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RESUME

Ce travail porte sur la simulation acoustique temps-réel pour des applications
de réalité virtuelle ou les jeux vidéo. Ce type d’application nécessite des temps
de calcul considérables, augmentant avec la complexité de la scène et impli-
quant des difficultés pour le rendu interactif. La simulation d’une scène sonore
complexe reste encore difficile à réaliser en temps réel à cause du coût de la
gestion indépendante des sources sonores. De plus, la description de la scène
sonore nécessite de spécifier la nature et la position de chaque source sonore
qui la compose, ce qui est une étape longue et fastidieuse. Dans ce cadre,
nous avons étudié la possibilité d’effectuer la simulation acoustique en tirant
parti de la puissance de calcul des cartes graphiques de dernière génération.
Les résultats montrent que l’architecture hautement parallèle de ces cartes
est appropriée pour ce type de calcul, augmentant grandement les perfor-
mances par rapport aux processeurs actuels. Nous nous sommes intéressés
par la suite à développer un algorithme exploitant l’audition humaine, per-
mettant d’effectuer un rendu sonore de la scène en respectant un budget
d’opérations donné. Pour cela, l’algorithme évalue une métrique d’importance
pour chaque signal à traiter sur des intervalles de temps très fins. Puis il
effectue les opérations par ordre de priorité jusqu’à atteindre le budget fixé.
Une évaluation subjective a été effectuée pour comparer différentes métriques
d’importance. Enfin, nous avons élaboré une méthode alternative d’acquisition
de scène sonore qui évite la modélisation individuelle de chaque source. A
partir d’enregistrements monophoniques simultanés d’une scène réelle, cette
méthode en détache les sources qui la composent. En étudiant les différences de
temps d’arrivée des enregistrements sur plusieurs bandes de fréquence, une po-
sition est extraite pour la source sonore émettrice la plus présente dans chaque
bande. Les composantes de chaque source peuvent ensuite être spatialisées
aux positions trouvées. En utilisant ce principe, nous pouvons également
rééditer la scène acquise. Par exemple, nous pouvons déplacer ou supprimer
une source, ou changer la position de l’auditeur en temps réel. Nous pouvons
aussi combiner plusieurs éléments provenant de différents enregistrements tout
en assurant une cohérence spatiale globale.



ABSTRACT

This thesis concentrates on real-time acoustic simulations for virtual reality
applications or video games. Such applications require huge computing times,
increasing with the complexity of the scene and involving difficulties for inter-
active rendering. In particular, the real-time simulation of a complex sound
scene remains difficult due to the independent processing of each sound source.
Moreover, the description of the auditory scene requires specifying the nature
and the position of each sound source, which is a long and tedious process.
To solve these problems, we studied the possibility of performing the acoustic
simulation by leveraging the computing power of latest generation graphics
processors. The results show that their massively parallel architecture is well
suited to such processing, increasing significantly the performances compared
to current general purpose processors. We were interested thereafter in de-
veloping an algorithm exploiting the human perception in order to render an
auditory scene by respecting a target budget of operations while minimizing
audible artifacts. The proposed algorithm evaluates an importance metric for
each signal on very fine time-intervals. Then, it performs the required sig-
nal processing operations by descending priority order until the target budget
is reached. A subjective evaluation was made to assess different importance
metrics.

Finally, we developed an alternative method of sound acquisition which
avoids the individual modeling of each source. From simultaneous mono-
phonic recordings of a real scene, this method extracts the scene components.
We analyze time-delay-of-arrival in the recorded signals in several frequency
bands. From this information, a position is extracted for the most significant
sound source in each band. The components from each source can then be
re-rendered at the corresponding locations. Using this method, we can also
edit the acquired scene. For instance, we can move or delete a sound source,
or change the position of the listener in real-time. We can also composite sev-
eral elements coming from different recordings while ensuring overall spatial
coherence.
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Restitution Sonore Hiérarchique et
Perceptive d’Environnements
Virtuels Multi-Modaux

Introduction

La réalité virtuelle a émergé avec la demande de simuler des phénomènes complexes
afin de mieux comprendre des processus compliqués, de développer des systèmes
d’entrâınement ou d’analyser des comportements humains. La plupart des travaux en
réalité virtuelle se sont concentrés sur les aspects visuels tandis que moins d’attention
a été prêtée à d’autres informations sensorielles, telles que le son. Néanmoins, il
est largement accepté que la combinaison du son et de l’image améliore le degré
d’immersion et est une composante clé pour augmenter le sentiment de présence dans
les environnements virtuels. En particulier, les indices auditifs nous informent sur
l’environnement et nous aident à la localisation, particulièrement pour des sources
invisible pour l’auditeur. Le processus pour simuler une scène virtuelle auditive
s’appelle “ Auralisation ” [Kleiner et al., 1993]. Auraliser une source sonore virtuelle
exige que l’auditeur perçoive :

1. la provenance du son,

2. les effets environnementaux dus aux occlusions, aux échos et aux réverbérations.

Ainsi, il est nécessaire de simuler les phénomènes physiques correspondants, en-
trâınant des temps de calcul considérables. De plus, la simulation sonore dépend
de la position d’écoute et, par conséquent, il est obligatoire de mettre à jour le rendu
sonore lorsque l’auditeur explore l’environnement. De nos jours, le succès des appli-
cations de réalité virtuelle amène une demande croissante de simulations de haute
qualité supportant des traitements et des effets plus avancés. Les environnements
virtuels deviennent également de plus en plus complexes. Par exemple, les jeux vidéo
actuels emploient des centaines de sources sonores simultanées, ce qui provoque un
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volume de calcul très élevé qui ne peut pas être traité par les solutions logicielles ou
matérielles actuelles.

D’autre part, le rendu de telles scènes complexes amène également un problème
de création du contenu. Les modèles courants exigent de représenter toutes les com-
posantes sonores par des sources ponctuelles. Chaque source sonore doit être décrite
par sa position 3D, sa trajectoire et un signal monophonique associé. Quand le nom-
bre de sources augmente, il devient de plus en plus difficile de concevoir le contenu
de la scène. Ecrire des scènes complexes devient un processus pénible. D’ailleurs,
créer une scène sonore virtuelle qui correspond à une scène réelle est très difficile en
utilisant ce modèle. En particulier, les signaux de chaque objet sonore doivent être
enregistrés individuellement, ce qui n’est pas toujours faisable. Par exemple, enreg-
istrer séparément le moteur et la vibration engendrée sur la carrosserie du vehicule
n’est pas facilement réalisable.

Le premier objectif de cette thèse est de développer de nouveaux algorithmes, per-
mettant un rendu interactif de scènes sonores complexes comprenant un nombre im-
portant de sources sonores, typiquement des centaines voire des milliers. Pour réaliser
cet objectif, nous chercherons à tirer profit des ressources logicielles et matérielles
disponibles. Un de nos objectifs est que nos simulations soient réalisable sur toute
plateforme, du simple ordinateur portable aux postes de travail de dernière génération.
Nous proposerons donc une nouvelle méthode progressive pour rendre une scène au-
ditive efficacement employant un compromis entre la vitesse et la qualité. Dans ce
cadre, nous utiliserons notre connaissance sur l’audition humaine afin d’accélérer le
processus de rendu.

La deuxième partie de cette thèse adresse le problème de création d’environnements
réalistes. Comme alternative à la modélisation de scènes sonores virtuelles avec des
sources ponctuelles, nous proposons une méthode innovante pour décrire une scène
sonore de manière automatique, en se servant d’enregistrements pris sur le terrain,
sans aucune contrainte sur la position des microphones. Cette approche s’inspire des
techniques d’“image-based rendering” utilisées dans le domaine du graphique.

Résumé des Contributions

Cette thèse est divisée en trois parties. La première partie présente une vue d’ensemble
des principes impliqués dans le domaine de l’acoustique et du rendu sonore 3D, ainsi
que les concepts de base nécessaires pour la comprension des chapitres. L’audition
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humaine est analysée dans un premier temps et, en étudiant l’anatomie de l’appareil
auditif, nous expliquons divers phénomènes psycho-acoustiques. Dans la deuxieme
partie, nous montrons comment nous pourrons les exploiter afin de rendre une scène
sonore de manière efficace. Enfin, La troisième partie présente une nouvelle méthode
pour créer automatiquement une scène sonore virtuelle à partir d’enregistrements
d’une scène réelle dans sa globalité.

Technique de Rendu Sonore Efficace

Notre première approche est d’exploiter le traitement parallèle fourni par le processeur
des cartes graphiques afin de pouvoir rendre un grand nombre de source efficacement.
Une simulation sonore 3D en temps réel est présentée comme exemple d’application
comprenant des effets standard comme le ré-echantillonage du au délai, l’atténuation
par la distance et une égalisation sur plusieurs bandes de fréquence pour prendre en
compte les indices spectraux de localisation (HRTF). Les résultats ont prouvé que
l’architecture de ces processeur est bien adaptée pour effectuer ce type de traitement
audio. Cependant, bien que nous obtenions une amélioration significative des perfor-
mances, l’algorithme dépend toujours directement du nombre de sources.

De ce fait, nous examinons la possibilité de réduire la quantité de données à
traiter en utilisant les propriétés de la perception humaine, telles que le masquage
auditif et l’illusion de continuité. Nous avons étudié plusieurs métriques d’émergence
généralement employées pour classifier ou trier diverses composantes auditives selon
leur importance perceptive. Nous les utilisons pour choisir des sous parties de plusieurs
signaux progressivement afin d’optimiser le traitement audio temps réel. Nous effec-
tuons une étude subjective pour évaluer quelle métrique réalise le mieux la reconstruc-
tion en utilisant seulement une quantité limitée de données. Nos études montrent que
le niveau RMS, utilisé en tant que métrique d’importance, offre un bon compromis
pour tous les types de signaux. Nos résultats montrent également que des sous parties
des signaux d’origine peuvent être omises dans la plupart des cas, sans dégradation ap-
parente dans les mélanges générés, ce qui valide cette approche pour des applications
temps réel. Enfin, nous proposons une approche de type niveau de détail semblable à
celles utilisées dans le domaine du graphique pour rendre une scène sonore selon les
ressources disponibles.
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Description Automatique de Scene Sonore

La troisième partie présente une nouvelle méthode pour créer automatiquement une
scène auditive virtuelle à partir d’enregistrements de la scène dans sa globalité, sem-
blables aux techniques utilisées pour l’ ”image based rendering” dans le domaine
graphique. Utilisant un ensemble de microphones standard, distribués dans un en-
vironnement réel, nous avons enregistré le champ sonore simultanément à plusieurs
endroits sans aucune contrainte sur leur emplacement. Cette méthode peut être
employée sur des scènes extérieures, ainsi que des scènes d’intérieur ayant peu de
réverbération. Après une calibration spatial, nous segmentons dans ces enregistrements
un certain nombre de composantes sonores, ainsi que leur provenance. Dans ce
contexte, nous évaluons différentes techniques pour estimer la différence de temps
d’arrivée entre les paires de microphones et nous présentons un algorithme hiérarchique
pour localiser les sources sonores. Notre approche extrait automatiquement une
description haut niveau de la scène sonore à partir des enregistrements, basée sur
l’endroit d’émission des signaux et leurs contenus fréquentiels, qui peut être en-
suite spatialisé avec un modèle de source ponctuelle. En utilisant la représentation
obtenue, nous pouvons éditer et re-rendre la scène sonore acquise avec different types
de système de restitution. En particulier, nous pouvons nous déplacer ou changer les
différentes sources sonores et arbitrairement choisir une position d’écoute. Nous pou-
vons également combiner plusieurs éléments de différentes scènes en préservant une
cohérence spatiale. Nous montrons également un éventail d’applications possibles con-
cernant les jeux, la réalité virtuelle/augmentée et la post-production cinématographique.

Cependant, l’algorithme suppose que le champ sonore est émis par des sources
ponctuelles, ce qui n’est pas toujours vrai. Nous présentons donc une nouvelle ap-
proche pour résoudre ce problème. Nous séparons les éléments sonores de premier
plan, constitué d’événements bien localisés, de ceux d’arrière plan, constitué de sons
plus diffus, en utilisant des hypothèses sur la stationnarité de l’arrière plan. Nous
adaptons, par conséquent, le rendu sonore en utilisant une stratégie différente suivant
le plan sonore. Nous reconstruisons la scène sonore de n’importe quel point de vue
en re-spatialisant le premier plan avec l’approche précédente alors que l’arriere plan
est encodé avec des harmoniques sphériques d’ordre réduit afin de fournir un rendu
spatial diffus. Nous montrons également qu’une déformation des enregistrements orig-
inaux permet de simuler des changements fluides du point d’écoute et des positions
des sources. Anfin de valider notre méthode, nous présentons une étude subjective,
comparant notre approche avec des enregistrements binauraux servant de référence,
ainsi que des enregistrements B-format montrant que notre approche réalise un bon
rendu spatial, tout en gardant une flexibilité sur le rendu et offrant de nombreuses
possibilités d’éditions.
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Conclusion

Dans cette thèse, nous nous sommes intéressé aux problèmes liés au rendu sonores de
scènes complexes, contenant un nombre considérable de sources. Nous avons identifié
deux difficultés qui empêchent le rendu interactif de telles scènes. Les temps de calcul
engendrés par le traitement audio requis par ce type de simulation sont au delà des
capacités des processeurs actuelles et le processus de création de telles scènes est long
et pénible. Dans cette thèse, nous avons proposé des solutions à ces deux problèmes.

Afin d’exécuter le nombre massif d’opérations requis par le rendu des simulations
sonores d’environments virtuels, nous avons proposé de tirer profit de l’architecture
parallèle fournie par les cartes graphiques (GPU). Bien que le GPU soit conçu pour
des applications graphiques, sa flexibilité et son architecture apportent une solution
alternative qui surpasse clairement les processeurs courants (CPU). D’ailleurs, les
performances des GPUs ont augmenté considérablement ces trois dernières années
par rapport aux CPUs et ils tendent à devenir de véritables processeurs universels.
Nos études ont montré que cette architecture est bien appropriée pour le traitement
audio. Prochainement, de telles architectures sont susceptibles de devenir des stan-
dards de facto et, de ce fait, nous sommes convaincu que les cartes sonores peuvent
tirer bénéfice d’inclure le même type d’architecture et de programmabilité.

Afin de simplifier une scène sonore et fournir une approche de type progressive au
rendu audio, nous avons proposé un nouvel algorithme qui exploite les propriétés de
l’audition humaine, comme le masquage auditif et l’illusion de continuité. La méthode
proposée fournit un niveau de détail, traitant progressivement les composantes sonores
importantes d’une scène. Cet algorithme apporte un compromis entre la vitesse et la
qualité, ce qui est bien adaptée aux applications temps réel, procurant une solution
pouvant être utilisée sur toute plateforme. La solution proposée dans cette thèse
permet de rendre des milliers de sources sonores sur tout type de plateformes, allant
des ordinateurs dernière génération aux ordinateurs portables.

Dans la deuxième partie de cette thèse, nous avons présenté une méthode pour
créer automatiquement des scènes sonores virtuelles basées sur des enregistrements de
scènes réelles. Cette technique complète les méthodes d’enregistrement sonore spatial
existantes. Cette approche contourne le problème de capturer chaque source individu-
ellement tout en offrant un niveau semblable d’interaction avec la scène. En outre,
la représentation de la scène obtenue fournit un codage compact du champ sonore
qui est indépendant du système de restitution. Ce travail suggère également que des
scènes sonores réelles peut être efficacement codées en utilisant peu d’information
spatiale.
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Une évaluation subjective de la qualité de la reconstruction spatiale, comparant
notre méthode avec d’autres techniques spatiales d’enregistrement telles que binaural
et le B-format ont été effectué. Il montre que notre approche surpasse l’enregistrement
B-format et peut obtenir une localisation proche de l’enregistrement binaural. Notre
approche permet une auralisation interactive des scènes sonores réelles tout en main-
tenant un rendu flexible. Nous sommes convaincus que notre approche peut offrir de
nouvelles perspectives pour la post-production.

Directions de Recherche

Cette thèse ouvre beaucoup de directions prometteuses pour de futures recherches.
Nous avons vu que le GPU est bien adapté au traitement de l’audio 3D. Malheureuse-
ment, nous n’avons pas pu évaluer nos algorithmes sur les derniers processeurs G80
qui résolvent les quelques problèmes soulignés par notre étude et qui amélioreraient
certainement les performances. Il serait intéressant d’examiner d’autres algorithmes
acoustiques tels que le filtrage par réponse impulsionnelle infinie (RII) ou par réponse
impulsionnelle finie (RIR). En effet, ces algorithmes sont des outils de base pour in-
clure des effets de réverbération dans les applications de réalité virtuelle. Dans ce
cas, les paramètres de réverbération pourraient sans doute être calculés directement
en analysant la géométrie de la scène 3D avec le GPU. Une évaluation sur la per-
formance de notre algorithme avec d’autres processeurs de type DSP pourrait être
également intéressante. D’autre part, l’approche de type progressive pourrait être
amélioré en ajoutant une sélection des grains plus fine ou en employant une autre
métrique d’importance comme une sonie pour les signaux variant dans le temps.
D’ailleurs, la théorie sur l’illusion de continuité n’a pas été explicitement employée
dans la métrique d’importance, et pourrai améliorer les résultats. Une extension
intéressante pourrait être d’utiliser cet algorithme avec d’autres représentations de
signal comme celles obtenues avec un algorithme de type “sparse coding” [Lewicki,
2002]. Dans ce cas, nos grains élémentaires seront les atomes de la décomposition.
L’algorithme présenté pourrait être également employé dans d’autres applications,
pour réduire le trafic réseau ou compresser seulement les parties importantes du sig-
nal.

La deuxième partie de la thèse pourrait être également améliorée de plusieurs
manières : Nous avons utilisé une hypothèse de “W-Disjoint orthogonalité” dans le
domaine de fréquence pour la séparation de source mais le domaine de Fourier n’est
en général pas assez parcimonieux pour des scénarios réels complexes. Travailler
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dans un autre domaine plus “creux” pourrait améliorer la séparation de source. Dans
chaque trame temporelle, nous cherchons une position de source indépendamment de
la qualité de l’évaluation. Nous pourrions garder uniquement les bonnes estimations
pendant un lapse de temps et les interpoler quand aucune évaluation satisfaisante
n’est trouvée. Dans ce cas, la difficulté serait de trouver une bonne mesure de qualité
pour nos évaluations. Dans son état actuel, l’algorithme emploie un nombre fixe
de bandes. Une stratégie alternative serait d’optimiser ce découpage pour chaque
trame. La localisation des microphones est basée sur des photographies. Il serait
préférable de trouver les positions des microphones en utilisant une technique utilisant
la différence de temps d’arrivée d’un signal aux microphones permettant de calibrer
le système directement sur place. Ceci pourrait être utile pour des applications de
télédiffusion. Enfin, dans la composante segmentée de l’arrière plan, il reste quelques
parties du premier plan dans le signal. Une amélioration possible serait de choisir les
parties du signal de l’arrière plan pour lesquelles l’intensité du signal de premier plan
correspondant est importante et les remplacer entièrement par une approche de type
synthèse de texture sonore.

En conclusion, nous pensons que cette thèse a pu réaliser les buts présentés dans
l’introduction: accélérer la vitesse du traitement audio pour la simulation de scène
sonore complexes et améliorer le processus de création de scène. Nous pensons que
les résultats ainsi que les directions décrites pour les futurs travaux illustrent le fort
potentiel de cette thèse.
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Chapter 1

Introduction

In the last 30 years, virtual reality appeared with the demand to simulate complex
and interactive phenomena in order to help us understand complicated processes,
develop training applications or analyze human behavior. Most work on virtual reality
has focused on visual aspects whereas less attention has been paid to other sensory
information, such as sound. However, it is now widely accepted that the combination
of sound and images improves realism and is a key component to increasing the sense
of presence in virtual environments. In particular, auditory cues inform us about the
surrounding environment and help the localization, especially for sources not directly
visible to the listener.

The process of simulating a virtual auditory scene is called “Auralization” [Kleiner
et al., 1993]. Auralizing a virtual sound source requires that the listener perceives:

1. the correct location of the sound

2. the correct environmental effects due to occlusions, echoes and reverberations

As a result, it is necessary to simulate related physical phenomena, resulting in a
high computational cost. Moreover, the sound simulation depends on the listening
position and, consequently, it is mandatory to update the rendering parameters while
the listener explores the environment. Nowadays, the success of virtual reality appli-
cations has lead to growing demand for high quality simulations and support for more
advanced processing and features. Virtual environments are also becoming increas-
ingly complex. For instance, current video games use hundreds of simultaneous sound
sources. This results in a very high computational load which cannot be supported
by current brute-force hardware or software solutions.

On the other hand, the rendering of such complex scenes also leads to an authoring
problem. Current models require representing all sounding components using point
sound sources. Each sound source has to be described by its 3D location or trajectory
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path and an associated monophonic signal. As the number of sources grows, the
contents of the scene becomes increasingly difficult to design. Authoring complex
scenes is thus a tedious process. Moreover, creating a virtual auditory scene to match
a real scene is complicated using this model. In particular, signals have to be recorded
individually for each sounding object, which is not always feasible. An example would
be recording the engine and the vibration caused on the body of a car separately.

The first goal of this thesis is to develop new algorithms, enabling the interactive
rendering of complex auditory scenes including a massive number of sound sources,
typically hundreds to thousands. To achieve this goal, we will seek to benefit from all
software and hardware resources available. Our simulations have to run on every kind
of personal computer, ranging from a simple laptop to last-generation workstations,
and thereby, we will propose a new scalable method to render an auditory scene
efficiently using a speed versus quality trade-off. In this context, we will leverage our
knowledge of human perception to accelerate the rendering process.

The second goal of this thesis addresses the problem of authoring realistic envi-
ronments. As an alternative to describing virtual auditory scenes with point sound
sources, we propose an innovative method for authoring an auditory scene automati-
cally from field recordings inspired from image-based rendering techniques in graphics
using an unconstrained setup of microphones.

1.1 Thesis Outline

This thesis is divided in three parts. The first part (Chapter 2 and Chapter 3) will
present an overview of the principles involved in the field of 3D audio rendering
and will introduce the basic concepts necessary to understand the following chapters.
Human hearing will be studied first and, by investigating the anatomy of the auditory
apparatus, we will explain various perceptual phenomena. We will see thereafter how
we can exploit them to render a scene efficiently. Finally, we will review possible
representations of an audio signal as well as standard simulation techniques used for
auralization.

The second part contains two chapters which present new methods to render a
complex audio scene in real-time. Recently, powerful graphics processor architec-
tures have appeared. These processors are massively parallel and programmable for
general-purpose applications. However, algorithms have to be designed to fit this
architecture. Chapter 4 will present this architecture and will describe how to use
this novel hardware to effectively perform audio processing operations as required for
3D sound simulations.

As human listeners are not able to perceive every sound source with the same
degree of accuracy, Chapter 5 will explain how to exploit the properties of human
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perception, such as auditory masking and the continuity illusion in order to simplify
an auditory scene. Several metrics, generally used to categorize and sort various
auditory components according to their perceptual importance, will be assessed in
order to optimize the rendering. This chapter will also propose a level of detail
approach similar to those used in graphics to render an auditory scene according to
the available resources.

The third part will present a new method to automatically author a virtual audi-
tory scene from field recordings, similar to image-based rendering in computer graph-
ics. In chapter 6, we will present a practical pipeline to convert real-world multi-track
recordings into a high level representation suitable for interactive auralization. By
analyzing the recordings in several frequency bands, we are able to obtain the location
from which the signals were emitted. We also extract the different components for
each source in order to re-render them from their extracted positions. This method
offers the possibility of re-editing the scene and move or delete sounds in a specified
area. The proposed algorithm also allows us to freely change the listening point and
to combine different elements coming from various recordings while ensuring global
spatial coherence. The proposed method could also be used in motion-picture audio
production. In this context, the visuals are generally acquired from many points of
view and the audio engineer has to make recordings consistent with the visuals. The
proposed method can re-render the acquired soundtrack from any point of view and
direction, thus simplifying this task. Chapter 7 will discuss improvements to this
approach. Where the previous method fails to segment correctly diffuse sound com-
ponents, the improved algorithm separates the audio in foreground and background
components under an assumption of stationarity of the background components. Both
foreground and background components will be spatialized using dedicated strategies.

1.2 Publications

The body of this thesis is part of the following publications :

Efficient 3D Audio Processing on the GPU. Emmanuel Gallo and Nicolas Tsingos.
GP2, ACM Workshop on General Purpose Computing on Graphics Processors, Au-
gust 2004

Prioritizing Signals for Selective Real-time Audio Processing. Emmanuel Gallo, Guil-
laume Lemaitre, Nicolas Tsingos. International Conference on Auditory Display
(ICAD’05) , July 2005

3D-Audio Matting, Post-editing and Re-rendering from Field Recordings. Emmanuel
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Gallo, Nicolas Tsingos, and Guillaume Lemaitre. EURASIP Journal on Applied Sig-
nal Processing, 2007 (Special Issue on Spatial Sound and Virtual Acoustics)

Extracting and Re-rendering Structured Auditory Scenes from Field Recordings. Em-
manuel Gallo and Nicolas Tsingos. AES 30TH International Conference, 2007
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Chapter 2

Overview of Human Perception

Sound is an auditory sensation caused by the presence of an acoustic traveling wave
generated by a vibration and which propagates through a medium. The human
auditory apparatus captures the vibration and transmits the stimuli to the brain
which informs us about the nature of the sound and its localization. In this context,
audio rendering aims at creating the illusion of a real sound scene to the ears of the
listener. Studies in human hearing provide the knowledge for recreating all the cues
needed by our brain in order to fool the senses of the listener.

In this chapter,we will present some general concepts on human hearing. The
anatomy and the physiological mechanism of the auditory system will be described.
We will see thereafter how these concepts can be useful to reduce the rendering
calculations by processing only the necessary data.

2.1 Human Hearing

2.1.1 Auditory System

The auditory apparatus, shown in Figure 2.1, has three main elements which have
different but complementary functions: the outer ear, the middle ear and the inner
ear.

Outer ear

The outer ear is the first part of the auditory apparatus and it is the only part visible.
It has two components : the pinna and the auditory canal. The pinna receives the
sound vibration and transmits it to the middle ear through the auditory canal to
vibrate the eardrum (or tympanic membrane). It also protects the middle ear in order
to prevent damage to the eardrum. The shape of the pinna is primarily responsible for
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middle ear
inner ear

Figure 2.1 3D model of the auditory apparatus divided into three parts :
Outer, middle and inner ear.

the sound localization by reflecting and diffracting the sound waves, hence modifying
their spectral components according to the incoming direction. The auditory canal
acts as a closed tube resonator, enhancing sounds in the range of 2000Hz-5000Hz,
which corresponds to human speech (see Figure 2.2). It is 2.5 cm long on average
allowing the middle and the inner ear to be located near the brain.

Middle Ear

The second part of the auditory apparatus carries the vibrations toward the inner ear.
As the inner ear contains fluids, an adaptation of the impedance is made to avoid
large losses of energy. The transmission is achieved by three ossicles (malleus, incus
and stirrup) which amplify the energy by means of a lever system. This transfer is
most efficient at middle frequencies (500-4000Hz).

Inner Ear

The function of the inner ear is to transform the mechanical energy into bio-electric
energy. This part is composed of the cochlea and the vestibular apparatus which is
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Figure 2.2 Transfer function of the outer ear from a sound at 45 degrees
in the horizontal plane, related to the head and pinna and to the ear canal.
This figure also show the combined result which emphasizes the frequency
range of speech.

used as a balance system but does not intervene for hearing. The cochlea has the
shape of a shell, measures 2/3 cm unrolled and is filled with an incompressible fluid
called perilymph. It is separated along its length by an osseous blade on which two
membranes are attached: the basilar membrane and the tectorial membrane. The
incoming variations of pressure cause progressive traveling waves which deform the
membranes from the base toward the apex (the extremity of the cochlea). The vibra-
tion of the basilar membrane involves the deformation of the organ of Corti, grouping
of auditory sensory cells or “hair cells”. In response to the pressure variations, the
hair cells send electrical impulses to the brain via the auditory nerve.

2.1.2 Auditory Filters

There is a tonotopic mapping of frequencies on the basilar membrane which resonates
at different regions along its length according to the frequency contents of the sound.
Low frequency sounds produce vibrations across the entire basilar membrane with a
maximum amplitude at the apex. High frequency sounds produce vibrations close to
the base of the basilar membrane.

Fletcher suggests that the auditory system can be modeled as a bank of band pass
filters, each region of the basilar membrane responding to a range of frequencies with
maximal amplitude [Fletcher and Munson, 1933]. He named these regions “critical
bands” and their bandwidth “critical bandwidth”. Each critical band is about 1.3
mm long on the basilar membrane and embraces about 1300 neurons. Later, based
on Zwicker’s work, the bark scale (in memory of Barkhausen) was introduced where
each bark spans one critical band [Zwicker et al., 1957]. Zwicker measured 25 critical
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bands and defined a table with corresponding central frequency, lower and upper
limit covering the whole audible frequency range. An analytical expression was later
introduced [Zwicker and E.Terhardt, 1980] :

z = 13 arctan(
0.76f

1000
) + 3.5 arctan(

f

7500
)2 (2.1)

where f is the frequency and z the corresponding Bark index.

More recently, Traunmüller introduced a more accurate expression [Traunmüller,
1990] :

z =
26.81f

1960 + f
− 0.53

∣∣∣∣ z′ = z + 0.15(2− z)
z′ = z + 0.22(z − 20.1)

z < 2
z > 20

(2.2)

where f is the frequency and z′ the corresponding Bark.

This critical band scale is largely adopted as a psychoacoustic model. However,
an alternative was introduced by Moore based on different experiments called ERB
for Equivalent Rectangular Bandwidth [Moore et al., 1997]:

e = 21.4 log10(
4.37f

1000
+ 1) (2.3)

where f is the frequency and e the corresponding ERB.

The measured widths of the corresponding filters were smaller than those obtained
by Zwicker (see Figure 2.3). Finally, Patterson introduced the gammatone auditory
filter bank [Patterson et al., 1992]. He modeled the human auditory filter using
gammatone filters keeping an ERB spacing between each filter.

2.1.3 Auditory Masking

Masking Overview

The mechanism of the basilar membrane produces an interesting psycho-acoustic phe-
nomenon called auditory masking which appears when a sound becomes inaudible due
to the presence of another sound. Two types of auditory masking exist : simulta-
neous (or frequency) masking and temporal masking. Simultaneous masking occurs
when two concurrent sounds emit at different frequencies but in the same critical
band. One of them (the maskee) can be totally inaudible due to the presence of the
other (the masker). If the vibration in regions of the basilar membrane produced by
a masker sound is large, the vibration of the maskee sound in the same regions will
not be perceived unless the excitation produced by the maskee exceeds that of the
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Figure 2.3 Comparison between BARK and ERB scale. The right plot
shows the bandwidth as a function of the central frequency. The left plot
shows the number of auditory filters upto each frequency value.

masker by a given minimum threshold. This masking threshold depends on the sound
pressure level, the frequency and some characteristics of the masker (see Figure 2.4).

Temporal masking occurs when two sounds are close in time. There is a loss of
sensitivity around the sound’s frequency during a few milliseconds (see Figure 2.5 a).
Thus, the ear does not perceive the sounds preceding or immediately following a sound
of strong intensity. The premasking is short, about 5ms, contrary to the postmasking
which persists longer, depending of the duration of the sound (see Figure 2.5 b).

Masking Threshold Model

The auditory masking concept is widely used in audio compression to calculate the
optimal quantization level without introducing audible artefacts [Painter and Spanias,
1997]. Masking thresholds can be computed as a function of the critical band energy
and tonality index for each frequency band of the auditory model [Johnston, 1988].
In more details, the critical band spectrum is computed as the sum of the energy in
the band convolved by a spreading function to simulate the spreading of vibrations
into neighboring bands.

An analytical expression of the spreading function is given by [Painter and Spanias,
1997] :

SFi = 15.81 + 7.5(i+ 0.474)− 17.5
√

1 + (i+ 0.474)2 (2.4)

where SFi is the spreading function in dB in function of the critical band index i.
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Fastl, 1999].

From the Fourier representation of the signal, the critical band spectrum can be
computed by summing the energy in each critical band :

Bi =

bhi∑
ω=bli

P (ω) (2.5)

where Bi the energy in the critical band i, bli is the lower boundary of the critical
band i, bhi is the upper boundary of the critical band i and P (ω) = Re(ω)2 + Im(ω)2

is the instantaneous power at the frequency index ω.
The spread spectrum can be computed as :

Ci = SFi ∗Bi (2.6)

where Ci is the spread spectrum in dB in critical band i, SFi is the spreading function
in critical band i and Bi the energy in the critical band i.

The tonality index in [0, 1] is an indication of the signal noisiness, low values
indicating a noisier component. This index can be computed using the “Spectral
Flatness Measure”(SFM), which is the ratio between the geometric mean (Gm) and
the arithmetic mean (Am) of the spectral components. In dB, the SFM can be
estimated as:
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SFMdB = 10log10(
Gm

Am
) = 10

[
(

1

N

N∑
n=1

log10(P (n)))− (log10(
1

N

N∑
n=1

(P (n))))

]
(2.7)

where P is the power spectrum, N is the FFT size and n is the frequency bin.

The tonality index can then be estimated as :

α = min(
SFMdB

SFMdBmax

, 1) (2.8)

where SFMdB is spectral flatness measure and SFMdBmax = −60dB.

The threshold offset Oi of the masking energy for the band i is given by linear
combination of a tonal and noise threshold depending on the tonality :

Oi = α(14.5 + i) + (1− α)5.5 (2.9)

where i is the index of the critical band.

Finally, the masking threshold Ti is estimated by subtracting the threshold offset
from the energy of the critical band :

Ti = 10log10(Ci)−
Oi
10 (2.10)

All frequency components below masking threshold are inaudible.
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2.1.4 Illusory Continuity

Illusory continuity belongs to the auditory illusion field which fools our hearing sense.
When a tone signal is replaced by a louder noise for a short time, the tone signal
is still perceived, although not present in the stimulus, and appears continuous and
unbroken. It is generally observed when there is no evidence of discontinuity and
the level of the second signal is large enough [Warren et al., 1988]. An interesting
case is the illusory continuity of interrupted speech. When some parts of speech
sentences are removed and replaced by a louder sound, they appear non-deleted from
the signal [Bashford et al., 1988].

2.1.5 Perception of Sound Intensity and Loudness Models

Harvey Fletcher, a pioneer on auditory perception, defined loudness in 1933 as : “a
psychological term used to describe the magnitude of an auditory sensation” [Fletcher
and Munson, 1933]. In this section, after some basics of auditory perception, some
models of loudness will be presented. We will see that loudness varies with intensity,
but also with the duration and the spectral composition of the signals.

Sound Propagation and Pressure Level

Sound corresponds to a vibration that propagates through a medium in time and
space. It travels as waves of alternating pressure with celerity c which is dependent
on the propagation medium (air, liquid, ..). The unit of pressure commonly used in
acoustics is the Pascal (Pa). To define the sound pressure level Ldb, we generally
express it in decibels of sound pressure level (or dBSPL) :

Ldb = 20log10(
p

p0

) (2.11)

where p0 is the reference sound pressure (generally 20µPa in air) and p is the effective
sound pressure.

Hearing Area

Figure 2.6 shows the hearing area. The audible frequency range spans from 20 Hz
to 20 kHz and the dynamic range is about 130 dB between a sound which is just
audible (threshold of hearing) and the discomfort level (threshold of pain). This
auditory curve is the result of statistical means based on user studies [Zwicker and
Fastl, 1999]. Music roughly extends from 50Hz to 10kHz, while speech covers areas
from 200 Hz to 5 kHz with a limited dynamic range.
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Threshold of Hearing

The threshold of hearing is the minimum sound amplitude that the average ear with
normal hearing can detect in a quiet environment. This threshold varies with the
frequency. Two thresholds are generally measured: “Minimum Audible Field” (MAF)
and “Minimum Audible Pressure” (MAP).

In the case of the MAP, the pressure is measured at the ear canal whereas in the
case of the MAF, the pressure is measured in free field with an artificial head. At low
frequencies, the MAF is 5/10dB lower than the MAP measure due to the masking
from vascular origin. Additional differences are due to head and pinna filtering (see
Figure 2.7).
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Equal Loudness Contours

The perception of intensity varies with the frequency. For this reason, a subjective
scale of loudness level was proposed by Barkhausen: the phon. By definition, at 1
kHz, the phon scale is the same as the dB scale. The equal-loudness-level contours
are a measure of sound pressure over the frequency spectrum, for which a constant
loudness is perceived. Figure 2.8 show the equal loudness contour as a function of
the frequency [Fletcher and Munson, 1933]. This curve reflects the limits of the
hearing area. The lowest contour corresponds to the absolute threshold of hearing
(see Figure 2.8) whereas the highest is the threshold of pain. The contours are lowest
in the medium frequency range indicating that the ear is most sensitive to frequencies
in this range, due to the resonance of the auditory canal. The shape of the contour
shows that the ear is less sensitive to frequencies which are higher or lower. In 1987,
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equal-loudness-level contours were revised and presented in the ISO 226 standard.
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Figure 2.8 Equal loudness contour as define by the ISO 226 for various
loudness level (in Phon).

A-Weighting

Based upon his work on loudness measurement, Fletcher [Fletcher and Munson, 1933]
proposed a filter to compensate the signal frequency in order to account for human
hearing sensitivity. The filter weighted the signal frequencies according to the equal-
level-contour and was adopted in a standard for measuring loudness and usually
incorporated in sound level meter. However, recent study from Aarts [Aarts, 1992]
have showed that it could produce inadequate or even misleading results because it
was originally designed for quiet sounds (40 phon).
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Sone and the Power Law

In 1936, the sone was introduced by Stevens [Stevens, 1936,Stevens, 1975]. Unlike the
phon scale, loudness is expressed on a linear scale. Stevens defined a sone to be equal
as 40 phons and to be directly proportional to the perceived loudness (see Figure 2.8).
He proposed that loudness perception could be described as a mathematical function,
“the power law”, defined with the formula :

L = kIa (2.12)

where L is the loudness in sones, I the intensity, k a constant depending on the sub-
ject and a was defined as 0.3. This corresponds to 10 dB per doubling in loudness.

Stevens Loudness Model (International Standard ISO 532A)

The power law leads to a computational model of loudness calculated from a linear
equation. The model first determines a loudness index for each frequency bands
according to a predefined table which describes the perceived magnitude as a function
of pressure level. The total loudness is then computed using the formula:

Sl = Sm + F (
∑

S − Sm) (2.13)

where Sm is the greatest of the loudness indices,
∑
S is the sum of loudnesses indices

in all bands and F depends on the bandwidth used in the analysis of the signal.

The total loudness is converted into loudness level by:

P = 40 + 10 log2(Sl) (2.14)

Nevertheless, this loudness model is only valid for diffuse field.

Zwicker Loudness Model (International Standard ISO 532B)

In 1960, Zwicker presented a method to compute loudness for stationary sounds which
is certainly one of the most popular methods [Zwicker, 1960,Zwicker and Fastl, 1999].
From the signal, a filter is applied to correct the middle and outer ear response. The
signal is analyzed through an auditory filter bank (ISO uses a 1/3 octave band pass
filter [Zwicker et al., 1991], but other auditory filter banks can be applied). The
loudness of each band is computed from the excitation level of the band using the
Stevens power law. The total loudness is integrated across each band.
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Moore Loudness Model

In 1996, Moore and Glasberg introduced a new method to compute loudness as a
revised version of Zwicker’s model [Moore and Glasberg, 1996], following the same
structure as his method :

1. Fixed Filter for transfer of outer / middle ear

2. Transform spectrum to excitation pattern

3. Transform excitation to specific loudness

4. Calculate area under specific loudness pattern

The Zwicker model was improved in several ways: the Moore loudness model works
both for monaural and binaural loudness. If the same sound is presented to both
ears, the loudness is doubled compared to single ear presentation. It also takes into
account the correct threshold of hearing for monaural or binaural estimations. It
used the equal-loudness-contours defined in the ISO 226 and an ERB scale for the
auditory filter bank. The excitation level of the band is transformed to loudness using
a modified power law, taking into account the background noise.

Time-Varying Loudness Model

Although the previous loudness models provide reasonable estimates for a variety of
signals, there are supposed to be applied on stationary sounds, limiting their domain
of application. Zwicker proposed an improved version of his loudness model to take
into account time-varying signals using temporal masking when computing the exci-
tation [Zwicker, 1977]. Glasberg and Moore improved their model as well [Glasberg
and Moore, 2002], introducing a difference between instantaneous loudness, short
term loudness and long term loudness. The excitation was predicted using multiple
Fast Fourier Transforms with different sizes in parallel to get a finer temporal resolu-
tion at high frequency and good spectral resolution at low frequency. Instantaneous
loudness was predicted using their earlier model. Short term loudness is computed
using a form of temporal integration of the instantaneous loudness as well as the long
term loudness using a form of temporal integration of short term loudness. Both
loudness models seem to be suitable for time varying sounds.
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2.2 Spatial Hearing

2.2.1 Coordinate System

To describe the localization of a sound source, it is easier to reference the location
of the sensation with angles and distance instead of using an Euclidean coordinate
system. The origin lies at the center of the head of the listener. The azimuth angle
is used to localize a sound in the horizontal plane located at ear level. The median-
sagittal plane is the plane splitting the body into right and left halves and the frontal
plane splits body into front and back halves. The elevation is the angle between the
horizontal plane and the source (see Figure 2.9).

median plane

horizontal plane

frontal plane

Figure 2.9 Coordinate system generally involved in auditory experiments.
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2.2.2 Localisation Cues

Interaural Cues

In the beginning of the century, Lord Rayleigh introduced the “Duplex theory” [Raleigh
and Strutt, 1907]. This theory demonstrates that the interaural time difference (ITD)
and the interaural intensity difference (IID) are the principal cues for source localiza-
tion in the horizontal plane. However, these cues are not equivalent according to the
frequency components of the incoming sound. Interaural time differences prevail at
low frequency, where the IID is small, whereas the interaural intensity difference domi-
nates at high frequencies due to the difficulties of the brain to correlate high frequency
sounds. Wightman suggested that the ITD cue is primarily used to localize, while
IID and spectral cues are used to resolve possible confusions of location [Wightman
and Kistler, 1992].

In order to evaluate sound localization accuracy, the discrimination of difference in
azimuth has been studied [Mills, 1958]. Depending on the frequency and the azimuth,
the minimum audible angle (MAA) varies. In Figure 2.10, the MAA is plotted as a
function of frequency for four reference directions (0◦, 30◦, 60◦ and 75◦). The MAA
is smallest for a sound coming in front. Around 1.5 kHz-1.8 kHz, the accuracy is very
low and consistent with the “Duplex theory”. The localization with the ITD works
up to 1.5 kHz, whereas the IID are small up to 1.8kHz. The MAA at an azimuth of
90 deg was always more than 40 deg. This is due to the cone of confusion.

This cone is centered on the interaural axis (see Figure 2.11). In space, each source
location belonging to the cone of confusion has the same ITD and approximately the
same IID. Therefore, localization in this area is ambiguous, but generally resolved
using head movements [Young, 1931,Wallach, 1940].

Spectral Cues

The “Duplex theory” model is validated for the localization of sources on the horizon-
tal plane, but fails for the localization in elevation, especially on the median sagittal
plane, where the ITD and IID are identical. Head movements help to resolve ambigu-
ous localization. Yet, short bursts can be localized in elevation, even if their duration
is too short to allow movements of the head. Many experiments demonstrate that the
form of the head, pinna and torso is required for the localization [Batteau, 1967,Roffler
and Butler, 1968,Gardner and Gardner, 1973]. Indeed, a complex filtering is realized
by our physionomy and modifies the spectral components of the sound according to
its direction of incidence [Wiener and Ross, 1946, Shaw, 1966]. The corresponding
pair of filters for both ears is called “Head related transfer functions” (HRTF). The
HRTF is dependent on each person and using non-individualized HRTF can result in
poor localization accuracy with front-back and up-down confusions [Wightman and
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Figure 2.10 The minimum audible angle (MAA) as a function of the fre-
quency for four reference directions (a) 0◦, (b) 30◦, (c) 60◦ and (d) 75◦ [Mills,
1958].

Kistler, 1989,Wenzel et al., 1993]. Whereas the azimuth localization is robust using
interaural cues, the spectral cues help to determine the elevation and disambiguate
the front-back localization and work best for complex stimuli [Roffler and Butler,
1968]. The monaural localization paradigm has been investigated to emphasize the
contribution of the spectral cues to the duplex theory. One problem is that complete
monauralisation of a listener is difficult to realize and achieving such studies is quite
complex because very low sound levels provide access to interaural cues [Wightman
and Kistler, 1997].

Cues for distance

Although the localization of a sound source is done using both interaural cues and
spectral cues, others cues are employed for distance perception. The principal cue for
distance perception is based on the intensity [Gamble, 1909, Coleman, 1963] which
gives a notion of absolute distance to familiar sounds. In the case of unfamiliar sounds,
the intensity cues only carry information about relative distance. In the presence of
multiple sound sources, the relative distance is improved and a difference of distance
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Figure 2.11 The cone of confusion : Different spatial locations produced
null ITD and ILD in this area.

of 6% is sufficient to be discriminated [Ashmead et al., 1990]. But the intensity
cues are not the only important information for auditory distance perception. The
reverberation also influences perceived distance. The sound arrives at the listener
from a direct path, but the environment alters the sound propagation by scattering,
absorbtion or reflection on the various obstacles. Sound sources in reverberant envi-
ronments are judged more distant. However, the ratio of direct sound to reverberant
sound provides another major cue for distance perception [Mershon and King, 1975].

2.2.3 Precedence Effect

In complex environments, sound is reflected and arrives from multiple directions.
But, even in this case, the localization of sound can be performed correctly. Wallach
investigated this effect and showed that when two sounds arrive with a short delay,
they are perceived fused into a single auditory image [Wallach et al., 1949]. The
location of this image correspond to the first wavefront that reaches the listener.
This “precedence effect” occurs when the delay between the two sounds is in the
range of 1 to 5ms. Below 1ms, the localization is perceived as the means of the source
locations and above 5ms, both sources become audible. However, the precedence
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effect disappears if the second sound is louder than the first one (10-15dB louder) or
if the sounds are not similar.
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Chapter 3

Overview of Rendering Techniques

In this chapter, we will present some possible representations of an audio signal. From
a continuous signal, we will sample it in discrete time to be able to process the data
on a computer. Then, we will show that, according to the chosen representation,
information can be coded in a more sparse manner. This representation is important
because it directly correlates with the amount of data to process. The second section
of this chapter covers techniques used to simulate a virtual auditory scene. We will
review common acquisition and resynthesis models, their principles, their performance
and their limits.

3.1 Representation of Sound

This section will describe some possible representations of an audio signal, from time-
domain waveform to sparse signal representation. Some signal representations are
more suitable for auditory perception. The representation also influences the manner
of analyzing, transmitting, storing, querying or displaying the data. In the last part
of this thesis, we will aim to obtain a higher level representation of an auditory scene.
This representation must lead to an efficient way to handling the data, to separating
various sources and to providing a good reconstruction of the signal without any
artifact.

3.1.1 From Analog to Digital

The typical representation of sound is generally the amplitude of the pressure level
as a function of time. In order to analyze and manipulate a continuous signal on a
computer, it has to be sampled at discrete instants in time spaced by a duration τ
called sampling period, whose inverse is the sampling frequency or sampling rate.
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From a mathematical point of view, the discretization of the signal x(t) can be done
by applying a Dirac comb with unit amplitude and sampling period τ .

x(n) =

∫ ∞

−∞
x(t)δ(t− nτ)dt (3.1)

Fourier Transform

The Fourier transform was introduced by a French mathematician, Fourier, in 1822 as
a tool to study heat conduction. He demonstrated that an arbitrary periodic function
can be decomposed into an infinite weighted sum of sinusoidal functions. The Fourier
transform is a powerful tool used to explore the frequency content of the signal. The
Fourier transform is given by the formula:

X(ω) =

∫ ∞

−∞
x(t)e−jωtdt (3.2)

And the inverse transform :

x(t) =
1

2π

∫ ∞

−∞
X(ω)ejωtdω (3.3)

Since its development, its capability to analyze and manipulate the frequency
domain of a signal, and also its fast implementation have lead to its widespread use
in all scientific domains.

Cross Correlation

A useful application of the Fourier transform is to measure the similarity between two
signals. The cross correlation is given by a sliding dot product over the two signals
x1 and x2.

Rx1x2(τ) =

∫ ∞

−∞
x1(t)x2(t− τ)dt (3.4)

where τ is the lag and Rx1x2 is maximum when the signal are identical.

A special case is the cross-correlation of a signal with itself, called auto-correlation,
and can be useful, for instance, for finding repeating patterns in a signal. In order
to compute the cross correlation efficiently, the Fourier transform can be used, giving
the cross spectral density (or cross spectrum).

Rx1x2(τ) =

∫ ∞

−∞
X1(ω)X∗

2 (ω)ejωτdω (3.5)

3.1 Representation of Sound 25



3.1.2 Data Sparseness

Data sparseness is the percentage of empty cells in signal data. A sparse dataset
has most components equal to zero. Therefore, the low number of non-zero coeffi-
cients provide important signal characteristics. As a consequence, in the case of linear
combination of signals, the probability that a coefficient belongs to a single signal is
high. For instance, when mixing two sparse signals, the probability that one com-
ponent of the two signals is zero is high. Since counting the number of zeros of the
signal is not practical, the degree of sparseness is measured using the sum of a cost
function. This function should be non-convex such as f(x) = β log(1 + (x/σ)2) or
f(x) = β |x/σ|q , q < 1 where β and σ represent some constants controling the shape
of the function [Rickard, 2006]. Data sparseness can also be visually exposed using a
scatterplot. A scatterplot is generally used in statistics to determine the association
between two variables. The first variable is located along the horizontal axis and the
second variable is located along the vertical axis. Figure 3.1 show the scatterplot of
two linear mixtures of signals in time and frequency domains. In time domain, each
point corresponds to a couple of sample from each mixture. In the frequency domain,
each point corresponds to a couple of real complex from each mixture. We can clearly
see lines and the direction of each line correspond to the mixing coefficients used for
the mixture [Bofill and Zibulevsky, 2001]. Thus, sparse signals are more appropriate
for source separation. Signal processing on sparse signals is also more efficient due to
the lower number of significant coefficients to compute.

Figure 3.1 Data sparseness : (a) Scatterplot of two linear mixtures in the
time domain. (b) Scatterplot of two linear mixtures in the frequency domain.
Note : In the frequency domain, lines appear and their directions correspond
to the mixing coefficients used for the mixture.
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3.1.3 Sparse Representation

A sparse representation of a signal is usually constructed using a decomposition into a
basis of elementary functions. The Fourier transform uses sinusoidal basis functions,
the wavelet decomposition can use several, like Haar or Daubechies basis functions.
However, the transforms do not provide a sparse representation for every kind of sig-
nal since the base does not take the signal into account. For instance, the Fourier
transform is not adequate to represent the Dirac function. Mallat proposes a repre-
sentation of the signal with an overcomplete basis named “Matching pursuit” [Mallat
and Zhang, 1993]. This algorithm searches into a dictionary of redundant functions
which provides the best match. The element of the dictionary is then subtracted out
and the algorithm continues iteratively until the residual error is small. Later, Chen
improved the signal decomposition to minimize the L1 norm of the coefficients [Chen
et al., 1998]. However, functions in the dictionary are predetermined and do not take
the signal into consideration.

The problem can be resolved with a probabilistic approach to ensure that coeffi-
cients are sparse and to minimize the reconstruction error. Finding a sparse repre-
sentation can be formulated as :

x = As+ ε, (3.6)

where x is the signal to decompose, A the matrix of basis functions (the dictionary)
s the vector of coefficients and ε is the residual error with s the sparsest possible.

The decomposition is not unique. However, this could be resolved using a Bayesian
approach [Olshausen and Field, 1996,Lewicki and Sejnowski, 2000] :

ŝ = arg max
s
P (s|x,A) = arg max

s
P (x|A, s)P (s), (3.7)

where ŝ is the optimal representation of x and P (s|x,A) the posterior distribution.

Assuming that ε is Gaussian noise, the data likelihood is given by :

logP (x|A, s) ∝ − 1

2σ2
(x− As)2, (3.8)

where σ is the noise variance.

s is supposed to be statistically independent and sparse :

P (s) =
∏

i

P (ai), (3.9)
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P (ai) = e−Q(ai), (3.10)

where Q is a non convex function to ensure sparseness of the coefficient.

Figure 3.2 provides a comparison between a sparse representation and a spec-
trogram of a voice sample. The dictionary used for the sparse representation is
constructed with a 128 ERB-spaced gammatone filter.

Figure 3.2 Sparse code representation [Smith and Lewicki, 2005]. (a) Signal
in time domain, (b) Sparse representation using a gammatone based dictio-
nary, (c) spectrogram of the signal.

3.2 Virtual Auditory Space Simulation

This section will review the auralization procedure. “Auralization” is a term defining
the process of simulating a virtual auditory scene. Thus, this section will present the
basic primitives used during rendering and effects generally involved in the simulation.
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3.2.1 Auditory Scene Modeling

Point Sound Source

Point sound sources are traditionally used to model a virtual auditory scene. These
sound sources represent objects localized in space that emit sound. In order to localize
the sound source, localization cues must be simulated [Chowning, 1971]. Typically,
interaural cues are employed (see 2.2.2). Since the source or the listener can move, the
wavelength at the receiver differs from the emission. This phenomenon is called the
“Doppler effect” and can be simulated using resampling. Different source characteris-
tics can modify sound emission. For example, a sound source can be omni-directional
or have a more complex emission pattern [Savioja et al., 1999]. Point sound source
do not physically exist in reality. This model assumes that the region that emits the
sound is small enough or is far enough from the listener to be represented as a point
source.

Signal of the sound source can either be recorded or fully synthesized and should
preferably be anechoic if additional effects have to be applied. For natural signals,
the sound must be recorded in quiet environment with low reverberation and pre-
equalized to fit the virtual emitting object. The signal is generally not compressed to
allow manipulating it efficiently, or a hardware based decompression is used in some
new game-console platforms. Pure synthetic sounds are generally created by physical
modeling. They can be generated on the fly or pre-computed depending on memory
or CPU requirements. Sound synthesis is well suited to virtual reality as a variety
of sounds can be modeled and rendered depending on the parameters obtained from
the simulation [Doel, 1998,Roads, 1996]. For instance, it is well suited to simulation
of contact sounds [Knott et al., 2003] or other physical phenomena [Dobashi et al.,
2003].

Complex sound sources

Complex sound sources are generally modeled as collections of multiple elementary
sound sources which have to be simulated separately to represent the sound of a
virtual object in the scene. For instance, to model the sound of a car correctly, it is
necessary to simulate with different sound sources the tire noise, the resonances of
the muffler and the engine harmonics as they do not produce the same sound, same
position and the same directivity pattern.

Diffuse sound area is generally simulated by sampling the region with point sound
source. The signals of each sound source have to be similar, but must be uncorrelated
to avoid phasiness effects generated by the small distance between the sources. For
better performance, previous papers [Sibbald, 2001,Tsingos et al., 2004] compute a
dynamic level of detail of the group of sources according to the distance of the listener
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(See 3.3.4).

3.2.2 Indirect Sound Scattering and Reverberation

Reverberation denotes sound coming indirectly to the listener. The environment of
the scene disturbs the propagation wave through various phenomena such as reflec-
tion, refraction, diffraction or dissipation. These phenomena are often modeled using
an impulse response representing the delay and amplitude of sounds arriving along
different propagation paths. An impulse response is composed of the direct sound,
early reflections and late reverberation. The early reflections depend on the geometry
of the room and the position of source and listener. They reach the listener during a
period, generally established, of up to 80ms [Roads, 1996]. Late reverberation is due
to the volume of the room and is mostly independent of the position of source and
receiver (see Figure 3.3)

Early reflections

A
m
p
lit
u
d
e

Time

Late reverberation

Figure 3.3 Example of room impulse response composed of the direct sound,
early reflections and late reverberation.

To create a reverberant effect, the impulse response can be measured from a real
room. Then, this filter is applied to the signal by convolution. The computational
time is generally proportional to the length of the filter. The impulse response of
a virtual room can be also calculated using geometrical acoustics algorithms given
a scene description and all properties of the materials. Finally, it can be artificially
created to fit a characteristic model of the reverberation. In this case, reverberation
can be applied using fast recursive algorithms.

Measures of Room Reverberation

The general method to measure an impulse response is to generate a signal with
high energy (e.g. a chirp), record it at the same time and determine the impulse
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response by deconvolving the recorded signal with the emitted one. In this case,
an average of successive measures is realized to improve the signal-to-noise ratio of
the impulse response measure. Schroeder introduced a method using maximal length
noise sequences as excitation signals [Schroeder, 1979]. Such sequences are periodic
and their autocorrelation is a Dirac function. Thus, the correlation of the signal
emitted with that recorded directly gives the impulse response, improving the signal
to noise ratio of the impulse response. Moreover, Borish accelerates the algorithm
using a transform of Hadamard [Borish and Angell, 1983]. A comparable method has
also been introduced by Foster using Golay codes [Foster, 1986].

Geometrical Techniques for Reverberation

Geometrical techniques allow for computing various propagation paths by modeling
the wave as a set of rectilinear rays. The reverberation is created by the contribution
of all the paths to the listener through an impulse response representing the delay
and amplitude of sounds arriving along different propagation paths.

The first geometric approach used ray tracing [Schroeder, 1962,Krokstad et al.,
1968, Schroeder, 1970]. Each sound source of the scene generates a large number of
sound rays in every direction. Rays travel until they reach the observer or can hit
an element of scene. In this case, the material absorbs some energy of the sound
before re-emiting it by reflection or diffraction. The listener is generally modeled as
a sphere to limit aliasing and improve computational efficiency. The image-source
technique is another popular technique to compute specular reflections [Allen and
Berkley, 1979, Borish, 1984]. On the assumption that only specular reflections are
considered, each path can be represented by a virtual sound source. Indeed, if the
sound wave is reflected by a wall, it is possible to create a virtual source by mirroring
the source, thus reducing the problem to direct sound sources (see Figure 3.4).

Geometric approaches fail at low frequencies when room resonance and diffraction
are more prevalent. However, some extensions have been proposed to model edge
diffraction based on the geometrical theory of diffraction and beamtracing [Tsingos
et al., 2001]. Room acoustics modeling using a digital waveguide mesh was introduced
by Savioja and provided another approach to room response simulation [Savioja et al.,
1994]. The method is a time domain finite difference method. The algorithm solves
the sound pressure propagation through a waveguide mesh for low frequencies and
combines with a ray tracing technique for high frequencies. At each point of the grid,
the sound pressure is resolved according to its neighborhood and to the last computed
value.
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Figure 3.4 The reflection of the sound source (red sphere) solved with a
source-image technique. A virtual source (yellow sphere) is created reducing
the problem to that of a direct sound source.

Artificial Reverberation

The previous reverberation techniques are computationally expensive. Moreover, the
listener might not perceive the full complexity of the reverberation. Besides, for some
applications, a higher level control might be preferable to physical modeling. This can
justify the usage of an artificial reverberation approach. An artificial reverberation
is not based on the geometrical properties of the room, but rather it attempts to
approximate the reverberation by adjusting the parameters perceptually.

The first artificial reverberation model was introduced by Schroeder using comb
and all-pass filters to reduce the coloration of the sound [Schroeder, 1962] and ex-
tended by Moorer [Moorer, 1979]. Gerzon generalized the Schroeder all-pass to N
dimensions using a unitary matrix [Gerzon, 1976]. He showed that if the matrix
is unitary, then the energy is preserved. Stautner and Puckette proposed a general
reverberation model called “feedback delay networks” [Stautner and Puckette, 1982]
based on delay lines and a feedback matrix connecting the output to the input (see
Figure 3.5). Jot proposed a practical reverberator design based on perceptual criteria
resulting in an efficient reverberation technique [Jot, 1997].
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Figure 3.5 Feedback delay networks topology. A is the feedback matrix, τi
are the delays and gi are the gains.

3.3 Spatial Audio Reproduction

Once the simulation is completed, the computed sound field must be reproduced to
the ears of the listener. The spatialization algorithm depends on the devices, such
as loudspeaker or headphone, used for the reproduction. The challenge of sound
spatialization is to provide a correct 3D image of the sound position.

3.3.1 Stereophonic Techniques and Multichannel Extensions

The simplest technique to spatially reproduce a sound is based on intensity pan-
ning [Blumlein, 1931, Bauer, 1961]. From the signal emanating by two equidistant
loudspeakers and differing only by magnitude or sign, a phantom source can be per-
ceived at the angular localization θI given by the stereophonic law of sines formulated
in phasor form :

sin(θI)

sin(θA)
= (Sl − Sr)/(Sl + Sr). (3.11)

where θA is the half angle between the two speakers, and Sl, Sr is respectively the
signal sent to the left and right speaker (see Figure 3.6).

In 1997, Pulkki introduced the “Vector Base Amplitude Panning” (VBAP) tech-
niques that generalized the method of the intensity panning for N speakers [Pulkki,
1997]. This method requires all speakers to be nearly equidistant to the listener. The
algorithm selects the three speakers nearest to the virtual source and computes the
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Figure 3.6 Stereophonic law of sines. A phantom source (red sphere) is
created using an intensity panning between the two speakers.

gain coefficients for each speaker, solving the equation:

p = g1l1 + g2l2 + g3l3 (3.12)

where gi is the gain to be applied on the speaker i, li is the vector from the listener to
the speaker i and p is the vector from the listener to the virtual source (see Figure 3.7).

Virtual sound can also be reproduced with speakers using a 5.1 surround tech-
nique. This technique has been introduced in the cinematographic field and has been
primarily designed to be used with a large screen. A specific speaker configuration
is required : Two front speakers for the stereo, one front speaker for the dialog, two
rear speakers for the ambiance and one subwoofer for enhancing the low frequen-
cies. Many audio coding schemes such as Dolby Digital (AC3) are dedicated to this
setup [Steinke, 1996].

A general drawback of these stereophony inspired techniques is to limit the listener
to be positioned only in an area called “sweet spot” where the reproduction is valid.
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Figure 3.7 Vector Base Amplitude Panning. A phantom source (red sphere)
is created using N speakers (N=3 in this example).

3.3.2 Binaural Rendering Techniques

Headphones are a common device employed for sound simulation. They takes ad-
vantage of the fixed position of the listener’s ears relative to the speaker and deliver
accurate sound.

The binaural rendering method is simple, requiring only a single filtering op-
eration. It provides the spectral cues for localization which are essential for the
perception of the elevation and rear hemisphere sound reproduction. (See 2.2.2).

The filter is defined individually from the characteristic of the head, torso and
pinna and is called the Head Related Transfer Function. The common technique used
to measure HRTFs is to place small microphone into the ears of the listener and to
record a the associated impulse response from a large number of directions. The sound
stimulus used in the acquisition process can be a chirp, a sine sweep or pseudo random
noise (MLS). The filter is created by comparing the recorded signal with the emitted
stimulus [Wightman and Kistler, 1989]. Another possible measurement option is to
simulate the filter using Boundary Element Methods (BEM) simulation [Katz, 2001].
This method resolves the wave propagation equation with a 3D model of a head
and deduces the corresponding HRTF filter. This technique is more reliable at low
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frequency where the measurements yield inaccurate. A major problem is the variation
between different individuals, which requires that HRTFs be measured individually,
especially for children who do not have the same morphology as adults. Some works
tend to provide appropriate HRTF by asking listeners to select from a catalogue of
HRTFs [Seeber and Fastl, 2003].

Another drawback of using headphones for audio simulation is the sensation that
the sounds move with the listener position. Head tracking provides a solution and is
essential for virtual reality applications. Other benefits of head tracking during the
simulation is that it resolves front/back ambiguities using head movements (see 2.2.2)
and improves sound localization performance [Begault et al., 2001].

It is possible to listen to binaural recordings with loudspeakers. However, using
loudspeakers for the reproduction setup requires another step due to the fact that the
speakers are distant from the ears and the sound emitted from one speaker arrives
to both ears. To listen to a binaural recording through speakers, a filter is applied
to remove the crosstalk signals and the filtering from the head to the speaker. The
technique is known as Transaural synthesis [Schroeder, 1975,Cooper and Bauck, 1989,
Jot et al., 1995]. When emitting signals Xr and Xl from speakers, the binaural signals
Yr,Yl perceived from the listener are convolved by a filter H (see Figure 3.8):[

Yl

Yr

]
=

[
Hll Hrl

Hlr Hrr

]
·
[
Xl

Xr

]
(3.13)

In order to render the correct binaural signal, the inverse matrix H−1 must be
applied to the emitted signal X such that :

[
Xl

Xr

]
=

[
Hrr −Hrl

−Hlr Hll

]
(Hll ·Hrr)− (Hlr ·Hrl)

·
[
Yl

Yr

]
(3.14)

3.3.3 Physically Based Rendering Techniques

The method presented in the previous section simulates auditory scenes based on
collections of point sound sources. This method provides a free view point rendering
of the scene interactively and is well adapted for 3D virtual reality applications and
games. However, the rendering might not sound realistic due to approximations of
the physical model. Alternatively, the surrounding environment can be recorded from
a microphone, and spatially rendered using various techniques.

The oldest and simplest is binaural recording. With just two microphones placed
inside the ears, the recording captures the filtering of the head (see 3.3.2) and consti-
tutes a reference for the perceived sound at the recording location. The recording can
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Figure 3.8 Transaural technique overview. the perceived signal Yr,Yl is a
mixture of the signal Xl and Xr convolved by a filter H.

be carried out with a human head or an artificial head. The quality of localization
increases when recording with the head of the actual listener. The only drawback of
the method is the “static” capture of the scene. After the recording is made, there
are no ways to control the displacement or rotation of the listener in the scene or to
modify the scene itself.

In 1931, Blumlein introduce a coincident microphone technique leading to new
possibility in sound reproduction [Blumlein, 1931]. During the recording, two bidirec-
tional microphones were placed in the same location but with a different orientation.
Thus, the sound arrives with a different intensity and the same delay. The playback
is made using the difference, creating stereo images directly from the real scene. Sim-
ilar techniques appeared with other microphones and orientations. At the same time,
non-coincident microphone techniques appeared, capturing sound with different time
delay with two microphones (A-B stereo). These techniques were later extended to
multichannel surround (e.g. Decca-tree [Everest, 1998]).

In the early 1970s, M. Gerzon introduced a surround sound technology called
“Ambisonics” [Gerzon, 1985]. With the assumptions that at a point in space, the
soundfield can be defined by an omnidirectional pressure and three difference pressures
in X, Y, Z direction, a microphone with four capsules positioned in a tetrahedron is

3.3 Spatial Audio Reproduction 37



used (see Figure 3.9).

(Up)
LF

(Up)
RB

LB
(Down)

RF
(Down)

Figure 3.9 Four-capsule microphone positioned in a tetrahedron. The
soundfield can be defined by an omnidirectional pressure and three differ-
ence pressures in X, Y, Z direction( c©Soundfield).

The signals are created by a linear combination of the four capsules to provide the
“B-format”. The B-format has four components: W is the omnidirectionnal pressure
signal, X the front-to-back directional information, Y the side-to-side directional in-
formation and Z the up-down directional information. Thus, the WXYZ component
can be deduced from the microphone capsules using the following formula [Craven
and Gerzon, 1977] : 

W = LF +RB +RF + LB
X = LF −RB +RF − LB
Y = LF −RB −RF + LB
Z = LF +RB −RF − LB

where LF is the left front capsule, RB the right back, RF the right front and LB is
the left back.

These components also correspond to a decomposition onto a first-order spherical
harmonics basis. Encoding the soundfield in such functions induces a spatial low pass
filter in the localization (see Figure 3.10). Recently, Laborie extended the principle
to acquire high order spherical harmonics using a microphone array [Laborie et al.,
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2003]. With theses methods, spatial localization was improved in comparison to
previous methods and rotation of the soundfield can be achieved. However, free
listener walkthrough still can not be done with such approaches.

Figure 3.10 Example of three functions with their approximation using
spherical harmonics functions of order N [Green, 2003].

Wavefield-synthesis (WFS) is based on the Huygens principle. This technique
consists in reconstructing the acoustic wavefront. From a loudspeaker array, it is pos-
sible to recreate the wavefront at any point with appropriately weighted and delayed
signals. Inside the loudspeaker array, the synthesized wavefront is identical to the
measure, providing a large listening zone without sweet spot. The recording is done
by close microphones which acquire the direct sound field of each source. High order
ambisonics can also be decoded in WFS systems by matrixing [Daniel, 2003]. Even
in this case it is not possible to create a virtual walkthrough application.

3.3.4 Perceptual Optimizations for Spatial Audio Rendering

This section will review the existing speed-up techniques for spatial audio rendering.
Spatialization is a per-sound source processing and implies an incrementally large
overhead as the number of source grows. However, our perception is not able to
distinguish all the detail of sound spatialization. Thereby, spatial optimization can
be done to reduce the processing cost of the sound simulation. Different types of
spatial reduction approaches exists and this section will introduce some fixed and
dynamic clustering approaches.
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Fixed Clustering

The first approach to reduce the spatialization was introduced by Herder [Herder,
1999]. He proposed to cluster sound sources in a directional cone structure. The cone
is selected according to the source location and the source is clustered if the perceptual
error between the representative and all the sources continues to be small. The
cluster representatives are used for rendering. This approach lead to several problems
discussed by the author : perceptual artefacts might occur during source switching
and sound spatialization errors might occur through averaging object attributes.
Recently, Jot proposes a method to reduce the binaural synthesis cost by spatially
interpolating the HRTF cues through a set of fixed spatial functions [Jot et al., 2006].

Dynamic Per-Object Clustering

The clustering proposed by Sibbald is an object based method [Sibbald, 2001]. Sound
sources related to an object or an area are grouped according to their distance to
the listener. In near field, secondary sound sources are created and dynamically
uncorrelated in order to improved the spatial sensation. In far field, sources are
clustered together, accelerating the spatial rendering. The drawback of the method
is that the clustering is evaluated on a per-object basis and does not consider all the
elements of the scene. Moreover, the metric used for the clustering is based only on
the distance, which could be improved.

Dynamic Global Clustering

Tsingos et al introduced a dynamic source clustering method based on both the scene
and the signal [Tsingos et al., 2004]. The dynamic clustering is derived from the
Hochbaum-Shmoys heuristic. The distance metric from the cluster position C and
the source position S uses a criterion of combined loudness, distance and angle:

Dist(C, S) = L ∗ (β log10(‖C‖ / ‖S‖) + λ(
1

2
(1− C · S) (3.15)

where L is the loudness of the current frame of the source signal S, λ and β are
weighting coefficients.

Thus, this distance metric creates longer clusters when sources are far from the lis-
tener, close in angle and quiet. The signal of the cluster representative is constructed
from the signal of the clustered sound sources and its position used to spatialize
the cluster using a dedicated algorithm according to the reproduction setup (see Fig-
ure 3.11). In order to render fewer sources, the algorithm also uses an on-line masking
evaluation performed at each time frame to remove inaudible sound sources.
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Figure 3.11 Dynamic clustering of point sound sources : When the cluster
is composed of more than one source, an impostor is defined to replace all
sources of the cluster (green sphere).
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In this first part, we have introduced the necessary notions to under-
stand the following chapters. We have seen that the auditory system
analyzes the incoming signal through auditory filters and that a number
of auditory phenomena depend on this analysis. We have seen that sig-
nals can be described with different representations and the sparseness
of these representations can lead to intuitively separate a signal mixture.
Moreover, sparse data have fewer significant coefficients leading to faster
processing. Finally, we have presented an overview of sound rendering
techniques. Point sound sources are generally used to model an auditory
scene. We will now investigate hardware parallelism in order to process
massive numbers of such sources efficiently.



Part II

Efficient Sound Rendering
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Chapter 4

Massively Parallel Processing for
Audio Rendering : A Case Study
on GPUs.

Audio processing applications are among the most compute-intensive and often rely on
additional DSP resources for real-time performance. However, programmable audio
DSPs are in general only available to product developers. Professional audio boards
with multiple DSPs usually support specific effects and products, while consumer
“game-audio” hardware still only implements fixed-function pipelines which evolve at
a rather slow pace.

The widespread availability and increasing processing power of programmable
graphics hardware (GPUs) could offer an alternative solution. GPU features, such
as multiply-accumulate instructions or multiple SIMD execution units, are similar to
those of most DSPs [Eyre and Bier, 2000]. Moreover, their high-level programmability
with floating point support and easy access to development kits turns them into
attractive co-processors for non-graphics applications. Besides, 3D audio rendering
applications require a significant number of geometric calculations, which are a perfect
fit for the GPU. Our feasibility study investigates the use of GPUs for efficient audio
processing.

4.1 GPU Architecture

Graphics hardware has a specific dataflow computational model. Its architecture
is originally dedicated to manipulate 3D primitives like points, lines or polygons,
perform some graphics operations and render the result on the screen. Primitives
follow a sequence of operations before processed to the screen. Figure 4.1 shows the
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essential steps of the pipeline. Basically, the application transmits data vertices of the
primitives to the vertex processor. The vertex is a structure containing 3D and texture
coordinates, color and normal vector. The vertex processor applies any mathematical
transform to each vertex including transform from world space to projection space.

In the second step, vertices are assembled following the geometric primitives in-
formation. In this step, culling is computed to discard invisible polygons according to
the normal of the polygon and the view direction. Next, clipping to the view frustum
is applied before the rasterization. The view frustum is a set of plane which defined
the field of view of the camera.
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Figure 4.1 GPU pipeline. The vertex processor and the fragment processor
are totally programmable.
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The third step of the pipeline rasterizes the transformed primitives. Rasterization
determines which fragment of the screen buffer is covered by a primitive. The term
“fragment” is employed instead of pixel to make the difference between the resulting
pixel and the one with other characteristics than color and containing possible oper-
ations to be done to get the result. The characteristics of the fragment, like color or
textures coordinates, are interpolated between the transformed vertices of the primi-
tive. The interpolation can be “nearest”, meaning truncated from the nearest pixel,
linear or bi-linear but any other interpolations can be applied via the programming
features of more recent GPUs.

The next step is the most important one. Indeed, this stage processes the oper-
ations of the fragment. Many math operations can be computed to obtain the final
pixel. The aim of the last step is to perform additional tests before writing the fi-
nal fragment value (color) to the frame buffer. Tests includes depth testing, used to
remove hidden pixel and alpha test, for compositing purposes.

The second and the fourth step can be overridden to define user programs. It
is possible to program the GPU with high level C-like languages (e.g., CG, GLSL,
HLSL). The power of the GPU is provided by its data parallel architecture. Each frag-
ment programs is processed in parallel. G70 Nvidia card contains 24 pixels pipeline
and the G80 contains 128 stream processors which are automatically attributed to
vertex of fragment processing using massive multithread handling. The communica-
tion from the GPU towards the CPU is slow, even with the new PCI express bus.
The fastest way to transfer resulting data back to fragment processor is to do multiple
passes by rendering the frame buffer to a texture. The vertex shader 3.0 model allows
transfer of data to the vertex processor. However, this communication is not really
fast because all pixels have to be rendered to the frame buffer beforehand.

4.2 GPU-Accelerated Audio Rendering

4.2.1 Storing Data on the GPU

The GPU memory model is targetted to 3D graphics and is different from the CPU
memory model. Taking it into consideration leads to better performance. The GPU
memory was designed to work with images. It is thus highly optimized for the Red-
Green-Blue plus Alpha (RGBA) data type. This structure is usually packed in floating
point data. To fit this model, we decompose our signals to four frequency bands, in
a perceptual scale and pack them in the RGBA structure (see Figure 4.2). As a
result, the four frequency bands are stored in an interleaved manner. Each pixel of
the texture represents a sample of the signal.
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Figure 4.2 Audio data structure. (a) The incoming signal is sliced into
frames. (b) The signal is decomposed into four frequency subbands. (c) the
four subbands are stored in 1D RGBA textures.

4.2.2 Audio Processing

We consider a combination of two simple operations commonly used for 3D audio
rendering: variable delay-line and filtering [Begault, 1994, Funkhouser et al., 2002].
The signal of each sound source is first delayed by the propagation time of the sound
wave. This involves resampling the signal at non-integer index values thus automati-
cally accounting for Doppler shifting. The signal is then filtered to simulate the effects
of source and listener directivity functions, occlusions and propagation through the
medium. We resample the signals using linear interpolation between the two clos-
est samples. On the GPU this is achieved through texture resampling. Filtering is
implemented using a simple 4-band equalizer. Assuming that input signals are band-
pass filtered in a pre-processing step, the equalization is efficiently implemented as a
4-component dot product which is issued as a single GPU instruction.

Binaural stereo rendering requires applying this pipeline twice, using a direction-
dependent delay and equalization for each ear, derived from head-related transfer
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Figure 4.3 Audio processing involved in the GPU simulation. Each sound
source is delayed by the propagation time and filtered to account for the
distance attenuation and head-related transfer functions (HRTFs).

functions (HRTFs) [Begault, 1994]. The HRTF data is represented as an azimuth-
elevation texture array (see Figure 4.4) where the RGBA component holds a gain
value for the corresponding frequency band. Similar audio processing can be used to
generate dynamic sub-mixes of multiple sound signals prior to spatial audio rendering
(e.g., the perceptual audio rendering of [Tsingos et al., 2004]).

4.2.3 Results

We compared an optimized SSE (Intel’s Streaming SIMD Extensions) assembly code
running on a Pentium 4 3GHz processor and an equivalent Cg/OpenGL implemen-
tation running on a Nvidia GeForce FX 5950 Ultra graphics board on AGP 8X and
a Nvidia Quadro FX4500 on PCI express. Audio was processed at 44.1 KHz using
1024-sample long frames. All processing was 32-bit floating point.
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Figure 4.4 Azimuth-elevation HRTF map for the left (a) and the right
ear (b). The intensity color of the RGBA component correspond to the
attenuation for each frequency component generated from measured FIR
data from the LISTEN HRTF database.

The GPU implementation, on a Nvidia Quadro FX4500, can perform binaural
processing of up to 2250 sound sources in real time while the SSE version renders
700 sound sources in one time-frame (≈22.5 ms). However, resampling floating-point
textures requires two texture fetches and a linear interpolation in the fragment shader.
If floating-point texture resampling was available in hardware, GPU performance
would increase. We have simulated this functionality on our GPU using a single
texture-fetch and achieved real-time performance for up to 3100 sources. With the
up-coming G80 processor, floating-point textures resampling is supported but not
available at the time of this study.

For mono processing, the Quadro FX treats up to 6150 (1 texture fetch)/ 4580 (2
fetches and linear interp.) sources, while the CPU handles 1400 in the same amount
of time. On average the GPU implementation using the Quadro FX4500 was about
three times faster than the SSE implementation and it would become 50% faster if
floating-point texture resampling was supported in hardware. The latest graphics
architectures would significantly improve GPU performance due to their increased
number of pipelines and their faster RAMDAC.

The huge pixel throughput of the GPU can also be used to improve audio render-
ing quality without reducing frame-size by recomputing rendering parameters (source-
to-listener distance, equalization gains, etc.)on a per-sample rather than per-frame
basis. This can be seen as an audio equivalent of per-pixel vs. per-vertex lighting in
graphics. By storing directivity functions in cube-maps and recomputing propagation
delays and distances for each sample, our GPU implementation can still render up
to 180 sources in the same time-frame. However, more complex texture-addressing
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Figure 4.5 Performance tests for audio rendering on the CPU and GPU.

calculations are needed in the fragment program due to limited texture size. By re-
placing such complex texture addressing with a single texture-fetch, we also estimated
that direct support for large 1D textures would increase performance by at least a
factor of 2. Novel G80 processors now support this functionality.

Running audio effects on the GPU frees-up CPU time for other tasks and can even
be combined with graphics rendering with little impact on display performances for
moderately graphics-demanding applications. Example movie files including GPU-
generated audio and graphics are available1. Both audio and graphics were generated
in real-time with the GPU.

4.3 Discussion and Conclusion

The vertex and fragment processor of the graphics hardware can be fully programmed
with assembly-like languages but is not really suitable for programming complex
shaders. Similar in spirit to Renderman, a shading language used by Pixar for image
rendering, high level C-like languages have been introduced to program the GPUs:
“CG” from Nvidia, “OpenGL Shading Language (GLSL)” from 3DLabs in conjunc-
tion with OpenGL ARB and “High Level Shading Languages (HLSL)”from Microsoft.
They give the most up-to-date functionality, but graphics notions are required to pro-

1http://www-sop.inria.fr/reves/projects/GPUAudio/
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Figure 4.6 Performance for binaural audio rendering on the CPU and GPU.

gram them. They are also dedicated to particular platforms API (such as OpenGL or
DirectX) and graphics processor vendor. Recently, with the success of the graphics
hardware as a general purpose processor unit, high level languages have emerged,
proposing a friendly programming approach and hiding graphics primitives and 3D
manipulation instructions.

Nvidia and ATI/AMD have recently introduced their new general purpose C-like
language to get optimal performance using their latest hardware and provided total
abstraction of the graphics pipeline2.

Microsoft introduced their new general purpose language for programming graphics-
processor3.

Academic research has also introduced new alternative languages which have
evolved into commercial applications. They provide development environments for
programming general purpose processor including the CPU, the GPU, or the Cell
processor. They offer a good compromise because they are multi-platform and inde-
pendent from the hardware4.

Finally, the parallel stream architecture introduced by the GPUs tends to ab-
stract from the graphics and evolve towards general purpose application. Due to this

2http://www.nvidia.com/object/cuda.html, http://ati.amd.com/companyinfo/researcher/documents.html
3http://research.microsoft.com/research/downloads/
4http://www.rapidmind.net, http://www.peakstreaminc.com
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architecture, the GPUs provide better performance than the CPU.
The GPUs performance has increased dramatically over the last three years com-

pared to CPUs [Owens et al., 2007]. While our first experiments, in 2004, suggested
that GPUs can be used for 3D audio processing with similar or increased performance
compared to optimized software implementations running on top-of-the-line CPUs,
the latest GPUs clearly outperform CPUs by a factor of at least 3, and, thereby, are
a perfect alternative for audio processing. Moreover, the GPUs surpass CPUs for a
number of other tasks, including Fast Fourier Transform, a tool widely used for audio
processing [Buck et al., 2004] and [Govindaraju et al., 2006]. Figure 4.7 shows a
performance comparison of the 1D Fast Fourier Transform, the CPU implementation
is based on the Intel Math Kernel library and the GPU implementation based on the
GPUFFTW library [Govindaraju et al., 2006].
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Figure 4.7 Comparison of 1D Fast Fourier Transform on CPU and
GPU [Govindaraju et al., 2006].

In our first study, we had detected several shortcomings which prevent efficient
use of GPUs for mainstream audio processing applications. Due to limitations in
texture-access modes and texture-size, long 1D textures could not be easily indexed
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and floating-point textures resampling was not supported. The latest G80 processor
now overcomes these limitations.

However, other algorithms such as infinite impulse response (recursive) filtering
cannot be implemented efficiently since past values are usually unavailable when
rendering a given pixel in fragment programs. As suggested in [Buck et al., 2004],
including persistent registers to accumulate results across fragments would solve this
problem.

On a broader scale, our results demonstrate that stream-processing architectures
are appropriate for audio rendering applications and that game-audio hardware, bor-
rowing from graphics architectures and shading languages, may benefit from including
programmable “voice shaders”, enabling per-sample processing, prior to their main
“effects” processor.
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In this chapter, we have focused on rendering a complex auditory scene by
exploiting parallel processing. A real-time 3D audio simulation has been
presented as an application example including time-delay resampling, dis-
tance attenuation and HRTF equalization. The results showed that the
GPU architecture is well adapted to handling audio processing. However,
although we obtain a significant improvement in performance through the
power of the GPU, the algorithm is still directly dependent on the number
of sources. In the following chapter, we will examine the possibility of
reducing the amount of data to be processed using human perception.



Chapter 5

Perceptual Progressive Rendering

Many applications ranging from video games to virtual reality or visualization and
sonification require processing large number of audio signals in real-time. For in-
stance, modern video games must render a large numbers of 3D sound sources using
some form of spatial audio processing. Furthermore, each source’s audio signal may
itself be generated as a mixture of a number of sub-signals (e.g., a car-noise is a
composite of engine and tire/surface noise) driven from real-time simulated physical
parameters. The number of audio signals to process may often exceed hardware ca-
pabilities. Priority schemes which select the sounds to process according to a preset
importance value are a common way of using hardware more efficiently, for instance
by managing the limited number of hardware channels on a dedicated sound card.
Usually, this value is determined by the sound designer at production time and might
further be modulated by additional effects at run-time, such as attenuation of the
sound due to distance or occlusion.

This chapter is focused on the problem of automatically prioritizing audio signals
according to an importance metric, in order to selectively process these signals. Such
a metric can then be used to tune the processing “bit-rate” in order to fit a given
computational budget: for instance, allocating a budget of arithmetic operations to a
complex signal processing task (e.g., a combination of mixing, filtering, etc.) involving
a large number of source signals.
Figure 5.1 shows a basic example application where four speech signals have been
prioritized according to a loudness metric and a mix has been generated simply by
playing back the single most-important signal per processing frame (highlighted in
yellow). Figure 5.3 demonstrates the same principle applied to several tracks of a
song rendered with a variable subpart of the original data. This could typically be
used for hardware voice management in video games.

This chapter presents a comparative study of several metrics that can be used to
prioritize signals for selective real-time processing of audio signals. In section 5.1,
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Figure 5.1 Four speech signals prioritized according to a loudness met-
ric computed over successive short time-frames. The single most important
frame across time is highlighted in yellow.

we start by reviewing previous work related to scalable and progressive audio pro-
cessing. A coarse-grain selective processing algorithm is described in section 5.2. In
particular, several metrics that can be used to prioritize the audio signals and selec-
tively allocate the required operations are discussed in section 5.2.1. Our selective
processing algorithm, which does not require a specific representation for the audio
data, is demonstrated in the context of a time-domain pipeline comprising mixing
and simple filtering operations in section 5.2.2. Results of a pilot subjective study are
then presented which support the applicability of our technique in section 5.3. We fi-
nally discuss our approach and sketch other possible applications of our prioritization
scheme before concluding.

5.1 Related Work

While parametric, progressive and scalable codecs are a key research topic in the audio
coding community [Vercoe et al., 1998,Purnhagen, 1999,Herre, 2002], few attempts
to date have been made to design a scalable or selective approach for real-time signal
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processing.
Fouad et al. [Fouad et al., 1997] propose a level-of-detail rendering approach for

spatialized audio where the sound samples are progressively generated based on a
perceptual metric in order to respect a computing time budget. When the budgetted
time is elapsed, missing samples are interpolated from the calculated ones. They
tag the signals according to their overall energy. However, such a scheme will fail at
capturing large variations of energy through time within the signal itself.

Wand and Straßer [Wand, 2004] proposed a multi-resolution approach to 3D au-
dio rendering. At each frame of their simulation, they use an importance sampling
strategy to randomly select a sub-set of all sound sources to render at each process-
ing frames. However, their importance sampling strategy does not account for the
variations in signal intensity which might be much more significant (factors of 10 or
more can be easily observed on speech signals for instance) than variations in the
control parameters such as distance attenuation, etc. which usually vary smoothly
and slowly through time (except for very near-field sources).

In our previous work [Tsingos et al., 2004] we proposed a framework for 3D audio
rendering of complex virtual environments in which sound sources are first sorted
by an importance metric, in our case the loudness level of the sound signals. The
importance metric is efficiently updated in real-time using pre-computed descriptors
stored with small chunks of the input audio signals. Hence, variations within the
signals are accounted for. The priority metric was used to determine inaudible sources
in the environment due to auditory masking and group sound sources together for
spatialization.

Our previous algorithm consists of computing the total power level of the scene
during a time frame. Then, we render all sound sources until the auditory masking
created by the rendered sources is sufficient to hide the remaining sources.

We evaluate masking in a conservative manner by first sorting the sources by
decreasing order according to their normalized loudness Lk

t and progressively inserting
them into the current mix until they mask the remaining ones. We start by computing
the total power level of our scene

Ptot =
∑

k

P k
t (f) (5.1)

At each frame, we maintain the sum of the power of all sources to be added to
the mix, PtoGo, which is initially equal to Ptot. We then progressively add sources
to the mix, maintaining the current tonality Tmix, masking threshold Mmix, as well
as the current power Pmix of the mix (see section 2.1.3). We assume that sound
power adds up which is a crude approximation but works reasonably well with real-
world signals, which are typically noisy and uncorrelated. To perform the perceptual
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culling, we apply the following algorithm, where ATH is the absolute threshold of
hearing (corresponding to 2 phons) [Moore et al., 1997]:

Mmix = −200
Pmix = 0
T = 0
PtoGo = Ptot

while (dB(PtoGo) > dB(Pmix)−Mmix) and (PtoGo > ATH) do
add source Sk to the mix
PtoGo -= P k

Pmix += P k

T += P k * T k

Tmix = T/Pmix

Mmix = (14.5 +Bark(fmax)) ∗ Tmix + 5.5 ∗ (1− Tmix)
k++

end

Similar to prior audio coding work [Painter and Spanias, 1997], we estimate the
masking threshold, Mmix(f) as :

Mmix(f) = (14.5 +Bark(fmax)) ∗ Tmix(f) + 5.5 ∗ (1− Tmix(f))(dB), (5.2)

where Bark(fmax) is the value of the maximum frequency in each frequency-band f
expressed in Bark scale.
The Bark scale is a mapping of the frequencies in Hertz to Bark numbers, correspond-
ing to the 25 critical bands of hearing [Zwicker and Fastl, 1999]. In our case we have
for our four bands : Bark(500) = 5,Bark(2000) = 18,Bark(8000) = 24,Bark(22050) =
25. The masking threshold represents the limit below which a maskee is going to be
masked by the considered signal. To better account for binaural masking phenom-
ena, we evaluate masking for left and right ears and assume the culling process is over
when the remaining power at both ears is below the masking threshold of the current
mix. Since we always maintain an overall estimate for the power of the entire scene,
our culling algorithm behaves well even in the case of a scene composed of many low-
power sources. This is the case for instance with image-sources resulting from sound
reflections. A naive algorithm might have culled all sources while their combination
is actually audible. This chapter extends this approach by comparing several priority
metrics and their subjective effect on selective processing of audio signals even for
cases where removed sub-parts of the signals are above masking threshold.
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Where the previous method does not provide any control on the amount of process-
ing, this chapter will propose a level of detail approach, using a speed versus quality
trade-off.

Other scalable approaches based, for instance, on modal synthesis, have also been
proposed for real-time modal synthesis of multiple contact sounds in virtual environ-
ments [Lagrange and Marchand, 2001, Doel et al., 2002, Doel et al., 2004]. Similar
parametric audio representations [Vercoe et al., 1998, Purnhagen, 1999] also allow
for scalable audio processing (e.g. pitch shifting or time-stretching, frequency con-
tent alteration, etc.) at limited additional processing cost, since processing would
only concern a limited number of parameters rather than the full PCM audio data.
However, this approach might imply real-time coding and decoding of the sound
representations. As parametric representations are not widely standardized and com-
monly used in interactive applications, available standard hardware decoders do not
usually give access to the coded representation in a convenient form for the user
to further manipulate. Eventhough processing in coded domain might be achieved
through modified software implementation of standard audio codecs (e.g. MPEG-1
layer 3, MPEG-2 AAC) [Touimi, 2000], the overhead due to partial decoding would
probably be overwhelming for a real-time application handling many signals.

5.2 Selective Audio Processing

We propose a coarse-grain selective audio processing framework which can be sepa-
rated in two steps : 1) we assign a priority to each frame of the input signals and
2) we select the frames to process by decreasing priority order until our pre-specified
budget is reached. Remaining frames are simply discarded from the final result. Both
steps are applied at each processing frame to produce a frame of processed output
signal. The following sections detail both steps.

5.2.1 Priority Metrics

In our approach, as well as others we described in section 5.1, processing management
is driven by a given importance metric. The choice of this metric is then a crucial
step: the audibility of the artifacts introduced by any processing optimizations will
depend on its quality.
Loudness seems a good candidate since it has been shown to be closely related to
masking phenomena [Zwicker, 1984,Baumgarte, 1997]. Using loudness as an impor-
tance metric might hence allow important maskers to be processed first. But one
can imagine that weighting may be more efficiently performed on the basis of more
cognitive aspects. For instance, in the context of a collision avoidance experimental
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Figure 5.2 Several priority metrics calculated for an example speech signal
using 3 ms-long frames.

setup, Robert Graham [Graham, 1999] noticed that faster braking reaction times were
measured when drivers were warned by car horns sounds, even if they were less loud
than other tested sounds. There is a vast literature aiming at building psychoacoustic
relationships between acoustic parameters of a sound and its so-called urgency (see
Stanton and Edworthy [Stanton and Edworthy, 1999] for an overview). Derivations
of these urgency metrics may form a more cognitive-founded importance metric.
As a starting point, this chapter examines the ability of several level-related metrics
to optimize audio processing. In particular, we evaluated the following importance
metrics:

1. RMS level, expressed in dB SPL,
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2. A-weighted level, expressed in dB [Acoustics-FAQ, 1997],

3. Moore, Glasberg & Baer’s loudness level [Moore et al., 1997], expressed in phons,
calculated assuming a stimulus is a band-limited noise.

4. Zwicker’s loudness [Zwicker et al., 1991], expressed in sones,

5. “Masking level” model defined as the level of the source minus a masking-
threshold offset, expressed in dB, predicted from the tonality index of the sig-
nal [Painter and Spanias, 1997,Brandenburg, 1992]. The tonality index is typ-
ically derived from a spectral flatness measure and indicates the tonal or noisy
nature of the signal (see section 2.1.3).

Each metric is evaluated for small processing frames along our test signals, typi-
cally every 3 to 23 ms (i.e., 128 to 1024 samples at 44.1kHz). Results were not signifi-
cantly different for the various frame sizes. Smaller frames give better time-resolution
and can result in more optimal interleaving of the signals during the processing step.
However, frames which are too short can result in highly degraded audio information
since interleaved signals will no longer be recognizable, a problem closely related to
the illusion of continuity [McAdams et al., 1998]. Figure 5.2 shows a comparison of
several loudness metrics evaluated on a fragment of speech data.

Table 5.1 shows the average rank correlation obtained with various metrics on a
three different mixtures speech, ambient and music signals. Rank correlation measures
how correlated the orderings obtained with the various metrics are. As can be seen
in this table, results appear to be dependent on the type of signals. For speech
and ambient sounds, metrics are correlated although not strongly. For the musical
mixture, results are more pronounced showing stronger correlation between Zwicker’s
and Moore’s loudness models and very low correlation between loudness models and
all the others.

5.2.2 Selective Processing Algorithm

Our budget allocation algorithm is designed for real-time streaming applications.
Hence, it has to be efficient and has to find a solution locally at each processing
frame. To do this, the importance of each frame of the signal is evaluated and until
our computational budget is reached, the algorithm selects which sub-parts of the
signals should be processed, by decreasing priority value, using a greedy approach.
An example is shown in Figure 5.1. The result is thus constructed as an interlaced
mixture of the most important frames in all signals. To avoid artefacts during the
reconstruction step, an overlap-add method (3ms frames with 10% overlap) was used.
Another example is shown in Figure 5.3. Selected frames for different budgets are
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speech Zwicker mask. Moore RMS A-weight.
loud. thr. loud. level

Zwicker loud. 1 0.37 0.57 0.40 0.35
mask thr. 0.37 1 0.54 0.73 0.56
Moore loud. 0.57 0.54 1 0.54 0.36
RMS level 0.40 0.73 0.54 1 0.54
A-weight. 0.35 0.56 0.36 0.54 1
ambient Zwicker mask. Moore RMS A-weight.

loud. thr. loud. level
Zwicker loud. 1 0.40 0.44 0.42 0.37
mask thr. 0.40 1 0.48 0.51 0.35
Moore loud. 0.44 0.48 1 0.47 0.37
RMS level 0.42 0.51 0.47 1 0.33
A-weight. 0.37 0.35 0.37 0.33 1
music Zwicker mask. Moore RMS A-weight.

loud. thr. loud. level
Zwicker loud. 1 0.05 0.42 0.04 0.03
mask thr. 0.05 1 0.04 0.42 0.40
Moore loud. 0.42 0.04 1 0.02 0
RMS level 0.04 0.42 0.02 1 0.36
A-weight. 0.03 0.40 0 0.36 1

Table 5.1 Rank correlation matrices for three test mixtures of speech, am-
bient and musical signals. Rank correlation was calculated using Spearman’s
formula [Howell, 1992] and averaged over all frames of the mixture.

highlighted. As can be seen in the figure, our approach directly takes care of any
sparseness in the mix by removing input frames below audibility threshold from the
final mix. This might already result in a significant gain. For the various mixtures
we used (ambient sounds, music and speech), we estimated that 0.7% to 33% of the
input frames could be trivially removed (0.7% for ambient sounds, 24.5% for music
and 33% for speech).

To improve the frequency resolution of our approach, we can further evaluate the
priority metric for a number of sub-bands of the signals. In our experiments, we used
four sub-bands corresponding to 0-500 Hz, 500-2000 Hz, 2000-8000 Hz, 8000-22000 Hz
and treated each sub-band as if it were an additional input sound signal to prioritize.
This would be typically useful for applications performing some kind of sub-band
correction of the audio signal (e.g., equalizers). Necessary band-pass filtering can
then be performed only on the selected sub-parts of the signal.
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Figure 5.3 (a) Loudness values (using Zwicker’s loudness model) through
time for the 17 tracks of a musical mix. Each track was selectively filtered and
processed into 4 frequency sub-bands resulting in 68 signals to prioritize. (b)
Priority map showing the first 12.5% most important frames highlighted in
red. (c) First 25% most important frames and (d) first 50% most important
frames.

5.2.3 Integration in a Real-Time Processing Framework

Although most of the level-related priority metrics we used cannot be directly eval-
uated in real-time for large numbers of audio streams, they can be efficiently com-
puted from additional descriptors stored with the audio data, in a manner similar
to [Tsingos et al., 2004]. Loudness information, in particular, can be retrieved from
pre-computed loudness tables, energy levels and tonality indices stored with each
corresponding frame of input audio data. This information may also be stored for
several sub-bands of the signal. Such an approach allows us to further modulate the
importance value in real-time depending on various other effects affecting the signal
during the simulation. Contrary to parametric coding this information does not aim
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at reconstructing the final signal directly so it can remain quite compact (typically
about 1 to 4 Kb/sec of input audio data) and can be interleaved with standard PCM
audio data for streaming or kept resident in memory for random access while the
PCM data is streamed on-demand.

Our coarse-grain selective algorithm integrates well within standard time-domain
audio processing pipelines. We tested it with a 3D audio processing application for
virtual reality. In this case, the signals of each virtual sound source undergo filtering
and resampling operations to simulate propagation effects (atmospheric scattering,
occlusion, Doppler shift, etc.) and binaural hearing (e.g., HRTF filtering) before being
combined to produce the final mix. We implemented a scalable 3D audio processing
pipeline implementing these effects using time-domain resampling and attenuation
over several sub-bands of each source signal, computed using second-order biquad
filters. Using our selective processing pipeline, we can process the signals using a
budgetted number of operations resulting in a performance gain directly proportional
to the selected budget. As sources of decreasing priority are processed, an alternate
solution is to simplify the operations (for instance, using linear resampling instead of
better quality spline-based resampling) rather than maintain high-quality processing
for all selected frames and simply drop low priority frames. Example movie files
demonstrating the approach are available at:
http://www-sop.inria.fr/reves/projects/scalableAudio/.

5.3 Pilot Subjective Evaluation

In order to evaluate subjective differences between the various metrics we ran a short
pilot evaluation study described in the following sections.

5.3.1 Experimental Conditions

Subjects: 18 subjects (10 women and 8 men, 19 to 48 years old) volunteered as
listeners. All reported normal hearing. Most of them were computer scientists, very
few with any experience in acoustics or music practice. None of them was familiar
with audio coding techniques, nor listened heavily to coded audio.
Stimuli: Three mixtures of various types of signals were generated: 1) a multi-track
musical mix, 2) male and female Greek, French and Polish speech and 3) ambient
sounds. The mixtures were created respectively from 17, 6 and 4 recordings sepa-
rated in four sub-bands, resulting in 68, 24 and 16 signals to prioritize. Mixtures
were generated at three resolutions, selecting the most important frames according
to our priority metrics, using only 50%, 25% and 12.5% of the input signal data.
Five different priority metrics (see section 5.2.1) were tested. A total of 45 stimuli (3
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types of signals * 3 resolutions * 5 metrics) were hence created. All signals were at
CD quality (44.1 kHz sampling rate and 16 bits quantization)1.
Apparatus: We ran the test on a laptop computer using an in-house test program
(see Figure 5.4). It was conducted using headphone presentation in a quiet office
room. Sennheiser HD600 headphones were used (diotic listening), calibrated to a
reference listening level at the eardrum. The sounds were stored on the computer’s
hard drive and played through the SigmaTel C-Major integrated sound-board. They
were played back at a comfortable level.
Procedure: The subjects were given written instructions explaining the task. They
were asked to rate the 45 resulting output mixtures relative to the corresponding
reference mix. We used the ITU-R2 recommended triple stimulus, double blind with
hidden reference technique, previously used for quality assessment of low bit-rate au-
dio codecs [Grewin, 1993]. Subjects were presented with three stimuli, R, A and
B, corresponding to the reference, the test stimulus and a hidden reference stimu-
lus3. Test stimuli were presented to each subject in a different (random) order. The
hidden reference was randomly assigned to button A or B. Our test program auto-
matically kept track in an output log file of the presentation order and the ratings
given respectively to the stimulus and the hidden reference signal for each test.

Figure 5.4 Snapshot of the interface designed for our listening tests.

Subjects could switch between the three stimuli at any time during the test by
pressing the corresponding buttons on the interface (see Figure 5.4). They were
asked to rate differences between each test stimuli (A and B) and the Reference from

1The stimuli used for the tests can be found at:
http://www-sop.inria.fr/reves/projects/scalableAudio/

2International Telecommunication Union
3 i.e., the subjects did not know which of A or B was the actual test or the reference.
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“imperceptible” to “very annoying”, using a scale ranging from 5.0 to 1.0 (with one
decimal) [ITU-R, 1994].
After the test, subjects were invited, during a semi-guided interview, to describe the
differences that they heard between the processed and the original sounds.

5.3.2 Analysis

Correlations between the subjects: All subjects raw judgments were significantly
correlated (p < 0.01) except for one who was removed from further analysis. After
removing this subject, the correlation coefficients ranged from 0.38 to 0.92.
Analysis of variance: A three-way analysis of variance was performed over the
judgments (repeated design). Results are given in Table 5.2. The experimental factors
affecting the judgments are: S: subjects, R: resolution , M: metric and T : type of
signals. All principal effects are significant (resolution: F(2,32)=195.0, p corrected

Source df Sum of Mean F-value p cor.
squares squares

S 16 139.8 8.7
R 2 967.7 483.2 195.0 0.000(**)
S*R 32 79.4 2.5
M 4 23.4 5.8 16.3 0.001(**)
S*M 64 23.0 0.3
R*M 8 5.6 0.7 1.9 0.191 (ns)
S*R*M 128 48.2 0.4
T 2 112.7 56.3 41.1 0.000 (**)
S*T 32 43.8 1.4
R*T 4 27.5 6.9 6.8 0.0191(*)
S*R*T 64 64.7 1.0
M*T 8 24.5 3.0 8.6 0.010(**)
S*M*T 128 45.5 0.4
R*M *T 16 17.2 1.07 2.8 0.115(ns)
S*R*M*T 256 99.1 0.4
Total 1722.0 2.2
df: degree of freedom
p cor.: corrected probability (conservative F-test)
* p<0.05; ** p<0.01; ns: not significant

Table 5.2 Anova table for the subjective evaluation

< 0.01; metric: F(4,64)=16.3, p corrected < 0.01; type of signal: F(2,32)=41.1, p
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corrected < 0.00). Only the interactions between between metric and type of signals
is significant at the lower threshold (F(8,128)=8.6 p corrected < 0.01). The principal
effects of the experimental factors are depicted on Figure 5.5 (vertical bars represent
the standard deviation).

The bottom graph in this figure clearly shows the effect of the resolution on the
average judgments: when 50% of the data are kept, average judgments lay between
4 and 5. This indicates that subjects were almost unable to catch any difference
between the processed sound and the original sound. For 25% resolution, average
judgments fall between 3 and 4, and slide down to less than 2 for a resolution of
12.5%. The top graph in the figure indicates that musical signals were, on average,
ranked higher than the other type of signals (subjects freely mention during post-
experimental interviews that differences were harder to notice for musical sounds).
This indicates that the alterations of the signal produced by the algorithm are less
perceptible for musical sounds. The middle graph in the figure represents the effect
of the metric on the average judgments. Results were not quite as pronounced, but
a first conclusion is that the A-weighting metric leads to the most audible difference
between the processed and original sounds (average judgments are weaker). Further
understanding is obtained by studying the significant interaction between metric and
type of signal, depicted in Figure 5.6.

The patterns of effects for the metrics are qualitatively identical for both musical
and speech signals: A-weighting leads to the worst results, RMS level and Zwicker’s
loudness model results in better judgments, Moore’s loudness yields to weaker judg-
ments. On the other hand, for ambient sounds, Zwicker’s loudness model results in
weaker results, whereas Moore’s loudness model leads the processed sounds to be
better evaluated with reference to the original ones. Although, our evaluation was
aimed at a totally different purpose, our results appear to be in agreement with the
recent paper by Skovenborg and Nielsen [Skovenborg and Nielsen, 2004]. However,
we could not test their two new loudness models, which seem to perform best. This
would be an interesting future study to conduct.

5.4 Discussion

Several conclusions can be drawn from this study. First of all, when only 50 % of
the original data are used, subjects are almost unable to hear any difference between
processed and original mixtures. When only 25 % of the sounds are kept, average
judgments lay between 3 and 4 (respectively “slightly annoying” and “perceptible but
not annoying”). This indicates that our algorithm can reduce the required number of
operations by more than 50 % without dramatically distorting the resulting mixtures
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(see Figure 5.7).
Another conclusion is that the judgments seem to be strongly influenced by the type
of signal. However, as this variable also integrates several other effects (numbers of
signals in the mix, sparseness of the mix, energy distribution in the mix, etc.) it
requires further testing.

Nevertheless, differences between original and processed sounds were more difficult
to detect for musical sounds. Two hypothesis can be formulated to explain this
phenomenon: first of all, due to their nature, musical sounds are more sparse than
other sounds. Energy peaks occur at regular rhythmic patterns, and there might be
a significant amount of low energy frames between these rhythmic accents. In our
example, we estimated the sparseness of our musical mix to be about 25%, which
would make it well suited to our algorithm. However, the speech mixture was found
to be much sparser that the ambient mixture (33% vs. less than 1%) although the
results for these two cases were rather similar.

Another hypothesis is that the metrics were in general better suited for musical
sounds.
Zwicker’s loudness model is more suitable for speech and musical sounds, while
Moore’s loudness model is more suitable for ambient sounds. This is consistent with
our implementation of Moore’s loudness model for noisy signals (it can be reasonably
assumed that ambient sounds are noisier than musical sounds).
These conclusions were confirmed during the subject interviews. Many subjects re-
ported that they used different criteria for the different types of signals. For speech
signals, they reported to produce favorable judgments as long as the intelligibility
was preserved, although most of the mixture was foreign language to them. For
musical sounds, they did not hear any difference until the sounds were drastically
distorted. Finally, for ambient sounds, they seem to have performed some kind of
“spectral listening”; a typical remark being: “I tried to notice if there was more or
less bass/treble”. Hence, we can conclude that no metric seems to perform best in all
cases but, rather, that the importance metric has to be adapted to the type of signal.

5.5 Conclusions

We have presented an approach for coarse-grain selective processing of audio signals.
Several level-related metrics that can be used to drive the selection process were
compared, showing significant difference between the various metrics in terms of the
ordering induced on the signals. A pilot subjective evaluation study suggests that
A-weighting does not perform as well as the other metrics at prioritizing the sound
signals. While RMS level appears as a good compromise, other metrics, loudness in
particular, can yield better results depending on the type of signals. Our selective

5.5 Conclusions 68



processing approach integrates well within standard audio processing pipelines and
can be used to reduce the necessary operations by 50% being almost transparent and
75% with reasonable impact on the perceived quality.

As future work, we would like to explore extensions to finer-grain processing by
combining our selection scheme with parametric audio coders or alternate representa-
tions for audio signals. Although the ordering produced by the metrics might be the
same, the resulting priority remains different (especially due to dynamic compression
performed by the various metrics) and its influence might grow as the selection can
be performed at finer levels.

We believe that proposing and evaluating more sophisticated priority metrics is
of primary interest for a wide range of applications including memory/resource man-
agement (e.g. 3D hardware voices, streaming from main storage space), real-time
masking evaluation [Tsingos et al., 2004], on-the-fly multi-track mixing [Pachet and
Delerue, 2000], dynamic coding and transmission of spatial audio content and more
generally for computational auditory scene analysis.
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Figure 5.5 Principal effects of the experimental factors. Vertical bars rep-
resent standard deviation.
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Figure 5.6 Interactions between the effects of the metric and the type of
signal on the average judgments.

Figure 5.7 Averaged judgments for the three test mixtures and for three lev-
els of detail. When only 50% of the input audio data was used, the resulting
mixture was highly rated regardless of the stimuli.
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In this first part, we have introduced new methods to accelerate audio ren-
dering. Two complementary approaches have been discribed. In the first
chapter, the audio rendering was efficiently performed exploiting parallel
computing resources. In the second chapter, audio rendering was opti-
mized using properties of human perception. We studied various priority
metrics that can be used to progressively select sub-parts of a number of
audio signals for real-time processing. We conducted both an objective
and a pilot subjective evaluation study aimed at evaluating which metric
would perform best at reconstructing mixtures of various types using only
a budget amount of original audio data. RMS level as a metric offers a
good compromise for all cases. Finally, our results show that significant
sub-parts of the original audio data can be omitted in most cases, with-
out noticeable degradation in the generated mixtures, which validates the
usability of our selective processing approach for real-time applications.



Part III

Authoring and Re-Rendering from
Field Recordings
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Chapter 6

Segmenting and Re-Rendering
Field-Recordings

While hardware capabilities allow for real-time rendering of increasingly complex
environments, authoring realistic virtual audio-visual worlds is still a challenging task.
This is particularly true for interactive spatial auditory scenes for which few content
creation tools are available.

Current models for authoring interactive 3D-audio scenes often assume that sound
is emitted by a set of monophonic point sources for which a signal has to be individ-
ually generated. In the general case, source signals cannot be completely synthesized
from physics-based models and must be individually recorded, which requires enor-
mous time and resources. Although this approach gives the user the freedom to
control each source and freely navigate throughout the auditory scene, the overall re-
sult remains an approximation due to the complexity of real-world sources, limitations
of microphone pick-up patterns and limitations of the simulated sound propagation
models.

On the opposite end of the spectrum, spatial sound recordings which encode di-
rectional components of the sound-field can be directly used to capture live auditory
environments as a whole [Malham and Myatt, 1995,Soundfield, 2007]. They produce
lifelike results but offer little control, if any, at the playback end. In particular, they
are acquired from a single location in space, which makes them insufficient for walk-
through applications or rendering of large near-field sources. In practice, for virtual
reality applications, their use is mostly limited to the rendering of an overall am-
biance. Besides, since no explicit position information is directly available for the
sound sources, it is difficult to tightly couple such spatial recordings with matching
visuals.

This chapter presents a novel analysis-synthesis approach which bridges the two
previous strategies. Our method builds a higher-level spatial description of the audi-
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tory scene from a set of field recordings. By analyzing how different frequency compo-
nents of the recordings reach the various microphones through time, it extracts both
spatial information and audio content for the most significant sound events present
in the acquired environment. This spatial mapping of the auditory scene can then
be used for post-processing and re-rendering the original recordings. Re-rendering
is achieved through a frequency-dependent warping of the recordings, based on the
estimated positions of several frequency subbands of the signal. Our approach makes
positional information about the sound sources directly available for generic 3D-audio
processing and integration with 2D or 3D visual content. It also provides a compact
encoding of complex live auditory environments and captures complex propagation
and reverberation effects which would be very difficult to render with the same level
of realism using traditional virtual acoustics simulations.

Our work complements image-based modeling and rendering approaches in com-
puter graphics [Chen and Williams, 1993,Horry et al., 1997,Buehler et al., 2001,Aliaga
and Carlbom, 2001]. Moreover, similar to the matting and compositing techniques
widely used in visual effects production [Porter and Duff, 1984], we show that the
various auditory components segmented out by our approach can be pasted together
to create novel and spatially consistent soundscapes. For instance, foreground sounds
can be integrated in a different background ambiance.

Our technique opens many interesting possibilities for interactive 3D applications
such as games, virtual/augmented reality or off-line post-production. We demonstrate
its applicability to a variety of situations using different microphone setups.

6.1 Related Work

Our approach builds upon prior work in several domains including spatial audio
acquisition and reproduction, structure extraction from audio recordings and blind
source separation. A fundamental difference between the approaches is whether they
attempt to capture the spatial structure of the wavefield through mathematical or
physical models or attempt to perform a higher-level auditory scene analysis to re-
trieve the various, perceptually meaningful, sub-components of the scene and their
3D location. The following sections give a short overview of the background most
relevant to our problem.

6.1.1 Spatial Sound-Field Acquisition and Reproduction

Processing and compositing live multi-track recordings is of course a widely used
method in motion-picture audio production [Yewdall, 2003]. For instance, recording
a scene from different angles with different microphones allows the sound editor to
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render different audio perspectives, as required by the visual action. Thus, producing
synchronized sound-effects for films requires carefully planned microphone placement
so that the resulting audio track perfectly matches the visual action. This is especially
true since the required audio material might be recorded at different times and places,
before, during and after the actual shooting of the action on stage. Usually, simulta-
neous monaural or stereophonic recordings of the scene are composited by hand by the
sound designer or editor to yield the desired track, limiting this approach to off-line
post-production. Surround recording setups (e.g., Surround Decca Trees) [Streicher,
2003,Everest, 1998], which historically evolved from stereo recording, can also be used
for acquiring a sound-field suitable for reproduction in typical cinema-like setups (e.g.,
5.1-surround). However, such recordings can only be played-back directly and do not
support spatial post-editing.

Other approaches, more physically and mathematically grounded, decompose the
wavefield incident on the recording location on a basis of spatial harmonic functions
such as spherical/cylindrical harmonics (e.g., Ambisonics) [Gerzon, 1985,Malham and
Myatt, 1995,Daniel et al., 1998, Leese, 1998,Merimaa, 2002] or generalized Fourier-
Bessel functions [Laborie et al., 2003]. Such representations can be further manipu-
lated and decoded over a variety of listening setups. For instance, they can be easily
rotated in 3D space to follow the listener’s head orientation and have been success-
fully used in immersive virtual reality applications. They also allow for beamforming
applications, where sounds emanating from any specified direction can be further
isolated and manipulated. However, these techniques are practical mostly for low
order decompositions (order 2 already requiring 9 audio channels) and, in return,
suffer from limited directional accuracy [Jot et al., 1999]. Most of them also require
specific microphones [Abhayapala and Ward, 2002,Meyer and Elko, 2004,Soundfield,
2007,Laborie et al., 2004] which are not widely available and whose bandwidth usually
drops when the spatial resolution increases. Hence, higher-order microphones do not
usually deliver production-grade audio quality, perhaps with the exception of Trin-
nov’s SRP system [Laborie et al., 2004] (www.trinnov.com) which uses regular studio
microphones but is dedicated to 5.1-surround reproduction. Finally, a common limi-
tation of these approaches is that they use coincident recordings which are not suited
to rendering walkthroughs in larger environments. Closely related to the previous ap-
proach is wave-field synthesis/holophony [Berkhout et al., 1993,Boone et al., 1995].
Holophony uses the Fresnel-Kirchoff integral representation to sample the sound-field
inside a region of space. Holophony could be used to acquire live environments but
would require a large number of microphones to avoid aliasing problems, which would
jeopardize proper localization of the reproduced sources. In practice, this approach
can only capture a live auditory scene through small acoustic “windows”. In con-
trast, while not providing a physically-accurate reconstruction of the soundfield, our
approach can provide stable localization cues regardless of the frequency and number
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of microphones.
Finally, some authors, inspired from work in computer graphics and vision, pro-

posed a dense sampling and interpolation of the plenacoustic function [Ajdler and
Vetterli, 2002, Do, 2004] in the manner of lumigraphs [Gortler et al., 1996, Levoy
and Hanrahan, 1996,Aliaga and Carlbom, 2001]. However, these approaches remain
mostly theoretical due to the required spatial density of recordings. Such interpola-
tion approaches have also been applied to measurement and rendering of reverberation
filters [Pellegrini, 1999,Horbach et al., 1999]. Our approach follows the idea of acquir-
ing the plenacoustic function using only a sparse sampling and then warping between
these samples interactively, e.g., during a walkthrough. In this sense, it could be seen
as an “unstructured plenacoustic rendering”.

6.1.2 High-Level Auditory Scene Analysis

A second large family of approaches aims at identifying and manipulating the compo-
nents of the sound-field at a higher-level by performing auditory scene analysis [Breg-
man, 1990]. This usually involves extracting spatial information about the sound
sources and segmenting out their respective content.

Spatial Feature Extraction and Reproduction

Some approaches extract spatial features such as binaural cues (interaural time-
difference, interaural level difference, interaural correlation) in several frequency sub-
bands of stereo or surround recordings. A major application of these techniques
is efficient multi-channel audio compression [Baumgarte and Faller, 2003,Faller and
Baumgarte, 2003] by applying the previously extracted binaural cues to a monophonic
down-mix of the original content. However, extracting binaural cues from recordings
requires an implicit knowledge of the reproduction system.

Similar principles have also been applied to flexible rendering of directional rever-
beration effects [Mungamuru and Aarabi, 2004] and analysis of room responses [Mer-
imaa, 2002] by extracting direction of arrival information from coincident or near-
coincident microphone arrays [Pulkki, 2006].

This chapter generalizes these approaches to multi-channel field recordings using
arbitrary microphone setups and no a priori knowledge of the reproduction system.
We propose a direct extraction of the 3D position of the sound sources rather than
binaural cues or direction of arrival.
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Blind Source Separation

Another large area of related research is blind source separation (BSS) which aims
at separating the various sources from one or several mixtures under various mixing
models [Vincent et al., 2003,O’Grady et al., 2005]. Most recent BSS approaches rely
on a sparse signal representation in some space of basis functions which minimizes
the probability that a high-energy coefficient at any time-instant belongs to more
than one source [Rickard, 2006]. Some work has shown that such sparse coding does
exists at the cortex level for sensory coding [Lewicki, 2002]. Several techniques have
been proposed such as independent component analysis (ICA) [Comon, 1994] or the
more recent DUET technique [Jourjine et al., 2000,Yilmaz and Rickard, 2004] which
can extract several sources from a stereophonic signal by building an inter-channel
delay/amplitude histogram in Fourier frequency domain. In this aspect, it closely
resembles the aforementioned binaural cue coding approach. However, most BSS
approaches do not separate sources based on spatial cues, but directly solve for the
different source signals assuming a priori mixing models which are often simple. Our
context would be very challenging for such techniques which might require know-
ing the number of sources to extract in advance, or need more sensors than sources
in order to explicitly separate the desired signals. In practice, most auditory BSS
techniques are devoted to separation of speech signals for telecommunication appli-
cations but other audio applications include up-mixing from stereo to 5.1 surround
formats [Avendano, 2003].

In this work, however, our primary goal is not to finely segment each source
present in the recorded mixtures but rather to extract enough spatial information so
that we can modify and re-render the acquired environment while preserving most of
its original content. Closer in spirit, the DUET technique has also been used for audio
interpolation [Radke and Rickard, 2002]. Using a pair of closely spaced microphones,
the authors apply DUET to re-render the scene at arbitrary locations along the
line passing through the microphones. The present work extends this approach to
arbitrary microphone arrays and re-rendering at any 3D location in space.

6.2 Overview

We present a novel acquisition and 3D-audio rendering pipeline for modeling and
processing realistic virtual auditory environments from real-world recordings.

We propose to record a real-world soundscape using arbitrarily placed omnidirec-
tional microphones in order to get a good acoustic sampling from a variety of locations
within the environment. Contrary to most related approaches, we use widely-spaced
microphone arrays. Any studio microphones can be used for this purpose, which
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Figure 6.1 Overview of our pipeline. In an off-line phase, we first analyze
multi-track recordings of a real-world environment to extract the location of
various frequency subcomponents through time. At run-time, we aggregate
these estimates into a target number of clustered sound sources for which we
reconstruct a corresponding signal. These sources can then be freely post-
edited and re-rendered.

makes the approach well suited to production environments. We also propose an
image-based calibration strategy making the approach practical for field applications.
The obtained set of recordings is analyzed in an off-line pre-processing step in or-
der to segment various auditory components and associate them with the position in
space from which they were emitted. To compute this spatial mapping, we split the
signal into short time-frames and a set of frequency subbands. We then use classical
time-difference of arrival estimation techniques between all pairs of microphones to
retrieve a position for each subband at each time-frame. We evaluate the perfor-
mance of existing approaches in our context and present an improved hierarchical
source localization technique from the obtained time-differences.

This high-level representation allows for flexible and efficient on-line re-rendering
of the acquired scene, independent of the reproduction system. At run-time during an
interactive simulation, we use the previously computed spatial mapping to properly
warp the original recordings when the virtual listener moves throughout the environ-
ment. With an additional clustering step, we recombine frequency subbands emitted
from neighboring locations and segment spatially-consistent sound events. This al-
lows us to select and post-edit subsets of the acquired auditory environment. Finally
the location of the clusters is used for spatial audio reproduction within standard
3D-audio APIs.

Figure 6.1 shows an overview of our pipeline. Sections 6.3, 6.4 and 6.5 describe
our acquisition and spatial analysis phase in more detail. Section 6.6 presents the
on-line spatial audio resynthesis based on the previously obtained spatial mapping of
the auditory scene. Finally, Section 6.7 describes several applications of our approach
to realistic rendering, post-editing and compositing of real-world soundscapes.
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Figure 6.2 We retrieve the position of the microphones from several pho-
tographs of the setup using a commercial image-based modeling tool. In this
picture, we show four views of a recording setup, position of the markers and
the triangulation process yielding the locations of the microphone capsules.

6.3 Recording Setup and Calibration

We acquire real-world soundscapes using a number of omnidirectional microphones
and a multi-channel recording interface connected to a laptop computer. In our exam-
ples, we used up to 8 identical AudioTechnica AT3032 microphones and a Presonus
Firepod firewire interface running on batteries. The microphones can be arbitrarily
positioned in the environment. Section 6.7 shows various possible setups. To produce
the best results, the microphones should be placed so as to provide a compromise
between the signal-to-noise ratio of the significant sources and spatial coverage.

In order to extract correct spatial information from the recordings, it is necessary
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Figure 6.3 Overview of the analysis algorithm used to construct a spatial
mapping for the acquired soundscapes.

to first retrieve the 3D locations of the microphones. Maximum-likelihood autocali-
bration methods could be used based on the existence of pre-defined source signals in
the scene [Moses et al., 2002], for which the time-of-arrival (TOA) to each microphone
has to be determined. However, it is not always possible to introduce calibration sig-
nals at a proper level in the environment. Hence, in noisy environments obtaining the
required TOAs might be difficult, if not impossible. Rather, we use an image-based
technique from photographs which ensures fast and convenient acquisition on loca-
tion, not requiring any physical measurements or homing device. Moreover, since it
is not based on acoustic measurements, it is not subject to background noise and is
likely to produce better results. We use REALVIZ ImageModeler (www.realviz.com)
to extract the 3D locations from a small set of photographs (4 to 8 in our test ex-
amples) taken from several angles, but any standard algorithm can be applied for
this step [Faugeras, 1993]. To facilitate the process we place colored markers (tape
or balls of modeling clay) on the microphones, as close as possible to the actual loca-
tion of the capsule, and on the microphone stands. Additional markers can also be
placed throughout the environment to obtain more input data for calibration. The
only constraint is to provide a number of non-coplanar calibration points to avoid
degenerate cases in the process. In our test examples, the accuracy of the obtained
microphone locations was of the order of one centimeter. Image-based calibration of
the recording setup is a key aspect of our approach since it allows for treating complex
field recording situations such as the one depicted in Figure 6.2 where microphones
stands are placed on large irregular rocks on a seashore.
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Figure 6.4 Illustration of the construction of the global spatial mapping
for the captured sound-field. (a) At each time-frame, we split the signals
recorded by each microphone into the same set of frequency subbands. (b)
Based on time-difference of arrival estimation between all pairs of recordings,
we sample all corresponding hyperbolic loci to obtain a position estimate
for the considered subband. (c) Position estimates for all subbands at the
considered time-frame (shown as colored spheres).

6.4 Propagation model and assumptions for source

matting

From the M recorded signals, our final goal is to localize and re-render a number J
of representative sources which offer a good perceptual reconstruction of the original
soundscape captured by the microphone array. Our approach is based on two main
assumptions.

First, we consider that the recorded sources can be represented as point emitters
and assume an ideal anechoic propagation model. In this case, the mixture xm(t) of
N sources s1(t), .., sn(t) recorded by the mth microphone can be expressed as:

xm(t) =
N∑

n=1

amn(t)sn(t− δmn(t)), (6.1)

where parameters amn(t) and δmn(t) are the attenuation coefficients and time-delays
associated with the nth source and the mth microphone.

Second, since our environments contain more than one active source simultane-
ously, we consider K frequency subbands, K >= J , as the basic components we
wish to position in space at each time-frame (Figure 6.4 (a)). We choose to use non-
overlapping frequency subbands uniformly defined on a Bark scale [Moore et al., 1997]
to provide a more psycho-acoustically relevant subdivision of the audible spectrum
(in our examples, we experimented with 1 to 32 subbands).
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In frequency domain, the signal xm filtered in the kth Bark band can be expressed
at each time-frame as:

Ykm(z) = Wk(z)
T∑

t=1

xm(t)e−j(2πzt/T ) = Wk(z)Xm(z), (6.2)

where

Wk(f) =

{
1 25k

K
< Bark(f) < 25(k+1)

K

0 otherwise
(6.3)

Bark(f) = 13atan(
0.76f

1000
) + 3.5atan(

f 2

75002
), (6.4)

f = z/Zfs is the frequency in Hertz, fs is the sampling rate and Xm(z) is the 2Z-
point Fourier transform of xm(t). We typically record our live signals using 24-bit
quantization and fs = 44.1KHz. The subband signals are computed using Z = 512
with a Hann window and 50% overlap before storing them back into time-domain for
later use.

At each time-frame, we construct a new representation for the captured soundfield
at an arbitrary listening point as:

x̂(t) ≈
J∑

j=1

K∑
k=1

α̂j
kmykm(t+ δ̂km),∀m (6.5)

where ykm(t) is the inverse Fourier transform of Ykm(z), α̂j
km and δ̂km are correction

terms for attenuation and time-delay derived from the estimated positions of the
different subbands. The term α̂j

km also includes a matting coefficient representing
how much energy within each frequency subband should belong to each representa-
tive source. In this sense, it shares some similarity with the time-frequency masking
approach of [Yilmaz and Rickard, 2004].

The obtained representation can be made to match the acquired environment
if K >= N and if, following a sparse coding hypothesis, we further assume that
the contents of each frequency subband belong to a single source at each time-frame.
This hypothesis is usually referred to as W-disjoint orthogonality [Yilmaz and Rickard,
2004] and given N sources S1, .., SN in Fourier domain, it can be expressed as:

Si(z)Sj(z) = 0 ∀i 6= j (6.6)

When the two previous conditions are not satisfied, the representative sources
will correspond to a mixture of the original sources and Equ. 6.5 will lead to a less
accurate approximation.
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6.5 Spatial Mapping of the Auditory Scene

In this step of our pipeline, we analyze the recordings in order to produce a high-
level representation of the captured soundscape. This high-level representation is a
mapping, global to the scene, between different frequency subbands of the recordings
and positions in space from which they were emitted (Figure 6.4).

Following our previous assumptions, we consider each frequency subband as a
unique point source for which a single position has to be determined. The localiza-
tion of a sound source from a set of audio recordings, using a single-propagation-
path model, is a well studied problem with major applications in robotics, peo-
ple tracking and sensing, teleconferencing (e.g, automatic camera steering) and de-
fense. Approaches rely either on time-difference of arrival (TDOA) estimates [Aarabi,
2003, Knapp and Carter, 1976, Huang et al., 2000], high-resolution spectral estima-
tion (e.g., MUSIC) [Schmid, 1986,Krim and Viberg, 1996] or steered response power
using a beamforming strategy [DiBiase et al., 2001, Chen et al., 2003, Mungamuru
and Aarabi, 2004]. In our case, the use of freely positioned microphones, which may
be widely spaced, prevents from using a beamforming strategy. Besides, such an
approach would only lead to direction of arrival information and not a 3D position
(unless several beamforming arrays were used simultaneously). In our context, we
chose to use a TDOA strategy to determine the location of the various auditory
events. Since we do not know the directivity of the sound sources nor the response of
the microphones, localization based on level difference cannot be applied.

Figure 6.3 details the various stage of our source localization pipeline.

6.5.1 Time-Frequency Correlation Analysis

Analysis of the recordings is done on a frame by frame basis using short time-windows
(typically 20ms long or 1024 samples at 44.1 kHz). For a given source position and a
given pair of microphones, the propagation delay from the source to the microphones
generates a measurable time-difference of arrival. The set of points which generate
the same TDOA defines an hyperboloid surface in 3D (or an hyperbola in 2D) whose
foci are the locations of the two microphones (Figure 6.4 (b)).

In our case, we estimate the TDOAs, τ̂mn, between pairs of microphones < m,n >
in each frequency subband k using standard generalized cross-correlation (GCC) tech-
niques in the frequency domain [Knapp and Carter, 1976,Rabinkin et al., 1996,Chen
et al., 2006]:

τ̂mn = arg max
τ
GCCmn(τ), (6.7)
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where the GCC function is defined as:

GCCnm(τ) =
Z∑

z=1

ψnm(z)E {Ykn(z)Y ∗
km(z)} ej(2πτz/Z). (6.8)

Ykn and Ykm are the 2Z-point Fourier transforms of the subband signals (see Eq. 6.2),
E {Ykn(z)Y ∗

km(z)} is the cross spectrum, τ < window size and .∗ denotes the complex
conjugate operator.

For the weighting function, ψ, we use the PHAT weighting which was shown to
give better results in reverberant environments [Chen et al., 2006]:

ψmn(z) =
1

|Yn(z)Y ∗
m(z)|

(6.9)

Note that phase differences computed directly on the Fourier transforms, e.g. as
used in the DUET technique [Jourjine et al., 2000,Yilmaz and Rickard, 2004], cannot
be applied in our framework since our microphones are widely spaced.

We also experimented with an alternative approach based on the average magni-
tude difference function (AMDF) [Merimaa, 2002, Chen et al., 2005]. The TDOAs
are then given as:

τ̂nm = arg min
τ
AMDFnm(τ), (6.10)

where the AMDF function is defined as:

AMDFnm(τ) =
1

Z

Z∑
z=1

|ykn(τ)− ykm(k + τ)| (6.11)

We compute the cross-correlation using vectors of 8192 samples (185 ms at 44.1KHz).
For each time-frame, we search the highest correlation peaks (or lowest AMDF values)
between pairs of recordings in the time-window defined by the spacing between the
corresponding couple of microphones. The corresponding time-delay is then chosen
as the TDOA between the two microphones for the considered time-frame.

In terms of efficiency, the complexity of AMDF-based TDOA estimation (roughly
O(n2) in the number n of time-domain samples) makes it unpractical for large time-
delays. In our test-cases, running on a Pentium4 Xeon 3.2GHz processor, AMDF-
based TDOA estimations required about 47 s. per subband for one second of input
audio data (using 8 recordings, i.e., 28 possible pairs of microphones). In comparison,
GCC-based TDOA estimations require only 0.83 s. per subband for each second of
recording.

As can be seen in Figure 6.7, the two approaches resulted in comparable subband
localization performance and we found both approaches to perform reasonably well in
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all our test cases. In more reverberant environments, an alternative approach could be
the adaptive eigenvalue decomposition [Huang et al., 2000]. From a perceptual point-
of-view, listening to virtual re-renderings, we found that the AMDF-based approach
lead to reduced artifacts, which seems to indicate that subband locations are more
perceptually valid in this case. However, validation of this aspect would require a
more thorough perceptual study.

6.5.2 Position Estimation

From the TDOA estimates, several techniques can be used to estimate the location of
the actual sound source. For instance, it can be calculated in a least-square sense by
solving a system of equations [Huang et al., 2000] or by aggregating all estimates into
a probability distribution function [Rui and Florencio, 2003,Aarabi, 2003]. Solving
for possible positions in a least-square sense lead to large errors in our case, mainly
due to the presence of multiple sources, several local maxima for each frequency
subband resulting in an averaged localization. Rather, we choose the latter solution
and compute a histogram corresponding to the probability distribution function by
sampling it on a spatial grid (Figure 6.5) whose size is defined according to the extent
of the auditory environment we want to capture (in our various examples, the grid
covered areas ranging from 25 to 400 m2). We then pick the maximum value in the
histogram to obtain the position of the subband.

For each cell in the grid, we sum a weighted contribution of the distance function
Dij(x) to the hyperboloid defined by the TDOA for each pair of microphones < i, j >:

Dij(x) = |(||Mi − x|| − ||Mj − x||)−DDOAij|, (6.12)

where Mi resp. Mj is the position of microphone i resp. j, x is the center of the
cell and DDOAij = TDOAij/c is the signed distance-difference obtained from the
calculated TDOA (in seconds) and the speed of sound c.

The final histogram value in each cell is then obtained as :

H(x) =
∑

ij

[
e(γ(1−Dij(x)))

eγ (1−DDOAij/||Mi −Mj||)

if Dij(x) < 1, 0 otherwise ] .

(6.13)

The exponentially decreasing function controls the “width” of the hyperboloid and
provides a tradeoff between localization accuracy and robustness to noise in the TDOA
estimates. In our examples, we use γ = 4. The second weighting term reduces the
contribution of large TDOAs relative to the spacing between the pair of microphones.
Such large TDOAs lead to “flat” ellipsoids contributing to a large number of neighbor-
ing cells in the histogram and resulting into less accurate position estimates [Ajdler
et al., 2004].
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The histogram is re-computed for each subband at each time-frame based on the
corresponding TDOA estimates. The location of the kth subband is finally chosen as
the center point of the cell having the maximum value in the probability histogram
(Figure 6.4 (c)):

Bk = arg max
x

H(x) (6.14)

In the case where most of the sound sources and microphones are located at simi-
lar height in a near planar configuration, the histogram can be computed on a 2D
grid. This yields faster results at the expense of some error in localization. A naive
calculation of the histogram at each time-frame (for a single frequency band and 8 mi-
crophones, i.e., 28 possible hyperboloids) on a 128× 128 grid requires 20 milliseconds
on a Pentium4 Xeon 3.2GHz processor. An identical calculation in 3D requires 2.3
s. on a 128× 128× 128 grid. To avoid this extra computation time, we implemented
a hierarchical evaluation using a quadtree or octree decomposition [Kalman, 1960].
We recursively test only a few candidate locations (typically 16 to 64), uniformly
distributed in each cell, before subdividing the cell in which the maximum of all esti-
mates is found. Our hierarchical localization process supports real-time performance
requiring only 5 ms to locate a subband in a 512 × 512 × 512 3D grid. In terms of
accuracy, it was found to be comparable to the direct, non-hierarchical, evaluation at
maximum resolution in our test examples.

6.5.3 Indoor Validation Study

To validate our approach, we conducted a test-study using 8 microphones inside a
7m×3.5m×2.5m room with a short reverberation time (about 0.3 sec. at 1KHz). We
recorded three people speaking while standing at locations specified by colored mark-
ers. Figure 6.6 depicts the corresponding setup. We first evaluated the localization
accuracy for all subbands by constructing spatial energy maps of the recordings. As
can be seen in Figure 6.7, our approach properly localizes the corresponding sources.
In this case, the energy corresponds to the signal captured by a microphone located
at the center of the room.

Figure 6.10 shows localization error over all subbands by reference to the three
possible positions for the sources. Since we do not know a priori which subband
belongs to which source, the error is simply computed, for each subband, as the min-
imum distance between the reconstructed location of the subband and each possible
source position. Our approach achieves a maximum accuracy of one centimeter and,
on average, the localization accuracy is of the order of 10 centimeters. Maximum
errors are of the order of a few meters. However, listening tests exhibit no strong
artefacts showing that such errors are likely to occur for frequency subbands con-
taining very little energy. Figure 6.10 also shows the energy of one of the captured
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Figure 6.5 (a) A 2D probability histogram for source location obtained by
sampling a weighted sum of hyperbolas corresponding to the time-difference
of arrival to all microphone pairs (shown in blue). We pick the maximum
value (in red) in the histogram as the location of the frequency band at each
frame. (b) A cut through a 3D histogram of the same situation obtained by
sampling hyperboloid surfaces on a 3D grid.

signals. As can be expected, the overall localization error is also correlated with the
energy of the signal.

We also performed informal comparisons between reference binaural recordings
and a spatial audio rendering using the obtained locations, as described in the next
section. Corresponding audio files can be found at:
http://www-sop.inria.fr/reves/projects/audioMatting.

They exhibit good correspondence between the original situation and our render-
ings showing that we properly assign the subbands to the correct source locations at
each time-frame.

6.6 3D-Audio Resynthesis

The final stage of our approach is the spatial audio resynthesis. During a real-
time simulation, the previously pre-computed subband positions can be used for
re-rendering the acquired sound-field while changing the position of the sources and
listener. A key aspect of our approach is to provide a spatial description of a real-
world auditory scene in a manner independent of the auditory reproduction system.
The scene can thus be re-rendered by standard 3D-audio APIs: in some of our test
examples, we used DirectSound 3D accelerated by a CreativeLabs Audigy2 NX sound-
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Figure 6.6 Indoor validation setup using 8 microphones. The 3 markers (see
blue, yellow, green arrows) on the ground correspond to the location of the
recorded speech signals.
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Figure 6.7 Energy localization map for a 28s.-long audio sequence featuring
3 speakers inside a room (indicated by the three yellow crosses). Light-purple
dots show the location of the 8 microphones. The top map is computed using
AMDF-based TDOA estimation while the bottom map is computed using
GCC-PHAT. Both maps were computed using 8 subbands and corresponding
energy is integrated over the entire duration of the sequence.
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card and also implemented our own software binaural renderer, using head-related
transfer function (HRTF) data from the LISTEN HRTF database1.

Inspired by binaural-cue coding [Faller and Baumgarte, 2003], our re-rendering
algorithm can be decomposed in two steps, that we detail in the following sections:

• First, as the virtual listener moves throughout the environment, we construct
a warped monophonic signal based on the original recording of the microphone
closest to the current listening position.

• Second, this warped signal is spatially enhanced using 3D-audio processing
based on the location of the different frequency subbands.

These two steps are carried out over small time-frames (of the same size as in
the analysis stage). To avoid artefacts we use a 10% overlap to cross-fade successive
synthesis frames.

6.6.1 Warping the Original Recordings

For re-rendering, a monophonic signal best matching the current location of the vir-
tual listener relative to the various sources must be synthesized from the original
recordings.

At each time-frame, we first locate the microphone closest to the location of the
virtual listener. To ensure that we remain as faithful as possible to the original
recording, we use the signal captured by this microphone as our reference signal R(t).

We then split this signal into the same frequency subbands used during the off-
line analysis stage. Each subband is then warped to the virtual listener location
according to the pre-computed spatial mapping at the considered synthesis time-
frame (Figure 6.8).

This warping involves correcting the propagation delay and attenuation of the
reference signal for the new listening position, according to our propagation model
(see Eq.6.1). Assuming an inverse distance attenuation for point emitters, the warped
signal R′

i(t) in subband i is thus given as:

R′
i(t) = ri

1/r
i
2Ri(t+ (δi

1 − δi
2)), (6.15)

where ri
1,δ

i
1 are respectively the distance and propagation delay from the considered

time-frequency atom to the reference microphone and ri
2,δ

i
2 are the distance and prop-

agation delay to the new listening position.

1http://recherche.ircam.fr/equipes/salles/listen/
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Figure 6.8 In the resynthesis phase, the frequency components of the signal
captured by the microphone closest to the location of the virtual listener
(shown in red) is warped according to the spatial mapping pre-computed in
the off-line stage.

6.6.2 Clustering for 3D-audio Rendering and Source Matting

To spatially enhance the previously obtained warped signals, we run an additional
clustering step to aggregate subbands which might be located at nearby positions
using the technique of [Tsingos et al., 2004]. The clustering allows to build groups
of subbands which can be rendered from a single representative location and might
actually belong to the same physical source in the original recordings. Thus, our
final rendering stage spatializes N representative point sources corresponding to the
N generated clusters, which can vary between 1 and the total number of subbands.
To improve the temporal coherence of the approach we use an additional Kalman
filtering step on the resulting cluster locations [Kalman, 1960].

With each cluster we associate a weighted sum of all warped signals in each sub-
band which depends on the Euclidean distance between the location of the subband
Bi and the location of the cluster representative Ck. This defines matting coefficients
αk, similar to alpha-channels in graphics [Porter and Duff, 1984]:

α(Ck, Bi) =
1.0/(ε+ ||Ck −Bi||)∑

i α(Ck, Bi)
. (6.16)

In our examples, we used ε = 0.1. Note that in order to preserve the energy distribu-
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Figure 6.9 Overview of the synthesis algorithm used to re-render the ac-
quired soundscape based on the previously obtained subband positions.

tion, these coefficients are normalized in each frequency subband.
These matting coefficients control the blending of all subbands rendered at each

cluster location and help smooth the effects of localization errors. They also ensure
a smoother reconstruction when sources are modified or moved around in the re-
rendering phase.

The signal for each cluster Sk(t) is finally constructed as a sum of all warped
subband signals R′

i(t), as described in the previous section, weighted by the matting
coefficients α(Ck, Bi) :

Sk(t) =
∑

i

α(Ck, Bi)R
′
i(t). (6.17)

The representative location of each cluster is used to apply the desired 3D-audio
processing (e.g., HRTFs) without a priori knowledge of the reproduction setup.

Figure 6.9 summarizes the complete re-rendering algorithm.

6.7 Applications and Results

Our technique opens many interesting application areas for interactive 3D applica-
tions, such as games or virtual/augmented reality, and off-line audio-visual post-
production. Several example renderings demonstrating our approach can be found at
the following URL:
http://www-sop.inria.fr/reves/projects/audioMatting.
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(b) AMDF-based localization
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Figure 6.10 Localization error for the same audio sequence as in Figure 6.7.
computed over 8 subbands. Averaged error over all subbands is displayed in
blue, maximum error in green and minimum error in red. The top (magenta)
curve represents the energy for one of the input recordings and shows its
correlation with the localization error (clearly larger when the energy drops
out).
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6.7.1 Modeling Complex Sound Sources

Our approach can be used to render extended sound sources (or small soundscapes)
which might be difficult to model using individual point sources because of their com-
plex acoustic behavior. For instance, we recorded a real-world sound scene involving
a car which is an extended vibrating sound radiator. Depending on the point of
view around the scene, the sound changes significantly due to the relative position
of the various mechanical elements (engine, exhaust, etc.) and the effects of sound
propagation around the body of the car. This makes an approach using multiple
recordings very interesting in order to realistically capture these effects. Unlike other
techniques, such as Ambisonics O-format [Malham, 2001], our approach captures the
position of the various sounding components and not only their directional aspect. In
the accompanying examples, we demonstrate a re-rendering with a moving listening
point of a car scenario acquired using 8 microphones surrounding the action (Fig-
ure 6.11). In this case, we used 4 clusters for re-rendering. Note in the accompanying
video available on-line, the realistic distance and propagation effects captured by the
recordings, for instance on the door slams. Figure 6.12 shows a corresponding energy
map clearly showing the low frequency exhaust noise localized at the rear of the car
and the music from the on-board stereo audible through the driver’s open window.
Engine noise was localized more diffusely mainly due to interference with the music.

Figure 6.11 We capture an auditory environment featuring a complex sound
source (car engine/exhaust, passengers talking, door slams and on-board
stereo system) using 8 microphones surrounding the action.
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Figure 6.12 Energy localization map for a 15 sec.-long recording of our car
scenario featuring engine/exhaust sounds and music (on the on-board stereo
system and audible through the open driver-window). Positions were com-
puted over 8 subbands using GCC-PHAT-based TDOA estimation. Energy
is integrated over the entire duration of the input audio sequence.

6.7.2 Spatial Recording and View-Interpolation

Following binaural cue coding principles, our approach can be used to efficiently gen-
erate high-resolution surround recordings from monophonic signals. To illustrate this
application we used 8 omnidirectional microphones located in a circle-like configura-
tion about 1.2 meters in diameter (Figure 6.13) to record three persons talking and
the surrounding ambiance (fountain, birds, etc.). Then, our pre-processing was ap-
plied to extract the location of the sources. For re-rendering, the monophonic signal
of a single microphone was used and respatialized as described in Section 6.6.1, using
4 clusters (Figure 6.15). Please refer to the accompanying video provided on the web
site to evaluate the result.

Another advantage of our approach is to allow for re-rendering an acquired audi-
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Figure 6.13 Microphone setup used to record the fountain example. In this
case the microphones are placed at the center of the action.

tory environment from various listening points. To demonstrate this approach on a
larger environment, we recorded two moving speakers in a wide area (about 15×5 me-
ters) using the microphone configuration shown Figure 6.14 (gray dot). The recording
also features several background sounds such as traffic and road-work noises. Fig-
ure 6.14 shows a corresponding spatial energy map. The two intersecting trajectories
of the moving speakers are clearly visible.

Applying our approach, we are able to re-render this auditory scene from any
arbitrary viewpoint. Although the rendering is based only on the monophonic signal
of the microphone closest to the virtual listener at each time-frame, the extracted
spatial mapping allows for convincing reproduction of the motion of the sources.
Note in the example video provided on the accompanying web-site how we properly
capture front-to-back and left-to-right motion for the two moving speakers.

6.7.3 Spatial Audio Compositing and Post-Editing

Finally, our approach allows for post-editing the acquired auditory environments and
compositing several recordings.
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Figure 6.14 Energy map for a recording of our moving speaker scenario.
The arrows depict the trajectory of the two speakers. Energy is integrated
over the entire duration of the input audio sequence. Note how the two
intersecting trajectories are clearly reconstructed.

Source Re-Localization and Modification

Using our technique, we can selectively choose and modify various elements of the
original recordings. For instance, we can select any spatial area in the scene and sim-
ply relocate all clusters included in the selected region. We demonstrate an example
interactive interface for spatial modification where the user first defines a selection
area then a destination location. All clusters entering the selection area are trans-
lated to the destination location using the translation vector defined by the center of
the selection box and the target location. In the accompanying video, we show two
instances of source re-localization where we first select a speaker on the left-hand side
of the listener and move him to the right-hand side. In a second example, we select
the fountain at the rear-left of the listener and move it to the front-right (Figure 6.15).
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Compositing

Since our recording setups are spatially calibrated, we can integrate several envi-
ronments into a single composite rendering which preserves the relative size and
positioning of the various sound sources. For instance, it can be used to integrate a
close-miked sound situation into a different background ambiance. We demonstrate
an example of sound-field compositing by inserting our previous car example (Fig-
ure 6.11) into the scene with the two moving speakers in a wide area. The resulting
composite environment is rendered with 8 clusters and the 16 recordings of the two
original soundscapes. Future work might include merging the representations in or-
der to limit the number of composite recordings (for instance by “re-projecting” the
recordings of one environment into the recording setup of the other and mixing the
resulting signals).

Figure 6.15 An example interface for source re-localization. In this example
we select the area corresponding to the fountain (in purple) and translate it
to a new location (shown as a yellow cross). The listener is depicted as a
large red sphere, the microphone array as small yellow spheres and the blue
spheres show cluster locations.
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Real/Virtual Integration

Our approach permits spatially consistent compositing of virtual sources within real-
world recordings. We can also integrate virtual objects, such as walls, and make
them interact with the original recordings. For instance, by performing real-time
ray-casting between the listener and the location of the frequency subbands, we can
add occlusion effects due to a virtual obstacle using a model similar to [Tsingos et al.,
1998]. Please refer to the accompanying examples at the previously mentioned URL
for a demonstration. Of course, perfect integration would also require correcting for
the reverberation effects between the different environments to composite. Currently,
we experimented only in environments with limited reverberation but blind extraction
of reverberation parameters [Baskind and Warusfel, 2002] and blind deconvolution are
complementary areas of future research in order to better composite real and virtual
soundfields.

6.8 Discussion

Although it is based on a simple mixing model and assumes W-disjoint orthogonality
for the sources, we were able to apply our approach to real-world recording scenarios.
While not production-grade yet, our results seem promising for a number of interactive
and off-line applications.

While we tested it for both indoor and outdoor recordings, our approach is cur-
rently only applicable to environments with limited reverberation. Long reverber-
ations will have a strong impact on our localization process since existing cross-
correlation approaches are not very robust to interfering sound reflections. Other
solutions based on blind channel identification in a reverberant context could lead to
improved results [Chen et al., 2006].

Errors in localization of the frequency subbands can result in noticeable artefacts
especially when moving very close to a source. These errors can come from several
factors in our examples particularly low signal-to-noise ratio for the source to localize,
blurring from sound reflections, correlation of two different signals in the case of
widely spaced microphones or several sources being present in a single frequency
subband. As a result, several overlapping sources are often fused at the location of
the louder source. While the assumption of W-disjoint orthogonality has been proven
to be suitable for speech signals [Rickard and Yilmaz, 2002], it is more questionable
for more general scenarios. It will only be acceptable if this source can perceptually
mask the others. However, recent approaches for efficient audio rendering have shown
that masking between sources is significant [Tsingos et al., 2004], which might explain
why our approach can give satisfying results quite beyond the validity domain of the
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underlying models. Alternate decompositions [Mallat and Zhang, 1993,Lewicki and
Sejnowski, 2000] could also lead to sparser representations and better results within
the same framework.

The signal-to-noise ratio of the different sound sources is also directly linked to
the quality of the result when moving very close to the source since our warping is
likely to amplify the signal of the original recording in this case.

We are working on several improvements to alleviate remaining limitations of the
system and improve the rendering quality:

Currently, we do not interpolate between recordings but select the signal of the
microphone closest to the listener location for subsequent warping and re-rendering.
This provides a correct solution for the case of omnidirectional anechoic point sources.
In more general situations, discontinuities might still appear when switching from
one microphone to the next. This can be caused, for instance, by the presence of a
sound source with a strong directionality. A solution to this problem would be to
warp the few microphones closest to the listener and blend the result at the expense
of a higher computing cost. Note that naive blending between microphone signals
before warping would introduce unwanted interferences, very noticeable in the case of
widely-spaced microphones. Another option would be to experiment with morphing
techniques [Slaney et al., 1996] as an alternative to our position-based warping. We
could also use different microphones for each frequency subband, for instance choosing
the microphone closer to the location of each subband rather than the one closest to
the listener. This would increase the signal-to-noise ratio for each source and could
be useful to approximate a close-miking situation in order to edit or modify the
reverberation effects for instance.

The number of bands also influences the quality of the result. More bands are likely
to increase the spatial separation but since our correlation estimates are significantly
noisy, it might also make artefacts more audible. In our case, we obtained better
sounding results using a limited number of subbands (typically 8 to 16). Following
the work of Faller et al. [Baumgarte and Faller, 2003, Faller and Baumgarte, 2003,
Faller and Merimaa, 2005], we could also keep track of the inter-correlation between
recordings in order to precisely localize only the frames with high correlation. Frames
with low correlation could be rendered as “diffuse”, forming a background ambiance
which cannot be as precisely located [Merimaa and Pulkki, 2004]. This could be seen
as explicitly taking background noise or spatially extended sound sources into account
in our mixing model instead of considering only perfect anechoic point sources. We
started to experiment with an explicit separation of background noise using noise-
removal techniques [Ephraim and Malah, 1984]. The obtained foreground component
can then be processed using our approach while the background-noise component can
be rendered separately at a lower spatial resolution. Example renderings available on
the web site demonstrate improved quality in complex situations such as a seashore
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recording.
Sound source clustering and matting also strongly depends on the correlation and

position estimates for the subbands. An alternative solution would be to first separate
a number of sources using independent component analysis (ICA) techniques and then
run TDOA estimation on the resulting signals [Saruwatari et al., 2003,Huang et al.,
2005]. However, while ICA might improve separation of some sources, it might still
lead to signals where sources originating from different locations are combined.

Another issue is the microphone setup used for the recordings. Any number of
microphones can be used for localization starting from two (which would only give di-
rectional information). If more microphones are used, the additional TDOA estimates
will increase the robustness of the localization process. From our experience, closely
spaced microphones will essentially return directional information while microphone
setups surrounding the scene will give good localization accuracy. Microphones uni-
formly spaced in the scene provide a good compromise between signal-to-noise ratio
and sampling of the spatial variations of the sound-field. We also experimented with
cardioid microphone recordings and obtained good results in our car example. How-
ever, for larger environments, correlation estimates are likely to become noisier due to
the increase in separation between different recordings, making them difficult to cor-
relate. Moreover, it would make interpolating between recordings more difficult in the
general case. Our preferred solution was thus to use a set of identical omnidirectional
microphones. However, it should be possible to use different sets of microphones for
localization and re-rendering which opens other interesting possibilities for content
creation, for instance by generating consistent 3D-audio flythroughs while changing
the focus point on the scene using directional microphones.

Finally, our approach currently requires an off-line step which prevents it from
being used for real-time analysis. Being able to compute cross-correlations in real-
time for all pairs of microphones and all subbands would make the approach usable
for broadcast applications.

6.9 Conclusions

We presented an approach to record, edit and re-render real-world auditory situ-
ations. Contrary to most related approaches, we acquire the sound-field using an
unconstrained, widely-spaced, microphone array which we spatially calibrate using
photographs. Our approach pre-computes a spatial mapping between different fre-
quency subbands of the acquired live recordings and the location in space from which
they were emitted. We evaluated standard TDOA-based techniques and proposed a
novel hierarchical localization approach. At run-time, we can apply this mapping to
the frequency subbands of the microphone closest to the virtual listener in order to
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resynthesize a consistent 3D sound-field, including complex propagation effects which
would be difficult to simulate. An additional clustering step allows for aggregat-
ing subbands originating from neighboring locations in order to segment individual
sound sources or small groups of sound sources which can then be edited or moved
around. To our knowledge, such level of editing was impossible to achieve using pre-
vious state-of-the-art techniques and could lead to novel authoring tools for 3D-audio
scenes.

We believe our approach opens many novel perspectives for interactive spatial
audio rendering or off-line post-production environments, for example to complement
image based rendering techniques or free-viewpoint video. Moreover, it provides a
compact encoding of the spatial sound-field, which is independent of the reproduction
system. In the near future, we plan to run more formal perceptual tests in order
to compare our results to binaural or high-order Ambisonics recordings in the case
of fixed-viewpoint scenarios and to evaluate its quality using various reproduction
systems. From a psychophysical point of view, this work suggests that real-world
sound scenes can be efficiently encoded using limited spatial information.

Other promising areas of future work would be to exploit perceptual localiza-
tion results to improve localization estimation [Wilson and Darell, 2006] and apply
our analysis-synthesis strategy to the real-time generation of spatialized audio tex-
tures [Lu et al., 2004]. Finally, making the calibration and analysis step interactive
would allow the approach to be used in broadcasting applications (e.g., 3D TV).
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We presented a novel approach to real-time spatial rendering of realistic
auditory environments and sound sources recorded live, in the field.
Our approach automatically extracts a high-level representation from the
recording which is compatible with the point-source model used for 3D
audio rendering. Using the high-level representation thus obtained, we
can edit and re-render the acquired auditory scene over a variety of lis-
tening setups. In particular, we can move or alter the different sound
sources and arbitrarily choose the listening position. We can also com-
posite elements of different scenes together in a spatially consistent way.
We demonstrated a wide range of possible applications for games, virtual
and augmented reality and audio-visual post-production. However, the
current algorithm assumes that the sound is emitted by a point source,
which is not true for every case. In the last chapter, we will present a
new approach to solve this problem based on a foreground and background
decomposition.



Chapter 7

Improved Background and
Foreground Classification and
Perceptual Evaluation

In the previous chapter, we developed a novel analysis-synthesis approach from field
recording. Inspired by spatial audio coding [Faller and Baumgarte, 2003, Baum-
garte and Faller, 2003,Breebaart et al., 2005,Pulkki and Faller, 2006,Goodwin and
Jot, 2006] and blind source separation [Yilmaz and Rickard, 2004, Vincent et al.,
2003,Radke and Rickard, 2002], our method builds a higher-level spatial description
of the auditory scene from a small set of monophonic recordings. This description
can then be used for real-time post-processing and re-rendering of the original record-
ings, for instance by smoothly varying the listening point inside the environment and
editing/moving sound sources. Contrary to previous spatial audio coding work, the
recordings are made from widely-spaced locations and sample both content and spa-
tial information for the sound sources present in the scene. Our approach is also
mostly dedicated to live recordings since it reconstructs estimates of the 3D loca-
tions of the sound sources from physical propagation delays. This information might
not be available in studio recordings which rely on non-physical panning strategies.
However, in the case of live field recordings, this approach suffers from several limita-
tions. First, the underlying hypothesis of time-frequency sparseness for the acquired
signals is often not true in practice, especially in the presence of significant back-
ground noise [Rickard, 2006]. This results in noisy position estimates and low quality
signal reconstruction when virtually moving throughout the environment. Second,
our approach uses a limited number of frequency subbands, acting as representative
point sources, to model the auditory environment at each time-frame. While point
sources might be appropriate to render well-localized events, background ambiance
and extended sources (e.g., the sea on a seashore) cannot be convincingly reproduced
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Figure 7.1 Typical components of a real-world auditory scene. In this chap-
ter, we propose to explicitly separate foreground, non-stationary and well lo-
calized, sound events from background components that are more stationary
and spatially diffuse.

using this model (Figure 7.1).
In this chapter, we propose a solution to these shortcomings based on an a priori

segmentation of foreground sound events and background ambiance which we de-
scribe in Section 7.1.1. We also present an improved re-rendering solution specifically
adapted to these two components which preserves the independence from the repro-
duction setup. In particular, we propose to render the foreground sound events using
a set of separate point sources while the background component is encoded using
a smoother low-order spherical harmonics representation. Details can be found in
Sections 7.1.2 and 7.1.3.

Section 7.2 describes the results of a pilot perceptual evaluation study aimed at
assessing the quality of our approach relative to reference binaural and B-format
recordings in the case of fixed-listening-point scenarios.

Finally, our approach introduces additional authoring capabilities by allowing sep-
arate manipulation of each component, which we briefly outline in Section 7.3 before
concluding.
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Figure 7.2 Overview of our re-synthesis pipeline. Foreground sound events
are rendered as point sources while background sounds are encoded using a
low-order spherical harmonics decomposition.

7.1 Improved Analysis and Re-Synthesis

This section addresses a set of possible improvements to our previous technique. They
are based on an a priori segmentation of background and foreground components
leading to a two-layer model, similar in spirit to the pairwise/non-directional and
direct/diffuse decompositions used in some spatial audio coding approaches [Pulkki
and Faller, 2006,Goodwin and Jot, 2006,Merimaa and Pulkki, 2004,Breebaart et al.,
2005]. However, since we are warping the direct component when re-rendering from
different listening points, switching at each time frame between localized/diffuse mod-
els on a per-subband basis would introduce audible artefacts in our case. We chose
to perform a finer-grain segmentation of the input recordings as a pre-processing step
which does not rely on position estimates. Such an approach was already reported to
improve results for blind source separation problems [Choi, 2003]. We also propose
re-rendering strategies tailored to each component.

7.1.1 Background/Foreground Segmentation

Previous work, such as performed by Avendano, proposed an ambiance extraction
from stereo signals using the assumption that the left and right ambience signals are
correlated. We chose to segment stationary background noise from non-stationary
sound events using the technique by Ephraim and Malah [Ephraim and Malah, 1984],
originally developed for denoising of speech signals. This approach assumes that the
distributions of Fourier coefficients for signal and noise are statistically independent
zero-mean Gaussian random variables. Under this assumption, the spectral amplitude
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Figure 7.3 Comparison between energy localization in the seashore example
of Section 7.3 for (a) the foreground component only and (b) the complete
recording. The figure shows the reconstructed location of all subbands inte-
grated through the entire duration of the sequence. White crosses indicate
the locations of the microphones used for recording.

of the denoised signal is estimated using a minimum mean-square error criterion. The
background noise signal is then simply obtained by subtracting the denoised signal
from the original. We found the algorithm to perform quite well. While not perfect, it
leads to a foreground component with limited musical noise. In most cases, this noise
is masked when re-combined with the background component at re-rendering time.
The extracted foreground component, containing non-stationary sounds is also better
suited to our underlying assumption of time-frequency sparseness than the original
recordings (see Figure 7.3). However, several foreground sound sources might still
overlap in time-frequency. Background and foreground segmentation is performed
independently on the signals from all microphones.

7.1.2 Background “Panorama” Generation

The separated foreground and background components are both processed using the
analysis pipeline described in Chapter 6 (see also Figure 7.1). However, in the case of
the background component, we obtain noisier position estimates since this component
will generally correspond to background noise and sources with low signal-to-noise
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ratios. In order to produce a smooth spatial background texture, we use the ob-
tained positions to encode the corresponding subband signals on a 1st-order spherical
harmonic basis. No warping is applied to the background component in this case
(Figure 7.2).

As our signals are real-valued, we encode them with real spherical harmonics
defined as:

ym
l (θ, φ) =


√

2Km
l cos(mφ)Pm

l (cosθ)√
2Km

l cos(−mφ)P−m
l (cosθ)

K0
l P

0
l (cosθ)

m > 0
m < 0
m = 0

(7.1)

where l is the order, m ∈ [−l; +l], P is the associated Legendre polynomial and K is
a scaling factor defined as:

Km
l =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

. (7.2)

For each subband signal, we compute the minimum and maximum elevation and
azimuth of the obtained positions over the entire duration of the recording. Then,
we uniformly expand the background signal in this area. We choose the background
signal to encode from the monophonic recording closest to the center of the acquired
scene. Accordingly, the background texture is encoded relative to a fixed reference
point, for instance the central point of the scene.

This background panorama can thus be encoded in a pre-processing stage so that
only the decoding is performed at run-time, e.g., when freely navigating in the record-
ings. Several decoding options are available depending on the desired reproduction
setup [Jot et al., 1999].

7.1.3 Improved Foreground Re-Synthesis

At re-rendering time, we perform a warping of the original foreground recordings in
order to generate a signal as consistent as possible with the desired virtual listening
position (Figure 7.2). Assuming an inverse distance attenuation for point emitters,
the warped signal R′

i(t) in subband i is given as:

R′
i(t) = ri

1/r
i
2Ri(t+ (δi

1 − δi
2)), (7.3)

where ri
1,δ

i
1 are respectively the distance and propagation delay from the considered

time-frequency atom to the reference microphone and ri
2,δ

i
2 are the distance and prop-

agation delay to the desired listening position.
This warping heavily relies on the fact that we consider the subband signals to

be re-emitted by anechoic point sources. In real-world environments this model is
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challenged, due to the strong directionality of some sound sources. As a result,
discontinuities can appear when the virtual listener is moving around if the signal
from a single reference microphone is used (e.g., the one closest to the desired virtual
position). To avoid such problems and roughly compensate for the limitations of our
anechoic point source model, we propose to continuously warp the signals of the two
microphones closest to the desired virtual listening position and blend them together
to generate a smoothly varying monophonic signal. Blending can be simply controlled
by the relative distance of the virtual listener to these two reference microphones.
Note that blending the signals prior to warping would introduce comb filtering effects
that can be very noticeable when the microphones are widely spaced. To further
improve the re-rendering quality of the foreground component, we also smooth our
position estimates for the subbands using Kalman filtering [Kalman, 1960]. This
prevents large and fast position changes and limits possible “wobbling” effects due to
jittery subband positions.

7.2 Pilot Subjective Evaluation

In order to evaluate the quality of a spatial audio reproduction system based on
our approach, we compared it to binaural and B-format recordings in the context of
various scenarios with fixed listening points.

7.2.1 Test Stimuli and Procedure

We recorded test scenarios in two different environments: indoors in a moderately
reverberant room (RT60 ≈ 0.3 sec. at 1KHz) and outdoors (see Figure 7.4). For
each scenario, we used 8 monophonic recordings made with AudioTechnica 3032 om-
nidirectional microphones to run our localization and re-rendering approach. A pair
of Sennheiser MKE-2 gold microphones was placed inside the ears of a subject to
capture reference binaural recordings and we also acquired a B-format version of
the scenes using a Soundfield ST250 microphone. Eventually, four recordings (one
indoors, three outdoors), each about 50 sec. long, were chosen for quality testing.

We used 8 non-overlapping subbands uniformly distributed on a Bark scale to
run our spatial analysis. Then, a binaural rendering from a point of view similar
to the binaural and B-format recordings was generated from the monophonic input
of the closest omnidirectional microphone and the time-varying locations obtained
for the subbands. The signal of the same microphone was used to generate both
a binaural rendering of the foreground events and the 1st-order spherical harmonic
background decoded over headphones using a virtual loudspeakers technique. In both
cases, we used head related transfer functions (HRTFs) of the LISTEN database
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Figure 7.4 Example recording setups. We used 8 omnidirectional micro-
phones (circled in yellow) to capture the auditory scene as well as a Soundfield
microphone (highlighted with a light red square) to simultaneously record a
B-format version. A binaural recording using microphones placed in the ears
of a subject provided a reference recording in each test case.

(http://recherche.ircam.fr/equipes/salles/listen/) for re-rendering. We also generated
a re-rendering without explicit background/foreground segmentation considering the
original recording to be entirely foreground. B-format recordings were also converted
to binaural using a similar virtual loudspeaker approach.

We used a protocol derived from Multiple Stimuli with Hidden Reference and An-
chors procedure (MUSHRA, ITU-R BS.1534) [Stoll and Kozamernik, 2000, Union,
2003, ITU-R, 2003] to evaluate each scenario, using four tests stimuli (binaural refer-
ence, B-format, our approach with foreground only, our approach with background/foreground
segmentation) and a hidden reference. We also provided one of our 8 monophonic
recordings and the omnidirectional (W) component of the B-format recordings as
anchors, resulting in a total of 7 signals to compare. Corresponding test stimuli are
available at the following URL: http://www-sop.inria.fr/reves/projects/aes30. Test
stimuli were presented over Sennheiser HD600 headphones. Monaural anchor signals
were presented at both ears.

Five subjects, aged 23 to 40 and reporting normal hearing, volunteered for this
evaluation. They were asked to primarily focus on the spatial aspects of the sounds,
paying particular attention to the position of the sources. Since the recordings were
made with different microphones, we asked them to avoid specific judgments com-
paring the general timbre of the recordings. However, the subjects were instructed
to keep track of any artefact compromising the quality of the reproduction. Their
comments were gathered during a short post-screening interview. Subjects were in-
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structed to rank the signals on a continuous [0,100] quality scale and give the highest
possible score to the signal closest to the reference. They were also instructed to give
the lowest possible score to the signal with the worst spatial degradation relative to
the reference.

7.2.2 Results

Figures 7.5 and 7.6 summarize the results of this study. The subjects were able to
identify the hidden reference and it received a maximal score in all test cases. In most
cases, our approach was rated higher than B-format recordings in terms of quality
of spatial reproduction. This is particularly true for the foreground-only approach
which does not smooth the spatial cues and obtains a very high score. However, the
subjects reported artefacts due to subbands whose localization varies rapidly through
time, which limits the applicability of the approach in noisier environments. Our
approach including background/foreground separation leads to smoother spatial cues
since the low order background signal may mask the foreground signal. Hence, it
was rated only slightly better than the B-format recordings. Subjects did not report
specific artefacts with this approach, showing an improved signal quality. As could
be expected, the monophonic anchors received the lowest scores. However, we can
note that in some of our test cases, they received scores very close to the B-format
reproduction. This is probably due to the low spatial resolution of B-format but could
also arise from a non-optimal HRTF-based decoding.

Looking at the various test-cases in more detail, Figure 7.6 highlights a signifi-
cantly different behavior for the indoor scenario (TEST#3). In this case, very little
background sound was present, hence our approach based on background and fore-
ground separation did not lead to any improvement and, in fact, resulted in a degraded
spatial impression. The B-format reproduction, however, obtained significantly better
scores in this case, probably due to the favorable configuration of the three speakers
(one in front, one to the left, and one to the right).

7.2.3 Discussion

In terms of audio quality, feedback from the subjects of the tests shows that our im-
proved algorithm outperforms the previous foreground-only solution. This is of course
due to the smoothly varying background and more robust foreground estimates. How-
ever, our proposed approach appears less convincing in terms of localization accuracy.
Significant parts of the foreground sounds can still be present in the background com-
ponent and will be spatialized using a different strategy. The resulting blend tends to
blur out the localization cues leading to a poorer spatial impression. Improving the
quality of the segmentation would probably lead to better results. Another possibility
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Figure 7.5 Average MUSHRA scores and 95% confidence intervals for all
subjects and all scenarios.
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Figure 7.6 Average MUSHRA scores and 95% confidence intervals for all
subjects in each of our 4 test scenarios.
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Figure 7.7 Recording setup used for the seashore recordings.

would be to use energy and not only time-differences of arrival to extract possible
localization information for the background component. We used a small number of
frequency subbands in our tests which can challenge our time-frequency orthogonal-
ity assumption resulting in noisier position estimates for the foreground component.
However, we obtained less convincing results with an increased number of frequency
subbands due to less accurate correlation estimates for narrower subbands signals. We
do not currently model sources “at infinity”, which may appear in the background
but also in the foreground component. Our position estimation can return erroneous
position estimates in this case due to the limited extent of our position histogram.
This could also explain the perceived degradation of spatial cues compared to the ref-
erence. Explicit detection of far-field sources is a component we are planning to add
in the near future. Finally, non-individualized HRTF processing could also be a major
cause of spatial degradation. Running the test with head-tracking and individualized
HRTFs might lead to improved results.

7.3 Applications

Our approach can lead to spatial audio coding applications for live audio footage in a
way similar to [Pulkki and Faller, 2006,Goodwin and Jot, 2006,Merimaa and Pulkki,
2004,Breebaart et al., 2005], but it also offers novel decoding/authoring capabilities
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Figure 7.8 Example virtual reconstruction of a seashore with walking pedes-
trian. Yellow spheres correspond to the locations of the microphones used
for recording.

not available with previous techniques such as free-viewpoint walkthroughs. Figure 7.8
illustrates the virtual reconstruction of a seashore scene with a pedestrian walking
on a pebble beach recorded with the setup shown in Figure 7.7. A spatial energy
map is overlaid, highlighting the location of foreground time-frequency atoms. Note
how the position of the footsteps sounds is well reconstructed by our approach. The
sound of sea waves hitting the rocks on the shore is mostly captured by the background
component (see also Figure 7.3). Please, visit the web pages mentioned in Sections 7.2
for example audio files and videos.

Spatial Re-Synthesis with Free-Moving Listener

Our approach allows for a “free-viewpoint” spatial audio rendering of the acquired
soundscapes. As the virtual listener moves throughout the scene, the foreground
component is rendered using a collection of point sources corresponding to each time-
frequency atom, as described in section 7.1.3. The background component is simply
rotated based on the current orientation of the listener in order to provide a consistent
rendering. Our representation encodes spatial cues in world space and can thus be
rendered on a variety of reproduction setups (headphones, multichannel, etc.).
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Background/Foreground Editing

Our two-layer model allows for independent control of the background and foreground
components. Their overall level can be adjusted globally or locally, for instance to
attenuate foreground sounds with local virtual occluders while preserving the back-
ground. The foreground events can also be copied and pasted over a new background
ambiance.

Re-Rendering with Various Microphones

Finally, the microphones used for the analysis process can be different from the ones
used for re-rendering. For instance, it is possible to use any directional microphone
to obtain a combined effect of spatial rendering and focussing on a specific source.

7.4 Conclusion

We presented an approach to convert field recordings into a structured representation
suitable for generic 3D audio processing and integration with 2D or 3D visual con-
tent. It applies both to outdoor environments or indoor environments with limited
reverberation, provides a compact encoding of the spatial auditory cues and captures
propagation and reverberation effects which would be very difficult to render with
the same level of realism using traditional virtual acoustics simulations.

Perceptual comparisons with reference binaural and B-format recordings showed
that our approach outperforms B-format recordings and can get close to reference
binaural recordings when all time-frequency atoms are rendered as foreground point
sources. However, artefacts due to background noise lead to reduced signal quality.
An alternative solution was proposed based on the explicit segmentation of station-
ary “background noise” and non-stationary “foreground events”. While the signal
quality is significantly improved when re-rendering, spatial cues were perceived to
be degraded, probably due to non-optimal background separation. In the future, we
would like to improve on our background/foreground segmentation approach, possibly
based on auditory saliency models [Kayser et al., 2005] or taking advantage of the sig-
nals from all microphones. Alternative sparse representations of the signals [Lewicki
and Sejnowski, 2000,Mallat and Zhang, 1993] could also be explored in order to im-
prove our approach. Further comparisons to other sound-field acquisition techniques,
for instance based on high-order spherical harmonic encoding [Abhayapala and Ward,
2002,Meyer and Elko, 2004], Fourier-Bessel decomposition [Laborie et al., 2003, La-
borie et al., 2004] or directional audio coding [Pulkki, 2006,Pulkki and Faller, 2006]
would also be of primary interest to evaluate the quality vs. flexibility/applicability
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tradeoffs of the various approaches. We believe our approach opens many novel per-
spectives for interactive spatial audio rendering or off-line post-production environ-
ments, for example to complement image based rendering techniques or free-viewpoint
video.
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In this chapter, we have presented an approach to automatically extract
and re-render a structured auditory scene from field recordings obtained
with a small set of microphones, freely positioned in the environment.
From the recordings and the calibrated position of the microphones, the
3D location of various auditory events can be estimated together with
their corresponding content. This structured description is reproduction-
setup independent. We proposed solutions to classify foreground, well-
localized sounds and more diffuse background ambiance and we adapted
our rendering strategy accordingly. We showed that warping the origi-
nal recordings during playback allows for simulating smooth changes in
the listening point or position of sources. We also presented compar-
isons with reference binaural and B-format recordings showing that our
approach achieves good spatial rendering while remaining independent of
the reproduction setup and offering extended authoring capabilities.



Chapter 8

Conclusion

In this thesis, we were interested in the problems related to virtual sound rendering of
complex scenes, for instance containing many sound sources. Two difficulties prevent
the interactive rendering of such scenes. The signal processing involved in the simu-
lation is beyond current CPU capabilities and the process of authoring such complex
scenes is difficult and tedious. In this thesis, we proposed solutions to both problems.

8.1 Summary of Contributions

In order to perform the massive number of audio processing operations required by
3D audio rendering, we have proposed to leverage the novel parallel architecture pro-
vided by the graphics hardware(GPU). Although the GPU is designed for graphics
applications, its flexibility and its data parallel processing architecture yields a good
alternative solution that clearly outperforms current CPUs. Moreover, GPU perfor-
mance has increased dramatically in the last three years in comparison to CPUs and
GPUs now tend to become truly multi-purpose processors. Our studies showed that
this architecture is well designed for audio processing tasks. In the future such archi-
tectures are likely to become de-facto standards and we believe that soundcards may
benefit from including the same type of architecture and programmability.

In order to simplify the auditory scene and provide a progressive approach to
audio rendering, we proposed a new algorithm which exploits the properties of human
hearing, such as auditory masking and illusory continuity. The proposed method
provides a scalable approach by progressively processing the important components of
a scene. This algorithm is well suited to any kind of application which includes signal
processing and in particular for 3D sound rendering. It provides a speed versus quality
trade-off well adapted to real-time applications, yielding a rendering solution that can
be tuned to any computer. Within this method, we have introduced an emergence

119



criterion and we have assessed a few importance metrics. A subjective evaluation
validates our algorithm, and shows that the audio operations can be reduced by
50 % without degradation in perceived quality. This approach can be also used in
compression algorithms or transmission of audio streams over networks. The solutions
proposed in this thesis allow for rendering thousands of sound sources on a variety of
platforms from laptops to top-of-the-line workstations

In the second part of this thesis, we have introduced a method to automatically
create virtual auditory scenes from recordings of a real scene. Moreover, this technique
complements current methods for spatial sound recording. Our approach extracts a
higher level description of the scene, using live recordings from several microphones
without any constraint on their location. We reconstruct a spatial scene represen-
tation based on the location of the emitted signals and their extracted frequency
content. This method can be used for outdoor scenes, as well as in low-reverberation
indoor scenes. We believe our approach can offer new perspectives for post-production
environments. It avoids the problem of capturing each source individually while of-
fering a similar level of interaction with the scene. Furthermore, the resulting scene
representation provides a compact encoding of the spatial soundfield which is inde-
pendent of the restitution system. This work also suggests that real-life sound scenes
can be efficiently encoded using limited spatial information.

We extended our previous assumptions used for segmenting the scene to diffuse
sound sources. The proposed method separates the signal into foreground and back-
ground components under the hypothesis that the background component is sta-
tionary. We reconstruct the audio scene from any point-of-view by spatializing the
foreground component using our previous approach. The background component is
encoded with low order spherical harmonics in order to provide a spatially diffuse ren-
dering. A subjective evaluation of the quality of the spatial reconstruction, comparing
our method with other spatial recording techniques such as binaural and B-format
has been performed. It showed that our approach typically outperforms B-format
recording and can get close to reference binaural recording. Our approach allows
for interactive auralization of complex real-world auditory scenes while maintaining
re-rendering flexibility.

8.2 Future Research and Applications

This dissertation opens many promising directions for future work.
We have seen that the GPU is well suited to 3D audio processing. Unfortunately,

we could not evaluate our algorithms on the latest processors G80 which solve the
few remaining problems highlighted by our study and would certainly improve the
performance. It would be interesting to test other audio processing algorithms such
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as “Infinite Impulse Response” (IIR) or “Finite Impulse Response” (FIR) filtering.
Indeed, these algorithms are the basic tools to include reverberation effects in virtual
reality applications. In this case, reverberation parameters could be computed directly
by analyzing the 3D scene geometry through the GPU. A performance evaluation with
other DSP processors could be also interesting to perform.

The scalability of the algorithm presented in Chapter 5 could be improved by
adding a finer grain selection or by using another importance metric such as a time
varying loudness model. Moreover, the illusory continuity was not explicitly used
in the emergence metric, and may improve the result. An interesting extension will
be to use this algorithm with other signal representations such as those obtained by
sparse coding [Lewicki, 2002]. In this case, our elementary grains will be the sparse
atoms. The algorithm presented can also be used in other applications, to reduce
bus/network traffic or code only important parts of the signal.

The second part of the thesis could also be improved in several ways:

• First, we assumed a W-Disjoint hypothesis in the frequency domain for source
separation but the Fourier domain is in general not sparse enough for this
assumption to hold in complex real-world scenarios. Working in another sparser
domain could improve the source separation.

• Second, for every frame, we searched for a source location regardless of the
quality of the estimation. We could instead keep track of good estimates during
a lapse of time and interpolate between them when no satisfying estimation
is found. In this case, the difficulty is to find a “goodness measure” for our
estimates.

• Third, in its current state, the algorithm uses a fixed number of bands. An
alternative strategy would be to use dynamic splitting strategies for every frame.

• Fourth, the localization of the microphone is derived from photographs. It
would be better to find the positions of microphones using a time-delay of
arrival approach to be able to directly calibrate on-site. This could be useful
for broadcasting applications.

• Finally, in the segmented background component, there are still some fore-
ground parts of the signal. A possible improvement would be to select the part
of the background signal where the foreground signal magnitude is high and to
fully replace the selected background which contains some foreground signal by
texture synthesis strategies similar to methods in audio restoration.

In conclusion, we believe that this thesis has achieved the goals set out in the
introduction, that is to advance the speed of processing for complex auditory scenes,
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and to improve the authoring process. We believe that the successful results and
the directions for future work described above illustrate the strong potential of this
research.
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