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Chapter 1

Introduction

In this chapter, we give a general introduction of the thesis. First, we provide problem
statement of our work. Second, we highlight some research questions that we answer in this
thesis. Third, we describe the work of the thesis and present its main contributions. Finally,
we present the structure of the manuscript.

1



2 Introduction

1.1 Problem statement

"God does not play dice"1. Even if Albert Einstein used his famous sentence in order to defend his
idea of the causal determinism of the universe, he agreed with the fact that the predictive determinism
is not always achievable due to the lack in our knowledge about the reality of things. Some scientists
went further and assumed that the uncertainty is inherent to the nature of things and therefore to their
behavior. Among these scientists we cite the members of the "Copenhagen School" that founded the
"quantum physics" and formulated the famous Heisenberg's "uncertainty" principle. Other scientists
disagreed with that principle and join Einstein's point of view, which supposes that the uncertainty
is due to our ignorance of how things really are: "the uncertainty is not in things but in our head:
uncertainty is a misunderstanding"2.

Nevertheless, whatever is the source of uncertainty, this phenomenon exists and must be faced in
many domains. During the last decades, many mathematical techniques, permitting to deal with the
uncertainty, have been emerged. The use of these techniques allows one to master the uncertainty in
order to reduce its negative impact, and consequently that of our misunderstanding.

In the supply chain management domain, a lot of sources of uncertainty can be encountered. Essen-
tially, these uncertainty sources re�ect our inability to predict the future behavior of a part or the whole
of a system with certainty. For example, the future production capacity of a machinery park is governed
by di�erent factors including the ambient temperature, that can not be predicted with precision for a
long time period. The knowledge of the exact future demand of a given internal combustion engine spare
part is impossible, despite the knowledge of the past demand of that spare part.

The impact of the uncertainty on the supply chain management is considerable. For example, due
to the demand uncertainty, many economic issues generate crucial (negative) impacts on the enterprise
performance. We cite, as examples, the following two issues:

• Out-of-stock: (Gruen, 2007) calculates an average out-of-stock level of 8.3% worldwide, for the
retail industry, based on the analysis of 52 studies that examine the out-of-stocks. This means that
for every 13 items a shopper plans to purchase, one will be out-of-stock. The out-of-stock varies
between Europe (8.6%) and the US (7.9%). The main cause of this out-of-stock, according to the
authors, is the "ordering and forecasting" (47%), which is equivalent to the demand uncertainty.
The response of the customers varies from substituting the required item with di�erent brand
(26%), not purchasing the item (9%) and buying the item at another place (31%). That induces
huge revenues lost for both the retailer and the manufacturer of the out-of-stock product.

• Unsaleable products: according to the 2003 Unsaleables Benchmark Report (Lightburn, 2003)3,
unsaleable products cost the entire grocery industry more than 1% in annual sales. For example
for the Supermarket Distributers, the unsalable products costed around 1.12% in 2003. This study
shows that more that 40% of the Unsaleables are due to an inadequate inventory management and

1Albert Einstein
2Jacques Bernoulli
3performed by Industry Unsaleables Steering Committee and its industry sponsors, Food Marketing Institute (FMI) and

Grocery Manufacturers of America (GMA)
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excess volume is at the heart of the issue, due to poor planning for example.

The globalization of the industrial world, increases the competition between the di�erent manufactur-
ers due to the di�erence between the costs corresponding to the di�erent countries. This increase in the
competition comes to be added to the other issues of the supply chain and therefore makes the production
and procurement decision making, inside the companies, more complicated. These aspects make from the
planning process a crucial task with high economic and managerial value. Indeed, the planning process
takes into account the stochastic aspect of the demand, the out-of-stock issue, the unsaleable problem,
the di�erence between the production and procurement costs and other issues. In this sense, this Ph.D.
work constitutes a contribution in the production planning and inventory control domain. In this work,
some of the issues and aspects that do not appear in the literature models are considered, and also some
other models are improved, in order to make them more reactive and more �exible.

1.2 Research questions

The major goals of this Ph.D. dissertation is to present a quantitative analysis of the planning models
of a special type of products, namely the style-goods type products and then to try to generalize the
obtained results for the long life cycle type products.

More precisely, the following research problems and questions are to be answered:

• are there any planning models for the short life cycle products that are more �exible or more reactive
than those existing in the literature?

• In a short life cycle products framework, how does a return or an anticipated salvage opportunity
(payback option) impact the optimal production/ordering policy?

• How does a production or procurement system with dual production mode behave?

• What is the impact of the information on the optimal policy of a production system, especially on
a use of the di�erent production modes and the payback (return) option?

• How does the production capacity constraints in�uence the decisions, especially those related to
the choice between the production modes in the di�erent planning periods?

• Can the insights and techniques developed for the short life cycle products be applied in the case of
the long life cycle products. In other words, can the results obtained for small production models
be generalized to the context of big planning models?

1.3 Thesis scope

In this Ph.D. dissertation, we are especially interested in the planning models for a special category of
products, the "style-goods" type products. We develop some models and some results are obtained for
this type of products. We try then, in a single chapter of this work, to generalize one of the frameworks
developed for the short life cycle products, to be applied on the long life cycle products.
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Therefore, in this work we provide some stochastic models to answer the questions asked in the
previous section, in a style-goods type products context, which induce a short selling season. For the �rst
question we propose many models in which there exist more �exibility due to more action opportunities
and more decision variables. In order to answer the second question, in the majority of our models, we
permit at the beginning of each planning period, via a decision variable, the return or the salvage of a
certain quantity of the available inventory and we show the impact of this decision on the optimal policy.

In order to answer the third question, we introduce in the majority of our models, production systems
with two production or procurement modes, permitting to satisfy the demand using two di�erent modes
with di�erent production costs. The fourth question is answered via two chapters, where we model and
show the impact of the information on the optimal policy: a two-period production model with demand
forecasts update and a two-stage contract model with demand forecast update also. These two updates
are performed using external information collected during the �rst stage of the model.

We introduce also another two-period production model that shows the impact of the production
capacity constraints on the planning decisions, which answers the �fth question asked above.

Since it is di�cult, even impossible to provide complete analytical solutions for a multi-periodic
planning models even in a two-period planning setting, we give some analytical insights for two-period
models and we see that these insights may be applied in a multi-periodic setting. On the other hand,
we introduce a new multi-periodic planning model, in which we use the production framework with two
production modes, developed for the small planning models. We de�ne then upper and lower bounds
on its optimal policy, which permit to provide an approximated solution and to answer our last research
question.

1.4 Thesis structure

The remaining part of this Ph.D. dissertation contains eight chapters which are:

Chapter 2: this chapter aims at de�ning the main concepts used in this thesis. We begin by giving a
brief historical background of the logistics, the supply chain and their military beginnings. We introduce
then the supply chain and its concepts, such as the �ow, the capacity, the inventory, the inventory
management and the information in the supply chain. Then, we detail the notions and parameters of two
important pillars of our study: the inventory management and the information in the supply chain. For
the inventory management, we de�ne the role and the functions of the inventory and the costs related to
the use of inventories. For the information in the supply chain, we emphasize on the demand, especially
on the demand forecasts, showing the methods used to develop demand forecasts and the impact of
the stochastic (uncertain) nature of the forecasts on the supply chain. Then we provide a study of the
planning in the supply chain and especially the production planning and inventory control.

Chapter 3: in this chapter, we present an inventory management model, which constitutes the simplest
planning model of this thesis and the basic work for the other chapters. We de�ne in this chapter an
extension of the newsvendor model with initial inventory. In addition to the classical decisions and
parameters of the newsvendor model with initial inventory, we introduce a new decision variable: a
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salvage opportunity at the beginning of the horizon, which may be very bene�cial in the case of high
initial inventory level. We develop the expression of the optimal policy for this extended model, for a
general demand distribution. The structure of this optimal policy is particular and is characterized by
two threshold levels. Some managerial insights are given via numerical examples.

Chapter 4: in this chapter we develop a two-period production planning and inventory control model
with two production modes and multiple return opportunities. We provide a general modeling, which
considers an initial inventory at the beginning of the planning horizon and many preliminary �xed orders
in a backlog framework. The model is then solved by a dynamic programming approach. A closed-form
analytical solution is developed for the second period, based on the results of Chapter 3 and a semi-
analytical solution is provided for the �rst period using an algorithm developed in this chapter. We
then provide some insights regarding this type of two-stage inventory decision process with the help of
numerical examples.

Chapter 5: in this chapter we provide an extension of the model presented in Chapter 4. We use the
same framework of Chapter 4 in a constrained production capacities setting. We formulate this model
using a dynamic programming approach. We prove the concavity of the global objective function and we
establish the closed-form expression of the second period optimal policy. Then, via a numerical solution
approach, we solve the �rst period problem and exhibit the structure of the corresponding optimal policy.
Some insights are provided, via numerical examples, that characterize the basic properties of our model
and the e�ect of some signi�cant parameters, especially the capacity constraints. We show how do the
capacity constraints in�uence the optimal policy in combination with the costs di�erences between the
di�erent production modes.

Chapter 6: in this chapter we provide another extension of the model presented in Chapter 4. In the
context of the framework shown in Chapter 4, we introduce a new and important parameter representing
an external information. This market information permits the update of the second period demand
distribution. The information is stochastic at the beginning of the �rst period and becomes deterministic
at the beginning of the second period. We de�ne the information via a joint distribution with the second
period demand. We develop the optimal policy of the second period subproblem. Then, using dynamic
programming, we show that the optimal policy of the �rst period has the same structure as the �rst
period optimal policy of the model introduced in Chapter 4. We provide a numerical study showing the
impact of the information quality on the optimal policy and on the optimal expected objective function.
This information quality is modeled by the correlation coe�cient between the information and the second
period demand.

Chapter 7: in the same context of short life cycle products, we consider in this chapter, a two-
stage supply contract model with single period planning horizon, for advanced reservation of capacity or
advanced procurement supply. At the �rst stage, two decisions are made: a �rst ordered quantity and a
certain amount of reserved capacity. At the second decision stage two other decisions are �xed: the use
of the already reserved capacity (exercise of options) to order a supplementary quantity and the return
of a certain quantity from the available inventory to the supplier. Between these two decision stages, an
external information is collected that serves to update the demand forecast. The updated demand forecast
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permits to adjust the decisions of the �rst stage by exercising options or by returning some units to the
supplier. The information is de�ned via a joint distribution function with the demand. At the end of the
horizon, the remaining inventory, if any, is sold (or returned to the supplier) at a salvage value that is in
general less than the initial unit production/procurement cost. During the selling season, any satis�ed
demand is charged with a unit selling price, and any unsatis�ed demand is lost and a penalty shortage
cost is paid. Between the two decision stages, The objective of the model is to determine the quantities
to be ordered before the beginning of the selling season or the amount of capacity to be reserved, in order
to satisfy optimally the demand.

Chapter 8: in this chapter, we generalize the framework of dual production mode, developed for
the short life cycle products in the previous chapters, to be applied on products of long life cycle. The
di�erence between procurement costs in a multi-periodic planning setting is modeled, by permitting to
�x two orders at each period: the �rst order with a fast production mode, which permits an immediate
delivery and the second order with a slow production mode, which has one period delivery delay. The
developed model is a discounted backlog one, with proportional production, inventory holding and short-
age costs. We allow all these costs to be period dependent. The demands are random variables with
probability distribution functions that are independent and possibly di�erent from one period to another.
We prove that some of the analytical properties, developed for the short life cycle products problems,
are valid for the multi-periodic planning problems (long life cycle products). Since the development of a
complete closed-form optimal policy is di�cult, even impossible, we provide upper and lower bounds for
the optimal decision variables. Then, we extend a known heuristic in order to �nd approximations for
the optimal order sizes. The provided numerical examples show the validity of our approximations.

Chapter 9: this chapter is dedicated to the general conclusions of this work and some propositions for
future research.



Chapter 2

Supply Chain Management, Production
and Inventory Planning Generalities

This chapter aims at introducing and de�ning the di�erent concepts used in this thesis. We
begin by giving a brief historical background of the logistics and the supply chain and their
military origins. Then we introduce the supply chain and its concepts, such as the capacity,
the �ow, the inventory and the information. We detail the notions and the parameters of
the two important pillars of our study: the inventory management and the information in
the supply chain. For the inventory management, we de�ne the role and the functions of the
inventory and the costs related to the use of inventories. For the information in the supply
chain, we emphasize on the demand and especially on the demand forecasts, showing the
methods used to develop demand forecasts and the impact of their stochastic (uncertain)
nature on the supply chain. Then we provide a study of the supply chain planning and
especially the production and the inventory planning.

7
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2.1 Brief historical background

In this section, we provide a brief historical background of the logistics and the supply chain. According
to (Pimor, 2005), the roots of the logistics come from military practices. The �rst de�nition of the
logistics in the history, has been formulated by Antoine-Henri de Jomini1:"the logistics is the practical
art of moving and providing the armies by establishing and organizing their lines of provisioning".

Moving an army or some troops of an army can not be accomplished without providing it with
ammunition and food. This supply problem has become a real problem in the modern history with the
colossal increase in the armies manpower, during the few last centuries, and has got as consequences:

• either the principle of a continuous movement of the armies, from a region to another, in order to
�nd new resources,

• either the use of an embarked logistics, to ensure the provisioning of the troops, during a long
campaign, each time where it is impossible to ensure a local supply (from the region where the
army is deployed), which is the case of the marine for example,

• or the use of provisioning lines between some stocks and the regions where the army is deployed.

This last mode of provisioning (provisioning lines), has pro�ted from the revolution of the transporta-
tion means, during the 20th century, to dominate the other supply modes.

Julius Caesar2 for example, who commanded a huge army, has quoted in The Comments, the corn
problem, that was necessary to supply his army, and that was transported by rivers and by carriage
columns. He sent his legates to negotiate with the di�erent populations in order to buy the food for the
army, and he stocked the bought quantities in the regions where the legions might pass the winter.

At the end of the 16th century and during the �rst middle of the 17th century, new armies with several
tens of thousands of soldiers have begun to appear, involving a lot of logistic problems. Some historians
conclude that the movement of the armies, at that era, were commanded rather than constrained by
logistic requirements: the armies had to remain moving in order to supply themselves.

To solve this problem, the system of stores (or stocks) has been created by Michel Le Tellier and
François Michel Le Tellier de Louvois3. These can be considered as the founders of modern military
logistics. They have set up a system composed of a network of stores with strategic reserves, permanent
vehicle �eets, supply standards and intendant council with a real supply administration. During the 18th

century, this system has been spread out and became a complex system constituted of a network of stocks
connected by a transportation lines.

In 1805, Napoléon replaced this system by a system of an extreme mobility, where for each military
campaign, he built a concentration of supply on the passages of the army.

The wars in Europe between 1870 and 1914 represent two important logistics innovation constituted
of the use of the railway and the huge need in supply and ammunition.

11977-1869, he was a part of Napoleon's sta� and instructor of the heir of the throne of Russia
2100 BC-44 BC, roman military and political leader and one of the most in�uential men in world history
31603-1685 and , 1641-1691 successively. Two French politicians who has contributed to the reform of the army of Louis

XIV
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During the second world war, real complex military supply chains have been set up. This war has
induced considerable developments, like the transportation management, the development of the handling
means and the use of sophisticated production and transportation planning methods. From a theoretical
point of view, the war of 1939-1945 has seen the birth of the "Operational Research" domain.

From an industrial point of view, in the 1950s and 1960s most manufacturers emphasized mass
production to minimize unit production cost as the primary operations strategy, with little product or
process �exibility. New product development was slow and relied exclusively on in-house technology
and capacity. "Bottleneck" operations were cushioned with inventory to maintain a balanced line �ow,
resulting in huge work in process inventory (see (Tan, 2001) and (Farmer, 1997)).

Until the 1970s, the industrial policy consisted of "pushing" the production to the market in order
to �ood the market and to motivate the customers to buy the products. In general, the production was
higher than the demand. In most of the businesses, the responsible of each domain or department tried to
minimize the costs related to its activities without worrying about the impact of his decisions on the other
parts of the company. At the end of the 1970s, the increase of the number of companies in each of the
di�erent industry segments, has increased the competition between these companies. It became therefore
necessary to take into account not only the production activities, but also all the industrial activities,
including the supply, the distribution and the other activities that are related to the production process.
The object of this change was not only to minimize the global costs, but also to increase customers'
service level. As a consequent, the "modern" or the industrial supply chain was born.

This domain has been improved after the development of the "Computer Science", which has permit-
ted the development of two branches of the logistics which are "Production Planning" and "Inventory
Management" that use the techniques of "Operations Research". During the last decades, these two
domains with "Operations Research" techniques have known very important improvements and new
branches and practices were born. For example, the �rst oil crisis has pushed Toyota to create the
Kanban system, connected with the "Just in Time Production" principle.

2.2 Supply chain notions

2.2.1 De�nition

(Chopra and Meindl, 2007) de�ne the supply chain as the set of parties involved, directly or indirectly,
in ful�lling a customer's request. The supply chain, which is also referred to as the logistics network,
consists not only of manufacturers and their suppliers, but also transporters, warehouses, distribution
centers, retail outlets, as well as raw material, work-in-process inventory and �nished products that �ow
between the facilities. A supply chain involves �ows of information, materials and funds between its
di�erent stages. Each stage of the supply chain is connected with other stages through these �ows.

The objective of each supply chain should be to maximize the overall value generated. The value a
supply chain generates is the di�erence between what the �nal product is worth to the customer and the
costs the supply chain incurs in �lling the customers' requests. At the same time, other objective would
be the increase (maximizing) of the customer's service level in order to satisfy in an optimal manner its
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requirements. Indeed, the two objectives could be connected via some costs like the backlogging costs
(Simchi-Levi et al., 2000).

The supply chain is dynamic and evolves over time. The di�erent parameters of the supply chain,
such as the customer's demand, the cost parameters, the strength and importance of the di�erent stages
of the supply chain, �uctuate considerably across the time.

2.2.2 Supply chain management

The term "supply chain management" was originally introduced by consultants in early 1980s ((Chen
and Paulraj, 2004), (Oliver and Webber, 1992)) and has subsequently gained tremendous attention (La
Londe, 1998). (Croom et al., 2000) have provided a critical literature review of supply chain management.

Supply chain management is the process of planning, implementing and controlling the operations of
the supply chain as e�ciently as possible. Supply chain management spans all movement and storage of
raw materials, work-in-process inventory and �nished goods from point-of-origin to point-of-consumption.

Supply chain management encompasses planning and management of all activities involved in sourc-
ing, procurement, conversion and logistics management activities. Importantly, it also includes coor-
dination and collaboration with channel partners, which can be suppliers, intermediaries, third-party
service providers and customers. In essence, supply chain management integrates supply and demand
management within and across companies.

An other de�nition of supply chain management is given by (Berry et al., 1994): supply chain man-
agement aims at building trust, exchanging information on market needs, developing new products and
reducing the supplier base to a particular original equipment manufacturer (OEM) so as to release man-
agement resources for developing meaningful, long term relationship.

2.2.3 Decision levels in supply chain

Even if the supply chain regroups di�erent domains, the decisions inside the supply chain are split into
three di�erent decision levels. For example, choosing the location of a factory is a strategic decision,
de�ning or adjusting the production capacities during a given set of time periods is a tactical decision
and the scheduling of four di�erent tasks on a machine inside a workshop is an operational issue.

The boundaries between the di�erent levels are not clear. In general, three levels are used: the strategic
level, the tactical level and the operational level. Note that these decision levels are generally related to
the horizon during which they are applied and to their nature. In general, the decisions of the higher
levels are considered as constraints for the lower levels decisions. For example, choosing the location of
a factory (strategic) constraints the transportation decisions which is taken every day (operational).

(Dallery, 2000) proposes a classi�cation of the decision levels in a supply chain constituted of four
levels (see Figure 2.1).

The strategic decision level includes decisions relative to the design of the supply chain or long-
term decisions. Among these decisions we �nd the number, location and size of the warehouses, of the
distribution centers and of the facilities. We can �nd also the decisions about the Information Technology
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Design 

Horizon                       Decisions                  Level                                    Decisions examples             

 
Long-term Strategic 

- Location and design of a plant  - Design of a production line - Design of a distribution network 
Planning 

 
Mid-term  Tactical 

- Aggregate production decisions - Load balancing between plants   - Outsourcing 
 
Short-term 

 
Very short-term 

Operational 

Flow Management 

Scheduling 

- Launching of production orders - Launching of supply orders - Delivery of a warehouse orders - Production organization of a workshop - Dynamic allocation of machines - Organizing a delivery tour 
Figure 2.1: Decision levels in a supply chain

infrastructure that support supply chain operations. The strategic partnership with suppliers, distributors
and customers and the creation of communication channels (cross docking, direct shipping and third-party
logistics) are also strategic decisions.

The tactical (or mid-term) decisions include planning decisions aiming at �nding an equilibrium
between charge and capacity. These decisions include the production (contracting, locations, scheduling
and planning process de�nition), the inventory (quantity, location and quality of inventory), the sourcing
contracts and other purchasing decisions.

The operational decision level is divided into two sub-levels. The �rst one, called "�ow management",
is relative to the short time decisions; it includes the decisions of launching the production, ordering
and transportation orders. The second sub-level, called "scheduling", is relative to the very short-term
decisions; it includes the decisions of scheduling the di�erent tasks inside a workshop.

In this dissertation, we present some decision making models that can be situated in the tactical
decision level, which are relative to the planning of the supply chain and precisely to the production and
inventory planning.

2.2.4 Supply chain concepts

(Chen and Paulraj, 2004) say that the origin of the supply chain concept has been inspired by many
�elds including the quality revolution (Dale et al., 1994), notions of materials management and integrated
logistics ((Carter and Price, 1993) and (Forrester, 1961)), a growing interest in industrial markets and
networks ((Ford, 1990) and (Jarillo, 1993)), the notion of increased focus ((Porter, 1987) and (Snow et
al., 1992)) and in�uential industry-speci�c studies ((Womack et al., 1990) and (Lamming, 1993)).

In this section we de�ne some of the supply chain concepts that we use in the following chapters of
this dissertation.
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Flow (�ux)

In a supply chain the �ow is the movement of the raw products, components, funds and information from
the supplier forward to the customer and vice-versa. The �ow of material for example, is the movement
of the raw material from the supplier to the manufacturer of components, to the assembly units, to the
customer passing through the retailing network. We distinguish between two types of �ows: internal and
external (Baglin et al., 2001).

The internal �ow is relative to the �ows (of materials, information and funds) inside a single unit
(company) of the supply chain. The external �ow is the �ow that circulates between two or more units.
The performance of the supply chain, or of a unit of the supply chain depends on both types of �ow.

If the internal and external �ows of materials corresponding to a given a part of the supply chain are
unsynchronized, that creates a stock (positive or negative) for that part. This phenomenon can occur in
the internal �ow, at the connection between two internal �ows for example.

Capacity

(Baglin et al., 2001) de�ne the resource as the set of means needed to transform the raw material into
components and �nished products. These resources include manpower, equipments, buildings, etc..

The capacity is the measure of the aptitude of a resource to deal with a �ow. It is the number of
treated (produced) units of products per unit of time. This capacity could be reduced due to breakdowns,
maintenance and the setup processes for example.

Inventory(stock)

As we have seen above, the "stock" or the inventory level is de�ned as the accumulation of a di�erence
between �ows. We de�ne the stock rotation as the ratio between the reference duration (a year for
example) and the �ow duration. It is equivalent to the number of successive �llings of the stock (Baglin
et al., 2001). Let us de�ne also the stock turnover as the ratio between the cost of goods sold divided by
the average of the inventory holding level.

Inventory functions (Baglin et al., 2001) enumerate the di�erent functions that a stock serves for.
These functions are classi�ed in di�erent categories:

• Service function: the inventory permits to maintain a certain service level, in order to permit an
immediate ful�llment of the customer's demands; this function is essential in the case where the
delivery time is lower than the production/supply time. This function of the stock allows to avoid
the shortage and therefore the lost sales or the backlogs of the customer's demands and the related
cost.

• Capacity regulation function: the use of an inventory serves to compensate for the predictable dif-
ference between the charge (customer's demand) and the capacity. This function is very important
in the case of seasonal products, where the demand varies tremendously over the time. It is useful
also in the case of lack of capacity.
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• Circulation function: this function aims at assuring a certain continuity in the �ow inside a structure
(a factory for example). In fact, the inventory permits a decoupling between the di�erent units of
a structure and allows for example to a downstream machine to continue working, even if the
upstream machine that feed it has failed. Therefore the inventory ensures a continuous circulation
of products inside a structure, by decoupling its units.

• Technological function: for some types of the products, stocking is necessary for the accomplishment
of the production process. For example the heat treatment of 10000 pieces in an oven at the time,
the production of wine and the production of perfumes.

• Speculation function: this function is relative to the use of the stock in order to pro�t from the
di�erence in ordering or production costs. For example, if the ordering/production costs of a certain
product is not stable, then it becomes pro�table to order and to stock a certain quantity of that
product when the ordering costs are low and then to use these stocked units to ful�ll the market
demands when the ordering costs are high.

• Other functions: one of the other functions of the inventory can be the economy of scale. Ordering
a big quantity may induce considerable reduction in the unit ordering costs, which implies the
increase of the unit revenue. An important reason to establish and to use inventories may be
the transportation. For some products, it is not possible to transport a small quantity, and the
retailer must order a quantity su�cient to �ll a truck for example each time. A last reason to use
inventories could be the need to avoid the transportation (delivery) uncertainty. If the supply delay
is not reliable, then to avoid shortage in satisfying customers, or in feeding the production units,
one must use a stock at the entry of the system.

On the other hand the inventory presents some disadvantages. The �rst one that we can cite is the
obsolescence of the stored products. Some products have a perishable nature, where after a certain storing
period become unusable. The second one is the �nancial immobilization. This is due to the fact that the
stored products represent a part of the company capital. If those units are stored for a certain period,
the capital that they represent can not be used or invested somewhere else. The third disadvantage is the
unsold articles. In fact these unsold articles represent a complete loss, unless they are sold with a salvage
value, which may permit to refund a part of their value. The fourth inconvenient is the cost related to
the holding inventories, which includes the handling costs, the space (buildings), etc..

Inventory costs The inventory costs can be classi�ed in three families ((Toomey, 2000) and (Zermati
and Mocellin, 2005)). The ordering costs, holding costs and shortage costs. When optimizing the decisions
relative to the inventory, one must take into account all these costs.

• Ordering/production costs: if we are in an ordering setting, the ordering costs include the salaries of
the personnel, the functioning costs (buildings, o�ces, etc.), reception and test costs, information
systems costs and customs costs. These costs represent about 2 to 5% of the value of the ordered
articles (Zermati and Mocellin, 2005).
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Assume that we are in a production setting, which means that the goods are produced locally, using
the proper facilities of the company. In this case the costs will include:

� raw material costs,

� labor costs,

� overheads (costs that cannot be charged directly to a speci�c product),

� �xed overheads (stable costs that occur regardless of whether or not goods are being produced,
i.e. rent of factory, which are allocated according to the number of machine hours),

� variable overheads (changeable overhead costs that vary according to the number of goods
produced, such as the energy consumption, which are allocated according to the number of
labor hours).

• Inventory holding cost : this family of costs can be divided into two subfamilies: �nancial and
functional costs.

The �nancial costs represent the �nancial interest of the money invested in procuring the stocked
products.

The functional costs include the rent and maintenance of the required place, the salaries of the
employees, the insurance costs, the equipments costs, the inter-depot transportation costs and the
obsolescence costs.

This family of costs represents about 12 to 25% of the value of the held products (Zermati and
Mocellin, 2005). This means that 12−25% of the value of the stocked products is charged per year.

• Shortage costs: the inventory shortage corresponds to the case where the units available at the
moment when the customer's demand occurs, are not su�cient to satisfy that demand. The related
costs are classi�ed in two categories: lost sales costs and backlogging costs. In the lost sales category,
if the available units are not su�cient to completely satisfy the demand, the unsatis�ed demands
are then completely lost and the cost in this case is the "miss to gain". In the second case, the
cost will be a penalty shortage cost. This last includes the cost di�erence between satisfying the
demand at the period at which it arrives and the period at which it is satis�ed.

In both cases, some costs can be incurred like the increase in the cost of raw material by the use of
substitute materials, the cost of buying or rent of a substitute product.

In the case where the stock is internal (located between two internal production units for example),
the inventory shortage will induce the stop of production of the second (downstream) unit and
therefore all the consequent costs, like technical unemployment.

Lead time

The lead time is an important parameter for the supply chain management and due to the globalization
of the industry, it becomes directly coupled with the procurement costs. Indeed the lead time is de�ned
as the laps of time between the initiation of any process of production and the completion of that process.
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An example of lead time is the time passed between ordering a new laptop on a website and receiving it
at home, which could be around 2 to 3 weeks.

In the supply chain management realm, the lead time means the time from the moment the supplier
receives an order to the moment he ships it in the absence of �nished goods or intermediate (work in
process). It is the time taken to actually manufacture the order without any inventory order other than
raw materials or supply parts. As mentioned before, in the current global setting, the bigger is the lead
time, the higher is the procurement costs. Indeed, in some countries, the manpower and the raw materials
costs are lower than those in other countries, but the procurement from these countries and the shipment
to high costs countries induces the obligation of the use of transportation means, which makes the lead
time bigger than the procurement from the high costs country directly. As example, the Airbus aircraft
manufacturer that has its assembling factories in Toulouse, France, has as supplier for some of the A380

wings components the Indonesian Aerospace company that has its factories in Indonesia. Of course, the
procurement lead time in his case is higher than that of a French local supplier, but the procurement
costs of the Indonesian supplier must be lower due to the di�erence in the manpower, the raw materials
and functional costs between France and Indonesia.

Information in supply chain

In the last years, we are living in the era of the "Information" or the "Information Technology" with all
the impacts and changes that have been generated on the society. One of the most important sectors
of the society that has been impacted by the "Information revolution" was the management and more
precisely the supply chain management. Indeed, the databases, electronic and data interchanges, Internet
and Intranets and decision support systems are dominating the markets, the production activities and
all the enterprizes sectors.

These technologies have permitted to the economic actors, and especially to the supply chain decision
makers to get accurate information about inventory levels, demand forecasts, production operations and
delivery status, which had made them more e�cient and e�ective in their decision making processes.

Unfortunately, having more information, even if it makes the management of the supply chain more
accurate and e�cient, it makes the decision making process more complex.

(Simchi-Levi et al., 2000) enumerate the bene�ts of disposing of abundant information in the supply
chain. This information plays many roles that can be detailed as follows:

• it helps to reduce the variability in the supply chain,

• it helps suppliers make better forecasts, accounting for promotions and market changes,

• it enables the coordination of the manufacturing and distribution systems and strategies,

• it enables retailers to better serve their customers by o�ering tools for locating desired items,

• it enables retailers to react and adapt to supply problems more rapidly,

• it enables lead time reduction.
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In the models that we present further in this Ph.D. dissertation, two information are crucial: the
inventory level and the demand forecasts.

The information about the inventory level is a dynamic information and is collected at the end of each
period of the planning horizon, in order to make the decisions relative to the production and ordering for
the rest of the horizon periods.

The notion of demand forecasts is developed in the next section.

Demand forecast

In the so-called "push" production processes, the actions are performed in anticipation of the demand,
whereas in the called "pull" production processes, they are performed in response to customer's demand.
In this Ph.D. work we adopt the "push" production processes.

In a production system where the production lead time is not equal to zero, one must have information
about the future demand. Otherwise, any overconsumption (non satis�ed orders) and underconsumption
(remaining inventory) will charge shortage and inventory holding costs. This means that the supplier
must have forecasts to produce/order its goods in order to satisfy the demands of its customers and to
minimize its costs.

Therefore, not using forecasts may cause loss of customers' demands, production stop and supplemen-
tary logistic costs (inventory holding).

On the other hand, the forecasts allow the decision maker to organize and to exploit his facilities (fac-
tories, production capacities, warehouses, etc.) in such a way to satisfy the demands with appropriate
time delays. In fact, some production processes require long time delays in order to be achieved. There-
fore, in order to organize the facilities and to respect a short delivery time for the customers' demands,
the decision maker should anticipate and use estimation of the future demand at the beginning of the
production process.

We conclude that the forecasts, or the estimate of the future demand is an absolute requirement to
the supply chain planning and especially to production and inventory planning. An exception could be if
the product is made or purchased to order. Even in this situation an estimate of the future requirements
would still be needed for capacity and/or �nancial planning.

In a lot of industries, it is possible to improve the forecasts quality over the time. In general improving
the forecasts quality means decreasing the variability of the forecasts by decreasing their standard devia-
tion over the time. This quality improvement can be done by using two type of information: internal or
external. The internal information is the information collected on the system during the previous time
periods, like the realization of random variables. This information can be used in two ways: the �rst is to
update the value of the state variables, and the second is to update the distribution of the random vari-
ables of the following periods. This update can be done due to a correlation between the realized random
variables and the future periods random variables. The external information is the information collected
on the external factors that may in�uence the system. In a supply chain context, this information can be
the market information. Another example is the weather as information in�uencing the demand of some
products.
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Forecast characteristics (Chopra and Meindl, 2007) de�ne the characteristics of the demand forecasts
as follows:

• forecasts are always wrong and should thus include both the expected value of the forecast (mean)
and a measure of the error (standard deviation),

• long-term forecasts are usually less accurate than short-term forecasts,

• aggregate forecasts are usually more accurate than disaggregate forecasts as they tend to have a
smaller standard deviation of error relative to the mean,

• in general, the farther up the supply chain a company is (or the farther it is from the consumer),
the greater is the distortion of information it receives.

Forecast methods In general, building forecast models relies on some data like historical sales during
the last periods. (Toomey, 2000) introduces a detailed study of the forecasting methods. Indeed, the
choice between these methods depends on the available data and on their correlation with the anticipated
future demand. If the demand data is reliable, and if there are no any external factor that impacts
the anticipated future demand, then the demand history is used and the forecasting method is called
"quantitative-intrinsic". If the future demand relates to external factor more than to the past product
sales, then the forecasts will be a computational projection based on patterns of external data. The
forecast method is therefore called "quantitative-extrinsic". In the case of new products, where there is
no historical data available, the forecasting method is "qualitative" which involves intuitive or judgemental
evaluation.

In many cases, forecasting future demand relies on the use of all the three methods.
Many forecasting techniques are used to determine the parameters of the future demand. The choice

between them depends on the forecast requirements, the patterns of past history and the availability of
the data.

For the "quantitative-intrinsic" situations, the used techniques are the "moving average", "exponential
smoothing", "extrapolation", "linear prediction" and others. A "simple moving average" is the un-
weighted mean of the previous n data points. For example a 12-day simple moving average of closing
price is the mean of the previous 12 days' closing prices.

There are various popular values of n. A moving average lags behind the latest data point, simply
from the nature of its smoothing. A simple moving average can lag to an undesirable extent, and can be
disproportionately in�uenced by old data points dropping out of the average. This is addressed by giving
extra weight to more recent data points as in the weighted and exponential moving average.

Exponential smoothing is a method of forecasting based on the weighted average technique, requiring
only two data (numbers): the last forecast and the actual demand for the last period (Toomey, 2000).
In this method, the new forecast is equal to the old forecast added to a weighted di�erence between the
last period and the old forecast.

For the "quantitative-extrinsic" situations, where it is possible to identify the underlying factors
that might in�uence the variable that is being forecast. If the causes are understood, projections of
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the in�uencing variables can be made and used in the forecasting process. In this case there are various
methods like the "regression analysis using the linear or nonlinear regression", the "autoregressive moving
average" and the "autoregressive integrated moving average".

In the case of "qualitative" or "judgemental" forecasting, there exist some other techniques like the
"surveys", the "scenario building" and the "technology forecasting".

In this Ph.D. dissertation we do not study these forecasting techniques, and we assume that the
demand forecasts are given. Therefore we are not interested in detailing and studying the forecasting
techniques.

Uncertainty in Supply chain

The demand forecasts are in general modeled using probability distribution functions. Since the forecasts
are always "wrong", as we have shown in the previous section, the demand forecasts that should be taken
into account in the planning process of the supply chain, constitute then the main source of uncertainty
in that process.

Other uncertainty sources may be the lead time of the suppliers that is not always reliable, the
produced quantities, that may vary due to a quality problem for example, the production capacities that
might also vary due to the breakdowns of the machines. The economic parameters of the supply chain
can also be uncertain (or stochastic), like the selling prices and the ordering or production costs.

These di�erent uncertainties are classi�ed by (Davis, 1993) in three distinct categories: demand un-
certainty, process uncertainty and supply uncertainty. The supply uncertainty is due to the supplier
processes and includes the lead time, the quantities and the quality of the products. The process un-
certainty includes the production process and especially the breakdowns of the machines. The demand
uncertainty is for (Davis, 1993) the most serious of all the uncertainties in the supply chain.

(Ho, 1989) regroups the uncertainties in supply chains into two groups: the environmental uncertainty
and the system uncertainty. The �rst category includes uncertainties beyond the production process, such
as demand and supply uncertainties. The second category includes the production process uncertainties
such as the quality, the lead time, the breakdowns uncertainty.

These uncertainties are worsened by the complexity and the dynamic aspect and interactions between
supply chain entities (Bhatnagar and Sohal, 2005). The greater the uncertainty in the supply chain, the
greater is its impact on the supply chain performance.

2.3 Supply chain planning

2.3.1 De�nition

"Imagine a world in which manufacturing, transportation, warehousing and even information capacity
are all limitless and free. Imagine lead times of zero, allowing goods to be produced and delivered
instantaneously. In this world, there would be no need to plan in anticipation of demand, because
whenever a customer demands a product, the demand would be instantly satis�ed. In this world supply



Supply chain planning 19

chain planning plays no role" (Chopra and Meindl, 2005).
However, in the real world, the capacities are limited, the production, transportation and stocking

processes are costly, the lead times are sometimes very high. Therefore, in order to ful�ll the customers'
demand and to minimize the cost, the companies must anticipate the demand and make decisions on the
capacities, the inventory levels, the produced quantities, the contracting and subcontracting strategies
and the prices, before that the demand is known.

The processes that permit to determine the decisions relevant of these problems, are called supply
chain planning.

In this dissertation we are interested in the mid-term or tactical planning and especially in the produc-
tion and inventory planning, or what is called in the literature the "aggregate planning" that we de�ne
in the following section.

2.3.2 Aggregate planning: production and inventory planning

Note that after this point, when we cite "planning" or "planning model", we refer to "production plan-
ning" or "production planning model" respectively, unless other indication is given.

Imagine an enterprise for which the market is quite stable, where there is no technological development,
no competition with other companies and where the quantities sold per time period are constants. For this
company, once the adequate production facilities are chosen, the operations management will be restricted
to the supply of raw material and the launching of the production orders in a repetitive manner. The
system is therefore stable over the time.

In the real world, enterprises are generally confronted with dynamic environments: the demand
(charge) evolves over the time, and therefore they are unstable. These types of �uctuations are gen-
erally encountered in the case of seasonal products, or in the case of products with uncertain future
demand, as we have mentioned above.

These important �uctuations of the demand over the time, induced by the market characteristics,
imply corresponding �uctuations in the charge on the production facilities. Nevertheless, in a mid-time
(or tactical) context, the production facilities have �xed capacities that do not change: the number of
machines is �xed, the procurement contracts are in general in�exible and could allow the reception of
only limited quantities per time period.

In this context, the role of the aggregate planning is to answer the following question: how to face
demand �uctuations with a production system with limited �exibility?(Baglin et al., 2001)

The aggregate planning serves then to anticipate the demand evolution, in order to adapt the pro-
duction facilities to their market.

(Silver and Peterson, 1985) de�nes the aggregate production planning as follows: given a set of (usually
monthly) demand forecasts for a single product, or for some measure of output that is common across
several products, the aggregate planning speci�es:

• the rate of production, or the produced quantities at each time period, or the equilibrium charge/
capacity,
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• the quantities of raw material needed at each period, and the related contracts with the suppliers,

• the size of the workforce, in order to adjust slightly the production capacities,

• the quantities shipped to the internal or external customers at each time period.

In our work ,we assume that the workforce, and consequently the production capacities are constants,
and therefore the related decision variables do not appear in our models. We assume also that the
quantity shipped are always equal to the quantity produced, and then the decision variables related to
the shipped quantities do not appear also.

The problem is then to minimize the total expected incurred cost or to maximize the total expected
pro�t. The components of the costs and of the pro�ts that are taken into account in the planning process
are:

• the selling price,

• the production or procurement cost,

• the cost of using a supplementary production capacity (overtime, hiring, training, etc.),

• the inventory holding cost,

• the cost of insu�cient production (or capacity), known as the shortage penalty cost,

• the salvage value, or the return value, which is the value of the unit returned to the supplier or sold
in a parallel market.

The aggregate planning is a mid-term or tactical planning that is applied not on individual products,
but rather on products families. A product family is a set of similar products that have, for example,
the same setup costs, the same seasonality properties, the same and approximately the same production
rate (Silver et al., 1998).

The aggregate plan that results from this planning or optimization process serves as a guide for
the operational decisions and establishes the parameters for the short-term production and distribution
decisions.

In this work we assume that the decisions or decision variables that are taken into account in the
planning process are relative to a single unit of the supply chain, namely the manufacturer (or the
retailer). It would be more pro�table if these decisions are taken in a coordinated manner, in such a way
that the di�erent stages of the supply chain, such as the manufacturer, the supplier, the retailer and the
transporter �x their aggregated plans in a coordinated way, even if it becomes more complicated to be
modeled and to be optimized.

Planning parameters

To build a mid-term planning model permitting to optimize the decision variables and to minimize the
total cost, some important parameters should be chosen in a suitable manner. These parameters could
be de�ned as follows ((Bitran and Tirupati, 1993) and (Shapiro, 1993)):
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• the aggregation level- product: the suitable aggregation level depends on the cost structure and on
the production facility. The majority of the aggregated production models assume a single product
which is the case studied in this Ph.D. dissertation,

• the aggregation level- facilities: most of the aggregate planning models assume that all the pro-
duction facilities are grouped into a single resource. There exist some models, called "monolithic
models" that treat each product and each facility alone. Note that the higher the aggregation level,
the simpler is the related optimization problem. In this work, we treat only cases with a single
product (or product family) and with a single production capacity.

• time unit (planning period): in general, for the mid-term planning models the planning period is
the month. Sometimes, the "week" is used, and the choice depends in general on the length of the
planning horizon. The "theoretical" models presented in the literature do not mention, generally,
the unit of the planning period, because it does not a�ect the optimal solution.

• planning horizon: the planning horizon is the time interval covered by the production plan. The
length of this horizon depends on the nature of the problem being modeled. For example, for
the problems presenting an annual seasonality, this planning horizon should be at least of twelve
months. For the short life cycle products or the style-goods type products, the planning horizon is
very short and in general it is constituted of one or two one-month planning periods. The notion
of the planning horizon is discussed in details in the next section.

Planning horizon

The planning horizon is the time interval on which the planning problem is de�ned. We can distinguish
two categories of planning horizon which are di�erentiated by the structure of the periods that constitute
the horizon:

• "frozen" horizon, for which the planning periods are de�ned and �xed and do not change over the
time. This type of planning horizon is used in the case of a de�ned contract between a supplier
and a retailer for example. It is used for some types of products that have a certain time-limited
demand de�ned over a �xed duration. This is the case of style-goods type products for example.

• rolling horizon, for which the planning periods evolve in such a manner that after the end of each
period, a new period is added at the end of the horizon. This type of planning horizons is used
in the case of products that are produced over a long time duration. Since taking into account all
the duration (that may be in�nite) is costly in terms of calculation and since the forecast of the far
periods is in general unreliable, one can transform the in�nite planning horizon to a rolling horizon.
(Garcia and Smith, 2000 a) and (Garcia and Smith, 2000 b) show that for all in�nite horizon, there
exists a corresponding �nite horizon for which the optimal decisions of the �rst period are the same.
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Stochastic vs deterministic planning

As we have seen above, the uncertainty has many sources in the supply chain and then it is di�cult to
omit its existence. This uncertainty should be taken into account in the decision process.

However, there exist some models that do not recognize the uncertainty. These models are in general
built for some problems in which the uncertainty is not very dominating and its in�uence could be ignored.
For example if the production is made on order, then the decision maker knows a priori how much is the
future demand to satisfy, and therefore it makes no sense to consider a stochastic demand in the decision
process. In such a problem, the decision variables may be the production quantities, knowing the costs,
the production capacities and the future demands ((Bitran et al., 1982), (Rajagopalan and Swaminathan,
2001) and (Zangwill, 1966)).

Due to the complexity generated by the stochastic aspect of some parameters, and especially of the
demand, there exist in the literature some papers that provide approximated solutions to the original
planning model. For example, (Bitran et al., 1982) transform the stochastic model to a deterministic one
and add some constraints that guarantee a certain service level. The authors provide an upper bound on
the error caused by substituting the optimal solution by the approximated one.

Others, such as (Raino and Ng, 2003) and (Haackman et al., 2002), provide models that deal with
stochastic production lead time. The lead time uncertainty is due to stochastic production capacities
(breakdowns), lack of supplier reliability, personnel availability, etc.. They use a rolling horizon frame-
work, where they solve at each period the new model after gathering new information and updating the
planning horizon. They also approximate the original stochastic model with a deterministic one, using
some service level constraints.

(Wang and Gerchak, 1996) introduce a planning model that solves using stochastic dynamic pro-
gramming in an information updating setting. They take into account, at the same time, stochastic
production capacities and stochastic production rate. They show some properties of the optimal policy
using a rolling horizon setting, without providing a closed-form optimal policy.

(Ciarallo et al., 1994) use the same techniques as (Wang and Gerchak, 1996) within two di�erent
frameworks: �nite and in�nite horizon, with information updates and with uncertainty only on demands
and on production capacities.

(Mula et al., 2006) provide a literature review of the main production planning models under un-
certainty. They classify the models in a chronological way, in four categories: the conceptual models
(Material Requirement Planning) and supply chain planning models or MRP, the analytical models (hi-
erarchical production planning, MRP, capacity planning, manufacturing resource planning, inventory
management and supply chain planning), arti�cial intelligence models (aggregate planning, MRP, Manu-
facturing resource planning, inventory management an supply chain planning) and the simulation models
(aggregate planning, MRP, capacity planning and manufacturing resource planning).

2.3.3 Supply chain planning models: classi�cation

In this section we propose a classi�cation of the planning problems in terms of the di�erent parameters.
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Let us de�ne, the following two di�erent decision strategies:

• decision strategy with �xed decision, in which at a given period, all the decisions for the following
periods are taken and �xed. This decision strategy is used in general where it is impossible to
improve the information about the system, such the demand forecasts, over the time,

Planning horizon 
Decisions 
Information 

Planning problem Frozen horizon Rolling horizon 
Frozen decisions  Rolling decisions Rolling decisions 

Taking into account realization of random variables of the previous periods 
Forecasts update for future periods Without forecasts update for the future periods Forecasts update for the future periods Without taking into account realization of random variables of previous periods Taking into account realization of random variables of the previous periods Taking into account realization of random variables of the previous periods Without taking into account realization of random variables of previous periods 

Fisher et al. (2001) 
Bradford & Sugrue (1990) 
Lau & Lau (1999)  
Fisher & Raman (1996) 
Gurnani & Tang (1999) 
Choi (2003) 
Eppen & Iyer (1997) 
Bassok & Anupindi (1997) 
Donohue (2000) 
Sethi et al.(2005) 
Barnes-Schuster et al. (2002) 

Hillier & Liberman (2001) 
Lau & Lau (1997) 
Lau & Lau (1998) 
Scarf (1959) 
Hadley & Whitin (1959)   

Karlin (1958) 
Bitran et al. (1984) 
Chand et al. (2002) 
 

Figure 2.2: Classi�cation of planning problems

• decision strategy with rolling decisions, where in each iteration, all the decisions relative to the
planning horizon are calculated and only the decisions relative to the �rst period are �xed. Then,
at the next period, using some new information to update the system state, the decisions of all the
planning horizon are calculated again and only the �rst period decisions are �xed.

The choice of the type of planning horizon and the decision strategy depends on many factors such
as the uncertainty of the problem parameters (demand, capacities), the reliability of the forecasts, the
nature of the products (style-goods, spare parts, perishable, etc.) and the complexity of the problem,
etc..

Another classi�cation could be done in terms of the obtained solution of the proposed models. The
criteria in this case is the nature of the solution, if it is analytical or numerical, and the degree of
aggregation of the products or the periods.
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In Figure 2.2 we detail the di�erent possible cases of a planning model in terms of the planning
horizon, the nature of the decision strategy and the nature of the information, and we provide some
examples from the literature. These possible cases are described in the following paragraphs.

The �rst case corresponds to the "frozen horizon" with rolling decisions, forecasts updates and with
taking into account the realization of the random variables of the previous periods (Figure 2.3). In this
case, the duration of the planning horizon is known from the beginning, but the decisions are �xed as
the time goes on. At each time period, the last period is eliminated, and the new information about the
system status is used in order to update the forecasts of the following periods random variables (demand
for example), and to �x the decisions relative to the current period. This type of situation is used in
the case of �exible contracts over a certain time duration, and in which gathering and using information
to update the system and to reduce the variability of the random variables is possible and not costly.
Examples of papers that deal with this type of problems can be (Fisher et al., 2001), (Bradford and
Sugrue, 1990), (Lau and Lau, 1999), (Fisher and Raman,1996), (Gurnani and Tang, 1999), (Choi, 2003),
(Eppen and Iyer, 1997), etc..

Figure 2.3: Frozen horizon with rolling decisions

The second case is similar to the �rst case, except the fact that in this type the realization of random
variables is not taken into account. That may be due to the di�culty of collecting new information about
the demand in the last periods for example, due to absence of an information system. In this case the
update of the forecasts is performed with new information collected on the market for example. To our
knowledge, in the literature there is any paper that presents models which can be classi�ed in this case,
but this case may be encountered in the industry.

The third case corresponds to the classical models of planning, with "frozen horizon", without infor-
mation update and with taking into account the realization of the previous periods random variables. In
this case, many papers can be found, such as (Lau and Lau, 1997), (Lau and Lau, 1998), (Scarf, 1959),
(Hadley and Whitin, 1959) and many others.

The second family of the planning models, corresponds to the rolling horizon category, and in which
there exists two types (Figure 2.4). The �rst type of models, corresponds to the models in which we take
into account the realization of the random variables of the previous models, with forecasts update for
the future periods. The information update may be of two origins: the �rst source of update is due to
the fact that a new period is added to the end of the planning horizon, and then new demand forecast,
for that period, is available. The second update source is the update of the existing demand forecasts,
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Figure 2.4: Rolling horizon with information update and with taking into account the realization of
random variables

using the collected information during the last periods. A lot of papers are published for this category
of models. (Chand et al., 2002) provide a literature review of the planning models with a rolling horizon
framework.

The other category of models in this family corresponds to models with rolling horizon, with infor-
mation update but without taking into account the realization of the random variables of the previous
periods. Note that this category corresponds to cases in which it is costly or di�cult to collect informa-
tion about the realized values of the previous periods random variables (demand for example) due to the
absence of information systems for example. To our knowledge, there is any work in the literature that
deals with such models.

Note that there are no models with rolling horizon and without forecasts updates. Indeed, the fact that
a new period is added at each iteration to the end of the planning horizon, implies that new information
about the demand of that period is available, which can be considered as an information update.

2.4 Conclusion

This chapter constituted an introduction to the supply chain concepts and especially to the production
and inventory planning notions. We have begun by giving a brief historical background of the military
origins of the supply chain, then we have de�ned the main notions of the supply chain, such as the decision
levels, the �ow and the capacities. We have also given an overview of the inventory management including
the role of the inventories and the related costs. Another important aspect of our work, which has been
studied in this chapter, is the information in the supply chain. This information has been constituted of
two elements: the inventory level and the demand forecast. Therefore, the role of the demand forecast
has been detailed and an overview of the forecasting techniques has been provided. Since the demand
forecasts are de�ned in general via random variables, we have shown the impact of the forecast uncertainty
which constitutes the main source of uncertainty in the supply chain planning processes. Finally, we have
provided a detailed study of the supply chain aggregate planning and in particular the production and
inventory planning.
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Chapter 3

A Newsvendor Model with Initial
Inventory and Two Salvage
Opportunities

In this chapter, we develop an extension of the newsvendor model with initial inventory. In
addition to the usual quantity ordered at the beginning of the horizon and the usual quantity
salvaged at the end of the horizon, we introduce a new decision variable: a salvage opportunity
at the beginning of the horizon, which might be used in the case of a high initial inventory
level. We develop an expression for the optimal policy for this extended model, for a general
demand distribution. The structure of this optimal policy has a particular form and is char-
acterized by two threshold levels. Some managerial insights are given via numerical examples.

Keywords: Newsvendor model, initial inventory, lost sales, salvage opportunities, concave
optimization, threshold levels.
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3.1 Introduction

The single period inventory model known as the newsvendor model is an important paradigm in operations
research and operations management literature. The underlying problem consists of ordering a certain
quantity of a given product, in order to optimally satisfy a future uncertain demand. The ordered
quantity should optimize an objective function that includes di�erent costs and/or pro�ts. As there is
a unique replenishment opportunity, if the ordered quantity is lower than the demand, excess demand
will be lost. On the contrary, if this quantity exceeds the observed demand, the excess will be sold at
a salvage value, generally lower than the wholesale price (purchasing price). The newsvendor model
has had numerous important applications, as in style-goods products (fashion, apparel, toys, etc.) or in
services management (booking on hotels, airlines, etc).

This model, which has represented the basic stochastic inventory model for several decades, has
received a lot of attention in the literature. In particular, many extensions have been proposed in order
to include speci�c additional characteristics in the model. The literature concerning the newsvendor
model is thus very large (for extensive literature reviews, see for example (Porteus, 1990), (Silver et
al., 1998) and (Khouja, 1999)). Generally speaking, a newsvendor model is characterized by three
elements: the objective function, the demand characterization and di�erent �nancial �ow speci�cations.
Most of the studies about the newsvendor model focus on the computation of the optimal order quantity
that maximizes the expected pro�t (or minimizes the expected cost) (Nahmias, 1996). Nevertheless, some
other works consider other criteria, such as maximizing the probability of achieving a target pro�t (Kabak
and Schi�, 1978), (Lau, 1980) and (Khouja, 1999). The demand process can be considered exogenous
(Nahmias, 1996), marketing e�ort dependent (Netessine and Rudi, 2000) or price-sensitive (Petruzzi and
Dada, 1999). Financial �ows generally introduced in the newsvendor problem are the wholesale price,
the selling price, the salvage value and the shortage penalty cost. Many extensions exist, such as a �xed
ordering cost (Silver et al., 1998), a dynamic selling price (Emmons and Gilbert, 1998), general forms of
salvage value and shortage penalty cost (Lal and Staelin, 1984).

Some authors have considered other decision variables or parameters in the model. In particular,
(Hillier and Lieberman, 1990) have analyzed a newsvendor model with an initial inventory. In this
extension, the decider observes, at the beginning of the selling season, the initial inventory level and �xes
his decisions as a function of this initial inventory. These authors have shown that in this case the optimal
order quantity can be deduced from the classical model (without initial inventory). (Kodama, 1995) has
considered a similar model in which the vendor, after observing the demand value, can carry out partial
returns or additional orders in the limit of de�ned levels.

In the present chapter, we develop a new extension of the initial inventory newsvendor model in which
a part of the initial inventory can be salvaged at the beginning of the selling season. As a matter of fact,
when the initial inventory level is su�ciently high, it may be pro�table to immediately salvage a part of
this initial inventory to a parallel market, before the season. This is an extension of the classical model
in which the unique salvage opportunity is placed at the end of the selling season.

In many practical situations, a potential interest exists for such a salvage opportunity before the selling
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season. For example, due to very long design/production/delivery lead-times a �rst products quantity
could be ordered from the supplier a long time before the selling season. This implies that the demand
distribution is not precisely known at the moment when the quantity is ordered ((Fisher and Raman,
1996) and (Fisher et al., 2001 )). In this case, if the demand appears to be particularly low, it could be
pro�table to return a part of the received quantity to the supplier or sell it to a parallel market, with a
return price which is lower than the order price.

From an intuitive point of view, we expect the corresponding optimal policy to be such that: if
the initial inventory is very high, a part of this inventory is expected to be salvaged. If the initial
inventory level is very low, an additional quantity should be ordered. In this chapter, we actually
establish that the optimal policy corresponding to this new extended model is a threshold based policy
with two di�erent thresholds: the �rst corresponds to the order-up-to-level policy of the classical model
with initial inventory, and the second threshold corresponds to a salvage-up-to-level policy, and is a result
of the salvage opportunity at the beginning of the season. Between the two thresholds, the optimal policy
consists of neither ordering, nor salvaging any quantity.

The remainder of this chapter is structured as follows. In the following section, we introduce the
model, describe the decision process and de�ne the notation used in the chapter, the objective function
and the model assumptions. In section 3.3, we recall the classical newsvendor model with initial inventory
and we show that it represents a special case of our model. In section 3.4, we solve our model and exhibit
the structure of the optimal policy as a function of the initial inventory level. In section 3.5 we give
some managerial insights via numerical applications. The last section is dedicated to conclusions and
presentation of new avenues of research.

3.2 The model

A manager has to �ll an inventory in order to face a stochastic demand. The ordering and selling
processes are as depicted in Figure 3.1. Before occurrence of the demand, an initial inventory is available.
Without loss of generality and because it is more coherent with the main idea of the present chapter, this
inventory is assumed to be positive. Note however that a model with a negative initial inventory can also
be developed, which would correspond to situations with some �rm orders received before the beginning
of the selling season. At the beginning of the season, the manager can make two decisions: �rst, he can
sell a part of this initial inventory to a parallel market and/or second, he can order a new quantity to
complete the initial inventory in order to better satisfy the future demand. After demand has occurred,
the remaining inventory, if any, is salvaged or the unsatis�ed orders, if any, are lost and, in this case, a
shortage penalty cost is paid.

The decision and state variables corresponding to this problem (according to Figure 3.1) are denoted
as follows:

Ib: the initial inventory level, available at the beginning of the selling season,

Q: the ordered quantity, which is to be received before the demand occurs,

Sb: the quantity salvaged at the beginning of the season, before the demand occurs,
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Stochastic demand, D 

Second salvage opportunity, Se (if Ie>0) First salvage opportunity, Sb 

Order, Q 

Final inventory,Ie Initial inventory, Ib 

Penalty shortage cost, b (if Ie<0) 

 

Figure 3.1: Ordering and selling process

Ie: the inventory level at the end of the selling season,

Se: the quantity that is salvaged at the end of the selling season.

We also de�ne the following parameters:

D: the random demand, which is characterized by a continuous probability density function f(·) :

[0,∞[→ IR+ and by the cumulative distribution function F (·) : [0,∞[→ [0, 1],

p: the unit selling price during the season,

sb: the unit salvage value for the quantity Sb,

c: the unit order cost for the quantity Q,

se: the unit salvage value of the quantity Se,

b: the unit shortage penalty cost.

As mentioned above, the objective function of the model consists of maximizing the total expected
pro�t, denoted as Π(Ib, Q, Sb, Se). This expected pro�t, with respect to the random variable D, is
explicitly given by

Π(Ib, Q, Sb, Se) = sbSb − cQ + seSe + p

∫ Ib+Q−Sb

0

Df(D) dD

+p(Ib + Q− Sb)
∫ ∞

Ib+Q−Sb

f(D) dD

−b

∫ ∞

Ib+Q−Sb

(D − Ib −Q + Sb)f(D) dD. (3.1)

The di�erent terms can be interpreted as follows:
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• the �rst term, sbSb, is the pro�t generated by salvage at the beginning of the season,

• the second term, cQ, is the order purchase cost,

• the third term, seSe, is the pro�t generated by salvage at the end of the season,

• the fourth and �fth terms are the expected sales,

• the last term is the expected shortage penalty cost.

It is worth noting that equivalent models can be built with a cost minimization criterion ((Khouja, 1999)
and (Geunes et al., 2001)). The decision variables have to satisfy the following constraints

0 ≤ Q, (3.2)

0 ≤ Sb ≤ Ib, (3.3)

0 ≤ Se ≤ Ie. (3.4)

In the classical newsvendor model, some assumptions are necessary to guarantee the interest and the
coherency of the model. A classical assumption is the following

se < c < p, (3.5)

which simply states that the selling process is pro�table (c < p) while the salvage process is not (se < c).
As we introduce the new decision variable, Sb, it is necessary to adapt assumption (3.5) as follows

0 < se < sb < c < p. (3.6)

We assume sb < c, in order to avoid those cases where it would be pro�table to order a quantity at
the beginning of the season and to immediately sell to the parallel market at the corresponding salvage
price sb. We furthermore assume se < sb, which seems quite reasonable from a managerial point of view.
Otherwise, namely if sb ≤ se, salvage at the beginning of the period would never be more pro�table than
keeping all the inventory to face demand and, eventually, to salvage the remaining inventory at the price
se. This would eliminate the interest of the new model we consider in this chapter.

3.3 The classical newsvendor model with initial inventory

In the classical newsvendor model with initial inventory ((Silver et al., 1998) and (Hillier and Lieberman,
1990)), there is no salvage opportunity at the beginning of the single period horizon, even if the initial
inventory level is very high compared to the required quantity to satisfy the stochastic demand. The
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Figure 3.2: Classical newsvendor model with initial inventory

decision process is as depicted in Figure 3.2, and the expected pro�t is given by

Π(Ib, Q) = −cQ + seSe + p

∫ Ib+Q

0

Df(D) dD

+ p(Ib + Q)
∫ ∞

Ib+Q

f(D) dD − b

∫ ∞

Ib+Q

(D − Ib −Q)f(D) dD.

(3.7)

It is a well known result that the optimal policy at the end of the season consists of completely salvaging
the remaining inventory, if any, ((Khouja, 1999), (Silver et al, 1998) and (Hillier and Lieberman, 1990)).
The optimal value of Se is thus given by

S∗e = max(0; Ie). (3.8)

Substituting Se by its optimal value given in (3.8), the expected objective function (3.7) becomes as
follows

Π(Ib, Q) = −cQ + se

∫ Ib+Q

0

(Ib + Q−D)f(D) dD

+ p

∫ Ib+Q

0

Df(D) dD + p(Ib + Q)
∫ ∞

Ib+Q

f(D) dD

− b

∫ ∞

Ib+Q

(D − Ib −Q)f(D) dD.

(3.9)

Assuming (3.5), it is easily shown (Hillier and Lieberman, 1990) that Π(Ib, Q) is concave in Q and that
the optimal value Q∗(Ib) is given by

Q∗(Ib) = max
(

0 ; F−1

(
p + b− c

p + b− se

)
− Ib

)
. (3.10)

Clearly the sum of the lost margin p − c and the shortage penalty b can be viewed as an underage
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cost, while the item cost c minus the salvage value se can represent an overage cost. As one would see,
a relatively high underage cost results in a higher order quantity, whereas a relatively high overage cost
leads to a lower order quantity. It is obvious that this newsvendor model with initial inventory, represents
a special case of our model, described in paragraph 3.2, with zero initial salvage value, namely sb = 0.

It is worth noticing that the optimal ordering quantity does not explicitly depend on the pair (p ; b)
but only on the sum p + b. In particular, a model with a unit selling price p and a penalty cost b > 0 is
equivalent to a model with a penalty cost b′ = 0 and a unit selling price p′ = p + b.

3.4 The extended model

In this section we consider the extended model described in section 3.2, with an expected objective
function given by (3.1). First we show the concavity of this expected objective function with respect to
the decision variables, then we explore the structure of the optimal policy.

Property 3.1 The objective function Π(Ib, Q, Sb, Se), de�ned in (3.1) is a jointly concave function with
respect to Q, Sb and Se.

Proof. The hessian of Π(Ib, Q, Sb, Se) with respect to Q, Sb and Seis given by

∇2Π(Ib, Q, Sb, Se) = −(b + p)f(Ib + Q− Sb)




1 −1 0

−1 1 0

0 0 0


 . (3.11)

From the model assumptions (3.6), for each vector V = (V1, V2, V3) ∈ IR3 we �nd

V T∇2Π(Ib, Q, Sb, Se)V = −(b + p)f(Ib + Q− Sb)(V1 − V2)2 ≤ 0,

which proves that the matrix ∇2Π(Ib, Q, Sb, Se) is semi-de�nite negative. Consequently, the objective
function Π(Ib, Q, Sb, Se) is jointly concave with respect to Q, Sb and Se. 2

Lemma 3.1 The optimal value of the decision variable Se is given by

S∗e = max(0; Ie) (3.12)

Proof. It could be easily shown that the �rst partial derivative of the expected objective function
Π(Ib, Q, Sb, Se) with respect to Se is given by

∂Π(Ib, Q, Sb, Se)
∂Se

= se. (3.13)

From assumption (3.6), one concludes that Π(Ib, Q, Sb, Se) is an increasing function in Se. Thus the
optimal value of Se, considering the constraint (3.4), is max(0; Ie). 2

From Lemma 3.1, one concludes that the optimal value of Se depends on the inventory level Ie. Note
that Ie is a random variable at the beginning of the selling season. Hence one could substitute Se by
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its expected optimal value in equation (3.1), and the expected pro�t function for the model described in
Figure 3.1 becomes

Π(Ib, Q, Sb) = sbSb − cQ + se

∫ Ib+Q−Sb

0

(Ib + Q− Sb −D)f(D) dD

+p

∫ Ib+Q−Sb

0

Df(D) dD + p(Ib + Q− Sb)
∫ ∞

Ib+Q−Sb

f(D) dD

−b

∫ ∞

Ib+Q−Sb

(D − Ib −Q + Sb)f(D) dD. (3.14)

It is worth noting that this expected objective function depends only on Ib, Q and Sb. Therefore Q∗(Ib)

and S∗b (Ib), the optimal values of the decision variables Q and Sb, are the solution of the optimization
problem

(Q∗(Ib), S∗b (Ib)) = arg
{

max
0≤Q,0≤Sb≤Ib

{Π(Ib, Q, Sb)}
}

, (3.15)

where Π(Ib, Q, Sb) is given in (3.14).

Let us now turn our attention to characterizing the optimal policy that de�nes the optimal values of
Q and Sb. We have shown in Property 1 that the objective function Π(Ib, Q, Sb) is jointly concave with
respect to the decision variables Q and Sb, hence one could use the �rst order optimality criterion.

Consider the two partial derivatives of Π(Ib, Q, Sb) with respect to Q and Sb, respectively given by

∂Π(Ib, Q, Sb)
∂Q

= −c + b + p + (se − b− p)F (Ib + Q− Sb) (3.16)

and

∂Π(Ib, Q, Sb)
∂Sb

= sb − b− p + (b + p− se)F (Ib + Q− Sb). (3.17)

It can be easily seen, by the structure of (3.16) and (3.17) and by assumption (3.6), that these derivatives
cannot be simultaneously equal to zero, which shows that, for a given inventory Ib, there are no optimal
solutions such that Q∗(Ib) > 0 and S∗b (Ib) > 0 simultaneously. In other words, one has the property

Q∗(Ib)S∗b (Ib) = 0. (3.18)

This result is fairly easy to understand. Indeed, a case for which Q∗(Ib) > and S∗b (Ib) > 0 would
correspond to a situation where starting from an initial inventory Ib, amount of products (equal to
min(S∗b (Ib), Q∗(Ib))) is sold at a unit salvage value sb and right after purchased at a unit cost c. Since
sb < c (assumption (3.6)), this would obviously be a counterproductive action.
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3.4.1 Optimality conditions for Q∗

For any given Sb value satisfying 0 ≤ Sb ≤ Ib, the optimal ordering quantity Q∗(Ib) is a function of
Ib − Sb that can be computed as the solution of the following optimization problem

Q∗(Ib) = arg
{

max
0≤Q

{Π(Ib, Q, Sb)}
}

. (3.19)

By concavity of Π(Ib, Q, Sb) with respect to Q, and for any given Sb value, the optimal solution Q∗(Ib)

is given either by

Q∗(Ib) = 0 (3.20)

if −c + b + p + (se − b− p)F (Ib − Sb) ≤ 0, or by

Q∗(Ib) = F−1

(
b + p− c

b + p− se

)
− Ib + Sb ≥ 0 (3.21)

if −c + b + p + (se − b− p)F (Ib − Sb) ≥ 0.

3.4.2 Optimality conditions for S∗b

For any given Q value satisfying 0 ≤ Q, the optimal ordering quantity S∗b (Ib) is de�ned as the solution
of the following optimization problem

S∗b (Ib) = arg
{

max
0≤Sb≤Ib

{Π(Ib, Q, Sb)}
}

. (3.22)

By concavity of Π(Ib, Q, Sb) with respect to Sb, and for any given Q value, the optimal solution S∗b (Ib) is
given either by

S∗b (Ib) = 0 (3.23)

if sb − b− p + (b + p− se)F (Ib + Q) ≤ 0, or by

S∗b (Ib) = F−1

(
sb − b− p

b + p− se

)
− Ib −Q ≥ 0 (3.24)

if sb − b− p + (b + p− se)F (Ib + Q) ≥ 0.

3.4.3 Critical threshold levels

From the above optimality conditions, two threshold levels appear to be of �rst importance in the optimal
policy characterization,

Y ∗
1 = F−1

(
b + p− c

b + p− se

)
and Y ∗

2 = F−1

(
b + p− sb

b + p− se

)
, (3.25)
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with, from assumption (3.6), are related by:

Y ∗
1 ≤ Y ∗

2 . (3.26)

These threshold levels can be interpreted as values such as

−c + b + p + (se − b− p)F (Y ∗
1 ) = 0, (3.27)

and

sb − b− p + (b + p− se)F (Y ∗
2 ) = 0. (3.28)

As the function F (·) is monotonously increasing, for any Ib values such that Ib < Y ∗
1 (resp. Ib > Y ∗

1 ),
one �nds

−c + b + p + (se − b− p)F (Ib) > 0 (resp. − c + b + p + (se − b− p)F (Ib) < 0) , (3.29)

and for any Ib values such that Ib > Y ∗
2 (resp. Ib < Y ∗

2 ), one �nds

sb − b− p + (b + p− se)F (Ib) > 0 (resp. sb − b− p + (b + p− se)F (Ib) < 0) . (3.30)

3.4.4 Critical threshold levels and structure of the optimal policy

We show below that the structure of the optimal policy is in fact fully characterized by these two threshold
levels as depicted in Figure 3.3.

Lemma 3.2 For Y ∗
1 ≤ Ib ≤ Y ∗

2 , the optimal solution is given by

Q∗(Ib) = S∗b (Ib) = 0.

Proof. For Y ∗
1 < Ib < Y ∗

2 , one �nds

∂Π(Ib, 0, 0)
∂Q

< 0 and
∂Π(Ib, 0, 0)

∂Sb
< 0, (3.31)

which induces, by concavity, that the solution Q∗(Ib) = S∗b (Ib) = 0 is the optimum of the pro�t function
for these Ib values. If Y ∗

1 = Ib, one �nds

∂Π(Ib, 0, 0)
∂Q

= 0 and ∂Π(Ib, 0, 0)
∂Sb

< 0, (3.32)

which leads to the same conclusion. If Y ∗
2 = Ib, one �nds

∂Π(Ib, 0, 0)
∂Q

< 0 and ∂Π(Ib, 0, 0)
∂Sb

= 0, (3.33)
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which leads to the same conclusion. 2

-

Initial inventory Ib

Y ∗
1 Y ∗

2

Q∗(Ib) = Y ∗
1 − Ib

S∗b (Ib) = 0
Q∗(Ib) = S∗b (Ib) = 0

Q∗(Ib) = 0

S∗b (Ib) = Ib − Y ∗
2

Figure 3.3: Structure of the optimal policy

Lemma 3.3 For Ib ≤ Y ∗
1 , the optimal solution is given by

Q∗(Ib) = Y ∗
1 − Ib and S∗b (Ib) = 0. (3.34)

Proof. For Ib ≤ Y ∗
1 , one �nds that

∂Π(Ib, Y
∗
1 − Ib, 0)

∂Q
= 0 and ∂Π(Ib, Y

∗
1 − Ib, 0)

∂Sb
< 0 (3.35)

which induces, by concavity, that the solution Q∗(Ib) = Y ∗
1 − Ib and S∗b (Ib) = 0 is the optimum of the

pro�t function for such Ib values. 2

Lemma 3.4 For Y ∗
2 ≤ Ib, the optimal solution is given by

Q∗(Ib) = 0 and S∗b (Ib) = Ib − Y ∗
2 . (3.36)

Proof. For Y ∗
2 ≤ Ib, one �nds that

∂Π(Ib, 0, Ib − Y ∗
2 )

∂Q
< 0 and ∂Π(Ib, 0, Ib − Y ∗

2 )
∂Sb

= 0 (3.37)

which induces, by concavity, that the solution Q∗(Ib) = 0 and S∗b (Ib) = Ib − Y ∗
2 is the optimum of the

pro�t function for such Ib values. 2

As in the classical Newsvendor model, it follows from the previous derivations that the optimal policy
does not explicitly depend on the pair (p,b) but only on the sum p+ b. In particular, a model with a unit
selling price p and a penalty cost b > 0 is equivalent to a model with a penalty cost b′ = 0 and a unit
selling price p′ = p + b.

3.5 Numerical examples and insights

The fundamental properties of the considered model will be illustrated by some numerical examples. In
a �rst example, we illustrate the structure of the optimal policy as a function of the initial inventory Ib.
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Then we exhibit, via a second numerical example, the impact of the demand variability on the structure
of optimal policy. A third example illustrates the e�ect of sb, the salvage value at the beginning of the
horizon. In the last example, we compare the considered extended model with the classical newsvendor
model with initial inventory, and we show the potential bene�t associated with the initial salvage process.

For these numerical applications, we assume that the demand has a truncated-normal distribution,
corresponding to a normal distributed demand, D ∼ N [µ, σ] truncated at the zero value (we exclude
negative demand values). Without loss of generality we also assume that the inventory shortage cost is
zero, namely b = 0.

In the following �gures, Q∗(Ib) and S∗b (Ib) represent the optimal values of the decision variables and
E[S∗e (Ib)] is the expected optimal value of the decision variable Se(Ib), which is given by

E[S∗e (Ib)] =
∫ Ib+Q∗(Ib)−S∗b (Ib)

0

(Ib + Q∗(Ib)− S∗b (Ib)−D)f(D) dD. (3.38)

This is to account for the fact that the variables Q and Sb are decided before the demand is known while
the variable Se is decided after the demand is realized.

3.5.1 Optimal policy

In this �rst example, we depict the behavior of the optimal decision variables as a function of the initial
inventory Ib. The numerical values for the parameters are the following: µ = 1000, σ = 400, p = 100,
sb = 30, c = 50 and se = 20. The two thresholds Y ∗

1 = 1127 and Y ∗
2 = 1460 have been represented in
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Figure 3.4. For Y ∗
1 ≤ Ib ≤ Y ∗

2 , one has Q∗(Ib) = S∗b (Ib) = 0, while E[S∗e (Ib)] is increasing. For Ib < Y ∗
1 ,

Q∗ decreases linearly as a function of Ib, which corresponds to the order-up-to-level policy de�ned by
equation (3.34). For Ib > Y ∗

2 , S∗b (Ib) > 0 is a linear increasing function of Ib, which corresponds to the
salvage-up-to-level policy de�ned by the equation (3.36).
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3.5.2 Variability e�ect

In this extended model, the decision variables Q and Sb are �xed before demand occurrence and are
thus, in one way or another, a�ected by demand variability. On the other hand, the decision variable
Se is �xed once the demand is perfectly known. From an intuitive point of view, the more variable the
demand the more pro�table is postponement of the decisions. In order to show the consequence of the
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Figure 3.5: Optimal policy for high demand variability

variability, we compare the example of Figure 3.4 with two other examples with higher (Figure 3.5) and
lower (Figure 3.6) variability. All the numerical parameters are the same as in the �rst example, except
demand variability. The demand standard deviations are respectively σ = 600 for the second example
in Figure 3.5 and σ = 200 for the third example in Figure 3.6. The thresholds are Y ∗

1 = 1191 and
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Y ∗
2 = 1690 for Figure 3.5 and Y ∗

1 = 1064 and Y ∗
2 = 1230 for Figure 3.6. It can be seen that the values of

both thresholds increase with the standard deviation of the demand. The increase of Y ∗
1 is in accordance

with standard newsvendor results with normally distributed demands, where for given costs, the order
quantity increases linearly with the demand standard deviation. The same justi�cation is valid for the
increase of Y ∗

2 . This increase in the Y ∗
1 and the Y ∗

2 values is accompanied by an increase of the optimal
Q∗ or the decrease of the S∗b for a given initial inventory value.

The increase of the optimal Q value permits the manager, for a given initial inventory, to stock a
bigger quantity to face demand variability. The same is true for the decrease of the optimal Sb value.

The increase in the Y ∗
1 and Y ∗

2 values is accompanied by an increase in the di�erence Y ∗
2 − Y ∗

1 . In
the interval [Y ∗

1 , Y ∗
2 ], the value of E[S∗e (Ib)] increases with Ib. The fact that the interval width Y ∗

2 − Y ∗
1

increases with demand standard deviation leads to an increase of E[S∗e (Ib)], which may be interpreted as
a postponement of the decision until the end of the season.
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Figure 3.7: Optimal policy for high sb value

3.5.3 E�ect of initial salvage value sb

In this section, we study the e�ect of the sb value on the optimal policy. We compare the nominal example
(de�ned in section (3.5.1), Figure 3.4), with two other examples with di�erent sb values. We consider for
the �rst example a high sb value , i.e. sb = 35 (Figure 3.7), and for the second a low sb value, i.e. sb = 25

(Figure 3.8). By (3.25), it is explicit that Y ∗
1 does not depend on sb. By (3.25) also, it is also explicit

that Y ∗
2 is a decreasing function of sb, as it is the case for the optimal policy behavior. For sb = 35, we

�nd Y ∗
1 = 1127 and Y ∗

2 = 1355, while for sb = 25, these values become Y ∗
1 = 1127 and Y ∗

2 = 1614. An
increase of sb automatically induces a decrease of Y ∗

2 , which means that for a given value of the initial
inventory Ib, the salvaged quantity S∗b (Ib) will increase. This increase will be accompanied by a decrease
of the expected value of S∗e (Ib). This can be summarized as follows: the higher the salvage value of the
parallel market, the higher the salvaged quantity S∗b (Ib) and the lower the expected salvaged quantity at
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the end of the season E[S∗e (Ib)].

3.5.4 Numerical comparison with the classical newsvendor model with initial
inventory

Our extended model introduces the additional variable Sb, which appears to be useful in presence of high
initial inventory level. In order to illustrate the magnitude of the bene�ts potentially associated with
Sb, we compare our model with the initial inventory newsvendor model described in section 3.2. For
the same numerical parameters values we have measured the relative di�erence between the expected
objective functions of the two models for three values of the salvage value sb: the nominal value, sb = 30;
a high value, sb = 35; a low value, sb = 25. The comparison is shown in Figure 3.9. Figure 3.9 shows
that the bene�ts associated with the Sb variable can be non-negligible for high values of Ib. Clearly, it is
equal to zero for the Ib values that are less than Y ∗

2 , where S∗b = 0. Via Figure 3.9, one may conclude
that:

• the di�erence, between the two expected optimal objective functions, is greater for high sb values.
This increase corresponds logically to the fact that the sb term only appears in the objective function
of the extended model and not in the newsvendor model.

• the threshold Y ∗
2 decreases with sb. For high sb value, the di�erence becomes positive.

This can be summarized as follows: the extended model is pro�table for high sb values and/or high
Ib values.
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3.6 Summary and conclusions

This chapter presents a new extension to the initial inventory newsvendor model in which a part of the
initial inventory can be salvaged to a parallel market before demand occurrence. We have shown that in
the case of a high initial inventory level, or a high initial salvage value sb, this feature can be useful. The
structure of the optimal policy is characterized by two threshold levels. Via numerical applications, we
have illustrated the theoretical properties and given some managerial insight.

The extension of this model to a multi-periodic framework is an ongoing research avenue.



Chapter 4

Two-Period Stochastic Production
Planning and Inventory Control:
General Modelling and Optimal
Analytical Resolution

We investigate in this chapter a two-period production planning and inventory control model.
Two production modes, with di�erent production costs, can be used and multiple return op-
portunities are available which provides an important �exibility. We consider that, at the
beginning of the decision process, an initial inventory is available and some preliminary �xed
orders are to be delivered at each period. A general modelling is provided in the context of a
backlog framework. The model is solved by a dynamic programming approach. A closed-form
analytical solution is developed for the second period subproblem, which is similar to a mod-
i�ed Newsvendor problem and is characterized by two threshold levels. Due to the dynamic
and sequential structure of the model, the �rst period subproblem solution is quite complex
to be completely characterized by a closed-form formula. We de�ne, therefore, an algorithm
that permits to simplify that solution and to characterize it under some assumptions. We
note that, in some cases, also the optimal solution of the �rst period subproblem is partially
characterized by two threshold levels. We then provide insights regarding this type of two-
stage inventory decision process with the help of numerical examples.

Keywords: Production planning, inventory control, production modes, backlog, parallel
market, dynamic programming, closed-form solution.
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4.1 Introduction

In this chapter, we study the same type of products that has been studied in Chapter 3, which is the style-
goods type products. These products are characterized by a short life cycle or are produced only once and
they have an uncertain future demand. Examples of such products are spare parts for a single production
run of a new model of an airplane. For this kind of products, the demand is, in general, spread out only
over a single period. In the literature, the model that deals with the production/inventory problems of
this type of products is known as the Newsvendor model.

The basic Newsvendor model consists of producing/ordering a certain quantity of a given product,
at the beginning of a single period horizon. This quantity has to optimally satisfy a future uncertain
demand during the same horizon. The decision maker has no additional replenishment opportunities: as
a consequence, if the ordered quantity is lower than the demand, excess demand is lost; on the other
hand, if this quantity exceeds the demand, the decision maker will have to salvage, at the end of the
horizon, the excess at a salvage value (generally lower than the production cost).

This single period model has been investigated and an extension to this model has been proposed in
Chapter 3. In spite of a huge literature that treats this type of models, the single period model can not
be really applied in many real-life applications that are fundamentally multiperiodic: several correlated
decisions should be sequentially taken. It is thus quite natural to consider two-period models, as a
fundamental building block, to analyze the structure of optimal decisions in such multi-period decision
processes. Such two-period decision processes permit one to adapt the inventory levels to the demand
variability. In fact, considering two periods makes the model more reactive and permits to exploit new
information associated to the demand realization. In other words, in a single period model, a unique
quantity is ordered at the beginning of the season, before information about the e�ective demand is
available. On the contrary, in a two-period model, after the �rst order, the realized demand of the
�rst period can be observed and a second order is made, which clearly exploits this information. This
�exibility gives to the decision maker more degrees of freedom and gives to him the choice between
multiple decisions, production modes, with di�erent costs, which may be very bene�cial.

Several authors have investigated such two-period production models. First, (Hillier and Liberman,
1990) analyzed a two-period model with uniformly distributed independent demands. Via a dynamic
programming approach, they have analytically solved this model and they have proposed an explicit
optimal order-up-to-level policy. (Lau and Lau, 1997, 1998) developed lost sales two-period models and
proposed numerical solutions via dynamic programming. (Bradford and Sugrue, 1990) proposed another
class of model in which the second period demand is correlated to the �rst period demand. A Bayesian
update for the second period demand forecast can thus be used after the observation of the realized �rst
period demand. These authors determined a conditional order-up-to-level policy for the second period and
an optimal order quantity for the �rst period. Another important two-period model has been proposed
by (Fisher and Raman, 1996); in these authors' paper, the demand of the whole horizon and the demand
of the �rst period are characterized via a joint probability density function. Furthermore, the order size
for the second period is constrained by an upper limit. (Gurnani and Tang, 1999) considered a two-period
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model with a �rst period demand equal to zero. In their model, the dynamic structure concerns available
information for the sequential decision process: at the end of the �rst period, exogenous information is
collected permitting to update the forecast for the second period demand. (Choi et al., 2003) proposed a
quite similar two-stage newsboy model with an update of the forecast of the second-period demand via
some market information. (Donohue, 2000) applies a similar approach for developing supply contracts.

In this chapter, we focalize on style-goods type products and on the development of a two-period
production/inventory model for this type of products. The induced costs are purchasing costs, inventory
holding costs and backorder costs. The demands at the �rst and second periods are de�ned by independent
random variables, with known probability distributions. We assume that at the end of the second period,
the remaining inventory can be sold to a speci�c market with a given salvage value.

In addition to these classical parameters, we suppose that some preliminary �xed orders should be
delivered at each period. Also, we suppose that, at the beginning of the �rst period, the initial inventory
level might be positive. On the other hand, we use two di�erent production modes allowing the decision
maker to produce for the second period twice and at di�erent moments. This �exibility permits, at the
same time, to exploit the lower costs of some production modes and to exploit the information about the
realization of the �rst period demand (Cheaitou et al., a, 2006).

Note that the initial inventory can result from previous selling seasons, or from a preliminary (early)
production or ordering operations. An early production is launched at a given moment, even before
estimating precisely the future demand, generally in order exploit the low production costs at that
moment.

An important aspect that we add to our model, and that does not exist in the literature is that the
decision maker is allowed to salvage (or return) a part of his inventory at the beginning of each period to
a parallel market. The salvage value of this option is more important than the salvage value at the end
of the season (i.e. at the end of the second period).

There are many cases where a given quantity can be salvaged at the beginning of the selling season
or at the beginning of a given period. The �rst case consists in selling this quantity to a parallel market,
which is considered as a client that buy with a price lower than the usual market price. In the second
case, this quantity can be returned to the supplier according to the terms of a supply contract. For
example, if one orders the product from a supplier, and if the order is placed su�ciently in advance, the
demand distribution is not well known at this moment. In this case, a speci�c contract with the supplier
can be implemented, which permits a part of the received quantity to be returned to the supplier with a
unit return value lower than the initial unit ordering cost.

The model includes initial inventory and initially �xed order quantities to be delivered in the di�erent
periods. We develop then an analytical solution for the second period and a semi-analytical solution for
the �rst period which permits to identify the optimal policy of each of the two periods. A special form,
two-threshold levels optimal policy for each of the planning horizon periods has been obtained. In order
to show the impact of the di�erent model parameters on the optimal policy, we conclude the chapter by
giving some numerical applications.

In summary, our model is characterized by the following contributions:
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• the periodic ordering process is quite general in the sense that at each time period orders can be
made for the di�erent subsequent periods, possibly with di�erent costs,

• for general demand distributions, a closed-form analytical solution for the second period and a
semi-analytical solution for the �rst period have been developed,

• the periodic selling process is quite general, in the sense that, in addition to the classical selling
process, it is possible at the beginning of each period, to sell a part of the available inventory to a
parallel market, at a given salvage value,

• data are dynamic which means that the selling prices, costs, salvage values and demand probability
distributions are period-dependent.

The remaining part of this chapter is structured as follows: the second section describes the model
(namely the complete decision process, the information structure, the costs and pro�ts structure and
the global objective function), the third section details the dynamic programming approach and the
solution details. Numerical examples are solved in the fourth section. The last section is dedicated to
the conclusion.

4.2 The Model

4.2.1 Model description

Note that in the model presented in this chapter, we do not consider any constraints about the time
length of the �rst and the second periods.

In each period t, the independent random demand Dt is de�ned by a probability density function
(PDF) ft(·) : [0, +∞[→ IR+ and by a cumulative distribution function (CDF) Ft(·) : [0, +∞[→ [0, 1]. At
each period any received demand is charged at a price pt, even if it is satis�ed only at the next period.

We de�ne the decision variables Qts (with 0 ≤ t ≤ s ≤ 3) as the quantities ordered at the beginning
of period t to be received at the beginning of period s, with a unit order cost of cts. Q01 and Q02 have
been ordered before the selling horizon and are assumed to be given. We now introduce the additional
decision variables St (with 1 ≤ t ≤ 3), which are the quantities salvaged at the beginning of period t,
with unit salvage values st. All the decision variables, i.e. Qts and St, are assumed to be non-negative.

The state variables of the model are Xt, the inventory level at the beginning of period t and It, the
inventory level at the end of period t (I0 is given and considered as the initial inventory for the problem).

The periodic inventory holding cost is ht, while unsatis�ed orders in period t are backlogged to the
next period, with a penalty shortage cost bt. It is worth noting that the third period is used in the
problem not as real period, involving a decision process to be optimized, but only as a terminal condition
for the problem.

Figure 4.1 presents the structure of the decision process and the demand realization, which can be
described as follows: the available inventory at the beginning of the �rst period, before current orders
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Figure 4.1: Decision process

are chosen and demand occurs, is
X1 = I0 + Q01, (4.1)

where, I0 and Q01 can be considered as given data. Then decision variables Q11, Q12 and S1 are �xed.
Demand D1 occurs, and the available inventory at the end of the �rst period is given by

I1 = X1 + Q11 −D1 − S1. (4.2)

The available inventory at the beginning of the second period, before current orders are chosen, before
demand occurs, and after Q12 is received, is

X2 = I1 + Q02 + Q12 = X1 + Q11 −D1 − S1 + Q02 + Q12, (4.3)

where Q02 can be considered as data. The decision variables Q22 and S2 are then �xed. Demand D2

occurs, and the available inventory at the end of the second period is given by

I2 = X2 + Q22 −D2 − S2. (4.4)

The ordered quantities cannot be negative and the salvaged quantities clearly cannot be higher than the
available inventories. These constraints are formulated by the following inequations

0 ≤ Q11, 0 ≤ Q12, 0 ≤ Q22, 0 ≤ Q33, 0 ≤ S1 ≤ X+
1 , 0 ≤ S2 ≤ X+

2 . (4.5)

Note that the optimal values of the decision variables Q11, Q12, Q22, S1 and S2 are Q∗11, Q∗12, Q∗22,
S∗1 and S∗2 successively.
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Note that the third period optimal policy is de�ned by the following Lemma.

Lemma 4.1 The optimal decision variables Q∗
33 and S∗3 are de�ned as follows

Q∗
33 = −I2 if I2 ≤ 0 and S∗3 = I2 if I2 > 0. (4.6)

Proof. Let us de�ne Π3(.) as the third period pro�t function. This function is given by

Π3(I2, Q33, S3) = −c33Q33 + s3S3 (4.7)

with
Q33 ≥ 0 and 0 ≤ S3 ≤ I2. (4.8)

An additional constraint may be the result of our decision process, where we assume that the unsatis�ed
demands at a period are charged with the price of that period and then satis�ed at the following period.
Therefore, when I2 < 0, then the corresponding backlogged demand should be satis�ed at the third
period.

It is clear that the function Π3(I2, Q33, S3) is an increasing function in S3 and a decreasing function
in Q33.

Therefore, when I2 < 0, then the values of Q33 and S3 that maximize the objective function
Π3(I2, Q33, S3) and respect the constraints will be Q∗

33 = −I2 and S∗3 = 0.
When I2 > 0, then the values of Q33 and S3 that maximize the objective function Π3(I2, Q33, S3) and

respect the constraints will be Q∗
33 = 0 and S∗3 = I2. 2

4.2.2 Model assumptions

Assumptions for the parameters

To avoid some trivial or nonrealistic cases and to guarantee the signi�cance of the model, it is necessary to
introduce some assumptions for the di�erent parameters of the model. These assumptions are described
as follows:

• Systematic backlog assumptions

c11 < c22 + b1, c11 < c12 + b1, c12 < c33 + b2 and c22 < c33 + b2. (4.9)

These constraints aim at avoiding situations with systematic backlogs of demands of one period to
the next. If the �rst constraint is not satis�ed, i.e. if c11 > c22 + b1, then it would be optimal to
not order any unit with Q11 and therefore to backlog the �rst period demands to the second period
to be satis�ed with Q∗22. If the second constraint is not satis�ed, i.e. if c11 > c12 + b1, then the
optimal decision variable Q∗11 will be equal to zero. In this case, the �rst period demands will be
backlogged to the second period, to be satis�ed with Q∗12. If the third constraint is not satis�ed, i.e.
if c12 > c33 + b2, then the slow production mode will not be used (Q∗12 = 0), which implies that the
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related demands will be satis�ed with Q∗
33. If the last constraint is not satis�ed, i.e. if c22 > c33+b2,

then it would be optimal to not order any unit with Q∗22, and to satisfy the backlogged demands of
the second period with Q∗33.

• Order/salvage assumptions (Di�erent periods)

s2 < c11 + h1, s3 < c12 + h2, s3 < c11 + h1 + h2 and s3 < c22 + h2. (4.10)

These constraints aim at avoiding unrealistic situations where it would be optimal to order at a
given period and then to sell to the parallel market at a salvage price in another period. For
example, if the �rst constraint is not satis�ed, then the optimal policy will consist in ordering an
in�nite Q∗11 quantity in the �rst period and selling it at a salvage price s2 in the second period. In
the case where the second constraint is not satis�ed, i.e. if s3 > c12 + h2, then the optimal ordered
quantity with the slow production mode (Q∗

12) and the optimal salvaged quantity at the end of the
season (S∗3 ) will be equal to in�nity. If the third constraint is not satis�ed, i.e. if s3 > c11 +h1 +h2,
then it will be optimal to order an in�nite Q∗11 quantity and to sell it after the end of the second
period with a salvage value of s3. If the last constraint is not satis�ed, the optimal policy will
consist in ordering an in�nite Q∗

22 quantity and selling it with a salvage value of s3.

• Order/salvage assumptions (Same period)

s1 < c11, s2 < c22, s2 < c12 and s3 < c33. (4.11)

These constraints aim at avoiding other situations where it would be pro�table to order at a given
period with the explicit strategy of salvaging this order during the same period, without satisfying
demands with this order. For example, if the �rst constraint is not satis�ed, i.e. if s1 > c11, then
it would be optimal to order an in�nite quantity in the �rst period and to salvage it in the same
period. If the second constraint is not satis�ed, then the optimal policy will consist in ordering
an in�nite Q∗22 quantity and in salvaging it immediately with a salvage value of s2. If the third
constraint is not satis�ed, i.e. if s2 > c12, then the optimal decision variables Q∗12 and S∗2 will be
equal to in�nity. If the last constraint is not satis�ed, then it will be optimal to order an in�nite
Q∗33 quantity and to salvage it immediately with a salvage price of s3.

• Slow production mode assumption

c12 < c11 + h1. (4.12)

This constraint aims at avoiding the situation where, a priori, it would never be pro�table to order
any quantity from the slow mode, which would render the slow mode a priori useless.

• Salvage assumptions
s1 > s2 − h1 and s2 > s3 − h2. (4.13)
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These constraints aim at avoiding the situations where it would, a priori, never be pro�table to
salvage any quantity at the beginning of a given period, because waiting for the next period and
salvaging at this next period would be, a priori, better. If the �rst constraint is not satis�ed, i.e.
if s1 < s2 − h1, it will be optimal not to salvage any unit with S1, and consequently, to keep all
the available units at the beginning of the �rst period in order to satisfy the �rst or second period
demands, or to be salvaged at the beginning of the second period. If the second constraint is not
satis�ed, it will be optimal not to salvage any unit at the beginning of the second period, and then
to keep these units in order to satisfy the second period demands, or to be salvaged after the end
of the second period, with a salvage value of s3.

Demand charging assumption

Since our model is de�ned in a backlogging framework, and in order to simplify the solution approach,
we assume in this chapter that at each period t, any received demand is charged at a price pt, even if the
demand is not satis�ed immediately. Unsatis�ed demands are backlogged to the next period, inducing a
unit backlog penalty cost bt.

Note that we consider in this chapter an average cost framework. Therefore, the model described above
can be viewed as equivalent to a model, in which the demands that cannot be satis�ed immediately are
charged in the period at which they are �nally satis�ed, at the price of the period in which the demand
originally arrived.

An alternative model would be to consider that a backlogged demand is charged when satis�ed but
at the price of the period at which it is satis�ed. It is easy to check that such a model could equivalently
be transformed into our model by using an equivalent backlog penalty b′t = bt + pt+1 − pt.

Note that all these assumptions are valid for this chapter, Chapter 5 and Chapter 6.

4.2.3 Global objective function

Let us introduce Π(I0, Q01, Q02, Q11, Q12, Q22, Q33, S1, S2, S3) as the expected pro�t, with respect to the
random variables D1 and D2, associated to the decision variables Q11, Q12, Q22, Q33, S1, S2, S3, and
the initial data of the problem I0, Q01, Q02. Substituting S3 and Q33 by their optimal values given in
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(4.6), then the expected objective function Π(·) will be

Π(I0, Q01, Q02, Q11, Q12, Q22, Q33, S1, S2, S3) =

s1S1 − c11Q11 − c12Q12 + p1

∫ ∞

0

D1f1(D1) dD1

− h1

∫ X1+Q11−S1

0

(X1 + Q11 − S1 −D1)f1(D1) dD1

− b1

∫ ∞

X1+Q11−S1

(D1 −X1 −Q11 + S1)f1(D1) dD1

+ p2

∫ ∞

0

D2f2(D2) dD2 + s2S2 − c22Q22

− (h2 − s3)
∫ X2+Q22−S2

0

(X2 + Q22 − S2 −D2)f2(D2) dD2

− (b2 + c33)
∫ ∞

X2+Q22−S2

(D2 −X2 −Q22 + S2)f2(D2) dD2.

(4.14)

The di�erent terms can be interpreted as follows:

• s1S1 is the total salvage price of the �rst period,

• c11Q11 represents the total ordering cost of the �rst period using the fast mode,

• c12Q12 represents the total ordering cost of the �rst period using the slow mode,

• the fourth term,
p1

∫ ∞

0

D1f1(D1) dD1,

represents the expected pro�t of the �rst period,

• the �fth term,
h1

∫ X1+Q11−S1

0

(X1 + Q11 − S1 −D1)f1(D1) dD1,

is the �rst period expected inventory holding cost,

• the sixth term,
b1

∫ ∞

X1+Q11−S1

(D1 −X1 −Q11 + S1)f1(D1) dD1,

represents the �rst period expected penalty shortage cost,

• the seventh term,
p2

∫ ∞

0

D2f2(D2) dD2,

is the expected second period pro�t,

• s2S2 represents the total second period salvage value,

• c22Q22 represents the total second period ordering cost,

• the tenth term,
(h2 − s3)

∫ X2+Q22−S2

0

(X2 + Q22 − S2 −D2)f2(D2) dD2,
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is the second period expected overage cost, which is constituted of the expected inventory holding
cost and the expected salvage value of the remaining inventory at the end of the second period,

• the last term,
(b2 + c33)

∫ ∞

X2+Q22−S2

(D2 −X2 −Q22 + S2)f2(D2) dD2,

represents the second period expected underage costs, constituted of the second period expected
shortage penalty cost and the expected ordering cost after the end of the second period (in order
to satisfy the backlogged demands).

4.3 The dynamic programming approach

In this section, we will use a dynamic programming approach combined with the convex optimization
to develop the optimal policies of the two periods of our planning horizon. According to the standard
dynamic programming methodology, we reformulate �rst the two-period problem into two single-period
sub-problems, by the the de�nition of appropriate value functions. Then we use the convex multi-variable
optimization to solve each of these two sub-problems.

4.3.1 Problem decomposition

In sequential stochastic decision processes, and especially in a production planning and inventory control
context, dynamic programming is often considered as a powerful solution technique (see for example
(Ross, 1983), (Bertsekas, 2000), (Toomey, 2000) and (Sethi et al., 2005)). Using this technique we can
decompose our problem into a couple of one-period subproblems. The �rst subproblem is associated
with the second period. The solution of this problem permits to characterize the optimal values of the
second-period decision variables, namely Q∗22 and S∗2 . Clearly, as the decision variables are in the second
period, then they are expressed as a function of the state variable X2. They are computed as the solution
of the optimization problem

max
ξ2(X2)

{Π2(X2, ξ2(X2))} , (4.15)

where Π2(X2, ξ2(X2)) is the expected second period pro�t function, and where we formally have

ξ2(X2) = (Q22(X2), S2(X2)). (4.16)

Then, the subproblem associated to the �rst period exploits the optimal solution of the second period
subproblem ξ∗2(X2) in order to �nd the optimal solution for the �rst period, namely

ξ∗1(X1) = (Q∗11(X1), Q∗12(X1), S∗1 (X1)), (4.17)

which is obtained as the solution of the problem

max
ξ1(X1)

{Π1(X1, ξ1(X1)) + ED1 {Π∗2(X2, ξ
∗
2(X2))}} , (4.18)
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where Π1(X1, ξ1(X1)) is the expected �rst period pro�t function, while the second term is the expectation,
with respect to D1, of the second period pro�t function, under the optimal policy ξ∗2(X2).

4.3.2 Second-period subproblem

The objective function of the second period is de�ned by the following expression

Π2(X2, Q22, S2) = p2

∫ ∞

0

D2f2(D2) dD2 + s2S2 − c22Q22

−(h2 − s3)
∫ X2+Q22−S2

0

(X2 + Q22 − S2 −D2)f2(D2) dD2

−(b2 + c33)
∫ ∞

X2+Q22−S2

(D2 −X2 −Q22 + S2)f2(D2) dD2. (4.19)

This class of models has been analyzed in Chapter 3. Nevertheless, there are some di�erences between
the second period problem and the model presented in Chapter 3. Therefore, we prove in this section the
concavity of the expected objective function de�ned in (4.19) with respect to the decision variables Q22

and S2. Then using the concavity property, we characterize the optimal policy.

Lemma 4.2 The objective function Π2(X2, Q22, S2), de�ned in (4.19) is a jointly concave function with
respect to Q22 and S2.

Proof. The hessian of Π2(X2, Q22, S2) with respect to Q22 and S2 is given by

∇2Π2(X2, Q22, S2) = −(b2 + c33 + h2 − s3)f2(Q22 − S2 + X2)


 1 −1

−1 1


 . (4.20)

From the model assumptions, for each vector V =


 V1

V2


 , where (V1; V2) ∈ IR2, we �nd

V T
(∇2Π2(X2, Q22, S2)

)
V = −(b2 + c33 + h2 − s3)f2(Q22 − S2 + X2)(V1 − V2)2 ≤ 0,

which proves that the matrix ∇2Π2(X2, Q22, S2) is semi-de�nite negative. Consequently, the objective
function Π2(X2, Q22, S2) is jointly concave with respect to Q22 and S2. 2

Optimal policy

The second period optimal policy is given by (for the proof, see Appendix A.1)

if X2 < Y12 ⇒




Q∗22 = Y12 −X2,

S∗2 = 0,
(4.21)

if Y12 ≤ X2 ≤ Y22 ⇒




Q∗
22 = 0,

S∗2 = 0,
(4.22)
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and

if X2 > Y22 ⇒




Q∗22 = 0,

S∗2 = X2 − Y22.
(4.23)

These conditions amount to

Q∗22 = (Y12 −X2)+ and S∗2 = (X2 − Y22)+, (4.24)

with
Y12 = F−1

2

(
b2 + c33 − c22

b2 + c33 + h2 − s3

)
and Y22 = F−1

2

(
b2 + c33 − s2

b2 + c33 + h2 − s3

)
. (4.25)

Furthermore, from the above equations, we conclude the following two properties.

Property 4.1 The optimal values of the two decision variables Q∗22 and S∗2 can not be simultaneously
positive.

Property 4.2 If X2 < 0, then the optimal quantity Q∗22 satis�es

X2 + Q∗
22 ≥ 0.

The two threshold levels, given in (4.25) can be interpreted similarly to the order-up-to-level of the
classical Newsvendor problem.

For the the �rst threshold level, Y12, de�ne the underage cost C1
u = b2 + c33 − c22 as the marginal

cost of not satisfying a demand in the second period with Q22, and the overage cost C1
o = c22 − s3 + h2

as the marginal cost of ordering a supplementary unit with Q22 over the optimal value. Therefore, in the
expression of Y12, the argument of the function is equal to the ratio of C1

u and C1
u + C1

o .
For the the second threshold level, Y22, de�ne the underage cost C2

u = b2 + c33 − s2 as the marginal
cost of salvaging a supplementary unit over the optimal at the beginning of the second period (which is
equivalent to not satisfying a marginal demand in the second period), and the overage cost C2

o = s2−s3+h2

as the marginal cost of not salvaging a supplementary unit with S2 and therefore keeping that unit for
the second period. Therefore, in the expression of Y22, the argument of the function is equal to the ratio
of C2

u and C2
u + C2

o , which can be interpreted as a modi�ed Newsvendor salvage-up-to-level.
Note that it is easily seen that under the assumptions of this chapter, one has

Y12 < Y22. (4.26)

4.3.3 First period subproblem

In this section we solve analytically the optimization problem of the �rst period which is an optimization
problem with three decision variables, i.e. Q11, Q12 and S1. Indeed, using the results of the second
period subproblem, we �nd, in this section, the optimal policy of the �rst period, namely ξ∗1(X1), that
permits to compute the optimal value of each of the decision variables in terms of the state variable, X1.
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Since it is not possible to provide a closed-form formula which de�nes that optimal policy, we introduce
an algorithm that permits to de�ne it partially in an analytical manner.

The total expected pro�t function Π(·), under the optimal second-period policy ξ∗2(X2) becomes

Π(X1, Q11, Q12, S1) = Π1(X1, Q11, Q12, S1)

+ ED1 {Π∗2(X2, Q
∗
22(X2), S∗2 (X2))} , (4.27)

where Π1(X1, Q11, Q12, S1) is given by

Π1(X1, Q11, Q12, S1) = s1S1 − c11Q11 − c12Q12 + p1

∫ ∞

0

D1f1(D1) dD1

−h1

∫ X1+Q11−S1

0

(X1 + Q11 − S1 −D1)f1(D1) dD1

−b1

∫ ∞

X1+Q11−S1

(D1 −X1 −Q11 + S1)f1(D1) dD1. (4.28)

The di�erent terms of (4.28) have been explained in section 4.2.3.

The optimization problem to solve for this subproblem is then given by

Π∗(X1) = max
Q11,Q12,S1

{Π(X1, Q11, Q12, S1)}

= max
Q11,Q12,S1

{
p1

∫ ∞

0

D1f1(D1) dD1 + s1S1 − c11Q11 − c12Q12

− h1

∫ X1+Q11−S1

0

(X1 + Q11 − S1 −D1)f1(D1) dD1

− b1

∫ ∞

X1+Q11−S1

(D1 −X1 −Q11 + S1)f1(D1) dD1

+ ED1 {Π∗2(X2, Q
∗
22(X2), S∗2 (X2))}

}
(4.29)

under the following constraints

Q11 ≥ 0, Q12 ≥ 0, and S1 ≥ 0. (4.30)

Lemma 4.3 The total expected objective function Π(X1, Q11, Q12, S1) de�ned in (4.27) is jointly concave
with respect to Q11, Q12 and S1.

Proof. See Appendix A.3. 2

Using Lemma 4.3, the optimization problem described in equation (4.29) has a unique maximum.
Thus, the �rst order optimality criterion can be used to develop the optimal policy that permits to �nd
the optimal decision variables values, Q∗

11, Q∗
12 and S∗1 , in terms of the di�erent problem parameters.
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First order optimality criterion

In Lemma 4.3, we have proved the concavity of the objective function Π(X1, Q11, Q12, S1). Thus, the
optimal solution can be directly characterized by the �rst order optimality criterion. In the following, the
optimal solution of the �rst period sub-problem is represented by (Q∗

11, Q
∗
12, S

∗
1 ). The expressions of the

�rst order partial derivatives of the total expected objective function Π(X1, Q11, Q12, S1) with respect to
the decision variables Q11, Q12 and S1 are given in Appendix A.2. The optimality conditions for the �rst
period decision variables (Q11, Q12, S1) are then given by

∂Π(X1, Q11, Q12, S1)
∂Q11

(Q∗11, Q
∗
12, S

∗
1 ) = 0, (4.31)

∂Π(X1, Q11, Q12, S1)
∂Q12

(Q∗11, Q
∗
12, S

∗
1 ) = 0, (4.32)

∂Π(X1, Q11, Q12, S1)
∂S1

(Q∗11, Q
∗
12, S

∗
1 ) = 0, (4.33)

with the following constraints
Q∗11 ≥ 0, Q∗

12 ≥ 0, and S∗1 ≥ 0.

Lemma 4.4 The optimal values Q∗
11 and S∗1 for the two �rst period decision variables Q11 and S1 satisfy

the following property
Q∗

11S
∗
1 = 0

Proof. See Appendix A.4.

Lemma 4.5 In the case where c12 > s1 + h1, the optimal decision variables Q∗12 and S∗1 satisfy the
following property

Q∗
12S

∗
1 = 0

Proof. See Appendix A.5.

First Period: di�erent possible cases

It is clear that the optimization problem relative to the �rst period subproblem, given in (4.29) and
(4.30), can not be solved completely in an analytical manner. Nevertheless, under some conditions on the
�rst order partial derivatives of the expected objective function Π(X1, Q11, Q12, S1) with respect to the
decision variables Q11, Q12 and S1, we are able to provide an analytical solution. Indeed, in each partial
derivative, we substitute the derivation variable by zero, and then we test the partial derivative sign in
that point (zero). We combine the di�erent cases of all the partial derivatives and we obtain eight total
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possible cases. As we have said, some of these cases can be solved completely and other cases cannot be
solved. Hence, we provide an algorithm that permits to identify the optimal solution.

By concavity, there exists one and unique solution (Q∗11, Q∗
12, S

∗
1 ), that maximize the total expected

objective function (4.27). The optimization problem de�ned in (4.27) is constrained by the constraints
given (4.30) and the optimal solution obtained by solving (4.27) must satisfy these constraints.

Using the �rst order optimality criteria, and taking into account the non-negativity constraints, we
will consider all the possible cases of the optimal solution that may exist in terms of the di�erent problem
parameters. We distinguished these cases by the sign of the optimal value of each of the decision variables,
Q11, Q12 and S1, obtained by the resolution of the unconstrained optimization problem de�ned in (4.27).
The sign of the optimal value of a decision variable indicates the sign of the partial derivative of the total
expected objective function with respect to that decision variable, if that decision variable is replaced,
in the partial derivative, by zero. Using this rule, eight di�erent cases can be obtained. In the following
sections the conditions that should be satis�ed in order to obtain each of the eight cases are given, and
then an algorithm that permits to know which of these cases is the valid case is de�ned. This algorithm
permits to provide the optimal solution.

a. case 1
This �rst case corresponds to the following assumptions

∂Π(X1, Q11, Q12, S1)
∂Q11

(0, Q∗
12, S

∗
1 ) ≤ 0, (4.34)

∂Π(X1, Q11, Q12, S1)
∂Q12

(Q∗
11, 0, S∗1 ) ≤ 0, (4.35)

∂Π(X1, Q11, Q12, S1)
∂S1

(Q∗11, Q
∗
12, 0) ≤ 0. (4.36)

Lemma 4.6 If equations (4.34), (4.35) and (4.36) are satis�ed, then the optimal solution of the con-
strained �rst period problem will be given by

(Q∗11; Q
∗
12; S

∗
1 ) = (0; 0; 0) (4.37)

Proof. By concavity the unconstrained problem given by (4.29) has a unique solution.

If the �rst partial derivative of the expected objective function with respect to Q11 is negative at the
point (0; Q∗

12;S
∗
1 ), then the optimal Q11 value for the unconstrained problem, Q∗

11, is negative. Since
for the the �rst period optimization problem, we have Q11 ≥ 0, then the optimal value of Q11 for that
problem is Q∗

11 = 0. The same reasoning is valid for Q12 and S1. 2

This �rst case corresponds to values of X1 and of the di�erent costs where it is not optimal to order
any Q11 or Q12 quantities, and it is optimal to not return (salvage) any S1 quantity. This could be
induced by a huge value of X1, that implies zero Q∗

11 and Q∗
12 with a very low s1 value that implies a
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zero S∗1 .

b. case 2
The second case of the �rst period optimization problem corresponds to the following assumptions

∂Π(X1, Q11, Q12, S1)
∂Q11

(0, Q∗
12, S

∗
1 ) > 0, (4.38)

∂Π(X1, Q11, Q12, S1)
∂Q12

(Q∗
11, 0, S∗1 ) > 0, (4.39)

∂Π(X1, Q11, Q12, S1)
∂S1

(Q∗11, Q
∗
12, 0) > 0. (4.40)

Lemma 4.7 Given the model parameters, the case 2 can not happen.

Proof. From assumption (4.38), one could conclude, using the same reasoning as in the proof of Lemma
4.6, that ∃ Q∗11 > 0, for which the �rst optimality equation (4.31) is satis�ed.

From assumption (4.40), one could conclude, using the same reasoning as in the proof of Lemma 4.6,
that ∃ S∗1 > 0, for which the third optimality equation (4.33) is satis�ed also.

Thus the optimal values of the decision variables Q11 and S1 are both positive. Nevertheless, from
the Lemma 4.4, one has the property

Q∗11S
∗
1 = 0.

Consequently, the case 2 in not a feasible case. 2

This case corresponds to values of the optimal decisions variables, where Q∗
11 and S∗1 are both positive.

However, from our model assumptions (section 4.2.2), it can be clearly seen that it is not pro�table to
order a Q∗

11 quantity and then to completely or partially return (or salvage) it instantaneously. Therefore,
this case can not be feasible.

c. case 3
The third case corresponds to the following assumptions

∂Π(X1, Q11, Q12, S1)
∂Q11

(0, Q∗
12, S

∗
1 ) > 0, (4.41)

∂Π(X1, Q11, Q12, S1)
∂Q12

(Q∗
11, 0, S∗1 ) > 0, (4.42)

∂Π(X1, Q11, Q12, S1)
∂S1

(Q∗11, Q
∗
12, 0) ≤ 0. (4.43)
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Lemma 4.8 If equations (4.41), (4.42) and (4.43) are satis�ed, then the optimal solution of the con-
strained �rst period optimization problem is given by

(Q∗11; S
∗
1 ) = ((Y11 −X1); 0) , (4.44)

with

Y11 = F−1
1

(
c12 − c11 + b1

h1 + b1

)
. (4.45)

And Q∗12 is positive and veri�es the following implicit equation

Ω1(Q∗
12) = −c12 + c22 + (b2 + c33 − c22)F1(Q02 + Y11 + Q∗

12 − Y12)

+ (−b2 − c33 + s2)F1(Q02 + Y11 + Q∗12 − Y22) (4.46)

+ (−b2 − c33 + s3 − h2)
∫ Q02+Y11+Q∗12−Y12

Q02+Y11+Q∗12−Y22

f1(x)F2(Q02 + Y11 + Q∗12 − x)dx

= 0

Proof. First, by concavity of the expected total objective function, and by taking into account the
constraint of non-negativity of the decision variables, equation (4.43) implies that S∗1 = 0. Replacing S∗1

by its value in equations (4.31) and (4.32) gives a two-variable system.
By concavity also, equations (4.41) and (4.42) imply that ∃ Q∗11 > 0 and ∃ Q∗12 > 0 that satisfy the

optimality equations (4.31) and (4.32) respectively.
Thus, by replacing Q∗

12 in (4.31), by its value obtained by solving the second optimality equation
(4.32), one gets

F1(Q∗11 + X1) =
(

c12 − c11 + b1

h1 + b1

)
. (4.47)

From the model assumptions (section 4.2.2), one has c11 < c12 + b1 and c12 < c11 + h1. These two
inequations lead to

c12 − c11 + b1

h1 + b1
< 1,

and permit then to write

Q∗
11 = F−1

1

(
c12 − c11 + b1

h1 + b1

)
−X1. (4.48)

Then one replaces Q∗
11 and S∗1 by their values in the second optimality equation (4.32) which leads to

(4.46). 2

Property 4.3 If equations (4.41), (4.42) and (4.43) are satis�ed, then the state variable X1 satis�es the
following property

X1 < Y11.

Proof. Equation (4.41) implies that ∃ Q∗11 > 0 which satis�es the �rst optimality equation (4.31).
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From equation (4.47), one has Q∗
11 + X1 = Y11, which is equivalent to X1 = Y11 − Q∗11. As Q∗11 > 0

thus X1 < Y11. 2

It is obvious that this case is relative to the low X1 values and to attractive c12 unit ordering cost.
Therefore, since X1 is low, and since from our model assumptions (section 4.2.2) it can be easily seen
that it is not pro�table to backlog the �rst period demands to the second period, Q∗11 must be positive.
That induces, due to our model assumptions that S∗1 is equal to zero. Then due to relatively low ordering
cost c12, Q∗12 is positive.

d. case 4
This fourth case corresponds to the following assumptions

∂Π(X1, Q11, Q12, S1)
∂Q11

(0, Q∗
12, S

∗
1 ) ≤ 0, (4.49)

∂Π(X1, Q11, Q12, S1)
∂Q12

(Q∗
11, 0, S∗1 ) > 0, (4.50)

∂Π(X1, Q11, Q12, S1)
∂S1

(Q∗11, Q
∗
12, 0) > 0. (4.51)

Lemma 4.9 If equations (4.49), (4.50) and (4.51) are satis�ed, then the optimal solution of the con-
strained �rst period problem will be given by

(Q∗11; S
∗
1 ) = (0; (X1 − Y21)) , (4.52)

with

Y21 = F−1
1

(
c12 − s1 + b1

h1 + b1

)
. (4.53)

And Q∗12 is positive and veri�es the following implicit equation

Ω2(Q∗
12) = −c12 + c22 + (b2 + c33 − c22)F1(Q02 + Y21 + Q∗

12 − Y12)

+ (−b2 − c33 + s2)F1(Q02 + Y21 + Q∗12 − Y22) (4.54)

+ (−b2 − c33 + s3 − h2)
∫ Q02+Y21+Q∗12−Y12

Q02+Y21+Q∗12−Y22

f1(x)F2(Q02 + Y21 + Q∗12 − x)dx

= 0

Proof. Using the same approach as in the preceding case, and permuting Q11 and S1 the result given in
Lemma 4.9 can be easily proven. 2

Property 4.4 If equations (4.49), (4.50) and (4.51) are satis�ed, then the state variable X1 satisfy the
following property

X1 > Y21.
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Proof. Equation (4.51) implies that ∃ S∗1 > 0 which satis�es the third optimality equation (4.33).

On the other hand, equation (4.52) implies S∗1 = X1 − Y21, which is equivalent to X1 = Y21 + S∗1 . As
S∗1 > 0 thus X1 > Y21. 2

Note that given the model assumptions (section 4.2.2) Y11 and Y21 satisfy

Y11 < Y21. (4.55)

Property 2 implies that case 4 corresponds to high X1 values (X1 > Y21). Therefore, this available
initial inventory, is su�cient to optimally satisfy the �rst period demands, and in addition, a part of this
available inventory can be salvaged (or returned to the supplier). That implies, that the optimal Q∗

11

should be equal to zero. On the other hand, this case corresponds to relatively low c12 values, which
induces that the optimal Q∗

12 is positive, and is used to satisfy the second period demands.

e. case 5
This �fth case corresponds to the following assumptions

∂Π(X1, Q11, Q12, S1)
∂Q11

(0, Q∗
12, S

∗
1 ) ≤ 0, (4.56)

∂Π(X1, Q11, Q12, S1)
∂Q12

(Q∗
11, 0, S∗1 ) > 0, (4.57)

∂Π(X1, Q11, Q12, S1)
∂S1

(Q∗11, Q
∗
12, 0) ≤ 0. (4.58)

Lemma 4.10 If equations (4.56), (4.57) and (4.58) are satis�ed, then the optimal solution of the con-
strained �rst period subproblem is given by

(Q∗11; S
∗
1 ) = (0; 0), (4.59)

and Q∗12 is positive and veri�es the following implicit equation

Ω3(Q∗
12) = −c12 + c22 + (b2 + c33 − c22)F1(Q02 + X1 + Q∗

12 − Y12)

+ (−b2 − c33 + s2)F1(Q02 + X1 + Q∗12 − Y22) (4.60)

+ (−b2 − c33 + s3 − h2)
∫ Q02+X1+Q∗12−Y12

Q02+X1+Q∗12−Y22

f1(x)F2(Q02 + X1 + Q∗12 − x)dx

= 0

Proof. Using the same reasoning as in case (4), and substituting Q∗11 = 0 and S∗1 = 0 by their values in
the second optimality equation (4.32), one can easily prove the result given in Lemma 4.10. 2

Property 4.5 If equations (4.56), (4.57) and (4.58) are satis�ed, then the state variable X1 veri�es the
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following property
Y11 ≤ X1 ≤ Y21.

Proof. Equation (4.55) gives Y11 < Y21.
On the one hand, assume that X1 < Y11, thus property (4.3) implies that equation (4.41) is satis�ed,

which is contradictory with equation (4.56).
On the other hand, suppose that X1 > Y21, then property (4.4) implies that equation (4.51) is satis�ed,

which is contradictory with equation (4.58).
Therefore, we can conclude that Y11 ≤ X1 ≤ Y21. 2

It is clear from Property 3 that the case 5 corresponds to medium initial inventory level X1 values.
For these values, it is not economically pro�table to salvage any unit from this initial inventory neither
to order any additional unit. Nevertheless, this initial inventory is not su�cient to satisfy the demands
of the second period, and therefore, due to the attractive ordering cost c12, the optimal Q12 is positive.

f. case 6
This case corresponds to the following assumptions

∂Π(X1, Q11, Q12, S1)
∂Q11

(0, Q∗
12, S

∗
1 ) > 0, (4.61)

∂Π(X1, Q11, Q12, S1)
∂Q12

(Q∗
11, 0, S∗1 ) ≤ 0, (4.62)

∂Π(X1, Q11, Q12, S1)
∂S1

(Q∗11, Q
∗
12, 0) > 0. (4.63)

Lemma 4.11 Given the model parameters, case 6 can not happen.

Proof. Using the same reasoning as in the proof of Lemma 4.7 one could easily prove Lemma (4.11). 2

This case, according to our model assumptions (section 4.2.2), is not a feasible case, because Q∗
11 and

S∗1 can not be both positive.

g. case 7
This case corresponds to the following assumptions

∂Π(X1, Q11, Q12, S1)
∂Q11

(0, Q∗
12, S

∗
1 ) > 0, (4.64)

∂Π(X1, Q11, Q12, S1)
∂Q12

(Q∗
11, 0, S∗1 ) ≤ 0, (4.65)

∂Π(X1, Q11, Q12, S1)
∂S1

(Q∗11, Q
∗
12, 0) ≤ 0. (4.66)
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Lemma 4.12 If equations (4.64), (4.65) and (4.66) are satis�ed, thus the optimal solution of the con-
strained �rst period problem is given by

(Q∗12; S
∗
1 ) = (0; 0), (4.67)

and Q∗11 is positive and veri�es the following equation

Ω4(Q∗
11) = −c11 + b1 + c22 − (h1 + b1)F1(Q∗11 + X1)

+ (b2 + c33 − c22)F1(Q02 + X1 + Q∗
11 − Y12) (4.68)

+ (−b2 − c33 + s2)F1(Q02 + X1 + Q∗11 − Y22)

+ (−b2 − c33 + s3 − h2)
∫ Q02+X1+Q∗11−Y12

Q02+X1+Q∗11−Y22

f1(x)F2(Q02 + X1 + Q∗11 − x)dx

= 0

Proof. Equations (4.65) and (4.66) and the expected objective function concavity property, with the
constraints of non-negativity of the decision variables imply that Q∗12 = 0 and S∗1 = 0.

By substituting these values in the �rst optimality equation (4.31), one gets the result shown in
equation (4.68). 2

Case 7 should correspond to relatively low X1 values, because the optimal quantity Q∗11, that is mainly
used to satisfy the �rst period demand, is positive, and therefore the optimal quantity S∗1 is equal to zero.
In the case 7, the relative ordering cost c12 with respect to the ordering cost c22 should be relatively high,
and therefore, the optimal quantity Q∗12 is equal to zero.

h. case 8

This last case corresponds to the following assumptions

∂Π(X1, Q11, Q12, S1)
∂Q11

(0, Q∗
12, S

∗
1 ) ≤ 0, (4.69)

∂Π(X1, Q11, Q12, S1)
∂Q12

(Q∗
11, 0, S∗1 ) ≤ 0, (4.70)

∂Π(X1, Q11, Q12, S1)
∂S1

(Q∗11, Q
∗
12, 0) > 0. (4.71)

Lemma 4.13 If equations (4.69), (4.70) and (4.71) are satis�ed, then the optimal solution of the con-
strained �rst period subproblem is given by

(Q∗
11; Q

∗
12) = (0; 0), (4.72)
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and S∗1 is positive and veri�es the following implicit equation

Ω5(S∗1 ) = s1 − b1 − c22 + (h1 + b1)F1(X1 − S∗1 )

− (b2 + c33 − c22)F1(Q02 + X1 − S∗1 − Y12) (4.73)

− (−b2 − c33 + s2)F1(Q02 + X1 − S∗1 − Y22)

− (−b2 − c33 + s3 − h2)
∫ Q02+X1−S∗1−Y12

Q02+X1−S∗1−Y22

f1(x)F2(Q02 + X1 − S∗1 − x)dx

= 0

Proof. The proof is similar to that of Lemma 4.12. 2

It is also clear that this last case corresponds �rst to relatively high ordering cost c12, that makes Q∗
12

equal to zero. In this case, also The optimal Q∗
11 is equal to zero and the optimal S∗1 is positive, which

means that the initial inventory level X1 is relatively high.

Property 4.6 In Ω4(Q∗11) de�ned in (4.68), assume that Q11+X1 = x1, and in Ω5(S∗1 ) de�ned in (4.73)
assume that X1 − S∗1 = x2.

De�ne Y ′
11 as the solution of Ω4(x1) = 0 and Y ′

21 as the solution of Ω5(x2) = 0. We have the following
property

Y ′
11 < Y ′

21 (4.74)

Proof. By replacing x2 by Y ′
11 in Ω5(x2) one gets

Ω5(Y ′
11) = s1 − c11. (4.75)

From the model assumptions (section 4.2.2), one has s1− c11 < 0, which implies that Ω5(Y ′
11) is negative.

On the other hand, the �rst derivative of Ω5(x2) with respect to x2 is given by

dΩ5(x2)
dx2

= (b1 + h1)f1(x2) + (b2 + c33 + h2 − s3)
∫ Q02+x2−Y12

Q02+x2−Y22

f1(x)f2(Q02 + x2 − x)dx. (4.76)

From the model assumptions (section 4.2.2), one has

c33 > s3,

which implies
(b2 + c33 + h2 − s3) > 0.

From equation (4.26), one has also Y11 < Y21, which means that

∫ Q02+x2−Y12

Q02+x2−Y22

f1(x)f2(Q02 + x2 − x)dx > 0.

That leads to conclude that the �rst derivative of Ω5(x2) with respect to x2 is positive and consequently,
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Ω5(x2) is an increasing function in terms of x2. By de�nition, Y ′
21 is the solution of Ω5(x2) = 0, thus one

has Ω5(Y ′
21) = 0. While from (4.75) one has Ω5(Y ′

11) < 0. Therefore, we can conclude that Y ′
11 < Y ′

21.
The same approach can be carried out by replacing Y ′

21 in Ω4(x1). 2

Lemma 4.14 If the following condition is satis�ed

∂Π(X1, Q11, Q12, S1)
∂Q12

(Q∗
11, 0, S∗1 ) ≤ 0, (4.77)

then the optimal policy of the �rst period can be given as follows:

• for X1 < Y ′
11, Q∗ = Y ′

11 −X1, Q∗
12 = 0 and S∗1 = 0,

• for Y ′
11 ≤ X1 ≤ Y ′

21, Q∗ = 0, Q∗12 = 0 and S∗1 = 0,

• for X1 > Y ′
21, Q∗ = 0, Q∗12 = 0 and S∗1 = X1 − Y ′

21.

Proof. For the three cases described above, we can get using (4.77) with the concavity property of the
expected objective function and the model constraints that Q∗

12 = 0.
Then replace Q∗12 by its value in the �rst order partial derivatives with respect to Q11 and S1, given

in (A.17) and (A.19).
Therefore, for the �rst case, X1 < Y ′

11, one �nds

∂Π(X1, Q11, Q12, S1)
∂Q11

(Y ′
11 −X1, 0, 0) = 0 and ∂Π(X1, Q11, Q12, S1)

∂S1
(Y ′

11 −X1, 0, 0) < 0 (4.78)

which induces, by concavity, that the solution Q∗
11 = Y ′

11 −X1 and S∗1 = 0 is optimal.
For the second case, Y ′

11 ≤ X1 ≤ Y ′
11, one �nds

∂Π(X1, Q11, Q12, S1)
∂Q11

(0, 0, 0) < 0 and ∂Π(X1, Q11, Q12, S1)
∂S1

(0, 0, 0) < 0 (4.79)

which induces, by concavity, that the solution Q∗
11 = 0 and S∗1 = 0 is optimal.

For the last case where X1 > Y ′
21 one �nds

∂Π(X1, Q11, Q12, S1)
∂Q11

(0, 0, X1 − Y ′
21) < 0 and ∂Π(X1, Q11, Q12, S1)

∂S1
(0, 0, X1 − Y ′

21) = 0 (4.80)

which induces, by concavity, that the solution Q∗
11 = 0 and S∗1 = X1−Y ′

21 is optimal for that case. 2

First period: optimal solution

Based on the results obtained in section 4.3.3, we de�ne in this section an algorithm to provide the
closed-form optimal solution of the �rst period, or the closed-form optimal solution with an implicit
equation.

The concavity of the global expected objective function, given in (4.29), implies the existence of a
single optimal solution of the �rst period subproblem. Therefore, for a given set of the model parameters,
one and only one of the eight cases, described in section 4.3.3, is valid.
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Therefore, we propose the following algorithm, constituted of a series of �ve tests, that permits to
know in which case one is located and consequently what is the optimal solution of the �rst optimization
subproblem.

Test 1 If the following inequations are satis�ed

∂Π(X1, Q11, Q12, S1)
∂Q11

(0, 0, 0) ≤ 0, (4.81)

∂Π(X1, Q11, Q12, S1)
∂Q12

(0, 0, 0) ≤ 0, (4.82)

∂Π(X1, Q11, Q12, S1)
∂S1

(0, 0, 0) ≤ 0, (4.83)

then the optimal solution is
(Q∗11;Q

∗
12;S

∗
1 ) = (0; 0; 0).

Note that for a given X1, the inequations Ω1(0) > 0, Ω2(0) > 0 and Ω3(0) > 0 could not be satis�ed
together.

Test 2 If Test (1) is not satis�ed and if the inequality Ω1(0) > 0 is satis�ed then the optimal solution
is

(Q∗11; S
∗
1 ) = ((Y11 −X1); 0) ,

and Q∗
12 veri�es the following implicit equation

Ω1(Q∗12) = 0.

Test 3 If Test (1) is not satis�ed and if the inequality Ω2(0) > 0 is satis�ed then the optimal solution
is

(Q∗11; S
∗
1 ) = (0; (X1 − Y21)) ,

and Q∗
12 veri�es the following implicit equation

Ω2(Q∗12) = 0.

Test 4 If Test (1) is not satis�ed and if the inequality Ω3(0) > 0 is satis�ed then the optimal solution
is

(Q∗11; S
∗
1 ) = (0; 0),

and Q∗
12 veri�es the following implicit equation

Ω3(Q∗12) = 0.
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Test 5 If Tests (1) to (4) are not satis�ed then the optimal solution is

Q∗12 = 0,

and Q∗
11 and S∗1 are given by the following:

• for X1 < Y ′
11, Q∗ = Y ′

11 −X1 and S∗1 = 0,

• for X1 > Y ′
21, Q∗ = 0 and S∗1 = X1 − Y ′

21,

where Y ′
11 and Y ′

12 are given in Property 4.6.

First period: some analytical insights

In this section, we discuss the results obtained in the previous sections, and especially the cases 3, 4 and
5 described in section 4.3.3, where Q∗12 > 0.

In these three cases it is easily seen that the optimal values of the two decision variables Q∗11 and
S∗1 are completely independent, and the optimal value of the decision variable Q∗

12 is dependent of the
second period.

In the following section we treat the �rst period optimal decision variables Q∗11 and S∗1 independence
of the second period parameters. More precisely, we study the case where the optimal decision variable
Q∗12 is positive, and we explain in this case, the independence of Q∗

11 and S∗1 of the ordering cost c22, the
unit salvage value s1 and the second period demand D2.

We treat this independence because its anti-intuitive nature. Indeed, normally, when the decisions
related to Q11, Q12 and S1 are �xed, one must normally take into account the unit ordering cost c22 and
the unit salvage value s2 and the second period demand distribution, which is not the case here.

• Independence of Q∗
11 from the second period, when Q∗12 is positive

We discuss in this section the independence of the optimal decision variables Q∗
11 from the second

period parameters, namely the demand the ordering cost c22, the salvage value s2 and the demand
distribution D2.

Note that we distinguish three di�erent cases, based on the realization of the �rst period demand
D1: X2 < Y12, Y12 ≤ X2 ≤ Y22 and Y22 < X2. In each of these cases, there exists a di�erent
optimal policy for the second period: in the �rst case, the optimal policy is (Q∗22 > 0;S∗2 = 0). In
the second case one has Q∗

22 = S∗2 = 0 and in the last case one has Q∗22 = 0 and S∗2 > 0 (see 4.3.3).

� Independence from the unit order cost c22

When Q∗
12 > 0, then the optimal quantity Q∗11 is independent of the cost c22.

When Q∗12 is positive, then the �rst period demand D1 can be satis�ed with one of the three
following quantities:

∗ Q∗11 with a unit cost of c11,

∗ Q∗12 with a unit cost of c12 + b1,
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∗ Q∗22 with a unit cost of c22 + b1.

From the model assumptions, we have c11 < c12 + b1 and c11 < c22 + b1. Therefore, we can
conclude that due to the cost structure, it is bene�cial to satisfy D1 �rst with Q∗11.

Let us �rstly take the case where the demand D1 is in such a way that X1 < Y12.

Following our decision process described in Figure 4.1, and taking into account the above
constraints, the �rst period demand is then satis�ed, by a prioritized order: �rst by Q∗11, with
a unit cost of c11, then by Q∗12 with a unit cost of c12 + b1 and �nally by Q∗22 with a unit cost
of c22 + b1. The latter conclusion is equivalent to: the demand D1 which is satis�ed �rst with
Q∗

11, will be then satis�ed with Q∗
12 if Q∗

11 is not su�cient and then with Q∗
22 if Q∗11 + Q∗12 is

not su�cient.

Taking into account the above reasoning, and since the quantities Q∗11 and Q∗12 are decided at
the same time, we conclude that, in the case where X1 < Y12, Q∗

11 must depend on the unit
ordering cost c12 (and not on c22), whereas (Q∗11 +Q∗

12) must depend on the unit ordering cost
of Q∗

22, namely c22.

Secondly, we take the last two cases of the �rst period demand realization where Y12 < X2 <

Y22 and X2 > Y22. In these two cases Q∗
22 = 0 (see section 4.3.3), and consequently Q∗

11 is
independent of c22.

We conclude that for all the possible values of the demand D1, Q∗11 is independent of c22,
which implies that Q∗11 is completely independent of c22, when Q∗

12 is positive.

� Independence from the unit salvage value s2

If Q∗12 > 0, then the optimal quantity Q∗11 is independent of the salvage value s2.

Firstly, we consider the two possible cases of the demand D1 values, where X2 < Y12 and
Y12 ≤ X2 ≤ Y22. In these two cases, the optimal decision variables S∗2 is equal to zero (see
section 4.3.3). Consequently, it becomes obvious that, in these two cases, Q∗11 is independent
of the unit salvage value s2.

Secondly, consider the case where X2 ≥ Y22, in which S∗2 > 0 and Q∗22 = 0 (see section 4.3.3).
If any of the salvaged units does not belong to Q∗

11, then Q∗
11 is independent of s2. Assume

that at least a part of the returned quantity belongs to Q∗11.

As we have seen in the previous section, it is bene�cial to satisfy the demand D1 with the fast
production mode (Q∗11) more than the slow production mode (Q∗12).

On the other hand, from the same model assumptions, one has s2 < c11 + h1 and s2 < c12

(section 4.2.2). These assumptions means that, in the case where S∗2 > 0, it is more bene�cial
to have as less units as possible at the beginning of the second period to minimize the number
of returned units.

Taking into account all these facts, we conclude that when S∗2 > 0 and Q∗12 > 0, and since
it is bene�cial to reduce as much as possible the returned units (S∗2 ), one must begin �rst by
reducing Q∗

12. We conclude that as long as one can reduce Q∗12, or in other terms as long as
Q∗

12 is positive, then Q∗
11 does not depend on s2.
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Consequently, we note that when Q∗12 is positive then Q∗
11 is independent of s2.

� Independence from the second period demand D2

If Q∗
12 > 0, then the optimal quantity Q∗11 is independent of the second period demand, namely

D2.

The second period demand D2 can be satis�ed with one of the three following quantities:

∗ Q∗11 with a unit cost of c11 + h1,

∗ Q∗12 with a unit cost of c12,

∗ Q∗22 with a unit cost of c22.

From the model assumptions, one has c12 < c11 +h1. Since the decisions Q∗1 and Q∗
12 are �xed

at the same moment, therefore it is more bene�cial to satisfy D2 with Q∗12 than with Q∗
11.

From the model assumptions also, we have c12 < c22. Therefore it is the di�erence between
c12 and c22, and the �rst period demand variability that determine, which of Q∗12 or Q∗22 is
more bene�cial to satisfy D2. Although, in all the cases, and when Q∗12 > 0, it is either Q12

or Q22 that may be used to satisfy (optimally) the second period demand. Therefore, as long
as Q∗12 is positive, Q∗11 is independent of D2.

� Equivalent Newsvendor model

In the case where Q∗12 > 0, Q∗
11 is de�ned by Q∗11 = (Y11 −X1)+ with

Y11 = F−1
1

(
c12 − c11 + b1

h1 + b1

)
,

given in (4.44) and (4.45).

This result can be interpreted as a classical Newsvendor problem with the following terms:

∗ underage cost Cu = c12 − c11 + b1,

∗ overage cost Co = c11 + h1 − c12.

The underage cost Cu is interpreted as follows:

Since Q∗12 is positive and it arrives before ordering Q∗
22 and after the realization of D1(Figure

4.2), therefore, in the case where there are back-orders from the �rst period, they will be
satis�ed �rst with Q∗12 with a unit cost of c12 + b1. Therefore, Cu represents marginal cost of
backlogging a demand of the �rst period and satisfying it with Q∗

12 instead of Q∗11.

The overage cost Co is interpreted as follows:

If some units ordered with Q∗11 are not used during the �rst period, they will stay until the
beginning of the second period. The unit cost charged for these units is then c11+h1. However,
if these units would be ordered with Q12, that arrives at the beginning of the second period,
then the unit cost charged would be c12. Therefore, the marginal overage cost is the di�erence
between c11 + h1 and c12.

• Independence of S∗1 from the second period when Q∗12 is positive
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Q11 
Q12 Q22 

X2 S2 D1 
I1 

Figure 4.2: Decision process

In this paragraph we emphasize on the independence of the other �rst period optimal decision
variable S∗1 of the second period parameters in the case where Q∗12 is positive.

� Independence from the unit order cost c22 and of the demand D2 distribution
If Q∗12 > 0, then the optimal decision variable S∗1 is independent of the cost c22.

Since the optimal decision variables S∗1 and Q∗
12 are �xed before that the stochastic demand

D1 is realized, then in order to study the independence of S∗1 of the second period parameters,
we must take separately the three possible ranges of the �rst period demand realization. First
of all, we take the case where X2 < Y12, in which we have Q∗22 > 0.

Note that when Q∗
12 > 0 and S∗1 > 0, the Lemma 4.5 implies that c12 < s1 + h1. On the other

hand, the second period demand D2 can be satis�ed with one (or more) of the three following
quantities: I1 (if 0 < I1), Q∗

12 and Q∗22. In function of the di�erence between c12 and c22, one
may have two cases:

∗ c12 < c22 < s1 + h1,

∗ c12 < s1 + h1 < c22.

In both of the above cases, it is clear that Q∗12 is more bene�cial to satisfy the demand D2,
rather than the �nal inventory of the �rst period I1 and the optimal quantity Q∗22. Indeed, the
marginal cost of keeping in stock a unit at the beginning of the �rst period is s1 + h1, and the
marginal cost of ordering a unit with Q∗12 is c12. Since the decisions Q∗12 and S∗1 are taken at
the same moment, therefore, at that moment (the beginning of the �rst period) one returns as
many units as possible with a salvage value s1, and to satisfy the second period demand, one
reorders units with Q∗12. That implies that S∗1 depends on the ordering cost c12 and not on
the ordering cost c22 neither on the demand D2 distribution. Note that the optimal decision
variable Q∗12 depends on the ordering cost c22 and the demand D2 distribution.

In the case where c22 < c12 < s1 + h1, the optimal decision variable Q∗12 is equal to zero and
therefore this case does not correspond to the context studied in this section (where we have
Q∗

12 > 0).
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Now, we consider the cases of the demand D1 realization, in which we have Y12 < X2 < Y22

or X2 > Y22. In these two cases, Q∗
22 is equal to zero, and thus c22 should not be considered

in the calculation of S∗1 . On the other hand, one has always c12 < s1 + h1 which means that
Q∗

12 has the priority to satisfy D2, and since the decisions S∗1 and Q∗
12 are taken at the same

moment, then only Q∗
12 should depend on D2 and therefore S∗1 is independent of the demand

D2

We conclude that whatever is the realization of the �rst period demand D1, and consequently
whatever is the second period initial inventory level X2, the decision variable S∗1 is independent
from the ordering cost c22 and from the demand D2.

� Independence from the unit salvage value s2

When Q∗
12 > 0, then S∗1 is independent from s2.

The analysis of this independence is similar to those discussed in the previous paragraphs.

� Equivalent Newsvendor model

From section 4.3.3 and (4.53), we have that when Q∗12 is positive, then S∗1 is given by S∗1 =

(X1 − Y21)+ with
Y21 = F−1

1

(
c12 − s1 + b1

h1 + b1

)
.

This solution can be interpreted as a modi�ed Newsvendor problem solution with the following
costs:

∗ underage cost Cu = c12 − s1 + b1,

∗ overage cost Co = s1 + h1 − c12.

The underage cost Cu represents the marginal cost of returning (salvaging) a product unit at
the beginning of the second period, incurring a cost of −s1, and then satisfying the related
back-order, at the beginning of the next period with Q∗12, incurring an additional cost of c12+b1

Q12 
Q22 

X2 S2 D1 
I1 S2 

Figure 4.3: Decision process

The overage cost Co represents the marginal cost of keeping an additional unit in stock (from
the initial inventory of the �rst period), incurring a cost of h1, instead of salvaging it and
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ordering a new unit with Q∗12 which incurs a cost of c12 − s1. The overage cost, Co, is then
the di�erence between these two marginal costs.

4.4 Computational study

Based on some numerical examples, we will show, in this section, the behavior of our model as a function
of the di�erent parameters. These numerical applications give us insights which are complementary to
the analytical ones, and that are compatible with the analytical solution that we have provided. The
second period analytical solution is completely characterized by two threshold levels, nevertheless the
�rst period solution is more complicated. Thus, we will emphasize on the �rst period decision variables
and show how are they in�uenced by the �rst and second period parameters. The following sections are
structured as follows:

• we begin with a nominal example that shows the �rst period optimal policy in terms of the �rst
period initial inventory level X1,

• then we show the impact of the �rst period demand variability on the optimal policy, and that of
the second period demand variability,

• via other numerical examples, we show the e�ect of the ordering costs c12 and c22.

Note that for these numerical applications, we assume that the demand has a truncated-normal
distribution, corresponding to a normal distributed demand, D ∼ N [µ; σ], for which we eliminate the
negative part.

4.4.1 Nominal example

In this section, we describe via a nominal example the shape of the optimal policy of the �rst period in
terms of its initial inventory level X1. In this example, we also show the shape of the expected optimal
policy of the second period. We represent by E[Q∗

22] and E[S∗2 ] the expected optimal values of Q22 and
S2 in function of the demand D1, the demand of the �rst period. This nominal example will be used
in the following sections to provide some comparisons with other numerical examples varying di�erent
parameters.

The numerical data used in this example are the following: D1 ∼ N [1000; 300], D2 ∼ N [1000; 300],
h1 = h2 = 5, p1 = p2 = 100, b1 = b2 = 25, c11 = 50, c12 = 30, c22 = 50, c33 = 50, s1 = s2 = s3 = 20 and
Q01 = Q02 = 0.

In this example we can easily identify the �rst period optimal policy shape, and the two thresholds
structure that characterizes the optimal decision variables Q∗

11(X1) and S∗1 (X1).
In the numerical example de�ned above, one has (c12 = 30) > (s1 + h1 = 25). Therefore, according

to Lemma 4.5, one must have Q∗12S
∗
1 = 0, which is the case here.

One can also see that in X1 values regions, where Q∗11 or S∗1 is positive, the optimal Q∗
12 value is

constant in terms of X1. In the region where both Q∗11 and S∗1 are null, the optimal Q∗12 is decreasing in
terms of X1.
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Figure 4.4: Nominal numerical example

In the region of small X1 values, the optimal policy is an order-up to Y11 policy which implies that
X1 + Q∗

11 = Y11. Since Y11 is constant, then when X1 increases, Q∗
11 must decrease. Since the other

model parameters are constant, thus Q∗12 does not vary. The same interpretation is valid for the high X1

values with a salvage up-to-level policy and a positive decision variable S∗1 .
For the central region of X1 values (between Y11 and Y21), the two optimal decision variables Q∗11 and

S∗1 are equal to zero. In this region the only parameter that changes is X1, and therefore, the optimal
Q∗12 must decrease when X1 increases.

4.4.2 Impact of the demand D1 variability

In this section, we study the impact of the �rst period demand D1 variability on the optimal policy. We
consider the same numerical data of section 4.4.1 except the demand D1 variability. For the �rst example
(Figure 4.5), we consider a higher variability than that of the nominal example with D1 ∼ N [1000; 450],
and for the second example (Figure 4.8) we consider a lower variability with D1 ∼ N [1000; 150].

As one could see from these two examples, for a given X1 value, the optimal decision variables Q∗11 and
S∗1 decrease when the demand D1 variability increases, while the optimal decision variable Q∗12 increases.
Indeed, note that the width of the interval between Y11 and Y12 increases with the demand D1 variability.
By de�nition, Y11 and Y21 are the value of the inverse cumulative distribution function of D1 at two given
points, given by

c12 − c11 + b1

h1 + b1

and
c12 − s1 + b1

h1 + b1
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Figure 4.5: High D1 variability

respectively. In our numerical example, the �rst point, relative to Y11 is lower than the mean of the
demand D1 and the second point relative to Y21 is higher than the demand mean. Therefore, when the
variability of D1 increases, Y11 decreases and Y12 increases (see Figure 4.6 and 4.7). That implies, as a
result of equations (4.44) and (4.52) that both Q∗11 and S∗1 decrease. For the values of X1 where Q∗11 is
positive, and to compensate for the decrease in Q∗

11, Q∗12 increases. Indeed Q∗12 is ordered at the beginning
of the �rst period and arrives at the beginning of the second period, and even if there is a backlog cost
from the �rst to the second period, this quantity (Q∗12) is used to satisfy backlogged orders of the �rst
period. Therefore, when the demand D1 variability increases, it becomes more pro�table to order with
the slow mode.

In the given numerical example, when S∗1 > 0 one always has Q∗12 = 0 (and of course Q∗
11 = 0),

then when the demand D1 variability increases, and to face this increase in variability, one �nd it more
pro�table not to sold more units with s1 and to keep the available units at the beginning of the �rst
period to be used in the �rst and eventually in the second period. In fact, as in our examples, the unit
inventory holding cost h1 is relatively low with respect to the di�erence between c12 and s1 which makes
Y21 higher than the mean of the demand D1, (see (4.53)).

It is logical to get an increase in the expected optimal salvaged quantity at the beginning of the second
period E[S∗2 ] due to the increase of Q∗

12.

4.4.3 Impact of the demand D2 variability

In this section we show the impact of the second period demand D2 variability on the optimal solution.
We compare the nominal example shown in paragraph 4.4.1 with two other examples that have the same
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Figure 4.8: Low D1 variability

numerical data except the standard deviation of D2: for the �rst example, shown in Figure 4.9, we assume
that D2 ∼ N [1000; 450]. For the second example shown in Figure 4.10 we suppose that D2 ∼ N [1000; 150]

From these two examples it can be easily see that when Q∗
12 is positive (for low X1 values), the optimal

decision variables Q∗
11 and S∗1 are independent of the demand D2 variability, whereas when Q∗12 = 0, the

optimal decision variables Q∗11 and S∗1 depends on the demand D2 variability.

Take the region of the high X1 values, where S∗1 > 0. For example, for a given X1, when the demand
D2 variability increases, the optimal decision variable S∗1 value decreases, which permits keeping more
units in stock to be eventually used in the second period, in order to face the increase in the second
period demand variability.

Since in our example, Q12 is less costly for satisfying the demand D2 than Q22 (c12 < c22), therefore
when the demand D2 variability increases Q∗

12 increases also, whereas, in these examples, Q∗22 is always
equal to zero.

Two factors in�uence the expected optimal decision variable E[S∗2 ] when the variability of D2 increases:
�rstly Y22 increases (see (4.25)); secondly, S∗1 decreases (for high X1 values).

4.4.4 Impact of the unit order cost c12

In this section we consider a numerical example for which the numerical data are the same as in the
nominal example given in section 4.4.1, except the initial inventory level X1 which is equal to zero in this
example (X1 = 0) and the unit order cost c12 which is variable in this example.

Looking to this numerical example (Figure 4.11), one could immediately deduce that when c12 becomes
higher than c22, Q∗

12 becomes automatically equal to zero. For a given c12 value which is less than c22 the
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Figure 4.9: High D2 variability
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Figure 4.10: Low D2 variability
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Figure 4.11: Impact of the unit order cost c12

optimal expected decision variable E[Q∗
22] becomes positive. This di�erence is due to the variability of

the demand D1, and to the role that Q12 plays in satisfying some of the backlogged demands of the �rst
period. Indeed, when the optimal decision Q∗12 is taken, the demand D1 is a random variable, while when
the optimal decision Q∗

22 is taken, the demand D1 is known (realized). Therefore for a cost of c12 which
is less than c22, the expected Q∗

22 becomes positive in order to compensate for this variability e�ect.

4.4.5 Impact of the unit order cost c22

We consider in this section the nominal numerical example presented in section 4.4.1, with initial inventory
level that is equal to zero (X1 = 0) and with a variable unit ordering cost c22.

It is clear, from Figure 4.12, that when Q∗12 > 0 the optimal decision variables Q∗11 and S∗1 are
independent from the second period parameters and especially, for this example, from c22. When c22

increases, the expected Q∗22 decreases, and becomes equal to zero for a certain value of c22. This last
value is higher than c12 (which is equal to 30 for this example). This di�erence is due, as we have seen in
the previous section, to the fact that Q∗12 is decided before that D1 is realized, while Q∗22 is decided after
that D1 is realized. To compensate for the decrease of expected Q∗

22, one increases Q∗12 and not Q∗11 to
not pay the inventory holding cost at the �rst period.

4.4.6 Impact of the unit salvage value s2

In this last example, we consider the same numerical data as in section 4.4.1 except the initial inventory
level X1 which is equal to zero and the unit salvage value s2 which is variable in this example.

One can note that Q∗
11 is independent of s2, and this is because Q∗

12 > 0. We deduce also that
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Figure 4.12: Impact of the unit order cost c22
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Figure 4.13: Impact of the unit salvage value, s2, on the optimal policy
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Q∗12 increases with s2 as the expected value of S∗2 . The increase of Q∗
12 is due to the opportunity of

returning a part of this ordered quantity to the supplier with an important s2 salvage value, and is
completely connected to the increase in the expected optimal salvaged quantity at the beginning of the
second period.
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Figure 4.14: Impact of the unit salvage value, s2, on the optimal expected objective function

In Figure 4.14 we show the impact of the unit salvage value on the optimal expected objective function.
We present in this picture the expected optimal objective function of our nominal model in terms of s2,
for X1 = 0, and for three di�erent values of the demand D1 standard deviation. The �rst one is the
nominal value, 300. The second one is for the example with high D1 variability, 450. The third one is for
the low D1 variability curve, 150.

Note that whatever is the variability of the demand D1, the expected optimal objective function
increases when the unit return value at the beginning of the second period, s2, increases because the
return option is very bene�cial for the retailer. The increase in the objective function is more important
when the variability of the demand D1 is high. In fact, when the variability of D1 increases, the number
of potential shortages at the �rst period increases also, and the need to order more units at the beginning
of the �rst period increases also: therefore when s2 increases, that permits reduces the impact of the
increase of the ordered units at the �rst period, because it permits a return with a better return price.

Note also that the expected optimal objective function decreases when the demand D1 variability
increases.
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4.5 Conclusion

In this chapter a new two-period production and inventory model has been presented. In this model,
two production modes are allowed and return opportunities are available at the beginning of each period.
A dynamic programming approach has been used in order to solve this stochastic two-period decision
model. We have shown that the structure of the optimal policy of the second period is completely
characterized by two threshold levels. The optimal policy of the �rst period has been characterized also
by two threshold levels. We have shown that in the case where the optimal quantity ordered at the �rst
period using the slow production mode is positive, the other decision variables of the �rst period are
completely independent of the second period parameters. Since the complete analytical characterization
of the �rst period optimal policy is not possible, an algorithm has been de�ned in order to characterize
that optimal policy, completely in some cases, and using an implicit equation in other cases. The behavior
of our model has been studied using some numerical examples. In the following two chapters (Chapter 5
and Chapter 6), we will improve the model presented in this chapter, by adding an exogenous information
to update the demand forecast of the second period on the one hand, and by adding limited production
capacities on the other hand.
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Chapter 5

Two-Period Production Planning and
Inventory Control with Capacity
Constraints

We provide in this chapter an extension of Chapter 4. We study a single product two-period
production/inventory model, in which the demands at each period are independent random
variables. To optimally satisfy these random demands, quantities can be produced at the
beginning of each period using slow or fast production mode, under capacity constraints. In
addition to the usual decision variables for such models, we consider that a certain quantity
can be salvaged at the beginning of each period. Such salvage processes are useful if the initial
inventory of a period is considered to be too high. The unsatis�ed demands for each period
are backlogged to be satis�ed during the next periods. After the end of the second period,
a last quantity is produced in order to satisfy remaining orders and to avoid lost sales. The
remaining inventory, if any, is salvaged. We formulate this model using a dynamic program-
ming approach. We prove the concavity of the global objective function and we establish the
closed-form expression of the second period optimal policy. Then, via a numerical solution
approach, we solve the �rst period problem and exhibit the structure of the corresponding
optimal policy. We provide insights, via numerical examples, that characterize the basic
properties of our model and the e�ect of some signi�cant parameters such as costs, demand
variabilities or capacity constraints.

Keywords: stochastic production and inventory planning, capacity constraints, salvage op-
portunities, dynamic programming.
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5.1 Introduction

In this chapter, we extend the model developed in Chapter 4. We study, therefore, style-goods type
products, characterized by a short life cycle with uncertain future demands. In the literature, the as-
sociated production/inventory management issues are modeled and analyzed, via the so-called newsboy
model studied in Chapter 3.

However, in many cases a multi-periodic structure underlies production/inventory management prob-
lems. This is well known for long life cycle products (see (Vollmann et al., 1988)), but even for short
life cycle products, as demonstrated by several recent research studies and successful applications (see
(Fisher et al., 1996, 2001)). Such multi-periodic decision processes exhibit an important additional fea-
ture with respect to the classical one-period newsboy model: it permits one to be reactive and to adapt
the successive orders to the successively observed demand �uctuations. In other words, in a single period
model the unique order is issued once, before information about the e�ective demand is available. On the
contrary, in a multi-period model, after each order the realized corresponding demand can be observed
and future orders will clearly exploit this information.

We choose to consider here a two-period model. Our results can clearly be seen as building blocks
permitting the analysis the structure of optimal decisions in general multi-period decision processes. In
addition, we assume that the order sizes are limited by capacity constraints. These constraints could
prevent the decision maker from satisfying the random future demand, inducing eventual lost-sales, or
even penalties.

Several two-period models including capacity constraints have been developed in the framework of
supply contracts. (Eppen and Iyer, 1997) studied a two-period lost sales model with backup agreement
contracts in a forecast-update environment. In this type of contract, the quantity ordered in the second
period is constrained and depends on the quantity ordered in the �rst period. (Bassok and Anupindi,
1997) studied supply contracts models with minimum commitment: the ordered quantity for the entire
horizon has to be greater than an initially �xed commitment. Via a classical dynamic programming
approach, these authors have exhibited the structure of the optimal policy for this particular multi-
period inventory model with backlogs. (Donohue, 2000) applied an approach similar to that of (Choi
et al., 2003) for a model with two production modes. The analysis is focused on return option in order
to achieve channel coordination. (Sethi et al., 2005) analyzed, in a dynamic programming setting, a
class of two-stage quantity �exibility contracts. In these contracts, one can order a �rst quantity before
accurate forecasts are available, then after the demand forecast updates are performed, one can order a
second constrained quantity and a third quantity from a spot market that is unconstrained. In (Barnes-
Schuster et al., 2002), supply contracts with options are investigated. Their model is a two-period one
with conditional demand distributions. The model is analyzed from the buyer and supplier points of
view. Again, the theoretical analysis is mainly concerned by the channel coordination issue.

In the present chapter, we consider a two-period production/inventory model with backlogs. The
induced costs are purchasing costs, inventory holding costs and backorder costs. The demands at the �rst
and second period are described by independent random variables, with known probability distributions.
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We assume that at the end of the second period, the remaining inventory can be sold to a speci�c market
with a given salvage value.

In addition to these classical parameters, we suppose that some preliminary �xed orders are to be
delivered at each period. We suppose also that at the beginning of the �rst period, the initial inventory
level can be given (as di�erent from zero). This initial inventory could, for example, result from previous
selling seasons, or from preliminary (early) orders.

The proposed model includes several production/ordering modes, with di�erent delivery lead-times,
in this way providing more �exibility to the decision maker.

Furthermore, in this model we consider capacity constraints: for each of the quantities ordered during
the �rst and second periods, there is a speci�c bound that cannot be exceeded ((Cheaitou et al., b, 2006)
and (Cheaitou et al., a, 2008)).

An important feature of the proposed model is worth being highlighted : at each period, the decision
maker has the opportunity of salvaging a part of current inventory. We furthermore assume that the
periodic salvage values are greater than the salvage value at the end of the last period. This general
salvage process corresponds to several practical cases. First, when a parallel market exists, this market
can be considered as a client that buys the products at a price lower than the usual market price. A
second case can occur in the framework of a buyer-supplier contract in which a fraction of the orders can
be returned to the supplier if the current inventory is considered to be too high with respect to expected
future demands. Clearly, in such settings the return price can be lower than the production/ordering
cost.

In summary, the model studied in the present chapter has the following features :

• �rst, the periodic ordering process is quite general in the sense that at each time period orders can
be made for the di�erent subsequent periods, possibly with di�erent costs and for general demand
distributions,

• second, the periodic selling process is quite general, in the sense that, in addition to the classical
selling process, it is possible, at the beginning of each period, to sell a part of the available inventory
to a parallel market, at a given salvage value,

• third, the data are dynamic : the selling prices, costs, salvage values and demand probability
distributions are period-dependent,

• fourth, the model includes initial inventory and initially �xed order quantities to be delivered in
the di�erent periods,

• �fth, the model includes many production/ordering modes and quantity-speci�c capacity con-
straints.

The remaining parts of this chapter are structured as follows: the second section describes the model
(namely the complete decision process and the optimization problem). In the third section, we propose
the solution approach. We �rst prove the objective function concavity of the second period subproblem.
Then we develop an analytical solution for the second period that characterizes the optimal policy, and
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by using dynamic programming, we then provide some analytical properties of the optimal policy of the
�rst period. Numerical examples are solved in section four, in order to give some managerial insight for
this kind of production/inventory system. The last section is dedicated to the conclusion and further
research ideas.

5.2 The model

5.2.1 Model description

As we have mentioned above, the model presented in this chapter is based on the model provided in
Chapter 4. The main di�erence is the addition in this chapter of production capacity constraints.

In each period t, the random demand Dt is de�ned by a probability density function (PDF) ft(·) :

[0,+∞[→ IR+ and by a cumulative distribution function (CDF) Ft(·) : [0, +∞[→ [0, 1]. At each period
any received demand is charged at a price pt, even if it is satis�ed at the next period.

We de�ne the decision variables Qts (with 0 ≤ t ≤ 3 and t ≤ s ≤ 3) as the quantities ordered at the
beginning of period t to be received at the beginning of period s, with a unit order cost of cts. Some
of these orders are limited by capacity constraints, explicitly given in (5.5). Q01 and Q02 have been
ordered before the selling horizon and are assumed to be given. We now introduce the additional decision
variables St (with 1 ≤ t ≤ 3), which are the quantities salvaged at the beginning of period t, with unit
salvage values st. All the decision variables, i.e. Qts and St, are assumed to be non-negative.

The state variables of the model are Xt, the inventory level at the beginning of each period, and It,
the inventory level at the end of each period (I0 is given and considered as the initial inventory for the
problem).

The periodic inventory holding cost is ht, while unsatis�ed orders in period t are backlogged to the
next period, with a penalty shortage cost bt. It is worth noting that the third period is used in the model
not as real period, involving a decision process to be optimized, but only as a terminal condition for the
model.

Figure 5.1 presents the structure of the decision process and demand realization, which is as follows.
The available inventory at the beginning of the �rst period, before current orders are chosen and demand
occurs, is

X1 = I0 + Q01, (5.1)

where, in fact, I0 and Q01 can be considered as data. Then decision variables Q11, Q12 and S1 are �xed.
Demand D1 occurs in such a way that the available inventory at the end of the �rst period is given by

I1 = X1 + Q11 −D1 − S1. (5.2)

The available inventory at the beginning of the second period, before current orders are chosen and
demand occurs, and after Q12 is received, is

X2 = I1 + Q02 + Q12 = X1 + Q11 −D1 − S1 + Q02 + Q12, (5.3)
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Figure 5.1: Decision process

where Q02 can be considered as data. Then decision variables Q22 and S2 are �xed. Demand D2 occurs
in such a way that the available inventory at the end of the second period is given by

I2 = X2 + Q22 −D2 − S2. (5.4)

The orders are constrained and the salvaged quantities clearly cannot be higher than the available inven-
tories. These constraints are formulated by the following inequations

0 ≤ Q11 ≤ K11, 0 ≤ Q12 ≤ K12, 0 ≤ Q22 ≤ K22, 0 ≤ S1 ≤ X+
1 , 0 ≤ S2 ≤ X+

2 . (5.5)

The last order Q33 is supposed to be unconstrained. Indeed, if the quantities ordered during the
�rst and second periods are not su�cient to satisfy demands, this last quantity, Q33, is ordered from an
assumed unconstrained spot market, with a unit order cost c33. As in (Sethi, 2005), we assume that c33

is greater than the unit order costs of the preceding periods. Ordering from such a spot in�nite market
permits one to satisfy all the unsatis�ed orders, guaranteeing a pure backlog model without lost sales.

The optimal terminal decision process in the third period is as follows (see (Khouja, 1999), (Silver et
al., 1998) and (Hillier and Lieberman, 1990)): after demand D2 has occurred, it is optimal to order Q33

and salvage S3 de�ned as follows

Q33 = −I2 if I2 ≤ 0 and S3 = I2 if I2 > 0. (5.6)

This result has been shown in Lemma 4.1 in Chapter 4.

Note that the assumptions on the model parameters are the same as those de�ned in Chapter 4 (see
section 4.2.2).
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5.2.2 The optimization problem

Introduce Π1(X1, Q11, Q12, S1) and Π2(X2, Q22, Q33, S2, S3) as the expected pro�t of the �rst and the
second periods with respect to the random variables D1 and D2 respectively. In the following sections,
the decision variables S3 and Q33 will be adapted to the state of the system according to optimal feedback
policy (5.6). These variables will thus be eliminated from the pro�t function expressions. The expected
pro�ts Π1(·) and Π2(·) are then formulated as follows

Π1(X1, Q11, Q12, S1) =p1E[D1] + s1S1 − c11Q11 − c12Q12

− h1

∫ X1+Q11−S1

0

(X1 + Q11 − S1 −D1)f1(D1) dD1

− b1

∫ +∞

X1+Q11−S1

(D1 −X1 −Q11 + S1)f1(D1) dD1,

(5.7)

Π2(X2, Q22, S2) =p2E[D2] + s2S2 − c22Q22

− h2

∫ X2+Q22−S2

0

(X2 + Q22 − S2 −D2)f2(D2) dD2

− b2

∫ +∞

X2+Q22−S2

(D2 −X2 −Q22 + S2)f2(D2) dD2

+ s3

∫ X2+Q22−S2

0

(X2 + Q22 − S2 −D2)f2(D2) dD2

− c33

∫ +∞

X2+Q22−S2

(D2 −X2 −Q22 + S2)f2(D2) dD2,

(5.8)

where E[D1] and E[D2] represent the expectation of the �rst and second period demands respectively.
De�ne Π(X1, Q11, Q12, Q22, S1, S2) as the global expected pro�t with respect to the random variables D1

and D2. This global expected pro�t is then

Π1(X1, Q11, Q12, S1) + ED1 {Π2(X2(X1, Q11, Q12, S1), Q22, S2)} , (5.9)

where ED1 {·} represents the expectation, with respect to D1. The global optimization problem is then to
maximize Π(·) with respect to the decision variables of the �rst and second periods under the constraints
de�ned in (5.5), namely

max
Q11,Q12,Q22,S1,S2

Π(X1, Q11, Q12, Q22, S1, S2), (5.10)

subject to

0 ≤ Q11 ≤ K11, 0 ≤ Q12 ≤ K12, 0 ≤ Q22 ≤ K22, 0 ≤ S1 ≤ X+
1 , 0 ≤ S2 ≤ X+

2 . (5.11)
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5.3 The resolution approach

Via a classical dynamic programming approach (see (Bertsekas, 2005), (Barnes-Schuster et al., 2002) and
(Sethi et al., 2005) and others), we decompose problem (5.10)-(5.11) into two one-period subproblems as
follows. The �rst subproblem is associated with the second period. The optimal solution for this problem,
namely the optimal policy Q∗22 and S∗2 , expressed as a function of the state variable X2, is de�ned as the
solution of the optimization problem

max
Q22,S2

{Π2(X2, Q22, S2)} , (5.12)

s.t.

0 ≤ Q22 ≤ K22 and 0 ≤ S2 ≤ X+
2 . (5.13)

Then, assuming that the optimal policy (Q∗
22(X2), S∗2 (X2)) will be implemented in the second period,

the optimal policy for the �rst period, namely (Q∗
11(X1), Q∗

12(X1), S∗1 (X1)) can be obtained as the solution
of the problem

max
Q11,Q12,S1

{Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))} =

max
Q11,Q12,S1

{Π1(X1, Q11, Q12, S1) + ED1 {Π∗2(X2, Q
∗
22(X2), S∗2 (X2))}} ,

(5.14)

s.t.

0 ≤ Q11 ≤ K11, 0 ≤ Q12 ≤ K12 and 0 ≤ S1 ≤ X+
1 . (5.15)

5.3.1 Second-period subproblem

We exhibit the solution of the second period sub-problem. This kind of problems has been studied in the
previous chapters. First, we prove the concavity of the expected objective function. Then, using the �rst
order optimality condition, we provide the optimal policy.

In Chapter 4, it has been proved that the objective function Π2(X2, Q22, S2), de�ned in (5.8) is a
jointly concave function with respect to Q22 and S2. Therefore, the optimal policy can be de�ned in the
following section.

Optimal policy First, we solve the unconstrained optimization problem de�ned by (5.12). We get, as
shown in Appendix A.1, a two-threshold optimal policy, with the threshold levels given by

Y12 = F−1
2

(
b2 + c33 − c22

b2 + c33 + h2 − s3

)
and Y22 = F−1

2

(
b2 + c33 − s2

b2 + c33 + h2 − s3

)
. (5.16)

By the model assumptions (see Chapter 4), it is easily seen that the two thresholds satisfy

Y12 ≤ Y22. (5.17)
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Via above lemma, and using the results shown in Appendix A.1, it is clear that the optimal policy for
the constrained problem (5.12)-(5.13) will be the following (see (Bassok and Anupindi, 1997)),

if X2 ≤ Y12 −K22 ⇒




Q∗22 = K22,

S∗2 = 0,
(5.18)

if Y12 −K22 ≤ X2 ≤ Y12 ⇒




Q∗
22 = Y12 −X2,

S∗2 = 0,
(5.19)

if Y12 ≤ X2 ≤ Y22 ⇒




Q∗
22 = 0,

S∗2 = 0,
(5.20)

and

if X2 ≥ Y22 ⇒




Q∗22 = 0,

S∗2 = X2 − Y22.
(5.21)

These conditions amount to

Q∗
22(X2) =

(
min (Y12 −X2; K22)

)+ and S∗2 (X2) = (X2 − Y22)+. (5.22)

Note that the production capacity constraint related to K22 is active only if K22 is smaller than the
order-up-to-level threshold Y12. Otherwise the capacity constraint of the second period will no longer be
active.

5.3.2 First period subproblem

The optimization problem to solve for the �rst period problem is given by

max
Q11,Q12,S1

{Π1(X1, Q11, Q12, S1) + ED1 {Π∗2(X2, Q
∗
22(X2), S∗2 (X2))}} (5.23)

s.t.
0 ≤ Q11 ≤ K11, 0 ≤ Q12 ≤ K12. (5.24)

Lemma 5.1 The total objective function Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2)), de�ned in (5.14) is a

jointly concave function with respect to Q11, Q12 and S1.

Proof. See Appendix B.1.

Lemma 5.1 shows that there exists an optimal policy for the �rst period optimization problem and
that this policy is unique. We de�ne Q∗11(X1), Q∗12(X1) and S∗1 (X1) as the optimal values of the �rst
period decision variables as a function of X1.
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Lemma 5.2 There are no optimal solutions with Q∗
11(X1) > 0 and S∗1 (X1) > 0 simultaneously. In other

words, one has the property Q∗11(X1) S∗1 (X1) = 0.

Proof. See Appendix B.3.

Lemma 5.3 When the optimal value of the decision variable Q12 is positive, namely when Q∗
12(X1) > 0,

the optimal values of the decision variables Q11 and S1 are completely characterized by two thresholds
given by

Y11 = F−1
1

(
c12 − c11 + b1

h1 + b1

)
and Y21 = F−1

1

(
c12 − s1 + b1

h1 + b1

)
. (5.25)

In other words, one has

(Q∗11; S
∗
1 ) =

(
min

(
(Y11 −X1)+; K11

)
; (X1 − Y21)+

)
(5.26)

Proof. See Appendix B.4.

The above lemmas partially characterize the �rst period optimal policy. Note that the algorithm
developed in Chapter 4, in order to characterize the �rst period optimal policy, is still valid for the model
presented in this chapter.

Unfortunately, there exists no complete closed-form solutions for this general problem (i.e. for general
demand probability distributions). We thus must have recourse to numerically computed solutions for
the examples analyzed in the following section.

5.4 Numerical applications and insights

We illustrate the impact of the main parameters of the model via several numerical examples. The second
period analytical solution is completely determined by two threshold levels, while the �rst period optimal
solution is determined numerically. Thus, we will emphasize especially the �rst period decision variables
and show how these variables and policies are in�uenced by the model parameters. The main parameters
are: the initial inventory level, the demand variability, the costs and the capacity constraints.

We �rst begin with a nominal example that exhibits the �rst period optimal policy as a function of
the initial inventory level I0. After this �rst example, we illustrate the e�ect of the �rst and second period
demand variability. Then, via other numerical examples we show the e�ect of the cost parameters (we
choose c22) and the production capacity constraint (we choose K11 and K12).

Note that for these numerical applications, we classically assume that the demand of period t has
a truncated-normal distribution, restricted to positive values. Note also that we represent by E[Q∗22]

and E[S∗2 ] the expected optimal values of Q22 and S2 in function of D1, the demand of the �rst period,
assuming that the optimal policy is implemented in the �rst period.
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Figure 5.2: Nominal numerical example

5.4.1 Nominal example

We �rst provide the nominal numerical example that will be exploited in the whole numerical analysis.
The numerical data for this example are the following: D1 ∼ N [1500; 300], D2 ∼ N [1500; 300], h1 = h2 =

10, p1 = p2 = 200, b1 = b2 = 50, c11 = c22 = c33 = 100, c12 = 60, s1 = s2 = s3 = 40, Q01 = Q02 = 0,
K11 = K22 = 1000, K12 = 1500. We �rst show the structure of the optimal policy of the �rst period in
terms of I0. In fact in this example, we also show the shape of the expected optimal policy of the second
period. It is easily seen that the �rst period optimal policy has a shape similar to that of the second
period, corresponding basically to two threshold feedback policies.

One can also see that in the regions where Q∗
11 or S∗1 is positive, Q∗12 is constant in terms of I0. In the

region where both Q∗11 and S∗1 are zero, the optimal Q∗
12 is decreasing in terms of I0. Obviously, E[Q∗22]

is also a decreasing function of I0.

For very small I0 values, the optimal values of both Q11 and Q12 are equal to their production
capacities, respectively K11 and K12. In this region, as the capacity constraints are active, the expected
optimal value of Q22 is relatively high, aiming to compensate for the unproduced parts due to these
constraints. In this region, Q∗

11 decreases linearly in terms of I0, which corresponds to an order-up-to-
level policy. Once Q∗

11 becomes equal to zero, Q∗
12 begins to decrease to compensate the increase of I0.

For high I0 values, the optimal value S∗1 is a linear increasing function in terms of I0, which can be
interpreted as a salvage-up-to-level policy.

5.4.2 Variability e�ect

We consider here the impact on the optimal policies of an increase in demand variabilities. We keep
the same numerical data as in the nominal example except for the standard deviation of the periodic
demands. In Figure 5.3, we have considered σ1 = 450, for the high D1 variability example and we have
plotted the absolute di�erence between the optimal values of the nominal example and the high D1
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Figure 5.3: Variability e�ect: high D1 variability

variability example. In Figure 5.4, we have considered σ2 = 450 for the high D2 variability example and
we have plotted also the absolute di�erence between the optimal values of the nominal example and the
high D2 variability example. As appearing in these �gures, for a given I0 value in the regions where the
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Figure 5.4: Variability e�ect: high D2 variability

capacity constraints are not active, Q∗11 and S∗1 decrease when the demand D1 variability increases, while
the value of Q∗12 increases. Indeed, one could note that the size of the interval between the two threshold
levels for Q∗11 and S∗1 increases with the demand D1 variability. For this example, when σ1 increases,
it becomes more pro�table to backlog a part of the �rst demand rather than to order a very high Q∗

11

quantity, which would induce high holding costs. To satisfy the possible backlogged orders, Q∗
12 increases

as it is more pro�table than Q∗22. In our example, when S∗1 > 0, one has Q∗12 = 0 (and Q∗
11 = 0). When

the demand D1 variability increases, it is not pro�table to salvage units at the price s1. On the contrary,
it is better to keep the available units in inventory, in order to use them in the �rst and/or eventually in
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the second period. Therefore, S∗1 decreases when σ1 increases.
On the other hand, as the optimal Q22 value depends on X2, the second period initial inventory level,

and on the demand D1, it can be logically observed that E[Q∗22] becomes greater with an increase of the
variability σ1, while Q∗11 decreases simultaneously. For high I0 values, and due to the decrease of S∗1 , the
expected optimal salvaged quantity E[S∗2 ] increases when σ1 increases.

Now, we compare the nominal example depicted in Figure 5.2 with the high D2 variability case
depicted in Figure 5.4. When σ2 increases, it appears that Q∗11 increases and S∗1 decreases. It is worth
noting that Q∗

12 increases and not Q∗
22, because it is more pro�table to deliver the demand D2 via Q∗

12

than via Q∗22. In the same time, and for a given I0 value, the expected optimal value (E[S∗2 ]) decreases
when σ2 increases, because it is more pro�table to keep the units, available at the beginning of the second
period, than to salvage them at a unit price of s2, in order to use them in the second period and to face
the increase of the demand D2 variability.

5.4.3 Cost e�ect on the optimal policy
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Figure 5.5: The unit order cost c22 and the production capacity K12 e�ect

In this example, we show the e�ect of the unit order cost c22. We assume a zero initial inventory level
I0. We illustrate this cost e�ect via two models: a �rst model with the capacity constraint parameter
K12 = 2000 and the second with K12 = +∞. From Figure 5.5, one can conclude that it is more pro�table
to deliver the demand D2 and the �rst period backlogged orders via Q∗

12 than via Q∗
22. We thus observe

Q∗12 > E[Q∗
22]. When the unit order cost c22 increases, the optimal expected Q∗22 decreases and is

compensated by an increase of Q∗12 (in this case, it can be noted that Q∗
11 is limited by the capacity

constraint associated to K11).
From Figure 5.5 one can see that for a given value of c22, when the capacity constraint K12 is not

active, the optimal values of Q∗12 and Q∗22 are the same in the constrained as in the unconstrained example.
With the increase of c22 and when the capacity constraint K12 becomes active, the optimal Q∗12 is limited,
and as a consequence, the expected optimal E[Q∗22] increases. As the unit order cost c22 is higher than
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Figure 5.6: Expected Optimal objective function: unconstrained and constrained cases

c12, the di�erence between the global expected optimal objective functions of the unconstrained model
(K12 = +∞) and the constrained one (K12 = 2000) increases when c22 increases, even if these two
objective functions both decrease, as one can see in Figure 5.6.

5.4.4 Impact of capacity constraint
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Figure 5.7: E�ect of the production capacity on the optimal policy

In order to illustrate the capacity e�ect, we present the optimal policies and the associated optimal
pro�t as a function of K11, for two di�erent values of K12, namely K12 = 1500 and K12 = +∞ (Figure
5.7).

For low K11 values, the related capacity constraint is active, and the optimal Q∗
11 value is equal to the

production capacity K11. For these values of K11, the optimal Q∗12 has to meet the �rst period backlogged
orders. When K11 increases, the optimal Q∗11 increases and converges toward K11, while simultaneously
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Q∗12 decreases. Once K11 becomes su�ciently large, the problem becomes unconstrained (with respect to
K11) and both Q∗11 and Q∗

12 become constant. For this example, one has an in�nite production capacity
K12, and Q12 is more pro�table than Q22 (due to the cost structure), then the expected optimal Q22

value is very low.
In Figure 5.7, and regarding the curves related to K12 = 1500 one could see that for low K11 values,

the capacity constraints that correspond to Q12 and Q12 are both active. In this case, the optimal values
Q∗11 and Q∗12 are equal to K11 and K12 respectively. The expected optimal value of Q22 is relatively
high (compared to the example where K12 = +∞) to compensate for these active constraints. Note also
that the value of K11 for which the related capacity constraint becomes inactive is higher in the case
of K12 = 1500 than the case of K12 = +∞. This is due to the fact that Q∗12 is limited by a capacity
constraint and a part of the demand must be satis�ed by Q∗11. For low K11 values, one can have two

0,25

0,275

0,3

0,325

0,35

0 400 800 1200 1600 2000

M
il

li
o

n
s

Production capacity K11

O
p

ti
m

al
 g

lo
b

al
 e

xp
ec

te
d

 o
b

je
ct

iv
e 

fu
cn

ti
o

n

Optimal Objective Function for K12=1500 Optimal Objective Function for K12=infinity

Figure 5.8: Global optimal expected objective function comparison

situations: in the �rst, if K12 = +∞, the optimal Q∗12 is high to compensate for the unproduced part
of Q∗

11, and E[Q∗
22] is low. In the second situation, if K12 < +∞, Q∗12 is low (and equal to K12) and

therefore E[Q∗22] is high. In our example, c12 is lower than c22, which explains the di�erence between the
two expected objective functions. As K11 increases, the need to replace Q11 by Q22 decreases, as does
the di�erence.

5.5 Conclusion

We have proposed in this chapter a new two-period production/inventory model in which many salvage
opportunities are possible and many production modes are used. Production capacities are taken into
account in the calculation of the optimal decision variables. The problem has been solved using a dynamic
programming approach. First, we have proved the concavity of the expected objective function of the
second period, and using this property we have provided the special-form two-threshold optimal policy
of that period. This result has served to show the concavity of the global expected objective function,
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and then to prove the existence of a single optimal solution. Some analytical properties that help in
characterizing the optimal policy of the �rst period have been provided. Via numerical examples, we
have shown that the �rst period optimal policy has a two-threshold shape similar to the second period.
Then, we have provided some insights, related to the e�ect of the di�erent parameters of the model,
namely the demand variability, costs and capacity constraints. The introduction in the model of an
information update process between successive decisions constitutes a future research.
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Chapter 6

Impact of the Information Updating on
the Optimal Policy of a Two-Period
Stochastic Production Planning Model

In this chapter we develop, based on the model studied in Chapter 4, a two-period produc-
tion/inventory management model. In addition to the model parameters de�ned in Chapter
4, we introduce a new parameter that represents an external information permitting the up-
date of the second period demand distribution. This new market information is stochastic at
the beginning of the �rst period and becomes deterministic at the beginning of the second
period. It is de�ned via a joint distribution with the second period demand. We develop the
optimal policy of the second period subproblem, then, using dynamic programming, we show
that the structure of the optimal policy of the �rst period is the same as that of the model
in Chapter 4. Then a numerical study shows the impact of the information quality, modelled
by a correlation coe�cient between the information and the second period demand, on the
optimal policy and on the optimal expected objective function.

Keywords: production planning, inventory control, production modes, market information,
forecasts updating, signal quality.
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Impact of the Information Updating on the Optimal Policy of a Two-Period Stochastic Production

Planning Model

6.1 Introduction

The two-period model constitutes a base-model that permitting to have insights about the multi-periodic
inventory models. As we have explained in Chapter 4 and Chapter 5, the two-period production/inventory
models apply well in the case of short-life type products. For this type of products, the demand of a single
(or multi) product occurs during a de�ned selling season that is constituted in general of two periods.
The two-period models are, in general, extensions to the very well known Newsvendor model, studied in
Chapter 3, which deals with this type of products. The literature of the extensions of the Newsvendor
model is huge and is composed of di�erent families. In this chapter we are interested in two types of
extensions: the �rst one is the two-period models, which is the case shown in Chapter 4, and the second
extension is about the state of the information on the demand.

For a huge variety of products, the future demand cannot always be de�ned in a deterministic manner.
In order to optimally satisfy this future demand, the manufacturer (or the retailer) should deal with that
demand using forecasts, by de�ning it as a random variable with given parameters. For some products, an
opportunity to improve these forecasts during the decision process is possible. In this case, if the model
deals with style-goods type products, then the single-point decision process could be transformed into
two-point or multiple-point decision process and the single period demand horizon can be changed into
two or multiple periods. Between these decision stages, some information is collected and the forecast of
the demand for the remaining part of the planning horizon is updated. Then new decisions are made,
taking the advantage of the new available information.

In this context, this chapter constitutes an extension to Chapter 4, where we use the two-period
framework developed in Chapter 4. A single product demand is de�ned by two independent random
variables over a two-period selling season. An external information is collected during the �rst period
and is used to update the demand of the second period (Cheaitou et al., a, 2007). This information
and the second period demand are jointly distributed at the beginning of the �rst period. Then the
information becomes deterministic at the beginning of the second period. At the beginning of the �rst
period, one can order two quantities using two di�erent supply modes: a fast mode with zero delivery lead
time and a slow mode with one period delivery lead time. Since the model considers an initial inventory,
there is the opportunity, at the beginning of the �rst period, to return a part of the available inventory
to the supplier or to sell it in a parallel market. At the end of the �rst period, any unsatis�ed demand is
backlogged to be satis�ed in the next period. At the beginning of the second period, and after the update
of the demand forecast, one can order an additional quantity using a fast production mode, and/or return
another quantity to the supplier or sell it in a parallel market. At the end of the planning horizon, any
remaining units are salvaged at a �xed salvage value, and any unsatis�ed demand is satis�ed by using an
emergency production mode.

The �rst advantage of this model is the fact that the decision process is divided into two points, with
two production modes. Indeed, it permits to the decision maker to observe the realized demand in the
�rst demand period, and then uses this information to adjust his decisions in order to better satisfy the
demand, which means more reactivity or more �exibility. Many papers have been published, and that
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provide two-period extensions to the Newsvendor model as we have shown in Chapter 4 and Chapter 5.
[See (Hillier and Liberman, 1990), (Lau and Lau, 1997, 1998) and (Choi et al., 2003)]. In these models,
no demand forecast updating is permitted, and a single production mode by decision period is allowed.

The second advantage can be summarized in the forecast updating process. Since the understocking
and the overstocking decisions are costing, and since it is impossible to have a perfect information or
distribution for the product demand in advance, one should use the forecasts of the future demand
in order to minimize the total costs. From this point of view, any information, that can be gathered
during the decision process and can improve the forecasts quality, contributes in the reduction of the
total costs. This information may be of two types: internal which represents the realized demand in
the previous periods, or external whic represents the sales of a preseasonal product for example. To be
useful, this information must be collected during the decision process, and before that the last decision is
taken. In the literature many models have been proposed using the information for production/inventory
problems. (Donohue, 2000) develops a contract model aiming at to determine the e�cient decisions, in a
two decision points framework, with a single demand period and exogenous information updating process,
in terms of wholesale price and return policy, which ensures coordination between the manufacturer and
the distributor. (Gurnani and Tang, 1999) developed a model similar to that of (Donohue, 2000) but
with a more general situation and that is di�erent in two points. First, they consider the case in which
the cost at the second decision period is uncertain and could be higher or lower than the cost at the �rst
decision period. In contrast, (Donohue, 2000) considers the case where the cost at the second decision
period is known and is higher than that at the �rst instant. Second, they consider the case where the
value of the information observed between the �rst and second instants varies from worthless to perfect.

The third advantage of the model presented in this chapter is the multi-supply modes framework. This
feature permits the use of two di�erent production modes for the second period: a fast production mode
with immediate delivery and a slow and less expensive production mode with one period delivery delay.
Between the instants where the decisions relative to these production modes are �xed, two information
are collected: the realized demand of the �rst period and the realized external information. Therefore,
the decisions relative to each of the two production modes are �xed with di�erent levels of information.
Indeed, the decision relative to the slow production mode is �xed before collecting the information about
the demand of the �rst period and the external information while the decision relative to the fast mode is
�xed after the collection of these information. This feature is coupled with the other feature that permits
to exploit these information, and which is relative to the quantity that can be returned to the supplier at
the beginning of the second period. In the literature, many papers deal with the two-mode supply problem
exclusively from the buyer's perspective. Here the key question is about the quantities to be produced
with each mode. A certain number of the early published works in this area assumes a multi-period
periodic review setting. For example, (Daniel, 1963) examines this question when emergency shipments
are bounded above and lead times are 1 and 0 periods, respectively, for the two modes. (Fukuda, 1964)
extends this analysis to handle the unbounded emergency shipments and lead times of k and k+l periods.
(Whittemore and Saunders, 1977) consider a more general model with arbitrary lead times and identify
the cases where it is optimal to use only one supply mode. (Moinzadeh and Nahmias, 1988) are the �rst
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who examined the basic dual supply problem in a continuous review setting. More recent work includes
(Zhang, 1995), who studies a period review, in�nite horizon system with up to three supply modes, and
(Lawson, 1995) who considers an interesting form of lead-time �exibility which is formally modeled as a
series of expedite and de-expedite opportunities. All of these models assume demand is stationary and
independent between periods and there is no model that allow a return to the supplier after the forecast
update.

The remaining of this chapter is structured as follows: in the following section, we present the model
and its parameters. In the third section, we de�ne the optimization method used to solve the optimization
problem of our model, and then the two periods optimization problems. In the fourth section, we provide
a numerical study showing the properties of the main model parameters and their impact on the optimal
policy and in the last section we give conclusions.

6.2 The Model

6.2.1 Model description

In this chapter, the presented model is based on the model de�ned in Chapter 4. The main di�erence
can be resumed by the introduction of a forecast updating process which uses an external information,
de�ned by a random variable i, correlated with the second period demand.

The �rst period demand D1, is de�ned by a probability density function (PDF) f1(D1) : [0,∞[→ IR+

and by a cumulative distribution function F1(D1) : [0,∞[→ [0, 1]. The second period demand D2 and
the external stochastic information i, are de�ned by a joint probability distribution function j(i, D2) :

[0,∞[×[0,∞[→ IR+ and a joint cumulative distribution function J(i,D2) : [0,∞[×[0,∞[→ [0, 1]. We
de�ne also the marginal probability density function of the information i, g(i) and the marginal cumulative
distribution function of the information G(i). For any given value i of the information, we de�ne the
conditional probability density function of the demand D2, f2(D2|i) and the conditional cumulative
distribution function of D2, F2(D2|i).

Like in the original model, at each period t, any received demand is charged at a price pt, even if it
is not immediately delivered.

Let Qts be the quantity ordered at the beginning of period t to be received at the beginning of period
s (with t ≤ s and t, s = 1, 2, 3). Then we introduce, for each period, the variable St, the quantity which
is salvaged (to the parallel market) at the beginning of period t (with t = 1, 2, 3). These two decision
variables, Qts and St are assumed to be non-negative.

The state variables of the model represent the inventory level at the beginning of each period, X1 and
X2 and the inventory level at the end of each period, I1 and I2 (I0 being the given initial inventory for
the problem).

The unit order cost of Qts is cts. In the case of a positive inventory at the end of a period, an inventory
holding cost ht is paid. Unsatis�ed orders in period t are backlogged to the next period, with a penalty
shortage cost bt. The unit salvage value at the beginning of period t is given by st. We note that the
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decisions that are �xed at period 3, concern the immediate moment after the end of the second period.
This means that the third period is not a real period but is used only as a terminal condition.

The structure of the decision process and demand realization, is shown in Figure 6.1.

Time 

X1 
+Q02 

-S2 (s2) -D2 (p2) 
+Q11 (c11) +Q22 (c22) 

X2 -D1 (p1) 
-S1 (s1) -S3 (s3) 

+Q33 (c33) 
I0 

+Q01 
Information i realization 

Demand D2 forecast update  

+Q12 (c12) 
 

 

Terminal  
Conditions 

First Period Second Period 

I1 I2 

Figure 6.1: Decision process

Note that we consider the same assumptions on the model parameters (costs, prices and salvage
values) that have been de�ned in section 4.2.2 of Chapter 4.

Note also that the optimal values of the decision variables Q33 and S3 are given by (see Lemma 4.1
of Chapter 4)

if I2 ≤ 0 ⇒ Q∗33 = −I2 and S∗3 = 0, (6.1)

if I2 ≥ 0 ⇒ Q∗33 = 0 and S∗3 = I2. (6.2)

In order to simplify modeling and resolution of the new model with information update, we will not
take into account the decision variables Q01 and Q02 de�ned in Chapter 4. Note that this omission does
not a�ect the obtained results.

6.2.2 The optimization problem

In this paragraph, we introduce Π1(X1, Q11, Q12, S1) as the expected pro�t of the �rst period with respect
to the random demand D1 and Π2(X2, Q22, S2|i) as the expected pro�t of the second period with respect
to the random demand D2 conditionally to the information i. These expected pro�ts are then given by
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the following equations

Π1(X1, Q11, Q12, S1) = p1E[D1] + s1S1 − c11Q11 − c12Q12

− h1

∫ X1+Q11−S1

0

(X1 + Q11 − S1 −D1)f1(D1) dD1

− b1

∫ ∞

X1+Q11−S1

(D1 −X1 −Q11 + S1)f1(D1) dD1,

(6.3)

and

Π2(X2, Q22, S2|i) = p2E[D2|i] + s2S2 − c22Q22

− (h2 − s3)
∫ X2+Q22−S2

0

(X2 + Q22 − S2 −D2)f2(D2|i) dD2

− (b2 + c33)
∫ ∞

X2+Q22−S2

(D2 −X2 −Q22 + S2)f2(D2|i) dD2,

(6.4)

where E[D1] represents the expectation of the �rst period demand and E[D2|i] the expectation of the
second period demand conditionally to the information i. Note that the initial inventory level of the
second period, X2, is a function of the �rst period parameters, decision variables and demand, where we
have X2 = X1 + Q11 + Q12 − S1 + Q02 −D1.

De�ne Π(X1, Q11, Q12, Q22, S1, S2) as the global expected pro�t with respect to the random variables
D1, D2 and i. This global expected pro�t is then

Π(X1, Q11, Q12, Q22, S1, S2) =

Π1(X1, Q11, Q12, S1) + Ei {ED1 {Π2(X2(X1, Q11, Q12, S1, D1), Q22, S2|i)}} ,
(6.5)

where Ei {·} and ED1 {·} represent the expectation with respect to i and D1 respectively. The global
optimization problem is then to maximize Π(·) with respect to the decision variables of the �rst and
second periods. It is given by

max
Q11,Q12,Q22,S1,S2

Π(X1, Q11, Q12, Q22, S1, S2). (6.6)

6.3 The dynamic programming approach

As we have done for the model de�ned without information updates in Chapter 4, we will use the
dynamic programming in order to characterize the optimal policies of the two periods of our planning
horizon. Using this optimization technique, we transform the optimization problem de�ned in (6.6)
into two optimization subproblems corresponding to the two periods of our planning horizon. The �rst
subproblem is associated with the second period, and is de�ned as follows

max
Q22≥0,S2≥0

{Π2(X2, Q22, S2|i)} . (6.7)
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Solving this optimization subproblem provides us with expressions of the optimal second period de-
cision variables, namely (Q∗22(X2, i), S∗2 (X2, i)), and the optimal expected objective function Π∗2(X2, Q

∗
22

(X2, i), S∗2 (X2, i)), as functions of X2 and i. Then using this optimal policy, we can de�ne the second
optimization subproblem associated with the �rst period

max
Q11≥0,Q12≥0,S1≥0

{Π(X1, Q11, Q12, S1)} = (6.8)

max
Q11≥0,Q12≥0,S1≥0

{Π1(X1, Q11, Q12, S1) + Ei {ED1 {Π∗2(X2, Q
∗
22(X2, i), S∗2 (X2, i))}}} .

6.3.1 Second-period subproblem

We begin by solving the second period subproblem. The optimization problem of the second period,
de�ned by equations (6.4) and (6.7) has been studied in Chapter 4. The only di�erence is the probability
density and distribution function, which is a simple distribution in Chapter 4 and a conditional distri-
bution in this chapter. This di�erence does not change the structure of the optimal policy provided in
Chapter 4. The optimal policy of the second period is then de�ned by the following

Q∗22(X2, i) = (Y12(i)−X2)+ and S∗2 (X2, i) = (X2 − Y22(i))+ (6.9)

with

Y12(i) = F−1
2

(
b2 + c33 − c22

b2 + c33 + h2 − s3

∣∣i
)

and Y22(i) = F−1
2

(
b2 + c33 − s2

b2 + c33 + h2 − s3

∣∣i
)

. (6.10)

Similarly to the interpretation provided in Chapter 4 for the second period characteristic threshold
levels, we interpret in this section the economic meaning of the threshold levels given in (6.10). These
threshold levels are interpreted as a solution of a modi�ed Newsvendor problem with and underage cost
of Cu and an overage cost of Co.

For the �rst threshold level Y12(i), de�ne the underage cost C1
u = b2 + c33 − c22 as the marginal cost

of not satisfying a demand in the second period with Q22, and the overage cost C1
o = c22 − s3 + h2 as

the marginal cost of ordering a supplementary unit with Q22 over the optimal value. Therefore, in the
expression of Y12(i), the argument of the function is equal to the ratio of C1

u and C1
u + C1

o .

For the second threshold level Y22(i), de�ne the underage cost C2
u = b2 + c33− s2 as the marginal cost

of salvaging a supplementary unit at the beginning of the second period (which implies not satisfying a
marginal demand in the second period), and the overage cost C2

o = s2 − s3 + h2 as the marginal cost of
not salvaging a supplementary unit at the beginning of the second period (which means keeping that unit
to be used in the second period). Therefore, in the expression of Y22(i), the argument of the function
F−1

2 (·) is equal to the ratio of C2
u and C2

u+C2
o . That permits to interpret Y22(i) as a modi�ed Newsvendor

salvage-up-to level.

It can be easily seen that for a given value of the information i, and under the cost assumptions of
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this chapter, one has
Y12(i) < Y22(i). (6.11)

6.3.2 First period subproblem

In this section we solve the optimization problem of the �rst period de�ned in (6.4) and (6.8).

It should be noticed that even if we have added a new and important element to the model presented
in Chapter 4, the structure of the optimal policy does not change. Note that the �rst order partial
derivatives of the expected objective function (6.8), given in Appendix C.1, are similar to the partial
derivatives of the �rst period expected objective function of the model shown in Chapter 4 given in
Appendix A.2. The only di�erence between the two models partial derivatives is the fact that in the
partial derivatives of the model shown in this chapter, some terms are de�ned as an expected value with
respect to the external information i.

Consequently, we will not enumerate the di�erent possible cases of the optimal policy, which are similar
to those of Chapter 4, and we will only show a single case of that optimal policy. For the other possible
cases, one can refer to Chapter 4. Instead, we will provide a numerical study to show the impact of the
external information on the optimal policy, the importance of the correlation (between the information
and the second period demand) and its impact on the optimal policy.

Before providing the numerical study, we prove the concavity of the expected �rst period objective
function, then we provide two Lemmas that partially characterize the �rst period optimal policy.

Lemma 6.1 The total expected objective function Π(X1, Q11, Q12, S1) de�ned in (6.4) is jointly concave
with respect to the decision variables Q11, Q12 and S1.

Proof. The proof of this Lemma is similar to that of the Lemma 4.3 presented in Chapter 4, except
that the function G(X1, Q11, Q12, S1) de�ned in the proof of the Lemma 4.3 should be replaced by the
function W (X1, Q11, Q12, S1). This function can be de�ned as follows

W (X1, Q11, Q12, S1) = (6.12)
∫ ∞

0

[∫ Q02+Q11+Q12−S1+X1−Y12(i)

Q02+Q11+Q12−S1+X1−Y22(i)

f1(x)f2(Q02 + Q11 + Q12 − S1 + X1 − x|i)dx

]
g(i) di,

which completes the proof. 2

Using Lemma 6.1, we can conclude that the optimization problem described in (6.4) and (6.8) has a
unique maximum. Thus, one could use the �rst order optimality criterion to develop the optimal policy.

Lemma 6.2 There are no optimal solutions with Q∗
11(X1) > 0 and S∗1 (X1) > 0 simultaneously. In other

words, one has the property
Q∗

11(X1)S∗1 (X1) = 0.

Proof. See the Proof of Lemma 4.4 in Chapter 4.
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Lemma 6.3 When the optimal value of the decision variable Q12 is positive, namely when Q∗
12(X1) > 0,

then the optimal values of the decision variables Q11 and S1 are completely characterized by two thresholds
given by

Y11 = F−1
1

(
c12 − c11 + b1

h1 + b1

)
and Y21 = F−1

1

(
c12 − s1 + b1

h1 + b1

)
(6.13)

In other words, one has

(Q∗11; S
∗
1 ) =

(
(Y11 −X1)+; (X1 − Y21)+

)
(6.14)

Proof. See the Proof of Lemma 4.8 and Lemma 4.9 in Chapter 4.

6.4 Numerical examples

We remind that some analytical results concerning the optimal policy of the �rst period, can be obtained
from Chapter 4. However, providing a complete closed-form analytical solution is not possible due to the
sequential nature of the decision process. Therefore, in this section we give some numerical examples in
order to show the behavior of our model and the impact of the di�erent model parameters on the optimal
policy and the optimal expected objective function.

Note that for these numerical applications, we assume that the �rst period demand has a truncated-
normal distribution, corresponding to a normal distributed demand, D1 ∼ N [µ1; σ1], for which we elimi-
nate the negative part. In fact the numerical mean and standard deviation given in the following examples
are those of the initial normal distribution. In the calculations we use the truncated-normal that corre-
sponds to the initial normal distribution.

We suppose that the joint probability density function of the information i and the second period
demand D2, namely j2(I,D2), is a bivariate normal distribution, with means θ and µ2, standard deviations
δ and σ2 and a correlation coe�cient ρ. Hence, the bivariate normal distribution allows us to solve
numerically the �rst period subproblem, and then to capture how the information enables the decision
maker to obtain more accurate demand forecast. It is then well known that the conditional second period
demand (D2|i) is also normally distributed with mean µ′2 and standard deviation σ′2 (Bickel and Doksum,
1977), where

µ′2 = µ2 + ρ
i− θ

δ
and σ′2 = σ2

√
1− ρ2 (6.15)

Note that the correlation coe�cient ρ always satis�es the inequality ρ ≤ 1 which implies that σ′2 ≤ σ2.
The last inequality means that the conditional distribution of the second period demand is more accurate
than the demand distribution which does not take into account the realized information.

Let f2(·) and F2(·) be, consecutively, the PDF and CDF of this normal distribution (with mean µ′2

and standard deviation σ′2).

We can, using the de�nitions given above, rewrite the two threshold levels de�ned in (6.10) as follows
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Y12(i) = µ2 + ρ(i− θ)
σ2

δ2
+ (σ2

√
1− ρ2)Φ−1

(
b2 + c33 − c22

b2 + c33 + h2 − s3

)
, (6.16)

and

Y22(i) = µ2 + ρ(i− θ)
σ2

δ
+ (σ2

√
1− ρ2)Φ−1

(
b2 + c33 − s2

b2 + c33 + h2 − s3

)
. (6.17)

This new de�nition of the threshold levels, permits to formulate the optimization problem of the �rst
period more practically and to perform some numerical examples that are shown in the following sections.

Note that the particular case where ρ = 0 is equivalent to the model presented in Chapter 4, where
the second period demand is independent of any information.

6.4.1 Nominal example

In this section we de�ne the basic numerical values on which we build our numerical examples. Firstly,
note that we will depict in these examples the optimal values of the decision variables of the �rst period,
namely Q∗

11, Q∗
12 and S∗1 , and the expected optimal values of the second period decision variables, namely

E[Q∗
22] and E[S∗2 ]. The expectation of these optimal decision variables is with respect to the random

information i and the random second period demand D2.

The numerical data used in this example are the following: D1 ∼ N [1000; 300], µ2 = 1000, θ = 1000,
σ2 = 300, δ = 300, h1 = 5, h2 = 5, p1 = 100, p2 = 100, b1 = 25, b2 = 25, c11 = 50, c12 = 30, c22 = 50,
c33 = 50, s1 = 20, s2 = 20, s3 = 20.

The correlation coe�cient ρ takes two values: the �rst value is equal to 0.1 and corresponds to a low
correlation between the information and the second period demand, or a low signal quality, while the
second value is equal to 0.9 and corresponds to a high signal quality, or a strong correlation.

In Figure 6.2 we can see the structure of the two-period optimal policy in terms of the initial inventory
level I0. Note that the optimal policy of the �rst period is characterized, like the optimal policy of the
second period, by two threshold levels. These two threshold levels divide the values of the initial inventory
level I0 into three intervals. The �rst interval corresponds to the low I0 values, in which Q∗11 is decreasing
in I0, Q∗12 is positive and constant and S∗1 is equal to zero. The second interval corresponds to the medium
I0 values, in which both Q∗11 and S∗1 are equal to zero, and Q∗12 is decreasing in I0. The last interval
corresponds to the high I0 values, in which only S∗1 is positive.

6.4.2 Information quality

In this section we compare the nominal example presented in Figure 6.2, where the correlation coe�cient
is ρ = 0.9 with another example depicted in Figure 6.3, where the information does not have a great
importance due to a low correlation coe�cient with the demand of the second period (ρ = 0.1).
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Figure 6.2: Nominal example: structure of the optimal policy, with high information quality (ρ = 0.9)

The other numerical parameters of the example depicted in Figure 6.3 are the same as those of the
nominal example, given in the previous section.

From the comparison between these numerical example, we can deduce that when the quality of the
information increases (ρ increases):

• the optimal quantity ordered with the slow mode, Q∗
12, decreases,

• the expected optimal quantity E[S∗2 ] increases,

• the optimal quantity Q∗
11, the optimal quantity S∗1 and the expected optimal quantity E[Q∗22] do

not change.

From these observations, we can conclude that in the interval of the I0 values where Q∗
12 is positive,

the optimal Q∗11 is independent of the information and of the second period demand distribution. The
second conclusion is that when the information quality increases, the use of the slow production mode
decreases. This means that instead of ordering a quantity Q∗

12 to be used in the second period, one
would prefer to wait and to pro�t from the collected information during the �rst period, and then �x the
decisions related to the second period. Since in each of the two numerical examples, the second period
fast production mode (Q∗22) is not used, then in both of these examples E[Q∗

22] does not change and is
always equal to zero.

In the interval of medium I0 values, and due the the decrease of the demand D2 variability, the
expected E[S∗2 ] increases. This increase is related to the decrease in the expected threshold level Ei[Y22(i)].
Indeed, from (6.17) one can easily see that when ρ increases Y22(i) and Ei[Y22(i)] decrease. In fact, in
this region, when the demand D2 variability decreases, then the need to additional units to satisfy the
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Figure 6.3: Structure of the optimal policy, with low information quality (ρ = 0.1)

demands of the second period decreases, and as we are in the interval in which E[S∗2 ] is positive, then
E[S∗2 ] increases. In the high I0 values interval, where Q∗12 is equal to zero, S∗1 and E[S∗2 ] increase in order
to compensate for the decrease of the demand variability.

6.4.3 Impact of the information variability

In this section we study the e�ect of the information quality, showing the impact of the information
variability δ on the optimal policy and on the expected optimal objective function.

In Figure 6.4, the optimal policy is depicted in terms of the initial inventory level I0. The numerical
data of this example are the same as the nominal data given in the nominal example except the information
standard deviation δ = 100 and the correlation coe�cient ρ = 0.9.

By comparing Figure 6.2 and Figure 6.4, one can see that, in the interval of positive Q∗12 values,
when the information variability decreases then the optimal Q∗

11 does not change. This is due to the
fact that in this region, Q∗

11 is independent of the second period demand distribution and of the infor-
mation distribution. Note also that when the variability of the information i decreases, the optimal Q∗

12

slightly decreases. This slight decrease is due to the fact that Q∗12 is decided before the knowledge of the
information i.

As we have mentioned before, it is optimal to satisfy the demand of the second period roughly with
Q∗12 (due to the structure of our costs) and then the optimal E[Q∗

22] is equal to zero in the numerical
examples presented in this section. In this case, the fast mode of the second period (Q22) serves as an
emergency mode which permits to satisfy the backlogged demands from the �rst period. Therefore, due
to the strong correlation between the information and the second period demand (ρ = 0.9) and to the fact
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Figure 6.4: Structure of the optimal policy, with low information variability (δ = 100) and high informa-
tion quality (ρ = 0.9)

that Q∗12 is ordered before the realization of the information i, when the variability of i decreases then
the optimal decision variable Q∗12 decreases slightly and therefore E[S∗2 ] increases tremendously. This big
increase is the consequence of the decrease of Ei[Y22(i)]. Indeed, from the (6.17) it can be easily seen that
for a high value of ρ, when δ increases then Y22(i) and consequently Ei[Y22(i)] decrease. This decrease
is proportional to the value of ρ: the higher the value of ρ, the higher the decrease of Ei[Y22(i)] for the
same decrease of δ.

In Figure 6.5 we depict the relative di�erence between the expected optimal objective function in the
case where ρ = 0.9 and that in the case where ρ = 0.1. We plot this relative di�erence for two values of
the information variability, δ = 100 and δ = 500.

The �rst remark that can be captured is the fact that the higher the correlation coe�cient, the higher
the expected optimal objective function. This means that when the signal quality increases, the expected
optimal pro�t increases. This conclusion can be seen from Figure 6.5 where the di�erence between the
expected optimal objective function with ρ = 0.9 and that with ρ = 0.1 is always positive.

On the other hand, from Figure 6.5 it can be seen that when the variability of the information
increases, the impact of the correlation between the information and the second period demand D2 on
the optimal expected pro�t increases also. Therefore, when the variability of the information increases,
the di�erence between expected optimal pro�t in the case where the correlation is high (ρ = 0.9) and the
expected optimal pro�t in the case where the correlation is low (ρ = 0.1) increases. That means, to get
a better performance (higher expected pro�t), it is better to have a high correlation in the case where
the information variability is high. In the case where the information variability is low, it does not really
matter if the correlation coe�cient is high or low.
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Figure 6.5: Impact of the information variability and quality on the expected optimal objective function

6.4.4 Impact of the di�erence between ordering costs

In this section we plot the optimal policy of our model in terms of the unit order cost of the slow
production mode c12. In both of the numerical examples shown in Figure 6.6 and Figure 6.7, we use
the nominal numerical data given above except the unit order cost c12 that we vary and the correlation
coe�cient ρ that is equal to 0.1 in the �rst �gure and to 0.9 in the second one. Note that in the two
�gures, when the unit order cost of the slow production mode c12 increases, the optimal quantity ordered
with this production mode, namely Q∗12, decreases. On the other hand, the optimal quantities produced
with the fast production mode, Q∗11 and Q∗22 increases which is an intuitive result. For the low c12 values,
the optimal expected decision variable E[Q∗22] is equal to zero, which means that for low c12 values, the
slow production mode is the mode that is roughly used to satisfy the second period demand. The fast
production mode of the second period, is used as a backup option to satisfy the backlogged demands
from the �rst period.

By comparing the two �gures, one can see that, for the values where Q∗12 is positive, when the
information quality increases then the optimal values of the decision variables relative to the �rst period
do not change, which can be deduced from (6.13). This result con�rm the fact that when the optimal
quantity ordered with the slow mode is positive, then the optimal policy of the �rst period is completely
independent of the demand of the second period and of the information.

As we have mentioned in section 6.4.2, when the information quality increases, then the use of the
slow production mode decreases and it becomes more pro�table to wait until the end of the �rst period
to exploit the collected information, in order to update the second period demand and to �x the ordering
decisions relative to the second period. Therefore, when ρ increases, the expected optimal decision
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Figure 6.6: Impact of the di�erence between the ordering costs, with low information quality
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Figure 6.7: Impact of the di�erence between the ordering costs, with high information quality
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variable E[Q∗22] increases also. The expected optimal decision variables E[S∗2 ] increases also due to the
decrease of Ei[Y22(i)] as we have shown above.

Note that for a given value of the unit ordering cost c12, the optimal decision variable Q∗
12 becomes

equal to zero, and the optimal policy becomes insensitive to the variation of c12. At this point, c12 is
approximately equal to c22 when the information is worthless (ρ = 0.1). In this case it is roughly the
economic di�erence (costs) between the slow and fast production modes that determine which production
mode to use. When the information quality is high (ρ = 0.9), the value of c12 at this same point become
lower than c22. These two examples show that when one use an updating of the demand distribution,
with two production modes, then it is not only the costs di�erence between the two production modes
that determine which mode to use, but also the value of the information used to update the demand
forecast.

6.5 Conclusion

In this chapter we have generalized the model presented in Chapter 4. We have used the same framework
of Chapter 4, and we have introduced a new and important element that was an updating process of the
second period demand forecast. The information used to update the demand distribution is an external
information that can be the sales of a similar product whose demand is correlated to the concerned
product. First of all, we have assumed a general correlation between the information and the demand,
and then to provide some insights via the numerical applications, we have assumed that the information
and the second period demand are de�ned by a bivariate normal distribution. We have shown that the
introduction of this new information updating process does not change the the structure of the optimal
policy. Then, using some numerical applications we have shown the structure of the optimal policy, and
the impact of the information quality and its variability on that policy. We have also provided an analysis
of the impact of the information quality on the use of the di�erent available production modes.



Chapter 7

Two-Stage Flexible Supply Contract
with Payback, Information Update and
Stochastic Costs

In this chapter, we consider a two-stage supply contract model for advanced reservation of
capacity or advanced procurement supply, with payback option at the beginning of the selling
horizon. Between the two decision stages, an external information is collected that permits to
update the demand forecast. The updated demand forecast serves then to adjust the decisions
of the �rst stage by exercising options or by returning some units to the supplier. This type
of contracts can be applied in the case of products with short life cycle, or, in other words,
with the style-goods type products. For this type of products, the demand occurs during a
single selling period (season). At the end of this period, the remaining inventory, if any, is
sold (or returned to the supplier) at a salvage value that is usually less than the initial unit
production/procurement cost. During the selling season, any satis�ed demand is charged with
a unit selling price and any unsatis�ed demand is lost and a penalty shortage cost is paid. The
demand is characterized by a probability density function with parameters that are known at
the beginning of the period. The objective of the model is to determine the quantities to be
ordered before the beginning of the selling season which can be interpreted as the amount of
capacity to be reserved, in order to satisfy optimally the demand.

Keywords: supply contract, information update, payback, newsvendor, dynamic program-
ming, particular cases, capacity reservation.
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7.1 Introduction

The style-goods type products are characterized by a short product-life. Demand uncertainty management
has long been regarded as crucial. Since it is impossible to have perfect knowledge about the demand
before the selling season and both understocking and overstocking are undesirable, policies that advocate
the use of market information to improve stocking decisions have been proposed (Choi, 2007). Therefore,
many �rms recognize opportunities to collect information permitting the improvement of the demand
forecast. This information may have di�erent sources: advanced custom forecasts, early season demand,
advanced bookings or sales of a pre-seasonal product. For example a �rm can collect information from
few key customers and use them in order to develop a total demand forecasts. In fashion industry (Fisher
and Raman, 1996) and in the computer industry (Padmanabhan, 1999), the early season information
collected by �rms constitutes a strong indicator for the total season demand. Many studies on the use
of information for inventory problems have been proposed in the literature (Scarf, 1959), (Murray and
Silver, 1966), (Azoury and Miller, 1984), (Azoury, 1985) and (Lovejoy, 1990).

To be useful, the collected information must be available before the last decision stage, or before taking
the last decisions. An example may be a �rm that should take some capacity reservation decisions, and
after that it should take decisions concerning the use of these production capacities. In this case, the
information must be collected at least between the �rst and the second decision stages.

An important factor that the �rm must understand in order to use in a better manner the external
information, is the quality of that information. Take the example of a �rm collecting some information
about the demand of a key customer before the selling season. If this information is not representative of
the whole set of customers then it can not be used to improve tremendously the quality of the demand
forecasts of all the customers. Therefore, in this case the demand quality is low. In other cases, the
collected information from the key customer may be very representative of the other customers' demand,
and therefore, the collected information constitutes a strong indicator on the demand forecast of the
whole set of customers. In this case the quality of the collected information is high. This quality of
the collected information could be modeled by the correlation between the demand and the information.
In the case where the collected information and the demand are random variables, the quality of the
information is then the correlation coe�cient between these two random variables.

The bene�t of a �exible contract, versus an in�exible one, is directly related to the quality of the
collected information. If the collected information is not very correlated to the demand, then the �exible
contract o�ers a little pro�t gain (Brown and Lee, 1998b).

The literature of the supply contracts is very rich. This literature can be divided into two main
categories (see (Lariviere, 1999) and (Tsay and al., 1999)): in the �rst category, a particular contract
is studied in order to examine the optimal action of the �rm given that the contract terms are �xed.
(Anupindi and Bassok, 1999) refer to this category of research as contract analysis. In the second
category, a simple two-party model is studied in order to show whether or not contract terms which
improve or coordinate the supply chain can be found. (Anupindi and Bassok, 1999) refer to this category
as contract design. Our chapter �ts into the �rst category of work.
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Many factors distinguish the models of supply contracts in the literature. The most important are
the structure (e.g. options-futures, quantity �exibility or backup agreement), the number of period in
the planning horizon (one period, two periods or multiple periods), the correlation between demand and
information (is the demand independent from period to period, or is there an external signal that permits
the improvement of future demand forecasts).

The �rst factor which distinguishes the contract models is the structure of the contract. The �rst
structure can be the options-futures contract ((Brown and Lee, 1998a), (Barnes-Schuster et al., 1998) and
(Cachon and Lariviere, 1997)). In this type of contracts, the �rm has two decision stages. At the �rst
stage two decisions are �xed: the number of futures (a non-refundable and unchangeable commitment)
and the number of options (a �exible commitment). At the second decision stage the �rm can exercise
a number or the totality of the prescribed options by paying an exercise cost. The second contract type
is the backup contract (Eppen and Iyer, 1997). In this case, the �rm makes an initial order decision
and at the �nal decision point, a part of the initial order may be cancelled, up to a certain prede�ned
percentage. The third contract type is the quantity �exibility contract ((Bassok and Anupindi, 1995)
and (Tsay, 1999)). In this case, the �rm makes an initial order decision and can later revise this order
decision within a certain upside and downside percentages.

The second factor which di�erentiates contracts is the number of periods. (Bassok and Anupindi,
1995) analyse a rolling horizon �exibility contract without information updates. (Tsay and Lovejoy,
1999) consider the contract of (Bassok and Anupindi, 1995) and allow for forecast updates. The resulted
multiple period models are di�cult to be solved and no analytical insights can be obtained.

In the literature, most papers treating the supply contracts study two-period models, which may
permit some analytical insights. (Milner and Rosenblatt, 1997) consider a two-period model in which
demands are assumed to be independent like (Bassok and Anupindi, 1995). Most papers allow the demand
updates using an external information (see for example (Eppen and Iyer, 1997), (Donohue, 1996, 2000),
(Tsay, 1999), (Brown and Lee, 1998a) and (Brown, 1999)).

We assume in this chapter, that the demand is characterized by a probability density function that
is updated, using an external market information, before the beginning of the selling season. We assume
also that the demand and the information are jointly distributed using a bivariate normal distribution.
The external information could be for example, the sales of a pre-seasonal product where the demand is
closely related to our product demand. The information could be also a completely external information
about an external condition (like the weather forecasts). We assume also that the ordering cost and the
return value of the second decision stage are stochastic.

In the model presented in this chapter, we develop a new type of contract that is more �exible than
those existing in the literature (Cheaitou et al., b, 2008). In addition to the classical contract process,
we assume that at the beginning of the selling period, a certain quantity can be returned to the supplier.
In general, the manufacturer (supplier) has many retailers or many retail channels. Therefore, if any of
these retailers decides to return a certain quantity to this supplier (in application of the contract), then he
could resell it to another retailer before the beginning of the selling horizon, or he can resell it via another
retail channel. This important option permits the retailer to pro�t from the external information that
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is collected between the two decision stages, and from the realization of the stochastic parameters (costs
and return value). Therefore, the retailer can adjust his previous decisions taken at the �rst decision
stage. More precisely, if the updated demand distribution is relatively low, then a part of the already
ordered quantity will be returned to the supplier, and if the updated demand distribution is relatively
high, then a part of the already reserved capacity will be used. Based on our knowledge, the return
option does not exist in any of the existing contracts papers.

In this chapter, the decision process is divided into two stages: in the �rst stage a �rst group of
decisions about the production and the capacity reservation (options) is made. In the second stage, an
exogenous information which is correlated with the demand distribution is collected, which permits the
update of the demand forecast. Another information related to the costs in the second stage is known.
After updating the demand forecast and the costs information, another decision group is made. These
new decisions are relative to the production of new quantities and to the return of a certain quantity,
from the quantity which was already received.

The remaining part of the presented chapter is structured as follows: in the following section we de�ne
the model, the parameters and the assumptions, the objective function and the optimal policy for the two
decision stages. In section 7.3, we study a particular case that represents the worthless information case.
In section 7.4, we develop another particular case, in which the correlation between the information and
the demand is perfect. In section 7.5, we provide a numerical study and in section 7.6 we give conclusions
and perspectives.

7.2 The Model

7.2.1 Model parameters

The stochastic demand of a mono-product is de�ned with an exogenous information by bivariate normal
probability density function. The random exogenous information becomes deterministic and completely
known between two di�erent stages of the decision process. To satisfy the demand, the retailer can
order a �rst time with a low cost production mode and he can reserve a certain amount of his supplier
capacity (options), but the available information about the demand is not accurate and the procurement
costs and return values in the second stage are stochastic. Once the exogenous information is known the
demand forecast is updated and at the same time the procurement cost and the return value become
deterministic. In the case of a su�ciently high correlation between the collected information and the
demand distribution, the variability of the demand decreases, and the retailer has an accurate demand
distribution that permits him to adjust his previous decisions. The retailer could either exercise a certain
number of the options bought from his supplier, or choose to return a part of the order that he had
previously bought from his supplier. After the end of the single period horizon, the unsatis�ed demands
are lost and the remaining inventory is returned to the supplier or sold in a parallel market.

The model parameters are de�ned as follows:

• D : the stochastic demand,
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Figure 7.1: Decision process

• i: the stochastic exogenous information collected between the two stages of the decision process,

• f(i,D): the bivariate normal probability density function of the demand D and the information i,

• µ0 and θ0: the means of the bivariate normal distribution with respect to D and i, respectively,

• σ0 and δ0: the standard deviations of the bivariate normal distribution with respect to D and i

respectively,

• ρ: the correlation coe�cient between D and i,

• g(i) and G(i): the marginal probability density and cumulative distribution functions of the infor-
mation i, respectively,

• h(D|i) and H(D|i): the conditional probability density and cumulative distribution functions of
the demand D conditionally to the given the information i, respectively,

• Φ(·): the standard normal cumulative distribution function,

• Q0: the quantity ordered at the �rst decision stage,

• K: the amount of capacity reserved (or number of options bought) at the �rst decision stage,

• Q1: the quantity ordered at the second decision stage (number of exercised options). (Q1 ≤ K),

• QT : the maximal number of units that might be ordered until the second decision stage (QT = Q0

+ K),

• S1: the quantity returned to the supplier or salvaged in a parallel market at the beginning of the
selling horizon (at the second decision stage),

• c0: the unit order cost for the quantity Q0,
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• cop: the unit cost for the capacity reservation,

• ce: the unit exercise cost for the options (for the quantity Q1). At the �rst decision stage, this
parameter is stochastic. At the second decision stage it becomes deterministic and may take one of
the following values: a low value, cL

e , that occurs with a probability β, and a high value, cH
e , that

occurs with a probability 1− β,

• s1: the unit price (salvage value) of the returned quantity at the beginning of the selling horizon, S1.
Like ce, s1 is stochastic at the �rst decision stage and becomes deterministic at the second decision
stage. It may take one of the following values: a low value sL

1 that occurs with a probability β, and
a high value sH

1 that occurs with a probability 1− β,

• p: the unit selling price during the selling horizon,

• b: the unit shortage penalty cost at the end of the horizon,

• s2: the unit salvage value at the end of the horizon.

Note that the reserved capacity (K) at the �rst decision stage, plays two essential roles. On the
one hand, the capacity reservation made by the retailer allows the supplier to prepare his raw materials
and production facilities in order to probably satisfy the demand corresponding to this reservation in
the second decision stage. On the other hand, the capacity reservation allows the retailer to exploit the
demand forecast updates by ordering an additional quantity at the second stage in order to optimally
satisfy the demand.

The random variables ce and s1 are realized (their values are known) at the same time with the same
level (low or high). That means that if the realized value of ce is low, then the realized value of s1 is also
low, and vice-versa.

Since f(D, i) is a bivariate normal distribution, then it is well known that, for a given value i of the
information, the conditional demand (D|i) is normally distributed (Bickel and Doksum, 1977), with mean
µ1 and standard deviation σ1, which are given by

µ1 = µ0 + ρ
(i− θ0)σ0

δ0
and σ1 = σ0

√
1− ρ2. (7.1)

Note that since ρ always satis�es ρ ≤ 1, then one always has σ1 ≤ σ0. The last inequality implies that
the variability of the conditional demand distribution given the information i is lower than the variability
of the marginal demand distribution which does not take into account the realization of the stochastic
information.

To develop the optimal policy, we will begin by determining the optimal policy of the second stage of
the decision process, then using the dynamic programming, we will use the optimal policy of the second
stage in order to develop the optimal policy of the �rst decision stage.
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7.2.2 Model parameters assumptions

Some assumptions on the model parameters are made in order to avoid classes of speci�c cases for which
the optimal solution is trivial and does not permit to have any interesting insight.

The �rst one is relative to the ordering costs. We assume that cop+cL
e < c0 < cop+cH

e in order to have
a general situation that makes the assumption of stochastic costs more interesting. If this assumption
is not satis�ed, then one will have only a single ordering mode and the other one will not be used. For
example if one has cop + cL

e < cop + cH
e < c0, the optimal Q∗0 will be automatically equal to zero.

An other intuitive assumption is taken into account and is relative to the selling price: cop + cH
e < p.

A third assumption de�nes the ranges of the salvage and the unit payback values and that gives sense
to the payback option at the beginning of the selling horizon: s2 < sL

1 < sH
1 . If for example we have

s2 > sH
1 > sL

1 , then the optimal returned quantity at the beginning of the selling horizon, S∗1 will be
equal to zero.

We assume also that sL
1 < sH

1 < ce. This assumption aims at avoiding situations in which it will be
pro�table to exercise options at the beginning of the second decision stage, in order to receive articles
from the supplier and then to return these articles immediately to the same supplier, which is not logical.

The last two assumptions are relative to the relation between the ordering costs and the return values:
sL
1 < cop + cL

e < c0 and sH
1 < c0 < cop + cH

e . If these assumptions are not respected, for example if one
has sL

1 > cop + cL
e , then at the beginning of the second decision stage, if the realized values of the exercise

cost and salvaged value are (cL
e ; sL

1 ), then one will use all the reserved capacity K to order Q∗
1 = K, and

then to return these units immediately after receiving them with a unit payback value of sL
1 .

7.2.3 Second decision stage subproblem

Objective function

Let EX(·) be the expectation taken over random variable X, x+ = max(0, x), x ∧ y = min(x, y).
Let us de�ne the objective function of the second stage by the following equation

Π1(Q1, S1|i, Q0, QT ) =

p ((Q0 + Q1 − S1) ∧D)− b(D −Q0 −Q1 + S1)+

+s2(Q0 + Q1 − S1 −D)+ − ceQ1 + s1S1. (7.2)

The expected value of the objective function with respect to the demand will be

ED|i [Π1(Q1, S1|i, Q0, QT )] =

p

∫ Q0+Q1−S1

0

Dh(D|i)dD + p

∫ ∞

Q0+Q1−S1

(Q0 + Q1 − S1)h(D|i)dD

−b

∫ ∞

Q0+Q1−S1

(D −Q0 −Q1 + S1)h(D|i)dD

+s2

∫ Q0+Q1−S1

0

(Q0 + Q1 − S1 −D)h(D|i)dD − ceQ1 + s1S1 (7.3)
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Lemma 7.1 The expected objective function ED|i [Π1(Q1, S1|i, Q0, QT )] is jointly concave with respect
to the decision variables Q1 and S1.

Proof. The hessian of ED|i [Π1(Q1, S1|i, Q0, QT )] with respect to q1 and S1 is given by

∇2ED|i [Π1(Q1, S1|i, Q0, QT )] = −(p + b− s2)h(Q0 + Q1 − S1|i)

 1 −1

−1 1


 . (7.4)

From the model assumptions (section 7.2.2), for each vector V =


 V1

V2


 , where (V1;V2) ∈ IR2, we �nd

V T
(∇2ED|i [Π1(Q1, S1|i, Q0, QT )]

)
V = −(p + b− s2)h(Q0 + Q1 − S1|i)(V1 − V2)2 ≤ 0,

which proves that the matrix ∇2ED|i [Π1(Q1, S1|i, Q0, QT )] is semi-de�nite negative. Consequently, the
expected objective function ED|i [Π1(Q1, S1|i, Q0, QT )] is jointly concave with respect to Q1 and S1. 2

Optimization problem

By proving the concavity of the expected objective function of the second decision stage subproblem, we
can now write the optimization problem of that stage as follows

max
0≤Q1≤K, 0≤S1≤Q0

ED|i [Π1(Q1, S1|i, Q0, QT )] (7.5)

The unconstrained type of this optimization problem (with an in�nite capacity K) has been studied
in details in Chapter 4 and Chapter 6. Therefore, the optimal policy of the unconstrained problem can
be completely characterized by two threshold levels, that are given by

Y1(i) = H−1

(
p + b− ce

p + b− s2

∣∣i
)

and Y2(i) = H−1

(
p + b− s1

p + b− s2

∣∣i
)

, (7.6)

with, from the model assumptions (section 7.2.2), are related by

Y1(i) ≤ Y2(i). (7.7)

These two threshold levels could be expressed di�erently as follows

Y1(i) = µ0 + ρ(i− θ0)
σ0

δ0
+ (σ0

√
1− ρ2)Φ−1

(
p + b− ce

p + b− s2

)
, (7.8)

and

Y2(i) = µ0 + ρ(i− θ0)
σ0

δ0
+ (σ0

√
1− ρ2)Φ−1

(
p + b− s1

p + b− s2

)
. (7.9)

Note that these threshold levels depend on the value of two stochastic parameters, namely ce and s1.
At the second decision stage, these two stochastic parameters become deterministic.
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In section 7.2.1, we have assumed that ce and s1 take, at the second decision stage, either their high
or their low value together. This means that at the second decision stage we will have one of the two
following cases:

• with a probability β the following threshold levels

Y L
1 (i) = H−1

(
p + b− cL

e

p + b− s2

∣∣i
)

and Y L
2 (i) = H−1

(
p + b− sL

1

p + b− s2

∣∣i
)

, (7.10)

• with a probability 1− β the following threshold levels

Y H
1 (i) = H−1

(
p + b− cH

e

p + b− s2

∣∣i
)

and Y H
2 (i) = H−1

(
p + b− sH

1

p + b− s2

∣∣i
)

, (7.11)

with

Y H
1 (i) ≤ Y L

1 (i) and Y H
2 (i) ≤ Y L

2 (i). (7.12)

Optimal policy of the constrained problem

In the remaining parts of this chapter, the decision variables of the �rst decision stage will be Q0 and
QT . The decision variable K could be easily deduced from these two decision variables.

Using the concavity of the expected objective function of the second decision stage, with respect to
the decision variables Q1 and S1, the optimal policy of the second decision stage can be de�ned as a
function of the threshold levels Y1(i) and Y2(i), as follows:

• if Y2(i) < Q0 then Q∗1 = 0 and S∗1 = Q0 − Y2(i),

• if Y1(i) ≤ Q0 ≤ Y2(i) then Q∗1 = S∗1 = 0,

• if Q0 < Y1(i) < QT then Q∗1 = Y1(i)−Q0 and S∗1 = 0,

• if QT < Y1(i) then Q∗
1 = QT −Q0 and S∗1 = 0.

Note that if (ce; s1) = (cL
e ; sL

1 ) then (Y1(i); Y2(i)) = (Y L
1 (i); Y L

2 (i)) and if (ce; s1) = (cH
e ; sH

1 ) then
(Y1(i); Y2(i)) = (Y H

1 (i); Y H
2 (i)).

This solution is simply a modi�ed newsvendor solution using the updated demand distribution H(D|i),
constrained by the initial decisions Q0 and QT of the �rst decision stage.

7.2.4 First decision stage subproblem

Note that we make the assumption that increasing values of realization of the information i denote
increasing forecasts of demand. In other words, the demand D is positively correlated with the information
i. For example, if the information is an aggregation of key customer forecasts, then a larger key customer
forecast indicates larger overall demand. Mathematically, we can express this using the concept of
stochastically larger (Ross, 1983). Consider two realization of i: i1 and i2. Then, i1 > i2 implies
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that D|i1 is stochastically larger than D|i2, expressed D|i1 ≥st D|i2. This stochastic relationship implies
that H(D|i1) ≤ H(D|i2) for all D (Brown and Lee, 1998b).

Since D is stochastically increasing in i, H(D|i) is decreasing in i for all D. Thus,

H−1

(
p + b− ce

p + b− s2

∣∣i
)

and
H−1

(
p + b− s1

p + b− s2

∣∣i
)

are increasing in i, so Y1(i) and Y2(i) are increasing in the information i. Because of this monotonic
behavior, we can express the optimal policy of the second stage as a function of the observed external
information as follows:

• if i < U2(Q0) then Q∗1(i, Q0) = 0 and S∗1 (i, Q0) = Q0 − Y2(i),

• if U2(Q0) ≤ i ≤ U1(Q0) then Q∗
1(i, Q0) = S∗1 (i, Q0) = 0,

• if U1(Q0) < i < V1(QT ) then Q∗1(i, Q0) = Y1(i)−Q0 and S∗1 (i, Q0) = 0,

• if V1(QT ) < i then Q∗
1(i, Q0) = QT −Q0,

with U2(Q0) is the value of i so that Y2(i) = Q0. U2(Q0) is given by the following equation

U2(Q0) =
δ0

ρσ0

[
Q0 − σ0

√
1− ρ2Φ−1

(
p + b− s1

p + b− s2

)
− µ0

]
+ θ0. (7.13)

U1(Q0) and V1(QT ) are also the values of i so that Y1(i) = Q0 and Y1(i) = K respectively. U1(Q0)

and V1(K) are given by the following equations

U1(Q0) =
δ0

ρσ0

[
Q0 − σ0

√
1− ρ2Φ−1

(
p + b− ce

p + b− s2

)
− µ0

]
+ θ0, (7.14)

and

V1(QT ) =
δ0

ρσ0

[
QT − σ0

√
1− ρ2Φ−1

(
p + b− ce

p + b− s2

)
− µ0

]
+ θ0. (7.15)

Note that the value of U2(Q0), U1(Q0) and V1(K) depends on the realized value of the couple (ce; s1).

Objective function

Using the dynamic programming principle, and using the obtained results in the previous sections, we
can write the expected objective function of the �rst decision stage as follows

Π0(Q0, QT ) = −cop(QT −Q0)− c0Q0 + E(ce;s1)

[
Ei

[
ED|i [Π∗1(Q

∗
1, S

∗
1 |i, Q0, QT )]

]]
. (7.16)

Let ED|i [Π∗1(Q
∗
1, S

∗
1 |i, Q0, QT )] be the optimal expected objective function of the second period (with

respect to D|i). ED|i [Π∗1(Q
∗
1, S

∗
1 |i, Q0, QT )] is then de�ned as follows
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ED|i [Π∗1(Q
∗
1, S

∗
1 |i, Q0, QT )] =





ED|i [Π∗11(Q
∗
1, S

∗
1 |i, Q0, QT )] if i < U2(Q0)

ED|i [Π∗12(Q
∗
1, S

∗
1 |i, Q0, QT )] if U2(Q0) < i < U1(Q0)

ED|i [Π∗13(Q
∗
1, S

∗
1 |i, Q0, QT )] if U1(Q0) < i < V1(QT )

ED|i [Π∗14(Q
∗
1, S

∗
1 |i, Q0, QT )] if V1(QT ) < i

(7.17)

with

ED|i [Π∗11(Q
∗
1, S

∗
1 |i, Q0, QT )] = (7.18)

p

∫ Y2(i)

0

Dh(D|i)dD + p

∫ ∞

Y2(i)

Y2(i)h(D|i)dD

−b

∫ ∞

Y2(i)

(D − Y2(i))h(D|i)dD

+s2

∫ Y2(i)

0

(Y2(i)−D)h(D|i)dD + s1(Q0 − Y2(i)),

ED|i [Π∗12(Q
∗
1, S

∗
1 |i, Q0, QT )] = (7.19)

p

∫ Q0

0

Dh(D|i)dD + p

∫ ∞

Q0

Q0h(D|i)dD

−b

∫ ∞

Q0

(D −Q0)h(D|i)dD + s2

∫ Q0

0

(Q0 −D)h(D|i)dD,

ED|i [Π∗13(Q
∗
1, S

∗
1 |i, Q0, QT )] = (7.20)

p

∫ Y1(i)

0

Dh(D|i)dD + p

∫ ∞

Y1(i)

Y1(i)h(D|i)dD

−b

∫ ∞

Y1(i)

(D − Y1(i))h(D|i)dD

+s2

∫ Y1(i)

0

(Y1(i)−D)h(D|i)dD − ce(Y1(i)−Q0),
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and

ED|i [Π∗14(Q
∗
1, S

∗
1 |i, Q0, QT )] = (7.21)

p

∫ QT

0

Dh(D|i)dD + p

∫ ∞

QT

QT h(D|i)dD

−b

∫ ∞

QT

(D −QT )h(D|i)dD + s2

∫ QT

0

(QT −D)h(D|i)dD

−ce(QT −Q0). (7.22)

Then the expected (with respect to D|i, i and (ce; s1)) optimal objective function of the second period
is given in Appendix D.1.

Lemma 7.2 The expected objective function Π0(Q0, QT ) is jointly concave with respect to the decision
variables Q0 and QT .

Proof. See Appendix D.2.

Lemma 7.3 The optimal values of the decision variables Q0 and K are characterized by a system of two
independent equations given by

∂Π0(Q0, QT )
∂QT

= 0 and ∂Π0(Q0, QT )
∂Q0

= 0 (7.23)

where the two partial derivatives are given in Appendix D.3 (equations (D.4) and (D.5)).

These equations characterize the optimal policy of the �rst decision stage, but they are very compli-
cated to be handled in order to get simple formulas that determine this optimal policy. For this reason, we
will develop in the following sections some particular cases in which we will provide closed-form formulas
of the optimal policy.

7.3 Worthless information particular case

In this section we will solve the particular case in which the information i is worthless, so that the
correlation coe�cient ρ is equal to zero. In this case the optimal threshold levels of the second decision
stage will be given by the following equations

Y1(i) = µ0 + σ0Φ−1

(
p + b− ce

p + b− s2

)
and Y2(i) = µ0 + σ0Φ−1

(
p + b− s1

p + b− s2

)
. (7.24)

Since the threshold levels de�ned above are independent of the information i, therefore, for any value
of the information i, one will have deterministic problem at the beginning of the second decision stage.
This problem depends on these two threshold levels and on the two optimal decision variables Q∗0 and
K∗.
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One can identify two di�erent cases, in terms of the values of the parameters sL
1 , sH

1 , cL
e and cH

e : case
A and case B.

The case A corresponds to the following assumptions

sL
1 < sH

1 < cL
e < cH

e , (7.25)

while the case B corresponds to the following assumption

sL
1 < cL

e < sH
1 < cH

e . (7.26)

7.3.1 Case A

This case corresponds to the following inequalities on the threshold levels of the second decision stage

Y H
1 (i) < Y L

1 (i) < Y H
2 (i) < Y L

2 (i). (7.27)

Second decision stage optimal policy

Depending on the realized value of the couple (ce; s1), one might have one of the two possible cases in
the second decision stage.

The optimal policy of this case and the possible combinations of situations, depending on the values
of the decision variables and the costs parameters, may be summarized in the following equations:

• case A.1: if Q0 ≤ QT ≤ Y H
1 , then Q∗

1 = K and S∗1 = 0,

• case A.2: if Q0 ≤ Y H
1 ≤ QT , then S∗1 = 0 and

� if (ce; s1) = (cL
e ; sL

1 ), then Q1 = K,

� if (ce; s1) = (cH
e ; sH

1 ) then Q∗1 = Y H
1 −Q0,

• case A.3: if Y H
1 ≤ Q0 ≤ QT ≤ Y L

2 then S∗1 = 0 and

� if (ce; s1) = (cL
e ; sL

1 ) then Q1 = K,

� if (ce; s1) = (cH
e ; sH

1 ) then Q1 = 0.

First decision stage optimal policy

Using the optimal policy developed in the previous section, we will provide in this section the optimal
policy of the �rst stage of this particular case.

In order to develop the �rst period optimal policy, we begin by de�ning the following expressions

s̄1 = βsL
1 + (1− β)sH

1 , c̄e = βcL
e + (1− β)cH

e and cMoy = c̄e + cop. (7.28)

Since we have proved the concavity of the expected objective function of the �rst decision stage, then
we will use the �rst order optimality criterion in developing the optimal policy.
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Whatever are the values of the costs of our model, we will have only three possible cases:

• the �rst case corresponds to cop > β(cH
e − cL

e ), which corresponds to the case A.1 of the second
decision stage. In this case, the optimal value of K is

K∗ = H−1

[
p + b− cMoy

p + b− s2

]
−Q∗

0.

For this case, if cMoy < 0 then the optimal value of Q0, Q∗0 = 0 and if cMoy > 0 then

Q∗
0 = H−1

[
p + b− cMoy

p + b− s2

]
,

• the second case applies if β(c0 − cL
e ) < cop < β(cH

e − cL
e ) which corresponds to the case A.2 of the

second decision stage. The optimal value of K is

K∗ = H−1

[
p + b− cL

e − cop/β

p + b− s2

]
−Q∗

0.

For this case if cMoy < 0 then the optimal value of Q0, Q∗0 = 0 and if cMoy > 0 then

Q∗0 = H−1

[
p + b− cH

e

p + b− s2

]
,

• the third case applies if cop < β(c0 − cL
e ) and c0 < cMoy which corresponds to the case A.3 of the

second decision stage. In this case, the optimal values of the decision variables are

K∗ = H−1

[
p + b− cL

e − cop/β

p + b− s2

]
−Q∗0

and

Q∗
0 = H−1


p + b + cop+βcL

e −c0
1−β

p + b− s2


 .

7.3.2 Case B

This case corresponds to the following inequalities on the threshold levels of the second decision stage

Y H
1 (i) < Y H

2 (i) < Y L
1 (i) < Y L

2 (i). (7.29)

Depending on the values of the cost parameters of our model, and taking into account the cost
assumptions de�ned in section 7.2.2, one will have in the Case B one of six possible cases.

Second decision stage optimal policy

The optimal policy of the second decision stage depends on the values of the decision variables of the �rst
decision stage and on the realization of the cost parameters of the second decision stage. These di�erent
situations may be summarized in the following equations:
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• case B.1: if Q0 < QT < Y H
1 then Q∗

1 = K and S∗1 = 0,

• case B.2: if Q0 < Y H
1 < QT < Y H

2 then

� if (ce; s1) = (cL
e ; sL

1 ) then Q∗
1 = K and S∗1 = 0,

� if (ce; s1) = (cH
e ; sH

1 ) then Q∗1 = Y H
1 −Q0 and S∗1 = 0,

• case B.3: if Q0 < Y H
1 < Y H

2 < QT < Y L
1 then

� if (ce; s1) = (cL
e ; sL

1 ) then Q∗
1 = K and S∗1 = 0,

� if (ce; s1) = (cH
e ; sH

1 ) then Q∗1 = Y H
1 −Q0 and S1 = 0,

• case B.4: if Y H
1 < Q0 < QT < Y H

2 then

� if (ce; s1) = (cL
e ; sL

1 ) then Q∗
1 = K and S∗1 = 0,

� if (ce; s1) = (cH
e ; sH

1 ) then Q∗1 = 0 and S∗1 = 0,

• case B.5: if Y H
1 < Q0 < Y H

2 < QT < Y L
1 then

� if (ce; s1) = (cL
e ; sL

1 ) then Q∗
1 = K and S∗1 = 0,

� if (ce; s1) = (cH
e ; sH

1 ) then Q∗1 = 0 and S∗1 = 0,

• case B.6: if Y H
1 < Y H

2 < Q0 < QT < Y L
1 then

� if (ce; s1) = (cL
e ; sL

1 ) then Q∗
1 = K and S∗1 = 0,

� if (ce; s1) = (cH
e ; sH

1 ) then Q∗1 = 0 and S∗1 = Q0 − Y H
2 .

First decision stage optimal policy

The optimal policy of the �rst decision stage of this particular case could be developed using the optimal
policy of the second decision stage provided in the previous section. Whatever the model parameters are,
one can resume the solution in six di�erent cases that correspond to those of the second decision stage.
These cases are:

• case B.1: this case applies if cop > β(cH
e − cL

e ). The optimal value of K, is then

K∗ = H−1

[
p + b− cMoy

p + b− s2

]
−Q∗

0.

If c0 > cMoy then Q∗0 = 0, else Q∗0 = QT ,

• case B.2: this case applies if β(sH
1 − cL

e ) < cop < β(cH
e − cL

e ). In this case

K∗ = H−1

[
p + b− cL

e − cop

β

p + b− s2

]
.

If c0 > cMoy then Q∗0 = 0, else Q∗0 = Y H
1 ,
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• case B.3: this case applies if 0 < cop < β(sH
1 − cL

e ). In this case

K∗ = H−1

[
p + b− cL

e − cop

β

p + b− s2

]
.

If c0 > cMoy then Q∗0 = 0, else Q∗0 = Y H
1 ,

• case B.4: this case applies if β(sH
1 − cL

e ) < cop < β(cH
e − cL

e ) and cop + (1 − β)sH
1 + βcL

e < c0 <

cop + (1− β)cH
e + βcL

e . In this case

K∗ = H−1

[
p + b− cL

e − cop

β

p + b− s2

]

and

Q∗
0 = H−1


p + b + cop−c0+βcL

e

1−β

p + b− s2


 ,

• case B.5: this case applies if 0 < cop < β(sH
1 − cL

e ) and cop + βcL
e + (1− β)sH

1 < c0 < cMoy. In this
case

K∗ = H−1

[
p + b− cL

e − cop

β

p + b− s2

]

and

Q∗
0 = H−1


p + b + cop−c0+βcL

e

1−β

p + b− s2


 ,

• case B.6: this case applies if 0 < cop < β(sH
1 − cL

e ) and c0 < cop + βcL
e + (1−β)sH

1 . In this case one
gets

K∗ = Q∗
0 = H−1

[
p + b− cL

e − cop

β

p + b− s2

]
.

7.4 Perfect information particular case

In this section we will develop the optimal policy of the entire problem in the case where the correlation
between the external information and the demand is perfect, or in other words when ρ = 1. In this case,
the conditional demand distribution will be a normal distribution with a mean equals to µ0+ρ(i−θ0)σ0/δ0

and a standard deviation equals to zero, which is equivalent to a deterministic demand that is equal to
D|i = µ0 + ρ(i− θ0)σ0/δ0.

We will use the same methodology as for the �rst particular case, studied in the previous section, in
order to develop the optimal policy of this particular case of our model.

We will begin by determining the optimal policy of the second decision stage, then using a dynamic
programming approach, we determine that of the �rst decision stage.
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7.4.1 Second decision stage optimal policy

The problem of the second decision stage is deterministic. Once the information i is known, the demand
D becomes deterministic and gets the value of D|i = µ0 + ρ(i− θ0)σ0/δ0. In this case whatever the value
of the couple (ce; s1) is, the optimal values of the decision variables Q1 and S1 will not be in�uenced.
Therefore depending on the value of the realized information i, we can have one of the following three
cases:

• if Q0 ≤ QT ≤ D|i then Q∗L
1 = Q∗H1 = QT − Q0 and S∗L1 = S∗H1 = 0 and the optimal expected

objective function (with respect to (ce; s1) ) is

Π∗1(Q
∗
1, S

∗
1 |i) = pQT − b(D|i−QT )− c̄e(QT −Q0),

• if Q0 ≤ D|i ≤ QT then Q∗L
1 = Q∗H1 = D|i − Q0 and S∗L1 = S∗H1 = 0 with the following expected

optimal objective function
Π∗1(Q

∗
1, S

∗
1 |i) = pD|i− c̄e(D|i−Q0),

• if D|i ≤ Q0 ≤ QT then Q∗L1 = Q∗H
1 = 0 and S∗L1 = S∗H1 = Q0 −D|i with

Π∗1(Q
∗
1, S

∗
1 |i) = pD|i + s̄1(Q0 −D|i).

7.4.2 First decision stage optimal policy

Using dynamic programming we can write the expected objective function of the �rst decision stage as
follows

Π0(Q0, QT ) = −cop(QT −Q0)− c0Q0 + Ei

[
E(ce;s1)[Π

∗
1(Q

∗
1, S

∗
1 |i)]

]

= −cop(QT −Q0)− c0Q0

+
∫ ∞

δ0/σ0(QT−µ0)+θ0

[pQT − c̄e(QT −Q0)− b(D|i−QT )] g(i)di

+
∫ δ0/σ0(QT−µ0)+θ0

δ0/σ0(Q0−µ0)+θ0

[pD|i− c̄e(D|i−Q0)] g(i)di

+
∫ δ0/σ0(Q0−µ0)+θ0

0

[pD|i + s̄1(Q0 −D|i)] g(i)di (7.30)

To derive the optimal values of the decision variables Q0 and QT , we will use the �rst order optimality
criterion.

The optimal values of Q0 and QT will be the solutions of the following equations

∂Π0(Q0, QT )
∂Q0

= −c0 + cop + c̄e − (c̄e − s̄1)G [δ0/σ0(Q0 − µ0) + θ0] = 0, (7.31)

and
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∂Π0(Q0, QT )
∂QT

= p + b− c̄e − cop − (p + b− c̄e)G [δ0/σ0(QT − µ0) + θ0] = 0. (7.32)

These two equations gives the following optimal values of the decision variables

Q∗0 =
σ0

δ0

[
G−1

(
c̄e + cop − c0

c̄e − s̄1

)
− θ0

]
+ µ0, (7.33)

and

Q∗T =
σ0

δ0

[
G−1

(
p + b− cMoy

p + b− c̄e

)
− θ0

]
+ µ0. (7.34)

Proposition If c0 < c̄e + cop then the optimal Q0 is positive and is equal to the value de�ned in (7.33).
In the other cases Q∗0 = 0.

7.5 Numerical analysis

In this section we provide some numerical applications to show the impact of each of our model parameters
on the structure of the optimal policy.

Firstly, we de�ne a nominal numerical set of parameters. Then, based on that set of parameters,
we de�ne other examples by varying one or more of the nominal numerical parameters. We make then
comparisons between the di�erent provided examples, in order to show the e�ect of some parameters of
our model on the optimal policy.

The nominal numerical values of our model parameters are de�ned as follows: µ0 = 1000, θ0 = 1000,
σ0 = 300, δ0 = 300, ρ = 0.5, β = 0.5, p = 100, b = 30, s2 = 15, c0 = 50, cop = 5, cL

e = 40, cH
e = 50,

sL
1 = 30, sH

1 = 40.
Note that in all the following numerical examples, we plot the optimal values of the decision variables

of the �rst decision stage Q0 and QT , namely Q∗0 and Q∗T , and the expected optimal values of the decision
values of the second decision stage, namely E[Q∗1] and E[S∗1 ]. Indeed, the expectation of the optimal
values of the decision variables Q1 and S1 is with respect to the stochastic couple (ce; s1) and with respect
to the stochastic information i.

7.5.1 Impact of the unit order cost c0

In this section we show the e�ect of the unit order cost c0 on the optimal policy of the �rst decision stage.
We use the nominal parameters de�ned above, and we vary the unit order cost of the �rst decision stage
c0 to show its impact on the optimal policy.

Note that for this example one has c̄e = 45, cMoy = 50 and s̄1 = 35.
From Figure 7.2, one can notice the existence of three di�erent intervals of values of c0. The �rst one

belongs to the lower values of c0, where the expected optimal value of the decision variable S1 is positive.
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In this region, the optimal value of the decision variable Q0 is high, due to the attractive ordering cost
c0, and consequently, the expected optimal decision variable E[Q∗

1] is equal to zero. Therefore, in this
region the optimal decision variable Q∗T is equal to the optimal decision variable Q∗0. Note that in this
region, even if the expected salvage value s̄1 is lower than the ordering cost c0, it is optimal to order some
units and to salvage them later using the payback option at the beginning of the selling period. This is
due to the existence of the correlation between the information i and the demand D (ρ = 0.5) and to the
attractive ordering cost c0 that is lower (in this region) than the expected cost cMoy = 50.

The second region belongs to the medium values of c0. In this region the optimal value of the decision
variable Q0 is still positive but is decreasing rapidly when c0 increases. The expected optimal value of the
decision variable S1 is equal to zero. In fact it is not pro�table to order some units at the �rst decision
stage and then to salvage them at the second decision stage. On the other hand, when c0 increases, the
optimal decision variable Q∗T is still constant, and as the optimal decision variable Q∗0 decreases, then the
optimal K∗ increases, to permit an increase in the number of units ordered at the second decision stage,
namely Q∗

1.

In the third region, which corresponds to the high values of c0, the optimal value of the decision
variable Q0 is equal to zero. In this region, it is normal that S∗1 = 0, because there are no units that are
able to be returned to the supplier. As Q∗0 = 0, then in this region the optimal policy is not a�ected by
the increase of c0.
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Figure 7.2: E�ect of the unit order cost, c0
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ρ=0.1 - β=0.5
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Figure 7.3: E�ect of information quality, ρ = 0.1
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Figure 7.4: E�ect of information quality, ρ = 0.9
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7.5.2 Impact of the information quality

In this section, we compare the example presented in the previous section, in Figure 7.2, (with correlation
coe�cient ρ = 0.5) with two other examples, that have the same parameters except the correlation
coe�cient: the �rst one is with less important information, with ρ = 0.1 and the second one is with more
important information with ρ = 0.9.

The �rst remark to be taken into account is that when the correlation between the information and
the demand decreases, the optimal policy becomes insensitive to the di�erence between the unit order cost
c0 and the expected cost cMoy, in the regions where this di�erence is considerable, and is very sensitive
in the zone where this di�erence is small. This implies that the width of the c0 values interval, where
both Q∗0 and E[Q∗

1] are positive (the interval of medium c0 values) increases when ρ increases. In this
region the optimal policy is to order with Q0 and Q1 together.

Note also that when ρ decreases, the expected returned quantity E[S∗1 ] decreases. Indeed, in the case
where ρ is low, the quality of the information captured between the two decision stages is very bad, and
it does not permit a reduction in the demand variability. As the payback value is less than the ordering
value, and one knows a priori that the collected information will not change tremendously the demand
distribution, then it will not be pro�table to return units ordered with Q0 with a payback value s1, and
consequently E[S∗1 ] decreases.

Notice that when ρ increases then the optimal reserved capacity amount increases. That gives a bigger
chance to pro�t from the information i and the variability reduction of the demand. This can be done by
adjusting the �rst ordered quantity Q0 using a part or the totality of the reserved capacity which implies
an important reactivity.

From Figures 7.2, 7.3 and 7.4, we can note that the e�ect of the information quality coupled with the
unit order cost c0 on the optimal policy can be divided into three cases.

The �rst case corresponds to the very low c0 values. In this region, the di�erence between cMoy

and c0 is very big so that the correlation coe�cient ρ has no importance. Hence, the optimal decision
variable K∗ and consequently the optimal expected decision variable E[Q∗1] are equal to zero. In this
region, when the information quality increases, the optimal decision variable Q∗0 increases due to two
reasons. Firstly, if the value of the realized information i is high, then the demand will be high (due
to the strong correlation). Therefore, a high value of the optimal decision variable Q∗

0 satis�es well the
demand. Secondly, if the value of the realized information i is low, then due to the low di�erence between
c0 and s1 a part of Q∗0 could be returned to the supplier.

The second case corresponds to the medium c0 values. In this region, the di�erence between cMoy and
c0 is low. Then it is the quality of the information that will determine which of the procurement modes
Q0 or Q1 will be more pro�table. Indeed, when ρ increases, K∗ increases, it becomes more pro�table
to postpone the ordering decision to the second decision stage, in order to use better the information i.
Then Q∗0 decreases and to compensate E[Q∗1] increases .

The third case is relative to the high c0 values. In this region it is logical to have Q∗0 = 0, for all ρ

values, due to the high di�erence between cMoy and c0. When ρ increases, the optimal K∗ increases also
which gives a better reactivity in the case of high i realization at the second decision stage. On the other
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hand E[Q∗1] decreases when ρ increases as it is decided after that i is known. In fact, �rst of all, when
ρ increases, and as Q∗0 = 0 for all ρ values, there is no need to postpone any orders from the �rst to the
second decision stage or to compensate for any unordered units (with Q∗0). In addition, for high ρ values,
the collected information during the �rst period will be very useful to reduce the demand variability.
Then after observing the information i, the variability of the demand decreases, and consequently the
expected optimal quantity E[Q∗1] ordered to face this variability decreases also. Note that this induces
an increase in the di�erence between K∗ and E[Q∗1].

7.5.3 Impact of the probability β

In this section we compare two di�erent examples that have both the same nominal numerical parameters
de�ned above except the probability β. For the �rst example shown in Figure 7.5 the probability that the
couple (ce; s1) takes its high value (cH

e ; sH
1 ) is equal to β = 0.9. In the second example shown in Figure

7.6 we have β = 0.1. ρ=0.5- β= 0.9
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Figure 7.5: E�ect of probability β, β = 0.9

Note that when the probability β decreases, the expected unit cost cMoy and the expected unit
payback value s̄1 increase.

From Figures 7.5 and 7.6 one can easily see that when the probability β decreases, it becomes more
pro�table to order more at the �rst decision stage with Q0 for two reasons: because the expected cost of
the use of the second decision stage options, cMoy, increases and at the same time the unit payback value
s̄1 increases also. This directly implies the increase in the expected S∗1 and the decrease of the optimal
capacity amount reserved K∗ and the optimal expected exercised options at the second decision stage
E[Q∗

1].
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Figure 7.6: E�ect of probability β, β = 0.1

7.5.4 Impact of the unit payback value sH
1

In this section we study the e�ect of the high value of the unit payback value sH
1 on the optimal policy

of the two decision stages and on the expected optimal objective function. Firstly, we plot two numerical
examples, showing the optimal policy, based on the nominal numerical data de�ned above except the
probability β and the value of sH

1 . In the �rst example shown in Figure 7.7 we vary sH
1 and we assume

that β = 0.5. In Figure 7.8 we vary sH
1 and we take β = 0.1. Secondly, we plot an other example

(Figure 7.9) in which we show the e�ect of sH
1 and of the correlation coe�cient ρ on the expected optimal

objective function of our model. This example (Figure 7.9) is based also on the nominal numerical values
de�ned above, except the probability β = 0.1, the correlation coe�cient ρ that we give three di�erent
values (0.1, 0.5 and 0.9) and the unit salvage value sH

1 that we vary in the admissible interval of values.

For the �rst two examples, Figures 7.7 and 7.8, note that when the higher value of s1, namely
sH
1 increases the expected optimal value of the returned quantity, E[S∗1 ] increases. This increase is
accompanied with an increase in the optimal ordered quantity Q∗

0, from which some units are returned at
the second decision stage. Note also that the optimal amount of reserved capacity K∗ and the expected
optimal ordered quantity at the second decision stage E[Q∗1] increase. This means that when sH

1 increases,
the optimal policy tends to a policy where one orders more at the �rst decision stage and less at the
second decision stage. In addition, a part of the ordered quantity at the �rst decision stage could be
returned to the supplier.

Note also that when the probability value β decreases, the impact of the increase of sH
1 on the optimal

policy may be seen more clearly, and especially for the low and medium sH
1 values.

In these two examples, we can �nd the same characteristics of the impact of the increase of the
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Figure 7.7: E�ect of the high unit payback value sH
1 , with β = 0.5

probability β on the oprimal policy and that have been described in section 7.5.3.
From Figure 7.9, the �rst important and rather intuitive issue that one can notice is the e�ect of

the quality of the collected information on the expected optimal objective function. It is clear that the
higher the quality of the information, the higher the expected optimal objective function. Note that in
this example we have assumed that the probability β = 0.1, in order to emphasize on the e�ect of the
higher value of the unit payback value, sH

1 . The second important issue is that the impact of the quality
of the information on the expected optimal objective function increases when the unit payback value sH

1

increases. This is due to the fact that, for the high ρ values, when sH
1 increases, the increase in E[S∗1 ] is

higher than that in the case of low ρ values.

7.6 Conclusion

In this chapter we have presented a new production/iventory model, for short life cycle products, or
newsboy type products. During a single period selling horizon, a single product for which the stochastic
demand is characterized by a probability density function, which is distributed jointly with an exogenous
market information. The decision process is divided into two stages. In the �rst stage, two decisions
are �xed: the �rst concerning a �rst ordered quantity, and a second decision concerning a capacity
reservation. In the second stage two decisions are also �xed: the �rst one is relative to the use of the
totality or of a part of the reserved capacity (purchased options) at the �rst decision stage. The second
one represents the quantity returned (payback) to the supplier at the beginning of the selling horizon,
from the quantity already ordered at the �rst stage. During the �rst stage, the exogenous information is
stochastic. The exercise costs (of the options) and the unit value of the returned quantity at the second



Conclusion 139

ρ= 0.5- β=0.1

0

200

400

600

800

1000

1200

1400

1600

32 34 36 38 40 42 44 46 48 50 52

Unit salvage value, s1
H

D
ec

is
io

n
 v

ar
ia

b
le

s

Q0* QT* E[Q1*] E[S1*] K*

Figure 7.8: E�ect of the high unit payback value sH
1 , with β = 0.1
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decision stage (payback) are also uncertain and each of them has two possible values. Between the two
decision stages, the market information is collected and the parameters of the conditional distribution of
the demand are known. The values of the exercise cost and of the unit return value are also known. At
the end of the selling horizon, each remaining unit, if any, is salvaged and any unsatis�ed order is lost.
We have provided the optimal policy of the second decision stage and the optimality equations of the
�rst decision stage. Since there is no closed-form analytical expression for the optimal policy, we have
solved numerically the �rst decision stage. Then, via numerous numerical examples we have provided
some insights on the optimal policy and the e�ect of the main model parameters on this policy. We have
also solved analytically two particular cases: the �rst one is a model with worthless information and the
second one is with perfect information.

Note that in this chapter we have analyzed a new type of contract from the point of view of the
retailer. We have shown the increase of the expected optimal objective function of the retailer and of
the total ordered quantity QT with the increase of the unit payback value sH

1 . In the perspectives of this
chapter we can �nd the study of the impact of the increase of sH

1 on the optimal policy and the optimal
expected objective function of the supplier, and as Q∗

T increases with sH
1 , we can assume that there exists

a certain value sH∗
1 that coordinates the channel and maximizes both the supplier and retailer expected

objective functions.



Chapter 8

Finite Horizon Dynamic Nonstationary
Stochastic Inventory Problem with Two
Production Modes: Near-Myopic
Bounds

We model in this chapter the di�erence between procurement costs in a multiperiodic planning
setting. We propose a model which is characterized by the possibility of �xing two orders at
each period: the �rst order with a fast production mode, which permits an immediate deliv-
ery and the second order with a slow production mode, which has one period delivery delay.
Clearly, the slow production mode is less expensive, and thus more attractive from this point
of view. We develop a discounted backlog model, with proportional production, inventory
holding and shortage costs. We allow all these costs to be period dependent. The demands
are random variables with probability distribution functions that are independent and possi-
bly di�erent from one period to another. Since there is no closed-form optimal solution, then
the main contribution of this chapter, which is the development of upper and lower bounds
on the optimal decision variables, permits to �nd an approximation on the optimal solution.
The approximated solutions are developed by exploiting the upper and lower bounds and by
using an extension of a known heuristic. We also provide some numerical examples in order
to test the e�ciency of our approximations.

Keywords:production planning, inventory control, slow and fast production modes, myopic
policies, upper and lower bounds.
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8.1 Introduction

Nowadays, in the production planning and inventory control context, the competition between suppliers
becomes rougher due to the globalization. Therefore, the gap between the correspondent procurement
costs becomes more and more important essentially due to raw materials and workforce costs di�erence
between the di�erent countries. However, the procurement cost is connected, in general, to the delivery
time. Indeed, in general, the higher the delivery time, the lower the unit ordering cost.

In the previous chapters we have modeled this di�erence in the procurement costs, in a two-period
setting. In this chapter, we model this di�erence in a multi-periodic framework by allowing to order
at each period of the planning horizon twice: the �rst time with a fast production mode, with an
immediate delivery and the second time with a slow production mode, that has one period delivery delay.
It is obvious that the slow production mode is less expensive and then more attractive. We develop a
discounted backlog model, with proportional production, inventory holding and shortage costs which are
period dependent. The demand distributions are independent and non-stationary.

(Whittemore and Saunders, 1977) characterized the optimal ordering policies under stochastic demand
when two supply options (slow and fast) are available, with di�erent costs and di�erent delivery times.
Using some assumptions on the holding-penalty cost functions, ordering costs and backlogging, they
provided theoretical conditions under which the optimal solution consists in using exclusively the fast
mode (respectively the slow mode). They provided explicit formulas de�ning the optimal slow mode
ordering quantity.

(Sethi et al., 2001, 2005) developed a periodic review inventory model with fast and slow delivery
modes and demand forecast updates. At the beginning of each period, on-hand inventory and demand
information are updated. At the same time, decisions on how much to order using fast and slow delivery
modes are made. Fast and slow orders are delivered, respectively, at the end of the current and the next
periods. They proved existence of an optimal Markovian policy, corresponding to a modi�ed base-stock
policy. No analytical expression are available for the optimal solutions.

(Bensoussan et al., 1983) analyzed an inventory model with two supply modes, one instantaneous and
the other with a one period lead time. They considered �xed and variable costs associated with ordering
decisions. They obtained an optimal policy, which represents a generalization of the well-known (s, S)
policy.

(Zhang, 1996) proposed a model of an inventory system with three di�erent supply modes. This
author exhibited, under some assumptions, the structure of the optimal ordering policy. He derived
explicit formulas, valid in some particular cases, for the optimal order-up-to levels. For the general case
no closed-form formulas are available, but some properties of the optimal solutions are discussed.

(Morton and Pentico, 1995) developed a methodology to cope with the problem of ordering once at
each period of a �nite horizon non-stationary inventory problem. They provided upper and lower bounds
on the optimal orders at each period.

In the present chapter, we address a multi-periodic non-stationary production/ inventory model with
random demands and fast and slow production modes (Cheaitou et al., b, 2007), for which it is well
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known that no analytical solutions are available. We thus focus on bounds and approximations for the
optimal solution, in a similar way as in (Morton and Pentico, 1995).

Using the methodology provided in (Morton and Pentico, 1995), we �rst perform a formal cost trans-
formation (exclusively for the fast production mode), which permits to replace the decision variable
relative to the ordered quantity by a new decision variable relative to the order-up-to level. This trans-
formation, which is well known in the literature (Veinott, 1965), permits to develop the bounds more
simply, and independently of the initial inventory level of each planning period. Via this formal trans-
formation, we exhibit an upper bound on the optimal required inventory level at the beginning of each
period. In this process, we heuristically assume that, at each period, the demand of the next period will
be satis�ed exclusively with units ordered at the current period with the slow mode. This last assump-
tion is numerically justi�ed. Under this assumption, the fast mode is exclusively used in order to deliver
the backlogged orders from the previous period. In other words, the fast production mode is used, as
an emergency mode, in order to adjust the decisions on the slow production mode, after observing the
inventory level at the beginning of the period. It is thus direct, using the same methodology as for the
fast mode, to provide bounds for the optimal slow mode orders. The Near-Myopic heuristic given in
(Morton and Pentico, 1995), that interpolates linearly between the stockout probabilities induced by the
upper and lower bounds, is then used in our setting. A numerical analysis is provided in order to show
some insights and to compare the solution given by the bounds, provided in this chapter, to the optimal
solution given by stochastic programming.

We note that the main contribution of this chapter is the development of the upper and lower bounds
on the optimal decision variables. The di�erence between this chapter and the model presented in (Morton
and Pentico, 1995) is the introduction of two delivery modes, with di�erent costs and di�erent time delays,
and the fact that we model the problem in a backlog framework instead of a lost sales one. In general, the
production cost is lower for the slow mode. It is worth noting that we consider a non-stationary model,
with time dependent parameters and backlogs.

The main di�erence between the work presented in this chapter and the work of (Whittemore and
Saunders, 1977), is that we provide upper and lower bound on the optimal policy whatever are the model
parameters. In some cases, the approximated values that we provide are optimal.

The remainder of this chapter is structured as follows. In section 8.2 we introduce the model and the
parameters. In section 8.3 we develop upper and lower bounds for the decisions variables (namely the
order-up-to-level for the fast mode and the order quantity for the slow mode). In section 8.4 we provide
the heuristic used to �nd approximated values for the decision variables via the upper and lower bounds.
In section 8.5, we provide a numerical analysis that shows the e�ciency of our approximations. In section
8.6 we conclude and we give some perspectives.
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8.2 The Model

8.2.1 Model parameters

Consider a nonstationary production/inventory problem in which there are N time periods. At each
period, a mono-product stochastic demand is de�ned by a probability density function with known
parameters. The demands of the di�erent periods are independent between each other, but are time-
dependent. To satisfy the demand, one can order, at the beginning of each period, twice: a �rst quantity
produced (delivered) with a fast production (delivery) mode, that is delivered immediately, and a second
quantity, produced (delivered) with a slow mode, that is delivered at the beginning of the next period.
The slow production mode is assumed to be less expensive than the fast way of ordering. At the end of
each period, the unsatis�ed demands are backlogged to be satis�ed in next period, and a proportional
penalty shortage cost is charged. The remaining inventory, if any, is kept to be used in the next period,
and a proportional holding cost is charged. After the end of the last period the remaining inventory is
salvaged. Let us de�ne the following model parameters:

• Dt: the demand at period t, t = 1, ..., N ,

• Ft(Dt): the cumulative distribution function of the demand at period t, t = 1, ..., N ,

• Qt: the quantity ordered at the beginning of period t and received immediately, t = 1, ..., N ,

• Qt,t+1: the quantity ordered at the beginning of period t received at the beginning of period t + 1,
t = 1, ..., N − 1,

• xt: the initial inventory level at period t (after reception of Qt−1,t and before ordering Qt), t =

1, ..., N ,

• yt(≥ xt): the "physical" inventory level, at the beginning of period t, after ordering and reception
of the quantity Qt, t = 1, ..., N , namely we have

yt = xt + Qt,

• c̃t: the proportional unit order cost of the fast mode (Qt), t = 1, ..., N ,

• c̃t,t+1: the proportional unit order cost of the slow mode (Qt,t+1), t = 1, ..., N − 1,

• b̃t: the unit penalty shortage cost at period t, t = 1, ..., N ,

• h̃t: the unit inventory holding cost at period t, t = 1, ..., N ,

• s̃N+1: the unit salvage value at the end of the planning horizon (after the end of period N),

• α: the discount factor at each period.

Note that our model is a dynamic one. Indeed, the cost parameters are period dependent.
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The decision process of the model is then described as follows: the initial inventory level xt at the
beginning of period t, is a function of the previous period parameters as follows

xt = yt−1 −Dt−1 + Qt−1,t. (8.1)

The decision variables Qt and Qt,t+1 are then �xed. The ordered quantity Qt is then received and the
new inventory level yt is as follows

yt = xt + Qt. (8.2)

The demand Dt occurs and the inventory level at the end of period t is then equal to

yt −Dt.

For a given on-hand inventory x, de�ne the expected inventory holding and penalty shortage cost in
period t, for t = 1, ..., N , by the following expression

L̃t(x) = h̃tEt

[
(x−Dt)+

]
+ b̃tEt

[
(Dt − x)+

]
, t ≤ N, (8.3)

where the �rst term in (8.3) is the expected inventory holding cost and the second term is penalty shortage
cost, with Et[·] is the expectation with respect to the random demand Dt, and (a)+ = max(a, 0).

Since we assume that after the end of the planning horizon, the remaining inventory, if any, is salvaged,
then the expected cost function of period N + 1 (a �ctitious period that represents the time that follows
the end of the planning horizon) is given by

L̃N+1(x) = −s̃N+1x, (8.4)

For each x, the derivative of the expected inventory holding and penalty shortage cost function, L̃t(x),
with respect to x is given by

L̃′t(x) = h̃tFt(x)− b̃t [1− Ft(x)] . (8.5)

De�ne Π̃t(xt) as the expected cost function from period t to the end of the horizon when entering
period t with initial inventory level of xt, and when pursuing an optimal policy from period t + 1 to the
end of the horizon. De�ne Π̃t

∗
(xt) as the value of the expected cost function Π̃t(xt) when pursuing an

optimal policy in period t. Then

Π̃∗t (xt) = min
Qt,Qt,t+1≥0

[
c̃tQt + c̃t,t+1Qt,t+1 + L̃t(xt + Qt)

+α

∫ ∞

0

Π̃∗t+1(xt + Qt + Qt,t+1 −Dt)dFt(Dt)
]

, t ≤ N − 1, (8.6)
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where c̃tQt represents the total ordering cost with the fast production mode in period t, c̃t,t+1Qt,t+1 is
the total ordering cost with the slow production mode in period t, L̃t(xt + Qt) is the expected inventory
holding and penalty shortage costs de�ned in (8.3), and

α

∫ ∞

0

Π̃∗t+1(xt + Qt + Qt,t+1 −Dt)dFt(Dt)

represents the the discounted expected optimal objective function, from period t + 1 until the end of the
planning horizon, entering period t + 1 with an initial inventory level of xt + Qt + Qt,t+1 −Dt.

The optimal cost function for period N , is then given by the following equation

Π̃∗N (xN ) =

min
QN≥0

[
c̃NQN + L̃N (xN + QN ) + α

∫ ∞

0

Π̃∗N+1(xN + QN −DN )dFN (DN )
]

, (8.7)

with

Π̃∗N+1(xN+1) = L̃N+1(xN+1) = −s̃N+1x
+
N+1. (8.8)

8.2.2 Model costs transformation

In order to develop the upper and the lower bounds on the optimal values of our model decision variables,
we will proceed a cost transformation that has been introduced in (Veinott, 1965). The aim of this
transformation is to replace the decision variable Qt, the quantity ordered with the fast production
mode, by yt, the inventory level at the beginning of period t, in such a way that yt becomes the new
decision variable instead of Qt. As it can be easily seen from (8.2), one has yt = xt + Qt, which means
that for a given initial inventory level xt, it is equivalent to decide of the ordered quantity Qt or of the
order-up-to level yt. Since the optimal value of the decision variable Qt depends on the value of the
initial inventory, xt, which implies the dependency on the previous period parameters, then the change
in the decision variables decouples the problem. Indeed, the order-up-to level does not depend normally
on the previous periods parameters. This decoupling makes the near myopic nature of the problem more
apparent.

The cost is not performed for the decision variable relative to the slow production mode Qt,t+1. This
is due to the fact that the decision variables yt and Qt,t+1 are �xed at the same moment, which means
that once the decision variable yt is decided, then the decision variable Qt,t+1 can be �xed independently
of the previous periods parameters.

We rewrite equations (8.6), (8.7) and (8.8) in another way. These equations are then respectively
equivalent to the following equations

Π̃∗t (xt) = min
yt≥xt,Qt,t+1≥0

[
c̃t(yt − xt) + c̃t,t+1Qt,t+1 + L̃t(yt)

+α

∫ ∞

0

Π̃∗t+1(yt + Qt,t+1 −Dt)dFt(Dt)
]

, t ≤ N − 1, (8.9)
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Π̃∗N (xN ) = min
yN≥0

[
c̃N (yN − xN ) + L̃N (yN ) + α

∫ ∞

0

Π̃∗N+1(yN −DN )dFN (DN )
]

, (8.10)

and

Π̃∗N+1(xN+1) = L̃N+1(yN −DN )+ = −s̃N+1(yN −DN )+. (8.11)

The cost transformation is made �rst by assuming that the new minimum cost function is equal to
Π∗t (xt) = c̃txt + Π̃∗t (xt). This assumption managerially means that the initial inventory xt in period t,
has a value of c̃txt, which should be (and now is) charged to period t (and is credited back to period
t− 1, after discounting, as a transfer). Thus, the available inventory in a period, is judged no di�erently
whether it comes from previous periods or it is ordered at the present period.

Add then c̃txt to both sides of (8.9) and (8.10), and replace Π̃∗t (xt) + c̃txt by Π∗t (xt) and Π̃∗t+1(yt +

Qt,t+1 −Dt) by −c̃t+1(yt + Qt,t+1 −Dt) + Π∗t+1(yt + Qt,t+1 −Dt). The transformation is completed by
noting the following identity

Et[(x−Dt)+]− Et[(Dt − x)+] + Et[Dt] = x, (8.12)

that is used to decompose yt. After arranging the terms one gets

Π∗t (xt) = min
yt≥xt,Qt,t+1≥0

[
Lt(yt) + (c̃t,t+1 − αc̃t+1)Qt,t+1

+ α

∫ ∞

0

Π∗t+1(yt + Qt,t+1 −Dt)dFt(Dt)
]

, t ≤ N − 1. (8.13)

The new optimal cost function, relative to period N , becomes as follows

Π∗N (xN ) = min
yN≥xN

[
LN (yN ) + α

∫ ∞

0

Π∗N+1(yN −DN )dFN (DN )
]

, (8.14)

with

Π∗N+1(xN+1) = LN+1(xN+1) = νx+
N+1 = ν(yN −DN )+, (8.15)

and

Lt(x) = htEt

[
(x−Dt)+

]
+ btEt

[
(Dt − x)+

]
+ c̃tEt[Dt], t = 1, ..., N, (8.16)

with the following new costs

bt = b̃t − c̃t + αc̃t+1, ht = h̃t + c̃t − αc̃t+1, with t = 1, ..., N − 1, (8.17)
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and

ν = −s̃N+1, bN = b̃N − c̃N , hN = h̃N + c̃N . (8.18)

8.3 Near-Myopic bounds

In this section, we use the new cost functions de�ned in the previous section in order to develop upper
and lower bounds on the optimal new decision variables, namely yt and Qt,t+1. We begin by providing an
upper bound on the decision variable yt, which is then used in the development of the upper bound on the
decision variable Qt,t+1. Then, in order to develop the lower bounds on the optimal decision variables,
and since we do not have the values of these latter, we replace them (the optimal decision variables) by
their corresponding upper bounds.

The new expected cost functions that correspond to the new cost parameters, de�ned in (8.17) and
(8.2.2), are then the following

Πt(xt, yt, Qt,t+1) =[
Lt(yt) + (c̃t,t+1 − αc̃t+1)Qt,t+1 + α

∫ ∞

0

Π∗t+1(yt + Qt,t+1 −Dt)dFt(Dt)
]

, (8.19)

where t = 1, ..., N − 1, and

ΠN (xN , yN ) =
[
LN (yN ) + α

∫ ∞

0

Π∗N+1(yN −DN )dFN (DN )
]

. (8.20)

As we have mentioned above, the expected objective function Πt(xt, yt, Qt,t+1) represents the expected
cost from period t to the end of the horizon, while pursuing an optimal policy from period t + 1 to the
end of the horizon.

Using the property that Lt and Π∗t are known to be convex function (Morton and Pentico, 1995), we
can deduce that Πt(·) is a convex function also (Heyman and Sobel, 1984). Then to optimize Πt(·), one
can use the �rst order optimality criterion.

The �rst order partial derivatives of Πt(xt, yt, Qt,t+1) with respect to yt and Qt,t+1 are given by the
following equations

∂Πt(xt, yt, Qt,t+1)
∂yt

= L′t(yt) + α

∫ ∞

0

∂Π∗t+1(Qt,t+1 + yt −Dt)
∂yt

dFt(Dt), t = 1, ..., N − 1, (8.21)

and

∂Πt(xt, yt, Qt,t+1)
∂Qt,t+1

= c̃t,t+1 − αc̃t+1 + α

∫ ∞

0

∂Π∗t+1(Qt,t+1 + yt −Dt)
∂Qt,t+1

dFt(Dt), (8.22)

where t = 1, ..., N − 1.
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The partial derivative of ΠN (xN , yN ) with respect to yN is de�ned as follows

∂ΠN (xN , yN )
∂yt

= L′N (yN ) + α

∫ ∞

0

∂Π∗N+1(yN −DN )
∂yN

dFt(DN ). (8.23)

Then, using the convexity property of g(·), the optimality equations that the decision variables yt and
Qt,t+1 must satisfy are given in the following equations

∂Πt(xt, yt, Qt,t+1)
∂yt

(y∗t , Q∗
t,t+1) = 0, t = 1, ..., N − 1, (8.24)

and

∂Πt(xt, yt, Qt,t+1)
∂Qt,t+1

(y∗t , Q∗t,t+1) = 0 t = 1, ..., N − 1, (8.25)

where y∗t and Q∗
t,t+1 are the optimal values of the decision variables yt and Qt,t+1 respectively.

Theorem 8.1 When the optimal decision variable Q∗t,t+1 is positive, then the optimal decision variable
y∗t is completely characterized by the threshold level yMax

t , given by

yMax
t = F−1

t

(
ct,t+1 − αct + bt

bt + ht

)
, t = 1, ..., N − 1. (8.26)

where one has

y∗t = max
(
xt; yMax

t

)
. (8.27)

Proof. See Appendix E.1. 2

Note that (8.26) constitutes a modi�ed Newsvendor formula. In the expression of yMax
t , the underage

cost is equal to ct,t+1 − αct + bt, which is equivalent to marginal cost of backlogging a demand from
period t to be satis�ed in period t + 1 with a unit ordered with Qt,t+1. The overage cost is equal to
αct − ct,t+1 + ht which is equal to the marginal cost of ordering a unit with the fast mode, and keeping
it in stock for period t + 1, instead of ordering it with the slow mode.

On the one hand, in the case where Q∗t,t+1 = 0, it is impossible to characterize with a closed-form
expression the optimal decision variable y∗t . On the other hand, in the case where Q∗

t,t+1 > 0, and
even if we have shown that y∗t is completely characterized, the optimal decision variable Q∗t,t+1 can not
be characterized via a closed-form formula. For these reasons, it is obvious that one needs to develop
approximated solutions that allow to provide good approximated values of the optimal decision variables
under all conditions. In the following sections we provide closed-form formulas that de�ne upper and
lower bound on y∗t and Q∗t,t+1.

8.3.1 Upper bound on y∗t

In this section we develop the upper bound on yt using the same approach provided in (Morton and
Pentico, 1995).
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Theorem 8.2 In an N-period problem, with regularity condition bi > αbi+1 − hi, the following term
constitutes an upper bound on the optimal decision variable yt

y∗mt,N = F−1
t,N

[
bt

bt +
∑N

k=t hkαk−t + αN−t+1ν

]
. (8.28)

Proof. See Appendix E.2. 2

The idea here can be explained as follows. If all demand distributions are convoluted and moved to
the �rst period, then a percentile of the convoluted demand distribution constitutes an upper bound on
the optimal order-up-to-level of that period. The order-up-to-levels for remaining periods go to zero.
This means that, to satisfy the demands of all the remaining periods, from period t to period N , we
order a single quantity at period t. On the other hand, after the end of period t, each remaining unit
that is still in stock, will not be used until the end of the planning horizon and therefore a corresponding
inventory holding cost will be paid during each of the remaining planning periods.

The formula shown in (8.28) may be interpreted as a modi�ed News-vendor formula, with an underage
cost of bt and and overage cost of

N∑

k=t

hkαk−t + αN−t+1ν. (8.29)

Note that bt includes the unit shortage penalty cost (backlog cost b̃t) and the cost di�erence between
satisfying the demand with units ordered in period t, with the fast mode (c̃t) and satisfying the demand
with units ordered in period t + 1 with the fast mode (αc̃t+1) (see (8.17)).

The overage cost, is equal to the marginal discounted inventory holding cost of a unit ordered at
period t, and kept in stock until the end of the planning horizon.

Proposition 1 Let us de�ne

y∗mt,j = F−1
t,j

[
bj

bj +
∑j

k=t hkαk−t

]
, t ≤ j < N. (8.30)

Then y∗mt,j , t ≤ j < N, is also an upper bound on the optimal decision variable y∗t .

Proof. y∗mt,j can be calculated by considering a j + 1− t period problem with zero salvage value at the
end of period j and by using the same approach that has been used to develop the upper bound given in
(E.12). 2

Proposition 2 De�ne the k-myopic policy as the tightest of the bounds given in (8.30)

y∗km
t = mint≤j<N (y∗mt,j ). (8.31)

Then the k-myopic policy is an upper bound on the ordering policy for the fast mode.

De�ne yU
t as the tightest upper bound on the optimal decision variable y∗t . This tightest upper bound
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is then the minimum between y∗mt,N and y∗km
t given by

yU
t = min

(
y∗mt,N , y∗km

t

)
. (8.32)

8.3.2 Upper bounds on Q∗
t,t+1

After having determined the upper bound on yt, we will provide in this section the upper bound on the
quantity ordered with the slow production mode Qt,t+1.

Rewrite the �rst order optimality equation with respect to the decision variable Qt,t+1, given in
equation (8.25), in the following way

∂Πt(xt, yt, Qt,t+1)
∂Qt,t+1

(xt, y
∗
t , Q∗

t,t+1)

= c̃t,t+1 − αc̃t+1 + α

∫ ∞

0

∂Π∗t+1(Q
∗
t,t+1 + y∗t −Dt)
∂Qt,t+1

dFt(Dt)

= c̃t,t+1 − αc̃t+1 + α

∫ ∞

0

L′t+1(y
∗
t + Q∗

t,t+1 −Dt)dFt(Dt)

+α

∫ ∞

0

[
α

∫ ∞

0

∂Π∗t+2

∂Qt,t+1
(Q∗t,t+1 + y∗t + Q∗

t+1,t+2 −Dt −Dt+1) dFt+1

]
dFt = 0. (8.33)

Assumption: We assume that ct,t+1 < αct+1. Therefore, ordering with the slow mode (Qt,t+1) in
order to satisfy the demand Dt+1 becomes more attractive than ordering with the fast mode (Qt). If this
assumption is not satis�ed, then the optimal decision variable Q∗t,t+1 will be equal to zero, and therefore
the slow production mode will not be used. Thus, in order to develop an upper bound on Qt,t+1 we will
assume that all the demand of period t + 1 is satis�ed with xt+1 (Q∗

t,t+1), and then Q∗
t+1 = 0.

At the moment when the decision variable Qt,t+1 is �xed, the realized value of the demand of period
t, namely Dt, is unknown (Dt is still a random variable). Due to that fact, no closed formula may be
obtained for the upper bound on the optimal value of the decision variable Qt,t+1. Therefore, in order
to simplify the development of the upper bound of Q∗

t,t+1 we will replace in (8.33), the demand Dt of
period t by its mean, namely µt. Note that, we have performed many numerical examples to show the
impact of replacing the stochastic demand Dt by its mean. In these examples, we have calculated the
upper bound on Q∗t,t+1 by two ways: in the �rst way, we have taken into account the stochastic demand
Dt as a random variable. In the second way, we have replaced the stochastic demand Dt by the mean
value µt. Then we have compared the two upper bounds obtained from the two di�erent methods. The
results showed that the values of the upper bound, in both cases, are always the same. This result can
be interpreted by the fact that Qt,t+1 is mainly ordered to satisfy the demand of period t + 1, and not
the backlogged demands of period t.

Theorem 8.3 An upper bound on the optimal value of the decision variable Qt,t+1 is de�ned as follows

Q̃t,t+1 =


F−1

t+1,N


 αc̃t+1 − c̃t,t+1 + αbt+1(∑N

j=t+1 hjαj−t + αN−t+1ν
)

+ αbt+1


− y∗t + µt




+

. (8.34)

Proof. See Appendix E.3. 2
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To calculate the upper bound on Qt,t+1, namely Q̃t,t+1, and since we can not determine the optimal
y∗t , we use the upper bound (or a combination of the upper bound and the lower bound provided in the
following sections) instead of y∗t in (E.21).

Proposition 3 Let us de�ne

Q̃k
t,t+1 =


F−1

t+1,k


 αc̃t+1 − c̃t,t+1 + αbt+1(∑k

j=t+1 hjαj−t
)

+ αbt+1


− y∗t + µt




+

, t + 1 ≤ k < N. (8.35)

Like the k-myopic bound provided on the optimal order-up-to-level at the beginning of each period,
equation (8.35) provides also an upper bound on the optimal quantity ordered with the slow mode. It
could be easily seen that Q̃k

t,t+1, t ≤ k < N, is also an upper bound on the optimal decision variable
Q∗t,t+1. This upper bound can be calculated by considering a k − t period problem with zero salvage
penalty at the end of period k.

De�ne the k-myopic policy for the slow production mode, as the tightest of the bounds de�ned in
(8.35)

Q∗km
t,t+1 = mint+1≤j<N (Q̃j

t,t+1). (8.36)

Then Q∗km
t,t+1 constitutes an upper bound on the ordering policy for the slow production mode.

To determine the tightest upper bound on Q∗
t,t+1, Q∗Ut,t+1, we take the minimum between Q̃t,t+1 and

Q∗km
t,t+1

Q∗Ut,t+1 = min
(
Q̃t,t+1, Q

∗km
t,t+1

)
. (8.37)

8.3.3 Lower bound on y∗t

In order to con�ne the optimal decision variable y∗t by using the upper bound developed above, we need
a lower bound on that optimal decision variable, that we will provide in this section.

As we have done for the upper bounds, in order to develop the lower bound we will write a near-myopic
equation that considers only the cases where units ordered at period t are used at periods t + 1, t + 2,...,
N . This consideration will help us to develop lower bounds on the decision variables yt, t = 1, ..., N .

Theorem 8.4 The following term constitutes a lower bound on the optimal decision variable y∗t

y∗Lt = F−1
t

[
bt − TN

t − νPN
t

ht + bt

]
, (8.38)
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where

PN
t = αN−t+1Pt,N and TN

t =
N−1∑

j=t

αj−t+1Pt,jhj+1, (8.39)

with

Pt,j = Pt,j(y∗t , y∗t+1, ..., y
∗
j+1)

=

(
j+1∏

k=t+1

∫ (y∗t−Dt,k−2−y∗j+1)
+

0

)
dFj(Dj)dFj−1(Dj−1)...dFt(Dt), (8.40)

Proof. See Appendix E.4. 2

In Theorem 8.4, Pt,j is the probability that any unit will be ordered from period t+1 to period j +1.
PN

t represents the discounted probability that there is no order until the end of the horizon. TN
t is the

discounted partial expectation of the time from period t + 1 until the �rst order in a period (≥ t + 1),
times the unit holding cost. This is equivalent to the discounted partial expectation of holding cost of a
unit ordered at period t until the period (≥ t + 1) where a �rst order is passed.

8.3.4 Lower bound on Q∗
t,t+1

In this section we develop the lower bound on the optimal value of the decision variable relative to the
slow production mode, Qt,t+1.

As we have done in the development of the upper bound on Qt,t+1 we will assume that it is worth
satisfying the demand Dt+1 with Qt,t+1 than with Qt+1. This assumption is justi�ed by the fact that the
ordering cost of the slow mode is lower than that of the fast mode, and by many numerical examples that
we have performed and that have shown the optimality of that assumption in the quasi totality of cases.
Therefore, in order to develop a lower bound on the optimal decision variable Q∗

t,t+1, we assume that all
the demands of period t+1 are satis�ed with units ordered with the slow production mode (Qt,t+1), and
consequently we have Q∗t+1 = 0.

Theorem 8.5 Q∗Lt,t+1, shown in (8.41), de�nes a lower bound on the optimal decision variable Q∗t,t+1

Q∗L
t,t+1 =

(
F−1

t+1

[
αc̃t+1 − c̃t,t+1 − T

′N
t+1 − P

′N
t ν + αbt+1

α(ht+1 + bt+1)

]
+ µt − y∗t

)+

, (8.41)

where

T
′N
t+1 =

N−1∑

j=t+1

αj+1−tP ′t,jhj+1 and P
′N
t = αN+1−tP ′t,N , (8.42)
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with

P ′t,j = P ′t,j(Q
∗
t,t+1, y

∗
t , y∗t+1, ..., y

∗
j+1)

=

(
j∏

k=t+1

∫ (Q∗t,t+1+y∗t−µt−Dt+1,k−1−y∗j+1)
+

0

)
dFj(Dj)...dFt+1(Dt+1), (8.43)

Proof. See Appendix E.5. 2

In Theorem 8.5, P ′t,j represents the probability that no order is placed in periods t + 1 to j + 1, or
in other term, P ′t,j represents the probability that the expected available inventory at the beginning of
period t + 1 is su�cient to satisfy all the demands from period t + 1 until period j + 1. P

′N
t is then

the discounted probability that there is no order until the end of the horizon and, therefore, that there
will be a certain inventory left to be salvaged in period N + 1. T

′N
t+1 represents the marginal discounted

expectation of the inventory holding cost of a unit available at the beginning of period t+1 and left until
the end of the horizon.

8.4 Heuristic to provide the approximated value of the optimal
decision variables

In this section, we provide a heuristic that allows us to calculate an approximated solution for our problem.
This heuristic is based on the heuristic developed by (Morton and Pentico, 1995) and constitutes a possible
way to exploit the obtained upper and lower bounds.

We begin by using propositions 1 , 2 and 3 in order to �nd a tight upper bound on the optimal
value of each of the two decision variables, yt and Qt,t+1. We calculate then the lower bounds on the
optimal values of the decision variables, using (8.38) and (8.41). We interpolate then, for each optimal
decision variable, between the upper and lower bound, in order to minimize the shortage probabilities.
The approximated value of each of the optimal decision variables, interpolates between the shortage
probabilities implied by its relative upper and lower bounds.

The approximated value of the optimal order-up-to-level yt, is given as follows

y∗At = F−1
t

[
AFt(y∗Lt ) + (1−A)F−1

t (yU
t )

]
. (8.44)

The approximated value of the optimal decision variable Q∗
t,t+1 is given by the following equation

Q∗B
t,t+1 = F−1

t+1

[
BFt+1(Q∗L

t,t+1) + (1−B)F−1
t+1(Q

∗U
t,t+1)

]
, (8.45)

with

0 ≤ A ≤ 1 and 0 ≤ B ≤ 1. (8.46)

Note that we have used the value found by (Morton and Pentico, 1995) for the interpolation coe�cient
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A that was 0.25. The authors have performed a pilot study permitting them to identify this value for
the interpolation parameter. For the interpolation coe�cient B, of the slow production mode, we have
performed a small pilot study, which shows that the best value is 0.1. Therefore, we have adopted this
value for our numerical examples.

Note that performing a pilot study can be a good extension of our work and can complete it, in order
to �nd the best value of the interpolation coe�cient B. That permits to exploit the developed upper and
lower bounds in the best way, permitting to �nd the best approximated value of the decision variables.

8.5 Numerical examples

We illustrate the e�ectiveness of the proposed approximations via some numerical examples. We have
solved optimally these examples using a stochastic programming approach, then, using our approach, we
have obtained the approximated solutions. Therefore we have compared the optimal solution with the
approximated solution.

Note that for these numerical applications, we classically assume that the demand of period t has
a truncated-normal distribution N [µt, σt], with a mean of µt and a standard deviation of σt which is
restricted to only positive values. For the optimal solutions, obtained with the stochastic optimization
approach, the demand distributions have been transformed into discrete distributions.

8.5.1 Nominal numerical data

We �rst provide the nominal numerical data that constitutes a base for all the numerical analysis section.
Those numerical data are the following: D1 ∼ N [1000; 300], D2 ∼ N [1000; 300], D3 ∼ N [1000; 300],
h̃1 = h̃2 = h̃3 = 5, b̃1 = b̃2 = b̃3 = 60, c̃1 = c̃2 = c̃3 = 50, c̃12 = c̃23 = 30, s4 = 15, α = 1.

Note that the exponential increase in the size of the stochastic program in terms of the number of
periods, has limited our study to three planning periods.

This example serves as a reference to show the e�ect of the parameters of the model on the quality
of the approximation.

8.5.2 Results

In this section we use the numerical data de�ned above in order to provide comparisons between the
optimal solution and the approximated solution given by our approach, for the �rst period of the three-
period problem.

It is worth noting that, since the stochastic optimization is a sequential approach, then using this
approach does not permit to get a single optimal value for the decision variables of the second and third
periods. Indeed, the optimal values of the second stage (period) decision variables depend on the value
of the �rst period realized demand. The optimal values of the third period decision variables, depend
on the �rst and second period realized demands. For this reason, we compare only the optimal and
approximated values of the decision variables of the �rst period. In our point of view, we see that this
comparison is su�cient, since one can apply this approach in a rolling horizon framework.
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The new value of the
changed parameter(s)

Relative error on y∗1 , % Relative error on Q∗
12,

%
Nominal numerical data 0 -3.55
c̃2=60 0 -1.57
c̃2=70 0 -1.08
c̃1=60 0 5.49
c̃1=c̃2=c̃3=70 0 6.03
s̃4=0 0 1.83
σ3=600 0 -2.85
c̃1=70 0 3.44
c̃3=60 0 -2.92
c̃1=60, c̃3=70 0 2.55
b̃1=b̃2=b̃3=40 0 0.27
c12=90 0.9 0
c12=90, σ1 = 600 0 0

Table 8.1: Relative Error on the Decision Variables of the First Period

Table 1 shows some numerical examples based on the nominal numerical data de�ned in the previous
section, where for each example (each line in the table) we have changed one or more of the nominal
numerical data. The changed parameter(s) of each line is given in the �rst column of that line. In
the second column, we give the relative di�erence between the optimal value of the decision variable y1

obtained via stochastic optimization and the approximated value obtained by our approximation. In the
last column we show the same relative di�erence for the decision variable Q12.

From Table (1), we can easily see that the relative di�erence between the optimal values of the decision
variables and their approximated values, is in the most of cases, very low. The relative di�erence between
the optimal value of the order-up-to-level y1 and the approximated value of y1, is always very low. This
low di�erence is due to the fact that in the cases where the optimal value of Q12 is positive, the solution
for yt, provided by the approximation, is optimal. In the case where the optimal value of the decision
variable Q12 is equal to zero (the case where c12 = 90), we can see that the approximated value of yt is
still quite close to the optimal value.

What we should improve is surely the choice of the interpolation coe�cient B, relative to the slow
production mode, given in (8.46). This improvement, could participate in the improvement of the quality
of the approximated solution of the slow production mode.

8.6 Conclusion

In this chapter we have developed a production and inventory model in which two production modes
are possible. The �rst is a fast mode, that permits an immediate delivery with a higher cost, and the
second is a slow mode with one period delivery delay and lower cost. In each period the unsatis�ed
demands are backlogged to be satis�ed in the following period. At the end of each period, an underage
and an overage costs are charged in terms of the state variable that represents the inventory level. At
the end of the planning horizon, any remaining quantity is salvaged at a certain salvage value. We have
provided closed-form expressions for the upper and lower bounds on the optimal values of the decision
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variables, and then using a heuristic, we have exploited these bounds in order to develop an approximated
value of each of the optimal decision variables. The numerical results were satisfying. It is obvious that
the �rst improvement that should be brought to the model is the procedure with which we choose the
interpolation coe�cient (between the upper and lower bounds) especially for the slow production mode.
The other improvement should be the fact that we could take into account a certain information updates
that permit to improve the knowledge of the demand distribution.
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Chapter 9

Conclusions and Perspectives

In this chapter, we give general concluding remarks and we present directions for future
research. For further details, we refer the reader to the concluding sections of the previous
chapters.
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9.1 Conclusion

The production/inventory planning process is a crucial activity in the industrial world with a considerable
economic value. This activity permits to the di�erent actors of the Supply Chain to satisfy the demands
of their respective customers in the best delays and with minimum costs. The demand is the most
important uncertainty source in the Supply Chain. Therefore, the production/inventory planning permits
to minimize its negative impact.

In fact, the production planning and the inventory management activities have many roles in the
optimization of the enterprise performance. The �rst role may be the service function, in the sense of
maintaining a certain service level and permitting the immediate ful�llment of the customers demands.
The second role is the capacity regulation function, which allows to compensate for the predictable
di�erence between the charge and the capacity. The third role is the circulation role; it permits to ensure
a certain continuity in the �ow inside a structure and therefore to decouple its di�erent entities. The last
important role may be the speculation role which takes its importance from the di�erences between the
ordering/ production costs of the di�erent suppliers and between the di�erent planning periods.

In this Ph.D. dissertation we presented production planning models essentially for short life cycle type
products. This type of products is generally characterized by a short selling season. The main goal of
the presented models were to help the decision maker in optimizing his production/ ordering, return and
capacity reservation decisions in order to optimally satisfy the demands of his customers and to minimize
his total costs (or maximize his total pro�t). In the presented models, we tried to give to the decision
maker more action opportunities than those existing in the literature models. These actions makes our
models more �exible and more reactive.

The main contributions of this thesis are detailed in six di�erent chapters. In addition to the conclu-
sions given in each chapter, we provide in the following paragraphs some general concluding remarks.

In Chapter 2 we presented a general overview of the Supply Chain and of the production and inventory
planning and we de�ned the di�erent related aspects and issues.

In Chapter 3 we presented an extension to the very well known Newsvendor model. This model
which is a paradigm in the literature of the operations research and management science is a single
period planning model in which a single ordering opportunity, at the beginning of the planning period,
is available and a single salvage (or return) opportunity at the end of the planning period is allowed. We
modeled in this Chapter, a Newsvendor model with initial inventory and two salvage opportunity: at the
beginning and the end of the planning period. We showed that the additional salvage opportunity is very
bene�cial in the case of a high initial inventory level.

Next, we presented a general two-period planning framework, with initial inventory, two production
modes and multiples salvage opportunities, in Chapter 4. This model allows the retailer to return a part
of his inventory to the supplier or to sell it in a parallel market, even before the beginning of the planning
period. The di�erent production modes with di�erent production costs give the decision maker more
degrees of freedom and allow him to pro�t from the di�erence between the production costs. In Chapter
5, we generalized this framework by adding capacity constraints to the model, which makes it more
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general permitting to consider many real cases where the production capacities are �nite. In Chapter 6,
we modeled an important aspect of the Supply Chain, which is the information update. Based on the
model shown in Chapter 4, we have considered a demand forecast updating process for the demand of
the second period. We studied the impact of the information updating process on the structure of the
optimal policy and showed the impact of the information quality on that optimal policy.

In addition, we presented in Chapter 7 an advanced capacity reservation contract model. This model
is constituted of a single planning period with two decision stages. We modeled in this chapter the
demand forecast updating process also. We studied then two particular cases, where the information was
perfect in the �rst case and worthless in the second case. The optimization process in this contract model
was considered from the point of view of the retailer.

Finally, we tried to generalize the framework comprising two production modes to the long life cycle
type products. We formulated in Chapter 8 a multi-periodic production planning problem with two
production modes. Since there is no closed-form solution for such problems, we provided upper and lower
bounds on the optimal decision variables. These bounds allowed us, using a known heuristic, to calculate
numerically approximated solutions.

9.2 Future Research

Worrying about practical and e�cient models and results, much is left to be done. Several interesting
areas of future research arise. In the following section we detail some of these research directions.

In the whole presented work, we have assumed single product models, in which the production and
procurement decisions of only one product are modeled. It is interesting to see the case of multi-product
models, in which the di�erent produced articles share the same limited resources.

We note that the fact that the production capacities are constrained makes the development of an
optimal solution more complicated than the development of the solution in the unconstrained problem,
as we have seen in Chapter 5. Nevertheless, a �rst extension to our di�erent models would be the
generalization of the obtained results to multiple products in a framework with capacity constraints.

Most of our models were constituted of a single period or of two periods and had as objective to solve
planning problems for products with short life cycle. These models, and especially those constituted of
two periods, represent an important base to study and to understand the behavior of the multi-periodic
models corresponding to long life cycle products. An interesting study would be the extension of the
obtained results in Chapter 4, Chapter 5 and Chapter 6 to multi-periodic cases. We see that at least
some of the obtained results in the two-period framework would be valid for the multi-periodic framework.

In this Ph.D. we have proposed two di�erent planning models with demand forecast update, in which
the information that permitted to update the demand forecast was an external market information.
Two extensions might be interesting in this context: the �rst extension would be the generalization of
the updating process to the other models presented in this work, especially to the models presented in
Chapter 5 and Chapter 8. The second extension would be the use of another updating process, in which
the demand distributions in the di�erent planning period are correlated. In this case, the update of the
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demand forecast in a given planning period will use the information about the realization of the demand
in the previous periods.

In Chapter 8 we have proposed a multi-periodic production planning model with two production
modes. Since the complete analytical solution for this model is very di�cult even impossible to be
obtained, we have provided upper and lower bounds on the optimal values of the decision variables.
These bounds allowed us, using a given heuristic, to calculate numerically an approximated solution.
An important extension of our work would be the improvement of the heuristic that calculated the
approximated solution and especially the choice of the interpolation coe�cient. This coe�cient permitted
to interpolate between the upper and the lower bounds in order to �nd the approximated solution.

Note that in each model provided in this work, the objective function of the optimization problem
has been de�ned as an expected function with respect to the random variables of the model. Therefore,
the optimization problems of this work have been either maximization or minimization problems of an
expected function. In this type of optimization problems, one does not take into account the variability of
the objective function. It would be therefore interesting to use other optimization methods which include
in the development of the optimal policy the variability of the objective function.

From the studies done in this Ph.D. thesis we have concluded that modeling and solving production
and inventory problems in a multi-periodic setting is very di�cult and the characterization of a closed-
form solution in some cases is impossible. Therefore, the used of some approximations or heuristics would
be more e�cient from this point of view.
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Appendix of Chapter 4

This appendix deals with the analysis of Chapter 4. In Appendix A.1, we provide the development and
the analysis of the second period optimal policy. In Appendix A.2 we give the partial derivatives of the
total expected objective function with respect to the three decision variables of the �rst period. Finally,
in Appendix A.3, Appendix A.4 and Appendix A.5 we develop the proofs of Lemma 4.3, Lemma 4.4 and
Lemma 4.5 respectively.

A.1 Second period optimal policy

In this section we characterize the optimal policy of the unconstrained second period problem de�ned in
equations (4.15) and (4.19). Consider the two partial derivatives of Π2(X2, Q22, S2) with respect to Q22

and S2, respectively given by

∂Π2(X2, Q22, S2)
∂Q22

= −c22 + b2 + c33 − (b2 + c33 + h2 − s3)F2(X2 + Q22 − S2) (A.1)

and

∂Π2(X2, Q22, S2)
∂S2

= s2 − b2 − c33 + (b2 + c33 + h2 − s3)F2(X2 + Q22 − S2). (A.2)

Optimality conditions for Q∗
22

For any given S2 value satisfying 0 ≤ S2 ≤ X2, the optimal ordering quantity Q∗22(X2) is a function of
X2 − S2 that can be computed as the solution of the following optimization problem

Q∗22(X2) = arg
{

max
0≤Q22

{Π2(X2, Q22, S2)}
}

. (A.3)
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By concavity of Π2(X2, Q, Sb) with respect to Q22, and for any given S2 value, the optimal solution
Q∗22(X2) is given either by

Q∗22(X2) = 0, (A.4)

if −c22 + b2 + c33 − (b2 + c33 + h2 − s3)F2(X2 − S2) ≤ 0, or by

Q∗22(X2) = F−1
2

(
b2 + c33 − c22

b2 + c33 + h2 − s3

)
−X2 + S2 ≥ 0, (A.5)

if −c22 + b2 + c33 − (b2 + c33 + h2 − s3)F2(X2 − S2) ≥ 0.

Optimality conditions for S∗2

For any given Q22 value satisfying 0 ≤ Q22, the optimal ordering quantity S∗2 (X2) is de�ned as the
solution of the following optimization problem

S∗2 (X2) = arg
{

max
0≤S2≤X2

{Π2(X2, Q22, S2)}
}

. (A.6)

By concavity of Π2(X2, Q22, S2) with respect to S2, and for any given Q22 value, the optimal solution
S∗2 (X2) is given either by

S∗2 (X2) = 0, (A.7)

if s2 − b2 − c33 + (b2 + c33 + h2 − s3)F2(X2 + Q22) ≤ 0, or by

S∗2 (X2) = X2 + Q22 − F−1
2

(
b2 + c33 − s2

b2 + c33 + h2 − s3

)
≥ 0, (A.8)

if s2 − b2 − c33 + (b2 + c33 + h2 − s3)F2(X2 + Q22) ≥ 0.

Critical threshold levels

From the above optimality conditions, two threshold levels appear to be of great importance in the second
period optimal policy characterization

Y12 = F−1
2

(
b2 + c33 − c22

b2 + c33 + h2 − s3

)
and Y22 = F−1

2

(
b2 + c33 − s2

b2 + c33 + h2 − s3

)
. (A.9)

Critical threshold levels and structure of the optimal policy

We show below that the structure of the optimal policy of the second period problem is, in fact, fully
characterized by the two threshold levels given in equation (A.9) as depicted in Figure 15.

Lemma A.1 For Y12 ≤ X2 ≤ Y22, the optimal solution is given by

Q∗
22(X2) = S∗2 (X2) = 0.
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Proof. For Y12 ≤ X2 ≤ Y22, one �nds

∂Π2(X2, 0, 0)
∂Q22

< 0 and
∂Π2(X2, 0, 0)

∂S2
< 0, (A.10)

which induces, by concavity, that the solution Q∗22(X2) = S∗2 (X2) = 0 is the optimum of the pro�t
function for these X2 values. If X2 = Y12, one �nds

∂Π2(X2, 0, 0)
∂Q22

= 0 and ∂Π2(X2, 0, 0)
∂S2

< 0, (A.11)

which leads to the same conclusion. If X2 = Y22, one �nds

∂Π2(X2, 0, 0)
∂Q22

< 0 and ∂Π2(X2, 0, 0)
∂S2

= 0, (A.12)

which leads to the same conclusion. 2

Lemma A.2 For X2 ≤ Y12, the optimal solution is given by

Q∗
22(X2) = Y12 −X2 and S∗2 (X2) = 0. (A.13)

Proof. For X2 ≤ Y12, one �nds that

∂Π2(X2, Y12 −X2, 0)
∂Q22

= 0 and ∂Π2(X2, Y12 −X2, 0)
∂S2

< 0 (A.14)

which induces, by concavity, that the solution Q∗
22(X2) = Y12 −X2 and S∗2 (X2) = 0 is the optimum of

the pro�t function for such X2 values. 2

Lemma A.3 For Y22 ≤ X2, the optimal solution is given by

Q∗
22(X2) = 0 and S∗2 (X2) = X2 − Y22. (A.15)

Proof. For Y22 ≤ X2, one �nds that

∂Π2(X2, 0, X2 − Y22)
∂Q22

< 0 and ∂Π22(X2, 0, X2 − Y22)
∂S2

= 0 (A.16)

which induces, by concavity, that the solution Q∗
22(X2) = 0 and S∗2 (X2) = X2 − Y22 is the optimum of

the pro�t function for such X2 values. 2
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-

Initial inventory X2

Y12 Y22

Q∗22(X2) = Y12 −X2

S∗2 (X2) = 0
Q∗

22(X2) = S∗2 (X2) = 0
Q∗22(X2) = 0

S∗2 (X2) = X2 − Y22

Figure A.1: Structure of the optimal policy of the second period

A.2 Partial derivatives of the total expected objective function
with respect to the three decision variables of the �rst period

∂Π(X1, Q11, Q12, S1)
∂Q11

= c22 − c11 (A.17)

+ (b2 + c33 − c22)F1(Q02 + Q11 + Q12 − S1 + X1 − Y12)

+ (s2 − b2 − c33)F1(Q02 + Q11 + Q12 − S1 + X1 − Y22)

− (b2 + c33 + h2 − s3)∫ Q02+Q11+Q12−S1+X1−Y12

Q02+Q11+Q12−S1+X1−Y22

f1(x)F2(Q02 + Q11 + Q12 − S1 + X1 − x)dx

∂Π(X1, Q11, Q12, S1)
∂Q12

= c22 − c11 + b1 − (b1 + h1)F1(Q11 − S1 + X1) (A.18)

+ (b2 + c33 − c22)F1(Q02 + Q11 + Q12 − S1 + X1 − Y12)

+ (s2 − b2 − c33)F1(Q02 + Q11 + Q12 − S1 + X1 − Y22)

− (b2 + c33 + h2 − s3)∫ Q02+Q11+Q12−S1+X1−Y12

Q02+Q11+Q12−S1+X1−Y22

f1(x)F2(Q02 + Q11 + Q12 − S1 + X1 − x)dx

∂Π(X1, Q11, Q12, S1)
∂S1

= −c22 + s1 − b1 + (b1 + h1)F1(Q11 − S1 + X1) (A.19)

− (b2 + c33 − c22)F1(Q02 + Q11 + Q12 − S1 + X1 − Y12)

− (s2 − b2 − c33)F1(Q02 + Q11 + Q12 − S1 + X1 − Y22)

+ (b2 + c33 + h2 − s3)∫ Q02+Q11+Q12−S1+X1−Y12

Q02+Q11+Q12−S1+X1−Y22

f1(x)F2(Q02 + Q11 + Q12 − S1 + X1 − x)dx
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A.3 Proof of Lemma 4.3

The hessian of Π(X1, Q11, Q12, S1) with respect to Q11, Q12 and S1 is given by

∇2Π(X1, Q11, Q12, S1) = −(b1 + h1)f1(Q11 − S1 + X1)




1 0 −1

0 0 0

−1 0 1


 (A.20)

− (b2 + c33 + h2 − s3)G(X1, Q11, Q12, S1)




1 1 −1

1 1 −1

−1 −1 1


 ,

with

G(X1, Q11, Q12, S1) =
∫ Q02+Q11+Q12−S1+X1−Y12

Q02+Q11+Q12−S1+X1−Y22

f1(x)f2(Q02 + Q11 + Q12 − S1 + X1 − x)dx (A.21)

For each vector V =




V1

V2

V3


 , where (V1; V2; V3) ∈ IR3, we �nd

V T
{∇2Π(X1, Q11, Q12, S1)

}
V = −(b1 + h1)f1(Q11 − S1 + X1)(V1 − V3)2 (A.22)

− (b2 + c33 + h2 − s3)G(X1, Q11, Q12, S1)(V1 + V2 − V3)2.

From the model assumptions (section 4.2.2), one has s3 < c33, which means that (b2+c33+h2−s3) > 0.
On one hand, from equation (4.26) one has Y12 < Y22. On the other hand f1(·) and f2(·) are two proba-
bility density functions, and therefore two positive functions. Hence the function G(X1, Q11, Q12, S1) is
positive. One could conclude that

V T
{∇2Π(X1, Q11, Q12, S1)

}
V ≤ 0,

which proves that the matrix∇2Π(X1, Q11, Q12, S1) is semi-de�nite negative. Consequently, the objective
function Π(X1, Q11, Q12, S1) is jointly concave with respect to Q11, Q12 and S1. 2

A.4 Proof of Lemma 4.4

It could be easily seen that equations (4.31) and (4.33) can not be satis�ed together for the same values
of Q∗11 and S∗1 .
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Indeed, ∀ Q∗12, suppose that the �rst optimality equation, namely (4.31) is satis�ed for a given value
Q∗11 > 0. Thus if one replaces Q∗11 by its value that satis�es equation (4.31) in the partial derivative of
the total expected objective function with respect to S1 (A.19), one gets

∂Π(X1, Q11, Q12, S1)
∂S1

(Q∗11, Q
∗
12, S

∗
1 ) = s1 − c11. (A.23)

From model assumptions (section 4.2.2), one has s1 < c11. Hence

∂Π(X1, Q11, Q12, S1)
∂S1

(Q∗11, Q
∗
12, S

∗
1 ) < 0.

By concavity, and by the constraint of non-negativity of the decision variables, one gets S∗1 = 0.

Now, suppose that ∀ Q∗12, the third optimality equation, namely (4.33) is satis�ed for a given value
S∗1 > 0. Thus if one replaces S∗1 by its value, that satis�es equation (4.33), in the partial derivative of
the total expected objective function with respect to Q11 given in (A.17), one gets

∂Π(X1, Q11, Q12, S1)
∂Q11

(Q∗11, Q
∗
12, S

∗
1 ) = s1 − c11. (A.24)

For the same reasons as in the �rst case, one gets Q∗
11 = 0, which completes the proof. 2

A.5 Proof of Lemma 4.5

If Q∗12 = 0, this property is satis�ed.

Now, suppose that Q∗12 > 0. Thus if one replaces Q∗
12 by its positive value in the partial derivative of

the total expected objective function with respect to S1, given in (A.19), one gets

∂Π(X1, Q11, Q12, S1)
∂S1

(Q∗
11, Q

∗
12, S

∗
1 ) = s1 − c12 − b1 + (h1 + b1)F1(Q∗

11 − S∗1 + X1). (A.25)

Since F1(·) is a PDF, therefore F1(·) ≤ 1. Hence on gets

∂Π(X1, Q11, Q12, S1)
∂S1

(Q∗
11, Q

∗
12, S

∗
1 ) ≤ s1 − c12 − b1 + (h1 + b1) = s1 − c12 + h1.

By assumption of Lemma 4.5, one has c12 > s1 + h1. Hence

∂Π(X1, Q11, Q12, S1)
∂S12

(Q∗11, Q
∗
12, S

∗
1 ) < 0.

By concavity, and by the constraint of non-negativity of the decision variables, one gets S∗1 = 0.

On the other hand, if S∗1 = 0, the property is also satis�ed. Now, suppose that S∗1 > 0, then replace
S∗1 by this value in equation (A.18), one gets
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∂Π(X1, Q11, Q12, S1)
∂Q12

(Q∗11, Q
∗
12, S

∗
1 ) = s1 − c11. (A.26)

For the same reasons as in the �rst case, one gets Q∗
12 = 0, which completes the proof. 2
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Appendix of Chapter 5

In this appendix, we give the complementary analysis and proofs of Chapter 5. We present the proof of
Lemma 5.1 in Appendix B.1. In Appendix B.2 we provide the partial derivatives of the total expected
objective function with respect to the �rst period decision variables. Finally we provide the proofs of
Lemma 5.2 and Lemma 5.3 in Appendix B.3 and Appendix B.4 respectively.

B.1 Proof of Lemma 5.1

The hessian of Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2)) with respect to Q11, Q12 and S1 is given by

∇2Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2)) =

− (b1 + h1)f1(Q11 − S1 + X1)




1 0 −1

0 0 0

−1 0 1




− (b2 + c33 + h2 − s3) {Ω(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))

+ Ψ(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))}




1 1 −1

1 1 −1

−1 −1 1


 , (B.1)

with

Ω(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2)) =

∫ Q02+Q11+Q12−S1+X1−Y12

Q02+Q11+Q12−S1+X1−Y22

f1(x)f2(Q02 + Q11 + Q12 − S1 + X1 − x)dx, (B.2)

and

Ψ(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2)) =∫ +∞

Q02+Q11+Q12−S1+X1−Y22+K22

f1(x)f2(Q02 + Q11 + Q12 − S1 + X1 − x + K22)dx. (B.3)
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For each vector V =




V1

V2

V3


 , where (V1; V2; V3) ∈ IR3, we �nd

V T
{∇2Π(X1, Q11, Q12, Q

∗
22(X2), S1, S

∗
2 (X2))

}
V = (B.4)

−(b1 + h1)f1(Q11 − S1 + X1)(V1 − V3)2

−(b2 + c33 + h2 − s3) {Ω(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))+

Ψ(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))} (V1 + V2 − V3)2.

By the model assumptions (given in Chapter 4), one has s3 < c33, which means that (b2 +c33 +h2−s3) >

0. As, from (5.17), one has Y12 < Y22 and as f1(·) and f2(·) are positive functions, we deduce that
Ω(X1, Q02, Q11, Q12, S1) and Ψ(X1, Q02, Q11, Q12, S1,K22) are nonnegative functions. We then �nd that

V T
{∇2Π(X1, Q11, Q12, Q

∗
22(X2), S1, S

∗
2 (X2))

}
V ≤ 0,

which proves that the matrix ∇2Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2)) is semi-de�nite negative. Conse-

quently, the objective function Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2)) is jointly concave with respect to

Q11, Q12 and S1. 2

B.2 Total expected objective function partial derivatives

Assume that α = Q02 + Q11 + Q12 − S1 + X1 − Y22, β = Q02 + Q11 + Q12 − S1 + X1 − Y12 and
γ = K22 + Q02 + Q11 + Q12 − S1 + X1 − Y12.

Consider the three partial derivatives of Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2)) with respect to Q11,

Q12 and S1 respectively given by

∂Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))

∂Q11
= (B.5)

−c11 + b1 − (b1 + h1)F1(X1 + Q11 − S1)

+c22F1(K22 + Q02 + Q11 + Q12 − S1 + X1 − Y12)

−c22F1(Q02 + Q11 + Q12 − S1 + X1 − Y12)

+s2F1(Q02 + Q11 + Q12 − S1 + X1 − Y22)

+
∫ β

α

f1(D1)

(b2 + c33 − (b2 + c33 + h2 − s3)F2(Q02 + Q11 + Q12 − S1 −D1 + X1)) dD1

+
∫ +∞

γ

f1(D1)

(b2 + c33 − (b2 + c33 + h2 − s3)F2(K22 + Q02 + Q11 + Q12 − S1 −D1 + X1)) dD1,
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∂Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))

∂Q12
= (B.6)

−c12 + c22F1(K22 + Q02 + Q11 + Q12 − S1 + X1 − Y12)

−c22F1(Q02 + Q11 + Q12 − S1 + X1 − Y12)

+s2F1(Q02 + Q11 + Q12 − S1 + X1 − Y22)

+
∫ β

α

f1(D1)

(b2 + c33 − (b2 + c33 + h2 − s3)F2(Q02 + Q11 + Q12 − S1 −D1 + X1)) dD1

+
∫ +∞

γ

f1(D1)

(b2 + c33 − (b2 + c33 + h2 − s3)F2(K22 + Q02 + Q11 + Q12 − S1 −D1 + X1)) dD1

and

∂Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))

∂S1
= (B.7)

s1 − b1 + (b1 + h1)F1(X1 + Q11 − S1)

−c22F1(K22 + Q02 + Q11 + Q12 − S1 + X1 − Y12)

+c22F1(Q02 + Q11 + Q12 − S1 + X1 − Y12)

−s2F1(Q02 + Q11 + Q12 − S1 + X1 − Y22)

+
∫ β

α

f1(D1)

(−b2 − c33 + (b2 + c33 + h2 − s3)F2(Q02 + Q11 + Q12 − S1 −D1 + X1)) dD1

+
∫ +∞

γ

f1(D1)

(−b2 − c33 + (b2 + c33 + h2 − s3)F2(K22 + Q02 + Q11 + Q12 − S1 −D1 + X1)) dD1

B.3 Proof of Lemma 5.2

Using Lemma 5.1, one could use the �rst order optimality criterion to characterize the �rst period optimal
decision variables. This induces the following optimality equations

∂Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))

∂Q11
(Q∗11, Q

∗
12, S

∗
1 ) = 0, (B.8)

∂Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))

∂Q12
(Q∗11, Q

∗
12, S

∗
1 ) = 0, (B.9)

and

∂Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))

∂S1
(Q∗11, Q

∗
12, S

∗
1 ) = 0. (B.10)

Regarding equations (B.5) and (B.7) one could easily see that equations (B.8) and (B.10) can not be
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satis�ed simultaneously for the same values of Q∗11(X1) and S∗1 (X1).
For any given Q12 and S1 values satisfying 0 ≤ Q12 and 0 ≤ S1 ≤ X1, assume that the �rst optimality

equation, namely (B.8) is satis�ed for a given value Q∗11(X1) > 0. Then replacing Q∗11(X1) by its value
that satis�es equation (B.8) in equation (B.7), one gets

∂Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))

∂S1
(Q∗

11(X1), Q12, S1(X1)) = s1 − c11. (B.11)

From the model assumptions (given in Chapter 4), one has s1 < c11. Hence

∂Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))

∂S1
(Q∗11(X1), Q12, S1) < 0.

By concavity, and by the constraint of non-negativity of the decision variables, one gets S∗1 (X1) = 0.
Now, for any Q1 and Q12 values satisfying 0 ≤ Q11 and 0 ≤ Q12, assume that the third optimality

equation, namely (B.10), is satis�ed for a given S∗1 (X1) > 0. Replace then S∗1 (X1) by its value that
satis�es equation (B.10) in equation (B.5). The following equation is obtained

∂Π(X1, Q11, Q12, Q
∗
22(X2), S1, S

∗
2 (X2))

∂Q11
(Q11, Q12, S

∗
1 ) = s1 − c11. (B.12)

For the same reasons as in the �rst case, one gets Q∗11 = 0. 2

B.4 Proof of Lemma 5.3

Assuming that Q∗12 > 0 implies that there exists a Q∗
12 > 0 that veri�es (B.9). Replace then Q∗12(X1, Q

∗
11, S

∗
1 )

obtained by solving (B.9) by its value in equations (B.5) and (B.7). The obtained system is a two-variable
system de�ned as follows

∂Π(X1, Q11, Q
∗
12(X1, Q

∗
11, S

∗
1 ), Q∗

22(X2), S1, S
∗
2 (X2))

∂Q11
=

c12 − c11 + b1 − (b1 + h1)F1(X1 + Q11 − S1), (B.13)

and

∂Π(X1, Q11, Q
∗
12(X1, Q

∗
11, S

∗
1 ), Q∗22(X2), S1, S

∗
2 (X2))

∂S1
=

−c12 + s1 − b1 + (b1 + h1)F1(X1 + Q11 − S1). (B.14)

The system constituted by equations (B.13) and (B.14) is similar to the system studied in Appendix A.1.
Then by using the same approach as in Appendix A.1 one gets the two-threshold optimal policy de�ned
by Y11 and Y21 given in (5.25). 2



Appendix C

Appendix of Chapter 6

This appendix completes the analysis of Chapter 6, where we provide in Appendix C.1 the partial deriv-
atives of the expected objective function with respect to the three decision variables of the �rst period.

C.1 Partial derivatives of the expected objective function with
respect to the three decision variables of the �rst period

∂Π(X1, Q11, Q12, S1)
∂Q11

= c22 − c11 + b1 − (b1 + h1)F1(Q11 − S1 + X1) (C.1)

+
∫ ∞

0

[
(b2 + c33 − c22)F1(Q02 + Q11 + Q12 − S1 + X1 − Y12(i))

+ (s2 − b2 − c33)F1(Q02 + Q11 + Q12 − S1 + X1 − Y22(i))

− (b2 + c33 + h2 − s3)
∫ Q02+Q11+Q12−S1+X1−Y12(i)

Q02+Q11+Q12−S1+X1−Y22(i)

f1(x)F2(Q02 + Q11 + Q12 − S1 + X1 − x|i)dx

]
g(i) di

∂Π(X1, Q11, Q12, S1)
∂Q12

= c22 − c12 (C.2)

+
∫ ∞

0

[
(b2 + c33 − c22)F1(Q02 + Q11 + Q12 − S1 + X1 − Y12(i))

+ (s2 − b2 − c33)F1(Q02 + Q11 + Q12 − S1 + X1 − Y22(i))

− (b2 + c33 + h2 − s3)∫ Q02+Q11+Q12−S1+X1−Y12(i)

Q02+Q11+Q12−S1+X1−Y22(i)

f1(x)F2(Q02 + Q11 + Q12 − S1 + X1 − x|i)dx
]
g(i) di
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∂Π(X1, Q11, Q12, S1)
∂S1

= −c22 + s1 − b1 + (b1 + h1)F1(Q11 − S1 + X1) (C.3)

+
∫ ∞

0

[
(−b2 − c33 − c22)F1(Q02 + Q11 + Q12 − S1 + X1 − Y12(i))

− (s2 − b2 − c33)F1(Q02 + Q11 + Q12 − S1 + X1 − Y22(i))

+ (b2 + c33 + h2 − s3)∫ Q02+Q11+Q12−S1+X1−Y12(i)

Q02+Q11+Q12−S1+X1−Y22(i)

f1(x)F2(Q02 + Q11 + Q12 − S1 + X1 − x|i)dx
]
g(i) di



Appendix D

Appendix of Chapter 7

In this appendix we complete the analysis of Chapter 7. In Appendix D.1 we provide the second decision
stage expected optimal objective function. The proof of Lemma 7.2 is given in Appendix D.2. Finally,
the �rst decision stage expected objective function partial derivatives are given in Appendix D.3.

D.1 Second decision stage expected optimal objective function

E(ce;s1)

[
Ei

[
ED|i [Π∗1(Q

∗
1, S

∗
1 |i, Q0, QT )]

]]
= (D.1)

β

{∫ UL
2 (Q0)

0

[
ED|i

[
Π∗L11 (Q∗1, S

∗
1 |i, Q0, QT )

]]
g(i)di

+
∫ UL

1 (Q0)

UL
2 (Q0)

[
ED|i

[
Π∗L12 (Q∗

1, S
∗
1 |i, Q0, QT )

]]
g(i)di

+
∫ V L

1 (QT )

UL
1 (Q0)

[
ED|i

[
Π∗L13 (Q∗1, S

∗
1 |i, Q0, QT )

]]
g(i)di

+
∫ ∞

V L
1 (QT )

[
ED|i

[
Π∗L14 (Q∗

1, S
∗
1 |i, Q0, QT )

]]
g(i)di

}

+(1− β)

{∫ UH
2 (Q0)

0

[
ED|i

[
Π∗H11 (Q∗1, S

∗
1 |i, Q0, QT )

]]
g(i)di

+
∫ UH

1 (Q0)

UH
2 (Q0)

[
ED|i

[
Π∗H12 (Q∗1, S

∗
1 |i, Q0, QT )

]]
g(i)di

+
∫ V H

1 (QT )

UH
1 (Q0)

[
ED|i

[
Π∗H13 (Q∗

1, S
∗
1 |i, Q0, QT )

]]
g(i)di

+
∫ ∞

V H
1 (QT )

[
ED|i

[
Π∗H14 (Q∗1, S

∗
1 |i, Q0, QT )

]]
g(i)di

}
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D.2 Proof of Lemma 7.2

The di�erent parts that de�ne the expected optimal objective function of the second decision stage, given
in (7.17) are jointly concave with respect to the decision variables Q0 and QT and the information i.

Indeed, let us prove the concavity of the ED|i [Π∗11(Q
∗
1, S

∗
1 |i, Q0, QT )] and therefore the concavity of

the other three functions could be easily shown using the same methodology.

The hessian of ED|i [Π∗11(Q
∗
1, S

∗
1 |i, Q0, QT )] with respect to q1, S1 and i is given by

∇2ED|i [Π∗11(Q
∗
1, S

∗
1 |i, Q0, QT )] = −p + b− s2

δ2
0

ρ2σ2
0h (Y2(i))




0 0 0

0 0 0

0 0 1


 .

For each vector V =




V1

V2

V3


 , where (V1; V2; V3) ∈ IR3, we �nd

V T
{∇2ED|i [Π∗1(Q

∗
1, S

∗
1 |i, Q0, QT )]

}
V = −p + b− s2

δ2
0

ρ2σ2
0h (Y2(i))V 2

3 . (D.2)

From the model assumptions (section 7.2.2), one has p + b > s2, which means that

V T
{∇2ED|i [Π∗11(Q

∗
1, S

∗
1 |i, Q0, QT )]

}
V ≤ 0,

which proves that the matrix ∇2ED|i [Π∗11(Q
∗
1, S

∗
1 |i, Q0, QT )] is semi-de�nite negative. Consequently, the

objective function ED|i [Π∗11(Q
∗
1, S

∗
1 |i, Q0, QT )] is jointly concave with respect to q1, S1 and i.

Note that if the functions ED|i
[
Π∗11(Q

∗
1, S

∗
1 |i, Q0, QT )

]
, ED|i

[
Π∗12(Q

∗
1, S

∗
1 |i, Q0, QT )

]
, ED|i

[
Π∗13(Q

∗
1,

S∗1 |i, Q0, QT )
]
and ED|i

[
Π∗14(Q

∗
1, S

∗
1 |i, Q0, QT )

]
are all de�ned for each i value, then an alternative to

de�ne ED|i [Π∗1(Q
∗
1, S

∗
1 |i, Q0, QT )] is (see (Bassok and Anupindi, 1997))

ED|i [Π∗1(Q
∗
1, S

∗
1 |i, Q0, QT )] = max

1≤i≤4

(
ED|i [Π∗1i(Q

∗
1, S

∗
1 |i, Q0, QT )]

)
. (D.3)

Theorem 4.13 in (Avriel, 1976) ensures that a function that is de�ned as the maximum (pointwise) of
several concave functions is concave, which proves that the function ED|i [Π∗1(Q

∗
1, S

∗
1 |i, Q0, QT )] is jointly

concave with respect to Q0, QT and i.

It is well known that the weighted non-negative sum (or integral) of concave functions is a concave
one (Boyd and Vandenberghe, 2004).

We conclude then that the function

Ei

[
ED|i [Π∗1(Q

∗
1, S

∗
1 |i, Q0, QT )]

]
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is jointly concave and consequently the function

E(ce;s1)

[
Ei

[
ED|i [Π∗1(Q

∗
1, S

∗
1 |i, Q0, QT )]

]]

is also jointly concave with respect to Q0 and QT . 2

D.3 First decision stage expected objective function partial deriv-
atives

∂Π0(Q0, QT )
∂QT

= (D.4)

−cop + β

{
−

∫ ∞

V L
1 (QT )

[
cL
e − p− b + (p + b− s2)H(K|i)] g(i)di

+
δ0

ρσ0
g(V L

1 (QT ))

[
(cL

e − p− b)
(
QT − Y L

1

(
V L

1 (QT )
))

−(p + b− s2)
[
Y L

1

(
V L

1 (QT )
)
H

(
Y L

1

(
V L

1 (QT )
) ∣∣i = V L

1 (QT )
)

−QT H
(
QT

∣∣i = V L
1 (QT )

)
+

∫ QT

0

Dh(D|i = V L
1 (K))dD

−
∫ Y L

1 (V L
1 (QT ))

0

Dh(D|i = V L
1 (K))dD

]] }

+(1− β)

{
−

∫ ∞

V H
1 (QT )

[
cH
e − p− b + (p + b− s2)H(K|i)] g(i)di

+
δ0

ρσ0
g(V H

1 (QT ))

[
(cH

e − p− b)
(
QT − Y H

1

(
V H

1 (QT )
))

−(p + b− s2)
[
Y H

1

(
V H

1 (QT )
)
H

(
Y H

1

(
V H

1 (QT )
) ∣∣i = V H

1 (QT )
)

−QT H
(
QT

∣∣i = V H
1 (QT )

)
+

∫ QT

0

Dh(D|i = V H
1 (K))dD

−
∫ Y H

1 (V H
1 (QT ))

0

Dh(D|i = V H
1 (K))dD

]]}
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and

∂Π0(Q0, QT )
∂Q0

= (D.5)

−c0 + cop + β

{
sL
1 G(UL

2 (Q0))− cL
e G(UL

1 (Q0)) + cL
e

+
∫ UL

1 (Q0)

UL
2 (Q0)

[(s2 − b− p)H(Q0|i) + p + b] g(i)di

− δ0

ρσ0
g(UL

1 (Q0))
[
(cL

e − b− p)(Q0 − Y L
1 (UL

1 (Q0)))

+(p + b− s2)[(Q0 − Y L
1 (UL

1 (Q0)))H(Y L
1 (UL

1 (Q0))|i = UL
1 (Q0))]

−
∫ Q0

0

Dh(D|i = UL
1 (Q0))dD +

∫ Y L
1 (UL

1 (Q0))

0

Dh(D|i = UL
1 (Q0))dD

]

− δ0

ρσ0
g(UL

2 (Q0))
[
(sL

1 − b− p)(Q0 − Y L
2 (UL

2 (Q0)))

+(p + b− s2)[(Q0 − Y L
2 (UL

2 (Q0)))H(Y L
2 (UL

2 (Q0))|i = UL
2 (Q0))]

−
∫ Q0

0

Dh(D|i = UL
2 (Q0))dD +

∫ Y L
2 (UL

2 (Q0))

0

Dh(D|i = UL
2 (Q0))dD

]}

(1− β)

{
sH
1 G(UH

2 (Q0))− cH
e G(UH

1 (Q0)) + cH
e +

∫ UH
1 (Q0)

UH
2 (Q0)

[(s2 − b− p)H(Q0|i) + p + b] g(i)di

− δ0

ρσ0
g(UH

1 (Q0))
[
(cH

e − b− p)(Q0 − Y H
1 (UH

1 (Q0)))

+(p + b− s2)[(Q0 − Y H
1 (UH

1 (Q0)))H(Y H
1 (UH

1 (Q0))|i = UH
1 (Q0))]

−
∫ Q0

0

Dh(D|i = UH
1 (Q0))dD +

∫ Y H
1 (UH

1 (Q0))

0

Dh(D|i = UH
1 (Q0))dD

]

− δ0

ρσ0
g(UH

2 (Q0))
[
(sH

1 − b− p)(Q0 − Y H
2 (UH

2 (Q0)))

+(p + b− s2)[(Q0 − Y H
2 (UH

2 (Q0)))H(Y H
2 (UH

2 (Q0))|i = UH
2 (Q0))]

−
∫ Q0

0

Dh(D|i = UH
2 (Q0))dD +

∫ Y H
2 (UH

2 (Q0))

0

Dh(D|i = UH
2 (Q0))dD

]}
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Appendix of Chapter 8

This appendix deals with the analysis of Chapter 8. We provide in the following Appendixes the proofs
of Lemmas 8.1, 8.2, 8.3, 8.4 and 8.5 respectively.

E.1 Proof of Theorem 8.1

Assuming that Q∗
t,t+1 > 0 implies that there exists a Q∗t,t+1 > 0 that satis�es (8.25). Replace then Q∗t,t+1

by its value in (8.24) to obtain the following single-variable equation

∂Πt(xt, yt, Qt,t+1)
∂yt

(yMax
t , Q∗

t,t+1) = −ct,t+1 + αct − bt + (bt + ht)Ft(yMax
t ) = 0, (E.1)

which implies

yMax
t = F−1

t

(
ct,t+1 − αct + bt

bt + ht

)
. (E.2)

Since, the decision variables yt is constrained (yt ≥ xt, see (8.2)), then one has

y∗t = max
(
xt; yMax

t

)
. (E.3)

which completes the proof. 2

E.2 Proof of Theorem 8.2

De�ne the following terms:

• Fij(·): cumulative distribution function of the demand from period i to period j,

• FR(·) = 1− F (·),

• Y1 = (y1, y2, y3, ...yN ) and X1 = (Q1,2, Q2,3, ..., QN−1,N ) represent any ordering policy for the hole
horizon,
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• Y2 = (y2, y3, ..., yN ),

• Pj(Y ) the probability that a supplementary unit ordered at the �rst period (over y1) with the fast
mode (Q1) to be used at the period j,

• P ∗j = Pj(y∗1 , y∗2 , ..., y∗N ).

Note that
PN+1 = F1N ,

and
N∑

1=1

Pi = FR
1N .

We will take only a Near-Myopic case, where we look only to the cases where the demand of the �rst
period (D1) satis�es the following equation

y∗t −Dt > y∗t+1, (E.4)

which means that we take only the cases where the units ordered at period t will be used in the following
periods. Therefore, we assume that the available inventory at the beginning of the �rst period is su�-
ciently high to satisfy the demand of the �rst period, the second period and so on. The cost induced by
the use of each unit ordered at period t and used at a period j (j > t), is multiplied by its probability.

Each time we assume that units from period t will be used in period t + 2 means that the remaining
inventory from period t+1 to period t+2 is positive with two information: the remaining inventory from
period t + 1 to period t + 2 is constituted of units ordered at period t; the units of period t are su�cient
to satisfy the hole demand of periods t and t + 1, so we do not need to order any unit in period t + 1 in
order to satisfy the demand Dt+1, and consequently the decision variable Qt,t+1 is equal to zero.

In this case, the vector X1 = (Q1,2, Q2,3, ..., QN−1,N ) will be equal to zero,

X1 = (Q1,2, Q2,3, ..., QN−1,N ) = (0, 0, ..., 0).

After taking into account these information, and rewriting equation (8.21) one gets

∂Π1(x1, y1)
∂y1

(x1, y
∗
1) = L′1(y

∗
1)+ (E.5)

α

∫ (y∗1−y∗2 )+

0

[
L′2(y

∗
1 −D1) + α

∫ (y∗1−D1−y3)
+

0

∂Π∗3(y
∗
1 −D1 −D2)

∂y1
dF2(D2)

]
dF1(D1) = 0.

The interpretation of this assumption is as follows (Morton and Pentico, 1995): a marginal unit
ordered above optimal in period t will �rstly cause extra marginal holding costs and save penalty costs
in period t. That is the �rst term (L′1(y∗1)). Secondly, if in the next period one would place a positive
order, then one would order one less unit in order to restore the original state in future periods, ending
the perturbation to the original optimal solution (as for the case of increasing demand distributions).
However, if the next period would have ordered 0, the extra unit will incur same sorts of costs in the next
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period, and for every period up until the �rst period which would have ordered anyway. In this period,
one unit in less will be ordered, to end the perturbation as before. The �rst term is the myopic term,
and hence the second term must be small whenever (E.5) is considered as a near-myopic equation. We
continue below to work to estimate this term.

By iteratively substituting (E.5), and noting that L′j = −bjF
R
jj + hjFjj we will get the following

equation

[
−b1P

∗
1 + h1

N+1∑

i=2

P ∗i

]
+ α

[
−b2P

∗
2 + h2

N+1∑

i=3

P ∗i

]
+ ... + αk−1

[
−bkP ∗k + hk

N+1∑

i=k+1

P ∗i

]

+... + αN−1
[−bNP ∗N + hNP ∗N+1

]
+ αNνP ∗N+1 = 0. (E.6)

By regrouping terms of the above equation we get



N∑

j=1

hjα
j−1 + αNν


 PN+1(y∗1 , Y ∗

2 )−
N∑

i=1


αi−1bi −

i−1∑

j=1

αj−1hj


 Pi(y∗1 , Y ∗

2 ) = 0. (E.7)

We assume that bi > αbi+1 − hi which is equivalent to

0 < α <
bi + hi

bi+1
.

By using the above assumption, and by substituting it into itself we get the following expression

b1 > αb2 − h1 > (α(αb3 − h2)− h1 = α2b3 − αh2 − h1) > ... > αi−1bi −
i−1∑

j=1

αj−1hj > ...

By replacing the coe�cients of P ∗i , i = 1, ..., N in (E.7) by −b1, one gets




N∑

j=1

hjα
j−1 + αNν


 PN+1(y∗1 , Y ∗

2 )− b1

N∑

i=1

Pi(y∗1 , Y ∗
2 ) ≤ 0. (E.8)

Now increase y∗1 to ỹ1 (y∗1 ≤ ỹ1) in order to restore equality, giving




N∑

j=1

hjα
j−1 + αNν


 PN+1(ỹ1, Y

∗
2 )− b1

N∑

i=1

Pi(ỹ1, Y
∗
2 ) ≤ 0, (E.9)

which is equivalent to

−b1F
R
1N (ỹ1, Y

∗
2 ) + h∗F1N (ỹ1, Y

∗
2 ), (E.10)

with

h∗ =
N∑

j=1

hjα
j−1 + αNν.
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Since Y ∗
2 has no in�uence on (E.10), we may reduce it to zero.

We may recognize now ỹ1 as optimal solution to the revised problem with all demand in the �rst
period with ỹ1 ≥ y∗1 .

Assume now that y∗mt,N is the solution of the revised problem (problem with demand convoluted in
period t), then

−btF
R
tN (y∗mt,N ) +




N∑

j=t

hjα
j−t + αN−t+1ν


FtN (y∗mt,N ) = 0, (E.11)

which gives,

y∗mt,N = F−1
t,N

[
bt

bt +
∑N

k=t hkαk−t + αN−t+1ν

]
, (E.12)

and completes the proof. 2

E.3 Proof of Theorem 8.3

As we have done for yt we will write a near-myopic equation for Qt,t+1. We will take into account only
cases where units from Qt,t+1 will be used in the following periods. Thus we assume that demand in
period t + 1 satis�es the following equation

Q∗
t,t+1 + y∗t − µt −

j∑

k=t+1

Dk > y∗j+1, j = t + 1, ..., N − 1, t = 1, ..., N − 1. (E.13)

Equation (8.33) becomes

c̃t,t+1 − αc̃t+1 + α

∫ ∞

0

L′t+1(y
∗
t + Q∗

t,t+1 − µt)dFt(Dt) (E.14)

+α

∫ ∞

0

[
α

∫ (Q∗t,t+1+y∗t−µt−y∗t+2)
+

0

∂Π∗t+2

∂Qt,t+1
(Q∗

t,t+1 + y∗t + Q∗t+1,t+2 − µt −Dt+1)dFt+1

]
dFt = 0,

which is equivalent to

c̃t,t+1 − αc̃t+1 + αL′t+1(y
∗
t + Q∗

t,t+1 − µt) (E.15)

+α2

∫ (Q∗t,t+1+y∗t−µt−y∗t+2)
+

0

∂Π∗t+2

∂Qt,t+1
(Q∗t,t+1 + y∗t + Q∗t+1,t+2 − µt −Dt+1)dFt+1 = 0.

De�ne the following terms:

• Z∗t = y∗t + Q∗
t,t+1 − µt,

• Xt = (Qt,t+1, Qt+1,t+2, ..., QN−1,N ), the vector of the ordered quantities using the slow mode from
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period t to N ,

• X∗
t = (Q∗

t,t+1, Q∗
t+1,t+2, ..., Q

∗
N−1,N ) the optimal Xt,

• P ∗
′

j (Z∗t , Y ∗
t+1, X

∗
t+1) the probability that a supplementary unit ordered with the slow mode at period

t (over Q∗
t,t+1) to be used at the period j.

For simplicity reasons we abbreviate P ∗
′

j (Z∗t , Y ∗
t+1, X

∗
t+1) by P ∗

′
j .

Note that P ∗
′

N+1 = Ft+1,N and
∑N

1=t+1 P ∗
′

i = FR
t+1,N .

By substituting (E.15) into itself and noting that L′j = −bjF
R
jj + hjFjj , one gets

c̃t,t+1 − αc̃t+1 + α

[
−bt+1P

∗′
t+1 + ht+1

N+1∑

i=t+2

P ∗
′

i

]
+ α2

[
−bt+2P

∗′
t+2 + ht+2

N+1∑

i=t+3

P ∗
′

i

]

+... + αk−t

[
−bkP ∗

′
k + hk

N+1∑

i=k+1

P ∗
′

i

]
+ ... + αN−t

[
−bNP ∗

′
N + hNP ∗

′
N+1

]

+αN−t+1νP ∗
′

N+1 = 0. (E.16)

By rearranging terms in (E.16), one gets

c̃t,t+1 − αc̃t+1 +




N∑

j=t+1

hjα
j−t + αN−t+1ν


 P∗′N+1 −

N∑

i=t+1


biα

i−t −
i−1∑

j=t+1

hjα
j−t


P∗′i

= 0. (E.17)

Using the following assumption
bt > αbt+1 − ht,

and by substituting it into itself one gets

bt > αbt+1 − ht > α(αbt+2 − ht+1)− ht = α2bt+2 − αht+1 − ht > ... > αk−tbk −
k−1∑

j=t

hjα
j−t > ...,

which implies

αbt+1 > αk−tbk −
k−1∑

j=t+1

hjα
j−t > ..., k > t.

If we replace all the coe�cients of P∗′i by αbt+1 in (E.17), we get

c̃t,t+1 − αc̃t+1 +




N∑

j=t+1

hjα
j−t + αN−t+1ν


 P∗′N+1 − (αbt+1)

N∑

i=t+1

P∗′i ≤ 0. (E.18)

Increase Q∗
t,t+1 enough to restore equality, into Q̃t,t+1. That means increase Z∗t into Z̃t = y∗t +Q̃t,t+1−

µt. That gives
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c̃t,t+1 − αc̃t+1 +




N∑

j=t+1

hjα
j−t + αN−t+1ν


 Ft+1,N (Z̃t, Y

∗
t+1, X

∗
t+1)

−(αbt+1)FR
t+1,N (Z̃t, Y

∗
t+1, X

∗
t+1) = 0. (E.19)

Since we have assumed that we will satisfy all demands of period t + 1 with units ordered with the
slow and less expensive mode (Qt,t+1), then the vectors Y ∗

t+1 and X∗
t+1 have no in�uence on equation

(E.19) and can be set to zero. That implies

Z̃t = F−1
t+1,N


 αc̃t+1 − c̃t,t+1 + αbt+1(∑N

j=t+1 hjαj−t + αN−t+1ν
)

+ αbt+1


 , (E.20)

and the upper bound on the optimal Qt,t+1 will be

Q̃t,t+1 =


F−1

t+1,N


 αc̃t+1 − c̃t,t+1 + αbt+1(∑N

j=t+1 hjαj−t + αN−t+1ν
)

+ αbt+1


− y∗t + µt




+

, (E.21)

which completes the proof. 2

E.4 Proof of Theorem 8.4

We rewrite (8.21) taking into account the fact that for the near myopic terms of (8.21) we consider only
demands that satisfy

0 ≤ Dt ≤ (y∗t − y∗t+1)

∂Πt(xt, yt, Qt,t+1)
∂yt

= L′t(yt) + α

∫ (yt−yt+1)
+

0

∂Π∗t+1(Qt,t+1 + yt −Dt)
∂yt

dFt(Dt). (E.22)

For an initial inventory level xt > y∗t , one has

∂Πt(xt, yt, Qt,t+1)
∂yt

= L′t(xt) + α

∫ (xt−yt+1)
+

0

∂Π∗t+1(Qt,t+1 + xt −Dt)
∂yt

dFt(Dt). (E.23)

Now substitute (E.22) into itself, and consider the optimal values of Yt, one gets

L′t(y
∗
t ) + α

∫ (y∗t−y∗t+1)
+

0

[
L′t+1(y

∗
t + Qt,t+1 −Dt) +

α

∫ (y∗t−Dt−yt+2)
+

0

L′t+2(y
∗
t + Qt,t+1 −Dt −Dt+1 + Qt,t+2)

...

]
dFN (DN )dFN−1(DN−1)...dFt(Dt) = 0. (E.24)

Since we have y∗t − y∗t+1 > Dt, which is equivalent to yt −Dt > yt+1, the optimal Qt,t+1 will be equal
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to zero, Q∗t,t+1 = 0.
The same reasoning is still valid for the following periods.
De�ne Dt,j =

∑j
k=t Dk, with Dt,t−1 = 0.

Thus equation (E.24) becomes as follows

L′t(y
∗
t ) +

N∑

j=t

αj+1−t

[(
j+1∏

k=t+1

∫ (y∗t−Dt,k−2−y∗j+1)
+

0

)

×L′j+1(y
∗
t −Dt,j)dFj(Dj)dFj−1(Dj−1)...dFt(Dt)

]
= 0, (E.25)

where
∏ ( · ) represents the convolution and t 6= N + 1 and y∗N+1 = 0.

De�ne

Pt,j = Pt,j(y∗t , y∗t+1, ..., y
∗
j+1)

=

(
j+1∏

k=t+1

∫ (y∗t−Dt,k−2−y∗j+1)
+

0

)
dFj(Dj)dFj−1(Dj−1)...dFt(Dt), (E.26)

as the probability that any unit will be ordered from period t + 1 to period j + 1.
For xt ≤ yt, de�ne

PN
t = αN−t+1Pt,N , (E.27)

as the discounted probability that there is no order until the end of the horizon.
De�ne also

TN
t =

N−1∑

j=t

αj−t+1Pt,jhj+1, (E.28)

as the discounted partial expectation of the time from period t+1 until the �rst order in a period (≥ t+1)
and N times the unit holding cost. This is equivalent to the discounted partial expectation of holding
cost of a unit ordered at period t until �rst order is passed at a period (≥ t + 1).

In order to develop the lower bound we need to rewrite the second term of the left hand side of (E.25)
as follows

N∑

j=t

αj+1−t

[(
j+1∏

k=t+1

∫ (y∗t−Dt,k−2−y∗j+1)
+

0

)
×

L′j+1(y
∗
t −Dt,j)dFj(Dj)dFj−1(Dj−1)...dFt(Dt)

]

=
N−1∑

j=t

αj+1−t

[(
j+1∏

k=t+1

∫ (y∗t−Dt,k−2−y∗j+1)
+

0

)
×

L′j+1(y
∗
t −Dt,j)dFj(Dj)dFj−1(Dj−1)...dFt(Dt)

]
+ αN+1−tνPt,N . (E.29)

Using (E.26), and noting that L′t ≤ ht, and L′N+1 = f ′N+1 = ν, we get
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N∑

j=t

αj+1−t

[(
j+1∏

k=t+1

∫ (y∗t−Dt,k−2−y∗j+1)
+

0

)
×

L′j+1(y
∗
t −Dt,j)dFj(Dj)dFj−1(Dj−1)...dFt(Dt)

]

≤
N−1∑

j=t

αj+1−t

[(
j+1∏

k=t+1

∫ (y∗t−Dt,k−2−y∗j+1)
+

0

)
×

hj+1dFj(Dj)dFj−1(Dj−1)...dFt(Dt)

]
+ αN+1−tνPt,N

=
N−1∑

i=t

αj+1−tPt,jhj+1 + αN−t+1νPt,N

= TN
t + νPN

t . (E.30)

Substituting the results above in (E.25) we get

L′t(y
∗
t ) + TN

t + νPN
t ≥ 0. (E.31)

Decrease y∗t to y∗Lt to restore equality, then one gets

L′t(y
∗L
t ) + TN

t + νPN
t = 0, (E.32)

which is equivalent to

htFt(y∗Lt )− bt + btFt(y∗Lt ) + TN
t + νPN

t = 0. (E.33)

That gives

y∗Lt = F−1
t

[
bt − TN

t − νPN
t

ht + bt

]
, (E.34)

which completes the proof. 2

E.5 Proof of Theorem 8.5

Consider the partial derivative of the expected objective function Πt with respect to Qt,t+1, at the optimal
point (y∗t , Q∗

t,t+1) given by

∂Πt(xt, yt, Qt,t+1)
∂Qt,t+1

(xt, y
∗
t , Q∗t,t+1) =

c̃t,t+1 − αc̃t+1 + α

∫ ∞

0

L′t+1(y
∗
t + Q∗

t,t+1 −Dt)dFt(Dt)

+α

∫ ∞

0

[
α

∫ ∞

0

∂Π∗t+2

∂Qt,t+1
(Q∗t,t+1 + y∗t + Q∗

t+1,t+2 −Dt −Dt+1)dFt+1

]
dFt = 0. (E.35)
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As we have done for yt we will write a near-myopic equation for Qt,t+1. We will take into account only
cases where units from Qt,t+1 will be used in the following periods. Thus we assume that the demand in
periods t + 1, ..., N satis�es the following equation

Q∗t,t+1 + y∗t −
j∑

k=t

Dk > y∗j+1, j = t + 1, ..., N − 1, t = 1, ..., N − 1. (E.36)

Equation (E.36) implies that (Q∗
t+1,t+2, Q

∗
t+2,t+3, ..., Q

∗
N−1,N ) = (0, 0, ..., 0).

Equation (E.35) implies the following near-myopic equation

c̃t,t+1 − αc̃t+1 + α

∫ ∞

0

L′t+1(y
∗
t + Q∗t,t+1 −Dt)dFt(Dt)

+ α

∫ ∞

0

[
α

∫ (Q∗t,t+1+y∗t−Dt−y∗t+2)
+

0

∂Π∗t+2

∂Qt,t+1
(Q∗t,t+1 + y∗t + Qt+1,t+2 −Dt −Dt+1)dFt+1

]
dFt = 0. (E.37)

As when deciding for Qt,t+1 we do not know the realized value of the demand of period t, namely Dt,
and to simplify the development of the upper bound of Qt,t+1 we will replace the Dt in (E.37), by the
mean of the demand in period t, namely µt. We get then the following equation

c̃t,t+1 − αc̃t+1 + αL′t+1(y
∗
t + Q∗t,t+1 − µt)

+α2

∫ (Q∗t,t+1+y∗t−µt−y∗t+2)
+

0

∂Π∗t+2

∂Qt,t+1
(Q∗t,t+1 + y∗t + Qt+1,t+2 − µt −Dt+1)dFt+1

= 0. (E.38)

By substituting (E.38) into itself, we get

c̃t,t+1 − αc̃t+1 + αL′t+1(y
∗
t + Q∗t,t+1 − µt)

+
N∑

j=t+1

αj+1−t

[(
j∏

k=t+1

∫ (Q∗t,t+1+y∗t−µt−Dt+1,k−1−y∗j+1)
+

0

)
×

L′j+1(Q
∗
t,t+1 + y∗t − µt −Dt+1,j)dFj(Dj)dFj−1(Dj−1)...dFt+1(Dt+1)

]
= 0. (E.39)

De�ne

P ′t,j = P ′t,j(Q
∗
t,t+1, y

∗
t , y∗t+1, ..., y

∗
j+1)

=

(
j∏

k=t+1

∫ (Q∗t,t+1+y∗t−µt−Dt+1,k−1−y∗j+1)
+

0

)
dFj(Dj)...dFt+1(Dt+1), (E.40)

T
′N
t+1 =

N−1∑

j=t+1

αj+1−tP ′t,jhj+1, (E.41)
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and

P
′N
t = αN+1−tP ′t,N . (E.42)

Using the fact that L′t(·) ≤ ht, t ≤ N and L′N+1 = ν, we can bound the left hand side of (E.39) by

c̃t,t+1 − αc̃t+1 + αL′t+1(y
∗
t + Q∗t,t+1 − µt)

+
N−1∑

j=t+1

αj+1−t

[(
j∏

k=t+1

∫ (Q∗t,t+1+y∗t−µt−Dt+1,k−1−y∗j+1)
+

0

)

×hj+1dFj(Dj)dFj−1(Dj−1)...dFt+1(Dt+1)

]
+ αN−t+1P ′t,Nν ≥ 0, (E.43)

which is equivalent to

c̃t,t+1 − αc̃t+1 + αL′t+1(y
∗
t + Q∗t,t+1 − µt) + T

′N
t+1 + P

′N
t ν ≥ 0. (E.44)

If we decrease Q∗t,t+1 into Q∗Lt,t+1 in order to restore equality, we get

c̃t,t+1 − αc̃t+1 + αL′t+1(y
∗
t + Q∗Lt,t+1 − µt) + T

′N
t+1 + P

′N
t ν = 0, (E.45)

which gives

Q∗L
t,t+1 =

(
F−1

t+1

[
αc̃t+1 − c̃t,t+1 − T

′N
t+1 − P

′N
t ν + αbt+1

α(ht+1 + bt+1)

]
+ µt − y∗t

)+

, (E.46)

which completes the proof. 2
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Résumé : Le phénomène d’incertitude, dont les sources sont variées, est rencontré dans plusieurs 

domaines et on devrait y faire face. Cette incertitude est due essentiellement à notre incapacité à prédire 
avec exactitude le comportement futur d’une partie ou de la totalité d’un système. Dans les dernières 
décades, plusieurs techniques mathématiques ont été développées pour maîtriser cette incertitude, afin de 
réduire son impact négatif, et par conséquent, l’impact négatif de notre méconnaissance.  
 
Dans le domaine du « Supply Chain Management » la source principale d’incertitude est la demande future. 
Cette demande est, en général, modélisée par des lois de probabilité paramétrées en utilisant des techniques 
de prévision. L’impact de l’incertitude de la demande sur les performances de la « Supply Chain » est 
important: par exemple, le taux mondial de rupture de stock, dans l’industrie de distribution était en 2007 de 
8.3%. De l’autre côté, le taux mondial de produits invendus, dans la grande distribution, était  en 2003 de 
1%. Ces deux types de coûts, qui sont dus essentiellement à l’incertitude de la demande, représentent des 
pertes significatives pour les différents acteurs de la « Supply Chain ». 
 
Dans cette thèse, on s’intéresse au développement de modèles mathématiques de planification de production 
et de gestion de stock,  qui prennent en compte ce phénomène d’incertitude sur la demande, essentiellement 
pour de produits à court cycle de vie. On propose plusieurs modèles de planification de production, à petit 
horizon de planification, qui prennent en compte les différents aspects de notre problématique, tels que les 
capacités de production, la remise à jour des prévisions de la demande,  les options de réservation de 
capacité, et les options de retour « Payback » des produits. On souligne, dans ces modèles, un aspect 
important qui prend de l’ampleur à cause de la mondialisation, et qui est lié à la différence entre les coûts de 
production des différents fournisseurs. On propose à la fin de la thèse, un modèle généralisé qui pourrait 
être appliqué à des produits à long cycle de vie, et qui exploite quelques résultats obtenus pour les produits 
à court cycle de vie. Tous ces modèles sont résolus analytiquement ou bien numériquement en utilisant la 
programmation dynamique stochastique.  

Mots clefs : Planification de Production, Gestion de Stocks, Demande Aléatoire, Minimisation de Coûts 

(Maximisation de Profits), Programmation Dynamique Stochastique, Solutions Analytiques et Numériques, 
Produits à Court Cycle de Vie. 

 
Abstract: The phenomenon of uncertainty is encountered in many domains and should be faced. Even if 

the sources of this phenomenon are numerous, it is essentially due to our incapacity to predict precisely the 
future behaviour of a part or the whole of a given system. Many mathematical techniques have been 
emerged in the few last decades, which permit to master the uncertainty, and therefore to reduce our 
ignorance of how systems really behave. 
 
In the Supply Chain Management domain, the main source of randomness is the future demand. This later is 
generally modelled using probability distribution functions, which are developed via different forecasting 
techniques. The influence of this demand variability on the performance of the Supply Chain is very 
important: for example, in 2007 the global inventory shortage rate in the retail industry were around 8.3%. 
On the other hand, in 2003 the global Unsaleable products cost around 1% in the grocery industry. These 
two types of costs, which are mainly caused by the uncertainty of the future demand, represent important 
lost for the whole Supply Chain actors. 
 
This Ph.D. dissertation aims at developing mathematical production planning and inventory management 
models, which take into consideration the randomness of the future demand in order to reduce its economic 
negative impact, essentially for short life cycle products. We provide many planning models that consider 
the main issues of the planning problems, such as the production capacities, the information updating 
processes, the supply contracts and the advanced capacity reservation in a total costs minimization context. 
We consider in these models some aspects that are not considered in the literature, such as the “Payback” or 
the return options. We emphasize also on an important issue that characterize the globalization of the 
industry, which may be resumed in the difference between the procurement costs of the different suppliers. 
This issue is considered in the most chapters presenting models for short life cycle products and in the last 
chapter it is generalized to a long life cycle products setting. All the presented models are solved either 
analytically or numerically using the dynamic stochastic programming.  

Keywords: Production Planning, Inventory Management, Stochastic Demand, Costs Minimization 

(Profits Maximization), Stochastic Dynamic Programming, Analytical and Numerical Resolution, Short Life 
Cycle Products. 
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