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Laboratoire de Mathématiques de Versailles
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Introduction

La résolution de systèmes polynomiaux est l’un des domaines les plus actifs du calcul formel
depuis le milieu des années soixante. Il existe de nombreuses manières d’appréhender la question,
ce qui explique l’abondance des travaux sur le sujet. Les plus célèbres d’entre eux sont ceux
qui proviennent de l’algorithme proposé par Buchberger dans [Buc70] pour le calcul des bases
de Gröbner, dans la veine des travaux d’Hironaka ; d’autres s’appuient sur des décompositions
triangulaires, des calculs de résultants ou des matrices de Macaulay. De nos jours, tous les
systèmes de calcul formel offrent des algorithmes de résolution polynomiale. Ces derniers sont
au cœur d’outils de calcul plus sophistiqués en géométrie algébrique ; ils permettent également
de résoudre des problèmes classiques provenant de l’ingénierie. Il existe de nombreux ouvrages
généralistes traitant de ce sujet, comme par exemple [BW93, Eis95, GP02, GG03, Mor03,
Wan04, CLO97, CLO05].

Dans tous les algorithmes mentionnés plus haut, les polynômes sont représentés par le
vecteur de leurs coefficients dans la base des monômes. Dans un tel modèle, chaque opération
élémentaire peut souvent être interprétée comme une élimination Gaussienne, si bien que les
routines d’algèbre linéaire jouent un rôle central. La connaissance d’une base de Gröbner d’un
idéal permet de remplacer un monôme par des monômes de plus bas degré ; pour cette raison,
cette approche est souvent appelée méthode de réécriture comme dans [Dem85].

Plutôt que de développer un polynôme dans la base des monômes, on peut préférer l’encoder
comme la fonction qui calcule ses valeurs en tout point ; on parle alors de méthodes d’évaluation.
Il existe de nombreuses études tirant parti de telles représentations. L’algorithme Kronecker,
qui fait l’objet de cette thèse, appartient à cette seconde classe de travaux.

En généralisant la méthode du pivot de Gauss aux systèmes polynomiaux, on est amené à
“éliminer” des variables. Du point de vue de la complexité, développer des polynômes provenant
de processus d’élimination est souvent une mauvaise idée, car le nombre de leurs monômes
explose de manière exponentielle. En revanche, les polynômes éliminants se comportent bien
dans un modèle en évaluation, comme nous l’illustrons dans ce paragraphe avec trois familles
d’exemples. Tout d’abord, considérons le déterminant d’une matrice n×n, qui est un polynôme
de degré n en les n2 coefficients de la matrice. Il est bien connu que le nombre de ses monômes
est n!, alors qu’il peut être évalué en tout point avec O(n3) opérations. Regardons ensuite le
résultant de deux polynômes univariés de degré n dont les coefficients sont indéterminés. Ce
dernier est un polynôme éliminant à 2(n + 1) indéterminées. Le nombre de ses monômes crôıt
exponentiellement en n, alors qu’il peut être évalué en un nombre d’opérations arithmétiques
quasi-linéaire en n (voir par exemple [GG03, Chapter 11]). Enfin, intéressons-nous à un système
de n polynômes denses de degré d en 2n variables. De manière informelle, si ces polynômes sont
suffisamment génériques, alors l’ensemble de leurs racines communes est de dimension n et de
degré dn. Dans cette situation, les polynômes éliminants en n variables sont de degré dn, si bien
que le nombre de monômes crôıt en dn2

lorsque d est fixé et n tend vers l’infini. En revanche,
les algorithmes présentés dans [Lec03] évaluent de tels polynômes éliminants avec un nombre
d’opérations qui crôıt en dn seulement.

L’algorithme Kronecker proposé par Giusti, Lecerf et Salvy dans [GLS01] résout un système
polynomial ayant un nombre fini de solutions avec un coût qui est linéaire en la taille de l’entrée
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Introduction

(donnée par une structure en évaluation) et polynomial en un degré géométrique intrinsèque.
Cet algorithme est l’aboutissement d’une longue lignée de travaux, que nous retraçons dans la
section suivante. Dans la seconde partie de cette thèse, nous présentons une version concise de
cet algorithme, ainsi qu’une preuve autonome de son bon fonctionnement, qui a fait l’objet de
la publication [DL07] ; cette nouvelle preuve permet de perfectionner l’algorithme de manière
à ce qu’il calcule également les multiplicités des racines sans coût supplémentaire.

Dans le cas univarié, la connaissance d’une racine et de sa multiplicité permet de retrouver
le facteur du polynôme qui lui correspond. Dans le cas multivarié, la situation est plus riche,
puisque deux racines peuvent avoir la même multiplicité sans avoir la même structure, ou plus
précisément sans correspondre au même idéal primaire. La décomposition primaire de l’idéal
associé à un système ayant un nombre fini de solutions donne une description des racines tenant
compte de la structure de leur multiplicité. Jusqu’à présent, tous les algorithmes de calcul de
décomposition primaire procèdent par méthodes de réécriture, et la plupart s’appuient sur des
calculs de bases de Gröbner. Nous proposons dans la troisième partie de cette thèse le premier
algorithme de décomposition primaire par méthodes d’évaluation ; ce résultat fait l’objet de la
prépublication [Dur07].

Historique de l’algorithme “Kronecker”

Les premières études sur les propriétés des polynômes éliminants en évaluation remontent
aux travaux de Giusti, Heintz, Morais et Pardo au début des années 90. Un premier algo-
rithme, proposé dans [GH93], calcule la dimension de l’ensemble des solutions d’un système
homogène. Les polynômes y sont représentés par des arbres de calcul appelés straight-line
programs en anglais ; nous utiliserons dans cette introduction l’abréviation SLP, et renvoyons
le lecteur à [BCS97, Chapter 4] pour une définition précise. On trouve ensuite dans [GHS93,
FGS95, KP96] la preuve que les polynômes impliqués dans le Nullstellensätz ont aussi de bonnes
propriétés en évaluation, et peuvent ainsi être calculés efficacement.

Les premiers pas vers un algorithme rapide de résolution polynomiale tirant parti des
méthodes d’évaluations apparaissent dans [GHMP95, Par95]. Le but de ces articles était de
développer un algorithme de résolution ayant une complexité polynomiale en des invariants
géométriques intrinsèques à l’ensemble des solutions, plutôt qu’en des quantités telles que la
régularité de Hilbert qui apparâıt dans le coût des méthodes de réécriture. L’algorithme proposé
dans [GHMP95] est incrémental en le nombre d’équations à résoudre, le système y est donné
par un SLP, et la position de Noether (qui fait l’objet du chapitre 2 de cette thèse) en est un
ingrédient central. Bien que les polynômes éliminants apparaissant dans cet algorithme soient
représentés par des programmes courts, leur coût d’évaluation restait cher.

Comme annoncé à la fin de [GHMP95], ce mauvais comportement pouvait être évité grâce à
l’utilisation d’un opérateur de Newton. Cette idée est exploitée dans [GHM+98] pour “compri-
mer” les SLP calculés lors des étapes intermédiaires de l’algorithme. On trouve dans [GHH+97]
une nouvelle version de l’algorithme de [GHMP95], ainsi que de nouvelles bornes inférieures
pour l’approximation Diophantienne. Les fibres de relèvement définies dans le chapitre 7 sont
alors apparues comme une représentation efficace des variétés de dimension positive.
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Historique de l’algorithme “Kronecker”

Ces résultats de complexité ont constitué une percée majeure en théorie de l’élimination.
Les différentes versions de l’algorithme mentionnées ci-dessus partagent les caractéristiques
suivantes :

– les polynômes donnés en entrée sont encodés par un SLP ;
– la résolution est calculée incrémentalement sur les équations ;
– tous les polynômes apparaissant dans les calculs sont codés par des SLP ;
– le système est supposé n’avoir qu’un nombre fini de solutions, dont l’algorithme calcule

une représentation univariée (définie au chapitre 4) ;
– la complexité est linéaire en la taille du SLP donné en entrée, et polynomiale en le plus

grand des degrés géométriques des systèmes intermédiaires.
On trouve dans [GHMP97] une variante de l’algorithme, dont le coût est polynomial en ces
dernières quantités et en la hauteur de l’ensemble des solutions dans le modèle de la machine
de Turing.

Les algorithmes décrits dans [GHH+97, GHMP97] ont ensuite été simplifiés dans la thèse de
Morais [Mor97]. On trouve dans [Mat99] l’analyse de classe de complexité et des améliorations
algorithmiques. Enfin, l’analyse de complexité binaire et d’importantes applications pour la
question du Nullstellensätz arithmétique ont été développées dans [Häg98, HMPS00].

Pour implémenter ces algorithmes, il était nécessaire de programmer efficacement des struc-
tures d’évaluation. Les premiers pas dans cette direction ont été présentés à la conférence
TERA’1996 à Santander par Aldaz et par Castaño, Llovet et Mart̀ınez [CHLM00]. Hägele a en-
suite proposé une implantation C++ des SLP. Enfin, une autre librairie [BHMW02] a été écrite
en langage Haskell. D’autres expériences ont été réalisées indépendamment pour implanter
l’algorithme de [GH93] dans le système Maple, qui offrait déjà une base de données pour les
structures d’évaluation [GHL+00]. La conclusion de tous ces essais fut que la taille des arbres
de calcul intermédiaire nécessitait trop de mémoire pour que l’on puisse observer en pratique
les résultats de complexité théorique.

Une solution à ce problème est ensuite venue d’une méthode de transformation utilisée en
informatique théorique pour éviter le calcul de données intermédiaires dues à la composition
de fonctions ; cette méthode s’appelle la déforestation. Dans certains cas, cette transformation
peut être effectuée automatiquement, mais elle a nécessité quelques efforts dans le contexte
de [GH93]. De manière informelle, la déforestation présentée dans [GHL+00] montre que le
calcul et le stockage des SLP intermédiaires est inutile si l’on réécrit les algorithmes de manière
appropriée. Ceci a permis d’implémenter avec succès les idées contenues dans [GH93].

Les techniques de déforestation ont été appliquées à l’algorithme de [Mor97] dans [GLS01].
Ce dernier article contient une réécriture complète de l’algorithme, ainsi que des simplifications
algorithmiques et des bornes précises de complexité. Les principaux nouveaux ingrédients sont
l’introduction de la représentation de Kronecker d’une variété, inspirée des travaux de Krone-
cker [Kro82] (voir le chapitre 4 de cette thèse pour une définition) et l’utilisation de courbes
relevées définies dans le chapitre 7. Le nouvel algorithme a été programmé dans le système de
calcul formel Magma sous le nom de Kronecker [Lec], en hommage à Léopold Kronecker. Grâce
à la suppression complète des SLP intermédiaires, seul le système en entrée doit être représenté
par un SLP. De plus, l’algorithme ne manipule que des polynômes en au plus deux variables
sur le corps de base. Des analyses de complexité similaires et l’idée de courbe relevée ont été
présentées de manière indépendante dans [HMW01].
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Par la suite, ces méthodes ont été généralisées pour le calcul de la décomposition équidimen-
sionnelle d’un système polynomial quelconque. Les algorithmes présentés dans [Lec00, JS00,
JPS01, JS02, JKSS04] procèdent à un pré-traitement du système donné en entrée pour éviter
l’apparition de composantes multiples dans les étapes intermédiaires, tandis que ceux de Le-
cerf [Lec02, Lec03] utilisent un opérateur de Newton généralisé pour traiter directement les
composantes multiples. Les décompositions irréductibles rationnelle et absolue se déduisent
aisément de la décomposition équidimensionelle en factorisant les représentations univariées
des différentes composantes, par exemple grâce aux algorithmes proposés dans [BLS+04, Lec06,
Lec07, CL07].

Les méthodes d’évaluation ont été utilisées avec succès pour résoudre des systèmes surdéter-
minés [GS99], des systèmes à paramètres [HKP+00, Sch03, BMWW04], des systèmes de Pham
[PSM04], des systèmes creux [JMSW06], et des systèmes sur des corps finis [CM06b, CM06a].
Elles s’appliquent aussi à la géométrie réelle [BGHM97, BGHM01, BGHP04, SS04, Saf05]. Le
logiciel Kronecker a permis de résoudre des problèmes provenant de la cryptographie [GS05],
de construire des modèles pour la réception rétinienne [Mal03], et de concevoir de nouvelles
bases d’ondelettes [Leh04] en traitement du signal.

De plus, l’approche incrémentale en le nombre d’équations a été adaptée récemment à la
résolution numérique par prolongement homotopique [SVW05]. Des comparaisons théoriques
entre les approches numériques et symboliques ont été établies dans [CPHM01, CMPSM02,
CPSM03, DLDM05]. Enfin, le lecteur intéressé par les bornes inférieures de complexité pour la
résolution polynomiale peut consulter [FGS95, Par95, HMPW98, GH01, CGH+03]. Grossière-
ment parlant, et sous certaines hypothèses, le résultat principal de [CGH+03] assure que l’al-
gorithme Kronecker appartient à une “classe de complexité optimale”.

Algorithmes pour la décomposition primaire

Les principaux travaux sur le calcul d’une décomposition primaire d’un idéal polynomial
remontent au début des années 90 avec [GTZ88, EHV92, SY96] ; on en trouve quelques améliora-
tions plus récentes comme [CCT97, Mon02]. Ces algorithmes traitent le cas d’idéaux de dimen-
sion quelconque sur un corps de caractéristique nulle. Ils sont inspirés des travaux de Seidenberg
[Sei74, Sei78, Sei84], et sont résumés et comparés dans [DGP99, GP02].

L’algorithme de [GTZ88] est implémenté dans des systèmes de calcul formel, comme par
exemple Singular [GPS05, DPS02]. Il se ramène au cas de la dimension nulle grâce à une
position de Noether, puis réduit ce dernier cas à une factorisation univariée ; nous le présentons
brièvement dans la section 1.5. Les algorithmes de [EHV92, SY96] retrouvent pour leur part
la décomposition primaire d’un idéal à partir de celle de son radical par localisations. Enfin,
on trouve dans [Ste05] un algorithme semblable à celui de [GTZ88] pour les corps de fonctions
algébriques de caractéristique positive, et dans [GWW07] un algorithme original pour les idéaux
de dimension nulle sur un corps fini.

Tous ces algorithmes utilisent des calculs de bases de Gröbner, et retournent une famille de
générateurs d’un ensemble de primaires. Dans le cas de la dimension nulle, il existe d’autres
manières de décrire une décomposition primaire. L’algorithme présenté dans [ABRW96] propose
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Plan de la thèse

d’utiliser des outils d’algèbre linéaire pour calculer, à partir d’une base de Gröbner d’un idéal,
la décomposition en algèbres locales du quotient de l’anneau des polynômes par l’idéal. Un
autre moyen classique d’obtenir l’algèbre locale d’une racine isolée donnée est de calculer une
base standard de l’idéal pour un ordre local, ce qui est rendu possible par l’algorithme du cône
tangent [Mor91] (généralisé aux ordres mixtes dans [GP96]). On trouve dans [MMM96] une
discussion sur les différents moyens de représenter la structure de la multiplicité d’une racine
isolée, ainsi que des algorithmes permettant de changer de représentation.

Toutes les approches précédemment citées procèdent par méthode de réécriture. Il faut
néanmoins noter que les algorithmes présentés dans [DZ05, Mou97] tiennent compte des pro-
priétés d’évaluation du système à résoudre. Étant donnée une racine p du système polynomial
f1 = · · · = fs = 0, l’algorithme de Mourrain [Mou97] calcule les matrices de multiplications par
les variables dans une base de l’algèbre locale de p en exploitant la dualité entre les polynômes
et les séries formelles d’opérateurs différentiels. Néanmoins, la borne sur le coût de l’algorithme
donnée dans [Mou97, Proposition 4.1] dépend du “nombre de monômes obtenus par dérivation
des monômes de f1, . . . , fs”, qui peut donner lieu à un nombre combinatoire. Bien que cette
borne soit probablement pessimiste, nous n’en connaissons pas de meilleure.

Notre algorithme écrit dans [Dur07] et présenté dans le chapitre 10 de cette thèse est donc
le premier à calculer la décomposition primaire d’un idéal de dimension nulle par méthodes
d’évaluation avec un coût polynomial en un nombre de Bézout du système (voir le théorème 1
ci-dessous).

Pour étudier une racine multiple, on peut également utiliser des algorithmes de déflation
[GLSY05, GLSY07, Lec02, LVZ06], qui produisent un nouveau système pour lequel la racine
est simple. L’algorithme de [Lec02] le réalise dans un cadre symbolique, et est un outil cen-
tral pour la décomposition équidimensionelle dans [Lec03]. Enfin, [Ley08] propose d’utiliser
la déflation pour calculer tous les premiers associés à un idéal à partir de décompositions
équidimensionelles. Une de nos motivations est de calculer la décomposition primaire dans le
même esprit que [Lec03] sans avoir recours à la déflation.

Plan de la thèse

Pour rendre ce texte accessible à un plus grand nombre de lecteurs, nous résumons dans
le premier chapitre la théorie classique de la décomposition primaire ; nous terminons par une
présentation rapide de l’algorithme de [GTZ88], qui permet de familiariser le lecteur avec l’uti-
lisation de formes séparantes.

La position de Noether présentée dans le deuxième chapitre est un ingrédient essentiel
pour l’algorithme Kronecker ; elle permet également le calcul de la dimension d’un idéal.
Un résultat classique de généricité (Theorem 2.4.3) permet d’assurer qu’un changement de
variables aléatoire fournit une position de Noether avec grande probabilité ; ceci permet un
processus d’élimination probabiliste, mais efficace. À partir de ce second chapitre, toutes les
preuves présentées dans cette thèse sont constructives. Nous extrayons ainsi de la preuve du
théorème 2.4.3 un algorithme déterministe classique pour le calcul d’une position de Noether.
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Introduction

Nous terminons la première partie de cette thèse par des considérations générales sur les
idéaux de dimension nulle. La décomposition primaire d’un tel idéal peut être représentée par la
donnée de ses racines et de leurs algèbres locales ; c’est sous cette forme que nous la calculerons
dans la troisième partie. Après avoir rappelé quelques résultats classiques sur la décomposition
en algèbres locales qui nous seront utiles par la suite, nous présentons dans le troisième chapitre
un algorithme inspiré de [FGLM93] qui permet de retrouver une base de Gröbner du primaire
associé à chacune des racines à partir de son algèbre locale.

La deuxième partie de ce texte est consacrée à la présentation de l’algorithme Kronecker,
qui procède incrémentalement sur les équations. Chaque étape incrémentale se divise en trois
opérations, appelées relèvement, intersection et nettoyage. Nous dédions un chapitre à chacun
de ces algorithmes, puis nous réservons un chapitre à l’algorithme de résolution.

Nous définissons dans le quatrième chapitre les représentations univariées d’un idéal. Ces
représentations sont de bons outils algorithmiques, puisqu’elles permettent de se ramener au
cas de polynômes à une variable. Nous en déduisons ainsi aisément l’algorithme de nettoyage,
qui permet de supprimer d’un ensemble de points ceux qui annulent un polynôme g.

La clé incrémentale de l’algorithme de résolution est la méthode d’intersection, qui fait
l’objet du cinquième chapitre. Plus précisément, il s’agit de calculer une représentation univariée
d’un idéal I+(f) de dimension nulle à partir de celle d’un idéal I de dimension 1. Le résultat de
la proposition 5.3.1 permet de présenter un algorithme d’intersection qui calcule les éventuelles
multiplicités des racines de I + (f). C’est un isomorphisme mis en évidence lors de la preuve
de la proposition 5.3.1 qui est à l’origine du calcul des algèbres locales dans la troisième partie.

La bonne complexité de l’algorithme Kronecker est en partie due au fait qu’il ne manipule
que des courbes et des ensembles finis de points. Ceci est rendu possible par des procédés de
spécialisation et de relèvement qui sont présentés dans le sixième chapitre.

Nous terminons la deuxième partie de la thèse par une présentation complète d’un algo-
rithme Kronecker avec multiplicités. L’algorithme présenté dans [GLS01] permet de calculer
les solutions du système f1 = · · · = fn = 0, g 6= 0 sous l’hypothèse que la suite f1, . . . , fn forme
une suite régulière réduite dans l’ouvert {g 6= 0}. Cette hypothèse assure en particulier que le
système ne présente pas de multiplicités avant la dernière étape d’intersection, ce qui permet
entre autres l’utilisation de l’algorithme de relèvement. Dans le cas où le système a des racines
multiples, l’algorithme présenté dans le cinquième chapitre permet d’en calculer les multiplicités
lors de la dernière intersection. Enfin, un lemme de Bertini (Proposition 7.1.6) permet de lever
l’hypothèse de régularité et ainsi de traiter tous les systèmes carrés zéro-dimensionels.

En plus de ses conséquences algorithmiques, l’énoncé de la proposition 5.3.1 permet de
retrouver quelques résultats classiques de la théorie du degré, comme un théorème de Bézout,
qui intervient dans l’étude de complexité de nos algorithmes. Les preuves de ces résultats sont
rassemblées dans la seconde section du septième chapitre.

La troisième partie de cette thèse est consacrée au calcul des algèbres locales. L’algorithme
présenté dans la seconde partie traite le système de manière globale. Pour trouver la structure
d’une racine multiple, nous allons intervenir de manière locale lors de la dernière intersection.
Nous sommes ainsi ramenés à l’étude d’un point à l’intersection d’une courbe et d’une hyper-
surface.

14
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Dans ce contexte local, nous aurons besoin d’algorithmes pour la réduction de matrices à
coefficients dans un anneau de séries formelles. Bien que cette question ait été abondamment
étudiée dans le cas de matrices à coefficients entiers ou polynomiaux, il ne semble pas exister
de travaux traitant le cas des séries. Nous proposons dans le huitième chapitre des algorithmes
adaptés à nos applications, ainsi que l’étude de leur complexité.

Dans le neuvième chapitre, nous introduisons un module de germe de courbe en la racine à
étudier, et nous donnons un algorithme pour calculer ce module à partir d’une représentation
univariée de la courbe.

Le calcul de l’algèbre locale se limite ensuite à une réduction de Smith, qui est détaillée dans
le dixième chapitre ; un raisonnement analogue permet de traiter les systèmes surdéterminés.
Nous terminons le dixième chapitre par une présentation générale de l’algorithme de décomposi-
tion primaire, ainsi que par son étude de coût.

Contributions originales de la thèse

La première contribution de cette thèse est une présentation concise de l’algorithme Krone-
cker, ainsi qu’une preuve entièrement autonome de son bon fonctionnement. Les simplifications
apportées aux preuves de [GLS01] permettent d’éviter le recours à des outils extérieurs à l’al-
gorithme, comme par exemple les séries de Hilbert. Nos preuves suivent en effet des idées
géométriques directement liées aux algorithmes ; à l’exception de celles du premier chapitre,
elles sont toutes constructives. Nous retrouvons ainsi dans la section 7.2 des résultats classiques
de la théorie du degré, comme un théorème de Bézout, qui intervient dans les études de coût
des algorithmes. À l’exception des considérations de complexités consignées dans le paragraphe
précédant le théorème 1, les seuls prérequis pour la lecture de cette thèse sont quelques résultats
sur les modules sur un anneau principal, que l’on peut trouver par exemple dans [Lan02, Chap-
ter X, Section 3], et un résultat classique sur les extensions de corps, dont une preuve peut
être trouvée dans [Lan02, Chapter VII, Section 1, Theorem 1.1], et qui n’est utilisé que dans
le second chapitre.

Au delà de leur intérêt pédagogique, ces nouvelles preuves permettent de lever certaines
hypothèses de régularité : le théorème 4.2.1, puis la proposition 5.3.1 généralisent [GLS01,
Corollary 2 and Proposition 8] aux idéaux équidimensionels. Ces nouveaux énoncés nous per-
mettent de présenter dans le chapitre 7 un algorithme qui calcule les multiplicités des racines
sans coût supplémentaire.

Dans la troisième partie de la thèse, nous aurons besoin d’algorithmes pour la réduction de
matrices à coefficients dans un anneau de séries formelles ; cette question ne semble pas avoir
été étudiée jusqu’à présent. Nous proposons dans le chapitre 8 un algorithme de calcul de
forme de Smith avec multiplicateurs inspiré de [Vil93], ainsi que son analyse de coût.

Enfin, nous tirons parti de l’aspect algorithmique de la preuve de la proposition 5.3.1 pour
présenter au chapitre 10 un nouvel algorithme de décomposition primaire. Dans la section 10.3,
nous proposons également une première estimation de sa complexité.

Plus précisément, étant donnés n+ 1 polynômes f1, . . . , fn, g à n variables sur un corps K
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de caractéristique zéro, l’algorithme Kronecker calcule les racines du système f1 = · · · = fn =
0, g 6= 0 sous l’hypothèse que la suite f1, . . . , fn est régulière réduite dans l’ouvert {g 6= 0} ; ceci
implique en particulier que l’ensemble des solutions du système dans une clôture algébrique K̄
de K est fini. L’algorithme retourne une suite q, v1, . . . , vn ∈ K[T ] de polynômes univariés telle
que les solutions du système dans K̄n sont les n-uplets (v1(α), . . . , vn(α)) lorsque α parcourt
l’ensemble des racines de q dans K̄ ; une telle suite est appelée représentation univariée de
l’ensemble des solutions.

L’algorithme présenté au chapitre 7 calcule également un polynôme χ ∈ K[T ] ayant les
mêmes facteurs irréductibles que q et tel que la multiplicité de (v1(α), . . . , vn(α)) comme solution
du système est égale à celle de α comme racine de χ. La suite χ, q, v1, . . . , vn est appelée
représentation univariée avec multiplicités de l’idéal associé au système. De plus, reprenant
l’idée de [GH93, KP96], nous utilisons un lemme de Bertini pour traiter tous les systèmes
g1 = · · · = gn = 0, g 6= 0 ayant un nombre fini de solutions dans K̄n.

Étant donnés s+ 1 polynômes g1, . . . , gs, g, nous notons (g1, . . . , gs) l’idéal de K[x1, . . . , xn]
engendré par g1, . . . , gs ; l’idéal associé au système g1 = · · · = gs = 0, g 6= 0 est le saturé par g

(g1, . . . , gs) : g∞ = {h ∈ K[x1, . . . , xn],∃N ∈ N, gNh ∈ (g1, . . . , gs)}

(la signification géométrique de la saturation est présentée dans la section 1.3). Sous l’hy-
pothèse que le système n’a qu’un nombre fini de solutions dans K̄n, l’algorithme présenté dans
la section 10.3 calcule :

– une représentation univariée avec multiplicités χ,Q, V1, . . . , Vn de (g1, . . . , gs) : g∞ ;
– une suite µ1, . . . , µρ d’entiers non nuls et des polynômes deux à deux premiers entre eux
Q1, . . . , Qρ ∈ K[T ] tels que χ = Qµ1

1 · · ·Qµρ
ρ ;

– pour tout ℓ ∈ {1, . . . , ρ}, une suite M
(ℓ)
x1 , . . . ,M

(ℓ)
xn de matrices µℓ × µℓ à coefficients dans

K[T ], telles que pour toute racine α ∈ K̄ de Qℓ, les matrices M
(ℓ)
x1 , . . . ,M

(ℓ)
xn évaluées en

T = α soient les matrices des endomorphismes de multiplication par x1, . . . , xn dans une
base commune de l’algèbre locale de (V1(α), . . . , Vn(α)) comme racine de (g1, . . . , gs) : g∞.

La suite (µℓ, Qℓ,M
(ℓ)
x1 , . . . ,M

(ℓ)
xn )1≤ℓ≤ρ décrit ainsi la structure des différentes algèbres locales ;

nous l’appelons représentation univariée locale, et nous en donnons des exemples dans la sec-
tion 10.3. Les polynômes Q1, . . . , Qρ proviennent d’un processus d’évaluation dynamique qui
permet d’éviter la factorisation du polynôme χ (voir section 10.3).

Nous résumons dans ce paragraphe les résultats classiques de complexité qui sont utiles
pour l’étude de coût de notre algorithme. Nous nous plaçons dans un modèle d’arbres de calcul
défini dans [BCS97, Section 4.4], et le système en entrée est donné par un SLP ([BCS97, Section
4.1]). Au cours des calculs, nous ne manipulons que des SLP sans division. Pour tout couple
de fonctions (f, g), nous écrivons f ∈ Õ(g) lorsqu’il existe β > 0 tel que f/g appartient à
O(log(g)β). Pour tout anneau unitaire A, une opération arithmétique entre deux polynômes
de A[T ] de degré au plus d (addition, multiplication ou division euclidienne par un polynôme
unitaire) coûte Õ(d) opérations arithmétiques dans A. Sommer ou multiplier des matrices n×n
à coefficients dans A coûte O(n3) opérations arithmétiques dans A ; le déterminant ou l’inverse
d’une telle matrice peuvent être calculés en O(n4) opérations, ou en O(n3) opérations si A
est un corps (de tels résultats peuvent être trouvés dans [BCS97, Chapters 15 and 16]). Il est
connu que les opérations usuelles en algèbre linéaire peuvent être effectuées plus rapidement ;
nous nous restreignons volontairement aux algorithmes naifs à ce stade de notre travail. Par
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exemple, évaluer un SLP de taille L en une matrice n× n à coefficients dans K coûte LO(n3)
opérations arithmétiques dans K.

Notre résultat de complexité principal est le suivant :

Théorème 1. Soit K un corps de caractéristique zéro, et g1, . . . , gs, g ∈ K[x1, . . . , xn] des
polynômes donnés par un SLP de taille L tels que le système g1 = · · · = gs = 0, g 6= 0 a un
nombre fini de solutions dans la clôture algébrique de K. Soient d1, . . . , ds les degrés respectifs
de g1, . . . , gs. On suppose que d1 ≥ d2 ≥ · · · ≥ ds > 1, et on pose D = d1 · · · dn. Alors
l’algorithme 14 du chapitre 10 calcule une représentation univariée avec multiplicités et une
représentation locale de l’idéal (g1, . . . , gs) : g∞ en

Õ(D11 + (L+ ns)D6)

opérations arithmétiques dans K. L’algorithme est probabiliste et dépend du choix de O(ns)
éléments de K ; les mauvais choix sont inclus dans un fermé algébrique propre.

Notre algorithme est probabiliste de type Monte Carlo : il est amené à choisir des paramètres
aléatoires, et de mauvais choix peuvent en altérer le résultat. Néanmoins, le fait que ces mauvais
choix soient inclus dans des fermés algébriques stricts rend la probabilité d’erreur très faible.
Nous n’estimons pas dans cette thèse la probabilité d’erreur, qui est voisine de celle de l’algo-
rithme Kronecker. Nous renvoyons le lecteur interessé par ce genre de questions à des travaux
tels que [HMW01, Mat99, KPS01].

L’exposant obtenu dans le théorème 1 n’est pas optimal. Nous donnons quelques pistes pour
l’améliorer à la fin du chapitre 10.

Enfin, les extensions [Lec00, Lec03] de l’algorithme Kronecker permettent le calcul de la
décomposition équidimensionelle d’une variété. Nous espérons que des idées similaires per-
mettent d’étendre nos techniques au calcul des primaires isolés en dimension positive.
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Notations

Here, we gather together the notations defined all along the thesis, so that this section can be
used as an index of notations.

As usual, we let N denote the integer ring. For any subsets E ,F , we write E ⊆ F if any
element x of E belongs to F , we write E ( F if E ⊆ F with E 6= F , and E * F if there
exists x ∈ E that does not belong to F . We let ∅ denote the empty set. For our complexity
measurement, we use the classical notation f ∈ Õ(g) when there exists β > 0 such that
f/g ∈ O(log(g)β).

In all the thesis, K denotes a field of characteristic zero with algebraic closure K̄, and K̄n

denotes the affine space with dimension n over K̄. Apart from the beginning of Chapter 1, I
denotes an ideal of the ring K[x1, . . . , xn] of polynomials in n variables over K; we write V(I) for
the set of zeros of I in K̄n. Given polynomials f1, . . . , fi ∈ K[x1, . . . , xn], we write (f1, . . . , fi)
for the ideal generated by f1, . . . , fi in K[x1, . . . , xn], or in a formal series ring in Part III. We
write I + J for the ideal generated by all the elements of the ideals I and J in K[x1, . . . , xn],
and I : g∞ for the saturation of the ideal I by the polynomial g (see Definition 1.3.1).

For any polynomial f ∈ K[x1, . . . , xn], we write deg(f), respectively, degxj
(f), for the total

degree of f , respectively, its partial degree in xj. The polynomial f is said to be monic in xj

when the coefficient of the greatest power of xj in f is a unit of K.

For any f, g ∈ K[x1, . . . , xn], we let Resxj
(f, g) denote the resultant of f and g with respect

to xj, which is the determinant of the Sylvester matrix of f and g seen as polynomials in the
variable xj; the discriminant Discxj

(f) of f with respect to xj is Resxj
(f, ∂f/∂xj). Two poly-

nomials f, g are pairwise coprime if their only common divisors are the units of K[x1, . . . , xn],
and the polynomial f is square-free if there does not exist a polynomial g with positive degree
such that g2 divides f .

In Part II, for any ideal I 6= (1) in K[x1, . . . , xn] of dimension r, we use the following
notation:

A = K[x1, . . . , xr], B = K[x1, . . . , xn]/I,

A′ = K(x1, . . . , xr), B′ = A′[xr+1, . . . , xn]/I ′,

where I ′ denotes the extension of I to A′[xr+1, . . . , xn]; let us remark that in Chapter 2, A
denotes any subring of K[x1, . . . , xn] with unity. If I is any ideal in Noether position, then B′ is
a A′-vector space of finite dimension, so that, for any f in K[x1, . . . , xn], we can define χ ∈ A′[T ]
(respectively, µ) as the characteristic (respectively, minimal) polynomial of the endomorphism
of multiplication by f in B′; we write χ0, respectively µ0, for the constant coefficient of χ,
respectively µ.

The sequences q, vr+1, . . . , vn, respectively q, wr+1, . . . , wn, refer to a univariate, respectively
Kronecker, representation of I (see Definition 4.3.2). In the case when I is radical unmixed in
Noether position, we let δ denote the dimension of B′, that equals the degree of q. In Chapter 7,
we are given f1, . . . , fn, g ∈ K[x1, . . . , xn], and for i ∈ {1, . . . , n}, we set

Ii = (f1, . . . , fi) : g∞,Ji =
√

Ii + (x1, . . . , xn−i), and Ki =
√

Ii + (x1, . . . , xn−i−1).

19



Notations

We say that f1, . . . , fn is a reduced regular sequence in the open subset {g 6= 0} when for all
i ∈ {0, . . . , n− 1}, fi+1 is a nonzerodivisor modulo Ii, and Ii is radical.

In Part III, we are led to deal with the ring K[[x1, . . . , xn]] of formal power series in x1, . . . , xn

over K. We say that we compute in K[[x1]] to precision η when we calculate in K[[x1]]/(x
η
1).

For any ring R, we let (R)r×s denote the algebra of matrices with r rows, s columns and entries
in R. We let Mk,ℓ, respectively M.,ℓ, denote the (k, ℓ)-th entry, respectively the ℓ-th column,
of the element M of (R)r×s; we let M t denote the transpose of M . In the case when R is the
formal power series ring K[[t]], M to precision η is the matrix whose entries are those of M to
precision η.

In Chapters 9 and 10, we are given the Kronecker representation q, w2, . . . , wn with respect
to x2 of an unmixed one-dimensional radical ideal I. We let q0 be the product of all irreducible
factors of q ∈ K[[x1]][x2] that vanish in (0, 0). We let I0 denote the ideal I extended to
K[[x1]][x2, . . . , xn], and we set J0 = I0 + (q0) and B0 = K[[x1]][x2, . . . , xn]/J0. The degree of q0
is denoted by δ0, when m0 denotes half the valuation of Discx2(q0). We set

M0 = K[[x1]] ⊕ K[[x1]]x2 ⊕ · · · ⊕ K[[x1]]x
δ0−1
2

and

L0 = K[[x1]]
1

xm0
1

⊕ K[[x1]]
x2

xm0
1

⊕ · · · ⊕ K[[x1]]
xδ0−1

2

xm0
1

.

We are also given a polynomial f such that I + (f) is zero-dimensional. We denote by

D0 = K̄[[x1, . . . , xn]]/(I0 + (f))

the local algebra of the origin as a root of I + (f) (see Definition 3.1.4). The integer µ0 is the
dimension of D0. The central ingredent of the computations of Part III is the isomorphism

K̄ ⊗ B0/(f) ≃ D0,

where K̄ ⊗ B0/(f) stands for the quotient of K̄[[x1]][x2, . . . , xn] by the extension of J0 + (f) to
K̄[[x1]][x2, . . . , xn].
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Part I

Prerequisite on Primary
Decomposition
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Let Q be a polynomial in one variable over an algebraically closed field of characteristic zero.
Its factorization Q =

∏s
ℓ=1(T − αℓ)

νℓ gives a complete description of its roots: the irreducible
factors give the roots αℓ, when their multiplicities can be read from the exponents νℓ. In Part I,
we summarize the classical theory of primary decomposition, which generalizes this description
for polynomial systems with several variables.

We begin Chapter 1 with the definition of an algebraic variety, which gives a geometrical
meaning to a polynomial system. Then we present the irreducible decomposition of radical
ideals, and give a geometric interpretation of the saturation of an ideal, which traduces in-
equalities. Finally, primary decompositions give an exact description of the roots of an ideal.
There are not so many known algorithms for computing primary decompositions in the general
case. We end Chapter 1 by giving a quick presentation of the famous one designed by Gianni,
Trager and Zacharias in [GTZ88], which computes primary decompositions by reducing to the
univariate case. Though we will have no need of this algorithm in the rest of the thesis, it is a
first incursion in the univariate philosophy.

The notions introduced in Chapter 1 permit us to define the dimension of an ideal as the
maximal dimension of its components. A classical way to compute the dimension is to choose
variables such that the ideal is in Noether position. Such a situation will be essential in Part II
since it allows to perform linear algebra in the quotient of the polynomial ring by the ideal.
Moreover, it can be used to reduce the dimension of any ideal by specializations, which will
permit us to deal with curves and finite set of points. In Chapter 2, we first give the definition
of the dimension of an ideal via transcendence degree. We then present Noether positions and
give a genericity result, together with an algorithm for computing a Noether position.

We end Part I with the particular case of zero-dimensional ideals, whose computation is the
purpose of this thesis. We recall the definition of a local algebra at a zero of an ideal. Then we
reformulate the primary decomposition in terms of local algebras; as a consequence, we remind
a classical result on characteristic polynomials that will be intensively used in Part II since
it gives a first piece of information on the multiplicities. Our main Algorithm 14 in Part III
returns the primary decomposition of any zero-dimensional ideal under the form of the local
algebras of its different roots. We give in Section 3.3 an algorithm ispired from [FGLM93] to
recover a Gröbner basis of the primary ideal of a root from its local algebra.

All the proofs given throughout this thesis are tightly connected to our algorithms. The only
exception is Chapter 1, in which we give the classical presentation of the primary decomposition
theory using Noetherianity.
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Chapter 1

Theory of Primary Decomposition

In this chapter, we study the roots of a polynomial system from a geometrical point of view.
First we associate to any system a geometric object called an affine variety; two systems define
the same variety if and only if the ideals generated by the equations have the same radical. In
a second section, we recall that any variety can be decomposed in irreducible components; this
corresponds to write any radical ideal as an intersection of prime ideals. A primary decomposi-
tion of an ideal is then a refinement of the decomposition of its radical. The classical proofs of
the existence of latter decompositions rely on the noetherianity of the polynomial ring. In the
last section of this chapter, we give an overview of the existing algorithms to compute primary
decomposition of any ideal, and present the well known one designed by Gianni, Trager and
Zacharias in 1988, in the particular case of zero-dimensional systems.

1.1 Radical Ideals and Varieties

Let K be a field of characteristic zero with algebraic closure K̄. In this section, we recall the
geometric meaning of some properties of ideals in K[x1, . . . , xn]. We refer the reader interested
in more details on this algebra-geometry dictionary to [CLO97, Chapter 4].

Definition 1.1.1. Let I be a non empty subset of polynomials in K[x1, . . . , xn]. The affine
variety of K̄n defined by I is the set

V(I) = {(a1, . . . , an) ∈ K̄n such that ∀f ∈ I, f(a1, . . . , an) = 0}.

We adopt the convention that V(∅) = K̄n.

The variety V(I) is thus the set of points in K̄n that vanish all the polynomials of I; for
examples in the affine plane K̄2, V(x1x2) is the union of both axes and V((x2

1 + (x2 − 1)2 −
1)(x2 − 2)) is the union of a circle and an line (see Figure 1.1.2 below). One easily deduces
from the definition that the intersection of two varieties remains a variety: indeed, we have
V(I1) ∩ V(I2) = V(I1 ∪ I2) for any subsets I1, I2 of polynomials in K[x1, . . . , xn]. Thus the
three points at the intersection of the previous circle V(x2

1 + (x2 − 1)2 − 1) with the parabola
V(x1 − x2

1) form the variety V({x2
1 + (x2 − 1)2 − 1, x1 − x2

1}).
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Figure 1.1.2.
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It is not true in general that V(I1)∪V(I2) = V(I1∩I2) for any subsets I1, I2 of polynomials
in K[x1, . . . , xn], as shows the example V(x1) ∪ V(x2) ( V({x1} ∩ {x2}) = K̄n. Nevertheless,
the previous equality is true as soon as I1 and I2 are ideals in K[x1, . . . , xn]. Indeed for the
non-trivial inclusion, if a is a point in V(I1∩I2) that does not belong to V(I1), then there exists
f ∈ I1 such that f(a) 6= 0. For any polynomials g ∈ I2, we have fg(a) = 0 with f(a) 6= 0, so
that g(a) = 0 and a ∈ V(I2), which proves that V(I1∩I2) ⊆ V(I1)∪V(I2). Now if I is any set of
polynomials in K[x1, . . . , xn], then any element of V(I) vanishes all the polynomials of the ideal
(I) generated by the elements of I in K[x1, . . . , xn]. We thus have V(I1)∪V(I2) = V((I1)∩(I2))
for any sets I1, I2 of polynomials; for instance V(x1) ∪ V(x2) = V((x1) ∩ (x2)) = V(x1x2). The
intersection of two varieties remains a variety.

Given any subset E of K̄n, the set of polynomials that are vanished by all the elements of
E , that is

I(E) = {f ∈ K[x1, . . . , xn] such that ∀(a1, . . . , an) ∈ E , f(a1, . . . , an) = 0},
is an ideal of K[x1, . . . , xn]. One easily check that the smallest variety that contains E is
V(I(E)), which is called Zariski closure of E . For instance, the Zariski closure of E = {(0, α) ∈
K̄2 such that α 6= 0} is the line V(x1): writing p ∈ I(E) as p = x1h1 + h2 with h2 ∈ K[x2], we
obtain h2(α) = 0 for all α 6= 0, so that h2 = 0 and p ∈ (x1).

For any variety V of K̄n, we clearly have V(I(V)) = V . Conversely, if I is an ideal, it is not
true in general that I(V(I)) equals I: indeed the set of roots of a polynomial f equals the one
of any power fm of f , and (f) 6= (fm). This yields the following definition:

Definition 1.1.3. Let I be an ideal in K[x1, . . . , xn].

(a) The radical ideal of I is the set
√
I = {f ∈ K[x1, . . . , xn] such that ∃m ∈ N, fm ∈ I}.

(b) The ideal I is radical if I =
√
I.

Since we consider varieties in K̄n, the Hilbert’s Nullstellensatz theorem (see [CLO97, Chap-
ter 4, Â§ 1, Theorem 2] for instance) ensures that for any ideal I in K[x1, . . . , xn], we have
I(V(I))) =

√
I; thus the radical ideal of (x2

1, x2), that is (x1, x2), equals I({(0, 0)}).
The radical ideal of I describes the set of common roots of all the polynomial of I, but

with a loss of information, as for (x2
1, x2). This lost information will be studied in Section 1.4.

The subject of this thesis is to compute the roots of a system without losing this information.
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1.2. Irreducible Decomposition

1.2 Irreducible Decomposition

To study an object, for instance a variety or an ideal, one often “break” it into “simpler”
objects. For example, the circle V(x2

1 + (x2 − 1)2 − 1) seems to be “unbreakable”, whereas
V((x2

1 + (x2 − 1)2 − 1)(x2 − 2)) = V(x2
1 + (x2 − 1)2 − 1) ∪ V(x2 − 2) is not. We now define the

“unbreakable” varieties and ideals.

Definition 1.2.1. (a) A variety V in K̄n is said to be irreducible if for all varieties V1,V2 in
K̄n, the equality V = V1 ∪ V2 implies that V = V1 or V = V2.

(b) An ideal I of K[x1, . . . , xn] is said to be irreducible if for any couple (I1, I2) of ideals in
K[x1, . . . , xn] such that I = I1 ∩ I2, then either I = I1 or I = I2.

For instance, the ideals (x2
1 + (x2 − 1)2 − 1) and (x2 − 2) are irreducible in K[x1, x2], when

((x2
1 +(x2 − 1)2 − 1)(x2 − 2)) is not. The Noetherianity of the polynomial ring ensures that any

ideal can be “broken” into “unbreakable” ideals, that is:

Theorem 1.2.2. Any ideal in K[x1, . . . , xn] is a finite intersection of irreducible ideals.

Proof. Let I be an ideal that cannot be written as an intersection of finitely many irreducible
ideals. Then there exists two ideals I1 ) I and I ′

1 ) I such that I = I1 ∩ I ′
1 and that I1

cannot be written as an intersection of finitely many irreducible ideals. By a recursive use of this
method, we construct an ascending chain I ( I1 ( I2 ( · · · of ideals in the Noetherian ring
K[x1, . . . , xn], which is impossible. Thus any ideal is an intersection of finitely many irreducible
ideals.

A similar proof for decomposition of varieties can be found in [CLO97, Chapter 4, Â§6,
Theorem 2]; we prefer here to translate Theorem 1.2.2 on varieties. We expect irreducible
ideals to define irreducible varieties. This leads to consider radical irreducible ideals, which
actually are the following ones:

Definition 1.2.3. An ideal I of K[x1, . . . , xn] is said to be prime if for any couple (f, g) of
polynomials in K[x1, . . . , xn] such that fg belongs to I, either f belongs to I or g belongs to
I.

Lemma 1.2.4. Let I be an ideal in K[x1, . . . , xn]. Then I is prime if and only if I is radical
and irreducible. Moreover, the radical ideal of any irreducible ideal is prime.

Proof. It directly follows from the definition that any prime ideal is radical. Let I be an ideal
which is not irreducible; there exist I1 ) I and I2 ) I such that I = I1 ∩ I2. Then taking
f ∈ I1\I and g ∈ I2\I, we have fg ∈ I with f /∈ I and g /∈ I, so that I is not prime. We
thus obtain that any prime ideal is irreducible.

Conversely, let I be a radical ideal which is not prime. There exist f /∈ I and g /∈ I such
that fg ∈ I. Then we claim that I = (I + (f)) ∩ (I + (g)): for the non-trivial inclusion, if
h = h1 + h2f = h3 + h4g with h1, h3 ∈ I, then h2 = h1(h3 + h4g) + (h2f)h3 + h2h4(fg) belongs
to I, and so does h since I is radical. We thus obtain that I is not irreducible: any irreducible
radical ideal is prime.
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Chapter 1. Theory of Primary Decomposition

We will see in Lemma 1.4.2 that any irreducible ideal I is primary (see Definition 1.4.1);
this ensures that the radical ideal of I is prime.

Following Lemma 1.2.5 gives the geometric meaning of the notion of prime ideal.

Lemma 1.2.5. Let V be an affine variety of the affine space K̄n. Then V is irreducible if and
only if I(V) is prime.

Proof. On the one hand, let us assume that V is an irreducible variety, and let f, g be polyno-
mials in K[x1, . . . , xn] such that fg ∈ I(V). Any point of V vanishes either f or g, so that V
equals the union of the two varieties (V ∩ V(f)) and (V ∩ V(g)). Then since V is irreducible,
either V equals V ∩V(f), and so f ∈ I(V), or V equals V ∩V(g), and g ∈ I(V). We just proved
that the ideal I(V) is prime.

On the other hand, assume that I(V) is prime, and let V1,V2 be varieties such that V = V1∪
V2, with V 6= V1. Since V2 ⊆ V , we have I(V) ⊆ I(V2); the same way, we have I(V) ( I(V1).
Now let g ∈ I(V2), and f ∈ I(V1)\I(V). Then since V = V1 ∪ V2, fg belongs to the prime
ideal I(V). Thus g belongs to I(V), that implies that I(V) = I(V2), and so that V = V2.

This yields the following geometric translation of Theorem 1.2.2:

Theorem 1.2.6. (a) Any radical ideal I in K[x1, . . . , xn] is a finite intersection I =
⋂s

ℓ=1 pℓ

of prime ideals. Moreover the set {p1, . . . , ps} is uniquely determined by I as soon as we
assume that pℓ * pk for ℓ 6= k; I =

⋂s
ℓ=1 pℓ is then called the reduced prime decomposition

of I.

(b) Any variety V in K̄n is a finite union V =
⋃s

ℓ=1 Vℓ of irreducible varieties. Moreover
the set {V1, . . . ,Vs} is uniquely determined by V as soon as we assume that Vℓ * Vk for
ℓ 6= k; V =

⋃s
ℓ=1 Vℓ is then called the reduced decomposition of V, and V1, . . . ,Vs are the

irreducible components of V.

Proof. Let I be radical ideal. Theorem 1.2.2 ensures the existence of some irreducible ideals
I1, . . . , Is such that I =

⋂s
ℓ=1 Iℓ. Then I =

√
I =

⋂s
ℓ=1

√Iℓ, which proves the existence of
a decomposition as in part (a) by Lemma 1.2.4. Then for any variety V in K̄n, there exist
some prime ideals I1, . . . , Is such that I(V) =

⋂s
ℓ=1 Iℓ. Thus V =

⋃s
ℓ=1 V(Iℓ), which yields the

existence of the decomposition as in part (b) by Lemma 1.2.5 since I(V(Iℓ)) = Iℓ is prime.

Let V be any variety in K̄n. One easily deduce from a decomposition of V in irreducible
varieties a reduced one V =

⋃s
ℓ=1 Vℓ. Let V =

⋃s′

ℓ=1 V ′
ℓ be another reduced decomposition of

V . Then for ℓ ∈ {1, . . . , s}, we have Vℓ = Vℓ ∩ V =
⋃s′

k=1(Vℓ ∩ V ′
k). Since Vℓ is irreducible,

this yields Vℓ = Vℓ ∩ V ′
k for some k ∈ {1, . . . , s′}, that is, Vℓ ⊆ V ′

k. Proceeding the same
way, one obtains that V ′

k ⊆ Vj for some j ∈ {1, . . . , s}. We thus have Vℓ ⊆ V ′
k ⊆ Vj, which

implies ℓ = j and Vℓ = V ′
k thanks to the hypothesis on the decomposition. Hence {V1, . . . ,Vs}

is a subset of {V ′
1, . . . ,V ′

s′}. A similar argument gives the opposite inclusion, so that we have
{V1, . . . ,Vs} = {V ′

1, . . . ,V ′
s′}: we are done with part (b).

For any ideals I,J , we have the equivalence I ⊆ J ⇔ V(J ) ⊆ V(I). Thus the uniqueness
of the reduced prime decomposition of a radical ideal directly follows from the one of a variety
by Lemma 1.2.5.
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1.3. Saturation of Ideals: Removing of Components

Figure 1.3.2.
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Example 1.2.7. The variety V((x2
1 + (x2 − 1)2 − 1)(x2 − 2)) is the union of a circle and a line in

K̄2 (see Figure 1.1.2); this corresponds to the radical decomposition

√

((x2
1 + (x2 − 1)2 − 1)(x2 − 2)) = (x2

1 + (x2 − 1)2 − 1) ∩ (x2 − 2).

The three points at the intersection of the circle V(x2
1+(x2−1)2−1) and the parabola V(x2−x2

1)
are given by

√

(x2
1 + (x2 − 1)2 − 1, x2 − x2

1) = (x1 − 1, x2 − 1) ∩ (x1 + 1, x2 − 1) ∩ (x1, x2).

1.3 Saturation of Ideals: Removing of Components

We present here a notion that can be used as an algorithmic tool to compute decompositions
of ideals.

Definition 1.3.1. Let I be an ideal of K[x1, . . . , xn], g be a polynomial, and m be an integer.

(a) The quotient ideal I : gm of I by gm is

I : gm = {f ∈ K[x1, . . . , xn], such that gmf ∈ I}.

(b) The saturation I : g∞ of I with respect to g is the ideal I : g∞ =
⋂∞

m=0 I : gm.

For instance, the quotient ideal of I = ((x2
1 + (x2 − 1)2 − 1)(x2 − 2)2) by g = x2 − 2 is

the ideal ((x2
1 + (x2 − 1)2 − 1)(x2 − 2)), when the saturation of I with respect to g is the

ideal (x2
1 + (x2 − 1)2 − 1) (see Figure 1.3.2 above). Following Proposition 1.3.3 highlights the

geometric meaning of the saturation of an ideal I with respect to a polynomial g: it corresponds
to remove the components of V(I) that are included in V(g).

Proposition 1.3.3. Let I be an ideal of K[x1, . . . , xn], and g be a polynomial in K[x1, . . . , xn].
Then V(I : g∞) is the Zariski closure of V(I)\(V(I) ∩ V(g)).
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Chapter 1. Theory of Primary Decomposition

Proof. Let a be an point in V(I)\(V(I)∩V(g)), and f be a polynomial in I : g∞. There exists
an integer m such that gmf belongs to I; then a vanishes gmf without vanishing g. Thus
f(a) = 0, and so a ∈ V(I : g∞): the Zariski closure of V(I)\(V(I) ∩ V(g)) is included in the
variety V(I : g∞).

Conversely, if h is a polynomial of I(V(I)\(V(I)∩V(g))), then gh belongs to I(V(I)) =
√
I,

and so h belongs to
√I : g∞. The ideal inclusion I(V(I)\(V(I) ∩ V(g))) ⊆ √I : g∞ implies

the opposite variety inclusion V(
√I : g∞) ⊆ V(I(V(I)\(V(I) ∩ V(g)))), which ends the proof

since V(
√I : g∞) = V(I : g∞).

One finds in [GP02, Sections 1.8.8 and 1.8.9] algorithms to compute quotient ideals and
saturation by the use of Gröbner bases. In the univariate case, that is, when the number of
variables n equals one, computing saturation reduces to gcd calculations; the latter case will
be exploited in Section 4.4.

1.4 Primary Decomposition

In this section, we define the primary decompositions of any ideal I as decompositions that are
compatible with the reduced decomposition of

√
I. We begin with an extension of the notion

of prime ideal:

Definition 1.4.1. An ideal Q in K[x1, . . . , xn] is primary if for any couple (f, g) of polynomials
in K[x1, . . . , xn] such that fg belongs to Q, either f belongs to Q or there exists m ∈ N such
that gm belongs to Q.

One easily deduces from the definition that the radical of any primary ideal Q is prime,
so that V(Q) is irreducible. For instance, the ideal (x2

1, x1x2, x
2
2) is primary with radical ideal

(x1, x2); primary ideals thus permit us to describe the multiplicity of an irreducible component.

Let us notice that an ideal whose radical is prime is not always primary: by considering
f = x2 and g = x1, one easily get convinced that the ideal (x2

2, x1x2) is not primary, while its
radical ideal

√

(x2
2, x1x2) = (x2) is prime. Actually, the ideal (x2

2, x1x2) = (x2) ∩ (x2
1, x1x2, x

2
2)

consists of the polynomials vanishing along the line V(x2) and vanishing to order at least two
at the point (0, 0), that belongs to V(x2) (see Figure 1.4.6). Considering primary ideals yields
to distinguish both “components”.

The irreducibility of V(Q) for any primary ideal Q suggests the following lemma:

Lemma 1.4.2. Let I be an irreducible ideal of K[x1, . . . , xn]. Then I is primary.

Proof. Let f, g be polynomials such that fg ∈ I and f /∈ I. Then I ⊆ I : g ⊆ I : g2 ⊆ · · · is
an ascending chain of ideals in the Noetherian ring K[x1, . . . , xn], so that there exists an integer
N such that I : gN = I : gN+1. We claim that I equals (I+(gN))∩(I+(f)): for the non-trivial
inclusion, if h = h1 +h2g

N = h3 +h4f with h1, h3 ∈ I, we have h2g
N+1 = h3g+h4fg−h1g ∈ I,

so that h2 ∈ I : gN+1 = I : gN and thus h ∈ I. Then I = I + (gN) since I is irreducible with
f /∈ I: the polynomial gN belongs to I, and I is primary.
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Figure 1.4.6.
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Here again, the converse does not hold, as shown by the primary ideal (x2
1, x1x2, x

2
2) =

(x2
1, x2) ∩ (x1, x

2
2).

Definition 1.4.3. Let Q be a primary ideal of K[x1, . . . , xn], and let p denote
√
Q. We say

that Q is p-primary, and we call p the prime belonging to Q.

If Q is a primary ideal, then
√
Q is the smallest prime ideal containing Q; from a geometric

point of view, Q is p-primary if and only if V(Q) = V(p). If Q and Q′ are two p-primary
ideals for the same prime ideal p, then Q ∩ Q′ is also a p-primary ideal. Reduced primary
decompositions of an ideal I are then a refinement of the reduced decomposition in prime
ideals of

√
I:

Definition 1.4.4. Let I be an ideal of K[x1, . . . , xn].

(a) A primary decomposition of I is an expression of I as an intersection of primary ideals
I =

⋂s
ℓ=1 Qℓ.

(b) A primary decomposition
⋂s

ℓ=1 Qℓ of I is said to be reduced if the prime ideals belonging
to Q1, . . . ,Qs are all distinct, and if I cannot be expressed as an intersection of a proper
subset of {Q1, . . . ,Qs}.

Example 1.4.5. The reduced primary decomposition

(x2
1 + (x2 − 1)2 − 1, x2 − x2

1) = (x1 − 1, x2 − 1) ∩ (x1 + 1, x2 − 1) ∩ (x2
1, x2)

is a refinement of the radical decomposition given in Example 1.2.7, in which the tangency of
the x1-axis at the origin is not forgotten (see Figure 1.4.6).

As a consequence of Theorem 1.2.2, we obtain:

Theorem 1.4.7. Any ideal I in K[x1, . . . , xn] admits a reduced primary decomposition.

Proof. Let I be an ideal in K[x1, . . . , xn]. Theorem 1.2.2 and Lemma 1.4.2 ensure the existence
of a primary decomposition I =

⋂s
ℓ=1 Qℓ of I. If Qℓ and Qk have the same radical ideal, we
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Chapter 1. Theory of Primary Decomposition

can replace them with the single ideal Qℓ ∩ Qk. Continuing in this way, we can assume that
the prime ideals belonging to Q1, . . . ,Qs are all distinct. Then even if it means omitting some
of the Qℓ, we can also easily assume that I cannot be expressed as an intersection of a proper
subset of {Q1, . . . ,Qs}.

A reduced primary decomposition may not be unique, as shows the example

(x2
2, x1x2) = (x2) ∩ (x2

1, x1x2, x
2
2) = (x2) ∩ (x1, x

2
2).

Nevertheless, the radical ideals of (x2
1, x1x2, x

2
2) and (x1, x

2
2) are equals. This fact suggests to

study the set of primes belonging to the primary ideals of a decomposition. In a sense, these
prime ideals represent components of the set of zeros of the ideal (here the line V(x2) and the
origin), which yields the following terminology:

Definition 1.4.8. Let I be an ideal in K[x1, . . . , xn]. A prime ideal p * K[x1, . . . , xn] is called
associated prime of I if there exists g ∈ K[x1, . . . , xn] such that p =

√I : g.

For instance, the associated primes of I = (x2
2, x1x2) are (x2) = I : (x1) and (x1, x2) = I :

(x2), whose radical ideals describe the x1-axis and the origin.

Theorem 1.4.9. Let I be an ideal of K[x1, . . . , xn], let
⋂s

ℓ=1 Qℓ be a reduced primary decom-
position of I, and let p1, . . . , ps denote the primes belonging to Q1, . . . ,Qs. Then the set of
associated primes of I is exactly {p1, . . . , ps}.

Proof. On one hand, let p be an associated prime of I. There exists g ∈ K[x1, . . . , xn] such
that p =

√I : g =
⋂s

ℓ=1

√Qℓ : g. Since a prime ideal is irreducible, we thus have p =
√Qℓ : g

for some ℓ ∈ {1, . . . , s}. Now since Qℓ is primary either
√Qℓ : g equals

√Qℓ or g ∈ Qℓ. Since
p 6= K[x1, . . . , xn], the second alternative cannot occur, and we have p =

√Qℓ.

On the other hand, since the primary decomposition is reduced, there exists gℓ /∈ Qℓ in
⋂

k 6=ℓ Qk for any ℓ ∈ {1, . . . , s}. Then
√I : gℓ =

⋂s
k=1

√Qk : gℓ =
√Qℓ : gℓ =

√Qℓ since

gℓ /∈ Qℓ. We thus have pℓ =
√I : gℓ, which proves that pℓ is an associated prime of I.

Remark 1.4.10. An ideal is primary if and only if it admits a unique associated prime.

In this thesis, we shall focus on the following particular class of ideals:

Definition 1.4.11. An ideal I is zero-dimensional if all its associated primes are maximal
with respect to the inclusion of ideals.

For instance, the ideal of Example 1.4.5 is zero-dimensional, when (x2
2, x1x2) is not. Since

we consider varieties in K̄n, an ideal I is zero-dimensional if and only if V(I) is a finite set of
points in K̄n, which justifies the terminology.

Overlying ideal (x2
2, x1x2) consists of the polynomials vanishing along the line V(x2) and

vanishing to order at least two at the point (0, 0), that belongs to V(x2); this suggests to
distinguish two kinds of associated primes:
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1.4. Primary Decomposition

Definition 1.4.12. Let I be an ideal in K[x1, . . . , xn] with associated primes p1, . . . , ps, and
let ℓ be an element of {1, . . . , s}.

(a) The ideal pℓ is an isolated prime of I if pk * pℓ for all k 6= ℓ.

(b) If pℓ is not isolated, it is said to be an are the embedded prime of I.

This terminology takes root in the geometric point of view: for instance, the only isolated
prime of (x2

2, x1x2) is (x2) when its unique embedded prime is (x1, x2), which corresponds to
the origin. If p1, . . . , pr are the isolated primes of an ideal I, then

√
I =

⋂r
ℓ=1 pℓ is the reduced

decomposition of
√
I: by considering the radical of an ideal, we “kill” the embedded primes.

The next proposition deals with the uniqueness of primary decompositions:

Proposition 1.4.13. Let I be an ideal of K[x1, . . . , xn] with reduced primary decomposition
I =

⋂s
ℓ=1 Qℓ. Let p be an associated prime of I, and let Qℓ1 , . . . ,Qℓr

denote the ideals of
{Q1, . . . ,Qs} that are included in p. Then Qℓ1 ∩ · · · ∩Qℓr

is independent of the decomposition.

Proof. We let K[x1, . . . , xn]p denote the localization of the ring of polynomials in p, that is, the
set of rational fractions f/g with g /∈ p. For any ℓ such that Qℓ * p, we have

QℓK[x1, . . . , xn]p ∩ K[x1, . . . , xn] = K[x1, . . . , xn].

For ℓ ∈ {ℓ1, . . . , ℓr}, we claim that QℓK[x1, . . . , xn]p ∩ K[x1, . . . , xn] = Qℓ. For the non trivial
inclusion, if f ∈ QℓK[x1, . . . , xn]p ∩K[x1, . . . , xn], then there exists a /∈ p such that af ∈ Qℓ. If
f /∈ Qℓ, then a ∈ √Qℓ since Qℓ is primary; this yields a contradiction since Qℓ ⊆ p. Thus

IK[x1, . . . , xn]p ∩ K[x1, . . . , xn] =
r
⋂

k=1

Qℓk
,

and
⋂r

k=1 Qℓk
is independent for the decomposition.

In the case when p is an isolated prime of I, the corresponding p-primary ideal does not
depend on the reduced primary decomposition of I. This yields the following corollary of
Proposition 1.4.13:

Corollary 1.4.14. Let I be an ideal whose all associated primes are isolated. Then I admits
a unique reduced primary decomposition. In particular, any zero-dimensional ideal admits a
unique primary decomposition.

Proof. It is a direct consequence of Proposition 1.4.13 and Definition 1.4.11.

Example 1.4.16. Let






f1 = x2
1 + (x2 − 1)2 − 1

f2 = x2
3 − x2

2

f3 = x2 − x2
1.

The variety V(f1, f2, f3) consists in the five points (0, 0, 0), (−1, 1,±1), (1, 1,±1) (see Fig-
ure 1.4.15 below). In Chapter 10, we compute the primary decomposition

(x2
1, x1x3, x

2
3, x2) ∩ (x1 + 1, x2 − 1, x3 − 1) ∩ (x1 + 1, x2 − 1, x3 + 1)

∩(x1 − 1, x2 − 1, x3 − 1) ∩ (x1 − 1, x2 − 1, x3 + 1)

of the ideal (f1, f2, f3).

35



Chapter 1. Theory of Primary Decomposition

Figure 1.4.15.
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1.5 Algorithms for Primary Decomposition

There exist several known algorithms for computing a primary decomposition in the general
case: the algorithms of [EHV92, GTZ88, SY96] for polynomial ideals over a field of characteristic
zero all take root in the work of Seidenberg [Sei74, Sei78, Sei84]; they are summarized and
compared in [DGP99, GP02]. Some variants of [GTZ88] are given in [CCT97, Mon02]. The
algorithm of [GTZ88] reduces to the zero dimensional case thanks to a general position, whereas
the algorithms of [EHV92, SY96] deduce the primary decomposition of a given ideal I from
the one of its radical ideal

√
I by localizations. Finally, the algorithm of [Ste05] extends the

one of [GTZ88] to algebraic function fields of positive characteristic, when [GWW07] contains
an original algorithm for zero-dimensional polynomial ideals over a finite field.

We present here the core of the algorithm of [GTZ88] for zero-dimensional ideals. This
algorithm is based on the following remark: in the univariate case, any ideal is generated by a
single polynomial, say f . If f = f ν1

1 · · · f νs
s is the factorization of the univariate polynomial f in

irreducible factors of K[x1], then (f) = (f ν1
1 ) ∩ · · · ∩ (f νs

s ) is a reduced primary decomposition
of the ideal (f). In the univariate case, primary decomposition calculations thus corresponds
to polynomial factorizations.

The main idea of Gianni, Trager and Zacharias is to reduce any zero-dimensional ideal to a
univariate ideal, using the fact that for any maximal ideal p, we have p ∩ K[x1] 6= ∅:

Definition 1.5.1. A zero-dimensional ideal I in K[x1, . . . , xn] with associated primes p1, . . . , ps

is in general position if pℓ ∩ K[x1] 6= pk ∩ K[x1] for ℓ 6= k.

For instance, the ideal of Example 1.4.5 is in general position; geometrically speaking, a
zero-dimensional ideal I is in general position when two points of V(I) are distinct if and
only if their first coordinates differ. General positions permit us to exploit the univariate case
towards the following proposition:

Proposition 1.5.2. Let I be a zero-dimensional ideal in general position, let f be the monic
polynomial that generates I ∩ K[x1], and let f = f ν1

1 · · · f νs
s be its irreducible factorization in

K[x1]. Then
⋂s

ℓ=1(I + (f νℓ

ℓ )) is a primary decomposition of I.
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1.5. Algorithms for Primary Decomposition

Proof. Let us remark that we can assume without loss of generality that f1, . . . , fs are monic.
First we prove that I =

⋂s
ℓ=1(I + (f νℓ

ℓ )). For ℓ ∈ {1, . . . , s}, we let f (ℓ) denote the polynomial
f/f νℓ

ℓ . Then there exists a Bézout relation
∑s

ℓ=1 aℓf
(ℓ) = 1 with a1, . . . , as in K[x1]. Now, let g

belong to
⋂s

ℓ=1(I + (f νℓ

ℓ )); for any ℓ ∈ {1, . . . , s}, there exist gℓ ∈ I and bℓ ∈ K[x1, . . . , xn] such
that g = gℓ + bℓfℓ. Then g =

∑s
ℓ=1 aℓf

(ℓ)g =
∑s

ℓ=1 aℓf
(ℓ)(gℓ + bℓfℓ) =

∑s
ℓ=1(aℓf

(ℓ)gℓ + aℓbℓf)
belongs to I. Since the other inclusion is obvious, we have I =

⋂s
ℓ=1(I + (f νℓ

ℓ )).

It remains to prove that for ℓ ∈ {1, . . . , s}, the ideal I + (f νℓ

ℓ ) is primary, that is, to
prove that its set of associated primes Aℓ contains exactly one element. First we claim that
I + (f νℓ

ℓ ) 6= K[x1, . . . , xn]: otherwise one could find g ∈ I and h ∈ K[x1, . . . , xn] such that
1 = g+hf νℓ

ℓ , which would imply f (ℓ) = gf (ℓ) +hf ∈ I. Thus the set Aℓ is not empty. Now any

ideal in Aℓ is an associated prime of I since (I+(f νℓ

ℓ )) : g = I : (f
(ℓ)
ℓ g) for any g in K[x1, . . . , xn].

Let p1, . . . , pr denote the associated primes of I, and let pk be the monic generator of the ideal
pk ∩ K[x1]. The general position of I ensures that the univariate irreducible polynomials pk

are pairwise coprime. Then we have (f1 · · · fs) =
√

I ∩ K[x1] =
⋂r

k=1(pk ∩ K[x1]) = (p1 · · · pr),
so that s = r and we can assume that fk = pk for k ∈ {1, . . . , s}. Finally, since an ideal is
always contained in any of its associated prime, we obtain Aℓ = {pℓ}. The ideal I + (f νℓ

ℓ ) is
primary.

Proposition 1.5.2 yields the following algorithm, which is the core of the algorithm presented
in [GTZ88].

Algorithm 1. Gianni Trager Zacharias zero-dimensional primary decomposition

Input: a zero-dimensional ideal I in general position.

Output: a set of pairs (Qℓ, pℓ) of ideals in K[x1, . . . , xn] with pℓ =
√Qℓ such that

⋂s
ℓ=1 Qℓ is a

primary decomposition of I.

1. Compute f ∈ K[x1] such that I ∩ K[x1] = (f).

2. Compute the factorization f = f ν1
1 · · · f νs

s of f in irreducible factors in K[x1].

3. For ℓ from 1 to s,

a. Qℓ := I + (f νℓ

ℓ );

b. pℓ :=
√Qℓ.

4. Return (Q1, p1), . . . , (Qs, ps).

Example 1.5.3. Let I be the zero-dimensional ideal (x2
1+(x2−1)2−1, x2−x2

1), that is in general
position in K[x1, x2]. Then we have I ∩ K[x1] = (x2

1(x1 − 1)(x1 + 1)). The algorithm returns
(Q1 = (x2

1, x2), p1 = (x1, x2)), (Q2 = p2 = (x1 − 1, x2 − 1)) and (Q3 = p3 = (x1 + 1, x2 − 1)).

Our presentation of the algorithm is quite schematic; more details can be found in the
original paper [GTZ88] or in [GP02, Section 4.2]. Step 1 rely on a Gröbner basis computation
with respect to a monomial ordering that eliminates x2, . . . , xn. For step 3.b we need an
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Chapter 1. Theory of Primary Decomposition

algorithm that, given a set of generators of an ideal I, computes a set of generators of
√
I; one

can for instance use the algorithm presented by Krick and Logar in [KL91] (see also [GP02,
Section 4.5]), which is based on the same idea of univariate reduction.

The general position hypothesis is not really restrictive: one can prove that for any zero-
dimensional ideal, most of the linear change of variables put the ideal in general position
(see [GTZ88, Proposition 7.1], [GP02, Proposition 4.2.2] or Corollary 4.3.12 below). The zero-
dimensional hypothesis can also be removed by the use of a Noether position (see [GTZ88,
Section 8] or [GP02, Section 4.3]).
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Chapter 2

Dimension and Noether Position

The idea of the dimension of a variety in K̄n is quite intuitive; for instance, we would like
to say that the parabola V(x1 − x2

2) has dimension 1 in the affine plane K̄2. We recall in
Section 2.1 the algebraic definition of dimension via transcendence degree. Noether positions
are then a way to highlight the geometric meaning of this algebraic dimension, and a practical
ingredient to compute it. General Noether positions, that correspond to Noether positions for
projective varieties, will be an important tool to control the degree of Kronecker representations
in Part II. We finish this chapter with genericity results on Noether positions that will be a key
for Algorithm 7 in Part II.

In the whole chapter, A denotes a subring of K[x1, . . . , xn] with unity.

2.1 Transcendence Degree and Dimension

The projection in the affine plane of the parabola V(x2 − x2
1) on the x1-axis V(x2) is finite

and surjective; for that reason, we would like to say that the dimension of the parabola is one.
Algebraic dependencies permit us to express this situation.

Definition 2.1.1. (a) Some polynomials e1, . . . , es in K[x1, . . . , xn] are algebraically depen-
dent modulo I if there exists a nonzero polynomial E with s variables over K such that
E(e1, . . . , es) belongs to I. Otherwise they are algebraically independent modulo I.

(b) A polynomial e ∈ K[x1, . . . , xn] is algebraic over A modulo I if there exists a nonzero
polynomial q ∈ A[T ] such that q(e) ∈ I.

(c) Such a polynomial e is integral over A modulo I if there exists a nonzero monic (i.e. with
leading coefficient 1) polynomial q ∈ A[T ] such that q(e) ∈ I.

Example 2.1.2. In K[x1, x2], x1 is algebraically independent modulo (x2 −x2
1) and x2 is integral

over K[x1] modulo (x2 − x2
1). Geometrically speaking, the independency of x1 ensures that

to any value α of x1 in K̄ corresponds a non empty set Vα of points in V(x2 − x2
1), when the

integrality of x2 over x1 ensures the finiteness of this set Vα for any α ∈ K̄ (here a single point).
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Chapter 2. Dimension and Noether Position

Figure 2.1.3.
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The polynomial x2 is not integral over K[x1] modulo (x1x2 − x2
1): the variety V(x1x2 − x2

1)
contains the whole line V(x1) over x1 = 0 (see Figure 2.1.3).

Algebraic and integral dependencies are preserved when passing to the radical of I, as
detailed in the following proposition:

Proposition 2.1.4. Some polynomials e1, . . . , es in K[x1, . . . , xn] are algebraically independent
modulo I if, and only if, they are algebraically independent modulo

√
I. A polynomial e in

K[x1, . . . , xn] is algebraic (respectively, integral) over A modulo I if, and only if, it is algebraic
(respectively, integral) over A modulo

√
I.

Proof. The proof is straightforward from the definitions.

We will use the following classical properties several times:

Proposition 2.1.5. Let e1, e2 be polynomials in K[x1, . . . , xn].

(a) If e1 and e2 are integral over A modulo I then so are e1 + e2 and e1e2.

(b) If e1 is integral over A modulo I, and if e2 is integral over A[e1] modulo I, then e2 is
integral over A modulo I.

Proof. In both cases, A[e1, e2] is finitely generated as a free A-module. Now, by the Cayley
Hamilton theorem one obtains a relation of integral dependency over A for any e ∈ A[e1, e2]
by evaluating in e the characteristic polynomial of the morphism of multiplication by e in
A[e1, e2].

The last algebraic tool that we need to define the dimension of an ideal is the following:

Definition 2.1.6. Let F be a field extension of K. The transcendence degree of F over K is
the maximal number of elements in F that are algebraically independent.
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2.1. Transcendence Degree and Dimension

Figure 2.1.9.
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The computation of the transcendence degree of a field is made easier by the following
classical result:

Proposition 2.1.7. Let F be a field extension of K with finite transcendence degree r. Then any
maximal (with respect to the inclusion ordering) subset of elements of F that are algebraically
independent has cardinality r. Moreover, if Γ is a set of generators of F over K and if S is a
subset of Γ whose elements are algebraically independents over K, then there exists a subset B
of Γ with cardinality r such that S ⊆ B and the elements of B are algebraically independent
over K.

Proof. See for instance [Lan02, Chapter VIII, Section 1, Theorem 1.1].

Thus K[x1, x2]/(x1 − x2
2) is a field extension with degree 1 over K since x1 is a maximal

subset of algebraically independent elements in the set of generators {x1, x2}. This example
suggests the following definition:

Definition 2.1.8. (a) If I is a prime ideal then the dimension dim(I) of I is the transcen-
dence degree of the quotient field of K[x1, . . . , xn]/I over K.

(b) In general, the dimension of I 6= (1) is the maximum of the dimensions of its associated
primes. By convention, the ideal (1) has dimension −1.

(c) An ideal I is unmixed if the dimensions of its associated primes are all equal.

From a geometrical point of view, the dimension of an ideal I is thus the maximal dimension
of the components of V(I), and I is unmixed when all the irreducible components of V(I) have
same dimension. The ideals (x1 − x2

2) and ((x2
1 + (x2 − 1)2 − 1)(x2 − 2)) are thus unmixed with

dimension one, when (x2
2, x1x2) = (x2) ∩ (x1, x

2
2) and (x1x2, x

2
2 − x2) = (x2) ∩ (x1, x2 − 1) have

dimension one without being unmixed (see Figure 2.1.9).

Of course, any zero-dimensional ideal as defined in 1.4.11 is unmixed with dimension zero.
Since all the associated primes of an unmixed ideal are isolated, Corollary 1.4.14 ensures that
any unmixed ideal I admits a unique reduced primary decomposition I =

⋂s
ℓ=1 Qℓ; in this

case, the ideals Q1, . . . ,Qℓ are called primary components of I.
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Chapter 2. Dimension and Noether Position

Figure 2.2.4.

-2-22 -1

-1

1

0

0

x3

1

0 x2x1

2

1-1
2-2

−2

2
−2

−1

1

−1

x1

0
0

0

x2

x3

1

−1
1

2

−2
2

0
0.5

1
-2 1

-1

0.5

0

0

1

1.5

2

-0.5 -1
2

V(x2
3 − x2

2) V(x2
3 − x2

2),V((x2 − 1)2 + x2
1 − 1) V(x2

3 − x2
2, (x2 − 1)2 + x2

1 − 1)

2.2 Noether Position

In this section, we generalize the situation observed in Example 2.1.2:

Definition 2.2.1. An ideal I is in Noether position if there exists r ∈ {0, . . . , n} such that
the variables x1, . . . , xr are algebraically independent modulo I, and such that xr+1, . . . , xn are
integral over K[x1, . . . , xr] modulo I.

Example 2.2.2. The ideal (x2 − x2
1) of Example 2.1.2 is in Noether position in K[x1, x2] with

r = 1, when (x1x2 − x2
1) is not. The ideals (x2

3 − x2
2) and (x2

3 − x2
2, (x2 − 1)2 + x2

1 − 1) are
in Noether position in K[x1, x2, x3] with r = 2, respectively r = 1 by Proposition 2.1.5 (see
Figure 2.2.4).

Remark 2.2.3. Any zero-dimensional ideal is in Noether position, with r = 0.

By Proposition 2.1.5, if I is in Noether position then any e ∈ K[x1, . . . , xn] is integral over
K[x1, . . . , xr] modulo I, so that another way to say that I is in Noether position is to say that
K[x1, . . . , xn]/I is an integral ring extension of K[x1, . . . , xr]. Geometrically speaking, as an-
nounced in Example 2.1.2, the algebraic independency of x1, . . . , xr modulo I, respectively the
integrality of xr+1, . . . , xn over x1, . . . , xr, ensures that the projection of V(I) on V(xr+1, . . . , xn)
is surjective, respectively finite.

When I 6= (1), we are to show that the integer r in Definition 2.2.1 coincides with the
dimension of I. Of course, when I = (1), I is in Noether position with r = 0 while dim(I) =
−1.

Theorem 2.2.5. Assume that I 6= (1).

(a) Assume that xr+1, . . . , xn are integral over K[x1, . . . , xr] modulo I. Then dim(I) ≤ r.
The latter inequality is an equality if, and only if, x1, . . . , xr are algebraically independent
modulo I.

(b) Assume that x1, . . . , xr are algebraically independent modulo I. Then we have dim(I) ≥ r.
If the latter inequality is an equality then xr+1, . . . , xn are algebraic over K[x1, . . . , xr]
modulo I. The converse holds if I is unmixed.
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2.3. General Noether Position

Proof. In order to prove part (a), let us first assume that I is prime. Since any maximal subset
of algebraically independent elements of {x1, . . . , xr} modulo I is also maximal in {x1, . . . , xn},
part (a) follows from Proposition 2.1.7. If I is not prime, then we can assume that I is
radical with prime decomposition p1 ∩ · · · ∩ ps by Proposition 2.1.4. Since xr+1, . . . , xn remain
integral over K[x1, . . . , xr] modulo each pℓ, we deduce that dim(pℓ) ≤ r for all ℓ ∈ {1, . . . , s},
whence dim(I) ≤ r. If x1, . . . , xr are algebraically dependent modulo I then they are also
algebraically dependent modulo each pℓ, for all ℓ ∈ {1, . . . , s}, whence dim(I) < r. Conversely,
if dim(I) < r, then there exists Eℓ ∈ pℓ ∩ K[x1, . . . , xr] \ {0} for all ℓ. Therefore E1 · · ·Es

belongs to I ∩ K[x1, . . . , xr] \ {0}, whence the algebraically dependence of x1, . . . , xr over K
modulo I, which ends part (a).

Let us now deal with part (b). If I is prime then part (b) straightforwardly follows from
Proposition 2.1.7. If I is not prime then we can assume again that I is radical with prime
decomposition p1 ∩ · · · ∩ ps. If x1, . . . , xr are algebraically independent modulo I, then there
necessarily exists ℓ ∈ {1, . . . , s} such that x1, . . . , xr are algebraically independent modulo pℓ,
whence dim(I) ≥ r. If xr+1, . . . , xn are algebraic over K[x1, . . . , xr] modulo I, then they are
also algebraic modulo pℓ, whence dim(I) = dim(pℓ) = r whenever I is unmixed. Conversely,
assume that dim(I) = r holds, and let i ∈ {r + 1, . . . , n}. For each ℓ ∈ {1, . . . , s}, if x1, . . . , xr

are algebraically dependent modulo pℓ then we take Eℓ ∈ pℓ ∩K[x1, . . . , xr] \ {0}; otherwise we
take Eℓ ∈ pℓ ∩ K[x1, . . . , xr, xi] \ {0}. Since E1 · · ·Es ∈ I, it follows that xi is algebraic over
K[x1, . . . , xr] modulo I, which ends part (b).

Example 2.2.6. If n = 3 and I = (x1x2 − 1, x3) ∩ (x1) then x1 is algebraically independent
modulo I, and x2, x3 are algebraic over K[x1] modulo I. Since dim(I) = 2, this shows that
we can not discard the unmixedness hypothesis in Theorem 2.2.5(b). This example also shows
that Theorem 2.2.5(a) does not hold if xr+1, . . . , xn are only supposed to be algebraic over
K[x1, . . . , xr] modulo I.

Example 2.2.7. If n = 2 and I = (x1x2−1)∩(x1, x2) then x1 is algebraically independent modulo
I, x2 is algebraic over K[x1] modulo I, and dim(I) = 1. This shows that the unmixedness
hypothesis in Theorem 2.2.5(b) is too strong.

Remark 2.2.8. It can be observed that the Noether position is preserved when extending the
ground field. Therefore if I is in Noether position then Theorem 2.2.5 implies that dim(I) does
not depend on the ground field K.

Remark 2.2.9. Noether positions can be used as a tool for reducing dimension by specializing
the independent variables. For instance, if we let I = (x1−x2

2), the ideal I+(x1) has dimension
zero when I has dimension one. This method is a key of the good cost of the Kronecker solver
since it permits us to deal only with ideals with dimension zero or one.

2.3 General Noether Position

In this section, we extend the notion of Noether position to projective varieties. This stronger
Noether position will allow us to control the degrees of Kronecker representations of ideals in
Part II.

43



Chapter 2. Dimension and Noether Position

For any e ∈ K[x1, . . . , xn], we denote by e♯ ∈ K[x0, x1, . . . , xn] the homogenization of e
with respect to the new variable x0, and by I♯ ⊆ K[x0, x1, . . . , xn] the ideal generated by the
homogenized polynomials of I. For any e ∈ K[x0, x1, . . . , xn] we write e♭ for e(1, x1, . . . , xn) ∈
K[x1, . . . , xn].

Algebraic independencies are preserved by homogenizing:

Lemma 2.3.1. Some polynomials e1, . . . , es in K[x1, . . . , xn] are algebraically dependent modulo
I if, and only if, x0, e

♯
1, . . . , e

♯
s are algebraically dependent modulo I♯.

Proof. If e1, . . . , es are algebraically dependent modulo I then, by homogenizing, we directly
obtain that x0, e

♯
1, . . . , e

♯
s are algebraically dependent modulo I♯. Conversely, let E be a nonzero

polynomial over K such that E(x0, e
♯
1, . . . , e

♯
s) ∈ I♯. Since I♯ is homogeneous, we can assume

that E is homogeneous for the weighted degree (1, deg(e1), . . . , deg(es)). The conclusion thus
follows by substituting 1 for x0 in E(x0, e

♯
1, . . . , e

♯
s) ∈ I♯.

The same property is not true for integral dependencies, which yields the following definition:

Definition 2.3.2. A polynomial e ∈ K[x1, . . . , xn] is generally integral over A modulo I if
there exists a nonzero monic polynomial q ∈ A[T ] such that q(e) ∈ I, and such that

deg(q(x1, . . . , xn, T
deg(e))) = degT (q(x1, . . . , xn, T

deg(e))), (2.3.1)

where q is seen in K[x1, . . . , xn, T ].

Example 2.3.3. The monomial x2 is generally integral over K[x1] modulo (x2
2 − x1) whereas it

is not modulo (x2 − x2
1).

For any subring A of K[x1, . . . , xn], we write A♯ for the subring of K[x0, x1, . . . , xn] generated
by x0 and by the homogenized polynomials of A. For example, if A = K[x1, . . . , xr] then A♯ is
K[x0, x1, . . . , xr]. The following properties are direct consequences of the definition:

∀e ∈ A♯, e♭ ∈ A, (2.3.2)

∀e ∈ A♯, any homogeneous component of e belongs to A♯. (2.3.3)

Assertion (2.3.3) is equivalent to saying that A♯ inherits the usual graduation of K[x0, x1, . . . , xn].

Lemma 2.3.4. Let e ∈ K[x1, . . . , xn]. The following assertions are equivalent:

(a) e is generally integral over A modulo I.

(b) e♯ is generally integral over A♯ modulo I♯.

(c) e♯ is integral over A♯ modulo I♯.

Proof. If (a) holds then there exists a polynomial q = Tα + a1T
α−1 + · · ·+ aα ∈ A[T ] such that

q(e) ∈ I, and such that equality (2.3.1) holds. It thus follows that

(e♯)α + x
deg(e)−deg(a1)
0 a♯

1(e
♯)α−1 + · · · + x

α deg(e)−deg(aα)
0 a♯

α ∈ I♯,

which leads to (b). Of course (b) implies (c). If (c) holds then there exists a polynomial
q = Tα + a1T

α−1 + · · · + aα ∈ A♯[T ] such that q(e♯) ∈ I♯. By property (2.3.3), we can take all
the ai homogeneous of degree i deg(e), so that we obtain (a) from property (2.3.2).
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2.3. General Noether Position

Proposition 2.1.5 does not extend nicely to generally integral dependencies. Nevertheless,
we have the following weaker properties:

Proposition 2.3.5. Let e1, e2 be in K[x1, . . . , xn].

(a) If e1 and e2 are generally integral over A modulo I, then so is always e1e2, and so is
e1 + e2 whenever deg(e1 + e2) = max(deg(e1), deg(e2)).

(b) If A inherits the usual graduation of K[x1, . . . , xn], if e1 is homogeneous and generally
integral over A modulo I, and if e2 is generally integral over A[e1] modulo I, then e2 is
generally integral over A modulo I.

Proof. We start with part (a). Without loss of generality we can assume that deg(e1) ≥ deg(e2).
We know from Lemma 2.3.4 that e♯

1 and e♯
2 are integral over A♯ modulo I♯; so are (e1 + e2)

♯ =

e♯
1 + x

deg(e1)−deg(e2)
0 e♯

2 and (e1e2)
♯ = e♯

1e
♯
2 by Proposition 2.1.5(a). Part (a) thus follows from

Lemma 2.3.4.

As for part (b), we proceed in a similar manner: e♯
1 is integral over A♯ modulo I♯, and e♯

2

is integral over (A[e1])
♯ modulo I♯. Thanks to the hypotheses on A and e1, we obtain that

(A[e1])
♯ = A♯[e♯

1], so that Proposition 2.1.5(b) implies that e♯
2 is integral over A♯ modulo I♯.

Part (b) thus follows from Lemma 2.3.4 again.

Example 2.3.6. Let K = Q[ı], with ı =
√
−1, let I = (x2 − x2

1), e1 = x2 + ıx2
1, and e2 = −ıx2

1.
Of course e2 is generally integral over K[x1] modulo I, and since e21 − 2ıx2

1e1 − 2x4
1 ∈ I so

is e1. Because e1 + e2 = x2 is not generally integral over K[x1] modulo I, the hypothesis
deg(e1 + e2) = max(deg(e1), deg(e2)) is necessary in Proposition 2.3.5(a). In addition, since
x2 − e1/(1 + ı) ∈ I, we have that x2 is generally integral over K[x1, e1] modulo I, which shows
that the homogeneity of e1 is necessary in Proposition 2.3.5(b). Finally, from x2

1−e1/(1+ı) ∈ I
we obtain that x1 is homogeneous and generally integral over K[e1] modulo I. Since we have
already seen that x2 is generally integral over K[x1, e1] modulo I, this shows that the graduation
hypothesis on A is necessary in Proposition 2.3.5(b).

In general the Noether position of I does not imply the Noether position of I♯ (consider
(x2 − x2

1) in K[x1, x2]). In order for I♯ to be in Noether position, we need to strengthen the
definition.

Definition 2.3.7. An ideal I of dimension r is in general Noether position if I is in Noether
position, and if the variables xr+1, . . . , xn are generally integral over K[x1, . . . , xr] modulo I.

Since K[x1, . . . , xr] inherits the usual graduation of K[x1, . . . , xn], Lemma 2.3.4 implies that
the Noether and the general Noether positions coincide whenever I is homogeneous.

Example 2.3.8. The ideal (x2
2 − x1) is in general Noether position in K[x1, x2], when (x2 − x2

1)
is not.

Proposition 2.3.9. If I has dimension r and is in general Noether position then any e ∈
K[x1, . . . , xn] is generally integral over K[x1, . . . , xr] modulo I.

Proof. This property is a direct consequence of Proposition 2.3.5(a).
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Chapter 2. Dimension and Noether Position

Figure 2.4.1.
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2.4 Genericity and Noether Positions

Given an ideal I of K[x1, . . . , xn], there is a priori no reason that it is in Noether position
even after a permutation of the variables. For example, (x1x2) is not in Noether position when
seen in K[x1, x2] nor in K[x2, x1]. In fact, we are to prove that almost all linear changes of the
variables in I produces a new ideal in Noether position. For example, by substituting x1+x2 for
x1 in (x1x2), we obtain the new ideal (x2

2 + x1x2) which is Noether position (see Figure 2.4.1).

For any n× n matrix M over K, we write I ◦M for the ideal {f ◦M(x1, . . . , xn)t | f ∈ I}.
The existence of a general Noether position will follow from a repeated use of the following
lemma:

Lemma 2.4.2. Let i ∈ {1, . . . , n} and assume that xi+1, . . . , xn are integral (respectively,
generally integral) over K[x1, . . . , xi] modulo I, and that x1, . . . , xi are algebraically depen-
dent modulo I. Then, for any nonzero polynomial a ∈ I ∩ K[x1, . . . , xi], and for any point
(α1, . . . , αi−1, 1) ∈ Ki that does not annihilate the homogeneous component h of highest degree
of a, the variables xi, . . . , xn are integral (respectively, generally integral) over K[x1, . . . , xi−1]
modulo I ◦M , where M is defined by

M(x1, . . . , xn)t = (x1 + α1xi, . . . , xi−1 + αi−1xi, xi, . . . , xn)t.

In addition, we have that degxi
(a ◦M) = deg(a ◦M).

Proof. By a straightforward calculation we obtain that the coefficient of x
deg(a)
i in a(x1 +

α1xi, . . . , xi−1 + αi−1xi, xi) is h(α1, . . . , αi−1, 1). Therefore, if the latter quantity is nonzero
then xi is generally integral over K[x1, . . . , xi−1] modulo I ◦ M . Since xi+1, . . . , xn remain
integral (respectively, generally integral) over K[x1, . . . , xi], the conclusion follows from Propo-
sition 2.1.5(b) (respectively, Proposition 2.3.5(b)).

Theorem 2.4.3. Let I be any proper ideal in K[x1, . . . , xn]. There exists a Zariski dense subset
of upper triangular n×n matrices M with 1 on their diagonal such that I◦M is general Noether
position.
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Proof. Let M be an upper triangular matrix with 1 on its diagonal, written in the following
form:

M =











1 α1,2 . . . α1,n

0 1 . . . α2,n
...

. . . . . .
...

0 . . . 0 1











.

For all i ∈ {1, . . . , n} we define the n× n matrix Mi by:

Mi(x1, . . . , xn)t = (x1 + α1,ixi, . . . , xi−1 + αi−1,ixi, xi, . . . , xn)t.

A straightforward calculation shows that M = Mn · · ·M1. Let r = dim(I). Since Mr · · ·M1

only affects the variables x1, . . . , xr, we see that I ◦M is in general Noether position if, and
only if, I ◦Mn · · ·Mr+1 is in general Noether position. Therefore the theorem follows from the
following stronger claim: for any i ∈ {r, . . . , n}, there exists a Zariski dense subset of values for
(αk,l|i+1 ≤ l ≤ n, 1 ≤ k ≤ l−1) such that xi+1, . . . , xn are generally integral over K[x1, . . . , xi]
modulo I ◦Mn · · ·Mi+1.

The proof of the claim is done by descending induction on i. If i = n then the claim
holds trivially. Assume that the claim is true for some i ∈ {r + 1, . . . , n}. Since i ≥ r + 1,
Theorem 2.2.5(a) implies that x1, . . . , xi can not be algebraically independent modulo I ◦
Mn · · ·Mi+1. Then Lemma 2.4.2 asserts that there exists a Zariski dense subset of values for
(αk,i|1 ≤ k ≤ i − 1) for which xi, . . . , xn are generally integral over K[x1, . . . , xi−1] modulo
I ◦Mn · · ·Mi, which completes the proof of the claim.

Corollary 2.4.4. Theorem 2.4.3 holds if we replace the space of the upper triangular matrices
with 1 on their diagonal by the whole space of the invertible matrices.

Proof. The set of matrices M such that all their principal minors are nonzero is dense. It is
classical that such a matrix M can be uniquely written as the product of a lower triangular
matrix L by an upper triangular matrix U with 1 on its diagonal. Since I ◦ L is in general
Noether position if, and only if, I is itself in general Noether position, the conclusion follows
from Theorem 2.4.3.

From the existence of general Noether positions, we can now deduce:

Corollary 2.4.5. If I 6= (1) then dim(I♯) = dim(I) + 1.

Proof. Thanks to Theorem 2.4.3, we can assume that I is in general Noether position. Therefore
the conclusion follows from Lemmas 2.3.1 and 2.3.4, and Theorem 2.2.5(a).

The proof of Theorem 2.4.3 directly gives an algorithm to compute general Noether position
for an ideal I (which is similar to [GP02, Algorithm 3.4.5]):
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Chapter 2. Dimension and Noether Position

Algorithm 2. Noether Position

Input: an ideal I.

Output: a matrix M such that I ◦M is in general Noether position, and the dimension r of I.

1. Initialize i with n and M with the identity matrix.

2. While (I ◦M) ∩ K[x1, . . . , xi] 6= ∅ do

a. choose a ∈ I ∩ K[x1, . . . , xi];

b. let h be the homogeneous component of highest degree of a;

c. choose (α
(i)
1 , . . . , α

(i)
i−1, 1) ∈ Ki that does not annihilate h;

d. for k from 1 to i− 1 replace Mi,k with α
(i)
k ;

e. decrease i by 1.

3. Return i and M .

The test of step 2 together with step 2.a can be performed via a Gröbner basis computation
with a monomial ordering that eliminates xi+1, . . . , xn. Evaluating a non constant polynomial
h on randomly chosen points, one should quickly find a point that does not annihilate h, which
permits to perform step 2.c. When considering complexity, notice that we only need to find out
a point that does not vanish a polynomial; the polynomial itself does not need to be explicity
written down. This observation led to the first breakthrough with evaluation techniques due
to Giusti and Heintz in [GH93].
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Chapter 3

Primary Decomposition of
Zero-dimensional Ideals

In this chapter, we focus on zero-dimensional ideals. As announced in Corollary 1.4.14 of
Chapter 1, such ideals have a unique primary decomposition, whose computation is the purpose
of Part III. In the whole chapter, we deal with K̄n, so that the maximal ideals in K̄[x1, . . . , xn]
are exactly the ideals (x1 − p1, . . . , xn − pn) with p = (p1, . . . , pn) ∈ K̄n. The variety defined
by any zero-dimensional ideal is thus a finite set of points, whose multiplicity structures are
described by the corresponding primary ideals.

We first present localizations as a way to isolate primary ideals, and define multiplicities
as the dimensions of local algebras. Then we traduce the primary decomposition of an ideal
in terms of local algebras. In Section 3.3, we propose an algorithm to recover a primary ideal
from its local algebra; this algorithm is inspired from [FGLM93].

3.1 Local Algebra of a Root

A classical way to study a variety V ⊆ K̄n is to examine the coordinate ring K̄[x1, . . . , xn]/I(V),
which can be thought of as the ring of polynomial functions on V . To focus on the information
in a neighborhood of p, one often considers rational functions defined at the point, that is,
whose denominator does not vanish when evaluated in p. Using the Taylor formula, one easily
get convinced that it is equivalent to deal with the ring K̄[[x1−p1, . . . , xn−pn]] of formal power
series in x1 − p1, . . . , xn − pn. For computational motivation, we will prefer the second ring: it
may be easier to control the size of truncated series than to estimate the degrees of numerators
and denominators of rational fractions.

Definition 3.1.1. Let p = (p1, . . . , pn) be an element in K̄n, and I be any ideal of K̄[x1, . . . , xn].
The localization Ip of I in p is the ideal I extended to the ring K̄[[x1 − p1, . . . , xn − pn]] of
formal power series over K̄.

The units of K̄[[x1 − p1, . . . , xn − pn]] are exactly the polynomials that do not vanish in p.
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Chapter 3. Primary Decomposition of Zero-dimensional Ideals

Figure 3.1.2.
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For instance, if

I = (x2
1 + (x2 − 1)2 − 1, x2 − x2

1) = (x2
1(x1 − 1)(x1 + 1), x2 − x2

1),

then we have I(0,0) = (x2
1, x2). The latter ideal describes the structure of the origin at the

intersection of the circle and the parabola, namely, the tangency of the x1-axis (see Figure 3.1.2).
Let us recall from Example 1.4.5 in Chapter 1 that the primary decomposition of I is

I = (x2
1, x2) ∩ (x1 + 1, x2 − 1) ∩ (x1 − 1, x2 − 1).

By localizing in (0, 0), we just keep the primary ideal with associated prime (x1, x2). Localiza-
tions can thus be seen as a way to “isolate” primary ideals:

Proposition 3.1.3. Let I be a zero-dimensional ideal in K̄[x1, . . . , xn] with reduced primary
decomposition I =

⋂s
ℓ=1 Qℓ. For ℓ ∈ {1, . . . , s}, let p(ℓ) denote the only point in V(Qℓ). Then for

any ℓ ∈ {1, . . . , s}, we have Ip(ℓ) = (Qℓ)p(ℓ). In addition, we have that Ip(ℓ) ∩K̄[x1, . . . , xn] = Qℓ.

Proof. For k 6= ℓ, there exists ik ∈ {1, . . . , n} such that p
(k)
ik

6= p
(ℓ)
ik

. Then since
√Qk =

(x1 − p
(k)
1 , . . . , xn − p

(k)
n ), the ideal Qk contains a power of xik − p

(k)
ik

, that is a unit in K̄[[x1 −
p

(ℓ)
1 , . . . , xn − p

(ℓ)
n ]]. We thus have (Qk)p(ℓ) = K̄[[x1 − p

(ℓ)
1 , . . . , xn − p

(ℓ)
n ]] for any k 6= ℓ, so that

Ip(ℓ) =
⋂s

k=1(Qk)p(ℓ) = (Qℓ)p(ℓ) . Let f ∈ (Qℓ)p(ℓ) ∩ K[x1, . . . , xn]. There exists g /∈ √Qℓ such
that fg ∈ Qℓ, so that f belongs to the primary ideal Qℓ. The result straightforwardly follows
from the equality Ip(ℓ) = (Qℓ)p(ℓ) .

We now define local algebras and multiplicities:

Definition 3.1.4. Let p = (p1, . . . , pn) ∈ K̄n and I be an ideal of K̄[x1, . . . , xn].

(a) The local algebra of p as a root of I is the K̄-algebra

Dp = K̄[[x1 − p1, . . . , xn − pn]]/Ip.

(b) The multiplicity µp of p as a root of I is the dimension of the K̄-algebra Dp.
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3.2. Decomposition in Local Algebras

Example 3.1.5. The algebra of the origin (0, 0) as a root of I = (x2
1 + (x2 − 1)2 − 1, x2 − x2

1) is
D0 = K̄[[x1, x2]]/(x

2
1, x2), and the one of (−1, 1) is D(−1,1) = K̄[[x1 + 1, x2 − 1]]/(x1 + 1, x2 − 1).

The origin thus has multiplicity two, and (−1, 1) has multiplicity one.

If f = α
∏s

ℓ=1(x− p(ℓ))νℓ is a univariate polynomial in K̄[x], then for any ℓ ∈ {1, . . . , s}, we
have (f)p(ℓ) = (x − p(ℓ))νℓ , so that Definition 3.1.4(b) coincide with the usual definition of the
multiplicity of a root.

In the multivariate case, that is when n ≥ 2, two zeros may have same multiplicities with
distinct structures, as shown by the primary ideals (x3

1, x2), (x2
1, x1x2, x

2
2). In Part II, we focus

on the computation of the roots together with their multiplicities. The calculation of the local
algebras is the purpose of Part III.

Remark 3.1.6. If I is a zero-dimensional ideal with reduced primary decomposition I =
⋂s

ℓ=1 Qℓ, if p(ℓ) denote the only point in V(Qℓ) for some ℓ ∈ {1, . . . , s}, then Proposition 3.1.3
ensures that Dp(ℓ) equals K̄[[x1 − p1, . . . , xn − pn]]/(Qℓ)p(ℓ) .

Remark 3.1.7. Let I be a zero-dimensional ideal, g be a polynomial in K̄[x1, . . . , xn], and p ∈ K̄n

be a root of I. Then p is a root of I : g∞ if and only if g does not vanish when evaluated in
p. In the latter case, g is a unit of K̄[[x1 − p1, . . . , xn − pn]], so that the local algebras of p as a
root of I and I : g∞ coincide.

3.2 Decomposition in Local Algebras

In this section, we traduce the primary decomposition of a zero-dimensional ideal I in terms
of local algebras, and give some classic consequences of this new representation of primary
decomposition.

Theorem 3.2.1. Let I be a zero-dimensional ideal with reduced primary decomposition I =
⋂s

ℓ=1 Qℓ, and for ℓ ∈ {1, . . . , s}, let p(ℓ) be the only point in V(Qℓ). Then the following isomor-
phism of K̄-algebras holds:

K̄[x1, . . . , xn]/I ≃ Dp(1) × · · · × Dp(s) .

Proof. For ℓ ∈ {1, . . . , s}, for any polynomial f ∈ K̄[x1, . . . , xn], we let [f ]ℓ denote the coset of
f in Dp(ℓ) . We let Φ be the morphism of algebras

Φ :

{

K̄[x1, . . . , xn] −→ Dp(1) × · · · × Dp(s)

f 7−→ ([f ]1, . . . , [f ]s)
.

The ideal I is obviously included in the kernel of Φ. Now, if f is an element that vanishes Φ,
then for any ℓ ∈ {1, . . . , s}, f belongs to (Qℓ)p(ℓ) ∩ K̄[x1, . . . , xn] = Qℓ by Proposition 3.1.3.
The kernel of Φ thus equals I =

⋂s
ℓ=1 Qℓ.

Example 3.2.2. For the ideal I = (x2
1 + (x2 − 1)2 − 1, x2 − x2

1) in K̄2, we thus have

K̄[x1, . . . , xn]/I ≃ D(0,0) × D(−1,1) × D(1,1).
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Chapter 3. Primary Decomposition of Zero-dimensional Ideals

The degree of a univariate polynomial equals the sum of the multiplicities of all its distinct
roots, which generalizes in:

Corollary 3.2.3. Let I be a zero-dimensional ideal, and let p(1), . . . , p(s) denote the elements
of V(I). For ℓ ∈ {1, . . . , s}, let µℓ denote the multiplicity of p(ℓ) as a root of I. Then
K̄[x1, . . . , xn]/I is a finite dimensional K̄-algebra with dimension

∑s
ℓ=1 µp(ℓ).

Proof. It directly follows from Theorem 3.2.1 by considering dimensions.

The following consequence of Theorem 3.2.1 will be widely used in Part II for the represen-
tation of multiplicities; it is sometimes refered as the Stickelberger Theorem.

Proposition 3.2.4. Let I be a zero-dimensional ideal in K̄[x1, . . . , xn], and let p(1), . . . , p(s)

denote the distinct zeros of I, with multiplicities µp(1) , . . . , µp(s). For f ∈ K̄[x1, . . . , xn], let
χ ∈ K̄[T ] denote the characteristic polynomial of the morphism mf of multiplication by f in
B = K̄[x1, . . . , xn]/I. Then we have

χ(T ) =
s
∏

ℓ=1

(f(p(ℓ)) − T )
µ

p(ℓ) .

Proof. Let us first examine the case when I is a primary ideal Q, with only root p in K̄n. Then
Corollary 3.2.3 ensures that the dimension of the K̄-vector space B = K̄[x1, . . . , xn]/Q equals
the multiplicity µp of p as a root of Q. Thus we just have to prove that the only eigenvalue
of mf is f(p). For λ ∈ K̄, let gλ be the polynomial f − λ: if λ is an eigenvalue of mf , then
there exists a polynomial h /∈ Q such that gλh ∈ Q: gλ is a zerodivisor in B. Now if λ 6= f(p),
then 1 − gλ/gλ(p) belongs to I({p}) = I(V(Q)) =

√
Q, so that (1 − gλ/gλ(p))

N belongs to Q
for some positive integer N . By expanding (1− gλ/gλ(p))

N , one obtains that gλ is a unit of B.
Therefore any λ 6= f(p) cannot be an eigenvalue of mf . This ends the proof in the case when
I = Q is primary.

If the ideal I is not primary, Theorem 3.2.1 allows us to consider χ as the characteristic
polynomial of its image [mf ] in Dp(1) × · · · × Dp(s) . Now for any ℓ ∈ {1, . . . , s}, Theorem 3.2.1
again ensures that Dp(ℓ) is isomorphic to K[x1, . . . , xn]/Qℓ, so that the restriction of [mf ] to
Dp(ℓ) has characteristic polynomial (f(pℓ) − T )µℓ .

Example 3.2.5. The characteristic polynomial of the morphism of multiplication by x1 in
K[x1, x2]/(x

2
1 + (x2 − 1)2 − 1, x2 − x2

1) is T 2(T − 1)(T + 1).

3.3 From Local Algebras to Primary Ideals

To any primary ideal Q in K̄[x1, . . . , xn] with only root p, we can associate the local algebra
Dp of p as a root of Q. Conversely, to any local algebra Dp corresponds a unique primary ideal
Q with associated prime (x1 − p1, . . . , xn − pn). In this section, we provide the reader with an
algorithm to recover Q from p and Dp.
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3.3. From Local Algebras to Primary Ideals

Firstly, we have to say how we encode the different objects. It is quite natural to depict
an ideal as a set of generators. One often compute a local algebra Dp under the form of
the matrices Mx1 , . . . ,Mxn

of the morphisms of multiplication by the variables x1, . . . , xn with
respect to a basis of Dp: indeed, these matrices allow all the computations in Dp. For instance,
D0 = K̄[[x1, x2]]/(x

2
1, x2) will be represented by

Mx1 =

(

0 0
1 0

)

and Mx2 =

(

0 0
0 0

)

,

which are the matrices of multiplication by x1, x2 in the basis 1, x1 of D0.

We now give an algorithm inspired from [FGLM93] to recover the primary ideal correspond-
ing to a given local algebra. For that purpose, we let lex denote the lexicographic ordering on
the monomials of K[x1, . . . , xn], for which xα1

1 · · ·xαn
n > xβ1

1 · · ·xβn
n if the first nonzero entry of

the vector (α1 − β1, . . . , αn − βn) ∈ Zn is positive. The leading monomial of a polynomial is
the greatest monomial with nonzero coefficient.

Algorithm 3. FGLM

Input: the matrices Mx1 , . . . ,Mxn
of the morphisms of multiplication by the variables x1, . . . , xn

with respect to a basis of a local algebra D.

Output: a Gröbner basis of the (x1, . . . , xn)-primary ideal Q in K[x1, . . . , xn] such that D ≃
K[[x1, . . . , xn]]/Q.

1. Initialize G and LG with the empty set.

2. Initialize B with the empty set.

3. Initialize m with 1.

4. While LG does not contain a positive power of x1,

a. let m̃ be the monomial m evaluated in (Mx1 , . . . ,Mxn
);

b. if the elements of B ∪ {m̃} are linearly independent, then add m̃ to B;

c. else

i. let g be a relation of linear dependency,

ii. add g to G and m to LG;

d. replace m with the next monomial in lexicographic order that is not a multiple of
an element of LG.

5. Return G.

Proposition 3.3.1. Algorithm 3 is correct.

Proof. See for instance [FGLM93] or [CLO05, Chapter 2, Section 3].

53



Chapter 3. Primary Decomposition of Zero-dimensional Ideals

Example 3.3.2. Let us run Algorithm 3 on the matrices

Mx1 =

(

0 0
1 0

)

and Mx2 =

(

0 0
0 0

)

.

At the end of the first round through the while loop, B contains the identity matrix Id, G =
LG = ∅ and m = x2. The second round yields B = {Id}, G = LG = {x2} and m = x1.
Finally the third round leads to B = {Id,Mx1}, G = LG = {x2, x

2
1}. We thus recover the

(x1, x2)-primary ideal (x2
1, x2).

Example 3.3.3. In Example 10.3.5, we will obtain the matrices

Mx1 =





0 −41159449
65536

0
0 0 0
0 1 + 4 1

16
0



 , Mx2 =





0 0 0
0 0 0
0 0 0



 and Mx3 =





0 1159449
65536

0
0 0 0
0 − 1

16
0



 .

Algorithm 3 applied to Mx1 ,Mx2 ,Mx3 returns the primary ideal (x2
1, x1x3, x

2
3, x2).

Computing zero-dimensional primary decompositions as pairs of roots and local algebras
is quite classical. One finds in [ABRW96] an algorithm that calculates the decomposition
of the quotient ring into local algebras by linear algebra from a Gröbner basis of the ideal.
Another classical way to obtain the local algebra of a given isolated root is to compute a
standard basis with respect to a local ordering by using the tangent cone algorithm of [Mor91];
a discussion on the different ways to represent the multiplicity structure of an isolated root
can be found in [MMM96]. The algorithms of [DZ05, Mou97] take advantage of the evaluation
property of the input system. Indeed, given a polynomial system f1 = · · · = fs = 0 together
with an isolated root p ∈ Kn, this algorithm computes the matrices of multiplication by the
variables with respect to a basis of the local algebra of p as a root of (f1, . . . , fs) thanks to
the duality between polynomials and formal power series in differential operators. But the
bound on the cost of the algorithm given in [Mou97, Proposition 4.1] still depends on the
number of monomials obtained by derivation of the monomials of f1, . . . , fs, which can yield
to a combinatorial number; although we believe that the latter cost is pessimistic, we did not
found a better estimate in the literature. For the first time, our algorithm underlying in Part III
computes the primary decomposition of a zero-dimensional ideal by pure evaluation techniques,
with a cost that does not involve a number of monomials up to a certain regularity.
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Part II

Computation of the Radical:
Global Solving
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The purpose of this thesis is the computation of the roots of a zero-dimensional system
together with the structure of their local algebras. In this part, we present the Kronecker
solver designed in [GLS01, Lec01], which computes the roots of a zero-dimensional system. For
the first time, we give a self contained proof of the good working of the solver, and we extend
it so that it further calculates the multiplicities of the roots without an extra cost. Most of the
proofs presented in this part can also be found in [DL07].

The input polynomial system is given by a sequence of equations f1 = · · · = fn = 0
and an inequation g 6= 0, where f1, . . . , fn and g belong to K[x1, . . . , xn]. In practice these
polynomials are expected to be represented by an evaluation data structure (a straight-line
program, for instance). The Kronecker solver designed in [GLS01] computes the roots of the
system f1 = · · · = fn = 0, g 6= 0 in the form

q(T ) = 0,











x1 = v1(T ),
...

xn = vn(T ),

where q, v1, . . . , vn ∈ K[T ]; we call such a sequence q, v1, . . . , vn univariate representation of the
radical ideal

√

(f1, . . . , fn) : g∞. If the ideal In = (f1, . . . , fn) : g∞ is not radical, we prove that
the algorithm also computes a polynomial χ ∈ K[T ] which square-free part is q, and such that
for any root α of q in K̄, the multiplicity of (v1(α), . . . , vn(α)) as a root of In equals the one of
α as a root of χ. We will refer to such a sequence χ, q, v1, . . . , vn as univariate representation
of In with multiplicities.

The Kronecker algorithm solves the equations f1, . . . , fn in sequence. To be more precise,
let us introduce the intermediate ideals

Ii = (f1, . . . , fi) : g∞, for i ∈ {1, . . . , n};
by convention we let I0 = (0). The version considered in [GLS01] requires the following
hypotheses:

fi+1 is a nonzerodivisor modulo Ii, and Ii is radical, for all i ∈ {0, . . . , n− 1};

in this case, we say that f1, . . . , fn is a reduced regular sequence in the open subset {g 6= 0}.
These requirements imply in particular that the dimension of Ii is n− i.

Using genericity results as the one proved in Chapter 2 for Noether positions, we will see
that, after performing a random affine change of the variables in the input system, the algorithm
can safely compute the finite sets of zeros of the ideals

Ji =
√

Ii + (x1, . . . , xn−i)

in sequence for i from 1 to n, with a high probability of success. The set of zeros of Ji is
represented by i univariate polynomials q, wn−i+2, . . . , wn in K[xn−i+1] such that

Ji = (q, q′xn−i+2 − wn−i+2, . . . , q
′xn − wn) + (x1, . . . , xn−i).

We call such a representation Kronecker representation of Ji.

The computation of a Kronecker representation of Ji+1 from a representation of Ji divides
into the following three steps:
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1. Lifting step. Compute a Kronecker representation of Ki =
√

Ii + (x1, . . . , xn−i−1).

2. Intersection step. Compute a representation of
√

Ki + (fi+1).

3. Cleaning step. Compute a representation of
√

Ki + (fi+1) : g∞.

Of course the algorithm stops as soon as it encounters an empty set of solutions, that is as
soon as Ii = (1). Geometrically speaking, Ki is a one-dimensional ideal whose set of zeros is
a solution curve of the ith first equations. Then, during the intersection step, we compute the
intersection of the latter curve with the hypersurface defined by fi+1 = 0. This intersection is
made of a finite set of points, from which we remove the ones contained in the hypersurface
defined by g = 0 during the cleaning step.

In Chapter 4, we define the different representations of ideals. We take advantage of their
univariate character to reduce the cleaning step to a gcd computation.

The cornerstone of the Kronecker solver is the intersection step presented in Chapter 5.
It consists in computing a univariate representation of a zero-dimensional ideal I + (f) from
the one of a one-dimensional radical ideal I. This calculation is made possible by Proposi-
tion 5.3.1. Moreover, the formula that follows from this proposition permits to give a global
intersection algorithm that computes a univariate representation of I + (f) with multiplici-
ties. Proposition 5.3.1 is also the starting point of the local intersection algorithm presented in
Part III.

In Chapter 6, we explain how to specialize the representations, and how to recover the whole
representation from a specialized one. This lifting operation relies on the good properties of
Kronecker representations: we can easily recover polynomials in K[x1, . . . , xr][T ] from their
specializations at x1 = · · · = xr = 0 by a Newton-Hensel lifting as soon as we have a bound on
their degrees. This specialization and lifting process permit to deal with ideals of dimension
zero and one.

We finish Part II with a complete presentation of the Kronecker solver. In the case when
f1, . . . , fn is a reduced regular sequence in the open subset {g 6= 0}, all the intermediate ideals
Ii are radical, so that multiplicities do not appear until the last intersection step. Applying our
new intersection algorithm to Kn−1 = In−1 and fn, we can obtain a univariate representation
of (f1, . . . , fn) : g∞ with multiplicities. These ideas are developped in Chapter 7, together with
a Bertini lemma that permits us to discard hypotheses on the input: by taking random linear
combinations of the generators of any square zero-dimensional system, one can safely assume
that the equations form a reduced regular sequence.
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Chapter 4

Univariate Representations and
Cleaning Step

In this chapter, we properly define the representations announced in the introduction for ideals
in Noether position. For that purpose, we let I be an ideal in K[x1, . . . , xn] with I 6= (1), and
we write r ≥ 0 for the dimension of I. In addition we will use the following notation:

A = K[x1, . . . , xr], B = K[x1, . . . , xn]/I,

A′ = K(x1, . . . , xr), B′ = A′[xr+1, . . . , xn]/I ′,

where I ′ denotes the extension of I to A′[xr+1, . . . , xn].

The ring B can naturally be seen as an A-module, whose torsion-freeness is related to the
unmixedness of I. If I is in Noether position, then B′ is a A′-vector space of finite dimen-
sion. Some suitable characteristic and minimal polynomials in B′ will lead to define univariate
representations. We conclude this chapter with the cleaning step algorithm.

4.1 Unmixedness and Torsion

The following proposition gives us a useful criterion for testing the unmixedness of I:

Proposition 4.1.1. Assume that I is in Noether position. Then B is a torsion-free A-module
if, and only if, I is unmixed.

Proof. Let Q1∩· · ·∩Qs represent a reduced primary decomposition of I, with associated primes
p1, . . . , ps. By Theorem 2.2.5(a), the ideal I is unmixed if, and only if, A ∩ pℓ = (0), for all
ℓ ∈ {1, . . . , s}. On the other hand, the fact that B has torsion reformulates into the following
property: there exist a ∈ A \ {0} and b 6∈ I such that ab ∈ I. If B has torsion then there exist
a ∈ A\{0}, ℓ ∈ {1, . . . , s}, and b such that ab ∈ Qℓ and b 6∈ Qℓ. Therefore we must have a ∈ pℓ,
hence I is not unmixed. Conversely, if I is not unmixed then there exists a ∈ (A ∩ pℓ) \ {0}
for some ℓ, hence some power of a is a torsion element for B.

59



Chapter 4. Univariate Representations and Cleaning Step

Figure 4.1.2.
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1)) V((x2) ∩ (x2
1, x1x2, x

2
2)) V(x1x2)

Example 4.1.3. The K[x1]-module K[x1, x2]/((x
2
1 + (x2 − 1)2 − 1)(x2 − 2)) is torsion-free, when

x1 is a torsion element in K[x1, x2]/((x2) ∩ (x2
1, x1x2, x

2
2)).

Example 4.1.4. If I = (x1x2) ⊆ K[x1, x2] then I is unmixed with dimension 1 but B has torsion.
This example shows that the Noether position is necessary in Proposition 4.1.1.

Corollary 4.1.5. If I is radical, then I ′ is radical. The converse holds if I is unmixed.

Proof. Let b ∈ A′[xr+1, . . . , xn], and assume that bm belongs to I ′ for some positive integer m.
There exists a ∈ A such that abm belongs to I. Then ab belongs to the radical ideal I, so
that b belong to I ′: the ideal I ′ is radical. Conversely, let f ∈ K[x1, . . . , xn] be such that fm

belongs to I for some positive integer m. Then f belongs to the radical ideal I ′, so that there
exists a ∈ A such that af belongs to I. The unmixedness of I ensures that f belongs to I by
Proposition 4.1.1, which proves the radicality of I.

Example 4.1.6. If I = (x2) ∩ (x2
1, x1x2, x

2
2), then I ′ = (x2) but I is not radical. This example

shows that the unmixedness of I is in general necessary in Corollary 4.1.5.

If I is an unmixed ideal, removing primary components of I does not affect the unmixed
nature of I, as says the following corollary of Proposition 4.1.1:

Corollary 4.1.7. Assume that I is unmixed, and let g in K[x1, . . . , xn] be such that I : g∞ 6=
(1). Then I : g∞ is unmixed with dimension r. If I is in Noether position or in general Noether
position then so is I : g∞.

Proof. Without loss of generality we can assume that I is in Noether position (respectively,
general Noether position), by Theorem 2.4.3. From Proposition 4.1.1 we know that B is a
torsion-free A-module. Therefore the assumption I : g∞ 6= (1) implies that x1, . . . , xr are
algebraically independent modulo I : g∞. On the other hand, the inclusion I ⊆ I : g∞ gives
us that xr+1, . . . , xn are integral (respectively, generally integral) over A modulo I : g∞. It
follows that I : g∞ inherits the Noether position of I (respectively, general Noether position),
whence dim(I : g∞) = r by Theorem 2.2.5(a). Finally, the torsion-freeness of B implies the one
of K[x1, . . . , xn]/(I : g∞), and Proposition 4.1.1 completes the proof.

Example 4.1.8. Let I = ((x2
1+(x2−1)2−1)(x2−2)). The ideal I : (x2−2)∞ = (x2

1+(x2−1)2−1)
is unmixed in general Noether position in K[x1, x2] with same dimension one as I.
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4.2. Characteristic and Minimal Polynomials

4.2 Characteristic and Minimal Polynomials

In the case of an unmixed curve in Noether position, that is when I is unmixed in Noether
position with dimension 1, then A = K[x1] is a principal ideal domain, and the torsion-free
module B is a finitely generated free module (see [Lan02, Chapter III, Theorem 7.3]). In this
situation, one can naturally speak about the characteristic and minimal polynomials of the
endomorphism of multiplication by any f in B. In this section, we study polynomials with
similar properties under the only hypothesis that B is torsion-free.

If I is any ideal in Noether position, then B′ is a A′-vector space of finite dimension, so
that, for any f in K[x1, . . . , xn], we can define χ ∈ A′[T ] (respectively, µ) as the characteristic
(respectively, minimal) polynomial of the endomorphism of multiplication by f in B′. In short,
we will respectively call them the characteristic and the minimal polynomials of f modulo I.

Theorem 4.2.1. Assume that I is in Noether position, and let d = deg(f).

(a) χ and µ belong to A[T ]. In addition, if I and f are homogeneous, then χ(T d) and µ(T d)
are homogeneous when seen in K[x1, . . . , xr, T ].

(b) If the Noether position is general then the total degrees of χ(T d) and µ(T d) seen in
K[x1, . . . , xr, T ] equal their respective partial degree in T .

(c) If I is unmixed then χ(f) and µ(f) belong to I.

Proof. Since f is integral over A modulo I by Proposition 2.1.5, there exists a monic polynomial
q ∈ A[T ] such that q(f) ∈ I. Since q(f) = 0 holds in B′, the minimal polynomial µ divides q in
A′[T ]. In particular, all the irreducible factors of µ divide q. Since q and these factors are monic
in T , the classical Gauss lemma [Lan02, Chapter IV, Theorem 2.1] implies that all these factors
actually belong to A[T ], so do µ and χ. If I and f are homogeneous then q can be chosen
so that q(T d) is homogeneous. Therefore all the irreducible factors of µ(T d) are homogeneous,
which concludes part (a).

If the Noether position is general then Proposition 2.3.9 implies that f is generally integral
over A modulo I. We can thus take q such that equality (2.3.1) holds. This equality between
the degrees hold for any irreducible factor of q, hence for µ and χ, which concludes part (b).

Since µ(f) ∈ I ′, there exist a ∈ A \ {0} and b ∈ I such that µ(f) = b/a. Thus we have
aµ(f) = 0 in B. By Proposition 4.1.1, B is torsion-free, whence µ(f) ∈ I. The same proof
holds for χ, which concludes part (c).

Example 4.2.2. With I = (x2
1 + (x2 − 1)2 − 1, x2 − x2

1) and f = x1 in K[x1, x2], we have
χ = µ = T 2(T − 1)(T + 1). With the ideal I = (x2

1 + (x2 − 1)2 + 1, x2
3 − x2

2) (see Figure 2.2.4)
and f = x2 in K[x1, x2, x3], we have χ = µ2 = (x2

2 − 2x2 + x2
1)

2.

Example 4.2.3. With I = (x2) ∩ (x2
1, x1x2, x

2
2) = (x2

2, x1x2) and f = x2 + 1, we have I ′ = (x2)
and µ = T − 1 but µ(f) = x2 6∈ I. Therefore it is necessary to assume that I is unmixed in
Theorem 4.2.1(c).

Example 4.2.4. Theorem 4.2.1(b) does not hold if the Noether position is not general as exem-
plified by taking I = (x2 − x2

1) and f = x2 so that µ = T − x2
1.
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Chapter 4. Univariate Representations and Cleaning Step

4.3 Univariate Representation

In this section, we assume that I is in Noether position, and we let δ denote the dimension
of the A′-vector space B′. To define a univariate representation of a zero-dimensional ideal as
announced in the introduction of Part II, we need a function that takes different values on the
distinct roots of the ideal. For a radical unmixed ideal, we search such a “separating function”
as a linear form in the independent variables:

Proposition 4.3.1. Assume that I is radical, unmixed, and in Noether position. Let u =
λr+1xr+1 + · · ·+ λnxn be a K-linear form. Then, I ′ is radical, and the following assertions are
equivalent:

(a) The powers of u generate B′.

(b) The degree of the minimal polynomial of u in B′ equals δ.

(c) There exist unique polynomials q, vr+1, . . . , vn in A′[T ] such that I ′ = (q(u), xr+1 −
vr+1(u), . . . , xn − vn(u)), q is monic, and deg(vj) ≤ deg(q) − 1 for all j ∈ {r + 1, . . . , n}.

(d) There exist unique polynomials q, wr+1, . . . , wn in A′[T ] such that I ′ = (q(u), q′(u)xr+1 −
wr+1(u), . . . , q

′(u)xn − wn(u)), q is monic, and deg(wj) ≤ deg(q) − 1 for all j ∈ {r +
1, . . . , n}.

Proof. We consider the morphism ψ from A′[T ] to B′ that sends T to u. Since its kernel is
generated by the minimal polynomial of u in B′, each of the four assertions are equivalent to
saying that B′ is isomorphic to A′[T ]/ ker(ψ).

Definition 4.3.2. (a) A linear form u satisfying assertions (a)–(d) of Proposition 4.3.1 is a
primitive element for I.

(b) The polynomials q, vr+1, . . . , vn in assertion (c) form a univariate representation of I.

(c) The polynomials q, wr+1, . . . , wn in assertion (d) form a Kronecker representation of I.

Example 4.3.3. The computation of Example 4.2.2 prove that x2 is not primitive for the radical
unmixed ideal in Noether position (x2

1+(x2−1)2−1, x2
3−x2

2). Let f1 = (x1+2x2+4x3)
2+(x2−

1)2 + 1 and f2 = x2
3 − x2

2 in K[x1, x2, x3]. The one-dimensional ideal (f1, f2) is radical unmixed
in Noether position with primitive element x2. Its univariate representation with respect to x2

is
{

q = x4
2 + (84−88x1)

185
x3

2 +
(4−6x2

1)

185
x2

2 +
(x3

1+x2
1)

185
x2 +

x4
1

185

v3 = 370
136x2

1+32x1
x3

2 − 361x1−168
136x2

1+32x1
x2

2 − 10x2
1−10x1−8

136x2
1+32x1

x2 − 13x3
1−4x2

1

136x2
1+32x1

,

in which we omit to mention v2 = x2. One easily deduce that its Kronecker representation with
respect to x2 is

{

q = x4
2 + (84−88x1)

185
x3

2 +
(4−6x2

1)

185
x2

2 +
(x3

1+x2
1)

185
x2 +

x4
1

185

w3 = −208x1−64
185

x3
2 +

64x2
1

185
x2

2 +
16x3

1

185
x2.
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4.3. Univariate Representation

Figure 4.3.5.
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Remark 4.3.4. If I is any zero-dimensional ideal, then the linear form u = λ1x1 + · · · + λnxn

is a primitive element for the radical ideal
√
I of I if and only if it takes distinct values

when evaluated at the different roots of I in K̄n. For instance, x1 is a primitive element for
√

(x2
1 + (x2 − 1)2 − 1, x2 − x2

1), with corresponding univariate representation

q = x1(x1 − 1)(x1 + 1), v1 = x1, v2 = x2
1.

On the other hand, x1 is not a primitive element for
√

((x1 − 1)2 + x2
2 − 1, x2

2 − x1), since it
takes the same value on both roots (1,−1) and (1, 1) (see Figure 4.3.5).

Let I be any zero-dimensional ideal, and let q, v1, . . . , vn denote the univariate representation
of

√
I with respect to a primitive element u. Let χ be the characteristic polynomial of u in

K[x1, . . . , xn]/I, so that q is the square-free part of χ. For any root α ∈ K̄ of χ, the multiplicity
of (v1(α), . . . , vn(α)) as a root of I equals the one of α as a root of χ by Proposition 3.2.4. This
yields the following definition:

Definition 4.3.6. Let I be an unmixed ideal in Noether position, and let u be a primitive
element for the radical ideal

√
I. Let q, vr+1, . . . , vn denote the univariate representation of

√
I

for the primitive element u, and let χ be the characteristic polynomial of u modulo I. We call
the sequence χ, q, vr+1, . . . , vn univariate representation of I with multiplicities for the primitive
element u.

Example 4.3.7. The univariate representation with multiplicities of (x2
1 + (x2 − 1)2 − 1, x2 −x2

1)
for the primitive element x1 is

χ = x2
1(x1 − 1)(x1 + 1), q = x1(x1 − 1)(x1 + 1), v1 = x1, v2 = x2

1.

Remark 4.3.8. Sequences χ, vr+1, . . . , vn also bear the name of rational univariate representa-
tions in [ABRW96] and [Rou99]. The authors of [GLS01] actually deal with geometric resolu-
tions of ideals that are made up of a change of variables that put the ideal in Noether position,
a primitive element, and the corresponding univariate representation.

Remark 4.3.9. Univariate representations with multiplicities do not give an exact representation
of the ideal. Indeed, the ideals (x4

1, x2, x3) and (x2
1, x

2
2, x3) have the same representations for

the primitive element x1 + x2. Nevertheless, it gives a first piece of information, that will be
precious for the computation of Part III.

Although Theorem 4.2.1 ensures that the polynomial q of a univariate representation belongs
to A[T ], Example 4.3.3 shows that vr+1, . . . , vn are rational functions in the free variables
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Chapter 4. Univariate Representations and Cleaning Step

x1, . . . , xr. We are to prove that the elements wr+1, . . . , wn of a Kronecker representation
belong to A[T ], which will be a central fact for the lifting step in Section 6.2. For this purpose,
we let Λr+1, . . . ,Λn be new auxiliary variables, and we introduce the following objects:

KΛ = K(Λr+1, . . . ,Λn), AΛ = K[Λr+1, . . . ,Λn, x1, . . . , xr],

A′
Λ = K(Λr+1, . . . ,Λn, x1, . . . , xr), and B′

Λ = A′
Λ[xr+1, . . . , xn]/I ′

Λ,

where I ′
Λ denotes the extension of I to A′

Λ[xr+1, . . . , xn]. We write IΛ for the extension of I to
K[Λr+1, . . . ,Λn, x1, . . . , xn] and we let

BΛ = K[Λr+1, . . . ,Λn, x1, . . . , xn]/IΛ.

We introduce the KΛ-linear form uΛ = Λr+1xr+1 + · · · + Λnxn. The minimal polynomial of uΛ

in B′
Λ is written qΛ, and we let

wΛ,j = −∂qΛ
∂Λj

, for all j ∈ {r + 1, . . . , n}.

Proposition 4.3.10. Assume that I is unmixed and in Noether position.

(a) I is radical if, and only if, qΛ is square-free.

(b) If I is radical then uΛ is primitive for IΛ, qΛ belongs to AΛ[T ], qΛ(uΛ) belongs to IΛ,
and qΛ is homogeneous of degree δ when seen as a polynomial in A′[Λr+1, . . . ,Λn, T ]. In
addition, if the Noether position is general, then the total degree of qΛ is δ when seen in
KΛ[x1, . . . , xr, T ].

Proof. It is easy to check that IΛ is in Noether position and unmixed with dimension n. From
Theorem 4.2.1, we know that qΛ ∈ AΛ[T ] and that

qΛ(uΛ) ∈ IΛ. (4.3.1)

By differentiating qΛ(uΛ) with respect to Λj, we obtain that

q′Λ(uΛ)xj − wΛ,j(uΛ) ∈ IΛ. (4.3.2)

If I is radical then IΛ is radical, hence qΛ is square-free. Conversely, if qΛ is square-free then
q′Λ(uΛ) is invertible in B′

Λ. It thus follows from (4.3.2) that the monomorphism A′
Λ[T ]/(qΛ(T )) →֒

B′
Λ that sends T to uΛ is surjective, and then that:

I ′
Λ = (qΛ(uΛ), q′Λ(uΛ)xr+1 − wΛ,r+1(uΛ), . . . , q′Λ(uΛ)xn − wΛ,n(uΛ)).

Thanks to Corollary 4.1.5, the radicality of I ′
Λ implies the one of IΛ, and thus the one of

I, which ends the proof of part (a). Since a basis of B′ induces a basis of B′
Λ, qΛ is indeed

the characteristic polynomial of a matrix whose entries are homogeneous of degree one in
Λr+1, . . . ,Λn, and thus qΛ is homogeneous of degree δ when seen in A′[Λr+1, . . . ,Λn, T ]. The
last assertion directly comes from Theorem 4.2.1(b).
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4.3. Univariate Representation

We are now ready to characterize the univariate representations of I. For any linear form
u = λr+1xr+1 + · · · + λnxn, we write qλ, wλ,r+1, . . . , wλ,n for the respective specializations of
qΛ, wΛ,r+1, . . . , wΛ,n at Λr+1 = λr+1, . . . ,Λn = λn.

Corollary 4.3.11. Assume that I is radical, unmixed, and in Noether position.

(a) u is primitive for I if, and only if, qλ is square-free.

(b) If u is primitive for I, then qλ, wλ,r+1, . . . , wλ,n is the Kronecker representation of I as-
sociated to u. In particular, qλ, wλ,r+1, . . . , wλ,n all belong to A[T ], and qλ(u), q

′
λ(u)xr+1 −

wλ,r+1(u), . . . , q
′
λ(u)xn − wλ,n(u) all belong to I. In addition, if the Noether position is

general, then the total degree of qλ is δ, and the total degrees of wλ,r+1, . . . , wλ,n are at
most δ, when seen in K[x1, . . . , xr, T ].

Proof. By substituting λr+1, . . . , λn for Λr+1, . . . ,Λn in (4.3.1) and (4.3.2), we obtain that
deg(qλ) = δ and that

(qλ(u), q
′
λ(u)xr+1 − wλ,r+1(u), . . . , q

′
λ(u)xn − wλ,n(u)) ⊆ I.

If qλ(u) is square-free then q′λ(u) is invertible in B′, and therefore the map from A′[T ]/(qλ(T ))
to B′ that sends T to u is surjective. It follows from Proposition 4.3.1(a) that u is a primitive
element. Conversely, if u is a primitive element, then the degree of the minimal polynomial q
of u equals δ, by Proposition 4.3.1(b), and we thus obtain that q and qλ have the same degrees,
hence are equal. In particular, qλ is square-free, which concludes part (a). The rest of the proof
comes directly from Proposition 4.3.10(b).

Part (b) of Corollary 4.3.11 permits us to control the degree of the elements of a Kronecker
representation for ideals in Noether position. That will be a key of the lifting step in Section 6.2.
We end this section with a genericity result:

Corollary 4.3.12. Assume that I is radical, unmixed, and in Noether position. Then the set
of points (λr+2, . . . , λn) ∈ Kn−r−1 such that u = xr+1 + λr+2xr+2 + · · · + λnxn is a primitive
element for I is Zariski dense.

Proof. By Proposition 4.3.10, the discriminant of qΛ is nonzero and homogeneous in the vari-
ables Λr+1, . . . ,Λn. Therefore if the specialization of this discriminant at Λr+1 = 1,Λr+2 =
λr+2, . . . ,Λn = λn is nonzero then u is a primitive element for I by Corollary 4.3.11(a).

Example 4.3.14. Let






f1 = x2
1 + (x2 − 1)2 − 1

f2 = x2
3 − x2

2

f3 = x2 − x2
1.

As already seen in Example 1.4.16, the variety V(f1, f2, f3) consists in the five points (0, 0, 0), (−1, 1,±1), (1,
(see Figure 4.3.13 below); x1 is not primitive for I = (f1, f2, f3). Nevertheless, x1 − 2x2 − 4x3

is a primitive element for I.
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Figure 4.3.13.
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Remark 4.3.15. The previous proofs contain an algorithm to compute λr+2, . . . , λn such that u is
primitive for I. First we compute qΛ, that can be done by eliminating Λr+1, . . . ,Λn, x1, . . . , xr, u
in the ideal IΛ + (u − Λr+1xr+1 − · · · − Λnxn) of AΛ[u, xr+1, . . . , xn]. Then, we calculate the
discriminant of qΛ with respect to u. Finally, we choose λr+2, . . . , λn that do not annihilate this
discriminant. As for Noether position, the use of the genericity result of Corollary 4.3.12 will
avoid such an expensive calculation.

4.4 Cleaning Step

We finish this chapter with an algorithm to remove components of a zero-dimensional ideal I
given by its univariate representation with respect to the primitive element x1. This algorithm
relies on the following remark: in the univariate case, for any polynomials f, g ∈ K[x1] with f
square-free, we have (f) : g∞ = (f) : gcd(f, g)∞ = (f/ gcd(f, g)). Univariate representations
permit to reduce to the univariate case:

Proposition 4.4.1. Let I be a radical zero-dimensional ideal in Noether position with prim-
itive element x1, let g be a polynomial in K[x1, . . . , xn], and let q, v1, . . . , vn be the univariate
representation of I with respect to x1. Let e = gcd(q, g(v1, . . . , vn)) in K[x1], Q = q/e, and Vj

be the remainder of vj divided by Q. Then x1 is a primitive element for I : g∞ and Q, V1, . . . , Vn

is the univariate representation of I : g∞ with respect to x1.

Proof. Since the ideal I is radical, the polynomial q is square-free. The proof follows from the
following straightforward calculations:

I : g∞ = (q(x1), x1 − v1(x1), . . . , xn − vn(x1)) : g∞

= (q(x1), x1 − v1(x1), . . . , xn − vn(x1)) : e(x1)
∞

= (Q(x1), x1 − V1(x1), . . . , xn − Vn(x1)).

Proposition 4.4.1 yields the following algorithm:
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Figure 4.4.3.
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Algorithm 4. Cleaning Step

Input: the univariate representation with multiplicities χ, q, v1, . . . , vn of a zero-dimensional
ideal I with primitive element x1, and a polynomial g ∈ K[x1, . . . , xn].

Output: I : g∞ = (1) or the univariate representation with multiplicities χ,Q, V1, . . . , Vn of
I : g∞ with respect to x1.

1. Compute e = gcd(q, g(v1, . . . , vn)).

2. Compute Q = q/e.

3. If Q = 1, then return I : g∞ = (1). Stop.

4. For j from 1 to n, compute the remainder Vj of vj divided by Q.

5. Replace χ with χ/ gcd(χ, edeg(χ)).

6. Return χ,Q, V1, . . . , Vn.

Proposition 4.4.2. Algorithm 4 works correctly as specified.

Proof. By Proposition 4.4.1, Q, V1, . . . , Vn is the univariate representation of
√
I with respect

to x1. In the zero-dimensional case, saturating an ideal corresponds to removing points, and
the correctness of step 5 comes from Proposition 3.2.4 since χ is the characteristic polynomial
of the multiplication by x1 modulo I.

Example 4.4.4. Let I = ((x2
1 + (x2 − 1)2 − 1)(x2 − 2), x2

1 + (x2 − 2)2 − 4), and g = x2 − 2 (see
Figure 4.4.3). The univariate representation with multiplicities of I for the primitive element
x1 is

χ = x2
1(x1 − 2)(x1 + 2), q = x1(x1 − 2)(x1 + 2), v2 = x2

1/2.

This yields e = gcd(q(x1), x
2
1/2 − 2) = x2

1 − 4, and thus to Q = x1. We obtain the univariate
representation with multiplicities

χ = x2
1, Q = x1, V2 = 0

of I : g∞ = ((x2
1 + (x2 − 1)2 − 1), x2

1 + (x2 − 2)2 − 4).
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Chapter 4. Univariate Representations and Cleaning Step

Assuming that x1 is a primitive element for I is not really restrictive. Indeed, Corol-
lary 4.3.12 ensures it with an high probability after a randomly chosen linear change of the
variables. Moreover, we will see in Chapter 6 how to reduce any unmixed ideal to the zero-
dimensional case by specializing the free variables.
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Chapter 5

Computation of Characteristic
Polynomials and Intersection Step

In this chapter, we carry on with the notation of the introduction of Chapter 4. We describe the
devices to compute a Noether position when adding a new polynomial f to an ideal I 6= (1),
and we give a proof of the well known principal ideal theorem. Then, we present a formula to
compute a characteristic polynomial modulo I + (f), that is the cornerstone of the Kronecker
solver, but that will also be a main ingredient in the definition of the degree of an ideal and in
the proof of a Bézout theorem in Section 7.2. Finally, we use this formula to design an algorithm
for computing a univariate representation of I+(f) from one of I in the case when dim(I) = 1
and dim(I + (f)) = 0. This algorithm is indeed the intersection step of the Kronecker solver.

5.1 Incremental Noether Position

Univariate representations are defined for ideals in Noether position. If I is in Noether position
then, for a given f ∈ K[x1, . . . , xn], there is a priori no reason for I + (f) to be in Noether
position, as shows the example I = (x2

3 − x2
1), f = x3 (see Figure 5.1.4 below). We are going

to show how to change the variables so that I and I + (f) become in Noether position. We
let χ and µ denote the characteristic and minimal polynomials of f modulo I defined at the
beginning of Section 4.2. We start with a lemma that relates the first properties of I + (f) to
the constant coefficients χ0 and µ0 of χ and µ respectively.

Lemma 5.1.1. Assume that I is unmixed and in Noether position.

(a) µ0 and χ0 belong to I + (f), and (I + (f)) ∩ A ⊆
√

(µ0) =
√

(χ0).

(b) f is a zerodivisor in B if, and only if, χ0 = 0 (or equivalently, µ0 = 0), if, and only if,
x1, . . . , xr are algebraically independent modulo I + (f).

(c) I + (f) = (1) if, and only if, χ0 ∈ K \ {0} (or equivalently, µ0 ∈ K \ {0}).
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Proof. From Theorem 4.2.1(c), we have that µ(f) ∈ I and χ(f) ∈ I, whence µ0 ∈ I + (f)
and χ0 ∈ I + (f). Let a be a polynomial in (I + (f)) ∩ A, and let g ∈ K[x1, . . . , xn] be such
that a − gf ∈ I. Since g in integral over A modulo I, there exist ν0, . . . , να−1 in A such that
gα + να−1g

α−1 + · · · + ν0 ∈ I. By multiplying the latter expression by fα, we obtain that
aα + να−1a

α−1f + · · ·+ ν0f
α ∈ I. We deduce that µ divides ρ = aα + να−1a

α−1T + · · ·+ ν0T
α in

A′[T ]. Since µ is monic, this division holds in A[T ], and therefore aα is a multiple of µ0, which
concludes part (a).

If µ0 = 0 then we have ν(f)f = 0 in B, with ν(T ) = µ(T )/T . Since deg(ν) < deg(µ) we
obtain that ν(f) 6∈ I, whence f is a zerodivisor. Conversely, if f is a zerodivisor then there
exists g 6∈ I such that fg ∈ I. Therefore there exists a primary component Q of I such that
g 6∈ Q and fg ∈ Q. It follows that f belongs to

√
Q, and that µ0 ∈ I + (f) ⊆

√
Q. Since I

is unmixed,
√
Q has dimension r, which implies that µ0 = 0 thanks to Theorem 2.2.5(a). By

part (a), µ0 = 0 if, and only if, x1, . . . , xr are algebraically independent modulo I + (f), which
concludes part (b). Finally part (c) straightforwardly follows from part (a).

Lemma 5.1.1 already gives us the following property: if f is a zerodivisor in B, then x1, . . . , xr

are algebraically independent modulo I+(f), and thus I+(f) is in Noether position (the general
Noether position is also preserved). For instance, the ideal I = ((x2

1 + (x2 − 1)2 − 1)(x2 − 2))
is unmixed in general Noether position with dimension one. The polynomial f = x2 − 2 is a
zero-divisor modulo I, and I + (f) = (f) remains in general Noether position with dimension
one. If f is a nonzerodivisor in B, then we can compute a Noether position for I + (f) as
follows:

Proposition 5.1.2. Assume that I is unmixed.

(a) If f is a zerodivisor in B then dim(I + (f)) = r. In addition, if I is in Noether position
or in general Noether position then so is I + (f).

(b) If f is a nonzerodivisor in B then dim(I +(f)) equals −1 or r− 1. In addition, if I is in
Noether position (respectively, general Noether position), then for any (α1, . . . , αr−1, 1) ∈
Kr that does not annihilate the homogeneous component h of highest degree of µ0, the
ideals I ◦ M and (I + (f)) ◦ M are in Noether position (respectively, general Noether
position), and degxr

(µ0 ◦M) = deg(µ0 ◦M), where M is the matrix defined by

M(x1, . . . , xn)t = (x1 + α1xr, . . . , xr−1 + αr−1xr, xr, . . . , xn)t.

Proof. As previously discussed, part (a) is a consequence of part (b) of Lemma 5.1.1 and part (a)
of Theorem 2.2.5.

If µ0 ∈ K \ {0} then part (b) trivially holds by Lemma 5.1.1(c). Otherwise, if µ0 6∈ K
then we use Lemma 2.4.2 with I + (f), i = r and µ0: we obtain that xr, . . . , xn are generally
integral over K[x1, . . . , xr−1] modulo (I + (f)) ◦M . In order to complete the proof it remains
to prove that x1, . . . , xr−1 are algebraically independent modulo (I + (f)) ◦M . To this aim,
let a ∈ K[x1, . . . , xr−1] ∩ (I + (f)) ◦M . By Lemma 5.1.1(a), µ0 ◦M divides a power of a. But
since Lemma 2.4.2 tells us that degxr

(µ0 ◦M) = deg(µ0 ◦M) > 0, we deduce that a = 0, which
ends the proof of part (b).
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Figure 5.1.4.
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Example 5.1.3. Let I be the ideal (x2
3 − x2

1) in general Noether position with dimension 2, and
f = x3. Then f is a nonzerodivisor in B since its minimal polynomial is T 2 − x2

1. The ideal
I + (f) is not in Noether position, when (I + (f)) ◦ (x1 + αx2, x2, x3) is as soon as α 6= 0 (see
Figure 5.1.4).

Remark 5.1.5. Proposition 5.1.2 gives a way to compute a common Noether position for I and
I + (f) from µ0. For the Kronecker solver, we will not deal with I and I + (f), but with a
specialization, so that we will not really compute µ0. We will only use the fact that a random
linear change of variables yields such a common Noether position with a high probability of
succes.

5.2 Incremental Unmixedness of the Radical

Proposition 5.1.2 ensures that if f is a nonzerodivisor in B and if I + (f) 6= (1), then the
dimension of I + (f) equals dim(I) − 1. In the case when I is unmixed, we expect each
component of V(I + (f)) to have dimension r − 1. The proof of the following version of the
classical principal ideal theorem is adapted from [Sha94, Chapter I, Section 6.2]. Recall that
we assume from the introduction that I 6= (1).

Theorem 5.2.1. Assume that I is unmixed, and let f ∈ K[x1, . . . , xn] be a nonzerodivisor in
B. If I + (f) 6= (1) then

√

I + (f) is unmixed with dimension r − 1.

Proof. Thanks to Theorem 2.4.3, Proposition 5.1.2(b), and Lemma 5.1.1(c), we can assume
that r ≥ 1, dim(I + (f)) = r − 1, I and I + (f) are in general Noether position, and that
degxr

(µ0) = deg(µ0) ≥ 1. Let us first prove the theorem when I and f are homogeneous.
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Chapter 5. Computation of Characteristic Polynomials and Intersection Step

Let E ∈ K[x1, . . . , xr−1, T ] be such that E(x1, . . . , xr−1, f) ∈ I. Since the polynomial
µ(T ) divides E(x1, . . . , xr−1, T ), it follows that µ0 divides E(x1, . . . , xr−1, 0). Therefore the
inequality degxr

(µ0) > 0 implies that E(x1, . . . , xr−1, 0) = 0. Since f is a nonzerodivisor
in B, we deduce that E = 0. In other words x1, . . . , xr−1, f are algebraically independent
modulo I. Since degxr

(µ0) = deg(µ0), Theorem 4.2.1(a) implies that xr is integral over
K[x1, . . . , xr−1, f ] modulo I. Thanks to Proposition 2.1.5(b) we obtain that xr+1, . . . , xn are
integral over K[x1, . . . , xr−1, f ] modulo I. This way we have shown that B is an integral ring
extension of K[x1, . . . , xr−1, f ].

Thanks to Proposition 4.1.1, in order to prove that
√

I + (f) is unmixed, it is sufficient to

prove that K[x1, . . . , xn]/
√

I + (f) is torsion-free when seen as a K[x1, . . . , xr−1]-module. With

this aim in view, let b ∈ K[x1, . . . , xn] and a ∈ K[x1, . . . , xr−1]\{0} be such that ab ∈
√

I + (f).
We claim that a power of b belongs to I + (f).

Let m ∈ N and g ∈ K[x1, . . . , xn] be such that ambm − fg ∈ I. In order to prove
the latter claim, we consider B as a K[x1, . . . , xr−1, f ]-module Bf , and we denote by B′

f the
corresponding finitely dimensional K(x1, . . . , xr−1, f)-vector space. By the classical Gauss
lemma [Lan02, Chapter IV, Theorem 2.1], the minimal polynomials of g and bm in B′

f belong
to K[x1, . . . , xr−1, f ][T ]. Let ρ(T ) = Tα + ρα−1T

α−1 + · · · + ρ0 denote the minimal polynomial
of g in B′

f . Then the minimal polynomial of bm in B′
f is

fαρ(amT/f)/amα = Tα + ρα−1

(

f

am

)

Tα−1 + · · · +
(

f

am

)α

ρ0.

We deduce that (am)j divides f jρα−j in K[x1, . . . , xr−1, f ], for all j ∈ {0, . . . , α − 1}. Since
x1, . . . , xr−1, f are algebraically independent, and since a ∈ K[x1, . . . , xr−1], we obtain that
(am)j divides ρα−j, whence (bm)α ∈ I + (f), which concludes the proof in the homogeneous
situation.

In the general situation, for any isolated prime p of I + (f), it can be verified that p♯ is
an isolated prime of I♯ + (f ♯). It follows that dim(p♯) = r, hence that dim(p) = r − 1, by
Corollary 2.4.5.

Example 5.2.2. With the polynomials f1, f2, f3 of Example 4.3.14, let I be the one-dimensional
unmixed ideal (f1, f2), and remark that f3 is a nonzerodivisor modulo I by Lemma 5.1.1 (b).
The ideal

√

(f1, f2, f3) is zero-dimensional, and thus unmixed.

Example 5.2.3. Let I = (x1, x2)∩(x3, x4). The ideal I is unmixed. If we take the nonzerodivisor
f = x2−x3, then

√

I + (f) = (x1, x2, x3)∩ (x2, x3, x4) is unmixed while I+(f) = (x1, x2, x3)∩
(x2, x3, x4) ∩ (x1, x2 − x3, x

2
3, x4) is not.

The following corollary of Theorem 5.2.1 is a first step towards the reduction of the di-
mension of an ideal by specialization of the independent variables, which is one of the main
processes that makes the good cost of the Kronecker solver.

Corollary 5.2.4. Assume that I is unmixed and in Noether position (respectively, general
Noether position), let s ∈ {0, . . . , r}. Then

√

I + (xs+1, . . . , xr) is in Noether position (respec-
tively, general Noether position) and unmixed with dimension s.
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Figure 5.2.6.
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Proof. Since the minimal polynomial of f = xr modulo I is µ = T − xr, Lemma 5.1.1 implies
that xr is a nonzerodivisor in B, and that I + (xr) 6= (1). Theorem 5.2.1 thus ensures that
√

I + (xr) is unmixed of dimension r−1. Then we obtain that
√

I + (xr) is in Noether position
(respectively, general Noether position) from Theorem 2.2.5(a). Finally, since

√

√

I + (xs+1, . . . , xr) + (xs) =
√

I + (xs, . . . , xr), (5.2.1)

a straightforward induction completes the proof.

Example 5.2.5. From a geometrical point of view, specializing xs+1, . . . , xr at zero corresponds
to take the intersection of V(I) with V(xs+1, . . . , xr). For instance, let I = (x2

3 + x2
1 − 1) in

K[x1, x2, x3], so that V(I) is a cylinder in K̄3 (see Figure 5.2.6). Then I + (x2) defines a circle
in the plane V(x2), when V(I + (x1, x2)) consists in two points of the x3-axis V(x1, x2).

In order to deal with specialized ideals, we wish to keep the hypotheses on regularity of
intersections. Following Corollary 5.2.7 gives a genericity result for this task:

Corollary 5.2.7. Assume that I is unmixed and in Noether position (respectively, general
Noether position), and let f ∈ K[x1, . . . , xn].

(a) If χ0 does not vanish at x1 = · · · = xr = 0, then f is a nonzerodivisor in K[x1, . . . , xn]/(I+
(x1, . . . , xr)).

(b) If f is a nonzerodivisor in B then the set of points (β1, . . . , βr) ∈ Kr such that f is a
nonzerodivisor in K[x1, . . . , xn]/(I + (x1 − β1, . . . , xr − βr)) is Zariski dense.

Proof. Let ψ denote the specialization of χ at x1 = · · · = xr = 0, and let J = I + (x1, . . . , xr).
By Corollary 5.2.4, J has dimension 0, and thus is unmixed. From Theorem 4.2.1 we have that
χ(f) ∈ I, whence ψ(f) ∈ J . Therefore the constant coefficient of the minimal polynomial of f
in K[x1, . . . , xn]/J can not be zero, and thus Lemma 5.1.1(b) implies that f is a nonzerodivisor
in K[x1, . . . , xn]/J . This concludes the proof of part (a). If f is a nonzerodivisor in B then
Lemma 5.1.1(b) implies that χ0 6= 0, which immediately yields part (b).
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Example 5.2.8. Let I be the ideal (x2
2 − x2

1) in K[x1, x2], which is unmixed in Noether position.
The polynomial f = x2 has characteristic polynomial T 2 − x2

1 in B = K[x1, x2]/I, and thus
is a nonzerodivisor in B by Lemma 5.1.1. Now, f is a zerodivisor in K[x1, x2]/(I + (x1)) =
K[x1, x2]/(x

2
2). Nevertheless, it is not in K[x1, x2]/I + (x1 − β) for any β in K\{0}.

Remark 5.2.9. As for Proposition 5.1.2, it is easy to find (β1, . . . , βr) as in part (b) of Corol-
lary 5.2.7 as soon as we know χ0. For the Kronecker solver, we will prefer to use the genericity
result and a random affine change of the variables since we only compute some specializations
of the polynomial χ0.

5.3 Incremental Computation of the Characteristic Poly-

nomial

We next present the key formula for the computation of the characteristic polynomial of xr

modulo I + (f).

Proposition 5.3.1. Assume that I has dimension r ≥ 1, is unmixed, and is in Noether
position. Let f be a nonzerodivisor in B. Then the polynomial χ0(x1, . . . , xr−1, T ) is proportional
over K(x1, . . . , xr−1) to the characteristic polynomial of xr modulo the extension J ′ of the ideal
J = I + (f) to K(x1, . . . , xr−1)[xr, . . . , xn]. The proportionality over K holds if, and only if, J
is in Noether position.

Proof. Let B̃ = K(x1, . . . , xr−1)[xr, xr+1, . . . , xn]/Ĩ, where Ĩ denotes the extension of I to
K(x1, . . . , xr−1)[xr, xr+1, . . . , xn]. By Proposition 4.1.1, B is a torsion-free A-module, so is B̃
seen as a K(x1, . . . , xr−1)[xr]-module. From [Lan02, Chapter III, Theorem 7.3], it follows that
B̃ is free, and, thanks to the Noether position of I, that B̃ has finite rank. Therefore, by [Lan02,
Chapter III, Theorem 7.9], there exist two bases e1, . . . , eδ and e′1, . . . , e

′
δ of B̃, and some monic

polynomials h1, . . . , hδ ∈ K(x1, . . . , xr−1)[xr] such that hℓ divides hℓ+1 for all ℓ ∈ {1, . . . , δ− 1},
and such that feℓ = hℓe

′
ℓ in B̃ for all ℓ ∈ {1, . . . , δ}.

On the one hand, since a basis of B̃ induces a basis of B′, we obtain that χ0 = ah1 · · ·hδ,
for some a ∈ K(x1, . . . , xr−1). On the other hand, we claim that the set B = {xαℓ

r e
′
ℓ | 1 ≤ ℓ ≤

δ, 0 ≤ αℓ ≤ deg(hℓ) − 1} is a basis of B̃/(f) seen as a K(x1, . . . , xr−1)-algebra. Let us first
verify that B actually generates B̃/(f). Let g ∈ B̃/(f). Any preimage g̃ of g in B̃ can be written
g =

∑δ
ℓ=1 gℓe

′
ℓ, with g1, . . . , gδ ∈ K(x1, . . . , xr−1)[xr]. Since, by construction, the ideal generated

by f in B̃ equals (h1e
′
1, . . . , hδe

′
δ), we can write g =

∑δ
ℓ=1 rℓe

′
ℓ in B̃/(f), where each rℓ denotes

the remainder in the division of gℓ by hℓ. Secondly, let us verify that B is free. Let r1, . . . , rδ ∈
K(x1, . . . , xr−1)[xr] be such that deg(rℓ) < deg(hℓ) and

∑δ
ℓ=1 rℓe

′
ℓ = 0 in B̃/(f). Then there

exist some polynomials q1, . . . , qδ ∈ K(x1, . . . , xr−1)[xr] such that
∑δ

ℓ=1 rℓe
′
ℓ +
∑δ

ℓ=1 qℓhℓe
′
ℓ = 0

in B̃. Therefore, for all ℓ we obtain rℓ + qℓhℓ = 0, whence qℓ = rℓ = 0 since deg(hℓ) > deg(rℓ).

In the basis B, the matrix of multiplication by xr in B̃/(f) is a diagonal block matrix, whose
blocks are the companion matrices of the hℓ. Therefore the characteristic polynomial q of xr in
B̃/(f) equals h1 · · ·hδ. We finally obtain that χ0 is proportional to q over K(x1, . . . , xr−1).
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Let us now deal with the last assertion of the proposition. If J = (1) then it trivially holds
thanks to Lemma 5.1.1(c). Let us now assume that J 6= (1). Theorem 5.2.1 gives us that
dim(J ) = r − 1. Therefore if J is in Noether position then there exists a monic polynomial
p ∈ K[x1, . . . , xr−1][T ] such that p(xr) ∈ J . Since Lemma 5.1.1(a) implies that χ0 divides a
power of p(xr), we deduce that the leading coefficients of χ0 seen in K[x1, . . . , xr−1][xr] belongs
to K, and thus that χ0 is proportional over K to q(xr). Conversely, if χ0 is proportional over K
to q(xr), then xr is integral over K[x1, . . . , xr−1] modulo J by Lemma 5.1.1(a). We thus obtain
that J is in Noether position by Proposition 2.1.5(b) and Theorem 2.2.5(a).

Example 5.3.2. The basis B in the proof of Proposition 5.3.1 is built from the isomorphism
between the K(x1, . . . , xr−1)[xr]-modules B̃/(f) and

δ
⊕

ℓ=1

K(x1, . . . , xr−1)[xr]/(hℓ).

In general this direct sum is not a decomposition of B̃/(f) into stable K(x1, . . . , xr−1)-algebras.
This can be seen by taking n = 2, I = (x2

2 + x1x2), r = 1, and f = x2
1. Then {1, x2} forms a

basis of the K[x1]-module B̃ = K[x1, x2]/Ĩ, in which the matrix of multiplication by f is the
diagonal matrix with h1 = x2

1 and h2 = x2
1 on its diagonal. As K[x1]-modules we thus have

B̃/(f) = K[x1]/(h1)
⊕

K[x1]/(h2)x2. These two submodules are stable by multiplication by x1

but K[x1]/(h1) is not stable by multiplication by x2.

5.4 Intersection Step

In this section, we let I be a radical unmixed ideal in Noether position with dimension 1
and primitive element x2, given by its univariate representation q, v2, . . . , vn. We let f be a
nonzerodivisor in B = K[x1, . . . , xn]/I such that

√

I + (f) 6= (1) with primitive element x1.
From Proposition 5.3.1, we deduce an algorithm that computes the univariate representation
with multiplicities ξ,Q, V1, . . . , Vn of I + (f) for the primitive element x1. We write ResT for
the resultant in the main variable T .

Proposition 5.4.1. The characteristic polynomial of x1 modulo I + (f) is proportional over
K to the following resultant in T :

χ0 = ResT (q(T ), f(x1, v2(T ), . . . , vn(T ))). (5.4.1)

In particular, Q(x1) is the square-free part of χ0.

Proof. Let p(1), . . . , p(s) denote the roots of the zero-dimensional ideal I ′ in an algebraic clo-
sure K(x1) of K(x1). Proposition 3.2.4 ensures that χ0 =

∏s
ℓ=1 f(p(ℓ)). The radicality of I

ensures the one of I ′ by Corollary 4.1.5. By a well known property of resultants (see for
instance [CLO05, Chapter 3, formula (1.4)]), we thus have

ResT (q(T ), f(x1, v2(T ), . . . , vn(T ))) =
∏

q(T )=0

f(x1, v2(T ), . . . , vn(T )) =
s
∏

ℓ=1

f(p(ℓ)).

Therefore the conclusion follows directly from Proposition 5.3.1.
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Proposition 5.4.1 gives a formula to compute the polynomial Q. We obviously have V1(x1) =
x1. It remains to explain how we calculate the polynomials V2, . . . , Vn. We proceed by spe-
cialization and interpolation. Let a ∈ K̄n be such that x2 is a primitive element for the
zero-dimensional ideal

√

I + (x1 − a). We will see in Corollary 6.1.3 how to compute from

q, v2, . . . , vn the univariate representation qa, va,2, . . . , va,n of
√

I + (x1 − a) with respect to x2.
Then we have

√

I + (x1 − a) = (qa(x2), x1 − a, x2 − va,2(x2), . . . , xn − va,n(x2)),

and so

√

I + (x1 − a) + (f) = (f(a, va,2(x2), . . . , va,n(x2)), qa(x2))

+ (x1 − a, x2 − va,2(x2), . . . , xn − va,n(xn)).

Now let us assume that a ∈ K̄n is a root of Q. Since x1 is primitive for
√

I + (f), we have

√

I + (f) + (x1 − a) = (x1 − V1(a), . . . , xn − Vn(a)).

Therefore we can compute V2(a) by means of the following formula:

x2 − V2(a) = gcd(f(a, va,2(x2), . . . , va,n(x2)), qa(x2)),

where gcd means the greatest common divisor in x2. By substituting V2(a) for x2 in all the va,j,
we obtain Vj(a) ∈ K̄, for all j ∈ {3, . . . , n}. Finally V2, . . . , Vn can be obtained by interpolation.

This yields the following algorithm:

Algorithm 5. Intersection Step

Input: the univariate representation q, v2, . . . , vn with respect to x2 of a radical unmixed one-
dimensional ideal I in Noether position, and a polynomial f ∈ K[x1, . . . , xn] such that:

• f is a nonzerodivisor in K[x1, . . . , xn]/I,

• if I + (f) 6= (1), x1, respectively x2, is a primitive element for I + (f), respectively
√

I + (x1 − a) for any first coordinate a ∈ K̄ of a point in V(I + (f)).

Output: I + (f) = (1), or the univariate representation with multiplicities ξ,Q, V1, . . . , Vn of
I + (f) for the primitive element x1.

1. Compute ξ = ResT (q(T ), f(x1, v2(T ), . . . , vn(T ))).

2. If ξ ∈ K\{0}, then return 1, 1, 0, . . . , 0.

3. If the coefficient c of x
deg(ξ)
1 in ξ is not 1, then replace ξ with ξ/c.

4. Compute the square-free part Q of ξ.

5. Let a1, . . . , as denote the distinct roots of Q in K̄.
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Figure 5.4.4.
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6. For ℓ from 1 to s, do

a. compute the univariate representation qaℓ
, vaℓ,2, . . . , vaℓ,n of

√

I + (x1 − aℓ) with re-
spect to x2;

b. compute V2(aℓ) = x2 − gcd(f(aℓ, vaℓ,2(x2), . . . , vaℓ,n(x2)), qaℓ
(x2));

c. for j from 3 to n compute Vj(aℓ) = vaℓ,j(aℓ, V2(aℓ)).

7. For j from 2 to n, compute the interpolating polynomial Vj from Vj(a1), . . . , Vj(as).

8. Return ξ,Q, V1 = x1, V2, . . . , Vn.

Proposition 5.4.2. Algorithm 5 works correctly as specified.

Proof. The correctness result follows from Proposition 5.4.1, Lemma 5.1.1 (c), and from the
computations above the algorithm.

Example 5.4.3. Let I = (x2
1 + (x2 − 1)2 − 1), with univariate representation

q = (x2 − 1)2 + x2
1 − 1, v2 = x2,

and let f = x2 − x2
1. From

ResT ((T − 1)2 + x2
1 − 1, T − x2

1) = x2
1(x1 − 1)(x1 + 1),

we deduce ξ and Q = x1(x1 − 1)(x1 + 1). Then using the calculations of Example 6.1.4 below,
we compute







V2(0) = x2 − gcd(x2, x
2
2 − 2x2) = 0,

V2(1) = x2 − gcd(x2 − 1, x2 − 1) = 1,
V2(−1) = x2 − gcd(x2 − 1, x2 − 1) = 1.

By interpolating, we obtain V2 = x2
1.

Of course in practice, computations are not really handled in K̄. Instead we appeal classical
techniques of computer algebra: for each irreducible factor Qℓ of Q, we do the above computa-
tions with taking a as the residue class of z in K[z]/(Qℓ(z)), and finally we recover the result by
means of the Chinese remainder theorem. Factorization can even be avoided thanks to dynamic
evaluation [Duv94, Duv95].

Here again, the hypotheses needed for Algorithm 5 are not really restrictive thanks in
particular to the genericity result of Corollary 4.3.12, as will be detailed in Section 7.1.
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Chapter 6

Specialization of Independent Variables
and Lifting Step

The Kronecker solver deals with ideals whose dimension is zero or one. To reduce any given
ideal in Noether position to a zero-dimensional one, we shall specialize the independent vari-
ables x1, . . . , xr. In a first section, we study the behavior of univariate representations under
specialization. Then we use Newton iterations to recover the whole representation from a
specialized one. In this way we achieve the lifting step of the Kronecker solver.

6.1 Specialization of the Independent Variables

In this section, we let I be a radical ideal with dimension r, we let s denote an integer in
{0, . . . , r− 1}, and we let J = I +(xs+1, . . . , xr). We show how to compute a Kronecker repre-
sentation of

√
J from one of I, with the same primitive element whenever it is possible. For this

purpose, we continue with the notation of Section 4.3, and we introduce JΛ = IΛ+(xs+1, . . . , xr)
for the extension of J to K[Λr+1, . . . ,Λn, x1, . . . , xn]. Let CΛ = K[Λr+1, . . . ,Λn, x1, . . . , xn]/JΛ,
and let QΛ represent the specialization of qΛ at xs+1 = · · · = xr = 0. We write J ′

Λ for the ex-
tension of JΛ to KΛ(x1, . . . , xs)[xs+1, . . . , xn], and we let C′

Λ = KΛ(x1, . . . , xs)[xs+1, . . . , xn]/J ′
Λ.

Proposition 6.1.1. Assume that I is radical, unmixed, and in Noether position (respectively,
general Noether position). Then J is in Noether position (respectively, general Noether posi-
tion),

√
J is unmixed with dimension s, and we have that:

(a) The square-free part of QΛ is the minimal polynomial of uΛ modulo the extension of
√
J

to KΛ(x1, . . . , xs)[xs+1, . . . , xn].

(b) J is radical if, and only if, QΛ is square-free.

Proof. The Noether position (respectively, general Noether position) of J , the unmixedness of√
J , and its dimension come from Corollary 5.2.4 directly. Let us now focus on the case when
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s = r − 1. We introduce ĨΛ for the extension of IΛ to KΛ(x1, . . . , xr−1)[xr, xr+1, . . . , xn], and
we let

B̃Λ = KΛ(x1, . . . , xr−1)[xr, xr+1, . . . , xn]/ĨΛ.

Since BΛ is a torsion-free AΛ-module by Proposition 4.1.1, the KΛ(x1, . . . , xr−1)[xr]-module B̃Λ

is torsion-free. By [Lan02, Theorem 7.3], and since ĨΛ is in Noether position, we deduce that
B̃Λ is a free KΛ(x1, . . . , xr−1)[xr]-module of finite rank.

Since qΛ is the characteristic polynomial of uΛ in B′
Λ, and since a basis of B̃Λ induces

a basis of B′
Λ, we deduce that qΛ is also the characteristic polynomial of uΛ in B̃Λ. Since

a basis of B̃Λ induces a basis of C′
Λ, we deduce that QΛ is the characteristic polynomial of

uΛ in C′
Λ. It follows that the square-free part of QΛ is the minimal polynomial of uΛ in

KΛ(x1, . . . , xr−1)[xr, . . . , xn]/
√

J ′
Λ. Since the extension of

√
J to KΛ(x1, . . . , xr−1)[xr, . . . , xn]

is
√

J ′
Λ, we are done with part (a) when s = r − 1. For the other values of s, we can

straightforwardly proceed by induction thanks to equality (5.2.1) (as used in the proof of
Corollary 5.2.4).

Let us now deal with part (b). If J is radical then J ′
Λ is radical by Corollary 4.1.5, and thus

the characteristic polynomial QΛ of uΛ in C′
Λ coincides with its minimal polynomial. We thus

obtain that QΛ is square-free. Conversely, if QΛ is square-free then the minimal polynomial of
uΛ modulo J ′

Λ is square-free. Therefore J is radical by Proposition 4.3.10(a).

Example 6.1.2. Let I be the radical unmixed ideal ((x1 + 1)2 + (x2 − 1)2 − 1) in general
Noether position in K[x1, x2]. We have uΛ = Λ2x2, and qΛ = T 2 − 2Λ2T + Λ2

2(x
2
1 + 1). Then

J = I+(x1) = ((x2−1)2, x1) is not radical, andQΛ = (T−Λ2)
2 is not square-free. Nevertheless,

the square-free part T − Λ2 of QΛ is the minimal polynomial of uΛ modulo the extension of√
J = (x2 − 1) to KΛ(x1)[x2].

We are now ready to give formulas to compute a univariate representation of
√
J , when u

remains a primitive element for
√
J . Let Q̃Λ represent the square-free part of QΛ, and let

W̃Λ,j = −∂Q̃Λ

∂Λj

.

Let Q̃λ, W̃λ,r+1, . . . , W̃λ,n represent Q̃Λ, W̃Λ,r+1, . . . , W̃Λ,n specialized at Λr+1 = λr+1, . . . ,Λn =
λn. By Proposition 6.1.1(a), Q̃Λ is the minimal polynomial of uΛ modulo the extension of√
J to KΛ(x1, . . . , xs−1)[xs, . . . , xn], so that by Corollary 4.3.11(b), Q̃λ, W̃λ,r+1, . . . , W̃λ,n is the

Kronecker representation of
√
J with primitive element u.

Let us now assume that we only know the representation qλ, wλ,r+1, . . . , wλ,n of I. From the
only specializations Qλ,Wλ,r+1, . . . ,Wλ,n of the latter representation at xs+1 = · · · = xr = 0,
one can easily compute the Kronecker representation of

√
J by the following formulas, whose

proof relies on the Chinese remainder theorem:

Corollary 6.1.3. Assume that I is radical, unmixed and in Noether position, and that u is
primitive for I and for

√
J .

Let Mλ denote the greatest common divisor of Qλ and Q′
λ, let q̃ = Qλ/Mλ denote the square-

free part of Qλ, let Pλ = Q′
λ/Mλ, and let P−1

λ denote the inverse of Pλ in K[T ]/(q̃(T )). Then
Mλ divides all the Wλ,j, so that can set Vλ,j = Wλ,j/Mλ, for each j ∈ {r + 1, . . . , n}.
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We define w̃j as the remainder of q̃′Vλ,jP
−1
λ divided by q̃(T ), for all j ∈ {r+ 1, . . . , n}, and

we let w̃j = 0, for j ∈ {s + 1, . . . , r}. Then q̃, w̃s+1, . . . , w̃n is the Kronecker representation of√
J with primitive element u.

Proof. We have to prove that q̃ = Q̃λ, w̃r+1 = W̃λ,r+1, . . . , w̃n = W̃λ,n. Since u is a primitive
element for

√
J , Corollary 4.3.11(a) implies that Q̃λ is square-free, whence q̃ = Q̃λ. It follows

that Mλ is the specialization of the greatest common divisor MΛ of QΛ and Q′
Λ at Λr+1 =

λr+1, . . . ,Λn = λn.

Let QΛ = Qα1
Λ,1 · · ·Qαl

Λ,l represent the irreducible factorization of QΛ. Of course, we have

Q̃Λ = QΛ,1 · · ·QΛ,l. We introduce Q̂Λ,j = Q̃Λ/QΛ,j and

W̃Λ,j,k = −∂QΛ,k

∂Λj

, for all j ∈ {r + 1, . . . , n}, and all k ∈ {1, . . . , l}.

We write Qλ,j, Q̂λ,j and W̃λ,j,k for the respective specializations of QΛ,j, Q̂Λ,j and W̃Λ,j,k at
Λr+1 = λr+1, . . . ,Λn = λn. From

WΛ,j

MΛ

=
l
∑

k=1

αkW̃Λ,j,kQ̂Λ,k, where WΛ,j = −∂QΛ

∂Λj

,

we deduce that

Vλ,j =
l
∑

k=1

αkW̃λ,j,kQ̂λ,k.

Independently, a straightforward computation gives us the following identities:

W̃λ,j =
l
∑

k=1

W̃λ,j,kQ̂λ,k, and Pλ =
l
∑

k=1

αkQ
′
λ,kQ̂λ,k.

Finally the fact that PλW̃λ,j equals Q̃′
λVλ,j in K[T ]/(Q̃λ(T )) is equivalent to the following

identity in K[T ]/(Q̃λ(T )):

(

l
∑

k=1

αkQ
′
λ,kQ̂λ,k

)(

l
∑

k=1

W̃λ,j,kQ̂λ,k

)

=

(

l
∑

k=1

Q′
λ,kQ̂λ,k

)(

l
∑

k=1

αkW̃λ,j,kQ̂λ,k

)

,

which is clearly satisfied modulo each Qλ,k for all k ∈ {1, . . . , l}.

Example 6.1.4. The Kronecker representation of I = (x2
1 + (x2 − 1)2 − 1) with respect to x2

is qλ = x2
2 − 2x2 + x2

1, wλ,2 = 2x2 − 2x2
1. By applying the formulas of Corollary 6.1.3, we

obtain the Kronecker representation q̃ = x2
2 − 2x2, w̃1 = 0, w̃2 = 2x2 of

√

I + (x1). This yields
the univariate representation q0 = x2

2 − 2x2, v0,2 = x2 used in Example 5.4.3. To compute the

Kronecker representation of
√

I + (x1 − 1), we apply the formulas on the ideal K = ((y2−1)2+

(y1 + 1)2 − 1). We obtain the univariate representation y2 − 1, 0, 1 of
√

K + (y1) with respect

to y2, and thus the one x2 − 1, 1, 1 of
√

I + (x1 − 1) with respect to x2.
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Remark 6.1.5. Let I be a radical unmixed ideal in Noether position with primitive element
u, and let δ = degT (qΛ) be the degree of the monic polynomial qΛ. Then Corollary 4.3.11(b)
ensures that degT (QΛ) = degT (qλ) = δ. Now if J is radical with primitive element u, then
Proposition 6.1.1 ensures that QΛ is square-free, so that degT (Q̃λ) = δ. Therefore deg(Mλ) = 1,
and the Kronecker representation of J is qλ, wλ,r+1, . . . , wλ,n evaluated in xs+1 = . . . = xn = 0;
we will widely use this particular case in Section 6.2.

Example 6.1.6. Let I = (x2
3 + x2

2 − 1), whose Kronecker representation with respect to x3 is
q = T 2 +x2

2 − 1, w3 = −2x2
2 +2 (see Figure 5.2.6). The Kronecker representation of I +(x1, x2)

is q̃ = T 2 − 1, w̃3 = 2.

Corollary 6.1.3 allows the computation of the Kronecker representation of
√
J . We now

need a sufficient condition on I for J to be radical; Corollary 6.1.9 gives a genericity result to
ensure this condition on I.

Corollary 6.1.7. Assume that I is radical, unmixed, and in Noether position (respectively,
general Noether position), and that I + (x1, . . . , xr) is radical.

(a) J is radical, unmixed with dimension s, and in Noether position (respectively, general
Noether position).

(b) If u = λr+1xr+1+· · ·+λnxn is a primitive element for I+(x1, . . . , xr) then it is a primitive
element for J .

Proof. In order to prove part (a), it remains to prove that J is radical by Corollary 5.2.4.
Since I + (x1, . . . , xr) is radical, Proposition 6.1.1(b) (applied with s = 0) implies that the
specialization of qΛ at x1 = · · · = xr = 0 is square-free. We deduce that QΛ is square-free, and
Proposition 6.1.1(b) thus gives us the radicality of J .

By combining Proposition 6.1.1 applied with s = 0 and Corollary 4.3.11(a) we obtain that
the specialization of qΛ at x1 = · · · = xr = 0 and Λr+1 = λr+1, . . . ,Λn = λn is square-free,
so is the specialization of QΛ at Λr+1 = λr+1, . . . ,Λn = λn. Therefore part (b) follows from
Corollary 4.3.11(a).

Example 6.1.8. Let I = (x2
3 − x2). Then I + (x2) = (x2

3, x2) is not radical, and neither is
I + (x1, x2) = (x2

3, x2, x1). Geometrically speaking, each point in V(I + (x2)) is a double root
of I + (x2), in particular the origin V(I + (x1, x2)).

Corollary 6.1.9. Assume that I is radical, unmixed, and in Noether position. Then the set of
points (β1, . . . , βr) ∈ Kr such that I + (x1 − β1, . . . , xr − βr) is radical is Zariski dense.

Proof. Proposition 4.3.10(a) tells us that qΛ is square-free, and thus that its discriminant is
nonzero. If the specialization of this discriminant at x1 = β1, . . . , xr = βr is nonzero, then
Proposition 6.1.1(b) implies that I + (x1 − β1, . . . , xr − βr) is radical.

Example 6.1.10. Let I = (x2
3 −x2) in K[x1, x2, x3]. For any (β1, β2) ∈ K2 with β2 6= 0, the ideal

I + (x1 − β1, x2 − β2) = (x2
3 − β2

2 , x1 − β1, x2 − β2) is radical.
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The following corollary gathers our previous genericity results in a form that will be useful
in Section 7.1. We let φ denote an affine change of the variables of the following form:







x1
...
xn






7→











1 α1,2 . . . α1,n

0 1 . . . α2,n
...

. . . . . .
...

0 . . . 0 1

















x1
...
xn






+







β1
...
βn






,

where all the αk,l and βk are taken in K.

Corollary 6.1.11. Assume that I is radical and unmixed with dimension r ≥ 1. Let f and g
be in K[x1, . . . , xn] such that f is a nonzerodivisor in B, and such that (I + (f)) : g∞ 6= (1).
Then

√

I + (f) and
√

I + (f) : g∞ are unmixed of dimension r− 1, and there exists a Zariski
dense subset of maps φ such that:

(a) I ◦ φ,
√

I + (f) ◦ φ and (
√

I + (f) : g∞) ◦ φ are in general Noether position;

(b) I ◦ φ+ (x1, . . . , xr) is radical;

(c) (
√

I + (f) : g∞) ◦ φ+ (x1, . . . , xr−1) = (
√

I + (f) ◦ φ+ (x1, . . . , xr−1)) : (g ◦ φ)∞;

(d) xr is a primitive element for
√

(I + (f)) ◦ φ+ (x1, . . . , xr−1);

(e) xr+1 is a primitive element for
√

I ◦ φ+ (x1, . . . , xr−1, xr − a), for each root a ∈ K̄ of the

minimal polynomial of xr modulo
√

(I + (f)) ◦ φ+ (x1, . . . , xr−1).

Proof. Remark that (I + (f)) : g∞ 6= (1) implies that (I + (f)) 6= (1), so that Theorem 5.2.1
implies that

√

I + (f) is unmixed of dimension r−1, and so is
√

I + (f) : g∞ by Corollary 4.1.7.
By combining Theorem 2.4.3, Corollary 4.1.7 and Proposition 5.1.2 we obtain that there exists
a Zariski dense subset of maps φ such that property (a) holds. Property (b) comes from
Corollary 6.1.9. Since g is a nonzerodivisor modulo

√

I + (f) : g∞, property (c) follows from
Corollary 5.2.7.

Now we suppose that properties (a)–(c) hold. From Corollary 5.2.4, we know that the
ideal

√

(I + (f)) ◦ φ+ (x1, . . . , xr−1) has dimension 0. We introduce the linear forms l1, . . . , ln
defined by

(l1, . . . , ln) = φ−1(x1, . . . , xn).

By construction, l1, . . . , lr−1 are algebraically independent modulo I + (f) and lr, . . . , ln are
generally integral over K[l1, . . . , lr−1] modulo I + (f). Since the linear part of φ is upper
triangular, we deduce from Proposition 2.3.9 that xr, . . . , xn are also generally integral over
K[l1, . . . , lr−1] modulo I + (f). Therefore we can naturally see

√

I + (f) + (l1, . . . , lr−1) as an
ideal of K[xr, . . . , xn], so that Corollary 4.3.12 gives us that the set of points (λr+1, . . . , λn)
such that lr = xr + λr+1xr+1 + · · ·+ λnxn is a primitive element for

√

I + (f) + (l1, . . . , lr−1) is
Zariski dense, which yields property (d).

Let a ∈ K̄ be as defined in part (e). By Corollary 5.2.4,
√

I + (l1, . . . , lr−1, lr − a) has dimen-
sion 0. We can use Corollary 4.3.12 again in order to obtain that the set of points (λr+2, . . . , λn)
such that lr+1 = xr+1+λr+2xr+2+· · ·+λnxn is a primitive element for

√

I + (l1, . . . , lr−1, lr − a)
is Zariski dense, which yields property (e).
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6.2 Lifting Step

In this section, we let r be a positive integer, and f1, . . . , fn−r, g be polynomials in K[x1, . . . , xn].
We assume that the ideal I = (f1, . . . , fn−r) : g∞ is unmixed, radical, in general Noether
position, with dimension r and primitive element xr+1. Moreover, we assume that the ideal
I + (x1, . . . , xr) is radical with same primitive element xr+1, so that J = I + (x1, . . . , xr) and
K = I +(x1, . . . , xr−1) are radical unmixed with primitive element xr+1 by Corollary 6.1.7. We
also assume that g is a nonzerodivisor modulo J .

The input of the lifting step is the univariate representation Q, Vr+1, . . . , Vn of J seen
in K[xr+1, . . . , xn] with primitive element xr+1. We write Q,Wr+1, . . . ,Wn for the associated
Kronecker representation. The output is the univariate representation Q̃, Ṽr+1, . . . , Ṽn of K
seen in K[xr, . . . , xn] with the same primitive element xr+1; we write Q̃, W̃r+1, . . . , W̃n for the
associated Kronecker representation.

The ingredients of this lifting step are the Newton iteration that allows us to compute a
Taylor expansion of Q̃, W̃r+1, . . . , W̃n at any order, and Corollary 4.3.11 for the bound on the
degrees of the Q̃, W̃r+1, . . . , W̃n. We introduce Â = K[[x1, . . . , xr]], and B̂ = Â[xr+1, . . . , xn]/Î,
where Î represents the extension of I to Â[xr+1, . . . , xn]. We let q, wr+1, . . . , wn (respectively,
q, vr+1, . . . , vn) denote the Kronecker (respectively, univariate) representation of I with primi-
tive element xr+1.

From Remark 6.1.5, we know that the specializations of q, wr+1, . . . , wn at x1 = · · · = xr = 0
coincide with Q,Wr+1, . . . ,Wn respectively, and that the specializations of q, wr+1, . . . , wn at
x1 = · · · = xr−1 = 0 coincide with Q̃, W̃r+1, . . . , W̃n respectively. Furthermore, thanks to
Corollary 4.3.11(b), it is sufficient to compute the approximation of q, wr+1, . . . , wn in Â[T ] to
precision (x1, . . . , xr−1, x

δ+1
r ) in order to obtain Q̃, W̃r+1, . . . , W̃n, where δ denotes degT (q) =

deg(Q).

More generally we are going to present an algorithm that computes the approximation
of q, wr+1, . . . , wn in Â[T ] to any precision. This algorithm relies on a modified version of
the classical Newton’s method. Let o[0] be any ideal of Â contained in (x1, . . . , xr). It is

sufficient to describe how to go from the approximation q[0], w
[0]
r+1, . . . , w

[0]
n to precision o[0] to

the approximation q[1], w
[1]
r+1, . . . , w

[1]
n to precision o[1], for any ideal o[1] containing (o[0])2. Inside

the approximation algorithm we will need the following statement, in which (b) is part of the
classical Jacobian criterion:

Lemma 6.2.1. The polynomials vr+1 = wr+1(q
′)−1, . . . , vn = wn(q′)−1 are well defined in Â[T ],

and the following properties hold:

(a) Î = (q(xr+1), xr+1 − vr+1(xr+1), . . . , xn − vn(xr+1)).

(b) The Jacobian matrix J of f1, . . . , fn−r with respect to the variables xr+1, . . . , xn is invert-
ible in B̂.

Proof. We have already seen that q′ is invertible modulo q in Â[T ]. Therefore vr+1, . . . , vn are
well defined in Â[T ], and we obtain the following inclusion from Corollary 4.3.11(b):

(q(xr+1), xr+1 − vr+1(xr+1), . . . , xn − vn(xr+1)) ⊆ Î.
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6.2. Lifting Step

Conversely, for any f ∈ I, we have that

f(x1, . . . , xr, vr+1(T ), . . . , vn(T )) = 0 in A′[T ]/(q(T )).

The fact that the latter equality also holds in Â[T ]/(q(T )) concludes part (a).

Let u = λr+1xr+1 + · · · + λnxn be a K-linear form, and let qλ be its minimal polynomial
in B′. By Theorem 4.2.1(c), there exist some polynomials h1, . . . , hn−r in K[x1, . . . , xn] and
a nonnegative integer α such that gαqλ(u) = h1f1 + · · · + hn−rfn−r. By differentiating with
respect to xr+1, . . . , xn, and by multiplying by g both sides of the latter equality, we deduce
that all the entries of

gα+1q′λ(u)(λr+1, . . . , λn) − g(h1, . . . , hn−r)J (6.2.1)

belong to (f1, . . . , fn−r). Since g is a nonzerodivisor in K[x1, . . . , xn]/J , the constant coefficient
of the minimal polynomial of g in K[x1, . . . , xn]/J is in K \ {0} by Lemma 5.1.1. Therefore by
Proposition 6.1.1(a), the constant coefficient of the minimal polynomial of g in B is invertible
in B̂, and so is g. Since (6.2.1) also holds over Â and since q′(u) is invertible in B̂, we deduce
that J is invertible in B̂, which proves part (b).

Since q[1] coincides with q[0] to precision o[0], there exists a unique polynomial ∆ ∈ o[0][T ]
defined to precision o[1], with deg(∆) ≤ δ − 1, and such that q[0](T ) divides q[1](T + ∆(T ))
to precision o[1], namely ∆(T ) is the remainder of −q[1](q[1]′)−1 divided by q[0] to the precision

o[1]. For each j ∈ {r + 1, . . . , n}, we introduce the polynomial ṽ
[1]
j (T ) as the remainder of

v
[1]
j (T + ∆(T )) divided by q[0](T ) to precision o[1], where we recall vj = wj(q

′)−1.

From Lemma 6.2.1(a), we know that:

fi(x1, . . . , xr, v
[1]
r+1(T ), . . . , v[1]

n (T )) = 0 in (Â/o[1])[T ]/(q[1](T )),

for all i ∈ {1, . . . , n− r}. By substituting T +∆(T ) for T in the latter equality we deduce that:

fi(x1, . . . , xr, ṽ
[1]
r+1(T ), . . . , ṽ[1]

n (T )) = 0 in (Â/o[1])[T ]/(q[0](T )),

for all i ∈ {1, . . . , n − r}. But thanks to Lemma 6.2.1(b), ṽ
[1]
r+1, . . . , ṽ

[1]
n can be obtained by

means of the following Newton iteration computed in (Â/o[1])[T ]/(q[0](T )) to precision o[1]:







ṽ
[1]
r+1
...

ṽ
[1]
n






=







v
[0]
r+1
...

v
[0]
n






− J−1







f1
...

fn−r






(x1, . . . , xr, v

[0]
r+1, . . . , v

[0]
n ).

Now it remains to show how the v
[1]
j can be recovered from the ṽ

[1]
j . First of all, since v

[1]
r+1(T ) =

T , we easily recover ∆(T ) = ṽ
[1]
r+1(T ) − T . Then, for each j ∈ {r + 1, . . . , n}, by means of a

second order Taylor expansion, we obtain that:

ṽ
[1]
j (T ) = v

[1]
j (T ) + ∆j(T ),
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where ∆j(T ) represents the remainder of ∆(T )v
[0]
j

′
(T ) divided by q[0](T ) to precision o[1]. This

way we can deduce v
[1]
j (T ). In a similar manner we have that

q[1](T ) = q[0](T ) + ∆q(T ),

where ∆q(T ) represents the remainder of ∆(T )q[0]′(T ) divided by q[0](T ) to precision o[1].

All these operations are summarized in the following algorithm:

Algorithm 6. Lifting Step

Input: • f1, . . . , fn−r, g ∈ K[x1, . . . , xn] such that the ideal I = (f1, . . . , fn−r) : g∞ is radical
unmixed in general Noether position with dimension r and primitive element xr+1,
and such that J = I + (x1, . . . , xr) is radical with same primitive element xr+1;

• the univariate representationQ, Vr+1, . . . , Vn of J seen in K[xr, . . . , xn] with primitive
element xr+1; we let δ = deg(Q).

Output: the Kronecker representation Q̃, W̃r+1, . . . , W̃n of the ideal K = I +(x1, . . . , xr−1) seen
in K[xr, . . . , xn] with primitive element xr+1.

1. Initialize Q̃ with Q, Ṽj with Vj for j ∈ {r + 1, . . . , n}, and ℓ with 0.

2. While 2ℓ ≤ δ + 1, do

a. compute ṽr+1, . . . , ṽn to precision x2ℓ+1

r with the formula







ṽr+1
...
ṽn






=







Ṽr+1
...

Ṽn






−






J−1







f1
...

fn−r












(0, . . . , 0, xr, Ṽr+1, . . . , Ṽn),

where J−1 is the inverse of the Jacobian matrix J of f1, . . . , fn−r with respect to
xr+1, . . . , xn;

b. compute ∆ = ṽr+1 − xr+1;

c. for j in {r + 1, . . . , n}, do

i. compute the remainder ∆j of ∆
∂Ṽj

∂xr+1
divided by Q̃ to precision x2ℓ+1

r ;

ii. replace Ṽj with ṽj − ∆j to precision x2ℓ+1

r .

d. i. compute the remainder ∆Q̃ of ∆ ∂Q̃
∂xr+1

divided by Q̃ to precision x2ℓ+1

r ;

ii. replace Q̃ with Q̃+ ∆Q̃;

e. replace ℓ with ℓ+ 1.

3. For j in {r + 1, . . . , n}, compute the remainder W̃j of Ṽj
∂Q̃

∂xr+1
divided by Q̃ to precision

xδ+1
r .

4. Return Q̃, W̃2, . . . , W̃n.
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Proposition 6.2.2. Algorithm 6 works correctly as specified.

Proof. We obtain at step 3 a Taylor expansion of Q̃,Wtr+1, . . . ,Wtn to precision xδ+1
r , that is

exactly the wanted Kronecker representation of J by part (b) of Corollary 4.3.11.

In step 4a, the value of the inverse of J can be computed with the classical iteration for the
inverse. For more algorithmic details we refer the reader to [GLS01, Section 4].

Example 6.2.3. Let us recover the circle defined by f1 = x2
1 + x2

2 + x2
3 − 1, f2 = x3 − x1 from

the two points vanishing (f1, f2) + (x1). The univariate representation of (f1, f2) + (x1) with
primitive element x2 is Q = x2

2 − 1/2, V2 = V3 = x2. The degree of Q is δ = 2, so that we will
pass twice through the while loop. For ℓ = 0, we have

(

ṽ2

ṽ3

)

=

(

x2

x2

)

− 1

2

(

x2 −1
x2 1

)(

0
0

)

=

(

x2

x2

)

,

so that ∆ = 0, and Q̃, Ṽ2, Ṽ3 remain unchanged. With ℓ = 1, we compute

(

ṽ2

ṽ3

)

=

(

x2

x2

)

− 1

2

(

x2 −1
x2 1

)(

x2
1

0

)

=

(

x2 − x2
1x2/2

x2 − x2
1x2/2

)

.

We thus have ∆ = −x2
1x2/2, so that Ṽ2 = Ṽ3 = x2. We recover the Kronecker representation

Q̃ = 2x2
2 + x2

1 − 1, W̃2 = W̃3 = −x2
1 + 1 of (f1, f2) with respect to x2.

As for Algorithms 4 and 5, part of the hypotheses needed for Algorithm 6 will be verified
with an high probability after a random affine change of variables for any input system such
that (f1, . . . , fn−r) : g∞ is radical unmixed. Proposition 7.1.6 will permit us to bring back any
zero-dimensional system to this situation by a linear mixing of the equations.
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Chapter 7

A Kronecker Solver with Multiplicities

We are now ready to complete the presentation of the Kronecker solver as designed in [GLS01].
This algorithm computes a univariate representation of the ideal

√

(f1, . . . , fn) : g∞ under some
intrinsic geometric hypothesis on the input system f1, . . . , fn, g. We extend it so that it fur-
ther computes a univariate representation with multiplicities of any zero-dimensional ideal
(g1, . . . , gn) : g∞. We conclude this chapter with applying Proposition 5.3.1 to the definition
of the degree of an ideal and a proof of a Bézout theorem. Both results are tools for the cost
analysis of the Kronecker solver in [GLS01], from which we recall the result in Theorem 7.1.7.

7.1 Computation of the Radical

Let f1, . . . , fn, g ∈ K[x1, . . . , xn] be such that f1, . . . , fn is a reduced regular sequence in the
open subset {g 6= 0}, as defined in the introduction of Part II. The algorithm computes some
representations of

Ii = (f1, . . . , fi) : g∞

in sequence for i from 0 to n, with the convention I0 = (1). Since it is easy to make the
algorithm stop as soon as it reaches Ii = (1), in order to simplify the presentation, we will
assume in the rest of this section that Ii 6= (1) for all i ∈ {0, . . . , n}.

Under our hypotheses we have the following central properties:

Proposition 7.1.1. Let f1, . . . , fn, g ∈ K[x1, . . . , xn] be such that f1, . . . , fn is a reduced regular
sequence in the open subset {g 6= 0}. Then for all i ∈ {0, . . . , n − 1}, the ideals

√

Ii + (fi+1)
and Ii+1 are unmixed with dimension n− i− 1.

Proof. By definition, I0 equals (0), hence is unmixed with dimension n. By induction, assume
that Ii is unmixed of dimension n− i for some i ∈ {0, . . . , n− 1}. Since fi+1 is assumed to be
a nonzerodivisor modulo Ii, Theorem 5.2.1 implies that

√

Ii + (fi+1) is either (1) or unmixed
with dimension n− i− 1. From

√

Ii+1 =
√

(Ii + (fi+1)) : g∞ =
√

Ii + (fi+1) : g∞,
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Figure 7.1.3.
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we deduce that Ii + (fi+1) has dimension n− i− 1 since Ii+1 is assumed to be proper. When
i ≤ n− 2, Ii+1 is assumed to be radical, so that its unmixedness and its dimension follow from
Corollary 4.1.7. When i = n − 1, Ii + (fi+1) is necessarily unmixed of dimension 0, so that
Corollary 4.1.7 gives us that Ii+1 is unmixed of dimension 0.

Example 7.1.2. Let














f1 = x2
1 + (x2 − 1)2 − 1

f2 = x2
3 − x2

2

f3 = x2 − x2
1

g = 1

as in Example 4.3.14. Then I1 = (f1), respectively I2 = (f1, f2), I3 = (f1, f2, f3) are unmixed
with dimension 2, respectively 1, 0.

For i ∈ {1, . . . , n}, we set

Ji =
√

Ii + (x1, . . . , xn−i)

and
Ki =

√

Ii + (x1, . . . , xn−i−1),

that define a finite set and a curve obtained from Ii by specialization. The solver is organized
around one main loop. The ith iteration of this loop computes the univariate representation
of Ji+1 with primitive element xn−i from the one of Ji with primitive element xn−i+1. This
iteration divides into the following three steps:

1. Lifting step. Compute the Kronecker representation of Ki with primitive element xn−i+1.

2. Intersection step. Compute the univariate representation of
√

Ki + (fi+1) with primitive
element xn−i.

3. Cleaning step. Compute the univariate representation of
√

Ki + (fi+1) : g∞ = Ji+1 with
primitive element xn−i.

Of course, these computations do not make sense without some hypotheses on the ideals Ii,
as for instance Noether position and suitable primitive elements. We use the genericity results

90



7.1. Computation of the Radical

collected in the previous chapters to ensure these hypotheses. More precisely, before entering
the main computations, the solver performs a random affine change of the variables in the input
polynomials f1, . . . , fn and g so that the following properties hold:

A1. Ii is unmixed of dimension n− i and in general Noether position, for all i ∈ {0, . . . , n}.

A2.
√

Ii + (fi+1) is unmixed of dimension n − i − 1 and in general Noether position, for all
i ∈ {0, . . . , n− 1}.

A3.
√

Ii + (fi+1) : g∞ is unmixed of dimension n− i− 1 and in general Noether position, for
all i ∈ {0, . . . , n− 1}.

A4. Ii + (x1, . . . , xn−i) is radical for all i ∈ {0, . . . , n− 1}.

A5. Ji+1 =
√

Ki + (fi+1) : g∞, for all i ∈ {0, . . . , n− 1}.

A6. xn−i is a primitive element for
√

Ki + (fi+1), for all i ∈ {0, . . . , n− 1}.

A7. xn−i+1 is a primitive element for
√

Ki + (xn−i − a) for each root a ∈ K̄ (the alge-

braic closure of K) of the minimal polynomial of xn−i modulo
√

Ki + (fi+1), for all
i ∈ {1, . . . , n− 1}.

A8. Ki = Ii + (x1, . . . , xn−i−1), is unmixed of dimension 1, and is in general Noether position
when seen in K[xn−i, . . . , xn], for all i ∈ {0, . . . , n− 1}.

A9. Ji is zero dimensional, for all i ∈ {0, . . . , n}.

A10. xn−i+1 is a primitive element for Ji, for all i ∈ {1, . . . , n}.

A11. xn−i+1 as a primitive element for Ki, for all i ∈ {1, . . . , n− 1}.

A12. xn−i+1 as a primitive element for Ii, for all i ∈ {1, . . . , n− 1}.

We are to show that such a change of the variables can be found at random with a very
high probability of success. More precisely, we are to prove that almost all affine changes of
the variables φ with shape







x1
...
xn






7→











1 α1,2 . . . α1,n

0 1 . . . α2,n
...

. . . . . .
...

0 . . . 0 1

















x1
...
xn






+







β1
...
βn






, (7.1.1)

ensures properties (A1)–(A12). Let us mention here that our approach closely follows [HMW01,
Section 3].

Proposition 7.1.4. There exists a Zariski dense subset of maps φ with shape (7.1.1) for which
properties (A1)–(A12) are satisfied if we replace the input system by f1 ◦ φ = · · · = fn ◦ φ = 0,
g ◦ φ 6= 0.
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Proof. For any i ∈ {0, . . . , n− 1}, Corollary 6.1.11 applied with Ii, fi+1 and g gives us proper-
ties (A1)–(A7) directly. Assume now that (A1)–(A7) hold. Then (A8) and (A9) are necessarily
satisfied, by Corollaries 5.2.4 and 6.1.7(a). Property (A10) is obtained via Proposition 4.3.1(a)
thanks to (A6) and the inclusion

√

Ki + (fi+1) ⊆ Ji+1. Finally, properties (A11) and (A12)
follow from Corollary 6.1.7(b) thanks to (A4).

Example 7.1.5. As already seen in Example 4.3.14, the input system of Example 7.1.2 does not
satisfy (A6). After the change of variables





x1

x2

x3



 7→





1 2 4
0 1 0
0 0 1









x1

x2

x3



 ,

we obtain the system














f1 = (x1 + 2x2 + 4x3)
2 + (x2 − 1)2 + 1

f2 = x2
3 − x2

2

f3 = x2 − (x1 + 2x2 + 4x3)
2

g = 1,

which satisfies all properties (A1)–(A12).

Here it is important to underline that such a change φ of the variables does not spoil the
evaluation cost of the input system: using evaluation data structures for the input polynomials
is a great advantage here. Of course this operation yields a probabilistic aspect in the Kronecker
algorithm: if we choose a map φ for which one of the properties (A1)–(A7) is not verified, the
output of the algorithm may not be correct. Nevertheless, the fact that “bad choices” of maps
φ are enclosed in a Zariski closed subset ensure that the probability that this occurs is very
small. Moreover, we could control this probability by evaluating the degrees of the polynomials
defining the different Zariski subsets. Estimating such a degree is quite technical here, since the
bad choices of the fibers β depend on the choosen Noether position α; by analogy with [HMW01,
Section 3], we expect a degree belonging to DO(1), where D is the product of all the degrees of
the input polynomials. The reader interessed in this kind of result may consult [Mat99, KPS01].

In the case when In = (f1, . . . , fn) : g∞ is not radical, Algorithm 5 permits us to compute a
univariate representation with multiplicities at the last intersection step. The following variant
of Bertini’s lemma further permits to discard the reduced regular sequence hypothesis on the
input by ensuring that a suitable random mix of the input equations postpones the multiplicities
to the last intersection step. These idea has already be used for algorithmic purpose, for instance
in [GH93, KP96]; we refer to [Lec00] for bounds on the probability of failure. We directly give
a statement in a form that will be useful for Section 10.2 in Part III, when we use it here with
s = n:

Proposition 7.1.6. Let g1, . . . , gs, g be polynomials in K[x1, . . . , xn] such that (g1, . . . , gs) : g∞

is a zero-dimensional ideal. Let τ = min(s, n + 1). Then there exists a Zariski dense open
subset U of K̄τ×s such that for all α = (αk,ℓ)1≤ℓ≤τ, 1≤k≤s ∈ U , the sequence

fℓ = α1,ℓg1 + · · · + αs,ℓgs, ℓ ∈ {1, . . . , τ}

satisfies the following properties:

92



7.1. Computation of the Radical

(a) f1, . . . , fn is a reduced regular sequence in the open subset {g 6= 0}.

(b) If s = n, then (f1, . . . , fn) : g∞ = (g1, . . . , gn) : g∞;
if s ≥ n+ 1, then (f1, . . . , fn) : g∞ + (fn+1) = (g1, . . . , gs) : g∞.

Proof. Following [Lec00], we let V , respectively, Vi for i ∈ {1, . . . , τ}, denote the variety of zeros
of (g1, . . . , gs) in K̄n, respectively, of (f1, . . . , fi). We let Ṽ , respectively, Ṽi, denote the variety
of zeros of (g1, . . . , gs) : g∞ in K̄n, respectively, of (f1, . . . , fi) : g∞; the irreducible components
of Ṽi are the components of Vi that are not included in the set of zeros of g. By [Lec00, Lemma
1], for α in a Zariski dense open subset of K̄τs, for any irreducible component W of Vi of
dimension n − i, either W is a component of V , or the variety of zeros of fi+1 intersects W
regularly. Then for i ∈ {1, . . . , n−1}, the variety of zeros of fi+1 intersects all the components of
Ṽi regularly since Ṽ is zero-dimensional. The sequence f1, . . . , fn is thus regular in {g 6= 0}. In
the overdetermined case, the previous alternative ensures us that, if m is a point of Ṽn that do
not belong to Ṽ , then m does not vanish fn+1, which gives part (b). Lastly, a similar argument
with [Lec00, Lemma 2] yields the radicality of the ideals (f1, . . . , fi) : g∞, i ∈ {1, . . . , τ} for α
in a Zariski dense open subset of K̄τs.

We now summarize the main algorithm:

Algorithm 7. Kronecker Solver with Multiplicities

Input: g1, . . . , gn, g ∈ K[x1, . . . , xn] such that (g1, . . . , gn) : g∞ is zero-dimensional.

Output: a univariate representation with multiplicities χ,Q, V1, . . . , Vn of (g1, . . . , gn) : g∞.

1. Let A be a random invertible n× n matrix with entries in K, and set

(f1, . . . , fn) = (A(g1, . . . , gn)t)t.

2. Let φ be a random map as in (7.1.1), and replace f1, . . . , fn, g with f1 ◦φ, . . . , fn ◦φ, g ◦φ.

3. Let Q = f1(0, . . . , 0, xn)/ gcd(f1(0, . . . , 0, xn), g(0, . . . , 0, xn)), Vn = xn be the univariate
representation of J1 with respect to xn.

4. For i from 1 to n− 1

a. by Algorithm 6, compute the Kronecker representation of Ki with primitive element
xn−i+1;

b. by Algorithm 5, compute the univariate representation (with multiplicities if i =
n− 1) of Ki + (fi+1) with primitive element xn−i;

c. by Algorithm 4, compute the univariate representation (with multiplicities if i =
n− 1) of

√

Ki + (fi+1) : g∞ = Ji+1 with primitive element xn−i.

5. Return χ,Q, φ−1(V1, . . . , Vn).
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Theorem 7.1.7. Let g1, . . . , gn, g be polynomials in K[x1, . . . , xn] given by a straight-line pro-
gram of size L such that (g1, . . . , gn) : g∞ is a zero-dimensional ideal. We let di denote the
degree of gi, assume that d1 ≥ · · · ≥ dn, and set D =

∏n
i=1 di and d = max(d1, . . . , dn). Then

Algorithm 7 computes a univariate representation with multiplicities of (g1, . . . , gn) : g∞ by
performing

Õ(n(nL+ n4)(dD)2)

arithmetic operations in K. The correctness of the output relies on random choices of O(n2)
elements of K; choices for which the result is not correct are enclosed in a strict algebraic subset.

Proof. Algorithm 7 works correctly as specified for A and φ outside a strict algebraic subset by
Propositions 7.1.6, 7.1.4, 4.4.2, 5.4.2 and 6.2.2. Steps 1 and 2 replace the straight-line program
of size L given as input with a straight-line program of size L+ 2n2. Now, since d1 ≥ · · · ≥ dn,
the degree of the variety of zeros of (f1, . . . , fi) : g∞ is at most d1 · · · di by Corollary 7.2.8 below.
The complexity bound is thus a direct consequence of [GLS01, Theorem 1].

Example 7.1.8. Let us continue with the data of Example 7.1.2. Since f1, f2, f3 already form
a regular sequence, we do not need to mix the equations. We perform the change of variables
announced in Example 7.1.5, and deal with the new equations f1, f2, f3. We enter the third
pass through the while loop with a univariate representation of J2 =

√

(f1, f2) + (x1), which
lifts into the univariate representation of K2 = (f1, f2) given in Example 4.3.3. At the end
of the intersection step, we obtain the following univariate representation of (f1, f2, f3) with
multiplicities:























χ = x3
1(x1 − 3)(x1 − 1)(x1 + 5)(x1 + 7),

Q = x1(x1 − 3)(x1 − 1)(x1 + 5)(x1 + 7),
V1 = x1,
V2 = − 11866

1157625
x6

1 − 105848
1157625

x5
1 + 811

46305
x4

1 + 1255064
1157625

x3
1,

V3 = 389
44100

x5
1 + 3427

44100
x4

1 − 401
17640

x3
1 − 41401

44100
x2

1 − 1
8
x1.

Since g = 1, the cleaning step has no effect. By applying the inverse change of variables
x1 → x1 − 2x2 − 4x3, we recover a univariate representation in the original coordinates:































χ = T 3(T − 3)(T − 1)(T + 5)(T + 7),
Q = T (T − 3)(T − 1)(T + 5)(T + 7),
V1 = 2 11866

1157625
T 6 + (2 105848

1157625
− 4 389

44100
)T 5 + (−2 811

46305
− 4 3427

44100
)T 4,

+(−21255064
1157625

+ 4 401
17640

)T 3 + (441401
44100

)T 2 + (1 + 41
8
)T,

V2 = − 11866
1157625

T 6 − 105848
1157625

T 5 + 811
46305

T 4 + 1255064
1157625

T 3,
V3 = 389

44100
T 5 + 3427

44100
T 4 − 401

17640
T 3 − 41401

44100
T 2 − 1

8
T.

One can read from this formulas that the multiplicity of the origin as a root of (f1, f2, f3) is 3.
We will compute in Part III the structure of this multiple point.

For our main Algorithm 14 in Section 10.3, we will act on the last intersection step, and we
will deal with overdetermined systems. We will rather use a variant of the Algorithm 7, that
returns some intermediate results:

Corollary 7.1.9. Let g1, . . . , gs, g be polynomials in K[x1, . . . , xn] given by a straight-line pro-
gram of size L, such that (g1, . . . , gs) : g∞ is a zero-dimensional ideal. We let di denote the
degree of gi, we assume that d1 ≥ · · · ≥ ds, and we set D =

∏n
i=1 di and d = max(d1, . . . , dn).

Then we can compute
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7.2. Degree and Bézout’s Theorem

• an affine change of variables φ as in (7.1.1),

• an unmixed one-dimensional radical ideal I under the form of its Kronecker representation
q, w3, . . . , wn in x2,

• a polynomial f ∈ K[x1, . . . , xn] such that (I + (f)) : (g ◦ φ)∞ is zero-dimensional, and
equals ((g1, . . . , gn) : g∞) ◦ φ if s = n,

• the univariate representation with multiplicities χ,Q, V1, V2, . . . , Vn in x1 of (I + (f)) :
(g ◦ φ)∞,

• if s > n, a polynomial h ∈ K[x1, . . . , xn] such that ((g1, . . . , gs) : g∞) ◦ φ = ((I + (f)) :
(g ◦ φ)∞) + (h)

with
Õ(n(n(L+ ns) + n4)(dD)2)

arithmetic operations in K. The correctness of the output relies on random choices of O(ns)
elements of K; choices for which the result is not correct are enclosed in a strict algebraic subset.
The polynomials f and h are given by a straight-line program of size L+ ns+ n2.

Proof. If s > n, we replace A by a matrix with n+1 rows and s columns in step 1 of Algorithm 7.
We thus obtain a new system f1, . . . , fn+1. We will take I = (f1 ◦ φ, . . . , fn−1 ◦ φ) : (g ◦ φ)∞,
f = fn ◦ φ and h = fn+1 ◦ φ. For φ and A in Zariski dense open subsets, I, f and h check
the asked properties by Propositions 7.1.4 and 7.1.6. Moreover, Algorithm 7 computes the
univariate representations of I and I + (f).

Steps 1 and 2 replace the straight line program of size L given as input with a straight-line
program of size L+ns+n2. The complexity bound is thus a consequence of Theorem 7.1.7.

Example 7.1.10. With the data of Example 7.1.8, we return the affine change of variable φ
defined in Example 7.1.5, the Kronecker representation in x2 of the one-dimensional ideal
((x1+2x2+4x3)

2+(x2−1)2+1, x2
3−x2

2) given in Example 4.3.3, and the univariate representation
in x1 computed in Example 7.1.8.

7.2 Degree and Bézout’s Theorem

In this last subsection we prove the necessary results in the degree theory that are needed in the
cost analysis of the Kronecker solver; we will not reproduce this analysis in the present thesis,
and refer the reader to [GLS01]. In the univariate case, the degree of a polynomial f coincides
with the dimension of K[x1]/(f). This notion can be extended to any ideal I in K[x1, . . . , xn],
as explained below. Theorem 7.2.7 gives an information on the degree of I + (f) from the ones
of I and (f).

Let I be any ideal in K[x1, . . . , xn], and let M denote an invertible n × n matrix over K.
In short, we write IM = I ◦M , BM = K[x1, . . . , xn]/IM , B′

M = A′[xr+1, . . . , xn]/I ′
M , where I ′

M

denotes the extension of IM to A′[xr+1, . . . , xn]. We write δ (respectively, δM) for the dimension
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of B′ (respectively, B′
M) seen as a A′-vector space. Proposition 5.3.1 is a central ingredient to

prove the next theorem that asserts that if I and IM are both in general Noether position then
δ = δM .

Theorem 7.2.1. Assume that I is unmixed and in general Noether position.

(a) δM ≤ δ.

(b) δM = δ if, and only if, IM is in general Noether position.

Since the proof of Theorem 7.2.1 is quite long, we postpone it to the end of the section.
Theorem 7.2.1 ensures that the following definition of the degree of I actually makes sense.

Definition 7.2.2. The degree of an unmixed ideal I, written deg(I), is the dimension of B′
M

seen as an A′-vector space, for any matrix M such that I ◦M is in general Noether position.

Example 7.2.3. The degree of any conical is 2, as for instance deg(x2
1 + (x2 − 1)2 − 1) = 2 =

deg(x2 − x2
1). We have computed a univariate representation of the ideal I = (x2

1 + (x2 − 1)2 −
1, x2 − x2

1) at the end of Chapter 5; we have deg(I) = 4, which is the number of roots of the
ideal counted with multiplicities.

Remark 7.2.4. In the case when I = (f) is a principal ideal, deg(I) equals the total degree of
the polynomial f .

Remark that deg((0)) = 1, and that deg(I) = 0 if, and only if, I = (1). The degree
decreases when we remove points or multiplicities, as proved in:

Proposition 7.2.5. Assume that I is unmixed.

(a) deg(
√
I) ≤ deg(I); the inequality is an equality if, and only if, I is radical.

(b) deg(I : g∞) ≤ deg(I), for any polynomial g; the inequality is an equality if, and only if,
g is a nonzerodivisor in B.

Proof. By Theorem 2.4.3, we can assume that I is in general Noether position. The inequality
of part (a) trivially follows from the inclusion of I ′ in the extension of

√
I to A′[xr+1, . . . , xn].

If the equality holds in part (a) then this extension of
√
I coincides with I ′. Therefore I ′ is

radical, and so is I by Corollary 4.1.5. We are done with part (a).

If I : g∞ = (1) then part (b) trivially holds. Otherwise Corollary 4.1.7 tells us that I : g∞ is
unmixed of dimension r and in general Noether position. On the other hand the extension of I :
g∞ to A′[xr+1, . . . , xn] coincides with I ′ : g∞. Therefore we obtain that deg(I : g∞) ≤ deg(I).
If g is a nonzerodivisor in B, then I = I : g∞, whence deg(I : g∞) = deg(I). Conversely, if the
latter equality holds then I ′ : g∞ = I ′, whence I : g∞ = I by Proposition 4.1.1.

Example 7.2.6. With the data of Example 4.4.4 at the end of Chapter 4, we have deg(I) = 4
when deg(I : g∞) = 2. Removing multiplicities, we obtain deg(

√I : g∞) = 1.
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In Example 7.2.3, we have seen that deg((x2
1 + (x2 − 1)2 − 1) + (x2 − x2

1)) = deg(x2
1 + (x2 −

1)2−1)+deg(x2−x2
1). Though the equality may not be true in the affine case, Proposition 5.3.1

is the core of the following version of the Bézout theorem:

Theorem 7.2.7. Assume that I is unmixed. Let f be a nonzerodivisor in B, and let J̃ denote
the intersection of the primary components Q of J = I+(f) belonging to an isolated associated
prime p. Then we have that deg(J̃ ) ≤ deg(I) deg(f). In addition, if I and f are homogeneous,
then the latter inequality is an equality.

Proof. By Theorem 2.4.3, we can assume that I and J are in general Noether position. From
Theorem 5.2.1 we know that J̃ is unmixed of dimension −1 or r − 1. By means of Theo-
rem 2.2.5(a) we observe that the extensions of J̃ and J coincide in K(x1, . . . , xr−1)[xr, . . . , xn].
Then Proposition 5.3.1 tells us that deg(J̃ ) equals the total degree of the constant coefficient
χ0 of the characteristic polynomial of f in B′. Thanks to Theorem 4.2.1(b), we deduce that
deg(J̃ ) ≤ deg(I) deg(f). Finally, Theorem 4.2.1(a) implies that the latter inequality is an
equality in the homogeneous case.

Corollary 7.2.8. Let g1, . . . , gs be polynomials in K[x1, . . . , xn] with degrees d1 ≥ · · · ≥ ds. Let
f1, . . . , fn be linear combinations of g1, . . . , gs as in Proposition 7.1.6, and let g ∈ K[x1, . . . , xn].
Then for any i ∈ {1, . . . , n}, we have deg((f1, . . . , fi) : g∞) ≤ d1 · · · di.

Proof. First let us remark that we can assume that deg(fi) ≤ di without loss of generality.
We proceed by induction on i, and set Ii = (f1, . . . , fi) : g∞, which is unmixed by Propo-
sition 7.1.1. Proposition 7.2.5(b) direcly yields deg(I1) ≤ d1. For i ∈ {1, . . . , n − 2}, since
considering the radical of an ideal “kills” the embedded primes, Theorem 7.2.7 together with
Proposition 7.2.5(a) yields

deg
(

√

Ii + (fi+1)
)

≤ deg(Ii) deg(fi+1).

Since Ii+1 is radical, we have Ii+1 =
√

(Ii + (fi+1)) : g∞ =
√

(Ii + (fi+1)) : g∞, which gives
the result for Ii+1 by Proposition 7.2.5(b). If i = n − 1, we can directly apply Theorem 7.2.7
since the zero-dimensional ideal In does not have embedded primes.

We end this section with the proof of Theorem 7.2.1. The idea of the proof relies on a
suitable set of generators of the group of n × n invertible matrices over K. For this purpose,
we introduce the following block notation:

M =

(

M1,1 M1,2

M2,1 M2,2

)

,

with M1,1 of size r × r; Idr represents the r × r identity matrix.

Lemma 7.2.9. Assume that I is unmixed and that M is in one of the following three forms:

(

Idr 0
M2,1 Idn−r

)

,

(

M1,1 0
0 Idn−r

)

, or

(

Idr 0
0 M2,2

)

.
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(a) I is in Noether position (respectively, general Noether position) if, and only if, IM is in
Noether position (respectively, general Noether position).

(b) δM = δ.

Proof. In the first two cases, part (a) can be straightforwardly verified from the definitions
of the Noether positions, whereas the third case follows from Proposition 2.1.5 (respectively,
Proposition 2.3.9). Since, in the three cases, M defines an isomorphism of K[x1, . . . , xn] that
leaves A globally unchanged and that sends I to IM , we clearly have that δM = δ.

Remark that δ is finite and positive. If x1, . . . , xr are algebraically dependent modulo IM

then I ′
M = (1), whence B′

M = 0 and δM = 0. In this situation, the theorem trivially holds, so
that we can assume from now on that x1, . . . , xr are algebraically independent modulo IM . In
this situation δM is finite since xr+1, . . . , xn are necessarily algebraic over A modulo IM thanks
to Theorem 2.2.5(b).

Claim 7.2.10. Without loss of generality, we can assume from the outset that

M =

(

M1,1 M1,2

0 Idn−r

)

.

Proof. Since M is invertible, the rank of the submatrix
(

M1,1 M1,2

)

is r, so that there exists
a (n−r)×r matrix N such that M1,1−M1,2N is invertible. Then a straightforward calculation
gives us that

M =

(

M1,1 −M1,2N M1,2

M2,1 −M2,2N M2,2

)(

Idr 0
N Idn−r

)

.

Thanks to Lemma 7.2.9, we can assume from the outset that M1,1 is invertible. And since we
have that

M =

(

Idr 0
M2,1M

−1
1,1 Idn−r

)(

M1,1 M1,2

0 M2,2 −M2,1M
−1
1,1M2,1

)

,

we can now assume that M2,1 = 0, thanks to Lemma 7.2.9 again. Finally the claim follows by
using Lemma 7.2.9 once more time in order to reach M2,2 = Idn−r.

Let y1, . . . , yr be new variables, and let

Ay = K[y1, . . . , yr], A′
y = K(y1, . . . , yr).

For each i ∈ {1, . . . , r}, we introduce the linear form

li = yi − (ωi,1x1 + · · · + ωi,nxn) ∈ K[y1, . . . , yr, x1, . . . , xn],

where ωi,j stands for the (i, j)th entry of M−1. For each i ∈ {0, . . . , r}, we write Ii for the ideal
I + (l1, . . . , li) of K[y1, . . . , yr, x1, . . . , xn]. We define I ′

i as the extension of Ii to A′
y[x1, . . . , xn],

and let:

Bi = K[y1, . . . , yr, x1, . . . , xn]/Ii and B′
i = A′

y[x1, . . . , xn]/I ′
i.
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We define δi as the dimension of the A′
y(x1, . . . , xr−i)-vector space

B′′
i = A′

y(x1, . . . , xr−i)[xr−i+1, . . . , xn]/I ′′
i ,

where I ′′
i represents the extension of I ′

i to A′
y(x1, . . . , xr−i)[xr−i+1, . . . , xn].

It is straightforward to check that x1, . . . , xr, yi+1, . . . , yr are algebraically independent mod-
ulo Ii, and that xr+1, . . . , xn, y1, . . . , yi are generally integral over

K[x1, . . . , xr, yi+1, . . . , yr]

modulo Ii by Proposition 2.3.9. From Theorem 2.2.5(a) we deduce that dim(Ii) = 2r − i.
Furthermore, by means of Proposition 4.1.1, it can be verified that the unmixedness of I implies
the one of Ii. This way, we obtain from Proposition 5.1.2(a) that li+1 is a nonzerodivisor Bi.

Claim 7.2.11. We have δ = δ0 and δM = δr. The ideal Ir is in general Noether position if,
and only if, I ◦M is in general Noether position.

Proof. The former equality is straightforward while the latter equality and the equivalence
between the Noether positions both follow from:

Ir = (f ◦M(y1, . . . , yr, xr+1, . . . , xn) | f ∈ I)+

(x1 − (m1,1y1 + · · · +m1,ryr +m1,r+1xr+1 + · · · +m1,nxn),

. . . ,

xr − (mr,1y1 + · · · +mr,ryr +mr,r+1xr+1 + · · · +mr,nxn)),

where mi,j stands for the (i, j)th entry of M .

Claim 7.2.11 implies that the theorem reformulates into: (a) δr ≤ δ0, and (b) the equality
holds if, and only if, Ir is in general Noether position.

It is a classical fact that the primes associated to I ′
i correspond to the ones of Ii that properly

extend to A′
y[x1, . . . , xn] (see [Eis95, Chapter 3, Theorem 3.10(d)], for instance). Let P be a

prime associated to Ii such that its extension P ′ to A′
y[x1, . . . , xn] is proper. Since y1, . . . , yr are

algebraically independent modulo P , we can find a subset S of {x1, . . . , xn} of cardinality r− i
such that y1, . . . , yr and the elements of S are algebraically independent modulo P by [Lan02,
Chapter VIII, Section 1, Theorem 1.1]. The elements of S are algebraically independent over
A′

y modulo P ′, and that the variables outside of S are algebraic over A′
y(S) modulo P ′. It

follows that dim(P ′) = r − i hence that I ′
i is unmixed of dimension either r − i or −1. But

since we have assumed that I ′
M 6= (1), we have that I ′

r 6= (1), whence dim(I ′
i) = r − i for all

i ∈ {1, . . . , r}. This way, we obtain from Proposition 5.1.2(a) that li+1 is a nonzerodivisor in
B′

i.

Claim 7.2.12. Without loss of generality, we can assume that I ′
i is in general Noether position,

for all i ∈ {0, . . . , r}.

Proof. We are going to exhibit a K-linear change of the variables that preserves δ, and the
general Noether position of I. Of course the general Noether position of I implies the one
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Chapter 7. A Kronecker Solver with Multiplicities

of I ′
0. Since li+1 is a nonzerodivisor in B′

i, we can use Proposition 5.1.2(b) successively with
f = l1, . . . , f = lr in order to construct a matrix

M ′ =

(

M ′
1,1 0
0 Idn−r

)

such that I ′
i ◦M ′ is in general Noether position for all i ∈ {1, . . . , r}. For each i ∈ {1, . . . , r},

we let
l′i = yi − (ω′

i,1x1 + · · · + ω′
i,nxn) ∈ A[y1, . . . , yr, x1, . . . , xn],

where ω′
i,j stands here for the (i, j)th entry of M−1M ′. By construction we have that I ◦M ′ +

(l′1, . . . , l
′
i) = Ii ◦M ′ to A′

y[x1, . . . , xn], so that Claim 7.2.10 allows us to replace I by I ◦M ′

and M by M ′−1M from the outset in the theorem.

In order to prove that δr ≤ δ0, we prove the following stronger statement:

Claim 7.2.13. For all i ∈ {0, . . . , r − 1}, we have that δi+1 ≤ δi.

Proof. Proposition 5.3.1 applied with I ′
i gives us that δi+1 equals to the degree in xr−i of the

constant coefficient of the characteristic polynomial of li+1 modulo I ′
i. The conclusion thus

follows from Theorem 4.2.1(b).

The proof of part (a) is now completed. If IM is in general Noether position, then part (a)
applied with IM and M−1 yields δ ≤ δM , whence δ = δM . Conversely, if the latter equality
holds then we have to prove that Ir is in general Noether position in order to complete the
proof of part (b), and thus the proof of the theorem. To this aim, we are to show the following
stronger statement:

Claim 7.2.14. If δ = δM then Ii is in general Noether position, for all i ∈ {0, . . . , r − 1}.

Proof. The general Noether position of I implies the one of I0. By induction, assume that
Ii is in general Noether position for some i ≥ 0. We can use Proposition 5.3.1 with Ii and
li+1. Since Claim 7.2.13 implies that δi+1 = δi, we deduce that the constant coefficient χ0

of the characteristic polynomial of li+1 in B′′
i has degree δi in xr−i. Since Theorem 4.2.1(b)

implies that deg(χ0) ≤ δi, we deduce from Lemma 5.1.1(a) that xr−i is generally integral over
K[y1, . . . , yr, x1, . . . , xr−i−1] modulo Ii+1. By Proposition 2.3.5(b) we finally get that Ii+1 is in
general Noether position.
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Part III

Computation of the Primary
Decomposition:
Local Solving
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The Kronecker solver presented in Part II computes the roots of any zero-dimensional ideal
(g1, . . . , gn) : g∞ together with their multiplicities. In Part III, we design an algorithm that
further computes the local algebra of each root. For this purpose, we act on the last step of the
Kronecker solver, and develop a local intersection procedure for a curve and an hypersurface
that comes from the basis produced in the proof of Proposition 5.3.1.

Proposition 7.1.6 in Chapter 7 ensures that after replacing the equations g1, . . . , gn with
random linear combinations f1, . . . , fn of g1, . . . , gn, one can safely assume that f1, . . . , fn is a
reduced regular sequence in the complementary {g 6= 0} of the set of zeros of g. In particular,
this implies that (f1, . . . , fn−1) : g∞ is a radical ideal whose associated primes all have dimension
one by Proposition 7.1.1. After performing a random affine change of variables in the input
system, the Kronecker solver can compute the univariate representation with multiplicities

χ,Q, V1, V2, . . . , Vn

in x1 of the ideal (f1, . . . , fn) : g∞ (see Definition 4.3.6). In order to complete the primary
decomposition of (f1, . . . , fn) : g∞, we have to compute all the local algebras of the multiple
roots. In Chapters 9 and 10, we assume that the origin is a multiple root of (f1, . . . , fn) : g∞,
whose multiplicity µ0 can be read off from χ. We focus on the computation of

D0 = K̄[[x1, . . . , xn]]/(f1, . . . , fn) : g∞.

In Section 10.3, we come back to the general situation by using dynamic evaluation in K[T ]/(Q).

The solver presented in Part II computes the ideals (f1, . . . , fi) : g∞ in sequence. Here we
act on the last intersection step, that is, we deal with the ideal

I = (f1, . . . , fn−1) : g∞.

Thanks to the affine change of variables, we can assume that I is in Noether position by
Proposition 7.1.4; the quotient B = K[x1, . . . , xn]/I is then a free K[x1]-module of finite type
by Proposition 4.1.1. By localizing and completing B in x1, we obtain a free K[[x1]]-module B0,
for which the isomorphism of algebras

K̄ ⊗ B0/(fn) ≃ D0

holds; in short we refer to B0 as the module of the curve germ (see Section 9.1 for a precise
definition).

The Kronecker solver computes the Kronecker representation q, w3, . . . , wn in x2 of the ideal
I. In Chapter 9, we design an algorithm that computes B0 from q, w3, . . . , wn. In Section 9.1,
we prove that B0 is a submodule of the K[[x1]]-module

L0 = K[[x1]]
1

xm0
1

⊕ K[[x1]]
x2

xm0
1

⊕ · · · ⊕ K[[x1]]
xδ0−1

2

xm0
1

for suitable integers δ0 and m0 that are related to q. This allows us to perform all the compu-
tations in the canonical basis of L0; for instance, the inclusion (∂q/∂x2)xj − wj ∈ I in Corol-
lary 4.3.11(b) permits us to identify the variable xj to an element of L0 for all j ∈ {3, . . . , n}.
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On the other hand, Corollary 4.3.11(b) again gives the equality I ∩ K[x1, x2] = (q), which
implies that B0 contains the K[[x1]]-module

M0 = K[[x1]] ⊕ K[[x1]]x2 ⊕ · · · ⊕ K[[x1]]x
δ0−1
2 .

In Section 9.3, we compute a basis of the K[[x1]]-module B0 by using the fact that B0 is the
smallest algebra that contains M0 and x3, . . . , xn.

The isomorphism K̄⊗B0/(fn) ≃ D0 implies that any basis of the cokernel of the morphism
of multiplication by fn in B0 is a basis of D0. We explain in Section 10.1 of Chapter 10 how we
can deduce such a basis from a Smith form computation. In Section 10.2, we use a similar idea
to extend the whole algorithm to overdetermined systems, that is, to the case when the number
of equations is greater than the number of variables. Finally, we summarize in Section 10.3 the
whole algorithm to compute the primary decomposition of any zero-dimensional ideal.

In Chapters 9 and 10, we deal with formal power series in x1, so that we have to study
the precision needed for the exactness of the computation. In Section 8.2, we use Hermite
normal forms to define a basis ε1, . . . , εδ0 of any submodule of L0 with rank δ0, such that the
coordinates of εℓ in the canonical basis of L0 are polynomials. We then give an algorithm for
adding a vector to a submodule of L0 given by such a basis; this allows the exact computation
of B0 in Section 9.3. Chapter 8 also contains an algorithm for the computation of the Smith
normal form with multipliers that is needed in Section 10.1.

In Part II, we did not reproduce the cost analysis of the Kronecker solver from [GLS01].
In this section, we detail the cost of the algorithms, which yields to the main result in Theo-
rem 10.3.4. At last, we do not need any other hypotheses than the one enclosed in Proposi-
tions 7.1.4 and 7.1.6: our computations do not modify the probability of error of the Kronecker
solver.
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Chapter 8

Normal Forms of Matrices with entries
in a Formal Power Series Ring

In Chapters 9 and 10, we will need algorithms to compute normal forms of matrices with entries
in a formal power series ring K[[t]] in one variable over K. Though this question has been studied
by many authors for matrices with entries in a polynomial ring, there is no reference for the case
of formal power series. We develop in this chapter suitable algorithms for our next chapters,
together with their cost analysis in terms of arithmetic operations in K. This chapter can be
read apart from the rest of the thesis.

8.1 Hermite Normal Form and Truncation

For any ring R, we let (R)r×s denote the algebra of matrices with r rows, s columns and entries
in R. We let Mk,ℓ, respectively M.,ℓ, denote the (k, ℓ)-th entry, respectively the ℓ-th column, of
the element M of (R)r×s. Afterwards, R will be replaced with the principal rings K[[t]] or K[t].
From now on we restrict ourself to matrices with full row rank, that is of rank r; this implies
that s is at least r. We begin with giving the definition of the Hermite normal form of a matrix
M ∈ (K[[t]])r×s of full row rank, whose existence and uniqueness can be easily deduced from
Lemma 8.1.2 since K[[t]] is a principal ideal domain (see also [Sto94, Chapter 2, Theorem 1]).

Definition 8.1.1. Let M ∈ (K[[t]])r×s be a matrix of full row rank. We say that M is in
Hermite normal form if for all (k, ℓ) ∈ {1, . . . , r} × {1, . . . , s},

• if k < ℓ, then Mk,ℓ = 0;

• there exists an integer νk such that Mk,k = tνk ;

• if k > ℓ, Mk,ℓ belongs to K[t] and has degree at most νk − 1.

We say that H ∈ (K[[t]])r×s is the Hermite normal form of M if H is in Hermite normal form
and if there exists a unit P of (K[[t]])s×s such that MP = H.

105
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In other words, the Hermite normal form H of a matrix M is a lower triangulation obtained
by elementary column operations:

H =











tν1 0 · · · 0 0

H2,1
. . . . . .

...
...

...
. . . . . . 0

...
Hr,1 · · · Hr,r−1 tνr 0











.

The following property of the Hermite normal form H of a matrix M characterizes the diagonal
elements of H.

Lemma 8.1.2. Let M ∈ (K[[t]])r×s be a full row rank matrix, and H be its Hermite normal
form. Let e1, . . . , er be the canonical basis of the free K[[t]]-module L = K[[t]]r, and let Im(M)
denote the submodule of L generated by the columns of M . For all k ∈ {1, . . . , r}, tνk generates
the ideal of K[[t]] made up of the k-th coordinates of the elements of Im(M) ∩ (K[[t]]ek ⊕ · · · ⊕
K[[t]]er).

Proof. Since the matrix P in Definition 8.1.1 is a unit of (K[[t]])s×s, the columns of the matrices
M and H generate the same submodule of L, which proves the lemma.

Let M ∈ (K[[t]])r×s be a matrix of full row rank, and H = MP be its Hermite normal
form. Whereas the entries of H are polynomial, those of M and P belong to K[[t]], so that
to compute the Hermite normal form of M , we have to compute in K[[t]]/(tη) for a suitable
integer η. The precision η necessary to ensure the exactness of the computations has to be at
least the maximal degree of the entries of H, that is ν = max(νk, k ∈ {1, . . . , r}). Our next
proposition asserts that the precision ν + 1 is sufficient to compute the Hermite normal form
of M . For any integer η ∈ N and matrices M,M ′ ∈ (K[[t]])r×s, we write M ≡ M ′ mod tη if
the valuations of all the entries of M −M ′ are at least η.

Proposition 8.1.3. Let M be an element of (K[[t]])r×s of full row rank, and let H = MP be
the Hermite normal form of M . Let ν be the maximal valuation of the diagonal entries of H.
Let H ′ ∈ (K[[t]])r×s be in Hermite normal form, and let P ′ be a unit of (K[[t]])s×s such that
MP ′ ≡ H ′ mod tν+1. Then H ′ = H.

Proof. With the notation of Lemma 8.1.2, let Im(H) and Im(H ′) denote the submodules of
L = K[[t]]r generated by the columns of H and H ′ respectively. Since Im(M) equals Im(H)
and since P ′ is a unit of (K[[t]])s×s, the following inclusions hold:

(I1) Im(H ′) ⊆ Im(H) + tν+1L,
(I2) Im(H) ⊆ Im(H ′) + tν+1L.

Using the shape of H ′, inclusion (I1) and Lemma 8.1.2, we obtain that H ′
1,1 = tν

′

1 belong to
the ideal generated by H1,1 = tν1 and tν+1, so that ν ′1 ≥ min(ν1, ν + 1), that is ν ′1 ≥ ν1. By
symmetry, we obtain ν1 ≥ min(ν ′1, ν + 1), so that ν ′1 = ν1: the first rows of H and H ′ coincide.

By induction, let us assume that the (k−1) first rows of H and H ′ coincide for some integer
k ∈ {2, . . . , r}. First we prove that Hk,k = H ′

k,k, that is νk = ν ′k with ν ′k being the valuation
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of H ′
k,k. Let us recall that H ′

.,k denotes the k-th column of H ′. By (I1), there exists a vector
V ∈ L such that H ′

.,k − tν+1V ∈ Im(H). The (k − 1) first coordinates of H ′
.,k are zero. Since

ν + 1 > νi for all i ∈ {1, . . . , k − 1}, one can assume that the (k − 1) first coordinates of V are
zero, even if it means adding a linear combination of H.,1, . . . , H.,k−1 to H ′

.,k − tν+1V . Then the

k-th coordinate tν
′

k − tν+1Vk of H ′
.,k − tν+1V belong to (tνk) by Lemma 8.1.2, so that ν ′k ≥ νk.

By symmetry, νk = ν ′k.

Finally, it remains to prove that Hk,ℓ = H ′
k,ℓ for all ℓ < k. Same arguments as before with

the difference of the ℓ-th columns H.,ℓ−H ′
.,ℓ ∈ Im(H)+tν+1L lead to Hk,ℓ−H ′

k,ℓ−tν+1Wk ∈ (tνk)
for some Wk ∈ K[[t]]. Then Hk,ℓ −H ′

k,ℓ belong to (tνk) since ν ≥ νk and therefore Hk,ℓ = H ′
k,ℓ

since both Hk,ℓ and H ′
k,ℓ are polynomials of degree strictly less than νk.

8.2 Algorithm for a Module-Vector Sum

We now give an application of Hermite normal forms that will be intensively used in Algo-
rithm 11 of Section 9.3. Let m ∈ N, δ ∈ N, and let L denote the free K[[t]]-module ( 1

tm
K[[t]])δ.

Let M be a submodule of L of rank δ. We use Hermite normal forms to define a basis of M
whose coordinates in the canonical basis of L belong to K[t].

Definition 8.2.1. Let M be a submodule of L of rank δ. A basis ε1, . . . , εδ is said normal lower
triangular basis of M if the matrix of (K[[t]])δ×δ whose ℓ-th column is the coordinate vector of
εℓ in the canonical basis of L is in Hermite normal form.

Example 8.2.2. Let δ = 2 and m = 3. The vectors whose coordinates are (t3, 0) and (0, t3)
in the canonical basis of L = ( 1

t3
K[[t]])2 form a normal lower triangular basis of the module

M = (K[[t]])2. The module K[[t]]⊕ 1
t
K[[t]] admits (t3, 0) and (0, t2) for normal lower triangular

basis.

We are to prove that any module M of rank δ admits a unique normal lower triangular basis;
this gives a way to test the equality between two modules. Moreover, under some hypotheses,
we can control the degree of the coordinates of the elements of the basis; this will be precious
for the cost analysis of our algorithms.

Lemma 8.2.3. Let M be a submodule of L of rank δ. Then there exists a unique normal lower
triangular basis ε1, . . . , εδ of M. For ℓ ∈ {1, . . . , δ}, the coordinates of εℓ in the canonical basis
of L belong to K[t]. In addition, if M contains the K[[t]]-module (K[[t]])δ, then the coordinates
of εℓ are of degree at most m.

Proof. Let e1, . . . , eδ be any basis of M, and let M be the matrix of (K[[t]])δ×δ whose ℓ-th
column is the vector of the coordinates of eℓ in the canonical basis of L. Let H be the Hermite
normal form of M . Existence and uniqueness of the normal lower triangular basis ε1, . . . , εδ

of M straightforward follow from those of H; the coordinates of εℓ in the canonical basis of L
belong to K[t] by Definition 8.1.1. Now, if M contains (K[[t]])δ, the element of L whose only
non-zero coordinate is the k-th one and equals tm belong to M for all k ∈ {1, . . . , δ}. Then the
valuation νk of the k-th diagonal entry of H is at most m by Lemma 8.1.2, and all the entries
of H have their degree bounded by m.
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Let ε1, . . . , εδ be the normal lower triangular basis of M, and let v be an element of L. We
are interested in computing the normal lower triangular basis of the module M + K[[t]]v. Let
M be the matrix of (K[[t]])δ×(δ+1) whose ℓ-th column is the vector of coordinates of εℓ in the
canonical basis of L for ℓ ∈ {1, . . . , δ}, and whose (δ+ 1)-th column is the coordinate vector of
v; the shape of M is

M =











tν1 0 · · · 0 v1

M2,1
. . . . . .

...
...

...
. . . . . . 0

...
Mδ,1 · · · Mδ,δ−1 tνδ vδ











. (8.2.1)

The normal lower triangular basis of M + K[[t]]v is given by the Hermite normal form H of
M . To compute H, we have to truncate the coordinates of v. If M contains the free module
(K[[t]])δ, Proposition 8.1.3 and Lemma 8.2.3 allow us to compute with precision m + 1 as in
the following algorithm. For a, b ∈ K[[t]], we let quo(a, b) denote the quotient of a divided by b.

Algorithm 8. Module-Vector Sum

Input: The normal lower triangular basis ε1, . . . , εδ of a submodule M of L = ( 1
tm

K[[t]])δ that
contains (K[[t]])δ, and the coordinates of an element v of L to precision m+ 1.

Output: The normal lower triangular basis of M + K[[t]]v.

1. Initialize M with the matrix M defined in (8.2.1) to precision m+ 1.

2. Initialize aux with 0.

3. For k from 1 to δ, do

a. if the valuation of Mk,δ+1 is greater than the one of Mk,k,
then replace M .,δ+1 with M .,δ+1 − quo(Mk,δ+1,Mk,k)M .,k;
else

i. replace aux with 1;

ii. exchange M .,k and M .,δ+1;

iii. multiply M .,k by (t− val(Mk,k)Mk,k)
−1;

iv. replace M .,δ+1 with M .,δ+1 − quo(Mk,δ+1,Mk,k)M .,k.

4. If aux = 1, then for ℓ from 1 to δ − 1 and for k from ℓ+ 1 to δ,
replace M .,ℓ with M .,ℓ − quo(Mk,ℓ,Mk,k)M .,k.

5. Return the δ first columns of M .

Proposition 8.2.4. Algorithm 8 works correctly as specified with Õ(δ2) arithmetic operations
in K[[t]]/(tm+1) if v ∈ M, and Õ(δ3) operations otherwise. It thus costs Õ(mδ2) operations in
K if v ∈ M, and Õ(mδ3) otherwise.
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Proof. Algorithm 8 computes the Hermite normal form of the matrix M defined in (8.2.1) by
vanishing recursively the entries of its last column. To be more precise, at the beginning of the
k-th crossing through the loop of step 3, the shape of the matrix M is

M =























tν1 0 · · · · · · · · · 0 0

M2,1
. . . . . .

...
...

...
. . . . . . . . .

... 0
...

. . . tνk
. . .

... Mk,δ+1
...

. . . . . . 0
...

M δ,1 · · · · · · · · · M δ,δ−1 tνδ M δ,δ+1























.

Step 3.a vanishes Mk,δ+1 by elementary operations on M .,k and M .,δ+1. If the valuation of
Mk,δ+1 is greater than νk, the k-th column of M remains the k-th column of M . Thus if
aux = 0 at step 4 the δ first columns of M are the ones of the input matrix M , and M is in
normal form. In this case, M + K[[t]]v = M since they have the same normal lower triangular
basis. Otherwise we have to reduce the lower entries of M , that is done in step 4.

Lemma 8.2.3 and Proposition 8.1.3 ensure that the computation can be done to precision
m + 1. Step 3.a costs O(δ) operations in K[[t]]/(tm+1). Then step 3 costs O(δ2) operations in
K[[t]]/(tm+1). If v /∈ M, the reducing step 4 cost O(δ3) operations, which ends the proof of the
proposition.

Example 8.2.5. Let δ = 2 and m = 3, let M = K[[t]]2, and let (0,−t2/4+3t3/4) be the truncated
coordinates of a vector v to precision 7. Then the vectors of the normal triangular basis of
M+K[[t]]v have coordinates (t3, 0) and (0, t2) in L. We thus have M+K[[t]]v = K[[t]]⊕ 1

t
K[[t]].

Remark 8.2.6. Algorithm 8 computes the Hermite normal form of matrices with a particular
shape. Algorithms for the calculation of Hermite normal forms were first studied for matrices
with entries in the integer ring (see [Coh93, Section 2.4]). In the polynomial case, the main
difficulty is the growth of the degrees of the intermediate expressions. The first algorithm with
polynomial bound on this intermediate degrees was given in [Kan85]. We refer to [Vil95] for
an overview of the classical algorithms in the polynomial case; more recently, the algorithm
of [MS03] is based on reduction of lattices. In the case of formal power series ring, we work with
truncated series, hence the question of the growth of intermediate expression disappears. The
second difficulty in the polynomial case is the computation of gcds, which is just a comparison
between valuations when in K[[t]].

8.3 Smith Form

Hermite forms are triangularizations obtained by elementary operations on the columns; Smith
forms are diagonalizations obtained by elementary operations on both the rows and the columns.
For our Algorithm 12 in Section 10.1, we need to compute the Smith normal form S of a matrix
M with entries in K[[t]] together with multipliers, that are two invertible matrices U, V such
that UMV = S. The algorithms of [KKS90, Vil94, Vil95] solve this problem for the case of
matrices in a polynomial ring. In this section, we give an algorithm inspired by [Vil95], that
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computes the Smith normal form of a matrix with entries in K[[t]], together with some pre- and
post-multipliers to a fixed precision. We recall below the definition of the Smith normal form of
a matrix with entries in K[[t]]. For the existence of the Smith normal form of a given matrix of
(K[[t]])r×s, we refer the reader to [Lan02, Theorem 7.9]; uniqueness follows from Lemma 8.3.2.

Definition 8.3.1. Let M ∈ (K[[t]])r×s be a matrix of rank ρ. We say that M is in Smith
normal form if, for all (k, ℓ) ∈ {1, . . . , r} × {1, . . . , s},

• if k 6= ℓ, Mk,ℓ = 0;

• there exists some integers ν1 ≤ · · · ≤ νρ such that Mk,k = tνk for k ∈ {1, . . . , ρ};
• if ρ < min(r, s), then Mk,k = 0 for all k > ρ.

We say that S ∈ (K[[t]])r×s is the Smith normal form of M if S is in Smith normal form and if
there exist two units U of (K[[t]])r×r and V of (K[[t]])s×s such that UMV = S; the matrices U
and V , that are not unique, are called pre- and post-multipliers respectively.

Let M ∈ (K[[t]])r×s be a matrix of rank ρ. For k ∈ {1, . . . , ρ}, we define the determinant
ideal Ik(M) of M as the ideal of K[[t]] generated by all the k × k minors of M . We then write
νk(M) for the common valuation of all the generators of the ideal Ik(M).

Lemma 8.3.2. Let M ∈ (K[[t]])r×s be a matrix of rank ρ, and let ν1, . . . , νρ denote the valu-
ations of the diagonal entries of the Smith normal form S of M . Then for all k ∈ {1, . . . , ρ},
we have νk(M) = ν1 + · · · + νk.

Proof. The lemma straightforward follows from the equality Ik(M) = Ik(S) (see [Lan02, Chap-
ter 19, Section 2, Inclusion (1)]).

Lemma 8.3.2 intrinsically characterizes the diagonal entries of the Smith normal form, which
can be deduced from gcd computations. The difficulty is indeed the computation of pre- or
post-multipliers. In [Vil95], Algorithm F [x]-TNSF calculates some multipliers for matrices in
(K[t])r×s by computing a lower triangulation T = NP , where P is a unit of (K[[t]])s×s, of some
preconditioned matrix N = CM verifying that the diagonal of T is the diagonal of the Smith
normal form S of M . The matrix P is then a post-multiplier, and one easily deduce from T
and C the Smith normal form of M and a pre-multiplier by “cleaning” the lower elements of
T by rows operations. Such a matrix T is called a triangular Smith form.

We adapt this strategy for a matrix M ∈ (K[[t]])r×s. The following algorithm computes a
triangular Smith form of the matrix M by computing recursively some units Ck of ({0, 1})r×r

and Pk of (K[[t]])s×s such that the shape of CkMPk is

Tk =























tν1 0 · · · · · · · · · 0

∗ . . . . . .
...

...
. . . tνk 0 · · · 0

... ∗

...
... M̄k+1

∗ · · · ∗























, (8.3.1)
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where tν1 , . . . , tνk are the k-th first diagonal entries of the Smith normal form of M . Here again,
we let quo(a, b) denote the quotient of a divided by b in K[[t]].

Algorithm 9. Triangular Smith Form

Input: A matrix M of (K[[t]])r×s of rank ρ to precision η ≥ νρ(M) + 1.

Output: Some matrices T ∈ (K[t])r×s, C ∈ ({0, 1})r×r and P ∈ (K[t])s×s such that

• T is a lower triangular matrix whose diagonal entries are those of the Smith normal
form of M ,

• P and C are unit of (K[[t]])s×s and (K[[t]])r×r respectively,

• CMP ≡ T mod tη.

1. a. Initialize T with M mod tη.

b. Initialize C with the r × r identity matrix.

c. Initialize P with the s× s identity matrix.

2. For k from 1 to ρ, do

a. find an index (ι̃, κ̃) ∈ {k, . . . , r} × {k, . . . , s} such that

val(Tι̃,κ̃) = min(val(Ti,j), k ≤ i ≤ r, k ≤ j ≤ s),

with ι̃ minimal for this property.

b. i. if ι̃ 6= k,

• replace Tk,. with Tk,. + Tι̃,.,

• replace Ck,ι̃ with 1;

ii. if κ̃ 6= k,

• exchange T.,k and T.,κ̃;

• exchange P.,k and P.,κ̃;

iii. • multiply T.,k by (t− val(Tk,k)Tk,k)
−1;

• multiply P.,k by (t− val(Tk,k)Tk,k)
−1;

c. for j from k + 1 to s,

• replace T.,j with T.,j − quo(Tk,j, Tk,k)T.,k;

• replace P.,j with P.,j − quo(Tk,j, Tk,k)P.,k.

3. Return T , C, P .

Proposition 8.3.3. Algorithm 9 works correctly as specified with Õ(ρrs) arithmetic operations
in K[[t]]/(tη), hence with Õ(ρrsη) arithmetic operations in K.
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Chapter 8. Normal Forms of Matrices with entries in a Formal Power Series Ring

Proof. We prove by induction that the matrix T satisfies the properties of the matrix (8.3.1)
at the issue of the k-th crossing through the for loop of step 2. Let k ∈ {1, . . . , ρ}, and assume
that the property is true for k − 1, that is, that we enter in the k-th loop with a matrix T of
shape Tk−1. After steps 2.b.i and 2.b.ii, Tk,k is the gcd of the elements of ((Ti,j))k≤i≤r,k≤j≤s;
after step 2.b.iii, this gcd is monic, that is, it is a power of t. Step 2.c vanishes the (s− k) last
entries of the Tk,.; thus T has shape (8.3.1). By Lemma 8.3.2, Tk,k is the k-th diagonal entry
of S since Ik(T

′) = Ik(M). Lastly, the output T,C, P of Algorithm 9 is such that T ≡ CMP
mod tη by construction, which ends the proof of correctness. The proposition follows from the
fact that step 2 performs O(ρrs) operations in K[[t]]/(tη).

Algorithm 10 achieves the computation of the Smith normal form by cleaning the lower
elements of T .

Algorithm 10. Smith Normal Form

Input: A matrix M of (K[[t]])r×s of rank ρ to precision η ≥ νρ(M) + 1.

Output: Some matrices S ∈ (K[t])r×s, Q ∈ (K[t])r×r and P ∈ (K[t])s×s such that

• S is the Smith normal form of M ,

• P and Q are units of (K[[t]])s×s and (K[[t]])r×r respectively,

• QMP ≡ S mod tη.

1. a. Let T , C, P be the output of Algorithm 9 applied to M to precision η.

b. Initialize Q with C and S with T .

2. For ℓ from 2 to r, for k from 1 to min(ℓ− 1, ρ),

a. replace Sℓ,. with Sℓ,. − quo(Sℓ,k, Sk,k)Sk,.,

b. replace Qℓ,. by Qℓ,. − quo(Sℓ,k, Sk,k)Qk,.;

3. Return S, Q, P .

Proposition 8.3.4. Algorithm 10 works correctly as specified with Õ(ρrs) arithmetic operations
in K[[t]]/(tη), and hence Õ(ρrsη) arithmetic operations in K.

Proof. Since the rank ofM is ρ, all the entries of ((Ti,j))ρ+1≤i≤r,ρ+1≤j≤s are zero. By construction
of T , for k ∈ {1, . . . , ρ}, the valuation of any entry of T.,k is at least νk. The correctness of
Algorithm 10 is thus a consequence of Proposition 8.3.3. Step 1 costs Õ(ρrsη) arithmetic
operations in K, and step 2 performs at most O(ρrs) operations in K[[t]]/(tη), which ends the
proof.
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Chapter 9

Module of a Curve Germ

In this chapter, we come back to the computation of local algebras. As announced in the
introduction of Part III, we act on the last intersection step of the Kronecker solver. We thus
deal with a one-dimensional unmixed radical ideal I in general Noether position, given by its
Kronecker representation q, w3, . . . , wn with respect to x2. This ideal defines a curve which is
assumed to pass through the origin. In a first section, we define a module of the curve germ at
the origin. We then give some properties of this module and design an algorithm to compute
it from the Kronecker representation of I.

9.1 Curve Germ

Under the previous hypotheses on I, Proposition 4.1.1 ensures that the K[x1]-module B =
K[x1, . . . , xn]/I is torsion-free. Since K[x1] is a principal ideal domain, B is thus a finitely gen-
erated free module by [Lan02, Chapter III, Theorem 7.3]. In order to focus on the information
at the origin, we work with the extension I0 of I to K[[x1]][x2, . . . , xn]. Moreover, if q =

∏

qi is
the factorization of q in K[[x1]][x2], we let q0 be the product of all the qi such that qi(0, 0) = 0;
since q is monic in x2, we can assume that q0 is monic. We set

J0 = I0 + (q0)

and
B0 = K[[x1]][x2, . . . , xn]/J0.

Remark 9.1.1. By Proposition 7.1.4, we can assume that x2 is a primitive element for
√

I + (x1).
The origin is thus the only point in V(I) with first coordinates (x1, x2) = (0, 0). Then the ideals
I and J0 extended to K[[x1, . . . , xn]] coincide, and J0 describes the curve germ at the origin.

Example 9.1.2. Let K be the rational number field Q, let I be the ideal of Q[x1, x2] generated
by q = (x2

1 +(x2−1)2−1)(x2−2). The curve defined by I is the union of a circle and a line (see
Figure 9.1.3 below). The factorization of q in Q[[x1]][x2] is q = (x2−2)(x2−σ1(x1))(x2−σ2(x1)),
where σ1, σ2 ∈ K[[x1]] are the roots of x2

2+2x2+x
2
1 = 0 in K[[x1]], with σ1(0) = 0 and σ2(0) = −2.

By replacing q with q0 = x2 − σ1(x1), we discard the line x2 = 2 and we only keep the germ of
the circle at the origin. Let us remark that the quotient Q̄[[x1]][x2]/I0 is a free K[[x1]]-module
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Figure 9.1.3.
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of dimension 3 whereas the dimension of B0 is one, which is the number of branches of the
curve passing through the origin.

Our final purpose is the computation of the local algebra D0 of the origin as a root of I+(f)
for some polynomial f that is a nonzerodivisor modulo I. Following Proposition 9.1.4 justifies
our interest in B0, and will give rise to the local intersection algorithm in Section 10.1:

Proposition 9.1.4. Let f be nonzerodivisor modulo I such that x1 is a primitive element for
I+(f), and let D0 denote the local algebra of the origin as a root of I+(f). Then the K̄-algebra
K̄ ⊗ B0/(f) is isomorphic to D0.

Proof. Let 0, p(2), . . . , p(r) denote all the zeros of I + (f) in K̄n, with respective local algebras
D0,Dp(2) . . . ,Dp(r) . Since x1 is primitive element for I+(f), the origin is the only root of I+(f)
with first coordinate 0; the extensions of the ideals I + (f) and J0 + (f) to K̄[[x1, . . . , xn]] are
thus equal. The proposition is then a consequence of the isomorphism of K̄-algebra

K̄ ⊗ B0/(f) ≃ D0 × Dp(2) × · · · × Dp(r)

given by Theorem 3.2.1.

Example 9.1.5. With the ideal I of Example 9.1.2, let f = x2 − x2
1. The curve defined by I

intersects the parabola of zeros of f at the points (0, 0), (1, 1), (−1, 1), (−
√

2, 2), (
√

2, 2) in Q̄2.
Then I + (f) = (x2

1(x1 − 1)(x1 + 1)(x2
1 − 2), x2 − x2

1), though I0 + (f) = (x2
1, x2) since (x1 − 1),

(x1 + 1) and (x2
1 − 2) are units of K[[x1]]. We thus recover the local algebra K̄[[x1, x2]]/(x

2
1, x2)

of the origin as a root of I + (f) (see Figure 9.1.8).

Remark 9.1.6. In Proposition 9.1.4, the requirement “x1 is primitive for I+(f)” can be replaced
with “x2 is primitive for

√

I + (x1)”. Nevertheless, both hypotheses will be assumed to be true
in our main algorithm 14.

Remark 9.1.7. As already mentioned in Remark 3.1.7 in Chapter 1, if g is a polynomial that
does not vanishes when evaluated at the origin, it is a unit of K[[x1, . . . , xn]], so that the
local algebra D0 defined in Proposition 9.1.4 coincides with the one at the origin as a root of
(I + (f)) : g∞.
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Figure 9.1.8.
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The purpose of this chapter is the computation of B0. With this aim in view, we now express
B0 as a submodule of an easily computable free module, in which all the calculation will be
done. Let δ0 be the degree of q0. We let Disc(q) and Disc(q0) denote the discriminants in x2

of q and q0 respectively. Since I is radical, the polynomials q and q0 are square-free, so that
Disc(q0) 6= 0; we let v0 denote the valuation of Disc(q0) in x1, that is the largest integer such
that xv0

1 divides Disc(q0). We set m0 = ⌊v0/2⌋ and

L0 = K[[x1]]
1

xm0
1

⊕ K[[x1]]
x2

xm0
1

⊕ · · · ⊕ K[[x1]]
xδ0−1

2

xm0
1

.

We are to show that B0 is a submodule of L0. For this, we will use the following good properties
of the Kronecker representation of I, that come from Corollary 4.3.11:

I ∩ K[x1, x2] = (q), (9.1.1)

∀j ∈ {3, . . . , n}, (∂q/∂x2)xj − wj ∈ I. (9.1.2)

Proposition 9.1.9. B0 is a free K[[x1]]-submodule of L0 with rank δ0.

Proof. Since the ideal I is in Noether position, x3, . . . , xn are integral over K[[x1]] mod-
ulo J0. Thus B0 is isomorphic to a submodule of the integral closure K[[x1]] of K[[x1]] in
K((x1))[x2]/(q0), where K((x1)) denotes the field of formal Laurent series in x1 over K. The
proposition is a refinement of the classical fact that K[[x1]] is a free submodule of the module
K[[x1]]1/Disc(q0) ⊕ K[[x1]]x2/Disc(q0) ⊕ · · · ⊕ K[[x1]]x

δ0−1
2 /Disc(q0) (see [Eis95, Proposition

13.14] for instance), as proved in the next paragraph.

Let b be an element of K[[x1]], and b1, . . . , bδ0 be its coordinates in the basis 1, x2, . . . , x
δ0−1
2

of the K((x1))-vector space K((x1))[x2]/(q0). For j in {1, . . . , δ0}, xm0
1 bj belongs to K((x1)).

Since K[[x1]] ∩ K((x1)) = K[[x1]], it is sufficient to prove that xm0
1 bj belongs to K[[x1]]. With

this aim in view, we introduce an auxiliary matrix. Since q0 is monic, it splits in K[[x1]]. Let
α1, . . . , αδ0 denote its roots, and for i in {1, . . . , δ0}, let σi denote the K((x1))-automorphism
that maps x2 to αi. Let M denote the matrix whose (i, j)th entry is σi(x

j−1
2 ) = αj−1

i , and let v
be the vector whose ith entry is bi. Then the ith entry of Mv is σi(b), which is an element of
K[[x1]] since b is in K[[x1]]. Now, let d be the determinant of M . Since M has its coefficients
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in K[[x1]], so has its matrix C of cofactors, and the i-th entry dbi of CMv belongs to K[[x1]].
At last, d =

∏

r<s(αs − αr) as a Vandermonde determinant, so that d2 = Disc(q0), and d has

valuation m0. We thus have xm0
1 bi ∈ K[[x1]].

Lastly, thanks to Property (9.1.1), we have J0∩K[[x1]][x2] = (q0). Therefore 1, x2, . . . , x
δ0−1
2

belong to B0, and thus the rank of B0 is δ0.

Remark 9.1.10. For computational purpose, it will be useful to have a bound on the quantities
δ0 and m0. If δ denotes the partial degree of q in x2, one easily deduce from the definition
of q0 that δ0 ≤ δ. Thanks to the general Noether position of I, the total degree of q equals
δ by Corollary 4.3.11(b), so that the valuation of Disc(q) is at most δ(δ − 1). Since Disc(q)
equals Disc(q0)(Res(q0, q/q0))

2 Disc(q/q0) up to a sign, we thus have m0 ≤ δ(δ − 1)/2. Finally,
Corollary 7.2.8 will permit to control δ from the degree of the input system in the proof of
Theorem 10.3.4.

Since q0 is the monic generator of J0 ∩ K[[x1]][x2] by Property (9.1.1), the K[[x1]]-module

M0 = K[[x1]] ⊕ K[[x1]]x2 ⊕ · · · ⊕ K[[x1]]x
δ0−1
2

is a K[[x1]]-submodule of B0. In Section 9.3, we will compute B0 by constructing a sequence
M0 ⊂ M1 ⊂ · · · ⊂ Mγ ⊆ L0 of submodules with strict inclusions. Following [Eis95, Section
2.4], we call such a sequence a chain of submodules of L0; the integer γ is called the length of
the chain. We end this subsection with a technical lemma that will be useful to establish the
termination of our algorithm.

Lemma 9.1.11. The length of a chain M0 ⊂ M1 ⊂ · · · ⊂ Mγ ⊆ L0 of submodules of L0

beginning with M0 = K[[x1]] ⊕ K[[x1]]x2 ⊕ · · · ⊕ K[[x1]]x
δ0−1
2 is at most m0δ0.

Proof. For α ∈ {1, . . . ,m0δ0}, we let qα, respectively, rα, denote the quotient, respectively, the
remainder, of the Euclidean division of α by m0. We set

Nα = K[[x1]]
1

xm0
1

⊕ · · · ⊕ K[[x1]]
xqα−1

2

xm0
1

⊕ K[[x1]]
xqα

2

xrα

1

⊕ K[[x1]]x
qα+1
2 ⊕ · · · ⊕ K[[x1]]x

δ0−1
2 ,

and N0 = M0. The lemma directly follows from [Eis95, Theorem 2.13] since N0 ⊂ N1 ⊂ · · · ⊂
Nm0δ0 = L0 is a composition series.

Example 9.1.12. With δ0 = m0 = 2, we have N0 = M0,

N1 = K[[x1]]
1

x1

⊕ K[[x1]]x2, N2 = K[[x1]]
1

x2
1

⊕ K[[x1]]x2, N3 = K[[x1]]
1

x2
1

⊕ K[[x1]]
x2

x1

,

and N4 = L0.

9.2 Truncated Coordinates

We will give in Section 9.3 an algorithm to compute B0, that is based on the fact that B0 is
the smallest algebra that contains M0 and the images of the variables x3, . . . , xn in L0. As
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announced at the end of Section 9.1, we will construct a chain of submodules of L0 by adding
vectors to M0, beginning with the images of x3, . . . , xn in L0; this operation is made possible by
Algorithm 8 in Section 8.2 as soon as we can compute the coordinates of x3, . . . , xn to precision
m0 +1. We study in this section the cost of computing q0, which gives m0, and the coordinates
of the variables in L0 to any precision. For any a ∈ K[[x1]][x2], we write a mod q0 for the
remainder of a divided by q0.

Lemma 9.2.1. Let η ∈ N\{0}.

(a) The polynomial q0 to precision η can be computed from q with Õ(ηδ) arithmetic operations
in K; this cost includes the computation of the inverse of q/q0 modulo q0 to precision η.

(b) The integer m0 and a polynomial π ∈ K[[x1]][x2] such that π∂q0/∂x2 ≡ xm0
1 mod q0 can

be computed to precision η from q and q0 to precision η+m0 with Õ((η+m0)δ
2
0) arithmetic

operations in K.

Proof. The computations of part (a) can be achieved by a Hensel lifting of the Bézout rela-
tion uq0 + v(q/q0) = 1 modulo x1, whose cost is given in [GG03, Theorem 15.11]. Let now
q̃0 ∈ K[x1, x2] denote the remainder of q0 divided by xη+m0

1 . Since q0 is monic in x2, Disc(q0)
and Disc(q̃0) coincide to precision η +m0. Now Disc(q̃0) and some polynomials a, b ∈ K[x1, x2]
such that aq̃0 + b∂q̃0/∂x2 = Disc(q̃0) can be computed from q̃0 with Õ((m0 + η)δ2

0) arith-
metic operations in K by [GG03, Corollary 11.18]. We can then take for π the truncation of
(x−m0

1 Disc(q̃0))
−1b to precision η.

Example 9.2.2. We gave in Example 4.3.3 the Kronecker representation of I = ((x2−1)2+(x1+
2x2+4x3)

2−1, x2
3−x2

2), which we recall comes from the change of variables in Example 7.1.5. We
deduce from these data that m0 = 3, and that the polynomial q0 to precision 2m0 +µ0 +1 = 10
is

x2
2 − (x2

1 + 2x3
1 + 101

4
x4

1 + 367
2x5

1
+ 14057

8
x6

1 + 65453
4
x7

1 + 10348865
64

x8
1 + 51973671

32
x9

1)x2

+(1
4
x4

1 + x5
1 + 77

8
x6

1 + 77x7
1 + 46301

64
x8

1 + 109591
16

x9
1)

Let us remark that δ0 = 2, which is the number of branches of V(I) that pass through the
origin.

Let m̃ be a monomial in x1, . . . , xn. By Proposition 9.1.9, m̃ can be identified to an element
of L0; we call coordinates of m̃ in L0 to precision η the coordinates of this element in the
canonical basis 1/xm0

1 , . . . , xδ0−1
2 /xm0

1 of L0, truncated in degree η. The following lemma allows
the computation of the coordinates of any monomial to any precision.

Lemma 9.2.3. Let η ∈ N.

(a) For j ∈ {3, . . . , n}, the coordinates of xj to precision η can be computed from wj and the
data of Lemma 9.2.1 to precision η with Õ(ηδ) arithmetic operations in K.

(b) Let a and b be two elements of B0. The coordinates of ab to precision η can be computed
from the coordinates of a and b to precision η + m0 and q0 to precision η + m0 with
Õ((η +m0)δ0) operations in K.
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Proof. By Property (9.1.2), (∂q0/∂x2)(q/q0)xj − wj belongs to J0. Then with the notation
of Lemma 9.2.1, xm0

1 xj − (q/q0)
−1πwj belongs to J0. The coordinates of xj in the basis

1/xm0
1 , . . . , xδ0−1

2 /xm0
1 of L0 are thus the coefficients of (q/q0)

−1πwj mod q0, which ends the
proof of part (a). Part (b) is a direct consequence of the fact that the coordinates of ab in L0

are the coefficients of xm0
1 ab mod q0 in K[[x1]].

Example 9.2.4. (continued from Example 9.2.2) The coordinates of x3 in the basis 1/x3
1, x2/x

3
1

of L0 to precision δ0m0 + µ0 + 1 = 10 are

(1
8
x4

1 − 1
8
x5

1 − 25
32
x6

1 − 19
4
x7

1 − 2479
64
x8

1 − 42351
128

x9
1,

−1
4
x2

1 + 3
4
x3

1 + 19
8
x4

1 + 187
16
x5

1 + 3097
32
x6

1 + 25671
32

x7
1 + 235735

32
x8

1 + 17894435
256

x9
1).

9.3 Computation of the Module

We now give an algorithm to compute B0, together with the matrices of multiplication by the
variables in B0 at a fixed precision. In this algorithm, any submodule of L0 is represented by
its normal lower triangular basis (see Definition 8.2.1).

Algorithm 11. Basis of B0.

Input: The Kronecker representation q, w3, . . . , wn of an unmixed one-dimensional radical ideal
I in general Noether position with primitive element x2, and a positive integer η.

Output: The normal lower triangular basis of the K[[x1]]-module B0, and the matrices of mul-
tiplication by x2, . . . , xn with respect to the latter basis of B0 to precision η.

1. Compute δ0, m0, and q0 to precision 2m0 + 1.

2. Compute the coordinates of x3, . . . , xn in L0 to precision m0 + 1.

3. Initialize M with M0.

4. Initialize M′ with M0 + K[[x1]]x3 + · · · + K[[x1]]xn.

5. While M 6= M′,

a. replace M with M′,

b. and let e1, . . . , eδ0 denote the normal lower triangular basis of M.

c. for all (k, ℓ) ∈ {1, · · · , δ0}2,

i. compute the coordinates of ekeℓ to precision m0 + 1;

ii. replace M′ with M + K[[x1]]ekeℓ.

6. a. Compute q0 and the coordinates of x3, . . . , xn to precision m0δ0 +m0 + η.

b. Compute the matrices Nx2 , . . . , Nxn
of multiplication by x2, . . . , xn respectively with

respect to the basis e1, . . . , eδ0 to precision η.
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9.3. Computation of the Module

7. Return M′, Nx2 , . . . , Nxn
.

Proposition 9.3.1. Algorithm 11 works correctly as specified with

Õ(n(m0δ0 + η)(δ + δ4
0) +m2

0δ
5
0)

arithmetic operations in K.

Proof. Lemma 9.1.11 ensures the termination of Algorithm 11. Thanks to Proposition 8.2.4,
step 4 can be performed from the coordinates of x3, . . . , xn to precision m0 + 1, and step 5.c.ii
can be deduced from the coordinates of ekeℓ to precision m0 + 1, that can be computed from
the exact coordinates of ek and eℓ and from q0 to precision 2m0 + 1 by Lemma 9.2.3 (b). Then
the returned module is the smallest algebra that contains M0 and x3, . . . , xn, that is B0.

By Lemma 9.2.1, step 1 costs Õ(m0(δ+δ
2
0)) operations in K; by Lemma 9.2.3 (a), step 2 costs

(n−2)Õ(m0δ) operations. Lemma 9.1.11 bounds the number of crossing through the while loop
of step 5 by m0δ0. Step 5.c.i costs Õ(m0δ0) operations by Lemma 9.2.3 (b), and is performed δ2

0

times at each cross through the while loop; this amounts to Õ(m2
0δ

4
0) operations in K all in all.

Finally, Algorithm 11 computes at most (n− 2) +m0δ
3
0 module-vector sums in L0; the cost of

computing all these sums belongs to m0δ0Õ(m0δ
3
0)+ (n− 2+m0δ

3
0 −m0δ0)Õ(m0δ

2
0) operations

in K by Lemma 9.1.11 and Proposition 8.2.4, and thus to Õ(m0δ
2
0(n+m0δ

3
0)) operations.

Lastly, let e1, . . . , eδ0 be the normal lower triangular basis of B0, let E be the δ0 square matrix
whose ℓ-th column is the vector of coordinates of eℓ in L0, and let Mj be the δ0 square matrix
Mj whose ℓ-th column is the vector of coordinates of xjeℓ in L0; the matrix of multiplication
by xj in the basis e1, . . . , eδ0 of B0 is thus Nxj

= E−1Mj. Since the degree of the entries of E
are bounded by m0 by Lemma 8.2.3, the determinant of E has valuation at most m0δ0; the
knowledge of Mj to precision m0δ0 + η thus allows the computation of Nxj

to precision η. At
last, the matrix Mj to precision m0δ0 + η can be deduced from q0 and the coordinates of xj to
precision m0δ0 +m0 + η by part (b) of Lemma 9.2.3. By Lemma 9.2.1 and Lemma 9.2.3, step 6
takes Õ(n(m0δ0 + η)(δ + δ4

0)) operations in K.

Example 9.3.2. (continued from Example 9.2.4) We begin at step 3 of Algorithm 11 with
M0 = K[[x1]] + K[[x1]]x2, with normal lower triangular basis x3

1(1/x
3
1), x

3
1(x2/x

3
1). At step 4,

we initialize M′ with the basis e1 = x3
1(1/x

3
1), e2 = x2

1(x2/x
3
1) of M0 + K[[x1]]x3. Then since

M′ + K[[x1]]e
2
1 = M′ = M′ + K[[x1]]e1e2 = M′ + K[[x1]]e

2
2, we obtain that B0 = M0 + K[[x1]]x3.

The matrices of multiplication by the variables in the basis e1, e2 of B0 to precision µ0 + 1 = 4
are

Nx1 =

(

x1 0
0 x1

)

, Nx2 =

(

0 −1
4
x3

1

x1 x2
1 + 2x3

1

)

and

Nx3 =

(

−1
8
x1 − 1

8
x2

1 − 25
32
x3

1
1
16
x2

1 + 1
16
x3

1

−1
4

+ 3
4
x1 + 19

8
x2

1 + 187
16
x3

1 −1
8
x1 + 1

8
x2

1 − 103
32
x3

1

)

.

119





Chapter 10

Intersection and Overdetermined Case

In this chapter, we achieve the computation of the primary decomposition of a zero-dimensional
ideal. First we give an algorithm to compute the local intersection at the origin from the mod-
ule of the curve germ. Then we explain how a similar idea permits to deal with overdetermined
systems. Finally, we summarize the top level algorithm for zero-dimensional primary decom-
position, together with its cost analysis.

10.1 Smith Form and Intersection

We enter this section with

• the normal lower triangular basis of a K[[x1]]-module B0 related to an unmixed one-
dimensional radical ideal I,

• the matrices Nx2 , . . . , Nxn
of the morphisms of multiplication by x2, . . . , xn in B0 with

respect to the latter basis,

• and a polynomial f ,

such that the K̄-algebra K̄ ⊗ B0/(f) is isomorphic to the local algebra

D0 = K̄[[x1, . . . , xn]]/(I + (f)), (10.1.1)

whose dimension µ0 is supposed to be known.

Our purpose is the design of an algorithm to calculate the matrices Mx1 , . . . ,Mxn
of the

morphisms of multiplication by x1, . . . , xn with respect to a basis of D0. In the following lemma,
we recall the basis found in the proof of Proposition 5.3.1, which can be easily deduced from a
Smith normal form with multipliers (see Definition 8.3.1):

Lemma 10.1.1. Let e1, . . . , eδ0 and e′1, . . . , e
′
δ0

be two bases of the K[[x1]]-module B0 and ν1 ≤
· · · ≤ νδ0 be integers such that for all k ∈ {1, . . . , δ0}, fek = xνk

1 e
′
k. Then

B = {xnk

1 e′k, 1 ≤ k ≤ δ0, 0 ≤ nk < νk}
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Chapter 10. Intersection and Overdetermined Case

is a basis of D0. In particular, µ0 equals
∑δ0

k=1 νk.

Proof. The lemma directly follows from isomorphism (10.1.1) since B is a basis of the cokernel
of the morphism of multiplication by f in B0.

Lemma 10.1.1 and Proposition 8.3.4 directly yield the following algorithm:

Algorithm 12. Local Intersection.

Input: The normal lower triangular basis of B0 and f ∈ K[x1, . . . , xn], the dimension µ0 of D0,
the matrices Nx2 , . . . , Nxn

of multiplication by the variables in the normal lower triangular
basis of B0 to precision µ0 + 1.

Output: The matrices Mx1 , . . . ,Mxn
of multiplication by x1, . . . , xn with respect to a basis of

D0 ≃ B0/(f).

1. Compute the matrix Nf of multiplication by f with respect to the normal lower triangular
basis of B0 to precision µ0 + 1.

2. Compute the diagonal xν1
1 , . . . , x

νδ0
1 of the Smith normal form S of Nf ,

together with the pre-multiplier U to precision µ0 + 1.

3. For i from 1 to n,

a. compute N̄xi
= UNxi

U−1 to precision µ0 + 1;

b. for (k, ℓ) in {1, . . . , µ0} × {1, . . . , µ0},
i. initialize Mxi

with the zero µ0 × µ0 matrix;

ii. let ik = 1 + max{i,∑i
r=1 νr ≤ k} and jℓ = 1 + max{j,∑j

r=1 νr ≤ ℓ};
iii. let (Mxi

)k,ℓ be the coefficient of xk−ik
1 in xℓ−jℓ

1 (N̄xi
)ik,jℓ

.

4. Return Mx1 , . . . ,Mxn
.

Proposition 10.1.2. If f is given by a straight-line program of size L, then Algorithm 12
works correctly as specified with

Õ(µ0δ
3
0(L+ n+ δ0))

arithmetic operations in K.

Proof. The columns of the matrix U computed at step 2 are the vectors of coordinates of a
basis e′ of B0 as in Lemma 10.1.1; we let B denote the associated basis of D0. In step 3.b, we
compute the matrices of multiplication by the variables with respect to the basis e′1, . . . , e

′
δ0

of

B0: for ℓ ∈ {1, . . . , δ0} and i ∈ {2, . . . , n}, we have xie
′
ℓ =

∑δ
k=1(Nxi

)k,ℓe
′
k. Step 3.c extracts

the coefficients in K of
∑δ0

ik=1(x
s
1(Nxi

)ik,jℓ
)e′ik , that are the coordinates of xi(x

s
1e

′
jℓ
) in the basis

B of D0.

The evaluation of f at (Nx1 , . . . , Nxn
) to precision µ0 + 1 gives the matrix Nf to precision

µ0 + 1. Step 2 can be executed from Nf to precision µ0 + 1 by Proposition 8.3.3. Step 3.b can
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10.1. Smith Form and Intersection

Figure 10.1.4.
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be performed from the matrices U and Nxi
to precision µ0 + 1 that are computed at steps 1

and 2 (since the determinant of the matrix U has valuation 0, we can invert U without loss of
precision). Finally, the knowledge of Nxi

to precision µ0 + 1 allows the computation of step 3.c
since all the νk are bounded by µ0.

Step 1 costs Õ(Lµ0δ
3
0) operations in K. By Proposition 8.3.3, the cost of step 2 belongs to

Õ(µ0δ
3
0) operations. Finally, the computation of U−1 costs Õ(µ0δ

4
0) operations, so that the cost

of step 3 belongs to Õ(µ0δ
3
0(δ0 + n)) operations.

Example 10.1.3. (continued from Example 9.3.2) Let us recall from Example 7.1.5 that f3 =

x2 − (x1 + 2x2 + 4x3)
2; the Smith normal form of Nf3 is

(

x1 0
0 x2

1

)

. With the notation of

Lemma 10.1.1, the matrices of multiplication by the variables in the basis e′1, e
′
2, x1e

′
2 of D0 are

Mx1 =





0 0 0
0 0 0
0 1 0



 , Mx2 =





0 0 0
0 0 0
0 0 0



 and Mx3 =





0 1159449
65536

0
0 0 0
0 − 1

16
0



 .

Coming back to the original system







f1 = x2
1 + (x2 − 1)2 + 1

f2 = x2
3 − x2

2

f3 = x2 − x2
1

by applying φ−1, we obtain the matrices

Mx1 =





0 −41159449
65536

0
0 0 0
0 1 + 4 1

16
0



 , Mx2 =





0 0 0
0 0 0
0 0 0



 and Mx3 =





0 1159449
65536

0
0 0 0
0 − 1

16
0



 .

Let us remark that M2
x1

= Mx1Mx3 = M2
x3

= 0; the monomials 1, x1, x3 thus constitute a basis
of the K̄-algebra D0. The computation of Example 3.3.3 give the corresponding primary ideal
(x2

1, x1x3, x
2
3, x2).
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Chapter 10. Intersection and Overdetermined Case

10.2 Overdetermined Case

In this section, we explain how to deal with overdetermined systems, that is, with zero-
dimensional ideals (g1, . . . , gs) : g∞ such that s > n.

Proposition 7.1.6 permits to assume that s = n+ 1. We thus have to end the computation
of

D′
0 ≃ D0 + (h) (10.2.1)

for some polynomial h. Isomorphism (10.2.1) directly yields an algorithm that computes the
matrices M ′

x1
, . . . ,M ′

xn
of multiplication by x1, . . . , xn with respect to a basis of D′

0 from the
matrices Mx1 , . . . ,Mxn

above:

Algorithm 13. Overdetermined Case

Input: The matrices Mx1 , . . . ,Mxn
of multiplication by x1, . . . , xn with respect to a basis of D0.

Output: The matrices M ′
x1
, . . . ,M ′

xn
of multiplication by x1, . . . , xn with respect to a basis of

D′
0 ≃ D0/(h).

1. Let Mh be the matrix obtained by evaluating h in (Mx1 , . . . ,Mxn
).

2. Compute a basis e1, . . . , eµ0 of D0 such that e1, . . . , eµ′

0
is a basis of the cokernel of Mh.

3. For i ∈ {1, . . . , n},

a. compute the matrix M ′′
xi

of multiplication by xi in the basis e1, . . . , eµ0 ;

b. M ′
xi

= (((M ′′
xi

)j,k))1≤j≤µ′

0,1≤k≤µ′

0
.

4. Return M ′
x1
, . . . ,M ′

xn
.

Proposition 10.2.1. Let us assume that h is given by a straight-line program of size L. Then
Algorithm 13 works correctly as specified with O((L+ n)µ3

0) arithmetic operations in K.

Proof. The correctness of Algorithm 13 is a direct consequence of isomorphism (10.2.1). Since
the computations of Algorithm 13 are linear algebra in D0 whose dimension is µ0, its cost
belongs to (L+ n)O(µ3

0) arithmetic operations in K.

Example 10.2.2. Let n = 2, I = (x2
2), f = x2

1 and h = x1x2. Then 1, x1, x2, x1x2 form a basis
of D0, and the cokernel of the morphism of multiplication by h in D0 is obviously generated
by 1, x1, x2. The matrices of multiplication by x1, x2 in this basis of D′

0 can easily be deduced
from their matrices in the latter basis of D0.

Example 10.2.4. With the notation of Example 10.1.3, the image of the morphism of multipli-
cation by h = x3 is generated by w = (1159449/65536)e′1 − (1/16)x1e

′
2. In the basis e′2, x1e

′
2

have

Mx1 =

(

0 0
1 0

)

, Mx2 =

(

0 0
0 0

)

and Mx3 =

(

0 0
0 0

)

.

These matrices yield the primary ideal (x2
1, x2, x3) to describe the origin (see Figure 10.2.3).
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Figure 10.2.3.
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10.3 Top Level Algorithm

In this section, we summarize our main algorithm, in which all the local algebras are computed
together. The output of our algorithm will be an extension of the univariate representation
with multiplicities χ̃, Q̃, Ṽ1, . . . , Ṽn of the zero-dimensional ideal (g1, . . . , gs) : g∞ given as input.
More precisely, our algorithm further computes:

• an integer ρ;

• a sequence of integers µ1, . . . , µρ and a sequence of pairwise relatively prime univariate
polynomials Q1, . . . , Qρ ∈ K[T ] such that χ̃ = Qµ1

1 · · ·Qµρ
ρ ;

• for each ℓ ∈ {1, . . . , ρ}, a sequence of square µℓ ×µℓ matrices M
(ℓ)
x1 , . . . ,M

(ℓ)
xn with entries

in K[T ] such that for any root α of Qℓ in K̄, the evaluation of M
(ℓ)
x1 , . . . ,M

(ℓ)
xn in T = α are

the matrices of multiplication by x1, . . . , xn with respect to a common basis of the local
algebra DV (α) of V (α) as a root of (g1, . . . , gs) : g∞.

In the sequel, we refer to the sequence (µℓ, Qℓ,M
(ℓ)
x1 , . . . ,M

(ℓ)
xn )1≤ℓ≤ρ as a local univariate repre-

sentation of the zero-dimensional ideal (g1, . . . , gs) : g∞.

Example 10.3.1. Let n = s = 2, f1 = x2
1 +(x2−1)2−1, f2 = x2−x2

1 and g = 1. The univariate
representation in x1 with multiplicities of (f1, f2) : g∞ = (f1, f2) is

χ = T 2(T − 1)(T + 1), V1 = T, V2 = T 2.

A local univariate representation of (f1, f2) is ρ = 2,

µ1 = 1, Q1 = T 2 − 1, M (1)
x1

= (T ), M (1)
x2

= (1)

for the two simple roots (−1, 1) and (1, 1), and

µ2 = 2, Q2 = T,M (2)
x1

=

(

0 0
1 0

)

and M (2)
x2

=

(

0 0
0 0

)

for the double root (0, 0).
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Figure 10.3.3.
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Example 10.3.2. The equations f1 = x2
1+x

2
2−1 and f2 = 5x2

1+2x1x2+5x2
2−6 have two common

double roots (
√

2/2,
√

2/2) and (−
√

2/2,−
√

2/2). Our top level algorithm in Section 10.3
returns the univariate representation

χ = (T 2 − 1/2)2, V1 = T, V2 = −2T 3 + 2T

of (f1, f2), the only factor Q1 = (T 2 − 1/2) with multiplicity µ1 = 2, and the matrices

M (1)
x1

=

(

0 −1/2
1 2T

)

and M (2)
x2

=

(

2T 1/2
−1 0

)

.

The evaluation ofM
(1)
x1 andM

(2)
x2 in T =

√
2/2 are the matrices of multiplication by the variables

with respect to a basis of D(
√

2/2,
√

2/2) (indeed the basis is 1, x1).

The polynomials Q1, . . . , Qρ of our representation come from the use of dynamic evaluation
(see [Duv94, Duv95]). Dynamic evaluation is a rather intuitive process that avoids irreducible
factorization. More precisely, letQ be a square-free polynomial and F be the quotient K[T ]/(Q).
Computations are done in F, where T is treated as a parameter. When we encounter a test
on T whose answer depends on the irreducible factors of Q, the computation tree splits in two
branches. For instance, let Q = T (T 2 − 1) and assume that the test is “T is a simple root of
χ = T 2(T − 1)(T + 1)”. Then we continue the computation in K[T ]/(T ) with the answer no,
and in K[T ]/(T 2 − 1) with the answer yes.

Our main algorithm works as follows: first, we use the Kronecker solver to reduce the
problem to the intersection of an unmixed one-dimensional radical ideal I and a polynomial
f . Algorithm 7 returns the rational univariate representation with multiplicities χ,Q, V1 =
x1, V2 . . . , Vn of (I + (f)) : g∞ with respect to x1. By performing the translation x1 − T, x2 −
V2(T ), . . . , xn − Vn(T ) in the dynamic field F = K[T ]/(Q), we come back to the computation
of the local algebra D0 of the origin as a root of I + (f). We then apply Algorithms 11 and 12
to end the computation. If the input system is overdetermined, the variant of Algorithm 7
presented in Corollary 7.1.9 returns a polynomial h to which we apply Algorithm 13. We finish
with going back to the original play of variables.

For sake of simplicity, we do not detail the dynamic evaluation process in step 2 of our main
algorithm:
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10.3. Top Level Algorithm

Algorithm 14. Local Univariate Representation

Input: g1, . . . , gs, g ∈ K[x1, . . . , xn], given by a straight line program of size L such that the
ideal (g1, . . . , gs) : g∞ is zero-dimensional.

Output: A local univariate representation of (g1, . . . , gs) : g∞.

1. a. By Algorithm 7, compute

• an affine change of variables φ with shape (7.1.1),

• the Kronecker representation q, w3, . . . , wn in x2 of an unmixed one-dimensional
radical ideal I,

• a polynomial f ∈ K[x1, . . . , xn] such that (I+(f)) : (g ◦φ)∞ is zero-dimensional
with primitive element x1, and equals ((g1, . . . , gn) : g∞) ◦ φ if s = n,

• the univariate representation with multiplicities χ,Q, V1, V2, . . . , Vn in x1 of (I+
(f)) : (g ◦ φ)∞,

• if s > n, a polynomial h ∈ K[x1, . . . , xn] such that ((g1, . . . , gs) : g∞) ◦ φ =
((I + f) : (g ◦ φ)∞) + h.

b. Replace K with the dynamic field F = K[T ]/(Q), and q, w3, . . . , wn, f and g with
their evaluation at x1 − T, x2 − V2(T ), . . . , xn − Vn(T ).

c. Initialize µ0 with the valuation of χ in T .

2. a. By Algorithm 11, compute

• the normal lower triangular basis of

B0 = F[[x1]][x2, . . . , xn]/(I0 + (q0)),

• the matrices of multiplication by x2, . . . , xn with respect to this basis to precision
µ0 + 1.

b. By Algorithm 12, compute the matrices Mx1 , . . . ,Mxn
of multiplication by x1, . . . , xn

with respect to a basis of

D0 = K̄[[x1, . . . , xn]]/(I + (f)) : (g ◦ φ)∞.

c. If s > n,

i. by Algorithm 13, replace Mx1 , . . . ,Mxn
with the matrices of multiplication by

x1, . . . , xn with respect to a basis of

D′
0 = K̄[[x1, . . . , xn]]/(I + (f)) : (g ◦ φ)∞ + (h);

ii. replace χ with gcd(χ, h(x1, V2(x1), . . . , Vn(x1)) and µ0 with the valuation of χ.

3. Return the univariate representation with multiplicities χ(T ), φ−1(T, V2(T ), . . . , Vn(T )) of
(g1, . . . , gs) : g∞, and the matrices φ−1(Mx1 , . . . ,Mxn

).
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Theorem 10.3.4. Algorithm 14 works correctly as specified with

Õ(n(n(L+ ns) + n4)(d1D)2 +D2(δ9 + nδ7) + nD2δ4 + (L+ ns)D5)

operations in K, where δ is the degree of the polynomial q in step 1.a, which is bounded by
d1 · · · dn−1, and where D is the product d1 · · · dn. The correctness of the output relies on random
choices of O(ns) elements of K; choices for which the result is not correct are enclosed in a
strict algebraic subset.

Proof. The correctness of Algorithm 14 is a consequence of Propositions 9.3.1, 10.1.2 and 10.2.1.
By Corollary 7.1.9, step 1 can be performed with Õ(n(n(L + ns) + n4)(d1D)2) arithmetic
operations in K. From Propositions 9.3.1, 10.1.2, 10.2.1 and Remark 9.1.10, we obtain that
steps 1.b, 1.c, 2 and 3 cost

Õ(δ9 + nδ7 + µ0(nδ
4 + (L+ ns)(δ3 + µ2

0))) (10.3.1)

operations in the dynamic field F.

The latter expression is the cost of the computations of one path through the dynamic
evaluation tree T . Since the degree of χ is at most D, µ0 can be bounded by D in (10.3.1). Since
the degree of Q is at most D, any operation in a node of T costs at most Õ(D) operations in K;
the cost of one path through the tree thus belongs to Õ(D(δ9 +nδ7)+µ0D(nδ4 +(L+ns)D3))
operations in K since δ is at most D. Finally, the bound on the degree of Q ensures that T
has at most D external nodes, which leads to the result since the sum of the multiplicities of
all the external nodes is at most D.

Example 10.3.5. Combining Examples 7.1.10, 9.3.2 and 10.1.3, we obtain the univariate rep-
resentation with multiplicities































χ = T 3(T − 3)(T − 1)(T + 5)(T + 7),
Q = T (T − 3)(T − 1)(T + 5)(T + 7),
V1 = −2 11866

1157625
T 6 − (2 105848

1157625
− 4 389

44100
)T 5 − (−2 811

46305
− 4 3427

44100
)T 4

+(−21255064
1157625

+ 401
17640

)T 3 + (441401
44100

)T 2 + (1 + 41
8
)T,

V2 = − 11866
1157625

T 6 − 105848
1157625

T 5 + 811
46305

T 4 + 1255064
1157625

T 3,
V3 = 389

44100
T 5 + 3427

44100
T 4 − 401

17640
T 3 − 41401

44100
T 2 − 1

8
T,

and the local univariate representation

• ρ = 2,

• µ1 = 1, Q1 = (T − 3)(T − 1)(T + 5)(T + 7) and

Mx1 =

(

1

30
T 3 +

1

5
T 2 − 7

30
T − 1

)

, Mx2 = (1) , Mx3 =

(

1

120
T 3 +

1

20
T 2 − 37

120
T − 3

4

)

for the four simple roots,
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10.3. Top Level Algorithm

• µ2 = 3, Q2 = T and

Mx1 =





0 −41159449
65536

0
0 0 0
0 1 + 4 1

16
0



 , Mx2 =





0 0 0
0 0 0
0 0 0



 and Mx3 =





0 1159449
65536

0
0 0 0
0 − 1

16
0





for the triple root at the origin.

Proof of “Théorème 1”. Théorème 1 in the introduction is a corollary of Theorem 10.3.4 since
δ is bounded by D and n is at most D whenever dn is strictly greater than 1.

The exponent of Théorème 1 is not optimal. First it could be lowered by considering the
precise cost of linear algebra, that is, by replacing the exponent 3 with ω; to make this relevant,
we should have to give better algorithms in Chapter 8. Then, the bottleneck of the algorithm
is the computation of B0 from the Kronecker representation of I. Algorithm 11 in Section 9.3
could be replaced by an algorithm inspired from [FGLM93] that avoids useless module-vector
sums; another way to reduce the cost of the computation of B0 may be to use structured linear
algebra. Finally, the cost of dynamical evaluation could be examined more precisely.
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Algebra 99 (1995), no. 5, 267–295.

[DZ05] B. Dayton and Z. Zeng, Computing the multiplicity structure in solving polyno-
mial systems, Proceedings of the 2005 International Symposium on Symbolic and
Algebraic Computation, ACM, New York, 2005, pp. 116–123 (electronic).

[EHV92] D. Eisenbud, C. Huneke, and W. Vasconcelos, Direct methods for primary decom-
position, Inv. Math. 110 (1992), no. 2, 207–235.

[Eis95] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Grad-
uate Texts in Mathematics, Springer-Verlag, 1995.

[FGLM93] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora, Efficient computation of zero-
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Résumé
Algorithmes pour la décomposition primaire des idéaux polynomiaux de dimension nulle

donnés en évaluation

Les algorithmes de résolution polynomiale sont impliqués dans des outils sophistiqués de calcul
en géométrie algébrique aussi bien qu’en ingénierie. Les plus populaires d’entre eux reposent sur
des bases de Gröbner, des matrices de Macaulay ou des décompositions triangulaires. Dans tous
ces algorithmes, les polynômes sont développés dans une base des monômes et les calculs uti-
lisent essentiellement des routines d’algèbre linéaire. L’inconvénient majeur de ces méthodes est
l’explosion exponentielle du nombre de monômes apparaissant dans des polynômes éliminants.
De manière alternative, l’algorithme Kronecker manie des polynômes codés comme la fonction
qui calcule ses valeurs en tout point.

Dans cette thèse, nous donnons une présentation concise de ce dernier algorithme, ainsi qu’une
preuve autonome de son bon fonctionnement. Toutes nos démonstrations sont intimement liées
aux algorithmes, et ont pour conséquence des résultats classiques en géométrie algébrique,
comme un théorème de Bézout. Au delà de leur intérêt pédagogique, ces preuves permettent
de lever certaines hypothèses de régularité, et donc d’étendre l’algorithme au calcul des multi-
plicités sans coût supplémentaire.

Enfin, nous présentons un algorithme de décomposition primaire pour les idéaux de polynômes
de dimension nulle. Nous en donnons également une étude de complexité précise, complexité
qui est polynomiale en le nombre de variables, en le coût d’évaluation du système, et en un
nombre de Bézout.

Mots clefs : algorithme, résolution polynomiale, décomposition primaire, complexité, géométrie
algébrique effective.

Abstract

Algorithms for primary decomposition of zero-dimensional polynomials ideals given by an
evaluation structure

Nowadays, polynomial system solvers are involved in sophisticated computations in algebraic
geometry as well as in practical engineering. The most popular algorithms are based on Gröbner
bases, resultants, Macaulay matrices, or triangular decompositions. In all these algorithms,
multivariate polynomials are expanded in a monomial basis, and the computations mainly
reduce to linear algebra. The major drawback of these techniques is the exponential explosion
of the size of eliminant polynomials. Alternatively, the Kronecker solver uses data structures to
represent the input polynomials as the functions that compute their values at any given point.

In this PhD thesis we give a concise presentation of the Kronecker solver, with a self-contained
proof of correctness. Our proofs closely follow the algorithms, and as consequences, we obtain
some classical results in algebraic geometry such as a Bézout Theorem. Beyond their pedagogi-
cal interest, these new proofs allow us to discard some regularity hypotheses, and so to enhance
the solver in order to compute the multiplicities of the zeros without any extra cost.

At last, we design a new algorithm for primary decomposition of a zero-dimensional polyno-
mial ideal. We also give a cost analysis of this algorithm, which is polynomial in the number
of variables, in the evaluation cost of the input system, and in a Bézout number.

Keyword: algorithm, polynomial solving, primary decomposition, complexity, effective al-
gebraic geometry.
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