
HAL Id: tel-00271128
https://theses.hal.science/tel-00271128

Submitted on 8 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Environnement de Programmation Multi Niveau pour
Architectures Hétérogènes MPSoC

K. Popovici

To cite this version:
K. Popovici. Environnement de Programmation Multi Niveau pour Architectures Hétérogènes MP-
SoC. Micro et nanotechnologies/Microélectronique. Institut National Polytechnique de Grenoble -
INPG, 2008. Français. �NNT : �. �tel-00271128�

https://theses.hal.science/tel-00271128
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

 N° attribué par la bibliothèque
 |__|__|__|__|__|__|__|__|__|__|

T H E S E

pour obtenir le grade de

DOCTEUR DE L’INP Grenoble

Spécialité : « Micro et nano électronique»

préparée au laboratoire TIMA

dans le cadre de l’Ecole Doctorale « Electronique, Electrotechnique,

Automatique et Traitement du Signal »

présentée et soutenue publiquement

par

Katalin Maria POPOVICI

le 25 Mars 2008

Environnement de Programmation Multi Niveau pour

Architectures Hétérogènes MPSoC

DIRECTEUR DE THESE : Dr. Ahmed Amine JERRAYA

M. Guy Mazaré , Président
M. Fabrice Kordon , Rapporteur
M. Dominique Lavenier , Rapporteur
M. Ahmed Amine Jerraya , Directeur de thèse
M. Tanguy Risset , Examinateur
M. Frédéric Rousseau , Examinateur

A ma famille

Remerciements

Je voudrais remercier profondément à mon directeur de thèse, M. Ahmed Jerraya de

m’avoir donné l’opportunité de faire une thèse dans le groupe SLS, son soutien et la liberté

qu’il m’a laissé dans mon travail. Qu’il trouve toute l’expression de ma sincère

reconnaissance.

Je remercie à M. Guy Mazaré d’avoir présidé mon jury de thèse, et aussi pour ces

appréciations. Je tiens à remercier à M. Fabrice Kordon et M. Dominique Lavenier d’avoir

accepté rapporter sur mon travail de thèse et pour leur remarques qui ont beaucoup contribuée

pour améliorer cette thèse. Je remercie à M. Tanguy Risset pour sa participation à mon jury

de thèse et pour ses commentaires pertinents et à M. Frédéric Rousseau pour son soutien et

surtout pour ses conseils tout au long de mon séjour ici.

Je tiens à remercier à l’ancien directeur du laboratoire, M. Bernard Courtois et à la

nouvelle directrice Mme Dominique Borrione, pour leur accueil au laboratoire TIMA.

Je remercie particulièrement à Lorena et Nacer de m’avoir encadré pendant mes stages

Socrates au TIMA et de m’avoir accordé beaucoup de leur temps, pour tous les conseils, les

discussions fructueuses et les efforts fournis.

Je remercie à tous mes collègues de l’équipe SLS pour leur collaboration et pour leur

sympathie. Je tiens à remercier en particulier à Hao, Youssef, Youngchul et Alexandre

(Chagoya), mes collègues de bureau, pour les très bons moments qu’on a vécu ensemble dans

le bureau 417. Je tiens à remercier à tous qui m’ont aidé à commencer cette thèse : Iuliana,

Cosmin, Gabriela N., Wassim, Sang-Il, Marcio, Arnaud, Ivan, Lorenzo, Frédéric H.,

Wander et pour leur gentillesse lorsque je suis arrivée dans le groupe SLS. J’exprime mon

gratitude à tous mes amis du groupe SLS (en manque d’espace je vais citer en ordre

alphabétique, mais je porte chacun d’entre eux un sentiment d’amitié personnel) : Abdel,

Aimen, Alex (Chureau), Amin, Benaoumeur, Lilia, Lobna, Patrice, Pierre, Quentin,

Xavier ; et à tous ceux qui m’ont donné des conseils précieux et qui m’ont montré leur

soutien : Sonja, Frédéric P., Paul. Un grand merci a tous les membres du laboratoire TIMA

que je n’ai pas cité mais que je n’oublie pas.

Un grand merci à mes amis roumains : Claudia, Marius (Gligor), Luiza. Je leur

souhaite bonne chance et bonne continuation. J’adresse mes remerciements à mes amis

brésiliennes : Lisane Brisolara et Edson Moreno. Bon courage pour la suite. Je remercie

également à mes amis de Grenoble : Manu, Kamel, Nadir.

Une pensée toute particulière pour mon fiancé Marius. Je tiens à lui exprimer tout mon

amour et ma gratitude pour son soutien, pour le support qu’il m’a montré dans les moments

difficiles et pour avoir partagé les moments heureux. Je tiens aussi à lui remercier pour

l’exemple qu’il m’a donné dans sa persévérance au travail, pour sa patience et sa tendresse. Je

lui souhaite une carrière brillante, et que tous ses rêves se matérialisent.

 Je finis par remercier à mes parents pour leur amour, leur constant soutient intellectuel

et affectif, pour leur encouragements et leur confiance. Je vous aime. Je remercie également à

mon frère, Zoli et ma belle sœur Tunde pour leur amitié et soutien, ainsi que le cadeau le plus

important qu’ils m’ont offert : ma très belle nièce Boglarka. Je vous aime tous.

Table de Matières

1. Contexte ... 9

2. Motivations... 11

3. Objectifs ... 13

4. État de l'art.. 14

5. Contribution ... 16

5.1. Conception de l’Architecture Système.. 18

5.2. Conception de l’Architecture Virtuelle .. 20

5.3. Conception de l’Architecture Transactionnelle .. 20

5.4. Conception du Prototype Virtuel.. 21

 9

1. Contexte

Les progrès technologiques constants en termes d'intégration sur silicium ont permis

de concevoir des systèmes sur puces de plus en plus complexes. Cette thèse s'inscrit dans le

domaine de la conception de systèmes embarqués multiprocesseurs monopuces, plus

communément appelés MPSoC.

La complexité croissante des MPSoC est accentuée par l’émergence de nouvelles

applications télécoms (WCDMA, CDMA 2000) et multimédia ((MPEG 2/4, H.263/4, MP3)

ou encore d’applications de jeux vidéo avec des contraintes fonctionnelles (puissance de

calcul, consommation, embarquabilité, reconfigurabilité) et non fonctionnelles (temps de mise

sur le marché, rétrécissement de la durée de vie du produit, coût) de plus en plus sévères. Pour

répondre à ces exigences et maîtriser cette complexité, les architectures MPSoC hétérogènes

sont essentielles afin d'atteindre les performances de calcul et de communication requises

[Mey 06].

Un système MPSoC hétérogène comprend différents types d'unités de calcul

spécifiques programmables et/ou non programmables (DSP, microcontrôleur, ASIP, FPGA,

ASIC, etc.) et différents réseaux de communication (liens rapides, non standard pour

l'organisation et l'accès mémoire, bus hiérarchiques sur puce, réseau sur puce). Ce type de

plateformes hétérogènes offre à la fois un parallélisme de calcul et une programmabilité très

souple.

Les plateformes hétérogènes typiques utilisées dans l'industrie sont le TI OMAP [TI],

le ST Nomadik [Nom], le Philips Nexperia [Nex] et le Diopsis D940 [Dio]. Ils intègrent un

processeur DSP et un microcontrôleur. De plus, la communication se fait via une

infrastructure efficace mais très sophistiquée. Les architectures hétérogènes de MPSoC

peuvent être représentées comme un ensemble de sous-systèmes logiciels et matériels

interconnectés par un réseau de communication (figure 1) [Cul 98].

Un sous-système logiciel est un sous-système programmable, à savoir un sous-

système contenant une entité programmable par un langage de haut niveau. Celui-ci intègre

différents composants matériels comprenant une unité de calcul (CPU), des composants

locaux spécifiques tels que des mémoires locales, des registres de données et de contrôle, des

accélérateurs de matériel, un contrôleur d'interruptions, un composant DMA pour l’accès

 10

direct aux mémoires, des composants de synchronisation tels que boîtes aux lettres (mailbox)

ou sémaphores, des composants spécifiques d'entrée-sortie, etc. (d'autres périphériques).

Communication Inter-SousSystème

Tache 1

HDS API

Comm OS

HAL API

HAL

Tache 2 Tache q

CPU

Tache 1

HDS API

Comm OS

HAL API

HAL

Tache 2 Tache p

CPU

L
o

g
ic

ie
l

Tache 1

HDS API

Comm OS

HAL API

HAL

Tache 2 Tache n

CPU Périphériques

Comm. Intra-SousSyst.

HW-SSHW-SS
HW-SSHW-SS

Comm. Intra-SousSyst.Comm. Intra-SousSyst.

M
at

ér
ie

l

SW-SS HW-SS
A

p
p

lic
at

io
n

H
d

S

Figure 1. Architecture matérielle – logicielle pour MPSoC

Chaque sous-système logiciel exécute une pile logicielle spécifique. La pile logicielle

est organisée en 2 couches : l'application et le logiciel dépendant du matériel (Hardware

dependent Software ou HdS). La couche applicative est associée au comportement des

fonctions de haut niveau composant les tâches de l'application ciblée. La couche de HdS est

associée au comportement du logiciel de bas niveau dépendant du matériel, tel que routines

d'interruptions, changement de contexte, contrôle d'entrée-sortie spécifique et ordonnancement

des tâches.

En fait, la couche de HdS inclut 3 composants : le système d'exploitation (SE) ou

Operating System (OS), la communication spécifique d'entrée-sortie (COMM) et la couche

d'abstraction du matériel (HAL). Le système d'exploitation permet d’ordonnancer les tâches, de

gérer le matériel, etc. La communication permet d’abstraire la réalisation des ressources de

communication. Le HAL comporte les pilotes d’entrées/sorties et les contrôleurs de bas

niveau permettant d’accéder directement au matériel. Le code correspondant à cette couche

est fortement lié au matériel. Ces différents éléments sont basés sur des primitives ou Interfaces

de Programmation d'Application (Application Programming Interface ou APIs) bien définis,

afin de passer d'une couche de logiciel à l'autre.

Un sous-système matériel représente un composant matériel qui met en œuvre les

fonctionnalités spécifiques à l'application ou un sous-système de mémoires globales accessible

par les unités de calcul.

11

2. Motivations

De part de leur nature, les MPSoC sont capables d’effectuer plusieurs calculs en

parallèle [Lav 06]. Dans la pratique, la programmation de telles architectures consiste

généralement à écrire des codes séparés pour les différents types de processeurs (DSP,

microcontrôleur), sans aucune validation de l’application globale sur la plateforme matérielle.

La validation s’effectue seulement quand tous les binaires logiciels sont produits et peuvent

être exécutés sur la plateforme matérielle.

Les systèmes embarqués incluent plusieurs processeurs qui exécutent des instructions

spécifiques. Par conséquent, la complexité du code logiciel est très grande (environ 100000

lignes de code pour certaines applications) et demande donc un temps de conception très

grand. Le logiciel ne peut plus être développé en langage assembleur. Donc, une approche de

conception à un niveau d’abstraction plus élevé est requise.

Pour ce genre d'architectures MPSoC, les environnements de programmation

classiques ne sont pas adaptés pour les raisons suivantes : (i) la programmation de haut niveau

ne gère pas efficacement les entrées/sorties (I/Os) et les systèmes de communication

spécifiques à l’architecture, tandis que (ii) la programmation de bas niveau avec la gestion

explicite des entrées-sorties et de la communication spécifique est très coûteuse en termes de

temps de développement et d’erreurs. De plus, la conception d’un système à un bas niveau

nécessite un temps de conception trop long vu que le temps d’exécution est au niveau cycle

d’horloge et la communication est au niveau registre.

La prochaine génération de MPSoC semble accentuer cette tendance en architectures

matérielles plus complexes, car plusieurs DSP et microcontrôleurs seront intégrés sur une

seule puce [Tur 05]. Ainsi, la principale difficulté est de savoir comment programmer de

telles architectures de manière efficace, à partir d'un langage de haut niveau. Les différents

types de processeurs exécutent différentes piles logicielles. Une difficulté additionnelle est de

corriger et de valider les couches inférieures de logiciel requises pour le portage du code

d'application de haut niveau sur l'architecture hétérogène ciblée. La validation et la correction

du HdS sont le goulot d'étranglement principal dans la conception des MPSoC [Wol 06] car

chaque sous-système de processeur nécessite un HdS spécifique afin d'être efficace.

Une programmation efficace exige l'utilisation des caractéristiques de l'architecture.

Par exemple, un échange de données entre deux tâches exécutés sur des processeurs différents

peut utiliser des systèmes de communication différents si on passe par une mémoire partagée

 12

globale ou par la mémoire locale d'un de ces processeurs. De plus, des méthodes différentes

de synchronisation (scrutation, interruptions) peuvent être employées pour synchroniser ces

échanges. Chacun de ces systèmes de communication présente des avantages et des

inconvénients en termes de performances (latence, débit), de partage des ressources

(traitement multitâche, entrées-sorties parallèles) et de coût général de communication (taille

de la mémoire, temps d'exécution). Le schéma idéal doit être en mesure de produire un

logiciel efficace à partir d'un environnement haut niveau en utilisant des primitives génériques

de communication, telles que des send/recv fournis par MPI [MPI].

Dans un flot de conception idéal, la génération du logiciel ciblant une architecture

spécifique se compose du partitionnement et de la répartition de l’application sur

l’architecture, de la génération du code final pour l'application et enfin de la génération du

logiciel dépendant du matériel (HdS) (figure 2).

Spécification
de l’application

Partitionnement et répartition

Génération du logiciel:

- Génération de code de l’application
- Génération de code du HdS

MPSoC
Exécution

Code logiciel

de l’application finale

HdS

Figure 2. Flot de conception logiciel

Le HdS est constitué de couches de logiciel bas niveau qui peuvent incorporer un

système d'exploitation (OS), une gestion de communication et une couche d'abstraction de

matériel pour permettre aux fonctions de l'OS d'accéder aux ressources matérielles de la

plateforme. Malheureusement, il n’existe pas de flot générique, capable de transposer

efficacement des applications de haut niveau sur des architectures hétérogènes MPSoC.

Les approches classiques effectuent la validation du logiciel en employant une

plateforme de développement. Comme la montre la figure 3, la plateforme de développement

13

logiciel est un modèle abstrait de l'architecture sous la forme d’une bibliothèque d’exécution

ou de simulation visant à exécuter le logiciel [Vin 01]. La combinaison de la plateforme avec

le code logiciel produit un modèle exécutable qui simule l'exécution du système final

comprenant l'architecture matérielle et logicielle. Ce modèle exécutable permet la simulation

du logiciel et des interactions détaillées entre matériel et logiciel, le débogage du logiciel et

éventuellement l’évaluation de la performance. La plateforme et le logiciel peuvent être

combinés en utilisant différents schémas. Le débogage du logiciel représente l’un des défis

principaux dans la conception d’un MPSoC [Mar 06].

Code logiciel
Plateforme de

développement

Débogage &

validation de

performance

Génération du

modèle exécutable

Plateforme

matérielle

Abstraction

du matériel
Modèle

exécutable

Figure 3. Plateforme de développement logiciel

3. Objectifs

L’objectif de cette thèse est de définir un flot de conception et de validation du logiciel,

systématique, basé sur des plateformes de développement logiciel, capable d’employer

efficacement les ressources de l'architecture matérielle visée. L’entrée du flot est un haut

niveau d’abstraction qui permet la conception des applications sur les plateformes MPSoC

hétérogènes existantes. L’objectif d’un tel flot est l’utilisation efficace des ressources de

l'architecture et la génération d’un code exécutable pour les applications multimédia.

L’architecture et l’application sont décrites dans un modèle unique en Simulink. La

répartition du logiciel sur les différents processeurs et les mécanismes de communication sont

 14

explicites dans ce modèle de haut niveau. Les piles logicielles exécutables sont générées pour

chaque unité de calcul à partir de la description initiale en Simulink. Chaque pile logicielle est

structurée en couches pour permettre la flexibilité en matière de réutilisation de composants

logiciels (OS, protocole de communication) et de portabilité sur d'autres plateformes (HAL).

Ces différents composants logiciels, ainsi qu’une architecture matérielle permettant de valider

ces composants, sont générés de façon systématique. Les composants logiciels correspondent

à quatre niveaux d'abstraction différents de l’architecture matérielle/logicielle : niveau

système (system architecture), niveau architecture virtuelle (virtual architecture), niveau

architecture transactionnelle (transaction accurate architecture) et niveau prototype virtuel

(virtual prototype). Pour permettre la validation du logiciel, différentes plateformes de

développement sont également générées à chaque niveau d'abstraction.

Ansi, ce flot est basé sur quatre niveaux d’abstraction matériel/logiciel qui permettent

une génération incrémentale du code logiciel ainsi qu’une validation de la pile logicielle à

chaque niveau.

4. État de l'art

Les travaux précédents liés à la génération et la validation du logiciel à partir d’un

environnement de haut niveau peuvent être classés en trois catégories : la conception orientée

logiciel, la conception orientée matériel ou la conception orientée électronique au niveau

système (Electronic System Level ou ESL).

Les approches orientées logiciel se servent d'un modèle logiciel sous forme de

bibliothèques d'exécution pour modéliser l'interaction avec le matériel [Des 02] [Mag 05].

L'application peut être décrite dans un langage de haut niveau ou générée à partir d'une

description UML ou toute autre spécification basée sur un modèle (model based design) [Bal

06] [Chen 05] [Gil 04][Kan 06] [Mod] [Vand 06]. La construction d’une pile logicielle se

compose de la compilation de ce code et de son lien avec les bibliothèques d'exécution. La

bibliothèque est définie séparément pour chaque processeur et peut être très sophistiquée. De

telles approches ont déjà été appliquées pour les architectures SoC (par exemple YAPI [Koc

00]) comme la plateforme de Trimedia comprenant un DSP et un MIPS. Les bibliothèques

sont difficiles à porter sur d'autres processeurs, ce qui rend cette approche inutilisable pour

des architectures hétérogènes MPSoC qui ont besoin d’un temps rapide de mise sur le marché

et d’une exploration d'architecture pour répondre aux exigences de performance. En fait, le

15

portage de la bibliothèque est fastidieuse et implique un long temps de conception et une

grande complexité dans le débogage du logiciel.

L'approche orientée matériel exécute le logiciel final sur une plateforme virtuelle et

correspond aux modèles classiques de cosimulation matériel/logiciel utilisant des simulateurs

de jeux d'instructions (Instruction Set Simulator ou ISS) [Row 09] [Sem 00]. Ces techniques

exigent que tous les logiciels et les matériels soient entièrement spécifiés. Ainsi, la validation

du logiciel se produit trop tard et le processus de débogage peut être trop coûteux et fastidieux.

Les approches axées sur l'ESL utilisent des APIs haut niveau pour abstraire l’interface

matériel-logiciel, par exemple DSOC [Pau 06] ou TTL [Van 04]. Cette approche permet la

génération et validation automatique d'un prototype virtuel d'un modèle de niveau système,

mais la génération de la couche HdS est effectuée en une seule étape, ce qui implique

généralement l'utilisation de systèmes de communication prédéfinis. D'ailleurs, l'écart entre le

modèle niveau système et le code produit rend le débogage des piles logicielles plus difficile

car l'identification des différentes sources d’erreurs n'est pas évidente.

Le flot de conception de logiciel proposé combine tous les avantages des trois

premières méthodes décrites précédemment. Il commence par un modèle haut niveau de

l'application en Simulink permettant la simulation fonctionnelle rapide du modèle

d'application. Il utilise des plateformes spécifiques qui intègrent les particularités de

l'architecture matérielle finale permettant l’estimation de performances. Il abstrait l’interface

matérielle- logicielle à l’aide d’APIs haut niveau qui cachent beaucoup de détails

d'architecture lors de la description de l'application. Même si le partitionnement et la

répartition sont explicites dans notre modèle, le flot fournit toujours un niveau d'abstraction

suffisant pour produire un gain significatif de productivité. En outre, l’un des principaux

avantages de l'approche présentée dans ce document est le débogage graduel des composants

de la pile logicielle.

Notre approche est dérivée d'une méthode de conception orientée plateforme [Vin 04].

Cette méthode met l’accent sur la création de couches d'abstraction dans le flot de conception

et étudie les propriétés sémantiques à travers ces différentes couches. Il se base sur une

méthodologie structurée pour développer des flots de conception de logiciel économiquement

viables.

Dans cette thèse, l’accent repose sur le débogage systématique du logiciel, qui est à

réaliser en structurant la pile logicielle en couches bien définies et en générant et utilisant des

 16

plateformes de développement logiciel et des modèles exécutables à différents niveaux

d'abstraction afin de permettre le débogage séparé des différentes couches logicielles.

5. Contribution

La contribution principale de cette thèse est la définition et le développement d’un flot

de conception et de validation de logiciel pour les MPSoC. L'approche proposée commence

par un modèle de haut niveau de l'application décrit en Simulink, permettant la simulation

fonctionnelle rapide du modèle d'application. Ensuite, le flot génère le code logiciel et la

plateforme de développement logiciel correspondant. Les spécificités de la plateforme sont

prises en compte dans les modèles abstraits de l'architecture et permettent l'estimation précise

des performances de calcul et communication. Le flot proposé abstrait les interfaces de

matériel/logiciel en employant des APIs haut niveau, qui cachent les détails liés à

l'architecture.

En outre, l’un des principaux avantages de l'approche présentée dans ce document est

la génération et la validation progressive des différents composants de la pile logicielle. Ceci

rend le débogage de l'application et du HdS plus facile, ouvrant de plus de nouvelles

possibilités comme l'estimation de la performance très tôt dans le flot de conception et

l’exploration de différents schémas de communication.

La programmation des MPSoC signifie une production efficace du logiciel

fonctionnant sur le MPSoC en utilisant les ressources disponibles de l'architecture pour la

communication et la synchronisation. Ceci touche deux aspects : la génération et la validation

des piles logicielles pour les MPSoC et la génération et la validation de la communication

pour les MPSoC.

Comme le montre la figure 4, le flot de conception de logiciel commence par des

spécifications de l'application et de l'architecture. L’application est composée d'un ensemble

de fonctions. La spécification de l'architecture représente la vue globale de l'architecture,

composée de plusieurs sous-systèmes matériels et logiciels.

17

Application
Vue globale de
l’architecture

Répartition de l’application
sur les CPUs

Architecture Système

Répartition de la communication
sur les ressources matérielles

Architecture Transactionnelle

Prototype Virtuel

Adaptation du logiciel à la
communication matérielle

Adaptation du logiciel aux
CPUs & mémoires spécifiques

HdS
API

OS

HAL

Comm.
Archit.

Comm.
Implem.

CPUs
ISS

Architecture Virtuelle

Communication Inter-SousSystème

Comm. Intra-SousSyst.

CPUs Périphériques

Comm. Intra-SousSyst.

HW-SSSW-SS

Communication Inter-SousSystème

Comm. Intra-SousSyst.

CPUs Périphériques

Comm. Intra-SousSyst.

HW-SSSW-SS

Communication Inter-SousSystème Abstrait

Sub-System
CommunicationSub-System

CommunicationComm. Intra-Sous-
Syst. Abstrait

HdS API

Communication Sous-
Syst. Abstrait

& exécution native SW

Tâche1 Tâche2 Tâcheq

HdS API

Communication Sous-
Syst. Abstrait

& exécution native SW

Tâche1 Tâche2 Tâcheq

HdS API

Communication Sous-
Syst. Abstrait

& exécution native SW

Tâche1 Tâche2 Tâchep

HdS API

Communication Sous-
Syst. Abstrait

& exécution native SW

Tâche1 Tâche2 Tâchep

HdS API

Comm. Intra-SousSyst.
Abstrait

& exécution native SW

Tâche1 Tâche2 Tâche n

HdS API

Comm. Intra-SousSyst.
Abstrait

& exécution native SW

Tâche1 Tâche2 Tâche n

Communication Inter-SousSystème Abstrait

Sub-System
Communication

Sub-System
Communication

Tâche 1Tâche 2Tâche q

Sub-System
Communication

Tâche 1Tâche 2Tâche p

Comm. Intra-Sous-
Système Abstraite

Tâche 1 Tâche 2 Tâche n

Sub-System
CommunicationComm. Intra-Sous-

Système Abstraite

Communication Inter-SousSystème

HdS API

Tâche1 Tâche2

CPUs Abstraits
& exécution native SW

Comm OS

HAL API

Tâche q

HdS API

Tâche1 Tâche2

CPUs Abstraits
& exécution native SW

Comm OS

HAL API

Tâche q

Sub-System
CommunicationSub-System

CommunicationComm. Intra-Sous-
Système

HdS API

Tâche1 Tâche2

CPUs Abstraits
& exécution native SW

Comm OS

HAL API

Tâche p

HdS API

Tâche1 Tâche2

CPUs Abstraits
& exécution native SW

Comm OS

HAL API

Tâche p

HdS API

Tâche1 Tâche2

CPUs Abstraits
& exécution native SW

Comm OS

HAL API

Tâche n

HdS API

Tâche1 Tâche2

CPUs Abstraits
& exécution native SW

Comm OS

HAL API

Tâche n

Communication Inter-SousSystème

Tache 1

HDS API

Comm OS

HAL API

HAL

Tache 2 Tache q

CPU

Tache 1

HDS API

Comm OS

HAL API

HAL

Tache 2 Tache p

CPU

Tache 1

HDS API

Comm OS

HAL API

HAL

Tache 2 Tache n

CPU Périphériques

Comm. Intra-SousSyst.

HW-SSHW-SS
HW-SSHW-SS

Comm. Intra-SousSyst.Comm. Intra-SousSyst.

SW-SS HW-SS

Figure 4. Flot de conception logiciel pour MPSoC

Les étapes principales de la programmation des MPSoC sont :

- Partitionnement de l’application et répartition de l'application sur l'architecture

ciblée, ou Conception d’Architecture Système

 18

- Répartition de la communication sur les ressources matérielles disponibles de

l'architecture, ou Conception d’Architecture Virtuelle

- Adaptation du logiciel à la communication matérielle spécifique, ou Conception

d’Architecture Transactionnelle

- Adaptation du logiciel aux processeurs et mémoires spécifiques, ou Conception du

Prototype Virtuel

Le résultat de chacune de ces quatre phases représente une étape dans le processus de

raffinement du logiciel et de la communication. Le raffinement est un processus progressif. À

chaque étape, d’autres composants logiciels et détails de communication sont intégrés aux

composants précédemment produits et validés. Le passage progressif du haut niveau au bas

niveau doit être validé à chaque étape de conception. La validation est habituellement

effectuée par analyse formelle ou simulation. Dans cette thèse, on utilise la validation basée

sur la simulation pour assurer que le comportement du système respecte les spécifications

initiales.

La validation et le débogage du logiciel sont effectués par l'exécution du code logiciel

sur la plateforme de développement correspondante. Le débogage est effectuée à l'aide des

programmes standard tels que le débogueur GNU ou en traçant les signaux SystemC pendant

la simulation. Le débogage est un processus itératif car les différents composants logiciels ont

besoin de différents niveaux de détail. Par exemple, le débogage du code des tâches de

l'application n'a pas besoin de l’implémentation du protocole de synchronisation entre les

processeurs, tandis que le débogage de l'intégration du code de tâches avec le système

d’exploitation exige ce genre de détail. L'interaction matériel/logiciel détaillée permet le

débogage de ce code logiciel de bas niveau spécifique à l'architecture.

 5.1. Conception de l’Architecture Système

La première étape du flot de conception logiciel représente le partitionnement et la

répartition de l’application sur l’architecture ciblée. Pendant cette étape, les interactions entre

l'application et l'architecture sont définis : le nombre de tâches de l’application qui peuvent

être exécutées en parallèle, la granularité de ces tâches et l'association entre les tâches et les

processeurs qui les exécutent. Le résultat de cette étape est généralement la décomposition de

l'application en tâches et la correspondance entre les tâches et processeurs. Cette étape

19

s'appelle également conception d'architecture système, et le modèle résultant est le modèle

d'architecture système.

Le modèle d'architecture système représente une description fonctionnelle des

spécifications de l'application, combinée à l'information de partitionnement et de répartition.

Les aspects liés au modèle d'architecture (par exemple les unités de calcul disponibles dans la

plateforme matérielle ciblée) sont combinés dans le modèle de l'application (par exemple

plusieurs tâches exécutées sur les différents processeurs). Ainsi, le modèle d'architecture

système exprime le parallélisme dans l'application regroupant les fonctions dans des tâches et

les tâches dans des sous-systèmes. Il rend également explicite les unités de communication

pour abstraire les protocoles de communication entres les tâches à l'intérieur d'un sous-

système et les protocoles de communication entres les différents sous-systèmes.

Les langages permettant de réaliser des modèles à ce niveau sont des langages de haut

niveau comme Simulink. La conception de l’application en Simulink nous fournit les

différentes tâches qui seront transposées sur la plateforme ainsi que la répartition de ces

tâches et sous-systèmes sur l’architecture, et décrit les divers chemins de communication.

Le chapitre 2 est consacré à cette étape de conception. Des différentes architectures

système sont construites utilisant Simulink pour différentes applications multimédia, (telles

que le décodeur Motion JPEG et l’encodeur vidéo H.264), partitionnées sur différentes

architectures MPSoC. Une application de traitement de signal basée sur Token Ring est

utilisée pour illustrer les différents concepts de base. La simulation du modèle de

l'architecture système a permis de valider la fonctionnalité de ces applications.

Le modèle Simulink a été annoté avec des paramètres spécifiques à l’architecture

matérielle et logicielle. Les paramètres spécifiques à l’architecture matérielle sont utilisés

pour identifier les différentes ressources matérielles fournies par l’architecture (type de

processeur, type de mémoire, type d’accès à la mémoire, type de communication entre les

différents processeurs, etc.). Les paramètres spécifiques à l’architecture logicielle sont utilisés

pour identifier les différents composants logiciels qui seront intégrées dans la pile logicielle

(système d’exploitation, primitives de communication utilisées pour l’échange des données

entre les tâches qui s’exécutent sur le même processeur, etc.). Ces paramètres permettent la

génération et la conception automatique de l’architecture virtuelle, de l’architecture

transactionnelle et du prototype virtuel.

 20

5.2. Conception de l’Architecture Virtuelle

La deuxième étape du flot proposé représente la répartition des communications sur

les ressources de la plateforme matérielle. Lors de cette phase, basée sur le mécanisme de

communication, les différentes FIFOs utilisées pour la communication entre les différentes

tâches sont reparties sur les ressources matérielles disponibles dans l'architecture pour

implémenter le protocole indiqué. Par exemple, une unité de communication FIFO peut être

implémentée dans une FIFO matérielle ou une mémoire partagée. Le code des tâches est

adapté au mécanisme de communication grâce aux APIs de l’HdS. Cette étape s’appelle

également conception d'architecture virtuelle et le modèle résultant s'appelle modèle

d'architecture virtuelle.

Dans ce modèle, la partie matérielle représente les sous-systèmes logiciels, les

composants mémoire qui interviennent dans les communications et les supports de

communication entre les sous-systèmes. La partie logicielle représente le code applicatif et

une interface logicielle qui permet à l’application d’accéder aux ressources de la plateforme,

principalement pour la mise en œuvre des communications.

Le chapitre 3 est consacré à la conception d’architecture virtuelle. La conception de

l’architecture virtuelle a été effectuée dans SystemC pour les applications suivantes : le Token

Ring exécuté sur l’architecture 1AX, le décodeur Motion JPEG partitionné sur l’architecture

Diopsis RDT avec bus AMBA et l’encodeur H.264 exécuté sur l’architecture Diopsis R2DT

avec réseau sur puce (NoC ou Network on Chip). La conception de l’architecture virtuelle

utilise les paramètres matériels et logiciels annotés dans l’architecture système. La simulation

du modèle de l'architecture virtuelle a permis la validation du partitionnement de l’application,

la validation du code des tâches et l’estimation des performances de communication.

5.3. Conception de l’Architecture Transactionnelle

L’étape suivante du flot proposé se compose de l’adaptation du logiciel à la

communication matérielle spécifique. Pendant cette étape, les aspects liés au protocole de

communication sont détaillés, par exemple le mécanisme de synchronisation entre les

différents processeurs fonctionnant en parallèle devient explicite. Le code logiciel doit être

adapté à la méthode de synchronisation, en utilisant par exemple des événements ou des

sémaphores. Ceci peut être fait en employant les services de l'OS et des composants de

communication de la pile logicielle. Cette phase d'intégration de l'OS et de la communication

21

est également appelée conception d'architecture transactionnelle. Le modèle résultant

s'appelle modèle d'architecture transactionnelle.

Dans ce modèle, la partie logicielle est enrichie d’un système d’exploitation et d’un

code logiciel gérant les entrées-sorties spécifiques. L’architecture matérielle de chaque sous-

système logiciel devient plus explicite.

Le chapitre 4 est consacré à la conception d’architecture transactionnelle. La

conception de l’architecture transactionnelle a été effectuée dans SystemC pour les

applications suivantes : le Token Ring exécuté sur l’architecture 1AX, le décodeur Motion

JPEG partitionné sur l’architecture Diopsis RDT avec bus AMBA et l’encodeur H.264

exécute sur l’architecture Diopsis R2DT avec réseau sur puce. La conception de l’architecture

transactionnelle utilise les paramètres matériels et logiciels annotés dans l’architecture

système.

La simulation du modèle de l'architecture transactionnelle a permis la validation du

code des tâches avec le système d’exploitation et du composant de communication de la pile

logicielle. L’architecture transactionnelle a permis aussi l’estimation plus précise de la

performance de communication.

5.4. Conception du Prototype Virtuel

La dernière étape correspond à l’adaptation du logiciel aux processeurs spécifiques

Cela inclut l'intégration du logiciel dépendant de matériel (HAL) dans la pile logicielle pour

permettre l'accès bas niveau aux ressources matérielles. L'étape est également connue sous le

nom de conception de prototype virtuel. Le modèle résultant s'appelle modèle de prototype

virtuel. Dans ce modèle, les piles logicielles sont complétées par l’implémentation de l’API

HAL et exécutées sur un simulateur d’instructions de CPU (Instruction Set Simulator ou ISS).

Ces différentes étapes du flot global correspondent à la génération et la validation des

différents composants logiciels à différents niveaux d'abstraction.

Le chapitre 5 est consacré à la conception de prototype virtuel. La conception du

Prototype Virtuel a été effectuée dans SystemC pour les applications suivantes: le Token Ring

exécuté sur l’architecture 1AX, le décodeur Motion JPEG exécuté sur un seul processeur

(ARM, DSP) et l’encodeur H.264 exécuté sur un seul processeur (ARM). La conception du

prototype virtuel utilise les paramètres matériels et logiciels annotés dans l’architecture

système.

 22

La simulation du modèle du prototype virtuel a permis la validation de la pile

logicielle finale et des mesures précises pour les performances.

Dans cette thèse, le flot proposé a été appliqué avec succès pour la génération et la

validation du logiciel pour plusieurs architectures MPSoC complexes qui exécutent plusieurs

applications multimédia, comme l’encodeur vidéo H.264, le décodeur d’images Motion JPEG,

le décodeur audio MP3 et l’encodeur audio Vocodeur. Les plateformes de développement en

SystemC à différents niveaux d’abstraction sont automatiquement générées à partir de la

description initiale en Simulink. Les architecture MPSoC considérées contiennent plusieurs

processeurs différents interconnectés par un bus ou un réseau sur puce.

Multilevel Programming

Environment for Heterogeneous

MPSoC Architectures

Table of Contents

1. INTRODUCTION.. 37

1.1. Context .. 39

1.2. MPSoC Programming Steps.. 40

1.3. Hardware/Software Abstraction Levels .. 43

1.3.1. The Concept of Hardware/Software Interface ... 44

1.3.2. Software Execution Models with Abstract Hardware/Software Interfaces 45

1.4. The MPSoC Architecture .. 49

1.5. Software Stack for MPSoC ... 52

1.5.1. Definition of the Software Stack.. 53

1.5.2. Software Stack Organization.. 53

1.5.2.1. Application Layer... 54

1.5.2.2. HdS Layer .. 54

1.5.2.2.1. Operating System.. 55

1.5.2.2.2. Communication Software Component .. 56

1.5.2.2.3. Hardware Abstraction Layer ... 57

1.6. The Concept of Mixed Architecture/Application Model .. 57

1.6.1. Definition of the Mixed Architecture/Application Model 57

1.6.2. Execution Model for Mixed Architecture/Application Model............................... 58

1.6.2.1. Execution model described in SystemC... 58

1.6.2.2.. Execution model described in Simulink ... 61

1.7. Examples of Heterogeneous MPSoC Architectures.. 63

1.7.1. 1AX with AMBA Bus.. 64

1.7.2. Diopsis RDT with AMBA Bus .. 66

1.7.3. Diopsis R2DT with NoC.. 69

1.8. Examples of Multimedia Applications.. 71

1.8.1. Token Ring Functional Specification... 72

1.8.2. Motion JPEG Decoder Functional Specification ... 73

1.8.3. H.264 Encoder Functional Specification ... 75

1.9. Conclusions ... 77

2. SYSTEM ARCHITECTURE DESIGN ... 79

2.1. Introduction ... 81

2.1.1. Mapping Application on Architecture.. 81

2.1.1.1 The Mapping .. 81

2.1.1.2 The Design Space Exploration ... 83

2.1.2. Definition of the System Architecture ... 84

2.1.3. Global Organization of the System Architecture ... 86

2.2. Basic Components of the System Architecture Model ... 88

2.2.1. Functions .. 89

2.2.2. Communication .. 90

2.3. Modeling System Architecture in Simulink.. 90

2.3.1. Writing Style, Design Rules and Constraints in Simulink 90

2.3.1.1. Constraints on the Simulink standard blocks .. 90

2.3.1.2. Constraints on the S-Functions ... 91

2.3.1.3. Constraints on the communication.. 92

2.3.2. Software at System Architecture Level.. 93

2.3.3. Hardware at System Architecture Level .. 93

2.3.4. Hardware-Software Interface at System Architecture Level 93

2.4. Execution Model of the System Architecture ... 94

2.5. Design Space Exploration of System Architecture ... 95

2.5.1. Goal of Performance Evaluation .. 95

2.5.2. Architecture/Application Parameters ... 95

2.5.3. Performance Measurements ... 99

2.5.4. Design Space Exploration .. 99

2.6. Application Examples at the System Architecture Level.. 100

2.6.1. Motion JPEG Application on Diopsis RDT... 100

2.6.2. H.264 Application on Diopsis R2DT... 104

2.7. State of the Art and Research Perspectives... 108

2.7.1. State of the Art ... 108

2.7.2. Research Perspectives .. 110

2.8. Conclusions ... 112

3. VIRTUAL ARCHITECTURE DESIGN... 113

3.1. Introduction ... 115

3.1.1. Definition of the Virtual Architecture.. 115

3.1.2. Global Organization of the Virtual Architecture.. 116

3.2. Basic Components of the Virtual Architecture Model.. 118

3.2.1. Software Components .. 118

3.2.2. Hardware Components... 119

3.3. Modeling Virtual Architecture in SystemC .. 119

3.3.1. Software at Virtual Architecture Level .. 119

3.3.2. Hardware at Virtual Architecture Level... 122

3.3.3. Hardware-Software Interface at Virtual Architecture Level................................ 126

3.4. Execution Model of the Virtual Architecture.. 128

3.5. Design Space Exploration of Virtual Architecture ... 128

3.5.1. Goal of Performance Evaluation .. 128

3.5.2. Architecture/Application Parameters ... 129

3.5.3. Performance Measurements ... 130

3.5.4. Design Space Exploration .. 132

3.6. Application examples at the Virtual Architecture Level... 133

3.6.1. Motion JPEG Application on Diopsis RDT... 133

3.6.2. H.264 Application on Diopsis R2DT... 137

3.7. State of the Art and Research Perspectives... 142

3.7.1. State of the Art ... 142

3.7.2. Research Perspectives .. 143

3.8. Conclusions ... 144

4. TRANSACTION ACCURATE ARCHITECTURE DESIGN 145

4.1. Introduction ... 147

4.1.1. Definition of the Transaction Accurate Architecture... 147

4.1.2. Global Organization of the Transaction Accurate Architecture........................... 148

4.2. Basic Components of the Transaction Accurate Architecture Model......................... 151

4.2.1. Software Components .. 151

4.2.2. Hardware Components... 152

4.3. Modeling Transaction Accurate Architecture in SystemC ... 152

4.3.1. Software at Transaction Accurate Architecture Level ... 153

4.3.2. Hardware at Transaction Accurate Architecture Level.. 157

4.3.3. Hardware-Software Interface at Transaction Accurate Architecture Level......... 160

4.4. Execution Model of the Transaction Accurate Architecture....................................... 161

4.5. Design Space Exploration of Transaction Accurate Architecture 162

4.5.1. Goal of Performance Evaluation .. 162

4.5.2. Architecture/Application Parameters ... 163

4.5.3. Performance Measurements ... 163

4.5.4. Design Space Exploration .. 164

4.6. Application Examples at the Transaction Accurate Architecture Level 165

4.6.1. Motion JPEG Application on Diopsis RDT... 165

4.6.2. H.264 Application on Diopsis R2DT... 169

4.7. State of the Art and Research Perspectives... 177

4.7.1. State of the Art ... 177

4.7.2. Research Perspectives .. 178

4.8. Conclusions ... 179

5. VIRTUAL PROTOTYPE DESIGN... 181

5.1. Introduction ... 183

5.1.1. Definition of the Virtual Prototype .. 183

5.1.2. Global Organization of the Virtual Prototype .. 184

5.2. Basic Components of the Virtual Prototype Model .. 185

5.2.1. Software Components .. 185

5.2.2. Hardware Components... 186

5.3. Modeling Virtual Prototype in SystemC... 186

5.3.1. Software at Virtual Prototype Level... 187

5.3.2. Hardware at Virtual Prototype Level ... 192

5.3.3. Hardware-Software Interface at Virtual Prototype Level 194

5.4. Execution Model of the Virtual Prototype .. 194

5.5. Design Space Exploration of Virtual Prototype.. 195

5.5.1. Goal of Performance Evaluation .. 195

5.5.2. Architecture/Application Parameters ... 196

5.5.3. Performance Measurements ... 196

5.5.4. Design Space Exploration .. 197

5.6. Application Examples at the Virtual Prototype Level .. 198

5.6.1. Motion JPEG Application on Diopsis RDT... 198

5.6.2. H.264 Application on Diopsis R2DT... 200

5.7. State of the Art and Research Perspectives... 202

5.7.1. State of the Art ... 202

5.7.2. Research Perspectives .. 203

5.8. Conclusions ... 204

6. CONCLUSIONS AND FUTURE PERSPECTIVES ... 207

6.1. Conclusions ... 209

6.2. Future Perspectives ... 211

References ... 215

Publications .. 225

List of Figures

Figure 1. MPSoC Hardware-Software Architecture .. 39

Figure 2. MPSoC Programming Steps ... 41

Figure 3. Software Execution Models at Different Abstraction Levels 46

Figure 4. MPSoC Architecture... 49

Figure 5. Software Stack Organization .. 53

Figure 6. SystemC Simulation Steps.. 60

Figure 7. Simulink Simulation Steps.. 62

Figure 8. 1AX MPSoC Architecture .. 64

Figure 9. Diopsis RDT Heterogeneous Architecture ... 67

Figure 10. Target Diopsis based Architecture.. 68

Figure 11. Diopsis R2DT with Hermes NoC ... 69

Figure 12. Token Ring Functional Specification ... 72

Figure 13. Motion JPEG Decoder .. 73

Figure 14. H.264 Encoder Algorithm Main Profile .. 76

Figure 15. Mapping Token Ring on the 1AX architecture .. 83

Figure 16. Design Space Exploration... 84

Figure 17. Global View of the System Architecture.. 85

Figure 18. System Architecture Model of Token Ring.. 88

Figure 19. User-defined C-Function .. 91

Figure 20. DFT Function of the Token Ring ... 92

Figure 21. Mapping Motion JPEG on Diopsis RDT.. 101

Figure 22. System Architecture Example: MJPEG Mapped on Diopsis 102

Figure 23. Mapping H.264 on Diopsis R2DT.. 105

Figure 24. H.264 Encoder System Architecture Model in Simulink 106

Figure 25. Global View of the Virtual Architecture .. 116

Figure 26. Task T2 Code.. 121

Figure 27. SystemC Code for the Top Module .. 123

Figure 28. SystemC Code for the ARM-SS Module.. 124

Figure 29. Example of Implementation of Communication Channels................................... 125

Figure 30. SystemC Main Function ... 126

Figure 31. Example of Hardware/Software Interface .. 127

Figure 32. Waveforms Traced during the Token Ring Simulation.. 132

Figure 33. Global View of Diopsis RDT running MJPEG .. 134

Figure 34. Virtual Architecture Simulation for Motion JPEG... 137

Figure 35. Global View of Diopsis R2DT running H.264 ... 139

Figure 36. Abstract Hermes NoC at Virtual Architecture Level.. 140

Figure 37. Words transferred through the Hermes NoC .. 141

Figure 38. Global View of the Transaction Accurate Architecture 148

Figure 39. Initialization of the Tasks running on ARM7... 154

Figure 40. Implementation of recv_data(…) API .. 155

Figure 41. Example of Task Header File ... 156

Figure 42. Data Structure of Tasks’Ports .. 156

Figure 43. Implementation of the __schedule() Service of OS.. 157

Figure 44. SystemC Code for the Top Module .. 158

Figure 45. SystemC Code for the ARM7-SS Module.. 159

Figure 46. SystemC Clock ... 160

Figure 47. Implementation of the __ctx_switch HAL API ... 160

Figure 48. Execution Model of the Software Stacks running on the ARM7 and XTENSA

Processors... 162

Figure 49. Transaction Accurate Architecture Model of the Diopsis RDT Architecture running

Motion JPEG Decoder Application.. 166

Figure 50. MJPEG Simulation Screenshot... 167

Figure 51. Global View of the Transaction Accurate Architecture for Diopsis R2DT with

Hermes NoC running H.264 Encoder Application .. 169

Figure 52. Hermes NoC in Mesh Topology at Transaction Accurate Level.......................... 171

Figure 53. Total KBytes Transmitted through the Mesh ... 172

Figure 54. Hermes NoC in Torus Topology at Transaction Accurate Level 173

Figure 55. Simulation Screenshot of H.264 Encoder Application running on Diopsis R2DT

with Torus NoC.. 175

Figure 56. IP Cores Mapping Schemes A and B over the NoC ... 175

Figure 57. Global View of the Virtual Prototype... 184

Figure 58. HAL Implementation for Context Switch on ARM7 Processor........................... 188

Figure 59. Enabling and Disabling ARM Interrupts .. 188

Figure 60. Example of Compilation Makefile for ARM7 Processor 189

Figure 61. Load and Execution Memory View.. 190

Figure 62. Example of Scatter Loading Description File for the ARM Processor 191

Figure 63. Example of Initialization Sequence for the ARM Processor 192

Figure 64. SystemC Code of the ARM7-SS Module ... 193

Figure 65. Execution Model of the Virtual Prototype.. 195

Figure 66. Global View of the Virtual Prototype for Diopsis RDT with AMBA Bus running

Motion JPEG Decoder Application.. 199

Figure 67. Execution Clock Cycles of Motion JPEG Decoder QVGA 199

Figure 68. Global View of the Virtual Prototype for Diopsis R2DT with Hermes NoC running

H.264 Encoder Application.. 201

Figure 69. Execution Clock Cycles of H.264 Encoder, Main Profile, QCIF Video Format . 201

Figure 70. Program and Memory Size ... 202

List of Tables

Table 1. Task code generation for Motion JPEG... 133

Table 2. Messages through the AMBA bus ... 136

Table 3. Task code generation for H.264 Encoder... 138

Table 4. Results captured in Hermes NoC using DXM as communication scheme.............. 141

Table 5. Memory accesses ... 168

Table 6. Mesh Noc Routing Requests... 171

Table 7. Torus Noc Routing Requests ... 174

Table 8. Torus Noc Amount of Transmitted Data [Bytes]... 174

Table 9. Execution and Simulation Times of the H.264 Encoder for Different Interconnect,

Communication and IP Mappings.. 176

Table 10. ARM7 and ARM9 processors family .. 196

Chapter 1

 INTRODUCTION

This chapter introduces the definitions of the basic concepts used in the document. The

chapter details the software and hardware organization for the heterogeneous MPSoC

architectures ant summarizes the main steps in programming MPSoC. The software design

represents an incremental process performed at four MPSoC abstraction levels (system

architecture, virtual architecture, transaction accurate architecture and virtual prototype). At

each design step, different software components are generated and validated using hardware

simulation models. The overall design flow is given in this chapter. Examples of target

architectures and applications, which will be used in the remaining part of this document, are

described.

1 .Introduction

39

1.1. Context

Current multimedia and telecom applications such as MPEG 2/4, H.263/4, CDMA

2000, WCDMA, and MP3 require heterogeneous multiprocessor system on chip (MPSoC)

architectures in order to achieve computation and communication performances [Mey 06].

Heterogeneous MPSoC includes different kinds of processing units (DSP, microcontroller,

ASIP, etc) and different communication schemes (fast links, non standard memory

organization and access). This kind of heterogeneous architectures provides highly concurrent

computation and flexible programmability.

Typical heterogeneous platforms used in industry are TI OMAP [TI], ST Nomadik

[Nom], Philips Nexperia [Nex] and Diopsis D940 [Dio]. They incorporate a DSP processor

and a microcontroller, communicating via efficient, but sophisticated infrastructure.

Heterogeneous MPSoC architectures may be represented as a set of software and

hardware processing subsystems which interact via a communication network (figure 1) [Cul

98].

Inter-SubSystem Communication

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task q

CPU

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task q

CPU

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task p

CPU

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task p

CPU

S
o

ft
w

ar
e

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task n

CPU Peripherals

Intra-SubSyst Comm.

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task n

CPU Peripherals

Intra-SubSyst Comm.

HW-SSHW-SS
HW-SSHW-SS

Intra-SubSyst Comm.Intra-SubSyst Comm.

H
ar

d
w

ar
e

SW-SS HW-SS

A
p

p
lic

at
io

n
H

d
S

Figure 1. MPSoC Hardware-Software Architecture

A software subsystem is a programmable subsystem, namely a processor subsystem.

This integrates different hardware components including a processing unit for computation

(CPU), specific local components such as local memory, data and control registers, hardware

accelerators, interrupt controller, DMA engine, synchronization components such as mailbox

or semaphores and specific I/O components or other peripherals.

1 .Introduction

40

Each processor subsystem executes a specific software stack organized in 2 layers: the

application and the Hardware dependent Software (HdS) layers. The application layer is

associated with the high level behavior of the heterogeneous functions composing the target

application. The HdS layer is associated with the hardware dependent low level software

behavior, such as interrupts routine services, context switch, specific I/O control and tasks

scheduling. In fact, the HdS layer includes 3 components: Operating System (OS), specific I/O

communication (Comm) and the Hardware Abstraction Layer (HAL). These different

components are based on well defined primitives or Application Programming Interfaces (APIs)

in order to pass from one software layer to another.

A hardware subsystem represents specific hardware component that implements specific

functionalities of the application or a global memory subsystem accessible by the processing

units.

The rest of this document is organized as it follows: Chapter 1 introduces the context

of MPSoC design, the difficulties of programming these complex architectures, the design

and validation flow of the multiple software stacks running on the different processor

subsystems, the adopted different abstraction levels and the definition of some concepts later

used in this document. Chapter 2, 3, 4 and 5 details the software design and validation for

MPSoC at four abstraction levels, namely the system architecture, virtual architecture,

transaction accurate architecture, respectively the virtual prototype design. Chapter 6 draws

conclusions and proposes future research perspectives.

1.2. MPSoC Programming Steps

Programming an MPSoC means to generate software running on the MPSoC

efficiently by using the available resources of the architecture for communication and

synchronization. This concerns two aspects: software stack generation and validation for the

MPSoC and communication mapping on the available hardware communication resources

and validation for MPSoC.

As shown in figure 2, the software design flow starts with an application and an

abstract architecture specification. The application is made of a set of functions. The

architecture specification represents the global view of the architecture, composed of several

hardware and software subsystems.

1 .Introduction

 41

Application

Global
Architecture View

Partitioning & Mapping

System Architecture

Mapping Comm.

on HW resources

Transaction Accurate Architecture

Virtual Prototype

SW Adapt. to Specific HW

Comm. implementation

SW Adapt. to
Specific CPUs & Memory

HdS
API

OS

HAL

Comm.
Archit.

Comm.

Implem.

CPUs
ISS

Virtual Architecture

Inter-SubSystem Communication

Intra-SubSyst Comm.

CPU Peripherals

Intra-SubSyst Comm.

HW-SSSW-SS

Inter-SubSystem Communication

Intra-SubSyst Comm.

CPU Peripherals

Intra-SubSyst Comm.

CPU Peripherals

Intra-SubSyst Comm.

HW-SSSW-SS

Abstract Inter-SubSystem Communication

Sub-System
Communication

Sub-System
Communication

Task 1 Task 2 Task n

Sub-System
Communication

Task 1 Task 2 Task n

Sub-System
Communication

Task 1 Task 2 Task n

Sub-System
Communication

Task 1 Task 2 Task n

Abstract Intra-
SubSystem Comm.

Task 1 Task 2 Task n

Abstract Intra-
SubSystem Comm.

Task 1 Task 2 Task n

Sub-System
CommunicationAbstract Intra-

SubSystem Comm.

Abstract Inter-SubSystem Communication

HdS API

Task 1 Task 2 Task n

HdS API

Task 1 Task 2 Task n

HdS API

Task 1 Task 2 Task n

HdS API

Task 1 Task 2 Task n

HdS API

Task 1 Task 2 Task n

Abstract Intra-
SubSystem Comm.

& native SW execution

HdS API

Task 1 Task 2 Task n

Abstract Intra-
SubSystem Comm.

& native SW execution

Sub-System
CommunicationSub-System

CommunicationAbstract Intra-
SubSystem Comm.

Inter-SubSystem Communication

HdS API

Task 1 Task 2

Abstract CPUs
& native SW execution

Comm OS

HAL API

Task n

HdS API

Task 1 Task 2

Abstract CPUs
& native SW execution

Comm OS

HAL API

Task n

HdS API

Task 1 Task 2

Abstract CPUs
& native SW execution

Comm OS

HAL API

Task n

HdS API

Task 1 Task 2

Abstract CPUs
& native SW execution

Comm OS

HAL API

Task n

HdS API

Task 1 Task 2

Abstract CPUs
& native SW execution

Comm OS

HAL API

Task n

HdS API

Task 1 Task 2

Abstract CPUs
& native SW execution

Comm OS

HAL API

Task n

Sub-System
CommunicationSub-System

CommunicationIntra-SubSystem
Communication

Inter-SubSystem Communication

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task q

CPU

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task q

CPU

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task p

CPU

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task p

CPU

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task n

CPU Peripherals

Intra-SubSyst Comm.

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task n

CPU Peripherals

Intra-SubSyst Comm.

HW-SSHW-SS
HW-SSHW-SS

Intra-SubSyst Comm.Intra-SubSyst Comm.

SW-SS HW-SS

F3 F4

F1

F2

F5

F7 F8

F9 F10

F11

Figure 2. MPSoC Programming Steps

1 .Introduction

42

The main steps in programming the MPSoC architecture are:

- Partitioning and mapping the application onto the target architecture subsystems

- Mapping application communication on the available hardware communication

resources of the architecture

- Software adaptation to specific hardware communication protocol implementation

- Software adaptation to detailed architecture implementation (specific processors

and memory architecture).

The result of each of these four phases represents a step in the software and

communication refinement process. The refinement is an incremental process. At each stage,

additional software component and communication architecture details are integrated with the

previously generated and validated components. This conducts to a gradual transformation of

a high level representation with abstract components into a concrete low level executable

software code. The transformation has to be validated at each design step. The validation is

performed by formal analysis, simulation or combining simulation with formal analysis [Kun

06]. In the following, we will use simulation-based validation to ensure that the system

behavior respects the initial specification.

During the partitioning and mapping of the application on the target architecture, the

relationship between application and architecture is defined. This refers to the number of

application tasks that can be executed in parallel, the granularity of these tasks (coarse grain

or fine grain) and the association between tasks and the processors that will execute them. The

result of this step is the decomposition of the application into tasks and the correspondence

tasks-processors [Thi 07]. This step is also called System Architecture Design, and the

resulting model is the System Architecture model.

The system architecture model represents a functional description of the application

specification, combined with the partitioning and mapping information. Aspects related to the

architecture model (e.g. processing units available in the target hardware platform) are

combined into the application model (i.e. multiple tasks executed on the processing units).

Thus, the system architecture model expresses parallelism in the target application through

capturing the mapping of the functions into tasks and the tasks into subsystems. It also makes

explicit the communication units to abstract the intra-subsystem communication protocols

1 .Introduction

 43

(the communication between the tasks inside a subsystem) and the inter-subsystem

communication protocols (the communication between different subsystems).

The second step implements the mapping of communication onto the hardware

platform resources. At this phase, the different links used for the communication between the

different tasks are mapped on the hardware resources available in the architecture to

implement the specified protocol. For example, a FIFO communication unit can be mapped to

a hardware queue, a shared memory or some kind of bus-based device. The task code is

adapted to the communication mechanism through the use of adequate HdS communication

primitives. This step is also entitled Virtual Architecture Design and the resulting model is

named Virtual Architecture model.

The next step of the proposed flow consists of software adaptation to specific

communication protocol implementation. During this stage, aspects related to the

communication protocol are detailed, for example the synchronization mechanism between

the different processors running in parallel becomes explicit. The software code has to be

adapted to the synchronization method, such as events or semaphores. This can be done by

using the services of OS and communication components of the software stack. This phase of

integrating the OS and communication is also named Transaction Accurate Architecture

Design and the resulting model is the Transaction Accurate Architecture model.

The last step corresponds to specific adaptation of the software to the target

processors and specific memory map. This includes the integration of the processor dependent

software code into the software stack (HAL) to allow low level access to the hardware

resources and the final memory mapping. This step is also known as Virtual Prototype Design

and the resulting model is called Virtual Prototype model.

These different steps of the global flow correspond to different software components

generation and validation at different abstraction levels, as it will be described in the

following paragraphs.

1.3. Hardware/Software Abstraction Levels

The structured model of the software stack representation allows generation and

validation of the different software components separately [Jer 06]. The different components

and layers of the software stack correspond to different abstraction levels. The debug of this

1 .Introduction

44

software stack made of several components is one of the MPSoC current design challenges

[Mar 06].

In order to validate the software, an execution model is required at each abstraction

level to allow debugging the specific software component. The execution model represents

an abstract architecture model [Roa 07] which allows simulating and validating the software

component at each abstraction level. The execution model is often called software

development platform and it is the result of abstracting different components of the target

hardware architecture. This abstract architecture model hides details of the underlying

implementation of the hardware platform, but ensures a sufficient level of control that the

software code can be validated in terms of performance, efficiency and reliable functionality.

The software validation and debug is performed by execution of the software code on

a corresponding execution model. The debug is an iterative process because the different

software components need different detail levels in order to be validated. For example, the

debug of the application tasks code does not need explicit implementation of the

synchronization protocol between the processors using mailboxes in the development

platform, while the debug of the integration of the tasks code with the OS requires this kind of

detail. The detailed hardware-software interaction allows debugging this low level

architecture specific software code. All these requirements are considered during the

abstraction of the architecture at each design step to build the executable model.

The debug of the software is performed by simulation at the different abstraction

levels. Thus, the system architecture model simulation is used to debug the application

algorithm. The virtual architecture model simulation serves to debug the application tasks

code. The transaction accurate architecture model simulation is used to debug the glue

between the application tasks code and OS and communication libraries. The virtual

prototype model uses Instruction Set Simulators to execute and debug the full software stack.

At all these abstraction levels, the debug process uses standard debugging tools and

environments, such as GNU debuggers, or trace waveforms during the simulation, such as

SystemC waveforms.

1.3.1. The Concept of Hardware/Software Interface

The software generation and validation using an executable model needs abstract

hardware/software interfaces including both software and hardware components. The

1 .Introduction

 45

hardware/software interface links the software part with the hardware part of the system. The

hardware/software interface needs to handle two different interfaces: one on the software side

using APIs and one on the hardware side using wires [Bou 05]. This heterogeneity makes the

hardware/software interface design very difficult and time-consuming because the design

requires both hardware and software knowledge and their interaction [Jer 05]. The

hardware/software interface requires handling many software and hardware architecture

parameters. To allow the gradual validation of the software stack, the hardware-software

interface needs to be described at the different abstraction levels.

1.3.2. Software Execution Models with Abstract Hardware/Software
Interfaces

Figure 3 illustrates the software execution models at different abstraction levels for a

simplified application made of 3 tasks (T1, T2 and T3), that need to be mapped on an

architecture made of 2 processing units and several memory hardware subsystems. For each

level, figure 3 shows the software organization, the hardware-software interface and the

execution model that will be used to validate the software component at the corresponding

abstraction level. The key differentiation between these levels is the way of specifying the

hardware-software interfaces and the communication mechanism implementation.

The highest level is the system architecture level (figure 3.a). In this case, the

software is made of a set of functions grouped into tasks. The function is an abstract view of

the behavior of an aspect of the application. Several tasks may be mapped on the same

software subsystem. The communication between functions, tasks and subsystems make use

of abstract communication links, e.g. standard Simulink links or explicit communication units

that correspond to specific communication paths of the target platform. The links and units are

annotated with communication mapping information. The corresponding execution model

consists of the set of the abstract subsystems. The simulation at this level allows validation of

the application’s functionality. This model captures both the application and the architecture

in addition to the computation and communication mapping. Figure 3.a shows the system

architecture model with the following symbols: circles for the functions, rounded rectangular

to represent the task, rectangular for the subsystem, crossed rectangular for the

communication units between the tasks, filled circles for the ports of the functions, diamonds

for the logic ports of the tasks and filled rectangular for group of hardware ports. The

dataflow is illustrated by unidirectional arrows.

1 .Introduction

46

 SW-SS1

COMM1

T2T1

F1 F2 F3 F4

T3

SW-SS2

COMM2

COMM3

Abstract CPU-SS1

COMM1

T2T1 T3

COMM2
SWFIFO

Abstract Communication Network

MEM

Abstract CPU-SS2 T2

HdS API

T3

CPU-SS1

COMM1

COMM2

Communication Network (Bus/NoC)

MEM SS CPU-SS2

Interface Periph.

Memory
Abstract

CPU1

Interface Periph.

Memory
Abstract

CPU2

T3

HdS API

HAL API

Comm OS

T2

CPU-SS1

COMM1

COMM2

Communication Network (Bus/NoC)

MEM SS CPU-SS2

Interface Periph.

MemoryCPU1 ISS

Interface Periph.

MemoryCPU2 ISS

T3

HdS API

HAL API

Comm OS

T2

HAL

a) System Architecture

b) Virtual Architecture

c) Transaction Accurate Architecture

d) Virtual Prototype

HdS API

Application function

Application task

Subsystem / Hardware component

Communication unit

Data transfer

Port logic (function level)

Port logic (task level)

Hardware Port (Group of Physical Ports)

Communication buffer

Task code

Legend

Figure 3. Software Execution Models at Different Abstraction Levels

1 .Introduction

 47

In this case, the system is made of 2 abstract software subsystems (SW-SS1, SW-SS2)

and 2 inter-subsystem communication units (COMM1, COMM2). The SW-SS1 software

subsystem encapsulates task T1, while the subsystem SW-SS2 groups together tasks T2 and

T3. The intra-subsystem communication between the tasks T2 and T3 inside SW-SS1 is

performed through the communication unit COMM3.

The next abstract level is called virtual architecture level (figure 3.b). The hardware-

software interfaces are abstracted using HdS API that hides the OS and the communication

layers. The application code is refined into tasks that interact with the environment using

explicit primitives of the HdS API. Each task represents a sequential C code using a static

scheduling of the initial application functions. This code is the final application code that will

constitute the top layer of the software stacks. The communication primitives of the HdS API

access explicit communication components. Each data transfer specifies an end-to-end

communication path. For example, the functional primitives send_mem(ch,src,size)/

recv_mem(ch,dst,size) may be used to transfer data between the 2 processors using a global

memory connected to the system bus, where ch represents the communication channel used

for the data transfer, src/dst the source/destination buffer and size the number of words to be

exchanged. The communication buffers are mapped on explicit hardware resources.

At the virtual architecture level, the software is executed using an abstract model of

the hardware architecture that provides an emulation of the HdS API. The software execution

model is composed of these abstract subsystems, explicit interconnection component and

storage resources. During the simulation at the virtual architecture level, the software tasks are

scheduled by the hardware platform since the final OS is not yet defined. The simulation at

this level allows validation of the final code of tasks and may give useful statistics about the

communication requirements. The virtual architecture is message accurate in terms of data

exchange between the different tasks. Thanks to the HdS APIs, the tasks code remains

unchanged for the following levels. In this document, the virtual architecture platform is

considered as a SystemC model where the software tasks are executed as SystemC threads.

In the example illustrated in figure 3.b, the system is made of two abstract processor

subsystems (CPU1-SS, CPU2-SS) and a global memory (MEM) interconnected through an

abstract communication network. The communication units comm1 and comm2 are mapped

on the global memory and the communication unit comm3 becomes a software fifo (swfifo).

The next level is called the transaction accurate architecture level (figure 3.c). At

this level, the hardware-software interfaces are abstracted using a HAL API that hides the

1 .Introduction

48

processor’s architecture. The code of the software task is linked with an explicit OS and

specific I/O software implementation to access the communication units. The resulting

software makes use of hardware abstraction layer primitives (HAL_API) to access the

hardware resources. This will constitute the final code of the two top layers of the resulting

software stack. The data transfers use explicit addresses, e.g. read_mem(addr, dst, size)/

write_mem(addr, src, size), where addr represents the source, respectively the destination

address, src/dst represents the local address and size the size of the data.

The software is executed using a more detailed development platform to emulate the

network component, the explicit peripherals used by the HAL API and an abstract

computation model of the processor. During the simulation at this level, the software tasks are

scheduled by the final OS, while the communication between tasks mapped on the same

processor is also implemented by the OS. The simulation at this level allows validating the

integration of the application with the OS and the communication layer. It may also provide

precise information about the communication performances. The accuracy of the performance

estimation is transaction accurate level. In this document, the transaction accurate architecture

is generated as a SystemC model where the software stacks are executed as external processes

communicating with the SystemC simulator through the IPC layer of the Linux OS running

on the host machine.

In the example illustrated in figure 3.c, the system is made of the 2 processor

subsystems (CPU1-SS, CPU2-SS) and the global memory subsystem (MEM-SS)

interconnected through an explicit communication network (bus or NoC). Each processor

subsystem includes an abstract execution model of the processor core (CPU1, respectively

CPU2), local memory, interface and other peripherals. Each processor subsystem executes a

software stack made of the application tasks code, communication and OS layers.

Finally, the HAL API and processor are implemented through the use of a HAL

software layer and the corresponding processor part for each software subsystem. This

represents the virtual prototype level (figure 3.d). At the virtual prototype level the

communication consists of physical I/Os, e.g. load/store. The platform includes all the

hardware components such as cache memories or scratchpads. The scheduling of the

communication and computation activities for the processors becomes explicit. The

simulation at this level allows cycle accurate performance validation and it corresponds to

classical hardware/software cosimulation models with Instruction Set Simulators [Row 94]

1 .Introduction

 49

[Sem 00] [Nic 02] for the processors and RTL components or cycle accurate TLM

components for the hardware resources.

In the example illustrated in figure 3.d, the 2 processor subsystems (CPU1-SS, CPU2-

SS) include ISS for the execution of the software stack corresponding to CPU1, respectively

CPU2. Each processor subsystem executes a software stack made of the application tasks

code, communication, OS and HAL layers.

In order to validate the software during the different design steps, different execution

models are used adapted to each software abstraction level. In the rest of the document, we

use Simulink for the initial simulation at system architecture level, while for the all others we

use SystemC.

1.4. The MPSoC Architecture

In the following paragraphs, the definition of the MPSoC architecture will be given.

System on chip (SoC) represents the integration of different computing elements

and/or other electronic subsystems into a single integrated circuit (chip). It may contain digital,

analog, mixed-signal, and often radio-frequency functions – all on one chip.

Multi-Processor System on Chip (MPSoC) are SoC that may contain one or more

types of computing subsystems, memories, input/output devices (I/O) and other peripherals.

These systems range from portable devices such as MP3 players, videogame consoles, digital

cameras or mobile phones to large stationary installations like traffic lights, factory controllers,

engine controllers for automobiles or digital set-top boxes.

The MPSoC architecture is made of three types of components: software subsystems,

hardware subsystems and inter-subsystem communication, as illustrated in figure 4.

Inter-SubSystem Communication

Intra-SubSyst Comm.

CPU Peripherals

Intra-SubSyst Comm.

HW-SSSW-SS

Inter-SubSystem Communication

Intra-SubSyst Comm.

CPU Peripherals

Intra-SubSyst Comm.

CPU Peripherals

Intra-SubSyst Comm.

HW-SSSW-SS

Figure 4. MPSoC Architecture

1 .Introduction

50

The hardware subsystems (HW-SS) represent custom hardware subsystems that

implement specific functionality of an application or global memory subsystems. The HW-SS

contain two types of components: intra-subsystem communication and specific hardware

components. The hardware components implement specific functions of the target application

or represent global memories accessible by the computing subsystems. The intra-subsystem

communication represents the communication inside the HW-SS between the different

hardware components. This can be in form of a small bus (collection of parallel wires for

transmitting address, data and control signals) or point-to-point communication links.

The software subsystems (SW-SS) represent programmable subsystems, also called

processor nodes of the architecture. The SW-SS include computing resources, intra-subsystem

communication and other hardware components, such local memories, I/O components or

hardware accelerators. The computing resources represent the processing units or CPUs. The

CPU (Central Processing Unit) also known as processor core, processing element or shortly

processor, executes programs stored in the memory by fetching their instructions, examining

them, and then executing them one after another [Tan 99]. There are two types of SW-SS:

single core and multi-core. The single-core SW-SS includes a single processor, while the

multi-core SW-SS can integrate several processor cores in the same subsystem. The intra-

subsystem communication represents the communication inside the SW-SS, e.g. local bus,

hardware fifo, point-to-point communication links or other local interconnection network used

to interconnect the different hardware components inside the SW-SS.

The inter-subsystem communication represents the communication architecture

between the different software and hardware subsystems. This can be a hardware FIFO

connecting multiple subsystems or a scalable global interconnection network, such as bus or

Network on Chip (NoC). Despite most of the buses, the NoC allows simultaneous data

transfers, being composed of several links and switches that provide a means to route the

information from the source node to the destination node [Cul 98].

Homogeneous MPSoC architectures are made of identical software subsystems

incorporating the same type of processors. In the heterogeneous MPSoC architectures,

different types of processors are integrated on the same chip, resulting different types of

software subsystems. These can be GPP (General Purpose Processor) subsystems for control

operations of the application; DSP (Digital Signal Processor) subsystems special tailored for

data intensive applications such as digital signal applications, or ASIP (Application Specific

1 .Introduction

 51

Instruction Set Processor) subsystems with a configurable instruction set to fit specific

functions of the application.

The different subsystems working in parallel on different parts of the same application

must communicate each other to exchange information. There are two distinct MPSoC

designs that have been proposed and implemented for the communication models between the

subsystems: shared-memory and message passing [Cul 98].

The shared memory communication model characterizes the homogeneous MPSoC

architecture. The key property of this class is that communication occurs implicitly. The

communication between the different CPUs is made through a global shared memory. Any

CPU can read or write a word of memory by just executing LOAD and STORE instructions.

Besides the common memory, each SW-SS may have some local memory which can be used

for program code and those items that need not be shared. In this case, the MPSoC architecture

executes a multithreaded application organized as a single software stack.

The message passing organization assumes a heterogeneous MPSoC architecture with

multiple software stacks running on the non identical software subsystems. The communication

between different subsystems is generally made through message passing. The key property of

this class is that the communication between the different processors is explicit through I/O

operations. The CPUs communicate by sending each other message by using primitives such

as send and recv. There are three types of message passing: synchronous (if the sender

executes a send operation and the receiver has not yet executed a receive, the sender is

blocked until the receiver executes the receive), buffered or asynchronous blocking (when a

message is sent before the receiver is ready, the message is buffered somewhere, for example

in a mailbox, until the receiver takes it out; thus the sender can continue after a send operation,

if the receiver is busy with something else) and asynchronous non-blocking (the sender may

continue immediately after making the communication call) [Tan 99].

Heterogeneous MPSoC generally combines both models to integrate a massive

number of processors on a single chip [Pau 06]. Future heterogeneous MPSoC will be made

of few heterogeneous subsystems where each may include a massive number of the same

processor to run a specific software stack [Jer 06].

Besides the hardware architecture previously presented, the MPSoC means also

software running on hardware. The major challenge for technical success of MPSoC is to

make sure that the software executes efficiently on the hardware [Bert 02].

1 .Introduction

52

The software design makes use of a programming model. The programming model

abstracts the hardware for the software design. It is made of a set of functions (implicit and/or

explicit primitives) that can be used by the software to interact with the hardware.

Additionally, the programming model needs to cover the four abstraction levels required for

the software refinement previously presented (system architecture, virtual architecture,

transaction accurate architecture and virtual prototype).

Examples of programming models can be considered: the OpenMP [Cha 00] for the

shared memory architectures and MPI [MPI], TTL [Van 04] or YAPI [Koc 00] for the

message passing architectures. The Multiflex [Pau 06] supports both shared memory model

and a remote procedure call based programming approach called DSOC (Distributed System

Object Component) for message passing architectures. Its shared memory functionality is close

to the one provided by POSIX [But 97], e.g. thread creation, mutexes, condition variables, etc.

The DSOC uses a broker to spawn the remote methods which aligns with CORBA. The

programming model is usually embodied in a programming environment [Cul 98].

This document considers heterogeneous MPSoC architectures organized as it was

illustrated previously in figure 4 with the support of message passing communication model.

1.5. Software Stack for MPSoC

 The software running on the MPSoC architecture is called embedded software. The

software costs are often a large part of the total cost of an embedded system and are

characterized by different performance requirements [Hen 03].

Often, the performance requirement in an embedded application is a real-time

requirement. A real-time performance requirement is one where a segment of the application

has an absolute maximum execution time that is allowed. For example, in a digital set-top box

the time to process each video frame is limited, since the processor must accept and process

the next frame shortly. In some applications, a more sophisticated requirement exists: the

average time for a particular task is constrained as well as the numbers of instances when

some maximum time is exceeded. Such approaches (sometimes called soft real-time) arise

when it is possible to occasionally miss the time constraints on an event, as long as not too

many are missed. Real-time performances tends to be highly application dependent.

1 .Introduction

 53

Two other key characteristics exist in many embedded applications: the need to

minimize the memory and the need to minimize the power. Sometimes the application is

expected to fit totally in the memory of the processor on chip; other times the application

needs to fit totally in a small off-chip memory. In any event, the importance of memory size

translates to an emphasis on code size, since data size is dictated by the application. Large

memories also mean more power [Hen 03].

1.5.1. Definition of the Software Stack

In this document, the software running on the software subsystems is called software

stack. In heterogeneous MPSoC architectures, each software subsystem executes a software

stack. The software stack is made of two components: the application tasks code and the

hardware dependent software (HdS). The HdS layer is made of three components: the

Operating System (OS), specific I/O communication software and the Hardware Abstraction

Layer (HAL). The HdS is responsible to provide application and architecture specific services,

i.e. scheduling the application tasks, communication between the different tasks, external

communication with other subsystems, hardware resources management and control. The

following paragraphs detail the software stack organization, including all these different

components.

1.5.2. Software Stack Organization

The software stack is structured in different software layers that provide specific

services.

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task n

A
p

p
lic

at
io

n
H

d
S

Task 1

HDS API

Comm OS

HAL API

HAL

Task 2 Task n

A
p

p
lic

at
io

n
H

d
S

Figure 5. Software Stack Organization

1 .Introduction

54

Figure 5 illustrates the software stack organization in two layers: application layer and

HdS (Hardware dependent Software) layer. In the first section, the application layer will be

presented, and then the HdS will be defined.

1.5.2.1. Application Layer

The application layer may be a multi-tasking description or a single task function of the

application targeted to be executed on the software (processor) subsystem. A task or thread is

a lightweight process that runs sequentially and has its own program counter, register set and

stack to keep track of where it is. In this document, the terms task and thread are used as

interchangeable terms. Multiple tasks can be executed in parallel by a single CPU (single-

core) or by multiple CPUs of the same type grouped in the software subsystem (multi-core).

The tasks may share the same resources of the architecture, such as processors, I/O

components and memories. On a single processor core node, the multithreading generally

occurs by time slicing, wherein a single processor switches between different threads. In this

case, the processing is not literally simultaneous, as the single processor is doing only one

thing at a time. On a multi-core processor subsystem, threading can be achieved via

multiprocessing, wherein different threads can run literally simultaneously on different

processors inside the software node [Tan 95].

The application layer consists of a set of tasks that makes use of programming model

or Application Programming Interface (API) to abstract the underlying HdS software layer.

These APIs corresponds to the HdS APIs.

1.5.2.2. HdS Layer

The HdS layer represents the software layer which is directly in contact with, or

significantly affected by, the hardware that it executes on, or can directly influence the

behavior of that hardware [Pos 03]. The HdS integrates all the software that is directly

depending on the underlying hardware, such as hardware drivers or boot strategy. It also

provides services for resources management and sharing, such as scheduling the application

tasks on top of the available processing elements, inter-task communication, external

communication, and all other kinds of resources management and control. The federative HdS

term underlines the fact that, in an embedded context, we are concerned with application

1 .Introduction

 55

specific implementations of these functionalities that strongly depend on the target hardware

architecture [Jer 06].

Current research studies proved that the HdS debug represents 78% of the global system

total debugging time of an MPSoC design cycle [You 04]. This may due to incorrect

configuration or access to the hardware architecture, e.g. a wrong configuration of the memory

mapping for the interrupt control registers. In order to reduce its complexity, the HdS is

structured into three software components: operating system (OS), communication management

(Comm) and hardware abstraction layer (HAL).

1.5.2.2.1. Operating System

The operating system (OS) is the software component that manages the sharing of the

resources of the architecture. It is responsible for the initialization and management of the

application tasks and communication between them. It provides services such as tasks

scheduling, context switch, synchronization and interrupt management.

Finding the optimal algorithm for the tasks scheduling represents a NP-complete

problem [Ven 05]. There are different categories of scheduling algorithms. The classic criteria

are hard real-time versus soft real-time or non real-time; preemptive versus cooperative;

dynamic versus static, centralized versus distributed [Tan 95].

Contrary to non real-time, the real-time scheduler must guarantee the execution of a task

in a certain period of time. Hard real-time must guarantee that all deadlines are met.

Preemptive scheduling allows a task to be suspended temporally by the OS, for example

when a higher-priority task arrives, resuming later when no higher-priority tasks are available to

run. This is associated with time-sharing between the tasks. Examples of preemptive scheduling

algorithms are: round robin, shortest-remaining-time or rate-monotonic schedulers. The

cooperative or non-preemptive scheduling algorithm runs each task to its completion. In this

case, the OS waits for a task to surrender control. This is usually associated with event-driven

operating systems. Examples of non-preemptive algorithm are the shortest-job-next or highest-

response-ratio-next.

With static algorithms, the scheduling decisions (preemptive or non-preemptive) are

made before execution. Contrary to static algorithms, the dynamic schedulers make their

scheduling decisions during the execution.

1 .Introduction

56

The implementation of the scheduler may be centralized, which controls all the task

execution ordering and communication transactions or distributed which distributes the control

decision to local schedulers [Cho 05].

When a task is ready for execution and it is selected by the scheduler of OS according to

the scheduler algorithm, the OS is also responsible to perform the context switch between the

currently running task and the new task. The context switch represents the process of storing

and loading the state of the CPU in order to share the available hardware resources between

different tasks. The state of the current task, including registers, is saved, so that in case the

scheduler gets back for execution the first task, it can restore its state and continue normally.

In order to ensure a correct runtime and communication order between the different

tasks running on parallel, synchronization is required. The tasks can synchronize by using

semaphores or by sending/receiving synchronization signals (events) each other. The mutex is a

binary semaphore which ensures mutual exclusion on a shared resource, such as a buffer shared

by two threads, by locking and unlocking it whenever the resource is accessed by a task [Tan

97] [Tan 99].

 The interrupt handler is another OS service used for interrupts management. There are

two types of processor interrupts: hardware and software. A hardware interrupt causes the

processor to save its state of execution via a context switch, and begins the execution of an

interrupt handler. Software interrupts are usually implemented as instructions in the

instruction set of the processor, which cause a context switch to an interrupt handler similar to

a hardware interrupt. The interrupts represent a way to avoid wasting the processor's

execution time in polling loops waiting for external events. Polling means when the processor

waits and monitors a device until the device is ready for an I/O operation.

1.5.2.2.2. Communication Software Component

The second software component of the HdS layer constitutes the communication

component, which is responsible to manage the I/O operations and more generally the

interaction with the hardware components and the other subsystems. The communication

component implements the different communication primitives used inside a task to exchange

data between the tasks running on the same processor or between the tasks running on different

processors. It may include different communication protocols, such as fifo (first-in-first-out)

implemented in software, or communication using dedicated hardware components. If the

1 .Introduction

 57

communication requires access to the hardware resources, the communication component

invokes primitives that implement this kind of low level access. These function calls are done in

form of HAL APIs.

The HAL APIs allow for the OS and Communication components to access the third

component of the software stack, that is the HAL layer.

1.5.2.2.3. Hardware Abstraction Layer

Low level details about how to access the resources are specified in the Hardware

Abstraction Layer (HAL) [Yoo 03]. The HAL is a thin software layer which totally depends on

the type of processor that will execute the software stack, but also depends on the hardware

resources interacting with the processor. The HAL includes the device drivers to implement the

interface for the communication with the device. This includes the implementation of drivers

for the I/O operations or other peripherals. The HAL is responsible also with processor specific

implementations, such as loading the main function executed by an OS, more precisely the boot

code, or implementation of the load and restore CPU registers during a context switch between

two tasks, but also codes for configuration and access to the hardware resources, e.g. MMU

(Memory Management Unit), timer, interrupt enabling/disabling etc.

The structured representation of the software stack in several layers (application tasks,

OS, communication and HAL), as previously described, has two main advantages: flexibility in

terms of software components reuse by changing the OS or the communication software

components, and portability to other processor subsystems by changing the HAL software layer.

1.6. The Concept of Mixed Architecture/Application Model

The following paragraphs give the definition of the mixed architecture/application

model and describe the execution scheme that allows simulating this model.

1.6.1. Definition of the Mixed Architecture/Application Model

The architecture and application specifications can be combined in a mixed

hardware/software model where the software tasks are mapped on the processor subsystems.

This mixed hardware-software representation can be modeled by abstracting the processor

1 .Introduction

58

subsystems and communication topology. The processor subsystems are substituted by

abstract subsystem models, while the communication is described using an abstract

communication platform. The result is a mixed application/architecture model, named also

mixed hardware/software model. The mixed architecture/application concept allows modeling

heterogeneous MPSoC at different abstraction levels, independent from the description

language used by the designer. The mixed hardware software model is called also Combined

Algorithm/Architecture model [Bon 06].

1.6.2. Execution Model for Mixed Architecture/Application Model

The execution of the mixed hardware/software model is performed through a

simulation which allows validation and debug of the system functionality at different stages

of the design process. The execution model allows capturing the behavior of the application

together with the architecture with a detailed hardware-software interaction. The execution

model helps to create early performance models of the MPSoC and validate the system

performances. By using different test benches, the execution model allows to test different

functionality scenarios, even before the final implementation.

The execution model can be described using different simulation environments, such

as SystemC or Simulink. In the following sections, the execution models described in

SystemC, respectively Simulink will be presented.

1.6.2.1. Execution model described in SystemC

 SystemC is a standard system level design language based on a C++ class library

[OSCI]. SystemC is convenient for mixed hardware/software modeling. It provides the

abstraction and constructs needed for high-level hardware modeling and verification. Such

abstraction, primarily at the transaction-level, allows much faster simulations and analysis,

and enables design issues to be detected early in the process. At the same time, the software

can be described as C or C++ modules.

The hardware is described in SystemC using the concept of modules, ports and

channels or signals provided by a C++ extension library. The software is described using the

concept of concurrent threads. The threads are encapsulated into the modules and may access

external channels through the ports of the modules. In this model, the hardware-software

interaction is modeled using the classical concepts of channel or signals.

1 .Introduction

 59

The execution model in SystemC allows the execution of the threads independently

using their own execution stacks [OSCI]. These threads or processes can be sensitive to

events on input or output ports. The sensitivity list of a process may be defined statically or

can change dynamically during the simulation. There are three types of SystemC processes:

SC_THREAD, SC_CTHREAD and SC_METHOD. The threads (SC_THREAD) can suspend

and resume execution only when they call the wait() function. The clocked threads

(SC_CTHREAD) are special threads which are sensitive only to clock signals. The methods

(SC_METHOD) behave like a non-preemptable standard procedure written in a high level

programming language. A SC_METHOD may suspend and resume execution when it gives

the control to the SystemC simulation kernel.

The simulation in SystemC involves execution of the SystemC scheduler which may

execute processes of the application. The SystemC simulation kernel does not preempt the

execution of a thread. The SystemC processes are executed until completion or until they

yield control to the simulation engine. Hence, the SystemC scheduler is co-operative

multitasking, as the processes run without interruption up to the point where it either returns

or calls the function wait(). The thread code between two wait() calls is executed in one

simulation clock cycle. Simulation time can advance only when a wait() statement has been

called.

The SystemC processes scheduler is event-driven, meaning that the processes are

executed to the occurrence of events. Events occur or are notified at precise points in the

simulation time. The scheduler can execute a process (a SystemC method or a SystemC

thread) in the following cases:

- In response to the process instance having been made runnable during the

initialization phase of the simulation

- In response to a call function sc_spawn to create processes dynamically during the

simulation

- In response to the occurrence of an event to which the process instance is sensitive.

Each process can have static or dynamic sensitivity list. The static sensitivity list

represents the list of events that may cause the process to be resumed or triggered

that are fixed before the simulation. The dynamic sensitivity list may change

during the simulation.

1 .Introduction

60

- In response to a time-out having occurred. A time-out occurs when a given time

interval has elapsed.

The simulation can start only after instantiation and proper connection of all modules

and signals. The simulation starts with calling sc_start() from the top level that contains

sc_main(). The sc_start() accepts as argument the total number of default time units of the

simulation period. If the argument is a negative number, the system is simulated infinitely.

Similar to VHDL or Verilog, SystemC threads scheduler supports delta cycles. A

delta-cycle is comprised of evaluate and update phases, and multiple delta cycles may occur at

a particular simulated time. As illustrated in figure 6, the SystemC simulation has the

following steps: initialization, evaluation, and update.

Initialization

Update
Output Signals

Advance
Simulation Time

Simulation
Stop Time?

no

STOP
Simulation

START
Simulation

yes

Run all active
processes until
synchronization

point (wait())

Is there
active

process?

yes

no

Figure 6. SystemC Simulation Steps

1 .Introduction

 61

In the initialization step, the SystemC scheduler establishes the initial value for all

signals and makes all the processes active. During the evaluation step, the scheduler executes

all the processes ready to run in an unspecified order. The order of the thread execution is

non-deterministic within a certain simulation phase. This may cause events notification to

occur which make other processes ready. If new processes become active, the evaluation will

continue until the list of ready processes is empty. The last phase is to update the values of the

output signals and to advance the simulation time to the earliest pending time notification.

1.6.2.2. Execution model described in Simulink

Simulink provides the capability to model and simulate the mixed

architecture/application representation like a synchronous dataflow model. The hardware is

described in Simulink using the concept of subsystems, ports and signals provided by the

standard Simulink library. The software is described as a set of functions using the standard

Simulink blocks or user defined functions. The functions are encapsulated into the subsystems

and may access external signals through the ports of the subsystems. In this model, the

hardware-software interaction is modeled using the concepts of signals connecting different

ports.

The execution model in Simulink supports various simulation options, such as the

simulation's start and stop time and the type of solver used to solve the model at each

simulation time step. Specifying simulation options is called configuring the model. Simulink

enables to create multiple model configurations, called configuration sets, modify existing

configuration sets or switch configuration sets.

Once the configuration model that meets the application requirements is defined or

selected, the mixed architecture/application model can be executed. Simulink runs the

simulation from the specified start time to the specified stop time. While the simulation is

running, the system designer can interact with the simulation in various ways, stop or pause

the simulation and launch simulations of other models. If an error occurs during the

simulation, Simulink halts the simulation and pops up a diagnostic viewer that helps the user

to determine the cause of error.

Figure 7 shows the main steps of the simulation engine in Simulink.

1 .Introduction

62

Initialization

Compute
Outputs

Generate
Outputs

Advance
Simulation Time

Simulation
Stop Time?

no

STOP
Simulation

START
Simulation

yes

Store Inputs

Figure 7. Simulink Simulation Steps

The first step is the initialization. This includes the compilation and link phases. First,

the Simulink engine invokes the model compiler. The model compiler converts the model to

an executable form. In particular, the compiler evaluates the values of the all block parameters.

Then, it determines the signal attributes for the links not explicitly specified, e.g. name, data

type, numeric type, and dimensionality of the signal. The model compiler checks that each

block can accept the signals connected to its inputs. Simulink uses a process called attribute

propagation to determine unspecified attributes. This process entails propagating the attributes

of a source signal to the inputs of the blocks that it drives. Then, the model compiler performs

block reduction optimizations and flattens the model hierarchy by replacing the hierarchical

subsystems with the blocks that they contain. It also determines the sorted order of the blocks,

which represent the invocation order of the blocks during the simulation. Finally, the model

compiler determines by propagation the sample times of all blocks in the model whose sample

times are not explicitly specified by the designer. After the compilation, the Simulink Engine

1 .Introduction

 63

allocates memory needed for signals, states, and run-time parameters. It also allocates and

initializes memory for data structures that store the run-time information for each block. This

corresponds to the Link phase. After the memory space allocation, initial values are assigned

to the states and outputs of the model to be simulated. The initialization phase occurs once at

the start of the simulation loop.

After the initialization, during the simulation loop, the Simulink engine successively

stores the inputs, computes and generates the outputs and states of the system at intervals

from the simulation start time to the finish time. The successive time points at which the

states and outputs are computed are called time steps. The length of time between steps is

called step size. The step size depends on the type of the solver. The next simulation step is

the sum of the current simulation time and the step size. When the simulation stop time is

reached, the simulation stops.

A solver is a Simulink software component that determines the next time step that a

simulation needs to take to meet target accuracy requirements that the user specified.

Simulink provides an extensive set of solvers, each adept at choosing the next time step for

specific types of applications. There are two types of solvers: fixed-step and variable-step.

With a fixed-step solver, the step size remains constant throughout the simulation. By contrast,

with a variable-step solver, the step size can vary from step to step, depending on the model's

dynamics. In particular, a variable-step solver reduces the step size when a model's states are

changing rapidly to maintain accuracy and increases the step size when the system's states are

changing slowly in order to avoid taking unnecessary steps.

In Simulink, the simulation of the application model starts by default at 0.0 seconds

and ends at 10.0 seconds. The Solver configuration panel allows specifying other start and

stop times for the currently selected simulation configuration. The simulation time and the

actual clock time are not the same. For example, running a simulation for duration defined in

the Solver configuration pane of 10 seconds usually does not take 10 seconds. The amount of

time it takes to run a simulation depends on many factors, including the model's complexity,

the solver's step sizes, and the host computer's speed.

1.7. Examples of Heterogeneous MPSoC Architectures

In the following paragraphs, examples of heterogeneous MPSoC architectures are

given. These examples will be used as case studies in the next chapters of the document.

1 .Introduction

64

The target hardware architecture considered is represented by a heterogeneous MPSoC

architecture. The heterogeneous architecture contains different processor subsystems and

memory or hardware subsystems. The different subsystems are interconnected via a global

communication network such as bus or network on chip (NoC). A processor subsystem,

which executes several tasks, includes one or more processors, local memories, peripherals,

and local buses connecting them. The hardware subsystem has the similar structure with the

processor subsystem. It includes one or more hardware IPs, local memories, local buses, and

communication I/Os such as bus bridge or network interface. A memory subsystem includes a

set of memories such as embedded SDRAMs, flash memories and external memories and it is

connected to a communication network via communication I/Os.

In this document, the programming environment and the different software generation

and validation steps are illustrated for 3 examples of heterogeneous MPSoC architectures,

namely the 1AX, the Diopsis RDT architecture with AMBA bus and the Diopsis R2DT

architecture with NoC. The main differentiation between these architectures, as it will be

described in the following paragraphs, consists of: the type and number of processors

incorporated in the architecture, the type of the adopted network component (bus or NoC in

different topologies) and the different communication and synchronization schemes provided

by the architecture.

1.7.1. 1AX with AMBA Bus

The first example of heterogeneous MPSoC represents the 1AX architecture. This

architecture is illustrated in figure 8.

ARM7 Mem

Mailbox Bridge

PIC
Mem0

HWFIFO

ARM-SS XTENSA-SS MEM-SS

Mailbox

XTENSA PIC Mem

Bridge
Bridge

AMBA AHB

Figure 8. 1AX MPSoC Architecture

1 .Introduction

 65

 The 1AX architecture is composed of two processor subsystems (ARM-SS and

XTENSA-SS) and one global memory subsystem (MEM-SS). The ARM-SS includes an

ARM7 processor [Arm] used to execute the control functions of the application, while the

XTENSA-SS contains a configurable Xtensa processor [Ten] for processing data-intensive

algorithms. The Xtensa processor can be customized to the target application functions with

an automatic instruction set generator called XPRES (Xtensa Processor Extension Synthesis).

The different subsystems are interconnected using an AMBA bus [Arm]. Each processor

subsystem integrates the processor core (ARM7, respectively XTENSA), the local memory

(Mem), the programmable interrupt controller (PIC), mailbox for the processors

synchronization, local bus and the bridge to interface with the AMBA bus.

 The interrupt controller handles external interrupts according to priority to cope with

external events (from mailbox) or data arriving from the other components (hardware fifo).

The local memories store program code and data. They also serve to store the buffer

used for the communication between the tasks running on the same processor. The MEM-SS

includes a global memory accessible by both processing units and the bridge for the

connection with the AMBA bus. The 1AX architecture contains also a hardware FIFO

(HWFIFO) directly connected to the local buses of the two processor subsystems. The

HWFIFO contains synchronization.

Each processor and hardware subsystem have a memory address space of 4 MB

(megabytes), while the memory subsystem has a memory address space equal with its

memory size. The 1AX architecture contains a global memory of 256 MB. The processor

subsystems have the first 4 MB address space reserved for the local bus transactions

(0x00000000-0x003FFFFF). The memory address space of a processor subsystem is divided

into two parts: 3 MB for local memory and 1 MB for peripheral memories. Bus transactions

with addresses lower than 4 MB (0x00400000) are treated as accesses to local components,

while those with addresses higher than 4MB are forwarded to the global AMBA bus via the

bridge component of the processor subsystem. The bus bridge receives the forwarded

transactions within the address space assigned to its subsystem.

This architecture allows two types of communication schemes between the processors:

using the global memory and using the hardware FIFO. In the first communication scheme,

one processor can deliver data to other processor though a global shared memory and send a

synchronization event via a mailbox between different processors. For example, a data

transfer from the ARM processor to the XTENSA processor using the global memory has the

1 .Introduction

66

following steps: first, the ARM processor checks a bit in its mailbox. If the bit is set to one,

which means that a space is available in the global memory, the ARM processor clears the bit

to zero, writes data to the global memory, and sets a bit of the mailbox in the Xtensa

processor subsystem to one, which means that data is available in the global memory. After

checking the bit in the mailbox, the Xtensa processor clears the bit of its mailbox to zero,

reads the data from the global memory, and sets the bit of the mailbox in the ARM processor

subsystem to notify the completion of the read operation. For this type of communication, the

bandwidth of the global interconnect could become bottleneck of the inter-processor

communication. It also may cause long latency to access the data because of the limitation of

the shared bus.

The second possible communication scheme between the two processors is based on

the hardware FIFO. The HWFIFO is a point-to-point communication between two processor

subsystems. Besides the data transfer, the HWFIFO also implements the synchronization

mechanism of the processors. For instance, a data transfer initiated by the ARM processor

using the HWFIFO has the following steps: the ARM processor copies data from its local

memory to the hardware FIFO directly. When the data number in the FIFO reaches a certain

threshold, the Xtensa processor checks it through interrupt or polling methods. Then, the

Xtensa processor copies the data from the hardware FIFO to its local memory. When the

hardware FIFO reaches empty, the ARM processor checks it through interrupt or polling

methods and copies the data again. The HWFIFO provides a new path to transfer data instead

of using the shared memory and global network. Thus, it can decrease the required bandwidth

of the global memory and network and speed up the communication. But compared to the

global memory, the HWFIFO increases hardware area because it needs extra shared memory.

It also relies on the processor to transfer data.

1.7.2. Diopsis RDT with AMBA Bus

The second target architecture example is the Shapes MPSoC architecture [Pao 06],

which is a multi-tile architecture based on a Diopsis tile. Figure 9 illustrates an elementary tile,

namely the RDT (RISC + DSP Tile).

The Diopsis tile is a triple core system integrating an ATMEL mAgicV VLIW DSP

[Atm], an ARM 9 RISC microcontroller [Arm] and a distributed network processor (DNP).

The Diopsis tile is called also D940. The system combines the flexibility of the ARM9

1 .Introduction

 67

controller with the high performance of the DSP and the on-chip and off-chip networking

capability of the DNP.

The local memories of the DSP and RISC can be accessed by both processing units.

Additionally, a distributed external memory (DXM) can be used to share data between all the

processors. The data transfer between these processors can follow different schemes based on

an AMBA bus, e.g. the DSP can read/write data to the local memory of the ARM by using or

not a DMA transfer.

JTAG
ROM KB

Bridge

DXM Interface(AHB EBI)

SRAM KB

PDMA

DSP JTAG

DSP
AHB

Master

4-addr/

cycle
Multiple

DSP

Addr

Gen

10-float

ops/cycle

16-port

256x40

Data Regs

DPM
2-port

DDM
6-access/

cycle

DSP
AHB
Slave

Slave

ICE

RISC
Instr Cache MMU Data Cache

RDM IF BIU
I D I D

Master

Multi-layer

Bus MATRIX

APB
DNP
AHB

Master

DNP
AHB
Slave

DNP
AHB

Master

DNP

X
+

DXM

X
-

Y
+

Y
-

Z
+

Z
-

C
+

NoC
(NI)

P
E
R
I

P
H
E
R
A
L
S

JTAG
ROM KB

Bridge

DXM Interface(AHB EBI)DXM Interface(AHB EBI)

SRAM KB

PDMA

DSP JTAG

DSP
AHB

Master

4-addr/

cycle
Multiple

DSP

Addr

Gen

10-float

ops/cycle

16-port

256x40

Data Regs

DPM
2-port

DDM
6-access/

cycle

DSP
AHB
Slave

Slave

ICE

RISC
Instr Cache MMU Data Cache

RDM IF BIU
I D I D

Master

Multi-layer

Bus MATRIX

APB
DNP
AHB

Master

DNP
AHB
Slave

DNP
AHB

Master

DNP

X
+

DXM DXM

X
-

Y
+

Y
-

Z
+

Z
-

C
+

NoC
(NI)

P
E
R
I

P
H
E
R
A
L
S

Figure 9. Diopsis RDT Heterogeneous Architecture

This document considers as example of MPSoC architecture a simplified version of

the initial Diopsis tile. The selection of the components from the original architecture still

captures all the possible communication schemes and specific I/O components. The subset is

shown in figure 10.

The reduced Diopsis tile contains 2 software subsystems: the ARM and the DSP

software subsystems. The ARM subsystem includes the processor core and local memories:

SRAM for data and ROM for program code. The DSP subsystem includes the DSP core, data

memory (DMEM), program memory (PMEM), control and data registers (REG), direct

memory access engine (DMA), programmable interrupt controller (PIC) and the mailbox as

synchronization component for the communication between the two processors. The interrupt

controller handles the external interrupts according to their priorities. The timer has the

1 .Introduction

68

highest priority of all the interrupt sources for both processors. All the communication devices

are assumed to generate an interrupt when new data becomes available.

AMBA AHB

ARM9 SS

SRAM

POT SS

Bridge

AIC SPI

Timer mailbox

ARM9Bridge

MEM SS

Bridge

DXM

ROM

REG DMEM

DSP SS

Bridge DMA

mailboxPIC

DSP

PMEM

Figure 10. Target Diopsis based Architecture

Apart from the software subsystems, the architecture contains 2 hardware subsystems

as well. The hardware nodes consist of distributed external memory subsystem (DXM) and

peripherals on tile (POT) subsystem. The distributed external memory subsystem includes a

global memory shared by the processors. The POT includes the system peripherals of the

RISC processor, e.g. timer, advanced interrupt controller (AIC), but also the I/O components

of the tile such as the serial peripheral interface (SPI).

The interconnection between these software and hardware subsystems is made via the

AMBA bus. Hence, all the subsystems contain a bridge component to interface with the

AMBA bus and a local bus for the local components interconnection. The AMBA bus

supports burst mode transmissions in order to allow continuously data transfer though the bus

after its initialization.

For performance reasons, the ARM processor can access directly the data memory and

control/status registers of the DSP processor via the AMBA slave interface of the DSP

subsystem. In the same way, the DSP core can read/write directly on the local memory of the

1 .Introduction

 69

RISC processor by initiating a DMA transfer. Moreover, the processors can store and load

data to/from DXM connected to the AMBA bus. Therefore, this architecture allows different

kinds of communication mapping schemes between the processors characterized by different

performances.

1.7.3. Diopsis R2DT with NoC

The third target architecture considered in this document represents the Diopsis R2DT

(RISC + 2 DSP) tile. This heterogeneous architecture is an extension of the previously

presented RDT tile. Figure 11 shows the Diopsis R2DT tile.

It contains three software subsystems: one ARM9 RISC processor subsystem and two

ATMEL magicV VLIW DSP processing subsystems. Similarly with the RDT tile, the

hardware nodes represent the global external memory (DXM) and POT (Peripherals on Tile)

subsystem. The POT subsystem contains the peripherals of the ARM9 processor and the I/O

peripherals of the tile. All the three processors may access the local memories of the other

processors and the distributed external memory (DXM).

In this architecture, the different subsystems are interconnected using the Hermes

Network on Chip (NoC) [Mor 04]. The bridges required for the data transfer through the

AMBA bus of the RDT architecture are replaced with Network Interface (NI) components. In

the same manner, the DMA engines of the DSP subsystems provide interfaces to the NoC

instead of the AMBA AHB interface.

Hermes NoC

ARM9 SS

SRAM

POT SS

NI

AIC SPI

Timer mailbox

ARM9
NI

MEM SS

NI

DXM

ROM

REG1 DMEM1

DSP1 SS

NI DMA

MailboxPIC

DSP1

PMEM

REG2 DMEM2

DSP2 SS

NI DMA

MailboxPIC

DSP2

PMEM

Figure 11. Diopsis R2DT with Hermes NoC

1 .Introduction

70

The NoC represents an on-chip packet-switched micro-network of interconnects. It is

constructed from multiple point-to-point data links interconnected by switches (routers), such

that data messages can be relayed from any source module to any destination module over

several links, by making routing decisions at the switches. As the NoC can operate

simultaneously on different data packets, it allows several data transfers in parallel through

the network. Therefore, it overcomes the limitations offered by a bus in terms of bandwidth

and scalability [Ben 02].

The basic components of a NoC are the switches, network interfaces and the links

between them. The data delivered through the NoC from the source module to the destination

module is divided into packets. A packet represents the basic unit for routing and sequencing.

The packets may be divided into flits. A flit (flow control digit) is the basic unit of bandwidth

and storage allocation. Flits do not have any routing or sequence information and have to

follow the router for the whole packet.

There are several factors that may influence the performances of a NoC [Pul 07], such

as:

- Topology. The topology represents the static arrangement of the routers and the

channels between them. A good topology allows fulfilling the requirements of the

traffic at reasonable cost. Examples of topologies are the ring, butterfly, tree, torus

and mesh topologies.

- Routing techniques. The routing algorithm performs the selection of a path through

the network. For instance, the XY routing algorithm supposes to route the flit

firstly on the horizontal direction (X) and then, when it reaches the column where

the destination module is located, it is routed in a vertical direction (Y). The XY

routing algorithm is minimal path routing algorithm and is free of deadlock [Asc

05]. The YX routing algorithm is similar with the XY, but reverses the order of

vertical and horizontal routing. Another type of routing technique is the west-first

algorithm.

- Switching strategy. The switching strategy specifies how the flits are forwarded by

the routers during the packet transmission. For instance, in the wormhole

transmission scheme, the router can start forwarding the first flit of a packet

without waiting for the tail [Moh 98]. Another type of switching strategy

represents the small frame switching.

1 .Introduction

 71

- Flow control. The flow control means how are the network resources allocated, if

packets traverse the network.

- Router architecture. This defines the properties of the switches and the buffers of

the switches, such as buffer size, buffer dimension, number of buffers, etc.

- Traffic pattern. The traffic pattern defines the data flows between every pair of

modules connected to NoC.

The Hermes NoC supports two types of topologies: Mesh and Torus. In the Mesh

topology, the NoC employs a 2D arrangement with 9 routers (3x3). The routers may have

from three to five ports, depending on the router position relative to the limits of the mesh.

The Mesh NoC uses a pure XY routing algorithm shared by all the ports, a round robin

scheduler to arbitrate the simultaneous packet transmission requests and wormhole packet

switching strategy.

In the Torus NoC model, every router has five bidirectional ports to implement a 3x3

2D Torus topology with wraparound links at the edges of the network. The routing algorithm

is a deadlock free version of the well known non-minimal west-first algorithm proposed in

[Gla 94].

1.8. Examples of Multimedia Applications

In the following paragraphs, three examples of applications are given. These examples

represent the target applications that will run on the architecture examples previously

described, considered as case studies in the remaining part of this document.

The target application domain represents the multimedia applications domain. This

kind of application can be found in many areas, such as entertainment, engineering,

advertisements, medicine, scientific research, spatial temporal applications (visual thinking,

visual/spatial learning) etc. Multimedia applications are based on information processing, e.g.

text, audio, graphics, animation, video, interactivity. Examples of multimedia applications

are: MPEG 2/4, H.263/4, JPEG 2000, MJPEG or the MPEG 1 Audio (layer 3)

encoder/decoder (shortly the MP3).

As presented in the following paragraphs, the considered target applications are:

1 .Introduction

72

- the Token Ring application, a simpler example used to illustrate the concepts and

methodology and targeted to be executed on the 1AX MPSoC architecture

- the Motion JPEG Decoder for image processing that will be mapped and executed

on the Diopsis RDT architecture

- the H.264 Encoder application for video processing, which will be running on the

Diopsis R2DT architecture with different NoC topologies.

Additionally, the programming environment was applied for an audio processing

application as well, the MP3 Decoder, running on the Diopsis RDT architecture [Pop 07].

The following paragraphs describe the considered 3 application examples (Token Ring,

Motion JPEG and H.264).

1.8.1. Token Ring Functional Specification

 The first target application is the Token Ring application. The application is composed

of three nodes that exchange a token. The nodes are connected in form of a ring. When a node

receives the token, it checks if the node is the destination of the token by comparing the

node’s identifier with the token’s value. In this case, the node performs some computations.

Otherwise, it forwards the token to the next node. The functional specification of the Token

Ring application is illustrated in figure 12.

If token Є N1 Token+=2 Token+=1

Mux TokenDFTSumIf sum<
1.000.000

STOP

If token Є N2 If token Є N3
yes yes

yes

yes

no no no

no

Figure 12. Token Ring Functional Specification

If the token is designed to the first node, the node increments the token value with 2

units. The second node increments the token value with 1 unit. Finally, the third token

1 .Introduction

 73

multiplexes the value of the token and computes a DFT (Discrete Fourier Transform) function.

The multiplexed value of the token represents the input for the DFT computation.

The DFT, occasionally called the finite Fourier transform, is a transform for Fourier

analysis of finite-domain discrete-time signals. It expresses an input function in terms of a

sum of sinusoidal components by determining the amplitude and phase of each component.

However, the DFT is distinguished by the fact that its input function is discrete and finite: the

input to the DFT is a finite sequence of real numbers, which makes the DFT ideal for

processing information stored in computers. In particular, the DFT is widely employed in

signal processing and related fields to analyze the frequencies contained in a sampled signal,

to solve partial differential equations, and to perform other operations such as convolutions.

The DFT can be computed efficiently in practice using a fast Fourier transform (FFT)

algorithm [Coo 69].

After the DFT computation, the generated coefficients are summed and assigned as

new value to the token. The iteration process will stop when the resulted sum is bigger than

1000000. Otherwise, the new value of the token is transmitted to the first node forming a loop.

1.8.2. Motion JPEG Decoder Functional Specification

The Motion JPEG Decoder application represents an image processing multimedia

application. In this document, the baseline Motion-JPEG decoder is used as target application

example, which represents the basic JPEG decoding process supported by all the JPEG

decoders [Wal 91]. JPEG is named from its designer, the Joint Photographic Expert Group.

The JPEG decoder performs the decompression of an encoded JPEG bitstream

(01011…) and renders the decoded images on a screen. The JPEG compression algorithm

splits the input image on blocks of 8x8 pixels. The decoder performs the exact opposite

process of the encoder. The main functions of the decoder are illustrated in figure 13.

Variable

Length
Decoding

IQ

DPCD

Huffman Tables Quantification Tables

Bitmap Images

JPEG
Images

01101…

DC Coefficients

AC Coefficients

IDCT
Zigzag
Scan

RLD

Figure 13. Motion JPEG Decoder

1 .Introduction

74

 The main functions of the Motion JPEG decoder algorithm are described as follows:

- VLD (Variable Length Decoder). The VLD represents the Huffman entropy

decoder. The input binary sequence of the compressed image is converted to a

symbol sequence using Huffman tables. This represents the opposite step of the

VLC (Variable Length Coder) step of the JPEG Encoder, when variable length

codes are assigned to the symbols created from the DCT coefficients. The decoder

can store only two sets of Huffman tables: one AC table and one DC table per set.

- DPCD (Differential Pulse Code Demodulation). The DPCD represents the

opposite process of the DPCM (Differential Pulse Code Modulation) part of the

JPEG Encoder, which is applied on the DC coefficient. The DC coefficient

represents the coefficient with 0 frequencies in both dimensions of the DCT

coefficients matrix, located at the left-top corner [0, 0]. The DPCD is in charge

with the reconstruction of the DC coefficient.

- RLD (Run Length Decoding). The RLD is the opposite step of the RLC (Run

Length Coding) of the compression algorithm, which is applied on the AC

coefficients (the 63 DCT coefficients which are different from the DC coefficient).

The AC coefficients are treated separately from the DC coefficient. The RLD

supposes to reconstruct the sequence of the AC coefficients from the sequence of

symbols by inserting the zero-valued AC coefficients before the non-zero valued

AC coefficients in the coefficients sequence.

- Zigzag Scan. This step puts back the 64 DCT coefficients in form of a matrix with

8x8 dimensions. The input of this step is an array of 64 elements in zigzag order,

and its output is an 8x8 matrix in original order.

- IQ (Inverse Quantization). The IQ is applied upon the 64 DCT coefficients using

quantification tables. This step consists of the multiplication of each of the 64

coefficients by its corresponding quantizer step size. The quantizer steps are stored

in the quantification tables.

- IDCT (Inverse Discrete Cosine Transform). This step transforms the 64 DCT

coefficients (the 8x8 block) from frequency domain to spatial domain and

reconstructs the 64-point output image signal by summing the basis signals.

1 .Introduction

 75

1.8.3. H.264 Encoder Functional Specification

 The H.264 Encoder application represents the third application example used as case

study. This application is a video processing multimedia application. It represents a standard

for video compression also known as MPEG-4 Part 10 or AVC (Advanced Video Coding).

The H.264 supports coding and decoding of 4:2:0 YUV video formats.

The input image frame (Fn) of a video sequence is processed in units of a macroblock,

each consisting of 16 pixels. A pixel consists of three color components: R (red), G (green)

and B (blue). Usually, pixel data is converted from RGB to YUV color space, where Y

represents the luma, and U and V the chroma samples. A macroblock contains 16x16=256 Y

luma samples and 8x8=64 U and 8x8=64 V chroma components. Each of these components is

processed separately. There are three types of macroblocks: I, P and B. The macroblocks are

numbered in raster scan order within a frame. A set of macroblocks is called slice.

To encode a macroblock, there are three main steps: prediction, transformation with

quantization, and entropy encoding. These main functions of the standard H.264/AVC

(Advanced Video Coding) are illustrated in figure 14 [Ric].

The prediction step tries to find a reference macroblock which is similar with the

current macroblock to be encoded. Depending on where the reference macroblock comes

from, there are two types of prediction: Intra and Inter mode. In Intra mode or I-mode, the

macroblocks are predicted using the previously encoded, reconstructed and unfiltered

macroblocks. In this case, the reference macroblock is usually calculated with mathematical

functions of neighboring pixels of the current macroblock. In the Inter (P or B) mode the

macroblocks are predicted from a reference picture (F’n-1) by motion estimation (ME) and

motion compensation (MC). This involves finding a 16x16 sample region in the reference

frame that closely matches the current macroblock. The reference picture maybe chosen from

a selection of past or future (display order) pictures, that have been already encoded,

reconstructed and filtered. The ME involves finding a 16x16 sample region in the reference

frame that closely matches the current macroblock. A popular matching criteria is to measure

the sum of absolute difference (SAD) between the current block and the candidate block and

to find its minimal value [ChenJ 06].

1 .Introduction

76

Fn T

F’n

F’n-1

+

-

+

+

Inter

Intra

NAL

.yuv

Q

T-1

Reorder CABAC

Q-1Filter

ME

MC

Intra
Pred.

Choose
Intra Pred.

Prediction

Figure 14. H.264 Encoder Algorithm Main Profile

After the prediction, the resulted macroblock is subtracted from the initial block to

produce a residual (difference) block. Then, the residual block is transformed (T) and

quantized (Q) to give a set of quantized transform coefficients, which are reordered (Reorder)

and entropy encoded (CABAC in figure 14). The H.264 uses two types of transforms (T):

Hadamard and DCT transforms, depending on the residual data that is to be encoded. A

Quantizer step is used for the division of the DCT coefficients. The Quantizer steps size could

be different for the luma and chroma components, but in range 0-51. During the Reordering,

each 4x4 block of quantized transform coefficients are mapped to a 16-element array in a

zigzag order, which will be entropy encoded. There are two types of entropy encoder:

CAVLC (Context Adaptive Variable Length Coder) and CABAC (Context Adaptive Binary

Arithmetic Coding).

The entropy encoded coefficients together with the information required to decode

each macroblock (prediction modes, quantizer parameters, motion vector information, etc)

form the compressed bitstream. This compressed bitstream is passed to a Network

Abstraction Layer (NAL) for transmission or storage of the encoded image.

During the encoding process, the H.264 algorithm decodes (reconstructs) the

macroblock to provide a reference for further predictions. The quantized transform

coefficients are scaled (Q-1) and inverse transformed (T-1) to produce a difference block. This

difference block is added to the predicted macroblock to create the reconstructed block.

1 .Introduction

 77

Then, a filter is applied to reduce the effects of blocking distortion. The filter

smoothes block edges, improving the appearance of the decoded frame. After that, the

reconstructed reference picture is created from a series of blocks.

 The H.264 standard supports seven sets of capabilities, which are referred as profiles,

targeting specific class of applications. The most used profiles for MPSoC implementation are

the Baseline, Main Profile and Extended Profile. In this document, the Main Profile will be

used as application case study. The Main Profile includes support for interlaced video, which

means that not the entire image is compressed, but only every second line, i.e. the odd lines of

the 1st image and even lines of the 2nd image. The Main Profile also supports entropy coding

using context-based adaptive binary arithmetic coding (CABAC).

1.9. Conclusions

This chapter defined the basic concepts used in programming heterogeneous MPSoC

architectures, such as MPSoC, software stack, hardware-software interface and execution

model.

The software stack was organized into several components (application tasks code, OS,

communication and HAL). This layered organization of the software stack allows a gradual

design performed in several steps corresponding to different abstraction levels (system

architecture, virtual architecture, transaction accurate architecture and virtual prototype). The

software validation is performed by simulation using an abstract architecture model.

The specification of three multimedia applications (Token Ring, Motion JPEG

Decoder and H.264 Encoder) and three examples of MPSoC architectures (1AX, Diopsis

RDT, Diopsis R2DT), which will execute these applications, were given.

In the following chapters, the software design and validation at each of these different

abstraction levels will be detailed.

Chapter 2

 SYSTEM ARCHITECTURE

DESIGN

This chapter presents the system architecture design. The system architecture design

consists of partitioning and mapping the application onto the target architecture, and

mapping the communication onto the available hardware resources. The key contribution in

this chapter represents the definition, organization and design of the system architecture

using Simulink, for the Token Ring application running on the 1AX architecture, the Motion

JPEG application targeting the Diopsis RDT architecture and the H.264 Encoder running on

the Diopsis R2DT architecture. The functional simulation of the system architecture models

allows validation of the applications’ algorithm.

_

2. System Architecture Design
__

81

2.1. Introduction

The system architecture design consists of partitioning the application into several

parallel tasks and mapping the application tasks onto the target architecture. The result of the

system architecture design represents the system architecture model. In this chapter, the

mapping process will be defined, and then the system architecture model will be presented.

The objectives of the system architecture design are:

- Functional validation of the target application algorithm

- Specification of the application partitioning and mapping onto the hardware

architecture.

2.1.1. Mapping Application on Architecture

2.1.1.1 The Mapping

MPSoC design flow starts with two separate models: architecture and application [Lie

01] similar with the Y-chart [Kie 02]. Usually, the description of the application functionality

and hardware topology are independent of one other. The architecture is specified as a set of

processor and hardware subsystems that interact via communication network.

The application is generally specified as a functional model made of a set of multiple

functions. Then, the functions are grouped into tasks in order to identify the parts of the

application which can be done in parallel. This corresponds to the partitioning step. A parallel

software is composed of multiple cooperating tasks, each of which performs a subset of

functions of the application. In case that the initial model of the application is sequential, e.g.

sequential C code, a parallelization step is required.

The parallelization process determines how the computation, data access or

input/output operations and data can be distributed among different processing elements [Cul

98]. It also determines which parts of the application will be implemented in software and

which parts in hardware. The parallelization of the application consists in dividing the

computation in several pieces that can be executed in parallel. These different pieces group

several functions of the application and are named tasks or processes. The parallelization

mechanism is called partitioning. A parallel application decreases the total execution time of

2. System Architecture Design

82

the application compared to its sequential execution [Pau 06]. The partitioning step is a quite

difficult to be optimized in a general case [Ver 07] and it will not be considered in this

document.

The partitioned model of the application will be mapped on the target architecture.

The different tasks running in parallel may be executed by different processors. The number

of tasks does not have to be the same with the number of processors available in architecture.

If the number of processors available on the target architecture is less than the number of

tasks, more than 1 task may be executed on the same processor. The assignment of tasks to a

target processor that will execute them is called mapping.

The mapping represents the association between the tasks and the processing elements

on which they are executing and the association between the buffers used for the

communication between the tasks and the hardware communication resources of the

architecture [Fla 07]. The mapping should ensure a balanced distribution of the computation

over the processors in order to meet the design constraints, e.g. the overhead of the

communication, synchronization and parallelism management [Cul 98].

The output of the mapping represents the assignment of the application functions to

the architectural units [Mic 02]. This corresponds to the system architecture model.

Example 1. Mapping Token Ring Application on 1AX

This paragraph illustrates the partitioning, mapping and

binding process for the Token Ring application onto the 1AX

architecture. Figure 15 shows the correlation between the

application functions and the architecture elements.

In this example, the functions of the application are

grouped into three tasks. Each task corresponds to a token node.

The first two tasks (T1 and T2) are mapped on the ARM7 processor,

while the third task T3 is mapped onto the XTENSA processor.

Figure 15 shows also the allocation of the communication

buffers onto the hardware communication resources. Thus, the

communication buffer used for the data exchange between the two

tasks mapped on the ARM7 processor T1 and T2 is mapped onto the

local memory SRAM of the ARM sub-system. The communication

buffers used between the task T1 and T3, respectively task T2 and

T3, which correspond to the communication between the two

processors, are mapped on the global memory.

2. System Architecture Design

 83

The result of the mapping process is the system

architecture model of the Token Ring application mapped on the

1AX architecture.

ARM7 Mem

Mailbox Bridge

PIC
Mem0

HWFIFO

ARM-SS XTENSA-SS MEM-SS

Mailbox

XTENSA PIC Mem

Bridge
Bridge

AMBA AHB

ARM7 Mem

Mailbox Bridge

PIC
Mem0

HWFIFO

ARM-SS XTENSA-SS MEM-SS

Mailbox

XTENSA PIC Mem

Bridge
Bridge

AMBA AHB

yes

yes

no

no

If token Є N1
yes yes

no no

Mux TokenDFTSumIf sum<
1.000.000

STOP

If token Є N3Token+=2 Token+=1If token Є N2

T1 T2

T3

Token Ring Application

1AX Architecture

Mapping

Figure 15. Mapping Token Ring on the 1AX architecture

2.1.1.2 The Design Space Exploration

Generally, there are many ways to map an application onto a given hardware

architecture. The design space exploration represents the different combinations of mapping

parallel software to parallel hardware. In order to be affordable in terms of design cost, the

mapping should not require any change of the application code but only of the hardware

dependent code. It also represents the different ways of interaction between the hardware,

software and their configuration and extension.

Usually, the mapping of an application to an MPSoC platform starts from a complex

system specification and goes through a vast design space exploration. The application

software needs to be adapted to the parallel capabilities of the multiprocessor architectures.

Furthermore, to enable fast and flexible exploration of the possible application-to-architecture

2. System Architecture Design

84

mappings, it is necessary to automate the hardware-software partitioning of the application

[Bel 06].

There are two ways for design space exploration: spatial and temporal. The spatial

exploration refers to binding application to architecture. It defines the possibilities of mapping

tasks on processors and the communication channels between the tasks to communication

paths available in the MPSoC architecture. The temporal exploration refers to computation

and communication ordering. It defines the scheduling policy on each resource and the

according parameters, e.g. time-division multiple access scheme and the associated slot length,

fixed priority scheduling and the associated priorities, or static scheduling and the associated

ordering [Thi 07].

The goal of design space exploration is to find a best matching between application

and architecture based on well defined criteria or objectives, including the design constraints.

The design space exploration is generally represented as an iterative loop with two main

phases: performance evaluation and optimization in terms of cost and performances (figure

16). The evaluation of the performances for MPSoC may be done using simulation or

analysis-based methods [Chak 03].

STOP
Exploration

Performance
Evaluation

Does it
satisfy the

requirements?

yes

no

Figure 16. Design Space Exploration

2.1.2. Definition of the System Architecture

The output of the mapping process represents a model at the highest abstraction level,

called system architecture model (SA) (figure 17). The definition of the system architecture

2. System Architecture Design

 85

given by the Carnegie Mellon University’s Software Engineering Institute in its glossary is:

“representation of a system in which there is a mapping of functionality onto hardware and

software components, a mapping of the software architecture onto the hardware architecture,

and human interaction with these components” [Car].

The system architecture represents a high level application model combined with

partitioning and mapping information. Aspects related to the architecture model (e.g.

processing units available in the target hardware platform) are combined into the application

model (i.e. multiple tasks executed on the processing units), resulting a combined

architecture/application model. Thus, the system architecture model expresses parallelism in the

target application through capturing the mapping of the application functions into tasks and the

tasks into subsystems. It makes also explicit the communication units between the tasks to

abstract the implementation of the communication protocol used for the data exchange between

them.

Comm.
Intra-SS

SW-SS2

Subsystems

Comm.
Inter-SS

TasksFunctions

T1 T3

Fm+1 FpFn Fn+1

T2

SW-SS1

COMM1

ParamName1 = Value1

ParamName2 = Value2

F1 … Fm… …

COMM2

COMM3

Figure 17. Global View of the System Architecture

At the system architecture level, the software is made of a set of functions grouped

into tasks. The function is an abstract view of the behavior of an aspect of the application.

Several tasks may be mapped on the same software subsystem. The communication between

functions, tasks and subsystems make use of abstract communication links, e.g. standard

2. System Architecture Design

86

Simulink signals or explicit communication units that correspond to specific communication

paths of the target platform. The corresponding hardware platform consists of the set of the

abstract subsystems.

2.1.3. Global Organization of the System Architecture

The system architecture model is a hierarchical model composed of several

components layers. This approach provides insight into how a model is organized and how its

parts interact.

The system architecture model may be represented using the hierarchy of concepts

depicted in figure 17. Thus, figure 17 shows a conceptual representation of the system

architecture defining the following concepts: subsystems, tasks, functions, inter-subsystem

communication and intra-subsystem communication.

A subsystem represents a set of tasks that are aimed to be mapped on the same

subsystem. Examples of subsystems are SW-SS1 and SW-SS2 in figure 17. This corresponds

to the mapping process of the application tasks on the different computation resources of the

target architecture. A task groups a set of application functions. Examples of tasks are T1, T2

and T3. This corresponds to the result of the partitioning process of the application functions

into tasks.

The basic element of the system architecture model represents the function. This can

be an elementary application function either pre-defined or user defined function. Example of

predefined functions are the functions representing mathematical operations (+, -, /, *),

constants, conditional structures (if-else) or repetitive structures (do-while). The user defined

functions represent specific functions implemented in diverse programming languages (e.g. C,

C++, Matlab). The user defined functions are also part of the system architecture model.

In order to specify the communication protocol used for the data exchange between

the different tasks, communication units are inserted between them in the system architecture

model. Later in the software design flow, during the next design steps, the communication

units will be replaced by behaviorally equivalent channel implementations with the annotated

protocol and device drivers from a real-time operating system targeting to run on the

processor.

There are 2 types of communication units: Inter-subsystem and Intra-subsystem. The

Inter-subsystem communication shows the communication between different subsystems, e.g.

2. System Architecture Design

 87

the communication units COMM2 and COMM3 between the subsystems SW-SS1 and SW-

SS2. The Intra-subsystem communication specifies the communication between the tasks

mapped on the same subsystem, e.g. COMM1 communication unit between tasks T1 and T2

mapped on SW-SS1. The number of the communication units depends on the application

partitioning and mapping on the target hardware architecture. The communication between

the functions inside the same task is implicit in the system architecture model and it will be

translated to communication via local variables inside the task during the next design step.

The system architecture model is annotated with software and hardware architecture

parameters to allow the generation and validation of the software stack and hardware

simulation platforms, and design space exploration.

The system architecture model may be represented using different environments such

as Simulink or SystemC. In the following paragraphs, the system architecture will be detailed

using as case study the Simulink environment.

Example 2. System Architecture Model of the Token Ring Application mapped on the 1AX

architecture in Simulink

Figure 18 illustrates a screenshot of the system

architecture modeled in Simulink for the Token Ring application

mapped on the 1AX architecture. The top layer of the model’s

hierarchy represent the two software subsystems available in the

1AX architecture (ARM7-SS and XTENSA-SS) and the 2 inter-

subsystem communication units between them (COMM1 and COMM2). The

2 inter-subsystem communication units allow the data exchange

between the 2 processor subsystems.

The application functions of the Token Ring application are

grouped into three tasks (T1, T2 and T3). Figure 18 illustrates

that for the Token Ring application 2 tasks (T1, T2) are mapped

on the ARM7 processor and the third task (T3) is mapped on the

XTENSA processors.

The third task (T3) running on the XTENSA processor

computes the DFT function. The DFT function is implemented in an

application library developed in C programming language,

representing an example of user defined function for the Token

Ring application.

2. System Architecture Design

88

The data exchange between the tasks T1 and T2 mapped on the

ARM7 processor requires the communication unit COMM.

System Architecture of Token Ring

Task T3 Specification

Task T3 mapped on XTENSATask T1 and T2 mapped on ARM7

Parameters Annotation

Figure 18. System Architecture Model of Token Ring

2.2. Basic Components of the System Architecture Model

The basic components of the system architecture Model are the computation and

communication components. The computation components consist of the application

2. System Architecture Design

 89

functions, while the communication makes use of generic I/Os, such as Simulink I/Os or

SystemC signals. The detailed description of these components will be illustrated in the

following paragraphs using the Simulink environment as representation medium of the system

architecture design.

2.2.1. Functions

The application functions can be modeled in Simulink by using Simulink blocks.

There are two types of blocks: standard Simulink blocks and user defined blocks. Blocks are

the elements from which Simulink models are built. Every Simulink block has a set of

attributes, called parameters, which govern its appearance and its behavior during the

simulation. Some types of parameters are common to all blocks (e.g. Block Name), while

other attributes are specific to a particular type of block. Simulink allows users to specify

values for many of a block’s parameters, thus enabling to customize the behavior to fit the

requirements of a particular application. For the standard blocks, Simulink provides

predefined continuous and discrete function blocks and a graphical user interface (GUI) to

relieve the application model building.

For the user defined blocks, Simulink provides the capability to integrate in the model

user defined blocks developed in other programming languages such as C, C++ or Matlab, by

using S-functions. To integrate S-functions in Simulink, there are two methods. The first one is

to write the S-function block manually. But this method requires also a manual development of

a wrapper function, which calls the actual function code. Additionally, the S-function has to be

manually compiled using the mex utility, in order to generate the MEX file accepted by the

Simulink simulation engine.

The second method to use an S-function consists of an automatic generation and

compilation of the S-function by using the S-Function Builder tool integrated in the Simulink

environment. The resulted S-function has a fixed type signature. But the designer has only to set

up the configuration panel by specifying the source files of the hand-written function code, the

format of the function call and the input/output arguments passed to the subroutine. The input

arguments represent the constant parameters required for the subroutine execution. The output

arguments represent the return value of the subroutine or the non constant parameters whose

values can be changed by the function. Then, based on the configuration, the S-Function

Builder will automatically create and compile the corresponding S-function.

2. System Architecture Design

90

2.2.2. Communication

The communication between the different application functions is made using the

Simulink signals. These links or signals connect the different Simulink blocks. They may carry

data from one block to one or more other blocks. The data transmission from the source block

and its arrival at the destination block happens simultaneously in a rendezvous fashion. The

signals may carry different types of data, such as integer, floating point or boolean. The

dimension of the data may vary also from scalar to vector or matrices, but it has to be constant

during the execution of the model.

2.3. Modeling System Architecture in Simulink

The system architecture may be described in Simulink or SystemC. This chapter will

present the modeling style in case of using the Simulink environment.

2.3.1. Writing Style, Design Rules and Constraints in Simulink

The system architecture design in Simulink imposes some limitations and constraints.

These design rules include:

- Constraints on the selection and configuration of the blocks used for the application

modeling;

- Constraints on the integration of application functions implemented in other

programming languages such as C/C++;

- Constraints regarding the construction of the system architecture model.

2.3.1.1. Constraints on the Simulink standard blocks

The system architecture model may use only discrete Simulink blocks in order to allow

a discrete event simulation.

In case of algebraic loops or feedback path, unit delay blocks have to inserted in the

Simulink loop. These unit delay blocks have to be configured by a sample rate equal with 1 in

order to delay their input signals inside the loop. The sample rate represents the number of

samples par second. The other blocks are characterized by an inherited sample-rate. In case of

2. System Architecture Design

 91

inherited sample-rate blocks, Simulink assigns an inherited sample rate to a block based on the

sample rates of the blocks connected to its inputs.

The supported predefined blocks are restricted to a subset of the standard Simulink

library. This subset includes:

- Mathematical operations, such as: sum, multiplication, division, modulo, absolute

value, etc;

- Logic operations: AND, OR, XOR, unary minus, shift arithmetic;

- Discrete blocks: delay, mux, demux, merge, selector, etc;

- Conditional structures: if-then-else and switch-case;

- Repetitive structures: for-loop and while-condition-loop;

- Sources: constants, extern files, input ports;

- Sinks: display block, scope block, extern files and output ports.

2.3.1.2. Constraints on the S-Functions

The system architecture model may include user defined functions written only in C

programming language. The S-Functions used to integrate the customized code need to be

built by using the S-Function Builder tool, which is the fastest and easiest way for the S-

Function generation compared with the manual implementation.

The arguments of the user defined function have to respect a well-defined order.

Basically, the function call accepts as parameters the input arguments followed by the output

arguments, as illustrated in figure 19. The order of the parameters definition has to be identical

with the order of the input/output ports declaration in the configuration panel of the S-Function

Builder tool. Moreover, the user defined C function has to return a void value.

void Function (DataType1 Input1, …, DataTypeN InputN,

DataTypeN+1 Output1, …, DataTypeN+M OutputM)

{

// user defined C code

}

Input arguments

Output arguments

Return Value

Figure 19. User-defined C-Function

2. System Architecture Design

92

Example 3. S-Function for the FFT computation in Token Ring

For example, the user defined C function used for the DFT

computation in the Token Ring application is declared and

implemented as shown in figure 20, where dir, x1 and y1 represent

the input arguments and x2 and y2 represent the output arguments.

void DFT(int* dir, double* x1, double* y1, double* x2, double* y2)

{

int i,k;

double arg;

double cosarg,sinarg;

double x22[3], y22[3];

for (i=0; i<3; i++)

{

x22[i]=0;

y22[i]=0;

arg=-(*dir) * 2 *3.141592654 * ((double)i)/3;

for (k=0; k<3; k++)

{

cosarg = cos(k*arg);

sinarg = sin(k*arg);

x22[i] = x22[i]+(x1[k]*cosarg - y1[k]*sinarg);

y22[i] = y22[i]+(x1[k]*sinarg + y1[k]*cosarg);

}

*x2+= x22[i];

*y2+= y22[i]/2;

}

}

Figure 20. DFT Function of the Token Ring

The different S-Functions are not allowed to share global variables between them,

their access being limited to the local data variables. The entire data passing between the

different S-Functions has to be modeled explicitly, with a dedicated Simulink signal used for

the connection between the different S-Functions.

2.3.1.3. Constraints on the communication

To transfer data in Simulink, the different blocks are connected by signals. The signal

between the blocks may carry data from one source block to multiple destination blocks. This

specific feature determines to use communication units which correspond to point-point

2. System Architecture Design

 93

communication schemes and restricts the global shared memory accesses in the target

architecture.

2.3.2. Software at System Architecture Level

The software at the system architecture level consists of a set of application functions

grouped into tasks.

Example 4. Software in the Token Ring System Architecture Model

The software in the Token Ring system architecture model is

represented by the application functions, e.g. DFT, +, -, /, *,

if, else or mathematical constants.

2.3.3. Hardware at System Architecture Level

The hardware at the system architecture level consists of the set of abstract hardware

and software subsystems that encapsulate the tasks aimed to be executed on those subsystems

and the different communication units introduced between the subsystems to specify the

communication protocol.

Example 5. Hardware in the Token Ring System Architecture Model

The hardware in the Token Ring system architecture model is

represented by the processor subsystems XTENSA-SS and ARM7-SS and

the inter-subsystem communication units COMM1 and COMM2 that

connect the 2 processor subsystems.

2.3.4. Hardware-Software Interface at System Architecture Level

The hardware-software interface at the system architecture level consists of a set of

links which connect the input/output ports of the different subsystems with the input/output

ports of the tasks that are mapped on those subsystems.

2. System Architecture Design

94

Example 6. Hardware-Software Interface in the Token Ring System Architecture Model

Example of hardware-software interface in the Token Ring

system architecture model represents the Simulink link that

connects the output port of task T3 (Out) with the output port of

the XTENSA subsystem (out) in figure 18.

2.4. Execution Model of the System Architecture

The Simulink model is used as a reference model for debugging the application’s

algorithm. The following sections will describe the adopted configuration in the Simulink

simulation engine to validate the system architecture model.

The simulation of the system architecture model uses a variable step discrete solver.

This allows validation of the functionality of the application. For the Inter-subsystem and

Intra-subsystem communication units, Simulink uses an abstract simulation model for each of

these units based on generic Simulink I/Os.

The system architecture model is used to validate the application’s algorithm through

functional simulation. It is similar to native code execution on the host machine. The

performance estimation at this level uses a simulation-based approach. As the system

architecture model represents a high level application model, the hardware architecture is

completely abstracted, including processor subsystems or communication infrastructure. The

memory usage is also abstracted, the application using variables and pointers without taking

in consideration details related to aspects such as shared memory or virtual memory. As

presented in [Bac06], a relevant metric at this high abstraction level is the simulation time of

the application.

The simulation time may give useful information on the efficiency of the application’s

algorithm in terms of behavioral features. The application’s algorithm does not depend on the

final operating system that will be running on the target processors, but influences the

performance after the application’s parallelization.

2. System Architecture Design

 95

Example 7. Simulation of the Token Ring System Architecture Model

The simulation of the system architecture model in Simulink

allows to validate the functionality of the application,

including the DFT computation. The simulation requires 3 seconds

and it stopped when the resulted value after the different

computations had become bigger than 1000000, conform the initial

specification of the application.

2.5. Design Space Exploration of System Architecture

2.5.1. Goal of Performance Evaluation

The MPSoC design process relies on several decisions and constraints related to

hardware and software architecture, which can influence the overall performance of the

system. Examples of hardware architecture decisions are: number and type of processors,

memory size, type of memories (local, global), type of communication network (point-to-

point, bus, network on chip), communication latency, etc. Examples of software architecture

decisions are: scheduling algorithm used by the operating system for the tasks

activation/deactivation, type of communication primitives (blocking or non blocking

semantic), real time execution requirements, binary code size, synchronization mechanisms

between the tasks running on the same processor, etc.

These different decisions influence the overall execution time of the system, cost and

power consumption. Therefore, good decisions are required to be able to control de MPSoC

design process.

The goal of performance evaluation at the system architecture level is to allow in an

early phase of the design process profiling the communication and computation. This can be

accomplished by providing information independently from the system behavior in time.

2.5.2. Architecture/Application Parameters

The system architecture model is annotated with application and architecture

parameters that can influence the global performance of the final system. These parameters

2. System Architecture Design

96

can be classified in 2 main categories: specific to subsystems or specific to communication

units.

a) Architecture/ Application Parameters specific to Subsystems

The parameters specific to subsystems characterize the different subsystems (hardware

and software) from both hardware and software points of view.

Examples of hardware architecture parameters that annotate the subsystems are:

- ResourceType which specifies the type of the hardware resource. There are 3 types

of hardware resources: computation resource (processors), storage resource

(memory) and I/O resources (I/O peripherals). In the case of a subsystem that

represents a processor subystem, the ResourceType specifies the type of the

processor cores.

- NetworkType. This parameter specifies the type of the network component used to

interconnect the different subsystems in the target architecture. Examples of

interconnect component are bus and Network-On-Chip (NoC).

- NoCTopology. This parameter is used when the NetworkType is NoC and it

specifies the topology of the NoC. Examples of NoC topologies are mesh, torus,

tree or butterfly.

- NoCRoutingAlgorithm. This parameter is used when the different subsystems are

interconnected by a NoC. The parameter specifies the routing algorithm used by

the routers to transmit the received data packet. Example of a routing algorithm is

the XY or YX.

- NoCArbitrationAlgorithm. This parameter is used to specify the type of the

arbitration algorithm used inside a NoC router (e.g. round robin, priority based,

etc), in order to select the routing request to be treated, when the router receives

more than one request simultaneously for packets transmission.

- ResourceName which identifies the hardware resource.

Each subsystem which represents a processor subsystem is annotated with software

architecture parameters. Examples of software architecture parameters are:

- OSType, which specifies the name of the operating system running on the target

processor. Examples of operating systems are: Linux, Mutek, DwarfOS and eCos.

2. System Architecture Design

 97

- SchedulerType to identify the type of the OS scheduler (preemptive, cooperative),

in case that the target OS supports different schedulers.

- SchedulerAlgorithm to define the algorithm used for the tasks management by the

operating system (round-robin, priority based) etc.

Example 8. Parameters specific to the Subsystems in the Token Ring System Architecture

Model

Examples of architecture/application parameters annotating

the subsystems of the Token Ring system architecture model are:

ResourceType with values “ARM7” for the ARM7 subsystem and

“XTENSA” for the XTENSA subsystem, NetworkType with the value

“AMBA” because in the 1AX architecture the different subsystem

are interconnected through the AMBA bus, OSType with value

“DwarfOS” to specific that the target operating system running on

each software system is the DwarfOS for both processors.

b) Architecture/ Application Parameters specific to Communication Units

The parameters specific to the communication units can be architecture or application

parameters.

Examples of hardware architecture parameters that annotate the communication units

are:

- ResourceType which specifies the type of the communication protocol or storage

resource. In the case of an Inter-subsystem communication unit, the ResourceType

specifies the storage resource on which the communication buffer will be mapped.

The communication buffer can be mapped in the sender subsystem, receiver

subsystem or in a stand-alone storage resource, such as global memory or

hardwarw FIFO. In the case of an Intra-subsystem communication unit, the

ResourceType specifies the communication protocol implemented in software,

such as software FIFO protocol or shared memory.

- AccessType. This parameter identifies whether the access to the memory that

stores the communication buffer is performed directly by the processor or by using

2. System Architecture Design

98

a DMA mechanism, in case that the target hardware architecture provides such

kind of mechanism for the memory access.

- ResourceName which identifies the storage resource in case that the target

hardware architecture provides several storage resources of the same type, e.g.

several hardware FIFOs or several global memories.

The communication unit can also be annotated with software architecture parameters,

e.g. CommType, which identifies the type of the communication library used during the HdS

integration. This parameter specifies the communication APIs used in the tasks code after

their generation for the data exchange, e.g. send(…)/recv(…) APIs when the CommType is

“MPI”; or DOL_read(…)/DOL_write(…) communication APIs when the CommType

parameter has the value equal with “DOL”. The different communication units can be

accessed using different communication primitives in the tasks code.

Example 9. Parameters specific to the Communication Units in the Token Ring System

Architecture Model

Examples of architecture/application parameters annotating

the communication units of the Token Ring system architecture

model are: ResourceType with value equal with “GMEM” in case of

the communication units COMM1 and COMM2 in order to specify that

the corresponding communication buffers used for the data

exchange between the 2 processors of the 1AX architecture are

mapped on the global memory. The parameter ResourceType has the

value “SWFIFO” for the communication unit COMM in order to

specify that the communication between the tasks T1 and T2 mapped

on the same ARM7 processor follows a software FIFO protocol.

Another parameter annotating the communication units COMM1

and COMM2 represents ResourceName with values “MEM0” in order to

specify that the communication buffers corresponding to these

communication units are mapped on the global memory identified

through id MEM0. The CommType parameter has the value “MPI” in

case of all the communication units, in order to specify that all

the tasks use the communication primitives “send(...)/recv(…)”

for all the data exchanges.

2. System Architecture Design

 99

2.5.3. Performance Measurements

At the system architecture level, the performance measurement consists of profiling

the communication and computation for each task and/or for each processor. As the system

architecture has no time notion, the result of profiling is a time independent data. Examples of

metrics that can be measured at this level are: application data size, buffer size required for

the intra-subsystem and inter-subsystem communication, the total quantity of exchanged data

between the tasks during the execution, the number of iterations of a function execution, the

amount of data transferred between the different processors, etc.

Example 10. Performance Measurements in the Token Ring System Architecture Model

For example, the DFT function of the Token Ring application

was required to be called and computed totally 14 times during

the execution of the whole application. The application data

exchanged between the ARM and XTENSA processors was 112 bytes

during the entire execution. The size of the application data

sent by the first task mapped on the ARM processor to the second

task running on the ARM processor was 64 bytes.

2.5.4. Design Space Exploration

At the system architecture level, the designer can experiment different partitioning and

mapping schemes. The designer can regroup the functions into the tasks in several ways, and

map these tasks on different subsystems. This exploration influences the total amount of data

exchanged between the tasks during the execution, the application data size or the number of

iterations of a specific function. By changing the partitioning and mapping of the application

on the target architecture, the number and type (intra-subsystem, inter-subsystem) of

communication units may vary also. The designer may adopt different communication

protocols and may map the communication buffers onto different storage resources by

annotating the communication units with the proper architecture parameters.

2. System Architecture Design

100

Example 11. Design Space Exploration for the Token Ring Application

In the case of the Token Ring application, the designer may

map the buffers required for the inter-subsystem communication

onto different communication architecture resources, such as the

local memories of both ARM and XTENSA processors or the shared

global memory. The designer may also opt for the dedicated

hardware FIFO component directly connected to the local buses of

both processor subsystems. Regarding the partitioning and mapping,

the Token Ring functions can be grouped forming tasks in

different ways, resulting tasks with different levels of

granularity. These tasks may be mapped on the processors in

several ways. For example, the DFT computation may be mapped on

the ARM processor instead of the XTENSA processor, letting the

XTENSA processor to be responsible for the control part of the

Token Ring application. In this case, the number of the intra-

subsystem communication units becomes 1 for the XTENSA processor,

while the ARM7 subsystem has no intra-subsystem communication

unit.

2.6. Application Examples at the System Architecture Level

In the following paragraphs, two examples will be presented at the system architecture

level: the Motion JPEG application mapped on the Diopsis RDT architecture and the H.264

encoder application mapped on the Diopsis R2DT architecture.

2.6.1. Motion JPEG Application on Diopsis RDT

This section presents the system architecture design in case of the Motion JPEG

(MJPEG) Decoder application running on the Diopsis RDT architecture with AMBA bus.

This consists of mapping the Motion JPEG Decoder application onto the Diopsis RDT

platform and modeling the resulted system architecture.

The first step of the system architecture design represents the functional modeling of

the application in Simulink. The development of the MJPEG Decoder application in Simulink

requires 7 S-Functions in order to integrate the C code of the main parts of the decoding

algorithm.

2. System Architecture Design

 101

After the functional modeling, the main functions of the application are isolated into

separate tasks. Figure 21 shows the application partitioning into tasks. The variable length

decoding (VLD) constitutes the first task. The differential pulse code demodulation on the DC

component (DPCD), run length decoding on the AC component (RLD), zigzag scan and inverse

quantization (IQ) are grouped into a second task. The inverse discrete cosine transformation

(IDCT) makes up the third task, and, finally, the display function of the decoded image

composes the fourth task.

AMBA AHB

ARM9 SS

SRAM

POT SS

Bridge

AIC SPI

Timer mailbox

ARM9Bridge

MEM SS

Bridge

DXM

ROM

REG DMEM

DSP SS

Bridge DMA

mailboxPIC

DSP

PMEM

Huffman Tables Quantification Tables

Bitmap Images

JPEG
Images

01101…

DC Coefficients

AC Coefficients

T1 T2 T3 T4

Motion JPEG

Diopsis RDT

Mapping

Variable
Length

Decoding

IQ

DPCD
IDCT

Zigzag
Scan

RLD

Figure 21. Mapping Motion JPEG on Diopsis RDT

After the partitioning of the application functions into tasks, the next step represents the

mapping of these tasks onto the computation and I/O subsystems provided by the target

architecture. Thus, the four different tasks are mapped onto the Diopsis RDT architecture

2. System Architecture Design

102

(figure 21). Thus, the first 2 tasks (T1 and T2) are mapped on the ARM9 processor. The third

task (T3), performing the IDCT computation, takes 68% of the total execution time of the

decoding process, being the most computation intensive task. Therefore, it was mapped on the

DSP processor. The resulting decoded image of the task T4 is displayed on a LCD panel

connected through the SPI peripheral of the POT. Hence, T4 was mapped on the POT sub-

system.

After the mapping process, in order to specify the communication protocol, several

communication units are inserted between the tasks mapped on the same processor and between

the different subsystems. The communication buffers used for the communication between the

tasks can be mapped on the local memories of both processor subsystems, or on the global

memory. Besides the buffer mapping on the storage resources, the mapping has to specify the

end-to-end communication path between the two processors. The result of the mapping

represents the system architecture model for the Motion JPEG application mapped on the

Diopsis RDT architecture. A screenshot of the system architecture modeled in Simulink is

illustrated in figure 22.

ARM DSP POT

comm1

comm2

comm3

Task1 Task2

comm4

comm5

comm6

comm7

comm8

SRAMSRAM

Task2 Specification

Figure 22. System Architecture Example: MJPEG Mapped on Diopsis

This model includes 3 subsystems: 2 software subsystems (the ARM and the DSP

subsystem) and a hardware subsystem (the POT). The Simulink hierarchy is able to capture

the mapping of the application onto the architecture at a high abstraction level through the

decomposition of the system into tasks and subsystems. The Simulink model includes also

2. System Architecture Design

 103

explicit communication units to capture different communication protocols and resources

provided by the architecture.

In this case, the Intra-subsystem communication for the tasks mapped on the same

subsystem follows a software FIFO protocol (SWFIFO). The Inter-subsystem communication

between the different subsystems uses data buffers mapped on different storage resources,

such as DSP data memory (DMEM), DSP registers (REG), ARM local memory (SRAM) or

the distributed external memory (DXM). Later in the design flow, each of the communication

units can be mapped on a specific communication path and protocol of the final architecture.

The number of communication units depends on the application partitioning and mapping

decisions on the target architecture.

The system architecture in Simulink is annotated with architecture information used

for the further software refinement and generation of the hardware simulation platform. The

hardware architecture parameters used in this example are:

a) Parameters specific to subsystems:

- ResourceType with possible values “ARM9”, “DSP” and “POT” in case of a

subsystem.

- NetworkType parameter, which has the value equal with “AMBA” for the Diopsis

architecture with AMBA bus.

- ResourceName parameter. This parameter identifies the hardware resource of the

target architecture, e.g. the DSP.

On the software side, each processor will execute a tiny operating system, namely

Dwarfos. Thus the OSType parameter for each software subsystem of the system architecture

model has the value “Dwarfos”. As the Dwarfos operating system supports only round robin

preemptive scheduling, the software architecture parameters SchedulerType and

SchedulerAlgorithm are not required in this example.

b) Parameters specific to communication units:

- ResourceType with possible values or “DXM”, “SRAM”, “DMEM”, “REG” for

the inter-subsystem communication and “SWFIFO” in case of a intra-subsystem

communication unit.

2. System Architecture Design

104

- AccessType parameter, required to specify for an inter-subsystem communication

unit whether the DSP will access the local memory of the ARM or the external

global memory directly or by initiating a DMA transfer.

- ResourceName parameter. This parameter identifies the hardware resource of the

target architecture in case of an inter-subsystem communication unit, e.g. the

external memory DXM.

The tasks executed by the processors will use the send(…)/recv(…) primitives as

communication APIs. Therefore, the CommType has the value “MPI” to represent the

message passing send(…)/recv(…) semantics for each communication unit.

To validate the MJPEG algorithm, the system architecture model can be simulated using

the Simulink discrete-time simulation engine. The input test image represents a 10 frames

bitstream encoded using QVGA YUV 444 format. The simulation time is 15s on a PC running

at 1.73GHz with 1GBytes RAM.

The simulation allowed measuring some performance indicators. Hence, the total

number of iterations necessary to decode the 10 frames input image was 36000. The

communication between the ARM and DSP through the communication unit COMM1

requires a buffer of 1 word (4 bytes), the communication unit COMM2 requires 64 words

(256 bytes) buffer size and finally, the communication unit COMM3 requires 4 words (64

bytes). The total number of words exchanged between the different subsystems during the

decoding process of the 10 frames was 2484 KWords.

2.6.2. H.264 Application on Diopsis R2DT

The H.264 Encoder is a computation intensive video application and more complex

than the Token Ring or Motion JPEG applications. Hence, the Diopsis R2DT with NoC is

used to execute the H.264 encoder.

This section presents the system architecture design in the case of the H.264 Main

Profile Encoder application running on the Diopsis platform with 2 DSP and one ARM9

processors interconnected through a NoC.

The first step represents the functional modeling of the H.264 application in Simulink,

The H.264 Encoder algorithm is composed of several functions and 2 data flows: a forward

path and a reconstruction path. The input frame of a video image sequence (Fn) is processed

2. System Architecture Design

 105

in units of a macroblock. The reference code used for the H.264 Encoder development is the

x264 open source code [X264]. The sequential C code is converted to a dataflow model as

explained in [Hwang 06]. The development of the H.264 Encoder application in Simulink

requires 4 S-Functions in order to integrate the C code of the main parts of the encoding

algorithm.

After the functional modeling, the different functions are grouped into tasks. Figure 23

illustrates the partitioning of the H.264 functions into tasks. The application functions are

grouped into three tasks as follows: the CABAC entropy encoder constitutes the task T2; the

NAL construction and bitrate controller are grouped into task T3; and the other computation

and control functions are grouped into task T1.

Hermes NoC

ARM9 SS

SRAM

POT SS

NI

AIC SPI

Timer mailbox

ARM9
NI

MEM SS

NI

DXM

ROM

REG1 DMEM1

DSP1 SS

NI DMA

MailboxPIC

DSP1

PMEM

REG2 DMEM2

DSP2 SS

NI DMA

MailboxPIC

DSP2

PMEM

Hermes NoC

ARM9 SS

SRAM

POT SS

NI

AIC SPI

Timer mailbox

ARM9
NI

MEM SS

NI

DXM

ROM

REG1 DMEM1

DSP1 SS

NI DMA

MailboxPIC

DSP1

PMEM

REG2 DMEM2

DSP2 SS

NI DMA

MailboxPIC

DSP2

PMEM

Fn T

F’n

F’n-1

+

-

+

+

Inter

Intra

NAL
Bitrate control

.yuv

Q

T-1

Reorder CABAC

Q-1

ME

MC

Intra
Pred.

Prediction

T1
T2 T3

Filter

Choose
Intra Pred.

H.264 Encoder

Diopsis R2DT

Mapping

Figure 23. Mapping H.264 on Diopsis R2DT

2. System Architecture Design

106

After the partitioning, the tasks are mapped on the available resources of the Diopsis

R2DT architecture. Therefore, each task is mapped on a different CPU. As task T1 and T2

requires a big amount of computation, they are mapped on the DSP processors: task T1 on

DSP1, respectively task T2 on DSP2. The task T3 including the control part for the bitrate is

mapped on the ARM9 processor. The communication between these tasks mapped on the

three different processors represents Inter-subsystem communication and it implies a total of

3 communication units, one between each pair of processors (DSP1->DSP2, DSP2->ARM9,

and ARM9->DSP1).

The resulted system architecture model is illustrated in figure 24.

System Architecture for H.264 Task T3 mapped on ARM9

Task T3 Specification

Parameters Annotation

Figure 24. H.264 Encoder System Architecture Model in Simulink

Similar with the system architecture model of the MJPEG application, in order to

allow the generation of the next levels, the high level application model of the H.264 contains

the following architecture information annotated as parameters:

2. System Architecture Design

 107

a) Parameters specific to subsystems:

- ResourceType for the subsystem in order to differentiate between the “ARM9” and

“DSP” subsystems.

- NetworkType parameter, which has the value equal with “NoC”, as the target

architecture will contain a NoC in the Diopsis architecture. This NoC

implementation is based on the Hermes NoC [Mor 04].

- NoCTopology, with possible values “MESH” and “TORUS”, as the target

architecture support both types of NoC topologies.

- NoCRoutingAlgorithm with possible value “XY” for the mesh topology or

“NMWF” (Non Minimal West First) algorithm for the Torus topology [Gla 94].

- NoCArbitrationAlgorithm with value “ROUND_ROBIN” to arbitrate the

simultaneous packet transmission requests on the router.

- ResourceName parameter to identify the hardware resource, e.g. the DSP1 or

DSP2 processor as the architecture contains more DSPs of the same type (Atmel

magicV VLIW processors).

As in this case the processors will execute single tasks, the software architecture

parameters is represented only by the OSType parameter with value “DWARFOS” to specify

the OS that will be responsible for the application boot, interrupt management and hardware

access.

b) Parameters specific to communication units

- ResourceType to specify the communication protocol of the inter-subsystem

communication unit (“DXM”, “SRAM”, “DMEM”, “REG”).

- AccessType parameter, required to specify whether the DSP processors will access

the local memory of the ARM or the external global memory directly or by

initiating a DMA transfer.

- ResourceName parameter to identify the hardware resource, e.g. the memory.

As software architecture parameter, the communication units are annotated with the

CommType parameter with value “MPI” for the communication primitives.

2. System Architecture Design

108

To validate the H.264 encoder algorithm, the system architecture model can be

simulated using the Simulink discrete-time simulation engine. The input test video represents a

10 frames video sequence QCIF YUV 420 format. The simulation time is 30s on a PC running

at 1.73GHz with 1GBytes RAM.

The simulation allowed measuring some performance indicators. Thus, the total

number of iterations necessary to decode the 10 frames video sequence was equal with the

number of frames. This is due to the fact that all the S-functions implemented in Simulink

operate at frame level. The communication between the DSP1 and DSP2 processors uses a

communication unit that requires a buffer of 288585 words to transmit the encoded frame

from the DSP1 processor to the DSP2 in order to be compressed. The DSP2 processor and the

ARM9 processor communicate through a communication unit that requires a buffer of 19998

words. The last communication unit between the ARM9 and DSP1 processors requires 1 word

buffer size in order to store the quanta value required for the encoder. The total number of

words exchanged between the different subsystems during the encoding process of the 10

frames video sequence using Main Profile configuration of the encoder algorithm, was

approximately 3085KWords.

2.7. State of the Art and Research Perspectives

2.7.1. State of the Art

Current literature includes several academic and industrial design environments that

involve specification of the application mapping on the target architecture at the system

architecture level.

The automatic parallelization of sequential program code is an open research topic.

Several research works have already focused on automatic partitioning and tasks mapping,

such as [Xu 06] and [Mei 07]. In [Fei 02], the authors propose an automatic partitioning of

the application and automatic allocation of the computation resources using genetic

algorithms. [Paz 04] proposes a programming paradigm that facilitates the translation of

sequentially-code software algorithms of the multimedia applications into their parallel

implementations.

Other research category focuses on finding the best mapping of an application onto the

architecture by using different kinds of optimization algorithms and metrics. Examples of

2. System Architecture Design

 109

these kinds of research works and tools are: PISA [Ble 03] which defines the mapping process

as a multi-objective search problem, Compaan compiler [Mei 07] which automatically

generates the mapping specification of an application modeled as Kahn Process Networks

onto the Intel IXP Network Processor, Mat[01] which describes the APOTRES framework for

mapping DSP applications on Single Program Multiple Data (SPMD) architectures, Bus[06]

which presents a framework that automatically partitions a C application code into hardware

and software or Xue[06] which treats the memory and processors allocation problem applying

a runtime resource partitioner for multiple applications running on a shared memory MPSoC

architecture. The Sesame environment described in [Erb 07][Tho 07] defines the optimal

mapping problem taking into account three objectives: maximum processing time in the

system, total power consumption and the cost of the architecture. The Sesame environment

uses analytical methods to identify a small set of promising mapping candidates, and then

uses simulation for performance evaluation. The DOL (Distributed Operation Layer)

framework allows multi-objective algorithm mapping onto MPSoC architectures with system

level performance analysis [Thi 07].

Besides the partitioning and mapping, other research works are related to the

specification, modeling and simulation of the system architecture. In the DOL environment,

the application is specified as Kahn Process Network [Thi 07]. The application, platform and

mapping information are stored into three separate XML files. Many research efforts focus on

the standardization of the XML format to facilitate various IPs exchange among different

tools and IP providers. The IP XACT proposed by the Spirit consortium is an example of

standardization proposal in form of an XML schema and APIs for representing and

manipulating hardware IPs [Spirit].

An example of modeling environment is the well-known Ptolemy [Pto] for high-level

system specification that supports description and simulation of multiple models of

computation, e.g. synchronous dataflow (SDF), boolean dataflow (BDF), finite state machine

(FSM), etc). The Ptolemy environment allows simulation at algorithmic level.

PeaCE [Ha 06] is a Ptolemy based co-design environment that supports hardware and

software generation from a mixed dataflow and extended FSM specification. PeaCE also

attempts to generate SoC architecture from an algorithm-level model. An extended version,

the HOPES framework is a new model based programming environment of embedded

software, which supports several environments for the initial specification (PeaCE, UML,

KPN) [Ha 07].

2. System Architecture Design

110

Several other research groups investigate the specification and simulation of

multimedia applications using Simulink and PeaCE [Kwo 04]. In [Rey 01] a design flow for

data-dominated embedded systems is proposed, which uses Simulink environment for

functional specification, and analysis of timing and power dissipation. This approach mainly

focuses on an IP-based design with single processor.

Recently, UML is investigated as a system-level language. [Kan 06] proposes a UML-

based MPSoC design flow that provides an automated path from UML design entry to FPGA

prototyping, including the functional verification and the automated architecture exploration.

2.7.2. Research Perspectives

Despite the existing of a huge literature on system architecture design, this is still an

open issue for heterogeneous MPSoC. There are 3 key problems concerning the system

architecture design:

- Automatic partitioning of the application functions into tasks;

- Automatic mapping of the tasks onto the target architecture;

- Automatic mapping of the communication onto the target architecture. This

includes communication buffer mapping on the storage resources and specification

of the communication path.

Programming the complex MPSoC architectures and providing suitable software

support (compiler and operating system) seems to be a key issue. This is due to the fact that

either system designers or compilers will have to make the application code explicitly parallel

to run on these architectures.

A first difficulty found in MPSoC design is how the applications running on these

multi-processor architectures are decomposed in several processes/tasks and how these

parallel tasks can share the same resources provided by the architectures. In particular,

allocation of the computation resources (processing units) and storage resources (memories) is

critical, as it dictates both performance and power consumption.

Automatic generation of the system architecture model represents one research

perspective. Starting from the specification of the application, specification of the architecture

and design constraints, the automatic partitioning and mapping could find the best

2. System Architecture Design

 111

configuration. The specification of the application can be considered as being the functional

model in Simulink, composed of several functions, similar with dataflow models.

The architecture specification has to include information related to the hardware

resources of the target architecture, such as number and types of the available processors, size

of the local and external memories and possible communication paths/protocols between the

different processors. The communication paths can be captured using the notion of graph,

where the nodes are the hardware resources of the architectures that may be crossed during a

data exchange between the processors. Examples of nodes are the CPUs, coprocessors, DMA

engines, memories, local buses or the global interconnect components (AMBA, NoC). The

edges of the graph represent the connections between them. In this way, the specification of

the communication path in the system architecture model (e.g. AccessType) is reduced to

solve the shortest path problem between two nodes of a graph. The architecture specification

can be stored using an XML format [Thi 07].

The design constraints may specify limitations for the relation between the application

specification in Simulink and the resource components. They include:

- The constraints between the functions of the application and processors of the

hardware architecture. For example, certain functions have to be grouped on the

same task or several tasks must run on certain processors or certain processors

types. One may also specify that certain tasks must be executed on the same

processor.

- Application constraints. This concerns real-time execution requirements, e.g.

deadline meeting constraints, execution time or communication latency.

Another method of system architecture generation may be based on profiling tools.

The application specification can be profiled using specific code profiling tools. The profiling

tools record summary information during the execution, (e.g. number of a function calls) and

help to expose performance bottleneck and hotspots. Based on the profiling data and

constraints information, analytical methods can propose an efficient application and

communication mapping.

2. System Architecture Design

112

2.8. Conclusions

This chapter presented the system architecture design with case study in Simulink for

the Token Ring application mapped on the 1AX architecture, the Motion JPEG decoder

application mapped on the Diopsis RDT MPSoC architecture and the H.264 Encoder

application mapped on the Diopsis R2DT architecture.

The hierarchical organization of the system architecture model allowed combining the

application model with the specification of the partitioning and mapping of the computation

and communication onto the hardware architecture resources.

The simulation at the system architecture level allowed to validate the functionality of

the application and to profile the communication requirements of the applications (number of

bytes that need to be exchanged during the execution).

Chapter 3

 VIRTUAL ARCHITECTURE

DESIGN

This chapter details the virtual architecture design. The virtual architecture design

consists of transforming the application functions into the final application tasks C code and

mapping the communication onto the hardware resources available in the target architecture.

The key contribution in this chapter represents the virtual architecture definition,

organization and design, using SystemC, for the Token Ring application running on the 1AX

architecture, the Motion JPEG application targeting the Diopsis RDT architecture and the

H.264 Encoder running on the Diopsis R2DT architecture. The simulation of the virtual

architecture models allows validating the partitioning and final application tasks code.

Different communication mapping schemes are explored in order to analyze their impact on

the global performances.

3. Virtual Architecture Design

115

3.1. Introduction

The virtual architecture design consists of mapping the communication onto the

hardware platform resources and generating the final C code for each task. At this phase, the

different links used for the communication between the different tasks of the system

architecture model are mapped onto the hardware communication resources available in the

architecture to implement the specified protocol. The system architecture tasks made of

application functions are transformed into the final application tasks code. These tasks code

designed in C is adapted to the communication mechanism through the use of adequate HdS

communication primitives. The result of the virtual architecture design represents the virtual

architecture model.

3.1.1. Definition of the Virtual Architecture

The second hardware-software abstraction level is called virtual architecture level

(VA). The virtual architecture captures the global organization of the system into abstract

software and hardware modules or subsystems and abstract hardware/software interfaces. The

virtual architecture model may be manually coded or automatically generated by system

architecture parser and analysis tools.

The objectives of the virtual architecture design are:

- Validation of the application partitioning and tasks mapping on the processing

subsystems available in the target architecture

- Validation of the final tasks code of the software stack

- Early estimation of the communication requirements.

The virtual architecture is composed of abstract subsystems that are interconnected

using abstract communication channels or abstract network components. The abstract

hardware or software processing subsystem represents a component which implements the

software tasks, respectively the hardware functions. The abstract communication network

represents high level communication channels, such as message passing channels, abstract

buses or NoC.

3. Virtual Architecture Design

116

Figure 25 illustrates the global view of the virtual architecture, composed of two

abstract software subsystems, a memory component and communication network. The left

part of the figure corresponds to the hardware architecture, while the right part represents the

software code at the virtual architecture level.

3.1.2. Global Organization of the Virtual Architecture

The virtual architecture model is a hierarchical model. The virtual architecture is

composed of abstract subsystems that are interconnected using an abstract communication

network, such as abstract bus, abstract NoC or abstract point-to-point communication

channels.

Abstract Communication Network

COMM1

COMM2

MEM

COMM1

COMM2

MEM

T1 T2

SWFIFO

Abstract ARM-SS Abstract XTENSA-SS

T3

Tasks code running on ARM

T1

HdS API

T2

HdS API

Figure 25. Global View of the Virtual Architecture

The abstract sub-systems may represent a processor subsystem, a hardware subsystem

or a memory subsystem. The software processing subsystem represents a component or

module which includes a set of task modules that are aimed to be executed on that processing

subsystem and a set of abstract communication channels for the communication between the

task modules inside the same subsystem. The hardware processing subsystem contains a

single task module which implements the hardware functions.

The task modules abstract the hardware/software interface. Each task module can be

characterized by two elements: container and ports. The container represents the task code.

The task code is represented by a sequential C code which implements the application

functions that were grouped together to form the task. The task code also contains

communication primitives (HdS API) which allows accessing the ports of the task modules.

The ports of the task module represent logic ports of the task, which serve to allow the

software code to access the communication channels used for the data exchange with another

3. Virtual Architecture Design

 117

tasks. The logic ports of the task modules are connected to the ports of the subsystem that

encapsulates them, or to the intra-subsystem communication channels.

At the virtual architecture level, the intra-subsystem communication units become

abstract communication channels inside the processor subsystem. The inter-subsystem

communication units become abstract communication architecture, and determine the

memory modules that serve as storage resources for the communication buffer mapping and

the type of global interconnect component. The type of the communication protocol and the

topology of the network infrastructure are implemented according to the annotation of the

system architecture model.

Example 12. Virtual Architecture of the Token Ring Application

Figure 25 shows a conceptual representation of the virtual

architecture for the Token Ring application mapped on the 1AX

architecture.

The virtual architecture contains two abstract subsystems

(ARM-SS, XTENSA-SS), corresponding to the ARM, respectively

XTENSA processors and the global memory module (MEM). All the

subsystems are interconnected by an abstract AMBA bus. The

different software subsystems encapsulate the application tasks

and communication channels for the data exchange between the

tasks mapped on the same processor. For instance, the ARM-SS

subsystem includes the two task modules (T1 and T2) that were

mapped on this processor and a SWFIFO communication channel used

for the communication between T1 and T2. SWFIFO represents an

abstract communication channel which implements a FIFO

communication protocol. The XTENSA-SS subsystem includes the T3

task module.

The inter-subsystem communication units COMM1 and COMM2 are

mapped on the global memory (MEM).

The virtual architecture model may be represented using different design languages,

such as SystemC [Gro 02] or SpecC [Gaj 00]. In the following paragraphs, the virtual

architecture will be detailed using the SystemC design language.

3. Virtual Architecture Design

118

3.2. Basic Components of the Virtual Architecture Model

The basic components of the system architecture model are the software and the

hardware components. The software components allow for a description of pure software

elements, while the hardware components represent the components of the execution model

[Verg 05]. The software components consist of the tasks code and HdS APIs, while the

hardware components represent the abstract subsystems and the abstract communication

network. The detailed description of these components will be illustrated in the following

paragraphs.

3.2.1. Software Components

The application software is refined to tasks C code that contains the final application

code and makes use of HdS API. The tasks code represents sequential code, which implements

a set of application functions. The communication primitives of the HdS API access explicit

communication components. Each data transfer specifies an end-to-end communication path.

For example, the functional primitives send_mem(ch,src,size)/recv_mem(ch,dst,size) may be

used to transfer data between the 2 processors using a global memory connected to the system

bus, where ch represents the communication channel used for the data transfer, src/dst the

source/destination buffer and size the number of words to be exchanged. Thanks to the HdS

APIs, the tasks code remains unchanged at the following abstraction levels (transaction accurate

architecture and virtual prototype).

Example 13. Software Components for the Token Ring application at the Virtual Architecture

Level

For the Token Ring application, the software is represented

by the sequential C code corresponding to tasks T1, T2 and T3.

This code implements the equivalent behavior of the different

Simulink functions in C and contains the communication primitives

send(ch, src,size)/recv(ch,dst,size) for the data exchange between

the diverse tasks.

3. Virtual Architecture Design

 119

3.2.2. Hardware Components

The software tasks are executed using an abstract model of the hardware architecture

that provides an emulation of the HdS API. The hardware platform is composed of those

components that provide the implementation these HdS APIs. Thus, it includes the abstract

subsystems, abstract communication architecture (interconnection component) and the storage

resources.

Example 14. Hardware Components for the Token Ring application at the Virtual

Architecture Level

For the Token Ring application, the hardware is represented

by the software subsystems (ARM-SS and XTENSA-SS), the global

memory MEM and the abstract communication network (abstract AMBA

bus).

3.3. Modeling Virtual Architecture in SystemC

The virtual architecture model is described using SystemC language and is generated

according to the parameters specified in the initial Simulink model. SystemC allows modeling

a system at different abstraction levels from functional to pin accurate register transfer level.

The virtual architecture is modeled using transaction level modeling (TLM) techniques that

allow analyzing SoC architecture in an earlier phase of design, software development and

timing estimation [Gro 02].

3.3.1. Software at Virtual Architecture Level

At the virtual architecture level, the Simulink functions of the application are

transformed into C program code for each task. This step is very similar to the code

generation performed by Real Time Workshop (RTW) [Matlab].

Contrary to the RTW which generates only single task code, the software at the virtual

architecture level represents a multitasking C code description of the initial Simulink

application model.

3. Virtual Architecture Design

120

Each data link of the Simulink model requires a memory space called buffer memory

to deliver data from the input block to the output blocks. To reduce the required memory size,

the task code generation has to apply buffer memory optimization techniques, such as copy

removal or buffer sharing [Han 06].

The task C code is made of two parts: computation and communication. The

computation part describes the behavior of various Simulink functions that are grouped in the

task, including local memory declaration. The Simulink blocks within a task are scheduled

statically according to their data dependency and generated into a task C code. The

communication between functions inside the tasks is translated into local memory elements.

To implement the external communication between tasks, during the task code generation the

function calls of the communication primitives are instantiated from an HdS API template

library, preserving the invocation order of the blocks. Then, the allocated memory spaces are

mapped onto the arguments of these functions. Before inserting the communication primitives,

data dependency between the tasks is checked during the task code generation in order to

perform deadlock prevention.

Example 15. Software Task Code for the Token Ring Application

Figure 26 illustrates the C code of the task T2 of the

Token Ring application at the virtual architecture level.

The task code contains the declaration of the local

variables (in, out, var and var2), the send_data/recv_data

communication primitives and the computation code. The tasks code

starts with a receive operation to read the input token, then it

performs some computation and finally it sends the new value of

the token to the next node.

The semantic of the communication primitives is the

following: the first parameter represents the logic port which is

connected to a communication channel, the second parameter is the

local memory from where the data is transferred in case of a send

operation or the local address where the data is stored in case

of the receive operation, and the last parameter defines the size

in words of data to be sent or received.

In the computation code, the C code represents the

equivalent behavior of the Simulink functions. Thus, the input

data stored in the local variable var represents the input token.

The destination of the token is calculated by a module operation

3. Virtual Architecture Design

 121

with 3 of the input token. If the result of this operation is 0,

the destination of the token is task T2. In this case the task

increments the token with 1 unit. Otherwise, task T2 is not the

destination of the token and it increments the token with value 2,

conform the application specification. Then, the task forwards

the token to the next node of the ring.

#include <Task2.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#ifdef VIRTARCH

void Task2::behavior (void) {

#else

void Task2(void) {

#endif

int in,out; //local variables

int var, var2;

for (;;) {

recv_data(&In1_Task2, &in, 1); //Communication API

var = in % 3; // Computation

var = abs(var);

if (var == 0)

var2 = in + 1;

else

var2 = in + 2;

out = var2;

send_data (&Out1_Task2, &out, 1); //Communication API

#ifdef VIRTARCH

wait();

#endif

}

}

Figure 26. Task T2 Code

The multitask C code generation from the system architecture model needs to handle a

large subset of pre-defined Simulink blocks, such as mathematical operations (sum,

multiplication, division, modulo etc), logical operations (AND, OR, XOR), discrete blocks

(delay, mux, demux, merge), conditional structures (if-then-else), repetitive structures (for-

loop, while-condition-loop). The generation has to support also user defined C codes

integrated in the Simulink model as S-functions. For the S-functions, the task code represents

a function call of the user written C function. The semantics of the argument passing are

3. Virtual Architecture Design

122

identical to those of the definition in the configuration panel of the S-Function Builder tool in

Simulink.

The resulted tasks code at the virtual architecture level is independent of the target

processor, communication protocol and abstraction level. This can be achieved by using HdS

APIs that hide many details of the underlying implementation of the architecture and

represent the abstraction of the hardware [Vin 04].

3.3.2. Hardware at Virtual Architecture Level

The hardware at the virtual architecture level consists of the set of hardware and

software subsystems that encapsulate the tasks aimed to be executed on those subsystems and

the abstract communication network introduced to implement the communication protocol.

The hardware is refined to a set of abstract SystemC modules (SC_MODULE) for

each subsystem. The SC_MODULE of the processor includes the tasks modules that are

mapped on the processor and the communication channels for the intra-subsystem

communication between the tasks inside the same processor. The communication channels

between the tasks mapped on the same processor are implemented using standard SystemC

channels. The tasks modules are implemented as SystemC modules (SC_MODULE).

For the inter-subsystem communication, the hardware architecture integrates also the

resources addressed explicitly by the HdS APIs. Typical examples are memories that serve to

store the communication buffers. The interconnection between the different components uses

an abstract model of the communication network that allows the data transfer from the source

to the destination module.

Example 16. Hardware Code for the Token Ring application at the Virtual Architecture Level

Figure 27 details the Top module for the Token Ring

application running on the 1AX architecture. The top module is a

SC_MODULE which includes the declaration and instantiation of the

ARM-SS (vARM7 in figure 27), XTENSA-SS (vXTENSA), abstract bus

(bus), global memories (gmem) and a global clock (clk). It also

interconnects these different components and fixes the addresses

of the communication buffers used for the data exchange between

the processors (the inter-subsystem communication units).

3. Virtual Architecture Design

 123

Thus, the communication buffer used between tasks T3

running on XTENSA and T2 running on ARM7 processors is mapped in

the global memory at address 0x0. The communication buffer

required for a data transfer between tasks T1 mapped on the ARM7

processor and T3 executed on the XTENSA is mapped on the global

memory at address 0x1000.

ifndef _TOP_H

#define _TOP_H

#include <systemc.h>

#include "XTENSA.h"

#include "ARM7.h"

#include "global_bus.h"

#include "mem.h"

SC_MODULE(TOP) { //TOP MODULE

sc_in<bool> clk;

XTENSA *vXTENSA; // XTENSA-SS MODULE

ARM7 *vARM7; // ARM-SS MODULE

global_bus_module *bus; // BUS CHANNEL

mem *gmem; // GLOBAL MEMORY MODULE

SC_CTOR(TOP) {

vXTENSA = new XTENSA("XTENSA"); //INSTANTIATION

vARM7 = new ARM7("ARM7");

bus = new global_bus_module("BUS");

gmem = new mem("mem",0x2000);

gmem->port(*bus); //CONNECTION

gmem->port.set_map(0x0,0x1FFF);

vXTENSA->In1_XTENSA(*bus);

vXTENSA->vTask3->In1_Task3.set_connect_address(0x0);

vARM7->Out1_ARM7(*bus);

vARM7->vTask2->Out1_Task2.set_connect_address(0x0);

vARM7->In1_ARM7(*bus);

vARM7->vTask1->In1_Task1.set_connect_address(0x1000);

vXTENSA->Out1_XTENSA(*bus);

vXTENSA->vTask3->Out1_Task3.set_connect_address(0x1000);

vARM7->clk(clk);

vXTENSA->clk(clk);

}

};

Figure 27. SystemC Code for the Top Module

Figure 28 shows the SystemC code for the ARM-SS component.

The ARM-SS is a SC_MODULE which encapsulates the instances of the

two tasks T1 (vTask1 in figure 28) and T2 (vTask2 in figure 28)

and the software FIFO channel for communication between them (ch1

in figure 28).

This ARM-SS has 3 ports: an input port, namely In1_ARM7, an

output port, namely Out1_ARM7, and a clock port (clk). The output

port of the ARM-SS is connected to the output port of task T2, as

3. Virtual Architecture Design

124

task T2 sends data to a task mapped on the other processor. The

input port of the ARM-SS is connected to the input port of task

T1, because task T1 needs external data from a task running on

another processor.

#ifndef _ARM7_H

#define _ARM7_H

#include "Task1.h"

#include "Task2.h"

SC_MODULE(ARM7) { // ARM-SS MODULE

Task1 *vTask1; // TASK T1 MODULE

Task2 *vTask2; // TASK T2 MODULE

SWFIFO_Channel ch1; // SOFTWARE FIFO CHANNEL

AMBA_Port Out1_ARM7; // PORTS

AMBA_Port In1_ARM7;

sc_in<bool> clk;

SC_CTOR(ARM7) {

vTask1 = new Task1("Task1"); //INSTANTIATION

vTask2 = new Task2("Task2");

vTask1->Out1_Task1(ch1); //CONNECTION

vTask2->In1_Task2(ch1);

vTask2->Out1_Task2(Out1_ARM7);

vTask1->In1_Task1(In1_ARM7);

vTask1->clk(clk);

vTask2->clk(clk);

}

};

#endif

Figure 28. SystemC Code for the ARM-SS Module

At the virtual architecture level, the tasks code uses HdS APIs, whose implementation

depends on the hardware platform. The hardware platform includes all the components

accessed by HdS API and the resources to implement the required communication paths.

Example 17. Communication primitives implementation for the Token Ring application at the

Virtual Architecture Level

Figure 29 shows an example of implementation of the

send_data(…)/recv_data(…) communication primitives that allow to

write or read to/from a software FIFO communication channel.

3. Virtual Architecture Design

 125

The FIFO channel is derived from a SystemC channel

(sc_prim_channel) and has a blocking implementation. Therefore,

if the sender wants to put data into the FIFO, but the FIFO is

full, the sender will be blocked until there is enough available

space in the buffer. This blocking implementation is employed by

calling the wait () statement in the implementation of the

send_data primitive if there’s not enough space available. The

wait() call suspends the execution of the task. In the same

manner, if a task calls a recv_data primitive, but there’s not

enough data stored in the FIFO buffer, the receiver will be

blocked until the FIFO contains the requested number of elements.

The FIFO buffer can be characterized by size and depth. The size

represents the number of elements stored in the buffer. The depth

represents the number of bits necessary to store one element.

Each element occupies the same number of bits. In this example

(figure 29), the FIFO buffer has a size equal with 30000 and

depth equal with 1 word (32 bits).

class SWFIFO_Channel: public sc_prim_channel, //SOFTWARE FIFO CHANNEL

public swfifo_if

{

int buffer[30000];

unsigned int sizemax;

int buffer_size;

public:

SWFIFO_Channel() {

sizemax=SIZEMAX_swfifo;

buffer_size =0;

}

virtual void recv_data(const SWFIFO_Port& port, void* dst, int size);

virtual void send_data(const SWFIFO_Port& port, void* src, int size);

virtual void init(const SWFIFO_Port& port, int size);

};

void SWFIFO_Channel::send_data(const SWFIFO_Port& port, // SEND_DATA

void* src, int size)

{

while((sizemax - buffer_size) < (unsigned)size)

wait();

for (int i=0; i<size; i++)

buffer[buffer_size+i]=(((int*)src)[i]);

buffer_size = buffer_size + size;

}

Figure 29. Example of Implementation of Communication Channels

 At the virtual architecture level, all the modules are connected to the same clock signal.

Typically the clock is created in the main function of the top level and passed down through

3. Virtual Architecture Design

126

the module hierarchy to the rest of the system. This allows subset of components or the entire

system to be synchronized by the same clock. The clock signal has a set of attributes, such as

default time unit, period, duty cycle, first edge and first value. The default time unit is

assumed to be 1 nanosecond. The period represents the number of default time units required

by the clock signal to make a complete transition from true (high) to false (low) and back

from false (low) to true (high). The duty cycle is the ratio of the high time to the entire clock

period. E.g. if the period of a clock signal is equal with 20 default units and the duty cycle is

0.25, this means that the clock would stay in true state for 5 time units and false for 15 time

units. The first edge represent the offset time from 0 of the first edge expressed in time units.

The first value represents the starting value of the clock (true or false).

Example 18. sc_main for the Token Ring application at the Virtual Architecture Level

Figure 30 presents the main function (sc_main) for the

Token Ring application at the virtual architecture level. This

includes the initialization of the top module, the declaration of

the global clock signal, the connection of the clock signal to

the clock port of the top module and the launch of the simulation.

The clock has a period of 20ns and duty cycle 0.5.

int sc_main(int argc, char ** argv)

{

TOP top_module("TOP"); //TOP MODULE INSTANTIATION

sc_clock s_clk("s_clk",20,0.5,0); // CLOCK SIGNAL

top_module.clk(s_clk);

sc_start(-1); //START SIMULATION

return 0;

}

Figure 30. SystemC Main Function

3.3.3. Hardware-Software Interface at Virtual Architecture Level

The hardware-software interface defines the software-hardware interaction and how

the software can access the hardware. At the virtual architecture level, the hardware/software

interface consists of a set of task modules. The task module is a SC_MODULE which

3. Virtual Architecture Design

 127

encapsulates the software code within a SystemC clocked thread (SC_CTHREAD). The

software code may access the hardware through the ports of the task module.

Example 19. Task Module for the Token Ring application at the Virtual Architecture Level

Figure 31 illustrates an example of task module for the

task T2. The task module contains the declaration of the logic

ports. The type of the ports depends on the type of communication

channel which is accessed. For instance, the input port of task

T2 In1_Task2 is connected to the software FIFO channel, thus the

port has the type SWFIFO_Port. Task T2 writes to task T3 running

on the XTENSA processor via the AMBA bus. Therefore, the type of

the output port Out1_Task2 is AMBA_Port.

#ifndef _Task2_H

#define _Task2_H

#include <systemc.h>

#include "swfifo.h"

#include "amba.h"

SC_MODULE (Task2) { //TASK T2 MODULE

sc_in<bool> clk;

SWFIFO_Port In1_Task2;

AMBA_Port Out1_Task2;

void behaviour();

SC_CTOR(Task2) {

SC_CTHREAD(behavior,clk); // THREAD

}

};

#endif

Figure 31. Example of Hardware/Software Interface

Task T2 executes a clocked SystemC thread, namely the

behavior function. The behavior function is defined in the task

software code, as illustrated in figure 26. A clocked SystemC

thread represents a thread of execution which is sensitive only

to the positive or negative edge of a clock signal.

3. Virtual Architecture Design

128

3.4. Execution Model of the Virtual Architecture

The virtual architecture level allows debugging the task code. The following sections

will describe the simulation model in SystemC and the adopted configuration to validate the

virtual architecture model.

The executable model is obtained by compiling the task code and hardware platform

together. The resulted executable model uses the SystemC scheduler to activate and deactivate

the execution of the different tasks. The processor and memories are SystemC modules. The

abstract network component (bus, NoC or point-to-point communication channels) and the

software FIFO channels are derived from the SystemC channels. The software tasks are

SystemC clocked threads. A clocked thread has its own thread of execution which may accept

only positive or negative edge clock event in its sensitivity list. When the simulation starts,

the clocked threads are automatically activated.

The simulation at the virtual architecture level allows validating the tasks C code of

the refined software and the hardware-software partitioning. It represents a native execution

of the software onto the simulation host machine. High simulation speed is usually attained,

but abstracting the hardware architecture it lacks some accuracy.

The simulation at the virtual architecture level allows avoiding communication

deadlock due to improper scheduling of the communication operations between the different

tasks. The debug of the software code may be done using standard C debuggers such as gdb,

or by tracing waveforms. SystemC provides functions to create a VCD (Value Change Dump)

or ASCII WIF (Waveform Intermediate Format) file that contains the values of variables and

signals as they change during the simulation. The waveforms can be viewed using standard

waveform viewers that support the VCD and WIF formats, such as gtkwave.

3.5. Design Space Exploration of Virtual Architecture

3.5.1. Goal of Performance Evaluation

The goal of performance evaluation at the virtual architecture level is to allow

profiling the communication and computation requirements and improve the overall

performances of the system. The objective is to provide through simulation statistical

information, such as utilization of the architecture model components (busy/idle times), the

3. Virtual Architecture Design

 129

degree of the contention in a system, profiling information (time spent in different executions),

critical path analysis or average bandwidth between the architecture components.

Based on the application requirements and the communication traffic resulted after the

virtual architecture simulation, the designer can fix some hardware and software architecture

decisions. Examples of hardware architecture decisions are: the topology of the interconnect

component that will be included in the hardware platform at the next abstraction level (NoC

topology) or the communication scheme between the different subsystems fixing the mapping

of the communication buffers onto the storage resources. Examples of software architecture

decisions are: application partitioning into tasks and mapping onto the processing subsystems

and the semantic of the communication primitives used in the final application tasks code.

These different decisions influence the overall execution time of the system, cost and

power consumption. Therefore, good decisions are required to be able to control the MPSoC

design process.

Example 20. Goal of Performance Evaluation for the Token Ring application at the Virtual

Architecture Level

For example, in case of the Token Ring application, the

designer fixes at the virtual architecture level the partitioning

of the application into the 3 tasks and the mapping of the FFT

computation onto the XTENSA processor. Also, the communication

between the processors is decided to be performed via the global

memory.

3.5.2. Architecture/Application Parameters

The virtual architecture model has to fix some parameters that can influence the global

performance of the final system. The parameters represent a subset of those specified at the

system architecture level. The virtual architecture validate some decisions taken at the system

architecture level, such as partitioning and mapping, while other parameters are preserved in

order to be validated at the next levels. The preserved parameters can be specific to

subsystems or communication units, as it will be detailed in the following paragraphs.

3. Virtual Architecture Design

130

a) Architecture/ Application Parameters specific to Subsystems

The parameters specific to subsystems characterize the different subsystems from

hardware and software points of view. The hardware architecture parameters that characterize

the subsystems at this level and will be validated at the following abstraction levels are:

- NetworkType to specify the type of the network component used to interconnect

the different subsystems, such as AMBA bus or Network-On-Chip (NoC).

- NoCTopology to specify the bus or NoC topology (Mesh or Torus).

- NoCRoutingAlgorithm to specify the routing algorithm used by the routers to

transmit the received data packet in case of a NoC network component.

- NoCArbitrationAlgorithm to specify the type the arbitration algorithm inside a

NoC router (e.g. round robin, priority based, etc).

The software architecture parameters that characterize each processor subsystem are:

- OSType, which specifies the name of the operating system running on the target

processor (e.g. Linux, Mutek, DwarfOS, eCos).

- SchedulerType to identify the type of the scheduler (preemptive, cooperative).

- SchedulerAlgorithm to define the algorithm used for the tasks management by the

operating system (round-robin, priority based) etc.

b) Architecture/ Application Parameters specific to Communication Units

The communication primitives used for the data exchange in the tasks code are fixed

at the virtual architecture level. Therefore, the parameters that characterize the communication

units and will be validated at the next abstraction levels rely on the hardware architecture.

Example of this kind of parameters is the AccessType which identifies the type of the access

to the memory (directly or through DMA) making the communication path end-to-end.

3.5.3. Performance Measurements

At the virtual architecture level, the performance measurement consists of profiling

the communication and computation requirements for each task or for each processor.

The virtual architecture has the notion of time due to the clock signals. Therefore, by

simply annotation of the virtual architecture model with adequate execution delays, if such

3. Virtual Architecture Design

 131

delay information is available, the simulation at this level can estimate the total clock cycles

spent on communication or computation by task or processor. But, the accuracy of the

estimation is not yet cycle accurate at this level, since not all the hardware components or

hardware features (e.g. final bus arbitration scheme, interconnect topology, peripherals) are

explicit in the model. The execution time represents these estimated clock cycles required to

run an application on the MPSoC architecture. The simulation time represents the time needed

to simulate the behavior of the application running on architecture with their interaction.

Examples of metrics that can be measured at the virtual architecture level are: tasks

code and data size, buffer size required for the intra-subsystem and inter-subsystem

communication, the total quantity of exchanged data between the tasks during the execution,

the number of iterations of a function execution, the amount of data transferred between the

different processors, the amount of data passing through the global interconnect component,

the buffer size requirements in the worst case scenario for the storage resources in order to

support the communication mappings specified at the system architecture level or the amount of

read/write operations performed at the storage modules for the communication, etc.

By tracing the waveforms of signals or variables during the simulation, other metrics

can be measured, e.g. cycles spent by task on computation and communication, current task

executed during the simulation, etc.

Example 21. Performance measurements for the Token Ring application at the Virtual

Architecture Level

For example, the total simulation time of the Token Ring

application was 3 seconds to execute 68 clock cycles of period 20

nanoseconds, required to run the entire application. But in this

example, the model is not annotated with accurate information

regarding the operating system and the communication overhead. Thus,

the estimation is only message level accurate.

In the case of the Token Ring application, the total code

size and data size of the tasks code running on both processors is

32223 bytes, respectively 12 bytes. The total number of bytes

passed through the bus during the simulation is 3136 bytes.

Figure 32 shows the waveforms captured during the simulation

of the Token Ring application, e.g. at time 13100 ps, the current

3. Virtual Architecture Design

132

task running on the ARM processor was T1, while task T2 was blocked

on communication.

Figure 32. Waveforms Traced during the Token Ring Simulation

3.5.4. Design Space Exploration

At the virtual architecture level, the design space exploration covers architecture

exploration, more precisely communication architecture exploration. The designer can

experiment different communication mapping schemes and different communication

primitives. The designer may adopt different communication protocols and may map the

communication buffers onto different storage resources. The different communication and

synchronization schemes have advantages and disadvantages in terms of performance (latency,

throughput), resource sharing (multitasking, parallel I/O) and communication overhead

(memory size, execution time). Also, the tasks code can be generated using different tools,

such as Real Time Workshop.

Example 22. Design Space Exploration for the Token Ring application at the Virtual

Architecture Level

In the case of the Token Ring application, the designer may

map the buffers required for the inter-subsystem communication

3. Virtual Architecture Design

 133

onto different architecture resources, such as the local memories

of both ARM and XTENSA processors, or the shared global memory or

on the hardware FIFO.

3.6. Application examples at the Virtual Architecture Level

The following sections detail the virtual architecture model for the two case-studies

considered in this document: the Motion JPEG Decoder application running on the Diopsis

RDT architecture with AMBA bus and the H.264 Encoder application running on the Diopsis

R2DT architecture with Hermes NoC.

3.6.1. Motion JPEG Application on Diopsis RDT

This section presents the virtual architecture design in case of the Motion JPEG

(MJPEG) Decoder application running on the Diopsis RDT platform. The virtual architecture

design consists of two steps: software design and hardware design.

Firstly, the C code for each task was generated from the Simulink system architecture

model based on the annotation with the software architecture parameters. In the system

architecture model, the value attributed to parameter CommType is equal with “MPI”.

Therefore, the generated task code uses send_data(…)/recv_data(…) for the communication

primitives. Moreover, the C code was optimized by applying buffer-sharing and copy-removal

memory optimization techniques.

In order to evaluate the efficiency of the software task code, a comparison with the

single task code generation from Simulink using Real Time Workshop (RTW) is given. Table 1

resumes the code and data size of the generated application code.

Table 1. Task code generation for Motion JPEG

Size
(Bytes)

Library
 Code Data

RTW
 Code Data

Multitask code
 Code Data

MJPEG 6818 32 8225 72 8032 494

The code library contains the user defined C-functions commonly used by all the code

generator tools and independent of the software design method. The application task code

obtained by applying memory optimization techniques is more efficient in terms of code size

3. Virtual Architecture Design

134

than the code generated using RTW. But the multitasked representation requires

communication buffers. Therefore, the data size is bigger than in the case of RTW, which

generates only single task code.

The second step of the virtual architecture design represents the hardware design. The

hardware design consists of building the software development platform in SystemC

considering the hardware architecture parameters that annotate the system architecture model.

Figure 33 illustrates a conceptual view of the virtual architecture of the Diopsis RDT

architecture with AMBA bus.

Abstract AMBA

comm1

comm2

DXM T1

HdS API HdS API

T1 T2

comm4

Abstract ARM9-SS

Abstract DSP-SS

T3

Tasks code on ARM9

Abstract POT-SS

T4

comm8

……

comm3

SRAM

DMEM REG

T3

Task code on DSP

HdS API HdS API

T2

HdS API HdS API

Figure 33. Global View of Diopsis RDT running MJPEG

The virtual architecture platform contains all the components that are accessible by the

software through the send_data(…)/recv_data(…) HdS APIs. The inter-subsystem

communication units are partially mapped on the memory modules (DXM, REG, SRAM,

DMEM), attached as slave components to the AMBA bus. The impartiality comes from the

abstraction of the hardware architecture and making implicit several hardware characteristics

(e.g. local bus, DMA, bus bridges, etc). The address space of the components are

automatically assigned and computed by using a template that contains a predefined address

size for each component. The communication buffers between the different subsystems are

3. Virtual Architecture Design

 135

mapped on the corresponding memory modules based on the protocol specified at the system

architecture level.

As showed in figure 33, the virtual architecture contains the following components:

abstract ARM9-SS, abstract DSP-SS, abstract POT-SS and the storage resources: DXM, local

memory SRAM of the ARM9 processor, data memory DMEM of the DSP processor and data

register REG of the DSP. All the components are interconnected using an abstract AMBA bus.

The ARM9-SS contains the two task modules that are running on it (T1 and T2) and the five

intra-subsystem communication channels (comm4, comm5, comm6, comm7 and comm8).

According to the system architecture annotation, all these communication channels are

implemented as FIFO channels. The DSP-SS includes the task module T3. The POT-SS

includes the task module T4 responsible with the display of the decoded image. The three

communication units between the subsystems, more precisely comm1, comm2 and comm3,

may be mapped on different storage resources. In a first case, the ResourceType of each

communication unit has the value “DXM”. Hence, the system architecture model specified to

use the external memory as buffer storage for the communication between the different

subsystems. Therefore, all three were mapped on the external memory DXM.

The abstract AMBA bus is implemented as a simple bus which transfers data initiated

by a master. It allows connection of several master and slave subsystems, but only one data

transfer request can be accomplished in time. The bus has a scheduler or arbiter which

controls the data traffic. If data is to be transferred, the requesting master subsystem sends a

message to the scheduler. The scheduler checks if the slave subsystem is ready for the data

transfer. If it is ready, the scheduler puts the request into a FIFO queue. Otherwise, it waits

until the availability of the slave component and checks its status by polling. This mechanism

allows avoiding blocking the bus for a data transfer to a destination or source which is not yet

ready to receive or send data. The request message contains an identification code of the

target subsystem, which represents the address of the slave component. The decoder is

responsible to identify the slave subsystem. As soon as the bus is available, the access to the

bus is granted to the requesting subsystem, which can perform the data transfer to the

destination address. Having completed the data transfer, the bus becomes free for the next

request in the scheduler's queue. The AMBA bus allows transfers in burst mode, which means

that the master may transfer the whole data message within one access grant to the bus [Arm].

Through polling the status of the destination subsystem, the virtual architecture bus provides

synchronization mechanism between the different subsystems similar to semaphores.

3. Virtual Architecture Design

136

The functionality of the software code was validated by execution using the hardware

platform. The software code was compiled with the architecture platform. During the

execution, the tasks are scheduled by the SystemC simulation engine.

Besides the task code validation, the simulation model allowed also to gather

important early performance measurements, e.g. total number of messages transferred through

the AMBA bus. The data transfer between the ARM9 and DSP processor subsystems is

performed in messages of 64 words for the IDCT coefficients and in 1 word for the decoding

pattern; the data transfer between the DSP-SS and POT-SS is performed in messages of 16

words.

Table 2 shows the results for different communication schemes. Using as

communication units only the DXM, the bus was accessed to transfer 216000 messages

during the decoding process of the ten frames. If the communication units are mapped on

different resources, for example comm1 is mapped on DXM, comm2 on REG and comm3 uses

DMEM memory to store the communication buffer, the global bus was accessed to transfer

144000 messages during the simulation. In the third scheme, comm1 and comm2 are mapped

on SRAM, while comm3 remains mapped on DMEM. Thus, all the communication units

make use only of local memories SRAM and DMEM. In this case, the execution required

108000 messages to be transferred via the AMBA bus. In all the communication schemes, the

communication units between the two tasks running on the ARM9 processor comm4, comm5,

comm6, comm7, comm8 and comm9 implements the software FIFO protocol.

Table 2. Messages through the AMBA bus

Comm.
Unit

Comm1 Comm2 Comm3
Comm4-
Comm8

Total messages
AMBA

Execution
Time (ns)

DXM DXM DXM SWFIFO 216000 4464060
DXM REG DMEM SWFIFO 144000 3720060 MJPEG

SRAM SRAM DMEM SWFIFO 108000 2232020

This simulation model was accurate enough to validate the functionality of the task

code and ensure that there is no communication deadlock in the scheduling of the data transfer

between the tasks. The simulation time required to decode the ten image frames encoded

using QVGA YUV 444 format was approximately 14s on a PC running Linux OS at 1.73GHz

in all the cases of communication schemes.

3. Virtual Architecture Design

 137

The total execution time required by the whole decoding process is illustrated in table

2. These numbers were estimated without annotation of the code with execution delays.

Therefore, the accuracy of the estimation relies on message level. As the DXM

communication scheme supposes all the data exchange through the AMBA bus, it requires the

highest number of execution cycles, in a total time of approximately 4464060ns, due to the

conflicts that appear on the shared bus when simultaneous bus requests occur. In the mixed

communication scheme with DXM, REG and DMEM, the total number of execution time is

estimated to be 3720060ns, while the last communication scheme guarantees the fastest

execution with 2232020ns. The numbers for required execution time are obtained by calling

sc_simulation_time() at the end of the execution in the top module of the SystemC platform.

All the subsystems are interconnected to the same clock signal with period of 20 nanoseconds

and duty cycle 0.5.

Figure 34 presents a screenshot during the SystemC simulation of the MJPEG

Decoder application at the virtual architecture level.

SystemC

Figure 34. Virtual Architecture Simulation for Motion JPEG

3.6.2. H.264 Application on Diopsis R2DT

This section presents the virtual architecture design in case of the H.264 Encoder

application running on the Diopsis R2DT platform. The virtual architecture design is

accomplished in two steps: software design and hardware design.

3. Virtual Architecture Design

138

The software design consists of generating the C code for each task from the system

architecture model using the software architecture parameters. The CommType parameter

annotating each subsystem determines the communication primitives supported by the

operating system. Similar with the Motion JPEG example, the CommType is equal with

“MPI”. Therefore, the generated task code uses send_data(…)/recv_data(…) for the

communication primitives. The code is optimized in terms of data memory requirements.

Table 3 shows the task code and data size of the software at the virtual architecture

level. The first column represents the code and data size of the functions that are independent

of the design method. The second column shows the code and data size in case of generation

using Real Time Workshop. Real Time Workshop generates single task code, while the

software at the virtual architecture level represents multitask code. The last column represents

the results for the software design method with memory optimization techniques.

Table 3. Task code generation for H.264 Encoder

Size
(Bytes)

Library
 Code Data

RTW
 Code Data

Multitask code
 Code Data

H.264 270994 132 296305 148 366060 148

 The second step of the virtual architecture design represents the hardware architecture

design. The hardware design consists of building the software development platform in

SystemC considering the hardware architecture parameters that annotate the system architecture

model. Figure 35 illustrates a conceptual view of the virtual architecture for the Diopsis R2DT

architecture with Hermes NoC.

The virtual architecture platform contains all the components that are accessible by the

software through the send_data(…)/recv_data(…) HdS APIs. Thus, the platform contains the

following modules: four abstract subsystems, namely the ARM9-SS, DSP1-SS, DSP2-SS and

POT-SS, and the local and global memory modules: DXM shared by all the subsystems,

SRAM local memory of the ARM9-SS, DMEM1 and REG1 memories of the DSP1-SS,

respectively DMEM2 and REG2 memories of the DSP2-SS. All these components are

interconnected using an abstract NoC model. The DSP1-SS contains the task module of T1.

The DSP2-SS includes the task module of T2. Finally, the ARM9-SS encapsulates the task

module of the third task T3. The three communication units between the different processors,

more precisely the comm1, comm2 and comm3, may be mapped on different storage resources,

3. Virtual Architecture Design

 139

according to the system architecture specification. Figure 35 shows an example of mapping of

the communication units onto the DXM global memory.

Abstract Hermes NoC

comm1

comm2

DXM

T1

T3

Abstract ARM9-SS

Abstract DSP1-SS

T1

Abstract POT-SS

comm3

SRAM

DMEM1 REG1

T2

T3

Abstract DSP2-SS

T2

DMEM2 REG2

HdS API HdS API

HdS API HdS API

HdS API HdS API

Figure 35. Global View of Diopsis R2DT running H.264

At this level, each local memory has allocated an address space of 4MB. The global

memory has an address space of 256MB.

The NoC at the virtual architecture level represents an abstract NoC where

information like topology, routing algorithm, arbitration or buffer size information are

omitted. Communication architecture is modeled like a crossbar, where any set of

communication events may occurs simultaneously.

Figure 36 details the model of the Hermes NoC at the virtual architecture level.

The NoC is composed of three basic elements, which are the network interface (NI),

the mapping table (MT) and the router. The network interface is responsible for providing

send/receive operations for communicating subsystems, encapsulating these requests in

packets, capturing and interpreting packets arriving from the NoC and delivering them to the

subsystems. The mapping table is responsible for storing and informing the correspondence

between the IP cores range address and NoC physical address, i.e. IP core address between

0x00400000 and 0x007FFFFF correspond to NoC physical address 0x0. The router is in

charge of transporting packets from the source network interface to the destination network

interface.

3. Virtual Architecture Design

140

Mapping Table

Router
0x0

Router

1x0
Router

1x1
Router

1x2

Network

Interface

0x0

Network

Interface

1x0

Network

Interface

1x1

Network

Interface

1x2

…

…

Figure 36. Abstract Hermes NoC at Virtual Architecture Level

The Hermes NoC for the Diopsis R2DT architecture involves 5 routers at the virtual

architecture level. Each router is connected to the corresponding network interface and the

other four routers. The network interfaces connect the following IP cores to the NoC: ARM9-

SS, POT-SS, DXM, DSP1-SS and DSP2-SS. One network interface is associated to each

subsystem. Therefore, SRAM and ARM9 share the same network interface with address 1x0.

The local memories REG1 and DMEM1 share the network interface with address 1x1 with

the DSP1 processor core. The network interface with address 1x2 connects the REG2,

DMEM2 and DSP2 components to the NoC. The network interface corresponding to the

DXM has address 0x0. Finally, the network interface connecting the POT-SS has address 0x1.

The functionality of the software code was validated by execution using the hardware

platform. The software code was compiled with the architecture platform. During the

execution, the tasks are scheduled by the SystemC simulation engine. The simulation model is

accurate enough to validate the functionality of the task code and ensure that there is no

communication deadlock in the scheduling of the data transfer between the tasks.

Besides the task code validation, the simulation model allowed also to gather

important early performance measurements, e.g. number of words exchanged between the

tasks through the network component. The virtual architecture simulation allows capturing

information regarding communication values through the NoC. Such values are the amount of

data exchanged between the different subsystems, the storage elements worst case size

requirement for the communication buffer, the number of operations (send/receive) originated

from each access point of the NoC, the amount of read/write operations performed at the

storage elements and the NoC area based on the number of routers.

3. Virtual Architecture Design

 141

Figure 37 shows these numbers in case of different communication mapping schemes.

Hence, when all the communication buffers are mapped on the DXM memory, as shown in

figure 35, the NoC was accessed to transfer 6171680 words during the encoding process of

the ten frames. In another case, comm1 is mapped on DXM, comm2 on REG2 and comm3 on

DMEM1. This case required 5971690 words to be transferred through the NoC. A third case

maps comm1 on DMEM1, comm2 on DMEM2 and comm3 on SRAM and it generates

3085840 words to be operated by the NoC.

Total words

6171680

5971690

3085840

3285820

6171670

3085850

5971700

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

DXM+DXM+DXM

DXM+DMEM2+DMEM1

DMEM1+DMEM2+SRAM

DMEM2+DXM+SRAM

DXM+DXM+REG1

DMEM1+SRAM+DXM

DXM+SRAM+DXM

Figure 37. Words transferred through the Hermes NoC

Table 4 shows some results captured during the simulation of the H.264 Encoder

application in case of the first communication scheme with all the buffers mapped on the

DXM memory.

Table 4. Results captured in Hermes NoC using DXM as communication scheme

H.264 NoC Address Read/Write
Requests

Total packets
sent

MBytes Sent

DXM 0x0 0 83352 17324
ARM9-SS 1x0 2426 4853 68
DSP1-SS 1x1 39260 78522 16167
DSP2-SS 1x2 41663 83327 2090

The first and the second columns represent the correspondence between the different

cores connected to the NoC and the NoC addresses. The third column represents the total

3. Virtual Architecture Design

142

number of read and writes requested over the NoC. Based on these values the designer may

define a better mapping of hardware or the size of packets. The fourth and the fifth columns

(Packets and MBytes sent) allow evaluating the real amount of communication injected in the

NoC through each network interface. The DXM was the core that inserted the biggest amount

of data in the NoC. The DXM packets are originated from read requests and confirmation

packets.

In the third communication scheme, the simulation time required to encode the ten

image frames using QCIF YUV 420 format was approximately 32s on a PC running Linux

OS at 1.73GHz. The execution time of the encoding of the process without accurate execution

delay annotation implies 2546540 ns or 127327 clock cycles with a common clock used by all

the modules with the following settings: period of 20 time units, a duty cycle of 50%, the first

edge will occur at 0 time units and the first value is true. All the modules are synchronized by

the same clock. The default time unit is assumed to be 1 nanosecond.

3.7. State of the Art and Research Perspectives

3.7.1. State of the Art

The concept of virtual architecture is used in several academic and industrial MPSoC

design environments. There are several modeling and simulation environments of the virtual

architecture.

For example, in the ROSES hardware/software co-design tool, the virtual architecture

is defined as a system made of an abstract netlist of virtual components. A virtual component

consists of an internal component (or module) and its wrapper for adaptation to different

communication protocols, abstraction levels or specification languages. The virtual

components are interconnected by virtual channels through virtual ports [Ces 02].

A similar definition of the virtual architecture is given in [Shin 06]. They define the

virtual architecture as a system in which processing elements communicate via abstract

channels.

[Kog 01] defines the virtual architecture as an intermediate phase of the SoC design

flow, where the functionality of the system is mapped to the architecture in an abstract

manner to enable architecture optimization across heterogeneous computational components.

The virtual architecture is annotated with timing characteristics of the target architecture, thus

3. Virtual Architecture Design

 143

it allows fast exploration of different design alternatives. In this approach, the timing related

aspects are captured by the communication channels.

[Gerst 05] identifies the abstraction levels based on the communication refinement

from abstract message passing down to cycle-accurate bus functional implementation. In their

work, the communication design starts from a virtual architecture model. The virtual

architecture is defined as a system composed of processing elements that communication via

abstract channels with untimed synchronous or asynchronous message passing semantics. The

virtual architecture presented in this document is similar with the one defined in [Gerst 05],

but it contains also explicit mapping of the communication buffer onto the storage

components and explicit abstract interconnect component.

Other research works focus on automatic generation of the virtual architecture. Thus,

[Nik 06] introduces the ESPAM tool, which automatically generates C/C++ software code for

each processor from an application specification in form of KPN. The code contains the main

behavior of a process, together with the blocking read/write synchronization primitives and

memory map of the system. The resulted code is similar with the task code at the virtual

architecture presented in this document.

3.7.2. Research Perspectives

 Future research perspectives of the virtual architecture concern the following aspects:

- Automatic generation of the software code

- Automatic annotation of the software and hardware code with timing information

for accurate performance estimation

- Formalization of fleeting from system architecture to virtual architecture.

One of the main challenges in a SoC development flow is the consistency between

different levels of abstraction of the system to be implemented [Ber 04]. The quality of design

can be preserved by automatic generation of the abstraction levels, including the virtual

architecture generation. The automatic generation of the virtual architecture implies

generation of the software code and the hardware platform. The generation is achievable due

to the annotation with architecture attributes of the initial specification in form of the system

architecture.

3. Virtual Architecture Design

144

The software and hardware architectures are natively executed on a simulation host,

without using a software simulator such as Instruction Set Simulator (ISS). Therefore, to

obtain an accurate estimation of the execution time for an application, such as number of

cycles spent by the processor on computation or waiting for the communication, the virtual

architecture code has to be orchestrated with additional timing information, like the number of

cycles required by the processor to compute a function. The automatic annotation of the

generated code (software and hardware) with timing information can be accomplished by

inserting wait(delay) statements in the SystemC code of the architecture.

The passing from the system architecture level to the virtual architecture level needs to

be done conform a rigorous method which ensures the right preservation of the initial

specification in terms of design constraints. This may be achieved through a formalization of

the system architecture, virtual architecture and the formalization of the conversion from the

high level to the more detailed level. The considered aspects could be the model of

computation and the model of execution that characterize each abstraction level, and the

definition of the rules that guarantee a correct translation from one model to another.

3.8. Conclusions

This chapter defined the virtual architecture design. It presented the software

representation as final application task code and the hardware organization in abstract

subsystems interconnected through an abstract network component.

The virtual architecture design was performed using SystemC for 3 case studies:

Token Ring mapped on the 1AX architecture, Motion JPEG running on the Diopsis RDT

architecture and H.264 Encoder running on the Diopsis R2DT architecture.

The simulation of the virtual architecture model allowed to validate the final code of

the application tasks and the partitioning of the application. It also gave important statistics

regarding the communication requirements. These include the total number of bytes

exchanged between the subsystems during the execution of the application, the amount of

data passing through the interconnect component (bus, NoC) and the buffer size requirements

in the worst case scenario for the storage resources in order to support the communication

mapping.

Chapter 4

 TRANSACTION

ACCURATE

ARCHITECTURE DESIGN

This chapter details the transaction accurate architecture design. The transaction

accurate architecture design consists of integrating the OS and the communication software

component with the application task code and adapting the software to specific

communication synchronization protocol. The key contribution in this chapter represents the

transaction accurate architecture definition, organization and design, using SystemC, for the

Token Ring application running on the 1AX architecture, the Motion JPEG application

targeting the Diopsis RDT architecture and the H.264 Encoder running on the Diopsis R2DT

architecture. The simulation of the transaction accurate architecture model allows validating

the execution of the application tasks code upon an OS and early performance validation of

the communication mapping scheme. Different interconnect components, communication

mapping schemes and IP cores positioning over the interconnect component are explored in

order to analyze the performances of the various communication paths.

4. Transaction Accurate Architecture Design
__

147

4.1. Introduction

The transaction accurate architecture design consists of software adaptation to

specific communication protocol implementation. At this phase, aspects related to the

communication protocol are detailed, for example the synchronization mechanism between

the different processors running in parallel becomes explicit. The software code is adapted to

the synchronization method, such as events or semaphores. The adaptation is performed

through an integration of the tasks codes with the OS and communication components of the

software stack. The result of the transaction accurate architecture design represents the

transaction accurate architecture model.

4.1.1. Definition of the Transaction Accurate Architecture

The third abstraction level of the hardware-software architecture is called transaction

accurate architecture level (TA). The transaction accurate architecture details the local

architecture of each subsystem and makes explicit the communication protocol. On the

software side, the tasks code is integrated with an operating system and communication

library to form the software stack. Each processor subsystem executes a software stack. The

transaction accurate architecture model may be manually coded or automatically generated

by different tools.

The objectives of the transaction accurate architecture are:

- Early validation of the tasks code execution upon an operating system

- Early performance validation of the communication mapping scheme.

The transaction accurate architecture is composed of processor and hardware

subsystems that are interconnected using an explicit interconnection component, such as bus

or NoC. The processor subsystems include the local components of the subsystem, such as

local memories, peripherals and network interfaces, and an abstract model of the processor

cores.

Figure 38 illustrates a global view of the transaction accurate architecture, composed

of two abstract processor subsystems, one memory hardware subsystem and the network

component. The left part of the figure corresponds to the hardware architecture, while the

4. Transaction Accurate Architecture Design
__

148

right part represents the software stack at the transaction accurate architecture level running

on the one of the processor subsystems.

Abstract
ARM7 Mem

Mailbox Bridge

PIC
Mem0

HWFIFO

ARM-SS XTENSA-SS MEM-SS

Mailbox

PIC Mem

Bridge
Bridge

AMBA AHB

COMM1

COMM2

SW Stack on ARM

Abstract
XTENSA

T2

HdS API

HAL API

Comm OS

T1

Figure 38. Global View of the Transaction Accurate Architecture

4.1.2. Global Organization of the Transaction Accurate Architecture

The transaction accurate architecture model is a hierarchical model. The transaction

accurate architecture is composed of software and hardware subsystems that are

interconnected using an explicit network component, e.g. bus, NoC or dedicated hardware

components like the hardware FIFO.

The software subsystem represents the processor subsystem. The hardware subsystem

represents a memory subsystem or dedicated hardware subsystem that accelerates the

computation of specific application functions.

Each subsystem integrates local components that are interconnected using a local

simple bus. Usually the processor subsystems are made of one or more abstract computation

models of the processor cores, local memories such as program code memory, data memory

or dedicated registers, network interfaces for the connection with the external world and other

processor specific peripherals. The selection of these components relies on the target

architecture and the software requirements at this level.

Each abstract processor model executes a specific software stack made of the tasks

code, operating system and communication library. The software stack uses hardware

abstraction layer primitives (HAL APIs) for the interaction with the hardware part of the

system. In fact, the abstract processor with the implementation of the HAL APIs represents

the hardware-software interface.

4. Transaction Accurate Architecture Design
__

 149

At the transaction accurate architecture level, the intra-subsystem communication

units become communication channels implemented by the communication and operating

system components of the software stack. Therefore, the communication between the tasks

running on the same processor is managed totally by the OS and communication software

libraries.

The inter-subsystem communication units are mapped on full end-to-end

communication paths through the architecture. Hence, the communication protocol and

synchronization between the processors become explicit. The different communication paths

are characterized by different performance indicators, such as throughput of the buses, delay

of the communication path or overhead of the HdS layer (device drivers, resource sharing

mechanism).

The adopted communication path and the topology of the network infrastructure are

implemented according to the annotation of the system architecture model and performance

estimation through the simulation of the virtual architecture model.

Example 23. Transaction Accurate Architecture for the Token Ring application

Figure 38 shows a conceptual representation of the

transaction accurate architecture for the Token Ring application

mapped on the 1AX architecture.

Figure 38 illustrates that for the Token Ring application

running on the 1AX architecture, the transaction accurate

architecture contains two processor subsystems, corresponding to

the ARM, respectively XTENSA processors and the global memory

subsystem. All these subsystems are interconnected by an explicit

AMBA bus.

The ARM-SS processor subsystem includes an abstract ARM

module, local memory, programmable interrupt controller (PIC),

mailbox for the communication synchronization and bridge for the

interface to the AMBA bus, all interconnected through a local bus.

The local architecture of the XTENSA-SS subsystem is

similar with the ARM-SS subsystem, but only it includes abstract

model for the XTENSA processor instead of the ARM7 processor. The

global memory subsystem includes the global memory and the bridge

for the connection with the global bus.

4. Transaction Accurate Architecture Design
__

150

The communication through a FIFO between the tasks T1 and

T2 mapped on the ARM-SS is implemented by the software components

of the ARM software stack.

At the transaction accurate architecture level, the inter-

subsystem communication units COMM1 and COMM2 are mapped on full

communication path. Therefore, a data sent by the ARM and

received by the XTENSA processor using as storage buffer the

global memory follows the next data path:

ARM -> BUS_ARMSS -> BRIDGE_ARMSS -> AMBA -> BRIDGE_MEMSS ->

BUS_MEMSS -> MEM -> BUS_MEMSS -> BRIGDE_MEMSS -> AMBA ->

BRIDGE_XTENSASS -> BUS_XTENSASS -> XTENSA

where:

- BUS_ARMSS represents the local bus of the ARM-SS

- BRIDGE_ARMSS is the bridge of the ARM-SS

- BUS_MEMSS is the local bus of the MEM-SS

- BRIDGE_MEMSS is the interface of the global memory to the

AMBA bus

- BUS_XTENSASS specifies the local bus of the XTENSA-SS

- BRIDGE_XTENSASS represents the bridge inside the XTENSA-

SS.

This kind of data transfer requires synchronization

mechanism between the two processors using the mailbox components.

Thus, when the data to transmit is stored in the global memory,

the ARM sends an event to the mailbox of the XTENSA to notify

that there is available data. After checking the appropriate

register status of the mailbox, the XTENSA processor may transfer

the data from the global memory.

Other path of communication between the processors offered

by the architecture involves the following route:

ARM -> BUS_ARMSS -> HWFIFO -> BUS_XTENSASS -> XTENSA

The communication through the hardware FIFO does not

require explicit synchronization because the hardware resource

manages also the synchronization between the processors.

4. Transaction Accurate Architecture Design
__

 151

The transaction accurate architecture model may be represented using different design

languages, such as SystemC [Gro 02] or SpecC [Gaj 00]. The following paragraphs will

present the transaction accurate architecture using SystemC as design language.

4.2. Basic Components of the Transaction Accurate
Architecture Model

The basic components of the transaction accurate architecture Model are the software

and hardware components. The software components consist of the tasks code, operating

system, communication library and HAL APIs, while the hardware components represent

detailed subsystems and explicit communication network.

4.2.1. Software Components

At the transaction accurate architecture level, a software stack is build for each

processor subsystem. This software stack is composed of the previously generated tasks code

enriched with an OS and communication library. The HdS software represents the assembly of

OS, communication library and HAL APIs. The HdS refines the communication APIs (HdS

APIs) to custom hardware specific low level APIs (HAL APIs) and is responsible for task and

hardware resources management. The HAL APIs abstract the underlying hardware architecture.

Their implementation is not yet defined for the target processor, allowing keeping the software

code still processor independent. Based on OS and communication libraries, the proposed

approach sets aside flexible building and configuration of the software stack. Therefore, it

allows easy customization for specific architectures and/or applications. At this level, the data

transfers use explicit addresses, e.g. read_mem(addr, dst, size)/ write_mem(addr, src, size).

Example 24. Software Components for the Token Ring application at the Transaction

Accurate Architecture Level

For the Token Ring application, a software stack is executed

by each processor (ARM7 and XTENSA). The software stack running on

the ARM7 is made of 2 application tasks code (T1 and T2), OS and

communication library. The software stack running on the XTENSA is

made of task code of T3, OS for the interrupt management and

communication software component. For both processors, the

software stack has the same OS running, namely DwarfOS the same

4. Transaction Accurate Architecture Design
__

152

communication library, that implements the primitives

send_data(…)/ recv_data(…) and are based on the same HAL APIs

(read_mem(…)/ write_mem(…),ctx_swich(…)).

4.2.2. Hardware Components

The hardware architecture at the transaction accurate level represents a more detailed

platform than the virtual architecture level. It includes the components explicitly used by the

HAL APIs. The different subsystems of the architecture are detailed with explicit peripherals

and abstract computation model for the processor cores. Design decisions such as subsystems

positioning over the global interconnect component, NoC size definition, NoC topology, NoC

routing algorithm and communication buffer size are implemented at the transaction accurate

architecture level.

Example 25. Hardware Components for the Token Ring application at the Transaction

Accurate Architecture Level

For the Token Ring application, the hardware platform has a

detailed local architecture for each subsystem. Thus, the ARM-SS

and XTENSA-SS contain an abstract ARM, respectively XTENSA

processor, a local memory, an interrupt controller, a local bus

and a bridge for the interface with the AMBA. The global memory

subsystem contains the global memory and the bridge for the

connection to the AMBA. The hardware FIFO is connected directly to

the local bus of each processor subsystem.

4.3. Modeling Transaction Accurate Architecture in
SystemC

The transaction accurate architecture model is described using SystemC TLM

language and is designed according to the annotated architecture parameters of the initial

system architecture model and the results of the virtual architecture model simulation.

4. Transaction Accurate Architecture Design
__

 153

4.3.1. Software at Transaction Accurate Architecture Level

The software design at the transaction accurate architecture level consists of

integration of the tasks code with an OS and communication implementation for each

processor subsystem. In the following examples, the considered operating system is called

DwarfOS, an in-house tiny operating system which supports a set of basic services, such as

interrupts management, FIFO software communication protocol, a cooperative scheduling

policy based on static priority and application tasks initialization [Gue 07] [Pop 08]. The

communication primitives are based on blocking message passing interface semantic. The

synchronization is made using events. At this level, the generated tasks are dynamically

scheduled by the OS scheduler according to the availability of data for read operations or the

availability of space for write operations.

The tasks C code remains unchanged from the virtual architecture level and it uses

HdS APIs such as send_data(…)/recv_data(…). Compared with the virtual architecture, the

implementation of these APIs is not anymore handled by the SystemC architecture. The

implementation relies on the OS and communication libraries. Hence, the tasks are blocked

on communication and scheduled by the OS scheduler and not by the SystemC scheduler as

at virtual architecture level.

The OS and communication components make use of HAL APIs. At this level, the

implementation of the HAL APIs is not yet defined for the target processors. Therefore, the

software code is still processor independent at the transaction accurate architecture level, but

it is adapted to specific hardware communication implementation such as synchronization.

The HAL APIs i.e. __ctx_switch(…) gives to the operating system, communication and

application software an abstraction of the underlying architecture. Furthermore, the HAL

APIs ease OS porting on new hardware architecture. There are different categories of HAL

APIs [Yoo 03]:

- Kernel HAL APIs, such as context creation, delete or switch APIs

- Interrupt management APIs which enable/disable interrupt and implements the

interrupt routine services

- I/O HAL APIs, which configure the I/O devices and allows their access

- Resource management APIs for power management (check battery status, set

CPU clock frequency, set or reset timer)

4. Transaction Accurate Architecture Design
__

154

Example 26. Software Code for the Token Ring application at the Transaction Accurate

Architecture Level

Figure 39 illustrates an example of software code for the

Token Ring at the transaction accurate architecture level.

#include <config.h> // OS dependent header files

#include <support/os_types.h>

#include <comm/os_comm.h>

#include <comm/event.h>

#include <stdio.h>

extern void Task1();

extern void Task2();

unsigned char SWFIFO_buf1[4]; // software channels

unsigned char SWFIFO_stat_send1 = OS_EVENT;

unsigned char SWFIFO_stat_recv1 = OS_NO_EVENT;

void thread_main() {

int id;

vector_attach(UNIX_IRQ, 0, _mailbox_isr, NULL);

vector_enable(UNIX_IRQ);

id=thread_create(Task1,0); // tasks initialization

id=thread_create(Task2,0); // for scheduling

return;

}

Figure 39. Initialization of the Tasks running on ARM7

Figure 39 shows the main file. The main file contains the

function “thread_main” which represents the first function

executed on the processor after boot. The main file is

responsible to initialize the application tasks and software

communication channels. It includes the OS dependent header files,

it declares the software FIFO communication channels, it attaches

the interrupt routine services to the interrupt numbers and

initializes the tasks in the list of scheduling tasks for the

operating system. As illustrated in figure 39, in case of the

Token Ring application, the initialization file of the ARM7

processor declares the two tasks running on ARM7 and the software

FIFO used for the communication between them. It also attaches

the interrupt routine service of the mailbox to interrupt number

0.

Figure 40 shows a fragment of the code implementing the

communication primitive recv_data(…). If the protocol of the

4. Transaction Accurate Architecture Design
__

 155

communication channel is based on a FIFO mechanism, the

implementation checks the status of the FIFO. If the FIFO is

empty, the scheduler of OS is called (__schedule(…)).

void recv_data (ch,dst,size){ //implementation of recv_data HdS API

…

switch (ch.protocol){

case FIFO:

if (ch.state == EMPTY)

__schedule(); // OS scheduler

…

Figure 40. Implementation of recv_data(…) API

The communication primitives access the logic ports of the

tasks that are declared in the header files of each task. Figure

41 shows the header file of task T2 running on the ARM7 processor

in case of the Token Ring application.

Task T2 has two logic ports:

- One input port (In1_Task2) bonded to the software FIFO

channel, that connects task T1 and T2 and it was declared

in the main file of the ARM7 processor as pointed up in

figure 39.

- One output port (Out1_Task2) for the external

communication with the task T3 running on the XTENSA

processor.

The logic ports are declared of type port_t, as illustrated

in figure 41. The port_t represents the data structure which

implements the logic port in case of the DwarfOS. It combines the

following fields: communication protocol associated to the port,

status of the local synchronization register, status of the

remote synchronization register, destination buffer used to store

the data to be exchanged, list of tasks that are waiting for the

port to acquire a synchronization event, and a specific field

which stores special protocol characteristics.

The input port of task T2 is characterized by a software

FIFO protocol and has the synchronization and buffer associated

with the software FIFO channel. The output port of task T2 notes

a global FIFO protocol with the communication buffer mapped onto

the external memory at the address 0x40500000 and the

synchronization making use of the registers of the local and

remote mailbox corresponding to the communication channel. The

local mailbox represents the mailbox corresponding to the ARM

4. Transaction Accurate Architecture Design
__

156

processor accessed at address 0x300808. The remote mailbox stands

for the mailbox of the XTENSA-SS with address 0x700808.

#ifndef _Task2_H

#define _Task2_H

#include <support/os_types.h>

#include <comm/os_comm.h>

#include <comm/event.h>

#include <stdio.h>

extern unsigned char SWFIFO_buf1[4]; //software fifo channel

extern unsigned char SWFIFO_stat_send1; //status of sender

extern unsigned char SWFIFO_stat_recv1; // status of receiver

extern port_t Out1_Task1;

port_t In1_Task2 = {OS_SWFIFO_PROTOCOL, // SOFTWARE FIFO protocol

&SWFIFO_stat_recv1, // local synchronization

&Out1_Task1, // remote port

SWFIFO_buf1, // buffer address

NULL,

OS_DEFAULT};

port_t Out1_Task2 = {OS_GFIFO_PROTOCOL, // GLOBAL FIFO protocol

(void*)0x300808, // mailbox local register

(void*)0x700808, // mailbox remote register

(void*)0x40500000, // buffer address

NULL,

OS_DEFAULT};

Figure 41. Example of Task Header File

typedef struct {

protocol_t protocol;

void *l_status;

void *r_port;

void *d_buffer;

thread_t *requesting_thread;

unsigned char specific;

} port_t;

Figure 42. Data Structure of Tasks’Ports

Figure 43 shows a portion of the OS scheduler

implementation. The scheduler searches for a new task in status

ready for execution. If there is a new ready task, the scheduler

performs a context switch, by calling the HAL API __cxt_switch(…).

During the context switch, the OS saves the status and registers

(program counter, stack pointer, etc) of the processor running

the current task and loads those of the new task.

4. Transaction Accurate Architecture Design
__

 157

void __schedule (void){

int old_tid = cur_tid;

cur_tid = get_new_tid(); //get new task ready for execution

__ctx_switch (old_tid,cur_tid); //context switch HAL API

…

Figure 43. Implementation of the __schedule() Service of OS

4.3.2. Hardware at Transaction Accurate Architecture Level

The hardware at the transaction accurate architecture level consists of the set of

hardware and software subsystems interconnected using an explicit communication network.

The hardware architecture implements the communication protocol, including buffer

mapping, synchronization mechanism used by the processors and the entire communication

path for inter-subsystem communication.

The different subsystems represent SystemC modules (SC_MODULE) which include

the local components. A top module includes the declaration, instantiation, interconnection

and address space allocation of these subsystems. Each subsystem incorporates the local

hardware modules. The local components are also SystemC modules.

The transaction accurate architecture makes use of library of transaction accurate

components. This library implements parametric hardware components such as mailbox,

bridge, network interface, interrupt controller, interrupt signals, buses and abstract execution

model for distinct types of processor.

Example 27. Hardware Code for the Token Ring application at the Transaction Accurate

Architecture Level

Figure 44 details the Top module for the Token Ring

application running on the 1AX architecture.

4. Transaction Accurate Architecture Design
__

158

#include "XTENSA_SS.h"

#include "ARM7_SS.h"

#include "AMBA.h"

#include “GMEM_SS.h"

SC_MODULE (TOP)

{

public:

AMBA *vAMBA;

GMEM_SS *vgmem_ss;

XTENSA_SS *vxtensa_ss;

ARM7_SS *varm7_ss;

SC_CTOR(TOP)

{ //AMBA BUS

vAMBA = new AMBA("AMBA");

//MEMORY SUBSYSTEM

vgmem_ss = new GMEM_SS("gmem",0x1000000);

vgmem_ss->bridge->port(*vAMBA);

vgmem_ss->bridge->port.set_map(0x40000000,0x40FFFFFF);

//XTENSA SUBSYSTEM

vxtensa_ss = new XTENSA_SS("XTENSA_SS","../sw/XTENSA/XTENSA.bin");

vxtensa_ss->bridge->port(*vAMBA);

vxtensa_ss->bridge->port.set_map(0x400000,0x7FFFFF);

//ARM7 SUBSYSTEM

varm7_ss = new ARM7_SS("ARM7_SS","../sw/ARM7/ARM7.bin");

varm7_ss->bridge->port(*vAMBA);

varm7_ss->bridge->port.set_map(0x800000,0xBFFFFF);

}

};

 Figure 44. SystemC Code for the Top Module

The top module is a SC_MODULE which includes the

declaration and the instanciation of the ARM-SS (varm7-ss in

figure 44), XTENSA-SS (vxtensa_ss), AMBA bus (vAMBA) and global

memory subsystem MEM-SS (vgmem_ss). It also interconnects these

different subsystems by linking the bridges of each subsystem to

the AMBA bus. A 4Mbytes address space is allocated to each

processor subsystem. Thus, the ARM-SS has the address space

0x800000-0xBFFFFF and the XTENSA-SS has the address space

0x400000-0x7FFFFF. The global memory is identified between

addresses 0x40000000-0x40FFFFFF.

Figure 45 shows the SystemC module of the ARM7 subsystem of

the 1AX architecture.

4. Transaction Accurate Architecture Design
__

 159

#include "ARM7_SS.h"

extern int debug_flag;

ARM7_SS::ARM7_SS(sc_module_name name, char *bin) // ARM7-SS

:sc_module(name)

{

sys_bus = new TlmBus("sys_bus"); // local bus

core = new ArmUnixCore("ARM7Core",bin,debug_flag); // abstract ARM7 core

core->rw_port(*sys_bus);

mem = new Sram("mem0",0x300000); // local memory

mem->port(*sys_bus);

mem->port.set_map(0x0,0x2FFFFF);

bridge = new AhbIf("bridge"); // bridge

bridge->master(*sys_bus);

bridge->slave(*sys_bus);

bridge->slave.set_map(0x400000,0x7fffffff);

pic = new Pic<1>("pic",0x20); // PIC

pic->port(*sys_bus);

pic->port.set_map(0x300000,0x30001f);

sync = new Sync("sync",0x400); // mailbox

sync->port(*sys_bus);

sync->port.set_map(0x300800,0x300bff);

TlmIntrSig *sig_sync = new TlmIntrSig("sig_sync"); //interrupt signals

sync->intr(*sig_sync);

pic->in_irq[0](*sig_sync);

s1 = new TlmIntrSig("sig_intr1");

s2 = new TlmIntrSig("sig_intr2");

pic->out_fiq(*s1);

pic->out_irq(*s2);

core->nIrqPort(*s2);

}

Figure 45. SystemC Code for the ARM7-SS Module

The ARM7 subsystem includes a local bus (sys_bus), an

abstract execution model of the processor core (ArmUnixCore), a

local memory (mem), a bridge (bridge) for the connection to the

AMBA bus, a programmable interrupt controller (PIC) (pic), the

mailbox synchronization component (sync) and some interrupt

signals (sign_sync, s1 and s2) . The local peripherals have

associated address space. Thus, the local memory is addressable

between addresses 0x0-0x2FFFFF, the PIC between addresses

0x300000-0x30001F, the mailbox between addresses 0x300800-

0x300BFF. Each processor subsystem has the local address space

between 0x0-0x400000. The accesses to addresses higher than

0x400000 will be forwarded by the local bus to the bridge for

external access through the AMBA bus.

4. Transaction Accurate Architecture Design
__

160

As illustrated in figure 46, the transaction accurate

architecture of the 1AX architecture contains a global clock used

by all the processors. This clock has a period of time 1 unit,

where a time unit represents one nanosecond.

sc_clock SystemClock("SystemClock", 1, SC_NS); //SYSTEM SYSTEMC CLOCK

Figure 46. SystemC Clock

4.3.3. Hardware-Software Interface at Transaction Accurate
Architecture Level

 The hardware-software interface at the transaction accurate architecture level is

represented by the abstract model of each processor core and the implementation of the HAL

APIs. This is responsible to guarantee the software access to the hardware and implements

the interaction between hardware and software.

 The abstract model of the processor defines an execution environment of the software

stack [Schir 07]. This is implemented as a SystemC module which interacts with the software.

The abstract processor is modeled as a bus functional model, which allows operations onto

the local bus, such as read and write operations [Shin 04].

The implementation of the HAL APIs allows a simulation model of the OS and inter-

processor communication on the host machine [Bac 05]. For example, the implementation of

the HAL API ctx_switch (old_tid, cur_tid) to perform a context switch between two tasks

relies on the APIs provided by the operating system running on the host machine (Windows,

Linux, UNIX, etc). Figure 47 exemplifies the implementation of the context switch on the

host machine running Linux OS that uses sigsetjmp and siglongjmp APIs to save and switch

the context of a task.

void __ctx_switch(int old_tid, int new_tid)

{

sigjmp_buf old_buf, new_buf;

old_buf = task[old_tid].buf;

new_buf = task[new_tid].buf;

if(!sigsetjmp(old_buf, 1)) //LINUX APIs

siglongjmp(new_buf, 1);

}

Figure 47. Implementation of the __ctx_switch HAL API

4. Transaction Accurate Architecture Design
__

 161

4.4. Execution Model of the Transaction Accurate
Architecture

The full hardware-software executable model is based on a co-simulation between

SystemC for the hardware components including the abstract processors, and the native

execution of the software stacks [Nic 02].

Each software stack is a SystemC thread which creates a Linux process for the

software execution. At the beginning of the simulation, the SystemC platform launches a

GNU standard debugger (gdb) Linux process for each software stack in order to start its

execution. The software stack interacts with the corresponding SystemC abstract processor

module through the Linux IPC layer. The hardware-software interface uses Linux shared

memory (IPC Linux shm) for the interaction, data and synchronization exchange between the

software and the hardware.

The simulation at the transaction accurate architecture level allows validating the

integration of the tasks code with the OS and the communication protocol and debug of the

HdS access to the hardware resources (e.g. access to the AMBA bus, interrupt lines

assignment, OS scheduling, etc). On the software side, it makes possible the debug of the

access of the OS functions to the hardware resources through the HAL APIs, e.g. read(…)/

write(…) in the memory, explicit synchronization using mailboxes or the interrupt routine

services. On the hardware side, it gives more precise statistics on the communication and

computation performances, such as number of exchanged bytes during the application

execution, network congestion or estimation of the processors cycles spent on

communication.

Example 28. Execution Model for the Token Ring application at the Transaction Accurate

Architecture Level

Figure 48 shows the execution model of the software stacks

running on the ARM7 and XTENSA processors in case of the 1AX

architecture. This represents a co-simulation between the gdb

Linux processes of each software stack gdb1 and gdb2 (one gdb for

each software stack) and one SystemC Linux process for the whole

hardware platform simulation. The interface between the three

Linux processes is performed using the Linux IPC shared memory.

4. Transaction Accurate Architecture Design
__

162

T1 T2 T3

HdS API

Comm OS

HAL simulation model
in LINUX

HAL API

Abstract ARM7
execution model

SystemC

Gdb1

HdS API

Comm OS

HAL simulation model
in LINUX

HAL API

Abstract XTENSA
execution model

Gdb2

…

Figure 48. Execution Model of the Software Stacks running on the ARM7 and XTENSA

Processors

4.5. Design Space Exploration of Transaction Accurate
Architecture

4.5.1. Goal of Performance Evaluation

The goal of performance evaluation at the transaction accurate architecture level is to

allow profiling the communication requirements and improve the overall performances of the

system. The objective is to provide through simulation statistical information, such as

utilization of the global interconnect component or degree of contention in the network

component and validate the communication protocol and the execution of the tasks under the

control of a dedicated operating system

Based on the communication traffic resulted after the transaction accurate architecture

simulation, the designer can fix hardware and software architecture decisions. Examples of

hardware architecture decisions are: the entire end-to-end communication path used for data

exchange between the processors, the size of the NoC in number of routers, the positioning of

the IP cores over the NoC, the final topology of the interconnect component, the routing

algorithm used in a NoC, the buffer size inside the NoC routers or the communication

4. Transaction Accurate Architecture Design
__

 163

protocol between the different subsystems fixing the mapping of the communication buffers

onto the storage resources and the synchronization mechanism. Examples of software

architecture decisions are: operating system used for the scheduling of the tasks running on

the same processing units, implementation of the communication primitives and

synchronization mechanism managed by software.

These different decisions influence the overall execution time of the system, cost and

power consumption. Therefore, good decisions are required to be able to control the MPSoC

design process.

4.5.2. Architecture/Application Parameters

 The transaction accurate architecture validates some hardware and software

architecture characteristic specified at the system architecture level, such as:

- Integration of the tasks code with the OS and communication libraries

- Implementation of the communication protocol: buffers mapping, synchronization

mechanism and end-to-end data path between the processors

- Adaptation of the software to specific hardware communication implementation

- Scheduling algorithm of the tasks

- Type of global interconnection algorithm with its configuration parameters such a

as topology, buffer size, routing algorithm, arbitration algorithm.

The transaction accurate architecture still keeps the implementation of the

communication protocol independent of the type of processor cores. Therefore, the

CPUCoreType represents an architecture parameter that will be considered only at the next

abstraction level, the virtual prototype level. This will determine the adaptation of the

software to particular CPU through the explicit implementation of the low level processor

specific HAL software layer.

4.5.3. Performance Measurements

At the transaction accurate architecture level, the performance measurement consists

of profiling the interconnect component and the communication and computation

requirements for each processor.

4. Transaction Accurate Architecture Design
__

164

Using annotation of the transaction accurate architecture model with adequate

execution delays, the simulation at this level can estimate the total clock cycles spent on

communication or computation by each processor. The achieved precision can be cycle

accurate only for the inter-subsystem communication, since all the hardware components of

the communication path are explicit. The accuracy of the software execution is transaction

level.

On the hardware side, the transaction accurate architecture may give more precise

statistics on the communication architecture such as number of conflicts on the shared global

bus due to the simultaneous access requests in the case of a bus-based architecture topology.

For a NoC based architecture topology, useful information deduced during the simulation are

related to the amount of NoC congestion, number of routing requests, number of transmitted

packets, the average amount of transmitted bytes per packet or the number of times some

routers failed to transmit the packed due to the conflicts. For both topologies (bus and NoC),

the transaction accurate architecture simulation allows extracting the total amount of

transmitted bytes through the global interconnect component and the amount of data

transferred between the different processors.

Example 29. Performance Measurements for the Token Ring application at the Transaction

Accurate Architecture Level

For example, the total simulation time of the Token Ring

application was 12 seconds to run the whole application and the

bus was required 108 times to transfer data. But in this example,

the model is not annotated with accurate information required for

an accurate estimation due to operating system and communication

overhead.

4.5.4. Design Space Exploration

At the transaction accurate architecture level, the design space exploration consists of

communication mapping exploration. The designer can experiment different communication

mapping schemes, different communication protocols and diverse global interconnect

components in distinct configurations. For example, the designer may adopt a bus such as

STBus or AMBA bus or a NoC such as Hermes or STNoC. Moreover, the NoC may support

4. Transaction Accurate Architecture Design
__

 165

different topologies (mesh, torus, hypercube, ring, tree), the routers may be positioned in

different dimensions (2D, 3D), the number of routers is configurable, and the IP cores may be

located through different access points to the NoC. Thus, the NoC offers flexibility and

scalability in terms of number of routers, number of network interfaces and interconnected IP

cores.

Example 30. Design Space Exploration for the Token Ring application at the Transaction

Accurate Architecture Level

At this level, the designer can still map the communication

buffers onto different storage resources provided by the

architecture, such the local memories of both ARM and XTENSA

processors, or the shared global memory or on the hardware FIFO

in case of the 1AX architecture running the Token Ring

application. These different communication mapping schemes

involve different communication paths and synchronization

mechanisms between the processors.

4.6. Application Examples at the Transaction Accurate
Architecture Level

The following paragraph presents the transaction accurate architecture model for the

two case-studies: the Motion JPEG Decoder application running on the Diopsis RDT

architecture with AMBA bus and the H.264 Encoder application running on the Diopsis

R2DT architecture with Hermes NoC in Torus and Mesh topologies.

4.6.1. Motion JPEG Application on Diopsis RDT

The transaction accurate architecture design consists of two steps: software and

hardware design. The software design consists of linking the tasks code with an operating

system and communication library. For the Motion JPEG application, in order to produce an

executable software code, the tasks code is compiled with the DwarfOS operating system and

the communication library that implements the send_data(…)/recv_data(…) communication

primitives. The tasks are schedules by the OS. The communication between the tasks of the

same processor is implemented by the OS and communication library.

4. Transaction Accurate Architecture Design
__

166

The hardware architecture of the Diopsis RDT tile contains the components that can

be accessed by HAL APIs (figure 49). The ARM subsystem includes the abstract processor

core, local data memory (SRAM), local bus and bridge for the connection with the AMBA

bus. The DSP subsystem includes the DSP core, data memory (DMEM), registers (REG),

DMA, interrupt controller (PIC), mailbox, local bus and the bridge for external connection.

The POT includes the system peripherals of the RISC processor, e.g. timer, interrupts

controller (AIC), synchronization component (mailbox), but also I/O components like the

serial peripheral interface (SPI).

AMBA AHB

ARM9-SS

SRAM

POT-SS

Bridge

AIC SPI

Timer Mailbox

Abstract
ARM9Bridge

MEM-SS

Bridge

DXM

REG DMEM

DSP-SS

Bridge DMA

MailboxPIC

Abstract
DSP

HdS API

Comm OS

T1 T2

HAL API

HdS API

Comm OS

T3

HAL API

SW Stack on ARM

SW Stack on DSP

Figure 49. Transaction Accurate Architecture Model of the Diopsis RDT Architecture

running Motion JPEG Decoder Application

The AMBA bus implementation is based on the implementation at the virtual

architecture level, but the synchronization between the different subsystems connected to the

global bus is handled explicitly through the operating system and dedicated hardware

components. The AMBA supports burst mode transfer at this level.

The assignment of addresses and mapping of the communication buffers into the

memories with the corresponding interrupt mechanism used for synchronization is performed

during the hardware platform design. The address space of components is different from the

virtual architecture platform, because the generated platform at Transaction Accurate level is

more detailed and fully implements the communication protocol.

4. Transaction Accurate Architecture Design
__

 167

The full hardware-software executable model is based on a cosimulation between

SystemC for the hardware components including the abstract processors, and native

execution of the software stacks. Each software stack is a UNIX process created and

launched at the beginning of the simulation by the SystemC platform, in order to start their

execution. The software stack interacts with the corresponding SystemC abstract processor

module through the Unix IPC layer. Besides the software debug, the execution model at this

level also provided more precise idea on performances, that allowed some architecture

experimentation, as detailed in the next section. The simulation of the 10 QVGA frames at

transaction accurate level takes 5m10s. Figure 50 shows a screenshot taken during the

simulation, which captures the execution of the 2 software stacks running on the ARM,

respectively DSP, and the SystemC simulation of the platform with the POT displaying the

decoded image.

Figure 50. MJPEG Simulation Screenshot

Using transaction accurate simulation, in this document, three experiments are

conducted with different communication schemes between the DSP and RISC. The results

are summarized in table 5. In the first scheme, the data exchange is made only via DXM.

This generated 5256000 transactions to DXM. The second communication scheme makes use

of DXM and REG communication units between the processors and DMEM between the

DSP and the POT. This generated 4608000 transactions to the DXM, 72000 to the register

4. Transaction Accurate Architecture Design
__

168

and 576000 to the DMEM. The third case uses the SRAM as communication unit between

the processors and DMEM between the DSP and POT and needs 4680000 transactions to the

SRAM and 576000 to the DMEM. One transaction to the memory means one read/write

operation of 1 word (4 bytes) to the memory.

Starting from quantitative estimators provided by ATMEL Inc., the number of clock

cycles, needed by ARM and DSP to access data buffers of length N words located in different

memories, can be estimated. The DMA engine of the DSP needs 14+(N-1) cycles for DXM

read, 10+(N-1) for DXM write, 5+(N-1) for SRAM read and 8+(N-1) for SRAM write. A

data movement between REG and SRAM driven by the DSP core costs N/4 cycles plus a

movement to/from the SRAM driven by the DMA engine. The ARM processor is not

natively equipped with a DMA engine. The cost of ARM isolated access is 11*N for DXM

read and 8*N for DXM write. Forcing the compiler to use the assembler instruction which

moves blocks of 8 registers, the cost of burst can be reduced to 11*(N/8)+N for DXM read

and 2*N for DXM write. On the Diopsis tile, the ARM processor runs at a clock frequency

which is double of the AMBA bus used as unit of measure. This factor 2 can be taken in

account in the estimate of time of ARM access to SRAM. The DSP data memory can be

accessed by ARM in 6*(N/8)+N cycles for write and 8*N cycles for read.

The performance estimation results are summarized in table 5. The overall number of

cycles required for the communication using AMBA burst mode is: approximately 8856k

when all the data transfer is made via DXM; 7884k in the second case using REG, DXM and

DMEM storage resources and 3960k in the third case using the SRAM and DMEM local

memories. Thus, if the software code makes use of the existing hardware resources, an

improvement in communication performance can be obtained. This improvement

corresponds to 11% in the second communication mapping case and 55% in the third case.

The communication protocol is specified in the initial Simulink model by annotating the

communication units.

Table 5. Memory accesses

Communication
Scheme

Transactions [KWords]
 DXM SRAM REG DMEM

Total
cycles

__

DXM+DXM+DXM 5256k 0 0 0 8856k 100%

DXM+REG+DMEM 4608k 0 72k 576k 7884k 89%

SRAM+SRAM+DMEM 0 4680k 0 576k 3960k 45%

4. Transaction Accurate Architecture Design
__

 169

4.6.2. H.264 Application on Diopsis R2DT

 The transaction accurate architecture of the Diopsis R2DT tile with Hermes NoC is

illustrated in figure 51.

 The tasks code is combined with the DwarfOS operating system and the

implementation of the send_data(…)/recv_data(…) communication primitives to build each

software stack running on the processors. The processors execute single task on top of the

operating system. The OS is required for the interrupt routine services and the application

boot.

 The hardware platform is composed of the detailed three processor subsystems

(ARM9-SS, DSP1-SS and DSP2-SS), one global memory subsystem (MEM-SS) and the

peripherals on tile subsystem (POT-SS). The different subsystems are interconnected through

an explicit Hermes NoC available in Torus and Mesh topologies.

Figure 51 presents the transaction accurate architecture of the Diopsis R2DT tile with

NoC running the H.264 encoder application. The local architectures of each subsystem are

detailed, including network interfaces, local bus, data memories and registers, abstract

processor models, synchronization components, interrupt controller or DMA engines.

HERMES NOC

ARM9-SS

SRAM

POT-SS

NI

AIC SPI

Timer Mailbox

NI

MEM-SS

NI

DXM

REG1 DMEM1

DSP1-SS

NI DMA

MailboxPIC

REG2 DMEM2

DSP2-SS

NI DMA

MailboxPIC

Abstract
ARM9

Abstract
DSP2

Abstract
DSP1

HdS API

Comm OS

T3

HAL API

HdS API

Comm OS

T3

HAL API

SW Stack ARM9

HdS API

Comm OS

T1

HAL API

HdS API

Comm OS

T1

HAL API

SW Stack DSP1

HdS API

Comm OS

T2

HAL API

HdS API

Comm OS

T2

HAL API

SW Stack DSP2

Figure 51. Global View of the Transaction Accurate Architecture for Diopsis R2DT with

Hermes NoC running H.264 Encoder Application

4. Transaction Accurate Architecture Design
__

170

The Hermes NoC at the transaction accurate architecture adds more architectural

details such as topology, routing algorithm and router buffer size. The Hermes NoC model is

composed of the same basic elements as the virtual architecture level: network interface,

mapping table and routers but with a more detailed implementation. Topology (e.g. mesh,

torus), routing algorithm (e.g. pure XY, west first), arbiter algorithm (e.g. round robin,

priority based) and buffer size (e.g. number of flits) can be varied. The packet structure in this

model is composed of destination address, size and body fields, similar to that assumed in the

synthesizable NoC description. The Hermes NoC allows at the transaction accurate

architecture level extracting information from the system communication architecture, like:

(i) number of routing requests; (ii) number of packets inserted into the NoC; (iii) amount of

bytes exchanged; (iv) the average of bytes per packet; (v) the number of packets transmitted,

(vi) number of routing request failed due to NoC congestion.

At the transaction accurate architecture level, the DMA components belonging to the

DSP subsystems become explicit and have direct link to the interconnect component. Thus,

the Hermes NoC for the Diopsis R2DT architecture requires seven access points: five for the

different subsystems, as previously presented in the virtual architecture model and two

additional for the DMA components.

The different subsystems can be mapped over the NoC in different ways. The

following paragraphs describe with details an example of IP cores mapping scheme. Thus, in

a first scheme, the network interfaces connect the following IP cores to the NoC:

- The ARM9-SS is connected to network interface with address 1x0.

- The network interface with address 2x1 connects the DSP1-SS.

- The network interface with address 1x1 connects the DMA of the DSP1-SS.

- The network interface with address 1x2 connects the DMA of the DSP2-SS.

- The network interface with address 2x2 connects the DSP2-SS to the NoC.

- The network interface corresponding to the MEM-SS has address 0x0.

- The network interface connecting the POT-SS has address 0x1.

The NoC was adopted in two topologies: mesh and torus. In both cases, the NoC has

9 routers (3x3). Each router is connected to the corresponding network interface and the

neighbor routers.

4. Transaction Accurate Architecture Design
__

 171

Figure 52 shows the NoC employing a 2D mesh topology, a pure XY routing

algorithm and a round robin arbiter algorithm at each router and wormhole as packet

switching strategy.

Router
0x0

Network
Interface

0x0

Network
Interface

0x1

Network
Interface

1x0

Network
Interface

2x0

Network
Interface

1x1

Network
Interface

2x1

Router
1x0

Router
2x0

Router
0x1

Router
1x1

Router

2x1

Router
0x2

Network
Interface

0x2

Router
1x2

Router
2x2

Network
Interface

1x2

Network
Interface

2x2

Router
0x0

Network
Interface

0x0

Network
Interface

0x0

Network
Interface

0x1

Network
Interface

0x1

Network
Interface

1x0

Network
Interface

1x0

Network
Interface

2x0

Network
Interface

2x0

Network
Interface

1x1

Network
Interface

1x1

Network
Interface

2x1

Network
Interface

2x1

Router
1x0

Router
2x0

Router
0x1

Router
1x1

Router

2x1

Router
0x2

Network
Interface

0x2

Network
Interface

0x2

Router
1x2

Router
2x2

Network
Interface

1x2

Network
Interface

1x2

Network
Interface

2x2

Network
Interface

2x2

Output Input

O
u

tp
u

t
In

p
u

t

Input Output

Mapping Table

Arbiter Algorithm
Routing Algorithm

Figure 52. Hermes NoC in Mesh Topology at Transaction Accurate Level

Table 6 shows the results captured during the transaction accurate architecture Mesh

model simulation in case of the H.264 encoder application.

Table 6. Mesh Noc Routing Requests

IP core NoC @ TOTAL LOCAL NORTH SOUTH EAST WEST

MEM-SS 0x0 20,00% 6,39% 6,18% 0,00% 7,43% 0,00%

POT-SS 0x1 20,63% 7,22% 3,19% 7,22% 2,99% 0,00%

 0x2 3,19% 0,00% 0,00% 0,00% 3,19% 0,00%

ARM9-SS 1x0 21,04% 7,43% 7,22% 0,00% 0,00% 6,39%

DSP1-SS (DMA) 1x1 10,21% 0,00% 0,00% 0,00% 2,99% 7,22%

DSP2-SS (DMA) 1x2 3,19% 0,00% 0,00% 0,00% 3,19% 0,00%

 2x0 6,18% 0,00% 0,00% 0,00% 0,00% 6,18%

DSP1-SS (NI) 2x1 9,17% 2,99% 0,00% 6,18% 0,00% 0,00%

DSP2-SS (NI) 2x2 6,39% 3,19% 0,00% 3,19% 0,00% 0,00%

4. Transaction Accurate Architecture Design
__

172

The first and the second columns represent the correspondence between the different

subsystems and the NoC access points. A routing request is performed at least once per

packet per router that it will cross. Depending on the application, the NoC structure, routing

algorithm, NoC congestion state, the routing request can occur as many times as needed

inside a router. For the H.264 encoder simulation with 10 frames QCIF YUV 420 format,

96618508 routing requests were issued. The third column of table 6 presents the percentage

of routing requests at each router, while the other columns detail this information related to

the router port (local to the corresponding network interface, north, south, east or west).

These results were captured in the case of mapping all the communication buffers onto the

external memory.

Figure 53 shows the amount of data that traverses each router in the Mesh NoC for

the H.264 encoder application with using external memory for communication between the

processors.

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

0x0

0x1

0x2

1x0

1x1

1x2

2x0

2x1

2x2

R
o

u
te

rs

Total MBytes

North South East West Local

58708 61052

92527 67638

92527

61052

67638 136332

136332 96392 140199

61052

61052 136332 67637 136332

128689 140198 96392

Figure 53. Total KBytes Transmitted through the Mesh

The local port of each router inserts packets to the NoC, while the remaining ports

transfer them inside the NoC. The value assigned to the local port of the router 0x0 (MEM

4. Transaction Accurate Architecture Design
__

 173

SS) corresponds to response packets due to read requests or confirmation packets due to write

requests. Block transfer operations (amount of operation that will be transferred in one

packet) permit to optimize the amount of data exchanged inside the NoC by minimizing the

amount of control data.

In the second topology, the adopted NoC was a 2D Torus topology and deadlock free

of a non-minimal west-first routing algorithm proposed by Glass and Ni [Gla 94]. Figure 54

presents the Hermes 3x3 Torus NoC.

Router
0x0

Network
Interface

0x0

Network
Interface

0x1

Network
Interface

1x0

Network
Interface

2x0

Network
Interface

1x1

Network
Interface

2x1

Router
1x0

Router
2x0

Router
0x1

Router
1x1

Router
2x1

Router
0x2

Network

Interface
0x2

Router
1x2

Router
2x2

Network
Interface

1x2

Network
Interface

2x2

Router
0x0

Network
Interface

0x0

Network
Interface

0x0

Network
Interface

0x1

Network
Interface

0x1

Network
Interface

1x0

Network
Interface

1x0

Network
Interface

2x0

Network
Interface

2x0

Network
Interface

1x1

Network
Interface

1x1

Network
Interface

2x1

Network
Interface

2x1

Router
1x0

Router
2x0

Router
0x1

Router
1x1

Router
2x1

Router
0x2

Network

Interface
0x2

Network

Interface
0x2

Router
1x2

Router
2x2

Network
Interface

1x2

Network
Interface

1x2

Network
Interface

2x2

Network
Interface

2x2

Output Input

O
u

tp
u
t

In
p
u
t

Input Output

Mapping Table
Arbiter Algorithm
Routing Algorithm

Figure 54. Hermes NoC in Torus Topology at Transaction Accurate Level

The H.264 encoder simulation with 10 frames QCIF YUV 420 format using Torus

NoC topology involved approximately 78217542 routing requests, representing 19% of

reduction when compared to the Mesh NoC. This was possible because the 2D torus topology

has longest minimum paths that are only half of those in 2D meshes. Also, torus networks

have better path diversity than meshes, which, if exploitable by the routing algorithm, leads

to diminished network congestion, thus reducing routing requests.

4. Transaction Accurate Architecture Design
__

174

Table 7 presents these results. The first columns represent the correspondence

between the IP cores and network interfaces, while the others show the distribution of the

routing requests along the local, north, south, east and west ports of each router. The results

were captured in case of the mapping all the communication buffers onto the external

memory.

Table 7. Torus Noc Routing Requests

IP core NoC @ TOTAL LOCAL NORTH SOUTH EAST WEST

MEM-SS 0x0 25,67% 8,90% 4,28% 4,34% 8,14% 0,00%

POT-SS 0x1 20,00% 7,86% 0,00% 7,86% 0,00% 4,28%

 0x2 4,33% 0,00% 0,00% 0,00% 0,00% 4,33%

ARM9-SS 1x0 16,28% 8,14% 7,86% 0,00% 0,00% 0,28%

DSP1-SS (DMA) 1x1 7,86% 0,00% 0,00% 0,00% 0,00% 7,86%

DSP2-SS (DMA) 1x2 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

 2x0 8,62% 0,00% 0,00% 0,00% 8,62% 0,00%

DSP1-SS (NI) 2x1 8,57% 4,28% 0,00% 4,28% 0,00% 0,00%

DSP2-SS (NI) 2x2 8,68% 4,34% 4,34% 0,00% 0,00% 0,00%

Table 8 sums up the amount of data transferred through the Torus NoC during the

H.264 encoder simulation. The third column of the table represents the amount of data and

control information exchanged (e.g. operation request, confirmation response, etc). The other

columns of the table show the amount of data transmitted per each router port.

Table 8. Torus Noc Amount of Transmitted Data [Bytes]

 NoC @ LOCAL NORTH SOUTH EAST WEST

MEM-SS 0x0 110724784 80393092 68768172 127341684 0

POT-SS 0x1 122941472 264 122941856 0 80393360

 0x2 0 0 0 0 68768436

ARM9-SS 1x0 127342228 1229941340 132 0 4399692

DSP1-SS (DMA) 1x1 0 0 0 132 122941208

DSP2-SS (DMA) 1x2 0 0 0 132 0

 2x0 0 0 0 106325092 528

DSP1-SS (NI) 2x1 80393908 396 40196920 264 0

DSP2-SS (NI) 2x2 68768964 66128700 528 0 0

Figure 55 shows a screenshot captured during the simulation of the H.264 encoder

running on the Diopsis R2DT architecture with Torus NoC.

4. Transaction Accurate Architecture Design
__

 175

In order to analyze the communication performances, the AMBA bus is also

experimented as global interconnect instead of the Hermes NoC. The average throughput of

the interconnect component in order to execute the H.264 in real time (25 frames/s) was

235Mbytes/s for the NoC and 115Mbytes/s for the AMBA.

DSP1

ARM9

DSP2

SystemC

Figure 55. Simulation Screenshot of H.264 Encoder Application running on Diopsis R2DT

with Torus NoC

The NoC allows various mapping schemes of the IPs over the NoC with different

impact on performances. In this document, two different mappings of the IP cores over the

Mesh and Torus NoC are experimented: scheme A, detailed in the previous paragraphs and

scheme B with the MEM-SS connected at network interface with address 1x1 (both x and y

coordinates are 1). Figure 56 summarizes the correspondence Network Interface and IP core

in case of these two IP mapping schemes.

DMA2DSP1-SSPOT-SS2

DSP2-SSMEM-SSARM9-SS1

--DMA10

210

DMA2DSP1-SSPOT-SS2

DSP2-SSMEM-SSARM9-SS1

--DMA10

210X
Y

DSP2-SSDSP1-SS-2

DMA2DMA1ARM9-SS1

-POT-SSMEM-SS0

210

DSP2-SSDSP1-SS-2

DMA2DMA1ARM9-SS1

-POT-SSMEM-SS0

210X
Y

Scheme A Scheme B

Figure 56. IP Cores Mapping Schemes A and B over the NoC

4. Transaction Accurate Architecture Design
__

176

Table 9 presents the results of the transaction accurate simulation: estimated

execution cycles of the H.264 Encoder, the simulation time using the different interconnect

components on a PC running at 1.73GHz with 1GBytes RAM and the total routing requests

for the NoC. These results were evaluated for the two considered IP mapping schemes shown

in figure 56 (A and B) and for three communication buffer mapping schemes:

DXM+DXM+DXM, DMEM1+DMEM2+SRAM and DMEM1+SRAM+DXM. The AMBA

had the best performance, as it implied the fewest clock cycles during the execution for all

the communication mapping schemes. The Mesh NoC attained the worse performance in case

of mapping all the communication buffers onto the DXM and similar performance with the

Torus in case of using the local memories.

Table 9. Execution and Simulation Times of the H.264 Encoder for Different Interconnect,

Communication and IP Mappings

-

-

-

18115966

18512403

15213557

18467386

24753488

24753610

14479723

13144538

12674692

13118044

78217542

96618508

NoC Routing

Requests

1995

1990

1730

1593

1430

1639

1555

1527

1574

1475

1466

1819

1846

1527

1482

Simulation

Cycles/Second

98717727min18s17435445-AMBADMEM1+DMEM2+SRAM

14159623816min42s31924750Scheme BTorusDMEM1+SRAM+DXM

15159823718min38s31964731Scheme BMeshDMEM1+SRAM+DXM

10130965214min48s26193040Scheme ATorusDMEM1+SRAM+DXM

11159423714min55s26233039Scheme AMeshDMEM1+SRAM+DXM

-

-

Scheme B

Scheme B

Scheme B

Scheme B

Scheme A

Scheme A

Scheme A

Scheme A

IPs Mapping

over NoC

13159523816min14s31924752TorusDMEM1+DMEM2+SRAM

98718328min24s17436640AMBADXM+DXM+DXM

98717747min17s17435476AMBADMEM1+SRAM+DXM

13159823817min8s31964760MeshDMEM1+DMEM2+SRAM

9175352919min8s35070587TorusDXM+DXM+DXM

9175352918min34s35070577MeshDXM+DXM+DXM

9130965212min26193039TorusDMEM1+DMEM2+SRAM

10142868512min54s28573705MeshDMEM1+DMEM2+SRAM

16233569928min29s46713986TorusDXM+DXM+DXM

25320143636min64028725MeshDXM+DXM+DXM

Average Interconnect

Latency [Cycles/Word]

Execution

Cycles

Simulation

Time [min]

Execution Time

at 100MHz [ns]
Interconnect

Communication

Mapping Scheme

-

-

-

18115966

18512403

15213557

18467386

24753488

24753610

14479723

13144538

12674692

13118044

78217542

96618508

NoC Routing

Requests

1995

1990

1730

1593

1430

1639

1555

1527

1574

1475

1466

1819

1846

1527

1482

Simulation

Cycles/Second

98717727min18s17435445-AMBADMEM1+DMEM2+SRAM

14159623816min42s31924750Scheme BTorusDMEM1+SRAM+DXM

15159823718min38s31964731Scheme BMeshDMEM1+SRAM+DXM

10130965214min48s26193040Scheme ATorusDMEM1+SRAM+DXM

11159423714min55s26233039Scheme AMeshDMEM1+SRAM+DXM

-

-

Scheme B

Scheme B

Scheme B

Scheme B

Scheme A

Scheme A

Scheme A

Scheme A

IPs Mapping

over NoC

13159523816min14s31924752TorusDMEM1+DMEM2+SRAM

98718328min24s17436640AMBADXM+DXM+DXM

98717747min17s17435476AMBADMEM1+SRAM+DXM

13159823817min8s31964760MeshDMEM1+DMEM2+SRAM

9175352919min8s35070587TorusDXM+DXM+DXM

9175352918min34s35070577MeshDXM+DXM+DXM

9130965212min26193039TorusDMEM1+DMEM2+SRAM

10142868512min54s28573705MeshDMEM1+DMEM2+SRAM

16233569928min29s46713986TorusDXM+DXM+DXM

25320143636min64028725MeshDXM+DXM+DXM

Average Interconnect

Latency [Cycles/Word]

Execution

Cycles

Simulation

Time [min]

Execution Time

at 100MHz [ns]
Interconnect

Communication

Mapping Scheme

This is explained by the small numbers of subsystems interconnected through the

NoC. In fact, NoCs are very efficient in architectures with more than 10 IP cores

interconnected, while they can have a comparable performance results with the AMBA bus in

less complex architectures. Between the NoCs, the Torus has better path diversity than Mesh.

Thus, Torus reduces network congestion and decreases the routing requests. Also, scheme A

of IP cores mapping provided better results than scheme B for the DMEM1+DMEM2+SRAM

buffer mapping. For the other buffer mappings the performance of scheme A was superior to

scheme B. In fact, the ideal IP cores mapping scheme would have the communicating IPs

4. Transaction Accurate Architecture Design
__

 177

separated by only one hope (number of intermediate routers) over the network to reduce

latency.

Comparing with the virtual architecture, the transaction accurate interconnects fully

implement the bus, respectively the NoC protocol. Thus it provides accurate characteristics.

Therefore, the simulation of the transaction accurate interconnects requires higher simulation

time compared with the virtual architecture. But, during both design steps, the NoC needs

more time for the application simulation than buses due to its high complexity.

4.7. State of the Art and Research Perspectives

4.7.1. State of the Art

 Current literature offers large set of references dealing with transaction accurate

architecture design and software native execution using an abstract hardware platform.

 ChronoSym [Bac 05] presents a fast and accurate SoC cosimulation that allows

validation of the integration of the tasks code with the operating system. It is based on an OS

simulation model and annotation of software with execution delays. The abstract execution

model of the processors in the transaction accurate architecture presented in this document is

similar with the timed bus functional model used in the ChronoSym approach, but it is not

annotated for accurate estimation.

[Bou 05-b] presents an abstract simulation model of the processor subsystem. In this

work, the processor subsystem is not defined as a set of hardware components, but it is

viewed from a software point of view. Thus, the processor subsystem is made of execution,

access and data unit elements to allow early validation of the MPSoC architecture and native

time accurate simulation of the software.

 [Ger 07], based on the work described in [Bou 04], resumes a hardware-software

interface modeling approach in SystemC at the transaction accurate architecture level. This

work uses the concept of required and provided services in the modeling of the hardware-

software interfaces. The hardware-software interface is assembled using software, hardware

and hybrid elements.

 [Kempf 05] illustrates a configurable event-driven Virtual Processing Unit (VPU) to

capture timing behavior of multiprocessor multithreaded platforms through flexible timing

4. Transaction Accurate Architecture Design
__

178

annotation. The VPU enables investigation of the mapping of the application tasks with

respect to time and space and early design space exploration.

 [Schir 07] deals with abstract modeling of embedded processors using TLM. This

work develops a high level abstract processor model that allows fast simulation, acceptable

accuracy in simulated timing and exposing the structure of the software architecture (e.g.

drivers and interrupts). This approach is similar with the abstract execution model of the

processor belonging to the transaction accurate architecture.

 [Ber 04] details the Synopsys System Studio design tool that allows a SoC design

flow from system level to implementation by passing through several abstraction levels. One

of the intermediate refinement steps corresponds to the development at the platform level,

which represents a TLM platform of the hardware that allows starting the development of the

software. The software development itself uses a specific development and simulation kernel

such as RTLinux, together with an interface layer to the virtual processors on the platform.

 [Has 05] [Has 06] presents a simulation model of µTRON-based RTOS kernels in

SystemC. They developed a library of APIs that supports preemption, task priority

assignment or scheduling RTOS services by native execution and a SystemC wrapper to

encapsulate the OS simulation model into the bus functional model (BFM) of the hardware

platform. Their approach is similar with the presented approach, but they do not give details

on the hardware side.

 [Shin 06] presents a communication design flow based on automatic TLM model

generation. They allow generation and refinement of bus based communication architectures,

including bus bridges and transducers. But they do not address software code adaptation to

specific communication protocol implementation, in order to optimize the overall

communication performance.

 [Kli 07] proposes a hardware procedure call (HPC) protocol to abstract the platform

dependent details of the TLM communication between the different subsystems, by providing

an additional layer for the software modeling on top of transaction-level models.

4.7.2. Research Perspectives

 The most important research perspective regarding the transaction accurate

architecture design consists of annotation of the software code with execution delays for

accurate software performance estimation and annotation of the hardware code for accurate

4. Transaction Accurate Architecture Design
__

 179

communication architecture performance estimation. This could be managed by applying a

similar approach with timed bus functional model used in ChronoSym [Bac 05].

 Other research perspective represents the automatic generation of the transaction

accurate architecture. The generation could be made possible by applying a service-based

modeling of the hardware-software interface as described in [Ger 07]. The composition of the

services easies the automatic generation tools to reduce design time. The generation can be

performed from the system architecture or virtual architecture. Generation from the system

architecture enables generation of different detail levels from the same specification (virtual

architecture, transaction accurate architecture and virtual prototype). The generation from the

virtual architecture enables gradual refinement of the hardware/software architecture based

on the performance estimation performed at this level.

 On another proposed research perspective refers to the design at the

transaction accurate architecture level of more complex multi-tile architectures such as Tile64

[Tilera] or AM2000 [Ambric] running massive parallel applications.

4.8. Conclusions

This chapter defined the transaction accurate architecture design. It presented the

software organization as final application task code running upon a real time OS and the

hardware organization in detailed subsystems interconnected through an explicit network

component.

The transaction accurate architecture design was performed using SystemC for 3 case

studies: Token Ring mapped on the 1AX architecture, Motion JPEG running on the Diopsis

RDT architecture and H.264 Encoder running on the Diopsis R2DT architecture.

The simulation of the transaction accurate architecture model allowed to validate the

integration of the final application tasks code with an OS and communication software

adapted to the synchronization protocol. It also gave more precise information on the

interconnect model. This includes the number of conflicts in the global bus, the amount of

NoC congestion, the number of transmitted bytes through the bus or NoC, the number of

routing requests, the number of times some routers failed to transmit the packet due to

conflicts inside the NoC or the average bytes per packet.

4. Transaction Accurate Architecture Design
__

180

The transaction accurate architecture design also allows exploration of different IP

cores mapping over the NoC in order to analyze their impact on the overall performances.

Chapter 5

 VIRTUAL PROTOTYPE

DESIGN

This chapter details the virtual prototype design. The virtual prototype design consists

of integrating the HAL implementation into the software stack and establishing the final

memory mapping. The validation of the software is performed by using classical co-

simulation with Instruction Set Simulators (ISS). The key contribution in this chapter

represents the virtual prototype definition, organization and design using SystemC for the

Token Ring application running on the 1AX architecture, Motion JPEG running on the

Diopsis RDT architecture and H.264 Encoder running on the Diopsis R2DT architecture. The

Motion JPEG application is executed using ISS on different types of single processor (ARM7,

ARM9 and DSP) and the H.264 Encoder is simulated using ISS running both on

multiprocessor architecture with 3 ARM7 processors and single processor (ARM7 and

ARM9). The simulation of the virtual prototype model allows to validate the software binary

and the memory mapping.

5. Virtual Prototype Design

183

5.1. Introduction

The virtual prototype design consists of software adaptation to specific target

processors and memory mapping. This includes the integration of the processor dependent

software code into the software stack, more precisely the HAL integration with the tasks code,

OS and communication software components. The result of the virtual prototype design

represents the virtual prototype model.

5.1.1. Definition of the Virtual Prototype

The lowest MPSoC abstraction level is called virtual prototype (VP). The software

stack is fully explicit, including the HAL layer to access the hardware resources and it is

detailed to ISA (Instruction Set Architecture) level to be adapted for a specific processor. The

hardware architecture incorporates an ISS for each processor to execute the final binary code.

At the virtual prototype level the communication consists of physical I/Os, e.g. load/store.

According to [Hong 06], the virtual prototype has the following objectives:

- Measure system performance and analyze its bottlenecks

- Find out optimization points from the bottleneck analysis by using traces and

profile data

- Allow full software stack and memory mapping validation before the real

hardware is available

- Evaluate architectural decisions of both hardware and software side.

The virtual prototype is characterized by three issues: timing accuracy, simulation

speed and development time. The virtual platform has to be accurate enough to analyze

system performance including hardware-software interaction, fast enough to execute the

software and it has to be available earlier than the real-chip development. Unfortunately, these

criteria are difficult to be accomplished simultaneously: accurate platforms usually require

detailed information, thus they impose slow simulation speed and substantial time to develop.

The simulation at the virtual prototype level allows performance validation and it

corresponds to classical hardware/software cosimulation models with Instruction Set

Simulators [Row 94] [Sem 00] for the processors. The simulation performed at this level is

5. Virtual Prototype Design

184

cycle accurate. It allows validating the memory mapping of the target architecture and the

final software code. It also provides precise performance information such as software

execution time, computation load for the processors, the number of clock cycles spent on

communication, etc. The hardware platform includes all the hardware components such as

cache memories or scratchpads.

Figure 57 illustrates a global view of the virtual prototype, composed of ISS for the

processors and the other hardware components, such as local resources of the processor

subsystems, memory subsystem and the network component. The left part of the figure

corresponds to the hardware architecture, while the right part represents the software stack at

the virtual prototype level running on the one of these processor subsystems.

ARM7
ISS Mem

Mailbox Bridge

PIC

Mem0

HWFIFO

ARM-SS XTENSA-SS MEM-SS

Mailbox

PIC Mem

Bridge
Bridge

AMBA AHB

COMM1

COMM2

SW Stack on ARM

XTENSA
ISS

T2

HdS API

HAL API

Comm OS

T1

HAL

Figure 57. Global View of the Virtual Prototype

5.1.2. Global Organization of the Virtual Prototype

The virtual prototype model is a hierarchical model. The virtual prototype is composed

of detailed software and hardware subsystems interconnected through a global interconnect

component. The software subsystems incorporate an Instruction Set Simulator (ISS) for each

processor to execute the final binary code and cycle accurate components for the rest of the

architecture. The ISS is a software environment which can read microprocessor instructions

and simulate their execution. Most of these tools can provide simulation results like values in

memory and registers, as well as timing information (e.g. clock cycle statistics).

Example 31. Virtual Prototype for the Token Ring application mapped on the 1AX

architecture

Figure 57 shows a conceptual representation of the virtual

prototype for the Token Ring application mapped on the 1AX

5. Virtual Prototype Design

 185

architecture. Figure 57 illustrates that for the Token Ring

application running on the 1AX architecture, the virtual platform

contains two processor subsystems, corresponding to the ARM,

respectively XTENSA processors and the global memory subsystem.

All the subsystems are interconnected by an explicit AMBA bus.

The processor subsystems encapsulate the ISS for the ARM7

processor, respectively XTENSA processor ISS.

The software stack represents the final software code adapted to specific processor

implementation. The communication consists of physical I/Os, e.g. load/store.

5.2. Basic Components of the Virtual Prototype Model

The basic components of the transaction accurate architecture Model are software and

hardware components. The software components consist of the tasks code, operating system,

communication library and HAL, while the hardware components represent detailed

subsystems with ISS for processor.

5.2.1. Software Components

At the virtual prototype level, the software stack running on each processor is

completely detailed and represents the final binary of the software. The binary image will run

on the hardware simulation platform or on the physical architecture board in case it is

available.

The software stack is composed of all the software components: application tasks code,

communication implementation, operating system, HAL and the APIs to pass from one

component to another. Thus, the software stack is fully explicit, including the HAL layer to

access the hardware resources and it is detailed to ISA (Instruction Set Architecture) level for

a specific processor. The HAL represents a thin low software layer, totally dependent of the

target processor core. The HAL allows the software to access and configure the hardware

peripherals.

5. Virtual Prototype Design

186

Example 32. Software Components for the Token Ring application at the Virtual Prototype

Level

For the Token Ring application, both software stacks

running on the ARM7, respectively XTENSA processor are made of

the application tasks code (T1 and T2 for the ARM7 processor and

T3 for the XTENSA), the DwarfOS as operating system,

communication library and the HAL specific implementation for the

ARM7, respectively XTENSA processors. For both software stacks,

the data and program code are mapped explicitly on the memory,

conform to the final memory mapping.

5.2.2. Hardware Components

 The components of the hardware platform are those at the previous abstraction levels

but detailed with cache memories, scratchpads, memory management units and special

registers. The hardware architecture contains all the resources required to validate the final

software stack. Therefore, it contains the local components of each processor and hardware

subsystem. In order to execute the software stack, the virtual platform contains an Instruction

Set Simulator (ISS) corresponding to each processor core.

Example 33. Hardware Components for the Token Ring application at the Virtual Prototype

Level

For example, in the case of the Token Ring application

running on the 1AX architecture, the hardware platform contains

ISS encapsulated in the processor subsystems, specific to the

ARM7, respectively XTENSA processors.

5.3. Modeling Virtual Prototype in SystemC

The virtual prototype is modeled according to the annotated architecture parameters of

the initial system architecture model and the results of the virtual architecture and transaction

accurate architecture model simulation.

5. Virtual Prototype Design

 187

5.3.1. Software at Virtual Prototype Level

The software design at the virtual prototype level consists of developing the final

software binary that will run on each processor of the hardware platform. The binary image is

obtained from the final software stack. This software stack contains all the software

components: those validated at the transaction accurate architecture level, namely the

application tasks code, operating system and communication library, and an additional low

level component, more precisely the HAL.

[Yoo 03] defines the HAL as all the software that is directly dependent on the

underlying hardware. Example of HAL code represents the software code written in assembly

language interpretable by the processor, such as context switch, boot code or enabling and

disabling the interrupt vectors, respectively code for configuration and access to hardware

resources, such as MMU (Memory Management Unit), system timer, on-chip bus, bus bridge,

the hardware dependent part of the device drivers that allow to access the I/O devices,

resource management, such as tracking system resource usage (check battery status) or power

management (set processor speed).

To create the complete binary software image, the designer has to develop the

configuration and build files (e.g. Makefile) which select and configure the library

components (OS, communication, HAL) and controls compilation and linking of the different

software components. Using a cross compiler, the final target binary is created for each

processor, than can be executed on the target processor of the virtual platform.

Example 34. Software Code for the Token Ring application at the Virtual Prototype Level

Figure 58 presents an example of HAL code performing a

context switch between two tasks running on the ARM7 processor in

the case of the Token Ring application. Instead of using a

simulation model of the HAL APIs as it was employed at the

transaction accurate architecture level, the virtual prototype

gives the final implementation of the HAL API __ctx_switch(…) by

using an explicit HAL software code. The context switch needs two

basic operations to be performed: store the registers of the

current task and load the registers of the new task.

5. Virtual Prototype Design

188

__ctx_switch ; r0 old stack pointer, r1 new stack pointer

STMIA r0!,{r0-r14} ; save the registers of current task

LDMIA r1!,{r0-r14} ; restore the registers of new task

SUB pc,lr,#0 ; return

END

Figure 58. HAL Implementation for Context Switch on ARM7 Processor

 Figure 59 illustrates another example of low level code

implementation of the HAL APIs that enables and disables the IRQ

interrupts for the ARM processor. The interrupts are enabled and

disabled by reading the CPSR (Current Program Status Registers)

flags and updating bit 7 corresponding to bit I.

__inline void enable_IRQ(void) //HAL API

{

int tmp;

__asm

{

MRS tmp, CPSR

BIC tmp, tmp,#0x80

MSR CPSR_c, tmp

}

}

__inline void disable_IRQ(void) //HAL API

{

int tmp;

__asm

{

MRS tmp, CPSR

ORR tmp, tmp, #0x80

MSR CPSR_c, tmp

}

}

Figure 59. Enabling and Disabling ARM Interrupts

In order to select properly the libraries of all these

software components (OS, communication, HAL) for the compilation

of the software stack, a Makefile is required. Figure 60 details

a Makefile used for cross-compilation of the software stack

running on the ARM7 processor of the 1AX architecture. The

Makefile contains the path to the application tasks code, target

OS (los-kernel), communication library (los-comm) and the HAL

library corresponding to the ARM7 processor (lib/arm7). It also

identifies the compiler to be used, which in this case represents

the arm-elf-gcc cross compiler provided by GNU [Gnu].

5. Virtual Prototype Design

 189

It also includes the path to the linker script ldscript,

used to coordinate the linking process of the different object

files obtained after the compilation. The ldscript guides also

the loading process of the software image into the memory, by

specifying explicitly the addresses where to load the program and

data code of the software stack.

More details about the memory mapping will be given in the

next paragraphs.

CC = arm-elf-gcc # cross compiler

OBJDUMP= arm-elf-objdump

OSHOME = /home/popovici/dwarfos

INCDIR = .

SRCDIR = .

OBJDIR = .

BINDIR = .

FLAGS = -Wall -D_SIMULINK_ -DSTACK_SIZE=0x1000 -g -I$(INCDIR)

FLAGS += -I$(OSHOME)/include -I$(OSHOME)/include/libc

FLAGS += -DARCH_ARM7 -T$(OSHOME)/lib/arm7/ldscripts

FLAGS += -nostdinc -nostdlib -nodefaultlibs -g

LIBS = -lh264-arm7 -L$(OSHOME)/lib/arm7 # HAL library

LIBS += -los-kernel -los-comm -lgcc -lc # OS & Comm libs

OBJSUF = .o

SRC = $(wildcard $(SRCDIR)/*.c)

OBJ = $(SRC:$(SRCDIR)/%.c=$(OBJDIR)/%.o)

OSOBJS = $(OSHOME)/lib/arm7/libos-hds.o

TARGET = sw.bin

all: $(TARGET)

$(TARGET): $(OBJ)

@echo

@echo 'creating binary "$(TARGET)"'

$(CC) -o $(TARGET) $(OSOBJS) $(OBJ) $(LIBS) $(FLAGS)

$(OBJDUMP) -D $(TARGET) > sw.d

@echo '... done'

@echo

Figure 60. Example of Compilation Makefile for ARM7 Processor

Loading software image in memory

An important aspect of the virtual prototype design consists of loading the binary

image of the software into the memories of the chip. Usually, MPSoC architectures provide

complex memory hierarchies composed of different memories, such as ROM, SRAM, DRAM,

FLASH, etc. The binary image obtained after the compilation and linking is divided in two

sections: read-only (RO) which contain the code and data only for read operations and read-

5. Virtual Prototype Design

190

write (RW) section which contain the data that can be both read and written. Usually the RO

part is loaded into a ROM memory. The RW part is stored in the ROM before the execution,

and then it is initialized from the ROM into a RAM memory.

The structure of a binary image is defined by the number of regions and output

sections, the positions in the memory of these regions and sections when the image is loaded

and the positions in the memory of these regions and sections when the image is executed.

Each output section contains one or more input sections. Input sections are the code and data

information from the object files obtained after the compilation.

The image regions are placed in the system memory map at load time. Then, before

execution of the image, some regions are moved to their execution addresses and some parts

of memory are set to zero creating the ZI (zero initialize) sections. Thus, there are two

different views of the memory map: load view and execution view. The load view defines the

memory in terms of addresses where the sections are located at the load time, before

execution of the image. The execution view describes the address of the sections while the

image is executing. Figure 61 shows the load and execution view of the memories.

RO Section

RW Section
ROM

RAM

RO Section

RW Section

ZI Section

Memory initialized
to zero

Memory at Load Memory at Execution

Copy/Decompress

0x00000000

0x00009000

0x00200000

0x00400000

Figure 61. Load and Execution Memory View

The image memory map is specified during the linking phase. The linking can be done

using command line options for software images with few loading and execution sections or

by using scatter-loading description file for more complex cases. The scatter-loading

description file represents a text file that specifies the grouping information of sections into

regions and the placement addresses of the regions to be located in the memory maps. The

scatter loading description file also allows to place the data at a precise address in the memory

5. Virtual Prototype Design

 191

map to access memory mapped I/Os and peripherals. Moreover, stack and heap addresses are

defined using the same description file.

Figure 62 shows an example of scatter loading description file for an ARM processor

according to the memory mapping described in figure 61 [Arm]. This scatter loading

descriptor example defines one load region (ROM_LOAD) and two execution regions

(ROM_EXEC and RAM). The entire program, including code and data is placed in ROM at

ROM_LOAD. The RO code will execute from ROM_EXEC. Its execution address (0x0) is the

same as its load address (0x0), so it does not need to be moved being a root region. The RW

data will get relocated from ROM_LOAD to RAM at address 0x00200000. The ZI data will

get created in RAM, above the RW data.

ROM_LOAD 0x0 ; Start address of load region

{

ROM_EXEC 0x0 0x9000 ; Start address and maximum size of exec region

{

* (+RO) ; Place all code and RO data in this exec region

}

RAM 0x00200000 0x00200000 ; Start address and maximum size of exec region

{

* (+RW,+ZI) ; Place all RW and ZI data into this exec region

}

}

Figure 62. Example of Scatter Loading Description File for the ARM Processor

 Before the execution of the binary image, the processor runs an initialization sequence

code to setup and configure the system. Figure 63 presents an example of initialization code

using HAL for the ARM processor [Arm].

The initialization sequence has two principal functions: __main and __rt_entry. The

__main function is responsible for setting the run-time image memory map. It also performs

the copy of code and data and initializes the ZI section with zero. The __rt_entry (run-time

entry) function is responsible to set up the application stack and heap memories, to initialize

the library functions and static data and it calls the constructors of global objects declared in

C++. Then, the __rt_entry function continues with the main user function, which represents

the entry point of the software stack. For instance, the main function can be the initialization

function of the OS that declares and initializes the tasks running on the processor.

5. Virtual Prototype Design

192

__main
• copy code and data

• zero uninitialized data

__rt_entry
• set up application stack
and heap

• initialize library functions

• call top-level

constructors (C++)

• Exit from application

main()
• causes the linker to pull

in library initialization
code

User codeC LibraryImage Entry

Point

Figure 63. Example of Initialization Sequence for the ARM Processor

5.3.2. Hardware at Virtual Prototype Level

 The hardware platform is fully detailed with cycle accurate TLM or RTL components

for the hardware resources. The hardware at the virtual prototype level is composed of the

same components as at the transaction accurate architecture level. In order to reach accurate

performance estimation, the hardware modules are modeled at this level with cycle accuracy.

Cycle accuracy can be achieved in two modeling methods:

- TLM modeling of the virtual prototype and use of execution delay annotation for

cycle accuracy

- RTL (Register Transfer Level) modeling of the virtual prototype.

Both methods can make use of SystemC design language. The TLM modeling method

has the advantage to ensure a fast simulation environment, while the RTL modeling may

allow synthesizing the hardware architecture within a hardware-software MPSoC co-design

flow.

The virtual prototype contains ISS for the processors in the processor subsystem to

execute the software stack.

5. Virtual Prototype Design

 193

Example 35. Hardware Code for the Token Ring application at the Virtual Prototype Level

The virtual prototype in case of the Token Ring application

running on the 1AX architectures is modeled using cycle accurate

TLM. Figure 64 shows an example of processor subsystem for the

ARM7-SS of the 1AX architecture running the Token Ring

application. The ARM7-SS includes the processor core ArmCore

SystemC module, which encapsulates an ISS of the software. The

rest of the components of the ARM7-SS are those from the

transaction accurate architecture level (local bus, local memory,

bridge, interrupt controller, and mailbox).

#include "ARM7_SS.h"

extern int debug_flag;

ARM7_SS::ARM7_SS(sc_module_name name, char *bin) // ARM7-SS

:sc_module(name)

{

sys_bus = new TlmBus("sys_bus"); // local bus

core = new ArmCore("ARM7_ISS",bin,debug_flag); // ARM7 ISS

core->rw_port(*sys_bus);

mem = new Sram("mem0",0x300000); // local memory

mem->port(*sys_bus);

mem->port.set_map(0x0,0x2FFFFF);

bridge = new AhbIf("bridge"); // bridge

bridge->master(*sys_bus);

bridge->slave(*sys_bus);

bridge->slave.set_map(0x400000,0x7fffffff);

pic = new Pic<1>("pic",0x20); // PIC

pic->port(*sys_bus);

pic->port.set_map(0x300000,0x30001f);

sync = new Sync("sync",0x400); // mailbox

sync->port(*sys_bus);

sync->port.set_map(0x300800,0x300bff);

TlmIntrSig *sig_sync = new TlmIntrSig("sig_sync"); //interrupt signals

sync->intr(*sig_sync);

pic->in_irq[0](*sig_sync);

s1 = new TlmIntrSig("sig_intr1");

s2 = new TlmIntrSig("sig_intr2");

pic->out_fiq(*s1);

pic->out_irq(*s2);

core->nIrqPort(*s2);

}

Figure 64. SystemC Code of the ARM7-SS Module

5. Virtual Prototype Design

194

5.3.3. Hardware-Software Interface at Virtual Prototype Level

 At the virtual prototype level the communication consists of physical I/Os, e.g.

load/store. The hardware-software interface is represented by the ISS for the processors. An

Instruction Set Simulator (ISS) is a simulation model, usually coded in a high-level language

such as C language, which mimics the behavior of a microprocessor by "reading" instructions

and maintaining internal variables which represent the processor's registers.

5.4. Execution Model of the Virtual Prototype

The integration of instruction set simulators for the software execution on specific

processors with hardware simulators of the architecture behavior is largely used in MPSoC

domain. By using ISS, this approach allows simulating a detailed hardware-software

interaction. The timing information can be measured instead of estimated as at the previous

abstraction levels and design steps.

The execution model of the virtual prototype resides on a cosimulation between the

software stack simulator and the hardware simulator [Nic 02]. Two types of simulators are

combined: one for simulating the programmable components running the software and one for

the dedicated hardware part [Erb 07]. The software stack is executed using processor specific

ISS. Instruction-level or cycle accurate ISS simulators are commonly used. The hardware

simulation is performed using hardware RTL descriptions realized in VHDL, Verilog or

SystemC or cycle accurate TLM description realized in SystemC. In the following examples,

we use SystemC for the hardware simulation.

The hardware-software simulation is driven by SystemC. The SystemC initializes the

processor SystemC modules that encapsulate the ISS. During the simulation, the ISS features

a simulation loop which fetches, decodes and executes instructions one after another. The ISS

is developed as sequential software running on a single processor. The simulation performed

at this level is cycle accurate. The simulation of the virtual prototype allows validating the

memory mapping of the target architecture and the software binary.

Example 36. Execution Model for the Token Ring application at the Virtual Prototype Level

Figure 65 shows the execution model of the 1AX architecture

running the Token Ring application. The model contains two ISS to

5. Virtual Prototype Design

 195

execute the binary codes, corresponding to the ARM7, respectively

XTENSA processors. The rest of the architecture components are

cycle accurate SystemC components modeled at TLM with execution

timing information.

T1 T2 T3

HdS API

Comm OS

HAL API

HdS API

Comm OS

HAL API

HAL HAL

ARM7
ISS + BFM

SystemC

XTENSA
ISS + BFM…

ARM7.bin XTENSA.bin

Figure 65. Execution Model of the Virtual Prototype

5.5. Design Space Exploration of Virtual Prototype

5.5.1. Goal of Performance Evaluation

 The goal of the performance evaluation at the virtual prototype level is to validate the

final software stack and the overall performance of the system. The performance evaluation is

related to both computation and communication aspects.

 Based on the results obtained by execution of the final software on the virtual

prototype model, the designer may need to improve some parts of the design or revise design

options due to unsatisfied design constraints, for example if real time requirements are not

met, such as number of frames processed per second in multimedia applications, usually

defined as 25 frames/second. Software optimization aims to decrease program and data size,

usually achieved through application algorithm optimization or communication overhead

reduction.

5. Virtual Prototype Design

196

5.5.2. Architecture/Application Parameters

The virtual prototype validates the adaptation of the final software code to a specific

processor.

The designer may choose different types of processor cores from the same processor

family or different processor families. The different kinds of processor cores of the same

family have a common architecture, but are differentiated by some specific features, such as

size of data and instructions cache memories, bus interfaces, the availability of tightly coupled

memory, power consumption, area, clock frequency [Mhz] or DSP extensions. Table 10

shows a subset of different characteristics of processors belonging to the ARM7 family

compared to the ARM926EJ-S processor of ARM9 family [Arm]:

Table 10. ARM7 and ARM9 processors family

 Cache Size
(Inst/Data)

Tightly
Coupled Mem

Mem
Mgmt

Bus
Interface

Thumb DSP Jazelle

ARM720T 8k unified - MMU AHB Yes No No

ARM7EJ-S - - - Yes Yes Yes Yes

ARM7TDMI - - - Yes Yes No No

ARM7TDMI-S - - - Yes Yes No No

ARM926EJ-S 16k/16k Yes MMU AHB Yes Yes Yes

 The designer may change these parameters and may set up different configuration

schemes, including target compilation optimizations, to increase the overall performance.

5.5.3. Performance Measurements

The simulation of the virtual prototype provides precise performance information such

as software execution time, computation load for the processors, the number of cycles spent

on communication, number of cycles spent by processors in idle state, etc.

Other important metrics that can be measured at this level are: program and data

memory size requirements of the final software stack, number of cycles spent by the processor

on certain application functions or number of instructions executed per clock cycle. This kind

of data can be gathered thanks to the precise profiling capabilities of the most instruction set

simulators. Usually, the virtual prototype is a cycle accurate model, thus it implies long

simulation time. Therefore, the simulation time represents another key feature to be measured

at the virtual prototype level.

5. Virtual Prototype Design

 197

Example 37. Performance Measurements for the Token Ring application at the Virtual

Prototype Level

In case of the Token Ring application, the execution of the

three tasks on a single ARM7TDMI processor without operating

system requires 484775 clock cycles running at 60 MHz. The

application compiled for a single ARM7 processor produces a code

size of 1112 bytes and 108 data bytes. The computation of the FFT

on the ARM7 processor involves 33329 clock cycles.

5.5.4. Design Space Exploration

At the virtual prototype level, the design space exploration consists of processor core

configuration and exploration. The different types of processors cores or differently

configured processors have different performances in terms of speed, power consumption and

cost.

Example 38. Design Space Exploration for the Token Ring application at the Virtual

Prototype Level

For instance, the XTENSA processor is a configurable

processor provided by Tensilica [Ten]. The SoC designers may

customize functional blocks to exactly match the required

application. Because these processors are fully programmable,

changes can be made in firmware even after the silicon production.

Generally, the configurable processors have two essential

features:

- Configurability, which allows the designers to pick and

configure the features they need.

- Extensibility, which allows designers to add multi-cycle

execution units, registers, or register files. For

instance, the Tensilica Instruction Extension (TIE) of the

XTENSA processors is a methodology that allows designers

to specify and verify the functional behavior of the new

data path and the RTL is automatically generated [Ten].

5. Virtual Prototype Design

198

Another space that can be explored at the virtual prototype level represents the

memory mapping. Thus, the different data structures can be mapped on different memories at

different addresses accessible through load/store instructions.

5.6. Application Examples at the Virtual Prototype Level

The following paragraph presents the virtual prototype model for the two case-studies:

the Motion JPEG Decoder application running on the Diopsis RDT architecture with AMBA

bus and the H.264 Encoder application running on the Diopsis R2DT architecture with

Hermes NoC.

5.6.1. Motion JPEG Application on Diopsis RDT

At the virtual prototype level, the software stacks of the Motion JPEG Decoder

application running on the two processors contain all the components. A processor specific

HAL layer is linked with the application tasks, operating system and communication libraries.

Usually, the HAL layer is provided by the processor vendors. Thus, a specific ARM7 HAL is

implemented in the final software running on the ARM7. Similarly, the HAL of the DSP is

integrated in the software stack. The two software stacks produce two different binary images

that will be interpreted and executed by the ISS corresponding to each of these processors.

The hardware platform contains cycle accurate detailed components using TLM

modeling with timing annotation or RTL modeling. Figure 66 illustrates a global view of the

virtual prototype platform with the use of ISS as processor execution model.

Figure 67 summarizes the total execution cycles measured when executing the whole

Motion-JPEG application on single processor single task configuration. The experimentation

was done using three types of processor cores. The first processor core represents the

ARM7TDMI-S processor of family ARM7. This processor works at frequency 60 MHz and

has not data cache or instruction cache memories. The second core belongs to ARM9

processors family and represents the ARM926EJ-S type of core. This runs at 200 MHz

frequency and is equipped with 16KBytes data cache and 16KBytes instruction cache

memories. The third processor represents the magicV VLIW DSP processor, running at 100

MHz. In the all cases, the real-time execution requirement defines an image rate equal with 25

images/second to be decoded.

5. Virtual Prototype Design

 199

AMBA AHB

ARM9-SS

SRAM

POT-SS

Bridge

AIC SPI

Timer Mailbox

ARM9
ISSBridge

MEM-SS

Bridge

DXM

REG DMEM

DSP-SS

Bridge DMA

MailboxPIC

DSP
ISS

HdS API

Comm OS

T1 T2

HAL API

HdS API

Comm OS

T3

HAL API

SW Stack on ARM

SW Stack on DSP

HAL

HAL

Figure 66. Global View of the Virtual Prototype for Diopsis RDT with AMBA Bus running

Motion JPEG Decoder Application

0

5000000

10000000

15000000

20000000

25000000

1 2 3 4 5 6 7 8 9 10

Frames

C
lo

ck
 c

yc
le

s

ARM7TDMI-S (60MHz) Real Time 60MHz

ARM926EJ-S (200MHz) Real Time 200MHz

DSP

Figure 67. Execution Clock Cycles of Motion JPEG Decoder QVGA

5. Virtual Prototype Design

200

As shown in figure 67, the number of execution cycles required to decode an image is

approximately 7 Mega cycles on the ARM9 processor, 16 Mega cycles on the DSP processor

and 23 Mega cycles on the ARM7 processor.

The performance difference between the two ARM processors is explained by the

availability of the additional cache memories and improvement in number of cycles required

for load/store operations characterizing the ARM9 core family compared with the ARM7 core.

The real time requirement implies 8 Mega cycles on a CPU running at 200 MHz and 2,4

Mega cycles on a CPU running at 60 MHz. Thus, the M-JPEG decoder can be executed in

real-time by using the ARM9 processor, while the execution on a single ARM7 processor

requires application code optimization. The execution on the DSP can be improved by using

the DSP specific optimization features.

After the compilation of the MJPEG decoder application, the memory requirements

are as follows: 7592 bytes of code size for the program memory and 1402 bytes data memory.

These values were obtained in case of targeting both processors ARM7 and ARM9 cores

using the CodeWarrior development tool [Metrowerks]. In case of the DSP processor, the

MJPEG decoder requires 614 bytes data memory and 2806 bytes program memory.

5.6.2. H.264 Application on Diopsis R2DT

The H.264 Encoder running on the Diopsis R2DT architecture at the virtual prototype

level is illustrated in figure 67. In the same way as in the case of the Motion JPEG decoder,

there are three final software stacks running on the architecture, one per each processor. The

HAL libraries were included in the software stack for each particular CPU.

The hardware platform includes ISS to execute the final software. The ISS allows

determining the execution cycles spent on each task. The virtual prototype of the Diopsis

R2DT running the H.264 encoder application is illustrated in figure 68.

Figure 69 captures the results of executing the H.264 Encoder application, Main

Profile, QCIF video resolution on the ARMTDMI-S and ARM926EJ-S processors. In this

single task fashion, the H.264 encoder requires around 30 Mega cycles to encode a P frame

and 16 Mega cycle for encoding one I video frame on the ARM9 CPU running at 200 MHz. If

the target processor is the ARM7 core, the encoder requires approximately 50 Mega cycles for

a frame type I and 90 Mega cycles for a frame type P.

5. Virtual Prototype Design

 201

HERMES NOC

ARM9-SS

SRAM

POT-SS

NI

AIC SPI

Timer Mailbox

NI

MEM-SS

NI

DXM

REG1 DMEM1

DSP1-SS

NI DMA

MailboxPIC

REG2 DMEM2

DSP2-SS

NI DMA

MailboxPIC

ARM9
ISS

DSP2
ISS

DSP1
ISS

HdS API

Comm OS

T3

HAL API

HdS API

Comm OS

T3

HAL API

SW Stack ARM9

HdS API

Comm OS

T1

HAL API

HdS API

Comm OS

T1

HAL API

SW Stack DSP1

HdS API

Comm OS

T2

HAL API

HdS API

Comm OS

T2

HAL API

SW Stack DSP2

HAL

HAL

HAL

Figure 68. Global View of the Virtual Prototype for Diopsis R2DT with Hermes NoC running

H.264 Encoder Application

0

20000000

40000000

60000000

80000000

100000000

120000000

1 2 3 4 5 6 7 8 9 10
Frames

C
lo

ck
 c

yc
le

s

ARM7TDMI-S (60MHz) Real Time 60MHz

ARM926EJ-S (200Mhz) Real Time 200MHz

Figure 69. Execution Clock Cycles of H.264 Encoder, Main Profile, QCIF Video Format

5. Virtual Prototype Design

202

As shown in figure 69, both results do not respect the real-time encoding requirement

established at 25 frames/second. Running on a single processor, the achieved frame rate is 9

frames/second for a P frame and 12 frames/second for the I video frame. The H.264 results

represented in figure 69 consider a key frame of 5 frames, which mean that between two I

frame there are 5 video frames that will be encoded as P frame.

Figure 70 shows the program and code size of the H.264 application compiled with

the CodeWarrior tool targeting the ARM7 and ARM9 processors. The data size has the same

value for both types of processor cores, being equal with 2799 Kbytes, while the program size

is 474 Kbytes compiled for the ARM7 processor and 277 Kbytes for the ARM9 core.

474 277

2799 2799

0

500

1000

1500

2000

2500

3000

ARM7 ARM9

K
B

yt
es

Code Size Data Size

Figure 70. Program and Memory Size

5.7. State of the Art and Research Perspectives

5.7.1. State of the Art

 Currently, virtual prototype environments for modeling and simulation based on

SystemC, such as Maxsim [Arm-b], Coware ConvergenSC [Coware] and Synopsys System

Studio [Synopsys], provide a rich set of components such as processors, memories, and

peripherals that can be extended by user-defined modules.

 The concept of Virtual Platform appears in [Hong 06] with the purpose to allow

software development and code optimization before the real board is available. [Oya 07] uses

virtual prototype simulation to perform a software profiling, such total execution cycles and

software performance analysis.

5. Virtual Prototype Design

 203

Execution of software using an ISS still suffers from low simulation speed compared

to real hardware. Therefore, many researchers focus on developing new techniques to attain

high simulation speed. In this context, [Qin 06] mixes the interpreted ISS simulation with

compiled ISS simulation in order to allow a multiprocessing simulation approach to increase

simulation speed. [Sin 07] describes an ultra-fast ARM and multi-core DSP instruction set

simulation environment based on just-in-time (JIT) translation technology, which refers to the

dynamic translation of the target instructions (ARM, DSP) to the host instructions (x86)

during the execution.

 [Kra 07] presents a fast and hybrid simulation framework which allows switching

between native code execution and ISS-based simulation. In this approach, the platform-

independent parts of the software stack are executed directly on the host machine, while the

platform dependent code executes upon an ISS. Thus, the framework allows debugging a

complex application through executing it natively until the point where the bug is expected,

and then executing on the ISS to examine the detailed software behavior.

Other research groups focus on integrating ISS within existing design flows. For

instance, [Liu 98] presents a framework of ISS integration within the Ptolemy design

environment that leverages the approach of time-approximate cosimulation based on source

code estimation of execution time, and refines its precision by using an ISS.

[Park 07] presents the automatic generation of virtual execution platforms for the

hardware architecture to analyze the run-time behavior of the application running on a real-

time operating system and to estimate accurately performance data.

[Kli 06] allows generation of synthesizable communication from high level TLM

communication models. The scope of this work is to reduce the gap between TLM and RTL

design for automating MPSoC synthesis.

[Schir 08] proposes automatic software synthesis from TLM platforms. They support

automatic generation of HdS, including code generation, communication software synthesis,

multi-task synthesis and generation of the configuration and makefiles to control the cross

compilation and linking of the generated code for a particular processor.

5.7.2. Research Perspectives

 The virtual platform has to be available earlier than the real hardware in order to allow

concurrent software and hardware design. Therefore, one research perspective regarding the

5. Virtual Prototype Design

204

virtual prototype design relies on the automation of the generation process by using the

architecture parameters annotating the system architecture model and the simulation results of

the higher abstraction levels. The automatic generation of the virtual prototype model shortens

the design time and permits to reduce human coding errors.

 Virtual prototype uses instruction set simulators for the software execution. This

implies high accuracy and low simulation speed. Moreover, the simulation time increase

exponentially with the number of processor cores integrated on the same chip. Thus, finding

new methodologies that speed up simulation, but still maintain accurate performance

evaluation represents another important issue for future research perspectives.

Another important research perspective, related to the considered case studies,

represents the simulation of the MJPEG and H.264 applications running on the multiprocessor

architecture. As the target architectures include commercial off-the-shelf DSP processors and

their compiler and instruction set simulator were provided as standalone applications, the

integration of the DSP instruction set simulators into a hardware simulation environment,

such as the one previously described in SystemC, represents an essential future perspective.

Generally, the integration of ISS into an existing platform imposes development of a software

simulation wrapper that interacts with the hardware model and solves the synchronization

problem for the hardware and software interaction.

5.8. Conclusions

This chapter detailed the virtual prototype design. The virtual prototype design

consisted of integrating the HAL component into the software stack, cross compiling it for the

target processor and fixing the final memory mapping.

The validation of the software binary was performed by using Instruction Set

Simulators (ISS). Thus, the Token Ring application was executed on the 1AX architecture,

Motion JPEG on the Diopsis RDT architecture and H.264 Encoder on the Diopsis R2DT

architecture.

The Motion JPEG application was also executed using ISS on a single processor

(ARM7, ARM9 and DSP) and the H.264 Encoder was simulated using ISS running both on

multiprocessor architecture with 3 ARM7 processors and single processor (ARM7 and

5. Virtual Prototype Design

 205

ARM9). The simulation of the virtual prototype model allows to validate the final software

binary and the memory mapping.

Chapter 6

 CONCLUSIONS AND

FUTURE PERSPECTIVES

6. Conclusions and Future Perspectives

209

6.1. Conclusions

This thesis proposed a software design and validation flow able to efficiently use the

resources of the architecture and allowing easy experimentation of several mappings of the

application onto the platform resources. The thesis used Simulink environment to capture

both application and architecture initial representations. The software generation and

validation was performed gradually from this initial model corresponding to different

software abstraction levels. Specific software development platforms (abstract models of the

architecture) in SystemC were used to allow debugging the different software components

with explicit hardware-software interaction.

The proposed software design flow decreases the complexity of the design process by

structuring it into several layers. The different components of the software stack were

generated and validated incrementally: the simulation at system architecture level validated

the application’s functionality; the virtual architecture level simulation allowed debugging the

final application task code, the execution at transaction accurate architecture level validated

the integration of the tasks code with the OS and communication library, while the virtual

prototype enables the validation of the binary image.

Besides the software debug, the platforms also allowed to accurately estimate the use

of the hardware resources by counting the total number of transactions exchanged during the

simulation. The proposed software design flow made also possible to optimize the

communication performance by using the architecture capabilities. The communication

optimization relied on easy experimentation of different mappings of the communication onto

the platform resources, using simple annotations of the initial Simulink model and generating

the corresponding platforms.

Automatic tools were also developed to generate the hardware development platforms

in SystemC for the 1AX architecture, Diopsis RDT and Diopsis R2DT architectures. Thus,

the initial Simulink model is parsed and stored in an XML based format. The Simulink parser

was developed using lex/yacc tools. Then, the virtual architecture and transaction accurate

architecture platforms are generated automatically from the intermediate XML representation

format. The generation makes use of a platform library at each abstraction level, which

contains parameterized template hardware components. The automatic generation of the

SystemC code of the hardware simulation models in case of the 1AX architecture, Diopsis

6. Conclusions and Future Perspectives

210

RDT and Diopsis R2DT architectures takes only few seconds from the Simulink model. More

details about the automatic generation of the SystemC development platforms can be found in

[Pop 07-b].

The flow is able to facilitate programming existing hardware platforms that contain

heterogeneous multiprocessor architectures with specific I/O components. The design flow

allows mapping sophisticated software organized into several stacks made of different layers

on these platforms. The new software design flow masters the complexity of the software

design process. This is achieved thanks to the incremental software layers generation and

corresponding software development platforms generation. These platforms are able to

abstract multimedia architectures at different abstraction levels and enable separate debug of

the software components. The application of the proposed approach on the 1AX platform, the

off shelf multimedia Diopsis RDT platform and Diopsis R2DT architecture allowed to

demonstrate that the proposed software design flow enables efficient communication

optimization in addition to efficient software debug.

Apart from the case studies presented in this document, the proposed programming

environment has been applied successfully for the following multimedia applications running

on the corresponding MPSoC architectures:

� Token Ring application targeting the 2A1X (2 ARM processors and 1 XTENSA

processor interconnected through the AMBA bus) and Diopsis RDT architectures

� MP3 audio decoder running on the Diopsis RDT architecture with AMBA bus

� Vocoder audio encoder executed on the Diopsis RDT architecture with AMBA

bus

� Motion JPEG image decoder running on the following architectures: 1AX, 2A1X,

Diopsis RDT with NoC interconnect, Diopsis RDT with AMBA bus in normal

mode without burst data transfers

� H.264 video encoder, main profile, running on the following architectures: Diopsis

RDT with NoC, Diopsis RDT with AMBA bus with and without burst transfer and

Diopsis R2DT with AMBA bus

� H.264 video decoder application, base profile, running on 1AX and 2A1X

architectures

6. Conclusions and Future Perspectives

 211

Moreover, the Motion JPEG application was also loaded and executed on the ARM 9

processor of the FPGA emulation platform of the Diopsis RDT architecture. Thus, in order to

validate the correctness and efficiency of the proposed software design flow, the generated

software stack of the MJPEG application was executed on a Diopsis emulation platform using

Xilinx Virtex-II XC2V8000 FPGA provided by Atmel Inc. Since the HAL library to access

the resources of the emulation platform was not yet fully available, the 4 tasks of the Motion

JPEG application were mapped onto the ARM9 processor. Then, the software stack was

designed and validated incrementally. The hardware simulation models were automatically

generated from the input system architecture Simulink model. For the tasks management, the

DwarfOS tiny in-house OS was used to implement basic OS services, such as tasks

scheduling and software FIFO channels for the communication between the tasks. This OS

was enriched to support specific context switch for the ARM9 processor. A Multi-Ice GDB

debugger server was used in order to load the final software binary image on the local

SDRAM memory. The FPGA platform based emulation ensured the reliability of the software

code’s functionality.

6.2. Future Perspectives

This thesis presented the complexity of software design and validation for

heterogeneous MPSoC architectures with an initial formalization of the programming process.

Future research perspectives tackle the following described items:

i) Automation of the software design and validation flow

The automation of the software design flow concerns two aspects:

- automatic tools for the software stack construction

- automatic tools for the software simulation models generation

On the validation side, the automatic SystemC development platforms generator tools

assume only a subset of subsystems and interconnect schemes. Extending these tools to

support general architectures and different software components remains as future work.

The automatic generation of the different MPSoC abstraction levels could be made

possible by applying a service-based modeling of the hardware-software interface as

6. Conclusions and Future Perspectives

212

described in [Ger 07]. The composition of the services allows the automatic generation tools

to build easily the different software and hardware simulation models.

The automatic generation of the hardware and software architectures at the different

abstraction levels shortens the design time and permits to reduce human coding errors.

ii) Automatic generation of the RTL hardware architectures

This thesis assumed examples of existing fixed hardware architecture. It made use of

abstraction models of the target architecture at the different TLM abstraction levels to allow

the software validation.

The automatic generation of RTL to allow synthesis of the target hardware

architectures represents future work. This would make possible hardware design in parallel

with the software design for a specific application, allowing hardware implementation of

some functions for a target application.

iii) Formalization of the hardware-software partitioning process

The proposed software design and validation flow uses system architecture model,

which represents the partitioned model of the application onto the target architecture. Thus,

formalizing the partitioning process represents another future perspective to allow early

design space exploration. Design space exploration represents an essential issue to analyze the

impact on performances by using different application partitioning, mapping and

communication schemes. Design space exploration allows finding the best combination of the

application/architecture configurations to achieve the required communication and

computation constraints. Future works focus on better parallelization of the applications and

exploration of the different partitioning and mapping combinations.

Automatic tools for application partitioning, mapping, and evaluation metrics such as

performance, power, and cost are necessary to fully explore the design space and help

designer’s choices. Therefore, future work should address estimation tools such as power

estimation to meet the tight power constraints on MPSoCs. For instance, power estimation

can be implemented by embedding cycle-accurate power model into each hardware

component of the development platform.

6. Conclusions and Future Perspectives

 213

Another aspect of future perspective for design space exploration constitutes the

annotation of the intermediate abstraction platforms with execution delays to provide more

accurate performance estimation at the design steps earlier than the virtual prototype design.

iv) Support of multiple applications

This thesis presented the problems met in programming MPSoC that runs single

application. The support of the multiple applications running on the same MPSoC architecture,

i.e. an audio encoder combined with a video encoder application is also envisioned for the

future. During the parallel execution of the multiple applications, the main difficulties that

need to be overcome are related to the global scheduling and hardware resource sharing of the

different applications.

v) Hardware-software co-design flow

A completely automated hardware-software co-design flow represents another future

research perspective. The flow involves a seamless refinement at the four abstraction levels

(system architecture, virtual architecture, transaction accurate architecture, virtual prototype).

It requires automatic code generators for the software design, platform based generators for

the hardware design and automatic hardware-software interfaces refinement.

 215

References

[Ambric] AM2000 Processor Array Family, http://www.ambric.com

[Arm] Technical documentation of ARM7 and ARM9 processors, AMBA Bus
Technical Specification, RealView Compilation Tools Linker and Utilities Guide,
Embedded Software Development with ADS v1.2, http://www.arm.com

[Arm-b] Technical documentation of ARM MaxSim http://www.arm.com

[Asc 05] G. Ascia, V. Catania, M. Palesi “Mapping Cores on Network-on-Chip”,
International Journal of Computation Intelligence Research, Vol. 1, No. 2, 2005,
pp. 109-126

[Atm] mAgicV VLIW DSP and Diopsis http://www.atmelroma.it

[Bac 05] I. Bacivarov, A. Bouchhima, S. Yoo, A.A. Jerraya “ChronoSym: a new approach
for fast and accurate SoC cosimulation”, International Journal on Embedded

Systems (IJES), Volume 1, Issue 1, 2005, pp. 103-111

[Bac 06] I. Bacivarov “Evaluation des performances pour les systèmes embarques
heterogenes, multiprocesseurs monopuces”, Thèse de Doctorat INPG, TIMA
Laboratory, 2006

[Bal 06] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, S. Neema
“Developing Applications Using Model-Driven Design Environments”, IEEE

Computer Society 39(2), 2006, pp. 33-40

[Bel 06] G. Beltrame, D. Sciuto, C. Silvano, P. Paulin, E. Bensoudane “An Application
Mapping Methodology and Case Study for Multi-Processor On-Chip
Architectures”, Proceeding of VLSI-SoC 2006, 16-18 October 2006, Nice,
France, pp. 146-151

[Ben 02] L. Benini, G. De Micheli “Networks on Chips: a new SoC paradigm”, IEEE
Computer, Vol. 35(1), 2002, pp. 70-78

[Bert 02] C. Berthet “Going Mobile: The Next Horizon for Multi-million Gate Designs in
the Semi-Conductor Industry”, Proceeding of DAC 2002, 10-14 June 2002, New
Orleans, USA, pp. 375-378

[Ber 04] Friedbert Berens “Algorithm to System-on-Chip Design Flow that Leverages
System Studio and SystemC 2.0.1”, The Synopsys Verification Avenue Technical

Bulletin, Volume 4, Issue 2, May 2004

[Ble 03] S. Bleuler, M. Laumanns, L. Thiele, E. Zitzler “PISA- A Platform and
Programming Language Independent Interface for Search Algorithms”,

References

216

Evolutionary Multi-Criterion Optimization (EMO 2003), Volume 2632/2003 of
LNCS, Springer, pp. 494-508

[Bon 06] M. Bonaciu “Plateforme flexible pour l’exploitation d’algorithmes et
d’architectures en vue de réalisation d’application vidéo haute définition sur des
architectures multiprocesseurs mono puces”, Thèse de Doctorat INPG, TIMA
Laboratory, 2006

[Bou 04] A. Bouchhima, S. Yoo, A.A. Jerraya “Fast and Accurate Timed Execution of
High Level Embedded Software Using HW/SW Interface Simulation Model”,
Proceeding of ASP-DAC 2004, January 2004, Yokohama, Japan, pp. 469-474

[Bou 05] A. Bouchhima, X. Chen, F. Petrot, W.O. Cesario, A.A. Jerraya “A Unified
HW/SW interface model to remove discontinuities between HW and SW design”,
Proceeding of EMSOFT’05, 18-22 September 2005, New Jersey, USA, pp. 159-
163

[Bou 05-b] A. Bouchhima, I. Bacivarov, W. Youssef, M. Bonaciu, A.A. Jerraya “Using
Abstract CPU Subsystem Simulation Model for High Level HW/SW
Architecture Exploration”, Proceeding of ASP-DAC 2005, 18-21 January 2005,
Shanghai, China, pp. 969-972

[Buc 92] J. Buck, S. Ha, E. Lee, D. Messerschmitt. “Ptolemy: A Framework for
Simulating and Prototyping Heterogeneous Systems”, International Journal of

Computer Simulation, v. 4, pp. 155-182.

[Bus 06] G. Busonera, S. Carta, A. Marongiu, L. Raffo “Automatic Application
Partitioning on FPGA/CPU Systems Based on Detailed Low-Level Information”,
Proceeding of the 9

th
 EUROMICRO Conference on Digital System Design, 30

August – 1 September 2006, Croatia, pp. 265-268

[But 97] D.R. Butenhof “Programming with POSIX Threads”, Addison Wesley, May,
1997, ISBN 0201633922

[Car] Open Systems Glossary of Software Engineering Institute, Carnegie Mellon,
http://www.sei.cmu.edu/opensystems/glossary.html

[Ces 02] W.O. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, L. Gauthier, M.
Diaz-Nava, A.A. Jerraya “Multiprocessor SoC Platforms: A Component-Based
Design Approach”, IEEE Design & Test of Computers, Volume 19, Nr. 6,
November-December 2002, pp. 52-63

[Cha 00] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J. McDonald “Parallel
Programming in OpenMP”, Morgan Kaufmann, October 2000, ISBN
9781558606715

[Chak 03] S. Chakraborty, S. Kunzli, L. Thiele, A. Herkersdorf, P. Sagmeister
“Performance evaluation of network processor architectures: combining
simulation with analytical estimation”, Computer Networks: The International

Journal of Computer and Telecommunications Networking, Volume 41, Issue 5,
April 2003, pp. 641-665

References

 217

[Chen 05] K. Chen, J. Sztipanovits, S. Neema “Toward A Semantic Anchoring
Infrastructure for Domain-Specific Modeling Languages”, Proceeding of
EMSOFT 2005, 19-22 September 2005, New Jersey, USA, pp. 35-43

[ChenJ 06] Jian-Wen Chen, Chao-Yang Kao, Youn-Long Lin “Introduction to H.264
Advanced Video Coding”, Proceeding of ASP-DAC 2006, 24-27 January 2006,
Yokohama, Japan, pp. 736-741

[Cho 05] Y. Cho, S. Yoo, K. Choi, N.E. Zergainoh, A.A. Jerraya “Scheduler
implementation in MPSoC Design”, Proceeding of ASP-DAC 2005, 18-21
January 2005, Shanghai, China, pp. 151-156

[Coo 69] J. Cooley, P. Lewis, and P. Welch (1969). “The finite Fourier transform”, IEEE

Trans. Audio Electroacoustics 17 (2), pp. 77-85

[Coware] ConvergenSC http://www.coware.com

[Cul 98] D.Culler, J.P. Singh, A. Gupta “Parallel Computer Architecture: A
Hardware/Software Approach”, Morgan Kaufmann, August 1998, ISBN
1558603433

[Des 02] G. Desoli et al. “A New Facility for Dynamic Control of Program Execution:
DELI”, Proceeding of EMSOFT 2002, Grenoble, France

[Dio] Diopsis D940, http://www.atmel.com

[Erb 07] Cagkan Erbes, Andy D. Pimentel, Mark Thompson, Simon Polstra “A
Framework for System-Level Modeling and Simulation of Embedded Systems
Architecture”, EURASIP Journal on Embedded Systems, Volume 2007, Article
ID 82123, June 2007

[Fei 02] Y. Fei, N.K. Ha “Functional Partitioning for Low Power Distributed Systems of
Systems-on-a-Chip”, Proceeding of ASP-DAC 2002, 7-11 January 2002,
Bangalore, India

[Fla 07] P. Flake, F. Schirrmeister “MPSoC demands system level design automation”,
EDA Tech Forum, Volume 4, Issue 1, March 2007, pp. 10-11

[Gaj 00] D.D. Gajski “SpecC: Specification Language and Design Methodology”, 2000,
Kluwer

[Ger 07] P. Gerin, H. Shen, A. Chureau, A. Bouchhima, A.A. Jerraya “Flexible and
Executable Hardware/Software Interface Modeling for Multiprocessor SoC
Design Using SystemC”, Proceeding of ASP-DAC 2007, pp. 390-395

[Gerst 05] A. Gerstlauer, D. Shin, R. Domer, D.D. Gajski “System-Level Communication
Modelling for Network-on-Chip Synthesis”, Proceeding of ASP-DAC 2005, 18-
21 January 2005, Shanghai, China, pp. 45-48

[Gil 04] F. Gilliers, F. Kordon, D. Regep “A Model Based Development Approach for
Distributed Embedded Systems”, Proceeding of RISSEF 2002, pp. 137-151, 2002

References

218

[Gla 94] C. Glass, L. Ni “The turn model for adaptive routing”, Journal of ACM, 41(5),
1994, pp. 278- 287

[Gnu] GNU tools and documentation, http://www.gnu.org

[Gro 02] T. Grotker, S. Liao, G. Martin, S. Swan “System Design with SystemC”, Kluwer,
2002, ISBN 1402070721

[Gue 07] X. Guerin, K. Popovici, W. Youssef, F. Rousseau, A. Jerraya “Flexible
Application Software Generation for Heterogeneous Multi-Processor System-on-
Chip”, Proceeding of COMPSAC 2007, 23-27 July 2007, Beijing, China

[Ha 06] S. Ha, C. Lee, Y. Yi, S. Kwon, Y.P. Joo “Hardware-Software Codesign of
Multimedia Embedded Systems: the PeaCE”, Proceeding of 12

th
 International

Conference on Embedded and Real-Time Computing Systems and Applications

(RTCSA’06), 2006, pp. 207-214

[Ha 07] S. Ha “Model-based Programming Environment of Embedded Software for
MPSoC”, Proceeding of ASP-DAC’07, 23-26 January 2007, Yokohama, Japan,
pp. 330-335

[Han 06] S.I. Han et al. “Buffer memory optimization for video codec application modeled
in Simulink”, Proceeding of DAC 2006, San Francisco, USA, pp. 689-694

[Has 05] M. AbdElSalam Hassan, Keishi Sakanushi, Yoshinori Takeuchi, Masaharu Imai
“RTK-Spec TRON: A Simulation Model of an ITRON Based RTOS Kernel in
SystemC”, Proceeding of DATE 2005, 7-11 March 2005, Munich, Germany, pp.
554-559

[Has 06] M. AbdElSalam Hassan, Masaharu Imai “A System Level Modeling
Methodology for RTOS Centric Embedded Systems”, Proceeding of 14th IFIP
VLSI-SoC, PhD Forum Digest of Papers, 16-18 October 2006, Nice, France, pp.
62-67

[Hen 03] J.L. Hennessy, D.A. Patterson “Computer Architecture: A Quantitative
Approach”, Third Edition, 2003, ISBN 1558605967, Printed by Elsevier Science
Pte Ltd.

[Hong 06] Sungpack Hong, Sungjoo Yoo, Sheayun Lee, Sangwoo Lee, Hye Jeong Nam,
Bum-Seok Yoo, Jaehyung Hwang, Donghyun Song, Janghwan Kim, Jeongeun
Kim, HoonSang Jin, Kyu-Myung Choi, Jeong-Taek Kong, Sookwan Eo
“Creation and Utilization of a Virtual Platform for Embedded Software
Optimization: An Industrial Case Study”, Proceeding of CODES+ISSS 2006,
Seoul, Korea, pp. 235-240

[Hwang 06] Hyeyoung Hwang, Taewook Oh, Hyunuk Jung, Soonhoi Ha “Conversion of
Reference C Code to Dataflow Model: H.264 Encoder Case Study”, Proceeding

of ASP-DAC 2006, 24-27 January 2006, Yokohama, Japan, pp. 152-157

[Kan 06] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hannikainen, T.D.
Hamalainen, J. Riihimaki, K. Kuusilinna “UML-based multiprocessor SoC

References

 219

design framework”, ACM Transactions on Embedded Computing Systems

(TECS), Volume 5, Issue 2, 2006, pp. 281-320

[Kempf 05] T. Kempf, M. Doerper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel, B.
Vanthournout “A Modular Simulation Framework for Spatial and Temporal Task
Mapping onto Multi-Processor SoC Platforms”, Proceeding of DATE 2005, 7-11
March 2005, Munich, Germany

[Kie 02] Bart Kienhuis, Ed F. Deprettere, P. van der Wolf, Kees A. Vissers “A
methodology to design programmable embedded systems- the Y-Chart approach”,
Lectures Notes in Computer Science, Volume 2268, Embedded Processor Design

Challenges: Systems, Architectures, Modeling, and Simulation–SAMOS 2002,
Springer, pp. 18-37

[Kli 06] W. Klingauf, H. Gadke, R. Gunzel “TRAIN: A Virtual Transaction Layer
Architecture for TLM-based HW/SW Codesign of Synthesizable MPSoC”,
Proceeding of DATE 2006, 6-10 March 2006, Munich, Germany, pp. 1318-1323

[Kli 07] W. Klingauf, R. Gunzel, C. Schroder “Embedded Software Development on Top
of Transaction-Level Models”, Proceeding of CODES+ISSS 2007, 30
September-3 October 2007, Salzburg, Austria, pp. 27-32

[Koc 00] E.A. de Kock et al. “Yapi: Application modeling for signal processing systems”,
Proceeding of DAC 2000, USA, pp.402-405

[Kog 01] T. Kogel, A. Wieferink, H. Meyr, A. Kroll “SystemC based architecture
exploration of a 3D graphic processor”, Proceeding of IEEE Workshop on Signal

Processing Systems, 26-28 September 2001, Antwerp, Belgium, pp. 169-176

[Kra 07] S. Kramer, L. Gao, J. Weinstock, R. Leupers, G. Ascheid, H. Meyr “HySim: A
Fast Simulation Framework for Embedded Software Development”, Proceeding

of CODES+ISSS 2007, 30 September – 5 October 2007, Salzburg, Austria

[Kun 06] S. Kunzli, F. Poletti, L. Benini, L. Thiele “Combining simulation and formal
methods for system-level performance analysis”, Proceeding of DATE 2006, 6-
10 March 2006, Munich, Germany, pp. 236-241

[Kwo 04] S. Kwon, H. Jung, S. Ha “H.264 decoder algorithm specification and simulation
in Simulink and PeaCE", Proceeding of ISOCC 2004, Seoul, Korea

[Jer 05] A. Jerraya, W. Wolf “Hardware-Software Interface Codesign for Embedded
Systems”, Computer, Volume 38, No.2, February 2005, pp.63-69

[Jer 06] A. Jerraya, A. Bouchhima, F. Petrot “Programming models and HW-SW
Interfaces abstraction for Multi-Processor SoC”, Proceeding of DAC 2006, San
Francisco, USA, pp. 280-285

[Lav 06] D. Lavenier, M. Daumas “Architectures des Ordinateurs”, Technique et Science

Informatique, 25(6), 2006

References

220

[Lie 01] P. Lieverse, T. Stefanov, P. van der Wolf, E. Deprettere “System level design
with SPADE: an M-JPEG case study”, Proceeding of ICCAD 2001, 4-8
November 2001, San Jose, USA, pp. 31-38

[Liu 98] J. Liu, M. Lajolo, A. Sangiovanni-Vincentelli “Software timing analysis using
HW/SW cosimulation and instruction set simulator”, Proceeding of the 6th

International Workshop on Hardware/Software Co-design CODES/CASHE’98,
15-18 March 1998, Seattle, Washington, pp. 65-69

[Matlab] The MathWorks Inc., http://www.mathworks.com

[Mag 05] D.P. Magee “Matlab Extensions for the Development, Testing and Verification
of Real-Time DSP Software”, Proceeding of DAC 2005, Anaheim, USA

[Mar 06] Grant Martin “Overview of the MPSoC Design Challenge”, Proceeding of DAC

2006, 24-28 July 2006, San Francisco, USA, pp. 274-279

[Mat 01] J. Mattioli, N. Museux, J. Jourdan, P. Saveant, S. de Givry “A Constraint
Optimization Framework for Mapping a Digital Signal Processing Application
onto a Parallel Architecture”, Proceeding of the 7

th
 International Conference on

Principles and Practice of Constraint Programming, 2001, pp. 701-715

[Mei 07] S. Meijer, J. Walters, D. Snuijf, B. Kienhuis “Automatic partitioning and
mapping of stream-based applications onto the Intel IXP Network Processor”,
Proceeding of Workshop on Software & Compilers for Embedded Systems

(SCOPES’07), Nice, 20 April 2007

[Metrowerks] CodeWarrior Development tools, http://www.metrowerks.com

[Mey 06] H. Meyr “Application Specific Processors (ASIP): On design and implementation
Efficiency”, Proceeding of SASIM 2006, Nagoya, Japan

[Mic 02] G. de Micheli, R. Ernst, W. Wolf “Readings in Hardware/Software Co-design”,
Morgan Kaufmann, 2002, ISBN 1558607021

[Mod] Model driven architecture http://www.omg.org/mda/

[Moh 98] P. Mohapatra et al. “Wormhole routing techniques for directly connected
multicomputer systems”, ACM Computing Survey, Vol. 30(3), 1998, pp. 374-410

[Mor 04] F. Moraes et al. “HERMES: an Infrastructure for Low Area Overhead Packet-
switching Networks-on-Chip Integration”, VLSI Journal, v38(1), 2004, pp. 69-93

[MPI] MPI http://www-unix.mcs.anl.gov/mpi

[Nic 02] G. Nicolescu, “Specification et validation des systemes heterogenes embarques”,
PhD Thesis, TIMA Laboratory, 2002

[Nik 06] H. Nikolov, T. Stefanov, E. Deprettere “Multi-processor System Design with
ESPAM”, Proceeding of CODES+ISSS’06, 22-25 October 2006, Seoul, Korea,
pp. 211-216

References

 221

[Nex] Nexperia http://www.nxp.com

[Nom] Nomadik, http://www.st.com

[OSCI] Open SystemC Initiative (OSCI) http://www.systemc.org

[Oya 07] M. Oyamada, F.R. Wagner, M. Bonaciu, W. Cesario, A. Jerraya “Software
Performance Estimation in MPSoC Design”, Proceeding of ASP-DAC’07, 23-26
January 2007, Yokohama, Japan, pp. 38-43

[Park 07] S. Park, W. Olds, K.G. Shin, S. Wang “Integrating Virtual Execution Platform for
Accurate Analysis in Distributed Real-Time Control System Development”,
Proceeding of RTSS 2007, 3-6 December 2007, Tucson, Arizona, USA

[Pao 06] Pier S. Paolucci, Ahmed A. Jerraya, Rainer Leupers, Lothar Thiele, Piero Vicini
“SHAPES : a tiled scalable software hardware architecture platform for embedded
systems”, Proceeding of CODES+ISSS 2006, Seoul, Korea, pp. 167-172

[Pau 06] P. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, D. Lyonnard, O. Benny, B.
Laviguer, D. Lo, G. Beltrame, V. Gagne, G. Nicolaescu “Parallel programming
models for a multi-processor SoC platform applied to networking and multimedia”,
IEEE Transactions on VLSI Journal, 2006

[Paz 04] Nuria Pazos, Alexander Maxiaguine, Paolo Ienne, Yusuf Leblebici “Parallel
modelling paradigm in multimedia applications: Mapping and scheduling onto a
multi-processor system-on-chip platform”, Proceedings of the International

Global Signal Processing Conference, Santa Clara, California, USA, September
2004

[Pop 07] K. Popovici, A.A. Jerraya “Simulink based Hardware-Software Codesign Flow
for Heterogeneous MPSoC”, Proceeding of Summer Computer Simulation

Conference (SCSC’07), 15-18 July 2007, San Diego, USA, pp. 497-504

[Pop 07-b] K. Popovici, X. Guerin, F. Rousseau, P.S. Paolucci, A. Jerraya “Efficient
Software Development Platforms for Multimedia Applications at Different
Abstraction Levels”, Proceeding of RSP 2007, 28-30 May, 2007, Porto Alegre,
Brazil

[Pop 08] K. Popovici, X. Guerin, F. Rousseau, P.S. Paolucci, A. Jerraya “Platform based
Software Design Flow for Heterogeneous MPSoC”, ACM Journal: Transactions

on Embedded Computing Systems (TECS), Special Issue on Rapid System

Prototyping, Accepted 17 January 2008

[Pos 03] Frank Pospiech “Hardware dependent Software (HdS). Multiprocessor SoC
Aspects. An Introduction”, MPSoC 2003, 7-11 July 2003, Chamonix, France

[Pul 07] A. Pullini, F. Angiolini, P. Meloni, D. Atienza, S. Murali, L. Raffo, Giovanni. De
Michelli, L. Benini “ NoC Design and Implementation in 65nm Technology”,
Proceeding of the 1

st
 Internal Symposium on Networks-on-Chip, 7-9 May 2007,

Princeton, New Jersey, USA, pp. 273-282

References

222

[Rey 01] L.M. Reyneri, F. Cucinotta, A. Serra, L. Lavagno “A hardware-software codesign
flow and IP library based on Simulink”, Proceeding of the 38

th
 conference on

Design Automation, Las Vegas, United States, 2001, pp. 593-598

[Ric] I. Richardson, G.J. Sullivan “H264 and MPEG-4 Video Compression”

[Roa 07] Jeff Roane “Electronic system level design for embedded systems”, EDA Tech

Forum, Volume 4, Issue 1, March 2007, pp. 14-16

[Row 94] J.A. Rowson “Hardware/Software cosimulation”, Proceeding of DAC 1994, San
Diego, USA, pp. 439-440

[Qin 06] W. Qin, J. D’Errico, X. Zhu “A Multiprocessing Approach to Accelerate
Retargetable and Portable Dynamic-compiled Instruction-set Simulation”,
Proceeding of CODES+ISSS 2006, 22-25 October 2006, Seoul, Korea, pp. 193-
198

[Schir 07] Gunar Schirner, Andreas Gertslauer, Rainer Domer “Abstract, Multifaced
Modeling of Embedded Processors for System Level Design”, Proceeding of

ASP-DAC 2007, 23-26 January 2007, Yokohama, Japan, pp. 384-389

[Schir 08] Gunar Schirner, Andreas Gertslauer, Rainer Domer “Automatic Generation of
Hardware dependent Software for MPSoCs from Abstract System Specifications”,
Proceeding of ASP-DAC 2008, 21-24 January 2008, Seoul, Korea

[Sem 00] L. Semeria, A. Ghosh “Methodology for hardware/software co-verification in
C/C++”, Proceeding of ASP-DAC 2000, Yokohama, Japan, pp. 405-408

[Shapes] Shapes (Scalable Software Hardware Architecture Platform for Embedded
Systems) European Project, http://shapes-p.org

[Shin 04] Dongwan Shin, Samar Abdi, D.D. Gajski “Automatic Generation of Bus
Functional Models from Transaction Level Models”, Proceeding of ASP-DAC

2004, 27-30 January 2004, Yokohama, Japan, pp. 756-758

[Shin 06] Dongwan Shin, Andreas Gertslauer, Junyu Peng, Rainer Domer, D.D. Gajski
“Automatic Generation of Transaction-Level Models for Rapid Design Space
Exploration”, Proceeding of CODES+ISSS 2006, Seoul, Korea, pp. 64-69

[Sin 07] S. Singhai, M.Y. Ko, S. Jinturkar, M. Moudgill, J. Glossner “An Integrated ARM
and Multi-core DSP Simulator”, Proceeding of CASES’07, 30 September-3
October 2007, Salzburg, Austria, pp. 33-37

[Spirit] Spirit IP-XACT, http://www.spiritconsortium.com

[Synopsys] Synopsys System Studio http://www.synopsys.com

[Tan 95] Andrew S. Tanenbaum “Distributed operating systems”, 1995, Prentice-Hall,
ISBN 0132199084

[Tan 97] Andrew S. Tanenbaum, Albert S. Woodhull “Operating Systems: Design and
Implementation”, 1997, Prentice-Hall, ISBN 0136386776

References

 223

[Tan 99] Andrew S. Tanenbaum “Structured Computer Organization”, 1999, Prentice-Hall,
ISBN 013219901

[Ten] Xtensa processor architecture, XPRES Compiler http://www.tensilica.com

[Thi 07] L. Thiele, I. Bacivarov, W. Haid, K. Huang “Mapping Applications to Tiled
Multiprocessor Systems”, Proceeding of Seventh International Conference on

Application of Concurrency to System Design (ACSD 2007), 10-13 July 2007,
Bratislava, Slovak Republic, pp. 29-40

[Tho 07] M. Thompson, H. Nikolov, T. Stefanov, A.D. Pimentel, C. Erbas, S. Polstra, E.F.
Deprettere “A Framework for Rapid System-level Exploration, Synthesis, and
Programming of Multimedia MP-SoCs”, Proceeding of CODES+ISSS 2007, 30
September-3 October 2007, Salzburg, Austria, pp. 9-14

[TI] TI OMAP, http://www.omap.com

[Tilera] Tile64 Processor Family, http://www.tilera.com

[Tur 05] J. Turley,”Survey says: Software tools more important than Chips”, Embedded

Systems Design Journal, 4-11-2005

[Van 04] P. Van der Wolf et al. “Design and programming of embedded multiprocessors:
an interface-centric approach”, Proceeding of CODES+ISSS 2004, Stockholm,
Sweden, pp. 206-217

[Vand 06] Y. Vanderperren and W. Dehaene, “From UML/SysML to Matlab/Simulink:
Current State and Future Perspectives”, Proceeding of Design Automation and

Test in Europe, DATE 2006, 6-10 March, Munich, Germany, pp. 93-93

[Ven 05] N. Ventroux, F. Blanc, D. Lavenier “A Low Complex Scheduling Algorithm for
Multi-processor System-on-Chip”, Proceeding of Parallel and Distributed

Computing and Networks, 15-17 February 2005, Innsbruck, Austria

[Ver 07] S. Verdoolaege, H. Nikolov, T. Stefanov “PN: A Tool for Improved Derivation
of Process Networks”, EURASIP Journal on Embedded Systems, Volume 2007,
Article ID 75947

[Verg 05] T. Vergnaud, L. Pautet, F. Kordon “Using the AADL to Describe Distributed
Applications from Middleware to Software Components”, Proceeding of Ada-

Europe 2005, York, UK, 20-24 June 2005, pp. 67-78

[Vin 01] A. Sangiovanni-Vincetelli, G. Martin “Platform-Based Design and Software
Design Methodology for Embedded Systems” IEEE Design and Test v.18, n.6,
pp. 23-33, 2001

[Vin 04] A. Sangiovanni-Vincetelli, et al. “Benefits and Challenges for Platform-Based
Design”, Proceeding of DAC 2004, USA

[Wal 91] G.K. Wallace “The JPEG Still Picture Compression Standard”, Communications

of the ACM, Special Issue on Digital Multimedia Systems, Vol.34(4), April 1991,
pp. 30-44

References

224

[Wol 06] W. Wolf “High-Performance Embedded Computing”, Morgan Kaufmann, 2006

[X264] h264 open source code, http://www.videolan.org/developers/x264.html

[Xue 06] L. Xue, O. Ozturk, F. Li, M. Kandemir, I. Kolcu “Dynamic Partitioning of
Processing and Memory Resources in Embedded MPSoC Architectures”,
Proceeding of DATE 2006, 6-10 March 2006, Munich, Germany, pp. 690-695

[Yoo 03] Sungjoo Yoo, A.A. Jerrara “Introduction to Hardware Abstraction Layers for
SoC”, Proceeding of DATE 2003, 3-7 March 2003, Munich, Germany, pp. 336-
337

[You 04] M.W. Youssef, S. Yoo, A. Sasongko, Y. Paviot, A. Jerraya “Debugging HW/SW
Interface for MPSoC: Video Encoder System Design Case Study”, Proceeding of

DAC 2004, 7-11 June 2004, San Diego, USA, pp. 908-913

 225

Publications

Book Chapters:

K. POPOVICI, W. O. CESARIO, F. WAGNER, A. JERRAYA “Hardware-Software
Interfaces Design for SoC”, Chapter in “Networked Embedded Systems”, Ed. CRC Press, to
appear 2008

K. POPOVICI, A. JERRAYA “Programming Models for MPSoC”, Chapter 4 in “Model

Based Design of Heterogeneous Embedded Systems”, Ed. CRC Press, to appear 2008

K. POPOVICI, A. JERRAYA “Hardware Abstraction Layer – Introduction and Overview”,
Chapter 3 in “Hardware dependent Software, Concept, Tools and Applications”, Ed.
Springer, to appear 2008

International Journals:

K. POPOVICI, X. GUERIN, F. ROUSSEAU, P.S. PAOLUCCI, A. JERRAYA “Platform
based Software Design Flow for Heterogeneous MPSoC”, ACM Journal: Transactions on

Embedded Computing Systems (TECS), Special Issue on Rapid System Prototyping, Accepted
17 January 2008, to appear

International Conferences, Symposiums, Workshops:

E. MORENO, K. POPOVICI, N. CALAZANS, A. JERRAYA “Integrating Abstract NoC
Models within MPSoC Design”, Proceeding of RSP 2008, 2-5 June 2008, Monterey, USA, to
appear

K. POPOVICI, A. JERRAYA “Multilevel Communication Modeling for Multiprocessor
System-on-Chip”, Proceeding of VLSI-DAT 2008, 23-25 April 2008, Hsinchu, Taiwan, to
appear

K. POPOVICI, A. JERRAYA “Simulink based Hardware-Software Codesign Flow for
Heterogeneous MPSoC”, Proceeding of SCSC 2007, 16-19 July 2007, San Diego, USA,
Invited Paper

X. GUERIN, K. POPOVICI, W. YOUSSEF, F. ROUSSEAU, A. JERRAYA “Flexible
Application Software Generation for Heterogeneous Multi-Processor System-on-Chip”,
Proceeding of COMPSAC 2007, 23-27 July 2007, Beijing, China

References

226

K. HUANG, S.I. HAN, K. POPOVICI, L. BRISOLARA, X. GUERIN, L. LI, X. YAN, S.I.
CHAE, L. CARRO, A. JERRAYA “Simulink based MPSoC Design Flow: Case Study of
Motion JPEG and H.264”, Proceeding of DAC 2007, 4-8 June 2007, San Diego, USA, Best
Paper Nominee

K. POPOVICI, X. GUERIN, F. ROUSSEAU, P.S. PAOLUCCI, A. JERRAYA “Efficient
Software Development Platforms for Multimedia Applications at Different Abstraction
Levels”, Proceeding of RSP 2007, 28-30 May, 2007, Porto Alegre, Brazil, Best Rated Paper

K. POPOVICI, X. GUERIN, L. BRISOLARA, A. JERRAYA “Mixed Hardware-Software
Multilevel Modeling and Simulation for Multithreaded Heterogeneous MPSoC”, Proceeding

of VLSI-DAT 2007, 25-27 April 2007, Hsinchu, Taiwan

N. E. ZERGAINOH, K. POPOVICI, A. JERRAYA, P. URARD “IP-Block based Design
Environment for High Throughput VLSI Dedicated Digital Signal Processing Systems”,
Proceeding of ASP-DAC 2005, 18-21 January 2005, Shanghai, China

N. E. ZERGAINOH, K. POPOVICI, A. JERRAYA, P. URARD “Matlab based Environment
for designing DSP Systems using IP blocks”, Proceeding of SASIMI 2004, October 2004,
Kanazawa, Japan

RESUME

La complexité et l’hétérogènité croissante des MPSoC sont accentuées par l’émergence de
nouvelles applications télécoms et multimédia avec des contraintes fonctionnelles de plus en plus
sévères. Pour ce genre d'architectures MPSoC hétérogènes, les environnements de programmation
classiques ne sont pas adaptés pour les raisons suivantes: (i) la programmation de haut niveau ne gère
pas efficacement les entrées/sorties (I/Os) et les systèmes de communication spécifiques, tandis que
(ii) la programmation de bas niveau avec la gestion explicite des entrées-sorties et la communication
spécifiques est très coûteuse en termes de temps et d’erreurs.

Cette thèse propose un flot de conception et validation du logiciel pour MPSoC. L'approche
présentée commence par un modèle de haut niveau de l'application et de l’architecture en Simulink,
permettant la simulation fonctionnelle rapide du modèle d'application. La génération et la validation
du logiciel sont effectuées graduellement en partant de ce premier modèle, correspondant à différents
niveaux d'abstraction. Des plateformes spécifiques de développement du logiciel (modèles abstraits de
l'architecture) sont employées pour permettre le débogage des différents composants logiciels avec une
interaction matériel/logiciel explicite.

Le flot proposé a été appliqué avec succès pour la génération et validation du logiciel pour
plusieurs architectures MPSoC complexes qui exécutent des applications multimédia, comme
l’encodeur vidéo H.264, le décodeur d’images Motion JPEG et le décodeur audio MP3. Les
architectures MPSoC considérées contiennent plusieurs processeurs (DSP, RISC) interconnectés par
un bus ou un réseau sur puce (NoC).

MOTS-CLES

MPSoC, logiciel embarqué, multimédia, plateforme de développement, niveau d’abstraction

TITLE

MULTILEVEL PROGRAMMING ENVIRONMENT FOR HETEROGENEOUS MPSOC

ARCHITECTURES

ABSTRACT

Current multimedia applications demand complex heterogeneous multiprocessor system on chip
(MPSoC) architectures with specific communication infrastructure in order to achieve the required
performances. Programming these architectures usually results in writing separate low level code for
the different processors (DSP, microcontroller), implying late global validation of the overall
application with the hardware platform.

This thesis proposes a software design and validation flow able to efficiently use the resources
of the architecture and allowing easy experimentation of several mappings of the application onto the
platform resources. The thesis uses Simulink environment to capture both application and architecture
initial representations. The software generation and validation is performed gradually from this initial
model corresponding to different software abstraction levels. Specific software development platforms
(abstract models of the architecture) are used to allow debugging of the different software components
with explicit hardware-software interaction.

The proposed approach was applied on several multimedia platforms, involving high
performance DSPs and RISC processors interconnected through buses or Network on Chip (NoC), to
explore communication architecture and to produce an efficient executable code for several
multimedia applications (H.264 encoder, Motion JPEG decoder and MP3 decoder).

Keywords

MPSoC, embedded software, multimedia, development platform, abstraction level

INTITULE ET ADRESSE DU LABORATOIRE

Laboratoire TIMA, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France.

ISBN : 978-2-84813-114-6 ISBNE : 978-2-84813-114-6

