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Chapitre 1

Introduction Générale

1.1 Histoire de la notion de décomposition dominée

Un difféeomorphisme f € Diff"(M), ou r > 1, est dit structurellement
stable si tout difféomorphisme voisin g est conjugué a f par un homéomor-
phisme h de M. On rappelle qu’un point périodique de période p d’un difféo-
morphisme f est hyperbolique si la p-éme itérée de la différentielle df au dessus
de ce point n’a aucune valeur propre de module 1. Lorsque de plus il y a des
valeurs propres de modules inférieurs & 1 et d’autres de modules supérieurs
a 1, on dit que c’est une selle. Dans les années trente, Andronov et Pontria-
guine [5] on remarqué une correspondance entre la stabilité structurelle et les
comportements hyperboliques. De fait, la stabilité structurelle locale autour
d’un point selle découle d’un théoréme de Hartmann-Grobmann (voir [31])

Au début des années soixante, D.V. Anosov [6] a prouvé la stabilité
structurelle des flots géodésiques des variétés riemanniennes compactes de
courbure négative. Ce résultat [7] s’applique en fait & toute une classe de
dynamiques : un flot d’une variété compacte riemannienne M est Anosov s’il
n’a pas de singularité et si le fibré tangent T'M se décompose en la somme
directe de trois sous-fibrés :

— un fibré stable, c’est-a-dire uniformément contracté : il existe un réel

T > 0 tel que le temps T du flot y contracte strictement tout vecteur
non nul.

— un fibré instable, c’est-a-dire uniformément dilaté : il existe un réel

T > 0 tel que le temps T" du flot y dilate strictement tout vecteur non
nul.

— un fibré unidimensionnel qui n’est ni contracté, ni dilaté.

On définit de méme la notion de difféomorphisme d’Anosov, en oubliant
le troisiéme fibré.

A la méme époque, S. Smale [59] exhibait une nouvelle classe de dyna-
miques particuliérement simples - les dynamiques Morse-Smale - et structu-
rellement stables. Un point = est non-errant pour un diffeomorphisme f si
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pour tout voisinage U de x, il existe un entier n > 1 tel que f™(U) intersecte
U. Un diffeomorphisme f est Morse-Smale si I'ensemble Q(f) de ses points
non-errants est une réunion finie de points périodiques hyperboliques, et si
pour tout couple de points dans Q(f) la variété stable de I'un et la variété
instable de 'autre se rencontrent transversalement en tout point d’intersec-
tion.

1.1.1 La théorie hyperbolique

S. Smale a créé une notion générale qui regroupe les difféomorphismes
d’Anosov et Morse-Smale. Un compact invariant K d’un difféomorphisme
f est hyperbolique si et seulement la restriction du fibré tangent & K se
décompose en deux sous-fibrés supplémentaires E° et B invariants par la
différentielle df, tels qu’une itérée de df contracte E® uniformément et dilate
E* uniformément. Plus précisément, il existe n € N et 0 < A < 1 tels
que pour tous vecteurs unitaires u,v dans E*, E% on a ||df"(u)|| < A7! et
ldf (w)]] > .

Un difféomorphisme est dit hyperbolique ou Aziome A si son ensemble
non-errant est hyperbolique et si I’ensemble Per(f) des points périodiques
de f est dense dans l’ensemble non-errant (f). D’aprés le théoréme de
décomposition spectrale de Smale, le non-errant d’un difféomorphisme hy-
perbolique s’écrit comme la réunion Q(f) = AjU...UA; de picces "basiques” :
ce sont des compacts deux a deux disjoints, isolés, invariants par f et tran-
sitifs (un ensemble est dit ¢ransitif lorsqu’il contient une orbite dense). De
plus 'a-limite comme 'w-limite de toute orbite est contenue dans un A;. En
particulier, si Q(f) = M, il n’y a qu’une piéce basique et f est un difféomor-
phisme d’Anosov.

Un difféeomorphisme hyperbolique est dit sans cycle si et seulement s’il
n’y a aucun cycle de piéces basiques. En d’autres termes, il n’y a pas de
suite périodique de piéces basiques telles que I’ensemble instable de chacune
intersecte ’ensemble stable de la suivante. Le difféomorphisme satisfait la
condition de transversalité forte si pour tous x,y dans I’ensemble non-errant,
la variété stable de l'un et la variété instable de "autre sont transverses.

Dans [47], J. Palis et S. Smale ont avancé une conjecture de stabilité :
Pour tout difféeomorphisme f € Diftf" (M),

— hyperbolicité et transversalité forte équivaut & stabilité structurelle.

— hyperbolicité et condition sans cycle équivaut a 2-stabilité : f est
conjugué a tout diffeomorphisme g C"-voisin, par restriction aux en-
sembles non-errants respectifs.

Smale [62] a montré qu’hyperbolicité sans cycle implique Q-stabilité. Puis
Robbin [53] en topologie C?, puis Robinson [54] en C, ont montré qu’un dif-
féomorphisme hyperbolique satisfaisant la condition de transversalité forte
est structurellement stable. A la fin des années 80, Ricardo Mané [39] a
achevé de prouver que la stabilité structurelle implique ’hyperbolicité et la
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transversalité forte. En s’appuyant sur les techniques de Mané, Palis [45] a
obtenu qu’(2-stabilité implique hyperbolicité et sans cycle, terminant ainsi
la preuve en classe C' de la conjecture de stabilité, prés de 20 ans aprés
I’avoir énoncée. On pensait dans les années 60 que I’ensemble des difféomor-
phismes hyperboliques d’une variété compacte était dense dans ’espace des
difféomorphismes. Mais rapidement sont apparus des exemples d’ouverts de
diffeomorphismes non structurellement stables [60] et de difféomorphismes
non {2-stables [4].

1.1.2 Hyperbolicité partielle et formes faibles de stabilité

Afin d’étudier D'existence et la dynamique des difféeomorpismes loin de
I'hyperbolicité, Hirsch, Pugh, Shub [35] et Brin, Pesin [19] ont introduit les
sytémes partiellement hyperboliques, i.e. tels que le fibré tangent se décom-
pose en une somme directe E° @ E¢ @ E" en trois sous-fibrés invariants, ol
FE? est uniformément contracté par la dynamique, E" est uniformément di-
laté, et E° est central, c’est-a-dire moins contracté que E° et moins dilaté
que E“. On montre aisément que les fibrés d’une décomposition partielle-
ment hyperbolique sont continus, et persistent en variant contintiment par
perturbations C1.

Ils ont notamment montré l'intégrabilité des fibrés stables et instables :
étant donné un systéme partiellement hyperbolique de classe C", il existe un
feuilletage F*® tangent au fibré stable et un feuilletage F* tangent au fibré
instable. Le fibré central, quant & lui, n’est en général pas intégrable. On
trouvera des indications dans [61, Section 3.1] pour la construction sur le
tore de dimension 6 de difféomorphismes robustement non-hyperbolique, et
partiellement hyperboliques avec un fibré non-intégrable.

Mais lorsque le feuilletage central existe, on a en général une forme faible
de stabilité structurelle. On dit que le feuilletage central de f partiellement
hyperbolique est strucurellement stable si pour tout difféomorphisme g C'-
voisin, le fibré central de g est intégrable, et s’il existe un homéomorphisme
h de M qui envoie le feuilletage central de f sur le feuilletage central de
g, de sorte que h o f o h™! soit isotope & g le long des feuilles centrales.
Le résultat principal de [35] est que si un systéme partiellement hyperbo-
lique a un feuilletage central expansif par plaques (plaque-exzpansive), alors
ce feuilletage est structurellement stable.

1.1.3 Décompositions dominées

Une forme encore plus faible d’hyperbolicité est celle de décomposition
dominée, qui fut introduite indépendamment par Liao [36] et Mané [38] dans
leurs travaux sur la conjecture de stabilité. Une décomposition dominée pour
une dynamique fixée est une décomposition du fibré tangent en une somme
directe de sous-fibrés invariants, tels que sur chaque sous-fibré la dynamique
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est moins dilatante ou plus contractante que sur la suivante. On renvoie le
lecteur & la section 1.3.1 pour une définition formelle.

De l'existence de champs de cones stables autour des fibrés, on déduit
quune décomposition dominée persiste par C'-perturbation de la dyna-
mique, et que les fibrés sont continus dans le tangent T'M et varient contint-
ment (voir [14]) par perturbation. Les fibrés d’une décomposition dominée
ne sont généralement pas intégrables, a part les fibrés extrémaux lorsque
uniformément contractants ou dilatants.

1.2 Dynamiques robustement non-hyperboliques

Une propriété d’un C"-difféeomorphisme f est dit C"-robuste si elle per-
siste par CT-perturbation de f. Des exemples de diffeomorphismes C'-
robustement non hyperboliques on été construits par Abraham et Smale [4]
en dimension > 4, puis Simon [58] en dimension > 3.

1.2.1 Bifurcations homoclines

En dimension 2, il n’est pas connu si les difféomorphismes hyperboliques
sont denses en topologie C'!, cependant, S. Newhouse a exhibé un ouvert U
de Diff?(M?) tel que tout f dans un résiduel de I/ a une infinité de puits ou
de sources. La propriété de posséder une infinité de puits ou de source est
appelée phénomeéne de Newhouse. Pour construire cet exemple, Newhouse a
étudié la dynamique au voisinage des tangences homoclines.

Définition 1.2.1. Une tangence homocline est une intersection non trans-
verse des variétés stable et instable d’une selle.

La tangence homocline est trés instable et peut-étre cassée par une petite
perturbation de la dynamique. Cependant, Newhouse [42, 43] a démontré que
sur les surfaces en topologie C?, prés de tout diffeomorphisme admettant une
tangence homocline, il y a un ouvert U de difféomorphismes et un résiduel
R € U tels que tout g € R présente un phénomeéne de Newhouse.

Un autre angle d’étude des dynamiques non-hyperboliques était la notion
de transitivité. On dit qu'une dynamique sur M est transitive s’il existe une
orbite dense dans M. On s’est demandé si les difféomorphismes d’Anosov
étaient caractérisés par la transitivité robuste. Plusieurs exemples d’ouverts
de difféeomorphismes robustement transitifs et non hyperboliques ont été ob-
tenus en dimension > 3.

Comme conséquence de la stabilité structurelle des feuilletages centraux,
il est exhibé dans [35] un difféomorphisme robustement transitif avec deux
selles d’indices différents, par CY-perturbation d’un difféomorphisme d’Ano-
sov du tore de dimension 4. S’il existait un difféomorphisme voisin hyperbo-
lique, par transitivité, I'unique piéce basique serait M tout entier. Il ne peut
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cependant pas y avoir deux selles d’indices différents dans une méme piéce
basique. C’est donc un difféomorphisme robustement non-hyperbolique.
Par des méthodes différentes, Mafié¢ [37] a trouvé que certaines C°-
perturbations d’un difféomorphisme d’Anosov du tore de dimension 3 sont
robustement transitives et admettent deux selles d’indices différents. Cet
exemple est loin des tangences homoclines mais est dans l'adhérence des
difféomorphismes admettant un cycle hétérodimensionnel :

Définition 1.2.2. Un cycle hétérodimensionnel est un couple de selles d’in-
dices différents telles que la variété instable de l'une intersecte la variété
stable de 'autre.

Un cycle hétérdimensionnel est également un phénomeéne instable. Ce-
pendant C. Bonatti et L. Diaz [12] ont montré que prés d’un cycle hétérodi-
mensionnel de codimension 1 (la différence d’indice entre les deux selles est
1), la fermeture des difféeomorphismes présentant un cycle hétérodimension-
nel est d’intérieur non vide.

1.2.2 Conjectures de densité de Palis

Palis a proposé de caractériser les dynamiques robustement non hyper-
boliques par ’accumulation par des tangences homoclines ou des cycles hé-
térodimensionnels.

Conjecture 1.2.3 (Conjecture de densité C" de Palis). La réunion
des difféeomorphismes hyperboliques et des difféomorphismes admettant une
tangence homocline ou un cycle hétérodimensionnel est dense dans Dift" (M).

Une version faible de cette conjecture avance ’existence d’une dichotomie
entre difféomorphismes Morse-Smale et fers & cheval.

Conjecture 1.2.4 (Conjecture faible de densité C"). L’ensemble des
difféomorphismes Morse-Smale et des difféomorphismes admettant une inter-
section homocline sont deuz ouverts dont la réunion est dense dans Diff" (M).

En 1967, Pugh [51] a montré le lemme de fermeture C' (C'-closing
lemma), qui dit que si un point « € M est récurrent pour un difféomor-
phisme f, alors il existe une C''-perturbation g arbitrairement faible de f
pour laquelle x est un point périodique. Dans les années 90, Hayashi [33] a
montré le lemme de connection C!' (C'-Connecting Lemma) : sous des hy-
pothéses d’accumulation sur les variétés stables et instables de deux selles
d’un difféeomorphisme, une perturbation arbitrairement faible crée un cycle
entre ces deux selles.

Ces deux lemmes sont fondamentaux dans la création par perturbation
de selles périodiques (& partir desquelles, sous certaines conditions, on crée
des tangences homoclines), et dans la création de cycles hétérodimensionnels.
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Ils sont le point de départ de tous les résultats partiels connus, dans le cadre
de la conjecture de densité C'. A I'heure actuelle, aucun equivalent de ces
lemmes n’est démontré en topologie C” pour r > 1, aussi n’a-t-on aucune
idée de la facon dont on pourrait répondre aux conjectures de densité C”.

La conjecture faible de densité C! a été montrée par Bonatti, Gan et
Wen [15] en dimension 3. Trés récemment, S.Crovisier [23], utilisant les tra-
vaux de Wen [65] et étudiant de maniére originale la dynamique dans la
direction centrale, I’a prouvée en toute dimension.

Théoréme 1.2.1 (Crovisier). L’ensemble des difféomorphismes Morse-
Smale et 'ensemble des difféomorphismes admettant une intersection homo-
cline sont deux ouverts disjoints dont la réunion est dense dans Diff!(M).

Des avancées récentes laissent espérer qu’une preuve de la conjecture de
Palis est accessible en C'.

En 2000, E. Pujals et M. Sambarino dans [52] ’ont montré pour les sur-
faces : un difféeomorphisme d’une surface compacte peut étre approchée en
topologie C'! soit par des difféomorphismes hyperboliques, soit par des difféo-
morphismes admettant une tangence homocline. Précisons les deux étapes
principales de leur preuve. Ils ont d’abord montré (Lemme 2.0.2) qu’en dehors
de la fermeture de ’ensemble des difféeomorphismes avec tangence homocline,
il y a un ouvert dense de difféomorphismes g dont le non-errant 2(g) admet
une décomposition dominée non-triviale.

Un second résultat (Théoréme B.) dit que si f est un difféomorphisme
C? sur une surface compacte et si Tia\M = E @ F est une décomposition
dominée au-dessus d’un compact A invariant pour f, alors A est la réunion
disjointe d’un ensemble hyperbolique et d’un nombre fini de courbes fermées
simples C' normalement hyperboliques, telles que que les restrictions f?|C
sont conjuguées a une rotation irrationnelle (p; est la période de la courbe
Ch).

On obtient facilement la conjecture de densité C! en combinant ces deux
résultats. En transposant cette méthode en dimension supérieure, on peut
naturellement déja chercher a montrer que loin des tangences homoclines il
y a des décompositions dominées fines sur le non-errant (ou sur les classes
homoclines, ou I’ensemble récurrent par chaines).

Hayashi avait annoncé des avancées dans la preuve de la conjecture de
Palis en toute dimension; cependant rien n’a encore été publié. Dans [65],
L. Wen a obtenu des résultats partiels remarquables. A partir de résultats
antérieurs [64] et du lemme de sélection de Liao (voir [36]), il montre que gé-
nériquement, loin des dynamiques hyperboliques, des tangences homoclines
et des cycles hétérodimensionnels, les ensembes minimaux non-hyperboliques
admettent une décomposition partiellement hyperbolique avec un ou deux
fibrés centraux de dimension 1.
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1.3 Définitions élémentaires et notations

Avant d’énoncer les résultats prinipaux de cette thése, on rappelle les dé-
finitions de fibrés, cocycles linéaires et décompositions dominées. On évoque
les classes homoclines et la théorie de Conley, outils essentiels en dynamique
Cl-générique.

1.3.1 Cocycles linéaires et décompositions dominées

Soit £ = (E,X,m: E — X) un fibré vectoriel de dimension d au-dessus
d’'une base X, i.e., pour tout € ¥, la fibre E, = 7 () est un espace
vectoriel de dimension d. En reprenant les notations de [16] et [13], on dit
qu'un couple de bijections A = (f: ¥ — X, A: E — E) est un cocycle
linéaire ou automorphisme de &£, si et seulement si le diagramme suivant
commute :

E—2 | . (1.1)

Un fibré euclidien (&, ]|.||) est un fibré vectoriel tel que chaque fibre est
muni d’une métrique euclidienne ||.||. Pour tout fibré euclidien £ et toute
bijection f de sa base X, ’ensemble des cocycles linéaires au dessus de la
dynamique f est muni de la distance suivante :

dist(A, B) = sup{[[A(u) = Bu)|, A7 (w) =B~ ()| / we& [lul =1}

Un cocycle linéaire est dit borné par C > 0 si pour tout vecteur unitaire

u€ & ona A, A7 (W) < C.

Définition 1.3.1. Etant donné un cocycle linéaire A sur un fibré euclidien &,
on appelle décomposition dominée pour A toute décomposition A-invariante
E=FE1P..PD E,en sous-fibrés vectoriels vérifiant la propriété suivante : il
existe C > 0 et 0 < A < 1 tels que pour chaque 1 < i < ¢, pour tout couple
de vecteurs unitaires u,v € E;, ;11 et tout n € N|

L7 ()l < CA*[L (W)l

On dit alors que E; est dominé par F;;1, et on écrit E; < E;11. De fagon
évidente, si la décomposition &€ = E1 @ ... @ E, est dominée, alors pour tout
1<i<j</{ onak; < E; En construisant des champs de cones stables, on
montre que toute décomposition dominée persiste par perturbation et varie
contintiment : pour toute famille de voisinages V1, ..., Vy des fibrés Fy, ..., Ep,
il existe € > 0 tel que tout cocycle linéaire B vérifiant dist(A, B) < € admet
une décomposition dominée F} & ... ® Fy, ou F; € V;, pout tout 4.
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De plus dans le cas particulier ou £ est ’espace tangent d’une variété M
restreint & un compact X, et ou A est la différentielle df d’un difféomorphisme
de M laisant invariant le compact X, alors (voir [14, Page 292], par exemple)
les sous-fibrés F; sont continus.

On dit qu'un fibré invariant F' est stable ou uniformément contracté par
A si et seulement 8’1l existe C' > 0 et 0 < A < 1 tels que pour tout vecteur
unitaire u € F et tout n € N, on a [|A™(u)|| < C.A". On dit qu'il est instable
ou uniformément dilaté s’il est uniformément contracté par le cocycle linéaire
inverse A1,

Définition 1.3.2. Etant donné un cocycle linéaire A sur un fibré euclidien
&, on appelle décompostion partiellement hyperbolique pour A toute une dé-
composition dominée £ = E°* $ 1 & ... 6 Ey & E" telle que E° est stable et
E" est instable pour A.

Etant donné un fibré euclidien £ avec une base compacte X, et une dé-
composition dominée £ = F; @ ...  Ey pour un cocycle linéaire A, une
métrique adaptée & cette décomposition dominée est une métrique ||.||. sur
chaque fibre de & telle que pour tout 1 < i < ¢, pour tous vecteurs unitaires
u,v € E;j,Eir1, on a ||A(u)|l« < [[A(v)|«. Si A admet une décomposition
partiellement hyperbolique £ = E* @ E1 & ... ® E, @ E*, la métrique ||.||«
y est adaptée si et seulement si elle est adaptée & la décomposition domi-
née correspondante, et si pour tous vecteurs unitaires u,v € E° E" on a

JA@. < 1 et [A()]. > 1.

1.3.2 Force d’une domination

On dit qu'une décomposition & = F @ G invariante pour un cocycle
linéaire A est N-dominée si, aprés N itérations, les vecteurs de F' sont deux
fois plus dilatés, ou deux fois moins contractés que ceux de F, c¢’est-a-dire
que pour tous vecteurs unitaires u,v € F, G, on a ||AYN (u)|| < 1/2[|AN (v)]].
On dira qu’une domination est d’autant plus faible que N est grand.

Remarque 1.3.3. D’apres cette définition, si une décomposition invariante
est N-dominée, elle n’est pas forcément M-dominée pour tout M > N.

Cette remarque n’a cependant pas lieu lorsque la métrique ||.|| est adaptée
a la décomposition dominée.

Dans [29], la définition de décomposition N-dominée différe de celle que
nous venons de donner; une décomposition est N-dominée d’apres [29] si
elle est L-dominée pour un certain L < N. On verra que ces deux définitions
sont équivalentes, dans une certaine mesure (voir le corollaire 1.4.1).
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1.3.3 Notions de récurrence
Classes homoclines

Dans cette section, r > 1 et M est une variété compacte riemannienne.
Soit f un élement de Diff"(M). On dit qu'un compact f-invariant A est
hyperbolique si et seulement s'il existe une décomposition invariante T'M|y =
E° @ E“ ou les fibrés E® et E“ sont respectivement stable et instable.

Un point périodique P de f est une selle si son orbite Orby(P) est hy-
perbolique si les fibrés stable et instable sont tous les deux non triviaux.
L’ensemble stable W*(Orb;(P)) = {x € M/dist(f"(P),Orbs(P)) — 0} et
I'ensemble instable W*(Orbs(P)) = {x € M/dist(f~"(P),Orbs(P)) — 0}
sont tous les deux des variétés plongées de classe C", et sont tangents aux
fibrés E° et E".

On dit que deux points selles sont homocliniqguement reliés si la variété
instable de chacun intersecte transversalement la variété stable de l'autre.
Ceci définit une relation d’équivalence sur les selles.

Définition 1.3.4. La classe homocline H(Q, f) d'un point selle @ d’'un
diffeomorphisme f est la fermeture de I’ensemble des point hyperboliques
homocliniquement reliés & Q.

Par définition une classe homocline contient un sous-ensemble dense de
points périodiques, et de fait est dans ’ensemble non-errant de f. La classe
homocline d’une selle @) est topologiquement transitive ; elle peut étre définie
de maniére équivalente comme la fermeture de ’ensemble des intersections
transverses des variétés stables et instables de @ (voir [44]).

Théorie de Conley

Dans ce paragraphe, on décrit briévement une notion de récurrence in-
troduite par Conley [21]. Une suite (z,,) est appelée e-pseudo-orbite pour un
e > 0, si et seulement si la distance dist(f(zy),Zn+1) est plus petite que €
pour tout n. L’ensemble récurrent par chaines R(f) est 'ensemble des points
x tels que pour tout € > 0 il y a une e-pseudo-orbite non réduite & un seul
point, et allant de z & x. On définit une relation d’équivalence ~ sur R(f)
de la facon suivante : x ~ y si et seulement si pour tout € > 0, il existe une
e-pseudo-orbite allant de z & y et une autre allant de y a =.

Les classes de récurrence par chaines sont les classes d’équivalence de
~ dans R(f). Comme M est compacte, ’ensemble récurrent par chaines est
compact et non vide, et chaque classe de récurrence par chaines est compacte.
L’ensemble non errant est clairement contenu dans I’ensemble récurrent par
chaines, et comme toute classe homocline est transitive, toute classe homo-
cline est dans une classe de récurrence par chaines.

Un résiduel d'un espace topologique est une intersection dénombrable
d’ouverts denses. Une propriété dynamique P est dite C"-générique si elle
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est satisfaite par un résiduel de I’ensemble des dynamiques C”. On dit égale-
ment que C"-génériquement la dynamique satisfait la propriété P. Dans [10],
C. Bonatti et S. Crovisier ont montré que C'-génériquement, les classes de
récurrence par chaines non apériodiques et les classes homoclines coincident :

Théoréme 1.3.1 (Bonatti, Crovisier). Etant donnée une variété com-
pacte M, il y a un résiduel HCR dans Diffl(M) de diffeomorphismes f tels
que chaque classe homocline de f est une classe de récurrence par chaines,
et réciproqguement, chaque classe de récurrence par chaines qui n’est pas une
classe homocline est apériodique (ne contient pas de point périodique).

Crovisier [22]| a récemment montré que génériquement une classe de ré-
currence par chaines est limite de Hausdorff d’une suite d’orbites de points
selles. Il est & noter que ces résultats ont été obtenus en travaillant sur la
preuve du lemme de fermeture de Pugh, et qu’elles peuvent étre vues comme
des généralisations de celui-ci. De fait, le lemme de fermeture découle direc-
tement du résultat de Crovisier.

1.3.4 Perturbations de difféomorphismes

Soit M une variété compacte riemannienne. On a une distance canonique
dist: TM x TM — RY sur le fibré tangent T'M. Un difféomorphisme f est
une e-perturbation de g en topologie C' si et seulement si, pour tout vecteur
unitaire v € TM, on a dist(df (v),dg(v)) < € et dist(df ~*(v),dg'(v)) < e.
Pour un sous-ensemble S \ M, f est une pertubation de g sur S si f =g
en-dehors de S.

Un lemme de Franks [26] permet de prolonger une perturbation de la
différentielle d’un difféomorphisme le long d’un point périodique en une per-
turbation locale du difféomorphisme. On le formule ainsi précisément :

Lemme 1.3.5 (Franks). Soit f un difféomorphisme d’une variété compacte
riemannienne M. Pour tout d > 0, il existe ¢ > 0 tel que :

st X est un ensemble f-invariant fini et si A est un cocycle linéaire sur
TM;s; avec dist(A, df|s) < €, alors on trouve une d-perturbation g de f sur
un voisinage arbitrairement petit de ¥ tel que dgiz = A.

Grace a ce lemme, on rameénera & chaque fois les problémes de perturba-
tions de difféomorphismes le long d’orbites périodiques au cas linéaire. On
travaillera ainsi sur des cocycles linéaires dans la preuve du Théoréme 4.5.2,
et sur ce qu'on appelera diffécomorphismes selle linéaires (linear saddle dif-
feomorphisms) dans la preuve du Théoréme 5.1.3. Remarquons que le lemme
de Franks est particulier & la topologie C*.
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1.4 Enoncé des résultats

L’objet de cette thése est principalement I’étude de la dynamique locale
des difféeomorphismes le long d’orbites périodiques, afin de déterminer quelles
dynamiques peuvent étre obtenues par perturbations en ’absence de décom-
position dominée. On en déduit, entre autres, des dichotomies génériques
entre phénomeénes de Newhouse et difféeomorphismes dont la dynamique pré-
sente une certaine forme de domination, et entre tangences homoclines et
dominations stable/instable.

1.4.1 Meétriques adaptées

Dans le chapitre 3, on répond & une ancienne question de Hirsch, Pugh,
Shub [35, page 5] & propos de 'existence de métriques adaptées aux décompo-
sitions dominées. On savait que les décompositions hyperboliques admettent
des métriques adaptées. En voici un résumé de la preuve :

Soit K un compact invariant d’un difféomorphisme f, et soit T'M | =
E*® & E* une décomposition hyperbolique pour df. Alors, pour tout vecteur
u € E%, ||df"(u)| tend exponentiellement vers 0 lorsque n va & l'infini, ou
Il est la métrique riemannienne initiale sur M.

On peut alors définir une nouvelle métrique ||.||s sur le fibré E® comme la
somme des poussés en avant de la métrique initiale par les itérées positives
de df. Clairement, comme ||u||s = [Ju||+ ||df (u)||s on a ||df (u)||s < |Ju||s pour
tout vecteur non-nul u. Symétriquement, on définit une métrique .||, sur E*
telle que ||df (u)|lw > ||ulu. On construit alors une métrique .||« sur M qui
coincide avec ||.||s sur Es et |||, et E" : elle est adaptée par construction. On
obtiendrait de méme une métrique adaptée dérivant d’un produit scalaire en
prenant la série des poussés en avant par df du produit scalaire initial sur
M. Cette métrique peut alors étre lissée tout en restant adaptée.

Hirsch, Pugh and Shub on remarqué que lorsqu’il n’y avait que deux fi-
brés dans une décomposition dominée et que 'un des deux fibrés était de
dimension un, une série similaire permettait encore la construction d’une
métrique adaptée. Cependant, l'existence d’une telle métrique leur était in-
connue dans le cas général pour les décompositions dominées ou partiellement
hyperboliques. C’est pourquoi il leur faut distinguer hyperbolicité normale
immédiate (immediate normal hyperbolicity) et hyperbolicité normale rela-
tive (relative normal hyperbolicity) [35, page 3|. Le théoréme suivant répond
complétement & leur question :

Théoréme 1.4.1 (G.). Soit f un difféomorphisme d’une variété rieman-
nienne M. Supposons que f admette une décomposition dominée sur un com-
pact invariant K, c’est-a-dire que le cocycle linéaire dfyx défini comme la
restriction de df a T Mk admet une décomposition dominée. Alors il existe
une métriqgue riemannienne lisse sur M qui est adaptée a cette métrique. Si
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la décomposition est partiellement hyperboliqgue, on a encore une métrique
riemannienne lisse qui y est adaptée.

La méthode est la construction de séparateurs entre les fibrés de la dé-
composition dominée, c’est-a-dire des fonctions de K dans RT qui corres-
pondraient a ’ajout & la dynamique de fibrés de dimension 1 entre chaque
couple de fibrés consécutifs. Alors sur chaque fibré, grace a une série de méme
inspiration que les précédentes, on trouve une métrique qui est adaptée aux
dominations relatives aux deux séparateurs qui I’encadrent. Lorsque les sé-
parateurs sont choisis convenablement, on a alors une métrique adaptée a la
décomposition dominée.

Par conséquent, pour toute décomposition dominée, il y a une métrique
sur le fibré telle que si on a une N-domination entre un couple de fibrés, alors
on a une L-domination pour tout L > N. Le corollaire suivant peut étre ai-
sément obtenu sans métriques adaptées, celles-ci ne facilitent que légérement
la preuve.

Corollaire 1.4.1. Soit f un difféormorphisme d’une variété compacte M.
Alors pour tout L € N, il existe N € N tel que si une décomposition T M, =
E @ F au dessus d’'un compact K n'est pas N'-dominée pour un certain
N' > N, alors elle n’est L'-dominée pour aucun L' < L.

Preuve : On raisonne par ’absurde et on suppose qu’il existe une suite
K, une suite L,, d’entiers entre 1 et L, et une suite N,, tendant vers o0,
telles qu'il existe une décomposition Lj,-dominée T\, = E, @ Fj, qui n’est
pas N,-dominée. Quitte a extraire, on peut supposer que les décompositions
Tk, = En ® F, ont méme indice i et sont Lo-dominées. Alors on a une
décomposition Lg-dominée E @ F d’indice ¢ sur la fermeture de la réunion
UnenKy. On a alors une métrique riemannienne ||.||. sur M adaptée a cette
décomposition dominée. En particulier, pour tout € > 0, lorsque N est plus
grand qu’un certain N, on a pour tous vecteurs unitaires u € E,v € F' que
Ndf N (u)]« < el|df™ (v)]]«. Mais la métrique |||« est équivalente & la métrique
initiale ||.||, ce qui contredit le fait que pour tout NN, il existe (u,v) € E, X F},
tels aue [[df ™ (u)| > 1/2]ldf ™ (v)]| 0

1.4.2 Phénoménes de Newhouse en toute dimension

Avant que Pujals et Sambarino ne prouvent la conjecture de densité C!
en dimension 2, R. Mafié [38] a obtenu une dichotomie Cl-générique entre
phénomeénes de Newhouse et difféomorphismes hyperboliques. Ce résultat a
été généralisé par Bonatti, Diaz et Pujals [13] en toute dimension. Ils ont
prouvé que génériquement, un difféomorphisme dont une des classes homo-
clines n’a pas de décomposition dominée a une infinité de puits ou de sources.
C’est un corollaire du théoréme suivant :
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Théoréme 1.4.2 (Bonatti, Diaz, Pujals). Soit P une selle d’un difféo-
morphisme f € Diff' (M), alors au moins l'une des deux assertions suivantes
est vérifiée :
— la classe homocline H(P, f) admet une décomposition dominée ;
— pour tout voisinage U de H (P, f), pour tout k € N, g est arbitrairement
Cl-proche de f avec k puits ou sources dont les orbites restent dans U.

La preuve de Bonatti-Diaz-Pujals s’appuient sur 'existence de ce qu’ils
appellent des transitions. Les transitions sont la traduction en termes de co-
cycles linéaires de la propriété suivante des classes homoclines : étant donnés
deux orbites périodiques d’une classe homocline, il y a des points périodiques
qui passent arbitrairement prés de P, puis arbitrairement prés de @, et ainsi
de suite; on peut de surcroit controler le temps que 'orbite va passer prés
de P puis prés de @, de sorte que la différentielle le long de cette orbite est
alternativement treés proche de la dérivée le long de Orb(P), et de la dérivée
le long de Orb(Q) sur des intervalles de temps de longueurs prescrites.

Aussi les résultats de [13] reposent-ils fortement sur le fait qu’ils se placent
a l'intérieur de classes homoclines. Dans cette thése on montre un énoncé
similaire en ne travaillant que sur une seule orbite d’un difféomorphisme f.
On obtient précisément le résultat suivant :

Théoréme 4.5.2 (Bonatti, G., Vivier). Soit un difféomorphisme f €
Diff! (M). Alors pour tout € > 0, il existe N € N tel que :

si Q est un point périodique et si le cocycle df Orb(Q) n’a pas de de
décomposition N-dominée, alors il y a une e-perturbation g de f sur un
voisinage arbitrairement petit de l’orbite de QQ, qui préserve cette orbite, et
telle que application de premier retour dgf’orb(Q) a des valeurs propres réelles
de méme module différent de 1.

En particulier, @) est un puits ou une source pour g. Le Chapitre 4 est
consacré & la preuve du théoréme 4.5.2. Avec un théoréme de Crovisier [22]
qui dit que génériquement toute classe de récurrence par chaines est limite de
Hausdorff d'une suite d’orbites périodiques, Abdenur, Bonatti, Crovisier [2]
en ont déduit le résultat générique suivant :

Théoréme 1.4.3 (Abdenur, Bonatti, Crovisier). Il eziste un résiduel
R e Diffl(M) de difféomorphismes f tels que pour toute classe de récurrence
par chaines K de f, on est en présence de l'un des deur cas suivants :

— il y a une décomposition dominée sur K ;

— K est limite de Hausdorff d’une suite de puits ou de sources.

On en déduit une généralisation de la dichotomie générique de Mané :

Théoréme 1.4.4 (Abdenur, Bonatti, Crovisier). Il eziste un résiduel
R € Diffl(M) de difféomorphismes f tels que l'un des deux points suivants
est vérifié :
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— le non-errant de f admet une décomposition Q(f) = Ay U...UA; en
compacts f-invariants deur & deux disjoints, qui sont chacun [’'union
de classes de récurrence par chaines, et sur chacun desquels on a une
décomposition dominée non-triviale ;

— f admet une infinité de puits ou de sources.

1.4.3 Création de tangences homoclines loin des dominations

En dimension 2, Pujals et Sambarino [52] ont montré que s’il n’y a pas
de décompostion dominée non-triviale sur ’ensemble non-errant d’un difféo-
morphisme f, alors par une perturbation arbitrairement petite, on crée une
tangence homocline.

Wen [64] a généralisé ce résultat en dimension plus grande. Il a montré
que si pour un entier 1 < i < d, 'ensemble i-prépériodique (I’ensemble des
points qui par perturbations arbitrairement faibles peuvent étre transformées
en des selles d’indice 7) n’admet pas de décomposition dominée d’indice 7,
alors il y a une perturbation arbitrairement petite de f qui crée une tangence
homocline. Il se peut cependant que la selle & laquelle est reliée la tangence
homocline ait été créée au cours de la perturbation, et 'indice de cette selle
ne peut étre controlée.

La présente thése répond a ces problémes, en travaillant encore sur des
petits voisinages d’orbites périodiques. On va montrer que si une selle a
une longue période, et si la domination entre les fibrés stables et instables
est suffisamment faible, alors par une petite perturbation de la dynamique
autour de l'orbite on crée une tangence homocline. On dit qu’une selle @ d’un
difféomorphisme f est N-dominée si la décomposition en les fibrés stable et
instable du cocycle df| o) est N-dominée. Voici un premier énoncé du
résultat annoncé :

Théoréme 5.1.3 (G.). Soit f un difféomophisme d’une variété compacte
riemannienne M. Pour tout € > 0, on a deuz entiers N, P > 0 tels que si Q
est une selle de période p > P non N-dominée, alors :

il existe une e-perturbation de f sur un voisinage arbitrairement petit U
de lorbite de @, qui préserve l'orbite de @) et son indice, et qui crée une
tangence homocline reliée o QQ dans U.

On peut de plus exiger que la perturbation préserve un nombre fini de
points dans les variétés stables et instables de la selle périodique @Q. Précisé-
ment :

Théoréme 6.1.1 (G.). Soit f un difféomorphisme d’une variété compacte
riemannienne M. Pour tout € > 0, on a deuz entiers N, P > 0 tels que si Q
est une selle de période p > P non N-dominée,

alors pour tous ensembles finis I'® et I'" respectivement dans les variétés
stable et instable, il existe une e-perturbation g de f sur un voisinage arbi-
trairement petit U de l'orbite de Q, qui préserve ['orbite de @ et son indice,



Thése de doctorat 23

qui crée une tangence homocline reliée a QQ dans U, et telle que I'® est dans
la variété stable de g et T est dans l’instable.

On peut en fait méme demander que si x € ' U IT'" est dans 'une des
variétés stable/instable forte de f, alors la variété stable/instable forte corre-
pondante est également définie pour g et contient x. En particulier une telle
tangence homocline peut étre crée en préservant une relation homocline entre
Q et tout autre point. Bien que I'une soit une conséquence de l'autre, afin
d’épargner au lecteur les difficultés techniques de la preuve du théoréme 6.1.1
(voir chapitre 6), on donne une preuve indépendante du théoréme 5.1.3 au
chapitre 5.

On déduira du théoréme 6.1.1 que si la classe homocline d’une selle d’in-
dice ¢ n’admet pas de décomposition dominée d’indice ¢, alors par perturba-
tion on obtient une tangence homocline reliée & cette classe homocline. Plus
précisément :

Corollaire 6.6.2 (G.). Soit Q un point selle de f dont la classe homocline
H(Q, f) est non-triviale (non réduite a l'orbite de Q) et n’admet pas de dé-
composition dominée de méme indice que Q). Alors, il existe une perturbation
arbitairement petite g de f qui préserve la dynamique sur un voisinage de Q)
et telle qu’il y a une tangence homocline reliée a Q.

Abdenur, Bonatti, Crovisier, Diaz et Wen [3] ont montré que pour un dif-
féomorphisme générique, pour toute classe homocline, ’ensemble des indices
des points selles dans cette classe homocline est un intervalle. Le Corol-
laire 6.6.2 et ce résultat donnent une réponse partielle a la [3, Conjecture 1] :

Théoréme 6.6.8. Pour tout difféomorphisme C-générique f, soit H(P, f)
une classe homocline contenant des selles d’indice o et B, a < (3. Alors on
a la dichotomie suivante :

— soit il existe une perturbation aritrairement faible g de f admettant
une tangence homocline associée a la continuation d’un des points pé-
riodiques de H(P, f);

— soit on a une décomposition dominée

ThppyM=FOE{®...0 E;_, OF,

ot dim(E) = « et chaque Ef est de dimension 1 et non hyperbolique.

1.5 Schéma de preuve du théoréme 4.5.2

1.5.1 Cocycles a grande périodes

Comme évoqué précédemment, le lemme de Franks 1.3.5 permet de se
ramener 3 I’étude des perturbations de la différentielle le long d’une orbite
périodique : en effet, il suffit de trouver une perturbation de la différentielle df
de f restreinte & l'orbite d’un point périodique @ qui rend toutes les valeurs
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propres au premier retour de méme module ; puis le lemme de Franks permet
de réaliser cette perturbation par une perturbation du difféomorphisme f.
Plus précisément, on trouvera une perturbation g de f sur un petit voisinage
de l'orbite de @, qui préserve l'orbite de @ et telle que dg le long de 'orbite
de @ est égale a la perturbation de df voulue.

On s’est donc ramené 3 la perturbation de cocycles linéaires. On va main-
tenant montrer qu’a borne fixée sur les normes des cocycles, si un cocycle
n’a pas de décompostion dominée suffisamment forte, une petite perturba-
tion rend égaux les modules des valeurs propres de ’application de premier
retour. Bien que [16] ne le prouve que pour les grandes périodes, il se trouve
que cette hypothése est inutile. Le cas des grandes périodes est traité dans
les sections 4.3 et 4.4. On en déduit facilement le cas général, dont la preuve
est faite dans I'appendice du méme chapitre.

L’idée dans le cas des grandes périodes est de considérer les perturbations
qui minimisent le diamétre spectral, c’est-a-dire le diamétre de I’ensemble des
exposants de Lyapunov le long de ’orbite.

Un cocycle linéaire A = (A, f) sur un fibré £ = (E,X) est appelé cocycle
a grandes périodes si les trois conditions suivantes sont vérifiées :

— 3 est infini;
— tout point x € ¥ est périodique pour f;
— pour tout p € N, ’ensemble des points de période p dans X est fini.

Un tel cocycle A est dit strictement sans domination si les seuls ensembles
en restriction desquels le cocycle A admet une décomposition dominée non-
triviale sont finis. Les valeurs propres d’un cocycle linéaire sont les valeurs
propres de ’application de premier retour le long d’une orbite périodique.
On dit que les valeurs propres d’un cocycle ont des modules distincts si les
valeurs propres de chaque application de premier retour sont de modules
deux & deux distincts.

Une perturbation d’un cocycle a grandes périodes A = (A, f) sur un fibré
E = (FE,%) est un cocycle B = (B, f) sur £ tel que pour tout € > 0, il n’y
a qu'un nombre fini de points x € ¥ au dessus desquels il y a un vecteur
unitaire u vérifiant || A(u)—B(u)|| > €. En d’autre termes, B est e-proche de A
presque partout. Une perturbation d’une perturbation est une perturbation.
Cette définition va nous épargner la manipulation de multiples € et rendra
énoncés et preuves plus lisibles et plus agréables.

Enoncons maintenant le résultat principal sur les cocycles :

Théoréme 1.5.1. Soit A un cocycle borné a grandes périodes. Alors si A
est strictement sans domination, il existe une perturbation B de A telle que
pour tout x € X3, Uapplication de premier retour BP en x a des valeurs propres
réelles de méme module.
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1.5.2 Résumé de la preuve du théoréme 1.5.1

On constate d’abord qu’il est suffisant de montrer que sous les mémes
hypothéses, il existe un ensemble infini 3’ C ¥ sur lequel une perturbation de
A a ses valeurs propres réelles et de méme module. Dans ce but on commence
par montrer qu’il y a une perturbation B de A qui rend toutes les valeurs
propres réelles et de modules distincts.

Etant donné un cocycle linéaire, on appelle diamétre spectral au point
x € X la différence entre le plus grand exposant de Lyapunov et le plus
petit en ce point. On essaie maintenant de minimiser par perturbations le
diamétre spectral sur un sous-ensemble infini de Y. Précisément, on veut
minimiser le diamétre spectral inférieur de B, c’est-a-dire la borne inférieure
des nombres p > 0 tels qu’il y ait une infinité de points de X en lesquels le
diametre spectral est plus grand que p.

Remarquons que si le diamétre spectral inférieur d’une perturbation B
de A est nul, alors on trouve un sous-ensemble infini ¥’ C ¥ et une seconde
perturbation C de B telle que par restriction a ¥/, C a toutes ses valeurs
propres réelles et de méme module. Enfin C est évidemment une perturbation
de A, ce qui termine la preuve. Il reste donc a trouver un tel B.

On montre en fait qu’il existe une perturbation B de A qui a des valeurs
propres réelles de modules distincts, et un sous-ensemble infini X' C X tel
que la restriction B’ & Y est incompressible, c’est-a-dire

— elle admet un diametre spectral §(B') : pour tout € > 0 il n’y a qu’un

nombre fini de de points x € ¥/ auxquels le diameétre spectral est hors
de l'intervalle [6(B') —€,6(B') + €] ;

— elle minimise le diametre spectral inférieur : toute perturbation de B’

a un diameétre spectral inférieur plus grand que que 6(B').

On remarquera alors que si A est strictement sans domination, B 1’est
également, ainsi que la restriction B’. Il est maintenant clairement suffisant
de montrer que si un cocycle est incompressible et strictement sans domina-
tion, alors son diamétre spectral est nul. Dans le paragraphe suivant on en
donne une idée de démonstration, concluant ainsi le schéma de preuve du
théoréme 1.5.1.

Voici de facon résumée comment, par récurrence sur la dimension du fi-
bré, on obtient qu'un cocycle incompressible et strictement sans domination
a un diameétre spectral nul. En dimension 2, les techniques de R. Mané [38]
en donnent une preuve. Supposons maintenant par I’absurde qu’un cocycle
incompressible A d’un fibré £ de dimension > 3 n’a strictement pas de do-
mination, et a un diameétre spectral strictement positif. On montre d’abord
lexistence d’un sous-ensemble infini ¥’ C X et d’une décomposition inva-
riante &yy = F @ G au-dessus de ¥’ en deux sous-fibrés non-triviaux tels
que les valeurs propres dans F' sont de plus petits modules que dans G, et
tels que les restrictions A|p et A|g sont strictement sans domination. De la,
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par incompressibilité, on déduit la nullité des diametres spectraux de Ap et
Aic-

Comme la dimension est plus grande que 3 et les valeurs propres sont
réelles, on peut supposer que dim(F') > 2 et trouver un sous-fibré unidimen-
sionnel invariant H C F. En adaptant un lemme de [13], comme A|pgq est
strictement sans domination, au moins 'une des deux assertions suivantes
est vérifiée :

— la décomposition H ® G n’est pas dominée pour A;

— la décomposition F/H & G/H n’est pas dominée pour le cocycle quo-

tient A/H.
Par hypothése de récurrence, on montre enfin que chacun des deux cas au-
torise une nouvelle perturbation qui décroit strictement le diamétre spectral
inférieur de A, ce qui contredit I'incompressibilité. CQFD.

1.6 Schéma de preuve du théoréme 5.1.3

Remarque 1.6.1. On prévient le lecteur que la définition d’N-domination
que nous utiliserons dans les preuves des théorémes 5.1.8 et 6.1.1 est lége-
rement différente de la définition utilisée jusqu’a présent. Cependant, par le
corollaire 1.4.1, le théoréme que mous montrerons ainsi implique le théoréme
annonce.

La preuve du théoréme 6.1.1 suit approximativement le méme chemin;
elle est cependant beaucoup plus technique et la nécessité d’une nouvelle
terminologie ne permet pas qu’on la résume ici.

Comme pour le théoréeme 1.5.1, on travaille sur des petits voisinages
d’orbites périodiques ; cependant on doit controler plus que la simple dérivée
le long de lorbite périodique. C’est pourquoi I'outil bien pratique de [16] ne
s’appliquera pas ici.

On perturbe la dynamique sur des petits voisinages d’orbites selles, tout
en préservant ces orbites. Ceci justifie la notion de difféomorphisme selle :
un difféomorphisme selle est un difféeomorphisme f d’un fibré vectoriel eu-
clidien £ au dessus d’une base finie ¥ (on voit ce fibré comme une variété
riemannienne non connexe), tel que f permute cycliquement les fibres, et la
section nulle O¢ du fibré est 'orbite d’une selle. Un difféomorphisme selle est
N-dominé si la décomposition en les directions stable et instable de df au
dessus de la section nulle est N-dominée.

On veut montrer que si un difféomorphisme selle a une grande période
et n’est pas suffisamment fortement dominé, alors on peut le perturber sur
un voisinage arbitrairement petit de la section nulle afin d’obtenir une tan-
gence homocline reliée & la section nulle. De méme que dans la preuve du
théoréme 1.5.1, on voit que si la période est grande, alors une petite per-
turbation du cocycle df|o, a toutes ses valeurs propres réelles et de modules
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deux & deux distincts. Par le lemme de Franks, on déduit que si un difféo-
morphisme selle f a une période suffisamment grande, alors il existe une
petite perturbation de f qui est encore un difféomorphisme selle et qui a des
valeurs propres réelles de modules deux & deux distincts.

Par une autre perturbation, on linéarise localement et on se raméne &
I’étude d’un difféomorphisme selle linéaire, a valeurs propres réelles et de
modules distincts. On montre alors par récurrence sur la dimension du fibré,
que si un tel difféeomorphisme selle n’est pas suffisamment fortement dominé,
alors une petite perturbation crée une tangence homocline.

La dimension 2 a été prouvée par Pujals and Sambarino, sous une
forme équivalente. En plus grande dimension, on écrit la décomposition
stable/instable £ = F @ G. Quitte a changer f en f~!, on peut suppo-
ser que la direction stable F' du difféomorphisme linéaire f est de dimension
> 2. Comme les valeurs propres sont réelles, elle contient un sous-fibré uni-
dimensionnel H invariant. Comme la domination entre les directions stable
et instable est faible, on applique encore le lemme de [13], de sorte qu’on est
dans l'un des deux cas suivants :

— la décompostion H @ G est faiblement dominée pour f,

— la décomposition F'/H & G/H est faiblement dominée pour le difféo-

morphisme linéaire quotient f/H.

Dans le premier cas, par hypothése de récurrence, une petite perturbation
de la restriction figge admet une tangence homocline. On montre alors
qu’elle peut étre étendue en une petite perturbation de f qui présentera
clairement une tangence homocline.

Dans le second cas, par hypothése de récurrence, une petite perturbation
du quotient f/H admet une tangence homocline. On la reléve en une petite
perturbation de f, et on montre qu’une telle perturbation admet également
une tangence homocline.

Remarquons que dans les deux cas on n’a a priori aucun controéle de la
taille des voisinages de Og sur lesquels on perturbe f. Néanmoins, en conju-
guant par une homothétie on peut faire en sorte que 'orbite de la tangence
homocline reste proche de Og, et grace a une version plus sophistiquée du
lemme de Franks, on construit enfin une perturbation de f sur un petit
voisinage de Og, qui admet une tangence homocline. CQFD.
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Chapter 2

(General Introduction

2.1 Birth of the notion of dominated splitting

A diffeomorphism f € Diff*(M), for some k > 1, is said to be structurally
stable if any neighbouring diffeomorphism g is conjugate to f via a home-
omorphism h of M. We recall that a periodic point of period p for a dif-
feomorphism f is hyperbolic if the p-th iterate of the derivative dfP has no
eigenvalue of modulus one. It is a saddle if it has both eigenvalues of moduli
greater than one and smaller than one. In the thirties, Andronov and Pon-
trjagin [5] saw a correspondence between structural stability and hyperbolic
behaviours. Indeed, the local structural stability of a dynamics around a
saddle point comes from a Hartmann-Grobmann theorem (see [31]).

In the early sixties, D.V. Anosov [6] proved the structural stability of
the geodesic flow of Riemannian compact manifolds of negative curvature.
He generalized that result [7] to a whole class of flows and diffeomorphisms:
an Anosov flow on a compact Riemannian manifold M is a flow without
singularity for which the tangent bundle T'M splits into three supplementary
invariant bundles:

e a stable bundle, that is, a uniformly contracted one: there is a real
number 7" > 0 such that the time-T" flow strictly contracts any nonzero
vector in it,

e an unstable bundle, that is, a uniformly expanded one: there is a real
number 7" > 0 such that the time-T" flow strictly expands any nonzero
vector in it.

e 3 one-dimensional bundle which is neither contracted nor expanded,

The notion of Anosov diffeomorphism is defined similarly, omitting the third
bundle.

Contemporarily to it, S. Smale [59] exhibited a new class of very simple
dynamical systems now known as Morse-Smale, which were proven to be

29
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structurally stable. A point x is non-wandering for a diffeomorphism f if
for any neighbourhood U of x, there is an integer n > 1 such that f™(U)
intersects U. A diffeomorphism is called Morse-Smale, if its non-wandering
set Q(f) (the set of its non-wandering points) is composed of finitely many
hyperbolic periodic points, and if for any pair of points in Q(f) the stable
manifold of the one and the unstable manifold of the other are in general
position, that is, the two manifolds meet transversely at any intersection
point.

2.1.1 The hyperbolic theory

Smale introduced a general notion which encloses Anosov and Morse-Smale
diffeomorphisms. A compact invariant set K for a diffeomorphism f is hy-
perbolic if and only if there is a splitting of the tangent bundle restricted to K
into two supplementary bundles E® and E", invariant by the derivative df,
such that the one is uniformly contracted and the other uniformly expanded
by an iterate of df. Precisely, there exists n € N and 0 < A < 1 such that
for any unit vectors u,v in E*, E%, ||df™(u)|| < A~! and ||df"(v)|| > .

A diffeomorphism is hyperbolic or Aziom A if its non-wandering set is
hyperbolic and if the set Per(f) of periodic points of f is dense in Q(f).
Smale’s Spectral Decomposition Theorem applies to any Axiom A diffeo-
morphism and provides a decomposition of the non-wandering set into a
union Q(f) = A; U...UA; of a finite number of pairwise disjoint, compact,
isolated, f-invariant, transitive sets (a set is transitive, if it contains some
dense orbit). Moreover, the a-limit set and w-limit set of every orbit are
respectively contained in some A;. In particular, if Q(f) = M, there is only
one basic set and f is an Anosov diffeomorphism.

An axiom A diffeomorphism satisfies the no-cycle condition if and only
if there is no cycle of basic pieces, that is, no cyclic sequence of basic pieces,
such that the unstable set of each basic piece intersects the stable set of the
next. It satisfies the strong transversality condition if for any x,y in the non-
wandering set, the unstable manifold of the one and the unstable manifold
of the other are transversal.

J. Palis and S. Smale conjectured in [47] that

e Axiom A and strong transversality condition is equivalent to structural
stability, that is, conjugacy to any neighbouring diffeomorphism.

e a diffeomorphism f € Diff"(M) is Axiom A and no-cycle condition if
and only if it is 2-stable, that is, for any neighbouring g, the restrictions
fia(r) and gjq(g) to the respective non-wandering sets are conjugate by
a homeomorphism.

This was called the Stability Conjecture. Smale [62] showed that Axiom A
and no-cycle condition implies Q-stability. Robbin [53] first showed that in
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C? topology, Axiom A and strong transversality implies structural stability,
then Robinson [54] showed it in C! topology. In the late eighties, Ricardo
Maiié [39] completed the proof that C! structural stability implies hyper-
bolicity and strong transversality. Relying on Mané’s techniques, Palis [45]
showed that Q-stability implies Axiom A and no-cycle.

It was believed in the sixties that the hyperbolic diffeomorphisms of a
compact manifold M were C" dense in the set of diffeomorphisms for some
r > 1. But it quickly appeared that there are open sets of non-structurally
stable diffeomorphisms [60] and of non-{2-stable diffeomorphisms [4].

2.1.2 Partial Hyperbolicity and weaker forms of stability

In order to study the existence and behaviour of diffeomorphisms far from hy-
perbolicity, Hirsch, Pugh, Shub [35| and Brin, Pesin [19] considered partially
hyperbolic systems, that is, admitting an invariant splitting of the tangent
bundle into a direct sum E* ® E¢ @ E“ of three subbundles, where E?® is
uniformly contracted by the dynamics, E* uniformly expanded, and E° is
central, i.e. less contracted than E° and less dilated than E“. It is easily
shown that the bundles of a partially hyperbolic splitting are continuous,
persist and vary continuously by C' perturbations.

Most notably they showed the integrability of the stable and unstable
bundles. Precisely, for a partially hyperbolic C” system, there exists a
smooth stable foliation F° that is tangent to the stable bundle E* and
symmetrically there is a smooth unstable foliation F* that is tangent to the
unstable bundle E*. On the other hand, in general, the central bundle is
not integrable. Clues are given in [61, Section 3.1] to build diffeomorphisms
on the 6-dimensional torus that are robustly non-hyperbolic, partially hy-
perbolic with a non-integrable central bundle.

But, when a central foliation exists, we have in general a weak form of
structural stability. One says that a central foliation of a partially hyperbolic
f is structurally stable if for any nearby C!-diffeomorphism g, the central
bundle of g is integrable and if there is a homeomorphism A of M, that sends
the central foliation of f on the central one of g, such that ho f o h™! is
isotopic to g along the central leaves. The main result of [35] is that if a
partially hyperbolic system has a central foliation that is plaque-expansive,
then it is structurally stable.

2.1.3 On dominated splittings

A weaker form of hyperbolicity is the notion of dominated splitting. It was
independantly introduced by Liao [36] and Mané [38] in their works on the
stability conjecture. A dominated splitting for a given dynamics is a splitting
of the tangent manifold into a direct sum of invariant subbundles, such that
the vector expansion on each bundle is uniformly less (or the vector contrac-
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tion is uniformly greater) than on the next bundle. A precise definition is
given in section 2.3.1.

From stability of conefields around the bundles, one shows that a dom-
inated splitting persists by C'-perturbation of the dynamics, and that the
bundles are continuous in 7'M and vary continuously (see [14]). The bundles
of a dominated splitting are in general not integrable, except the extremal
bundles if uniformly contracting or expanding.

2.2 Persistently non-hyperbolic behaviours

A property on a C" diffeomorphism f is said to be (C"-)robust if it persists
by C"-perturbations of f. Abraham and Smale [4] in dimension > 4, then
Simon [58] in dimension > 3 built examples of Cl-robust non Axiom A
diffeomorphisms.

2.2.1 Homoclinic bifurcations

In dimension 2, it is not known if Axiom A diffeomorphisms are dense for
the C! topology, but S. Newhouse showed the existence of an open subset I/
of Diff?(M?) such that any f in a residual subset of ¢/ has an infinite number
of sinks or sources. The property of having infinitely many sinks or sources
is called Newhouse phenomenon. To build this example, Newhouse studied
the dynamics in the neighbourhood of homoclinic tangencies.

Definition 2.2.1. A Homoclinic tangency is a non-transverse intersection
between the stable and unstable manifolds of a saddle orbit.

A homoclinic tangency is very unstable and can be broken by any slight
perturbation. However, Newhouse [42, 43| showed that close to any C?
diffeomorphims f of a surface admitting a homoclinic tangency, there is an
open set U of diffeomorphisms, and a residual subset R € U, such that every
g € R displays a Newhouse phenomenon.

Another viewpoint to study non-hyperbolic behaviors was that of tran-
sitivity. One says that a dynamics on M is transitive if and only if there is
a dense orbit in M. It was asked whether robust transitivity charaterized
Anosov diffeomorphisms. Several examples of open sets of robustly transi-
tive, non-hyperbolic diffeomorphisms appeared then in dimensions > 3.

As a consequence of the structural stability of central foliations, [35]
obtains, by a CY-perturbation of an Anosov diffeomorphism on the four-
dimensional torus, a diffeomorphism that is robustly transitive and has two
saddles of different indices. If a neighbouring diffeomorphism was hyperbolic,
by transitivity, the unique basic piece would be M. However there can not
be two periodic saddles of different indices in a same basic piece. Hence, this
is a robustly non-hyperbolic diffeomorphism.



Thése de doctorat 33

By different methods, Maifié [37] proves that some C°-perturbation of an
Anosov diffeomorphism on the three-dimensional torus is also robustly tran-
sitive and admits two saddle points of different indices. That example is far
from homoclinic tangencies but is in the closure of a set of diffeomorphisms
that have a heterodimensional cycle:

Definition 2.2.2. A heterodimensional cycle is a pair of saddle points of
different indices, such that the unstable manifold of one intersects the stable
manifold of the other.

A heterodimensional cycle is also an unstable phenomenon, however C.
Bonatti and L. Diaz [12] showed that close to a codimension 1 heterodimen-
sional cycle (i.e. the difference of indexes between the two saddles is 1), the
closure of the diffeomorphisms that present a heterodimensional cycle has
nonempty interior.

2.2.2 Palis’ density conjectures

Palis proposed to characterise robustness of non-hyperbolic behaviour by
local density of homoclinic tangencies or heterodimensional cycles. This is
the purpose of his

Conjecture 2.2.3 (Palis’ C"-density conjecture). The union of hyper-
bolic diffeomorphisms, and diffeomorphisms admitting a homoclinic tangency
or a heterodimensional cycle is dense in Diff" (M).

A weak version of that conjecture asserts that there is a dichotomy be-
tween Morse-Smale diffeomorphisms and diffeomorphisms that admit a ho-
moclinic intersection.

Conjecture 2.2.4 (weak C"-density conjecture). The set of Morse-
Smale diffeomorphisms and the set of diffeomorphisms that admit a ho-
moclinic intersection, are two disjoint open sets whose union is dense in

Diff" (M).

In 1967, Pugh [51] showed the C'-closing lemma, that is, if = is a re-
current point for a diffeomorphism f, then there is an arbitrarily small C'-
perturbation g of f for which x is a periodic point. In the 90s Hayashi [33]
showed the C''-Connecting Lemma: under some recurrence-like condition on
the stable and unstable manifolds of a pair of saddle points of a diffeomor-
phism f, an arbitrarily small perturbation of f creates a cycle between these
two saddles.

These two lemmas are all-important to perturb and create saddle periodic
points, therefore homoclinic tangencies, and heterodimensional cycles. They
are the basis of all existing developments towards the C'-density conjecture.
However no C"-closing nor connecting lemmas are known for » > 1: the
C"-density conjectures seem out of reach for the time being.
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The weak C''-density conjecture was shown by Bonatti, Gan and Wen [15]
in dimension 3. Very recently, S.Crovisier [23], using the works of Wen [65]
and introducing an original way to study the dynamics along the central
bundles, proved it in any dimension:

Theorem 2.2.5 (Crovisier). The set of Morse-Smale diffeomorphisms and
the set of diffeomorphisms that admit a homoclinic intersection, are two dis-
joint open sets whose union is dense in Diff*(M).

Recent advances suggest that a proof of the C''-density conjecture might
be attainable.

In 2000, E. Pujals and M. Sambarino in [52] showed the C'!-density con-
jecture of Palis for surfaces: a surface diffeomorphism can be C! approxi-
mated either by Axiom A diffeomorphisms or by diffeomorphisms admitting
a homoclinic tangency. Let us give the two main steps of their proof. They
first showed (Lemma 2.0.2) that in the complementary set of the closure of
the diffeomorphisms with a homoclinic tangency, there is an open and dense
set of diffeomorphims g whose non-wandering set €(g) admits a non-trivial
dominated splitting.

Then a second result (Theorem B.) says if f is a C? diffeomorphism on
a compact surface and if T|\M = E @ F' is a dominated splitting above a
compact invariant set A for f, then A is the disjoint union of a hyperbolic
set and a finite number of periodic simple closed curves C* that are normally
hyperbolic, and such that the restriction fpi|Ci is conjugate to an irrational
rotation (p; is the period of the curve C?).

The C'-density conjecture in dimension two is easily obtained combin-
ing these two results. Paralleling that method, one natural way in higher
dimension is first to show that far from homoclinic tangencies, there are thin
enough dominated splittings on the non-wandering set (or chain-recurrent
set, or homoclinic classes).

Hayashi claimed some breakthroughs for a proof of the C' Palis conjec-
ture in higher dimensions, however no paper has yet been released. In [65], L.
Wen made some progress towards it, cleverly combining previous results [64]
and Liao’s selecting lemma [36] to prove that generically, far from hyperbolic
dynamics, homoclinic tangencies and heterodimensional cycles, the minimal
non hyperbolic sets admit a partially hyperbolic splitting, with one or two
one-dimensional central bundles.

2.3 Basic definitions and notations

Before stating the main results of this thesis, we recall elementary defini-
tions on bundles, linear cocycles, and dominated splittings. We also define
homoclinic classes and mention Conley’s theory, as important tools to study
Cl-generic dynamics.
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2.3.1 Linear cocycles and dominated splittings

Let £ = (E,X,m: E — ) be a dimension d linear bundle above a base
¥, that is, for all € X, the fibre E, = 7~!(z) above z is a dimension d
vector space. As similarly defined in [16] and [13], we say that a couple of
bijections A = (f: ¥ — ¥, A: E — FE) is a linear cocycle or automorphism
on & if and only if, for all € X, the map A induces by restriction a vector
spaces isomorphism from the fibre Ey to E(,), that is, the following diagram
commutes:

(2.1)

E .
P,k
E—f>2

A dimension d Euclidiean bundle (€, ||.]|) is a dimension d linear bundle
such that each fibre is endowed with a Euclidean metric ||.||. For any Eu-
clidean bundle &, for any bijection f on its base X, we endow the set of linear
cocycles above the dynamics f with the following distance:

dist(A, B) = sup{[[A(u) — B)ll, |A™" (u) = B~ (w)ll/u € &, Jull = 1}.

We say that a linear cocycle is bounded by C' > 0 if and only if for any unit
vector u € £, we have || A(u)l], A~ (u)|| < C.

Definition 2.3.1. A dominated splitting for a linear cocycle A on a Eucli-
diean bundle £ is an A-invariant splitting £ = E1 @ ... @ E; such that there
is C > 0and 0 < A < 1 such that for any 1 < i < [, for any pair of unit
vectors u,v € E;, E;itq, for all n € N, we have || f"(u)|| < CA"||f™(v)]|.

We then say that F; is dominated by FE;;1, and write E; < FE;11. Ob-
viously, if £ = E; @ ... ® E; is dominated, then for all 1 < i < j < [,
we have E; < E;. Finding stable cone fields, one shows that a dominated
splitting persists by perturbation, and varies continuously: for any family of
neighbourhoods Vi, ...,V of the bundles Fj, ..., Ej, there is € > 0 such that
any linear cocycle B so that dist(A,B) < €, admits a dominated splitting
Fi & ...® F), where F; € V; for all 1.

Moreover, in the particular case where £ is the tangent space of a mani-
fold M restricted to a compact set X, and A is the derivative df of a diffeo-
morphism of M that leaves the compact set X invariant, then (see [14, Page
292|, for instance) the subbundles E; of T'M)y; are continuous.

We say that an invariant bundle F' is stable or uniformly contracted by
A if and only if there exist C > 0 and 0 < A < 1 such that, for any unit
vector u € F, for all n € N, we have || A"(u)|| < C.A\". We say that it is
unstable or uniformly expanded if it is uniformly contracted by the converse
linear cocycle A~L.
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Definition 2.3.2. A partially hyperbolic splitting for a linear cocycle A on
£ is a dominated splitting &€ = E* ® F1 @ ... ® E; ® E* such that E° is stable
and E* is unstable for A.

Given a FEuclidean bundle £ with compact base ¥, and a dominated
splitting £ = E1 @ ... ® E; for a linear cocycle A, an adapted metric for
that dominated splitting is a metric ||.||« on each fibre of £ such that for all
1 < <, for all unit vectors u,v € E;, Ej+1, we have || A(u) |« < | A(v)|]«. If
A admits a partially hyperbolic splitting £ = E*®FE1®...0EGEY, the metric
II-||« is adapted to it if and only if it is adapted to the corresponding dominated
splitting, and if for all unit vectors u,v € E*, E* we have || A(u)|« < 1 and
JA@)]. > 1.

2.3.2 Strength of domination

We say that an invariant splitting £ = F' @ G for a linear cocycle A is N-
dominated if, after N iterations, the vectors of F' are twice more dilated, or
twice less contracted than those of E, that is, for any unit vectors u,v € F, G,
we have || AN (u)|| < 1/2||AN (v)|. Therefore, the greater N is, the weaker
the domination is.

Remark 2.3.3. According to that definition, if an invariant splitting is N -
dominated, it is not necessarily M-dominated, for all M > N.

However, that remark is addressed if the metric ||.|| is adapted to the
dominated splitting. In [29], the definition of an N-dominated splitting dif-
fers from the one we gave here; namely, a splitting is N-dominated according
to [29] if it is L-dominated for some L < N. We will see that these two def-
initions are equivalent, to some extent (see Corollary 2.4.2).

2.3.3 About recurrence notions
Homoclinic classes

In this section, M is a compact Riemannian manifold and Diff" (M) is the
set of C"-diffeomorphisms on M, for some r > 1. Let f be a diffeomorphism
in Diff"(M). One says that an f-invariant compact set A is hyperbolic, if
and only if there is an invariant splitting TM|y = E°® & E" where E° is a
stable bundle for df and E* is an unstable bundle.

A periodic point P for f is a saddle if its orbit Orb;(P) is hyperbolic
and the stable and unstable bundles are both non-trivial. The stable set
W#(Orby(P)) = {x € M/dist(f"(P),Orby(P)) — 0} and the unstable
set W*(Orbs(P)) = {x € M/dist(f~"(P),Orbs(P)) — 0} are both C”"
embedded manifolds that are tangent to the bundles E° and E“, respectively.

We say that two saddle points are homoclinically related if and only if
the unstable manifold of the orbit of one intersects transversely the stable
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manifold of the orbit of the other. This defines an equivalence relation on
periodic saddle points.

Definition 2.3.4. The homoclinic class H(Q, f) of a saddle point @ of
a diffeomorphism f is the closure of the set of hyperbolic points that are
homoclinically related to Q.

By definition a homoclinic class contains a dense subset of periodic points,
therefore it is in the non-wandering set of f. The homoclinic class of @ is
topologically transitive and can be equivalently defined as the closure of the
transverse intersections of the stable and unstable manifolds of @ (see [44]).

Conley Theory

We briefly describe a recurrence notion introduced by Conley [21]. A se-
quence (z,,) is an e-pseudo-orbit for some e > 0 if and only if the distance
dist(f(xyn), Tnt1) is less than € for each n. The chain-recurrent set R(f) is
the set of points x such that, for all ¢ > 0, there is an e-pseudo-orbit that
is not reduced to a single point and that goes from z to x. We define an
equivalence relation ~ on R(f) in the following way: x ~ y if and only if,
for all € > 0, there is an e-pseudo-orbit from x to y, and an e-pseudo-orbit
from y to x.

The chain-recurrent classes are the equivalence classes of ~ in R(f). For
M is compact, the chain recurrent set is compact and not empty, and each
chain recurrent class is compact. Clearly, the non-wandering set is contained
in the chain-recurrent set, and since a homoclinic class is transitive, each
homoclinic class is in a chain-recurrent class.

A residual subset of a topological space is a countable intersection of dense
open sets. A dynamical property P is C"-generic if it is satisfied by a residual
set of dynamics for the C"-topology. We also say that C"-generically, the dy-
namics satisfies property P. In [10], C. Bonatti and S. Crovisier showed that
C'-generically, the non-aperiodic chain recurrent classes and the homoclinic
classes coincide:

Theorem 2.3.5 (Bonatti, Crovisier). Given a compact manifold M, there
is a residual subset HCR of Diff (M) of diffeomorphisms f such that each
homoclinic class of f is a chain-recurrent class and conversely, each chain-
recurrent class is either aperiodic (does not contain any periodic point) or is
a homoclinic class.

Crovisier [22| recently showed that generically a chain-recurrent class is
a Hausdorff limit of saddle orbits. Note that these results were obtained
working on Pugh’s closing lemma and Hayashi’s connecting lemma and can
be seen as generalizations of them; indeed, Theorem 2.3.5 implies the C'-
connecting lemma, and Crovisier’s clearly implies the C'-closing lemma.
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2.3.4 Perturbations of diffeomorphisms

Let M be a Riemannian compact connected manifold. Then there is a
canonical distance dist: TM x TM — R7T on the tangent bundle TM.
A diffeomorphism f is an e-perturbation of g for the C' topology, if and
only if, for any unit vector v € T'M, we have dist(df(v),dg(v)) < € and
dist(df 1 (v),dg~(v)) < e. Given a subset S of M, f is a pertubation of g
on S if f = g outside S.

A lemma by Franks [26] allows to extend a perturbation of the derivative
of a diffeomorphism along a periodic orbit into a local perturbation of the
diffeomorphism on the whole manifold. We restate it:

Lemma 2.3.6 (Franks). Let f be a diffeomorphism on a compact Rieman-
nian manifold M. For any 6 > 0 there is € > 0 such that the following
holds:

if ¥ ds a finite f-invariant set, and if A is a cocycle on TMy, with
dist(A, df|s) < €, then there is a J-perturbation g of f on an arbitrarily
small neighbourhood of ¥ such that dg)s, = A.

With this lemma, we will reduce the perturbation problems to linear
perturbation ones. It will allow to work on linear cocycles in the proof of
Theorem 4.5.2, and to work on what we will call linear saddle diffeomor-
phisms in the proof of Theorem 5.1.3. Note that Franks’ lemma is specific
to the C'-topology.

2.4 Statement of Results

This thesis essentially studies the local dynamics of diffeomorphisms along
periodic orbits, to find what behaviours can be obtained by small pertur-
bations in absence of some dominated splittings along that orbit. The con-
sequences will be, among others, generic dichotomies between Newhouse
phenomenons and diffeomorphims admitting some dominated behaviours,
dichotomies between homoclinic tangencies and stable/unstable dominated
splittings.

2.4.1 Adapted metrics

In Chapter 3, we answer an old question from Hirsch, Pugh, Shub [35, page
5] on existence of adapted metrics for dominated splittings. It was known
that a hyperbolic splitting admits an adapted metric. We give an outline of
a proof of it:

Let K be a compact invariant set for a diffeomorphism f, and T'Mx =
E® @ E" be an invariant hyperbolic splitting for f. Then, for any vector
u € E?, ||df"(u)|| converges exponentially to zero as n goes to oo, where ||.||
is the initial Riemannian metric on M.
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One can then define a new metric ||.||s on the bundle E® as the sum of
the push forwards of the initial metric by the positive iterates of df. Clearly,
lldf (w)||s < |lu||s for any non-zero vector w, since ||ulls = |Jul| + ||df (v)]|s-
Symmetrically, one defines a metric ||.||, on E* such that ||df (u)|l, > ||u]|w-
One then builds a metric ||.|[« on M that coincides with ||.||s on Es and ||.||,
on E“; that metric is adapted to the hyperbolic splitting, by construction.
An adapted Riemannian structure would be obtained taking the serie of the
push forwards of the inner product on M by the iterates of df. That metric
can then be smoothed and remain adapted.

Hirsch, Pugh and Shub noticed that it worked similarly in the case of a
two-bundles dominated splitting, one of the bundles being one-dimensional.
However no proof was known for general dominated splittings, or partially
hyperbolic splittings. This is why they need to make a difference between
'immediate normal hyperbolicity’ and ’relative normal hyperbolicity’ [35,
page 3|. The next theorem provides a complete answer to their question:

Theorem 2.4.1 (G.). Let f be a diffeomorphism on a Riemannian mani-
fold M. Suppose that f admits a dominated splitting on a compact invariant
set K, that is, the linear cocycle dfic defined as the restriction of df to T M
admits a dominated splitting. Then there exists an adapted smooth Rieman-
nian metric on M for that dominated splitting. Similarly, if the splitting is
partially hyperbolic, there is an adapted smooth Riemannian metric on M.

The strategy is to build separators between the bundles of the dominated
splitting, that is, functions from K to RT that would correspond to add to the
dynamics one-dimensional bundles between each pair of consecutive bundles
of the dominated splitting. Then some serie provides on each bundle a metric
that is adapted to the domination with respect to the two neighbouring
separators (or one-dimensional bundles). When the separators are properly
chosen, this provides an adapted metric for the dominated splitting.

Consequently, for any dominated splitting, there is a metric on the bundle
such that N-domination between a pair of bundles implies L-domination for
any L > N. The following corollary can be easily obtained without adapted
metrics, knowing that such metrics exist only makes it slightly easier.

Corollary 2.4.2. Let f be a diffeomorphism on a compact manifold M.
Then for any L € N, there exists N € N such that if an invariant splitting
TMg=E®F on a compact set K 1s not N'-dominated for some N' > N,
then it is not L'-dominated, for all L' < L.

Proof: We reason by contradiction. If the statement above is not true, then
we can find a sequence K, a sequence L,, of integers between 1 and L and a
sequence IV, that tends to +oo, such that there is an L,-dominated splitting
Tk, = En®F)y, that isnot Ny,-dominated. We may extract and suppose that
the splittings 7|, = Ey, @® F), have constant index i, and are Lo-dominated.
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Then there is an Lp-dominated splitting £ & F of index ¢ on the closure of
the union UK. Let |.||« be a Riemannian adapted metric on M for that
dominated splitting. In particular, for all € > 0, if N is greater than some
N, for any unit vectors v € FE,v € F, we have ||df" (u)|s < e|ldf™ (v)]|x.
But the metric ||.||« is equivalent to the initial metric ||.||, this contradicts the
fact that for all N, for some (u,v) € E,, x Fy, ||df V¥ (u)|| > 1/2||df N (v)]|.
O

2.4.2 Newhouse phenomenons in any dimensions

Prior to Pujals and Sambarino’s proof of the C''-density conjecture in dimen-
sion 2, R. Mafié [38] obtained a C'-generic dichotomy between Newhouse
phenomenons and Axiom A diffeomorphims. This result was generalized
by Bonatti, Diaz and Pujals [13] in greater dimension. They showed that
generically, a diffeomorphism such that one of its homoclinic classes has no
dominated splitting has infinitely many sinks or sources. This is a corollary
of the following:

Theorem 2.4.3 (Bonatti, Diaz, Pujals). Let P be a saddle of a diffeo-
morphism f € Diff' (M), then

e cither the homoclinic class H(P, f) admits a dominated splitting,

e or for any neighbourhood U of H(P, f), for any k € N, there is g
arbitrarily C'-close to f having k sinks or sources whose orbits are

included i U.

In their proof, Bonatti-Diaz-Pujals need the existence of what they call
transitions. Transitions are the translation on linear cocycles of the following
property of homoclinic classes: given two periodic orbits P and @ in a homo-
clinic class, there are periodic points passing arbitrarily close to P, thereafter
arbitrarily close to @), and so on; moreover the successive times the periodic
points spend close to P and @ can be chosen, so that the derivative along
that periodic orbit is alternatively very close to the derivative on Orb(P),
and very close to the derivative on Orb(Q) on prescribed segments of time.

Therefore, the [13] results heavily rely on the fact they work inside ho-
moclinic classes. One results of this thesis allows to obtain a corresponding
result, working along a single orbit of a diffeomorphism f. Precisely, we get
the following:

Theorem 4.5.2 (Bonatti, G., Vivier). Let f be a diffeomorphism of
Diff(M). For all € > 0, there is N € N such that the following stands:

if Q is a periodic point and the cocycle df| Orbs(Q) has no N-dominated
splitting, then there is an e-perturbation g of f on an arbitrarily small neigh-
bourhood of the orbit of Q, such that the orbit of Q) is preserved, and the
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linear isomorphism dgfoorb(Q) has real eigenvalues with moduli all equal and
different from 1.

In particular, @ is a sink or a source for g. Chapter 4 deals with the
proof of Theorem 4.5.2. From this and a theorem of Crovisier [22]| that
states that, generically, any chain-recurrent class is the Hausdorff limit of a
sequence of periodic orbits, Abdenur, Bonatti, Crovisier [2] got the following
generic result:

Theorem 2.4.4 (Abdenur, Bonatti, Crovisier). There erists a resid-
ual subset R € Diff!(M) of diffeomorphisms f such that given any chain-
recurrent class K of f,

e cither there is a dominated splitting on K,

e or the set K s the Hausdorff limit of a sequence of periodic
sinks/sources of f.

A consequence of that theorem is the following generalization of Mané’s
generic dichotomy:

Theorem 2.4.5 (Abdenur, Bonatti, Crovisier). There is a residual sub-
set R € Diff' (M) of diffeomorphisms f such that

e cither the non-wandering set of f admits a decomposition Q(f) =
A U ... UA; into pairwise disjoint f-invariant compact sets, each of
which admits a non trivial dominated splitting and is a union of chain-
recurrent classes.

e or there are infinitely many periodic sinks/sources.

2.4.3 Creation of homoclinic tangencies away from domina-
tion

In dimension 2, Pujals and Sambarino [52] proved that if there is no non-
trivial dominated splitting on the non-wandering set of a diffeomorphism f,
then an arbitrarily small perturbation creates a homoclinic tangency.

Wen [64] generalised that result in higher dimensions. He showed that if
for some integer 1 < i < d, the i-preperiodic set (the set of points that can
be turned into a saddle of index i by an arbitrarily small C''-perturbation)
does not admit a dominated splitting of index 4, then there is an arbitrarily
small perturbation that turns f to admit a homoclinic tangency. However
the saddle for which the homoclinic tangency occurs may have been created
in the perturbation that he builds. Moreover the index of that saddle cannot
a priori be controlled.

We will address these problems, again working on small neighbourhoods
of periodic orbits. We will show that if a saddle orbit has a long period and
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the domination between the stable and unstable bundles is weak enough,
then a homoclinic tangency can be obtained by perturbation of the dynamics
around the orbit. We say that a saddle periodic point @ for a diffeomorphism
f is N-dominated if the splitting into the stable and unstable bundles of the
cocycle df| o (@) 18 N-dominated. Here is a first version of our result:

Theorem 5.1.3 (G.). Let f be a diffeomorphism on a compact Riemannian
manifold M. For any € > 0, there are two integers N, P > 0 such that, if Q
15 a saddle point of period p > P and not N-dominated,

then there exists an e-perturbation of f on an arbitrarily small neighbour-
hood U of the orbit of Q, that preserves the orbit of Q and its index, and
creates a homoclinic tangency related to @ in U.

Moreover, one can ask the perturbation to preserve a finite number of
points in the stable and unstable manifolds of the periodic saddle point Q).
Precisely:

Theorem 6.1.1 (G.). Let f be a diffeomorphism on a compact Riemannian
manifold M. For any € > 0, there are two integers N, P > 0 such that, if Q
18 a saddle point of period p > P and not N-dominated,

then for any finite sets I'® in the stable manifold and T'" in the unstable
one, there exists an e-perturbation g of f on an arbitrarily small neighbour-
hood U of the orbit of Q, that preserves the orbit of @, creates a homoclinic
tangency related to QQ in U, and such that I'® is in the stable manifold of g,
and I'* is in the unstable one.

Actually, one can even ask that if z € I'* UT" is in some strong sta-
ble/unstable manifold for f, the corresponding strong stable/unstable man-
ifold is defined also for g, and contains x. In particular such a homoclinic
tangency can be created preserving the homoclinic relationship between
and any other saddle point. Although one is a consequence of the other, to
spare the reader the technical difficulties of the proof of Theorem 6.1.1 (see
Chapter 6), we give an independant proof of Theorem 5.1.3 in Chapter 5.

We will deduce from Theorem 6.1.1 that if the homoclinic class of a
saddle of index 7 does not admit a dominated splitting of index 4, then by a
perturbation, one obtains a homoclinic tangency related to the homoclinic
class:

Corollary 6.6.2 (G.). Let Q be a saddle point for f whose homoclinic
class H(Q, f) is non-trivial (not reduced to the orbit of Q) and does not admit
a dominated splitting of same index as Q. Then, there is an arbitrarily small
perturbation g of f, that preserves the dynamics on a neighbourhood of Q,
and such that there is a homoclinic tangency related to Q.

Abdenur-Bonatti-Crovisier-Diaz-Wen [3] showed that for a generical dif-
feomorphism, for any homoclinic class, the set of indices of the saddles points
in that homoclinic class is an interval. Corollary 6.6.2, and this result give
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a partial answer to [3, Conjecture 1]:

Theorem 6.6.8.  For every C'-generic diffeomorphism f, let H(P, f) be
a homoclinic class containing saddles of indices a and 3, o < 3. Then the
following dichotomy holds:

e cither there is an arbitrarily small perturbation g of f admitting a
homoclinic tangency associated to the continuation of some saddle of
H(P, f);

e or there is a dominated splitting for f on H(P, f)
ThppyM=FEOE{®...0E;_,®F,

where dim(E) = o and each Ef is 1-dimensional and not hyperbolic.

2.5 Sketch of the proof of Theorem 4.5.2

2.5.1 Large periods cocycles

As we mentioned before, Franks’ Lemma, 2.3.6 allows to reduce the problem
to studying what can be obtained by perturbing the derivative along a peri-
odic orbit: indeed, we first find a perturbation of the derivative df of f along
a periodic orbit () that turns all the eigenvalues at the first return to have
same modulus, then Franks’ Lemma allows to realize that perturbation by
a perturbation of the diffeomorphism f. Precisely, we find a perturbation g
of f on a small neighbourhood of the orbit of @, that preserves the orbit of
Q@ and such that dg on the orbit of @ is equal to the expected perturbation
of df.

Hence we are reduced to perturbing linear cocycles. Roughly, it is enough
to show that given a bound on the norms of cocycles, if a cocycle has no
strong dominated splitting along some orbit, then a small perturbation of
the cocycle turns the eigenvalues of the first return linear map on that orbit
to have same modulus. In [16] it is only proved for large periods, but it
happens that the large period hypothesis is not necessary. The large period
case is treated in sections 4.3 and 4.4. The general case is easily deduced
and is treated in the appendix of the same chapter.

The idea for large period systems will be to look for the perturbations
that minimize the Lyapunov diameter, that is the diameter of the set of
Lyapunov exponents, along one orbit.

We define a linear cocycle A = (A, f) on a bundle £ = (E,X) to be a
large periods cocycle if the three next conditions are statisfied:

e Y is infinite

e any point x € X is periodic for f
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e for any p € N, the set of p-periodic points in X is finite.

We say that such a cocycle A is strictly without domination if the only sets in
restriction to which the cocycle A admits a non-trivial dominated splitting
are finite. The eigenvalues of a linear cocycle are the eigenvalues of the first
return map along a periodic orbit. We will say that the eigenvalues of a
cocycle have different moduli if the eigenvalues of each first return map have
different moduli.

A perturbation of a large periods cocycle A = (A, f) on a bundle & =
(E,XY) is a cocycle B = (B, f) on & such that for all € > 0, there is only
a finite set of points x € 3, for which there is a unit vector u above z
satisfying || A(u) — B(u)|| > €. That is, B is e-close to A almost everywhere.
A perturbation of a perturbation is a perturbation. That definition spares
us the use and handling of multiple e-s and makes the statements and proofs
much lighter.

We now can state the main result on cocycles:

Theorem 2.5.1. Let A be a bounded large periods cocycle. Then if A is
strictly without domination, there exists a perturbation B of A such that for
any x € X, the first return map BP at x has all eigenvalues real, with same
modulus.

2.5.2 Outline of the proof of Theorem 2.5.1

We first see that it is sufficient to show that with the same hypothesis, there
is an infinite subset ¥’ C ¥ on which some perturbation of A has a return
map with all eigenvalues real, with same modulus. We prove that there is a
perturbation B of A that turns all the eigenvalues to be real with different
moduli.

Given a linear cocycle, we call Lyapunov diameter at o point x € 3
the difference between the greatest and smallest Lyapunov exponents of the
cocycle at that point. We now try minimize the Lyapunov diameter on an
infinite subset of 3. Precisely we minimize the lower Lyapunov diameter of
B, that is, the infimum of the numbers p > 0 such that there is an infinite
subset of ¥ of points at which the Lyapunov diameter of B is greater than
p-

We notice that if the lower Lyapunov diameter of a perturbation B of A
is 0, then we find an infinite subset ¥’ C ¥ on which some perturbation of A
has a return map with all eigenvalues real, with same modulus, which would
conclude the proof. We are left to find such a B.

In fact, we show that there is a perturbation B of A that has real eigen-
values with different moduli, and an infinite subset ¥’ C X, such that the
restriction B’ to Y’ is incompressible, that is
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e it admits a Lyapunov diameter 6(B'), i.e. for all € > 0, there is only
a finite set of point x € ¥’ at which the Lyapunov diameter for B’ is
outside the interval [6(B') —€,d(B’) + €.

e it minimizes the lower Lyapunov diameter: any perturbation of B’ has
a lower Lyapunov diameter greater than §(8').

We will notice that A being strictly without domination, so is the per-
turbation B, and so is the restriction B’. It is now clearly sufficient to show
that if a cocycle is incompressible and is strictly without domination, then
its Lyapunov diameter is 0. The next section gives an idea of the way we
show it and thus concludes the sketch of the proof of Theorem 2.5.1.

We summarize how, by induction on the dimension of the bundle, we
obtain that an incompressible cocycle strictly without domination has Lya-
punov diameter equal to zero. In dimension 2, the techniques of R. Mané [38]
provide a proof. Assume by contradiction that an incompressible cocycle A
on a bundle & of dimension > 3 is strictly without domination, and has Lya-
punov diameter > 0. We first show that there is an infinite subset ¥’ C 3
and an invariant splitting &y = F'&G above ¥/ into two non-trivial subbun-
dles such that the eigenvalues on F' are smaller than on G above each point
x € ¥, and the restrictions Ajp and A|g are strictly without domination.
From this and by incompressibility, we get that the Lyapunov diameter of
both Az and Ag is zero.

Since the dimension is > 3, we may assume that dim(F') > 2 and find a
one-dimensional invariant subbundle H C F. Adapting a Lemma from [13],
since A is strictly without domination, we get that

e cither the splitting H ® G is not dominated for A,

e or the splitting F'/H @& G/H is not dominated for the quotient cocycle
A/H.

We finally show that both case authorise, by the induction hypothesis, a
new perturbation that strictly decreases the lower Lyapunov diameter of A,
which contradicts incompressibility. QED.

2.6 Sketch of the proof of Theorem 5.1.3

Remark 2.6.1. As we already warned in section 2.3.2, the definition we take
for N-domination in the proofs Theorems 5.1.8 and 5.1.3 is slightly different
from the definition we used until now. However, by Corollary 2.4.2, the
theorem that we will actually show implies the theorem that we announced.

The proof of Theorem 5.1.3 roughly follows the same steps, but due to
much more technical difficulties and the need of abstruse terminology, we do
not summarise it here.
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As for Theorem 2.5.1 we will work on small neighbourhoods of periodic
orbits, however we need more precise information than the derivative on the
periodic orbit. This is why the cocycle tool of [16] will not directly apply
here.

We will perturb on small neighbourhoods of periodic saddle orbits, pre-
serving these orbits. This motivates the notion of saddle diffeomorphisms:
a saddle diffeomorphism is a diffeomorphism f on a linear Euclidean bundle
E over a finite base X (we see that bundle as a non-connected Rieman-
nian manifold), such that f does a cyclic permutation of the fibres, and the
zero-section Og is the orbit of a saddle point. A saddle diffeomorphism is
N-dominated if the splitting into the stable and unstable directions of df
above the zero-section is N-dominated.

We want to show that if a saddle diffeomorphism has period great enough,
and if it is not dominated enough, then we can perturb it on an arbitrarily
small neighbourhood of the zero-section to obtain a homoclinic tangency re-
lated to the zero-section. The same way as in the proof of Theorem 2.5.1,
we see that if the period is great, then a small perturbation of the cocyle
df|o. above the zero-section has real eigenvalues with pairwise distinct mod-
uli. Again from Franks’ Lemma, we deduce that if the period of a saddle
diffeomorphism f is great enough then there is a small saddle-perturbation
of f that has real eigenvalues with pairwise distinct moduli.

By another perturbation we linearize locally and reduce us to studying a
saddle diffeomorphism that is linear, and has real eigenvalues with pairwise
distinct moduli. We will prove by induction on the dimension of the bundle,
that if such a linear saddle diffeomorphism is not strongly enough dominated,
then a small perturbation turns it to admit a homoclinic tangency.

Dimension 2 was proved, albeit not in that form, by Pujals and Sam-
barino. In greater dimension, let £ = F'@® G be the stable/unstable splitting.
One may assume that the stable direction F' of the linear f has dimension
> 2. As the eigenvalues are real, it contains a one-dimensional invariant sub-
bundle H. Since the domination between the stable and unstable directions
is weak, we use again the lemma from [13|, and get that

e cither the splitting H & G is weakly dominated for f,

e or the splitting F'//H®G/H is weakly dominated for the quotient linear
diffeomorphism f/H.

In the first case, the induction hypothesis provides a small perturbation of
the restriction f|ygq that admits a homoclinic tangency. We will then show
that it can be extended to a small perturbation of f, which will also crearly
present a homoclinic tangency.

In the second case, the induction hypothesis provides a small perturba-
tion of the quotient f/H that admits a homoclinic tangency. We will lift



Thése de doctorat 47

it into a small perturbation of f, and show that such a lift also admits a
homoclinic tangency.

Notice that in both cases we have a priori no control on the size of the
neighbourhood of O¢ on which we perturb f. Nevertheless, conjugating by a
homothety, we will ensure that the orbit of the homoclinic tangency is close
to Og, and thanks to a refined Franks Lemma, we finally find a perturbation
of f on a small neighbourhood of Og that has a homoclinic tangency. QED.
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Chapter 3

Adapted metrics

3.1 Indroduction

The best known and simplest examples of chaotic dynamical systems are
uniformly hyperbolic systems, like Anosov diffeomorphisms. A diffeomor-
phism f on a compact Riemannian manifold M is said to be an Anosov
diffeomorphism if there exists a splitting of the tangent bundle T'M into two
supplementary, df-invariant subbundles, called the stable and the unstable
bundles that are uniformly contracted and expanded, respectively, by an
iterate of f. If the hyperbolic systems are now well understood, many dy-
namical systems are (robustly) not hyperbolic, so that several authors have
tried to weaken the notion of hyperbolicity, in order to recover some of its
properties on a larger class of systems.

In this spirit, Brin, Pesin [19] and Hirsch, Pugh, Shub [35] extended the
notion of hyperbolic diffeomorphism to that of partially hyperbolic diffeomor-
phism, that is, admitting an invariant splitting TM = E° & E° & E", where
the stable bundle F* is uniformly contracted, the unstable one E" is uni-
formly expanded, and the central one E€ is uniformly less contracted (resp.
less expanded) than E® (resp. E"). Hirsch, Pugh, Shub showed the struc-
tural stability of the central bundle of a partially hyperbolic diffeomorphism
(under some extra hypothesis, see [35, Theorem 7.1]).

Working on the stability conjecture!, Liao and Maiié [38] were led to the
following general notion : a dominated splitting for f is a splitting of T'M into
two supplementary invariant subbundles such that there exists an iterate of
df that uniformly contracts more (or expands less) the first subbundle than
the second one. This notion is a key tool for understanding non-hyperbolic
systems:

e In dimension 2, Pujals and Sambarino [52] proved that a diffeomor-

'The stability conjecture, proved by Maifié in [39] for diffeomorphisms and then by
Hayashi for flows in [32], asserts that any C'-structurally stable system is hyperbolic, i.e.
satifies the Axiom A and the strong transversality condition.
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phism with a dominated splitting may be C'-approached by hyper-
bolic ones, and diffeomorphisms without dominated splitting may be
approached by diffeomorphisms exhibiting a homoclinic tangency: as
a consequence any diffeomorphism of a compact surface can be C!-
approximated either by hyperbolic (Axiom A) diffeomorphisms, or by
diffeomorphisms that exhibit a homoclinic tangency (this was conjec-
tured by Palis).

e In any dimension, Bonatti, Diaz, Pujals showed in [13] that a ro-
bustly transitive generic diffeomorphism in Diff! (M), admits a non-
trivial dominated splitting defined on the whole M.

As recalled above, for a hyperbolic set K of a diffeomorphism f, the
vectors in the stable and unstable bundles are uniformly contracted and ex-
panded, respectively, by the derivative df", for some n > 0. The hyperbolic-
ity of K does not depend on the metric on the manifold, but the smallest time
n where the contraction/expansion phenomena are seen depends on the met-
ric; a Riemannian metric is called adapted to the hyperbolic set K if one can
take n = 1. Applying Holmes’ theorem (see [35, page 15]), we obtain that
any hyperbolic set admits an adapted Riemannian metric. We will adapt
this theorem to the case of dominated behaviours, to show Lemma 3.4.2. It
was asked in [35, page 5] if there existed an adapted metric for a dominated
splitting, that is a metric such that df uniformly contracts more (or expands
less) the first subbundle than the second one, at the first iteration.

The aim of this paper is to give a complete positive answer to this ques-
tion, proving that such an adapted metric exists for any dominated splitting:

Theorem . Let f be a diffeomorphism of a Riemannian manifold M, and K
a compact invariant subset of M, such that the restriction of f to K admits
a dominated splitting TM |x= E' ® E?> @ --- @ E¢, where the vectors in E?
are uniformly less expanded than those in E*T' by df™ for somen > 0. Then
there ezxists a Riemannian metric ||.|| on M (necessarily equivalent to the
first metric) and adapted to the dominated splitting: there exists a constant
0 < pu < 1 such that for any x € K, any i € {1,...,d — 1}, and any unit
vectors u € EL, v € EXFL one has ||df (u)|| < p.||df (v)]| -

This result was already known by [35] for a dominated splitting in 2
bundles, TM|x = E1 & E», such that dim(E;) = 1 or dim(E3) = 1. In ad-
dition, they showed that any absolutely normally hyperbolic system, admits
an adapted metric, but it was not known whether it was true for a relatively
normally hyperbolic system, which is, with our definitions, a partially hyper-
bolic system. We answer by showing (see Theorem 3.4.6) that an adapted
metric exists for any partially hyperbolic splitting, that is a metric adapted
to the corresponding dominated splitting, and such that the stable/unstable
bundles are uniformly expanded/contracted at the first iterate. Finally, we
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show in Section 3.5 how to transpose these results from diffeomorphisms to
flows.

In order to present more clearly the idea of the proof, we will first focus,
in Section 3.3, on dominated splittings into two subbundles, over an invari-
ant compact set of a diffeomorphism. Then, we will show that there exists
an adapted Finsler for any dominated splitting into d bundles for a finite
dimensional Banach bundle automorphism (see Theorem 3.4.1).

3.2 Definition and notations

For a morphism A of normed vector spaces, define the norm and the mini-
mum norm of A:

4= s 4G m(4) = it A

When A is invertible, m(A) = ||[A7||~!. For a Banach bundle E, we denote
by E, the fibre of I above a point x of the base. If A is an automorphism
of a Banach bundle E with compact base K, then for any point = of K, we
denote by A, the restriction of A to the fibre E,. We refer the reader to [35]
for definitions.

We say that a sequence of functions g,(x): K — R converges exponen-
tially to zero if there exists positive constants C' and p < 1 such that for all
x and n,

lgn ()] < Cp".

Given an automorphism A of a Banach bundle F with compact base K

A

E E
o,k
K ! K

and a positive continuous function r: K — R, we denote by R,(x) the
product

n—1

Ro(x) = [] rlf'(@)] = r@)r(f @))rlf~" (@)]

Definition 3.2.1. A positive continuous function r: K — R dominates A,
if the sequence of ratios © — ||.AZ||/Rn(x) converges exponentially to zero
as n — oo, where A7 = A"|g,.

In this case we write df|p < r. Symmetrically, we say that r is dominated
by A and we write r < A if and only if the ratio R,,/m(A™) goes exponentially
to zero as n — oo. Notice that r < A is equivalent to A~ < 1/r.
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Definition 3.2.2. Let E be a finite dimensional Banach bundle over a com-
pact base K, and E = E' @ ... ® E? be an invariant splitting for an auto-
morphism A, where the E? are vector subbundles with constant dimension.
Then we say that it is a dominated splitting if, for each integer 0 < i < d, the

ratio HA‘”EZH / m(.A‘”EiH) tends exponentially to zero, as n goes to infinity.

We have written ||AFE1|| Jm( TLEH‘l) for the function z
HA@EZH/m( |"Ei+1). In this case, we say that Ag: is dominated by
Agi+1, and we write Ajgi < Ajgit1. We recall that the subbundles E; are

necessarily continuous (see [14, Appendix B| for a proof).

Remark 3.2.3. Since the bundles and automorphisms are continuous, and
the base K 1is compact, the definitions of domination and dominated split-
ting are independant of the Finsler. Thus we will be allowed to change to
equivalent metrics.

A Finsler ||.||« is adapted to the dominated splitting if and only if, for all
1 < d, we have

A g«
m, (Agit1)

where ||.||« and m, are the norm and the minimum norm, with respect to the
Finsler ||.||«. Equivalently, by compactness of the base, there exists a real
number 0 < C' < 1 such that, for any z € K, for any nonzero unit vectors
u € EL v e B we have ||A(u)|s < C|A@0)|x.

3.3 Two-bundle splittings

Let M be a compact smooth manifold endowed with a Riemannian metric
II.ll, let f be a diffeomorphism of M and let K be an invariant compact set
in M. We will show the following:

Theorem 3.3.1. If TkM = E & F is a dominated splitting for the dif-
feomorphism f on the compact K, then there exists a smooth Riemannian
metric on M that is adapted to that dominated splitting.

The proof consists in building first a separator for the dominated splitting,
that is, a positive function r: K — R such that we have dfjp < r < df|p.
Then by a dominated version of Holmes’ theorem, we will build two metrics
II.llz and ||.||F on the bundles E and F, such that, for any = € K, for any
unit vectors u € F, and v € F,, we have

ldf (W)l < r(z) < lldf (v)] -

These metrics will induce, up to perturbation, an adapted Riemannian metric
on M.
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Lemma 3.3.2. A two-bundle dominated splitting has a separator.

Proof: In the following, we fix a dominated splitting T M = E @ F for the
diffeomorphism f. For simplicity, call dfjp = A and df|r = B. By hypothesis,
the ratio ||.A™||/m(B") tends exponentially to zero. In particular, for N large
enough, the function z — [|AY||/m(BLY) is smaller than 1/2. Therefore, for
a > 1> b close enough to 1, we have for all  in K:

al AY [N < bm(BY) VN

Hence, Lemma 3.3.2 comes from the following claim. O

Claim 1. Any continuous function r: K — R such that a.HAile/N <
r(z) < bm(BN)YYN separates the splitting.

Proof : For any integer n > N, and each 0 < k < N — 1 we can write the
iterate A7 as the composition

Afk+mN(x OAfk(x OAI;

for some integers 0 <1 < N — 1 and m > 0. Precisely, take the integer part
of (n — k)/N for m, and | = n —nM — k. Denote by ¢ the upper bound of
the norms of the i-th forward or backward iterates of A, for i < N:

c= suwp |4,
l{|<N,yeK

It is finite, as K is compact. We have then

IAZL < 1A (TG AR in 1) 1451

[AZI < c? Hjejk HA%(@H

where Ji is the set of integers {k + iN,i = 0...m — 1}, that is the set of
integers of the form &£+ ¢/N and comprised between 0 and n — N. Obviously,
the sets J for k = 0,..., N — 1, are pairwise disjoint and their union is the
interval {0,...,n — N}. Hence, taking the product of inequalities (1), for
k=0,..,N —1 we obtain

MM < T AR -

j€{0,..n—N}

Since |AY, |7t < ALY | <e¢, we get

£+ @)

f](x ‘

lAzY < VN T 1A o -
j€{0,...,n}
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Thus, as al|AY, Hl/N < r[fi(z)], we get that, for any z € K,

Ji(x)
[AZ]| < Pa "Ry (),

which prooves that A < r. Notice that 1/b.||B; Y| < 1/r(x), for all x. Thus,
we have the same way B~! < 1/r and then » < B. This ends the proof of
the claim, and that of Lemma 3.3.2. O

We now show the following Lemma (which can actually be seen as a
particular case of Lemma 3.4.2 stated below):

Lemma 3.3.3. Let r: K — R be a positive function that separates the
continuous splitting E & F, that 1s dfjp < v < dfjp. Then there exists a
Riemannian metric ||.||« on M that is adapted to the domination; namely,
for all x € K, for all unit vectors u € E,, v € F, we have:

ldf ()]« < r(x) <[ldf (v)]l«

Proof : We define on E a metric ||.||g by

IIdf”U\I2
Jul% = Z o

for any u € E,, where R, (z) = r(z)...r[f""!(x)] as above. By domination,
this is a sum of a normally convergent series of continuous functions; therefore
||z is well-defined and continuous. As a sum of quadratic forms, ||.|[% is
a quadratic form, thus ||.||g is a Hilbertian metric (it arises from an inner
product). Moreover, we have:

lldf" )

d n+1 d U d n u 2

=1

since Ry_1(z) = Rn()/r(z). We obtained ||df (u)[|5 = r()*[[ullf — [lul’]
where |lu||? is the first term of the series defining |lu||%. Hence, for any
nonzero u, ||df (v)||g < 7(x)||u||g. Up to change f into f~! and r into 1/r,
we find the same way a Hilbertian metric ||.||z on F' such that, for all nonzero
vin F, r(z)||v]|r < ||df (v)||r. Consider now the Hilbertian metric ||.||. on
T M that extends ||.||g and ||.||r and that makes E and F' orthogonal. It
is continuous, since ||.||g and ||.|F are.

The inequality [|df (u)|l« < r(z) < ||df(v)||« holds for all unit vectors
u € FE, v € F above each point = of the base K. We extend the metric
||l.|l« to the whole M, and smooth it into a Riemannian metric by a small
perturbation, so that, by compactness of K, the inequality is preserved. O

This together with the existence of a separator (Lemma 3.3.2) ends the
proof of Theorem 3.3.1.
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3.4 Multiple bundles splittings

We will show in this section the most general result of our paper:

Theorem 3.4.1. Let E be a finite dimensional Banach bundle on a compact
base, and let A be an automorphism of E. If E = E'®...® E?% is a dominated
splitting for A, then there is a Finsler ||.||. on E adapted to the domination,
that is, for each i =1...d — 1, for any x € K, we have

Azl < (A ).
|Ez

Furthermore, if the original metric on E is Hilbertian, then the adapted
metric can be chosen to be also Hilbertian.

Let F' be a Banach bundle with compact base K, and B be an automor-
phism

F 5 .
I I
K ! K

Then we have this dominated version of Holmes’ Theorem (see |35, page
15]):

Lemma 3.4.2. Let r,s: K — R be two positive continuous functions such
that the domination r < B < s and the inequality v < s hold on K. Then
there is a Finsler ||.||« on F that is adapted to the domination, namely, for
any x € K, for any u € F, \ {0}, we have

r(@)llulle <[IB(u)llx < s(z)]ull

Proof : For all w in F, we define

B™(u)|)?
Jul? = ZR? oI + Z” el

where .|| is the original metric on F, and where R,[f "(y)] =
r(f7 W) (F7H W), Snly) = s(y)s(f(y))-..s(f*1(y)) as before. Still by

domination, the series normally converges to a continuous function. Thus
II.]|« is a well-defined Finsler. We have

Bn+1 H2

HB(U)HE = ZR2 - n+1 ||B n+1 H2 Z ”

BTL
- ZRnH DB H2+Z S

H2
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For we have R, 11[f"(z)] = Rp[f " (z)].r(z) and S,—1[f(z)] = Sn(x)/s(x),
we get

2 2 2, HB”uH2
[B(u)llx = ZR )] B (w)[|” + Z @

On the other hand, we have Ry(z)||B=%(v)|| = ||v|| = ||B°(v)|/So(z) since
Rg and Sy are empty products equal to 1. So, in the expression of ||ul|?, we
can take the first term of the second sum to the first sum:

HB”
lullf = ZRQ 2)]IB™" (w)|* + Z
Finally, since r < s, we obtain, for any nonzero vector u, the inequality

[r(@)Pllullz < IBu)Z < [s(2))?[|ulZ

the square root of which concludes the proof. O

||2

Remark 3.4.3. Having chosen this quadratic construction, if ||.|| is a Hilber-
tian metric, then ||.||« is still a Hilbertian metric.

Proof of Theorem 3.4.1 : By definition, the ratios ||A|E1H/m( ‘E‘H’l)
converge exponentially to zero, for each 4, as n goes to infinity. Thus we can
find an integer N such that for each 7, the ratio ||A|E1H/m(A‘E1+1) is smaller
than 1/4. The proof of Lemma 3.3.2 still works when TM|x = E @ F is
replaced by the Banach bundle £ @ E*t!, and when df i 1s replaced by the
automorphism A\ gigpi+1.

Choose then a family (r;)p<i<q Of continuous functions such that
2UNIIATL N < < 27N m(ANE )Y, We have then ri(z) < .. <
rq—1(z), for all z € K; furthermore, by Claim 1, we have

Ei <r1 <FEy<..<rg_1<E,.

In order to have two-sided dominations for the extremal bundles, we may
add two functions rg < Fq1 and Eg < 14, with 0 < rg < r1 and rq_1 < 74.
We now apply Lemma 3.4.2 to find a Finsler ||.||; on each E; that is adapted
to the domination r; < F;41 < ;1. Define the new metric

lalle = [ D lIps)l17,
i=1..d

for all w € E, where p; is the projection on E; along By @®...0E '@ E T @
E?. Tt is a Finsler that is clearly adapted to the dominated splitting: for any
unit vectors u € EX, v € EXF we have ||ulls = |Jull; < ri(z) < ||[vlliz1 = |||«
O
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Remark 3.4.4. Obviously by the previous remark, if the original metric ||.||
was a Hilbertian metric, then the metrics |.||; are so, and the metric ||.||, we
built us still a Hilbertian metric.

After smoothing the adapted Hilbertian metric, we obtain the following,
which is a reformulation of Theorem :

Corollary 3.4.5. Let M be a Riemannian manifold, K a compact invariant
set for a diffeomorphism f, and TeM = E' @ ... ® E4 a dominated splitting
for f above K. Then there exists a smooth Riemannian metric on M that is
adapted to it.

The existence of an adapted metric was shown for absolute- and not
relative-normally hyperbolic systems (see [35]| for proofs and definitions).
The bases of all Banach bundles are still compact. A dominated splitting
E =FE'®..® E? for an automorphism A is partially hyperbolic if and only
if, for some 1 < k < k+1 < [ < d, the bundles E* = E' & ... @ E¥ and
E*=E'®...® E? are respectively stable and unstable, that is HA‘”ES || and
HA‘}ZH converge exponentially to zero as n goes to infinity. We say that a
metric |||« is adapted to such partially hyperbolic splitting, if it is adapted
to the dominated splitting, and if || Ajgs|| < 1 and m(Ajg.) > 1.

Theorem 3.4.6. A partially hyperbolic splitting has an adapted metric.

Proof : We show it in the three-bundle case (it is the same idea for the
general case). Consider a partially hyperbolic splitting £ = E* @ E¢ & E*
with compact base for an automorphism A. Then HA‘”ESH and HAELH tend
exponentially to zero as n goes to infinity. From the construction we gave
in the proof of Lemma 3.3.2, we can find two functions 0 < r < 1 < s such
that

A\ES <r< A|Ec < s '<A‘Eu

With respect to this domination, the metric ||.||, produced in the proof of
Theorem 3.4.1 is adapted to the dominated splitting and satisfies [|.Ags|| <
I <m(Ajgu). Hence, it is adapted to the partially hyperbolic splitting. O

3.5 Dominated splittings for flows

In this section, we briefly show that the same results apply for flows. In the
following, ¢ is a flow on a compact subset K of a Riemannian manifold M.
A Finsler |.||s on M is adapted to a dominated splitting Tx M = E'&...® E?
for ¢, if and only if, for any point x € K, for all unit vectors v, w in any pair
Ei Eif! we have

vt >0, [de'(v)ls < [lde (w)lx,
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where d¢' is the derivative of the time-t map of ¢. The existence of adapted
metrics for flows is not a straightforward consequence of our results on dif-
feomorphisms. At best, applying the former results would provide, for each
e > 0, a metric ||.||« such that the inequality above holds for all ¢ > e. To get
adapted metrics, we have to transpose the notion of separator to the flow
case.

Let E be a subbundle of T M, invariant by ¢. Fix two strictly positive,
continuous functions r, s: K — R. Then, for any x € K, for all t € R, define

Rie) = o ([ bl )lan)
Si(z) = exp ( /Otln[s(gbu(x))].du).

For any fixed z, the functions t — R;(z) and t + S;(z) are C!, and for all
real numbers t, k,

Rigp(x) = Ri(x).Re[o'(2)], (3.1)
Sire(z) = Re(z).Sp[o" ().

Assume that r < s, and that we have the domination relation r < dg¢ < s,
that is, for all z € K, for any vector v € E,, the quantities ||d¢*(v)|/S¢(x)
and ||d¢'(v)|/R¢(z) go exponentially to zero, respectively, as t goes to 400,
and as t goes to —oo. Then, define the Finsler |||« on E by

0 )2 t() (|12
e

for any z € K, for all v € F,.

Claim 2. For any nonzero vector v € E above any point x € K, the metric
I|.|l« satisfies

¥k >0, Ry(@).llvllx < [[dg" (v)[l« < Sk()-][v]|.
That is, the metric ||.||« is adapted to the domination r < dg¢ < s.

Remark 3.5.1. This is merely Lemma 3.4.2 for flows.

Proof : After a change of variable, we get:
£ lde' @)1 0 |d¢! (v)]?
do*(v)||? = / 7.dt+/ —————.dt
[l = | B ed@ ) L edm

Ry |l dg* (0)I* 2 oo |ldgt (v) ||
_ Rk()/m T+ S )./k i
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by formulae (3.1) and (3.2). Let (k) be the quotient S7(z)/R2(x), and
define the function:

ldg" (v) |12 |d¢* (v)]1? o0 |ld¢! (v)?
ok RS _/OO o dt+9(k)./k e

Since §(k) = exp (2. fok In 3" (a:)]du) ,and s < r, the derivative 0’ is strictly
positive. The function f is obviously C!, and its derivative, after some

calculation, is

+o0 iy 2
F(k) = 0'(k). / e )I” 4,

k Si(z)

Hence f’ is strictly positive, and f is strictly increasing. For we have f(0) =
|lvl|?/R%(z) = ||v||?, the inequality f(k) > f(0) leads to Ry(z)2.|v|? <
|[dg* (v)||2, for all k > 0. The inequality ||d¢*(v)|? < S#(z).|[v]|? comes the
same way, considering this time the function g : (k> [|d¢®(v)||?/S2()).
This concludes the proof of the claim. O

On the other hand, any dominated splitting for a flow has a separator.
Let Tk M = FE & F be a dominated splitting. For simplicity, ® will denote
the restriction of d¢ to the bundle E. For instance, we will write ||®¢ | for
the maximum norm of the restriction of d¢ to E,. Precisely, we assert the
following:

Claim 3. The functionr = (z — a.||q);{||1/T) is a separator E < r < F, for
some a > 1, and some T large enough.

Remark 3.5.2. This is Lemma 3.53.2 for flows; the proof is comparable step
by step to that of Claim 1.

Proof: Fixarealt > T. Let m be the largest integer such that T'+mT <t.
For any real 0 < x < T', we decompose ®' to obtain, for all z € K,

IRLI < NPt ) [Pt i 17 g - 1R s ) 1 e ) -1 D5,

where A > 0 satisfies t = k + m7T 4+ A. Denote by ¢ the upper bound
¢ = sup|;<oryek || Py, and take the logarithm of the inequality:

In | @[ < 2In(c) + 10 1P s nsyr gy | + -+ I DG .

This stands for all 0 < x < T'. Therefore we have:
T T T T
/0 In ||®L.de < /0 2.ln(c).d/€+/0 ln||q)¢,,v+(m DT (4 || dk + .. —i—/o ln||q)£,{(x)||.dﬁ
mT
T.In||®L| < 2T.In(c) +/0 I [|®f . du

t
T.In||®L| < 4T.ln(c)+/0 I [|® 4., |- du,



60 Nikolaz Gourmelon

since 0 < ¢t —mT < 2T, and —In[|®] || <In|[®,7|| < In(c). Then, dividing
by T', we obtain

t
In||®L| < ln(c4)+/0 Infa~tr(¢"(2))].du.

Writing the exponential form, we get | ®%| < c*a=*R;(x). Which means that
® =dgr¢p < r. We are left to check that r < dp¢ for some T > 0 big enough,
and some a > 1. This is done the same way as in Lemma 3.3.2. O

Clearly, referring the reader to the proof of Theorem 3.4.1, flow versions
of Lemmas 3.3.2 and 3.4.2 are all the ingredients we need, to transpose the
results of Section 3.4 to flows:

Theorem 3.5.3. A dominated (resp. partially hyperbolic) splitting for a flow
on a compact subset of a Riemannian manifold admits an adapted metric.

Acknowledgements: I would like to thank Christian Bonatti and Sylvain
Crovisier for second reading and corrections. Special thanks to the referee
for his great help on writing.



Chapter 4

Newhouse Phenomenons

Les résultats énoncés dans ce chapitre ont été obtenus en collaboration avec
Christian Bonatti et Thérése Vivier. Nous montrons que si une orbite péri-
odique n’admet pas une décomposition dominée de force prescrite, elle peut
étre transformée en un puits ou une source par une petite C 1—perturbation
le long de l'orbite. A partir de ce résultat [16] montre que le flot de Poincaré
linéaire d’un champ de vecteurs C' admet une décomposition dominée au-
dessus de tout ensemble robustement transitif.

The results stated in this chapter are a common work with Christian
Bonatti and Théreése Vivier. We show that a periodic orbit period of a
diffeomorphism or flow, either admits a dominated splitting of a prescribed
strength, or can be turned into a sink or a source by a C'-small perturbation
along the orbit. Using that result [16] proves that the linear Poincaré flow of
a C'l-vector field admits a dominated splitting over any robustly transitive
set.

4.1 Introduction

In [38], R. Mané proved that any robustly transitive diffeomorphism f of a
closed surface S is an Anosov diffeomorphism. Let us give a sketch of his
proof.

Mané first establishes that the tangent bundle of the surface splits into a
direct sum T'S = E @ F of two line bundles, and that this splitting is domi-
nated: the vectors in F' are uniformly more expanded by D f than those in E.
In order to prove this, he shows that, if there were no dominated splitting,
then it would be possible to perturb (in the C'-topology) the differential of
the diffeomorphism along some periodic orbits in order to create a complex
eigenvalue, thus creating a sink or a source and breaking the transitivity.
This is a purely linear-algebraic argument on periodic sequences of matrices
in GL(2,R). It remains to show that the vectors in E are indeed uniformly
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contracted and the vectors in F' uniformly expanded. This requires deeper
arguments, in particular the ergodic closing lemma.

The first argument of this proof has been adapted in higher dimension,
first in [24] in dimension 3 and then in [13] in any dimension: any robustly
transitive diffeomorphisms admits a dominated splitting. However, the ar-
guments in these papers fail to be purely algebraic: both of them use the
classical fact that, if P and @) are homoclinically related hyperbolic saddles,
there are periodic saddles (with arbitrarily long periods) that remain arbi-
trarily close to the orbit of P during an arbitrarily long time, then jump into
a neighborhood of ) in a bounded time, remain there during an arbitrarily
long time, come back in a small neighborhood of P in a bounded time, and so
on. This dynamical argument allows in some sense to multiply large positive
iterates of the derivative of f corresponding to different periodic orbits. This
"semi-group-like" property has been formalized in [13] through the notion of
linear cocycles with transitions, whose archetype is the cocycle induced by
D f, over the set of homoclinically related periodic orbits in some homoclinic
class. [13] shows that, if a linear cocycle with transitions does not admit
any dominated splitting, then a small perturbation of the diffeomorphism
enables to turn the differential along a periodic orbit into a homothety, thus
turning the periodic orbit into a sink or a source.

The notion of transition introduced in [13] is a very strong tool, but it
turns out to be also heavy and not very flexible. For instance, it is not
easy to adapt its definition to continuous time systems. Another problem
was that [13] does not give any information on the existence of dominated
splittings for sequences of periodic orbits with trivial homoclinic class.

However, transitions are needed to get the linear result in [13]. Given
a linear cocycle without transition and without dominated splitting, it is
indeed not always possible to turn the matrix at the period into an homo-
thety by a small perturbation of the cocycle . We can nevertheless recover
almost the same property: for any linear cocycle over periodic orbits (with-
out transition hypothesis) without dominated splitting, there are arbitrarily
small perturbations such that the matrix at the period (corresponding to
some periodic orbit of the system) has all its eigenvalues real and with same
modulus.

Actually, the article [16] only shows it for long periods systems; we added
a complement (see section 4.5) that deals with the general case. We state

!Consider for example a sequence of periodic points x, with periods p, — oco of
a diffeomorphism f such that the differential along the orbit can be written (in local

coordinates) as: Df(f'(zn)) = < (2) 8 ),Vi € {0,...pn — 2} and Df(f*n " (z,)) =

-1 . . . - .
( (1) 0 ) Then these orbits admit no dominated splitting, but there is € > 0 such
that for any e-perturbation g of f preserving the orbit of one x,, the differential Dg?™ (xy,)
is not an homothety.
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the consequence for the periodic orbits of a diffeomorphism:

Corollary 4.2.21 Let f: M — M be a diffeomorphism of a compact Rie-
mannian manifold. Then for any € > 0 there are integers {,n such that, for
any periodic point x of period p(x) > n:

o cither f admits an (-dominated splitting along the orbit of x;

e or, for any neighborhood U of the orbit of x, there exists an e-
perturbation g of f for the Cl-topology, coinciding with f outside U
and on the orbit of ©, and such that x is a source or a sink of g for
which the differential DgP®) () has all eigenvalues real and with same
modulus.

One obtains an analogous result for flows (see [16]).

Our results can be connected to a recent result by S. Gan in [27]%: given
any € > 0, there is £ > 0 such that, for any periodic point =z,

e cither there is an /-dominated splitting £ @ F' along the orbit of x with
dimFE =1,

e or there is an e-small C''-perturbation of f, that makes equal the mod-
uli of the ¢t and the i + 1th eigenvalues associated to the orbit of
T.

Our results on periodic orbits of diffeomorphisms derive from analogous
results obtained for linear cocycles (see subsection 4.2.1 for the definition
and subsection 4.2.5 for the statement of the result) together with a lemma
of Franks which enables to achieve any perturbation of the differential of a
diffeomorphism as the differential of a perturbation of the diffeomorphism.

We would like to thank Marie-Claude Arnaud and Sylvain Crovisier for
many enlightening discussions, and the referee for pointing out the relation
between Gan’s result and ours.

It would be tempting to try to deduce our result from Gan’s result. If a periodic orbit
has no ¢-dominated splitting, then one may apply Gan'’s result to any pair of eigenvalues.
So, one can hope to make equal, successively, every pair of eigenvalues. This idea relies
on the fact that, what is done at a step does not destroy the effect of the previous pertur-
bations; in other words, it needs the robustness of the proximity of some of the Lyapunov
exponents, independently of the period of the periodic orbit. Unfortunately, one can easily
build sequences of periodic orbits 7,, whose period tends to infinity, having a pair of equal
Lyapunov exponents that are separated by more than a constant (for n large enough) by
an arbitrarily small perturbation.
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4.2 Statement of the results

4.2.1 Elementary definitions : linear cocycles

Definition 4.2.1. We shall call linear cocycle of dimension d any 4-uple
A= (%, f,E, A) such that:

e Yisaset and f: ¥ — X is a one-to-one map.

e 7w : F — 3 is a linear bundle of dimension d over ¥, whose fibers are
endowed with a Euclidean metric || ||. The fiber over the point x € ¥
will be denoted by E,.

o A:x€X— Ay € GL(Ey, Ef(y)) is a map.

We shall say that a linear cocycle A is bounded if there exists a constant
K > 0 such that, for any point x € ¥, we have ||4,|| < K and || A;!|| < K.
We shall say that A is a cocycle of matrices if the bundle 7 : E — 3 is trivial
and if the metric on each fiber is the standard euclidean norm of R?. We
shall then consider A, as an element of GL(R,d). Notice that any linear
cocycle A bounded by K is, up to a choice of orthonormal basis over each
fiber F,, conjugated to a cocycle of matrices bounded by the same constant
K.

Let A be a linear cocycle. For any integer n, and any point z € X, we
shall denote by A} the product A} = Agn-1(y) 0 ... 0 Af,) o Az. Moreover,
A" = (X, f*, E, A™) is a linear cocycle bounded by K™.

We shall say that a subbundle F' C FE is invariant if its fibers F, have
constant dimension for any point = € ¥ and if Fy(,y = A;(F;). We denote by
F the (a priori non invariant) orthogonal subbundle of F, that is, for each
point x € ¥, F- is the orthogonal supplement of F}, in E,. These subbundles
are both naturally endowed with the metric induced by the metric defined
on E.

Definition 4.2.2. Let A be a linear cocycle, ¥’ an f-invariant subset of 2
and F' an invariant subbundle over X.

1. The restriction of A to the subset >’ is a linear cocycle (¥, f, E, A)
denoted by Ajsy.

2. The linear cocycle Ap induced by A on F is the linear cocycle
(3, f, F, A) obtained by restricting A to the subbundle F.

3. The quotient cocycle of A by F, denoted by A/F, is the linear cocycle

(2, f, Fl, A/F), where (A/F),: FIJ- — Ffl(x) is the projection on Fjﬂzx),

parallel to Fy(,), of the restriction (A|FL> cFl— Ej(y) of Ag.
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Notice that if A is bounded by K, then Ay, Ap and A/F are also
bounded by K: this is obvious for the first two cocycles. This is true for
A/F because the invariance of F' by A implies

(A/F)_l = A_I/Fv

and because the use of an orthogonal projection decreases the norm of the
application (in fact, for any integer n, (A/F)" = A"/F).

We shall use the natural notions of transverse subbundles, and of direct
sum of transverse subbundles.

4.2.2 Dominated decomposition

Definition 4.2.3. Let A be a linear cocycle bounded by K, and F,G two
invariant subbundles. We shall say that G dominates F', denoted by F' < G
or F' <y G, if there exists an integer ¢ such that, for any point x € % and
any pair of vectors (u,v) € F, x G, the following inequality holds:

1AL
2" ol

Remark 4.2.4.

1. {-domination does not imply (¢ + 1)-domination;

2. For any constant K > 0, any integer £, there is an integer L such that,
for any linear cocycle bounded by K and any £-dominated decomposition
F <y G, the following assertion holds:

V' > L, F <y G.

We then use the following notation: F < G. We call characteristic
time of domination the smallest L such that F <* G.

Definition 4.2.5. A bounded linear cocycle A admits a dominated splitting
(or dominated decomposition) if there exist two transverse invariant subbun-
dles F,G such that E = F ® G and F < G.

More generally, for any Fi,..., F} invariant subbundles such that F =
Fy @ --- @ Fy, the decomposition is said dominated if, for any i € {1,...,k —
1}, F; < Fi41: indeed, [13] proves that, under these assumptions, the decom-
position E = (@Zl F]) & (@fﬂ F]) is dominated for any ¢ € {1,...,k — 1}.
We shall also use the following Lemma ([13, Lemma 4.4])

Lemma 4.2.6. Let A= (X, f, E, A) be a bounded linear cocycle and assume
that E admits an invariant decomposition E = F & G ® H. Consider the
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quotient cocycle A/G. The projection on E/G of the subbundles F' and H
induces an invariant decomposition denoted by E/G = F/G ® H/G.

Assume that we have the dominations F/G < H/G and G < H, then we
have (F & G) < H. Symmetrically, we get:

(F<Gand F/G < H/G) = F < (G H).

4.2.3 Periodic cocycles

We shall consider linear cocycles over a system (X, f) satisfying the following
three properties:

(P1) X is infinite,
(P2) any point z € ¥ is periodic, and we shall denote its period by p(z),

(P3) for any integer k > 0, the set of points € ¥ such that p(x) < k is
finite.

A system verifying (P2) is a periodic system. A system (X, f) verifying
(P1), (P2) and (P3) is a large periods system. In particular, for any large
periods system (X, f) the set 3 is countable, and up to an indexation of the
orbits, X can be regarded as a sequence of periodic orbits whose periods tend
to infinity. The restriction of (X, f) to any infinite invariant subset of X is
another large periods system.

Let (X, f) be a periodic system. For any linear cocycle A = (X, f, E, A)
and any z € % we define:

My g = AP®): B, — E,.

We shall use the abridged notation M, when there is no ambiguity on the
considered cocycle.

Definition 4.2.7. Let A = (X, f, E, A) be a linear bounded cocycle over an
infinite periodic system.

1. We shall say that the cocycle A is strictly without dominated decompo-
sition (or equivalently strictly without domination) if the only invari-
ant subsets Y/, in restriction to which the cocycle admits a dominated
splitting, are finite.

2. An invariant splitting £ = F'@ G shall be said strictly not dominated if
the only invariant subsets ¥ in restriction to which the splitting F & G
is dominated are finite.

Remark 4.2.8. If A is strictly without domination and if X' C X is an
infinite f-invariant subset, then the restriction Ajsy is also strictly without
domination.
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Lemma 4.2.9. Let A = (X, f,E, A) be a linear bounded cocycle over an
nfinite periodic system.

1. Let E = F ® G be an invariant splitting, then:

e cither there exists an infinite invariant subset X' C X such that
the splitting is strictly not dominated in restriction to Y';

e or there exists a finite invariant subset g C X such that the
splitting is dominated in restriction to 3\ Xy.

2. In any case, A verifies one of the following properties:

e cither there exists an infinite invariant subset X' C X such that the
cocycle is strictly without dominated decomposition in restriction
to X;

e or there exists a partition ¥ = XU X --- UXy, with k < d, such
that, for any i € {0,...,k} the subsets ¥; are f-invariant, ¥¢ is
a finite set and the cocycle admits a dominated decomposition in
restriction to each ¥;, © > 1.

Proof:

1. Let E = F & G be an invariant splitting. For any integer L > 1, let
us consider the set ¥y, of points « € X such that the restriction of the
cocycle over the orbit of = verifies F' < G. If there exists an integer L
such that the ¥\ ¥, is finite, then the second assertion holds. Assume
that for any integer L, ¥\ ¥, is an infinite set, then we can construct
an infinite sequence of points x, with disjoints orbits such that, for
any n, o, belongs to ¥ — 3,,. The union ¥’ of the orbits of the points
T, satisfies the first assertion.

2. Assume A admits no dominated splitting and consider, for any pair
of integers (L > 0,4 € {1,....,d — 1}), the set ¥ ;) of points such
that the restriction of the cocycle over the orbit of x admits a splitting
E = F @ G verifying F < G and dim(F) = i. If there exists an
integer L such that the set ¥\ U?;ll Y(L,) 1s finite, then the second
assertion holds. Assume that for any integer L, ¥\ Uf:_ll Y(L4) s an
infinite set, then we can construct an infinite sequence of points x,
with disjoint orbits such that, for any n, x, belongs to X — (J; ¥(,,)-
The union Y’ of the orbits of the points z,, satisfies the first assertion.

a
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4.2.4 Perturbations
Definition 4.2.10.

1. Let A= (%, f, E, A) be a bounded linear cocycle. For any given ¢, any
bounded linear cocycle B = (X, f, E, B) such that ||A; — B,|| < e and
|A;t — Bl < e for any x € ¥ is an e-perturbation of A.

2. Let A= (%, f,E, A) be a bounded linear cocycle over an infinite peri-
odic system. A linear cocycle B = (X, f, E, B) is a perturbation of A
if, for any € > 0, the set {z € ¥, ||A; — B;|| > ¢} is finite.

Remark 4.2.11.

1. Any linear cocycle A over a finite (hence periodic) system (X, ) admits
a dominated decomposition if and only if there exist an integer v €
{1,..,d — 1} and, for any point x € ¥ two spaces Fy and G, invariant
by M, with dimension i, (respectively d —1i,) such that the modulus
of any eigenvalue of the restriction My g, is strictly smaller than the
modulus of any eigenvalue of My g, -

2. As a consequence, any linear cocycle over a finite system (X, f) with
dimension greater than 3 admits arbitrarily small perturbations such
that there exists a decomposition of the set 3 = 31 U ¥y verifying the
two following assertions: the restriction of the linear cocycle to X1
admits a dominated splitting E = Fy ® G where dim(Fy) = 1, and
the restriction of the linear cocycle to Yo admits a dominated splitting
E = F, ® Gy where dim(Fy) = 2.

Both these remarks explain why we shall neglect finite invariant subsets
of the system in our further study.

Remark 4.2.12. Let (X, f) be an infinite periodic system, and A,B and C
be three bounded linear cocycles of dimension d over (X, f). Then :

o if B is a perturbation of A, then A is a perturbation of B;

e if B is a perturbation of A and if C is a perturbation of B, then C is a
perturbation of A;

In other words, "to be a perturbation of" defines an equivalence relation on
the set of bounded cocycles over (3, f).

Remark 4.2.13. Let A = (X, f, E, A) be a bounded linear cocycle over an
mnfinite periodic system and let B be a perturbation of A. Then there is a
scalar function a: X — R with the following property:

e There is a finite subset ¥y C X such that, for all x € X\ X the
determinant of the matriz o(x).B, is equal to the determinant of A,;
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e «(x) converges to 1 when x — oo, that is, for all € > 0 the set {x €
Y| |a(x) — 1] > e} is finite.

In particular, the cocycle C defined by Cy, = a(x)By is a perturbation of the
cocycle A.

Given a bounded linear cocycle admitting a dominated splitting, [13]
proves that any small enough perturbation of the cocycle admits a domi-
nated splitting (with same dimension of the subbundles). More precisely,
[13] proves that:

Lemma 4.2.14. Given any dimension d, any positive constant K and
any integer £ > 0, there is an € > 0 such that, for any linear cocycle
A= (%, f,E, A) bounded by K, of dimension d, admitting an (-dominated
splitting F' <y G, one has that:

any e-perturbation B of A admits a dominated splitting F' < G' with
dim(F") = dim(F).

Corollary 4.2.15. Let A= (%, f, E, A) be a bounded linear cocycle over an
infinite periodic system. Assume A is strictly without dominated splitting.
Then any perturbation of A is strictly without dominated splitting.

Proof: We argue by contradiction: assume that there exists a perturbation
B of A whose restriction to an infinite invariant subset ¥/ admits a dominated
splitting £ = F @ G. Since A is bounded, the linear cocycle B is bounded by
some positive constant K. Fix £ > 0 such that F' <y, G. By Lemma 4.2.14,
there exists an € > 0 such that any e-perturbation of B admits a dominated
splitting. By definition of a perturbation, there exists a finite invariant
subset X such that the restriction of the linear cocycle A to the infinite set
'\ ¥ is an e-perturbation of B, hence admits a dominated splitting. This
contradicts the assumption that A is strictly without dominated splitting.
O

4.2.5 Statement of the results for linear cocycles

Theorem 4.2.16. Any bounded linear cocycle A over a large periods system
admits a perturbation B such that for any point x € %, all eigenvalues of
M, g are real, with multiplicity 1 and different moduls.

Scholium 4.2.17. For any x € ¥, A(z,.A) denotes the d-uple (o1, ...,04) of
the Lyapunov exponents of x, considered with multiplicity and in increasing
order. That is, each o; is of the form

log (| Ai)

p(x)

7 )

where \; is an eigenvalue of the matriz M, 4.
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The proof of Theorem 4.2.16 will show that, in the statement of Theo-
rem 4.2.16, we can require that A(z,B) — A(z, A) € R? converges to 0 € R?
when p(x) goes to infinity.

The main result in this section is the following:

Theorem 4.2.18. Let A be a bounded linear cocycle over a large periods
system. Assume that A is strictly without dominated decomposition. Then
there exists a perturbation B and an infinite invariant subset X' such that,
for any point x € X', all eigenvalues of M, g are real, with same modulus.

This result can be restated in the following stronger version:

Corollary 4.2.19. Let A be a bounded linear cocycle over o large periods
system. Assume that A is strictly without dominated decomposition. Then
there exists a perturbation B such that, for any point x € X, all eigenvalues
of My g are real, with same modulus.

Let us prove Corollary 4.2.19 using Theorem 4.2.18:

Proof: For any € > 0, let us denote by . the set of points x € X such
that there exists an e-perturbation B over the reduced system (Orb(z), f)
verifying: for any integer k, all eigenvalues of M fk(z),p are real, with same
modulus.

Let us first remark that A, = ¥\ . is a finite set. Indeed, if A, were an
infinite set, we could apply Theorem 4.2.18 to the linear cocycle A restricted
to A., which is strictly without domination: it contradicts the definition of
A..

We shall now use the following decomposition

S=A1U (Z1\Bip2) U (B12 \ Bugz) - U (B \ Biyany) - U (MS1y) -
Let us consider the linear cocycle B defined as follows:

1. Ay being a finite set, the restriction of B to A; can be any cocycle
verifying M, p = Id for any point € Ay;

2. by definition, for any integer k, there exists an 1/k-perturbation B of
the restriction of A to the set 35 \ ¥q/(441) such that for any point
T € Xy \ Y1/(k+1), My p has all eigenvalues real with same modulus;

3. since A satisfies the announced assertion over the set N%;,, B can be
taken equal to A in restriction to the set NX; .

The set Xy, \ ¥1/(n+1) 18 included in Ay, 4q) which is finite, hence the
linear cocycle B is a perturbation of A. O
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Corollary 4.2.20. Given any dimension d, any positive constant K and
any € > 0, there exists two integers £ and n such that, any K-bounded linear
cocycle A with dimension d over a periodic orbit with period greater than n
satisfies one of the following two assertions:

o cither A admits an (-dominated splitting;

o or there exists an e-perturbation B of A such that M, p has all eigen-
values real with same modulus.

Proof: Assume, arguing by contradiction, that corollary 4.2.20 is wrong:
there is d, K and € > 0 such that, given any integer n, there is a K-bounded
linear cocycle A, with dimension d, over a periodic orbit 7, with period
greater than n, verifying the two following properties:

e for every k < n, A, has no k-dominated splitting;

e there is no e-perturbation A, of A, such that, for z,, € 7, the eigen-
values of Mxn 4, are all real with same modulus.

Consider ¥ = [J, ey Vn: this set is a large periods system. Let A be
the linear cocycle defined over X, such that its restriction to =, is A,. The
cocycle A is a K-bounded linear cocycle which, by construction, is strictly
without domination: any invariant set on which A admits an /-dominated
decomposition is included in Uf;:o ~v» and hence is finite. Furthermore, for
any perturbation B of A, the set of points = for which the matrix M, p
has all eigenvalues real with same modulus is finite: the cocycle B is (by
definition of a perturbation) an e-perturbation of A out of a finite set. This
contradicts Theorem 4.2.18, and this contradiction concludes the proof. O

4.2.6 Statement of the results for diffeomorphisms

A lemma of Franks in [26] allows to realize any small perturbation of the
derivative of a diffeomorphism along a finite set by a C''-perturbation of the
diffeomorphism. This enables us to restate Corollary 4.2.20 for diffeomor-
phisms.

Corollary 4.2.21. Let f: M — M be a diffeomorphism of a compact man-
ifold, endowed with a Riemannian metric ||-||. Then for any € > 0 there are
two integers £ and n such that, for any periodic point x of period p(x) > n:

e cither f admits an {-dominated splitting along the orbit of x;

e or, for any neighborhood U of the orbit of x, there exists an e-
perturbation g of f for the C-topology, coinciding with f outside U
and on the orbit of z, and such that the differential DgP\®) () has all
eigenvalues real and with same modulus. This modulus can furthermore
be chosen different from 1 so that the orbit of x is a source or a sink

of g.
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Remark 4.2.22. In fact, the pair (¢,n) given by the preceding result only
depends on € and on an upper bound of |Df||. The result henceforth holds
with the same (£,n) for a C*-neighborhood of f.

Let f be a diffeomorphism on a compact manifold M. Let us recall
that a point x € M is chain-recurrent if there exist pseudo-orbits starting
and ending at x with arbitrarily small jumps. [10] proves that any chain-
recurrent point can be turned into a periodic point by an arbitrarily small
Cl-perturbation.

Corollary 4.2.23. Let f be a diffeomorphism on a compact manifold. Then
for any €, there exist a pair of integers (£,n) such that for any chain-recurrent
point x, one of the following two assertions holds:

1. either x belongs to an invariant compact set admitting an £-dominated
splitting;

2. or there is an e-perturbation g of f (in the C'-topology) for which x is
a periodic sink or source.

4.3 Proof of Theorem 4.2.16

4.3.1 Perturbations on subbundles and quotient bundles

Throughout this paragraph, we shall denote by A = (X,f,E,A) a K-
bounded linear cocycle over a infinite periodic system. Let F' be an invariant
subbundle of E. Let us consider an orthonormal basis of vectors of F' and
an orthonormal basis of vectors of F*: this provides an orthonormal basis
of vectors in which we can write A in blocks of the form:

(5 )

where C is bounded. We thus get the following two lemmas:

Lemma 4.3.1. For any perturbation Br of the induced cocycle Ap there
exists a perturbation B of A with the following properties:

o F is invariant by B;

o the induced cocycle obtained by restriction of B to the subbundle F' 1is
BF;

e the quotient cocycle B/F coincides with A/F. In particular, the eigen-
values of M, A associated to eigenvectors out of F, remain unchanged.
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Lemma 4.3.2. For any perturbation Br. of the quotient cocycle A/F, there
exists a perturbation B of A with the following properties:

o F' s invariant by B;
e the quotient cocycle of B by F' coincides with By ;
e the induced cocycle obtained by restriction of B to F' coincides with Ap.

Definition 4.3.3. Let E and E’ be two bundles of same dimension over a
system (X, f). Any change of basis P from E to E’ (that is, for any point
x €%, P, € GL(E,, E)) is bounded by K > 0 if and only if, for any x € X,
[Po]l < K and ||P; Y| < K.

We then get the following two lemmas:

Lemma 4.3.4. Let E and E’ be two bundles of same dimension over a
system (X, f), and let P be a bounded change of basis from E to E'. Let B =
(3, f, E', B) be the bounded linear cocycle defined by By = Pp(y) 0 Ay 0 P!
for any point x € 3. Then the following two statements hold:

o if A admits a dominated splitting, then so does B;

o for any perturbation A of A, the linear cocycle B defined by Py () oA, 0
Pt for any point x € ¥ is a perturbation of B.

Lemma 4.3.5. Let F' and G be two invariant subbundles of E with trivial
intersection. Assume that, the angle F,,G; is bounded from below by a
uniform constant for any point x € . Then, there exists a bounded change
of basis P : E — E such that the subbundles P(F') and P(G) are orthogonal.
(Notice that the subbundles P(F') and P(G) are necessarily invariant by the
linear cocycle B obtained by conjugating A by P: By = Py 0 Az o Pt for
any point x € 3.)

As the bundles of a dominated splitting have their angles bounded from
below, one deduces from the previous lemma:

Corollary 4.3.6. Let A be a bounded linear cocycle admitting a dominated

splitting E = F & G. Then, up to a change of basis, we can assume the
dominated decomposition to be orthogonal, thus we can write A in blocks of

the form:
Ar 0
0 Ag )
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4.3.2 Cocycle of dimension 2

Proposition 4.3.7. Let A be a K-bounded linear cocycle of dimension 2
over a large periods system. There exists a perturbation B of A such that,
for any point x € X, M, g has all eigenvalues real of multiplicity 1, and
different modulus.

Furthermore, the Lyapunov exponents of B can be chosen arbitrarily close

to those of A.
This is a consequence of [10, lemme 6.6] which is restated below:

Lemma 4.3.8. For any ¢ > 0, there exists N(g) > 1 such that, for any
integer n > N (g) and any finite sequence Ay, ..., Ay, of elements in SL(2,R),
there exists a sequence o, ..., in ] — ¢, €[ such that the following assertion
holds:

for any i € {0, ...,n} if we denote by B; = Ry, o A; the composition of A;
with the rotation R, of angle «;, then the matriz By, o B,_10---0 By has
real eigenvalues.

Let us deduce the proof of Proposition 4.3.7:

Proof: Let A be a K-bounded linear cocycle of dimension 2 over a large
periods system (X, f). First notice that, if a matrix in GL(2,R) has a real
eigenvalue, then there is an arbitrarily small perturbation of this matrix
that has two real eigenvalues of multiplicity 1 with different moduli. So we
just need to build a perturbation of A such that the matrices M, p have at
least one real eigenvalue (of modulus arbitrarily close to the moduli of the
eigenvalues of M, 4).

Consider Y1 C X the set of points x for which the matrix M, 4 has a
pair of complex (non-real) conjugated eigenvalues. If 3; is finite, we are
done (it suffices to define B on X1, such that M, g, x € ¥ is the homothety
transformation whose ratio is the modulus of the complex eigenvalue of M, 4.

Assume now that > is infinite. Fix a sequence ¢, decreasing to 0 and
consider the sets I';, = {x € ¥; | p(z) > N(e,)}. As X is a large periods
system, the complement of each I',, is finite.

Remark 4.3.9. There is a sequence &, converging to 0 such that, for any o €
[—€n,en] and any matriz A € GL(2,R) with ||A|| < K one has ||[A—B|| < 6,
where B = Ry 0 A.

For any = € I, \ I',+1, Lemma 4.3.8 gives a sequence (o), i@
0,...,p(x) — 1, with |oy| < &, such that the matrix Hg(x)_l Ra, o A(fi(x))
has a real eigenvalue. Define B on the orbit of = by

Bfl(:t) - Rt(m)-ai o A(fz(.ilf))
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where ¢(z) is the infimum of the ¢ €]0, 1] such that the matrix Hg(x)_l Ri.o, 0
A(f%(x)) has a real eigenvalue. Then t(z) €]0,1], and M, ;3 has a real eigen-
value of multiplicity 2 and whose modulus coincides with the modulus of the
eigenvalue of M, 4.

Then Remark 4.3.9 implies that the cocycle B defined that way on
U, (I'n \ T'nt1) is a perturbation of A; moreover as (I';),, is a decreasing
sequence and (T, = (), one gets that T'o = |J,,(I'n \T'p+1). Finally 31\ is
finite, so that one can complete this perturbation in a perturbation of A on
Y1: define B on the finite set X1 \ I'g in the same way as when ¥ is finite.
We complete this perturbation on ¥ by defining B, = A, for x ¢ ¥, thus
obtaining the announced perturbation. O

4.3.3 Proof of Theorem 4.2.16 and Scholium 4.2.17

We proceed by induction on the dimension d of the cocycle. The case d =1
is trivial and d = 2 is solved by Proposition 4.3.7.

Assume the result is true for any d’ < d, and consider a bounded cocycle
A of dimension d over a large periods system (X, f). Notice that, for any
d > 1, any linear isomorphism of R? admits an invariant 2-plane. As a
direct consequence, any linear cocycle of dimension d over (X, f) admits an
invariant subbundle F' of dimension 2. Applying the induction assumption
to the induced cocycle Ap and to the quotient cocycle A/F, we obtain the
perturbations Br of Ar and Bp. of A/F. Lemmas 4.3.1 and 4.3.2 ensure
then the existence of a perturbation B of A inducing the cocycle Br on F
and whose quotient B/F is Bp.. Notice that, for any x, all eigenvalues
of M, p are real, and that an arbitrarily small additional perturbation can
make their moduli pairwise distinct.

4.4 Proof of Theorem 4.2.18

4.4.1 Lyapunov diameter

Let A= (%, f, E, A) be a bounded linear cocycle over a large periods system.
Define the Lyapunov diameter of x € ¥ by:

§(z, A) = max { | log(‘h‘;&;‘)g(w’)’, \ € Spec(Mx)} :

i.e. the difference between the largest and the smallest Lyapunov exponent
of  for the cocycle A. We shall use the notation 6(x) whenever there is no
ambiguity on the considered cocycle.
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We then denote by 04 (A) (the upper Lyapunov diameter of A) and 6_(A)
(the lower Lyapunov diameter) the upper and the lower limit, respectively,
of the é(x) for x € X.

Lemma 4.4.1. Let (X, f) be a large periods system and A a bounded linear
cocycle such that 6_(A) = 0. Then there exists a perturbation B of A and an
infinite invariant subset X' such that, for any point x € Y/, all eigenvalues
of My g are real, with same modulus.

Proof: Using Theorem 4.2.16 and Scholium 4.2.17, one builds a perturbation
A’ of A such that §_(A") = 0 and such that, for any = € %, all eigenvalues
of M, 4 are real, with multiplicity 1, and different moduli. We can then
choose, for any = € ¥, an orthonormal basis b, of each fiber E, such that
each linear map A/ has an upper triangular matrix in this basis.

As §_(A") = 0, there is some infinite invariant subset ¥’ C 3 such that
lim, o 6(x, A") = 0 (that is, for any € > 0, the set {z € ¥’ | §(z, A’) > ¢}
is finite). For any x € ¥’ we consider C,: E, — E, the linear map whose
matrix in the basis b, is the diagonal matrix (a;) where a; > 0 verifies:

1
ap(x) _ |det Mx,A/|E
' Al

where ); the ith eigenvalue of M, 4/. Since é(x) converges to 0 as p(x)
goes to oo for z € X', the matrix C, converges to the Identity matrix.
Define now B by:

e B, =A,ifx ¢
e B,—A,0C,ifzec.

The linear cocycle B is a perturbation of A and, for any x € ¥/, all
eigenvalues of M p are real and have the same modulus. O

Given a bounded cocycle A over a large periods system (3, f), we define
the minimal Lyapunov diameter of A, denoted by 6,min(A), as the infimum
of the §_(B) for all perturbation B of A.

Remark 4.4.2. If ¥ C X is an infinite invariant subset, then the Lyapunov
diameter of the restricted cocycle Ajsy verifies: 5mm(.,4‘2/) > Omin(A).

Lemma 4.4.3. There is a perturbation B of A such that 6_(B) = dpmin(A).
Furthermore, B can be chosen so that, for any x € ¥, all eigenvalues of M,
are real, with multiplicity 1 and with different moduli.

Proof: For any integer n > 0 there is a perturbation B, of A such that
0_(By) < dmin + % Then, by definition of §_(B,,) and of a perturbation of
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A, for any n > 0 there is an infinite f-invariant subset ¥,, C 3 such that
any x € Y, verifies:

2 1
5(2) < Omin + = and  |Ay, — By| < —.
n n

Choose by iteration an infinite sequence (z,), € X as follows. Fix z; € 3.
Once z1, ...,z chosen, choose z,11 € ¥p41 \ U, Orb(x;); this is possible
because X, 41 is an infinite set whereas the union of the orbits of z;, i €
{1,...,n} is finite.

Define the perturbation B of A as follows:

o if x € ¥ belongs to the orbit of z;, for some integer ¢ > 1, then
B, = Bi,:v§

e otherwise, B, = A,.

One easily verifies that the so-defined linear cocycle B is a perturbation of
A verifying 0_(B) = dnin(A). A new perturbation of B given by Theo-
rem 4.2.16 and Scholium 4.2.17 allows to turn all eigenvalues into real ones
with multiplicity 1, different moduli, without modifying 6_ (B). O

Remark 4.4.4. In the proof of Lemma 4.4.3, denote X' = U ,Orb(x;) and
let B' be the restriction of B to the infinite invariant subset X'. Then

5+(B,) =4 (B,) = 5mm(B/) = 5mzn(B)
This remark motivates the following definition

Definition 4.4.5. Let (3, f) be a large periods system. A bounded linear
cocycle A over (X f) is called incompressible if it verifies both following
assumptions:

1. 64 (A) = 6_(A) = Smin(A);

2. for any = € ¥, all eigenvalues of M, 4 are real, with multiplicity 1 and
different moduli.

If A is incompressible, we denote by d(.A) the Lyapunov diameter of A
defined by §(A) = 61 (A) = 6_(A) = Inin(A).

Remark 4.4.6. Let A = (X, f, E, A) be an incompressible bounded linear
cocycle over a large periods system (X, f), and let ' C X be an invariant
infinite subset. Then the restricted cocycle Ajr is incompressible.

Theorem 4.2.18 is now a corollary of the following result:

Theorem 4.4.7. Let (X, f) be a large periods system and A a bounded linear
cocycle over (X, f). Assume that A is incompressible and strictly without
domination. Then §(A) = 0.
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The proof of Theorem 4.4.7 is the aim of the next sections. Let us first

prove Theorem 4.2.18 using Theorem 4.4.7:
Proof: Consider a bounded linear cocycle A over a large periods system
(3, f) and assume that A is strictly without domination. Then Lemma 4.4.3
and Remark 4.4.4 ensure the existence of a perturbation B of A and of an
infinite f-invariant subset ¥’ C X such that the restriction B’ = By is
incompressible. Corollary 4.2.15 and Remark 4.2.8 imply that B’ is strictly
without domination.

Then Theorem 4.4.7 asserts that §(B’) = 0, and Lemma 4.4.1 finally
implies the existence of a perturbation C’ of B’ and the existence of an infinite
invariant subset ¥ C ¥’ such that, for any point = € f], all eigenvalues of
M, ¢ are real, with same modulus. The cocycle C on X defined by C, = A,
when x ¢ ¥, and C, = C! when x € ¥, is a perturbation of A satisfying the
conclusion of Theorem 4.2.18. a

Remark 4.4.8. In fact we proved that, if Theorem 4.4.7 holds for d-
dimensional cocycles, then Theorem 4.2.18 also holds for d-dimensional co-
cycles.

We are left to prove Theorem 4.4.7. We argue by induction on the di-
mension d of the cocycle. We shall first prove that for any incompressible
cocycle A = (X, f, E, A) strictly without domination, there exists a splitting
into two invariant subbundles £ = F' & G such that the induced cocycles
A|r and A|g are both strictly without domination.

4.4.2 Splitting in subbundles strictly without domination
We aim in this section at proving the following:

Proposition 4.4.9. Let A= (X, f, E, A) be a bounded linear cocycle strictly
without domination over a large periods system. Assume that, for any x € X,
all eigenvalues of M, are real with multiplicity 1 and with different modulus.
Then there exists an invariant partition ¥ = X U --- U X431 such that for
any i € {1,...,d— 1}, either the set X; is empty or the set ¥; is infinite and
in this case, there exists an invariant decomposition B = F; ® G; over %;
such that

o dim(F;) =i;

o the induced cocycles Ap, and Ag, over ¥; are strictly without domina-
tion;
o for any x € X;, the moduli of the eigenvalues of M, corresponding to

F; are strictly smaller than the ones corresponding to G;.

Lemma 4.4.10. Let A be a bounded linear cocycle defined over a large pe-
riods system (X, f). Let E = F @ G be an invariant splitting such that
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1. the cocycles induced by restriction Arp and Ag are strictly without dom-
nation;

2. for any x € X, the eigenvalues of M, corresponding to F are strictly
smaller than the ones corresponding to G;

3. the decomposition E = F @ G 1is strictly not dominated.
Then the cocycle A is strictly without domination.

Proof: We proceed by contradiction. Let F’ @& G’ be a dominated splitting
on some infinite invariant subset ¥’ C 3. Then the moduli of the eigenvalues
corresponding to F’ are strictly smaller than the ones corresponding to G’.
If dim(F") = dim(F) (and hence dim(G") = dim(G)) then the second condi-
tion of the lemma implies that F/ = F' and G’ = G, which is in contradiction
with the first condition of the lemma.

Note that

e either dim(F’) > dim(F) and dim(G') < dim(G);
e or dim(F'") < dim(F) and dim(G") > dim(G).

Both cases are symmetric. We shall consider the first case.

As the moduli of the eigenvalues corresponding to F' are strictly smaller
than the ones corresponding to G, we get that G’ € G and F C F'. We
thus deduce that F” is transverse to G and that G admits the following
decomposition G = (F' N G) @& G’ over ¥'. This splitting (over the infinite
subset ') is dominated by assumption, which is in contradiction with the
assumption of G being strictly without domination. O

Lemma 4.4.11. Let A be a linear cocycle defined over a large periods system
(3,f), and E = E1 & --- ® Ey, be an invariant splitting such that:

1. for any integer i, the cocycle induced by restriction Ag, is strictly with-
out domination;

2. for any integer i, for any point x € X, the moduli of the eigenvalues of
M, corresponding to E; are strictly smaller than the ones corrrespond-
ing to Eiyq;

3. the cocycle A is strictly without domination.
For any i € {1,...,k — 1} define F; = E; @ E;11. Then there exists an

wmwvariant partition ¥ = X U ... U Xg_1 such that, either X; is a finite set,
or the induced cocycle A, is strictly without domination over ¥;.
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Proof: For any x € X, we denote by L;(x) the characteristic time (cf
Remark 4.2.4) of the domination of the splitting F; = E; & E; 1 over the
periodic orbit of z. Let i, € {1,...,k — 1} be an integer chosen so that the
characteristic time L;, (x) realizes the maximum of {L;(z), ¢ € {1,...,k—1}.
Note that i, can be chosen constant over the periodic orbit of z, hence the
function x — 4, is invariant by f.

Let ¥; ={z € %, i, =i}. Then ¥ U---UX,_; is an invariant partition
of . Choose i such that ¥; is an infinite set.

Claim 4. The decomposition F; = E; & E; 1 is strictly not dominated over
.

Proof: We proceed by contradiction. Assume the decomposition F; =
E; ® E;;; is dominated over an infinite invariant subset X! C ¥;. There
exists an integer L such that E; < E;.; over ¥, For any z € X}, L is
by definition bigger than L;(x). As i, = 4, we get that L;(z) < L for any
je{l,...,k—1}. Asa conclusion, Ej <L Ej4 for any j over X!, hence the
decomposition £ = E| @ --- @ E}, is dominated over X', which contradicts
the assumption of A being strictly without domination. O

Note that, thanks to the previous claim, the decomposition F; = E; ®
FE;41 over X; satisfies all the assumptions of the lemma 4.4.10. We thus get
that Ap, is strictly without domination over 3;, which concludes the proof
of the lemma. O

We are now ready to prove Proposition 4.4.9.
Proof: We are going to show by a decreasing inductive argument that, for
any k € {2,...d}, there exists an integer i and an invariant finite partition
Pr={%},...,EF } of ¥ such that for any j € {1,... i} either the set E? is
finite, or the set E? is infinite and in this case there is an invariant splitting
E=F & @ E} such that

(P1) for any ¢ € {1,...,k}, the induced cocycle Ag, over E? is strictly
without domination;

(P2) for any ¢ € {1,...,k — 1} and for any z= € Eé‘?, the moduli of the
eigenvalues of M, corresponding to Ej are strictly smaller than the
ones corresponding to Fyq;

(P3) the restricted cocycle A\zk is strictly without domination.
J

For k = d, denote by FEi,..., E4 the one-dimensional subbundles corre-
sponding, for any = € X, to the eigenspaces of M, ordered in the increasing
way by the moduli of the eigenvalues. The trivial partition ¥ = ¥ and this
splitting satisfy all the required conditions.

Assume the proposition verified for £ + 1. Let Z?H

€ Pr11 be one of

the subsets given by the inductive assumption. If this subset is finite, E;‘?‘H
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remains in the partition Pg. Assume E?H is an infinite set. Denote by

E=FE1 & @ Eyy1 the corresponding invariant splitting. Applying Lemma

4.4.11 to the restricted cocycle A\E’?H’ we get a finite invariant partition of
J

the set E?H in subsets ¥/ verifying the following dichotomy:
e cither the subset Y/ is finite;

e or the subset ¥ is infinite and there is an integer 7 such that the induced
cocycle Ag,qE,,, is strictly without domination. Endow the restricted
cocycle to X' with the decomposition in k& subbundles obtained by gath-
ering F; together with F;;1 in the decomposition (in k+ 1 subbundles)
associated to E;?H. In other words, if F' = E; & F;4+1, the decomposi-
tion associated to X' is E1 @ - O E;_ 1 ® F® Ej490® -+ ® Ejyq. This
splitting satisfies the required conditions.

Gathering together the partitions built for each E?H in Pi41, we get the
announced partition Py, which ends the induction argument.

We thus get a partition Py. Let us first denote by 3, the union of all
finite subsets of the partition Ps. Over each infinite set of the partition Po,
there is a splitting of E into two subbundles F = F; & Fs verifying the
conditions (P1), (P2) and (P3). For any integer i € {1,...,d— 1}, denote by
¥ the union all infinite subsets of the partition Py such that dim(E;) = 1.

Choose an integer ig € {1,...,d — 1} such that the set ¥} is not empty.
Denote by X;, the set X U Xig and extend the subbundle E; defined over
Ego to Xf by considering the sum of the first iy eigenspaces with smaller
moduli of eigenvalues. We then conclude the proof by taking 3; = X for
any integer i # ig. O

4.4.3 Decreasing the Lyapunov spectrum: proof of Theo-
rem 4.4.7

We proceed by induction on the dimension d of the cocycle. When d = 2,
Mané ([38]) ensures the existence of perturbations along arbitrarily long
periodic orbits, with complex eigenvalues at the period. Applying Proposi-
tion 4.3.7, there exists a perturbation whose eigenvalues at the period are
real, and of moduli arbitrarily close to the modulus of the complex eigenval-
ues. This concludes the proof of Theorem 4.4.7 in the 2-dimensional case.

Assume now that Theorem 4.4.7 holds for any cocycle of dimension
strictly less than d. We will prove that it also holds for d-dimensional
cocycles. Notice that this implies that Theorem 4.2.18 also holds for d-
dimensional cocycles (see Remark 4.4.8).

Consider a large periods system (X, f) and a bounded d-dimensional
linear cocycle A = (X, f, E, A) that is incompressible and strictly without
domination. We will show, arguing by contradiction, that §(A) = 0. Assume
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(by contradiction) that 6(.A) > 0. Notice that any cocycle B obtained by
restriction of the cocycle A to an infinite subset of 3 verifies the following:

(H1) B is incompressible;
(H2) B is strictly without domination;
(H3) 6(B) =4d(A) > 0.

Proposition 4.4.9 implies the existence of an infinite invariant subset I' C
¥ such that the restricted cocycle B = A admits a (not dominated) splitting
E = F & G with the following properties:

(H4) the induced cocycle Bp and Bg are strictly without domination;

(H5) for any z € T', the moduli of the eigenvalues of M, corresponding to F'
are strictly smaller than the ones corresponding to G.

Lemma 4.4.12. We have:
04+(Br) = 64(Bg) = 0.

Proof: We proceed by contradiction, assuming (for instance) that 6 (Br) =
0 > 0. There exists an infinite invariant subset I'g C I' such that, for any
point « € I'o, 6(z,Br) > &/2. The restricted cocycle (Bp)p, is strictly
without domination, and its dimension is strictly less than d. Then, the in-
duction assumption allows to apply Theorem 4.2.18 to the cocycle (BF)|FO'

Thus there is a perturbation (Br)p, such that d ((BF)F()) = 0. Further-

more, by Remark 4.2.13, we can assume that this perturbation preserves the
determinant of the matrix (Bp), for any point x € I'y.
We can now consider a perturbation C of the cocycle A such that

e outside Iy, C coincides with A;

—~—

e onI'y,Cp = (Bp) and C/F = A/F,
Claim 5. For any point x € 'y,

1
< —_ —.
0(x,C) < d(x, A) ¥
Proof: Recall that

e the moduli of the eigenvalues of M, 4 corresponding to F' are strictly
smaller than the ones corresponding to G;

e the eigenvalues of M, ¢ associated to eigenspaces outside F' coincide
with the eigenvalues of M, 4 associated to G;
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e since the considered perturbation of the matrix A, preserves the deter-
minant of (Ar),, the modulus of the eigenvalues of M, ¢ corresponding
to F'is equal to the geometric average of the moduli of the eigenvalues
of M$7 A-

For any cocycle D, let us denote the smallest and the greatest Lyapunov
exponents of a point x by

0'+.’I] = Imax M ec
(2.0 = o { FEBDL, 3 spec o, )|

and
[ log (|A])]
p(x)
So, the Lyapunov diameter of z is §(x, D) = o+ (z,D) — o~ (x, D).
As a consequence of the previous remarks, for any x € I'g,

log(| det(Mz,4,)])
dim(F).p(z)
Thus, for any point z € I'g, §(x, A) — d(z,C) = 0~ (x,C) — 0~ (x,.A). De-

note by [A1(z)| < ... < [Agim(r)(®)| the moduli of the eigenvalues of M, 4
corresponding to F' and o;(z) = log(|\i(z)|)/p(z). We then get the following:

o (z,D) = min{ , A € Spec (M%D)} .

ot (2,C) = ot (2, 4) and 0~ (2,C) =

e 0 (z,A) =o01(x);

dim(F)
e 0 (z,C) = Zkﬁilm(;)k(_x)§

® Ogim(r)(7) — 01(x) > 6/2 since = € Ty.

We then get by an easy calculus that o~ (z,C) > o~ (2, A) + ﬁm(ﬂ’ thus
5(z,C) < o(z, A) — 2. O

Since I'g is an infinite set, we deduce from the preceding claim that

0_(C) <4(A) — % which is in contradiction with the assumption of incom-

pressibility of A. This concludes the proof of the Lemma. O

As a direct corollary we get:

Corollary 4.4.13. Let F' C F and G' C G be invariant subbundles defined
over an infinite invariant subset IV C T'.

Then the induced cocycle (Bjr ) and (Bjr)gr are strictly without domi-
nation. Furthermore the quotient cocycles B/F and B/G verify

0+(B/F) =64+(B/G) =0,

hence B/F and B/G are strictly without domination (and the same holds for
any cocycle induced by B/F or B/G over an infinite invariant subset).
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Proof: Let us start by two easy criteria given by the Lyapunov diameter:

e If a bounded linear cocycle Cy over a periodic system admits a domi-
nated splitting, then 6_(Cy) > 0;

e If a bounded linear cocycle C over a periodic system is not strictly
without domination, then it admits a dominating splitting over an
infinite invariant subsystem, hence it verifies §,(C) > 0.

On the one hand, Lemma 4.4.12 implies that, if F/ C F is an invariant sub-
bundle over an infinite invariant subset I C I, then 01 ((Bjp)pr < 34 (Br) =
0, so that (Bjr/)p is strictly without domination.

On the other hand, for any x € I, the linear map M (z,B/F) is
conjugated to M(xz,Bg). As a consequence they both have same spec-
trum, thus 6(x, B/F) = 6(x,Bg). Similarly, 6(z,B/G) = 6(z,Br). Hence
0+(B/F)=04+(Bg) =0 and 6+ (B/G) = 04+(Br) =0. O

Proposition 4.4.14. Let B be a linear cocycle over a large periods system
(' C X, f) satisfying the properties (H1), (H2), (H3), (H4) and (H5).
Assume that H C E is a proper B-invariant subbundle containing F as a
proper subbundle (i.e. 0 & F, & Hy & E, for any x € I'). Then the splitting
H =F @ (GNH) is a dominated splitting for the cocycle Byy.

Similarly, if L C E s a proper B-invariant subbundle containing G as a
proper subbundle, then the splitting L = (FNL)® G is a dominated splitting
of the cocycle By,

Proof: The two statements of the proposition being completely symmetri-
cal, we shall just prove the first one. We proceed by contradiction: consider
a proper B-invariant subbundle H C F containing F' as a proper subbundle,
and assume that the splitting H = F & (G N H) is not dominated. We shall
contradict the assumption (H1).

As the moduli of the eigenvalues of the matrix M (x, B) corresponding to
F are strictly smaller than the ones corresponding to G (hence, to GNH ), this
splitting is dominated over any finite subsystem. This remark together with
the assumption that the splitting H = F @& (G N H) is not dominated imply,
by Lemma 4.2.9, the existence of an infinite invariant subset IV C " over
which the splitting is strictly not dominated. Corollary 4.4.13 then states
that the cocycles (Bjr)r and (Bjrv)anp are also strictly without domination:
we infer by Lemma 4.4.10 that the cocycle C = (Bjr)y is strictly without
domination.

As H is a proper subbundle of F, its dimension is strictly smaller than d.
The induction assumption hence implies that Theorem 4.2.18 can be applied
to C: there is a perturbation C of C over an infinite invariant subset I' C I
such that, for any z € T, all eigenvalues of Mx,é’ have same modulus. Fur-
thermore, Remark 4.2.13 allows to assume that this perturbation preserves
the determinant for any z € T
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Using Lemmas 4.3.1 and 4.3.2, we build a perturbation Bof B verifying
the following properties:

1. B coincides with B out of T';

2. B leaves the subbundle H invariant;

3. the quotient cocycle (B)/H coincides with B/H;
4. the induced cocycle ([;’”:)H is C.

The following lemma (which contradicts the incompressibility of B) will
conclude the proof of the proposition:

Lemma 4.4.15. 6_(B) < 6(B).

Proof: Notice first that (G N H)(z), being not reduced to 0, contains eigen-
vectors of My p. As 04 (Br) =1 (Bg) =0, the set

{z €T, |6(x,By) — 0(z,B)| > ¢}

is finite for any € > 0. As a direct consequence, 6_(C) = 6+(C) = §(B) =
0> 0.

Consider the variations of the extremities of the Lyapunov spectrum of
T € f, under the perturbations B — B. For any x € I:

° 0+(x,l§) < ot (x,B);
o o (z,B) = inf{a’(m,é),a’(w,B/H)}.

Notice that o (z, B)—o (x, B/H) converges to 0 when x tends to infinity
because this difference corresponds to Lyapunov exponents of B associated

to G and 04(Bg) = 0. In order to prove the lemma, we are left to verify
that:

Claim 6. )
lim inf (0_(:1:,C) - a_(x,C)) > 0.
T—00
The determinant of M, ~ and M, ¢ are equal, and all the eigenvalues of

M, & have the same modulus, so that

I 1 log|det(Myc)|
o (x,0) = dim(H) p(z)

This determinant is the product of the determinant of M, g, by dim(HN
G) = dim(H) — dim(F') eigenvalues of M, p corresponding to G. Moreover,
the difference of any Lyapunov exponent of M, g, and any Lyapunov expo-
nent of M, p, converges to d as ¢ — oo (this can be deduced easily from
0+(Br) =064(Bg) =0 and 04(B) =6_(B) = §(B)). Now we get:
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(dim(H) — dim(F)) §(B)
dim(H)

lim (O‘i(CC,é) - O'i(l’,C)) = >0 (4.1)

Tr— 00
This implies the claim and thus concludes the proofs of the lemma and of
Proposition 4.4.14. O O

Proposition 4.4.16. Let B be a linear cocycle over a large periods system
(I' C X, f) satisfying the properties (H1), (H2), (H3), (H4) and (H5).
Assume that H C E is a proper B-invariant subbundle containing F as a
proper subbundle. The splitting E = F & G induces by projection a natural
splitting E/H = F/H ©& G/H on the quotient cocycle B/H. This splitting is
then a dominated splitting for the cocycle Byy.

Similarly, if L C G is a proper B-invariant subbundle, then the splitting
E/L=F/L®G/L is a dominated splitting for the cocycle B/L.

The proof of Proposition 4.4.16 follows the same argument as the one of
Proposition 4.4.14, so we just give the sketch of the proof.
Proof: We proceed by contradiction: consider a proper B-invariant subbun-
dle H C F and assume that the splitting £/H = F//H & G/H is not domi-
nated. Using Lemma 4.4.12, one verifies that 6. ((Br)/H) = 0+((Bg)/H) =
0 proving that the two cocycles (Br)/H and (Bg)/H are strictly without
domination. As the splitting E/H = F/H @& G/H is not dominated, there
is an infinite invariant subset IV C T' over which the splitting is strictly
not dominated. Lemma 4.4.10 implies now that the quotient cocycle B/H is
strictly without domination over I'V. As the dimension of E/H is strictly less
than d the induction hypothesis asserts that we can apply Theorem 4.2.18
(and Remark 4.2.13) to (B/H)|r: there is an infinite invariant subset rcr’

and a perturbation C of (B/H )|1: (preserving the determinant) such that, for
any r € T, all eigenvalues of M_ ~ have same modulus. Now, using Lem-

mas 4.3.1 and 4.3.2 we build a perturbation B of B verifying the following
properties:

1. B coincides with B outside T}

2. B leaves the subbundle H invariant;

3. the induced cocycle (B) g coincides with By
4. the quotient cocycle (B)/H coincides with C over T,

The following lemma (contradicting the incompressibility of B) hence con-
cludes the proof of the proposition:

Lemma 4.4.17. §_(B) < 4(B).
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The proof of Lemma 4.4.17 follows exactly the proof of Lemma 4.4.15
and we let it to the reader.
O

We conclude the proof of Theorem 4.4.7 (and hence also of Theo-
rem 4.2.18)by proving Lemma 4.4.18 below which contradicts the fact that
B is strictly without domination:

Lemma 4.4.18. The splitting E = F & G is a dominated splitting for B
over T,

Proof: As d > 3, one of the two subbundles F' or G has dimension greater
than 2. Assume for instance that dim(F') > 2.

Recall that, for x € T', all the eigenvalues of M (x,B) have multiplicity
one, and pairwise distinct moduli. Let F; C F be the one-dimensional sub-
bundle corresponding to the eigenvalue of smallest modulus, and Fo C F be
the codimension one subbundle directed by the dim(F) —1 other eigendirec-
tions. These subbundles are clearly invariant by B, and we get an invariant
splitting F' = F| ® Fs.

Then, Proposition 4.4.14 applied to L = F» ® GG implies that Fr < G.
Furthermore, Proposition 4.4.16 applied to H = F5 implies that the splitting
E/F, = F/Fy, ® G/F; is dominated. Notice that F'/Fy is the projection on
E/F5 of the subbundle F}, and hence coincides with F; /F5 (according to the
notations used in Lemma 4.2.6). Now Lemma 4.2.6 asserts that F1 ®F, < G,
that is F' < G. O

4.5 Appendix

It happens that in the results we stated previously (article [16]), the large
period hypothesis is unnecessary. Actually we have the following on cocycles:

Proposition 4.5.1. Given any dimension d any period p, any positive con-
stant K and any € > 0, there exists an integer £,, such that for any K-bounded
linear cocycle A with dimension d over a periodic orbit of period p,

o cither A admits an {,-dominated splitting;

e or there exists an e-perturbation B of A such that the first return map
has all eigenvalues real with same modulus.

Then from Franks’ Lemma and the large period statement on cocycle
(Corollary 4.2.20), we obtain

Theorem 4.5.2. Let f be a diffeomorphism on a compact Riemannian man-
ifold. Then for all e > 0, there is an integer N such that for any peiodic point
x
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o cither f admits an N-dominated splitting on the orbit Orbs(x) of x,

e or there is an e-perturbation g of f on an arbitrarily small neighbour-
hood of the orbit Orby(x), that preserves the orbit of x, and such that
the Lyapunov exponents of g at x are all equal.

Proof of Theorem 4.5.2 from Proposition 4.5.1 and Corol-
lary 4.2.20 : Let f be a diffeomorphism of Diff(M). Let K > 0 be a
bound for the cocycle df on TM, and let 6 > 0. Fix € > 0 as in Franks’
Lemma 2.3.6 with respect to § and the bound A = K. Choose n,¢ € N as
in Corollary 4.2.20, with respect to K, € and the dimension d of M. For all
p < n, choose ¢, € N as in Proposition 4.5.1.

Denote by £y the least common multiple of the integers ¢ and /,, for
p=1,..,n: if z is a periodic point such that the cocycle df Orb () has no
fp-dominated splitting, it has neither any /-dominated splitting, nor any /-
dominated splitting. Then, for any periodic point z, by Proposition 4.5.1 (if
x has period less than n) and by Corollary 4.2.20 (if  has period greater
than n), there is a linear cocycle B such that dist(df, Orbf(x),B) < eand B
has all Lyapunov exponents equal. Franks’ Lemma gives a d-perturbation
g of f on an arbitrarily small neighbourhood of the orbit of z, such that
the orbit of z is preserved, and dg| o, () = B, therefore dgf Orb(x) has real
eigenvalues with moduli all equal and different from 1. O

Proof of Proposition 4.5.1 : Let K > 0 and d,p € N. let A be a cocycle
on a bundle £ as in the hypothesis of the proposition. Let A\; < ... < Ag be
the moduli of the eigenvalues of the first return map AP. One finds a flag
E1 C & C ... C & =& of Ainvariant subbundles of £, such that for all 7,
the moduli of the eigenvalues of AP restricted to & are Aq, ..., \;.

Let 71 = & and for 1 < ¢ < k let F; be the orthogonal bundle of &_4
in &. We have € = F1 @ .... & Fi. Then the linear cocycle B defined by
B(v;) = Mg/ AiA(v;), for all 1 < i < k and all v; € F;, has all eigenvalues
with modulus equal to A\;. Clearly, for any € > 0, there exists a constant
0 > 1 depending only on K,d,p (and €) such that, if the ratio between each
of the pairs \;11, A; is less than §, then B is e-close to A.

Therefore, we are done if we show that if the ratio between some pair
Ait1, A; is greater than §, then there exists a integer N depending only on
K,d,p and 6, such that the cocyle A admits an N-dominated splitting.

Let 1 <4 < k and suppose that the ratio between \; and \;11 is greater
than §. Write then the invariant splitting & = F'@®G such that the restriction
Ajr has all eigenvalues with moduli less or equal to A;, and A;g has all
eigenvalues with moduli greater or equal to ;1.

The map .Af 7 has norm less than K, hence finding an orthogonal basis

of F' on which .AI"F is upper triangular, we get a splitting AfF =D+ N,
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where N is strictly upper triangular and has norm less than K?, and D is
diagonal.

Then for all n € N, we develop and write Aﬁ? = (D + N)" as the sum of
products of the form T;....T,, where T; € {D, N}, and N appears less than
d times. There are less than n of these terms, and the norm of such a term
T;....T, is less than

max(|N]%, 1), _max (| DI = K40+ ).

geeey

Therefore, the norm of Af; is less than (nK)%.(A?™¢ 4 AP). Notice that

A; is between K~P and KP. Hence, for any o > 1, there is an integer n,
depending only on K, d,p and «, such that for any unit vector w in F', we
have || AP (u)| < a.\".

Symmetrically, there is an integer m, depending only on K,d,p and «,
such that for any unit vector v in G, we have || AP™ (v)]| > o=t A\
Take a < §'/3 and ¢ a multiple of n,m, such that §¢/3 > 2. The integer
N = {p depends only on K,d,p and ¢, and the splitting € = F & G is N-
dominated for A. This, as announced, ends the proof of Proposition 4.5.1.
O
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Chapter 5

Creating homoclinic tangencies

5.1 Introduction

An invariant set 3 for a diffeomorphism of a compact manifold is hyperbolic
if and only if the tangent bundle 7'My, above S splits into two invariant
bundles, the first being uniformly contracted by an iterate of the diffeomor-
phism, and the other uniformly expanded. A hyperbolic diffeomorphism will
be a diffeomorphism such that its chain-recurrent set (see [21]), is hyperbolic.
This is equivalent to being Axiom A and satisfying the no cycle condition.
J.Palis and S.Smale conjectured in [47] that

e Axiom A and no cycle condition is equivalent to 2-stability, that is,
conjugacy to any neighbouring diffeomorphism, by restriction to re-
spective non-wandering set (which happens here to be the chain recur-
rent set).

e Axiom A and strong transversality condition is equivalent to structural
stability, that is, conjugacy to any neighbouring diffeomorphism.

Smale [62] showed that Axiom A and no cycle condition implies Q2-stability.
Robbin [53] first showed that in C? topology, Axiom A and strong transver-
sality implies structural stability, then Robinson [54| showed it in C topol-
ogy. In the late eighties, Ricardo Maiié [39] completed the proof that C*
structural stability implies hyperbolicity and strong transversality. Relying
on Mané’s techniques, Palis [45] showed that Q-stability implies hyperbolic-
ity. It was believed in the sixties that the hyperbolic diffeomorphisms of a
compact manifold M were C" dense in the set of diffeomorphisms for some
r > 1. But soon it appeared that there was open sets of non-structurally sta-
ble diffeomorphisms [60] and of non-Q-stable diffeomorphisms [4]. Such ex-
amples now abound, in dimension > 2 for C? topology, and in dimension > 3
for C'! topology. Palis proposed to characterise robustness of non-hyperbolic
behaviour by local density of two type of bifurcations:

91
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e homoclinic tangencies, that is, tangency between the stable and unsta-
ble manifolds of a periodic saddle point (orbit),

e heterodimensional cycles, that is a pair of saddle points of different in-
dex (dimension of the unstable manifold) such that the unstable man-
ifold of one intersects the stable manifold of the other.

This is the purpose of his

Conjecture 5.1.1 (Palis’ C"-density conjecture). The union of hyper-
bolic diffeomorphisms, and diffeomorphisms admitting a homoclinic tangency
or a heterodimensional cycle is dense in Diff" (M).

In order to study dynamics away from hyperbolic behaviours, a weak
form of hyperbolicity was created: let f be a diffeomorphism on a compact
manifold, K a compact invariant set, and let M| = E'® F be an invariant
splitting of the tangent bundle restricted to K, for the derivative df. We
say that this splitting is dominated of index dim(F) if some iterate of df
uniformly contracts more (or expands less) the first bundle than the second
one.

The existing results in C' topology, and recent developments inspire
hope for a proof of the C''-density conjecture. However no such tools as the
Closing Lemma and Franks’ Lemma exist in C" topology for > 1. In the
following, we will work exclusively in C'-topology.

In a groundbreaking paper, E. Pujals and M. Sambarino in [52] showed
the C! density conjecture of Palis for surfaces: a surface diffeomorphism
can be C! approximated either by Axiom A diffeomorphisms or by diffeo-
morphisms admitting a homoclinic tangency. As a first step, they proved
that given a diffeomorphism f and e > 0, if the hyperbolic splitting along
a periodic orbit of f is not dominated enough then a C' e-perturbation of
f creates a homoclinic tangency associated to that same orbit. Roughly,
they follow a technique of Mané [38] to create a small angle between the
two eigendirections by a pertubation of the derivative, thus "bringing near"
both manifolds (see [14, page 132] for a summarizing picture). A second
perturbation slightly pushes one of the manifolds to meet the other at some
point.

Hayashi claimed some breakthroughs for a proof of the C' Palis conjec-
ture in higher dimensions, however no paper has yet been released. In [65], L.
Wen made some interesting progress towards it, proving that for a generical
diffeomorphism far from hyperbolic dynamics, from homoclinic tangencies
and from heterodimensional cycles, the minimal non hyperbolic sets admit a
partially hyperbolic splitting, with one or two one-dimensional central bun-
dles.

A weak Palis conjecture says that there is a dense open subset of diffeo-
morphism that are either Morse-Smale, or admit a homoclinic intersection.
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It was shown by Bonatti, Gan and Wen [15] in dimension 3. Very recently,
S.Crovisier [23], using the works of Wen [65] and introducing an original
way to study the dynamics along the central bundles, proved the weak Palis
conjecture in any dimension:

Theorem 5.1.2. The set of Morse-Smale diffeomorphisms and the set of
diffeomorphisms that admit a homoclinic tangency, are two disjoint open
sets whose union is dense in Diff! (M).

To prove the main results of [65], Wen cleverly conbined Liao’s selecting
lemma (see [36]) and the main theorem of a previous paper [64, Theorem A],
which is a generalization of Pujals and Sambarino’s first step of their proof.
Precisely, Wen showed that if for some integer 1 < ¢ < d, the i-preperiodic set
(the set of points that can be turned into a saddle of index 7 by an arbitrarily
small C'-perturbation) does not admit a dominated splitting of index i, then
there is an arbitrarily small perturbation that turns f to admit a homoclinic
tangency. However he insists the saddle for which the homoclinic tangency
occurs may have not existed before the perturbation. Moreover the index of
that saddle cannot a priori be controlled.

One aim of this paper is to address these underlying questions. We will
show that if along a saddle point with great period, the splitting between
the stable and unstable directions is not strongly enough dominated, then
one can C'-perturb the dynamics on an arbitrarily small neighbourhood of
the orbit, preserving the orbit of that saddle, and its index, and creating a
homoclinic tangency related to it.

A diffeomorphism f of M is bounded by A if the derivatives df and df ~"
have norms less than A, that is, for any unit vector v € T'M, we have
ldf ()|, ||df ' (v)]| < A. In section 5.2.3 we endow Diff! (M) with a metric
canonically associated to the Riemannian structure of M; we say that g is
an e-perturbation of f if its distance to f is less than e.

Let N € N. We say that a saddle point ) for a diffeomorphism f
is N-dominated, if for some 0 < n < N, for all unit vectors u and v
above z, tangent to the stable and unstable manifolds, respectively, we have
ldf™(w)|| < 1/2]|df™(v)]]. A homoclinic tangency related to @ is a point at
which the stable and unstable manifolds of @) intersect non-transversely. We
now can state our first result, which precises Wen’s one:

Theorem 5.1.3. Fix A > 0, € > 0 and an integer d > 2. There exists
two integers Ny, P > 0 such that, if f is a diffeomorphism bounded by A
on a d-dimensional Riemannian manifold, and Q is a saddle point of period
p > P, not Ng-dominated,

then there exists an e-perturbation of f on an arbitrarily small neighbour-
hood U of the orbit of Q, that preserves the orbit of Q@ and its index, and
creates a homoclinic tangency related to Q in U.
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In particular, if ¢/ is small enough, the tangency will be between the
stable and unstable manifolds of a same point of the orbit of (). Moreover,
one can ask that the index of () is preserved. This is what Pujals and
Sambarino showed in dimension d = 2; we will show it for d > 3 in section 5.3
by induction on the dimension. It happens that the technique we use is
adaptable to some more constraint such as preserving a finite set in the
strong stable/unstable manifolds. Theorem 5.1.3 can be completed to:

Theorem 6.1.1. Fiz A > 0, € > 0 and an integer d > 2. There exists
two integers Ng, P > 0 such that, if f 1s a diffeomorphism bounded by A
on a d-dimensional Riemannian manifold, and Q is a saddle point of period
p > P, not Ng-dominated,

then for any finite set I' of the manifold, there exists an e-perturbation of
f on an arbitrarily small neighbourhood U of the orbit of Q, that preserves
the orbit of Q, creates a homoclinic tangency related to Q in U, and such
that if x € ' was in some strong stable or unstable manifold of Q, then it
"still 4s".

Let us explain the last words of this statement: in section 6.1 we will
introduce the notion of flag-configuration for a finite set I The flag-
configuration of I' with respect to a dynamics is the piece of information that
tells for each € I' what is the dimension of the strongest stable/unstable
manifold (if any) that contains z. We will say that the flag-configuration
of T" is preserved by a perturbation if, for any x € I', the dimension of the
strongest stable/unstable manifold (if any) that contains x is preserved or
decreased. In other words, if x is in some stong stable manifold, it will
stay in it. With this terminology, Theorem 6.1.1 says that we can apply
Theorem 5.1.3 preserving the flag-configuration of any finite set I' of the
manifold.

Corollary 5.1.4. If the homoclinic class H(P, f) of a saddle point P for f
does not admit a dominated splitting of same index as P, then there is an

arbitrarily small perturbation of f that creates a homoclinic tangency related
to P.

Although the first theorem is a particular case of the second, we will
show them separately for the reader’s convenience, keeping in mind that the
skeleton of the proof of the second is that of the first. Perturbing on a small
neighbourhood of @ is equivalent to perturbing cyclic diffeomorphisms (see
section 5.2.1). We will show (see Reduction Proposition, section 6.4) that
it is sufficient to prove the theorems for linear cyclic diffeomorphism, such
that the eigenvalues along the orbit are all real and pairwise distinct. This
will allow to restrict to an invariant bundle, or to go to the quotient by it,
to reduce dimension.

In this chapter, we focus on the proof of Theorem 5.1.3. The proof of
theorem 6.1.1, although it is based on that of Theorem 5.1.3, is much more
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technical and will be done in Chapter 6.

5.2 Notations and preliminaries

5.2.1 Cyeclic diffeomorphims and saddle diffeomorphisms on
a vector bundle

Let £ = (E,X,m: E — ) be a dimension d linear bundle above a base
¥, that is, for all x € X, the fibre E, = 7~ !(z) above z is a dimension d
vector space. As similarly defined in [16] and [13], we say that a couple of
bijections A = (f: ¥ — X, A: E — FE) is a linear cocycle or automorphism
on &, if and only if, for all x € 3, the map A induces by restriction a vector
spaces isomorphism from the fibre Ey to E(,), that is, the following diagram
commutes:

E . (5.1)

We will consider the particular case of cyclic automorphisms, that is,
automorphisms A = (f, A) on bundles whose base 3 is finite and such that
f is a cyclic permutation of X. In the following, all bundles of the form
{1,...,p} x R? will be endowed, fiber by fiber, with the canonical Euclidian
metric ||.||, and thus will be viewed both as Riemannian manifolds and vector
bundles above the base {1, ...,p}. We will denote by Og the trivial subbundle
{1,...,p} x {0} of a bundle £ = {1,...,p} x R%

Definition 5.2.1. A diffeomorphism f on a bundle £ = {1,..,p} x R? will
be said to be a cyclic diffeomorphism on & if for all 0 < i < p, we have

f(i,0) = f(i+1,0) and f(p,0) = (1,0).

We say that p is the period of such a cyclic diffeomorphism. We say that
a cyclic diffeomorphism on a bundle £ is a linear (cyclic) diffeomorphism if
moreover it is a linear cocycle.

Definition 5.2.2. A cyclic diffeomorphism on a bundle £ = {1,..,p} x R?
will be said to be a saddle diffeomorphism on £ if the orbit O¢ of the point
(1,0) is a saddle for f, i.e. the derivative dfP(1,0) has eigenvalues of moduli
smaller and greater than 1, but none equal to 1.

We say that a saddle diffeomorphism on a bundle £ is a linear saddle if
moreover it is linear. Given a saddle diffeomorphism f on &, we denote by
WE(f) (resp. W(f)) the stable (resp. unstable) manifold of f on &, that is
the set of points x € £ such that the norm ||f™(z)|| (resp. ||f"(z)||) goes
to 0 as n goes to +o0.
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We say that a real number A is an eigenvalue of a linear saddle f on &, if
and only if there is a point x € £ such that fP(z) = A.z. We call eigenbundle
associated to A the set of points = such that fP(z) = A\.x; it is an invariant
subbundle of &£, with constant dimension. Observe that a linear cyclic dif-
feomorphism verifies all the diagonalisation and trigonalisation properties of
the linear maps.

5.2.2 Restrictions, quotients of cyclic diffeomorpihsms

Given a cyclic diffeomorphism f on & = {1,...,p} x R? and an invariant
subbundle F' C & for f, we will naturally consider the restriction fip of f
to the bundle F. The bundle F' is canonically endowed with the restricted
Euclidean metric, and f|r is a cyclic diffeomorphism of the bundle F'. More-
over, if f is a saddle diffeomorphism and F intersects both the contracting
and the expanding manifolds of f, then fr is a saddle diffeomorphism.

Write F' as the pairwise disjoint union |_|1iD:1 F; of the fibers F; C E; =
{i} x R?. The vector spaces F; have same dimension d’. The quotient spaces
E;/F; ={a+ F;,a € E;} are (d — d')-dimensional, and canonically endowed
with a Euclidean metric ||.||; defined by ||a + F;||; = ||m(a)||; where 7 is the
orthogonal projection of a on the orthogonal space of F;. We will denote by
&/F the quotient vector bundle defined as the disjoint union | |_; E;/F;. As
seen before, it is canonically endowed with a Euclidean metric.

If f preserves the directions parallel to F (that is, for any 4, for any
a € E;, f induces a bijection from a + F; on f(a) + F;11, if ¢ < p, or on
f(a) + Fy, if i = p) then there exists a unique cyclic diffeomorphism f/F on
the quotient bundle such that the following graph commutes:

£ £
5/l; Jr g/l;

We say that f is a [ift of f/F. If F contains neither all the contract-
ing eigendirections, nor all the expanding directions, then f/F is a saddle
diffeomorphism of £/F.

5.2.3 Perturbations in C' topology

Let M be a Riemannian manifold, not necessarily connected nor compact.
Call ||.|| the Riemannian metric on TM, and V the corresponding Levi-
Civita connection. We recall that the connection induces a distance on each
connected component of T'M in the following way: for any points z,y in a
same connected component of M, and any vectors u € T, M,v € T, M we
define

dist(u, v) = inf{ v — V5 ()] + €(7), 7 € Cay}
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where Cyy is the set of C'! curves that go from x to y, £(7) is the length
of the curve 7, and V,(u) € T, M is the parallel transport of the vector u
along v by the connection V. We extend the distance to whole T'M, letting
dist(u,v) = 400 if u and v are not in a same connected component. With
this definition of the distance, the following inequality is obvious:

VA > 1,dist(A.u, Av) < A.dist(u,v). (5.2)

A diffeomorphism f of M will be said to be bounded by A > 1, if and only
if, for any unit vector v € TM, we have A~ < ||df (v)|| < A. Define

£ = sup{lldf ()], lldf ~* (v)ll/v € TM, [|v]] = 1},

that is, | f] is the smallest number such that f is bounded by A. We say that
f is simply bounded if and only if |f| < co.

Remark 5.2.3. If f is bounded by A, so are the restriction fip and the
quotient f/F.

Definition 5.2.4. A diffeomorphism f is an e-perturbation of g for the
C' topology, if for some €y < €, for any unit vector v € TM, we have
dist(df (v), dg(v)) < €o and dist(df ~*(v),dg~!(v)) < eo.

Thus f is an e-perturbation of ¢ if and only if f~! is an e-perturbation
of g~!. If moreover g coincides with f outside a set U/, then we say that g
is an e-perturbation of f on U. Notice that with the definition we gave, if
g is an e-perturbation of f on a compact set, then for some € < ¢, g is an
¢’-perturbation of f. This, together with the following remark, will allow to
perturb an e-perturbation of f into another e-perturbation of f.

Remark 5.2.5. If h is an n-perturbation of g, which is an e-perturbation
of f then h is an (n + €)-perturbation of f. For any e-perturbation g of f,
there exists v > 0 such that any v-perturbation of g is an e-perturbation of
f- Moreover, if f is bounded by A then g is bounded by A + €, precisely,
gl < |f+e

5.2.4 Perturbations of cyclic/saddle diffeomorphisms

A map g is a cyclic e-perturbation of a cyclic diffeomorphism f of the bundle
£ =1{1,...,p} = xR?%if and only if it is both an e-perturbation of f, and a
cyclic diffeomorphism on £. We say that it is a cyclic local e-perturbation if
moreover the perturbation is only local, that is, g coincides with f outside
a compact set. We define similarly saddle e-perturbation, replacing the word
‘cyclic’ by ’saddle’.

Notice that if two linear saddles f and g on £ are different then there is
no e for which f is an e-perturbation of g. This is why we define two linear
saddles f and g to be linearly e-close if and only if, for any point x € £ with
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norm 1, we have ||f(z) — g(z)||, | f~(z) — g~ (z)|| < e. Eventually, we may
forget the adjective linearly.

When composing two small C'-perturbations, a Lipschitz control of the
derivatives is needed to make sure that the perturbed composition is still
a small perturbation of the initial composition. However simple statements
can be made in very particular cases:

Remark 5.2.6. Let f be a linear (thus necessarily bounded) cyclic diffeomor-
phism on a bundle £, if ® is a diffeomorphism of £ that is an e-perturbation
of Idg, then fo® and ® o f are |f|e-perturbations of f.

Moreover, if a cyclic diffeomorphism f is linear on U and ® is an e-
perturbation of Ids on U, then f o ® is an |f|e-perturbation of f on U. If
f~1is linear on U, if ® is an e-perturbation of Ids on U, then ® o f is an
| f|e-perturbation of f on f~1(U).

Lemma 5.2.7. Let f be a linear cyclic diffeomorphism on a bundle &, let g
be a cylic e-perturbation of f, and ¢ be an n-perturbation of Ids. Then go ¢
is an € +n.(|f| + €)-perturbation of f.

Proof : Let u be a unit vector of the tangent bundle TE. Let v = d¢(u).
We have dist(v,u) < n, and [jv]]| < 1+ n. Since f is linear, we have
dist(df (v), df (v)) < |f]|.dist(u,v). Therefore

dist(dg o ¢(u), df (u)) < dist(dg(v), df (v)) + dist(df (v), df (u))
ello] + I 1. dist(u, v)
e+l +) (53)

Conversely, let v = dg~!(u). We have ||[v| < |g] < |f| +e.

<
<

dist(dp~' o dg™(u),df 1 (u)) < dist(dg™(u),df 1 (u)) + dist(do ! (v),v)

< e+
< e+n(fl+e
Hence g o ¢ is an € + n.(| f| + €)-perturbation of f. |

We also state without a proof the following useful

Lemma 5.2.8. Let gi be a sequence of diffeomorphisms on a manifold M
that tends to a diffeomorphim f for the C' topology. Let K be a compact and
Dy, be a sequence of cyclic perturbations of Idy; on K, that tends to Idy for
the C topology. Then g o @, tends to f for the C topology.

About conjugating a perturbation of a linear cyclic diffeomorphism by a
homothety:

Remark 5.2.9. Let f be a linear cyclic diffeomorphism on a bundle £, and
g a cyclic e-perturbation of f on a set U. Then, for any real number A\ > 1,
the diffeomorphism A~'.g o \.Idg is a cyclic e-perturbation of f on \™'.U.
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We define the C' norm of a map f from a Riemannian manifold M
to the vector bundle & = {1,..,p} x R? by ||f|| = sup{||f(z)||,>z € M} +
sup{||df (v)|,v € TM,||v|]| = 1}. In the particular case where M = &, the
tangent bundle T can be identified to a vector bundle {1,...,p} x R% x R%.
This induces on each fibre a distance that coincides with the distance dist
we defined previously. Let us state without a proof an elementary lemma:

Lemma 5.2.10. There ezists a > 0 such that, for any 0 < e < «, if a map
€: & — & sends each fibre of £ into itself, and has C' norm less than €, then
the map Idg + € is a diffeomorphism and is a 2e-perturbation of identity.

Notice that trivially, we have the following converse statement: if a map
is an e-perturbation of identity, we can write it as a sum Id + €, where € has
C'-norm less than e. Then we have this useful corollary:

Corollary 5.2.11. Let f be a linear cyclic diffeomorphism on a bundle £.
Let g: € — &£ be a map such that for any x € €, f(x) and g(x) are in the
same fibre (that is, the map f — g is defined), and such that the C' norm
of f — g is less than € = «/|f|. Then g is diffeomorphism of € and is a
2| f|2e-perturbation of f.

Proof: Weput £=f —g. Then f~log=f~lo(f+&)=1Ide+ floéby
linearity of f. Besides, the map f~! o & has C! norm smaller than |f|e < a.
Thus from Lemma 5.2.10, f~! o g is a diffeomorphism and more precisely
a 2| f|e-perturbation of Idg. By Remark 5.2.6, g = fo f~logis a 2|f|?-
perturbation of f. O

5.2.5 Preliminary perturbation and extension lemmas
Franks’ Lemma and some more precise perturbation lemmas

Let 3 be a subset of a manifold M. Then given two linear cocycles A and
B on T'My,, we define the distance between them to be oo if they do not lift
from the same dynamics on X, otherwise we define

dist(A, B) = sup (4" (v) = B:(w)]).

vET My, ||lv||=1,ce{-1,1}

We say that two linear cocycles are e-close if the distance from one to another
is strictly less than €. We first state without a proof a very classical lineariza-
tion lemma that perturbs a cyclic diffeomorphism to be locally linear, that
is, linear on a neighbourhood of the zero-section Og¢.

Lemma 5.2.12. Let f be a cyclic diffeormorphism on a bundle £. Then
for all ¢ > 0, there is a cyclic e-perturbation of f on an arbitrarily small
neighbourhood of O¢ that is locally linear, with same derivative as f above
Og, that is dgo, = dfo, .
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In particular if ¢ is a cyclic e-perturbation of f, there is a cyclic e-
perturbation h of f that has same derivative as g above Og. We state now a
version of Franks’ Lemma [26, lemma 1.1] for cyclic diffeomorphisms:

Lemma 5.2.13 (Franks). Let A > 0. Then for all § > 0, there is € > 0
such that the following holds: if f is a cyclic diffeomorphism on a bundle
&, and is bounded by A. If a linear cocycle B on TE&y, is e-close to the
derivative of df, then there is a cyclic 0-perturbation g of f on an arbitrarily
small neighbourhood of Og, such that the derivative of g above Og is B.

We define the radius of a path (A).ec(o,1) of cocycles in T'My; as
sup [dist(.At, .Ao)]

te[0,1]

In the particular case where some point of ¥ is a sink for f and for A, we
would like to know when the basin of attraction of that point for g is the
same as for f. This is the purpose of the following proposition:

Proposition 5.2.14. Let f be a cylic diffeomorphism of a bundle £, such
that the orbit Og is a hyperbolic sink for f. Let Ayt € [0,1] be a path of linear
cocycles on TE, of radius strictly less than € > 0, that starts at Ay = dfo,
and such that for any t € [0, 1], the orbit Og is a sink for A,. Then there is a
cyclic e-perturbation g of f on an arbitrarily small neighbourhood of Og such
that dgo, = A1, and such that the basin of attration of Og for g is the same

as for f .

We will use this proposition in dimension 2 to turn the eigenvalues of a
sink to be real, preserving the flag-configuration of its whole basin of attrac-
tion (see section 6.4.2).

Lemma 5.2.15. Let F be a compact (for the topology of cocycles) family of
cyclic linear diffeomorphisms on € such that any f € F is a sink. Then there
1s v > 0 such that any cyclic v-perturbation g of any f € F is a hyperbolic
sink whose stable manifold is the whole £.

Proof: We only give a few clues: by compactness, there is an integer n € N
such that for any f € F, for any =z € &, || f™(z)|| < ||z]|/2.

Then by compactness of F and linearity of its elements, the reader can
check that for any n € N, there is v > 0 such that if g is a cyclic v-
perturbation g of f € F, then for all x € &, || f™(z) — ¢"(x)|| < ||=||/3. These
two inequalities ensure that ¢ is a hyperbolic sink whose stable manifold is
the whole €. O

Proof of Proposition 5.2.14 : Let f be a linear cyclic diffeomorphism
on & = {1,...,p} x R", and let (A¢)e[o,1] be a path of linear cocycles as in
the hypothesis of the proposition. Thus, for some ¢ < ¢, for all ¢ € [0, 1], we
have dist(Ag, A:) < £. Choose 0 < d <& — /.
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Claim 7. There is a a cyclic perturbation g of f, such that dgo, = Ay,
its basin of attraction being the whole £, and such that for all x € &, the
derivatives dg; and df,, seen as linear maps from R™ to R™, are £ + d-close

(that is ||dg, — dfu||. [ldg, ) — df ;| < €+0).

There exists A > 0 such that for all ¢, the linear cyclic diffeomorphism
f+ that identifies to A; is bounded by A. Choose € > 0 as in Lemma 5.2.13
with respect to A and 0. The family of linear cocycles (A;) is compact,
therefore we can apply Lemma 5.2.15 and find 0 < v < € such that any
cyclic v-perturbation g of any f; is a hyperbolic sink whose stable manifold
is the whole £, where f; is the linear cyclic diffeomorphism that identifies to
At.

Let 0 =tg < t; < ... <t = 1 be a sequence such that dist(As,, Az, ) <
v, for all 0 < i < k. Then by Lemma 5.2.13, we find a sequence (g;)i=1,.. &
of diffeomorphisms of O¢ such that for all 0 < ¢ < k, g;4+1 is a cyclic 6-
perturbation of f;, on a bounded neighourhood ;i of Og, with equal-
ity of derivatives dg;y1 = df;,,, above Og. We may apply linearization
lemma 5.2.12 to suppose moreover that the g; are locally linear, that is
linear on a neighbourhood V; of Og. In other words, g; coincides locally with
fur

Recall that each g; is a v-perturbation of a linear cyclic diffeomorphism
ft, for some t € [0, 1], and by Lemma 5.2.15, g; is a sink whose stable manifold
is the whole £. From Remark 5.2.9, we may conjugate each of the g; by a
convenient homothety, and suppose that U;11 C g;(V;). We fit successively
these k perturbations together, to obtain a local cyclic perturbation g of f
that coincides with f; on an neighbourhood of Og, and whose stable manifold
is the whole €.

Note finally that for all x € &, the derivative dg, is equal to the deriva-
tive of some g; above x, which is v-close to the derivative of f;,. Since
dist(Ay;, Ao = df) < ¢, and v < §, we get that the derivatives dg, and dfs,
seen as linear maps from R"™ to R™, are £ + ¢ < e-close. This ends the proof
of the Claim.

We may again conjugate g by a homothety, and suppose that g is a
perturbation of f on an arbitrarily small neighbourhood. Applying the mean
value theorem to the conclusions of the claim, we obtain that when such a
g coincide with f outside a sufficiently small neighbourhood of Og, it is an
g-perturbation of f. Which ends the proof of Proposition 5.2.14. O

Define the map (e,4) +— 74 from (RT™)? to R™ by n.a =
min{a/34,¢/6A% ¢}. Here follows a lemma to turn a perturbation of a
saddle diffeomorphism to a local perturbation, preserving the dynamics of
the initial perturbation on a neighbourhood of the zero section Og¢.

Lemma 5.2.16 (Localization). Let ¢ > 0, let f be linear cyclic diffeo-
morphism on a bundle £ = {1,...,p} x R%, and U be a neighbourhood of Og.
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Then there is a bounded neighbourhood V of Og such that if g is a cyclic
Ne,|f|-Perturbation of f, there is a cylic e-perturbation h of f that coincides
with g on U and with f, outside V. Precisely h writes as ¢.g + .f where
¢ + Y is a partition unit on &.

We insist that V only depends on U, € and f, not on g.

Proof : To shorten notation, we put n = 1. a. Let ¢+ = 1 be a unit
partition on &, such that ¥ = 1 on U and 1 = 0 outside a bounded neigh-
bourhood V of Og. We choose the set V and the unit partition so that the
derivative of ¢ (therefore that of /) has derivative less than 1.

Let g be a cyclic 7, |s-perturbation of f. Define the map h on & by
h(z) = ¢(z).f(x)+¢(x).g(z). Forall z € £ we have f(z)—h(z) = ¢(z).(f—
9)(x) = (x)(f — g)(y). Thus the distance ||f(x) — h(z)|| between f(x) and
h(z) is less than i (x).n < n. We calculate the derivative:

d(f —h) =dy.(f —g) +(df —dg)

and get similarly that ||d,(f — h)|| < 2.n, since ||d,¢|| < 1. Hence the map
f — h has C'-norm striclty less than 37. We recall that n = Ne, | < /3| f].
We apply Corollary 5.2.11, and obtain that h is a diffeomorphism on £ and a
6| f|?>n-perturbation of f. Hence for any cyclic Ne,|f|-perturbation g of f, we
found a cyclic e-perturbation h of f on V that coincides with g on U4. Which
ends the proof of the lemma. O

Extension and Lifting Lemmas.

In the following, f is a linear cyclic diffeomorphism and H an invariant
subbundle. In this section we show to what extent it is possible to extend
a perturbation of the restriction fg, or to lift a pertubation of the quotient
f/H into a perturbation of f.

Lemma 5.2.17 (Extension). Let f be a linear cyclic diffeomorphism on a
bundle € = {1, ...,p}, that admits an invariant bundle H and let € < a/|f|.
If ¢’ is a cyclic e-perturbation of the restriction f\m, then there exists a cyclic
| fle-perturbation g of f that extends ¢', that is 9H = g', and such that the
quotients g/H and f/H are defined and equal.

In the following we naturally identify £/H with the orthogonal bundle D
of H in &, thus the canonical projection 7: & — £/H will be the orthogonal

projection mp on D. Besides my will be the orthogonal projection on the
bundle H.

Proof : Define the map g = forp+g'omy on €. We have f = forp+ figo
7, therefore f—gis defined and f—g = (fjg —g')omy. Since the derivative
of mg has norm 1, and fjz — ¢ has C'-norm less than ¢, f — g has C'-norm
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less than €. Since € < a/|f|, from Corollary 5.2.11, ¢ is a diffeomorphism
of £ and a 2| f|?e-perturbation of f. The diffeomorphism g clearly coincides
with ¢’ by restriction to H and goes to the quotient by H. Obviously g acts

on £/H, that is on D, as f does. In other words f/H = g/H. O
Define v, |y = min{a/|f], ZT}{Q‘ }. With Lemma 5.2.16, we get the follow-

ing localized statement:

Corollary 5.2.18. Let f be a linear cyclic diffeomorphism on a bundle
E = {1,...,p}, that admits an invariant bundle H. If g is a cyclic local
Ve, f|-perturbation of the restriction fig, then there exists a cyclic local €-
perturbation g of f that extends ¢' (i.e. 9 = g'), and such that the quotients
g/H and f/H are defined and equal.

Proof : Apply successively the extension lemma and Lemma 5.2.16. a

Lemma 5.2.19 (Lifting). Let f be a linear cyclic diffeomorphism on a
bundle € = {1,...,p} x R? that admits an invariant subbundle H, and let ¢ <
aflf|. If ¢ is a cyclic e-perturbation of the quotient cyclic diffeomorphism
f/H on £/H, then there exists a cyclic 2| f|*e-perturbation g of f that is a
lift of ¢, i.e. the following diagram commutes:

g

£ . (5.4)

-k

&/H—2 E/H

Moreover, g can be chosen such that, for oll x € E/H, for o = 1, if
f/H'(x) = g/H"(x) then f*= g* on the affine space x + H.

Remark 5.2.20. As a consequence, the diffeomorphism g can be chosen so
that if for some x, for all n € N, we have f/H"(x) = g/H™(x), then for all
n € (N we have f* = g" on the affine space x + H.

In particular, by restriction to H, g" = f" for any integer n.

The last assertion will be useful in preserving homoclinic relations, to
verify that a cyclic diffeomorphism is firmly flag-configuration respecting
(defined in section 6.2.2).

Proof : We define the map g: € - E by g=¢ onp + 7y o f. We let the
reader notice that

f = mpoforp+mgof (5.5)

= f/Homp+muof (5.6)

Therefore f — g is defined and we have f — g = (f/H — ¢') o mp. Since the
derivative of 7p has norm 1, and the C'-norm of f/H — ¢ is less than e,



104 Nikolaz Gourmelon

the C'-norm of f — g is less than e. Hence, from Corollary 5.2.11, ¢ is a
diffeomorphism of € and is a 2|f|?e-perturbation of f.

We have tpog=npog omp+mpomgof =g onp. Hence, g is a lift
of ¢

We are left to verify the last assertion of the lemma: If x € £/H satisfies
f/H(x) = g/H(x), that is 7p o fip = ¢, then g,y = ¢'(¥) + TH 0 floyn =
mp o f(x) + g © flz4n. Since H is invariant by f, which is linear, we
have f(x + H) = f(z) + H and 7p o fluog = 7p o f(z). We finally get
Yjo+ i = TD © floprr + i © flasrr = flagm I f/H N (z) = g/H N (z) =y,
thus f/H(y) = g/H(y) and g;y+g = fjy+m, the image of which is z + H.
Hence g‘;ir = f‘;}r ;- This ends the proof of the lemma. O

5.2.6 Dominated splittings, N-domination and homoclinic
tangencies

Let f be a diffeomorphism of a Riemannian manifold M, and K a compact
invariant subset of M. We denote by E°(f|x), the stable bundle of f|f, that
is, the set of vectors v € T'M | of the tangent bundle restricted to K, such
that [|df"(v)|| goes to zero as n tends to infinity. We denote by E*(f|x) the
unstable bundle of f|, that is, the stable bundle of f‘;(l. A invariant bundle
FE is uniformly contracting for f if and only if there exists N > 0 such that
for any v € E*, ||dfN (v)|| < 1/2. It is uniformly ezpanding if and only if it
is uniformly contracting for the reverse dynamics.

Definition 5.2.21. We say that an invariant compact set K for f is a
hyperbolic set it TM|x = E* & E*, it E° is uniformly contracted and if E"
is uniformly expanded.

Let us define the notion of dominated splitting, which is a weak form of
hyperbolicity.

Definition 5.2.22. An invariant splitting TM|x = E & F of the tangent
bundle restricted to K for f, is a dominated splitting if there exists IV such

that, for any point x € M, for any unit vectors u € E,, v € F, above x, we
have df™ (u) < 1/2.dfN (v).

We will say that a splitting is M -dominated if and only if there exists a
positive integer N < M that satisfies the above condition. This is a slightly
different definition from that of [13] and [16]. A useful consequence of this
very definition is that if a splitting is not N-dominated then it is not N’-
dominated for any positive integer N’ < N.

Let @ be a periodic saddle point for f, denote by Orbs(Q) its orbit, and
by TMom, @) = E’(Q) @ E*(Q) the hyperbolic splitting along its orbit.
We call it an N-dominated saddle if and only if the splitting E°(Q) ® E*(Q)
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is N-dominated. In this article, we denote by W*#(Q) and W*(Q) the stable
and unstable manifolds of the orbit of ), that is the set of points x such
that the distance dist(f"(x),Orbs(x)) goes to 0 as n goes to +00/—00. A
homoclinic intersection for a saddle () is an intersection between the stable
and unstable manifolds of its orbit elsewhere than at Q).

Definition 5.2.23. A homoclinic intersection x for a saddle @ is called a
homoclinic tangency if the intersection of the tangent spaces T,W*(Q) and
T.W*(Q) is not reduced to z. By a dimension argument, this is equivalent
to saying that the stable and unstable manifolds of Orb(Q) do not intersect
transversely at x.

In this case, we say that x is a homoclinic tangency related to the saddle
Q. If an open neighbourhood U/ of the orbit Orb;(Q) of ) contains the orbit
of z, then we say that x is a homoclinic tangency related to Q in U.

In particular, we say that a cyclic diffeomorphism f on a bundle £& =
{1,..,p} xR%is an N-dominated saddle on & if and only if the periodic point
(0,0), whose orbit is the zero section Og, is N-dominated. We denote by
We#(f) and W*(f) the stable and unstable manifolds of the orbit Og for f.
We say that the saddle f admits a homoclinic intersection (resp. homoclinic
tangency) if the saddle point (1,0) admits a homoclinic intersection (resp.
homoclinic tangency).

5.3 Proof of Theorem 5.1.3

For the sake of readability, we first present a proof Theorem 5.1.3, although
it is a weak version of Theorem 6.1.1. This will allow to introduce clearly
the tools we will use for the proof of Theorem 6.1.1.

5.3.1 Reduction of the theorem

Clearly, choosing local charts around each point of the orbit of ), Theo-
rem 5.1.3 can be equivalently stated in terms of saddle diffeomorphisms:

Theorem 5.3.1. Fiz A > 0, € > 0 and an integer d < 2. There exists two
integers Ny, P > 0 such that, if f is a saddle diffeomorphism on a bundle
E=1{1,...,p} x R% and satisfies:

e the diffeomorphism f is bounded by A,
e the period p is greater than P,
o the saddle f is not Ng-dominated,

then there exists a saddle e-perturbation of f on an arbitrarily small neigh-
bourhood of the zero-section Og that admits a homoclinic tangency in U.
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With the following proposition, the problem can be reduced to show
Theorem 5.3.1 in the case where f is locally linear, that is linear on a neigh-
bourhood of Og, and dfé’g has real eigenvalues with pairwise distinct moduli.

Proposition 5.3.2 (Reduction Proposition). Fiz e > 0 and A > 0 and
an integer d > 0. Then there is an integer P > 0 such that, for any p > P,
the following holds:

if a saddle diffeomorphism f on & = {1,...,p} x R? is bounded by A, then
there exists a locally linear saddle e-perturbation g of f on an arbitrarily
small neighbourhood of Og, such that dgg£ has real eigenvalues with pairwise
distinct moduls.

We can restate [16, Theorem 2.1] as follows:

Theorem 5.3.3. Fiz e >0, A > 0 and an integer d > 0. Then there is an
integer P > 0 such that, for any p > P, the following holds:

if a saddle diffeomorphism f on & = {1,...,p} x R? is bounded by A,
then there exists an e-perturbation B of the derwative dfy, such that the p-th
iterate BP of B has real eigenvalues with pairwise distinct moduli.

Proof of Proposition 5.3.2 : Apply successively Theorem 5.3.3, Franks’
Lemma 5.2.13, and finally linearize locally by Lemma 5.2.12. O

We recall that we defined a diffeomorphism to be a local perturbation
of another, if they coincide outside a compact set. We will show now that
Proposition 5.3.2 reduces us to show the following proposition:

Proposition 5.3.4. Fiz A > 0, ¢ > 0 and d > 2. There exists an integer
Ny > 0 such that, if f is a linear saddle on a bundle € = {1,...,p} x R?, and
satisfies:

o the diffeomorphism f is bounded by A,
e the saddle f is not Ng-dominated,
e it has real eigenvalues.

Then there exists a saddle local e-perturbation of f that admits a homoclinic
tangency.

Remark 5.3.5. A saddle diffeomorphism f is bounded by A and not Ng-
dominated if and only if the saddle diffeomorphism f~' is bounded by A
and not Ng-dominated. Besides a saddle diffeormophism g is a local e-
perturbation of f that admits a homoclinic tangency, if and only if g~ is
a local e-perturbation of f~' that admits a homoclinic tangency.

Thus showing that the conclusions of the proposition hold for f is equiv-
alent to showing that they hold for f=1. This will allow us to change f into

f~1 in the proof of it.
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This proposition is the main part of the proof of Theorem 5.1.3, it will
be showed by induction on the dimension d in section 5.3.2. The following
remark, which complements Remark 5.2.9, says that once we have a saddle
local perturbation that satisfies the conclusions of the proposition, we have
a saddle local perturbation on an arbitrarily small neighbourhood of Og that
satisfies the same conclusions.

Remark 5.3.6. Assume that g is a saddle e-perturbation of the linear saddle
f on a bounded set U, that admits a homoclinic tangency in U, that s, the
orbit of the tangency is in U. Then, for all X > 1, the conjugation by \.Id
of g, g = A\L.go \.Id, is a saddle e-perturbation that admits a homoclinic
tangency in \™1U.

Hence, f has a saddle e-perturbation on an arbitrarily small neighbour-
hood U that admits a homoclinic tangency in it.

We restate [16, Lemma 2.14|, which says that any perturbation of a
cocycle that admits a dominated splitting still admits a dominated splitting.

Lemma 5.3.7. For any A > 0 and any integers d > 2, N > 0, there is
v > 0 and an integer M > 0 such that if A is a linear cocycle bounded by A
on a d-dimensional bundle £, and € = F®G is an N-dominated splitting for
A, then for any v-perturbation B of A, there is a (unique) invariant splitting
E=F" @G for B that is M-dominated, and such that dim(F’) = dim(F).

We have then the straightforward corollary:

Corollary 5.3.8. For any A > 0 and any integers d > 2, N > 0, there is
v > 0 and an integer M > 0 such that if g is a saddle diffeomorphism on
E=1{1,...,p} x R? that is bounded by A and N-dominated, then any saddle
v-perturbation f of g of same index as g, is M-dominated.

Remark 5.3.9. The contrapositive of this corollary is the following: for any
A > 0 and any integers d > 2 and N > 0, there exists an integer M > 0 and
a real number v > 0 such that given a saddle f that is not M-dominated,
any saddle v-perturbation g of f of same index as f is not N-dominated.

Proof of Theorem 5.3.1 from Propositions 5.3.4 and 5.3.2 : Fix
A >0, e >0, an integer d > 2. Apply Proposition 5.3.4 with the bound
A+¢/2, with e = £/2 and with dimension d to find the corresponding integer
N4. Now choose and fix M > 0 and 0 < v < ¢/2 as Remark 5.3.9 allows to
do for N = N;. Then apply Proposition 5.3.2 for our chosen v and A, to
find the corresponding integer Fp.

Let f be a d-dimensional saddle bounded by A that is not M-dominated,
with period greater than Fy. By Proposition 5.3.2, there exists a locally linear
saddle v-perturbation g of f on an arbitrarily small open neighbourhood U
of Og that has pairwise distinct real eigenvalues. By Remark 5.3.9, g is
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not Ng-dominated. Call g the linear saddle that coincides with g on an open
neighourhood V of Og. The linear saddle g is bounded by A+v < A+¢/2, has
real eigenvalues and is not Ng-dominated. Therefore, by Proposition 5.3.4,
there exists a saddle local €/2-perturbation h of ¢ that admits a homoclinic
tangency at a point z.

By Remark 5.3.6, for any neighbourhood W of the zero section Og, the
saddle h can be chosen so that it is a e/2-perturbation of g on W, and so
that W contains the orbit Orb; () of the tangency x. Choose W so that its
closure is in V.

Then define h to be the saddle that coincides with g outside W, and with
h on W (and in fact on V), since h and g coincide on V \ W). For g is an
e/2-pertubation of f on U, and h is an /2 perturbation of g on W CU, we
have that h is an e-perturbation of f on /. Finally, as h and h coincide on
W, which contains the orbit of the homoclinic tangency x of h, x is also a
homoclinic tangency for h in W. This concludes the proof of the theorem.
]

5.3.2 Proof of Proposition 5.3.4

In the following, we will only work on bundles/manifolds of the form & =
{1,...,p} x R endowed with the canonical Euclidean metric. We will show
Proposition 5.3.4 by induction on the dimension d of the bundle £. We first
briefly describe the structure of the demonstration.

Sketch of the proof

We initiate the induction process in dimension d = 2, thanks to a smart
argument by Pujals and Sambarino in [52]. In dimension d > 3, we write
the hyperbolic splitting: £ = F @ G, where F' is the stable space and G the
unstable one. By Remark 5.3.5, we may replace f by f~! and assume that
F' has dimension > 2.

Fix a non-trivial invariant space H C F, with dim(H) = 1. From Lemma
5.3.10, if the saddle is not strongly enough dominated, i.e. if the splitting
E = F & G is not Ng-dominated for Ny large, then one of the following
situations occurs:

e The splitting E' = H & G is not strongly enough dominated for the
restriction of f to E’ so that, by induction hypothesis, we can find a
saddle local e-perturbation of f|g/ that has a homoclinic tangency.

e The splitting F'/H®G/H of the quotient bundle F/H is not dominated
enough for the quotient linear saddle f/H so that, by induction hy-
pothesis we can find a saddle local e-perturbation of f/H that admits
a homoclinic tangency.
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In the first case, by Corollary 5.2.18 we can extend the cycle local small
perturbation of fip to a cycle local small perturbation g of f. The diffeo-
morphism ¢ extends a saddle cycle that has a homoclinic tangency; thus it
also has a homoclinic tangency.

In the second case, by Lemma 5.2.19 we can lift the small perturbation
of f/H into an small pertubation g of f that coincides with f on H. Then
we will show in section 5.3.2 that, g/H admitting a homoclinic tangency, so
does g. Finally, we choose a bounded open neighbourhood U of Og such that
the homoclinic tangency of g can be seen in it, and we find a local small
perturbation h of f coinciding with g on U. In these conditions h is a saddle
local small perturbation of f with a homoclinic tangency.

Hence, we are done in both cases: we found a cycle local perturbation
that turns f to admit a homoclinic tangency. QED.

The proof in details

We restate [13, Lemma 4.4] in terms of saddle diffeomorphisms:

Lemma 5.3.10. Fiz a real number A > 0 and an integer d > 2. For any
N € N, there exists M € N such that the following holds: let f be o linear
saddle on a d-dimensional bundle € = {1,...,p} x R?, so that

e it is bounded by A,
o its hyperbolic splitting € = F & G is not M -dominated.

Then for any invariant non-trivial subbundle H of F, either the splitting
H © G is not N-dominated for the restriction figer, or the splitting F'/H @
G/H is not N-dominated for the quotient linear automorphism f/H.

Let us notice that, although not explicitly, Proposition 5.3.4 is shown
by Pujals and Sambarino [52] in dimension 2 (it suffices to combine Lem-
mas 2.0.1 and 2.2.1). For a complete proof, see section 6.5.1. We are now
ready to prove Proposition 5.3.4 by induction.

Proof of Proposition 5.3.4 : As we just pointed out, it is done for d = 2.
Fix d > 2, and suppose now that the theorem is true for any dimension
2<d <d-1 Fix A>0ande > 0. Let € > 0 be less than v, 4, which
is as defined for Corollary 5.2.18, less than gi"‘; where n is as defined for
Lemma 5.2.16, and less than /A, where « is as defined in Lemma 5.2.10.
The induction hypothesis gives us, for each 2 < d’ < d — 1, an integer Ny
that verifies the following conditions:

for any linear saddle f of a bundle {1,...,p} x R? such that

e it is bounded by A and not Ng-dominated,
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e it has real eigenvalues,

there exists a cycle local e-perturbation g of f such that it admits a homo-
clinic tangency. Let N be the maximum of the integers Ny for 2 < d’ < d—1.
Fix M € N as in Lemma 5.3.10, with respect to A, d and N. We will show
that the conclusions of Proposition 6.5.2 will hold for Ny = M, and a per-
turbation of size e.

Let f be a linear saddle on a d-dimensional bundle £ = {1,...,p} x RY
such that

e it is bounded by A,

e it has real eigenvalues and is not M-dominated.

By Remark 5.3.5, we may replace f by f~! and assume that the stable
space F' has dimension greater than two. Since f has real pairwise distinct
eigenvalues, there is an invariant splitting F' = F1&®...@ F}, of eigendirections,
where F is the strongest stable eigendirection. Call H the subbundle F5 &
... ® Fj. From Lemma 5.3.10, either the splitting H & G is not N-dominated
for the restriction f/ggp, or the splitting F//H @ G//H is not N-dominated
for the quotient linear cocycle f/H. Call d and dy the dimensions of H ® F
and F/H & G/H, respectively. By definition, N is greater than Ny, and
Ng,; we reformulate the dichotomy:

e cither the splitting F' = H @ G is not N-dominated, and thus not Ny, -
dominated, for the restriction fggp. Then, by induction hypothesis,
we find a saddle local e-perturbation ¢’ of J|e that admits a homoclinic
tangency. The following proposition, shown in section 5.3.2 ends the
study of this case:

Proposition 5.3.11. For € > 0 smaller than v = v o as defined for
Corollary 5.2.18, if ¢ is a saddle local e-perturbation of JiEr with a
homoclinic tangency, then there is a saddle local e-perturbation g of f
that has a homoclinic tangency.

e or the splitting F/H = F/H & G/H is not N-dominated, and thus
not Ng,-dominated, for the saddle quotient f/H. Then, by induction
hypothesis, we find a saddle local e-perturbation ¢’ of f/H that admits
a homoclinic tangency. We conclude with the following proposition,
shown in section 5.3.2:

Proposition 5.3.12. For ¢ > 0 smaller than ;1 = min(555, a/A), if
g is a saddle local e-perturbation of f/H with a homoclinic tangency
related to the orbit Og, then there is a saddle local e-perturbation g of

f that admits a homoclinic tangency related to Og.

We are done in both cases: this ends the proof of Proposition 5.3.4. O
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The restriction case: proof of Proposition 5.3.11

Let ¢ > 0and A > 0. Let v = v 4. Let f be a linear saddle on & =
{1,...,p} x R? that is bounded by A, and let E’ be an invariant bundle for
f- Let ¢’ be a saddle local v-perturbation of f|/ that admits a homoclinic
tangency. We have |f| < A, therefore v = v 4 < v, g

Then by Corollary 5.2.18, since ¢’ is a Ve, f|-perturbation of f|gs, there
exists a cyclic local e-perturbation g of f that extends ¢’. In particular, since
g|p admits a homoclinic tangency, so does g.

The quotient case: proof of Proposition 5.3.12

Let ¢ > 0 and A > 0. Let g = min(55%,/A). Let f be a linear saddle
on & = {1,...,p} x R? that is bounded by A, and let H be an invariant
subbundle of the stable bundle of f. Let ¢’ be a saddle local u-perturbation
of f/H that admits a homoclinic tangency.

We have p < 355 < ng“fg‘ Then by Lemma 5.2.19, since ¢’ is a ng“fQ‘-

perturbation of f/H, there is an 7, |s-perturbation g of f that is a lift of ¢.
By Remark 5.2.20, g can be chosen such that gz = fg.

Lemma 5.3.13. If g/H admits a homoclinic tangency, then g also admits
one.

Claim 8. The stable manifold of g is the inverse image 7~ [W*(g/H)] of the
stable manifold W#(g/H) of g/H by the canonical projection 7: E€ — E/H.

Proof : The linear saddle fjz = gz is a sink, thus there an integer
k € N such that ¢* divides by four the norms on H: for any = € H,
llg(x)|| < ||lz||/4. Since g is a diffeomorphism that is C'-bounded, there
is a neighbourhood U of the zero-section Og such that for any = € U, for any
y = x + v where v is a vector in H, we have ||g¥(x) — ¢*(v)|| < ||z — yl|/3.

Therefore, since g is C!, for any C' > 0 there is a neighbourhood U of Og/m
such that if € 7~1(U) has norm greater than C, then ||¢*(z)|| < |lz||/2.

We recall that (g/H)*[x(x)] = n[¢*(x)], by commuting diagram 5.4.
Thus for k greater than some N € N, g*(z) belongs to 71 (U). Therefore
for any k > N, ||g"*(2)| < |lg¥(=)]|/2 if ||g¥(x)|| > C. This proves that
lim supy,_,, [|¢" ()| < 2C. This holds of course for all C' > 0. Therefore,
any x € 7 [W?*(g/H)] is in the stable manifold of g.

The converse inclusion is much easier: if x is in the stable manifold of g,
then ¢*(x) goes to zero, and so does 7 o g¥(x) = (g/H)¥[r(z)]. Therefore
m(x) € W#(g/H). This ends the proof of the claim. O

Claim 9. The map 7 induces by restriction a diffeomorphism from the un-

stable manifold W"(g) of g to the unstable one W"(g/H) of g/H .
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Proof : As H is in the stable manifold of g, the tangent bundle to W*(g)
at the zero-section has a trivial intersection with the kernel H of 7; thus on
a neighbourhood of the zero section, 7 induces an immersion from W*(g)
to W% (g/H). By dimension equality, 7(WW"(g)) is a neighbourhood of Og
in W*(g/H), that is, m induces by restriction a diffeomorphism between a
neighbourhood U of O¢ in W"(g) and a neighbourhood V of O¢ in W¥(g/H).

Then it clearly induces a diffeomorphism between ¢* (1) and (g/H)* (V).
The neighbourhoods ¢ and V can be chosen such that the sequences g* (i)
and (g/H)* (V) are increasing. The limits of these sequences are the unstable
manifolds of g and g/H, respectively. Hence 7 defines a diffeomorphism from
W(g) to W"(g/H). O

Proof of Lemma 5.3.13 : Let x € £/H be a homoclinic tangency
for g/H: the tangent spaces T} and T7" at x of W#(g/H) and W¥(g/H)
have non-trivial intersection. Then, by Claim 9, there exists an element
y € 7 (z) such that y belongs to W%(g). By Claim 8, it belongs also
to W#(g). Consider the tangent spaces T35 (which contains H) and T3 of
the stable and unstable manifold of g at y. The map 7 defines a bijection
from T¢ to T and, since the stable manifold of g is 7~ [W*(g/H)], we have
T5 = n~1(T}). Hence 7 sends Ty'+ Ty in T{+1T5, and from the rank theorem
dim(T§ + T5) < dim (T 4 T7) + dim[K er ()]

We have dim (77" +17) < dim(7}) +dim(77), since they have non-trivial
intersection. On the other hand, dim(73") = dim(77}") as they are in bijection
by 7, and dim(7%) = dim(7%) +dim(H) as T§ = 7~ 1(T}) and T¥ N H = {0}.
From these equalities and inequalities, we get:

dim(Ty' + T5) < dim(75) + dim(73")

Hence the two tangent spaces 13" and 75 have non-trivial intersection: the
intersection of the stable and unstable manifolds of ¢ at y is a homoclinic
tangency. d

Next claim will end the proof of Proposition 5.3.12:

Proposition 5.3.14. There exists a saddle local e-perturbation of f with a
homoclinic tangency.

Proof : Choose an open bounded neighbourhood U of O¢ that contains the
orbit of the homoclinic tangency y by ¢g. Then any saddle diffeomorphism
that coincides with g on U admits a homoclinic tangency at x. As g is
an 7). |y-perturbation of f, Lemma 5.2.16 provides an e-perturbation h of f
that coincides with g on U, and that coindices with f on a neighbourhood
of infinity. Thus we found a saddle local e-perturbation of f that admits a
homoclinic tangency. O



Chapter 6

Creating tangencies preserving
homoclinic cycles

Here we show that the construction of the previous chapter can be done in or-
der to preserve homolinic cycles. In rough terms, we will show that if the sta-
ble/unstable splitting on a long-period saddle point is not dominated enough,
then a small perturbation creates a homoclinic tangency related to the saddle
point, preserving a fixed finite set in the strong stable/unstable manifolds.
To state it precisely, we will introduce the notion of flag-configuration (see
below). Among other consequences, we deduce that if a homoclinic class of
a saddle P does not admit a dominated splitting of same index as P, then
an arbitrarily small perturbation creates a homoclinic tangency related to
P.

6.1 Prolegomena and statement of results

Two periodic saddle points R and S of a diffeomorphism f are said to form
a cycle if and only if the unstable manifold W*(R) of R intersects the stable
manifold W#(S) of S, and the unstable manifold W*(S) intersects the stable
manifold W#*(R). We will show in this chapter that, with the same hypothesis
as in Theorem 5.1.3, it is possible to create a homoclinic tangency at a saddle,
preserving a finite number of cycles involving the saddle. Precisely:

Theorem 6.1.1. Fiz A > 0, € > 0 and an integer d > 2. There exists two
integers Ng, P > 0 such that, if f is a diffeomorphism on a d-dimensional
Riemannian manifold, and Q a periodic saddle point, that satisfy:

o the diffeomorphism f is stricly bounded by A,
o the saddle QQ has period p greater than P and is not Ng-dominated,

then for any finite set 3 of saddle points that form a cycle with Q, there
exists an e-perturbation of f on an arbitrarily small neighbourhood U of the

113
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orbit of Q, that preserves the orbit of QQ, that creates a homoclinic tangency
related to Q in U, and such that Q still forms a cycle with each of the points
of 3.

A more precise result is possible; we introduce a few definitions and
notations. Let R be a saddle point with period p, for a diffeomorphism f
on a d-dimensional Riemannian manifold M. We denote by Spec(R) the
spectrum of dfP(R), that is the d-uple (Ay, ..., A\g) of the eigenvalues of df?(R)
counted with multiplicity, where the A; are ordered by increasing moduli: for
each 1 <1 < d, |)\’L|S|)\Z+1| .

If |A;| < min(|Ai+1], 1), we denote by W;*(R) the set of points z of M
such that, for any real number A > |\;|, we have dist(f?"(x),Orbs(R)) =
o(A\"), as n goes to infinity. This set is an i-dimensional C'-submanifold of
W3 (R). We call it the i-dimensional strong stable manifold of Orby(R) for f.
For convenience, we define the O-dimensional strong manifold to be the orbit
of R. To simplify the statements, if for some integer i, the i-dimensional
strong stable manifold of R does not exist, then we let W;’Z(R) = (). Let the
integers 71 < ... < i} be the dimensions for which there exists a strong stable
manifold. Then we have W;’“(R) C W;’ZQ(R) C .. C W;’ZkR = Wi(R).
We call that family of manifolds, the stable flag of R for f.

Symmetrically, if it exists, we denote by W}L "(R) and call i-dimensional
strong unstable manifold of Orbs(R) for f, the i-dimensional strong stable
manifold of Orbs(R) for f~1, and we define similarly the unstable flag. For
any point x € M, we define the flag-type of x for the saddle R of f to be the
pair (s, u,) defined by

sy =inf{i e NJw e WP'(R)},  u, =inf{i € N/z € W/ (R)},
with the convention inf ) = +oo0.

Remark 6.1.2. Let x be of flag-type (s;,uz), and i,j be a such that i > s,
and j > uy. Then if W;’Z and W}”’J exist, an arbitrarily small perturbation
of f on an arbitrarily small neighourhood of x increases the flag-type of x
from (sz,ug) to (i,7).

We will say that a perturbation g of f that preserves the orbit of the
saddle R, respects the flag-configuration of a finite set I' for f if and only if,
for any € I, it preserves or decreases the flag-type of  for R, which means
that:

re WP (R) = zeW)(R) (6.1)
reWS(R) = ze W/ (R). (6.2)

In the following, we will ask for more than preserving cycles as in Theo-
rem 6.1.1. For any fixed finite set I', we want to find a perturbation that
creates a homocinic tangency, and respects the flag-configuration of I'. We
state it precisely:
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Theorem 6.1.3. Fiz A > 0, € > 0 and an integer d > 2. There exists two
integers Ng, P > 0 such that, if Q is a periodic saddle point for a diffeomor-
phism f on a d-dimensional Riemannian manifold M, that satisfy:

o the diffeomorphism f is stricly bounded by A,
o the saddle Q) has period p greater than P and is not Ng-dominated,

then for any finite subset T' of M, there exists an e-perturbation of f on
an arbitrarily small neighbourhood U of the orbit of Q, that preserves the
orbit of Q, creates a homoclinic tangency related to QQ in U, and respects the
flag-configuration of .

The following remark will allow to replace f by f~! in the proofs (see
section 6.5.2).

Remark 6.1.4. g is a saddle e-perturbation of f that respects the flag-
configuration of T' for f, if and only if g~ is a saddle e-perturbation of
=1 that respects the flag-configuration of T' for f~1.

Now we show that respecting flag-configuration allows to preserve cycles:

Proof of Theorem 6.1.1, from Theorem 6.1.3 : Let ) be a saddle
for a diffeomorphism f, and let ¥ = {Ry, ..., R} be a finite set of saddles of
f that form each a cycle with @. Suppose first that @ is not in ¥. Denote
by s; (respectively u;) one of the intersections between W*(R;) and W*(Q)
(respectively between W*(R;) and W*(Q)). The union K = {f"(s;),n €
N,1<i<k}u{f"™(u;),n €N, 1<i<k}UX is clearly a compact set that
does not intersect the orbit of Q. Fix a neighbourhood U of Orb;(Q) that
does not intersect K. Theorems 6.1.1 and 6.1.3 have the same hypothesis.

Under these hypothesis, by Theorem 6.1.3, we find a perturbation g of f
on U that creates a homoclinic tangency related to @ in i, and respects the
flag-configuration of I" = {s;,u;,1 <14 < k}. For U does not intersect K, we
have that @@ and any R; still form a cycle. Hence that perturbation satisfies
the conlusion of Theorem 6.1.1. If @ is in X, that is admits a homoclinic
intersection at a point x, then add to I' the point x and apply Theorem 6.1.3
as previously. Then the point = will still be a homoclinic point, and @ will
still form a cycle with itself. The conclusions of Theorem 6.1.1 are satisfied.
O

If f is a saddle diffeomorphism on a bundle &£, then, by an abuse of
notation, we call i-dimensional strong stable manifold of f and denote by
W$i(f) the i-dimensional strong stable manifold of the orbit O¢ of (0, 1) for
f. Of course we use the symmetrical notations, replacing stable by unstable
and s by u. We can restate Theorem 6.1.3 in terms of saddle diffeomorphisms:
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Theorem 6.1.5. Fit A > 0, € > 0 and an integer d > 2. There exist
two integers Ng, P > 0 such that, if f is a saddle diffeomorphism on € =
{1,...,p} x R? that satisfies:

o the diffeomorphism f is bounded by A,
e the period p is greater than P,
o the saddle f is not Ng-dominated,

then for any finite subset I' of £, there exists a saddle e-perturbation of f on
an arbitrarily small neighbourhood U of the zero section Og, that admits a
homoclinic tangency in U, and that respects the flag-configuration of T'.

Given a saddle diffeomorphism f on £, and a finite set I' in £, we will
denote by I'* the subset of points of I' that belong to the stable manifold
of f, and I'* the subset of points that belong to the unstable one. In our
proofs we may have to do successively many flag-configuration-respecting
perturbation of a saddle diffeomorphism f. Notice then that I'* (resp. I'") is
a subset of the stable (resp. unstable) manifold of any saddle perturbation
of f that respects the flag-configuration of I'.

Remark 6.1.6. Since the points of I' that are not in the stable or unstable
manifolds of f do not appear in the conclusions of the theorem, it will be
enough to show it for any finite subset I' of the union WZUWY, that is, such
that I' = I'° UT". Besides, it is clearly sufficient to show it when there is
no pair {z,y} in T such that x is an iterate of y by f. This is what we will
suppose in all the following, to ease redaction, even if not mentioned.

We will again considerably reduce the problem, adapting the lemmas we
used in section 5.3. However much more work will be needed here.

6.2 Technical definitions and lemmas

6.2.1 Generalized eigendirections and eigenmanifolds

Let A be a linear isomorphism of a vector space. We say that an invariant
space E) is a generalized eigendirection with eigenvalue A € C, for A, if and
only if one of the two following situations occurs:

e The space F has dimension one, A is a real number, and A induces a
homothety of ratio A on F).

e The space E) has dimension two, A is not a real number, and A is
conjugate to a similitude of ratio A on that space.
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We call simple isomorphism any linear isomorphism A of a vector space
E that admits an invariant splitting £/ = E), @ ... @ E),, where the A; are
complex numbers with moduli different from 1 such that || < [Ao] < ... <
|Ai], and each E), is a generalized eigenspace for A. We call good splitting
for a simple isomorphism A the splitting £ = Ey, ® ... @ E), through which
we see the simplicity of A.

We say that a cyclic diffeomorphism f on € = {1, ..., p} x R? has a simple
derivative if and only if df? induces a simple isomorphism on each fibre of £.
We call good splitting for f the splitting £ = E\, @ ... ® E), through which
we see the simplicity of dfP. Let f be now a linear cyclic diffeomorphism
on £. We say that an invariant bundle is an eigenbundle or eigendirection if
and only if there is A € R such that, for any point  in the bundle, we have
fP(z) = A.xz. Then we say that X is the eigenvalue of that eigendirection.

In the following the adverb locally will mean ’on a neighbourhood of O¢’.
Let f be a cyclic diffeomorphism on £ that has a simple derivative and is
locally linear. Then the generalized eigendirections £}, of the locally linear
f provide local manifolds W)l\‘:c that are invariant by f if stable, or by f~!
if unstable. The union W), of the negative iterates of Wi‘z’c if [N < 1,
or positive iterates if |[\;| > 1, is an invariant embedded manifold which
we will call generalized eigenmanifold of f associated to the eigenvalue A;.
Obviously, the generalized eigenmanifold W), is uniquely defined and any
point x in it ends up (by positive iterates if |\;| < 1, or negative else) in the
generalized eigendirection E),; of the locally linear f.

Remark 6.2.1. An eigenmanifold has no dynamical meaning and depends
on the linearization one chooses. We introduced that notion only for conve-
nience.

Let f be a linear cyclic diffeomorphism on €& = {1,...,p} x R? with a
simple derivative. Fix integers 1 < ¢ < [ such that 0 < |A\j+1] < 1. Call dy
and da the dimensions of Ey, ©...® E), and Ey, © ... © E) We recall the
following classical results:

it1°

Proposition 6.2.2. The do-dimensional stable manifold of f is defined and
admits a dimension dy strong stable foliation F, such that for any pair of
points x and y in the same leaf, we have dist(fP"(x), fP"(y)) = O(|A\|").
If moreover f s locally linear, then the generalized eigenmanifold Wy, , in-
tersects transversely, exactly once, each of the leaves of F. Finally, for any
point x € Wy, \Og, there is a constant C such that for any n great enough,

dist(0g, fP™"(x)) = C.|Aig1|™.

Remark 6.2.3. The simple isomorphisms of R% are an open dense subset
of GL(R,d). The simple isomorphisms with real eigenvalues form an open
dense subset of the set of isomorphisms with real eigenvalues.
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6.2.2 Common multiples and firmly flag-respecting pertur-
bations

Here we introduce a property on the eigenvalues of a linear saddle that
will allow localized statements: under some conditions, from a saddle local
perturbation that respects the flag-configuration of a set I', we will get saddle
perturbations on arbitrarily small neighbourhoods of Og that respect the
configuration of I' and are locally dynamically conjugate to the original.
Thus, we will parallel Remark 5.3.6, and complement it to match the flag-
configuration requirements.

We say that a finite set of complex numbers {\;;1 < ¢ < [} have a
common multiple X\, if and only if, for any ¢ € I, there is an integer n; such
that A" = A. An arbitrarily small perturbation of any finite set {\;,1 <1 <
[} turns each of the arguments 6; = arg()\;) to be commensurable to 7 and
each of the logarithms log |A;| to be a nonzero rational number. Hence, an
arbitrarily small perturbation turns that set to have a real common multiple
A > 1, which allows the following remark:

Remark 6.2.4. The isomorphism of R such that their eigenvalues have a
common multiple A > 1, are dense in GL(R, d). The isomorphisms that have
real eigenvalues with a common multiple A > 1 form a dense subset of the
set of isomorphisms with real eigenvalues.

To abridge statements, we may say that a cycle diffeomorphism f has
a common multiple X if X is a common multiple of the eigenvalues of the
isomorphism dfé’g. Let f be a linear cyclic diffeomorphism, let I' C £ be a
finite set. Then we will say that a perturbation g of f firmly respects the
flag-configuration of I" if and only if

e it respects the flag-configuration of T,

e ¢" coincides with f™ on I'*, and ¢~ coincides with f~™ on I'¥, for all
n € N.

Let H be a subbundle of £. In the following, m will denote the canonical
projection from & to £/H, I'/H will denote the projection 7(I") of the set
[, and I'|y the intersection I' N H. We may write I + H for 7 Y(T/H). We
say that a perturbation g of f firmly respects the flag-configuration of I' to
the quotient by H if and only if

e g and f go to the quotient by H
e g/H respects the flag-configuration of I'/H for f/H

e ¢" coincides with f” on I'*+ H, and ¢g~" coincides with f=" on '+ H,
for all n € N.
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Of course, saying that g firmly respects the flag-configuration of I', corre-
sponds to saying that ¢ firmly respects the flag-configuration of I to the
quotient by the trivial subbundle Og. The following fundamental remark
corresponds to Remark 5.3.6:

Remark 6.2.5. Let f be a linear cycle with a simple derivative, and a com-
mon multiple A > 1. Let H be a (maybe trivial) subbundle of Og, and I' be
a finite subset of the generalized eigendirections of f. Let g be a cycle e-
perturbation of f on U that firmly respects the flag-configuration of T (to the
quotient by H). Then, for any positive integer n, the cycle diffeomorphism
gyve = AN F.go N Idg is a cycle e-perturbation of f that firmly respects the
flag-configuration of T (to the quotient by H ).

6.3 Perturbation Propositions: transformations
that respect flag-configuration

We will state in this section two technical propositions that will describe gen-
eral circumstance under which flag-configuration respecting perturbations
are possible. More precisely, given a cyclic perturbation, or a family of
cyclic perturbations of a cyclic diffeomorphism f on £, we will give some
conditions under which there is a small and local cyclic perurbation of f
that preserves some dynamical features of the initial cyclic perturbations
(such as local behaviour around Og, local linearity, homoclinic tangency, ...)
and that respects the flag-configuration of a fixed finite set of points of £.

The first one will be useful to linearize locally or to perturb the deriva-
tive of f, respecting the flag-configuration of a finite set (see proofs of Lem-
mas 6.4.1 and 6.4.2). The proof is postponed until section 6.3.1.

Proposition 6.3.1. Let f be a cyclic diffeomorphism on a bundle £ =
{1,....,p} x RL. Let Uy, be a sequence of neighbourhoods of Og that tends
to O¢ for the Hausdorff topology, and gy a sequence of cyclic perturbations of
f on Uy, that converges to f for the C'-topology. Let T' be a finite subset of
E. Then for any € > 0, for any k great enough, there exists an e-perturbation
g of f on an arbitrarily small neighbourhood of Og, that coincides with g on
a neighbourhood of Og, and that respects the flag-configuration of .

The second proposition will allow, under some conditions, to preserve
the flag-configuration when a perturbation of f is done by induction on the
dimension, lifting a perturbation of a quotient f/H of f by an invariant
bundle, or extending a perturbation of the restriction fg of f. For that, H
needs to be central:

Definition 6.3.2. We say that a cyclic diffecomorphism f of £ = {1, ...,p} x
R? admits a central bundle H if f goes to the quotient by H (in particular H
is invariant), and if the eigenvalues of f|y are strictly weaker than the other
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eigenvalues of f. Precisely, for any eigenvalue A of the quotient cocycle
df?/Hy,, for any eigenvalue p of the restricted cocycle dfﬁq, we have

AL lpl <1 = u] <A (6.3)
AL lpl =1 = | > [Al (6.4)

Here is first an unformal outline of the proposition: if a small perturba-
tion g of a linear cylic diffeomorphism f - both admitting a central bundle
H - firmly respects the flag-configuration of I' by restriction to H and to the
quotient by H, then we can find a small perturbation of f on an arbitrarily
small neighbourhood of O¢, that respects the flag-configuration of the whole
I', and that has locally the same dynamical features as g.

Now we state it precisely, and will prove it in section 6.3.2. We remind
that the restriction I'\z is I' N H and that (€,A) — ne,a was defined in
Lemma 5.2.16.

Proposition 6.3.3. Let € > 0. Let f be a linear cyclic diffeomorphism on &
with a simple deriwative and a common multiple A > 1, I' a finite set in the
union of the generalized eigendirections of f, and g a cyclic n |s|-perturbation
of f. If H 1is a central bundle for both f and g such that

® g firmly respects the flag-configuration of I'\g for fim,

e g firmly respects the flag-configuration of I'\ H for f, to the quotient
by H.

Then for any bounded set B of £, there is a cyclic e-perturbation h on an
arbitrarily small neighbourhood of Og, that respects the flag-configuration of
I', and such that gjz = ~v.h o ~~L.Idg for some v > 0.

In particular, h can be found to be conjugate to g on a bounded neigh-
bourhood of Og, therefore to satisfy dho, = dgo,. Besides, if g has a homo-
clinic tangency at a point x, if we choose B to contain the (bounded) orbit
of = in its interior, h will also admit a homoclinic tangency.

6.3.1 Proof of Proposition 6.3.1

We recall, without a proof, three folklore lemmas. The two first are equiva-
lent.

Lemma 6.3.4. Let x; be a sequence of points in R™ that tends to x. Then
for any neighbourhood U of x, for any € > 0, for k great enough, there exists
an e-perturbation of Id, on U that sends x on x.

Lemma 6.3.5. For any € > 0, there is a ratio r such that, if x and y are
two points in an open set U of R™ with diameter smaller than 1, if we have

dist(z, y)
dist(z, €\ U)

<,
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then there is an e-perturbation of Id, on U that sends x on y.

Lemma 6.3.6. Let g be a sequence of diffeomorphisms that converges to
a diffeomorphism f for the C'-topology. Let P be a periodic saddle point
for f. If the i-dimensional strong stable manifold W*'(f) of f emists, for k
great enough, it also exists for g, and the sequence W*'(gy) C'-converges
to W5U(f) on the compacts. Moreover, for any point x € WS(f), there is
a sequence xj, € W' (gy) such that the sequence sup{dist[f"(z), g} (xx)],n €
N} tends to zero as k goes to co.

Of course, the symmetrical statement holds for the strong unstable man-
ifolds.

We need now some definitions and notations. Let f be a cyclic diffeomor-
phism and gx be a sequence of cyclic diffeomorphisms. Let A = A% U AY be
a finite set in the union of the stable and unstable manifolds of f such that
no point of A is an iterate of another by f. To all k € N, to all x € A, we
associate a point z of €. let Ay = {xg,x € A}. We say that the sequence
(g9x, Ak) approzimates the flag-configuration of (f, A) if and only if

e for all z € A® the sequence (gj(71)), oy converges to the sequence
(f™(x)),, € N as k goes to +o0, that is

sup{dist[f"(z), g (xr)],n € N} = 0
e for all z € A", the sequence (g,;"(xk))n oy converges to the sequence
(f~™(x)),, € N as k goes to +oo, that is

sup{dist[f~"(z), g, "(zx)],n € N} = 0

e For all k € N, the flag-type of zj, for g is less or equal to the flag-type
of x for f.

We will denote by A} (A7) the set of such points x;, € Ay that are in the
stable (unstable) manifold of gi. Notice that Lemma 6.3.6 asserts that if f
is a cyclic diffeomorphism and A is a finite set in A*UAY, if g, is a sequence
of cyclic diffeomorphisms that converges to f in Diff' (M), then there is a
sequence Ay such that (g, Ag) approximates the flag-configuration of (f, A).
We now state the following technical lemma:

Lemma 6.3.7. If a sequence (gx,Ax) approzimates the flag-configuration
of (f,A), then for any neighbourhood W of A = AU f~Y(AY), there is a
sequence Dy of perturbations of Ide on W, that tends to Idg in Diffl(g),
and such that for k great enough gy o @1 respects the flag-configuration of A

for f.
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Proof : With the same notation as previously, we write A = {xy,z € A}.
For g, o @ to respect the flag-configuration of A for f, it suffices that

o & send = on zy, for all z € A® and send g; *(zx) on g; ' (x), for all
T €AY

e it be identity by restriction to the positive iterates Z; = Un,>195 (A7),
the negative iterates Z}) = Up>2g, " (A}), and on a neighbourhood of
O¢.

Indeed, the positive orbit of any z € A® by such g o ®; coincides after the
first iterate with the positive orbit of x; by gr. The diffeomorphism g o @
coincides with gi on a neighbourhood of Og, therefore x has same flag-type
for gy o @y as x for g, which is less or equal to the flag-type of = for f.
Thus g o O respects the flag-configuration of A® for f. The unstable case
is symmetrical.

Now we have to show that given a neighbourhood W of A, and € > 0,
for k£ great enough, we can find an e-perturbation ®; of Ide on W that
satisfies these conditions. By hypothesis, the sequence Z; converges to 7° =
Up>1f"(A®), and the sequence Z}' converges to I" = Up>2f " (A"), for the
Hausdorff topology. Thus the minimun distance from A to 7, = Z; U I}
(that is the infimum of the distances dist(x, y) where x € A and y € Zj) goes
to the minimum distance p from A to Z U O0g. We have p > 0 since we put
ourselves under the conditions given by Remark 6.1.6.

Let W be a union of closed balls W, of radius less than p/2, centered at
x if x € A® and centered at f~1(z) if z € A¥. Tt is disjoint from Og, and for
k great enough, ¥V does not intersect Z; not Z;'. Hence, a perturbation ®;
on W satisfies the second item for k great enough.

The distances dist(z, xy), dist(gk_l(:c), f~1(z)) and dist(gk_l(xk), (=)
go to zero as k goes to co. We can apply Lemma 6.3.4 on each W, and find,
for any k great enough, an e-perturbation of Idg on W that sends x on zy,
and g, '(zx) on g; (). This ends the proof of the lemma. O

Proof of Proposition 6.3.1 : Fix f, I' and the sequences U and g
as in the hypothesis of the lemma. By Remark 6.1.6, we assume that I' =
I'* UT", and that there is no point of I' that is an iterate of another by f.
Fix € > 0 and an open neighbourhood U of Og. For some [ € N, the set
A = fYT*) U fI=YTY) is a subset of U. Define A = fY(T'*) U f~HT%).

Let W be a compact neighbourhood of A in ¢/ that does not intersect Og.
By Lemma 6.3.6, there is a sequence Ay such that (gg, Ax) approximates
the flag-configuration of (f, A). We apply Lemma 6.3.7 and find a sequence
®,, of cyclic pertubations of Idg on W that tends to Idg in Diff’(£) and
such that, for k great enough, g o @5 respects the flag-configuration of A
for f. For any k € N, g; o @, is a cyclic diffeomorphism that coincides with
g outside W, therefore coincides with f outside W U Uy.
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From Lemma 5.2.8, the sequence g o ®, converges to f for the C'-
topology. Therefore, for k great enough, gr o @ is a cyclic e-perturbation
of f on W U U, that respects the flag-configuration of A for f. Choose W
so that it does not intersect the sets fi(I'*) for i = 0,...,1 — 1, and f/(I'%)
for j = —I,...,0 and choose k great enough so that U does not intersect
these same sets. Then, for k great enough, g = gp o @ respects the flag-
configuration of I' for f. We found for k£ great enough an e-perturbation g of
f on U that respects the flag-configuration of f, and that coincides with g
on a neighbourhood of Og (since the compact set YW does not intersect Og).
This ends the proof of Proposition 6.3.1. O

6.3.2 Proof of Proposition 6.3.3

Lemma 6.3.8. Let H be a central bundle for a cyclic diffeomorphism f of
E. If the i-dimensional strong stable manifold W**(f/H) of f/H exists, it
also exists for f and the canonical projection w: € — E/H induces a diffeo-
morphism from WU(f) on WSi(f/H). If the i-dimensional strong unstable
manifold W' (f/H) of f/H ezists, then it exists for f and 7 induces a
diffeomorphism from W% (f) on Wi (f/H).

Proof : Suppose that the i-dimensional strong stable manifold W(f/H)
of f/H exists. Then we write the sequence Ap, ..., \p of the eigenvalues of
f/H, counted with multiplicity, and ordered by increasing moduli (of course
k > ). We have |\;| < 1, and if & > 4, there is a gap between the i-th and the
(141)-th eigenvalue, that is, [A\;| < |Ai+1]|. Since H is central, the eigenvalues
of f/H are strictly stronger than those of J\m, therefore the i-th eigenvalue
of f is also A\; and there is a gap between it and the next eigenvalue. Hence
f has an i-dimensional strong stable manifold.

For any © € W*¥(f), and for any A > |)\;|, we have ||f"(z)| = o(A").
Since 7 is a projection, || f/H" omw(x)| = |7 o f"(z)|| = o(A\"™). Thus f/H (x)
is in the i-dimensional strong stable manifold of f/H. The bundle H is
locally transverse to W*i(f) at Og, since the eigenvalues of fim are strictly
weaker than A;. Precisely, we find a neighbourhood U of O¢ in the local
W*(f), at which the fibres of the form z + H meet W*%(f) transversely.
Since for all n € N, f~" sends the fibres x + H on others, and W**(f) on
itself, the fibres  + H meet W*%(f) transversely at the preimages f~"(U).
The union of these is W*%(f). Hence the projection 7: & — £/H defines an
immersion ; from W*%(f) on its image.

We are left to show that that immersion is a bijection from W*i(f) to
W$i(f/H). Since m; is an immersion and its image contains Og, since W*¢(f)
and W**(f/H) have same dimension, a neighbourhood U of Og in W*¢(f)
is sent bijectively by 7; on a neighbourhood V of Og in W*¢(f/H). We may
choose U and V such that f(U) C U and f/H(V) C V. Note that, since the
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following graph commutes

£ £ (6.5)
E/l;I f 5};

we have m; = f/H ™ om; o f*. Let my be the restriction of m; to U. It
is a bijection. Therefore, m; r—n@ = f/H ™™ om0 f is a bijection from
f~™U) on f/H~™(V), and coincides with m;. As the sequences f~"(U) and
f/H~™(V) increase to Wi(f) and W*i(f/H), respectively, we get that 7;
is a bijection from W*¢(f) on W*(f/H). Consequently, 7 induces by re-
striction a diffeomorphism from W*i(f) on W*¢(f/H). The strong unstable
case is symmetrical. O

Corollary 6.3.9. Let H be a central bundle for o linear cyclic diffeomor-
phism f of & with a simple derivative. Let x € £\ H be in a generalized
eigendirection of f, and let (sy,uy) be its flag-type for f. Then

e cither x is in the stable manifold of f and s, # +oo. Then f/H has an
sz-dimensional strong stable manifold, and the s,-dimensional strong
stable manifold of f is sent on it by m diffeomorphically.

e or x is in the unstable manifold of f and u, # +o00. Then f/H has a
ug-dimensional strong stable manifold, and the u,-dimensional strong
unstable manifold of f is sent on it by ™ diffeomorphically.

Proof : Let z € £\ H be in a generalized eigendirection of f and let A, \;
be the corresponding eigenvalue(s) (A might be real). Since f has simple
derivative, |A\y| # 1, therefore x is either in the stable manifold or in the
unstable. Suppose it is in the stable (replace f by f~! for the other case).
We recall that s, was defined to be co when z is not in any strong stable
manifold. Then s, # oo. Besides, as x ¢ H, x is not in Og and s, > 0.
Then we can write the sequence of the s, first eigenvalues Aj, ..., A\, of
f, counted with multiplicity, and ordered by increasing moduli. Notice that
As, = Ag OT Mz. Since H is central and does not contain z, the eigenvalues
of H are strictly weaker than A\s;, . Therefore, the sequence Aj, ..., As, is also
the sequence of the s, first eigenvalues of f/H counted with multiplicity.
This shows that f/H admits an s,-dimensional strong stable manifold. We
conclude with Lemma 6.3.8. O

We are now ready to prove Proposition 6.3.3. We put ourselves under
its hypothesis and notations, we define A =T'\ H, A = (I'\ H) N W*(f),
A = (T\ H)NnWH(f), and A = AU f~1(A%). In the following, we denote
Me,|f| Simply by n. For all k € N, we define gy, = A F.go N Idg.



Thése de doctorat 125

We will show the proposition in three steps: we will first show that there
is a sequence Ay of finite sets such that (gr, Ax) approximates the flag-
configuration of (f,A). By Lemma 6.3.7, for any neighbourhood W of A,
this will provide a sequence @, of cyclic pertubations of I'dg on W that tends
to Idg in Diff'(£) and such that, for k great enough, gp = gp o @}, firmly
respects the flag-configuration of A for f. Then we will conjugate again g
by a homothety A.Idg, to obtain a perturbation h on an arbitrarily small
neighbourhood of Og. Choosing k£ and ¢ great enough, such an A will satisfy
the conclusions of the proposition.

Claim 10. There is a sequence Ay of finite sets such that (g, Ax) approxi-
mates the flag-configuration of (f,A).

Proof : Let z € A® then it is not in H, and by assumption it is in a
generalized eigendirection of f. Let (s;,u,) be the flag type of z. Since
x € W5(f)\ Og, we have s, > 0 and u, = 0. From Corollary 6.3.9, W% ( f)
projects diffeomorphically by = on W**#(f/H). The flag type of z/H for
f/H is smaller than (s,,0). Since g/H firmly respects the flag-configuration
of I'/H for f/H, by Remark 6.2.5, /H is in the j-dimensional strong stable
manifold of gr/H = A~".g/HN*.Idgp, for some 0 < j < s,.

By Lemma 6.3.8, there exists a unique point zg in the j-dimensional
strong stable manifold of g9 = g such that xg/H = z/H. In particular,
the flag-type of xy for gy is less or equal to the flag-type of = for f. We
recall that A is a multiple of the eigenvalue of x, thus we find n, such that
7 (x) = Ax. We let

—k.ng

T = gy (A F.z0).

The flag-type of zq for gg is the flag type of A=*.zq for gy, therefore it is the
flag-type of z; = g,;k'"”()\*k.xo) for gs.

There is a vector v € H such that xgp = x +v. Since g firmly respects the
flag-configuration of ', to the quotient by H, we have ¢~ (o) = f~"(xo) =
f"(x)+ f~™(v). Since z is in a stable eigendirection of f, and v is a central

bundle for f, the ratio ”;::((:3” = ||g—n|(|;;(i);(£)—”"(x)|| goes to zero as n goes to

+00. Since the family {g*(z0) — f*(z0)}ren is bounded, and || f~"(z)|| goes
to co, we obtain that

sup;> .y lg' (o) — ()]
Lf= (@)l

goes to zero as n tends to +oo. Then

1 _rl
T = o ! (ao) < e

goes to zero as k goes to +oo. Notice that the set {\7F.f!(z),1 > —k.n,} is
0 g

the set of the positive iterates of z by f. Besides A™".¢' () = gL (A™".z0),
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therefore {A7*.¢!(xg),l > —k.n,} is the set of the positive iterates of x; by
gr- Thus we just have shown that the sequence (gx, {zx}) approximates the
flag-configuration of (f,{z}).

We do this for any z € A% and symmetrically for any x € A%: we
found a sequence Ay of finite sets such that (gx, Ax) approximates the flag-
configuration of (f,A). This ends the proof of the claim. O

Claim 11. For any bounded set B, for any neighbourhood W of A, we can
build an 1 s-perturbation g of f that firmly respects the flag-configuration
of I for f, and such that some restriction g"B, of ¢ is conjugate to 95 by a
homothety.

Proof : Let B be a bounded set in £. Let W be a closed neighourhood
of A that does not intersect H, nor any f~"(A®)+ H, for n > 1, nor any
f"(A") + H, for n > 0.

From the previous claim, we find a sequence Ay of sets such that the
sequence (gr,Ay) approximates the flag-configuration of (f,A). Apply
Lemma 6.3.7, and obtain a sequence @, of cyclic perturbations of I'dg on W,
that tends to Idg in Diff'(£), and such that for k great enough g, = gi o Py
respects the flag-configuration of A for f. It coincides with g on B’, thus
by restriction to B', g; is conjugate to gz by a homothety of £. We write
that ®;, is a yp-perturbation of Idg, where v, — 0.

We recall that g is an 7, |g-perturbation of f, therefore it is an -
perturbation of f for some 0 < 7 < eta, ;. From Lemma 5.2.7, g; is a
"+ vi(|f] + €)]-perturbation of f. Thus for k great enough, it is an 7. |-
perturbation of f that respects the flag-configuration of A for f. Since W is
closed, and does not intersect Og, for k great enough, B’ = A™%(B) does not
intersect ¥V and g) = gy on B’

There is an integer k; € N such that all the properties we just stated
are satisfied. That is, g,’Cl is an 7| s-perturbation of f that respects the
flag-configuration of A for f, and 921\8’ = gr,|B 18 conjugate to g|z by the
homothety \¥1.Idg.

Since g firmly respects the flag-configuration of A for f, to the quotient
by H, g, also does (Remark 6.2.5), and since W does not intersect any
f7"(A®%) + H for n > 1, nor any f"(A") + H for n > 0, g;, also firmly
respects the flag-configuration of A for f. For W does not intersect H,
and g firmly respects the flag-configuration of I'\f, gg, and gfﬂ also firmly
respects the flag-configuration of I'\y for f. Take ¢’ = g; : we proved the
claim. O

Proof of Proposition 6.3.3 : Let ¢’ be an 7e,|f-Perturbation of f as we
found in the previous claim. Let I/ be an open neighbourhood of Og that
contains the positive orbit of I'*, the negative one of I'* and B’. Then by
Lemma 5.2.16, there is a cylic e-perturbation h of f that coincides with ¢’
on U, and with f outside a bounded set V. Precisely h writes as ¢.¢' + 1.f
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where ¢ + 1 is a partition unit on £. Since h = ¢ on U, h respects the
flag-configuration of I" for ¢’, thus for f, and the restriction g = g|’ w of h
is conjugate to gz by a homothety.

Since h = ¢.¢' +1.f and ¢, f both firmly respect the flag-configuration
of I for f,the diffeomorphism h also firmly repects the flag-configuration of
I’ for f. Thus we can conjugate h by another homothety, and obtain a cyclic
e-perturbation on an arbitrarily small neighbourhood of Og¢, that respects the
flag-configuration of I', and such that it is conjugate to gz by a homothety of
&, by restriction to some bounded set. This ends the proof of the proposition.
O

6.4 Reduction Lemmas and Proposition

In this section, we will show the Reduction Proposition which will allow
to reduce the proof of Theorem 6.1.5 to the case of a linear saddle whose
eigenvalues are real, have pairwise distinct moduli, a common multiple, and
are huge (defined in this section). Moreover, we will be allowed to suppose
that the set I' is in the union of the eigendirections of the linear saddle.
The proof of that proposition (6.4.5) will be split into four technical lemmas:
Simplification, Linearization, Shifting to Real Eigenvalues, and Getting Huge
Eigenvalues. The proofs of the three last lemmas being done in the three
next sections. We first state a lemma that allows to reduce the proof to the
case of cyclic diffeomorphisms with simple derivatives.

Lemma 6.4.1 (Simplification). Let f be a cycle diffeomorphism on € =
{1,...,p} X R? and T a finite subset, then there exists an arbitrarily small
perturbation of f on an arbitrarily small neighbourhood of Og¢ that has a
simple derivative, with a common multiple A > 1, and that respects the flag-
configuration of I'. Moreover, if f has real eigenvalues, then the perturbation
can be chosen to have also real eigenvalues.

Proof : By Remark 6.2.4, there is a sequence Ay, of linear cocycles on T'E,
that converges to the derivative of f on Og, and such that for all k, A} is
simple and its eigenvalues admit a common multiple \;. We write that Ay
is ny-close to the derivative dfy,, where 7, is a sequence that tends to zero.
Then, by Franks’ Lemma 5.2.13, there is a sequence U}, of neighbourhoods
of O¢ that tends to Og, a sequence € that tends to zero, and a sequence g of
saddle diffeomorphisms, such that for any k, g is a saddle eg-perturbation
of f on Ug, and its derivative along Og¢ is Aj. Therefore, all the hypothesis
of Proposition 6.3.1 are satisfied.

We apply it: for any € > 0, there is a saddle local e-perturbation g of f on
an arbitrarily small neighbourhood of Og that respects the flag-configuration
of I' and that has coincides with some g; on a neighbourhood of Og¢, hence
it has a simple derivative. O
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We then state a version of linearization Lemma 5.2.12 that turns a cyclic
diffeomorphism into a locally linear one, by a perturbation that respects the
flag-configuration of a finite set I'. We remind the reader of Remark 6.1.6,
and suppose that I' = I'* U I'® is made of points of the stable and unsta-
ble manifolds. Then it can be required that the generalized eigenmanifolds
of the perturbated cyclic diffeomorphism contain I'. It will be proved in
Section 6.4.1.

Lemma 6.4.2 (Linearization). Let f be a cyclic diffeomorphism on € =
{1,...,p} x R? that has a simple derivative. Then, for all € > 0, for any open
neighbourhood U of the zero section Og = {1,...,p} x {0}, and for any finite
set ' =T"UT®, there exists a cyclic local e-perturbation g of f on U that is
locally linear and such that:

e the deriwative of g equals that of f along the zero bundle Og,
e it respects the flag-configuration of T,
e cach point of I' is in a generalized eigenmanifold of g.

The next lemma is a key to reduce to cyclic diffeomorphisms whose
derivative have real eigenvalues. Provided the period is great enough, one
finds a perturbation of a linear saddle that turns the eigenvalues to be real,
and that respects the flag-configuration of a finite set.

Lemma 6.4.3 (Shifting to Real Eigenvalues). Fiz real numbers € > 0,
A >0, and an integer d. There exists an integer P such that, for any integer
p > P, the following holds:

e for any linear cyclic diffeomorphism f on the bundle € = {1, ...,p} xR%,
with simple deriwative, bounded by A, and such that its eigenvalues
admit a common multiple X > 1,

e for any finite set I' of points in the generalized eigenmanifolds of f,

we can find a cyclic e-perturbation g of f on an arbitrarily small neigh-
bourhood of Og, that has real eigenvalues, that preserves the moduli of the
eigenvalues, and respects the flag-configuration of T".

When we apply this lemma, we will not use the fact that the perturbation
g of f preserves the moduli of the eigenvalues, therefore such a slightly
weaker statement would be sufficient. However, we prove it by induction
on the dimension d of the bundle £, and moduli preservation is needed
as an induction hypothesis. The proof of Lemma 6.4.3 will be tackled in
section 6.4.2.

Finally, we state a lemma that allows to restrict our study to saddle
diffeomorphisms whose derivatives have huge eigenvalues, that is, any eigen-
value in modulus is either striclty less than 1/2 or strictly greater than 2.
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Lemma 6.4.4 (Getting Huge Eigenvalues). Fiz real numbers ¢ > 0 and
A >0, and an integer d. There exists an integer P such that, for any integer
p > P, the following holds:

o for any linear saddle diffeomorphism f on the bundle € = {1,...,p} X
R?, with simple derivative, bounded by A, with real eigenvalues that
admit a common multiple X > 1,

e for any finite set I' of points in the generalized eigenspaces of f,

we can find a saddle e-perturbation of f on an arbitrarily small neighbourhood
of Og¢, that has real strong eigenvalues, and respects the flag-configuration of
.

We will show it in section 6.4.3. These three lemmas may be synthetized
into a single result:

Proposition 6.4.5 (Reduction Proposition). Fiz e > 0 and A > 0 and
an integer d > 0. Then there is an integer P > 0 such that, for any p > P,
the following holds:

if a saddle diffeomorphism f on €& = {1,...,p} x R? is bounded by A,
then for any finite set I' in the union of the stable and unstable manifolds of
f, there exists a locally linear saddle e-perturbation g of f on an arbitrarily
small neighbourhood of Og,

e that has real huge eigenvalues with a common multiple A > 1 and
pairwise distinct moduli,

e that respects the flag-configuration of I', in such a way that I' is con-
tained in the generalized eigenmanifolds of g.

This proposition allows to restrict the proof of Theorem 6.1.5 to very
particular cases, namely, linear saddles that match the two items of the
conclusion. We do not give a precise proof, but it can be summarized this
way:

first apply Lemma 6.4.1 to obtain a simple derivative with a common
multiple. Then, linearize with Lemma 6.4.2, and switch to real eigenvalues
by Lemma 6.4.3. Use once more Lemma 6.4.2 to linearize locally thus being
able to use Lemma 6.4.4 to get real huge eigenvalues. A priori, the derivative
is not anymore simple: apply again Lemma 6.4.1 to obtain a simple derivative
with a common multiple; thus the eigenvalues are real, with pairwise distinct
moduli. This last perturbation can be chosen arbitrarily small, so that the
eigenvalues are still huge. Finally we apply Lemma 6.4.2 a third and last
time to obtain a locally linear saddle, and to push T' into the generalized
eigendirections.

Of course, all the seven successive perturbations respect the flag-
configuration of T'.
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6.4.1 Proof of the Linearization Lemma

We may first show the following partial result:

Lemma 6.4.6. Let f be a cyclic diffeomorphism on € = {1,...,p} x RZ
Then, for all € > 0, for any open neighbourhood U of the zero section Og =
{1,...,;p} x {0}, and for any finite set I' =T UT*, there exists a cyclic local
e-perturbation g of f on U that is locally linear and such that:

e the derivative of g equals that of f along the zero bundle O¢,
e it respects the flag-configuration of T'.

Proof : By Lemma 5.2.12, we can find a sequence ¢, > 0 tending to zero,
a sequence U of neighbourhoods of O¢ tending to Og, and for any k, a
saddle local eg-perturbation g of f on U that is locally linear, and whose
derivative along Og coincides with that of f. Since the strong stable and
unstable manifolds vary continuously on compact sets by C! perturbation,
those of g; converge to those of f on the compacts. Hence we can apply
Proposition 6.3.1 to find, for all € > 0, for all neighbourhood U of Og, an
e-perturbation g of f on U, that coincides with some g; on a neighbourhood
of O¢, and that respects the flag-configuration of I'. Hence g satisfies the two
items of the conclusion of the lemma. O

We now are ready for the proof of the Linearization Lemma:

Proof of Lemma 6.4.2 : We apply Lemma 6.4.6 to find an arbitrarily
small, arbitrarily local, cyclic perturbation g of f that has same derivative,
that is locally linear, and respects the flag-configuration of I". Let & =
E,, @ ...® E), be the good splitting for the locally linear g.

Fix now = € I'"" \ O¢ and let (us,s;) be its flag-type, that is x is in
the s,-dimensional strong stable manifold, with s, > 0. Since g is locally
linear, that strong stable manifold coincides locally with Ey, @ ... @ Ej,,
for some 1 < ¢ < [. If ¢ = 1, it coincides locally with the generalized
eigendirection E),, thus with the generalized eigenmanifold W), . Therefore
the s, -dimensional strong stable manifold is W), by definition, and x is
already in a generalized eigenmanifold.

If that manifold is tangent at Og to the bundle E}, , it is in the generalized
eigenmanifold W),. Thus z is in a generalized eigenmanifold. If not, the da-
dimensional strong stable manifold is tangent at Og to Ey, ©...® E), ® E)
for some 7 > 1.

i+17

We will associate to x a point z’ in the following way: Proposition 6.2.2
provides a strong stable foliation F on the s,-dimensional strong stable man-
ifold, such that the leaf that goes through x, intersects the generalized eigen-
manifold W, , at a unique point ’. Notice that z’ is not in Og, otherwise
x would be in a stronger stable manifold than the s,-dimensional, which
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contradicts that (uy,s,) is the flag-type of . Still from the proposition, we
have

dist(g” (), 9" (') = O(A|") (6.6)
dist(0g, ¢"(2')) = C.Pwa]", (6.7)

for some constant C', and all n great enough. For all £ < 0, We denote by x,,
(resp. x},) the n-th iterate of  (resp. 2’) by g. We may perturb slightly g,
preserving the derivative of g along O¢ and respecting the flag-configuration
of I, to get that if x # y are two points of T', then, for all integers n,m > 0,
we have x], # y/ .

Let A* = 0g U{ap, 2 € T',n € N} U{a],,z € T',n € N}. We define
symmetrically the set A", and call A the union of these two sets. Then,
thanks to equalities (6.6) and (6.7), for any = € T, the ratio

dist(zp, x,)
dist(z!, A\ {zp, 2l })

tends to zero as n tends to infinity. Define A,, = Uzer{zy,,z),}. Then, for
n great enough, we can apply Lemma 6.3.5 to each pair {z,, ] }. Thus we
find a small perturbation ® of Idg on a small neighbourhood of A,, such
that

e for all z € I, for all m # n, we have ®(z,,) = 2}, ®(z) = T,

D(a7,) = Ty,
e for all z € T, for all m # n, we have ®(x)) = z,, ®(p) = Tm,
D(a7,) = T,

e the diffeomorphism @ is equal to the identity map on a small neigh-
bourhood of O¢.

In other words, ® pushes the points of I in the generalized eigenmanifolds of
g. The composition g o ® is a locally linear small perturbation of g that has
same derivative as g, the points of I' are in its generalized eigenmanifolds,
and it respects the flag-configuration of ¢ (this last point comes from the
fact that x, and ], have same flag-type for g).

Hence g o @ is a small perturbation of f that satisfies the three items of
the conclusions of Lemma 6.4.2. This concludes the proof of the lemma. O

6.4.2 Shifting to real eigenvalues: proof of Lemma 6.4.3

We will prove it by induction on the dimension d of £. We start at dimension
d = 2. We first reformulate |10, lemme 6.6]. In the following Rg, denotes
the rotation of angle 3; > 0 on the fibre {i} x R? of &, = {1,...,p} x R%
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Lemma 6.4.7 (Bonatti, Crovisier). For any ¢ > 0, there is an integer P,
such that for any p > P, and any linear cocycle f of £,, there is a sequence
B = B,.... Bp with —e < B; < €, that satisfies the following:

If we denote by ®g the diffeomorphism that coincides with Rg, on any
fibre {i} x R2, then the linear cyclic diffeomorphism f o ®j5 has real eigen-
values.

In particular, if f has not real eigenvalues, let to € [0, 1] be the smallest
such that fo®,, g has real eigenvalues, where tof is the sequence to31, ..., 10 3p.
Then f o ®; 3 has a real double eigenvalue, and f o ®,3, for any t € [0,to]
has complex eigenvalues; the moduli of these eigenvalues are equal to the
modulus of the eigenvalues of f, by preservation of the determinant. Notice
finally that the path of cocycles defined by (f o ®45)ic0,4,) has radius strictly
less than ¢|f| < e.A.

Proof of Lemma 6.4.3 in dimension 2 : Let ¢ = ¢/A. In dimension d =
2, if the eigenvalues are not real, the linear cyclic diffeomorphism is either a
sink or a source. We assume it is a sink, the source case is symmetrical. There
is only one generalized eigenmanifold, the 2-dimensional unstable manifold:
the flag-type of each point of I' is 2. By Lemma 6.4.7 and the comment that
follows, for A fixed, if p is great enough, we find a path A;c[p 1) of length
£.A = € in the set of cocycles above Og such that Ay = dfy, and A; has a
real double eigenvalue. Finally, for all ¢ € [0,1] the eigenvalues of A; have
same modulus as the eigenvalues of Ay, that is, strictly less than 1.

Thus, the A; are all sinks. We can apply Proposition 5.2.14, and obtain
a cyclic e-perturbation of f that has a real double eigenvalue, with the same
modulus as the initial complex eigenvalues, and such that its stable manifold
is the whole £. The flag-type of each point of I is either 1 or 2: the flag-
configuration is respected. o

Now d > 3 and we assume that Lemma 6.4.3 is shown for any dimension
d <d.

Claim 12. For all e > 0, A > 0, there is an integer P such that, for any
integer p > P,

e for any linear cyclic diffeomorphism f on the bundle € = {1, ...,p} xR?,
with simple deriwative, bounded by A, and such that its eigenvalues
admit a common multiple X > 1,

e for any finite set I of points in the generalized eigenspaces of f,

we can find an e-perturbation g of f on an arbitrarily small neighbourhood of
Og that respects the flag-configuration of T, that preserves the one (if real) or
two (if complex) smallest eigenvalues in modulus, and that turns the other
etgenvalues to be real, preserving their moduli.
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Proof : Let € > 0 and A > 0. Let = ne 4 as defined for Lemma 5.2.16
and let v, 4 be as defined for Corollary 5.2.18. From the induction hy-
pothesis, there exists an integer P such that, for any integers p > P and
0 < d < d, for any linear cyclic diffeomorphism f’ on & = {1,...,p} x R
with simple derivative and bounded by A, for any finite set I of points in
the generalized eigendirections of f’, there is a 1, s-perturbation ¢’ of f’ on
an arbitrarily small neighbourhood of Ogs, that has real eigenvalues, that
preserves the moduli of the eigenvalues on the orbit Og/, and that respects
the flag-configuration of I".

Let f be a linear cyclic diffeomorphism on £ = {1, ..., p} x R?, with simple
derivative, bounded by A, and such that its eigenvalues admit a common
multiple A > 1. Let £ = E), @ ... @ E), be the good splitting associated to
the simple linear automorphism f and let I' be a finite set in Fy, U...U E},.
Let H be the invariant subbundle E), U ... U Ej,.

Applying the induction hypothesis, we find a local v, a-perturbation g’ of
Jim on an arbitrarily small neighbourhood V of 0g, that preserves the moduli
of the eigenvalues along the periodic orbit Of, that has all eigenvalues real,
and that respects the flag-configuration of I'|;. Choosing ) small enough,
we may suppose that ¢’ firmly respects the flag-configuration of Ly

By definition, since |f| < A, we have v, 4 < vys; then by Corol-
lary 5.2.18 there exists a local n-perturbation g of f that extends ¢, and such
that g/H = f/H. Thus, the perturbation g of f preserves the moduli of the
eigenvalues, and turns all the eigenvalues to be real, but possibly the two
smallest in modulus. Since g is a local perturbation of f and g/H = f/H
respects the flag-configuration of I'/H for f/H, for some integer k great
enough, g, = A7%.g o A¥.1dg is an (n = na.)-perturbation of f that firmly
respects the flag-configuration of I'\ H to the quotient by H. We recall that
since |f| < A, we have 1. a4 < n |5 < €.

To avoid double indexing, let g = g, and g’ = gr . Although we know
that g respects the flag-configuration of I' N H for f, it does a priori not
respect that of I' \ H. Two cases may occur:

e Either |A\;| > 1. Then any = € £\ H is in the d-dimensional unstable
manifold (and in no other strong unstable manifold), therefore has flag-
type (0,d) for f. Its flag-type can only be decreased by gi. Hence gi
respects the flag-configuration of I" for f, which concludes the study of
this case.

e Or |[\| < 1. Then H is a central bundle for f (see Definition 6.3.2)
and for g. Trivially, gj}q‘ a = [fig firmly respects the flag-configuration
of I''y for fiy. Finally, by assumption, I' is in the union of the gen-
eralized eigendirections of f. All the hypothesis of Proposition 6.3.3
are satisfied: for any bounded neighbourhood B of Og¢, there is an e-
perturbation h of f on an arbitrarily small neighbourhood of O¢, that
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respects the flag-configuration of I', and is locally conjugate to giz by
an homothety v.Idg. In particular dho, = dgr,, = dgo,, thus the per-
turbation h of f preserves the moduli of the eigenvalues counted with
multiplicity, and turns all the eigenvalues to be real, but possibly the
two smallest in modulus.

Hence we are done for both cases. This ends the proof of the claim. O

1

Changing f into f~' and ¢ into g~', we get of course the symmetrical

claim:

Claim 13. For alle > 0 and A > 0, there is an integer P such that, for any
integer p > P,

e for any linear cyclic diffeomorphism f on a bundle £ = {1,...,p} x RY,
with simple derivative, bounded by A, and such that its eigenvalues
admit a common multiple A > 1,

e for any finite set I' of points in the generalized eigenspaces of f,

we can find a e-perturbation g of f on an arbitrarily small neighbourhood of
Og that respects the flag-configuration of T, that preserves the one (if real)
or two (if complex) greatest eigenvalues in modulus, and that turns the other
eigenvalues to be real preserving their moduli.

We show shortly how, applying these two claims one after the other, we
get all eigenvalues real:
Proof of Lemma 6.4.3 : Apply Claim 12 to perturb f into g. Notice
that if A > 1 is a common multiple for the eigenvalues of f, it is a multiple
of the one or two smallest eigenvalues of g (which are preserved). Since g
has preserved the moduli of the other eigenvalues, they all are of the form
+|u| where p is an eigenvalue of f. We have then u* = A\ = |u|¥, for some
k € Z, since )\ is a real positive number. Thus A is again a common multiple
for the eigenvalues of g. We apply Lemma 6.4.2 to linearize locally and to
push T' in the generalized eigenspaces, while preserving the derivative. This
cyclic perturbation coincides locally with a linear cyclic diffeomorphism to
which we can apply Claim 13, and turn the possibly remaining two complex
eigenvalues into real ones. O

6.4.3 Getting huge eigenvalues: proof of Lemma 6.4.4

Definition 6.4.8. We say that an eigenvalue X of a saddle cycle f, is a huge
stable eigenvalue if it has modulus less than 1/2. We say that it is a huge
unstable eigenvalue if it has modulus greater than 2.

We naturally can split the proof of Lemma, 6.4.4, first obtaining huge sta-
ble eigenvalues with a first perturbation, and then huge unstable eigenvalues
with a second one.
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Lemma 6.4.9. Fiz real numbers e >0 and A > 0, and an integer d. There
exists an integer P such that, for any integer p > P, the following holds:

e for any linear cyclic diffeomorphism f on the bundle & = {1, ...,p} xR?,
bounded by A, with simple derivative and real eigenvalues that admit a
common multiple A > 1,

e for any finite set I' of points in the eigendirections of f,

we can find a cyclic e-perturbation of f on an arbitrarily small neighbourhood
of Og, that has real huge unstable eigenvalues, preserves the stable eigenval-
ues, and respects the flag-configuration of I

We have of course the symmetrical lemma swapping "stable" and "un-
stable", which is a straightforward consequence of Lemma 6.4.9, changing
f into f~'. Lemma 6.4.4 is easily obtained applying successively these two
lemmas.

We are left to prove Proposition 6.4.9: in short terms, we do a pertur-
bation on the quotient f/F of f by its stable bundle F', that respects the
flag-configuration of I'/F' and turns the (unstable) eigenvalues to be huge.
Then we lift it into a cyclic diffeomorphism of £ that does not a priori re-
spect the flag-configuration of I'. We finally use Proposition 6.3.3 to obtain
a cyclic perturbation of f that respects the flag-configuration of I'; that has
the same stable eigenvalues as f and has huge unstable eigenvalues.

Let us first give without a proof a particular case of Franks’ Lemma:

Lemma 6.4.10. For all v > 0, A > 0, there exists k > 1 such that, for
any bundle F of the form {1,....p} x R, for any linear saddle f on F that
1s bounded by A, there exists a local v-perturbation of f that coincides with
fx=f o k.Ide on a neighbourhood of O and writes as ®.f + V.f. where
1=®+ VU is a unit partition.

Proof of Lemma 6.4.9 : Let ¢ >0, A > 0, and fix an integer d > 0. Let

v > 0 such that 24%v < min(n, 4, a/A). Choose x > 1 corresponding to the

In(2)
In(k)”? d

let p > P. Let f be a linear cylic diffeomorphism on & = {1,...,p} x R%
bounded by A, and I" a finite set that satisfy the assumptions of Lemma 6.4.9.
Let £ = F @ G be the hyperbolic splitting for f (it exists, as f has a simple
derivative). The cyclic diffeomorphism f/F on £/F has eigenvalues with
moduli greater than 1, and is bounded by A.

From Lemma 6.4.10, we get a local v-perturbation ¢’ of f/F on a bounded
set U, that writes as ®.f/F + W.f/F o k.Idg/p, and that coincides with
f/F o k.Idg/p on a neighbourhood of Og,p. Clearly, ¢’ has same strong
unstable manifolds as f/F and its derivative has huge eigenvalues, since
kP > 2. Thus ¢’ respects the flag-configuration of I'/G. Thus, for all § > 1,
gy = 0~ 1qg 00.1dg /r has same strong unstable manifolds as f/F, and respects

previous lemma, with respect to v and A. Choose an integer P >
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the flag-configuration of I'/F for f/F. Since n? > 2, the eigenvalues of ¢,
therefore those of gj, have moduli all greater than 2.

For ¢’ is a local perturbation of f/H, we can choose § > 1 great, so that
for all n € N we have g = f/H" on I'*/H and g, " = f/H " on I'*/H.
Notice that v < a/A < a/|f|. Then by Lemma 5.2.19, there exists a cyclic
2| f|?v-perturbation g of f that is a lift of gj. By Remark 5.2.20, g can be
chosen such that for all n € N we have ¢g" = f™ by restriction to I'* + H,
g~ " = 7" by restriction to I'* + H, and gz = fjg. Thus g firmly respects
the flag-configuration of I' for f to the quotient by H, and g g trivially firmly
respects the flag-configuration of I for fg.

We recall that v was chosen so that 2|f|?v < 24%v < Ne,s) and that the
bundle F'is a central bundle for f. Hence we can apply Proposition 6.3.3
and find an e-perturbation of f on an arbitrarily small neighbourhood of Og,
that respects the flag-configuration of I', and that is locally conjugate to g
by a homothety. Such a perturbation has strong unstable eigenvalues, and
has same stable eigenvalues as f, since g = f|p. This ends the proof of the
lemma. O

6.5 Proof of Theorem 6.1.5

The first idea of the author to prove Theorem 6.1.5 was to reduce it to a theo-
rem that would be a counterpart of Proposition 5.3.4, with flag-configuration
preservation. This would be

Fiz e >0, A > 0 and an integer d > 0. Then there is an integer Ng > 0
such that, for any linear saddle diffeomorphism f on € = {1,...,p} x R,

e that is bounded by A,
e that has real eigenvalues with pairwise distinct moduls,
e that is not Ny-dominated,

For any finite set I' of points of the eigendirections of f, there exists a saddle
e-perturbation g of f on an arbitrarily small neighbourhood of Og, that has a
homoclinic tangency and that respects the flag-configuration of T".

However, in the proof of Proposition 5.3.4, Remark 5.3.6 is fundamental:
we need conjugacy by A.Id to respect flag-configuration, which is usually
not the case. This works when A is a common multiple of the eigenvalues
of f. Besides, adapting step by step the proof of Proposition 5.3.4, we have
to make sure that we can extend, or lift the perturbation (see section 5.3.2),
respecting the flag-configuration of I'. To achieve the retriction case, we can
state a useful
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Remark 6.5.1. Let f be a linear saddle on & = F& G, where F is the stable
bundle and G the unstable one. Let ' = F} ® H be a dominated splitting for
fip- If ¢’ is a saddle e-perturbation of the restriction f" of f to ' = H &G
and respects the flag-configuration of a finite set ' C E’, then any saddle
diffeomorphism g that extends ¢’ to € respects the flag-configuration of T for

f-

However, it turned out in the quotient case, that the perturbation made
on the quotient f/H, might change the order of the eigenvalues of f in such a
way that the flag-type of some points of I' would be irrecoverably increased.
Indeed, our induction proof still relies on Pujals and Sambarino’s one on
dimension 2; the perturbation they do does not preserve the moduli of the
eigenvalues. We will show in section 6.5.1 that the proof of Pujals and Sam-
barino can be done preserving the moduli of the eigenvalues, and respecting
flag-configuration, if we assume that the eigenvalues are strong enough. This
is why the counterpart of Proposition 5.3.4 in the flag-configuration respect-
ing case, has to be stated as follows:

Proposition 6.5.2. Fiz e >0 and A > 0 and an integer d > 0. Then there

s an integer Ng > 0 such that, for any linear saddle diffeomorphism f on
E={1,..,p} x R4,

e that is bounded by A,

e that has huge real eigenvalues with a common multiple A > 1 and
pairwise distinct moduli,

e that is not Ng-dominated,

For any finite set I' of points of the eigendirections of f, there exists a saddle
e-perturbation g of f on an arbitrarily small neighbourhood of Og, that has
a homoclinic tangency, that respects the flag-configuration of I', and that
preserves the moduli of the eigenvalues.

This will be showed by induction on the dimension d of £ in section 6.5.2,
and for the sake of respecting flag-configuration, we need to enclose preserva-
tion of the eigenvalues in the induction process. This motivates the seemingly
overly precise conclusion. The proof of that proposition is the core of the
paper, and the main part of this section.

Proof of Theorem 6.1.5 from Propositions 6.4.5 and 6.5.2 : This
works exactly the same way as the proof of Theorem 5.3.1 from Proposi-
tion 5.3.4 and Proposition 5.3.2: apply first the Reduction Proposition 6.4.5
and use Remark 5.3.9 to perturb a saddle diffeomorphism f into g that
coincides locally with a linear saddle diffeomorphism g satisfying all the hy-
pothesis of Proposition 6.5.2. O
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6.5.1 Proof of Proposition 6.5.2 in dimension 2
Let us reformulate the proposition in the particular case of dimension 2:

Theorem 6.5.3. Fix ¢ > 0 and A > 0. Then are integers P,No > 0
such that for any p > P, for any linear saddle diffeomorphism f on € =
{1,...,p} x R?

e that is bounded by A,

e such that the two huge eigenvalues |A| < 1/2 and |u| > 2 have a com-
mon multiple A > 1,

e that is not No-dominated,

For any finite set I' of points of the eigendirections of f, there exists a saddle
e-perturbation g of f on an arbitrarily small neighbourhood of Og, that has
a homoclinic tangency, that preserves the eigenvalues of the derivative, and
respects the flag-configuration of I'.

We will split the proof into two steps, as Pujals and Sambarino did, we
prove that there exists a perturbation on an arbitrarily small neighbourhood
of Og, that respects the flag-configuration of I', preserves the eigenvalues,
and creates a small angle between the two eigendirections at Og. We state it
precisely:

Lemma 6.5.4. Fiz e > 0, A > 0 and 6 > 0. Then there are two integers
No > 0 and P > 0 such that, for any linear saddle diffeomorphism f on
E={1,...,p} x R?

e that is bounded by A,
e that is not No-dominated,
o such that the two eigenvalues have a common multiple A > 1,

for any finite subset I' of points of the eigendirections of f, there exists a
saddle e-perturbation g of f on an arbitrarily small neighbourhood of Og, that
preserves the eigenvalues of the derivative, respects the flag-configuration of
I, and such that at some point i € {1,...,p}, the two eigendirections of dg
at the origin make an angle smaller than 6.

The proof of this lemma is postponed until section 6.5.1. Then we will
show in section 6.5.1 how with a small angle we can obtain a homoclinic
tangency from a small flag-configuration-preserving lemma:

Lemma 6.5.5. Fiz e >0, A > 0. There exists an angle 6 > 0 such that, for
any linear saddle diffeomorphism f on & = {1,...,p} x R?

e that is bounded by A,
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e that has huge eigenvalues,

e such that somewhere the angle between the eigendirections is smaller
than 0,

for any finite subset I' of the eigendirections, there is an e-perturbation g on
an arbitrarily small neighbourhood V of Og that preserves the eigenvalues,
that respects the flag-configuration of I' and creates a homoclinic tangency in

V.

To prove Proposition 6.5.3, first apply Lemma 6.5.4, linearize locally with
Lemma 6.4.2, and apply Lemma 6.5.5. A lengthy proof follows, if needed.

Proof of Lemma 6.5.3 from Lemmas 6.5.4 and 6.5.5 : Fixe > 0
and A > 0. Then Lemma 6.5.5 provides 6 > 0 with respect to ¢g = €/2
and Ay = A+ ¢/2. Lemma 6.5.4 provides two integers Ny, P > 0 with
respect to A, €; = ¢/2 and . Let f be a linear saddle diffeomorphism f on
E={1,...p} xR? with p > P

e that is bounded by A,

e such that the two huge eigenvalues |A\| < 1/2 and |u| > 2 have a
common multiple A\ > 1,

e that is not No-dominated,

Then by Lemma 6.5.4, for any finite set I' of points of the eigendirections
of f, there exists a saddle e/2-perturbation g of f on an arbitrarily small
neighbourhood W of Og¢, that preserves the eigenvalues of the derivative,
respects the flag-configuration of I', and such that at some point i € {1, ..., p},
the two eigendirections of dg at the origin make an angle smaller than 6. We
may apply Lemma 6.4.2 and assume g is locally linear. Let g be the linear
saddle to which g is equal on a neighbourhood U of Og. We may change I’
into A = ¢g"s(I'*)Ug~"=(I"*) C U, where the integers ns, n, > 0 are such that
any positive iterate of z € g™ (I'*) and any negative iterate of x € g"s(I'¥)
are in U.

Then, apply Lemma 6.5.5 to g (which is bounded by A+ ¢/2 and has sta-
ble and unstable eigendirections making an angle smaller than 6 somewhere)
to find an €/2-perturbation h of g on an arbitrarily small neighbourhood
V that preserves the eigenvalues, creates a homoclinic tangency in V, and
respects the flag-configuration of A. Choosing V to be small enough, we
finally find a saddle diffeomorphism & that coincides with h on U, and with
g outside U (thus outside V). This will be an € perturbation of f on W
(which we recall was arbitrarily small), that preserves the eigenvalues, that
has a homoclinic tangency, and respects the flag-configuration of I'. This
concludes the proof of the two dimensionnal case. O
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Obtaining a small angle: proof of Lemma 6.5.4

Naturally, we first show that one can perturb the derivative of f on Og to
obtain somewhere a small angle between the two eigendirections. We recall
that in section 5.2.3 we defined two linear saddles f and ¢ to be linearly
e-close if they are e-close as linear cocyles. The following proof is strongly
inspired from techniques of [38] and [13, Lemma 3.4], for a picture that
summarizes the proof, see [14, page 132].

Lemma 6.5.6. For all e >0, A >0, 6 > 0, there are two integers Ny > 0
and P > 0 such that for any linear saddle f on {1,...,p} x R? that is bounded
by A, there is a linear saddle g e-close to f, that has the same eigenvalues as
f, that preserves one of the eigendirections of f, and such that somewhere
the angle between the two eigendirections is smaller than 6.

Given a linear saddle f on & = {1,...,p} x R? and the correponding
hyperbolic splitting F' & G. Denote by Pf a diffeomorphism of {1,...,p} x R?
that is linear, stabilizes each fibre, and sends isometrically the bundle F' on
{1,...,p} x R x {0}, and the bundle G on {1,...,p} x {0} x R. Then f+ =
Py ofon_1 is a linear saddle whose stable eigendirection is {1, ..., p} x Rx {0},
and unstable eigendirection is {1, ...,p} x {0} xR, and is N-dominated if and
only f is. Clearly, if f is bounded by A, then so is f*, and if the angles
between the stable and unstable eigendirections of f is bounded from below
by 6, then Pf is bounded by a quantity B(f) which is equivalent to 6~

Proof of Lemma 6.5.6 : Fixe >0, A > 0,0 > 0. Then, from the bounds
A and B(6) above, there are n > 0 and [ such that, for any linear saddle f
that is bounded by A whose eigendirections make an angle greater than 6,
if g is n-close to Pro f o Pfl, then Pfl o go Py is e-close to f; if the angle
between the eigendirections of g is smaller than 3, then the angle between
the eigendirections of f is smaller than 6.

Thus it suffices to show the following:

Claim 14. Fiz A,n,8 > 0. There are two integers P, N > 0 such that if f
is a linear saddle on € = {1,...,p} x R? (with p > P), that is bounded by A,
that is not N-dominated, whose stable bundle is {1,...,p} x R x {0}, whose
unstable bundle is {1,...,p} x {0} x R,

then there is a linear saddle g, n-close to f that is equal to f on {1,...,p}x
R x {0}, that has same eigenvalues as f, and such that the angle between the
etgendirections of g is somewhere smaller than (.

We may represent f by a sequence of matrices

a; 0 .
A = < 0 b ),z:l,...,p

where A; is the matrix in the canonical bases of the induced map f: E; —
Ei+1-



Thése de doctorat 141

If f is not N-dominated, then by definition, it is not N’ dominated for
any N/ < N, thus we can assume N < P/2. We have

H a; < H b;, (6.8)

i=1,...,p i=1,...,p

and for there is no IN-domination, we may reindex the sequence A;, so that
21L,-1 nai > 11,1 nbi. Where reindexing means to fix an integer j
and Ch:cml{ge each A; toyAy(Hj)[le, where (i+ j)[p] is the rest of the euclidian
division of 7 + j by p.

Define

(1 n _ (1 0 _
B1—<0 1),BZ—<0 1_i_'u>forz—2,...,N,

1 0 .
B, = ( 0 (14 )" > fori=N-+1,...,2N — 1.

where p > 0 is the greatest real number such that if a matrix M is bounded
by A, then M By, BiM and M B;, i = 2,...,2N —1 are n-close to M. The im-
age of the line R(0, 1) (spanned by (0, 1)) is sent by the matrix By on R(u, 1),
then by inequality 6.8 the product A,...A2N + 1Ay Ao, 1 Ban—1...A; is hy-
perbolic with stable direction R(1,0) and unstable R(0, 1). Hence that prod-
uct sends the line R(u,1) on a line R(p, 1) with |p| < u. Finally define

L —p
(0 1)

That matrix sends back R(p,1) on the line R(0,1). Let g be the linear
cyclic diffeomorphism of £ whose matricial representation is the sequence
A1By, ..., Aon_1Ban_1, Aan, ..., BpAp. The way we chose 0 < p < 1 ensures
that g is n close to f. Clearly, ¢g” sends the line {(1,0)} xR on itself (its orbit
is still the unstable eigenbundle). Besides, if N is great enough, precisely
greater than a constant that depends only on A and 3, ¢’V sends the line
{1} x {0} xR on a line that makes an angle smaller than 3 with {IV +1} x
R x {0}. Notice finally that g = f on {1,...,p} x R x {0}, and the Jacobians
of g? and fP are equal. Hence the eigenvalues are preserved. This ends the
proof of the claim, and that of the lemma. O

Now that found how to perturb the derivative at Og¢ to obtain small
angles, we have to extend that pertubation into a saddle perturbation. This
is achieved by the following:

Lemma 6.5.7. Let f be a linear saddle of €. Let € < a/4|f| where « is the
constant defined in Lemma 5.2.10. Let g be a linear saddle that is linearly
e-close to f, and such that f = g on a one-dimensional subbundle H. Then
there is a 8|f|*e-perturbation h of f that goes to the quotient by H, with
f/H = g/H, such that h = g on a neighbourhood of Og and h = f outside
the strip Cy = {x € £/ dist(z, H) < 1}.
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Proof : Define a map h on £ by h(zx) = ¢(z).f(x) + ¥(x).g(z), where
¢+ = 11is a unit partition on £ such that ¢(x) and ¢(z) only depend
on the projection x/H, 1) = 1 on a small neighbourhood of H, and ¢ = 0
outside C'1. Therefore, the map h goes to the quotient by H, coincides with
g on a neighbourhood of H and with f outside C';. Clearly ¥ and ¢ can be
chosen to have derivatives with norms less than 2.

If x ¢ Cy then f(z) = h(z) and dyf = dyh. If x is in C}, then we can
write * = xg + y where xy € H and y has norm smaller than 1. We have
F(x) — h(z) = B(@).(f - 9)(x) = Y(@)(f — 9)(y), for f = g on H. Thus
IIf(x) — h(z)|| < l.e|ly|| < e. We calculate the derivative:

d(f —h) =dy.(f —g) +(df —dg)

and get similarly that ||d,(f — h)| < 2¢+ l.e. Hence the map f — h has C'-
norm less than 4e < «/|f|. Then by corollary 5.2.11, h is a diffeomorphism,
precisely a 8| f|?e-perturbation of f. O

Proof of Lemma 6.5.4 : Fixe >0, A > 0and § > 0. Let ¢ =

min (a/4\f\, ng“fQ‘ ) Then fix two integers No > 0 and P > 0 as Lemma 6.5.6
enables us to do. Let f be a linear saddle that is bounded by A, that is not
Nsy-dominated, and such that the two eigenvalues have a common multiple
A > 1. Let H be the stable eigendirection of f. Then there is a linear saddle
g that is linearly e-close to f, that coincides with f on F', that has same
eigenvalues as f, and such that the angle between the two eigendirections of

g is somewhere smaller than 6.

We have e < a/4|f|, hence by Lemma 6.5.7 there is a 8| f|2e-perturbation,
therefore an 7, |r-perturbation of f that goes to the quotient by H, with
f/H = h/H, such that h = g on a neighbourhood of O¢ and h = f outside
the strip C1 = {x € £/dist(z, H) < 1}. Let I' be a finite set of points of
the eigendirections of f, and let v > 1 be such that y~! is smaller than
the distance from H to I'* (in other words v~1.C; does not intersect I'%).
Then the diffeomorphism A’ = y~1.h o v4.Ide coincides with f outside Cj.
Therefore, it firmly respects the flag-configuration of I'* for f to the quotient
by H (notice that f/H = h'/H).

Obviously, fig = hTH by restriction to H, thus hTH firmly respects the
flag-configuration of I'|;y for f|;. We apply Proposition 6.3.3 and find an e-
perturbation g of f on an arbitrarily small neighbourhood of O¢, that respects
the flag-configuration of I" and that is locally conjugate to h’, therefore to g.
That g has same eigenvalues as f, and the angle between its eigendirections
is somewhere smaller than 6. This ends the proof of Lemma 6.5.4 O
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Creating a homoclinic tangency from a small angle: proof of
Lemma 6.5.5

Once we have a small angle between the two eigendirections, we can adapt
the argument of Pujals and Sambarino to preserve a finite set I in the stable
and unstable manifolds of f.

Under the hypothesis of lemma 6.5.5, let D® and D“ be two simple fun-
damental domains, respectively, of the stable and unstable eigendirections of

f, that is D® writes as a union | — x, —|A®|.z] U [|A®|.z, 2] of two intervals,
where z is a point of the stable direction and A® the corresponding eigen-
value, and D" writes as | — |[A\"|.x, —z] U [z, |[\"|.z[, where z is a point of the

unstable direction, and A" the corresponding eigenvalue.

We suppose moreover that for any x € I'®) there is a positive iterate
2’ = f¥(x) in D?, and for any x € T'%, there is a negative iterate 2’ = f~*(x)
in D%, Call I the union of these 2’. It is obviously sufficient to find g that
respects the flag-configuration of I, provided that g coincides with f on a
small enough neighbourhood of O¢. From that, we can do a

Remark 6.5.8. [t is sufficient to prove 6.5.5 in the case where I'* and I'®
are simple fundamental domains of the stable and unstable eigendirections of
f, respectively.

Lemma 6.5.9. Let f be a linear saddle on & = {1,....,p} x R? and T'¢, T*
two finite subsets of fundamental intervals D® and D", respectively. Then,
for any p > 1, there is an arbitrarily small saddle perturbation g of f on
an arbitralily small U neighbourhood of Og, that is equal to f on a small
neighbourhood V C U of Og, that preserves the flag-configuration of I', and
such that any integer k greater than some K > 0, we have that g*(I'*) and
g *(T%) are included in intervals of the form [—p.x,—x] U [z, p.x], where
15 in the stable or unstable eigendirections.

Proof : Under the hypothesis of the lemma, let U be a neighbourhood of
Og. We may change I'* into f™(I'*) and I'* into f~"(I'%), to suppose that
fcbDCcUand T C D* CU.

We write D* =| — y*, —z*] U [2®,y*[ and D" =] — y*, —z"] U [z*, y"[.
We find 2® € D?® and z" € D" such that I'* C] — 2%, —2%] U [2*, 2] and
' c] — 2% —a"% U [z", 2% Clearly, there is a compact box B® in U, that
intersects W*5(f) UW"(f) into [—2z°, —z®] U [z®, 2°], and such that the boxes
|A%|F.B*, for k € N, are pairwise disjoint. As a consequence, these boxes do
not contain Og.

For all n > 0, there exists a diffeomorphism ®° of B® that sends the set | —
2%, —x®]U[z®, z°] on itself, that can be extended to £ by the identity map into
an n-perturbation of Idg, and such that, for the restricted diffeomorphism

ﬁfzsﬁxﬂu[w,zsp the points £x* are sinks whose stable manifolds are [z*, z°]
and ] — z°, —z®], respectively. The compact set I'* is in these manifolds, thus
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there is an iterate (®°)X(I'*) C [—p.2®, —2°] U [z, p.2°]. Let ¥U* be the
diffeomorphism of £ that coincides with [A*|F.®% o |\*|~*.Idps on the boxes
IA%|F. B2, for all 0 < k < K, and with the identity map outside these boxes.
The diffeomorphism W* is an n-perturbation of Idg on U that coincides with
Idg on a neighbourhood V of Og and on the unstable manifold of f.

By Remark 5.2.6, h = f o ¥* is a saddle | f|n-perturbation of f on U. It
is equal to f on V and on the unstable manifold of f, and for £ > K, the
set h¥(I'%) is in [—p.hF(2*), h* (2*)] U [R*(2®), p.h*(2*)]. The dynamics on a
neighbourhood of the unstable manifold is not affected by that perturbation.
Thus, we can do the symmetrical perturbation ¥* on the unstable manifold,
and obtain finally an arbitrarily small (choose n small enough) saddle pertur-
bation g = f o U® o U* on U, that satisfies all the conclusions of the lemma.
This concludes the proof of Lemma 6.5.9. O

To prove Lemma 6.5.5, we are now left to show the following:

Lemma 6.5.10. Fiz ¢ > 0, A > 0. Then there is an angle 8 > 0, and a
constant p > 1 such that, for any linear saddle diffeomorphism f on £ =
{1,...,p} x R?, that is bounded by A, that has two huge eigenvalues, and such
that somewhere the angle between the eigendirections is smaller than 0,

for any finite subset I' = T U T such that I'* C [—p.x,—x] U [z, p.x]
and T'" C [—p.y, —y] U ly, p.y], where = is the stable direction and y in the
unstable direction, there is an e-perturbation g on an arbitrarily small neigh-
bourhood of O¢ that preserves the eigenvalues, creates a homoclinic tangency,
and respects the flag-configuration of I.

This step correspond to Lemma 2.2.1 in [52]. The idea and the proof
are roughly the same, thus we only give a short proof. We use without a
proof the following statement, slightly more precise than Lemma 6.3.5, as it
controls derivatives.

Lemma 6.5.11. For any n > 0, there exists a ratio r such that, for any pair
of points x and y in an open set U of R™ with diameter smaller than 1, for
any pair of unit vectors u € T,R"™ and v € T,R", if we have

dist(z,y) .
dist(z,E\U)

and if the angle between u and v is smaller than r, then there is an n-
perturbation of Id, on U that sends x on y, and whose derivative sends u on
v.

Short proof of Lemma 6.5.5: Fix0<e<1, A>0. Andlet 0 < 0
and 1 < p < 24 We let the reader draw a picture and notice that there
is a function r(f) > 0 that tends to 0 as 6 goes to zero that satisfies the
following: under the hypothesis of the lemma, for any neighourhood V of Og¢,
there are a pair of points x and y in the stable and unstable manifolds of f
and a compact neighbourhood U C V of {x,y} such that
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e U does not intersect the orbit of I', nor Og¢,

e it intersects each W"(f) and W#*(f) into an interval that is a subset
of a simple fundamental domain of f,

e the ratio % is smaller than r(0).

Let u € T,£ and v € TyE be the unit vectors pointing to Og, therefore
tangent to the stable and unstable manifold, respectively. They make an
angle 0. If 6 is small enough, r(0) is small enough to apply Lemma 6.5.11
and find an ¢/|f|-perturbation ¥ of Idg on U that sends z* on z*, and such
that d¥(u) = v. Then, the diffeomorphism g = foW is a saddle perturbation
of f on U that preserves the orbits of each point of I' (therefore respects the
flag-configuration of I'), that has the same eigenvalues as f, and such that its
stable and unstable manifold go through z*, tangently to w; in other words
it admits a homoclinic tangency. By Remark 5.2.6, g is an e-perturbation of
f on U. The neighbourhood ¥V D U of O¢ could be chosen arbitrarily small.
Therefore g matches the conclusions of Lemma 6.5.5. a

6.5.2 The induction: proof of Proposition 6.5.2 in dimension
d>3

Sketch of the proof

This sketch should be compared to that of the proof of Proposition 5.3.4 (see
section 5.3.2). We merely adapt it to the constraint of flag-configuration
preservation. We initiate the induction process in dimension d = 2: it is
shown in section 6.5.1 that when the eigenvalues are huge, Pujals and Sam-
barino’s construction can be done preserving the eigenvalues, and adapted
to respect the flag-configuration of a finite set I'.

In dimension d > 3, we write the hyperbolic splitting: £ = F & G, where
F' is the stable bundle of f and G the unstable one. By Remark 6.1.4, we
can assume as in the proof of Proposition 5.3.4 that F' has dimension > 2.
We recall that f has real eigenvalues with pairwise distinct moduli, therefore
F splits into a direct sum Fy @ ... & F} of eigendirections, where F} is the
strongest stable eigendirection. Call H the subbundle F5 @ ... ® F;. From
Lemma 5.3.10, if the saddle is not dominated enough then we have again the
same dichotomy:

e The splitting £’ = H & G is not dominated enough for the restriction
of f to £’ so that, by induction hypothesis, we can find a saddle small-
perturbation g’ of fiz on an arbitrarily small neighbourhood of 07,
that respects the flag-configuration of IV = I' N E’, that preserves the
eigenvalues of the derivative, and that admits a homoclinic tangency.
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e The splitting F'//H @& G/H of the quotient bundle £/H is not dom-
inated enough for the quotient linear saddle f/H so that, by induc-
tion hypothesis, we can find a saddle small-perturbation ¢ of f/H
on an arbitrarily small neighbourhood of Og /g, that respects the flag-
configuration of I'/H = m(I"), that preserves the eigenvalues of the
derivative, and that admits a homoclinic tangency.

If we are in the first case, by Corollary 5.2.18 we can extend ¢’ to a cycle
local small-perturbation g of f such that the quotients g/E’ and f/E’ are
defined and equal. The diffeomorphism g extends a saddle diffeomorphism
that has a homoclinic tangency; thus it also has a homoclinic tangency. The
cyclic diffeomorphism g respects the flag-configuration of I for f but a priori
the flag-configuration of the remainder of I' (that is I' \ I' = I" N F}), is not
respected. We see that E’ is a central bundle for f and g, and choosing
g = g’ to be a perturbation of fg/ on a sufficiently small neighbourhood
of Ogs, we can apply Proposition 6.3.3.

If we are in the second case, by Lemma 5.2.19, we can lift the perturbation
g’ of f/H into a small-perturbation g of f that coincides with f on H. We
showed in section 5.3 that, ¢’ admitting a homoclinic tangency, so does g.
The saddle diffeomorphism g respects the flag-configuration of 'y for f,
but the flag-configuration of the remainder of I' is not a priori respected.
The bundle H is central for f and g, and choosing ¢’ to be a perturbation
of f/H on a sufficiently small neighbourhood U’ of Og/m, we can apply
Proposition 6.3.3.

Thus, in both cases we can obtain a cyclic perturbation of f on an ar-
bitrarily small neighbourhood, that respects the flag-configuration of I', and
that is locally conjugate to g in such a way that it also admits a homoclinic
tangency. It is easily checked that the eigenvalues are preserved in both
cases. QED.

A detailed proof

Fix d > 2, and suppose now that the theorem is true for any dimension
2<d <d-—1. Fix A>0and e > 0. Let € > 0 be less than Ve.a,A, Which
is as defined for Corollary 5.2.18, less than gETjQ where 7 is as defined for
Lemma 5.2.16, and less than «/A, where « is as defined in Lemma 5.2.10.
Use Proposition 6.5.2 for each 2 < d’ < d — 1, to find an integer Ny with
respect to A and e (this is the induction hypothesis).

Let N be the maximum of the integers Ny for 2 < d < d — 1. Fix
M € N as in Lemma 5.3.10, with respect to A, d and N. We will show that
the conclusions of Proposition 6.5.2 will hold for Ny = M, and a perturbation
of size ¢.

Let f be a linear saddle on a d-dimensional bundle £ = {1,...,p} x RY
such that
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e it is bounded by A,

e it has real huge eigenvalues with a common multiple A > 1 and pairwise
distinct moduli,

e it is not NNy-dominated,

and let I be a finite subset in the eigendirections of f. The linear saddle f~*
also satisfies the three items and I is in the eigendirections of f~!, besides
(Remark 6.1.4) the two following statements are equivalent:

e g is a saddle e-perturbation of f on an arbitrarily small neighbourhood
of Og, that has a homoclinic tangency, that preserves the eigenvalues
of the derivative, and respects the flag-configuration of I'.

e g ! is a saddle e-perturbation of f~! on an arbitrarily small neigh-

bourhood of Og, that has a homoclinic tangency, that preserves the
eigenvalues of the derivative, and respects the flag-configuration of I'.

So, we may replace f by f~! and assume that in the invariant hyperbolic
splitting £ = F@®G, the stable space F' has dimension greater than two. Since
f has real pairwise distinct eigenvalues, there is an invariant splitting F' =
F1®...8 F}, of eigendirections, where F is the strongest stable eigendirection.
Call H the subbundle F5 ® ... ® F;. From Lemma 5.3.10, either the splitting
H @ G is not N-dominated for the restriction figqp, or the splitting F//H @
G/H is not N-dominated for the quotient linear cocycle f/H. Call d; and
dy the dimensions of H & F and F/H © G/H, respectively. By definition,
N is greater than Ny, and Ng,; we reformulate the dichotomy:

e cither the splitting F' = H & G is not N-dominated, and thus not
Ng,-dominated, for the restriction f|z. Then, by induction hypothe-
sis, we find a saddle e-perturbation ¢’ of figs on an arbitrarily small
neighbourhood U of Og, that has a homoclinic tangency, that preserves
the eigenvalues of the derivative, and respects the flag-configuration
of I = T'N E’. Choosing U small enough, one can suppose that the
saddle diffeomorphism ¢’ firmly respects the flag-configuration of I".

The following proposition, shown in section 6.5.2 ends the study of this
case:

Proposition 6.5.12. Let ¢ > 0 and v = vy_, a. If there is a sad-
dle v-perturbation g’ of J|gr that has a homoclinic tangency, that pre-
serves the eigenvalues of the derivative of fig, and firmly respects the
flag-configuration of I, then there is a saddle e-perturbation g on an
arbitrarily small neighbourhood of Og of f that has a homoclinic tan-
gency, that preserves the eigenvalues of the derivative, and respects the
flag-configuration of I
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e or the splitting £/H = F/H & G/H is not N-dominated, and thus

not Ng,-dominated, for the saddle quotient f/H. Then, by induction
hypothesis, we find a saddle local e-perturbation ¢’ of f/H on an arbi-
trarily small neighbourhood U of Og, that has a homoclinic tangency,
that preserves the eigenvalues of the derivative, and respects the flag-
configuration of I'/H = w(I"). In particular, choosing &/ small enough,
one can suppose that the saddle diffeomorphism ¢’ firmly respects the
flag-configuration of I'/H. We conclude with the following proposition,
shown in section 5.3.2:
Proposition 6.5.13. Let ¢ > 0 and p = min(355, /A). If there is a
saddle local p-perturbation g of f/H, that has a homoclinic tangency,
that preserves the eigenvalues of the derivative, and firmly respects the
flag-configuration of I'/H = ©(T"), then there is a saddle e-perturbation
g of f on an arbitrarily small neighbourhood of Og, that has a homo-
clinic tangency, that preserves the eigenvalues of the derivative, and
respects the flag-configuration of I'.

We recall indeed that € was chosen less than i and v defined above. Thus hav-
ing chosen ¢ sufficiently small we found in both cases a saddle e-perturbation
of f on an arbitrarily small neighbourhood of Og¢, that has a homoclinic
tangency, that preserves the eigenvalues of the derivative, and respects the
flag-configuration of I'. This ends the proof of Proposition 5.3.4.

The restriction case: proof of Proposition 6.5.12

Let ¢ > 0 and A > 0. Let n = n.4. Let f be a linear saddle on & =
{1,...,p} x R? that is bounded by A, and such that its eigenvalues admit a
common multiple A > 1. Let v = v, 4 be as defined for Corollary 5.2.18.
Let E' be an invariant central bundle for f, I" a finite set in the union of
the eigendirections of f, and ¢’ a saddle v-perturbation of f|g, that has a
homoclinic tangency, that preserves the eigenvalues of the derivative of f|g,
and firmly respects the flag-configuration of I”.

We have vy 4 < vy, therefore by Corollary 5.2.18, g’ can be extended
to a local n-perturbation g of f, such that g/E’ = f/E’. Of course it also
admits a homoclinic tangency, and its eigenvalues coincide with those of f.
By hypothesis, gg/ firmly respects the flag-configuration of I'\gs for fgr,
and since g/FE’' = f/FE’, g firmly respects the flag-configuration of I' \ E’ for
f, to the quotient by E’. Since g)g' has the same eigenvalues as f|g/, and
g/E" = f/E', E is also a central bundle for g. Finally n = 1.4 <1, -

Let B be a bounded neighbourhood of Og and the orbit of the tangency
of g. We can apply Proposition 6.3.3 and find an e-perturbation h of f on
an arbitrarily small neighbourhood, that respects the flag-configuration of I
for f and such that v.h o y~1.Idg = g, for some v > 0. Hence h also has a
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homoclinic tangency and has the same eigenvalues as f. This ends the proof
of Proposition 6.5.12.

The quotient case: proof of Proposition 6.5.13

Let ¢ > 0 and A > 0. Let p = min(25%, @/A). Let f be a linear saddle on
£ ={1,...,p} xR? that is bounded by A, and such that its eigenvalues admit a
common multiple A > 1. Let H be an invariant central bundle for f, I" a finite
set in the union of the eigendirections of f, and ¢’ a saddle u-perturbation
of f/H that has a homoclinic tangency, that preserves the eigenvalues of the
derivative of f/H, and firmly respects the flag-configuration of I'/H.

As a/A < a/|f], we can apply Lemma 5.2.19 and find a saddle 2A42u-
perturbation g of f that is a lift of ¢’. By Remark 5.2.20, since g/H firmly
respects the flag-configuration of I'/H for f/H, g can be chosen so that it
firmly respects the flag-configuration of I" for f, to the quotient by H, and
so that gy = fig. Thus trivially gz firmly respects the flag-configuration
of I'\y for fijz. As g/H and f/H have same eigenvalues and g5y = fiu, g
has same eigenvalues as f, and H is also a central bundle for g. Finally we
recall that 242y < e, A < 1, f: all the hypothesis of Proposition 6.3.3 are
satisfied.

We showed in section 5.3, Lemma 5.3.13, that if ¢’ admits a homoclinic
tangency, so does g. Let B be a neighbourhood of O¢ and of the orbit
of that homoclinic tangency. We apply Proposition 6.3.3 and find an e-
perturbation h of f on an arbitrarily small neighbourhood, that respects the
flag-configuration of I for f and such that v.hoy~1.Idg = g, for some v > 0.
Hence h also has a homoclinic tangency and has the same eigenvalues as f.
This ends the proof of Proposition 6.5.13.

6.6 Consequences

6.6.1 General results

We say that two periodic saddle points are homoclinically related if and only
if the unstable manifold of the orbit of one intersects transversely the stable
manifold of the orbit of the other. This, by the A-lemma (see [46, Page 80|,
for instance), is an equivalence relation.

Definition 6.6.1. Let () be a saddle point for some diffeomorphism f. The
homoclinic class H(Q, f) of @ is the closure of the set of hyperbolic points
that are homoclinically related to Q.

One of the consequences of Theorem 6.1.1 is

Corollary 6.6.2. Let ) be a saddle point for f whose homoclinic class
H(Q, f) is non-trivial (not reduced to the orbit of Q) and does not admit a
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dominated splitting of same index as Q. Then, there is an arbitrarily small
perturbation g of f, that preserves the dynamics on a neighbourhood of @,
and such that there is a homoclinic tangency related to Q.

We need first a few preliminary results. We show that if two saddles are
homoclinically related, then a homoclinic tangency associated to one of them
can be turned by a small perturbation into a homoclinic tangency associated
to the other.

Proposition 6.6.3. Let QQ and R be saddle points of f that are homoclini-
cally related. If f admits a homoclinic tangency x associated to R, then for
any neighbourhood U of x, for any € > 0, there is an e-perturbation g of f on
U, that preserves the saddle @ and such that g admits a homoclinic tangency
related to Q.

We state without a proof a folklore A-lemma-like:

Lemma 6.6.4. Let R be a saddle for a diffeomorphism f of index i. Let
x € WYR) and y € W*(R), and let D be a i-dimensional C'-disk centered
at y and transverse to W*(R) at y. Then for any n > 0, there is a point
z € D such that, for some ng,n1 € N, for any 0 < n < ngy, we have

dist(f"(y), f"(2)) <,

for any ng <n < nq, we have

dist(f"(2), /" (2)) <,

and the tangent space of the disk f™ (D) at f™(z) is n-close to the tangent
space of W*(R) at x.

Proof of Proposition 6.6.3 : Under the hypothesis of the lemma, let a be
a transverse intersection between W%(Q) and W*(R), and b be a transverse
intersection between W*(Q) and W*(R). Let ¢ be the minimum distance
between x and

Orbs(x) \ {z} UOrbs(a) U Orby(b) U Orb(Q) U Orb(R).

Let U be a neighbourhood of z with diameter less than /2.

Let D? be a ball in W"(Q) centered on a, small enough so that the
distance between f~"(D%) and f~"(a) is less than §/2, for all n € N. Let
n < 0/2. Apply the previous lemma, and find z € D2 such that for some
no,n1 € N, for any 0 < n < ng we have dist(f"(a), f"(z)) < n, for any
no < n < ny, we have dist(f"(z), f* " (x)) < n, and tangent space of the
disk f"1(D3) at f™(a) is n-close to the tangent space of W*(R) at z.

Hence, for all n > 0, we found a point z" in W%(Q) such that
dist(z,z%) < n, such that T, W*(Q) and T, W"(R) are n-close, and for all
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n € N, dist(f~"(z"), ) is greater than §/2. Symmetrically we find a point
x® in W*(Q) such that dist(z,z®) < n, such that T,sW*(Q) and T,W*(R)
are 7n-close, and for all n € N, dist(f"(«%), x) is greater than /2.

Let HT, be the intersection of T,W*(R) and T,W?#(R). There is a
subspace HT? of T,sW?*(Q) and a subspace HT," of T,«W"(Q) such that
both are n-close to HT,. If ® is a perturbation of Idy; on U that sends
on z° and HT}' on HT}, then g = f o® is a perturbation of f that admits a
homoclinic tangency at z*. Taking n small enough, such a ® can be found
to be an arbitrarily small perturbation of Idy; on bounded Y. Therefore, by
Remark 5.2.8, g can be found to be arbitrarily close to f. O

We recall the following classical

Lemma 6.6.5. Let [ be a diffeomorphism on a compact manifold M with
dimension d. Let g, be a sequence of diffeomorphisms that tends to f in
Diff! (M) and Q, be a sequence of periodic points for f, such that the se-
quence of their orbits Orb(Q,) converges for the Hausdorff topology to a
compact set K for f. Then K is invariant for f. Moreover there is a domi-
nated splitting of index i for f on K if and only if, for some integer N > 0,
for anyn great enough, there is an invariant splitting of index i of the tangent
space along the orbit of Q,, that is N-dominated for g,.

We now are ready for the proof of the corollary.
Proof of Corollary 6.6.2 : We recall that in a homoclinic class H(P, f),
there is a sequence P, of saddle orbits of f, with same index as P, that
tends to H(P, f) for the Hausdorff topology. Since H(P, f) is not trivial,
it is infinite, therefore the period of the sequences P,, tends to +o0o. From
Lemma 6.6.5, there is a sequence N,, in N that tends to +o0 and such that
the invariant splitting composed of the stable and unstable bundles of P, is
not N,-dominated. Therefore we can apply Theorem 6.1.1 to P, for n great
enough, and the cycle it forms with P: for any € > 0, for n great enough,
there is an e-perturbation g of f on an arbitrarily small neighbourhood of P,
that creates a homoclinic tangency at P, and preserves the cycle between
P and P,. Therefore H(P,g) contains P, which admits a homoclinic tan-
gency related to it. Finally, from Proposition 6.6.3, we perturb again g on
an arbitrarily small neighbourhood of the tangency z for P,, to obtain a
perturbation h of f such that the dynamics is preserved on a neighbourhood
of Orb(P) and such that there is a homoclinic tangency associated to the
saddle P. O

6.6.2 Generic results

Let us recall shortly some definitions from Conley’s theory [21]. Let f be a
diffeomorphism of a manifold M. A sequence (x,) is an e-pseudo-orbit for
some € > 0 if and only if the distance dist(f(xy,), Zn+1) is less than e for each
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n. The chain-recurrent set R(f) is the set of points = such that for all e > 0
there is an e-pseudo-orbit that is not reduced to a single point and that goes
from x to x. We define an equivalence relation ~ on R(f) in the following
way: x ~ y if and only if, for all € > 0, there is an e-pseudo-orbit from x to
y, and an e-pseudo-orbit from y to x.

The chain-recurrent classes are the equivalence classes of ~ in R(f). If
M is compact, the chain-recurrent set is not empty, and the chain-recurrent
classes are compact.

A residual subset of a topological space is a countable intersection of dense
open sets. A dynamical property P is C*-generic if it is satisfied by a residual
set of dynamics for the C*-topology. We also say that C*-generically, the dy-
namics satisfies property P. In [10], C. Bonatti and S. Crovisier showed that
C'-generically, the non-aperiodic chain recurrent classes and the homoclinic
classes coincide:

Theorem 6.6.6 (Bonatti, Crovisier). Given a compact manifold M, there
15 a residual subset HCR of Diffl(M) of diffeomorphisms f such that each
homoclinic class of f is a chain-recurrent class and conversely, each chain-
recurrent class is either aperiodic (does not contain any periodic point) or is
a homoclinic class.

Besides, with F. Abdenur, L. Diaz and L. Wen [3|, they showed the
following result:

Theorem 6.6.7 (Abdenur, Bonatti, Crovisier, Diaz, Wen). There is a
residual subset I of Diff' (M) of diffeomorphisms f such that any homoclinic
class H(p, f) containing hyperbolic saddles of indices a and 3 contains a
dense subset of saddles of index T, for all T € [a, ).

Corollary 6.6.2, and this result give partial answer to |3, Conjecture 1]:

Theorem 6.6.8. For every C'-generic diffeomorphism f, let H(P, f) be a
homoclinic class containing saddles of indices o and B, o < 3. Then the
following dichotomy holds:

e cither there is an arbitrarily small perturbation g of f admitting a
homoclinic tangency associated to the continuation of some saddle of
H(P, f);

e or there is a dominated splitting for f on H(P, f)
TypyM =EOE{® ... O E;_,®F,
where dim(E) = « and each Ef is 1-dimensional and not hyperbolic.

However, we do not know yet whether E and F' are uniformly contracted
and uniformly expanded when « is minimal and # maximal. In a recent
preprint, S. Crovisier [22] showed the following:
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Theorem 6.6.9 (Crovisier). Given a a compact manifold M, there is a
residual subset Ry of Diff'(M) such that for any f € Ry, for each chain
recurrent class C of f, there is a sequence of periodic orbits of f that tends
to C for the Hausdorff topology.

Still, as explained in [3], for we have no precise information on the indexes
of the saddle points, this is not sufficient to generalize the previous dichotomy
to all the chain-recurrent classes. Precisely, with Theorem 6.6.6 we have the
dichotomy only for chain recurrent-classes that contain a periodic orbit.
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