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Document organization

This document is a summary of my research activities since October 1997, the date of my
PhD defense. This document constitutes the dissertation required to show my capability to
supervise young researchers such as PhD students. My research activities are organized in the five
following axes.

. Perception for scene understanding.

. Maintaining 3D coherency throughout time (physical world).
. Event recognition (semantic world).

. Performance evaluation and learning (autonomous systems).
. Knowledge acquisition (interactive systems).

The chapter 4 presents globally these research themes.

The chapter 5 describes the work done to conceive a vision platform in order to easily build
efficient modules for scene interpretation.

The chapter 6 presents the work on mobile object tracking and on information fusion.

The chapter 7 describes the work on the representation and recognition of events using different
types of formalism.

The chapter 8 presents the work on performance evaluation for video interpretation algorithms and
preliminary work on learning techniques to tune program parameters.

The chapter 9 presents the work on knowledge acquisition to help the users to describe their
scenarios of interest.

The chapter 10 is a conclusion of this dissertation proposing several perspectives and answering
long term issues in scene interpretation.
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Chapter 4

Research Themes

Scene understanding is the process, often real, tohgerceiving, analysing and
elaborating an interpretation of a 3D dynamic scalngerved through a network of sensors.
This process consists mainly in matching signabrimiation coming from sensors observing
the scene with models which humans are using terstehd the scene. Based on that, scene
understanding is both adding and extracting semdrdm the sensor data characterizing a
scene. This scene can contain a number of physigatts of various types (e.g. people,
vehicle) interacting with each others or with themvironment (e.g. equipment) more or less
structured. The scene can last few instants (eeyfall of a person) or few months (e.g. the
depression of a person), can be limited to a ldaboyalide observed through a microscope or
go beyond the size of a city. Sensors include hsgameras (e.g. omni directional, infrared),
but also may include microphones and other sen@gs optical cells, contact sensors,
physiological sensors, radars, smoke detectors).

Scene understanding is influenced by cognitiveomisand it requires at least the
melding of three areas: computer vision, cognitiand software engineering. Scene
understanding can achieve four levels of generroprder vision functionality of detection,
localisation, recognition and understanding. Bnscunderstanding systems go beyond the
detection of visual features such as corners, edgésnoving regions to extract information
related to the physical world which is meaningfui fiuman operators. Its requirement is also
to achieve more robust, resilient, adaptable coerpusion functionalities by endowing them
with a cognitive faculty: the ability to learn, gddaweigh alternative solutions, and develop
new strategies for analysis and interpretation. Kdyecharacteristic of a scene understanding
system is its capacity to exhibit robust perforneamwen in circumstances that were not
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foreseen when it was designed (G. H. Granlund)theamore, a scene understanding system
should be able to anticipate events and adaptp&sation accordingly. Ideally, a scene
understanding system should be able to adapt tel nawiations of the current environment
to generalize to new context and application dosaind interpret the intent of underlying
behaviours to predict future configurations of thevironment, and to communicate an
understanding of the scene to other systems, imgutimans. Related but different domains
are robotic, where systems can interfere and mattiér environment, and multi-media
document analysis (e.g. video retrieval), wheretéthcontextual information is available.

4.1 Objectives

Despite few success stories, such as traffic mongde.g. Citylog), swimming pool
monitoring (e.g. Poseidon) and intrusion detecfiery. ObjectVideo), scene understanding
systems remain brittle and can function only undstrictive conditions (e.g. during day
rather than night, diffuse lighting conditions, sbadows), having poor performance over
time, they are hardly modifiable, containing littepriori knowledge on their environment.
Moreover, these systems are very specific and nieells redeveloped from scratch for other
applications. To answer these issues, most resaardfave tried to develop new vision
algorithms with focused functionalities, robust egb to handle real life conditions. Up to
now no vision algorithms were able to address &ngel varieties of conditions characterising
real world scenes, in terms of sensors conditibasjware requirements, lighting conditions,
physical object varieties, application objectives..

My goal is to design a framework for the easy gatien of autonomous and effective
scene understanding systems. This objective is aeyitious; however the current state-of-
the-art techniques in cognitive vision have leaghadtial solutions [Cohn et al., 2006], [Dee
and Hogg, 2005], [Needham et al., 2005], [Nevatiale 2004], [Remagnino et al., 2006],
[Crowley, 2006b], [Jodogne and Piater, 2005] anhf)g and Gong, 2006b]. | believe that to
reach this goal, a holistic approach is needed evhiee main scene understanding process
relies on the maintenance of the coherency of épeesentation of the global 3D scene
throughout time. This approach which can be calledsemantic interpretation, is driven by
models and invariants characterising the sceneitandiynamics. Scene understanding is a
complex process where information is abstractedutyin four levels; signal (e.g. pixel,
sound), perceptual features, physical objects,eaetts. The signal level is characterized by
strong noise, ambiguous, corrupted and missing . d&@tee whole process of scene
understanding consists in filtering this informatio bring forth pertinent insight of the scene
and its dynamics. To fulfil this objective, modelad invariants are the crucial points to
characterise knowledge and insure its consistenthedour abstraction levels. For instance, |
have defined formalisms to model the empty scerteeturrounding (e.g. its geometric), the
sensors (e.g. calibration matrices of the cameths)physical objects expected in the scene
(e.g. 3D model of human being), and the scenafia®terest for users (e.g. abnormal events).
The invariants (called also regularities) are gaharles characterising the scene dynamics.
For instance, the intensity of a pixel can changaifscantly only in two cases: change of
lighting condition (e.g. shadow) or change due fhgsical object (e.g. occlusion). A second
rule for example, verifies that physical objectamat disappear in the middle of the scene.
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There is still a open issue consists in determimiggther these models and invariants are
given a priori or are learned. The whole challeogesists in organising all these knowledge
in order to capitalise experience, share it witheos and updating it along experimentation.
To face this challenge, tools in knowledge engimgesuch as ontology, are needed.

4.2 Summary of research work done

To concretize this approach my research activitiage been organised within the
following five axes. For each axis, | summarize timain scientific challenges | have
addressed.

* Perception for scene understanding (perceptual world). A first axis is to
collect and develop vision algorithms to handletladl varieties of real world
conditions. The goal of all these algorithms isdetect and classify the
physical objects which are defined as interestynghle users. A first difficulty
consists in developing robust segmentation algmsthfor detecting the
physical objects of interest. The most common #lgms estimate the motion
within the videos. These algorithms are based an hHippothesis that the
objects of interest are related to what is movinghe video, which can be
inferred by detecting signal changes. Unfortunatiidgse algorithms have the
tendency to detect a lot of noise (e.g. due totlgfanges) together with the
objects of interest. A second difficulty consists éxtracting meaningful
features characterising the objects of intereststMuf algorithms compute
features relatively to the trajectory of the phgsiobjects. Robust descriptors
characterising the shape of physical objects stifld to be developed. A third
difficulty is to establish under which hypotheshs tlgorithms are valid, and
to understand their limits. In the same way, akhons processing other media
and modalities (e.g. audio, contact, radar) needemdevelopment to
complement the information extracted from videeatns. A still open issue is
to establish the precision and likelihood of thps®cesses.

* Maintenance of the 3D coherency throughout time (physical world). A
second axis consists in combining all the inforomaticoming from the
different sensors observing the detected physiogcts and in tracking these
objects throughout time. Despite all the works donghis domain within the
last 20 years, fusion and tracking algorithms rentaittle. To guarantee the
coherency of these tracked objects, spatio-temp@asoning is required.
Modelling the uncertainty of these processes is als open issue. Another
guestion that we need to answer is at which ldvsl information should be
combined. Information fusion at the signal leveh garovide more precise
information, but information fusion at higher leseé more reliable and easier
to realise. In any case, a precise formalism isdegégo combine uncertain
information coming from heterogeneous sensors.
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Event recognition (semantic world). At the event level, the computation of
relationships between physical objects constitideshird axis. The real

challenge is to explore efficiently all the possipatio-temporal relationships
of these objects that may correspond to evente(talso actions, situations,
activities, behaviors, scenarios, scripts and dbles). The varieties of these
events, called generally video events, are hugedapénd on their spatial and
temporal granularities, on the number of the phalsobjects involved in the

events, and on the event complexity (number of ammpts constituting the

event and the type of temporal relationship). Sodallenge is to explore this
large event space without getting lost in combinatsearches.

Evaluation, control and learning (autonomous systems). To be able to
improve scene understanding systems, we need apaneto evaluate their
performance. The classical methodology for perferceaevaluation consists
in using reference data (called ground truth). Hmvegenerating ground truth
is tiresome and error prone. Therefore, an isstie perform the performance
evaluation stage using unsupervised techniquese ©waluation is possible, a
real challenge consists in optimising the sceneerstdnding system using
machine learning techniques in order to find th&t lsembination of programs,
the best set of program parameters with the begtalcstrategies to obtain an
efficient and effective real-time process. The idifity is three fold. First,
programs depend on environmental conditions andotbgram optimisation
process has to be dynamic to take into accounhaf@mental changes and
available resources. Second, all these programsinéedinked with each
others, so the modification of one program parameta mess the functioning
of all other programs. Finally, the knowledge oresh programs is not
formalised and usually, even the developers camelbtwhat will be the
program output under even specific conditions. Aeptway to improve
system performance is to add higher reasoning. ésaerderstanding is
essentially a bottom-up approach consisting inrabshg information coming
from signal (i.e. approach guided by data). Howgugrsome cases, a top-
down approach (i.e. approach guided by models)iwgmmove lower process
performance by providing a more global knowledgehaf observed scene or
by optimising available resources. For instance,dllobal coherency of the 4D
world can help to decide whether some moving regmrrespond to noise or
to physical objects of interest. So, the fourthsaxi my research consists in
exploring program supervision (including evaluaji@and machine learning
techniques for the easy generation of effectivé-treee scene understanding
systems.

Communication, Visualisation and Knowledge Acquisition (interactive
systems). Even when the correct interpretation of the scems been
performed, the scene understanding system still tbagommunicate its
understanding to the users. So user interactionstitates a fifth axis. There
are at least three types of users: program devedpprperts of the application
domain and end-users. The first challenge is tdlenarogram developers to
understand all specific components and in the sdme, the global
architecture of the scene understanding systemthabt they can adapt
efficiently their programs and configure and inlstake system on a site. To
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reach this goal, formalism is required to expresgymam knowledge. Second,
if we want an effective system, the a priori knadge needs to be formalised
to enable the domain experts to describe their odetlogy for analysing the
scene. For instance, a tool and a dedicated ontdiage to be provided to
assist the experts in defining the scenarios ti@system has to recognize. To
help this process, a graphical tool can be desigmegenerate and visualise 3D
virtual animations illustrating these scenarios.cbomplement of these tools,
clustering techniques can be used to mine the émgactivities (i.e. event
patterns or time series) occurring in the scenerebher, if we want the
system to be used, special care needs to be bréugl$play what has been
understood to the final users. An ergonomic intefan an adapted media
(e.g. immersive reality or PDA personal digital istent), a convenient
representation of the scene (e.g. virtual 3D scangmented reality), and an
intuitive vocabulary are the necessary devicesetprovided to the end-users.
Besides these devices, the system needs to take aictount feedback
information from the end-users to be able to adtgpperformance to the
specific goals of each user.

All along these years, for each axis, | have triedestablish the scientific and
technological foundation for a the Scene Understen@pproach through the design of
systems dedicated to more than 20 applications. (¢igual Surveillance, Activities
Monitoring, Ambient Intelligence, Perceptual Usertterface, Health Care, and Animal
Behavior Analysis), in direct contact with usersgig from end-users (e.g. human
operators, managers, domain experts), to integratmardware and software providers. |
believe that applications are a key point in coviogi effective scene understanding systems
for three reasons: first they enable to answer ¢kallenges, second they are the necessary
conditions to enable experts of the application dionmo provide the precise knowledge on
the scene and finally they are the main way witd telp of end-users to evaluate the
performance of the final system. These real woyktesns could not have been conceived,
only with the help of 7 PhD students and 9 reseangineers that | have supervised.

This document aims at summarising these experieficespartial solutions) and
exploring the still open issues.

4.3 Plan of the dissertation

The following of the manuscript described succedgithe research that | have lead
along these five axes.

More precisely, the chapter 5 entitled “perceptionscene understanding” describes

the work | have done to conceive a vision platfofocalled VSIP) to build efficient
components for scene understanding.
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The chapter 6, named “maintaining 3D coherencyutjnout time”, presents work
done on object tracking and information fusion.plarticular, two types of fusion will be
detailed: (1) video camera coupled with other sengmontact sensors and optical cells), (2)
multiple cameras with overlapping field of view. ¢hapter 6, we have tried to underline the
invariants and rules necessary to maintain the@i2iency throughout time.

The chapter 7 named “event recognition”, descnibeks on event representation and
event recognition, using different types of forraali finite state automata, HMM, Bayesian
networks, and temporal constraint networks.

The chapter 8 entitled “evaluation and learningfesents works on performance
evaluation of video understanding algorithms andyeaork done on the configuration of
video processing programs. In this chapter, we rdesa first attempt on learning the
parameters of video processing programs.

The chapter 9 named “knowledge acquisition” presamrk on knowledge modelling
techniques for helping end-users to describe gwEnarios of interest. We explain how these
technigues can be guided by a dedicated ontolagypatticular, we describe a tool for the
automatic generation of simulated videos from eseksi specifications. We also present early
works for learning automatically scenarios modseds videos.

In this document, references [Bremond x] corresptmdhe papers | wrote (or |

participated in the writing) describing my work aack listed in the CV part, whereas other
references [author x] are listed at the end ofdiheument.
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Chapter 5

Perception for scene under standing

This chapter aims at explaining the choice and oulogy taken to build a generic
scene understanding platform called VSIP (Videové&illance Intelligent platform). This
platform or tool box, aims at the easy generatibdeulicated scene understanding systems. It
has been designed in three stages during a pdrikitlyears.

First, from 1994 to 1997, based on the state ofatiewe had specified a general
model of the video understanding process [BremdndHis model contains the main video
understanding functionalities which can be sumnearin general with the following tasks:
(1) object detection and classification, (2) objeatking and (3) event recognition. We have
proposed to use a global representation of whatokas understood in the observed scene,
based on a 3D geometric representation of the sdectiding contextual knowledge
[Bremond 4, 14 and 16]. Meanwhile from 1994 to 2006 had gained some experiences in
developing perception algorithms through Europeaojepts in Video Surveillance in
parking, subways, super-markets (e.g. PASSWORDSRWY) [Bremond 2, 5, 16, 17, 18, 19
and 20], and through a DARPA project in Unman Axiahicles surveillance (VSAM, Video
Surveillance and Activity Monitoring) [Bremond 6, 81, 22, 23 and 24].

Second, from 2000 to 2004, we had collected a $epewception algorithms
corresponding to the basic functionalities in videwderstanding, in an exhaustive and
structured way. This work had been done thankshé European project ADVISOR on
subway monitoring [Bremond 25, 26, 30, 31 and 38 & an industrial project on bank
agency monitoring [Bremond 13, 27, 29, 31 and 38].

Third, from 2004 to 2006, we had complemented thessgrams with specific
algorithms dedicated to particular applications gnthan 10) [Bremond 36, 37, 38, 40, 41
42, and 44]. For instance, we have developed aifgpatgorithm for door detection to
determine when a door is open, and to differentia¢edoor from people motion [Bremond
32]. Through out the PhD thesis of Bernard BoulByemond 10 and 36] we have also
proposed an algorithm to recognise posture of geepblving in a scene observed by one
video camera. During this period, we had tried andie varieties of real world scenes, while
improving the robustness of the generic algoritfionghe most common scene understanding
tasks.
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Since most of the work has been done on Videodledequirements of classical real
world application, we have focused most of the @gtion algorithms on video processing.
Thus, this dissertation document will study mostision algorithms and we will give only
early results on perception from other sensorscdmplement these results, the following
articles can be read [Dong and Pentland 2006, Gareclet al 2006, Foresti and Regazzoni
2002, Al-Hames 2005] For simple sensors (opticé @nd contact sensors), we have mainly
developed filtering techniques to get rid of oulien order to get a coherent signal. For
instance, we have designed a system to recognesasely the shape of people travelling
through a passage observed by a combination of re@nfa camera observing the passage
from the top and 5 lateral cameras) coupled witlb&Kto sharpen people detection) and
optical cells [Bremond 43]. For complex sensorscfophones), we have relied on processing
techniques developed by other teams through cobadiloos. For instance, we were able to
extract audio and video information from on boamant scenes to detect abnormal events
such as “vandalism against a window” [Bremond 51].

Thus, algorithms processing other media (e.g. audmntact) are needed to
complement the information extracted from vide@atns. A still open issue is to establish
the precision and likelihood of these processethé@ir contributions to extract meaningful
content on the observed scene. As far as | am ooedethe main issue with knowledge
extraction from other sensors is more an inforrmafission issue, which will be discussed in
the next chapter.

All these experiments in scene perception have nindd two recurrent challenges.
First, the brittleness of segmentation algorithmisds uncertainty and errors through the
whole understanding process. Image segmentatioa ©assical but hard problem in
perception, which is becoming tractable in videaenstanding, relaying on the assumption
that the interesting objects are the physical dbj@t motion in the scene. Although good
segmentation results can be obtained in specifiatsons (e.g. stable lighting conditions),
segmentation algorithms have the tendency to detdot of noise (e.g. lack of contrast,
ambiguous, corrupted and missing data) togethdn wieé objects of interest. Second, the
difficulty of extracting meaningful features preverirom obtaining precise descriptions of
the physical objects of interest. Most of algorithroompute features relatively to the
trajectory of the physical objects, but remain wéalextract descriptors characterising the
shape of the physical objects. Therefore, moseséarch works in video understanding have
tried to address these issues. Since usually tinesehallenges need first to be addressed to
pursue higher reasoning, this chapter 5 will foars explaining the reasons of these
difficulties and on proposing few solutions.

To detail the choices taken for building the VSIBt#erm, this chapter is organised as
follows. Section 1 studies the state of the adid®o understanding. Section 2 enumerates the
large varieties of conditions that we have to fadeen developing scene understanding
systems. Section 3 describes briefly the main V@gerithms, which have been detailed in
collaboration with Benoit Georis during his PhD @mogram supervision for video
understanding. Section 4 details few advanced iéhgos for handling specific problems in
scene understanding. Conclusion reviews advantgesmitations of the VSIP platform.
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5.1 State-of-theart in Video Under standing

This section aims at presenting different videccpssing techniques which have been
designed under different assumptions and for diffepurposes. Each technique alone is not
sufficient to address the variety of all possihleiaions and to be elected as an acceptable
solution regarding the complexity of the video umstlending problem. In the meantime,
integrated approaches are most of the time desitpregdarticular applications and are not
flexible enough to be reused for other applicatidnsconsequence, this description stresses
(1) the large variety of video processing prograand (2) the need of having a library of
programs combined with an external control componghich would be in charge of
selecting, tuning and combining programs in funtid the application requirements.

Video understanding is a process which consisthenrecognition of events (either
predefined by an end-user or learnt by a systena) given application domain (e.g., human
activities) starting from a pixel analysis up teyanbolic description of what is happening in
the scene viewed by cameras. This process immliesé several consecutive techniques to
reach this objective. There is a huge literaturecdbing such video processing techniques
and several surveys list and categorize these itpobs in a more or less exhaustive way. For
instance, in [Cedras 1995], the authors presenuraeg on motion-based recognition
techniques ranging from human tracking and recammitto lip-reading and gesture
interpretation. In [Aggarwal 1997] the authors slfs the techniques for human motion
analysis in three parts: motion analysis, trackingving humans from a single or from
multiple views and recognition of human activities[Gavrila 1999], the author classifies the
techniques for analysing human movements in thaetegories: 2D model-free approaches,
2D model-based approaches and 3D approaches. mtigRe@ 2000], the author proposes an
application-centered classification, such as sllargie, monitoring, smart rooms or
perceptual user interfaces. Finally, two recenveys [Wang et al., 2003] [Moeslund et al.,
2006], include the latest research (from 1997 t652(according to a similar classification
than the one proposed in [Aggarwal 1997].

However, our objective here is not to realize aresyrbut instead to present relevant
techniques which fall into one of the two genemtkegories composing a video understanding
process (the structure is identical as the onédgg@rwal 1997] but not necessarily restricted
to human motion analysis): (1) object detection atabsification and (2) spatio-temporal
analysis. This structure has the advantage of gmuyi a global view of the video
understanding process even if the categories segeétated and may overlap. For instance, a
technigue based on a Kalman filter usually realetethe same time both object detection and
tracking [Piater 2001]. Along with a brief descigut of these techniques, we give indications
concerning the assumptions which have guided tHesign and which influence their
conditions of use. So, this state of the art fosusere on video processing techniques rather
than on event recognition techniques, to highligie large variety of video processing
programs, which are greatly dependent on the psedegideos. In chapter 7, a study on event
recognition techniques is presented to emphasisasseies in scene understanding.
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Object detection and classification

Several approaches have already been investigatentder to detect and classify
objects of interest in a scene. Concerning thectlete task, most of the techniques use
motion information to detect the regions which espond to objects of interest. They are
presented in the following.

Background subtraction

Although many algorithms have been designed forgansegmentation [Herbulot et
al., 2006], background subtraction is probably rinest widely used technique for detecting
interesting objects from images coming from a staimera [Lim et al 2005, Monnet et al
2003, Cavallaro et al 2005, Salvador et al 20@akch particular technique depends on the
type of background modelling which is used. Thedast technique consists in taking a
reference image which is temporally averaged ovee using either the median value (e.g.,
[Yang 1992]) or the mean value (e.g., [Marcenar@@p This reference image is subtracted
from the current image and the resulting differenmoage is threshold in order to obtain
moving regions. This technique may perform welldostatic background but fails as soon as
the background is more complex and dynamic (eghtihg variations, slow moving objects).
In addition, the use of a unique threshold valuetifie entire image is another limitation. In
consequence, several alternatives have been pahpose

The Pfinder system [Wren1997] uses a multi-statistical modeta@bur and shape for
the tracked objects and a single Gaussian per potethe background model. After an
initialization period with an empty scene, thistsys reports fairly good results for an indoor
scene with few persons; however, no results arertegh for outdoor scenes. On the opposite,
the technique presented in [Stauffer1999] is ingehtb be applied on outdoor scenes and is
especially good at handling moving elements ofsitene such as swaying trees. They model
the values of a particular pixel as a mixture oli€&aans. However, a main problem is that
this online model suffers from slow learning at theginning, especially in busy
environments. In order to overcome this problemextension of this method is proposed in
[Kaewtrakulpong and Bowden, 2001]. Nevertheles#h Inoethods are not well appropriate to
provide an accurate segmentation for low-contrastejes due to the Gaussian smoothing.
Another solution is th&/4 (Who-When-Where-What) system [Haritaoglu et @00@ which
models the background with three values for eagklpthe minimum intensity, maximum
intensity values and the maximum intensity diffe®rbetween consecutive frames over a
training period. However, the authors recognize shadows or sudden illumination changes
(e.g., due to a cloud) cannot be handled withtdahnique.

Concerning problems of low-contrasted targets aidien changes, they are treated in
[Elgammal et al., 2000] where a non-parametric rhoflehe background is able to quickly
adapt itself to changes and to better discriminatecontrasted targets. Concerning the
shadow issue, a model of background with three §€ans is proposed in [Friedman and
Russell, 1997] for traffic monitoring applications.Gaussian models each of the three parts
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of the scene: the road, the vehicles and the shadowather interesting work [Cucchiara et
al., 2003] proposes to add several criteria onlpiakies in the HSV (Hue-Saturation-Value)
colour space during the background subtractionistepder to suppress pixels corresponding
to shadows.

Frame differencing

A frame differencing technique can be viewed asekfround subtraction technique
where the reference image is replaced at eachdiempeby the previous frame [Lipton et al.,
1998]. This technique thus provides the fastesptatian to environment changes. However,
depending on the frame rate which is used andpgbedsof objects, holes may appear inside
the detected moving regions (e.g., for slow mowbgects). A first improvement is reported
in [Bergenl et al., 1992] where the authors useetfirame differencing to detect moving
regions. A second improvement is presented in tl®AM (Visual Surveillance And
Monitoring) system [VSAM 1998], [Collins et. al.0Q0] where three-frame differencing is
combined to background subtraction to produce aisbHdetection of moving regions. This
later technique is shown to be fast and efficiéntt, the report fails to present a detailed
performance evaluation.

Optical flow

The most classical approach to detect objectsvideo consists in motion estimation
[Zhai and Shah, 2006], [Velastin et al., 2006], [p&tin et al., 2005] and [Desurmont et al.,
2006]. In particular, the optical flow techniqugically computes the motion field from
image intensities in order to isolate regions hgwancoherent motion [Barron et al., 1994],
[Fejes and Davis, 1997], [Nagel, 1998], [Middendarfd Nagel, 2000]. For instance, this
technique can discriminate an individual walkingatinter flow in a crowded scene. Another
advantage of this technique is that it can be wesexh in presence of camera motion. A
drawback of this technique is that the computatidrderivatives for each pixel is often
required, thus making the method computationallgessive. However, alternatives to this
pixel-based approach exist. For instance, in [Co@ndt al., 2003], the authors propose to use
MPEG-2 motion vectors as a basis for obtainingrttwgion field. Then, they apply specific
rules and filters to obtain a smooth motion fiedy(, they use the gradient magnitude present
in AC coefficients of the discrete cosine transfoas a confidence measure of motion
vectors). In consequence, this alternative is ableork in real-time conditions.

Feature detection

Instead of using motion information between conseeuframes, another class of
methods for the object detection task consist®mputing image features [Hall et al., 2004],
[Mark and Gavrila, 2006], [Vaswani et al., 2003pdain particular contours [Vaswani et al.,
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2005], [Veeraraghavan et al., 2005], from a singilage. The watershed technique [Beucher
and Lantuejoul, 1979] defines the contours in aagenas the watersheds of the gradient
modulus of the grey value function (considered asliaf surface). This technique has the

advantage to be non-parametric compared to thosghwireshold the gradient. This method

and its improvements have been applied to detectdhd lanes for obstacle detection in a
traffic monitoring application [Beucher and Biloded 994]. This latter improvement consists

in the introduction of a fast watershed transforimolh enables to speed up the processing
time to 5 frames per second.

An alternative to watersheds is active shape md@aletes et al., 1995]. For instance,
in [Baumberg et al., 1994] the authors use acthape models to detect (and also track) the
contours of pedestrians. The model is derived ftaming shapes which are described by
known feature points of a B-spline. Then, a PCAn@pal Component Analysis) is applied
on these points to obtain a reduced representalfiois. model is able to detect (and track)
deformable shapes. However, this technique requrésaining stage but also a manual
initialization or an initialization with anotherdienique (such as background subtraction).

Object classification

According to a predefined semantics, once objeetslatected, the classification task
aims at assigning a label to each object, This ¢digh implies a matching stage with a model
of objects to classify. This matching stage carue techniques such as template-base
object detection [Ferryman et al., 2000], [Bremd&], crowd detection [Zhao and Nevatia,
2004], [Andrade et al., 2006], [Guler and Farro@)@] human-body detection [Gourier et al.,
2006], [Mittal et al., 2003], [Cucchiara et al.,0&), [Dimitrijevic et al., 2005], [Agarwal and
Triggs, 2006], face detection [Viola and Jones,&0[Zhou and Chellappa, 2005], [Foresti et
al., 2003], and gait analysis [Nixon et al., 2QOf{ale et al., 2005]. For instance, in
[Haritaoglu et al., 2000], moving regions are cifisd into one of three predefined classes
(single person, people in a group, other objeéis).a single person, a comparison is made
between the normalized vertical and horizontal gotapns of the moving region and the
projection templates of four different posturesisling, sitting, crawling/bending and lying
down) pre-computed experimentally. For a groupy thiest try to determine how many
persons are present in the group by detecting hddds is done by extracting significant
peaks of the vertical projection histogram of theving region. However, a main
disadvantage of this technique precisely congisestimating with a high confidence whether
the moving region corresponds to a single persdo argroup of persons. Another drawback
Is the sensitivity of this technique to shadows. {iwrong histogram).

In [Collins et al., 1999], the authors classify thving regions into one of three
classes (human, vehicle and human group) with eetlayer neural network trained with a
back propagation algorithm. The inputs are theafisgdness, the area and the aspect ratio of
the moving region, associated to the zoom factbrs Technique is fairly efficient but it is
viewpoint dependent. Another solution is proposedkiuno et al., 1996] where the authors
use a simple silhouette-based shape representahtich combines the mean and the standard
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deviation of the silhouette projection histogramtvhe bounding box of the moving region.
This method reliably distinguishes humans from elelsi.

Other techniques use a set of image features @@Ilgur, texture) in order to perform
the classification. We can mention the work repbiite [Oren et al.,, 1997] where wavelet
coefficients are used as low-level intensity feasuto represent the appearance properties.
These coefficients are obtained by applying a dbffigal operator at various locations, scales
and orientations (vertical, horizontal, corner)tba images. A support vector machine is used
as the classifier which learns the relationshipveen these coefficients from a set of positive
and negative examples. Compared to classical tggbsi(i.e., those which use colour or
texture), this technique can detect and classifyeptians from front or rear views, when
there is no reliable colour or texture patterns alisd in cluttered scenes.

Finally, concerning vehicle applications, we camtran the ESPRIT VIEWS system
aiming at monitoring vehicles in roundabouts faffic control [Buxton and Gong, 1995].
Another interesting work which models vehicles D & proposed in [Nagel, 2000]. These
parameterizable models can be distorted in ordenpoove robustness.

Spatio-temporal analysis

The objective of the spatio-temporal analysis iagk maintain a 3D representation of
what is happening in the scene over a period oé tfeng., few seconds up to a minute) by
resolving potential incoherence, based on visuarants in the scene (e.g., a person cannot
go through a wall). This task implies the trackiofythe previously classified objects of
interest and sometimes a fusion of information ecapfrom the different cameras (i.e., in a
multi-camera configuration).

Region-based tracking

Region-based tracking is perhaps the most popéennique for performing the
matching of objects over time. Most of these teghaes rely on a Kalman filter (or
equivalent) to perform the association between abjein [Cox and Higorani, 1996], the
authors propose an efficient implementation of dtiple hypotheses tracker. They keep all
information about the associations between theeatlyr tracked objects and the new
observations until they are able to decide whi@hthe right associations (i.e., they remove
incoherent associations). Each hypothesis (i.essipte association) corresponds to a Kalman
filter. In [Piater and Crowley, 2001], a Kalmantdil is also used to effectively track
interacting targets in a scene. However, this teghn suffers from a problem of target
initialization. In addition, due to the Gaussiastdbution assumption, this technique is not
conceived to handle multi-modal distributions ot thtate parameters. For instance, this
technique is inadequate in dealing with the sinm@taus presence of occlusions and a
cluttered background resembling the tracked ohjects
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Another solution consists in using a particle filer more generally probabilistic
techniques [Du and Piater, 2006], [Gelgon et &Q3} and [Coue et al., 2006]. For instance,
in [Nummiaro et al., 2002], the authors use a copmurticle filter to track objects. The objects
are modelled by a weighted histogram which takes account both the colour and the shape
of the objects. The particle filter thus compaltes tistograms of objects of frarid andt at
the sample positions in order to decide whetheeabjmatch or not. This technique is robust
to partial occlusions, is rotation and scale inmatiand is computed efficiently. A current
limitation is that the tracker has difficulties tikandle significant changes in object
appearance.

Feature-based tracking

The tracking of features is a good alternativedgian-based tracking [Gavrila and
Munder, 2007], [Mathes and Piater, 2006], [Ozuysiakl., 2006] and [Mittal and Davis,
2003]. For instance, in [Shi and Tomasi, 1994], #uthors first compute the covariance
matrix in a small image window. This window is s&d over the entire image in raster order.
Then, the two eigenvectors corresponding to therhvaaimal eigenvalues of the covariance
matrix are kept. These eigenvectors define thectiimes of maximal gradient and are thus
used to detect corners (or T shapes) in the imagmpared to region-based techniques, this
technique is robust to partial occlusions and daa be used to track crowds. However, the
computational cost is the main disadvantage. Intiatdd the computation of features is not
stable, often leading to tracking errors.

Model-based tracking

Compared to the previous techniques, model-basetlitg algorithms are still often
considered as sophisticated techniques which &ireutli to implement but in the meantime,
they usually perform better in complex situatioasy(, clutter, occlusions) [Cucchiara et al.,
2001], [Cavallaro et al., 2005b] and [Plankers Bod, 2001]. Some of them are based on 3D
information computation [Desurmont et al., 2006§ 4ortasun et al., 2006]. In [Wren et al.,
1997], the authors model the human body in six bmalys: head, torso and four limbs. This
technique performs well for tracking a single persdowever, it has not been conceived to
handle multiple objects. The drawback of this senpéchnique has been improved in
[Haritaoglu et al 2000] where shape analysis islusaletect and track people and their parts.

In [Zhao and Nevatia, 2004], the authors preserdrdiaulated human walking model
composed of two parts: global motion and limb mmtidhe global motion of objects is
tracked in 3D using ellipsoid shape models. Thiha,lbcomotion mode (walking, running,
standing) and the 3D body posture are estimatedmbiing inference in an a priori
locomotion model. Robust results are reported omll@hging sequences containing
occlusions, cast shadows and reflections.
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Multiple cameratracking

Based on the observation that most of the trackeahniques fail in complex
situations (e.g., a lot of interacting objects)esal works have studied active vision methods
[Foresti and Micheloni, 2003] and [Smith et al.,08p and mainly fusion of information
technigues with multiple cameras [Remagnino et2004a], [Du et al., 2006], [Cavallaro
2005], [Martinez del Rincon et al., 2006], [Krahmester et al., 2006] and [Snidaro et al.,
2003] to improve results and robustness. This fussoeither performed on the output of
different algorithms applied on the same cameraeldi and Maybank, 2002] or on
information coming from several cameras [Black &fics, 2001]. In particular, an interesting
work [Mittal and Davis, 2003] has addressed theblenm of multi-view tracking using
synchronized cameras. This system is able to camninformation coming from multiple
camera pairs (i.e., up to 16 synchronized cameras wsed in the experiments) in order to
handle occlusions and correctly track densely Extatbjects in a cluttered scene. However,
due to the complexity, the system is not yet ableadrk in real-time (i.e., it currently takes 5
seconds per processing step).

In [Javed et al., 2003], the proposed system ie &bltrack the objects in the scene
using non-overlapping field of view cameras. Fitlsg system learns the camera topology and
the path probabilities of objects during a trainpitase. This is based on the assumption that
people and cars tend to create redundancy in pl#ysfollow. Then, the associations are
performed with a maximum a posteriori estimatianfework.

In case cameras have overlapping field of viewglsable technique for tracking
groups of people using multiple cameras is preseintgBremond, 30]. First, the authors
compute a temporal graph of objects for each camdoales of this graph represent the
objects of interest (and their properties) whilgesiare temporal links over time. Then, they
fuse the different temporal graphs of objects e@dbr each camera, by using three criteria:
3D position, 3D dimension and temporal criteriaisTkatter criterion increases the fusion
score between two objects at timeif their corresponding parents at time $t-1$ have
previously been fused.

Finally, as there are few works addressing the Iprotof tracking groups of people,
we want to mention another work [McKenna et alQ@0Qand even if the authors use a single
camera. The proposed system maintains a representdtregions, persons and groups, by
using simple heuristic rules (e.g., a group is cosepl of several persons and contains
therefore one or more regions, a region which negtamore than one group triggers the
merging of these groups into a new bigger grouplis Bystem is able to process video
sequences at various frame rates without any noadiin in parameter setting. However,
only preliminary results are reported.
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Long-term tracking

In order to improve the robustness of tracking meghes, several works address this
issue with a long-term approach, i.e., the compnatf the best associations between objects
over a large temporal window [Zhang and Gong, 2Q08] [Berclaz et al., 2006]. Most of
these techniques are based on a graph comput@@pet[al., 2006], [Gatica-Perez, 2005] and
[Gomila and Meyer, 2001]. We have to note that #pproach does not necessarily replace
but complement short-term approaches (i.e., thosaqusly described).

In [Bremond, 26], the authors first compute a depaths in the temporal graph of
objects. These paths represent the possible tragstthat objects may have. Then, the
association decision is taken with a delatp allow to study the evolution of all the possible
paths. The tracking algorithm chooses at each frdmeebest path to update the object
characteristics, based on a quality factor which w8eighted sum of several criteria, such as
the 3D size similarity, the 3D distance betweeneotsj. This technique enables to better
discriminate people during crossings or to recaégemporary occluded persons.

In the same way, in [Khalaf and Intille, 2001], tnethors propose to use continuity in
space, motion and appearance over time to tragdopsr Continuity in space refers to the fact
that two persons who merge must be the same whegnsghlit again, or to the fact that a
person cannot disappear without a known expland&an, presence of a door). Continuity in
motion refers to the fact that there is a limitthe amount of distance people can travel in a
given amount of time. Continuity in appearance nef® the fact that people tend to look
more similar to themselves than to others, in ay@@ver time. This technique also performs
the decision with a predefined delay by using dyicgsrogramming techniques.

5.2 Largevariety of real world conditions

After reviewing the various types of videos proaeggprograms, the large variety of
real world videos needs to be characterised t@ geecise picture of the complexity of video
understanding problems. Based on our experienceamutevious works on this topic [Ellis,
2002], we propose here a characterization of thalbitity of video sequences which covers
most of the video understanding issues. The scépbi® characterization is large but not
large enough to be applied directly to specific domm such as the processing of aerial
images. In these cases, appropriate criteria shmubiided to extend this characterization.

Type and position of the sensor

The type of sensor (high resolution, PTZ, CCD, CMQO@Srared, aerial, omni-
directional, stereo,...) and the acquisition/steragaterial are of prime importance because
they dictate the processing which can be applietherncorresponding video sequences. For
instance, a background subtraction technique tectietotion cannot be directly applied with
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a moving camera. We can also have a large fieldevi camera which introduces distortion
or we can have an omni-directional sensor whichuireq dedicated techniques. CMOS
cameras can introduce a grain noise which impaseslditional pre-filtering stage.

We can also underline the effect of the cameratiposiThe distance to the scene can
range from a close-up view (e.g., the object heigl#00 pixels high) up to a far view (e.g.,
an object is 2 pixels high). For instance, a fawimay induce a higher miss-detection rate.
Moreover, a top view camera has a low perspectifectebut makes difficult to computate
the height of an object. With a side view, thereation of the 3D parameters is difficult due
to the high perspective.

Finally, cameras can deliver compressed images vatious compression ratios, a
high ratio implying artefact problems such as tleeking artefact in the JPEG protocol. The
frame rate and the image resolution have an impactetection and tracking. For instance, a
low frame rate can introduce higher ambiguitieshi@ matching process used during object
tracking. A too low resolution may prevent to dé@small object.

Camera and scene motion

Although a system uses fixed cameras, motion geations can be induced by two
kinds of motion. First, camera vibrations are cagsnainly translations between consecutive
frames. For example, a camera on a pillar for heghaurveillance can be oscillating due to
wind. Second, scene motion can be generated bylajegt in the scene like curtains, trees,
escalators or relative motion which occurs whendémera is fixed inside a moving object
like a train and a part of its field of view seég toutside of the train. Another example of
noise motion is a rainy or snowy weather condifimnan outdoor camera. All these motion
perturbations can degrade performances of objé¢ettien techniques based on motion.

[llumination changes

We can list four main problems caused by illumioaithanges:

. Slow illumination changes: in outdoor scenes, sldlwmination
changes can occur due to clouds or solar rotagom,(sunset, sunrise). For
indoor scenes, it can be caused by intensity vanstfrom the light source
(bulb,...). These changes add noise in the objetection algorithm based on
motion.

. Fast illumination changes: some image parts aree8oras submitted
to fast illumination changes. In an indoor scemdristance, closing blinds can
introduce a dark area in the image.

. Automatic gain control of cameras: when a cameraxisosed to a
strong illumination change (for instance, an obadsing close in front of the
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camera), its gain is automatically corrected tairasthe best image quality.
This leads to detect motion in the whole image redrents to find the objects.
. Visual artefacts: these are perturbation phenomédiiken reflections
against walls, reflections due to windows or brifjbors, reflections in pools
of standing water, low target contrast, contragkddows (with textured or
coloured background),...

Static and dynamic occlusions

Static occlusions, which can be either partial wl, fare mainly due to clutter. In a
small office for instance, people tend to get clmseach other or will be more often occluded
by a scene object like a desk or a chair. In suchsa, people will probably not be correctly
detected, classified and tracked. In fact, thekirgr can suffer from variations in the 2D
appearance and/or in the estimation of the 3D iocatf an object. A full static occlusion can
be responsible of the loss of a track. Object dietecand tracking are thus considerably
affected by clutter.

Moreover, the more clutter the more chance to emeouproblems in handling
contextual objects such as a chair which has besptaded by a human, a newly installed
desk,... This adds a lot of complexity in discriating interesting objects from perturbing
ones. Clutter is also synonymous of image compjlekior instance, an airport tarmac, a car
park or a road which exhibit a homogeneous colmage can be more easily handled than a
textured image coming from a cluttered office.

Concerning dynamic occlusions, there are two p@kproblems which can arise.
First, a more or less long dynamic occlusion cavent to determine accurately the number
of objects present in the scene. For instancersopeoccluded by another person for a long
time will be hardly tracked by a system, as theme @o spatial evidences and very few
temporal ones. Second, crossings between objectsgeaerate a swap of identifiers of
objects, thus preventing to compute a correctdtaig and other descriptors.

Type, speed and pose of objects

Several problems can arise from the type, the spedle pose of objects which are
present in the scene. Most of video processingrpmg use a model of objects or a model of
movement of objects. The type of objects may infagethe frequency of failure of a tracking
algorithm because objects can be modelled moressrdccurately. For instance, a person can
have a totally non-predictable movement (e.g.,ragrewho is making a half turn) compared
to a car whose motion can be physically modelled.,(eknown steering lock, known
acceleration model). Also, in a scene where objedtdifferent types can occur, the
interaction between different types of objects @ause difficulties for a classification
process. For instance, a vehicle near (or occlydangerson may prevent the classification
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process to correctly classify the person and tieclee separately but classifying both of them
as a compound object.

The speed of objects may also induce more diffiesilfor a tracking algorithm.
Considering a fixed frame rate, an object whicm®ving fast can be lost by a tracker, if the
frame rate is too slow. For instance, it can berggn who begins to run to catch the metro in
a metro station. In addition, it is hardly possilbdeadapt processing parameters for each
single data (i.e., to have a different processorgfrunning person and for a walking one). At
the opposite, a stopped object can generate miestdes during the object detection
process.

Finally, the posture of people, if not handled, canse serious problems for detection,
classification or tracking procedures. Indeed, cammalgorithms rely on the constancy of
features over time to realize the tracking and rtgrbve their confidence values. This
constancy can be broken down in case of suddeativars of postures. Also, a classification
process may fail to assign a correct label to agemwho is lying on the floor or who is
raising his/her hands up, as the adequacy witimibe! is not good enough anymore.

Camera synchronization and hand-over

The main objective of video understanding is tove a semantic description of
what is happening in a real 3D scene. Dependinthertarget application, this process may
require the use of multiple sensors having oveitapfield of view or not. For instance, the
event to recognize may involve tracking a persolkiwg first in a corridor and then entering
an office. The process of multi-sensor fusion maestable to understand that the perceived
information coming from the camera viewing the wwr and the perceived information
coming from the camera inside the office are batimiag from the same person. This
problem is known as thisand-over problem and is sometimes not trivial to manage. Indeed,
algorithms based on appearance models may suffier ¢hanges in appearance of the same
person viewed from two different cameras (e.g.,d&eson is front view by camera 1 and is
seen back by camera 2).

A soft synchronization of cameras is usually leszusate than a hard-wired
synchronization. However, this is the common camgion in most of existing systems as it
is a less expensive and easier solution. A proskesaulti-sensor fusion may suffer from the
variations of timing information during the assdita phase of perceived information of the
same person but coming from different sensors,(@gimilarity measure falls below a
threshold due to the comparison of time-shifteconmfation about the same reality). In
consequence, a tracking can lose the track of gacillue to the non-association of
information coming from the sensors.

Event complexity

49



50

The complexity of the events to recognize can peseral problems in terms of
processing time. First, events involving a long penal sequence of states and events may
generate a combinatorial explosion if the recognifprocess is trying every possibility. For
instance, a model of the eveatperson enters an office and then sits down on a chair is
simpler than a model of the evemperson is vandalizing a ticket machine. Indeed, the latter
event involves several successive states and elMenis person A enters a zone 1, the person
A moves from a zone 1 to a zone 2, the person ysdtar 10 seconds in zone 2, the person
moves back to zone 1, the person A moves again hame 1 to zone 2, etc. Second, events
involving several objects are more difficult to démand may also generate a combinatorial
explosion.

53 Video Under standing Programs

Based on the state of the art, we have collectetioardeveloped generic video
processing programs, which can be used to procksgeavariety of real world videos. This
section describes these programs which are orghnédeng the main functionalities
composing a video understanding process. Thisasecdescribes first these functionalities
and second, the video processing programs usedIR latform to build different scene
understanding systems.

531 Video Under standing Functionalities

Object detection and classification

The objective of this task is to detect and clgsie physical objects of interest which
are present in the scene. This task takes imagewas (colour or black and white). These
images have been digitized at a variable framesratel produces a list of labelled physical
objects of interest. This task is applied for eammera in case of a multi-camera
configuration.

The detection decomposes the image into blobs smoreling to potential physical
objects of interest. Advanced functionalities cehsdf being able to distinguish blobs
generated by human activities from those corresipgntb noise generated by contextual
objects (e.g., moving trees), shadows or reflestiokor instance, these advanced
functionalities may require the use of contexta&bimation (e.g., 3D geometry of the empty
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scene) or chromatic information about pixels. Thepat of the detection is a grey level
image (0 = background, n = identifier of the objecinterest).

The classification (possibly including any filteginand splitting/merging process)
classifies blobs into labels corresponding to @assef physical objects of interest, with
respect to a predefined semantics: person, vehgleup of persons, etc. Advanced
functionalities consist in refining the object das (e.g., motorcycle, cycle, car, truck,
airplane, for the vehicle class), in splitting atige(e.g., two separate persons are better than a
group), in computing a posture and an orientation dbjects, in computing their 3D
parameters while taking into account static ocolusiby contextual objects. The output of the
classification is a list of physical objects ofargst with their properties.

Spatio-temporal analysis

The objective of this task is to maintain a 3D ementation of what is happening in
the scene over a period of time (e.g., few secaqi$o a minute) by resolving potential
incoherencies, based on visual invariants in tlenede.g., a person cannot go through a
wall). First, a tracking process matches the objelgtected at image time t-1 with those
detected at image time t and maintains a uniquetifter for each object over the whole
video stream coming from the camera. The trackingput is a temporal graph of objects.
Nodes of this graph represent physical objects {haeid properties) while edges are temporal
links over time. The various sequences of edgdhigngraph represent the various possible
trajectories a physical object of interest may hale case of multiple cameras with
overlapping field of view, a fusion operation igfoemed to obtain a unique graph of objects.
Then, this unique graph is analysed over a langgdeal window in order to extract temporal
properties of physical objects of interest (elgg trajectory, the zone of entrance and exit of
the object, the speed). Advanced functionalitiessei in being able to correctly track objects
in a network of cameras with distant field of viesing information like the 3D location of
objects, in tracking separately rather than glgbaljects in case of dynamic occlusion.
Several alternatives are possible depending ontyibe of objects being tracked and the
complexity of the scene: individual tracking, graugcking, crowd tracking.

Event recognition

The objective of this task is to recognize any éveom descriptors given by the
preceding tasks (e.g., shape, speed, positionrajettory). An event (e.g., abandoned bag,
forbidden zone access, bank attack) is either learpredefined by an end-user. An event is
characterized by the involved objects, the intiiale of the event recognition and its duration.
This recognition is performed globally for the seeviewed by one or several cameras.
Advanced functionalities consist in being able tmdile the uncertainty associated to low-
level features in order to maintain a high scoreewént recognition, or in being able to
recognize complex events involving fine descriptreh as the posture of an object.
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5.3.2 VSIP Library

This section first gives a description of the Idyraof video processing programs
composing the video understanding platform call&P/which is illustrated on Figure 5.1.
This platform which has been described in [Brem@&jds made of several techniques. These
technigues have been extensively explained in akpapers which are given in reference in
the text. Here, the objective is to describe howhaee decomposed and structured the whole
processing chain into programs or typical combaoreti of programs (and identified their
input/output data) by following a general model/mfeo understanding.

The first task is théletection and classification of physical objects of interest which
are present in the scene. This task takes one iesggput (colour or black and white) and
produces a list of labelled physical objects okfast. To achieve this task, several distinct
steps (including options and alternatives) havenbeentified:

. Image acquisition: this step produces a digitized image coming feom
video source. Several alternatives exist: framelgrag from an acquisition
card in case of an analogue camera, image loadimg & file which is stored
on a hard drive, decompression of a MJPEG liveasireoming from an IP
camera.

. Reference image generation: this step creates a reference image which
is used during the segmentation step. There aeraewvays of computing this
image [Bremond, 32]. First, when no a priori knodge in the form of an
image of the empty scene is available, the firgigenof the video sequence is
taken. One drawback of this technique is that asysgn present at the
beginning of the sequence is integrated in thereafee image. Second, the
reference image is selected among a list of stonages corresponding to the
empty scene taken under different illumination d¢bods. The selected image
is the one which is the nearest of a mean imageputed over the N first
frames of the video sequence, according to a méiased on statistical
variables (e.g., standard deviation of intensit9)ne drawback of this
technique is that it is a global approximation g Thus, a third technique
refines this reference image on a local basis tgquires more images (e.g.,
N equal to 100) and is also more time consuming.

. Segmentation: this step detects moving regions by subtracting t
current image from the reference image. The rewpldifference image is
threshold using several criteria based on pixetnsity in order to create
moving regions. These moving regions (also callets) are associated with a
set of 2D features like density or position. Twiealatives exist, depending on
whether the chromatic information about pixelsvaikable and usable or not.

. Chair management: this step is optional and works on the list aflig
[Bremond, 32]. It may be activated to help diffdrating a blob corresponding
to a chair from a blob corresponding to a persgryding a priori information
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about contextual objects (e.g., by comparing a wotlistribution of a blob
with a predefined visual template of a chair).

. Door detection: this step is also optional and wask the list of blobs.
It allows handling the opening/closing of doors efhhave been specified in
the 3D description of the scene (i.e., a priori Wiealge). This algorithm
removes from blobs the moving pixels correspondo@ door being opened
or closed [Bremond, 9].

. Classification: this step takes the list of blobs and producéistaof
physical objects of interest. It is composed oééhsuccessive sub steps. First,
a merge process tries to correct segmentationselgoregrouping small blobs
corresponding to the same physical entity (e.grsqe car). Then, a split
process is applied on large blobs to verify whetihery could correspond to
several physical entities. In this situation, tHebbis separated into one or
several parts, each one corresponding to a physiddl. At this point, the
confidence that blobs correspond to physical estits better. Thus, a set of
3D features like 3D position, width and height eoenputed for each blob, by
using calibration information. By comparing this &¢ 2D and 3D features
with predefined models, these blobs are classiifed several predefined
classes (e.g., person, group, car, truck, airctafknown, noise,...). A final
filtering stage is applied to remove small and assified blobs which do not
correspond to real entities. At the output of thessification step, the blobs
with their associated class label and their s&bfeatures are callgahysical
objects of interest.

. 3D position correction: this step corrects the 3D position of physical
objects of interest which have been located at@giplace (such as outside
the boundary of the observed scene or behind g.Wdlis may happen when
the bottom part of a person is not correctly dedie.g., the legs can be
occluded by a contextual object or badly segmented)

. Ghost suppression: this step aims at removing physical objects of
interest which are not due to real objects in tbene (i.e., ghosts). Instead,
they are due to stationary objects which have leegrated in the reference
image (e.g., a car parked for hours) and whichnam moving again but not
yet removed from the reference image. For instatige,technique analyses
the presence or absence of gradient on the olpetbur in the current image.

. Reference image updating: this step works on the reference image and
tries to integrate environment changes appearinghé current image. A
simple and fast technique consists in blendinghtliifjgeach reference pixel
with a small coefficient (e.g., 0.01). An altermaticonsists in discriminating
real objects from regions of persistent changééimage (e.g., a new poster
on the wall or a newspaper on the table) and tegnate only these regions
[Bremond, 32]. This alternative is time consumingl aequires computing
several features.

Once this first task is performed, the list of phgtobjects of interest is then
processed by thgoatio-temporal analysis task. This task is also composed of
several steps:

. Frame to frame tracking: this step is performed for each video sequence
in case of a multi-camera configuration (e.g., éguence or in parallel). The
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objective is to link from frame to frame all phyaicobjects of interest
[Bremond, 18]. The decision to create a link isdabsn several criteria such as
the amount of overlap, the 3D distance betweenregmf gravity of objects
[Rota and Thonnat, 2000]. The output of this st igraph containing the
detected physical objects of interest updated dwvee and a set of links
between objects detected at tiln@nd objects detected at tirz&¢. A physical
object of interest with temporal links towards poess ones is called taacked
physical object of interest. This graph provides all the possible trajectooés
an object.

. Fusion and Synchronization: depending on the carmendiguration,
this step may be activated. Graphs of physicalai®jef interest coming from
the different cameras with overlapped fields ofware fused together in order
to obtain a unique representation. This technigees .ccombination matrices
(combining several compatibility criteria) to edtab the good association
between the different views of a same object. Asptal object of interest
detected by a camera may be fused with one or mbysical objects of
interest seen by other cameras, or can be simpgly &ene or destroyed if
classified as noise. A temporal synchronizatiosametimes necessary when
the different cameras are not synchronized by aifspdnardware. In such a
situation, this step may decide to pause the psitg®n a camera to wait for
the other ones. The output of this step igraph of fused tracked physical
objects of interest. They contain all the temporal links of the oraimbjects
which have been fused together and their 3D featare the weighted mean of
the original 3D features. Weights are computeduimcfion of the distances of
original objects from the corresponding camerathia way, the resulting 3D
features are more accurate than original ones.

. Long-term tracking: this step works on the (fused) graph of objects.
Depending on the events to recognize, several naliges are activated
[Bremond, 25, 26 and 30]. All of them rely on then® idea: they first
compute a set of paths (in the graph) represeniiagossible trajectories of
objects to track (e.g., isolated individuals, grewb people, crowd). Then they
track the physical objects of interest with a pfegsl delay T to compare the
evolution of the different paths. At each frameg thest path to update the
physical object characteristics is chosen.

Once physical objects of interest are tracked avemporal window and featured in a

unique 3D referential, thevent recognition task is performed. Depending on the type of
events to recognize, different alternatives areluse
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. For events dealing with uncertainty, Bayesian netwaan be used
[Bremond, 34].
. For events with a large variety of visual invargre.g., fighting),

AND/OR trees can be used [Bremond, 31]. Visual iiards are visual
features which characterize a given event indep#hdef the scene and of an
algorithm. For instance, for fighting event, some visual invariants are an
erratic trajectory of a group of people, or onespearlying down on the ground
or important relative dynamics inside the group.

. For events organised as sequence of events, weaismrinite state
automata [Bremond 31]. If these events are charsetk by uncertainty,
HMM (Hidden Markov Models) can be used [Bremond. 23]
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. Finally, for events involving multiple physical @uts of interest and

complex temporal relationships, the technique usedased on a constraint
network whose nodes correspond to sub-events andendrges correspond to
temporal constraints [Bremond, 28 and 35]. Temporahstraints are

propagated inside the network to avoid an expoakwrtbmbination of the

recognized sub-events. For each frame, eventseamgmized incrementally

(i.e., temporal constraints are checked), starfiomn the simplest ones up to
the more complex. This technique uses a declaringuage to specify events
to recognize. The output of this last task is adfsecognized events.

For efficiency and modularity reasons [Bremond, tBg exchange of data between
programs of the VSIP library is realized throughared memory. This shared memory is
managed by a shared memory manager which is rebpons data management and
distribution to programs.

In conclusion, we can see that we have a fairlgdaamount of distinct programs. In
addition, a program can be either elementary orptexn(e.g., alternatives or sequences have
been identified) and can be either mandatory apopt. As a consequence, a main issue is to
model all this variability and flexibility to obtaian efficient scene understanding system.
This issue will be discussed in chapter 8.
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Figure 5.1: the hierarchy of the library of video processing programs composing the video

understanding platform called VS P. The orange boxes correspond to elementary programs directly

executable and white boxes correspond to components composed of elementary programs.
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54 Advanced Video Under standing Programs

Advanced video understanding programs are needleer ¢0 process specific scenes
(e.g. highly cluttered scenes) or to address pdaticrequirements (e.g. people posture
recognition). This section describes these two dymé works on advanced video
understanding programs. The first work has beere dorcollaboration with Gabriel Davini
and Magali Maziere on correcting the position obpe detected in a cluttered scene and not
complying with 3D geometric constraints. The secovatk has been done with Bernard
Boulay during his phD on posture recognition [Bremd 0, and 36].

54.1 A context-awar e detection algorithm for occluded objects

In many video interpretation applications, mobilgezts may be partially occluded
and thus not visible in their wholeness. As a cquseace, when computing their 3D position
and dimensions, if only the visible part is takemoi account, errors may be committed.
Moreover, standard appearance-based context-unasi@ssification algorithms may fail,
assigning the objects with wrong types or even icemsg the objects as noise.

We can identify three types of occlusion:

1. the occlusions due to the vision field of camerhiclw occur when the
mobile object is on the border of the vision fiekdcamera;

2. the occlusions due to contextual objects (e.g.ar)zhthat occur when
one or more contextual objects are placed betws=mbbile object and the camera;

3. the occlusions due to (other) mobile objects.

Occlusions may be static or dynamic, depending betker the occluded regions
change in time. Usually, the first two types of laston are static, since the camera and
contextual objects do not move; even if, theresamae exceptions as, for example, the doors,
the windows or the wheelchairs. On the contrarg, tiinrd type of occlusion is typically
dynamic.

In order to cope with static problems of occlusiam propose an algorithm which
exploits thea priori knowledge of the vision field of camera and ofteottual objects so as to
estimate the occluded parts of analyzed objects. Sdtond types of occlusion in case of
dynamic problems are left to specific algorithmslidated to particular contextual occluding
objects, while the third type of occlusion (inclngia mixture of previous types) is left to the
tracking module.

The proposed algorithm is composed of two paresfitist one deals with the first type
of occlusion, the second one deals with the sedppé in case of static occlusions. Both
sections start with a series of tests that aretouestablish whether the mobile object is
occluded and where the mobile object may have dehnigpart. For example, if a person is
sitting behind an armchair and the visible pajtigt his/her head, we may conclude that there
is an occlusion due to the armchair and then agmigéhrt may be found below the head.
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At this point, in order to proceed with the anasyswe check whether the visible part
of the object is compatible with a mobile objectdab(e.g. human being). This means that
we test whether the mobile object 3D dimensionsesmond to those of a mobile object, as
specified by its model. For example, if a mobilgegbis found to be occluded on its left side,
we first verify whether its height correspond te ttommon height of the considered model
object, since the occlusion on object left sidesdaet affect its height. Then, we check
whether its width is reasonably close to the mimmmobile object width. Exceptions to this
rule are made on a per model basis, for some spadifiations, as when the visible part is a
head that is not compatible with the person stahdedth.

Since the visible part of an object may comply witiore than one mobile object
model, the preferred model is the one with the ésgltompatibility.

In the case of the first type of occlusion, an odeld mobile object, which complies
for at least with one 3D dimension (width or heigintlength) of a mobile object model, is
corrected so as the two other dimensions becomstémelard 3D dimensions of the model,
eventually, its 3D position may also be recompusddhis point, a new classification stage is
run so as to assign the object with a type, wharnesponds to the considered mobile object
model or corresponds to a compatible model withdtter.

In the case of the second type of occlusion, statitextual objects are first scanned
in order to find those that partially occlude thehite object; also, this process estimates the
maximum space where the mobile object can be Iddagkind. In the following, a number of
hypotheses about the analyzed object 3D positichdamensions are made, till the first of
them succeeds in complying with the considered taobbject model. At this point, as
before, the analyzed object is modified and rediads

The proposed algorithm has been successfully testeideo sequences with different
scenarios; an example of its application is prodiohethe pictures in 5.2.

Figure 5.2: Two occluded objects correctly recognized and poéifionéd. '
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54.2 Human Postur e Recognition

This section describes an algorithm to recognigepibsture of people evolving in a
scene observed by only one camera. We have progwsedginal work on human posture
recognition by combining a classical 2D approactl ase of a 3D human model. The 3D
model (cf. Figure 5.3) is defined by 9 degrees reedom (articulations): the abdomen,
shoulders, elbows, hips and knees. We first dégbneach posture of interest a specific set of
parameters. These parameters are the three Eglesdar each articulation.

- = L
SRR |
®) (c)

Figure 5.3: The image (a) depicts a man in T-shape posture. In image (b) we can see the
corresponding blob and its horizontal and vertical projections. Image (c) represents the 3D human
model in T-shape posture selected by the algorithm.

For each detected person, the video understandatiipnon (VSIP) provides us with
the position of this person in the 3D space. Thencampare the silhouette of the detected
person with reference silhouettes generated fra8 model. We project the 3D models on
the image plan for reference postures (called eefsr images), which have been generated
using the 3D position of the person. To determhme drientation of 3D model, we test all
possible orientations using a rotation step. Thencompare the horizontal and vertical (H.
& V.) projections of the reference images with ¢ & V.) projections of the detected
person silhouette. The horizontal (resp. vertipafjection on the reference axis is obtained
by counting the quantity of motion pixels which @spond to the detected person for each
row (resp. column). An example is shown in Figu&fr the T-shape posture.

A first challenge is to tune the parameters of plsture recognition algorithm to
obtain better results. The most important paramistehe rotation step. To determine the
optimal rotation step, the recognition rate of post on synthetic data is computed for
different rotation step values. For this experimem¢ have used a 3D woman model (cf.
Figure 5.4igure ) which is different of the 3D model used for recttign. We choose a 36
degrees step because it gives a better ratio betreeegnition rate (76 %) and computation
time (1.5 images per second). We have performesl oessynthetic data by giving the correct
orientation which shows that computation time did by 10, and recognition rate increase
from 76% to 95%.

A second challenge is to evaluate the posture retog approach. We obtain good
results on real videos of about 2000 frames degdiargeted postures (Table 5.1): 89% of
correct recognition for standing postures and 8&o ditting-bending postures. A more
accurate analysis gives 100% of correct recognitowrstanding posture with arms up (left
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and right arms are not discriminated), 62% for ditagn posture with arms near the body, 87%
for T-shape posture, 75% for sitting postures, @mg 40% for bending posture.

Standing Postures: 89% Sitting-Bending Posture% 88
Standing Standing T-Shape Sitting on Sitting on the| Bending
posture with | postures with postures: chair floor postures:
arms up: arms near the 87% postures: postures: 40%
100% body: 62% 54% 57%
na:100| a:100| na:83 a41| na:93 a0 napl a40 na7l g13:70nha:24

Table 5.1: Recognition rate of postures organized in a hierarchical way depending on the scene
difficulties (a: ambiguous case, ha: ho-ambiguous case).

We define an ambiguous case as a situation whersiltihouettes of a person in two
different postures are very similar (cf. Table 5\lje determine ambiguous case by using
synthetic data. A synthetic video is made for epokture and for all possible orientations.
Then, an ambiguous case is found when the posureticorrectly detected by the algorithm.
For example, a no-ambiguous case of the bendinii@osorresponds to the situation where
the camera observes the person from the side. ®yimhinating ambiguous cases, we obtain
an average of recognition rate of 70% for non anntig cases and only 24% for ambiguous
cases on real videos.

Figure 5.4: 3D woman model used for experiments with synthetic data

About 35% of wrong recognitions are due to the guity problem, and the other
65% to segmentation problems as shown in FigureTmSmprove the algorithm we plan to
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compute features from the detected person (orientaBD height, ...) to compute more
appropriate 3D model. We also want to use inforomaprovided by the tracking phase to
improve results by taking advantages of the termmtaerency.

TR A

kb

Figure 5.5: (a) Sanding posture with arms along the body recognized as T-shape posture,(b) T-shape
posture recognized as standing posture with arms along the body.

55 Conclusion: Advantages and limitations of VSIP
platform

In this chapter, we have described the large wanévideo processing programs and
of videos depicting a scene. We have explained Y& platform can help building scene
understanding systems, based on two types of pregrél) generic programs for common
video characteristics, (2) advanced programs fadlyag particular situations. Nevertheless,
object detection and extracting perceptual featuvitlsstay an open issue for still a long
period of time, in particular in real world situattis, such as moving cameras, crowd, and
limited processing capacities.

The current trend is to establish under which higpsés the algorithms are valid, and
to understand their limits. Based on this resulirabterisation, the other four research axes
proposed in the introduction can be fruitfully eoq@d. Moreover, we believe that pursuing
these axes is important for two reasons: firstsame specific conditions (e.g. structured
environment), these challenges can be solved atmhdesome applications do not require
perfect vision results (i.e. perfect object detattand tracking). In the next chapters, we will
discuss the other research axes.
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Chapter 6

Maintaining 3D coherency
throughout time

This chapter studies the mechanisms to maintain the@i2rency along time to bridge the

gap between the signal and semantic levels. Thiadees are done along with two directions.
First, we explore the different ways of tracking bile objects through videos, taking

advantage of the temporal coherency. Second, weesgldhe issue of information fusion.

Despites all the works done in these domains withenlast 20 years, fusion and tracking
algorithms remain brittle. To guarantee the coheyeof tracked objects, spatio-temporal
reasoning is required. In this chapter, the fiesttion reviews briefly three stages to insure
temporal coherency: frame to frame tracking, loegnt tracking and global tracking. The

frame to frame tracking computes the links betweerbile objects from one frame to the

next one. The long term tracking explores the §@basible paths within a temporal window
of few frames, typically 10 frames [Bremond 25, &&l 30]. The global tracking optimises
globally these paths among all potentially mobilgeots [Bremond 12 and 49]. The main
challenge of these tracker is not to loose the&ktcd@ny mobile object, even in case of noise
(e.g. change of lighting conditions), motion of textual objects (e.g. a door), dynamic
occlusions (e.g. people crossing) and large derditynobile objects (e.g. crowd). These
trackers have been validated through several Earopeojects such as ADVISOR [Advisor,

2003] and AVITRACK [Avitrack, 2006].

The second section presents different mechanismmflarmation fusion. There are
two types of information fusion: (1) fusion betweeni-modal information coming from a
network of sensors of the same type [Bremond, 8@](@) fusion of multi-modal information
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coming from heterogeneous sensors, such as viddoaadio sensors [Bremond, 51].

However, the information fusion issue remains tame for both types; finding a common

formalism for information representation which ise@se enough to model information

uncertainty. Information fusion can be done ateheyels: perceptual world, physical world

and semantic world. At the level of perceptual wonberceptual features are combined
through statistic and probabilistic techniques,hsas Principal Component Analysis (PCA)

and Bayesian network [Bremond, 43]. The goal iBlter outliers, normalise the features and
to reduce the dimension of the features spacee(tace redundancy). At the physical world
level, information is combined using invariantsregponding to spatio-temporal constraints
(e.g. to handle statistic occlusions), and ruleslelimg dedicated knowledge (e.g. a physical
object cannot disappear in the middle of the scfde@mond, 12 and 30]. At the semantic
world level, events are combined following scripthich are usually pre-defined by end-

users. This combination can be done by differemhédisms such as scenarios [Bremond 35]
or chronicles [Ghallab, 1996].

The main benefit of using information fusion istiadge the gap between signal level
and semantic level. The main challenge in vide@gssing is the bad quality of data which is
often erroneous, corrupted, incomplete, partiasmig and vague. To cope with these issues,
we need redundant information to be able to perfohe abstraction process. Another
question that we need to answer is at which leki information should be combined.
Information fusion at the signal level can providere precise information, but information
fusion at higher levels is more reliable and easieealise.

To solve these issues, there are three main rotendlti sensors information fusion:

. Utilization of a 3D scene representation for conmigrheterogeneous
and uncertain information

. When the information is reliable the combinatioodd be at the
lowest level to get the better precision

. When the information is uncertain or on differehjexts, the
combination should be computed at the highest lerhantic) to get better
abstraction

During the past few years, we have been involveld several research works dealing
with information fusion at the three levels of peesing, using different formalisms for
information representation. Here, we review brigfigse works.

In video processing a common way of having seugmds of information on a scene
is to use different types of process for extractimigrmation. For instance, a process can
detect and classify mobile objects in video streawisereas another one detects specific
objects such as human faces or detect specifis avkich have consistent colour properties.
In the SAMSIT project on video surveillance onbodrdin [Bremond, 51], we have
combined these different types of process to hattididrain motion and strong shadows cast
all over the scene. In this project, we have alsml@ned video and audio analysis to
disambiguate some scenarios. For instance, to tdetelence scenes we have combined
shouting events detected by microphones with stroations detected by video cameras.
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In a control access application, during the PhBiohh Bui [Bremond, 43], we have
combined optical cells, cameras observing the rogrdrom the side and a camera observing
the entrance from the top. We have combined afle¢heformation in a 3D representation of
the entrance. We were able to distinguish all tygfgseople and objects coming through the
entrance such as adult, kids, stroller, and luggage

In bank agency video surveillance application, migithe PhD of Van Thinh Vu [Vu,
2004], [Bremond, 35], and works done by Magali Mazi[Bremond, 38], we have combined
different contact sensors and cameras (visibleiaindred) to better understand activities in
the bank. Thanks to the sensors we were able axtdptecisely when the door of the room
and the door of the safes were open.

In ambiance intelligent applications on helping keep elderly at home, we are
planning to combine physiological sensors instatiada person, contact and pressure sensors
installed in an apartment and cameras to underskaendaily activities of person living in the
apartment. Each sensor is dedicated to the deteofigpecific events which are combined
through the video analysis.

In the ADVISOR project on metro surveillance [Bramp39] and in the AVITRACK
project [Bremond, 12] on apron surveillance, weehaembined several cameras observing a
scene. In the AVITRACK project, we have combinedaBneras observing all the servicing
operations occurring around a parked aircraft. Kehato the 8 cameras, we were able to
observe all activities occurring on both sideshaf &ircraft despite the occlusions of vehicles
operating around the aircratft.

In this chapter, we cannot describe all the worsedin maintaining 3D coherency
throughout time. Therefore, the first section pneselifferent types of algorithms for tracking
objects of interest throughout the videos. The sdcgection on information fusion focuses
more on the following two experiments: (1) multroara fusion based on the computation in
the physical world of mobile object correspondenaed (2) multi-camera fusion combined
with optical cells based on perceptual feature matcthrough a Bayesian network.

6.1 Temporal coherency in the 3D space

This section presents an approach for trackingeeitbolated individual, group of
people, crowd or vehicles in the context of vissiaiveillance of metro and airport scenes. In
this context, tracking algorithms are composedhofé tasks: (a) motion detection and frame
to frame tracking, (b) long term tracking of indiuals, groups of people, crowd and vehicles
evolving in the scene and (c) global tracking fopging with any remaining errors. This
work has been performed mostly in the frameworkhef European projects ADVISOR and
AVITRACK [Advisor, 2003], [Avitrack, 2006]. To redcthis goal, we have developed a
system which takes as input video streams commg fsne or several cameras and tracks all
mobile objects in the video streams. The sectiaorganised as follows: in the first part, we
present briefly the global system and then thekingcalgorithms.
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6.1.1 Overall System Overview

As describe in chapter 5, the video interpretatigstem is based on the co-operation
of a vision and a behaviour recognition moduleras\g on Figure 6.1.

The vision module is mainly composed of three taglkist a motion detector and a
frame to frame tracker generates a graph of madfigects for each calibrated camera.
Second, a combination mechanism is performed tobawmthe graphs computed for each
camera into a global one. Third, this global graphused for long term tracking of
individuals, groups of people and crowd evolvingtive scene (typically on hundreds of
frames). The combination mechanism and the behavemognition algorithm are presented
further in the next sections. On top of that, we 8B scene models, one for each camera, as a
priori contextual knowledge of the observed scene define in a scene model the 3D
positions and dimensions of the static scene abj@cy. a bench, a ticket vending machine)
and the zones of interest (e.g. an entrance z&wehantic attributes (e.g. fragile) can be
associated to the objects or zones of interest tasked in the behaviour recognition process.

- Motion Detector | Vision Module |

) =)
SN F2F Tracker | | (ndividual
- ) Tracking

- Motion Detector

@i EEMuIti-cameras Group |

Behaviour
Recognition| Alarms
-

: ] Etvaetsfs Annotations
! .S i
- Motion Detector med iy
) B Tracking
S| - F2F Tracker —
Scene Models (3D)
- Scene objects
- Zones
- calibration matrices
Figure 6.1: Video interpretation system
6.1.2 Motion Detector and Frameto Frame Tracking

The goal of the Motion Detector is to detect focleframe the moving regions in the
scene and classify them into a list of mobile otgjegith labels corresponding to their type
based on their 3D size, such as PERSON. This taskbe divided into three sub-tasks:
detection of mobile objects, extraction of featurdassification of mobile objects. A list of
mobile objects is obtained at each frame. Each lmalbject is described by 3D numerical
parameters (center of gravity, position ,heightitivi...) and by a semantic class (PERSON,
OCCLUDED PERSON, GROUP, CROWD, METRO TRAIN, SCENBJECT, NOISE or
UNKNOWN).

The goal of the frame to frame tracker (F2F Tratlkseto link from frame to frame the
list of mobile objects computed by the motion deiecThe output of the frame to frame
tracker is a graph of mobile objects. This grapbvles all the possible trajectories that a
mobile object may have. The link between a new taodiject and an old one is computed
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depending on three criteria: the similitude betwdsir semantic classes, their 2D (in the
image) and their 3D (in the real world) distance.

6.1.3 Individual, Group of peopleand Crowd Long Term
Tracking

The goal here is to follow on a long period of tirigher Individuals, Groups of
people or Crowd to allow the scenarios involvingsh three different types of actors to be
recognised. For example, when we want to deteabapgof people (at least two persons)
which is blocking an exit zone, we prefer reasonmith the Group Tracker because it
provides a more accurate 3D location of the grdypeople in the scene.

The Individual Tracker tracks each person indivijuashereas the Group Tracker
tracks globally all the persons belonging to th@earoup. Both trackers perform a temporal
analysis of the Combined Graph. The Individual Kemccomputes and selects the trajectories
of mobile objects which can correspond to a resd@ethanks to an explicit model of person
trajectory. In a similar way, the Group Tracker @uites and selects the trajectories of mobile
objects which can correspond to the persons irsigal group thanks to an explicit model of
the trajectories of people inside a group.

Individual and Group Trackers are running in patalWhen the density (computed
over a temporal window) of detected mobile objéssomes too high (typically if the mobile
objects overlap more than 2/3 of the image), we shese two trackers because in such a
situation, they cannot give reliable results. As ghoint, we trigger the Crowd Tracker which
is in fact the Group Tracker with an extended manfethe trajectories of people inside a
group allowing a large density of detected peommiging to the same group that by this
way defines a crowd. These trackers are describatbre detail in [Bremond 25 and 36].

6.1.4 Global Tracking

As shown in Figure 6.1, the VSIP platform is basedtwo main modules: one
dedicated to vision and tracking, and one dedictiestene understanding. While the scene
understanding module needs accurate input dat@dognize behaviors, some incorrectly
tracked objects are sometimes present in the viaiwh tracking output. We thus have
developed a Global Tracking module which takesrgmuti the a priori knowledge of the
observed environment (static and dynamic contert] ¢he tracked objects and sends
corrected tracked objects to the scene understamdodule. The correction of the tracking
objects is guided by user defined rules.
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The Global Tracker is a generic prototype basedutas which allows to quickly and
easily adaptable to a new application. Each incbtracking result is analyzed and a rule is
used to correct it. This rule can be a completady nmule, or a default rule (defined for
another situation or application) overloaded witheav set of parameters.

For the Airport Apron Monitoring European proje&MITRACK), we have so far
solved two main problems adding new rules in theb@l Tracking:

. The first is the loss of tracked objects which ascwhen a vehicle
stays for a long time at the same place. The definée keeps track of the
vehicles when they are lost and parked in a speniine, and ends when the
vehicles restart (the newly detected vehiclesiaket with the parked ones) or
after a predefined period of time (the parked VeBiare removed);

. The second problem appears when a vehicle is deteas several
smaller objects (over detection case, as showngurd-6.2-a). It occurs when
a vehicle is slowly manoeuvring in a small areae €hrrecting rule merges the
mobile objects (as shown in Figure 6.2-b) intoréred vehicle. To achieve that,
the rule takes into account the predefined vemubelels, and the 3D position
and motion of the mobile objects.

FFERNEEEX

LOADER 2

Figure 6.2: On the left, a Loader vehicle is detected as several mobile objects (over detection) while
on theright, the Loader vehicleis correctly tracked as one mobile object.

The developed Global Tracker has been used inrédiftgprojects which use the VSIP
platform, such as the AVITRACK European project a@dssiopee on bank agency
surveillance. This tracker is described in morexidl@t [Bremond 12].

67



68

6.2 Multiple cameras Combination

In this section, we present an approach for trackpeople in a cluttered scene
(typically a metro scene) viewed by several cametitis overlapping FOVs (Field Of View).
The ambitious goal here is to process real worttk@istreams coming from metro stations
taken for the European project ADVISOR and to cambinformation from multiple
cameras. The solution we propose is composed e thteps. First a combination mechanism
is performed to combine the graphs computed foln eamera into a global one. Second, this
global graph is used for long term tracking of grewf people evolving in the scene
(typically on hundreds of frames). Finally, the uks of group tracking are used for
recognizing predefined scenarios correspondingoeziiic group behaviors. In this section,
we focus on the graph combination.

6.2.1 Combination of moving region graphsfor multiple
camer as

The goal of the combination phase is to combinetadl graphs of moving regions
computed by the Frame to Frame tracker (F2F Tradkeeach camera into a global one that
we called the Combined Graph. As we mentioned éngtevious section (F2F Tracker), a
graph of moving regions is built frame by framedmynputing links between the new moving
regions detected and the old ones. To combinéedlet graphs, we combine together the new
moving regions detected for all cameras. Each newimg region detected for each camera
can be involved in one of the three following typésombination:

. Fusion: the moving region is fused with one or several mgvegions
detected by other cameras. If the labels of alitlo®ing regions are the same,
we fuse them into one moving region by computingagarage of their 3D
features. By making such a fusion, the estimatiothe® 3D features (position,
width, height) of the resulting moving region is proved (closer to the
reality). If the label of the moving regions is fdifent, we select for the
Combined Graph the one which is the closest tortbéel of person.

. Selection: the moving region is not fused with other movimgions
and is selected for the Combined Graph. This mow&ggon corresponds to a
mobile object observed by one camera without amgespondence with other

cameras.
. Removing: the moving region is eliminated and is not presenthe
Combined Graph. This moving region corresponds moige just detected by
one camera.
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When the combination is done, the temporal linksh&f Combined Graph are
inferred from the links computed for each indivilg@aph. In the case dfusion, if
{g',...,dn} is the set ofmoving regions which are fused together into theving region
I at time t, 1 is linked with the set of combinemoving regions {I,"%,...,1,"} which
corresponds to the result of the combination otladl parents of thenoving regions at
time t — 1. For the case &Hection, the process is similar with the difference the t
moving region I' results from the selection of only ormeving region g.'. In the case of
Removing, no link is computed becausedoes not exist. The main step in the graph
combination phase is the combination of theving regions newly detected by each
camera. To manage this task, we use an iteratpeaph. If there are N cameras, we first
combine themoving regions detected by the two first cameras, and then tkaltrés
combined with the moving regions detected by theltbtamera and so on up to the last
camera. Thus, we reduce the algorithm to a two dgie@ space in which we combine N-
1 times information about 2 cameras.

6.2.2 Computation of the combination matrix

We compute a n * m combination matrix to compaeedbrrespondences between the

moving regions R = {r;...ry} detected by camera C1 and timeving regions O = {0;...0p}
detected by camera C2. We have 3 different critfitia k,, ks} for doing this. For each
criterion k, we construct a n * m Matrix N\\n and m are respectively the numbemoking
regions detected for cameras C2 and C1). The elementofi,Nk is in the range [0, 100]
where zero indicates that there is no corresporedbatween the twmoving regions r; and ¢
and 100 characterizes the strongest corresponaenaguted for criteria K The final matrix
F, called the Combination Matrix, is found as theghted sum of the matricex N

F= ZS: W, N,
k=1

where the three global weights\&re parameters of the combination algorithm. The

three criteria are :
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. Position criteria: It estimates the spatial coheecbetween two moving
regions @and | by computing their 3D proximity. This proximity equal to

100 if bothmoving regions have exactly the same 3D position and decreases
exponentially up to zero when the 3D distance betwée twomoving
regionsis above a threshold T (e.g. 5m).

. Dimension criteria: It estimates the dimension gheiand width)
similitude between twonoving regions o; and . The moving region labels are
compared thanks to a class correspondence talikec®mmparison returns 100
if both moving regions have the same label and returns values which deere
up to zero when the labels indicates two classesbfct very different (e.g.
NOISE and GROUP).



70

. Temporal criteria: It reinforces the correspondéeneveen twamoving
regions o, and | when one parent of; @and one parent of have been fused
together. This criteria returns 100 when the paréive been fused together,
otherwise it returns 0.

We consider that twanoving regions o, and | have a high correspondence if the
element (i, ) of the Combination Matrix F is hightean a threshold T, where T is also a
parameter of the combination algorithm (we use T0¥ Then we use a set of rules to
decide which type of combination to apply (see rsextion).

6.2.3 Extraction of sub combination matrices

We extract in the Combination Matrix F, disjointbsmatrices called &which
correspond to a set of moving regions having cpoedences together. Each sub matrix is
constituted of twamoving regions sub sets: one called, B a sub set of R and the other called
Os is a sub set of O. These sub sets are the maxisubnsets of neighbour moving regions
for which eachmoving region of Rs has a high correspondence with at least woeng
region of Os. A moving region of Rs is a neighbour of anothenoving region of Rs if they
have at least one high correspondence in commdnomgmoving region of O

Combination rules

This section describes the rules that we use forboaing themoving regions {ri...rm}
and {o...0,} detected for two cameras C1 and respectively €1&ing the Combination
Matrix F and the sub matrices F

No correspondence

First, we process thmoving regions which do not have any high correspondence in
the Combination Matrix F. In that casemaving region detected for camera C1 or C2 does
not have any high correspondences withoaing region detected for the other camera. Two
possible situations in the real 3D scene can geneteh a case.

. A mobile object (in the real world) is in the fietd view of only one
camera, consequently, this mobile object is detelbtethis camera but not by
the others (e.g. a person hidden by a pillar velldmly detected by one of the
two cameras).
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. A mobile object is in the field of view of both cemas, but it
corresponds to a noise (e.g. a reflection on tberfl Consequently, it is
possible that only one of the two cameras has Idaitéeatures (position,
direction, ...) to detect this mobile object.

When we process moving region without high correspondences, we first check
whether it corresponds to a mobile object whicimighe field of view of both cameras. If it is
the case and if the dimension of tmeving region is too small (typically a moving region
labels UNKNOWN or NOISE), thimoving region is removed. Otherwise, thenoving region
is selected for the Combined Graph.

Fusion in case of good correspondence

Second, we process the combinatiommoting regions having good correspondences.
In that case, the size of the sub matrixsFL * 1. Such a dimension means that there age on
or several mobile objects (in the real world) whiok detected as only omeving region for
each camera (one moving regiguietected for camera C1 and aneving region o detected
for camera C2). The twonoving regions r; and ¢ arefused together (see the definition of
fusion in Section 3.1).

Combination in case of ambiguity

Third, we process the combination of sub set®@fing regions Rs and Q which have
ambiguous correspondences.

Noiseremoving

This corresponds to a pre-filtering task whichpplaed on every rectangle n * m fn
m) sub matrices in order to eliminate theving regions that correspond to noise even if they
have one or several high correspondences. Thigtisitucan occur when a person is detected
by the two cameras C1 and C2 whereas a noiseastddtclose to this person only by one of
the two cameras. In that case, thaing region corresponding to the noise could have a high
correspondence with the one corresponding to tihgope The approach used to solve this
ambiguity is similar to the one used in the casBl@fCorrespondence (see previous section).
We identify in the sub set (Rr Q), with the largest number of elements, thaving regions
too small (labelled UNKNOWN or NOISE) that belorggthe FOV of both camera C1 and
C2. As the probability that suahoving regions correspond to a noise is big enough, these
moving regions areremoved. Thus, the size of the sub matrix is reduced &edsub matrix
can be processed by the other combination rules.
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Correct but noisy correspondence

This corresponds to square sub matrices n * n Ih Such a sub matrix implies that
the number of mobile objects detected by each car@dr and C2 is the same but their
correspondence is ambiguous. We distinguish twescas

The first case corresponds to a 2 * 2 sub matgixX¥wo fusion combinations between
the two sub setsR= {rs s rs3t and Q = {0s,1,0s,2} are possible. Either we fuse ti@ving
regions associated to the main diagonal @f(ig; is fused with @; and g, with o5, ) or we
fuse themoving regions associated to the second diagonal &f k1 is fused with g, and &>
with os7). We perform thdusion of the moving regions associated to the diagomelirg
diagonal or second diagonal) for which the sumhefroving region correspondences is the
biggest and is higher than a threshold £190). If themoving regions on the diagonals have
not high enough correspondences, salect for the Combined Graph theoving regions of
the camera which have the largest 3D size to keep@amum of information.

The second case corresponds to a n * n (n > 2jmaibx K. In a theoretical point of
view, we should compare all the possible fusion loimiations (= n!). However, in order to
ease the algorithm scheme and to save time progesge do not explore and compare all the
possible fusion combinations but we rather try ¢éduce the size of the sub matrix by
achieving the fusion between the two moving regitwas have the highest correspondence, if
this correspondence is high enough (above a thicesho= 90). If such a correspondence
exists, the two correspondimgpving regions arefused together. The size ok ks reduced and
Fs is re-processed by the combination rules. On therdand, if the highest correspondence
is not high enough (<90), wedlect for the Combined Graph th&oving regions of the
camera which have the largest 3D size to keep amuaw of information.

I ncorrect and noisy correspondence

This last case corresponds to rectangle n * s (m) sub matricesdand is managed
similarly to the previous case (n * n, n > 2 subtnwars). We fuse together the twuooving
regions that have the highest correspondence if this spaedence is high enough (> 90).
The size of Eis reduced andgsHs re-processed by the combination rules. If tighdst
correspondence is not high enough, seiect for the Combined Graph the set of moving
regions of the camera which have the largest nurmbelements to maximize the number of
isolated mobile objects (see Figure 6.3).
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Figure 6.3: This figure illustrates the multiple cameras combination process. Three persons are
evolving in the scene. Camera C1 detects three mobile objects whereas camera C2 detects only two
mobile objects. The combination matrix enables to determine (a) a high correspondence between the
mobile object M11 of C1 and the mobile object M12 of C2; these two mobile objects are fused
together in the combined graph, and (b) an ambiguous correspondence between the two mobile
objects M21 and M31 of C1 and the mobile object M22 of C2; the two mobile objects M21 and M31
detected by C1 are selected in the combined graph.

6.2.5 Graph combination results

This fusion module has been tested on several isetjoences. In this section, we are
showing images of the processed videos. In theagas) a red box corresponds to a moving
region classified as a PERSON and a green boxsmonels to a moving region classified as a
GROUP. On Figure 6.4, the two top images show tlwimg regions detected for each
camera and the two bottom images show the projedto each camera of the moving
regions resulting from the combination process.sTigure illustrates the case where the
combination process select moving regions from ocamera because in this camera the
moving regions are corresponding to different indlials who are separated.
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b2: detection selected for camera C2

Figure 6.4: Two persons are detected as one moving region by the camera C1 (al) whereas they are
detected as two separated moving regions by the camera C2 (a2). A 2* 1 sub combination matrix Fsis
congtituted (case: Incorrect and noisy correspondence). As there are not high enough
correspondences in Fs and as there are more moving regions detected by camera C2, the moving
regions of camera C2 are selected. Thus the combination process has improved the detection of
camera C1 (bl): the two persons are now detected as two separated moving regions.

Currently, the main limitation of the combinatiorodule is an over estimation of the
number of persons. This can occur when the sansompeas detected as one moving region
(labelled as a PERSON) from two cameras and omlegesE moving regions is not detected in
the field of view of the other camera due to 3Difms errors. In that case, the combination
process cannot make the correspondence betweemothieg regions and decide to keep both
moving regions (corresponding to the same indiMiduaifferent cameras) in the Combined
Graph.
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6.3 Object Recognition Based on a Multi-Sensor
System

In this section, we propose a new system for shapegnition based on a video and
multi-sensor system in order to classify mobileeak§. Our goal is to design a system with
very high recognition rate complying with real-timmenstraint. To achieve this goal, we have
conceived a device combining a static camera aset af lateral sensors. Cameras are often
static in visual surveillance network to get a retdow-level detection of mobile objects. The
lateral sensors are very useful to separate peopézing the access control site. The real-time
constraint is very challenging as it implies tha¢ solutions should be kept with a maximal
computing time.

Our approach consists in applying Bayesian classifior shape recognition to handle
the uncertainty accurately.

6.3.1 System Overview

Our goal is to have as much information as possiblethe scene to understand
precisely who is entering the site. To reach tlualga fixed camera is placed above, at the
height of about 2.5m, while a set of lateral semssmlaced on the side as shown in Figure
6.5. The camera observes the mobile objects frantap to detect and locate them. The
lateral sensors observe the side of mobile objeetlp, to separate the detected mobile objects
and provide information on their lateral shape.

[J Camera (Euclidean view) =lolxl
(1)

Figure 6.5: The access control site contains (1) a top camera, (2) a set of lateral sensors and (3) an
access door.

The interpretation process is composed of four rtesks as shown in Figure 6.6. First
a motion detector detects mobile objects evolvimghie scene thanks to the top camera.
Second, the mobile objects detected as one moeg®mr can be separated thanks to the
computation of the vertical projections of pixelstbanks to the lateral sensors. Third, the
mobile objects are classified into several moblgect categories (e.g. adult, child, suitcase,
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two adults close to each other) using Bayesiansifiess. Finally, the mobile objects are
tracked to improve the reliability of the recogoirtiprocess.

Moreover, we use a 3D model of the empty scenem®a contextual knowledge of
the observed environment. We define in the 3D soeodel the 3D positions and dimensions
of the equipment (e.g. the access door), the zohegerest (e.g. the entrance/exit zone) and
the expected objects in the scene (adult, chiltcase, two adults close to each other). Using
context is essential for object recognition and dstablishing the confidence in the whole
interpretation system.

Context
- equipment
- zones of interes
- expected object

4

Motion || Mobile objecty| Mobile objec} |Mobile Objec
Detectior separation | | Classificatior] ™| Tracking

vJ

y y /1 \
= e o
Sensors J
00O

Figure 6.6: The interpretation process takes as input a video stream and sensor information
and outputs the recognized shape of mobile objects.

6.3.2 M obile Object Separ ation

A common error of motion detection is to detectesall mobile objects (people
walking closely to each other or person carryingudcase) as only one moving region (cf.
Figure 6.7). The mobile object separation task ist&isn separating the moving regions that
could correspond to several individuals into digtimoving regions. To accomplish this task,
two techniques are combined together: computatiopidel projections and utilization of
lateral sensors.

Computing Vertical Projections of Pixels

For each moving region, we calculate the potenpiaints of separation (called
separators) corresponding to potential bordersdmtviwo persons. For that, we calculate the
vertical projections of the moving region pixelssi®wn in Figure 6.7. When a “valley” is
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detected between two “peaks”, we regard this vadlsya potential separator between two
distinct persons and the peaks as the gravity remtethese persons. If the size (the 3D
length and the 3D width) of both distinct persoratches the dimension of a real person then
this separator is valid.

(c) (d)
Figure 6.7: Separation using the vertical projections of pixels: images (a), (b) illustrated three
persons detected as one moving region; image (c) illustrated the vertical projections of pixels and
image (d) shows that the moving region has been separated into three distinct moving regions.

Using L ateral Sensors

The separation method using the vertical projestiminpixels depends on the position
of the persons relatively to the camera. This netbannot separate two adults walking
closely to each other or far from the camera (cjufe 6.8-a). In this case, we use lateral
sensors to detect the point of separation. For plgmve can detect the non-occluded sensors
announcing a space between two adults. More exactbgparator is a non-occluded sensor
found between two bands of occluded sensors (gtirgi6.8-b).
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(b)
Figure 6.8: Separation using lateral sensors. Image (a) shows two adults walking closely to each

other and detected as one region mobile; drawing (b) shows three non-occluded sensors detected
between two adults. These three sensors form a separator.

In addition to help to separate two adults walkitagely to each other, lateral sensors
provide also clues to separate the objects aseddiatthe persons such as bags, suitcases and
in certain cases children. To separate objectsgeime a separator as a column of sensors
having a large majority of non-occluded sensorseséhseparators enable to separate two
consecutive suitcases and a suitcase or a chihd fine adult if the distance between them is
big enough (cf. Figure 6.9).

A T T T Y

Figure 6.9: The top camera does not see the suitcase but lateral sensors help to separate it from the
person. The separator (column of sensors having a large majority of non-occluded sensors) is
indicated by an arrow.

6.3.3 Mobile Object Classification

Mabile Object Models

Initially, we have to build a model (class) forfdifent mobile objects such as “adult”,
“child”, “suitcase” and “two adults close to eactiner”. We are supposed to have the model
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for two adults close to each other because in oakese two adults are walking very closely
to each other, neither the vertical projectiongpiéels nor the lateral sensors can separate
them. The model for a mobile object is built frote characteristics obtained by the top
camera and the lateral sensors. The top cameradpsoinformation on its 3D length, &nd

its 3D width W. For lateral sensors, we divide the zone of senabrthe mobile object
position into n sub-zones (cf. Figure 6.10). THengach sub-zone i, we calculate the density
S of the occluded sensors and we use this densaycharacteristic of the mobile object.

The number of sub-zones, their dimension and tpesition should be chosen
intelligently according to the properties and tle®ple body parts (e.g. the legs is one of the
sensitive body part for a person). In our experitaletest, to simplify the calculation, we
divide the zone of sensors into 9 sub-zones. Theewsion of each sub-zone is defined
proportionally with the dimension of the zone aswh in Figure 6.10.
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Figure 6.10: The zone of sensorsis divided into 9 sub-zones and the density of occluded sensorsin
each sub-zone is used as characteristic of mobile object shape.

To reinforce the mobile object model, we also cdesthe lateral 3D width Yénd the
lateral 3D height Hof the zone as characteristics of the mobile dbjec

In conclusion, in our implementation, a mobile abjenodel is a set of 13
characteristics: { W;, W, H and § i=1..9. However, we can add other characteristics
mobile object to enrich the model.

Training Bayesian Classifiers

For each class of mobile object, we use about 88mces representative of the class
to train a dedicated classifier. For each frame,cammpute and record the values of mobile
object characteristics (i.e,W;, W, H, S, i=1..9). We count the number of mobile objects
having the same value for the characteristic C. So we obtain the freqyefor a given
mobile object class to have the valu®r the characteristic C. In other words, we abtie
conditional probability P(c|F)hat a mobile object has the valador the characteristic C
knowing that this mobile object belongs to class F

79



80

By counting the number of mobile objects of otHeasses (i.e. all classes excluding F)
having the same valuefor the characteristic C, we also obtain the coodél probability
P(chF) that a mobile object has the value c for the charetic Cknowing that this mobile
object belongs to another clasdH corresponds to all classes excluding cEss

We have developed a tool permitting a user to @teoa frame with
information for the learning task. Once the uses lkthosen a video sequence, the tool
visualizes each frame of the sequence and askss#reto delimit the mobile object seen in
the frame and to give its class (e.g. adult, clsldicase, two adults). The tool then, for each
mobile object, calculates automatically the val(igsw, wi, h, s, i=1..9) of its characteristics
(corresponding to ground truth) and records thetm I8 files. These files are used latter as
the training data. They are useful also for evahggthe recognition method. For example, we
compare the output of the recognition module whign ground truth data in these files.

Mobile Object Classification

To classify mobile objects into the expected clasgee compare, in each frame, the
characteristics of the mobile object with the chtgastics of the mobile object classes using
the Bayes rule.

For each frame and for each mobile object o, whllaiector containing itdegrees
of membership D(olJF) for all classes F. The degree of membershiphés ratio of the
probability P(aJF) that the mobile objea belongs to the class F divided by the probability
P(ad(=F)) that the mobile object o belongs to anothes{(aF corresponds to any class
excluding class F) as shown by equation 6.1.

P(oOF)
P(oO(=F))
Equation 6.1. The degree of membership is defined as the ratio of the probability that
the mobile object o belongsto the classF.

D(oOF) =

By using Bayes rule and by replacing the mobileecbpy its characteristic set, we
obtain:

P(F|l, W, W,h,5,8),...8)
P(-F[l, w,w,h,s,5,,...8)

Equation 6.2. The degree of membership is computed as the ratio of the conditional
probability that the mobile object characteristics correspond to the class F.

D(oOF) =

Where P(F {] w;, h, w;, 5,..., $) IS the conditional probability that the mobilejextt
characteristics correspond to class F knowing #teevset (| w;, h, w, s1,...,%).
After checking that all characteristics are indefet we simplify equation 6.2:
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R, |F)x.. xRg|F) xR |F)
P, |=F) .. xP(8|=F) xP(g|-F)

Equation 6.3. the degree of membership is computed as the ratio of the conditional
probability of each characteristic corresponding to the class F.

D(oLF) =

Where P(c|F) (respectively P¢d)) is the conditional probability that a mobilejextt
characteristic C has the value c knowing that timebile object belongs to class F
(respectively to another class). These conditignababilities are obtained from the ground
truth data as discussed in the precedent section.

The mobile object o is then classified into thesslavith the biggest degree of
membership.

6.3.4 Mobile Object Tracking

The Bayesian classifiers sometimes miss recogmizi®d mot recognize the class for a
mobile object due to the large variety of latetadses (i.e. due to lack of training data). To
increase the recognition reliability, we track mebobject when they evolve through the
scene. This tracking stage enables, on one handomect potential frame to frame
classification errors and on the other hand, cdp lag¢ter to recognize human behaviors and
scenarios.

Maobile Object Matching

The mobile object matching stage consists of matckhie mobile objects previously
detected at time t-1 with new ones detected at tirfie calculate these correspondences, we
currently use three different criteria: their comipitity of lateral shape, their 3D distance and
the overlap between their bounding boxes. The aecte match or not two mobile objects is
made based on thresholds on the weighted sum & tiréeria.

For each criterion k, we construct a binary matgxn, My (n, and r are the number
of mobile objects detected at t-1 and the numbenef mobile objects detected at t)
containing the correspondences for the criteriéhe final decision matrix M is computed as
the weighted sum of the matrices &b shown by equation 6.4.

ZWkMk

3
— k=1
M = 3

> W,

k=1
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Equation 6.4. The matrix M combines the three matrices of correspondences between
mobile objects.

If M(i, ), (i=1..n; j=1..n,) is greater than a certain threshadlthen the mobile objects
o at t-1 and pat t are matched. If an old mobile object at tdteches with several new mobile
objects at t, the mobile object having the bestrespondence (i.e. the greatest
correspondence) is chosen.

Recognition Refinement

To increase the reliability of the shape recognitadgorithm (i.e. to correct potential
classification errors), we maintain the tempordierency of the membership degree vector D
composed of the membership degrees for all clagsmseach previously detected mobile
object at t-1, we update this vector D with the penary membership degree Getected at
time t as shown by equation 6.5.

D=D+awD,
Equation 6.5. Update of the member ship degree vector D.

Wherew, 0 < wx £ 1 is the confidence weight at t of the Bayesiassifiers. This
confidence weight is chosen according to the lassasor density where the mobile object is
detected. For example, a high confidence weiglth@sen if the mobile object at time t is
found in a zone where there are many lateral sens@: where we obtain a more precise
shape of mobile object).

The final class of mobile object is chosen accaydim the biggest value in the new
vector of membership degrees.

6.3.5 Results

The recognition module has been tested in two stagstand-alone experimentation
on recorded image sequences (i.e. test offline)aanéxperimentation in live in interaction
with the kernel of an existing access control dewised in subways at RATP.

To train the Bayesian classifiers, for each clasdult”, “child”, “suitcase”, we used
about 300 frames as training data and about 1@00es for testing. For the class “two adults
close to each other”, at the present time, we lohg 32 frames in total to represent this
class. For this class, we used 15 frames as tagata and 17 frames for testing.

In the stand-alone stage, the results are vermiging. A large majority of mobile

objects have been correctly recognized with a diggree of membership (cf. Figure 6.11 and
Table 6.1). More than 94% of adults, children andcases are correctly recognized. More
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precisely, for the adult class, the true positw®8%, the false positive is 1% and the false
negative is 2%. The true positive for “two adullsse to each other” is about 73% due to the
lack of training data in the learning phase.

Mobile Obiect True False False Frames used F;gf:ﬂrisnvnse
obrie DhIeCt - positive Positive | Negative for testing d atlal 9
Adult 98% 1% 2% 1102 327
Child 94% 3% 6% 1050 295
Suitcase 95% 2% 5% 1008 305
Two adults
close to each 73% 0% 27% 17 15
other

Table 6.1: More than 94% of adults, children and suitcases are correctly recognized.

(b) An adult with a child
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(b) Two adults walking closely to each other

Figure 6.11: The images on the right show the recognition result in a 3D animation from the
processing of images on the | eft.

The recognition module sometimes miss classifiehi with a small suitcase and
vice versa due to the similarity of appearance. @ddtrall the potential errors in the frame to
frame classification have been corrected by thaéréo frame tracking.

The recognition result depends on training videzedun the learning phase. To obtain
better results, we should enrich the training dataeach class. For example, for the class
“adult”, the training data should include largeiegy of persons (fat, thin, tall, short, adult in
summer/winter clothes, etc).

In the live experimentation, the recognition moduli@s on a PC (Pentium IV 2.8
GHz, 1GB memory, Linux) and receives a video stresn®?5 images per second. The
maximal time for processing one image is inferm3bms. The real-time constraint is then
satisfied.

6.3.6 Conclusion on multi-sensor system

We have described in this paper a video and meilisar interpretation process for
shape recognition. The key of the recognition metisoto compute mobile object properties
thanks to a camera and a set of lateral sensorthando use Bayesian classifiers. The system
has been tested offline and on live video streamd,gives very promising results.

The recognition, as previously said, depends dnitrg videos and sensor data. Since
realistic training data cannot include all varista mobile object classes and shapes, the first
next step will consist in studying supervised and-supervised machine learning techniques
in order to learn dynamically new classes of moblgects. Moreover, with the objective of
helping the system to control the access safelycanafortably while preventing from fraud,
the second next step should consist in human betwageind scenario recognition in order to
understand and anticipate the evolutions of maiblects. For this, we plan to adapt methods
proposed in [Bremond 34, and 35]. Finally, for 8ystem to be more robust, the third next
step will consist in studying the system autonof. example, the system should be able to
detect failures (sensors or camera breakdown, ehariglight) and set up a degraded
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operation mode according to the resource availdaliie. objective will be to have a system
that can reconfigure itself dynamically and autooasty.

6.4 Conclusion on maintaining 3D coherency throughout time

In this chapter, we have reviewed several worksnmaintaining 3D coherency
throughout time. These works are organized follgaiwo directions: coherency throughout
time and coherency of multi-sensor informationha 8D space. These works have presented
some solutions to bridge the gap between signakantantic levels. The key issues are:

. Building a common knowledge representation for cioinig all
information describing the scene.

. Modelling and managing the uncertainty and thenmgleteness of data
and models characterizing the scene and its dysamic

These works have described some efficient inforondiision algorithms that can lead
to a coherent understanding of the observed s@aapites these success, there are still some
limitations depending on the uncertainty and latknéormation. Nevertheless, thanks to a
precise formalism combining uncertain informati@mmeng from heterogeneous sensors, we
are able in some cases to understand the evoloitidhre mobile objects in the scene and so to
recognise the events characterising the behavajurese objects of interest.
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Chapter 7

Event recognition

A problem of current focus in cognitive vision igeat recognition. The goal is to
develop a systematic methodology to the designmigement and to integrate cognitive
vision systems for recognizing events (called alsenarios) involved in a scene observed by
sensors (mostly cameras).

Since the years 90s, there have been several chseaits and companies defining
new approaches to design systems that can undgristanan activities in dynamic scenes
many works have been done to recognise from vifleasring and Lobo, 2001], [Ayers and
Shah, 2001], [Olguin and Pentland, 2006], [Chel&appal., 2005], [Xiang and Gong, 2006a],
in particular using motion based techniques [CrgwR006], [Shah, 2003], [Brdiczka et al.,
2006], [Andrade et al., 2006], [Parameswaren anell@bpa, 2005] and [Ogata et al., 2006].
For instance, several works have been applied tmehtare [Cucchiara et al., 2005],
[Cucchiara et al., 2003] and [Huang et al., 2008 have classified event recognition
approaches into two main categories: probabilstchastic approaches and constraint-based
approaches. This section describes several of thedes and a short discussion of issues that
still need to be studied.
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Probabilistic and Stochastic Approaches

The main probabilistic and stochastic approaches ltlave been used to recognize
video events include neural networks [Howell andxt®n, 2002], bayesian classifiers
[Bremond, 24], [Intille and Bobick, 2001], and Hield Markov Models (HMM) [Bremond,
8], [Barnard et al., 2003].

The first two approaches (i.e. neural networks aagesian classifiers) are well
adapted to combine observations at one time pouttthey have not a specific mechanism to
represent the time and temporal constraints betwesial observations such as Allen’s
interval algebra operators [Allen, 1981]. For im&t® Dynamic Bayesian Networks (DBN)
have been used successfully to recognize shortaehpctions [Buxton, 2002], but the
recognition process depends on time segmentatittenwthe frame-rate or the activity
duration change, the DBN has to be retrained. Ggtgnsions of DBN have been proposed
to model sequences of events using hidden nodesptesent hidden temporal states [Gong
and Xiang, 2003]. These Bayesian networks are airtol HMMs. Thus, these approaches are
not well adapted to process temporal sequences.

The third approach based on HMM is very popular laasl been successfully used to
recognize temporal sequences of simple eventsgakito account the uncertainty of the
visual observations. For instance, a typical athamias the one presented by Hongeng et al.
[Bremond, 23] uses HMM to recognize multi-stateaiees in dynamic scenes. A multi-state
activity is a temporal sequence of mono-state aietsvzand is inferred from the probability of
mono-state activities observed in a time intendaimono-state activity is a primitive activity
corresponding to a coherent unit of motion. Fotanse, “a car slows down toward an object”
IS @ mono-state activity contained in the multtestactivity “a car turns back at a check-
point”. Thus, the HMM approach shows the advantagenodelling the uncertainty of the
observed environment and reasoning with uncertalyy propagating the recognition
likelihood through a finite state automaton. Howeweven if few solutions have been
proposed for handling two mobile objects, such @spted HMMs ([Brand et al., 1997] &
[Oliver et al., 2000]) and DPNs (Dynamic ProbahitidNetworks) [Gong and Xiang, 2003],
HMMs are not well suitable for recognizing actiggi involving several mobile objects for
four main reasons. First, all the combinations wérgs involving diferent mobile objects
need to be modelled in the HMM. Second, HMM carilga&sodel sequences of events, but
not complex temporal relationships (e.g. Allen'semal algebra operators [Allen, 1981]).
Third, the normalization process of the recognitbdrseveral concurrent activities (modelled
by different HMMSs) is not well addressed. Usually, thevagtlasting a longer time period
gets a lower recognition likelihood. Moreover, expentations are usually done with short
videos starting and ending synchronously with theveies (i.e. one video corresponding
exactly to one activity) and not with long videamtaining mixed and successive concurrent
activities. Fourth, the learning phase is critimalearn the parameters of HMMs that model
complex activities. For instance, the authors afri@ and Xiang, 2003] use only 16 activity
samples (8 loading and 8 unloading videos) to titaéir HMMs.

Other formalisms based on mobile object trajecsohave been used to recognize
frequent activities. For instance, the authorsFkorgsti et al., 2005] have used clustering
techniques to learn frequent trajectories and ttude abnormal events. The authors of [Rao
et al., 2002] have computed the motion units (datlgnamic instants and intervals) of a
trajectory to define an activity. These formalisnavédr the same drawbacks than classical
HMMs, they are well adapted to recognize a sequehegents performed by mono-physical-
object.
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Constraint-Based Approaches

Constraint-based approaches have been largely taseztognize activities for few
decades. The main trend consists in designing sienbetworks whose nodes or predicates
correspond to the boolean recognition of simplemés. The first constraint-based approaches
have been developed in the 70s and include plaogniton, [Kautz and Allen, 1986],
[Schmidt et al., 1978] and event calculus [Shanah@f0] and [Kowalski and Sergot, 1986].
However, these approaches have not been applezkete understanding based on real-world
perceptual observations.

Other approaches including Petri Net [Castel et H)96], [Tessier, 2003], logic
programming [Davis et al., 2005], script-based laage, constraint resolution [Needham et
al., 2005] and [lvanov and Wren, 2006] and chranrelcognition [Nokel, 1989], [Kumar and
Mukerjee, 1987], [Dousson, 1994], and [Dousson let #093] have been adapted for
recognizing activities through videos.

For instance, the authors in [Lesire and Tessi@d5p have designed a Petri Net to
recognize a given activity, whose nodes corresgortgpical situations and the tokens to the
mobile objects involved in the activity. But, trapproach uses just one Petri Net to recognize
one activity type and cannot recognize all the aences of the same activity.

Stochastic grammar has been proposed to parseesanpbns recognized by vision
modules [Ivanov and Bobick, 2000]. Logic and Propsggramming have also been used to
recognize activities defined as predicates [Dava.e2005]. Constraint Satisfaction Problem
(CSP) has been applied to model activities as mnsinetworks [Rota and Thonnat, 2000].
These last three approaches are interesting and bagcessfully recognized complex
activities. However, they do not have specific me@ras to handle temporal constraints so
they have to explore all possible temporal comiopmat of events. To reduce this
combinatorial explosion, the authors in [Rota ahdfihat, 2000] have proposed to first check
whether the constraint network has a solution usi@g arc consistency algorithm [Mohr and
Henderson, 1986]. However, to find all the solutjotieese approaches Store all Totally
Recognized Events (and are called in the followBAdRE) to be used to recognize other more
complex events. In practice, these approaches eeognize in real-time only activities
involving a small number of physical objects.

Other techniques for the recognition of human #ati have been proposed to reduce
this combinatorial explosion by propagating the genal constraints inside the constraint
network. Then, the recognition is limited to onlyet subnetworks (complying with the
satisfied temporal constraints) that can lead tossiple activity. These approaches Store all
Partially Recognized Events (and are called SPREBg SPRE algorithms envisage all
combinations that can occur and store only thesdigions (a prediction corresponds to an
event that is occurring in the observed environmant partially recognized by the
recognition process at the current instant) to gazze complete events in the future. For
instance, anfécient version was proposed by the authors of [Riehaand Bobick, 2003]
who described a temporal constraint network (caddF for Past, Now and Future) to
recognize activities. However, this network canrejresent event duration and is mainly
dedicated to the recognition of event sequences.

More generally, the notion of chronicle was firdr@duced in [Kumar and Mukerjee,
1987] (and called dynamic situation) and then edeinby [Dousson and Ghallab, 1994] and
[Ghallab, 1996]. A chronicle is represented astaosevents (detected by specific routines)
and sub-chronicles (recognized by the recognitioocgss) linked by temporal constraints.
The temporal aspects are the starting/ending tioetg of a chronicle and also the delay
between two chronicles. A graph propagation teamnigs used to compile pre-defined
chronicles. For a given chronicle, the compilert fingilds a temporal constraint graph whose
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nodes correspond to the time points defined withim given chronicle and whose arcs
correspond to the temporal relations of those pmiats. The chronicle recognition algorithm
recognizes incrementally predefined chronicles liyguthis graph and by storing all Partially
Recognized Chronicles (PRC). Each time an evergdsived or a chronicle is recognized,
new temporary structures are created for the ne@sPk each PRC, there are time windows
corresponding to the time delay when another esebithronicle is expected or forbidden. If
there is any violation of these time windows, tHRCPis deleted. If not, the chronicle is
recognized when all the time windows are corredtllfilled. This approach recognizes
correctly predefined chronicles and makes the ratiogrof chronicles possible in real-time.
This approach has been applied to the video slawmeg of metro stations [Chleq and
Thonnat, 1996].

However, the SPRE algorithm was designed to rezegmiono-physical-object events
(i.e. chronicles), so, it constitutes a drawbacdk rfalti-physical-object events. For a multi-
physical-object events, the algorithm has to credtepredictions corresponding to all
combinations of potential physical-objects. Thimss technique can lead to a combinatorial
explosion.

Related Work Discussion

All these techniques allow an efficient recognitafrscenarios, but there are still some
temporal constraints which cannot be processed.ekample, most of these approaches
require that the scenarios are bounded in time l[@hal1996], or process temporal
constraints and atemporal constraints in the samg fRota and Thonnat, 2000]. Thus,
complexity and real-time processing are two magsues partially addressed to recognize
complex activities involving multi-physical-objectds shown previously, both STRE and
SPRE algorithms can recognizéfieiently pre-defined events. However, they show sdver
drawbacks, for instance, (1) the SPRE algorithnmsesand maintain all occurrences of
partially recognized events as a potential recagmitin the future so can lead to a
combinatorial explosion and (2) the STRE algorithpesform at each instant a complete
search among all possible events and sub-eventgnmzed in the past and all possible
combinations of physical-objects so it can alsal feaan exponential algorithm.

In the literature, a second point concerns scemkengtanding algorithms recognizing
activities from audio-video sensors. Only few woitkave addressed this issue limiting
themselves to the fusion of information at the deatlevel. Most of these works combine
audio and video clues to track more robustly peapla scene [Cristani et al., 2006]. Few
works have also addressed the recognition of éiesvior meeting rooms [Al-Hames et al.,
2005] and broadcasting videos [Barnard et al., p06Bg HMM, but these works are limited
to the recognition of simple events. Moreover, audnd video events cannot always be
combined at the feature level because they caelated to diferent aspects of the activity. In
these cases, audio-video information has to badfas¢he semantic level. For instance, in a
fighting event, the audio event “shouting” and theles event “hitting” are weakly
constrained and have to be combined at the semanékt

In this chapter, we studied one example of bothr@gghes, numerical and symbolic
approaches. The first section presents an algotithravent recognition based on finite state
automata and AND/OR trees, which has been desighethg the European project
ADVISOR with the help of three engineers, Frede@apillard, Alberto Avanzi and
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Christophe Tornieri [Bremond 3, 30, 31 and 39].sThpproach is well adapted for the
effective recognition of events with simple tempaanstraints, and with strong connections
with vision algorithms. Another advantage of thgpeoach is the easy prototyping of new
recognition methods (e.g. automata).

The second section describes an efficient real-tagorithm, which has been
proposed during the PhD of Thinh Van Vu [Bremond 28, 33 and 35]. This scenario
recognition algorithm takes as input the a prianowledge of the scene and a stream of
individuals tracked by vision algorithms as desedilin previous chapters. This algorithm is
specially adapted for processing any type of tempoonstraints (including temporal Allen
algebra). This algorithm manages to search in @afinime for previously recognised sub-
scenarios in order to recognise a current scenBhierefore, based on the analysis of the state
of the art, our work focuses on a novel algoritlomdctivity recognition by taking advantages
of both SPRE and STRE approaches. A second gaalskow that this novel algorithm is
also adapted to recognize complex audio-video itiesvand that the recognition can be done
at the event level [Bremond, 51]. We have alsogre=i a declarative language for helping
end-users to describe their scenarios of interest.

7.1 Numerical Approach for Event Recognition

We propose in this section an approach for recogmisither isolated individual,
group of people or crowd behaviours in the contaxvisual surveillance of metro scenes
using multiple cameras. In this context, a behavi@ecognition module relies on a vision
module which tracks all mobile objects (called adexors) evolving in the scene. For each
tracked actor, the behaviour recognition moduldqgpers three levels of reasoning: states,
events and scenarios. We have also defined a dgdrarework to easily combine and tune
various recognition methods (e.g. automaton, Bayesetwork or AND/OR tree) dedicated
to the analysis of specific situations (e.g. mondfmactors activities, numerical/symbolic
actions or temporal scenarios). A main problem ehaviour recognition is the ability to
define and reuse methods to recognise specificv@ira, knowing that the perception of
behaviours is strongly dependent on the site, #maeca view point and the individuals
involved in the behaviours. Our approach consistsléfining a formalism allowing us to
write and easily reuse all methods needed forghegnition of behaviours. This formalism is
based on three main ideas. First, the formalisnulghbe flexible enough to allow various
types of operators to be defined (e.g. a tempoltak for an automaton). Second, all the
needed knowledge for an operator should be exmlawithin the operator so that it can be
easily reused. Finally, the description of the apans should be declarative in order to build
an extensible library of operators.

Validation results on different methods used toogeise specific behaviours are
illustrated through three behaviour recognitionregbes: "Fighting”, "Blocking" and "Fraud"
behaviours. This work has been performed in thenéwork of the European project
ADVISOR (http://www-sop.inria.fr/orion/ADVISOR)
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7.1.1 Behaviour representation

We call an actor of a behaviour, any scene objeailved in the behaviour, including
static objects (equipment, zones of interest...)jviddals, group of people or crowd. The
entities needed to recognise behaviours corresfmdifferent types of concepts which are:

1. The basic properties:a characteristic of an actor such as its trajgabor
its speed.

2. The states:a state describes a situation characterising ongeweral
actors defined at time t (e.g. a group is agitatdp stable situation
defined over a time interval. For the stdtan individual stays close to
the ticket vending machine”, two actors are involved: an individual and a
piece of equipment.

3. The events:an event is a change of states at two consectinnes (e.g.
a group enters a zone of interest).

4. The scenarios:a scenario is a combination of states, eventsubr s
scenarios. Behaviours are specific scenarios (dkgpen on the
application) defined by the users. For examplentmitor metro stations,
end-users have defined 5 targeted behavioliFsaud”, "Fighting"
"Blocking”, "Vandalism" and" Overcrowding".

To compute all the needed entities for the recagmivf behaviours, we use a generic
framework based on the definition ©perators which are composed of four attributes:

Operator name: indicates the entity to be computed such as @te"sn Individual is
walking" or "thetrajectory is straight".

Operator input: gives a description of input data. There are tyye$ of input data:
basic properties characterising an actor and stitbtesrcomputed by other Operators.

Operator body: contains a set of competitive methods to comgheeshtity. All these
methods are able to compute this entity but they sprecialised depending on different
configurations. For example, to compute the scendfighting”, there are 4 methods (as
shown on Figure), for example, one method comptitesevolution of the lateral distance
between people inside a group. A second one ddatestsneone, surrounded by people, has
fallen on the floor.
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(d)

Figure 7.1: Thisfigureillustrates four methods combined by an AND/OR tree to recognise the
behaviour "Fighting". Each image illustrates a configuration where one method is more appropriate
to recognise the behaviour: (a) lying person on the floor surrounded by people, (b) significant
variation of the group width, (c) quick separation of people inside a group and (d) significant
variation of the group trajectory.

Operator output: contains the result of the entity computation asit#e by all the
other Operators. This result corresponds to theevaf the entity at the current time.

This generic framework based on the definition petors gives two advantages: It
first enables us to test a set of methods to coengntentity, independently of other entities.
So we can locally modify the system (the methodsdmpute an entity) while keeping it
globally consistent (without modifying the meaniafjthe entity). Second, the network of
Operators to recognise one scenario is organis@dnasrarchy. The bottom of the hierarchy
is composed of states and the top correspondsetasdbnario to be recognised. Several
intermediate levels composed of state(s) or eveod(s be defined.

7.1.2 Behaviour recognition
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We have defined four types of methods dependintipernype of entities:

Basic properties methods: we use dedicated routines to compute properties
characterising actors such as trajectory, speedl@eaction. For example, we use a polygonal
approximation to compute the trajectory of an imdliial or a group of people.

State methods:we use numerical methods which include the contjpmaf: (a) 3D
distance for states dealing with spatial relati¢gg. "an individual is close to the ticket
vending machine"), (b) the evolution of temporal features for statkealing with temporal
relations (e.g''the size of a group of people is constant”) and (c) the speed for states dealing
with spatio-temporal relations (e.tan individual iswalking") and (d) the combination of sub
states computed by other operators.

The output of these numerical methods is then ifladgo obtain a symbolic value.

Event methods: we compare the status of states at two consecuistants. The
output of an event method is boolean: the evergitiser detected or not detected. For
example, the everitn group of people enters a zone of interest” is detected when the stéte
group of peopleisinside a zone of interest” changes from false to true.

Scenario methods:for simple scenarios (composed of only 1 state) verify that a
state has been detected during a predefined timedpgsing a temporal filter. For sequential
scenarios (composed of a sequence of states), evéniie state automatons. An automaton
state corresponds to a state and a transition gvant. An automaton state also corresponds
to an intermediate stage before the complete retogrof the scenario. We have used an
automaton to recognise the scenarios "Blocking" "&f@wud’ as described on Figure and
Figure .

For composed scenarios defining a single unit ofvenment composed of sub
scenarios, we use Bayesian networks as proposf8iréyond 23 and 25] or AND/OR trees
of sub scenarios as illustrated on Figure . A dpson of Bayesian networks for scenario
recognition can be found in [34]. We have define@d @Bayesian network to recognise the
"violence" behaviour composed of 2 sub scenariosternal violence" (e.g. erratic motion of
people inside a group) aneéxternal violence" (e.g. quick evolution of the trajectory of the

group).
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Enter_Z 01

Grpx
is tracked

Start walking
Start_running

Exit ZOI Stops

ZO1 > 30 sec

& Blocking »

Figure 7.2: To check whether a group of people is blocking a zone of interest (ZOl), we have defined
an automaton with three states: (a) a group is tracked, (b) the group is inside the ZOI and (c) the
group has stopped inside the ZOlI for at least 30 seconds.

Both of these methods need a learning stage to kba& parameters of the network
using ground truth (videos annotated by operat@syesian networks are optimal given
ground truth but the AND/OR trees are easier te tamd to adapt to new scenes.

Enter_vwalid_zone from_entrance

Ind x is
inside a ticket
validation zone,

Ind x
is tracked

Exit_valid_zone to_platform
Exit valid zone to_entrance
Speed_decrease

Exit_valid_zone_to_platform
Exit valid zone to_entrance

Speed_increase

Exit valid_zone to_entrance

Ind x
speeds up
n validation
zone

« Fraud »
behaviour
scenario
recognised

Ind x jumps
over the
harrier

Exit valid_zone to_platform

Figure 7.3: To check whether an individual is jumping over the barrier without validating his ticket,
we have defined an automaton with five states: (a) an individual is tracked, (b) the individual is at the
beginning of the validation zone, (c) the individual has a high speed, (d) the individual is over the
barrier with legs up and (e) the individual is at the end of the validation zone.

For scenarios with multiple actors involved in cdexptemporal relationships, we use
a network of temporal variables representing sunagos and we back-track temporal
constraints among the already recognised sub sosres described in the next section.
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Figure 7.4: To recognise whether a group of people is fighting, we have defined an AND/OR tree
composed of four basic scenarios: (L) lying person on the floor surrounded by people, (W) significant
variation of the group width, (S quick separation of people inside the group and (T) significant
variation of the group trajectory. Given these four basic scenarios we were able to build an OR node
with all combinations (corresponding to 15 sub scenarios) of the basic scenarios. These combinations
correspond to AND nodes with one up to four basic scenarios. The more basic scenarios there are in
AND nodes, the less strict is the recognition threshold of each basic scenario. For example, when
there is only one basic scenario (e.g. L(90)), the threshold is 90 and when there are four basic
scenarios, the threshold is 60. To parameterise these thresholds, we have performed a learning stage
consisting in a statistical analysis of the recognition of each basic scenario.

g JUMPING OVER BARRIERS
=io-0T0P- ksl TR B
: e

Figure 7.5: This figure illustrates four behaviours selected by end users and recognised by the video
interpretation system: (a) "Fraud" recognised by an automaton, (b) "Vandalism" recognised by a
temporal constraint network, (¢) "Blocking" recognised by an automaton and (d) "Overcrowding"
recognised by an AND/OR tree.

98



99

7.1.3 Behaviour recognition results

The behaviour recognition module is running on all@ix and is processing four
tracking outputs corresponding to four cameras witlate of 5 images per second. We have
tested the whole video interpretation system (iiclg motion detection, tracking and
behaviour recognition) on videos coming from temeeas of Barcelona and Brussels metros.
We correctly recognised the scendteraud” 6/6 (6 times out of 6) (Figure .a), the scenario
"Vandalism' 4/4 (Figure .b), the scenariéighting” 20/24 (Figure), the scenari®locking”
13/13 (Figure .c) and the scenatmvercrowding” 2/2 (Figure .d). We also tested the system
over long sequences (10 hours) to check the robsstover false alarms. For each behaviour,
the rate of false alarm is: 2 fofraud”, O for"Vandalism", 4 for"Fighting”, 1 for "Blocking"
and O for"Overcrowding".

Moreover, in the framework of the European proj@dDVISOR, the video
interpretation system has been ported on Windowldrestalled at Barcelona metro in March
2003 to be evaluated and validated. This evaludtambeen done by Barcelona and Brussels
video surveillance metro operators during one waekhe Sagrada Familia metro station.
Together with this evaluation, a demonstration bagn performed to various guests,
including the European Commission, project Reviewand representative of Brussels and
Barcelona Metro to validate the system. The evalonatnd the demonstration were
conducted using both live and recorded videos: fdhannel in parallel composed of three
recorded sequences and one live input stream fhenmiain hall of the station. The recorded
sequences enabled to test the system with rareamsogrof interest (e.dfighting, jumping
over the barrier, vandalism) whereas the live camera allowed to evaluate ysees against
scenarios which often happen (e.gvercrowding) and which occurred during the
demonstration and also to evaluate the system stdaise alarms. In total, out of 2&ghting
incidents in all the recorded sequences, 20 alamere correctly generated, giving a very
good detection rate of 95%. Out of nibkcking incidents, seven alarms were generated,
giving a detection rate of 78%. Out of 42 instancegumping over the barrier, including
repeated incidents, the behaviour was detectedn@¢ giving a success rate of 88%. The
two sequences ofandalism were always detected over the six instancegsadalism, giving
a perfect detection rate of 100%. Finally, the ox@wvding incidents were also consistently
detected in the live camera, with some 28 separadpts being well detected.

In conclusion, the ADVISOR demonstration has beealuated very positively by
end-users and European Committee. The algorithponeted very successfully to the input

data, with high detection rates, less than 5% [siefalarms and with all the reports being
above approximately 70% accurate.

7.1.4 Conclusion on using a numerical approach
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In this article, we have described a video integiren system able to automatically
recognise high level of human behaviours involuimdjviduals, groups of people and crowd.

Different methods have been defined to computeipdgpes of behaviours under
different configurations. All these methods haverbéntegrated in a coherent framework
enabling to modify locally and easily a given meth®he system has been fully tested off-
line and has been evaluated, demonstrated andssfigitye validated in live condition during
one week at the Barcelona metro in March 2003.1x step consists in designing the video
interpretation system to be operational (able fpecwith any unpredicted real world event,
and to implement dynamic tuning of algorithm parters, and working on a large scale. For
that, we need to design a platform able to be ganéid dynamically and automatically.

7.2 Temporal Scenario

We can distinguish two main categories of appros¢dheecognize a scenario based
on a symbolic network: the STRS approaches (Stdremlly Recognized Scenarios)
recognize scenarios based on an analysis of soen@tognized in the past [Bremond 34],
whereas the SPRS approaches (Stores Partially RigedgScenarios) recognize scenarios
based on an analysis of scenarios that can benzeagin the future [Ghallab 1996]. The
STRS approaches recognize a scenario by searchirtigei set of previously recognized
scenarios a set of sub-scenarios matching the iscanadel to be recognized. Thus, if the
system fails to recognize a scenario, it will h&weetry the same process (re-verify the same
constraints) at the next instant, implying a cogtfgcessing time. A second problem is that
STRS algorithms have to store and maintain all mecwes of previously recognized
scenarios. The SPRS approaches recognize a scegarredicting the expected scenarios to
be recognized at the next instants. Thus, the siosnaave to be bounded in time to avoid the
never ending expected scenarios. A second proldehat SPRS algorithms have to store and
maintain all occurrences of partially recognizednagios, implying a costly storing space.

The method presented in this section is a STRSoapprtaking advantages of the
SPRS approaches. The objective is to reduce theegsing time (1) when searching in the
past (list of previously recognized scenarios)aonroccurrence of a given scenario model and
(2) when trying to recognize a scenario involvireyeyal actors by avoiding checking all
combinations of actors.

In this section, to solve scenario recognition éssuve first propose a language to
describe scenario models and second a temporalramngesolution approach to recognize
in real-time scenario occurrences. Our scenariogesgmtation is mainly based on the
representation of [Bremond 29] and inspired bywloek of [Ghallab 1996]. In this section,
we focus on the optimization of the recognition Inoet We first enhance the processing of
temporal operators by pre-compiling scenario modelsdecompose them into simpler
scenario models. By this way, the scenario recmgnialgorithm uses a linear search
compared to an exponential search for non-compgitetharios. Secondly, we propose a novel
algorithm to recognize composed scenarios thatstakivantages of the actors of its sub-
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scenarios when they are recognized instead ofgmfincombinations of actors as this is often
the case for similar state of the art algorithms.

7.2.1 Temporal Scenario Representation

Our goal is to make explicit all the knowledge resaey for the system to be able to
recognize scenarios occurring in the scene. Theriggsn of this knowledge has to be
declarative and intuitive (in natural terms), sattthe experts of the application domain can
easily define and modify it. Thus, the recognitipnocess uses only the knowledge
represented by experts through scenario models.

Let Q be the set of scenario models @ndbe the set of scenario instances (recognized
scenarios). For a scenario modell Q and a scenario instanpd] ®, we notew = w(p) the
scenario model op and we notep(w) the set of recognized scenarios of the maodeA
scenario is composed of four parts:

a) o(w) is the set of actor variables (characters) in@dlhin the scenario. a(p)
corresponds to the actors. An actor can be a pdracked as a mobile object by a vision
module or a static object of the observed envirartrhike a chair.

b) o(w) is the set of sub scenarios that compose is an elementary scenario if
o(w) = [, if not, w is called a composed scenario. Each sub-scermniepresented by a
variable v. These variables are called temporahkibes because their value is a recognized
scenario defined on a temporal interval. We mpgt@ a scenario instance corresponding to the
value of the temporal variable v, anfv) the set of variables corresponding to the actdér
p(v).

C) ¢(w) is the set of sub-scenarios that should not odaung the recognition of
the scenariao. We call¢(w) the forbidden sub scenariasy(w) is the set of forbidden actor
variables involved inp(w) but not already defined ia(w). ¢(w) anday(w) are called the
forbidden variables.

d) K(w) is the set of constraints af There are three types of constraints:

- the set of temporal constraints, not8@w), on at least one variable ofw) and not
on any forbidden variable,

- the set of atemporal constraints, naté¢t), on onlya(w),

- the set of forbidden constraints, not€¢w), on any forbidden variable.

The three subsets'(w), K*(w) andk (w) constitute a partition of(w). We use the
operator "and" to link the constraints within a getonstraints. To use the operator”, we
propose to define two similar scenario models wdtfierent constraints. An elementary
scenario is only composed of a set of charactetsatamporal constraints.

Figure represents a model of a composed scenBaok' attack”. This scenario
involves two actors, a cashier and a robber.

In our representation, any scenamonvolves at least one person, and is defined on a
time interval. An interval is represented by itarshg and ending times notethrt(w) and

101



102

end(w). Defining the scenarios on a time interval is artpnt for the experts to describe
scenarios in a natural way.

Scenari o( Bank_att ack,
Characters((cashi er: Person), (robber: Person))
SubScenari os(
(cas_at _pos, inside_zone, cashier,"Back _Counter™)
(rob_enters, changes_zone, robber,
"Entrance_zone", "Infront_Counter")
(cas_at _safe, inside_zone, cashier, "Safe")
(rob_at _safe, inside_zone, robber, "Safe") )
For bi ddenSubScenari os(
(any_i n_branch, inside_zone, any_p, "Branch"))
Constrai nt s(
Tenporal ((rob_enters during cas_at_pos)
(rob_enters before cas_at_safe)
(cas_at _pos before cas_at _safe)
(rob_enters before rob_at safe)
(rob_at _safe during cas_at_safe))
At enpor al ((cashi er # robber))
For bi dden((any_p # cashier) (any_p # robber)
(any_in_branch during rob_at _safe))))

Figure 7.6: The scenario "Bank attack" is composed of four steps: (1) the cashier is at his’her position
behind the counter, (2) the robber enters the bank and moves toward the front of the counter then (3)
both of them arrive at the safe door and (4) nobody else in the branch during the attack.

7.2.2 Scenario Recognition

The scenario recognition process has to detecthwéienario is happening from a
stream of observed persons tracked by a vision faodu each instant. The recognition
process takes also as input the a priori knowlezfgbe scene and the scenario models. As
defined in the previous section, there are twosygfescenarios: elementary and composed.

Recognition of elementary scenarios

The algorithm to recognize an elementary scenandatuy. consists in a loop of the
selection of a set of actors then the verificatidrthe corresponding atemporal constraints
k*(we) until all combinations of actors have been test@dce a set of actors satisfies all
constraintx”(uws), we say that the elementary scenawiois recognized and we generate an
elementary scenario instanpeattached with the corresponding scenario model,stt of
actors and the recognition time t. The scenaritaimee is then stored in the list of recognized
scenarios. If at the previous instant, a scenaistancep’ of same type (same model, same
actors) was recognized on a time intervgltftl], the two scenario instances are mergedanto
scenario instance that is recognized on the tieaval [t, t].

102



103

The selection of actors leads the recognition @lgorto an exponential combination
in function of the number of actor variables. Hoeevin practice, there are few actor
variables in elementary scenario models, so thegration algorithm is still real-time.

Compilation of composed scenarios

A composed scenario is a sequence of sub-scenartesed in time. Each sub-
scenario corresponds to a temporal variable irctteesponding scenario model. The STRS
algorithms of the state of the art perform at eashtant a extensive search process among all
possible scenarios and sub-scenarios leading texponential algorithm. We propose to
decompose the scenario model into a set of sing@aasio models containing at most two
sub-scenarios.

To compile a predefined composed scenario maglele define three steps: (1) build
a graph with the temporal variable&v), (2) generate intermediate scenario modelsofand
(3) link the generated intermediate scenario mooat®d on the constraint@w).

As proposed by [Ghallab 1996], we first build agravhich nodes correspond to the
temporal variables and which arcs correspond tdetmporal constraints' (). The arcs are
oriented and are associated with a time intervalesponding to the time delay between the
ending time of the two variables. For example, ¢bastraint cbetween y v, is associated
with an interval [a, b] indicating that ¢an end in the intervakfd(vi)+a, end(vi)+b]. The
constraintbefore is associated with [p]. After building the graph (called initial graphijth
all temporal constraints between temporal variald¢s), we compute the equivalent
complete graph and we check the graph consistdiimgse two graphs are equivalent because
the only difference between them is the redundaricsome constraints. Then, we simplify
the complete graph by removing unnecessary arabtton the least constrained graph. These
two graphs are also equivalent for the same realuma.initial and simplified graphs for the
scenario "Bank attack"” (Figure ) are shown on Figur&rreur! Source du renvoi
introuvable.. Thanks to the simplified graph, all the tempaoratiableso(w) are ordered by
their ending time.

Second, we generate intermediate scenario modetpased at most of two sub-
scenarios. For each intermediate scenario magd&e callstart (noted¢(w)) the first sub-
scenario ofw; and we caltermination (notedt(w)) the second sub-scenariowf

As o(w) = (v, Va,..., V) is a sequence of n (n > 2) ordered temporal béegm we
generate n-1 intermediate modef§ o,..., ' as followed: '
a) o(w) = (v, V») ando(w) = (V, vis1) for i > 1, where Vis a new temporal
variable corresponding to the scenario madé,
b) a(w) =aE(w)) O a(t(w)) =a(vy) O...0 a(vj.),
c) o) =¢(w and ¢(w) =0 fori<n-1,
ap(w™) = ayp(w) and ay(w) =0 fori<n-1,
d) kAW = kNw) n k(a(wh)) andk™(w) = k(W) n K(a(w)) - K(o(w™))
fori>1
K'(3) contains the constraints corresponding to the antering 1 (i.e.t(w)) in
the simplified graph.
k(™) =kF(w) and k(W) =0 fori<n-1.
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Figure 7.7: To compile the scenario "Bank attack”, we build: (a) the graph with all temporal
constraints k'(«), (b) the simplified graph with only the necessary constraints, the generated

intermediate scenario models (c).

The resulting scenario model'™ is equivalent to the initial scenario model This
two scenarios have the same actor variables antvadept set of constraints. The only
difference is that the constraints of the scenariare verified at several intermediate levels
corresponding to the intermediate scenario modethawn on Figure .

By using this compilation method, we can decompablescenario models into
scenarios containing only one or two temporal \deis. The recognition of compiled
scenario models is described in the next sectitve. Jain in processing time is due to the
search algorithm: we just try several times to liwo scenario instances instead of trying to
link together a whole set of combinations of sceEngstances.

Scenari o(Bank_attack 1,
Characters((cashi er: Person), (robber: Person))
SubScenari os(
(cas_at _pos, inside_zone, cashier,
"Back_Counter™)
(rob_enters, changes_zone, robber,
"Entrance_zone", "Infront_Counter"))
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Constraints((cas_at_pos during rob_enters)
(cashi er # robber) ))

Scenario(Bank_attack 2, # «
Char acters((cashi er: Person), (robber:Person))
SubScenari os(
(att_1, Bank_attack_ 1, cashier, robber)
(cas_at _safe, inside_zone, cashier, "Safe") )
Constrai nt s(
((start of att 1) before cas_at_safe) ))

Scenario(Bank_attack 3, # «
Characters((cashi er: Person), (robber:Person))
SubScenari os(

(rob_at _safe, inside_zone, robber, "Safe") )
For bi ddenSubScenari os(

(any_i n_branch, inside_zone, any_p, "Branch"))
Const rai nt s(

(rob_at_safe during (termnation of att_2))

(any_in_branch during rob_at_safe) ) )

Figure 7.8: Threeintermediate scenario models are generated for the compilation of the scenario
model "Bank_attack", and the initial model is equivalent to "Bank_attack 3".

Recognition of composed scenarios

The recognition of a composed scenario maeadk triggered by a scenario template,
which has been generated when the last sub-scgndeminatingw, has been recognized.
The scenario template contaimsand the scenario instanpgwith its list of actorsx(p) that
partially instantiatest(wx). As wx is composed of two sub-scenarios, only one subastEps
startingux, still needs to be found.

If such a scenario instanpghas been previously recognized in the past, thearae
able to finish instantiating the remaining actofso@uw). Thus, just a few combinations of
actors need to be checked avoiding an exponeetaths.

The last step of the algorithm consists in verifymhether all temporal and atemporal
constraints K'(cx) and k*(wy)) are satisfied wittps and p;. If one forbidden constraint of
kF(wy) cannot be satisfied then the scenamig is recognized and stored in the list of
recognized scenarios.

Discussion

In the domain of temporal scenario recognition @midong SPRS algorithms, the
chronicle recognition algorithm [Ghallab, 1996] ese of the most popular. By storing
partially recognized scenarios, it can speed upwhele recognition process. A patrtially
recognized scenario corresponds to a prediction andbles to store all previous
computations that do not need to be recomputekeatollowing instants. A main difference
between the chronicle algorithm and our algoritlsnhiat the chronicle algorithm has been
developed to process scenarios defined with oné/"actor” and can only recognize events
detected at one time point. Thus, this algorithnefigcient for the configuration "mono-
actor". However, in the configuration "multi-actgrghe chronicle algorithm has to duplicate
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the partially recognized scenarios for each contlunaf actors not already instantiated. This
can lead to an explosion of memory allocation andrt exponential search. Our algorithm is
as efficient for the configuration "mono-actor" base we store the recognized scenarios
which have been compiled. Moreover, it is efficidat the configuration "multi-actors”
because the recognized scenarios do not need dueated even if some actors are not
instantiated. The worst case occurs with elemerdaenarios because to recognize them at
the current instant, all combinations of actorscheebe checked. In real world applications,
elementary scenarios do not contain many actoabkes (less than 3) making the proposed
algorithm sufficient to obtain an operational resale video interpretation system.

7.2.3 Experiments and results

To validate our recognition algorithm, we firstegtated the algorithm with a vision
module to obtain an operational interpretationesysand then we have realized four types of
tests: (1) on recorded videos taken in a bank bramd in a metro station to verify if the
algorithm can correctly recognize the predefineghacio models, (2) on live videos acquired
on-line from cameras installed in an office an@ ibank branch to verify if the algorithm can
work robustly on a long time mode, (3) on recordétkos taken in a bank branch and on
simulated data to study how the complexity of tlygoathm depends on the scenario models
(i.e. number of sub-scenarios and of actor varglded (4) on simulated data to study how
the complexity of the algorithm depends on the demwity of the scene (i.e. number of
persons in the scene).

In the first experiment, we verify on recorded wadehat the algorithm correctly recognizes
several types ofBank attack” scenarios and several types"dandalism against a ticket
machine" scenarios.

Table7. 1 shows that the predefined scenarios were correstiygnized in most of the
cases. The interpretation system fails to recogsmee scenarios only in the cases when the
vision module misses to detect the people in teascWe have not detected any false alarm
during all the experiment. The non-detection o$éahlarms can be explained by the fact that
the scenarios are very constrained and there dikelyrto be recognized by error.

In the second experiment, we installed the integbien system in an office and in a
bank and we connected the system to two on-lineecasnto acquire directly live videos. In
this experiment, we use the bank scenarios andigrglg modified them to use them in the
office. We ran the system in the bank for few hamd continuously during 24h in the office.
As in the first experiment, the scenarios were nobshe time correctly recognized, showing
that the recognition algorithm can work reliablydambustly in real-time and in continuous
mode.

Number o Average .. INumber
tested number of R$g$eg?&|)on of false
sequencey persons/framg 0 alarms

106



107

Bank cam. 1 1 4 80 0
Bank cam. 2 1 2 100 0
Metro cam. 2 3 2 100 0

Table 7. 1. The recognition of temporal scenarios in videos of a bank branch and of a metro station.

In the third experiment, we studied the processimg of the recognition algorithm in
function of the scenario models. First, we studikd processing time of the algorithm
focusing on the resolution of temporal constraifrishis experiment (shown dfigure), we
tested eight configurations of scenario models:fifs¢ configuration is made of scenarios
containing 3 sub-scenarios and the last configumas made of scenarios containing 10 sub-
scenarios.
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Figure 7.8 : The processing time of the new algorithm is closely linear in function of the number of
sub-scenarios.

On the bank videos containing 300 frames, we failnad the processing time of the
classical STRS algorithm is exponential in functairthe number of sub-scenarios, whereas
the processing time of our algorithm is closelyeén in function of the number of sub-
scenarios.
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Figure 7.9. The processing time (a) of the old algorithm and (b) of the new algorithm depend on the
number of actor variables of predefined scenario models.

Second, we studied the processing time of the ihgorfocusing on the number of
actor variables of the scenario models. In thiseexpent (shown oifrigure), we tested nine
configurations of scenario models: the first coafagion is made of scenarios involving 2
actor variables and the last configuration is mafdgcenarios involving 10 actor variables. To
run the algorithm with enough actors, we simulabadk videos containing 35 persons. On
these videos, we found that the processing tinthetlassical STRS algorithm is exponential
in function of the number of actor variables, wiaasréhe processing time of our algorithm is
closely linear in function of the number of actariables.

120

Processing time/frame
(ms)

Maximal number of persons/frame

Figure 7.10. The (a) maximal and (b) average processing time/frame of the new algorithm depend on
the number of detected persons.

In the fourth experiment, we studied the processimg of the recognition algorithm
in function of the scene. To have a continuousat@am of the scene, we simulated the scene.
We built a scene environment with eight zones tdrast and ten pieces of equipment. We
simulated the individuals evolving in the sceneath instant. In these simulated videos, the
number of individuals changed from 30 up to 240vé&afy if our algorithm can recognize in
real-time the predefined scenarios, we measuredththemal processing time per frame. We
found that, the maximal processing time for eaelm is 100ms for a scene of 240 persons.
We also found that the average processing timedoh frame is closely linear in function of
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the number of persons. Figure shows several téstisis experiment to illustrate how the
processing time depends on the complexity of teaesc

With the fourth experiment, we can conclude that mecognition algorithm can
recognized in real-time the predefined scenaridhafnumber of persons/frame is less than
240. All these tests are realized on a PC linuXJCBOMHz, 320MB RAM.

7.2.4 Conclusion on Temporal Scenario

In the literature, there are two categories of syimbapproaches to recognize
temporal scenarios: the STRS algorithms reasoninghe past and the SPRS algorithms
reasoning on the future. First, we have shown tth@tSTRS algorithms recognize usually a
scenario by performing an exponential combinatiearsh. Then, we have explained that
even if our proposed algorithm is a STRS algorithinchecks temporal constraints
nevertheless by performing a linear search thaoks $tep of pre-compilation of scenarios.
Second, we have also shown that the SPRS algoritiawes to try all combinations of actors
to be able to recognize "multi-actors” scenariosanks to the pre-compilation step this
drawback for our algorithm is limited to elementagenarios. For these two reasons, the
proposed algorithm enables the integrated videsrpnétation system to be real-time. Up to
our knowledge, this video interpretation systemthe first operational system able to
recognize complex temporal scenarios.

Our future work consists in taking care of the esrand the uncertainty of the vision
module. The goal is to be able to continue therpmétation of the videos even when the
vision module cannot cope with the real world coemp.

7.3 Conclusion on Event Recognition

In this chapter, we have presented the two typespproach for recognising
events: numerical and symbolic. The numerical apgtes are well adapted to events closely
related to vision features involving few actors @ty one actor with or without interaction
with his/her environment). However, their effeciiess depends on the training stage as the
parameters are learned with training video sequgeenoataining positive and negative event
samples. Moreover, developing these recognitiorordlgns is not straightforward and
required a strong expertise in vision. They aratnatly easy to implement but their tuning
for a particular application is a main problem. dddition, they suffer from a difficult
modelling stage of events involving multiple act@rg., objects of interest). The reason is
that the combination of events is often exponemfiaén the number of actors, leading to the
utilization of a huge training set. Finally, thelescription is not declarative and it is often
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difficult to understand how they work (especialyy Neuronal Networks). In consequence, it
is relatively difficult to modify them or to add @iori knowledge. Therefore, new learning
mechanisms need to be defined to ease the constrwaftevent recognition algorithms: to
define the training video sets and to learn thacttire and the parameters of the network.
This point will be discussed in the next chapter.

Symbolic approaches are well adapted to model cexni@mporal events involving
multiple actors. Despite a large number of potémanbinations of events to be explored,
well designed algorithms can still recognise evamt®al-time. When good vision results are
obtained, the symbolic event recognition algorithsaa recognise all scenarios. An intuitive
language has been also defined to help the end-tsatescribe their scenarios of interest.
The main problem of symbolic approaches is the meisim to handle the errors of vision
algorithms. Most of the time, the recognition algons take the hypothesis that vision
algorithms do not make errors and generate peirf@cted objects. Moreover, modelling the
scenarios selected by the end-users is an erroemmcess (i.e. models of scenario are often
vaguely defined), which can be time consuming, @gfig in case of monitoring all everyday
activities. Therefore, two main improvements stfted to be done. First, managing the
uncertainty of vision features (in particular thestl of tracked objects), is a crucial point.
Second, learning the models of scenario becomesntss while dealing with video
monitoring applications. This second point willdiscussed in chapter 9.
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Chapter 8

Performance evaluation and learning

To be able to improve scene understanding systei@sjeed at one point to study
vision system architecture [Remo and et al.,, 2003}eenhill et al., 2002], [Velstin and
Remagnino, 2005], [Davies and Velastin, 2005], [€uara et al., 2004], [Enficiaud et al.,
2006] and to evaluate their performance [Borg £t28l05], [lazarevic-McManus et al., 2006],
[Hall et al., 2005], [Desurmont et al., 2006], [Mdmar et al., 2006]. The classical
methodology for performance evaluation consistssimg reference data (called ground truth)
[Bashir and Porikli, 2006], [Thirde et al., 2006Li et al., 2006], [Ziliani et al., 2005].
However, generating ground truth is tiresome amdreprone. Therefore, an issue is to
perform the performance evaluation stage using parsised techniques. During European
projects, such as ADVISOR and AVITRACK [Bremondaigd 12], we have acquired a long
experience in evaluating the performance of pddrcwideo understanding systems.
Moreover, during the PhD of Benoit Georis [Bremod®, 37 and 38] and the ETISEO
program on performance evaluation, we have propaseatcurate definition of ground truth,
a set of metrics, and video criteria to get a maginl assessment of the performance of video
understanding programs.

Once evaluation is possible, a real challenge stsmisin optimising the scene
understanding system using machine learning teaksiq order to find the best combination
of programs, the best set of parameters of thesgrgams with the best control strategies to
obtain an efficient and effective real-time procédse difficulty is three fold: first, programs
depend on environmental conditions and this op#tios process has to be dynamic to take
into account environmental changes. Second, aHetlograms are interlinked with each
others, so the modification of one program parame#@ mess the functioning of all other
programs. Finally, the knowledge on these progreasmsot formalised and usually, even the

112



113

developers cannot tell what will be the progranpatunder even specific conditions. During
Benoit Georis PhD [Bremond 48], we have definetamnework to formalise the construction
of video understanding systems by specifying al khowledge required: knowledge of the
program, knowledge of the scene environment anduseds goals. This framework is
intended to ease the building, the configuratidre tuning and the evaluation of video
understanding systems.

Another way to improve system performance is to &dgher reasoning. Scene
understanding is essentially a bottom-up approamfsisting in abstracting information
coming from signal (i.e. approach guided by dakgwever, in some cases, a top-down
approach (i.e. approach guided by models) can iwmapiower process performance by
providing a more global knowledge of the observaehs. For instance, the global coherence
of the 4D world can help to decide whether moviegions correspond to noise or physical
objects of interest. During most of past projesiszch as SAMSIT [Bremond, 51] we have
tried to incorporate high-level feedback to helghwthe detection and tracking of physical
objects of interest. However, a convenient fornmalstill needs to be defined to make these
experiments seamlessly integrated in new scenestadeing systems.

So this chapter, mostly based on Benoit Georis Fh&bris, 2006] and [Bremond,
13], consists in exploring performance evaluatiod ahachine learning techniques for the
easy generation of effective real-time scene umnaedsng systems. The first section describes
supervised (with user interactions) and unsupedvidly automatic) evaluation mechanisms
with the goal to get an insight on the evaluatg@@hms. This work has also been supported
by the ETISEO program with the help of Valery Vdiera research engineer. The second
section presents preliminary results on learninghnegues for scene understanding
algorithms. The goal is mostly to learn the besapeeter set of a given algorithm, knowing a
characterisation of the scene.

8.1 Performance Evaluation

The analysis of existing evaluation techniques shthat few of them enable to really
improve performances. This is due to the fact thay lack standard evaluation criteria and
also a clear evaluation protocol. Most of the tittesy define evaluation criteria in function
of the particular application of interest. Howevitie essential issue comes from the fact that
performances depend on the video sequences usésstmg, on the hypotheses which have
guided the design of programs and on all the paemsieThus, it is very difficult to
understand results of other systems even if theyeaaluated under the same assumptions. In
consequence, in order to be able to diagnose pnshédend to take advantage of the evaluation
results, the only possibility is to test a systeynvarying one parameter at a time, all others
being fixed.

In parallel, several workshops and projects havenbereated to answer to this
increasing need of having effective evaluationse Dverall trend is to propose automatic
tools allowing comparing results with referenceaddtese automatic tools enable to produce
significant quantitative results on standard tesgte®@ sequences. However, a standard
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database does not exist yet and the ground trdithitcen is a hard task. In addition, there is a
large variability of end-user needs. In consequeneeneed a general evaluation framework
to get better insights on the video understandp@ches and on current technical issues.
In the same way, we need a flexible evaluation ¥dakch enables to acquire expertise on the
video processing programs composing a video uratedstg platform. The evaluation tool
should be parameterized in function of the taslevaluate, the target application and the
environmental description. An example of flexilyilivhich is required is the ability to select
the part of the ground truth which is relevant t@laate a given task. For instance, to
evaluate a face tracker, we do not need a bourmirdut an ellipse delineating the face. On
the opposite, in a people counting application,libending box or just the centre of gravity
of the objects is often sufficient.

8.1.1 Supervised Evaluation

By definition, a supervised evaluation performsamsessment of the quality of the
obtained results by comparing them to the idealeetgd results. Most of the time, these
expected results are given by a human and aredagit®ind truth data. The scheme of a
supervised evaluation is illustratedrigure.

Algorithm
results
Reference
data

Figure 8.1: An algorithm is tested on a set of video sequences by comparing its output results with
reference data.

Algorithm
to be tested

= Evaluation

Comparison
results

Annotation
process

This scheme can be applied to most video undetstg problems but may not be
easily applicable with PTZ cameras due to the mobdf defining a correct ground truth (i.e.,
which position of the camera is best for trackingah object).

The objective of the supervised evaluation is twbfdé-irst, this evaluation allows a
system endowed with an intelligent control to cgufe itself according to its environment
(e.g., selection of algorithm, initial parametettisg). In this case, the system is run offline
on recorded video sequences which are represemtatithe future conditions of use of the
system. Second, this evaluation allows the videacgssing experts to compare various
techniques in competition and to run extensiveesenf testing for their programs on various
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video sequences and environmental conditions ierot@ acquire expertise. This expertise
can then be explicitly written using a video praieg program formalism [Bremond, 13 and
48], [Moisan and Thonnat, 2000]. For instance, teigpertise can take the form of a
precondition of utilization of a program (e.g., nalid for outdoor sequences) or a rule to
adapt a parameter according to a characteristihefenvironment (e.g., set the threshold
value to twice the default value if the mean imhgminance is greater then 150).

Although the evaluation can be interactive (i.be system prompts a user to assess
results at each processing step) and useful inctimfiguration mode of the system, we
recommend to use an automatic evaluation. The mgagbat we must ensure the significance
of the evaluation results and to prevent to fin@ specific piece of knowledge due to the
analysis of a too particular situation or problekn. automatic evaluation is thus a good way
to test several long video sequences but impliesdtious task of defining ground truth.

Ground truth, reference data and annotations

To perform an effective and useful evaluation deehnical issue, it is important to
distinguish the three following conceptgound truth data, reference data and annotation,
even if they are often confused or mixed in therdture:

. Ground truth data: data given by a human operator and which describe
real world expected results (e.g., objects of ggerevents) at the output
of a video processing program. These data are seppo be unique and
corresponding to end-user requirements even if anymcases, this
information can contains errors (annotation bid¥)ese data can be
written in a various formats, such as XML or MPEG7.

. Annotations: information associated to a video sequence. Thiym
about the video content, but also about technig#iculties (e.qg.,
presence of shadows) and recording conditions, (@e&ather conditions)
of the video sequence under consideration. Thesetations can help to
get a more precise classification of false or inecirresults (e.g., wrong
classification, wrong detection) and thus can Hbak expert in his/her
knowledge acquisition objective.

. Reference data:data supposed to be constant and unique, correisgpn
to a functionality of a video processing task amgdito evaluate the
output of a video processing program at a givek tagel. Reference
data include ground truth data, information givgnabvideo expert and
data computed from all annotations and contextaébrination. For
instance, the 3D position of a person is a refexatata computed from
the bounding box given by a video expert and thi&redion matrix.

Ground truth generation

The generation of ground truth consists in definthg ideal output of a video
processing functionality. This is not as trivial iadirst seems. First, the level of details of
ground truth attributes depends on the functiopalihich has to be evaluated. For instance,
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the evaluation of a motion detection algorithm Ijeaequires a pixel-based ground truth
whereas the evaluation of a tracking algorithm roaly use a list of bounding boxes. Of
course, if we want more details, the process obtation becomes more tedious and time-
consuming.

Second, the ground truth definition is a subjectiwrecess. There are several key
questions a human has to answer before he/sheefae @jround truth. For instance, is it
better to draw the bounding box of the whole obyeleen this object is occluded? Is it better
to draw two bounding boxes when two people walky/\aose to each other or to draw only
one for the group? These choices have to be maiter@gpect to the target application and
the features to evaluate. What is important ist&y soherent and to give rules to persons
making the annotation in order to define as obyetyias possible particular data.

We suggest giving as much precise information asaveduring the annotation. The
main reason is that we must be able to evaluatentb& sophisticated algorithms (existing
ones as well as future ones, in order to avoidfieidg over time several ground truth on the
same video sequences) and being impartial fodgdrishms. For instance, we have chosen to
draw the full bounding box for each object even whes dynamically or statically occluded.
In this way, we are able to evaluate all typeseiedtion algorithms. In case the algorithm it
does not need to re-compute accurately the detectioobjects, it is always possible to
compensate the detection errors by re-computingtiservable parts of the mobile objects.
In case the algorithm wants to correct detecti®ulte and process a whole object (e.g., to
recover the feet of a person even if this persqaitially observable due to an occlusion), we
are able to determine whether the object detedtish has correctly labelled the person as
occluded. Of course, due to the fact that the coordinafeisasible parts are guessed, this
choice can lead to imprecision but they are natiBgant when performing an evaluation at
the level of details of the bounding box.

In addition, care must be taken to avoid introdgaither bias when defining ground
truth. For instance, the assessor may be awangiafat video processing problems and thus
define the ground truth to increase performancesteller, it is important to annotate at a
task level without using any knowledge or inforroatwhich are not available at that level.
For instance, the assessor must not draw a bourixngor an object on a frame if he/she
does not see this object on this frame, even hafaheguess its presence by looking at the
whole sequence (due to the evidence of motion).c@uming the annotation of high-level
tasks, it is sometimes difficult to annotate actelyathe starting time of an event (e.g., the
person began to fight at frame 150 and not a fra#8 because of the time shift between the
beginning of an action and the presence of theesponding visual evidences.

Finally, we want to point out that ground truth calso help to classify video
sequences (see previous chapter). Indeed, insteadrually creating classes for classifying
the variability of video sequences according tariteigon hardly computable automatically
(e.g., the number of objects in the scene), weendract the information from the ground
truth and classify automatically the set of videqueences with respect to this criterion.

Several performance indicators
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Once video sequences have been collected and gtouthdhas been defined, video
processing experts have to define evaluation @itnd metrics for each functionality which
has to be evaluated:

. Evaluation criterion: an evaluation criterion is an evaluation
functionality to compare video understanding aldpni results. Usually,
this comparison is performed with reference data. iRstance, for the
detection of physical objects of interest, a cittiercan correspond to the
evaluation of the accuracy of the 2D or 3D objeciation; another one
can correspond to the evaluation of the qualityhef object shape. For
the classification of physical objects of interest, criterion can
correspond to the evaluation of the quality ofélssigned class labels. In
addition, these criteria can be detailed with rdgam video clip
categories. For instance, in the previous exantpgeassignment of class
labels could be evaluated under static occlusimasons.

. Evaluation metric: a distance between video understanding algorithm
results and reference data implementing an evaluatiterion. A way of
displaying evaluation results is to use a ROC (ReceOperating
Characteristic) curve defined as a plot of the pasitive rate against the
false positive rate. Each sample point of the cusvebtained with a
particular parameter setting of the algorithm ureleluation.

Based on these metrics, four evaluation statisacsbe computed:

. True Positive (TP): a result which is confirmed by a reference data.

. False Positive (FP):a result which does not match any reference data
(i.e., a false alarm).

. False Negative (FN)a result which is missing with respect to refeeenc
data.

. True Negative (TN): an absence of result which correctly correspoads t
the absence of reference data.

Most of the time, true negatives are difficult tontpute. For a detection task, it is
possible to compute this number provided that tloairgd truth is defined for each pixel. On
the opposite, it is difficult to define the notiohtrue negative for a tracking functionality. For
instance, this would require defining the completagn set of the set of links between
objects belonging to reference data.

We are now able to perform the evaluation. In oreranalyse evaluation results,
performance indicators are required. We propose beveral concepts which are currently
under acceptance of the scientific community [Etjse

. Precision: the precision of an algorithm is defined as thecg@etage of
good results among all computed results, i.e., tiaenber of true
positives over the sum of true positives and falssitives. For instance,
the precision can measure the reliability of a mégphe under given
environmental conditions.

. Sensitivity: the sensitivity of an algorithm is defined as gescentage of
good results among all expected results, i.e.ntmber of true positives
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over the sum of true positives and false negatives. instance, the
sensitivity can indicate whether or not a technicuable to achieve the
target objective in given conditions.

. Specificity: the specificity of an algorithm is defined as pegcentage of
correctly detected noise among all noise, i.e., tlhuenber of true
negatives over the sum of true negatives and faisdives. For instance,
the specificity can measure the robustness of anigae when it is
applied beside the preconditions. Neverthelesss tfotion is more
complex to use as it requires the computationu# tregatives.

The choice of the indicator may depend on the taobgective. For instance, if the
expert wants to optimize a technique to obtain aimam detection rate (e.g,90%), he/she
will prefer the sensitivity. On the opposite, iktlbbjective is to obtain as less false alarms as
possible then precision should be chosen equal o synthetic view of these concepts and
their relationships is illustrated in Table 1.

Reference Data (RD Noise (N)
Computed True Positive False Positive Precision
(TP) (FP) (TP/(TP+FP))
Not Computed False Negative True Negative
(EN) (TN)
Sensitivity Specificity
(TP/(TP+FN)) (TN/(TN+FP))

Table 8.1: Performance indicators and their relationships.

8.1.2 A Supervised Evaluation Tool

As said before, video understanding systems nedxk tealidated in order to verify
that it produces satisfactory results regarding@set requirements. Moreover, performance
evaluation is a main way to acquire a deep expedis programs and to be able to increase
incrementally the knowledge bases of the systemshis section, we present a supervised
evaluation tool and the associated metrics to coentbee results with the reference data.

The supervised evaluation tool we have proposedténded to four main purposes.
First, this tool enables to compare the performarafedifferent algorithms on a set of test
video sequences. Second, this tool enables to ifjutre improvement in performances of an
algorithm over time. Third, this tool enables vidpmcessing experts to acquire a deep
expertise on programs and on their use (e.g., looturte program parameters). Finally, this
tool enables to verify that a constructed systeadpces satisfactory results corresponding to
end-user requirements. This supervised evaluabioing illustrated in Figure .
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Figure 8.2: First, video processing experts define annotations and ground truth data on the whole set
of test video sequences. Then, for each video processing task, an automatic tool computes reference
data, using annotations, ground truth data and contextual information corresponding to the video
sequences. Finally, algorithm output results are automatically compared with the corresponding
reference data. This process is here illustrated for two different tasks. the detection and the

classification of physical objects of interest.

¥

The first step consists in defining ground trutiadand annotations on the selected set
of test video sequences. This manual operatioreifopmed only once by video processing
experts. Then, an automatic tool computes referelata for each video processing task
which corresponds either to a primitive or a conitgoeperator. These reference data are
computed from ground truth data but also from odni@ information and annotations. For
instance, the expert does not provide any 3D in&tion when defining ground truth data.
However, 3D information is useful to evaluate thecuaacy of the 3D object location
estimation. This information is thus automaticalymputed from ground truth data and the
calibration matrix. Another illustration is the knledge of reference data which are statically
occluded. Instead of asking an expert to assigiatac-occlusion label to these reference data,
it is faster and more accurate to automatically pot@ statically occluded reference data from
ground truth data and the knowledge of the scemmsmg@y (including static contextual
objects). Once reference data are available fadeowprocessing task, the evaluation consists
in comparing output results with these referencéa.ddhis comparison can be tuned
according to the evaluation objective. For instanifethe expert wants to study the
effectiveness in close field of an algorithm whidbtects physical objects of interest, an
adjustable parameter may indicate to not take attmount reference data which are too far
from the camera location. Another illustration e tstudy of static occlusions. In this
particular case, the expert asks the comparatonkyp compute statistics for reference data
which are statically occluded.

In conclusion, this adjustable tool enables expertdeeply study a particular problem
in order to acquire expertise on it (e.g., whickthis best technique to solve this problem, what
parameterization is the most appropriate givenetindronmental conditions specified in the
annotation). In other words, experts are able tmolystone class of problems at a time by
decomposing the whole complex video understandinglem with a fine granularity. There
are actually four directions for the decompositiadhe goal to achieve (i.e., which
functionality for the system), the scene environtm@escribed in the annotation), the video
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data (described in the annotation) and the taslemegaluation. Each intersecting point
between these four decomposition axes defineskdgmoto study. For instance, we can study
the impact of shadows in people outdoor scenes®tracking process for the recognition of
a fighting event. Of course, the finer the decontmws is, the most effective is the
evaluation. Future investigations will achieve finecompositions. We can now describe the
tool in more details.

Ground truth definition

In order to perform the comparison, we first havaléfine the necessary comparison
material which is ground truth. To this end, we,useong all the available ground truth
acquisition tools, the VIPER software from the Umsity of Maryland [Doermann and
Mihalcik, 2000], [Viper], [Mariano et al, 2002]. Thtool enables to draw bounding boxes
and to assign user-defined semantic informationolgects (e.g.occluded, person,...).
Following the framework guidelines, we have sevaulds for defining ground truth:

1. Define precisely the starting and ending time & tdeo sequence for
which ground truth is defined. It can be the exdatation of a clip (i.e.,
occurrence of an event) or a little bit more thaclia (e.g., few seconds
before and after the occurrence of an event).

2. Select a reference image of the scene corresponidinthe video
sequence under consideration (i.e., with respetttedstarting and ending
time). The scene is either an empty scene or aeseeth physical
objects. This step is important and intended terda@ne which physical
objects are considered as contextual objects belgrig the background.
A good example is a parked car: either the caleas parked for hours
(i.e., before the starting time and after the egdime) and is thus a
contextual object or the car has just been parkedvall move during
the selected video clip and is thus a physical atlé interest that must
be defined in the ground truth.

3. Define a bounding box for each physical objectniéliest which has at
least a visible part. In other word, we draw thi fwunding box even
when objects are statically or dynamically occludddwever, we do not
draw a bounding box for an object we do not seallatThis rule is
related to the next one.

4. Do not define a bounding box for a physical objafctnterest which is
not visible when looking at a single image (i.eo, bt use temporal
information to guess an object).

5. Assign a unique identifier for a physical objectioferest, even if the
object disappears temporarily from the field ofwidJnlike the previous
rule, the identifier is related to a video procegstask which uses
temporal information. It is thus normal that a hummexpert uses this
information too (i.e., his’/her memory).
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An example of a bounding box definition using th€&R graphical user interface is
illustrated in Figure . The white person is stdlyjcaccluded by the desk. Nevertheless, we
can see that the full bounding box has been drdvenfeet position being guessed.
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Figure 8.3: Bounding box definition using VIiPER graphical user interface.

Each physical object of interest is featured wité tollowing attributes: 2D width and
height, 2D position and an identifier. These atti#s are stored in a file in the VIPER XML
format.

Beside ground truth data, we provide several atiooof the video sequences:
. Scene typeindoor or outdoor.
. Number of physical objects of interefw, a lot of, crowd.
. Frequency of crossings between objefes; a lot of.

Finally, we compute reference data from grounchtdsta, contextual information and
annotations. For instance, we determine staticusamhs by re-projecting the 3D bounding
box of a contextual object in the image plane drahtcomputing whether or not there is an
overlap with any ground truth bounding box. Theatigk position of the overlap informs us
on the type of occlusion (e.g., left occlusion,tbwot occlusion,...). We can note that this
computation is possible thanks to the full boundboy definition in the ground truth. Now
that reference data are available, we are readgdess the performances of video processing
programs by comparing their output results wittséheeference data.
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Evaluation criteria and metrics

Evaluation criteria and metrics are the ingrediaithe comparison. A criterion is an
evaluation functionality whereas a metric is aahse implementing an evaluation criterion.
Different metrics can be used for a same criteao can be selected by an adjustable
parameter of the comparator. We list hereunderrabesateria and corresponding metrics for
the main video processing tasks:

1. Detection of physical objects of interest:
. Criterion qualifying the number of blobs correspimgd to physical
objects of interest: the metric checks if the cweping area between
blobs and reference data is above a given threshAottle positive is a
reference data having a sufficient overlap withokloA false positive is a
blob having no sufficient overlap with referenceada\ false negative is
a reference data having no sufficient overlap wldbs.

. Criterion qualifying the area corresponding to pbtas objects of
interest, globally in an image: the metric compudteseach image a per
pixel statistic based on bounding boxes. Perceatégea video clip are
computed as the sum of percentages per image ditage¢he number of
images containing at least one reference dataué piositive is a pixel
belonging to both the reference data set and thie $#t. A false positive
is a pixel belonging to the blob set but not to tbference data set. A
false negative is a pixel belonging to the refeeedata set but not to the
blob set.

2. Classification of physical objects of interest:

. Criterion qualifying the classification of physicabjects of interest:
different metrics can be used to count the numlbgohysical objects
having a correct type. A first metric only takegoiraccount objects
which are correctly detected in order to obtainetqpositives, false
positives and false negatives. A second metric makedistinction
between mis-classifications due to classificatidrorecomings (e.g.,
unknown) or due to detection shortcomings (e.gk laf contrast). A
third metric compares the physical objects of ieséat different levels of
the class hierarchy. For instance, a motorcyclesdiad as vehicle is
considered a true positive at a higher level ofdlass hierarchy even if it
is a false positive at a lower level. Finally, atlenetric checks the ability
of separating an object of composed type (e.gumad people) in two or
more objects of elementary type (e.g., person) wtien video clip
contains several physical objects side by side.

. Criterion qualifying the properties of physical ebis of interest in case
of isolated physical objects correctly detected:efach property, a metric
computes the distance of that property between ipdly®bjects and
reference data (e.g., 3D center of gravity, 3D Wi@D height, 2D center
of gravity).
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3. Tracking of physical objects of interest:

. Criterion qualifying the frame-to-frame tracker.iJlcriterion estimates
whether the link between two physical objects detkécat two
consecutive time instants is correctly computednot. This criterion
depends on three types of information: the ovelafween bounding
boxes of detected physical objects and referenda, dae type of
detected physical objects, the presence of oneewmral links between
bounding boxes of physical objects at time t aridderresponding to an
identical real object: the metric computes the nemif links between
physical objects compared to reference data liAksrue positive is a
reference data link matching a link between twospdst objects. A false
positive is a link between two physical objects moatching any
reference data. A false negative is a referencelddé not found.

. Criterion qualifying the long-term tracker. Thisiterion estimates
whether trajectories of physical objects are cdlyedetected over the
duration of their presence in the scene or not:ntle¢ric computes the
number of detected trajectories compared to refereata trajectories. A
true positive is a reference data trajectory matgha physical object
trajectory. A false positive is a physical objedjectory not matching
any reference data trajectories. A false negattvea ireference data
trajectory not found.

. Criterion qualifying the long-term tracker propesdi for each property, a
metric computes the distance of that property betwghysical objects
and reference data (e.g., 3D speed, 3D direction).

4. Recognition of events:

. Criterion qualifying the recognition of events gidly in a video clip or
in a scene in a multi-camera configuration: the rimetomputes the
number of correctly recognized events comparedeterence data, for
each event type.

. Criterion qualifying event properties: the metriongputes the average
difference of the initial (and also ending) eveme between detected
event and reference data event.

In conclusion, we can see that we can obtain anpetexization of the evaluation by
deciding to study a particular criterion and foistltriterion, a particular metric. This
parameterization provides a first level of flexidyilfor performing experiments. A second
level of flexibility can be provided by refiningeke metrics with contextual information (e.g.,
study the accuracy of the 3D width estimation omlya particular zone delimited in the
scene).
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8.1.3 Unsupervised Evaluation

Unsupervised evaluation is the most convenient wagerform an evaluation as it
does not require any user intervention. Nonethelibés evaluation is less accurate and far
more complicated to set up than the superviseduatiah. Indeed, the problem is to
determine invariants results have to verify. Instlsection, we give few examples of
unsupervised evaluation criteria which have bedmel@ after having performed several tests
and experiments.

Besides the difficulties to automate the evaluapioocess, it is interesting to consider
obtaining an unsupervised evaluation since it glesiautonomous adaptability abilities to a
system, when combined with a repair mechanismidaosunderstanding, a feedback from a
high-level module to a low-level module is a mairaywto achieve an unsupervised
evaluation. For instance, an event detector cuyeetognizing an event involving three
persons can put this information into a fact basethe next processing time step, the
reasoning engine is able to trigger an adjustmérdome parameter values of the object
detector by measuring the difference between theecunumber of outputs of the object
detection process and the number of outputs exgphégtehe high-level process.

Once video processing experts are able to run sixierseries of testing on their
algorithms, they were able to formalize their exigerin the form of unsupervised evaluation
criteria. Unsupervised evaluation is more compédatio set up than a supervised evaluation
but in the meantime, is more interesting as systeet®me endowed with an autonomous
adaptability property. For instance, we have defined two ddteto assess a bad
segmentation. In both situations, the associatpdirenechanism is to change the reference
image. The assumption underlying these two criterihat both situations cannot correspond
to a real scene recorded by cameras having aisuffitame rate.

Unsupervised Evaluation coupled with a repair mechaism

We illustrate now the global repair mechanism ithboases. The first one is a bad
result assessment of tifegmentation program. For this program evaluation, experts have
defined two unsupervised criteria to assess thesptation results:

. A difference between the number of blobs detectetiva consecutive
time instants which is greater than 10.

. A variation of more than 20% of all blob area wigspect to the image
area.

The second automatic diagnosis is a bad resulsss®nt of thdmageAcquisition
program. In this case, the illumination conditidmsve drastically changed globally on the
image from the previous to the current time steg.(&ve switch from a dark to a light image
or the opposite). This change implies to compuethe control mechanism, a new reference
image which is more adapted to the new illuminatonditions.

In order to demonstrate the effectiveness and #reergl scope of this automatic

control mechanism (i.e., the knowledge of contsolalidated and is not too specific), we
illustrate this dynamic system adaptation for twffedent sites. The first site is a camera
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which is installed inside a safe in a bank agemtyconsequence, this room is usually dark
unless a person comes into it and turns on the. ligte second site is the office environment
equipped with the vandalism detection system. Aisege has been recorded where a system
developer tests a sequence of light switch on dhdrofact, a usual background adaptation
process is not sufficient to handle a fast tramsitin addition, during a light switching, the
sensor undergoes a transient period during whiclyes are of very poor quality. In this case,
an intelligent control enables to skip these franmesrder to recover a normal processing
after this transient period.

For the first site, Figure illustrates the temp@aguence of images with the repair
mechanism. Figure illustrates the same temporgliesece of images without the repair
mechanism. The condition of the experimentation idemtical, this means that the same
sequence of programs is applied with the same maeamin both cases, except that the
control criteria have been disabled in the secaws® cFor the sake of clarity, all the images
are not represented for each time step. We illtestitee key idea which is the assessment-
repair action at two time steps (282-283 and 2881-28/e can see that after a transient period
of 15 frames, the system is able to detect theopeas time step 296 and that the system can
run with a correct background corresponding toriees environmental conditions. On the
opposite, we clearly see that the old version @& #flystem keeps subtracting a wrong
background to each input frame, during and after tfansient period. As a result, the
foreground covers the entire image and the pesstitus not detected at time step 296.

Current
image

Background
image

Foreground
image

Short term
tracking

image

Figure 8.4: Bank monitoring dynamic controlled sequence. From top to bottom, a column represents
the current, background, foreground and the short term tracking output image. A red arrow indicates
that the previous image is taken as the new background image. The repair mechanism is either
triggered by a bad assessment of the ImageAcquisition program (blue arrow) or by a bad assessment
of the Segmentation program (green arrow). In both cases, the subsequent processing at this time step
is interrupted, which corresponds to the fact that no image is illustrated for the corresponding
processing. We can see that the person is successfully detected at time step 296.
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Current
image
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image
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image

Short term
tracking

image

Figure 8.5: Illustration of the same video segquence of the bank agency without repair mechanism.
From top to bottom, a column represents the current image, the background image, the foreground
image and the short term tracking output image. A wrong background generates a bad detection over
the entire image, thus preventing to detect the person after the transient period.

For the second site, Figure represents a simiatral sequence for the office
environment. In this case, the transient perioshigrter, due to the fact that the sensor is of
better quality. Nevertheless, the control criteeanain mandatory to be able to detect the
person under the new environmental conditions.tk@rsake of clarity, we do not reproduce
here the results for the old system without thairemechanism. The same conclusion applies
for this situation: the old system fails to detdwd person while the system with the repair
mechanism provides satisfactory results.

These results demonstrate the effectiveness ofetiaduation-repair mechanism to

provide theadaptability property. It enables the system to react to usk®e environment
changes, such as a sudden illumination changeodaiéight switch off.
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Current
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Figure 8.6: Vandalism detection dynamic controlled sequence. From top to bottom, a column
represents the current, background, foreground and the short term tracking output image. A red arrow
indicates that the previous image is taken as the new background image. The repair mechanism is
either triggered by a bad assessment of the ImageAcquisition program (blue arrow) or by a bad
assessment of the Segmentation program (green arrow). In both cases, the subsequent processing at
this time step is interrupted, which corresponds to the fact that no image is illustrated for the
corresponding processing. We can see that the person is successfully detected at time step 313.

8.14 Discussion on Evaluation

Evaluation is a key element to insure that systestisnot only perform well on few
video sequences but that they will really addresd-weser goals. In this section, we have
presented a methodology for evaluating system pwadoces. We have seen that several
issues need to be addressed in order to obtainrtngre¢ and useful evaluation: the
characterization and selection of test video secggenthe generation of ground truth and the
choice of indicators. Once these decisions arentake evaluation enables experts to acquire
a deep expertise of programs and techniques. Kpsriise acquisition is usually performed
offine and can be then explicitly written usingded processing program formalism
[Bremond, 13]. This knowledge can then be used utjitosystem control during live
executions (e.g., by taking into account precoadgj by using unsupervised adaptation
rules).
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The proposed evaluation tool offers to video preces experts the possibility to
perform a large series of experiments for the nvadieo processing tasks and the ability to
acquire expertise on programs. However, the desigm effective tool is a very long process
and the current version of the tool does not alédwdecompositions. This is due to the fact
that the tool not only consists in the implemewiaif criteria and metrics but also in having
a large video database for testing (and abovehalcorresponding ground truth). This large
annotated database is mandatory to obtain signifiesaluation results and to understand
thoroughly a video understanding issue. This isiaht a main objective of the ongoing
ETISEO project. Otherwise, by testing on few segasnthere is a chance to obtain a too
factual knowledge of the problem. In conclusions treliminary tool need to be and will be
continued during the ETISEO project [Etiseo, 2005].

8.2 Learning Techniques for Video Understanding

Because of the complexity to tune parameters omdquire knowledge, many
technigues have been envisaged for object recogn[tNoor et al., 2006], [Munder and
Gavrila, 2006], [Hung et al., 2002], [Lpatev, 200@Dalal et al., 2006], [Larlus and Jurie,
2006] and for event recognition [Zaidenberg et 2006], [Gong and Xiang, 2005], [Marcon
et al., 2005], [Laptev et al., 2007], [Hogg et @aDO5], [Scalzo and Piater, 2006], [Panini and
Cuccchiara, 2003], [Foresti et al., 2005] mostlgdzhon statistics computation. Three main
categories of learning techniques have been irgasti for video understanding. The first
class of techniques learns the parameters of @ vidderstanding program [Hall et al., 2006],
[Sage and Buxton, 2004] and [Micheloni and Fore&fi03]. These techniques have been
widely used in the case for the event recogniti@ihods based on neural networks [Buxton,
2002], [Foresti, 2006], [Huang et al., 2005], naBayesian classifiers [Sheikh and Shah,
2005], [Lv et al.,, 2006] and HMMs [Galata et alQ02], [Wilson and Bobick, 2001],
[Andrade et al., 2006], [Bremond, 24].

The second class consists in using unsupervisaditgatechniques to avoid the
tedious task of labelling training video sequendehinson and Hogg, 1996], and to deduce
abnormalities from the learnt events [Foresti et 2002], [Gong and Hung, 2005], [Xiang
and Gong, 2005] and [Zhang et al., 2005]. Thesknigoes are usually based on clustering
techniques and are especially used to learn thetste of HMMs [Brand, 1999].

The third class of methods consists in learningethent model by computing frequent
temporal patterns as reported in [Dousson and Dudf8§9] for log reports in computer
networks. This technique has recently been appiieddeo understanding [Bremond, 47]. In
this case, an event is defined as a temporal sequeh elements. The frequent event
corresponds to the interesting ones. These techksigtart to be a necessary step when
conceiving video understanding systems but thegtdtet an early stage of development.

In this section we address the first issue bygiasg a tool to learn the parameters of

a given program. The third class of methods isudised in the next chapter on Knowledge
Acqisition.
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8.2.1 Learning Tool for Parameter Adaptation

Based on our experience, the definition of inigation and adjustment criteria by
video processing experts remains usually a maibl@ne. In order to cope with that missing
knowledge which is difficult to acquire, we propdseapply a learning tool to that particular
situation. We first describe the general learnirgghad and we then explain the derived tool
to adapt program parameters to illumination changes

The method proceeds in three steps. The first istape identification of a set of
parameters which is dependent in some sense tdtexiar characterizing the system
environment. For instance, it can be a subset cdnpeters of a motion detector which are
sensitive to the image contrast. Thus, this fitgp sonsists in finding a piece of knowledge
which is ideally given by a video processing expBesed on his/her experience, an expert is
generally able to give such a relationship. Them@ampeters can be pre-processed in order to
obtain independent parameters (e.g., with a prai@dpmponent analysis).

The second step is the study of the variabilityhaf selected criterion characterizing
the environment (e.g., the image contrast). Thidystan be either qualitative or quantitative.
In case of a qualitative description of the vatipithe expert decomposes the variability
into several classes, again based on his/her expexi For instance, if the selected criterion is
the number of persons in the scene, the expert ereate 5-10 classes labelled from few
people (e.g., 2 or 3 persons) wowded scene (e.g., more than 20 persons). In case of a
quantitative description, a clustering algorithmg(e k-mean, PCA, ascending hierarchical
classification) creates several classes accordimagnetric. For instance, the metric can be the
Euclidean distance between two histograms whichiegeesenting the image contrast.

The third step is the determination of a set ofrogk parameter values for each class
which has been created. These optimal values d@agneld with an offline supervised learning
(e.g., neural networks, the simplex algorithm, fetier methods). These values obtained with
a training input data set are then used in a génatian phase on a testing input data set.

There are two ways of using this learning methadbfailding video understanding
systems:

. Initial parameter configuration: if the criterion is qualitatively
described, the system is able to retrieve and heeset of optimal
parameter values from the qualitative informatiomreiceives from an
end-user. For instance, an end-user starts themsyed provides in the
meantime the descriptiocrowded situation so that the system uses the
crowded scene set of values.
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. Dynamical parameter configuration: if the criterion is quantitatively
described, the system is able to dynamically re¢riend use the optimal
set of parameter values corresponding to the gagsh has the smallest
distance with the current value of the criterioor khstance, the system
computes an intensity histogram on the current enamd retrieve the
class label which has the closest histogram fragrcthrent one.

In both cases, providing an accurate descriptioa difficult task. On one hand, a
gualitative description may be biased due to atéthexpertise or a subjective interpretation
of the expert (e.g., a wrong number of classes)ti@rother hand, a quantitative description
implies the selection of a metric. This metric isghof the time not perfect and may create
wrong element labels (i.e., an element that shobldously belong to class A but that is put
to class B due to the metric).

When possible, quantitative descriptions should pbeferred as they offer more
possibilities. For instance, we can obtain a selfdosis property for the system. The idea is
to raise a signal when the system has not beentalfled an appropriate class label (i.e., a
class which is sufficiently close) several timehisTsignal is a mean to alert the end-user that
the system has encountered a new situation/coafigarwhich requires running a supervised
learning on this new configuration. Thus, an evoluttowards incremental learning can be
investigated. Nevertheless, the qualitative desoripis most of the time the only one
available, due to the chicken and egg problem,(eayv to automatically quantify the number
of persons in a scene which is precisely one ofgthe of the video understanding task) and
due to the difficulty to quantify an abstract copicée.g., how to automatically quantify the
amount of clutter?). There is room here to discowvew techniques for quantifying abstract
characteristics of environments of video understapdystems.

8.2.2. Method implementation to handle illuminatim changes

We have applied the general method described adoagapt theCol our Segmentation
algorithm parameters to illumination changes aggnom an outdoor camera. First, we have
chosen the image contrast as a representativeianitefluencing the segmentation results.
The image contrast is here characterized by thartigpn of grey level intensities of an
intensity histogram over the whole image. The finhjective is to learn the relationship
between the image contrast and the segmentatiamgsers. In other words, for a given
scene and a given intensity histogram, we wantatee lthe optimal values for segmentation
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parameters.
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Figure 8.7: These figures reprt two types of illumination conditions: (a) sun with shadow and (b)
dark

Following the method, after the selection of aetiitn, we have to study the
variability of this criterion (i.e., the image coast). To this end, we have recorded several
hours of video sequences of the same scene condiggo to different illumination
configurations, as shown in Figure . For instamge have chosen different moments in a day
(early in the morning or late in the evening), eieint days (sunny day or cloudy day) and
different months (March to June). An intensity bgsam is computed for each image taken
every five minutes over the whole range of videgusmces. Then, we use a standard
ascending hierarchical classification algorithmarder to cluster these histograms. This
choice is guided by the consideration that thectiele of a similarity measure is more
intuitive than giving an a priori number of clas¢eg., as in a k-mean algorithm). In fact, an
expert can express his/her knowledge on how sinmala two histograms through this
similarity measure. We have currently chosen thelifean distance as similarity measure
between two histograms.

An initial distance matrix between elements is tedausing the similarity measure
between two elements. Elements are progressiveljegad into classes according to a
distance threshold (i.e., the minimum distance nscg@ssed first). Thus, we need also a
similarity measure between two classes. We haveerhthe distance between two classes as
the maximum distance observed between all pospdils of elements, one from each class.
This ensures that we never gather classes corgaghments whose distance is greater than
the distance threshold (i.e., each class elemeat Isast as close from each other as the
distance threshold).

Now that several classes have been identified, axe lto learn optimal parameter
values for each class. The preliminary step to apigmization is to define ground truth data
for comparison with operator output results. Asaxe interested in segmentation results, we
have to define an accurate pixel-based ground.tiitiis step is the most critical one because
a main issue when using a learning technique ipréwide good learning examples. This
difficulty is illustrated in Figure , where we caee that the current boundary of the physical
object of interest implies few wrongly labelled gig. This step is thus a compromise between
the time spent by an expert to accurately defiregitound truth and the effectiveness of the
learning tool.
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Concerning the optimization algorithm, we currentige the Downhill Simplex
method [Numerical, 2002]. This method minimizes tmdimensional functions without
making any assumption on function derivatives. Timsthod is thus well indicated for
achieving our objective as we do not have any médron about the derivatives. The main
corollary is that we do not have a guarantee oéiabtg a global minimum. However, this
method provides a mechanism to overcome this patgroblem. In fact, the method is run
several times starting with a different initial ¥@cand is stopped when the same result value
is found at least three successive times. CurrewdymaximizeS which is defined as the sum
of correctly detected pixels (true positives) andectly non-detected pixels (true negatives)
over the total number of pixels (true positivesjetrnegatives, false negatives and false
positives).
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Figure 8.8 : Definition of the shape of a physical object of interest to obtain a pixel-based ground
truth.

The last step before being able to use learnt gdluredynamical parameter adaptation
during a live system execution is to compute a sclespresentative (i.e., an intensity
histogram). We have currently defined the classesgntative as the mean histogram of a
class. This way, the system first computes the bemtich between the current intensity
histogram and available class representatives lam uses the optimal values corresponding
to the selected class. More concretely, each setlaoks corresponding to a class is loaded in
a LearntParameters table in the fact base at the starting of the esystThe matching
operation is performed inside tAequisition module (after the load of a new image) and the
result (i.e., a class label) is put in the VSIPredamemory. This class label is retrieved from
the shared memory manager by the control modulealllj this label is used by the
initialization criteria to choose the righearntParameters from the fact base table in order to
assign values to parameters of @aour Segmentation program.

Experiment for validation of the learning tool
For the validation of the proposed learning toat, mave realized an experiment with

an outdoor camera on top of a building at INRIA BapAntipolis. An AX1S2420 IP camera
IS viewing a car park with a far field of view. Thebjective of this experiment is to
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demonstrate that it is possible to decompose thahibity of illumination changes in a given
number of clusters and then to learn an optimabEparameter values for the segmentation
program for each of these clusters, using a trgiset. Then, during a generalization phase
(i.e., when processing new unknown input data) stfsgem can automatically retrieve the set
of optimal parameter values by selecting the clusthich is the closest to the current
illumination conditions.

The assumptions for the validity and scope (itere¢usability) of this experiment are
the following:

. The video sequence is taken during the period pfien 7 am to 9 pm.
. The field of view is restricted to the car parkaa(ee., the tree area is not
managed).

In order to learn the relationship between illuniiol changes and segmentation
parameters, we first characterize the illuminatgrthe repartition of grey level intensities of
an intensity histogram over the whole image. Thegen histograms which have been
computed for each image taken every five minutesr ahe whole range of recorded
sequences are represented in figure

A X-Z slice represents an image histogram
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Figure 8.9: Thisfigure shows the image histogram for each instant of the day on the y axis. The x axis
corresponds to the intensity level of the pixels and z axis the frequency of the intensity levels. The
histograms have been clustered into five classes. For each class, we have computed the optimal
parameter set .
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We have recorded a total of 23 hours of small videguences of about 30 minutes
each, during different moments in a day (earlyhmtnorning or late in the evening), different
days (sunny day or cloudy day) and different mor{fiarch to June) and with different
activities (car or pedestrians). These non consexuttensity histograms are ordered along
the Y axis. Each X-Z slice of this 3D diagram cepends to an intensity histogram of a
whole image. Each histogram represents on the Z thei percentage of the total number of
pixels belonging to a given intensity interval & tX axis. The intensity scale (i.e., [0-255])
is divided into 51 intervals of 5 intensity levels.

For the sake of illustration of the ascending hecal classification method applied
on the whole set of video sequences, we have @adrclusters along the Y axis:

. [0-40] and [261-280]: this cluster corresponds ntages taken during
sunny days.

. [41-115]: this cluster corresponds to images ta#aring sunny days
with few clouds.

. [116-215]: this cluster corresponds to images takemg cloudy days.

. [216-249]: this cluster corresponds to images taketine late morning,
before the sun appears.

. [250-260]: this cluster corresponds to images takery early in the
morning.

The parameter optimization step is the most ciito@ of this learning process, due to
several reasons. First, it is difficult to obtainog training examples. As the optimization
process usually takes more than 1 day to be coetpléhe total time spent to validate the
training stage is huge. A second reason is thagtbend truth definition at a pixel level is
time consuming (e.g., one frame per 2 minutes)aliinit is sometimes difficult to record
sequences containing some activity outside theceffiours. In this case, an alternative
solution consists in recording sequences with actor

In consequence, due to the fact that we had aedmimount of time to realize this
experiment, we have selected a subset of the whalge of the video sequences to perform
the optimization. We have selected the range [1IA]-Zorresponding to several non-
consecutive video clips taken the same day, fata bf more than 3 hours. First, we have
selected several video clips for which we have mlypuaefined the ground truth. In order to
give an indication, we have defined the groundhtifot a thousand of frames and the whole
annotation process took about 30 hours. Secondhawe classified these video clips into two
sets: a training set and a testing set. Third, aeshdefined 2 different clustering situations:
the first situation contains one cluster and theosd situation contains 2 clusters. The first
situation is directly obtained (i.e., the whole gah while the second has been obtained by
running the clustering algorithm with a predefiribreshold.

The first cluster roughly corresponds to video sempes recorded in the morning (the
sun is rising) whereas the second cluster correlspdn video sequences recorded in the
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afternoon (very sunny). The training scde(which have been introduced before as the
function to be maximised) is equal to 99% in ea&bec

In conclusion, the optimization algorithm has giuena set of parameter values for
both clusters. Learning these values is a firgi &tgprovide an optimal configuration for each
illumination situation of the INRIA car park surllance system. However, more experiments
are needed to learn values for the other clustertscan be defined based on the whole set of
recorded video sequences.

These learning results may be directly applied tteelo systems which use a static
camera of the same type and of the same orientatioich view the same type of scene (i.e.,
a large portion of the image is asphalt) and whach colour calibrated. Finally, as a
histogram can be easily automatically computedrput frames on a regular basis (e.g., once
each 5 minutes), the program parameters can benatitally (dynamically) adjusted by
taking the set of parameters of the cluster whglthe closest of the current illumination
conditions.

8.2.3 Discussion on Learning

Despite the encountered difficulties to obtain gteaining examples when defining a
pixel-based ground truth, and the two days requineaverage for computing on a standard
computer the optimization phase, this tool is etsyise. Currently, the tool is not fully
automatic and a manual step is needed to makerdhsitton from the clustering to the
optimization part. Indeed, the clustering algorithen implemented in Matlab and the
optimization algorithm is implemented in C++. InetHuture, we want to enlarge the
capabilities of this learning tool by taking intocaunt other criteria characterizing the scene
environment. For instance, we would like to ledme telationship between the number of
persons in a scene and the tracking parameters.idbased on the observation that tracking
has to handle more or less frequent occlusiontgitug depending on the number of persons
in the scene.

Nevertheless, the current utilization of this tallring the construction of a video
understanding system has demonstrated the bemdéaming to obtain moreffective and
adaptable systems. In addition, these results may be dyreetisedfor other systems in the
same conditions. However, this learning tool isyaalfirst step towards a complete learning
tool which can be used to learn different relatiops between the parameters and the
environmental conditions and which can be appliedagh level of the video understanding
chain (i.e., for low-level tasks as well as higkde ones). In consequence, future
investigations are needed to extend and validateulrent learning tool.
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8.3 Conclusion on Evaluation and Learning

In this chapter, we have presented several workgesformance evaluation of video
understanding algorithms and on learning technifuegarameter tuning.

On evaluation, we have described a methodology anol for evaluating the
performance of video understanding systems. Givedeo data base, ground truth and a set
of metrics, the user can adapt the tool to evalaaspecific video understanding task (e.qg.
object tracking), or specific scene conditions.(swglden illumination change). We have also
presented an algorithm to evaluate automaticakyghality of a segmentation program for
object detection in order to re-compute dynamictil/reference image when it is necessary.

On learning, we have described an algorithm tonl@atomatically the parameters of
the segmentation program, by computing a charaetéwn of the illumination conditions of a
given scene. This is the first stage towards theadyc configuration of video understanding
systems.

These evaluation and learning mechanisms are atebBmmary stage, but are
necessary to obtain an effective video understansiystem, operational 24/7 at a large scale.
Therefore, more efforts still need to be done.artipular, an appropriate formalism needs to
be defined to make these mechanisms seamlesslyratee in new scene understanding
systems.
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Chapter 9

Knowledge Acquisition

Even when the correct interpretation of the sceag lbeen performed, the scene
understanding system still has dommunicate its understanding to the users. There are at
least three types of users: program developers \{isign and software engineers), experts of
the application domain (e.g. security experts, daneperts) and end-users (e.g. human
operators, managers, police). The first challengeta enable program developers to
understand all specific components and in the damethe global architecture of the scene
understanding system, so that they can adapt esifigi their programs and configure and
install the system on a site. To reach this goa,have proposed a formalism to express
program knowledge and to capitalize experience uiddimg scene understanding systems
[Bremond, 13 and 48].

Second, if we want an effective system, ¢ghpriori knowledge on the application
domain needs to be formalized to enable the domvgderts to describe their knowledge and
their methodology for analyzing the scene. In saeméerstanding, there are four main types
of knowledge to be represented: (1) the empty soériee surrounding (e.g. its geometric),
(2) the sensors (e.g. calibration matrices of tameras), the network and the processing
units, (3) the physical objects expected in thenede.g. 3D model of human being) and their
dynamics, and (4) the events of interest for eretsidNe have defined formalisms to model
all these types of knowledge. We have proposeddtism to model the empty scene (called
also contextual information) corresponding to ttegis environment of the scene, including
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the sensor configuration, the geometry of the saamk associated contextual information
specific to the application (subway platform, str@scalator,...). This formalism is based on
a 3D spatial representation of the scene [Breméntl4, and 16]. We also use several models
to represent the physical objects of interest. istance, when the information is not
accurate, we use the ratio of the 3D height by hwilft the physical objects [Bremond, 3].
When more information is available, we represeatghysical objects by a 3D parallelepiped
corresponding by the volume occupied by the objéBiemond, 53]. When accurate
information is available, we use a 3D geometrieallistic and articulated model of human
beings [Bremond, 10]. Finally, we use an intuitrepresentation of events and a declarative
language for helping end-users to describe themato of interest [Bremond, 28, 33 and 38].
This event representation contains four main pdtfsthe physical objects involved in the
event, (2) the components (i.e. sub-events) composhe event, (3) the forbidden
components which should not occur during the evant (4) the constraints linking the
physical objects with the components.

To describe this a priori knowledge, we are usingplogies. For instance, we have
built a video event ontology during the framewofktlte ARDA workshop series on video
events, based on our experience on video survedldBremond, 59]. The use of video
understanding systems has been generalized altloevorld leading to the need of a shared
ontology on the application domains. An ontologyhe set of all the concepts and relations
between concepts shared by the community in a gieemain. The ontology is first useful for
experts of a given application domain to use videderstanding systems in an autonomous
way. The ontology makes the video understandingesys user-centered and enables the
experts to fully understand the terms used to dwscctivity models. For instance, the
ontology needs to be defined together with endsus8o they will be able to define
themselves their scenarios of interest. Moreover,antology is useful to evaluate the video
understanding systems and to understand exactly typas of events a particular video
understanding system can recognize. This ontolsgglso useful for developers of video
understanding applications to share and reuseitgaiodels dedicated to the recognition of
specific events. Building an ontology used as arggfce for video understanding applications
is particularly difficult because many developensl &xperts of application domains all over
the world have their own ideas about how to deschibman activities. The terms chosen to
name the ontology concepts are taken from everylityut they have been redefined to
avoid ambiguities. There are two types of ontolaipe first one (user ontology) enables to
address real scenarios of interest for end-usdresel scenarios are usually complex and
depend on the application domain. The second omgl concept ontology) describes
primitive events that can be detected by videoneldygies and enables to link the scenarios
of interest to perceptual features effectively detlele by video technologies. We have
recently extended this visual context ontology vatiio event concepts [Bremond, 59].

We believe that a tool incorporating a dedicatetblogy should to be provided to
assist the experts in defining the scenarios tlasystem has to recognize. Currently, we use
the ‘protégé’ software developed at Stanford Ursitgr (UK) to build and browse the
hierarchy of concepts used to describe the videmteantology. We are developing a second
software to edit and define accurately the end-gsenarios, with the scenario components
and constraints. Moreover, to help this processhawe designed a graphical tool to generate
andvisualize 3D virtual animations illustrating these scenaf®®emond, 27 and 40].

In complement of these tools, we have developestaling techniques to mine the
frequent activities (i.e. event patterns or timees occurring in the scene [Bremond, 47]. A
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recurrent question consists in determining whethes knowledge is given a priori or is
learned.

Third, if we want the system to be used, speciad ceeeds to be brought to display
what has been understood to the final users. Aonergic interface on an adapted media (e.g.
immersive reality or PDA personal digital assistaatconvenient representation of the scene
(e.g. virtual 3D scene, augmented reality) usingirduitive vocabulary are the necessary
devices to be provided to the end-users. Besidesethevices, the system needs to take into
account feedback information from the end-userbe@ble to adapt its performance to the
specific goals of each user. These topics are lyscahsiderate secondary compared to the
effectiveness of video understanding algorithmsweleer, we believe that these topics are
important and will become critical in the future.

The whole challenge of knowledge acquisition cdssisy organizing all this
knowledge in order to capitalize experience, shareith others and updating it along
experimentations. In this chapter, we present tyyges of work. In the first section, we
describe a tool for simulating and visualizing hunteehaviors. This tool, given a scenario
description, generates automatically a video ithtsig the scenario in an environment
characterized by specific conditions. It enablepeets to understand and validate the
functioning of a video understanding system andhiypotheses to obtain satisfactory results.
This tool has been developed during the internshiphinh Van Vu [Bremond, 27].

In the second section, we describe preliminary wamklearning event patterns (i.e.
time series) corresponding to frequent activitiesuoring in the observed scene. The event
patterns are learnt by computing the frequencylafoanbination of primitive events detected
by a video understanding system. The learnt evatt¢iqms can complement scenarios defined
by end-users, especially in applications monitomvgryday activities. This work has been
done during the internship of Alexander Toshev [Boed, 47].

9.1 Human behavior simulation for video
under standing

This section presents a modelling framework for visialization and simulation of
automatic behavior analysis. The video understandionsists in recognizing pre-defined
scenarios describing human behaviors from videwesstps. This framework (called test
framework) has (1) to visualize the computatiorinaf interpretation and scenarios described
by an expert, (2) to be flexible enough (configlealor testing the different configurations
of the understanding system and (3) to be reatisugh to understand what is going on in a
real scene. Another requirement of this framewsertoiverify the coherence between a given
understanding system and the test framework, scaneestablish the limit and the robustness
of the understanding system. This test framewoitkhe an efficient tool for the developers
(e.g. experts in vision and in scenario recognjtiand for the experts of the application
domain (e.g. agents of security). To validate ftasmnework, we have developed a test system
for video understanding system. Here, we are ugiBlP platform, described in chapter 5 as
an example of understanding system.

136



137

For more than 20 years, the problem of 3D scengalimtion has been addressed by
many laboratories who study the visualization of3Sld scene from its description. For
example, at the faculty of Computer Science of maroUniversity [Terzoploulos, 1999],
researchers generate 3D animations where manysfetd a swimmer evolve in the bottom
of the sea. To visualize these animations, they ma@delled the behaviors of individuals and
fishes and theirs interactions in groups. In paléic they have modelled all the physical and
biological rules for fish to swim, eat, reproducagerceive other fishes. At the Computer
Graphics Lab of the Swiss Technology Institute afifanne [Bezault et al, 1992], researchers
have modelled individuals evolving in a museuma isireet and in a supermarket. They have
also modelled the crowd behaviors like the reactdnpeople in fire situations. These
laboratories have obtained many results in the domé& 3D animations from a scene
description. However, there are few laboratorie® wstudy the visualization of scenarios
recognized by an automatic video understandingesysEor example, the Robotics Institute
at Carnegie Mellon University [Collins and Kana@®01], computes 3D animations where a
group of individuals enters/leaves the universitg by taking as input the camera network
surrounding the university. The goal of these ationa is mainly to demonstrate the tracking
of the group all around the university.

Our approach to describe human behaviors consistsfining six generic models (i.e.
meta-class): scene context, camera, human bodgnastenario and scene-scenario. Using
these generic models, we can construct specificetsde.g. the scenario class “meeting at a
coffee machine”) described in libraries of moddiben these specific models are used to
generate instances (e.g. scenario “individuals 4 Bnmeet at the coffee machine M”) to
visualize what is occurring in a given real scemerresponding to videos or scene
descriptions). We also propose a description laggua build all these models.

91.1 Visualisation and simulation for video under standing

As described in chapter 5, a video understandirgiesy contains three principal
modules: (1) individual detection, (2) individuaht¢king and (3) scenario (i.e. behavior)
recognition. It takes its inputs from a video camand generates recognized scenarios as
output. A typical system is represented in Figufie 9

Individual Individual Scenario
— detection tracking recognition —
Camera Recogmsed
scenario

€)) (2) ©)

Figure 9.1: a video interpretation system contains three ppatmodules.
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The test framework for a video understanding sysséiould contain the following
functionalities:

Visualization of scenarios recognized by an unédeding system and
scenarios described by an expdttis important for the developer (e.g.
expert in vision and scenario recognition) to vimgaeach step of the
scenario recognition process. It is also imporfantthe experts of the

application domain (e.g. agent of security in arojeto visualize the

scenarios that they describe.

Evaluation of the couple understanding-test systesmfy the coherence
between the understanding and test system.

Validation of understanding systemstablish the limits and robustness of
the understanding system by simulating test videos.

For this purpose, we propose to define a test fvariethat allows the three following
tasks (see Figure 9.2):

1.

Generation of realistic 3D animations correspondittgythe scenarios

recognized by an understanding systé@rhe generation of animations
needs to be flexible enough to illustrate specifiteps of the

understanding process. For example, to illustita¢ettacking process, it
is convenient to give a specific colour to eackkeal individual.

Comparison of two animations, one coming from ttierpretation of an
initial video and the other one coming from thesiptetation of a new
video generated by the test system and correspgndm the
interpretation of the initial videoFor a scenario recognized by an
understanding system from an initial video, thdé &stem generates a
first 3D animation and a second video that corradpdo the recognized
scenario. We have to compare that the first anonais similar to the
second one.

Automatic generation of a set of videosrresponding to a scenario
described by an expert. This set of videos shdlustiate the variety of
all possible instances of this scenario (e.g. warigue to different
locations of individuals and due to different opticeffects like
illumination).
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Figure9.2: an interpretation systeind its test system.

9.1.2 Scene context

Scene context and camer a representation

The scene context contains a set of contextuatrrdtion related to the environment
of the scene (e.g. the 3D geometry of the scené)used by the video interpretation and
visualisation process. We use scene contexts comgathe four following elements:

. a set of polygonal zones with semantic informatiemrance zone, zone
near the seat,...

. a set of areas of interest that gather the condexiaes with the same
semantic information: platform, metro tracks,...

. a set of 3D objects of the environment which ppadly includes the
equipment (e.g. a seat, a door).
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. a calibration matrix of the scene containing thé&iegic parameters of
the camera (position, direction and field of viewQV).

We represent the 3D context objects of the enviemtnusing a meta-class (generic
model of 3D context object) and we represent edglcob type as a class of this meta-class.
Thus, we have built five classes of context objéletd usually appear in metro scenes: class
“seat”, “trashcan”, “validation machine”, “ticket anhine” and “door”. To facilitate the
building process, we have defined a descriptiomguage where the meta-class 3D context
object enables the construction of a hierarchy Dfc®ntext object classes. These classes
contain five attributes:

» the relative co-ordinates that represent the mositf the 3D object in the
referential of the super part (super 3D object). &@mple, the leg of a chair is
defined relatively to the chair.

« the angular co-ordinates of the 3D object in thedreferential,

» the size of the 3D object along its referentiakaxi

» the sub-parts or/and geometric primitives that titarie the 3D object,

« the colour of the 3D object.

We use three types of geometric primitives: sphesecated cone and parallelepiped.
For the truncated cone, its both sections can déferent radius. The geometric primitives
have the same attributes of the 3D object classapéthe list of sub-parts.

Visualisation of the scene context

To visualise the scene context, we use GEOMVIEWfrée software for 3D
visualisation) for visualising the polygonal zoressd 3D objects. To use GEOMVIEW, it is
first necessary to represent the objects of theescentext in OpenGL format (see Figure ).

Convert to Display through
Scene contex OpenGL GEOMVIEW

description format

Figure 9.3: visualisation of a scene context description gSBEOMVIEW

For the polygonal zones, there are specific method3EOMVIEW to display them
in 3D. For the 3D context objects we first comptte co-ordinates of the geometric
primitives of the objects in the scene referentiae multiply the co-ordinates of the
geometric primitives by the referential transforimas of all containing super 3D objects.
Then we use a GEOMVIEW method that constructs tedioes and the facets of the
geometric primitives.

Using this representation we have built two scesrgexts for metro station including

a platform, a corridor and a hall: one for Ysetistain Brussels and one for Segrada-Familia
station in Barcelona. Figure 9.4 shows two images fSagrada-Familia station.
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Figure 9.4: Sagrada-Familia station in Barcelona: (1) raw imaggken by a camera and (2) scene
context model corresponding to this image.

9.1.3 Human body

We use a hierarchical and articulated model forgheeric model of human body
parts. A human body part is composed by sub-parggometric primitives. These primitives
are the same one used for 3D context objects: sphtuncated cones and parallelepipeds.
Figure 9.5 shows the 26 geometric primitives conmgpshe human body. We represent
classes of human body parts (and the whole humdy) lusing a generic model similar to the
generic model of 3D context object.

Figure 9.5: hierarchical and articulated model of the humardpasing three types of primitives (1)
spheres, (2) truncated cones and (3) parallelemped

In the description language we have defined 14sekdor modelling human body
parts: the whole human body, the head, the arnasletis, the neck, the shoulders, the hips,
the trunk, the foot and the hand. Figure 9.6 shimdhuman body from different view points.
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. (2) 3) (4) (5)

Figure 9.6.: visualisation of the 3D model of the human bddy top view, (2) bottom view, (3) front
view, (4) back view and (5) view from the left.

Using these models, there are two ways of visumgithe human body. First, we can
visualise an individual from its description by @&mpert. Second, we can visualise an
individual detected by an understanding system feowideo sequence. In both cases, we
visualise the body part by displaying the geomepitnitives composing the body part
through GEOMVIEW.

914 Human behaviour

Human behavioursfor understanding systems

In understanding systems, the notions of statenteaed scenario [Bremond, 3] are
used to recognise human behaviours. A state clesises at a given instant, the situation of
an individual detected by a camera. An event defiaechange of state at two successive
instants. A scenario defines a combination of exent

In the understanding system that we are testint asitates are defined: posture (e.g.
lying, crouching, standing), direction (e.g. towarthe right, towards the left, leaving,
arriving), velocity (e.g. stopped, walking, runnjndocation with respect to a zone (e.qg.
inside, outside), proximity with respect to a coaitebject (e.g. close, far), relative location
with respect to another individual (close, farjatee posture with respect to a context object
(e.g. sitting, any) and relative walk with respar@another individual (e.g. coupled, any). By
using these eight states, eighteen events areedefiior example, the event “falling” is
defined from the change of posture from “standing™lying”. Combining these events,
several scenarios are defined such as “two perswet at a coffee machine” for office
applications and “graffiti on wall” for metro stati applications. A scenario is a set of spatio-
temporal constraints on the individuals of the scemn the context objects and/or on the
previously recognised sub-scenarios (or eventsg tEmporal constraints are expressed by
eguations that combine the instants when the eesatdetected.
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Human behavioursfor thetest framework

In the test framework, the notions of posture,axgtscenario and scene-scenario are
defined to visualise behaviours recognised by amerstanding system or described by an
expert. A posture corresponds to all body parammeitan individual to be visualised at one
instant. An action characterises an individual motivhen one (or several) of its body
parameters change(s). Behaviours are representestdmarios. A scenario combines the
individuals of the scene and the context objectd wuib scenarios which are relevant to the
same activity. An elementary scenario is an actiBn.scene-scenario combines and
instantiates all previously defined scenarios.

In our formalism, an action (or scenario) can bsualised at different speeds which
indicates how many frames per second are displafadaction (or scenario) can have a
departure/arrival position which locates the indal at the beginning and the end of action
(or scenario). The temporal constraints are expredsy intervals (named periods) that
correspond to the duration of an action (or scepafihe interval of a sub action (or sub
scenario) is defined relatively to the period &f ttontaining action (or scenario).

Because our purpose is to conceive a test framework automatic video
understanding systems, we do not consider morasgrections such as “balance the arm”
and “move the finger” which are difficult to detdsmt understanding systems.

Action

Generic model of actions

An action is relative to the motion of one bodytdar the whole human body) which
is characterised by the changes of the body padnpeters. These changes are mainly
rotations around the body part axis. An actionasatibed by dierarchical modelan action
can be decomposed intab action(sgescribing the motion of sub part(s) (see Figurd.9n
our formalism, to ease the description of actiogsekperts, it is possible to indicate the
departure/arrival position in the case where thaylmart is the whole individual. There are
two types of actions: periodic (e.g. “walking”) andn-periodic (e.g. “move close to”). For
non-periodic actions, the period corresponds to dheation of the action. For periodic
actions, the number of periods is defined in thet@ioing action and the duration is obtained
by multiplying the number of periods times the actperiod.

Figure 9.7: in the action “walking” during interval [t1,t2], tle right leg rotates with anglel around
the hip; and in its sub action “the right leg ugthe lower part of the leg rotates with angi2 around
the knee.
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To represent actions, we propose a generic modeltiae following attributes:

. the concerned part of human body.

. the fixed part of human body on the ground (seevaltbe visualisation
of an action).

. the global period of the action.

. the variation of angles of rotation around the pafi¢rential.

. the speed of the action.

. the departure/arrival position (optional, used owlyen the part is the
whole individual).

. the list of sub actions with:

. their relative period,

. the concerned sub part of human body,

. the variation of angles of rotation around the pati referential.

Visualisation of actions

An action is visualised by displaying the indivitlyeerforming the action at regular
instants. In the case where the test frameworkalises the actions recognised by an
understanding system, the individual posture tovisealised is obtained by the posture
detected by the understanding system. Thereforéeitdramework just needs to display the
individual where it has been detected. If the Jisadon frequency is greater than the
frequency of the input video, then it is necesdarynterpolate linearly the intermediary
positions of the individual. Knowing the global gams of the individual, we calculate the
vertices of the geometric primitives of the indivad body in the scene referential and display
the primitives through GEOMVIEW in the same waywthe visualisation of 3D context
objects.

In the case where the test framework takes as thguactions modelled by an expert,
we visualise an action in three steps:

1. calculationof the current posture from the previous inst&ytusing the
posture of the previous instant and the angulaiatrans of the action,
we calculate the new angular co-ordinates of eabhpart of the body at
the current instant. From the new angular co-otdsave can calculate
the new vertices of the primitives of each bodyt jppgr multiplying their
co-ordinates by the referential transformation iRairhis transformation
matrix is defined for each body part and enablesotapute co-ordinates
in body party referential to co-ordinates in itsntaning body part
referential. By this way we obtain the verticestlod body part defined
relatively to the global position of the individudlhese new co-ordinates
define the new posture of the individual in theiwidlal referential.

2. calculation of the global position of the individual. To calate all
positions of the individual, we make the followihgpothesis: at each
moment, there is a fixed point of a body part om gnound (see Figure
9.8.). Currently, the actions we are interestediri@ actions where the
individual has a fixed part on the ground (e.g. Ikirag”, “running”). In
the near future, we are planning to extend our &ism to handle
actions such as “jumping above a barrier. To dakeuthe global
position, we first compute the distance between smocessive fixed
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points on the ground (if the fixed point of theianthas changed since
last instant). Second, we compute the motion ofrétferential point of
the individual relatively to the current fixed ptinThese two points
(referential/fixed points) are defined by the expddy applying the
transformation corresponding to this motion to veetices of primitives
defining the individual, we obtain the new co-ortes of these vertices
that correspond to the current posture of the idded. There are other
approaches to calculate the position of an indaidwom its motion
description. In [L. Bezault et al, 1992], the authdescribe the motion
by mathematical equations (based on experimenta) dad calculate the
position of individuals by solving the equation t&ys.

3. visualisation: after computing the geometric primitives of thentfan
body relatively to the new global position of thelividual, we display
all the primitives with GEOMVIEW.

fixed point during the interval [100, 150]

Figure 9.8.: one of the fixed points while the individual is kiad).

Scenario

Generic model of scenarios

A scenario combines the individuals of the sceng thie context objects which are
relevant to the same activity with more elementary scenarios. An elementary scenario is
an action that corresponds to the motion of theleehaman body of the involved individuals.
The model of scenarios is defined as the modettdmss. It is a hierarchy of sub scenarios.
Each sub scenario is ordered in time thanks tovale (called periods) that correspond to the
duration of the sub scenarios defined relativelythie global period of the main scenario.
Unlike actions, a scenario has an attribute cooeding to the list of actors and context
objects involved in the scenario. At the level oémarios, an actor (or a context object) is
represented by a variable that corresponds taolbeof the actor in the scenario.

Visualisation of scenarios
We visualise a scenario in three steps. First,imledll actors and context objects of

the scene involved in the scenario to the variabdieined in the actions composing the
scenario. Second, we order these actions in tioreedch action, we calculate its duration
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(start and end point) relatively to the scenaridqak defining when the action is active (is
displayed). Third, at each instant, we display adtors involved in active actions using
GEOMVIEW. Figure 9.9 presents the visualisationttté scenario “two persons meet at a
coffee machine” between the instants 80 and 240.

Scene-scenario

Generic model of scene-scenarios

A scene-scenario combines and instantiates alliqusly defined scenarios. To
represent a scene-scenario we use a generic nnaddlas five attributes:

. The scene context includes the list of context abjenvolved in the
scene. The expert describing the scene can chhegeefault attributes
of the context objects (e.g. their colour).

. The virtual camera information that correspondshi® viewpoint from
where the 3D animation is visualised. This infonmratincludes the 3D
position, the direction and the field of view (FOdf)the camera.

. The list of actors involved in the scene with thieitial position, size,
posture and colour. If this information is not pdrd, default values are
used.

. A set of scenarios occurring in the scene. For esxamario, we first
specify which actor corresponds to which role dadim the scenario and
we also specify the scenario period relativelyhe global period of the
scene-scenario.

. The visualisation speed of the scene.

Figure 9.9: visualisation of the scenario “two persons meea abffee machine” between the instants
80 and 240.

Visualisation of scene-scenarios
We display a scene-scenario in three steps. FMistnitialise and connect the actors

and the context objects to the scenarios definethénscene. Second, we calculate the
parameters of the virtual camera of GEOMVIEW. Thiwe display all active scenarios
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composing the scene at each instant. The visualisitame rate can be specified either at the
level of the scene-scenario or at the level ofsitenarios or actions.

9.15 Results

To validate this framework, we have developed & s$gstem for VSIP, the video
understanding system taken as an example of uaddisyy system. Thanks to this test
system, we have realised three 3D animations tisaiakse the results of VSIP from real
videos of metro taken for the ADVISOR European @cbjFigure shows (1) an image that
illustrates the individuals detected by VSIP ande&gponds to the output of VSIP and (2) an
image that illustrates the 3D animation generatethk test system (named “animation 1”).
At the time, VSIP was not able to detect the pastmd the orientation of the individuals
(front view, lateral view). By default, the 3D aration shows the front view of the
individuals.

Thanks to the test system, we have also realiseehs8D animations from scene-
scenarios described by an expert and then gendtaezbrresponding videos taken from the
view point of the real camera.

Moreover we were able to verify the coherence betwibe understanding and the test
system. For that, we have first generated a 3D andm (named “animation 17)
corresponding to a recognised scenario. Then we barerated a video from “animation 17,
processed this second video by the understandisteray and generated a second 3D
animation. As shown oRigurethese two animations are almost identical whichciags that
the understanding system does not make any differdretween real videos and videos
generated by the test system.

9.1.6 Discussion on simulation for video under standing

We have proposed a framework for the visualisabod the simulation of video
understanding systems. Thanks to this frameworkyeee able to build a test system that
generates the 3D animations corresponding to siosna@cognised by a video understanding
system, or scenarios described by an expert. Tiseehis framework, we have defined six
original models for modelling the virtual camerag tvisualisation of the scene geometry, the
human body, the actions, the scenarios and thesmanarios of individuals evolving in the
scene.

These encouraging results open many perspectives.al planning three main

extensions of the framework. First, we plan to adtttionalities to help the developer (e.g.
expert of vision or scenario recognition) to untand the influence of algorithm parameters
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setting, and to test the robustness of the int&poa. It will be interesting to generate test
videos (animations) with noise phenomena (e.g.®hadbr simulating more realistically the
input video of understanding systems. Second, ae fa extend the description language for
the expert of the application domain (e.g. seclaggnt) to be able to describe more complex
scenarios and to visualise scenario variationsef@mple with respect to the variation of
actor location.

Finally, we would like to define a unified framewousing the same models for the
understanding and the test system (e.g. modetsdofidual, action and scenario).

Figure 9.10: illustration of the test system results: (1) d¢iten of individuals corresponding to the
output of VSIS, (2) generation of a first animatamd a second video corresponding to the output of
VSIS and (3) generation of a second animation spoading to the second video processed a second
time by VSIS.

9.2 Frequent Composite Event Discovery in Videos

In this section, we propose a method for discowdéryomposite events in videos. The
algorithm processes a set of primitive events aghimple spatial relations between objects
obtained from a tracking system and outputs fretjgeent patterns which can be interpreted
as frequent composite events. We use the APRIQJrighm (called also association rules)
from the field of data mining for efficient detemti of frequent patterns. We adapt this
algorithm to handle temporal uncertainty in theadatithout losing its computational
effectiveness. It is formulated as a generic franr&wn which the context knowledge is
clearly separated from the method in form of a kirnty measure for comparison between
two video activities and a library of primitive eus serving as a basis for the composite
events.

The problem of video event recognition has beedistuin chapter 7. In most of the
approaches explicit models of events are used wdmieheither created manually or learned
from labelled data. In this work we focus on thelpem of detecting frequent complex
activities without a model. In this work an eventispatio-temporal property of an object in a
time interval or a change of such a property, acrilged in chapter 7. An example of an
event at a parking lot is 'vehicle on the road’eddgure. 9.11(a)). For the recognition of
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events an algorithm was selected from the videcerstdnding VSIP platform described in
chapter 5. The events are formally defined in anedescription language which allows us
to define complex events in terms of simpler oned & this way to build hierarchical
structures of events. For instance, in a parkingiloomplex event is ‘@arking manoeuvre’
which consists ofa vehicle on the road’*a vehicle on the parking road*vehicle on a
parking place’and person coming out from the vehicl&he simplest events at the bottom of
this description are referred as primitive while ttomplex ones are called composite. In
order to provide a complete description of a donairextensive library of events is needed
containing a formal description for each possib&hdvior. To simplify the library and
decrease the deployment efforts we retain in thisdy only the most simple and general
events which are the primitive ones. These are Isisypatial relations likéobject in a zone’
or ‘object near another objectThe frequent composite events are deduced irutnmatic
way from the set of all detected primitive everitsr the latter task we adapt the data mining
APRIORI algorithm ([1]) which uses the so called RARRI property: the sub-patterns of
frequent patterns are also frequent. Thereforetirsgawith short patterns we count the
occurrence only of those patterns whose sub-patteare marked as frequent in a previous
step. In this way the search space is reducedeAduwscode can be found in Algorithm (1):

APRIORI(S, |, sn)

INPUT: A setof states S ={s .. $}.

OUTPUT: All l-pattern classes €with size s(®) greater than a given sizg.s

1 natural i« 2;

pattern set P, «— @;
Kie{{sd... {sn}}

2:whilei<ldo

3: R «— CREATENEXTLENGTHPATTERNS(K4, i)

4: K'i «<— COMBINEPATTERNSINTOCLASSES(P

5 Ki — RETAINFREQUENTPATTERNS( K; Sn)

6: i—i+1

7:end while

Return K|

In line 3 all pairs of patterns of length- 1 from the previous iteration which have
exactlyi — 2 mutual elements are merged into patterns of length the next step equal
patterns are combined in classes. Finally, onlyctasses with a size greater than a given size
threshold g are retained.
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Figure 9.11: (a) Visualization of the event 'vehicle on th
in the scene.

The difficulties of a direct application of the af@oalgorithm in the domain of video
event analysis arise from the uncertainty of thta:dthere are no equal but only similar
occurrences of the same behavior type. Precis@yave to answer two questions:

. How do we measure the number of occurrences ofcawitg (its frequency)
and how the frequency of a sub-activity is relatedthe frequency of an
activity (line 5)?

. How do we decide which patterns of events repreensame event type (line
4)?

The answer to these questions depends on the wagowgare event patterns.
Therefore, a similarity measure is necessary whkidluates to which extend two patterns
represent the same activity. Using this similaaly a basis we can answer in a domain-
independent way the above questions. In particth@ number of occurrences of a behavior
and thus implicitly its frequency can be definedairsoft manner taking into account the
similarity. Additionally, the APRIORI property doe®t hold in case of similarity because
sub-patterns of patterns can be less similar then patterns themselves. Therefore, we
formulate in the next section a WEAK-APRIORI pragyewhich decreases the frequency
threshold for shorter patterns in order to prevesing sub-patterns of frequent patterns and
thus to guarantee their detection in the mergeistépe 3. The second point - combination of
patterns into classes - uses an entropy-base@chgalgorithm.

The domain knowledge is provided in two forms: Hesithe similarity we must
specify a library of generic primitive event typd$ie occurrences of these events are the
input to the algorithm and therefore serve as asldas the composite events which can be
detected.

We present a generic framework for high-level feguevent discovery. The context
knowledge is clearly separated from the algoritmmd lhus makes the approach applicable in
different domains for which primitive events anthsarity can be defined. By solving the
above issues we guarantee robust event detectiaroisy environments. Moreover, the
algorithm outputs a set of composite events whioh faierarchically ordered and thus
generates a clear event structure.
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9.2.1 Related Work

Although the research in the field of unsupervieednt detection and learning is at its
beginning there are several approaches studiedoOtie most widely used techniques is to
learn in an unsupervised manner the topology ofaakbV model. [Brand and Kettnaker,
2000] use an entropy-based function instead oMarimum- Likelihood estimator in the E-
step of the EM-algorithm for learning parametersHadden Markov Models (HMM). This
leads to a concentration of the transitional prdlieds just on several states which
correspond in most of the cases to meaningful svéwtother approach is based on variable
length Markov models which can express the depereleha Markov state on more than one
previous states [Galata et al, 2002]. While thighoe learns good stochastic models of the
data it cannot handle temporal relations. A furtbienilar technique is based on hierarchical
HMMs whose topology is learned by merging and spit states [Xie et al, 2003]. The
advantage of the above techniques for topologyiegrof Markov models is that they work
in a completely unsupervised way. Additionally,tle@an be used after the learning phase to
recognize efficiently the discovered events. On oleer hand, these methods deal with
simple events and are not capable of creating gartderarchies. The states of the Markov
models do not also correspond always to meanirgyfahts. Another method was proposed
by [Magee et al, 2004] who use inductive logic pemgming to generalize simple events.
Although being promising this system was developaty for simple interactions without
taking into account any temporal relations. For-lewel event detection and learning several
standard techniques were also used. [Walter e20fl1] learn gestures by extracting and
clustering prototypes of gesture components frajedttories of hand movements using the k-
means algorithm. The authors use the Minimum Dp8on Length principle to determine the
optimal number of gesture components. All these@hes perform well in the case of the
problem they are specified for but cannot be géizech The data mining community has
been studying the task of frequent pattern extvacfor several decades. However, more
emphasis is put on the computational effectivettems on the robustness against noise. There
are only a few approaches coping with some spepifablems arising from uncertainty:
temporal variability is addressed in [Sun et al)30 Unfortunately, they do not propose a
general way of dealing with different types of uramty.

9.2.2 A Modd of Frequent Patterns

In this section we introduce some basic notatiore &@ve interested in reoccurring
structures in a primitive event set, expecting thase structures correspond to meaningful
complex activities:

Definition 1: A m-event pattern s a set of primitive events with cardinality. p =

{e1. .. em}. The set ofll m-event patterns is denoted B{Y. A sub-patterrof a patterrp is a
patternp’ whose events are containedpin
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Although a pattern p is just a set, it describeglicitly a structure through the
relations between its events. Additionally, a samily measure is needed in order to express
the degree of similarity between patterns:

Definition 2: A similarity measursinm™(py, p) of orderm between twan-patterns p
and p is a mapping siff’ : P™ x p™ _, [0, 1], whereP™ is the set of alin-patterns

The concrete form of this mapping depends on theaailo and therefore it is not
possible to require further properties. Using theva notions of patterns and similarity we
can build pattern classes.

Definition 3: A m-patternclassC™ of order m is a set of m-event patternssubclassof a
classC is a clas€’ whose patterns are sub-patterns of patter@s in

We expect that a pattern class stands for a behtyygie and thus contains examples of
this behavior which should be similar to each atfidris property is guaranteed through the
class building step (line 4 in Algorithm 1) which realized as clustering maximizing the
weighted entropy of the class (see next secti@dnjrequent subclasses of a class stands also
for a frequent shorter activity which should be afdmed additionally if it occurs more
frequently than activity represented by the clésslfi Using the APRIORI-algorithm (1) from
section 1 we can maintain links from subclassesldsses formed in the next loop of the
algorithm and retain the subclasses containing rexaenples than the number of examples in
the class. In this way a hierarchical descriptibnanposite events can be achieved. Based on
the above similarity we can define (in a domainejpehdent way) a measure for the
membership of a pattern in a pattern class angdttern class size:

Definition 4: A class similarity measure sith (p, C) between a m-event pattern p and
a pattern class C of order m is a mappind8imP™ x K™ _, [0, 1]:

sim™(p,C) £1 sim™(p, p") (9.1)
|C|ame

where P(m) is the set of all m-patterns and K(mbhes set of all pattern classes of
order m.

Definition 5: The size s(C) of a pattern class C is the sunh@fstmilarities between
all patterns in C to C:

def

s(C) = > _sim(p,C) (9.2)

pOC

A large class size means both a large number ohpbes of the behavior represented
through the class (large number of summands inteou#9.2)) and also high degree of
representativeness of the behavior through its glesn(high value of the summands in
equation (9.2)). In the case that we use an eguabtead of a similarity the above class size
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corresponds to the number of the patterns in thescls(C) = |C|. The class size can be viewed
also to be proportional to frequency of the evgpetdescribed by the class.

9.2.3 Weak-Apriori Property

Using the above notation, the APRIORI propertyctite the introduction and used as
a basis for the algorithm can be expressed asaisilo

s(C™Y) = s(C™),

where ¢" Y is a subclass of @. In the case of similarity instead of equality the
APRIORI property does not have to be always vatidan be violated by m-patterns which
have (m — 1)-sub-patterns that are not so simgaha patterns itself. A reason may be a pair
of strongly dissimilar events in the sub-patteri®ge impact on the total similarity between
the patterns loses strength with increasing patergth. This property can hold for all pairs
of patterns in a class and thus leads to a smaiter of its subclasses. In this case the
APRIORI property will not hold.

A remedy is a different version of the APRIORI pedyy which requires a weaker
bound on the size of the subclass:

- Definition 6: WEAK-APRIORI-Property: For all sub-classe§"C’ of a pattern class
C"™ holds:

s(C™™) 2 g(m)s(C™) - f(m)| ¢

where g(m) and f(m) are positive functions of ttess order m. The functions g(m)
and f(m) serve as a correction for the smaller siza subclass. The concrete form of f(m)
and g(m) depends on the similarity measure anastantiation is given in equation (9.3) for
the similarity defined there. Provided the propenyDefinition 6 holds for a similarity
measure we can see that Algorithm 1 correctly reizeg all |-classes with size at leatifs
we use in line 5 in thé"iloop for the size of a class C the following dynanhreshold (i

[2,1]):

$(Ch=s, [To0-ICI Y FR 190 (9.3)

k=i+l k=i+1 ji+l

This threshold results from the WEAK-APRIORI propyeby propagating the class
size decrease from step | till step i. It guaramtidsat we will not miss in earlier loops of the
algorithm any subclasses which can be used to mmhsind consequently detect all classes of
order | with size at least,sA proof of this fact can be found in [Toshev, 300
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9.24 Pattern Clustering

The objective of line 4 in Algorithm (1) is to ckfy the generated patterns into
clusters which correspond to the same activity tyrecisely, this clustering step must result
in large coherent classes which are also cleastyngjuishable from each other.

We propose an entropy-based agglomerative hieaicbiustering method [Li et al,
2004]. Starting with classes containing only onéepa, in each successive step we merge
those two classes; @nd G whose merge leads to the highest increase oflity dtinction
U(Ci, G). This function is based on the weighted entropyCj of a class C which is defined
as the product of the class size s(C) and the elaisepy H(C). The entropy H(C) is defined
by interpreting a class as a random variable wéllues equal to the patterns and probabilities
Pc(-) of those values proportional to the class sinties:

e simp,C) _simp,C)
PC(p)_meSi mp.C) - SO (9.4)

where [IC. From the above definitions follows:

H,(C) = QM (C) = Y sim(p,C) Iog(%) (9.5)

A class of high quality is characterized by a lavgkie of the weighted entropy: large
class size indicates a lot of mutually similar eats in the class and large class entropy
indicates good coherence and lack of outliers.

During the clustering we merge classes if this #agds to an increase of the weighted
entropy of the new class compared with the oldselas

def

u(c.,C)=H,(COC)-H,(C)-H,C)>0 (9.6)

We iterate the above merge step until no furthereimse can be achieved. In this case
we have hopefully all patterns describing the saniwity type in one class.

9.25 Similarity Measure
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In this section we describe informally a similanityeasure between video events. As
an application we use videos recorded at a patbkindivided into zones (see Figure 9.11(b))
in which vehicles and persons are tracked. The systeognizes the everitmn object being
in a zone’and‘an object close to another objecThese events can be described completely
by a tuple of attributes: event name, object typeage name and start/end time.

A similarity measure compares event patterns usliregattributes of the primitive
events. We distinguish between symbolic and numatidbutes. In the above domain
examples for the first attribute types are evemh@aobject type, and zone name; examples
for the second type are event duration, event/statttime. The former are in most of the
cases unordered and can be compared only for ggudiile the latter must be treated with a
soft comparison function:

def :L X = y
Com(X ) = :
omi{%.Y) {0, otherwise

def _(x=y)?

CnUm(X' y) = e i

wherex, y//Randa /7 R is a parameter. The usage of the denominatanakes the
function more sensitive to differences between bmalues. This corresponds to the
assumption that attributes with small values areensasceptible to changes.

Another taxonomy of the attributes is based onrtheage. Some attributes can be
compared directly like event names, object typesiezname, and event duration. In other
cases we must evaluate an attribute in relatioi waitributes of other events: comparing
event start/end times directly does not make sbasenly in the context of another event in
order to express the temporal relation between thBased on this distinction between
attributes we define thetribute-structure similarity

def

sim_.(p,, p;) = w,attr(p;, p;) +wstruct(p,, p;)

with wa,ws > 0, W, + Ws = 1, which compares not only the properties ofghmitive
events in a separate manner throughaitsbute similarity attr(p, p) but also compares the
structures of the patterns expressed in termseofeimporal relations between the events in a
pattern formulated astructure similarity struct(p, p). Using the above two notions we
combine direct comparison with principles of anglogasoning.

The above components of the similarity must bengefimanually for each domain.
Hereby, the attributes of a primitive evem@ eof ampattern p k =1 . . .m are compared
with the attributes of exactly one event’ eof the other m-patterp; using an appropriate
compare function: symbolic attributes are compacedy about equality; for numeric

(x-y)?
attributes x and y we use *¥ . The similarity between patterns is the averagehef
similarities between all primitive events:
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attr() 6" = []C(a",c, (@)

aVD(e)

def

attr(p,,p,) = — > attr(e) e{))
mis

where ¢j(a) 0 D(e!”) is the corresponding attribute " to an attributea from
e’ The structure similaritycompares the temporal relations of the primitiver¢s. The
temporal relation betweeg’ and " from p can be compared with the temporal relation
betweene!” and € from p; as follows:

. . . ~ def . . . .
struct(e!’,€" e, &) = C,,,(dist(e”, &), dist(g” "))

where dist(-,-) compares the temporal distancedsst events:

. dfd(e,€).|d(g,e Eld(e;,&)l
dist(e, &) _{d(ej,q), otherwise

D(e, g) = b(e) — e(¢) with b(e) ande(e)start and end time of an eventinally:

def

1 i L .
StrUCt(pl, p) = - Struct( ('), ('), (l)’ (J))
: m(m-1) k,I;,k#l RERE

Configuration Sample pattern 1 Sample pattern 2
Pert. Noise length rank length rank
5 0% 5 1 6 2
25% 5 1 6 1
50% 5 1 6 2
10 0% 5 1 6 2
25% 5 2 5 1
50% 5 1 6 1

Table 9.1. Results with synthetic data. For each configumaitd perturbation variance, noise portion,
and sample pattern the rank and the length of thetimeaningful detected patterns are displayed.

It can be shown that the attribute-similarity semiy satisfies the WEAK-APRIORI
property [Toshev, 2005]:
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SCT) 2 (- sC™) - (s 2y e
m-1 m-1 m-2

g(m) f(m)

With increasing pattern lengtin the bound on the right side of the above inequalit

m-— oo m
converges towards s{®) because g(m)— 1 andf(m) — 0. Hence, the violation of the
initial APRIORI property decreases with increaspajtern length and so the computational
effectiveness of the initial algorithm is preserved

9.2.6 Evaluation

We test our approach on two types of sets conmifiequent composite events:
synthetic data and data from the parking lot memgpdomain. In both cases we describe the
data manually and compare the most frequent patterand by the algorithm with this
description. We assess (i) which sub-patterns efetkpected event patterns were recovered
and (i) what is their frequency compared with treguency of the other detected patterns.
The latter aspect is quantified in form of a raakpattern has rank k if it is the" kmost
frequent.

The synthetic data was generated from two mangadigited sample patterns of length
6. For each sample pattern 6 test sets were creatddllows. 5 copies of each of these
patterns were perturbed and randomly positioned time interval of 15000 time frames.
Precisely, the start/end times were perturbed withaussian noise with variance equal to 5
and 10 time frames and mean 0 and thus resultingvin sets for each sample pattern.
Additionally, noisy events were added to each dwbse portion of all events equals to 0%,
25% or 50%. The resulting sets and the resulte@tkperiments for each set are displayed in
table 9.1 and show that in all test runs at leaStsabpattern of the optimal 6-pattern was
recovered. This pattern was in 65% of the casestb&t frequent and in the remaining cases
the second frequent. In the case when the expeetiteln was the second frequent, the most
frequent pattern was caused by events which cantadly form patterns. The performance
of the algorithm was stable even in the worst addagh perturbation and 50% noise.

In order to evaluate the technique in a real diuatve apply it to the parking lot
domain. We process approximately 4 hours video ftem days resulting in approximately
200 hundred primitive events representing approteiya?0 composite events divided into
two sets, one set for each day. These sets arenpeesin Figure 9.12 together with the
results. In both cases the most frequent complexteswvere detected and they had in both
cases rank 1. These events correspond to the maeoparking and thus the most natural
activity in the domain was detected.

The reasons for not obtaining a pattern of fulgkbnare strong perturbations in some
cases and imperfect tracking which splits sometiores primitive event into several due to
lost objects. The computational cost reduces rgpidth each iteration of the APRIORI
algorithm: in each step beyond the 3rd one less 8 of all possible patterns were taken
into account. This shows the effectiveness of tHeAK-APRIORI property in the case of the
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attribute-similarity measure: the bound becomesemm@strictive with increasing pattern
length for which the number of possible patterngeases. On a machine with a 3.4 GHz
Intel Pentium CPU the algorithm needed betweenn8i09® minutes for each run.

Occurr. Discovered

Person Road 2 with rank
net
f detected
'\ | eft 4 Aot
vehicle Pa|'|;ing detected
Occurr. Disovered / Places
Person Parking with rank i
Roid - Road 2 detr:ctted Entrance —p Road —p> Ez;';lng P Exit 3 de:eoctted
Road 3 1 .
Vehicle k "\ Right 9 *
Parking
Places
Parki Left
Road —p Rz;dlng —>» Parking 5 1 Person parking
Road 8 1
Places Road >
(a) BOREL PARKING 11 03 (b) BOREL PARKING 21 03

Figure 9.12: Manually created description of the data and resutach flow displays a sequence of
primitive events of 'vehicle or person in a zonethwthe zone name and object type given. The
occurrence refers to data descriptions. The diseaveomplex events are marked green with their
rank to the right.

9.2.7 Discussion on Event Discovery

In this section, we have presented an approactidi@cting frequent composite events
using the APRIORI algorithm from the data miningldi. We were able to adapt this
algorithm to handle uncertainty without losing dsmputational attractiveness. It discovers
clear composite events and structures them hiecalbh The proposed method is built as a
general framework for which context knowledge imicof a similarity measure and a generic
library of primitive events must be specified. hretfuture we would like to investigate other
similarity measures based, for example, on proliegsil In a similarity we can incorporate
not only uncertainty of the temporal attributes higo of the remaining attributes such as
labels, for examples. Another topic is the analg$ithe detected frequent patterns in order to
create a compact and expressive model of the wdaike A different topic is to improve the
performance of the method. This can be achievedugtr better implementation but also
through integrating the operation from the lin@3igorithm (1) as another merge step in the
clustering from line 4: we can create longer patteby combining classes whose patterns
have large number of overlapping states. In thig the whole algorithm can be represented
as a clustering.
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9.3 Conclusion on Knowledge Acquisition

In this chapter, we have presented two tools fquaimg a priori knowledge and more
precisely the scenarios to be recognised. The sk, by simulating and visualizing 3D
animations helps end-users to define their scemafionterest. It has been successfully used
to model several scenarios for two applicationgs Tdol can also be useful to understand the
functioning of the whole video understanding systamd to help tuning system parameters.
However, the tool is not user-friendly and maturewgh to be fully operational and to
simulate the whole diversity of the real world.

The second tool aims at learning the frequent coatluns of primitive events called
event patterns. These event patterns corresponidetdrequent activities occurring in the
observed scene and are for end-users potentigdusosof interest. This tool is useful for pre-
defining everyday activities, especially in monibtgy applications. However, the learnt
frequent scenarios are not always interesting amshagios of interest are not necessary
frequent. Thus, this work needs to be refined tduithe, for instance, contextual information
and end-users feedback through an interactivefagerto guide the extraction of scenarios of
interest.

All these tools on knowledge acquisition for vidg@aderstanding systems are useful
and will become critical soon, in order to devel@g/7 video understanding systems
functioning on large scales. However, these works €till at a preliminary stage of
development. Therefore, more works are expectétbtwish in this knowledge acquisition
domain.
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Chapter 10

Conclusion and Per spectives

This document aims at summarising past experiemgexene understanding systems,
focusing on main achievements and underlying newds for the near future. We have first
studied this domain following the three worlds itweml by the scene understanding process:
perceptual world, physical world and semantic world

The perceptual world includes all features (e.g. colour, edge, 2D sh&t@
trajectory, sound, contact information) describimgscene and in particular the physical
objects evolving in the scene. This world is chemased by its uncertainty and redundancy.
Here, the scene understanding process is mairdgrigpensate for missing or misplaced data,
to filtered outliers (i.e. inconsistency with thejority of data), to remove aberrant data (i.e.
out of range), to cluster similar information (ugifor instance, statistical models) and to
categorise combinations of features. To explorepdeeptual world, in the chapter 5, on
vision programs, we have described the large variety of video @semg programs and the
diversity of videos depicting a scene. We have @rpd how VSIP platform can help
building scene understanding systems, based omnyfes of programs: (1) generic programs
for the main video understanding tasks and for comwideo characteristics, (2) advanced
programs for specific tasks and for handling pafic situations. Nevertheless, object
detection and extracting perceptual features waly @n open issue for still a long period of
time, in particular in real world applications camting challenging situations, such as moving
cameras, crowd, and limited processing capacities.
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To improve the perception of dynamic 3D scenesavgeplanning to work towards
three directions. First, we want to compute betkenrceptual features for characterising the
objects of interest. For instance, we aim at expipnew visual features (e.g. feature points
such as KLT (Kanade Luca Tomasi), local 2D desorgptsuch as HOG (Histogram of
Gradients) or the ones described by Viola and Joaesl other sensor features (e.g.
environment and physiological sensors, audio, rddatures). In this objective, we have
started to supervise a PhD Nadia Zouba [Bremonpdps3he combination of heterogeneous
sensor network for homecare applications. A sedatinection consists in designing robust
algorithms for characterising the object of intérgsape in order to infer their postures and
gestures. Thanks to the proposed new perceptualrésaand previous work [Bremond, 10],
these algorithms should be independent from theecamiew point and still effective in
complex situations (e.g. static and dynamic ocolusi moving background, crowd,
interactions between objects of interest and iotemas with contextual objects). We will
explore these new types of algorithms with PhD MkBaniche who is studying gesture
recognition in complex scenes. The third direci®io establish under which hypotheses the
algorithms are valid, and to understand their Bmithis topic is currently under process with
PhD A. T. Nghiem who is studying the relationshipstween algorithm parameters and
algorithm performance. The objective is then tarojgte the use of perception algorithms and
their combinations. Based on this algorithm chamasation, the advanced research axes
proposed in the introduction can be fruitfully esqgld. Moreover, we believe that pursuing
these other axes is important for two reasong; fimissome specific conditions (e.g. structured
environment), the challenge of the perceptual waréth be solved and second, some
applications do not require perfect vision resqls. perfect object detection and tracking).
These other research axes constitute strong aotinds in scene understanding.

The physical world contains all the physical objects of the real @Wodspecially the
ones in motion. Reasoning in this world is near ltgcal inferences performed by human
beings (i.e. common sense). It includes geomaphgsical laws, spatio-temporal and logic.
Here, the scene understanding process aims at aimangg a coherent and multi-modal
representation of the real world throughout time.study the physical world, in the chapéer
on maintaining 3D coherency throughout time, we have reviewed several works. These
works are organized following two directions: caray throughout time and coherency of
multi-modal information in the 3D space. These vgohave presented some solutions to
bridge the gap between signal and semantic leVakskey issues are:

. Building a common knowledge representation for cioiniy all
information describing the scene.
. Modelling and managing the uncertainty and the nmgleteness of data

and models characterizing the scene and its dyrsamic

These works have described some efficient inforondhiision algorithms that can lead
to a coherent understanding of the observed s@aspites these success, there are still some
limitations in particular situations, depending tire amount of uncertainty and lack of
information characterising the input data.

Nevertheless, thanks to a precise formalism comginincertain information coming
from heterogeneous sensors, we are able in ses&sab to understand the evolution of the
mobile objects in the scene and so to recogniseesstully the events characterising the
behaviours of these objects of interest. For usataral trend in this information fusion
domain consists first in extending the common kmolge representation to combine in an
easy way all information coming from different soes. This trend also consists in modelling
all type of uncertainty and incompleteness for bd#ta and scene models. Therefore, a
current work is to integrate the largest diversifysensors to get a complete multi-modal
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perception of the scene. This objective is addoegsdwo different aspects by PhD B. Bui
[Bremond 43] on people categorisation using optoedlls and video cameras and by PhD N.
Zouba [Bremond, 55] on multi-sensor scene undedgtgn

The semantic world gathers all types of events, relations and coscepated to the
activities occurring in the scene. This world isstiyp symbolic and linked to the application
domain. Reasoning in this world consists in speaéusal and logic inferences and verifying
spatio-temporal constraints which make sense amlg particular domain with a specific
objective. For the semantic world, in the chaptenEvent Recognition, we have presented
work on the two types of approach for recognisingngs: numerical and symbolic. The
numerical approaches are well adapted to evenselgioelated to vision features involving
few actors (mostly one actor with or without int@rans with his/her environment). However,
their effectiveness depends on the training stagdha parameters are learned with training
video sequences containing positive and negatieatesamples. Moreover, developing these
recognition algorithms is not straightforward aedjuired a strong expertise in vision. They
are relatively easy to implement but their tunirgg @ particular application is a main
problem. In addition, they suffer from a difficuttodelling stage of events involving multiple
actors (i.e., objects of interest). The reasonhat tthe combination of events is often
exponential given the number of actors, leadingh® collection of a huge training set.
Finally, their description is not declarative andsi often difficult to understand how they
work (especially for Neuronal Networks). In conseqge, it is relatively difficult to modify
them or to add a priori knowledge.

Therefore, new learning mechanisms need to be etéfio ease the construction of
event recognition algorithms: to select the tragnimdeo sets and to learn the structure and the
parameters of the network. In this objective, fostance a first goal is to propose a set of
generic primitive event concepts and to link therthvgpecific algorithms characterised by
explicit knowledge, in particular on the scene eaht(e.g. narrow corridor). For instance,
these event concepts can express changes in oifjegte (e.g. bending) and/or (e.g.
zigzagging) trajectory. The challenge is to descthis knowledge in a declarative way and to
link it to a description of the observed real scand of the application objectives. This topic
will be partially studied by PhD M.Zuniga who is tking on learning primitive event
concepts related to shapes and by PhD Thi Lan Lekimg on event concepts related to
trajectories. A second goal is to learn the semartf the observed dynamic 3D scene based
for instance on the statistic analysis of objeafetttories. For that, in the IST CARETAKER
project we will learn the main people journeys isubway network, we will cluster people
trajectories into meaningful categories and we lgidirn the topology of the observed scene
through the massive and long-term recording of gl data coming from a network of
cameras and microphones.

Symbolic approaches are well adapted to model cexnf@mporal events involving
multiple actors. Despite a large number of potémitanbinations of events to be explored,
well designed algorithms can still recognise evamtgal-time. As we have shown in chapter
7, when good vision results are obtained, the syimlavent recognition algorithms can
recognise all scenarios. An intuitive language Iesn also defined to help the end-users to
describe their scenarios of interest. The main lprobof symbolic approaches is the
mechanism to handle the errors of vision algorithidest of the time, the recognition
algorithms take the hypothesis that vision algonghdo not make errors and generate perfect
tracked objects. Moreover, modelling the scenaspscified by the end-users is an error
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prone process (i.e. models of scenario are oftguelst defined) at the scenario recognition
level, which can be time consuming, especiallydsecof monitoring all everyday activities.

Therefore, we are planning to work on two main iay@ments. First, managing the
uncertainty of vision features (in particular tlstl of tracked objects), is a crucial point. To
reach this objective, we are planning to extend Saenario Description Language for
modelling explicitly the uncertainty of vision feaés. Together with this language extension,
we would like to propose mechanisms to propagaseuhcertainty through all the layers of
the event recognition process. These improvemeritsbe explored through the ITEA
SERKET project whose goal is to enhance securitiirtelogies. The second improvement
consists in learning the scenario models of interéhis issue becomes essential while
dealing with video monitoring applications and wéhHarge amount of scenario models. This
research direction is related to knowledge acdaisitand is detailed below in the
corresponding section.

After studying the issues and perceptive of thensaenderstanding process, in these
perceptual world, physical world and semantic woklee have addressed problems more
related to scene understandisygtems, once we have shown that a computer program can
understand a scene in few situations, how thisgasing can be generalized in most real
cases. | believe that new trends in scene undelisgamely on this generalising process, on
the mechanisms to acquire and capitalise knowlatgeon making systems adaptable, user-
centered and in the same time fully autonomoush#e addressed these topics through two
directions: (1) evaluation and learning knowled@eystems and (2) knowledge acquisition
through end-user interactions.

ConcerningEvaluation and Learning, in the chapter 8, we have presented several
works on performance evaluation of video understapdalgorithms and on learning
techniques for parameter tuning.

On evaluation, we have described a methodology and a tool f@lueNing the
performance of video understanding systems. Giveideo data base, ground truth and a set
of metrics, the user can adapt the tool to evalaaspecific video understanding task (e.g.
object tracking), or specific scene conditions .(esgdden illumination changes). We have
also presented an algorithm to evaluate autombtita® quality of a segmentation program
for object detection in order to re-compute dynaiycthe reference image when it is
necessary.

On learning knowledge of systems, we have described an algoritb learn
automatically the parameters of a segmentationrarogby computing a characterisation of
the illumination conditions of a given scene. Thisthe first stage towards the dynamic
configuration of video understanding systems.

These evaluation and learning mechanisms are atelmmary stage, but are
necessary to obtain an effective video understansiystem, operational 24/7 at a large scale.
Therefore, more efforts still need to be done. drtipular, an appropriate formalism needs to
be defined to make these mechanisms seamlessiyratee in new scene understanding
systems. Moreover, for parameter tuning, we aithatacterising precisely and exhaustively
all algorithm parameters, their dependencies betwdékeemselves and between a
characterisation of the input data (i.e. videos) #reir impact on system performance. Given
this characterisation and a set of reference idpta associated with ground-truth, we will be
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able to automatically and dynamically configuraty &cene understanding system. This is
the subject of PhD A. T. Nghiem.

Concerningknowledge acquisition through end-user interactignse the chapter 9, we
have presented two tools for acquiring a prioriwlamige and in particular the scenarios to be
recognised. The first tool, by simulating and vigiag 3D animations helps end-users to
define their scenarios of interest. It has beertesgfully used to model several scenarios in
two applications. This tool can be also usefulnderstand the functioning of the whole video
understanding system and to help tuning systemnpeieas. However, the tool is not user-
friendly and mature enough to be fully operatiosadl to simulate the whole diversity of the
real world. Research in this domain is still for ais appealing topic. Especially, we are
planning to work on a generic and complete formali® describe realistic dynamic 3D
scenes (to be visualised as virtual scenes) asneddy end-users.

The second tool aims at learning the frequent coatluins of primitive events called
event patterns. These event patterns corresponidetdrequent activities occurring in the
observed scene and are for end-users potentigdusosrof interest. This tool is useful for pre-
defining everyday activities, especially in monitgy applications. However, the learnt
frequent scenarios are not always interesting amshagios of interest are not necessary
frequent. Thus, we are planning to refine this ttwlinclude, for instance, contextual
information and end-users feedback through anantee interface to guide the extraction of
scenarios of interest. In the same way, we wagbteeive tools to visualise and explore the
event space structured through the computed eatdrps. Another trend consists for us to
reduce the processing time of the clustering tephes by taking benefit of new data mining
algorithms. This topic will be partially studiedrttugh the IST CARETAKER project.

All these topics on evaluation, learning and on videodlge acquisition for video
understanding systems are sensitive and will bectnitieal soon, in order to develop 24/7
video understanding systems working on a largees¢abwever, these works are still at a
preliminary stage of development, waiting for thaimscene understanding process to be
sufficiently mastered. Therefore, more works arpeeted to flourish in these learning and
knowledge acquisition domains.
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