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La réhabilitation d’un désastre, l’abaissement des détecteurs d’un avion en vol, le traite-
ment de la progression des bagages aux aéroports, l’arrivée de soldats dans un territoire
étranger, le contrôle d’un environnement et des habitats, l’équipement d’une maison en
électroménager, la circulation des véhicules sur la route, et l’étiquetage des animaux. Tous
ces événements ont un point commun : ils profitent amplement du déploiement des réseaux
ad hoc.

Cette thèse a pour objet l’étude de la mobilité sur la performance des réseaux ad hoc
mobiles. Nous nous concentrons en particulier sur l’étude du délai d’un message.

D’abord, nous définissons le type des réseaux auxquels nous nous intéressons, puis nous
regardons la mobilité dans ces réseaux.

Un Réseau Ad Hoc Mobile

La définition d’ad hoc donnée par Le Petit Larousse est la suivante :

Ad hoc (adjectif): Qui convient à la situation, au sujet.

Un réseau ad hoc est un réseau de télécommunication établi malgré l’absence d’une
infrastructure fixe. Des raisons de l’absence d’un réseau fixe peut être l’éloignement d’une
région, par exemple dans le cas des animaux étiquetés ou des soldats dans un territoire
étranger, ou bien il se peut qu’il soit indésirable, impraticable, ou simplement trop cher
d’installer un réseau fixe.

i
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l’idée qui fait la force d’un réseau ad hoc est que l’information peut passer d’un nœud
à un autre par différents nœuds. Un nœud peut représenter une personne, un portable, un
capteur de mesure, ou un dispositif électronique ayant la capacité de communiquer avec
d’autres capteurs par des transmissions radio. Le fait que les réseaux ad hoc soient devenus
si populaires au cours des dernières années est dû à leur facilité de déploiement, leur coût
abordable, leurs avancées technologiques récentes, la réponse à un besoin (notamment après

des attaques terroristes), et l’utilisation répandue d’instruments électroniques. On trouve
constamment de nouvelles applications pour les réseaux ad hoc et la recherche dans ces
réseaux est un domaine très vivant.

Les capteurs peuvent consister à n’être que des détecteurs qui sont créés dans le seul but
de rassembler et de transmettre des données (les réseaux de capteurs). Les capteurs peuvent
aussi faire partie d’un dispositif intégré comme un ordinateur portable ou un téléphone
portable. Dans chaque cas, nous avons des messages qui doivent être envoyés d’un capteur
à un autre.

Les utilisations des réseaux de capteurs sont nombreuses et semblent ne connâıtre
presqu’aucune limite. Ils ont été utilisés pour mesurer une activité sismique, contrôler les
bagages aux aéroports [20] [29], et les activités environnementales [81] [38], militaires [81]

[38], et agricoles [30]. D’autres exemples d’utilisations sont les systèmes d’entretien pour
l’identification du réservoir-remplissage ou du composant-remplacement, et la régulation du
processus en temps réel pour l’automatisation industrielle. Si nous jetons un coup d’oeil à
la surveillance d’habitat, les capteurs peuvent être utilisés pour :

• capter des microclimats

• surveiller les comportements des animaux

• identifier des changements d’habitat

• identifier des événements saisonniers peu communs (comme la migration des oiseaux)

• détecter les feux et empêcher leur expansion

• détecter les des secteurs contaminés et puis sonner des alarmes

• fournir des directions et des informations aux visiteurs.

Réseaux Ad Hoc Mobiles

Les nœuds dans les réseaux de capteurs sont souvent stationnaires et le transfert des données

dépend de la construction des routes multi-sauts ou des infostations [32] [88]. À l’opposé

de ces réseaux il existe les réseaux ad hoc mobiles (MANET), dans lesquels les nœuds sont
mobiles. Cette mobilité peut être exploitée pour le transfert des données d’un nœud à un
autre, en particulier si les nœuds dans le réseau ne sont pas réellement connectés. L’étude
de la mobilité est le sujet de cette thèse.
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La connectivité d’un réseau est déterminée principalement par la distance entre les
nœuds. Une propriété des réseaux ad hoc mobiles est que les connections entre les nœuds
sont continuellement établies et rompues. Une représentation est donnée par un graphique
de recouvrement (overlay graphs) montrant les nœuds qui sont connectés les uns aux autres.
D’autres réseaux similaires aux réseaux ad hoc mobiles et ayant aussi des représentations
graphiques de recouvrement sont les graphes petit-mondes (small-world) et les réseaux pair-
à-pair. Dans ces réseaux les connections entre les nœuds sont également établies et rompues
et les données sont passées d’un nœud à un autre, en utilisant, quand cela est possible,
d’autres nœuds comme relais. Il y a cependant des différences qui séparent les réseaux petit-
mondes et pair-à-pair avec les réseaux ad hoc et qui valent donc la peine d’être expliquées:

• Le phénomène petit-monde est devenu populaire dans les travaux éminents [83] [84] de
Watts & Strogatz. Ce phénomène est décrit par l’envoi d’une lettre accompagnée d’une

description du destinataire. À chaque étape, une personne reçoit la lettre et la fait
suivre à la personne la plus proche du destinaire qu’elle connaisse. Watts & Strogatz
ont découvert qu’en moyenne, il y a environ six sauts de l’envoyeur au destinataire.
Ce résultat est surprenant vu qu’il existe plus de six milliards de personnes dans le
monde! Un réseau est appelé un réseau petit-monde s’il y a un nombre faible de sauts
entre chaque paire de nœuds dans le réseau, indépendamment de la taille du réseau.
La découverte de ce phénomène a entrâıné la construction de modèles importants pour
la diffusion de l’information entre les gens [9], sur l’Internet [10], et pour la diffusion

des virus physiques et des virus technologiques [2].

• Les réseaux pair-à-pair sont devenus populaires par leur capacité à distribuer gratuite-

ment de la musique par l’Internet, en particulier par les logiciels Napster1 et Gnutella2.
L’idée sous-jacente au réseau pair-à-pair est que chaque pair, c’est-à-dire un ordina-
teur attaché au réseau, a des fichiers qui sont disponibles pour les autres pairs. Quand
quelqu’un cherche un fichier (souvent un fichier d’une chanson ou d’un film), des nœuds
intermédiaires aident dans la recherche et le transfert des données. Comme dans les
réseaux ad hoc mobiles et petit-monde, nous pouvons représenter les pairs (nœuds) et
leurs connections par un réseau de recouvrement. Comme dans les deux autres types
de réseaux, les liens entre les nœuds sont souvent rompus et établis.

Les mesures de performance les plus importantes dans les réseaux petit-mondes et
pair-à-pair sont : le nombre de nœuds à traverser avant de trouver un fichier, le nombre de
nœuds atteints après un certain nombre de sauts, la méthode de recherche, et le passage à
l’échelle d’un réseau. Dans les réseaux ad hoc mobiles, la distance physique entre les nœuds

1Napster, en étant attaqué en justice pour atteinte aux droits l’industrie musicale, a fait de la publicité

aux réseaux pair-à-pair. L’affaire a été perdue par Napster et maintenant elle propose une deuxième version

payante aux utilisateurs pour le téléchargement de musique.
2Gnutella a été arrêté immédiatement après que America Online en a pris la direction, mais ńăreverse

engineeringăż lui a donné une nouvelle vie. Tandis que Napster pouvait facilement être poursuivi a justice

car il se sert d’une base de données centrale, Gnutella ne pouvait pas être poursuivi car il est décentralisé.

La combinaison de leur publicité et leur contribution au trafic d’Internet a généré beaucoup d’activité de

recherche [36] [23].
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et la mobilité jouent également un rôle. La performance d’un réseau ad hoc mobile est donc
caractérisée par la connectivité, le débit et le délai d’un message (en terme de temps au lieu

du nombre de sauts).

Motivation et la Contribution de la Thèse

La plupart des publications sur les réseaux ad hoc mobiles concernent la connectivité ou le
débit [47] [45] d’un réseau. Le travail de cette thèse est nouveau car nous étudions l’effet
de la mobilité sur le délai d’un message. l’introduction d’un composant de mobilité rend les
modèles mathématiques très difficiles à résoudre. Pour cette raison, très peu de résultats
existent encore en la matière. Cette direction de recherche est toujours en développement
et beaucoup de questions concernant l’influence de la mobilité et le délai d’un message sont
encore à résoudre.

Le sujet principal dans la première partie de cette thèse et le délai d’un message, défini
comme étant le temps requis pour transmettre un message d’une source à une cible, en
utilisant la mobilité et les ressources d’autres nœuds.

Le débit et le délai d’un message sont influencés de manières différentes dans les réseaux
ad hoc mobiles lorsqu’il n’y a pas toujours un lien direct entre deux nœuds. Pour s’assurer
une transmission satisfaisante il y a plusieurs possibilités :

• L’existence des routes multi-sauts entre la source et la cible, en utilisant des nœuds
intermédiaires, permet de transférer les données, donc elle a l’avantage de réduire le
délai d’un message.

• Contrairement aux réseaux ad hoc statiques, les réseaux ad hoc mobiles présentent
l’avantage que les nœuds intermédiaires peuvent transporter des données quand ils se
déplacent. Dans cette situation, le délai d’un message n’est pas seulement constitué
d’un délai de propagation et d’un délai d’une file d’attente, mais aussi par suite du
temps (significatif) requis pour des nœuds de se placer près l’un de l’autre. Pour cette
raison, les protocoles de relais déterminent aussi la performance d’un réseau ad hoc
mobiles.

• Un nœud peut transmettre à une puissance plus haute. Cette augmentation de la
gamme de transmission peut créer des routes entre deux nœuds, mais au prix de
l’augmentation de l’usure des piles et des interférences. En outre, si les distances entre
les nœuds sont grandes, l’augmentation de la gamme de transmission n’aura peut-être
pas beaucoup d’effet sur la création des routes entre les nœuds. Cependant, comme
nous allons voir dans la première partie de cette thèse, l’augmentation de la gamme
de transmission a une (grande) influence sur le délai d’un message si la mobilité est
utilisée pour le transfert des données.

À la base d’une étude sur la mobilité nous avons le modèle de mobilité, qui définit
comment les nœuds se déplacent. Les nœuds sont très dynamiques dans certains modèles,
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et dans d’autres ils se déplacent à proximité d’un point, ou ils restent même immobiles. Dans
beaucoup de situations de la vie réelle, le modèle de mobilité est souvent inconnu ou est

récemment mesuré en raison des avancements technologiques faits ces dernières années. À
cause de la variabilité des mouvements des nœuds (souvent inconnus), il est important pour
mieux mesurer la performance d’un réseau d’utiliser une variété de modèles de mobilité. Par
exemple, la performance d’un nouveau protocole dépend-elle du modèle de mobilité ? Ou
est-elle indépendante des mouvements des nœuds ? Ou bien encore, l’existence d’une région
centrale change-t-elle la performance du protocole ?

Il y a plusieurs caractéristiques d’un réseau qui sont liées à un modèle de mobilité ;
chacune est importante pour des raisons différentes. Ces caractéristiques sont :

• La distribution spatiale des nœuds3: la fonction de probabilité d’un nœud dans une
certaine position si le système est dans un état stationnaire. Est-ce que les nœuds sont
concentrés (groupés) autour des points chauds, ou sont-ils répandus sur la superficie ?
Le retard du message peut être significativement plus petit si les nœuds se rassemblent
autour des points chauds (en raison d’une région de retour en commun). Si les nœuds
sont répandus également, i.e., la distribution stationnaire des nœuds est uniforme, les
mathématiques deviennent des fois solubles, comme il a été démontré par les articles
fructueux de Gupta & Kumar [47] et Grossglauser & Tse [45]. Cependant, la per-
formance d’un réseau en terme de délai d’un message est un problème largement non
résolu et il est une des contributions principales de cette thèse.

• Le premier temps de rencontre : à partir d’un temps aléatoire, c’est la différence
de temps entre un temps aléatoire et l’instant ou deux nœuds se retrouvent pour la
première fois dans la gamme de communication de l’autre. Ce délai est important,
non seulement pour le temps nécessaire au nœud source pour entrer en contact avec le
nœud destination, mais aussi pour le temps nécessaire à des nœuds de relais pour entrer
en contact avec la destination. En particulier, nous allons montrer (sous certaines

hypothèses), que le temps de transfert d’un message est déterminé par le premier
temps de rencontre entre deux nœuds.

La dérivation de ces mesures est faite dans la première partie de cette thèse. Ces calculs
sont faits pour un nombre de modèles de mobilité à une dimension et à deux dimensions.
Nous utilisons ensuite ces expressions afin d’obtenir le sujet central de la première partie :
le temps moyen de transfert d’un message.

Un résultat intéressant et surprenant de cette partie est le rôle de l’intégrale sur le carré
de la distribution spatiale des nœuds : celle-ci nous permet d’obtenir le premier temps de
rencontre (le Théorème 4.2.1), qui joue à son tour un rôle central pour le délai de message

sous un nombre de protocoles de relais (le Théorème 3.2.1).

D’autre points importants pour le délai de message : la vitesse des nœuds, la taille
de surface sur laquelle les nœuds se déplacent, la gamme de transmission, et le protocole
de relais. On penserait que le modèle de mobilité est aussi important. Cependant—sous

3Distribution stationnaire de la position d’un nœud.
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l’hypothèse qu’il n’y pas d’interférences et que la gamme de transmission est minime com-

parée à la taille de surface—il résulte de cette thèse que seulement
∫ ∫

π2(x, y)dxdy et la

vitesse moyenne des nœuds sont importantes, et non le modèle de mobilité lui-même! Ev-
idemment, le modèle de mobilité détermine ces deux quantités, mais cela signifie que deux
modèles de mobilité différents peuvent donner le même délai de message, pourvu que le

produit de
∫ ∫

π2(x, y)dxdy et la vitesse moyenne soient les mêmes! En outre, nous allons

montrer que le délai de message est linéaire dans la superficie et inversement linéaire dans
la gamme de transmission et dans la vitesse.

Dans cette thèse il y a des contributions dans les domaines des réseaux ad hoc mobiles,
des systèmes à ”polling”, des équations stochastiques et récursives, et des files d’attentes en
tandem. Ces résultats sont distribués en deux parties et une appendice :

I. Message Delay in Mobile Ad Hoc Networks

II. Polling Systems with Correlated Switchover Times

A. The Value Function of a Tandem Queue

La partie I est composée des chapitres 1-4. Il y a plusieurs contributions dans la
première partie, mais la plus significative est la combinaison du Corollaire 4.2.2 (page 93)

avec le Théorème 3.2.1 (page 67). Le corollaire dit que, sous certaines conditions et pour
une certaine classe de mouvements, la distribution du premier temps de rencontre entre
deux nœuds dans deux dimensions est exponentiellement distribuée avec un paramètre λ.
Ce résultat est utilisé dans le Théorème 3.2.1 qui donne une expression pour le délai de
message pour deux types de protocoles et plusieurs modèles de mobilités. En particulier, le
délai est inversement lié au parametre λ.

Bien que chaque chapitre soit construit sur l’antécédent, chaque chapitre se lit à part.
Les contributions de chaque chapitre sont comme suit :

Dans le premier chapitre nous étudions un réseau ad hoc mobile à une dimension.
Les nœuds se déplacent selon un mouvement Brownien dans des segments finis, ou chaque
segment a des frontières réflectives. Les nœuds peuvent communiquer seulement quand ils
sont dans leur propre voisinage. Nous obtenons une expression pour le temps de transfert
entre deux nœuds dans un segment, et nous obtenons également une expression pour la
distribution de probabilité d’emplacement du transfert. Nous constatons que le temps de
transfert s’exprime simplement par la gamme de transmission et la longueur d’intervalle.
Ces résultats sont alors utilisés pour obtenir le délai d’un message en traversant une suite
de nœuds dans des segments contigus.

Une analyse similaire est faite dans le Chapitre 2, mais cette fois pour des nœuds qui
se déplacent selon une marche aléatoire sur un nombre d’états finis. Les résultats sont sim-
ilaires, mais la nature discrète des mouvements nécessite des approches différentes. Parfois
les calculs deviennent plus compliqués, et d’autres fois la notation avec des matrices et des
implémentations numériques facilitent l’analyse. En particulier, l’expression pour le délai
du message est semblable à l’expression quand les nœuds se déplacent selon un mouvement
Brownien, sauf un terme qui apparâıt à cause de la nature discrète du mouvement. Ce
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terme disparâıt pour un nombre d’états croissant. Un autre résultat donné dans ce chapitre
est une expression pour le temps, à partir d’un temps aléatoire, jusqu’au moment ou deux
marches aléatoires sont à un certain nombre d’états l’une de l’autre. Les résultats dans ce
chapitre peuvent être utilisés aussi pour des messages qui se promènent dans un réseau de
capteurs.

Nous proposons également un modèle stochastique pour le calcul du temps de transfert
d’un message dans un réseau ad hoc mobile, dans lequel les nœuds mobiles (ou simplement

mobiles) servent de nœuds relais. Le modèle a deux paramètres d’entrée: le nombre de
mobiles et l’intensité d’un nombre fini de processus de Poisson homogènes et indépendants.
Ces processus de Poisson représentent les instants auxquels deux mobiles arbitraires peuvent
communiquer. Nous calculons la transformée de Laplace-Stieltjes du temps de transfert (ou

délai) d’un message, défini comme étant le temps nécessaire pour transmettre un message
d’une source à une destination. De ce résultat nous déduisons le temps moyen de transfert
d’un message, ainsi que son comportement asymptotique pour des réseaux avec beaucoup
de mobiles. Nous déterminons également la distribution du nombre de copies d’un message
dans le réseau à l’instant où le message atteint sa destination. Ces calculs sont effectués pour
deux types de protocoles de routage qui utilisent les mobiles comme relais: le two-hop relay
protocol, où seule la source peut utiliser les mobiles comme relais, et le unrestricted relay
protocol, où tous les mobiles peuvent utiliser les autres mobiles comme relais. En dépit de
sa simplicité, le modèle est capable de prédire les performances (délai, nombre de copies) de

ces deux protocoles pour trois modèles différents de mobilité (Random Waypoint, Random

Direction, Random Walker), comme le montrent des résultats de simulations.

La valeur du paramètre de la distribution exponentielle utilisée dans le Chapitre 3 est
dérivée et discutée dans le Chapitre 4.

La partie II de cette thèse est constituée du Chapitre 5 dans lequel un système à
ńăPollingăż, qui est constitué de deux files d’attente servies par un serveur est résolu. Après
avoir servi une file d’attente, le serveur a besoin d’un temps de passage après lequel il
commence à servir l’autre file d’attente. Les suites des temps de passages peuvent être
corrélées. Nous obtenons l’expression de plusieurs quantités, dont notamment le temps
d’attente moyen et la taille moyenne de la file d’attente. Grâce à ces expressions, nous
comparons les différentes disciplines de service. Finalement, par des exemples nous montrons
que la corrélation des temps de passage peut augmenter considérablement le temps d’attente
moyen et la taille des files d’attente, indiquant que cette corrélation ne peut pas être ignorée.
Cela a des implications importantes pour des systèmes de communication dans lesquels un
canal de communication commun est partagé par plusieurs utilisateurs et où le temps entre
des transferts de données consécutifs est corrélé, par exemple dans les réseaux ad hoc.

Dans l’appendice, nous étudions deux files d’attente en série avec des “holding costs”
pour chaque client dans le système. La fonction de valeur est calculée pour le coût moyen
lorsqu’il n’y a pas d’entrée de clients (le système avec l’entrée des clients reste un problème

ouvert). Cette fonction est une combinaison des nombres de Catalan et de ballot et peut être
utilisée pour l’optimisation des systèmes en série ou pour le calcul complet de la fonction de
valeur.
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Notation

Étant données des variables aléatoires X et Y , la notation

fX(x) :=
∂P (X ≤ x)

∂x
et fX,Y (x, y) :=

∂2P (X ≤ x;Y ≤ y)

∂x∂y
,

est la distribution de la probabilité de X, respectivement (X, Y ).



Introduction

Disaster recovery, sensors dropped from aircraft, baggage handling at airports, soldiers in a
foreign territory, environmental and habitat monitoring, household electronics, cars travel-
ling on a road, and tagged animals all have one element in common: they can benefit greatly
by the deployment of ad hoc networks.

The main focus in this thesis is the effect of the mobility on the performance of mobile
ad hoc networks, in particular the effect it has on the message delay. Before we look at
mobile ad hoc networks, let us first look at what an ad hoc network is.

What is an Ad Hoc Network?

The definition of ad hoc as given by the Webster dictionary [1] is

Ad hoc (adjective)

1.a : concerned with a particular end or purpose <an ad hoc investigation committee>

1.b : formed or used for specific or immediate problems or needs <ad hoc solutions>

2 : fashioned from whatever is immediately available : improvised <large ad hoc
parades and demonstrations>

An ad hoc network refers to a communication network which has been established
despite the lack of a fixed infrastructure. This lack of a fixed network can be due to the
remoteness of a region, for example, for tagged animals or soldiers travelling through a
foreign territory. Other reasons for the lack of a fixed infrastructure may be because it is
undesirable, unfeasible, or simply too expensive.

The idea, and power, behind an ad hoc network is that information is passed from
one node to another. Here a node can refer to a person, a measuring sensor, or any general
electronic device. The strong increase in the popularity of ad hoc networks in the last couple
of years is due to their envisioned ease of deployment, financial benefits, recent technological
advancements, terrorist attacks, and widespread use of electronic devices. Because of their
wide applicability and cheap installation, other uses of ad hoc network are continuously
being found and therefore this field of technology and research will continue to grow for
quite some time.

1
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The electronic devices may consist only of sensors which are created with the sole
purpose of collecting and passing on data (the so-called sensor networks). On the other
hand, sensors can also be part of an integral device such as a laptop or a mobile phone.
Whatever the form, the idea is that a message needs to be sent from one device to another.

For this reason the applications of sensor networks are enormous and seem to know
no bounds. Sensor networks have been used to measure seismic activity, handle baggage at
airports [20] [29], and to monitor environmental, military [81] [38], agricultural, and vine-

yard [30] activities. Other examples are maintenance systems for the early recognition of
tank-refill or component-replacement as well as real-time process-control for industrial au-
tomation. If we take a look at the example of habitat monitoring in a national park, then the
sensors can be used to capture micro-climates, monitor animal behaviour, identify changes
in habitat, report unusual seasonal events like bird migration, detect fires and prevent its
expansion, set alarms for contaminated land or water areas, and sense approaching visitors
and provide online directions.

Mobile Ad Hoc Networks

As opposed to sensor networks which are often stationary and rely on a multi-hop path
or infostations [32] [88] to transfer data, the nodes in mobile ad hoc networks (MANET)
are mobile and form the main focus of this thesis. This mobility can easily be exploited to
ensure the transfer of data from one node to another, especially if the nodes in the network
are not well connected to each other.

In an ad hoc network, the connectivity of two nodes is generally determined by the
physical distance between them. A particular property of mobile ad hoc networks is that
connections between nodes are continuously set up and broken down. At any time, the
network can be represented by an overlay graph showing the nodes which are connected
to each other at that moment in time. Closely related to this are small-world graphs and
peer-to-peer networks. Also in these networks, connections between nodes come and go and
there is data that is passed from one node to another node, possibly by making use of
intermediary nodes. There are however a number of distinctions which make these networks
different from ad hoc networks and are therefore worth pointing out.

The small-world phenomenon was made popular by Watts & Strogatz in their seminal
works [83] [84]. The basic idea starts with a letter that must be sent to someone in the
world. The letter is accompanied by a description of the person to whom the letter needs
to be sent, and whenever a person receives the letter (s)he passes it on to an acquaintance

whom (s)he thinks is closer to the destination. It was found that everyone in the world is
separated by an average of approximately six such hops from each other. This is a rather
surprising result given that there are over 6 billion people in the world! Nowadays, if in
a network—irrespective of its size—two nodes are only a small number of hops away from
each other, then the network is said to have the small-world phenomenon. This study has
led to important models for the spread of not only information between people, but also
for the spread of both (physical) viruses and (technological) viruses which are sent over the
internet through emails.
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Peer-to-peer networks were made popular by Napster4 and Gnutella5 due to their pub-
licity and their ability to distribute music on the internet for free. The basic idea is that
each peer (i.e., computer attached to the peer-to-peer network) has files on its computer

that are available to all of the other peers. When someone searches for a specific file (usually

a music or a movie file), intermediary nodes are often used for both searching and for trans-
fering the data. Here the network can also be represented by an overlay network showing
the connections between the nodes at a certain moment in time. Just like in mobile ad hoc
networks, the links between nodes are often broken down and rebuilt again.

In small-world and peer-to-peer networks there is large emphasis on the number of hops,
the number of nodes reached per hop, search methods, and the scalability of the network. In
mobile ad hoc networks however, the physical distances between the nodes play a role and
therefore the performance of the network is instead characterized through the connectivity,
throughput, and message delay (in terms of time instead of the number of hops).

Motivation and Contribution of the Thesis

Most of the existing literature on mobile ad hoc networks is concerned with either the
connectivity or the throughput [47] [45] of a network. The work in this thesis is novel in
the sense that the effect of the mobility on the message delay is studied. The introduction
of a mobile component in models often renders them mathematically intractable and, for
this reason, very few results exist on this matter. This direction of research is still in its
infancy and much work needs to be done to better understand the influence of mobility and
the mobility pattern on the delay of a message.

The main issue addressed in the first part of this thesis is the message delay, defined as
the time required to transfer a message from a source to a destination node, while possibly
making use of intermediary mobile nodes.

One characteristic of mobile ad hoc networks is that a direct link between two nodes
does not always exist, and this affects the throughput and the message delay in different
ways. To ensure a satisfactory transmission of the data a number of different options exist.

• If a network is not sparsely distributed, then multi-hop paths between a source and
a destination node may exist. The intermediary nodes can then relay the data thus
greatly reducing the message delay.

• As opposed to static ad hoc networks, mobile ad hoc networks have the additional

4Napster brought peer-to-peer networks into the news by being engaged in a legal lawsuit concerning

music rights. The court case was lost by Napster and now a second version of Napster charges users to

download music.
5Gnutella was discontinued immediately after America Online took it over but with reverse engineering it

was brought back to life again. Whereas Napster made use of a central database, Gnutella is decentralized,

which meant that it could not be pursued by lawsuits. The idea of all nodes contributing information to

the network and the nodes helping each other find the information has lead to a surge of research activity

[36] [23].
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advantage that an intermediary node can relay data while it is moving around. The
latter situation means that the message delay is not only made up of a propagation
and queueing delay, but also of a (possibly significant) amount of time required for
nodes to move closer to each other. In this case, relay protocols help determine the
performance of the network.

• Another method of influencing the performance of the network is to have a node
transmit at a higher power, thus increasing its transmission range. This may cause a
path between two nodes to come into existence, but it this does come at the price of
valuable battery power. If the distances between the nodes are large, then increasing
the transmission range may not have much effect on the creation of a direct path
between a source and a destination node. However, as will be seen in the first part
of this thesis, this will definitely have a positive influence on the message delay if the
mobility of nodes is used to transmit a message.

At the basis of the study of the effects of mobility is the mobility model. The mobility
model defines how nodes move around. In some cases, the nodes are very dynamic; in other
cases, nodes remain around the same location or even pause. In many real-life situations, the
mobility pattern is often unknown or is only just being measured due to the technological
advancements made in recent years. Because of the variability of, and often unknown,
movement patterns, it is important to study the performance of a network under a variety
of different mobility models. For example, do conclusions of the performance of a new
protocol depend on the mobility model or do they hold in general?

Fixing a mobility model results in a number of characteristics, each of them important
in a different way. These characteristics are:

• Spatial node distribution6: the probability of a node being in a certain location once
the system has reached steady-state. Are the nodes clustered around hot-spots or are
they spread out evenly over the surface area? If the nodes congregate around hot-
spots, then the message delay can be significantly smaller due to nodes coming back,
or hanging around, these hot-spots. If the nodes are spread out evenly, i.e., the spatial
node distribution is uniform, then systems often become mathematically tractable as
exemplified by the seminal papers of Gupta & Kumar [47] and Grossglauser & Tse [45].
However, the performance of a network in terms of message delay remains largely an
open question and this forms the main contribution of the first part of this thesis.

• First-meeting times: starting from a random time, this is the time until two nodes
are within communication range of one another for the first time. This quantity is
important not only for the time needed for the source node to come into contact
with the destination node, but also for the time needed for relay nodes to come into
contact with each other and with the destination node. In particular, it will be shown
that under a number of realistic assumptions, the message delay is determined by the
first-meeting times of nodes.

6Also referred to as the steady-state location or the stationary distribution of the location of the nodes.
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The derivation of these measures for a number of the mobility models is performed in the
first part in this thesis, in both one and two dimensions. These quantities will then be
used to derive the central topic of the first part, namely the mean message delay. One
very interesting and surprising result is that the integral over the square of the spatial
node distribution plays a central role for the first-meeting times (Theorem 4.2.1), which in
turn plays a central role for the message delay under a number of different relay protocols
(Theorem 3.2.1).

What else is of importance for the message delay? Naturally the speed of the nodes,
the surface area, the transmission range and the relay protocol play a role. One would think
that the mobility model itself plays an important role as well. However, assuming there is
no interference and r << L, then one important result derived in this thesis is that only∫ ∫

π2(x, y)dxdy and the average relative speed of the nodes is of importance and NOT

the mobility pattern itself! Naturally the mobility pattern determines these two quantities,
but this means that completely different mobility models can give the same message delay

(as long as the product of
∫ ∫

π2(x, y)dxdy and the average relative speed is the same)!

Furthermore, it will be shown that the message delay is linear in the area size and inversely
linear in the transmission range and the speed.

Organisation of the Thesis

This thesis makes a number of contributions to the fields of mobile ad hoc networks, polling
systems, stochastic recursive equations, and tandem queues. The results are distributed
over two parts and an appendix:

I. Message Delay in Mobile Ad Hoc Networks;

II. Polling Systems with Correlated Switchover Times;

A. The Value Function of a Tandem Queue.

Part I is composed of Chapters 1-4. Although many contributions are given in the first
part, perhaps most valuable are the combination of Corollary 4.2.2 on page 93 and Theorem
3.2.1 on page 67. The former states that for certain movement patterns, under certain
conditions, the first-meeting time between two nodes in two dimensions is exponentially
distributed with parameter λ. The latter theorem makes use of this result to give closed
form expressions for the message delay using two different relaying protocols for a number of
different mobility patterns in two dimensions. In particular, the message delay is inversely
related to λ.

Although there is a build-up and link between the chapters, each chapter is self-
contained. The contributions of each chapter are outlined in the following paragraphs.

In Chapter 1, a simple one-dimensional ad hoc network topology is analysed. Nodes
move as Brownian motions in finite segments, where each segment has reflecting boundaries.
Communications (or relays) between nodes can occur only when they are within transmission
range of each other. An expression for the transfer time between two nodes in one segment
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is obtained as well as a closed form expression for the probability density function of the
location where a relay takes place. It is worth noting that the average message delay between
two nodes reveals a simple expression in terms of the transmission range and the length of
the interval. These results are then used to obtain the message delay across of sequence of
nodes moving in adjacent segments.

A similar analysis is repeated in Chapter 2 but then for nodes moving as Random
Walkers on a finite number of states. Although similar expressions are obtained, the discrete
nature requires a slightly different analysis. At times the mathematics is more involved and
at other times matrix notation and the possibility of numerical implementation simplify
matters. In particular, the same expression for the message delay as under the Brownian
Motion mobility model is obtained up to a factor difference which accounts for the discrete
nature of the process. This factor vanishes for an increasing number of states. A nice result
given in this chapter is an expression for the time it takes two random walkers on the same
state space to come with a certain number of states from each other. These results can also
be used for two messages travelling across a sensor network.

In Chapter 3, a simple stochastic model is introduced that accurately models the mes-
sage delay in two-dimensional mobile ad hoc networks where nodes relay messages for each
other. The model has only two input parameters: the number of nodes and the parameter of
an exponential distribution which models the first-meeting time between two nodes. Closed-
form expressions are obtained for the Laplace-Stieltjes transform of the message delay. From
this result, the expected message delay in closed-form is obtained as well as its asymptotic
expansion for networks with many nodes. The probability distribution of the number of
copies of the message at the time the message is delivered is also computed. These calcu-
lations are carried out for two relay protocols: the two-hop relay and the unrestricted relay
protocols. Despite its simplicity, the model is able to accurately predict the performance of
both relay protocols for a number of mobility models (random waypoint, random direction

and the random walker mobility models), as shown by simulations.

The exponential parameter used in Chapter 3 is derived in Chapter 4.

Part II of this thesis is made up of a single chapter, namely Chapter 5. In this chapter, a
queueing system is analysed in which service is alternated between two queues and the server
requires a (finite) switchover time to switch from one queue to the other. The distinction
from classical results is that the sequence of switchover times from each of the queues need
not be i.i.d. nor independent from each other; each sequence is merely required to form
a stationary ergodic sequence. With the help of stochastic recursive equations, explicit
expressions are derived for a number of performance measures, most notably for the average
delay of a customer and the average queue lengths under different service disciplines. With
these expressions, a comparison is made between the service disciplines, and the influence
of correlation is studied. Finally, through a number of examples, the correlation is shown
to significantly increase the mean delay and the average queue lengths indicating that the
correlation between switchover times should not be ignored. This has important implications
for communication systems in which a common communication channel is shared amongst
various users and where the time between consecutive data transfers is correlated (one can
also think of a narrow bridge with cars travelling over the bridge from one direction at a
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time). The position of the server then corresponds to the direction data is travelling in. A
similar situation arises in ad hoc networks; there is a common channel which needs to be
shared amongst various users. The higher the number of users, the longer one has to wait
before being able to capture the channel necessary to (re)transmit data. In particular, if
one has to wait a long time before being able to transmit data, then it is very likely that
there are many users around and that the next time one has to wait once again for a long
period of time. For this reason the correlation of the number of users over time in an ad
hoc network inherently introduces correlation between the waiting (switchover) times, and
this in turn leads to an increase in the mean delay and queue lengths.

The appendix of the thesis lies separate from the rest of the thesis as it deals with the
derivation of the value function (also known as the bias vector) of the average costs of the
tandem queue. It remains an open problem in queueing theory. Once the value function is
obtained, it can be used for important optimisation purposes. Although the final expression
remains out of reach, a closed-form expression is however obtained for the value function if
there is no inflow of customers into the first queue. This expression is in terms of Catalan
and ballot numbers which give an intuitive explanation to the problem at hand.

Notation

For any random variables X and Y , let

fX(x) :=
∂P (X ≤ x)

∂x
and fX,Y (x, y) :=

∂2P (X ≤ x;Y ≤ y)

∂x∂y
,

be the probability density function (pdf) of respectively X and (X, Y ).
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Mobile ad hoc networks are characterized by a lack of a fixed infrastructure and by node
mobility. In these networks data transfer can be improved by using mobile nodes as relay
nodes. As a result, transmission power and the movement pattern of the nodes have a key
impact on the performance. In this chapter the impact of node mobility is studied through
the analysis of a simple one-dimensional ad hoc network topology. Nodes move in adjacent
segments with reflecting boundaries according to Brownian motions. Communications (or

relays) between nodes can occur only when they are within transmission range of each
other. The expected time to relay a message is determined along with the probability
density function of the relay locations. Finally, an approximation formula is provided for
the expected relay time between any pair of mobiles.

Note: The material presented in this chapter has been published in the proceedings of

WiOpt1 [41] and has been submitted to the ACM Kluwer journal of Wireless Networks.

1Unfortunately in [41] the formulas published are a factor
√

2 off from the correct result.
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1.1 Introduction

Ad hoc networks can be deployed when a fixed network structure is not available. The lack
of a fixed infrastructure may arise in emergency situations, remote regions, hostile areas
or, as is often the case, due to the financial costs involved in the deployment of a fixed
infrastructure.

As a consequence of the absence of a fixed infrastructure, components (or nodes) of
an ad hoc network need to behave as routers by relaying messages in order to improve
communications. Instances of nodes in ad hoc networks are laptops, planes [76], cars,

electronic tags on animals [73], mobile phones, et cetera. If nodes are mobile then operating
these networks become even more complex, as mobility will impact routing protocols, control
of transmission power, quality of service (e.g., interference, path loss, shadowing effects),
battery usage, to name but a few.

As long as data does not have to be transferred directly between two mobiles and
that nodes are willing to relay messages, their mobility may have a positive impact on the
performance, as shown in [45]. This has led to the design of protocols that take advantage of

node mobility to enhance the performance of some applications (e.g., messaging applications

in [63]). Data relaying cuts down transmission power, interferences and increases battery
usage. On the other hand, it may increase latency—since the existence at any time of a
“path” between two mobiles is not guaranteed—even if (intermediary) nodes can be used as
routers to convey a message from its source to its destination.

This chapter studies the impact of mobility on the latency in the case of nodes acting
as relay nodes. This is done for one-dimensional ad hoc network topologies and under the
assumption that nodes move according to (independent) Brownian motions.

A natural approach (but not the only one, see [71] for another approach) to modeling
a mobile ad hoc network with relaying nodes consists of looking down at the earth and
representing it as a finite two-dimensional plane. If two mobiles are within a fixed trans-
mission range of each other then a message can be relayed/transmitted (see Figure 1.1).
Furthermore, mobiles move according to a certain movement pattern. Unfortunately, this
simple model of an ad hoc network (no physical restrictions in the area covered by the nodes,

nodes are homogeneous, etc.) is extremely difficult to analyse, even with simple movement

patterns such as, for example, the Random waypoint mobility model (which is described in

Section 3.3.1.1 or in [86]). For instance, obtaining an exact expression for the stationary
distribution of the location of the mobiles under the Random waypoint mobility model in
two dimensions remains an open problem.

Obtaining any results characterizing the first instance of time when two mobiles come
within transmission range of each other is a problem of even greater complexity. For this
reason, this chapter focuses on a one-dimensional topology—a model that already reveals
interesting properties. Although the extension of the theory presented in this chapter to
a two dimensional scenario does not seem to be possible, the insights gained have led to
the developments of the results in Chapter 3, of which most notably the Laplace-Stieltjes
transform of the message delay.
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Figure 1.1: Visual representation of an ad hoc network. Node can transfer a message only
if they are with each others transmission range. In this case only two of the nodes can
communicate with each other.

When analyzing a mobile ad hoc network, an important consideration is the movement
pattern. Are mobiles restricted in their movement by roads, physical objects, waterways,
or mountains? Do they roam around a central point? It has been shown that the latter is
the case for the Random waypoint mobility model, where there is a higher concentration of
mobiles around a central region (see Section 4.B for an example) .

The following scenarios are addressed in this chapter. In Section 1.2 the situation is
considered where two mobiles move along a segment with reflecting boundaries (see Figure

1.2). Both mobiles move along the segment according to independent Brownian motions.
We are interested in computing the expected time until both mobiles come within com-
munication range of each other. This quantity is computed for any given initial locations
(Proposition 1.2.1) as well as for the case where each Brownian motion is initially in steady-

state (Proposition 1.2.3). It is known (see Section 1.3) that the latter assumption implies
that both mobiles are uniformly distributed over the segment. The uniform spatial distribu-
tion over the coverage area has attracted attention lately and several fundamental results [8]

[47] [45] have been obtained in this setting. However, the model presented here is different
from the models considered in those papers.

In Section 1.3, I mobiles on I segments are considered, one mobile per segment, as
depicted in Figure 1.5. The mobiles move along their respective segment (with reflecting

boundaries) according to independent Brownian motions. The goal is to determine the

expected message delay between the first and last mobile in the sequence (Proposition 1.3.2),
that is, the expected time to transfer a message from the first to the last mobile. As an
additional result, the probability density function (pdf) of the position of a mobile at a relay

epoch (Proposition 1.3.1) is identified. Numerical results are reported in Section 1.4. These
results suggest an accurate and scalable approximation for the expected message delay in
one dimension (see equation (1.15)). The possible extensions of the model are discussed in
Section 1.5.
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1.2 Two mobiles moving along a line segment

Consider two mobiles (say mobiles X and Y) moving along segment [0, L]. See Figure 1.2.
Communications between these two mobiles occur only when the distance between them
is less than or equal to r ≤ L. The objective of this section is to determine the expected
first-meeting time, defined as the first time when both mobiles come with a distance r of
each other.

0 Lr r

0 0x y

Figure 1.2: Two mobiles moving along [0, L] with transmission range r.

Let x(t) and y(t) be the position of mobiles X and Y, respectively, at time t. We

assume that X = {x(t), t ≥ 0} and Y = {y(t), t ≥ 0} are identical and independent

Brownian motions with drift 0 and diffusion coefficient2 D, both moving along the segment
[0, L] with reflecting boundaries at the edges. Let TL,r be the first-meeting time, namely,

TL,r = inf{t ≥ 0 : |y(t) − x(t)| ≤ r}. (1.1)

Set x(0) = x0 and y(0) = y0. By convention we assume that TL,r = 0 if |y0 − x0| ≤ r. From

now on we assume that |y0 − x0| > r.

We are interested in

TL,r(x0, y0) := IE[TL,r | x(0) = x0, y(0) = y0], 0 < x0, y0 < L,

the expected first-meeting time given that mobiles X and Y are located at position x0 and
y0, respectively, at time t = 0. The following result holds:

Proposition 1.2.1 (Expected first-meeting time with given initial positions)
For 0 ≤ x0 < y0 ≤ L with x0 + r < y0 and 0 ≤ r ≤ L

TL,r(x0, y0) =
32(L− r)2

Dπ4

∞∑

m=1
m odd

∞∑

n=1
n odd

sin
(

mπ(y0+x0−r)
2(L−r)

)
sin
(

nπ(y0−x0−r)
2(L−r)

)

mn(m2 + n2)
. (1.2)

�

The proof of Proposition 1.2.1 is based on the following intermediary result that gives
the expected time for a two-dimensional Brownian motion Z evolving in an R by R square
to hit any boundary of the square.

2i.e., x(t + h)−x(t) (respectively y(t + h)− y(t)) is normally distributed with mean 0 and variance 2Dh

for all h > 0, and non-overlapping time intervals are independent of each other. See Appendix 1.A for a

more detailed description of the Brownian motion.
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Proposition 1.2.2 (Two Brownian motions in a square)

Consider two independent and identical one-dimensional Brownian motions {u(t),
t ≥ 0} and {v(t), t ≥ 0}, with zero drift and diffusion coefficient D. Define the two-

dimensional Brownian motion Z = {z(t) = (u(t), v(t)), t ≥ 0}. Set u0 = u(0) and v0 := v(0)
and assume that 0 ≤ u0 ≤ R and 0 ≤ v0 ≤ R.

Let

τR := inf{t ≥ 0 : u(t) ∈ {0, R} or v(t) ∈ {0, R}}

be the first time when the process Z hits the boundary of a square of size R by R.

Define τR(u0, u0) = IE[τR | z(0) = (u0, v0)]. Then,

τR(u0, v0) =
16R2

Dπ4

∞∑

m≥1
m odd

∞∑

n≥1
n odd

sin
(

mπu0

R

)
sin
(

nπv0

R

)

mn(m2 + n2)
. (1.3)

�

The proof of Proposition 1.2.2 is given in Appendix 1.B. We are now in a position to prove
Proposition 1.2.1.

Proof of Proposition 1.2.1: Let x0+r < y0 ≤ L. An equivalent way to view the Brownian

motions X and Y at time t = 0 is to consider that the point (x0, y0) is located in the upper
triangle in Figure 1.3 delimited by the lines x = 0, y = L and y = x + r. If we assume
that the boundaries x = 0 and y = L are reflecting boundaries in Figure 1.3, then we see
that TL,r(x0, y0) is nothing but the expected time needed for the two-dimensional Brownian

motion {(x(t), y(t)), t ≥ 0} to hit the diagonal of the triangle (i.e., to hit the line y = x+ r)

given that (x(0), y(0)) = (x0, y0). (The process {(x(t), y(t)), t ≥ 0} is a two-dimensional

Brownian motion since {x(t), t ≥ 0} and {y(t), t ≥ 0} are both independent Brownian

motions.)

By using the classical method of images (see e.g., [68, p. 81]), it can be seen that this
time is itself identical to the expected time needed to hit the boundary of the square of size√

2(L− r) by
√

2(L− r) shown in Figure 1.4 given that (x(0), y(0)) = (x0, y0). This is due
to the reflecting boundaries at x = 0 and y = L acting as mirrors.

In order to apply the result in Proposition 1.2.2, we need to compute the coordinates
(x′0, y

′
0) of (x0, y0) in a new system of coordinates (x′, y′) depicted in Figure 1.4 and which is

rotated 45o from the original coordinate system. We find (x′0, y
′
0) = ((y0 + x0 − r)/

√
2 and

(y0 − x0 − r)/
√

2) and we may conclude, from Proposition 1.2.2, that

TL,r(x0, y0) = τ√2(L−r)

(
(y0 + x0 − r)/

√
2, (y0 − x0 − r)/

√
2
)
. (1.4)

By using (1.3) in the right hand side of (1.4) we see that (1.2) holds.
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Figure 1.3: When mobiles X and Y are at
a distance r of each other they are located
on the line y = x + r (y0 > x0 + r).
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Figure 1.4: Since reflecting barriers at
x = 0 and y = L act as mirrors, the
method of images turns the problem into a
2D Brownian motion inside four absorbing
barriers.

An example of the expected first-meeting time TL,r(x0, y0) is displayed in Figure 1.6

(see Section 1.4 for comments).

We conclude this section by giving the expected first-meeting time when both mobiles
are uniformly distributed over the segment [0, L] at time t = 0. We will see in the next
section that this case corresponds to the situation where both Brownian motions X and Y
are in steady-state at time t = 0.

Proposition 1.2.3 (Expected first-meeting time for uniform initial positions)

Assume that both mobiles X and Y are uniformly distributed over [0, L] at time t = 0

and 0 ≤ r ≤ L. The expected first-meeting time IE[TL,r] is

IE[TL,r] =
128(L− r)4

Dπ6 L2
C0, (1.5)

where C0 is a constant given by C0 =
∑∞

m=1
m odd

∑∞
n=1
n odd

1
m2n2(m2+n2)

≈ 0.527927. �
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Proof: Since X and Y are uniformly distributed at t = 0, we have

IE[TL,r] =
1

L2

∫ L

0

∫ L

0

IE[TL,r | x(0) = x0, y(0) = y0]dx0dy0

=
1

L2

∫

x0+r<y0≤L

TL,r(x0, y0) dx0dy0 +
1

L2

∫

y0+r<x0≤L

TL,r(y0, x0) dx0dy0

=
2

L2

∫

x0+r<y0≤L

TL,r(y0, x0) dx0dy0

=
64(L− r)2

Dπ4L2

∫

x0+r<y0≤L

h(y0+x0−r, y0−x0−r)dx0 dy0.

where

h(u, v) :=

∞∑

m≥1
m odd

∞∑

n≥1
n odd

sin(muβ) sin(nvβ)

mn(m2 + n2)
, β :=

π√
2(L− r)

.

Define the new variables u = (y0 + x0 − r)/
√

2 and v = (y0 − x0 − r)/
√

2. We find

IE[TL,r] =
64(L− r)2

Dπ4L2

[ ∫ L−r√
2

u=0

∫ u

v=0

h(u, v)|J(u, v)| dv du

+

∫ √
2(L−r)

u= L−r√
2

∫ √
2(L−r)−u

v=0

h(u, v)|J(u, v)| dv du
]

(1.6)

where |J(u, v)| (=1) is the determinant of the Jacobian matrix

J(u, v) =




dx

du

dx

dv

dy

du

dy

dv


 =




1√
2

− 1√
2

1√
2

1√
2


 .

It remains to evaluate the two double integrals in (1.6). By making use of the identity

h(u, v) = h(
√

2(L−r)−u, v) we see that both integrals in the right hand side of (1.6) are
equal, since

∫ √
2(L−r)

u= L−r√
2

∫ √
2(L−r)−u

v=0

h(u, v)dvdu =

∫ √
2(L−r)

u= L−r√
2

∫ √
2(L−r)−u

v=0

h(
√

2(L−r)−u, v)dvdu =

∫ L−r√
2

u=0

∫ u

v=0

h(u, v)dvdu.

The first integral can be evaluated by using the symmetry h(u, v) = h(v, u). This gives

∫ L−r√
2

u=0

∫ u

v=0

h(u, v)dvdu =

∫ L−r√
2

u=0

∫ u

v=0

h(v, u)dvdu =

∫ L−r√
2

v=0

∫ L−r√
2

u=v

h(v, u)dudv

=

∫ L−r√
2

u=0

∫ L−r√
2

v=u

h(u, v)dvdu.
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0 (I−2)L IL2LL (I−1)L

Figure 1.5: A chain of relaying mobiles.

Hence,

∫ L−r√
2

u=0

∫ u

v=0

h(u, v)dvdu =
1

2

∫ L−r√
2

u=0

∫ L−r√
2

v=0

h(u, v)dvdu

so that

IE[TL,r] =
64(L− r)2

Dπ4L2

∫ L−r√
2

0

∫ L−r√
2

0

h(u, v)dvdu. (1.7)

Since the double series in h(u, v) are uniformly bounded in the variables

u, v ∈ [0,
√

2(L − r)] (its absolute value is bounded from above by (
∑

k≥1 1/k2)2 = π4/36),

we may invoke the bounded convergence theorem to interchange the integral and summation
signs in (1.7). This gives

IE[TL,r] =
64(L− r)2

Dπ4L2

∞∑

m≥1
m odd

∞∑

n≥1
n odd

1

mn(m2 + n2)

∫ L−r√
2

u=0

sin(muβ)du

∫ L−r√
2

v=0

sin(nvβ)dv

=
128(L− r)4

Dπ6L2

∞∑

m≥1
m odd

∞∑

n≥1
n odd

1

m2n2(m2 + n2)
.

The last line follows because cos(jπ/2) = 0 for j odd.

1.3 A chain of relaying mobiles

Consider the situation depicted in Figure 1.5. There are I adjacent segments, each of length
L, and there is a single mobile per segment. We denote by Xi the mobile in segment i.
Let 0 ≤ xi(t) ≤ L (i = 1, . . . , I) be the relative position of the i-th mobile in its segment.

We assume that the process Xi = {xi(t), t ≥ 0} is a Brownian motion with zero drift and
diffusion coefficient D and that X1, . . . ,XI are mutually independent processes. Last, we
assume that each segment has reflecting boundaries at the ends.

Let T1 = inf{t ≥ 0 : x1(t) + r ≥ L + x2(t)} be the transfer time between mobiles X1

and X2, that is T1 is the first time when X1 and X2 are located at a distance less than or
equal to r from each other. The relay times T2 ≤ · · · ≤ TI−1 between mobiles X2 and X3,
. . ., XI−1 and XI , respectively, are recursively defined by

Ti = inf{t ≥ Ti−1 : xi(t) + r ≥ L+ xi+1(t)}, i = 2, . . . , I − 1.
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The objective of this section is to compute IE[Ti] for i = 1, . . . , I − 1.

Throughout this section it will be assumed that L ≤ r ≤ 2L. This assumption is made
for the sake of mathematical tractability. Indeed, a few seconds of reflection will convince

the reader that when3 L ≤ r ≤ 2L and (x1(0), x2(0)) = (x0, y0) the time needed to transfer

a message between two adjacent segments is the same as T2L,r(x0, y0 + L), the expected

first-meeting time obtained in Section 1.2 for a segment of length 2L (with the given initial

conditions). This observation allows us to find at once the expected transfer time between

mobiles X1 and X2 for any initial conditions x1(0) and x2(0). We find

IE[T1 | x1(0) = x, x2(0) = y] = IE[T2L,r(x, y + L)]. (1.8)

The difficulty arises when trying to find the expected relay times between mobiles Xi and
Xi+1 for i = 2, . . . , I − 1, since the position of Xi when the transfer between Xi−1 and Xi

takes place is not uniform in [iL, (i + 1)L].

To overcome this difficulty, we assume that the Brownian motions X1, . . . ,XI are all

in steady-state at time t = 0. This assumption implies, 2 in particular, that the position of
each mobile at time t = 0 is uniformly distributed over its segment (i.e., the pdf of xi(0) is

uniform over [0, L]). The same holds of course at any arbitrary time (i.e., the pdf of xi(t) is

uniform over [0, L] if t is arbitrary).

Another consequence of this assumption is that the position of mobile Xi+1 at time

Ti−1 (i.e., when Xi receives a message from Xi−1) is still uniformly distributed over [0, L].
This property will be used later on.

Proposition 1.3.1 below addresses the location of a mobile at the time when a relay
occurs. For later reference, we state the result in a general form. Consider two adjacent
segment, each of length L, with a single mobile in each segment (mobile X in the first

segment and Y in the second segment). Both mobiles move in their segment (with reflecting

boundaries) according to independent and identical Brownian motions with zero drift and
coefficient diffusion D. We assume that the Brownian motion representing the movement
of Y is in steady state at time t = 0. As usual, a relay will occur the first time when both
mobiles come within a distance r of each other, with L ≤ r ≤ 2L.

Proposition 1.3.1 (Pdf of location at relay epoch)

Fix L ≤ r ≤ 2L. Let q(y; x), y ∈ [0, L], be the pdf of the (relative) position of mobile Y at
the relay epoch, given that at time t = 0 the mobile X is at position x and the position of
mobile Y is uniform.

3When L ≤ r ≤ 2L the reflecting boundaries conditions are at x1(t) = 0 and at x2(t) = 2L. For

0 ≤ r ≤ L there are two additional reflecting boundary conditions at x1(t) = L and at x2(t) = L which lead

to a much more difficult problem which we were not able to solve.
2Hint: let π(x) be the stationary density probability that the mobile is in position x ∈ [0, L]. Solving

the diffusion equation D∂2π(x)/dx2 = 0 with the reflecting conditions dπ(x)/dx = 0 for x ∈ {0, L} and the

normalizing condition
∫ L

0 π(x)dx = 1 yields π(x) = 1/L for x ∈ [0, L] – see e.g., [26, p. 223].
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We have

q(y; x) =
1{y≤x+r−L} + f(x, y) 1{y≥r−L, x<2L−r}

L
, (1.9)

where

f(x, y) =
4

π2

∞∑

m≥1

∞∑

n≥1
n6=m

n (am,n + bm,n + cm,n)

m2 + n2
sin

(
mπ(y − r + L)

2L− r

)

+
2

π(2L− r)

∞∑

m≥1

dm + em

m
sin

(
mπ(y − r + L)

2L− r

)
,

and

am,n =
2m sin(nθ) − 2n sin(mθ)

m2 − n2
,

bm,n =
sin
(
(m− n)π + nθ

)
+ sin

(
(m− n)π −mθ

)

m− n

cm,n = −
sin
(
(m+ n)π − nθ

)
+ sin

(
(m + n)π −mθ

)

m+ n
,

dm =2(2L− r − x) cos(mθ)

em =
2L− r

mπ

(
sin(mθ) − sin

(
2mπ −mθ

))
, θ =

πx

2L− r
. �

The proof of Proposition 1.3.1 is given in Appendix 1.C. We are now in a position to compute

the expected transfer times IE[Ti] for i = 1, . . . , I − 1.

Define fi(x) (0 ≤ x ≤ L) as the pdf of xi(Ti−1) for i = 1, . . . , I−1 (that is, P (xi(Ti−1) <

y) =
∫ y

0
fi(x) dx). Note that f1(x) = 1/L for x ∈ [0, L] thanks to the assumption that mobile

X1 is in steady-state at time t = 0 (recall that T0 = 0 by convention). Let us first compute

IE[T1]. We find

IE[T1] =
1

L2

∫ L

0

∫ L

0

IE [T1 | x1(0) = x, x2(0) = y] dx dy

=
1

L2

∫

{x+r<y+L}
T2L,r(x, y + L) dx dy, (1.10)

by using (1.8) and T2L,r(x, y+L) = 0 if x+ r ≤ y+L. Similar to the derivation of (1.5) we
get

IE[T1] =
64 (2L− r)4

Dπ6L2
C0. (1.11)
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Next the computation of IE[Ti] for i = 2, . . . , I − 1. We have

IE[Ti] =IE[Ti−1] +
1

L

∫ L

0

∫ L

0

IE [Ti − Ti−1 |xi(Ti−1) = x, xi+1(Ti−1) = y] fi(x) dx dy

(1.12)

=IE[Ti−1] +
1

L

∫

{x+r<y+L}
T2L,r(x, y + L) fi(x) dx dy, (1.13)

where we have used (1.8) to derive (1.13). To derive (1.12) we have used the fact that the

position of mobile Xi+1 is uniformly distributed over its segment at time Ti−1 (i.e., when

the relay between mobiles Xi−1 and Xi occurs), and that it is independent of the position

of mobile Xi−1 at time Ti−1. It remains to evaluate the functions fi(x) for i = 2, . . . , I − 1.
Differentiating in y on both sides of the identity

P (xi(Ti−1) < y) =

∫ L

0

P (xi(Ti−1) < y | xi−1(Ti−2) = x) fi−1(x) dx,

and then using Proposition 1.9, gives

fi(y) =

∫ L

0

q(y; x) fi−1(x) dx, 0 ≤ y ≤ L, (1.14)

for i = 2, . . . , I − 1. These results are summarized in the next proposition.

Proposition 1.3.2 (Expected relay times of one-dimensional Brownian motions)

The expected relay times IE[Ti] for i = 1, . . . , I−1, are given by (1.11) and (1.13), where the

functions fi(x), i = 2, . . . , I−1, satisfy the recursion (1.14) with f1(x) = 1/L. In particular,

IE[T1] =
64 (2L− r)4

Dπ6L2
C0. �

1.4 Numerical results and discussion

The expected first-meeting time TL,r(x0, y0) between two nodes is displayed in Figure 1.6

as a function of the initial position x0 and y0 of the mobiles, for L = 30, r = 5 and
D = 1/4 (recall that D is the diffusion coefficient of the Brownian motions X and Y). The

figure shows that the expected message delay grows (roughly) linearly as the initial distance
between both mobiles increases and neither of the mobiles is near the boundaries of the
interval [0, L]. We used (1.14) to determine the mapping x → f2(x) for 0 ≤ x ≤ L, the
pdf of the location of mobile X2 when the relay with X1 occurs. This mapping is plotted

in Figure 1.7 for different values of the starting position of mobile X1 (x1(0) = 5, 10, 15, 20)

and for L = 30, r = 35, D = 1/4. It is interesting to observe that f2(x) is uniform in
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for L = 30, r = 5, D = 1/4.
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[0, x1(0)]. This is easily explained by the fact that if X2 is located in [0, r − L] at time T1

then it was necessarily located in this interval prior to time T1, since otherwise the relay
would have occurred before T1. Each peak corresponds to the most likely value y in [0, L]

where mobile X2 will be located at time T1. This value is around y = x1(0) + r.

Figure 1.8 displays mappings x→ fi(x) for i ∈ {2, 3, 100} (evaluated from (1.14) with

uniformly distributed initial locations). It is worth observing that these functions converge

very rapidly (already f3(x) and f100(x) are extremely close to each other).
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Figure 1.9 displays mappings r → IE[T100], r → 100 × IE[T2 − T1], and r → 100 ×
IE[T1]. This figure carries two important messages. First, it shows for different values of the
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transmission range r, that the approximation IE[T100] ∼ 100× IE[T2−T1] is very close to the

exact result IE[T100] (derived from Proposition 1.3.2)), thereby suggesting the approximation

IE[Ti] ∼ i× IE[T2 − T1] (1.15)

for the expected time to relay a message from mobile X1 to mobile Xi+1. This approximation
is based on the fact that the relay location convergences extremely rapidly and, with the
exception of the first relay, the relay locations, and therefore also the relay times, of the
consecutive relays are very similar. It has been verified that (1.15) is accurate for small

values of i as well as for large values (i.e., larger than 100). Second, it shows that the

approximation IE[T100] ∼ 100 × IE[T1] may not be accurate for small transmission ranges,

thereby ruling out the approximation IE[Ti] ∼ i × IE[T1]. This is so because the latter
approximation does not account for the fact that mobile Xi does not start from a “uniform
location”at time Ti−1 (as opposed to mobile X1 whose position is uniformly distributed over

[0, L] at time t = 0).

1.5 Extensions to the model

In this paper the message delay over a one-dimensional network was analysed for mobiles
which move as Brownian motions in adjacent segments. The extension of this theory to more
than two mobiles per segment, or with leakage from one domain to the next, does not seem
to be mathematically tractable. The reason for this is the following. If there are N mobiles
in a segment then their positions needs to be mapped to a single N -dimensional Brownian
motion. So far no problem. The model starts becoming more complex though when one has
to take into account the positions of the N -dimensional Brownian motion which correspond
to two nodes being in each others transmission range. For two one-dimensional Brownian
motions this resulted in a diagonal line (see Figure 1.3). For three nodes this leads to three
intersecting planes in a three-dimensional space. On top of this one has to take into account
the (reflecting) border conditions for each of the mobiles. Although writing down these
conditions is still feasible, the “real” problem lies in keeping track of which nodes have or
have not received a copy of the message, the correlation between these nodes their positions,
and finding an expression for the function which corresponds to the expected transfer time
and which satisfies all of the necessary conditions.

A similar problem arises for N two-dimensional Brownian motions. In this case the
positions of the mobiles can be mapped to a single 2N -dimensional Brownian motion. Since
the area in which two nodes can communicate is given by a circle, it means that with the
method of images the corresponding boundary conditions are no longer in the simple form
of a square. Once again, finding a function which corresponds to the expected message
delay, while keeping track of which mobile have a copy of the message, does not seem to be
feasible.

As a side remark it is worth mentioning that the process which models the distance
between two two-dimensional Brownian motions in free space (i.e., with no boundaries)
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is known as a Bessel process. For this process various results exist, and, just as for two
Brownian motions on an infinite line, the expected time until two Brownian motions in free
space come within each others range is infinite. In this paper a bounded region was assumed
to ensure a finite transfer time.

1.6 Concluding remarks

Besides message delay, the question of power control is also central in ad hoc networking.
Ongoing research is concerned with determining the minimum transmission range that will
ensure communication between mobiles (within a certain probability) before the battery
power runs out, and with introducing utility functions into the model.

As soon as two nodes come within each others communication range there is the im-
portant issue of how long their contact time is. If these times are too short then a successfull
transfer of a message can not be guaranteed. Hence either the contact times or the proba-
bility of a successful transfer should be taken into account to more accurately reflect reality.

With a certain amount of overlap to this work, the next chapter considers the situation
where instead of mobiles moving as Brownian motions they move as Random walkers over
a discrete state space. This model also corresponds to messages being passed around a
sensor network. The results presented there are verified through simulations and are in
correspondence to the results presented in this chapter (in the limit for an infinite number

of states).

As mentioned earlier, the problem with keeping track of which mobiles do or do not have
a copy of the message in combination with their positions greatly increases the complexity
and limits the extendibility of the theory presented in this paper. However, by assuming
that r << L and by working in (at least) two dimensions it has been found that the number
of copies in the network can be decoupled from the positions of the copies. This greatly
simplifies the analysis and has led to generic results and formulas given in Chapter 3 which
hold under a variety of mobility models. Oddly enough, the theory developed there can not
be used for the analysis of one-dimensional mobility models and hence there remains a need
to study the one- and the two-dimensional settings separately.
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1.A The Brownian motion

A Brownian motion with zero drift is a stochastic process {x(t); t ≥ 0} with the properties

• Each increment x(t+h)−x(t) is normally distributed with mean 0 and variance 2Dh

for all h > 0. The constant D is known as the diffusion coefficient.3

• Non-overlapping time intervals are independent of each other.

Although the proof lies outside the scope of this thesis, we point out that if there is an

absorbing barrier at x′ then we must have p(x′, t) = 0. If there is a reflecting barrier at x′

then we must have
∂px0,x(t)

∂x

∣∣∣
x′

= 0. See [68] for the underlying theory,

If one is interested in the first-passage time to a boundary, then the behaviour of the
Brownian motion after it has reached the boundary for the first time is not of influence to the
distribution of the first-passage time to that boundary. This means that the boundary can
be taken to be absorbing or reflecting as it will not change the first-passage time distribution.
In the presence of an absorbing boundary, the first-passage time to the boundary can be
calculated by taking the flux at the boundary, that is, the first-passage time is given by the
space derivate of the concentration orthogonal to the boundary. See [68] for the motivation
and proofs of this result.

The extension of the one-dimensional Brownian motion to a two-dimensional movement
pattern is done by taking two independent one-dimensional Brownian motions and mapping
each of these movements to each of the dimensions. Similarly, from a multi-dimensional
Brownian motion we can extract a one-dimensional Brownian motion by looking at the
movement in only one of the dimensions.

1.A.1 History of the Brownian motion

The Brownian motion was first “discovered” by the English botanist Robert Brown in 1827
and later developed, in a mathematical sense, by Einstein in 1905. Einstein’s treatment
considers a small particle which is exposed to an enormous amount of molecular collisions.
Although each collision has a negligible effect, the superposition of all collisions gives the
particle a motion. This motion, a type of diffusion process, is the Brownian motion. The
first rigorous mathematical formulation was given by Wiener in his 1918 dissertation and
following papers and for this reason the Brownian motion is also often referred to as a
Wiener-process. Brownian motion are also used in finance—in particular stock markets—to
model the fluctuations of (stock) prices.

Other, more complicated, diffusion processes can also be used to model a movement
(such as the Ornstein-Uhlenbeck process). As opposed to the random walk, a Brownian
motion is a continuous time, continuous state space Markov process. This movement is in

3In the literature there is often a confusion in the exact definition of the diffusion coefficient D and the
drift µ. The constant 2 can be part of, or it can be left out of the definition of the constants.
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general constructed in either of two ways: either as a limiting form of a random walker or
as a diffusion process.

1.A.2 Brownian motion as a random walker

First the approach starting from a random walker on an infinite state space. We will provide
only the outline of the proof as it provides insight into the way a Brownian motion moves.
A rigorous treatment is rather involved and can be found in the references mentioned at the
end of this section.

The evolution of the occupation probability a random walker on an infinite state space
is described by the master-equation

px0,x(n + 1) = p · px0,x−1(n) + q · px0,x+1(n). (1.16)

In the following we will replace this discrete space and time process by a continuous space
and time process. First we make the time continuous by letting each step take ∆t units of
time. During a time t the random walk jumps about t/∆t times. The master-equation then
becomes

px0,x(t + δt) = p · px0,x−1(t) + q · px0,x+1(t).

By taking the Taylor expansion of this expression we obtain

px0,x(t) + δt
∂px0 ,x(t)

∂t
+
∑

k≥2

δk
t

k!

∂kpx0,x(t)

∂tk
= p · px0,x−1(t) + q · px0,x+1(t).

Since the term δt will be sent to zero the summation will become negligible. We now have

∂px0,x(t)

∂t
=

p

δt
· px0,x−1(t) +

q

δt
· px0,x+1(t) −

1

δt
· px0,x(t)

Next the discrete space will be “continuized4” by letting each step have length δx. By once
again taking the Taylor expansion (but now on the spatial coordinate x), collecting terms,

and “throwing away” all terms with a δk
x and k larger than three, we obtain the convection-

diffusion equation

∂px0,x(t)

∂t
+ ν

∂px0 ,x(t)

∂x
= D

∂2px0,x(t)

∂x2
, (1.17)

where ν := (p-q)δx/δt is the bias velocity or drift and D := (δx)
2/2δt is the diffusion coeffi-

cient. For the symmetric random walk, i.e., p = q = 1/2, the drift is equal to zero and the
simpler diffusion equation

∂px0,x(t)

∂t
= D

∂2px0,x(t)

∂x2
(1.18)

4Although this word officially does not exist, here it is used to mean “made continuous”.
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is obtained. This Brownian motion is referred to as the (standard) Brownian motion with
zero drift. Whereas for random walkers one talks about the occupation probability of a
state, for Brownian motions one refers concentration in x.

The approach presented here is mainly heuristic in nature, for a truly rigorous treatment
δt and δx must be sent to zero in the correct way. See for example [26, page 203] [53].
For more information about the relationship between the discrete hopping process and the
continuum the reader is referred to [35], [85], and [82].

1.A.3 Brownian motion as a diffusion process

Small particles execute Brownian motions owing to collisions with the molecules in the gas
or liquid in which they are suspended. Let x(t) represent, at time t, the location of a

particle along one axis (for example, along a horizontal axis). The concentration px0,x(t)

then represent the probability density in x at time t for a particle starting in x(0) = x0.

Since px0,x(t) is a density we have the properties

px0,x(t) ≥ 0,

∫ ∞

−∞
px0,x(t)dx = 1, (1.19a)

for all t ≥ 0. Furthermore, since at time t = 0 the particle starts in x0, we require

lim
t→0

px0,x(t) = 0, for x 6= x0. (1.19b)

From physical properties Einstein showed that px0,x(t) must satisfy (1.18), where D is given

by D = 2RT/Nf . Here R is a gas constant, T is the temperature, N is Avogardo’s number,

and f is a coefficient of friction.

1.B Proof of Proposition 1.2.2

The density probability q(x, t; u0) that the Brownian motion {u(t), t ≥ 0} is in position

x ∈ (0, R) at time t, given that u(0) = u0 and that the Brownian motion has not been

absorbed up to time t, is [68, p. 255, formula (8.2.1)] [85, page 177]

w(x, t; u0) =
2

R

∑

n≥1

e−(nπ/R)2Dt sin
(nπx
R

)
sin
(nπu0

R

)
.

Since {u(t), t ≥ 0} and {v(t), t ≥ 0} are independent and identical Brownian motions, we

deduce from the above that the density probability p(x, y, t; u0, v0) that the two-dimensional

Brownian motion Z is in position (x, y) at time t, without having hit one of the sides of the
squares up to time t, is given by

p(x, y, t; u0, v0) = w(x, t; u0)w(y, t; v0). 0 < x, y < R. (1.20)
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Conditioned on z(0) = (u0, v0), the probability S(t; u0, v0) = P (τR > t) that the process has

not hit the boundaries at time t (often called the survival probability [68]) is given by

S(t; u0, v0) =

∫ R

0

∫ R

0

p(x, y, t; u0, v0)dxdy.

Therefore,

S(t; u0, v0) =

∫ R

0

w(x, t; u0)dx

∫ R

0

w(y, t; v0)dy

=
4

R2

∑

m≥1

e−(mπ/R)2Dt sin
(mπu0

R

)∫ R

0

sin
(mπx

R

)
dx×

∑

n≥1

e−(nπ/R)2Dt sin
(nπv0

R

)∫ R

0

sin
(nπy
R

)
dy (1.21)

=
16

π2

∑

m≥1
m odd

∑

m≥1
n odd

sin
(

mπu0

R

)
sin
(

nπv0

R

)

mn
e−

π2

R2
(m2+n2)Dt,

where the uniform convergence of the series w(x, t; ·) in x ∈ [0,∞) (because |w(x, t; ·)| ≤
1/(1− exp(−(π/R)2Dt))) allows one to interchange integral and summation signs in (1.21).

Note that, as expected, S(0; u0, v0) = 1 since
∑

i≥1 sin((2i − 1)x)/(2i − 1) = π/4 for all x

[37, Formula 1.442.1].

Finally,

τR(u0, v0) =

∫ ∞

0

S(t; u0, v0) dt

=
16

π2

∫ ∞

0

∑

m≥1
m odd

∑

m≥1
n odd

sin
(

mπu0

R

)
sin
(

nπv0

R

)

mn
e−

π2

R2 (m2+n2)Dt dt (1.22)

=
16

π2

∑

m≥1
m odd

∑

m≥1
n odd

sin
(

mπu0

R

)
sin
(

nπv0

R

)

mn

∫ ∞

0

e−
π2

R2 (m2+n2)Dtdt (1.23)

=
16R2

Dπ4

∞∑

m≥1
m odd

∞∑

n≥1
n odd

sin
(

mπu0

R

)
sin
(

nπv0

R

)

mn(m2 + n2)
,

where we have used the property that the series S(t; ·, ·) is uniformly convergent in [0,∞)

(since S(t; ·, ·) ≤ 1 for all t ≥ 0 by definition of S(t; ·, ·)) to interchange the summation and

the integral signs in (1.22) to give (1.23). This concludes the proof.
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1.C Proof of Proposition 1.3.1

Let x(t) and y(t) be the relative positions at time t of mobiles X and Y in [0, L] and

[L, 2L], respectively. Let T the first time when x(t) + r ≥ y(t) + L. Observe that T = 0 if

x(0) + r ≥ y(0) + L. We have

P (y(T ) < y | x(0) = x0) =
1

L

∫ L

0

P (y(T ) < y | x(0) = x0, y(0) = y0) dy0

=
1

L

∫ L

0

1{x0+r≥L+y0}1{y>y0} dy0

+
1

L

∫ L

0

1{x0+r<L+y0,y≥r−L}P (y(T ) < y | x(0) = x0, y(0) = y0) dy0

=
1

L
min(x0 + r − L, y)

+
1

L
1{y≥r−L,x0<2L−r}

∫ L

x0+r−L

P (y(T ) < y | x(0) = x0, y(0) = y0) dy0,

where the indicator function 1{y≥r−L} in the second integral in the second equality accounts

for the fact that if the transfer does not take place at t = 0 (under the condition x0+r < y+L

then necessarily T > 0) then mobile Y can not be located in [L, L−r) at time T as otherwise
the relay would have occurred before time T . Differentiating both sides of the above relation
with regards to y gives

q(y; x0) =
1

L
1{y≤x0+r−L} +

1

L
1{y≥r−L,x0<2L−r}

∫ L

x0+r−L

g(y; x0, y0) dy0, (1.24)

with g(y; x0, y0) := (∂/∂y)P (y(T ) < y | x(0) = x0, y(0) = y0). It remains to evaluate

g(y; x0, y0). To this end, we will use again the method of images (see proof of Proposition

1.2.1).

Consider a square of size R by R, with R =
√

2(2L− r), delimited by the (absorbing)

boundaries x′ = 0, x′ = R, y′ = 0 and y′ = R. Starting from position (x′0, y
′
0) at time t = 0,

the pdf p(x′, y′, t; x′0, y
′
0) of the location of a two-dimensional Brownian motion at time t,

given that the mobile has not been absorbed up to time t, is given by (see equation (1.20))

p(x′, y′, t; x′0, y
′
0) =

4

R2

∑

n≥1

∑

n≥1

e−(m2+n2)(π/R)2Dt×

sin

(
mπx′

R

)
sin

(
nπy′

R

)
sin

(
mπx′0
R

)
sin

(
nπy′0
R

)
.

(1.25)

This expression will be used later on to derive the pdf of the location where the Brownian
motion hits the side of the square for the first time.
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Let ξ(x′, y′; x′0, y
′
0) (0 ≤ x′, y′, x′0, y

′
0 ≤ R), be the pdf of the absorption occurring at

point (x′, y′). Since we have applied the method of images we find that g(y; x0, y0) is the

sum of four of these components. Namely, with x′ =
√

2(y+L−r), it is the sum of the

densities of hitting the side of the square R×R at the points (x′, 0), (0, x′), (R−x′, R), and

(R,R− x′). With x′0 = (y0+x0+L−r)/
√

2 and y′0 = (y0−x0+L−r)/
√

2 this gives

g(y; x0, y0) = ξ
(
x′, 0; x′0, y

′
0

)
+ ξ
(
0, x′; x′0, y

′
0

)
+ ξ
(
R−x′, R; x′0, y

′
0

)
+ ξ
(
R,R−x′; x′0, y′0

)
.

Onward calculations can be simplified slightly by making use of symmetry arguments. Con-
tinuous rotation of the square by 90o means that each of the terms can be replaced by the
density of the probability of hitting the side of the square at (x′, 0) while starting from,

respectively, (x′0, y
′
0), (y′0, x

′
0), (R − x′0, R− y′0), or (R− y′0, R− x′0). This gives

g(y; x0, y0) =ξ (x′, 0; x′0, y
′
0) + ξ (x′, 0; y′0, x

′
0)

+ ξ (x′, 0;R−x′0, R−y′0) + ξ (x′, 0;R−y′0, R−x′0) . (1.26)

Note that although ξ(x′, 0; ·, ·) no longer contains y′, it still depends on y, x0, and y0 through

x′ =
√

2(y+L−r), x′0 = (y0+x0+L−r)/
√

2, and y′0 = (y0−x0+L−r)/
√

2. It remains to solve

ξ (x′, 0; x′0, y
′
0) for any set of initial conditions (x′0, y

′
0). We shall do this through the help of

the first-passage probability of the point (x′, 0).

If j(x′, t) is the pdf of the first-passage probability of hitting the absorbing boundary

of the square for the first time in the point (x′, 0) at time t, then naturally

ξ(x′, 0; x′0, y
′
0) =

∫ ∞

0

j(x′, t)dt, (1.27)

since it is the probability density of hitting the boundary for the first time in (x′, 0) over all
time.

It is known [68, p. 25, p. 45] that j(x′, t) is equal to the flux going out from the point

(x′, 0), i.e.,

j(x′, t) = D
∂p(x′, y′, t; x′0, y

′
0)

∂y′
|y′=0,

with p(x′, y′, t; x′0, y
′
0) the pdf of the location of the Brownian motion at time t given by

equation (1.25). Combining this with (1.27) gives

ξ(x′, 0; x′0, y
′
0) =D

∫ ∞

0

∂p(x′, y′, t; x′0, y
′
0)

∂y′
|y′=0 dt

=
4

Rπ

∑

n≥1

∑

n≥1

n

m2 + n2
sin

(
mπx′

R

)
sin

(
mπx′0
R

)
sin

(
nπy′0
R

)
. (1.28)

Finally, plugging (1.26) and (1.28) into (1.24) yields (1.9) after some tedious algebra.
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Mobile ad hoc networks are characterized by a lack of a fixed infrastructure and by
node mobility. In these networks key factors for the performance of the network are the
node mobility and the transmission power. In addition to these two factors, relaying also
plays an important role in determining the time required to transfer a message between
mobiles. In this chapter we study these three elements through the analysis of a simple
one-dimensional ad hoc network topology. Nodes move as random walkers and communi-
cation can take if they are within a certain number of states from each other. Each mobile
remains an arbitrary amount of time in a state after which it possibly jumps to one of the
neighbouring states. Closed-form expressions are derived for the expected time until two
nodes communicate directly with each other, departing from either given initial positions or
from a stationary regime. Although the resulting expressions are rather complex, a simple
and accurate approximation is derived which holds for an arbitrary number of states, com-
munication ranges, and sojourn time distributions at each state. Finally, these results are
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extended to obtain the message delay when relaying a message across a sequence of mobiles.
The results presented here can also be used for two messages travelling through a sensor
network. In addition, in the limit (for the number of states), the Random Walker turn into

Brownian motions and all of the results converge to those presented in Chapter 1 or in [41].

The rest of this chapter is organised as follows. In Section 2.1 the situation is considered
where two nodes move as two independent random walkers over the same set of states (see

Figure 2.1). We are interested in computing the expected time until both nodes come within
a certain number of states from each other. This quantity is derived for any given initial
locations (Proposition 2.1.1) as well as for the case where each random walk is assumed to

start from steady-state (Proposition 2.1.2). It is known (see the assumption after Proposition

2.1.1) that this assumption implies that both nodes are uniformly distributed over the
segment. The uniform spatial distribution over the coverage area has attracted attention
lately and several fundamental results [45, 34, 8] have been obtained in this setting.

These results are then used and extended in Section 2.2 where a message is relayed
across a chain of nodes. Numerical results are given in section 2.2.1. Finally, concluding
remarks are given in Section 2.4.

2.1 Two random walkers jumping on a finite state space

We consider two mobiles (henceforth called nodes or random walkers) X and Y jumping
over L > 1 points, labelled 0, 1, . . . , L − 1. Both node are assumed to move independently
of each other according to the following mobility pattern: each mobile visits state i ∈
{0, 1, . . . , L−1} for a random duration (called the visit time) and then jumps instantaneously

to one of the two neighbouring states with equal probability if i ∈ {1, 2, . . . , L− 2}; if i = 0

(resp. i = L− 1) then the mobile either stays in state 0 (resp. L− 1) or it jumps to state 1

(resp. L − 2) with equal probability. After this the process starts over again but from the
new state. See Figure 2.1.
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Figure 2.1: Two nodes (at x0 and y0) represented as two random walker on L states.

We assume that the visit times at the states are independent and identically distributed
random variables with finite mean IE[S]. In particular, the cases will be considered where
the visit times are either all exponentially distributed or all constant. Let Tn denote the

time when the nth jump (of either mobile) occurs which gives {Tn}n as a Poisson process

with intensity 2/IE[S]. In the latter case (constant visit times) we assume that the mobiles

jump at exactly the same time1 so that T2n−1 = T2n = nIE[S]. In both cases T0 = 0.

1The analysis of two mobiles jumping at different times is messy due to need of keeping track which

mobile jumped last. If nodes are assumed to jump at the same time all the results will be almost the same.
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Let x(n), y(n) ∈ {0, 1, . . . , L− 1}, respectively, be the state nodes X and Y are in just

after the nth jump (i.e., at time Tn+) and let x0 := x(0) and y0 := y(0).

Nodes X and Y can communicate as long as they are not separated by more than r
states. More precisely, if we denote by NL,r the number of jumps until the first communi-

cation takes place, then

NL,r = inf{n ∈ Z
∗ : |y(n) − x(n)| ≤ r}, with Z

∗ := {0, 1, 2, . . .} (2.1)

Note that NL,r = 0 if |y(0)− x(0)| ≤ r.

Our first objective in this section is to compute

NL,r(x0, y0) := IE[NL,r | x(0) = x0, y(0) = y0], x0, y0 ∈ {0, 1, . . . , L−1}, (2.2)

the conditional expected number of jumps required until both nodes can communicate. From

this the unconditional expected number of jumps, IE[NL,r], will be derived as well as the

expected time, IE[TNL,r
], until the two nodes can transfer a message between each other.

The following proposition gives the conditional expected number of jumps.

Proposition 2.1.1 (Expected number of jumps with given initial positions)

Let x0, y0, r ∈ {0, 1, . . . , L − 1} and x0 + r < y0 (the case x0 − r > y0 can be solved by

interchanging x0 and y0). The expected number of jumps for the random walkers X and Y
starting in x0 and y0 to come within r states from each other is given by

NL,r(x0, y0) =
R−1∑

j=1
j odd

R−1∑

k=1
k odd

FjFkgjk(xy, y0)

1 − cos(jθ) cos(kθ)
(2.3a)

in the case of exponential visit times and by

NL,r(x0, y0) =

R−1∑

j=1
j odd

R−1∑

k=1
k odd

2FjFkgjk(x0, y0)

1 −
(
cos(2jθ) + cos(2kθ)

)
/2

(2.3b)

in the case of deterministic visit times. Here

R := 2(L− r), Fj :=
2 sin(jθ)

R
(
1 − cos(jθ)

) ,

θ :=
π

R
=

π

2(L− r)
, gjk(x0, y0) := sin

(
πj(y0−r+x0+1)

2(L− r)

)
sin

(
πk(y0−r−x0)

2(L− r)

)
.

The proof is given Appendix 2.B. �
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We have not succeeded in simplifying equation (2.3) any further. As an example, the

conditional expected number of jumps NL,r(x0, y0) as a function of x0 and y0 is displayed

in Figure 2.2 for exponential visit times and L = 30 states and r = 5. Deterministic visit
times gives an identical figure. The figure shows that the expected number of jumps grows
(roughly) linearly as the initial distance between both nodes increases and neither of the
nodes is near the outer states of the segment.

As Proposition 2.1.1 gives the conditional expected number of jumps, the next ques-
tion that naturally arises is what the unconditional expected number of jumps could be.
To answer this question, we assume that the random walkers X and Y are in steady-state

at jump n = 0. This assumption implies,2 in particular, that the position of each random
walker at jump n = 0 is uniformly distributed, i.e., the probability density function (pdf)

of x(0) or y(0) is uniform over {0, . . . , L−1}. The same holds of course at any arbitrary

time (i.e., the pdf of x(n) or y(n) is uniform over {0, . . . , L−1} if n is arbitrary). With this
assumption we are now in a position to give the unconditional expected number of jumps
needed for two nodes to come within communication range of each other.

Proposition 2.1.2 (Expected number of jumps for uniform initial positions)

Let r ∈ {0, 1, . . . , L−1} and assume that two random walkers X and Y are in steady-state at

jump n = 0. The expected number of jumps, IE[NL,r], in the case of exponential visit times
is

IE[NL,r] =
4

R2L2

R−1∑

j=1
j odd

R−1∑

k=1
k odd

GjGk cos(kθ)

1 − cos(jθ) cos(kθ)
, (2.4a)

whereas in the case of deterministic visit times

IE[NL,r] =
8

R2L2

R−1∑

j=1
j odd

R−1∑

k=1
k odd

GjGk cos(kθ)

1 −
(
cos(2jθ) + cos(2kθ)

)
/2
. (2.4b)

Here

R := 2(L− r), θ :=
π

R
=

π

2(L− r)
, Gj :=

1

1 − cos(jθ)
.

Furthermore, there is an insensitivity property3 towards the underlying visit time distribution

since for both exponential and deterministic visit times4

IE[NL,r] =
512(L− r)4C

π6L2
+ O

(
(L− r)2

L2

)
, (2.5)

2See Section 2.A for the derivation.
3It is interesting to point out that the limiting form of the random walkers, two Brownian motions moving

on a line, gives an expression [41, Proposition 3] similar to equation (2.5) up to a constant factor (D = 1/4)

difference which accounts for the transition from the discrete to the continuous state space.
4One writes f(N) = O(g(N)) if |f(N)/g(N)| is bounded from above as N → ∞.
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where

C :=
∞∑

j=1
j odd

∞∑

k=1
k odd

1

j2k2(j2 + k2)
≈ 0.5279.

In both cases a simple lower bound is given by

512(L− r)4C

π6L2
− (2 + π2)(L− r)2

2π2L2
≤ IE[NL,r] (2.6)

�

The proof is forwarded to Appendix 2.C. Expressions for the upper bounds can also by
obtained (they are given in Appendix 2.C) but they are rather lengthy and have therefore
been omitted here as they does not provide additional information.

Examples of equations (2.4a) and (2.4b) are given in Figure 2.3 for L = 25 states
and varying transmission ranges. Also shown in the figure are simulated values of the
expected number of jumps for a range of different visit time distributions, along with the
90% confidence intervals of the simulations. Each point in the figures is based on n =
5.000.000 runs to estimate the expected number of jumps. The confidence interval around

each simulated mean is [x̄ ± σ√
n
Φ(0.95)], where x̄ := 1

n

∑n
i=1 xi is the simulated expected

number of jumps (xi is the number of jumps needed in the ith simulation run) and σ :=
1
n

∑n
i=1(xi − x̄)2 is the simulation variance. Here Φ(0.95) ≈ 1.645 is the 95 percentile of the

normal distribution function.

Striking is the fact that in all cases the theoretical and the simulated expected number
of jumps are in such close vicinity to one another that they can hardly be distinguished from
one another. This is due to an insensitivity towards the underlying visit time distribition.
The reason for this, we argue, is that although directly after the jump of one node the
elapsed visit time of the other node may not be ignored (unless it is exponential), after
a number of jumps the expected number of jumps of each of the two nodes become more
or less independent of each other. Putting it differently, let Wn be a sequence of numbers
such that Wn = 0 if the first node jumps at jump n and Wn = 1 if the second node
jumps at jump n. Then, unless the visit times are exponential, the sequences of zeros
and ones are correlated. However, as the number of steps increases, the mean number of
zeros becomes more independent of the order of the zeros and ones. As proposition 2.1.2
presents the expected number of jumps, regardless of the order in which the nodes jump, it
is to be expected that the expected number of jumps is more or less (but not completely)
independent of the visit time distribution.

Another interesting feature of Figure 2.3 is that equations (2.4a), (2.4b), and 32R4

π6L2 can

be seen to lie extremely close to each other, indicating that the O(·) term in (2.5) is relatively

small (even for L = 25). Taking different values of L and r have continuously led to the
same conclusions.
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Figure 2.2: Expected number of jumps
N30,5(x0, y0) (see Proposition 2.1.1) for

random walkers X and Y to come within r
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To get an indication of the estimates given in equations (2.5) and (2.6) take a look at

Figure 2.4. Shown are, for exponential visit times (deterministic visit times gives an idential

figure), the function 32R4

π6L2 , the lower bound given by (2.6), and the exact values calculated

with (2.4). As can be seen, even for small values of L and r, the exact expected number of

jumps for deterministic and exponential visit times, and the function 32R4

π6L2C lie extremely

close to one another. Also, as L increases we see that the lower bound gets (relatively) closer
to the exact values.

As a note it must be observed that although they are all extremely close, the expected
number of jumps for exponential and deterministic visit time are not identical, nor is either

of them exactly equal to 32R4

π6L2C.

Proposition 2.1.2 gave the expected number of jumps until the two nodes are within
communication range of each other. The following proposition extends this result to the
expected time for this to happen.

Proposition 2.1.3 (Expected transfer time for uniform initial positions)
Let two random walkers jump on the same L states and let them start from a steady-state
distribution. For exponentially and deterministically distributed visit times with mean IE[S],

the expected transfer time IE[TNL,r
] is

IE[TNL,r
] =

IE[S]

2
IE[NL,r], (2.7)

where IE[NL,r] is given in Proposition 2.1.2. For both exponentially or deterministically
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Figure 2.4: Expected number of jumps (exact values, approximation, and lower bound) until
two random walkers on L states are within r states from each other .

distributed visit times we have, with the help of (2.5),

IE[TNL,r
] =

256(L− r)4CIE[S]

π6L2
+ IE[S] · O

(
(L− r)2

L2

)
(2.8)

Just as in Proposition 2.1.2, we see that there is an insensitivity property towards the un-
derlying visit time distribution. �

Proof. We start by considering exponential visit times. Let the visit times, S1 and
S2, of the two nodes be independent and exponentially distributed with mean IE[S]. Since

Tn−Tn−1 is the visit time between the (n−1)th and the nth jump, it follows that Tn−Tn−1 is

distributed as an exponential variable with mean S/2. To see why Tn−Tn−1 ∼ exp(2/IE[S]),

first realize that by definition T1−T0 = min(S1, S2). Then

P (T1 − T0 > t) = P (min(S1, S2) > t) = P (S1 > t;S2 > t) = P (S1 > t)P (S2 > t) = e−2t/IE[S].

The visit times for both nodes ‘start over’ after each jump—due to the memoryless property
of the exponential distribution—and therefore Tn−Tn−1 ∼ T1−T0. This gives the expected
transfer time as

IE[TNL,r
] = IE

[
NL,r∑

i=1

Ti−Ti−1

]
= IE[T1−T0]IE[NL,r] =

IE[S]

2
IE[NL,r].

In the case of deterministic visit times of duration IE[S], the visit time Tn−Tn−1 between

the (n−1)thh and the nth jump is either of duration IE[S] if n is odd and zero if n is even
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(since the nodes were assumed to jump at the same time). This results in

IE[TNL,r
] = IE

[
NL,r∑

i=1

Ti−Ti−1

]
= IE[T1−T0]

IE[NL,r]

2
=

IE[S]

2
IE[NL,r].

2.2 A chain of relaying nodes

In the previous section we considered two nodes moving on the same state space. Next
consider the situation depicted in Figure 2.5. There are I adjacent segments, each with L
states, and there is a single node per segment. We denote by Xi the node in segment i

(i ∈ {1, . . . , I}). Let xi(n) ∈ {0, . . . , L−1} be the relative position of the ith node in its

segment. We assume that the process Xi = {xi(n), n = Z
∗} is a random walker with equal

probability of jumping to the right or the left and that the random walker remains a random
amount of time (the visit time) in each state. Whenever a random walker is in a state at
the edge of its segment, then once the visit time has expired the random walker jumps to
the same state or to the neighbouring state (within its segment) with equal probability.
Additionally, assume that X1, . . . ,XI are mutually independent processes.

�� ������ ������	
�� 
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0 L (I−2)L (I−1)L IL−12L−1

Figure 2.5: There are I segments with a random walker jumping in each segment.

Let M1 = inf{n ∈ Z
∗ : x1(n)+r ≥ L−1+x2(n)} be the expected number of jumps

until X1 and X2 are located at most r states from each other for the first time. The
expected number of jumps M2 ≤ · · · ≤MI−1 between nodes X2 and X3, . . ., XI−1 and XI ,
respectively, are recursively defined by

Mi = inf{n ≥Mi−1 : xi(n) + r ≥ L−1+xi+1(n)}, i = 2, . . . , I − 1, n ∈ Z
∗. (2.9)

Our objective in this section is to compute IE[Mi], the expected number of jumps needed to

transfer a message from the first node to the (i+1)th node, for i = 1, . . . , I−1.

Throughout this section it will be assumed that L ≤ r ≤ 2L. This assumption is made
for the sake of mathematical tractability. Indeed, a few seconds of reflection will convince the

reader that when5 L ≤ r ≤ 2L and (x1(0), x2(0)) = (x0, y0) the expected number of jumps

needed to transfer a message between two adjacent segments is the same as N2L,r(x0, y0+L),

the expected number of jumps obtained in Section 2.1 for a segment with 2L states and with

5When L ≤ r ≤ 2L the reflecting boundaries conditions are at x1(t) = 0 and at x2(t) = 2L. For

0 ≤ r ≤ L there are two additional reflecting boundary conditions at x1(t) = L and at x2(t) = L which lead

to a much more difficult problem which we were not able to solve.
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the given initial conditions. This observation allows us to find at once the expected number

of jumps between nodes X1 and X2 for any initial conditions x1(0) and x2(0). We find

IE[M1 | x1(0) = x, x2(0) = y] = N2L,r(x, y + L). (2.10)

The difficulty arises when trying to find the expected number of jumps between nodes Xi

and Xi+1 for i = 2, . . . , I − 1, since the position of Xi right after the transfer between Xi−1

and Xi takes place is not uniform.

To overcome this difficulty, we assume that the random walkers X1, . . . ,XI are all in
steady-state at jump n = 0. This assumption implies, in particular, that the position of
each node at jump n = 0 is uniformly distributed over its segment (i.e., the pdf of xi(0) is

uniform over {0, . . . , L−1}). The same holds at any arbitrary time, i.e., the pdf of xi(n) is

uniform over {0, , . . . , L−1} if n is arbitrary.

Another consequence of this assumption is that the position of node Xi+1 at jump Mi−1

(i.e., when Xi receives a message from Xi−1) is uniformly distributed over {0, . . . , L−1}.
This property will be used later on.

Proposition 2.2.1 below addresses the location of a node at the moment when a relay
occurs. For later reference, the result is stated in a general form. Consider two adjacent
segment, each with L states, with a single node in each segment (node X in the first segment

and Y in the second segment). Both nodes move in their segment as independent random

walkers with equal probability of jumping in either direction (and at the outermost states

the random walker can once again jump back to the same state). Let the random walker
representing the movement of Y be in steady state at jump n = 0. As usual, a transfer can
occur the first time both nodes are within r states from one another.

Proposition 2.2.1 (Pdf of location at relay epoch for exponential visit times)

Fix L ≤ r ≤ 2L. Let q(x, y) be the pdf of the (relative) position y ∈ {0, . . . , L−1} of node

Y at the relay epoch, given that at jump n = 0 node X is at position x ∈ {0, . . . , L−1} and
that the position of node Y is uniform. Let N be the number of jumps until the relay can
take place. The function q(x, y) can be calculated through a series of functions.

We have

q(x0, y) = P (y(N) = y|x(0) = x0)

=
1{y≤x0+r−L+1)}

L
+

1{x0+r≤2(L−1), y≥r−L+1}
L

L−1∑

y0=x0+r−L+1

g(y; x0, y0), (2.11a)

where
g(y; x0, y0) = (Pẋ−1,y+Pẋ,y+1)/4

and ẋ := y−r+(L−1). Finally, the function Pxy is calculated through

Pxy = P̃xy + 1{x≥1}P̃−x,y + 1{y≤L−2}P̃x,2(L−1)−y + 1{x≥1; y≤L−2}P̃−x,2(L−1)−y. (2.11b)
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where

P̃xy =
4

Ṙ2

Ṙ−1∑

j=1

Ṙ−1∑

k=1

ḣjk(x, y)ḣjk(x0, y0)

1 − cos(jθ̇) cos(kθ̇)
(2.11c)

and

ṙ = r−(L−1), Ṙ = 2(L− 1 − ṙ) = 2(L− 1) − r, θ̇ =
π

Ṙ
=

π

2(L− 1) − r
,

ḣjk(x, y) := sin
(
jθ̇(y−ṙ+x)

)
sin
(
kθ̇(y−ṙ−x)

)
, ṙ+x ≤ y ≤ L−1. �

The proof of Proposition 2.2.1 is given in Appendix 2.D. We are now in a position to
compute the expected number of jumps IE[Mi] needed to transfer a message from the first

to the ith node, i = 2, . . . , I. Conditioning on the independent positions of the nodes in the

ith and (i+1)th segment at jump Mi−1 gives

IE[Mi−Mi−1] =

L−1∑

x=0

L−1∑

y=0

IE
[
Mi−Mi−1|xi(Mi−1) = x; xi+1(Mi−1) = y

]

· P
(
xi(Mi−1) = x

)
· P
(
xi+1(Mi−1) = y

)
.

In steady state P (xi+1(Mi−1) = y) = 1/L and IE[Mi −Mi−1|xi(Mi−1) = x; xi+1(Mi−1) =

y] depends only on the positions of the two nodes and not on i. From (2.10) we have

IE[Mi−Mi−1|xi(Mi−1)=x; xi+1(Mi−1)=y] = N2L,r(x, y+L). This gives

IE[Mi −Mi−1] =
1

L

L−1∑

x=0

L−1∑

y=0

N2L,r(x, y+L) · P
(
xi(Mi−1) = x

)
. (2.12)

The last term on the right hand side can be found by conditioning on the position of the
node one step earlier. This gives the recursive relationship

P
(
xi(Mi−1) = y

)
=

L−1∑

x=0

q(x, y) · P
(
xi−1(Mi−2) = x

)
,

y ∈ {0, . . . , L−1},
i = 2, . . . , I − 1.

(2.13)

These last couple of results are ideally suited for matrix implementation and are summarized
in the next proposition.

Proposition 2.2.2 (Distribution relay location and expected number of jumps)

Let the visit time be exponentially distributed and let Q and N be matrixes with entry (x, y)
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equal to q(x, y) and N2L,r(x, y) respectively, i.e.,

Q =




q(0, 0) · · · q(L−1, 0)
...

. . .
...

q(0, L−1) · · · q(L−1, L−1)


 , (2.14a)

N =




N2L,r(0, L) · · · N2L,r(0, 2L−1)
...

. . .
...

N2L,r(L− 1, L) · · · N2L,r(L− 1, 2L−1)


 , (2.14b)

where q(·, ·) and N2L,r(·, ·) can be calculated with the help of Proposition 2.2.1 and Proposi-

tion 2.1.1, respectively. Let 1 be a column vector of ones and define ξy as a column vector

filled with zeros except for the yth element which is equal to one, y ∈ {0, . . . , L−1}. Let xT

be the transpose of a vector x.

The pdf of the location where the I th node receives the message is

P
(
xi(Mi−1) = y

)
=

1

L
1T Qi−1ξy, y ∈ {0, . . . , L−1}, i ∈ {1, 2, . . . , I}. (2.15)

The expected number of jumps for the ith transfer is given by

IE[Mi −Mi−1] =
1

L2
1TQi−1N1, (2.16)

which leads to the expected number of jumps to transfer a message over I segments:

IE[MI−1] =
1

L2
1T
( I−2∑

i=0

Qi
)
N1. (2.17)

The expected transfer time needed for this is given by

IE[T ] =
IE[S]

2
IE[MI−1]. (2.18)

The location where the node receives the message converges rapidly to a distribution π which
satisfies

π = πQ (2.19)

This gives

π = 1T (Q + E − I)−1 (2.20)

where E is an L× L matrix of ones and I is an L× L matrix of ones on the diagonal and
zeros elsewhere. Assuming convergence, the average number of jumps for one relay is

IE[M∞ −M∞−1] =
1

L
πM1. �



42 Chap. 2 Message Delay for One-dimensional Random Walkers

Proof. By iterating (2.13) with P (x1(0) = x) = 1/L, we see that (2.15) immediately

follows. By definition of matrix multiplications (2.16) follows from (2.12) and (2.15). The
rest of the equations follow from standard matrix manipulation arguments.

Once the matrixes in (2.14) have been generated, a number of performance measures
can easily be calculated. This will be discussed in the next section.

2.2.1 Numerical results for a chain of nodes

We have used Proposition 2.2.1 to determine the mapping y → P
(
x2(M1) = y

)
, the pdf

of the location of node X2 when the relay with X1 occurs, y ∈ {0, . . . , L − 1},. This
mapping is plotted in Figure 2.6 for different values of the starting position of node X1

(x1(0) = 5, 10, 15, 20) and for L = 30 states per segment and r = 35. It is interesting to

observe that P
(
x2(M1) = y

)
is uniform in [0, x1(0)]. This is easily explained by the fact that

if X2 is located in {0, . . . , r−L}, then the transfer took place at time zero. The pdf of X2

at that moment was uniformly distributed. Each peak corresponds to the most likely value
of y in {0, . . . , L} where node X2 will be located at jump M1. This value is approximately

given by y = x1(0) + r.
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Figure 2.6: Mapping x→ P
(
x2(M1) = y

)

(pdf of location of node X2 at the relay

epoch) when node X1 is at position x0 ∈
{5, 10, 15, 20} at jump n = 0, Here L = 30
states per segment and r = 35.
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(
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)

(pdf of the starting location of node i after

the (i−1)th jump), for i ∈ {2, 3, 100}. Here
L = 30 states per segment and r = 35.

The mapping y → P (xi(Mi−1 = y) is shown in Figure 2.7 for i ∈ {2, 3,∞}. Here r = 35,

the starting position of the first node is taken from the stationary (uniform) distribution,
and there are L = 30 states per segment. It is worth observing that the starting positions
converge very rapidly (already the starting positions for i = 2 and i = 3 are very close to

each other and the functions for i = 3 and π can hardly be distinguished from each other).
This phenomenon can also be seen in Figure 2.8 where the expected number of jumps to
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perform the i-th relay is shown.
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Figure 2.8: Expected number of jumps per
relay. Here L = 30 states and r = 35.

30 35 40 45 50 55 60
0

2000

4000

6000

8000

10000

12000

14000

Communication radius (r)

T
ra

ns
fe

r 
tim

e 
(in

 s
ec

on
ds

)

Expected transfer time over 30 segments

Theory
 Simulated visit times:
Exponential
Deterministic
Gamma
Poisson

Figure 2.9: Expected transfer time over 30
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Figure 2.9 displays the expected time to transfer a message over 30 segments, with L =
30 states per segment and r = 35. In addition, the transfer time—based on simulations—is
shown for various visit time distributions. This figure once again confirms something which
we have seen earlier: the expected transfer time (or number of jumps) is (almost) insensitive
to the underlying visit time distribution.

2.3 Extensions to the model

In this chapter the message delay over a one-dimensional network was analysed for mobiles
which move as random walkers in adjacent segments. The extension of this theory to more
than two mobiles per segment, or with leakage from one domain to the next, does not seem
to be mathematically tractable. The reason for this is the following. If there are N mobiles
in a segment then their positions needs to be mapped to a single N -dimensional random
walker. So far no problem. The model starts becoming more complex though when one has
to take into account the positions of the N -dimensional random walker which correspond
to any two nodes being in each others transmission range. For two one-dimensional random
walkers this resulted in a diagonal line (see Figure 2.10). For three nodes this leads to three
intersecting planes in a three-dimensional space. On top of this one has to take into account
the (reflecting) border conditions for each of the mobiles. Although writing down these
conditions is still feasible, the “real” problems lie in keeping track of which nodes have or
have not received a copy of the message, the correlation between these nodes their positions,
and finding an expression for the function which corresponds to the expected transfer time
and which satisfies all of the necessary conditions.

A similar problem arises for N two-dimensional random walkers. In this case the
positions of the mobiles can be mapped to a single 2N -dimensional random walker. Since
the area in which a node can communicate with another node is given by a circle, it means
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that with the method of images the corresponding boundary conditions are no longer in the
simple form of a square (since the “mirrors” are located on the outer edge of the circles).
Once again, finding a function which corresponds to the expected message delay, while
keeping track of which mobile have a copy of the message, does not seem to be feasible.

2.4 Concluding remarks

In this chapter closed-form expressions were derived for the relay locations and for the trans-
fer times (expected number of jumps). In addition, it was found that all of the expressions
show insensitivity towards the underlying visit time distribution. For the transfer of a mes-
sage over a one-dimensional network it was found that the transfer time grows linearly with
the number of segments. These results are in agreement with those obtained in Chapter 1
where nodes do not move as Random Walkers but as Brownian motions.

The formulae derived are of use not only for the message delay between nodes which
move as random walkers, but they can also be used to determine the time until two messages
travelling through a sensor network are near to one another.

Besides message delay, the question of power control is also central in ad hoc networking.
Ongoing research is concerned with determining the minimum transmission range that will
ensure communication between mobiles (within a certain probability) before the battery
power runs out, and with introducing utility functions into the model.

As mentioned earlier, the problem with keeping track of which mobiles do or do not have
a copy of the message in combination with their positions greatly increases the complexity
and limits the extendibility of the theory presented in this paper. However, by assuming
that r << L and by working in (at least) two dimensions it has been found that the
number of copies in the network can be decoupled from the positions of the copies. This
greatly simplifies the analysis and has led to generic results and formulae which hold under a
variety of mobility models. This is the topic of the next chapter. Oddly enough, the theory
developed there can not be used for the analysis of one-dimensional mobility models and
hence there remains a need to study the one- and the two-dimensional settings separately.
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2.A The stationary distribution of a random walker

In this section the stationary distribution of a random walker is shown to be uniformly
distributed.

If a random walker starts in state j, then the occupation probability of state k just
after the n-th jump is given by [31, Formula (3.15), p.357]

pjk(n) =
1 − (p/q)

1 − (p/q)L

(
p

q

)k

+
2n+1p1+(n−j+k)/2q(n+j−k)/2

L

L−1∑

r=1

Sr, (2.21)

with

Sr =
cosn πr

L

{
sin πr(j+1)

L
−
(

q
p

)1/2

sin πrj
L

}{
sin πr(k+1)

L
−
(

q
p

)1/2

sin πrk
L

}

1 − 2
√
pq cos πr

L

.

The stationary distribution π(k) can be obtained from this expression by taking n→ ∞
in equation (2.21). By doing this the second term goes to zero which leaves

π(k) = lim
n→∞

pjk(n) =
1 − (p/q)

1 − (p/q)L

(
p

q

)k

. (2.22)

This last expression is also given in [57, p.104]. If we take p → 1/2 in (2.22) then we see
that

π(k) =
1

L
, (2.23)

i.e., the stationary distribution of a symmetric random walker in one or two dimensions is
uniformly distributed.

2.B Proof of Proposition 2.1.1

Proof. Fix x0 ∈ {0, . . . , L−1} and y0 ∈ {0, . . . , L−1} such that r≤x0+r ≤ y0≤L−1. An

equivalent way to view the random walkers X and Y is to consider the two-dimensional (2D)

random walker Z = {z(n) = (x(n), y(n)), n ∈ Z
∗} as shown in Figure 2.10. The circles in

Figure 2.10 represent the states which the 2D random walker can be in. The arrows between
the states indicate the neighbouring states the 2D random walker can jump to assuming
exponential visit times. If the visit times are deterministic then the arrows point in the
two diagonal directions (instead of vertically and horizontally) since both nodes jump at
the same time. The boundary states 0 and L − 1 for the random walkers X and Y in the
one-dimensional case are represented in the two-dimensional case by reflecting boundaries
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at x = −1/2, x = L − 1/2, y = −1/2, and y = L − 1/2. With this we see that NL,r(x0, y0) is

equal to the expected number of jumps needed for the 2D random walker Z to hit any of
the states on the line y = x+r (i.e., the black points in Figure 2.10), given the reflecting

boundaries at x = −1/2 and y = L− 1/2 and that z(0) = (x0, y0).

x

y

10 L−r−1

0

r

L−1

L−1

Figure 2.10: The positions of nodes X and
Y are mapped to two dimensions by Z =
{z(N) = (x(N), y(N)). X and Y are at
a distance r of each other when they are
located on the line y = x + r.
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Figure 2.11: Since reflecting barriers at

x = −1/2 and y = L− 1/2 act as mirrors,
the method of images turns the problem
into finding the expected number of jumps
for a 2D random walker starting in (x0, y0)
to hit one of the black states.

By using the classical method of images (see e.g., [68, p. 81]), the reflecting barriers at

x = −1/2 and y = L−1/2 can be seen as mirrors resulting in an extension of the state space.
The expected number of jumps is then identical to the expected number of jumps needed to
hit the boundary in the form of a square as shown in Figure 2.11, given that z(0) = (x0, y0).

In order to facilitate readability with regards to sets of points, define the following sets

I := {x, y ∈ Z
∗ : 0 ≤ x ≤ L−r−2; x+r+1 ≤ y ≤ L−1},

I∗ := {x, y ∈ Z
∗ : −(L−r) < x < L−r−1; x+r < y < 2L−r−1−x;

r − 1 − x < y < x+2L−r},
B = {x, y ∈ Z

∗ : x+ r = y; 0 ≤ x ≤ L−r−1},
B2 = {x, y ∈ Z

∗ : x+ r = y − 2L; 0 ≤ x ≤ L−r−1},
B3 = {x, y ∈ Z

∗ : −x− 1 + r = y; 0 ≤ x ≤ L−r−1},
B4 = {x, y ∈ Z

∗ : −x− 1 + r = y − 2L; 0 ≤ x ≤ L−r−1},
B∗ = B ∪ B2 ∪ B3 ∪ B4.
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The sets B and B∗ are the boundaries which correspond, respectively, to the coloured
states in Figures 2.10 and 2.11 (for L = 6 and r = 2). The set I is the set of states to the
left of B in Figure 2.10, whereas I∗ is the set of interior states which are contained inside
the square created by B∗ in Figure 2.11. Whenever the 2D random walk is taken on I∗ ∪B∗

we shall refer to it as the extended random walk and denote all of the related sets with a
star.

The remainder of this section is devoted to the derivation of the function NL,r(x0, y0),

the expected time for a 2D random walker starting in state (x0, y0) ∈ I ∪ B to hit one of
the absorbing states in B, or equivalently, the expected time for the extended 2D random
walker starting in state (x0, y0) ∈ I ∪ B to hit one of the absorbing states in B∗. First of
all, the function must satisfy the boundary conditions

NL,r(x, y) = 0, for (x, y) ∈ B∗, (2.24)

independent of the visit time distributions. For the time being assume the visit times are
exponentially distributed, the deterministic case will be dealt with at a later stage. If the
extended random walker starts in (x, y) ∈ I, then the extended 2D random walker takes at

least one jump and therefore the expected number of jumps to hit B∗, NL,r(x, y), is equal

to one plus the expected number of jumps starting in one of the states neighbouring (x, y).

After this jump, the process repeats itself (due to the memoryless property) but in a new

state. Thus, for exponential visit times, NL,r(x, y) must also satisfy

NL,r(x, y) = 1 +
NL,r(x−1, y) +NL,r(x+1, y) +NL,r(x, y−1) +NL,r(x, y+1)

4
, (2.25)

for (x, y) ∈ I∗.

In order to find the function which satisfies these conditions, notice that for j, k ∈
{0, 1, . . . , 2(L−r)} each of the components

gjk(x, y) := sin (θj(y−r+x+1)) sin (θk(y−r−x)) , θ :=
π

R
=

π

2(L− r)

satisfies the boundary conditions of (2.24). By creating a function which is made up of these

components we can obtain a function which is also a solution of (2.25). Assume that as a

trial solution NL,r(x, y) takes the form

NL,r(x, y) =

R−1∑

j=1

R−1∑

k=1

Ujkgjk(x, y), (2.26)

with R := 2(L− r) and Ujk an unknown—to be determined—function of j and k. By

plugging this trial solution into (2.25) and bringing terms to the same side we see that Ujk

must satisfy

R−1∑

j=1

R−1∑

k=1

Ujk

[
gjk(x, y)−

gjk(x−1, y)+gjk(x+1, y)+gjk(x, y−1)+gjk(x, y+1)

4

]
= 1.

(2.27)
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With the trigonometric identity sinα+ sin β = 2 sin(α+β
2

) cos(α−β
2

) this can be rewritten as

R−1∑

j=1

R−1∑

k=1

Ujk

(
1 − cos(jθ) cos(kθ)

)
gjk(x, y) = 1. (2.28)

This gives a condition on Ujk that must be satisfied in order for the trial solution of (2.26)

to hold. We shall come back to this expression after the derivation of a similar summation—
through the means of a Discrete Sine Transform (DST)—which is also equal to one. As the
two summations both equal one, the terms in each of the summations can be compared and
an expression for Ujk is obtained.

Introduce a sequence of real numbers, fm for m = 1, . . . , R−1. Its DST is given by [21,

p. 126]

Fj =
1

R

R−1∑

m=1

fm sin (mjθ) , j = 1, . . . , R− 1, (2.29)

with its inverse transformation given by [21, p. 127]

fm = 2
R−1∑

j=1

Fj sin(mjθ), m = 1, . . . , R− 1.

Taking fm = 2 = fn gives 4 = fmfn = 4
∑R−1

j=1

∑R−1
j=1 FjFk sin(mjθ) sin(nkθ). This is an

expression similar to (2.28) but now with unknown Fj and Fk. However, Fj, and identically

Fk, can be calculated by taking fm = 2 in (2.29) leading to the DST of the constant two

[21, pages 242 and 300]:

Fj =
2

R

R−1∑

m=1

sin(mjθ) =
sin(jθ)(1 − cos(πj))

2R sin2(jθ/2)
.

Simplifying this using 2 sin2(α) = 1−cos(2α) [37, formula 1.317.1] gives

Fj =

{
0 if j is even,

2 sin(jθ)

R
(
1−cos(jθ)

) if j is odd. (2.30)

Recapitulating, we have found Fj and Fk such that

R−1∑

j=1

R−1∑

k=1

FjFk sin(mjθ) sin(nkθ) =
R−1∑

j=1

Fj sin(mjθ)
R−1∑

k=1

Fk sin(nkθ) = 1,
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for any m,n = {1, . . . , R−1}. As a specific case we can take m = y−r+x+1 and n = y−r−x
for any (x, y) ∈ I∗ and compare this to (2.28). We find

Ujk =
FjFk

1 − cos(jθ) cos(kθ)
. (2.31)

Thus the proposed trial solution in (2.26) with the coefficients Ujk given by (2.31) is the

function that we set out to find as it satisfies (2.25) as well as the boundary conditions in

(2.24). To the best of out knowledge this expression can not be simplified any further.

Now consider deterministic visit times. Whenever a random walker jumps, the other
random walker also jumps. This implies that, in this case, NL,r(x, y) must satisfy

NL,r(x, y) = 2 +
NL,r(x−1, y−1) +NL,r(x−1, y+1) +NL,r(x+1, y−1) +NL,r(x+1, y+1)

4

for (x, y) ∈ I∗. The two accounts for the fact that two jumps take place (one for each

random walker). From here on the proof for the exponential visit times can be reused with

the slight modification that (2.27) changes slightly and (2.28) then turns into

R−1∑

j=1

R−1∑

k=1

Ujk

(
1 − cos(2jθ) + cos(2kθ)

2

)
gjk(u, v) = 2.

This leads to

Ujk =
2FjFk

1 − (cos
(
2jθ) + cos(2kθ)

)
/2
.

2.C Proof of Proposition 2.1.2

Proof. We start by taking exponential visit times. The proof for deterministic visit times
is identical but with just a few minor modifications which are outlined at the end of this
section.

Since the starting positions of the random walkers X and Y are uniform we have

IE[NL,r] =
1

L2

L−1∑

x0=0

L−1∑

y0=0

IE[NL,r | x(0) = x0; y(0) = y0]

=
1

L2

L−r−2∑

x0=0

L−1∑

y0=x0+r+1

NL,r(x0, y0) +
1

L2

L−1∑

x0=r+1

x0−r−1∑

y0=0

NL,r(y0, x0)

=
2

L2

L−r−2∑

x0=0

L−1∑

y0=x0+r+1

NL,r(x0, y0), (2.32)
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where NL,r(x0, y0) is given in Proposition 2.1.1. The last step follows from the interchange-

ability of x0 and y0. Some insight can be gained into this function with the change of
variables u = y0−r+x0+1 and v = y0−r−x0 (this shifts and rotates the coordinate system

by 45 degrees). See Figure 2.12 for an example (with R = 8) of the labelling of the states in

the new coordinate system (u, v). The figure on the left is for exponential visit times and

the figure on the right is for deterministic visit times. Equation (2.32) then becomes

IE[NL,r] =
2

L2

(
L−r∑

u=2

u−1∑

v=1
u+v odd

h(u, v) +
R−2∑

u=L−r+1

R−u−1∑

v=1
u+v odd

h(u, v)

)
, (2.33)

with

h(u, v) :=
R−1∑

j=1
j odd

R−1∑

k=1
k odd

FjFk sin(jθu) sin(kθv)

1 − cos(jθ) cos(kθ)
. (2.34)

The dependence of the inner summations of (2.33) on umakes them difficult to evaluate.
However, by rewriting the summation in such a way that they no longer depend on u it allows
them to be evaluated and an approximate closed-form expression can be obtained. In order
to do this, first note that the summations in (2.33) define a sum over a triangular region

(quadrant I in Figure 2.12).

II

III IV

I

(1,2) (2,1)

(3,2) (4,1)

(5,2)(4,3)(2,5)

(2,3)

(6,1)

(5,4)

(6,5)

(7,6)

(4,7)

(3,4)(1,6)

(a) Exponential visit times.

II

III IV

I

(3,4)(2,5)(1,6) (4,3) (5,2)

(4,1)(3,2)(2,3)

(2,1)(1,2)

(4,7) (6,5)

(7,6)

(5,4)

(6,1)

(b) Deterministic visit times.

Figure 2.12: The states with labels in the new coordinate system (u, v) with R = 8. The
sum of the values of the points in I is equal to the sum of the values of the points in II,
III, or IV .
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By using the identity sin(juθ) = sin(j(R− u)θ) it turns out that h(u, v) is symmetric
in the sense that

h(u, v) = h(v, u) = h(R−u,R−v) = h(R−v, R−u), (u, v) ∈ I∗.

This symmetry, while considering the four quadrants I, II, III, and IV as shown in Figure
2.12, reveals that the summation over the points in I is equal to the summation over the
points in II, III, or IV . Therefore the value of the summations in (2.33) is equal to a

quarter of the summation over the entire area (I + II + III + IV ). This gives

IE[NL,r] =
1

2L2

( R−1∑

u=1
u odd

R−1∑

v=1
v even

h(u, v) +

R−1∑

u=1
u even

R−1∑

v=1
v odd

h(u, v)

)
=

1

L2

R−1∑

u=1
u odd

R−1∑

v=1
v even

h(u, v),

where in the second step once again the symmetry h(u, v) = h(v, u) was used. This expres-

sion can be simplified by changing the order of summation (this is allowed since the sums

are finite) to reveal

IE[NL,r] =
1

L2

R−1∑

j=1
j odd

R−1∑

k=1
k odd

FjFk

1 − cos(jθ) cos(kθ)

R−1∑

u=1
u odd

sin(juθ)

R−1∑

v=1
v even

sin(kvθ).

The summations over the sin can be evaluated with the help of [37, Formulas 1.342.1 &

1.342.3]

R−1∑

u=1
u odd

sin(jθu) =
sin2(jπ)

sin(jθ)
=

{
0 if j is even,

1
sin(jθ)

if j is odd,
(2.35)

R−1∑

v=1
v even

sin(kθv) =
sin (kπ/2) sin (kπ/2 − kθ)

sin(kθ)
=

{
0 if k is even,
cos(kθ)
sin(kθ)

if k is odd,

through which the first part of Proposition 2.1.2 is obtained,

IE[NL,r] =
4

R2L2

R−1∑

j=1
j odd

R−1∑

k=1
k odd

cos(kθ)

(1 − cos(jθ))(1 − cos(kθ))(1 − cos(jθ) cos(kθ))
. (2.36)

Although an explicit expression the above summation is, to the best of our knowledge, not
known, its scaling behaviour in R (or equivalently, in L and r) can be derived and will be

shown to be equal to equation (2.5). To render the summation benign, we start by looking

at the terms inside the summations. Bounds are then derived for these terms (with the help

of Taylor expansions) after which the bounds for the summation are obtained.
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We start by looking at the term (1−cos(x))−1 and point out that it is largest around

x = 0 (for 0<x<π). Consider the Taylor expansion [70, Table 4.2] of cos(x) around this
point,

cos(x) = 1 − x2/2 +

∞∑

k=2

x2k(−1)k

(2k)!
︸ ︷︷ ︸

εx

. (2.37)

Note that εx is positive for 0<x<π and therefore 1−x2/2 < cos(x) < 1. Also, εx is bounded
in value by

0 < εx =
x4

4!
−

∞∑

k=1

x4k+2

(4k + 2)!

(
1 − x2

(4k + 4)(4k + 3)

)
<
x4

4!
.

Using the Taylor expansion and the geometric series gives

1

1 − cos(x)
=

1

1 − (1 − x2/2 + εx)
=

2

x2

(
1

1 − 2εx/x2

)
=

2

x2

(
1 +

∑

n≥1

(
2εx/x

2
)n
)
.

The last step is justified since 2εx

x2 < x2

12
< π2

12
< 1. With the help of the above expression we

find the following bounds when 0<x<π

2

x2
<

1

1 − cos(x)
<

2

x2

(
1 +

∑

n≥1

(
x2

12

)n)
<

2

x2

(
1 +

∑

n≥1

(
π2

12

)n)
=

2

x2
+ C1, (2.38)

where C1 := 1
6−π2/2

≈ 0.94.

Next consider the term (1− cos(x)cos(y))−1. This term contains two poles; one in

(x, y) = (0, 0) and the other in (x, y) = (π, π). With the help of the Taylor expansion of

the cos around those points it can be seen that (1−cos(x)cos(y))−1 grows roughly with rate

2/(x2+y2) and 2/((π−x)2+(π−y)2). Making use of this knowledge we write

1

1 − cos(x)cos(y)
=

2

x2 + y2
+

2

(π − x)2 + (π − y)2
+ βxy,

where

βxy =
1

1 − cos(x)cos(y)
− 2

x2 + y2
− 2

(π − x)2 + (π − y)2
. (2.39)

By making a figure of βxy (see Figure 2.13) for 0 ≤ x, y ≤ π it can quickly be seen that

0 < βxy and that the maximum is limx→0 βxx = limx→π βxx = π2−3
3π2 := C2 ≈ 0.232. This
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gives (for 0 < x, y < π)

2

x2+y2
+

2

(π−x)2 + (π−y)2
<

1

1−cos(x)cos(y) <
2

x2+y2
+

2

(π−x)2 + (π−y)2
+ C2,

(2.40)

from which we also obtain

2

x2 + y2
<

1

1 − cos(x)cos(y)
. (2.41)

0 1 2 3
0

1
2

3
0

0.05

0.1

0.15

0.2

0.25

x

The function β
xy

y

Figure 2.13: The function βxy given by

equation (2.39).

0 1 2 3
0

1
2

3

−0.3

−0.2

−0.1

0

0.1

x

The function γ
xy

y

Figure 2.14: The function γxy given by

equation (2.46).

This brings us one step closer to unveiling the bounds for the expected number of
jumps. Continuing from (2.36), with the help of (2.37), (2.38), and (2.41), the expected
number of jumps is bounded from below by

IE[NL,r] >
4

R2L2

R−1∑

j=1
j odd

R−1∑

k=1
k odd

(
1 − π2k2

2R2

)(
2R2

π2j2

)(
2R2

π2k2

)(
2R2

π2(j2 + k2)

)

=
32R4

π6L2

R−1∑

j=1
j odd

R−1∑

k=1
k odd

(
1

j2k2(j2 + k2)
−
(
π2

2R2

)
1

j2(j2 + k2)

)
.

The summations in this lower bound are still dependent on R and the behaviour in
R is therefore not obvious. To overcome this problem we shall extend the summations to

infinity. To do this first observe that 1/j2 − 1/R2 ≤ 0 whenever j ≥ R. This means that we
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can decrease the bound by adding a couple of negative terms,

IE[NL,r] >
32R4

π6L2

R−1∑

j=1
j odd

R−1∑

k=1
k odd

(
1

j2k2(j2 + k2)
−
(
π2

2R2

)
1

j2(j2 + k2)

)

+
32R4

π6L2

∞∑

j=R
j odd

∞∑

k=1
k odd

( 1

j2
− 1

R2

︸ ︷︷ ︸
≤0

) 1

k2(j2 + k2)

+
32R4

π6L2

R−1∑

j=1
j odd

∞∑

k=R
k odd

(
1

k2
− 1

R2︸ ︷︷ ︸
≤0

)
1

j2(j2 + k2)
.

Collecting terms gives the lower bound:

IE[NL,r] >
32R4

π6L2

(
C3 −

2 + π2

2R2
C4

)
, (2.42)

with C3 :=
∑j odd

j≥1

∑k odd

k≥1
1

j2k2(j2+k2)
≈ 0.5279 and

C4 :=

∞∑

j=1
j odd

∞∑

k=R
k odd

1

k2(j2+k2)
=

1

2

∞∑

j=1
j odd

∞∑

k=R
k odd

1

j2+k2

(
1

j2
+

1

k2

)

=
1

2

j odd∑

j≥1

∞∑

k=R
k odd

1

j2+k2

(
j2+k2

j2k2

)
=

1

2

(
π2

8

)2

,

where in the last step
∑

k≥0
1

(2k+1)2
= π2/8 [37, Formula 0.234.2] was used.

Next is the derivation of an upper bound. Starting once again from (2.36) and using

the upper bounds of (2.38) and (2.40) we find that the expected number of jumps is bounded
from above by

IE[NL,r] <
4

R2L2

R−1∑

j=1
j odd

R−1∑

k=1
k odd

(
2R2

π2(j2 + k2)
+

2R2

π2((R− j)2 + (R− k)2)
+ C2

)

×
(

2R2

π2j2
+ C1

)(
2R2

π2k2
+ C1

)
(2.43)

This summation can be simplified without raising the bound too much. For most of the
terms behind the summation signs the indexes of the double summations can be extended
to infinity leading to combinations of the constants C3 and C4, or use can be made of
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∑k odd

1≤k≤R−1 1 = R/2. One of the summations which should not blindly be extended to

infinity is

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

j2 + k2
<

∞∑

j=1
j odd

R−1∑

k=1
k odd

1

j2
=
π2R

16
.

To bound a number of the other terms note that

R−1∑

j=1
j odd

1

j2(R− j)2
=

R−1∑

j=1
j odd

1

R2

(
1

j2
+

1

(R− j)2
+

2

jR
+

2

(R − j)R

)

<
2

R2

∞∑

j=1
j odd

1

j2
+

4

R3

(
1 +

R/2∑

j=1

1

2j + 1

)
.

Using the asymptotic expansion of the harmonic numbers [87, page 184] this gives

R−1∑

j=1
j odd

1

j2(R− j)2
<

π2

4R2
+

4

R3

(
1 +

R/2∑

j=1

1

2j

)
<

π2

4R2
+

4+2(ln(R/2)+γ+1/R)

R3︸ ︷︷ ︸
=:f(R)

,

where γ ≈ 5.772 is Euler’s constant and f(R) is a function which is O(1/R2). One of the
terms is then bounded by

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

(R−j)2+(R−k)2

1

j2

1

k2
<

R−1∑

j=1
j odd

∞∑

k=1
k odd

1

(R−j)2

1

j2

1

k2
<
π2

8
f(R),

and another is bounded by

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

(R−j)2+(R−k)2

1

j2
<

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

(R−j)2

1

j2
<
R

2
f(R).

With the help of these expressions we can obtain upper bounds for each of the terms in
equation (2.43).
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32R4C1

π6

∞∑

j=1
j odd

∞∑

k=1
k odd

1

j2 + k2

1

j2

1

k2
=

32R4

π6
C3

16R2C1

π4

∞∑

j=1
j odd

∞∑

k=1
k odd

1

j2 + k2

(
1

j2
+

1

k2

)
=

16R2

π4
C4 = O(R2)

8C2
1

π2

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

j2 + k2
≤ C2

1R

2
= O(R)

32R4

π6

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

(R− j)2 + (R − k)2

1

j2

1

k2
≤ R4

4π4
f(R) = O(R2)

16R2

π4

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

(R− j)2 + (R − k)2

(
1

j2
+

1

k2

)
≤ 16R3

π4
f(R) = O(R)

8C2
1

π4

∞∑

j=1
j odd

∞∑

k=1
k odd

1

(R− j)2 + (R− k)2
=
π2C2

1

16
= O(R)

16R2C2

π4

∞∑

j=1
j odd

∞∑

k=1
k odd

1

j2

1

k2
=

16R2C2

π4

(
π2

8

)2

= O(R2)

8C1C2

π2

∞∑

j=1
j odd

∞∑

k=1
k odd

(
1

j2
+

1

k2

)
=

8C1C2R

π2

(
π2

8

)
= O(R)

4C2
1C2

R2

∞∑

j=1
j odd

∞∑

k=1
k odd

1 =
4C2

1C2

R2

(
R

2

)2

= O(R2)

Combining all of this gives

IE[NL,r] ≤
32R4

π6L2
C3 + g(R/L),

where g(x) is a function such that limx→∞ g(x) = k, where k is some constant greater than

zero, i.e., g(x) = O(1). With the lower bound on the other side given by (2.42), we obtain
the final expression for exponential visit times:

IE[NL,r] =
32R4

π6L2
C3 + O(R2/L2). (2.44)
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The proof for deterministic visit times goes along identical lines but with a few minor
differences. First of all (2.34) becomes

h(u, v) :=
R−1∑

j=1
j odd

R−1∑

k=1
k odd

2FjFk sin(jθu) sin(kθv)

1 −
(
cos(2jθ) + cos(2kθ)

)
/2
.

Performing similar calculations from here on leads to

IE[NL,r] =
8

R2L2

R−1∑

j=1
j odd

R−1∑

k=1
k odd

cos(kθ)

(1−cos(jθ))(1−cos(kθ))
(
1−(cos(2jθ)+cos(2kθ))/2

) , (2.45)

which is (2.4b). Since (1−(cos(2x)+cos(2y))/2)−1 has a pole in (x, y) = (0, 0) we can proceed
as previously to show that

1

x2 + y2
<

1

1 − (cos(2x) + cos(2y))/2
,

which—for the same reasons as eq.(2.40)—leads to the same lower bound given in equation

(2.42). There are three more poles in (x, y) = (0, π), (π, 0), and (π, π) for 0 < x, y < π
which leads to the approximation

1

1−
(
cos(2x)+cos(2y)

)
/2

=
1

x2+y2
+

1

x2+(π−y)2
+

1

(π−x)2+y2
+

1

(π−x)2+(π−y)2
+γxy,

where

γxy :=
1

1−
(
cos(2x)+cos(2y)

)
/2

− 1

x2+y2
− 1

x2+(π−y)2
− 1

(π−x)2+y2
− 1

(π−x)2+(π−y)2

(2.46)

is shown in Figure 2.14 and is bounded by limx→0 γx0 = 1
2
− 8

π2 < γxy < limx→π/2 γxx =
1
3
− 5

2π2 := C5 for 0 < x, y < π. An upper bound for (2.45) is then given by

IE[NL,r] <
8

R2L2

R−1∑

j=1
j odd

R−1∑

k=1
k odd

(
R2

π2(j2+k2)
+

R2

π2(j2+(R−k)2)
+

R2

π2((R−j)2+k2)

+
R2

π2((R−j)2+(R−k)2)
+C5

)(
2R2

π2j2
+C1

)(
2R2

π2k2
+C1

)
(2.47)

Of the first five terms right behind the summation signs, the evaluation of the first and last
terms have already been dealt with (but now with C5 replaced by C2). It remains to assess
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the other three remaining terms, of which two are identical due to symmetry. First of all
we have

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

j2 + (R− k)2

1

j2k2
<

R−1∑

j=1
j odd

R/2∑

k=1
k odd

1

j2 + (R/2)2

1

j2k2
+

R−1∑

j=1
j odd

R/2∑

k=1
k odd

1

j2 + k2

1

j2(R/2)2

<
∞∑

j=1
j odd

∞∑

k=1
k odd

4

R2

1

j2k2
+

∞∑

j=1
j odd

∞∑

k=1
k odd

1

j2 + k2

1

j2

4

R2

=
4

R2

(
π4

64
+ C4

)
=

3π4

32R2
.

Another of the terms is

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

j2((R− j)2 + k2)
<

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

j2(R− j)2
<
R

2
f(R),

and because of symmetry

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

k2((R− j)2 + k2)
=

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

k2(j2 + k2)
< C4.

With the help of these expressions we obtain upper bounds for each of the expressions in
(2.47). We have

32R4C1

π6

∞∑

j=1
j odd

∞∑

k=1
k odd

1

j2 + k2

1

j2

1

k2
=

32R4

π6
C3

32R4

π6

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

j2 + (R− k)2

1

j2

1

k2
≤ 3R2

π2
=O(R2)

32R4

π6

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

(R − j)2 + k2

1

j2

1

k2
≤ 3R2

π2
=O(R2)

32R4

π6

∞∑

j=1
j odd

∞∑

k=1
k odd

1

(R− j)2 + (R − k)2

1

j2

1

k2
≤ R4

4π4
f(R) =O(R2)

32R2

π4

∞∑

j=1
j odd

∞∑

k=1
k odd

1

j2

1

k2
≤ 32R2C5

π4

(
π2

8

)2

=O(R2)
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and also

16R2C1

π4

∞∑

j=1
j odd

∞∑

k=1
k odd

1

j2 + k2

1

k2
=
R2C1

8
=O(R2)

16R2C1

π4

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

j2 + (R− k)2

1

k2
≤ 8R3C1

π4
f(R) =O(R)

16R2C1

π4

∞∑

j=1
j odd

∞∑

k=1
k odd

1

(R− j)2 + k2

1

k2
=

16R2C1C4

π4
=O(R2)

16R2C1

π4

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

(R − j)2 + (R− k)2

1

k2
≤ 8R3C1

π4
f(R) =O(R)

16C1C5

π2

∞∑

j=1
j odd

∞∑

k=1
k odd

1

k2
= C1C2R =O(R)

Furthermore,

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

j2 + (R− k)2
=

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

(R− j)2 + k2

=
R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

(R− j)2 + (R− k)2

=
R−1∑

j=1
j odd

R−1∑

k=1
k odd

1

j2 + k2

<
∞∑

j=1
j odd

∞∑

k=1
k odd

1

j2 + k2
=
Rπ2

16
= O(R),

and

R−1∑

j=1
j odd

R−1∑

k=1
k odd

1 =
R2

4
= O(R2).
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This gives us

IE[NL,r] =
32R4

π6L2
+ g2(R/L),

where g2(x) is a function with the property limx→∞g2(x) = k2, where k2 is some constant

bigger than zero. In particular, g2(x) is O(1). Together with the lower bound in equation

(2.42) this gives, just as for exponential visit times,

IE[NL,r] =
32R4

π6L2
+ O

((L− r

L

)2
)
.

2.D Proof of Proposition 2.2.1

Proof. Let x(n) and y(n) be the relative positions of nodes X and Y at the nth jump (here

n is not the individual, but the sum of the number of jumps of the two nodes). Let N be
the first time the nodes can communicate, i.e.,

N = inf{n ∈ Z
∗ : x(n)+r ≥ y(n)+L}, L ≤ r ≤ 2L.

Observe that N = 0 if x(0)+r ≥ y(0)+L. By conditioning on the starting positions we find

P (y(N) = y|x(0) = x0) =

x0+r−L∑

y0=0

P (y(N) = y | x(0) = x0; y(0) = y0)P (y(0) = y0)

+

L−1∑

y0=x0+r−L+1

P (y(N) = y | x(0) = x0; y(0) = y0)P (y(0) = y0)

=
1

L

x0+r−L∑

y0=0

1{y=y0} +
1

L

L−1∑

y0=x0+r−L+1

P (y(N) = y| x(0) = x0; y(0) = y0)

=
1{y≤x0+r−L}

L
+

1{x0+r≤2L−1, y≥r−L}
L

L−1∑

y0=x0+r−L+1

∞∑

n=1

f (n)
y , (2.48)

where

f (n)
y = P

(
y(N) = y;N = n | x(0) = x0; y(0) = y0

)

is the probability that the two nodes can communicate for the first time in the nth step with

node Y in state y(n) = y. In (2.48) it is best to include the indicator function to reflect the

fact that f
(n)
y = 0 outside the indicated values of x0 and y.

It remains to solve f
(n)
y . We shall do this with the help of the probability

px,y,n := P
(
x(n) = x; y(n) = y;N > n | x(0) = x0; y(0) = y0;N > n−1

)
,
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that the two nodes starting in x0 and y0 are in states x(n) = x, respectively, y(n) = y in

the nth step and that they do not communicate in step n. In particular, this means that
pẋ,y,n = 0 for ẋ := y−r+L, any y and any n. Equivalently, the positions of the two nodes can

been viewed as a 2D random walker Z = {z(n) = (x(n), y(n))} and then px,y,n represents

the probability that the 2D random walker is in (x, y) in the nth step, given that the random

walker started in (x0, y0) and that it has not yet been absorbed by any of the absorbing

states {(x, y) : x+ r = y + L}.

It is now possible to express f
(n)
y in terms of the position of the 2D random walker one

step earlier. If y(n) = y, then necessarily x(n) = ẋ with ẋ := y − r+L. Hence at time n−1

this means that (x(n−1), y(n−1)) = (ẋ− 1, y) or (x(n−1), y(n−1)) = (ẋ, y+ 1). This gives

f (n)
y =





pẋ,y+1,n−1/4 if y = r − L
(pẋ−1,y,n−1 + pẋ,y+1,n−1)/4 if r − L < y < L−1
pẋ−1,y,n−1/4 if y = L−1

(2.49)

Although it not written for the sake of readability, this equation still depends on (x0, y0). It
remains to find px,y,n. Because of the possibilty that the random walkers can jump back to

the same state (at the outermost states), it is easier to first solve the related probability

p̃x,y,n := P
(
x̃(n) = x; ỹ(n) = y;N > n | x̃(0) = x0; ỹ(0) = y0;N > n−1

)
,

of the extended 2D random walker and to then express px,y,n in terms of these probabilities.

The latter is easy to do since the mirror images contribute to the original probability as
follows

px,y,n = p̃x,y,n + p̃−x−1,y,n + p̃x,2L−1−y,n + p̃−x−1,2L−1−y,n. (2.50)

To give an expression for p̃x,y,n we will first establish the requirements which uniquely define

p̃x,y,n. We will then give the function p̃x,y,n which satisfies these requirements.

By definition, p̃x0,y0,0 = 1 an p̃x,y,0 = 0 if x 6= x0 or y 6= y0. Furthermore, since the

boundaries are absorbing states it is requires that p̃x,y,n = 0 for (x, y) ∈ Ñ . Finally, if at

step n the extended random walker is in (r, s), then the next step takes it to one of the four

neighbours (r±1, s), (r, s±1). This gives the relationship

p̃x,y,n+1 =
p̃x−1,y,n + p̃x+1,y,n + p̃x,y−1,n + p̃x,y+1,n

4
, n ∈ Z

∗, (2.51)

The function p̃xyn which satisfies these requirements is given by

p̃x,y,n =
4

R2

2(L−ṙ)−1∑

j=1

2(L−ṙ)−1∑

k=1

[
cos (jθ) cos (kθ)

]n
ġjk(x, y)ġjk(x0, y0), (2.52)
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with ṙ = r−L and

ġjk(x, y) := sin

(
πj(y−ṙ+x+ 1)

2(L−ṙ)

)
sin

(
πk(y−ṙ−x)

2(L−ṙ)

)
, r+x ≤ y ≤ L−1.

First of all, it satisfies the boundary conditions (p̃xyn = 0 for (x, y) ∈ B). Secondly,

p̃x0,y0,0 = 1 follows from
∑R

j=1 sin2(πju/R) = 0 [37, equation 1.351.1]. Finally, to show it

satisfies (2.51), we make use of the same relationship as used to go from (2.27) to (2.28),
namely

ġjk(x−1, y)+ġjk(x+1, y)+ġjk(x, y−1)+ġjk(x, y+1) = 4 cos(jθ) cos(kθ)ġjk(x, y).

Putting (2.52) into (2.51) gives

p̃x,y,n+1 −
p̃x−1,y,n + p̃x+1,y,n + p̃x,y−1,n + p̃x,y+1,n

4

=
4

R2

2(L−ṙ−1)∑

j=1

2(L−ṙ−1)∑

k=1

[
cos(jθ) cos(kθ)

]n
ġjk(x0, y0)×

×
[
cos(jθ) cos(kθ)ġjk(x, y) −

ġjk(x−1, y)+ġjk(x+1, y)+ġjk(x, y−1)+ġjk(x, y+1)

4

]

= 0

for (x, y) ∈ I. The proposition follows by combining (2.49)-(2.52), changing the order of
summation, and evaluating the geometric summation over N .
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In this chapter a stochastic model is introduced that accurately models the message
delay in a mobile ad hoc network (MANET) where nodes can relay messages for each other.
The model has only two input parameters: the number of nodes and the intensity of a finite
number of homogeneous and independent Poisson processes modeling instances when any
pair of nodes come within transmission range of one another. Closed-form expressions are
obtained for the Laplace-Stieltjes transform of the message delay, defined as the time needed
to transfer a message between a source and a destination. From this result, we derive the
expected message delay in closed-form as well as its asymptotic expansion for large networks.
The probability distribution of the number of copies of the message at the time the message
is delivered is also computed. These calculations are carried out for two relay protocols,
the two-hop relay and the unrestricted relay protocols. Despite its simplicity, the model is
able to accurately predict the performance of both relay protocols for a number of mobility
models (random waypoint, random direction and random walker mobility models), as shown
by simulations.

Note: Part of the material in this chapter has been published as an extended abstract
in the ACM SIGMETRICS 2005 proceedings [44] and will appear in the proceedings of

PERFORMANCE 2005 [69]. It is also available as an INRIA research report [43].
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3.1 Introduction

In MANET a mobile node (or simply a node) can only send data directly to another node if
both nodes are within transmission range of one another or in contact. Two nodes are said
to be within transmission range of one another if the distance between them does not some
threshold R.

The fact that two nodes are in contact is of course not enough to ensure a success
transmission of a message. Many phenomena may occur during the transmission and cause
it to fail (interferences due to other transmissions, physical obstacles, power problems, etc.).
Message relaying is a technique that facilitates the delivery of a message by using interme-
diary nodes to forward the message.

Routing protocols using relay nodes [61, 63, 89] have recently been proposed that
increase the message delivery ratio in mobile ad hoc networks. These protocols operate on a
store-carry-forward mode to take advantage of node mobility to improve node connectivity,
and ultimately the message throughput. When information is available (node movement,

node position, etc.) these protocols may use it in a static [89] or in a dynamic [61] way.
The concept of relay nodes can also be used in the case when no information on the nodes
is available [63].

Evaluating the performance of relay protocols (message delivery ratio, message latency,

throughput, etc.) is a difficult task due to the inherent complexity of mobile ad hoc networks,
particularly the random nature of both the movement of the nodes and of the demand
(traffic). The performance of mobile ad hoc networks are in general studied via lengthy
and complex simulations, for a limited number of mobility models, including the random
waypoint mobility model [22, 55] or the random direction mobility model [11, 46] which are
described in, respectively, sections 3.3.1.1 and 3.3.1.2.

In this chapter a simple stochastic model is introduced to evaluate the performance of
relay protocols for mobile ad hoc networks. The model has only two input parameters: the
number of nodes in the network and the intensity (λ) of some identical and independent
Poisson processes. In particular, the model does not require the distribution of the stationary
distribution of the location of the nodes as input.

These processes model instances, called meeting times, at which any pair of nodes come
within transmission range of one another. Transmissions between two nodes can only take
place at meeting times and are assumed to be instantaneous. The latter assumption models
the situation where the transmission time of a message is very small with respect to the time
needed for two nodes to meet. Therefore, the random nature of a MANET is captured in the
model through a finite number of these independent and homogeneous Poisson processes.

The selection of the intensity λ will be discussed in Sections 3.3 and 3.4 and is the topic
of Chapter 4.

The model is used to characterize the message delay between two arbitrary nodes—
hereafter called the source node and the destination node—for two relay protocols and for
three mobility models. The two relay protocols are the two-hop relay protocol and the
unrestricted relay protocol.
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In the two-hop relay protocol the source node may forward the message to all the
nodes it meets along its route, including of course the destination node. Any node which
has received the message from the source node may only forward it to the destination node.

In the unrestricted relay protocol the source node may forward a message to all the
nodes it meets (as in the two-hop relay protocol), but in this protocol any node that carries
the message may in turn forward the message to all the nodes it encounters, along its
trajectory.

The three mobility models that are consider in this chapter are the random waypoint,
the random direction, and the two-dimensional random walker mobility models. All three
models and their mathematical properties will be described in Section 3.3.1.

The characterization of the message delay in MANET has already received some atten-
tion. In [71] it is shown that, under the two-hop relay protocol, the expected message delay

is of the order Tp(n)n for the random waypoint mobility model on a sphere (where n is the

number of nodes per unit area and Tp(n) is the transmission time of a message). It is shown

in the same paper that the expected message delay is of the order Tp(n) log2(n) when nodes

execute independent Brownian motions on a sphere. In Chapter 1 (or in [41]) the expected
message delay is computed for a one-dimensional network topology, where the nodes move
in adjacent segments according to independent and reflected Brownian motions.

This chapter is organized as follows: the stochastic model is introduced in Section 3.2.1,
then we compute in Section 3.2.2 the Laplace-Stieltjes Transform (LST) of the message

delay (Theorem 3.2.1). In this theorem the distribution is also obtained of the number
of copies of the message at the time the message is delivered to the destination node. In
Theorem 3.2.2 the expected message delay is given in a closed-form expression. From this,
an asymptotic expansion of the expected message delay for a large number of nodes derived.
These calculations are done for the two relay protocols.

In Section 3.3, the expected message delay and the distribution of the number of copies
of the message found in Section 3.2 are compared to results obtained by simulations. Simu-
lations have been carried out for each of the six combinations of the two relay protocols and
the three mobility models. The simulation results are very close to the analytical results.
We observed discrepancies only when the node transmission range is large with respect to
the size of the area in which the nodes move.

The model assumptions have been validated in Section 3.3 in the absence of interfer-
ences (a situation that will typically occur when the communication radius of the nodes
is small with respect to the area in which the nodes move, and the node density is also
small). One way to incorporate interferences into the model is to thin the meeting time

sequences: with some (independent) probability p (resp. 1 − p) a transmission occurring

at a meeting time will be a success (resp. failure). Due to the fact that a thinned Poisson
process is again a Poisson process, it is enough to replace λ by λp, with p the probability
that a communication fails due to interferences. On-going research will be devoted to this
issue.

On the other hand, one can also argue that the communication radius of the nodes
must be small enough so that interferences remain at an acceptable level. It has been shown
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in [45] [72, Lemma 1] that the transmission range of the nodes should be of the order 1/
√
N

for the two-hop relay protocol, in order to maintain a constant capacity per node (with N

the number of nodes per unit area). In Section 3.4 it is shown how for a transmission range

that is of the order of 1/
√
N the model can be used to compute the expected message delays

for large networks and for the two relay protocols considered.

A word on the notation: given a function g(N), one writes f(N) = O(g(N)) if

|f(N)/g(N)| is bounded from above as N → ∞ and f(N) = o(g(N)) if f(N)/g(N) → 0 as
N → ∞.

3.2 The stochastic model

Consider a network with N + 1 identical mobile nodes. There is a single message to be
delivered by a source node to a destination node. Intermediary nodes can be used as relay
nodes. The goal is to determine the distribution of the message delay and the distribution of
the number of copies of the message at the time the message is delivered to the destination
node.

First the model is introduced (Section 3.2.1) and then in Section 3.2.2 it is used to

evaluate the performance (message delay, number of copies) of the two-hop relay and the
unrestricted relay protocols.

3.2.1 Definition of the model

An analytical model that would carefully take into account the main features of a MANET
(transmission range, mobility pattern, interferences, fading, etc.) would be mathematically
intractable. Instead, a model is proposed where the impact of these features is captured
through a single parameter (the parameter λ, see below).

Let 0 ≤ ti,j(1) < ti,j(2) < · · · be the successive meeting times between nodes i and j

(i 6= j). Define τi,j(n) := ti,j(n + 1) − ti,j(n), the n-th inter-meeting time between nodes i

and j.

Transmissions between two nodes may only take place at meeting times and are assumed
to be instantaneous. The latter assumption covers the situation where the transmission time
of a message between two nodes is negligible with respect to the node inter-meeting times.

Assume that if a transmission takes place between node i and node j (at some meeting

time ti,j(n)) then it will be successful. Assume that it is node i that carries the message

just before time ti,j(n). Under the two-hop relay protocol node i will transmit (a copy of)

the message to node j at time ti,j(n) if i is the source node or if j is the destination node.

Under the unrestricted relay protocol node i will always transmit the message to node j at
time ti,j(n) regardless of the identity of node j.

Throughout this chapter the following assumption will hold for each relay protocol:
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(A) the processes {ti,j(n), n ≥ 1}, 1 ≤ i, j ≤ N + 1, i 6= j, are mutually independent

and homogeneous Poisson processes with rate λ > 0. Equivalently stated, the random
variables (rvs) {τi,j(n)}i,j,n are mutually independent and exponentially distributed

with mean 1/λ.

Introduce:

• T2 (resp. TU), the message delay under the two-hop (resp. unrestricted) relay protocol,

defined as the time needed to send the message (or a copy of the message) from the
source to the destination;

• N2 ∈ {1, 2, . . . , N} (resp NU ∈ {1, 2, . . . , N}), the number of copies of the message in

the network (including the original message but excluding the message at the destina-

tion node) at the time the message is delivered to the destination node.

For θ ≥ 0 let

T ?
2 (θ) := E[e−θT2 ], T ?

U (θ) := E[e−θTU ]

be the LST of T2 and TU , respectively.

3.2.2 Performance of relay protocols

Theorem 3.2.1 gives, for each relay protocol, the LST of the message delay and the distri-
bution of the number of copies.

Theorem 3.2.1 (LST of message delay)
Under the two-hop relay protocol

T ?
2 (θ) =

N∑

i=1

i
(N − 1)!

(N −i)!

(
λ

λN + θ

)i

(3.1)

and

P (N2 = i) =
i

N i

(N − 1)!

(N −i)! , i = 1, . . . , N. (3.2)

Under the unrestricted relay protocol

T ?
U(θ) =

1

N

N∑

i=1

i∏

j=1

λj(N + 1 − j)

λj(N + 1 − j) + θ
(3.3)

and

P (NU = i) =
1

N
, i = 1, . . . , N, (3.4)

that is, the number of copies is uniformly distributed over {1, . . . , N}. �
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Proof. For both the two-hop and the unrestricted protocols the proof is based on
modeling the number of copies in the network as an absorbing finite-state Markov chain.
The transition rates of these Markov chains will differ for each protocol.

For each protocol the Markov chain takes its values in {1, 2, . . . , N−1, N, A}. The
Markov chain is in state i = 1, 2, . . . , N when there are i copies of the message in the
network including the original message, and it is in state A when the message has been
delivered to the destination node. Note that states 1, 2, . . . , N are transient states and A is
an absorbing state.

A separate proof is provided for (3.1)-(3.2) and (3.3)-(3.4).

Proof of (3.1) and (3.2):

������������ �
�
�� �
�
�� �
�
��1 2 3

3λ 2λ λ

2λλ 3λ

(Ν−2)λ (Ν−3)λ

(Ν−2)λ

(Ν−1)λ
N

(Ν−1)λ

N−1N−2

Νλ

A

Figure 3.1: Two-hop relay: transition diagram of the Markov chain representing the number
of copies

The transition diagram of the Markov chain corresponding to the two-hop relay pro-
tocol is given in Figure 3.1. Recall that under the two-hop relay protocol only the source
node distributes copies of the message to nodes that come within its transmission range.
Therefore, when there are i copies in the network, then either a new copy is sent to the
N − i nodes which do not have a copy yet, which occurs at the rate λ(N − i) and triggers a
transition from i to i+1, or one of these i copies reaches the destination node, which occurs
at the rate λi and triggers a transition from i to A. This explains the transition diagram in
Figure 3.1.

The transition from i from i + 1 occurs with the probability (N − i))λ/((N − i))λ +

iλ) = 1 − i/N , and the transition from i to A occurs with the complementary probability

iλ/((N − i))λ+ iλ) = i/N .

The sojourn time Si in state i = 1, 2, . . . , N is exponentially distributed with inten-
sity λN (the sum of transition rates out of state i). Moreover S1, . . . , SN are mutually
independent random variables.

By conditioning on the state of the Markov chain just before its enters state A, or
equivalently by conditioning on the number of copies N2 just before the message hits its
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destination, we have

T ?
2 (θ) =

N∑

i=1

IE[e−θT2 |N2 = i]P (N2 = i)

=
N∑

i=1

IE[e−θ
∑i

j=1
Sj |N2 = i]P (N2 = i). (3.5)

As mentioned earlier, 1 − j/N (resp. j/N) is the probability of jumping from state j to

state j + 1 (resp. from state j to state A). Therefore,

P (N2 = i) =
i

N

i−1∏

j=1

(
1 − j

N

)
=

i

N i

(N − 1)!

(N −i)! , (3.6)

which establishes (3.2).

When in state j = 1, 2, . . . , N , the Markov chain can either enter state j + 1 after a

time Sj,1 that is exponentially distributed with intensity (N − j)λ, or enter state A after a

time Sj,2, independent of Sj,1, which is exponentially distributed with intensity jλ. Observe

that Sj = min{Sj,1, Sj,2}. Moreover

P [Sj,1 < x |Sj,1 < Sj,2] =P [Sj,2 < x |Sj,1 > Sj,2]

=P (Sj < x)

=1 − exp(−λN) (3.7)

as a consequence of the exponential distribution. Therefore,

IE[e−θ
∑i

j=1 Sj |N2 = i] =IE[e−θ(
∑i−1

j=1
Sj,1+Si,2) |Sj,1 < Sj,2, . . . , Si−1,1 < Si−1,2, Si,1 > Si,2]

(3.8)

From (3.7), (3.8) and the fact that the rvs {Sj,k}j=1,...,N,k=1,2 are mutually independent, we

find

IE[e−θ
∑i

j=1
Sj |N2 = i] =

i∏

j=1

IE[e−θSj ] =

(
λN

λN + θ

)i

. (3.9)

Putting (3.5), (3.6) and (3.9) together yields

T ?
2 (θ) =

N∑

i=1

i
(N − 1)!

(N − i)!

(
λ

λN + θ

)i

,

which proves (3.1).
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Figure 3.2: Unrestricted relay: transition diagram of the Markov chain representing the
number of copies

Proof of (3.3) and (3.4):

The transition diagram of the Markov chain associated with the unrestricted relay
protocol is displayed in Figure 3.2. Under this protocol, each node which has a copy of
the message is allowed to distribute it to a node which does not have a copy and which
comes within its transmission range. Therefore, when there are i copies of the message in
the network a new copy is created at the rate λi(N − i) (transition from i to i + 1) and

one of these i copies reaches the destination node at the rate λi (transition from i to A), as
depicted on Figure 3.2.

The chain jumps from state i to state i + 1 with probability (N − i)/(N + 1 − i) and

it jumps from state i to state A with probability 1/(N + 1 − i). The sojourn time S̃i in

state i is exponentially distributed with intensity λi(N + 1− i) (obtained as the sum of the

transition rates going out state i).

By conditioning on the number of copies NU , we have

T ?
U(θ) =

N∑

i=1

IE[e−θ
∑i

j=1
S̃j |NU = i]P (NU = i)

with

P (NU = i) =
1

N + 1 − i

i−1∏

j=1

N − j

N + 1 − j
=

1

N
,

which proves (3.4).

Similarly to (3.9) we have

IE[e−θ
∑i

j=1
S̃j |NU = i] =

i∏

j=1

IE[e−θS̃j ] =
i∏

j=1

λj(N + 1 − j)

λj(N + 1 − j) + θ
,

so that

T ?
U(θ) =

1

N

N∑

i=1

i∏

j=1

λj(N + 1 − j)

λj(N + 1 − j) + θ
,
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which proves (3.3).

Theorem 3.2.2 gives the expected message delay for each relay protocol. This result
shows that for each protocol the expected message delay is a linear function of the expected

inter-meeting time 1/λ.

Theorem 3.2.2 (First two moments message delay)
Under the two-hop relay protocol, the expectation of the message delay is given by

IE[T2] =
1

λN

N∑

i=1

i2(N − 1)!

(N−i)!N i
(3.10a)

=
1

λ

(√
π

2N
+O

( 1

N

))
. (3.10b)

The second moment and the variance of this quantity are given by

IE[T 2
2 ] =

1

λ2N2

N∑

i=1

i2(i + 1)(N − 1)!

N i(N − i)!
=

1

λ2N

(
2 + O

( 1√
N

))
, (3.11)

V ar(T2) =
1

λ2N

(
4 − π

2
+ O

( 1√
N

))
. (3.12)

Under the unrestricted relay protocol, the expected message delay is given by

IE[TU ] =
1

λN

N∑

i=1

1

i
(3.13a)

=
1

λN

(
log(N) + γ + O

( 1

N

))
, (3.13b)

where γ ≈ 0.57721 is Euler’s constant. The second moment is given by

IE[T 2
U ] =

1

Nλ2

N∑

i=1



(

i∑

k=1

1

k(N + 1 − k)

)2

+

i∑

k=1

(
1

k(N + 1 − k)

)2

 (3.14)

Proof. The proof will make use of the following lemma which is proven in Appendix
3.A (for the sake of readability).

Lemma 3.2.1 For large N

N∑

i=1

i2N !

(N − i)!N i
= N3/2

√
π

2
+ O(N), (3.15a)
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and

N∑

i=1

i3N !

(N − i)!N i
=2N2 + O(N3/2). (3.15b)

�

Since IE[T2] = − dT ?
2
(θ)

dθ

∣∣∣
θ=0

, the first part of IE[T2] can be derived at once from (3.1).

Equation (3.10b) follows quickly with the help of (3.15a).

In the same way the second moment of the expected message delay under the two-hop

relay protocol can be derived by taking IE[T 2
2 ] =

∂2T ?
2
(θ)

∂θ

∣∣∣
θ=0

. We have

∂2T ∗
2 (θ)

∂2θ
=

N∑

i=1

i
(N − 1)!

(N − i)!

(
λ

λN + θ

)i(
i(i+ 1)

(λN + θ)2

)
,

and so

IE[T 2
2 ] =

∂2T ∗
2 (θ)

∂2θ

∣∣∣∣
θ=0

=
1

λ2N2

N∑

i=1

i2(i+ 1)(N − 1)!

N i(N − i)!
.

With the help of the Lemma 3.2.1 it follows that

IE[T 2
2 ] =

1

λ2N3

(
2N2 + O

(
N3/2

))
=

1

λ2N

(
2 + O

( 1√
N

))
.

This means that the variance is given by

V ar(T2) =
1

λ2N

(
2 + O

( 1√
N

))
− 1

λ2

(
π

2N
+ O

( 1

N3/2

))

=
1

λ2N

(
4 − π

2
+ O

( 1√
N

))
.
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Similarly, we find by differentiating (3.3) with regards to θ, and then by setting θ = 0,
that

IE[TU ] =
1

λN

N∑

i=1

i∑

j=1

1

j(N + 1 − j)

=
1

λN(N + 1)

N∑

i=1

i∑

j=1

(
1

j
+

1

N + 1 − j

)

=
1

λN(N + 1)

N∑

j=1

N∑

i=j

(
1

j
+

1

N + 1 − j

)

=
1

λN(N + 1)

N∑

j=1

(
1

j
+

1

N + 1 − j

)
(N + 1 − j)

=
1

λN

N∑

j=1

1

j
,

which is (3.13a). This last summation is known as the harmonic numbers. Its asymptotic

expansion is [70, p. 186]

N∑

j=1

1

j
= log(N) + γ + O

( 1

N

)
,

where γ is Euler’s constant. This gives (3.13b).

To derive the second moment of the expected message delay under the unrestricted
relay protocol we make use of

∂2T ∗
U(θ)

∂2θ
=

1

N

N∑

i=1



(

i∑

k=1

−1

λk(N + 1 − k) + θ

)2

+
i∑

k=1

(
1

λk(N + 1 − k) + θ

)2



·
i∏

j=1

λj(N + 1 − j)

λj(N + 1 − j) + θ
.

This gives the second moment of TU by taking θ = 0.

The next result gives the number of occurances of the message at the time the message
is delivered.

Corollary 3.2.1 (Expected number of copies) The expected number of copies under
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the two-hop relay protocol is given by (cf. (3.2))

IE[N2] =
1

N

N∑

i=1

i2

N i

N !

(N −i)! . (3.16)

Hence (cf. (3.10a))

IE[N2] = λN IE[T2],

so that

IE[N2] =

√
πN

2
+O(1). (3.17)

The expected number of copies under the unrestricted relay protocol is (cf. (3.4))

IE[NU ] =
N + 1

2
. �

The relative performance of the two-hop relay and unrestricted relay protocols can be

captured through the ratios IE[TU ]/IE[T2] and IE[NU ]/IE[N2] given by (cf. Theorem 3.2.2)

IE[TU ]

IE[T2]
=

N
∑N

i=1
1
i∑N

i=1
i2

N i
N !

(N−i)!

and (cf. Corollary 3.2.1)

IE[NU ]

IE[N2]
=

N(N + 1)

2
∑N

i=1
i2

N i
N !

(N−i)!

,

respectively. Note that both ratios are independent of λ.

By using the asymptotic expansions (3.10b), (3.13b) and (3.17), we see that

IE[TU ]

IE[T2]
≈ log(N)√

N

√
2

π

and

IE[NU ]

IE[N2]
≈
√
N

2π
,

for large N . In other words, for large N the expected message delay under the unrestricted

relay protocol is approximately log(N)/
√
πN/2 times smaller than under the two-hop relay

protocol, while the expected number of copies is approximately
√
N/2π times larger.

For instance, for N = 103 then IE[TU ]/IE[T2] ≈ 0.17 and IE[NU ]/IE[N2] ≈ 12.6.
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3.3 Applications

This section is devoted to the application of the results in Section 3.2 to three different mo-
bility models. It is structured as follows: the mobility models are presented in Section 3.3.1
and the simulation setting for each mobility model is introduced in Section 3.3.2. Through
both intuitive reasoning and simulations it is shown in Section 3.3.3 that assumption (A) is
reasonable when the transmission range is not too large relative to the surface area. Based
on this observation, estimates are obtained for the meeting rate λ, for each mobility model
and for various transmission ranges. With the help of these estimates and Theorem 3.2.2,
the expected message delays predicted by the analytical model are computed for each mo-
bility pattern, for both the two-hop relay and for the unrestricted relay protocols, and are
compared to simulation results.

The accuracy of the model is demonstrated in Sections 3.3.4 and 3.3.5, where the
expected message delay and the distribution of the number of copies obtained by the model
are compared to simulation results.

3.3.1 Mobility models

Although the results in Section 3.2 hold regardless of the dimension of the space in which the
nodes move, in the following we shall only apply them to three standard two-dimensional
mobility models: the random waypoint mobility model (Section 3.3.1.1), the random di-

rection mobility model (Section 3.3.1.2), and the two-dimensional random walker mobility

model (Section 3.3.1.3).

3.3.1.1 Random waypoint mobility model

The random waypoint mobility model was first introduced in [56] and later given its name

in [22]. It is commonly used for the simulation of mobile ad hoc networks [55, 22]. Its

properties have been studied extensively [13, 14, 12] and explicit expressions for the spatial

node distribution, in terms on an integral which has to be evaluated (numerically), are given

in [51, 52]. An initialisation procedure for simulations is given in [65].

In the random waypoint mobility model each node is assigned an initial waypoint loca-
tion in a given area (typically a square) and travels at a constant speed S to a destination

waypoint chosen uniformly in this area. The speed S is chosen uniformly in (vmin, vmax),
independently of the initial location and destination. After reaching the destination, the
node may pause for a random amount of time after which a new destination and a new
speed are chosen, independently of all previous destinations, speeds, and pause times. The
stationary distributions of location and speed in the random waypoint mobility model differ
significantly from the uniform distribution. In particular, it has been observed that the
stationary distribution of the location of a node is more concentrated near the center of the
region in which the nodes move [14]. Also, vmin needs to be strictly positive to ensure that

the average speed over time does not go to zero [86].
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3.3.1.2 Random direction mobility model

In the random direction mobility model [11, 46] each node is assigned an initial direction

α, speed S ∈ [vmin, vmax] in km/hour and a finite travel time τ . The node then travels in
the direction α for a duration τ and at speed S. When the travel time has expired new
speed and travel times are chosen at random independently of each other and of all previous
directions, speeds and travel times. In addition, a new angle is chosen for the change of
direction of travel. Depending on the definition, the new travel direction can also be chosen
independent of the previous travel direction. When a node reaches a boundary it is either
reflected [8, 11] or the area wraps around so that the node reappears on the other side [11].

The stationary distributions of the location and direction have been shown to be uni-
form [8, 64] for arbitrary direction, speed and travel time distributions, irrespective of the
boundaries being reflecting or wrap around. This is in contrast with the random waypoint
mobility model where nodes are more likely to be concentrated near the center of the area.
Another difference is that the minimum speed vmin does not have to be strictly positive.
The speed can be equal to zero since the node maintains a certain speed only for a limited
amount of time.

Notice that random direction mobility model is a generalization of the random walker:
by fixed the travel time and choosing only a vertical or horizontal direction of travel one
obtains a random walker. Notice also that the random direction can be ’scaled’ to obtain a
Brownian motion by sending the travel time to zero.

3.3.1.3 Random walker mobility model

In the two-dimensional Random Walker Mobility Model each node moves as a random walker
on a two-dimensional square lattice. The time is discrete and at each time step each node
has a probability of 1/4 of hopping to a position above, below, to the left, or to the right of
its current position. If the node is positioned on a boundary, then instead of hopping off the
lattice it hops back to the same state. This movement can be seen as someone wandering
at a constant speed from intersection to intersection through a city, where all of the streets
are equally spaced and perpendicular to each other (Manhattan network). The stationary
distribution of the location of a two-dimensional random walker on a square lattice is uniform
over the area. This properties is a consequence of the fact that a two-dimensional random
walker can be constructed from two independent one-dimensional random walkers, and that
the stationary location of a symmetric random walk in one dimension is uniform (see Section

1.2).

3.3.2 Simulation Setting

The numerical results presented hereafter are based on simulation programs in which mobiles

nodes move in a square of size 4 × 4km2.

For the random waypoint mobility model special care must be taken in the initialization
process of the simulator since the starting positions are not uniform. A good procedure for



Sec. 3.3 Applications 77

doing this, and which we have used, is presented in [65]. The method consists of sampling
the initial speeds and locations from their stationary distributions. Then, subsequent speeds
and locations are sampled from the uniform distribution. The pause times are taken to be
equal to zero.

Since the stationary distribution of the location of a node is uniform for both the
random direction and the random walker mobility models, their implementation does not
pose any difficulty.

For the random waypoint mobility model and the random direction mobility model, a

speed (in km/h) was chosen uniformly in [vmin, vmax] = [4, 10]km/h.

In the random direction mobility model, a node moves in a direction that is uniformly
distributed in [0, 2π), for an exponentially distributed amount of time (expressed in hours)

with mean 1/4, and at a speed that is uniformly distributed in [4, 10]km/h, before the node

chooses a new direction, travel time and speed.1

For the random walker mobility model we assume that the streets are 80 meters apart

and that the random walkers move at the constant speed2 of one block per minute (this

results in 512 = 2601 states and a constant speed of 4.8 km/h).

We assume that there are no inferences and that the transmission of a message between
two nodes (in contact) is instantaneous. The former assumption typically models a situation
where the transmission radius is small with respect to the size of the area. The latter
assumption typically models a situation where the message transmission time between two
nodes is negligible with respect to the node inter-meeting times. With these assumptions it
is easy to derive the time between consecutive events; details of this are given in Appendix
3.B.

In order to apply the results in Section 3.2 we need, for each mobility model, to check
the validity of assumption (A) and to identify the parameter λ of the exponential inter-
meeting time distribution.

3.3.3 Validation of the Poisson meeting times

For each mobility model and for various communication radii, the movement of two nodes
have been simulated and estimations have been made of the distribution (Section 3.3.3.1)

and the auto-covariance function (Section 3.3.3.2) of the inter-meeting times between these
two nodes. The results, based on 100,000 observations and which are reported below, show
that the Poisson assumption for the meeting time sequences is valid for all three mobility
models and for a large range of communication radii.

1As a small remark it is worth mentioning that with the right choice of parameters the random direction

mobility model can be used to simulate random walkers.
2In the previous chapter is was shown that due to time averages the underlying visit time distribution is

of little or no importance for the message delay, hence a constant visit time can be taken.
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3.3.3.1 Inter-Meeting Time Distribution

Figure 3.3 displays, on a log-scale for the y axis, the complementary cumulative distribution
function (complementary cdf) of the inter-meeting time between two nodes for each mobility

model and for three different communication radii (R = 50m, 100m, 250m).
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Figure 3.3: Complementary cdf of the inter-meeting time of two nodes for the random
waypoint, the random direction, and the random walker mobility models.

For the random direction and the random waypoint mobility models, and for each
communication radius, we have also plotted the complementary cdf of an exponential dis-
tribution (i.e. a straight line on a log-scale for the y axis) with intensity (i.e. slope) λ. We

observe an excellent agreement between the estimated cdf (solid line) and the exponential

cdf (dashed line) for the three different communication radii. Estimates for the value of λ
for these two models will be derived in Chapter 4 and are given in Corollary 4.2.2.

For the random walker mobility model the situation is more complicated: the inter-
meeting time is not exponential but there is an an exponential tail which rapidly emerges.
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The reason, we argue, is because random walkers have a tendency to“hang around”the same
region (resulting in many small inter-meeting times). If, however, the two random walkers
have wandered away from one another, then we find an exponential distibution for the time
until they meet again. This explains why in [72] the first-meeting time (defined as the time

between a random moment and the moment when two nodes meet) between two Brownian
motions resembles an exponential distribution whereas the inter-meeting time does not.

Because of the quick emergence of the exponential tail for the random walker mobility,
this movement pattern has been included into the analysis to see how robust the model is.
An explicit expression for the exponential tail under the random walker mobility model is,
to the best of our knowledge, not known and it is therefore obtained numerically as the
complementary of the average first-meeting time obtained across all simulations.

The fact that, for each mobility model, the cdf of the inter-meeting distribution is well-
approximated by an exponential distribution, at least for small to moderate transmission
radii (with respect to the size of the area) finds its roots in the various independence as-
sumptions placed on each mobility model. Indeed, nodes move independently of each other
and future directions and speeds (and therefore locations) of a node are independent of past
directions and speeds of this node. If we pick two mobile nodes at random at some sta-
tionary time, then there is a probability q that they will meet (in the sense of being within

transmission range of one another) before the next change of direction of either node. At
the next change of direction, because of the independent assumptions recalled above, the
process repeats itself and there is a probability q that these nodes will meet before the next
change of direction. This yields a geometric distribution for the number of changes of direc-
tion before both nodes meet. The exponential distribution pops up because the number of
changes of direction is “linearly” related to the time traveled before the nodes meet.

The fact that inter-meeting times are exponentially distributed has already been ob-
served for the Brownian motion and the random waypoint mobility model on a sphere [71].
This issue will be studied in more detail in Chapter 4. In particular, Theorem 4.2.1 provides
the parameter of the exponential distribution and Corollary 4.2.2 gives a number of special
cases for which simple closed-form expressions exist. Most notable is that λ has a linear
relationship with the transmission radius (under the assumption that R << L). This is
confirmed in Figure 3.4 where the estimate of λ based on simulations is plotted against the
communication range R. Also shown in the figure are the theoretical values of λ obtained
through Corollary 4.2.2. Not surprising, the value of λ is lower for nodes moving according
to the random waypoint model than for the random direction mobility model since the nodes
are more concentrated around the center of the region. The linear relationship between λ
and R has also been observed for the random walkers, but for that mobility model the
theoretical value of λ remains to be found.

Since the parameter λ describes the meetings time between two nodes, and interference
was considered neglible, it means that λ is independent of the relaying protocol used.
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Figure 3.4: Relationship between the inter-meeting time intensity λ and the transmission

radius R. Here [vmin, vmax] = [4, 10] km/hour.

3.3.3.2 Independence of Inter-Meeting Times

Let {τ(n)}n be the inter-meeting times between two given nodes. To check the assumption

that the rvs {τ(n)}n are mutually independent rvs, we have used the following classical

estimator for the auto-correlation function of {τ(n)}n

ρm(h) =
γm(h)

γ0(h)
, h ≥ 0,

where

γm(h) :=
1

m

m−h∑

n=1

(
τ(n + h) − τ̂ (m)

) (
τ(n) − τ̂ (m)

)

is an estimator of the auto-covariance function, with τ̂ (m) = (1/m)
∑m

n=1 τ(n) the sample

mean for m observations.

If the rvs {τ(n)}n are mutually independent then their autocorrelation function is equal

to zero for all h ≥ 1.

The mapping h → ρm(h) corresponding to the random waypoint mobility model is

plotted in Figure 3.5 for m = 100, 000 and R = 0.25km. The autocorrelation functions
corresponding to other values of R (R = 0.05km, R = 0.1km) and/or to the random
direction mobility model and the random walker mobility model are not displayed since
they are identical to the results in Figure 3.5. From these results we conclude that the
assumption that the inter-meeting times between two nodes are mutually independent rvs
is a reasonable assumption.

In conclusion, the results reported in Sections 3.3.3.1 and 3.3.3.2 validate the assump-
tion that the meeting time process between two given nodes is a Poisson process for all three
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mobility models and for small to moderate communication radii (with respect to the size of

the area in which the nodes move).
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Figure 3.5: Autocorrelation function of inter-meeting times for the random waypoint mo-
bility model with R = 0.25km.

3.3.4 Expected Message Delay

For the three mobility models introduced in Section 3.3.1 and for three communication radii
(R = 0.05km, 0.1km, 0.25km), Figures 3.6-3.7 display the expected message delays obtained
both through simulations and by the analytical model as a function of the number of nodes.
Results for the two-hop (resp. unrestricted) relay protocol are given in Figure 3.6 (resp.

Figure 3.7).

These results demonstrate the ability of the analytical model to predict the expected
message delay under both the two-hop relay protocol and the unrestricted relay protocol for
different mobility patterns, across any number of nodes and communication radii.

3.3.5 Distribution of Number of Copies

Figures 3.8-3.10 compare the distribution of the number of copies at message delivery time
obtained through simulations (represented by bars in the figures) and by the analytical

model (solid lines), under both relay protocols and for 40 nodes (i.e., N = 39).

Results for the two-hop relay protocol are displayed in Figures 3.8-3.9 for the random
waypoint mobility model and the random walker mobility model, respectively (results for
the random direction mobility models are identical to that of the random waypoint mobility
model and have not been displayed). We observe that for all three mobility models the fit

is quite good when R = 50m and that it deteriorates as R increases (although the results
are still acceptable for R = 100m for the random waypoint mobility model and the random
direction mobility model).
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Figure 3.6: Expected message delay as a function of the number of nodes: the two-hop relay
protocol

Results for the unrestricted relay protocol are reported in Figure 3.10. Recall that for
this protocol the number of copies is uniformly distributed in the analytical model, namely,
P (NU = i) = 1/39 = 0.0256 for all i = 1, . . . , 39 (see Theorem 3.2.1). Results are displayed
for each mobility model, each for a different transmission range. We can see that in all cases
the distribution of the number of copies is very close to the uniform distribution.

These results give a good indication that our model, despite its genericness, is able to
capture the main features of the interaction of the mobility models and the relay protocols.
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Figure 3.7: Expected message delay as a function of the number of nodes: the unrestricted
relay protocol
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Figure 3.8: Distribution of the number of copies: the two-hop relay protocol under the
random waypoint mobility model
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Figure 3.9: Distribution of the number of copies: the two-hop relay protocol under the
random walker mobility model
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Figure 3.10: Distribution of the number of copies: the unrestricted relay protocol

3.4 Large networks

We have observed in Section 3.3 that, for the three mobility models considered in this
chapter, the inter-meeting time intensity (λ) is well approximated by a linear function of
the transmission range R. This approximation is valid as long as R is not “too large” with
respect to the size of the area in which the nodes move.

On the other hand, when the number of nodes increases R should decrease to prevent
interferences from becoming excessive.

Putting these two observations together, yields

λ = O(R(N)),

where R(N), the transmission range for a network with N nodes, is a decreasing function
of N .

Introducing this behaviour of λ in Theorem 3.2.2 immediately gives the following:

Corollary 3.4.1 For large N

IE[T2] =O
(

1√
NR(N)

)
and IE[TU ] = O

(
log(N)

NR(N)

)
. �
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If we choose R(N) = O(1/
√
N) in order to keep interference at an acceptable level (it is

shown in [72, Lemma 1] that R(N) = O(1/
√
N) in order to achieve a constant capacity per

node with the two-hop relay protocol), then

IE[T2] =O(1) and IE[TU ] = O
(

log(N)√
N

)
,

by using Corollary 3.4.1.

Alternatively, one may want to find the function R(N) so that the expected message

delay for unrestricted relaying is O(1) as the number of nodes becomes large. This is

achieved when R(N) = O(log(N)/N) leading to IE[T2] = O(
√
N/ log(N)).

Remark 3.4.1 Let TR be the message delay under the two-hop relay protocol. Recall that in

this protocol a message is relayed instead of copied [45] [71] [72]. Similar to the analysis con-

ducted in Section 3.2, it can be shown that IE[TR] = λ−1(1+1/N−1/N 2) = λ−1(1+O(1/N)).

Since λ = O(r(N)) for the random waypoint model, and with the scaling r = O(1/
√
N),

we find that the expected message delay under the two-hop relay protocol is O(
√
N), just as

was found in [71] but for nodes moving on a sphere.3

3.5 Concluding Remarks

In the first three chapters of this thesis the message delay was studied for a number of
different movement patterns. Some of these results which followed had to be calculated
separately for each mobility model whereas a number of other results were generic of nature.
The two most noteworthy generic results are the exponential inter-meeting times for R << L
and Theorem 3.2.1 for the LST of the message delay. In the next chapter it will be studied
for which class of mobility models these last two important results hold and in particular the
value λ will be derived for the random direction and the random waypoint mobility model.

An important reason for studying which class of movement patterns result in expo-
nential first-meeting times lies in the complexity of the first-meeting times. As Chapters
1 and 2 show, obtaining this measure for two relatively simple movement patterns in one
direction already proves to be quite challenging. Obtaining exact closed-form results in two
dimensions and for more than two mobiles does not seem feasible, hence the need to see
when the exponential approximations hold.

The generic model of this chapter can be used to evaluate and compare the performance
of different routing protocols for message delivery in MANET for a wide range of mobility
models. Future research will deal with the study of message delivery within a certain
timeframe and for nodes which are not always turned on.

3The Brownian motion mobility model was studied in [72], whereas in this paper we consider the random

walker mobility model. To go from the latter movement to the former care must be taken in terms of the

limit and the metric under consideration (expected delay).
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In this work it was assumed that there was a single message and that communications
between other nodes do not interfere with the transfer of that single message. The next
step requires the study of simultaneous communications that take the queueing at the relay
nodes into account.

3.A Proof of Lemma 3.2.1

Proof. We start with proving (3.15a). Define A(N) :=
∑N

i=1
i2N !

(N−i)!N i .

If it were not for the presence of the factor i2 in A(N), then this quantity would be

the Ramanujan Q-distribution [70, page 188], also known as the birthday function. This
function often shows up in the analysis of algorithms.

The derivation of the approximation (3.15a) follows that of the Ramanujan Q-distribution

approximation [70, Proposition 4.8]. We now outline it.

Let i0 := bN3/5c. This implies that i20/N → ∞ as N → ∞ and i0 = o(N2/3). We have

A(N) =

i0∑

i=1

i2N !

(N − i)!N i
+B(N),

with B(N) :=
∑N

i=i0+1
i2N !

(N−i)!N i .

B(N) is an exponentially small function of N , in the sense that B(N) is O(1/N a) for
any a > 0. The proof of this result goes as follows. It is shown in the proof of Proposi-

tion 4.8 in [70] that C(N) :=
∑N

i=i0+1
N !

(N−i)!N i is an exponentially small quantity. On the

other hand, B(N) ≤ N 2C(N), from which we conclude that B(N) is exponentially small
since the product of an exponentially small quantity and any polynomial in N remains an
exponentially small quantity [70, Exercise 4.10, p. 158].

Therefore,

A(N) =

i0∑

i=1

i2N !

(N − i)!N i
+ ∆(N),

where ∆(N) represents a function which is exponentially small.

For any integer i that is o(N 2/3) it is shown in [70, Proposition 4.4] that

N !

(N − i)!N i
=e−i2/(2N)

(
1 + O

( i
N

)
+ O

( i3
N2

))
. (3.18)

Since i = o(N2/3) whenever 1 ≤ i ≤ i0, we deduce from (3.18) that

A(N) =

i0∑

i=1

i2e−i2/(2N)

(
1 + O

( i
N

)
+ O

( i3
N2

))
+ ∆(N).
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By applying the Euler-MacLaurin summation [70, Theorem 4.2] to the functions x3e−x2/2

and x5e−x2/2 we find that (see [70, Exercise 4.69] for similar results)

i0∑

i=1

i2e−i2/(2N)O
( i
N

)
= O(N)

and

i0∑

i=1

i2e−i2/(2N)O
( i3
N2

)
= O(N),

respectively. Hence,

A(N) =

i0∑

i=1

i2e−i2/(2N) + O(N). (3.19)

By noting that i2e−i2/(2N) is exponentially small for i > i0 we can add all terms for i > i0
into the right hand side of (3.19), which gives

A(N) =
∑

i≥1

i2e−i2/(2N) + O(N). (3.20)

The above summation is the summation of the function Nx2e−x2/2 at regularly spaced points

with step 1/
√
N . Another application of the Euler-MacLaurin formula [70, Proposition 4.2]

yields

∑

i≥1

i2e−i2/(2N) =N3/2

∫ ∞

0

x2e−x2/2dx+ O(N)

=N3/2

√
π

2
+ O(N), (3.21)

so that

A(N) = N3/2

√
π

2
+ O(N)

from (3.20) and (3.21), which concludes the proof of the first part of the lemma.

The proof (3.15b) is done in a similar way to shown that

∑

i≥1

i3N !

(N − i)!N i
=

∑

i≥1

i3e−i2/(2N) + O(N3/2)

= N2

∫ ∞

0

x3e−x2/2dx+ O(N3/2)

= 2N2 + O(N3/2).
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3.B Derivation of the time until the next event

For the purpose of numerical analysis an event-driven simulation program was written. An
event can be:

• the change of direction or position of a node;

• two nodes coming within range of each other;

• two nodes getting out of range of each other.

The calculation of the time until one of the last two events happens is done the next
paragraph.

Calculation of the time until two nodes meet.
Since the simulation program is event-driven it is necessary to calculate the time between
the change of direction of a node and the time of a possible meeting with another node
before its next change of direction. To derive this time take a look at Figure 3.11.

s2

α 2

α 1

s1

(x1,y1)

(x2,y2)

Figure 3.11: Illustration of the meeting of two nodes.

Assume the second nodes changes direction at time t = 0. Let the position of node

i = 1, 2 at that moment be given by (xi, yi), the direction by αi, and the speed by si. The
position of node i at time t ≥ 0 is

xi(t) = xi + t · si · cos(αi), (3.22a)

yi(t) = yi + t · si · sin(αi). (3.22b)

The mobiles meet or separate from each other at time t if the distance between them is

exactly R. These times are given by the solution toR =
√

(x1(t) − x2(t))2 + (y1(t) − y2(t))2.
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Filling in (3.22) gives

R2 =
(
x1+t·s1 · cos(α1)−x2+t · s2 ·cos(α2)

)2

+
(
y1+t·s1 · sin(α1)−y2+t · s2 ·sin(α2)

)2

=
(
(x1−x2)+t

(
s1 cos(α1)−s2 cos(α2)

))2

+
(
(y1−y2)+t

(
s1 sin(α1)−s2 sin(α2)

))2

= (x1 − x2)
2 + (y1 − y2)

2

+2t
(
(x1 − x2)

(
s1 cos(α1) − s2 cos(α2)

)
+ (y1 − y2)

(
s1 sin(α1) − s2 sin(α2)

))

+t2
((
s1 cos(α1) − s2 cos(α2)

)2
+ (s1 sin(α1) − s2 sin(α2))

2
)
.

Solving this second-degree polynomial in t gives

t1 =
−b−

√
b2 − 4ac

2a
,

t2 =
−b +

√
b2 − 4ac

2a
,

with

a := h2
1 + h2

2, h1 := s1 cos(α1) − s2 cos(α2),

b := 2(x1 − x2)h1 + 2(y1 − y2)h2, h2 := s1 sin(α1) − s2 sin(α2),

c := (x1 − x2)
2 + (y1 − y2)

2 − R2.

Here t1 and t2, respectively, give the moments in time when the mobiles come into contact
with one another and when they loose contact with each other. If

• b2 − 4ac < 0: the two nodes never me(e)t;

• t1 < 0 and t2 < 0: their hypothetical meeting and separation took place in the past;

• t1 < 0 and t2 ≥ 0: they are in contact at time t = 0 and will separate at time t2;

• t1 ≥ 0 and t2 ≥ 0: they will meet at time t1 and separate at time t2.

Finally, the times t1 and t2 can be compared to the time until the next change of direction
of either node, and then the appropriate event can be scheduled.
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In this chapter it is proven that the first-meeting times and the inter-meeting times
between two nodes moving under the random direction and the random waypoint mobility
model are exponentially (λ) distributed. This result is shown under the hypothesis that

there is no interference and that the fixed transmission range (r) is small compared to

the length (L) of the square area the nodes move on, i.e., r << L. The parameter λ is
identified for each of the models and in the special case were the speeds of the two nodes
are constant and identical a simple expression reveals itself. The obtained expressions are
validated against numerical results.

The obtained expressions can be used in the previous chapter where—assuming expo-
nential (λ) inter-meeting times—the message delay was expressed as a function of λ and the
number of nodes.
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4.1 Introduction

The first-meeting time is defined as the time, starting from a random moment in time, until
two nodes meet. The inter-meeting time is defined as the time that passes between two
consecutive meetings. It is assumed that each node has the same transmission range r.

An interesting property emerges for the random direction and the random waypoint
mobility models in two-dimensions: the first-meeting and the inter-meeting times are (ap-

proximately) exponentially distributed as long as the fixed transmission radius is small

compared to the length (L) of the square surface area the nodes travel on, i.e., r << L.
This is best seen in Figure 4.1 where the complementary cdf of the first meeting times
is shown for both mobility models, L = 4 km, and for three different transmission radii
(r = 50, r = 100, and r = 250 meters). The speeds at each change of direction are chosen

from [vmin, vmax] = [4, 10] km/hour. The variation in the tails are artefacts of simulations.
The figures for the inter-meeting times are virtually identical and are given in Figure 4.5
(the reason for this is given in Section 4.4).
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Figure 4.1: Complementary cdf of the first-meeting time.

Note the log-scale on the vertical axis. Alongside each of the simulated values is also a
straight line which corresponds to an exp(λ) distribution, where λ = 1/mean(First-meeting

times) obtained through the simulations. The variances in the tails are artifacts of simula-
tions.

In the next section the values of λ will be derived for both of the mobility models,
whereafter in Section 4.3 examples will be given. The obtained expressions are then linked
in Section 4.4 to the results of Chapter 3 after which concluding remarks are given in Section
4.5.
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4.2 The values for λ

The following theorem, which holds for any mobility model with the stated assumptions, is
central to this chapter and provides us with a basis for the estimates of λ for the random
direction and the random waypoint mobility models. The proof is given in Appendix 4.A.

Theorem 4.2.1 (First-meeting time distribution) Let two nodes move independently

of each other in a square of size L × L with speeds V1 and V2. Let IE[V∗] be the average

relative speed between the two nodes, and let π(x, y) be the distribution of the node location
in steady-state. If the transmission range r << L and the location of a node at time t is
independent of it’s location at time t + ∆t, for some small ∆t, then the first-meeting time

(F ) between the nodes is exponentially distributed with parameter λ, where λ is given by

λ ≈ 2rIE[V∗]

∫ L

0

∫ L

0

π2(x, y)dxdy. (4.1)

The average time until the two nodes meet is

IE[F ] =
1

λ
≈ 1

2rIE[V∗]
∫ L

0

∫ L

0
π2(x, y)dxdy

. �

Although the assumption in the above theorem at first glance seems very strong, for
mobility patterns which “move around” fast enough it provided excellent approximations.
For example, consider the random waypoint mobility model: knowing a node’s current
position provides us some information on where the node may have been located a little
moment earlier, but it provides us very little, almost no, information about the positions
where the node has previously changed direction. Hence we see that there is an independence
property over time.

In order to apply Theorem 4.2.1 to the random waypoint and the random direction
mobility models we first need to know two measures, namely the integral over the square of
the spatial node distribution and the average relative speed, IE[V ∗]. These two quantities are
summarized in the following propositions for which the proofs are forwarded to Appendixes
4.B and 4.C.

Proposition 4.2.1 Let π(x, y) be the pdf of the spatial node distribution of a node moving
in a square of size L× L. We have

∫ L

0

∫ L

0

π2(x, y)dxdy = 1/L2, (4.2a)

for nodes moving according to the random direction mobility model and

∫ L

0

∫ L

0

π2(x, y)dxdy ≈ 1.3683/L2, (4.2b)

for nodes moving according to the random waypoint mobility model. The constant ω ≈ 1.3683
shall be referred to as the waypoint constant . �.
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Proposition 4.2.2 (Distribution of the relative speed)
There are two nodes both travelling in a straight line and let their direction of travel both be
uniformly distributed. If the nodes are travelling with speeds V1 = v1 and V2 = v2 then the
cdf of their relative speed is given by

P (V∗ ≤ v∗|V1 = v1;V2 = v2) =





0, if v∗ ≤ |v1 − v2|,
1
� arccos

(
v2
1+v2

2−v2
∗

2v1v2

)
, if |v1 − v2| < v∗ < v1 + v2,

1, if v∗ ≥ v1 + v2.

The conditional pdf follows from this by taking the derivative:

fV∗(v∗|V1 = v1;V2 = v2) =






v∗

� v1v2

√

1−
(

v2
1
+v2

2
−v2∗

2v1v2

)2
, if |v1 − v2| < v∗ < v1 + v2,

0, otherwise.

(4.3)

If the at each change of direction the nodes do not pause and their speed is selected
uniformly from (vmin, vmax] then the pdf of the average relative speed under the random
direction mobility model is

fV∗ =
1

(vmax − vmin)2

∫ vmax

vmin

∫ vmax

vmin

fV∗(v∗|V1 = v1;V2 = v2)dv1dv2,

whereas for the random waypoint mobility model, the pdf of the average relative speed is
given by

fV∗(v∗) =
1

ln2
(

vmax

vmin

)
∫ vmax

vmin

∫ vmax

vmin

fV∗(v∗|V1 = v1;V2 = v2)

v1v2
dv1dv2. (4.4)

Both the pdf and the expected value,

IE[V∗] =

∫ 2vmax

0

fV∗(v∗)dv∗ (4.5)

can be calculated numerically. �

Notice in particular that Proposition 4.2.2—with pause times equal to zero—applies
to the random direction mobility model in a square and to the random waypoint mobility

model in a circle1. It can also be used as a very good approximation for the random walker
in a square since there the direction of the nodes is not far from the uniform [48].

As an example, Figure 4.2(a) shows the pdf of the relative speed for both mobility mod-

els with [vmin, vmax] = [4, 10] km/hour. In this case, the expected relative speed under the

1Due to symmetry arguments the direction of travel is uniformly distributed.
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random direction mobility model is IE[V∗] ≈ 9.2 km/hour and under the random waypoint

mobility model it is IE[V∗] ≈ 8.7 km/hour.

From the figure we see that there is merely a slight difference between the two mo-
bility models. However, as vmin gets closer to zero the difference between the two models
becomes more distinct. To see this, Figure 4.2(b) displays the pdf of the relative speed when

[vmin, vmax] = [0.3, 10] km/hour. The average relative speed at the moment of contact is

IE[Ṽ∗] ≈ 7.4 km/hour for the random direction mobility model and IE[Ṽ∗] ≈ 4.4 km/hour for
the random waypoint mobility model. Here we see that under the latter movement pattern
the nodes become “trapped” in the slower speeds.
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Figure 4.2: Pdf of the relative speed in two dimensions.

At the other extreme, when the minimum speed is equal to the maximum speed (vmin =

vmax) a simple expression unveils itself and the two mobility models converge to the same
distribution as shown in the following corollary.

Corollary 4.2.1 (Relative speed for nodes travelling at a constant speed)
For two nodes travelling at the same speed the cdf of the relative speed—for both the random
direction and the random waypoint model—is given by

P (V∗ ≤ v∗|V1 = v = V2) =
2

�
arcsin

( v∗
2v

)
. (4.6)

The distribution function is

fV∗(v∗|V1 = v = V2) =
1

� v
√

1 − (v∗/2v)2
=

2
�
√

4v2 − v2
∗
, (4.7)
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and the average relative speed is

IE[V∗|V1 = v = V2] =
4v

�
. (4.8)

�

Proof : For V1 = v = V2 the first part of proposition 4.2.2 becomes

P (V∗ ≤ v∗|V1 = v = V2) =
1
�

arccos

(
1 − 2

( v∗
2v

)2
)
.

With the help of arccos(−x) + arccos(x) = � and [37, equation 1.626.2] arccos(2x2 − 1) =

2 arccos(x) this gives

P (V∗ ≤ v∗|V1 = v = V2) = 1 − 2
�

arccos
( v∗

2v

)
=

2
�

arcsin
( v∗

2v

)
,

where in the last step the property arccos(α) + arcsin(α) = � /2 was used. The distribution
function and the expectation are easy to derive from this.

Interestingly, the average relative speed which is given in (4.8) is larger than v, the

(average) speed of each node.2 In one dimension the situation is different: there it can be
shown that the average relative speed is equal to v.

We are now in a position to summarize all of the previous results into the following
corollary.

Corollary 4.2.2 (First-meeting times: random waypoint and random direction)
The first-meeting time for the random direction mobility model for r << L is approximately
exponentially (λRD) distributed, where λRD is

λRD ≈ 2rIE[V∗]

L2
. (4.9a)

The expected time until two nodes meet is given by

IE[FRD] ≈ L2

2rIE[V∗]
. (4.9b)

Likewise, for the random waypoint mobility model we have

λRW ≈ 2ωrIE[V∗]

L2
, (4.10a)

IE[FRW ] ≈ L2

2ωrIE[V∗]
, (4.10b)

2In addition—although not proven here—the average relative at the moment when two nodes meet is

given by π
2 v, which is larger than the average relative speed ( 4

π
v) at a random moment in time.
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where ω ≈ 1.3683 is the Waypoint constant.

The average relative speed can be calculated with the help of equations (4.3) and (4.5).
If the speeds of both nodes are identical and constant, i.e., V1 = v = V2, then

λRD ≈ 8rv
� L2

, IE[FRD] =
� L2

8rv
, (4.11a)

λRW ≈ 8ωrv
� L2

, IE[FRW ] =
� L2

8ωrv
. (4.11b)

�

Proof: The first set of equations follow by filling in Proposition 4.2.1 into Theorem 4.2.1.
Equation (4.11) is a direct consequence of Corollary 4.2.1.

Remark: A simple example why the distributions of the first-meeting times can never be
truly exponential is because at a random moment in time there is a non-zero probability (but

very small since r << L) that two nodes are in contact with one another (i.e., P (F = 0) > 0).
For the interested reader this probability is given in Appendix 4.D.

An application of this Corollary has already been given in Figure 3.4 on page 80 for

[vmin, vmax] = [4, 10] km/hour. There the values of λ follow from IE[V∗] ≈ 9.3 for the random

direction and IE[V∗] ≈ 8.7 for the random waypoint mobility model.

A consequence of the above corollary is the following.

Corollary 4.2.3 (Comparison between random waypoint and random direction)
If the expected relative speed is the same for the random direction and the random waypoint

mobility model,3 then the parameter λ is a factor ω ≈ 1.4 higher for the random waypoint
model. This implies that the expected first-meeting time, the expected inter-meeting time,
and the expected message delay are a factor ω lower for the random waypoint model. This
result holds for both the two-hop and the unlimited relay protocol.

Similarly, if the average relative speed is a factor ω higher for the random direction
mobility model, then the expected first-meeting times and the expected message delay for
both models are the same.

Proof: It will be shown in Section 4.4 that the first-meeting times and the inter-meeting
times are almost identical to one another if r << L. The remainder is then a direct
consequence of combining Corollary 4.2.2 with Theorem 3.2.2.

3This is the case if both nodes travel a the same constant speed (V1 = v = V2). See Corollary (4.2.2).
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4.3 Examples

As examples of Corollary 4.2.2, Figures 4.3 and 4.4 show the complementary cdf for, re-
spectively, constant speeds (V1 = V2 = 10 km/hour) and speeds chosen uniformly in

[vmin, vmax] = [4, 10] km/hour.
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Figure 4.3: Complementary cdf of the first-meeting times for V1 = V2 = v = 10km/hour.

Alongside each set of simulated first-meeting times is shown an exponential (λ) dis-

tribution, where λ is obtained through Corollary 4.2.2. In all cases there is an excellent
match.

4.4 Implications for the message delay

In the previous chapter the Laplace-Stieltjes transform and the first two moments of the
message delay were given for the case where the inter-meeting times between nodes for a
Poisson process. In this section we compare the first-meeting times to the inter-meeting
times and from that conclude that the results from this chapter can be applied to the
previous chapter.

The inter-meeting time between two nodes is defined as the time that passes between
the moment when two nodes come in contact and the moment in time when they come into
contact again. This is equivalent to saying that the inter-meeting time is the contact time

between two nodes plus the time until the two nodes meet again4. However, for movements
which are very dynamic we may expect that the positions of each node, after they were
in contact, quickly converge to the steady-state node location. In other words, we expect

4Sometimes the latter time is referred to as the inter-meeting time.
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Figure 4.4: Complementary cdf of the first-meeting times if the speeds of both nodes are

chosen uniformly in [vmin, vmax] = [4, 10] km/hour.

the inter-meeting times and the first-meeting times will resemble one another. Similarly, if
we have a Poisson process then the time between events and the time between a random
moment and the next event are both exponentially distributed with the same parameter.

The quickest method of checking this is by showing in Figure 4.5 the complementary
cdf of the inter-meeting times for the two movement patterns studied throughout this chap-
ter. Once again [vmin, vmax] = [4, 10] km/hour and an exp(1/4) travel time is taken for

the random direction mobility model. Alongside the simulated values is shown an exp(λ)

distribution with λ obtained through Corollary 4.2.2.

As can be seen from Figure 4.5, the complementary cdf of the inter-meeting time for
both of the mobility models is exponentially distributed. In addition, as was expected, the
estimates provided for λ for the first-meeting times are in excellent agreement with the
inter-meeting times. Hence we can apply all of the results obtained in this chapter to the
previous chapter.

One of the results which can be used with the previous chapter is that if the relative
speeds are the same for both models—a situation that arises is the nodes all travel at the
same constant speed—then the time until two nodes meet is a factor ω ≈ 1.4 smaller under
the random walker than under the random direction mobility model. This in turn implies
that the message delay is a factor ω smaller for the random waypoint model, irrespective
of the relay protocol used! This improvement in performance is due to the nodes travelling
regularly over a central region. Hence we have a direct quantification of the improvement
for relaying with hotspots due to the different mobility patterns.
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Figure 4.5: Complementary cdf of the inter-meeting time.

4.5 Concluding remarks

In this chapter it was shown that under certain conditions the first-meetings times of the
two movement patterns presented—the random direction and the random waypoint mobility
models—can be fitted by an exponential distribution. With this property it was shown in
Chapter 3 that the message delay can be described by a simple formula. On the basis of
this a number of questions come to mind which will be addressed in future research. These
questions are:

• How does the first-meeting time distribution change when the transmission range (r)

is not much smaller than the length (L) of the square area the nodes move on?

• Which other (types of) movement patterns have exponential first-meeting times? In
the previous chapter it was shown numerically that the random walker also has this
characteristic. However, for that movement pattern the nodes do not “move around”
fast enough for Theorem 4.2 to be applied and hence therefore it’s value for λ remains
an open question.

• How do varying transmission ranges affect the results? For example, there could be
groups of nodes each with a different (fixed) transmission range, or each node could
have a stochastic transmission range which varies over time.

Aside from these issues many optimization questions can be addressed by combining
Theorem 3.2.1 and Theorem 4.2. For example, which relay strategy and/or transmission

range must be employed to ensure a successful transmission in 95% of the cases within a
certain amount of time? How can the battery power of a node be used optimally?



Sec. 4.A Proof of Theorem 4.2.1. 101

Another issues which requires further study is the comparison of the message delay and
network consumption by having different mobility models.

In this first part of the thesis the relatively simple fixed radius model was used. Al-
though not part of this thesis, the interference should be included into the models and the
numerical studies. It is expected that the same results and conclusions hold as long as
r << L and the number of nodes per unit area is not too large.

In other words, there are still a lot of interesting problems which have to be solved....

4.A Proof of Theorem 4.2.1.

Proof: The proof consists of modelling the meeting of two nodes as a geometric variable
with some probability p of success and then taking the limit to derive the exponential
distribution. The probability p depends on the speeds and the positions of the two nodes.
We shall derive this probability by conditioning on the position (x1, y1) of the first node and
by deriving the probability px1,y1

that within the next ∆t time the two nodes will meet each

other. Without much impact we can assume that there is no change of direction during ∆t.

Note that the probability px1,y1
is dependent on the area (A) that node one covers in

∆t time, i.e., the highlighted area in Figure 4.6. Also note that the area of A is given by
2rV1∆t (ignoring border effects).

∆

∆

V t1

r

t1area(A)=2rV

A
V1

Figure 4.6: Area covered by the first node during a time ∆t.

First we will take the position of the second node each ∆t units of time from the
stationary distribution. Afterwards the speed of the second node will be taken into account.

Assuming the second node is in its stationary position it means that the probability
that the second node is located in area A is

px1,y1
=

∫ ∫

A

π(x, y)dxdy.

For small r the points π(x, y) in A can be approximated by π(x1, y1) to give

px1,y1
≈ 2r · V1 · ∆t · π(x1, y1).
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Unconditioning on the position of the first node leads to the probability p that within the
next ∆t time the two nodes meet each other:

p =

∫ L

0

∫ L

0

px1,y1
π(x1, y1)dx1dy1

≈ 2r · V1 · ∆t

∫ L

0

∫ L

0

π2(x1, y1)dx1dy1.

Taking the limit ∆t → 0 gives an exponential distribution with parameter

λ ≈ 2rV1

∫ L

0

∫ L

0
π2(x1, y1)dx1dy1.

Now consider the situation where the second node is mobile with speed V2 = v2. In
this case we should not look at the area the first node covers, but instead we should look at
the positions the second node has to be in such it will end up in the area the first node will
cover, i.e., the area the second node has to be in such that they meet in the next ∆t units
of time. As shown in Figure 4.7, the area A depends on V∗, the relative speed between the

nodes.5

∆

∆

V1

V
*

V2

−V2

area(A)=2rV t

V t*

r

*

A

Figure 4.7: Position the second node has to be in for the nodes to meet.

In particular, if the first node is in (x1, y1) then the probability of a “success” is given

5Hint: think of this process from the viewpoint of the first node. In the case of Figure 4.7 the first node

“sees” the second node coming straight down at it (since the horizontal speeds are identical). The only

positions the second node can start in such that the two nodes meet are the ones directly above the first

node.
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by

px1,y1
=

∫ ∫

A

π(x2, y2)dx2dy2

≈ 2r · V∗ · ∆t · π(x1, y1),

since the area of A is 2r ·V∗ ·∆t. Integrating over all starting positions of the first node give

p =

∫ L

0

∫ L

0

px1,y1
π(x1, y1)dx1dy1

≈ 2r · V∗ · ∆t ·
∫ L

0

∫ L

0

π2(x1, y1)dx1dy1.

Taking the limit ∆t → 0 finally leads to the exponential distribution with parameter

λ ≈ 2rV∗

∫ L

0

∫ L

0

π2(x1, y1)dx1dy1.

4.B Proof of Proposition 4.2.1.

Proof: The expression for nodes moving according to the random direction mobility model
is easy to obtain as it is known [64] that the spatial node distribution is uniform, i.e.,

π(x, y) = 1/L2.

Unlike the one-dimensional case, there is unfortunately not a simple expression for
the steady-steady location of nodes under the random waypoint mobility model in two
dimensions. Close approximations exist [13] and at best the spatial node distribution over

any convex region (which includes of course a rectangle, square, circle, box, or sphere) is

expressed as an integral which can be evaluated numerically [51] [52].

Summarizing the results in [51] which allow us to calculate π(x, y) numerically: the
steady-state location of nodes on a square of size L× L is given by

π(x, y) =
1

l̄L5

∫ π

0

g(x, y, φ)g(x, y, φ+ π)
(
g(x, y, φ) + g(x, y, φ+ π)

)
dφ,

where l̄ ≈ 0.521405 is the average path length in a unit square and

g(x, y, φ) =





L−y
sin φ

, if arctan L−y
L−x

≤ φ < π
2

+ arctan x
L−y

,
−x

cos φ
, if π

2
+ arctan x

L−y
≤ φ < π + arctan y

x
,

−y
sin φ

, if π + arctan y
x
≤ φ < 3π

2
+ arctan L−x

y
,

a−x
sin φ

, if 0 ≤ φ arctan a−y
L−x

or 3π
2

+ arctan L−x
y

≤ φ < 2π.
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Figure 4.8: Spatial node distribution under the random waypoint mobility model.

As an example the stationary distribution of the node location in a 4 × 4 square is given

in Figure 4.8. The integral over the square of π(x, y) was derived numerically from these
values.

4.C Proof of Proposition 4.2.2.

Proof: Let V1 = v1 and V2 = v2 be the speeds of the two nodes and let V∗ be the resulting
relative speed between them due to the difference Γ ∈ (− � , � ] in their direction, see Figure
4.9.

−v2
*

Γ

V

1
2

vv

Figure 4.9: Combining the speeds V1 = v1, V2 = v2, and Γ (the difference in directions)
leads to the relative speed V∗.

Notice that the relative speed is given by

V 2
∗ =

(
v1 + v2 cos(π − Γ)

)2
+
(
v2 sin(π − Γ)

)2

= v2
1 + v2

2 − 2v1v2 cos(Γ).



Sec. 4.D Probability of contact at a random moment 105

This relationship allows us to derive the cdf since

P (V∗ ≤ v∗|V1 = v1;V2 = v2) = P (v2
1 + v2

2 − 2v1v2 cos(Γ) ≤ v2
∗ | V1 = v1;V2 = v2)

= P (cos(Γ) ≥ v2
1 + v2

2 − v2
∗

2v1v2
| V1 = v1;V2 = v2)

= P (|Γ| ≤ arccos

(
v2
1 + v2

2 − v2
∗

2v1v2

)
| V1 = v1;V2 = v2).

The change from ≥ to ≤ in the last line is because arccos(x) is a decreasing function
in x. Note that if the directions of travel of each node is uniformly distributed then Γ is
also uniformly distributed. This leads to equation (4.3).

Next we need the pdf of the speed of a node at a random moment in time in order to
uncondition (4.3). If the speed of a node is selected uniformly from [vmin, vmax], then the
speed of a node under the random direction mobility model is uniformly distributed and so

fVi
(vi) = 1/(vmax − vmin).

For the pdf of the random waypoint mobility model a little more work is required.
If the speed, S, of a node at a change of direction is selected uniformly from [vmin, vmax],

then fS(s) = 1/(vmax − vmin) and for i = 1, 2 we have fVi
(vi) = fS(s)C/vi. Here C is a

constant to ensure the probability sums to one and the division by vi is necessary because
at a random time the node only maintains a certain speed vi for a fraction 1/vi of time.

Since 1 =
∫ vmax

vmin
fVi

(vi) = ln(vmax/vmin)
vmax−vmin

C we obtain C = vmax−vmin

ln(vmax/vmin)
and

fVi
(vi) =

1

vi ln
(

vmax

vmin

) , i = 1, 2.

(This gives the well-known result IE[Vi] = (vmax − vmin)/ ln
(

vmax

vmin

)
)

Unconditioning (4.3) then leads to (4.4). To the best of the author’s knowledge, the
evaluation of the resulting integrals do not lead to a simple closed-form expression.

4.D Probability of contact at a random moment

In this section we derive the probability that from a random moment in time two nodes are
in contact with one another. For this purpose define F as the first-meeting time and

Cx,y,r :=
{
(a, b) ∈ [0, L]2 :

√
(x− a)2 + (y − b)2 ≤ r

}
,

i.e., Cx,y,r is the set of points which are at most a distance r from the point (x, y).
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This allows us to write out the probability that (given the position of one of the nodes)
two node are within each others vicinity as

P
(
F = 0| (X1, Y1) = (x, y)

)
=

∫ ∫

Cx,y,r

π(x2, y2)dx2dy2.

For the points (x2, y2) ∈ Cx,y,r and a small r the approximation π(x2, y2) ≈ π(x, y) can be

used. This results in

P
(
F = 0| (X1, Y1) = (x, y)

)
≈

∫ ∫

Cx,y,r

π(x, y)dx2dy2 = � r2π(x, y)

and

P (F = 0) =

∫ L

0

∫ L

0

P
(
F = 0| (X1, Y1) = (x, y)

)
· π(x, y)dxdy

≈ � r2

∫ L

0

∫ L

0

π2(x, y)dxdy

For the random direction mobility model this gives

P (F = 0) ≈
� r2

L2
, (4.12a)

and for the random waypoint mobility model (c.f., equation (4.2b))

P (F = 0) ≈
� ωr2

L2
, (4.12b)

where ω ≈ 1.368 is the Waypoint contact.

Since � r2/L2 ≈ 0.012 for r = 0.25km and L = 4km it follows that P (F > 0) ≥ 0.98.
This explains why the complementary cdf in Figure 4.1 and Figures 4.3-4.5 appear to start
from one on the y-axis.
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Chapter 5
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Correlated Switchover Times
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In this second part of the thesis a single server queueing system is analysed in which
service is alternated between two queues and the server requires a (finite) switchover time
to switch from one queue to the other. The distinction from classical results is that the
sequence of switchover times from each of the queues need not be i.i.d. nor independent
from each other; each sequence is merely required to form a stationary ergodic sequence.
With the help of stochastic recursive equations explicit expressions are derived for a number
of performance measures, most notably for the average delay of a customer and the average
queue lengths under different service disciplines. With these expressions a comparison is
made between the service disciplines and the influence of correlation is studied. Finally,
through a number of examples it is shown that the correlation can significantly increase the
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mean delay and the average queue lengths indicating that the correlation between switchover
times should not be ignored. This has important implications for communication systems
in which a common communication channel is shared amongst various users and where the
time between consecutive data transfers is correlated (for example in ad-hoc networks).

Note: A summary of the material presented in this chapter is published in [40]. A longer
version almost identical to this chapter has been submitted to QUESTA and is available as
an INRIA research report [39].

5.1 Introduction and Motivation

So far only few explicit results have been known in queueing theory for systems whose
evolution is described by general stationary ergodic processes. One line of research that
allows one to handle stationary ergodic sequences is based on identifying measures that
are insensitive to correlations. For example, the probability of finding a G/G/1 queue non-
empty is just the ratio between the expected service time and the expected inter-arrival time
of customers (which follows directly from Little’s Law). The expected cycle duration in a

polling system (under fairly general condition) too, depends on the inter-arrival, service and
vacation times only through their expectations under general stationary ergodic assumptions
(see e.g., [7]). An example of performance measures that depend on the whole distribution of
service times but is insensitive to correlations is the growth rate of the number of customers
or of the sojourn time in a (discriminatory) processor sharing queue in overload [6, 54].

Other insensitivity results on bandwidth sharing in a network can be found in [18, 17].

The polling models studied here do not exhibit insensitivity. Approximating correlated
vacations by independent ones can result in large errors in the performance, see e.g., [90]
in the context of Bluetooth. To study these systems use is made of stochastic recursions
equations (SRE) introduced in [3] which extend branching processes with migration on one

hand, and linear stochastic recursive equations1 on the other. It has already been shown in
[3] that vector valued SRE can be used to describe some embedded processes appearing in

polling models.2

In this chapter one dimensional SRE are identified which are used in order to compute
the expected waiting times and queue lengths in a system with two queues where a single
server alternates between two queues and requires switch-over times (modeled as vacations)
to move from one queue to the other. Two systems are studied: one in which both queues
are served exhaustively and one in which one queue is served exhaustively and the other
according to the gated discipline. In the exhaustive service discipline the server serves a
queue until is empty before switching to the next queue. In the gated service discipline a
gate is closed in front of a queue when the server arrives at that queue. The server then
serves only the customers that were present at the moment the gate was closed, after which

1Linear SRE have already been used to study the impact of correlation of the loss process on TCP

throughput [5].
2SRE have also been used recently to study the infinite server queue with correlated arrivals [4].
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it moves on to the next queue. The customers who arrived after the gate was closed have
to wait until the next round before being served. The analytical results obtained are then
used to study numerically the impact of correlated switchover times on the performance, as
well as the difference in performance due to the service discipline used.

The polling system studied in this paper, but without the correlation, has been used in
the past [75] to model communication systems in which transmission between two stations

can take place only in one direction at a time3. The position of the server then corresponds
to the direction data is travelling in. A similar situation arises in ad hoc networks; there
is a common channel which needs to be shared amongst various users. The more users
there are, the longer one has to wait before being able to capture the channel necessary to
(re)transmit data. In particular, if one has to wait a long time before being able to transmit
data, then it is very likely that there are many users around and that the next time one
has to wait once again for a long period of time. For this reason the correlation of the
number of users over time in an ad hoc network inherently introduces correlation between
the waiting (switchover) times, and this in turn leads to an increase in the mean delay and
queue lengths.

The remainder of this document is structured as follows. In section 5.2 the polling sys-
tem is described in more detail and the notation and some formulas are established. Section
5.3 (respectively section 5.4) is entirely devoted the analysis of the exhaustive/exhaustive

(respectively exhaustive/gated) queueing system. This is done by first deriving a SRE in

section 5.3.1 (5.4.1) which leads to the derivation of a number of performance measures in

section 5.3.2 (5.4.2), of which most notably the expected waiting times and queue lengths

in section 5.3.2.6 (5.4.2.7). The performance measures are used then used in the examples
of section 5.5 to show the influence of correlated switchover times. Finally, conclusions are
given in section 5.6. To aid the reader, a list of notation is given appendix 5.E.

5.2 Model Description

We examine the polling of two queues, i.e., one queue is served after which the other queue is
served. No limit is specified for the length of either queue. After serving queue i (i = 1, 2) for
the n-th time, the server requires a switchover time of duration Vn,i. Assume all Vn,i have the

same distribution as Vi (Vn,i ∼ Vi), where Vi is assumed to form a general distribution with

first and second moment vi and v
(2)
i , and with variance δ2

i :=v
(2)
i −v2

i , i = 1, 2. Let R :=v1+v2

and ∆2 := δ2
1 +δ2

2. The sequences of switchover times are assumed to be stationary ergodic
instead of the usual i.i.d., and possibly dependent on each other. This implies that there can
be a correlation between the switchover times of the two queues and/or within the sequence
of switchover times for each queue. The arrival of customers at queue i is Poisson with rate λi

and the service times are nonnegative, i.i.d. random variables with (finite) first and second

moments for queue i given by, respectively, bi and b
(2)
i . The load at queue i is ρi := λibi

and the system is stable [78, page 280] if and only if the overall load ρ := ρ1 + ρ2 < 1,

3One can also think of a narrow bridge with cars travelling over the bridge from one direction at a time.
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which we assume throughout. Furthermore, we will continuously assume that the queues
are operating under stationary regime.

Introduce the covariance functions (i = 1, 2)

ci(n) =IE[V0,iVn,i] − IE[V0,i]IE[Vn,i], n ∈ N, (5.1)

c12(n) =IE[V0,1Vn,2] − IE[V0,1]IE[Vn,2], n ∈ Z. (5.2)

Note that c12(n) is defined for n ∈ Z. With this convention it is not necessary to work with

c21(n) := IE[V0,2Vn,1]− IE[V0,2]IE[Vn,1], since under stationary regime it follows that c21(n) =

IE[V0,2Vn,1]− IE[V0,2]IE[Vn,1] = IE[V−n,2V0,1]− IE[V−n,2]IE[V0,1] = c12(−n). In particular, if for

each queue the sequence of switchover times is uncorrelated, then ci(0) = δ2
i and ci(n) = 0,

for n ∈ N. If there is no correlation between the switchover times of the two queues, then

c12(n) = 0, for n ∈ Z.

Because of the assumption of the queues operating under stationary regime (5.1) and

(5.2) can be rewritten as

IE[V0,iVn,i] = v2
i + ci(n), i = 1, 2, n ∈ N, (5.3a)

IE[V0,1Vn,2] = v1v2 + c12(n), n ∈ Z. (5.3b)

In order to establish the SRE, let Dn,i(N) be the duration of the busy period in the

ith queue, initiated by N customers waiting in that queue when the server arrives at that

queue for the nth time. Similarly, let Nn,i(T ) be the number of customers arriving at queue

i during a period of time T during the server’s nth visit to queue i.

Let us now establish a number of formulas which will be used throughout. First recall
that if Di is a random sequence of i.i.d. random variables, independent of a random variable

N , and IE[Di] = d, IE[D2
i ] = d(2), and

τ(N) :=
N∑

i=1

Di, (5.4)

then

IE[τ 2(N)] =
∞∑

n=1

IE

[
n∑

i=1

Di ·
n∑

i=1

Di|N = n

]
P (N=n)

=

∞∑

n=1

n
(
IE[D2

1]+(n−1)(IE[D1])
2
)
P (N=n)

=d2IE[N2] + (d(2)−d2)IE[N ]. (5.5)

Similarly,

IE[N 2
n,i(T )] =

∫ ∞

0

IE[N 2
n,i(t)|T = t]dT (t) =

∫ ∞

0

(
(λit)

2 + λit
)
dT (t)

=λ2
i IE[T 2] + λiIE[T ]. (5.6)
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Next we proceed in a similar manner to obtain the second moment of the busy period

generated by Y customers initially in the system. First recall that Dn,i(1) is a single busy

period initiated by a single customer in an M/G/1 queue with Poisson arrivals with rate

λi and general service time with first and second moments bi and b
(2)
i respectively. The

first two moments of a single busy period initiated by a single customer are given by [57,

equations 5.141 and 5.142]

di := IE[Dn,i(1)] =
bi

1 − ρi
, (5.7a)

d
(2)
i := IE[D2

n,i(1)] =
b
(2)
i

(1 − ρi)3
, i = 1, 2. (5.7b)

The busy period, Dn,i(Y ), generated by Y customers is the sum of Y independent single

busy periods, each with distribution Dn,i,k ∼ Dn,i(1). Hence the second moment is

IE[D2
n,i(Y )] = IE

[
Y∑

k=1

Dn,i,k

]2

= IE

[
Y∑

k=1

Dn,i(1)

]2

= d2
i IE[Y 2] +

(
d

(2)
i − d2

i

)
IE[Y ].

(5.8)

By taking Y = Nn,i(T ) we obtain (i = 1, 2)

IE[D2
n,i(Nn,i(T ))] =d2

i IE[N 2
n,i(T )] + (d

(2)
i − d2

i )IE[Nn,i(T )]

=λ2
id

2
i IE[T 2] + d

(2)
i λiIE[T ]. (5.9)
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5.3 Exhaustive/Exhaustive Service System

5.3.1 Introduction

We start by examining the exhaustive polling of two queues, i.e., one queue is served until
it is empty after which the other queue is served until emptied. Consider the system at

the moment the server starts serving the first queue for the nth time with L∗
n,1 customers

waiting in the queue. From here on the following steps take place (see Figure 5.1 for a visual

representation of this decomposition):

• Exhausting the first queue. The L∗
n,1 customers in the first queue require a busy period

duration of Dn,1 := Dn,1(L
∗
n,1) to exhaust.

• Switching to the second queue. After serving the first queue the server requires a
switchover time of Vn,1 units of time.

• Exhausting the second queue. In the time needed to switch from the second to the first
queue (Vn−1,2), to exhaust the first queue (Dn,1), and to switch back to the second

queue (Vn,1), there have been L∗
n,2 := Nn−1,2(Vn−1,2)+Nn,2(Dn,1(L

∗
n,1)+Vn,1) customers

arriving at the second queue. It requires Dn,2 := Dn,2(L
∗
n,2) units of time to empty

this queue.

• Switching back to the first queue. After serving the second queue the server requires a
switchover time of Vn,2 units of time.

Busy period
time V
Switchover Busy period

of duration D
Switchover
time Vof duration Dn,1 n,1 n,2 n,2

Figure 5.1: Decomposition of the nth cycle into busy periods (Dn,1 and Dn,2) and switchover

times (Vn,1 and Vn,2).

After this the process starts over again and a new cycle begins. Hence the nth cycle is
made up of

Cn =Dn,1 + Vn,1 +Dn,2 + Vn,2.
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The time between the server finishing work at queue i and returning to queue i in the
next cycle is the inter-visit time In,i and is given by

In,1 = Vn,1 +Dn,2 + Vn,2, (5.10a)

In,2 = Vn,2 +Dn+1,1 + Vn+1,1. (5.10b)

A SRE will be established for this quantity and we will see that it plays a central role for
the derivation of the expected waiting times and queue lengths. The time Dn+1,i spent at

queue i in the (n+1)th cycle is related to the inter-visit time according to

Dn+1,1 = Dn+1,1(Nn,1(In,1)), (5.11a)

Dn+1,2 = Dn+1,2

[
Nn,2(Vn,2)+Nn+1,2

(
Vn+1,1

+Dn+1,1(Nn,1(In,1))
)]

(5.11b)

The expectation is the sum of expected busy periods [57, p.217] and thus

IE[Dn,1] =
b1IE[Nn,1(In,1)]

1 − ρ1

=
ρ1IE[In,1]

1 − ρ1

. (5.12a)

Using the stationarity and the divisibility (Nn,2(a+b) = Nn,2(a)+Nn,2(b)) of the arrival

process it can be shown that

IE[Dn,2] =
ρ2IE[In,2]

1 − ρ2

. (5.12b)

Since the busy periods are sums of service times, the divisibility property also holds for
Dn,i. This means that from (substitute 5.11b into 5.10a)

In+1,1 =Vn+1,1 + Vn+1,2 + Dn+1,2

[
Nn,2(Vn,2) + Nn+1,2

(
Vn+1,1 + Dn+1,1(Nn,1(In,1))

)]
,

n ∈ N, we see a SRE (as presented and solved for stationary ergodic sequences in [3])

arising. Although the system is two dimensional (as there are two queues), the reduction to
a one dimensional SRE is a key element in obtaining explicit formulas for the performance
measures.

Theorem 5.3.1 (SRE for exhaustive/exhaustive system). The inter-visit time of the first
queue allows itself to be written as a one-dimensional SRE,

In+1,1 =An(In,1) + Bn (5.13)

with

An(·) := Dn+1,2

(
Nn+1,2

(
Dn+1,1(Nn,1(·))

))
, (5.14)

Bn := Vn+1,1 + Vn+1,2 + Dn+1,2

(
Nn,2(Vn,2) + Nn+1,2(Vn+1,1)

)
. (5.15)

Note that from (5.12a) and (5.12b) we have IE[An(In,1)] = αIE[In,1] where α := ρ1ρ2

(1−ρ1)(1−ρ2)
.

�
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The existence of a stationary ergodic In,1 which satisfies (5.13) is given in the following

theorem which is proven in Appendix 5.A.

Theorem 5.3.2 If ρ < 1 then there exists a stationary ergodic regime I ∗n,1 which satisfies

(5.13). �

5.3.2 Performance Measures

In the next couple of sections the first two moments of various performance measures will
be derived. Starting with the first two moments of the intervisit time of the first queue, we
see that all of the other quantities can easily be expressed in terms of the intervisit time.
Most importantly, closed form expressions for the average waiting time and the mean queue
length will be derived in the presence of correlated switchover times.

5.3.2.1 Intervisit Time

Taking the expectation of the square of (5.13) gives

IE[I2
n+1,1] =IE[An(In,1)]

2 + IE[B2
n] + 2IE[An(In,1)Bn]. (5.16)

This expression is central to the proof of the following theorem.

Theorem 5.3.3 (Intervisit time in exhaustive/exhaustive system). Under the stationary
regime the expected intervisit time of queue i is given by

E[In,i] =
R(1 − ρi)

1 − ρ
, ρ := ρ1 + ρ2, i = 1, 2. (5.17)

The second moment is given by

βIE[I2
n,1] =

R

1−ρ

(
λ1ρ

2
2b

(2)
1

(1−ρ1)2
+λ2b

(2)
2

)
+δ2

1+

(
1− 2ρ2(1−ρ)

1−ρ1

)
δ2
2 +

(
1−ρ+2ρ1ρ2

1−ρ

)
R2+2C

(5.18)

where

α :=
ρ1ρ2

(1 − ρ1)(1 − ρ2)
, β :=

(1 − ρ)(1 − ρ + 2ρ1ρ2)

(1 − ρ1)2
.
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and

C :=

∞∑

j=1

[
c1(j)+c2(j)+

(1−ρ)2

ρ1(1−ρ1)
c2(j) +

1−ρ2

ρ1
c12(−j)+

1−ρ2(1−α)

α
c12(j−1)

]
αj

(5.19)

is the addition to the intervisit time due to the correlation between the switchover times. �

Remark: By taking λ2 = 0, one obtains an ordinary M/G/1 queue with correlated va-

cations where IE[I2
n,1] (= v

(2)
1 +v

(2)
2 +2v1v2) no longer depends on the correlation (since α = 0).

The proof is given in Appendix 5.B. On the basis of this theorem a number of other results
quickly follow.

Corollary 5.3.1 (Intervisit Time With Uncorrelated Switchover Times).

If the successive switchover times in each queue are uncorrelated then c1(j) = c2(j) = 0 for
j ≥ 1. Furthermore, if the switchover times between the two queues are uncorrelated, then
c12(j) = 0 for j ∈ Z. This leads to C = 0. The expression then agrees with the classical

result mentioned in [28, equation (55)] or in [77, equation4 (4.36a)]. �

5.3.2.2 Number of Customers Waiting When Server Arrives

The exhaustive nature of the server implies that the number of customers building up at
queue i is exactly the number of customers that arrived at that queue during its intervisit
time. Thus,

L∗
n+1,1 = Nn,1(In,1).

From this we immediately obtain

IE[L∗
n+1,i] =λiIE[In,i] =

Rλi(1 − ρi)

1 − ρ
(5.20)

as the expected length of the queue, under stationary regime, at the moment the server
arrives at queue i (i = 1, 2). The second moment follows through squaring,

IE[(L∗
n+1,1)

2] =IE[N 2
n,1(In,1)] = λ2

1IE[I2
n,1] + λ1IE[In,1],

which leads to

IE[(L∗
n,i)

2] :=λ2
i IE[I2

n,i] +
Rλi(1 − ρi)

1 − ρ
. (5.21)

4Instead of switchover times this work refers to reply intervals. Unfortunately, the definition or the

indices in (4.36a) are not coherent for the case N = 2 as the indices of ones and two have to be interchanged

(for δ1 and δ2, as well as for r1 and r2) to obtain the correct result. The result is mentioned correctly in

[28, equation (55)].
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5.3.2.3 Duration of Busy Periods

The expected time per cycle, in steady state, for the server to work on queue i (i = 1, 2) is
given by

IE[Dn,i] =
Rρi

1 − ρ
. (5.22)

This follows directly from IE[Dn,i] = IE[Dn,i(L
∗
n,i)] =

biIE[L∗
n,i]

1−ρi
.

Since IE[D2
n,1] = IE[D2

n,1(Nn,1(In,1))], the second moment follows with (5.9) and is given

by

IE[D2
n,1] =

ρ2
1IE[I2

n,1]

(1 − ρ1)2
+

Rλ1b
(2)
1

(1 − ρ1)2(1 − ρ)
. (5.23)

5.3.2.4 Cycle time

By definition Cn+1,i = Dn+1,i + In+1,i. From this the expected duration of a cycle under

stationary regime immediately follows:

IE[Cn+1,i] =
R

1 − ρ
, i = 1, 2. (5.24)

Taking the expectation over the square produces

IE[C2
n+1,1] =IE[D2

n+1,1] + IE[I2
n+1,1] + 2IE[Dn+1,1In+1,1].

The last term on the right hand side can be derived using (5.13) to give

IE[Dn+1,1In+1,1] =IE[Dn+1,1 ·
(
An(In,1) + Bn

)
] = IE[Dn+1,1 · An(In,1)] + IE[Dn+1,1 · Bn]

=IE
[
Dn+1,1 · Dn+1,2

(
Nn+1,2(Dn+1,1)

)]
+ IE

[
Dn+1,1

(
Nn,1(In,1) · Bn

)]

=
ρ2

1 − ρ2
IE[D2

n+1,1] +
ρ1

1 − ρ1
IE[In,1Bn].

Plugging in the expressions for IE[In,1Bn] (equations (5.72) and (5.75)) reveals that

IE[C2
n+1,1] = IE[D2

n+1,1] + IE[I2
n+1,1] +

2ρ2

1 − ρ2
IE[D2

n+1,1] +
2ρ1

1 − ρ1
IE[In,1Bn]

=

(
1 + ρ2

1 − ρ2

)
IE[D2

n+1,1] + IE[I2
n,1] +

2ρ1

1 − ρ2

(
R2

1 − ρ
+

ρ2δ
2
2

1 − ρ1

)

+
2

ρ2

∞∑

j=1

αj

[
c1(j)+c2(j)

1−ρ2

+
(1−ρ)2c2(j)

ρ1(1−ρ1)(1−ρ2)
+
c12(−j)
ρ1

+ c12(j)
(
1 +

αρ2

1−ρ2

)]

−2c2(1) +
2(−c12(−1) + αc12(0))

1 − ρ2
.
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The expression for IE[D2
n+1,1] = IE[D2

n,1] is given in equation (5.23) and leads to

IE[C2
n+1,1] =

((
1 + ρ2

1 − ρ2

)(
ρ2

1

(1 − ρ1)2

)
+ 1

)
IE[I2

n+1,1] +
2ρ1

1 − ρ2

(
R2

1 − ρ
+

ρ2δ
2
2

1 − ρ1

)

+

(
1 + ρ2

1 − ρ2

)
Rλ1b

(2)
1

(1 − ρ1)2(1 − ρ)
− 2c2(1) +

2(−c12(−1) + αc12(0))

1 − ρ2

+
2

ρ2

∞∑

j=1

αj

[
c1(j) + c2(j)

1 − ρ2
+

(1 − ρ)2c2(j)

ρ1(1 − ρ1)(1 − ρ2)
+
c12(−j)
ρ1

+ c12(j)
(
1 +

αρ2

1 − ρ2

)]
.

Remark: A cycle can also be defined as Cn,1 = In,1 +Dn+1,1. The first moment of the cycle

time is then the same. However, the second moment is then different since

IE[C2
n,1] =IE[I2

n,1] + IE[D2
n+1,1] + 2IE[In,1 · Dn+1,1(Nn,1(In,1))]

=IE[I2
n,1] + λ2

1d
2
1IE[I2

n,1] + λ1d
(2)
1 IE[In,1] + 2λ1d1IE[I2

n,1]

=
IE[I2

n,1]

(1 − ρ1)2
+
λ1b

(2)
1 IE[In,1]

(1 − ρ1)3
.

This last expression corresponds to [77, equation5 (4.23b)].

5.3.2.5 Number Served per Cycle

To derive the first and second moments of the number of customers served per cycle, consider
an M/G/1 queue with arrival rate λi, average service time bi, and the second moment of the

service time b
(2)
i . Then the expectation [57, equation (5.153)] and the variance [57, equation

(5.154)] of the number of customers served in a single busy period are

IE[Γi] =
1

1 − ρi
, Var[Γi] =

ρi(1 − ρi) + λ2
i b

(2)
i

(1 − ρi)3
.

Let Tn,i(N) be the number of customers served at queue i during the nth cycle if there are N

customers in the queue at the moment of polling. Since the number served is the sum of the
number served during N busy periods, (5.4) tells us that the expected number of customers
served, per cycle, at queue i is

IE[Tn,i] =IE[Tn,i(L
∗
n,i)] =

IE[L∗
n,i]

1 − ρi

=
λiR

1 − ρ
, (5.25)

5There is in fact a factor λi missing in [77, formula (4.23b)]. It should read . . .+
λi[−(1−ρi)+λ2

i
b
(2)
i

]
∑

N

k=1 rk

1−
∑

N

k=1 ρk

.
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for i = 1, 2. To derive the second moment note that

IE[T 2
n,i] =IE[T 2

n,i(L
∗
n,i)]

=(IE[Γi])
2IE[(L∗

n,i)
2] + Var[Γn,i]IE[L∗

n,i]

=
IE[(L∗

n,i)
2]

(1 − ρi)2
+
Rλi

(
ρi(1 − ρi) + λ2

i b
(2)
i

)

(1 − ρi)2(1 − ρ)
.

Using equation (5.21) gives

IE[T 2
n,i] =

1

(1 − ρi)2



λ2
i IE[I2

n,i] +
Rλi

(
1 − ρ2

i + λ2
i b

(2)
i

)

1 − ρ



 i = 1, 2. (5.26)

5.3.2.6 Expected Waiting Time and Average Queue Length

Two of the most important performance measures, the expected waiting time and the av-
erage queue length, still remain to be given. The following theorem provides us with this
result.

Theorem 5.3.4 (Expected waiting time and queue length for the exhaustive/exhaustive

service discipline). The expected waiting time (total time in system minus service time) of
a customer going through queue i is decomposed of two parts, namely

IE[Wq,i] =
λib

(2)
i

2(1 − ρi)
+

(1 − ρ)IE[I2
n,i]

2R(1 − ρi)
, (5.27)

i = 1, 2. This gives

IE[Wq,1] =
λ1b

(2)
1

2(1−ρ1)
+

λ1ρ
2
2b

(2)
1 +λ2(1 − ρ1)

2b
(2)
2

2(1−ρ1)(1−ρ)(1−ρ+2ρ1ρ2)

+
(1−ρ1)R

2(1−ρ) +

(
∆2

2
− ρ2(1−ρ)

1−ρ1

δ2
2 +C

)
ψ, (5.28)

where ψ := 1−ρ1

R(1−ρ+2ρ1ρ2)
and C (defined in (5.19)) is the increase in the expected waiting

time due to correlated switchover times.

The average number of customers at queue i (in service and in the queue) follows
directly from Little and is

IE[Ls,i] =λiIE[Wq,i] + ρi, i = 1, 2. �
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In the uncorrelated case (C = 0) this is in correspondence with [78, formula6 (3.12)].

Proof: For a customer arriving at queue i (i = 1, 2) the system behaves as an M/G/1 queue
where the server goes on vacation as soon as the queue is empty. The random variable for

the nth ”vacation” from the first queue is exactly In,i. Conditioning the waiting time in the

queue on whether or not a customer arrives when the server is busy or on vacation produces

IE[Wq,i] =
IE[In,i]

IE[Cn,i]
IE[Wq,i|vac] +

IE[Dn,i]

IE[Cn,i]
IE[Wq,i|busy]. (5.29)

A tagged customer that arrives during a vacation has to wait for the vacation to finish
plus the time needed to serve the customers that arrived before him/her in the vacation. The

expected remaining vacation time is IE[I2
n,i]/2IE[In,i] and the expected number of customer

that arrived before the tagged customer is λiIE[I2
n,i]/2IE[In,i]. This means that

IE[Wq,i|vac] =
IE[I2

n,i]

2IE[In,i]
(1 + λibi) . (5.30)

A tagged customer that arrives when the server is busy has to wait for the current
customer in service to finish plus the expected time needed to serve the Lq,i customers that

arrived at (and still are in) the queue before the tagged customer did. This gives

IE[Wq,i|busy] =
b
(2)
i

2bi
+ biIE[Lq,i|busy]. (5.31)

To obtain the number of customers in the queue, first realize that the expected waiting time
of a customer in the system is IE[Ws,i] = bi + IE[Wq,i]. Little [62] tells us that the expected

number of customers, Ls,i, at the queue i (in service and in the queue) is

IE[Ls,i] := λiIE[Ws,i] = ρi + λiIE[Wq,i].

On the other hand,

IE[Ls,i] =
IE[Dn,i]

IE[Cn,i]
IE[Ls,i|busy] +

IE[In,i]

IE[Cn,i]
IE[Ls,i|vac]

=ρi(1 + IE[Lq,i|busy]) + (1 − ρi)
λiIE[I2

n,i]

2IE[In,i]
.

6The last term in [78, formula (3.12)] is missing a factor two and there is a mix up between δ1 and δ2.

The expression should read · · · + [1−ρ1−2ρ2(1−ρ)]δ2
2+(1−ρ1)2δ2

1

2R(1−ρ+2ρ1ρ2) .
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Combining these last two equations gives

IE[Lq,i|busy] =
1

bi

(
IE[Wq,i] −

(1 − ρi)IE[I2
n,i]

2IE[In,i]

)
. (5.32)

Putting together equations (5.29)-(5.32) gives

IE[Wq,i] =(1 − ρi)
IE[I2

n,i]

2IE[In,i]
(1 + λibi) + ρi

(
b
(2)
i

2bi
+ IE[Wq,i] −

(1 − ρi)IE[I2
n,i]

2IE[In,i]

)

=
λib

(2)
i

2(1 − ρi)
+

IE[I2
n,i]

2IE[In,i]
. (5.33)

The theorem follows by plugging in the values of IE[In,i] and IE[I2
n,i]. Notice that not once

have we assumed the switchover times and the busy periods to be uncorrelated!

An alternative proof is given in Appendix 5.C.

5.3.3 Identical queues

Let both queues be identically distributed, i.e., λ := λi, c(j) := ci(j), b
(2) := b

(2)
i , v := vi,

δ2 := δ2
i , and ρ̂ := ρi, for i = 1, 2. The stability condition is then ρ̂ = λb < 1/2. In

stationary regime,

IE[In,1] =
2v(1 − ρ̂)

1 − 2ρ̂
(Intervisit time)

IE[L∗
n,1] =

2vλ(1 − ρ̂)

1 − 2ρ̂
(Queue length when server arrives)

IE[Dn,1] =
2vρ̂

1 − 2ρ̂
(Busy period duration)

IE[Cn,1] =
2v

1 − 2ρ̂
(Cycle time)

IE[Tn,1] =
2vλ

1 − 2ρ̂
(Number served per cycle)
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The second moments are

E[I2
n,1] = 2v

(
λb(2) + 2v(1 − ρ̂)2

(1 − 2ρ̂)2

)
+

2(1 − ρ̂)δ2

1 − 2ρ̂

+
2(1 − 3ρ̂+ 3ρ̂2)

β(1 − ρ̂)2

∞∑

j=0

αjc12(j) +
2(1 − ρ̂)

ρ̂

∞∑

j=1

[
c(j)

1 − 2ρ̂
+

1

β
c12(−j)

]
αj

IE[(L∗
n,1)

2] = λ2IE[I2
n,1] +

2vλ(1 − ρ̂)

1 − 2ρ̂

IE[D2
n,1] =

1

(1 − ρ̂)2

(
ρ̂2IE[I2

n,1] +
2vλb(2)

1 − 2ρ̂

)

IE[C2
n,1] =

IE[I2
n,1]

(1 − ρ̂)2
+

2vλb(2)

(1 − ρ̂)2(1 − 2ρ̂)

IE[T 2
n,1] =

1

(1 − ρ̂)2

(
λ2IE[I2

n,1] +
2vλ(1 − ρ̂2 + λ2b(2))

1 − 2ρ̂

)

with

α =
ρ̂2

(1 − ρ̂)2
, β =

(1 − ρ̂)4 − ρ̂4

(1 − ρ̂)2
=

(1 − 2ρ̂)(1 − 2ρ̂+ 2ρ̂2)

(1 − ρ̂)2
.

The expected waiting time and average queue length are

IE[Wq,1] =
λb(2) + (1 − ρ̂)v

1 − 2ρ̂
+
δ2

2v
(Waiting time)

+
1 − 3ρ̂+ 3ρ̂2

v(1 − ρ̂)(1 − 2ρ̂ + 2ρ̂2)

∞∑

j=0

αjc12(j) +
1 − 2ρ̂

2vρ̂

∞∑

j=1

[
c(j)

1 − 2ρ̂
+

1

β
c12(−j)

]
αj

IE[Ls,1] =λIE[Wq,1] + ρ̂ (Average queue length)

In the case of uncorrelated switchover times these expressions coincide with the known
results for the intervisit time (equation (4.21) in [77]), number of customers at polling

instant (equation (4.12b) in [77]), duration of a busy period (4.15b), cycle time (4.24),

number of customers served per cycle (4.18b), waiting time (4.33b), and the average queue

length (4.34).
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5.3.4 Heavily Unbalanced Traffic

What happens to the waiting times if we let the traffic at the second queue approach zero?
By letting λ2→0 in (5.28) we see that the expected waiting times,

IE[Wq,1] =
λ1b

(2)
1

2(1 − ρ1)
+
R

2
+

∆2

2R
,

IE[Wq,2] =
λ1b

(2)
1

2(1 − ρ1)2
+

R

2(1 − ρ1)
+

(
∆2

2
− ρ1(1 − ρ1)δ

2
2

)
1

R(1 − ρ1)
,

no longer depends on the correlation. Because of this the conclusions of [77, page 83] hold
which state that if ρ1 ≥ 0.5, or if all switching times of the second queue are constant

(δ2 = 0), we have IE[Wq,2] ≥ IE[Wq,1].

5.3.5 Switchover Times Equal to Zero

Let us examine what happens to the expected waiting time when the switchover times are
constant and equal to zero. By looking at the expressions for the expected waiting times
(equation (5.28)), we see that the variances and (cross) correlations of the switchover times
must go faster to zero than the mean switchover times does since otherwise the expected

waiting times could explode (for example, limR→0 δ
2
2/R must go to zero). Sending the

appropriate variables to zero in the right order produces

IE[Wq,1] =
λ1b

(2)
1

2(1 − ρ1)
+

λ1ρ
2
2b

(2)
1 + λ2(1 − ρ1)

2b
(2)
2

2(1 − ρ1)(1 − ρ)(1 − ρ + 2ρ1ρ2)
.

This is naturally no longer dependent on the correlation and is identical to (4.36b) in

[77].

5.4 Exhaustive/Gated Service System

5.4.1 Introduction

Now let the first queue be served exhaustively and the second be served in a gated manner.

The time needed to serve N customers in the second queue in the nth cycle is denoted by
Sn,2(N). Naturally, IE[Sn,2(N)] = b2IE[N ]. The service time of the second queue, Sn,2,

satisfies the following recursive relationship

Sn+1,2 =Sn+1,2

(
Nn,2

(
Sn,2 + Vn,2

)
+ Nn+1,2

(
Dn+1,1 + Vn+1,1

))
.

At the same time, the time the server works per cycle at the first queue, Dn,1, satisfies

Dn+1,1 =Dn+1,1

(
Nn,1

(
Vn,1 + Sn,2 + Vn,2

))
.
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By combining these two expressions we obtain the following theorems.

Theorem 5.4.1 (SRE for the exhaustive/gated system). The SRE for the service time at
the gated queue is given by

Sn+1,2 =Xn(Sn,2) + Yn, (5.34)

with

Xn(·) : = Sn+1,2

(
Nn,2

(
·
)
+Nn+1,2

(
Dn+1,1

(
Nn,1(·)

)))
, (5.35)

Yn := Sn+1,2

(
Nn,2

(
Vn,2

)
+ Nn+1,2

(
Dn+1,1

(
Nn,1(Vn,1 + Vn,2)

)
+ Vn+1,1

))
. (5.36)

Note that IE[Xn(Sn,2)] = γIE[Sn,2] where γ := ρ2

1−ρ1
. �

Theorem 5.4.2 If ρ < 1 then there exists a stationary ergodic regime S∗
n,2 which satisfies

(5.34). �

The proof of the last theorem is omitted due to the strong similarity with the proof of
Theorem 5.3.2.

5.4.2 Performance Measures

Starting with the service time at the second queue, the next couple of sections will present
a number of performance measures of the mixed exhaustive/gated service system.

5.4.2.1 Service Time Second Queue

Theorem 5.4.3 (Service Time Second Queue) Under the stationary regime the expected
time per cycle spend on service time at the second queue is given by

IE[Sn+1,2] =
ρ2R

1 − ρ
. (5.37)

The second moment of the same variable is

ωIE[S2
n+1,2]

=
R

1−ρ

(
λ1b

(2)
1 +

λ2(1−ρ1)
2b

(2)
2

ρ2
2

)
+ (1−2ρ1(1−ρ)) δ2

1 + δ2
2 +

(
1−ρ1+ρ2

1−ρ

)
R2

+ 2ρ

∞∑

j=0

c12(j)γ
j + 2

∞∑

j=1

(
c2(j) +

1−ρ1(2−ρ)
ρ2

(
c12(−j)+ρc1(j)

))
γj. (5.38)
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with

γ :=
ρ2

1 − ρ1
, ω :=

(1 − ρ1)
2 − ρ2

2

ρ2
2

. �

The proof forwarded to Appendix 5.D

5.4.2.2 Cycle Time Starting from the Second Queue

The cycle time, Cn,2, starting from the server arriving at the second queue can be derived

by using the relationship

Sn+1,2 = Sn+1,2

(
Ṅn,2(Cn,2)

)
,

where Ṅn,2(·) expresses7 the number of arrivals at the second queue during the nth cycle,

with the cycle starting from the arrival of the server at the second queue. The time the
server works, per cycle, on the second queue is equal to the time needed to serve the
customers that arrived at the second queue during the previous cycle. Taking the expectation
(IE[Sn+1,2] = ρ2IE[Cn,2]) gives the first moment,

IE[Cn,2] =
R

1 − ρ
. (5.39)

By taking the expectation of the square one obtains

IE[S2
n+1,2] = IE[S2

n+1,2

(
Ṅ2(Cn,2)

)
] = ρ2

2IE[C2
n,2] + λ2b

(2)
2 IE[Cn,2],

where (5.76) was used. Substituting (5.38) into this gives the second moment of the cycle
time starting from the polling instant of the second queue:

ηIE[C2
n,2] =

R

1 − ρ

(
λ1b

(2)
1 + λ2b

(2)
2

)
+
(
1 − 2ρ1(1 − ρ)

)
δ2
1 + δ2

2 +

(
1 − ρ1 + ρ2

1 − ρ

)
R2

+ 2ρ

∞∑

j=0

c12(j)γ
j + 2

∞∑

j=1

(
c2(j) +

1 − ρ1(2 − ρ)

ρ2

(
c12(−j) + ρc1(j)

))
γj.

(5.40)

where γ := ρ2

1−ρ1
and η := (1 − ρ1)

2 − ρ2
2.

7This represents a shift from the original arrival process Nn,2(·). By doing so the calculations become

significantly less involved. Note that this process is correlated to Nn,2 and Nn+1,2, but it is independent of

Dn,1(·) and Sn,2(·).
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5.4.2.3 Intervisit Time First Queue

The time between the server leaving the first queue and arriving back at the first queue is
the intervisit time and it is given by

In,1 = Vn,1 + Sn,2 + Vn,2.

It’s expectation is straightforward,

IE[In,1] =
(1 − ρ1)R

1 − ρ
. (5.41)

For the second moment a little more work is needed as

IE[I2
n,1] =IE[(Vn,1 + Sn,2 + Vn,2)

2] = δ2
1 + δ2

2 +R2 + 2IE[Sn,2(Vn,1 + Vn,2)] + IE[S2
n,2].

(5.42)

The second last term remains to be assessed. Similar to the step taking (5.80) to (5.81),

Theorem 2 of [3] provides us with the answer. Applying the theorem just as in (5.81) gives

IE[Sn,2(Vn,1+Vn,2)] =

∞∑

j=0

γjIE[Y0(Vj+1,1 + Vj+1,2)]

=
∞∑

j=0

γjIE
[
S1,2

(
N0,2

(
V0,2

)
+ N1,2

(
D1,1

(
N0,1(V0,1+V0,2)

)
+ V1,1

))
(Vj+1,1 + Vj+1,2)

]

=ρ2

∞∑

j=0

γjIE
[(
V0,2 +

ρ1

1 − ρ1
(V0,1 + V0,2) + V1,1

)
(Vj+1,1 + Vj+1,2)

]
.

Using the covariance functions and collecting terms gives

IE[Sn,2(Vn,1+Vn,2)] =ρ2

∞∑

j=0

γj
(R2 + c12(−j−1) + c2(j+1)

1 − ρ1

+
ρ1

(
c1(j+1) + c12(j+1)

)

1 − ρ1

+ c1(j) + c12(j)
)
.

Here the term R2 can be taken out of the summation and the covariance terms can be
re-indexed (for example, γ

∑∞
j=0 γ

jc1(j+1) =
∑∞

j=1 γ
jc1(j)) to give

IE[Sn,2(Vn,1 + Vn,2)] =
ρ2

1 − ρ
R2 + ρ2

(
c1(0) + c12(0)

)

+

∞∑

j=1

[
c12(−j) + c2(j) + ρ1

(
c1(j) + c12(j)

)
+ ρ2

(
c1(j) + c12(j)

)]
γj

=
ρ2R

2

1 − ρ
+ ρ2

(
δ2
1 +c12(0)

)
+

∞∑

j=1

[
c12(−j)+c2(j) + ρ

(
c1(j)+c12(j)

)]
γj.



128 Chap. 5 An Alternating-Priority Server with Correlated Switchover Times

This expression can be put back into (5.42) to disclose that

IE[I2
n,1] = δ2

1 + δ2
2 +

(
1 +

2ρ2

1 − ρ

)
R2 + 2ρ2

(
δ2
1 + c12(0)

)

+2
∞∑

j=1

[
c12(−j) + c2(j) + ρ

(
c1(j) + c12(j)

)]
γj

+
1

ω

[
R

1 − ρ

(
λ1b

(2)
1 +

λ2(1 − ρ1)
2b

(2)
2

ρ2
2

)
+(1−2ρ1(1−ρ))δ2

1 +δ2
2+

(
1+

2ρ2

1 − ρ

)
R2

+2ρ
∞∑

j=0

c12(j)γ
j + 2

∞∑

j=1

(
c2(j) +

1 − ρ1(2 − ρ)

ρ2

(
c12(−j) + ρc1(j)

))
γj

]
,

with γ := ρ2

1−ρ1
and ω :=

(1−ρ1)2−ρ2
2

ρ2
2

. Collecting terms gives the second moment of the

intervisit time of the first queue,

IE[I2
n,1] =

λ1ρ
2
2b

(2)
1 + λ2(1 − ρ1)

2b
(2)
2

(1 − ρ)2(1 − ρ1 + ρ2)
R +

(1 − ρ1)
2∆2

(1 − ρ)(1 − ρ1 + ρ2)
+

2ρ2(1 − ρ1)(1 + ρ2)

1 − ρ1 + ρ2
δ2
1

+
(1 − ρ1)

2

(1 − ρ)2
R2 +

2ρ2

1 − ρ

(
1 − ρ1(2 − ρ)

1 − ρ1 + ρ2

)
c12(0) (5.43)

+
2(1−ρ1)

2

(1−ρ)(1−ρ1+ρ2)

∞∑

j=1

[(
1+

ρ2(1 − ρ)

1−ρ1

)(
ρc1(j)+c12(−j)

)
+c2(j)+ρc12(j)

]
γj.

5.4.2.4 Duration of the Busy Period at the First Queue

The time the server spends, per cycle, at the first queue is made up of

Dn+1,1 = Dn+1,1

(
Nn,1(In,1)

)
,

the time needed to empty a queue (exhaustively), starting with the number of customers
that have arrived at and accumulated at the first queue since the last time the server served
the first queue, i.e., since the intervisit time In,1. The expected value is

IE[Dn+1,1] =
ρ1R

1 − ρ1
. (5.44)

Taking once again the expectation over the square gives IE[D2
n+1,1] = IE[D2

n+1,1

(
Nn,1(In,1)

)
],

which with (5.9) gives

IE[D2
n+1,1] =

ρ2
1IE[I2

n,1]

(1 − ρ1)2
+

λ1Rb
(2)
1

(1 − ρ1)2(1 − ρ)
, (5.45)

as the second moment of the duration of the busy period at the first queue.
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5.4.2.5 Number of Customers Waiting When Server Arrives

The number of customers, L∗
n+1,i, waiting in a queue at the moment the queue is polled is

equal to either (i = 1) the number of customers that arrived during the last intervisit time

or (i = 2) the number of customers that have arrived since the gate closed. This gives

L∗
n+1,1 =Nn,1(In,1)

L∗
n+1,2 =Ṅn,2(Cn,2).

Thus the expected number of customers waiting at the polling instances are

IE[L∗
n+1,1] =

λ1(1 − ρ1)R

1 − ρ
(5.46a)

IE[L∗
n+1,2] =

λ2R

1 − ρ
. (5.46b)

The second moments follows through squaring to give (see (5.6))

IE[(L∗
n+1,1)

2] = λ2
1IE[I2

n,1] +
λ1(1 − ρ1)R

1 − ρ
(5.47a)

IE[(L∗
n+1,2)

2] = λ2
2IE[C2

n,2] +
λ2R

1 − ρ
. (5.47b)

5.4.2.6 Number of Customers Served per Cycle

The derivation of the expected number of customers served, per cycle, at the first queue is
completely identical to that of the exhaustive/exhaustive service discipline given in section

5.3.2.5 (with i = 1). Equations (5.25) and (5.26) give

IE[Tn,1] =
IE[L∗

n,1]

1 − ρ1
=

λ1R

1 − ρ
, (5.48)

IE[T 2
n,1] =

1

(1 − ρ1)2


IE[(L∗

n,1)
2] +

λ1R
(
ρ1(1 − ρ1) + λ2

1b
(2)
1

)

1 − ρ




=
1

(1 − ρ1)2


λ2

1IE[I2
n,1] +

λ1R
(
1 − ρ2

1 + λ2
1b

(2)
1

)

1 − ρ


 . (5.49)

The number of customers served, per cycle, at the second queue is easier since, because of
its gated nature, it is equal to the number of customers waiting in the queue at the moment
the queue gets polled. Thus Tn,2 = L∗

n,2 and, in particular,

IE[Tn,2] =IE[L∗
n,2] =

λ2R

1 − ρ
, (5.50)

IE[T 2
n,2] =IE[(L∗

n,2)
2] = λ2

2IE[C2
n,2] +

λ2R

1 − ρ
. (5.51)
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5.4.2.7 Expected Waiting Time and Average Queue Length

Theorem 5.4.4 (Expected Waiting Times for Exhaustive/Gated Served Queues)
If queue 1 is serviced exhaustively and queue 2 has gated service, then the expected time a
customer waits in queue i (i = 1, 2) until being served is given by

IE[Wq,1] =
(1−ρ1)R

2(1−ρ) +
ρ2(1−ρ)(1+ρ2)δ

2
1

R(1−ρ1+ρ2)
+

1−ρ1

2(1−ρ1+ρ2)

[
λ1b

(2)
1 + λ2b

(2)
2

1−ρ +
∆2+2C1

R

]

(5.52a)

IE[Wq,2] =
(1+ρ2)R

2(1−ρ) − ρ1(1−ρ)(1+ρ2)δ
2
1

R(1−ρ1+ρ2)
+

1+ρ2

2(1−ρ1+ρ2)

[
λ1b

(2)
1 + λ2b

(2)
2

1−ρ +
∆2+2C2

R

]

(5.52b)

where

C1 =

∞∑

j=1

[
c2(j)+ρc12(j) +

(
1+

ρ2(1 − ρ)

1 − ρ1

)(
c12(−j)+ρc1(j)

)]
γj+

ρ2(1−ρ1(2−ρ))
(1−ρ1)2

c12(0)

C2 =
∞∑

j=1

[
c2(j) + ρc12(j) +

1 − ρ1(2 − ρ)

ρ2

(
c12(−j) + ρc1(j)

)]
γj + 2ρc12(0)

is the increase due to correlated switchover times. Here γ := ρ2

1−ρ1
.

The average queue lengths,

IE[Ls,i] =λiIE[Wq,i] + ρi, i = 1, 2. (5.53)

follow immediately because of Little. �

If the switchover times for each of the two queues are independent, as well as the switchover
times between the two queues, then C1 = 0 = C2 and we obtain the results given in [66,

formulas (25) and (28)] or [78, formula8 4.1].

Proof: For a customer arriving at the first (exhaustive) queue, the derivation of the waiting

time is identical to that leading to (5.33) in Theorem 5.3.4. Therefore we have

IE[Wq,1] =
λ1b

(2)
1

2(1 − ρ1)
+

IE[I2
n,1]

2IE[In,1]
.

Filling in the values of IE[In,1] and IE[I2
n,1] gives the expected waiting time of a customer in

the first queue.

8The formula presented in this reference is taken incorrectly from [66]. The first term for the waiting

time for customers arriving at the second queue should contain (1 + ρ2) instead of (1 + ρ1).
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Now imagine a tagged customer arriving at the second queue. The tagged customer has

to wait for the cycle to finish (the expected remaining cycle time is IE[C2
n,2]/2IE[Cn,2]) plus

the time needed to serve the customers which arrived in the same cycle, but the before the
tagged customer did (the expected number of customers arriving before the tagged customer

is λ2IE[C2
n,2]/2IE[Cn,2] and they require an expected total time of λ2b2IE[C2

n,2]/2IE[Cn,2] to

serve). Therefore, the expected waiting time for a customer arriving at the second queue is

IE[Wq,2] =
IE[C2

n,2]

2IE[Cn,2]
(1 + ρ2).

Filling in the value for the second moment of the cycle time gives IE[Wq,2].

5.4.3 Identical Queues

In the case of identical queues (λ := λi, ρ̂ = ρi, v := vi, δ := δi, b
(2) := b

(2)
i , and c(j) := ci(j),

for i = 1, 2) we have as the stability condition ρ̂ = λb < 1/2 and

IE[Dn,1] =
2ρ̂v

1 − ρ̂
(Service Time/Busy Period Q1)

IE[Sn,2] =
2ρ̂v

1 − 2ρ̂
(Service time/Busy Period Q2)

IE[In,1] =
2(1 − ρ̂)v

1 − 2ρ̂
(Intervisit time Q1)

IE[Cn,2] =
2v

1 − 2ρ̂
(Cycle time Q2)

IE[L∗
n,1] =

2λ(1 − ρ̂)v

1 − 2ρ̂
(Number Waiting Q1)

IE[L∗
n,2] =

2λv

1 − 2ρ̂
(Number Waiting Q2)

IE[Tn,i] =
2λv

1 − 2ρ̂
(Number Served per Cycle)

Writing out the second moments of these quantities does not provide much insight. The
expected waiting times are

IE[Wq,1] =
(1 − ρ̂)v

1 − 2ρ̂
+
ρ̂(1 − 2ρ̂)(1 + ρ̂)δ2

2v
+

1 − ρ̂

2

[
2λb(2)

1 − 2ρ̂
+
δ2 + C1

v

]
(5.54a)

IE[Wq,2] =
(1 + ρ̂)v

1 − 2ρ̂
− ρ̂(1 − 2ρ̂)(1 + ρ̂)δ2

2v
+

1 + ρ̂

2

[
2λb(2)

1 − 2ρ̂
+
δ2 + C2

v

]
(5.54b)
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with

C1 =
∞∑

j=1

[
2ρ̂c12(j) +

1 − 2ρ̂3

1 − ρ̂
c(j) +

1 − 2ρ̂2

1 − ρ̂
c12(−j)

)]
γj +

ρ̂(1 − 2ρ̂(1 − ρ̂))

(1 − ρ̂)2
c12(0)

(5.55a)

C2 =

∞∑

j=1

[
2ρ̂c12(j) +

(
3 − 4ρ̂+ 4ρ̂2

)
c(j) +

1 − 2ρ̂(1 − ρ̂)

ρ̂
c12(−j)

]
γj + 4ρ̂c12(0)

(5.55b)

being the increase due to correlated switchover times. In this case γ := ρ̂
1−ρ̂

.

The average queue lengths are given by

IE[Ls,i] = λIE[Wq,i] + ρ̂, i = 1, 2. (5.56)

5.4.4 Comparison of Waiting Times in Exhaustive/Gated System

In the subsequent sections the effect of the service discipline at the two queues will be
studied. We start by examining the expected waiting times in the exhaustive/gated system.
Although the discussions are about the expected waiting times, the same arguments hold
for the average queue length.

5.4.4.1 Single Server Queue with Correlated Vacations

By turning off one of the queues one obtains an M/G/1 queue with multiple correlated

vacations. Let us start by turning off the second queue (by setting λ2 = 0, ρ2 = 0, v2 = 0,

and v
(2)
2 = 0, which leads to c2(j) = 0, c12(j) = 0, and γ = 0) to end up with an exhaustively

served M/G/1 queue where the expected waiting time

IE[Wq,1] =
λ1b

(2)
1

2(1 − ρ1)
+
v

(2)
1

2v1
(Exhaustive M/G/1)

is independent of the correlation between the vacations! This result was previously pointed
out in [3, paragraph 3.6] which causes it to correspond to the expression for the expected

waiting time but with i.i.d. vacation times [79, page 123].

On the other hand, by turning off the first queue in the exhaustive/gated system, we

are left with an M/G/1 queue with a gated service discipline. After setting the appropriate
parameters to zero we obtain

IE[Wq,2] =
λ2b

(2)
2

2(1 − ρ2)
+
v

(2)
2

2v2
+

ρ2v2

1 − ρ2
+

1

v2

∞∑

j=1

c2(j)ρ
j
2 (Gated M/G/1)
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as the waiting time of a customer arriving at a gated M/G/1 queue with correlated vacations.
If there is no correlation then this expression is in agreement with the result previously
obtained in [3, Theorem 5] and [79, equation (5.24a)].

It is interesting to compare the difference between these two waiting times due to the
server behaving differently. Assuming queues with identical parameters (by dropping the

indices of ones and twos and setting ρ̂ := ρ1 = ρ2) we see that

IE[W ]gated M/G/1 − IE[W ]exhaustive M/G/1 =
ρ̂v

1 − ρ̂
+

1

v

∞∑

j=1

c(j)ρ̂j, (5.57)

where the first term on the right hand side is the mean length of a service period (which is

the same for the exhaustive and the gated service systems). If there is no correlation, then
it is well known that the expected waiting time in an exhaustively served queue is less than
that in a gated serviced queue. In the presence of correlated vacation times this difference
is larger but remains a surprisingly simple expression.

5.4.4.2 Nonidentical Queues

The difference between the waiting times at the two queues is found by subtracting (5.52)

from (5.52a) to give IE[Wq,2] − IE[Wq,1] =

ρR

2(1−ρ)
− ρ(1−ρ)(1+ρ2)δ

2
1

R(1−ρ1+ρ2)
+

ρ

2(1−ρ1+ρ2)

[
λ1b

(2)
1 +λ2b

(2)
2

1−ρ
+

∆2+2
(
(1 + ρ2)C2−(1−ρ1)C1

)

ρR

]

=
ρR

2(1−ρ)
− ρ(1−2(ρ1+ρ2ρ))δ2

1

2R(1−ρ1+ρ2)
+

ρ

2(1−ρ1+ρ2)

[
λ1b

(2)
1 +λ2b

(2)
2

1−ρ
+

δ2
2+2

(
(1+ρ2)C2−(1−ρ1)C1

)

ρR

]
,

with C1 and C2 defined in Theorem 5.4.4. From this expression we see that if 1−2(ρ1+ρ2ρ) >

0, and C1 = 0 = C2, and if δ2
1 is sufficiently large, then it may very well be possible that

the expected waiting time at the gated queue is smaller than the expected waiting time at
the exhaustive queue! However, the range of parameter settings for which this is the case is
fairly small. In particular, in the next sections it will be shown that this does not happen
when there are no switchover times or if the system is heavily loaded.

5.4.4.3 Identical Queues

Assume that, except for the service discipline, the two queues in the exhaustive/gated system
have equal parameter settings. The difference between the waiting time of a customer
arriving at the gated or at the exhaustive queue is

IE[Wq,2] − IE[Wq,1] =ρ̂

(
2λb(2) + 2v

1 − 2ρ̂
+
ρ̂(1 + 2ρ̂)δ2 + C2 − C1

v

)
,

with C1 and C2 defined in (5.55b). Since it is not necessarily true that C2 ≥ C1, we can
deduct that, under equal parameter settings and correlated switchover times, the average
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waiting time at the gated queue can be smaller than the average waiting time at the exhaustive
queue.

5.4.4.4 Switchover Times Equal to Zero

Let us now examine the two service disciplines in the interesting situation when the switchover
times are equal to zero. By looking at the expressions for the expected waiting times (equa-

tion (5.52b)), we see that the variances and (cross) correlations of the switchover times must
go faster to zero than the mean switchover times does since otherwise the expected waiting

times could explode (for example, limR→0 δ
2
1/R must go to zero).

By first sending the second moments and the (cross) correlations of the switchover
times to zero, and then the mean switchover times to zero, we see that the expected waiting
times for the exhaustive/gated service discipline are

IE[Wq,1] =
1 − ρ1

2(1 − ρ1 + ρ2)

[
λ1b

(2)
1 + λ2b

(2)
2

1 − ρ

]
,

IE[Wq,2] =
1 + ρ2

2(1 − ρ1 + ρ2)

[
λ1b

(2)
1 + λ2b

(2)
2

1 − ρ

]
.

From this it is clear that a customer arriving at the second queue is expected to wait

IE[Wq,2] − IE[Wq,1] =
ρ

2(1 − ρ1 + ρ2)

[
λ1b

(2)
1 + λ2b

(2)
2

1 − ρ

]

longer than a customer that arrives at the first queue.

5.4.4.5 Heavily Loaded System

Let us now consider what happens if the system is heavily loaded (ρ close to 1). In this case

(with the exception of the case where ρ1 → 1 and ρ2 → 0, in which case we refer to section

5.4.4.1) the expected waiting times (taken from 5.52b),

IE[Wq,1] →
(1 − ρ1)R

2(1 − ρ)
+

1 − ρ1

2(1 − ρ1 + ρ2)

[
λ1b

(2)
1 + λ2b

(2)
2

1 − ρ

]

IE[Wq,2] →
(1 + ρ2)R

2(1 − ρ)
+

1 + ρ2

2(1 − ρ1 + ρ2)

[
λ1b

(2)
1 + λ2b

(2)
2

1 − ρ

]

explode due to the factor 1−ρ in the denominators. As we can see, the correlation no longer
plays a role. The difference between the expected waiting times tends towards

IE[Wq,2] − IE[Wq,1] →
ρR

2(1 − ρ)
+

ρ

2(1 − ρ1 + ρ2)

[
λ1b

(2)
1 + λ2b

(2)
2

1 − ρ

]
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which is always positive.

More discussions on the differences arising due to the server behaviour can be found in
the examples of the next section.

5.5 Examples

In the following sections we will consider a number of examples in which the sequences
of switchover times are correlated. The covariance functions will be calculated explicitly
after which the effect of the correlation on the waiting times will be studied. In all of
the examples the expected waiting time of a customer arriving at the first queue of the
exhaustive/exhaustive system is given by (5.28), whereas in the exhaustive/gated system

the expected waiting times are given by (5.52b). The difference between each of the examples
is that C, C1, and C2 take on different values.

5.5.1 Example 1: Correlated Switchover Times

Consider a sequence of switchover times where there is no correlation between the switchover

times of the two queues (this gives c12(j) = 0, for j ∈ Z). Let the individual sequence of
switchover times per queue satisfy

Vn+1,i = xiVn,i + (1 − xi)εn,i, i = 1, 2, (5.58)

where xi ∈ [0, 1) is a constant and εn,i are positive i.i.d. variables with finite expectation

IE[εn,i] =: ε̄i and second moment IE[ε2
n,i] =: ε

(2)
i . The parameter xi determines the amount

of correlation in the sequence; with xi = 0 the sequence is i.i.d., whereas when xi tends to
one the correlation is maximal. Notice that there exists a stationary ergodic sequence of
switchover times which satisfies (5.58). By taking the expectation it follows that IE[Vn+1,i] =

xiIE[Vn,i] + (1 − xi)ε̄i. Due to the stationarity of the process IE[V0,i] = IE[Vn,i] = vi is

independent of xi, and therefore vi = ε̄i. A similar relationship can be derived for the
second moments by taking the expectation over the square of (5.58) to give

IE[V 2
n+1,i] =x2

i IE[V 2
n,1] + (1 − xi)

2IE[ε2
n,i]

+ 2xi(1 − xi)IE[εn,i]IE[Vn,i].

Due to the stationarity (IE[V 2
n+1,i] = IE[V 2

n,i] = v
(2)
i ) this implies that

v
(2)
i =

(1 − xi)ε
(2)
i + 2xiε̄ivi

1 + xi

,

which gives a second relationship (since ε̄i = vi),

δ2
i =

1 − xi

1 + xi

V ar(εn,i).
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Thus we see that for xi ∈ [0, 1) there exists a εn,i such that any desired values of vi and

δ2
i can be obtained. Now we will derive the covariance functions and the expected waiting

time.

By iterating (5.58) a number of times it is quickly seen that

Vn,i =xn
i V0,i + (1 − xi)

n−1∑

k=0

εn−1−k,ix
k
i . (5.59)

From this we obtain

IE[V0,iVj,i] =xj
i IE[V 2

0,i] + (1 − xj
i )ε̄iIE[V0,i] = xj

iv
(2)
i + (1 − xj

i )ε̄ivi.

This means that the covariance functions, ci(j) = IE[V0,iVj,i] − IE[V0,i]IE[Vj,i], are given by

ci(j) =xj
iv

(2)
i + (1 − xj

i )ε̄ivi − vi

(
xj

ivi + (1 − xj
i )ε̄i

)
= xj

i

(
v

(2)
i − v2

i

)
= xj

iδ
2
i . (5.60)

Since

∞∑

j=1

ci(j)α
j =δ2

i

∞∑

j=1

(αxi)
j =

αxiδ
2
i

1 − αxi
, (5.61)

we have from Theorem 5.3.4 that the expected waiting time in the exhaustive/exhaustive

system is given by (5.28) with

C :=
αx1δ

2
1

1 − αx1
+

αx2δ
2
2

1 − αx2

(
1 +

(1 − ρ)2

ρ1(1 − ρ1)

)

and α = ρ1ρ2

(1−ρ1)(1−ρ2)
.

Equivalently, in the exhaustive/gated system we have from equation (5.61) and from

Theorem 5.4.4 that the expected waiting times are given by (5.52b) where γ = ρ2

1−ρ1
and

C1 =
γx1δ

2
1

1 − γx1

(
1 +

ρ2(1 − ρ)

1 − ρ1

)
ρ +

γx2δ
2
2

1 − γx2

C2 =
γx1δ

2
1

1 − γx1

(
1 +

ρ1

ρ2
(1 − ρ)2

)
+

γx2δ
2
2

1 − γx2
.

Numerical examples of the influence of the correlation on the expected waiting times
can be found in Figure 5.2. Shown in each of the figures is the expected waiting time
divided by the expected waiting time for uncorrelated sequences of switchover times. There
are Poisson arrivals with λi = 0.4. The first two moments of the switchover times are always
kept fixed (first moment for each of the switchover time distributions is fixed at vi = 3) and
the service times are taken to be exponential with bi = 0.4 or bi = 1.2.

Based on the figures and equations above the following important conclusions can be
made:
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• If x1 = x2 = 0 then there is no correlation between the sequences of switchover times
and C = 0, C1 = 0, and C2 = 0;

• The increase in expected waiting times due to correlated switchover times can be up
to several times (3.5 times in the example) the expected waiting times if there would
be uncorrelated switchover times.

• The increase in the expected waiting times due to correlation grows linearly with the

variance δ2
i of the switchover times;

• Under light traffic (α and γ are small and so) the increase in the expected waiting

time is (approximately) linear in xi.

• Under heavy traffic α and γ are close to one and, due to the factor 1−αxi or 1−γxi in
the denominators, the increase in waiting time due to correlated switchover times can
be significant. Hence the presence of correlation has the biggest impact on the waiting
time if the system has a heavy load (and the switching times have a high variance).
This can be seen clearly in Figure 5.2.

• It can be shown that, under identical parameter setting, in the exhaustive/gated sys-
tem the expected waiting time at the exhaustive queue is always smaller than at the
gated queue. In addition to this, we see from Figure 5.2 that in lightly loaded systems
the gated queue (Q2) suffers most from correlated switchover times whereas in heavily

loaded traffic both queues are effected (relatively) equally by the correlated switchover
times.

5.5.2 Example 2: Stochastic Recursive Sequence of Switchover

Times

Consider a sequence of switchover times which satisfy the following stochastic recursive
relationship

Vn+1,i =Fn,i(Vn,i) + En,i, (5.62)

where Fn,i(·) are independent, infinitely divisible stochastic processes with IE[Fn,i(T )] =

xiIE[T ] and IE[F2
n,i(T )] = x

(2)
i IE[T 2] + yiIE[T ]. Here xi ∈ [0, 1), yi ≥ 0 and x

(2)
i ≥ x2

i . The

sequence En,i is a sequence of independent variables with IE[En,i] = ε̄i and IE[E2
n,i] = ε

(2)
i .

Iterating gives

Vn,i =

(
n−1∏

k=0

Fk,i

)
V0,i +

n−1∑

k=0

(
n−1∏

l=k+1

Fl,i

)
Ek,i,
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Figure 5.2: Example: Correlated Switchover Times. The expected waiting time divided by
the expected waiting time with uncorrelated switchover times. The different lines corre-
spond to different switchover time distributions, all with mean vi = 3. Here x := x1 = x2

determines the level of correlation, there is no cross correlation, the service times are ex-
ponential, and λi = 0.4. The top figures are with mean service times bi = 0.4 (ρ = 0.32)

whereas the second row of figures are under heavy traffic with bi = 1.2 (ρ = 0.96). The first

column of figures correspond to the exhaustive/exhaustive system, whereas the second and
third column of figures show the normalized waiting times for, respectively, the exhaustive
queue (Q1) and the gated queue (Q2) in the exhaustive/gated system.
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and so

IE[Vn,i] =xn
i vi + ε̄i

n−1∑

k=0

xk
i = xn

i vi +
1 − xn

i

1 − xi

ε̄i.

This leads to the condition vi = ε̄i

1−xi
. The second moment of the switchover times is found

by taking the expectation over the square of (5.62). Doing this produces

IE[V 2
n+1,i] = IE[F2

n,i(Vn,i)] + IE[E2
n,i] + 2IE[Fn,i(Vn,i) · En,i] = x

(2)
i v

(2)
i + yivi + ε

(2)
i + 2xiviε̄i.

Since, by definition, IE[V 2
n+1,i] also equals v

(2)
i , we have

v
(2)
i =

ε
(2)
i + (yi + 2xiε̄i)vi

1 − x
(2)
i

.

Thus we see that there exists a En,i which generates a sequence Vn,i with arbitrary correlation

and any desired values of vi and v
(2)
i . Similarly, it is easy to show that

IE[V0,iVn,i] =xn
i v

(2)
i +

1 − xn
i

1 − xi

ε̄ivi.

This gives the covariance functions

ci(j) =IE[V0,iVj,i] − IE[V0,i]IE[Vj,i] = xj
iv

(2)
i +

1 − xj
i

1 − xi

ε̄ivi − vi

(
xj

ivi +
1 − xj

i

1 − xi

ε̄i

)
= xj

i δ
2
i

which are completely identical to (5.60)! This means that if the first two moments of the

switchover times are kept fixed while varying x ∈ [0, 1), that the expected waiting times are

once again given by (5.28) and (5.52b) with C, C1, and C2 as given in the first example.
Furthermore, the conclusions of the first example also hold here.

As a special case of (5.62) we can take Vn+1,i = xiVn+εn,i where xi ∈ [0, 1) is a constant

and εn,i is a positive sequence of i.i.d. variables.

5.5.3 Example 3: Identical Switchover Times

Set Vn,2 = Vn,1. This introduces cross-correlation between the two sequences of switchover

times and it gives v2 = v1 and δ2
2 = δ2

1. In addition to this let Vn+1,1 = xVn,1 + (1 − x)εn,1

just as in the first example. From (5.60) we have c1(j) = xjδ2
1 after which

c2(j) =IE[V0,2Vn,2] − IE[V0,2]IE[Vn,2] = IE[V0,1Vn,1] − IE[V0,1]IE[Vn,1] = c1(j) = xjδ2
1

c12(j) =IE[V0,1Vn,2] − IE[V0,1]IE[Vn,2] = IE[V0,1Vn,1] − IE[V0,1]IE[Vn,1] = c1(j) = xjδ2
1

c12(−j) =IE[V0,2Vn,1] − IE[V0,2]IE[Vn,1] = IE[V0,1Vn,1] − IE[V0,1]IE[Vn,1] = c1(j) = xjδ2
1
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immediately follow. This means that (i = 1, 2)

∞∑

j=1

ci(j)α
j =

∞∑

j=1

c12(j)α
j =

∞∑

j=1

c12(−j)αj =
αxδ2

1

1 − αx

can all be plugged into Theorem 5.3.4 so that the expected waiting time in the exhaus-
tive/exhaustive system is given by (5.28) with

C =
αxδ2

1

1 − αx

(
1−ρ2(1−α)

αx
+ 2 +

(1 − ρ)2

ρ1(1 − ρ1)
+

1 − ρ2

ρ1

)
,

ψ := 1−ρ1

2v1(1−ρ+2ρ1ρ2)
, and α = ρ1ρ2

(1−ρ1)(1−ρ2)
.

Equivalently, the expected waiting times in the exhaustive/gated system are given by

(5.52b) with

C1 =
γxδ2

1

1−γx

(
2+

ρ2(1−ρ)
1−ρ1

)
(1+ρ)+

ρ2(1−ρ1(2−ρ))
(1−ρ1)2

δ2
1,

C2 =
γxδ2

1

1 − γx

(
1 +

1 − ρ1(2 − ρ)

ρ2

)
(1 + ρ) + 2ρδ2

1 .

To get a feeling of the impact of the cross correlation, the expected waiting times are
plotted in Figure 5.3 for various switchover time distributions and traffic loads. Shown in
each of the figures is the expected waiting time divided by the expected waiting time for
uncorrelated sequences of switchover times. There are Poisson arrivals with λi = 0.4. The
first two moments of the switchover times are always kept fixed (first moment for each of

the switchover time distributions is fixed at vi = 3) and the service times are taken to be

exponential with bi = 0.4 or bi = 1.2.

Striking is the impact of the cross correlation on the waiting times. For example, if
there is no correlation within each sequence of switchover times (x = 0), then there is
still an increase in the expected waiting time due to the cross-correlation. For the exhaus-

tive/exhaustive system this increase is (1 − ρ2(1 − α))ψδ2
1 and for the exhaustive/gated

system this increase is given by ρ2(1−ρ1(2−ρ))
(1−ρ1)2

δ2
1 and 2ρδ2

1 for, respectively, the exhaustive and

the gated queue. For exponentially distributed switchover times this can mean an increase
of tens of percents in the expected waiting time. Besides this, all of the conclusions made
in the first example also hold here, with the exception that the increase in expected waiting
time can up to a factor 5.
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Figure 5.3: Example: Identical Switchover Times. The expected waiting time divided by
the expected waiting time if there would be no correlation between the switchover times.
The different lines correspond to different switchover time distributions. Here x determines
the level of correlation, cross correlation is introduced by setting Vn,2 = Vn,1, the service

times are exponential, and λi = 0.4. The figures in the first row are with mean service time
bi = 0.4 (ρ = 0.32) and the figures on the bottom row are under heavy traffic with bi = 1.2

(ρ = 0.96). The first column of figures correspond to the exhaustive/exhaustive system,
whereas the second and third column of figures show the normalized waiting times for,
respectively, the exhaustive queue (Q1) and the gated queue (Q2) in the exhaustive/gated
system.
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5.5.4 Example 4: Switchover Times Coming from the Same Se-

quence

As a last example consider the case where the two sequences of switchover times come from
a single sequence:

Yn+1 =xYn + (1 − x)εn,
Vn,1 := Y2n

Vn,2 := Y2n+1.
(5.63)

Here Yn is a stationary ergodic sequence, IE[εn] = ε, and IE[ε2
n] = ε(2). In this case there is

a large correlation between the two sequences, but it is not as strong as in example 3. Once
again we will derive an explicit expression for the expected waiting times. Equation (5.63)
can be rewritten as

Vn,1 =xVn−1,2 + (1 − x)ε2n

Vn,2 =xVn,1 + (1 − x)ε2n+1.

Iterating twice gives

Vn,1 =x2Vn−1,1 + (1 − x)
(
xε2n−1 + ε2n

)

Vn,2 =x2Vn−1,2 + (1 − x)
(
xε2n + ε2n+1

)
,

and iterating a few more times shows that

Vn,1 =x2nV0,1 + (1 − x)

n−1∑

k=0

(
xε2(n−k)−1 + ε2(n−k)

)
x2k

Vn,2 =x2nV0,2 + (1 − x)

n−1∑

k=0

(
xε2(n−k) + ε2(n−k)+1

)
x2k.

Taking the expectation over this gives

IE[Vn,i] =x2nvi + (1 − x2n)ε, i = 1, 2,

which with the stationarity gives vi = ε. This last result can be generalized to saying that

all of the moments of Vn,1 and Vn,2 are equal to each other, in particular, δ2
1 = δ2

2. This

follows from the stationarity of Yn, i.e., IE[V k
n,2] = IE[Y k

2n+1] = IE[Y k
2n] = IE[V k

n,1].

The covariance functions can be derived in the same way as in the previous examples,

c1(j) =IE[V0,1Vj,1] − IE[V0,1]IE[Vj,1] = x2j
(
IE[V 2

0,1] − IE[V0,1]
2
)

= x2jδ2
1. (5.64)

In a similar manner it can be derived that c2(j) = x2jδ2
2 = x2jδ2

1. The cross covariance
function for j ∈ N is

c12(j) =IE[V0,1Vj,2] − IE[V0,1]IE[Vj,2]

=IE
[
V0,1

(
xVj,1 + (1 − x)ε2j+1

)]
− IE

[
V0,1]IE

[
xVj,1 + (1 − x)ε2j+1

]

=xIE
[
V0,1Vj,1] + xIE

[
V0,1]IE[Vj,1] = xc1(j) = x2j+1δ2

1. (5.65)
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Similarly,

c12(−j) =IE[V−j,2V0,1] − IE[V−j,2]IE[V0,1] = IE[V0,2Vj,1] − IE[V0,2]IE[Vj,1]

=IE[V0,2 ·
(
xVj−1,2 + (1 − x)ε2n

)
] − IE[V0,2]IE

[
xVj−1,2 + (1 − x)ε2n

]

=xc2(j−1) = x2j−1δ2
1 (5.66)

Putting these expressions for the covariance functions into (5.19) tells us that the expected

waiting time for a customer arriving at the first queue of an exhaustive/exhaustive system

is given by (5.28) where ψ := 1−ρ1

R(1−ρ+2ρ1ρ2)
, α = ρ1ρ2

(1−ρ1)(1−ρ2)
, and

C =

(
1−ρ2(1−α)

αx
+ 2+

(1 − ρ)2

ρ1(1 − ρ1)
+

1 − ρ2

xρ1

)
αx2δ2

1

1 − αx2
. (5.67)

Similarly, in the exhaustive/gated system the expected waiting times follow by putting

(5.64)-(5.66) into Theorem 5.4.4. This leads to the expected waiting time being given by

(5.52b) with γ = ρ2

1−ρ1
and

C1 =
γx2δ2

1

1 − γx2

(
ρ +

1

x

)(
x + 1 +

ρ2(1 − ρ)

1 − ρ1

)
+
ρ2(1 − ρ1(2 − ρ))

(1 − ρ1)2
xδ2

1 (5.68a)

C2 =
γx2δ2

1

1 − γx2

(
p+

1

x

)(
x+

1 − ρ1(2 − ρ)

ρ2

)
+ 2ρxδ2

1 (5.68b)

The waiting times as a function of x and for different switchover time distributions can
be seen in Figure 5.4. Due to the strong similarities the same conclusions can be made as
for the first examples, with the exception that in this case the increase is not entirely linear
in x for systems with a low traffic load.

5.6 Concluding Remarks

The performance of alternating-priority queues with very weak assumptions on the switchover
time sequences was studied; all that is assumed is that these sequences are stationary ergodic.
In spite of this generality explicit expressions were derived for the expected waiting times
and number of customers in each queue. The expressions obtained involve the weighted
sum of all correlations where the weights decrease exponentially fast to zero. With the help
of these explicit expressions, through numerically studies and examples, it was shown that
correlation can add up to 400% to the expected waiting times. This has important implica-
tions for (ad-hoc) networks where a common communication channel is shared amongst a
number of users and the number of users between consecutive data transfers are correlated.

The analysis of the gated/gated queueing systems is slightly more evolved because
the stochastic recursive equations for that system can not be written in a one-dimensional
version. It remains a subject for future research.
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Figure 5.4: Switchover Times from the Same Sequence. The expected waiting time divided
by the expected waiting time if there would be no correlation between the switchover times.
The different lines correspond to different switchover time distributions. Here x determines
the level of correlation, cross correlation is introduced by having the switchover times come
from the same sequence, the service times are exponential, and λi = 0.4. The figures in the
first row are with mean service time bi = 0.4 (ρ = 0.32) and the figures on the bottom row

are under heavy traffic with bi = 1.2 (ρ = 0.96). The first column of figures correspond to

the exhaustive/exhaustive system, whereas the second and third column of figures show the

normalized waiting times for, respectively, the exhaustive queue (Q1) and the gated queue

(Q2) in the exhaustive/gated system.
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The extension of the models discussed here to more than two queues is another open
problem that remains to be addressed. With independent switchover times the expected
waiting times can be found by solving a set of equations. It will be interesting to see if a
similar solution can be given for correlated switchover times and what the influence is of
correlation on a larger number of queues.
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5.A Proof of Theorem 5.3.2.

The proof of Theorem 5.3.2 will make use the following lemma [19, Propositions 6.6 and

6.31] [27, p.292 and p.295]

Lemma 5.A.1 Let X1, X2, . . . be a stationary and ergodic process, and φ(x) be Borel mea-

surable, then the process B1, B2, . . . defined by Bn = φ(Xn, Xn+1, . . .) is stationary ergodic.

First of all note that An(y) and Bn are nonnegative (component-wise) for all n and y.

Moreover, An(y) are monotone increasing in y for all n and for each sample path. Theorem

1 in [3] then tells us that

(i) if the sequence {(An(·),Bn),−∞ < n <∞} is stationary ergodic9 and

(ii) if P (limn→∞In,1 is finite) > 0 for I0,1 = 0,

then there exists a stationary ergodic regime I∗n,1 defined on the probability space and I∗n,1

satisfies (5.13).

We start by verifying that Bn is stationary ergodic by analyzing it term by term. First
of all the processes Vn,1 and Vn,2 are by assumption stationary ergodic. Furthermore it can be

shown that Nn,2(Vn,i), i = 1, 2, is also stationary ergodic. To do this introduce the sequence

of i.i.d. uniform variables Un,i on (0, 1) and let Nn,2(ω), ω ∈ IR, have cumulative distribu-

tion function FNn,2(ω)(x) := P (Nn,2(ω) ≤ x). With the help of the inverse-transformation

method for drawing random numbers it follows that Nn,2(ω) = F−1
Nn,2(ω)(Un,i) which leads to

Nn,2(Vn,i) = F−1
Nn,2(Vn,i)

(Un,i). In other words, Nn,2(Vn,i) is a function of two parameters, Un,i

and Vn,i. Call this function f(U, V ) := F−1
Nn,2(V )(U). This function is Borel measurable, and

9We mean by that notation that the sequence {((An(y))y∈Y ,Bn),−∞ < n < ∞} is stationary ergodic

rather than {(An(In,1),Bn),−∞ < n < ∞}. Here Y is a subset of IR.



146 Chap. 5 An Alternating-Priority Server with Correlated Switchover Times

since Xn := (Un,i, Vn,i) is stationary ergodic it follows with Lemma 5.A.1 that Nn,2(Vn,i) =

f(Un,i, Vn,i) is stationary ergodic. An identical argumentation with the sequence of i.i.d.

uniform variables Wn on (0, 1) leads to the function g(Wn, N) := F−1
Dn,2(N)(Wn) = Dn,2(N)

with which it can be shown that Dn,2(Nn) = g(Wn, Nn) is also stationary ergodic. Getting

back to Bn, with the vector Xn := (Vn,1, Vn,2, Un,1, Un,2,Wn) and the projection function

Pi(Xn) which gives the i-th coordinate of Xn, we can rewrite Bn as

Bn = Vn+1,1 + Vn+1,2 + g(Wn+1, f(Un,2, Vn,2) + f(Un+1,1, Vn+1,1))

= P1(Xn+1) + P2(Xn+1) + g(P4(Xn+1), f(P3(Xn), P2(Xn)) + f(P3(Xn+1), P1(Xn+1)))

Since projections, additions and compositions of measurable functions are once again mea-
surable it follows with Lemma 5.A.1 that Bn is stationary ergodic.

Next we show that the sequence An(·) is stationary ergodic by starting with the in-

nermost term of (5.14) and working outwards. Since the number of arrivals in cycle n is

independent of the number of arrivals in cycle k, for k 6= n, it follows that Nn,1(·) is an i.i.d.

sequence in n. With a similar argumentation it follows that Dn,1(·) is an i.i.d. sequence

in n. Furthermore, a composition of independent processes results once again in an i.i.d.

sequence. To prove this let Dk(·) and Nm(·) be i.i.d. sequences and independent of each

other. Conditioning on the inner process gives (k 6= l and m 6= n)

P (Dk(Nm) ≤ x;Dl(Nn) ≤ y) =

=

∫ ∞

0

∫ ∞

0

P (Dk(r) ≤ x;Dl(s) ≤ y)dP (Nm ≤ r)dP (Nn ≤ s)

=

∫ ∞

0

∫ ∞

0

P (Dk(r) ≤ x)P (Dl(s) ≤ y)dP (Nm ≤ r)dP (Nn ≤ s)

=P (Dk(Nm) ≤ x)P (Dl(Nn) ≤ y).

In particular, this means that the sequence Dn+1,1(Nn,1(·)) is an i.i.d. sequence in n. Per-

forming two more compositions like this proves that An(·) is an i.i.d. sequence (and therefore

also stationary ergodic). This proves (i).

To show that (ii) holds it is sufficient to show that certain conditions of Lemma 1

in [3] hold as that lemma leads to (ii). The first condition is that An(·) forms an i.i.d.
sequence independent of the stationary ergodic sequence Bn. The second condition is that
IE[|A0(y)|] ≤ α|y| for some α < 1 and all y ≥ D where D > 0 is some constant.

It has already been shown that the sequence An(·) forms an i.i.d. sequence and that

Bn is a stationary ergodic sequence. The sequence An(·) is also independent of Bn since

(compare (5.15) to (5.14)) Vn+1,1 and Vn+1,2 are independent of An(·), Nn,2 is independent

of Nn+1,2, and Vn+1,1 is independent of Dn+1,1(Nn,1(·)).
Finally, since IE[|A0(y)|] = IE[An(y)] = αy, with α = ρ1ρ2

(1−ρ1)(1−ρ2)
, it follows that the

second condition holds since α < 1 whenever ρ < 1, which was assumed throughout. Thus

(ii) holds if ρ < 1.
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Since (i) and (ii) hold there exists (Theorem 1 in [3]) a stationary regime I ∗n,1 which

satisfies (5.13).

5.B Proof of Theorem 5.3.3.

Proof: Taking the expectation on both sides of equation (5.13) gives

IE[In+1,1] =R +
ρ2

1 − ρ2

(
R +

ρ1IE[In,1]

1 − ρ1

)
.

Under the stationary regime IE[In+1,1] = IE[In,1] which immediately leads to the first moment

E[In,1] =
R(1 − ρ1)

1 − ρ
. (5.69)

To obtain the second moment we need to derive the terms on the right hand side of (5.16).
First of all,

IE[A2
n(In,1)] =IE

[
D2

n+1,2

(
Nn+1,2

(
Dn+1,1(Nn,1(In,1))

))]

=λ2
2d

2
2IE[D2

n+1,1(Nn,1(In,1))] + λ2d
(2)
2 IE[Dn+1,1(Nn,1(In,1))]

=λ2
2d

2
2

(
λ2

1d
2
1IE[I2

n,1] + λ1d
(2)
1 IE[In,1]

)
+ λ1d1λ2d

(2)
2 IE[In,1].

Plugging equations (5.7) and (5.17) into this results in

IE[A2
n(In,1)] =

ρ2
1ρ

2
2IE[I2

n,1]

(1 − ρ1)2(1 − ρ2)2
+

R

(1 − ρ2)2(1 − ρ)

(
λ1ρ

2
2b

(2)
1

(1 − ρ1)2
+
λ2ρ1b

(2)
2

1 − ρ2

)
. (5.70)

Next we proceed with the second unknown of expression (5.16), IE[B2
n], where we recall

that Bn is defined in equation (5.15). Making use of (5.3) gives

IE[B2
n] =IE

[
Vn+1,1 + Vn+1,2 + Dn+1,2

(
Nn,2(Vn,2) + Nn+1,2(Vn+1,1)

)]2

=v
(2)
1 + v

(2)
2 + 2v1v2 + 2c12(0) + 2λ2d2

(
v

(2)
1 + v2

2 + 2v1v2 + c2(1) + c12(−1) + c12(0)
)

+ λ2
2d

2
2

(
v

(2)
1 + v

(2)
2 + 2v1v2 + 2c12(−1)

)
+ λ2d

(2)
2 R

=
∆2 +R2

(1 − ρ2)2
− 2ρ2δ

2
2

1 − ρ2
+

Rλ2b
(2)
2

(1 − ρ2)3
+

2ρ2c2(1) + 2c12(0)

1 − ρ2
+

2ρ2c12(−1)

(1 − ρ2)2
. (5.71)

To solve the last part first notice that the processes Nn,1(·), Nn,2(·), Nn+1,1(·), Nn+1,2(·),
Dn+1,1(·), and Dn+1,1(·) are all independent of each other, and each of them is independent
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of In,1, Vn,2, Vn+1,1, and Vn+1,2, This means that

IE[An(In,1)Bn] =αIE[In,1Bn], (5.72)

with α := ρ1ρ2

(1−ρ1)(1−ρ2)
. The last piece of the puzzle can be derived with the help of Theorem

2 in [3] which states that

In,1 =

∞∑

j=0

( n−1∏

i=n−j

A(n−j)
i

)
(Bn−j−1), n ∈ Z,

where for each integer i, {A(−j)
i }j are independent of each other and have the same distri-

bution as Ai(·). To apply the theorem it is sufficient to have α < 1, which turns out to be

equivalent to ρ < 1, and that IE[Bn] < ∞ (see Lemma 1 in [3]). The latter indeed holds as

IE[Bn] = R
1−ρ2

.

Applying the theorem gives

IE[In,1Bn] =
∞∑

j=0

IE

[ n−1∏

i=n−j

(
Di+1,2

(
Ni+1,2

(
Di+1,1(Ni,1(Bn−j−1))

)))
· Bn

]

=

∞∑

j=0

αjIE [Bn−j−1Bn] =

∞∑

j=0

αjIE [B0Bj+1] . (5.73)

because of the independence of the processes Di,1(·), Dn,2(·), Ni,1(·), and Ni,2(·), for all

i ∈ Z. Writing out the last term yields

IE

[
B0Bj+1

]
= IE

[(
V1,1 + V1,2 + D1,2

(
N0,2(V0,2) + N1,2(V1,1)

))

·
(
Vj+2,1 + Vj+2,2 + Dj+2,2

(
Nj+1,2(Vj+1,2) + Nj+2,2(Vj+2,1)

))]

=v2
1 + c1(j+1) + v1v2 + c12(j + 1) + λ2d2

(
v1v2 + c12(j) + v2

1 + c1(j+1)
)

+ v1v2 + c12(−j−1) + v2
2 + c2(j+1) + λ2d2

(
v2
2 + c2(j) + v1v2 + c12(−j−1)

)

+ λ2d2

(
v1v2 + c12(−j − 2) + v2

2 + c2(j+2)+λ2d2

(
v2
2 +c2(j+1)+v1v2+c12(−j−2)

))

+ λ2d2

(
v2
1 + c1(j+1) + v1v2 + c12(j+1) + λ2d2

(
v1v2 + c12(j) + v2

1 + c1(j+1)
))

=
R2

(1 − ρ2)2
+
c1(j+1) + c2(j+1)

(1 − ρ2)2
+
ρ2(c2(j) − 2c2(j+1) + c2(j+2))

1 − ρ2

+
c12(−j−1) + c12(j+1)

1 − ρ2

+
ρ2(c12(−j−2) + c12(j))

(1 − ρ2)2
. (5.74)
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Putting (5.72)-(5.74) together and re-indexing the summation (for example,
∑∞

j=0 α
j+1c2(j)

=
∑∞

j=1 α
jc2(j−1) = αc2(0) +

∑∞
j=1 α

jαc2(j)) produces

IE[An(In,1)Bn] =

∞∑

j=1

[
R2 + c1(j) + c2(j)

(1 − ρ2)2
+
ρ2

(
α− 2 + 1

α

)
c2(j)

1 − ρ2

+
c12(−j)
1 − ρ2

(
1 +

ρ2

α(1 − ρ2)

)
+
c12(j)

1 − ρ2

(
1 +

αρ2

1 − ρ2

)]
αj

+
ρ2(αc2(0) − c2(1))

1 − ρ2

+
ρ2(−c12(−1) + αc12(0))

(1 − ρ2)2
.

All of the terms with v1 and v2 can be pulled out of the summation and under stationary

regime c2(0) = δ2
2. This gives

IE[An(In,1)Bn] =
ρ1ρ2R

2

(1 − ρ2)2(1 − ρ)
+

ρ1ρ
2
2δ

2
2

(1 − ρ1)(1 − ρ2)2
− ρ2c2(1)

1 − ρ2
+
ρ2(−c12(−1) + αc12(0))

(1 − ρ2)2

+
1

(1 − ρ2)2

∞∑

j=1

[
c1(j) + c2(j) +

(1 − ρ)2c2(j)

ρ1(1 − ρ1)
+

(1 − ρ2)c12(−j)
ρ1

]
αj

+
1 − ρ2(1 − α)

(1 − ρ2)2

∞∑

j=1

c12(j)α
j. (5.75)

Putting equations (5.70),(5.71), and (5.75) into (5.16) and collecting terms gives

IE[I2
n+1,1] =

ρ2
1ρ

2
2IE[I2

n,1]

(1 − ρ1)2(1 − ρ2)2
+

R

(1 − ρ2)2(1 − ρ)

(
λ1ρ

2
2b

(2)
1

(1 − ρ1)2
+ λ2b

(2)
2

)

+
1

(1 − ρ2)2

(
∆2 − 2ρ2(1 − ρ)δ2

2

1 − ρ1

+

(
1 − ρ+ 2ρ1ρ2

1 − ρ

)
R2
)

+
2(1 − ρ2(1 − α))

(1 − ρ2)2

∞∑

j=0

c12(j)α
j

+
2

(1 − ρ2)2

∞∑

j=1

[
c1(j) + c2(j) +

(1 − ρ)2c2(j)

ρ1(1 − ρ1)
+

(1 − ρ2)c12(−j)
ρ1

]
αj.

Under stationary regime IE[I2
n+1,1] = IE[I2

n,1]. The theorem follows by putting these terms

on the same side and by making use of the identity

1 −
(

ρ1

1 − ρ1

)2(
ρ2

1 − ρ2

)2

=
(1 − ρ)(1 − ρ + 2ρ1ρ2)

(1 − ρ1)2(1 − ρ2)2
.
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5.C Alternative proof of Theorem 5.3.4.

Proof: Under a number of assumptions [33] presents a decomposition theory which states

that the expected waiting time in an M/G/1 queue with vacations can be decomposed into
two parts, namely

IE[Wq,i] =
λib

(2)
i

2(1 − ρi)
+ IE[Ṽi].

The first part is the Pollaczek-Khinchin formula for the expected waiting time in an ordinary
M/G/1 queue without vacations. The second part is the forward-recurrence time defined as

IE[Ṽi] =
IE[I2

n,i]

2IE[In,i]
.

See [25] for an application of this theory. Since a customer in a polling system arriving at

queue i sees the system as an M/G/1 with vacations, and the theorem does not assume

independence between vacations and service times (or busy periods), we can apply the
theorem to our polling system.

5.D Proof of Theorem 5.4.3.

Proof: First of all note that the expected service time of N customers at the second

queue is the sum of their individual service times and hence IE[Sn,2] = b2IE[N ]. Taking the

expectation over (5.34) then gives

IE[Sn+1,2] =ρ2

(
IE[Sn,2] +R + IE

[
Dn+1,1

(
Nn,1(Sn,2 + Vn,1 + Vn,2)

)])

=
ρ2

1 − ρ1

(
IE[Sn,2] +R

)
,

where the last line follows since IE[Dn,1] = ρ1IE[In,1])/(1−ρ1) (equation (5.12a)) . Because of

the stationarity (IE[Sn+1,2] = IE[Sn,2]), this gives the first moment, IE[Sn+1,2] = ρ2R/(1− ρ).

Before we derive the second moment, we first need to point out (with the help of (5.4)

and (5.6)) that

IE[S2
n,2(Nn,2(T ))] =b22IE[N 2

n,2(T )] + (b
(2)
2 − b22)IE[Nn,2(T )]

=ρ2
2IE[T 2] + λ2b

(2)
2 IE[T ]. (5.76)

Squaring (5.34) gives the second moment of the service time of the second queue as

IE[S2
n+1,2] =IE[X 2

n(Sn,2)] + IE[Y2
n] + 2IE[Xn(Sn,2)Yn]. (5.77)
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The right hand side will be solved piece by piece. First of all, using (5.76), and then (5.6)

along with the independence of Nn,2(·) and Nn+1,2(·) gives

IE[X 2
n(Sn,2)] =IE

[
S2

n+1,2

(
Nn,2

(
Sn,2

)
+ Nn+1,2

(
Dn+1,1

(
Nn,1(Sn,2)

)))]

=b22IE

[(
Nn,2

(
Sn,2

)
+ Nn+1,2

(
Dn+1,1

(
Nn,1(Sn,2)

)))2
]

+ (b
(2)
2 − b22)IE

[
Nn,2

(
Sn,2

)
+ Nn+1,2

(
Dn+1,1

(
Nn,1(Sn,2)

))]

=λ2b
2
2

(
λ2IE[S2

n,2] + IE[Sn,2] + 2λ2IE
[
Sn,2 · Dn+1,1

(
Nn,1(Sn,2)

)]

+ λ2IE
[
D2

n+1,1

(
Nn,1(Sn,2)

)]
+ IE

[
Dn+1,1

(
Nn,1(Sn,2)

)] )

+ λ2(b
(2)
2 − b22)IE

[
Sn,2 + Dn+1,1

(
Nn,1(Sn,2)

)]
.

A couple of these terms can be crossed out to give

IE[X 2
n(Sn,2)] =ρ2

2

(
IE[S2

n,2] + 2IE
[
Sn,2 · Dn+1,1

(
Nn,1(Sn,2)

)]
+ IE

[
D2

n+1,1

(
Nn,1(Sn,2)

)] )

+ λ2b
(2)
2 IE

[
Sn,2 + Dn+1,1

(
Nn,1(Sn,2)

)]
.

Applying formula (5.8) and then substituting d1 = b1/(1− ρ1) and d
(2)
1 = b

(2)
1 /(1− ρ1)

3 (see

(5.7)) leads to

IE[X 2
n(Sn,2)] =ρ2

2

(
IE[S2

n,2]
(
1 +

2ρ1

1 − ρ1

+ λ2
1d

2
1

)
+ λ1d

(2)
1 IE[Sn,2]

)
+
λ2b

(2)
2

1 − ρ1

IE[Sn,2]

=
ρ2

2IE[S2
n,2]

(1 − ρ1)2
+

IE[Sn,2]

1 − ρ1

(
λ1b

(2)
1 ρ2

2

(1 − ρ1)2
+ λ2b

(2)
2

)

=
ρ2

2IE[S2
n,2]

(1 − ρ1)2
+

ρ2R

(1 − ρ1)(1 − ρ)

(
λ1b

(2)
1 ρ2

2

(1 − ρ1)2
+ λ2b

(2)
2

)
(5.78)

The second part of (5.77) can be derived along similar lines. Taking the expectation of the
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square of (5.36),

IE[Y2
n] =IE

[
S2

n+1,2

(
Nn,2

(
Vn,2

)
+ Nn+1,2

(
Dn+1,1

(
Nn,1(Vn,1 + Vn,2)

)
+ Vn+1,1

))]

=b22IE
[(

Nn,2

(
Vn,2

)
+ Nn+1,2

(
Dn+1,1

(
Nn,1(Vn,1 + Vn,2)

)
+ Vn+1,1

))2]

+
(
b
(2)
2 − b22

)
IE
[
Nn,2

(
Vn,2

)
+ Nn+1,2

(
Dn+1,1

(
Nn,1(Vn,1 + Vn,2)

)
+ Vn+1,1

)]

=λ2b
2
2

(
λ2IE[V 2

n,2] + IE[Vn,2] + 2λ2IE
[
Vn,2 ·

(
Dn+1,1

(
Nn,1(Vn,1 + Vn,2)

)
+ Vn+1,1

)]

+ λ2IE
[(

Dn+1,1

(
Nn,1(Vn,1 + Vn,2)

)
+ Vn+1,1

)2]

+ IE
[
Dn+1,1

(
Nn,1(Vn,1 + Vn,2)

)
+ Vn+1,1

])

+ λ2

(
b
(2)
2 − b22

)
IE
[
Vn,2 + Dn+1,1

(
Nn,1(Vn,1 + Vn,2)

)
+ Vn+1,1

]
.

Also here terms can be crossed out10. Doing this gives

IE[Y2
n] =ρ2

2

(
IE[V 2

n,2] + 2IE
[
Vn,2 ·

(
Dn+1,1

(
Nn,1(Vn,1 + Vn,2)

)
+ Vn+1,1

)]

+ IE
[(

Dn+1,1

(
Nn,1(Vn,1 + Vn,2)

)
+ Vn+1,1

)2])

+ λ2b
(2)
2 IE

[
Vn,2 + Dn+1,1

(
Nn,1(Vn,1 + Vn,2)

)
+ Vn+1,1

]
,

after which the expectations can be moved farther back in the equation to give

IE[Y2
n] =ρ2

2

(
IE[V 2

n,2] +
2ρ1

1 − ρ1
IE
[
Vn,1Vn,2 + V 2

n,2

]
+ 2IE[Vn+1,1Vn,2]

+ λ2
1d

2
1IE
[
(Vn,1 + Vn,2)

2
]
+ λ1d

(2)
1 IE[Vn,1 + Vn,2] + IE[V 2

n+1,1]

+
2ρ1

1 − ρ1
IE[Vn,1Vn+1,1 + Vn+1,1Vn,2]

)
+
λ2b

(2)
2 R

1 − ρ1
.

10The slightly more elaborate calculations and then the crossing out of terms is due to Nn,2(·) and

Nn+1,2(·) being treated separately. Although it is tempting to combine them into one term, it is better

not to do so since the independence and correlations between the different processes Nn,1(T ), Nn,2(T ),

Dn+1,2(T ), Sn,1(T ), and Sn+1,1(T ) are not always obvious and have to be treated with care when squaring

them.
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In terms of the covariance functions c1(j), c2(j), and c12(±j), j∈N (see equation (5.3)),

IE[Y2
n] =ρ2

2

(
v

(2)
2 +

2ρ1(v1v2 + c12(0) + v
(2)
2 )

1 − ρ1
+ 2v1v2 + 2c12(−1)

+
ρ2

1

(
v

(2)
1 + v

(2)
2 + 2v1v2 + 2c12(0)

)

(1 − ρ1)2
+

λ1b
(2)
1 R

(1 − ρ1)3
+ v

(2)
1

+
2ρ1(v

2
1 + c1(1) + v1v2 + c12(−1))

1 − ρ1

)
+
λ2b

(2)
2 R

1 − ρ1

=
ρ2

2

1 − ρ1

(
δ2
1 + δ2

2 +R2

1 − ρ1

− 2ρ1δ
2
1 +

λ1b
(2)
1 R

(1 − ρ1)2

)
+
λ2b

(2)
2 R

1 − ρ1

+
2ρ2

2

1 − ρ1

(
ρ1c1(1) + c12(−1) +

ρ1c12(0)

1 − ρ1

)
. (5.79)

The third part of (5.77) is

IE[Xn(Sn,2)Yn] =IE
[
Sn+1,2

(
Nn,2

(
Sn,2

)
+ Nn+1,2

(
Dn+1,1

(
Nn,1(Sn,2)

)))
· Yn

]

=b2IE
[(

Nn,2

(
Sn,2

)
+ Nn+1,2

(
Dn+1,1

(
Nn,1(Sn,2)

)))
· Yn

]

=ρ2IE
[(
Sn,2 + Dn+1,1

(
Nn,1(Sn,2)

))
· Yn

]
= γIE[Sn,2Yn] (5.80)

where in each step the independence and non-overlapping of Sn,2 and Vn,i (i = 1, 2) was

used. Theorem 2 in [3] provides us with a mean to work out (5.80). The theorem states
that

Sn,2 =
∞∑

j=0

( n−1∏

i=n−j

X (n−j)
i

)
(Yn−j−1), n ∈ Z,

where for each integer i, {X (−j)
i }j are independent of each other and have the same distri-

bution as Xi(·). To apply the theorem it is sufficient to have γ < 1, which turns out to be

equivalent to ρ < 1, and that IE[Yn] < ∞ (see Lemma 1 in [3]). The latter indeed holds as

IE[Yn] = ρ2R
1−ρ1

.

Using the theorem and because of the independence of the processes Dn,1(·), Sn,2(·),
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Nn,1(·), and Nn,2(·), for all n ∈ N, we obtain

IE[Sn,2Yn] =
∞∑

j=0

IE

[
n−1∏

i=n−j

(
Si+1,2

(
Ni,2

(
Yn−j−1

)
+ Ni+1,2

(
Di+1,1

(
Ni,1(Yn−j−1)

))))
· Yn

]

=

∞∑

j=0

bj2IE

[
n−1∏

i=n−j

(
Ni,2

(
Yn−j−1

)
+ Ni+1,2

(
Di+1,1

(
Ni,1(Yn−j−1)

)))
· Yn

]

=
∞∑

j=0

ρj
2IE

[
n−1∏

i=n−j

(
Yn−j−1 + Di+1,1

(
Ni,1(Yn−j−1)

))
· Yn

]

=

∞∑

j=0

(
ρ2

1 − ρ1

)j

IE [Yn−j−1Yn] =

∞∑

j=0

γjIE [Y0Yj+1] . (5.81)

with γ := ρ2

1−ρ1
. Finally, writing out the last term of this expression yields

IE [Y0Yj+1] =IE

[
S1,2

(
N0,2

(
V0,2

)
+ N1,2

(
D1,1

(
N0,1(V0,1+V0,2)

)
+ V1,1

))

· Sj+2,2

(
Nj+1,2

(
Vj+1,2

)
+ Nj+2,2

(
Dj+2,1

(
Nj+1,1(Vj+1,1+Vj+1,2)

)
+ Vj+2,1

))]

=ρ2
2IE

[(
V0,2 + D1,1

(
N0,1(V0,1+V0,2)

)
+ V1,1

)

·
(
Vj+1,2 + Dj+2,1

(
Nj+1,1(Vj+1,1+Vj+1,2)

)
+ Vj+2,1

)]

=ρ2
2IE

[
V1,1Vj+2,1 + V0,2Vj+1,2 + V1,1Vj+1,2 + Vj+2,1V0,2

+
ρ1

1 − ρ1

(
V1,1Vj+1,1 + V0,1Vj+2,1 + 2V0,2Vj+1,2

+ Vj+1,1V0,2 + V0,1Vj+1,2 + Vj+2,1V0,2 + V1,1Vj+1,2

)

+
ρ2

1

(1 − ρ1)2

(
V0,1Vj+1,1 + V0,2Vj+1,2 + V0,1Vj+1,2 + Vj+1,1V0,2

)]
.
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Using the covariance functions (5.3)

IE [Y0Yj+1] =ρ2
2

[
v2
1 + c1(j+1) + v2

2 + c2(j+1) + 2v1v2 + c12(j) + c12(−j−2)

+
ρ1

1 − ρ1

(
2v2

1 + c1(j) + c1(j+2) + 2v2
2 + 2c2(j+1)

+ 4v1v2 + c12(−j−1) + c12(j+1) + c12(−j−2) + c12(j)
)

+
ρ2

1

(1−ρ1)2

(
v2
1 +c1(j+1) + v2

2+c2(j+1)+2v1v2+c12(j+1)+c12(−j−1)
)]

=
ρ2

2

1 − ρ1

[
R2

1 − ρ1

+
c1(j+1) + c2(j+1)

1 − ρ1

+ ρ1(c1(j) − 2c1(j+1) + c1(j+2))

+ c12(−j−2) + c12(j) +
ρ1(c12(−j−1) + c12(j+1))

1 − ρ1

]
. (5.82)

Putting equations (5.81) and (5.82) into (5.80) and re-indexing the summation gives

IE[Xn(Sn,2)Yn] =
ρ2

2

1 − ρ1

∞∑

j=1

(
R2 + c1(j) + c2(j)

1 − ρ1
+ ρ1(c1(j−1) − 2c1(j) + c1(j+1))

+ c12(−j−1) + c12(j−1) +
ρ1(c12(−j) + c12(j))

1 − ρ1

)
γj.

In this expression the term R2 can be pulled out of the summation and the various covariance

functions can be collected together (for example,
∑∞

j=1 γ
jc2(j−1) = γc1(0) +

∑∞
j=1 γ

jγc2(j))

to reveal

IE[Xn(Sn,2)Yn] =
ρ2

2

1 − ρ1

[
ρ2R

2

(1 − ρ1)(1 − ρ)
+ ρ1

(
γc1(0) − c1(1)

)
− c12(−1) + γc12(0)

+

∞∑

j=1

γj

(
c1(j)+c2(j)

1 − ρ1
+ρ1c1(j)

(
γ−2+

1

γ

)
+c12(−j)

(1
γ

+
ρ1

1−ρ1

)
+c12(j)

(
γ+

ρ1

1−ρ1

))]

=
ρ2

2

1 − ρ1

[
ρ2R

2

(1 − ρ1)(1 − ρ)
+ ρ1

(
γc1(0) − c1(1)

)
− c12(−1) + γc12(0)

]

+
ρ2

2

(1 − ρ1)2

∞∑

j=1

(
c1(j) + c2(j) +

ρ1

ρ2
(1 − ρ)2c1(j) +

1−ρ1(2−ρ)
ρ2

c12(−j) + ρc12(j)

)
γj.

(5.83)

Putting equations (5.78), (5.79), and (5.83) into (5.77), using c1(0) = v
(2)
1 − v2

1, and collect-
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ing terms gives

IE[S2
n+1,2] =

ρ2
2IE[S2

n,2]

(1 − ρ1)2
+

ρ2R

(1 − ρ1)(1 − ρ)

(
λ1ρ

2
2b

(2)
1

(1 − ρ1)2
+ λ2b

(2)
2

)

+
ρ2

2

1 − ρ1

(
δ2
1 + δ2

2 +R2

1 − ρ1
− 2ρ1δ

2
1 +

λ1b
(2)
1 R

(1 − ρ1)2

)
+
λ2b

(2)
2 R

1 − ρ1

+
2ρ2

2

1 − ρ1

(
ρ1c1(1) + c12(−1) +

ρ1c12(0)

1 − ρ1

)

+
2ρ2

2

1 − ρ1

[
ρ2R

2

(1 − ρ1)(1 − ρ)
+ ρ1

(
γδ2

1 − c1(1)
)
− c12(−1) + γc12(0)

]

+
2ρ2

2

(1 − ρ1)2

∞∑

j=1

γj

(
c2(j) +

1 − ρ1(2 − ρ)

ρ2

(
c12(−j) + ρc1(j)

)
+ ρc12(j)

)

=
ρ2

2IE[S2
n,2]

(1 − ρ1)2
+

R

1 − ρ

(
λ1ρ

2
2b

(2)
1

(1 − ρ1)2
+ λ2b

(2)
2

)

+
ρ2

2

(1 − ρ1)2

((
1 − 2ρ1(1 − ρ)

)
δ2
1 + δ2

2 +

(
1 − ρ1 + ρ2

1 − ρ

)
R2 + 2ρc12(0)

)

+
2ρ2

2

(1 − ρ1)2

∞∑

j=1

(
c2(j) +

1 − ρ1(2 − ρ)

ρ2

(
c12(−j) + ρc1(j)

)
+ ρc12(j)

)
γj.

The final expression is obtained by assuming stationary, putting the terms IE[S2
n+1,2] =

IE[S2
n,2] on the same side, and multiplying both sides by (1 − ρ1)

2/ρ2
2.
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5.E List of Notation

An(·) = A nested combination of stochastic processes defined in (5.14).
Bn = A nested combination of stochastic processes defined in (5.15).

Dn,i(N) = Total busy period generated by N customers in queue i with arrival rate λi

and first and second moment of the service time bi and b
(2)
i , respectively.

Dn,i,k = Single busy period generated by the k-th customer in queue i with arrival rate

λi and first and second moment of the service time bi and b
(2)
i , respectively.

Sn,i(N) = Service time of N customers at queue i with first and second moment of the

service time bi and b
(2)
i , respectively.

Nn,i(T ) = Number of arrivals at queue i in time T in the nth cycle (cycle starting from

the polling instant of the first queue).

Ṅn,2(·) = The number of arrivals at the second queue during the nth cycle, with the
cycle starting from the arrival of the server at the second queue.

Tn,i(N) = The number of customers served at queue i during the nth cycle if there are
N customers in the queue at the moment of polling.

Xn(·) = A nested combination of stochastic processes defined in (5.35).
Yn = A nested combination of stochastic processes defined in (5.36).
α = ρ1ρ2

(1−ρ1)(1−ρ2)
= Central quantity in the exhaustive/exhaustive queueing system.

Comes forth from IE[An(I)] = αIE[I], with An(·) defined in (5.14).
bi = IE[Bi] = Expected service time at queue i.

b
(2)
i = IE[Bi]

2 = Second moment of the service time at queue i.
ci(n) = IE[V0,iVn,i] − IE[V0,i]IE[Vn,i] = Covariance function for the vacation sequences

at queue i.
c12(n) = IE[V0,1Vn,2] − IE[V0,1]IE[Vn,2] = Covariance function for the vacation sequences

between the two queues.
di = ρi/(1− ρi) = The expected duration of a single busy period, where the arrival

rate is λi and the average service time is bi.

d
(2)
i = b

(2)
i /(1− ρi)

3 = Second moment of the duration of a single busy period, where

the arrival rate is λi, the average service time is bi, and the second moment of

the service time is b
(2)
i .

δ2
i = v

(2)
i − v2

i = Variance of the switching time from queue i to the other queue.
∆2 = δ2

1 + δ2
2 = Sum of the variances of the switching times.

γ = ρ2

1−ρ1
= Central quantity in the exhaustive/gated queueing system. Comes

forth from IE[Xn(I)] = γIE[I], with Xn(·) defined in (5.36).
λi = (Poisson) arrival rate at queue i.
ρi = λidi = load at queue i.
ρ = ρ1+ρ2 = load of the system. The assumption is made throughout that ρ < 1/2.
ρ̂ = ρ1 = ρ2 if the parameter settings for the two queues are equal.
R = v1 + v2.
vi = E[Vn,i] = Expected switching time from queue i to the other queue.

v
(2)
i = E[V 2

n,i] = Second moment of the switching time away from queue i.
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Cn,i = Duration of the nth cycle starting from the polling instant of the ith queue.
Dn,i = Duration of the busy period at queue i in the nth cycle.
In,i = Inter-visit of the ith queue in the nth cycle. This is the time between the

server switching away from queue i until the time that the server comes back
to queue i. ( In,1 = Vn,1 + Dn,2 + Vn,2 for exhaustive/exhaustive queues and

In,1 = Vn,1 + Sn,2 + Vn,2 for exhaustive/gated queues).
K = A constant used in the expressions for the inter-visit time and the waiting

times. Sometimes K1 or K2 is used if there is a difference between the two
queues.

L∗
n,i = Number of customers in queue i in the nth cycle at the moment the queue is

polled.
Lq,i = Average number of customers in queue i. This is also the number of customers

that arrived at queue i during a vacation, and are still in the queue, before a
tag customer arrived in that same vacation.

Ls,i = Average number of customers at queue i (including the customer in service).
This is also the number of customers that arrived at queue i during a vacation
(and are in the queue or in service) before a tag customer arrived in that same
vacation.

Sn,i = Service time at queue i in the nth cycle (=similar to the duration Dn,i of the

busy period but then with no arrivals).
Tn,i = The number of customers served, per cycle, at queue i.
Vn,i = Switching time from queue i to the other queue in the nth cycle.
Wq,i = Random variable for the waiting time of a customer in queue i (not including

service).
Ws,i = Random variable for the total sojourn time of a customer at queue i (waiting

time plus service time).
Γi = The number of customers served during a busy period, where the arrival rate

is λi, average service time is bi, and the second moment of the service time is

b
(2)
i .
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Appendix A
The Value Function of a Tandem Queue

Contents

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.2 A tandem queue with no arrivals . . . . . . . . . . . . . . . . . . 162

A.3 A tandem queue with arrivals . . . . . . . . . . . . . . . . . . . . 168

A.4 Appendix: Proof of Proposition A.2.1 . . . . . . . . . . . . . . . 170
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We study the tandem queue with independent servers with exponentially distributed ser-
vice times. The system is subject to holding costs. An explicit expression is derived for the
value function of the average costs in the absence of customer arrivals. The derivation is
accomplished through the inversion of its generating function. The resulting expression is a
weighted combination of Catalan and ballot numbers which give an intuitive explanation to
the problem at hand. The techniques and tricks used—along with the insights gained—can
provide valuable information for the derivation of the value function in the presence of ar-
rivals. Once derived, the value function can be used for important optimization and control
of many queueing networks.

Note: The work in this chapter was sponsored by a van Gogh project. It was done
jointly with Sandjai Bhulai at the Vrije Universiteit in Amsterdam and is a continuation of
[15, section 4.3].
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A.1 Introduction

The optimal control of servers and the routing in queueing networks (such as tandem queues,

networks of queues, re-entry queues, or packets being routed through the Internet) is impor-
tant from both a financial and a congestion perspective. Obtaining the optimal control or
service policy can be achieved through linear programming, value and policy iteration [67],

or the power serie algorithm [50]. However, the optimal policy can often not be determined

explicitly due to the curse of dimensionality. It has been shown [16] [80] that the first step of
policy iteration produces policies which are very close to the optimal policy, while in some
cases not having problems with the curse of dimensionality. To perform this one-step policy
iteration the value function needs to be known.

The value function, also known as the bias vector, of a queueing system provides us
with information about the cost of operating the system. The costs can be either averaged
over time [42]—the situation which will be considered here—or they can be discounted [49]

[59] [60]. For further information on the value function the reader is referred to [15, Chapter

4] or [58].

The structure of this chapter is as follows. In Section A.2 the value function of the
tandem queue is discussed, in the absence of customer arrivals. Its generating function is
given in Section A.2.1 after which the value function is obtained in Section A.2.2. In Section
A.3 the tandem queue with arrivals is discussed.

A.2 A tandem queue with no arrivals

Consider two single server queues in tandem as shown in Figure A.1. Arrivals at the first
are determined by a Poisson process with rate λ. Once a customer has been served at
the first queue (s)he proceeds to the second queue. When the second server has finished
serving the customer, the customer leaves the system. The duration of the service in the
first (respectively second) queue is exponentially distributed with parameter µ1 (resp. µ2).

µ1 µ2
λ

Poisson arrivals

Figure A.1: A tandem queue with arrival rate λ and service rates µ1 and µ2.

The system is exposed to holding costs hi for each customer in queue i for each one
unit of time. Without restrections we will take h1 = 0 and h2 = 1. Holding costs could
also be included in the first queue, but because this queue behaves as an ordinary M/M/1

queue—for which the value function and the average holding costs are known [15, Sections

3.4 and 4.3]—we take h1 = 0.

The second queue also behaves as an M/M/1 queue with arrival rate λ and service rate
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µ2, but only from a long-run average point of view. Since the value function captures the
transient behaviour of the system the results from the M/M/1 queue cannot be used.

To understand the transient behaviour of how the system is emptied we start by looking
at the system with no arrivals, i.e., setting λ = 0. If there are no arrivals, then the long-run
average (holding) cost is equal to zero.

The dynamic programming optimality equation (or Poisson equation) for the system

is given by1

(µ1 + µ2)V (x, y) = y + µ1V (x− 1, y + 1) · 1(x>0) + µ1V (x, y) · 1(x=0) + µ2V (x, [y − 1]+),

(A.1)

The function V (x, y) is the (relative) value function and it is our goal to find an ex-
pression for this quantity. The Poisson equation is derived as follows. If the system is in
state (x, y), for x > 0 and y > 0 (this corresponds to x, respectively, y customers in the first,

respectively, the second queue), then the expected time until the system changes states is

1/(µ1 + µ2). The holding costs occured during this amount of time is y times this quantity,

which gives the first term in the right hand side of (A.1), after multiplication by µ1 + µ2.

From here the system can go to either state (x − 1, y + 1) with probability µ1/(µ1 + µ2),

or to state (x, y − 1) with probabilty µ2/(µ1 + µ2). The cases where x = 0 and y = 0 are
treated in a similar way.

The function V (x, y) has the interpretation of the asymptotic difference in total costs
that results from starting the process with x, respectively, y customers in the first, respec-
tively, second queue as compared to starting from some reference state. Without loss of
generality we will take the reference state to be the empty tandem queue (x = 0 and y = 0),

giving V (0, 0) = 0.

A.2.1 The generating function of the value function

The expression for the value function will be found with the help of its generating function.

For this purpose define G(z1, z2) :=
∑

x≥0, y≥0 V (x, y)zx
1z

y
2 . With equation (A.1) this gives

[
µ1+µ2−µ1

z1
z2

−µ2z2

]
G(z1, z2) =

z2
(1−z1)(1−z2)2

+ µ1G(0, z2) +

[
µ2−µ1

z1
z2

]
G(z1, 0).

(A.2)

We proceed by first obtaining an expression for G(z1, z2), through the derivation of

G(z1, 0) and G(0, z2), after which G(z1, z2) will be inverted to give us the value function.

By taking a simple M/M/1 queue, or z1 = 0 in equation (A.2), we have from (A.1)

1The notation [·]+ is used to indicate [y]+ = max(0, y).
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V (0, y) =
y(y + 1)

2µ2
, (A.3)

and thus

G(0, z2) =
z2

µ2(1 − z2)3
. (A.4)

To obtain G(z1, 0), we can choose z2 such that the left hand side of equation (A.2)

vanishes (i.e., choose z2 such that µ1 + µ2 − µ1
z1

z2
− µ2z2 = 0), giving us an expression for

G(z1, 0) in terms of G(0, z2). Some calculus shows that z2 defined by

z2 =
µ1 + µ2 −

√
(µ1 + µ2)2 − 4µ1µ2

2µ2
= µ1

(
µ1 + µ2

µ1µ2

)(
1 −√

1 − 4γ

2

)

is the correct root, with γ := µ1µ2/(µ1 + µ2)
2.

Denote S(z1) :=
√

(µ1 + µ2)2 − 4µ1µ2z1. By inserting the above value of z2 into (A.2)

and performing some calculus we find

G(z1, 0) =
2(µ1 + µ2 − S(z1))

2(µ1 + µ2 + S(z1) − 2µ1z1)

(1 − z1)(µ2 − µ1 + S(z1))3(−µ1 − µ2 + S(z1) + 2µ1z1)

=
z1(µ1 − µ2 + S(z1))

2µ1µ2(1 − z1)3

=
z1

µ2(1 − z1)3
− 1

µ1 + µ2

(
z2
1

(1 − z1)3

)(
1 −√

1 − 4γz1

2γz1

)
. (A.5)

Inverting this expression gives

V (x, 0) = V (0, x) − 1

µ1 + µ2

x−2∑

k=0

(
x− k

2

)
1

k + 1

(
2k

k

)

︸ ︷︷ ︸
Catalan numbers

γk. (A.6)

The Catalan numbers which show up in the last summation have numerous interpre-
tations [74, pages 221-247], of which one is very closely related to the tandem queue.
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Figure A.2: The paths from (3, 3) to (0, 0), without going below the diagonal. The number

of paths is given by the Catalan number CN = 1
N+1

(
2N
N

)
with N = 3 (C3 = 5).

Interpretation of Catalan numbers. Consider an N -by-N lattice. The Catalan num-

bers CN := 1
N+1

(
2N
N

)
describe the number of lattice paths (also referred to as Dyck paths)

from the point (N,N) to (0, 0), without going below the diagonal line (x, x). An example
for N = 3 is given in Figure A.2.

Next take a look at the possible state transitions shown in Figure A.3 for the tandem
queue with x = 3 customers in the first queue and y = 0 customers in the second queue. It
should be clear that with a simple shift Figures A.2 and A.3 describe the same situation.

(0,0) (3,0)

(0,3)

Figure A.3: The possible state transitions from state (3, 0) to state (0, 0).

With the above interpretation it is not surprising that (a weighted sum of) the Catalan

numbers show up in the expression for V (x, 0), c.f., equation (A.6).

Plugging (A.4) and (A.5) into (A.2) gives the first part of the following proposition.

Proposition A.2.1 (Generating function of the value function for λ = 0)
The generating function of the bias vector for the average cost of a tandem queue, with
holding costs in the second queue and with no arrivals (λ = 0), is given by

[
µ1 + µ2 − µ1

z1
z2

− µ2z2

]
G(z1, z2) =

z2
(1 − z1)(1 − z2)2

+
µ1

µ2

(
z2

(1 − z2)3

)
(A.7a)

+

(
z1

(1 − z1)3

)(
µ2 − µ1

z1
z2

)(
1

µ2
−
(
µ1 + µ2

µ1µ2

)(
1 −√

1 − 4γz1

2

))
,

where γ := µ1µ2/(µ1 + µ2)
2.
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Alternatively, G(z1, z2) can be rewritten as

G(z1, z2) =
1

µ2

(
z2

(1 − z1)(1 − z2)3
+

z1z2
(1 − z1)2(1 − z2)2

+
z1

(1 − z1)3(1 − z2)

)

−
(

z2
1

(1 − z1)3(1 − z2)

)(
1

µ1 + µ2

)(
1 −√

1 − 4γz1

2γz1

)

− 1

µ2

(
z1

(1 − z1)2(1 − z2)

)(
z2

S1(z1) − z2

)
, (A.7b)

where

S1(z1) :=

(
µ1 + µ2

µ2

)(
1 +

√
1 − 4γz1

2

)
.

The proof of (A.7b) is forwarded to Appendix A.4 for the sake of readability.

By writing G(z1, z2) in the second form it can be inverted to give V (x, y), even though,

to the best of the author’s knowledge, it not known how to invert the kernel (µ1+µ2−µ1
z1

z2
−

µ2z2)
−1. Inversion of equation (A.7b) provides us with the main result of this chapter.

A.2.2 The value function of a tandem queue

Proposition A.2.2 (Value function of the tandem queue for λ = 0)
The value function for the average cost of a tandem queue with holding costs in the second
queue and no arrivals (λ = 0) is given by

V (x, y) =
(x+ y)(x+ y + 1)

2µ2
− 1

µ1 + µ2

x−2∑

k=0

(
x− k

2

)
Catalan numbers︷ ︸︸ ︷

1

k + 1

(
2k

k

)
γk

− 1

µ2

∑

0≤k≤x−1

∑

1≤m≤y

(x− k)

(
µ2

µ1 + µ2

)m
m

k +m

(
2k +m− 1

k +m− 1

)

︸ ︷︷ ︸
Ballot numbers

γk, (A.8a)

where γ := µ1µ2/(µ1 + µ2)
2.

The value function can also be written as

V (x, y) =V (x, 0) + V (0, y) +
xy

µ2

− 1

µ2

∑

0≤k≤x−1

∑

1≤m≤y

(x− k)

(
µ2

µ1 + µ2

)m
m

k +m

(
2k +m− 1

k +m− 1

)
γk, (A.8b)
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where

V (x, 0) =
x(x + 1)

2µ2
− 1

µ1 + µ2

x−2∑

k=0

(
x− k

2

)
1

k + 1

(
2k

k

)
γk,

V (0, y) =
y(y + 1)

2µ2

are the boundary value functions. �

The proof is given in Appendix A.5.

The ballot numbers are related to the classical ballot problem2 and can be used to

describe the number of paths in a N -by-(N+m) lattice going to from (0, 0) to (N,N +m),

while never going below the diagonal (x, x). For m = 1 the ballot numbers turn into the
Catalan numbers.

Corollary A.2.1 (Special cases)
Some special cases of the value function are given by the following situations.

• The servers at both queues work at the same speed (µ1 = µ2 = µ):

V (x, y) =
(x + y)(x+ y + 1)

2µ
− 1

2µ

x−2∑

k=0

(
x− k

2

)
1

k + 1

(
2k

k

)(
1

4

)k

− 1

µ

∑

0≤k≤x−1

∑

1≤m≤y

(x− k)

(
1

2

)m
m

k +m

(
2k +m− 1

k +m− 1

)(
1

4

)k

=
2xy + y(y + 1)

2µ
+

(
1

2

)y ∑

0≤k≤x−1

(x− k)

(
2k + y

k + y

)(
1

4

)k

.

• The server at the second queue works at half the speed of the server at the first queue

(µ1 = 1
2
µ2):

V (x, y) = V (x, 0) + 2V (0, y) +
2

3µ2

x−2∑

k=0

(
x− k

2

)
1

k + 1

(
2k

k

)(
2

9

)k

.

2Suppose that, in an election, candidate 0 receives N + k votes and candidate 1 receives N votes. What

is the probability that candidate 0 is always in the lead during the counting process? A related question is

in how many ways can the ballots be counted such that candidate 0 is always in the lead during the counting

process. For detailed discussions on the ballot problem the reader is referred to [24] and [31].
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• The server at the second queue works at twice the speed of the server at the first queue

(µ1 = 2µ2):

V (x, y) =
(x + y)(x+ y + 1)

2µ2
− 1

3µ2

x−2∑

k=0

(
x− k

2

)
1

k + 1

(
2k

k

)(
2

9

)k

− 1

µ2

( y
2y

+ (x− 2)
(
1 − (1/2)y

))
. �

A.3 A tandem queue with arrivals

In the previous sections the value function was derived for a tandem queue with no arrivals
(λ = 0). Unfortunately, the extension of these results to value function in the presence

of arrivals (λ > 0) remains an open problem. The problem lies in finding an expression

for G(0, z2) or for G(z1, 0). Once one of these two expressions is known, the other can be

derived from this and we obtain an expression for G(z1, z2). The final step would then be

to invert G(z1, z2).

For completeness we give the Poisson equations for λ ≥ 0 and show the relationship
between G(z1, z2), G(0, z2), an G(z1, 0).

Let λ ≥ 0 and let g denote the average costs. Define ρi = λ/µi for i = 1, 2 and assume
that the stability conditions ρ1 < 1 and ρ2 < 1 hold. The dynamic programming equation
is given by

g + (λ+ µ1 + µ2)V (x, y) = y + µ1V (x− 1, y + 1) · 1(x>0) + µ1V (x, y) · 1(x=0)

+µ2V (x, [y − 1]+) + λV (x + 1, y).

It is known that the average cost g = λ/(µ2 − λ). From this we then have V (1, 0) = g/λ =

1/(µ2 − λ).

The Poisson equations can also be written as

g + λV (0, 0) = λV (1, 0),

g + (λ+ µ1)V (x, 0) = λV (x + 1, 0) + µ1V (x− 1, 1), x > 0,

g + (λ+ µ2)V (0, y) = y + λV (1, y) + µ2V (0, y − 1), y > 0,

g + (λ+ µ1 + µ2)V (x, y) = y + λV (x + 1, y) + µ1V (x− 1, y + 1)

+ µ2V (x, y − 1), x > 0, y > 0.
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By taking the z-transform we obtain

g +

[
λ+ µ1 + µ2 −

λ

z1
− µ1

z1
z2

− µ2z2

]
G(z1, z2) =

z2
(1 − z1)(1 − z2)2

+

[
µ1 −

λ

z1

]
G(0, z2)

+

[
µ2 − µ1

z1
z2

]
G(z1, 0).

From here on the problem lies in finding an expression for G(0, z2) or for G(z1, 0). Once
one of these two expressions is known, the other can be derived from this and an expression

for G(z1, z2) is obtained.



170 Chap. A The Value Function of a Tandem Queue

A.4 Appendix: Proof of Proposition A.2.1

Proof: The starting point is the generating function given in equation (A.7a). This gen-
erating function has an—let us call it—interesting kernel which is difficult to invert. To
invert the generating function we shall deploy two simple tricks: (1) subtract and add terms

(which sum up to zero) so as to obtain three seperate terms for which it is known how to

invert them, and (2) during the derivation of the third term an expression will appear in
both the numerator and in the denominator—therefore it can be crossed out—which renders
the terms benign (for the purpose of inversion).

Bringing the kernel to the other side gives

G(z1, z2) =

(
z2

(1 − z1)(1 − z2)2

)(
1

µ1 + µ2 − µ1
z1

z2
− µ2z2

)
(A.9)

+
µ1

µ2

(
z2

(1 − z2)3

)(
1

µ1 + µ2 − µ1
z1

z2
− µ2z2

)

+

(
z1

(1−z1)3

)(
µ2 − µ1

z1

z2

µ1+µ2−µ1
z1

z2
−µ2z2

)(
1

µ2
−
(
µ1+µ2

µ1µ2

)(
1−√

1−4γz1

2

))
.

By using properties similar to
µ2−µ1

z1
z2

µ1+µ2−µ1
z1
z2

−µ2z2
= 1 − µ1−µ2z2

µ1+µ2−µ1
z1
z2

−µ2z2
, and by rearranging

terms we obtain

G(z1, z2) =

(
z2

(1 − z1)(1 − z2)2

)(
1

µ1 + µ2 − µ1
z1

z2
− µ2z2

)
(A.10)

−
(

z2
(1 − z1)(1 − z2)2

)(
1

µ1 + µ2 − µ1
z1

z2
− µ2z2

)

+
1

µ2

(
z2

(1 − z1)(1 − z2)3
+

z1z2
(1 − z1)2(1 − z2)2

)

+
1

µ2

(
z1

(1 − z1)2(1 − z2)

)(
µ1 − µ2z2

µ1 + µ2 − µ1
z1

z2
− µ2z2

)

+
1

µ2

(
z1

(1 − z1)3(1 − z2)

)(
1 − µ1(1 − z1)

µ1 + µ2 − µ1
z1

z2
− µ2z2

)

−
(

z1
(1−z1)3(1−z2)

)(
1 − µ1(1 − z1)

µ1+µ2−µ1
z1

z2
−µ2z2

)(
µ1+µ2

µ1µ2

)(
1−√

1−4γz1

2

)
.

Here we see that the first and second term of (A.9) will cancel each other out. If in addition
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we subtract a z2 term from the last term in the last line of (A.9), then we obtain

G(z1, z2) =
1

µ2

(
z2

(1 − z1)(1 − z2)3
+

z1z2
(1 − z1)2(1 − z2)2

+
z1

(1 − z1)3(1 − z2)

)

−
(

z1z2
(1 − z1)2(1 − z2)

)(
1

µ1 + µ2 − µ1
z1

z2
− µ2z2

)

−
(

z1
(1 − z1)3(1 − z2)

)(
µ1 + µ2

µ1µ2

)(
1 −√

1 − 4γz1

2

)

+

(
z1

(1−z1)2(1−z2)

)(
1

µ1+µ2−µ1
z1

z2
−µ2z2

)[(
µ1+µ2

µ2

)(
1−√

1−4γz1

2

)
−z2

]

+

(
z1z2

(1 − z1)2(1 − z2)

)(
1

µ1 + µ2 − µ1
z1

z2
− µ2z2

)
.

Notice that the second term and the fifth term cancel each other out. Because of the
recurrence of a couple of terms it is worthwhile to introduce

S1(z1) :=

(
µ1 + µ2

µ2

)(
1 +

√
1 − 4γz1

2

)

S2(z1) :=

(
µ1 + µ2

µ2

)(
1 −√

1 − 4γz1

2

)

This gives us

G(z1, z2) =
1

µ2

(
z2

(1 − z1)(1 − z2)3
+

z1z2
(1 − z1)2(1 − z2)2

+
z1

(1 − z1)3(1 − z2)

)

−
(

z1
(1 − z1)3(1 − z2)

)(
µ1 + µ2

µ1µ2

)(
1 −√

1 − 4γz1

2

)

− 1

µ2

(
z1z2

(1 − z1)2(1 − z2)

)(
S2(z1) − z2

(S2(z1) − z2)(S1(z1) − z2)

)

Now we are finally in a position to see why the rearranging of the terms pays off: in

the last the term S2(z1)−z2 shows up in both the numerator and in the denominator. Since

S2(z1) − z2 6= 0 these terms vanish and we obtain equation (A.7b).
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A.5 Appendix: Proof of Proposition A.2.2

Proof: To invert the generating function G(z1, z2) given in equation (A.7b) we will make
use of the following two lemmas.

Lemma A.5.1 We have

z2
S1(z1) − z2

=
∑

x≥0

∑

y≥1

(
µ2

µ1 + µ2

)y
y

x + y

(
2x + y − 1

x+ y − 1

)
γxzx

1z
y
2 (A.11)

�

Proof: We can rewrite z2

S1(z1)−z2
as

z2
S1(z1) − z2

=
∑

y≥1

(
1

S1(z1)

)y

zy
2

=
∑

y≥1

(
µ2

µ1 + µ2

)y (
1 −√

1 − 4γz1

2γz1

)y

zy
2

This is done by making use of the geometric serie
∑

n≥1 x
n = x/(1 − x) and then by

filling in the value of S1(z1). The geometric expansion is allowed as long as |x| < 1, which
in our case is equivalent to saying that z1 and z2 need to so such that z2

S1(z1)−z2
< 1. As

S1(z1) >
1
2

this is not a problem.

Equation (A.11) is derived from this by making use of the following formula which is

obtained from the book Analysis of Algorithms [70, page 128]

(
1 −

√
1 − 4z

2

)y

=
∑

x≥y

y

x

(
2x− y − 1

x− 1

)
zx.

Dividing this last expression by zy and taking z := γz1 gives the formulated result. This
series is known as the Ballot numbers of which the Catalan numbers are a special case.

Lemma A.5.2 The convolution of two generating functions A and B defined by A(z1, z2) =∑
x≥0

∑
y≥0 a(x, y)z

x
1z

y
2 and B(z1, z2) =

∑
x≥0

∑
y≥1 b(x, y)z

x
1z

y
2 is given by

A(z1, z2) ∗B(z1, z2) =
∑

x≥0

∑

y≥0

∑

0≤k≤x

∑

1≤m≤y

a(x− k, y −m)b(k,m)zx
1 z

y
2 �
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Proof: The lemma follows by writing out the convolution:

A(z1, z2) ∗B(z1, z2) =

(∑

x≥0

∑

y≥1

a(x, y)zy
2

︸ ︷︷ ︸
a′(x)

zx
1

)(∑

x≥0

∑

y≥0

b(x, y)zy
2

︸ ︷︷ ︸
b′(x)

zx
1

)

=
∑

x≥0

( ∑

0≤k≤x

∑
y≥0 a(x−k,y)zy

2︷ ︸︸ ︷
a′(x− k)

∑
y≥1 b(k,y)zy

2︷︸︸︷
b′(k)

)
zx
1

=
∑

x≥0

(
∑

0≤k≤x

∑

y≥0

(
∑

1≤m≤y

a(x− k, y −m)b(k,m)

)
zy
2

)
zx
1

=
∑

x≥0

∑

y≥0

∑

0≤k≤x

∑

1≤m≤y

a(x− k, y −m)b(k,m)zx
1 z

y
2

With these two lemmas the inversion of G(z1, z2) does not require much more work.

The first line of equation (A.7b) is a combination of known generating functions which
are easy to invert. The inversion of the remaining two lines follows from the two lemmas.
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Résumé

Dans la première partie de cette thèse, nous étudions la mobilité dans les réseaux ad hoc mobiles. Plus

précisément, nous étudions le temps de transfert d’un message, défini comme étant le temps requis pour

transmettre un message d’un nœud à un autre nœud, en utilisant éventuellement d’autres nœuds comme re-

lais. Dans un premier temps, pour plusieurs modèles de mobilité, nous trouvons le temps requis afin que deux

nœuds puissent communiquer. Dans un deuxième temps, dans les cas unidimensionnel et bidimensionnel,

nous caractérisons le temps de transfert d’un message.

Dans le cas bidimensionnel le calcul devient générique et moins sensible au modèle de mobilité consid-

éré, ce qui est très intéressant comme propriété. Ceci permet d’obtenir la transformée de Laplace du temps

de transfert d’un message selon deux protocoles de routage différents. En particulier, nous obtenons une

approximation simple pour le temps moyen de transfert. Nous montrons également, par des simulations,

que cette approximation est robuste et valide pour plusieurs modèles de mobilité et pour une grande gamme

de rayons de communication.

La deuxième partie de cette thèse traite d’un système à “Polling” qui consiste en deux files d’attente.

Nous obtenons l’expression de plusieurs mesures de performance, notamment le temps moyen d’attente et

la taille moyenne de la file d’attente. Grâce à ces expressions et à des exemples, nous montrons que ces

quantités augmentent significativement quand il y a corrélation entre les temps de commutation de chaque file

d’attente. Cela signifie que la corrélation ne peut pas être ignorée et qu’elle a des implications importantes

sur les systèmes de communication dans lesquels un canal de communication commun est partagé entre

plusieurs utilisateurs (par exemple dans les réseaux ad hoc).

Dans l’appendice nous étudions deux files d’attente en série avec des “holding costs”pour chaque client

dans le système. La fonction de valeur est calculée pour le coût moyen lorsqu’il n’y a pas d’entrée de clients.

Cette fonction peut être utilisée pour l’optimisation des systèmes en série ou pour le calcul complet de la

fonction de valeur.

Abstract

In the first part of this thesis we focus on the mobility in mobile ad hoc networks. This is achieved by studying

the message delay, defined as the time required to send a message from a source node to a destination node,

while possibly making use of intermediary relay nodes. For a number of mobility patterns, we first obtain

the distribution of the time until two nodes come within one another’s communication range. Building on

these results, explicit expressions for the message delay are obtained, both in one and in two dimensions,

when nodes relay messages for each other and when the network is not fully connected.

We discover that in two dimensions something special happens: calculations become generic in nature

(i.e., not so much dependent on the underlying mobility pattern). This enables us to derive closed-form

expressions for the Laplace-Stieltjes transform of the message delay for two different relay protocols. In

particular, a simple approximation is obtained for the mean message delay. Through simulations it is

confirmed that this expression is robust as it holds for all of the mobility patterns considered, any number

of nodes, and a wide range of communication radii.

The second part is devoted to the study of polling systems composed of two queues. Explicit expres-

sions are derived for various performance measures, most notably the mean waiting times and the queue

lengths. Through examples it is shown that these quantities can significantly increase in the presence of cor-

relation in and between the sequences of switchover times from each queue. This has important implications

for communication systems in which a common communication channel is shared amongst various users and

where the time between consecutive data transfers is correlated (as is the case in ad hoc networks).

In the appendix we consider a tandem queue with holding costs for each customer. An explicit

expression is obtained for the value function of the average costs when there is no inflow of customers. The

expression obtained provides an intuitive explanation and can be used for optimisation purposes and for the

full derivation of the value function when there is an inflow of customers.


