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i

There may be only a few basic learning mechanisms underlying all this
complex [brain] activity. The final explanation is likely to be in terms of the
basic patterns of connections laid down in normal development, plus the key
learning algorithms that modify those connections and other neural parame-
ters. Thus the neocortex may well have an underlying simplicity, not at the
level at which the mature brain behaves but at the way by which it arrives
at that intricate behavior, based on its innate structure and guided by its
rich experience of the world.

Francis Crick. The Astonishing Hypothesis. 1994. Touchstone.
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Abstract

In this thesis I propose various learning mechanisms that could account for
the speed, selectivity and invariance of the neuronal responses in the visual
cortex. I also present the results of a relevant psychophysical experiment
demonstrating that familiarity can accelerate visual processing.

In Chapter 2, I demonstrate that, in a feedforward neural model of the
ventral stream, a combination of a temporal coding scheme, where the most
strongly activated neurons fire first, with Spike Timing Dependent Plasticity
(STDP) leads to a situation where neurons in higher order visual areas will
gradually become selective to frequently occurring feature combinations. At
the same time, their responses become more and more rapid. I firmly believe
that such mechanisms are a key to understanding the remarkable efficiency
of the primate visual system.

In Chapter 3, I present a second study, not restricted to vision, where one
receiving STDP neuron integrates spikes from a continuously firing neuron
population. It turns out, somewhat surprisingly, that STDP is able to find
repeating spatio-temporal spike patterns and to track back through them,
even when embedded in equally dense ‘distractor’ spike trains – a computa-
tionally difficult problem. STDP thus enables some form of temporal coding,
even in the absence of an explicit time reference. Given that the mechanism
exposed here is simple and cheap it is hard to believe that the brain did not
evolve to use it.

One interesting prediction of the STDP models of Chapters 2 and 3 is
that visual responses’ latencies should decrease after repeated presentations
of a same stimulus. In Chapter 4 I tested this prediction experimentally by
inferring the visual processing times through behavioral measures. I used a
saccadic forced-choice paradigm. The target was always the same repeating
image (an interior scene), while the distractors (other interior scenes) were
changing. The experiment revealed a familiarity-induced speed-up effect of
about 100 ms. Most of it can be attributed to the learning of the task but
a ∼25 ms effect corresponds to the familiarity with a given image, and is
reached after a few hundred presentations. Of course this does not mean
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iv ABSTRACT

that the STDP models of Chapters 2 and 3 are true – only that they are
plausible.

In Chapter 5, I investigated the learning mechanisms that could account
for the invariance of certain neuronal responses to some stimulus proper-
ties such as location or scale. It has been proposed that the appropriate
connectivity could be learnt by passive exposure to smooth transformation
sequences, and the use of a learning rule that takes into account the recent
past activity of the cells: the ‘trace rule’. I proposed a new variant of the
trace rule that only reinforces the synapses between the most active cells,
and therefore can handle cluttered environments. I applied it on V1 complex
cells in the HMAX model, and demonstrated that, after exposure to natural
videos, the learning rule was indeed able to form pools of simple cells with
the same preferred orientation but with shifted receptive fields.

Taken together, these simulations suggest how the visual cortex could wire
itself. While still speculative at the time of writing the models presented here
all rely on widely accepted biophysical phenomena and are thus biologically
plausible. The psychophysical results of Chapter 4 are compatible with the
STDP models of Chapter 2 and 3.

Those last two models also demonstrate how the brain could easily make
use of information encoded in the spike times. Whether these spike times
contain additional information with respect to the averaged firing rates – a
theory referred to as ‘temporal coding’ – is controversial. Given that the
mechanisms proposed here are simple, efficient, and satisfy the known tem-
poral constraints coming from the experimental literature, they provide a
strong argument in favor of the use of temporal coding, at least when rapid
processing is involved.

Keywords: vision, object recognition, ultra-rapid visual categorization,
learning, temporal coding, spiking neurons, Spike Timing Dependent Plas-
ticity (STDP)



Résumé

Dans cette thèse je propose plusieurs mécanismes d’apprentissage qui
pourraient expliquer la rapidité, la sélectivité et l’invariance des réponses
neuronales dans le cortex visuel. J’expose également les résultats d’une ex-
périence de psychophysique pertinente, qui montrent que la familiarité peut
accélérer les traitements visuels.

Au Chapitre 2, je démontre que, au sein d’un model neuronal de la voie
ventrale de type ‘feedfoward’, la combinaison d’une part d’un schéma de
codage temporel dans lequel les neurones les plus stimulés déchargent en
premier, et d’autre part de la Spike Timing Dependent Plasticity (STDP),
amène à une situation dans laquelle les neurones des aires de haut niveau
deviennent graduellement sélectifs à des combinaisons fréquentes de primi-
tives visuelles. En outre, les réponses de ces neurones deviennent de plus en
plus rapides. Je crois fermement que de tels mécanismes sont à la base de la
remarquable efficacité du système visuel du primate.

Au Chapitre 3 je présente une autre étude, non spécifique à la vision,
dans laquelle un unique neurone reçoit des potentiels d’action (ou ‘spikes’)
provenant d’une population d’afférents qui déchargent continuellement. Il
s’avère, étonnamment, que la STDP permet de détecter puis de remonter des
patterns de spikes spatio-temporels même s’ils sont insérés dans des trains de
spikes ‘distracteurs’ de même densité – un problème computationnellement
complexe. La STDP permet donc l’utilisation d’un codage temporel, même
en l’absence d’une date de référence explicite. Etant donné que le mécanisme
présenté ici est simple et peu coûteux, il est difficile de croire que le cerveau
n’a pas évolué pour l’utiliser.

Une prédiction intéressante des modèles STDP des Chapitres 2 et 3 est
que les latences des réponses visuelles devraient diminuer après présentations
répétées d’un même stimulus. Au Chapitre 4 j’ai testé expérimentalement
cette prédiction, en inférant les temps de traitement visuels à partir de me-
sures comportementales. J’ai utilisé un paradigme de choix forcé saccadique,
avec comme cible toujours la même image répétée (une scène d’intérieur),
alors que les distracteurs (également des scènes d’intérieur) changeaient. Les

v



vi RÉSUMÉ

résultats mettent en évidence une accélération des temps de traitement de
l’ordre de 100 ms. La majeur partie de cet effet est imputable à l’apprentis-
sage de la tâche, mais environ 25 ms correspondent a de la familiarité avec
une image donnée. Ces 25 ms sont gagnées au bout de quelques centaines
de présentations. Bien sûr cela ne veut pas dire que les modèles STDP des
Chapitres 2 et 3 sont vrais – seulement qu’ils sont plausibles.

Au Chapitre 5 j’ai recherché les mécanismes d’apprentissage qui pour-
raient expliquer l’invariance de certaines réponses neuronales à certaines pro-
priétés du stimulus visuel comme la position ou la taille. Il a été proposé que
la connectivité appropriée pourrait être apprise à partir d’exposition passive
à des séquences de transformations continues, et d’une règle d’apprentissage
qui prend en compte l’activité de la cellule moyennée sur un passé récent : la
‘trace rule’. Je propose une nouvelle variante de cette ‘trace rule’ qui renforce
uniquement les synapses entre les cellules les plus actives, ce qui lui permet
de fonctionner dans des environnements chargés. Je l’ai appliquée sur les
cellules complexes de V1 dans le modèle HMAX, et on voit que, après expo-
sition à des vidéos naturelles, la loi d’apprentissage forme des ensemble de
cellules simples dont l’orientation préférée est la même, mais dont les champs
récepteurs sont décalés.

Les simulations présentées ici suggèrent comment le cortex visuel pourrait
s’auto-organiser. Même s’ils sont spéculatifs aujourd’hui, les modèles propo-
sés s’appuient tous sur des mécanismes biophysiques communément admis –
ils sont donc biologiquement plausibles. Les résultats de psychophysique du
Chapitre 4 sont compatibles avec les modèles STDP des Chapitres 2 et 3.

Ces deux derniers modèles démontrent aussi comment le cerveau pourrait
facilement tirer profit de l’information contenue dans les dates de spikes. Si
ces dates contiennent d’avantage d’information par rapport au taux de dé-
charge moyen – la théorie dite du ‘codage temporel’ – est controversé. Etant
donné que les mécanismes proposés ici sont à la fois simples, efficaces, et sa-
tisfont les contraintes temporelles provenant de la littérature expérimentale,
ils constituent un argument fort en faveur de l’utilisation de codage temporel,
du moins dans les traitements rapides.

Mots-clefs : vision, reconnaissance d’objets, catégorisation visuelle ultra-
rapide, apprentissage, codage temporel, neurones impulsionnels, Spike Ti-
ming Dependent Plasticity (STDP)
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Chapter 1

Introduction

1.1 Learning is the key

Activity driven refinement of local neural networks, through synaptic plastic-
ity and axon remodeling, is ubiquitous in developing neural systems, and is
a necessary supplement to the genetically programmed mechanism of laying
out coarse connections between brain areas (Katz and Shatz, 1996; Innocenti
and Price, 2005). In some cases, this refinement must occur at a given period
of development, said ‘critical’, otherwise the functionality of the network is
irreversibly impaired. For example Hubel and Wiesel demonstrated that ocu-
lar dominance columns in the lowest neocortical visual area of cats, V1, were
largely immutable after a critical period in development (Hubel and Wiesel,
1970). In congenitally blind people, the areas that would have become visual
are involved in other functions, such as audition or language processing (see
for example (Ofan and Zohary, 2007)). This means that an area ’s functions
largely emerges from experience, and are not hard-coded in the genes.

Among all the living organisms humans are probably the ones that learn
the most. New born humans are far from being operational and need con-
stant education and care for at least the first ten years of their lives. Wild
children’s development is severely impaired and lead to irreversible disfunc-
tions (Benzaquén, 2006). At birth our brain volume is only 25% of its adult
size (against 70% in the macaque). Most of the cerebral growth thus occurs
after birth, while the organism is perceiving the outside world, and interact-
ing with it. The acquisition of cognitive skills, and the underlying cerebral
maturation and brain area specialization, thus result from complex interac-
tions between experience and a genetically specified assembly program.

The cost of the long necessary training for humans is probably compen-
sated by the ability to adapt to new environments and to build on knowledge
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2 CHAPTER 1. INTRODUCTION

acquired by others, in particular across generations. This contrasts with more
primitive organisms, which are genetically programmed to behave in a more
fixed manner, but need less training.

From a computational point of view learning is arguably the key to un-
derstanding intelligence (Poggio and Smale, 2003), and has thus been studied
extensively by the Artificial Intelligence community. In the context of neural
networks learning can be defined as follow (Haykin, 1994):

Learning is a process by which the free parameters of a neural network are
adapted through a process of stimulation by the environment in which the
network is embedded. The type of learning is determined by the manner in
which the parameter changes take place.

Among all the potential parameters the synaptic weights are probably the
most important. In the cortex the number of connections from and to each
neuron is in the order of a few thousands, and activity-driven synaptic reg-
ulation has been observed both in vivo and in vitro. The key of intelligence
probably lies in this dense connectivity and its plasticity.

We distinguish supervised and unsupervised learning. Supervised learn-
ing requires a ‘teacher’, and is task-specific. For example a network can be
trained to classify between faces and non-faces images from a set of labeled
examples. The network is then able to generalize to new data to a certain
extent, that is to label previously unseen images. This capacity to generalize,
beyond the memory of specific examples, is critical (Poggio and Bizzi, 2004).
Vapnik and Chervonenkis showed that there is an optimal VC dimension for
the network (Vapnik and Chervonenkis, 1971) (the VC dimension is roughly
the capacity of the network to fit any set of training data). If it is too small
the network is not flexible enough to learn the training examples, let alone
to generalize. If it is too big the network behaves like a look-up table: it
does learn the specific training associations but does not generalize well to
new data, unless a huge amount of training data is available. Humans, by
being able to learn a new visual category from just a few examples, clearly
outperform any machine-learning algorithm today. How we generalize so well
remains a mystery.

In unsupervised (or self-organized) learning there is no external teacher
to oversee the learning process. However, providing the world is not random,
the network can tune itself to its statistical regularities. It can develop the
ability to form internal representations for encoding features of the input
and thereby to create new classes automatically (Becker, 1991). This type
of learning is task-independent: it only depends on the world’s statistics.
Unsupervised learning presumably dominates in the lower layers of the visual
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system.

1.2 Object recognition in the primate’s visual
cortex

The primate’s visual cortex processes the information coming from the retina
through the Lateral Geniculate Nucleus (LGN). It is made of several areas
that are roughly hierarchically organized (Felleman and Van Essen, 1991).
As can be seen on Fig. 1.1, it is generally assumed that the processing can be
divided in two pathways: the so-called ventral and dorsal streams (Mishkin
et al., 1983; DeYoe and Essen, 1988). The first one, also called the ‘what’
pathway, is primarily involved in object recognition (independently of the
object location), whereas the second one, also called the ‘where’ pathway
is mostly involved in spatial vision, object localization, and control of ac-
tion (Ungerleider and Haxby, 1994). From now on I am going to focus on
the ventral stream, which consists in a chain of neurally interconnected areas,
including the primary visual cortex V1, and the extrastriate visual areas V2,
V4 and IT.

Beyond IT, the Pre-Frontal Cortex (PFC) is thought to be involved in
linking perception to memory and action. It is probably there that the
categorization take place, essentially from the output of IT, using task specific
circuits (Freedman et al., 2001).

1.2.1 Selectivity & invariance in the ventral stream

Robust object recognition requires both selectivity – so that an object (or
object class) A is not confused with an object (class) B – and invariance
– so that the object (class) A is recognized whatever its position, scale and
whatever the viewpoint and lighting conditions, and eventually despite non-
rigid transformations (for example facial expressions) and, for categorization,
variations of shape within a class. Computer vision scientists know well how
difficult this problem is. For example two face portraits of two individuals A
and B are usually much more similar, in terms of low level image features,
than a face and a profile portrait of A. Yet our visual system robustly extracts
the identity the people in our visual fields, outperforming any computer vision
system. How do we do that?

Over the last decades, a number of physiological studies in non-human
primates have established several basic facts about the cortical mechanisms of
recognition in the ventral stream. The accumulated evidence points towards
two key features (see Fig. 1.2): from V1 to IT, there is a parallel increase in:
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1. the complexity of the optimal stimuli for the neurons (Perrett and
Oram, 1993; Desimone, 1991; Kobatake and Tanaka, 1994). That is
neurons respond selectively to objects that are more and more complex.
To be precise, V1 neurons’ preferred stimuli are oriented bars (Hubel
and Wiesel, 1959, 1968). In V2 many neurons are also orientation
selective (Hubel and Wiesel, 1965, 1970) but some encode combina-
tions of orientations such as angles (Boynton and Hegdé, 2004; Anzai
et al., 2007). Further along in the hierarchy, neurons in V4 respond
to features of intermediate complexity (Kobatake et al., 1998), such as
Cartesian and non-Cartesian gratings (Gallant et al., 1996) or combi-
nation of boundary conformations (Pasupathy and Connor, 1999, 2001,
2002). Beyond V4, in the Infero-Temporal cortex (IT), and particularly
in its anterior part (AIT) neurons are tuned to complex stimuli, for ex-
ample faces, hands and other body parts (Gross, 1972; Bruce et al.,
1981; Perrett et al., 1982; Rolls, 1984; Perrett et al., 1984; Baylis et al.,
1985; Perrett et al., 1987; Yamane et al., 1988; Hasselmo et al., 1989;
Perrett et al., 1991, 1992; Hietanen et al., 1992; Souza et al., 2005),
see (Logothetis and Sheinberg, 1996) for a review.

2. invariance of the responses to position and scale (Hubel and Wiesel,
1968; Perrett and Oram, 1993; Logothetis et al., 1995; Logothetis and
Sheinberg, 1996; Tanaka, 1996; Riesenhuber and Poggio, 1999), and
finally view point (Logothetis et al., 1995). This also means the size of
the Receptive Fields (RF) increases until IT (Perrett and Oram, 1993;
Tanaka, 1996). Understanding how these invariances are obtained –
while neurons remain selective to their preferred stimuli – is a major
challenge for visual neuroscientists. In V1, Hubel and Wiesel identified
two kinds of cells that differ in their functional properties: the simple
and the complex cells (Hubel and Wiesel, 1968). Both are orientation
selective, but the complex cells’ responses are more invariant to the
phase and/or position of the stimuli. To account for this invariance,
Hubel and Wiesel (1962) proposed that the complex cells could pool
their inputs from a group of simple cells tuned to the same orientation,
but with shifted receptive fields. A number of models have been built on
this proposal, extending the scheme to the whole hierarchy (Fukushima,
1980; LeCun and Bengio, 1998; Riesenhuber and Poggio, 1999; Wallis
and Rolls, 1997; Rolls and Milward, 2000; Stringer and Rolls, 2000;
Masquelier and Thorpe, 2007; Serre et al., 2007). How the appropriate
connectivity could be learnt remains largely unknown and is the subject
of Chapter 5. Lastly, one of the most striking aspect of the the shift and
scale invariance observed in higher area such as IT is that it does not
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seem to require exhaustive previous experience (Logothetis et al., 1995;
Hung et al., 2005). Show a monkey an object it has never seen before at
position P and scale S. This generates a set of IT responses R. Shifting
the object by a few degrees (∼4◦ for typical stimulus size of 2◦ ) or
rescaling it by a few octaves (∼2) will generate a new set of responses
R′ similar to R. Whether such invariance derives from a lifetime of
previous experience with other similar objects (feature sharing) or from
innate structural properties of the visual system or both, remains to be
determined. In any case, the observation that the adult IT population
has significant position and scale invariance for arbitrary ‘novel’ objects
provides a strong constraint for any explanation of the computational
architecture and function of the ventral visual stream (Hung et al.,
2005).

1.2.2 Speed

The speed of object recognition in cortex is an extremely useful piece of in-
formation since it allows to infer what could be the underlying neural compu-
tations and to exclude some type of processing that are too time-consuming.

The visual system seems to have an ‘fast recognition’ mode – the initial
phase of recognition before eye movements and high-level processes can play a
role – which is already surprisingly accurate. This ‘fast recognition’ has been
studied extensively in humans and monkeys by Thorpe and colleagues us-
ing ultra-rapid categorization paradigms (Thorpe et al., 1996; Fabre-Thorpe
et al., 1998; Rousselet et al., 2002; Bacon-Mace et al., 2005; Kirchner and
Thorpe, 2006; Girard et al., 2007). Recently, it has been found that when
two images are simultaneously flashed to the left and right of fixation, human
subjects can make reliable saccades to the side where there is a target animal
in as little as 120-130 ms (Kirchner and Thorpe, 2006). If we allow 20-30 ms
for motor delays in the oculomotor system, this implies that the underlying
visual processing can be done in 100 ms or less. The same protocol has just
been used with monkeys, leading to even faster minimal reaction times of
about 100 ms (Girard et al., 2007). Fig. 1.3 illustrates the time course of
visual and motor processing in a go-no go task.

This psychophysical result is backed-up by electrophysiology in monkeys.
The responses in IT begin 80-100 ms after onset of the visual stimulus, and
are selective from the very beginning (Oram and Perrett, 1992), here to faces
and heads, even in Rapid Serial Visual Presentation (RSVP) paradigms,
when the preferred image is hidden in a continuous flow at rates up to 72
images per seconds (Keysers et al., 2001). More recently, recordings in
IT showed that spike counts over time bins as small as 12.5 ms (which pro-
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Figure 1.3: The feedforward circuits involved in a go-no go rapid visual
categorization task in monkeys. At each stage two latencies are given: the
first is an estimate of the earliest neuronal responses to a flashed stimulus,
whereas the second provides a more typical average latency. Reproduced
with permission from (Thorpe and Fabre-Thorpe, 2001)
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Figure 1.4: Constraints on computation time in an ultra-rapid visual cat-
egorization task (adapted from (Thorpe and Imbert, 1989)). The shortest
path from the retina to IT has at least 10 neuronal layers. At each stage two
latencies are given: the first is an estimate of the earliest neuronal responses
to a flashed stimulus, whereas the second provides a more typical average la-
tency. The time window available for a neuron to perform its computation is
in the order of 10 ms, and will rarely contain more than one spike. Feedback
is almost certainly ruled out.
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duce essentially a binary vector with either ones or zeros) and only about
100 ms after stimulus onset contain remarkably accurate information about
the nature of a visual stimulus (Hung et al., 2005).

These temporal constraints are extremely severe: given than about 10
neuronal layers separate IT from the retina (see Fig. 1.4), they leave about
10 ms of processing time for each neuron (Thorpe and Imbert, 1989). Since
firing rates are seldom above 100 Hz in the visual system, this 10 ms window
will rarely contain more than one spike. So talking about the firing rate
of one neuron in this ‘fast recognition’ mode makes little sense, though we
can talk about the firing rate of a population of neurons (see also 1.4.1).
We can also talk about individual spike times. These spike times have been
largely ignored by most of the neuroscientists: since Adrian recorded sensory
neurons in the 1920’s and reported that their mean firing rates increased with
the intensity of the stimulus (Adrian, 1928) it has been commonly assumed
that these rates encode most of the information. However this view is under
challenge, as we will see in Section 1.3.

These severe temporal constraints have another major implication: they
almost certainly rule feedback out (see Fig. 1.4), and suggests that a core hi-
erarchical feedforward architecture may be a reasonable starting point for
a theory of visual cortex aiming to explain ‘fast recognition’. This hy-
pothesis is backed up by the fact that feedforward-only models have been
shown to perform very well on object recognition in natural non-segmented
images (Masquelier and Thorpe, 2007; Serre et al., 2007), sometimes even
matching the human performance with backward masking (Serre et al., 2007).

1.3 Learning and plasticity in the visual cortex

In the developing animal, ‘rewiring’ experiments (see (Horng and Sur, 2006)
for a recent review), which re-route inputs from one sensory modality to
an area normally processing a different modality, have now established that
visual experience can have a pronounced impact on the shaping of cortical
networks. How plastic is the adult visual cortex is however still a matter of
debates.

From the computational perspective, it is very likely that learning may
occur in all stages of the visual cortex. For instance if learning a new task
involves high-level object-based representations, learning is likely to occur
high-up in the hierarchy, at the level of IT or PFC. Conversely, if the task to
be learned involves the fine discrimination of orientations like in perceptual
learning tasks, changes are more likely to occur in lower areas at the level
of V1, V2 or V4 (see (Ghose, 2004) for a review). It is also very likely
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that changes in higher cortical areas should occur at faster time scales than
changes in lower areas.

By now there has been several reports of plasticity in all levels of the
ventral stream of the visual cortex (see (Kourtzi and DiCarlo, 2006), i.e. both
in higher areas like PFC (Rainer and Miller, 2000; Freedman et al., 2003;
Pasupathy and Miller, 2005) and IT (see for instance (Logothetis et al.,
1995; Rolls, 1995; Kobatake et al., 1998; Booth and Rolls, 1998; Erickson
et al., 2000; Sigala and Logothetis, 2002; Baker et al., 2002; Jagadeesh et al.,
2001; Freedman et al., 2006) in monkeys or the LOC in humans (Dolan
et al., 1997; Gauthier et al., 1999; Kourtzi et al., 2005; Op de Beeck et al.,
2006; Jiang et al., 2007). Plasticity has also been reported in intermediate
areas like in V4 (Yang and Maunsell, 2004; Rainer et al., 2004) or even lower
areas like V1 (Singer et al., 1982; Karni and Sagi, 1991; Yao and Dan, 2001;
Schuett et al., 2001; Crist et al., 2001), although their extent and functional
significance is still under debate (Schoups et al., 2001; Ghose et al., 2002;
DeAngelis et al., 1995).

Supervised learning procedures to validate Hebb’s covariance hypothesis
in vivo in the visual cortex at the cellular level have also been proposed. The
covariance hypothesis predicts that a cell’s relative preference between two
stimuli could be displaced towards one of them by pairing its presentation
with imposed increased responsiveness (through iontophoresis). It was indeed
shown possible to durably change some cells’ RF properties in cat primary
visual cortex, such as ocular dominance, orientation preference, interocular
orientation disparity and ON or OFF dominance, both during the critical
developmental period (Frégnac et al., 1988) and in adulthood (McLean and
Palmer, 1998; Frégnac and Shulz, 1999). More recently, a similar proce-
dure was used to validate the Spike Timing Dependent Plasticity (see Sec-
tion 1.7.1) in developing rat visual cortex (Meliza and Dan, 2006) using in
vivo whole-cell recording.

Altogether the evidence suggests that learning plays a key role in deter-
mining the wiring and the synaptic weights of visual cortex cells.

1.4 Theoretical neuroscience

1.4.1 Rate coding, temporal coding and population cod-
ing

Where neural information processing is concerned, it is usually assumed that
spikes are the basic currency for transmitting information between neurons,
the reason being that they can propagate over large distances. How the brain
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actually uses them to encode information remains more controversial.
Spikes have little variation in amplitude and duration (about 1 ms). They

are thus fully characterized by their dates (the idea that this spike dates
indeed contain information is referred to as ‘temporal coding’). However
many electrophysiologists report that the individual dates are not always
reliable. Summarizing them by counting how many spikes occurred in a
given time window (i.e. computing a mean firing rate) usually leads to more
reproducible values. Whether information is lost in this averaging operation
has been the object of an on going debate for some time. (the idea that
most of the information remains in the averaged rate is referred to as ‘rate
coding’).

The answer probably depends on the size of the time window. If too
big, averaged values may fail to capture some dynamical aspects of the re-
sponses. It is thus tempting to use a small window, and compute a more
‘instantaneous’ firing rate. However to estimate the firing rate of one neu-
ron the time window must contain at least a few spikes. The minimal time
window is thus in the order of a few typical Inter Spike Intervals (ISI). This
is sometimes longer than the order of magnitude of some behavioral times,
ruling out the hypothesis that the individual firing rates are indeed used in
the neural computations that underlie the behavior.

Electrophysiologists can sometimes reduce this window by averaging over
several runs, with carefully controlled conditions. Obviously this solution is
not possible in the brain. However the same result could be obtained by
averaging over a population of redundant neurons with similar selectivity.
This is referred to as ‘population coding’ and is indeed a possibility, though
costly in terms of number of neurons (Gautrais and Thorpe, 1998).

In this thesis, I explored another possibility. I assumed individual spike
times were (somewhat) reliable, despite what some electrophysiologists think,
and investigated how information could be encoded and decoded in those
spike times.

1.4.2 Randomness, noise, and unknown sources of vari-
ability

According to Laplace, randomness is only a measure of our “ignorance of the
different causes involved in the production of events.” (Laplace, 1825). Throw
a dice. You cannot guess the number that will come out. But theoretically, if
you knew the initial conditions (speed and position of the dice) with enough
precision, and used an fine enough model, you could compute it. The more
chaotic the system (high sensitivity to the initial conditions), the more you
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need to know the initial conditions with accuracy. Now build a machine
capable to throw the dice always at the same position and speed. If the
machine is accurate enough, the the number which comes out will always be
the same. Thus the dice by itself is not a random number generator.

Whether we live in a deterministic world or not, and the implications
for the notion of free will, have been the object of a raging debate for some
centuries, involving both scientists and philosophers. It is out of the scope
of this thesis. However there is generally a consensus on that in realistic
experiences there is always a limit on how accurately controlled the conditions
are, and there are usually non-controlled ones. Both can lead to unexplained
variability in the results that we call ‘noise’ (even though the term can be
misleading and I prefer the term ‘unexplained variability’).

In the field of neuroscience, this variability is huge. According to the
semi-serious Harvard Law of Animal Behavior: “Under carefully controlled
experimental circumstances, an animal will behave as it damned well pleases”.
Electrophysiologists also report variability in their measures. But inferring
a lack of precision in the neural code from observations of variability is haz-
ardous. In this thesis, I will argue that the variability in some recorded spike
times, in particular in the visual system, could come from non-controlled
variables that might also affect neuronal activation, such as attention, eye
movements, mental imagery, top-down effects etc. This is even more true
for higher order neurons, because they do not only receive input from the
retina, so the total input for these neurons is basically unknown. As Barlow
wrote about neural responses in 1972, “their apparently erratic behavior was
caused by our ignorance, not the neuron’s incompetence.” (Barlow, 1972).

1.4.3 Neuronal models

Computational neuroscientists have come-up with more or less detailed neu-
ronal models. At which level the neurons should be modeled in a neural
network model is always a difficult question. The neuronal model should
capture all the essential mechanisms that underlie the network’s functional-
ity, and, to save time, avoid computing side effects which do not impact this
functionality. This is easier said than done.

A somewhat coarse model is the firing rate model. It is an approximation
of how a neuron behaves in a steady regime. The input spikes are then
summarized by a firing rate xj for each afferent (it thus ignores, among
other things, that simultaneous presynaptic spikes are more efficient than
distant ones in triggering a postsynaptic one). The output spikes are also
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summarized as a firing rate y, given by:

y = f

(∑
j

wj · xj

)
(1.1)

f is the transmission function that is increasing and usually non-linear. In
particular f usually saturates above a certain value, because the output firing
rate is limited by the refractory period. A popular choice for f is a sigmoid.

This model, although very simplified, is extremely popular, in particular
among the Artificial Intelligence community. For example the well known
perceptron or the Self-Organizing Maps (SOM) both use rate-based neuronal
models.

In the firing rate model the individual spikes are not modeled. When
needed, some authors sometimes generate them through a stochastic process
(usually Poisson). The existence of such randomness in the true spike gener-
ation process is somewhat dubious, especially because we know that neurons
stimulated directly by current injection in the absence of synaptic input give
highly stereotyped and precise responses (Mainen and Sejnowski, 1995).

Another drawback of the firing rate model is the assumption of a steady
regime. It thus fails to capture the transients, which are probably the most
interesting aspects of neural computation, especially when rapid processing
is involved.

For these reasons, in most the work presented here I have used the (Leaky)
Integrate-and-Fire model, in which individual input and output spikes are
modeled. A neuron is modeled as a capacitor C in parallel with a leaking
resistance R driven by an input current I(t). The membrane potential u is
thus driven by:

C · du

dt
= I(t)− u(t)

R
(1.2)

If we multiply Eq. 1.2 by R and introduce the membrane time constant
τm = RC of the leaky integrator, it follows:

τm ·
du

dt
= R · I(t)− u(t) (1.3)

If the input current I(t) is in fact generated by the arrival of presynaptic
spikes s at several synapses indexed by j, with weights wj, and at times t

(s)
j

it has the form:
I(t) =

∑
j

wj ·
∑

f

α(t− t
(s)
j ) (1.4)

where α is a kernel that expresses the current generated by one input spike
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and that we will not detail here.
The LIF neuron also has a threshold. When it is reached, due to the

nearly simultaneous arrival of several presynaptic spikes, a postynaptic spike
is emitted. This is followed by a negative after potential and a refractory
period, during which the membrane potential is set to a resting value. Then
Eq. 1.3 holds again. Fig. 1.5 illustrates those points.

Finer biophysical neuronal models also exists such as conductance-based
IF (gIF) models (Destexhe, 1997), the Hodgkin-Huxley model (Hodgkin and
Huxley, 1952) or compartmental models (see (Brette et al., 2007) for a recent
review on spiking neuron models). They provide a detailed description of how
one single neuron behaves, but their computational cost is usually prohibitive
for network applications like the ones I investigate in this thesis. The LIF
model is widely accepted as a decent approximation of real neurons and I
assumed it did capture all the essential mechanisms.

1.5 Evidence for temporal coding in the brain

Since Adrian recorded sensory neurons in the 1920’s and reported that their
mean firing rates increased with the intensity of the stimulus (Adrian, 1928)
it has been commonly assumed that these rates encode most of the informa-
tion processed by the brain. According to this view the spike generation is
supposed to be a stochastic process, usually assumed to be Poisson. The sig-
nature of such a Poisson process is that the spike count over a time interval
has a variance equal to its mean across trials (the ratio of both quantities is
called the Fano factor and it thus equal to 1 for a Poisson process).

However the conventional view is under challenge. First various recent
studies show that some neuronal responses are too reliable for the Poisson
hypothesis to be tenable: for example Liu et al. (2001) and (Uzzell and
Chichilnisky, 2004) find a Fano factor of about 0.3 in the retina and in the
LGN respectively. Amarasingham et al. (2006) also proves that the Poisson
hypothesis should be rejected for the first part of IT responses, from 100 ms
to 300 ms after stimulus onset.

Second spike times are found reproducible in many neuronal systems (see
Table 1.1), sometimes with millisecond precision. The time reference is either
the onset of a stimulus, the maximum of a brain oscillation, or other spike
times in case of spike patterns. These spike times are shown to encode infor-
mation, sometimes complementary with respect to the information encoded
in the rates: for example in monkeys Gawne et al. (1996) found that some
V1 neurons encode the stimulus form in their rates and the stimulus contrast
in their latency, and Kiani et al. (2005) showed that IT responses’ latencies
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Figure 1.5: Leaky Integrate-and-Fire (LIF) neuron. Here is an illustrative
example with only 6 input spikes. The graph plots the membrane potential as
a function of time, and clearly demonstrates the effects of the 6 corresponding
Excitatory PostSynaptic Potentials (EPSP). Because of the leak, for the
threshold to be reached the input spikes need to be nearly synchronous. The
LIF neuron is thus acting as a coincidence detector. When the threshold is
reached, a postsynaptic spike is fired. This is followed by a refractory period
of 1 ms and a negative spike-afterpotential.
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were shorter for human faces than for animal faces, although both resulted
in the same response magnitude.

In spontaneous activity, several second long firing sequences have also
been found reproducible in slices of mouse primary visual cortex or in intact
cat primary visual cortex in vivo (Ikegaya et al., 2004). Such long sequences,
called ‘cortical songs’, could be generated by synfire chains (Abeles, 2004),
that is series of pools of neurons connected in a feedforward manner. Note
that the relevance of such long cortical songs in vivo is controversial because
they could emerge by chance (McLelland and Paulsen, 2007; Mokeichev et al.,
2007). However the spikes of the first 100 ms after the onset of an active
period (‘UP state’) occur with up to millisecond precision (Luczak et al.,
2007).

Other authors report a higher variability in the spike times. But first the
variability could also come from the use of an inappropriate time reference.
For example the stimulus onset is often used, while using the population ac-
tivation onset (i.e. measuring the relative neuron’s latency with respect to its
neighbors) sometimes lead to more reproducible and informative values Chase
and Young (2007). This of course requires simultaneous multi-units record-
ing. When oscillations are present, using their maximums as a time reference
(i.e. measuring the phase of the spikes) may lead to more reproducible values
than the absolute latencies. For example Fries et al. (2001) recorded neu-
rons in cat primary visual cortex and showed that their absolute latencies
could be prolonged or shortened from one trial to another (depending on
when the stimulus was presented with respect to the phase of a LFP gamma-
oscillation) but their phase with respect to the gamma-cycle reference frame
remained roughly constant (Fries et al., 2007).

Second, as said above in Section 1.4.2, such variability, could come from
non-controlled variables.

1.6 Models of object recognition in cortex

1.6.1 Feedforward and feedback

The vast majority of models of object recognition in cortex today are feedfor-
ward only, and ignore back-projections (Fukushima, 1980; LeCun and Ben-
gio, 1998; Riesenhuber and Poggio, 1999; Wallis and Rolls, 1997; Rolls and
Milward, 2000; Stringer and Rolls, 2000; Ullman et al., 2002; Masquelier and
Thorpe, 2007; Serre et al., 2007). This is somewhat surprising as the circuitry
of the cortex involves a massive amount of backprojections that convey infor-
mation from higher areas back to the lower areas (Felleman and Van Essen,
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1991). The anatomy has been extensively studied in the visual system where
it is clear that feedforward connections constitute only a small fraction of the
total connectivity (Douglas and Martin, 2004). For example about as many
neurons project from V2 to V1 as from V1 to V2.

The main justification for these feedforward-only models is that the visual
system seems to have an ‘fast recognition’ mode in which feedback is probably
largely inactive (see Section 1.2.2). It is this mode, and only this mode that
the feedforward models attempt to simulate. In this thesis, I will focus on
feedforward-only models.

However, feedback and top-down mechanisms, particularly those that
handle attentional effects have also been modeled. Deco and colleagues
looked at top-down attention (Deco and Zihl, 2001; Deco and Lee, 2002;
Rolls and Deco, 2002; Deco and Rolls, 2004, 2005). They use mean-field neu-
rodynamical approaches in which attention is modeled as a top-down input
that bias the competition between neurons of a same area. Some authors also
studied bottom-up (image-based) attention which postulates that the most
salient features are attended first, see for example (Tsotsos et al., 1995; Itti
and Koch, 2000).

1.6.2 Static, single spike wave and mean field approxi-
mations

As for single neurons (see Section 1.4.3), the question of at which level a
network should be modeled is tricky. A proper way to answer it would be
to model it at the ‘finest possible level’, and investigate a posteriori how
legitimate is a given approximation. Unfortunately it is not always possible
to define such finest possible level. Furthermore this approach is often too
computationally expensive. Modelers thus attempt to justify approximations
a priori.

As far as the visual system modeling is concerned, three simplifications
are usual, and can be used independently. The first one is the assumption of
steady neuronal activities, meaning time can be removed from the equations,
and it is very common (for example made by (Fukushima, 1980; Riesen-
huber and Poggio, 1999; Wallis and Rolls, 1997; Rolls and Milward, 2000;
Stringer and Rolls, 2000; Serre et al., 2007)) Firing rates can thus be defined
at the neuronal level, and rate-based neuronal models can be used (see 1.4.3).
However the assumption of a steady regime is dubious. As said before there
is psychophysical and electrophysiological evidence showing that high level
recognition can be done in 100 ms or less in humans (see 1.2.2). This means
a steady regime in terms of firing rates has not enough time to settle, at least
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at the neuronal level. Models based on firing rates may thus fail to capture
some key transient mechanisms of this ‘fast recognition’ process. This is the
reason why I did not use them, except for the work on invariance learning
of Chapter 5. Furthermore, static models are inherently unable to deal with
dynamical stimuli, such as videos or RSVP.

The second approximation is completely different: it consists in limit-
ing the simulation to the first spike emitted by each neuron after onset of
the visual stimulus, like in most of the studies done by Thorpe and col-
leagues (VanRullen et al., 1998; Perrinet et al., 2001; Delorme et al., 2001;
VanRullen and Thorpe, 2001, 2002; Perrinet et al., 2004b; Masquelier and
Thorpe, 2007). The justification for it is that, as said in section 1.2.2, the
time window available for each neuron to perform the computation which un-
derlie ‘fast recognition’ is in the order of 10 ms and will rarely contain more
than one spike. This approximation enormously simplifies the computations:
irrespective of the actual anatomical connectivity, a network in which each
neuron only ever fires one spike is by definition a pure feed-forward network,
because a neuron activity cannot influence itself through any loop. Activity
is thus modeled as a single spike volley (also called spike wave) that prop-
agates across the layers of the network. Between two successive volleys all
the membrane potential are reset to their resting values. This approach also
means that we do not have to worry about the effects of refractory periods
and synaptic dynamics such as depression due to depletion etc. Because
of the discrete processing though, these models cannot deal with dynamical
stimuli.

The third approximation is the mean field approach, in which neurons
are not considered individually, but modeled in population of neurons with
similar characteristics and connectivity (Deco and Zihl, 2001; Deco and Lee,
2002; Rolls and Deco, 2002; Deco and Rolls, 2004, 2005). Individual spike
times are lost, but a population firing rate can be defined over small time
windows. The approach is thus dynamical and can deal with dynamical
stimuli. The main drawback of the method is that individual spike times are
lost, which excludes the possibility that they could be informative, and spike
timing-dependent phenomenon such as STDP (see Section 1.7.1) cannot be
modeled.

1.6.3 Weight-sharing

Most of the bio-inspired hierarchical networks use restricted receptive fields
and weight-sharing, i.e. each cell and its connectivity is duplicated all posi-
tions and scales (Fukushima, 1980; LeCun and Bengio, 1998; Riesenhuber
and Poggio, 1999; Ullman et al., 2002; Masquelier and Thorpe, 2007; Serre
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et al., 2007) Networks using these techniques are called convolutional net-
works.

In a learning network weight-sharing allows shift-invariances to be built
by structure (and not by training). It reduces the number of free parame-
ters (and therefore the VC dimension (Vapnik and Chervonenkis, 1971)) of
the network by incorporating prior information into the network design: re-
sponses should be scale and shift invariant. This greatly reduces the number
of training examples needed. Note that this technique of weight sharing could
be applied to other transformations than shifting and scaling, for instance
rotation and symmetry.

However, it is difficult to believe that the brain could really use weight
sharing. Indeed learning is problematic with such a scheme since, as noted
by Földiák (Földiák, 1991), updating the weights of all the simple units
connected to the same complex unit is a non-local operation. We will see in
Chapter 5 how approximative weight-sharing could be implemented in the
brain.

1.7 Spike Timing Dependent Plasticity (STDP)

1.7.1 Experimental evidence

Experimental studies have observed Long Term synaptic Potentiation (LTP)
when a presynaptic neuron fires shortly before a postsynaptic neuron, and
Long Term Depression (LTD) when the presynaptic neuron fires shortly af-
ter, a phenomenon known as Spike Timing Dependant Plasticity (STDP).
The amount of modification depends on the delay between the two events:
maximal when pre- and post-synaptic spikes are close together, the effects
gradually decrease and disappear with intervals in excess of a few tens of
milliseconds (Bi and Poo, 1998; Zhang et al., 1998; Feldman, 2000). An
exponential update rule fits well the synaptic modifications observed exper-
imentally (Bi and Poo, 2001) (see Fig. 1.6).

STDP is now a widely accepted physiological mechanism of activity-
driven synaptic regulation. It has been observed extensively in vitro (Markram
et al., 1997; Bi and Poo, 1998; Zhang et al., 1998; Feldman, 2000), and more
recently in vivo in Xenopus’s visual system (Vislay-Meltzer et al., 2006; Mu
and Poo, 2006), in the locust’s mushroom body (Cassenaer and Laurent,
2007), and in the rat’s visual (Meliza and Dan, 2006) and barrel (Jacob
et al., 2007) cortex. Very recently, it has also been shown that cortical reor-
ganization in cat primary visual cortex is in accordance with STDP (Young
et al., 2007).
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Figure 1.6: The STDP modification function. The additive synaptic weight
updates as a function of the difference between the presynaptic spike time
and the postsynaptic one is plotted. An exponential update rule fits well
the synaptic modifications observed experimentally (Bi and Poo, 2001). The
left part corresponds to Long Term Potentiation (LTP) and the right part to
Long Term Depression (LTD).

Note that STDP is in agreement with Hebb’s postulate because it rein-
forces the connections with the presynaptic neurons that fired slightly before
the postsynaptic neuron, which are those which ‘took part in firing it’. As a
result, it reinforces causality links : if an input I causes the neuron N to fire,
next time I occurs N is even more likely to fire, and it is also more likely to
fire earlier with respect to the beginning of I. As we will see later these two
effects of STDP are crucial.

1.7.2 Previous modeling work

STDP has received considerable interest from the modeling community over
the last decade. Here I review relevant previous computational studies.

In an influential paper Song et al. (2000) demonstrated the competitive
nature of STDP: synapses compete for the control of the postsynaptic spikes.
This competition stabilizes the synaptic weights: because not all the synapses
can ‘win’ (i.e. be potentiated) the sum of the synaptic weights is naturally
bounded, without the need for additional normalization mechanism. Further-
more, when the system is repeatedly presented with similar spike patterns,
the winning synapses are those through which the earliest spikes arrive (on
average). The ultimate effect of this synaptic modification is to make the the
postsynaptic neuron respond more quickly.

Gerstner and Kistler (2002) reproduced those main results and also demon-
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Figure 1.7: Intensity-to-latency conversion. (a) For a single neuron, the
weaker the stimulus, the longer the time-to-first-spike. (b) When presented
to a population of neurons, the stimulus evokes a spike wave, within which
asynchrony encodes the information (reproduced with permission from Guy-
onneau et al. (2004))

strated that STDP increased the postynaptic spike time precision by selecting
inputs with low time jitter.

Guyonneau et al. (2005) tested the robustness of Song et al. (2000)’s re-
sults in more challenging conditions, including spontaneous activity or jitter.
Furthermore they also demonstrated that neither firing rate or even syn-
chrony are relevant in the STDP selection process: only the latency matters.

STDP was also applied in visual cortex models with asynchronous spike
propagation. Those models assumed one spike per neuron only (see Sec-
tion 1.6.2), and an intensity-to-latency conversion in the first layer (see
Fig. 1.7).

Delorme et al. (2001) and Guyonneau (2006) both showed that V1 simple
cells’ Gabor style orientation selectivity could emerge by applying STDP
on spike trains coming from LGN ON- and OFF-center cells modeled as
Difference-of-Gaussian (DoG) filters.

Guyonneau et al. (2004) used Gabor filters as inputs and propagated the
same image repeatedly. The earliest spikes thus corresponded to the most
salient edges of the image. By concentrating weights on the corresponding
synapses STDP led to an interesting visual form detector, as can be seen on
Fig. 1.8. Note that this study differs from the one presented in Chapter 2 in
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that it is holistic and not feature-based.

1.8 Original contributions

1.8.1 STDP-based visual feature learning

In this study I essentially put together three ideas in the literature:

1. Multi-layer hierarchical models for robust feature-based object recog-
nition, exemplified by (Fukushima, 1980; LeCun and Bengio, 1998;
Riesenhuber and Poggio, 1999; Wallis and Rolls, 1997; Rolls and Mil-
ward, 2000; Stringer and Rolls, 2000; Serre et al., 2007) (but none of
these models learns in a biologically plausible manner)

2. Time-to-first spike coding. In the first layers of the network the more
strongly a cell is activated the earlier it fires a spike as in (VanRullen
et al., 1998; VanRullen and Thorpe, 2001).

3. STDP. Neurons at later stages of the system implement STDP, which
had been shown to have the effect of concentrating the synaptic weights
on afferents that systematically fire early, which causes the postsynaptic
spike latency to decrease (Song et al., 2000; Gerstner and Kistler, 2002;
Guyonneau et al., 2005).

I demonstrated that when such a hierarchical system is repeatedly pre-
sented with natural images, the intermediate level neurons equipped with
STDP naturally become selective to patterns that are reliably present in the
input, while their latencies decrease, leading to both fast and informative
responses. This process occurs in an entirely unsupervised way, but I then
showed that these intermediate features are able to support robust catego-
rization.

The resulting model is appealing because it has some of the properties
of other hierarchical models (robust object recognition without combinato-
rial explosion), but can recognize objects quickly, as has been suggested in
experimental literature.

This study has been published:

Masquelier T, Thorpe SJ (2007) Unsupervised learning of visual features
through spike timing dependent plasticity. PLoS Comput Biol 3(2): e31.
doi:10.1371/journal.pcbi.0030031

The original paper can be found on Section A.1. Preliminary results on
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Figure 1.8: Einstein: STDP learning of a V1-filtered face. A population of
V1-like cells encodes an orientation for each pixel in the image presented to
the network (here, Einstein’s face); each cell acts as an intensity-to-latency
converter where the latency of its first spike depends on the strength of
the orientation in its receptive field. Time taken to achieve recognition of
the stimulus decreases (middle column) while a structured representation
emerges and stabilizes (left column) that is built upon the earliest afferents
of the input spike wave (right column). Note that the information concerning
the evolution of the synaptic weights in the course of learning is represented
twice on this figure. First in the distribution of synaptic weights on the right.
It is also present in the receptive field on the left, that is linearly reconstructed
based on the synaptic weights and the selectivity of the corresponding afferent
neurons (here, orientation selective filters). Reproduced with permission from
Guyonneau et al. (2004)
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face feature learning were also presented in the conference NeuroComp 2006,
Pont-à-Mousson, France (see Section B.2 for the conference paper and poster).

1.8.2 STDP-based spike pattern learning

The main limitation in the above-mentioned work on STDP-based visual
feature learning – as well as in many STDP studies (Song et al., 2000; Delorme
et al., 2001; Guyonneau et al., 2005; Gerstner et al., 1996) – is the assumption
that the input spikes arrive in discrete volleys, each one corresponding to
the presentation of one stimulus (or the maximum of a brain oscillation).
The stimulus onset (or the maximum of the oscillation) is then an explicit
time reference that allows defining a time-to-first spike (or latency) for each
neuron. What happens in a more continuous world was unclear.

This is the reason why I started a second study, presented in Chapter 3,
not restricted to vision, where one receiving STDP neuron integrates spikes
from a continuously firing neuron population. It turns out, somewhat sur-
prisingly, that STDP is able to find and track back through spatio-temporal
spike patterns, even when embedded in equally dense ‘distractor’ spike trains
– a computationally difficult problem.

STDP thus enables some form of temporal coding, even in the absence
of an explicit time reference. This means that global discontinuities such as
saccades or micro-saccades in vision and sniffs in olfaction, or brain oscilla-
tions in general are not necessary for STDP-based learning. Given that the
mechanism exposed here is simple and cheap it is hard to believe that the
brain did not evolve to use it.

This second study has also been published:

Masquelier T, Guyonneau R, Thorpe SJ (2008) Spike Timing Dependent
Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains.
PLoS ONE 3(1): e1377. doi:10.1371/journal.pone.0001377

The original paper can be found on Section A.2.

1.8.3 Visual learning experiment

One of the predictions of the two STDP models of Chapters 2 and 3 is that
visual responses’ latencies should decrease after repeated presentations of
a same stimulus. In Chapter 4 I tested this prediction experimentally by
inferring the visual processing times through behavioral measures.

In a previous study Fabre-Thorpe et al. (2001) looked for an eventual
experience-induced speed-up effect, using the animal/non-animal manual
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go/no-go paradigm of Thorpe et al. (1996). An extensive training with 200
animal images over a 3-week period failed to increase the speed of process-
ing. Two reasons may explain this negative result: first we may be already
experts in animal/non-animal classification, second go/no-go is usually less
appropriate than saccadic forced choice to reveal subtle differences between
conditions (Simon Thorpe, personal communication).

I thus used the saccadic forced-choice paradigm (Kirchner and Thorpe,
2006; Guyonneau et al., 2006; Bacon-Macé et al., 2007; Fletcher-Watson
et al., 2007; Girard et al., 2007), in which one target image and one dis-
tractor image are flashed simultaneously on both sides of a fixation cross,
and the participant is asked to move his eyes towards the target as fast as
possible. Both accuracy (i.e. correct response rate) and reaction times are
recorded. Here the target was always the same repeating image (an interior
scene), while the distractors were changing (other interior scenes).

The experiment did reveal a familiarity-induced speed-up effect of about
100 ms. Most of it can be attributed to the learning of the task but a 25 ms
effect corresponds to the familiarity with a given image, and is reached after
a few hundred presentations.

1.8.4 Invariance learning

This work, presented in Chapter 5, has been done in collaboration with
Thomas Serre and Tomaso Poggio, of the McGovern Institute for Brain Re-
search, MIT. We presented preliminary results at the VSS 07 Conference,
Sarasota, FL, USA (see Section B.3 for the conference abstract and poster),
and we wrote a memo:

Masquelier T, Serre T, Thorpe S and Poggio T (2007) Learning complex
cell invariance from natural videos: a plausibility proof. CBCL Paper #269
/ MIT-CSAIL-TR #2007-060, Massachusetts Institute of Technology, Cam-
bridge, MA, USA. http://hdl.handle.net/1721.1/39833

We investigated the learning mechanisms that could account for the invari-
ance of certain neuronal responses to some stimulus properties such as loca-
tion or scale (see Section 1.2.1). It has been proposed that the appropriate
connectivity could be learnt by passive exposure to smooth transformation
sequences, and the use of a learning rule that takes into account the recent
past activity of the cells: the ‘trace rule’ (Földiák, 1991), so as to extract
slowly varying representations (Slow Feature Analysis (SFA) (Wiskott and
Sejnowski, 2002) is an alternative equivalent implementation (Sprekeler et al.,
2007)). However as pointed out by Spratling (2005), the trace rule by itself is

http://hdl.handle.net/1721.1/39833
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inappropriate when multiple objects are present in a scene: it cannot distin-
guish which input corresponds to which object, and it may end-up combining
multiple objects in the same representation.

We proposed a new variant of the trace rule that only reinforces the
synapses between the most active cells, and therefore can handle cluttered en-
vironments. We applied it on V1 complex cells in the HMAX model (Riesen-
huber and Poggio, 1999; Serre et al., 2005a, 2007), and demonstrated that,
after exposure to natural videos, the learning rule was indeed able to form
pools of simple cells with the same preferred orientation but with shifted
receptive fields.



Chapter 2

STDP-based visual feature
learning

This Chapter presents an extended and updated version of the published
paper (Masquelier and Thorpe, 2007):

Masquelier T, Thorpe SJ (2007) Unsupervised learning of visual features
through spike timing dependent plasticity. PLoS Comput Biol 3(2): e31.
doi:10.1371/journal.pcbi.0030031

The original paper can be found on Section A.1. Preliminary results on
face feature learning were also presented in the conference NeuroComp 2006,
Pont-à-Mousson, France (see Section B.2 for the conference paper and poster).

2.1 Résumé

De nombreuses études expérimentales ont observé une Long Term Poten-
tiation (LTP) quand un neurone pré-synaptique décharge peu de temps avant
un neurone post-synaptique, et une Long Term Depression (LTD) quand le
neurone pré-synaptique décharge peu de temps après, un phénomène connu
sous le nom de Spike Timing Dependent Plasticity (STDP) (Bi and Poo, 1998;
Markram et al., 1997; Zhang et al., 1998; Feldman, 2000; Vislay-Meltzer et al.,
2006; Mu and Poo, 2006; Cassenaer and Laurent, 2007). Quand on présente
successivement à un neurone des trains de spikes similaires en entrée on sait
que STDP a pour effet de concentrer les poids synaptiques sur les afférents
qui déchargent systématiquement en premier, ce qui diminue la latence du
spike post-synaptique (Song et al., 2000; Guyonneau et al., 2005).

Ici, on utilise cette règle dans un réseau de neurones de type feedfor-

29
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ward impulsionnel asynchrone qui simule la voix ventrale et l’on montre que
lorsque l’on présente au réseau des images naturelles on voit progressivement
émerger une sélectivité à des primitives (ou ‘features’) visuelles de complexité
intermédiaire. Ces features, qui correspondent à des formes qui sont à la fois
saillantes et présentes de manière consistante dans les images, sont très infor-
matives et permettent une reconnaissance d’objets robuste, comme démontré
sur plusieurs tâches de classification.

Le modèle est attrayant parce que, comme d’autres réseaux hiérarchiques
multi-couches (du type Fukushima (1980); LeCun and Bengio (1998); Rie-
senhuber and Poggio (1999); Wallis and Rolls (1997); Rolls and Milward
(2000); Stringer and Rolls (2000); Serre et al. (2007)), il permet une recon-
naissance d’objet robuste tout en évitant une explosion combinatoire, mais
aussi parce que la reconnaissance est rapide, comme suggéré par la littérature
expérimentale (Oram and Perrett, 1992; Thorpe et al., 1996; Fabre-Thorpe
et al., 1998; Keysers et al., 2001; Rousselet et al., 2002; Bacon-Mace et al.,
2005; Hung et al., 2005; Kirchner and Thorpe, 2006; Serre et al., 2007; Gi-
rard et al., 2007). STDP y joue un rôle clef en générant des réponses à la fois
rapides et sélectives.

2.2 Abstract

Experimental studies have observed Long Term synaptic Potentiation (LTP)
when a presynaptic neuron fires shortly before a postsynaptic neuron, and
Long Term Depression (LTD) when the presynaptic neuron fires shortly after,
a phenomenon known as Spike Timing Dependant Plasticity (STDP) (Bi
and Poo, 1998; Markram et al., 1997; Zhang et al., 1998; Feldman, 2000;
Vislay-Meltzer et al., 2006; Mu and Poo, 2006; Cassenaer and Laurent, 2007).
When a neuron is repeatedly presented with similar inputs STDP is known
to have the effect of concentrating high synaptic weights on afferents that
systematically fire early, while postsynaptic spike latencies decrease (Song
et al., 2000; Guyonneau et al., 2005).

Here we use this learning rule in an asynchronous feedforward spiking
neural network that mimics the ventral visual pathway, and show that when
the network is presented with natural images selectivity to intermediate com-
plexity visual features emerges. Those features, which correspond to proto-
typical patterns that are both salient and consistently present in the images,
are highly informative and enable robust object recognition, as demonstrated
on various classification tasks.

The resulting model is appealing because, like other hierarchical mod-
els Fukushima (1980); LeCun and Bengio (1998); Riesenhuber and Poggio
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(1999); Wallis and Rolls (1997); Rolls and Milward (2000); Stringer and Rolls
(2000); Serre et al. (2007), it is able of robust object recognition without
combinatorial explosion, but it can also do it fast, as has been suggested in
experimental literature (Oram and Perrett, 1992; Thorpe et al., 1996; Fabre-
Thorpe et al., 1998; Keysers et al., 2001; Rousselet et al., 2002; Bacon-Mace
et al., 2005; Hung et al., 2005; Kirchner and Thorpe, 2006; Serre et al., 2007;
Girard et al., 2007). By generating fast and selective responses STDP plays
a key role here.

2.3 Introduction

Temporal constraints pose a major challenge to models of object recognition
in cortex. There is now psychophysical and electrophysiological evidence
showing that object recognition occurs in 100 ms or less in humans (see Sec-
tion 1.2.2). This ‘fast recognition’ presumably depends on the ability of the
visual system to learn to recognize familiar visual forms in an unsupervised
manner. Quite how this learning occurs constitutes a major challenge for
theoretical neuroscience.

Here we explored the capacity of network architectures that have three
key features. First we used a feedforward multi-layer hierarchical model of
the kind exemplified by (Fukushima, 1980; LeCun and Bengio, 1998; Riesen-
huber and Poggio, 1999; Wallis and Rolls, 1997; Rolls and Milward, 2000;
Stringer and Rolls, 2000; Serre et al., 2007). These networks are known
to be able of robust feature-based object recognition. Second, when stim-
ulated with a flashed visual stimulus, the neurons in the various layers of
the system fire asynchronously, with the most strongly activated neurons
firing first – a mechanism that has been shown to efficiently encode image
information (VanRullen and Thorpe, 2001). Third, neurons at later stages
of the system implement Spike-Time Dependent Plasticity, which is known
to have the effect of concentrating high synaptic weights on afferents that
systematically fire early (Song et al., 2000; Guyonneau et al., 2005).

We demonstrate that when such a hierarchical system is repeatedly pre-
sented with natural images, these intermediate level neurons will naturally
become selective to patterns that are reliably present in the input, while
their latencies decrease, leading to both fast and informative responses. This
process occurs in an entirely unsupervised way, but we then show that these
intermediate features are able to support robust categorization.
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2.4 Model

2.4.1 Hierarchical architecture

Our network belongs to the family of feedforward hierarchical convolutional
networks used by many other studies (Fukushima, 1980; LeCun and Ben-
gio, 1998; Riesenhuber and Poggio, 1999; Ullman et al., 2002; Serre et al.,
2007). To be precise its architecture is inspired from Serre, Wolf and Poggio’s
model of object recognition (Serre et al., 2005b), a model that itself extends
HMAX (Riesenhuber and Poggio, 1999) and performs remarkably well with
natural images. Like them, in an attempt to model the increasing complexity
and invariance observed along the ventral pathway (see Section 1.2.1), we use
a four layer hierarchy (S1–C1–S2–C2) where simple cells (S) gain their selec-
tivity from a linear sum operation, while complex cells (C) gain invariance
from a nonlinear max pooling operation (see Fig. 2.1, and Section 2.7 for a
complete description of our model).

2.4.2 Temporal coding

Nevertheless our network does not only rely on static non-linearities: it uses
spiking neurons and operates in the temporal domain. At each stage the
time-to-first spike with respect to stimulus onset (or to be precise the rank
of the first spike in the spike train as we will see later), is supposed to be the
‘key variable’, that is the variable which contains information and which is in-
deed read-out and processed by downstream neurons. When presented with
an image, the first layer’s S1 cells, emulating V1 simple cells, detect edges
with four preferred orientations and the more strongly a cell is activated the
earlier it fires. This intensity-latency conversion (see Fig. 1.7) is in accor-
dance with recordings in V1 showing that response latency decreases with
the stimulus contrast (Albrecht et al., 2002; Gawne et al., 1996) and with the
proximity between the stimulus orientation and the cell’s preferred orienta-
tion (Celebrini et al., 1993). It has already been shown how such orientation
selectivity can emerge in V1 by applying STDP on spike trains coming from
retinal ON and OFF-center cells (Delorme et al., 2001; Guyonneau, 2006),
so for simplicity we started our model from V1 orientation-selective cells.
We also limit the number of spikes at this stage by introducing competition
between S1 cells through a 1-Winner-Take-All mechanism: at a given loca-
tion – corresponding to one cortical column – only the spike corresponding
to the best matching orientation is propagated (sparsity is thus 25% at this
stage). Note that k-Winner-Take-All mechanisms are easy to implement in
the temporal domain using inhibitory GABA interneurons (Thorpe, 1990).
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Figure 2.1: Overview of the 5 layer feedforward spiking neural network. As
in HMAX (Riesenhuber and Poggio, 1999) we alternate simple cells that gain
selectivity through a sum operation, and complex cells that gain shift and
scale invariance through a max operation (that simply consists in propagating
the first received spike). Cells are organized in retinotopic maps until the
S2 layer (included). S1 cells detect edges. C1 maps sub-sample S1 maps
by taking the maximum response over a square neighborhood. S2 cells are
selective to intermediate complexity visual features, defined as a combination
of oriented edges (here we symbolically represented an eye detector and a
mouth detector). There is one S1–C1–S2 pathway for each processing scale
(not represented on the figure). Then C2 cells take the maximum response
of S2 cells over all positions and scales and are thus shift and scale invariant.
Finally, a classification is done based on the C2 cells’ responses (here we
symbolically represented a face / non face classifier). In the brain equivalents
of S1 cells may be in V1, of S2 cells in V1-V2, S2 cells in V4-PIT, C2 cells in
AIT and the final classifier in PFC. This chapter focuses on the learning of
C1 to S2 synaptic connections through STDP.
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These S1 spikes are then propagated asynchronously through the feed-
forward network of integrate-and-fire neurons. Note that within this time-
to-first-spike framework, the maximum operation of complex cells simply
consists in propagating the first spike emitted by a given group of affer-
ents (Rousselet et al., 2003a). This can be done efficiently with an integrate-
and-fire neuron with low threshold that has synaptic connections from all
neurons in the group.

Images are processed one by one, and we limit activity to at most one
spike per neuron, that is, only the initial spike wave is propagated. Before
presenting a new image, every neuron’s potential is reset to zero. We process
various scaled versions of the input image (with the same filter size). There is
one S1-C1-S2 pathway for each processing scale (not represented on Fig. 2.1).
This results in S2 cells with various receptive field sizes (see Section 2.7).
Then C2 cells take the maximum response (i.e. first spike) of S2 cells over
all positions and scales, leading to position and scale invariant responses.

This chapter explains how STDP can set the C1-S2 synaptic connections,
leading to intermediate complexity visual features, whose equivalent in the
brain may be in V4 or IT. STDP is a learning rule that modifies the strength
of a neuron’s synapses as a function of the precise temporal relations between
pre- and post-synaptic spikes (see Section 1.7.1). Here we used a simplified
STDP rule where the weight modification does not depend on the delay
between pre- and post-synaptic spikes, and the time window is supposed to
cover the whole spike wave (see Section 2.7.5). We also use 0 and 1 as ‘soft
bounds’, ensuring the synapses remain excitatory. The effects of STDP with
Poisson spike trains have been studied (Song et al., 2000; VanRossum et al.,
2000). Here, we demonstrate STDP’s remarkable ability to detect statistical
regularities in terms of earliest firing afferent patterns within visual spike
trains, despite their very high dimensionality inherent to natural images.

2.4.3 STDP-based learning

Visual stimuli are presented sequentially and the resulting spike waves are
propagated through to the S2 layer, where STDP is used. We use restricted
receptive fields (i.e. S2 cells only integrate spikes from a s x s square neigh-
borhood in the C1 maps corresponding to one given processing scale) and
weight sharing (i.e. each prototype S2 cell is duplicated in retinotopic maps
and at all scales). Starting with a random weight matrix (size = 4 x s x s) we
present the first visual stimuli. Duplicated cells are all integrating the spike
train and compete with each other. If no cell reaches its threshold nothing
happens and we process the next image. Otherwise for each prototype the
first duplicate to reach its threshold is the winner. A 1-Winner-Take-All
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mechanism prevents the other duplicated cells from firing. The winner thus
fires and the STDP rule is triggered. Its weight matrix is updated, and the
change in weights is duplicated at all positions and scales. This allows the
system to learn patterns despite of changes in position and size in the train-
ing examples. We also use local inhibition between different prototype cells:
when a cell fires at a given position and scale, it prevents all other cells from
firing later at the same scale and within an s/2 x s/2 square neighborhood
of the firing position. This competition, only used in the learning phase,
prevents all the cells from learning the same pattern. Instead, the cell popu-
lation self-organizes, each cell trying to learn a distinct pattern so as to cover
the whole variability of the inputs.

If the stimuli have visual features in common (which should be the case
if for example they contain similar objects), the STDP process will extract
them. That is, for some cells we will observe convergence of the synaptic
weights (by saturation), which end up being either close to 0 or to 1. During
the convergence process synapses compete for control of the timing of post-
synaptic spikes (Song et al., 2000). The winning synapses are those through
which the earliest spikes arrive (on average) (Song et al., 2000; Guyonneau
et al., 2005), and this is true even in the presence of jitter and spontaneous
activity (Guyonneau et al., 2005) (although the model presented in this chap-
ter is fully deterministic). This ‘preference’ for the earliest spikes is a key
point since the earliest spikes, which correspond in our framework to the
most salient regions of an image, have been shown to be the most informa-
tive (VanRullen and Thorpe, 2001). During the learning the postsynaptic
spike latency decreases (Song et al., 2000; Guyonneau et al., 2005; Gerstner
and Kistler, 2002). After convergence, the responses become selective (in
terms of latency) (Guyonneau et al., 2005) to visual features of intermediate
complexity similar to the features used in earlier work (Ullman et al., 2002).
Features can now be defined as clusters of afferents that are consistently
among the earliest to fire. STDP detects these kinds of statistical regular-
ities among the spike trains and creates one class of units for each distinct
pattern.

2.5 Results

We evaluated our STDP-based learning algorithm on two Caltech datasets,
one containing faces and the other motorbikes, and a distractor set containing
backgrounds, all available at www.vision.caltech.edu (see Fig. 2.2 for sam-
ple pictures). Note that most of the images are not segmented. Each dataset
was split into a training set used in the learning phase, and a testing set, not

www.vision.caltech.edu
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Figure 2.2: Sample pictures from the Caltech datasets. The top row shows
examples of faces (all unsegmented), the middle row shows examples of mo-
torbikes (some are segmented, others are not), and the bottom row shows
examples of distractors.

seen during the learning phase, but used afterwards to evaluate the perfor-
mance on novel images. This standard cross-validation procedure allows the
measurement of the system’s ability to generalize, as opposed to learning the
specific training examples. The splits used were the same as Fergus et al.
(2003). All images were rescaled to be 300 pixels in height (preserving the
aspect ratio) and converted to gray-scale values.

2.5.1 Single-class

We first applied our unsupervised STDP-based algorithm on the face and
motorbike training examples (separately), presented in a random order, to
build two sets of ten class specific C2 features. Each C2 cell has one preferred
input, defined as a combination of edges (represented by C1 cells). Note that
many gray level images may lead to this combination of edges, because of
the local max operation of C1 cells, and because we lose the ‘polarity’ infor-
mation (i.e. which side of the edge is darker). However we can reconstruct a
representation of the set of preferred images by convolving the weight matrix
with a set of kernels representing oriented bars. Since we start with random
weight matrices, at the beginning of the learning process the reconstructed
preferred stimuli do not make much sense. But as the cells learn, structured



2.5. RESULTS 37

representations emerge, and we are usually able to identify the nature of the
cells’ preferred stimuli. Fig. 2.3 and 2.4 show the reconstructions at vari-
ous stages of learning for the face and motorbike datasets respectively. We
stopped the learning after 10,000 presentations.

Then we turned off the STDP rule and tested these STDP-obtained fea-
tures’ ability to support face / non face and motorbike / non motorbike
classification. This chapter focuses more on feature extraction than on so-
phisticated classification methods, so we first used a very simple decision
rule based on the number of C2 cells that fired with each test image, on
which a threshold is applied. Such a mechanism could be easily implemented
in the brain. The threshold was set to be at equilibrium point (i.e. when
the false positive rate equals the missed rate). In Table 2.1 we report good
classification results with this ‘simple count’ scheme in terms of area under
the Receiver Operator Characteristic (ROC) and the performance rate at
equilibrium point.

We also evaluated a more complicated classification scheme. C2 cells’
thresholds were supposed to be infinite, and we measured the final poten-
tials they reached after having integrated the whole spike train generated by
the image. This final potential can be seen as the number of early spikes in
common between a current input and a stored prototype (this contrasts with
HMAX and extensions (Riesenhuber and Poggio, 1999; Serre et al., 2005b,
2007), where an Euclidian distance or a normalized dot product is used to
measure the difference between a stored prototype and a current input). Note
that this potential is contrast invariant: a change in contrast will shift all
the latencies, but will preserve the spike order. The final potentials reached
with the training examples were used to train a Radial Basis Function (RBF)
classifier (see Section 2.7.6). We chose this classifier because linear combi-
nation of Gaussian-tuned units is hypothesized to be a key mechanism for
generalization in the visual system (Poggio and Bizzi, 2004). We then evalu-
ated the RBF on the testing sets. As can be seen in Table 2.1, performance
with this ‘potential+RBF’ scheme was better.

Using only ten STDP-learnt features we reached on those two classes a
performance that is comparable to that of Serre, Wolf and Poggio’s model,
that itself is close to the best state-of-the-art computer vision systems (Serre
et al., 2005b). However their system is more generic. Classes with more
intra-class variability (for example, animals) appear to pose a problem with
our approach, because a lot of training examples (say a few tens) of a given
feature type are needed for the STDP process to learn it properly.

Our approach leads to the extraction of a small set (here ten) of highly
informative class-specific features. This is in contrast with Serre et al’s ap-
proach where many more (usually about a thousand) randomly extracted
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Figure 2.3: Evolution of reconstructions for face features. Above is the num-
ber of postsynaptic spikes emitted. Starting from random preferred stimuli,
cells detect statistical regularities among the input visual spike trains after
a few hundred discharges, and progressively develop selectivity to those pat-
terns. A few hundred more discharges are needed to reach a stable state.
Furthermore, the population of cells self-organizes, with each cell effectively
trying to learn a distinct pattern so as to cover the whole variability of the
inputs.



2.5. RESULTS 39

Figure 2.4: Evolution of reconstructions for motorbike features.
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features are used. Their sets are more generic, and suitable for many differ-
ent classes (Serre et al., 2005b). They rely on the final classifier to ‘select’
diagnostic features and appropriately weight them for a given classification
task. Here, STDP will naturally focus on what is common to the positive
training set, i.e. target object features. The background is generally not
learned (at least not in priority), since backgrounds are almost always too
different from one image to another for the STDP process to converge. Thus
we directly extract diagnostic features, and we can obtain reasonably good
classification results using only a threshold on the number of detected fea-
tures. Furthermore as STDP performs vector quantization from multiple
examples as opposed to ‘one shot learning’, it will not learn the noise, nor
anything too specific to a given example, with the result that it will tend to
learn archetypical features.

Another key point is the natural trend of the algorithm to learn salient
regions, simply because they correspond to the earliest spikes, with the re-
sult that neurons whose receptive fields cover salient regions are likely to
reach their threshold (and trigger the STDP rule) before neurons ‘looking’
at other regions. This contrasts with more classical competitive learning
approaches, where input normalization helps different input patterns to be
equally effective in the learning process (Rolls and Deco, 2002). Note that
‘salient’ means within our network ‘with well defined contrasted edges’, but
saliency is a more generic concept of local differences, for e.g . in intensity,
color, orientations as in Itti et al’s model (Itti et al., 1998). We could use
other types of S1 cells to detect other types of saliency, and provided we
apply the same intensity-latency conversion, STDP would still focus on the
most salient regions. Saliency is known to drive attention (see (Treue, 2003)
for a review). Our model predicts that it also drives the learning. Future
experimental work will test this prediction.

2.5.2 Multi-class

Of course, in real life we are unlikely to see many examples of a given cate-
gory in a row. That is why we performed a second simulation, where twenty
C2 cells were presented with the face, motorbike, and background training
pictures in a random order, and the STDP rule was applied. Fig. 2.5 shows
all the reconstructions for this mixed simulation after 20,000 presentations.
We see that the twenty cells self-organized, some of them having developed
selectivity to face features, and others to motorbike features. Interestingly,
during the learning process the cells rapidly show a preference for one cate-
gory. After a certain degree of selectivity has been reached, the face feature
learning is not influenced by the presentation of motorbikes (and vice versa),
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Figure 2.5: Final reconstructions for the twenty features in the mixed case.
The twenty cells self-organized, some having developed selectivity to face
features, and some to motorbike features.

simply because face cells will not fire (and trigger the STDP rule) on motor-
bikes.

Again we tested the quality of these features with a (multi-class) clas-
sification task, using an RBF network and a ‘one versus all’ approach (see
Section 2.7.6). As before we tested two implementations: one based on a
‘binary detections+RBF’ and one based on ‘potential+RBF’. Note that a
simple detection count can not work here, as we need at least some super-
vised learning to know which feature (or feature combination) is diagnostic
(or anti-diagnostic) of which class. Table 2.2 shows the confusion matrices
obtained on the testing sets for both implementations, leading respectively to
95.0% and 97.7% of correct classifications on average. It is worth mentioning
that the ‘potential+RBF’ system perfectly discriminates between faces and
motorbikes – although both were presented in the unsupervised STDP-based
learning phase.
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Table 2.1: Classification results

Model STDP (Simple Count) STDP (Potential+RBF) Hebbian Serre et al. (2005b)
Equilibrium Pt ROC Equilibrium Pt ROC Equilibrium Pt ROC Equilibrium Pt ROC

Face 96.5 99.1 99.1 100.0 96.9 99.7 98.2 99.8
Motorbikes 95.4 98.4 97.8 99.7 96.5 99.3 98 99.8

Table 2.2: Confusion matrices

Prediction with: STDP Features (Binary) STDP Features (Potential) Hebbian Features
Face Motorbike Background Face Motorbike Background Face Motorbike Background

Actual Face 97.2 0.5 2.3 98.2 0.0 1.8 97.7 0.0 2.3
Actual Motorbike 0.0 95.3 4.8 0.0 97.5 2.5 0.3 96.3 3.5
Actual Background 3.1 4.4 92.4 0.4 2.2 97.3 4.9 3.6 91.6
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2.5.3 Hebbian learning

An interesting control is to compare the STDP learning rule with a more
standard hebbian rule, in this precise framework. For this purpose we con-
verted the spike trains coming from C1 cells into a vector of (real valued)
C1 activities XC1 , supposed to correspond to firing rates (see Section 2.7.7).
Each S2 cell was not modeled anymore at the integrate-and-fire level, but was
supposed to respond with a (static) firing rate YS2 given by the normalized
dot product:

YS2 =
WS2 ·XC1

|XC1|2
(2.1)

where WS2 is the synaptic weight vector of the S2 cell, and |.|2 is the usual
euclidian norm.

The S2 cells still competed with each other, but the kWTA mechanisms
now selected the cells with the highest firing rates (instead of the first one
to fire). Only the cells whose firing rates reached a certain threshold were
considered in the competition (see Section 2.7.7). The winners now triggered
the following modified hebbian rule (instead of STDP):

δWS2 = a · YS2 · (XC1 −WS2) (2.2)

where a decay term has been added in order to keep the weight vector
bounded (however the rule is still local, unlike the situation with an ex-
plicit weight normalization). Note that this precaution was not needed in
the STDP case, because competition between synapse naturally bounds the
weight vector (Song et al., 2000). The rest of the network is strictly identical
to the STDP case.

Fig. 2.6 shows the reconstruction of the preferred stimuli for the ten C2

cells after 10,000 presentations for the face stimuli (top) and the motorbikes
stimuli (bottom). Again we can usually recognize the face and motorbike
parts to which the cells became selective (even though the reconstructions
look fuzzier than in the STDP case, because the final weights are more
graded). We also tested the ability of these hebbian-obtained features to
support face / non face and motorbike / non motorbike classification once
fed into a RBF, and the results are shown in Table 2.1 (last column). We also
evaluated the hebbian features with the multi-class set up. Twenty cells were
presented with the same mix of face, motorbike and background pictures as
before. Fig. 2.7 shows the final reconstructions after 20,000 presentations,
and Table 2.2 shows the confusion matrix (last columns).

The main conclusion is that the modified hebbian rule is also able to
extract pertinent features for classification (although performance on these
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Figure 2.6: Hebbian learning. (Top) Final reconstructions for the ten face
features. (Bottom) Idem for the ten motorbike features.

Figure 2.7: hebbian learning. Final reconstructions for the twenty features
in the mixed case. As with STDP-based learning, the twenty cells self-
organized, some having developed selectivity to face features, and some to
motorbike features.
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tests appears to be slightly worse). This is not very surprising as STDP can
be seen as a hebbian rule transposed in the temporal domain, but it was
worth checking it. Where STDP would detect (and create selectivity to)
sets of units that are consistently among the first one to fire, the Hebbian
rule detects (and creates selectivity to) sets of units that consistently have
the highest firing rates. However, we believe the temporal framework is a
better description of what really happens at the neuronal level, at least in
ultra-rapid categorization tasks. Furthermore STDP also explains how the
system becomes faster and faster with training, since the neurons learn to
decode the first information available at their afferents’ level (see also the
Section 2.6).

2.6 Discussion

2.6.1 On learning visual features

While the ability of hierarchical feedforward networks to support classifica-
tion is now reasonably well established (for e.g . (Fukushima, 1980; LeCun and
Bengio, 1998; Riesenhuber and Poggio, 1999; Wallis and Rolls, 1997; Rolls
and Milward, 2000; Stringer and Rolls, 2000; Serre et al., 2005b, 2007)), how
intermediate complexity features can be learned remains an open problem,
especially with cluttered images. In the original HMAX model S2 features
were not learned but manually hard-wired (Riesenhuber and Poggio, 1999).
Later versions use huge sets of random crops (say 1,000) taken from natural
images, and use these crops to ‘imprint’ S2 cells (Serre et al., 2005b, 2007).
This approach works well and can be applied to a wide range of categorisa-
tion problems but is costly since redundancy is very high between features,
and many features are irrelevant for most (if not all) the tasks. To select only
pertinent features for a given task, Ullman proposed an interesting criterion
based on mutual information (Ullman et al., 2002), leaving the question of
possible neural implementation open. LeCun showed how visual features in
a convolutional network could be learned in a supervised manner using back-
propagation (LeCun and Bengio, 1998), without claiming this algorithm was
biologically plausible. Although we may occasionally use supervised learning
to create a set of features suitable for a particular recognition task, it seems
unrealistic that we need to do that each time we learn a new class. Further-
more, a purely supervised system would be very unlikely to survive. Animals
have to learn without having a teacher available. Here we took another ap-
proach: one layer with unsupervised competitive learning is used as input
for a second layer with supervised learning. Note that this kind of hybrid
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scheme has been found to learn much faster than a two layer backpropagation
network (Rolls and Deco, 2002).

2.6.2 A bottom-up approach

Our approach is a bottom up one: instead of intuiting good image process-
ing schemes and discussing their eventual neural correlates, we took known
biological phenomena that occur at the neuronal level, namely intensity-to-
latency conversion, integrate-and-fire and STDP, and saw where it could lead
at a more integrated level. The role of the simulations with natural images
is thus to provide a ‘plausibility proof’ that such mechanisms could be im-
plemented in the brain.

2.6.3 Four simplifications

However, we have made four main simplifications. The first one was to prop-
agate input stimuli one by one. This may correspond to what happens when
an image is flashed in an ultra-rapid categorization paradigms (Thorpe et al.,
1996; Fabre-Thorpe et al., 1998; Rousselet et al., 2002; Bacon-Mace et al.,
2005; Kirchner and Thorpe, 2006; Serre et al., 2007; Girard et al., 2007),
but normal visual perception is an ongoing process. However, every 200 or
300 ms we typically perform a saccade. The processing of each of this discrete
‘chunks’ seems to be optimized for rapid execution (Uchida et al., 2006), and
we suggest that much can be done with the feedforward propagation of a sin-
gle spike wave. Furthermore, even when fixating, our eyes are continuously
making microsaccades which could again result in repetitive waves of activa-
tion. This idea is in accordance with electrophysiological recordings showing
that V1 neuron activity is correlated with microsaccades (Martinez-Conde
et al., 2000). Here we assumed the successive waves did not interfere, which
does not seem too unreasonable given that the neuronal time constants (in-
tegration, leak, STDP window) are in the range of a few tens of milliseconds
whereas the interval between saccades and microsaccades is substantially
longer. Furthermore, it is known that visual signal transmission is at least
partially blocked during the saccade, presumably at the LGN level (Thiele
et al., 2002). The 50-60 ms of ‘pause’ may be just what the cortex needs
to return to a resting state, so that successive waves do not interfere. Note
that this simplification allows us to use non-leaky integrate-and-fire neurons,
and an infinite STDP time window. More generally, as proposed by Hop-
field (Hopfield, 1995), waves could be generated by population oscillations
that would fire each cell at a time in advance of the maximum of the oscilla-
tion which increases with the inputs the cell received. There is experimental
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evidence for such a coding scheme in the cat primary visual cortex (König,
1995; Fries et al., 2001), see (Fries et al., 2007) for a review. This ‘one-by-
one processing’ approximation is also legitimized by the study presented in
Chapter 3, where we will see that even in a continuous regime where afferents
fire continuously with a constant population rate STDP is still able to detect
and learn a repeating spatio-temporal spike pattern.

The second main simplification we have made consists in using restricted
receptive fields and weight sharing (see Section 1.6.3), as do most of the bio-
inspired hierarchical networks (Fukushima, 1980; LeCun and Bengio, 1998;
Riesenhuber and Poggio, 1999; Ullman et al., 2002; Serre et al., 2005b, 2007).
However, it is difficult to believe that the brain could really use weight shar-
ing since, as noted by Földiák (Földiák, 1991), updating the weights of all
the simple units connected to the same complex unit is a non-local operation.
Instead he suggested that at least the low level features could be learned lo-
cally and independently. Subsequently, cells with similar preferred stimulus
may connect adaptively to the same complex cell, possibly by detecting cor-
relation across time thanks to a trace rule (Földiák, 1991). Wallis, Rolls and
Milward successfully implemented this sort of mechanism in a multilayered
hierarchical network called Vis-Net (Wallis and Rolls, 1997; Rolls and Mil-
ward, 2000), however performance after learning objects from unsegmented
natural images was poor (Stringer and Rolls, 2000). Slow Feature Analy-
sis (Wiskott and Sejnowski, 2002), which also aims at extracting invariant
representation based on the fact that they vary slowly in time, has recently
been shown equivalent to Földiák’s trace rule (Sprekeler et al., 2007). Future
work will evaluate the use of local learning and adaptive complex pooling
in our network, instead of exact weight sharing (see Chapter 5 for the type
of mechanisms we would like to implement). Learning will be much slower
but should lead to similar STDP features. Note that it seems that monkeys
can recognize high level objects at scales and positions that have not been
experienced previously (Hung et al., 2005; Logothetis et al., 1995). It could
be that in the brain local learning and adaptive complex pooling are used up
to a certain level of complexity, but not for high level objects. These high
level objects could be represented with a combination of simpler features that
would be already shift and scale invariant. As a result there would be less
need for spatially specific representations for high level objects.

The third simplification we have made is to use only five layers (includ-
ing the classification layer) whereas processing in the ventral stream involves
many more layers (probably about ten), and complexity increases more slowly
than suggested here. It could be that the additional depth of the primate
visual system is entirely related to the need to have receptive field size in-
crease. As mentioned above our system achieves position and size invariance
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by weight sharing over large neural maps – a technique that cannot be used in
the brain, where neurons probably pool from local slightly shifted receptive
fields (see Chapter 5). However STDP as a way to combine simple features
into more complex representations, based on statistical regularities among
earliest spike patterns, seems to be a very efficient learning rule and could
be involved at all stages.

The last main simplification we have made is to ignore both feed-back
loops and top down influences. While normal, everyday vision extensively
uses feed-back loops, the temporal constraints almost certainly rules them
out in an ultra-rapid categorization task (Thorpe et al., 1996). The same
cannot be said about the top-down signals, which do not depend directly on
inputs. For e.g . there is experimental evidence that the selectivity to the
‘relevant’ features for a given recognition task can be enhanced in IT (Sigala
and Logothetis, 2002) and in V4 (Bichot et al., 2005), possibly thanks to a
top-down signal coming from the prefrontal cortex, thought to be involved
in the categorization process. These effects, for example modeled in Szabo
et al’s model (Szabo et al., 2006), are not taken into account here.

2.6.4 ‘Early vs. later spike’ coding and STDP: two keys
to understand fast visual processing

Despite these four simplifications we think our model captures two key mech-
anisms used by the visual system for rapid object recognition. The first one
is the importance of the first spikes for rapidly encoding the most important
information about a visual stimulus. Given the number of stages involved in
high level recognition and the short latencies (∼100 ms) of selective responses
recorded in monkeys’ IT (Oram and Perrett, 1992; Keysers et al., 2001; Hung
et al., 2005), the time window available for each neuron to perform its com-
putation is probably around 10-20 ms (Thorpe and Imbert, 1989) and will
rarely contain more than one or two spikes (see Section 1.2.2). The only thing
that matters for a neuron is whether or not an afferent fires early enough so
that the presynaptic spike falls in the critical time window, while later spikes
can not be used for ultra-rapid categorization. At this point (but only at this
point) we have to consider two hypotheses: either presynaptic spike times
are completely stochastic (for example, drawn from a Poisson distribution),
or they are somewhat reliable. The first hypothesis causes problems since
the first presynaptic spikes (again the only ones taken into account) will cor-
respond to a subset of the afferents that is essentially random, and will not
contain much information about their real excitation (Gautrais and Thorpe,
1998). A solution to this problem is to use populations of redundant neurons



2.7. TECHNICAL DETAILS 49

(with similar selectivity), to ensure the first presynaptic spikes do correspond
on average to the most active populations of afferents. In this work we took
the second hypothesis, assuming the time-to-first spike of the afferents (or to
be precise their firing order) was reliable and did reflect a level of excitation.
This second hypothesis receives experimental support (see Section 1.5 for a
review).

Very interestingly STDP provides an efficient way to develop selectivity to
first spike patterns, as shown in this Chapter. After convergence the potential
reached by a STDP neuron is linked to the number of early spikes in common
between the current input and a stored prototype. This ‘early spike’ vs. ‘later
spike’ neural code (while the spike order within each bin does not matter)
has not only been proven robust enough to perform object recognition in
natural images but is fast to readout: an accurate response can be produced
when only the earliest afferent have fired. The use of such a mechanism at
each stage of the ventral stream could account for the phenomenal processing
speed achieved by the visual system.

Recently (Rolls et al., 2006) recorded neurons in IT and expressed some
skepticism about the use of some sort temporal coding to encode object iden-
tity in this area. However our model is actually fully compatible with what
they found. First they conclude that “considerable information is available
from the first spike to arrive in response to a stimulus” – we obviously agree
on that; second that “the order in which the spikes arrive from the differ-
ent neurons does not appear to add significant information to that available
from knowing that a spike has arrived from some but not other neurons”
– which corresponds exactly the ‘early spike’ vs. ‘later spike’ we propose;
and third that “more information is available if all the spikes in a short time
window are taken into account” – we certainly agree that more information is
available if we integrate spikes over a larger time window (25-50 ms in their
case) (otherwise why would there be more than one spike?), but we argue
that because of the above mentioned temporal constraints, in an ultra-rapid
visual categorization task most of the processing if probably done with only
the first spikes.

2.7 Technical details

Here is a detailed description of the network, the STDP model and the clas-
sification methods.
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2.7.1 S1 cells

S1 cells detect edges by performing a convolution on the input images. We
are using 5x5 convolution kernels, that roughly correspond to Gabor filters
with wavelength of 5 (i.e. the kernel contains one period), effective width 2,
and four preferred orientations: π/8, π/4 + π/8, π/2 + π/8 and 3π/4 + π/8
(π/8 is there to avoid focusing on horizontal and vertical edges, that are
seldom diagnostic). We apply those filters to five scaled versions of the
original image: 100%, 71%, 50%, 35% and 25%1. There are thus 4 x 5 = 20
S1 maps. S1 cells emit spikes with a latency that is inversely proportional
to the absolute value of the convolution (the response is thus invariant to
an image negative operation). We also limit activity at this stage: at a
given processing scale and location only the spike corresponding to the best
matching orientation is propagated.

2.7.2 C1 cells

C1 cells propagate the first spike emitted by S1 cells in a 7x7 square of a
given S1 map (that correspond to one preferred orientation and one process-
ing scale). Two adjacent C1 cells in a C1 map correspond to two 7x7 squares
of S1 cells shifted by 6 S1 cells (and thus overlap of one S1 row). C1 maps
thus sub-sample S1 maps. To be precise, neglecting the side effects, there are
6 x 6 = 36 times fewer C1 cells than S1 cells. As proposed by Riesenhuber
and Poggio (Riesenhuber and Poggio, 1999), this maximum operation is a
biologically plausible way to gain local shift invariance. From an image pro-
cessing point of view, it is a way to perform sub-sampling within retinotopic
maps without flattening high spatial frequency peaks (as would be the case
with local averaging).

We also use a local lateral inhibition mechanism at this stage: when a
C1 cell emits a spike, it increases the latency of its neighbors within a 11x11
square in the map with the same preferred orientation and the same scale.
The percentage of latency increase decreases linearly with the distance from
the spike: 15% at 1 pixel, 12.5% at 2, 10% at 3, 7.5% at 4, and to 5% at 5
pixels. As a result, if a region is clearly dominated by one orientation, cells
with inhibit each other and the spike train will be globally late so unlikely
to be ‘selected’ by STDP.

1Choosing the number of scales is always an issue: the more scales the more likely you
are that the actual scale of a target object do correspond to one processing scale, but more
scales also generates more false alarm. A geometric progression with ratio

√
2 seemed a

good choice.
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2.7.3 S2 cells

S2 cells correspond to intermediate complexity visual features. Here we used
ten prototype S2 cell types, and twenty in the mixed simulation. Each proto-
type cell is duplicated in 5 maps (weight sharing), each map corresponding to
one processing scale. Within those maps the S2 cells can only integrate spikes
from the four C1 maps of the corresponding processing scale. The receptive
field size is 16 x 16 C1 cells (neglecting the side effects, this leads to 96 x
96 S1 cells and the corresponding receptive field size in the original image is
(96/processing scale)2). C1-S2 synaptic connections are set by STDP.

Note that we did not use a leakage term. In the brain, by progressively
resetting membrane potentials towards their resting levels, leakiness will de-
crease the interference between two successive spike waves. In our model
we process spike waves one by one, and reset all the potentials before each
propagation, and so leaks are not needed. This is equivalent to studying the
limit case when the membrane time constant is � than the time-lag between
two input spikes of the same wave, but is � than the time-lag between two
waves.

Finally, activity is limited at this stage: a k-Winner-Take-All ensures that
at most two cells can fire for each processing scale. This mechanism, only
used in the learning phase, helps the cells to learn patterns with different real
sizes. Without it, there is a natural bias towards ‘small’ patterns (i.e. large
scales), simply because corresponding maps are larger, so the likelihood of
firing with random weights at the beginning of the STDP process is higher.

2.7.4 C2 cells

Those cells take for each prototype the maximum response (i.e. first spike)
of corresponding S2 cells over all positions and processing scales, leading to
ten shift and scale invariant cells (twenty in the mixed case)2.

2.7.5 STDP Model

We used a simplified STDP rule:

∆wij =

{
a+ · wij · (1− wij) if tj − ti ≤ 0 (LTP)
a− · wij · (1− wij) if tj − ti > 0 (LTD) (2.3)

2Ten C2 cells is a minimum: tests with fewer cells did not reach the same level of
performance, because the variability of the target class was not covered.
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where i and j refers respectively to the post- and pres-synaptic neurons, ti
and tj are the corresponding spike times, ∆wij is the synaptic weight modifi-
cation, and a+ and a− are two parameters specifying the amount of change.
Note that the weight change does not depend on the exact tj − ti value,
but only on its sign. We also used an infinite time window. These simpli-
fications are equivalent to assuming that the intensity-latency conversion of
S1 cells compresses the whole spike wave in a relatively short time interval
(say 20-30 ms), so that all presynaptic spikes necessarily fall close to the
postsynaptic spike time, and the change decrease becomes negligible. In the
brain this change decrease and the limited time window are crucial: they
prevent different spike waves coming from different stimuli from interfering
in the learning process. In our model, we propagate stimuli one by one, so
these mechanisms are not needed. Note that with this simplified STDP rule
only the order of the spikes matters, not their precise timings. As a re-
sult the intensity-latency conversion function of S1 cells has no impact, any
monotonously decreasing function give the same results.

The multiplicative term wij · (1− wij) ensures the weight remains in the
range [0, 1] (excitatory synapses), and implements a soft bound effect: when
the weight approaches a bound, weight changes tend towards zero.

We also applied LTD to synapses through which no presynaptic spike
arrived, exactly as if a presynaptic spike had arrived after the postsynaptic
one. This is useful to eliminate the noise due to original random weights on
synapses through which presynaptic spike never arrive.

As the STDP learning progresses we increase a+ and |a−| . To be precise
we start with a+ = 2−6 , multiply the value by 2 every 400 postsynaptic
spikes, until it reaches a maximum value of 2−2. Similarly a− is adjusted so
as to keep a fixed a+/a− ratio (-4/3). This allows us to accelerate convergence
when the preferred stimulus is somewhat ‘locked’, whereas directly using high
learning rates with the random initial weights leads to erratic results.

We used a threshold of 64 (=1/4 of the 16 x 16 C1 − S2 weights). Initial
weights are randomly generated, with mean 0.8 and standard deviation 0.05.

2.7.6 Classification setup

We used a Radial Basis Function (RBF) network. In the brain this classifica-
tion step may be done in the Pre-Frontal Cortex (PFC) using the outputs of
IT. Let X be the vector of C2 responses (containing either binary detections
with the first implementation or final graded potentials with the second one).
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This kind of classifier computes an expression of the form:

f(X) =
N∑

i=1

ci · exp

(
−(X −Xi)

2

2σ2

)
(2.4)

and then classifies based on whether or not f(X) reaches a threshold. Su-
pervised learning at this stage involves adjusting the synaptic weights ci so
as to minimize a (regularized) error on the training set (Poggio and Bizzi,
2004).

E(X) =
1

2

N∑
i=1

[di − F (Xi)]
2 +

1

2
λ‖DF‖2 (2.5)

where the Xi correspond to C2 responses for some training examples (1/4
of the training set randomly selected), di = 1 for positive examples and
-1 for negative ones, λ is the regularization parameter, and D is a linear
differential operator (the second term thus penalizes non-smooth functions).
The full training set was used to learn the ci. We used σ = 2 and λ = 10−12.

The multi-class case was handled with a ‘one versus all approach’. If n
is the number of classes (here three), n RBF classifiers of the kind ‘class i’
vs. ‘all other classes’ are trained. At the time of testing each one of the n
classifier emits a (real valued) prediction that is linked to the probability of
the image belonging to its category. The assigned category is the one that
correspond to the highest prediction value.

2.7.7 Hebbian learning

The spike trains coming from C1 cells were converted into real valued ac-
tivities (supposed to correspond to firing rates) by taking the inverse of the
first spikes’ latencies (note that these activities do not correspond exactly
to the convolution values because of the local lateral inhibition mechanism
of layer C1). The activities (or firing rates) of S2 units were computed us-
ing Equation 2.1. Note that the normalization causes an S2 cell to respond
maximally when the input vector XC1 is collinear to its weight vector WS2

(neural circuits for such normalization have been proposed in (Poggio and
Bizzi, 2004)). Hence WS2 (or any vector collinear to it) is the preferred stim-
ulus of the S2 cell. With another stimulus the response is proportional to the
cosine between WS2 and XC1 . This kind of tuning has been used in extensions
of HMAX (Serre et al., 2005b, 2007). It is similar to the Gaussian tuning
of the original HMAX (Riesenhuber and Poggio, 1999), but it is invariant to
the norm of the input (i.e. multiplying the input activities by 2 has no effect
on the response) which allow us to remain contrast-invariant (see also (Serre
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et al., 2005a) for a comparison between the two kinds of tuning).
Only the cells whose activities were above a threshold were considered

in the competition process. It was found useful to use individual adaptive
thresholds: each time a cell was among the winners its threshold was set to
0.91 times its activity (this value was tuned to get approximately the same
number of weight updates than with STDP)3. The competition mechanism
was exactly the same as before, except that it selected the most active units,
and not the first one to fire. The winners’ weight vector were updated with
the modified hebbian rule of Equation 2.2, in which a is the learning rate. It
was found useful to start with a small learning rate (0.002) and geometrically
increase it every 10 iterations. The geometric ratio was set to reach a learning
rate of 0.02 after 2000 iterations after which the learning rate stayed constant.

2.7.8 Differences from the model of Serre, Wolf and
Poggio

Here we summarize the differences between our model and the model of (Serre
et al., 2005b) in terms of architecture (leaving the questions of learning and
temporal code aside)

• We process various scaled versions of the input image (with the same
filter size), instead of using various filter sizes on the original image.
This is equivalent, while being much faster.

• S1 level: only the best matching orientation is propagated. This was
shown to give better results in their model as well (Mutch and Lowe,
2006).

• C1 level: we use lateral inhibition (see above) to avoid focusing on zones
where one orientation dominates.

• S2 level: the similarity between a current input and the stored proto-
type is linked to the number of early spikes in common between the
corresponding spike trains, while Serre et al . use the Euclidian distance
between the corresponding patches of C1 activities.

• We used an RBF network and not a Support Vector Machine (although
this had little impact on the performance).

3This kind of threshold, which essentially says that a certain level of activity has to
be reached for the synapses to be plastic, differs from the sliding threshold of the Bienen-
stock Cooper Munro (BCM) theory (Bienenstock et al., 1982), which determines whether
LTP or LTD is applied. Note that STDP has recently been mapped to a BCM learning
rule (Toyoizumi et al., 2005; Pfister and Gerstner, 2006)



Chapter 3

STDP-based spike pattern
learning

The study presented in this Chapter has just been published (Masquelier
et al., 2008):

Masquelier T, Guyonneau R, Thorpe SJ (2008) Spike Timing Dependent
Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains.
PLoS ONE 3(1): e1377. doi:10.1371/journal.pone.0001377

The original paper can be found on Section A.2.

3.1 Résumé

De nombreuses études expérimentales ont observé une Long Term Poten-
tiation (LTP) quand un neurone pré-synaptique décharge peu de temps avant
un neurone post-synaptique, et une Long Term Depression (LTD) quand le
neurone pré-synaptique décharge peu de temps après, un phénomène connu
sous le nom de Spike Timing Dependent Plasticity (STDP) (Bi and Poo,
1998; Markram et al., 1997; Zhang et al., 1998; Feldman, 2000; Vislay-Meltzer
et al., 2006; Mu and Poo, 2006; Cassenaer and Laurent, 2007).

De nombreuses études théoriques ont modélisé les effets de la STDP quand
les spikes en entrée arrivent par vagues successives. On montre alors que, sous
réserve que ces vagues présentent des similarités, la STDP concentre les poids
synaptiques sur les afférents qui sont systématiquement parmi les premiers à
décharger, ce qui a pour effet diminuer la latence du spike post-synaptique
par rapport au début de la vague (Song et al., 2000; Gerstner and Kistler,
2002; Guyonneau et al., 2005; Masquelier and Thorpe, 2007). La STDP a

55
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également été étudiée en régime oscillatoire, et il a été montré qu’elle permet
de sélectionner uniquement les entrées dont la phase est constante parmi une
population d’afférents aux phases aléatoires (Gerstner et al., 1996).

Les effets de STDP en régime continu sont plus méconnus. Ici, on s’inté-
resse au cas très général d’un neurone qui est face à une population d’afférents
qui déchargent continuellement avec un taux moyen uniforme et constant. On
montre que, étonnamment, même dans cette situation STDP est capable de
détecter puis de remonter un pattern de spikes spatio-temporel qui se répète,
pourtant ‘caché’ dans des trains de spikes ‘distracteurs’ de même densité, ce
qui est un problème computationnellement complexe (Frostig et al., 1990;
Prut et al., 1998; Abeles and Gat, 2001; Fellous et al., 2004). A la fin de
l’apprentissage, le neurone est devenu sélectif au début du pattern et peut
servir de prédicteur précoce pour le reste du pattern, au risque de produire
une fausse alarme si le reste du pattern ne vient pas, mais avec l’avantage
d’être très réactif.

STDP permet donc l’utilisation d’un codage temporel, même sans date
de référence explicite. Cela signifie que des discontinuités globales comme
les saccades en vision, les sniffs en olfaction (Uchida et al., 2006), ou les
oscillations en général ne sont pas nécessaires pour l’apprentissage basé sur
STDP, bien qu’ils le facilitent probablement. Etant donné que le mécanisme
présenté ici est simple et peu coûteux, il est difficile de croire que le cerveau
n’a pas évolué pour l’utiliser.

3.2 Abstract

Experimental studies have observed Long Term synaptic Potentiation (LTP)
when a presynaptic neuron fires shortly before a postsynaptic neuron, and
Long Term Depression (LTD) when the presynaptic neuron fires shortly af-
ter, a phenomenon known as Spike Timing Dependent Plasticity (STDP).
When a neuron is presented successively with discrete volleys of input spikes
STDP has been shown to learn ’early spike patterns’, that is to concentrate
synaptic weights on afferents that consistently fire early, with the result that
the postsynaptic spike latency decreases. Here, we show that these results
still stand in a continuous regime where afferents fire continuously with a
constant population rate. As such, STDP is able to solve a very difficult
computational problem: to localize a repeating spatio-temporal spike pat-
tern embedded in equally dense ‘distractor’ spike trains. STDP thus enables
some form of temporal coding, even in the absence of an explicit time refer-
ence. Given that the mechanism exposed here is simple and cheap it is hard
to believe that the brain did not evolve to use it.
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3.3 Introduction

3.3.1 The computational problem: spike pattern detec-
tion

Electrophysiologists report the existence of repeating spatio-temporal spike
patterns with millisecond precision, both in vitro and in vivo, lasting from a
few tens of ms to several seconds (Frostig et al., 1990; Prut et al., 1998; Fellous
et al., 2004; Ikegaya et al., 2004; Abeles, 2004). In this study we assess the
difficult problem of detecting a repeating spatio-temporal pattern in multiple
spike trains, a problem made particularly difficult when only a fraction of
the recorded neurons are involved in the pattern. Fig. 3.1 illustrates such
a situation. There is a pattern of spikes (indicated by the red dots) that
repeats at irregular intervals, but is hidden within the variable background
firing of the whole population (shown in blue). The problem is made hard
because nothing in terms of population firing rate characterizes the periods
when the pattern is present, nor is there anything unusual about the firing
rates of the neurons involved in the pattern. In such a situation detecting the
pattern clearly requires taking the spike times into account. However direct
comparison of each spike time to one another over the entire recording period
and across the entire set of afferents is extremely computationally expensive.
However, in this article we will see how a single neuron equipped with STDP
can solve the problem in a different manner, taking advantage of the fact
that a pattern is a succession of spike coincidences.

3.3.2 Background: STDP and discrete spike volleys

STDP is now a widely accepted physiological mechanism of activity-driven
synaptic regulation (see Section 1.7.1 for experimental evidence). Note that
STDP is in agreement with Hebb’s postulate because it reinforces the connec-
tions with the presynaptic neurons that fired slightly before the postsynaptic
neuron, which are those which ‘took part in firing it’. It thereby reinforces
causality links.

When a neuron is presented successively with similar volleys of input
spikes STDP is known to have the effect of concentrating synaptic weights
on afferents that consistently fire early, with the result that the postsynaptic
spike latency decreases (Song et al., 2000; Gerstner and Kistler, 2002; Guyon-
neau et al., 2005; Masquelier and Thorpe, 2007). This theoretical observation
is in accordance with recordings in rat’s hippocampus showing that the so
called ‘place cells’ fire earlier – relative to the cycle of the theta oscillation
in hippocampus – after the animal has repeatedly traversed the correspond-
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Figure 3.1: Spatio-temporal spike pattern. Here we show in red a repeating
50 ms long pattern that concerns 50 afferents among 100. The bottom panel
plots the population spike counts (in spikes) using 10 ms time bins (we chose
10 ms because it is the membrane time constant of the neuron used later
in the simulations), and demonstrates that nothing in terms of spike count
characterizes the periods when the pattern is present. The right panel plots
the individual spike counts over the whole period. Neurons involved in the
pattern are shown in red. Again, nothing characterizes them in terms of
spike count. Detecting the pattern thus requires taking the spike times into
account.
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ing area (Mehta et al., 2000). STDP has also been studied in an oscillatory
mode, and was shown to be able to select only phase-locked inputs among a
broad population with random phases, turning the postsynaptic neuron into
a coincidence detector (Gerstner et al., 1996).

The main limitation of these studies is the assumption that the input
spikes arrive in discrete volleys (sometimes also called ‘spike waves’). They
assume an explicit time reference – usually the presentation of a stimu-
lus (Song et al., 2000; Guyonneau et al., 2005; Masquelier and Thorpe, 2007),
or the maximum (or minimum) of an oscillatory drive (Hopfield, 1995; Ger-
stner et al., 1996) – that allows the specification of a time-to-first spike (or
latency) for the afferents, which could be used by the brain to encode in-
formation (VanRullen et al., 2005; Fries et al., 2007). Activity between the
volleys is assumed to be spontaneous and much weaker. Furthermore, many
studies (Gerstner et al., 1996; Song et al., 2000; Guyonneau et al., 2005) also
require the pattern to be present in all volleys for the STDP to learn it, that
is no ‘distractor’ volleys are inserted between pattern presentations. But
what happens when the population of afferents is continuously firing with
a constant population firing rate, so that no explicit time reference is avail-
able? Is STDP still able to find and learn spike patterns among the inputs?
Is the learning robust if, more realistically, pattern presentations occur at
unpredictable times, separated by long ‘distractor’ periods and if the pattern
does not involve all the afferents? Does it make sense to use the beginning
of the pattern as a time reference, and does the postsynaptic spike latency
with respect to this reference still decrease?

3.3.3 Experimental set-up: STDP in continuous regime

To answer these questions we inserted an arbitrary pattern at various times
into randomly generated ‘distractor’ spike trains, as in Fig. 3.1, and investi-
gated whether a single receiving STDP neuron, with a 10 ms membrane time
constant, was able to learn it in an unsupervised manner. To be precise, we
simulated a population of 2,000 afferents firing continuously for 450 s (see
Section 3.6 for details). Most of the time (3/4 of the time in the baseline
simulation) the afferents fired according to a Poisson process with variable
instantaneous firing rates. Spiking activity in the brain is usually assumed to
follow roughly Poisson statistics, hence this choice, but here it is not crucial:
what matters is that the afferents fire stochastically and independently. But
every now and then, at random times, half of these afferents left the stochas-
tic mode for 50 ms and adopted a precise firing pattern. This repeated
pattern had roughly the same spike density as the stochastic distractor part,
so as to make it invisible in terms of firing rates. To be precise the firing
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rate averaged over the population and estimated over 10 ms time bins has a
mean of 64 Hz and a standard deviation of less than 2 Hz (this firing rate
is even more constant than in the 100 afferent case of Fig. 3.1 because of
the law of large numbers). We further increased the difficulty by adding a
permanent 10 Hz Poissonian spontaneous activity to all the neurons, and
by adding a 1 ms jitter to the pattern. Intriguingly, we will see that one
single Leaky Integrate-and-Fire (LIF) neuron receiving inputs from all the
afferents, acting as a coincidence detector (see Fig. 1.5), and implementing
STDP, is perfectly able to solve the problem and learns to respond selectively
to the start of the repeating pattern.

3.4 Results

3.4.1 A first example

At the beginning of a first simulation the 2,000 synaptic weights all equal to
0.475 (arbitrary units normalized in the range [0,1]). The neuron is there-
fore non-selective. Since the presynaptic spike density – on its 10 ms time
scale – is almost constant, it discharges periodically (see Fig. 3.2a). The
greater are the initial weights (or the lower the threshold), the smaller is the
period (here it is about 16 ms). Each time a discharge occurs we update
the synaptic weights using the STDP rule of Fig. 1.6, and clip them in the
range [0,1]. At this stage, the neuron discharges both outside and inside the
pattern (represented by grey rectangles on Fig. 3.2). In the first case presy-
naptic and postsynaptic spike times are uncorrelated, and since a−τ− > a+τ+

(LTD/LTP imbalance; see Section 3.6), STDP leads to an overall weakening
of synapses (Song et al., 2000) (note: if no repeating patterns were inserted
STDP would thus gradually decrease the synaptic weights until the threshold
would not be reached any longer). But in the second case, by reinforcing the
synaptic connections with the afferents that took part in firing the neuron,
STDP increases the probability that the neuron fires again next time the
pattern is presented (reinforcement of causality link). As a result, selectivity
to the pattern emerges, here after about 13.5 s (see Fig. 3.2b) that is after
only about 70 pattern presentations and 700 discharges: the neuron grad-
ually stops discharging outside the pattern (no false alarms), while it does
discharge most of the time when the pattern is presented (high hit rate),
and can even fire twice per pattern as in the case illustrated here. Chance
determines which part(s) of the pattern the neuron becomes selective to at
this stage (i.e. the postsynaptic spike latency(ies), with respect to the be-
ginning of the pattern here about 5 ms and 40 ms). However the increase
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in selectivity usually rapidly leads to only one discharge per pattern, here at
about 40 ms.

Once selectivity to the pattern has emerged STDP has another major
effect. Each time the neuron discharges in the pattern, it reinforces the
connections with the presynaptic neurons that fired slightly before in the
pattern. As a result next time the pattern is presented the neuron is not
only more likely to discharge to it, but it will also tend to discharge earlier.
In other words, the postsynaptic spike latency locks itself to the pattern and
decreases steadily (with respect to the beginning of the pattern). However,
it cannot decrease endlessly. There is a convergence by saturation when all
the spikes in the pattern that precede the postsynaptic spike already cor-
respond to maximally potentiated synapses, and all are necessary to reach
the threshold. This usually occurs when the latency is already very short,
the value depending on the threshold, although it could occur even earlier
if the pattern has a zone with low spike density. Spikes outside the pattern
cannot contribute efficiently to the membrane potential: since their times are
stochastic, STDP usually depresses the corresponding synapses. We end up
with a bimodal weight distribution with synapses either maximally potenti-
ated or fully depressed (as predicted by VanRossum et al. (2000)).

Here this convergence occurs after about 2000 discharges. At this stage,
the postsynaptic spike latency (with respect to the beginning of the pattern)
is about 4 ms (see Fig. 3.2c). After convergence the hit rate is then 99.1% with
no false alarms (estimated on the last 150 s). Notice that the signal/noise
ratio has increased with respect to the situation in Fig. 3.2b, that is the
potential reached on distractor periods is farther from the threshold. Among
the 2,000 synapses, 383 are fully potentiated (weight≈1), while the rest of
them are almost completely depressed (weight≈0). All of the potentiated
synapses correspond to afferents involved in the pattern. The fact that there
is no false alarms means once the learning has been done, a neuron just waits
for its preferred stimulus, and need never forget what it has learned. The
model thus predicts that fully specified neurons might actually have very low
spontaneous rates, whereas higher rates might characterise less well specified
cells.

Fig. 3.3 shows the latency reduction (with respect to the beginning of the
pattern) during the learning stage until it stabilizes at a minimum of about
4 ms. Apart from the initial part (before selectivity emerges) the curve looks
similar to those observed in earlier work with discrete spike volleys (Guyon-
neau et al., 2005). By convention the latency is 0 when the neuron discharged
outside the pattern, that is when it generated a false alarm. There are no
false alarms after the 676th discharge, that is for the last 436 s of simulation.

Fig. 3.4 illustrates the situation after convergence. It can be seen that
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Figure 3.2: Overview of the 450 s simulation. Here we plotted the membrane
potential as a function of simulation time, at the beginning, middle, and
end of the simulation. Grey rectangles indicate pattern presentations. (a)
At the beginning of the simulation the neuron is non-selective because the
synaptic weights are all equal. It thus fires periodically, both inside and
outside the pattern. (b) At t=13.5 s, after about 70 pattern presentations
and 700 discharges, selectivity to the pattern is emerging: gradually the
neuron almost stops discharging outside the pattern (no false alarms), while
it does discharge most of the time the pattern is present (high hit rate),
here even twice (c) End of the simulation. The system has converged (by
saturation). Postsynaptic spike latency is about 4 ms. Hit rate is 99.1% with
no false alarms (estimated on the last 150 s).
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Figure 3.3: Latency reduction. Here we plotted the postsynaptic latency as a
function of the number of discharges (by convention the latency is 0 when the
neuron discharged outside the pattern, i.e. when it generated a false alarm).
We clearly distinguish 3 periods: the beginning, when the neuron is non-
selective; the middle, when selectivity has emerged and STDP is ‘tracking
back’ through the pattern; and the end, when the system has converged
towards a fast and reliable pattern detector.
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STDP has potentiated most of the synapses that correspond to the earliest
spikes of the pattern (Fig. 3.4a), and depressed most of the synapses that
correspond to presynaptic spikes which follow the postsynaptic one, as in the
previous work with discrete volleys (Song et al., 2000; Guyonneau et al.,
2005; Masquelier and Thorpe, 2007). This results in a sudden increase in
membrane potential when the neuron starts integrating the pattern, and
the threshold is quickly reached (Fig. 3.4b). Notice that all the synaptic
connections with afferents not involved in the pattern have been completely
depressed.

3.4.2 Batches

We performed 100 similar simulations with different pseudo-randomly gener-
ated spike trains. Our criteria for a ‘successful’ simulation were: convergence
to a state with a postsynaptic latency inferior to 10 ms, a hit rate superior
to 98% and no false alarms. This occurred in 96% of the cases. For the re-
maining 4%, the neurons stopped firing when too many discharges occurred
outside the pattern in a row (leading to an overall weakening of synapses, so
the threshold was no longer reached).

We ran other batches of 100 simulations to investigate the impact on this
96% success performance of five parameters.

The first one is the pattern relative frequency (i.e sum of pattern durations
over total duration ratio, assuming a fixed pattern duration of 50 ms), 1/4
in the baseline condition, and Fig. 3.5a shows its effect. We see that while
the performance is very high as long as the ratio is above 15%, with smaller
values the probability of success slowly drops. This means the pattern needs
to be consistently present for the STDP to learn it. However, this applies
only at the beginning (say during the first 1000 discharges). Here we used a
constant pattern frequency, but after the initial part the neuron has already
become selective to the pattern, so presenting longer distractor periods does
not perturb the learning at all. We also tried to change the pattern duration
while maintaining its relative frequency at 1/4. It turns out that what makes
the detection difficult is the delay between two pattern presentations, not the
pattern duration itself. Since we kept the pattern relative frequency constant,
this delay increased with the pattern duration so the performance dropped:
97% with a 40 ms pattern, 96% with 50 ms, 93% with 60 ms, 59% with
100 ms and 46% with 150 ms. However we think this delay is more naturally
investigated by changing the pattern relative frequency as in Fig. 3.5a.

The second parameter we investigated is the amount of jitter (1 ms in
the baseline condition), and Fig. 3.5b shows its influence. We see that the
performance is very good for jitter levels lower than 3 ms. For larger amounts



3.4. RESULTS 65

449.6 449.65
1

500

1000

1500

2000
a

t (s)

# 
af

fe
re

nt

449.6 449.65

0

500

1000

b

t (s)

P
ot

en
tia

l (
a.

 u
.)

 

 
potential
threshold
resting pot.

Figure 3.4: Converged state (a) we represented the spike trains of the 2,000
afferents. We have reordered the afferents with respect to Fig. 3.1 so that
afferents 1-1000 are involved in the pattern, and afferents 1001-2000 are not
and we use a color code ranging from black for spikes that correspond to
completely depressed synapses (weight=0) to white for spikes that correspond
to maximally potentiated synapses (weight=1). This allows the visualization
of the spikes which generate a significant EPSP and those which do not. The
pattern is represented with a grey line rectangle. Notice the cluster of white
spikes at the beginning of it: STDP has potentiated most of the synapses
that correspond to the earliest spikes of the pattern. Note that virtually all
the synaptic connections with afferents not involved in the pattern have been
completely depressed. (b) The membrane potential is plotted as a function
of time, over the same range as above. We clearly see the sudden increase
that corresponds to the above-mentioned cluster.
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of jitter the spike coincidences (with respect to the 10 ms membrane time
constant) are lost, and the STDP weight updates are inaccurate, so the
learning is impaired. In the brain millisecond spiking precision has been
reported in many structures (see Section 1.5).

The third parameter is the proportion of afferents involved in the pat-
tern (1/2 in the baseline condition), and Fig. 3.5c shows its influence. The
threshold was scaled proportionally. Not surprisingly, with fewer afferents
involved in the pattern, it becomes harder to detect, but it is still detected
more than half of the times when only 1/3 of the afferents are involved in
the pattern. Note that the other 2/3 of afferents are discarded by STDP.
This suggests that activity-driven mechanisms could select a small set of ‘in-
teresting’ afferents among a much bigger set of initially connected afferents,
probably specified genetically, a phenomenon known as ‘developmental ex-
uberance’ for which there is considerable experimental evidence (Innocenti
and Price, 2005).

The fourth parameter is the initial weight (0.475 in the baseline condition)
and Fig. 3.5d shows its influence. Recall discharges outside the pattern lead
to an overall decrease of synaptic weights. If too many of them occur in
a row the threshold may no longer be reachable. Thus a high initial value
for the weights increases the resistance to discharges outside the pattern,
leading to a better performance. High initial weights also cause the neuron
to discharge at a high rate at the beginning of the learning process, when it
is non-selective: 63 Hz for an initial weight of 0.475, 38 Hz for 0.325. These
values may seem high in regard to usual experimental values. But first after
only 13 s selectivity has emerged, and the neuron fires at a rate between 5
and 10 Hz. It is conceivable that electrophysiologists rarely record such short
very active initial phases. Second, we consider here that the population of
afferents is constantly firing with a mean rate of 64Hz. This is to make
the problem of pattern detection harder, but if the afferents have less active
periods, which is likely to occur in the brain, so will have the post-synaptic
neuron. We also added Gaussian noise to the initial weights, with increasing
standard deviation until 0.475 (thus equal to the mean). Following this noise
addition the weights were clipped in [0,1]. This had no significant impact
on the performance, at least in the present case when the initial weights are
relatively high.

The fifth parameter is the proportion of missing spikes (0 in the base line
condition) and Fig. 3.5e shows its influence. Not surprisingly the number of
successfully learned patterns decreases with the proportion of spikes deleted.
However with a 10% deletion the pattern was correctly learnt 82% of the
time, demonstrating that the system is quite robust to spike deletion.

We also tried changing the membrane time constant τm (10 ms in the
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baseline condition), scaling the threshold proportionally. This had little im-
pact on the performance (79% success with τm=5 ms, 88% with τm=20 ms),
but it did have an impact on the minimal latency that is reached after con-
vergence. A smaller time constant (and the smaller threshold that goes with
it) causes the neuron to be interested in more coincident spikes. The system
converges when the very few nearly coincident first spikes of the pattern all
correspond to maximally potentiated synapses, and the postsynaptic spikes is
fired just after them. The final latency is thus shorter than the one we have
with a longer time constant, which enables the neuron to integrate spikes
over a longer time window.

Taken together these results demonstrate that the learning is amazingly
robust to the model parameters. We thus believe that we have captured a
mechanism than emerges from STDP rather than from a precise neural model
configuration. While we admit it is still somewhat speculative to affirm that
a similar mechanism takes place in the brain, it is at least very plausible.
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Figure 3.5: Resistance to degradations (100 trials). (a) Percentage of successful trials as a function of the pattern
frequency (pattern duration / the total duration, given a fixed pattern length of 50 ms). The pattern needs to
be consistently present, at least at the beginning, for the STDP to start the learning process. (b) Percentage of
successful trials as a function of jitter. For jitter greater than 3 ms (this should be compared to the 10 ms membrane
time constant) spike coincidences are lost and learning is impaired (c) Percentage of successful trials as a function of
the proportion of afferents involved in the pattern. Performance is good if this proportion is above 1/3 (d) Percentage
of successful trials as a function of the initial weights. With a high value the neuron can handle more discharges
outside the pattern. (e) Percentage of successful trials as a function of the proportion of spikes deleted. With a 10%
deletion the pattern was correctly learnt in 82% of the cases.
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3.5 Discussion

3.5.1 STDP in continuous regime

Our first claim is that the main results previously obtained for STDP based
learning with the highly simplified scheme of discrete spike volleys (Song
et al., 2000; Gerstner and Kistler, 2002; Guyonneau et al., 2005; Masquelier
and Thorpe, 2007) still stand in this more challenging continuous framework.
This means that global discontinuities such as saccades or micro-saccades in
vision and sniffs in olfaction (Uchida et al., 2006), or brain oscillations in
general are not necessary for STDP-based learning of temporal patterns,
although they will almost certainly help. Temporal code skeptics often point
out the fact that neurons would need to know a time reference to decode a
temporal code, and we see here that this is not necessary: as long as there
are recurrent spike patterns in the inputs, and even if they are embedded
in equally dense ‘distractor’ spike trains, a neuron equipped with STDP
can potentially find them in only a few tens of pattern presentations, and
will gradually respond faster and faster when the pattern is presented, by
potentiating synapses that correspond to the earliest spikes of the patterns,
and depressing all the others. This last point strongly reinforces the idea that
a substantial amount of information could be available very rapidly, in the
very first spikes evoked by a stimulus (VanRullen and Thorpe, 2001). Our
results also suggest that activity-driven mechanisms could select a small set of
afferents among a much bigger set of initially connected afferents, probably
specified genetically, a phenomenon known as ‘developmental exuberance’
for which there is considerable experimental evidence (Innocenti and Price,
2005).

It is worth mentioning that the proposed learning scheme is fully unsu-
pervised. No teaching signal tells the neuron when to learn nor labels the
inputs. Biologically plausible mechanisms for supervised learning of spike
patterns have also been proposed (Gütig and Sompolinsky, 2006).

3.5.2 Spike pattern detection

It is also surprising to see how such a simple mechanism can solve a problem
as complex as spike pattern detection. However, there is no consensus on
the definition of a spike pattern, and we admit ours is quite simple: here a
pattern is seen as a succession of coincidences. A Leaky Integrate and Fire
(LIF) neuron is known to be capable of coincidence detection, and it has even
been proposed that this is its main function in the brain (Abeles, 1982; Konig
et al., 1996). Here the membrane time constant (10 ms) is shorter than the
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duration of the pattern (50 ms), and so the LIF neuron can never be selective
to the whole pattern. Instead, it is selective to ‘one coincidence’ of the pattern
at a time, that is, selective to the nearly simultaneous arrival of certain spikes,
just as it occurs in one subdivision of the pattern. At the beginning of the
learning process STDP will cause the LIF neuron to become selective to
one such coincidence (chance determines which one). Then STDP will track
back through the pattern, from one coincidence to the previous one, until the
initial coincidence is reached and the chain of causality is stopped. At this
point the neuron is selective only to the simultaneous arrival of the pattern’s
earliest spikes, and can serve as ‘earliest predictor’ of the subsequent spike
events (Song et al., 2000; Mehta et al., 2000; Gerstner and Kistler, 2002),
at the risk of triggering a false alarm if these subsequent events don’t occur,
but with the benefit of being very reactive.

This contrasts with approaches where the whole pattern needs to be taken
into account, sometimes including finer structural aspects such as spike or-
ders or relative delays (Frostig et al., 1990; Prut et al., 1998; Abeles and
Gat, 2001; Fellous et al., 2004). But neuronal mechanisms able to reliably
decode such structures have to be proposed and looked for in the brain. One
appealing candidate mechanism is the synfire chain (Abeles, 1991) but di-
rect evidence for their existence is still fairly limited (Abeles, 2004). Here
we limit the notion of pattern to successive coincidences, and suggest a way
such patterns could be decoded, using widely accepted neurophysiological
mechanisms, namely coincidence detection and STDP.

Another limitation of this work is the excitatory-only scheme. Conse-
quently, something like ‘afferent A must not spike’ cannot be learnt, only ‘pos-
itive patterns’ can. However, evidence for plasticity in inhibitory synapses in
the brain is weak and inhibition is often assumed to be non-selective. So we
propose that most of the selectivity could be achieved using only excitatory
synapses, as in this model.

3.5.3 Argument for temporal coding

Whether spike times contain additional information with respect to discharge
rates has been the object of an ongoing debate for some time. Electrophys-
iologists have tried to answer this question mostly by recording neurons in
sensory and motor systems with a repeating stimulus or action, and looking
at inter-trial variability of the spike times. Some claim that spike times can
be very reliable while others are more skeptical (see Section 1.5 for a review).
Given that the simple and cheap mechanism exposed here reliably detects
spatio-temporal spike patterns, it is hard to believe that the brain did not
evolve to use at least the form of temporal coding exposed above (‘succes-
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sive coincidences’), unless there is an unavoidable intrinsic source of noise
in the integrate-and-fire mechanism that makes all spike times unreliable.
The main source for this sort of noise is probably at the level of synaptic
transmission (Movshon, 2000), since neurons stimulated directly by current
injection in the absence of synaptic input give highly stereotyped and precise
responses (Mainen and Sejnowski, 1995). However, spike times can be very
reliable in some experiments (see Section 1.5), particularly in the auditory
cortex, proving that reliable synapses do exist. So, as said in Section 1.4.2,
we argue that variability in other recorded spike times, in particular in the
visual system, could come from non-controlled variables that might also af-
fect neuronal activation, such as attention, eye movements, mental imagery,
top-down effects etc.

3.5.4 A generic mechanism

We would like to emphasize the fact that the approach presented here is
generic. It is not limited to sensory systems, and it could be applied to either
experimental or model-generated data. The first step would be to see if STDP
finds spike patterns in the data. Providing it does, the second step would
be to understand what those patterns mean by solving the corresponding
inverse problem.

3.5.5 Extension: competitive scheme

What happens if there is more than one repeating pattern present in the
input? We verified that as the learning progresses, the increasing selectivity
of the postsynaptic neuron rapidly prevents it from responding to several
patterns. Instead, it picks one (chance determines which one), and becomes
selective to it and only to it. To learn the other patterns other neurons are
needed.

A competitive mechanism could ensure they optimally cover all the dif-
ferent patterns and avoid learning the same ones. Such a mechanism could
be implemented through inhibitory horizontal connections between neurons,
such that as soon as one neuron fires, it could prevent other cells from learn-
ing the same pattern, as in previous work (Guyonneau et al., 2004). The
neural population would then self-organize to cover all the input patterns.
The ‘coverage’ could be optimized using neurons that differ in their param-
eters (for example their thresholds), leading to more robust learning and
detection. Furthermore a long input pattern can be coded by the successive
firings of several STDP neurons, each selective to a different part of the pat-
tern, and competition would prevent them all from tracking back through the
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pattern and clustering at the beginning. Note that within such a competi-
tive framework a pattern detection probability of 50% is hardly a disaster: it
means that with 2 neurons the risk that one pattern is not detected is 25%,
with 3 neurons 12.5%, with 4 neurons 6.25% and so on. The system could
then work with suboptimal parameters (highlighted in Fig. 3.5), for example
weaker initial weights.

Further work is needed to evaluate this form of competitive network.
However in this Chapter we wanted to stress the fact that one single LIF
neuron equipped with STDP is consistently able to detect one arbitrary re-
peating spatio-temporal spike pattern embedded in equally dense ‘distractor’
spike trains, which is a remarkable demonstration of the potential for such a
scheme.

3.6 Technical details
The simulations were performed using MATLAB R14 (Mathworks 2005, Nat-
ick MA). The source code is available upon request.

3.6.1 Poisson spike trains

The spike trains were prepared before the simulation (Fig. 3.1 illustrates
the type of spike trains we used, though with a smaller set of neurons).
For memory issues instead of using spike trains defined over a 450 seconds
period, we pasted the same 150 s long pattern three times (this repetition had
no impact on the results). Each afferent emits spikes independently using
a Poisson process with a variable instantaneous firing rate r, that varies
randomly between 0 and 90 Hz. The maximal rate change s was chosen so
that the neuron could go from 0 to 90 Hz in 50 ms. To be precise, time was
discretized using a time step dt of 1 ms. At each time step:

1. the afferent has a probability of r.dt of emitting a spike (whose exact
date is then picked randomly in the 1 ms time bin)

2. its instantaneous firing rate is modified: dr = s.dt where s is the speed
of rate change (in Hz/s), and clipped in [0, 90] Hz.

3. its speed of rate change is modified by ds, randomly picked from a uni-
form distribution over [-360 +360] Hz/s, and clipped in [-1800 +1800]
Hz/s

Note that we chose to apply the random change to s as opposed to r so
as to have a continuous s function and a smoother r function.
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As mentioned in the Discussion, a limitation of this work is the excitatory-
only scheme. Consequently, something like ‘afferent A must not spike’ cannot
be learnt, only ‘positive patterns’ can. We thus wanted a pattern in which
all the afferents spike at least once. We could have made up such a pattern,
but we wanted the pattern to have exactly the same statistics as the Poisson
distractor part (to make the pattern detection harder), so we preferred to
randomly pick a 50 ms period of the original Poisson spike trains and to
‘copy-paste’ it (see below). To make sure this randomly selected period did
contain a spike from each afferent we implemented a mechanism that triggers
a spike whenever an afferent has been silent for more than 50 ms (leading to a
minimal firing rate of 20 Hz). Clearly, such mechanism is NOT implemented
in the brain. It is just an artifice we used here to make the pattern detection
harder. As a result the average firing rate was 54 Hz, and not the 45 Hz we
would have without this additional mechanism.

Once the random spike train has been generated, a part of it, defined
as the ‘pattern’ to be repeated, is ‘copy-pasted’. This ‘copy-paste’ does not
involve the last 1000 afferents (obviously the indices are arbitrary), which
conserve their original spike trains. But we discretize the spike trains of the
first 1000 afferent into 50 ms sections. We randomly pick one of these sections
and copy the corresponding spikes. Then we randomly pick a certain number
of these sections (1/4 in the baseline condition), avoiding consecutive ones,
and replace the original spikes by the copied ones. A jitter was added before
the pasting operation, picked from a Gaussian distribution with mean zero
and standard deviation 1 ms (in the baseline condition).

After this ‘copy-paste’ operation a 10 Hz Poissonian spontaneous activity
was added, to all neurons and all the time. The total activity was thus 64 Hz
on average, and spontaneous activity represented about 16% of it.

3.6.2 Leaky Integrate and Fire (LIF) neuron

(see Fig. 1.5) For computational reasons we modeled the LIF neuron us-
ing Gerstner’s Spike Response Model (SRM) (Gerstner, 1995; Gerstner and
Kistler, 2002). That is instead of solving the membrane potential differential
equation we used kernels to model the effect of presynaptic and postsynaptic
spikes on the membrane potential. Each presynaptic spike j, with arrival
time tj, is supposed to add to the membrane potential an Excitatory Post-
Synaptic Potential (EPSP) of the form:

ε(t− tj) = K

(
exp

(
−t− tj

τm

)
− exp

(
−t− tj

τs

))
·Θ(t− tj) (3.1)
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where τm is the membrane time constant (here 10 ms), τs is the synapse time
constant (here 2.5 ms), Θ is the Heavyside step function:

Θ(s) =

{
1 if s ≥ 0
0 if s < 0

(3.2)

and K is just a multiplicative constant chosen so that the maximum value
of the kernel is 1 (the voltage scale is arbitrary in this Chapter).

The last emitted postsynaptic spike i has an effect on the membrane
potential modeled as follows:

η(t− ti) = Θ(t− ti) · T ·{
K1 · exp

(
− t−tj

τm

)
−K2 ·

(
exp

(
− t−ti

τm

)
− exp

(
− t−ti

τs

))}
(3.3)

where T is the threshold of the neuron (here 500, arbitrary units). The
first term models the positive pulse and the second one the negative spike-
afterpotential that follows the pulse (see Fig. 1.5). Here we used K1 = 2 and
K2 = 4. For simplicity, the resting potential is supposed to be zero, but a
non zero value would simply shift the kernel, and shifting the threshold by
the same value would lead to the same computation.

Both ε and η kernels were rounded to zero when respectively t − tj and
t− tj were greater than 7τm.

At any time the membrane potential is:

p = η(t− ti) +
∑

j|tj>ti

wjε(t− tj) (3.4)

where the wj are the excitatory synaptic weights, between 0 and 1 (arbitrary
units).

This SRM formulation allows us to use event-driven programming: we
only compute the potential when a new presynaptic spike is integrated. We
then estimate numerically if the corresponding EPSP will cause the threshold
to be reached in the future and at what date. If it is the case, a postsynaptic
spike is scheduled. Such postsynaptic spike events cause all the EPSPs to
be flushed, and a new ti is used for the η kernel. There is then a refractory
period of 1 ms, during which the neuron is not allowed to fire.

This event driven programming is much less computationally expensive
than solving numerically the LIF differential equation using a small time
step.
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3.6.3 Spike Timing Dependent Plasticity

An exponential update rule (see Fig. 1.6):

∆wj =

 a+ · exp
(

tj−ti
τ+

)
if tj − ti ≤ 0 (LTP)

a− · exp
(
− tj−ti

τ−

)
if tj − ti > 0 (LTD)

(3.5)

with the time constants τ+ = 16.8 ms and τ− = 33.7 ms, provides a reason-
able approximation of the synaptic modification observed experimentally (Bi
and Poo, 2001).We restricted the learning window to [ti−7τ+, ti] for LTP and
to [tj, tj +7τ−] for LTD. For each afferent, we also limited LTP (respectively
LTD) to the last (first) presynaptic spike before (after) the postsynaptic one
(‘nearest spike’ approximation). We did not take the effects of finer triplet
of spikes (Pfister and Gerstner, 2006) into account.

It was found that small learning rates led to more robust learning. We
used a+ = 2−5 and a− = −0.85a+. Following learning the weights were
clipped to [0,1]. Note that all synapses remain excitatory: there is no inhi-
bition in all these simulations.
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Chapter 4

Visual learning experiment

In this Chapter I present recent unpublished psychophysical data. The exper-
iment was run at the Centre de Recherche Cerveau et Cognition, Toulouse,
France.

4.1 Résumé

Une prédiction des modèles STDP présentés aux Chapitres 2 et 3 est que
la latence des réponses neuronales devrait décroître après répétition d’un
même stimulus. Ceci devrait être vrai en particulier dans le cortex visuel qui
semble rester plastique durant toute la vie (voir Section 1.3). C’est là une
prédiction intéressante, et qui peut être testée expérimentalement.

Si l’électrophysiologie fournirait un moyen direct de tester cette prédic-
tion, ce n’est pas l’approche que nous avons utilisée ici : nous avons choisi
d’inférer les temps de traitements visuels en utilisant une mesure compor-
tementale. Plus précisément nous avons utilisé le paradigme de choix forcé
saccadique (Kirchner and Thorpe, 2006; Guyonneau et al., 2006; Bacon-Macé
et al., 2007; Fletcher-Watson et al., 2007; Girard et al., 2007), dans lequel une
image cible et un distracteur sont flashés simultanément de part et d’autre
d’une croix de fixation, et le sujet doit diriger son regard vers l’image cible
le plus rapidement possible. On enregistre à la fois la précision (taux de ré-
ponses correctes) et les temps de réaction. Ici on répéte toujours la même
image cible (une scène d’intérieur), versus des distracteurs changeant (égale-
ment des scènes d’intérieur), et on cherche à savoir si les temps de réactions
diminuent au long de l’expérience.

Effectivement, on a constaté que les temps de traitement s’accéléraient
d’environ 100 ms, même si ce gain est en majeure partie imputable à l’ap-
prentissage de la tâche, et seulement 25 ms est spécifique à l’image. Ces 25 ms

77
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sont gagnées au bout de quelques centaines de présentations. Beaucoup de
questions restent ouvertes, notamment si cet effet de 25 ms dépend du type
de stimuli utilisé, et s’il est invariant à la position rétinienne, c’est à dire :
reconnaîtrions nous aussi vite une image apprise à une position donnée si elle
nous est présentée à un autre endroit ?

Bien sûr l’existence d’un effet d’accélération par apprentissage ne prouve
pas que les modèles STDP présentés aux Chapitres 2 et 3 sont vrais – ils sont
seulement plausibles.

4.2 Abstract

One of the predictions of STDP models of Chapters 2 and 3 is that visual
responses’ latencies should decrease after repeated presentations of a same
stimulus. In this Chapter we tested this prediction experimentally by infer-
ring the visual processing times through behavioral measures.

We used the saccadic forced-choice paradigm (Kirchner and Thorpe, 2006;
Guyonneau et al., 2006; Bacon-Macé et al., 2007; Fletcher-Watson et al.,
2007; Girard et al., 2007), in which one target image and one distractor
image are flashed simultaneously on both sides of a fixation cross, and the
participant is asked to move his eyes towards the target as fast as possible.
Both accuracy (i.e. correct response rate) and reaction times are recorded.
Here the target was always the same repeating image (an interior scene),
while the distractors (other interior scenes) were changing, and we looked for
a familiarity-induced speed-up effect.

The experiment did reveal a familiarity-induced speed-up effect of about
100 ms. Most of it can be attributed to the learning of the task but a 25 ms
effect corresponds to the familiarity with a given image, and is reached after
a few hundred presentations. Many questions remain open, such as if this
25 ms speed-up is shift-invariant and depends on the type of stimuli.

4.3 Introduction

One of the predictions of STDP models of Chapters 2 and 3 is that neuronal
responses’ latencies should decrease after repeated presentations of a same
stimulus. This should be true in particular in the visual cortex, that seems to
be plastic even in adulthood (see Section 1.3 for evidence). It is an interesting
prediction that is worth being tested experimentally.

Although electrophysiology would be a way to test directly the prediction,
it is not the approach we took here: we chose to infer the neural processing
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times using behavioral measures. To be precise we used the saccadic forced-
choice paradigm (Kirchner and Thorpe, 2006; Guyonneau et al., 2006; Bacon-
Macé et al., 2007; Fletcher-Watson et al., 2007; Girard et al., 2007), in which
one target image and one distractor image are flashed simultaneously on
both sides of a fixation cross, and the participant is asked to move his eyes
towards the target as fast as possible. Both accuracy (i.e. correct response
rate) and reaction times are recorded. This paradigm has been shown to
reveal subtle differences in processing times between for example categories –
differences that were invisible with a go/no-go task with manual response (for
example face/non-face categorization is faster than animal/non-animal with
the saccadic forced-choice paradigm (unpublished data) whereas the speed
is about the same with the go/no-go paradigm (Rousselet et al., 2003b),
Simon Thorpe, personal communication). Here the target was always the
same repeating image, while the distractors were changing, and we looked
for a familiarity-induced speed-up effect.

In a previous study Fabre-Thorpe et al. (2001) looked for an eventual
experience-induced speed-up effect, using the animal/non-animal go/no-go
paradigm of Thorpe et al. (1996). An extensive training with 200 animal
images over a 3-week period failed to increase the speed of processing. This
could be due to the fact that, as mentioned above, go/no-go is not always
appropriate to reveal subtle differences. However Kirchner and Thorpe (2006)
also looked for a image-specific learning effect with the saccadic forced-choice
by repeating 20 target images for 20 times each. They found that there
was a tendency for the reaction times to decrease during the course of the
experiment (first vs. last block of 80 trials: 27 ms), but this general learning
effect did not interact with the type of image present (new vs. repeated) and
was therefore probably due to improvement in decision or motor skills. It
thus seems we are already experts in animal/non-animal classification.

We thus needed a visual task in which we were not already expert. Ideally
we wanted the participants to learn a visual stimulus that they had never
seen before. A preliminary experiment where non-Chinese speaker partici-
pants were asked to learn and detect one Chinese character among others in
a saccadic forced-choice paradigm showed that the task was too difficult. We
thus used natural images, to be precise house interior scenes, and the par-
ticipant was asked to identify one of them among other interior scenes. It is
likely that before the experiment participants already had neurons tuned to
features suitable for the encoding of interior scenes and the objects present
in them (presumably located in the Para-hippocampal Place Area (PPA)
and the Lateral Occipital Complex (LOC)). However the identification of
a precise previously unseen scene among others requires specific learning.
Whether this learning is done by building a ‘grand-mother cell’ that inte-
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grates spikes from the appropriate feature detectors, or by other forms of
read-out is unknown. In any case, the processes involved in this ultra-rapid
visual categorization task are likely to be forward (Kirchner and Thorpe,
2006) and STDP should be able to speed them up.

Although many questions remain open the experiment did reveal such a
speed-up effect. Most of it seems to be independent of the target image, that
is participants seem to learn how to do the task, and develop strategies that
are in fact useful for the detection of any interior scenes (for example focus
on the gist or on a precise zone). However some of it (∼25 ms) is image
dependent, i.e. results from the familiarity with one given image, but is lost
if a new target image is used.

4.4 Methods

4.4.1 Participants

Twelve volunteers (aged from 23 to 52, 5 women and 7 men) with normal
or corrected-to-normal vision performed a 2AFC visual discrimination task.
The experimental procedures were authorized by the local ethical committee
(CCPPRB No. 9614003). Experiments were undertaken with the under-
standing and written consent of each participant.

4.4.2 The saccadic forced-choice

We used a modified version of the saccadic forced-choice paradigm originally
proposed by Kirchner and Thorpe (2006). Fig. 4.1 illustrates the protocol.
The background was a 50% gray. The participant had first to fix a cross
shown in the middle of the screen for a pseudo-random fixation period P
chosen in [800 ms, 1600 ms]. An eye tracker1 monitored the gaze position
in real time. When the participant had been fixing the cross continuously
for P ms (with precision ±1.7◦ ), the cross was removed and two images
were presented for 80 ms (unlike in (Kirchner and Thorpe, 2006), we did
not use a gap between the cross removal and the image presentation). Each
image corresponded to 8.4 × 8.4◦ of visual angle, and the eccentricity was
±8.7◦ . The images were followed by two fixation crosses indicating the
saccade landing positions. A time-out of 1 s was used for the participant’s
response. An inter-trial of 1.5 s followed. The participant was asked to move

1Model: iView X at 240 Hz, by SensoMotoric Instruments GmbH (SMI), Teltow/Berlin,
Germany. I wrote the code to interface it with the Matlab PsychoToolBox presentation
software.
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800-1600 ms

80 ms

1500 ms

Figure 4.1: Saccadic forced-choice protocol. We checked that the participant
did fixate the cross for a pseudo random period in [800 ms,1600 ms]. We then
removed the cross and presented the two stimuli for 80 ms. The images were
followed by two fixation crosses indicating the saccade landing positions.

his eyes towards the cross that corresponded to the target image. Note that
the 80 ms presentation almost never allowed the participant to explore the
images, that were already removed when he initiated his saccades in all but
.2% of the cases.

4.4.3 Design

Each participant did two sessions, separated by 24 hours.
On Day 1 Participant 1 learnt two targets A and B. We used 12 alternated

blocks of 50 trials. That is in each block the same target (A for even blocks,
B for odd blocks) was shown 50 times in a row, versus changing distractors.
The first two blocks began with two trials without distractor, that is only
the target was shown on one side for 80 ms (nothing on the opposite side) so
that the participant could identify it. These ‘easy trials’ are not taken into
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account in the data analysis.
On Day 2 participant was tested on A and a new image C. The protocol

was exactly the same as on the first day.
We chose a two-day protocol because we had reasons to believe that the

learning of the repeated target would be consolidated during sleep (Karni
et al., 1994; Stickgold et al., 2000; Atienza et al., 2004; Walker et al., 2005;
Censor et al., 2006). This effect was not found significative here (see Sec-
tion 4.5).

The three target image A, B and C were counter-balanced across partici-
pants (see Table 4.1). Note that full counter balancing would actually require
24 subjects, to include cases where the repeated image does not correspond
to the same block parity on Day 1 and Day 2. We assumed such counter
balancing was not needed.

Table 4.1: Experimental design: counter-balancing images across partici-
pants.

Participant D 1 - Even D 1 - Odd D 2 - Even D 2 - Odd
1 A B A C
2 B A B C
3 C A C B
4 A C A B
5 B C B A
6 C B C A
7 B A C A
8 A B C B
9 A C B C
10 C A B A
11 C B A B
12 B C A C

4.4.4 Stimuli

A hundred and one 246 × 246 gray level images were used, all representing
house interior scenes2 (see Fig. 4.2 for sample images). Mean luminance was

2Source: Corel CD-ROM library, “Residential interiors”
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Figure 4.2: Sample pictures from the database.

normalized to 43%. Contrast, defined as the standard deviation of the gray
levels, was normalized to 16%.

Three of them were chosen to be the targets A, B and C (see Fig. 4.3).
We chose images with no salient object on the foreground.

4.4.5 Saccade detection

Two computers were used: the presentation computer, and the eye-tracker
computer. The first one dealt with the stimuli presentation (using the Mat-
lab PsychoToolBox). The second one recorded the gaze position constantly.
Each block began with a 13-point calibration procedure. At the time of flash-
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Figure 4.3: The three target pictures A, B and C.

ing the images the presentation computer sent a trigger to the eye-tracker
computer, through the ethernet port and a crossover cable, as recommended
by SMI. This trigger appeared in the gaze position files and allowed to com-
pute off-line the saccade initiation times with respect to the stimulus onset.

Saccades were detected as follows: first we determined the first time after
stimulus onset that the gaze shifted by more than half the distance between
the original fixation cross and the center of the images (shorter saccades were
not considered as valid responses). Later points were not considered (so if
the subject changed his mind after a large saccade we took the first choice
into account). The initiation of the saccade was then defined as the last time
the speed passed the threshold of 85◦ /s. This allowed to define a saccade
initiation time in more than 86% of the cases.

4.5 Results
To our surprise the task was found significantly more difficult than the
original animal/non-animal task of Kirchner and Thorpe (2006) (see Sec-
tion 4.6.3). This is the reason why we had to remove the 200 ms gap they
used between the fixation cross and the image presentation to reach a similar
accuracy, but at the expense of slower reaction times (see Section 4.6.4)3.
Note that 2 out of 14 original participants were considered as outliers and
were discarded: they did not reach 70% on this last period, but they were
also the fastest with median reaction times of 171 and 142 ms. This suggests
a bound on the speed-accuracy trade-off curve: under ∼200 ms, it is virtually
impossible to do the task.

3In a pilot experiment with a 200 ms gap I was 58% accurate with a mean reaction
time of 175 ms, vs. 71% correct and 250 ms without the gap.
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Figure 4.4: Histograms of reaction times, for both correct and incorrect trials,
for all the participants and all the blocks. Note that responses under ∼200 ms
are at chance level.

Fig. 4.4 plots the raw histograms of reaction times, for both correct and
incorrect trials, for all the participants and all the blocks, and confirms
this ∼200 ms bound under which participants are at chance level. On each
session each target image was seen 300 times, that we split in 4 phases of 75
trials. We give the following name to our conditions: 1R for the target of
Day 1 that will be repeated on Day 2, 1S for the single target of Day 1, 2R
for the repeated target of Day 2 and 2S for the single target of Day 2.

Fig. 4.5 plots the speed-accuracy curves for one typical participant. Those
curves are obtained from the raw distributions of the kind shown in Fig. 4.4
by computing the cumulative distribution of the correct minus incorrect re-
sponses, normalized by the number of trials (here 75). y = 1 thus corresponds
to 100% correct and y = 0 to chance level (50% correct). The x corresponds
to the time bound until which responses are taken into account. It can be
seen that, despite some variability, the curves tend to climb faster and higher
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Figure 4.5: Speed-accuracy curves for one typical participant, for each of the
four phases of 75 trials, in the four conditions 1R, 1S, 2R and 2S. It can be
seen that, despite some variability, the curves tend to climb faster and higher
for later phases, which is the signature of a learning effect.

for later phases, which is the signature of a learning effect. We summarize
this phenomenon by computing the abscissas of the intersections of the curves
with y = 0.12, that we call the ‘reference times’. This evaluation criterion
combines both the accuracy and the reaction times. The 12% threshold may
seem low, but we are above all interested in the fast responses. When partici-
pants took more time to answer, they probably used higher cognitive process
such as complex decision-making, presumably involving feedback, which led
to high variability. In this study, we focus on the fast and more stereotyped
responses, whose neuronal correlate is presumably mostly feedforward and
more likely to be speeded-up by STDP.

We thus have 12 participants x 4 conditions x 4 phases = 192 data points.
Four of them could not be computed, because the good answers never out-
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Figure 4.6: Reference times for the four phases and the four conditions,
averaged over all participants.

numbered the errors by 12%. We thus replaced the each missing value by
the maximum reference time of the corresponding participant, taken over all
the phases of the corresponding condition. Note that this is a conservative
bias that tend to minimize the learning effect.

Fig. 4.6 plots the reference times for the four phases and the four con-
ditions, averaged over all participants. Note that the error bars are big,
indicating a high inter-subject variability. This is the reason why we used
paired statistical tests. Note also that reference times are really high and
highly variable on Day 1, especially on the first two phases, when partici-
pants have to learn a difficult task. The apparent difference between 1R and
1S on those first two phases is presumably just a fluke. Day 2 data is much
cleaner.

The first conclusion is that there is indeed a learning effect. References
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times decrease from about 350 ms to 250 ms on average between the begin-
ning and the end of the experiment. Differences between images were not
found significant (1-way repeated measure ANalysis Of VAriance (ANOVA)).
The second conclusion is that only about 25 ms of this speed-up is image de-
pendent. Most of the speed-up can thus be attributed to the fact that the
participants learn how to do the task, tune their motor systems, and develop
strategies that are in fact transferable to the detection of another interior
scenes (for example focus on the gist or on a precise zone).

We performed repeated measure ANOVA to check the significance of those
effects. Given that most reaction times follow a log-normal distribution we
first took the logarithm of the measured reference time. Before applying each
ANOVA we also check for the sphericity of the data using both Bartlett’s
and Mauchly’s sphericity tests, which both concluded that assumption of
sphericity was tenable in all our case tests.

We performed a first repeated measure ANOVA with all the data, and
three factors: Day, Repeated vs. Single (RvsS), Phase. Only the day, the
phase, and the interaction of both were found significant explicative factors.
This validates the learning effect but it does not seem to be image-specific.
We expected the ‘Repeated vs. Single’ criterion to be a significant explicative
factor when interacting with the day or the phase or both, but it was not
the case. We attribute that to the high unexplained variability of the first
phases of Day 1 which is not negligible with respect to the difference between
repeated and single conditions on Day 2.

We thus performed a second repeated measure ANOVA with a subset of
the data consisting of the last phase of Day 1 and the first phase of Day 2, and
two factors: Day and Repeated vs. Single (RvsS) (see Table 4.2). This time,
the interaction Day x RvsS has a significant effect on the reference times
(p=0.026). This means the difference between the Repeated and the Single
conditions on Day 2 is signifantly greater than the unexplained difference
between them on Day 1. It thus validates the advantage for the image we
know already.

We performed a third ANOVA with the Day 2 data, and two factors:
Phase and Repeated vs. Single (RvsS)(see Table 4.3). The interaction
Phase x RvsS has a significant effect on the reference times (p=0.024). This
means that, as expected, the Repeated condition leads to significantly faster
reference times, but only for the first phases. After only ∼ 150 trials the new
image is recognized as fast as the known one.
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Table 4.2: ANOVA Day 1 last phase - Day 2 first phase. Factor 1: Day.
Factor 2: Repeated vs. Single (RvsS). Legend: SOV: Source Of Variability,
SS: Sum of Squares, df: degree of freedom, MS: Mean Square, F: F statitic,
P: p-value.

SOV SS df MS F P
Day 0.000 1 0.000 0.036 0.8528
Error(Day) 0.136 11 0.012
RvsS 0.026 1 0.026 2.232 0.1633
Error(RvsS) 0.128 11 0.012
DayxRvsS 0.021 1 0.021 6.646 0.0257
Error(DayxRvsS) 0.035 11 0.003
Error 0.298 33 0.009
Total 1.026 47

Table 4.3: ANOVA Day 2. Factor 1: Phase. Factor 2: Repeated vs. Single
(RvsS).

SOV SS df MS F P
Phase 0.036 1 0.036 1.662 0.2238
Error(Phase) 0.240 11 0.022
RvsS 0.038 3 0.013 2.503 0.0763
Error(RvsS) 0.167 33 0.005
PhasexRvsS 0.025 3 0.008 3.587 0.0239
Error(PhasexRvsS) 0.077 33 0.002
Error 0.483 77 0.006
Total 1.510 95
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4.6 Discussion

4.6.1 A robust experience-induced speed-up

The difficulty we are facing with this experiment is that we have to esti-
mate performance frequently to capture the learning effect, since it is fast
(∼ 100 presentations for the new image on Day 2). We thus used 75 trial
bins, but such small bins lead to noisy estimations of the reference times.

However our results did show a significant 100 ms speed-up effect due to
familiarity with both the task (∼ 75 ms) and the target image (∼ 25 ms). A
few hundred presentations are needed to reach a ceiling effect. Note that we
used a somewhat aggregated level, by summarizing 75 trials with one value,
the so called ‘reference time’. We thus believe our results are robust and
reproducible.

Of course the existence of the speed-up does not prove the STDP models
of Chapters 2 and 3 are true. It just shows that they are plausible.

4.6.2 Type of stimuli and shift-invariance

We are planning other experiments to investigate if this 25 ms effect is still
there with other kinds of stimuli, such as random dots, fractals or Chinese
characters.

Another interesting question is whether the 25 ms advantage for familiar
images that we recorded is ‘shift-invariant’. That is would we recognize
faster a familiar object at a previously unseen retinal location? There are
reasons to doubt it. Many perceptual learning studies, with task ranging
from vernier discrimination to texture segmentation, report limited shift-
invariance Ramachandran (1976); Fiorentini and Berardi (1981); Karni and
Sagi (1991); Shiu and Pashler (1992); Fahle et al. (1995). Both Nazir and
O’Regan (1990) and Dill and Fahle (1998) also showed that random patterns
were harder to recognize at a previously unseen retinal location.

The answer probably depends on the type of stimuli. It is likely that
high level stimuli, such as natural scenes, are encoded higher in the ventral
stream hierarchy, possibly in IT, where responses are relatively invariant to
translation. Simpler stimuli, such as random dots, might be encoded in lower
areas, possibly in V1 or V2, where responses’ position tuning is sharper.

We are planning future experiments to assess these questions.
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4.6.3 Target-distractor distance has more impact than
intra-class variability

As mentioned above the task was more difficult than expected. Participants
reported that the task was demanding, especially at the beginning. They
found hard that they never had a chance to see the target in foveal vision,
let alone to explore it. It usually took them a few tenth of trials to identify
the repeating target (the two ‘easy trials’ at the beginning with no distractor
were usually not enough for the participants to identify the target). Even
at the end of the experiment they could hardly describe the content of the
targets.

What is surprising is that from a computational point of view the identi-
fication of a given scene seems much simpler than the recognition of a class
with huge intra-class variability such as animals. A three line program could
solve the first problem, whereas computer vision scientists are still fighting
to solve the second one with human performance.

We attribute this difficulty to the fact that we used distractors of the same
category as the target, namely interior scenes. Both must activate neurons in
the same region(s) of the visual cortex and with the same latency(ies), thus a
precise read-out procedure is probably needed to distinguish the target from
the distractors. If on the contrary the distractors are from another category,
as in the animal/non-animal task, they will probably not activate the same
region(s), or at least not at the same time (see for example (Kiani et al.,
2005), discussed in Section 1.5), so simply estimating the activity(ies) of the
region(s) selective to the target, eventually at a given time, should be enough
to do the task.

This idea is agreement with the go/no-go results of Delorme et al. (2004),
who found a 10 ms advantage (with similar accuracy) for the identification
of a given animal picture among non-animal distractors with respect to the
identification of a given non-animal picture, still among non animal distrac-
tors. Although the ‘non-animal’ class is extremely varied, and we predict the
10 ms difference would increase using a more narrow category for both target
and distractors, for example interior scenes like here, the difficulty of the task
seems to be directly linked to similarity between target and distractors. Our
results suggests that this similarity has more impact on the performance than
the variability of the target class (zero in the extreme case of identification).
This is summarized in Fig. 4.7.
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Figure 4.7: Schematic view of the impact of intra-class variability and dis-
tance between targets and distractors on the classification task difficulty
(modified from (Macé, 2006)). Our results, in line with previous experi-
ments (Macé, 2006), suggest that the second factor is more important than
the first one in ultra-rapid visual categorization.
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4.6.4 The gap shifts the speed-accuracy trade-off

Given the difficulty of the task, to reach a decent level of accuracy we had
to remove the 200 ms gap that Kirchner and Thorpe (2006) used, at the
expense of longer reaction times.

Generally speaking such a gap could provide an interesting leverage to
move along the speed-accuracy curve. A negative gap, that is leaving the
fixation cross for a few ms after the images have been flashed probably leads
to even slower but more accurate responses. An adaptive gap could thus
enable to normalize either the speed or the accuracy across subjects and/or
conditions.

We are planning new experiments to test these predictions.

4.7 Conclusion
To conclude, this study is really just a first step – the 25 ms reduction in
reaction time is indeed consistent with a decrease in latency to repeated
stimuli, that could be due to STDP. However, many questions remain open,
such as if this 25 ms speed-up is shift-invariant and depends on the type of
stimuli, and if the difficulty encountered here comes from the nature of the
task (intra-class identification) or from the image category (e.g . how fast and
accurate would we be at identifying a given face picture among other face
pictures?).

Given the variability of the behavioral reaction times, in the end, it may
be that single unit recording studies will be the best level to look at this sort
of latency decrease effect.
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Chapter 5

Invariance learning: a plausibility
proof

This work is the result of a collaboration with Thomas Serre and Tomaso
Poggio, of the McGovern Institute for Brain Research, MIT, which started
when I visited their laboratory for three months in summer 2006. We pre-
sented preliminary results at the VSS 07 Conference, Sarasota, FL, USA
(see Section B.3 for the conference abstract and poster), and we wrote a
memo (Masquelier et al., 2007):

Masquelier T, Serre T, Thorpe S and Poggio T (2007) Learning complex
cell invariance from natural videos: a plausibility proof. CBCL Paper #269
/ MIT-CSAIL-TR #2007-060, Massachusetts Institute of Technology, Cam-
bridge, MA, USA. http://hdl.handle.net/1721.1/39833

It is not in the ‘main stream’ of this thesis since rate coding is used. However
it is complementary with respect to the studies presented in Chapters 2 and
3, which proposed mechanisms to learn selectivity : here we are interested
in how invariance can be learnt. Future work will implement the proposed
mechanism on spiking neurons.

5.1 Résumé

Une des caractéristiques les plus frappantes du cortex est sa capacité à
s’auto-câbler. Comprendre comment ce câblage s’effectue durant le dévelop-
pement, et comment il s’affine ensuite par l’expérience tout au long de la vie
est un des plus grands défis en neuroscience. Tandis que les modèles computa-
tionnels du système visuel deviennent de plus en plus détaillés (Riesenhuber
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and Poggio, 1999; Giese and Poggio, 2003; Deco and Rolls, 2004, 2005; Serre
et al., 2005a; Rolls and Stringer, 2006; Berzhanskaya et al., 2007; Masquelier
and Thorpe, 2007), la question de comment la connectivité pourrait s’auto-
organiser à partir de l’expérience visuelle est souvent négligée.

Ici on se focalise sur les modèles hiérarchiques de la voie ventrale du cor-
tex visuel de type feedforward (Fukushima, 1980; Perrett and Oram, 1993;
Wallis and Rolls, 1997; Mel, 1997; LeCun and Bengio, 1998; VanRullen et al.,
1998; Riesenhuber and Poggio, 1999; Ullman et al., 2002; Hochstein and Ahis-
sar, 2002; Amit and Mascaro, 2003; Wersing and Koerner, 2003; Serre et al.,
2005a; Masquelier and Thorpe, 2007; Serre et al., 2007), qui étendent le mo-
dèle classique des cellules simples aux cellules complexes proposé par Hubel
and Wiesel (1962) aux aires extra-striées, et dont on a montré qu’ils ex-
pliquent une quantité de données expérimentales. De tels modèles stipulent
l’existence des deux sortes de cellules, les simples et les complexes, avec des
prédictions spécifiques sur leurs connectivités respectives et les fonctionnali-
tés qui en résultent.

Au sein de ces réseaux la question de l’apprentissage, particulièrement
pour les cellules complexes, est probablement la moins bien comprise, et
beaucoup d’auteurs ont recourt à des artifices tels que le câblage en dur
et/ou le partage des poids (‘weight-sharing’). Plusieurs algorithmes ont été
proposés pour l’apprentissage des cellules complexes basé sur une ‘trace rule’
qui exploite la continuité temporelle du monde (ex (Földiák, 1991; Wallis
and Rolls, 1997; Wiskott and Sejnowski, 2002; Einhäuser et al., 2002; Sprat-
ling, 2005)), mais très peu sont capables d’apprendre à partir de séquences
d’images naturelles non segmentées.

Nous proposons ici une nouvelle variante de la ‘trace rule’ qui renforce
uniquement les synapses entre les cellules les plus activées, ce qui lui per-
met de fonctionner dans des environnements chargés. Jusqu’ici l’algorithme
a été testé au niveau des cellules simples et complexes du cortex visuel pri-
maire (V1). On a vérifié qu’une sélectivité de type Gabor pouvait émerger
à partir d’un mécanisme d’apprentissage de type hebbien compétitif – ce
qui avait été montré précédemment (ex (Delorme et al., 2001; Einhäuser
et al., 2002; Guyonneau, 2006) – puis nous montrons comment la ‘trace rule’
modifiée permet aux cellules complexes situées en aval de se connecter à des
cellules simples dont l’orientation préférée est la même, mais dont les champs
récepteurs sont décalés.
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5.2 Abstract

One of the most striking feature of the cortex is its ability to wire itself.
Understanding how the visual cortex wires up through development and how
visual experience refines connections into adulthood is a key question for
Neuroscience. While computational models of the visual cortex are becoming
increasingly detailed (Riesenhuber and Poggio, 1999; Giese and Poggio, 2003;
Deco and Rolls, 2004, 2005; Serre et al., 2005a; Rolls and Stringer, 2006;
Berzhanskaya et al., 2007; Masquelier and Thorpe, 2007), the question of
how such architecture could self-organize through visual experience is often
overlooked.

Here we focus on the class of hierarchical feedforward models of the ventral
stream of the visual cortex (Fukushima, 1980; Perrett and Oram, 1993; Wallis
and Rolls, 1997; Mel, 1997; LeCun and Bengio, 1998; VanRullen et al., 1998;
Riesenhuber and Poggio, 1999; Ullman et al., 2002; Hochstein and Ahissar,
2002; Amit and Mascaro, 2003; Wersing and Koerner, 2003; Serre et al.,
2005a; Masquelier and Thorpe, 2007; Serre et al., 2007), which extend the
classical simple-to-complex cells model by Hubel and Wiesel (1962) to extra-
striate areas, and have been shown to account for a host of experimental data.
Such models assume two functional classes of simple and complex cells with
specific predictions about their respective wiring and resulting functionalities.

In these networks, the issue of learning, especially for complex cells, is
perhaps the least well understood, and many authors use hard-wired con-
nectivity and/or weight-sharing. Several algorithms have been proposed for
complex cell learning based on a trace rule to exploit the temporal continu-
ity of the world (for e.g . (Földiák, 1991; Wallis and Rolls, 1997; Wiskott and
Sejnowski, 2002; Einhäuser et al., 2002; Spratling, 2005), but very few can
learn from natural cluttered image sequences.

Here we propose a new variant of the trace rule that only reinforces the
synapses between the most active cells, and therefore can handle cluttered
environments. The algorithm has so far been developed and tested through
the level of V1-like simple and complex cells: we verified that Gabor-like sim-
ple cell selectivity could emerge from competitive hebbian learning, as had
been shown before (e.g . (Delorme et al., 2001; Einhäuser et al., 2002; Guyon-
neau, 2006)), and we show how the modified trace rule allow the subsequent
complex cells to pool over simple cells with the same preferred orientation,
but with shifted receptive fields.
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5.3 Introduction

One of the most striking feature of the cortex is its ability to wire itself (see
Section 1.1). Understanding how the visual cortex wires up through develop-
ment and how plasticity refines connections into adulthood is likely to give
necessary constraints to computational models of visual processing. Surpris-
ingly there have been relatively few computational studies (Perrett et al.,
1984; Földiák, 1991; Hietanen et al., 1992; Wallis et al., 1993; Wachsmuth
et al., 1994; Wallis and Rolls, 1997; Stringer and Rolls, 2000; Rolls and Mil-
ward, 2000; Wiskott and Sejnowski, 2002; Einhäuser et al., 2002; Spratling,
2005) that have tried to address the mechanisms by which learning and plas-
ticity may shape the receptive fields of neurons in the visual cortex. Perhaps
this can, in part, be explained by a relative lack of experimental data (see
Section 1.3). At the same time, this is somehow a paradox as theoretical work
could indeed provide interesting predictions to be tested experimentally.

Here we study biologically plausible mechanisms for the learning of se-
lectivity and invariance of cells in the primary visual cortex (V1). We focus
on a specific class of models of the ventral stream of the visual cortex, the
feedforward hierarchical models of visual processing (Fukushima, 1980; Per-
rett and Oram, 1993; Wallis and Rolls, 1997; Mel, 1997; LeCun and Bengio,
1998; VanRullen et al., 1998; Riesenhuber and Poggio, 1999; Ullman et al.,
2002; Hochstein and Ahissar, 2002; Amit and Mascaro, 2003; Wersing and
Koerner, 2003; Serre et al., 2005a; Masquelier and Thorpe, 2007; Serre et al.,
2007), which extend the classical simple-to-complex cells model by Hubel
and Wiesel (1962) (see Box 1) and have been shown to account for a host of
experimental data.

To be precise we have used the HMAX model (Riesenhuber and Poggio,
1999; Serre et al., 2005b, 2007), which assumes two functional classes of sim-
ple and complex cells with specific predictions about their respective wiring,
and focused on the learning of the V1 simple and complex cells, respectively
called S1 and C1. Learning in higher stages of the model will be addressed
in future work. We show that with simple biologically plausible learning
rules, these two classes of cells can be learned from natural real-world videos
with no supervision. In particular, we verified that S1 Gabor-like selectivity
could emerge from competitive Hebbian learning, as had been showed be-
fore (Delorme et al., 2001; Einhäuser et al., 2002; Guyonneau, 2006), and,
more importantly, we proposed a new mechanism, which suggests how the
specific pooling from S1 to C1 could self-organize by passive exposure to
natural input video sequences. We discuss the computational requirements
for such unsupervised learning to take place and make specific experimental
predictions.
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5.4 HMAX Model
The key computational issue in object recognition is the specificity-invariance
trade-off: recognition must be able to finely discriminate between different
objects or object classes while at the same time be tolerant to object trans-
formations such as scaling, translation, illumination, changes in viewpoint,
changes in context and clutter, as well as non-rigid transformations (such
as a change of facial expression) and, for the case of categorization, also to
variations in shape within a class. Thus the main computational difficulty of
object recognition is achieving a trade-off between selectivity and invariance.
Extending the hierarchical model by (Hubel and Wiesel, 1959) (see Box 1)
to extrastriate areas and based on theoretical considerations, Riesenhuber
and Poggio (1999) speculated that only two functional classes of units may
be necessary to achieve this trade-off, and demonstrated it with the so-called
HMAX model1:

5.4.1 The Simple S units

They perform a tuning operation over their afferents to build object-selectivity
(the analog of the tuning operation in computer vision is the template
matching operation between an input image and a stored representation).
The simple S units receive convergent inputs from retinotopically organized
units tuned to different preferred stimuli and combine these subunits with a
bell-shaped tuning function, thus increasing object selectivity and the com-
plexity of the preferred stimulus (see (Serre et al., 2005a) for details).

As discussed in (Poggio and Bizzi, 2004) neurons with a Gaussian-like
bell-shape tuning are prevalent across cortex. For instance simple cells in
V1 exhibit a Gaussian tuning around their preferred orientation (Hubel
and Wiesel, 1962) or even cells in inferotemporal cortex are typically tuned
around a particular view of their preferred object (Logothetis et al., 1995;
Booth and Rolls, 1998). From the computational point of view, Gaussian-
like tuning profiles may be key in the generalization ability of cortex and
networks that combine the activity of several units tuned with a Gaussian
profile to different training examples have proved to be powerful learning
scheme (Poggio and Girosi, 1990; Poggio and Smale, 2003).

5.4.2 The Complex C units

They receive convergent inputs from retinotopically organized S units tuned
to the same preferred stimuli but at slightly different positions and scales with

1HMAX stands for Hierarchical MAXimum
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Box 1: The Hubel & Wiesel hierarchical model of V1.

Following their work on striate cortex,
Hubel & Wiesel described a hierarchy of
cells in the primary visual cortex: At the
bottom of the hierarchy, the radially sym-
metric cells are like LGN cells and respond
best to small spots of light. Second, the
simple cells do not respond well to spots
of light and require bar-like (or edge-like)
stimuli at a particular orientation, posi-
tion and phase (i.e. white bar on a black
background or dark bar on a white back-
ground). In turn, the complex cells are also
selective for bars at a particular orientation
but they are insensitive to both the loca-
tion and the phase of the bar within their
receptive fields. At the top of the hierarchy
the hypercomplex cells not only respond to
bars in a position and phase invariant way,
just like complex cells, but are also selec-
tive for bars of a particular length (beyond
a certain length their response starts de-
creasing).
Hubel & Wiesel suggested that such
increasingly complex and invariant ob-
ject representations could be progressively
built by integrating convergent inputs from
lower levels. For instance, as illustrated
in Fig. 5.1 (reproduced from (Hubel and
Wiesel, 1959)), position invariance at the
complex cells level, could be obtained by
pooling over simple cells at the same pre-
ferred orientation but at slightly different
positions.

Figure 5.1: The Hubel & Wiesel
hierarchical model for building
complex cells from simple cells.
Reproduced from (Hubel and
Wiesel, 1959).
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a max-like operation, thereby introducing tolerance to scale and translation.
max functions are commonly used in signal processing (e.g . for selecting peak
correlations) to filter noise out. The existence of a max operation in visual
cortex was predicted by (Riesenhuber and Poggio, 1999) from theoretical
arguments (and limited experimental evidence (Sato, 1989)) and was later
supported experimentally in V4 (Gawne and Martin, 2002) and in V1 at the
complex cell level (Lampl et al., 2004). Note that other recordings are more
compatible with an average operation than with a max operation, see for
example (Zoccolan et al., 2005).

5.4.3 Neural implementations of the two key operations

In this work we use static idealized approximation to describe the response
of populations of simple and complex units (see Section 1.4.1 for a discussion
on population coding). As described in (Serre et al., 2005a) both operations
can be carried out by a divisive normalization followed by weighted sum
and rectification. Normalization mechanisms (also commonly referred to as
gain control) in this case, can be achieved by a feedforward (or recurrent)
shunting inhibition (Torre and Poggio, 1978; Reichardt et al., 1983; Carandini
and Heeger, 1994).2

The detailed mathematical formulation of the two operations is given in
Box 2. There are plausible local circuits (Serre et al., 2005a) implement-
ing the two key operations within the time constraints of the experimental
data (Perrett et al., 1992; Keysers et al., 2001; Hung et al., 2005) based
on small local populations of spiking neurons firing probabilistically in pro-
portion to the underlying analog value (Smith and Lewicki, 2006) and on
shunting inhibition (Grossberg, 1973). A complete description of the two
operations, a summary of the evidence as well as plausible biophysical cir-
cuits to implement them can be found (Serre et al., 2005a) (see Section 5,
pp. 53-59).

Other possibilities may involve spike timing in individual neurons (Masque-
lier and Thorpe, 2007) (see Section 1.5 for experimental evidence). Future

2For the past two decades several studies (in V1 for the most part) have provided evi-
dence for the involvement of GABAergic circuits in shaping the response of neurons (Sil-
lito, 1984; Douglas and Martin, 1991; Ferster and Miller, 2000). Direct evidence for the
existence of divisive inhibition comes from an intracellular recording study in V1 (Borg-
Graham and Fregnac, 1998). Wilson et al. (1994) also showed the existence of neighboring
pairs of pyramidal cells / fast-spiking interneurons (presumably inhibitory) in the pre-
frontal cortex with inverted responses (i.e. phased excitatory/inhibitory responses). The
pyramidal cell could provide the substrate for the weighted sum while the fast-spiking
neuron would provide the normalization term.
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Box 2: Computational implementation of the Hubel & Wiesel model.

We use a population coding framework (i.e. a ‘unit’ corresponds to a population of
neurons). We denote by (x1, x2, . . . xn) the set of inputs to a unit and w = (w1, . . . , wN )
the corresponding synaptic weights. For a complex unit, the inputs xj are retinotopically
organized and selected from an m × m grid of afferent units with the same selectivity
(e.g . for an horizontal complex cells, subunits are all tuned to an horizontal bar but at
slightly different positions and spatial frequencies). For a simple unit, the subunits are
also retinotopically organized (selected from an m ×m grid of possible afferents). But,
in contrast with complex units, the subunits of a simple cell could in principal be with
different selectivities to increase the complexity of the preferred stimulus.
Mathematically, both the tuning operation and the max operation at the simple and
complex units level can be well approximated by the following equation:

y =

n∑
j=1

w∗
j xp

j

k +

 n∑
j=1

xq
j

r ,

where y is the output of the unit, k << 1 is a constant to avoid zero-divisions and p, q
and r represent the static non-linearities in the underlying neural circuit.
Such non-linearity may correspond to different regimes on the f−I curve of the presynap-
tic neurons such that different operating ranges provide different degrees of non-linearities
(from near-linearity to steep non-linearity). An extra sigmoid transfer function on the
output g(y) = 1/(1 + expα(y−β)) controls the sharpness of the unit response.
By adjusting these non-linearities, the equation above can approximate better a max or
a tuning function:

• When p / qr, the unit approximates a Gaussian-like tuning, i.e. its response
y will have a peak around some value proportional to the input vector w =
(w1, . . . , wN ). For instance, when p = 1, q = 2 and r = 1/2, the circuits
perform a normalized dot-product with an L2 norm, which with the addition of
a bias term may approximate a Gaussian function very closely (see (Kouh and
Poggio, 2004; Serre et al., 2005a) for details).

• When p ' q + 1 (wj ≈ 1), the unit implements a soft-max and approximates a
max function very closely for larger q values (see (Yu et al., 2002), the quality
of the approximation also increases as the inputs become more dissimilar). For
instance, r ≈ 1, p ≈ 1, q ≈ 2 gives a good approximation of the max (see (Serre
et al., 2005a) for details).
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work will evaluate the use of spiking neuron and temporal coding in this
framework.

While there exists at least partial evidence for the existence of both Gaus-
sian tuning and max-like operations (see earlier and (Serre et al., 2005a)),
the question of how the specific wiring of simple and complex cells could
self-organize during development and how their selectivity could be shape
through visual experience is open. In the next section, we review related
work and speculate on computational mechanisms that could underlie the
development of such circuits.

5.5 On learning correlations

Here we speculate that correlations play a key role in learning. Beyond the
Hebbian doctrine, which says that ‘neurons that fire together wire together’,
we suggest that correlation in the inputs of neurons could explain the wiring
of both simple and complex cells. As emphasized by several authors, sta-
tistical regularities in natural visual scenes may provide critical cues to the
visual system to solve specific tasks (Richards et al., 1992; Knill and Richards,
1996; Callaway, 1998; Coppola et al., 1998) or even provide a teaching sig-
nal (Barlow, 1961; Sutton and Barto, 1981; Földiák, 1991) for learning with
no supervision. More specifically, we suggest that the wiring of the simple
S units depends on learning correlations in space while the wiring of the C
units depends on learning correlations in time.

5.5.1 Simple cells learn spatial correlations

Simple cells learn spatial correlation between inputs at the same time(i.e. for
simple S1 units in V1, the bar-like arrangements of LGN inputs, and beyond
V1, more elaborate arrangements of bar-like subunits, etc.). This corre-
sponds to learning which combinations of features appear most frequently
in images. That is, a simple unit has to detect conjunctions of inputs (i.e.
sets of inputs that are consistently co-active), and to become selective to
these patterns. This is roughly equivalent to learning a dictionary of image
patterns that appear with higher probability.

This is a very simple and natural assumption. Indeed it follows a long
tradition of researchers that have suggested that the visual system, through
visual experience and evolution, may be adapted to the statistics of its natural
environment (Attneave, 1954; Barlow, 1961; Atick, 1992; Ruderman, 1994)
(see also (Simoncelli and Olshausen, 2001) for a review). For instance, (At-
tneave, 1954) proposed that the goal of the visual system is to build an
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efficient representation of the visual world and (Barlow, 1961) emphasized
that neurons in cortex try to reduce the redundancy present in the natural
environment.

This type of learning can be done with an Hebbian learning rule (Földiák,
1990). Here we used a slightly modified Hebb rule, which has the advantage of
keeping the synaptic weights bounded, while remaining a local learning rule
(see Equation 5.6). At the same time, a mechanism is necessary to prevent all
the simple units in a given cortical column from learning the same pattern.
Here we used hard competition of the 1-Winner-Take-All form (see (Rolls
and Deco, 2002) for evidence). In the algorithm we describe below, at each
iteration and within each hypercolumn only the most activated unit is allowed
to learn (but it will do so if and only if its activity is above a threshold, see
Section 5.8.3). In the cortex such a mechanism could be implemented by
short range lateral inhibition.

Networks with anti-Hebbian horizontal connections have also been pro-
posed (Földiák, 1990). While such networks could, in principle, remove re-
dundancy more efficiently, they cannot account for the initial feedforward
response of neurons within the first 10-30 ms after response onset (Thorpe
and Imbert, 1989; Thorpe and Fabre-Thorpe, 2001; Keysers et al., 2001;
Rolls, 2004) but could nevertheless be easily added in future work. Further-
more, a certain level of redundancy is desirable, to handle noise and loss of
neurons.

Matching pursuit, that could also be implemented in visual cortex through
horizontal connections, has also been proposed to reduce the redundancy and
increases the sparseness of neuronal responses (Perrinet et al., 2004a).

Previous work has already shown how selectivity to orientation could
emerge naturally with simple learning rules like Spike-Timing-Dependant-
Plasticity (STDP) (Delorme et al., 2001; Guyonneau, 2006) and a hebbian
rule (Einhäuser et al., 2002). The goal of the work here is to apply such rule
to the specific HMAX model (Riesenhuber and Poggio, 1999; Serre et al.,
2005a, 2007).

5.5.2 Complex cells learn temporal correlations

Complex cells may learn from visual experience how to associate frequent
transformations in time – such as translation and scale – of specific visual
features coded by simple cells. The wiring of the C units reflects learning of
correlations across time, e.g . for complex C1 units, learning which afferent S1

units with the same orientation and neighboring locations should be wired
together because, often, such a pattern changes smoothly in time (under
translation) (Földiák, 1991; Wiskott and Sejnowski, 2002).
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ON

4 x 4 Cortical Columns
16 S1 in each

7X7 RF

4 C1

LGN

Figure 5.2: Overview of the specific implementation of the Hubel & Wiesel V1
model used. LGN-like ON- and OFF-center units are modeled by Difference-
of-Gaussian (DoG) filters. Simple units (denoted S1) sample their inputs
from a 7× 7 grid of LGN-type afferent units. Simple S1 units are organized
in cortical hypercolumns (4 × 4 grid, 3 pixels apart, 16 S1 units per hyper-
column). At the next stage, 4 complex units C1 cells receive inputs from
these 4 × 4 × 16 S1 cells. This chapter focuses on the learning of the S1 to
C1 connectivity.
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As discussed earlier, the goal of the complex units is to increase the
invariance of the representation along one stimulus dimension. This is done
by combining the activity of a group of neighboring simple units tuned to
the same preferred stimulus at slightly different position and scales. In this
chapter we focus on translation invariance, but the same mechanism could
be applied to any transformation (for e.g . scale, rotation or view-point).

A key question is how a complex cell would ‘know’ which simple cells it
should connect to, i.e. which simple cells do represent the same object at
different locations? Note that a standard Hebbian rule, that learns conjunc-
tions of inputs, does not work here, as only one (or a few) of the targeted
simple cells will be activated at once. Instead, a learning rule is needed to
learn disjunctions of inputs.

Several authors have proposed to use temporal continuity to learn com-
plex cells from transformation sequences (Perrett et al., 1984; Földiák, 1991;
Hietanen et al., 1992; Wallis et al., 1993; Wachsmuth et al., 1994; Wallis and
Rolls, 1997; Rolls and Milward, 2000; Wiskott and Sejnowski, 2002). This
can be done using an associative learning rules that incorporate a temporal
trace of activity in the post-synaptic neuron (Földiák, 1991), exploiting the
fact that objects seldom appear or disappear, but are often translated in the
visual field. Hence simple units that are activated in close temporal proxim-
ity are likely to represent the same object, presumably at different locations.
Földiák (1991) proposed a modified Hebbian rule, known as the ‘trace rule’
which constrain synapses to be reinforced when strong inputs coincides with
strong average past activity (instead of strong current activity in case of a
standard Hebbian rule). This proposal has formed the basis of a large num-
ber of algorithms for learning invariances from sequences of images (Becker
and Hinton, 1992; Stone and Bray, 1995; Wallis and Rolls, 1997; Bartlett and
Sejnowski, 1998; Stringer and Rolls, 2000; Rolls and Milward, 2000; Wiskott
and Sejnowski, 2002; Einhäuser et al., 2002; Spratling, 2005).

However, as pointed out by Spratling (2005), the trace rule by itself is
inappropriate when multiple objects are present in a scene: it cannot distin-
guish which input corresponds to which object, and it may end-up combining
multiple objects in the same representation. Hence most trace-rule based al-
gorithm require stimuli to be presented in isolation ((Földiák, 1991; Oram
and Földiák, 1996; Wallis, 1996; Stringer and Rolls, 2000)), and would fail
to learn from cluttered natural input sequences.

To solve this problem, Spratling made the hypothesis that the same object
could not activate two distinct inputs, hence co-active units necessarily cor-
respond to distinct objects. He proposed a learning rule that can exploit this
information, and successfully applied it on drifting bar sequences(Spratling,
2005).
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However the ‘one object activates one input’ hypothesis is a strong one. It
seems incompatible with the redundancy observed in the mammalian brain
and reproduced in our model. Instead we propose another hypothesis: from
one frame to another the most active inputs are likely to represent the same
object. If the hypothesis is true, by restraining the reinforcement to the
most active inputs we usually avoid to combine different objects in the same
representation (note that this idea was already present in (Einhäuser et al.,
2002), although not formulated in those terms).

In this chapter we focus on the learning of simple S1 and complex C1

units (see Fig. 5.2), which constitutes a direct implementation of the Hubel
and Wiesel (1959) model of striate cortex (see Box 1). The goal of a C1

unit is to pool over S1 units with the same preferred orientation, but with
shifted receptive fields. In this context our hypothesis becomes: ‘in a given
neighborhood, the dominant orientation is likely to be the same from one
frame to another’. As our experimental suggests, this constitutes a reasonable
hypothesis, which leads to appropriate pooling.

5.6 Results

We tested the proposed learning mechanisms in a 3 layer feedforward network
mimicking the Lateral Geniculate Nucleus (LGN) and V1 (see Fig. 5.2).
Details of the implementation can be found in the Section 5.8.

The stimuli we used were provided by Betsch et al. (2004). The videos
were captured by CCD cameras attached to cats’ heads, while the animals
were exploring several outdoor environments. Theses videos approximate the
input to which the visual system is naturally exposed, although eye move-
ments are not taken into account.

To simplify the computations, learning was done in two phases: First S1

units learned their selectivity through competitive Hebbian learning. After
convergence, plasticity at the S1 stage was switched off and learning at the
complex C1 unit level started. In a more realistic scenario, this two-phase
learning scheme could be approximated with a slow time constant for learning
at the S1 stage and a faster time constant at the C1 stage.

5.6.1 Simple cells

After about 9 hours of simulated time S1 units have learned a Gabor-like se-
lectivity (see Fig. 5.3) similar to what has been previously reported for corti-
cal cells (Hubel and Wiesel, 1959, 1962, 1965, 1968; Schiller et al., 1976a,b,c;
DeValois et al., 1982a,b; Jones and Palmer, 1987; Ringach, 2002). In par-
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ticular, receptive fields are localized, tuned to specific spatial frequencies
in a given orientation. In this experiment, only four dominant orientations
emerged spanning the full range of orientations with 45◦ increment: 0◦ , 45◦ ,
90◦ and 135◦ . Interestingly, in an another experiment using S1 receptive
fields larger than the 7 × 7 receptive field sizes used here, we found instead
a continuum of orientations (data not shown). The fact that we obtain only
four orientations here is likely to be a discretization artifact. With this caveat
in mind, in the following we used the 7 × 7 RF sizes (see Table 5.1), which
match the receptive field sizes of cat LGN cells.

Our results are in line with previous studies that have shown that com-
petitive Hebbian learning with DoG inputs leads to Gabor-like selectivity
(see for instance (Delorme et al., 2001; Einhäuser et al., 2002; Guyonneau,
2006)).

5.6.2 Complex cells

In phase 2, to learn the receptive fields of the C1 units, we turned off learning
at the S1 stage and began to learn the S1−C1 connectivity. This was done us-
ing a learning rule that reinforce the synapse between the currently most ac-
tivated S1 unit and the previously most activated C1 unit (see Section 5.8.4).
After 19 hours of simulated time, we ended up with binary S1 −C1 weights,
and each C1 remained connected to a pool of S1 with the same preferred
orientation, eventually in different cortical columns (see Fig. 5.4). Hence
by taking the (soft) maximum response among its pool, a C1 unit becomes
shift-invariant and inherits its orientation selectivity from its input S1 units.

In total 38 S1 units were not selected by any C1 (see Fig. 5.5). They
either had an atypical preferred stimulus or were tuned to an horizontal
bar, which, because of a possible bias in the training data (maybe due to
horizontal head movements), is over-represented at the S1 level. In addition
we did not find any S1 unit selected by more than one C1 unit. In other
words, the pools Fig. 5.4(a), 5.4(b), 5.4(c), 5.4(d) and 5.5 were all disjoint.
Note that superimposing those 5 figures leads to Fig. 5.3.

We also experimented other learning rules in the same architecture (data
not shown). We reimplemented Földiák’s original trace rule (Földiák, 1991)
given by:

∆w = α · tr(y) · (x−w). (5.1)

As expected, the learning rule failed mainly due to the fact that input frames
do not contain isolated edges but instead edges with multiple orientations.
This, in turn, leads to complex units that pool over multiple orientations.

We also implemented Spratling’s learning rule (Spratling, 2005), which
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Figure 5.3: Reconstructed S1 preferred stimuli for each one of the 4×4 cortical
hypercolumns (on this figure the position of the reconstructions within a
cortical column is arbitrary). Most units show a Gabor-like selectivity similar
to what has been previously reported in the literature (see text).
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failed in a similar way, because the hypothesis that ‘one edge activates one
S1 unit’ is violated here.

Finally we re-implemented the rule by Einhäuser et al. (2002) (see Equa-
tion 5.11). We reproduced their main results and the learning rule generated
a continuum of S1 − C1 weights (as opposed to our binary weights). The
strongest synapses of a given complex cell did correspond to simple cells with
the same preferred orientation but, undesirably, the complex cells had also
formed connection to other simple cells with distinct preferred orientation
(see also Section 5.7).

5.7 Discussion

Contrary to most previous approaches (Földiák, 1990, 1991; Wallis and Rolls,
1997; Stringer and Rolls, 2000; Rolls and Milward, 2000; Spratling, 2005), our
approach deals with natural image sequences, as opposed to artificial stimuli
such as drifting bars. For a given algorithm to be biologically plausible a
necessary condition (although not sufficient) is that it can handle natural
images, which bring supplementary difficulties such as noise, clutter and
absence of relevant stimuli. Models that process simpler stimuli may be
useful to illustrate a given mechanism, but the goal in fine should be to deal
with natural images, just like humans do. To our knowledge, the only model
for the learning of simple and complex cells, which has been shown to work
on natural image sequences is the one by Einhäuser et al. (2002). Our work
extends the study by Einhäuser et al. (2002) in several significant ways.

First, by using soft-bounds in the weight update rule (see Equation 5.10),
the proposed algorithm converges towards input weights to a complex unit
that are binary. This means that each complex unit is strongly connected to
a pool of simple units that all have the same preferred orientation. This leads
to complex units with an orientation bandwidth similar to the orientation
bandwidth of simple units (see (Serre and Riesenhuber, 2004)) in agreement
with experimental data (DeValois et al., 1982b). Conversely, the algorithm
by Einhäuser et al . generates a continuum of synaptic weights and although
weaker, some of the connections to simple units to non-preferred orientations
remained thus broadening the orientation bandwidth from simple to complex
units.

Another important difference with the learning rule used in (Einhäuser
et al., 2002) is that our modified Hebbian learning rule is based on the cor-
relation between the current inputs to a complex unit and its output at the
previous time step (as opposed to previous input and current output in (Ein-
häuser et al., 2002)). This was suggested in (Rolls and Milward, 2000). Here
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(a) S1 units (n=73) that remain connected
to C1 unit # 1 after learning

(b) S1 units (n=35) that remain connected
to C1 unit # 2 after learning

(c) S1 units (n=59) that remain connected to
C1 unit # 3 after learning

(d) S1 units (n=38) that remain connected
to C1 unit # 4 after learning

Figure 5.4: Pools of S1 units connected to each C1 unit. For e.g . C1 unit
# 1 became selective for horizontal bars: After learning only 73 S1 units
(out of 256) remain connected to the C1 unit, and they are all tuned to an
horizontal bar, but at different positions (corresponding to different cortical
columns; on this figure the positions of the reconstructions correspond to
their positions in Fig. 5.3).
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Figure 5.5: The 38 S1 cells that were not connected to any C1.

we found empirically that it leads to faster and more robust learning. It
also turns out to be easier to implement in biophysical circuits: Because of
synaptic delays, it is in fact very natural to consider the current input to a
unit and its output to the previous frames a few tens of milliseconds earlier.
Measuring correlations between past inputs and current output would need
an additional mechanism to store the current input for future use.

Finally our approach tends to be simpler than most of the previous ones.
The inputs to the model are raw gray-level images without any pre-processing
such as low pass filtering or whitening. Also the proposed algorithm does not
require any weight normalization and all the learning rules used are local.

Our neurophysiologically-plausible approach also contrasts with objective
function approaches, which optimize a given function (such as sparseness (Ol-
shausen and Field, 1996; Rehn and Sommer, 2007) (minimizing the number
of units active for any input), statistical independence (Bell and Sejnowski,
1997; van Hateren and Ruderman, 1998; van Hateren and van der Schaaf,
1998; Hyvärinen and Hoyer, 2001) or even temporal continuity and slowness
(Wiskott and Sejnowski, 2002; Körding et al., 2004; Berkes and Wiskott,
2005) in a non-biologically plausible way. Such normative model can pro-
vide insights as to why receptive fields look the way they do. Indeed such
models have made quantitative predictions, which have been compared to
neural data (see (van Hateren and Ruderman, 1998; van Hateren and van der
Schaaf, 1998; Ringach, 2002) for instance). However, such approaches ignore
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the computational constraints imposed by the environment and are agnostic
about how such learning could be implemented in the cortex.

Fortunately connections can be drawn between the two classes of ap-
proaches. For example, Sprekler et al . recently showed that Slow Feature
Analysis (SFA) is in fact equivalent to the trace rule, and could be imple-
mented by Spike Timing Dependant Plasticity (Sprekeler et al., 2007).

Finally our approach constitutes a plausibility proofs for most models of
the visual cortex (Fukushima, 1980; LeCun and Bengio, 1998; Riesenhuber
and Poggio, 1999; Ullman et al., 2002; Serre et al., 2007; Masquelier and
Thorpe, 2007), which uses weight-sharing (see Section 1.6.3). Such model
typically learn at one location and simply ‘replicate’ units at all locations.
This is not the approach we undertook in this work: The 4 × 4 grid of S1

units (16 at each location) are all learned independently and indeed are not
identical. We then suggested a mechanism to pool together cells with similar
preferred stimulus. The success of our approach validates the simplifying
assumption of weight-sharing. However we still have to test the proposed
mechanisms for higher order neurons (such as the C2 cells of Chapter 2).

The idea of exploiting temporal continuity to build invariant representa-
tions finds partial support from psychophysical studies, which have suggested
that human observers tend to associate together successively presented views
of paperclip objects (Sinha and Poggio, 1996) or faces (Wallis and Bülthoff,
2001). The idea also seems consistent – as pointed out by Stryker (Stryker,
1991; Földiák, 1998; Giese and Poggio, 2003) – with an electrophysiological
study by Miyashita (1988), who showed, that training a monkey with a fixed
sequence of image patterns lead to a correlated activity between those same
patterns during the delayed activity.

Finally this class of algorithms lead to an interesting prediction made
by Einhäuser et al. (2002), namely that the selectivity of complex units
could be impaired by rearing an animal in an environment in which tem-
poral continuity would be disrupted (for instance using a stroboscopic light
or constantly flashing uncorrelated pictures). We verified this prediction on
our model and found that randomly shuffling the frames of the videos had
no impact on the development of the simple S1 units while the selectivity of
the complex C1 units was significantly impaired (all the synapses between
the simple and complex units ended up depressed).

To conclude, although this study could be pushed further – in particu-
lar the proposed mechanism should be implemented on spiking neurons, and
should be tested on higher order neurons – it does constitute au plausibil-
ity proof that invariances could be learnt using a simple trace-rule, even in
natural cluttered environment.
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Figure 5.6: Videos: the world from a cat’s pespective (Betsch et al., 2004).

5.8 Technical details

5.8.1 Stimuli: the world from a cat’s perspective

The videos used were taken from (Betsch et al., 2004)(see Fig. 5.6). The
camera spans a visual angle of 71◦ by 53◦ and its resolution is 320 × 240
pixels. Hence each pixel corresponds to about 13 min of arc. We only used
the first six videos (from thirteen total) for a total duration of about 11
minutes. Spatio-temporal patches were extracted from these videos at fixed
points from a 9×11 grid (sampled every 25 pixels). These 99 sequences were
concatenated leading to a total of about 19 hours of video (about 1.6 million
frames).

In the following, we set the receptive field sizes for model LGN-like, simple
S1 and complex C1 units to the average values reported in the literature for
foveal cells in the cat visual cortex (Hubel and Wiesel, 1968). We did not
model the increase in RF size with eccentricity and assumed that foveal values
stood everywhere. This leads to receptive field sizes for the three layers that
are summarized in Table 5.1.



5.8. TECHNICAL DETAILS 115

Table 5.1: Receptive field sizes in pixels, and in degree of visual angle.

ON −OFF S1 C1

Pixels 7 13 22
Degrees 1.6 2.9 4.9

5.8.2 LGN ON- and OFF-center unit layer

Gray level images are first analyzed by an array of LGN-like units that cor-
respond to 7× 7 Difference-of-Gaussian (DoG) filters:

DoG =
1

2π

(
1

σ1

e
− r2

2σ2
1 − 1

σ2

e
− r2

2σ2
2

)
(5.2)

We used σ2 = 1.4 and σ2/σ1 = 1.6 to make the DOG receptive fields
approximate a Laplacian filter profile, which in turn resembles the receptive
fields of biological retinal ganglion cells (Marr and Hildreth, 1980). Positive
values ended in the ON-center cell map, and the absolute value of negative
values in the OFF-center cell map.

5.8.3 S1 layer: competitive hebbian learning

Model S1 units are organized on a 4 × 4 grid of cortical columns. Each
column contains 16 S1 units (see Fig. 5.2). The distance between columns
was set to 3 pixels (i.e. about half a degree of visual angle). Each S1 unit
received their inputs from a 7× 7 grid of afferent LGN-like units (both ON-
and OFF-center) for a total of 7 × 7 × 2 input units. S1 units perform a
bell-shape tuning (see (Serre et al., 2005a) for details) function which can
be approximated by the following static mathematical operation (see Box 2):

yraw =

∑n
j=1 wj.x

p
j

k + (
∑n

j=1 xq
j)

r
(5.3)

Here for the S1 cells we set the parameters to: k = 0, p = 1, q = 2 and
r = 1/2, which is exactly a normalized dot-product:

yraw =
w.x

||x||
(5.4)

The reader should refer to (Knoblich et al., 2007) for biophysical cir-
cuits of integrate and fire neurons that use realistic parameters of synaptic
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transmission approximating Equation 5.4.
The response of a simple S1 unit is maximal if the input vector x is

collinear to the synaptic weight vector w (i.e. the preferred stimulus of the
unit). As the pattern of input becomes more dissimilar to the preferred
stimulus, the response of the unit decreases monotonically in a bell-shape-
like way (i.e. the cosine of the angle between the two vectors).

The unit activity yraw is further normalized by the recent unit history,
i.e. a ‘running average (denoted by tr(.)) of the raw activities over past few
frames’:

y =
yraw

tr(yraw)
(5.5)

Such unit history is often referred to as a (memory) trace (Földiák, 1991;
Wallis, 1996; Wallis and Rolls, 1997; Stringer and Rolls, 2000; Rolls and
Milward, 2000). For our model S1 unit, such normalization by the trace
approximates adaptation effects. One can think of yraw as the membrane
potential of the unit while y approximates the instantaneous firing rate of
the unit over short time intervals: units that have been strongly active will
become less responsive. While non-critical, this normalization by the trace
significantly speeds-up the convergence of the learning algorithm by balanc-
ing the activity between all S1 units (the response of units with a record of
high recent activity is reduced while the response of units which have not
been active in the recent past is enhanced).3

The initial w weights of all the S1 units were initialized at random (sam-
pled from a uniform distribution on the [0,1] interval). In each cortical column
only the most active cell is allowed to fire (1-Winner-Take-All mechanism).
However, it will do so if and only if its activity reaches its threshold T . It
will then trigger the (modified) Hebbian rule:

∆w = α · y · (x−w) (5.6)

The −w, added to the standard Hebb rule, allows to keep the w bounded.
However, the learning rule is still fully local.

The winner then updates its threshold as follows:

T = y (5.7)

3Empirically we found that the learning algorithm would still converge without the
normalization term. However the distribution of preferred orientations among the learned
S1 units would be far less balanced than in the full learning algorithm (the number of
horizontal units would outweigh the number of vertical ones (data not shown).
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At each time step, all thresholds are decreased as follows:

T = (1− η) · T (5.8)

There is experimental evidence for such threshold modulations in pyrami-
dal neurons, which contribute to homeostatic regulation of firing rates. For
example, Desai et al . showed that depriving neurons of activity for two days
increased sensitivity to current injection (Desai et al., 1999).

At each time step the traces are updated as follows:

tr(yraw) =
yraw

ν
+ (1− 1

ν
) · tr(yraw) (5.9)

We used η = 2−15 and ν = 100. It was found useful to geometrically
increase the learning rate α for each S1 cell every 10 weight updates, starting
from an initial value of 0.01 and ending at 0.1 after 200 weight updates. Only
half of the 1,683,891 frames were needed to reach convergence.

5.8.4 C1 Layer: pool together consecutive winners

4 C1 cells receive inputs from the 4× 4× 16 S1 cells through synapses with
weight w ∈ [0, 1] (initially set to .75).

Each C1 cell’s activity is computed using equation 5.3, but this time with
p = 6 (and still q = 2 and r = 1/2). It has been shown that such operation
performs a soft-max (Yu et al., 2002), and biophysical circuits to implement
it have been proposed in (Knoblich et al., 2007).

Winner-Take-All mechanisms select the C1 winner at time t−∆t (previous
frame), Jt−∆t, and the current S1 winner at time t (current frame), It. The
synapse between them is reinforced, while all the other synapses of Jt−∆t are
depressed:

∆wiJt−∆t
=

{
a+ · wiJt−∆t

· (1− wiJt−∆t
) if i = It

a− · wiJt−∆t
· (1− wiJt−∆t

) otherwise (5.10)

Synaptic weights for the non-winning C1 cells are unchanged.
This learning rule was inspired by previous work on Spike Timing Depen-

dent Plasticity (STDP) (Masquelier and Thorpe, 2007). The multiplicative
term wiJt−∆t

· (1 − wiJt−∆t
) ensures the weight remains in the range [0,1]

(excitatory synapses) and implements a soft bound effect: when the weight
approaches a bound, weight changes tend toward zero, while the most plastic
synapses are those in an intermediate state.

As recommended by (Rolls and Milward, 2000) we chose to exploit cor-
relations between the previous output and the current input (as opposed to
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current output and previous output, as in Einhäuser et al .’s model (Ein-
häuser et al., 2002)). We empirically confirmed that learning was indeed
more robust this way.

It was found useful to geometrically increase the learning rates every 1000
iteration, while maintaining the a+/a− ratio at a constant value (-170). We
started with a+ = 2−3 and set the increase factor so as to reach a+ = 2−1 at
the end of the simulation.

5.8.5 Main differences with Einhäuser et al . 2002

• Learning rule for complex cells: first Einhäuser et al . select the C1

winner at time t (current frame), Jt, and the previous S1 winner at
time t − ∆t (previous frame), It−∆t. The synapse between them is
reinforced, while all the other synapses of Jt are depressed. Second,
they use a different weight update rule:

∆wiJt =

{
α · (1− wiJt) if i = It−∆t

−α · wiJt otherwise (5.11)

This learning rule leads to a continuum of weights at the end (as op-
posed to binary weights) Tests have shown that the problem persists
if (like us) we select the C1 winner at time t − ∆t (previous frame),
Jt−∆t, and the current S1 winner at time t (current frame), It, and
apply Einhäuser’s rule:

∆wiJt−∆t
=

{
α · (1− wiJt−∆t

) if i = It

−α · wiJt−∆t
otherwise (5.12)

so the problem comes from the weight update rule they use, and not
from the type of correlation involved.

• They normalize activity by running averages also at the complex stage

• They did not model the increase in RF size between S1 and C1



Chapter 6

Conclusions

6.1 Résumé
En introduction j’ai décrit trois propriétés essentielles des réponses neu-

ronales dans le cortex visuel. Elles sont :
1. Sélectives (voir Section 1.2.1, paragraph 1)
2. Invariantes (voir Section 1.2.1, paragraph 2)
3. Rapides (voir Section 1.2.2)

Au Chapitre 2 j’ai proposé un mécanisme basé sur la STDP qui pourrait ex-
pliquer à la fois la sélectivité et la vitesse des réponses. Plus précisément, j’ai
démontré que, au sein d’un model neuronal de la voie ventrale de type ‘feed-
forward’, la combinaison d’une part d’un schéma de codage temporel dans
lequel les neurones les plus stimulés déchargent en premier, et d’autre part de
la STDP, amène à une situation dans laquelle les neurones des aires de haut
niveau deviennent graduellement sélectifs à des combinaisons fréquentes de
primitives visuelles. En outre, les réponses de ces neurones deviennent de plus
en plus rapides. Le modèle est attrayant parce que, comme d’autres réseaux
hiérarchiques multicouches (du type Fukushima (1980); LeCun and Bengio
(1998); Riesenhuber and Poggio (1999); Wallis and Rolls (1997); Rolls and
Milward (2000); Stringer and Rolls (2000); Serre et al. (2007)), il permet
une reconnaissance d’objet robuste tout en évitant une explosion combina-
toire, mais aussi parce que la reconnaissance est rapide, comme suggéré par
la littérature expérimentale (Oram and Perrett, 1992; Thorpe et al., 1996;
Fabre-Thorpe et al., 1998; Keysers et al., 2001; Rousselet et al., 2002; Bacon-
Mace et al., 2005; Hung et al., 2005; Kirchner and Thorpe, 2006; Serre et al.,
2007; Girard et al., 2007).

Une prédiction intéressante de ce modèle est que les latences des réponses
visuelles devraient diminuer après présentations répétées d’un même stimu-

119
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lus. Au Chapitre 4 j’ai testé expérimentalement cette prédiction, en inférant
les temps de traitement visuels à partir de mesures comportementales. J’ai
pu confirmer que la familiarité avec une image peut diminuer le temps né-
cessaire pour la reconnaître d’environ 25 ms, et ce après quelques centaines
de présentation seulement. Bien sûr cela ne veut pas dire que le modèle est
vrai – seulement qu’il est plausible.

Un mécanisme basé sur une nouvelle variante de la ‘trace rule’ qui pour-
rait expliquer certaines invariances des réponses a été proposé au Chapitre 5.
Certes cette étude pourrait être complétée (en particulier les mécanismes pro-
posés devraient être implémentés sur des neurones impulsionnels, puis testés
sur des couches de plus haut niveau), mais elle montre comment, même dans
des environnements chargés, des neurones pourraient exploiter la continuité
temporelle du monde pour construire des représentations invariantes.

Même si les modèles proposés sont encore un peu spéculatifs, ils s’appuient
sur des mécanismes biophysiques simples et communément admis. Ils sont
donc biologiquement plausibles.

Au delà de ces résultats propres au système visuel les travaux présentés
ici créditent également l’hypothèse de l’utilisation de codage temporel dans
le cerveau. En particulier l’étude présentée au Chapitre 3 est très générique :
elle n’est pas restreinte à la vision ni même aux systèmes sensoriels. On
a montré que, étonnamment, la STDP permet de détecter des patterns de
spikes spatio-temporels même s’ils sont insérés dans des trains de spikes ‘dis-
tracteurs’ de même densité – un problème computationnellement complexe.
La STDP permet donc l’utilisation d’un codage temporel, même en l’absence
d’une date de référence explicite. Ce modèle et le modèle du système visuel
présenté Chapitre 2 démontrent donc comment le cerveau pourrait facile-
ment tirer profit de l’information contenue dans des dates de spikes. Si ces
dates contiennent d’avantage d’information par rapport au taux de décharge
moyen – la théorie dite du ‘codage temporel’ – est controversé. Etant donné
que les mécanismes proposés ici sont à la fois simples, efficaces, et satis-
font les contraintes temporelles provenant de la littérature expérimentale, ils
constituent un argument fort en faveur du codage temporel.

Cela ne veut pas dire que le codage par taux de décharge n’est jamais uti-
lisé, ni que les taux contiennent systématiquement moins d’information que
les dates de spikes. Simplement, je pense que les schémas de codages tempo-
rels décrive mieux les régimes transitoires, qui sont probablement un aspect
important de la computation neurale, surtout quand il s’agit de traitements
rapides.

Jusqu’ici j’ai limités mes études au processus dits ‘feedforward’, parce
qu’ils sont supposés être le principal corrélat neuronal de la reconnaissance
ultra-rapide. Cependant, il est clair que le feedback et les effets ‘top-down’
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jouent un rôle clef dans le mode ‘normal’ de la vision. Mieux comprendre
leurs rôles est mon objectif principal de post-doctorat.

6.2 On selectivity, invariance and speed in the
visual system

In the introduction we explained that the neuronal responses in the visual
system have three important properties. They are:

1. Selective (see Section 1.2.1, paragraph 1)

2. Invariant (see Section 1.2.1, paragraph 2)

3. Fast (see Section 1.2.2)

Although still speculative at this time, the STDP-based learning mecha-
nisms presented in Chapters 2 and 3 could account for both the selectivity
and the speed of the responses.

To be precise we have shown in Chapter 2 that, in a feedforward network
mimicking the ventral pathway, a combination of a temporal coding scheme
where the most strongly activated neurons fire first with Spike-Time Depen-
dent Plasticity leads to a situation where neurons in higher order visual areas
will gradually become selective to frequently occurring feature combinations.
At the same time, their responses become more and more rapid. The result-
ing model is appealing because, like other hierarchical models Fukushima
(1980); LeCun and Bengio (1998); Riesenhuber and Poggio (1999); Wallis
and Rolls (1997); Rolls and Milward (2000); Stringer and Rolls (2000); Serre
et al. (2007), it is able of robust object recognition without combinatorial
explosion, but it can also do it fast, as has been suggested in experimental
literature (Oram and Perrett, 1992; Thorpe et al., 1996; Fabre-Thorpe et al.,
1998; Keysers et al., 2001; Rousselet et al., 2002; Bacon-Mace et al., 2005;
Hung et al., 2005; Kirchner and Thorpe, 2006; Serre et al., 2007; Girard et al.,
2007). We thus firmly believe that time-to-first spike coding and STDP are
keys to understanding the remarkable efficiency of the primate visual system.

The study presented in Chapter 3 legitimizes the ‘one-by-one processing’
approximation of Chapter 2 by showing that even in a continuous regime,
where afferents fire continuously with a constant population rate, STDP is
still able to detect and learn a repeating spatio-temporal spike pattern.

The STDP models of Chapters 2 and 3 both predict that visual responses’
latencies should decrease after repeated presentations of a same stimulus.
In Chapter 4 I tested this prediction experimentally by inferring the visual
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processing times through behavioral measures, and did find that familiarity
with an image could speed up its recognition by about 25 ms. A ceiling effect
was reached after a few hundred presentations. Of course this does not mean
that the STDP models of Chapters 2 and 3 are true – only that they are
plausible.

A new variant of the trace rule (Földiák, 1991) that could account for cer-
tain invariances of the responses has been proposed in Chapter 5. Although
this study could be pushed further (in particular the proposed mechanism
should be implemented on spiking neurons, and should be tested on higher
order neurons), it shows how neurons could take advantage on the temporal
continuity of the world, using a learning rule that incorporates a running
average of the cell’s activity over a recent past, in order to build invariant
representations. The proposed rule works even in natural cluttered environ-
ments.

Taken together these results thus suggest how the visual cortex could
wire itself to produce fast, selective and invariant responses. While still
speculative at the time of writing the models presented here all rely on widely
accepted biophysical phenomena and are thus biologically plausible.

6.3 On learning rates

It is worth mentioning that the theoretical STDP studies of Chapters 2 and
3, and the experimental study of Chapter 4 all suggest that learning takes a
few hundred iterations – an order of magnitude which is compatible with the
results of in vivo supervised learning procedures to durably change receptive
field properties in cat V1 Frégnac et al. (1988); McLean and Palmer (1998);
Frégnac and Shulz (1999).

6.4 On temporal coding in general

Besides these results on vision this thesis also strengthen the case for the
use of temporal coding in the brain. In particular the study presented on
Chapter 3 is very general: it is not restricted to vision, nor even to sensory
systems. We showed that, surprisingly, the widely accepted mechanism of
STDP is able to solve a very difficult computational problem: to localize
a spike pattern embedded in equally dense ‘distractor’ spike trains. STDP
thus enables some form of temporal coding, even in the absence of an explicit
time reference.

This model, together with the visual system model of Chapter 2, demon-
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strates how the brain could easily make use of information encoded in the
spike times. Whether these spike times contain additional information with
respect to the averaged firing rates is controversial. Given that the mech-
anisms proposed here are simple, efficient, and satisfy the known temporal
constraints coming from the experimental literature, they provide a strong
argument in favor of temporal coding.

This does not mean that the rates contain no information, nor that they
systematically contain less information than the spike times. Rate coding is
probably extensively used in the brain. However, I think temporal coding
schemes do a better work at explaining what happens during transients which
are probably an important aspect of neural computation, especially when
rapid processing is involved.

6.5 Perspective: top-down effects and feedback

So far I have studied mainly the feedforward paths of the ventral stream,
mainly because they are believed to be the principal neural correlates of ‘fast
recognition’. However the temporal constraints mentioned in Section 1.2.2
do not rule out all the top-down effects. For example when performing an
animal/non animal ultra rapid categorization, subjects are likely to enhance
the selectivity of some neurons tuned to animal features, probably located
in IT. Indeed, there is experimental evidence that the selectivity to the ‘rel-
evant’ features for a given recognition task can be enhanced in IT (Sigala
and Logothetis, 2002) and in V4 (Bichot et al., 2005), possibly thanks to a
top-down signal coming from the prefrontal cortex, thought to be involved in
the categorization process. None of the models presented in this thesis take
these top-down effects into account.

Furthermore, slower processes than ‘fast-recognition’, such as segmenta-
tion, are believed to rely extensively on feedback loops.

It is thus very clear that back-projections play a critical role in normal,
every day vision, and I would like to get a better understanding of their
functions during my postdoc.

6.6 On the roles of models

Sadly, models sometimes receive little interest from the experimental commu-
nity. Some think that it is too early to build realistic models, that we should
first gather enough experimental data. Some do not even see the point in
building an artificial brain, in parallel of the real one. Here I list the main
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roles of models in neuroscience, according to me.

• To organize and synthesize the knowledge we accumulated
about a given brain function. This kind of models need not be
quantitative. They aim at giving a synthetic view of one brain function,
to describe what modules are involved and the way the interact. They
are built from an exhaustive reviews of the corresponding experimental
literature.

• To validate a given theory by ‘implementing’ it (plausibility
proof). These quantitative models strengthen the case for a given
theory. For example there is a big difference between claiming that
utra-rapid visual categorization can be done in a feedforward-only mode
and developing a model that actually does it. The fact that the model
works is a necessary condition (although not sufficient) for the theory
to be true.

• To test some hypothesis and suggest new experiments. Some-
times models can precede experimental data. These models are specu-
lative but, through simulations, they can make predictions and suggest
new experiments to test them.

6.7 Applications
This work was partially funded by SpikeNet Technology Inc. (http://www.
spikenet-technology.com), which is interested in artificial vision and its
industrial applications. During those three years I have worked in constant
interaction with the Research and Development team, particularly with Jong-
Mo Allegraud and Nicolas Guilbaud. Some applications of my work are now
fully operational, others are still being evaluated.

1. STDP-based visual feature learning. A successful proof-of-concept for
an early version of the algorithm presented in Chapter 2 was done
in 2005 with the Centre National d’Etudes Spatiales(CNES)(http:
//www.cnes.fr) on the problematic of generic object classification in
SPOT 5 satellite images (ROBIN competition, http://robin.inrialpes.
fr, Dataset #2). In 2006, the algorithm also enabled the development
of a generic face detector, SNFace, based on STDP-learnt face fea-
tures. Jong-Mo Allegraud has now ported my original Matlab/C code
in a highly flexible C++ code that is used for commercial applications.
The next step will be to learn a huge set of generic visual features from

http://www.spikenet-technology.com
http://www.spikenet-technology.com
http://www.cnes.fr
http://www.cnes.fr
http://robin.inrialpes.fr
http://robin.inrialpes.fr
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a huge image database, which could then be used to recognize any class
of objects.

2. STDP-based spike pattern learning. Applications for audiovisual pro-
cessing are now being evaluated. After having converted the input
into spike trains the algorithm can learn and detect repeating patterns,
which may enable sound, object and motion recognition.

3. Invariance learning. This algorithm has not been used yet, but it could
be useful to restrict the zones in which features are looked for in a
feature-based object detection, like in Fig. 2.1
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Spike timing dependent plasticity (STDP) is a learning rule that modifies synaptic strength as a function of the relative
timing of pre- and postsynaptic spikes. When a neuron is repeatedly presented with similar inputs, STDP is known to
have the effect of concentrating high synaptic weights on afferents that systematically fire early, while postsynaptic
spike latencies decrease. Here we use this learning rule in an asynchronous feedforward spiking neural network that
mimics the ventral visual pathway and shows that when the network is presented with natural images, selectivity to
intermediate-complexity visual features emerges. Those features, which correspond to prototypical patterns that are
both salient and consistently present in the images, are highly informative and enable robust object recognition, as
demonstrated on various classification tasks. Taken together, these results show that temporal codes may be a key to
understanding the phenomenal processing speed achieved by the visual system and that STDP can lead to fast and
selective responses.

Citation: Masquelier T, Thorpe SJ (2007) Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput Biol 3(2): e31. doi:10.1371/journal.
pcbi.0030031

Introduction

Temporal constraints pose a major challenge to models of
object recognition in cortex. When two images are simulta-
neously flashed to the left and right of fixation, human
subjects can make reliable saccades to the side where there is
a target animal in as little as 120–130 ms [1]. If we allow 20–30
ms for motor delays in the oculomotor system, this implies
that the underlying visual processing can be done in 100 ms
or less. In monkeys, recent recordings from inferotemporal
cortex (IT) showed that spike counts over time bins as small as
12.5 ms (which produce essentially a binary vector with either
ones or zeros) and only about 100 ms after stimulus onset
contain remarkably accurate information about the nature of
a visual stimulus [2]. This sort of rapid processing presumably
depends on the ability of the visual system to learn to
recognize familiar visual forms in an unsupervised manner.
Exactly how this learning occurs constitutes a major challenge
for theoretical neuroscience. Here we explored the capacity
of simple feedforward network architectures that have two
key features. First, when stimulated with a flashed visual
stimulus, the neurons in the various layers of the system fire
asynchronously, with the most strongly activated neurons
firing first—a mechanism that has been shown to efficiently
encode image information [3]. Second, neurons at later stages
of the system implement spike timing dependent plasticity
(STDP), which is known to have the effect of concentrating
high synaptic weights on afferents that systematically fire
early [4,5]. We demonstrate that when such a hierarchical
system is repeatedly presented with natural images, these
intermediate-level neurons will naturally become selective to
patterns that are reliably present in the input, while their
latencies decrease, leading to both fast and informative
responses. This process occurs in an entirely unsupervised
way, but we then show that these intermediate features are
able to support categorization.

Our network belongs to the family of feedforward

hierarchical convolutional networks, as in [6–10]. To be
precise, its architecture is inspired from Serre, Wolf, and
Poggio’s model of object recognition [6], a model that itself
extends HMAX [7] and performs remarkably well with natural
images. Like them, in an attempt to model the increasing
complexity and invariance observed along the ventral path-
way [11,12], we use a four-layer hierarchy (S1–C1–S2–C2) in
which simple cells (S) gain their selectivity from a linear sum
operation, while complex cells (C) gain invariance from a
nonlinear max pooling operation (see Figure 1 and Methods
for a complete description of our model).
Nevertheless, our network does not only rely on static

nonlinearities: it uses spiking neurons and operates in the
temporal domain. At each stage, the time to first spike with
respect to stimulus onset (or, to be precise, the rank of the
first spike in the spike train, as we will see later) is supposed to
be the ‘‘key variable,’’ that is, the variable that contains
information and that is indeed read out and processed by
downstream neurons. When presented with an image, the
first layer’s S1 cells, emulating V1 simple cells, detect edges
with four preferred orientations, and the more strongly a cell
is activated, the earlier it fires. This intensity–latency
conversion is in accordance with recordings in V1 showing
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that response latency decreases with the stimulus contrast
[13,14] and with the proximity between the stimulus
orientation and the cell’s preferred orientation [15]. It has
already been shown how such orientation selectivity can
emerge in V1 by applying STDP on spike trains coming from
retinal ON- and OFF-center cells [16], so we started our
model from V1 orientation-selective cells. We also limit the
number of spikes at this stage by introducing competition
between S1 cells through a one-winner-take-all mechanism: at
a given location—corresponding to one cortical column—
only the spike corresponding to the best matching orienta-
tion is propagated (sparsity is thus 25% at this stage). Note
that k-winner-take-all mechanisms are easy to implement in
the temporal domain using inhibitory GABA interneurons
[17].

These S1 spikes are then propagated asynchronously
through the feedforward network of integrate-and-fire
neurons. Note that within this time-to-first-spike framework,
the maximum operation of complex cells simply consists of
propagating the first spike emitted by a given group of
afferents [18]. This can be done efficiently with an integrate-
and-fire neuron with low threshold that has synaptic
connections from all neurons in the group.

Images are processed one by one, and we limit activity to at
most one spike per neuron, that is, only the initial spike wave
is propagated. Before presenting a new image, every neuron’s
potential is reset to zero. We process various scaled versions
of the input image (with the same filter size). There is one S1–
C1–S2 pathway for each processing scale (not represented on
Figure 1). This results in S2 cells with various receptive field
sizes (see Methods). Then C2 cells take the maximum response
(i.e., first spike) of S2 cells over all positions and scales,
leading to position and scale invariant responses.

This paper explains how STDP can set the C1–S2 synaptic
connections, leading to intermediate-complexity visual fea-
tures, whose equivalent in the brain may be in V4 or IT. STDP
is a learning rule that modifies the strength of a neuron’s
synapses as a function of the precise temporal relations
between pre- and postsynaptic spikes: an excitatory synapse
receiving a spike before a postsynaptic one is emitted is
potentiated (long-term potentiation) whereas its strength is
weakened the other way around (long-term depression) [19].
The amount of modification depends on the delay between

these two events: maximal when pre- and postsynaptic spikes
are close together, and the effects gradually decrease and
disappear with intervals in excess of a few tens of milliseconds
[20–22]. Note that STDP is in agreement with Hebb’s
postulate because presynaptic neurons that fired slightly
before the postsynaptic neuron are those that ‘‘took part in
firing it.’’ Here we used a simplified STDP rule where the
weight modification does not depend on the delay between
pre- and postsynaptic spikes, and the time window is
supposed to cover the whole spike wave (see Methods). We
also use 0 and 1 as ‘‘soft bounds’’ (see Methods), ensuring the
synapses remain excitatory. Several authors have studied the
effect of STDP with Poisson spike trains [4,23]. Here, we
demonstrate STDP’s remarkable ability to detect statistical
regularities in terms of earliest firing afferent patterns within
visual spike trains, despite their very high dimensionality
inherent to natural images.
Visual stimuli are presented sequentially, and the resulting

spike waves are propagated through to the S2 layer, where
STDP is used. We use restricted receptive fields (i.e., S2 cells
only integrate spikes from an s 3 s square neighborhood in
the C1 maps corresponding to one given processing scale)
and weight-sharing (i.e., each prototype S2 cell is duplicated in
retinotopic maps and at all scales). Starting with a random
weight matrix (size ¼ 4 3 s 3 s), we present the first visual
stimuli. Duplicated cells are all integrating the spike train and
compete with each other. If no cell reaches its threshold,
nothing happens and we process the next image. Otherwise
for each prototype the first duplicate to reach its threshold is
the winner. A one-winner-take-all mechanism prevents the
other duplicated cells from firing. The winner thus fires and
the STDP rule is triggered. Its weight matrix is updated, and
the change in weights is duplicated at all positions and scales.
This allows the system to learn patterns despite changes in
position and size in the training examples. We also use local
inhibition between different prototype cells: when a cell fires
at a given position and scale, it prevents all other cells from
firing later at the same scale and within an s/2 3 s/2 square
neighborhood of the firing position. This competition, only
used in the learning phase, prevents all the cells from learning
the same pattern. Instead, the cell population self-organizes,
each cell trying to learn a distinct pattern so as to cover the
whole variability of the inputs.
If the stimuli have visual features in common (which should

be the case if, for example, they contain similar objects), the
STDP process will extract them. That is, for some cells we will
observe convergence of the synaptic weights (by saturation),
which end up being either close to 0 or to 1. During the
convergence process, synapses compete for control of the
timing of postsynaptic spikes [4]. The winning synapses are
those through which the earliest spikes arrive (on average)
[4,5], and this is true even in the presence of jitter and
spontaneous activity [5] (although the model presented in this
paper is fully deterministic). This ‘‘preference’’ for the
earliest spikes is a key point since the earliest spikes, which
correspond in our framework to the most salient regions of
an image, have been shown to be the most informative [3].
During the learning, the postsynaptic spike latency decreases
[4,5,24]. After convergence, the responses become selective
(in terms of latency) [5] to visual features of intermediate
complexity similar to the features used in earlier work [8].
Features can now be defined as clusters of afferents that are
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Author Summary

The paper describes a new biologically plausible mechanism for
generating intermediate-level visual representations using an
unsupervised learning scheme. These representations can then be
used very effectively to perform categorization tasks using natural
images. While the basic hierarchical architecture of the system is
fairly similar to a number of other recent proposals, the key
differences lie in the level of description that is used—individual
neurons and spikes—and in the sort of coding scheme involved.
Essentially, we have found that a combination of a temporal coding
scheme where the most strongly activated neurons fire first with
spike timing dependent plasticity leads to a situation where neurons
in higher order visual areas will gradually become selective to
frequently occurring feature combinations. At the same time, their
responses become more and more rapid. We firmly believe that
such mechanisms are a key to understanding the remarkable
efficiency of the primate visual system.

STDP-Based Visual Feature Learning



consistently among the earliest to fire. STDP detects these
kinds of statistical regularities among the spike trains and
creates one unit for each distinct pattern.

Results

We evaluated our STDP-based learning algorithm on two
California Institute of Technology datasets, one containing
faces and the other motorbikes, and a distractor set
containing backgrounds, all available at http://www.vision.
caltech.edu (see Figure 2 for sample pictures). Note that most
of the images are not segmented. Each dataset was split into a
training set, used in the learning phase, and a testing set, not
seen during the learning phase but used afterward to evaluate
the performance on novel images. This standard cross-
validation procedure allows the measurement of the system’s
ability to generalize, as opposed to learning the specific
training examples. The splits used were the same as Fergus,
Perona, and Zisserman [25]. All images were rescaled to be
300 pixels in height (preserving the aspect ratio) and
converted to grayscale values.

We first applied our unsupervised STDP-based algorithm
on the face and motorbike training examples (separately),
presented in random order, to build two sets of ten class-
specific C2 features. Each C2 cell has one preferred input,
defined as a combination of edges (represented by C1 cells).
Note that many gray-level images may lead to this combina-
tion of edges because of the local max operation of C1 cells
and because we lose the ‘‘polarity’’ information (i.e., which
side of the edge is darker). However, we can reconstruct a
representation of the set of preferred images by convolving

the weight matrix with a set of kernels representing oriented
bars. Since we start with random weight matrices, at the
beginning of the learning process the reconstructed pre-
ferred stimuli do not make much sense. But as the cells learn,
structured representations emerge, and we are usually able to
identify the nature of the cells’ preferred stimuli. Figures 3
and 4 show the reconstructions at various stages of learning
for the face and motorbike datasets, respectively. We stopped
the learning after 10,000 presentations.
Then we turned off the STDP rule and tested these STDP-

obtained features’ ability to support face/nonface and
motorbike/nonmotorbike classification. This paper focuses
more on feature extraction than on sophisticated classifica-
tion methods, so we first used a very simple decision rule
based on the number of C2 cells that fired with each test
image, on which a threshold is applied. Such a mechanism
could be easily implemented in the brain. The threshold was
set at the equilibrium point (i.e., when the false positive rate
equals the missed rate). In Table 1 we report good
classification results with this ‘‘simple-count’’ scheme in
terms of area under the receiver operator characteristic
(ROC) and the performance rate at equilibrium point.
We also evaluated a more complicated classification

scheme. C2 cells’ thresholds were supposed to be infinite,
and we measured the final potentials they reached after
having integrated the whole spike train generated by the
image. This final potential can be seen as the number of early
spikes in common between a current input and a stored
prototype (this contrasts with HMAX and extensions [6,7,26],
where a Euclidian distance or a normalized dot product is
used to measure the difference between a stored prototype

Figure 1. Overview of the Five-Layer Feedforward Spiking Neural Network

As in HMAX [7], we alternate simple cells that gain selectivity through a sum operation, and complex cells that gain shift and scale invariance through a
max operation (which simply consists of propagating the first received spike). Cells are organized in retinotopic maps until the S2 layer (inclusive). S1
cells detect edges. C1 maps subsample S1 maps by taking the maximum response over a square neighborhood. S2 cells are selective to intermediate-
complexity visual features, defined as a combination of oriented edges (here we symbolically represented an eye detector and a mouth detector). There
is one S1–C1–S2 pathway for each processing scale (not represented). Then C2 cells take the maximum response of S2 cells over all positions and scales
and are thus shift- and scale-invariant. Finally, a classification is done based on the C2 cells’ responses (here we symbolically represented a face/nonface
classifier). In the brain, equivalents of S1 cells may be in V1, S2 cells in V1–V2, S2 cells in V4–PIT, C2 cells in AIT, and the final classifier in PFC. This paper
focuses on the learning of C1 to S2 synaptic connections through STDP.
doi:10.1371/journal.pcbi.0030031.g001
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and a current input). Note that this potential is contrast
invariant: a change in contrast will shift all the latencies but
will preserve the spike order. The final potentials reached
with the training examples were used to train a radial basis
function (RBF) classifier (see Methods). We chose this
classifier because linear combination of Gaussian-tuned units
is hypothesized to be a key mechanism for generalization in
the visual system [27]. We then evaluated the RBF on the
testing sets. As can be seen in Table 1, performance with this
‘‘potential þ RBF’’ scheme was better.

Using only ten STDP-learnt features, we reached on those
two classes a performance that is comparable to that of Serre,
Wolf, and Poggio’s model, which itself is close to the best
state-of-the-art computer vision systems [6]. However, their
system is more generic. Classes with more intraclass varia-
bility (for example, animals) appear to pose a problem with
our approach because a lot of training examples (say a few
tens) of a given feature type are needed for the STDP process
to learn it properly.

Our approach leads to the extraction of a small set (here
ten) of highly informative class-specific features. This is in
contrast with Serre et al.’s approach where many more

(usually about a thousand) features are used. Their sets are
more generic and are suitable for many different classes [6].
They rely on the final classifier to ‘‘select’’ diagnostic features
and appropriately weight them for a given classification task.
Here, STDP will naturally focus on what is common to the
positive training set, that is, target object features. The
background is generally not learned (at least not in priority),
since backgrounds are almost always too different from one
image to another for the STDP process to converge. Thus, we
directly extract diagnostic features, and we can obtain
reasonably good classification results using only a threshold
on the number of detected features. Furthermore, as STDP
performs vector quantization from multiple examples as
opposed to ‘‘one-shot learning,’’ it will not learn the noise,
nor anything too specific to a given example, with the result
that it will tend to learn archetypical features.
Another key point is the natural trend of the algorithm to

learn salient regions, simply because they correspond to the
earliest spikes, with the result that neurons whose receptive
fields cover salient regions are likely to reach their threshold
(and trigger the STDP rule) before neurons ‘‘looking’’ at
other regions. This contrasts with more classical competitive

Figure 2. Sample Pictures from the Caltech Datasets

The top row shows examples of faces (all unsegmented), the middle row shows examples of motorbikes (some are segmented, others are not), and the
bottom row shows examples of distractors.
doi:10.1371/journal.pcbi.0030031.g002

Table 1. Classification Results

Model STDP Features (Simple Count) STDP Features (Potential þ RBF) Hebbian Features Serre, Wolf, and Poggio

Equilibrium Point ROC Equilibrium Point ROC Equilibrium Point ROC Equilibrium Point ROC

Faces 96.5 99.1 99.1 100.0 96.9 99.7 98.2 99.8

Motorbikes 95.4 98.4 97.8 99.7 96.5 99.3 98 99.8

doi:10.1371/journal.pcbi.0030031.t001
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learning approaches, where input normalization helps differ-
ent input patterns to be equally effective in the learning
process [28]. Note that ‘‘salient’’ means within our network
‘‘with well-defined contrasted edges,’’ but saliency is a more
generic concept of local differences, for example, in intensity,
color, or orientations as in the model of Itti, Koch, and
Niebur [29]. We could use other types of S1 cells to detect
other types of saliency, and, provided we apply the same
intensity–latency conversion, STDP would still focus on the
most salient regions. Saliency is known to drive attention (see

[30] for a review). Our model predicts that it also drives the
learning. Future experimental work will test this prediction.
Of course, in real life we are unlikely to see many examples

of a given category in a row. That is why we performed a
second simulation, where 20 C2 cells were presented with the
face, motorbike, and background training pictures in random
order, and the STDP rule was applied. Figure 5 shows all the
reconstructions for this mixed simulation after 20,000
presentations. We see that the 20 cells self-organized, some
of them having developed selectivity to face features, and
others to motorbike features. Interestingly, during the

Figure 3. Evolution of Reconstructions for Face Features

At the top is the number of postsynaptic spikes emitted. Starting from random preferred stimuli, cells detect statistical regularities among the input
visual spike trains after a few hundred discharges and progressively develop selectivity to those patterns. A few hundred more discharges are needed to
reach a stable state. Furthermore, the population of cells self-organizes, with each cell effectively trying to learn a distinct pattern so as to cover the
whole variability of the inputs.
doi:10.1371/journal.pcbi.0030031.g003
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learning process the cells rapidly showed a preference for one
category. After a certain degree of selectivity had been
reached, the face-feature learning was not influenced by the
presentation of motorbikes (and vice versa), simply because
face cells will not fire (and trigger the STDP rule) on
motorbikes. Again we tested the quality of these features
with a (multiclass) classification task, using an RBF network
and a ‘‘one-versus-all’’ approach (see Methods). As before, we
tested two implementations: one based on ‘‘binary detections
þ RBF’’ and one based on ‘‘potential þ RBF’’. Note that a
simple detection count cannot work here, as we need at least
some supervised learning to know which feature (or feature
combination) is diagnostic (or antidiagnostic) of which class.

Table 2 shows the confusion matrices obtained on the testing
sets for both implementations, leading, respectively, to 95.0%
and 97.7% of correct classifications on average. It is worth
mentioning that the ‘‘potential þ RBF’’ system perfectly
discriminated between faces and motorbikes—although both
were presented in the unsupervised STDP-based learning
phase.
A third type of simulation was run to illustrate the STDP

learning process. For these simulations, only three C2 cells
and four processing scales (71%, 50%, 35%, and 25%) were
used. We let at most one cell fire at each processing scale. The
rest of the parameters were strictly identical to the other
simulations (see Methods). Videos S1–S3 illustrate the STDP

Figure 4. Evolution of Reconstructions for Motorbike Features

doi:10.1371/journal.pcbi.0030031.g004
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learning process with, respectively, faces, motorbikes, and a
mix of faces, motorbikes, and background pictures. It can be
seen that after convergence the STDP feature showed a good
tradeoff between selectivity (very few false alarms) and
invariance (most of the targets were recognized).

An interesting control is to compare the STDP learning
rule with a more standard hebbian rule in this precise
framework. For this purpose, we converted the spike trains
coming from C1 cells into a vector of (real-valued) C1
activities XC1, supposed to correspond to firing rates (see
Methods). Each S2 cell was no longer modeled at the
integrate-and-fire level but was supposed to respond with a
(static) firing rate YS2 given by the normalized dot product:

YS2 ¼
WS2 � XC1

jXC1j2
ð1Þ

where WS2 is the synaptic weight vector of the S2 cell (see
Methods).

The S2 cells still competed with each other, but the k-
winner-take-all mechanisms now selected the cells with the
highest firing rates (instead of the first one to fire). Only the
cells whose firing rates reached a certain threshold were
considered in the competition (see Methods). The winners
now triggered the following modified hebbian rule (instead of
STDP):

dWS2 ¼ a � YS2 � ðXC1 �WS2Þ; ð2Þ

where a decay term has been added to keep the weight vector
bounded (however, the rule is still local, unlike an explicit
weight normalization). Note that this precaution was not
needed in the STDP case because competition between
synapse naturally bounds the weight vector [4]. The rest of
the network is strictly identical to the STDP case.
Figure 6 shows the reconstruction of the preferred stimuli

for the ten C2 cells after 10,000 presentations for the face
stimuli (Figure 6, top) and the motorbikes stimuli (Figure 6,
top). Again we can usually recognize the face and motorbike
parts to which the cells became selective (even though the
reconstructions look fuzzier than in the STDP case because
the final weights are more graded). We also tested the ability
of these hebbian-obtained features to support face/nonface
and motorbike/nonmotorbike classification once fed into an
RBF, and the results are shown in Table 1 (last column). We
also evaluated the hebbian features with the multiclass setup.
Twenty cells were presented with the same mix of face,
motorbike, and background pictures as before. Figure 7
shows the final reconstructions after 20,000 presentations,
and Table 2 shows the confusion matrix (last columns).
The main conclusion is that the modified hebbian rule is

also able to extract pertinent features for classification
(although performance on these tests appears to be slightly

Figure 5. Final Reconstructions for the 20 Features in the Mixed Case

The 20 cells self-organized, some having developed selectivity to face
features, and some to motorbike features.
doi:10.1371/journal.pcbi.0030031.g005

Figure 6. Hebbian Learning

(Top) Final reconstructions for the ten face features.
(Bottom) The ten motorbike features.
doi:10.1371/journal.pcbi.0030031.g006

Table 2. Confusion Matrices

Predicted with: STDP Features (Binary Detections) STDP Features (Potential) Hebbian Features

Face Motorbike Background Face Motorbike Background Face Motorbike Background

Actual Face 97.2 0.5 2.3 98.2 0 1.8 97.7 0 2.3

Actual Motorbike 0 95.3 4.8 0 97.5 2.5 0.3 96.3 3.5

Actual Background 3.1 4.4 92.4 0.4 2.2 97.3 4.9 3.6 91.6

doi:10.1371/journal.pcbi.0030031.t002
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worse). This is not very surprising as STDP can be seen as a
hebbian rule transposed in the temporal domain, but it was
worth checking. Where STDP would detect (and create
selectivity to) sets of units that are consistently among the
first one to fire, the hebbian rule detects (and creates
selectivity to) sets of units that consistently have the highest
firing rates. However, we believe the temporal framework is a
better description of what really happens at the neuronal
level, at least in ultrarapid categorization tasks. Furthermore,
STDP also explains how the system becomes faster and faster
with training, since the neurons learn to decode the first
information available at their afferents’ level (see also
Discussion).

Discussion

While the ability of hierarchical feedforward networks to
support classification is now reasonably well established (e.g.,
[6–8,10]), how intermediate-complexity features can be
learned remains an open problem, especially with cluttered
images. In the original HMAX model, S2 features were not
learned but were manually hardwired [7]. Later versions used
huge sets of random crops (say 1,000) taken from natural
images and used these crops to ‘‘imprint’’ S2 cells [6]. This
approach works well but is costly since redundancy is very
high between features, and many features are irrelevant for
most (if not all) of the tasks. To select only pertinent features
for a given task, Ullman proposed an interesting criterion
based on mutual information [8], leaving the question of
possible neural implementation open. LeCun showed how
visual features in a convolutional network could be learned in
a supervised manner using back-propagation [10], without
claiming this algorithm was biologically plausible. Although
we may occasionally use supervised learning to create a set of
features suitable for a particular recognition task, it seems
unrealistic that we need to do that each time we learn a new
class. Here we took another approach: one layer with

unsupervised competitive learning is used as input for a
second layer with supervised learning. Note that this kind of
hybrid scheme has been found to learn much faster than a
two-layer backpropagation network [28].
Our approach is a bottom-up one: instead of intuiting good

image-processing schemes and discussing their eventual
neural correlates, we took known biological phenomena that
occur at the neuronal level, namely integrate-and-fire and
STDP, and observed where they could lead at a more
integrated level. The role of the simulations with natural
images is thus to provide a ‘‘plausibility proof’’ that such
mechanisms could be implemented in the brain.
However, we have made four main simplifications. The first

one was to propagate input stimuli one by one. This may
correspond to what happens when an image is flashed in an
ultrarapid categorization paradigm [1], but normal visual
perception is an ongoing process. However, every 200 ms or
300 ms we typically perform a saccade. The processing of
each of these discrete ‘‘chunks’’ seems to be optimized for
rapid execution [31], and we suggest that much can be done
with the feedforward propagation of a single spike wave.
Furthermore, even when fixating, our eyes are continuously
making microsaccades that could again result in repetitive
waves of activation. This idea is in accordance with electro-
physiological recordings showing that V1 neuron activity is
correlated with microsaccades [32]. Here we assumed the
successive waves did not interfere, which does not seem too
unreasonable given that the neuronal time constants (in-
tegration, leak, STDP window) are in the range of a few tens
of milliseconds whereas the interval between saccades and
microsaccades is substantially longer. It is also possible that
extraretinal signals suppress interference by shutting down
any remaining activity before propagating the next wave.
Note that this simplification allows us to use nonleaky
integrate-and-fire neurons and an infinite STDP time
window. More generally, as proposed by Hopfield [33], waves
could be generated by population oscillations that would fire
one cell at a time in advance of the maximum of the
oscillation, which increases with the inputs the cell received.
This idea is in accordance with recordings in area 17 of cat
visual cortex showing that suboptimal cells reveal a systematic
phase lag relative to optimally stimulated cells [34].
The second simplification we have made is to use only five

layers (including the classification layer), whereas processing
in the ventral stream involves many more layers (probably
about ten), and complexity increases more slowly than
suggested here. However, STDP as a way to combine simple
features into more complex representations, based on
statistical regularities among earliest spike patterns, seems
to be a very efficient learning rule and could be involved at all
stages.
The third main simplification we have made consists of

using restricted receptive fields and weight sharing, as do
most of the bio-inspired hierarchical networks [6–10] (net-
works using these techniques are called convolutional net-
works). We built shift and scale invariance by structure (and
not by training) by duplicating S1, C1, and S2 cells at all
positions and scales. This is a way to reduce the number of
free parameters (and therefore the VC dimension [35]) of
the network by incorporating prior information into the
network design: responses should be scale- and shift-
invariant. This greatly reduces the number of training

Figure 7. Hebbian Learning: Final Reconstructions for the 20 Features in

the Mixed Case

As with STDP-based learning, the 20 cells self-organized, some having
developed selectivity to face features, and some to motorbike features.
doi:10.1371/journal.pcbi.0030031.g007
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examples needed. Note that this technique of weight sharing
could be applied to other transformations than shifting and
scaling, for instance, rotation and symmetry. However, it is
difficult to believe that the brain could really use weight
sharing since, as noted by Földiák [36], updating the weights
of all the simple units connected to the same complex unit
is a nonlocal operation. Instead, he suggested that at least
the low-level features could be learned locally and inde-
pendently. Subsequently, cells with similar preferred stim-
ulus may connect adaptively to the same complex cell,
possibly by detecting correlation across time thanks to a
trace rule [36]. Wallis, Rolls, and Milward successfully
implemented this sort of mechanism in a multilayered
hierarchical network called Vis-Net [37,38]; however, per-
formance after learning objects from unsegmented natural
images was poor [39]. Future work will evaluate the use of
local learning and adaptative complex pooling in our
network, instead of exact weight sharing. Learning will be
much slower but should lead to similar STDP features. Note
that it seems that monkeys can recognize high-level objects
at scales and positions that have not been experienced
previously [2,40]. It could be that in the brain local learning
and adaptative complex pooling are used up to a certain
level of complexity, but not for high-level objects. These
high-level objects could be represented with a combination
of simpler features that would already be shift- and scale-
invariant. As a result, there would be less need for spatially
specific representations for high-level objects.

The last main simplification we have made is to ignore both
feedback loops and top-down influences. While normal,
everyday vision extensively uses feedback loops, the temporal
constraints almost certainly rule them out in an ultrarapid
categorization task [41]. The same cannot be said about the
top-down signals, which do not depend directly on inputs.
For example, there is experimental evidence that the
selectivity to the ‘‘relevant’’ features for a given recognition
task can be enhanced in IT [42] and in V4 [43], possibly thanks
to a top-down signal coming from the prefrontal cortex,
thought to be involved in the categorization process. These
effects, for example, modeled by Szabo et al. [44], are not
taken into account here.

Despite these four simplifications, we think our model
captures two key mechanisms used by the visual system for
rapid object recognition. The first one is the importance of
the first spikes for rapidly encoding the most important
information about a visual stimulus. Given the number of
stages involved in high-level recognition and the short
latencies of selective responses recorded in monkeys’ IT [2],
the time window available for each neuron to perform its
computation is probably about 10–20 ms [45] and will rarely
contain more than one or two spikes. The only thing that
matters for a neuron is whether an afferent fires early
enough so that the presynaptic spike falls in the critical time
window, while later spikes cannot be used for ultrarapid
categorization. At this point (but only at this point), we have
to consider two hypotheses: either presynaptic spike times
are completely stochastic (for example, drawn from a
Poisson distribution), or they are somewhat reliable. The
first hypothesis causes problems since the first presynaptic
spikes (again the only ones taken into account) will
correspond to a subset of the afferents that is essentially
random, and will not contain much information about their

real activities [46]. A solution to this problem is to use
populations of redundant neurons (with similar selectivity)
to ensure the first presynaptic spikes do correspond on
average to the most active populations of afferents. In this
work we took the second hypothesis, assuming the time to
first spike of the afferents (or, to be precise, their firing
order) was reliable and did reflect a level of activity. This
second hypothesis receives experimental support. For exam-
ple, recent recordings in monkeys show that IT neurons’
responses in terms of spike count close to stimulus onset (100–
150 ms time bin) seem to be too reliable to be fit by a typical
Poisson firing rate model [47]. Another recent electro-
physiological study in monkeys showed that IT cell’s latencies
do contain information about the nature of a visual stimulus
[48]. There is also experimental evidence for precise spike
time responses in V1 and in many other neuronal systems
(see [49] for a review).
Very interestingly, STDP provides an efficient way to

develop selectivity to first spike patterns, as shown in this
work. After convergence, the potential reached by an STDP
neuron is linked to the number of early spikes in common
between the current input and a stored prototype. This ‘‘early
spike’’ versus ‘‘later spike’’ neural code (while the spike order
within each bin does not matter) has not only been proven
robust enough to perform object recognition in natural
images but is fast to read out: an accurate response can be
produced when only the earliest afferents have fired. The use
of such a mechanism at each stage of the ventral stream could
account for the phenomenal processing speed achieved by
the visual system.

Materials and Methods

Here is a detailed description of the network, the STDP model, and
the classification methods.

S1 cells. S1 cells detect edges by performing a convolution on the
input images. We are using 5 3 5 convolution kernels, which roughly
correspond to Gabor filters with wavelength of 5 (i.e., the kernel
contains one period), effective width 2, and four preferred
orientations: p/8, p/4 þ p/8, p/2 þ p/8, and 3p/4 þ p/8 (p/8 is there
to avoid focusing on horizontal and vertical edges, which are seldom
diagnostic). We apply those filters to five scaled versions of the
original image: 100%, 71%, 50%, 35%, and 25%. There are thus 4 3
5 ¼ 20 S1 maps. S1 cells emit spikes with a latency that is inversely
proportional to the absolute value of the convolution (the response
is thus invariant to an image negative operation). We also limit
activity at this stage: at a given processing scale and location, only
the spike corresponding to the best matching orientation is
propagated.

C1 cells. C1 cells propagate the first spike emitted by S1 cells in a 7
3 7 square of a given S1 map (which corresponds to one preferred
orientation and one processing scale). Two adjacent C1 cells in a C1
map correspond to two 73 7 squares of S1 cells shifted by six S1 cells
(and thus overlap of one S1 row). C1 maps thus subsample S1 maps.
To be precise, neglecting the side effects, there are 6 3 6 ¼ 36 times
fewer C1 cells than S1 cells. As proposed by Riesenhuber and Poggio
[7], this maximum operation is a biologically plausible way to gain
local shift invariance. From an image processing point of view, it is a
way to perform subsampling within retinotopic maps without
flattening high spatial frequency peaks (as would be the case with
local averaging).

We also use a local lateral inhibition mechanism at this stage: when
a C1 cell emits a spike, it increases the latency of its neighbors within
an 11311 square in the map with the same preferred orientation and
the same scale. The percentage of latency increase decreases linearly
with the distance from the spike, from 15% to 5%. As a result, if a
region is clearly dominated by one orientation, cells will inhibit each
other and the spike train will be globally late and thus unlikely to be
‘‘selected’’ by STDP.
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S2 cells. S2 cells correspond to intermediate-complexity visual
features. Here we used ten prototype S2 cell types, and 20 in the
mixed simulation. Each prototype cell is duplicated in five maps
(weight sharing), each map corresponding to one processing scale.
Within those maps, the S2 cells can integrate spikes only from the
four C1 maps of the corresponding processing scale. The receptive
field size is 16316 C1 cells (neglecting the side effects; this leads to 96
3 96 S1 cells, and the corresponding receptive field size in the
original image is [96 / processing scale]2). C1–S2 synaptic connections
are set by STDP.

Note that we did not use a leakage term. In the brain, by
progressively resetting membrane potentials toward their resting
levels, leakiness will decrease the interference between two successive
spike waves. In our model we process spike waves one by one and
reset all the potentials before each propagation, and so leaks are not
needed.

Finally, activity is limited at this stage: a k-winner-take-all strategy
ensures at most two cells that can fire for each processing scale. This
mechanism, only used in the learning phase, helps the cells to learn
patterns with different real sizes. Without it, there is a natural bias
toward ‘‘small’’ patterns (i.e., large scales), simply because corre-
sponding maps are larger, and so likeliness of firing with random
weights at the beginning of the STDP process is higher.

C2 cells. Those cells take for each prototype the maximum
response (i.e., first spike) of corresponding S2 cells over all positions
and processing scales, leading to ten shift- and scale-invariant cells
(20 in the mixed case).

STDP model. We used a simplified STDP rule:

fDwij ¼ aþ:wij :ð1� wijÞ if tj � ti � 0
Dwij ¼ a�:wij :ð1� wijÞ if tj � ti . 0 ð3Þ

where i and j refer, respectively, to the post- and presynaptic neurons,
ti and tj are the corresponding spike times, Dwij is the synaptic weight
modification, and aþ and a� are two parameters specifying the
amount of change. Note that the weight change does not depend on
the exact ti � tj value, but only on its sign. We also used an infinite
time window. These simplifications are equivalent to assuming that
the intensity–latency conversion of S1 cells compresses the whole
spike wave in a relatively short time interval (say, 20–30 ms), so that
all presynaptic spikes necessarily fall close to the postsynaptic spike
time, and the change decrease becomes negligible. In the brain, this
change decrease and the limited time window are crucial: they
prevent different spike waves coming from different stimuli from
interfering in the learning process. In our model, we propagate
stimuli one by one, so these mechanisms are not needed. Note that
with this simplified STDP rule only the order of the spikes matters, not
their precise timings. As a result, the intensity–latency conversion
function of S1 cells has no impact, and any monotonously decreasing
function gives the same results.

The multiplicative term wij � (1�wij) ensures the weight remains in
the range [0,1] (excitatory synapses) and implements a soft bound
effect: when the weight approaches a bound, weight changes tend
toward zero.

We also applied long-term depression to synapses through which
no presynaptic spike arrived, exactly as if a presynaptic spike had
arrived after the postsynaptic one. This is useful to eliminate the
noise due to original random weights on synapses through which
presynaptic spikes never arrive.

As the STDP learning progresses, we increase aþ and ja�j To
be precise, we start with aþ ¼ 2�6 and multiply the value by 2 every
400 postsynaptic spikes, until a maximum value of 2�2. a� is adjusted
so as to keep a fixed aþ/a� ratio (�4/3). This allows us to accelerate
convergence when the preferred stimulus is somewhat ‘‘locked,’’
whereas directly using high learning rates with the random initial
weights leads to erratic results.

We used a threshold of 64 (¼ 1/4 3 16 3 16). Initial weights are
randomly generated, with mean 0.8 and standard deviation 0.05.

Classification setup. We used an RBF network. In the brain, this
classification step may be done in the PFC using the outputs of IT. Let
X be the vector of C2 responses (containing either binary detections
with the first implementation or final potentials with the second one).
This kind of classifier computes an expression of the form:

f ðXÞ ¼
XN

i¼1
ci � e�

ðX�Xi Þ2

2r2 ð4Þ

and then classifies based on whether or not f(X) reaches a threshold.
Supervised learning at this stage involves adjusting the synaptic

weights c so as to minimize a (regularized) error on the training set
[27]. The Xi correspond to C2 responses for some training examples
(1/4 of the training set randomly selected). The full training set was
used to learn the ci. We used r ¼ 2 and k ¼ 10�12 (regularization
parameter).

The multiclass case was handled with a ‘‘one-versus-all approach.’’
If n is the number of classes (here, three), n RBF classifiers of the kind
‘‘class I’’ versus ‘‘all other classes’’ are trained. At the time of testing,
each one of the n classifiers emits a (real-valued) prediction that is
linked to the probability of the image belonging to its category. The
assigned category is the one that corresponds to the highest
prediction value.

Hebbian learning. The spike trains coming from C1 cells were
converted into real-valued activities (supposed to correspond to
firing rates) by taking the inverse of the first spikes’ latencies (note
that these activities do not correspond exactly to the convolution
values because of the local lateral inhibition mechanism of layer C1).
The activities (or firing rates) of S2 units were computed as:

YS2 ¼
WS2 � XC1

jXC1j2
ð5Þ

where WS2 is the synaptic weight vector of the S2 cell. Note that the
normalization causes an S2 cell to respond maximally when the input
vector XC1 is collinear to its weight vector WS2 (neural circuits for
such normalization have been proposed in [27]). Hence WS2 (or any
vector collinear to it) is the preferred stimulus of the S2 cell. With
another stimulus XC1 the response is proportional to the cosine
betweenWS2 and XC1. This kind of tuning has been used in extensions
of HMAX [26]. It is similar to the Gaussian tuning of the original
HMAX [7], but it is invariant to the norm of the input (i.e.,
multiplying the input activities by 2 has no effect on the response),
which allows us to remain contrast-invariant (see also [26] for a
comparison between the two kinds of tuning).

Only the cells whose activities were above a threshold were
considered in the competition process. It was found useful to use
individual adaptative thresholds: each time a cell was among the
winners, its threshold was set to 0.91 times its activity (this value was
tuned to get approximately the same number of weight updates as
with STDP). The competition mechanism was exactly the same as
before, except that it selected the most active units and not the first
one to fire. The winners’ weight vectors were updated with the
following modified hebbian rule:

dWS2 ¼ a � YS2 � ðXC1 �WS2Þ ð6Þ

a is the learning rate. It was found useful to start with a small
learning rate (0.002) and to geometrically increase it every ten
iterations. The geometric ratio was set to reach a learning rate of 0.02
after 2,000 iterations, after which the learning rate stayed constant.

Differences from the model of Serre, Wolf, and Poggio. Here we
summarize the differences between our model and their model [6] in
terms of architecture (leaving the questions of learning and temporal
code aside).

We process various scaled versions of the input image (with the
same filter size), instead of using various filter sizes on the original
image: S1 level, only the best matching orientation is propagated; C1
level, we use lateral inhibition (see above); S2 level, the similarity
between a current input and the stored prototype is linked to the
number of early spikes in common between the corresponding spike
trains, while Serre et al. use the Euclidian distance between the
corresponding patches of C1 activities.

We used an RBF network and not a Support Vector Machine.

Supporting Information

Video S1. Face-Feature Learning

Here we presented the face-training examples in random order,
propagated the corresponding spike waves, and applied the STDP
rule. At the top of the screen, the input image is shown, with red,
green, or blue squares indicating the receptive fields of the cells that
fired (if any). At the bottom of the screen, we reconstructed the
preferred stimuli of the three C2 cells. Above each reconstruction,
the number of postsynaptic spikes emitted is shown with the
corresponding color. The red, green, and blue cells develop selectivity
to a view of, respectively, the bust, the head, and the face.

Found at doi:10.1371/journal.pcbi.0030031.sv001 (3.3 MB MOV).
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Video S2. Motorbike-Feature Learning

The red cell becomes selective to the front part of a motorbike, while
the green and blue cells both become selective to the wheels.

Found at doi:10.1371/journal.pcbi.0030031.sv002 (6.8 MB MOV).

Video S3. Mixed Case

The training set consisted of 200 face pictures, 200 motorbike
pictures, and 200 background pictures. Notice that the red cell
becomes selective to faces and the blue cell to heads, while the green
cell illustrates how a given feature (round shape) can be shared by two
categories.

Found at doi:10.1371/journal.pcbi.0030031.sv003 (7.6 MB MOV).
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Spike Timing Dependent Plasticity Finds the Start of
Repeating Patterns in Continuous Spike Trains
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Experimental studies have observed Long Term synaptic Potentiation (LTP) when a presynaptic neuron fires shortly before a
postsynaptic neuron, and Long Term Depression (LTD) when the presynaptic neuron fires shortly after, a phenomenon known
as Spike Timing Dependant Plasticity (STDP). When a neuron is presented successively with discrete volleys of input spikes
STDP has been shown to learn ‘early spike patterns’, that is to concentrate synaptic weights on afferents that consistently fire
early, with the result that the postsynaptic spike latency decreases, until it reaches a minimal and stable value. Here, we show
that these results still stand in a continuous regime where afferents fire continuously with a constant population rate. As such,
STDP is able to solve a very difficult computational problem: to localize a repeating spatio-temporal spike pattern embedded
in equally dense ‘distractor’ spike trains. STDP thus enables some form of temporal coding, even in the absence of an explicit
time reference. Given that the mechanism exposed here is simple and cheap it is hard to believe that the brain did not evolve
to use it.

Citation: Masquelier T, Guyonneau R, Thorpe SJ (2008) Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike
Trains. PLoS ONE 3(1): e1377. doi:10.1371/journal.pone.0001377

INTRODUCTION
Electrophysiologists report the existence of repeating spatio-

temporal spike patterns with millisecond precision, both in vitro

and in vivo, lasting from a few tens of ms to several seconds[1–3].

In this study we assess the difficult problem of detecting them, and

suggest how neurons could solve it. The problem is made

particularly difficult when only a fraction of the recorded neurons

are involved in the pattern. Fig. 1 illustrates such a situation. There

is a pattern of spikes (indicated by the red dots) that repeats at

irregular intervals, but is hidden within the variable background

firing of the whole population (shown in blue). The problem is

made hard because nothing in terms of population firing rate

characterizes the periods when the pattern is present, nor is there

anything unusual about the firing rates of the neurons involved in

the pattern. In such a situation detecting the pattern clearly

requires taking the spike times into account. However direct

comparison of each spike time to one another over the entire

recording period and across the entire set of afferents is extremely

computationally expensive. In this article we will see how a single

neuron equipped with STDP can solve the problem in a different

manner, taking advantage of the fact that a pattern is a succession

of spike coincidences.

STDP is now a widely accepted physiological mechanism of

activity-driven synaptic regulation. It has been observed exten-

sively in vitro[4–7], and more recently in vivo in Xenopus’s visual

system[8,9], in the locust’s mushroom body[10], and in the rat’s

visual cortex[11] and barrel cortex[12]. An exponential update

rule fits well the synaptic modifications observed experimental-

ly[13] (see Fig. 2). Very recently, it has also been shown that

cortical reorganization in cat primary visual cortex is in

accordance with STDP[14]. Note that STDP is in agreement

with Hebb’s postulate because it reinforces the connections with

the presynaptic neurons that fired slightly before the postsynaptic

neuron, which are those that ‘took part in firing it’. It thereby

reinforces causality links.

When a neuron is presented successively with similar volleys of

input spikes STDP is known to have the effect of concentrating

synaptic weights on afferents that consistently fire early, with the

result that the postsynaptic spike latency decreases[15–18]. This

theoretical observation is in accordance with recordings in rat’s

hippocampus showing that the so called ‘place cells’ fire earlier –

relative to the cycle of the theta oscillation in hippocampus – after

the animal has repeatedly traversed the corresponding area[19].

STDP has also been studied in an oscillatory mode, and was

shown to be able to select only phase-locked inputs among a broad

population with random phases, turning the postsynaptic neuron

into a coincidence detector[20].

The main limitation of these studies is the assumption that the

input spikes arrive in discrete volleys (sometimes also called ‘spike

waves’). They assume an explicit time reference – usually the

presentation of a stimulus[15,17,18], or the maximum (or

minimum) of an oscillatory drive[20,21] – that allows the

specification of a time-to-first spike (or latency) for the afferents,

which could be used by the brain to encode information[22,23].

Activity between the volleys is assumed to be spontaneous and

much weaker. Furthermore, many studies[15,17,20] also require

the pattern to be present in all volleys for the STDP to learn it, that

is no ‘distractor’ volleys are inserted between pattern presentations.

But what happens when the population of afferents is continuously

firing with a constant population firing rate, so that no explicit time

reference is available? Is STDP still able to find and learn spike

patterns among the inputs? Is the learning robust if, more
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realistically, pattern presentations occur at unpredictable times,

separated by long ‘distractor’ periods and if the pattern does not

involve all the afferents? Does it make sense to use the beginning of

the pattern as a time reference, and does the postsynaptic spike

latency with respect to this reference still decrease?

To answer these questions we inserted an arbitrary pattern at

various times into randomly generated ‘distractor’ spike trains, as

in Fig 1, and investigated whether a single receiving STDP

neuron, with a 10 ms membrane time constant, was able to learn

it in an unsupervised manner. To be precise, we simulated a

population of 2,000 afferents firing continuously for 450 s (see

Materials and Methods for details). Most of the time (3/4 of the

time in the baseline simulation) the afferents fired according to a

Poisson process with variable instantaneous firing rates. Spiking

activity in the brain is usually assumed to follow roughly Poisson

statistics, hence this choice, but here it is not crucial: what matters

is that the afferents fire stochastically and independently. But every

now and then, at random times, half of these afferents left the

stochastic mode for 50 ms and adopted a precise firing pattern.

This repeated pattern had roughly the same spike density as the

stochastic distractor part, so as to make it invisible in terms of

firing rates. To be precise the firing rate averaged over the

population and estimated over 10 ms time bins has a mean of

64 Hz and a standard deviation of less than 2 Hz (this firing rate is

even more constant than in the 100 afferent case of Fig. 1 because

of the law of large numbers). We further increased the difficulty

by adding a permanent 10 Hz Poissonian spontaneous activity

to all the neurons, and by adding a 1 ms jitter to the pattern.

Intriguingly, we will see that one single Leaky Integrate-and-Fire

(LIF) neuron receiving inputs from all the afferents, acting as a

coincidence detector (see Fig. 3), and implementing STDP, is

perfectly able to solve the problem and learns to respond

selectively to the start of the repeating pattern.

RESULTS
At the beginning of a first simulation the 2,000 synaptic weights

are all equal to 0.475 (arbitrary units normalized in the range

[0,1]). The neuron is therefore non-selective. Since the presynaptic

spike density – on its 10 ms time scale – is almost constant, it

discharges periodically (see Fig. 4a). The greater are the initial
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Figure 1. Spatio-temporal spike pattern. Here we show in red a repeating 50 ms long pattern that concerns 50 afferents among 100. The bottom
panel plots the population-averaged firing rates over 10 ms time bins (we chose 10 ms because it is the membrane time constant of the neuron used
later in the simulations), and demonstrates that nothing characterizes the periods when the pattern is present. The right panel plots the individual
firing rates averaged over the whole period. Neurons involved in the pattern are shown in red. Again, nothing characterizes them in terms of firing
rates. Detecting the pattern thus requires taking the spike times into account.
doi:10.1371/journal.pone.0001377.g001
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Figure 2. The STDP modification function. We plotted the additive
weight updates as a function of the difference between the presynaptic
spike time and the postsynaptic one. We used an exponential law (see
Materials and Methods). The left part corresponds to Long Term
Potentiation (LTP) and the right part to Long Term Depression (LTD).
doi:10.1371/journal.pone.0001377.g002
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weights (or the lower the threshold), the smaller is the period (here

it is about 16 ms, the initial firing rate is thus about 63 Hz). Each

time a discharge occurs we update the synaptic weights using the

STDP rule of Fig. 2, and clip them in the range [0,1]. At this stage,

the neuron discharges both outside and inside the pattern

(represented by grey rectangles on Fig. 4). In the first case

presynaptic and postsynaptic spike times are uncorrelated, and

since a2t2.a+t+ (where a2 and t2 are respectively the LTD

learning rate and time constant, and a+ and t+ are the same

parameters for LTP, see Materials and Methods), STDP leads to

an overall weakening of synapses[15] (note: if no repeating

patterns were inserted STDP would thus gradually decrease the

synaptic weights until the threshold would not be reached any

longer). But in the second case, by reinforcing the synaptic

connections with the afferents that took part in firing the neuron,

STDP increases the probability that the neuron fires again next

time the pattern is presented (reinforcement of causality link). As a

result, selectivity to the pattern emerges, here after about 13.5 s

(see Fig. 4b) that is after only about 70 pattern presentations and

700 discharges: the neuron gradually stops discharging outside the

pattern (no false alarms), while it does discharge most of the time

when the pattern is presented (high hit rate), and can even fire

twice per pattern as in the case illustrated here. Chance determines

which part(s) of the pattern the neuron becomes selective to at this

stage (i.e. the postsynaptic spike latency(ies), with respect to the

beginning of the pattern here about 5 ms and 40 ms). However

the increase in selectivity usually rapidly leads to only one

discharge per pattern, here at about 40 ms.

Once selectivity to the pattern has emerged STDP has another

major effect. Each time the neuron discharges in the pattern, it

reinforces the connections with the presynaptic neurons that fired

slightly before in the pattern. As a result next time the pattern is

presented the neuron is not only more likely to discharge to it, but

it will also tend to discharge earlier. In other words, the

postsynaptic spike latency locks itself to the pattern and decreases

steadily (with respect to the beginning of the pattern). However, it

cannot decrease endlessly. There is a convergence by saturation

when all the spikes in the pattern that precede the postsynaptic

spike already correspond to maximally potentiated synapses, and

all are necessary to reach the threshold. This usually occurs when

the latency is already very short, the value depending on the

threshold, although it could occur even earlier if the pattern has a

zone with low spike density. Spikes outside the pattern cannot

contribute efficiently to the membrane potential: since their times

are stochastic, STDP usually depresses the corresponding

synapses. We end up with a bimodal weight distribution with

synapses either maximally potentiated or fully depressed (as

predicted by van Rossum et al[24]).

Here this convergence occurs after about 2000 discharges. At

this stage, the postsynaptic spike latency (with respect to the

beginning of the pattern) is about 4 ms (see Fig. 4c). After

convergence the hit rate is then 99.1% with no false alarms

(estimated on the last 150 s). Notice that the signal/noise ratio has

increased with respect to the situation in Fig. 4b, that is the

potential reached on distractor periods is farther from the

threshold. Among the 2,000 synapses, 383 are fully potentiated

(weight<1), while the rest of them are almost completely depressed

(weight<0). All of the potentiated synapses correspond to afferents

involved in the pattern. The fact that there is no false alarms

means once the learning has been done, a neuron just waits for its

0 10 20 30 40 50 60 70 80
−3

−2

−1

0

1

2

3

4

5

6

t(ms)

P
ot

en
tia

l (
ar

bi
tr

ar
y 

un
its

)

 

 

potential
threshold
resting pot.
input spike times

Figure 3. Leaky Integrate-and-Fire (LIF) neuron. Here is an illustrative example with only 6 input spikes. The graph plots the membrane potential as
a function of time, and clearly demonstrates the effects of the 6 corresponding Excitatory PostSynaptic Potentials (EPSP). Because of the leak, for the
threshold to be reached the input spikes need to be nearly synchronous. The LIF neuron is thus acting as a coincidence detector. When the threshold
is reached, a postsynaptic spike is fired. This is followed by a refractory period of 1 ms and a negative spike-afterpotential.
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preferred stimulus, and need never forget what it has learned. The

model thus predicts that fully specified neurons might actually

have very low spontaneous rates, whereas higher rates might

characterize less well specified cells.

Fig. 5 shows the latency reduction (with respect to the beginning

of the pattern) during the learning stage until it stabilizes at a

minimum of about 4 ms. Apart from the initial part (before

selectivity emerges) the curve looks similar to those observed in

earlier work with discrete spike volleys[17]. By convention the

latency is 0 when the neuron discharged outside the pattern, that is

when it generated a false alarm. There are no false alarms after the

676th discharge, that is for the last 436 s of simulation.

Fig. 6 illustrates the situation after convergence. It can be seen

that STDP has potentiated most of the synapses that correspond to

the earliest spikes of the pattern (Fig. 6a), and depressed most of

the synapses that correspond to presynaptic spikes which follow

the postsynaptic one, as in the previous work with discrete volleys

[15,17,18]. This results in a sudden increase in membrane

potential when the neuron starts integrating the pattern, and the

threshold is quickly reached (Fig. 6b). Notice that all the synaptic

connections with afferents not involved in the pattern have been

completely depressed.

We performed 100 similar simulations with different pseudo-

randomly generated spike trains and patterns. Our criteria for a

‘successful’ simulation were: convergence to a state with a

postsynaptic latency inferior to 10 ms, a hit rate superior to 98%

and no false alarms. This occurred in 96% of the cases. For the

remaining 4%, the neurons stopped firing when too many

discharges occurred outside the pattern in a row (leading to an

overall weakening of synapses, so the threshold was no longer

reached).

We ran other batches of 100 simulations to systematically

investigate the impact on this 96% success performance of five

parameters.

The first one is the pattern relative frequency (i.e sum of pattern

durations over total duration ratio, assuming a fixed pattern

duration of 50 ms), 1/4 in the baseline condition, and Fig. 7a

shows its effect. We see that while the performance is very high as

long as the ratio is above 15%, with smaller values the probability

of success drops. This means the pattern needs to be consistently

present for the STDP to learn it. However, this applies only at the

beginning (say during the first 1000 discharges). Here we used a

constant pattern frequency, but after the initial part the neuron has

already become selective to the pattern, so presenting longer
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Figure 4. Overview of the 450 s simulation. Here we plotted the membrane potential as a function of simulation time, at the beginning, middle, and
end of the simulation. Grey rectangles indicate pattern presentations. (a) At the beginning of the simulation the neuron is non-selective because the
synaptic weights are all equal. It thus fires periodically, both inside and outside the pattern. (b) At t<13.5 s, after about 70 pattern presentations and
700 discharges, selectivity to the pattern is emerging: gradually the neuron almost stops discharging outside the pattern (no false alarms), while it
does discharge most of the time the pattern is present (high hit rate), here even twice (c) End of the simulation. The system has converged (by
saturation). Postsynaptic spike latency is about 4 ms. Hit rate is 99.1% with no false alarms (estimated on the last 150 s).
doi:10.1371/journal.pone.0001377.g004
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Figure 5. Latency reduction. Here we plotted the postsynaptic latency as a function of the number of discharges (by convention the latency is 0
when the neuron discharged outside the pattern, i.e. when it generated a false alarm). We clearly distinguish 3 periods: the beginning, when the
neuron is non-selective; the middle, when selectivity has emerged and STDP is ‘tracking back’ through the pattern; and the end, when the system has
converged towards a fast and reliable pattern detector.
doi:10.1371/journal.pone.0001377.g005

Figure 6. Converged state (a) we represented the spike trains of the 2,000 afferents. We have reordered the afferents with respect to Fig. 1 so that
afferents 1–1000 are involved in the pattern, and afferents 1001–2000 are not and we use a color code ranging from black for spikes that correspond
to completely depressed synapses (weight = 0) to white for spikes that correspond to maximally potentiated synapses (weight = 1). This allows the
visualization of the spikes which generate a significant EPSP and those which do not. The pattern is represented with a grey line rectangle. Notice the
cluster of white spikes at the beginning of it: STDP has potentiated most of the synapses that correspond to the earliest spikes of the pattern. Note
that virtually all the synaptic connections with afferents not involved in the pattern have been completely depressed. (b) The membrane potential is
plotted as a function of time, over the same range as above. We clearly see the sudden increase that corresponds to the above-mentioned cluster.
doi:10.1371/journal.pone.0001377.g006
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distractor periods does not perturb the learning at all. We also

tried to change the pattern duration while maintaining its relative

frequency at 1/4. It turns out that what makes the detection

difficult is the delay between two pattern presentations, not the

pattern duration itself. Since we kept the pattern relative frequency

constant, this delay increased with the pattern duration so the

performance dropped: 97% with a 40 ms pattern, 96% with

50 ms, 93% with 60 ms, 59% with 100 ms and 46% with 150 ms.

However we think this delay is more naturally investigated by

changing the pattern relative frequency as in Fig. 7a.

The second parameter we investigated is the amount of jitter

(1 ms in the baseline condition), and Fig. 7b shows its influence.

We see that the performance is very good for jitter levels lower

than 3 ms. For larger amounts of jitter the spike coincidences are

lost, and the STDP weight updates are inaccurate, so the learning

is impaired. In the brain millisecond spiking precision has been

reported in many structures, including the retina[25,26], the

Lateral Geniculate Nucleus[27,28], the visual cortex[29,30], the

somatosensory system[31,32] and the auditory system[33]. Some

authors report higher variability, but this could result from non

controlled variables rather than intrinsic noise (see Discussion).

The third parameter is the proportion of afferents involved in

the pattern (1/2 in the baseline condition), and Fig. 7c shows its

influence. The threshold was scaled proportionally. Not surpris-

ingly, with fewer afferents involved in the pattern, it becomes

harder to detect, but it is still detected more than half of the times

when only 1/3 of the afferents are involved in the pattern. Note

that the other 2/3 of afferents are discarded by STDP. This

suggests that activity-driven mechanisms could select a small set

of ‘interesting’ afferents among a much bigger set of initially

connected afferents, probably specified genetically, a phenomenon

known as ‘developmental exuberance’ for which there is

considerable experimental evidence[34].

The fourth parameter is the initial weight (0.475 in the baseline

condition) and Fig. 7d shows its influence. Recall discharges

outside the pattern lead to an overall decrease of synaptic weights.

If too many of them occur in a row the threshold may no longer be

reachable. Thus a high initial value for the weights increases the

resistance to discharges outside the pattern, leading to a better

performance. High initial weights also cause the neuron to

discharge at a high rate at the beginning of the learning process,

when it is non-selective: 63 Hz for an initial weight of 0.475,

38 Hz for 0.325. These values may seem high in regard to usual

experimental values. But first after only 13 s selectivity has

emerged, and the neuron fires at a rate between 5 and 10 Hz. It is

conceivable that electrophysiologists rarely record such short very

active initial phases. Second, we consider here that the population

of afferents is constantly firing with a mean rate of 64Hz. This is to

make the problem of pattern detection harder, but if the afferents

have less active periods, which is likely to occur in the brain, so will

have the post-synaptic neuron. We also added Gaussian noise to

the initial weights, with increasing standard deviation until 0.475

(thus equal to the mean). Following this noise addition the weights

were clipped in [0,1]. This had no significant impact on the

performance, at least in the present case when the initial weights

are relatively high.

The fifth parameter is the proportion of missing spikes (0 in the

base line condition). The threshold was scaled proportionally. Not

surprisingly the number of successfully learned patterns decreases

with the proportion of spikes deleted. However with a 10%

deletion the pattern was correctly learnt 82% of the time,

demonstrating that the system is quite robust to spike deletion.

We also tried changing the membrane time constant tm (10 ms

in the baseline condition), scaling the threshold proportionally.

This had little impact on the performance (79% success with

tm = 5 ms, 88% with tm = 20 ms), but it did have an impact on the

minimal latency that is reached after convergence. A smaller time

constant (and the smaller threshold that goes with it) causes the

neuron to be interested in more coincident spikes. The system

converges when the very few nearly coincident first spikes of the

pattern all correspond to maximally potentiated synapses, and the

postsynaptic spikes is fired just after them. The final latency is thus

shorter than the one we have with a longer time constant, which

enables the neuron to integrate spikes over a longer time window.

Taken together these results demonstrate that the learning is

amazingly robust to the model parameters. We thus believe that

we have captured a mechanism than emerges from STDP rather

than from a precise neural model configuration. While we admit it

is still somewhat speculative to affirm that a similar mechanism

takes place in the brain, it is at least very plausible.

DISCUSSION
Our first claim is that the main results previously obtained for

STDP based learning with the highly simplified scheme of discrete

spike volleys[15–18] still stand in this more challenging continuous

framework. This means that global discontinuities such as saccades
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or micro-saccades in vision and sniffs in olfaction[35], or brain

oscillations in general[23] are not necessary for STDP-based

learning of temporal patterns (although they will almost certainly

help). Temporal code skeptics often point out the fact that neurons

would need to know a time reference to decode a temporal code,

and we see here that this is not necessary: as long as there are

recurrent spike patterns in the inputs, and even if they are

embedded in equally dense ‘distractor’ spike trains, a neuron

equipped with STDP can potentially find them in only a few tens

of pattern presentations, and will gradually respond faster and

faster when the pattern is presented, by potentiating synapses that

correspond to the earliest spikes of the patterns, and depressing all

the others. This last point strongly reinforces the idea that a

substantial amount of information could be available very rapidly,

in the very first spikes evoked by a stimulus[36].

It is worth mentioning that the proposed learning scheme is fully

unsupervised. No teaching signal tells the neuron when to learn

nor labels the inputs. Biologically plausible mechanisms for

supervised learning of spike patterns have also been proposed[37].

It is also surprising to see how such a simple mechanism can

solve a problem as complex as spike pattern detection. However,

there is no consensus on the definition of a spike pattern, and we

admit ours is quite simple: here a pattern is seen as a succession of

coincidences. A Leaky Integrate and Fire (LIF) neuron is known to

be capable of coincidence detection, and it has even been

proposed that this is its main function in the brain[38,39]. Here

the membrane time constant (10 ms) is shorter than the duration

of the pattern (50 ms), and so the LIF neuron can never be

selective to the whole pattern. Instead, it is selective to ‘one

coincidence’ of the pattern at a time, that is, selective to the nearly

simultaneous arrival of certain spikes, just as it occurs in one

subdivision of the pattern. At the beginning of the learning process

STDP will cause the LIF neuron to become selective to one such

coincidence (chance determines which one). Then STDP will track

back through the pattern, from one coincidence to the previous

one, until the initial coincidence is reached and the chain of

causality is stopped. At this point the neuron is selective only to the

simultaneous arrival of the pattern’s earliest spikes, and can serve

as ‘earliest predictor’ of the subsequent spike events[15,16,19], at

the risk of triggering a false alarm if these subsequent events don’t

occur, but with the benefit of being very reactive.

This contrasts with approaches where the whole pattern needs

to be taken into account, sometimes including finer structural

aspects such as spike orders or relative delays[2,3,40,41]. But

neuronal mechanisms able to reliably decode such structures have

to be proposed and looked for in the brain. One appealing

candidate mechanism is the synfire chain[42] but direct evidence

for their existence is still fairly limited[43]. Here we limit the

notion of pattern to successive coincidences, and suggest a way

such patterns could be decoded, using widely accepted neuro-

physiological mechanisms, namely coincidence detection and

STDP.

Another limitation of this work is the excitatory-only scheme.

Consequently, something like ‘afferent A must not spike’ cannot be

learnt, only ‘positive patterns’ can. However, evidence for

plasticity in inhibitory synapses in the brain is weak and inhibition

is often assumed to be non-selective. So we propose that most of

the selectivity could be achieved using only excitatory synapses, as

in this model.

Whether spike times contain additional information with respect

to discharge rates has been the object of an ongoing debate for

some time. Electrophysiologists have tried to answer this question

mostly by recording neurons in sensory and motor systems with a

repeating stimulus or action, and looking at inter-trial variability of

the spike times. Some claim that spike times can be very reliable

while others are more skeptical (see ref [22,44] for reviews). Given

that the simple and cheap mechanism exposed here reliably

detects spatio-temporal spike patterns, it is hard to believe that the

brain did not evolve to use at least the form of temporal coding

exposed above (‘successive coincidences’), unless there is an

unavoidable intrinsic source of noise in the integrate-and-fire

mechanism that makes all spike times unreliable. The main source

for this sort of noise is probably at the level of synaptic

transmission[45], since neurons stimulated directly by current

injection in the absence of synaptic input give highly stereotyped

and precise responses[46]. However, spike times can be very

reliable in some experiments[22,44], particularly in the auditory

cortex, proving that reliable synapses do exist. So we argue that

variability in other recorded spike times, in particular in the visual

system, could come from non-controlled variables that might also

affect neuronal activation, such as attention, eye movements,

mental imagery, top-down effects etc. As Barlow wrote about

neural responses in 1972, ‘‘their apparently erratic behavior was

caused by our ignorance, not the neuron’s incompetence.’’[47]

We would like to emphasize the fact that the approach

presented here is generic. It is not limited to sensory systems,

and it could be applied to either experimental or model-generated

data. The first step would be to see if STDP finds spike patterns in

the data. Providing it does, the second step would be to understand

what those patterns mean by solving the corresponding inverse

problem.

What happens if there is more than one repeating pattern

present in the input? We verified that as the learning progresses,

the increasing selectivity of the postsynaptic neuron rapidly

prevents it from responding to several patterns. Instead, it picks

one (chance determines which one), and becomes selective to it

and only to it. To learn the other patterns other neurons are

needed.

A competitive mechanism could ensure they optimally cover all

the different patterns and avoid learning the same ones. Such a

mechanism could be implemented through inhibitory horizontal

connections between neurons, such that as soon as one neuron

fires, it could prevent other cells from learning the same pattern, as

in previous work[48]. The neural population would then self-

organize to cover all the input patterns. The ‘coverage’ could be

optimized using neurons that differ in their parameters (for

example their thresholds), leading to more robust learning and

detection. Furthermore a long input pattern can be coded by the

successive firings of several STDP neurons, each selective to a

different part of the pattern, and competition would prevent them

all from tracking back through the pattern and clustering at the

beginning. Note that within such a competitive framework a

pattern detection probability of 50% is hardly a disaster: it means

that with 2 neurons the risk that one pattern is not detected is

25%, with 3 neurons 12.5%, with 4 neurons 6.25% and so on. The

system could then work with suboptimal parameters (highlighted

in Fig. 7), for example weaker initial weights.

Further work is needed to evaluate this form of competitive

network. However in this paper we wanted to stress the fact that

one single LIF neuron equipped with STDP is consistently able to

detect one arbitrary repeating spatio-temporal spike pattern

embedded in equally dense ‘distractor’ spike trains, which is a

remarkable demonstration of the potential for such a scheme.

MATERIALS AND METHODS
The simulations were performed using MATLAB R14 (Math-

works 2005, Natick MA). The source code is available from the

authors upon request.
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Poisson spike trains
The spike trains were prepared before the simulation (Fig. 1

illustrates the type of spike trains we used, though with a smaller

set of neurons). For memory issues instead of using spike trains

defined over a 450 seconds period, we pasted the same 150s long

pattern three times (this repetition had no impact on the results).

Each afferent emits spikes independently using a Poisson process

with a variable instantaneous firing rate r, that varies randomly

between 0 and 90 Hz. The maximal rate change s was chosen so

that the neuron could go from 0 to 90 Hz in 50 ms. To be precise,

time was discretized using a time step dt of 1 ms. At each time

step:

1. the afferent has a probability of r.dt of emitting a spike (whose

exact date is then picked randomly in the 1 ms time bin)

2. its instantaneous firing rate is modified: dr = s.dt where s is the

speed of rate change (in Hz/s), and clipped in [0, 90] Hz.

3. its speed of rate change is modified by ds, randomly picked

from a uniform distribution over [2360+360] Hz/s, and

clipped in [21800+1800] Hz/s

Note that we chose to apply the random change to s as opposed

to r so as to have a continuous s function and a smoother r

function.

As mentioned in the Discussion, a limitation of this work is the

excitatory-only scheme. Consequently, something like ‘afferent A

must not spike’ cannot be learnt, only ‘positive patterns’ can. We

thus wanted a pattern in which all the afferents spike at least once.

We could have made up such a pattern, but we wanted the pattern

to have exactly the same statistics as the Poisson distractor part (to

make the pattern detection harder), so we preferred to randomly

pick a 50 ms period of the original Poisson spike trains and to

‘copy-paste’ it (see below). To make sure this randomly selected

period did contain a spike from each afferent we implemented a

mechanism that triggers a spike whenever an afferent has been

silent for more than 50 ms (leading to a minimal firing rate of

20 Hz). Clearly, such mechanism is NOT implemented in the

brain. It is just an artifice we used here to make the pattern

detection harder. As a result the average firing rate was 54 Hz,

and not the 45 Hz we would have without this additional

mechanism.

Once the random spike train has been generated, a part of it,

defined as the ‘pattern’ to be repeated, is ‘copy-pasted’. This ‘copy-

paste’ does not involve the last 1000 afferents (obviously the indices

are arbitrary), which conserve their original spike trains. But we

discretize the spike trains of the first 1000 afferents into 50 ms

sections. We randomly pick one of these sections and copy the

corresponding spikes. Then we randomly pick a certain number of

these sections (1/4 in the baseline condition), avoiding consecutive

ones, and replace the original spikes by the copied ones. A jitter

was added before the pasting operation, picked from a Gaussian

distribution with mean zero and standard deviation 1 ms (in the

baseline condition).

After this ‘copy-paste’ operation a 10 Hz Poissonian spontane-

ous activity was added, to all neurons and all the time. The total

activity was thus 64 Hz on average, and spontaneous activity

represented about 16% of it.

Leaky Integrate and Fire (LIF) neuron (see Fig. 3)
For computational reasons we modeled the LIF neuron using

Gerstner’s Spike Response Model (SRM)[16,49]. That is instead

of solving the membrane potential differential equation we used

kernels to model the effect of presynaptic and postsynaptic spikes

on the membrane potential. Each presynaptic spike j, with arrival

time tj, is supposed to add to the membrane potential an Excitatory

Post-Synaptic Potential (EPSP) of the form:

e t{tj

� �
~K : exp {

t{tj

tm

� �
{ exp {

t{tj

ts

� �� �
:H t{tj

� �
where tm is the membrane time constant (here 10 ms), ts is the

synapse time constant (here 2.5 ms), H is the Heavyside step

function:

H sð Þ~
1 if s§0

0 if sv0

�

and K is just a multiplicative constant chosen so that the maximum

value of the kernel is 1 (the voltage scale is arbitrary in this paper).

The last emitted postsynaptic spike i has an effect on the

membrane potential modeled as follows:

g t{tið Þ~T: K1
: exp {

t{ti

tm

� �
{

�

K2
: exp {

t{ti

tm

� �
{ exp {

t{ti

ts

� �� ��
:H t{tið Þ

where T is the threshold of the neuron (here 500, arbitrary units).

The first term models the positive pulse and the second one the

negative spike-afterpotential that follows the pulse (see Fig. 3).

Here we used K1 = 2 and K2 = 4. For simplicity, the resting

potential is supposed to be zero, but a non zero value would simply

shift the kernel, and shifting the threshold by the same value would

lead to the same computation.

Both e and g kernels were rounded to zero when respectively

t2tj and t2ti were greater than 7?tm.

At any time the membrane potential is:

p~g t{tið Þz
X

j=tjwti

wj
:e t{tj

� �

where the wj are the excitatory synaptic weights, between 0 and 1

(arbitrary units).

This SRM formulation allows us to use event-driven program-

ming: we only compute the potential when a new presynaptic

spike is integrated. We then estimate numerically if the

corresponding EPSP will cause the threshold to be reached in

the future and at what date. If it is the case, a postsynaptic spike is

scheduled. Such postsynaptic spike events cause all the EPSPs to

be flushed, and a new ti is used for the g kernel. There is then a

refractory period of 1 ms, during which the neuron is not allowed

to fire.

Spike Timing Dependent Plasticity
An exponential update rule (see Fig. 2):

Dwj~
az: exp

tj{ti

tz

� �
if tjƒti LTPð Þ

{a{: exp {
tj{ti

t{

� �
if tjwti LTDð Þ

(

with the time constants t+ = 16.8 ms and t2 = 33.7 ms, provides a

reasonable approximation of the synaptic modification observed

experimentally[13].We restricted the learning window to

[ti27?t+,ti] for LTP and to [ti,ti+7?t2] for LTD. For each afferent,

we also limited LTP (respectively LTD) to the last (first)

STDP Finds Spike Patterns

PLoS ONE | www.plosone.org 8 January 2008 | Issue 1 | e1377



presynaptic spike before (after) the postsynaptic one (‘nearest spike’

approximation). We did not take the effects of finer triplet of

spikes[50] into account.

It was found that small learning rates led to more robust

learning. We used a+ = 0.03125 and a2 = 0.85?a+ Following

learning the weights were clipped to [0,1]. Note that all synapses

remain excitatory: there is no inhibition in all these simulations.
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Appendix B

Conference abstracts & posters

B.1 Ultra-rapid visual form analysis using feed-
forward processing

Masquelier T, Guyonneau R, Guilbaud N, Allegraud J-M, Thorpe S J, 2005,
"Ultra-rapid visual form analysis using feedforward processing" Perception
34 ECVP Abstract Supplement. http://www.perceptionweb.com/abstract.
cgi?id=v050563

The speed with which humans and monkeys can detect the presence of
animals in complex natural scenes constitutes a major challenge for mod-
els of visual processing. Here, we use simulations using SpikeNet (http:
//www.spikenet-technology.com) to demonstrate that even complex vi-
sual forms can be detected and localised with a feedforward processing ar-
chitecture that uses the order of firing in a single wave of spikes to code
information about the stimulus. Neurons in later recognition layers learn
to recognise particular visual forms within their receptive field by increasing
the synaptic weights of inputs that fire early in response to a stimulus. This
concentration of weights on early firing inputs is a natural consequence of
spike-time-dependent plasticity (STDP) (see Guyonneau et al. (2005)). The
resulting connectivity patterns produce neurons that respond selectively to
arbitrary visual forms while retaining a remarkable degree of invariance in
image transformations. For example, selective responses are obtained with
image size changes of roughly ±20%, rotations of around ±12◦ , and view-
ing angle variations of approximately ±30◦ . Furthermore,there is also very
good tolerance to variations in contrast and luminance and to the addition
of noise or blurring. The performance of this neurally inspired architecture
raises the possibility that our ability to detect animals and other complex
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forms in natural scenes could depend on the existence of very large numbers
of neurons in higher-order visual areas that have learned to respond to a
wide range of image fragments, each of which is diagnostic for the presence
of an animal part. The outputs of such a system could be used to trigger
rapid behavioural responses, but could also be used to initiate complex and
time-consuming processes that include scene segmentation, something that
is not achieved during the initial feedforward pass.

B.2 Face feature learning with Spike Timing
Dependent Plasticity

I presented preliminary results on STDP-based visual feature learning at the
conference NeuroComp 06, Pont-à-Mousson, France.

The model I used is a simplified version of the one presented in Chapter 2.
There are only two layers: the first one mimics V1 simple cells with a time-to-
first-spike coding (this layer corresponds to S1 in the complete model), and
the subsequent one implements STDP (S2 in the complete model). There
are no complex cells, nor classification layers.

I applied it on face images, and STDP did extract face features.

B.2.1 Paper



FACE FEATURE LEARNING WITH SPIKE TIMING DEPENDENT
PLASTICITY

Timothée Masquelier and Simon J Thorpe
Centre de Recherche Cerveau et Cognition

UMR 5549 CNRS - Université Paul Sabatier Toulouse 3
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ABSTRACT
Spike Timing Dependent Plasticity (STDP) is a learning
rule that modifies synaptic strength as a function of the rela-
tive timing of pre-and postsynaptic spikes. Here we use this
learning rule with neurons integrating spike trains coming
from V1 orientation selective cells. Presenting natural im-
ages containing faces we observe that the neurons develop
selectivity to face features. These results suggest that tem-
poral codes may be a key to understanding the phenomenal
processing speed achieved by the visual system, and argue
that STDP can lead to fast and selective responses.

KEY WORDS
STDP, spiking neurons, learning, visual features, face
recognition

1 Introduction

Temporal constraints pose a major challenge to models of
face recognition in cortex. When two images are simul-
taneously flashed to the left and right of fixation, human
subjects can make reliable saccades to the side where there
is a face in as little as 100-110 ms[16]. If we allow 20-30
ms for motor delays in the oculomotor system, this implies
that the underlying visual processing can be done in 80-
90 ms. In monkeys, recent recordings from inferotemporal
cortex (IT) shows that spike counts over time bins as small
as 12.5 ms (that produce essentially a binary vector with
either ones or zeros) and only about 100 ms after stimulus
onset contain remarkably accurate information about the
nature of a visual stimulus[10]. This sort of rapid process-
ing presumably depends on the ability of the visual system
to learn to recognize familiar visual forms. Quite how this
learning occurs constitutes a major challenge for theoreti-
cal neuroscience.

Here we explored the capacity of a simple 2-layer
feedforward network that has two key features. First, when
stimulated with a flashed visual stimulus, the neurons in
the first layer of the system (mimicking V1 orientation se-
lective cells) fire asynchronously, with the most strongly
activated neurons firing first. This mechanism has been
shown to efficiently encode image information[21]. Sec-
ond, neurons in the second layer implement Spike-Time

Dependent Plasticity (STDP), which is known to have the
effect of concentrating high synaptic weights on afferents
that systematically fire early[14, 9].

We demonstrate that when such a system is repeatedly
presented with natural images containing faces, the second
layer neurons will naturally become selective to patterns
that are both salient and reliably present in the input, in this
case face features. Furthermore, thanks to the use of com-
petition, the neuron population self-organizes, each neuron
learning a distinct pattern, so as to cover the whole vari-
ability of the inputs.

2 Model

2.1 V1 spike trains

When presented with an image, the first layer’s cells, em-
ulating V1 cells, detect edges with four preferred orienta-
tions and the more strongly a cell is activated the earlier
it fires. This intensity-latency conversion is in accordance
with recordings in V1 showing that response latency de-
creases with the stimulus contrast[1, 7] and with the prox-
imity between the stimulus orientation and the cell’s pre-
ferred orientation[4]. We also limit the number of spikes
at this stage by introducing competition between V1 cells
through a 1-Winner-Take-All mechanism: at a given loca-
tion corresponding to one cortical column only the spike
corresponding to the best matching orientation is propa-
gated (sparsity is thus 25% at this stage). Note that k-
Winner-Take-All mechanisms are easy to implement in the
temporal domain using inhibitory GABA interneurons[15].
Those V1 spikes are then propagated asynchronously to-
wards the second layer, where STDP is used.

2.2 STDP

STDP is a learning rule that modifies the strength of a neu-
ron’s synapses as a function of the precise temporal re-
lations between pre- and post-synaptic spikes: an excita-
tory synapse receiving a spike before a postsynaptic one
is emitted is potentiated (Long Term Potentiation) whereas
its strength is weakened the other way around (Long Term



Depression)[12]. The amount of modification depends on
the delay between these two events: maximal when pre-
and post-synaptic spikes are close together, the effects
gradually decrease and disappear with intervals in excess
of a few tens of milliseconds[3, 22, 6]. Note that STDP
is in agreement with Hebb’s postulate because presynap-
tic neurons that fired slightly before the postsynaptic neu-
ron are those which ‘took part in firing it’. Several au-
thors have studied the effect of STDP with Poisson spike
trains[14, 19]. Here, we demonstrate the STDP’s remark-
able ability to detect statistical regularities in terms ofearli-
est firing afferent patterns within visual spike trains, despite
their very high dimensionality inherent to natural images.

3 An iterative process

Visual stimuli are presented sequentially and the resulting
spike waves are propagated until the STDP layer. We pro-
cess various scaled versions of the input image (with the
same filter size). This results in cells with various recep-
tive field sizes. It has been suggested that the mammalian
visual system also performs multi-resolution processing us-
ing multiple receptive field sizes[5]. We use restricted re-
ceptive fields (i.e. cells only integrate spikes from a s x
s square neighborhood in the V1 maps corresponding to
one given processing scale) and weight sharing (i.e. each
prototype cell is duplicated in retinotopic maps and at all
scales). Starting with a random weight matrix (size = 4 x
s x s) we present the first visual stimuli. Duplicated cells
are all integrating the spike train and compete with each
other. If no cell reaches its threshold nothing happens and
we process the next image. Otherwise for each prototype
the first duplicate to reach its threshold is the winner. A 1-
Winner-Take-All mechanism prevents the other duplicated
cells from firing. The winner thus fires and the STDP rule
is triggered. Its weight matrix is updated, and the change
in weights is duplicated at all positions and scales. This
allows the system to learn patterns despite of changes in
position and size in the training examples. We also use lo-
cal inhibition between different prototype cells: when a cell
fires at a given position and scale, it prevents all other cells
from firing later at the same scale and within an s/2 x s/2
square neighborhood of the firing position. This competi-
tion prevents all the cells from learning the same pattern.
Instead, the cell population self-organizes, each cell trying
to learn a distinct pattern so as to cover the whole variabil-
ity of the inputs.

If the stimuli have visual features in common (which
should be the case if for example they contain similar ob-
jects), the STDP process will extract them. That is, for
some cells we will observe convergence of the synaptic
weights (by saturation), which end up being either maxi-
mally potentiated or fully depressed. During the conver-
gence process synapses compete for control of the timing
of postsynaptic spikes[14]. The winning synapses are those
through which the earliest spikes arrive (on average)[14, 9],
and this is true even in the presence of jitter and sponta-

neous activity[9]. This ‘preference’ for the earliest spikes
is a key point since the earliest spikes, which correspond to
the most salient regions of an image, have been shown to be
the most informative[21]. During the learning the postsy-
naptic spike latency decreases[14, 9, 8]. After convergence,
the responses become selective (in terms of latency)[9],
here to visual features of intermediate complexity. Features
can now be defined as clusters of afferents that are consis-
tently among the earliest to fire. STDP detects these kinds
of statistical regularities among the spike trains and creates
one unit for each distinct pattern. This can be seen as a vec-
tor quantization process, which removes redundancy in the
input and performs dimension reduction, thereby facilitat-
ing subsequent processing, fore.g. face recognition.

4 Results

We evaluated our STDP-based learning algorithm on a Cal-
tech face dataset (available at www.vision.caltech.edu),us-
ing three prototype STDP cells. Faces are seen under vari-
ous lighting condition and with very varied backgrounds.

Figure 1 illustrates the learning process (a video
showing all the learning process (presentation by presen-
tation) can be seen at http://cerco.ups-tlse.fr/∼masqueli/).
Starting from random preferred stimuli, cells detect statis-
tical regularities among the input spike trains after about
one hundred discharges, and progressively develop selec-
tivity to those patterns. A few hundred more discharges
are needed to reach a stable state. Furthermore, the popu-
lation of cells self-organizes: the blue cell learns the eyes
and forehead, the green cell learns the nose and right eye,
while the blue cell learns a coarse view of a whole face.

The background is generally not learned (at least not
in priority), since backgrounds are almost always too dif-
ferent from one image to another for the STDP process to
converge. Furthermore as STDP performs vector quantiza-
tion from multiple examples as opposed to ‘one shot learn-
ing’, it will not learn the noise, nor anything too specific
to a given example, with the result that it will tend to learn
archetypical features.

Another key point is the natural trend of the algorithm
to learn salient regions, simply because they correspond
to the earliest spikes, with the result that neurons whose
receptive fields cover salient regions are likely to reach
their threshold (and trigger the STDP rule) before neurons
‘looking’ at other regions. This contrasts with more classi-
cal competitive learning approaches, where input normal-
ization helps different input patterns to be equally effec-
tive in the learning process[13]. Note that ‘salient’ means
within our network ‘with well defined contrasted edges’,
but saliency is a more generic concept of local differences,
for e.g. in intensity, color, orientations as in Ittiet al.’s
model[11]. We could use other types of cells in the first
layer to detect other types of saliency, and provided we
apply the same intensity-latency conversion, STDP would
still focus on the most salient regions. Saliency is known to
drive attention (see [18] for a review). Our model predicts
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Figure 1. Preferred stimulus reconstructions after 0, 50, 150, and 500 presentations. At the top of each frame the input image is
shown, with red, green or blue squares indicating the receptive fields of the cells that fired (if any). At the bottom of the screen
we reconstructed the preferred stimuli of the three cells. Above each reconstruction the number of postsynaptic spikesemitted
is shown with the corresponding color. See also the video available at http://cerco.ups-tlse.fr/∼masqueli/

that it also drives the learning.

5 Conclusions

We do not claim that our model is realistic: the real ven-
tral stream involves many more layers, and complexity in-
creases more slowly than suggested here. But we think it
captures two key mechanisms used by the visual system for
rapid object recognition. The first one is the importance of
the first spikes to rapidly encode the most important infor-
mation about a visual stimulus. Given the number of stages
involved in high level recognition and the short latencies
of selective responses recorded in monkeys’ IT[10], the
time window available for each neuron to perform its com-
putation is probably around 10-20 ms[17] and will rarely
contain more than one or two spikes. The only thing that
probably matters for a neuron is whether or not a presy-
naptic spike is early enough to fall in the critical time win-
dow. Later spikes are probably not needed for ultra-rapid
categorization. Thus we propose that most of the infor-
mation must be encoded in the split between the earliest
spikes and the others. Clearly such mechanism requires
precise stimulus-locked spike times. Recent recordings in
monkeys show that IT neurons’ responses in terms of spike
count close to stimulus onset (100-150 ms time bin) seem
to be too reliable to be fit by a typical Poisson firing rate
model[2]. There is also experimental evidence for precise
spike time responses in V1, and in many other neuronal
systems (see[20] for a review).

Very interestingly STDP provides an efficient way to
develop selectivity to first spike patterns, as shown in this
work. It could explain how a neuron learns to decode the
first information available at its afferents’ level, to produce
fast and selective responses. We believe that STDP is ex-
tensively used in the visual system, and constitutes the sec-
ond key mechanism captured by our model.
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1. Introduction – Temporal constraints imposed by both psychophysical and electrophysiological data pose a major challenge to models of face recognition in cortex. Here we 
explored the capacity of two simple mechanisms. First, when stimulated with a flashed visual stimulus, the neurons in the first layer of the system fire asynchronously, with the most 
strongly activated neurons firing first. Second, neurons in the second layer implement Spike-Time Dependent Plasticity (STDP).

Face feature learning with Spike Timing Dependent 
Plasticity

Timothée Masquelier & Simon J. Thorpe
Centre de Recherche Cerveau et Cognition (CerCo), Toulouse France

SpikeNet Technology SARL, Labège, France

3. Experimental set-up – we used a Caltech face 
dataset (available at www.vision.caltech.edu). Faces are 
seen under various lighting conditions and with very varied 
backgrounds. Images are presented sequentially and the 
resulting spike waves are propagated until the STDP layer, 
where we put 3 prototype neurons. Theses prototype 
neurons have restricted receptive fields, and are duplicated 
in retinotopic maps (weight sharing).

We process various scaled versions of the input image (with 
the same filter size). This results in cells with various 
receptive field sizes.

Winner-Take-All mechanisms
ensures that:

For each prototype only one duplicated version fires (and 
trigger the STDP rule). The change in weights is then 
duplicated at all positions and scales. This allows the system 
to learn patterns despite of changes in position and size in 
the training examples.

At most one cell fires in a given region and scale. This 
competition prevents all the cells from learning the same 
pattern.

2. Model – we used a simple 2-layer convolutional
feedforward network.

V1 layer
Oriented edge detectors organized in retinotopic maps

Intensity-latency conversion. In accordance with experimental 
data[1-3]. Has been shown to efficiently encode image 
information[8].

1 Winner-Take-All (only the best matching orientation is 
propagated)

STDP layer
Spike Timing Dependent Plasticity STDP is a learning rule 

observed experimentally:

Long Term Potentiation (LTP) when a presynaptic spike 
precedes a postsynaptic one

Long Term Depression (LTD) when presynaptic spike follows 
a postsynaptic one

STDP is In agreement with Hebb’s postulate postulate: 
presynaptic neurons that fired slightly before the postsynaptic 
neuron are those which ‘took part in firing it’.

When applied on repetitive similar inputs STDP is known to 
have the effect of concentrating high synaptic weights on 
afferents that systematically fire early[5,7].

4. Results – starting from random preferred stimuli, cells detect statistical regularities among the input spike trains after about one hundred discharges, and progressively 
develop selectivity to those patterns (see figure below). A few hundred more discharges are needed to reach a stable state, with synapses either maximally potentiated or 
maximally depressed.

During the learning process:

synapses compete for control of the timing of postsynaptic spikes, and the winning synapses are those through which the earliest spikes arrive (on average)[5,7]

the postsynaptic spike latency decreases[4,5,7]

the algorithm naturally favors salient regions, simply because they correspond to the earliest spikes, with the result that neurons whose receptive fields cover salient regions are 
likely to reach their threshold (and trigger the STDP rule) before neurons ‘looking’ at other regions.

thanks to the competition the cell population self-organizes each neuron learning a distinct pattern, so as to cover the whole variability of the inputs.

5. Conclusion – by quickly detecting statistical regularities among the spike 
trains and creating one unit for each distinct pattern (vector quantization), STDP 
removes redundancy in the input and performs dimension reduction. It thereby 
facilitates subsequent processing, for e.g. face recognition. The mechanism is 
robust enough to deal with natural images and yet leads to highly selective face 
feature detectors.

Interestingly STDP naturally leads to an ‘early spike versus later spike’ neural code, 
which has the advantage of rapidly transmitting information: each neuron produces 
a reliable response when only a few percent of its afferent have fired. The use of 
such a mechanism at each stage of the ventral stream could explain the fast and 
selective responses observed in IT[6].

0 presentations 50 presentations 100 presentations 150 presentations 500 presentations

Preferred stimulus reconstructions after 0, 50, 150, and 500 presentations. At the top of each frame the input image is shown, with red, green or blue squares indicating the 
receptive fields of the cells that fired (if any). At the bottom of the screen we reconstructed the preferred stimuli of the three cells. Above each reconstruction the number of 
postsynaptic spikes emitted is shown with the corresponding color. See also the video available at http://cerco.ups-tlse.fr/~masqueli/

References
[1] D. G. Albrecht,W. S. Geisler, R. A. Frazor, and A.M. Crane. J Neurophysiol, 2002.

[2] S. Celebrini, S.J. Thorpe, Y. Trotter, and M. Imbert. Vis Neurosci, 1993.

[3] T.J. Gawne, T.W. Kjaer, and B.J. Richmond. J Neurophysiol, 1996.

[4] W. Gerstner and W.M. Kistler. Cambridge University Press, 2002.

[5] R. Guyonneau, R. VanRullen, and S.J. Thorpe. Neural Comput, 2005.

[6] C.P. Hung, G. Kreiman, T. Poggio, and J.J. DiCarlo. Science, 2005.

[7] S. Song, K.D. Miller, and L.F. Abbott. Nat Neurosci, 2000.

[8] R. VanRullen and S.J. Thorpe. Neural Comput, 2001.

V1 layer STDP layer

synapse

Time

A
ct

iv
at

io
n

Threshold

SpikeSpike

tj– ti

dWij / Wij / (1-Wij)

a+

a–

j

i

tj

ti

Wij

...
...

+
-

+
-

+
-

...
... ΙΙΙΙ

Synapses kWTA
circuit



B.3. LEARNING SIMPLE AND COMPLEX CELLS-LIKE RECEPTIVE FIELDS FROM NATURAL IMAGES: A PLAUSIBILITY PROOF157

B.3 Learning simple and complex cells-like re-
ceptive fields from natural images: A plau-
sibility proof

B.3.1 Abstract

Masquelier, T., Serre, T., Thorpe, S., & Poggio, T. (2007). Learning sim-
ple and complex cells-like receptive fields from natural images: a plausibility
proof [Abstract]. Journal of Vision, 7(9):81, 81a, http://journalofvision.
org/7/9/81/, doi:10.1167/7.9.81.

The ventral stream of the primate’s visual system, involved in object recog-
nition, is mostly hierarchically organised. Along the hierarchy (from V1, to
V2, V4, and IT) the complexity of the preferred stimulus of the neurons in-
creases, while, at the same time, responses are more and more invariant to
shift, scale, and finally viewpoint. Several feedforward networks have been
proposed to model this hierarchy by alternating simple cells, which increase
selectivity, with complex cells, which increase invariance (Fukushima, 1980;
LeCun and Bengio, 1998; Riesenhuber and Poggio, 1999; Serre et al., 2005a).
The issue of learning is perhaps the least well understood, and many authors
use hard-wired connectivity and/or weight-sharing. Several algorithms have
been proposed for complex cell learning based on a trace rule to exploit the
temporal continuity of the world (for e.g . (Földiák, 1991; Wallis and Rolls,
1997; Wiskott and Sejnowski, 2002; Einhäuser et al., 2002; Spratling, 2005),
but very few can learn from natural cluttered image sequences. Here we pro-
pose a new variant of the trace rule that only reinforces the synapses between
the most active cells, and therefore can handle cluttered environments. The
algorithm has so far been developed and tested through the level of V1-like
simple and complex cells: we showed how Gabor-like simple cell selectivity
could emerge from competitive hebbian learning, and how the modified trace
rule allow the subsequent complex cells to pool over simple cells with the
same preferred orientation, but with shifted receptive fields. Development of
the V2, V4, and IT layers is ongoing.

B.3.2 Poster
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1. Introduction – The ventral stream of the primate’s visual system, involved in object recognition, is mostly hierarchically 
organized. Along the hierarchy (from V1, to V2, V4, and IT) the complexity of the preferred stimulus of the neurons increases, while, at 
the same time, responses are more and more invariant to shift, scale, and finally viewpoint. Several feedforward networks have been 
proposed to model this hierarchy by alternating simple cells, which increase selectivity, with complex cells, which increase invariance 
(Fukushima 1980; Le Cun & Bengio 1998; Riesenhuber & Poggio 1999; Serre et al 2007; Masquelier & Thorpe 2007). The issue of 
learning is perhaps the least well understood, and many authors use hard-wired connectivity and/or weight-sharing. Several 
algorithms have been proposed for complex cell learning based on a trace rule to exploit the temporal continuity of the world (for e.g., 
Foldiak 1991; Wallis & Rolls, 1997; Wiskott & Sejnowski, 2002; Einhaüser et al 2002; Spratling 2005), but very few can learn from 
natural cluttered image sequences.

Here we propose a new variant of the trace rule that, thanks to Winner-Take-All (WTA) competitive mechanisms, only reinforces the 
synapses between the most active cells, and therefore can handle cluttered environments. We test it on simple cells that learnt their 
selectivity through a competitive hebbian learning mechanism.

Learning simple and complex cells-like receptive fields from natural images: a plausibility proof
Timothée Masquelier, Thomas Serre, Simon J Thorpe and Tomaso Poggio

Centre de Recherche Cerveau et Cognition (CerCo), Toulouse France
Dept. of Brain and Cognitive Sciences and McGovern Institute for Brain Research, MIT, Cambridge, MA

2. Stimuli: the world from a cat’s perspective
� Same as in Betsch et al 2004

� CCD cameras attached to cats’ heads

� Animals explore several outdoor environments

� Approximate the input which the visual system is naturally exposed to 
(although eye movements are not taken into account)

� Visual angle: 71 by 53° 

� Resolution: 320x240

� A total of 19h of video

3. V1 Model 4. Retinal ON-OFF cell layer: DoG convolution
� Convolution with 7x7 Difference-of-Gaussian kernel:

� Mimics biological retinal ganglion cells

5. Simple cell layer: competitive hebbian learning
� 16 simple (S) cells in each of the 4x4 cortical columns, starting with random synaptic weights

� Each S cell first computes a normalized dot product between

its input x (a 7x7 patch of ON-OFF values) and its synaptic weight vector w

� This value is then normalized using a trace (smooth temporal average)

of the last dot product values

� In each cortical column a 1-Winner-Take-All mechanism applies

� The winner will trigger a hebbian rule

iff its activity y is above its threshold T:

� Its threshold is then set to its activity y

� At each time step all the thresholds decrease by 3e-3%

6. Complex cell layer: pool together consecutive 
S winners
� 4 complex (C) cells receive inputs from the 4x4x16 S cells, 
through synapses with weights w (0�w�1), initially random

� Each C cell computes the maximum value of its weighted inputs:

� WTA mechanisms select the C winner at time step t-

�

t, J(t-

�

t),
and the S winner at time t, I(t). The synapse between them is 
reinforced. All the other synapses of J(t-

�

t) are depressed:

� Synaptic weights for non-winning C cells are unchanged

7. Results: orientation selectivity, pools with same preferred orientation
� Simple cells learn spatial correlations within a frame. Gabor-like orientation selectivity emerges.

� Complex cells learn temporal correlations between frames. After convergence weights are binaries 
(i.e. presence or absence of connection). Here we represent the pools of simple cells each complex 
cell has formed connection with: 

Each C cell pooled together S cells with the same preferred orientation, but at different locations. By 
taking the maximum value among the pool C cells have a shift-invariant response.

8. Discussion

� Idea: two consecutive S winners are likely to represent the same orientation, so pool them 
together. This solves the correspondence problem when multiple objects are present even if 
a given edge activates two simple cells (unlike Spratling 2005)

� Makes this model the only one to our knowledge that handle natural cluttered images, with 
the one by Einhäuser et al 2002. However:

� We end up with binary S-C synaptic weights

� We learn about 20 times faster

� Our model is simpler (no preprocessing, no lateral inhibition)

� We have more realistic RF sizes, in particular the RF of our complex cells are about twice as big as the 
ones of simple cells, leading to a larger shift-invariance

� Biologically plausible. Future work will implement the model on integrate-and-fire neurons

� Development for higher order neurons is ongoing
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ented edges (here we symbolically represented an eye detector
and a mouth detector). There is one S1–C1–S2 pathway for
each processing scale (not represented on the figure). Then C2

cells take the maximum response of S2 cells over all positions
and scales and are thus shift and scale invariant. Finally, a
classification is done based on the C2 cells’ responses (here we
symbolically represented a face / non face classifier). In the
brain equivalents of S1 cells may be in V1, of S2 cells in V1-V2,
S2 cells in V4-PIT, C2 cells in AIT and the final classifier in
PFC. This chapter focuses on the learning of C1 to S2 synaptic
connections through STDP. . . . . . . . . . . . . . . . . . . . 33

2.2 Sample pictures from the Caltech datasets. The top row shows
examples of faces (all unsegmented), the middle row shows
examples of motorbikes (some are segmented, others are not),
and the bottom row shows examples of distractors. . . . . . . 36

2.3 Evolution of reconstructions for face features. Above is the
number of postsynaptic spikes emitted. Starting from random
preferred stimuli, cells detect statistical regularities among the
input visual spike trains after a few hundred discharges, and
progressively develop selectivity to those patterns. A few hun-
dred more discharges are needed to reach a stable state. Fur-
thermore, the population of cells self-organizes, with each cell
effectively trying to learn a distinct pattern so as to cover the
whole variability of the inputs. . . . . . . . . . . . . . . . . . . 38

2.4 Evolution of reconstructions for motorbike features. . . . . . . 39
2.5 Final reconstructions for the twenty features in the mixed case.

The twenty cells self-organized, some having developed selec-
tivity to face features, and some to motorbike features. . . . . 41

2.6 Hebbian learning. (Top) Final reconstructions for the ten face
features. (Bottom) Idem for the ten motorbike features. . . . . 44
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2.7 hebbian learning. Final reconstructions for the twenty features
in the mixed case. As with STDP-based learning, the twenty
cells self-organized, some having developed selectivity to face
features, and some to motorbike features. . . . . . . . . . . . . 44

3.1 Spatio-temporal spike pattern. Here we show in red a repeat-
ing 50 ms long pattern that concerns 50 afferents among 100.
The bottom panel plots the population spike counts (in spikes)
using 10 ms time bins (we chose 10 ms because it is the mem-
brane time constant of the neuron used later in the simula-
tions), and demonstrates that nothing in terms of spike count
characterizes the periods when the pattern is present. The
right panel plots the individual spike counts over the whole pe-
riod. Neurons involved in the pattern are shown in red. Again,
nothing characterizes them in terms of spike count. Detecting
the pattern thus requires taking the spike times into account. . 58

3.2 Overview of the 450 s simulation. Here we plotted the mem-
brane potential as a function of simulation time, at the be-
ginning, middle, and end of the simulation. Grey rectangles
indicate pattern presentations. (a) At the beginning of the
simulation the neuron is non-selective because the synaptic
weights are all equal. It thus fires periodically, both inside and
outside the pattern. (b) At t=13.5 s, after about 70 pattern
presentations and 700 discharges, selectivity to the pattern
is emerging: gradually the neuron almost stops discharging
outside the pattern (no false alarms), while it does discharge
most of the time the pattern is present (high hit rate), here
even twice (c) End of the simulation. The system has con-
verged (by saturation). Postsynaptic spike latency is about
4 ms. Hit rate is 99.1% with no false alarms (estimated on the
last 150 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Latency reduction. Here we plotted the postsynaptic latency
as a function of the number of discharges (by convention the
latency is 0 when the neuron discharged outside the pattern,
i.e. when it generated a false alarm). We clearly distinguish 3
periods: the beginning, when the neuron is non-selective; the
middle, when selectivity has emerged and STDP is ‘tracking
back’ through the pattern; and the end, when the system has
converged towards a fast and reliable pattern detector. . . . . 63
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3.4 Converged state (a) we represented the spike trains of the
2,000 afferents. We have reordered the afferents with respect
to Fig. 3.1 so that afferents 1-1000 are involved in the pattern,
and afferents 1001-2000 are not and we use a color code ranging
from black for spikes that correspond to completely depressed
synapses (weight=0) to white for spikes that correspond to
maximally potentiated synapses (weight=1). This allows the
visualization of the spikes which generate a significant EPSP
and those which do not. The pattern is represented with a
grey line rectangle. Notice the cluster of white spikes at the
beginning of it: STDP has potentiated most of the synapses
that correspond to the earliest spikes of the pattern. Note
that virtually all the synaptic connections with afferents not
involved in the pattern have been completely depressed. (b)
The membrane potential is plotted as a function of time, over
the same range as above. We clearly see the sudden increase
that corresponds to the above-mentioned cluster. . . . . . . . 65

3.5 Resistance to degradations (100 trials). (a) Percentage of suc-
cessful trials as a function of the pattern frequency (pattern
duration / the total duration, given a fixed pattern length
of 50 ms). The pattern needs to be consistently present, at
least at the beginning, for the STDP to start the learning
process. (b) Percentage of successful trials as a function of
jitter. For jitter greater than 3 ms (this should be compared
to the 10 ms membrane time constant) spike coincidences are
lost and learning is impaired (c) Percentage of successful tri-
als as a function of the proportion of afferents involved in the
pattern. Performance is good if this proportion is above 1/3
(d) Percentage of successful trials as a function of the initial
weights. With a high value the neuron can handle more dis-
charges outside the pattern. (e) Percentage of successful trials
as a function of the proportion of spikes deleted. With a 10%
deletion the pattern was correctly learnt in 82% of the cases. 68

4.1 Saccadic forced-choice protocol. We checked that the par-
ticipant did fixate the cross for a pseudo random period in
[800 ms,1600 ms]. We then removed the cross and presented
the two stimuli for 80 ms. The images were followed by two
fixation crosses indicating the saccade landing positions. . . . 81

4.2 Sample pictures from the database. . . . . . . . . . . . . . . . 83
4.3 The three target pictures A, B and C. . . . . . . . . . . . . . . 84
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4.4 Histograms of reaction times, for both correct and incorrect
trials, for all the participants and all the blocks. Note that
responses under ∼200 ms are at chance level. . . . . . . . . . . 85

4.5 Speed-accuracy curves for one typical participant, for each of
the four phases of 75 trials, in the four conditions 1R, 1S, 2R
and 2S. It can be seen that, despite some variability, the curves
tend to climb faster and higher for later phases, which is the
signature of a learning effect. . . . . . . . . . . . . . . . . . . . 86

4.6 Reference times for the four phases and the four conditions,
averaged over all participants. . . . . . . . . . . . . . . . . . . 87

4.7 Schematic view of the impact of intra-class variability and dis-
tance between targets and distractors on the classification task
difficulty (modified from (Macé, 2006)). Our results, in line
with previous experiments (Macé, 2006), suggest that the sec-
ond factor is more important than the first one in ultra-rapid
visual categorization. . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 The Hubel & Wiesel hierarchical model for building complex
cells from simple cells. Reproduced from (Hubel and Wiesel,
1959). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Overview of the specific implementation of the Hubel & Wiesel
V1 model used. LGN-like ON- and OFF-center units are mod-
eled by Difference-of-Gaussian (DoG) filters. Simple units (de-
noted S1) sample their inputs from a 7× 7 grid of LGN-type
afferent units. Simple S1 units are organized in cortical hy-
percolumns (4× 4 grid, 3 pixels apart, 16 S1 units per hyper-
column). At the next stage, 4 complex units C1 cells receive
inputs from these 4× 4× 16 S1 cells. This chapter focuses on
the learning of the S1 to C1 connectivity. . . . . . . . . . . . . 105

5.3 Reconstructed S1 preferred stimuli for each one of the 4 × 4
cortical hypercolumns (on this figure the position of the recon-
structions within a cortical column is arbitrary). Most units
show a Gabor-like selectivity similar to what has been previ-
ously reported in the literature (see text). . . . . . . . . . . . 109

5.4 Pools of S1 units connected to each C1 unit. For e.g . C1 unit
# 1 became selective for horizontal bars: After learning only
73 S1 units (out of 256) remain connected to the C1 unit,
and they are all tuned to an horizontal bar, but at different
positions (corresponding to different cortical columns; on this
figure the positions of the reconstructions correspond to their
positions in Fig. 5.3). . . . . . . . . . . . . . . . . . . . . . . . 111
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5.5 The 38 S1 cells that were not connected to any C1. . . . . . . 112
5.6 Videos: the world from a cat’s pespective (Betsch et al., 2004). 114
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Learning mechanisms to account for the speed,

selectivity and invariance of responses in the

visual cortex

In this thesis I propose various activity-driven synaptic plasticity mecha-
nisms that could account for the speed, selectivity and invariance of the neu-
ronal responses in the visual cortex. Their biological plausibility is discussed.
I also present the results of a relevant psychophysical experiment demonstrat-
ing that familiarity can accelerate visual processing. Beyond these results on
the visual system, the studies presented here also credit the hypothesis that
the brain uses the spike times to encode, decode, and process information – a
theory referred to as ‘temporal coding’. In such a framework the Spike Tim-
ing Dependent Plasticity may play a key role, by detecting repeating spike
patterns and by generating faster and faster responses to those patterns.



Auteur Timothée Masquelier

Titre Mécanismes d’apprentissage pour expliquer
la vitesse, la sélectivité et l’invariance des ré-
ponses dans le cortex visuel

Directeur de thèse Simon J Thorpe

Lieu et date de sou-
tenance

Le 15 février 2008 à l’Université Paul Saba-
tier Toulouse III

Résumé
Dans cette thèse je propose plusieurs mécanismes de plasticité synaptique
qui pourraient expliquer la rapidité, la sélectivité et l’invariance des ré-
ponses neuronales dans le cortex visuel. Leur plausibilité biologique est
discutée. J’expose également les résultats d’une expérience de psycho-
physique pertinente, qui montrent que la familiarité peut accélérer les
traitements visuels. Au delà de ces résultats propres au système visuel,
les travaux présentés ici créditent l’hypothèse de l’utilisation des dates
de spikes pour encoder, décoder, et traiter l’information dans le cerveau
– c’est la théorie dite du ‘codage temporel’. Dans un tel cadre, la Spike
Timing Dependent Plasticity pourrait jouer un rôle clef, en détectant
des patterns de spikes répétitifs et en permettant d’y répondre de plus
en plus rapidement.
Mots-cles
vision, reconnaissance d’objets, catégorisation visuelle ultra-rapide, ap-
prentissage, codage temporel, neurones impulsionnels, Spike Timing De-
pendent Plasticity (STDP)
Discipline administrative
Neurosciences Cognitives
Laboratoire
Centre de Recherche Cerveau et Cognition UMR 5549 (CNRS-Université
Paul Sabatier Toulouse III), Faculté de Médecine de Rangueil 31062 Tou-
louse CEDEX9


	Abstract
	Résumé
	Acknowledgments
	Contents
	Introduction
	Learning is the key
	Object recognition in the primate's visual cortex
	Selectivity & invariance in the ventral stream
	Speed

	Learning and plasticity in the visual cortex
	Theoretical neuroscience
	Rate coding, temporal coding and population coding
	Randomness, noise, and unknown sources of variability
	Neuronal models

	Evidence for temporal coding in the brain
	Models of object recognition in cortex
	Feedforward and feedback
	Static, single spike wave and mean field approximations
	Weight-sharing

	Spike Timing Dependent Plasticity (STDP)
	Experimental evidence
	Previous modeling work

	Original contributions
	STDP-based visual feature learning
	STDP-based spike pattern learning
	Visual learning experiment
	Invariance learning


	STDP-based visual feature learning
	Résumé
	Abstract
	Introduction
	Model
	Hierarchical architecture
	Temporal coding
	STDP-based learning

	Results
	Single-class
	Multi-class
	Hebbian learning

	Discussion
	On learning visual features
	A bottom-up approach
	Four simplifications
	`Early vs. later spike' coding and STDP: two keys to understand fast visual processing

	Technical details
	S1 cells
	C1 cells
	S2 cells
	C2 cells
	STDP Model
	Classification setup
	Hebbian learning
	Differences from the model of Serre, Wolf and Poggio


	STDP-based spike pattern learning
	Résumé
	Abstract
	Introduction
	The computational problem: spike pattern detection
	Background: STDP and discrete spike volleys
	Experimental set-up: STDP in continuous regime

	Results
	A first example
	Batches

	Discussion
	STDP in continuous regime
	Spike pattern detection
	Argument for temporal coding
	A generic mechanism
	Extension: competitive scheme

	Technical details
	Poisson spike trains
	Leaky Integrate and Fire (LIF) neuron
	Spike Timing Dependent Plasticity


	Visual learning experiment
	Résumé
	Abstract
	Introduction
	Methods
	Participants
	The saccadic forced-choice
	Design
	Stimuli
	Saccade detection

	Results
	Discussion
	A robust experience-induced speed-up
	Type of stimuli and shift-invariance
	Target-distractor distance has more impact than intra-class variability
	The gap shifts the speed-accuracy trade-off

	Conclusion

	Invariance learning: a plausibility proof
	Résumé
	Abstract
	Introduction
	HMAX Model
	The Simple S units
	The Complex C units
	Neural implementations of the two key operations

	On learning correlations
	Simple cells learn spatial correlations
	Complex cells learn temporal correlations

	Results
	Simple cells
	Complex cells

	Discussion
	Technical details
	Stimuli: the world from a cat's perspective
	LGN ON- and OFF-center unit layer
	S1 layer: competitive hebbian learning
	C1 Layer: pool together consecutive winners
	Main differences with Einhäuser et al@let@token . 2002


	Conclusions
	Résumé
	On selectivity, invariance and speed in the visual system
	On learning rates
	On temporal coding in general
	Perspective: top-down effects and feedback
	On the roles of models
	Applications

	Papers (Peer-reviewed international journals)
	Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity
	Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains

	Conference abstracts & posters
	Ultra-rapid visual form analysis using feedforward processing
	Face feature learning with Spike Timing Dependent Plasticity
	Paper
	Poster

	Learning simple and complex cells-like receptive fields from natural images: A plausibility proof
	Abstract
	Poster


	List of tables
	List of figures
	Bibliography

