

Sources atomiques pour senseurs inertiels interférométriques à long temps d'interrogation

Gaël Varoquaux

Direction de thèse : Alain Aspect – Philippe Bouyer

Senseurs inertiels

Mesures d'accélération, rotation, ...

Applications

- Navigation inertielle
- Géodésie
- Tests de physique fondamentale

État de l'art : les senseurs interférométriques

- Gyrolasers
- Suivi interférométrique de masses test

Interférométrie

Interférométrie

Interférométrie = mesure du déphasage

Le déphasage se traduit par des franges

Un accéléromètre atomique

- Atomes défléchis et séparés par des impulsions laser
 ⇒ Géométrie à la Mach-Zehnder
- Interféromètre symétrique : déphasage nul

Un accéléromètre atomique

Référentiel accéléré

 \Rightarrow déplacement des atomes

- Phase locale des lasers imprimée sur les atomes
 - \Rightarrow déphasage atomique dû à la déflection des atomes

 $\Delta \phi = \mathbf{k_{eff}} \cdot \mathbf{a} \ T^2$ résolution : $\Delta a/a = 10^{-9}$

 $\Delta\phi\propto a~T^2$

Chute des atomes

 $\Delta\phi\propto a~T^2$

Chute des atomes

 \Rightarrow Fontaine (0.5 s)

 $\Delta\phi\propto a~T^2$

 $\Delta\phi\propto a~T^2$

Une bonne source atomique : • ne chute pas • est collimatée

1 Interférométrie atomique en chute libre

2 Vers une source atomique collimatée

Interférométrie atomique en chute libre

- Le vol en microgravité
- Des mesures en environnement bruité
- Un montage d'atomes froids en microgravité

1 Microgravité

Sur Terre, les atomes tombent

 Plate-formes orbitales
 Coût et temps de développement élevés

• Expériences lâchées en chute libre 100 m, 8 s, 50 g à l'atterrissage

1 Microgravité

Sur Terre, les atomes tombent

 Plate-formes orbitales
 Coût et temps de développement élevés

- Expériences lâchées en chute libre 100 m, 8 s, 50 g à l'atterrissage
- Avions en vols balistiques
 Airbus A300, CNES

Les pilotes annulent manuellement la gravité

Objet en chute libre dans le référentiel de l'avion

Les pilotes annulent manuellement la gravité

4 secondes de vraie chute libre pour 1 m de parcours

Tous les corps en chute libre dans un champ gravitationnel suivent la même trajectoire.

- Deux espèces atomiques : Potassium et Rubidium.
- Un accéléromètre atomique pour mesurer l'accélération.
- 4 secondes de temps de chute (= 80 m)

$$\Rightarrow$$
 Résolution de $\frac{\Delta a}{a} \sim 10^{-12}$

De la mesure à la phase,

mesure = $A + B \cos \phi$

A, B : fluctuent

phase

De la mesure à la phase,

mesure = $A + B \cos \phi$

- A, B : fluctuent
 - \Rightarrow Plusieurs mesures

...à l'accélération

 $\phi = k \left(a \, T^2 + X_{\text{mirroir}} \right)$

mesure = $A + B \cos \phi$

- A, B : fluctuent
 - \Rightarrow Plusieurs mesures

...à l'accélération différentielle

$$\begin{cases} \phi_{\mathsf{K}} &= k \ \left(\mathsf{a}_{\mathsf{K}} \mathsf{T}^2 + \mathsf{X}_{\mathsf{mirroir}} \right) \\ \phi_{\mathsf{Rb}} &= k \ \left(\mathsf{a}_{\mathsf{Rb}} \mathsf{T}^2 + \mathsf{X}_{\mathsf{mirroir}} \right) \end{cases}$$

Réjection de mode commun

mesure = $A + B \cos \phi$

A, B : fluctuent

 \Rightarrow Plusieurs mesures

...à l'accélération différentielle

 $\begin{cases} \phi_{\mathsf{K}} &= k_{\mathsf{K}} \left(a_{\mathsf{K}} T^2 + X_{\mathsf{mirroir}} \right) \\ \phi_{\mathsf{Rb}} &= k_{\mathsf{Rb}} \left(a_{\mathsf{Rb}} T^2 + X_{\mathsf{mirroir}} \right) \end{cases}$

Réjection de mode commun

Mais : différence d'accélération \neq différence de phase

Corréler des mesures de paraboles différentes

Description statistique de l'expérience

$$\begin{cases} m_{\mathsf{K}} &= A + B \cos(k_{\mathsf{K}} \left(a_{\mathsf{K}} T^2 + X_{\mathsf{mirroir}} \right)) \\ m_{\mathsf{Rb}} &= C + D \cos(k_{\mathsf{Rb}} \left(a_{\mathsf{Rb}} T^2 + X_{\mathsf{mirroir}} \right)) \end{cases}$$

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} &= A + B \cos(k_{\rm K} \left(a_{\rm K} T^2 + X_{\rm mirroir}\right)) \\ m_{\rm Rb} &= C + D \cos(k_{\rm Rb} \left(a_{\rm Rb} T^2 + X_{\rm mirroir}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\mathsf{K}} &= \mathsf{A} + B\cos(k_{\mathsf{K}}\left(a_{\mathsf{K}}T^{2} + X_{\mathsf{mirroir}}\right)) \\ m_{\mathsf{Rb}} &= \mathsf{C} + D\cos(k_{\mathsf{Rb}}\left(a_{\mathsf{Rb}}T^{2} + X_{\mathsf{mirroir}}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\mathsf{K}} &= \mathsf{A} + B\cos(k_{\mathsf{K}}\left(a_{\mathsf{K}}T^{2} + X_{\mathsf{mirroir}}\right)) \\ m_{\mathsf{Rb}} &= \mathsf{C} + D\cos(k_{\mathsf{Rb}}\left(a_{\mathsf{Rb}}T^{2} + X_{\mathsf{mirroir}}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\mathsf{K}} &= \mathsf{A} + B\cos(k_{\mathsf{K}}\left(a_{\mathsf{K}}T^{2} + X_{\mathsf{mirroir}}\right)) \\ m_{\mathsf{Rb}} &= \mathsf{C} + D\cos(k_{\mathsf{Rb}}\left(a_{\mathsf{Rb}}T^{2} + X_{\mathsf{mirroir}}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\mathsf{K}} &= \mathsf{A} + B\cos(k_{\mathsf{K}}\left(a_{\mathsf{K}}T^{2} + X_{\mathsf{mirroir}}\right)) \\ m_{\mathsf{Rb}} &= \mathsf{C} + D\cos(k_{\mathsf{Rb}}\left(a_{\mathsf{Rb}}T^{2} + X_{\mathsf{mirroir}}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\mathsf{K}} &= \mathsf{A} + B\cos(k_{\mathsf{K}}\left(a_{\mathsf{K}}T^{2} + X_{\mathsf{mirroir}}\right)) \\ m_{\mathsf{Rb}} &= \mathsf{C} + D\cos(k_{\mathsf{Rb}}\left(a_{\mathsf{Rb}}T^{2} + X_{\mathsf{mirroir}}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\mathsf{K}} &= \mathsf{A} + B\cos(k_{\mathsf{K}}\left(a_{\mathsf{K}}T^{2} + X_{\mathsf{mirroir}}\right)) \\ m_{\mathsf{Rb}} &= \mathsf{C} + D\cos(k_{\mathsf{Rb}}\left(a_{\mathsf{Rb}}T^{2} + X_{\mathsf{mirroir}}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\mathsf{K}} &= \mathsf{A} + B\cos(k_{\mathsf{K}}\left(a_{\mathsf{K}}T^{2} + X_{\mathsf{mirroir}}\right)) \\ m_{\mathsf{Rb}} &= \mathsf{C} + D\cos(k_{\mathsf{Rb}}\left(a_{\mathsf{Rb}}T^{2} + X_{\mathsf{mirroir}}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\mathsf{K}} &= \mathsf{A} + B\cos(k_{\mathsf{K}}\left(a_{\mathsf{K}}T^{2} + X_{\mathsf{mirroir}}\right)) \\ m_{\mathsf{Rb}} &= \mathsf{C} + D\cos(k_{\mathsf{Rb}}\left(a_{\mathsf{Rb}}T^{2} + X_{\mathsf{mirroir}}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\mathsf{K}} &= \mathsf{A} + B\cos(k_{\mathsf{K}}\left(a_{\mathsf{K}}T^{2} + X_{\mathsf{mirroir}}\right)) \\ m_{\mathsf{Rb}} &= \mathsf{C} + D\cos(k_{\mathsf{Rb}}\left(a_{\mathsf{Rb}}T^{2} + X_{\mathsf{mirroir}}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\mathsf{K}} &= \mathsf{A} + B\cos(k_{\mathsf{K}}\left(a_{\mathsf{K}}T^{2} + X_{\mathsf{mirroir}}\right)) \\ m_{\mathsf{Rb}} &= \mathsf{C} + D\cos(k_{\mathsf{Rb}}\left(a_{\mathsf{Rb}}T^{2} + X_{\mathsf{mirroir}}\right)) \end{cases}$$

Estimation Bayesienne

Description statistique de l'expérience

$$\begin{cases} m_{\mathsf{K}} &= A + B \cos(k_{\mathsf{K}} \left(a_{\mathsf{K}} T^2 + X_{\mathsf{mirroir}} \right)) \\ m_{\mathsf{Rb}} &= C + D \cos(k_{\mathsf{Rb}} \left(a_{\mathsf{Rb}} T^2 + X_{\mathsf{mirroir}} \right)) \end{cases}$$

Convergence de l'estimation

- Conditions suffisamment répétables
 - Expérience en vol libre
 - Configuration insensible à la rotation
- Vibration des miroirs limitées

Description statistique de l'expérience

$$\begin{cases} m_{\rm K} = A + B\cos(k_{\rm K}(a_{\rm K}T^2 + X_{\rm mirroir})) \\ m_{\rm Rb} = C + D\cos(k_{\rm Rb}(a_{\rm Rb}T^2 + X_{\rm mirroir})) \end{cases}$$

Convergence de l'estimation

- Conditions suffisamment répétables
 - Expérience en vol libre
 - Configuration insensible à la rotation
- Vibration des miroirs limitées

 $\sigma_{X_{\text{mirroir}}} = 2.9 \,\mu\text{m}$ $\Delta \sigma_{X_{\rm mirroir}} = 1.2\,\mu{\rm m}$ $\sigma_{X_{\rm mirroir}} = 0.6\,\mu{\rm m}$ $lpha \sigma_{X_{\mathrm{mirroir}}}$ $= 0.1 \,\mu m$ $\overset{\phi}{\nabla} 10^{-2}$ Dev 10^{-3} 10^{0} 10^{1}

Si $\sigma_{X_{
m mirroir}} \sim 0.1\,\mu{
m m}$, en 30 mesures : $\Delta a/a \sim 5\cdot 10^{-11}$

1 Une source d'atomes froids en microgravité

Chambre d'optique atomique Infrastructure

- Jusqu'à 9 g solidité structurelle
- 6°C–20°C cyclage thermique
- coupure de courant
- pression : 800–1000 hPa

- 4 mois
- 2m×2m
- 700Kg
- 1100VA

1 Une source d'atomes froids en microgravité

Sources laser télécom doublées

Bâtis expérimentaux

- Bâti de lasers et contrôle 450 Kg
- Bâti de physique atomique-150 Kg
- Bâti d'alimentation 100 Kg

1 Une source d'atomes froids en microgravité

Chambre de physique atomique

1 Résultats de la campagne de vol

PMO très robuste

 $(\sim 10^9 \, {\rm at})$

Le champ magnétique terrestre déséquilibre les mélasses optiques

Test du principe d'équivalence

4 s de chute libre + estimateur Bayesien $\Rightarrow \frac{\Delta a}{a} \sim 5 \cdot 10^{-11}$

Mise en place d'une expérience d'atomes froids en microgravité

Nouvelle campagne de vols en février

2 Vers une source atomique collimatée

- Sources atomiques collimatées
- Le montage expérimental
- Des atomes dans le piège optique

2 Sources atomiques collimatées

$$\Delta v \sim rac{\hbar}{m \, \lambda_{
m dB}}$$

Rapport signal à bruit

Collimation

Maximiser le nombre de particules par volume de cohérence, $n \lambda_{dB}^3$

 \Rightarrow Paramètre clé : λ_{dB}

Interférométrie avec des gaz atomiques dégénérés

2 Sources atomiques collimatées

$$\Delta v \sim rac{\hbar}{m \, \lambda_{
m dB}}$$

Rapport signal à bruit

Collimation

Maximiser le nombre de particules par volume de cohérence, $n \lambda_{dB}^3$

 \Rightarrow Paramètre clé : λ_{dB}

Interférométrie avec des gaz atomiques dégénérés

Condensats de Bose	Gaz de Fermi
Interactions :	Blocage de Pauli :
• erreurs systématiques	• pas d'erreurs systématiques
\bullet diminution de $\lambda_{\rm dB}$	 élargissement spectral

 λ_{dB} seulement légèrement meilleur pour les Bosons

2 Produire des gaz atomiques dégénérés

2 Sources laser

Diode laser en cavité étendue \Rightarrow spectralement fin + accordable

Diodes pour 780 nm : ne marchent pas à 767 nm (potassium)

Diode traité anti-reflet en cavité étendue

- \Rightarrow pas de compétition entre cavités
 - + plage de fonctionnement élargie Accordable sur 30 nm

Amplificateurs semi-conducteurs

⇒ 800 mW de puissance de sortie Largeur spectrale de 700 kHz

R. Nyman, G. Varoquaux et al., Rev. Sci. Instrum. 77, 033105 (2006)

2 Jet atomique

piège magnéto-optique 2D

- Faisceaux transverses retro-réfléchis
- Faisceau pousseur

5.10⁸ atomes capturés dans un piège magnéto-optique

2 Agencement de l'enceinte

2 chambres

+ pompes

R. Nyman, G. Varoquaux et al. App. Phys. B, 84, 673-681 (2006)

2 Agencement de l'enceinte

R. Nyman, G. Varoquaux et al. App. Phys. B, 84, 673-681 (2006)
2 Agencement de l'enceinte

R. Nyman, G. Varoquaux et al. App. Phys. B, 84, 673-681 (2006)

2 Agencement de l'enceinte

R. Nyman, G. Varoquaux et al. App. Phys. B, 84, 673-681 (2006)

2 Agencement de l'enceinte

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu{\rm m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu{\rm m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

>

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu\text{m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu{\rm m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

>

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

>

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu{\rm m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu{\rm m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

>

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

>

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu{\rm m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

>

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu\text{m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,
Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu{\rm m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu{\rm m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu{\rm m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu{\rm m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

>

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu\text{m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu{\rm m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

>

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

>

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège $\sim 200\,\mu{\rm m}$,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Atomes piégés au voisinage des fortes intensités

- Laser Erbium fibré : 50 W à 1560 nm
- Profondeur : 75 μ K pour $w = 200 \,\mu$ m

Ajuster la taille du piège

- Chargement : taille comparable au nuage atomique
- Évaporation : fort confinement

Optimum de chargement

- Piège magnéto-optique comprimé : 10^7 At, $300 \,\mu{\rm m}$, $50 \,\mu{\rm K}$
- Optimum expérimental : taille du piège \sim 200 μ m,

Déplacement lumineux

Déplacement lumineux

Niveau supérieur de la raie D2 fortement déplacé

Déplacement lumineux

Niveau supérieur de la raie D2 fortement déplacé

 \Rightarrow Imagerie sélective en énergie potentielle

Déplacement lumineux

Niveau supérieur de la raie D2 fortement déplacé

 \Rightarrow Imagerie sélective en énergie potentielle

Déplacement lumineux

Niveau supérieur de la raie D2 fortement déplacé

 \Rightarrow Imagerie sélective en énergie potentielle

Déplacement lumineux

Niveau supérieur de la raie D2 fortement déplacé

 \Rightarrow Imagerie sélective en énergie potentielle

Déplacement lumineux

Niveau supérieur de la raie D2 fortement déplacé

 \Rightarrow Imagerie sélective en énergie potentielle

Déplacement lumineux

Niveau supérieur de la raie D2 fortement déplacé

 \Rightarrow Imagerie sélective en énergie potentielle

Déplacement lumineux

Niveau supérieur de la raie D2 fortement déplacé

 \Rightarrow Imagerie sélective en énergie potentielle

Déplacement lumineux

Niveau supérieur de la raie D2 fortement déplacé

 \Rightarrow Imagerie sélective en énergie potentielle

Déplacement lumineux

Niveau supérieur de la raie D2 fortement déplacé

 \Rightarrow Imagerie sélective en énergie potentielle

Reconstruction de la forme du faisceau

2 Déplacement lumineux des lignes atomiques

Reconstruction de la forme du faisceau

Description du faisceau gaussien

Extraction du M2 : ~ 2

2 Chargement du piège dipolaire

Deux processus de pertes

 $au_1 \sim 100\,{
m ms}$ $au_2 \sim 1\,{
m s}$

2 Chargement du piège dipolaire

10⁵ atomes transférés après évaporation libre

Conclusion

Une source atomique en microgravité

- Construction et démonstration d'une source d'atomes froids
- Jusqu'à 4 s de temps de vol possible
- Un protocole pour tester le principe d'équivalence

Vers une source cohérente toute optique

- Développement de lasers semi-conducteurs accordables
- Construction d'une expérience d'atomes ultra-froids compacte
- Chargement des atomes dans un piège optique compressible

Perspective

Tester le principe d'équivalence avec des gaz dégénérés

- Faire rebondir les atomes
- Annuler les interactions

Perspective

Tester le principe d'équivalence avec des gaz dégénérés

- Faire rebondir les atomes
- Annuler les interactions

Contrôle des interactions avec du potassium et du rubidiumChamps jusqu'à 1000 GaussHomogénéité 70 ppm

Homogénéité mesurée sur 4 mm² : 180 ppm

Merci ! Alain et Philippe

Krub particulièrement Rob, Jean-François, Jean-Philippe

Little-ICE particulièrement Nassim

Les électroniciens Frédérique et André

Le service achat, les services généraux, les TPs Tout le groupe d'optique atomique

> Les mécaniciens Patrick et Michel

Tous ceux que j'ai oubliés

- Lentille sur platine de translation
- Transport d'image dans l'enceinte
- Recirculation