP RNA (340 nt), U5L (215 nt) and U5S (180 nt)
determined by hybridization of the same filter are indicated as size
markers. Mature U4 is 160 nt.

in vitro by recombinant His6–Rnt1p were identified by
primer extension with oligo 249 (Figure 6A). Two
major stops, corresponding to sites of cleavage between
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nucleotides1135/1136 (site I in Figure 6D) and1169/
1170 (site II in Figure 6D) with respect to the 39 end of
the mature U4, were detected following incubation with
His6–Rnt1p (Figure 6A, lane 5); these sites were not
detected in the no-enzyme controls (Figure 6A, lane 6).
The sites lie on both sides of the predicted stem–loop
structure and are in good agreement with the consensus
for other Rnt1p cleavage sites (Figure 6D). Additional
minor stops were detected one nucleotide 59, corresponding
to positions1134/1135 and1168/1169 (smaller arrows
in Figure 6D). To confirm that these stops represented
sites of endonuclease cleavage, internally labelled RNA
transcripts (Figure 6B) were also assayed using either
recombinant His6–Rnt1p or extracts prepared fromRNT11

and rnt1-∆ strains of yeast (see Materials and methods).
Incubation with either recombinant Rnt1p (Figure 6B,
lanes 3–6) or the yeast extract containing Rnt1p (Figure
6B, lane 7), resulted in the appearance of discrete cleavage
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products that were not observed in the input RNA (Figure
6B, lane 2) or with the yeast extract lacking Rnt1p (Figure
6B, lane 8). The estimated sizes of these products are in
good agreement with the predicted sizes of the products
of cleavage at both sites I and II (Figure 6B; the predicted
locations and sizes of the cleavage products are indicated
below the gel).

To identify the position of in vivo processing, we
performed primer extension using an oligo that hybridizes
to the U4 flanking sequence 39 to the Rnt1p cleavage site
(oligo 249). In the wild-type strain, a primer extension
stop was detected between nucleotides1135 and1136,
precisely matchingin vitro cleavage site I (Figure 6C,
lane 1). This stop was absent from thernt1-∆ strain
(Figure 6C, lane 2).In vivocleavage could not be detected
at site II, but the primer gave a high background in this
region (data not shown). Following cleavage of the pre-
rRNA in the 39-ETS by Rnt1p, the excised 39 fragment
is degraded 59→39 by Rat1p (Kufelet al., 1999). The
primer extension stop observed in therat1-1 strain at
position 1135/1136 was stronger than in the wild type,
supporting the conclusion that this is a site ofin vivo
endonuclease cleavage (Figure 6C, lane 3).

We conclude that Rnt1p cleaves the 39 flanking sequence
of the U4 snRNA. The predominantin vivo cleavage is
at position 1135/1136, generating the U4-39II RNA.
Cleavage may also occur at1169/1170, although no
species corresponding to this cleavage was detected by
Northern hybridization. The1135/1136 cleavage acts as
a site of entry for the exosome complex. Since U4-39II is
detected in wild-type cells it is presumably a normal
processing intermediate. In the absence of Rnt1p, longer
transcripts are detected; these are also substrates for the
exosome since they accumulate at higher levels in double-
mutant strains, but can be efficiently processed to mature
U4 by another pathway(s). It seems likely that the accumu-

Fig. 6. Rnt1p cleaves the 39 end of the U4 precursor. (A) Mapping of
the in vitro Rnt1p cleavage sites. Primer extension was performed
using oligo 249 on the model U4-39 RNA incubated with buffer
(lane 6) or recombinant His6–Rnt1p (lane 5) as described in Materials
and methods. DNA sequencing reaction on a PCR product
encompassing the region of the 39 end of U4 from position149 to
1235, using the same primer, was run in parallel (lanes 1–4). The
primer extension stops at positions1135 and1169 are indicated.
(B) In vitro cleavage of an internally labelled model U4-39 RNA
substrate by Rnt1p.32P-labelled U4-39 RNA was incubated at 23°C in
the following conditions: lane 2, Rnt1p buffer; lanes 3–6, Rnt1p buffer
with 20 ng of recombinant His6–Rnt1p for the times indicated; lane 7,
with whole-cell extract from a wild-type (WT) strain of yeast; lane 8,
with whole-cell extract from arnt1-∆ strain; lanes 1 and 9, RNA size
markers. The positions of DNA size markers are indicated on the right
of the gel. The cleavage products obtained are labelled a–e on the left
and the predicted origin of each species is indicated below the gel.
S: substrate, 187 nt; a: 59 end of transcript to site II, 121 nt; b: 39 end
of transcript to site I, 100 nt; c: 59 end of transcript to site I, 87 nt;
d: 39 end of transcript to site II, 66 nt; e: site I to site II, 34 nt.
(C) Mapping of the Rnt1p 59 cleavage sitein vivo. Primer extension
analysis through the 39 end of the pre-U4 was performed using primer
249 hybridizing downstream of position1 212. RNA was extracted
from wild-type (WT, lane 1) andrnt1-∆ (lane 2) strains grown at 30°C
and from arat1-1 strain following transfer to 37°C for 2 h (lane 3).
DNA sequencing reactions were run in parallel (lanes 4–7). The
primer extension stop at position1135 is indicated. (D) Computer-
predicted RNA structure in the U4 39 flanking region that contains the
Rnt1p cleavage sites. The major cleavage sites I (between nucleotides
135 and 136) and II (between nucleotides 169 and 170) are indicated
by arrows.
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Table I. Phosphoimager quantitation of Northern hybridization data
from Figures 5 and 7

WT GAL::rrp41 GAL::rrp45 rrp6-∆ rnt1-∆
(24 h) (40 h)

U5L 1.27 1.63 0.63 1.9 0.025
U5S 1 13.5 6.1 4.5 9.4
U5S/U5L 0.79 8.28 9.68 2.37 376
U4 1 3.8 2.9 2.5 6.5
SCR1 1 1.05 1.27 1.59 1.46

U5L and U5S levels are expressed relative to the signal for U5S in the
wild-type strains.

lation of the short 39-extended U4-39I species is not a
direct product of inhibition of the exosome complex, but is
associated with the activation of an alternative processing
pathway, since these species are increased relative to the
wild type in strains lacking either exosome components
or Rnt1p.

Quantitation of the Northern data (Table I) revealed
that the mature U4 accumulates above the wild-type level
in both the exosome and Rnt1p mutant strains relative to
the cytoplasmic 7SL RNA homologue SCR1 (Table I and
Figure 5D) or the nucleolar MRP RNA (data not shown).
We conclude that a significant fraction of the U4 or pre-
U4 population is normally degraded by an exosome-
dependent pathway in wild-type strains.

Two forms of the U5 snRNA, U5L and U5S, which
differ at their 39 ends, are observed in wild-type yeast
strains (Patterson and Guthrie, 1987). Species with short,
heterogeneous 39 extensions were observed for both U5L
(U5L-39) and U5S (U5S-39). These species are detected
with an internal U5 probe (oligo 244; Figure 7A and D),
and also with probes across the 39 end of U5L (oligo 247;
Figure 7B) or across the 39 end of U5S (oligo 248; Figure
7C), although only the longer forms are detected by oligos
247 and 248. Both U5L-39 and U5S-39 were detected at
low levels in wild-type strains (Figure 7, lanes 1 and 12).
These, and a longer species, U5-39I, were accumulated in
strains depleted of Rrp41p (Figure 7, lanes 2 and 3) or
Rrp45p (Figure 7, lanes 7 and 8), or lacking Rrp6p (Figure
7, lane 15) and were mildly accumulated in strains depleted
of Dob1p (data not shown). Inrrp6-∆ strains that were
also depleted of Rrp41p, the accumulation of these inter-
mediates was not clearly different from therrp6-∆ single-
mutant strains (data not shown). Cleavage sites for Rnt1p
are present in the U5 39 flanking region (Chanfreauet al.,
1997). In the absence of Rnt1p, U5L-39 and U5-39I were
absent and the level of U5L was strongly reduced (Figure
7D, lanes 13 and 14 and Table I). Based on their gel
mobilities, the U5L-39 species extend up to a position
close to the 59 Rnt1p cleavage site [siteλ in Figure 7 and
Chanfreauet al. (1997)], while the larger U5-39I species
extends to a position close to the 39 Rnt1p cleavage site
[site σ in Figure 7 and Chanfreauet al. (1997)]. The
accumulation of these species in exosome mutants suggests
that the Rnt1p cleavages normally act as entry sites for
the exosome. In the absence of Rnt1p (Figure 7A, lanes
13 and 14), longer 39 extended forms of U5 were detected
in a ladder to a species designated U5-39II of ~690 nt
(Figure 7A). These were strongly increased inrnt1-∆
strains also depleted of Rrp41p, Rrp45p or Rrp6p (Figure
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Fig. 7. Northern analysis of processing of U5 snRNA inrnt1-∆ and
exosome mutants. Strains were grown and RNA was prepared as
described for Figure 5. (A andD) Hybridization with oligo 244
complementary to the mature U5 snRNA. (B) Hybridization with oligo
247 complementary to the region across the 39 end of mature U5L
snRNA. (C) Hybridization with oligo 248 complementary to the
region across the 39 end of mature U5S snRNA. Probe names are
indicated in parentheses on the left and the positions of detected RNA
species are indicated on the right. (B, C and D) present only relevant
regions of the Northern blot. The amount of total RNA loaded in lane
14 is 4-fold greater than in lane 13 and other lanes. (E) Oligo 250
complementary to the mature SCR1 RNA; the panels show successive
hybridizations of the same filter. The positions of migration of SCR1
(525 nt), MRP RNA (340 nt) determined by hybridization of the same
filter are indicated as size markers. Mature U5L is 215 nt and U5S is
180 nt.
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Fig. 8. Northern analysis of processing of U1 snRNA inrnt1-∆ and
exosome mutants. Strains were grown and RNA was prepared as
described for Figure 5. (A) Hybridization with oligo 245
complementary to the region across the 39 end of mature U1 snRNA.
(B) Hybridization with oligo 242 complementary to the mature U1
snRNA. Probe names are indicated on the left and the positions of
RNA species detected are indicated on the right. (C) Oligo 250
complementary to the mature SCR1 RNA; the panels show successive
hybridizations of the same filter.

7A). It seems likely that U5-39II extends to the transcription
termination site and that the ladder represents intermediates
in its 39 processing to U5S. Little effect on the 39 extended
forms of U5 was seen on treatment with RNase H and
oligo(dT) (data not shown).

The signal for U5S was strikingly increased relative to
U5L, SCR1 RNA or MRP RNA (data not shown) in strains
depleted of Rrp41p (Figure 7, lanes 2 and 3), Rrp45p
(Figure 7, lanes 7 and 8) or Dob1p (data not shown), or
lacking Rrp6p (Figure 7, lane 15) or Rnt1p (Figure 7D,
lane 13). These results are quantified in Table I; the
U5S:U5L ratio is changed.10-fold on depletion of Rrp41p
or Rrp45p and the total amount of U5L 1 U5S synthesized
is substantially more than wild type. We conclude that
when the normal processing pathway is active, a large
fraction of the pre-U5S or U5S population is degraded.
U5S is unusual among snRNAs in not having a terminal
stem–loop structure beyond the Sm binding site to stabilize
the 39 end, which may make it particularly liable to
degradation.

A 39 extended form of the U1 snRNA that is likely to
extend to the Rnt1p cleavage site has been reported for
wild-type strains (Seipeltet al., 1999). This presumably
corresponds to the species designated U1-39II that we
detect on Northern hybridization (Figure 8, lanes 3 and
14), which is absent inrnt1-∆ strains (Figure 8, lane 15).
The yeast U1 RNA is 568 nt in length (Kretzneret al.,
1987; Silicianoet al., 1987), substantially larger than U4
and U5, and the precursors are therefore less well separated
in Figure 8 than in Figures 5 and 7. In addition, we see
shorter 39 extended forms, U1-39I, which are strongly
accumulated in strains depleted of Rrp41p (Figure 8, lanes
4 and 5) or Rrp45p (Figure 8, lanes 9 and 10), or lacking
Rrp6p (Figure 8, lane 2). Unlike the longer U1-39II species,
the shorter U1-39I persists inrnt1-∆ strains (Figure 8, lane
15). Thernt1-∆ strain accumulates longer, heterogeneous
39 extended species, U1-39III , which are reported to be
polyadenylated (Seipeltet al., 1999). As for U4 and U5,
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these long species are more strongly accumulated inrnt1-∆
strains that also lack exosome components. In contrast to
the results for U4 and U5, the mature U1 is not clearly
accumulated above wild-type levels in the exosome
mutants.

We conclude that 39 processing of U1, like U4 and U5,
involves 39 cleavage by Rnt1p and processing by the
exosome, although mutations in individual components of
the complex do not block processing.

Discussion

The characterization of the exosome complex raised an
obvious question: why are so many different exonucleases
present in the complex? Possible explanations are that
multiple enzymes might function in the processing of
single RNA substrates or that different enzymes might be
preferentially active on different substrates. We have
presented initial evidence for both of these phenomena,
as well as identifying a large number of additional sub-
strates for the complex.

During the processing of the 7S pre-rRNA to the 5.8S
rRNA, the specificity of the exonuclease appears to change
at least twice (see Figure 9A), a phenomenon that we
refer to as exonuclease hand-over. Moreover, the effects
on the 6S pre-rRNA vary between different mutants,
showing that they do not have identical functions. The
putative RNA helicase Dob1p/Mtr4p appears to be
required for each of these processing steps. The 5.8S1
30 pre-rRNAs extend to the 39 side of a predicted stable
stem–loop structure, which includes the two terminal
nucleotides of the mature 5.8S rRNA (Yeh and Lee, 1990).
It is, however, unclear whether processing is inhibited by
the stem–loop structure itself, or by the consequent very
close proximity to the 39 region of the mature 5.8S rRNA,
which is likely to be associated with ribosomal proteins.
The simplest interpretation of the data would be that all
of the essential exosome components, but not Rrp6p, are
required for normal processing of the 7S pre-rRNA to
5.8S1 30. At this point, Rrp6p may take over the major
role and process the 5.8S1 30 species to 6S pre-rRNA.
In the absence of the exosome components some other
activity is able to digest the 7S pre-rRNAs partially,
producing the observed ladder of intermediates. This
alternative activity is not provided by Rrp6p, since these
species are detected in theGAL::rrp41/rrp6-∆ and
GAL::rrp45/rrp6-∆ strains. Moreover, both the remaining
exosome components and any alternative activity can
poorly process the 5.8S1 30 pre-rRNAs since these
accumulate to high levels in therrp6-∆ strain. It is notable
that the 39 end of this species is predicted to lie in a stem
structure, which may inhibit its processing if released as
a free RNA. Unlike the larger intermediates that are
specifically detected in the exosome mutants, the 6S pre-
rRNAs are detected in the wild type. This may represent
a site at which rapid processive processing is normally
replaced by slower distributive trimming of the RNAs. The
heterogeneity shown between different exosome mutant
strains indicates that 6S pre-rRNA is processed by the
exosome, rather than being the product of an alternative
pathway that is activated in the absence of exosome
activity. The pattern of intermediates observed during
degradation of the 59 ETS region of the pre-rRNA also
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Fig. 9. Models for RNA processing pathways. (A) Processing of the
7S pre-rRNA to 5.8S rRNA. The mature rRNA is shown as a box and
the transcribed spacers as lines. Processing of the 7S pre-rRNA to
5.8S1 30 requires all essential components of the exosome complex.
Processing from 5.8S1 30 to 5.8S1 8 (6S pre-rRNA) specifically
requires Rrp6p. The final trimming to the mature 5.8S again requires
multiple exosome components. Each step requires the putative RNA
helicase Dob1p/Mtr4p. 5.8S1 30 lies at the 39 side of a predicted
stem–loop structure. (B) Processing of the U24 snoRNA from the
debranched intron lariat following mRNA splicing. The 59 and 39
exons are shown as dark boxes, the mature U24 is shown as a lighter
box and the remainder of the intron as lines. (C) Processing of the U4
snRNA. An Rnt1p cleavage site lies in the 39 flanking sequence and
may act as an entry site for the exosome, acting together with Dob1p/
Mtr4p. The timing of cap trimethylation of U4 is not clear. 39
processing of snoRNAs and snRNAs is not blocked by mutation of
individual components of the exosome indicating that other extrinsic
or intrinsic activities can functionally replace these.
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varies amongst the different exosome mutants, suggesting
that exonuclease hand-over may be occurring during this
processing.

Analysis of pre-snRNA processing reveals a complex
picture. Each of the RNA polymerase II-transcribed
snRNAs in yeast, U1, U2, U4 and U5, has a cleavage site
for Rnt1p in the 39 flanking region (Chanfreauet al.,
1997; Abou Elela and Ares, 1998; Seipeltet al., 1999 and
this work). For U1, U4 and U5 this may act as an entry
site for the exosome complex, acting together with the
Dob1p RNA helicase (see Figure 9C). However, in no
case is synthesis of the snRNA blocked by the inhibition
of cleavage by Rnt1p or by mutations in exosome com-
ponents, indicating that alternative processing pathways
exist.

In strains lacking Rnt1p the synthesis of long 39
extended forms of U1 and U2 has been reported (Abou
Elela and Ares, 1998; Seipeltet al., 1999) and we show
here that this is also the case for U4 and U5. During pre-
rRNA processing, the 39 end of the 35S pre-rRNA is
normally cleaved cotranscriptionally by Rnt1p (Abou Elela
et al., 1996; Kufelet al., 1999). In the absence of Rnt1p
the pre-rRNA transcripts extend to a position close to the
site of transcription termination. The extended U4 and U5
species form a ladder to a discrete size that we speculate
represents the transcription termination site. These are not
detected in the wild type, suggesting that pre-U4 and pre-
U5 may also be cleaved cotranscriptionally. The extended
species are substrates for the exosome since they accumu-
late at higher levels inrnt1-∆ strains that are depleted for
exosome components. For both the pre-rRNA and U4, the
excised 39 fragments generated by Rnt1p cleavage are
degraded by the 59→39 exonuclease Rat1p, which also
processes the 59 end of the 5.8SsrRNA and many snoRNAs
(see Figure 9B) (Amberget al., 1992; Henryet al., 1994;
Petfalskiet al., 1998; Villa et al., 1998).

39 maturation of snoRNAs that are excised from mRNA
introns (U18 and U24) or from a dicistronic transcript
(U14) also involves the exosome. U18 and U24 are
predominately processed from the debranched intron lariat
(Ooi et al., 1998; Petfalskiet al., 1998; Villaet al., 1998).
In the exosome mutants we see accumulation of the
species in which the 59 end of the snoRNA has been
matured but the intron is 39 unprocessed (U18-39 and
U24-39), together with a ladder that probably represents
intermediates in the 39 processing of these to the mature
snoRNAs. The U18-39 and U24-39 RNAs also undergo
some polyadenylation in strains lacking Rrp6p. In Rnt1p
mutants, the 39 extended forms of U1 and U2 that are
generated also become polyadenylated (Abou Elela and
Ares, 1998; Seipeltet al., 1999), so this seems to be a
general phenomenon in yeast. We conclude that 39 pro-
cessing of the debranched intron lariats containing U18
and U24 normally involves the exosome (see Figure 9B).
Apparent intermediates in the 39 processing of U14 are
also observed, particularly in strains lacking both Rrp6p
and Rrp41p. These may extend to the transcription termin-
ation site, but this has not yet been localized. Final
trimming of each of these snoRNAs specifically requires
Rrp6p. This activity apparently cannot be substituted by
other exonucleases, since the entire snoRNA population
is shifted in size by ~3 nt. This trimming activity is not
clearly inhibited by mutations in other single components
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Table II. Yeast strains used in this work

Strain Genotype Reference

BMA 38 MATa/α ade2-1/ade2-1 his3-∆200/his3-∆200 leu2-3, 112/leu2-3, 112 trp1-1/trp1-1 ura3-1/ura3-1 Baudinet al. (1993)
can1-100/can1-100

YCA12 MATa ade2-1 his3-∆200 leu2-3, 112 trp1-1 ura3-1 can1-100 RRP6::Kl TRP1 Allmang et al. (1999)
YDL401 MATa his3-∆200 leu2-∆1 trp1 ura3-52 gal2 gal∆108 Lafontaine and Tollervey (1996)
P118 as YDL401 butGAL10::prot.A-RRP41 Lafontaine and Tollervey (1996)
YCA20 as YDL401 butGAL10::RRP45 Allmang et al. (1999)
YCA30 as YCA20 butRRP6::Kl TRP1 this study
YCA31 as P118 butRRP6::Kl TRP1 this study
YJK10 as YDL401 butRNT1::TRP1 this study
YJK11 as P118 butRNT1::TRP1 this study
YJK12 as YCA20 butRNT1::TRP1 this study
YJK13 as YCA12 butRNT1::TRP1 this study
GAL::DOB1 MATα ura3-1 ade2-1 his3-11,15 leu2-3, 112 trp1-1 dob1::HIS3MX61 [pAS24-DOB1] de la Cruzet al. (1998)
rat1-1 MATα, his3-∆200, leu2-∆1, ura3-52, rat1-1 Amberget al. (1992)
RP582 MATa leu2-3, 112 ura3-52 rpb1-1 Decker and Parker (1993)

of the exosome. It is notable that each of the enzymatic
activities shown to be involved in pre-snoRNA processing,
the exosome, the 59→39 exonuclease Rat1p and the
endonuclease Rnt1p, also participate in pre-rRNA pro-
cessing.

There are apparent similarities between 39 processing
of the 5.8S rRNA, snoRNAs and snRNAs. In each case
there is a downstream cleavage, by endonuclease or
splicing, which acts as a site of entry for exonucleases.
Processing is at least biphasic with short 39 extended
forms accumulating, and each appears to involve the
activities of more than one component of the exosome.
In each case, other activities can partially substitute for
the mutant exosome components. For the 7S pre-rRNA,
and particularly the 5.8S1 30 pre-RNA, this is inefficient,
and synthesis of mature 5.8S is strongly inhibited. The
final trimming of snoRNAs is apparently completely
dependent on the activity of Rrp6p, but the processing of
further 39 extended pre-snoRNAs and pre-snRNAs can be
carried out by other activities with good efficiency, as
shown by the wild-type levels of the mature RNAs.
Indeed, U4, and particularly U5S, are synthesized at
substantially elevated levels in exosome mutants, indicat-
ing competition between synthesis of mature snRNA and
degradation of the precursors in the wild type.

It is unclear whether residual processing in the exosome
mutant strains is carried out by other components of the
complex. It is notable that double-mutant strains lacking
both Rrp6p and Rrp41p show stronger phenotypes for
some activities (e.g. 39 processing of U14 and U18) than
does either single mutant, indicating that the absence of
one component does not necessarily inactivate the entire
complex. Alternatively, the yeast genome contains several
other predicted 39→59 exonucleases (Mian, 1997; Moser
et al., 1997) that may be able to partially substitute for
the exosome. The combination of mutations in these genes
with mutations in exosome components will now be
needed to analyse their interactions and substrates.

Materials and methods

Strains
Growth and handling ofS.cerevisiaewere by standard techniques. The
transformation procedure was according to Gietzet al. (1992). Except
where stated, strains were grown in liquid and solid minimal medium
containing 0.67% yeast nitrogen base (Difco) and 2% glucose.GAL-
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regulated strains were pre-grown in RSG medium (2% raffinose, 2%
sucrose, 2% galactose, 0.67% yeast nitrogen base) and harvested at
intervals following a shift to 2% glucose.

Yeast strains used and constructed in this study are listed in Table II.
To construct the double mutantsGAL10::rrp45/rrp6-∆ (YCA30) and

GAL10::rrp41/rrp6-∆ (YCA31), the RRP6::TRPdisrupted allele was
amplified by PCR from genomic DNA extracted fromrrp6-∆ (YCA12).
The PCR product was transformed into the corresponding conditional
mutant strains P118 and YCA20, respectively. The amplification of
RRP6::TRPwas done with oligos: 59RRP6, CAGTAATGAATATTAAT-
GTTCATCTGAAGATAGACG; 39RRP6, ATGGTGTGCATGGGGG-
AGCCATAACTCCATGACACA. Strains YDL401, P118 and YCA20
were used to construct the mutantsrnt1-∆ (YJK10), GAL10::rrp41/
rnt1-∆ (YJK11) andGAL10::rrp45/rnt1-∆ (YJK12), using the same PCR
strategy. Oligonucleotides 59RNT1, 59-GAAGACATATCCGAAGTG-
ACA and 39RNT1, 59-GGATTTCTATACCCTCGAGGAG, complement-
ary to sequences beyond theRNT1gene, were used for the amplification
with genomic DNA extracted fromrnt1-∆ strain generously provided
by G.Chanfreau (Chanfreauet al., 1998b). Transformants were selected
for Trp1 prototrophy and were screened by PCR. The phenotypes of
respective constructs were confirmed by Northern hybridization. Strain
rrp6-∆/rnt1-∆ (YJK13) was constructed by crossing YJK10 and YCA12
strains. The double-mutant strain was selected from dissected full tetrads
by testing for the pre-rRNA and snoRNA processing phenotypes by
Northern hybridization. Wild-typeRNT1 and rnt1-∆ sister strains
(Chanfreauet al., 1998b) were used to prepare whole-cell extract. Strain
rat1-1 was kindly provided by C.Cole (Amberget al., 1992).

RNA extraction, Northern hybridization and primer
extension
RNA was extracted as described previously (Tollervey and Mattaj,
1987). Northern hybridization (Tollervey, 1987) and primer extension
(Beltrame and Tollervey, 1992) were as described previously. Standard
6 or 8% acrylamide gels were used to analyse low molecular weight
rRNA species and primer extension reactions.

For pre-rRNA and rRNA analysis the following oligonucleotides were
used: 017 59-GCGTTGTTCATCGATGC; 020 59-TGAGAAGGAAATG-
ACGCT; 033 59-CGCTGCTCACCAATGG; 041 59-CTACTCGGTCA-
GGCTC.

The oligonucleotides used for Northern blot hybridization and primer
extensions on other small RNAs were as follows: 031 (MRP) 59-
AATAGAGGTACCAGGTCAAGAAGC; 201 (snR190) 59-CGTCAT-
GGTCGAATCGG; 202 (U14) 59-TCACTCAGACATCCTAGG; 205
(U18) 59-GTCAGATACTGTGATAGTC; 206 (U18-39) 59-GCTCTG-
TGTGCTATCGTC; 210 (U14-39) 59-GTATACGATCACTCAGAC; 213
(U24-39) 59-AAACCATTCATCAGAG; 214 (U24) 59-TCAGAGAT-
CTTGGTGATAAT; 218 (snR10, 29-O-methyl RNA) 59-CUIUUAAAU-
UUICIUU; 236 (snR39) 59-GGTGATAAGTTACGACAGC; 238 (snR41)
59-GGGTTGTCGACATGTAGTTA; 242 (U1) 59-CACGCCTTCCGCG-
CCGT; 243 (U4) 59-CCGTGCATAAGGAT; 244 (U5) 59-AATATG-
GCAAGCCC; 245 (39Ex-U1) 59-TGTTCCATTTATTTCTGAAA; 246
(39Ex-U4) 59-AAAGAATGAATATCGGTAATG; 247 (39Ex-U5S) 59-
GAGAAAAAGGGCAGAAAAG; 248 (39Ex-U5L) 59-TAGAAAAGAT-
AAACGCCCT; 249 (U4DS) 59-GACACACAAGAAGGAGAACACTC;
250 (SCR1) 59-AAGGACCCAGAACTACCTTG.
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RNase H treatment
Deadenylation was performed essentially as described (Decker and
Parker, 1993). Samples of 30µg of RNA were annealed with 750 ng
oligo(dT) at 65°C for 1 h and digested with 6 U RNase H at 30°C for
1 h. The control samples were treated identically, except that the
oligo(dT) was omitted.

In vitro processing reactions
Synthetic U4-39 RNA was obtained byin vitro transcription as described
(Chanfreauet al., 1998b) using PCR product as template. PCR product
was generated from genomic DNA using a forward primer carrying a
T7 promoter (T7U4DS, 59-GCGAATTCTAATACGACTCACTATAGG-
AAGTAATATCAAAAAATAGG) and a reverse primer U4DS.

Whole-cell extracts were prepared from wild-type andrnt1∆ sister
strains as described (Chanfreauet al., 1998b).

Recombinant His6–Rnt1p was prepared by cloning a PCR-amplified
RNT1gene into pET16B (Novagen), usingNdeI and BamHI restriction
sites added into the primers (NdeI–RntI, 59-GGGAATTCCATATGGGCT-
CAAAAGTAGCAGG; Bam–RntI, 39-CGGGATCCTCAGCTTGTAT-
CTGAGAATTTTCTTTTCTTATTC). Expression of His6–Rnt1p inE.coli
strain BL21 was induced by addition of isopropyl-β-D-galactopyranoside
at OD0.5 (final concentration 0.5 mM). After 3 h of expression at 30°C,
cells were harvested and pellets were kept at –80°C. Pellets were
resuspended in 40 ml of Start buffer (20 mM sodium phosphate pH 7.0,
10 mM imidazole) and cells were further lysed by passing through a
French press. Cell debris were pelleted and the supernatant was loaded
into a Hi-Trap Chelating column (Pharmacia) pre-equilibrated with the
Start buffer. The column was washed with 10 ml Start buffer and
proteins were eluted with sodium phosphate buffer with increasing
imidazole concentration (20, 40, 60, 100, 300 and 500 mM) or a linear
gradient of imidazole (10–500 mM). Peak fractions were pooled and the
protein was dialysed twice against the storage buffer (50% glycerol,
50 mM Tris–HCl pH 7.6, 200 mM KCl, 0.5 mM dithiothreitol, 0.5 mM
EDTA pH 8.5). The protein was stored at a concentration of 2 mg/ml
at –20°C and remained active for several months after storage.

In vitro processing of U4-39 RNA in cell extracts or with recombinant
His6–Rnt1p, and mapping of the cleavage sites using primer extension,
was performed as described (Chanfreauet al., 1998a,b). Prior to the
reaction, gel-purified RNA substrates (2 nM) were denatured for 2 min
at 85°C in the Rnt1p buffer (50 mM Tris–HCl pH 7.6, 200 mM KCl,
0.1 mg/ml wheat-germ tRNA, 5 mM MgCl2) and cooled to 23°C. The
cleavage reaction was performed either at 23°C using from 50 to
200 fmol of recombinant His6–Rnt1 or by incubation in the whole-
cell extracts.
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Almost all small eukaryotic RNAs are processed from transiently stabilized 3*-extended forms. A key
question is how and why such intermediates are stabilized and how they can then be processed to the mature
RNA. Here we report that yeast U3 is also processed from a 3*-extended precursor. The major 3*-extended
forms of U3 (U3-3*I and -II) lack the cap trimethylation present in mature U3 and are not associated with small
nucleolar RNP (snoRNP) proteins that bind mature U3, i.e., Nop1p, Nop56p, and Nop58p. Depletion of Nop58p
leads to the loss of mature U3 but increases the level of U3-3*I and -II, indicating a requirement for the snoRNP
proteins for final maturation. Pre-U3 is cleaved by the endonuclease Rnt1p, but U3-3*I and -II do not extend
to the Rnt1p cleavage sites. Rather, they terminate at poly(U) tracts, suggesting that they might be bound by
Lhp1p (the yeast homologue of La). Immunoprecipitation of Lhp1p fused to Staphylococcus aureus protein A
resulted in coprecipitation of both U3-3*I and -II. Deletion of LHP1, which is nonessential, led to the loss of
U3-3*I and -II. We conclude that pre-U3 is cleaved by Rnt1p, followed by exonuclease digestion to U3-3*I and
-II. These species are stabilized against continued degradation by binding of Lhp1p. Displacement of Lhp1p
by binding of the snoRNP proteins allows final maturation, which involves the exosome complex of 3*35*
exonucleases.

Eukaryotic cells contain a large number of stable RNA spe-
cies, nearly all of which are synthesized by posttranscriptional
processing from larger precursors. This has long been known
for the highly abundant cytoplasmic RNAs, tRNAs, and rRNAs,
but more recently it has become clear that is also the case for
the small nuclear RNAs (snRNAs), which participate in pre-
mRNA splicing, and the small nucleolar RNAs (snoRNAs),
which participate in rRNA processing and modification. It is a
long-standing mystery why cells use such a strategy, rather than
simply terminating transcription at the end of the mature RNA
sequence. We will offer a potential explanation for this, at least
in the case of the U3 snoRNA.

Analyses of the 39 end processing of the 5.8S rRNA in
Saccharomyces cerevisiae led to the identification of the exo-
some complex, composed of 11 different 39359 exonucleases
(6, 36, 37; E. Petfalski and D. Tollervey, unpublished data).
Subsequent work showed that the exosome participates in the
39 processing of other RNA substrates, including many snRNAs
and snoRNAs (5, 55), and also participates in mRNA turnover
(9). A homologous complex, designated the PM-Scl complex, is
present in human cells and is a target for autoimmune anti-
bodies (6).

In addition to the exosome, normal 39 processing of the U1,
U2, U4, and U5 snRNAs involves cleavage by the endonucle-
ase Rnt1p (1, 5, 14, 45), the yeast homologue of Escherichia
coli RNase III (2). Rnt1p cleaves on both sides of extended
stem-loop structures with closing AGNN tetraloops (15), and
these cleavages are likely to act as entry sites for the exosome

complex, with the final trimming performed by the Rex exo-
nucleases and/or the exosome component Rrp6p (5, 54).
Rnt1p also acts to separate the individual pre-snoRNAs from
polycistronic precursors (15, 16) and processes the 39 external
transcribed spacer of the yeast pre-rRNA (2, 28).

Another 39 processing factor, the La phosphoprotein, was
identified as the target of human autoimmune antibodies and
was shown to bind to the poly(U) tracts located at the 39 ends
of all RNA polymerase III transcripts (42, 48). La also binds to
39 extended precursors to human U1 and the yeast snRNAs
(34, 58) and to internal sequences of several viral RNAs, in
some cases at sequences that lack poly(U) tracts (4, 23). The
yeast homologue of La, Lhp1p (La-homologous protein), is
nonessential for viability but is required for normal 39 process-
ing of tRNAs (56, 59). In the presence of Lhp1p, processing is
endonucleolytic, whereas in the absence of Lhp1p this cleavage
is inhibited and an alternative, exonucleolytic pathway takes
over tRNA 39 maturation (59). Lhp1p also associates with the
newly transcribed U6 snRNA, which is transcribed by RNA
polymerase III (39).

Here we show how these factors collaborate in the 39 pro-
cessing of the U3 snoRNA.

MATERIALS AND METHODS

Strains. Growth and handling of S. cerevisiae were by standard techniques. The
transformation procedure was as described elsewhere (21). Yeast strains used
and constructed in this study are listed in Table 1. Wild-type RNT1 and rnt1-D
sister strains (15) were used to prepare whole-cell extract. Strain rat1-1 was
kindly provided by C. Cole (7). The nonessential gene LHP1 was disrupted and
tagged with Staphylococcus aureus protein A (“ProtA” in construct designations)
at the carboxy-terminal end of Lhp1p by a PCR strategy (29) in the haploid strain
YDL401, using the Kluyveromyces lactis URA3 marker.

The oligonucleotides used to construct and test the gene disruption and pro-
tein A tagging were 838 (59 LHP1::URA), 59-TCTATTTGGTTCTACTGGAA
CTAAAGTAGCATCTGCAAAGAAGTAGAGAAGTTTGAGAGGGC; 839
(39 LHP1::URA), 59-ATATGCTATGATAATGAGATACGAGAACCAGAA
GAAACACAAGAACTGGGTAGAAGATCGGTC; 840 (59 LHP1 test), 59-A
CAGAGTCGCATCTCATCGC; 841 (39 Kl URA), 59-GGTAGAAGATCGG
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TC; 842 (59 LHP1::ProtA); 59-GAGGACTCTTCTGCCATTGCCGATGACGA
TGAGGAGCACAAGGAGGGCGTGGACAACAAATTC; and 843 (39
LHP1::ProtA), 59-TCCATTTTAACCAGTAACGGTAATTTTTAATACTAA
TAAAAAAAGCTGGGTAGAAGATCGGTC.

RNA extraction, Northern hybridization, and primer extension. For depletion
of Rrp41p and Rrp45p, cells were harvested at intervals following the shift from
RSG medium (2% galactose, 2% sucrose, 2% raffinose) to medium containing
2% glucose. Otherwise strains were grown in YPD medium. RNA was extracted
as described previously (52). Northern hybridization and primer extension were
as described previously (12, 51). Standard 6 or 8% acrylamide gels were used to
analyze low-molecular-weight RNA species and primer extension reactions. For
RNA hybridization and primer extension, the following oligonucleotides were
used: 200 (U3), 59-UUAUGGGACUUGUU; 203 (59U3), 59-CUAUAGAAAU
GAUCCU; 218 (snR10), 59-CUIUUAAAUUUICIUU; 230 (anti-U3sub6), 59-
GATTCCTATAGAAACACAG; 250 (scR1), 59-ATCCCGGCCGCCTCCATC
AC; 251 (39Ex-U3), 59-GTGGTTAACTTGTCA; 252 (U3ADS), 59-TTTGTTT
TCGCATCCGTCGCTC; 253 (U3DS), 59-GGAGTCATACTATCAAGAAC;
254 (39U3), 59-CCAACTTGTCAGACTGCCATT; 260 (U3 intron), 59-CAAA
AGCTGCTGCAATGG; 261 (U6), 59-AAAACGAAATAAATTCTTTGTAAA
AC; and 310 (tRNATyr

GCA-intron), 59-AAGATTTCGTAGTGATAA.
Oligonucleotides 200, 203, and 218 are largely composed of 29-O-methyl RNA.
Expression of the U3 cDNA. The synthesis of U3A from cDNA constructs was

analyzed by expression of the ARS-CEN pU3-wt plasmid carrying an ADE2
marker (11). This U3 intronless construct is under the control of the natural
promoter and terminator regions. Expression was analyzed in the GAL::snr17A
strain JH84 (24; J. Hughes, personal communication), from which the endoge-
nous U3A was depleted by growth on glucose medium. Alternatively, the pU3
sub6-CBS1 plasmid, which carries the viable mutations U3sub6 and CBS1 (11,
47), was expressed in wild-type yeast strains. U3 synthesized from the cDNA
construct was detected by hybridization with a probe specific for the sub6 mu-
tation (47).

In vitro processing reactions. Synthetic U3-39 RNAs were obtained by in vitro
transcription as described elsewhere (16), using a PCR product as template. The
PCR product was generated from genomic DNA using a forward primer carrying
a T7 promoter (T7U3DS; 59-GCGAATTCTAATACGACTCACTATAGGTAC
TTCTTTTTTGAAGGGAT) and reverse primers 252 (U3ADS) for a longer
U3(260/1177) transcript or 253 (U3DS) for a shorter U3(260/1139) transcript.
Whole-cell extracts were prepared from wild-type and rnt1-D sister strains as
described previously (16), and recombinant His6-Rnt1p was purified as described
previously (5, 16).

In vitro processing of U3-39 RNA in cell extracts or with recombinant His6-
Rnt1p and mapping of the cleavage sites using primer extension were performed
as described elsewhere (16). Prior to the reaction, gel-purified RNA substrates (2
nM) were denatured for 2 min at 85°C in Rnt1p buffer (50 mM Tris-HCl [pH
7.6], 200 mM KCl, 0.1 mg of wheat-germ tRNA/ml, 5 mM MgCl2) and cooled to
23°C. The cleavage reaction was performed at 23°C using 100 fmol of recombi-
nant His6-Rnt1 or by incubation in the whole-cell extracts.

RNase A/T1 mapping. RNase A/T1 mapping was performed as described
elsewhere (22). The 32P-labeled antisense probe was transcribed in vitro with T7
polymerase using a PCR template as described above. The PCR product was
generated from genomic DNA using forward primer T7antiU3, carrying a T7
promoter (59-GCGAATTCTAATACGACTCACTATAGGTTTTAAACAATT
TAGAAAAGG), and reverse primer 39antiU3 (59-GGGCTCTATGGGTGGG
TAC). The RNA transcript was gel purified and hybridized to 8 mg of total RNA

in 30 ml of piperazine-N,N9-bis(2-ethanesulfonic acid) (PIPES) buffer (40 mM
PIPES) [pH 6.7], 400 mM NaCl, 1 mM EDTA) and 50% formamide. Annealing
was performed by heating at 95°C for 2 min followed by incubation at 48°C for
several hours. Digestion in RNase buffer (10 mM Tris-HCl [pH 7.5], 300 mM
NaCl, 1 mM EDTA) was performed with 5 to 15 U of RNase T2, 0.4 to 2.5 units
of RNase T1, and 0.1 to 0.5 mg of RNase A (RNase T2 from GibcoBRL; RNases
T1 and A from Boehringer) for 30 min at 25°C. Protected products were recov-
ered by guanidium thiocyanate–phenol-chloroform extraction and separated on
an 10% polyacrylamide gel.

RNase H treatment. Deadenylation was performed essentially as described
elsewhere (18). Samples of 30 mg of RNA were annealed with 750 ng of oli-
go(dT) at 65°C for 1 h and digested with 6 U of RNase H at 30°C for 1 h. The
control samples were treated identically except that the oligo(dT) was omitted.

Immunoprecipitation. For immunoprecipitation of ProtA-Nop1p, ProtA-
Nop58p, ProtA-Nop56p, Lhp1p-ProtA, and m3

2,2,7G-capped RNAs, yeast whole-
cell extracts were prepared as described elsewhere (46) except that for immu-
noprecipitation of m3

2,2,7G-capped RNAs, cells were resuspended in buffer A
(150 mM potassium acetate [KAc; pH 7.5], 20 mM Tris-Ac, 5 mM MgAc) with
1 mM dithiothreitol, 0.5% Triton X-100, and 5 mM phenylmethylsulfonyl fluo-
ride. Immunoprecipitation of ProtA-Nop1p, ProtA-Nop58p, ProtA-Nop56p, and
Lhp1p-ProtA with rabbit immunoglobulin G (IgG) agarose beads (Sigma) was
performed as previously described (33) at 150 mM salt (KAc) concentration. For
immunoprecipitation with m3

2,2,7G-cap-specific serum (R1131; kindly provided by
R. Lührmann), 30 ml of suspension of protein G-Sepharose was washed with
phosphate-buffered saline buffer and incubated on a rotating wheel with extract
equivalent to 4 units of optical density at 600 nm of cells in 120 ml of buffer A for
2 h at 4°C. After the pellet was washed in buffer A, bound m3

2,2,7G-capped RNAs
were eluted with 10 mM m7G(59)ppp(59)G (Pharmacia) in 30 ml of buffer A. The
RNAs were extracted with GTC/phenol-chloroform and ethanol precipitated.

RESULTS

Yeast cells contain 3*-extended forms of U3. Yeast U3 is
encoded by two genes, SNR17A, encoding U3A, and SNR17B,
encoding U3B (25). U3A is approximately 10-fold more abun-
dant than U3B (25), and all analyses have been performed for
U3A. On Northern hybridization, probe 200, to mature U3A,
was observed to hybridize to two RNA species of slower gel
mobility (U3-39I and U3-39II) in total yeast RNA preparations
(Fig. 1A, lane 1) that were estimated to be approximately 10
and 20 nucleotides (nt), respectively, longer than the mature
U3 (333 nt). A probe complementary to the sequence across
the 39 end of the mature U3A (probe 251), which hybridizes
specifically to 39-extended species, also detected these RNAs
as well as a longer species (U3-int 39) of approximately 470 nt.
Both SNR17A and SNR17B contain introns that are excised by
the pre-mRNA splicing machinery (38). The size and hybrid-
ization pattern of U3-int 39 indicates that it corresponds to a
39-extended precursor that retains the intron (Fig. 1D and 6B).

TABLE 1. Yeast strains used in this work

Strain Genotype Reference or source

YCA12 MATa ade2-1 his3-D200 leu2-3,112 trp1-1 ura3-1 can1-100 RRP6::Kl TRP1 6
YDL401 MATa his3D200 leu2D1 trp1 ura3-52 gal2 galD108 29
D150 MATa ura3-52 leu2-3,112 ade1-100 his4-519 L. Guarente, personal communication
P118 As YDL401 but GAL10::ProtA-RRP41 29
YCA20 As YDL401 but GAL10::RRP45 6
YJK10 As YDL401 but RNT1::TRP1 5
YJK11 As P118 but RNT1::TRP1 5
YJK12 As YCA20 but RNT1::TRP1 5
YJK13 As YCA12 but RNT1::TRP1 5
rat1-1 MATa his3-D200 leu2-D1 ura3-52 rat1-1 6
RP582 MATa leu2-3,112 ura3-52 rpb1-1 18
ProtA-Nop1 MATa ade leu trp lys ura3 nop1::URA3 pUN100-ProtA-NOP1 26
ProtA-Nop58 MATa ade2 ade3 leu2 ura3 can1 nop58::HIS3 pRS315-ProtA-NOP58 20
ProtA-Nop56 MATa ade2 ade3 leu2 ura3 nop56::HIS3 pRS315-ProtA-NOP56 20
GAL::nop58 As YDL401 but GAL10::NOP58 30
GAL::nop56 As YDL401 but GAL10::NOP56 31
Lhp1p-ProtA As YDL401 but LHP1::ProtA This work
YCA 35 MATa his3D200 leu2D1 trp1 ura3-52 gal2 galD108 LHP1::Kl URA This work
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It is not clear whether U3-int 39 has 39 ends identical to those
of U3-39I and U3-39II. Synthesis of the U3-39I and U3-39II
RNAs was not affected by the presence or absence of the
intron in the pre-snoRNA, since identical species were ob-
served in strains expressing U3 cDNA constructs (see Materi-
als and Methods) (data not shown).

The mature U3 carries a 59 trimethyl guanosine (TMG) cap
structure (25) and was precipitated with anti-TMG antibodies
(Fig. 1A, lane 3) (generously provided by R. Lührmann, Uni-
versity of Marburg). In contrast, the U3-39I, U3-39II, and U3-
int 39 RNAs were not precipitated with anti-TMG and were
recovered exclusively in the immune supernatant (Fig. 1A, lane
2). Mature yeast U3, like all box C1D snoRNAs, is associated
with Nop1p, Nop56p, and Nop58p (30, 31, 44) and was copre-
cipitated with protein A-tagged fusion proteins (Fig. 1B, lanes
3, 6, and 9). No association of U3-39I, U3-39II, or U3-int 39
with these proteins was observed, and the RNAs were again
recovered exclusively in the immune supernatants (Fig. 1B,
lanes 2, 5, and 8).

Genetic depletion of Nop58p leads to the loss of all tested
box C1D snoRNAs including U3 (30). The GAL::nop58 strain
was pregrown on permissive, galactose medium (0-h sample)
and then transferred to glucose to repress synthesis of Nop58p
(Fig. 1C). Mature U3 was codepleted with Nop58p, whereas
the levels of the U3-39I and U3-39II RNAs were increased. The
U3-int 39 species was unaffected.

We conclude that the U3 snoRNA is synthesized from 39
extended precursors that lack the TMG cap structure. The
pre-U3 species are not associated with snoRNP proteins and,
unlike the mature snoRNA, do not require Nop58p for stabil-
ity. Indeed, the accumulation of U3-39I and U3-39II in strains
depleted of Nop58p indicates that their normal maturation to
U3 requires Nop58p binding.

3* processing of U3 involves cleavage by Rnt1p. Rnt1p
cleaves 39-extended precursors to the U1, U2, U4, and U5
snRNAs and processes polycistronic pre-snoRNAs. We there-
fore determined whether it is also involved in the 39 processing
of pre-U3 species. In strains carrying a complete deletion of
the RNT1 gene, the level of mature U3 was reduced approxi-
mately threefold (Fig. 1D, I; see also Table 2). Strains carrying
rnt1-D lacked the U3-39I and U3-39II RNAs (Fig. 1D, II) and
we observed a heterogeneous group of RNAs extending to
approximately 600 nt (see Fig. 6A, lane 16, where more RNA
is loaded). In addition, the intron-containing precursor was
found to be 39 processed in the rnt1-D strain, in contrast to the
39-extended form seen in the wild type (Fig. 1D, III, lane 2; see
also Fig. 6C, lanes 12 to 14). The reduced levels of U3 in the
rnt1-D strain were initially postulated to be due to impaired
splicing (15). However, subsequent work indicated that splicing
was not defective in the rnt1-D strain (45) and, as shown in Fig.
1D, there is no overall accumulation of intron-containing
forms of U3.

We conclude that 39 processing of U3 normally involves
cleavage by Rnt1p. In the absence of cleavage, long 39-ex-
tended forms are synthesized. The time required for these to
be synthesized and then processed may allow assembly of the
mature snoRNP proteins, and processing proceeds directly to
the 39 end of the mature snoRNA. This processing is, however,FIG. 1. Northern analysis of 39-extended forms of U3 snoRNA. Probes (in-

dicated in parentheses): 251, complementary to the region across the 39 end of
the mature U3A; 200, complementary to mature U3; 260, complementary to the
U3A intron; 250, complementary to the scR1 RNA. For panels A and B, input
lysates were estimated to contain comparable amounts of U3 snoRNA, and
equal fractions of the preparation were loaded for each lane; panels C and D,
constant amounts of total RNA were loaded in each lane. (A) Immunoprecipi-
tation with m3

2,2,7G cap-specific antibody (R1131) on lysates from the wild-type
D150 strain. (B) Immunoprecipitation of lysates from strains expressing epitope-
tagged fusion proteins ProtA-Nop1p, ProtA-Nop58p, and ProtA-Nop56p. (C)
Stability of mature and 39-extended U3 upon depletion of Nop58p. RNA was

extracted from the GAL::nop58 and wild-type (WT) strains following transfer
from permissive, galactose medium to repressive, glucose medium for the times
indicated. (D) Effects of rnt1-D on 39-extended U3. The level of scR1 RNA is
shown as a control for loading. T, total cell lysate; S, immune supernatant; P,
immunoprecipitate.
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inefficient since mature U3 levels are strongly reduced (Fig.
1D; see also Table 2).

Rnt1p cleaves on both sides of extended stem-loop struc-
tures with a closing AGNN tetraloop (15). Inspection of the 39
flanking sequences revealed the presence of good matches to
consensus Rnt1p cleavage sites 39 to both SNR17A and
SNR17B, the genes encoding U3A and U3B, respectively
(shown for SNR17A in Fig. 2D). To confirm that these are
authentic cleavage sites, the cleavage of the SNR17A site was
tested in vitro. The U3(260/1139) in vitro transcript, which
spans the region between positions 260 and 1139 with respect
to the mature U3 39 end including the predicted stem-loop
structure, was used to map the cleavage site by primer exten-
sion (Fig. 2A). Incubation with recombinant His6-Rnt1p (Fig.
2A, lane 5) resulted in the appearance of two primer extension
stops that were not detected after incubation in the absence of
Rnt1p (Fig. 2A, lane 6). The primer extension stops were at nt
122 and 159, corresponding to cleavage between nt 121/22
and 158/159, and are in good agreement with the consensus
sites of Rnt1p cleavage (Fig. 2D). To demonstrate that in vitro
processing is by endonuclease cleavage, a longer transcript was
labeled internally; U3(260/1177) spans the 39 region of the
U3A precursor between positions 260 and 1177. Incubation
with either recombinant His6-Rnt1p (Fig. 2B, lanes 3 to 5) or
an extract from a wild-type (RNT11) strain of yeast (Fig. 2B,
lane 6) led to the appearance of a set of discrete cleavage
products that were not observed with the no-enzyme control
reaction (Fig. 2B, lane 2) or with an extract from an rnt1-D
strain of yeast (Fig. 2B, lane 7). The substrate is 237 nt, and
comparison to size markers (Fig. 2B, lanes 1 and 8) indicated
that the sizes of the three smaller species were in good agree-
ment with the predicted cleavage products: from 159 to the 39
end of the transcript (predicted size, 119 nt) (band a), from the
59 end to 121 (predicted size, 81 nt) (band b), and from 122
to 158 (predicted size, 37 nt) (band c).

The 39 fragments generated by Rnt1p cleavage of the pre-U4
snRNA and the pre-rRNA are strongly stabilized by mutation
of the nuclear 59339 exonuclease Rat1p (5, 28), indicating that
it normally degrades these regions. The sites of in vivo cleavage
of pre-U3 were identified by primer extension using probe 252,
which hybridizes in the SNR17A flanking sequence 39 to the
stem-loop structure. In the rat1-1 strain (Fig. 2C, lane 5),
primer extension stops were observed at 122 and 159, iden-
tical to the in vitro cleavage sites. These were absent from
RNA extracted from the rnt1-D strain (Fig. 2C, lane 6) but
were also not detectable in the wild-type strain (Fig. 2C, lane
7). The stop corresponding to the position of the 39 end of
mature U3 may be a consequence of the stem structure at this
position. The level of this stop is unaltered in the rat1-1 strain,
suggesting that it is not a cleavage site. We cannot, however,
exclude the possibility that a fraction of U3 is processed by
endonucleolytic cleavage at the mature 39 end. RNase MRP
was shown not to be involved in this process (data not shown).

We conclude that Rnt1p cleaves the 39 extended pre-U3 at
121/122 and 158/159. Following cleavage the 39 fragment is

FIG. 2. Rnt1p cleaves the 39 end of the U3 precursor. (A) Mapping of the in
vitro Rnt1p cleavage sites. Primer extension was performed with probe 253 on
the model U3(260/1139) RNA incubated with buffer (lane 6) or recombinant
His6-Rnt1p (lane 5) as described in Materials and Methods. DNA sequencing
reaction on a PCR product encompassing the 39 end of U3 from positions 260
to 1139, using the same primer, was run in parallel (lanes 1 to 4). The primer
extension stops at positions 122 and 159 are indicated. (B) In vitro cleavage of
an internally labeled model U3(260/1177) RNA substrate by Rnt1p. 32P-labeled
U3(260/1177) RNA was incubated at 23°C in the following conditions: lane 2,
Rnt1p buffer; lanes 3 to 5, Rnt1p buffer with 10 ng of recombinant His6-Rnt1p
for the times indicated; lane 6, with whole-cell extract from a wild-type (WT)
strain of yeast; lane 7, with whole-cell extract from an rnt1-D strain. Lanes 1 and
8, RNA size markers. The positions of DNA size markers are indicated on the
right in nucleotides. The obtained cleavage products are labeled a to c on the left,
and the predicted origins of these species are as follows: S, substrate (237 nt); a,
39 end of transcript to position 121/122 (119 nt); b, 59 end of transcript to
position 158/159 (81 nt); c, positions 121/122 to 158/159 (37 nt). Since in
vitro cleavages of U3(260/1177) are complete (100%), no intermediate cleav-

age products are visible. (C) Mapping of the Rnt1p 59 cleavage site in vitro.
Primer extension analysis through the 39 end of the pre-U3 was performed with
primer 252, hybridizing downstream of position 1177. RNA was extracted from
wild-type (lane 7) and rnt1-D (lane 6) strains grown at 30°C and from a rat1-1
strain following transfer to 37°C for 2 h (lane 5). DNA sequencing reactions were
run in parallel (lanes 1 to 4). The primer extension stops at positions 159, 122,
and 11 (39 end of U3) are indicated. (D) Computer-predicted RNA structure in
the U3 39 flanking region that contains the Rnt1p cleavage sites. The cleavage
sites between nt 121 and 122 and between nt 158 and 159 are indicated by
arrows. The 39 end of mature U3 is underlined.
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degraded by Rat1p. The level of the mature U3 is reduced in
strains lacking Rnt1p, indicating that this is normally the major
synthesis pathway.

The major 3*-extended forms of U3 do not extend to the
Rnt1p cleavage sites. High-resolution Northern hybridization
showed that the U3-39I band was too small to extend to the
Rnt1p cleavage sites, and even the larger U3-39 II species
appeared to be slightly smaller than expected. The 39 ends of
these species were therefore determined by RNase protection.
For this, the region of SNR17A from 295 to 136 was amplified
by PCR using a primer that incorporated a T7 promoter (see
Materials and Methods). In addition to the band correspond-
ing to the mature 39 end of U3, two major protected fragments
were detected in RNA from the wild-type strain (Fig. 3A, lane
3) but were absent from the rnt1-D strain (Fig. 3A, lane 4). The
sizes to these bands correspond to species that extend to
U3112 and U3118, in good agreement with the gel mobilities
of the U3-39I and U3-39II RNAs, respectively.

We conclude that following Rnt1p cleavage, the pre-U3
undergoes rapid trimming back to 112 and 118.

The major 3*-extended forms of U3 are stabilized by Lhp1p.
It seemed very likely that some RNA binding factor was re-
sponsible for stabilizing the 39 ends of the U3-39I and -II
species. Inspection of the sequence showed that these RNAs
possessed 39 poly(U) tracts (Fig. 3B). The 39 poly(U) tracts of
RNAs transcribed by RNA polymerase III are bound by the La
protein (42, 48), as are the 39 extended precursors to human
U1 (34) and yeast (58) snRNAs. We therefore tested whether

the U3-39I and -II RNAs were being stabilized by binding to
Lhp1p, the yeast homologue of La (39, 59).

The LHP1 gene is nonessential (59), and a gene disruption
was performed by a one-step PCR approach (10) using the K.
lactis URA3 marker (see Materials and Methods). RNase pro-
tection analysis of RNA from the lhp1-D strain showed the loss
of the major 39-extended ends at 118 and 112 and the ap-
pearance of shorter, heterogeneous protected fragments cor-
responding to RNAs from U318 to U3111 (Fig. 3A, lane 7).
This result was confirmed by Northern hybridization (Fig. 4).
The U3-39II and U3-39I species were absent from the lhp1-D
strain (Fig. 4A), and a species slightly shorter than U3-39I was
detected. The level of mature U3 was unaffected in the lhp1-D
strain (Figs. 3A and 4B), as were the levels of the truncated U3
degradation intermediates seen in wild-type cells (see Fig. 6;
data not shown). These data suggested that both U3-39I and
U3-39II were stabilized by binding Lhp1p.

To confirm this, a C-terminal fusion between Lhp1p and two
copies of the Z domain of S. aureus protein A was constructed
and integrated at the chromosomal LHP1 locus by a one-step
PCR approach (29) (see Materials and Methods). Western
blotting confirmed that the fusion protein was expressed and
could be efficiently immunoprecipitated with IgG agarose
(data not shown). Immunoprecipitation was performed on two
independently isolated Lhp1p-ProtA strains; data are pre-
sented for only one strain in Fig. 5. Processing of pre-tRNATyr

appeared to be the same in the strain expressing only Lhp1p-
ProtA and the wild type (Fig. 5D); however, some accumula-
tion of the shorter 39-extended pre-U3 species was visible (Fig.
5A), suggesting that the Lhp1p-ProtA fusion protein is under-
expressed or otherwise not fully functional.

As expected, the tRNATyr primary transcript (Fig. 5D) and
the U6 snRNA (Fig. 5E) were immunoprecipitated on IgG
agarose from the strain expressing Lhp1p-ProtA (lane 6) but
not from the wild type (lane 3). Both U3-39I and U3-39II were
coprecipitated with Lhp1p-ProtA (Fig. 5A), as were U3-int 39
and a species of approximately 800 nt designated U3-39III (Fig.
5B). The species shorter than U3-39I seen in the Lhp1p-ProtA
strain was not coprecipitated and remained in the immune

FIG. 3. Mapping of the 39-extended forms of U3 by RNase protection. (A)
RNA was extracted from wild-type (WT), rnt1-D, and lhp1-D strains grown at
30°C and from GAL::rrp41 and GAL::rrp41/rnt1-D strains following transfer from
permissive, RSG medium to repressive, glucose medium at 30°C for 24 and 48 h,
respectively. Total E. coli tRNA was used as a control RNA. Positions of the
Rnt1p-dependent protected species at 112 and 118 are indicated. (B) Sche-
matic of the U3 39 flanking region showing the ends of the protected regions and
the Rnt1p cleavage sites.

FIG. 4. 39-extended forms of U3 are stabilized by Lhp1p. Lane 1, LHP1
strain; lane 2, lhp1-D strain. Total RNA was analyzed by Northern hybridization
with probe 251, specific for the 39-extended U3 (A), probe 200, which hybridizes
to the mature U3 (B), and probe 250, which hybridizes to scR1 RNA (C).
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supernatant (Fig. 5A, lane 5). Mature U3 (Fig. 5B and C) and
the 39 processed, intron-containing pre-tRNATyr (Fig. 5D)
were recovered at the same low levels in the wild-type and
Lhp1-ProtA precipitates. The pre-U3 and pre-tRNA species
were more efficiently precipitated than U6, presumably be-
cause only the newly synthesized U6 is associated with Lhp1p
(35, 39).

We conclude that Lhp1p binds and stabilizes the major 39-
extended forms of U3.

The exosome participates in 3* processing of U3. The levels
of 39-extended precursors to other snoRNAs and snRNAs are
elevated in strains carrying mutations in the exosome complex
(5, 55). To assess the effects of genetic depletion of exosome
components on the 39-extended forms of U3, Rrp41p and
Rrp45p were depleted by transfer of GAL::rrp41 and GAL::
rrp45 strains (6, 36) from permissive RSG medium (0-h sam-
ples) to repressive, glucose medium for the times indicated. A
strain deleted for the gene encoding the Rrp6p component of
the exosome (6) was also analyzed. In the strains lacking
Rrp41p (Fig. 6A and C, lanes 5), Rrp45p (lanes 10), or Rrp6p
(lanes 2), the levels of U3-39I and U3-39II were higher than in

the isogenic wild-type control strains (lanes 3 and 14); these
results are quantitated in Table 2. For the GAL::rrp41 strain,
this increase was confirmed by RNase protection (Fig. 3A, lane
4), which showed that the accumulated precursors were iden-
tical to U3-39I and -II. Rrp41p is underexpressed in the
GAL::rrp41 strain in RSG medium and therefore shows some
accumulation of the extended species in the 0-h sample (6, 36).
In strains genetically depleted of other exosome components,
Rrp4p, Rrp40p, Rrp46p, or Csl4p, increased levels of U3-39I
and -II were also observed (data not shown). In addition, an
RNA species that comigrated with the U3-39III RNA, seen on
Lhp1p-ProtA precipitation (Fig. 5), was accumulated in the
exosome mutants. On prolonged exposure, this species could
also be detected at low levels in wild-type cells. Depletion of
the exosome components did not lead to depletion of the
mature U3. Indeed, as was previously observed for the U4 and
U5 snRNAs, depletion of exosome components led to an in-
crease in the mature U3 snoRNA of approximately twofold
(Table 2).

FIG. 5. 39-extended forms of U3 are coprecipitated with Lhp1p-ProtA. Ly-
sates from the LHP11 and LHP1::ProtA strains were immunoprecipitated using
IgG agarose. RNA was recovered from the total cell lysate (T), immune super-
natant (S), and immunoprecipitate (P) and analyzed by Northern hybridization.
Probes are indicated in parentheses and described in Materials and Methods. On
prolonged exposure, background precipitation of mature U3 is seen for both the
wild-type and Lhp1-ProtA strains (lanes 7 and 8). In panel B, the total and
supernatant lanes were heavily overexposed at the exposure needed to visualize
the U3-int 39 and U3-39III RNAs and were omitted. Approximately fourfold
more cell equivalents are loaded for the bound material.

FIG. 6. Northern analysis of processing of U3 snoRNA in exosome mutants.
RNA was extracted from strains carrying GAL-regulated constructs following
transfer from permissive, RSG medium to repressive, glucose medium at 30°C
for the times indicated, or from the wild-type (WT), rnt1-D, rrp6-D, and rnt1-D/
rrp6-D strains grown on glucose medium at 30°C. RNA was separated on an 6%
polyacrylamide gel and hybridized with oligonucleotide probes. The panels show
successive hybridization of the same filter. Probes are indicated in parentheses on
the left and described in Materials and Methods; the positions of RNA species
detected are indicated on the right. Panel C presents a weaker exposure of the
same gel as panel A. Panels B to E present only relevant regions of the Northern
blots. The amount of total RNA loaded in lane 16 is fourfold greater than in lane
15 and other lanes. The positions of migration of scR1 (525 nt) and P (369 nt)
RNAs determined by hybridization of the same filter are indicated as size
markers. Mature U3 is 333 nt.
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In strains lacking exosome components, the 39 processed,
intron-containing precursor is clearly detected. This is most
visible for Rrp6p (Fig. 6B, lane 2) but was also seen for several
other exosome mutants (Fig. 6B and data not shown). This
species is not detected in the wild type, and we speculate that
this processing intermediate is normally a dead-end product
that is degraded by the exosome. 39 processing appears to be
dependent on snoRNP protein binding, but assembly with the
mature snoRNP proteins may be incompatible with assembly
of a functional spliceosome. The exosome also degrades other
stalled, intron-containing pre-mRNAs (C. Bousquet-Antonelli,
C. Presutti, and D. Tollervey, submitted for publication).

The combination of the deletion of both RNT1 and RRP6
(Fig. 6, lane 1) partially restored synthesis of species with the
same gel mobility as the U3-39I and U3-39II RNAs. Depletion
of Rrp41p or Rrp45p from the strain lacking Rnt1p (Fig. 6A
and C, lanes 7, 8, 12, and 13) led to the appearance of heter-
ogeneous RNA species slightly smaller than U3-39I, similar in
size to the species seen in the lhp1-D strain (Fig. 4). Consistent
with this, RNase protection analysis in the GAL::rrp41/rnt1-D
strain reveals a ladder of protected RNA fragments extending
from mature U3 to position U3112 (Fig. 3A, lane 6); due to
the location of the hybridization probe, only the longer RNAs
were detected by Northern hybridization (Fig. 6). A stronger
ladder of RNA species extending up to the position of U3-39III
was observed by Northern hybridization (Fig. 6, lanes 7, 8, 12,
and 13), which was reflected by the strong protection of the
full-length antisense probe (Fig. 3A, lane 6). The combination
of each of exosome mutations with rnt1-D partially restored the
mature U3 levels compared to the rnt1-D single mutant strain
(Table 2).

We conclude that the exosome complex of 39359 exonucle-
ases participates in the 39 processing of U3. This processing
pathway closely resembles that of the U1, U4, and U5 snRNAs
(5, 14, 45, 55). In each case, synthesis of the mature RNA
continues in strains depleted of single components of the exo-
some, indicating either that different components of the com-
plex are partially functionally redundant or that other exo-
nucleases can largely substitute for the exosome.

The level of the mature U3 is elevated in the exosome
mutants, indicating competition between the synthetic pathway
and degradation of the pre-U3. This was also seen for the U4
and U5 snRNAs (5). Consistent with this model, a truncated
U3 species (U3**) was observed in wild-type strains (Fig. 7,
lanes 1 and 12) (24, 35). The U3** species was 59 and 39
truncated, as shown by its failure to hybridize to probes di-
rected against either the 39 end of U3 (Fig. 7B) or the 59 end
of U3 (Fig. 7C). In contrast, the U3* species that is accumu-
lated in rrp6-D, GAL::rrp41, and GAL::rrp45 strains was trun-
cated only at the 59 end, indicating that U3 is normally 39
degraded by the exosome. The level of U3* is further elevated

in exosome mutants that also lack Rnt1p, consistent with the
model that degradation of pre-U3 is increased in rnt1-D strains.
The 59 degradation activity has not been further characterized
but is likely due to the 59339 exonuclease Rat1p, which 59
processes other snoRNAs and degrades pre-rRNA spacer frag-
ments (41).

In strains lacking Rnt1p, 39 extended forms of U1 and U2
snRNAs undergo a low level of polyadenylation (1, 45), and
the precursors to several snRNAs and snoRNAs are polyade-
nylated in exosome mutants (5, 55). To determine whether this
was also the case for the 39-extended U3, RNA was treated in
vitro with oligo(dT) and RNase H. Following this deadenyla-
tion treatment, the longer 39-extended species detected in the
rnt1-D/GAL::rrp41 strain became shorter and more discrete
(data not shown), indicating that a low level of polyadenylation
had indeed occurred.

DISCUSSION

How is U3 processed? A model for 39 processing of the U3A
snoRNA is presented in Fig. 8. We postulate that processing is
normally initiated by cotranscriptional cleavage by Rnt1p
across a stem structure at positions 121 and 158 with respect
to the 39 end of U3. The released 39 fragment is degraded by
the 59339 exonuclease Rat1p, as shown by its accumulation in
the rat1-1 strain. The 39 extended pre-snoRNA is rapidly pro-
cessed to 112 and 118, since the species extended to 121 is
not readily detected in total RNA. The products of Rnt1p
cleavage of pre-U4 and pre-U5 are elevated in strains deleted
for components of the exosome (5), and we think it probable
that the exosome complex also carries out the initial shortening
of the pre-U3. We cannot, however, exclude the participation
of other exonucleases, such as the Rex1-3p family that carry
out the final trimming of several small RNA species (54). The
pre-U3 is stabilized against further 39 degradation by binding
of Lhp1p to the 39 poly(U) tracts at 119 and 113; whether
Lhp1p binds to internal poly(U) tracts prior to the start of
digestion, or binds to free 39 poly(U) tracts generated during
digestion, cannot be determined at present. The larger U3-
39III species is bound by Lhp1p, suggesting that Lhp1p does
bind to internal poly(U) sequences prior to processing, but the
endpoints of this have not been mapped and we cannot exclude
the possibility that it has a terminal poly(U) tract. It is likely
that the poly(U) tracts at 119 and 113 can each bind Lhp1p,
although binding may be mutually exclusive.

The box C1D snoRNAs, including U3, bind a set of com-
mon proteins, Nop1p, Nop56p, and Nop58p (13, 30–32, 40, 44,
53) that probably bind to the box D sequence close to the 39
end of the snoRNA and the 39-terminal stem (13, 57). These
proteins are not associated with the 39-extended U3 species,
and we propose that their binding displaces Lhp1p from the 39

TABLE 2. PhosphorImager quantification of Northern hybridization data from Fig. 6a

Construct
Quantification

GAL::rrp41 GAL::rrp41/rnt1-D GAL::rrp45 GAL::rrp45/rnt1-D rnt1-D rrp6-D rrp6-D/rnt1-D

U3 2.1 1.16 2.14 1 0.31 2.82 0.97
scR1 0.83 0.87 1.66 1.85 2.27 2.16 2.34
U3/scR1 2.53 1.33 1.29 0.54 0.11 1.3 0.41
U3-39I 1 -II 2.3 0.57b 2.89 0.27b 0.044 2.78 0.31
U3-39I 1 -II/scR1 2.77 0.65 1.74 0.15 0.019 1.29 0.13

a The U3-39I and -II doublet was quantified as one species. The GAL::rrp41 and GAL::rrp41/rnt1-D data are from the 24-h time points; the GAL::rrp45 and
GAL::rrp45/rnt1-D data are from the 40- and 48-h time points, respectively. Values are relative to the wild-type level, assigned a value of 1.

b Species shorter than U3-39I that appears in the GAL::rrp41/rnt1-D and GAL::rrp45/rnt1-D strains.
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flanking sequence. Since the snoRNP proteins bind at the very
39 end of the snoRNA, this displacement may be steric. Re-
moval of Lhp1p is envisaged to allow the exosome to resume
processing, generating the mature snoRNA 39 end. This is
followed by cap trimethylation; in vertebrates this snoRNA
modification requires the conserved box C1D snoRNAs (50),
probably acting via binding the mature snoRNP proteins. The
yeast U3 genes are unusual in that they contain an intron that
is excised by the normal pre-mRNA splicing machinery. In
wild-type cells this is spliced from the 39-extended pre-U3,
since only the 39-extended, intron-containing species is de-
tected. The endpoints of the U3-int 39 species have not been
determined, but these species are associated with Lhp1p, sug-
gesting that they may have been largely processed to 118 and
112.

Deletion of Rnt1p strongly reduces synthesis of mature U3
(Table 2). Processing of the long 39-extended pre-U3 species
generated in the absence of Rnt1p cleavage involves the exo-
some, as shown by their increased levels in rnt1-D strains lack-

ing exosome components. We speculate that a processive exo-
some complex assembles on the long 39-extended pre-U3,
which is able to substantially displace bound Lhp1p and/or the
snoRNP proteins and therefore degrades most of the pre-U3
population. Consistent with this model, depletion of exosome
components from rnt1-D strains restored mature U3 to the
wild-type level (Table 2).

In the absence of Lhp1p, the U3 snoRNA was still 39 pro-

FIG. 7. Exosome components participate in the degradation of U3 snoRNA.
For Northern analysis of U3 snoRNA in wild-type (WT) and rnt1-D and exosome
mutant strains. RNA was extracted as described for Fig. 2, separated on an 6%
polyacrylamide gel, and hybridized with oligonucleotide probes. The panels show
successive hybridization of the same filter. Probes are indicated in parentheses on
the left and described in Materials and Methods; the positions of RNA species
detected are indicated on the right. The amount of total RNA loaded in lane 14
is fourfold greater than in lane 13 and other lanes. The positions of migration of
snRNA190 (190 nt), U5L (215 nt), and snR10 (246 nt) determined by hybrid-
ization of the same filter are indicated as size markers. Mature U3 is 333 nt. The
locations of the oligonucleotide probes and the predicted structures of the
degradation intermediates are shown schematically.

FIG. 8. Model for the 39 processing of the U3A snoRNA. The presence of
the poly(U) tracts and stem-loop structure in the 39 flanking sequence and the
intron are indicated. For simplicity, only one poly(U) tract is indicated. In reality,
two tracts are present, at 119 and 113, each of which is likely to act as a binding
site for Lhp1p. The activity that carries out the initial trimming to 118 and 112
has not been determined but is likely to be the exosome. The endpoints of the
U3-int 39 species have not been determined, but the finding that these species are
associated with Lhp1p suggests that they are processed to 118 and 112.

5422 KUFEL ET AL. MOL. CELL. BIOL.



cessed. The U3-39I and U3-39II species were absent but slightly
smaller, heterogeneous species were observed, indicating that
some other factor(s) can also bind the 39 poly(U) tract. An
obvious candidate is the Lsm complex, which binds to the 39
poly(U) tract of the U6 snRNA and is required for normal 39
processing of the RNase P RNA (3, 17, 35, 43). Consistent with
this model, mutations in Lsm8p were lethal in combination
with the deletion of LHP1 (39).

In otherwise wild-type strains, depletion of exosome compo-
nents increased the mature U3 level by inhibiting a 39 degra-
dation pathway that generates the truncated U3** intermedi-
ate, indicating competition between the synthetic and
degradative pathways during normal U3 synthesis. Similar ob-
servations have been reported for the U4 and U5 snRNAs (5).

The processing pathway deduced here for yeast U3 shows
similarities to the processing pathways proposed for the U1,
U2, U4, and U5 spliceosomal snRNAs. In each case, down-
stream cleavage by Rnt1p is thought to act as an entry for the
exonucleases (1, 5, 14, 45). For U1, U4, and U5, this processing
was also shown to involve the exosome complex (5, 55); this has
not been addressed for U2. Also in each case, shorter 39 ex-
tended species normally accumulate as transient intermedi-
ates, although their 39 ends have not yet been accurately
mapped. In the case of pre-U4 and pre-U5, the Rnt1p cleavage
products are 39 processed by the exosome complex and then
trimmed to the mature RNAs by the Rex1-3p family of exo-
nucleases together with the Rrp6p exosome component (54).
Other box C1D snoRNAs are 39 trimmed by Rrp6p (5), but
this is not the case for U3.

Inspection of the 39 flanking sequences reveals that poly(U)
tracts are present in the 39 flanking sequences of the U1, U2,
U4, and U5 snRNA genes (Fig. 9). In each case, the Rnt1p
cleavage site is adjacent to a poly(U) tract (Fig. 9A). For the
U2, U3, and U5L RNAs, the mature RNA regions (uppercase
in Fig. 9A) are located relatively close to the Rnt1p cleavage
site, with additional poly(U) tracts between the Rnt1p cleavage
site and the mature 39 end. The mature regions of U1, U4, and
U5S are more distant, and their 39 ends are located within a

further poly(U) tract (Fig. 9B). Lhp1p is associated with yeast
pre-U1, U2, U4, and U5 (58). However, in contrast to the
model presented here for U3, Lhp1p is proposed to function as
a cofactor for the assembly of the spliceosomal snRNAs with
the Sm proteins. The human and plant U3 snoRNAs also have
39 flanking poly(U) tracts, suggesting that this feature may be
conserved throughout eukaryotes (27, 49).

Why is U3 processed? The 39 ends of almost all RNAs from
all organisms are generated by 39 processing rather than tran-
scription termination, but the reasons for this have largely
remained obscure. The data presented here provide a possible
explanation, at least for U3. The binding sites for the common
snoRNP proteins, the box D element and the terminal stem
structure, define the 39 end of the mature U3 snoRNA. Tran-
scription termination at this site would generate an RNA with
a monomethylguanosine cap structure and lacking the snoRNP
proteins. This could not readily be distinguished from the
products of premature termination or failed pre-mRNA splic-
ing. It is likely that these are normally very rapidly degraded by
the exosome complex and Rat1p (C. Bousquet-Antonelli, C.
Presutti, and D. Tollervey, unpublished data). Delaying or
reducing these degradative activities might allow sufficient time
for snoRNP assembly and cap trimethylation, but at the ex-
pense of allowing greater accumulation of aberrant RNAs.
Such a strategy might also allow a greater level of accidental
protection of inappropriate RNA species by RNA-binding pro-
teins. Instead, the cell has adopted a mechanism to specifically
delay 39 processing of the snoRNA. Transcription continues
beyond the 39 end of the mature snoRNA, with the transcript
normally being cleaved by Rnt1p and protected by binding of
Lhp1p. This leaves the mature 39 end free for binding of the
snoRNP proteins. Such a system has the additional advantage
of acting as a quality control system. We envisage that the
snoRNP proteins, or at least Nop58p, must displace Lhp1p to
allow final maturation of the snoRNA. In the absence of
Nop58p binding, the 39 extended pre-U3 accumulates to low
levels and is then degraded. Binding of La to pre-tRNAs has
also been proposed to function as a quality control system (19),
and binding of Lhp1p to the U6 snRNA and pre-tRNAi

Met is
also likely to antagonize rapid 39 degradation (8, 39).

We propose that 39 processing acts as a quality control
system in the synthesis of many RNA species and that this
underlies its ubiquitous occurrence.
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The pap1-5 mutation in poly(A) polymerase causes rapid depletion of mRNAs at restrictive temperatures.
Residual mRNAs are polyadenylated, indicating that Pap1-5p retains at least partial activity. In pap1-5 strains
lacking Rrp6p, a nucleus-specific component of the exosome complex of 3�-5� exonucleases, accumulation of
poly(A)� mRNA was largely restored and growth was improved. The catalytically inactive mutant Rrp6-1p did
not increase growth of the pap1-5 strain and conferred much less mRNA stabilization than rrp6�. This may
indicate that the major function of Rrp6p is in RNA surveillance. Inactivation of core exosome components,
Rrp41p and Mtr3p, or the nuclear RNA helicase Mtr4p gave different phenotypes, with accumulation of
deadenylated and 3�-truncated mRNAs. We speculate that slowed mRNA polyadenylation in the pap1-5 strain
is detected by a surveillance activity of Rrp6p, triggering rapid deadenylation and exosome-mediated degra-
dation. In wild-type strains, assembly of the cleavage and polyadenylation complex might be suboptimal at
cryptic polyadenylation sites, causing slowed polyadenylation.

The exosome is a complex of 3�-5�exonucleases that is con-
served in eukaryotes (31) and archaea (25). In yeast, nuclear
and cytoplasmic forms of the exosome share 10 components.
All of these proteins are essential for viability and have se-
quence homology to known 3�-5� exoribonucleases, and several
have been shown to function as ribonucleases in vitro. Genetic
depletion or mutation of any of these proteins results in very
similar defects in RNA maturation and degradation (2), and
for convenience they are often referred to as the “core” exosome
components (reviewed in references 12, 32, and 48). In addi-
tion, the cytoplasmic complex is associated with the GTPase
Ski7p (3, 49), while the nuclear complex is associated with an
additional exonuclease, Rrp6p (2, 11), and a nucleic acid bind-
ing protein, Lrp1p/Rrp47p (30, 35).

Ski7p functions together with the core exosome in cytoplas-
mic mRNA turnover and RNA surveillance pathways (3, 49).
In contrast, the functions of Rrp6p and Lrp1p/Rrp47p are
distinct from those of the core components of the exosome
during nuclear 3� processing of several small stable RNAs,
including the 5.8S rRNA (1, 2, 9, 30, 35, 47). In these cases,
Rrp6p specifically processes RNA intermediates that are gen-
erated by the activity of the core exosome.

In eukaryotic mRNAs, the 3� poly(A) tail plays key roles in
translation, mRNA stability, and, at least in some cases, nu-

clear export. The poly(A) tail is added to the 3� ends of
mRNAs by poly(A) polymerase, Pap1p in yeast (34), within a
large processing complex in a reaction that is normally coupled
to cotranscriptional mRNA cleavage and transcription termi-
nation (6, 53; reviewed in references 27 and 37). In some
strains with defects in pre-mRNA cleavage, long 3�-extended
transcripts that are rapidly degraded by the nuclear exosome
are generated (42). In certain cases, subsequent polyadenyla-
tion that is uncoupled to pre-mRNA cleavage can apparently
generate functional mRNAs from pre-mRNAs that have been
3� processed by the exosome. Rrp6p is not required for the
initial processing of the 3�-extended transcripts (42). However,
in strains defective in mRNA cleavage due to the rna14-1
mutation (28, 29), Rrp6p plays a distinct role in pre-mRNA
degradation following initial processing by the exosome, ap-
parently antagonizing polyadenylation. However, recombinant
Rrp6p was reported to show no preference for poly(A)� RNAs
in vitro (11), so any direct role in deadenylation is unlikely to
result from the intrinsic specificity of the Rrp6p exonuclease
activity. A different role for RNA polyadenylation in stimulat-
ing nuclear RNA degradation by the exosome has been de-
scribed recently (21, 22, 50, 52). This involves a distinct nuclear
poly(A) polymerase, Trf4p (22, 39, 50, 52).

A previous analysis identified the rrp6-1 point mutation,
which alters a key residue in the catalytic region of Rrp6p, as
a suppressor of the temperature-sensitive (TS) lethal mutation
pap1-1 (9, 11, 34, 36). This suggested that Rrp6p, and perhaps
the nuclear exosome, plays a role in degrading mRNAs that
have failed to undergo polyadenylation. Consistent with this
model, Rrp6p was required to restrict mRNAs synthesized in
pap1-1 strains to a nuclear region that was proposed to lie close
to the site of transcription (18).

To better define the role of the exosome in the degradation
of mRNAs with defects in polyadenylation, we examined
poly(A) tail length and mRNA degradation in strains carrying
a collection of reported TS lethal alleles of PAP1 (28). In each
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mutant, mRNA levels were rapidly reduced after transfer to
nonpermissive temperature. However, in pap1-5, but not
pap1-2, strains, the reduced level of residual mRNAs appeared
to be substantially polyadenylated at the nonpermissive tem-
perature. Further analyses led to the conclusion that the defi-
ciency in mRNAs in the pap1-5 strain is not due to the inability
to synthesize poly(A) tails per se but to an RNA surveillance
pathway that triggers nuclear deadenylation and exosome-me-
diated degradation of the newly synthesized pre-mRNAs.

MATERIALS AND METHODS

Strains, media, and yeast genetics. Strains were grown in YPD medium,
containing 2% peptone, 1% yeast extract, and 2% glucose, or YPGal, containing
2% peptone, 1% yeast extract, and 2% galactose. Transformation was performed
as described previously (17), except that 6% dimethyl sulfoxide was added prior
to heat shock and the final pellet was resuspended in 0.15 M NaCl. For the
strains of Saccharomyces cerevisiae used in this study, see Table S1 in the sup-
plemental material. To make strain YCA42 (pap1-5/rrp6�), the RRP6 open
reading frame was replaced by Kluyveromyces lactis URA3 in strain pap1-5 by
using primers 5�RRP6::URA (849) (see Table S2 in the supplemental material
for the sequence) and 3�RRP6::URA (850). Transformants were selected for
Ura� prototrophy and analyzed by Northern blotting for 5.8S rRNA processing
defects. To make strains YCT56 (pap1-5/GAL::rrp41) and YCT59
(pap1-5/rrp6�/GAL::rrp41), the HIS3-GAL10-ProtA-RRP41 cassette was ampli-
fied by PCR from strain P118 with primers RRP41-1 (842) and RRP41-2 (843)
and transformed into strains pap1-5 and YCA42. Correct gene deletion was
confirmed by analysis of the 5.8S rRNA processing defect. Strain YCT83 (pap1-
5/mtr3-1) was obtained by sporulation of diploids resulting from crossing pap1-5
with YCT73. The KAN-GAL-3HA-MTR4 construct was generated from strain
YCBA81 by one-step PCR (22a) in strain pap1-5 with primers MTR4-F4 (991)
and MTR4-R3 (992). Transformants were selected for kanamycin resistance and
analyzed by Northern blotting for 5.8S rRNA processing defects. One transfor-
mant, YCT109 (pap1-5/GAL::MTR4), was selected. To make strains YCT68
(ski7�) and YCT71 (pap1-5/ski7�), the KAN::ski7 cassette was amplified by PCR
from strain Y01852 (EUROSCARF) with primers SKI7-1 (993) and SKI7-2
(994) and transformed into D270 and pap1-5, respectively. Correct integration
was confirmed by PCR. To make strains YLM122 (ccr4�) and YLM124 (pap1-
5/ccr4�), the KAN::ccr4 cassette was amplified by PCR from strain Y00387
(EUROSCARF) with primers CCR4-1 (1101) and CCR4-2 (1102) and trans-
formed into D270 and pap1-5, respectively; correct integration was confirmed by
PCR. To make strains YLM127 (pan2�) and YLM129 (pap1-5/pan2�), the
KAN::pan2 cassette was amplified by PCR from strain Y04461 (EUROSCARF)
with primers PAN2-1 (1104) and PAN2-2 (1105) and transformed into D270 and
pap1-5, respectively; correct integration was confirmed by PCR. Strain YLM121
(pap1-5/rrp6-1) was obtained by sporulation of diploids resulting from crossing
pap1-5 with a strain carrying the rrp6-1 allele (11).

RNA extraction and analysis. RNA extractions were performed as described
previously (41). Seven micrograms of total RNA was analyzed for each sample.
Small RNAs were separated on a 6% acrylamide gel containing 8.3 M urea and
transferred to a Hybond N� membrane by electrotransfer. High-molecular-
weight RNAs were analyzed on 1.2% agarose gels and transferred by capillary
elution. For the oligonucleotides used, see Table S2 in the supplemental mate-
rial.

For poly(A) tail length analysis of mRNA, 7 �g of total RNA was digested with
10 �g of RNase A and 250 units of RNase T1 in 10 mM Tris, pH 8, 300 mM
NaCl. The digestion was stopped by adding 10 mM EDTA, 0.25% sodium
dodecyl sulfate, 25 �g/ml proteinase K, and 0.5 mg/ml glycogen. Samples were
precipitated, and then 3� end labeling of the poly(A) tails was carried out
overnight at 4°C with 10 �Ci [32P]pCp (cytidine-3�,5�-bisphosphate) and 40 units
of T4 RNA ligase in 50 mM Tris-HCl, pH 7.9, 10 mM MgCl2, 3.3 mM dithio-
threitol, 10 �g/ml bovine serum albumin, and 10% dimethyl sulfoxide. Samples
were then phenol-chloroform extracted and precipitated, and electrophoretic
separation was analyzed on a 12% acrylamide-8 M urea gel. For total poly(A) tail
analysis, 7 �g of total RNA was extensively hydrolyzed with RNase A and RNase
T1. Following ethanol precipitation to remove free nucleotides, residual poly(A)
tracts were 3� end labeled with [32P]pCp and RNA ligase and resolved on a 12%
polyacrylamide gel containing 8 M urea. Similar results were obtained with two
independent experiments.

RNase H treatment. Deadenylation was performed essentially as described
previously (33). Samples (20 �g) of RNA were annealed with 400 ng oligo(dT)
at 68°C for 10 min and digested with 1.5 U RNase H at 30°C for 1 h.

RESULTS

In pap1-5 mutant strains, poly(A)� mRNAs are degraded by
the nuclear exosome. The pap1-2 and pap1-5 mutations each
result in tight TS lethality at 37°C, but they have little effect on
growth at 23°C (28). Both alleles have multiple mutations, and
it is not clear which of them give rise to the TS phenotype. The
lengths of the poly(A) tracts present in total RNA were as-
sessed by 3� labeling with [32P]pCp following digestion with
RNase A and RNase T1 (see Materials and Methods). During
growth at 23°C, little difference was seen in the average
poly(A) tail length between the pap1-2 and pap1-5 strains, both
of which showed maximal poly(A) tail lengths around 20 nu-
cleotides shorter than that of the wild type (Fig. 1A). Following
transfer to 37°C for 30 min, the pap1-2 strain retained only low
levels of poly(A) (Fig. 1A, lane 5). In contrast, pap1-5 strains
retained substantial poly(A) tracts (Fig. 1A, lane 6). The signal
strength was reduced at 37°C relative to 23°C, consistent with
overall loss of mRNAs, but the maximal tail length distribution
was not greatly shortened (see Fig. S1 in the supplemental
material for PhosphorImager quantification of these data).
Similar poly(A) length distribution was seen even after 90 min
at 37°C (data not shown). This result would be consistent with
synthesis of a reduced level of poly(A)� RNAs, which continue
to be normally deadenylated in the cytoplasm. We conclude
that the pap1-5 strain, but not the pap1-2 strain, retains signif-
icant polyadenylation activity at 37°C. This suggested that le-
thality in the pap1-5 strain did not result simply from an in-
ability to generate poly(A) tails.

The pap1-2 and pap1-5 alleles were combined with deletion
of the RRP6 gene. RNAs from the single- and double-mutant
strains were analyzed by Northern blotting 2 h after transfer to
37°C (Fig. 1B). Increased CYH2 and ACT1 mRNA levels were
seen for the pap1-5 rrp6� strain relative to the pap1-5 single
mutant. In contrast, no increases were seen in the pap1-2 rrp6�
strain relative to pap1-2 alone. Quantification is shown for
CYH2 transcript and is standardized relative to scR1 RNA, a
component of the cytoplasmic signal recognition particle.

These observations suggested a role for the nuclear exosome
in the degradation of newly synthesized poly(A)� pre-mRNAs
in the pap1-5 mutant strain. To confirm the nuclear localiza-
tion of this degradation, the pap1-5 allele was also combined
with a deletion of the gene encoding the cytoplasmic exosome
component Ski7p, which is required for 3� degradation of cy-
toplasmic mRNAs (3, 5, 45, 49). No clear mRNA stabilization
was conferred by the absence of Ski7p, and no truncated RNA
species were observed (Fig. 1C).

The loss of mRNA from the pap1-5 strain was assessed
during a time course following transfer to 37°C. Several mRNAs
tested (ACT1, CYH2, RPL25, and MFA2 and RPL30, RPS26a,
and CYC1) (Fig. 2A and B, lanes 8 to 14, and data not shown)
were all progressively depleted at 37°C in the pap1-5 strain,
indicating that accumulation of new mRNA was inhibited.
However, even at late time points, residual mRNAs were
present in the pap1-5 strain, indicating a reduced level of
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ongoing mRNA synthesis. Quantification is shown for the
CYH2 transcript, standardized to scR1 RNA.

This conclusion was greatly strengthened by analysis of the
pap1-5 rrp6� strain (Fig. 2A and B, lanes 15 to 21). For all
mRNAs tested, synthesis in the pap1-5 strain at 37°C was
substantially increased by the absence of Rrp6p. The rrp6�

mutation alone did not strongly affect these mRNA species
(data not shown).

The pap1-5 mutation was also combined with GAL::RRP41
to allow depletion of the core exosome component Rrp41p. In
pap-1-5 strains depleted of Rrp41p, a substantially different
phenotype was observed (Fig. 2A and B, lanes 22 to 29). For
most mRNAs tested, truncated RNA species were observed
that migrated at positions below the size range of mRNAs in
the wild type. Such truncated RNAs are not seen in strains
lacking only Rrp41p (data not shown; see references 8 and 42),
showing that they are a consequence of some defect in mRNA
synthesis in the pap1-5 strain. An exception was the ACT1
(actin) mRNA, for which truncated RNAs were not detected
by Northern hybridization of the full-length mRNA but were
observed following truncation by RNase H cleavage (data not
shown). A 3�-extended RNA species was visible in strains lack-
ing Rrp41p. This RNA was also detected with a probe to the
ACT1 3� flanking sequence (data not shown). An increased
level of this RNA species was previously observed in the pap1-1
strain (26).

In the pap1-5 GAL::RRP41 strain, very rapid loss of many
mRNAs was seen after transfer to 37°C. This effect was not
dependent on the pap1-5 mutation and was also seen in PAP1�

strains depleted of core exosome components (data not shown)
or the exosome cofactor Mtr4p (see Fig. 4). In some prepara-
tions, a substantial decline in mRNA levels was also seen in
wild-type strains. The mechanism underlying these precipitous
reductions in cytoplasmic mRNA levels is still unclear. The
mRNAs detected at later time points are presumably synthe-
sized de novo at the nonpermissive temperature, confirming
the continued synthesis of poly(A)� RNAs.

The pap1-5 strains were also tested for decay of heat shock
mRNAs, for which a pseudo-pulse-chase analysis can be per-
formed by induction at 42°C, followed by incubation at 37°C
(Fig. 2C). SSA3 showed robust induction in the pap1-5 strain
(Fig. 2C, lanes 7 to 12). The absence of Rrp6p from the pap1-5
strain increased the expression of SSA3 (Fig. 2C, lanes 13 to
18). Truncated forms of SSA3 were also evident in the pap1-5
strain depleted of Rrp41p (Fig. 2C, lanes 19 to 24).

These results indicated that the exosome components Rrp6p
and Rrp41p play distinct roles during mRNA degradation in
the pap1-5 strain. To determine whether Rrp6p acts prior to
Rrp41p and the core exosome, we constructed a pap1-5 strain
that lacked Rrp6p and could be depleted of Rrp41p (Fig. 2A
and B, lanes 30 to 37, and Fig. 2C, lanes 25 to 30). The absence
of Rrp6p suppressed accumulation of the truncated RNA spe-
cies, which were seen in the pap1-5 strain depleted of Rrp41p
alone, for most mRNAs tested, CYH2 and SSA3 (Fig. 2A to C)
and CYC1 and RPL30 (data not shown). In the experiment
shown in Fig. 2, the absence of Rrp6p plus Rrp41p from pap1-5
had little effect on the RPL25 mRNAs relative to depletion of
Rrp41p alone (Fig. 2B). However, loss of the truncated RPL25
species was evident in other experiments; the reason for this
variability is still unclear.

It is notable that the reduction in mRNA levels in pap1-5
mutant strains, and the degree of restoration in rrp6� mutants,
showed substantial variation for different mRNA species. Het-
erogeneity has been seen in the nuclear degradation of un-
spliced pre-mRNAs (8). As in the cytoplasm, mRNA degrada-
tion in the nucleus apparently proceeds at species-specific rates

FIG. 1. The pap1-5, but not pap1-2, mutation allows poly(A) syn-
thesis at the nonpermissive temperature and is suppressed by loss of
Rrp6p. (A) Poly(A) tail length analysis of mRNAs from strains carry-
ing the pap1-2 and pap1-5 mutations. Poly(A) tracts present in 7 �g of
total RNA were labeled and analyzed on a 12% acrylamide-8 M urea
gel. The size marker was tRNA from end-labeled total RNA. WT, wild
type. (B and C) Northern blot analyses. The strains indicated were
grown on glucose medium at 23°C (23°C lanes) and then shifted to
37°C for 2 h (37°C lanes). For each lane, 7 �g of total RNA was
separated on a 1.2% agarose-formaldehyde gel and analyzed by North-
ern hybridization using the probes indicated on the left. The graphs
show mean values � standard deviations for the CYH2 transcript,
obtained from PhosphorImager quantification of three independent
experiments and normalized to the scR1 loading control.
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and shows variations in response to mutations in the degrada-
tion machinery. This presumably reflects differences in RNP
structure.

mRNAs present in the pap1-5 strain at nonpermissive tem-
perature are polyadenylated. To assess the polyadenylation
states of mRNAs present in the pap1-5 strains at 37°C, dead-

enylation was performed in vitro using RNase H and oligo(dT)
(Fig. 3A; quantification is shown for the RPL25 and RPL30
transcripts in Fig. 3B). Deadenylation of the wild-type samples
resulted in increased in-gel mobility and more coherent RNA
distribution for the RPL25, RPL30, and MFA2 mRNAs, as
expected. This was also the case for RNA in the pap1-5 rrp6�

FIG. 2. Rrp6p acts prior to Rrp41p in the same degradation pathway. (A and B) Total RNA was extracted from the wild-type (WT), pap1-5,
and pap1-5/rrp6� strains grown on glucose medium at 23°C and after shift to 37°C for the times indicated. Strains pap1-5/GAL::rrp41 and
pap1-5/rrp6�/GAL::rrp41 were pregrown in galactose medium at 23°C (GAL lanes), transferred to glucose medium at 23°C for 20 h (23°C lanes),
and then shifted to 37°C for the times indicated. Northern blot analysis was performed on 7 �g of total RNA separated on a 6% acrylamide-8.3
M urea gel (A) or a 1.2% agarose-formaldehyde gel (B). The graph shows levels of the CYH2 transcripts obtained by PhosphorImager
quantification of the data presented in panel A normalized to the scR1 loading control. Values obtained at 23°C were arbitrarily set as 1.
(C) Northern blot of heat shock-inducible mRNA. The wild-type, pap1-5, and pap1-5/rrp6� strains were pregrown on glucose medium at 23°C. The
pap1-5/GAL::rrp41 and pap1-5/rrp6�/GAL::rrp41 strains were pregrown in galactose medium at 23°C and transferred to glucose medium at 23°C
for 20 h (23°C lanes). All strains were then shifted to 42°C for 15 min (42°C lanes), followed by transfer to 37°C for the times indicated.
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strain at nonpermissive temperature, confirming that polyade-
nylated mRNAs continue to be synthesized. In the pap1-5
single mutant, residual RPL30 and MFA2 were still polyade-
nylated at the nonpermissive temperature, but this was less

clear for RPL25. The pap1-5 strain depleted of Rrp41p showed
little accumulation of poly(A)� RNA relative to the pap1-5
single mutant but accumulated deadenylated and truncated
species (Fig. 3A).

The size heterogeneity of the mRNA populations compli-
cates quantification of their abundance. We therefore com-
pared the signals obtained for the deadenylated RNAs in Fig.
3A. RPL25 and RPL30 mRNA levels were quantified after
deadenylation and standardized relative to scR1 RNA. Quan-
tification (Fig. 3B) showed that even in the wild type, total
levels of RPL25 and RPL30 mRNAs were reduced following
transfer to 37°C. This reduction was substantially greater in the
pap1-5 single mutants but was largely suppressed in the ab-
sence of Rrp6p or following depletion of Rrp41p.

We conclude that in the pap1-5 strain these mRNAs largely
undergo Rrp6p-dependent deadenylation followed by Rrp41p-
dependent degradation. This suggests that the drastic reduc-
tions in mRNA levels seen in the pap1-5 strain following trans-
fer to 37°C are not primarily due to an inability to synthesize
poly(A)� mRNAs. Rather, the newly synthesized mRNAs are
rapidly identified by an RNA surveillance mechanism that re-
quires Rrp6p.

Degradation following deadenylation requires Mtr3p and
Mtr4p. To confirm that the phenotypes seen on depletion of
Rrp41p were due to defects in the function of the nuclear
exosome, the pap1-5 allele was combined with a TS lethal
mutation in the core exosome component Mtr3p and with the
GAL::MTR4 allele, which allows genetic depletion of Mtr4p/
Dob1p (15), a putative RNA helicase and cofactor for the
nuclear exosome (Fig. 4). In the pap1-5 mtr3-1 double-mutant
strain, loss of the polyadenylated mRNA after transfer to 37°C
was accompanied by accumulation of deadenylated and trun-
cated mRNAs (Fig. 4, lanes 22 to 28). Quantification is shown
for the CYH2 mRNA and is standardized relative to scR1
RNA.

In the Mtr4p-depleted strains, the RPL30 and RPL25 mRNAs
were very rapidly lost following transfer to 37°C. In the pap1-5
strain depleted of Mtr4p, the appearance of de novo-synthe-
sized mRNAs that were deadenylated and truncated was seen
at later time points (Fig. 4, lanes 37 to 44). This phenotype
closely resembles that seen in the pap1-5 strain depleted of
Rrp41p (Fig. 2).

We conclude that in pap1-5 strains newly synthesized
poly(A)� mRNAs are rapidly deadenylated, followed by 3�35�
degradation by the nuclear exosome, acting together with its
cofactor Mtr4p.

Deadenylation does not require the catalytic activity of
Rrp6p. In vitro analyses have shown that the residue altered in
the rp6-1 allele is critically required for catalysis, and the mu-
tant protein is therefore unlikely to show exonuclease activity
in vivo (11, 36). To determine whether Rrp6p is directly re-
sponsible for mRNA deadenylation in the pap1-5 strain, a
pap1-5 rrp6-1 strain was constructed. The levels of the RPL30
and RPS26a mRNAs were mildly elevated in the pap1-5 rrp6-1
strain relative to pap1-5 alone, but rrp6-1 had much less effect
than rrp6� (Fig. 5A and B) and other mRNAs. The exonucle-
ase activity of Rrp6p may participate in deadenylation but is
apparently not required for degradation to occur.

In growth tests in liquid culture, the absence of Rrp6p par-
tially suppressed the growth defect of strains carrying pap1-5 at

FIG. 3. Specific mRNAs in the pap1-5 strain are polyadenylated.
(A) Total RNA was extracted from the wild-type (WT), pap1-5, and
pap1-5/rrp6� strains and grown in glucose medium for 30 min after
transfer to 37°C. The pap1-5/GAL::rrp41 strain was pregrown in galac-
tose medium at 23°C, transferred to glucose medium at 23°C for 20 h,
and then shifted to 37°C for 30 min. Samples were treated with RNase
H plus oligo(dT) (� lanes) and compared with untreated samples (�
lanes). Samples were separated on a 6% acrylamide-8.3 M urea gel,
transferred to nylon, and hybridized with RPL25, RPL30, and MFA2
probes. T, deadenylated and truncated species. (B) PhosphorImager
quantification of data from panel A. Deadenylated RPL25 and RPL30
mRNA (oligo-dT � lanes) was quantified using a PhosphorImager and
standardized to scR1 RNA.
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either 34°C or 37°C (shown for 37°C in Fig. 6). The rrp6�
single-mutant strain is impaired in growth, but despite this, the
rrp6� pap1-5 strain clearly grew better than the pap1-5 single
mutant. In contrast, growth of the rrp6-1 pap1-5 strain was
indistinguishable from that of the strain with pap1-5 alone,
consistent with the low level of suppression seen in Northern
analyses. These results suggest that Rrp6p has an RNA sur-
veillance function that is distinct from its exonuclease activities
and is required to identify mRNAs synthesized in the pap1-5
strain as being defective and to target them for degradation.

Two deadenylase complexes characterized in yeast are the
Ccr4p-Caf1p-Not complex, which is probably the major cyto-
plasmic deadenylase, and Pan2p-Pan3p, which has been impli-
cated in nuclear poly(A) length control (7, 10, 14, 43, 44). To
assess their participation in deadenylation, ccr4� and pan2�

mutations were each combined with pap1-5. Neither mutation
conferred significant mRNA stabilization in the pap1-5 strain
(see Fig. S2 and S3 in the supplemental material). Consistent
with this, neither double mutant showed increased growth in
liquid culture relative to pap1-5 alone (data not shown). The
combination of pan2� with rrp6� and pap1-5 in a triple-mutant
strain failed to increase mRNA synthesis or growth relative to
the rrp6� pap1-5 double mutant (data not shown; see Fig. S2 in
the supplemental material).

DISCUSSION

Nuclear mRNAs are initially deadenylated and then de-
graded by the exosome. We had anticipated that mRNAs syn-
thesized at the nonpermissive temperature in strains with de-

FIG. 4. 3� degradation requires Mtr3p and Mtr4p. (A and B) Total RNA was extracted from the wild-type (WT), pap1-5, mtr3-1, and
pap1-5/mtr3-1 strains grown on glucose medium at 23°C and after shift to 37°C for the times indicated. Strains GAL::mtr4 and pap1-5/GAL::mtr4
were pregrown in galactose medium at 23°C (GAL lanes), transferred to glucose medium at 23°C for 20 h (23°C lanes), and then shifted to 37°C
for the times indicated. Northern blot analysis was performed on 7 �g of total RNA separated on a 6% acrylamide-8.3 M urea gel (A) or a 1.2%
agarose gel (B). The graph shows levels of the CYH2 transcripts obtained by PhosphorImager quantification of the data presented in panel A,
normalized to the scR1 loading control. Values obtained at 23°C were arbitrarily set as 1.
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fects in poly(A) polymerase would predominantly lack poly(A)
tails. However, the analysis of total poly(A) RNA and individ-
ual mRNAs indicates that the TS lethal pap1-5 strain retains
substantial polyadenylation activity in vivo at the restrictive
temperature. The loss of mRNAs from pap1-5 strains is ap-
parently due to the targeting of newly synthesized, polyadenyl-
ated mRNAs for nuclear degradation. The mRNAs are initially
deadenylated by an activity that requires the nucleus-specific
exosome component Rrp6p and then 3� degraded by the core
exosome, acting together with the nuclear RNA helicase Mtr4p
(Fig. 7). In contrast, the pap1-2 allele retained little poly(A)�

RNA at the nonpermissive temperature, and mRNA synthesis
was not clearly restored by loss of Rrp6p. While we cannot
exclude the possibility that poly(A) tails detected in the pap1
strains at nonpermissive temperature are synthesized by the
poly(A) polymerase activity of Trf4p (22, 39, 50, 52), the allele
specificity makes this less likely.

Deadenylation of poly(A)� mRNAs synthesized in the
pap1-5 strain at 37°C required the nuclear exosome component
Rrp6p. This contains an exonuclease domain that is related to
Escherichia coli RNase D and shows 3�-exonuclease activity in
vitro (11, 36), suggesting that it might act directly as the dead-
enylase. However, previous analyses reported that recombi-
nant Rrp6p shows no preference for poly(A)� RNAs in vitro
(11), so any specific role in deadenylation was unlikely to result
from its intrinsic activity. The rrp6-1 point mutation is strongly
predicted to inactivate the in vivo exonuclease activity of
Rrp6p and phenocopies rrp6� for defects in stable RNA syn-
thesis (9, 11, 36). However, the presence of the rrp6-1 mutation
conferred little suppression of mRNA synthesis in pap1-5
strains and did not lead to detectable accumulation of degra-
dation intermediates. Moreover, unlike rrp6�, the rrp6-1 mu-
tation conferred no growth suppression in pap1-5 strains. This
indicates that while Rrp6p is required for surveillance of the

mRNAs synthesized in the pap1-5 strain, its exonuclease activ-
ity is not required for their degradation. Rrp6p is comprised of
two distinct domains, with an amino-terminal exonuclease do-
main and a C-terminal HRDC (helicase and RNase D C-
terminal) domain. The HRDC domain has been proposed to
play a regulatory role in Rrp6p function (36) and is likely to
have nucleic acid binding activity (20). It is therefore possible
that the HRDC domain specifically functions in surveillance in
the pap1-5 strain. Since Rrp6p is apparently not required for
mRNA deadenylation, we tested two other characterized yeast
deadenylases, Ccr4p and Pan2p (7, 10, 44). However, the de-
cline in the levels of most mRNAs tested following transfer to
37°C was indistinguishable in pap1-5 strains and pap1-5 ccr4�
or pap1-5 pan2� double mutants. Moreover, mRNA levels in
the pap1-5 rrp6� pan2� triple mutant were not different from
those in the pap1-5 rrp6� double-mutant strain. Consistent
with this observation, pan2� also conferred no growth increase
in the pap1-5 strain.

This indicates that Ccr4p and Pan2p are not individually
responsible for nuclear deadenylation in the pap1-5 back-
ground. It may be that once an mRNA has been targeted for
degradation in an Rrp6p-dependent process, multiple proteins
can participate in the deadenylation. During 3� maturation of
the yeast 5.8S rRNA, several 3� exonucleases participate in the
final trimming (9, 31, 46), and this is also the case for many
RNA-processing and degradation steps in bacteria (24).

The features that make nuclear pre-mRNAs targets for deg-
radation in pap1-5 strains have not yet been established. Can-
didates for features that might be recognized include defects in
the structure of the cleavage and polyadenylation machinery,
the presence of shortened poly(A) tails, and a reduced rate of
polyadenylation. We favor the last possibility and speculate
that assembly of the cleavage and polyadenylation machinery
at suboptimal, and therefore potentially inappropriate, sites
may be correlated with a lower rate of poly(A) addition and/or
reduced processivity of the reaction. The low sequence com-
plexity of polyadenylation sites suggests that many potential

FIG. 5. mRNA levels in pap1-5 strains lacking the exonuclease
activity of Rrp6p. RNA was extracted from the strains indicated grow-
ing at 23°C and 1 h after transfer to 37°C. (A) RNA separated on 8%
polyacrylamide-urea gel. (B) RNA separated on 1.2% agarose gels.

FIG. 6. Growth curves obtained following transfer to 37°C. Cells
were pregrown in rich YPD medium at 23°C and transferred to 37°C
at time zero. The cells were maintained in exponential growth by
addition of prewarmed medium. OD600, optical density at 600 nm.
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cryptic sites exist. Glutathione S-transferase-tagged Rrp6p has
been reported to coprecipitate with Pap1p from cell lysates
(11), indicating that they can physically interact. It is conceiv-
able that prolonged association of Pap1p with the pre-mRNA,
due to slowed polyadenylation, might be sufficient to recruit
Rrp6p and the exosome.

In multicellular organisms, regulated and alternative
poly(A) site choice has been reported and can have important
developmental consequences (4, 13, 16, 23, 40). In such cases,
the nuclear RNA surveillance pathway we report here may be
important in determining the relative levels of the mRNAs
synthesized.
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Accurate Processing of a Eukaryotic Precursor
Ribosomal RNA by Ribonuclease MRP in Vitro
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Very few of the enzymes required for eukaryotic precursor ribosomal RNA (pre-rRNA)
processing have been identified. Ribonuclease (RNase) MRP was characterized as a
nuclease that cleaves mitochondrial replication primers, but it is predominantly nucleolar.
Previous genetic evidence revealed that this ribonucleoprotein is required, directly or
indirectly, for cleavage of the yeast pre-rRNA in vivo at site A3. Here, an in vitro processing
system that accurately reproduces this cleavage is described. Biochemical purification
and the use of extracts depleted of the MRP RNA demonstrate that endonucleolytic
cleavage of the pre-rRNA is directly mediated by RNase MRP. This establishes a role for
RNase MRP in the nucleolus.

Three of the four eukaryotic ribosomal
RNAs are produced by processing a long
precursor RNA (Fig. IA). Genetic analysis
in the yeast Saccharomyces cerevisiae pro-

vides a means to dissect this processing
pathway and identify the factors and steps
involved (1). Nevertheless, study of the
biochemical mechanisms underlying pre-

rRNA processing would be facilitated by
the development of tractable in vitro sys-

tems. The ribonucleoprotein RNase MRP
was identified as an endonuclease that
cleaves mitochondrial replication primers
in vitro (2). However, its predominantly
nucleolar localization (3) and the reported
existence of another enzyme able to cleave

mitochondrial primers (4) have led to some
controversy about RNase MRP's cellular
function. Mutations in two components of
yeast RNase MRP, the MRP RNA (5, 6) or

Poplp protein (7), inhibit in vivo cleavage
of the pre-rRNA at a site, designated A3,
located upstream of the 5.8S rRNA (7, 8). It
was, however, unclear whether RNase MRP
participated directly in this cleavage event.

Poplp is a component of both RNase P
and RNase MRP (7). A tagged version of
Poplp fused to two immunoglobulin G
(IgG)-binding regions of Staphylococcus
aureus protein A (ProtA-Poplp) is func-
tional in vivo and efficiently coprecipi-
tates the RNase P and MRP RNAs (7).

We reasoned that the activities of both
RNase P (9) and RNase MRP might be
enriched from extracts containing ProtA-
Poplp by affinity selection with IgG aga-
rose beads (10). We first tested whether
yeast RNase P activity (11) could be de-
tected by this strategy. A ProtA-Poplp
precipitate cleaved a radiolabeled pre-
tRNA (Fig. iB). This reaction was most
likely mediated by RNase P for the follow-
ing reasons. (i) Cleavage was dependent
on the presence of ProtA-Poplp (Fig. iB).
(ii) Cleavage was accurate (12, 13). (iii)
Micrococcal nuclease treatment of the pre-
cipitate inhibited cleavage (13). (iv) The
sup3e-A1 mutant pre-tRNA, which is defec-
tive for cleavage by RNase P (14), was not
processed in our assay (13). Thus, affinity
selection of ProtA-Poplp can be used to
detect associated enzymatic activities.
We tested next whether the same pre-

cipitates could process the 35S pre-rRNA.
Because of the large size of the pre-rRNA
substrate (7 kb), the products of the reac-

tion were analyzed by primer extension
(10). A primer extension stop appeared
after incubation of the 35S pre-rRNA sub-
strate with a ProtA-Poplp precipitate
(Fig. 1C). This stop mapped to site A3
(Fig. 1C) and was not detected when ex-

tracts from a strain expressing nontagged
Poplp were used (Fig. 1C), showing that
ProtA-Poplp or associated factors (or
both) mediate this reaction (15). The pro-
cessing activity contains an essential RNA

Fig. 1. In vitro processing of pre-tRNA and pre- A

rRNA by affinity-selected ProtA-Popl p pellets. (A) 35S substr
Structure of the 35S pre-rRNA transcript and of the
2.5-kb substrate. Mature rRNAs are shown as box- 2.5-kb substr

es and spacers as lines. The A2 and A3 cleavage
sites, the 5' ends of the 5.8S rRNA (B1s and B1L),
and primer d are indicated on an enlarged drawing
of the 2.5-kb transcript region. Scale bars are on the B ijII2wt P

right. (B) Endonucleolytic cleavage of a 32P-labeled aLjlLjProU
SupSl pre-tRNA transcript (24). Lane 1, molecular 123
size marker with sizes indicated on the left in nucle- -Pr
otides; lane 2, control reaction with a precipitate
from a wild-type extract (wt Popl p); lane 3, tran- 90

script processed with a ProtA-Popl p precipitate; 76 l tf|
lane 4, mock-treated substrate. The pre-tRNA, ma-
ture tRNA, and 5' leader are indicated. (C) Process- 67

ing of a nonlabeled 35S pre-rRNA at site A3 ana-
lyzed by primer extension. Lane 1, mock-treated
substrate depicting nonspecific primer extension
stops (for example, because of secondary struc-
ture); lane 2, transcript processed with a ProtA-
Poplp precipitate; lane 3, control reaction with a 34
precipitate from a wild-type extract; lane 4, EGTA
addition prevents the micrococcal nuclease inacti- 26
vation of the A processing activity; lane 5, the A
processing activity of the ProtA-Popl p precipitate is 1 2 3 4
micrococcal nuclease (MNase)-sensitive; lane 6,
primer extension on cellular RNA depicting the primer extension stop cor-
responding to the in vivo A3 cleavage. Lanes G, A, T, and C are the cognate
sequence ladder. (D) Mutant A3A1O is not processed in vitro. A 2.5-kb
wild-type transcript (lanes 1 to 3) and a mutant derivative bearing a 1 0-nt
deletion immediately 3' to site A3 (8) (lanes 4 to 6) were assayed by primer

rate

rate

'op1p C wt Popip
A-Pop1p ProtA-PoplpLS| >T

EGTAI I +|I

D

500 nt

200 nt

2.5kb A31
1+1 I I wt Pop1p

1+1 11jProtA-Pop1p

-4-A3

-4-A3

-A3A10

G A T C 1 2 3 4 5 6 1 23456

extension for in vitro cleavage at site A3. Lanes 1 and 4, mock-treated
substrates; lanes 2 and 5, substrate incubated with the IgG precipitate from
a wild-type extract; lanes 3 and 6, substrate incubated with a ProtA-Popl p
precipitate. Positions corresponding to cleavage at A3 of the wild-type and
A31M 0 substrates are indicated.
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component because it was inactivated by
micrococcal nuclease (Fig. 1C). A 10-nu-
cleotide (nt) deletion immediately 3' to
site A3 prevents processing at this site in
vivo (8). A 2.5-kb substrate (Fig. 1A)
carrying this mutation was not processed
in vitro, whereas a control wild-type 2.5-
kb transcript was processed (Fig. 1D), in-
dicating that the in vitro reaction mimics
processing in vivo. Our results show that a

micrococcal nuclease-sensitive activity
associated with Poplp accurately cleaves
the pre-rRNA at site A3 in vitro.

The RNase MRP and RNase P RNAs
are the major RNA species found in a

ProtA-Poplp precipitate when assayed by
end-labeling (13); therefore, one of the cor-

responding endonucleases is most likely to

mediate the in vitro pre-rRNA processing
reaction. RNase P and MRP were separated
by biochemical purification (16) (Fig. 2A).
In the most purified MRP fraction (M2), no

RNase P RNA could be detected, whereas
the purest RNase P fraction (P2) contained
only trace amounts of MRP RNA (Fig. 2B).
The peak RNase MRP and P fractions from
each column were affinity-selected on IgG
agarose beads and assayed for cleavage of a

pre-tRNA substrate and the 35S pre-rRNA
substrate (Fig. 2, C and D). Accurate endo-
nucleolytic cleavage of the pre-tRNA was

detected in the RNase P-containing frac-
tions but not in the fractions highly en-

riched for RNase MRP (Fig. 2C). Converse-
ly, processing of the 35S pre-rRNA was

specifically detected in the RNase MRP
fractions (Fig. 2D).
We used an in vivo depletion strategy

(17) to demonstrate that RNase MRP, rath-
er than a copurifying ribozyme, is responsi-
ble for the processing reaction. Extracts
were prepared from cells that conditionally
transcribe the MRP RNA (6) and also ex-

press ProtA-Poplp. In vitro cleavage of the
35S pre-rRNA at site A3 was lost in extracts
prepared after in vivo depletion of MRP
RNA (Fig. 3A). MRP RNA depletion did
not affect RNase P activity (Fig. 3B). Ex-
tracts prepared from wild-type cells grown
under the same conditions were active for
processing at site A3 (Fig. 3A) and RNase P
activity (Fig. 3B). Therefore, depletion of
the MRP RNA specifically affected process-

ing at site A3. We conclude that RNase
MRP directly and accurately processes the
pre-rRNA at site A3 in vitro.

To better define the substrate require-
ments for pre-rRNA processing, we tested
a 141-nt transcript overlapping site A3
(Fig. 4A). This short substrate was pro-

cessed accurately at site A3 by a precipi-
tate of fraction M2 (and MI) containing

highly purified RNase MRP (Fig. 4B). In-
cubation of internally labeled 141-nt sub-
strate with a purified RNase MRP precip-
itate produced fragments of 81 and 60 nt

Fig. 2. Purified RNase MRP
processes pre-rRNA at the
A3 site. (A) Fractionation
scheme. The fractionation
conditions and fraction
names are indicated. Activi-
ties present in the Ml, P1,
M2, and P2 fractions were
tested after further purifica-
tion by affinity selection on
IgG agarose. (B) Distribution
of RNase P and MRP RNAs
in the fractions. Lane 1,
RNAs extracted from total
extract; lanes 2 and 4, RNAs
from the peak RNase MRP
fractions after Resource Q
and Mono S chromatogra-
phy, respectively; lanes 3
and 5, RNAs from the peak
RNase P fractions after Re-
source Q and Mono S chro-
matography, respectively.
Slot-blots of the duplicate fil-
ters were hybridized either
with an RNase P (top panel)
or MRP RNA probe (lower
panel). Lane 1 was exposed
for a shorter period than
were the other lanes, but
identical exposure lengths
are shown for the P and
MRP hybridizations, allow-

(Fig. 4C), corresponding to the 5' and 3'
cleavage products, respectively. Cleavage
at site A3 by RNase MRP is therefore
endonucleolytic, and the information re-

A Extract
(ProtA-Popip)

25% (NH4)2SO4

Supernatant

45% (NH4)2SO4

Pellet

Resource 0

M P1
(0.4-M fraction) (0.6-M fraction)

Mono S

a ctL MI Pl M2 P2
18C
160

123

D

M2 P2
(0.4-M fraction) (Flowthrough)

B t a S
' Ml P1 M2 P2

RNase P
RNA

RNase MRP
RNA

1 2 3 4

E n LE Q S

3 X M1 P1 M2P2

m Pre-tRNA

-tRNA

4-A3

1 2 3 4 5 6 7

ing direct comparison of the ratio of RNase P and MRP RNAs. Traces of RNase MRP RNA could be
detected in fraction P2 after longer exposure, whereas only a background signal could be detected in the
slot containing the M2 fraction probed for RNase P RNA. (C) Assay of the pre-tRNA processing activity
by precipitates of the fractions. Precipitates from total extract (lane 3), the Resource Q Ml and P1
fractions (lanes 4 and 5), and the Mono S M2 and P2 fractions (lanes 6 and 7) were assayed for pre-tRNA
processing. A mock-treated substrate is presented in lane 2 and a molecular size marker in lane 1 with the
size of the corresponding bands (in nucleotides) indicated on the left. Some nonspecific degradation is
apparent in lanes 4 and 6, but no specific cleavage is detected. (D) Assay of the pre-rRNA processing
activity in precipitates of the fractions. In lanes 3 to 7, pre-rRNA processing was assayed with the same
fractions as for the pre-tRNA processing in (C). Lane 2 shows a mock-treated RNA, and lane 1, RNA
extracted from wild-type cells. Sub., substrate.

Fig. 3. Precipitates of extracts A B
made from cells depleted in vivo of
RNase MRP RNA do not process ° Gal-MRP wt

pre-rRNA at site A3. (A) In vitro
cleavage of the pre-rRNA substrate ' 8 03120312 Pr--tRNA
(Sub.) by ProtA-Popl precipitates.

A plasmid carrying the ProtA-Popl
construct was introduced into
strain MES1 24, which contains a

galactose-regulated NME1 gene E
(Gal-MRP, lanes 3 to 5), and into
the otherwise isogenic wild-type

strain MES1 23 (lanes 6 to 8) (6).

Extracts were prepared from cells
grown on galactose (lanes 3 and 6)
and from cells grown on glucose for 1 2 3 4 5 6 7 8

3 hours (lanes 4 and 7) and 12 hours (lanes 5 and 8). Under these conditions the MRP RNA amount
reaches a minimum after 8 hours (6). Lane 1, RNA extracted from wild-type cells; lane 2, mock-treated
RNA. (B) Pre-tRNA processing by precipitates of the same extracts. Lanes are as for (A), except that lane
1 is omitted.
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quired for substrate recognition is con-
tained in a 141-nt fragment of the pre-
rRNA.
A low level of aberrant processing of the

141-nt substrate 1 nt 3' to site A3 was
observed with our purest RNase P prepara-
tion (18) (Fig. 4, B and C, lane 4 in each).
The 141-nt substrate may be recognized by
RNase P because of a structural resem-
blance to pre-tRNA or because of its bind-

A
- ~~~~~~~~~35

-141-nt substrate

B a s 0Ca SUl Pi "so
s a s "eA

Sub. Sub.

5' products I

3' products I

Fig. 4. A 141-nt pre-rRNA substrate is recog-
nized and cleaved endonucleolytically by RNase
MRP. (A) Location of the 141-nt substrate. The
35S pre-rRNA is shown on top, and the region
surrounding site A3 is shown enlarged below.
The 141-nt substrate extends from 3 nt down-
stream of the A2 site to 9 nt upstream of the B1 L
site (8). (B) In vitro processing of an unlabeled
141-nt substrate (Sub.). The products of the re-
action with IgG precipitates of the peak RNase
MRP (lanes 1 and 3) and P (lanes 2 and 4) frac-
tions were detected by primer extension. The
bands corresponding to the substrate RNA and
the A3 cleaved product are indicated. Lane 5 is a
mock-treated substrate. Note that about 250
fmol of the substrate were used, approximately
50-fold more than the labeled substrate used for
the experiment depicted in (C). (C) Endonucleo-
lytic cleavage of the 141-nt substrate by RNase
MRP. Internally labeled 141-nt substrate was in-
cubated with IgG precipitates of the peak RNase
MRP (lanes 1 and 3) and P (lanes 2 and 4) frac-
tions, and the products were detected after gel
electrophoresis. The positions of migration of
the substrate and the 5' and 3' cleavage prod-
ucts are indicated. The 3' product always ap-
pears as a doublet, because of a 1-nt heteroge-
neity at the 3' end of the substrate, generated
during in vitro transcription. The 3' and 5' frag-
ments were identified by processing end-labeled
substrates (13).

270

ing to Poplp. Only low levels of aberrant
cleavage could be detected with the longer
substrates (Figs. 1 to 3), possibly because
folding of these longer RNAs interferes
with RNase P binding or catalysis or both.
This cleavage was not detectable in vivo (7,
8, 13). Another in vitro substrate for RNase
MRP, the mitochondrial replication primer,
is also cleaved by RNase P (19). These
observations are consistent with a recent
model proposing that RNase MRP and its
role in eukaryotic pre-rRNA processing
evolved from RNase P (20).

Few reactions that reproduce steps of the
eukaryotic pre-rRNA processing in vitro
have been described (21). We have shown
that steps of yeast pre-rRNA processing can
be accurately reproduced in vitro by the
genetic identification of the components
implicated and the use of tagged proteins to
specifically enrich for the desired activity.
A similar strategy could be applied to the
study of other complex cellular processes.
Our results demonstrate that RNase MRP
accurately cleaves pre-rRNA at site A3 in
vitro. From this and previous in vivo stud-
ies of RNase MRP mutants, we conclude
that RNase MRP is directly implicated in
rRNA processing, consistent with its nu-
cleolar localization.
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We have undertaken a deletion analysis of the 30 external transcribed
spacer (30 ETS) in the pre-rRNA of Saccharomyces cerevisiae. A stem loop
structure immediately 30 to the 25 S rRNA region is necessary and suf®-
cient for processing of the 30 ETS. This is believed to be by cotranscrip-
tional cleavage by Rnt1p, the yeast homologue of RNase III. In addition,
this stem-loop is required for cleavage of site A3 by RNase MRP and for
processing at site B1L, in the 30 region of ITS1. Processing at an upstream
site in ITS1, site A2, and at sites in the 50 external transcribed spacer are
not affected, even by complete deletion of the 30 ETS. We conclude that
processing in the 30 ETS and in ITS1 is coupled. This would constitute a
quality control that prevents synthesis of the 5.8 S rRNA and 50 end
maturation of the 25 S rRNA in transcripts which are incomplete due to
premature transcription termination.

# 1998 Academic Press Limited

Keywords: rRNA; ribosomes; nucleolar; Saccharomyces cerevisiae; RNase
MRP
Introduction

In eukaryotes, the ribosomal RNAs are produced
in the nucleolus and cotranscribed as a single large
precursor RNA (pre-rRNA) that is processed into
the mature 18 S, 5.8 S and 25 S rRNAs by removal
of the external transcribed spacers (50 ETS and 30
ETS) and internal transcribed spacers (ITS1 and
ITS2). Removal of the transcribed spacers involves
a series of processing steps carried out by endonu-
cleases and exonucleases (Venema & Tollervey,
1995) (Figure 1).

In yeast, the longest detectable pre-rRNA tran-
script, the 35 S pre-rRNA, is generated by cleavage
in the 30 ETS and is reported to extend from the
initiation site to a position seven nucleotides
beyond the 30 end of 25 S rRNA. Early studies
using rRNA mini-gene transcripts suggested that
formation of the 30 end of 25 S rRNA is a multi-
step process (Kempers-Veenstra, 1986; Veldman
et al., 1980). Transcription termination, mapped at
position �210 relative to the 30 end of 25 S rRNA
(Kempers-Veenstra, 1986), produces the 30 ETS.
This is removed by endonucleolytic cleavage at
sites between nucleotides �15 and �50 followed
by exonucleolytic digestion to position �7
l transcribed spacer;
-rRNA, percursor
onucleoprotein

981693
(Kempers-Veenstra, 1986). The conserved region
�15 to �50 of dyad symmetry was shown to be
required and suf®cient for 30 end maturation of
25 S rRNA in vitro. This step of the yeast proces-
sing pathway was the ®rst to be reproduced in vitro
using partially puri®ed yeast whole cell extracts
(Yip & Holland, 1989). However, few trans-acting
factors involved in 30 ETS processing have been
identi®ed. The product of the RNA82 gene (Piper
et al., 1983) is likely to be required since rna82-1
mutants affect 30 end formation of transcripts
derived from a mini-gene reporter (Kempers-
Veenstra, 1986). More recently, Abou Elela et al.
(1996) identi®ed the endonuclease Rnt1p, the yeast
homologue of Escherichia coli RNase III, which
cleaves the conserved stem-loop structure in the 30
ETS. In an rnt1-1 strain, processing of the 30 ETS
was inhibited leading to the accumulation of 30
extended forms of the 27 S pre-rRNAs and 25 S
rRNA. A synthetic 30 ETS substrate was speci®cally
cleaved in vitro by recombinant Rnt1p at a site
within the stem-loop structure located 21 nt down-
stream of the 30 end of 25 S rRNA; a position close
to, but not identical with, the reported sites of
in vivo processing.

Rnt1p is also likely to carry out the endonucleo-
lytic cleavage in the 50 ETS at site A0 (Abou Elela
et al., 1996). The recombinant protein is able to
cleave a synthetic 50 ETS RNA at site A0 in vitro in
the absence of cofactors. In contrast, a large num-
ber of trans-acting factors are required for the early
# 1998 Academic Press Limited



Figure 1. Structure and processing pathway of the pre-rRNA in Saccharomyces cerevisiae. A, Structure of the 35 S pre-
rRNA and position of oligonucleotides. Thick lines represent the mature rRNA sequences and thin lines the tran-
scribed spacers. The hybridization positions of oligonucleotides a to i are indicated. Open boxes within the 18 S, 5.8 S
and 25 S rRNA regions indicate the location of the tags. B, Pre-rRNA processing pathway. The rDNA is transcribed
into a single large pre-rRNA that undergoes sequential cleavage to generate the mature rRNAs. Cleavages by Rnt1p
in the 30 ETS and at site A0 in the 50 ETS generate the 35 S pre-rRNA and the 33 S pre-rRNA respectively. The 33 S
pre-rRNA is subsequently processed at sites A1 at the 50 end of 18 S rRNA, generating 32 S pre-rRNA, and site A2 in
ITS1 giving rise to the 20 S and 27 SA2 precursors. A2 cleavage separates the pre-rRNAs destined to form the small
and large ribosomal subunit rRNAs. The 20 S precursor is then endonucleolytically cleaved at site D to yield the
mature 18 S rRNA. The 27 SA2 pre-rRNA is processed by two alternative pathways giving rise to the two forms of
5.8 S rRNA, the major form, 5.8 SS, and the minor form, 5.8 SL. Formation of 5.8 SS requires cleavage of 27 SA2 by
RNase MRP at site A3 to generate the 27 SA3 pre-rRNA. This site acts as an entry site for two exonucleases, Rat1p
and Xrn1p, that degrade the pre-rRNA 50 ! 30 to site B1S, generating the 50 end of the short form of the 27 SB pre-
rRNA, 27 SBS. This pre-rRNA is subsequently processed to the 5.8 SS and 25 S rRNAs. Processing at sites C1 and C2

generates the 7 SS, which is converted to 5.8 SS by a complex of 30 ! 50 exonucleases, the ``exosome''. An alternative
pathway leads to the cleavage at site B1L, the 50 end of the 27 SBL pre-rRNA, which is processed to yield the 5.8 SL

and 25 S rRNAs.
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cleavages of the pre-rRNA in vivo. The major class
comprises a number of small nucleolar ribonucleo-
protein particles (snoRNPs; for reviews see
Maxwell & Fournier, 1995; Tollervey & Kiss, 1997).
Four snoRNPs, U3, U14, snR10 and snR30 have
been shown to be required for the early cleavages
in the 50 region of the pre-rRNA at sites A0, A1 and
A2 (see Figure 1). Genetic depletion of any of the
RNA or protein components of these snoRNP has
similar effects: the inhibition of cleavage at site A0,
A1 and A2, resulting in the inhibition of the
synthesis of mature 18 S rRNA. These snoRNP
components may participate in a multi-snoRNP
processing complex, probably assembling on the 50
ETS, that brings together the sequences surround-
ing sites A0, A1 and A2 in order to coordinate their
cleavage (reviewed by Morrissey & Tollervey,
1995).

Subsequent cleavages further 30 in the pre-rRNA
generate the 5.8 S and 25 S rRNAs. Another RNP
particle, RNase MRP plays a role in these proces-
sing reactions (Chu et al., 1994; Lygerou et al., 1994,
1996; Schmitt & Clayton, 1993). RNase MRP
directly cleaves site A3 located in ITS1 (Lygerou
et al., 1996), providing an entry site for 50 ! 30 exo-
nuclease degradation to site B1S, the 50 end of the
major form of 5.8 SS rRNA (Henry et al., 1994).
This trimming requires two proteins, Xrn1p and
Rat1p, that exhibit a 50 ! 30 exonuclease activity
in vitro (Amberg et al., 1992; Kenna et al., 1993;
Larimer et al., 1992; Stevens & Poole, 1995). An
alternative, less understood, pathway processes
site B1L the 50 end of the minor 5.8 SL rRNA.
Although capable of functioning independently,
the RNase MRP complex assembled at site A3 and
the snoRNP complex assembled in the 50 ETS and
site A2 are believed to interact to bring about ef®-
cient A2 and A3 cleavage (Allmang et al., 1996).
This interaction may occur via a bridging factor,
Rrp5p (Venema & Tollervey, 1996).

Strikingly, it appears that none of the pre-rRNA
processing activities function on the nascent pre-
rRNA; yeast pre-rRNA processing is initiated only
on the fully transcribed pre-rRNA. Following com-
pletion of transcription, however, the 35 S pre-
rRNA undergoes very rapid processing. We there-
fore speculated that a signal present in the 30 ETS
might be required to initiate the processing path-
way.

Various cis-acting signals are predicted to be
present in the 30 ETS and in search of these signals
we have undertaken an analysis of the effects of
deletions in the 30 ETS on pre-rRNA processing
in vivo.

Results

Nested deletions in the 30 ETS

To test the effects of deletions in the 30 ETS on
ribosome synthesis we have used a system allow-
ing the conditional expression of mutant and wild-
type pre-rRNA (Henry et al., 1994). Previous ana-
lyses have shown that yeast RNA polymerase I
transcription terminates 210 nt beyond the mature
30 end of 25 S rRNA (Veldman et al., 1980). In the
GAL::rDNA construct, the GAL7 terminator region
is inserted 284 nt 30 to the 25 S coding sequence
and introduces an SalI site directly adjacent to the
rDNA coding sequence (Nogi et al., 1991). Nested
deletions were constructed that encompassed the
whole 30 ETS region, including the stem-loop struc-
ture cleaved by Rnt1p, and analyzed in vivo.
Unidirectional deletions were generated by Exonu-
clease III from a synthetic linker inserted into the
SalI site (see Materials and Methods) and enter the
30 ETS progressively from 30 to 50. The extents of
these deletions are shown Figure 2. The clearest
predicted structure in this region is a strong stem-
loop located immediately 30 to the 25 S rRNA cod-
ing sequence (nt �8 to �56; see Figure 2B).
Mutations 30 ETS �1 to �3 leave the stem-loop
structure intact, whereas 30 ETS �4 and �5 enter
the stem-loop. 30 ETS �6 deletes the entire stem-
loop structure and in addition deletes six nucleo-
tides from the 30 end of the 25 S rRNA. In the 30
ETS �6 � H mutant, the stem-loop structure was
recreated, with the last six nucleotides of 25 S
rRNA substituted by the SalI restriction site
sequence (see Material and Methods). Three of the
last six nucleotides of the 25 S rRNA are predicted
to be base-paired at the base of a helical stem
within the 25 S rRNA (Gutell & Fox, 1988). The 30
ETS �6 � H mutation may therefore alter the
structure of the 30 helix in the mature 25 S rRNA.

The mutations were functionally analysed by
expression in the pGAL::rDNA construct.
Expression of the pre-rRNA carrying the deletions
that leave the hairpin structure intact (30 ETS �1,
�2 and �3) supported the growth of an rpa12
strain at the non-permissive temperature (37�C) on
galactose medium (Figure 3) at rates similar to the
wild-type pre-rRNA. In contrast, expression of
the pre-rRNA carrying the mutations that enter the
stem-loop structure (30 ETS �4, �5 and �6) did
not support the growth of the rpa12 strain. Restor-
ation of the hairpin structure in 30 ETS �6 � H pre-
rRNA did not restore the ability to support growth
in an rpa12 strain (Figure 3).

Deletions in the 30 ETS affect 30 end
processing of the pre-rRNA

The effect of the 30 ETS deletions on pre-rRNA
processing were examined by Northern hybridiz-
ation six hours after transfer to 37�C (Figure 4).
The steady state levels of the mature rRNAs were
determined using oligonucleotides complementary
to neutral tags that are present in the 25 S and 18 S
rRNA (Beltrame & Tollervey, 1992), while the
levels of the pre-rRNAs were determined using the
oligonucleotides indicated in ®gure 1A. None of
the 30 ETS deletions affected the accumulation
of the 18 S rRNA (Figure 4VII) or altered the levels
of the 20 S pre-rRNA (Figure 4VI). This showed
that global processing of the pre-rRNA was not
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affected by the deletions. We conclude that, con-
trary to our expectations, there is no signal in the
30 ETS that is required to initiate the pre-rRNA pro-
cessing pathway.

The 30 ETS �1, �2 and �3 mutant pre-rRNAs
generated normal levels of 25 S rRNA (Figure 4V,
Figure 2. Deletions in the 30 ETS. A, Schematic representat
structure and the Sal1 site located into the GAL7 terminator
etions in mutants 30 ETS �1 to 30 ETS �6 is represented bel
hatched box indicates the altered region in the re-introduce
missive temperature is indicated in each case; (�) represe
mutation. B, Predicted structure of the 50 region of the 30 E
Elela et al., 1996) and the end points of the 30 ETS �3, �4, �
is that re-introduced in the �6 � H mutation.
lanes 3 to 5) and pre-rRNA processing was unaf-
fected with normal levels of all the major inter-
mediates. Therefore, no sequence 30 to the stem-
loop structure is required for normal function of
the 30 ETS. In contrast, synthesis of the 25 S rRNA
from pre-rRNAs carrying the 30 ETS �4 and �5
ion of the 30 ETS region (thin line) showing the stem-loop
(Nogi et al., 1991). The extent and size of the 30 ! 50 del-

ow. In the schematic representation of 30 ETS �6 � H the
d sequence. The viability of the rpa12 strain at non-per-
nting a fully viable mutation, (ÿ) representing a lethal
TS. The major site of in vitro cleavage by Rnt1p (Abou

5 and �6 mutations are indicated. The sequence in italics



Figure 3. Growth analysis of 30 ETS
deletion mutants. Growth curves of
NOY504 strains transformed by
pTA1 plasmids containing the 30
ETS deletions. Cells were grown in
minimal galactose medium at 23�C
until reaching an A600 nm of 0.07
and then shifted to 37�C, the non-
permissive temperature, to repress
chromosomal rDNA transcription.
Growth curves were measured
after the temperature shift. The
symbols used for each mutant are
represented beside the curves.
Strains were transformed with the
following vectors: (WT 30 ETS) vec-
tor containing the wild-type 30 ETS
sequence; (ÿrDNA) vector lacking
the rDNA sequence; (30 ETS �1-�6
and 30 ETS �6 � H) vectors con-
taining the 30 ETS deletions
reported in Figure 2.
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mutations was strongly reduced (Figure 4V, lanes
6 and 7), and no detectable 25 S rRNA was syn-
thesized from the 30 ETS �6 pre-rRNA (Figure 4V,
lane 8). Restoration of the stem-loop structure in
the 30 ETS �6 � H pre-rRNA only partially
restored 25 S rRNA synthesis (Figure 4V, lane 9),
to levels similar to those observed for the 30 ETS
�4 and �5 constructs. Transformants carrying a
plasmid without the rDNA unit did not show any
background signal (Figure 4, lane 2). The 30 ETS
�4, �5 and �6 mutations resulted in the pro-
duction of aberrant extended forms of 27 SA2 pre-
rRNA (Figure 4II, lanes 6 to 8) and 27 SB
(Figure 4III, lanes 6 to 8). Furthermore, an
extended form of 25 S rRNA was synthesized from
the 30 ETS �4 and �5 pre-rRNAs. These aberrant
intermediates, 27 SA2*, 27 SB* and 25 S*, represent
forms of the corresponding RNAs that are 30
extended up to the GAL7 terminator since they can
be detected by oligonucleotide i (complementary to
the GAL7 terminator sequence; Figure. 4IV, lanes 6
and 7). The levels of 27 SA2* synthesized from the
30 ETS �4 and �5 are comparable to those of the
27SA2 synthesized from the wild-type pre-rRNA
(Figure 4II), again indicating that processing at site
A2 is unaffected by even the complete deletion of
the 30 ETS. The 27 SA2* pre-rRNA, however,
slightly accumulates in �6 pre-rRNAs (Figure 4II).
In contrast, levels of 27 SB* synthesized from the 30
ETS �4 and �5 pre-rRNAs are strongly reduced as
compared to the wild-type 27 SB (Figure 4III).
Moreover, no 27 SB* and 25 S* rRNA are syn-
thesized from the 30 ETS �6 mutant, in marked
contrast to the 30 ETS �4 and �5 pre-rRNAs from
which 25 S* rRNA is synthesized. The ratio of
25 S* : 27 SA2* in the �4 and �5 pre-rRNAs is sub-
stantially lower than the ratio of 25 S : 27 SA2 syn-
thesized from the wild-type pre-rRNA (data not
shown). This indicates that the processing of
27 SA2* to 25 S* is relatively inef®cient, consistent
with the reduced level of 27 SB*.

When the 30 ETS hairpin structure is restored in
mutant 30 ETS �6 � H, the aberrant 30 extended
intermediates are lost, and only normal pre-rRNA
species are detected (Figure 4II, III, IV, lane 9).
However, the 27 SA2 pre-rRNA slightly accumu-
lates (Figure 4II) and the level of 27 SB is strongly
decreased (Figure 4III).

We conclude that an intact stem-loop structure is
required for processing of the 30 ETS. Mutations
which enter (30 ETS �4 and �5) or remove (30 ETS
�6) this structure prevent processing, leading to
the accumulation of pre-rRNA species that are 30
extended to the transcription termination site. Pro-
cessing of the 30 ETS is restored by re-insertion of
the hairpin structure in the 30 ETS �6 � H pre-
rRNA. In addition, both the six nucleotides at the
30 end of the 25 S rRNA and the hairpin structure
are important for the processing in ITS1 that con-
verts the 27 SA2 pre-rRNA to 27 SB. Since the
major processing pathway for 27 SA2 is cleavage at
site A3 by RNase MRP, these data indicate that A3

cleavage was inhibited by the mutations in the 30
ETS.

Deletions in the 30 ETS affect processing
in ITS1

The effects of the deletions on the ef®ciency and
accuracy of the pre-rRNA cleavages in ITS1 were
analysed by primer extension using oligonucleo-
tide g that hybridizes to the pre-rRNA in ITS2 (see
Figure 1). The levels of primer extension products
terminating at site A2 re¯ect the abundance of the
27 SA2 and 27 SA2* pre-rRNAs; these are unaf-
fected by any of the deletions in the 30 ETS



Figure 4. Northern analysis of high molecular weight pre-rRNA and rRNAs from strains expressing 30 ETS deletions.
RNA was extracted from NOY504 transformants expressing various plasmid-borne mutant pre-rRNA after six hours
growth at 37�C. RNA was separated on a 1.2% agarose gel containing formaldehyde and transferred for Northern
hybridization. Lane 1, pre-rRNA with the wild-type 30 ETS sequence. Lane 2, vector lacking the rDNA sequence.
Lane 3, 30 ETS �1 pre-rRNA. Lane 4, 30 ETS �2 pre-rRNA. Lane 5, 30 ETS �3 pre-rRNA. Lane 6, 30 ETS �4 pre-
rRNA. Lane 7, 30 ETS �5 pre-rRNA. Lane 8, 30 ETS �6 pre-rRNA. Lane 9, 30 ETS �6 � H pre-rRNA. I, oligo c.
II, oligo d. III, oligo g. IV, oligo i. V, oligo h. VI, oligo b. VII, oligo a. For simplicity we only show regions of each
Northern; together all the high molecular weight RNAs detected are shown. The position of the various pre-rRNAs
and rRNAs is indicated on the right and the RNA is schematically represented; boxes represent the mature rRNA
sequences, hatched boxes the GAL7 terminator sequences and thin lines the transcribed spacers. The hybridization
site and the name of the oligonucleotide used for the detection of each species is indicated.
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(Figure 5). Similarly, the early cleavages A0 and A1

were not affected by the deletions (data not
shown), consistent with the Northern hybridization
data. In contrast, the primer extension stop at site
A3 is lost in pre-rRNAs with deletions that enter or
delete the stem-loop structure (30 ETS �4, �5 or
�6; Figure 5, lanes 6 to 8) and is not restored by
re-introduction of the hairpin in 30 ETS �6 � H
(Figure 5, lane 9). The levels of the primer exten-
sion stops at both B1S and B1L are reduced to
levels close to that of the ÿrDNA control in
mutants 30 ETS �5, �6 and �6 � H (Figure 5,
lanes 7 to 9), and reduced to a lesser extent in 30
ETS �4 (Figure 5, lane 6). These results are consist-
ent with the low levels of 27 SB and 27 SB*
detected for these mutants by Northern hybridiz-
ation (Figure 4).

The primer extension data for site A3 showed
the loss of the 27 SA3 pre-rRNA from the 30 ETS
�4-�6 mutants. To determine whether this is due
to the destabilization of the pre-rRNA or to the
inhibition of pre-rRNA cleavage at site A3 we
examined the level of the excised A2-A3 fragment.
Northern hybridization of low molecular weight
RNA using a probe hybridizing between sites A2

and A3 (oligonucleotide c in Figure 1) showed that



Figure 5. Primer extension analysis through ITS1 of
pre-rRNA containing deletions in 30 ETS. RNA was
extracted from NOY504 transformants expressing var-
ious plasmid-borne mutant pre-rRNA after six hours
growth at 37�C. Primer extension was performed using
oligonucleotide g hybridizing within ITS2. A dideoxynu-
cleotide sequence generated with the same oligonucleo-
tide was run in parallel. Lane 1, pre-rRNA with the
wild-type 30 ETS sequence. Lane 2, vector lacking the
rDNA sequence. Lane 3, 30 ETS �1 pre-rRNA. Lane 4, 30
ETS �2 pre-rRNA. Lane 5, 30 ETS �3 pre-rRNA. Lane 6,
30 ETS �4 pre-rRNA. Lane 7, 30 ETS �5 pre-rRNA. Lane
8, 30 ETS �6 pre-rRNA. Lane 9, 30 ETS �6 � H pre-
rRNA. The positions of primer extension stops at sites
A2, A3, B1S and B1L are indicated.

Figure 6. Northern analysis of 5.8 S rRNA and the A2-
A3 RNA fragment. RNA was extracted from NOY504
transformants expressing various plasmid-borne mutant
pre-rRNA after six hours growth at 37�C. Low molecu-
lar weight RNA was separated on an 8% polyacryl-
amide gel containing 8 M urea and transferred for
Northern hybridization. Upper panel: mature 5.8 S
detected with oligo f, complementary to the tag
sequence. Lower panel: excised A2-A3 fragment detected
with oligo c. Lane 1, pre-rRNA with the wild-type 30
ETS sequence. Lane 2, vector lacking the rDNA
sequence. Lane 3, 30 ETS �1 pre-rRNA. Lane 4, 30 ETS
�2 pre-rRNA. Lane 5, 30 ETS �3 pre-rRNA. Lane 6, 30
ETS �4 pre-rRNA. Lane 7, 30 ETS �5 pre-rRNA. Lane 8,
30 ETS �6 pre-rRNA. Lane 9, 30 ETS �6 � H pre-rRNA.
The ratios between 5.8 SS and 5.8 SL measured by Phos-
phorImager scanning (Molecular Dynamics) are indi-
cated in the table below the Figure.
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this fragment can be detected in strains expressing
the wild-type or the �1, �2 and �3 mutant pre-
rRNAs (Figure 6, lanes 3 to 5), but is not detected
in the strains expressing the �4 or �5 pre-rRNAs
(Figure 6, lanes 6 and 7). We conclude that the 30

ETS mutations that enter the stem-loop structure
prevent excision of this fragment. Since A2 clea-
vage was unaffected in the mutant pre-rRNAs, we
conclude that cleavage at site A3 was indeed
speci®cally inhibited. In the case of the 30 ETS �6
mutation (Figure 6, lane 8) the A2-A3 fragment was
not detected but a smaller RNA species was con-
sistently observed using either oligonucleotide c or
d (marked with * in Figure 6). This species was not
detected when the stem-loop structure was re-
inserted in the �6 � H pre-rRNA (Figure 6, lane 9).
The identity of this species is currently uncertain.
Sites B1S and B1L are the 50 end of the 5.8 SS and
5.8 SL rRNAs, respectively. Northern hybridization
using a probe speci®c for the tag in 5.8 S rRNA
(oligonucleotide f in Figure 1) shows a strong
reduction in the accumulation of both 5.8 SS and
5.8 SL rRNAs synthesized from the 30 ETS �4 and
�5 pre-rRNAs (Figure 6, lanes 6 and 7). In
addition, these deletions under-accumulate 5.8 SS

compared to 5.8 SL rRNA; the ratio is reduced by a
factor of 1.5, as determined by PhosphorImager
scanning (Figure 6). The ratios of 5.8 SS to 5.8 SL

rRNA synthesized from the 30 ETS �1, �2 and �3
pre-rRNAs are identical to the wild-type. Synthesis
of 5.8 SS rRNA requires upstream cleavage at site
A3 (Henry et al., 1994) and its under accumulation
in the �4 and �5 mutants con®rms the inhibition
of cleavage at this site. In the case of the 30 ETS �6
pre-rRNA, accumulation of 5.8 S rRNA was
undetectable (Figure 6, lane 8). Re-insertion of the
stem-loop structure in the 30 ETS �6 � H pre-
rRNA allows formation of low levels of 5.8 SS and
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5.8 SL rRNA, with a ratio similar to the wild-type
control.

From these data we conclude that the integrity
of the stem-loop structure in the 30 ETS is import-
ant both for processing of the 30 ETS and for clea-
vage of site A3 in ITS1. The alternative ITS1
pathway that processes site B1L is less sensitive to
disruption of the stem-loop structure, as shown by
the increase in the ratio of 5.8 SL to 5.8 SS rRNA
synthesized from the 30 ETS �4 and �5 pre-
rRNAs, and its restoration in the �6 � H pre-
rRNA.

Discussion

Recent years have seen the development of sev-
eral systems that allow mutations in the yeast pre-
rRNA to be studied in vivo. The effects of
mutations in several of the transcribed spacer
regions on pre-rRNA processing have been studied
in some detail, although interpretation of the
results has frequently been complicated. The spacer
which to date has been least well studied in
Saccharomyces cerevisiae is the 30 ETS. This region of
the pre-rRNA is predicted to have a number of
features of importance and we have undertaken an
initial deletion analysis.

Perhaps the most surprising ®nding to emerge
from this analysis is a negative result; there does
not appear to be a signal in the 30 ETS that is
important for initiating the processing pathway.
The basis of the apparent need for such a signal
can be simply stated: Transcription of the 35 S
pre-rRNA requires approximately ®ve minutes,
so the early processing sites are transcribed sev-
eral minutes before their eventual processing.
Why are these sites not cleaved cotranscription-
ally, as is the case in E. coli? Moreover, the life
time of the fully transcribed 35 S pre-rRNA is
very short: from Northern hybridization and
pulse-chase labeling we estimate this at approxi-
mately ten seconds; and during this time many
or all of the ca 60 20-O-methyl modi®cations in
the pre-rRNA are also made (Brand et al., 1977;
Klootwijk et al., 1972). Why are these not made
cotranscriptionally? Our anticipation was that the
processing pathway would be initiated by the
recognition of some signal within the 30 ETS
region that would indicate that transcription has
been successfully completed. This does not
appear to be the case. Even the pre-rRNA from
which the entire 30 ETS region has been deleted
(30 ETS �6) undergoes the early processing reac-
tion with normal kinetics, as shown by the lack
of accumulation of the full length 35 S pre-rRNA
or the 33 S and 32 S pre-rRNAs, generated by
processing at sites A0 and A1. Moreover, an
alternative hypothesis, that the termination of
transcription by RNA polymerase I itself triggers
the processing pathway is also unlikely in this
case, as transcription is by RNA polymerase II.
How the correct timing of the processing and
modi®cation of the pre-rRNA is achieved there-
fore remains an enigma.

The stem-loop structure is required for
processing of the 30 ETS

The feature of the 30 ETS that the deletion
mutations clearly identify as functionally import-
ant is the strong stem-loop structure predicted to
form close to the end of the 25 S rRNA (see
Figure 2B). Mutations that delete the entire 30 ETS
up to the 30 boundary of this stem (30 ETS �1-3)
have no detectable effect on processing of the pre-
rRNA in the 30 ETS or elsewhere. In contrast, del-
etions which enter this stem-loop (30 ETS �4 and
�5), or remove it entirely (30 ETS �6) are severely
impaired in processing of the 30 ETS region. In
these pre-rRNAs, the 35 S* transcripts extend to
the GAL7 terminator that is inserted 30 to the nor-
mal site of termination by RNA polymerase I.
These species are not detected in the wild-type pre-
rRNA and we conclude that the 30 ETS is normally
cleaved cotranscriptionally, in marked contrast to
processing at other sites. The stem-loop structure
in the 30 ETS can be cleaved in vitro by Rnt1p
(Abou Elela et al., 1996) which, by analogy to E. coli
RNase III, is expected to cleave in extended imper-
fect stem structures. Similar structures are cleaved
by Rnt1p in the 50 ETS (Abou Elela et al., 1996) and
in precursors to U5 snRNA (Chanfreau et al., 1997).
The 30 ETS �4 and �5 mutations do not remove
the site of in vitro cleavage but are predicted to dis-
rupt the stem structure, thus abolishing cleavage
by Rnt1p. Interestingly, the presence of these long
30 extensions does not prevent processing of the
aberrant pre-rRNAs, since we detect the 27 SA*
and 27 SB* pre-rRNAs, and even the 25 S* rRNA,
that are 30 extended to the GAL7 terminator. The
stem-loop structure is both necessary and suf®cient
for cleavage in the 30 ETS, since its reintroduction
into the 30 ETS �6 � H pre-rRNA restores normal
processing in the 30 ETS.

Processing in the 30 ETS and ITS1
are coordinated

These analyses also revealed interactions
between the 30 ETS and pre-rRNA processing reac-
tions that occur almost 4 kb away in ITS1. Del-
etions �4 and �5 in the hairpin speci®cally
inhibited cleavage at site A3 in ITS1. This was
shown by the loss of the primer extension stop at
site A3, showing the loss of the 27 SA3 pre-rRNA,
and the loss of the excised A2-A3 cleavage frag-
ment. Two forms of the 27 SB pre-rRNA and 5.8 S
rRNA are generated. In the major pathway, clea-
vage at site A3 is followed by exonuclease trim-
ming to site B1S, the 50 end of the 27 SBS pre-rRNA
and 5.8 SS rRNA. A minor pathway generates the
27 SBL pre-rRNA and 5.8 SL rRNA. Synthesis of
both the 27 SBS and 27 SBL pre-rRNAs from the �4
and �5 pre-rRNAs was inhibited, resulting in
reduced synthesis of the 5.8 SS and 5.8 SL rRNAs.
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However, synthesis of 5.8 SS was more severely
inhibited than was synthesis of 5.8 SL, indicating
that A3 cleavage by RNase MRP was more sensi-
tive to mutations in the 30 ETS stem-loop than was
processing at B1L.

The effects of mutations in the 30 ETS are distinct
from mutations in Rnt1p. In particular, the rnt1-1
strain accumulates the 23 S RNA, a product of
cleavage at site A3, and is not clearly defective in
the processing of 27 SA2* to 27 SB* (Abou Elela
et al., 1996). These observations indicate that the
defects in processing of site A3 in the 30 ETS �4
and �5 pre-rRNAs are not a direct consequence of
the inhibition of 30 ETS processing. We conclude
that the stem-loop structure is recognized by a fac-
tor other than Rnt1p, and this recognition is
important for processing in ITS1.

The obvious rationale for the existence of such a
system is to prevent synthesis of the 5.8 S rRNA
and maturation of the 50 end of 25 S rRNA from
transcripts which are incomplete due to premature
transcription termination. A similar situation has
been reported in Schizosaccharomyces pombe.
Mutations that delete, or interfere with the struc-
ture of, a hairpin stem in the 30 ETS inhibited both
the removal of the 30 ETS region and production of
the 5.8 S and 25 S rRNAs (Hitchen et al., 1997;
Melekhovets et al., 1994), suggesting a similar inhi-
bition of steps in ITS1 processing. Indeed, Good
et al. (1997a, b) have proposed that the potential
for such quality control systems is a reason for the
existence of pre-rRNA processing in general.

A model for the coordination of pre-
rRNA processing

In both Bacteria and Archaea the 16 S and 23 S
rRNA sequences are ¯anked by spacer sequences
which form extensive helices that generate the rec-
ognition sites for endonucleases; RNase III in bac-
teria (King et al., 1984; Robertson & Dunn, 1975;
Young & Steitz, 1978) and the bulge-helix-bulge
endonuclease in Archaea (reviewed by Dennis,
1997; Garrett et al., 1991). These interactions within
the pre-rRNAs ensure the coordination of proces-
sing at the 50 and 30 ends of the rRNAs. In S. cerevi-
siae, the hairpin structures in the 50 ETS and 30 ETS
each provide cleavage sites for Rnt1p (RNase III)
but different mechanisms exist to ensure the
coordination of the processing reactions at the
opposite ends of the 18 S and 5.8 S/25 S rRNAs.
The eukaryotic 5.8 S rRNA is clearly homologous
to the 50 end of the bacterial and archaeal 23 S
rRNA, indicating that the ITS2 region arose by an
insertion event in an early eukaryote. The coupling
reported here between processing in ITS1 and pro-
cessing of the 30 ETS would therefore be function-
ally analogous to the coupling between processing
at the 50 and 30 ends of the bacterial and archaeal
23 S provided by the requirement for base-pairing
of the ¯anking sequences.

In Xenopus laevis the snoRNA U8 is required for
the synthesis of 5.8 S and 25 S rRNA; depletion of
U8 leads to a phenotype similar to deletions of the
30 ETS stem-loop structure with the inhibition of
processing both of the 30 ETS and in ITS1 (Peculis
& Steitz, 1993). No yeast homologue of U8 has yet
been identi®ed, but we predict that a functional
homologue will play a role in the processing ana-
lysed here. It is possible that this RNP binds to the
hairpin structure in the 30 ETS, promoting cleavage
by Rnt1p and also interacts with the RNase MRP
complex bound to the pre-rRNA around site A3 in
ITS1.

This model resembles that proposed for the
coupling of pre-rRNA processing in the 50 ETS and
in ITS1. Cleavage of site A0 in the 50 ETS by Rnt1p
in vivo absolutely requires the binding of the U3
snoRNA to the pre-rRNA at a site some 140
nucleotides 50 to the cleavage site. Moreover,
mutations in U3 or other snoRNAs (U14, snR10
and snR30) inhibit processing both at the 50 end of
the 18 S rRNA and in ITS1 at site A2. This has led
to the suggestion that a multi-snoRNP complex
forms and is required for these coordinated proces-
sing reactions. Furthermore, processing at sites A1

and A2 is coupled to processing by RNase MRP at
site A3. This coupling may involve the large Rrp5p
protein functioning as a bridging factor (Venema &
Tollervey, 1996).

This suggests a model (Figure 7) in which RNase
MRP interacts with multiple components of the
processing machinery: an snoRNP complex and
Rrp5p bound to the 50 ETS and at site A2 and
another complex bound to the pre-rRNA in the 30
ETS, making 35 S pre-rRNA processing a highly
coordinated process.

Materials and Methods

Strains and media

Growth and handling of S. cerevisiae used standard
techniques. The strain used was NOY504: a, rpa12::LEU2,
leu2-3, 112, ura3-1, trp1-1, his3-11, can1-100 (Nogi et al.,
1993; generously provided by M. Nomura).

Construction of nested deletions in the 30 ETS

The wild-type plasmid pTA1 used to generate nested
deletions in the 30 ETS was derived from pGAL::rDNA
(Henry et al., 1994). This plasmid, contains the entire
yeast rDNA unit fused to the GAL7 promoter (Nogi et al.,
1993) in YEp24 (2mm-URA3). In addition, small oligonu-
cleotide tags have been inserted in the 18 S, 5.8 S and
25 S rRNA genes. pTA1 was obtained by insertion of the
polylinker NotI, BstEII, BstXI (KpnI), SalI at the SalI site
located nine nucleotides downstream of the rDNA unit
in the GAL7 terminator sequence. 30 ETS nested deletions
of the 30 ETS were produced by exonuclease III digestion
(Erase-a-Base, Promega). The pTA1 plasmid was
digested with KpnI and NotI and progressive uni-
directional deletions were generated from the NotI site.
The plasmid sequences were protected from digestion by
the 30 overhang at the KpnI restriction site. The 30 SalI
site was left intact and now directly ¯anked the rDNA
sequence. The positions of the mutations are indicated in
Figure 2, numbering is relative to the 30 end of 25 S
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rRNA. In the 30 ETS �1, �2, �3, �4, �5 and �6 mutants
nucleotides from �284 to �262, �178, �58, �41, �24
and ÿ5, respectively, were deleted. Mutant 30 ETS
Figure 7. Model for the coordination of pre-rRNA proces
processing pathways of S. cerevisiae (A) and E. coli (B) are re
the transcribed spacers. Endonucleases are represented b
arrangement of the rRNA is conserved between bacteria an
split by the insertion of the ITS2 spacer and the E. coli pre-rR
rRNAs. The spacers ¯anking the bacterial rRNA molecule f
for RNase III and ensure the coordination of processing at
spacer regions provide a site for cleavage by RNase P. In y
cleavages sites for Rnt1p (RNase III) and small nucleolar ribo
molecular base-pairing to ensure coordinated 50 and 30 end
plex bound in the 50 ETS interacts with the RNase MRP com
involve the Rrp5p protein. Here we propose a coupling bet
homologue of the U8 snoRNA is predicted to be involved in
Rnt1p and ITS1 cleavage by the RNase MRP complex.
�6 � H was obtained by re-insertion of the hairpin struc-
ture into the 30 ETS �6 deletion mutant at the same
nucleotide position as in the wild-type pre-rRNA. For
sing in yeast and comparison with E. coli. The pre-rRNA
presented. Boxes represent mature rRNAs and thin lines

y scissors and snoRNP complexes by balls. The basic
d eukaryotes. However the yeast large-subunit rRNA is
NAs encode tRNAs in spacer between the 16 S and 23 S

orm extensive helices, which contain the recognition sites
the 50 and 30 end of rRNAs. The tRNAs present in the

east, hairpin structures in the 50 ETS and 30 ETS provide
nucleoprotein particle (snoRNP) complexes replace intra-

processing. We previously proposed that a snoRNP com-
plex that cleaves site A3 in ITS1, and this coupling may

ween processing in ITS1 and in the 30 ETS. A functional
the coupling cleavage of the 30 ETS hairpin structure by
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this, the 30 ETS �6 � H plasmid was linearized at the
SalI site and nucleotides 50-TCGATTTTTATTTCTTTCT-
AAGTGGGTACTGGCAGGAGTCGGGGCCTAGTTTA-
GAGAGAG-30 were inserted, resulting in the mutation
of the last six nucleotides 3387AUUUGU3392 of 25 S rRNA
to 3387GGUCGA3392 and restoration of the wild-type 30
ETS sequence and hairpin structure up to nucleotides
�58 (Figure 2B).

Growth rate measurement

For growth rate measurements cells were ®rst grown
in minimal galactose medium at 23�C (the permissive
temperature for chromosomal rDNA transcription in
rpa12 strains) to an A600 nm of 0.07. Cells were then
shifted to the non-permissive temperature (37�C) to
repress chromosomal rDNA transcription and selectively
express the plasmid-encoded, mutant rDNA. Regular
dilution of cells with pre-warmed medium was per-
formed in order to maintain exponential growth and the
A600 nm was followed for 50 hours.

RNA extraction

Prior to RNA extraction for Northern analysis or pri-
mer extension, NOY504 strains were transformed with
pGAL::rDNA, the 30 ETS mutant plasmids or a negative
control plasmid (ÿrDNA) YEplac 195 (2mm-URA3; Gietz
& Sugino, 1988); and grown at 23�C in minimal galactose
medium until they reached mid log phase. Cells were
diluted to A600 nm 0.09 and shifted for six hours to 37�C
(Henry et al., 1994). Total RNA was extracted as pre-
viously described (Tollervey & Mattaj, 1987).

Northern Hybridization

For each sample 8 mg of total RNA was separated on
1.2% (w/v) agarose-formaldehyde gels and transferred
to Hybond N� membranes (Amersham) for Northern
hybridization as described by Tollervey & Mattaj (1987).
Northern hybridization was performed as previously
described using the following oligonucleotides. (a) 50-
CGAGGATCCAGGCTTT-30; (b) 50-GCTCTTTGCTCTT
GCC-30; (c) 50-TGTTACCTCTGGGCCC-30; (d) 50-
CCAGTTACGAAAATTCTTG-30; (g) 50-GGCCAG-
CAATTTCAAGT-30; (h) 50-ACTCGAGAGCTTCAGTAC-
30; (i) 50-AAGAATCAGATTTACAGATAATGATGT-
CATT-30. Oligonucleotides a, and h hybridize to the tags
in 18 S and 25 S rRNAs, respectively. Oligo i hybridizes
to the GAL7 terminator sequence, 47 nucleotides down-
stream of the SalI site (see Figure 1).

Low molecular weight RNAs were separated on 8%
(w/v) polyacrylamide gels containing 8 M urea in
1 � TBE and electrobloted onto Hybond N� membranes
(Amersham). Hybridization to the tag in 5.8 S rRNA was
performed using an 20-O-allyl oligonucleotide (f)
(Lamond & Sproat, 1993). The sequence is 50-DGDDUD-
CUGGCGDdGdC-30 (Henry et al., 1994), where D is 2,6-
diamino-purine, which can form three hydrogen bonds
to U residues (Lamm et al., 1991).

Primer extension

Primer extension was performed as described pre-
viously (Beltrame & Tollervey, 1992) on 4 mg of total
RNA using primer (d) 50-CCAGTTACGAAAATTCTTG-
30. To identify the position of primer extension stops,
DNA sequencing reactions performed with the same oli-
gonucleotide were run in parallel.
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ABSTRACT

Ribosomal protein S8 specifically recognizes a helical
and irregular region of 16S rRNA that is highly
evolutionary constrained. Despite its restricted size, the
precise conformation of this region remains a question
of debate. Here, we used chemical probing to analyze
the structural consequences of mutations in this RNA
region. These data, combined with computer modelling
and previously published data on protein binding were
used to investigate the conformation of the RNA
binding site. The experimental data confirm the model
in which adenines A595, A640 and A642 bulge out in
the deep groove. In addition to the already proposed
non canonical U598 - U641 interaction, the structure is
stabilized by stacking interactions (between A595 and
A640) and an array of hydrogen bonds involving bases
and the sugar phosphate backbone. Mutations that alter
the ability to form these interdependent interactions
result in a local destabilization or reorganization. The
specificity of recognition by protein S8 is provided by
the irregular and distorted backbone and the two
bulged adenines 640 and 642 in the deep groove. The
third adenine (A595) is not a direct recognition site but
must adopt a bulged position. The U598 - U641 pair
should not be directly in contact with the protein.

INTRODUCTION
The interaction of E.coli ribosomal protein S8 with its 16S rRNA
binding site represents an interesting model for studying the
molecular mechanism of specific RNA -protein recognition.
Protein S8 is capable of binding individually to the central domain
of 16S rRNA and plays an important role in the early stage of
ribosomal 30S subunit assembly (1-2). It participates to the
formation of one early nucleation site (3), and interacts co-
operatively with other ribosomal proteins (4-5). It is therefore
a crucial element for the sequential assembly of RNA and proteins
constituting the small ribosomal subunit. It is also able to regulate
the translation of its own operon (6-8) by a feed-back
mechanism.

A considerable amount of work was already devoted to the
interactions between S8 and its 16S rRNA target site and to the
fine structure of this site (4-5, 9-14). It was recently shown
that the rRNA can be restricted to a short helical stem (nucleotides
588 -605/633 -651), without significantly altering the apparent
affinity constant (15). The central part of this helical region (called
'region C') is highly evolutionary constrained and the conserved
elements are also found in the target regulatory site of S8 on its
mRNA (8,16). We previously proposed a three-dimensional
model of region C, derived from structure probing and computer
modeling (14). This model displays characteristic features: A595,
A640 and A642 bulge out in the deep groove of the helix, and
U598 and U641 form a non-canonical base pair. However, the
conformation of this region is disputed and three other folding
models have been proposed in the literature. These models
essentially differ in the pairing ofU598 which is either with A640
(17- 18), U641 (14) or A642 (5). We favoured a U595-U641
base pair (14), since it accounts for the non reactivity of U598
and U641 and for the reactivity of A640, A642 and A595. The
pair U598-A640 was recently proposed on the basis of sequence
comparison (17- 18). In order to agree with the reactivity data,
such a U598 -A640 pair should involve Hoogsteen hydrogen
bonding and not Watson-Crick interactions. In addition, the non
reactivity of the unpaired U641 could only be explained by
additional tertiary interaction or stacking.

Recently, we investigated the role of conserved nucleotides in
region C as potential determinants for S8 recognition by studying
the effect of 14 single and double mutations on S8 recognition
(15). Of the 14 mutants tested, only three are still efficiently
recognized by S8. In order to discriminate whether the loss of
recognition is due to the loss of a specific contact or to
conformational rearrangement, we now report the structural
consequences of the mutations, using chemical probing on the
14 RNA variants mentioned above and of two new RNA mutants
(A598/U640 and A598/U640/G64 1). In addition, footprinting
experiments were conducted on those mutants that still retain S8
binding capacity. Our results emphasize the subtleties of RNA
conformation and an unexpected versatility in the structural
consequences of single base mutations. An improved three-
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dimensional model is derived from the present experimental data
and the results are discussed in terms of RNA folding and S8
recognition.

MATERIALS AND METHODS
Preparation of the biological material
Plasmids construction, RNA synthesis and purification of wild-
type and mutant 16S rRNA fragments (nucleotides 584-756)
are described in (15). Two additional mutants were constructed
(A598/U640 and A598/U640/G641) following the same protocol.
Their relative binding affinity was determined as in (15).
Ribosomal protein S8 was prepared under non-denaturing
conditions according to Cachia et al. (19).

Chemical probing and footprinting
A standard assay contains 16 pmol RNA and 2 jg carrier tRNA
in 20 IL of appropriate buffer. RNA was first pre-incubated for
15 min at 40°C in buffer Ni [50 mM sodium cacodylate (pH
7.5), 20 mM magnesium acetate, 250 mM potassium acetate]
or N2 [50 mM sodium borate (pH 8.0); 20 mM magnesium
acetate, 250 mM potassium acetate]. For each reaction, a control
was treated in parallel, omitting the reagent. Modification with
DMS: incubation was for 5 and 10 min in buffer Ni or for 2
and 5 min in buffer Dl [50 mM sodium cacodylate (pH 7.5),
1 mM EDTA] for semi-denaturing conditions. Modifications with
CMCT: incubation was for 15 and 30 min in buffer N2 or for
2 and 5 min in buffer D2 [50 mM sodium borate (pH 8.0), 1
mM EDTA] for semi-denaturing conditions. Modifications with
DEPC: incubation was for 15, 30 and 60 min in buffer NI or
for 15 and 30 min in buffer DI (semi-denaturing conditions).
All modifications were at 37°C. Footprinting experiments using
CMCT and DMS were conducted on wild-type RNA and mutants
allowing S8 binding. Complexes were formed in the presence
of 0.4 ,M S8 for wild-type RNA, mutants U595 and A641, or
2 ,tM for mutant A598 -U640. Footprinting gels were scanned
using the Bio-Imager Analyzer BAS 2000 (Fuji). Synthesis of
primer, labeling, hybridization, reverse transcription and analysis
of generated cDNA fragments were described by Mougel et al.
(14).

Computer modeling
The modeled molecule integrating stereochemical constraints and
experimental data was constructed with the help of several
computer programs and tested by comparing the theoretical
accessibility of atoms with the observed experimental reactivity,
as described earlier (20).

RESULTS
Binding strength of the new mutants
Previous results showed that both mutants A598 and U642 fail
to recognize S8 (15). Here, we tested the possibility to restore
S8 binding by the double mutation A598/U642. The results (not
shown) show that this double mutation restores only partially S8
recognition (with a 5-fold reduced binding strength). Sequence
comparison indicates that U598 is highly conserved. However,
in Rcy purpur, nucleotide 598 is an adenine, and nucleotides 640
and 641 are simultaneously replaced by U and G, respectively.
Therefore, we constructed a new mutant containing these three
mutations (A598/U640/G641). This triple mutant is not
recognized by S8 (results not shown).

Conformational studies of the RNA variants
The four bases were tested for their chemical reactivity at one
of their Watson-Crick positions with DMS, at A(Nl) and
C(N3), and with CMCT, at G(N1) and U(N3). For some
mutants, position N7 of adenines was also probed with DEPC.
In addition, footprinting experiments were conducted using DMS
and CMCT with those RNAs that still retain S8 binding ability.
A typical experiment is shown in Fig. 1. Experiments were
repeated several times (from 2 to 4 times) and the degree of
reactivity was evaluated from 1 to 4 by visual inspection. In the
case of footprinting experiments, reactivity changes induced by
S8 binding were quantified.
The reactivity changes induced by the mutations are exclusively

localized in region C (nucleotides 594-599/639-645). Results
are summarized in Table 1 and in Figs 2-4 which show the
deduced secondary foldings of region C. One striking
consequence of all the mutations tested is that U641, which is
not reactive in the wild-type RNA, becomes reactive at various
degrees in all mutated RNAs, with the single exception of mutant
G643 (Table 1). By contrast, U598 remains unreactive in all
mutants, suggesting that its N3 position is involved in H-bonding
or that the residue is stacked inside the helix, preventing
modification.

DISCUSSION
Mutations affecting adenines 595, 640 and 642
The deletion of any of these three adenines results in a complete
loss of binding (15). The deletion of either A640 or A642 induces
reactivity at U641 and decreases the reactivity of A642(N1) or
A640(N 1), respectively (Table 1). These results suggest that
nucleotide U641 is bulging out in these two mutants and that U598
pairs with either A642 or A640, respectively (Fig. 2). Moreover,
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the reactivity of A595(N1) increases by 2-fold, indicating that
A595 is not simply bulged out in the wild-type RNA (as already
hinted at by its low reactivity) but is probably involved in
hydrogen-bonding or stacking, interactions which are disrupted
in each deletion mutant. Thus, the observed lack of binding of
protein S8 may be due to the loss of a possible contact and/or
to a local structural rearrangement of region C. Unexpectedly,
the deletion of A595 induces a high level of reactivity at U641
(level 3), and a 2-fold increase in the reactivity of A642 (Fig.
2), showing that the removal of the bulged A595 destabilizes the

A A,

6_-\> AX 547

CUGUC UGGC

I.I
GA C UG A U UG

592

WT= 1

N

C U G A C U G G C

I I

G A C U G A.U U G

A

A640< 0.01'

CUG CUGGC

GA C U GA:U U G
A

W. c. A(N7)~jl nreactive

4 4 reactive in sernl-denaturing
3 3 conditions

2 enhanced in semi-deiaturieq1 conditions

Af,,,,f A A

CUGACUGGC CU G C U G G C

I I * * * *
GACUGA UUG G A CUG A U U G

A
h

A642 <0.01* A595 c 0.01*

Afu
CUG AU GGC

* * a

GAC UG U UG
A.:A

\ts A "-

C iG C U G GC

GA C UG A U UG

f

U640<0.01* U642<0.01* U595=0.75*

Figure 2. Proposed secondary structure of mutants affecting adenines 595, 640
and 642. The wild-type RNA is shown as reference. Only nucleotides
592-601/637-647 are shown. The reactivities (estimated between 1 and 4 from
marginal to high) are indicated with the color code. Substituted nucleotides are
indicated in bold characters and deletions by (A). Nucleotides without reactivity
indicated are not determined. The S8-induced reactivity changes are indicated
for wild-type and U595: filled triangle (protection); asterisk (enhanced reactivity).
The S8 binding strength [expressed as the ratio of the apparent association constant
(Ka) of the mutant on the Ka of the wild-type RNA]are indicated. The values
marked with an asterisk are from Mougel et al. (15).

interactions which involve U641. The non-reactivity of U598
suggests that it remains stacked inside the helix, either unpaired
or alternatively paired with A640 or A642.
The A to U substitution at position 642 causes the disruption

of the G597 -C643 pair since C643 becomes highly reactive at
N3 (level 3). The reactivity pattern favors the existence of two
base pairs, U598 -A640 and G597 -U641, while nucleotides
A595, A596, U642, C643 and U644 form an interior asymmetric
loop (Fig. 2). Thus, the loss of binding induced by the U642
mutation results from a refolding of region C. In mutant U640,
U641 becomes reactive (level 2) but less than in mutant AA595
(level 3). Therefore, the interaction involving U641 might be
weakened but not completely abolished. Another consequence
of the A640 substitution is the 2-fold increase in reactivity of
A595(N1), as already observed in mutants A640 and A642. Since
the deletion of A595 has also a distal effect on U641 and A642,
a structural interdependence between A595, U598, A640 and
A642 can be inferred.
Mutant U595 requires a particular attention since it is still

recognized by S8 with the same affinity as the wild-type RNA
(15). Its reactivity pattern is rather similar to that of mutant U640
(Table 1). However, U641 becomes reactive (level 2), revealing
an unexpected distal effect induced by the mutation. The fact that
mutant U595, but not mutant U640, is recognized by S8 suggests
that A640 is a specific determinant for S8, and that a bulged
nucleotide, but not necessarily an adenine, is required at position
595. Most likely, this bulged nucleotide or the particular distortion
of the backbone induced by this bulge, is necessary for a correct
RNA fold. Since both U595 and U641 are reactive in this mutant
(level 2), it was interesting to test their reactivity in the S8-RNA
complex. The footprinting experiments show that A640 and A642
become unreactive as in the case of the wild-type RNA. However,
U641 displays the same level of reactivity as in the naked RNA
and the reactivity of U595 is even increased by a factor of 2 (not
shown). This observation confirms that nucleotide 595 is not a

specific contact but is required as a bulge. Note that U641 remains
unreactive in the wild-type RNA-S8 complex.

Possible interactions involving U598
In the different models proposed so far, U598 is paired with either
A640, U641 or A642. The U598-U641 pair was tested by

Table 1. Reactivity data of critical nucleotides of region C in wild-type and mutant RNAs

Nucl. position U594 A595 A596 G597 U598 C599 G639 A640 U641 A642 C643 U644 G645
Mutant (N3) (Ni,N7) (Nl,N7) (N1) (N3) (N3) (N1) (N1,N7) (N3) (N1,N7) (N3) (N3) (N1)

WIT 0+ 1+, 0+ 0+,0+ 0+ 0+ 0 0 2,1+ 0+ 1+, 1+ 0+ 0+ 0+
A640 0+ 2 0 0 0+ 0+ 0 A 4 1 0 0+ 0
A642 0+ 2 1 0 0+ 0 0 0+ 2 .: 0 1 0
A595 0+ A 1 0+ 0+ 0 0+ 2 3 2 0+ 0+ 0+
U640 0+ 2+ 1+ 0+ 0+ 0+ 0+ 2 2 2 0+ 0+ 0+
U642 0+ 2 1 0+ 0+ 0 0 1 1+ 2 3 2 0+
U595 0+ 2 1+1+ 0+ 0+ 0 0 2,1 2 2,1 nd 0+ 0+
C641 0+ 2+,2+ 1+,0+ 0 0 0 0 5,0. .d 1+1+ 0+ 1 0+
A641 0+ 0+,1+ 0,0 0+ 0+ 0 0+ 3,1+ .+,0 2,1 0+ 0+ 0+
A598 0+ 0+,2+ 0+,0+ 0+ 2,0+ 0 0 2,2 2 2,2 0 0+ 0+

A5981U642 0+ 1+,3 0+,0+ 0 2,0 0+ 0+ 2,2 4 0 0+ 0+
G643 1 4 2 0+ 0+ 0 0 0 0+ 2 i 3 0+

C597/G643 1+ 2+ 1 0+ 0+ 0 0 2 3 2 0+ 0+
G5990+ 1+,4 0 0+ 0~~~~~ ~~~~~~+.:::0. 1..+ 3,3 2 2,2+ 0 0+ 0+

G599/C639 0+ 1+ 0+ 0+ 0+ . 0 2 1+ 2+ 0 0+ 0+
A598/U640 0+ 1+ 1+ 0 2 nd 0 0 1+ 2 1 0+ 0+

A598AU6401G641 0 0, 1+ 0, 1+ 0 0+,1+ 0 0 1,3 0 3,3 0+ 0+ 0+

The degree of reactivity of U(N3), G(Nl), C(N3), A(Nl) (first number) and A(N7) (second number) is estimated from
1 to 4, as in Fig. 3 and 7-9. Degree 5 corresponds to an hyperreactivity (enboxed). Reactivity of mutated nucleotides
is shadowed. (+) denotes reactivity or increase of reactivity in semi-denaturing conditions; (nd) is not determined.
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substituting U641 either by C (preventing the formation of the
U-U pair but not the pairing between U598 with either A640
or A642), or by A (allowing the formation of a potential canonical
U-A pair). Unexpectedly, the C641 mutation results in
hyperactivity of A640(Nl) (with N7 unreactive), while U598
remains unreactive under native conditions (Table 1).
Unfortunately, a pause of reverse trianscptase masks the mutated
C641. Otherwise, the reactivity of A595 is enhanced 2-fold at
both Nl and N7. Although we have no obvious explanation for
the hyperactivity of A640, this results precludes the formation
of a canonical U598-A640 pair in this mutant (but not a
Hoogsteen pair). On the other hand, in mutant A641 the mutated
adenine is unreactive at both NI and N7, while A640 and A642
are reactive (with A640>A642) (Fig. 1). This result indicates
that U598 does form a canonical pair with the mutated A641 but
not with A640 or A642, although the three adenines are potential
candidates for pairing (Fig. 3). Furthermore, this mutant is
perfectly recognized by S8. Moreover, A640 and A642 are
clearly protected from DMS modification in the presence of S8
(not shown). On the other hand, the substitution of U598 by A
leads to a loss of S8 binding (15). Interestingly, probing indicates
that A598 and U641 do not form a stable inverted pair, as shown
by the reactivity of these two nucleotides (level 2) (Fig. 3). It
is puzzling that the U598-A641 pair can be formed, while the
inverted A598 -U641 cannot. This results supports the existence
of an unusual U598-U641 pair, however.
The other two alternatives imply the formation of a base pair

between U598 with either A640 or A642. We first showed that
substituting A640 or A642 by U leads to a loss of binding and
induces local rearrangements (see below). However, the double
A598/U642 substitution does not restore binding (15). In fact,
in this double mutant, U641 and U642 are both highly reactive
(with U641 > U642), indicating that the mutated A598 which is
also reactive (level 2) does not pair with any of the two potential
candidates (U641 or U642). Most likely, residues 598 and
640-642 are unpaired and form an interior open loop (Fig. 3).
Furthermore, the reactivity of A595 remains unchanged at Nl
but becomes reactive at N7 (level 3). In this study, we showed
that the double A598/U640 substitution restores only partially

S8 recognition. Probing experiments indicate that A598 is reactive
(level 2) and U640 unreactive. Strikingly, U641 is only
marginally reactive (2-fold less than in RNA A598), but becomes
more reactive in semi-denaturing conditions. Thus, there is no
clear evidence for a pairing of A598 with either U640 or U641
(Fig. 3). We also showed that the triple mutant A598/U640/G641
is not recognized by S8. Probing experiments indicate that only
A642 is highly reactive at both Ni and N7 (level 3). Again, it
is not clear from probing data whether A598 interacts with U640
or G641.
Our results also points out the limits of nucleotide sequence

comparison while ignoring amino acid sequence co-variations in
the corresponding protein. Indeed, a phylogenetic analysis of a
subset of protein L23/25 and their putative respective rRNA
binding sites clearly evidenced the existence of co-variations in
both RNA and protein (21). Therefore, none of the postulated
pairs involving U598 can be strictly proven by the classical
disruption/inversion method. The only positive mutant (A641)
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favors the existence of the U598 -U641 pair, since the formation
of a U598 -A641 pair was clearly evidenced. One should note
that U641 is frequently substituted by A in 16S-like rRNAs.

Mutations affecting the G-C pairs
From our model, the G599 and G643 substitutions, which both
lead to a complete loss of S8 binding (15), are expected to disrupt
the two G- C pairs surrounding the U-U pair and most likely
to have a destabilizing effect. Indeed, reactivity data indicate that
these mutations induce conformational rearrangements. As a
result of the G643 mutation, A640(N1) becomes unreactive while
the reactivity of A595(N1) is enhanced by a factor of 4 (Table
1). In addition, U644 and A596(N1) become reactive (level 3
and 2, respectively). These data suggest the formation of pairs
U598-A640 and G597-U641 (as in mutant U642).
Unexpectedly, the potential A595 -U644 pair is not formed and
nucleotides 595, 596 and 642-644 form a five-base internal loop
(Fig. 4). The G599 mutation induces a 2-fold increase of
reactivity at A640 (both NI and N7 positions). It also induces
new reactivity at U641 (level 2) and at A595(N7) (level 4). Most
likely, helix III is extended by the two meta-stable U598 -A642
and G599-U641 pairs (Fig. 4).
The double mutation G599-C639 restores S8 binding (15) and

gives a reactivity pattern similar to that of the wild-type RNA
(Table 1). The only difference with the wild-type RNA is a
marginal reactivity of U641 (level 1) in native conditions, and
a 2-fold increase of the reactivity of A640(N1). Therefore, the
C599-G639 base pair can be inverted without significant
functional and structural effect (Fig. 4). On the contrary, the
double mutation C597/G643 does not restore binding (15).
Probing experiments show that the mutations cause a strong
reactivity of U641 (level 3) and a 2-fold increased reactivity of
A595 and A640 at NI (Fig. 1). The high reactivity at U641 could
be explained by the possible loss of interactions with U598 as
a consequence of the mutations or to the alteration of a network
of interactions involving other nucleotides like A595. Thus, an
inverted C597/G643 pair is formed but it is not structurally
equivalent to the wild-type one. However, specific contacts
between S8 and this G-C pair cannot be excluded. Interestingly,
the G597-C643 pair is strictly conserved. Note that a C to U
transition and a single deletion at position 643, both produce over
50-fold reduction in S8 affinity and confer slow growth in E. coli
cells in vivo (16).

A possible three-dimensional model
The present results show that the fold of region C is functionally
and structurally highly constrained. The effect of mutations could
not be predicted by a simple secondary structure model. The
mutations can be classified in 3 classes: (i) mutations that display
a wild-type like folding and affinity for protein S8 (A641 and
G599/C639); (ii) mutations that induce a substantial refolding
(A640, A642, U642, C641, G643 and G599) and are not
recognized by protein S8; (iii) mutations that induce a local
opening of region C (A595, U595, U640, A598, A598/U642,
A598/U640, A598/U640/G641 and C597/G643) with variable
effect on S8 binding. These latter mutations seem to be
responsible for the disruption of a network of interactions in

region C resulting in a destabilization of the postulated
U598-U641 pair. Furthermore, there is a clear structural
interdependence between nucleotides A595, U598, A640, A642
and G597 and/or C643. The new model we propose does not
basically differ from the previous one, as far as the base-pairing
scheme is concerned, however the conformation of the sugar-
phosphate backbone is more irregular and tertiary interactions
account for the present observations (Figs 5-6).

In this model, the U598(N3, 04) -U641(02, N3) already
proposed in the previous model (14) has been maintained. The
three bulged adenines are still bulging out on the same side of
the helix, facing the major groove, but their orientation has been
modified. Both A595 and A640 adopt a C2' endo sugar pucker.
Adenine 595, which is in a syn conformation, is stacked on A640
and both residues can be involved in an array of hydrogen bonds
(Figs 5-6). Thus, hydrogen bonding between A595(N6) and the
phosphate groups of both U641 and A642, between A595(N7)
and the 2'OH of A640, as well as between A642(N6) and the
phosphate group of U594 can occur. There is a very good
correlation between the reactivity of A640 and A595 at both NI
and N7 and their accessibility in the model. Moreover, the
postulated hydrogen bonds involving A595 and the ribose-
phosphate backbone most likely stabilize its particular
conformation. Thus, according to the model, deleting or
substituting A595 results in the loss of these interactions and to
the destabilization of the U598-U641 pair. The free hydrogen
of C643(N4) can also form a bond with the phosphate group of
A642. This should account for the observed increased reactivity
of both A642 and U641 when inverting the G597-C643 pair.
This model offers a rather satisfying solution for the observed
interdependence between the three bulged adenines, the U-U
pair and C643. Other hydrogen bonding possibilities cannot be
excluded. Overall, the postulated structure is characterized by:
(i) the known tendency of R-Y-R sequences for conformations
in which the two purine residues stack on a side opposite to that
of the pyrimidine (22); (ii) the added stabilization brought about
by the third adenine 'intercalating' between the two bulged
adenines.

What is recognized by protein S8?
One characteristic feature of the model is the irregularity of the
sugar-phosphate backbone (with one kink on the 5' strand and
two kinks on 3' strand). The reason why the U598 -U641 pair
can be replaced by U598-A641 but not by A598-U641 is
probably correlated with this particular geometry. Another
consequence of the proposed conformation is the widening of
the deep groove, allowing to position the three bulged adenines.
Protein S8 may sit in the distorted deep groove of the RNA and
probably recognizes the irregular backbone conformation. The
model also fits with the idea that A640(N 1), which is accessible
in the naked RNA and protected in the bound form, is a specific
contact. The invariant A642 is also a good candidate for specific
interaction, in particular positions N6 and Ni which are both
accessible in the model. It should be reminded that S8 binding
is strongly affected by protonation of (a) residue(s) with a pK
around 5-6 (13) and that an adenine was considered to be the
best candidate. On the opposite, A595 which is buried and poorly

Figure 6. Proposed three-dimensional model of region C. (a) Stereoscopic view down the deep groove, with strand 637-647 in green, strand 592-601 in yellow,
A595 in pink, A640 and A642 in blue. (b) Detailed view showing the coaxial stacking between A640 and A595 and possible hydrogen bonds (A595(N6)-OP641
and -OP642; A595(N7) -A640(2'OH); A642(N6) -OP594). (c) Detailed view after a rotation of 180° about the vertical axis, showing the U598-U641 and the
possible hydrogen bond between C643(N4) and OP642.



3714 Nucleic Acids Research, 1994, Vol. 22, No. 18

accessible does not appear to be involved in direct interaction.
The evidence that A595 is not a recognition site is provided by
mutant U595. In this case, the reactivity of U595(N3) is even
increased in the presence of S8, suggesting that it is tilted outside
the helix. The fact that U641(N3) remains reactive in this mutant
in the presence of S8 also indicates that U641 is probably not
directly recognized. This can be explained by the particular
location of the U598-U641 pair: in the proposed model, its
access from the distorted deep groove is partially shielded by
the bulged adenines.
The S8 binding site constitutes a typical example of RNA

structural complexity used as a source of protein specific
recognition. Our results highlight subtleties in the RNA
conformation which cannot be explained by a simple secondary
structure. In addition, they clearly show that the classical
disruption/replacement method used to prove standard
Watson-Crick base-pairing is inadequate for identifying non
canonical interactions.

21. Metzenberg, S., Joblet, C., Verspieren, P. and Agabian, N. (1993) Nucleic
Acids Res. 21, 4936-4940.

22. van de Hoogen, Y.T., Treumiet, S.J., Roelen, H.C.P.F., de Vroom, E.,
van der Marel, G.A., van Boom, J.H. and Altona, C. (1988) Eur J. Biochem.
171, 155-162.
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