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Version abrégée

Mes recherches se situent à l’interface de la géométrie Riemannienne et des géométries de contact
et symplectique et portent sur la construction des métriques Kähler ou Sasakie-Einstein, sur l’étude
des systèmes Hamiltonians conformes, la géométrie des fibrés cosphériques et les groupöıdes de Lie
propres. Le thème principal de cette thèse est l’étude des applications des symétries Lie en géométrie
différentielle et systèmes dynamiques.

Le premier chapitre de cette thèse étudie la réduction singulière des symétries du fibré cosphérique,
les propriétés conservatives des systèmes de contact et leurs réduction. Le fibré cosphérique d’une
variété différentiable M (dénoté par S∗(M)) est le quotient de son fibré cotangent sans la section
nulle par rapport à l’action par multiplication de R+ qui couvre l’identité sur M . C’est une variété
de contact qui détient en géométrie de contact la position analogue du fibré cotangent en géométrie
symplectique. En utilisant une métrique Riemannienne sur M , on peut identifier S∗(M) avec son
fibré tangent unitaire et son champ de Reeb avec le champ géodésique de M . Si M est munie de
l’action propre d’un groupe de Lie G, le relèvement de cette action à S∗(M) respecte la structure de
contact et admet une application moment équivariante J . Nous étudions les propriétés topologiques
et géométriques de l’espace réduit à moment zéro de S∗(M), i.e. (S∗(M))0 := J−1(0)/G. Ainsi,
nous généralisons les résultats de [16] au cas singulier. Appliquant la théorie générale de réduction
de contact, théorie dévéloppée par Lerman et Willett dans [34] et [57], on obtient des espaces qui
perdent toute information sur la structure interne du fibré cosphérique. En plus, la projection du fibré
cosphérique sur sa base descend à une surjection continue de (S∗(M))0 à M/G, mais qui n’est pas un
morphisme d’espaces stratifiés si on munit l’espace réduit avec sa stratification de contact et l’espace
de base avec la stratification standarde de type orbitale définie par l’action du groupe de Lie. Compte
tenu des théorèmes de réduction du fibré cotangent (cas régulier et singulier) et du fibré cosphérique
( cas régulier), on s’attend à ce que les strates de contact aient une structure fibrée additionnelle.
Pour résoudre ces problèmes, nous introduisons une nouvelle stratification de (S∗(M))0, nommée la
stratification C-L (les deux majuscules symbolisent la nature coisotrope ou Legendréenne de leurs
strates). Elle est compatible avec la stratification de contact de (S∗(M))0 et la stratification de type
orbital de M/G. Aussi, elle est plus fine que la stratification de contact et rend la projection de
(S∗(M))0 sur M/G un morphism d’espaces stratifiés. Chaque strate C-L est un fibré sur une strate
de type orbital de M/G et elle peut être vue comme une union de strates C-L, une d’entre elles étant
ouverte et dense dans la strate de contact correspondante et difféomorphe à un fibré cosphérique. Ainsi,
nous avons identifié les strates maximales munies de structure de fibrés cosférique. Les autres strates
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sont des sous-variétés coisotropes ou Legendre dans les composantes de contact qui les contiennent.
Par conséquant nous faison une analyse géométrique et topologique complète de l’espace réduit. Nous
analysons aussi le comportement de la projection sur (S∗(M))0 du flot de Reeb (flot géodésique).

L’ensemble de champs de vecteurs de contact (les analogues des champs de vecteurs Hamiltonians
en géométrie symplectique) forment le ”groupe de Lie” de l’algèbre des transformations de contact.
Dans le premier chapitre nous présentons aussi la réduction des systèmes de contact (qui, localement,
sont en correspondence bijective avec les équations non-autonomes de Hamilton-Jacobi) et les systèmes
Hamiltonians dépendants de temps.

Dans le deuxième chapitre nous étudions les propriétés géométriques des quotients de variétés
Sasaki et Kähler. Nous construisons une procédure de réduction pour les variétés symplectiques
et Kähler (munies de symétries générées par un groupe de Lie) qui utilise les préimages rayon de
l’application moment. Précisémmant, au lieu de considérer comme dans la réduction de Marsden-
Weinstein (ponctuelle) la préimage d’une valeur moment µ, nous utilisons la préimage de R+µ, le
rayon positif de µ. Nous avons trois motivations pour développer cette construction.

Une est géométrique: la construction des espaces réduits de variétés Kähler correspondant á un
moment non nulle qui soient canoniques dans le sense que la structure Kähler réduite est la projection
de la structure Kähler initiale. La réduction ponctuelle (Marsden-Weinstein) donnée par Mµ :=
J−1(µ)/Gµ où µ est une valeur de l’application moment J et Gµ est le sous-groupe d’isotropie de µ
par rapport à l’action coadjointe de G n’est pas toujours bien définie dans le cas Kähler (si G 6= Gµ).
Le problème est causé par le fait que la structure complexe de M ne préserve pas la distribution
horizontale de la submersion Riemannienne qui projète J−1(µ) sur Mµ. La solution proposée dans
la litterature utilise l’espace réduit à moment zéro de la difference symplectique de M avec l’orbite
coadjointe de µ munie d’une forme Kähler-Einstein unique (construite par exemple dans [7], Chapitre
8) et différente de la forme de Kostant-Kirillov-Souriau. L’unicité de la forme sur l’orbite coadjointe
garantit un espace réduit bien défini. Par contre, ne plus utiliser la forme de Kostant-Kirillov-Souriau
entrâıne le fait que l’espace réduit n’est plus canonique. L’espace réduit rayon que nous construisons
est canonique et peut être défini pour tout moment. Il est le quotient de J−1(R+µ) par rapport à un
certain sous-groupe normal de Gµ.

La deuxième raison est une application à l’étude des systèmes Hamiltonians conformes (voir [40]).
Ce sont des systèmes mécaniques non-autonomes, avec friction dont les courves intégrales préservent,
dans le cas des symétries, les préimages rayons de l’application moment. Nous extendons la notion
de champ Hamiltonian conforme, en montrant qu’on peut ainsi inclure dans cet étude de nouveaux
systèmes mécaniques. Également, nous présentons la réduction de systèmes Hamiltonians conformes.

La troisième raison consiste à trouver des conditions necéssaires et suffisantes pour que les espaces
réduits (rayons) des variétés Kähler (Sasakian)-Einstein soient aussi Kähler (Sasakian)-Einstein. Nous
nous occupons de cela dans le deuxième chapitre de la thèse, dans [15] et dans [14] où nous utilisons des
techniques de A. Futaki. Ainsi, nous pouvons construire de nouvelles structures de Sasaki-Einstein.
Comme exemples de réductions rayon symplectic (Kähler) et contact (Sasaki) nous traitons le cas des
fibrés cotangent et cosphérique. Nous montrons qu’ils sont des espaces universels pour la réduction
rayon. Des exemples d’actions toriques sur des sphères sont aussi décrits.

Le troisième chapitre de cette thèse traite l’étude de l’espace des orbites d’un groupöıde propre.
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Dans [62], [63] A. Weinstein a partiellement résolu le problème de la linéarisation des groupöıdes pro-
pres. En [59], N. T. Zung l’a achevé en démontrant un théorème de type Bochner pour les groupöıdes
propres. Nous prouvons un théorème de stratification de l’espace d’orbites d’un groupöıde propre en
utilisant des idées de la théorie des foliations et le théorème de ”slice” (linéarisation) de Weinstein et
Zung. Nous montrons explicitement que le feuilletage orbital d’un groupöıde propre est un feuilletage
Riemannien singulier dans le sense de Molino. Pour cela nous avons deux motivations. D’un côté
nous voulons montrer qu’il y ait une équivalence entre groupöıdes propres et ”orbispaces” (des espaces
qui sont localement des quotiens par rapport à l’action d’un groupe de Lie compact) et d’un autre
nous voulons étudier la réduction des actions infinitésimales (actions d’algèbres de Lie) qui ne sont
pas intégrables à l’action d’un groupe de Lie. Ces actions et leur intégrabilité ont été étudiées, entre
autres, par Palais ([45]), Michor, Alekseevsky.

Mots cléfs: Variétés de contact et Sasakienne, variétés symplectique et Kähler, application moment,
courbure Ricci, fibré cosphérique, réduction rayon, systèmes Hamiltoniens conformes, groupöıde Lie,
stratification.
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Abstract

My research lies at the interface of Riemannian, contact, and symplectic geometry. It deals with the
construction of Kähler and Sasaki-Einstein metrics, with the study of conformal Hamiltonian systems,
the geometry of cosphere bundles, and proper Lie groupoids. The main theme of this thesis is the
study of applications of Lie symmetries in differential geometry and dynamical systems.

The first chapter of the thesis studies the singular reduction of cosphere fiber bundles. The copshere
bundle of a differentiable manifold M (denoted by S∗(M)) is the quotient of its cotangent bundle
without the zero section with respect to the action by multiplications of R+ which covers the identity
on M . It is a contact manifold which has the same privileged position in contact geometry that
cotangent bundles have in symplectic geometry. Using a Riemannian metric on M , we can identify
S∗(M) with its unitary tangent bundle and its Reeb vector field with the geodesic field on M . If
M is endowed with the proper action of a Lie group G, the lift of this action on S∗(M) respects
the contact structure and admits an equivariant momentum map J . We study the topological and
geometrical properties of the reduced space of S∗(M) at zero momentum, i.e. (S∗(M))0 := J−1(0)/G.
Thus, we generalize the results of [16] to the singular case. Applying the general theory of contact
reduction developed by Lerman and Willett in [34] and [57], one obtains contact stratified spaces that
lose all information of the internal structure of the cosphere bundle. Even more, the cosphere bundle
projection to the base manifold descends to a continuous surjective map from (S∗(M))0 to M/G,
but it fails to be a morphism of stratified spaces if we endow (S∗(M))0 with its contact stratification
and M/G with the customary orbit type stratification defined by the Lie group action. Based on
the cotangent bundle reduction theorems, both in the regular and singular case, as well as regular
cosphere bundle reduction, one expects additional bundle-like structure for the contact strata. To
solve these problems, we introduce a new stratification of the contact quotient at zero, called the C-L
stratification (standing for the coisotropic or Legendrian nature of its pieces). It is compatible with
the contact stratification of (S∗(M))0 and the orbit type stratification of M/G. It is also finer than
the contact stratification. Also, the natural projection of the C-L stratified quotient space (S∗(M))0
to its base space, stratified by orbit types, is a morphism of stratified spaces. Each C-L stratum is
a bundle over an orbit type stratum of the base and it can be seen as a union of C-L pieces, one of
them being open and dense in its corresponding contact stratum and contactomorphic to a cosphere
bundle. Hence we have identified the maximal strata endowed with cosphere bundle structure. The
other strata are coisotropic or Legendrian submanifolds in the contact components that contain them.
Consequently, we can perform a complete geometric and topological analysis of the reduced space.
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We also study the behaviour of the projection on (S∗(M))0 of the Reeb flow (geodesic flow).

The set of contact Hamiltonian vector fields (the analogous of Hamiltonian vector fields in sym-
plectic geometry) form the ”Lie” group of the algebra of contact transformations. In the first chapter
we also present the reduction of contact systems (which locally are in bijective correspondence with
the non-autonomus Hamilton-Jacobi equations) and time dependent Hamiltonian systems.

In the second chapter of this thesis we study quotients of Kähler and Sasaki-Einstein manifolds.
We construct a reduction procedure for symplectic and Kähler manifolds (endowed with symmetries
generated by a Lie group) which uses the ray pre-images of the associated momentum map. More
precisely, instead of considering as in the Marsden- Weinstein reduction (point reduction) the pre-
image of a momentum value µ, we use the pre-image of R+µ, its positive ray. We have three reasons
to develop this construction.

One is geometric: the construction of canonical reduced spaces of Kähler manifolds corresponding
to a non zero momentum. By canonical we mean that the reduced Kähler structure is the projection

of the initial Kähler structure. The point reduction (Marsden-Weinstein) given by Mµ := J−1(µ)
Gµ

,
where µ is a value of the momentum map J and Gµ the isotropy subgroup of µ with respect to the
coadjoint action of G is not always well defined in the Kähler case (if G 6= Gµ). The problem is caused
by the fact that the complex structure of M does not leave invariant the horizontal distribution of the
Riemannian submersion which projects J−1(µ) on Mµ. The solution proposed in the literature uses
the reduced space at zero momentum of the symplectic difference of M with the coadjoint orbit of µ
endowed with a unique Kähler-Einstein form (constructed, for insatnce, in [7], Chapter 8) and different
from the Kostant-Kirillov-Souriau form. The uniqueness of the form on the coadjoint orbit ensures
that the reduced space is well defined. On the other hand, not using the Kostant-Kirillov-Souriau
form implies the fact that the reduced space is no longer canonical. The ray reduced space that we
construct is canonical and can be defined for any momentum. It is the quotient of J−1(R+µ) with
respect to a certain normal subgroup of Gµ.

The second reason is an application to the study of conformal Hamiltonian systems (see [40]). They
are mechanical, non-autonomous systems with friction whose integral curves preserve, in the case of
symmetries, the ray pre-images of the momentum map, but not the point (momentum) preimages
of the Marsden-Weinstein quotient. We extend the notion of conformal Hamiltonian vector field
by showing that one can thus include in this study new mechanical systems. Also, we present the
reduction of conformal Hamiltonian systems.

The third reason consists of finding the necessary and sufficient conditions for the ray reduced
spaces of Kähler (Sasakian)-Einstein manifolds to be also Kähler (Sasakian)-Einstein. We deal with
this problem in the second chapter of the thesis, in [15], and in [14] where we use techniques of A.
Futaki. Thus, we can construct new Sasaki-Einstein structures. As examples of symplectic (Kähler)
and contact (Sasakian) ray quotients we treat the case of cotangent and cosphere bundles and show
that they are universal spaces for ray reductions. Examples of toric actions on spheres are also
described.

The third chapter of my thesis studies the space of orbits of a proper Lie groupoid. In [62], [63] A.
Weinstein has partially solved the problem of linearization of proper groupoids. In [59], N. T. Zung has
completed it by showing a theorem of Bochner type for proper groupoids. Using ideas from foliation
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theory and the slice (linearization) theorem of Weinstein and Zung, we prove a stratification theorem
for the orbit space of a proper groupoid. We show explicitely that the orbital foliation of a proper
Lie groupoid is a Riemannian singular foliation in the sense of Molino. For all these we have two
motivations. On one hand we want to prove that there is an equivalence between proper groupoids
and orbispaces (the spaces which are locally quotients with respect to an action of a compact Lie
group). On the other hand we would like to study the reduction of infinitesimal actions (actions of
Lie algebras) which are not integrable to Lie group actions. These actions and their integrability have
been studied, among others, by Palais ([45]), Michor, Alekseevsky.

Key words: contact and Sasakian manifolds, symplectic and Kähler manifolds, momentum map,
Lie symmetries, Ricci curvature, cosphere bundle, ray reduction, conformal Hamiltonian systems,
stratifications.
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liberté de choisir mes thèmes de recherche et de m’avoir constamment encouragé dans mon travail.
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Chapter 1

Singular Cosphere Bundle Reduction

1.1 Introduction

The main goal of this chapter is to carry out the singular reduction of cosphere bundles at the zero value
of the contact momentum map. This presents interest because cosphere bundles carry considerably
more structure than a general contact manifold and have the same privileged position in contact
geometry that cotangent bundles have in symplectic geometry. They have been intensively used in
topological problems dealing with the classification of immersions and embeddings. Associating to
each immersion (embedding) of a smooth manifold a Legendrian submanifold in its cosphere bundle
one can use Legendrian contact homology to construct topological invariants. A beautiful introduction
to the applications of these contact constructions is [18].

Contact reduction appears for the first time in the work of Guillemin and Sternberg [24] in the
context of reducing symplectic cones. Albert [3] and, several years later, Geiges [21] and Loose [35]
independently defined and studied contact reduction at the zero value of the contact momentum map
for free proper contact actions of Lie groups. Reduction at a general value of the momentum map was
studied by both Albert [3] and Willett [57] who proposed two different versions of dealing with it. It
turns out that Willett’s method is the one that naturally parallels the symplectic reduction theory,
even in the singular case as shown by Lerman and Willett [34]. They prove that the resulting contact
quotient depends only on the contact structure, that it is independent of any contact form defining
the contact foliation, and that it is a stratified space, more precisely, a cone space. For an extension
of Willett’s method where the contact space can be defined at any value of the momentum map see
[58].

The case of cosphere bundle reduction for proper free lifted Lie group actions was studied in [16]
with a view of comparing the theory to that for cotangent bundle reduction. It turns out that in
regular contact reduction of cosphere bundles there are no analogues of magnetic terms. In parallel,
in [47] the authors have developed the theory of singular cotangent bundle reduction at the zero value
of the momentum map and have found a finer stratification than that given by the general theory.
This is due to the additional structure of the cotangent bundle and the fact that the Lie group action
is a cotangent lifted action. A similar phenomenon occurs in contact reduction of cosphere bundles.
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Applying the general theory of singular contact reduction due to Lerman and Willett [34] yields
contact stratified spaces that, however, lose all information of the internal structure of the cosphere
bundle. Based on the cotangent bundle reduction theorems, both in the regular and singular case, as
well as regular cosphere bundle reduction, one expects additional bundle-like structure for the contact
strata. The cosphere bundle projection to the base manifold descends to a continuous surjective map
from the reduced space at zero to the orbit quotient of the configuration space, but it fails to be a
morphism of stratified spaces if we endow the reduced space with its contact stratification and the
base space with the customary orbit type stratification defined by the Lie group action. The present
paper introduces a new stratification of the contact quotient at zero, called in what follows the C-L
stratification (standing for the coisotropic or Legendrian nature of its pieces) which solves the above
mentioned two problems. Its main features are the following. First, it is compatible with the contact
stratification of the quotient and the orbit type stratification of the configuration orbit space. It is
also finer than the contact stratification. Unlike the cotangent bundle case, the isotropy lattice of the
group action on the base manifold Q no longer suffices for the description of this new stratification.
In fact, this lattice IQ indexes a new decomposition of each contact stratum of the reduced space,
but the isotropy lattice of the zero level set of the momentum map is given by IQ without those
elements corresponding to orbit type submanifolds of dimension equal to that of their orbits. Second,
the natural projection of the C-L stratified quotient space to its base space, stratified by orbit types,
is a morphism of stratified spaces. Third, each C-L stratum is a bundle over an orbit type stratum
of the base and each contact stratum can be seen as a union of C-L pieces, one of them being open
and dense in its corresponding contact stratum and contactomorphic to a cosphere bundle. The other
strata are coisotropic or Legendrian submanifolds in the contact components that contain them.

This chapter is structured as follows. Section 1.2 presents the definitions, conventions, and re-
sults on stratified spaces and contact reduction (regular and singular) that are used throughout this
chapter. It quickly reviews the relevant results on regular contact cosphere reduction. Section 1.3
describes, for a general contact manifold, the relation between contact vector fields and the non au-
tonomous Hamilton-Jacobi equation. In the case of symmetries we prove a Noether type theorem
which gives invariant submanifolds of contact vector fields. Their reduction is studied and a simple
characterization of relative equilibria is given. Section 1.4 deals with the singular cosphere bundle
reduction at zero momentum. It begins the work on the stratification of the quotient by studying
the case of one single orbit type (Theorem 1.4.1). The contact stratification and contact geometry of
the reduced space are studied in Subsection 1.4.2, having as main results Theorems 1.4.2 and 1.4.3.
The new C-L stratification is also introduced here and its properties are investigated. Theorem 1.4.4
presents a complete description of its frontier conditions. It is also explained what is the tool needed
for an analysis of Withney or local triviality conditions for this new stratification. Section 1.5 studies
the singular cosphere bundle reduction for almost semifree actions, that is, actions that are in bijec-
tive correspondence with free lifted actions on the cosphere bundle. The stratification is computed
explicitly and the particular case of the circle acting on the cosphere bundle of the plane is carried
out in detail. Section 1.6 studies the example of the diagonal action of the two-torus on two copies
of the plane, lifted to the cosphere bundle. This example is rich enough to illustrate the relationships
between the various stratifications and the strata are computed explicitly.
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1.2 Preliminaries

In this section we will survey the main results of several topics that will be needed in the subsequent
development of the thesis. We will assume that all topological spaces are paracompact. In addition,
manifolds will be real, smooth and finite-dimensional. By group we will mean a finite-dimensional Lie
group. Every action of a group G on a manifold M is supposed to be smooth and the usual notation
g ·m for g ∈ G and m ∈ M will be employed. The natural pairing between a vector space and its dual
will be denoted by 〈·, ·〉. By submanifold, we will always mean an embedded submanifold.

1.2.1 Stratified spaces and proper group actions

The natural framework for singular reduction is the category of stratified spaces. We briefly recall
here the basic concepts (see [48]). Let X be a topological space and ZX = {Si : i ∈ I} a locally finite
partition of X into locally closed disjoint subspaces Si ⊂ X, where I is some index set. We say that
(X,ZX) is a decomposed space if every Si is a manifold whose topology coincides with the induced
one from X and if the frontier condition holds: Si ∩ Sj 6= ∅ implies Si ⊂ Sj , whence Si ⊂ ∂Sj , where
∂Sj := Sj\Sj . In this case, the elements of ZX are called pieces of the decomposition.

In a topological space X, two subsets A and B are said to be equivalent at x if there exists an open
neighborhood U of x such that A ∩ U = B ∩ U . These equivalence classes are called set germs at x.
Let S be the map that associates to each point x ∈ X the set germ Sx = [O]x of a locally closed subset
O of X. We say that (X,S) is a stratified space if, for every point x ∈ X there exists a neighborhood
U of x endowed with a decomposition ZU such that for every y ∈ U , Sy = [Z(y)]y, where Z(y) ∈ ZU

denotes the piece containing y. In this case we say that the decomposition ZU locally induces S.

Given two stratified spaces (X,S) and (Y, T ) and a continuous map f : X → Y , we say that f is
a morphism of stratified spaces (or shorter, a morphism) if for every x ∈ X there exist neighborhoods
V of f(x) and U ⊂ f−1(V ) of x such that

(i) there exist decompositions ZU and ZV locally inducing the stratifications S and T respectively,
with the property that for every y ∈ U contained in a piece S ∈ ZU there is an open neighborhood
y ∈ W ⊂ U such that f

W
(S ∩ W ) is contained in the unique piece R ∈ ZV that contains f(y),

and

(ii) f
S ∩ W

: S ∩ W → R is smooth.

In addition, we will say that f is a stratified immersion (resp. submersion, diffeomorphism, etc...) if
so are all the maps f

S ∩ W
for every point x ∈ X. Given two different stratifications S and S ′ on the

same topological space X, we say that S is finer than S ′ if the identity map 1X , viewed as a map
between stratified spaces (X,S) → (X,S ′), is a morphism.

Smooth manifolds are trivially stratified spaces and smooth maps between manifolds are their
morphisms. Note that a decomposed space (X,ZX) induces naturally a stratification (X,S) by just
taking Sx to be the set germ of the piece containing x, for every x ∈ X. In this case, we call the pieces
Si ∈ ZX the strata of (X,S) and say that they satisfy the frontier conditions defined by the underlying
decomposition. In this paper the stratifications that will appear will be of this form and thus, for
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the sake of simplicity, when this is the case we will work most of the time with the decompositions
inducing these stratifications.

Let φ : G × M → M be a smooth action of the Lie group G on the manifold M . Since M is
paracompact it admits a Riemannian metric so if it is connected, M is second countable. The action
is called proper if φ × idM is a proper map. In this paper we only work with proper actions. For
instance, every action of a compact group is automatically proper. The main properties of a proper
action of G on M are:

(i) For each m ∈ M , its stabilizer (or isotropy group) Gm is compact.

(ii) The manifold structure of the orbit G · m is the one that makes the natural bijection G/Gm →
G · m a diffeomorphism. The inclusion G · m →֒ M is an injective immersion. In addition, the
orbit is a closed subset of M . If M is connected, then the orbit is an embedded submanifold of
M .

(iii) The quotient space equipped with the quotient topology is paracompact and the orbit map
π : M → M/G is open and closed.

(iv) M admits a G-invariant Riemannian metric.

(v) If all the stabilizer groups are conjugate to a given subgroup H ⊂ G, then M/G is a smooth
manifold, the orbit map π : M → M/G is a smooth locally trivial fiber bundle whose fibers are
diffeomorphic to G/H, and the structure group of this locally trivial fiber bundle is N(H)/H,
where N(H) is the normalizer of H in G.

We now quote Palais’ Tube Theorem [45] in a form adapted to our needs, which is of great
importance in the local study of proper actions. Let m ∈ M . Choose an invariant Riemannian metric
on M and use it to decompose TmM = g · m ⊕ Sm, where g · m = {ξM (m) : ξ ∈ g}. This splitting is
Gm-invariant for the linear action of Gm on TmM . The twisted action of Gm on G×Sm is defined by

h · (g, s) = (gh−1, h · s) (1.2.1)

for h ∈ Gm, g ∈ G and s ∈ Sm. Since Gm acts freely on the right on G, the twisted action is free.
In addition, Gm is compact by property (i) of proper group actions, so the quotient space, denoted
by G×Gm Sm, is a manifold. The Tube Theorem implies the existence of a Gm-invariant open ball U
around the origin in Sm such that the map ψ : G ×Gm Sm → M defined by

ψ([g, s]) = g · expm(s) (1.2.2)

maps G ×Gm U diffeomorphically and equivariantly onto a G-invariant neighborhood U ′ of G · m in
M . Here, expm is the exponential map at m associated to the chosen Riemannian metric. The map
ψ is called a tube for the action and Sm is called a linear slice, or simply a slice of the action at m.
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Let IM be the isotropy lattice of M , i.e. the set of conjugacy classes of subgroups of G which
appear as stabilizers for the action of G on M . Such classes, called orbit types, are denoted by (H) .
For each element (H) ∈ IM the (H)-orbit type manifold is defined by

M(H) = {m ∈ M | (Gm) = (H)}. (1.2.3)

In the same way, for any subset A of M one defines the orbit type sets of A by A(H) = A ∩ M(H)

and the isotropy lattice of A by restriction. For a proper G-action on a manifold M such that M/G
is connected, there is always a subgroup H0 ⊂ G such that M(H0) is open and dense in M and H0 is
conjugate to a proper subgroup of any other stabilizer. This orbit type (H0) is called the principal
orbit type of IM .

Obviously, the collection of orbit type manifolds forms a partition of M . For simplicity, we will
make from now on the following important assumption: for every (H) ∈ IM , all the connected
components of M(H) have the same dimension and M is second countable. Hence we have:

(i) For every (H) ∈ IM , M(H) is a G-invariant submanifold of M , and

(ii) M and M/G are stratified spaces with strata M(H) and M (H) := M(H)/G respectively. Their
frontier conditions are:

M (H) ⊂ ∂M (L) ⇐⇒ (L) ≺ (H),

and correspondingly for M , where (L) ≺ (H) means that L is conjugate to a proper subgroup of
H. Since ≺ defines a partial ordering in IM we say that the frontier conditions of the stratification
of M/G are induced by the isotropy lattice IM .

Remark 1.2.1. If one allows the connected components of the orbit type manifolds to have different
dimensions, then one needs to work in the larger category of Σ-manifolds and Σ-decompositions. A
Σ-manifold is a countable topological sum of connected smooth manifolds having possibly different
dimensions (see [48] for more details). However, our results on the stratified nature of the studied
quotient spaces remain valid.

1.2.2 Contact Manifolds.

Recall that a contact structure on a smooth (2n + 1)-dimensional manifold C is a codimension one
smooth distribution H ⊂ TC maximally non-integrable in the sense that it is locally given by the
kernel of a one-form η with η ∧ (dη)n 6= 0. Intuitively, this means that the contact distribution is
as non integrable as possible, since the integrability condition reduces to η ∧ dη = 0. Such an η is
called a (local) contact form. Any two proportional contact forms define the same contact structure.
A contact structure which is the kernel of a global contact form is called exact. In the case of exact
contact manifolds, dη has rank n implying the existence of the Reeb vector field R uniquely defined
by

iRd η = 0 and η(R) = 1.

In the following we will consider only exact orientable contact manifolds. The theorem of Darboux
(see [39]) states that, locally, every contact structure is diffeomorphic to (R2n+1, dz − Σjyjdxj).
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When studying the geometry of the singular reduced spaces of cosphere bundles one needs the
notions of coisotropic and isotropic submanifolds in the contact context. Any integral submanifold N
of H has the property that its tangent space at every point is an isotropic subspace of the symplectic
vector space (ker ηx, d ηx) and that’s why, sometimes, they are also called isotropic submanifolds. In
particular, dimN ≤ n; if dimN = n, then N is called a Legendrian submanifold. A submanifold N of
the contact manifold (C, η,R) is coisotropic if for any x ∈ N the subspace TxN ∩ ker ηx is coisotropic
in the symplectic vector space (ker ηx, d ηx).

A group G is said to act by contactomorphisms on a contact manifold if it preserves the contact
structure H. For an exact contact manifold (C, η), this means that g∗η = fgη for a smooth, real-
valued, nowhere zero function fg. G acts by strong contactomorphisms on C, if g∗η = η, i.e. G
preserves the contact form, not only the contact structure. A G–action by strong contactomorphisms
on (C, η) admits an equivariant momentum map J : C → g∗ given by evaluating the contact form on
the infinitesimal generators of the action: 〈J(x), ξ〉 := η(ξC)(x). Note the main difference with respect
to the symplectic case: any action by strong contactomorphisms automatically admits an equivariant
momentum map. Note also that orbits which lie in the zero level set of the contact momentum map
are examples of isotropic submanifolds. The momentum map J is constant on the flow of the Reeb
vector field. In addition,

〈TxJ(v), ξ〉 = dη(x)(v, ξC(n))

for any x ∈ C, v ∈ TxC, and ξ ∈ g. This immediately implies

[im(TxJ)]◦ = {ξ ∈ g | dη(x)(ξC(x), ·) = 0},

which is the contact analogue of the bifurcation lemma from the usual theory of momentum maps
on Poisson manifolds; the term on the left is the annihilator of the subspace in parentheses. For this
(contact) momentum map, 0 ∈ g∗ is a regular value if and only if the infinitesimal isometries induced
by the action do not vanish on the zero level set of J . Moreover, if this is the case, the pull back
of the contact form to J−1(0) is basic. For more details on contact manifolds and their associated
momentum maps see [8], [22], and [57].

1.2.3 Regular contact reduction

Suppose G acts freely, properly, and by strong contactomorphisms on the exact contact manifold

(C, η). Denote by i0 : J−1(0) →֒ C and π0 : J−1(0) → C0 := J−1(0)
G the canonical inclusion and

projection respectively. C0 is called the zero contact reduced space. The reduction at zero for contact
manifolds was done simultaneously by Albert([3]), Geiges([21]), and Loose([35]).

Theorem 1.2.1. Let G be a Lie group acting properly, freely and by strong contactomorphisms on the
contact manifold (C, η). Then there is a unique exact contact form on C0, η0 defined by π∗

0η0 = i∗0η.

Regarding contact reduction at µ 6= 0, up to now there are two versions available: one due Albert
[3] and a more recent one due to Willett [57].

Albert’s method [3]. Let (C, η) be an exact contact manifold with Reeb vector field R and let
Φ be a “good” action of a Lie group by strong contactomorphisms. For µ ∈ g∗, denote by Gµ the
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isotropy group at µ of the coadjoint action and by gµ its Lie algebra. If µ 6= 0 is a regular value of
J the restriction of the contact form to J−1(µ) is not basic. This problem is overcome by Albert by
changing the infinitesimal action of gµ on J−1(µ) as follows: ξ 7→ ξC − 〈µ, ξ〉R, where R is the Reeb
vector field. In general, this infinitesimal action cannot be integrated to an action of Gµ. However,

if R is complete, this gµ–action is induced by an action of the universal covering group Ĝµ (if Gµ is
connected) given by

(etξ, n) 7→ φetξ(ρ−1
t〈µ,ξ〉(n)),

where ρt is the flow of the Reeb vector field. Albert defines the reduced space as J−1(µ)/Ĝµ via this
new action and shows that it is naturally a contact manifold. Unfortunately, as it was explained in
[57], this contact quotient depends on the chosen contact form and not only on the contact structure.
This disadvantage was corrected by Willett in [57].

Willett’s method [57]. The idea is to expand µ and to shrink Gµ. As above, G is a Lie group that
acts smoothly on an exact contact manifold (C, η) preserving the contact form η. Let µ ∈ g∗. Willett
calls the kernel group of µ, the connected Lie subgroup Kµ of Gµ with Lie algebra kµ = ker (µ|gµ).
It is easy to see that kµ is an ideal in gµ and therefore Kµ is a connected normal subgroup of Gµ.
Contact reduction (or the contact quotient) of C by G at µ is defined by Willett as

CR+µ := J−1(R+µ)/Kµ.

Assume that Kµ acts freely and properly on J−1(R+µ). Then J is transversal to R+µ and the pull
back of η to J−1(R+µ) is basic relative to the Kµ–action on J−1(R+µ) and thus induces a one form
ηR+µ on the quotient CR+µ. If, in addition, kerµ+gµ = g then the form ηµ is also a contact form. It is
characterized, as usual, by the identity π∗

µηR+µ = i∗µη, where πµ : J−1(R+µ) → CR+µ is the canonical
projection and iµ : J−1(R+µ) →֒ C is the canonical inclusion.

It is to be noted that for µ = 0, Albert’s and Willett’s quotients coincide.

1.2.4 Singular contact reduction at zero momentum

Reduction theory for co-oriented contact manifolds in the singular context was introduced by Willett
and Lerman in [?] and [57]. We now review briefly this construction at zero momentum, since it
will be used in our refinement to the cosphere bundle case. Let G be a Lie group that acts by
strong contactomorphisms on an exact contact manifold (C, η). Denote by J : C → g∗ the associated
momentum map. By the definition of J , its zero level set is a G-space.

Theorem 1.2.2. Let (C, η) be an exact contact manifold and G a Lie group acting smoothly on C by
strong contactomorphisms with momentum map J : C → g. Then for every stabilizer subgroup H of
G the set

C
(H)
0 := (J−1(0))(H)/G = (C(H) ∩ J−1(0))/G

is a smooth manifold and the partition of the contact quotient

C0 :=
(
J−1(0)

)
/G



8 Singular Cosphere Bundle Reduction

into these manifolds is a stratification with frontier conditions induced by the partial order of IJ−1(0).

Moreover, there is a reduced exact contact structure on C
(H)
0 generated by the one-form η

(H)
0 charac-

terized by

(π
(H)
G )∗η(H)

0 = (̃i(H))
∗η,

where π
(H)
G : (J−1(0))(H) → C

(H)
0 is the projection on the orbit space and ĩ(H) : (J−1(0))(H) →֒ C is

the inclusion.

In what follows this stratification will be referred to as the contact stratification of C0.

1.2.5 Regular cosphere bundle reduction

Cosphere bundles are the odd dimensional analogs of cotangent bundles in contact geometry. In the
following, we will briefly recall their construction and their equivariant regular contact reduction,
referring to [16], [18], [5], and [49] for more details.

Let Q be a n-dimensional manifold and θ the Liouville one-form on T ∗Q, defined by θ(Xpx) =
〈px, TpxτXpx〉, where px ∈ T ∗

xQ, X ∈ Tpx(T ∗Q), and τ : T ∗Q → Q is the canonical projection. Let
Φ : G × Q → Q be an action of G on Q. Denote by

Φ∗ : G × T ∗Q → T ∗Q

its natural (left) lift to the cotangent bundle. Consider the action of the multiplicative group R+ by
dilations on the fibers of T ∗Q \ {0T ∗Q}.

Definition 1.2.1. The cosphere bundle S∗Q of Q is the quotient manifold (T ∗Q \ {0T ∗Q})/R+.

Let π+ : T ∗Q \ {0T ∗Q} → S∗Q and κ : [αq] ∈ S∗Q 7→ q ∈ Q be the canonical projections. Denote
by [αq] the elements of the cosphere bundle. Of course, (π+, R+, T ∗Q\{0T ∗Q}, S∗Q) is a R+-principal
bundle. Also, we will use the π+ notation for any R+ projection. The exact contact structure of S∗Q
is given by the kernel of any one form θσ satisfying θσ = σ∗θ for σ : S∗Q → T ∗Q \ {0T ∗Q} a global
section. Such σ always exists and, even more, the set of global sections of this principal bundle is in
bijective correspondence with the set of C∞ functions f : T ∗Q \ {0T ∗Q} → R+ satisfying

fσ(rαq) =
1

r
fσ(αq), r ∈ R+, αq ∈ T ∗Q \ {0T ∗Q}.

(See [16] for details).

Remark 1.2.2. 1. Let C(S∗Q) = S∗Q × R+ be the symplectic cone over S∗Q, endowed with the
symplectic form d(tθσ). Then one can easily see that Tσ : C(S∗Q) → T ∗Q\{0T ∗Q} given by Tσ([αq], t) =
tfσ(αq)αq is a well defined symplectic diffeomorphism, that is, a symplectomorphism.
2. If Q is zero-dimensional, we set, by convention, S∗Q = ∅.
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The action Φ lifts to the cosphere bundle yielding a proper action

Φ̂∗ : G × S∗Q → S∗Q, Φ̂∗(g, [αq]) = [Φ∗(g, αq)]

by contactomorphisms with all scale factors positive. In [34] it has been proved that for any proper
action which preserves an exact contact structure, there exists a G-invariant contact form. As every
contact form on the cosphere bundle is obtained via a global section as above, we shall chose once and
for all a section σ for which (Φ̂∗g)∗θσ = θσ. Relative to this contact form the induced action on the
cosphere bundle is by strong contactomorphisms. The associated momentum map, which depends on
the section σ, will be denoted by J for simplicity, since in what follows no other contact form different
from θσ will be used. As above, the exact contact structure of S∗(Q/G) can be described as the kernel
of a global contact form of type ΘΣ, where

Σ : S∗(Q/G) → T ∗(Q/G) \ {0T ∗(Q/G)}

is a global section, and Θ is the Liouville one-form of T ∗(Q/G).

Regular reduction of cosphere bundles was done in [16]. Its main result at zero momentum is

Theorem 1.2.3. Let Q be a differentiable manifold of real dimension n, G a finite dimensional Lie
subgroup of Diff(Q) and Φ : G×Q → Q a smooth action of G on Q. Assume that Kµ acts freely and
properly on J−1(R+µ) and that kerµ + gµ = g. Then the contact reduction

(S∗Q)R+µ = J−1(R+µ)/Kµ

is embedded by a map preserving the contact structures onto a subbundle of S∗(Q/Kµ). For zero
momentum µ = 0, the above embedding is actually a contactomorphic diffeomorphism.

For examples, see [16]. In the last 3 sections of this chapter, we will generalize Theorem 1.2.3 for
zero momentum to non-free actions, within the framework of stratified spaces, relating our results to
the contact stratification defined in Theorem 1.2.2.

1.3 Contact geometry and the Hamilton-Jacobi equation

In this section we will present a nice connection between contact geometry and the non-autonomus
Hamilton-Jacobi equation. We will also present the contact version of Noether conservation law.

Lemma 1.3.1. Let (C,H) be a contact manifold with contact 1-form η and Reeb vector field R. Then:

1◦ for any smooth function H : C → R, there is a unique vector field XH such that

iXH
η = −H, iXH

dη = dH −R(H)η. (1.3.1)

2◦ a vector field X verifies (1.3.1) if and only if LXη = gη for g some smooth function on C.
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Proof. To prove 1◦, let H be a smooth function on N and XH := X0 −R(H), where X0 is the unique
vector field belonging to the contact distribution and defined by the relation iX0dη|H = dH|H. 2◦ If
X verifies (1.3.1) it is easy to see that LXη = gη for g := −R(H). On the other hand, if one has
LXη = gη, let H := −iXη. Applying Cartan’s magic formula, one obtains iXdη = gη + dH and
evaluating this 1-form on R, we find g = R(H) thus finishing the proof.

Remark 1.3.1. Vector fields verifying (1.3.1) are called contact vector fields and the above lemma
shows that there is a one-to-one correspondance between the set of contact vector fields and the set of
smooth functions on a contact manifold. More over, the Lie algebra of contactomorphisms is given by
the set of contact vector fields with Lie bracket defined by {f, g} = −η([Xf , Xg]) = df(Xg) + dg(R)f.

Remark 1.3.2. Notice that using the Darboux theorem, for each smooth function H, the vector field
XH is defined in canonical coordinates by the following contact differential equation

ẋj =
∂H

∂yj
, ẏj = −∂H

∂xj
− yj

∂H

∂z
, ż =

∑

j

yj ẋj − H. (1.3.2)

and, locally, the Lie bracket has the following form:

{f, g} = (∂xi
f∂yi

g + ∂yi
f∂xi

g) − (xi∂xi
f∂tg − xi∂xi

∂zf) − (f∂zg − g∂zf).

Proposition 1.3.1. Let H = H(x1, ..., xn, y1, ..., yn, z) be a smooth function on the contact manifold
R2n+1 and consider the Hamilton- Jacobi equation:

∂tS + H(x, ∂xS, S) = 0 (1.3.3)

for S = S(t, x) a function on Rn+1. There is a one to one correspondence between solutions of the
above equation and equation (1.3.2). Namely, if S is a solution of (1.3.3) and x(t) is a solution of
ẋ = ∂yH(x, ∂xS, S), then

x(t), y(t) = ∂xS(t, x(t)), z(t) = S(t, x(t))

represents a solution of (1.3.2). Conversely, given an initial function S(0, x) = S0(x) one can con-
struct a solution of the Hamilton-Jacobi equation using solutions of (1.3.2) with initial conditions of
the form (x(0) = x0, y(0) = ∂xS0(x0), z(0) = S0(x0)).

Proof. First, let’s consider S and x(t) solutions of the Hamilton-Jacobi equation (1.3.3) and ẋ =
∂yH(x, ∂xS, S) respectively. Denote by γ(t) := (x(t), y(t), z(t)). Deriving (1.3.3) with respect to xj ,
we obtain:

∂xj
∂tS(t, x(t)) + ∂xj

H(γ(t)) +
∑

i

∂yi
H(γ(t))∂xj

∂xi
S(t, x(t))

+ ∂zH(γ(t))∂xj
S(t, x(t)) = 0

⇐⇒ ∂xj
∂tS + ∂xj

H +
∑

i

ẋi∂xj
∂xi

S + yj∂zH = 0

⇐⇒ ẏj = −yj∂zH − ∂xj
H.
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We have thus proved that γ(t) is a solution of (1.3.2).
To show the converse, fix the initial function S0 and consider

F (t, x̃, ∂xS0(x̃), ∂tS0(x̃), S0(x̃)) := (x(t), y(t), yn+1(t), z(t)),

where (x(t), y(t), z(t)) is a solution of (1.3.2) with initial conditions given by (x(0) = x̃, y(0) =
∂xS0(x̃), z(0) = S0(x̃)) and yn+1(t) is a solution of

{
ẏn+1 = H(x(t), y(t), z(t))∂zH(x(t), y(t), z(t))
yn+1(0) = −H(x̃, ∂xS0(x̃), S0(x̃)).

If H = H(x, y, yn+1, z) := H(x, y, z) + yn+1, then

d

dt
H(F (t)) = [∂xj

H∂yj
H + ∂yj

H(−∂xj
H − yj∂zH) + ∂zH(yj∂yj

H − H)

+H∂zH](F (t)) = 0

and hence, H(F (t)) = 0 since the initial conditions imply H(F (0)) = 0. As we only work with smooth
functions, there is a T0 > 0 such that the map X which associates x(t, x̃) = x(t) to (x̃, t) for t < T0 is
a C1 diffeomorphism onto its range. Therefore, we can define the smooth map S(t, x) := z(X−1(x)) =
z(t, x̃) which verifies the required initial condition. The proof will be completed by showing that

∂tS(t, x) = yn+1(X
−1(x)) and ∂xS(t, x) = y(X−1(x)).

Thus, consider
T (t, x̃) := ∂tz − ∂tx y − yn+1 R(t, x̃) := ∂x̃z − y∂x̃x.

T = 0 identically and hence,

∂tR = ∂tR − ∂x̃T = ∂tx yx̃ − ∂ty ∂x̃x + ∂x̃yn+1

= ∂yH yx̃ + (∂x̃H + y∂zH)∂x̃x + ∂x̃yn+1 = −∂zH(∂x̃z + y ∂zH),

since ∂x̃H. We have thus obtained that R is a solution of the liniar problem ∂zHR with initial condition
R(0, x̃) = 0. This implies that ∂x̃z = y∂x̃x. Using ∂x̃z = ∂xS∂x̃x and the fact that T is the null
function, it results that {

(y − ∂xS)∂x̃x = 0
(y − ∂xS)∂tx + (∂tS − yn+1) = 0.

and as X is a diffeomorphism, our proof is complete.

Corollary 1.3.1. S(t, x) is a solution of (1.3.3) if and only if the associated Legendrian submanifolds

Lt = {(x, ∂xS(t, x(t)), S(t, x(t))|x ∈ Rn}

are related by Lt = Ψt(L0), where Ψt : R2n+1 → R2n+1 is the flow of the contact differential equation
(1.3.2).
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Remark 1.3.3. For the Cauchy problem of equation (1.3.3)




∂tS + H(x, ∂xS, S) = 0 on Ω an open domain inRn

S(0, x) = S0(x)
S|∂Ω = ϕ,

where Ω is a domain in R one could construct the same correspondence as in the proof of Proposition
1.3.1.

In the context of contact geometry, the following theorem illustrates once more the principle that
behind any symmetry there should be a conservation law.

Theorem 1.3.1. Let (C, η) be an exact contact manifold, G a Lie Group acting properly on M and
H ∈ C∞(C)G. Then the flow of the contact vector field associated to H, ϕt, invaries J−1(R+µ) for
any µ ∈ g∗. In other words, modulo R+ the momentum map is constant on every integral curve of
XH , or ϕt invaries the level sets of the type J−1(R+µ). Similarly, H is preserved by ϕt modulo R+.

Proof. Let t 7→ x(t) be an integral curve of XH , ξ ∈ g and µ ∈ g∗ such that x(0) ∈ J−1(µ). Then

d

dt
〈J(x(t)), ξ〉 = iXH

d〈J, ξ〉(x(t)) = dη(x(t))(XH(x(t)), ξM (x(t)))

= dH(ξM )(x(t)) − Rx(t)(H)〈η, ξM 〉(x(t)) =

d

ds

∣∣∣∣
s=0

H(exp(−sξ) · x(t)) − Rx(t)(H)〈J(x(t)), ξ〉 = −Rx(t)(H)〈J(x(t)), ξ〉.

Consider the real function G given by G(t) := −Rx(t)(H). Then, the previous calculation implies that

〈J(x(t)), ξ〉 = e
R t
0 G(s)ds〈µ, ξ〉.

Since this is true for any ξ ∈ g∗, the conclusion follows.

An immediate consequence of Theorem 1.3.1 is that the ray preimages of the momentum map are
invariant submanifolds of the contact vector fields.

Remark 1.3.4. Unlike the symplectic case, the level subsets J−1(µ) are not conserved quantities. This
would only happen if H were a first integral of the Reeb vector field R which locally means that ∂H

∂z = 0
thus reducing everything to the symplectic case. Notice that the contact equations do not coincide with
the time dependent Hamilton equations.

Theorem 1.3.2. Reduction of contact dynamics in the regular case Consider H a smooth

G-invariant function on C. Then, the flow Ft of the contact vector field XH induces a flow F R
+µ

t on
the reduced space CR+µ which satisfies

πµ ◦ Ft = FR
+µ

t ◦ πµ.

Even more, this flow is a contact flow associated to the smooth function HR+µ : CR+µ → R defined by
HR+µ ◦ πµ = H ◦ iµ and the vector fields XH , XH

R+µ
are πµ- related.
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The proof is similar to the one in the symplectic case, using that F ∗
t η = exp(ht)η and the fact that

the Reeb vector field of CR+µ is given by Tiµ(R).

Corollary 1.3.2. If H,K are G-invariant smooth functions on C, then H, K is also G-invariant and

{H, K}R+µ = {HR+µ.KR+µ}C
R+µ

,

where { , }C
R+µ

denotes the Poisson bracket on the reduced manifold and {H, K}R+µ is the function

induced on CR+µ by {H, K}.

Remark 1.3.5. Time dependent Hamiltonians, as defined in [1] live on the exact contact manifold
T ∗Q × R. And even if they are not contact vector fields, it is easy to see that in the presence of
symmetries(not on the time, though), their flow leaves invariant the ray pre-images of the momentum
map. Hence one can speak of reduced time dependent Hamiltonians. Under good conditions the reduced
Hamiltonian lives on a subbundle of T ∗(Q/Kµ). This can be easily verified for the damped harmonic
oscillator with rotational symmetries. See, for instance [42].

1.4 Singular cosphere bundle reduction at zero momentum

1.4.1 The decomposition of J
−1(0)

The geometric study of the contact reduced space (S∗Q)0 passes through the analysis of the level set
J−1(0) and, in particular, of its isotropy lattice IJ−1(0). We shall use the fact that both the cosphere
bundle S∗Q and the lifted action of G on it are completely determined by the differential structure
of Q and its supported G-action. This will allow us to obtain our first main result, Proposition 1.4.1,
which describes this isotropy lattice, and hence the topology of the contact stratification of (S∗Q)0,
in terms of the isotropy lattice of Q without those elements corresponding to zero dimensional orbit
types in Q/G. Also, as a preliminary result, and a “building block” for the general construction, we
state an intermediary cosphere reduction result, Theorem 1.4.1, which applies to base manifolds Q
on which the group action is not free but exhibits a single orbit type, that is, IQ consists of only one
element.

Lemma 1.4.1. The isotropy lattice of the cosphere bundle coincides with the isotropy lattice of the
cotangent bundle without the zero section

IS∗Q = IT ∗Q\{0T∗Q}.

Proof. It is enough to show that Gαq = G[αq ] for any αq ∈ T ∗Q \ {0T ∗Q}. Thus let g ∈ G[αq ]. This
implies that g[αq] = [gαq] = [αq] ⇐⇒ gαq = rαq for r > 0. Since the action of G on Q is proper,
there is a G-invariant Riemannian metric on Q and hence ‖gαq‖ = ‖αq‖ = r‖αq‖. It follows that
r = 1 and G[αq ] ⊂ Gαq . The other inclusion being obvious, the proof is now complete.
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Remark 1.4.1. We will write Jct : T ∗Q → g∗ for the canonical momentum map for the cotangent-
lifted action of G on T ∗Q endowed with the canonical symplectic form. As J−1(0) = π+(J−1

ct (0) \
{0T ∗Q}) note that

(J−1(0))(L) = π+

(
(J−1

ct (0))(L) \ [(J−1
ct (0))(L) ∩ {0T ∗Q}]

)

since (J−1
ct (0) \ {0T ∗Q})(L) = (J−1

ct (0))(L) \ [(J−1
ct (0))(L) ∩ {0T ∗Q}].

The following theorem is an immediate consequence of Theorems 1.2.3 and 1.2.2.

Theorem 1.4.1. Let G be a finite dimensional Lie group acting properly on the differentiable manifold
Q such that all the points in Q have stabilizers conjugate to some K (that is, Q = Q(K)). Then
J−1(0) is a submanifold of (S∗Q)(K) and (S∗Q)0, the reduced space at zero, is contact-diffeomorphic
to S∗(Q/G) .

In the following proposition we give the decomposition of J−1(0) and show how the topology of
the contact quotient at zero is completely determined by the isotropy lattice of Q. For that, we will
use the following partition of T ∗Q. We fix once and for all a G-invariant Riemannian metric on Q.
Then, for any (H) ∈ IQ, the restriction of TQ to the submanifold Q(H) can be decomposed as the

Whitney sum TQ(H)
Q = TQ(H) ⊕ NQ(H), where, for every q ∈ Q(H), NqQ(H) = TqQ

⊥
(H)). Note that

each of the elements of the Whitney sum are G-invariant vector bundles over Q(H). Dualizing this
splitting over each orbit type submanifold in Q, we obtain the following G-invariant partition of T ∗Q:

T ∗Q =
∐

(H)∈IQ

T ∗Q(H) ⊕ N∗Q(H).

Now, the restriction of this partition to T ∗Q\{0T ∗Q} and afterwards its quotient by the action of R+,
induces a G-invariant partition of S∗Q.

Let I∗Q denote the isotropy lattice of Q without those elements (H) corresponding to orbit type
submanifolds Q(H) for which the orbits of the restricted G-action have the same dimension as Q(H).
At this moment, we will need some results on cotangent-lifted actions, which were proved in [47].

Lemma 1.4.2. If G acts on Q and on T ∗Q by cotangent lifts with momentum map Jct : T ∗Q → g∗.
Let (L), (H) ∈ IQ be arbitrary.

(i) (N∗Q(H))(H) is the zero section of N∗Q(H).

(ii) Let Jct(H) denote the canonical momentum map on T ∗Q(H) associated to the lift of the action
on Q(H) obtained by restriction from Q. Then

(J−1
ct (0))(L) = J−1

ct(L)(0)
∐

(H)≻(L)

(
J−1

ct(H)(0) × (N∗Q(H))(L)

)
(1.4.1)

(iii) If (L) 6= (H), then (N∗Q(H))(L) 6= ∅ if and only if (H) ≻ (L).
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Proposition 1.4.1. Suppose G acts properly on the manifold Q. Then we have:

(i) For q ∈ Q(H) such that Gq = H and (L) ∈ IS∗Q,

(J−1(0))(L) ∩ S∗
q Q 6= ∅ ⇐⇒ (L) ∈ IQ and

(
(H) ∈ I∗Q or (L) ≺ (H)

)
;

(ii) (L) ∈ IJ−1(0) ⇐⇒ (L) ∈ I∗Q and hence C(L)
0 6= ∅ ⇐⇒ (L) ∈ I∗Q ⇐⇒ dimQ(L) ≥ 1;

(iii) The cosphere bundle projection k restricts to the G-equivariant continuous surjection k(L) :

(J−1(0))(L) → Q(L) which is also an open map;

(iv) For a fixed orbit type (L) in the zero momentum level set of the lifted G-action to S∗Q the
corresponding orbit type submanifold admits the following G-invariant partition:

(J−1(0))(L) = J−1
(L)(0)

∐

(H)≻(L)

π+
(
J−1

ct(H)(0) ×
(
N∗Q(H)

)
(L)

)
, (1.4.2)

where (H) ∈ IQ;

(v) For every (H) ≻ (L) with (L) ∈ I∗Q and (H) ∈ IQ the restrictions

t̃(L) := k(L)|J−1
(L)

(0) and t̃(H)≻(L) := k(L)|π+

“

J−1
ct(H)

(0)×(N∗Q(H))(L)

”

are G-equivariant smooth surjective submersions onto Q(L) and Q(H) respectively. The mappings
Jct(H) and J(H) denote the momentum maps of the restricted actions of G to T ∗Q(H) and S∗Q(H)

respectively (which are the same as the canonical momentum maps for the restricted G-action
on Q(H)).

Proof. To prove (i), let (L) ∈ IS∗Q and q ∈ Q(H) with Gq = H. Then

(J−1
ct (0))(L) ∩ T ∗

q Q = (SH
q )∗ ⊕ (N∗

q Q(H))(L), (1.4.3)

where SH
q is the linear slice for the G-action on Q(H)(see section 3 of [47]). Since (J−1(0))(L) ∩S∗

q Q =

∅ ⇐⇒ (J−1
ct (0))(L) ∩T ∗

q Q = {0}, then (J−1(0))(L) ∩S∗
q Q = ∅ only when (SH

q )∗ and (N∗
q Q(H))(L) are

simultaneously zero. This amounts to (L) = (H) ∈ IQ\I∗Q, (see Lemma 1.4.2) from where the result
follows.

(ii) is a forward consequence of (i). The rest of this statement and the G-equivariant continuous
surjectivity of k(L) are direct consequences of the fact that IQ = IJ−1

ct (0). To prove the openness of

k(L) it suffices to observe that for any open subset U of (J−1(0))(L), k(L)(U) = τ(L)(π
−1(U)), where

τ(L) : (J−1
ct (0))(L) → Q(L) is the open canonical cotangent projection map.

Applying (1.4.1) and the fact that (N∗Q(H))(L) does not contain the zero section when (H) 6= (L)
we have

(J−1
ct (0) \ {0T ∗Q})(L) =

(
J−1

ct(L)(0)
)
\ {0T ∗Q(L)

}
∐

(H)≻(L)

[
J−1

ct(H)(0) ×
(
N∗Q(H)

)
(L)

]
.



16 Singular Cosphere Bundle Reduction

Hence, applying π+ to this relation, we get

(J−1(0))(L) = J−1
(L)(0)

∐

(H)≻(L)

π+
(
J−1

ct(H)(0) ×
(
(N∗Q(H)

)
(L)

)

which proves statement (iv).
As for the proof of (v), it is enough to notice that

J−1
(L)(0) and π+

(
J−1

ct(H)(0) × (N∗Q(H))(L)

)

are bundles over Q(L) and Q(H) respectively.

Remark 1.4.2. Notice that for the description of orbit types in J−1(0), we need not only I∗Q, but also

the lattice IQ since each (J−1(0))(L) is written as a union with index (H) in IQ, but (L) belongs to
I∗Q.

1.4.2 The topology and contact geometry of C0

The secondary decomposition of C(L)
0

Define the fiber bundles:

s(H)≻(L) := J−1
ct(H)(0) × (N∗Q(H))(L) → Q(H)

s(L) := J−1
ct(L)(0) → Q(L).

Taking into account that π+(s(H)≻(L)) are G-invariant pieces of the partition (2.6.9) of (J−1(0))(L)

and that the actions of G and R+ commute, we can define:

CS(H)≻(L) :=
π+(s(H)≻(L))

G

CC(L) :=
J−1

(L)(0)

G
=

π+
(
s(L) \ {0T ∗Q(L)

}
)

G
≃ S∗

(
Q(L)

G

)
.

Notice that for the above equivalence we have applied Theorem 1.4.1 and that each contact stratum
admits the following partition, which is the quotient of (2.6.9):

C(L)
0 =

(
J−1(0)

)
(L)

G
= CC(L)

∐

(H)≻(L)

CS(H)≻(L) (1.4.4)

≃ S∗
(

Q(L)

G

) ∐

(H)≻(L)

CS(H)≻(L).
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Remark 1.4.3. In the notations of the previous section, the maps k(L), t̃(L), and t̃(H)≻(L) descend to

k(L) : C(L)
0 → Q(L), t̃(L) : CC(L) → Q(L), and t̃(H)≻(L) : CS(H)≻(L) → Q(H);

k(L) is an open continuous surjection and the other two are smooth surjective submersions.

Theorem 1.4.2. With the above notations, we obtain the following:

(i) Q(L) is a stratified space with strata Q(H), for all (L) 4 (H) and with frontier conditions given
by

Q(K) ∩ Q(H) 6= ∅ ⇐⇒ (H) 4 (K).

Moreover, Q(L) is open and dense in Q(L).

(ii) For every (L) ∈ I∗Q and (H) ∈ IQ, the partition (1.4.4) is a stratification of the corresponding

contact stratum C(L)
0 , called the secondary stratification. The frontier conditions are given

by:

CS(H)≻(L) ⊂ ∂CC(L) for all (H) ≻ (L);

CS(H′)≻(L) ⊂ ∂CS(H)≻(L) ⇐⇒ (H ′) ≻ (H) ≻ (L).

Moreover, the piece CC(L) is diffeomorphic to S∗(Q(L)), is open and dense in C(L)
0 , and the map

k(L) is a surjective submersion of stratified spaces.

Proof. Since the G-action is proper, the orbit type decomposition of Q induces a stratification of Q/G

and the first part of the theorem follows immediately considering the relative topology of Q(L) in Q/G.

Also, (1.4.4) is a locally finite partition and its pieces are obviously submanifolds of C(L)
0 . As k(L) is

a continuous map and (k(L))−1(Q(L)) = CC(L), it follows that CC(L) is open in C(L)
0 . In order to

prove the density, let x ∈ C(L)
0 and U be any open neighborhood of x. Hence, V = k(L)(U) is an open

subset of Q(L) and, since Q(L) is dense in Q(L), there is at least one element y ∈ V ∩Q(L). Notice that
(k(L))−1(y) = (t̃(L))−1(y) ⊂ CC(L) and that there is at least an element in (t̃(L))−1(y) which is in U .
This means that U ∩ CC(L) 6= ∅ which proves the density of CC(L).

Using the density of CC(L), the first frontier condition for the secondary stratification becomes

obvious. For the second one, consider in C(L)
0 an arbitrary open neighborhood U of a point x ∈

CS(H′)≻(L). By the openness property of k(L), we obtain that O = k(L)(U) is an open neighborhood

of k(L)(x) in Q(L). Applying (i), we have that O ∩ Q(H) 6= ∅ ⇐⇒ (H ′) ≻ (H) ≻ (L). Furthermore,
the surjectivity of t̃(H)≻(L) implies (t̃(H)≻(L))−1(z) ∩ U 6= ∅ for any z ∈ O ∩ Q(H), proving that
CS(H′)≻(L) ⊂ ∂CS(H)≻(L) ⇐⇒ (H ′) ≻ (H) ≻ (L).

As k(L) restricted to each piece of the secondary decomposition is surjective, Remark 1.4.3 imme-
diately implies that this map is a stratified surjective submersion.
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We will refer to the strata of the form CS(H)≻(L) as contact seams due to their stitching role that
will be explained later in Remark 1.4.5.

This theorem completes the topological description of each contact stratum C(L)
0 in terms of its

secondary stratification. We shall now begin the investigation of geometrical aspects, namely to what
extent the strata of this secondary stratification admit canonical contact structures in the sense that
the 1-forms generating them are induced by some cosphere bundle structures compatible with the
reduced contact form on the contact stratum. Thus, denote by

Ψ̃(H) : CC(H) →
(
S∗(Q(H)), Θ

(H)
Σ

)

the bundle isomorphism given by Theorem 1.4.1, where Θ
(H)
Σ is a contact form on the cosphere bundle

of Q(H). Observe that the restricted projection onto the first factor

p1(H)≻(L) :
(
J−1

ct(H)(0) \ {0T ∗Q(H)
}
)
× (N∗Q(H))(L) → J−1

ct(H)(0) \ {0T ∗Q(H)
}

is R+ and G-equivariant so it descends to the surjective submersion

p̃
(H)≻(L)
1 : CS◦

(H)≻(L) → CC(H),

where

CS◦
(H)≻(L) :=

π+
(
J−1

ct(H)(0) \ {0T ∗Q(H)
} × (N∗Q(H))(L)

)

G

is an open and dense submanifold of the contact seam CS(H)≻(L). Then, for any pair (H) ≻ (L), we

have the following bundle map covering the identity on Q(H)

Ψ̃(H)≻(L) := Ψ̃(H) ◦ p̃
(H)≻(L)
1 : CS◦

(H)≻(L) → S∗(Q(H))

which is also a surjective submersion. We are now able to endow each cosphere-like stratum CC(H)

and each CS◦
(H)≻(L) with 1-forms given by:

(
CC(H), η(H) := (Ψ̃(H))∗Θ(H)

Σ

)
and (1.4.5)

(
CS◦

(H)≻(L), η(H)≻(L) := (Ψ̃(H)≻(L))∗Θ(H)
Σ

)
. (1.4.6)

It is impossible to induce in this way a 1-form on the whole piece CS(H)≻(L) and hence we are forced
to restrict ourselves, for the time being, to CS◦

(H)≻(L). However, we will show later how to extend this
form to the whole CS(H)≻(L).

Theorem 1.2.2 gives the existence of an abstractly defined contact structure on each contact piece

C
(L)
0 generated by a 1-form θσ

(L)
0 . One of the aims of this section is to investigate the compatibility

of the previously defined forms η(H) and η(H)≻(L) with the reduced contact form θσ
(L)
0 and to describe

as much as possible this abstract contact structure.
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Theorem 1.4.3. The strata CC(L) and CS◦
(H)≻(L) within the contact stratum C(L)

0 satisfy the following
properties:

(i) (CC(L), η(L)) is an open dense contact submanifold of the contact stratum C(L)
0 contactomorphic

to (S∗(Q(L)),Θ
(L)
Σ ).

(ii) Using the above notations, the conformal classes of η(L) and η(H)≻(L) admit smooth extensions

to C(L)
0 equivalent to θσ

(L)
0 , namely

θσ
(L)
0 CC(L)

≃ η(L) and θσ
(L)
0 CS◦

(H)≻(L)
≃ η(H)≻(L).

The extension of η(L) is unique.

(iii) The conformal class of η(H)≻(L) can be smoothly and uniquely extended to the whole stratum

CS(H)≻(L). If (H) ∈ I∗Q then CS(H)≻(L) is a coisotropic submanifold of the contact stratum C(L)
0 .

When (H) ∈ IQ \ I∗Q then CS(H)≻(L) is a Legendrian submanifold of the contact stratum C(L)
0 .

Proof. (i) is a simple consequence of Theorem 1.4.1.

For (ii), let (L) and (H) be two fixed elements of I∗Q and IQ respectively and i
(H)≻(L)
0 : CS◦

(H)≻(L) →
C(L)

0 the inclusion map. By definition,

θσ
(L)
0 CS◦

(H)
≻ (L)

≃ η(H)≻(L) ⇐⇒ ∃f > 0 in C∞(CS(H)≻(L)) such that

θσ
(L)
0 CS◦

(H)≻(L)
= f η(H)≻(L) ⇐⇒ (i

(H)≻(L)
◦ )∗θσ

(L)
0 ≃ (Ψ̃(H)≻(L))∗Θ(H)

Σ .

To simplify the reading of the proof, consider the two figures 2.5.1 and 1.4.2 where π
(H)≻(L)
G and π̄

(H)
G

denote the canonical G-projections and all the horizontal arrows in the first and second diagram are
injections and projections respectively.

As π
(H)≻(L)
G ◦ π+ is a submersion, it suffices to prove that

(i
(H)≻(L)
0 ◦ π

(H)≻(L)
G ◦ π+ )∗θσ

(L)
0 ≃ (Ψ̃(H)≻(L) ◦ π

(H)≻(L)
G ◦ π+ )∗Θ(H)

Σ . (1.4.7)

Observe that i
(H)≻(L)
0 ◦ π

(H)≻(L)
G ◦ π+ = π

(L)
G ◦ π+ ◦ i(H)≻(L) and the first term of (1.4.7) becomes

(π
(L)
G ◦ π+ ◦ i(H)≻(L) )∗θσ

(L)
0 = i∗(H)≻(L) ◦ π∗

+ ((π
(L)
G )∗θσ

(L)
0 )

= i∗(H)≻(L) ◦ π∗
+ (̃i∗(L)θσ ) = (π+ ◦ j(H) ◦ Φ )∗θσ,

where in the last line we have used Theorem 1.2.2 together with the equality π+ ◦ j(H) ◦ Φ = ĩ(L) ◦
π+ ◦ i(H)≻(L), with j(H) and Φ inclusions defined by:

Φ :
(
J−1

ct(H)(0) \ {0T ∗Q(H)
} × (N∗Q(H))(L)

)
→֒ T ∗Q|Q(H)

\ {0T ∗Q(H)
}
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J−1
ct(H)(0) \ {0T∗Q(H)

} × (N∗Q(H))(L)
Â

Ä
i(H)≻(L)//

π+

²²

(J−1
ct (0) \ {0T∗Q})(L)

π+

²²

Â

Ä
i(L) // T ∗Q\{0T∗Q}

π+

²²
π+

(
J−1

ct(H)(0) \ {0T∗Q(H)
} × (N∗Q(H))(L)

)
Â

Ä

ei(H)≻(L) //

π
(H)≻(L)
G

²²

(J−1(0))(L)
Â

Ä

ei(L) //

π
(L)
G

²²

S∗Q

CS◦

(H)≻(L)
Â

Ä i
(H)≻(L)
0 //

eΨ(H)≻(L)

²²

C(L)
0

S∗(Q(H))

Figure 1.4.1: Diagram defining η(H)

and
j(H) : T ∗Q|Q(H)

\ {0T ∗Q(H)
} →֒ T ∗Q \ {0T ∗Q}.

Using this time π̄
(H)
G ◦π+ ◦p1(H)≻(L) = p̃

(H)≻(L)
1 ◦π

(H)≻(L)
G ◦π+, we can write the second term of (1.4.7)

as:

(Ψ̃(H) ◦ p̃
(H)≻(L)
1 ◦ π

(H)≻(L)
G ◦ π+ )∗Θ(H)

Σ = (Ψ̃(H) ◦ π̄
(H)
G ◦ π+ ◦ p1(H)≻(L) )∗Θ(H)

Σ

= (π+ ◦ p1(H)≻(L) )∗ (Ψ̃(H) ◦ π̄
(H)
G )∗Θ(H)

Σ ≃ (π+ ◦ p1(H)≻(L) )∗l∗(H)θ(H)Σ,

where θ(H)Σ is a contact form on S∗Q(H). Let p(H) : T ∗Q|Q(H)
\{0T ∗Q(H)

} → T ∗Q(H) be the projection
map. Since l(H) ◦ π+ ◦ p1(H)≻(L) = π+ ◦ p(H) ◦ Φ, the second term is in the same conformal class as
Φ∗p∗(H)π

∗
+θ(H)Σ and, hence, equation (1.4.7) is equivalent to

Φ∗p∗(H)π
∗
+θ(H)Σ ≃ Φ∗j∗(H)π

∗
+θσ ⇐⇒ Φ∗p∗(H)(Σ ◦ π+)∗θ(H) ≃ Φ∗j∗(H)(σ ◦ π+)∗θ

⇐⇒ Φ∗p∗(H)fΣθ(H) ≃ Φ∗j∗(H)fσθ,

where θ and θ(H) are the canonical one-forms on T ∗Q and T ∗Q(H) respectively, and σ, Σ are sections
in the associated cosphere bundles. But p∗(H)θ(H) = j∗(H)θ, as it can be easily seen in local coordinates,

which proves (1.4.7).
As for the extension of the conformal class of η(L), an analogous proof can be developed just by

considering the limit case (H) = (L), when CS0
(H)≻(L) degenerates in CC(L). In order to prove the

uniqueness of this extension, let us consider a point x ∈ C(L)
0 and one tangent vector vx ∈ TxC(L)

0 .

As CC(L) is open and dense in C(L)
0 , there is a sequence of points xk ∈ CC(L) and one of vectors

vxk
∈ Txk

CC(L) ≃ Txk
C(L)

0 such that

lim
k→∞

xk = x, lim
k→∞

vxk
= vx.
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(
J−1

ct(H)(0) \ {0T∗Q(H)
} × (N∗Q(H))(L)

)p1(H)≻(L) //

π+

²²

J−1
ct(H)(0) \ {0T∗Q(H)

}

π+

²²

π+

(
J−1

ct(H)(0) \ {0T∗Q(H)
} × (N∗Q(H))(L)

)
ep1(H)≻(L) //

π
(H)≻(L)
G

²²

J−1
(H)(0)

π̄
(H)
G

²²

l(H) // S∗(Q(H))

CS◦

(H)≻(L)
fp1

(H)≻(L)

// CC(H)

eψ(H)

// S∗(Q(H))

Figure 1.4.2: Diagram defining η(H)≻(L)

From the above arguments and using the continuity of θσ
(L)
0 , we have that

lim
k→∞

η(L)(xk)(vxk
)

g(xk)
= lim

k→∞
θσ

(L)
0 (xk)(vxk

) = θσ
(L)
0 (x)(vx),

with g ∈ C∞(CC(L)) a positive function such that η(L) = g θσ
(L)
0 CC(L)

. We have thus proved that the

class of θσ
(L)
0 is the unique smooth extension of the class of η(L) to C(L)

0 .
(iii) To extend the class of η(H)≻(L) from CS◦

(H)≻(L) to the whole piece CS(H)≻(L), we will apply
the same type of arguments as before, using this time that CS◦

(H)≻(L) is open and dense in CS(H)≻(L).
Namely, for any point x ∈ CS(H)≻(L) and any vx ∈ TxCS(H)≻(L), there is a sequence of points
xk ∈ CS◦

(H)≻(L) and one of vectors vxk
∈ Txk

CS◦
(H)≻(L) ≃ Txk

CS(H)≻(L) such that

lim
k→∞

xk = x, lim
k→∞

vxk
= vx.

Observe that

lim
k→∞

η(H)≻(L)(xk)(vxk
)

f(xk)
= θσ

(L)
0 (x)(vx)

and notice that this extension is also unique and given by the conformal class of θσ
(L)
0 |CS(H)≻(L)

.
To check the coisotropy and Legendrian submanifold conditions, let x ∈ CS◦

(H)≻(L). A direct count
of dimensions gives:

dimker θσ
(L)
0 (x) = dim C(L)

0 − 1 = 2(dimQ(L) − dimG + dimL − 1)

since S∗Q(L) is open in the corresponding contact stratum. At this point we need the following
intermediate result.

Lemma 1.4.3. The dimension of the tangent space to a contact seam is

dimTxCS(H)≻(L) = dimQ(H) + dimQ(L) − 2 dimG + dimH + dimL − 1. (1.4.8)
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Proof. We want to compute dimTxCS(H)≻(L) = dimCS(H)≻(L). For this, let π(z) = k0(x) be the base

point of x, where z ∈ Q(H) with Gz = H and note that dimCS(H)≻(L) = dim(J−1
ct (0) ∩ T ∗

z Q)(L) +
dimQ(H) − dimG + dimL − 1, where the class (L) refers to the linear H-action on the vector space

J−1
ct (0) ∩ T ∗

z Q. On the other hand, the inverse of the Riemannian bundle isomorphism TQ → T ∗Q
maps (J−1

ct (0) ∩ T ∗
z Q)(L) H-equivariantly isomorphically to (Sz)(L). Now, if ψ, U , and U ′ are like

in the Tube Theorem (1.2.2), then ψ restricts to a diffeomorphism between G ×H

(
(Sz)(L) ∩ U

)
and

U ∩ Q(L). Since dimG ×H (Sz)(L) = dimG + dim(Sz)(L) − dimH, we can compute

dim(Sz)(L) = dimQ(L) − dimG + dimH.

Finally we obtain dimTxCS(H)≻(L) = dimQ(H) + dimQ(L) − 2 dim G + dimH + dimL − 1.

Consequently, a simple dimension count gives

dimTxCS(H)≻(L) −
1

2
dimker θσ

(L)
0 (x) = dimQ(H) − dimG + dimH

= dim(Sz)(H) ≥ 0,

where z ∈ Q(H) is the base point of x and Sz is the associated linear slice. Suppose first that (H) ∈ I∗Q
and so dimTxCS(H)≻(L) − 1

2 dimker θσ
(L)
0 (x) 	 0. This implies that CS◦

(H)≻(L) and CS(H)≻(L) can be

neither isotropic nor Legendrian submanifolds of C(L)
0 and that TxCS◦

(H)≻(L) * ker θσ
(L)
0 (x) for any

x ∈ CS◦
(H)≻(L).

Now let
Wx := TxCS◦

(H)≻(L) ∩ ker θσ
(L)
0 (x) = TxCS(H)≻(L) ∩ ker θσ

(L)
0 (x)

and
Vx :=

{
v ∈ TxCS◦

(H)≻(L) \ ker θσ
(L)
0 (x) : v = v0 ⊕ kR(x), k ∈ R , v0 ∈ ker θσ

(L)
0 (x)

}
.

One can easily check that Vx is a one dimensional vector space and that for any x ∈ CS◦
(H)≻(L),

we have TxCS◦
(H)≻(L) = Wx ⊕ Vx. As Ψ̃(H)≻(L) is a surjective submersion and θσ

(L)
0 CS◦

(H)≻(L)
≃

η(H)≻(L), it follows that TxΨ̃(H)≻(L)(Wx) = kerΘ
(H)
Σ (y) and TxΨ̃(H)≻(L)(Vx)= span {RΣ(y)}, where

y = Ψ̃(H)≻(L)(x) and RΣ(y) is the Reeb vector field of
(
S∗(Q(H)),Θ

(H)
Σ

)
. Therefore, we obtain

rank dη(H)≻(L)(x)|Wx = dimWx − dimker dη(H)≻(L)(x)|Wx

= dimWx − dim{v ∈ Wx : dΘ
(H)
Σ (y)(TxΨ̃(H)≻(L)v, TxΨ̃(H)≻(L)w) = 0,∀w ∈ Wx}

= dimWx − dimkerTxΨ̃(H)≻(L)
Wx

= dimS∗(Q(H)) − 1.

This shows that rank dη(H)≻(L)(x)
W

= 2dimW−(dim C(L)
0 −1) proving that CS◦

(H)≻(L) is a coisotropic
submanifold. Since CS◦

(H)≻(L) is dense in CS(H)≻(L), by an extension argument similar to the one
used before, we have that CS(H)≻(L) is also a coisotropic submanifold of the corresponding contact
stratum.
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If (H) ∈ IQ\I∗Q, then dimTxCS(H)≻(L) = 1
2 dimker θσ

(L)
0 (x) and by the definition (1.4.6) η(H)≻(L) =

0 since S∗(Q(H)) is the trivial bundle, proving thus that the CS(H)≻(L) is a Legendrian submanifold

of C(L)
0 .

Remark 1.4.4. Note that the contact seams CS(H)≻(L) can never be contact submanifolds of C(L)
0 .

The C-L stratification of C0

In this subsection we prove the existence of a new stratification of the contact reduced space C0,
different from the contact stratification in Theorem 1.2.2. The existence of this new stratification,
that we call the C-L stratification since its strata are coisotropic or Legendrian submanifolds of the
corresponding contact stratum, is due to the bundle structure of the contact manifold that we start
with. We will see that the C-L stratification is strictly finer than the contact one, if the base manifold
Q has more than one orbit type. In principle, this is not an advantage since the contact stratification
partitions the singular contact quotient in less and larger smooth components. However, if we take into
account the bundle structure of the problem we can see why this new stratification is more appropriate.

The most important feature of regular cosphere bundle reduction, Theorem 1.2.3, is that if we
start with the cosphere bundle of a manifold Q, we end up again with a cosphere bundle, this time
over Q/G. Furthermore, the reduced contact structure on S∗(Q/G) equals the canonical cosphere
contact structure. In the singular setting however, the lack of smoothness of the quotient spaces
involved forces us to choose another definition of fibration. The most natural one when working with
decomposed or stratified spaces is the following: if A and B are decomposed spaces together with a
continuous surjection f : A → B, we say that f : A → B defines a stratified bundle over B if f is a
morphism of decomposed spaces. In our case, there is a natural projection k0 : C0 → Q/G induced
from the cosphere bundle projection k : S∗Q → Q. If we consider the natural orbit type stratification
of Q/G and the contact one of C0, then the projection does not define a stratified bundle over Q/G

since the image of a contact stratum C(L)
0 under the projection is Q(L) which includes several orbit

type strata of Q/G. We will prove that the choice of the coisotropic stratification for the contact
quotient C0 solves this problem.

Consider the partition of C0 obtained by putting together all the secondary strata found in every
contact stratum:

C0 =
∐

(L)

CC(L)

∐

(K′)≻(K)

CS(K′)≻(K) (1.4.9)

for every pair of classes (L), (K) ∈ I∗Q and every (K ′) ∈ IQ.

Theorem 1.4.4. The partition (1.4.9) is a decomposition of C0 inducing a stratification, called the
C-L stratification, that satisfies the following properties:

(1) If Q/G is connected and (L0) is the principal orbit type in Q, then CC(L0) is open and dense in
C0.

(2) k0 : C0 → Q/G is a stratified bundle with respect to the C-L stratification of C0 and the orbit
type stratification of Q/G.
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(3) If IQ consists of more than one class, the C-L stratification is strictly finer than the contact one,
and they are identical otherwise.

(4) The frontier conditions for the C-L stratification of C0 are:

(i) CC(K) ⊂ ∂CC(H) ⇐⇒ (H) ≺ (K)

(ii) CS(K)≻(H) ⊂ ∂CC(H) ⇐⇒ (H) ≺ (K)

(iii) C(K) ⊂ ∂CS(K)≻(H) ⇐⇒ (H) ≺ (K)

(iv) CS(K′)≻(H) ⊂ ∂CS(K)≻(H) ⇐⇒ (H) ≺ (K) ≺ (K ′)

(v) CS(K)≻(H′) ⊂ ∂CS(K)≻(H) ⇐⇒ (H) ≺ (H ′) ≺ (K).

Proof. For (1), recall by Proposition 1.4.1 that IJ−1(0) = I∗Q. The principal orbit type of the isotropy

lattice corresponds to an open and dense piece, so (J−1(0))(L0) is open and dense in J−1(0), since
(L0) is by hypothesis the principal orbit type in I∗Q (assuming that dimQ 6= 0) and hence in IJ−1(0).

Consequently, as the orbit map J−1(0) → C0 is continuous and open, C(L0)
0 is open and dense in C0.

Now, since C(L0)
0 is equipped with the relative topology with respect to C0 and CC(L0) is open and

dense in it (Theorem 1.4.2), it follows that CC(L0) is also open and dense in C0. For (2), note that

the restrictions of k0 to CC(L) and CS(H)≻(L) coincide with the corresponding restrictions of k(L),

which, by Remark 1.4.3, are smooth surjective submersions over Q(L) and Q(H) respectively for every
(L) ∈ I∗Q and (H) ∈ IQ. This shows that these restrictions map each C-L stratum of C0 to an orbit type

stratum of Q/G. Therefore, k0 is a morphism of stratified spaces. To prove (3), recall from Theorem

1.4.1, that if IQ consists of a single orbit type (H), then C0 = C(H)
0 = CC(H) (assuming dimQ 6= 0)

and its contact and C-L stratifications are both trivial and identical. If there is more than one orbit
type in the base, the number of C-L strata is strictly higher than the number of contact strata (which
is equal to the number of orbit types of I∗Q). The identity map in C0 injects each C-L stratum in the
unique contact stratum to which it belongs and is hence a morphism of stratified spaces. Therefore,
the C-L stratification is finer than the contact one. For (4), relations (ii) and (iv) follow from the

frontier conditions of the secondary stratum C(H)
0 . To prove (i), it suffices to recall from the general

theory of singular contact reduction that C(K)
0 ⊂ ∂C(H)

0 if and only if (H) ≺ (K). Using the density of

any maximal secondary stratum CC(L) in the corresponding contact piece C(L)
0 , (i) follows. (iii) is a

consequence of (v) if one considers the limit case CC(K) = CS(K)≻(K).
Finally, to prove (v), choose a point [x] ∈ CS(K)≻(H′) ⊂ C0 and an open neighborhood [x] ∈ O ⊂ C0.

We shall show that O ∩ CS(K)≻(H) 6= ∅ if (H) ≺ (H ′) ≺ (K). Let x ∈ J−1(0) be a preimage of [x].
We can assume without loss of generality that Gx = H ′ and that the projection of x, i.e. the point
z = k(x) ∈ Q, satisfies Gz = K. Let U be the only open G-saturated set in J−1(0) such that U/G = O.
Then, identifying S∗Q with the unit bundle in T ∗Q via a G-invariant metric on Q, we have that x
is a unit covector lying in the subset of the cotangent fiber at z given by (SK

z )∗ ⊕ (N∗
z Q(K))(H′). By

the general properties of linear representations of compact groups on vector spaces and the property
(iii) of cotangent-lifted actions in Lemma 1.4.2, it follows that p2(U ∩ T ∗

z Q) ∩ (N∗
z Q(K))(H) 6= ∅

for every compact subgroup H of K such that H ≺ H ′ and (N∗
z Q(K))(H) 6= ∅, i.e., (H) ∈ IQ.
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Here, p2 is the linear projection (SK
z )∗ ⊕ N∗

z Q(K) → N∗
z Q(K). From this, it follows that if x′ ∈

p2(U ∩ T ∗
z Q)) ∩ (N∗

z Q(K))(H), then [x′] ∈ O ∩ CS(K)≻(H).

Remark 1.4.5. The previous result shows that, identifying a stratum CC(H) with S∗(Q(H)) as shown
in Theorem 1.4.3, the reduced space C0 is almost everywhere a collection of cosphere bundles, one
for each orbit type stratum of positive dimension in Q/G. These cosphere bundles satisfy the same
frontier conditions as their bases, i.e., S∗(Q(K)) ⊂ ∂S∗(Q(H)) if and only if Q(K) ⊂ ∂Q(H) (condition
(i)), but in this case there is always a contact seam CS(K)≻(H) between them, which “glues together”
these two cosphere bundles, as reflected in conditions (ii) and (iii).

A remark on the local properties of the C-L stratification of C0.

Throughout this paper we have used a purely topological concept of stratification (see subsection
1.2.1). However, in the literature most of the time the notion of stratification is a finer one, in a sense
incorporating some sort of smooth structure not confined to each stratum. Namely, the additional
condition usually imposed to a stratified space X is that of being a locally trivial cone space (which
together with a smooth structure of degree ≥ 2 implies that X is a Whitney space, see [48] for details).

According to [34], the contact quotient C0 together with the stratification given by Theorem 1.2.2
is a locally trivial cone space. In that paper, the authors prove this fact using a contact analogue of
the equivariant symplectic tubular neighborhood of Marle, Guillemin and Sternberg. They study the
conical properties of the stratification in the local model provided by the corresponding equivariant
tube φ : C → U . This is possible since the basic ingredients to construct the strata, the orbit
types C(H), are mapped in the local model to U(H). However, this is not the case for the cosphere
bundle. The building blocks of the secondary and C-L stratifications of a cosphere bundle quotient are

π+
(
s(L) \ {0T ∗Q(L)

}
)

and π+
(
s(H)≻(L)

)
. In order to express them in the tubular neighborhood, one

would need the tube φ to be explicitly defined or at least adapted to the cosphere bundle category in a
way that reflects the fibrated nature of C. Consequently, the problem of studying the local triviality of
the secondary or C-L stratifications implies finding such an adapted normal form for cosphere bundles,
which is yet unknown.

1.5 Singular base actions with cosphere regular lifts

In the following definition we introduce a class of actions which may have singularities on Q but that
will be proven to yield regular lifted actions on S∗Q.

Definition 1.5.1. An almost semifree action of G on Q is a smooth action such that a) it is free almost
everywhere, b) the connected components of every orbit of non-maximal dimension are isolated, and c)
for every non-trivial isotropy subgroup H ∈ IQ with Lie algebra h, its induced adjoint representation
on (g/h) \ {0} given by h · [ξ] = [Adhξ] is free.

Note that for any almost semifree action, the quotient space Q/G consists on an open and dense
stratum Q(e), except possibly for a set of isolated singular points. The next proposition shows that



26 Singular Cosphere Bundle Reduction

the class of almost semifree actions is in one-to-one correspondence with the class of free actions on
S∗Q.

Proposition 1.5.1. Let S∗Q be the cosphere bundle of Q endowed with the lift of a proper action of
a Lie group G on Q. This lifted action is free if and only if the action on Q is almost semifree.

Proof. Recall that, identifying with the help of a G-invariant Riemannian metric S∗Q with the unit
bundle SQ ⊂ TQ and TQ with T ∗Q, G acts freely on S∗Q if and only if its tangent-lifted action on TQ
is free on the unit bundle, and hence if it is free away from the zero section (since by linearity the lifted
action intertwines the fiber rescaling by non-zero factors). Let q ∈ Q with stabilizer Gq = H 6= {e},
S ⊂ TqQ a linear slice for the G-action at q and v = ξQ(q) + s ∈ TqQ \ {0}. Note that all the
admissible ξ’s differ by an element of the Lie algebra of H. Then U = G · expq(S) is a G-invariant
neighborhood of the orbit G · q = G · expq(0) and there is an H-isomorphism f : TqQ → g/h×S given
by f(ξQ(q) + s) = ([ξ] , s), where the H-invariance is with respect to the linear action on TqQ and the
diagonal action on g/h× S given by h · ([ξ] , s) = ([Adh ξ] , h · s). Consequently, Gv = Hv = Hs ∩H[ξ].

Suppose first that the lifted action of G on S∗Q is free. Then any point q′ ∈ U \G ·q can be written
as q′ = g · expq(s) for some 0 6= s ∈ S with g ∈ G and Gq′ = gHsg

−1 = {e}, since Gs = Hs = {e} as
assumed above. Hence the G-action on Q is almost semifree.

For v = ξQ(q0) ∈ Tq0Q \ {0} with ξ ∈ g, ξ /∈ h we obtain that Gv = {e} = Hv = H[ξ], thus proving
that the induced adjoint representation on (g/h) \ {0} is free.

To prove the converse implication, let v ∈ TqQ \ {0} as before, with v = s + ξQ(q0), where s ∈ S
and ξ ∈ g. If s is different from zero, multiplying it if necessary by a positive scalar smaller than one,
we can guarantee that G · expq(s) ⊂ U \ G · q. Shrinking U if necessary, we can guarantee that all of
the points in U \ G · q0 have trivial isotropy, since the orbits of non maximal dimension are isolated
by hypothesis. Using again the Tube Theorem, the isotropy groups of these points are gHsg

−1 = {e},
for every g ∈ G, which forces Hs = {e} and hence Hv = {e}. In the case when s = 0, we have that
Gv = H[ξ] = {e}, thus completing the proof.

Remark 1.5.1. To geometrically express the third condition in Definition 1.5.1, notice that every non
trivial isotropy subgroup H = Gq ∈ IQ acts freely on (g/h) \ {0} if and only if for any element h ∈ H
the associated diffeomorphism of Q maps bijectively {exp(tξ) · q : t ∈ R} to {exp(t Adh ξ) · q : t ∈ R}
for every ξ ∈ g with [ξ] 6= 0 in g/h.

Notice that this is a major difference with the cotangent bundle case, where the cotangent-lifted
action is free if and only if the base action is free as well. In the context of cosphere bundle reduction
the reason for the special interest in semifree actions and in finding necessary and sufficient conditions
for the freeness of the lifted cosphere action is the following. Given a cosphere bundle C = S∗Q with
the lift of a proper almost semifree action on Q, if we ignore the bundle structure of the contact
manifold C we are in the hypothesis of regular contact reduction, since G acts freely, properly, and
by strong contactomorphisms on C. Therefore, the contact reduced space C0 is a well defined smooth
contact manifold.

On the other hand, since the action on Q is not free in general, we cannot apply the main result
on regular cosphere bundle reduction of [16] (see Theorem 1.2.3) because in that case the quotient



1.5 Singular base actions with cosphere regular lifts 27

Q/G will not be a smooth manifold. In fact, one expects C0 to be a smooth reduced manifold fibrating
continuously over the topological stratified space Q/G, but this bundle description cannot be achieved
by only applying the scheme of regular cosphere bundle reduction. However, the results of the previous
section will allow us to provide such a “stratified bundle” picture of the contact quotient C0. Indeed,
we have the following result.

Theorem 1.5.1. Let G be a Lie group acting properly and almost semifreely on Q and by lifts on the
cosphere bundle S∗Q with contact momentum map J : S∗Q → g∗. Write the orbit type decomposition
of Q/G as

Q/G = Q(e)
∐

(H)∈IQ\I∗Q

∗(H),

where Q(e) = Q(e)/G is open and dense in Q/G and each ∗(H) with (H) ∈ IQ \ I∗Q is an isolated point

of some lower dimensional stratum Q(H) with (H) ≻ (e), lying in the boundary of Q(e). Then the
quotient C0 = J−1(0)/G is a smooth manifold which can be decomposed as

C0 ≃ S∗(Q(e))
∐

(H)∈IQ\I∗
Q

CS(H) (1.5.1)

where each CS(H) is a trivial bundle over ∗(H) and a connected submanifold of C0 lying in the bound-
ary of S∗(Q(e)). Moreover, the manifolds CS(H) are Legendrian submanifolds of C0 in one-to-one
correspondence with the singular orbits of the G-action on Q and have dimension dimQ− dimG− 1.

Proof. Since J−1(0) consists of a single orbit type (e), due to the fact that the lifted action to S∗Q is
free, the secondary and C-L stratifications coincide with the partition (1.5.1). As for every (H) ∈ IQ

different from (e) we have (H) ∈ IQ \ I∗Q, the contact seams CS(H) := CS(H)≻(e) are Legendrian
submanifolds of C0. The dimension of each connected component is then given by formula (1.4.8)
noting that dimQ(e) = dimQ and dimQ(H) = dimQ(H) −dimG+dimH = 0 for every (H) ∈ IQ \ I∗Q,
since the action on Q is almost semifree.

Recall that a group action is called semifree if it is free everywhere except for a set of isolated
fixed points. Semifree actions are important particular cases of almost semifree actions and they are
commonly found in examples. The following example explicitly illustrates the geometric constructions
of this paper in that situation.
Example: S1 acting on S∗R2. Consider Q = R2 with Euclidean coordinates (x1, x2) and its
cotangent bundle T ∗R2 = R2 × R2 with coordinates (x1, x2, y1, y2). The action of S1 by rotations on
R2 (a semifree action with R2

(S1) = {(0, 0)}) lifts to T ∗R2 by the induced diagonal action. A Hilbert
basis for the ring of S1-invariant polynomials for this cotangent lifted action is given by (see [13], §1.4)

σ1 = x2
1 + x2

2 + y2
1 + y2

2,
σ2 = 2(x1y1 + x2y2),
σ3 = y2

1 + y2
2 − x2

1 − x2
2,

σ4 = x1y2 − x2y1.
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These polynomials satisfy the semialgebraic relations

σ1 ≥ 0, σ2
1 = σ2

2 + σ2
3 + 4σ2

4.

We can identify the cosphere bundle S∗R2 with the subset of T ∗R2 given by the constraint

σ1 + σ3 = 2.

The cotangent lifted action restricts to S∗R2 giving the free lifted action by contactomorphisms. Its
associated momentum map is given by

J(x1, x2, y1, y2) = σ4

for (x1, x2, y1, y2) ∈ S∗R2. Consequently, using invariant theory, the contact reduced space J−1(0)/S1

is identified with the semialgebraic variety of R3 = {σ2, σ3, σ1} defined by

C0 ≃
{
(σ2, σ3, σ1) ∈ R3 : σ1 ≥ 0, σ2

1 = σ2
2 + σ2

3, σ1 + σ3 = 2
}

.

This contact reduced space is in fact a smooth manifold since it is the parabola obtained intersecting
the plane P = {σ1 + σ3 = 2} with the upper half of the cone σ2

1 = σ2
2 + σ2

3. Its smooth structure is
induced from the ambient space R3. This was to be expected since the action on the contact manifold
S∗R2 is free.

However, this reduced space is no longer a cosphere bundle since the action on the base is semifree.
We investigate now how the stratified bundle structure of C0 obtained in the previous sections arises
here. Note that Q/G = R2/S1 can be identified with the subset of R3 given by

Q/G = {(0,−t, t) : t ≥ 0} ,

which is a half-open line parallel to the plane P containing C0. According to the notation employed
in this section, Q/G is a stratified space with strata Q(e) and ∗ = (0, 0, 0). The continuous fibration
k0 : C0 → Q/G is given by k0(σ2, σ3, σ1) = (0, 1 − σ1, σ1 − 1). Note that (k0)−1(Q(e)) = L

∐
R and

(k0)−1(∗) = (0, 1, 1) (see figure 1.5), where C0 = L
∐

R
∐{(0, 1, 1)}. In addition, recall that Q(e) ≃ R

and that S∗R = R ⊔ R.
So (k0)−1(Q(e)) = L

∐
R is diffeomorphic to the cosphere bundle S∗Q(e). The fiber over a point

(0,−t, t) ∈ Q(e) is the pair of points (2
√

t, 1 − t, 1 + t) and (−2
√

t, 1 − t, 1 + t) which lie in L and
R respectively. Finally, the point (0, 1, 1), the minimum of the parabola C0, is the seam CS(S1)≻(e)

lying in the boundary of S∗(Q(e)). Finally, since both C0 and S∗(Q(e)) are one-dimensional, their
contact structures are trivial, due to the fact that the corresponding contact distributions must be
zero-dimensional.

1.6 Example: diagonal toral action on R2 × R2

We illustrate the main results obtained in this paper with one more example rich enough to show all the
extra structure appearing in the cosphere bundle singular reduction. This time, the reduced contact
space C0 will have dimension bigger than one and will have hence a non-trivial contact structure.
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Figure 1.5.1: The contact reduced space as a parabola fibrating over a half-closed line.

Consider the proper action of G = T2 on Q = R2 × R2, where each S1 factor acts by rotations on
the corresponding R2 factor. The isotropy lattice for this action is shown in Figure 1.6.1, where the
subconjugation partial order is represented by arrows. Also, the corresponding stratification lattice is
shown. A stratification lattice is a graphical arrangement of all the strata of a stratified space where
for any two strata A, B with A ⊆ B and such that there is no other stratum C with the properties
A ⊆ C and C ⊆ B we write A → B. For the action under study, we have IQ \ I∗Q = {

(
T2

)
}.

Let (x, y) = (x1, x2, y1, y2) be the Euclidean coordinates of a point in Q and z = (x, y, u, v) =
(x1, x2, y1, y2, u1, u2, v1, v2) the ones of a covector in T ∗Q ≃ R4 × R4. The ring of G-invariant polyno-
mials on T ∗Q is generated by

ρ1 = ‖x‖2 + ‖u‖2 σ1 = ‖y‖2 + ‖v‖2

ρ2 = 2(x · u) σ2 = 2(y · v)
ρ3 = ‖u‖2 − ‖x‖2 σ3 = ‖v‖2 − ‖y‖2

ρ4 = x1u2 − x2u1 σ4 = y1v2 − y2v1.

These polynomials, which form a Hilbert basis, are subject to the following semi-algebraic relations

ρ1 ≥ 0, σ1 ≥ 0, ρ2
1 = ρ2

2 + ρ2
3 + 4ρ2

4, σ2
1 = σ2

2 + σ2
3 + 4σ2

4.

Identifying the cosphere bundle S∗R4 with R4 × S3 ⊂ R4 × R4, where S3 = {(u, v) ∈ R2 × R2 :
‖u‖2 + ‖v‖2 = 1}, it is easy to see that its contact structure is given by the kernel of the restriction
of the Liouville one-form θ = udx + vdy and that the associated momentum map J : S∗R4 → R2 is
given by J(x, y, u, v) = (ρ4, σ4) ∈ R2. Consequently, we still have two more constraints to describe the
zero-momentum level set:

ρ4 = 0 and σ4 = 0.

Notice that we can also see S∗R4 as the subset of R8 defined by the additional constraint

ρ1 + ρ3 + σ1 + σ3 = 2.
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The associated G-invariant Hilbert map is defined by

γ : J−1(0) → R3 × R3,γ(z) = (ρ1(z), ρ2(z), ρ3(z);σ1(z), σ2(z), σ3(z)),

and we can identify the reduced contact space with the image of γ, i.e. with the semialgebraic variety
of R6 defined by

C0 ≃ {(ρ; σ) ∈ R6 : ρ1, σ1 ≥ 0, ρ2
1 = ρ2

2 + ρ2
3, σ2

1 = σ2
2 + σ2

3, ρ1 + ρ3 + σ1 + σ3 = 2}

which is the intersection between the product of two cones, C1 × C2 and the hypersurface H :=
{(ρ1, ρ3, σ1, σ3) ∈ R4 : ρ1 + ρ3 + σ1 + σ3 = 2}. (see Figure 1.6.2).

The Reeb vector field on S∗R4 is given by R(x, y, u, v) = (u, v, 0, 0) for any (x, y, u, v) ∈ R4 × S3

and the flow of the corresponding reduced Reeb vector field on C0 at a point (ρ0;σ0) is easily computed
as

ρ1(t) = ρ01 + ρ02t + 1
2(ρ01 + ρ03)t

2

ρ2(t) = ρ02 + (ρ01 + ρ03)t

ρ3(t) = ρ03 − ρ02t − 1
2(ρ01 + ρ03)t

2

σ1(t) = σ01 + σ02t + 1
2(σ01 + σ03)t

2

σ2(t) = σ02 + (σ01 + σ03)t

σ3(t) = σ03 − σ02t − 1
2(σ01 + σ03)t

2.

Applying Proposition 1.4.1, we know that the orbit types of J−1(0) are exactly those given by I∗Q
and hence the contact strata of C0 are in bijective correspondence with the strata of Q given by I∗Q.
We then have

T ∗Qe = {(x, y, u, v) ∈ R8 : (x, y) 6= 0}
T ∗Q(S1×e) = {(0, y,0, v) ∈ R8 : y 6= 0}
T ∗Qe×S1 = {(x,0, u,0) ∈ R8 : x 6= 0}
N∗Qe = {(x, y,0,0) : x 6= 0 , y 6= 0}
N∗QS1×e = {(0, y, u,0) : y 6= 0}
N∗Qe×S1 = {(x,0,0, v) : x 6= 0}.

Consequently, a direct computation gives the following orbit types for the zero momentum map

J−1(0) = {z ∈ R4 × S3 : ρ4(z) = σ4(z) = 0}
(J−1(0))(e) =

{
z ∈ J−1(0) : x 6= 0, y 6= 0

}
∐ {

z ∈ J−1(0) : x = 0 , y 6= 0, u 6= 0
}

∐ {
z ∈ J−1(0) : x 6= 0, y = 0, v 6= 0

}
∐ {

z ∈ {0R4} × S3 : u 6= 0, v 6= 0
}

(J−1(0))(e×S1) =
{
z ∈ J−1(0) : y = v = 0, x 6= 0

}
∐{z ∈ J−1(0) : x = y = v = 0, ‖u‖ = 1}

(J−1(0))(S1×e) =
{
z ∈ J−1(0) : x = u = 0, y 6= 0

}
∐{z ∈ J−1(0) : x = y = u = 0, ‖v‖ = 1}.
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Using the image of the Hilbert map γ we can realize the contact strata given by Theorems 1.2.2, 1.4.2,
and 1.4.4 as:

C(e)
0 = CC(e)

∐
CS(S1×e)≻(e)

∐
CS(e×S1)≻(e)

∐
CS(T2)≻(e)

CC(e) =
{
(ρ; σ) : ρ1, σ1 > 0, ρ1 6= ρ3, σ1 6= σ3, ρ2

1 = ρ2
2 + ρ2

3,

σ2
1 = σ2

2 + σ2
3, ρ1 + ρ3 + σ1 + σ3 = 2

}

CS(S1×e)≻(e) = {(ρ; σ) : ρ1, σ1 > 0, σ1 6= σ3, ρ1 = ρ3, ρ2 = 0,

2ρ1 + σ1 + σ3 = 2, σ2
1 = σ2

2 + σ2
3

}

= (R+ × C2) ∩ {2ρ1 + σ1 + σ3 = 2, σ1 6= σ3}
CS(e×S1)≻(e) = {(ρ; σ) : ρ1, σ1 > 0, ρ1 6= ρ3, σ1 = σ3, σ2 = 0,

2σ1 + ρ1 + ρ3 = 2, ρ2
1 = ρ2

2 + ρ2
3

}

= (C1 × R+) ∩ {2σ1 + ρ1 + ρ3 = 2, ρ1 6= ρ3}
CS(T2)≻(e) = {(ρ; σ) : ρ1, σ1 > 0, ρ1 = ρ3, σ1 = σ3, ρ2 = σ2 = 0,

ρ1 + σ1 = 1}
C(e×S1)

0 = CC(e×S1)

∐
CS(T2)≻(e×S1)

CC(e×S1) =
{
(ρ;0) : ρ1 > 0, ρ1 + ρ3 = 2, ρ2

1 = ρ2
2 + ρ2

3

}
\ {(1, 0, 1;0)}

CS(T2)≻(e×S1) = {(1, 0, 1; 0, 0, 0)}
C(S1×e)

0 = CC(S1×e)

∐
CS(T2)≻(S1×e)

CC(S1×e) =
{
(0;σ) : σ1 > 0, σ1 + σ3 = 2, σ2

1 = σ2
2 + σ2

3

}
\ {(0; 1, 0, 1)}

CS(T2)≻(S1×e) = {(0, 0, 0; 1, 0, 1)} .

The corresponding contact, secondary and C-L stratification lattices in C0 are shown in Figure
1.6.3. Notice that (e) is the principal orbit type in Q and, therefore, CC(e) is open and dense in the
reduced space C0. The contact seams CS(T2)≻(S1×e), CS(T2)≻(e×S1), and CS(T2)≻(e) are Legendrian
submanifolds of their contact strata, while the rest are coisotropic. Every contact seam is mapped by
the flow of the reduced Reeb vector field into the CC-secondary stratum of its corresponding contact
stratum as it can be easily checked.

In order to understand the bundle structure of these stratifications, we embed Q in T ∗Q as the
zero section and we identify Q/G with the subset of the image of γ given by

Q/G = {(t1, 0,−t1; t2, 0,−t2) : t1, t2 ≥ 0} ≃ R+ × R+,

a half-plane parallel to H. The strata of its orbit stratification are

Q(e×S1) = {(t1, 0,−t1;0) : t1 > 0}
Q(S1×e) = {(0; t2, 0,−t2) : t2 > 0}
Q(e) = {(t1, 0,−t1; t2, ; 0,−t2) : t1, t2 > 0}
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Figure 1.6.1: Isotropy and stratification lattices for the T2 action on R4.
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Figure 1.6.2: The ambient space of C0

and we obtain that the corresponding cosphere-like strata of C0 are diffeomorphic to the cosphere
bundles

S∗(Q(e×S1)) ≃ S∗(Q(S1×e)) ≃ R ⊔ R and S∗(Q(e)) ≃ R2 × S1.

The continuous fibration k0 : C0 → Q/G is given by k0(ρ1, ρ2, ρ3; σ1, σ2, σ3) = (ρ1 − 1, 0, 1 − ρ1; σ1 −
1, 0, 1 − σ1).
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34 Singular Cosphere Bundle Reduction



Chapter 2

Kähler and Sasakian ray reductions

2.1 Introduction

In this chapter we study geometric properties of Sasakian and Kähler quotients. In the presence of Lie
group symmetries G, we construct a reduction procedure for symplectic and Kähler manifolds using
the ray pre images of the associated momentum map J . More precisely, instead of taking as in point
reduction (Weinstein-Marsden reduce spaces, usually denoted by Mµ), the pre image of a momentum
value µ, we take the pre image of R+µ, the positive ray of µ. And instead of taking the quotient with
respect to the isotropy group Gµ of the momentum with respect to the coadjoint action of G, we take
it with respect to the kernel group of µ, a normal subgroup of Gµ. In this chapter the ray reduced
spaces will be denoted by MR+µ. We have three reasons to develop this construction.

One is geometric: the construction of non-zero, well defined Kähler reduced spaces. Kähler point
reduction is not always well defined. The problem is that the complex structure may not leave invariant
the horizontal distribution of the Riemannian submersion πµ : J−1(µ) → Mµ := J−1(R+µ)/Gµ. The
solution proposed in the literature, is based on the Shifting Theorem (see Theorem 6.5.2 in [56]).
More precisely, one endows the coadjoint orbit of µ, Oµ with a unique up to homotheties Kähler-
Einstein metric of positive Ricci curvature. This uniqueness modulo homotheties is guaranteed by
the choice of an Ad∗-invariant scalar product on g∗. Then, one performs the zero reduction of the
Kähler difference of the base manifold M and Oµ. Unfortunately, this construction is correct only in
the case of totally isotropic momentum (i.e. Gµ = G). Otherwise, using the unique Kähler-Einstein
form on the coadjoint orbit, instead of the Kostant-Kirillov-Souriau form makes impossible the use
of the Shifting Theorem since the momentum map of the orbit will no longer be the inclusion. Even
so, one could take by definition the reduced space at µ momentum to be the zero reduced space of
the symplectic difference of M and Oµ. But this reduced space is not canonical, in the sense that the
pull-back through the quotient projection of the reduced Kähler structure is no longer the initial one.
On the other hand, the ray Kähler reduction always exists and is canonical.

The second reason is that it provides invariant submanifolds for conformal Hamiltonian systems
(see [40]) and consequently, the right framework for the reduction of symmetries of such systems.
They are usually non-autonomous mechanical systems with friction whose integral curves preserve, in
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the case of symmetries, the ray pre-images of the momentum map, and not point pre images.
The third reason is finding necessary and sufficient conditions for quotients of Kähler (Sasakian)-

Einstein manifolds to be again Kähler (Sasakian)-Einstein. Using techniques of A. Futaki (see [19],
[20]), we prove that, under appropriate hypothesis, ray quotients of Kähler-Einstein manifolds remain
Kähler-Einstein.

As examples of symplectic (Kähler) and contact (Sasakian) ray reductions we treat the case of
cotangent and cosphere bundles. We show, proving a shifting type theorem that, theoretically,
(T ∗Q)R+µ and (S∗Q)R+µ are universal ray reduced spaces. Concrete examples of toric actions on
spheres are also computed.

The chapter is structured as follows. The second section gives a brief introduction to Sasakian-
Einstein manifolds presenting all the equivalent definitions existing in the literature. In the following
section we present the non zero momentum Sasakian reduction and we illustrate it with examples
of tori actions on spheres. We also make some comments on the sectionol curvature of Sasakian
quotients. Section 2.4 presents the symplectic and Kähler ray reduction treating separately the case
of exact symplectic manifolds. In the fifth section of this chapter we deal with the cone and Boothby-
Wang compatibilities with the ray reduction. Namely, we show that the ray reduction of the cone
of a contact manifold is exactly the cone of the contact reduced space. As a corollary we obtain the
ray reduction of cotangent bundles. Also, we prove that the Boothby-Wang fibration associated to a
quasi-regular, compact, Sasakian manifold descends to a Boothby-Wang fibration of the ray reduced
spaces. Section 2.6 presents the study of conformal Hamiltonian systems. We extend the class of
conformal Hamiltonian systems already studied in the literature and we complete the existing Lie
Poisson reduction with the general ray one, making thus use of the conservative properties of the
momentum map. The examples we provide are Duffing oscillators and Rayleigh systems. We also
give a characterization of relative equilibria for this type of systems. In Section 2.7 we perform the
ray reduction of cotangent bundles of Lie groups, as well as the reduction of their associated cosphere
bundles. We show, proving a shifting type theorem that, theoretically, (T ∗G)R+µ and (S∗G)R+µ

are universal ray reduced spaces. The role of the coadjoint orbit of the ray momentum R+µ in the
construction of these universal reduced spaces is made clear. In the last section we find necessary
and sufficient conditions for the ray reduced space of a Kähler-Einstein manifold of positive Ricci
curvature to be again Kähler-Einstein. Using the compatibility of ray reduction with the Boothby-
Wang fibration, we obtain as a corollary similar conditions for the Sasaki-Einstein case. All these are
illustrated with the examples of Section 2.3.2.

2.2 Sasaki-Einstein geometry

Traditionally, Ssakian manifolds were defined via contact structures by adding a Riemannian metric
with certain compatibility conditions.

Definition 2.2.1. A Sasakian structure on an exact contact manifold (S, η,R) is a Riemannian metric
g on S such that there is a (1, 1)-tensor field ϕ with

ϕ2 = −Id + η ⊗R η(X) = g(X,R) dη(X, Y ) = g(X,ϕY ), (2.2.1)
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for any vector fields X, Y .

A good reference for this point of view is the book of D. E. Blair, [8].

There are other equivalent definitions of a Sasakian manifold and in the following proposition
we present four of them. The first one is most in the spirit of the original definition of Sasaki(see
[50]). The most geometric approach is highlighted in the second definition. It only uses the holonomy
reduction of the associated cone metric and it was introduced by C. P. Boyer and K. Galicki in [10].

Proposition 2.2.1. Let (S, g) be a Riemannian manifold of dimension m, ∇ the associated Levi-
Civita connection, and R the Riemannian curvature tensor of ∇. Then, the followings are equivalent:

• there exists a unitary Killing vector field R on S so that the tensor field ϕ of type (1, 1), defined
by ϕ(X) = ∇XR, satisfies the condition

(∇Xϕ)(Y ) = g(R, Y )X − g(X,Y )R,

for any pair of vector fields X and Y on S;

• the holonomy group of the cone metric on S, (C(S), C(g)) := (S × R+, r2 g +dr2) reduces to a
subgroup of U(m+1

2 ). In particular, m = 2n + 1, for a n ≥ 1 and (C(S), C(g)) is Kähler;

• there exists a unitary Killing vector field R on S so that the Riemannian curvature satisfies the
condition

R(X,R)Y = g(R, Y )X − g(X, Y )R,

for any pair of vector fields X and Y on S;

• there exists a unitary Killing vector field R on S so that the sectional curvature of every section
containing R equals one;

• (S, g) is a Sasakian manifold.

For the proof, see [10].

Example: Sasakian spheres. One of the simplest compact examples of Sasakian manifolds is the
standard sphere S2n+1 ⊂ Cn with the metric induced by the flat one on Cn. The characteristic Killing
vector field(i.e. the associated Reeb vector field) is given by R(−→p ) = −i−→p , i being the imaginary unit,
and the contact form by the dual 1-form to R. More general Sasakian structures on the sphere can be
obtained by deforming this standard structure as follows. Let ηA = 1

P

aj |zj |2 η, for 0 < a1 ≤ a2 · · · ≤ an.

Its Reeb field is RA =
∑

aj(xj∂yj − yj∂xj). Clearly, η and ηA underly the same contact structure.
Define the metric gA by the conditions:

• gA(X, Y ) = 1
2dηA(IX, Y ) on the contact distribution (here I is the standard complex structure

of Cn);

• RA is normal to the contact distribution and has unit length.
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It can be seen that S2n−1
A := (S2n−1, gA) is a Sasakian manifold (cf. [27]).

Contact reduction at zero momentum was extended to the metric context (Sasakian manifolds)
in [23]. Namely, they have constructed reduction at zero momentum of Sasakian manifolds. For
Sasaki-Einstein base manifolds there were also given sufficient conditions for the reduced space to be
Sasaki-Einstein.

Theorem 2.2.1. Let (S, g,R) be a Sasakian manifold and G a compact Lie group acting on S by
contact isometries. If the zero contact reduced space is well defined, then it is a Sasakian manifold.

Theorem 2.2.2. In the hypothesis of the above theorem, if S is Sasaki-Einstein and the length of the
multi vector field ξ1S ∧ ... ∧ ξdim(G)S is constant on the preimage of zero of the momentum map, then
S0 is also Sasaki-Einstein. Here, {ξj}j=1,dim(G) denote a basis of g.

2.3 Non zero momentum Sasakian reduction

2.3.1 The reduction theorem

Theorem 2.3.1. Let (S, g,R, η) be a (2n − 1) dimensional Sasakian manifold, let G be a Lie group
of dimension d acting on S by strong contactomorphisms. Let J : S → g∗ be the momentum map
associated to the action of G and let µ be an element of the dual g∗. We assume that:

1. Ker µ + gµ = g.
2. The action of Kµ on J−1(R+µ) is proper and by isometries.
3. J is transverse to R+µ.

Then the contact quotient
SR+µ = J−1(R+µ)/Kµ

is a Sasakian orbifold with respect to the projected metric and the Reeb vector field.

Proof. We already know that the reduced space SR+µ is a contact manifold (see [57]). What is left to
be proved is that the metric g and the Reeb field R project on SR+µ, the latter onto a Killing field
such that the curvature tensor of the projected metric satisfies formula (2.2.1).

From the transversality condition satisfied by the momentum map one knows that J−1(R+µ) is
an isometric Riemannian submanifold of S (which induced metric we also denote by g). As the flow
of the Reeb field leaves invariant the level sets of the momentum J , one derives that the restriction of
R is still a unit Killing field on J−1(R+µ).

In order to establish the metric properties of the canonical projection πR+µ : J−1(R+µ) → SR+µ,
we have to understand the extrinsic geometry of the submanifold J−1(R+µ) ⊂ S. The first step is to
find a basis of the normal bundle of J−1(R+µ). To this end we look at the direct sum g = gµ ⊕ m

where µ |m= 0 (such a decomposition always exists since Ker µ + gµ = g). Let mM = {ξM |ξ ∈ m} and
recall that (see [57, Theorem 1]):

(TxJ−1(R+µ) ∩ Ker ηx) ⊕ RRx ⊕ mM (x) = (TxΦ−1(0) ∩ Ker ηx) ⊕ RRx, (2.3.1)

for any x ∈ J−1(R+µ), where Φ is the momentum map associated to the action of Kµ on S.
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Let now {ξ1, . . . , ξk} and {η1, . . . , ηm} be two bases in kµ and, respectively, m. Without loss of
generality, one may suppose that the fundamental fields {ηjS}j=1,m form an orthogonal basis of mS ,
g-orthogonal on TJ−1(R+µ) ∩ Ker η and that {ξiS}i=1,k are mutually orthogonal.

With these hypotheses, one derives that {ϕξiS , ϕηjS} are linearly independent in each x ∈ S and

g(ϕηjS ,W ) = g(ϕξiS , W ) = dη(W, ξiS) = −〈dJ(W ), ξi〉 = 〈rµ, ξi〉 = 0

for any vector field W tangent to J−1(R+µ). Therefore, for any i, j, the fields {ϕξiS , ϕηjS} belong to
the normal bundle of J−1(R+µ). A simple counting of the dimensions in the relation (2.3.1), together
with the fact that {ϕξiS} is a basis in the normal bundle of TΦ−1(0) (see the proof of [23, Theorem
3.1]), imply that {ϕξiS , ϕηjS} is indeed a basis of the normal bundle of J−1(R+µ)1.

Let ∇, ∇S be the Levi-Civita covariant derivatives of J−1(R+µ) and S respectively and let Ai,
Aj be the Weingarten operators associated to the unitary normal sections ϕξiS/‖ξiS‖, 1 ≤ i ≤ k,
ϕηjS/‖ηjS‖, 1 ≤ j ≤ m. By applying the Weingarten formula and the relation (2.6.9), one obtains,
for any X,Y, Z tangent to J−1(R+µ):

g(AiY, Z) = ‖ξiS‖−1{g(ξiS , Y )η(Z) − g(ϕ∇S
Y ξiS , Z)},

g(AjY, Z) = ‖ηjS‖−1{g(ηjS , Y )η(Z) − g(ϕ∇S
Y ηjS , Z)}.

As Kµ acts by strong contact isometries, the metric g projects on a metric g SR+µ on SR+µ with
respect to which the canonical projection πR+µ becomes a Riemannian submersion. We now show
that the vertical distribution V is locally generated by the vector fields {ξiS}. We have indeed:

TxπR+µ(ξiS(x)) = TxπR+µ (ċ(0)) = ˙(πR+µ ◦ c)(0)

where c(t) = Φ(exp tξiS , x).
But (πR+µ ◦ c)(t) = πR+µ(x) for any t and then

TxπR+µ(ξiS(x)) = 0 for any x ∈ J−1(R+µ).

This proves that {ξiS}1≤i≤k ⊂ Vx and, as dimVx = k, it implies that {ξiS} generate V.
The formulae LξiS

R = 0 for i = 1, . . . , k prove that R is a projectable vector field and its projection

RR
+µ is a unit Killing field on the reduced space SR+µ.

Let X, Y, Z be vector fields orthogonal to RR
+µ. Using O’Neill’s formulae (see [7, (9.28f)]) we

derive:

gS
R+µ(RS

R+µ(X,RR
+µ)Y, Z) = g(R(Xh, ξ)Y h, Zh) + 2 g(A(Xh, ξ), A(Y h, Zh)

− g(A(R, Y h), A(Xh, Zh)) + g(A(Xh, Y h), A(R, Zh)),

where Xh denotes the horizontal lift of the vector field X, A is O’Neill’s (1,2) tensor field given by
the relation: A(Zh, Xh) = vertical part of ∇S

ZhXh and R the curvature tensor of the connection ∇ on
J−1(R+µ). On the other hand:

g(∇ZhR, ξiS) = g(ϕZh, ξiS) = dη(ξiS , Zh) = 〈dJ(Zh), ξiS〉
= r〈µ, ξiS〉 = 0,

1{ϕξiS , ηjS} is also a basis for T⊥J−1(R+µ) Our choice is only technically motivated.
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and hence:

RS
R+µ(X,RR

+µ)Y = R(Xh,R)Y h.

This completes the proof.

Remark 2.3.1. Under the hypothesis of the above theorem, the dimension of the reduced space is
2n − (d + µ) + 3 = 2n + 1 − 2k − m, where µ = dimGµ.

2.3.2 Examples: actions of tori on spheres.

In Willett’s reduction scheme, the smallest dimension of G which produces non-trivial examples is
2. We here present some complete computations for various actions of G = T 2 on M = S7 with the
standard Sasakian structure given by the contact form η =

∑
(xjdyj − yjdxj). When possible, we

briefly discuss also the reduction at zero with the same group (the notations for the momentum maps
will be the ones used in the previous section). Generalizations to S2n−1 are also indicated.

Note that our examples show the dependence of the dimension of the quotient on the choice of µ.

Example 2.3.1. Let first T 2 act on S7 by

((eit0 , eit1), (z0, ..., z3)) 7→ (eit0z0, e
it0z1, e

it1z2, e
it1z3).

Since G is commutative, gµ = g = R2.

For any (r1, r2) ∈ g the associated infinitesimal generator is given by

(r1, r2)S7(z) = r1(−y0∂x0 + x0∂y0) + r1(−y1∂x1 + x1∂y1)

+ r2(−y2∂x2 + x2∂y2) + r2(−y3∂x3 + x3∂y3)

and the momentum map J : S7 → (R2)
∗

reads J(z) = 〈(|z0|2 + |z1|2, |z2|2 + |z3|2), ·〉.
Let µ : R2 → R, µ = 〈v, ·〉, v ∈ R2 \ {0} fixed. Then:

J−1(R+µ) =





S3(
√

v1
v1+v2

) × S3(
√

v2
v1+v2

), if v1, v2 > 0

S3(
√

v1
v1+v2

), if v1 > 0, v2 = 0

S3(
√

v2
v1+v2

), if v1 = 0, v2 > 0

For v = (1, 0) J−1(R+µ) = S3, Ker µ = kµ = {0} × R, Kµ = {e} × S1. The action of Kµ on
J−1(R+µ) is trivial and hence SR+µ = S3. In this case 0 is not a regular value of Φ-the momentum
map associated to the Kµ action but, nevertheless, Φ−1(0) is a submanifold of S7 and hence the reduced
space at zero, Φ−1(0)/Kµ is a Sasaki manifold. As Φ−1(0) = S3 and C(Sn) = Rn+1 \ {0}, we obtain
that (C(S7))0 = R4 \ {0}. Note that for this choice of µ reducing and taking the cone are commuting
operations exactly as in the zero case.
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For v = (1, 1) we obtain: J−1(R+µ) = S3( 1√
2
) × S3( 1√

2
), kµ = {(−x, x)|x ∈ R}, Kµ =

{(e−it, eit)|eit ∈ S1}. The action of Kµ on J−1(R+µ) is given by

((e−it, eit), z) 7→ (e−itz0, e
−itz1, e

itz2, e
itz3),

thus SR+µ = S2 × S3.
We can generalize this example for S = S2n+1 by considering the action

((eit0 , eit1), z) = (eit0z0, e
it0z1, e

it1z2, ..., e
it1zn).

Now the momentum map is J(z) = 〈(|z0|2 + |z1|2,
∑ |zk|2), ·〉. For µ as above, we have:

J−1(R+µ) =





S3(
√

v1
v1+v2

) × S2n−3(
√

v2
v1+v2

), if v1, v2 > 0

S3(
√

v1
v1+v2

), if v1 > 0, v2 = 0

S2n−3(
√

v2
v1+v2

), if v1 = 0, v2 > 0

For the same particular choices of µ as above, we obtain as reduced spaces respectively S3, S2n−3

or S3 × CPn−2.

Example 2.3.2. Let now the action be given by

((eit0 , eit1), z) 7→ (e−it0z0, e
it0z1, e

it1z2, e
it1z3).

The infinitesimal generator of the action will be

(r1, r2)S7(z) = r1(y0∂x0 − x0∂y0) + r1(−y1∂x1 + x1∂y1)

+ r2(−y2∂x2 + x2∂y2) + r2(−y3∂x3 + x3∂y3).

The momentum map is J(z) = 〈(|z1|2 − |z0|2, |z2|2 + |z3|2), ·〉 and

J−1(R+µ) =

{
z ∈ S7 | ∃s > 0 such that

{
|z1|2 − |z0|2 − sv1 = 0,

|z2|2 + |z3|2 − sv2 = 0.

}
(2.3.2)

For v = (1, 0) we obtain

J−1(R+µ) = {z ∈ S7|z2 = z3 = 0, |z1| > |z0|} = S3 \ {|z1| ≤ |z0|}.

The action of Kµ = {e} × S1 on J−1(R+µ) is trivial, thus MR+µ = S3 \ {|z1| ≤ |z0|}, an open
submanifold of S3. For v = (1, 1), solving for s the equations in (2.3.2) gives s ∈ (0, 1

2 ]. Hence:

J−1(R+µ) ≃
(

S1(
1√
2
) × S5(

1√
2
)

)
\

{
z ∈ S7 | |z0|2 =

1

2

}

≃ S1(
1√
2
) × (S5(

1√
2
) \ S1(

1√
2
))
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an open submanifold of the product of spheres.
The action of Kµ on J−1(R+µ) is given by

((e−it, eit), z) 7→ (eitz0, e
−itz1, e

itz2, e
itz3).

Let A denote the set
{
z ∈ S7(

√
2) | 0 < |z2|2 + |z3 |2≤ 1

}
. Obviously, the above action of Kµ can be

understood on the whole C4 and, as such, restricts to an action on A. Then SR+µ is diffeomorphic
with (S1 × S5) ∩ A/Kµ. To identify the quotient, let g :

(
S1 × S5

)
∩ A →

(
S1 × S5

)
∩ A be given by

(z0, z1, z2, z3) 7→ (z0, z
−1
1 , z2, z3).

g induces a map from
((

S1 × S5
)
∩ A

)
S1 (with respect to the diagonal action of S1) to((

S1 × S5
)
∩ A

)
/Kµ. The map

(z0, ..., z3) 7→ (z̄1z0, z1, z̄1z2, z̄1z3)

is a diffeomorphism of
(
S1 × S5

)
∩ A equivariant with respect to the diagonal action of S1 and the

action of S1 on the first factor. Hence SR+µ is diffeomorphic to S5( 1√
2
) \ pr

{
z ∈ S7 | |z0|2 = 1

2

}
≃

S5( 1√
2
) \ S1( 1√

2
), where pr : C4 → C3, pr(z0, . . . , z3) = (z0, z2, z3).

If we change the action on z0 with e−iktz0, the reduced space will be the above one quotiented by
Zk (see also [23, Example 4.2]).

Example 2.3.3. Let us take this time:

((eit0 , eit1), z) 7→ (eit0z0, e
it1z1, e

it1z2, e
it1z3),

whose infinitesimal generator is

(r1, r2)S7(z) = r1(−y0∂x0 + x0∂y0) + r2

3∑

j=1

(−yj∂xj + xj∂yj).

The momentum map is:
J(z) = 〈(|z0|2, |z1|2 + |z2|2 + |z3|2), ·〉.

For J−1(R+µ) we obtain the following possibilities:

J−1(R+µ) =





S1(
√

v1
v1+v2

) × S5(
√

v2
v1+v2

), if v1, v2 > 0

S5(
√

v2
v1+v2

), if v1 = 0, v2 > 0

S1(
√

v1
v1+v2

), if v2 = 0, v1 > 0

(2.3.3)

In particular, for v = (1, 0), SR+µ = S1, for v = (0, 1), SR+µ = S5 and for v = (1, 1) one obtains the
same quotient as in the preceding example.
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Example 2.3.4. Considering the weighted action of T 2 on S7 given this time by

((eit0 , eit1), z) 7→ (eit0λ0z0, e
it1λ1z1, z2, z3),

one obtains the momentum map

J(z) = 〈(λ0|z0|2, λ1|z1|2), ·〉.
For v = (0, 1) and λ1 strictly positive, the reduced space is S5 \ S3 if λ0 6= 0 and S7 \ S5 if λ0 = 0.

The cone construction is verified in this case. Indeed, J−1(0) = S3 and

(C(S7))0 ≃ C(S5) = C(S3) ∪ C(S5 \ S3).

If v = (1, 1) and λ0, λ1 > 0,

J−1(R+µ) =

{
z ∈ S7 | |z1| =

√
λ0

λ1
|z0|, z0 6= 0

}
= S7 ∩ (C∗ × A) (2.3.4)

where A is the ellipsoid of equation

|z1|2(1 +
λ1

λ0
) + |z2|2 + |z3|2 = 1.

The action of Kµ on J−1(R+µ) is given by

((e−it, eit), z) 7→ (e−itλ0z0, e
itλ1z1, z2, z3)

and the reduced space

SR+µ =
⋃

(z2,z3)∈pr(J−1(R+µ))

S1(β−λ0αλ1) × {(z2, z3)}

where pr : C4 → C2, pr(z0, . . . , z3) = (z2, z3), β =
√

λ0(1−|z2|2−|z3|2)
λ0+λ1

and α =
√

λ1(1−|z2|2−|z3|2)
λ0+λ1

.

If [z] = [z′] in the reduced space then z2 = z′2 and z3 = z′3. So let (z2, z3) be fixed in pr(J−1(R+µ)).
z ∈ J−1(R+µ) and pr(z) = (z2, z3) imply |z0| = α and |z1| = β. The action of Kµ on J−1(R+µ) is in
fact the diagonal action of S1 on the first two coordinates. Let f : (S1(α) × S1(β) × {(z2, z3)})/S1 →
S1(αλ1β−λ0) be the map given by

[z] 7→ zλ1
0 zλ0

1 .

One can easily check that f is a diffeomorphism.

In the previous examples, the Reeb flow on the reduced space is the restriction of the canonical one
of the standard sphere. In this latter case, we obtain a non-standard Reeb flow.

We now write the flow of the Reeb field of the reduced contact form on MR+µ (for v = (1, 1)). Let
r(t) =

(
cos t − sin t
sin t cos t

)
, Z = (z2

0 , z
3
0)

t. Then the flow is written as where

A = ‖z0
0‖λ1‖z1

0‖λ0 ,

a = λ1v0 + λ0v1, with v0 = arg(z0
0), v1 = arg(z1

0),

b = λ1 + λ0,

RR
+µ(t) = diag(r(t), r(t)).
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2.3.3 The sectional curvature of the quotient

Contact CR submanifolds

In this section we want to evaluate the sectional curvature of the Sasakian reduced space, both at zero
and non zero momentum. For technical reasons, it will be convenient to place ourselves in a slightly
more general situation. We first recall the following definition (see e.g. [6]):

Definition 2.3.1. Let (S, gS ,R) be a Sasakian manifold. An isometric submanifold N is called
contact CR or semi-invariant if it admits two mutually orthogonal distributions D and D⊥, such that:

1. TN decomposes orthogonally as: TN = D ⊕ D⊥ ⊕ 〈R〉 and

2. ϕD = D, ϕD⊥ ⊆ T⊥N .

We see that, in general, the normal bundle of the submanifold also splits into two orthogonal
distributions: ϕD⊥ and its orthogonal complement that we denote by ν and which is invariant to the
action of ϕ. We then have:

TM|N = D ⊕ D⊥ ⊕ 〈R〉 ⊕ ϕD⊥ ⊕ ν.

For a vector field V normal to N we shall denote V̄ , respectively Ṽ its component in ϕD⊥, respectively
in ν. Such submanifolds have been extensively studied in the last thirty years.

Obviously, very natural examples are the ray level sets of Sasakian momentum maps. To better
mimic our situation, we moreover make the following:

Assumption. There exists a Riemannian submersion π : N −→ P over a Sasakian manifold
(P, gP ,RP ) such that:

1. D⊕〈R〉 represents the horizontal distribution of the submersion; (and hence D⊥ represents the
vertical distribution of the submersion);

2. The two Reeb fields are π-related: R is basic and projects over RP .

This situation was already considered by Papaghiuc in [46], on the model of Kobayashi’s paper
[30] where the similar setting was discussed in Kählerian context.

Let φ := ∇PRP and observe that in our assumption we have (φX)h = ϕXh.
We want to relate the sectional curvature of planes generated by orthonormal pairs {X, φX},

respectively {Xh, ϕXh}. This is usually known as ϕ-sectional curvature, the analogue in Sasakian
geometry of holomorphic sectional curvature; it completely determines the curvature tensor, cf. [8],
so it is worth having information about it.

We first apply (as in the proof of Theorem 2.3.1) O’Neill’s formula to relate the curvatures of N
and P . For X tangent to P and orthogonal to ζ, (this is not restrictive, as the planes passing through
the Reeb field have sectional curvature 1 on a Sasakian manifold), using the anti-symmetry of the
tensor A, we obtain:

RN (Xh, ϕXh, Xh, ϕXh) − RP (X, φX, X, φX) = −3‖A(Xh, ϕXh)‖2
N , (2.3.5)
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where the sub-index refers to the norm with respect to gN .
The next step is to apply the Gauss equation to the Riemannian submanifold N of S:

RS(Xh, ϕXh,Xh, ϕXh) − RN (Xh, ϕXh, Xh, ϕXh)

= ‖h(Xh, ϕXh)‖2
S − gS(h(Xh, Xh), h(ϕXh, ϕXh)).

(2.3.6)

We now need to relate the tensors A and h. To this end, we write hE, respectively vE for the
horizontal, respectively vertical part of a tangent (to N) vector field E and we first decompose

∇S
Xh(ϕY h) = h∇S

Xh(ϕY h) + A(Xh, ϕY h) + h(Xh, ϕY h).

Then we use the formulae (∇S
Eϕ)F = η(F )E − gS(E, F )ξ (see [8]) and (∇S

Eϕ)F = ∇S
E(ϕF ) − ϕ∇S

EF
to express ∇S

Xh(ϕY h). Finally, equaling the tangent and normal parts in the equation we obtain this
way, we arrive at the following relations:

A(Xh, ϕY h) = vϕh(Xh, Y h),

h(Xh, ϕY h) = ϕA(Xh, Y h) + ϕ ˜h(Xh, Y h).
(2.3.7)

Note that if ϕD⊥ = T⊥N (i.e. ν = {0}), and this is the case when N is the zero level set of a Sasakian
momentum map, the above relations simplify to:

A(Xh, ϕY h) = ϕh(Xh, Y h),

h(Xh, ϕY h) = ϕA(Xh, Y h).
(2.3.8)

In the general case, from (2.3.7) we easily derive:

h(ϕXh, ϕY h) = h(Xh, Y h) − ˜h(Xh, Y h),

and hence
gS(h(ϕXh, ϕY h), h(Xh, Y h)) = ‖h(Xh, Y h)‖2

S − ‖ ˜h(Xh, Y h)‖2
S . (2.3.9)

From equation (2.6.10) it follows that on the orthogonal complement of ξ, the tensor ϕ acts like an
isometry. Therefore, using again (2.3.7), we derive:

‖h(Xh, ϕY h)‖2
S = ‖A(Xh, Y h)‖2

S + ‖ ˜h(Xh, Y h)‖2
S ,

‖A(Xh, ϕY h)‖2
S = ‖h(Xh, Y h)‖2

S .
(2.3.10)

Let us denote KP
φ (X), respectively KS

ϕ (Xh) the sectional curvature of the plane {X, φX}, respectively

{Xh, ϕXh}. Adding equations (2.3.5), (2.3.6) and using (2.3.9), (2.3.10), we finally obtain (taking
again into account the anti-symmetry of A):

KP
φ (X) = KS

ϕ (Xh) + 4‖h(Xh, Xh)‖2
S − 2‖ ˜h(Xh, Xh)‖2

S . (2.3.11)
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The curvature of the quotient

In general, from equation (2.3.11) one hopes to deduce the positivity of the ϕ-sectional curvature of
the quotient. This depends on the extrinsic geometry of the level set, which is a data additional to
the reduction scheme: the second fundamental form of the level set cannot be entirely expressed in
terms of the action. But in some particular cases, one is able to derive a conclusion.

Obviously the simplest situation occurs when J−1(R+µ) is totally geodesic in S: then the ϕ-
sectional curvatures of S and J−1(R+µ) are equal. In fact, one is only interested in the vanishing of
h(Xh, Y h), which, by the first equation in (2.3.7), is implied by the vanishing of O’Neill’s integrability
tensor A. This is a rather strong condition, implying that J−1(R+µ) is a locally a (not necessarily
Riemannian) product and cannot be predicted by the action. Other conditions on the second funda-
mental form which are common in Riemannian and Cauchy-Riemann submanifold theory, see e.g. [7],
(mixed totally geodesic, (contact)-totally umbilical, extrinsic sphere etc.) and permit some specula-
tions in (2.3.11) or even the computation of the Ricci curvature of the quotient, seem to be artificial
in this context, as not directly expressible in terms of the action.

We apply the above computation for N being J−1(0) and for P being the respective reduced space.
Then equation (2.3.11) implies:

Proposition 2.3.1. The reduced space at 0 of a Sasakian manifold with positive ϕ-sectional curvature
(in particular of an odd sphere with the standard Sasakian structure) has strictly positive ϕ-sectional
curvature.

2.4 Symplectic and Kähler ray-reductions

Let G be a Lie group acting smoothly, properly, by symplectomorphisms and in a Hamiltonian way on
a symplectic manifold (M, ω). Denote by J : M → g∗ the associated momentum map and recall that
it is G-equivariant. For any element µ ∈ g∗, let Kµ be the unique connected, normal Lie subgroup of
Gµ with Lie algebra given by kµ = ker (µ|gµ). This group is called the kernel group of µ.

Definition 2.4.1. We define the quotient of M by G at R+µ to be MR+µ := J−1(R+µ)/Kµ. MR+µ

will be called the ray reduced space at µ.

In this section we will show that, under certain hypothesis, the ray quotient admits a natural
symplectic or Kähler structure, once the initial manifold is symplectic or Kähler. The proof of the
next theorem is an analogous of the proof given in [57] for the contact case, see Theorem 1. As all
reduction theorems, it mainly uses arguments in linear symplectic or contact algebra.

For the two results of this section we will need three lemmas. The first is a characterization of a
locally free action and the last two are classical results of symplectic linear algebra.

Lemma 2.4.1. J is transverse to R+µ if and only if Kµ acts locally freely on J−1(R+µ).

Lemma 2.4.2. Consider a symplectic vector space (V, Ω) and W ⊂ V an isotropic subspace. Then,
kerΩ |WΩ= W , where WΩ is the symplectic perpendicular of W .
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Lemma 2.4.3. Let V be a vector space and Ω : V × V → R an antisymmetric and bilinear two-
form. If V admits the direct decomposition V = X ⊕ V with respect to Ω and kerΩ ⊆ kerΩ |X , then
kerΩ = kerΩ |X .

We are now ready to prove the first theorem of this section.

Theorem 2.4.1. Suppose (M, ω) is a symplectic manifold endowed with a Hamiltonian action of the
Lie group G. Let µ ∈ g∗ and Kµ its kernel group. Denote by J : M → g∗ the associated momentum
map and assume that the following hypothesis are verified:

1◦ Kµ acts properly on J−1(R+µ);

1◦ J is transverse to R+µ;

3◦ g = kerµ + gµ.

Then the ray quotient at µ

MR+µ := J−1(R+µ)/Kµ

is a naturally symplectic orbifold, i.e. its symplectic structure ωR+µ is given by

π∗
R+µωR+µ = i∗

R+µω,

where

πR+µ : J−1(R+µ) → MR+µ and iR+µ : J−1(R+µ) →֒ M

are the canonical projection and immersion respectively.

Proof. The transversality of the momentum map with respect to R+µ, ensures that J−1(R+µ) is a
submanifold of M . Lemma 2.4.1 implies that the quotient MR+µ is an orbifold and that πR+µ is a
surjective submersion in the category of orbifolds.

The first step is to see that the restriction of the symplectic form on J−1(R+µ) is projectable on
the quotient MR+µ to a canonical two-form denoted ωR+µ. For any ξ ∈ kµ and any x in M , we have
that

TxπR+µ(ξM (x)) =
d

dt

∣∣∣∣
t=0

πR+µ(exp tξ · x) =
d

dt

∣∣∣∣
t=0

πR+µ(x) = 0.

Hence, 〈{ξJ−1(R+µ) | ξ ∈ kµ}〉 ⊂ ker(TπR+µ). A count of dimensions shows that, in fact, the vertical
distribution of πR+µ is generated by all the infinitesimal isometries associated to the elements of kµ.
Since ω |J−1(R+µ)= i∗

R+µω is Kµ-invariant, it follows that its Lie derivative with respect to all vector

fields {ξJ−1(R+µ) | ξ ∈ kµ} is zero. Let x ∈ J−1(R+µ) with J(x) = rµ and v ∈ Tx(J−1(R+µ)). Then,
identifying TJ(x)R+µ with Rµ, we obtain

ω(iR+µ(x))(ξM (x), TxiR+µv) = Ti
R+µ

(x)J |J−1(R+µ) (v)(ξ) =

i∗
R+µ(TJ |J−1(R+µ))(v)(ξ) = µ(ξ) = 0.

It follows that i∗
R+µω is a basic two-form which projects on MR+µ to the closed form ωR+µ ∈ Λ2(T ∗Mµ)

with the property that π∗
R+µωR+µ = i∗

R+µω.
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Since ωR+µ is a closed form, it remains to prove that it is also non-degenerate. For this, we will
show that Tx(Kµ · x) = ker(i∗

R+µω)(x), for any x ∈ J−1(R+µ). Fix x ∈ J−1(R+µ) with J(x) = tµ and
denote by Ψ : M → k∗µ the momentum map associated to the action of the kernel group of µ on M .

Let iT : g∗ →֒ k∗µ be the canonical inclusion. Then, Ψ = iT ◦ J and J−1(R+µ) ⊂ J−1(k◦µ) = Ψ−1(0).
Notice that J−1(R+µ) ∩ G · x = GR+µ · x, where GR+µ = {g ∈ G | Ad∗

g µ = rµ, r > 0} is the ray
isotropy group of µ.

This Lie group has many interesting properties for which we refer the reader to Section 2.7. For
any v ∈ (Tx(Kµ · x))ωx , ωx(v, ξM (x)) = 0, ∀ξ ∈ kµ if and only if TxJ(v)(ξ) = 0, ∀ξ ∈ kµ. Therefore,
(Tx(Kµ · x))ωx = TxU , where U := J−1(k◦µ) = Ψ−1(0). We can assume U to be a submanifold of
M because the transversality condition satisfied by the momentum map implies that Kµ acts locally
freely at least on a neighborhood of J−1(R+µ) in U , if not on the whole U .

Applying Lemma 2.4.2 for (V, Ω) := (TxM,ωx) and W := Tx(Kµ · x), we obtain that kerωx |TxU=
Tx(Kµ · x). We have already seen that Tx(Kµ · x) ⊂ ker i∗

R+µωx. It follows that

kerωx |TxU⊂ kerωx |TxJ−1(R+µ) . (2.4.1)

Since g = kerµ + gµ, we can chose a decomposition

g = gµ ⊕ m with µ |m= 0. (2.4.2)

Let mM := {ξM (x) | ξ ∈ M}. For any ξ ∈ m and η ∈ kµ, the equivariance of the momentum map
implies that

TxJ(ξM (x))(η) = ξg∗(tµ)(η) = −t〈µ, [ξ, η]〉 = tηg∗(µ)(ξ) = 0.

Therefore, mM (x) ⊂ TxU and TxJ(mM (x)) ⊂ Ttµ(G · tµ). It is easy to see that

TxJ |mM (x): mM (x) → Ttµ(G · tµ)

is a linear isomorphism and, hence,

TxJ(mM (x)) = Ttµ(G · tµ). (2.4.3)

Notice that equation (2.4.3), the third hypothesis which can equivalently be expressed as {0} =
(kerµ)◦ ∩ (gµ)◦ = Rµ ∩ Ttµ(G · tµ), and the fact that TxJ(J−1(R+µ)) ⊂ Rµ imply that

mM (x) ∩ TxJ−1(R+µ) = {0}. (2.4.4)

A simple dimension calculus shows that mM (x) and TxJ−1(R+µ) are complementary subspaces of
TxU . We have also seen that they are perpendicular with respect to ωx |TxU . Using relation (2.4.1),
we can now apply Lemma 2.4.3 for V := TxM , W := mM (x), and X := TxJ−1(R+µ). Thus, we obtain
that kerωx |TxU= Tx(Kµ · x) = kerωx |TxJ−1(R+µ), for any x ∈ J−1(R+µ). This shows that ωR+µ is a
non-degenerate form, completing thus our proof.
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Notice that in the case µ = 0 we recover the reduced symplectic space at zero. Without the
hypothesis that Kµ acts properly on J−1(R+µ), the quotient MR+µ may not be Hausdorff. As the
Lemma 2.4.1 proves, the second hypothesis of this theorem ensures that MR+µ is an orbifold. If µ is
non-zero and the kernel and isotropy groups of µ coincide, then the quotient may fail to be symplectic.
For an example, take the symplectization of the contact manifold used for instance in the Example
(3.7) of [57]. One will obtain a quotient of odd dimension and, hence, the necessity of the last condition
in Theorem 2.4.1.

Corollary 2.4.1. In the hypothesis of Theorem 2.4.1, if the dimension of M is 2n and the Lie group
G is d-dimensional, then the dimension of the symplectic quotient is 2n − 2k − m = 2n − p − d + 2,
where p = dim(Gµ) = k + 1.

In the symplectic point reduction, the reduced spaces of exact manifolds are not always exact.
This is, however true, only if one performs reduction at zero momentum. Recall, for instance, that
coadjoint orbits which are point reduced spaces are not necessarily exact symplectic manifolds. A
counter example may be found in [36], Example (a) of Section 14.5. Surprisingly, ray quotients of
exact symplectic manifolds are exact for any momentum.

Corollary 2.4.2. In the hypothesis of Theorem 2.4.1, if (M, ω) = (M,−dθ) with θ a Kµ-invariant
one form, then the ray quotient will also be exact.

Proof. We want to show that i∗
R+µθ is a basic form for the projection πR+µ : J−1(R+µ) → MR+µ.

The Kµ-invariance ensures that Lξ
J−1(R+µ)

i∗
R+µθ = 0, for any ξ in the kernel algebra of µ. For x ∈

J−1(R+µ), we have that

i∗
R+µθ(iµ(x))(ξJ−1(R+µ)(x)) = J(x)(ξ) = rµ(ξ) = 0.

Hence, iξ
J−1(R+µ)

(i∗
R+µθ) = 0, for any ξ ∈ kµ, proving that i∗

R+µθ is basic. Therefore, there is a one

form θ
R

+
µ

such that i∗
R+µθ = π∗

R+µθ. Using Theorem 2.4.1, we get that

π∗
R+µ(−dθR+µ) = d(−π∗

R+µθR+µ) = −di∗
R+µθ = i∗

R+µ(−dθ) = i∗
R+µω = π∗

R+µωR+µ.

Since π∗
R+µ is injective we obtain that ωR+µ = −dθR+µ.

A large class of examples can be obtained in the case when (M, ω) is the cotangent bundle of a
manifold Q endowed with the canonical symplectic form ω0 = −dθ0 and we treat this case in Section
2.5, Corollary 2.5.1.

We will now extend this reduction procedure to the metric context, i.e. for Kähler manifolds.

Theorem 2.4.2. Let (M, g, ω) be a Kähler manifold and G a Lie group acting on M by Hamiltonian
symplectomorphisms. If J : M → g∗ is the momentum map associated to the action of G and µ an
element of g∗, assume that:

1◦ Ker µ + gµ = g;
2◦ the action of Kµ on J−1(R+µ) is proper and by isometries;
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3◦ J is transverse to R+µ.

Then the ray quotient at µ

MR+µ := J−1(R+µ)/Kµ

is a Kähler orbifold with respect to the projection of the metric g.

Proof. From Theorem 2.4.1, we already know that (MR+µ, ωR+µ) is a symplectic orbifold. It remains
to show that the symplectic structure is also a Kähler one with corresponding metric given by the
projection of g. The second hypothesis ensures that (J−1(R+µ) , i∗

R+µ g) is an isometric Riemannian
submanifold of M .

Again, we will use a decomposition g = gµ⊕m, where µ |m= 0. Let Ψ : M → k∗µ be the momentum
map associated to the action of Kµ on M and mM := {ξM (x) | ξ ∈ M}. In the proof above we have
already seen that

TxJ−1(R+µ) ⊕ mM (x) = TxΨ−1(0), (2.4.5)

for any x ∈ J−1(R+µ). Let {ξ1, · · · ξk} and {η1, · · · ηm} be basis in kµ and m respectively, where
m = dimm and k = dim kµ. Without loss of generality, we can assume that the infinitesimal isometries
{ξiM}i=1,k and {ηjM}j=1,m are g-orthogonal. Thus, {JξiM , JηjM}i,j are linearly independent in each
point of J−1(R+µ). Even more, {JξiM , JηjM}i,j belong to the normal fiber bundle to J−1(R+µ) since

g(JηjM , V ) = g(JξiM , V ) = ω(ξiM , V ) = −TJ(V )(ξ) = −rµ(ξi) = −rµ(ηj) = 0

for any V vector field on J−1(R+µ). The next step is to show that {JξiM}i=1,k is a basis in the normal
bundle of TΨ−1(0). Notice that {ξiM |J−1(R+µ)}i=1,k are tangent to J−1(R+µ) and

g(JξiM , V ) = ω(ξiM , V ) = TΨ(V )(ξi) = TiT (TJ(V ))(ξi) = 0,

for any V differentiable section of TΨ−1(0). Here, we have used that Ψ = i∗T ◦J , where i∗T : g∗ → k∗µ is
the canonical projection. Therefore, {JξiM}i=1,k are vector fields normal to TU , where U = J−1(k◦

µ) =
Ψ−1(0). As dimTU = dimM − dim kµ, these vector fields form a basis of the normal fiber bundle to
TU . Equation (2.4.5) implies that {JξiM , JηjM}i,j form a basis of the normal bundle to J−1(R+µ).
Since the action of Kµ on J−1(R+µ) is isometric, i∗

R+µ g projects on MR+µ in gR+µ and the projection
πR+µ becomes thus a Riemannian submersion. Obviously, the vertical distribution of this Riemannian
submersion is given by {ξiM}i=1,k. Then, TxJ−1(R+µ) = {ξiM}(x) ⊕Hx, where Hx is the horizontal
distribution at x associated to the Riemannian submersion πµ. To see that (ωR+µ, gR+µ) is an almost
Kähler structure, we need to check that

ωR+µ([x])(Txπµv, Txπµw) = gR+µ([x])(CR+µTxπµv, Txπµw),

for any [x] = πµ(x) ∈ J−1(R+µ) and v, w ∈ Hx. Here, CR+µ denotes the projection of the complex
structure C of ω. Since Txπµ is an isomorphism from the horizontal space at x onto T[x]MR+µ which
identifies (ωR+µ, gR+µ)([x]) with (i∗

R+µω, i∗
R+µ g) |Hx suffices to show that the horizontal distribution

is C-invariant. Let v ∈ Hx. Then ω(Cv, ξiM ) = g(v, ξiM ) = 0, for any ξi ∈ kµ. Also g(Cv, CξiM ) =
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g(v, ξiM ) = 0 and g(Cv, CηjM ) = g(v, ηjM ) = 0, for all i = 1, k and j = 1,m. It follows that Cv is also
a horizontal vector. To show that CR+µ is integrable we will evaluate the Nijenhuis tensor. Thus,

NR+µ(Txπµ(v), Txπµ(w)) = [Txπµ(v), Txπµ(w)] − [CR+µTxπµ(v), CR+µTxπµ(w)]

+CR+µ([CR+µTxπµ(v), Txπµ(w)]) + CR+µ([Txπµ(v), CR+µTxπµ(w)])

= Txπµ([v, w]) − Txπµ([Cv, Cw]) + CR+µ(Txπµ([Cv, w])) + CR+µ(Txπµ([v, Cw]))

= Txπµ([v, w] − [Cv, Cw]) + Txπµ(C([Cv, w])) + Txπmu(C([v, Cw]))

= Txπµ(N(v, w)) = 0,

where N is the Nijenhuis tensor of (ω, g). Thus, CR+µ is integrable and
(MR+µ, ωR+µ, gR+µ) a Kähler manifold.

Remark 2.4.1.

Remark 2.4.2. Unfortunately, non zero Kähler regular point reduction is not canonical. As it is very
well explained in [11] (see Exercise 3), the complex structure may not leave invariant the horizontal
distribution of the Riemannian submersion given by the quotient projection(πµ : M → Mµ). Therefore
it is not projectable on Mµ. The solution proposed in the literature, is based on the Shifting Theorem
(see Theorem 6.5.2 in [56]). More precisely, one endows the coadjoint orbit of µ, Oµ with a unique up to
homotheties Kähler-Einstein metric of positive Ricci curvature. For the construction of this metric and
applications, see [32], Chapter 8 in [7], and [29]. This uniqueness modulo homotheties is guaranteed
by the choice of an Ad∗-invariant scalar product on g∗. Then, one performs the zero reduction of the
Kähler difference of the base manifold M and Oµ. Unfortunately, this construction is correct only in
the case of totally isotropic momentum (i.e. Gµ = G). Otherwise, using the unique Kähler-Einstein
form on the coadjoint orbit, instead of the Kostant-Kirillov-Souriau form makes impossible the use
of the Shifting Theorem since the momentum map of the orbit will no longer be the inclusion. Even
so, one could take by definition the reduced space at µ momentum to be the zero reduced space of the
symplectic difference of M and Oµ. But this reduced space is not canonical, in the sense that the
pull-back through the quotient projection of the reduced Kähler structure is no longer the initial one.
On the other hand, the ray Kähler reduction always exists and is canonical.

2.5 Cone and Boothby-Wang compatibilities

In this section (M, η) is a 2n + 1-dimensional exact contact manifold and G a Lie group acting on
it by strong contactomorphisms. Denote by C(M) := (M × R+, dr2 ∧ η + r2dη) the symplectic cone
associated to M . We imbed M in the cone as M × {1}. Recall that if (M, η, g) is a Sasaki manifold,
then the associated symplectic cone admits a canonical Kähler structure given by C(g) := r2 g +dr2.
Consider the lift of the G-action on the cone C(M) given by: g · (x, r) := (g · x, r), for any g ∈ G and
(x, r) ∈ C(M). This action commutes with the translations on the R+ component and, in the Sasaki
case, it is by holomorphic isometries. In the Sasakian case, we can also define a complex structure
given as follows:

JY := ϕY − η(Y )R, ,JR := ξ,
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where R = r∂r is the vector field generated by the 1-group of transformations ρt : (x, r) → (x, tr) and
:
=∇ξ, with ∇ the Levi-Civita connection associated to g. It is easy to see that (M, η, g) is Einstein if
and only if the cone metric C(g) is Ricci flat, i. e., (C(M), C(g)) is Calabi-Yau (i. e. Kähler Ricci-flat).

Let Φ : M → g∗ be the contact momentum map associated to the G-action on M . The lifted action
on the cone is Hamiltonian and a corresponding equivariant symplectic momentum map is given by

Φs : C(M) → g∗ , Φs(x, r) := esJ(x) , for any (x, r) ∈ C(M).

Having established the above notations, we are ready to prove that reduction and the cone con-
struction are commuting operations.

Lemma 2.5.1. Let (M,η, g, ξ) be a Sasakian manifold and (C(M), C(g), J) its Kähler cone. Suppose a
Lie group G acts on M by strong contactomorphisms and commuting with the action of the 1-parameter
group generated be the field R. Let µ be an element of the dual of the Lie algebra of G. Then the
Kähler cone of the reduced contact space at µ is the reduced space at µ for the lifted action on C(M).

Proof. Let Kµ be the kernel group of µ, MR+µ the corresponding contact reduced space, and C(MR+µ)
the rduced space for the lift of the action on the cone. Since the Kµ-action commutes with homotheties
on the R+ component, there is a natural diffeomorphism between C(MR+µ) and C(M)R+µ:

Ψ : C(M)R+µ → C(MR+µ) , Ψ([x, r]) := ([x], r), ∀[x, r] ∈ C(M)R+µ.

Using the commutativity of the diagram in figure 2.5.1, it is easy to see that Ψ is also a symplectom-
porphic isometry. Namely,

(Ψ ◦ π1R+µ)∗(ηµ ∧ dr2 + r2dηµ) = i∗1R+µ(η ∧ dr2 + r2dη),

and

Ψ∗(C(gR+µ)) = C(g)R+µ,

where i1R+µ : Φ−1
s (R+µ) → C(M), π1R+µ : Φ−1

s (R+µ) → C(M)R+µ, and, πR+µ : Φ−1(R+µ) → (M)R+µ

are the canonical inclusion and Kµ-projections, respectivelly.

Φ−1(R+µ) × R+
π1R+µ//

π
R+µ

×id
R+

²²

C(M)R+µ
Ψ // MR+µ × R+

MR+µ × R+

≃

id
M

R+µ
×R+

33ggggggggggggggggggggggg

Figure 2.5.1: Commutative diagram used in the proof of Lemma 2.5.1
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Corollary 2.5.1. Let Q be a differentiable manifold of real dimesnion n, G a finite dimensional Lie
group acting smoothly on Q. Denote by µ an element of the dual Lie algebra g∗ and by Kµ its kernel
group. Assume that Kµ acts freely and properly on J−1(R+µ), with J : T ∗Q → g∗ the canonical
momentum map associated to the G-action. Then the ray reduced space (T ∗(Q))R+µ is embedded by a
map preserving the symplectic structures onto a subbundle of T ∗(Q/Kµ).

Proof. Note that the symplectic cone of the cosphere bundle of Q is exactly T ∗Q \ {oT ∗Q}. Applying
Theorems 3.1 and 3.2 in [16], and the above lemma the conclusion of the Corollary follows.

Recall that a celebrated theorem of Boothby and Wang (see Section 3.3 in [8]) states that if M
is also compact and regular, then it admits a contact form whose Reeb vector field generates a free,
effective S1-action on it. Even more, M is the bundle space of a principal circle bundle π : M → N
over a symplectic manifold of dimension 2n with symplectic form ω determining an integer cocycle.
In this case, this contact form, η is a connection form on the bundle π : M → N with curvature form
dη = π∗ω. N is actually the space of leaves of the characteristic foliation on M (i.e. the 1-dimesional
foliation defined by the Reeb vector field of η). If M is a Sasaki manifold, then N becomes a Hodge
manifold and the fibers of π are totally geodesic. This case was treated by Y. Hatakeyama in [25].
Even more, in [9], Theorem 2.4 it was proven that M is Sasaki-Einstein if and only if N is Kähler-
Einstein with scalar curvature 4n(n + 1) and that all the above still holds in the category of orbifolds
if M is quasi-regular, i.e. all the leaves of the characteristic foliation are compact.

Proposition 2.5.1. Let π : (M, g) → (N, h) be a the Boothby-Wang fibration associated to the
quasi-regular, compact, Sasaki manifold M . Suppose a connected Lie group G acts by strong contacto-
morphisms on (M, g) with momentum map JM : M → g∗. Let µ be an element of g∗, with kernel group
Kµ. Assume that the action of Kµ on J−1(R+µ) is proper and by isometries and that kerµ + gµ = g.
Then, the reduced space of N at µ is well defined and there is a canonical Boothby-Wang fibration of
the reduced spaces:

π̃ : MR+µ → NR+µ.

Proof. Denote by η the contact form of the Boothby-Wang fibration and by R its Reeb vector field.
Since [R, ξM ] = 0 for any ξ ∈ g and G is connected, the action generated by the Reeb vector field
commutes with the action of G. Hence there is a well defined action of G on N . Even more, this
action is by symplectomorphisms. If JM : M → g∗ is the equivariant momentum map associated to
the G-action on M , the induced application

JN : N → g∗ , JN (π(x)) := JM (x),

for any x ∈ M . Indeed, if Φt
R is the flow of the Reeb vector field, we have

JM (Φt
R(x))(ξ) = η(Φt

R(x))(ξM (Φt
R(x)) = ((Φt

R)∗η)(x)(ξM (x)) = η(x)(ξM (x))

= JM (x)(ξ),

for any ξ ∈ g and any x ∈ M . This proves that JN is well defined. Using the fact that π∗ω = dη, it
is easy to see that JN is an equivariant momentum map associated to the G-action on N . We also
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have that π(J−1
M (R+µ)) = J−1

N (R+µ) and obviously the action of Kµ on J−1
N (R+µ) is proper and by

isometries. Therefore, the quotient space NR+µ is a well defined symplectic orbifold and the induced
projection π̃ : MR+µ → NR+µ becomes a Boothby-Wang fibration.

2.6 Conformal Hamiltonian vector fields

In this section we will study the dynamical behavior of conformal Hamiltonian systems. This class
of systems comprises mechanical, non autonomous systems with friction or Rayleigh dissipation. The
definition of conformal Hamiltonian vector fields appeared for the first time in the work of McLachlan
and Perlmutter, see [40]. In this section we will see that in the presence of symmetries the solutions
of conformal Hamiltonian systems preserve the ray pre-images of the momentum map, but not the
point pre-images used in the construction of the Marsden-Weinstein quotient. Therefore, the right
tool for the study of symmetries of these systems is the ray reduction and not the point one. We will
also enlarge the class of conformal Hamiltonian systems previously defined and we will complete the
Lie-Poisson reduction of these systems with the general ray reduction.

Recall that an autonomous Hamiltonian system defined on the manifold M and endowed with
an appropriate symmetry group G obeys certain conservation laws. Namely, if H ∈ C∞(M) is the
G-invariant Hamiltonian, J : M → g∗ an associated equivariant momentum map, the pre-images
{J−1(µ)|µ ∈ g∗} are invariant submanifolds of the Hamiltonian vector field. In symplectic geometry
this conservation property is known as the Noether theorem and it states that if t → c(t) is a solution
of the Hamiltonian system starting at the point x0 with momentum J(x0) = µ, then at any time
t the solution will have the same momentum µ. In other words, the Hamiltonian flow leaves the
connected components of J−1(µ) invariant and commutes with the group action. Hence, it projects
on Mµ on to another Hamiltonian flow corresponding to the smooth function Hµ ∈ C∞(Mµ) defined
by Hµ ◦ πµ = H ◦ iµ. The triple (Mµ, ωµ, XHµ) is called the reduced Hamiltonian system. Of course,
in this setup appropriate symmetries refers to a proper, free action which ensures the smoothness of
the quotient Mµ. This is a classical result of J. Marsden and A. Weinstein. For the proof and physical
examples, see [37] and [38].

However, in physics there are a lot of simple mechanical systems whose energy is not conserved,
but dissipated. This is the case for the unforced Duffing oscillators as shown bellow.

Example 2.6.1. Simple mechanical systems with friction-unforced Duffing oscillators. The
equation of motion of an unforced Duffing oscillator is described by:

ẍ + kẋ + (x2 − 1)x = 0, (2.6.1)

with k a real constant. Equation 2.6.1 is equivalent to the system
{

ẋ = ∂H
∂y

ẏ = −∂H
∂x − ky,

(2.6.2)

where H is the Hamiltonian given by

H(x, y) :=
y2

2
+

x4

4
− x2

2
. (2.6.3)
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Lemma 2.6.1. Note that the vector field Xk
H on the symplectic manifold (T ∗R, ω0) ≃ (R2, ω0 =

dx ∧ dy) described by the system 2.6.2 can be written as XH + Z, where Z is the unique vector field
defined by iZω0 = −kθ0 with θ0 = −ydx the canonical 1-form of T ∗R. Even more, iXk

H
ω0 = dH −kθ0.

Example 2.6.2. Simple mechanical systems with friction which dissipate energy and sym-
plectic area-conformal Hamiltonians on R2n. More general, on the canonical symplectic manifold
(R2n, ω0 = dq ∧ dp) with coordinates (q, p) consider the set of vector fields Xk

H defined by

{
q̇ = ∂H

∂p

ṗ = −∂H
∂q − kp.

(2.6.4)

and with H = T + V (q) ,T = 1
2pT M(q)p, T positive definite and k < 0 describe systems with friction

which dissipate energy and symplectic area, and verify the condition iXk
H

ω0 = dH − kθ0.

Example 2.6.3. A special case of mechanical systems with Rayleigh dissipation. All
dynamical systems

{
q̇ = ∂H

∂p

ṗ = −∂H
∂q − R(q)∂H

∂p ,
(2.6.5)

for which Ḣ = −R(q)〈∂H
∂p , ∂H

∂p 〉 ≤ 0 and which are subject to the condition

R(q) = kM(q) (2.6.6)

are precisely of the form (2.6.4). Here R(q) defines a positive metric.

All the above examples, were treated in [40]. In this article the authors study conformal Hamil-
tonian systems on symplectic exact manifolds. In the following paragraph we will briefly recall their
definition and properties as studied in [40]. From now on (M,ω = −dθ) will be an exact symplectic
manifold.

Definition 2.6.1. The vector field Xk
H on M is conformal with real parameter k if iXk

H
ω = dH − kθ

for a H ∈ C∞(M). This condition is equivalent to LXk
H

= −kω.

Note that the hypothesis of exact symplectic manifold does not restrain the generality since a
symplectic manifold admits a vector field Xk

H with LXk
H

= −kω if and only if it is exact. If, in

addition, H1(M) = 0, then all the conformal vector fields on M are given by

{XH + kZ|H ∈ C∞(M)},

where Z is defined by iZω = −θ. For the proof, see Proposition 1 in [40]. It was noticed by the
authors that, in the case of Lie symmetries, the conformal Hamiltonian vector fields have a special
behaviour with respect to the associated momentum map. Namely,
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Proposition 2.6.1. Let G be a Lie group which acts on (M,ω = −dθ) leaving the 1-form θ invariant
and H a smooth, G-invariant function on M . Denote by J : M → g∗ the associated G-equivariant
momentum map. Then, Xk

H is a G-invariant vector field for any real k and its flows preserves the ray
pre-images of the associated momentum map as follows:

J(x(t)) = e−ktJ(x(0)),

for any integral curve x of Xk
H and any time t.

Remark 2.6.1. In other words, the motion is constrained to a ray of momentum values entirely
determined by the initial momentum. Hence, the ray pre-images of the momentum map are invariant
submanifolds for the conformal Hamiltonian vector fields.

In the hypothesis of Proposition 2.6.1, with M the cotangent bundle of a Lie group G, the authors
have performed the conformal Lie Poisson reduction and reconstruction of solutions for conformal
Hamiltonian vector fields. However, they could not exploit the ray momentum conservation, nor
perform a reduction which uses not only the group invariance, but also the ray-momentum one.
Proposition 2.6.1 and Theorem 2.4.1, immediately suggest that the appropriate method of reduction
for conformal Hamiltonian vector fields is the ray reduction constructed in Section 2.4.

But before passing to details, we want to show how to generalize the definition of conformal
Hamiltonian vector fields in order to include in this study more physical systems. Let us come back
to the examples given in the beginning of this section. Recall that a Rayleigh system (Example 2.6.3)
is a conformal Hamiltonian if and only if the condition (2.6.6) is satisfied. However, any Rayleigh
system on R2n with vector field X has the following property

iXω0 = dH − fθ0,

where f(q, p) :=
R(q) ∂H

∂p

p . Of course, f may not be well defined at points on the q-axis, and , if

necessary, we restrict X to R2n \ U , with U a small closed cylinder with axis (Rn, q).

The forced Duffing oscillator is the dynamical system with equation of motion

ẍ + kẋ + (x2 − 1)x = γ cos ωt. (2.6.7)

It is equivalent to the following system

{
ẋ = ∂H

∂y

ẏ = −∂H
∂x − ky + γ cos ωt,

(2.6.8)

where the Hamiltonian is again H(x, y) := y2

2 + x4

4 − x2

2 . Denote by XD the vector field defined by

(2.6.8) and note that iXD
ω0 = dH − fDθ0, with fD(t, x, y) := −(k + γ cos ωt

y ), for any real pair (x, y)
with y 6= 0 and any time t.

These examples suggest the following enlarged definition of a conformal Hamiltonian vector fields
on an exact symplectic manifold.
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Definition 2.6.2. The vector field Xf
H on the symplectic manifold (M, ω) is conformal Hamiltonian

with conformal parameter the smooth function f and smooth Hamiltonian H if i
Xf

H

ω = dH − fθ.

Remark 2.6.2. Observe that if H1(M) = 0, Xf
H is conformal Hamiltonian if and only if L

Xf
H

ω =

−d(fθ).

Remark 2.6.3. The conformal Hamiltonian Xf
H = XH + Zf is the summ of the Hamiltonian vector

field determined by H and Z which is uniquely determined by the relation iZω = −fθ. In local
coordinates (q, p), Z is given by fp ∂

∂p .

The next proposition shows that this enlarged class of conformal Hamiltonians behaves well in the
presence of symmetries.

Proposition 2.6.2. Let G be a Lie group which acts on (M, ω = −dθ) leaving the 1-form θ invariant,
H and f smooth, G-invariant functions on M . Denote by J : M → g∗ the associated G-equivariant
momentum map. Then, Xf

H is a G-invariant vector field and its flow preserves the ray pre-images of
the associated momentum map as follows:

J(x(t)) = ee
R t
0 −f(x(s))ds

J(x(0)),

for any integral curve x of Xf
H and any time t.

Proof. Denote by φ the action of G on M . Then, for any g ∈ G we have

φ∗
g(iXf

H

ω) = φ∗
g(dH − fθ) = dH − fθ = i

Xf
H

ω, (2.6.9)

since f and H are G-invariant. On the other hand,

φ∗
g(iXf

H

ω) = iφ∗
gXF

H
φ∗

gω = i
φ∗

gXf
H

ω. (2.6.10)

Since ω is non-degenerate, (2.6.9) and (2.6.10) imply that Xf
H is G-invariant.

First recall that any exact symplectic manifold admits an equivariant momentum map given by
J : (M, ω = dθ) → g∗, 〈J(x), ξ〉 := θ(ξM )(x), for any x ∈ M and ξ ∈ g. Now, let x(t) be an integral

curve of Xf
H . Then,

d

dt
〈J(x(t)), ξ〉 = TJξ(Xf

H(x(t))) = ω(x(t))(Xf
H(x(t)), ξM (x(t))) =

dH(ξM (x(t)) − f(x(t))θ(ξM (x(t))) = −f(x(t))Jξ(x(t)).

Henece, J(x(t)) = ee
R t
0 −f(x(s))ds

J(x(0)) for any ξ ∈ g and any time t.

Remark 2.6.4. Note that if f and H are Kµ-invariant, with Kµ the kernel group associated to µ ∈ g∗,
then the corresponding conformal Hamiltonian is also Kµ-invariant.



58 Kähler and Sasakian ray reductions

Proposition 2.6.2 suggests that the ray reduction is a natural tool for the study of conformal
Hamiltonian systems. Thus,

Proposition 2.6.3. Consider (M, ω = −dθ) an exact symplectic manifold endowed with the smooth
action of a Lie group G. Choose an element µ in g∗ with kernel group Kµ. Denote by J : M → g∗

the associated equivariant momentum map defined by J(x)(ξ) := iξM
θ, for any x ∈ M and ξ ∈ g

with infinitesimal isometry ξM . Suppose all the hypothesis of Theorem 2.4.1 are fulfilled and Xf
H is a

conformal Hamiltonian vector field with H and f Kµ-invariant functions. Then,

• the flow of Xf
H induces a flow on the ray reduced space M+

R
µ defined by

πR+µ ◦ Φt ◦ iR+µ = ΦR
+µ

t ◦ πR+µ.

• the vector field generated by the flow ΦR
+µ

t is conformal Hamiltonian (Xf
H)R+µ with

fR+µ ◦ πR+µ = f ◦ iR+µ ,HR+µ ◦ πR+µ = H ◦ iR+µ.

the vector fields Xf
H and (Xf

H)R+µ are πR+µ-related.

• a point x ∈ M is a relative equilibrium of Xf
H with respect to the G-symmetries if and only if

there is an element ξ of the ray isotropy algebra gR+µ such that Xf
H(x) = ξM (x) or, equivalently,

Φt(x) = exp tξ · x, for any t. The relative equilibria of Xf
H coincide via the πR+µ-projection with

the equilibria of (Xf
H)R+µ, or, equivalently, with the points x ∈ M for which there is a ξ ∈ gR+µ

such that
d(Jξ − H)(x) = f(x)θ(x). (2.6.11)

Remark 2.6.5. Note that, in local symplectic coordinates (q, p), condition (2.6.11) is equivalent to

{
pf(q, p) = ∂(Jξ−H)

∂q (q, p) = pf(q, p)

0 = −∂(Jξ−H)
∂p .

(2.6.12)

Proof. The first two points of the theorem are a direct consequence of Proposition 2.6.2. For the rest,
suffice it to use the definition of a conformal Hamiltonian vector field, the relation ω(ξM , ·) = dJξ(·),
and Proposition 2.6.2.

Example 2.6.4. The reduction of a Rayleigh system on T ∗(R2∗ × R2∗). On (T ∗(R2∗ ×
R2∗), (q, p)) ≃

(
(R2∗ × R2∗) × R4, (q, p)

)
consider the Rayleigh system given by H(q, p) = 1

2(‖q‖2 +
‖p‖2) and R(q) = ‖q‖2. Note that f = R and it is well defined at any point in R4. Consider the cotan-
gent lift of the rotation action of S1 × S1 on R2∗ × R2∗. The reason for restricting R4 to (R2∗ × R2∗)
is to have free symmetries. It is a free and proper action and H and f are S1 × S1-invariant. Let
µ := 〈(0, 1), ·〉 be an element of (R×R)∗, the dual of the Lie algebra of S1 ×S1. Then Kµ = {e}× S1

and kµ = {0} × R. The momentum map asscoiated to the S1 × S1-action is given by

J : R2∗ × R2∗ × R4 → (R × R)∗ ,J(q, p) = (q1 · p̄T
1 , q2 · p̄T

2 ),
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for any (q, p) = (q1, q2, p1, p2) ∈ R4 \ {0} × R4 with p̄T
i = (pi2,−pi1), i = 1, 2 and J−1(R+µ) =

{(q, p) ∈ (R4 \ {0}) × R4|q1 · p̄T
1 = 0 , q2 · p̄T

2 ∈ R+}. By Theorem 2.5.1, the ray reduced space(
T ∗(R2∗ × R2∗)

)
R+µ

is embedded in T ∗(R
2∗×R

2∗

{e}×S1 ) ≃ T ∗(R2 \ {0} × (0,∞)). The reduced Rayleigh

system is given by HR+µ(q, s) = 1
2(‖q‖2 + s2) and RR+µ(q) = ‖q‖2.

2.7 Ray Reductions of Cotangent and Cosphere bundles of a Lie

Group

In this section we will determine the ray reduced spaces for lifted actions on cotangent and cosphere
bundles. We will show that these ray reduced spaces are universal in the sense that any (symplectic)
contact (ray) reduced space can be recovered from the (ray) reduced space of a (cotangent) or cosphere
bundle.

Let G denote a d-dimensional Lie group with Lie algebra g. G acts on itself by left translations.
This action lifts canonically to an action on T ∗G which admits an equivariant and right invariant
momentum map

JL : T ∗G → g∗ , JL(αg) := T ∗
e Rg(αg). (2.7.1)

Similarly, for right translations we can construct the equivariant and left invariant momentum map

JR : T ∗G → g∗ , JR(αg) := T ∗
e Lg(αg). (2.7.2)

Denote by Oµ the coadjoint orbit of an element µ of g∗ and by OR+µ its coadjoint ray orbit

Oµ := {Ad∗g−1µ = gµ | g ∈ G} and OR+µ := {Ad∗g−1rµ | g ∈ G , r ∈ R+}.

Notice that the ray coadjoint orbit OR+µ is just the orbit through µ of the action of G × R+ on g∗

defined by (g, r) · µ′ 7→ Ad∗grµ
′, for any (g, r) ∈ G × R+ and any µ′ ∈ g∗. Like any orbit it is an

immersed initial submanifold of g∗.
Recall that g∗ is a Poisson manifold with respect to the Lie-Poisson brackets {·, ·}± defined by

{f, g}±(µ) := ±
〈

µ,

[
δf

δµ
,
δg

δµ

]〉
, f , g ∈ C∞(g∗) , µ ∈ g∗,

where the element δf
δµ of g is defined by the equality 〈ν, δf

δµ〉 := D f(µ) · ν, for any ν ∈ g∗ (see,
for example, [36], Theorem 14.3). Each coadjoint orbit admits a G-invariant symplectic structure
described in the following theorem.

Theorem 2.7.1. Let G be a Lie group and µ an element of the dual of its Lie algebra g∗. Then the
coadjoint orbit of µ, Oµ is a symplectic manifold with G-invariant symplectic structure ω±

Oµ
given by

ω±
Oµ

(ν)(ξg∗(ν), ηg∗(ν)) := ±〈ν, [ξ, η]〉,
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for arbitrary ν ∈ Oµ, and ξ, η ∈ g. The symplectic structures ω±
Oµ

are usually called the Kostant-

Kirillov-Souriau (KKS) symplectic forms. The connected components of {Oµ}µ∈g∗ are the symplectic
leaves of (g∗, {·, ·}±).

An interesting feature of coadjoint orbits is that they can be regarded as point reduced spaces.

Theorem 2.7.2. For the lifted left action of G on T ∗G the reduced space at µ ∈ g∗, ((T ∗G)µ, ωµ)
is well defined and the momentum map for the lifted right action of G on T ∗G induces a symplectic
diffeomorphism J̄R : ((T ∗G)µ, ωµ) → (Oµ, ω−

Oµ
) given by J̄R(

[
T ∗

g Rg−1µ
]
) := Ad∗gµ.

For a proof see, for instance, Theorem 6.2.2 in [56].

Since for the ray-reduction the role of the coadjoint orbit will be played by a diagonal product of
the coadjoint ray orbit and the quotient of G by the corresponding kernel group, we will now describe
their manifold structure. We will see that, in general, OR+µ is an immersed smooth submanifold of
g∗. However, if the coadjoint action is proper, its ray orbits will be closed embedded submanifolds.

Definition 2.7.1. Let GR+µ be the ray isotropy group of µ defined by GR+µ := {g ∈ G |Ad∗gµ =
rgµ, for a rg ∈ R+}.

Lemma 2.7.1. The ray isotropy group GR+µ is a closed Lie subgroup of G. Its Lie algebra is given
by

gR+µ = {ξ ∈ g | ad∗ξµ = rξµ for a rξ ∈ R}.

Proof. We have the following sequence of subgroups Gµ < GR+µ < G. To prove that the ray isotropy
group is closed in G, suppose (gn)n∈N is a convergent sequence in GR+µ with lim

n→∞
gn = g ∈ G. Then

lim
n→∞

Ad∗gn
µ = ( lim

n→∞
rgn)µ = Ad∗gµ, for (rgn)n∈N a convergent sequence of positive numbers. Since the

coadjoint map is linear and µ 6= 0, lim
n→∞

rgn is a strictly positive number and hence g ∈ GR+µ. Thus,

the ray isotropy group is closed. To determine its Lie algebra, let first ξ be an element of gR+µ. We
want to show that exp(tξ) belongs to GR+µ for arbitrary t ∈ R. Then

d

dt
Ad∗exp tξµ = Ad∗exp tξ(ad∗ξµ) = Ad∗exp tξ(rξµ) = rξAd∗exp tξµ.

We have used the following formula

d

dt
Ad∗g(t)µ(t) = Ad∗g(t)

(
ad∗ξ(t)µ(t) +

dµ

dt

)
, (2.7.3)

where ξ(t) = Tg(t)R
−1
g(t)(

dg
dt ) and g(t), µ(t) are smooth curves in G and g∗, respectively. It follows that

Ad∗exp tξµ = erξtµ and exp tξ ∈ GR+µ, for every real t. For the reverse inclusion, suppose ξ is an element
of the Lie algebra of the ray isotropy group. Then we know that exp tξ ∈ GR+µ and Ad∗exp tξµ = rtµ
with rt a positive real number for every t ∈ R. Deriving at zero the above equality, we obtain that
ad∗ξµ =

(
d
dt

∣∣
t=0

rt

)
µ, completing thus the proof of this lemma.
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Remark 2.7.1. As we saw in the proof of Theorem 2.4.1, if the Lie group G acts in a Hamiltonian
way on the manifold M and this action admits an equivariant momentum map J : M → g∗, then for
every x ∈ J−1(R+µ) we have that

J−1(R+µ) ∩ (G · x) = GR+µ · x , Tx(GR+µ · x) = Tx(G · x) ∪ Tx(J−1(R+µ)).

Lemma 2.7.2. The ray isotropy group GR+µ acts on G×R+ by g′ · (g, r) → (g′g, r
rg′

), where Ad∗g′µ =

rg′µ. This action is free and proper and, therefore, the twisted product G ×G
R+µ

R+ is well defined.
Even more, the surjective map

f : G × R+ → OR+µ , f(g, r) := Ad∗g(rµ)

descends to a diffeomorphism on the twisted product G ×G
R+µ

R+.

Proof. Since it consists of direct calculations, we skip the proof of this Lemma.

Remark 2.7.2. Note that the above Lemma implies that the dimension of the ray orbit at µ is given
by dim(OR+µ) = dimG + 1 − dim(GR+µ).

For technical reasons we need a precise description of the tangent space of the ray orbit.

Lemma 2.7.3. Let OR+µ be the coadjoint ray orbit of µ ∈ g∗. Then its tangent space at µ is given by

TµOR+µ = {ad∗ξµ + rµ | r ∈ R , ξ ∈ g}.

Proof. Consider the smooth curve in OR+µ given by µ(t) := Ad∗exp(tξ)(e
trµ), where r is an arbitrary

real number. Note that µ(0) = µ and d
dt

∣∣
t=0

µ(t) = ξg∗(µ) + rµ = ad∗ξµ + rµ. Therefore, A :=
{ad∗ξµ + rµ | r ∈ R , ξ ∈ g} ⊂ TµOR+µ.

Let g = gR+µ ⊕ mR+µ be a splitting of g, and {ξ1, · · · ξk}, {ξk+1, · · · ξd} basis of gR+µ and mR+µ,
respectively. It is easy to see that the set {ξk+1 g∗(µ), · · · , ξd g∗(µ), µ} forms a basis of A. And since
dim({ξk+1 g∗(µ), · · · , ξd g∗(µ), µ}) is d + 1 − dim(GR+µ), it follows that A = TµOR+µ.

Proposition 2.7.1. The coadjoint ray orbit OR+µ is an initial Poisson submanifold of g∗ and if the
coadjoint action is proper, it is even a closed embedded submanifold.

Proof. Denote by f̃ : G×G
R+µ

R+ → OR+µ →֒ g∗, f̃([g, r]) := Ad∗g−1(rµ) the bijection of Lemma 2.7.2.

Let πR+µ : G × R+ → G ×G
R+µ

R+ be the canonical projection. f̃ is a smooth, one-to -one map since

f̃ ◦ πR+µ = f : G × R+ →֒ g∗. To prove that it is also an immersion, we will show that T[g,r]f̃ is

injective for every [g, r] ∈ G ×G
R+µ

R+. Note that kerT[g,r]f̃ = T(g,r)πR+µ(kerT(g,r)f), for each [g, r]

element of the twisted product G ×G
R+µ

R+.

We will first show that kerT(e,r)f = {(ξ, rrξ) ∈ g × R | ξ ∈ gR+µ , ad∗ξµ = rξµ}. For the direct
inclusion, just use formula (2.7.3) to obtain

T(e,r)f(ξ, rrξ) =
d

dt

∣∣∣∣
t=0

Ad∗exp(−tξ)(e
rξtr)µ = −ad∗ξ(rµ) + rrξµ = 0,
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for every ξ ∈ gR+µ. The other inclusion can be proved in a similar way. In general, for any element
(g, r) ∈ G × R+, observe that

kerT(g,r)f = T(e,r)Lg kerT[e,r]f̃ = T(e,r)Lg({(ξ, rrξ) ∈ g × R | ξ ∈ gR+µ , ad∗ξµ = rξµ}).

Applying to the above relation T(g,r)πR+µ and recalling that Ad∗exp tξµ = erξtµ, for each ξ ∈ gR+µ and

t a real number, we obtain that kerT[g,r]f̃ = {0[g,r]}. It follows immediately that f̃ is an injective
immersion. The fact that it is also a Poisson map is a simple consequence of Lemma 2.7.3 and of the
formula for the Hamiltonian vector field associated to H ∈ C(g∗) : XH(µ′) = ad∗δµ

µ

µ′, for any µ′ ∈ g∗.

To see that the ray orbit is also an initial submanifold of g∗, we will prove that its connected
components are accessible sets of an integrable singular distribution. For this, let D be the singular
distribution on g∗ defined by

D(µ′) := {ad∗ξµ
′ + rµ′ | r ∈ R , ξ ∈ g}, for everyµ′ ∈ g∗.

It is a smooth distribution since it is generated by the family of vector fields (Xξ,r){ξ∈g,r∈R+} with
flows given by

Φξ,r(µ′) := Ad∗exp tξe
trµ′, for everyµ′ ∈ g∗.

To show that D is an involutive distribution, let (ξ, r′) and (η, r) be two arbitrary elements of g × R.
We will prove that Tµ′Φη,r

t (Xξ,r(µ′)) = XAdexp(−tη)ξ,r′(Ad∗exp tηe
trµ′) for any real t. Indeed,

XAdexp(−tη)ξ,r′(Ad∗exp tηe
trµ′) =

d

ds

∣∣∣∣
s=0

(
Ad∗exp(sAd−tηξ)(e

sr′Ad∗exp tηe
trµ′)

)
=

d

ds

∣∣∣∣
s=0

(
Ad∗exp−tη exp sξ exp tη(e

sr′Ad∗exp tηe
trµ′)

)

=
d

ds

∣∣∣∣
s=0

(
Ad∗exp tηAd∗exp sξ(e

sr′etrµ′)
)

= Tµ′Φη,r
t (Xξ,r(µ′)).

Lemma 2.7.3 implies that OR+µ is an integral submanifold of D of maximal dimension. Recall that
according to the Stefan-Sussmann theorem (see [54] and [55]) the maximal integral manifolds of D

are the accessible sets in g∗ obtained by finite compositions of the flows Φξ,r
{ξ∈g,r∈R}. In particular,

they are initial submanifolds of g∗. Hence the maximal integral manifold of D through µ′ is G0 · µ′,
where G0 is the connected component of e in G and the dot stands for the coadjoint action. Now,
it follows easily that the connected components of OR+µ are (G0 · µ′)µ′∈O

R+µ
. Therefore, OR+µ is an

initial submanifold of g∗.
Suppose now that the coadjoint action is proper. We want to prove that f̃ is a closed map, hence

a homeomorphism onto its image. This will immediately imply that the coadjoint ray orbit is an
embedded submanifold of g∗. For this, let F̃ be a closed subset of G ×G

R+µ
R+ and (f̃([gn, rn]))n∈N

a convergent sequence in f̃(F̃ ). Then we have that (f((g, rn)))n∈N is a convergent sequence in f(F ),
where F is the closed set = π−1

R+µ
(F̃ ). A result of Palais, see Theorem 4.3.1 in [45], guarantees the

existence of a G-invariant metric on g∗. Using this metric, we obtain that ‖ Ad∗gn
rnµ ‖n∈N= (rn ‖ µ ‖
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)n∈N is also a convergent subsequence. Hence lim
n→∞

rn = r a strictly positive number since µ 6= 0. It

follows that (Ad∗gn
(rnµ))n∈N and (rnµ)n∈N are two convergent sequences. Using the properness of the

coadjoint action we obtain that (gn)n∈N admits a convergent subsequence. The fact that F is closed
immediately implies that lim

n∈N

(f̃((g, rn))) ∈ f̃(F̃ ), completing thus the proof of this Proposition.

Remark 2.7.3. Notice that arguments similar to the ones used in the second part of the proof of
Proposition 2.7.1, show that if the coadjoint action is proper any coadjoint ray orbit is a closed sub-
manifold of g∗.

Remark 2.7.4. In general, for each µ ∈ g∗, the coadjoint orbit is an immersed submanifold of the
corresponding ray coadjoint orbit. If the coadjoint action is proper, then it is a closed embedded
sumbanifold.

Fix µ an element of g∗. Notice that the Lie algebra of the kernel group of µ, kµ is closed in
gµ. Let U be an open neighborhood of 0 in g such that the exponential map exp : U → exp(U)
is a diffeomorphism. Choose V ⊂ U a closed neighborhood of 0. Then exp(V ) ⊂ exp(U) is a
closed neighborhood of e. We want to show that exp(V )∩Kµ is closed in G. Thus, suppose (kn)n∈N =
(exp ξn)n∈N is a convergent sequence of exp(V )∩Kµ with (ξn)n∈N a sequence in V . Since exp−1 kn = ξn

for every n ∈ N, it follows that in fact ξn ∈ kµ. Using the continuity of the exponential map and the
fact that the kernel algebra is closed in g, we have that lim

n→∞
exp−1 kn = lim

n→∞
ξn = ξ ∈ kµ. Therefore

lim
n→∞

exp ξn = exp lim
n→∞

ξn = exp ξ ∈ Kµ and exp(V ) ∩ Kµ is closed in G. A standard result of Lie

theory (see, for instance, [17]), Corollary 1.10.7) implies that the kernel group of µ is a closed regular
Lie subgroup of G and the quotient G

Kµ
is a smooth manifold.

Now we are ready to define the manifold which will play the role of the cotangent orbit for the ray
reduction, namely the diagonal product of the ray orbit and the quotient of G by the corresponding
kernel group

Diag

(
OR+µ × G

Kµ

)
:= {(Ad∗grµ, ĝ) | g ∈ G and r ∈ R+}.

Recall that given two surjective submersions π1 : M1 → E and π2 : M2 → E, the diagonal of M1 ×M2

over (π1, π2), Diag (M1 × M2) := {(x1, x2) ∈ M1 ×M2 |π1(x1) = π2(x2)} is a submanifold of M1 ×M2

and its tangent space is given by

T(x1,x2)(Diag(M1 × M2)) ≃{(v1, v2) ∈ Tx1M1 × Tx2M2 |Tx1π1(v1) = Tx2π2(v2)} =

Diag(Tx1M1 × Tx2M2).

In particular, for π1 : OR+µ → G
G

R+µ
defined by π1(Ad∗grµ) := ĝ and π2 the canonical projection

from G
Kµ

onto G
G

R+µ
we obtain that

T(Ad∗grµ,ĝ) Diag

(
OR+µ × G

Kµ

)
≃ Diag

(
TAd∗grµOR+µ, Tĝ

G

Kµ

)
≃ TAd∗grµOR+µ.
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More precisely, we have that

T(Ad∗grµ,ĝ) Diag

(
OR+µ × G

Kµ

)
= {

(
ad∗ξ(Ad∗grµ) + r′Ad∗grµ, ξ̂G(ĝ)

)
| ξ ∈ g , r′ ∈ R},

for any (Ad∗grµ, ĝ) ∈ OR+µ. Here ξ̂G(ĝ) denotes the projection on G
Kµ

of the infinitesimal isometry

associated to ξ with respect to the action by left translations of G on itself. Let ω−
R+µ

be the two form

on Diag
(
OR+µ × G

Kµ

)
defined by

ω−
R+µ

(Ad∗grµ, ĝ)((ad∗ξ1Ad∗grµ + r1Ad∗grµ, ˆξ1G(ĝ)), (ad∗ξ2Ad∗grµ + r2Ad∗grµ, ˆξ2G(ĝ)))

= −〈Ad∗grµ, [ξ1, ξ2]〉 + r2〈Ad∗grµ, ξ1〉 − r1〈Ad∗grµ, ξ2〉, (2.7.4)

for any (Ad∗grµ, ĝ) ∈ Diag
(
OR+µ × G

Kµ

)
and any tangent vectors (ad∗ξi

Ad∗grµ + riAd∗grµ, ˆξiG)i=1,2 ∈

T(Ad∗grµ,ĝ) Diag
(
OR+µ × G

Kµ

)
. In fact, as we will see from Theorem 2.7.3,

(
Diag

(
OR+µ × G

Kµ

)
, ω−

O
R+µ

)

is a well defined symplectic manifold. One could also prove this directly.

Theorem 2.7.3. Consider the cotangent lift of the action by left translations of a Lie group G on
itself. For every µ ∈ g∗ with kerµ+gµ = g, the ray reduced space (T ∗(G)R+µ, ωR+µ) is well defined and

symplectomorphic to the diagonal manifold
(
Diag

(
OR+µ × G

Kµ

)
, ω−

R+µ

)
with symplectic form ω−

R+µ

defined by (2.7.4).

Proof. Since the cotangent lift of left translations is a free and proper action, if µ is an element of

g∗ with kerµ + gµ = g the ray reduced space at µ, (T ∗G)R+µ =
J−1

L (R+µ)
Kµ

is well defined. JR is the

associated momentum map defined in (2.7.1).
Note that J−1

L (R+µ) = {T ∗
g Rg−1(rµ) | g ∈ G , r ∈ R+}. The momentum map associated to right

translations (see (2.7.2)) induces the application J̄R : (T ∗G)R+µ → Diag
(
OR+µ × G

Kµ

)
defined by

J̄R([αg]) := (JR(αg), ĝ) = (Ad∗grµ, ĝ), for any αg = T ∗
g Rg−1(rµ). To see that J̄R is well defined, fix an

arbitrary k ∈ Kµ. Then,

J̄R([k · αg]) = J̄R([k · T ∗
g Rg−1rµ]) = J̄R([T ∗

kgLk−1T ∗
g Rg−1rµ])

= (T ∗
e LkgT

∗
kg(Rg−1 ◦ Lk−1)(rµ), k̂g) = (Ad∗g(rµ), ĝ),

proving thus that J̄R is indeed well-defined. Since the kernel group of µ is a subgroup of its isotropy
group, J̄R is also one to one. Surjectiveness is obvious and hence J̄R is a bijection. Its inverse is given

by J̄R−1 : Diag
(
OR+µ × G

Kµ

)
→ (T ∗G)R+µ, J̄R−1(Ad∗grµ, ĝ) = [T ∗

g Rg−1rµ].

To prove that J̄R is smooth, and hence a diffeomorphism we will use the right invariant 1-form λ ∈
Λ1(G) given by λ(g)(vg) := T ∗

g Rg−1µ(vg). The graph of λ defines the diffeomorphism F ′ : G → J−1
L (µ),

F ′(g) := λ(g) = T ∗
g Rg−1µ. Consider the map F : G × R+ → J−1

L (R+µ) given by F (g, r) := F ′(g)r,
for any elements g ∈ G and r ∈ R+. It is obviously smooth and we want to show that it descends
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to a diffeomorphism F̄ : Diag
(
G ×G

R+µ
R+) × G

Kµ

)
→ (T ∗G)R+µ, F̄ (([g, r], ĝ) = [T ∗

g Rg−1rµ]. Let us

first verify that it is a well defined map. For this, let (k, rk) ∈ G ×G
R+µ

R+ with ĝ = k̂g, so that

([(kg, r
rk

)], k̂g) = ([(g, r)], ĝ). The equality of the second components implies that actually k belongs
to the kernel group of µ. Then we obtain

F̄ ([(kg,
r

rk
)], k̂g) = [T ∗

kgR(kg)−1
r

rk
µ] = [T ∗

kgRg−1T ∗
k Lk−1T ∗

e LkT
∗
k Rk−1

r

rk
µ] =

[T ∗
kgRg−1T ∗

k Lk−1Ad∗k
r

rk
µ] = [k · T ∗

g Rg−1rµ] = [T ∗
g Rg−1rµ] = F̄ ([g, r], ĝ).

Observe that J̄R ◦ F̄ is precisely the diffeomrophism of Lemma 2.7.2. Therefore, J̄R is also a diffeo-
morphism. Its inverse is given by

J̄R−1 : Diag

(
OR+µ × G

Kµ

)
→ (T ∗G)R+µ , J̄R−1(Ad∗grµ, ĝ) = [T ∗

g Rg−1rµ],

and we can endow Diag
(
OR+µ × G

Kµ

)
with the symplectic form ω−

O
R+µ

:= J̄∗
R−1ωR+µ. In order to

give the explicit description of ω−
O

R+µ
fix (Ad∗grµ, ĝ) ∈ Diag

(
OR+µ × G

Kµ

)
and two tangent vectors

{vi = (ad∗ξi
Ad∗grµ + riAd∗grµ, ξ̂iG(ĝ)}i=1,2 in

T(Ad∗grµ,ĝ) Diag
(
OR+µ × G

Kµ

)
. It follows that

ω−
O

R+µ
(Ad∗grµ, ĝ)(v1, v2) = ωR+µ([T ∗

g Rg−1rµ])(T(Ad∗grµ,ĝ)J̄R−1(v1), T(Ad∗grµ,ĝ)J̄R−1(v2)).

Note that

T(Ad∗grµ,ĝ)J̄R−1(vi) =

T(Ad∗grµ,ĝ)J̄R−1(
d

dt

∣∣∣∣
t=0

(Ad∗exp tξi
etriAd∗grµ, ̂(exp tξi · g)))

=
d

dt

∣∣∣∣
t=0

(J̄R−1(Ad∗exp tξi
etriAd∗grµ, ̂(exp tξi · g)))

=
d

dt

∣∣∣∣
t=0

(πKµ(T ∗
g exp tξi

R(g exp tξi)−1retriµ))

= TT ∗
g R

g−1rµπKµ

(
d

dt

∣∣∣∣
t=0

etri(T ∗
g Rg−1rµ) · exp tξi

)
= TT ∗

g R
g−1rµπKµ(Xξi(T ∗

g Rg−1rµ)),

where Xξi is the vector field on T ∗G with flow given by
Φi(t, αg′) := T ∗

g exp tξi
Rexp−tξi

etriαg′ , for any αg′ ∈ T ∗
g′G. Then, using the fact that π∗

Kµ
ωR+µ =
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i∗
R+µ(−dΘ) and the above calculus, we obtain

ω−
O

R+µ
(Ad∗grµ, ĝ)(v1, v2) = π∗

Kµ
ωR+µ(T ∗

g Rg−1rµ)(Xξ1(T ∗
g Rg−1rµ), Xξ2(T ∗

g Rg−1rµ))

= −dΘ(T ∗
g Rg−1rµ)(Xξ1(T ∗

g Rg−1rµ), Xξ2(T ∗
g Rg−1rµ)) =

− Xξ1(Θ(Xξ2)(T ∗
g Rg−1rµ) + Xξ2(Θ(Xξ1)(T ∗

g Rg−1rµ) + Θ([Xξ1 , Xξ2 ])(T ∗
g Rg−1rµ).

Next, we want to show that

Θ(Xξi) = Jξi

R andXξi(J
ξj

R )(T ∗
g Rg−1rµ) = 〈Ad∗grµ, [ξi, ξj ]〉 + ri〈Ad∗grµ, ξj〉, (2.7.5)

for i = 1, 2. Indeed, for any αg ∈ T ∗
g G we have

Θ(Xξi)(αg) = 〈αg, Tαgπ(Xξi(αg))〉 = 〈αg,
d

dt

∣∣∣∣
t=0

π(etriαg · exp tξi)〉

= 〈αg, ξiG(g)〉 = Jξi

R (αg).

This also implies that Xξi and ξiG are π-related vector fields. And

Xξi(J
ξj

R )(T ∗
g Rg−1rµ) =

d

dt

∣∣∣∣
t=0

J
ξj

R (etriT ∗
g Rg−1rµ · exp tξi) =

d

dt

∣∣∣∣
t=0

T ∗
e Lg exp tξi

(T ∗
g exp tξi

Rexp−tξi
(etriT ∗

g Rg−1rµ))(ξj) =

d

dt

∣∣∣∣
t=0

Ad∗g exp tξi
(etrirµ)(ξj) = Ad∗g(ad∗Adgξi

rµ + rirµ)(ξj) =

Ad∗g(ad∗Adgξi
rµ + rirµ)(ξj) = (ad∗ξi

(Ad∗grµ) + riAd∗grµ)(ξj).

Note that in the above calculation we have again used formula (2.7.3). Applying (2.7.5), it follows
that

ω−
O

R+µ
(Ad∗grµ, ĝ)(v1, v2) = −Xξ1(Θ(Xξ2)(T ∗

g Rg−1rµ) + Xξ2(Θ(Xξ1)(T ∗
g Rg−1rµ)

+Θ(X [ξ1,ξ2])(T ∗
g Rg−1rµ) = −〈Ad∗grµ, [ξ1, ξ2]〉 − r1〈Ad∗grµ, ξ2〉

+〈Ad∗grµ, [ξ2, ξ1]〉 + r2〈Ad∗grµ, ξ1〉 + J
[ξ1,ξ2]
R (T ∗

g Rg−1rµ)

= −〈Ad∗grµ, [ξ1, ξ2]〉 + r2〈Ad∗grµ, ξ1〉 − r1〈Ad∗grµ, ξ2〉.

In particular, for g = e and r = 1 we have that

ω−
O

R+µ
(µ, ê)((ad∗ξ1µ + r1µ, ξ̂1), (ad∗ξ2µ + r2µ, ξ̂2)) = −〈µ, [ξ1, ξ2]〉 + r2〈µ, ξ1〉

−r1〈µ, ξ2〉, for any ξ{i=1,2} ∈ g.

The first term in the above expression is precisely ω−
Oµ

(µ)(ad∗ξ1µ, ad∗ξ2µ) and hence the minus sign in

the notation of the symplectic form on Diag
(
OR+µ × G

Kµ

)
.
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Corollary 2.7.1. In the hypothesis of Theorem 2.7.3, the symplectic form ω−
O

R+µ
defined by 2.7.4 is

G-invariant with respect to the following action

g1 · (Ad∗grµ, ĝ) :=

(
Ad∗

g−1
1

Ad∗grµ, ĝg−1
1

)
,

for each g1 in G and (Ad∗grµ, ĝ) in Diag
(
OR+µ × G

Kµ

)
.

Proof. Fix g1 in G and x := (Ad∗grµ, ĝ) in Diag
(
OR+µ × G

Kµ

)
. Let vξ be the tangent vector

(ad∗ξ(Ad∗grµ) + rξAd∗grµ, ξ̂G(ĝ)) ∈ T(Ad∗grµ,ĝ) Diag
(
OR+µ × G

Kµ

)
. Here ξ is an arbitrary element of

g. Then, we have

ω−
O

R+µ
(g1 · x)(g1 · vξ, g1 · vη) =

ω−
O

R+µ
(g1 · x)

(
d

dt

∣∣∣∣
t=0

(Ad∗
exp tξg−1

1
etrξAd∗grµ), ̂TgRg−1

1
ξG(ĝ),

d

dt

∣∣∣∣
t=0

(Ad∗
exp tηg−1

1
etrηAd∗grµ), ̂TgRg−1

1
ηG(ĝ)

)
=

ω−
O

R+µ
(g1 · x)

((
Ad∗

g−1
1

vξ, ̂(Adg1ξ)G(ĝg−1
1 )

)
,

(
Ad∗

g−1
1

vη, ̂(Adg1η)G(ĝg−1
1 )

))
=

ω−
O

R+µ
(g1 · x)

((
vAdg1ξ, ̂(Adg1ξ)G(ĝg−1

1 )

)
,

(
vAdg1η, ̂(Adg1η)G(ĝg−1

1 )

))
=

− 〈Ad∗
gg−1

1
rµ, [Adg1ξ,Adg1η]〉 + rη〈Ad∗

gg−1
1

rµ,Adg1ξ〉 − rξ〈Ad∗
gg−1

1
rµ, Adg1η〉 =

− 〈Ad∗grµ, [ξ, η]〉 + rη〈Ad∗grµ, ξ〉 − rξ〈Ad∗grµ, η〉 = ω−
O

R+µ
(x)(vξ, vη).

Therefore, ω−
O

R+µ
is G-invariant.

Proposition 2.7.2. The symplectomorphic G-action on
(
Diag

(
OR+µ × G

Kµ

)
, ω−

O
R+µ

)
admits an

equivariant momentum map

−IO
R+µ

: Diag

(
OR+µ × G

Kµ

)
→ g∗ , IO

R+µ
(Ad∗grµ, ĝ) := −Ad∗grµ,

for each (Ad∗grµ, ĝ) in Diag
(
OR+µ × G

Kµ

)
.

Proof. Let ξ be an element of g and denote by Iξ
O

R+µ
: Diag

(
OR+µ × G

Kµ

)
→ R the map given by
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(Ad∗grµ, ĝ) 7→ 〈Ad∗grµ, ξ〉. The infinitesimal generator associated to ξ on Diag
(
OR+µ × G

Kµ

)
is

ξ
Diag

“

O
R+µ

× G
Kµ

”(Ad∗grµ, ĝ) =
d

dt

∣∣∣∣
t=0

(
Ad∗exp−tξAd∗grµ, ̂g exp−tξ

)
=

(ad∗−ξ(Ad∗grµ),−ξ̂G(ĝ)), for any (Ad∗grµ, ĝ) ∈ Diag

(
OR+µ × G

Kµ

)
.

Then, for all
(
ad∗ηAd∗grµ + rηAd∗grµ, η̂G(ĝ)

)
∈ T(Ad∗grµ,ĝ) Diag

(
OR+µ × G

Kµ

)
, we obtain that

iξ
Diag

„

O
R+µ

× G
Kµ

«ω−
O

R+µ
(Ad∗grµ, ĝ)(ad∗ηAd∗grµ + rηAd∗grµ, η̂G(ĝ)) = (2.7.6)

ω−
O

R+µ
(Ad∗grµ, ĝ)

((
ad∗−ξ(Ad∗grµ),−ξ̂G(ĝ)

)
,
(
ad∗ηAd∗grµ + rηAd∗grµ, η̂G(ĝ)

))
=

〈Ad∗grµ, [ξ, η]〉 − rη〈Ad∗grµ, ξ〉.

On the other hand,

T(Ad∗grµ,ĝ)I
ξ
O

R+µ

(
ad∗ηAd∗grµ + rηAd∗grµ, η̂G(ĝ)

)
=

d

dt

∣∣∣∣
t=0

〈Ad∗exp tηe
trηAd∗grµ, ξ〉 (2.7.7)

= −〈Ad∗grµ, [ξ, η]〉 + rη〈Ad∗grµ, ξ〉.

Equalities (2.7.6) and (2.7.7) imply that X−Iξ
O

R+µ

= ξ
Diag

“

O
R+µ

× G
Kµ

” for all ξ ∈ g. Hence the proof of this

proposition is complete.

Recall that the symplectic difference of two symplectic manifolds (Mi, ωi)i=1,2 is M1 ⊖ M2 :=
(M1 × M2, π

∗
1ω1 − π∗

2ω2), where (πi : M1 × M2 → Mi)i=1,2 are the canonical projections. If the
Lie group G acts on both M1 and M2 such that these actions admit equivariant momentum maps
(Ji : Mi → g∗)i=1,2, then the diagonal action of G on the symplectic difference M1 ⊖ M2 admits an
equivariant momentum map given by Jd := J1 ◦ π1 − J2 ◦ π2 : M1 ⊖ M2 → g∗.

The following theorem illustrates the theoretical importance of the diagonal product

Diag
(
OR+µ × G

Kµ

)
in the reduction procedure. Namely, any ray reduced space can be seen as the

symplectic difference of the initial manifold and the diagonal product of the associated ray coadjoint
orbit with the quotient of G by the kernel group.

Theorem 2.7.4 (Shifting Theorem). Let the Lie group G act smoothly on the symplectic manifold
(M, ω) such that it admits an equivariant momentum map J : M → g∗. Fix µ an element of the dual
Lie algebra of G and suppose that the hypothesis of Theorem 2.4.1 are fulfilled. Then G acts diagonaly

on M ⊖ Diag
(
OR+µ × G

Kµ

)
and its symplectic reduced space at zero is well defined. Even more,

(
M ⊖ Diag

(
OR+µ × G

Kµ

))
0

is symplectomorphic to MR+µ, the ray reduced space at µ of M .
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Proof. The symplectic difference M ⊖ Diag
(
OR+µ × G

Kµ

)
has symplectic form π∗

1ω − π∗
2ω

−
O

R+µ
and

momentum map Jd := J ◦ π1 + IO
R+µ

◦ π2. Of course, π1 : M ⊖ Diag
(
OR+µ × G

Kµ

)
→ M and

π2 : M ⊖ Diag
(
OR+µ × G

Kµ

)
→ Diag

(
OR+µ × G

Kµ

)
are the canonical projections. It is easy to check

that in the hypothesis of Theorem 2.4.1, the 0-symplectic reduced space is well defined.

Let φ : J−1(R+µ) → M ⊖ Diag
(
OR+µ × G

Kµ

)
be the map defined by x ∈ J−1(R+µ) 7→

(x, (−J(x), ê)). Denote by [φ] its (Kµ, G)-projection

[φ] : MR+µ →
(

M ⊖ Diag

(
OR+µ × G

Kµ

))

0

, [φ](x̂) := [x, (−J(x), ê)],

where [, ] and ˆ denote the G and Kµ-classes, respectively. This map is well defined. Indeed, let k

be an element of the kernel group of µ. Then, [φ](k̂x) = [kx, (−J(kx), ê)] = [kx, (−k · J(x), k̂−1)] =
[k · (x, (−J(x), ê))] = [φ](x̂), for any x̂ ∈ MR+µ. To see that [φ] is injective, let x̂1, x̂2 be elements
of MR+µ such that [x1, (−J(x1), ê)] = [x2, (−J(x2), ê)]. Then, there is g an element of G such that
(gx1, (−gJ(x), ĝ−1) = (x2, (−J(x2), ê)). It follows that g ∈ Kµ and gx1 = x2. Hence x̂1 = x̂2 and [φ]

is one-to-one. If [x, (Ad∗grµ, ĝ)] is an element of
(
M ⊖ Diag

(
OR+µ × G

Kµ

))
0
, then Jd(x, (Ad∗grµ, ĝ)) =

J(x) + Ad∗grµ = 0. Therefore, gx ∈ J−1(R+µ),

[φ](ĝx) = [gx, (−J(gx), ê)] = [gx, (−gAd∗grµ, ĝg−1)] = [x, (−J(x), ê)],

and [φ] is onto. As it is obviously a smooth map, we obtain that [φ] is in fact a diffeomorphism with
inverse given by [x, (Ad∗grµ, ĝ)] 7→ [gx].

To show that [φ] is also a symplectic map, fix x̂ in MR+µ and (vi)i=1,2 in TxJ−1(R+µ). Note
that Tx(π2 ◦ φ)(vi) belongs to Rµ ≃ TJ(x)(R+µ) for each i = 1, 2. Suppose J(x) = rµ and (Tx(π2 ◦
φ)(vi) = riµ)i=1,2 with (ri)i=1,2 reals. Then, using the function equalities [φ] ◦ πKµ = πG ◦ φ and
π1 ◦ φ = IdJ−1(R+µ), we obtain

[φ]∗(π∗
1ω − π∗

2ω
−
O

R+µ
)0(x̂)(TxπKµv1, TxπKµv2) =

(π∗
1ω − π∗

2ω
−
O

R+µ
)0([x, (−J(x), ê)])(Tx([φ] ◦ πKµ)v1, Tx([φ] ◦ πKµ)v2) =

(π∗
1ω − π∗

2ω
−
O

R+µ
)(φ(x))(Txφv1, Txφv2) =

ω(x)(Tx(π1 ◦ φ)v1, Tx(π1 ◦ φ)v2) − ω−
O

R+µ
(J(x), ê)(Tx(π2 ◦ φ)v1, Tx(π2 ◦ φ)v2) =

i∗µω(x)(Tx(iµ ◦ π1 ◦ φ)v1, Tx(iµ ◦ π1 ◦ φ)v2) − ω−
O

R+µ
(rµ, ê)(r1µ, r2µ) =

i∗µω(x)(Tx(iµ ◦ π1 ◦ φ)v1, Tx(iµ ◦ π1 ◦ φ)v2) = ωR+µ(x̂)(TxπKµv1, TxπKµv2),

completing thus the proof of this theorem.

In the remaining of this section we will study the ray reduced spaces of the cosphere bundle of
the Lie group G. Consider the action of the multiplicative group R+ by dilatations on the fibers of
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T ∗G \ {0T ∗G}. The cosphere bundle of G, S∗G is the quotient manifold (T ∗G \ {0T ∗G})/R+. Denote
by πR+ : T ∗G \ {0T ∗G} → S∗(G) the canonical projection. Then, (πR+ , R+, T ∗G \ {0T ∗G}, S∗G) is a
R+-principal bundle. S∗G admits a canonical contact structure given by the kernel of any one form
constructed as the pull-back of the Liouville form on T ∗G through a global section of the R+-principal
bundle (πR+ , R+, T ∗G \ {0T ∗G}, S∗G). Namely, for every global section σ : S∗G → T ∗G \ {0T ∗G}
the one-form Θσ = σ∗Θ determines the same contact structure. Note that π∗

R+Θσ = fσΘ, where
fσ : T ∗G \ {0T ∗G} → R+ is a smooth function with the property that fσ(rαg) = 1

rfσ(αg) for any
r ∈ R+ and αg ∈ T ∗G. The action by left translations of G on its cotangent bundle induces a free
and proper action on the copshere bundle given by

g′ · {αg} := {T ∗
g′gLg−1αg},

for all {αg} ∈ S∗G and g′ ∈ G. Since it is a proper action which preserves the contact structure, there
is always a global section σ such that the action will preserve the associated contact form Θσ. Then,
this action admits an equivariant momentum map defined by

〈JsL({αg}), ξ〉 := Θσ({αg}(ξS∗G)({αg}) = fσ(αg)αg(ξG(g)),

where {αg} ∈ S∗G and ξ ∈ g. That is, JsL(αg) = fσ(αg)αg, for any {αg} ∈ S∗G. Here we have briefly
recalled the construction and some of the properties of the cosphere bundle of a Lie group. For more
details the interesting reader is referred to [16], [18], and [?].

Denote by Diag
(
S∗(OR+µ) × G

Kµ

)
the diagonal product of the πR+-quotient of the ray orbit of µ

and G
Kµ

. The quoteint space S∗(OR+µ) is a smooth manifold since the R+-action on OR+µ is free and
proper. The map

[g] ∈ G

GR+µ
−→ Ad∗grµ

is a diffeomorphism. Define the following one form on Diag
(
S∗(OR+µ) × G

Kµ

)

ηO
R+µ

({Ad∗grµ}, ĝ)(TAd∗grµπR+µ(ad∗ξAd∗grµ + r′Ad∗grµ, ξ̂G(ĝ)) :=

fσ(T ∗
g Rg−1rµ)〈Ad∗grµ, ξ〉, (2.7.8)

for any ({Ad∗grµ}, ĝ) ∈ Diag
(
S∗(OR+µ) × G

Kµ

)
and any tangent vector

TAd∗grµπR+µ(ad∗ξAd∗grµ + r′Ad∗grµ, ξ̂G(ĝ) ∈ T({Ad∗grµ},ĝ) Diag

(
S∗(OR+µ) × G

Kµ

)
.

As we will see in the proof of the following Theorem, the diagonal manifold(
Diag

(
S∗(OR+µ) × G

Kµ

)
, ηO

R+µ

)
is a well defined exact contact manifold.

Theorem 2.7.5. Let the Lie group G act on its cosphere bundle S∗G by the lift of left translations
on itself. Suppose µ is an element of the dual of its Lie algebra with kernel group Kµ and the property
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that kerµ+gµ = g, where gµ is the isotropy algebra of µ for the coadjoint action. Then the ray reduced

space at µ, (S∗G)R+µ is well defined and contactomorphic to
(
Diag

(
S∗(OR+µ) × G

Kµ

)
, ηO

R+µ

)
, where

ηO
R+µ

is the one form define by (2.7.8).

Proof. First note that since the Kµ and R+-actions commute we have the equality J−1
sL (R+µ) =

πR+(J−1
L (R+µ)). Even more the maps,

φ : (S∗G)R+µ → (T ∗G)R+µ

R+
and J̄R+ :

(T ∗G)R+µ

R+
→ Diag

(
S∗(OR+µ) × G

Kµ

)

defined by φ([{αg}]) := {[αg]} and J̄R+({[T ∗
g Rg−1rµ := ({Ad∗grµ}, ĝ), for any αg in J−1

L (R+µ) are

diffeomorphisms. Let Ψ : (S∗G)R+µ → Diag
(
S∗(OR+µ) × G

Kµ

)
be the map Ψ := J̄R+ ◦ φ. It is

obviously a diffeomorphism with inverse given by

Ψ−1 : Diag

(
S∗(OR+µ) × G

Kµ

)
→ (S∗G)R+µ , Ψ−1({Ad∗grµ}, ĝ) = [{T ∗

g Rg−1rµ}],

for any g ∈ G and r ∈ R+. Denote by ηR+µ the reduced contact form of (S∗G)R+µ. Then,

(Ψ−1)∗(ηR+µ)({Ad∗grµ}, ĝ)(TAd∗grµπR+µ(ad∗ξAd∗grµ + r′Ad∗grµ, ξ̂G(ĝ)) =

(πs
R+µ)∗({T ∗

g Rg−1rµ})
(

d

dt

∣∣∣∣
t=0

πR+(Ad∗g exp tξe
tr′Ad∗grµ, ̂g · exp tξ)

)
=

(πs
R+µ)∗({T ∗

g Rg−1rµ})
(
TT ∗

g R
g−1rµπR+(Xξ(T ∗

g Rg−1rµ))
)

=

Θσ({T ∗
g Rg−1rµ})

(
TT ∗

g R
g−1rµπR+(Xξ(T ∗

g Rg−1rµ))
)

=

(π∗
R+Θ)(TT ∗

g R
g−1rµ)(Xξ(T ∗

g Rg−1rµ)) = fσ(T ∗
g Rg−1rµ)Θ(T ∗

g Rg−1rµ)(Xξ(T ∗
g Rg−1rµ))

= fσ(T ∗
g Rg−1rµ)Jξ

R(T ∗
g Rg−1rµ) = fσ(T ∗

g Rg−1rµ)〈Ad∗grµ, ξ〉 =

ηO
R+µ

({Ad∗grµ}, ĝ)(TAd∗grµπR+µ(ad∗ξAd∗grµ + r′Ad∗grµ, ξ̂G(ĝ)), (2.7.9)

for all ξ ∈ g and g ∈ G. Hence, ηO
R+µ

is a contact form and Ψ the required contactomorphism.

Corollary 2.7.2. In the hypothesis of Theorem 2.7.5, the contact form ηO
R+µ

defined by 2.7.8 is
G-invariant with respect to the following action

g1 · ({Ad∗grµ}, ĝ) :=

(
{Ad∗

g−1
1

Ad∗grµ}, ĝg−1
1

)
,

for each g1 in G and (Ad∗grµ, ĝ) ∈ Diag
(
S∗(OR+µ) × G

Kµ

)
.
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2.8 Ray quotients of Kähler-Einstein Fano manifolds

In this section we will study the behavior of Kähler-Einstein metrics of positive Ricci curvature with
respect to symmetries. Namely, in the hypothesis of Theorem 2.4.2 and using techniques developed
in [19] and [20] by A. Futaki, if M is a Fano manifold and ω represents its first Chern class we will
show how to compute the Ricci form of the reduced space in terms of the reduced Kähler form ωR+µ

and data on J−1(R+µ) and the kernel group Kµ. As a corollary we will obtain that if M is a Fano
manifold and the symplectic ray reduction of Theorem 2.4.1 can be performed, then the ray reduced
symplectic manifold MR+µ will also be Fano. Even more, if M is a compact Kähler-Einstein manifold
of positive Ricci curvature, then MR+µ is Einstein if and only if the norm of a certain multi vector
field defined using the kernel algebra kµ and the algebra m defined in (2.4.2) is constant on J−1(R+µ).

Recall that the Ricci form ρ of a compact Kähler manifold (M, g, ω) is a real closed (1, 1)-form
whose class in the de Rham cohomology group H2

DR(M) defines the first Chern class. Suppose that
the Kähler form ωg represents the first Chern class of M . Then, applying the local i∂∂̄-Lemma (see,

for instance [?]), we obtain that there is a smooth real function f such that ρ − ω =
√
−1
2π ∂∂̄f . If

the compact connected Lie group G acts on M by holomorphic isometries, then there is always an
associated equivariant momentum map J : M → g∗. We will now recall its construction.

By Theorem 2.4.3 in [19] there is an isomorphism between the complex Lie algebra of holomorphic
vector fields on M and the set of all complex-valued functions u satisfying ∆fu − u = 0. This
isomorphism is given by u 7→ gradu. Here, ∆f is the differential operator given by

u 7→ ∆u −∇iu∇if = ∆u − gij̄ ∂u

∂z̄j
∂zi

f = ∆u − gradu(f),

with ∆ the complex Laplacian, ∇ the covariant derivative associated to g and (zi)i local holomor-
phic coordinates. Then, the infinitesimal isometries associated to the elements of the Lie algebra g

embed in the space of holomorphic vector fields on M as follows: assign to each ξ ∈ g the holomorphic
vector field ξ′M := 1

2(ξM −
√
−1CgξM ). C denotes the complex structure of (M, g). In other words, all

the infinitesimal isometries are real holomorphic vector fields. Therefore there is a smooth complex
function uξ′

M
with graduξ′

M
= ξ′M .

Lemma 2.8.1. For every ξ element of the Lie algebra g, the above defined function uξ′M
is pure

imaginary.

Proof. Since G acts by holomorphic isometries, ξM (f) = 0 and we have

∆fuξ′M
= ∆uξ′M

− ξ′M (f) = ∆uξ′M
+

√
−1

2
C(ξM )f and ¯∆fuξ′M

= ¯∆uξ′M
−

√
−1

2
C(ξM )f.

Using the fact that ∆fuξ′M
− uξ′M

= 0 it follows that

∆(uξ′M
+ ¯uξ′M

) = uξ′M
+ ūξ′M

. (2.8.1)

On the other hand, it is well known that on a complex connected Riemannian manifold, if X, the
gradient of a function u is a holomorphic vector field, then it is a Killing vector field if and only if u+ ū
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is constant. In particular, if u is pure imaginar, then the real part of X is a Killing vector field. For a
proof of this, see for instance [12]. Applying this to X = grad(uξ′M

+ ūξ′M
) we obtain that uξ′M

+ ūξ′M
is a constant function. Hence, 2.8.1 implies that uξ′M

+ ūξ′M
= 0.

Proposition 2.8.1. Let M be a compact complex manifold of positive first Chern class and dimension
n. Choose any Kähler metric g which represents the first Chern class and suppose the Lie group G

acts on (M, g) by holomorphic isometries. Then the map J : M → g∗, 〈J(x), ξ〉 :=
√
−1
2π uξ′M

defines
an equivariant momentum map for the action of G on M .

Proof. In a local holomorphic coordinate system (z1, ..., zn), the Kähler form associated to g is given

by ω =
√
−1
2π gαβ̄ dzα ∧ dzβ̄. Then, for any ξ in g,

iξ′M ω = igrad uξ′
M

ωg =
i

2π
gαβ̄ ∇β̄uξ′M

gαγ̄ dz̄γ = ∂̄Jξ.

and

iξM
ω = i(ξ′M+ξ̄′M )ωg = iξ′M ωg + iξM

ωg = dJξ,

proving thus that J is a momentum map. To show the equivariance of J , fix g ∈ G and ξ ∈ g. Observe
that the G-action commutes with the operator ∆f and that for any vector field Y of type (0, 1) we
have

ω(grad(g∗uξ′
M

), Y ) = Y (g∗Jξ) = (g∗Y )Jξ = ω(graduξ′
M

, g∗Y ) =

ω(g−1
∗ ξ′M , Y ) = ω((adg−1ξ)′M , Y ) = ω(gradu(ad

g−1ξ)′M
, Y ).

Hence, J is also G-equivariant.

Assume that the hypothesis of Theorem 2.4.2 are verified for a momentum value µ. Choose
{ξi}i=1,k and {ηi}i=1,m basis of kµ and m such that the associated infinitesimal isometries form an
orthogonal frame of the vertical distribution of πR+µ : J−1(R+µ) → MR+µ and of mM respectively.
Recall that mM is the space defined in the decomposition 2.4.5. Denote by ξ′ ∧ η′ the multi vector
ξ′1M ∧ ... ∧ ξ′kM ∧ η′1M ∧ ... ∧ η′mM . We are now ready to state the main theorem of this section.

Theorem 2.8.1. Let (M, g, ω) be a Fano Kähler manifold with ω representing its first Chern class.
Let G be a Lie group acting on M by holomorphic isometries. Suppose that µ is an element of the dual
of the Lie algebra of G such that the ray reduced space is a well defined Kähler orbifold (MR+µ, ωR+µ)
Assume that the kernel group Kµ is compact. Then, the Ricci form of the ray reduced space is given
by

ρR+µ = ωR+µ +

√
−1

2π
∂∂̄(fR+µ + log ‖ξ′ ∧ η′‖2

R+µ), (2.8.2)

where fR+µ and ‖ξ′ ∧ η′‖R+µ are the Kµ-projections of f and the point-wise norm of the multi vector
ξ′ ∧ η′. Consequently, MR+µ is also Fano.
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Proof. First note that ξ′ ∧ η′ is Kµ-invariant. For any g ∈ G and x ∈ M , ξM (gx) = g∗(adg−1ξ)M (x).
Since the kernel group Kµ is compact, det(adg−1 |kµ) = 1 and

(ξ′1M ∧ ... ∧ ξ′kM )(gx) = (det(adg−1 |kµ)g∗(ξ
′
1M ∧ ... ∧ ξ′kM )(x) = g∗(ξ

′
1M ∧ ... ∧ ξ′kM )(x).

Even more det(adg−1 |g) = det(adg−1 |gµ) det(adg−1 |m) and since Gµ and G are compact, it follows that
det(adg−1 |m) = 1. By an argument similar to the one above we obtain that the multi vector ξ′ ∧ η′ is
Kµ-invariant.

The action of Kµ being by isometries it is clear that the point wise norm of ξ′ ∧ η′ is also Kµ-
invariant. Recall from Theorem 2.4.2 that we have the following orthogonal decomposition:

TxM = Vx ⊕Hx ⊕ mM (x) ⊕ C(Vx). (2.8.3)

Vx is the vertical space at x of the Riemannian submersion πR+µ : J−1(R+µ) → MR+µ and it is
generated by {ξiM (x)}i=1,k. The horizontal space at x is Hx and mM (x) is invariant with respect to
the complex structure C. Let V and M be the distributions defined by {Vx ⊕ C(Vx)}x∈J−1(R+µ) and
{mM (x)}x∈J−1(R+µ). Consider the following decompositions

V ⊗ C = V1,0 ⊕ V0,1

H⊗ C = H1,0 ⊕H0,1

M⊗ C = M1,0 ⊕M0,1.

Then we have that i∗
R+µT 1,0M = H1,0⊕V1,0⊕M1,0. Denote by ∇h, ∇v, ∇m, and ∇R

+µ the connections

induced by the Levi-Civita connection of M on H1,0, V1,0, M1,0, and i∗
R+µT 1,0M (or their determinant

bundles). Let θh, θv, θm, and θR
+µ be the connection forms of the above defined connections with

respect to the local, orthogonal and Kµ- invariant frames Y1 ∧ ...∧Ys, ξ′1M ∧ ...∧ ξ′kM , η′1M ∧ ...∧ η′mM ,

Y1 ∧ ... ∧ Ys ∧ ξ′1M ∧ ... ∧ ξ′kM ∧ η′1M ∧ ... ∧ η′mM , respectively. Then, θR
+µ = θh + θv + θm. Extend the

connection forms by

θh
h(Y ) = θh(Y ) θh

h(ξM ) = 0 θh
h(ηM ) = 0 θh

v (Y ) = 0 θh
v (ξM ) = θh(ξM )

θv
h(Y ) = θv(Y ) θv

h(ξM ) = 0 θv
h(ηM ) = 0 θv

v(Y ) = 0 θv
v(ξM ) = θv(ξM )

θm
h (Y ) = θm(Y ) θm

h (ξM ) = 0 θm
h (ηM ) = 0 θm

v (Y ) = 0 θm
v (ξM ) = θm(ξM )

θh
v (ηM ) = 0 θh

m(Y ) = 0 θh
m(ξM ) = 0 θh

m(ηM ) = θh(ηM )

θv
v(ηM ) = 0 θv

m(Y ) = 0 θv
m(ξM ) = 0 θv

m(ηM ) = θv(ηM )

θm
v (ηM ) = 0 θm

m(Y ) = 0 θm
m(ξM ) = 0 θm

m(ηM ) = θm(ηM ) ,

for any Y ∈ H, ξM ∈ V, and ηM ∈ M. Then θ = θh
h+B, where B = θh

v +θh
m+θv

h+θv
v+θv

m+θm
h +θm

v +θm
m.

Finally, let θR+µ be the connection form of the fiber bundle detT 1,0MR+µ with respect to the local
orthogonal frame πR+µ∗Y1 ∧ ... ∧ πR+µ∗Ys.
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We want to prove that (πR+µ)∗θR+µ = θh
h. First,note that the Levi-Civita connection of MR+µ is

given by

∇R
+µX̂1X̂

2 = πR+µ∗(hor(∇X1h
X2h)),

for any X̂1, X̂2 vector fields on the quotient. Here hor denotes the horizontal projection and X1h, X2h

are the unique sections of the horizontal distribution which project onto X̂1 and X̂2. Then, we obtain

(π∗
R+µθR+µ)(Xh) = ∇R

+µ
π

R+µ∗
Xh

(πR+µ∗(Y1) ∧ ... ∧ πR+µ∗(Yk)) =

∑k

i=1
πR+µ∗(Y1) ∧ ... ∧ πR+µ∗(hor∇Xh

Yi) ∧ ... ∧ πR+µ∗(Yk)

= πR+µ ∗ (∇Xh
(Y1 ∧ ... ∧ Yk)) = πR+µ ∗ (θh

h(Xh)Y1 ∧ ... ∧ Yk).

Since the frame is Kµ-invariant it follows that θh
h(Xh) is a Kµ-invariant function on J−1(R+µ), for

any horizontal vector field Xh. Therefore, (πR+µ)∗θR+µ = θh
h and

π∗
R+µρω

R+µ
=

√
−1

2π
dπ∗

R+µθR+µ =

√
−1

2π
dθh

h =

√
−1

2π
(dθ − B) = i∗

R+µρω −
√
−1

2π
B, (2.8.4)

where B := dθh
v + dθh

m + dθv
h + dθv

v + dθv
m + dθm

h + dθm
v + dθm

m.
Observe that

dθv
h = dπ∗

R+µ(∂ log ‖ξ′‖2
R+µ) = π∗

R+µ(∂̄∂ log ‖ξ′‖2
R+µ). (2.8.5)

Indeed, fix Y a section of H1,0. Working in holomorphic coordinates it is very easy to see that
∇v

Ȳ
ξ′M = 0. On the other hand

∇v
Y ξ′ =

∑k

i=1
ξ′1M ∧ ... ∧ g(∇Y ξ′iM , ξ̄′iM )

‖ξ′iM‖2
ξ′iM ∧ ... ∧ ξ′kM =

∑k

i=1
Y (log(‖ξ′iM‖2))ξ′ = Y (log(‖ξ′‖2))ξ′.

(2.8.6)

Hence formula (2.8.5) follows. In a similar way we can see that dθm
h = π∗

R+µ(∂̄∂(log‖η′‖2)). Therefore,

dθv
h + dθm

h = π∗
R+µ(∂̄∂ log‖ξ′ ∧ η′‖2). (2.8.7)

Applying Lemma 7.3.8 in [19], we know that for any γ, section of detT 1,0M and any ξ in kµ,
LξM

γ = ∇ξM
γ − (2π

√
−1∆Jξ)γ. In particular, for γ := Y1 ∧ ...∧Ys ∧ ξ′1M ∧ ...∧ ξ′kM ∧ η′1M ∧ ...∧ η′mM ,

along J−1(R+µ) we get ∇ξM
γ = LξM

γ + (2π
√
−1∆Jξ)γ = −(ξ′Mf)γ = and ∇ηM

γ = −(η′Mf)γ.
Recall that from the definition of J we have that uξ′M

= uη′
M

= 0, for all ξ ∈ kµ and η ∈ m.

Let θv := θh
v + θv

v + θm
v and θm := θh

m + θv
m + θm

m. From the above computations we have that
θv(ξM ) = −ξ′M (f) and θm(ηM ) = −η′M (f) = 0, for all ξ ∈ kµ and all η ∈ m. Notice that for the last
equality we have used the fact that mM is invariant with respect to the complex structure C.

The definitions of θv and θm imply that

θv = −i∗
R

+
mu

∂f + π∗
R

+
mu

∂f
R

+
mu dθv = i∗

R
+
mu

∂∂̄f − π∗
R

+
mu

∂∂̄f
R

+
mu, (2.8.8)
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dθm = 0. (2.8.9)

From (2.8.4), (2.8.7), (2.8.9), and (2.8.8), the conclusion of the theorem follows.

Theorem 2.4.2, Proposition 2.5.1, and Theorem 2.8.1 entail the following corollary.

Corollary 2.8.1. In the hypothesis of Theorem 2.4.2, suppose M is also Kähler-Einstein of positive
Ricci curvature. Then ray reduced space MR+µ is Kähler-Einstein if and only if ‖ξ′∧η′‖R+µ is constant
on J−1(R+µ).

Proof. It is just a matter of definitions.

Theorems 2.5 in [9] and 2.8.1 imply

Corollary 2.8.2. In the hypothesis of Theorem 2.8.1, if M has Ricci curvature strictly bigger then
−2, then so does MR+µ.

Example 2.8.1. All the reduced spaces of Examples 3.1 and 3.2 of [15] are Sasaki-Einstein.



Chapter 3

The stratification of proper groupoids

3.1 Proper Lie groupoids

In this section we will briefly review the definition and properties of proper Lie groupoids. By con-
vention, the base space of any Lie groupoid is assumed to be Hausdorff, but the space of arrows is not
necessarily Hausdorff.

One of the fundamental examples of Lie groupoids is the one associated to a Lie group action and
usually called the action groupoid. Let G × M → M be a smooth action of the Lie group G on the
manifold M . The associated action groupoid, denoted by G ⋉ M is given by

G ⋉ M := G × M
s,t

⇒ M , s(g, m) := m , t(g,m) := g · m.

Definition 3.1.1. A Lie groupoid G
s,t

⇒ M is called proper if G is a Hausdorff manifold and the
source-target map (or the anchor map as it is sometimes called) (s, t) : G → M × M is a proper
topological map.

Example 3.1.1. An action groupoid is proper if and only if the group action is proper.

Example 3.1.2. ([63]) Let G be a semisimple non-compact Lie group. Let E ⊂ g∗ be the elliptic
subject of G defined as the set of all the elements of g∗ who have compact coadjoint isotropy groups.
Under the orbit method, E corresponds to the discrete series of representations of G. E is an open
subset of g∗ and the restriction of the coadjoint action to E is proper. Therefore, the restriction of
the symplectic groupoid T ∗G ⇒ g∗ to E is a proper groupoid.

Definition 3.1.2. Two Lie groupoids G1 ⇒ M1 and G2 ⇒ M2 are said to be Morita equivalent (see
[60]) if there exists a manifold X endowed with a left and right action of G1 ⇒ M1 and G2 ⇒ M2

respectively and with momentum maps ρ : X → M1 and σ : X → M2 such that

• the two actions commute with each other;

• X is a G1-principal bundle over X
σ→ M2;
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• X is a G2-principal bundle over X
ρ→ M1.

(X, ρ, σ) is called an equivalence bimodule between the Lie groupoids G1, G2.

For the equivalence of this definition with others existing in the literature, see [?], Part 3. The
following proposition shows how many of the topological properties of proper group actions still hold
in the case of proper groupoids.

Proposition 3.1.1. ([41], [62], [59]) Let G ⇒ M be a proper Lie groupoid. Then,

• the isotropy group Gx := {g ∈ G|s(g) = t(g) = x} of any base point x is a compact Lie group;

• each orbit of G is a closed embedded submanifold of M ;

• the orbit space M/G with the induced quotient topology is a Hausdorff space;

• any Lie groupuoid Morita equivalent to G is also proper;

• if N is a submanifold of M which intersects a groupoid orbit O transversally at a point x ∈ M
and S is a sufficiently small open neighbourdhood of x in N , then the restriction groupoid GS :=
s−1(S) ∩ t−1(S) ⇒ S is a proper Lie groupoid which has x as a fixed point.

The groupoid GS in the last item of the above proposition is called a slice of G at x ∈ M and this
notion makes sense even for non-proper groupoids. Note that two arbitrary slices of a groupoid at two
points lying on the same orbit are locally isomorphic.

However, the properness of a Lie groupoid is not sufficient to imply all the nice properties of
proper Lie group actions, such as the stability of fixed points or the existence of tubes (see [62]).
That is why one has to impose the additional condition of source local triviality. Note that in the
case of proper actions, the source and target maps are globally trivial fibrations. Recall that a base
point of a groupoid is fixed if its orbit contains only one point. A fixed point is stable if each one
of its neighborhoods contains a G-invariant one. Every fixed point of a source locally trivial proper
topological groupoid is stable. Note that the source local triviality hypothesis is necessary and it is
not preserved under Morita equivalence.

The analogue of the Bochner’s linearization theorem for groupoids was conjectured by A. Weinstein
and proved by N. T. Zung in [59].

Theorem 3.1.1. Any proper Lie groupoid G ⇒ M with a fixed point x ∈ M is locally isomorphic to
a linear action groupoid, namely the action groupoid of the action of the compact isotropy group Gx

on the tangent space TxM .

An immediate consequence of Theorem 3.1.1 is the following Tube Theorem for Lie groupoids.
This theorem was obtained by Weinstein in [62] under the hypothesis that Theorem 3.1.1 holds. If O
is an orbit of the groupoid G ⇒ M , then GO denotes the restriction of G to O and τ : NO → O the
normal bundle of O in M . The structure of G induces a linear action of GO on NO. This action may
be defined as follows. Let g ∈ GO and v ∈ NO be such that s(g) = τ(v). Choose γ a parametrized
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curve on the base such that γ(0) = s(g) and
[

d
dε

∣∣
ε=0

γ(ε)
]

= v ∈ NO. Let γ̃ be a parametrized curve

in G with γ̃(0) = g and s ◦ γ̃ = γ. Then we define g · x :=
[

d
dε

∣∣
ε=0

(t ◦ γ̃)(ε)
]
∈ NO. It is easy to verify

that this is a well defined action. We denote by GO ⋉ NO the corresponding action groupoid.

Recall that O is of finite type if there is a proper map F : O → R with a finite number of critical
points. Now we are ready to state the Tube Theorem for proper Lie groupoids.

Theorem 3.1.2. (Tube Theorem [62], [59]) Let G ⇒ M be a source locally trivial proper Lie
groupoid and let O be an orbit of finite type. Then there is an invariant neighborhood U of O in
M such that the restriction GU of G to U is isomorphic to the restriction of GO ⋉ NO to a tubular
neighborhood of the zero section in NO (and also isomorphic to GO ⋉ NO itself ).

In fact, this Tube Theorem for groupoids represents the linearization of source locally trivial
proper groupoids near orbits of finite type. Note that in the case of an action groupoid the groupoid
linearization is slightly weaker then the linearizaton of the action since it only implies the orbital
linearization of the action. More precisely, locally, the group orbits are those of a linear action, but
the action on these orbits may still be non linear.

As a consequence of the Tube Theorem we have the following result which will be needed in Section
7.

Lemma 3.1.1. Let G ⇒ M be a proper groupoid with paracompact base. Then, to any open and
G-invariant cover of M one can associate a G-invariant partition of unity.

Proof. Let (Ui)i∈I be an open, G-invariant cover of M . The properness of the groupoid implies the
closeness of the orbit projection map π : M → M/G. Since closed maps preserve paracompactness,
it follows that the orbit space is also paracompact. Therefore, there is an open and locally finite
subcover, (Ṽi)i∈I , of (Ũi = π(Ui))i∈I such that (Vi := π−1(Ṽi))i∈I is an open, G-invariant, and locally
finite subcover of M . For any i ∈ I, let [xi] := π(xi) be a point of Ṽi such that Wi := G · Si ⊂ Vi,
where Si is a slice of the groupoid at xi. Obviously, W̃i := π(Wi) is contained in Ṽi for any indice
i ∈ I. The slice theorem for proper groupoids implies that the orbit space of the restricted groupoid
to Wi is equivalent to the orbit space of the linear action of Gxi

on an open subset of zero in Txi
Si, Bi.

Even more, this action is orthogonal with respect to a Gxi
-invariant inner product on Bi. Using the

fact that any ray function on Bi is Gxi
-invariant, we can construct positive functions fi ∈ C∞(Bi)

Gxi

with fi(0) = 0 and supp(fi) included in any given neighborhood of zero in Bi. Extend by zero each of
these functions on the whole base and denote by (f̃i)i∈I the induced functions on the orbit space M/G.
Since (Ṽi)i∈I is a locally finite family, so are the families (supp(f̃i))i∈I and (supp(fi))i∈I . Consider

gi := fi
P

i∈I fi
and g̃i := f̃i

P

i∈I f̃i
. It is easy to see that (gi)i∈I is the required G-invariant partition of

unity and (g̃i)i∈I is a partition of unity of the orbit space associated to the open cover (Vi)i∈I .
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3.2 The Stratification of the Orbit Space of Proper Lie Group Ac-

tions

Recall that the local model of a proper Lie groupoid is an action groupoid. That is why, the purpose
of this section is to review the stratification of the orbit space of a proper Lie group action and to
reformulate it in a way which can be naturally generalized to proper Lie groupoids.

Let G × M → M be a smooth proper action of the Lie group G on the manifold M . It is well
known that the connected components of the orbit types

M(H) = {x ∈ M |Gx is conjugate to H}, (3.2.1)

are smooth embedded submanifolds of M . Here, Gx denotes the stabilizer of x. The subgroups H
labelling the orbit types of M are compact. The orbit space M/G is a Hausdorff paracompact space
locally modeled as the linear quotient by Gx of a vector subspace of TxM complementar to the tangent
space to the orbit of x.

Denote by π : M → M/G the orbit projection of the G-action. It is a consequence of Palais’ slice
theorem for proper actions that the connected components of the sets π(M(H)) are smooth manifolds,
and that the partition of M/G into these connected manifolds is a smooth stratified cone space
satisfying the Whitney conditions. This stratification is called the orbit type stratification of M/G.
Since the connected component of x in the orbit type M(H) is given by Ge · Mx

H , this stratification is
also called the isotropy type stratification. Here, MH = {x ∈ M |Gx = H} is the isotropy type of H,
Mx

H its connected component containing x, and Ge is the connected component of the identity in G.
For further details, we refer the interested reader to [17], [56], or [48].

The main problem in trying to generalize this picture to the orbit space of a proper groupoid
G ⇒ M is that the characterization (3.2.1) of the pieces inducing the stratification makes no sense
for a groupoid. Namely, the isotropy groups of a groupoid at points in different orbits cannot be
compared by conjugation. In this section we adopt an equivalent approach to the construction of the
orbit types and hence of the orbit type stratification of M/G. This approach is based on ideas coming
from singular foliation theory, namely projectable vector fields. It has the advantage of admitting a
natural generalization to proper Lie groupoids which will be presented in Section ??.

The first step is to realize the connected components of the orbit types as the leaves of a singular
integrable distribution.

Proposition 3.2.1. If G is a Lie group acting properly on the manifold M , the family of (local) vector
fields G-invariant or tangent to the orbits generates a singular integrable distribution whose leaves are
the connected components of the orbit types. Therefore, the partition of the orbit space M/G into the
G- projections of the leaves coincides with the stratification by orbit types.

This was proved in [43] and [56]; see for instance Theorem 3.4.10 and Theorem 3.5.1 in [56]. The
definition of a G-invariant vector field uses the fact that the action of G associates to any group
element a diffeomorphism of M . In the case of a groupoid, this diffeomorphism is defined only on the
orbit through the source of this element. Thus, this definition can not be generalized to groupoids.
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However, the notion of G-invariant vector fields makes sense only for smooth sections of the normal
bundle to the orbits. For this, one should use the G-action defined for the linear model of a proper
groupoid. Note that since the normal bundle is singular, technically it is very difficult to determine
the normal, G-invariant vector fields. Therefore this formulation would be of no practical use for the
groupoid case.

To overcome this difficulty we introduce another family of local vector fields which we call G-
derivations and whose definition depends only on the properties of the orbit foliation on M , and no
longer implicitly on the G-action itself. This new family of vector fields will generate exactly the same
distribution, but the condition defining them is easy to check in concrete exemples even for grupoids.

Definition 3.2.1. Let the Lie group G act properly on the smooth manifold M .

1. The local G-projectable vector fields are the local vector fields whose flow sends orbits to orbits.
We will denote the family of local G-projectable vector fields by P(M,G).

2. The (local) G-derivations of M are those (local) vector fields which act as derivations on the
ring of smooth G-invariant functions on M , C∞(M)G. We will use the following notation for
the family of G-derivations on M

D(G,M) = {X ∈ X(M)loc |X(f) ∈ C∞(M)G, ∀f ∈ C∞(M)G}.

3. Let IT (G, M) denote the sum of the family of local G-invariant vector fields and the family of
local vector fields tangents to the orbits.

Recall that in the theory of foliations, an important class of vector fields is the one of projectable
(or foliate) vector fields (see, for instance, [?]). They are defined as those vector fields whose Lie
bracket with any vector field tangent to the foliation is again tangent to the foliation and are used in
the study of transverse parallelizability of foliations. In the case of regular foliations, the projectable
vector fields are precisely those whose flow leaves the connected components of the orbits invariant.
Hence, the name in Definition 3.2.1, (1). The same result also holds in the case of an orbit foliation
given by the proper action of a Lie group.

Proposition 3.2.2. Let the Lie group G act smoothly and properly on the manifold M . Then, the
projectable vector fileds of the induced orbit foliation of M are those vector fields whose flow takes
connected components of the orbits to connected components of the orbits.

Proof. The proof is based on arguments similar to the ones used in the proof of Proposition 3.2.3 and,
therefore, we will skip it.

Remark 3.2.1. Note that the above characterization is also true for singular Riemannian foliations
admitting slices.

The G-projectable vector fields form a subclass of the class of projectable ones and if G is connected
they cöıncide. Even if they provide a nice interpretation in the language of foliation theory of the orbit
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types, in practice, the condition defining them is very difficult to check since one should first integrate
them. That is why, in the next two propositions we will show that in the case of proper group actions
the G-projectable vector fields, G-derivations, and IT (G,M) cöıncide. Note that we could not find
a direct way of proving that the G-derivations and IT (G,M) cöıncide. We use G-projectable vector
fields as an intermediate.

Proposition 3.2.3. Consider a proper smooth action of a Lie group G on a manifold M . Then the
set of local G-projectable vector fields equals the set of G-derivations.

Proof. To prove the first inclusion, consider a local vector field whose flow Φt
X takes orbits to orbits

and a G-invariant smooth function f defined on the domain of X. Then Xf is also G-invariant since

(Xf)(gx) =
d

dt

∣∣∣∣
t=0

(f ◦ Φt
X)(gx) =

d

dt

∣∣∣∣
t=0

(f(g′Φt
X(x)))

=
d

dt

∣∣∣∣
t=0

(f ◦ Φt
X)(x) = (Xf)(x).

For the reverse inclusion, consider X a G-derivation and let Φt
X be its flow. Since Φt1+t2

X = Φt1
X ◦ Φt2

X

for any t1, t2, and t1 + t2 such that the previous expression is well defined, it suffices to prove that
the flow of X takes orbits to orbits in a small neighborhood of t = 0. For any f ∈ CG(M) denote by
f̃ the induced Withney smooth function on the orbit space. Let x ∈ M a point in the domain of X.
We will first study the case when x belongs to the principal orbit type of the connected component
of M containing x. Therefore, there is an open G-invariant neighborhood of x in M such that the
corresponding restricted action has a single orbit type. Consequently, we can suppose that, locally,
the orbit space of the G-action is a smooth manifold and the orbit projection a surjective submersion.
The vector field X defines a derivation X on the algebra of smooth functions C∞(M/G) as follows:

X(h) := ˜X(h ◦ π),

for any h ∈ C∞(M/G). The smooth vector field associated to this derivation will also be denoted by
X. Then, for any point y in the domain of X and any smooth function h defined on a neighborhood
of π(y), we have

X(π(y))[h] = (Xh)(π(y)) = ˜X(h ◦ π)(π(y)) = (X(h ◦ π))(y) = Tyπ(X(y))[h].

This proves that X is a projectable vector field on the space of orbits and that its projection is precisely
the associated derivation X, namely Tπ ◦ X = X ◦ π. Since their flows are also π-related, we obtain
that Φt

X sends orbits to orbits.
If there is a x ∈ M in the domain of X, but not belonging to the principal orbit type of the

connected component of M containing x, let (xn)n∈N be a convergent sequence in the principal orbit
type with limit x. We know that such a sequence exists because the principal orbit type is dense in M .
Then the limit of the sequence (gxn)n∈N is gx. Since the points gxn belong to the principal orbit type,
we have that Φt

X(gxn) = g′nΦt
X(xn) for (g′n)n∈N a sequence in G and lim

n→∞
Φt

X(gxn) = Φt
X(gx). We
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also have that lim
n→∞

Φt
X(xn) = Φt

X(x). Then, the properness of the G-action guarantees the existence

of a convergent subsequence of (g′n)n∈N, (g′nk
)k∈N with limit g′. It follows that (g′nk

Φt
X(xnk

))k∈N

converges to g′Φt
X(x). The uniqueness of the limit insures that Φt

X(gx) = g′Φt
X(x) and the proof is

thus complete.

Proposition 3.2.4. If the Lie group G acts properly on the smooth manifold M , then the generalized
distribution generated by IT (G,M) is exactly the distribution generated by the family of G-projectable
vector fields.

Proof. Let Z = X + Y ∈ IT (G,M) with X tangent to the orbits and Y a G-equivariant local vector
field. The Trotter formula for the flow of the sum of two vector fields gives

Φt
Z(gx) = lim

n→∞
(Φ

t/n
X ◦ Φ

t/n
Y )n(gx) = lim

n→∞
(gnΦt

Y (x)),

for some gn ∈ G. Since the G-orbits are closed submanifolds of M , the above limit belongs to G·Φt
Y (x)

and the first inclusion follows.

To show that G-projectable vector fields actually belong to IT (G,M) we will first show how to
associate a G-equivariant vector field Ṽ to any arbitrary local vector field V on M . Since the G-
action is proper there is a sequence {xn}n∈N of points in M with associated slices {Sn}n∈N such
that {π(Sn)}n∈N is a locally finite open covering of the orbit space M/G (see Theorem 4.2.4 in [48]).
Consequently, there is also a G-invariant partition of unity {fn}n∈N subordinated to the open covering
{G · Sn}n∈N. For each n ∈ N, define Ṽn to be the following section of the restricted tangent bundle
TM |Sn → Sn

(Ṽnf)(s) :=

∫

Gxn

〈df(s), g−1 · V (gs)〉µn,

where µn is the Haar measure of the isotropy subgroup Gxn , s is a point of the slice Sn, and f a
smooth function defined on a neighborhood of s. Even more, we can extend Ṽn on the restricted
bundle TM |G·Sn → G · Sn as follows

(Ṽnf)(g · s) := (Ṽn(f ◦ Φg))(s),

for any g ∈ G, s ∈ Sn, and f smooth function defined on a neighborhood of gs. The above expression
is well defined. To see this, note that given g1, g2 ∈ G satisfying g1s = g2s, then g−1

1 g2 ∈ Gxn by the

slice axioms for Sn. Now, using the Gxn-equivariance of Ṽn, we obtain

(Ṽnf)(g1s) = (Ṽn(f ◦ Φg1))(s) = (Ṽn(f ◦ Φg1 ◦ Φg−1
1 g2

))(s) = (Ṽn(f ◦ Φg2))(s) = (Ṽnf)(g2s).

Now we can define a G-invariant section of the whole tangent bundle by

Ṽ :=
∑

n∈N

fnṼn.
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Let X be a G-projectable field. Denote by X̃ the associated G-invariant vector field constructed
before. It remains to show that the vector field X − X̃ is tangent to the orbits at every point. To see
this, consider f a smooth G-invariant function. Then,

((X − X̃)f)(x) = (Xf)(x) −
∑

n∈N

(fnX̃nf)(x)

= (Xf)(x) −
∑

n∈N

fn(x)

∫

Gxn

〈df(x), g−1 · X(gx)〉dµn

=
∑

n∈N

fn(x)

∫

Gxn

(
〈df(x), X(x)〉 − 〈d(f ◦ Φg−1)(gx), X(gx)〉

)
dµn

=
∑

n∈N

fn(x)

∫

Gxn

((Xf)(x)) − (Xf)(gx))) dµn.

But Proposition 3.2.3 implies that Xf is again a G-invariant function and, thus, (X − X̃)f = 0 for
any f ∈ CG(M). Therefore, we obtain that X = X̃ + (X − X̃) ∈ IT (G,M).

As a consequence of Propositions 3.2.3 and 3.2.4, one can use the distribution generated by the
family of G-derivations to describe the connected components of the orbit types, as well as the strata
of the orbit space M/G.

Corollary 3.2.1. For the proper action of a Lie group G on a smooth manifold M , the family of
G-derivations is an integrable singular distribution whose leaves are the connected components of the
orbit types M(H). Their projections under the orbit map π : M → M/G are the strata of the orbit type
stratification of M/G.

3.3 Free and proper groupoids

Definition 3.3.1. A groupoid G ⇒ M is a free groupoid if and only if all isotropy groups are trivial.

Notice that in the case of an action groupoid, the above definition coincides with the one of a free
action of a Lie group on a smooth manifold.

Theorem 3.3.1. If G
s,t

⇒ M is a free and proper groupoid, then the orbit space M/G is a smooth
manifold and the orbit projection π : G → M/G is a submersion. Even more, if the groupoid is source
locally trivial, then the orbit projection becomes a differentiable locallly trivial fibration.

Proof. Since the groupoid G ⇒ M is proper and free, the map (s, t) : G → M × M is a proper
and injective submersion. Denote by R its image which is the graph of the equivalence relation on M
induced by the groupoid orbits. Hence, by the local fibration theorem(see, for instance [1], [2]), R is an
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injectively immersed submanifold of M ×M . The properness hypothesis implies that R is also closed
in M × M and (s, t) is a homeomorphism onto its image. Therefore R is an embedded submanifold
of M × M . Applying a theorem of Godement, see [2] or [52], [2, Part II, Chap. 3, 12, Theorem 2],
we obtain that M/G is a smooth manifold such that π : G → M/G becomes a submersion. To see
that it is a diffrential fibration, suffice to notice that the orbit si diffeomorphic to the corresponding
s-fiber.

3.4 The orbit space as a metric space

Theorem 3.4.1. Let G ⇒ M a source-locally trivial and proper Lie groupoid with paracompact base.
Then, there is a Riemannian metric g invariant with respect to the G-action on the vectors normal to
the orbits, i.e.,

g(g · x)(g · v1, g · v2) = g(x)(v1, v2),

for any v1, v2 normal vectors at x and any g ∈ s−1(x).

Proof. The slice theorem for proper groupoids implies that M/G is locally the quotient of a vector
space by the action of a proper group. Hence M/G is locally compact. Applying Alexandroff’s
Theorem(see [1], page 29), we obtain that M/G is also a σ-compact space since it is second countable.
Therefore, there is a sequence (xn)n ⊂ M such that (π(Sxn))n is a locally finite covering of the orbit
space M/G, with Sxn a slice through xn and π the orbit projection. Consequently, (G · Sxn)n is a
locally finite covering of M . As the orbit space is also normal, every xn has a neighborhood Kn with
compact closure in Sxn and such that (π(Kn))n is a covering of M/G. Then, there exists a function
fn : Sxn → [0,∞) differentiable, with compact support and strictly positive on Kn. By Theorem 2.3
in [59], the slice groupoid GSxn

of xn is isomorphic to the action groupoid Gxn × Vxn ⇒ Vxn , where
Vxn is a small neighborhood of zero in the normal space to the orbit G · xn at xn. By averaging if
necessary, we can assume that fn is GSxn

-invariant. Consequently, fn can be extended to G · Sxn by
defining fn(g · z) := fn(z) for any z ∈ Sxn and g ∈ s−1(z). Note that fn is G-invariant on G · Sxn .

Let g0 be a Riemannian metric on M . For any z ∈ Sxn , consider the orthogonal decomposition
TzM = Tz(G · z) ⊕ T⊥

z (G · z) with respect to g0. Since xn is a fixed point for the slice groupoid

GSxn

sn,tn
⇒ Sxn , s−1

n (xn) = Gxn ≃ s−1
n (z) and therefore a compact Lie group for any z ∈ Sxn . Define for

each n ∈ N the following bundle metric on TM |Sxn
→ Sxn :





g0n(z)(u1, u2) := g0(z)(u1, u2), if (u1, u2) ∈ Tz(G · z)

g0n(z)(u, v) := 0, if u ∈ Tz(G · z), v ∈ T⊥
z (G · z)

g0n(z)(v1, v2) :=
∫

s−1
n (z)

g0(g · z)(g · v1, g · v2)dµz, if v1, v2 ∈ T⊥
z (G · z),

where µz is the Haar measure induced by Gxn on the compact Lie group s−1
n (z). It follows that g0n is

GSxn
-invariant. Therefore, we can extend g0n to the vector bundle TM |G·Sxn

→ G · Sxn such that it
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becomes a G-invariant metric. Indeed, for z ∈ Sxn and g ∈ s−1(z) define





g0n(g · z)(u1, u2) := g0(g · z)(u1, u2), if (u1, u2) ∈ Tg·z(G · z)

g0n(g · z)(u, v) := 0, if u ∈ Tg·z(G · z), v ∈ T⊥
g·z(G · z)

g0n(g · z)(v1, v2) := g0n(z)(g−1 · v1, g
−1 · v2), if v1, v2 ∈ T⊥

g·z(G · z).

To check that this metric is well defined, let g1 · z = g2 · z and v1, v2 ∈ T⊥
g1·z(G · z). Using the GSxn

-

invariance of the metric, we have that g0n(g2 ·z)(v1, v2) = g0n(z)(g−1
2 ·v1, g

−1
2 ·v2) = g0n(g−1

1 g2 ·z)(g−1
2 ·

v1, g
−1
2 · v2) = g0n(g1 · z)(v1, v2). Taking g = Σ g0n fn, the conclusion follows immediately.

Recall that a Riemannian submersion is a submersion between smooth Riemannian manifolds such
that its tangent map restricted to the horizontal distribution on the total space becomes an isometry.
Combining the above theorem and Theorem 3.3.1, we obtain that the orbit projection of a free and
proper groupoid becomes a Riemannian submersion:

Corollary 3.4.1. Let π : G → M/G be the orbit projection of a free and proper gropoid with paracom-
pact base M endowed with a G-invariant metric (in the sense of Theorem 3.4.1). Then, the projection
of this metric on the orbit space is a well defined metric for which π becomes a Riemannian submersion.

3.5 Local Properties of the Orbit Space of a Proper Lie Groupoid

In this section we prove that the orbit space of a proper Lie groupoid with all of its orbits of finite
type is a smooth stratifed cone space satisfying the Whitney conditions. This fact seems to be well
known, although we could not find a complete proof in the literature. The main tool used to this end
is a slice theorem for proper Lie groupoids 3.1.2 which can be used to show that a proper Lie groupoid
with all of its orbits of finite type is locally Morita equivalent to the action groupoid corresponding to
a linear representation of a compact Lie group on a vector space. At this point, since a stratification
and its properties are local in nature, the statement will follow by the situation already existing for
orbit spaces of proper Lie group actions.

Let s, t : G ⇒ M be a proper Lie groupoid and assume that all its orbits are of finite type. There is
a local model for the groupoid, due to Weinstein and Zung, that plays the role of Palais’ tube theorem
for proper Lie group actions. We briefly explain the construction of this local model, since it will be
needed all throughout this chapter. See [59] for details.

Let O ⊂ M be an orbit and consider its normal bundle NO = TM O/TO. The restricted groupoid
GO = s−1(O)∩t−1(O) ⇒ O acts in a natural way on NO with momentum map the canonical projection
NO → O. The tube theorem states that there exist invariant neighborhoods U of O in M and V
of the zero section in NO such that GU ⇒ U and GO ⋉ V ⇒ V are isomorphic as Lie groupoids. In
particular, there is an orbit preserving diffeomorphism between U and V . In the case G is the action
groupoid for a proper action of a Lie group G on M we recover Palais’ tube theorem.

We now use this model to proof that the orbit space for a proper groupoid with orbits of finite
type is an orbispace, i.e. a topological space that locally looks like the quotient of a vector space by a
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linear representation of a compact Lie group. Let x ∈ O and let Gx = s−1(x) ∩ t−1(x) be its isotropy
group. By the properness hypothesis, Gx is a compact Lie group which acts linearly on NxO. We then
have the following

Proposition 3.5.1. GO ⋉ NO ⇒ NO and Gx × NxO ⇒ NxO are Morita equivalent Lie groupoids.

Proof. For the groupoids under consideration we choose

NO ←π2 s−1(x) × NxO →π1 NxO

with projections π1(g, v) = g · v according to the induced action of GO on NO, and π2(g, v) = v. It is
straightforward to check that the actions

(GO ⋉ NO) × (s−1(x) × NxO) → (s−1(x) × NxO)

(g′, v′) · (g, v) 7→ (gg′, v),

and

(Gx × NxO) × (s−1(x) × NxO) → (s−1(x) × NxO)

(g′, v) · (g, v) 7→ (gg′−1
, g′ · v)

are well defined and satisfy the required axioms.

Since Morita equivalent Lie groupoids have homeomorphic orbit spaces, choosing invariant neigh-
borhoods V and U as before and applying Proposition 3.5.1 we have

Corollary 3.5.1. The orbit space of a source-locally trivial proper Lie groupoid with all of its orbits of
finite type is a Whitney stratified space for which every point has a neighborhood homeomorphic to the
quotient of an open invariant neighborhood of zero in a vector space acted upon linearly by a compact
Lie group.

Proof. We can choose V in the tube theorem as the GO-saturation of some Gx-invariant open neigh-
borhood V ′ of zero in NxO. Therefore, a neighborhood O of [x] in M/G is given by O = U/GU ≃
V/(GO ⋉ V ) ≃ V ′/Gx where the first homeomorphism is due to the tube theorem and the second to
the Morita equivalence of GO ⋉V and Gx ×V ′, and the fact that V ′/(Gx ×V ′) = V ′/Gx, which express
the equality between the orbit space for the groupoid Gx × V ′ and the orbit space for the Lie group
action Gx × NxO → NxO restricted to V ′. The stated properties of M/G now follow just by noting
that locally this orbit space has the same properties as an orbit space for a proper group action (see
[17]), among which we find the Whitney condition.

In the next section we study the global properties of this orbit space and identify the strata that
induce this Whitney stratification.

Remark For the same reasons, the orbit space for a proper groupoid with orbits of finite type has
additional properties. Namely, it is a cone space with a C∞ smooth structure in the sense of [48].
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3.6 The Strata of the Orbit Space

In this section we realize the strata of the orbit space of a proper Lie groupoid with the accessible sets
of a family of vector fields defined on its base.

Definition 3.6.1. Let G ⇒ M be a Lie groupoid. The set of (local) G-derivations vector fields is
defined by

D(G,M) = {X ∈ X(M)loc : X(f) ∈ CG(M), ∀f ∈ CG(M)},
where CG(M) is the set of smooth functions constants on the orbits of G.

Recall from Section 2.4 that in the case of a proper Lie group action the set of G-derivations
corresponds to the set of G-projectable vector fields (those whose flow sends orbits to orbits). This
is an integrable generalized distribution with leaves the connected components of the orbit type sub-
manifolds M(H). Then, the projection of these leaves to the orbit space M/G are its smooth strata.
The main result of this section is the following theorem, which provides an analogous description for
the strata of the orbit space of a proper Lie groupoid.

Theorem 3.6.1. For a source-locally trivial proper Lie groupoid G ⇒ M with all of its orbit of finite
type, the set of the local G-derivations generates a generalized integrable distribution. Furthermore, the
projection of its leaves onto the orbit space M/G are the smooth strata of the Whitney stratification
referred to in Corollary 3.5.1.

In the proof of this theorem we will need a technical result about the existence of a partition of
unit on M compatible with G.

Lemma 3.6.1. Let G ⇒ M be a proper groupoid with paracompact base. Then, to any open and
G-invariant cover of M one can associate a G-invariant partition of unity.

Proof. Let (Ui)i∈I be an open, G-invariant cover of M . The properness of the groupoid implies the
closeness of the orbit projection map π : M → M/G. Since closed maps preserve paracompactness,
it follows that the orbit space is also paracompact. Therefore, there is an open and locally finite
subcover, (Ṽi)i∈I , of (Ũi = π(Ui))i∈I such that (Vi := π−1(Ṽi))i∈I is an open, G-invariant, and locally
finite subcover of M . For any i ∈ I, let xi := π(xi) be a point of Ṽi such that Wi := G ·Si ⊂ Vi, where
Si is a slice of the groupoid at xi. Obviously, W i := π(Wi) is contained in V i for any indice i ∈ I.
The slice theorem for proper groupoids implies that the orbit space of the restriction groupoid to Wi

is equivalent to the orbit space of the linear action of Gxi
on an open subset of zero in Txi

Si, Bi. Even
more, this action is orthogonal with respect to a Gxi

-invariant inner product on Bi. Using the fact
that any ray function on Bi is Gxi

-invariant, we can construct positive functions fi ∈ CGxi (Bi) with
fi(o) = 0 and supp(fi) included in any given neighborhood of zero in Bi. Extend by zero each of these
functions on the whole base and denote by (f i)i∈I the induced functions on the orbit space M/G.
Since (V i)i∈I is a locally finite family, so are the families (supp(f i))i∈I and (supp(fi))i∈I . Consider

gi := fi
P

i∈I fi
and gi := f i

P

i∈I f i

. It is easy to see that (gi)i∈I is the required G-invariant partition of

unity and (gi)i∈I is a partition of unity of the orbit space associated to the open cover (Vi)i∈I .
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Proof. (Of Theorem 3.6.1)

The family of local G-derivations generate a smooth distribution on M that we will show to be
Sussmann integrable. Let x ∈ M , O the orbit through x and U ∋ x an invariant open neighborhood.
Using the tube theorem we can substitute GU ⇒ U by GO ⋉V ⇒ V , where V is a neighborhood of the
zero section in NO. By Proposition 3.5.1 this action groupoid is Morita equivalent to Gx × O ⇒ O,
with O a Gx-invariant neighborhood of 0 in NxO. In particular, we can consider the bi-bundle V ←π2

S →π1 O and the family of vector fields

D(S) = {X ∈ X(S) : X(f) ∈ C inv(S) ,∀f ∈ C inf(S)},

where C inv(S) is the set of smooth functions on S invariant under the commuting actions of GO ⋉ V
and Gx × O.

By construction, functions in CGO⋉V (V ) lift by π2 to functions in C inv(S). Analogously, functions
in CGx×O(O) lift by π1 to functions in C inv(S). Therefore, vector fields in D(S) are π1 and π2

projectable, and since these two projections are surjective submersions, D(S) generates the families
of basic vector fields on V and O. This induces a bijection between D(GO ⋉ V, V ) and D(Gx × O,O).

The previous argument shows that D(G,M) is everywhere defined, since any x ∈ M has a neigh-
borhood V as before on which D(G,M)

U
is in one to one correspondence to D(Gx × O, O), which

according to Propositions 3.2.3 and 3.2.4 equals LGx(Gx, O) 6= ∅.
In addition,D(G,M) is invariant under the flows of its vector fields. To see this, recall that using

Proposition 3.2.3 together with the previous discussion, D(G,M)
U

is in one to one correspondence
with the family of projectable vector fields on O. Let Y and Z be projectable vector fields on O and
let F Y

t , FZ
t be their flows. Then the vector field F Y

T ∗Z has as flow F Y
t ◦ FZ

t ◦ F Y
−t. By definition F Y

t

and FZ
t send Gx-orbits to Gx-orbits and hence so does the above composition. This proves that the

family of projectable vector fields on O is invariant under its flows. Using backwards the one to one
correspondence we have the same behavior for X(M)G,bas U

.
Now, since X(M)G,bas is an everywhere defined family of vector fields invariant by its flows gen-

erating a smooth distribution, the Stefan-Sussmann theorem implies that it is integrable, and that
its leaves are the accessible sets of vector fields in X(M)G,bas. Again by using Morita equivalence, for
any point in the orbit space one can find an open neighborhood U/GU for which the decomposition of
U/GU in the sets L∩U for L a leaf of the generalized foliation of X(M)G,bas equals the decomposition of
U/GU = O/Gx into orbit types. Since the latter is the decomposition locally inducing the stratification
of M/G referred to in Corollary 3.5.1, it follows that the leaves of X(M)G,bas are the global strata of
this stratification.

Corollary 3.6.1. In the hypothesis of Theorem 3.6.1, the stratification of the space of orbits M/G
induces in a natural way a stratification of the space of objects G. This stratification has the same
properties as the base stratification.

Proof. If M =
⋃

α∈I Mα is the foliation described in Theorem 3.6.1, then G =
⋃

α∈I Gα, with Gα :=
s−1(Mα) ∩ t−1(Mα) is the required stratification of the space of object.
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Ways of continuing

• Prove that orbispaces and proper groupoids are Morita equivalent.

• Dynamical behaviour, equilibria for time dependent Hamiltonians, conformal Hamiltonians. Try
the study of eyefish lens using contact equations and prefered optical axis.

• The reduction of cosphere bundle can be easily extended to jet bundles. Reduce Monges-Ampere
equations (contact and symplectic reduction simultaneously) for classifications.

• Cosphere bundles have been intensively used in topological problems dealing with the classifi-
cation of immersions and embeddings. The first one to use these ideas was V. I. Arnold (see
[4]) who studied the structure of the space of immersed plane curves using contact invariants of
associated Legendrian knots in the cosphere bundle of R2. Study the reduction of all topological
invariants associated to cosphere (contact homology). Then, maybe one should be able to use
the symmeties when classifying immersions or embeddings.



92 The stratification of proper groupoids



Bibliography

[1] R. Abraham, J. Marsden, Foundations of Mechanics, second edition, New York, Ben-
jamin/Cummings, 1978.

[2] R. Abraham, J. Marsden, T. S. Ratiu, Manifolds, Tensor Analysis and Applications, Applied
Mathematical Sciences 75, Springer Verlag, New-York, 1988.
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Sci. École Norm. Sup., 4 39(2006), no. 5, 841–869.

[60] P. Xu, Momentum maps and Morita equivalance, J. Differential Geom., 67 (2004), 289-333.

[61] P. Xu, Morita Equivalent Symplectic Groupoids. Symplectic geometry, groupoids, and integrable
systems (Berkley, CA, 1989), Math. Sci. Res. Inst. Publ., 20, 291–311, Springer, New York, 1991.

[62] A. Weinstein, Linearization of regular proper groupoids, J. Inst. Math. Jussieu, 1 (2002), no. 3,
493–511.



[63] A. Weinstein, Linearization Problems for Lie Algebroids and Lie Groupoids, [1800493]. Conférence
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