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Mathématiques, Sciences et Technologies de l’Information, Informatique

——

présentée et soutenue publiquement par

Pau Gargallo i Piracés

le 11 février 2008
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Résumé

La stéréovision multi-vues consiste à retrouver la forme des objets à partir de

plusieurs images prises de différents points de vue connus. Ceci est un problème

inverse où on cherche la cause (l’objet) alors qu’on observe l’effet (les images).

Sous une optique bayésienne, la solution serait une reconstruction qui reproduise

au mieux les images observées tout en restant plausible a priori. Dans cette

thèse, nous présentons des modèles et des méthodes permettant de minimiser la

différence entre les images observées et les images obtenues par le rendu de la

reconstruction. Pour ceci, il est nécessaire de tenir compte des occultations qui on

lieu lors du rendu. Le résultat principal de la thése est le calcul de la dérivée de

l’erreur de reprojection par rapport aux variations de surface qui tiens en compte

les changements de visibilité lors que la surface se déforme.

Mots-Clés : Stérévision multi-vues, reconstruction de surfaces, inférence bayésienne,

calcul variationnel, visibilité





Abstract

Multi-view stereo is the problem of recovering the shape of objects from multiple

images taken from different but known camera positions. It is an inverse problem

where we want to find the cause (the object) given the effect (the images). From

a Bayesian perspective, the solution would be the reconstruction that best repro-

duces the input images while at the same time being plausible a priori. Taking this

approach, in this thesis we develop generative models and methods for computing

reconstructions that minimize the difference between the observed images and the

images sythetized from the reconstruction.

Three models are presented. The first, represents the reconstructed scene by

a set of depth maps. This gives high resolution results, but have problems at the

objects boundaries. The second model represents the scene by a discreet occu-

pancy grid, yielding to a combinatorial optimization problem, which is addressed

through message passing techniques. The final model represents the scene by a

smooth surface and the resulting optimization problem is solved via gradient de-

scent surface evolution.

In either model, the main difficulty is to correctly take into account the occlu-

sions. Modeling self-occlusions results in optimization problems that challenge

current optimization techniques. In this respect, the main result of the thesis is

the computation of the derivative of the reprojection error with respect to surface

variations taking into account the visibility changes that occur while the surface

moves. This enables the use of gradient descent techniques, and leads to surface

evolutions that place the contour generators of the surface to their correct loca-

tion in the images without the need of additional silhouettes or apparent contours

constraints.

Keywords: Multi-view stereo, 3D reconstruction, Bayesian inference, varia-

tional calculus, visibility
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Résumé en Français

Introduction

Dans cette thèse nous nous intéressons au problème de la stéréovision multi-

vues qui consiste à retrouver la forme d’objets à partir d’images. Étant données

plusieurs images d’un objet prises de différents points de vue connus, le but est

de reconstruire la géométrie et, facultativement, l’apparence de l’objet. Ceci est

l’un des problèmes principaux de la vision par ordinateur, et ses applications sont

nombreuses.

Beaucoup d’animaux, humains inclus, utilisent leurs yeux pour percevoir leur

environnement. Que ce soit par l’utilisation de deux yeux, ou en bougeant la tête,

les animaux sont capables d’estimer la profondeur et la géométrie des objets qui

les entourent. Plusieurs sources d’information comme la parallaxe, les ombres, la

couleur ou les contours d’occultation sont utilisées dans ce processus. Bien que

ceci soit fait sans effort apparent par les animaux, on a pas encore réussi à le faire

faire aux ordinateurs. Depuis le début des recherches en vision par ordinateur,

les chercheurs ont développé des algorithmes pour extraire des informations tridi-

mensionnelles à partir d’images. Il n’y a pas encore un algorithme général pour

tout faire en toute situation, mais plusieurs sous-problèmes ont été résolus.

Actuellement, le problème général de la reconstruction d’objets à partir d’images

est résolu par étapes, la dernière desquelles étant celle qui nous intéresse. Les trois

étapes principales sont :

1. Appariement parcimonieux : Dans une première étape, un certain nombre

de points d’intérêt, comme des coins ou des contours, sont détectés dans

chaque image, et ensuite, mis en correspondance entre les différentes im-

ages.

2. Reconstruction parcimonieuse : La deuxième étape, consiste à utiliser les

correspondances pour retrouver aussi bien le mouvement de la caméra que

la position 3D des points d’intérêt.

3. Stéréovision multi-vues : Finalement, en connaissant la position des caméras,

9
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on calcule une reconstruction dense de la géométrie des objets apparaissant

dans les images.

Étant donné que les positions des caméras sont connues, la stéréovision multi-

vues correspond à un problème d’appariement dense d’images. En effet, si on

connaı̂t la position des caméras et on sait qu’un pixel d’une image correspond à

un certain pixel d’une autre image, on peut retrouver la position 3D de ce point par

triangulation. Malheureusement, il n’est pas facile de mettre en correspondance

les pixels d’une image avec les pixels d’une autre, car l’apparence des objets peut

changer d’une image à l’autre, il peut y avoir des ambiguı̈tés dans les zones peu

texturées et certaines parties d’une image peuvent être occultées dans l’autre im-

age.

Dans cette thèse, nous n’abordons pas le problème des changements d’apparence.

Nous partons de l’hypothèse qu’un point d’un objet apparaı̂t de la même couleur

dans toutes les images où il est visible.

Même avec cette hypothèse, il nous restent les problèmes des ambiguı̈tés et

les occultations. Dans les parties uniformes des images, où plusieurs pixels ont

la même couleur, la mise en correspondance devient impossible et il nous fau-

dra ajouter des connaissances a priori si on veut donner une solution unique au

problème. De plus, si une partie d’un objet est visible dans une image et pas dans

l’autre, il ne sera pas possible de trouver des correspondances pour les pixels de

la première image.

Pour aborder ces difficultés, dans cette thèse, nous regardons la stéréovision

multi-vues comme un problème inverse et nous adoptons l’approche bayésienne.

Nous commençons par décrire comment ont été obtenues les images à partir du

monde qu’on veut reconstruire et ensuite, nous utilisons l’inférence bayésienne

pour invertir ce processus et inférer la géométrie du monde à partir des images.

Modèle de formation d’images

Les images sont le résultat d’un processus complexe dans lequel la lumière émise

par des sources lumineuses voyage dans l’espace et arrive au capteur de la caméra

après avoir été réfléchie par plusieurs objets. En graphisme, le rendu photo-réaliste

s’intéresse à la reproduction de ce phénomène et à la génération d’images à par-

tir d’une description de la géométrie et de l’apparence des objets. Ceci est un

problème difficile, surtout dû aux multiples réflections qu’un rayon de lumière

subit avant d’arriver à la caméra. On remarque tout de même que le problème est

bien posé dans le sens où la solution (les images) est déterminée par l’entrée (la

géométrie et l’apparence). On dit que c’est un problème directe.

La stéréovision multi-vues est le problème opposé où on connait les images

et on recherche la forme des objets. On dit que c’est un problème inverse car on
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connait la conséquence et on cherche la cause.

Sans autres informations, le problème est extrêmement difficile car l’espace

de recherche (toutes les formes et apparences des formes) est énorme, et la re-

lation entre les images et les objets est complexe. Cette dernière difficulté est

spécialement due aux inter-réflections qui font que la couleur observée dans un

pixel dépend non seulement de l’objet qui est visible dans le pixel, mais aussi de

tout son environnement et du point de vue.

Pour simplifier le problème et le rendre plus abordable, nous supposons dans

cette thèse que la couleur apparente des objets ne dépend pas du point de vue.

C’est-à-dire qu’un point de la surface d’un objet apparaı̂t de la même couleur

dans toutes les images dans lesquelles il est visible. L’apparence de chaque point

de la surface des objets peut donc être décrite par une couleur et il n’y a pas besoin

de tenir compte des inter-réflections.

Le modèle de formation d’images qui est utilisé dans cette thèse est le suivant

: étant donnée la géométrie des objets et la couleur de chaque point de la surface,

la couleur observée dans un pixel correspond directement à la couleur du premier

point de la surface qui intersecte le rayon de vue du pixel.

Avec ce modèle de formation d’images simplifié, il n’y a plus d’inter-réflections

à tenir en compte car la couleur d’un pixel dépend uniquement de la couleur

du point observé. Cependant, il reste toujours une interdépendance entre les

différents points de la surface des objets parce que pour trouver la première in-

tersection de la surface avec le rayon de vue du pixel il faut connaı̂tre toute la

surface. Autrement dit, pour savoir si un point de la surface est visible, il faut

connaı̂tre tout la surface. Gérer correctement la visibilité est alors la difficulté

principale qui reste.

Approche bayésienne pour la stéréovision multi-vues

Telle qu’on l’a présentée, la stéréovision multi-vues est le problème inverse du

rendu. La théorie des probabilités est un outil mathématique idéal pour formaliser

les problèmes inverses. Pour ce faire, il faut modéliser l’ensemble des observa-

tions possibles et les variables inconnues dans un seul espace de probabilité. Avec

un tel espace, on se pose la question : Quelle est la probabilité d’une certaine so-

lution étant données les observations ? Formaliser des problèmes réels de cette

façon est souvent appelé l’approche bayésienne.

Pour la stéréovision multi-vues les variables observées sont les valeurs des

pixels – des images d’entrée, qu’on notera I . Les variables inconnues sont la

géométrie et la couleur du monde observé, qu’on notera w. La distribution de

probabilité conjointe des images et du monde, p(I, w), est une distribution sur

l’énorme espace de toutes les images et mondes possibles. Cette distribution doit
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contenir toutes nos connaissances du problème : Pour chaque paire d’un ensemble

d’images et d’un monde, combien nous paraı̂t-il plausible que cette paire existe ?

Définir une distribution de probabilités qui représente exactement nos con-

naissances sur le problème est une tâche difficile. Cependant, on peut obtenir des

approximations satisfaisantes d’une manière naturelle, en décomposant la distri-

bution conjointe en quelques termes plus simples. La relation cause à effet qui

existe entre le monde et les images fait qu’il est intuitif de décomposer la proba-

bilité conjointe comme ceci :

p(I, w) = p(I|w) p(w) . (1)

Les deux termes de la décomposition sont les suivants :

• Le premier terme, p(I|w), est la probabilité conditionnelle des images ob-

servées étant donné un monde hypothétique. Cette distribution est appelée

la vraisemblance et doit répondre à la question : Si w était le monde réel,

quelle serait la plausibilité d’observer les images I ? Par exemple, si le

monde contient des objets verts, on espère que les images vont être, elles

aussi, vertes et on dira que observer du rouge dans un monde vert n’est pas

vraisemblable. Plus précisément, si on nous donne un monde w on peut le

photographier (par rendu) depuis les mêmes points de vue que les images

d’entrée. Le résultat est un ensemble d’images I∗(w) qu’on appelle images

idéales et qui correspondent aux images que, en principe, on devrait ob-

server si le monde était w. En comparant les images idéales avec les images

observées, on peut alors facilement définir sa vraisemblance. Cette mesure

de similarité entre les image idéales et les images observées sera appelée

l’erreur de reprojection. La minimisation de l’erreur de reprojection est le

problème principal considéré dans cette thèse.

• Le deuxième terme, p(w), est la distribution a priori sur l’espace des mon-

des possibles. On l’appelle a priori parce qu’elle doit être définie avant de

tenir compte des observations. Elle doit répondre à la question : Quelle est

la plausibilité que le monde réel soit w ? En effet, même avant d’observer

les images, on a déjà une idée sur à quoi le monde ressemble. On sait par

exemple que la matière est souvent regroupée dans des objets solides et non

pas aléatoirement repartie dans l’espace. On sait aussi que les objets ont

des couleurs caractéristiques et qu’ils ne sont pas texturés par des couleurs

aléatoires. Toutes ces connaissances doivent être représentées par la distri-

bution a priori.

Cette décomposition est naturelle parce qu’elle suit l’ordre logique qu’il faut

suivre pour générer des images à partir de rien. Il faut d’abord créer un monde ;
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Figure 1: Modèle génératif pour la stéréovision multi-vues. D’abord on crée le

monde, ensuite on en prend des photos.

le choix de ce monde est guidé par la distribution a priori p(w). Ensuite, il faut

photographier le monde ; comment prendre des photos est encodé dans la vraisem-

blance p(I|w) (voir Figure 1). Ces types de décomposition sont appelés modèles

génératifs ; ils sont le modèle idéal pour formaliser des problèmes inverses.

Une fois que la distribution conjointe est définie, on peut répondre à toute

question concernant les variables modélisées. Dans notre cas, il est naturel de se

poser la question : Quelle est la probabilité du monde étant données les images ?

La réponse à cette question est la distribution a posteriori p(w|I). Elle peut être

déterminée à partir de la distribution conjointe par la relation

p(w|I) =
p(I, w)

p(I)
=

p(I|w) p(w)
∫

p(I|w) p(w) dw
. (2)

Cette équation est souvent appelée la règle de Bayes. Elle est particulièrement

intéressante parce qu’elle met en relation ce qu’on veut connaı̂tre, la distribution

a posteriori, avec ce qu’on connaı̂t, la vraisemblance et l’a priori.

Dans quelques applications, calculer une distribution de probabilité sur toutes

les solutions possibles ne sera pas un résultat satisfaisant et il est préférable d’en

choisir une seule – un bon monde. Pour ceci il est raisonnable de choisir le monde

le plus probable. Ceci est appelé le maximum a posteriori (MAP).

En résumé, l’approche bayésienne pour la stéréovision multi-vues consiste en

trois étapes :

1. Choisir l’espace des mondes (ou reconstructions) possibles et une distribu-

tion a priori p(w),

2. décrire le processus de formation d’images en spécifiant la vraisemblance

p(I|w),

3. et, finalement, calculer ou maximiser la distribution a posteriori p(w|I).
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Autres approches

Le stéréovision a été étudiée depuis bien longtemps. Il n’est donc pas surprenant

qu’il existe plusieurs différentes approches au problème. Nous pouvons les clas-

sifier grossièrement en trois types : Les méthodes directes, les méthodes de min-

imisation d’énergie et les hybrides.

Méthodes directes

On dit qu’un point de l’espace est photo-cohérent s’il apparaı̂t de la même couleur

dans toutes les images. En général, les points qui appartiennent à la surface des

objets sont photo-cohérents. Ceci suggère un algorithme très simple pour recon-

struire la surface des objets : On peut parcourir tout l’espace et pour chaque point

regarder si le point est photo-cohérent ou pas ; s’il l’est, on l’accepte comme étant

un point de la surface.

Un tel algorithme ne marche pas toujours pour deux raisons. D’un côté, le

fait que les points de la surface sont photo-cohérents n’implique pas que tous les

points photo-cohérents sont sur la surface. De l’autre côté, à cause des occulta-

tions, pas tous les points de la surface sont photo-cohérents dans toutes les images.

L’algorithme va donc à la fois détecter quelques faux points et ne pas détecter tous

les bons. Malgré tout, ce simple algorithme est la base des méthodes directes.

Pour réduire le nombre de fausses détections il est fréquent de demander que

non seulement le point soit photo-cohérent mais aussi un certain voisinage [129].

Pour augmenter le nombre de bonnes détections il faut gérer les occultations. La

façon la plus simple est d’utiliser des critères de photo-cohérence robustes [149,

150, 76, 74].

La façon dans laquelle l’espace est parcouru est aussi un facteur important.

Les deux stratégies majeures sont de chercher la profondeur de chaque pixel d’une

image de référence [75, 27], ou bien d’explorer une grille régulière de voxels

[131, 58].

En général les performances des méthodes directes restent limitées du fait

qu’elles prennent des décisions dures sur une partie de la scène sans en connaı̂tre le

reste et qu’il est difficile d’introduire des informations a priori comme par exemple

la préférence pour les surfaces lisses.

Méthodes de minimisation d’énergie

Les problèmes rencontrés par les méthodes directes peuvent être résolus en con-

sidérant le problème d’une façon globale. Au lieu de prendre des décisions indépendantes

pour chaque point de l’espace, on peut chercher la surface à reconstruire comme

un tout. Pour ceci on définit un coût, ou énergie, pour chaque surface possible, et
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on cherche la surface qui le minimise. Le plus souvent, cette énergie est formée

par deux termes, un qui correspond à la vraisemblance et qui assure que la surface

sera cohérente avec les images et l’autre qui correspond à l’a priori et qui force la

surface à avoir une forme raisonnable.

On peut distinguer deux types d’approches pour la définition d’une telle énergie

: Approches génératives et non-génératives.

Approches non-génératives Celles-ci sont l’extension logique des méthodes

directes. Les méthodes directes utilisent un critère de photo-cohérence pour décider

si un point est sur la surface ou pas. Si l’on dispose d’une surface candidate, on

peut mesurer sa qualité en faisant la somme de ce critère sur tous les points de

la surface. On a défini ainsi un critère de photo-cohérence global pour toute la

surface.

Une façon pratique de représenter la surface est d’utiliser une carte de pro-

fondeurs par rapport à une image de référence. Pour chaque pixel de l’image

de référence on calcule sa profondeur. Le critère de photo-cohérence est alors

la somme sur tous les pixels de l’image de référence de la photo-cohérence du

point 3D associé [129, 125, 164, 148, 159, 3, 146]. Des variables de visibilité

additionnelles peuvent être utilisées pour mieux tenir compte des occultations

[8, 76, 147]. Si on veut reconstruire toute la surface visible dans les images en

utilisant des cartes de profondeurs, il faudra en calculer une pour chaque image

d’entrée [80, 115, 86].

Une autre façon de reconstruire toute la surface est de la représenter de façon

indépendante des images par une surface quelconque. Dans ce cas, la surface

optimale peut être calculée par évolution de surface, utilisant une représentation

par ensembles de niveaux [41, 70, 135, 72], des maillages [46, 187, 60] ou des

particules orientées [45, 153]. Il est aussi possible [16] d’utiliser la méthode de

graph-cuts pour minimiser ce type d’énergies [111, 166, 185, 67, 161].

Un problème récurrent de ce type d’énergies est la tendance des surfaces à

diminuer ou disparaı̂tre. En effet, plus la surface est petite, plus petit sera le coût

de photo-cohérence (car on le somme sur une surface plus petite). Ceci est appelé

la distorsion systématique vers les surfaces minimales [5, 179]. Pour répondre à

cet effet, il a été proposé d’utiliser des forces de gonflage [168, 166, 61, 5, 179].

Approches génératives Une façon alternative de définir une énergie à min-

imiser est de suivre l’approche bayésienne telle qu’on l’a présentée dans la section

précédente [25, 105, 177, 73, 71, 118, 79]. Dans ce cas, l’énergie correspond au

négatif du logarithme de la probabilité a posteriori de la surface. Ceci est la somme

d’une énergie de vraisemblance plus une d’a priori. L’énergie de la vraisemblance

correspond à l’erreur de reprojection qui mesure la différence entre les images
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observées et les images reproduites à partir de la reconstruction.

Une difficulté importante avec cette approche est que l’erreur de reprojection

contient des termes de visibilité qui sont difficiles à minimiser correctement. Des

solutions partielles ne fonctionnant que sur des surfaces convexes ont été trouvées

[177]. Dans le dernier chapitre de cette thèse (chapitre 4), nous montrons com-

ment l’erreur de reprojection peut être minimisée de façon exacte par évolution de

surfaces [50].

Strecha et d’autres ont développé des modèles génératifs qui utilisent une

seule carte de profondeurs [144, 145, 143]. Pour pouvoir gérer les occultations et

d’autres effets, ils définissent un processus marginal qui est chargé de la génération

des pixels qui observent ces effets. Nous avons développé une extension de ce

modèle qui utilise plusieurs cartes de profondeurs [51]. Ceci permet à la fois de

modéliser toute la scène et de tenir compte des occultations de façon géométrique

(chapitre 3).

Méthodes hybrides

Finalement, un troisième groupe de méthodes utilise à la fois des méthodes di-

rectes et de minimisation d’énergie. L’idée est de faire la reconstruction en deux

étapes. Dans la première, une méthode directe est utilisée pour trouver un nuage

de points sur la surface. Normalement, ce nuage sera bruité et contiendra des

points qui ne sont pas vraiment sur la surface. Dans une deuxième étape, une

méthode de minimisation d’énergie est utilisée pour caler une surface sur le nuage

de points de façon robuste [94, 48, 60]. Une méthode alternative est de calculer

des cartes de profondeurs avec une méthode directe, et de les combiner avec une

méthode de minimisation d’énergie [31, 63, 172, 141, 181, 100]. Ces approches

combinent la vitesse et la simplicité des approches directes avec la précision et la

robustesse des méthodes de minimisation d’énergie.

Contributions de cette thèse

Dans cette thèse, nous utilisons systématiquement l’approche bayésienne décrite

précédemment. Nous appliquons cette approche à trois représentations différentes

de la géométrie du monde, et nous étudions les problèmes algorithmiques qui en

découlent.

• Nous commençons par étudier le cas où le monde est représenté par un

ensemble de cartes de profondeurs (chapitre 3). L’utilisation de plusieurs

cartes de profondeurs est aussi bien motivée par la haute résolution que

cette représentation offre que par le fait qu’en cherchant la profondeur de
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chaque pixel d’entrée on est sûr de tout modéliser. En pratique on ob-

serve deux difficultés liées à cette représentation. Premièrement, les con-

tours d’occultation sont difficiles à optimiser car de petits déplacements de

ceux-ci nécessitent de grandes variations des profondeurs des pixels voisins.

Deuxièmement, la représentation est redondante, ce qui impose l’ajout de

contraintes supplémentaires pour imposer la cohérence entre les différentes

cartes de profondeurs.

• Au vu de cela, nous avons développé un modèle dans lequel le monde est

représenté de façon indépendante des images par une fonction d’occupation

de l’espace. Le calcul des cartes de profondeurs est tout de même requis par

le processus de formation d’images, parce qu’elles déterminent les parties

visibles de la surface. Dans notre modèle, comme dans la réalité, les cartes

de profondeurs sont déterminées à partir de la fonction d’occupation.

• Dans le chapitre 4, nous traitons la version discrète du modèle, où l’on

considère la fonction d’occupation d’une grille de voxels. Ceci induit un

problème d’optimisation combinatoire important, que nous représentons

sous la forme d’un graphe de facteurs.

• Finalement, dans le chapitre 5, nous traitons la version continue du modèle

d’occupation, où l’on considère l’occupation de tous les points de l’espace.

Dans ce cas, la recherche du maximum a posteriori du modèle devient un

problème d’optimisation de formes. Nous résolvons ce problème par une

descente de gradient. Le calcul du gradient de la vraisemblance est la con-

tribution principale de cette thèse. Le calcul est intéressant parce qu’il car-

actérise les changements de visibilité qui apparaissent lorsqu’on déforme

une surface.

En résumé, du côté qu’est-ce qu’il faut optimiser, nous proposons le modèle

d’occupation, combiné avec des cartes de profondeurs, parce qu’il explique de

manière naturelle le processus de formation d’images, notamment les occulta-

tions. Du côté comment l’optimiser, nous calculons la dérivée de l’erreur de re-

projection ce qui permet d’optimiser le modèle par des méthodes de déformation

de surface.

Représentation utilisant plusieurs cartes de profondeurs

Quand on veut reconstruire une scène à partir d’images, on peut utiliser plusieurs

représentations (principalement des voxels, des fonctions implicites ou des mail-

lages). Quelque soit la représentation utilisée, si on veut calculer la visibilité de
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façon géométrique, il est fort probable qu’on ait besoin de calculer des cartes de

profondeurs, car elles déterminent les parties visibles de la scène. La question

qu’on considère dans ce chapitre est : Serait-il possible d’utiliser les cartes de

profondeurs elles-mêmes comme représentation de la géométrie, au lieu de les

calculer à partir d’une autre représentation ?

La motivation principale pour utiliser des cartes de profondeurs est leur haute

résolution. Les images numériques contiennent des millions de pixels. Si on veut

utiliser un modèle génératif pour reconstruire une scène à partir d’images, il faut

que le modèle soit capable d’expliquer chacun de leurs pixels. La résolution de la

reconstruction doit donc être en accord avec la résolution des images. Bien qu’il

soit possible de construire des grilles de voxels parcimonieuses ou des maillages

gigantesques, les cartes de profondeurs sont une solution plus simple sur le plan

algorithmique. Les reconstructions impressionnantes obtenues par Strecha et al.

[146, 144] en utilisant des cartes de profondeurs sont un bon exemple de résultats

qu’il serait difficile d’obtenir avec d’autres représentations.

Afin de modéliser complètement la scène qui apparaı̂t dans les images, nous

développons dans ce chapitre un modèle génératif qui utilise une carte de pro-

fondeurs pour chaque image, de sorte que tous les pixels soit expliqués. La pro-

fondeur d’un pixel correspond à la profondeur du point 3D visible dans ce pixel.

Ces points 3D forment un nuage de points, et ce nuage est ce qu’on utilise comme

représentation de la géométrie de la scène. L’apparence des objets sera représentée

par la couleur des points.

Pour pouvoir inférer les profondeurs et les couleurs, nous définissons la prob-

abilité conjointe des images, des profondeurs et des couleurs suivant l’approche

bayésienne décrite précédemment. Pour bien tenir compte des occultations géométriques,

nous introduisons des variables de visibilité qui indiquent quels points du nuage

sont visibles dans quelle image. Ces variables de visibilité dépendent directement

des profondeurs pour pouvoir les déterminer de façon géométrique. Cependant,

la dépendance n’est pas stricte car un point géométriquement visible peut être oc-

culté par un effet comme un reflet spéculaire ou un objet mobile qui n’est pas

modélisé.

Une attention particulière est portée à la définition d’un a priori sur l’ensemble

des cartes de profondeurs. Idéalement, elles devraient être cohérentes les unes

avec les autres et former une seule surface. De plus, on voudrait qu’elles soient

lisses partout sauf le long des contours d’occultation où de grandes discontinuités

doivent être autorisées.

La reconstruction est faite par maximisation de la probabilité a posteriori

des profondeurs et des couleurs. Les variables de visibilité restent cachées et

doivent être marginalisées. Pour ceci, on utilise l’algorithme EM (Expectation–

Maximization) qui alterne entre l’estimation des probabilités des variables de vis-

ibilité, et la maximisation de l’a posteriori.
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Résultats

Nous avons testé la méthode avec quelques jeux d’images. Pour les cas simples,

où il n’y a pas d’occultations elle marche bien et les résultats sont de très haute

résolution. Pour des cas plus compliqués dans lesquels un objet se trouve devant

un fond distant on a trouvé des difficultés liés aux contours d’occultation. Le

problème est que pour bien placer les contours d’occultation il faut que les valeurs

de profondeur des pixels voisins changent de façon non continue ; or la méthode

d’optimisation que nous utilisons ne permet pas ce type de changements. Une

heuristique a été développée pour palier ce problème. Les figures 2 et 3 montrent

un jeux d’images difficile, avec les cartes de visibilité estimées, l’évolution de

l’algorithme et le résultat final.

Conclusion

L’utilisation de plusieurs cartes de profondeurs a montré quelques avantages, no-

tamment, la haute résolutions des résultats et la possibilité de gérer les occulta-

tions de façon géométrique. Cependant, elle a aussi montré deux inconvénients

importants. Premièrement, il a fallu concevoir un a priori ad hoc qui force les

différentes cartes de profondeurs à être cohérentes. Ceci n’est pas très naturel car

dans le monde réel les cartes de profondeurs sont toujours cohérentes, puisqu’elles

sont issues d’une même géométrie. Deuxièmement, nous avons rencontré des

problèmes aux contours d’occultation. En effet, notre a priori permet d’obtenir

des discontinuités dans les cartes de profondeurs. Cependant, notre méthode

d’optimisation ne permet pas de placer ces discontinuités à la position correcte.

Les prochains chapitres adresserons ces problèmes en utilisant une représentation

de la géométrie indépendante des images et non redondante.

Représentation utilisant l’occupation et la profondeur

Dans ce chapitre, nous développons un modèle génératif pour la stéréovision

multi-vues, dans lequel la géométrie des objets est définie par une fonction d’occupation

discrète. Dans ce modèle, le monde est représenté par une division de l’espace en

régions pleines de matière ou vides. La profondeur d’un pixel est alors déterminée

de façon naturelle comme étant la profondeur du premier point occupé sur son

rayon de vue. Connaissant donc la profondeur, la couleur du pixel correspond à la

couleur de ce point 3D.

Ce modèle simple a deux avantages. Premièrement, par rapport à d’autres

modèles qui utilisent des fonctions d’occupation, celui-ci modélise explicitement

la relation déterministe qui existe entre l’occupation et la profondeur. Ceci per-
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Figure 2: Staty : En haut, les cinq images d’entrée. En bas, les cartes de visi-

bilité estimées, i.e. la probabilité que les points 3D correspondants à la carte de

profondeurs d’une image, soient visibles dans une autre image.
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Figure 3: Staty : A gauche, un rendu à base des points de l’évolution de la recon-

struction pendant l’optimisation. A droite, deux rendus de la carte de profondeurs

estimée pour la deuxième image.
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Figure 4: Réseau bayésien associé à un seul pixel et son rayon de vue.

L’occupation des voxels ui détermine la profondeur d. La couleur du pixel I
correspond à la couleur C à la profondeur d.

Figure 5: Graphe de facteurs correspondant au modèle pour un seul pixel (gauche)

et pour deux pixels (droite).

met de gérer les occultations de façon exacte. Deuxièmement, à la différence

des méthodes qui utilisent des cartes de profondeurs, le fait de déterminer la pro-

fondeur à partir de la fonction d’occupation fait que les différentes cartes de pro-

fondeurs soient automatiquement cohérentes.

Dans ce chapitre, nous explorons la version discrète de ce modèle, dans laque-

lle l’espace est divisé en un nombre discret de cellules (ou voxels) qui peuvent être

pleines ou vides. La figure 4 montre le réseau bayésien associe à un seul pixel.

L’occupation de tous les voxels sur son rayon de vue est utilisée pour déterminer la

profondeur du pixel. Cette profondeur et la couleur de l’espace sont alors utilisées

pour déterminer la couleur du pixel. Quand la couleur de l’espace est connue, ce

modèle peut être représenté par le graphe de facteurs apparaissant dans la figure

5. Dans ce graphe, la vraisemblance de chaque pixel correspond à un gros facteur

qui lie tous les voxels sur son rayon de vue.

L’optimisation de cet énorme graphe de facteurs est un problème combina-

toire très complexe. Nous avons développé les règles de passage de messages

permettant d’optimiser le graphe par propagation de croyances (en anglais : be-
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Figure 6: Résultats d’une expérience avec un seul pixel.

lief propagation). La taille des facteurs et le grand nombre de boucles limitent la

précision des résultats obtenus par cette méthode.

Résultats

Nous avons validé le modèle en faisant différentes expériences. La première,

consiste à optimiser un modèle réduit qui contient un seul pixel. Pour ceci, la

vraisemblance de la profondeur du pixel a été fixée manuellement (ligne bleue,

figure 6). Le vrai a posteriori sur l’occupation qui résulte de cette vraisemblance

a été calculé par des méthodes d’échantillonnage (ligne verte). Quand on calcule

cet a posteriori par la méthode de passage de messages, on obtient un résultat

assez différent (ligne rouge). En général, pour différentes vraisemblances, le vrai

a posteriori et celui calculé par le passage de messages sont toujours similaires

dans les voxels les plus proches du point de vue, et de plus en plus différents

lorsqu’on s’en éloigne.

Nous avons aussi calculé le maximum a posteriori (l’occupation la plus proba-

ble, ligne bleue claire) avec la méthode de passage de messages. Le vrai maximum

serait la configuration dans laquelle tous les voxels avant le pic de la vraisem-

blance (voxel 32) sont vides et tous les autres sont pleins. On observe, que le

résultat obtenu est vide pour trop de voxels.

Nous avons alors testé la méthode pour des paires stéréo en espérant que

l’interaction entre les différents pixels pourrait améliorer les résultats. En effet,

les résultats sont meilleurs (figure 7), mais on observe toujours cet effet de ¡¡ sur-

creusage ¿¿. Ceci est évident dans les zones moins texturées, où des gros trous
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Figure 7: L’image de gauche, la vérité terrain et nos résultats.
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apparaissent.

Conclusion

Nous avons développé un modèle qui explique les images d’entrée à partir de

l’occupation de l’espace par le moyen des profondeurs des pixels. Le modèle est

très satisfaisant car il correspond à la façon de laquelle les images ont été générées

et modélise les occultations explicitement. Cependant, l’optimisation du modèle

s’est révélée bien difficile. La méthode de passage de messages que nous avons

utilisée n’a pas fonctionné correctement ce qui est normal car le graphe contient

beaucoup de boucles. On a donc un bon modèle, mais qui est, à présent, trop

compliqué à optimiser.

Le gradient de l’erreur de reprojection

Dans ce chapitre nous développons un modèle génératif pour la stéréovision multi-

vues qui représente la géométrie de la scène par une surface fermée et lisse. Ce

modèle peut être vu comme étant la version continue du modèle d’occupation +

profondeurs du chapitre précédent. Cette fois-ci, on considère l’occupation de

tous les points de l’espace et non seulement de quelques cellules. La frontière

entre les points occupés et ceux vides est la surface qu’on cherche à optimiser.

Dans ce modèle, la vraisemblance des images est calculée en projetant la sur-

face reconstruite dans les images et en comparant les images prédites avec celles

observées. L’énergie correspondante à cette vraisemblance est une intégrale sur

le domaine de l’image de la différence entre les deux images. Nous appelons ce

type d’énergies, fonctionnelles d’erreur de reprojection.

Notre contribution principale est le calcul exacte de la dérivée de la fonction-

nelle d’erreur de reprojection. Ceci permet, pour la première fois, d’optimiser ce

type de fonctionnelles par des méthodes d’évolution de surfaces. La principale

difficulté a été de bien tenir compte des changements de visibilité qui apparaissent

lorsqu’on déforme la surface. Nous présentons une étude géométrique et analy-

tique de ces changements qui est fortement basée sur la théorie des distributions.

Cette étude est ensuite utilisée pour calculer la dérivée de la fonctionnelle.

Notre analyse montre et quantifie la forte influence qu’a le mouvement des

contours d’occultation sur l’erreur de reprojection. Comme conséquence de cette

forte influence, pendant la minimisation de l’erreur de reprojection, on observe

que les contours d’occultation ont tendance à se placer dans leur position correcte.

Notre travail permet donc de justifier les méthodes qui utilisent des contraintes

de silhouettes ou de contours apparents et de les comprendre comme étant des

approximations d’un seul critère : l’erreur de reprojection.
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Figure 8: Les quatre images d’entrée et trois rendus de la reconstruction obtenue.

Résultats

Nous avons réalisé des évolutions de surfaces pour des jeux d’images de synthèse

et réelles. Les images des boules (figure 8), par exemple, ont été conçues pour

montrer la tendance des contours d’occultation à bien se placer au cours de l’évolution

de surface. En effet, les images ne contiennent aucune texture, donc, la seule in-

formation présente sont les contours d’occultation. Les résultats montrent les trois

boules parfaitement séparées. Les évolutions sur des images réelles comme celles

du temple (figure 9) montrent la capacité des évolutions de grossir, ce qui était

difficile à obtenir avec les méthodes d’évolution de surface précédentes.

Conclusions

Dans cette thèse, nous avons abordé le problème de la stéréovision multi-vues

d’un point de vue bayésien. Nous avons décrit comment les images peuvent être

générées à partir d’un modèle, et nous avons ensuite utilisé l’inférence bayésienne

pour invertir ce processus et retrouver le modèle à partir des images. La relation

entre le modèle et les images est particulièrement compliquée à cause des oc-

cultations qui apparaissent pendant le processus de formation d’images. De plus

l’espace des formes dans lequel il faut faire de l’inférence est aussi très complexe.

L’inférence est donc difficile.

Nous avons développé trois modèles utilisant différentes représentations de

la forme des objets. Un premier utilisant des cartes de profondeurs, un deuxième

utilisant l’occupation d’une discrétisation de l’espace, et un troisième utilisant des
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Figure 9: Première ligne : Quelques images du temple. Deuxième ligne :

L’évolution de la surface. Troisième ligne : La reconstruction finale. Dernière

ligne : La reconstruction finale pour le dinosaure.
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surfaces lisses. En regardant les choses a posteriori, je pense que le fait d’avoir

exploré des représentations de formes spécifiques n’a pas été très bénéfique et que

ceci a retardé la compréhension du problème fondamental qui est la minimisation

de l’erreur de repojection. Ce problème apparaı̂t quelque soit la représentation

utilisée. Le calcul de la dérivée de l’erreur de reprojection est un premier pas pour

résoudre ce problème.

Le modèle d’occupation discret est tout de même utile, puisqu’il y a des situa-

tions où l’approche d’évolution de surfaces n’est pas utilisable. De plus, bien qu’il

n’y ait pas encore une bonne méthode pour l’optimiser, avoir une version discrète

du même problème devrait permettre d’explorer des méthodes qui ne sont pas

utilisables pour le modèle continu.

En ce qui concerne des travaux futurs, il y a deux directions parallèles dans

lesquelles on peut avancer : Chercher des meilleures méthodes d’optimisation

pour les modèles présentés, et concevoir de meilleurs modèles. Pour la version

discrète du modèle d’occupation il faut regarder si les méthodes de coupes de

graphes (en anglais : graph-cuts) seraient applicables, car il a été montré qu’elles

sont plus performantes que le passage de messages pour des graphes avec beau-

coup de boucles [83]. Pour la version continue, il faut explorer la possibilité de

développer des méthodes de relaxation convexe. Ces méthodes ont été récemment

utilisées pour d’autres problèmes variationnels avec un grand succès [108, 18].

Finalement, de meilleurs modèles qui représentent mieux le monde réel de-

vraient être conçus. Il est facile de décrire des modèles plus compliqués – il suffit

de décrire la façon dont les images sont générées. Cependant, ceci amène à des

modèles bien plus compliqués à optimiser que ce que nous avons présenté ici.

Un équilibre entre la complexité du modèle et la facilité avec laquelle on peut

l’optimiser doit être trouvé.
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Chapter 1

Introduction

In this chapter we introduce the problem of multi-view stereo. The general prob-

lem being very complex, we concentrate on the special case of Lambertian scenes

under fixed lighting. We describe the simple image formation process associated

with these scenes. Then, we present the generative Bayesian approach to invert

the process, which will drive the developments of this thesis.

1.1 The Multi-View Stereo Problem

Multi-view stereo is the problem of recovering the shape of objects from images.

Given a set of images of an object or a scene taken with different camera posi-

tions, the goal is to reconstruct the shape, and optionally the appearance, of the

object. It is one of the central problems in computer vision and its applications

are uncountable.

Many animals, including humans, use their eyes to perceive the world. By

observing the world from different viewpoints, either using two eyes or by mov-

ing the head, animals are able to perceive depth and to understand the three-

dimensional geometry of the world. Many cues, such as motion parallax, shading,

color information or occlusion boundaries, are used in the process. While this

ability does not seem to require any effort to animals, being able to reproduce it

on computers has proved to be difficult. Since the beginning of computer vision,

researchers have developped computational algorithms to extract 3D information

from images. Although a general system that will work in any situation is still to

be found, many partial problems have been solved.

Currently, the standard pipeline for reconstructing objects from images has

mainly three stages (Figure 1.1):

1. Sparse matching In a first stage, a number of interesting features, like

small image patches, edges or corners, are detected on each image, and

35
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Figure 1.1: The 3D reconstruction pipeline: feature matching, structure from mo-

tion, and dense reconstruction.

then matched between the different images.

2. Structure from motion In a second stage, the features correspondences

are used to infer the camera position as well as the 3D position of the fea-

tures [59].

3. Multi-view stereo Finally, with the known camera positions a dense re-

construction of the geometry of the objects is computed.

Given that the camera positions are known, the multi-view stereo problem is

equivalent to the problem of finding dense correspondences between the pixels (or

sub-pixels) in the different images. Indeed, if we know the camera positions and

we know that two points in two images are the projection of the same 3D point,

the position of this point can be found by triangulation. Unfortunately, finding

dense correspondences between images is rather hard. The main difficulties are

the changes of appearance, ambiguities and occlusions.

When an image is taken, the light reflected or emitted by the objects of the

scene is captured by a camera. To recover the geometry of the objects from the

light captured by the camera, one has to understand the relationship between the

object geometry and the captured light. In general, the problem is very hard be-

cause the light reflected by an object depends on the object itself, but also on

its surroundings. The same object will appear differently under different lighting

conditions. Moreover, the appearance of an object changes when the point of view



1.2 The Image Formation Process 37

changes because objects do not reflect the same light in all directions. In this the-

sis, we will not confront the problem of appearance changes, and we will assume

that objects reflect the same light in all directions (see next section).

Even with this simplifying assumption, we are left with the problems of am-

biguity and occlusions. In uniform parts of the images, where many pixels have

the same color, finding correspondences is a problem with ambiguous solutions,

and one has to rely on prior knowledge if a single solution is desired. In addition,

occlusions make the correspondence problem ill-defined. If a part of an object

appears in an image, but is occluded in another, pixels of the first image will have

no correspondent in the second.

To tackle these problems, in this thesis, we adopt the Bayesian approach. We

start by describing how the images have been generated from the unknown world,

and then use Bayesian inference to reverse the process and infer the unknown

world from the images. In the following section, we describe the image formation

process and introduce some basic notation. Later, in section 1.3, we present the

Bayesian approach to inverting the process.

1.2 The Image Formation Process

In this section we overview the real image formation process, and then present the

simplified version that will be used in this work.

Images are the result of a complex physical process involving basically three

factors:

1. the light, traveling all around being reflected, refracted, absorbed, scattered

and diffracted;

2. the world geometry and reflectance properties that reflect, refract, absorb,

scatter and diffract the light;

3. and the camera capturing the light arriving it its sensor.

To get an idea of the complexity of the process, it is enough to imagine the life

of one of the photons that is serving your eyes to read this text (see figure 1.2).

If the blinds of your window are open, chances are that the photon’s life started

eight minutes ago in the sun. It has traversed the atmosphere, the clouds and the

window; it has bounced against many walls; and then, finally, has hit this paper

and has been projected into your retina. This is happening for zillions of photons

at the same time, and each of them is taking its particular path from the sun to

your eye.

In order to describe how an image is formed exactly, it would be necessary to

track all the photons that are susceptible of arriving at the camera. The state of
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Figure 1.2: The life of a photon from the sun to your eye through this paper and

more.

all the photons at an instant can be expressed compactly by counting the number

of them that are traversing every point in every direction. The appropriate mag-

nitude for this counting is radiance, and the function that gives the counting at

every point in every direction is the plenoptic function [2]. For a point x and a

direction v, the plenoptic function L(x,v) gives the amount of radiance travers-

ing a differential patch in the direction v, when the patch is placed at x and is

orthogonal to v.

Humans and camera sensors are able to perceive colors. These means that

photons of different wavelength are perceived differently. Thus, it is convenient

to include the wavelength as parameter of the plenoptic function. In this case,

L(λ,x,v) is radiance of wavelength λ traversing x in the direction v.

Because the plenoptic function completely represents the state of the light

(up to polarization), it determines everything that can be observed. Images are

observations of the plenoptic function, and cameras are devices that perform these

observations. Central cameras, for example, measure the plenoptic function at

a single point but in many directions. Measuring in all the directions produces

panoramic images.

The plenoptic function is determined from the world geometry and reflectance

properties that describe how the light is transmitted and reflected. Given a descrip-

tion of the world it is thus possible to compute the images that will be captured by

a camera in that world. This is the goal of photo-realistic rendering in computer

graphics. Of course, computing the whole plenoptic function is a huge computa-

tional challenge. Nevertheless, the problem is solvable in the sense that it has a

well defined solution. We say that it is a direct problem because the output is a

consequence of the input—we know the cause and we seek the consequence.



1.2 The Image Formation Process 39

Multi-view stereo is exactly the opposite problem. We are given a set of im-

ages, and we want to find the world that generated them. We are not even given the

whole plenoptic function, but only a small sampling. We say that it is an inverse

problem because we are given the consequence and we want to find the cause.

Without any further assumption, the problem is extremely difficult; it is am-

biguous, the solution space (world geometry and reflectance properties) is huge,

and the relationship between the images and the world is complex. The latter is

specially due to the multiple reflections that a photon can experiment before arriv-

ing at the camera. The color observed at a pixel is not only due to the surface point

visible on that pixel, but also to all the other surface points that are radiating light

to that point. Hence, every pixel contains information about the whole surface,

and it is difficult to split this information into independent pieces for each surface

point.

In order to simplify the problem we will do two things:

Firstly, instead of searching the reflectance properties of the surface, we will

directly search for the exitant radiance at the points in the surface of the world

(i.e. the amount of light reflected by every surface point). This avoids the inter-

reflection problem because the observed value in a pixel is directly and only re-

lated to the exitant radiance at the observed point. However, the problem is still

ambiguous, even more than before, beause we are not requiring any physical co-

herence to the seeked radiance.

Secondly, we will assume that the radiance exiting a point is the same in all the

directions. This is the constant brightness assumption, and it implies that every

surface point will appear to be of the same color in all the images. The assumption

will hold in a scene containing only Lambertian materials, but may also hold in

other scenes with diffuse enough illumination. Under this assumption, the exitant

radiance at a surface point is a single value (three for color images). This greatly

reduces the ambiguity [87, 6] and narrows the solution space.

In the following we introduce some basic notation and present the simplified

image formation process that we consider.

1.2.1 Basic Setup and Notation

The space can be divided in two regions: the free space, where light travels freely

along straight lines, and the space occupied by opaque matter, where light can

not penetrate. Let Ω ⊂ R
3 be the set of occupied points. We will call Ω the

shape of the world. Let also Γ = ∂Ω be the boundary of Ω. This is the surface

separating occupied points from the free space, where the light is reflected; it is

the only visible part of the world’s shape. Figure 1.3 depicts the situation. In
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Figure 1.3: Basic setup.

the following, we will indistinctly speak about shape reconstruction or surface

reconstruction.

Consider a perspective camera with optical center O. We will note the projec-

tion into the image plane by π : R
3 → R

2. If x is a 3D point, then

u = π(x) (1.1)

is the pixel where it is projected to.

Let P be the camera’s projection matrix [59], such that if x and u are the

homogeneous coordinates of x and u, then

u ∝ Px . (1.2)

We decompose the projection matrix into its internal, K, and external, (R|t), pa-

rameters as

P = K(R|t) . (1.3)

The depth of a point is the distance between the point and the camera origin

measured along the axis orthogonal to the image plane. The depth function d :
R

3 → R is defined as

d(x) = R3x + t3 , (1.4)

where R3 and t3 are the last row and last coordinate of R and t.

When there are many cameras, we will distinguish these entities by a subindex

indicating the camera, as πi, Pi or di.
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A point is said to be visible from the camera if the segment joining it to the

optical center does not contain any surface point besides itself. Only points in the

free space or on the surface can be visible.

For every pixel there can only be a single visible surface point on its viewing

ray. Thus, the projection mapping π gives a bijection between the visible part of

the surface and the image plane. Let π−1
Γ : R

2 → Γ be the inverse mapping that

back-projects pixels to surface points. Given a pixel u, the point

x = π−1
Γ (u) (1.5)

is the surface point that is visible on this pixel.

The depth map of the surface with respect to the camera is a function DΓ :
R

2 → R that, for every pixel u, gives the depth of its back-projection onto the

surface,

DΓ(u) = d(π−1
Γ (u)) . (1.6)

Knowing the depth map of the surface is equivalent to knowing the backprojection

function. The depth map is a parametrization of the visible surface.

1.2.2 Isotropic Radiance Model

Under the constant brightness assumption, the radiance that leaves a surface point

is the same in all the directions. If we only deal with the red, green and blue

components of the light spectrum, this exitant radiance can be specified by a single

three-dimensional vector, which we will simply call the color. Note that this color

refers to the outgoing radiance (the amount of reflected light), and depends on the

incoming light; it does not refer to the albedo (or intrinsic color) of the surface.

Let C : Γ → R
3 be the color map assigning colors to points of the surface.

The image captured by the camera corresponds to the radiance arriving on

the image plane. Neglecting vignetting and any other lens effect, the color value

observed at a pixel corresponds exactly to the color of the surface point visible

on that pixel. The image formation process is then as simple as computing the

back-projection of every pixel onto the surface and taking the color of the back-

projected point. If we note the generated image by I∗, this is

I∗(u) = C(π−1
Γ (u)) . (1.7)

One of the motivations for considering this simplified model was to directly

connect the observation at a pixel to a single point on the surface and avoid in-

terdependencies between different points in the surface. This has been achieved;

the color of a pixel depends only on the back-projected point. However, there is

still an interdependency between the points of the surface. To back-project a pixel
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the whole surface must be known. Reciprocally, to find the pixels where a surface

point is seen, one must know the rest of the surface because the point can be oc-

cluded by some other surface part. Occlusions are the main difficulty remaining

after the simplifications we use.

1.3 Bayesian Rationale for Multi-view Stereo

Multiple images without a doubt make it infinitely easier to prop-

erly segment images (how many animals understand the content of

photographs?).

David Mumford [106]

Inspired by the Bayesian rationale for image segmentation energy functionals

explained by Mumford [106], we present here the general Bayesian approach to

multi-view stereo.

As presented above, multi-view stereo is the inverse problem of rendering. We

are given a set of images and we want to infer their cause. Probability theory pro-

vides the ideal framework for formalizing inverse problems. The idea is to jointly

model the observed data and the unknown variables in a single probability space.

Having such a space one can simply ask the question: what is the probability of a

solution given the observed data? Formalizing real problems in this way is often

called the Bayesian approach.

In multi-view stereo, the observed variables are the pixel values of the input

images. Let us note all of them by I . The unknown variables are the world

geometry and color, which we denote by w. The joint probability of images

and world, p(I, w), is a distribution on the huge space of all possible images and

all possible worlds. This distribution has to encode all our knowledge about the

problem by measuring how plausible every pair of image set and world is to us.

For example, it could encode that if the world is green, we expect the images to

be green, or also that we don’t expect a car to be on the top of a tree.

Defining a joint distribution that perfectly reflects our knowledge is very dif-

ficult. However, good approximations can be done in a rather natural way by

decomposing it in simple terms. Because there is a clear cause-effect relationship

between the world and the images, it is useful to decompose the joint probability

as

p(I, w) = p(I|w) p(w) . (1.8)

Here,

• p(I|w) is the conditional probability of the images given the world. It is

called the likelihood and it should quantify the question: if the real world

happened to be w, how likely would it be to observe I?
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Figure 1.4: Generative model for multi-view stereo. First you create the world;

then, you take pictures of it.

• p(w) is the prior distribution over the possible worlds. It has nothing to do

with the images and it should answer the question: how plausible is to me

that the real world is w?

The decomposition is natural because it follows the way that has to be taken to

generate images: first you create the world, and then you take pictures of it (Figure

1.4). The prior tells which worlds are more likely to exist and the likelihood tells

you how to take the pictures. This sort of decomposition is called a generative

model and is the obvious model to use to formalize inverse problems.

Once the joint distribution is specified, any question involving the modeled

variables has an answer. In our case, we are given a set of images and wonder

how was the world that appears on them. Therefore, the natural question to ask

is how probable is a world given the observed images? The answer is the poste-

rior distribution p(w|I). The posterior distribution is determined from the joint

distribution by

p(w|I) =
p(I, w)

p(I)
=

p(I|w) p(w)
∫

p(I|w) p(w) dw
. (1.9)

This equation is often referred to as Bayes’ Theorem. It has the quality of directly

relating what we want, the posterior, to what we know, the likelihood and prior,

and therefore to solve the original inverse problem.

For some applications, the posterior distribution over all the possible worlds

is not a practical answer to the multi-view stereo problem. A single good world

would be preferred. In this case, a reasonable choice would be the most probable

one which is called the maximum a posteriori or MAP. Independently of the

application, dealing with distributions in the space of all the possible worlds is not

an easy task, therefore most of the time we will content ourselves to find the MAP

estimate.

Maximizing the posterior probability is equivalent to minimizing its negative

logarithm. The negative logarithm of probability distributions is also called en-
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ergy or error functions. The posterior energy is the sum of the likelihood and

prior energies. Using the notation E(a|b) = − ln p(a|b) we have

E(w|I) = E(I|w) + E(w) + const. (1.10)

which is the typical form of energy functionals: a sum of a data term (likelihood)

and a regularization term (prior). The constant term corresponds to the evidence,

− ln p(I), (see section 1.3.3); it does not depend on the world and can thus be

ignored when maximizing the posterior.

To sum up, the Bayesian approach to multi-view stereo consists in three steps:

1. Choosing the space of possible worlds and a prior p(w),

2. describing the image formation process by specifying the likelihood p(I|w),

3. and finally computing or maximizing the posterior p(w|I).

In the following sections, we will discuss the first two points which correspond to

the modeling part. The last step corresponds to an optimization problem and will

be discussed in later chapters for every particular model.

1.3.1 World Prior

Let Ω ⊂ R
3 be the set of 3D points occupied by matter and let Γ = ∂Ω be the

surface that separates the occupied points from the free space. The color of the

surface is defined by a function C : Γ → R
d. A world w is described by both the

shape Ω (or equivalently Γ) and the color map C. Thus, the space of all possible

worlds is constituted by all the shape–color map pairs;

W = {(Ω, C)|Ω ⊂ R
3, C : Γ → R

d} . (1.11)

The prior on the world p(w) should be a probability distribution on W , whose

values are large for worlds that are likely to exist a priori, and small for strange

worlds that we don’t expect to exist. Summing the prior for all the possible worlds

in W should give 1. The problem is that W has infinite dimension, and, therefore,

we do not know how to sum in this space. There are two paths to circumvent the

problem: ignore this fact and avoid having to integrate in this space, or approxi-

mate the space with finite dimensional spaces.

Inspired by the Boltzmann law in statistical physics [22] we can define a ten-

tative probability distribution of the form

p(w) =
1

Z
e−E(w) , (1.12)
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with some energy E of our choice. The normalization constant should then be

Z =
∫

e−E(w)dw, where dw is an hypothetical Lebesgue measure on the colored

shapes space—which is known not to exist. For the purpose of maximizing the

posterior, we can use the energy formulation presented above (1.10), and deal

directly with the energy, avoiding the problem of the existence of the probability

distribution itself.

Many shape prior energies have been proposed in the literature. Normally we

expect the surface of the world to be more or less smooth, which can be quantified

by penalizing the sum of certain quantities over the surface. The most popular

quantity by far is the surface area

E(Ω) =

∫

Γ

dσ . (1.13)

It penalizes surfaces with large area and, therefore, non-smooth ones. It is a very

rough representation of our real prior belief on the world geometry, but it is simple

and easy to optimize. Higher order priors, penalizing the surface curvature instead

of the area, are also possible [157, 34], and avoid shrinking effects generated by

the area prior. When penalizing the curvature, a robust cost function can be used

to occasionally tolerate sharp edges [35, 156, 37].

Another approach to build priors is to use examples [160, 29]. If we know

that the world is similar to a set of examples, we can penalize worlds that do

not look like the examples. This is a very strong prior in the sense that only the

small proportion of shapes that look like the examples are probable. A remarkable

application of such a strong constraint is the reconstruction of 3D faces from even

a single image given a prior database of faces [13]. Such priors are not genereally

used in multi-view stereo mostly because it is rare to have examples of what you

want to reconstruct. A possible soft alternative, would be to have examples of

local surface patches [90], and to enforce the similarity between the patches of the

reconstructed world and the examples.

If we are interested in more than the MAP, then we need an actual distribution

and not only an energy. The only current solution is to approximate the colored

shape space by some finite dimensional space. A simple way is to divide the space

into a finite number of cells, for example voxels. In the discrete space it is possi-

ble to approximate some of the previous energies by pair-wise potentials linking

neighboring sites [16]. The result is a Markov Random Field prior distribution on

the occupancy. This approach will be taken in chapter 4.

In addition to these geometric priors, we can also consider terms involving the

color map. The appearance of surfaces is structured; no surface looks like random

noise. We can define energies that prefer smooth textures by penalizing the gra-

dient of the color map [73]. It is also possible to learn the appearance of objects

from images, and to build priors based on database of image patches [44, 42, 114].
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It is also relevant that the radiance discontinuities often coincide with the edges

of the objects; thus, shape and color are correlated. The prior on the color map

can be combined with the geometry to reflect this correlation. The result is a color

driven smoothing of the surface [3, 146].

In general the choice of a good prior distribution is hard and subjective. Cur-

rently, in multi-view stereo, the choice is usually done depending on what energy

function we are able to optimize, rather than by looking at what we expect the

world to be. Hopefully, the situation will improve as better optimization meth-

ods are developed. On the other hand, the fact that very good results are being

obtained with very simple priors [130] suggests that, with enough high quality

images, the problem may not be as ambiguous as one might think. In that case, a

good model of the images’ likelihood would be enough.

1.3.2 Image Likelihood

The likelihood of the images defines the probability of observing a set of images

given a certain world. From the world description, the camera parameters and

the image formation process described above, it is possible to synthetically gen-

erate the set of images that would ideally be observed. We will call these images

the ideal images, and we will note them by I∗, or by I∗(w) to highlight their

deterministic dependence on the world.

If the world model is correct, we expect the observed images to be equal to the

ideal images, but in practice they might differ. There are mainly three reasons:

1. noise and quantization effects produced by the camera sensor,

2. deviations from the constant brightness assumption due to non-Lambertian

surfaces or different shot sensitivities,

3. and occlusions by unmodeled objects such as a fly on the objective or people

in front of a building.

Let us start by the simplest case, where there is only an additive noise, in-

dependent for every pixel. The color, I(u), of a single pixel, u, is then given

by

I(u) = I∗(u) + ǫ , (1.14)

where the noise, ǫ, follows some distribution, for example a Gaussian. The im-

ages’ likelihood is then the product of the likelihoods of every pixel in every im-

age, i,

p(I|w) =
∏

i

p(Ii|I
∗
i ) =

∏

i

∏

u

p
(

Ii(u) | I∗i (u)
)

. (1.15)
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When the noise is Gaussian, the corresponding energy is simply the sum of squared

differences between the observed and the ideal images,

E(I|w) = − ln p(I|w) =
∑

i

∑

u

(Ii(u) − I∗i (u))2 + const. (1.16)

We will call this energy the reprojection error.

Comparing the two images pixel by pixel is a very simple dissimilarity mea-

sure. However, the ideal images are generated from the world, and they already

encode the image formation process. In particular occlusions are taken into ac-

count. Thus this simple dissimilarity measure is not simple when regarded as

a function of the world, and its optimization is the main concern of this thesis,

especially in chapters 4 and 5.

As long as the constant brightness assumption holds and the only deviation is

due to an independent Gaussian noise, the sum of squared differences is a good

likelihood energy. However, when the observed scene contains specular objects

and the constant brightness assumption does not hold, our model is no longer

valid. The natural solution to this is to update the image formation model to take

into account specular reflections. This implies modifying the world representa-

tion and the rendering process. While possible, the resulting likelihood will be

certainly harder to deal with, because the relationship between world and images

will be more complex.

To avoid this complexity, an alternative to include everything into the model is

being robust to unmodeled effects. Being robust is always desirable because how-

ever complex a model is, it is always possible to observe unmodeled phenomena.

In our case these could be a specular highlight, but also a bird flying in front of the

camera or some dust in the the sensor. In order to be robust to such effects, one

can change the pixel likelihood. Instead of modeling the noise with a Gaussian

distribution, which has its mass very concentrated around zero, one can use some

distribution with heavier tails so that strong differences between the observed and

ideal pixels are not completely unlikely.

An elegant way to define the robust distribution is by using a mixture. The

probability of an observed pixel can be defined as a mixture of (i) a Gaussian

distribution, in the case the model is valid for this pixel; and (ii) some flatter dis-

tribution in case the pixel is an outlier. There is therefore a new (hidden) variable

in the model that says whether the pixel is an inlier or an outlier [149, 144]. We

will call them the outlier variables. Figure 1.5 depicts the way the likelihood is

computed: rendering the ideal images, masking the outliers and comparing with

the observed images. It has to be noted that the outlier variables have nothing

to do with geometric occlusions happening during the image formation model;

They indicate whether the ideal image is visible in the observed image, not the

geometric visibility of the points of the world in the ideal image.
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Figure 1.5: The world,w, is rendered into the ideal images, I∗, outliers are masked

away, and the rest is compared with the observed images.

The outlier variables of different pixels will normally be correlated. If a pixel

is an outlier its neighbors are likely to be so too because the cause of the outlier

(the highlight, the bird or the sensor’s dust) will probably be larger than a pixel.

The prior on the outlier variable can represent that by enforcing the coherence

between neighboring outlier variables [145].

Background Model

Until now, we assumed that we wanted to reconstruct everything appearing in the

observed images. In many situations, however, we are only interested in one of

the objects in the scene, even if other objects appear in the background of the

images. We would like the reconstructed world to represent only this object. In

that case, if we render the world into the images, it will only cover a part of them

and, therefore, the ideal images will be smaller than the observed images. What

is then the likelihood of a pixel not observing the world?

The probability of a pixel knowing that it is observing the background has to

be defined. The situation is the same as in image segmentation [106, 21, 124]. If

we want to separate the object of interest from the background we have to give a

model for both. The object of interest is modeled by the world w; the background

model depends greatly on the situation and on what do we mean by background.

Ideally, we would be given a 3D model of the background. This way we could

render the background into the images and complete the empty parts of the ideal

images. In practice, it is likely to not have such a model, especially because we are

just trying to avoid reconstructing it. But, in fact, we do not need the 3D model,

only the renderings. If we are able to take the images from the same point of view

with and without the object of interest, then the images without the object can be
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used as a background model.

In the absence of background images, we have to use weaker models. We can

for example assume that the background pixels are all of the same color [177, 21],

or we can model the color distribution of the background pixels [26, 123].

We can use whatever background model fits the situation, but we have to use

one. Formally, the likelihood of pixels not covered by the reconstruction has to

be defined in order to have a proper joint distribution p(I, w). Practically, not

counting background pixels leads to models whose maximum likelihood solution

is the empty surface: no surface, no ideal image, no error. Correcting this by

changing the world prior would be twisted.

1.3.3 A Word on Evidence

As a bonus, modeling the joint probability of images and world, we also deter-

mined a prior distribution on the images, p(I). This distribution is interesting

because, although we did not choose it directly, it should correspond to our idea

of how an image looks like. This is the most fundamental question in computer

vision and image processing, what is an image? [106, 90]. It also gives a good

quality check for any model. Sampling p(I) should give images that are as realis-

tic as possible. Of course, for the existing models, the samples look quite simple

yet. In the context of model selection, p(I) is called marginal likelihood because

it is obtained by summing over the possible worlds, or evidence because it gives

a score to the whole modeling or hypothesis.

1.3.4 Conclusion

It is my belief that a robust solution to the general low-level vi-

sion problem can be found using this approach. The main obstacle

is to find more effective and faster ways of estimating the w minimiz-

ing E(w) than those presently available.

David Mumford [106]

The presented generative approach provides a clean and straightforward ap-

proach to defining the solution of the multi-view stereo problem. Prior knowledge

is included, which may resolve ambiguities. The approach is extensible, it explic-

itly states the assumptions, and it quantifies the uncertainty of the results.

The generative approach, however, has an important pitfall. Although defin-

ing the model is simple, actually finding the solution is often hard. For the simple

image formation model considered in this work, the main difficulties come from

the occlusions during the rendering. Correctly handling them will be our main
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concern. For more general image formation models, more difficulties will appear

mainly due to shadows (light occlusions) and inter-reflections. The tools devel-

oped in this thesis are to be seen as a first step toward these more general models.

1.4 Contributions of this Thesis

In this thesis, we systematically apply the Bayesian rationale described above to

different world representations, and address the associated computational prob-

lems.

• We commence by presenting a generative model that represents the world

using multiple depth maps (chapter 3). The use of depth maps as represen-

tation is motivated by algorithmic simplicity and because their resolution

matches the resolution of the images. Using multiple depth maps—instead

of a single one—lets us explain all the pixels in all the images, and also

permits a simple description of geometric occlusions.

We observe two downsides in the depth maps representation. Firstly, the

shape is difficult to optimize near the depth discontinuities. In effect, small

movements of the shape’s occluding contour would require large changes of

depth. Secondly, the representation is redundant; a point in the surface will

be represented by the depth maps of every image where it is visible. This

increases the computational cost, and requires a special effort to ensure that

the multiple depth maps are coherent.

• In view of this, we develop a model representing the shape directly by the

occupancy of the space independently from the images (chapter 4). This

representation avoids the shortcomings of depth maps because the shape

can be modified directly, and there is no redundancy. Still, depth maps are

implicitly required by the image formation process because they determine

the points of the surface that are visible in the images. Thus, in the proposed

generative model, the occupancy generates the depth maps, and the depth

maps generate the images. We will call it the occupancy–depth model be-

cause it explicitly characterizes the causal relationship between occupancy

and depth.

• In chapter 4, we address the discrete version of the occupancy–depth model,

where the occupancy of the cells of a discretized space is considered. In this

case, the shape is determined by a finite set of occupancy variables, and the

occupancy–depth model has the form of a factor graph, where the likelihood

factor of each pixel is linked to the occupancy variables of the cells crossing

its viewing ray.
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• In chapter 5, we address the continuous version of the occupancy–depth

model, where occupancy of all the points in the space is considered. In

this case, finding the maximum a posteriori becomes a shape optimization

problem. We solve the problem using gradient descent surface evolution.

For this purpose, the gradient of the likelihood with respect to the shape has

to be computed.

We write the likelihood energy in a general form that we call the reprojec-

tion error functional, and compute its derivative. Computing the derivative

of the reprojection error is interesting because it involves understanding the

changes of visibility that occur when the surface moves. We present an

analysis of the visibility that enables to quantify these changes by relying

on the theory of distributions.

The resulting expression for the derivative has two terms: one accounting

for the movement of the visible parts of the surface, and one accounting

for the visibility changes produced by the movement of the occluding con-

tour. During the gradient descent surface evolution the latter term moves the

occluding contours of the shape in order to hide or uncover what is behind.

The movement of the occluding contours produces a movement of the depth

discontinuities, which was impossible in the depth map representation.

In summary, on the what to optimize side, we propose the occupancy–depth

model because it naturally explains the image formation process (occlusions in-

cluded). On the how to optimize side, we compute the derivative of the reprojec-

tion error enabling the optimization of the model via surface evolution.
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Chapter 2

State of the Art

Multi-view stereo has been studied for a long time. Since the beginning of com-

puter vision, many algorithms have been proposed. A recent survey on the subject

by Seitz et al. [130] shows the rapid apparition of new algorithms in the last few

years. This growing interest has two reasons. Firstly, good camera calibration and

structure from motion algorithms are now available. Having accurate calibration

data makes it possible to solve the problem in ways that would not work with er-

rors in the calibration. Secondly, new efficient shape optimization methods have

appeared. Hence, new multi-view stereo methods using them have been proposed.

In this chapter, we present a review of the different approaches that have been

taken for solving the multi-view stereo problem. Then, we discuss additional

information that can help to solve the problem. Finally, we review the shape

representation and optimization tools used by the current techniques.

2.1 Approaches

There exist many techniques to solve the multi-view stereo problem. Different

assumptions and different choices on how to represent the scene, how to define

what is a good reconstruction, how to deal with the occlusion problem, and others,

make each technique unique. It would be impossible to properly classify all the

techniques according to a single criterion, but we can get a good overall idea of

the available methods by looking at how they approach the problem.

In the following, we group the different approaches into three categories that

we call bottom-up, top-down and hybrid methods. Bottom-up methods are tech-

niques that directly extract 3D information from the images, usually, by matching

patches between different images. Top-down methods are those that define an en-

ergy function relating the shape with the images, and then look for the minimum.

Finally, many methods are composed of a first bottom-up step, where 3D features

53
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are extracted, plus a top-down step, where a surface is fitted to these features. We

call them hybrid methods.

2.1.1 Bottom-Up: Direct Methods or Detectors

Since the relative orientation and calibration of the cameras are known, a 3D point

can be projected into different images, and the color of the pixel at its projection

can be observed. A 3D point that appears with the same color in all the images

is said to be photo-consistent. Under the constant brightness assumption, points

lying on the surface of the world are generally photo-consistent. This suggests a

simple algorithm for finding surface points: for every 3D point, collect the color

of the images at its projections, and if they are sufficiently similar, then accept the

point as a surface point.

In general, this algorithm fails for two reasons. On the one hand, the assump-

tion that surface points are photo-consistent does not imply that all the photo-

consistent points belong to the surface. On the other hand, due to occlusions,

surface points might not be photo-consistent. Thus, the algorithm will, both, de-

tect non-surface points, and fail to detect some surface points. In spite of these

issues, this simple algorithm constitutes the basic skeleton of bottom-up methods.

Improvements

In order to reduce the number of false positive detections, we can strengthen

the photo-consistency test. In addition to require a surface point to be photo-

consistent, we can require a small neighborhood of the point to be photo-consistent

too. This is often called aggregation of the matching cost. Assuming the surface

to be smooth, a small surface patch around a point can be approximated by planar

patch, and it is reasonable to expect that this patch will be photo-consistent. The

photo-consistency of the patch can be computed with different criteria such as the

sum of squared differences or the normalized cross-correlation [129].

The local planarity assumption avoids false detections. In order to avoid the

contrary—surface points not being detected—one should take care of occlusions.

Occlusions are problematic because to detect them, we should already know the

searched shape. Simple solutions are to use robust photo-consistency measures

[149, 150], or to accept a patch even if it is only photo-consistent in a few images,

as it may be occluded in the others [76]. Because the local planarity assumption

might be inaccurate near the occlusion boundaries, it has also been proposed to

use adaptative windows for aggregating photo-consistency [74].
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Search Strategies

The space of all 3D points or, even worse, all 3D patches is very large. In order to

explore it efficiently some search strategy must be taken.

Depth map based techniques concentrate on finding the surface points visible

in one given reference image. For every pixel in the image, a number of points

of its viewing ray are tested. The winner—if any—is the most photo-consistent

one [75, 27]. To reduce the computational time, the patches are usually assumed

to be parallel to the reference image plane. Still, once an acceptable estimation

of the 3D point is available, the orientation can be found through optimization

of its photo-consistency [96, 36, 48]. This approach is simple and potentially

fast, as it can be implemented in parallel and on commodity graphics hardware

[174, 28, 182].

To reconstruct a complete scene using a depth map based technique, it is nec-

essary to run the algorithm for many reference images. Alternatively, scene based

techniques explore the 3D space directly, without reference images. One can start

considering that the space is empty, and progressively add detected surface points

[131, 58], or start by assuming the space to be full, and progressively carve non

photo-consistent points [87, 133]. The second procedure is called space carving,

and has the property of being conservative with respect to visibility: if a point is

occluded in the real scene, then it is occluded in the carved volume during the

carving procedure (as long as no surface points are incorrectly carved, of course).

Direct methods have drawbacks. Having to make hard decisions makes it dif-

ficult to handle occlusions properly, and it is also difficult to enforce prior knowl-

edge about the scene, such as smoothness. This makes them perform badly in the

textureless regions of the images. It has to be said, however, that as long as there

is texture and enough images are available, current bottom-up methods work very

well [54, 48, 58], and fast, and thus less accurate, versions are being used as the

first step of the hybrid methods presented in section 2.1.3.

2.1.2 Top-Down: Energy Minimization and Inference

The problems encountered by the direct methods can be solved by addressing

the problem globally. Instead of making independent point-wise decisions for

finding surface points, we can search for the surface as a whole. The idea is that,

given a reconstruction of the observed world, we can measure how coherent is the

reconstructed world with the images, and also how pretty the world itself is. This

gives a quality measure for the reconstruction. The best reconstruction is the one

with optimal measure.

In general all the methods use a cost function with two terms: a data term and
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a regularization term. They correspond to the likelihood and prior (see section

1.3) of the decomposition

p(I, w) = p(I|w) p(w) . (2.1)

We distinguish two approaches to the construction of such models: the gen-

erative one, which defines the image likelihood in the natural way presented in

the introduction, and the non-generative, which defines the image likelihood in an

ad hoc way by summing some image matching score over the surface. The latter

approach is presented first.

Non-Generative

Non-generative approaches are the logical extension of direct methods. Direct

methods use photo-consistency scores to decide whether a point is likely to be on

the surface or not. If we are given a tentative reconstruction, we can evaluate these

scores for the points on its surface. By cumulating the scores over the surface, we

can define a global surface photo-consistency energy.

Figure 2.1: Two non-generative approaches to stereo. On the left, a 2D MRF con-

taining a depth per pixel. On the right, a 3D MRF containing a binary occupancy

per voxel.

Depth maps models If we only want to reconstruct the surface visible from one

reference image, then we can parameterize it through a depth map z. The standard

form of the energy in this case is a pairwise Markov Random Field:

E(z) =
∑

i

φi(zi) +
∑

ij

ψij(zi, zj) , (2.2)

where the first sum extends over the pixels i of the reference image (Figure 2.1).

The function φi gives the photo-consistency error of the 3D point on the viewing
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ray of pixel i at depth zi. Therefore, the sum cumulates the errors over all the

points of the parametrized surface. This corresponds intuitively to the likelihood

term. However, it has not been defined as the probability of the images given the

surface, but simply as the sum of a matching cost.

The second sum is over the set of neighboring pixel pairs (i, j). The function

ψij penalizes the difference of depth between neighboring pixels. Thus, it models

our prior belief that the surface is generally smooth. This smoothness constraint

is the improvement we get with respect to direct methods. As a result, we can no

longer make independent decisions for every pixel, since the pixels’ depths are

inter-connected.

The use of Markov Random Fields and Bayesian methods in computer vision

was introduced as an alternative to regularization theory [53, 98, 159, 149]. Ro-

bust forms of the ψij function avoid over-penalizing discontinuities. Thus, it is

possible to obtain piecewise smooth results, which is exactly how real depth maps

are.

The vast majority of depth based stereo algorithms use this type of energy

[129, 125, 164, 148]. Many extensions have been proposed to better handle oc-

clusions, usually by adding explicit variables to flag them [8, 76, 147]. It has also

been proposed to use an equivalent continuous formulation of the energy,

E(z) =

∫

I

φ(u, z(u))du +

∫

I

ψ(u,∇z(u))du , (2.3)

whose optimization leads to diffusion–reaction PDEs [159, 3, 146].

In order to represent the whole scene and not only one depth map, the formu-

lation has been extended to multiple depth maps [80, 115, 86]. A set of multiple

depth maps is a redundant representation of the surface. Therefore, one has to add

constraints to ensure coherence.

Shape Models A simpler approach to reconstruct complete scenes is to directly

represent the scene’s shape, Ω, instead of using depth maps. The corresponding

energy functional has the form

E(Ω) =

∫

Ω

f(x) dx +

∫

Γ

g(x,nΓ) dσ . (2.4)

The first term is the sum of a density function f inside the shape, and is called the

ballooning functional. The second term is the sum of a cost g over the surface,

and is called the weighted area functional. The value g(x,nΓ) should give the

photo-consistency error of a patch at position x with normal nΓ, so that the integral

measures the overall surface photo-consistency. Shape prior costs can also be

included in g as well as in f .
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The optimal surface is usually searched by surface evolution using level sets

[41, 70, 135, 72], meshes [46, 187, 60], or oriented particles [45, 153]. Other

optimization strategies include applying mesh transformations [104, 167], and

message passing [169].

Boykov and Kolmogorov [16], showed that simple forms of these energies can

be approximated by discrete 3D MRFs. Let u be the occupancy function: ui tells

whether a point i is inside an object or in the free space. The energy has the form

E(u) =
∑

i

fi(ui) +
∑

ij

gij(ui, uj) , (2.5)

where fi and gij are discrete version of f and g. Intuitively, surface points cor-

respond to edges separating occupied and free points (see Figure 2.1). This for-

mulation has the advantage that one can use the graph cut algorithm to find its

global minimum. Many applications to multi-view stereo have been proposed

[111, 166, 185, 67, 161].

Being able to find global minima, one quickly discovers the pitfall of the for-

mulation. Because the photo-consistency is summed over the surface, the smaller

the surface, the lower the error; in the extreme, no surface, no error. This produces

a bias toward small surfaces, which is called the minimal surface bias [5, 179].

In the case where there is no ballooning term, the global minimum of the energy

is the empty shape.

The simplest way to counter the minimal surface bias is to pump the sur-

face by using a negative ballooning density f [168, 166]. Unfortunately, naive

choices of f give balloon like results. Better ballooning forces can be constructed

by accumulating evidence of occupancy [61]. Another option, is to weight the

photo-consistency cost according to an initial estimate of the surface [5], or to

equivalently change the discretization density [179].

Interestingly, this bias was not present in the depth map formulation above,

and will not be present in the generative approaches presented below. This is

mainly because photo-consistency is summed over the image domain, whose size

is independent of the size of the surface.

Generative

While the goal of the non-generative approach is to find the surface with lower

photo-consistency error, the goal of the generative approach is to find the surface

that best reproduces the input images. This gives a natural definition of the image

likelihood relying on the image formation process. Given a reconstruction of

the world, one can render the ideal images that would be obtained from it, and

compare them to the observed images. A generic form of this reprojection error
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functional is

E(Ω) =

∫

I

ρ
(

I(u) − I∗Ω(u)
)

du , (2.6)

where I is the observed image, I∗(Ω) is the rendered one, and ρ is some error

function.

With accuracy as main goal, people at the NASA [25, 105] have used the

generative approach to reconstruct shape and emittance of planets from satellite

images. A very careful description of the image formation process from meshes

permitted achieving super-resoluted results.

Stereoscopic segmentation [177] is a different application of the same ap-

proach. Its goal is to segment an object in multiple images while, at the same

time, to reconstruct its geometry. The idea is to reproject the reconstruction onto

the images and compare this with the observation. The object and the background

are assumed to have approximately constant appearance. Thus, the model can

be seen as the 3D version of the Chan–Vese model for image segmentation [21].

Stereoscopic segmentation has been extended to handle non-constant radiances

[73] and even to the shape-from-shading problem [71].

The reprojection error functional used by these methods (2.6) is different from

the ones used by the non-generative models (2.4) in that the sum is done over the

image domain. In addition, the functional involves the rendering of the ideal im-

ages I∗ which requires to properly handle occlusions. This makes the functional

difficult to optimize. Appearance-cloning [79] is a voxel carving technique explic-

itly designed to optimize the reprojection error. In chapter 4, we investigate the

use of graphical model based techniques for the same voxel based optimitzation

[52].

In stereoscopic segmentation, the optimization is done via gradient descent

surface evolution. As the functional involves visibility terms, one must quantify

how the visibility changes when the surface moves. This was done by assuming

the object to be convex and using the concept of oriented visibility. In chapter

5, we derive the exact differential of the reprojection error without assuming the

objects to be convex, thus taking into account self-occlusions [50].

If one wants to evaluate the performance of stereo algorithms, the reprojection

error is a natural error measure that can be used without having a ground truth

reconstruction. However, not all of the stereo algorithms output textured surfaces;

most only reconstruct a color-less surface. Szeliski [151] proposed to use some of

the images to texture map the models, and then reproject them into another image

and compute the difference. The procedure is reminiscent to cross-validation in

statistics. He called this measure the prediction error.

Pons et al. [118] developed a multi-view stereo and scene flow estimation al-

gorithm that minimizes the prediction error via gradient descent surface evolution.
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Importantly, they showed how to minimize the prediction error when an arbitrary

measure of dissimilarity is used to compare the predicted and the input images.

By using contrast invariant measures such as mutual information, or measures ro-

bust to contrast changes such as normalized cross-correlation, the algorithm can

be used to reconstruct non-Lambertian scenes or to use images taken under differ-

ent lighting conditions. Being robust to these effects is a major improvement to

the reprojection error based methods that require the effects to be included in the

model.

The idea of comparing images trough the model instead of comparing the

color of the model to the color of the images can be understood, from a generative

point of view, as marginalizing the color of model as well as the specular effects

and the contrast changes. Of course the real marginalization would be rather hard

to perform—imagine summing over all the possible world textures and lighting

conditions—but the robust image to image comparison can be seen as an approx-

imation of this real marginal likelihood. This is a common practice in statistical

data analysis, where the real likelihood is often too complex, and it is replaced by

a datum-to-datum comparison, which is called pseudo-likelihood.

Strecha and colleagues have developed generative models using a single depth

map representation of the world [144, 145, 143]. In order to deal with occlusions

and unmodeled effects like moving objects or specular highlights, they define

an outlier process, which is responsible for the generation of pixels that suffer

such effects. This model is different in that the depth map only gives a partial

description of the world observed in the images. Pixels on the other images that

do not observe any part of the surface modeled by the depth map are not explained,

and therefore, can not be generated. Another particularity is that these models do

not explain geometric occlusions through the image formation process but through

the outlier process. Thanks to this, the models fit into an MRF formulation and can

be effectively optimized in a similar manner as the non-generative formulations.

We developed an extension of Strecha’s model to multiple depth maps [51].

The motivation was that using a depth map per image, the complete scene can

be modeled, all the pixels are explained, and geometric occlusions are easy to de-

scribe geometrically. This comes at the price of an increased complexity as depths

of different images interact with each other. The resulting energy functional turns

out to be very similar to the one defined previously by Kolmogorov et al. [84, 86],

even though they did not formulate the energy in this generative manner. Our

model will be presented in chapter 3.
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Probabilistic Carving and Transparency

We present here, several techniques that have been proposed to extend space carv-

ing (sec. 2.1.1) probabilistically, and that do not necessarily fit into the generative

or non-generative categories presented above. Underlying all these techniques is

the idea of assigning soft occupancies to voxels. The goal is to avoid the hard deci-

sions made by direct techniques, and to replace them by soft occupancies updates

or random occupancy sampling.

De Bonet and Viola [32] proposed an algorithm to reconstruct translucent ob-

jects by assigning opacity values to voxels. They suggest a relationship between

occupancy uncertainty and transparency. However, stating that objects are opaque

and being uncertain of occupancy is inherently different from admitting that ob-

jects can be transparent [152], and the relationship between the two concepts has

not been explored farther.

Probabilistic space carving [19] is an algorithm for assigning occupancy prob-

abilities to voxels. The algorithm is based on some simplifying assumptions that

make it possible to independent updates of the soft occupancy of every voxel.

Bhotika and Kutulakos introduced the concept of the photo-hull distribution

[10]. This is a distribution on the shape space that gives, for every shape, the

probability that the shape is the photo-hull of the input images. This distribu-

tions corresponds intuitively to the images’ likelihood. Their analysis leads to a

stochastic algorithm for drawing samples from the photo-hull distribution.

2.1.3 Hybrid

In the previous sections, we have seen the bottom-up and the top-down approaches.

Bottom-up methods worked by detecting surfaces points directly from the images.

Top-down methods recovered the surface by minimizing some photo-consistency

energy. Here we will present the hybrid approach, which combines a first bottom-

up detection with a final top-down surface fitting stage.

The principle is that, while bottom-up methods can be inaccurate, they gen-

erally recover a point cloud that is sufficiently dense for fitting a surface to it

[94, 48]. The detected point cloud may be noisy, contain outliers, and fail to

represent the uniform regions of the images. Yet, robustly fitting the surface can

smooth noise, reject outliers, and fill undetected surface regions with a smooth in-

terpolation. The input images can still be used to boost the surface fitting process

[184, 121, 161].

The voting approach of Hernández and Schmitt [60] has a similar principle.

The method cumulates matching scores in an octree grid: it detects candidate sur-

face points, and, for each of them, it adds its matching score to the corresponding

cell. Next, it fits a deformable surface using the cumulated scores plus a silhouette
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force (see section 2.2.1 below for more details).

Another, increasingly popular, hybrid approach is to merge noisy depth maps.

Tens of bottom-up methods can be used to quickly recover a depth map for every

input image (see section 2.1.1). These depth maps are usually inaccurate, but

they are also redundant. The redundancy can be exploited during the merging to

improve accuracy and detect outliers. Classical methods for merging depth maps

where designed to merge high-quality (when compared to stereo) laser scanned

depth maps [31, 63], and can not be applied directly. Hence, robust methods

are being developed [172, 80, 141, 181]. Real-time merging algorithms are also

coming out [100].

With robustness in mind, probabilistic models for merging depth maps have

also been proposed. The probabilistic depth carving method [175] performs an

ad hoc sequential Bayesian update of the occupancy estimates on a voxel grid to

infer occupancy from depth maps. Soft visibility based occupancy estimates can

also be used as an intelligent ballooning force to avoid the minimal surface bias

of non-generative top-down methods [61].

To summarize, hybrid techniques offer a very good compromise between ac-

curacy, robustness and speed.

• Accuracy is better than in bottom-up methods thanks to the smoothing and

averaging effect of the final surface fitting.

• Robustness is better than in top-down approaches because in the detection

step a global search for surface points, which gives an easy initialization

and constraints for the surface estimation.

• Hybrid methods can be fast because (i) there is no need for high accuracy

during the bottom-up step, and (ii) good initialization and geometric con-

straints are available for the top-down step.

2.2 Additional Cues

The multi-view stereo approaches presented above, use the input images as the

only source of information. In practice, additional information, such as some

sparse 3D geometry or the position of the light sources, may also be available.

In this section, we review some of these additional data and the ways they are

exploited.

2.2.1 Known Geometry and Visibility Constraints

Here, we present some geometric information that is typically available. This

includes sparse sets of points, known pixel depths and visibility constraints.
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Points

Multi-view stereo images are typically calibrated using structure from motion al-

gorithms. These algorithms recover the camera parameters and positions from a

sparse set of point matches between the images. The result of the procedure con-

sists in the camera parameters and position for every shot, plus the 3D locations

of the matched points. The 3D points of a sparse reconstruction of the scene can

be used to initialize and to constrain denser reconstructions.

Reconstructing surfaces from unorganized point clouds has been largely stud-

ied in computational geometry [64, 40, 4, 15]. The basic principle is to consider

that the searched shape is a subset of the Delaunay triangulation of the point cloud

and to decide which tetrahedra of the triangulation are inside and which are out-

side the shape [14]. Usually, the point cloud obtained from the structure from

motion algorithms are very sparse and noisy, and these techniques using only the

points may be insufficient. Nevertheless, the idea can be combined with photo-

consistency and visibility information to improve the results [49, 88].

Another approach for reconstructing surfaces from points is to use variational

methods. One can define an energy measuring how well a surface fits the point

cloud and minimize it by surface evolution [188]. Orientation information, such

as the normal to the points, can also be incorporated to the energy [137], as well

as photo-consistency [93].

Visibility

The output of the structure from motion algorithms is a bit more than a point

cloud. For every point, we know its 3D position, but also that it has been seen from

certain cameras. If a point has been seen from a camera, the segment between the

camera optical center and the reconstructed point must be free. This is called

the visibility constraint, and requires the reconstructed shape not to intersect the

visibility segments [97, 158, 140, 88, 49]. Observing a 3D point in an image, thus,

carries two pieces of information:

1. the space between the camera and the point must be outside the shape,

2. and the space just after the point must be inside the shape.

Silhouettes

Silhouettes are another source of geometric information possibly available. When

we want to reconstruct a single object of the scene, the user, or an automatic

background subtraction algorithm, can segment the images into foreground (the

object) and background layers. Similarly to the known depths, this segmentation

gives two constraints:
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1. 3D points projecting into the background part of the image can not be inside

the shape,

2. and the projection of the shape must cover the foreground part.

The largest volume satisfying these constraints is the visual hull [7, 89].

The visual hull contains the object of interest, and gives a coarse approxima-

tion of its real shape. It can be computed fast and exactly [43], thus it gives a

good starting point for multi-view stereo algorithms. Some algorithms compute

the visual hull first and then refine it using photo-consistency information [69, 47].

Some others, enforce the visual hull constraints during the reconstruction process

strictly [132, 140], or by adding a term to their energies [60].

In addition to silhouettes, internal apparent contours can also be used. The

constraints derived from internal apparent contours are more subtle as we only

know that the surface must be tangent to the viewing direction. This cue can be

combined with photo-consistency [78], or used alone [139, 30].

2.2.2 Photometric Cues

Under the constant brightness assumption the only cue used by most multi-view

stereo algorithms is correspondence: a surface point should appear of the same

color in all the images. The actual observed color value is not relevant. If we

look at the physics of refection, however, this color value carries information—

especially, about the surface orientation.

The simple image formation process presented in the introduction disregards

whatever happens to light before being reflected by the surface towards the cam-

era. A more realistic model should take into account the incoming light and not

only the reflected one. This will have the benefits of

• using more of the information available in the images,

• allowing to recover the surface albedo and not only its radiation, and

• being generalizable to non-isotropic radiations and, thus, to non-Lambertian

materials.

A first step towards the full modeling of light is to consider that all the incom-

ing light originates from a single point light source. Due to the multiple reflections

that light may undergo on its path from the source to the camera, this assumption

is only approximately correct, but it is worth studying it, and has practical appli-

cations in controlled environments.
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In the simplest scenario, a Lambertian surface of constant and known albedo is

illuminated with a single light source whose position and intensity are also known.

The shape from shading problem consists in recovering the surface from a single

image [66]. The intensity of the pixels in the image gives information about the

orientation of the observed surface: bright pixels correspond to surface parts fac-

ing the light source, while dark pixels correspond to parts where the light arrives

tangentially. Reconstructing the surface amounts to integrating these orientation

cues, which corresponds to solving a partial differential equation. Under realistic

contitions the problem turns out to be well-posed [120].

In the more general case, when the light source and the surface albedo are

unknown, the shape from shading problem suffers from the bas-relief ambiguity

[9]. For a given image, there is a family of triplets surface, albedo and light source

that reproduce it exactly. The ambiguity disappears if one models interreflections

properly [23]. A simpler way to resolve the ambiguity and, at the same time, im-

prove the accuracy is to use multiple images, either by moving the light source or

the camera.

Photometric stereo is the problem of recovering the surface given a set of

images taken with a static camera and a moving light source [173]. Each of the

images constrains the possible surface orientations at each point. Consequently,

unlike in shape from shading, in photometric stereo it is possible to recover the

surface orientation and albedo at each point independently. This make photo-

metric stereo a reliable technique for recovering shape and albedo of Lambertian

surfaces.

For non-Lambertian surfaces, things are harder. The relationship between im-

age intensity and surface orientation is not as simple or even not known. A practi-

cal way to find out the relationship is to use a reference object of the same material

and known geometry, for example a sphere [62]. By taking images of the target

and reference objects under the same illumination conditions, it is possible to

match points with the orientation. Since the orientation of the reference object is

known, this determines the orientation of the target object.

The approach has been extended to objects made of several materials. The

reflectance of a point can be expressed as a linear conbination of the reflectance of

some material basis [92]. Furthermore, it has been shown that the appearance of

the reference object can be learnt from the images of the target object itself; thus,

avoiding the need of having reference objects for each material [56, 180].

By moving the light instead of the camera, several observations of the same

surface point are obtained at the same pixel. This avoids the correspondence prob-

lem of multi-view stereo. On the other hand, keeping the camera fixed, only the

visible part of the surface is recovered, and in many practical situations it might
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be difficult to move the light. Hence, the photometric analysis for moving cam-

eras has also been studied [113, 186, 165]. The proposed methods are essentially

equal to the standard multi-view stereo ones, but have a matching cost that takes

into account the physics of reflection [46, 11]. Generative approaches are natu-

rally extended by simply changing the image formation model [25, 71, 178].

A particularly elegant method moving both light sources and cameras is the

Helmholtz stereopsis [189]. By switching the positions of the light source and

the camera, one obtains constraints on the surface orientation that are independent

of the object material. Practical application of the technique is difficult, since

exchanging light and camera is tricky.

2.3 Tools

In this section, we briefly review the mathematical and algorithmic tools used

by the multi-view stereo techniques. We start by reviewing the different ways a

surface can be represented numerically, and we then survey the shape optimization

techniques.

2.3.1 Shape Representations

There are several ways to define the concept of shape mathematically [81]. In

multi-view stereo, the common one is that a shape is an open set of points in the

space; its boundary is a surface, which we often require to be smooth. Even if we

agree on using this definition, when we are to represent a shape numerically—on

a computer for example—we still have to choose a numerical representation, i.e.

how to represent shapes with finite sets of numbers. In this section, we will discuss

this numerical representation choice, not the mathematical definition, which we

assume to be the common one.

The numerical representation choice is important for two reasons.

• The space of all shapes has infinite dimension. Hence, it can not be parame-

terized by a finite set of numbers. A numerical representation of shapes can

only achieve to represent a subset of all possible shapes. A voxel grid, for

example, can only depict lego-like shapes, while meshes can only represent

polyhedra.

• In addition, the representation determines the things one can do or compute.

For example, it is hard to determine the normal to a shape represented by

voxels, and it is hard or impossible to determine whether a 3D point is inside

or outside a shape represented by a mesh or a depth map respectively. The

representation limits therefore the available optimization strategies.
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We review now the most common shape representations.

Meshes Meshes are the most popular surface representation, especially in com-

puter graphics. They consist of a set of vertices plus connectivity information

defining edges and facets. They are usually interpreted as polyhedra, but they can

also be used to represent smooth surfaces through interpolation. In particular, dif-

ferential properties of shapes such as the surface normal and the curvature can be

computed from mesh representations.

The simplest way to optimize a mesh is by deforming an initial guess [77].

During the evolution however, the mesh can intersect with itself, and the topology

of the mesh must be changed. This has been seen as a major problem of meshes,

but there are now algorithms to detect and remove self-intersections efficiently

[38, 183]. A powerful alternative consists in using tetrahedral meshes to represent

the shape instead of triangular meshes to represent the surface; self-intersections

are then much easier to deal with [117, 116].

Point Clouds Surfaces can also be represented by a simple set of, usually ori-

ented, points [153, 46]. Point clouds are like meshes without the connectivity

information; nevertheless, as long as the point sampling is dense enough, connec-

tivity can be recovered from the points alone. Also, differential properties of the

shape can be estimated through interpolation [20]. For operations like rendering,

connectivity information may not be necessary [128].

Depth Maps Depth maps are a practical representation of the part of the surface

that is visible in one image. For every pixel, the depth of the surface point appear-

ing in the pixel is stored. It is therefore a partial representation since the entire

surface may not be seen in a single image.

Given a depth map, the image coordinates are a parametrization of the surface.

Therefore, differential properties of the surface can be computed. However, the

depth map corresponding to a smooth surface may not be smooth; in particular, it

will have discontinuities along the apparent contour of the shape [81].

Depth maps can be optimized in many ways. The simplest one is to do an

exhaustive search for every pixel. Further, surface smoothness can be enforced

by enforcing the smoothness of the depth map using MRFs [129] (see sections

2.1.2 and 2.3.2). Because of the depth discontinuities, surface evolution is dif-

ficult to implement using a depth map representation, yet successful PDE based

approaches exist [3, 146].

Height Maps or Relief Surfaces Very similar to depth maps, height maps pa-

rameterize surface points by their height relative to a base surface. This can be
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used to represent any surface as long as the base surface is close enough to the

represented surface. Of course, finding a good initial base surface is important.

The visual hull can be used for this purpose [169].

Level Sets Osher and Sethian [109] introduced the Eulerian approach to moving

shapes. The shape is represented using an implicit function; points where the

function is negative are inside the shape, points where it is positive are outside,

and the surface corresponds to the function’s zero level set. Moving the surface

comes down to changing the values of the function.

The level set representation has several advantages over the Lagrangian ap-

proaches. Most notably, topology changes during the shape evolution happen

automatically when changing the values of the implicit function. In addition, the

function can be stored in a regular grid and standard finite difference methods can

be used to solve the PDEs associated with the shape motion [110].

In principle level sets are made to represent shapes and, therefore, closed sur-

faces. Still, open surfaces can be represented by tracking their boundary [138].

All this makes the level set method the de facto method for surface evolution.

The caveat is that by representing the 2D surface using a 3D function we are incre-

menting the computational complexity. In practice, though, the implicit function

is only needed in the vicinity of the surface. Thus, methods for updating only the

points in a narrow band around the surface [1] and to even only store those points

[68] have been proposed.

Occupancy Grids Finally, another way of representing shapes is to divide the

space into cells and recording which of them are occupied by the shape and which

are empty. The standard discretization are voxels [39], but is it is also possible

to cut the space in tetrahedra for example [14, 49]. It is important to remark

that occupancy grids are well suited to represent shape occupancy, not surface

occupancy; the surface is the boundary of the occupied voxels.

Shape optimization using occupancy grids is a combinatorial problem with bi-

nary variables. For some cost functions, the graph cut algorithm gives the optimal

solution. For others, relaxation and probabilistic inference methods can be used.

2.3.2 Optimization Methods

In this section, we will overview some optimization methods that are used to op-

timize functionals with respect to shapes.
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Direct Methods

Direct methods (see section 2.1.1) detect surface points independently. For this,

they use few or no optimization methods, which range from basic thresholding

and exhaustive line searches to standard finite dimensional optimization such as

gradient descent.

Surface Evolution

Energy functionals over surfaces can be minimized by deforming an initial surface

making sure that the deformation reduces the cost at every step. One can define

forces that deform the surface ad hoc; also, using the Euler-Lagrange minimum

condition it is possible to derive fixed point schemes whose stationary points are

minima of the energy. But there is a more principled way of defining minimizing

surface evolutions. As in finite dimensional optimization, the direction in wich

the surface must be deformed can be determined by computing the gradient of the

functional [136].

The space of all shapes can be given a structure of infinite dimensional Rie-

mannian manifold [101]. In this manifold, points are shapes, curves are surface

evolutions and tangent vectors are normal velocities (small shape deformations).

The gradient of an energy functional is a tangent vector that points towards the

steepest direction. By always going into the opposite direction, we obtain a sur-

face evolution that monotonically decreases the functional.

The definition of gradient depends on the metric of the shape space. Different

metrics give different gradients and different gradient descent evolutions [24]. All

of these evolutions reduce the energy monotonically, but some are smoother, some

are numerically stabler, and some avoid local minima where others get trapped.

Thus changing the metric is a reliable way of accelerating or improving the results

without changing the cost function.

Surface evolutions can be implemented using level sets [109, 57] or meshes

[77, 116, 183]. Depth maps and relief surfaces can only be used as long as there

are no discontinuities.

Graphical Models

When we represent shapes using occupancy grids or depth maps for example, we

get a finite set of variables describing the shape. Energy functionals can be ex-

pressed in terms of these variables—either by designing the functional directly in

the discrete representation or by approximating an existing shape functional [16].

The resulting expressions are often sums of factors, each one of which involves

only a small neighborhood of variables. This is because, often, the occupancy of
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Figure 2.2: Graphical models: a Bayesian network (top-left), its corresponding

factor graph (top-right), a Markov random field (bottom-left), and its correspond-

ing factor graph (bottom-right).

a point or the depth of a pixel are only directly related to the value of neighbor-

ing points or pixels. Graphical models [12] express this kind of energies (or their

equivalent probability distributions) as graphs, where the nodes are variables and

the edges or hyper-edges are factors relating different variables.

There are three types of graphical models

• Bayesian networks Applying the product rule of probabilities it is always

possible to write the joint probability distribution of a set of variables x as

the product of the probability of every variable given the previous ones,

p(x) =
∏

i

p(xi|x1, · · · , xi−1) . (2.7)

Often a variable xi does not depend on all of the previous variables, and we

have that p(xi|x1, · · · , xi−1) = p(xi|pai), where pai ⊂ {x1, · · · , xi−1} are

the parents of xi, that is the subset of variables that are necessary to explain

xi. The decomposition has then the form

p(x) =
∏

i

p(xi|pai) . (2.8)

This can be represented graphically as a directed acyclic graph, where nodes

are variables and there is and edge connecting xj with xi if and only if xj
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is a parent of xi (see Figure 2.2). Bayesian networks have a simple inter-

pretation in terms of generative models. If ones wants to generate random

samples following the distribution p(x), it has to start by sampling the nodes

that have no parents according to their prior distribution, then sample their

sons according to their conditional probability, and continue following the

directions of the arrows.

• Markov random fields For some sets of variables, like for example the

set of pixels of an image, decomposing their joint probability distribution

as a Bayesian network is rather unnatural because there is no clear order

between the variables; it is hard to decide which pixels are necessary to

generate which other. Instead, it is more natural to simply say that there is

symmetric a dependence between pairs of neighboring pixels. The resulting

decomposition is of the form

p(x) =
1

Z

∏

ij

ψij(xi, xj) , (2.9)

where the product extends over the pairs of neighboring variables, the factor

ψij defines their relation, and Z is a normalization constant that ensures that

p(x) is normalized. Graphically, MRFs are represented as undirected graphs

where nodes are variables and edges are factors (Figure 2.2).

• Factor graphs Sometimes the dependence between different variables can

not be expressed as a product of pair-wise terms, but it is possible to express

it as a product of factors that use more than two variables. It is strait forward

to extend the concept of MRF to include factors which take an arbitrary

number of variables. The general form is

p(x) =
1

Z

∏

a

fa(xa) , (2.10)

where a indexes the factors, and xa refers to the set of variables given as in-

put to the factor fa. Graphically, factor graphs are represented using a bipar-

tite graph, where circles represent variables, squares represent factors, and

there is an edge between a variable and a factor if the factor uses the vari-

able. Interestingly, factor graphs are a generic representation of distribution

factorizations, thus Bayesian networks and MRFs can easily be converted

into factor graphs. Figure 2.2 show an example of this conversion.

In multi-view stereo, the more often graphical models are used to express the

relation between neighboring pixels or voxels, and thus Markov Random Fields

are used. In chapter 4, however, we will see that the graph associated to the
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generative model of multi-view stereo presented in the introduction contains high

order factors relating the occupancy of all the points in a viewing ray.

Two major techniques are currently used in computer vision for optimizing

graphical models: graph cuts and message passing.

Graph Cuts Optimizing binary pair-wise MRFs can be reduced to the problem

of finding the minimal cut in their graph by assigning the proper values to the

edges of the graph. Finding the minimal cut can be done efficiently. Thus, under

certain regularity conditions, it is possible to minimize binary MRFs globally and

efficiently [85]. Optimizing energies with factors of degree larger than two is also

possible but much less studied.

Because the min-cut equivalence works only for binary variables, graph cuts

are suitable for solving segmentation problems including occupancy based multi-

view stereo [134, 111, 166]. Graph cuts have also been extended to non-binary

variables by posing the problem as a set of binary decisions [17]. In this case, the

global optimum is not necessarily found, but the error of the solution is bounded.

Message Passing The other trend in graphical model optimization concerns the

belief propagation algorithm and its derivatives. Belief propagation was originally

developed as an algorithm to perform exact inference on trees (graphs without

loops). The algorithm computes the marginal distributions of every variable in the

tree in linear time. It was observed later that applying the exact same algorithm

to graphs with loops gives reasonable results, even though no theoretical result

accompanied the observation [112].

More recently, Yedidia et al. [176] showed that stable points of the loopy belief

propagation algorithm correspond to minima of the Bethe approximation of the

free energy of the system, giving thus some justification of the loopy algorithm.

However, this did not prove the existence of stable points, neither that the stable

points will correspond to the global minima of the free energy. Wainwright et al.

[171, 170] developed convex bounds of the free energy, and proved that stable

points of a slight modification of the loopy belief propagation, coined tree re-

weighted belief propagation, correspond to the single minima of the bound. Still

convergence is not assured, but if the algorithm converges, it does always at the

same place.

The expectation propagation proposed by Minka [103] addresses the prob-

lem of approximating complex distributions with simpler parametric forms. In-

terestingly, Minka showed that approximating a factor graph distribution with a

fully factorized distribution using expectation propagation yields to the exact same

message passing equations than belief propagation [102]. This gives a different

perspective to the algorithm which is useful for designing new message passing
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algorithms and schedules.

Although, belief propagation is an algorithm for computing marginals, it can

be modified to compute the most probable configuration. This is done by replacing

the sums in the message equations by maxima. For trees this gives the dynamic

programing based Viterbi algorithm. For general graphs it is called max-product

belief propagation.

Multiple performance comparisons of the different message passing and graph

cuts methods have been done [155, 154, 83], and the results depend on the connec-

tivity of the graph. For lowly connected graphs belief propagation and, especially,

its tree-reweighted version performs better; for highly connected graphs, graph

cuts clearly outperforms message passing techniques.

Expectation Maximization

When describing the relationship between the world and the images through the

specification of their joint probability p(I, w), it is often useful to use some addi-

tional variables. These variables can be, for example, outlier flags that tell whether

pixels are outlier or inliers, or any other information that it is useful to describe

the image formation process. We call them hidden variables and note them by h.

The joint probability of images and world is then obtained by summing over the

unknown hidden variables,

p(I, w) =

∫

p(I, w, h) dh . (2.11)

To reconstruct the most probable world given the images, we have to compute

the maximum a posteriori which is

w∗ = arg max
w

p(w|I) = arg max
w

∫

p(I, w, h) dh . (2.12)

The problem is that when the number of hidden variables is large, computing the

sum over all their possible values can be infeasible. The expectation maximization

algorithm (EM) [33, 107] solves the problem by approximating the sum locally

by a lower bound. Given an initial estimate of the world wt, a lower bound of

the posterior is computed such that it coincides with the posterior at wt. Thus,

maximizing the lower bound will necessarily improve the posterior. The algorithm

is as follows

• E-step Compute the posterior of the hidden variables given the images and

the current estimation of the world wt:

ft(h) = p(h|I, wt) (2.13)
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• M-step Maximize the lower bound with respect to the world to find a better

estimation:

wt+1 = arg max
w

∫

ft(h) log p(I, w, h) dh (2.14)

The function to maximize on the M-step is the expected value of the logarithm

of the joint probability given the distribution f t, which motivates the name of the

algorithm. It is often written as 〈log p(I, w, h)〉ft
. This function is still a sum over

all the hidden variables. However, this time, the integrant is the logarithm of a

probability. In many cases, this makes possible to write the integrant as a sum

of small terms (the logarithms of the probability factors) which can be integrated

independently.

Convex Relaxation

In the domain of mathematical image processing, it has been shown that certain

image functionals involving the total variation [126] are convex; their minimum

can therefore be found using any local technique. The total variation appears in

shape optimization when ones writes the weighted area functional (2.4) by means

of the characteristic function of the shape. In this case even if the functional is

convex, the domain—the space of characteristic functions—is not. Nevertheless,

Strang [142] showed that if one enlarges the search domain to admit all functions

with values between 0 and 1, then the minimum of this relaxed problem is actually

a characteristic function and coincides therefore with the minimum of the original

problem.

This old result is the basis of new methods for optimizing particular cases

of the weighted area functional globally [108, 18]. In contrast to the level set

methods, which deal with an implicit function of the shape, convex relaxation

methods deal with relaxed versions of the characteristic function of the shape.

A similar approach, reminiscent to the graph cut methods, is to exploit the min-

cut/max-flow duality [5].

Applications of these methods to the multi-view stereo problems are just ap-

pearing [181, 82].

2.4 Conclusion

In this chapter, we have seen the three major approaches to multi-view stereo.

Bottom-up methods explore the points of the space, compute photo-consistency

scores, and apply heuristics to robustly decide whether a point is on the surface

or not. Top-down methods, define the solution as the minimum of an energy
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function. This energy can be defined in many different ways. Hybrid methods

combine the two approaches.

We have also seen, that additional information, such as known surface points

or shading cues, can be used to constraint the problem. Finally, we reviewed

different surface representations and optimization methods that are used by the

existing multi-view stereo algorithms.

In this thesis, we take the top-down approach because it has the quality of

clearly defining the solution of the problem. We develop generative models of

multi-view images. This determine the energy to be minimized naturally, by ap-

plying the rules of probabilities, which should be in accordance to common sense.

In addition, the generative approach lets the door opened to the inclusion of addi-

tional cues, which can be added naturally by describing how the new informations

was generated from the model.

We develop the generative models using three different shape representations.

First, we explore the possibility of using multiple depth maps to represent the

shape (chapter 3). Then we build a model representing the shape through the

occupancy of a voxel grid, and study the resulting inference problem (chapter 4).

Finally, we consider general shapes with smooth boundaries, where the associated

optimization problem is solved by gradient descent surface evolution (chapter 5).

By developing the same basic model presented in the introduction (see section

1.3), using different shape representations, we will learn about the strengths and

the weaknesses of each representation. At the same time, we will get a better

insight on what are the fundamental problems inherent to the problem itself and

not to the representation.
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Chapter 3

A Multiple Depth Maps Model

In this chapter we present a generative model for multi-view stereo based on a

multiple depth maps representation of the world. For every pixel in every image,

a 3D point, parameterized by the pixel’s depth, is considered. The resulting point

cloud, without any additional connectivity information, is used to represent the

world’s surface. The surface’s appearance is represented by associating a color to

each of the points. In addition, visibility variables are used to take into account

geometric occlusions and outliers in the image formation process. We propose a

prior for the visibility variables given the depths maps that accounts for geometric

occlusions geometrically, and a prior for the multiple depth maps that smoothes

and merges them while enabling discontinuities.

3.1 Introduction

As shown in the previous chapter, when reconstructing the a scene from images,

the scene’s geometry can be represented in different ways—mainly voxels, level

sets, meshes or depth maps. Whichever representation is used, if one wants to

deal with geometric occlusions, depth maps will play an important role. In effect,

depth maps determine the visibility of the space; to determine whether a 3D point

is visible in an image, one can test whether the point is in front or behind the

visible surface parameterized by the image’s depth map, which is the principle of

the Z-buffer rendering algorithm. Because of this, any reconstruction algorithm

dealing with geometric occlusions, whichever shape representation it uses, is very

likely to compute depth maps at some point.

The question that we address in this chapter is: would it be possible to repre-

sent the shape directly by the depth maps themselves instead of computing them

from another shape representation?

The main motivation for using depth maps is resolution. Digital images have

77
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millions of pixels. If we want to reconstruct the scene using a generative model,

the model should accurately explain all of these pixels. Thus, the resolution of

the model should be in par with the resolution of the images. The resolution

of depth maps is, by definition, adapted to the resolution of the images. The

larger the images, the larger the depth maps. While it is possible to build sparse

voxel grids or huge meshes matching the resolution of the images, depth maps are

definitely a simpler solution. The impressive reconstructions obtained by Strecha

et al. [146, 144] using a depth map representation of the world are an example of

results that will be harder to obtain with other representations.

In order to represent the entire scene appearing in the images, in this chapter

we will develop a generative model using a depth map for every input image, so

that every pixel is explained. The depth of a pixel corresponds to the depth of the

3D point visible on that pixel. These 3D points form a point cloud, which is what

we consider as representation of the world’s geometry. The appearance will be

represented by the color of the points.

In order to infer the depth and color of the points, we define the joint proba-

bility of the observed images, the depths and the colors following the guidelines

given in the introduction (section 1.3). We start by defining the likelihood of the

observed images given the depths and colors in section 3.2.3. This corresponds to

specifying how to render the point cloud into the images, and then compare the

result with the observed images. To deal with occlusions in the rendering process,

we introduce visibility variables that flag whether the points are visible in each of

the renderings.

The visibility of the 3D points is obviously related to the depth maps. Conse-

quently, we define a prior on the visibility variables that depends on the depths to

determine the geometric visibility of the points (section 3.2.4). For robustness, the

prior is not strict; even if a point is geometrically visible, it is still possible—but

unlikely—for the visibility variable to signal an occlusion. Moving objects and

specular highlights will therefore be detected as occlusions.

The depth maps of the different images should ideally be coherent and repre-

sent a single surface. Thus, we expect them to coincide over large regions, and

also that they will be generally smooth everywhere but at the occlusion bound-

aries. We reflect that in the multiple depth map prior that we define in section

3.2.5.

We perform the reconstruction by maximizing the posterior probability of

depths and color given the images. As the visibility variables are unknown, we use

the Expectation–Maximization algorithm to iteratively estimate the expectation of

the visibility variables and maximize the posterior of the model.
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Figure 3.1: For a given 3D point x, dj(x) denotes its depth relative to image Ij .
Dj(x) denotes the estimated depth of the pixel onto which x is projected by Pj ,

u = Pjx.

3.2 Model

In this section, we define the multiple depth maps model by specifying the joint

probability of all the relevant variables. We start by defining the relevant variables

in section 3.2.1. Next, in section 3.2.2 we decompose the joint probability of

the variables, determining the statistical dependencies between them. Finally, in

sections 3.2.3 to 3.2.5 we give a form to each term of the decomposition.

3.2.1 Depth and Color Maps and Visibility Variables

We will be using the notation introduced in the introduction in section 1.2.1. The

set of n input images is noted as {Ii}i=1..n, so that Ii(u) is the color of pixel u in

the ith image, which lives in some color space (graylevel, RGB or another). The

projection of a 3D point, x into image ı is noted by πi(x) and its depth by di(x)
For every pixel in the input images we will compute its depth and color.

Depths will be stored in a set of depth maps {Di}i=1..n and colors in a set of

color maps {Ci}i=1..n. Di(u) and Ci(u) will then be the depth and the color of

the point seen by the pixel u of the ith image. This point can be obtained from

the pixel and the depth and will be noted π−1
Di

(u). Sometimes it will be more il-

lustrative to think of the set of colored depth maps as a representation of the 3D

point cloud {π−1
Di

(u) : i = 1..n,u ∈ Ii}, and treat all the points of the cloud in

the same manner, ignoring their origin, i.e. the image by whose depth map a point

is parameterized.

To avoid confusions, it is important to remark the difference between the com-

puted depth maps Di : R
2 → R, which parameterize points in the cloud by giving

the depth of pixels, and the depth functions di : R
3 → R, which simply compute
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Figure 3.2: Bayesian network representation of the joint probability decomposi-

tion. Arrows represent statistical dependencies between variables.

the depth of points in the space. See figure 3.1.

Due to geometric occlusions, specular reflections or other effects not all the

points of the cloud will be visible in every input image. As proposed by Strecha

et al. [144] we introduce a boolean variable Vi,x for each model point x = π−1
Dj

(u)
and each image Ii, that signals whether x is visible or not in image Ii. These

variables are hidden and only their probabilities will be computed.

In summary, the random variables involved in the model are: the observed

images, the depth maps, the color maps, and the visibility maps.

3.2.2 Decomposition

Having all the variables defined, we will now choose a decomposition of their joint

probability. The decomposition will define the statistical dependencies between

the considered variables.

For completeness, we add a variable, τ = {Σ, σ, σ′, v, l}, to the previously de-

fined variables, that represents the set of all the parameters that will be used in our

approach, and that will be defined in the following sections. The joint probability

of all the variables is then p(I, V, C,D, τ) and the proposed decomposition is:

p(τ) p(C|τ) p(D|τ) p(V |D, τ) p(I|V,C,D, τ) (3.1)

The decomposition is represented as a network in figure 3.2. The factors are:

1. p(τ) is the prior probability of the parameters. In this work we will assume

that the parameters are known. Thus, this term is irrelevant and can be

ignored.
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2. p(C|τ) is the prior on the colors of the depth maps. This term was used by

Fitzgibbon et al. [42] to regularize the novel view synthesis problem with

great success. The so-called image-based priors were introduced to enforce

the computed color mapsC to look like natural images. In practice, this was

enforced by comparing the image patches with a catalogue of examples in a

similar way to the approach proposed by Freeman et al. [44] for the super-

resolution problem. We won’t take this approach in this work, and we will

adopt a uniform prior on the color maps, centering the regularization on the

depth maps.

3. p(D|τ) is the prior on depth maps. Its work is to smooth and integrate the

different depth maps. It is developed in section 3.2.5.

4. p(V |D, τ) is the visibility prior. We propose to consider visibility as depen-

dent on D, to enable geometric reasoning on occlusions (section 3.2.4). In

the E-step of the EM algorithm described below, this geometric visibility

prior will be probabilistically mixed with photometric evidence, giving an

estimate of the visibility that is more robust to geometric occlusions than

using a uniform prior.

5. p(I|V,C,D, τ) is the likelihood of the input images. Particular attention is

paid to this term (section 3.2.3), because we find that usual formulae are not

satisfactory for the wide-baseline case.

The variables can be classified in three groups: the known variables (or data)

I and τ , the wanted variables (or model) w = (C,D) and the hidden ones V . The

inference problem is now stated as finding the most probable value of the wanted

variables, given the value of the known ones and marginalizing out the hidden

ones. That is, we want to estimate

w∗= arg max
w

p(w|I, τ) = arg max
w

∫

p(I, V, I∗, D, τ) dV .

The following sections give a form to each term of the decomposition.

3.2.3 Likelihood

Pixels in input images are treated as noisy observations of the model. We suppose

the noise to be independently identically distributed. Thus, the likelihood can be

decomposed as the product of the per-pixel likelihoods:

p(I|V,w) =
∏

i

∏

u

p(Ii(u)|V,w) . (3.2)
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Figure 3.3: On the left, many 3D points instantiated by the first image project to

the same pixel in the second one. On the right, many pixels on the second image

have no 3D point instantiated by the first image that is projected onto them.

Note that this product is extended over the pixels in the input images and not over

the points in the 3D model. Many of the previous works on Bayesian modeling

of the stereo problem using depth maps [129, 42, 144] define the likelihood in a

non-generative way as

p(I|V,w) =
∏

x

∏

i

p(Ii(πi(x))|C(x), V ) , (3.3)

where the product is done over the points x of the model and p(Ii(πi(x))|C(x), V )
stands for the probability of observing the color Ii(πi(x)) at the projection of x,

given that the color of the model is C(x). This probability distribution is typi-

cally a Gaussian distribution centered at the color C(x). In energy formulations,

the product over the points in the model corresponds to computing the photo-

consistency energy as a sum over the points in the model. Although this has the

great advantage of clearly representing the contribution of every model point to

the total likelihood, it is difficult to justify from a generative point of view.

The problems related to this approximation are sketched in figure 3.3. In the

first case, many 3D points instantiated by the first image’s depth map project to

the same pixel in the second image. Computing the product over the 3D points

as in (3.3) will overuse the second image’s pixel. This is not a good idea given

that the viewing angle of this pixel is really steep, hence its color is quite random

and depends on the camera sensors. In the second case, only a few points of the

first image’s depth map project to the second image, so many pixels of the second

image will be unused even if these pixels were seeing the scene better than any

other.

In small-baseline situations, where there is almost a bijection between pixels in
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each image and 3D model points from any other image’s depth map, these effects

are minimal and can be ignored. However, in wide-baseline setups, these effects

are relevant and it is desirable to deal with them. In the following, we propose an

approximation to the per-pixel product likelihood in the form of a product over

the points of the model (3.2).

The per-pixel likelihood p(Ii(u)|V,w) measures the similarity between the

color Ii(u) observed in the pixel u of image i, and the color that the model would

predict for that pixel, I∗i (u). The predicted color has to be defined. This is basi-

cally a rendering problem where we have to decide how to render the point cloud

into the images. A simple choice, of course, would be to assign to each pixel

the color of its corresponding point of the cloud; I∗i (u) = Ci(u). This, however,

would not introduce any dependence between the color of the different images,

and thus, the likelihood term will be useless. A prior on the set of colored depth

maps would be required to introduce such a dependence.

Instead, we will use all 3D points projecting to u to determine its likelihood.

Let us call Si,u the set of points that are projected to u in image i. We define the

per-pixel likelihood as the geometric mean of the likelihoods that the pixel would

have if only one of the points in Si,u was used,

p(Ii(u)|w) =
∏

x∈Si,u

p
(

Ii(u)|I∗i (u) = C(x),Σ
)

1
|Si,u| .

Computing the geometric mean of probabilities is equivalent to computing the

arithmetic mean of energies. The idea behind is to cut the pixel’s information

in |Si,u| parts and give one to each point in Si,u. This is justified as a manner

of using all the points in Si,u without overusing the pixel u. It is a heuristic

approximation of the correct solution (3.2) but it solves the problems commented

above and permits writing the likelihood as a per-point product

p(I|w) =
∏

x

∏

i

p
(

Ii(πi(x))|I∗i (πi(x)) = C(x),Σ
)

1
|Si,u| , (3.4)

where the product extends over all the points, x, in the point cloud and all the

images, i. We refer to the term p
(

Ii(πi(x))|I∗i (πi(x)) = C(x),Σ
)

as the pixel-

point likelihood, and we model it by a mixture between a normal distribution in

the case that the point is visible, Vi,x = 1, and a uniform distribution over the

color space otherwise, Vi,x = 0. Summing over the two possibilities gives

p(Ii(u)|I∗i (u) = C(x),Σ) = p(Vi,x = 1|D) N (Ii(u)|C(x),Σ)

+ p(Vi,x = 0|D) U .
(3.5)

When the prior on the visibility variables is constant, this distribution is called a

contaminated Gaussian [149]. The following section describes the non-constant

form that we give to this visibility prior.
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Figure 3.4: The blue point, parameterized by the left image, is unlikely to be

visible on the right image because its depth with respect to the right image is

different from the estimated one—the one of the red point. The curve represents

the prior probability of being visible in the right image with respect to depth.

3.2.4 Geometric Visibility Prior

The mixture of the pixel-point likelihood (3.5) is balanced by the visibility prior

p(Vi,x|D). This models the prior belief on whether the point x is visible or not

in image Ii, before taking into consideration the colors C(x) or Ii(u). A uniform

distribution is usually used for such a situation [144, 150, 148]. However, our

decomposition (3.1) of the joint probability, allows using the depth maps’ infor-

mation to give a more interesting form to this prior.

Di(πi(x)) is the estimated depth of the pixel in image Ii onto which x is

projected—which is not the same (see section 3.2.1) as the actual depth, di(x),
of x. If di(x) is similar to Di(πi(x)), it suggests that x is near the point seen

by u, so it is more likely that x is visible. Conversely, if di(x) is very different

from Di(πi(x)) the idea of image Ii seeing x seems unlikely. Thanks to this

simple observation the geometric visibility can be easily and efficiently handled,

in a multiple depth map approach. Szeliski proposed to use a threshold to strictly

determine the visibility [150]. Here, we quantify the above idea by the (smooth)

expression

p(Vi,x = 1|D) = v exp

(

−
(di(x) −Di(πi(x)))2

2σ2

)

, (3.6)

where v ∈ [0, 1] is the visibility prior for points at the estimated depth Di(πi(x)),
and σ models the tolerance that we give to points that are not exactly at this depth.

Figure 3.4 plots the prior along a viewing ray.

The effect of this prior on the pixel-point likelihood is in agreement with the
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above intuition. For points near the depth Di(πi(x)), the prior is large and the

normal distribution centered at C(x) of the pixel-point likelihood mixture (3.5) is

weighted up. This makes pixel colors similar to C(x) more probable. For points

far from the depth Di(πi(x)), the uniform distribution is favored, and the color

C(x) becomes irrelevant, which is logical given that we don’t believe that the

pixel πi(x) is seeing the point x.

3.2.5 Multiple Depth Maps Prior

The multiple depth maps prior p(D|τ) is supposed to evaluate the plausibility

of a set of depth maps without using any other information but the depth maps

themselves. Two main properties are desired:

1. Each depth map should be mostly smooth but (strong) discontinuities have

to be allowed.

2. The 3D points clouds belonging to the different depth maps should be over-

lapping.

Instead of using separate terms to measure smoothness and overlap, we evalu-

ate the two properties in a single expression. To do so, we think of the set of depth

maps as a point cloud forgetting, for a moment, the 2D neighborhood relation

existing in the images. Smoothness and overlap will be reached by letting points

attract one another, independently if they originate from the same depth map or

not.

We express the probability of the point cloud as a Markov network (Figure

3.5):

p(D) ∝
∏

x∈D

∏

y∈N(x)

ϕ(x,y) , (3.7)

where N(x) denotes the neighborhood of x and ϕ(x,y) is the compatibility prob-

ability for the (x,y) pair. For the moment, let us consider that the neighbourhood

extends to the totality of points, N(x) = D \ {x}. Like for the pixel-point likeli-

hood (3.5), we model the compatibility probabilities as mixtures of a normal and

a uniform distribution, balanced by a hidden line process L:

ϕ(x,y) = p(Lx,y = 1)N (y|x, σ′) + p(Lx,y = 0)U (3.8)

where p(Lx,y) is the constant prior on the line process. l = p(Lx,y = 1) is a

parameter of the method. The other parameter, σ′, is the variance of the isotropic

three dimensional normal distribution N . U is a uniform distribution over a vol-

ume containing the scene.
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Figure 3.5: The points issued from different depth maps are linked with potentials

to enforce compatibility. Potentials are stronger when the points are close.

The underlying idea is that the process Lx,y signals if the two points should

attract each other or not. If Lx,y = 1, we regard y as a noisy measurement of x and

its probability distribution is set to a normal distribution centered on x and with

variance σ′. Note that this relationship is symmetrical. Otherwise, if Lx,y = 0 a

uniform distribution is used to reflect the idea that x and y are not related.

Evaluating this prior is computationally expensive. If m is the number of

points, there areO(m2) compatibility probabilities. However, for all the points far

enough from x, N (y|x, σ′) will be very small and ϕ(x,y) will be constant. We

can thus restrict the neighborhood to the points near enough to x. We define the

neighborhood as the points inside a sphere centered at x with a radius ρ dependent

on σ′. Finding this neighborhood is in itself a hard problem that can be expensive.

Luckily, our point cloud comes from a set of depth maps where points are ordered.

The projection of the neighborhood sphere in each image is an ellipse. The set of

3D points instantiated by the pixels inside these ellipses contain all neighbors of

x, greatly facilitating the task of finding them.

As desired, the proposed prior smoothes and integrates all the depth maps at

the same time. Discontinuities are allowed thanks to the hidden line process L
that avoids distant points to attract one another.

There is however an important property of depth maps that this prior is not

enforcing. Real depth maps originate from a single surface. Thus, points parame-

terized by a depth map should not be behind the points parameterized by another

depth map, as showed in figure 3.6. That means that if x is a point parameterized
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Figure 3.6: The visible surface parameterized by a depth map should not intersect

the free space of other depth maps. Red points parameterized by the left camera

are incompatible with the free space of the right camera depth map.

by a depth map, and Di is another depth map, then the depth of x should be larger

or equal to the depth of the pixel where x projects to, di(x) ≥ Di(πi(x)). This is

not enforced by the proposed prior.

Kernel Correlation. Our prior is closely related to leave-one-out kernel cor-

relation. Tsin and Kanade showed the capacities of the KC prior in smoothing

while keeping discontinuities and applied it successfully to the stereo problem

[163]. The KC prior can be written as a Markov network with

ϕKC(x,y) ∝ exp(N (x|y, σ′))

In figure 3.7, the negative logarithms of our compatibility probability and the

KC-based one are plotted to show the similar shape they have. The advantage of

the mixture prior over the KC is that it is defined in a probabilistic framework that

permits the incorporation of new cues of information. We could, for example, use

a statistical relation between the color of points and the line process L, that makes

points of the same color have a better chance to be attracted to one another.

3.3 Inference

The reconstruction will be performed by maximizing the posterior probability of

depth and color, using the Expectation Maximization algorithm [33]. EM alter-

nates between estimating the probability of the hidden variables (the visibility in

our case), and optimizing the model (depth and color). We start with a given initial

model w0 (see section 3.4) and repeat the next steps until convergence.

E-step. In the expectation step we compute the posterior probabilities of the

visibility variables, V , given the current estimate of the model. For every model
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Figure 3.7: In red, a plot of the clique potentials of our prior, − log(N (x|0, 1)+1).
In blue, the kernel correlation based one, −N (x|0, 1).

point x and every image i, the probability that the point is being seen in the image

has to be computed. This amounts to test whether the point is geometrically visible

by computing the visibility prior and check whether the image is seeing a color

similar to the color of the point (the likelihood). We store the posteriors as a set

of visibility maps fi,x = p(Vi,x = 1|I, wt). From the joint distribution, after many

simplifications we have

fi,x =
p(Vi,x = 1|D)N

p(Vi,x = 1|D)N + p(Vi,x = 0|D)U
, (3.9)

where N = N (Ii(πi(x))|C(x),Σ) and U is the uniform distribution (see (3.5)). It

is by this equation that the geometric visibility prior is mixed with the photometric

evidence to give an estimation of the current visibility.

M-step. In the maximization step the computed visibility maps are used to

compute the expected log-posterior (see section 2.3.2). This is

wt+1 = arg max
w

〈log p(w, V |I)〉f

= arg max
w

{ 〈log p(I|V,w)〉f + log p(D) } ,
(3.10)

where the expectation 〈·〉f is computed with respect to the visibility variables as-

suming they follow the distributions, f , estimated by the E-step. The two terms

of the last equation are the expected log-likelihood and the log-prior. After sim-

plification the log-likelihood is (cf. (3.4) and (3.5)),

〈log p(I|V,w)〉f =
∑

x

∑

i

1

Si,u
(fi,x logN + (1 − fi,x) logU) (3.11)

and the log-prior (cf. (3.7)),

log p(D) =
∑

x

∑

y

logϕ(x,y) . (3.12)
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The maximum is searched by gradient descent. Analytical derivation of the

log-posterior with respect to the model variables can be easily computed from

the above equations. In our implementation, only one gradient descent iteration

is done at each M-step. The iteration finds a better guess for wt+1 but not the

best. This method is called the Generalized EM algorithm, and it still ensures that

the posterior is (locally) maximized. The motivation for doing this is that each

iteration of the gradient descent method is as expensive as an E-step, and rapid

alternation between E and M steps permits a faster actualization of the visibility

maps.

3.4 Experiments

We have implemented the algorithm in a pyramidal scheme to speed up conver-

gence and reduce the chances of being trapped in irrelevant local minima. We start

using reduced versions of the original input images, and thus reduced versions of

the colored depth maps. When convergence of EM is achieved, a higher resolution

level is initialized with the obtained results, using bilinear interpolation.

In all our experiments, the noise variance Σ (see section 3.2.3) was included

to the wanted variables and estimated during the optimization process, and esti-

mated at every M-step. The visibility prior, v, was set to 0.9 expressing the idea

that a point is likely to be visible in an image if it is at a similar depth to that

estimated for that image (see section 3.2.4). σ′ was set to the same value as σ (see

sections 3.2.4 and 3.2.5). This value was heuristically set to two times the robust

mean of the distance between pairs of 3D points instantiated from consecutive

pixels in the images. The parameter l (see section 3.2.5) was the only one to be

specially adapted for each experiment. We present the results on several datasets

of increasing complexity.

Easy. The Loggia data set (figure 3.8) consists of three wide-baseline images

of a scene with rich textures and simple geometry. Initial depth maps were set to

a constant value (i.e. fronto-parallel) and the algorithm converged to the correct

surface. The Casino data set (figure 3.9) contains five images with small baseline.

Constant depth initialization was also used. The results show the potential of the

method in capturing fine details. In both cases, large enough values of l (l > 0.1)

gave similar results. No occlusions are present on these images.

Medium. We tested our method’s performance for the Cityhall scene 1 to

prove that the algorithm can achieve state-of-the-art results in wide-baseline match-

ing but with several depth maps at once. Images 3, 4 and 5 of the dataset were

used. In this case, the model was initialized using the 3D feature point positions

1The Cityhall images with full calibration can be downloaded from

http://www.esat.kuleuven.ac.be/˜cstrecha/testimages/
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Figure 3.8: Loggia: The three input images (top) and renderings of its recovered

depth maps (bottom).

Figure 3.9: Casino: The five input images (top) and renderings of the recovered

surface (bottom).
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from the calibration step. Pixels with known depth were fixed while successive

Gaussian blurs were applied to the rest of the depth map pixels. From this coarse

initialization the algorithm converged, merging the depth maps into a single sur-

face. The results (Figure 3.10) show fine and rich details and the strong disconti-

nuity between the foreground statues and the door was preserved, but clearly not

at their real location. Examples of incorrecly placed discontinuities are marked

with red ellipses in Figure 3.10.

Hard. To show the potential of the algorithm in dealing with strong discon-

tinuities and geometric occlusions, we tested its performance on the challenging

staty data set (figures 3.11 and 3.12). The scene contains a statue in front of a

far wall. A single depth map is not enough to model the scene because none of

the images sees the whole statue or wall. We used the same coarse initialization

method as for the Cityhall scene.

The main difficulty was to correctly estimate the large discontinuity between

the statue and the wall. Smoothing in this region would produce incorrect 3D

points between the foreground and the background. We set the l parameter to a

small value (l = 0.2) to motivate the points not to attract each other too much

(see section 3.2.5). The discontinuity was then well preserved, but not at the exact

position. Some background points remained attached to the statue. In addition,

when initializing a finer level of the pyramid from a coarser one, we used bilinear

interpolation which smoothed out the discontinuity.

To solve these problems we alternated several EM iterations with the following

heuristic global search. For each pixel u and image i, we consider all the depths

of the 3D points Si,u that are projected to that pixel (see section 3.2.3). Then we

test if the likelihood will be improved if we change the depth of pixel u to any

of these values. The value producing the best improvement is kept. The large

discontinuity between the statue and the wall was detected by the EM algorithm

from the coarser level. The global search heuristic placed this discontinuity at the

correct position and mantained it there in the finer levels.

3.5 Conclusion

The use of the multiple depth map representation demonstrated to have some ad-

vantages. Compared to 3D domain representations like voxels or level sets, the

resolution of the results is much higher. Note however, that novel sparse level set

grids [68] enable to build very large level set grids with resolutions comparable to

the image resolution (see Figure 5.11 in chapter 5 for an example). Additionally,

novel mesh deformation algorithms [116, 183] solve the self-intersection prob-

lems and are a good alternative to the level set method. They avoid the need of a

voxel grid, and enable very high resolution results.
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Figure 3.10: Cityhall: The three used input images (top) and renderings of an

estimated depth map seen from two different angles. No points were removed.

The oversmoothed part at the bottom of the model corresponds to points seen

only in one image. The two flat regions in the center correspond to discontinuities

of the depth map. The red ellipses indicate examples of incorrectly placed depth

discontinuities.
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Figure 3.11: Staty: On top, the five input images of the dataset. Below, the

visibility maps; i.e. the estimated probabilities of the 3D points instantiated by

the depth map of every image to be visible in every other image.
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Figure 3.12: Staty: On the left, a point-based rendering of the reconstructed

point cloud during the evolution of the algorithm, from a coarse initialization, to

the final model. On the right, two renderings of the estimated depth map for the

second image, D2, are shown. Note the preserved large discontinuities between

statue and background.
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Compared to using a single depth map, using multiple ones made it possible

to deal with geometric occlusions geometrically as opposed to treating occlusions

as outliers.

However, using multiple depth maps also showed some disadvantages. Due

to the redundancy of the representation, a special prior was needed to force the

different depth maps to be coherent. We proposed an ad hoc prior for this prob-

lem that proved useful, but feels unnatural. Real depth maps of the real world

are always coherent because they are all generated from the same geometry. The

natural way to enforce coherence between different depth maps would be to actu-

ally represent this geometry. By representing the geometry independently of the

images, the depth maps can be determined from it, and coherence between them

is assured.

The other issue encountered with depth maps are the discontinuities. The

proposed prior is tolerant toward them, and the results presented large ones. How-

ever, the discontinuities were not at their correct position. The problem is that,

once a discontinuity appears in a depth map, it never moves. It is not possible to

translate a depth discontinuity by optimizing the depths locally. Moving a depth

discontinuity requires large changes of depths. Thus, a heuristic was needed to

perform these large changes. Again, representing the shape of the scene indepen-

dently from the images avoids this problem because the depth discontinuities can

be moved smoothly by locally deforming the scene.

In the following chapters we consider a generative model representing the

shape of the world independently from the images. Depth maps are still used

to determine visibility. However, they are deterministically determined from the

world’s shape, as it happens in reality. In chapter 4, we define the discrete version

of this model, where the shape is represented by the occupancy of a voxel grid, and

show the enormous associated graphical model. Next in chapter 5, we consider the

continuous version of the model, and discover that its optimization via gradient

descent explicitly moves the depth map discontinuities to improve the image’s

likelihood, as we did heuristically here.

Visibility changes and EM There is also something to improve in the way we

dealt with visibility. Visibility is estimated during the E-step, and the estimation

is kept constant during the M-step. This means that during the M-step, we are not

taking into account that geometric visibility changes while the model moves. This

issue will be directly addressed in chapter 5 where the changes of visibility will

be taken into account during the optimization of the model.
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Chapter 4

The Occupancy–Depth Model

We develop an occupancy based generative model of stereo and multi-view stereo

images. In this model, the shape of the world is represented by dividing the space

into empty and occupied regions. The depth of a pixel is naturally determined

from the occupancy as the depth of the first occupied point on its viewing ray.

Then, the color of a pixel corresponds to the color of this 3D point.

This model has two theoretical advantages. First, unlike other occupancy

based models, it explicitly models the deterministic relationship between occu-

pancy and depth and, thus, it correctly handles occlusions. Second, unlike depth

based approaches, determining depth from the occupancy automatically ensures

the coherence of the resulting depth maps.

In this chapter we will present the discrete version of the model, where the

space is divided into cells and the occupancy of each cell is to be computed. In

the following chapter, we will address the continuous version of this model where

the occupancy of every point in the space is considered.

4.1 Introduction

There are mainly two ways of representing the world for the stereo and multi-view

stereo problems. In small-baseline situations, the world is typically represented

by a depth map on a reference image, and computing depth is regarded as a corre-

spondence problem [129]. In wide-baseline situations, it is often more convenient

to represent the shape of the objects by a surface or an occupancy function, and

to optimize some photo-consistency score [130]. Depth and occupancy are obvi-

ously highly related, but most of the algorithms concentrate on finding one of the

two.

The main problem with either approach are occlusions. The fact that a 3D

point is not always visible from all the cameras makes the extraction of 3D infor-

97



98 Chapter 4: The Occupancy–Depth Model

mation from images hard. The two main approaches to solve this issue are to treat

occluded points as outliers [145] or to explicitly model the geometrical reason for

the occlusion. Making an accurate generative model for multi-view images, as

we wish to do, necessarily involves modeling occlusions geometrically, because

geometric occlusions really exist in the true image formation process.

Geometric occlusions can be modeled effectively in depth based approaches

by computing a depth map for every input image [76, 86, 51]. However, as we

have seen in the previous chapter, this requires to add constraints, so that the

multiple depth maps are coherent and form a single surface. These constrains are

not necessary in shape based approaches that implicitly incorporate them as they

compute a single model for all the images.

Shape based approaches usually deal with geometric occlusions in an alternat-

ing way. They first compute the visibility given the current estimate of the shape;

and then modify the shape according to some criteria. Methods using graph-cuts

[111, 168], for example, guess visibility from a coarse initialization of the shape

such as the visual hull. Methods using surface evolution [41, 119] or voxel carv-

ing [87] use the current shape estimate to compute visibility. Either procedure

disregards the fact that the visibility will change while modifying the shape. A

voxel carving technique carving inside the object, or a shrinking surface evolution

are consequences of this oversight.

The model presented in this chapter explicitly characterizes the relationship

between depth and shape and profits of the benefits of both worlds. The shape’s

occupancy automatically gives coherence to the depth maps. Properly deriving

the depth maps from the occupancy implicitly encodes the geometric occlusions.

There are many works in the literature that infer occupancy from images by

alternating between the estimation of occupancy and depth or visibility as we do

here. Szeliski and Golland [152], for example, proposed to iteratively update

opacity estimates by computing visibility from the previous estimation. De Bonet

and Viola [32] proposed a similar algorithm where the concept of transparency

and uncertainty were intentionally confused. Yao and Calway [175] proposed to

perform a recursive Bayesian update of the occupancy probabilities. All of these

works propose ad hoc iterative methods for computing occupancy. The model

presented here shares the same principle, but is different in that it poses the prob-

lem as an optimization problem. Thus, the solution is defined as the minimal

energy configuration and iterative algorithms for computing it can be derived in a

principled way.
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4.2 Model

This section presents the occupancy-depth model. We first introduce the random

variables involved in the generative process. Then we decompose their joint prob-

ability distribution into simpler terms and give a form to each of them.

4.2.1 Occupancy, Depth and Color Variables

Consider a discretization of the 3D space in a finite set of sites S ⊂ R
3. A

given site x ∈ S, can be in the free space or inside an object. This defines the

occupancy of the site that will be represented by a binary random variable ux (1

meaning occupied and 0 meaning free). The occupancy of the whole space will

be represented by the random process u : S → {0, 1}, which defines the shape of

the world.

The shape is not enough to generate images. Its appearance is also needed. In

the simplest case, under the constant brightness assumption, the appearance can

be represented by a color at each point on the surface of the objects. As we do

not know the shape of the objects right now, we will need to define the color of all

sites in S, even if only the color of the sites lying on the surface is relevant. The

color will be represented by a random process C : S → R
3.

Given the occupancy of the space and the position and calibration of a camera

i, the depth Di(u) of a pixel u is determined as the depth of the first occupied

point on its viewing ray.

The observed color at that pixel, Ii(u), should ideally correspond to the color

of the site observed at that pixel. i.e. the point of the viewing ray of u which is at

depth Di(u). In other words, the predicted value for the pixel is

I∗i (u) = C(π−1
Di(u)(u)) , (4.1)

as introduced in section 1.2.2.

In summary, the variables involved in the image formation process are the

occupancy of space, its color, the depths and the observed images.

4.2.2 Decomposition

In order to define the joint probability on all the variables, we decompose it in

terms representing the natural dependence between the variables. One can think

of this step as defining the way the data (the images) were generated.

The proposed decomposition is

p(u,C,D, I) = p(u)p(C|u)
∏

i,u

p(Di
u
|u)

∏

i,u

p(I i
u
|Di

u
, C) . (4.2)
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Figure 4.1: Bayesian network representation of the joint probability decomposi-

tion

It is represented graphically in Figure 4.1. Each term of the decomposition corre-

sponds to a variable and, thus, to a node of the network. The arrows represent the

statistical dependencies between the variables. In other words, the order that one

has to follow to generate random samples of the model from scratch.

Therefore, the data generation process is as follows. First one builds the ob-

jects of the world by generating an occupancy function. Then one paints them by

choosing the space colors. Finally, one takes pictures of the generated world: first

determining which points are visible from the camera by computing the depth of

the pixels, and then setting the color of the pixels to be the color of the observed

3D points.

In the following sections, we define each of the terms of the decomposition.

4.2.3 World Priors

Not all the possible occupancy functions are equally likely a priori. One expects

the occupied points to be gathered together forming objects, rather than randomly

scattered over the 3D space. To represent such a belief, we choose the occupancy

u to follow a Markov Random Field distribution. This gives the following prior,

p(u) ∝ exp
{

−
∑

x,y

ψ(ux, uy)
}

(4.3)

where the sum extends to all the neighboring points (x,y) in a grid discretization

S of the 3D space. The energy potentials are of the form ψ(ux, uy) = α|ux −uy|,
so that they penalize neighboring sites of different occupancies by a cost α.

This prior is isotropic in the sense that two neighboring points are equally

likely to have the same occupancy regardless of their position and color. From

experience, we know that the discontinuities or edges in images often correspond
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to discontinuities in the occupancy (the occluding contours). Therefore, one could

be tempted to use the input images to derive a smoothing prior for the occupancy

that is weaker at the points projecting to image discontinuities. While effective,

this would not be correct from a Bayesian point of view, as one would be using the

data to derive a prior for the model. We will now see how to obtain this anisotropic

smoothing effect in a more theoretically well grounded way.

In the proposed decomposition, the prior on the color of the space depends

on the occupancy. This makes it possible to express the following idea. Two

neighboring points that are both either occupied or free, are likely to have similar

colors. The colors of two points with different occupancies are not necessarily

related. This can be expressed by the MRF distribution

p(C|u) ∝ exp
{

−
∑

x,y

φ(Cx, Cy, ux, uy)
}

(4.4)

with

φ(Cx, Cy, ux, uy) =

{

̺(Cx − Cy) if ux = uy

0 otherwise
(4.5)

where ̺ is some robust penalty function, that penalizes the difference of colors of

neighboring points with the same occupancy.

Now, combining the prior on the occupancy with the prior on the color we

have

p(u,C) ∝ exp
{

−
∑

x,y

ψ(Cx, Cy, ux, uy)
}

(4.6)

with

ψ(Cx, Cy, ux, uy) =

{

̺(Cx − Cy) if ux = uy

α otherwise
(4.7)

If we are given the color of the space, then p(u|C) ∝ p(u,C) is a color driven

smoothing prior on the occupancy. Neighboring points with the same color are

more likely to have the same occupancy than neighboring points with different

colors. As the color will be estimated from the images, the color discontinuities

will coincide with the edges in the images. Thus, this term will represent our

experience based knowledge that object borders coincide with image edges.

4.2.4 Pixel Likelihood

The color Ii(u) observed at a pixel should be equal to the color of the 3D point

visible at that pixel, up to the sensor noise and other unmodeled effects, e.g. spec-

ularities. This predicted color is I∗i (u) = C(π−1
Di(u)(u)), and thus, the likelihood
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Figure 4.2: Bayesian network of the model associated to a single viewing ray.

The occupancy variables ui along the viewing ray determine de depth d. The

color of the image I corresponds to the color C at depth d

of a pixel is of the form

p(Ii(u)|Di(u), C) ∝ exp
{

−ρ
(

Ii(u) − I∗i (u)
) }

, (4.8)

where ρ is some robust penalty function.

Note that unlike traditional stereo algorithms, here there are no occlusions to

be taken into account by the function ρ. We are matching the color of a pixel

with the color of the observed scene point, not with the color of pixels in the other

images. The observed scene point is, by definition, non-occluded, so no occlusion

problem appears here.

Depth Marginalization

The likelihood (4.8) of a pixel depends only on its depth and not on the whole

occupancy function. However, the relationship between occupancy and depths

is simple and deterministic. Therefore, it is easy to marginalize out the depth

and express the likelihood directly in terms of the occupancy of the points on the

viewing ray of the pixel.

To simplify the notation we will do the computations for a single pixel. Fig-

ure 4.2 shows the Bayesian network associated to a single pixel. The points of

its viewing ray will be denoted by the natural numbers {0, 1, 2, · · · }, ordered by

increasing distance to the camera. Their occupancy is a vector u such that ui is

the occupancy of the i-th point in the viewing ray. The depth will be denoted by

d.

With this language, the probability of a depth given the occupancy is

p(d|u) =
∏

i<d

(1 − ui)ud (4.9)
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This equation encodes the fact that if d is the depth of a pixel, then occupancy of

the points with lower depths must be zero and the occupancy of the point at depth

d must be one. It is easy to check that p(d|u) is 1 only when d is the actual depth

determined by u and 0 otherwise.

Now, if we note the likelihood of the pixel having a depth d by L(d) =
p(I i

u
|Di

u
= d, C) and the likelihood of a pixel given the occupancy u by L(u),

then

L(u) = p(I|u,C) =
∑

d

p(I|d, C)p(d|u) =
∑

d

L(d)
∏

i<d

(1 − ui)ud . (4.10)

Note that the summand is null for all depths d except for the one that corresponds

to the occupancy u.

4.3 Inference

The last section presented the generative occupancy–depth model by defining the

joint probability of occupancy, color, depth and image pixels. In this section we

will present an algorithm for inverting the process and recover occupancy from

multiple images.

Given a set of observed images {Ii} the goal is to find the posterior probability

of occupancy and color, p(u,C|I). In a tracking application, for example, one

may be interested in computing the occupancy marginals at each point in the 3D

space. This can be used as input for a volumetric 3D tracker. Alternatively, in a

novel view synthesis application one may be more interested in finding the most

probable world in order to render it from other points of view.

As we will see these are difficult tasks, challenging the most recent inference

algorithms. The main problem is the interdependence of the occupancies of the

points in a viewing ray, which creates high order cliques, in addition to the extreme

loopiness of the network. We present here a first try of solving the inference

problem by using EM and message passing.

The optimization is done by alternating between the optimization of the oc-

cupancy and the color. In the E-step, the probabilities of the occupancies are

computed using message passing. Depending on the goal, the sum-product or the

max-product algorithm is used. In the M-step, the color estimation is improved

by maximizing its expected log-posterior.

It is interesting to note that simpler optimization techniques like iterative con-

ditional modes will lead to algorithms strongly similar to voxel carving or surface

evolution. In this case, one will start with an initial guess of the occupancy and

will try to change the occupancy of the voxels at the border of the objects in or-

der to improve the posterior. The message passing algorithm presented below is
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Figure 4.3: Factor graph representation of the distribution for a single pixel (left)

and for two pixel with intersecting viewing rays (right)

smarter in the sense that it will make decisions about the occupancy of a whole

viewing ray at a time.

4.3.1 Factor Graph Representation

In the E-step, for a fixed coloring of the space,C, the posterior probability p(u|I, C)
must be computed (or maximized). This distribution can be represented as a fac-

tor graph. Again, for notational simplicity, we detail here the factor graph corre-

sponding to a single pixel,

p(u|I, C) ∝ L(u)
∏

ij

exp(−ψ(ui, uj)) . (4.11)

Figure 4.3 shows the factor graph for a single pixel and sketches the one corre-

sponding to a pair of pixels in different images.

The graph contains two types of factors. The likelihoods of the pixels L are

huge factors connecting all the points on the viewing ray of each pixel. The

smoothing potentials exp(−ψ) are standard pairwise factors. Notice the extreme

loopiness of the complete graph, where the viewing rays of different pixels inter-

sect one another.

4.3.2 Message Passing

Inference will be done by message passing in the factor graph. Messages will

be sent from the likelihood and smoothing factors to the occupancy variables and

vice-versa. One can visualize this process as a dialogue between the images and

the occupancy. Each image tells the occupancy what to be. The occupancy gathers

all the messages and replies to each image with a summary of the messages sent

by the other images. The process continues until a global agreement is found.
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We derive here the reweighted message passing equations [102, 170] for the

occupancy factor graph. The equations are presented for the sum-product algo-

rithm, but the max-product equivalents can be obtained easily by replacing all the

sums in the equations by maximums.

Using the notation of Minka [102], the posterior probability of the occupancy

p(u|I, C) will be approximated by a fully factorized variational distribution

p(u|I, C) ≈ q(u) =
∏

i

qi(ui) . (4.12)

For each occupancy variable ui, its belief qi is computed as the product of the

messages that it receives from the factors to which it is connected in the graph. If

we note a factor by fa, the message that the factor sends to the occupancy variable

ui is a distribution over ui noted as ma→i(ui). The belief is then

qi(ui) =
∏

a∈N (i)

ma→i(ui) , (4.13)

where N (i) are the indices of the factors connected to ui. The message that a

factor fa sends to a variable is given by

ma→i(ui)
αa =

∑

ua\ui

fa(ua)
αa

∏

j∈N (a)\i

nj→a(uj) , (4.14)

where ua is the set of variables connected to the factor fa and N (a) their indices.

αa is the weight of the factor and it is a parameter of the message passing algo-

rithm. Finally, nj→a(uj) is the replying message from an occupancy variable to a

factor. It is defined as,

ni→a(ui) = qi(ui) ma→i(ui)
−αa . (4.15)

Outline of the algorithm

In practice, the message passing algorithm works by first initializing the messages

and then iteratively update them using the above rules. Only the messages send

from factors to variables (ma→i) need to be stored. These being known, the beliefs

(qi) and the replying messages (ni→a) can always be computed through equations

(4.13) and (4.15) respectively.

The occupancy–depth graph contains to types of factors, the pixels’ likelihood

and the smoothing factors.

For every pixel, there is a likelihood factor connecting all the voxels on its

viewing ray. Reciprocally, every voxel is connected to the pixels where it projects

to. For a given image, each voxel will be connected to a pixel on the image. Thus
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the message that the pixels of a single image are sending to the voxels’ occupancy

are one per voxel in the grid and can be stored into a single occupancy grid. We

interpret this grid as a big message send from the image to the voxels. We will

have to store a voxel grid for every image.

The other factors of the graph are the smoothing factors ψ. If every voxel

is connected to its 6 closest neighbors, we need 6 occupancy grids to store the

messages send from the smoothing factors to the voxels.

The algorithm consist then in

1. initilize the grids containing the messages to uniform distributions

2. iteratively update the message grids though equation (4.14)

3. compute the final desired quantities from the resulting beliefs (4.13)

Updating rules simplification

The pair-wise smoothing potentials are simple and a direct implementation of

these formulas is straightforward. The likelihood factors, however, need more

attention. These factors link a lot of variables. A direct implementation of the

equations above will involve computing sums over all the possible configurations

of occupancy along each viewing ray. The number of configurations grows expo-

nentially with the number of sites and becomes quickly intractable.

Luckily, the likelihood factor L is simple enough that the sum can be simpli-

fied analytically. The message that a pixel likelihood factor sends to the occupancy

of the grid point i is

mL→ui
(x)αL =

∑

u\ui

L(u)αL

∏

j 6=i

nj→L(uj) . (4.16)

Substituting L(u) from equation (4.10) we get
∑

d

∑

u\ui

L(d)αL

∏

j<d

(1 − uj)ud
∏

j 6=i

nj→L(uj) . (4.17)

And now we can split and simplify the sum over d into 3 sums with d smaller,

equal and bigger than i respectively,

∑

d<i

L(d)αL

∏

j<d

nj→L(0)nd→L(1)
∏

j>d∧j 6=i

(

∑

uj

nj→L(uj)
)

+ ui L(i)αL

∏

j<i

nj→L(0)
∏

j>d

(

∑

uj

nj→L(uj)
)

+ (1 − ui)
∑

d>i

L(d)αL

∏

j<d∧j 6=i

nj→L(0)nd→L(1)
∏

j>d

(

∑

uj

nj→L(uj)
)

.

(4.18)
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Finally, defining

τ(d) = L(d)αL

∏

j<d

nuj→L(0)nud→L(1)
∏

j>d

(

∑

uj

nuj→L(uj)
)

, (4.19)

we have

mL→ui
(ui)

αL =
1

∑

ui
nui→L(ui)

∑

d<i

τ(d) +
ui

nui→L(1)
τ(i) +

1 − ui
nui→L(0)

∑

d>i

τ(d) ,

(4.20)

which can be computed in linear time.

4.3.3 Color Estimation

In the M-step the color of the space is computed by maximizing the expected

log-posterior,

〈ln p(u,C|I)〉q = 〈ln p(I|u,C)〉q + 〈ln p(u,C)〉q + const. (4.21)

where 〈·〉q denotes the expectation with respect to u assuming that it follows the

variational distribution q. Again, the expectation is a sum over all possible occu-

pancy configurations. Simplifications similar to the ones done above yield to

〈ln p(I|u,C)〉q = −
∑

d

∏

i<d

qi(0) qd(1) ρ
(

I − C(d)
)

(4.22)

and

〈ln p(u,C)〉q = −
∑

ij

[

(

qi(0) qj(0) + qi(1) qj(1)
)

̺(Ci − Cj)

+
(

qi(0) qj(1) + qi(1) qj(0)
)

α
]

.

(4.23)

The optimization is done by a gradient descent procedure.

The initialization of the whole EM procedure is as follows. The messages

are all initialized to uniform distributions. The color is initialized at each site by

computing the mean of the color of its projections to the input images.

4.4 Experimental Validation

In order to validate the generative model and to test the possibility of inverting the

process using the inference method described above, we performed three types of

experiments.
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Figure 4.4: Results for the single pixel experiment.

Single pixel The first experiment was done to test the performance of the reweighted

message passing algorithm. In order to keep things simple, we considered the

viewing ray of a single pixel. The factor graph associated to the occupancy of the

points in the viewing ray appears on the left of Figure 4.3. We manually chose the

likelihood function L(d) = p(I|d). This is represented by the blue curve in Figure

4.4. We then computed the ground truth posterior of the occupancy by sampling

occupancies according to the factor graph distribution. The marginals of resulting

posterior, i.e. the probability of occupancy for every point in the viewing ray, is

represented by the green curve on the figure.

These marginals can be interpreted as follows. The pixel’s depth is very un-

likely to be lower than 10, thus, the first points of the viewing ray have a very low

posterior probability of being occupied because this would otherwise imply the

depth being lower than 10. As we move forward on the viewing ray, the depth’s

likelihood increases. This makes the occupancy of the points at depths between

15 and 20 more probable. Later, at depth 32 there is a high likelihood peak, thus

the points around are even more likely to be occupied. Points after this peak are

unlikely to be seen, and thus the probability of occupancy tends to 0.5 because we

have no information.

We then computed the posterior through the reweighted message passing de-

scribed above. The inferred occupancies are represented by the red curve. They

only approximate the ground truth posterior very roughly. The two peaks of the

real posterior are fused in a single ramp that tends to 1 instead of 0.5.

We also tested, the performance of the max-product rules in approximating

the MAP of the occupancies. The real maximum clearly consists in all the points
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before the likelihood peak (at 32) as being empty and the rest as being occupied.

The result of the max-product algorithm is shown in light-blue in the figure. As

one can see, the algorithm carved too far and wrongly considers the points in the

range 32–36 to be empty. This extra carving effect will also be noticed in the other

experiments.

Stereo pairs Despite the poor performance of the message passing on the single

pixel example, we tested the algorithm with real images with the hope that the

interconnections between different viewing rays will constrain the problem and

possibly give better results. Figure 4.5 shows the results obtained for the four

stereo pairs of the Middlebury evaluation [129]. The displayed depth maps were

computed from the inferred occupancy of frontoparallel layers placed in front of

the cameras.

The results are generally correct, but large errors are present, especially in the

textureless regions. Holes appear in these regions. We believe that these holes are

a consequence of the message passing algorithm rather than a real optimum of the

model’s posterior. As we observed on the single pixel case, the max-product al-

gorithm has a tendency to over-carve the occupancy. In textureless regions, where

the image likelihood does not discriminate the different depths, this tendency is

reinforced and carves everything away.

Multi-view stereo The last test was done with wide base line multi-view stereo

data, to test the exact same algorithm in a very different setup. Figure 4.6 shows

the results of the inference for the dinoSparseRing data set [130]. The shape of

the dinosaur is globally recovered, but here also we observe numerous holes in the

object.

We did not perform a numerical evaluation of the results because the errors are

clearly visible by the naked eye. The evaluation scores will be dominated by the

errors described above and, therefore, uninteresting.

4.5 Conclusion

In this chapter, we presented the discrete version of the occupancy–depth model.

The model is built strictly following the Bayesian rationale presented in the in-

troduction. The images are explained by the occupancy of the space through the

image formation process, which takes into account geometric occlusions. The re-

sulting model can be visualized as a very large factor graph. The graph is very

loopy and has high degree factors (linking all the occupancies in a viewing ray).
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Figure 4.5: Left image, ground truth and results.
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Figure 4.6: Results the multi-view stereo experiments

We found state-of-the-art message passing techniques to perform very poorly

on the occupancy–depth graph, and this limited the quality of the results. We

also tried simple relaxation of the binary occupancy variables without much suc-

cess, again due to the high order of the likelihood factors. Other optimization

techniques have to be explored.

In the next chapter, we develop the continuous version of the occupancy–depth

model. In this case, the optimization can be done via gradient descent surface

evolution. We develop the necessary equations and show the gradient descent

procedure effectively optimizes the posterior.

The surface evolution approach, however, is difficult to apply to the small-

baseline stereo pairs to which we applied the discrete version. Small baseline

stereo has important applications, for example, in image based rendering, where

the goal is not no reconstruct a precise 3D model, but to generate new images.

In this case, reconstructing a layered shape representation, as we do here, is use-

ful because it can be rendered from other viewpoints. Hence, good optimization

algorithms for the discrete version would still be valuable.

Despite the difficulty of optimizing it, we think that the occupancy–depth fac-

tor graph is important because it describes the image formation process exactly.

Therefore, the real solution of the problem should have a very low energy, and

the solution of minimal energy is expected to be a satisfactory solution (of course,

when a limited number of images are available, this will depend on the prior). This

is not the case with the simpler standard MRF stereo model, where it is known that

the global minimum of its energy is not a particularly good solution of the original

problem [155, 99].

In summary, the occupancy–depth model might not be easy to optimize, but

we believe that is the right thing to optimize.



112 Chapter 4: The Occupancy–Depth Model



Chapter 5

The Gradient of the Reprojection

Error

In this chapter we consider generative models of multi-view images that represent

the shape of the world with closed smooth surfaces. This can be seen as the

continuous version of the occupancy–depth model where the occupancy of every

point in the space is considered and the frontier between free and occupied points

is assumed to be smooth. The image likelihood energy of such models is an

integral over the image domain of some error measure between the observed and

predicted pixel values. We call this type of energies reprojection error functionals.

Our main contribution is the computation of the exact derivative of the repro-

jection error functional. This allows, for the first time, its rigorous minimization

via gradient descent surface evolution. The main difficulty is to correctly take into

account the visibility changes that occur when the surface moves. A geometric

and analytical study of these changes is presented and used for the computation

of the derivative.

The analysis shows the strong influence that the movement of the contour

generators has on the reprojection error. As a consequence, during the proper

minimization of the reprojection error, the contour generators of the surface tend

to move automatically to their correct location in the images. Therefore, current

multi-view stereo methods adding additional silhouette or apparent contour con-

straints to ensure this alignment can now be understood and justified by the single

criterion of the reprojection error.

5.1 Introduction

Surface evolution is one of the most successful approaches to multi-view stereo.

The idea of starting with an initial rough approximation of the surface and then

113
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deform it so that it improves some matching score is simple, yet powerful. Three

independent properties characterize a surface evolution algorithm: the way the

evolving surface is represented, the energy that is minimized and, because the

energy is often non convex, the initialization and the direction into which the

surface is deformed. Unfortunately, most of the early surface evolution algo-

rithms for stereo specified their energy based on the particular representation

used (meshes [46], oriented particles [45] or depth maps [122, 146], for exam-

ple). Since Faugeras and Keriven [41] showed how to use the general purpose

level set method for multi-view stereo, it has been more and more understood that

energies and surface evolutions can be specified independently of the numerical

shape representation used. The important question that will determine the results

is therefore the energy to be minimized.

Following the Bayesian rationale presented in the introduction 1.3, the energy

to minimize is the negative log-posterior. This is the sum of a likelihood energy

of the images plus the model prior energy. The likelihood energy of an image

should compare the input image I with the image, I∗, predicted by the model.

For the simple image formation model considered in this thesis the value of a

pixel u is I∗(u) = C(π−1
Γ (u)), where C is the color of the space and π−1

Γ (u) is

the backprojection of the pixel onto the reconstructed surface Γ (or, by default, a

point in the background B ⊂ R
3). Thus, the likelihood energy is

∫

I

(

I(u) − C(π−1
Γ (u))

)2
du . (5.1)

For more elaborated image formation models, the energy will still have a similar

form, which we describe now.

For many image formation models, the predicted value of a pixel u depends

only on the position of the point π−1
Γ (u) and possibly on its normal n(π−1

Γ (u)).
The error measure between a predicted and an observed image is then of the form

E(Γ) =

∫

I

g
(

π−1
Γ (u), n(π−1

Γ (u))
)

du , (5.2)

where I is the set of all pixels in the image, du is the area measure on the sensor’s

image plane, and1 g : R
3 × S

2 → R gives the error measure for the pixel u. We

call (5.2) the reprojection error functional and the objective of this chapter is to

find a method for minimizing it.

This functional class (5.2) is wide enough to cover many image-based surface

reconstruction problems. In section 5.6.1, we illustrate an example application to

multi-view stereo, where g measures the difference between the observed color

of a pixel and the one predicted by the reconstruction. Another example would

1
S

2 represents the unit sphere, i.e. the space of normals.
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be the reconstruction from noisy range images [172], where g would measure the

difference between the captured depth at u and the depth of π−1
Γ (u).

In the last years, great advances on the minimization of surface functionals

have been made. Several works have addressed the minimization of the weighted

area functionals. These are functionals of the form

A(Γ) =

∫

Γ

g(x,n(x)) dσ , (5.3)

where g is integrated on the surface and dσ is the surface’s area measure. The

derivative of this functional has been computed, allowing therefore its minimiza-

tion via gradient descent surface evolution [41, 55, 136]. It has also been shown

how to find the global minimum of some of these functionals via graph cuts

[16, 91] and continuous max-flow [5].

The difference between the functionals (5.2) and (5.3), emanates from the fact

that the first is an integral over the image domain, i.e. where the data lives, while

the latter is an integral over the surface.

To benefit from the existing knowledge about the weighted area functional,

one may try to rewrite the functional (5.2) as an integral over the surface and

background by counting only the visible points [118, 135, 177]. This gives,

E(Γ) = −

∫

Γ∪B

g(x,n(x))
x · n(x)

x3
z

νΓ(x) dσ , (5.4)

where νΓ is the visibility function (giving 1 for an x that is visible and 0 otherwise,

cf. section 5.4) and where the fact that du = −x·n(x)
x3

z
νΓ(x) dσ has been used. We

note that the integral is done over both the surface and background so that we

don’t undercount the pixels that are not covered by the projection of the surface.

We observe that the integrand obtained by the conversion depends on x and

n(x) as in (5.3), but also especially on the whole surface Γ, because of the visi-

bility term νΓ(x). Hence, the reprojection error functional is not a weighted area

functional and the existing methods for minimizing the weighted area functionals

can not be applied.

In this chapter, we compute the derivative of the reprojection error functional

(section 5.5), allowing therefore its minimization via gradient descent. To do so,

we first study the changes of visibility while a surface moves (section 5.4). We

will particularly observe that contour generators have a strong influence on these

changes. When a contour generator moves, some hidden parts of the surface or the

background appear behind it and some visible parts disappear. The backprojection

π−1
Γ (u) of the pixels at the corresponding apparent contour moves suddenly from

one part of the surface to another. This has a strong effect on the predicted value

of these pixels and therefore on the reprojection error and its derivative.
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As a consequence, the correct gradient descent evolution of the reprojection

error automatically favors and ensures the alignment of the apparent contours of

the reconstructed surface with discontinuities present in the images. This align-

ment thus provides a generalization of the visual hull that takes into account all

the apparent contours and not only the silhouettes (i.e. outer apparent contours).

The experiments of section 5.6.1 will demonstrate this alignment in a particular

application of the functional to multi-view stereo.

5.2 Related Work

Most state of the art surface reconstruction algorithms [130] use, at some point,

a weighted area functional. The cost of a surface point is defined by a photo-

consistency measure using the images where this point is visible. Not being pos-

sible to include the visibility in the functional itself, it has to be determined before

evolving the surface. This can be done once and for all [60, 111, 168] or iter-

atively, alternating the computation of the visibility with the optimization of the

functional [41, 118, 144].

Any method not including the visibility in the functional suffers, to some ex-

tent, of the minimal surface bias [5, 179]. This is a bias towards small surfaces.

Its most notable effect is that the null surface has cost 0 and is therefore the global

minimum. A softer effect is the tendency of small and thin parts of the surface to

disappear.

Palliatives have been proposed. Ballooning forces [168] pump the surface

to avoid shrinkage and tend to get balloon like results [179]. Surface evolution

methods [41, 118] rely implicitly on the fact that, for sufficiently textured surfaces,

a wide local minimum exists close to a good reconstruction. Thus, the evolution

will stop before shrinking too much. Visual hull based approaches constrain the

surface to fill the silhouettes of the object in the images [60, 47, 132]; the bias is

thus reduced, but only in non-concave surface parts.

Stereoscopic segmentation [177] uses the concept of oriented visibility [91] to

include the visibility in a weighted area functional. Thus, the shrinkage is avoided

and the resulting surface is consistent with the silhouettes in the images. This

happens automatically without the need of additional constraints. However, the

oriented visibility approximation is only valid for convex objects and the evolution

derived in [177] does not correctly handle self-occlusions.

Visual hull constraints have been generalized to taking into account not only

silhouettes but all apparent contour generators, by enforcing them to be aligned

with strong image gradients [30, 78]. The same way that the stereoscopic seg-

mentation manages to reconstruct visual hull like surfaces without silhouette con-

straints, the proper minimization of the reprojection error presented here performs
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the alignment of all the apparent contours naturally, without any additional con-

straints.

5.3 Mathematical Background and Notation

We will use the mathematical framework described by Solem and Overgaard [136]

in which shapes are implicitly represented by level set functions [109, 110]. We

remind here the related notions and notations required for understanding our work.

5.3.1 Level Set and Characteristic Functions

Given a level set function φ : R
3 → R, the set of points where the function is

negative,

Ω = {x : φ(x) ≤ 0} , (5.5)

is a solid shape [81]. Its boundary,

Γ = {x : φ(x) = 0} (5.6)

is an oriented surface that we assume to be smooth. We say that φ is an implicit

representation of Ω, and that Ω is the inside of Γ. The outward normal vector of

the surface can be computed from the implicit representation as

n = ∇φ/|∇φ| . (5.7)

The characteristic function of the shape, χΩ : R
3 → {0, 1}, evaluates to 1

inside the shape and 0 outside. It can easily be expressed in terms of φ and the

Heaviside step function, H , as

χΩ = 1 −H(φ) . (5.8)

The characteristic function is not continuous and therefore not derivable. Never-

theless, its gradient ∇χΩ can be defined in the distributional sense [65, 127] by

describing how it acts when applied to test functions. For all test vector fields

w : R
3 → R

3,
∫

R3

∇χΩ ·w dx ≡ −

∫

R3

χΩ ∇ · w dx = −

∫

Ω

∇ · w dx = −

∫

Γ

w · n dσ . (5.9)

The first equality is the definition of distributional derivative and the last term

results from Gauss’ divergence theorem. In simple words, the distribution ∇χΩ

computes the flux of w that is entering the shape. We can obtain an expression of

this gradient in terms of the implicit function φ by applying the chain rule to (5.8).

This gives

∇χΩ = −∇φ δ(φ) (5.10)

where δ is the Dirac delta distribution.
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5.3.2 Functional Derivatives

Local minima of functionals depending on surfaces can be found by evolving an

initial surface. Appropriate evolutions can be characterized by observing the rate

of change of the functional during the evolution. For this purpose, we review here

the concepts of derivative, differential and gradient of functionals with respect to

surfaces.

Let M denote the manifold of admissible surfaces defined by Solem and

Overgaard [136] and more formally by Michor and Mumford [101]. Every point

in this space is a surface. Curves correspond to surface evolutions. A surface evo-

lution is characterized by the normal component of velocity at which the points

of the surface are moving. The tangent vector to a curve can therefore be de-

scribed by the normal velocity. The tangent vectors on a point Γ are the normal

velocities by which the surface can evolve. The tangent space TΓM is the set of

all these normal velocities. This is an infinite dimensional vector space, and it

can be upgraded to a Hilbert space by defining a scalar product 〈·, ·〉. Different

scalar products give different Riemannian structures to the manifold of admissible

surfaces [24].

If φ is an implicit representation of Γ, the variation φs = φ + sψ describes a

curve Γ(s) = {x : φs(x) = 0} in M with Γ(0) = Γ. The normal velocity (or

tangent vector) of this evolution at s = 0 is a function v : Γ → R such that

v =
−ψ

|∇φ|
. (5.11)

Any tangent vector can be obtained from a variation of φ by appropriately choos-

ing ψ.

A surface functional E : M → R is an application assigning numbers to sur-

faces. The directional derivative of a functional in a certain direction v is defined

by restricting the functional to a curve whose tangent vector is v. Consider the re-

striction of E to the curve Γ(s). When the function E(Γ(s)) is derivable at s = 0
we say that the Gâteaux derivative of E at Γ in the direction v is

∂E(Γ, v) ≡
d

ds
E(Γ(s))

∣

∣

∣

s=0
. (5.12)

As a function of the direction v, the derivative ∂E(Γ, ·) : TΓM → R may

happen (or not!) to be a linear bounded operator. In case it is, we say that the

functional is Fréchet differentiable, and the differential is

dE(Γ)v = ∂E(Γ, v) . (5.13)

The concept of gradient is attached to the concept of scalar product in the
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tangent space. Consider, for now, the standard L2 product

〈u, v〉 =

∫

Γ

u v dσ . (5.14)

If it exists, the gradient of E at Γ is a tangent vector ∇E(Γ) such that

∂E(Γ, v) = 〈∇E(Γ), v〉 =

∫

Γ

∇E(Γ) v dσ . (5.15)

The interest of the gradient in optimization is that evolving the surface in its

opposite direction ensures a decrease of the functional. Indeed, if Γ(t) satisfies

∂

∂t
Γ = −∇E(Γ) , (5.16)

then from (5.12) and (5.15) we have

∂

∂t
E(Γ(t)) = −

∫

Γ

∇E(Γ)2 dσ ≤ 0 . (5.17)

To compute the gradient of a functional, we take the following strategy. We

first compute the Gâteaux derivative for a generic tangent direction v and then try

to rewrite the obtained expression as a scalar product as in (5.15).

5.4 Understanding the Visibility

This section presents an analysis of the visibility and its evolution. The analysis is

based on the study of Tsai et al. [162], who described the dynamics of the visible

regions as the observer moves. The goal here, is to compute the derivative of the

visibility function with respect to surface variations instead.

5.4.1 Geometrical Description

We assume the scene to be contained inside a bounded region of R
3 and let the

background surface B be the frontier of this region. It would be possible to con-

sider unbounded scenes and to define the background as an abstract surface at

infinity. However, we found this to be unnecessary in practice because one can

always assume the bounded region to be big enough (the size of the universe for

example). Having a finite background will simplify the derivations in the follow-

ing sections and avoids the need for special cases. Note also that the following

developments will be done for a single image, thus the background surfaces of

different images do not need to be the same.
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Figure 5.1: The banana shape seen from a vantage point. The green part of the

surface is the visible surface. The viewing ray segments are the crepuscular rays

that form the crepuscular cone. The horizon is drawn with green lines and the

terminators with a dashed red line.

Figure 5.2: Sliced view of the banana shape. The visible surface/volume is drawn

in green and the crepuscular cone/occluded volume in red.
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Let Ω be a solid shape inside the scene and assume a central camera to be at

the origin with a certain field of view. A point in the space is said to be visible if

and only if (i) it is in the field of view of the camera and (ii) the segment joining it

to the camera contains no point of the shape or the background (other than itself).

The visibility partitions the space into two parts, the visible and the occluded

one. The frontier between these two parts can it turn be partitioned into its visible

and occluded parts. In the following we will describe the geometry of the visibility

by recursively partitioning the space into visible and occluded parts. We will start

with dimension three parts and continue with lower dimensions.

The set of all visible points will be called the visible volume V and its com-

plement, Vc, the occluded volume. These volumes cover the whole space and are

respectively colored in green and red in Figure 5.2. The frontier between the two

volumes ∂V is a two-dimensional surface that will be called the visibility inter-

face.

The visibility interface contains both points that are visible and points that are

not. The visible part of the interface corresponds exactly to the visible part of the

shape’s surface. Therefore, we will refer to this part as the visible surface. It is

shown as green curves in Figure 5.2 and as the green part of the surfaces in Figure

5.1. The occluded part of the interface is mostly in the free space. It is formed

by patches of a generalized cone joining different parts of the visible surface. In

analogy to atmospherical optics, we will call this part crepuscular cone, because

it looks like the sun rays that can be seen streaming through the gaps in clouds

during twilight. Another sensitive name would be penumbra rays as they delimit

the umbra region. Figure 5.3 shows a picture of real crepuscular rays. They are

represented as red segments in figures 5.1 and 5.2.

Table 5.1: Hierarchical subdivision of the visible and occluded parts of the space.

The interface between visible and occluded is a manifold of lower dimension

which can be subdivided again into visible and occluded parts.

dimension interface visible occluded

3 R
3 visible volume occluded volume

2 visibility interface visible surface crepuscular cone

1 surface visibility border horizon terminator

0 singular points horizon endings T-junctions

The border between the visible surface and the crepuscular cone is a closed

curve on the shape’s surface which we will call the visibility border. Again, this

curve contains both visible and occluded points. The visible part is the horizon

or contour generator (green curves in Fig. 5.1). It is a (possibly open) curve
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Figure 5.3: Crepuscular rays over the sea.

made of visible surface points whose normal is perpendicular to the viewing ray.

Its projection into the image are the apparent contours. The occluded part is the

terminator (red curves in Fig. 5.1). It contains the points where the shadow of

the horizon is cast. The segments joining points in the horizon with their termi-

nators are the crepuscular rays that form the crepuscular cone. The points in the

crepuscular cone are all occluded by the horizon.

5.4.2 Mathematical Formulation

Let the visibility function νΓ : R
3 → {0, 1} be the characteristic function of the

visible volume, i.e. the binary function evaluating to 1 for points that are visible

and to 0 elsewhere. In this section we write this function in terms of the level

set function φ in order to derive analytical expressions for its spatial and temporal

derivatives in the next sections. Later, the results will be used for computing the

Gâteaux derivative of the reprojection error functional.

Assume the vantage point to be at the origin and let φ be an implicit represen-

tation of the surface. The visibility of a point x can be determined from the values

that φ takes along the segment connecting the origin with x. If any of these values

is non-positive, then x is occluded.

Let yφ(x) be the point of the segment where φ admits the minimum, i.e.

yφ(x) = αφ(x)x with

αφ(x) = arg min
α∈[0,1]

φ(αx) . (5.18)

If the minimum is not unique, take the one closest to the origin. Figure 5.4 il-
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Figure 5.4: Location of yφ(x) according to the position of x. If x is in the visible

volume then φ(yφ(x)) is positive, else it is negative.

lustrates several examples of points x and their corresponding yφ. We observe

that φ(yφ(x)) is negative in the interior of the occluded volume and positive in

the interior of the visible volume. Tsai et al. [162] have shown that the function

φ ◦ yφ (which is called ψ in their notation) is a continuous function, therefore,

φ(yφ(x)) = 0 for all the points on the visibility interface regardless of their visi-

bility.

This implies that for every point x on the visibility interface, yφ(x) is a point

on the surface. If x is itself on the visible surface (example b in Figure 5.4), then

necessarily yφ(x) = x, otherwise x would be occluded by yφ(x). If x is on a

crepuscular ray (example e in Figure 5.4), then yφ(x) is its occluder, lying on the

horizon where the crepuscular ray begins. All points on a crepuscular ray share

the same occluder, yφ. This fact gives an important role to the horizon because

every point in the horizon is responsible for the visibility of a whole crepuscular

ray.

From the above, it follows that φ◦yφ is an implicit representation of the closure

of the occluded volume and

νΓ(x) = H(φ(yφ(x))) (5.19)

almost everywhere, with exactly the exception of the visibility interface. Also, as

distribution, νΓ = H ◦ φ ◦ yφ. Figure 5.5 shows the level sets of φ ◦ yφ on the

banana shape. Let us stress here that even if the above rewriting is based φ, the

visibility function itself νΓ depends only on the surface Γ.
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Figure 5.5: Contour plot of φ composed with yφ. The gradient of φ ◦ yφ on

the visibility interface is drawn with black arrows. Note that the gradient on the

crepuscular rays is proportional to the gradient at the horizon where each ray

begins and is orthogonal to the viewing ray.

5.4.3 Spatial Derivative of the Visibility

The visibility function being binary, its gradient must be defined in the distribu-

tional sense. The gradient of the visibility, ∇νΓ, is a distribution that computes

flow integral across the visibility interface
∫

∇νΓ ·wdx = −
∫

∂V
w · dσ (see sec-

tion 5.3.1). It can be imagined as a vector field that is zero everywhere except

on the visibility interface, where it is aligned with the interface’s normal and is

infinitely long.

In order to derive an analytical expression of the gradient ∇νΓ, we first note

that

∇(φ ◦ yφ) = ∇φ(yφ)αφ (5.20)

almost everywhere (see Figure 5.5 for intuition). Specifically, this holds for all

the points on the visibility interface except for the terminators where φ ◦ yφ is

not derivable. To see this, we distinguish two cases. When yφ is in the interior

of the segment between the vantage point and x, then using Lagrange multipliers

we know that ∇φ(yφ(x)) · x = 0. As a consequence, the chain rule yields the

above result. Otherwise, when yφ is at an extremum of the segment, we generally

have that yφ(x) = x and αφ(x) = 1 in a neighborhood of x and so the same
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consequence holds.

Now, applying the chain rule to (5.19) it follows that the sought gradient is

∇νΓ = δ(φ(yφ)) ∇φ(yφ) αφ . (5.21)

5.4.4 Temporal Derivative of the Visibility

Consider a variation φs = φ + sψ of φ. Let Γ(s) be the associated deformed

surface. As the surface evolves, the visibility of the space changes. Thus, the

visibility function νΓ(s)(x) is now a space-time function.

The derivative of the visibility function with respect to time measures the

speed at which the visibility of the points is changing. For short enough time

intervals, the visibility of the points in the interior of the visible and occluded

volume does not change. Therefore, the derivative is zero everywhere except on

the visibility interface where it is infinite. As a distribution, the derivative acts on

functions by measuring the variation of its integral over the visible domain.

Intuitively, the temporal derivative measures the difference between the amount

of mass that enters and that exits the visible volume as the surface evolves. Fig-

ure 5.6 shows four different parts of the surface moving and the corresponding

regions of the space that enter and leave the visible volume. Note how, moving a

visible point of the surface only affects a small region of the space, while moving

a horizon changes the visibility of all of its crepuscular ray.

An analytical expression of the temporal derivative in terms of the implicit

function can be obtained. The chain rule gives

d

ds
νΓ(s)(x)

∣

∣

∣

s=0
= δ(φ(yφ))(ψ(yφ) + ∇φ(yφ) · ẏφ) (5.22)

where ẏφ is the temporal derivative of yφs at s = 0. If yφ is in the interior of

the segment, then ẏφ and x are collinear and orthogonal to ∇φ(yφ). Otherwise, if

yφ = x then ẏφ = 0. So, in any case, we have

d

ds
νΓ(s)(x)

∣

∣

∣

s=0
= δ(φ(yφ)) ψ(yφ) . (5.23)

5.4.5 Temporal Derivative of a Quantity Integrated over the

Visible Volume

We have now the necessary tools to compute the Gâteaux derivative of a functional

F that is the integral of a quantity f over the visible volume,

F (Γ) =

∫

R3

f(x)νΓ(x)dx . (5.24)
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Figure 5.6: Representation of the changes of visibility for a moving surface. Four

regions of the surface are moving: two in the interior of the visible interface and

two around the horizon. Movements of the interior of the visible surface pro-

duce local visibility changes. Only the points traversed by the moving surface

change their visibility. On the other hand, movements around the horizon change

the visibility globally. The movement of the horizon produces a movement of

the crepuscular rays behind it. Any point traversed by a moving crepuscular ray

changes its visibility.
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This derivative will be used in the following section to easily obtain the derivative

of the reprojection error functional. The main difficulties are contained in this

section.

From equation (5.23), we see that

d

ds
F (Γ(s))

∣

∣

∣

s=0
=

∫

R3

f(x)
d

ds
νΓ(s)(x)

∣

∣

∣

s=0
dx

=

∫

R3

f(x)ψ(yφ)δ(φ(yφ)) dx ,

(5.25)

which we rewrite as an integral over the visibility interface

d

ds
F (Γ(s))

∣

∣

∣

s=0
=

∫

∂V

f(x)
ψ(yφ)

|∇(φ ◦ yφ)|
dσ , (5.26)

by noting that dσ = |∇(φ ◦ yφ)|δ(φ(yφ))dx. Ideally, we would like to write the

derivative as an integral over the surface Γ and not over the visibility interface (see

section 5.3.2). With this aim, we split the integral into a sum of two integrals, one

over each of the parts of the visibility interface.

(i) On the visible surface, we know that yφ = x and, thus, the integral is

simply
∫

Γ∩V

f(x)
ψ(x)

|∇φ(x)|
dσ . (5.27)

(ii) On the crepuscular cone, yφ is the occluder of x and is a point on the

horizon of the surface. All the points on a crepuscular ray share the same occluder

on the horizon. The idea, here, is to attribute all the mass of a crepuscular ray to

the origin of the ray on the horizon. This way, the integral over the crepuscular

cone will be written as an integral over the horizon and, therefore, over the surface

Γ.

Given an arc parametrization of the horizon, γ : I → R
3 : t 7→ γ(t), the

crepuscular cone can be parameterized by x(r, t) = rγ(t) with t ∈ I and r in

the interval (1, Tγ(t)); where for any fixed t, x(r, t) covers the crepuscular ray

from the horizon γ(t) to the associated terminator. By using this parametrization,

equation (5.20) and the fact that yφ(x(r, t)) = γ(t), the surface integral (5.26)

over the crepuscular cone is written as

∫

I

∫ Tγ(t)

1

f(rγ(t))
ψ(γ(t))

|∇φ(γ(t))|
r2|γ(t) × γ

′(t)| dr dt . (5.28)

The terms depending on r can be gathered together into L(x) =
∫ Tx

1
f(rx)r2dr,

which cumulates the mass of f along the crepuscular rays. Also, let η(t) denote
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the normal vector to the horizon, that is tangent to the surface and points away

from the observer. The integral is, then,2

∫

I

L(γ(t))
ψ(γ(t))

|∇φ(γ(t))|
(γ(t) · η(t)) dt . (5.29)

This is the flux of the vector field L ψ

|∇φ|
x crossing the horizon from the visible

surface to the crepuscular cone. It is an integral over the horizon. Let us now

convert it into an integral over the surface Γ.

Consider the set of points of the surface whose normal is oriented towards the

camera, O = {x · n(x) ≤ 0 : x ∈ Γ}. The border of this set as a subset of the

surface, ∂O, is a curve on the surface. The horizon corresponds exactly to the

visible part of this curve. From (5.9) on the Riemanian manifold Γ (instead of

R
3), we know that

∫

Γ

∇ΓχO · w dσ = −

∫

∂O

w · η dτ , (5.30)

where ∇Γ denotes the intrinsic gradient in Γ and χO = 1 −H(x · n) is the char-

acteristic function of O. Considering the vector field w(x) = νΓ(x)L(x) ψ(x)
|∇φ(x)|

x,

which is zero for all the points of ∂O except the horizon, we have that equation

(5.29) can be written as

∫

Γ

νΓ(x)L(x)
ψ(x)

|∇φ(x)|
(x · ∇Γ[H(x · n)]) dσ . (5.31)

Since ∇[H(x ·n)] is on the tangent plane of Γ, it corresponds to ∇Γ[H(x ·n)].
Thus, by (5.10), we can rewrite x · ∇Γ[H(x · n)] as xt∇nx δ(x · n). Finally,

joining the splitted integrals (5.27) and (5.31), the Gâteaux derivative of F is

∂F (Γ, v) =

∫

Γ

−
[

f + L xt∇nx δ(x · n)
]

νΓ v dσ. (5.32)

Remark: As expected in section 5.3.2, we have managed to rewrite the Gâteaux

derivative of F as
∫

Γ
u v dσ. Nevertheless, unusually here, u is not a function,

but a distribution. Distributions are linear continuous operators, so the functional

is Fréchet differentiable and the differential is u. However, the gradient in the

tangent space, as defined in [136] and [24], does not exist for this functional,

because u is not an admissible deformation of Γ. In other words, to perform a

gradient descent evolution u has to be approximated by an admissible deforma-

tion. In practice, this reduces simply to approximating the delta distribution with

a function.

2
γ
′ and η form an orthonormal basis of the tangent plane at γ. In this basis, γ = (γ · γ′)γ′ +

(γ · η)η and thus |γ × γ
′| = γ · η.
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5.5 Differential of the Reprojection Error Functional

The reprojection error functional presented in the introduction is an integral over

the image domain. In this section, we rewrite it as an integral over the visibility

interface and then as a volume integral over the visible volume. Having done

that, we apply the result of the previous section to compute the differential of the

reprojection error functional.

Let us recall the form of the reprojection error functional

E(Γ) =

∫

I

g
(

π−1
Γ (u), n(π−1

Γ (u))
)

du . (5.33)

The backprojection function π−1
Γ : I → Γ ∪ B is a bijection between the image

domain and the visible part of the surface and background. In addition, π−1
Γ is

differentiable almost everywhere with the exception of the apparent contours. As

the apparent contours are of measure zero, we can use π−1
Γ to make a change

of variable and write the reprojection error as an integral over the surface and

background.

The image measure relates to the surface measure by du = −x·n(x)
x3

z
νΓ(x) dσ

and the change of variable gives

E(Γ) = −

∫

Γ∪B

g(x,n(x))
x · n(x)

x3
z

νΓ(x) dσ . (5.34)

We observe now that for all the points x of the visible surface or background,

the normal n∂V(x) to the visibility interface coincides with the normal n(x) to the

surface. Also, on the crepuscular cone we have that the normal is orthogonal to

the viewing direction x · n∂V(x) = 0. This means that the integrand of (5.34) is

0 on the crepuscular cone and thus the domain of the integral can be extended to

the whole visibility interface. The result is

E(Γ) = −

∫

∂V

g(x,n(x))
x

x3
z

· n∂V(x) dσ . (5.35)

5.5.1 Case where g does not depend on the Normal

Let us first consider the case where the cost function g does not depend on the

normal to the surface, but only on the position, g(x,n(x)) = g(x). In this case, the

functional (5.35) is the flux of the vector field g(x) x

x3
z

across the visibility interface

∂V . By Gauss’ divergence theorem, this flux is the opposite of the amount of

divergence of the vector field inside the visible volume:

−

∫

∂V

g(x)
x

x3
z

· n∂V(x) dσ =

∫

V

∇ ·

(

g(x)
x

x3
z

)

dx . (5.36)



130 Chapter 5: The Gradient of the Reprojection Error

Thus, as ∇ · x

x3
z

= 0, the functional can be written as

E(Γ) =

∫

R3

∇g(x) ·
x

x3
z

νΓ(x) dx . (5.37)

This has the form of the functional (5.24) developped in the previous section with

f(x) = ∇g(x) · x

x3
z
. By using the result (5.32), we immediately get the Gâteaux

derivative of the functional.

We observe that, in this case, L has a simple form, because the integral sums

up the variations of g along the crepuscular rays. In effect,

L(x) =

∫ Tx

1

∇g(rx) ·
x

x3
z

dr =
[

g(T (x)) − g(x)
] 1

x3
z

, (5.38)

where T (x) is the terminator of x.

Finally, noting g ◦ T by g′, the differential of the reprojection error functional

is

−∇g ·
x

x3
z

νΓ + (g − g′)
xt∇nx

x3
z

δ(x · n)νΓ . (5.39)

5.5.2 With Normals

We describe here the derivation of the differential for the general case where g
may depend on the normal of the surface. Using Gauss’ divergence theorem like

in the previous section, the energy can be written as

E(Γ) =

∫

R3

∇ ·
(

g(x,n)
x

x3
z

)

νΓ(x) dx (5.40)

Let Γ(s) be a variation of Γ with implicit representation φs = φ + sψ. The

derivative of the energy with respect to s is, by the product rule,

d

ds
E(Γ(s))

∣

∣

∣

s=0
=

∫

R3

d

ds
∇ ·

(

g(x,ns)
x

x3
z

)∣

∣

∣

s=0
νΓ dx

+

∫

R3

∇ ·
(

g(x,n)
x

x3
z

) d

ds
νΓ(s)

∣

∣

∣

s=0
dx .

(5.41)

In the second integral the normal does not depend on s. Thus, it is the derivative

of a quantity integrated over the visible volume, and we can apply the result of

section 5.4.5 exactly as we did in the case where g does not depend on the normal.

The first integral needs more attention.

The derivative of g is d
ds
g(x,ns)|s=0 = gn · ∇ψ

|∇φ|
(see [136]), thus the first

integral writes as
∫

R3

∇ ·
(

gn ·
∇ψ

|∇φ|

x

x3
z

)

νΓ dx . (5.42)
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Remember that our goal is to write the integral as in the form

∫

Γ

u v dσ , (5.43)

where u will be the gradient, and v = − ψ

|∇φ|
is the tangent vector of the variation.

To get rid of the ∇ψ term and make ψ appear instead, we can use integration by

parts. We obtain

−

∫

R3

gn ·
∇ψ

|∇φ|

x

x3
z

· ∇νΓ dx . (5.44)

Using (5.19) the gradient of the visibility can be written in terms of φ. We have

−

∫

R3

gn ·
∇ψ

|∇φ|

x

x3
z

· ∇φ(yφ)αφδ(φ(yφ)) dx . (5.45)

We note now that x · ∇φ(yφ) is zero on the crepuscular cone, thus the integrant is

only non-zero on the visible surface, where αφ = 1. Simplifying we get

−

∫

R3

gn · ∇ψ
x · n∂V

x3
z

δ(φ(yφ)) dx . (5.46)

Integrating by parts on ∇ψ gives

∫

R3

∇ ·
(

gn
x · n∂V

x3
z

)

ψ δ(φ(yφ)) dx

+

∫

R3

ψ
x · n∂V

x3
z

gnδ
′(φ(yφ)) dx .

(5.47)

The second term is null because gn is tangent to the surface and thus either gn ·
∇(φ ◦ yφ) = 0 or x · n∂V = 0 . The first integral is only non-zero on the visible

surface and can be written as

−

∫

Γ

∇ ·
(

gn
x · n

x3
z

)

νΓ
−ψ

|∇φ|
dσ , (5.48)

which has the desired form.

Joining the two terms of equation (5.41), we conclude that the differential of

the normal depending reprojection error is

−∇ ·
(

gn
x · n

x3
z

+ g
x

x3
z

)

νΓ + (g − g′)
xt∇nx

x3
z

δ(x · n)νΓ . (5.49)
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5.5.3 Comparison with the Gradient of the Weighted Area Func-

tional

Let g be defined as

g(x,n) = −g(x,n)
x · n

x3
z

. (5.50)

If we assume everything to be visible, we have that the reprojection error can be

written as
∫

Γ

g(x,n) dσ , (5.51)

which is a weighted area functional. Its differential is

∇ · (g
n

+ g n) = −∇ ·
(

gn
x · n

x3
z

+ g
x

x3
z

)

. (5.52)

Therefore, the differential of the reprojection error (5.49) is equal to the gradient

of the weighted area functional of (5.50) given in [41, 55, 136], plus a new term,

(g − g′)
xt∇nx

x3
z

δ(x · n)νΓ , (5.53)

which is due to the changes of visibility caused by the movement of the horizon.

5.6 Applications

In this section, we present three reprojection error functionals of interest with

applications to different surface reconstructions techniques. For each of them, we

derive their differential using the formulas of the previous section.

5.6.1 Multi-view Stereo

We deal here with the reprojection error functional derived from the generative

approach to multi-view stereo. To keep the example simple, the scene is assumed

to be Lambertian and the illumination static as in the rest of this thesis. Note

though that more elaborate reflectance models [178] still lead to a reprojection

error functional.

To explain the images, we need a surface Γ and also the radiance of points of

that surface and of the background. LetC : R
3 → R

3 be the radiance function that

associates colors to the points of the 3D space. Ideally, the color I(u) observed at

the pixel u of image I should be equal to the color of the pixel’s backprojection

onto the surface C(π−1
Γ (u)). Remember, that this backprojection, can be both a
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point of the surface Γ or a point of the background B. The SSD reprojection error

of the surface into an image is

E(Γ, C) =
1

2

∫

I

(

I(u) − C(π−1
Γ (u))

)2
du , (5.54)

and the reprojection error for a set of images is the sum of the individual reprojec-

tion errors.

Optimizing the reprojection error can be done by alternating between the esti-

mation of C and Γ.

Color Optimization For a fixed surface, the optimal radiance of a surface point

has a closed form solution as a weighted sum of the colors observed at its projec-

tion onto the images where it is visible,

C(x) =

∑

i Ii(πi(x))x·n
zi
νi(x)

∑

i
x·n
zi
νi(x)

. (5.55)

Note however that this determines only the color of the points belonging to the

surface; the color of the rest of the space can be chosen arbitrarily. We can, for

example, extend the color of the surface to the rest of the space constantly along

the normal direction, or alternatively extend first the normal and the visibility

function, and then use the equation (5.55) everywhere. In the experiments we take

the latter approach. In addition, the color of the background points is assumed to

be known and remains unchanged.

Surface Optimization For a fixed color map, from equation (5.49), the differ-

ential of a single image error with respect to the surface is

(I − C)t∇C
x

x3
z

νΓ +
(

(I − C)2 − (I − C ′)2
)xt∇nx

x3
z

δ(x · n)νΓ (5.56)

where C ′ denotes the radiance at the terminator of x—which can be a point on the

surface or in the background—and where I stands for I ◦ π.

Intuitively, this means that during the evolution, the visible points will move

according to the first term of (5.56) in order to match C with I in the interior of

objects in the image. Additionally, the second term will move the horizon of the

surface and only the horizon because of the δ(x ·n)νΓ factor. This term compares

the cost of the points in the horizon with the cost of the terminator and moves the

horizon accordingly, so that the terminator becomes visible or occluded depending

on that comparison. As a consequence, the apparent contours of the surface on

the image will move to their correct location, as will be shown in the experiments.
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5.6.2 Surface Reconstruction from Range Images

Another problem where a reprojection error functional appears is the reconstruc-

tion of surfaces from range data. In this case, we are given a set of measured

depth images and want to find the surface that originated them. The depth maps

are typically obtained with a laser scanner or from multiple images using a bottom

up stereo algorithm.

Whitaker [172] derived the MAP energy functional for the problem, making

reasonable assumptions about the noise in the input depth maps. The likelihood

energy simply compares the values of the measured depth map, R, with the depth

maps obtained by the reconstructed surface. This is

E(Γ) =

∫

I

ρ
(

R(u) − d(π−1
Γ (u))

)

du , (5.57)

which has the form of a reprojection error functional with

g(x) = ρ(R(π(x)) − xz) . (5.58)

Whitaker made some approximations in order to convert the functional into

a ballooning functional and to be able to minimize it via surface evolution. The

strategy of converting the image-based energy into a volume cost is analogous to

the method of Curless and Levoy [31] for mixing depth maps and also to recent

work by Zach et al. [181].

With the results of the previous section, the differential of the likelihood en-

ergy can be computed and the likelihood can be optimized directly. The differen-

tial is

ρ′(R(π(x)) − xz)
1

x2
z

νΓ +
(

ρ(R− xz) − ρ(R− x′
z)

)xt∇nx

x3
z

δ(x · n)νΓ (5.59)

5.6.3 Multi-view Normal Integration

Photometric stereo is a technique that recovers the surface’s orientation from mul-

tiple images taken with a fixed camera and a moving light source. The ability of

the technique of recovering the surface normal for every pixel in the image yields

very accurate results. The recovered normal fields can be integrated to reconstruct

a surface.

An important drawback though is that with a fixed viewpoint one can only

recover the parts of the surface visible from that viewpoint; also, the scale of the

surface is not known as only the normals are recovered. One solution to this is to

perform photometric stereo from different viewpoints and then merge the different

normal fields into a single surface. We have then the problem of reconstructing a
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surface such that its projection to each of the viewpoints matches the normal fields

given by the photometric stereo algorithm.

A natural likelihood energy for this problem is

E(Γ) =

∫

I

(

N(u) − n(π−1
Γ (u))

)2
du . (5.60)

That is the sum of some error measure ρ between the recovered normal fieldN and

the normal of the projected surface n(π−1
Γ (u)). This has the form of a reprojection

error functional with

g(x,n) =
(

N(π(x)) − n
)2
. (5.61)

Its differential is

∇
(

(N − (N · n)n)
x · n

x3
z

+ (N − n)2 x

x3
z

)

νΓ

+
(

(N − n)2 − (N − n′)2
)xt∇nx

x3
z

δ(x · n)νΓ . (5.62)

5.7 Implementation

Here, we describe the implementation of the gradient descent surface evolution

corresponding to the multi-view stereo application.

The evolution is implemented using the level set method [109] (other surface

evolution methods could be used though). The surface is represented as the zero

level set of an evolving implicit function φ(x, t). At each time, the level set func-

tion is stored in a uniform grid discretization of the space. To move the surface

with normal velocity v : Γ → R, the implicit function has to evolve according to

the partial differential equation

∂φ

∂t
= −v‖∇φ‖ , (5.63)

where v : R
3 → R is some extension of v to the whole space. As we want

to minimize the reprojection error, we can choose the normal velocity to be the

opposite of its gradient so that the error decreases with the time.

Two issues must be addressed. Firstly, as the gradient is only defined on the

surface, we have to extend it to the rest of the space. As proposed by Gomes and

Faugeras [57], in order to improve the numerical stability, the gradient is extended

so that it is constant along the direction of the normal to the surface. This means

that for a given point in the space, x, the extended normal velocity v(x) is equal to

the normal velocity at the surface point closest to x. If the initial implicit function
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φ(·, 0) was a signed distance function, extending the normal velocity in this way

ensures that it will remain a signed distance function during the evolution.

The second issue is that the reprojection error does not really have a gradi-

ent. The differential of the reprojection error contains delta functions, which do

not correspond to admissible surface deformations. Thus, the differential must be

approximated by an admissible deformation. This can be done by approximat-

ing the delta function by a Gaussian distribution. In effect, Charpiat et al. [24]

showed that applying positive linear operators, such as smoothing, to the L2 gra-

dient leads to directions that still reduce the energy. Replacing the delta function

by a Gaussian is a quick and rough approximation of a real intrinsic smoothing of

the gradient.

The procedure of computing the smoothed and extended gradient is laborious

because it involves computing visibility, horizons and terminators. We proceed as

follows.

1. Extract a mesh: A mesh representation of the 0 level set is computed using

the marching cubes algorithm [95]. In addition, for every vertex of the

mesh, the surface normal is computed by interpolating the gradient of the

implicit function ∇φ linearly.

2. Compute the depth maps: The mesh is then rendered from the point of

view of the input images using OpenGL. The Z-buffer of the renderings is

used to compute the depth maps of the surface.

3. Colorize the mesh: For each mesh vertex, its optimal color is computed

through equation (5.55). The visibility function is computed using the depth

maps as

νi(x) =

{

1 if di(x) < Di(πi(x))

exp{− (di(x)−Di(π(x))2

2ǫ2
} otherwise

(5.64)

where di(x) is the depth of the point x with respect to the i-th camera,

and Di(πi(x)) is the value of the computed depth map for this camera at

the projection of x. The parameter ǫ gives a small tolerance to surface

points whose depth is a little larger than the computed surface depth. This

tolerance is necessary to compensate the low numerical precision at which

the depth maps are computed.

4. Compute the predicted images: The predicted images, I∗, are computed

by rendering the background and the colored mesh.
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Figure 5.7: Left, method for rendering the terminator by pushing the horizon

inside. Right, for every grid point x, its closest surface point s(x) is computed.

5. Compute the terminator images: The color of the terminators can be

computed without finding the terminators explicitly. For this we render the

background and the surface again, but this time we push the horizon of the

surface inside. That is, for each vertex of the mesh, if its normal is orthog-

onal to the viewing ray, we shift its position in the opposite direction of the

normal (Figure 5.7). The result is an image that is equal to the predicted

image everywhere except on the apparent contours where the color of the

terminator appears instead of the color of the horizon. We will call this

images the terminator images. This operation can be easily implemented

using programable vertex shaders.

6. Compute the gradient: Finally, we compute the extended gradient for ev-

ery point in a narrowband arrow the surface according to equation (5.56).

We detail here how to compute each of the terms in the equation. This has

to be done for every point in the grid where φ is stored:

(a) Compute the closest surface point: Given the grid point, x, that does

not necessarily lie on the surface, its closest surface point, s, is com-

puted (Figure 5.7). Because we φ is a signed distance function, this

point is

s(x) = x − φ(x)∇φ(x) (5.65)

(b) Compute the gradient of the color: The color, C, and the gradient of

the color ∇C are computed at s by averaging the colors of the images

where s is visible. This is given by equation (5.55) and its gradient

version

∇C(x) =

∑

i∇Ii(πi(x))∇πi(x) x·n
zi
νi(x)

∑

i
x·n
zi
νi(x)

. (5.66)
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Note that here we neglected the gradient of the weights ∇(x·n
zi
νi) be-

cause their value is expected to be small compared to the gradient of

the images. An alternative way of computing the gradient of the color

would be to use finite differences.

(c) Compute the gradient of the normal: The gradient of the normal is

equal to the Hessian matrix of the signed distance function,

∇n(x) = Hφ(x) . (5.67)

The problem is that while we are considering the grid point x, we ac-

tually want to compute the gradient of the normal at the closest surface

point s. We show now, how to compute Hφ(s(x)) from Hφ(x).

The gradient of s, seen as a function of x (see equation (5.65)), is the

matrix

∇s = I −∇φ∇φt − φHφ . (5.68)

We also have that the gradient at s coincides with the gradient at x,

∇φ(s) = ∇φ, and derivating this equation we get

Hφ(s)∇s = Hφ , (5.69)

which is the relation between H(s(x)) and H(x). The function s is a

projection, thus ∇s has rank 2 and is not invertible. We can solve the

equation for Hφ(s) by adding the constraint Hφ(s)∇φ = 0, which

holds because φ is a signed distance function. The system to solve is

Hφ(s)
(

∇s|∇φ
)

=
(

Hφ|0
)

, (5.70)

and can be solved by computing the pseudoinverse of (∇s|∇φ) or by

Gaussian elimination.

(d) Compute the delta term: The term δ(x·n) has to be approximated by

a soft delta function δa(x·n), where δa is, for example, a Gaussian with

standard deviation a. If done this way, the parameter a will depend

on the units in which x is expressed. If x has very large values, for

example, points that are nearly at the horizon can still produce large

values of x · n, thus a has to be chosen large if one wants to accept

points near the horizon. To avoid this dependence, we use the fact that

δ(x) = αδ(αx), and to rewrite the term as

δ(x · n) =
1

‖x‖
δ

(

x · n

‖x‖

)

≈
1

‖x‖
δa

(

x · n

‖x‖

)

(5.71)
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(e) Compute the color of the terminator: Since we have rendered the

images without the horizons, if s is on the horizon of an image, we can

compute the color, C ′(s), of its terminator by taking the value of the

terminator image at the projection of s.

To improve speed and overall convergence the evolution is done using a multi-

resolution scheme; starting with low resolution versions of the level set grid and

the images, and progressively increasing the resolutions.

5.8 Experiments

We present here, the experiments performed on two, specially designed, synthetic

scenes and three real world scenes. The goal of these experiments is to show the

impact of the proper handling of the visibility.

5.8.1 Synthetic Data

The balls dataset (fig. 5.8) consists of 20 images of three balls floating above a

plane. There is no texture or shading in any part of the scene. Therefore, the

only information present in the images are the apparent contours. In addition,

because of self-occlusions between the balls and the plane, the silhouettes of the

foreground are not sufficient to distinguish that the balls are three separate objects.

The visual hull of the scene is formed by only two connected components: the

plane and the three balls glued together.

The reprojection error minimizing flow (5.56) was executed 3 times. First, us-

ing the flow as it is, then, using only its second term (the horizon term) and, finally,

using only the first term (the interior term). The first two executions successfully

managed to separate the three balls and obtained a correct reconstruction. The

third one, did not separate the balls during the evolution and, due to the lack of

texture, did shrink and disappear. The shrinkage did happen even when initializing

from the ground truth.

Visual hull energies or constraints [60, 132, 47] could have been used to avoid

the shrinkage, but this would not help in separating the balls. Methods using all the

apparent contours [78, 30], and not only the silhouettes, will have better chances.

The point here is that the direct minimization of the reprojection error already did

the job. No additional constraints or energies were needed. The horizon term took

care of placing the apparent contours of the reconstructed balls at their correct

location in the image.

We repeated the experiment for the bowl scene (fig. 5.8). The scene contains a

green ball inside a yellow bowl with Lambertian shading. The execution with the
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Figure 5.8: Four input images of the balls dataset and three rendereings of the

reconstruction obtained with the horizon term.

full flow, correctly recovered the concavity of the bowl and the shape of the ball.

The execution using only the horizon term did not carve the concavity at all, which

is logical since the texture at the interior of the bowl is not used. The execution

with the interior term, did carve the concavity, but not completely, keeping the ball

and the bowl linked together. This shows how the interior and the horizon terms

worked together, the first one carving the concavity and the second one enforcing

the apparent contour of the ball on the images, thus separating the ball and the

bowl.

5.8.2 Real Images

The evolution was also tested on real images including the temple and the dino

datasets of the multi-view stereo database [130]. Figure 5.10 shows the evolution

obtained for the temple sparse ring dataset. The evolution was manually initial-

ized with two small ellipses, one on the top of the temple and one on the bottom,

to show that the surface can grow during the evolution. In effect, one of the nice

things about the reprojection error is that the empty surface is not necessarily a

minimum, since it does not reproduce the original images. Thus, if the initializa-

tion is a small surface inside the real object, the surface will not shrink. Instead,

the horizon term will pull the horizons of the surface out because the color of

the horizon is much more likely than the color of the terminator which is at the

background.

The evolution took 40 mins, the last 30 mins of which the surface reminded

nearly steady. Basically, the first iterations, while the level set grid resolution is
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Figure 5.9: Four input images of the bowl dataset and the reconstruction obtained

by the full term, the horizon term and the interior term.

coarse, the surface moves fast and the iterations’ time span is short because the

number of voxels is small. As the resolution increases, the time spend at each

iteration increases also. The final grid resolution is about 150 × 200 × 100.

We executed the algorithm on the temple ring and the dino ring datasets, which

contain 47 images, and on the temple sparse ring and dino sparse ring, which

contain 16 images. Daniel Scharstein kindly provided numerical evaluation of

the results, which appear at http://vision.middlebury.edu/mview/ and are

included in table 5.2 under the label Lambertian. The evaluation, gives accuracy

and completeness scores based on the distance of the reconstructed surface to the

ground truth surface. The accuracy score is the distance that brings 90% of the

result within the ground truth surface. The completeness score is the percentage of

the ground truth surface that lies within 1.25mm of the result (the objects’ heights

are 16cm and 10cm). Table 5.2 gives also the median, the worst and the best

scores for comparison with the other techniques that have been evaluated.

While the reconstructions are globally correct, the accuracy and complete-

ness scores are a bit disappointing. We observe two problems. Firstly the results

are bumpy—look for example at the stairs of the temple in Figure 5.10. We ex-

amined the input images and compared them with the images generated by the

reconstruction, and we observed significant differences such as some input im-

ages being significantly brighter that the reconstructed radiance. We concluded

that the constant brightness assumption does not hold on these images, even if the

objects were apparently Lambertian. The second problem of the results, is that the

http://vision.middlebury.edu/mview/
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Figure 5.10: First row: some of the input images of the temple dataset. Second

row: surface evolution for the temple sparse ring dataset. Third row: final recon-

struction for the temple sparse ring dataset. Forth row: final reconstruction for the

dino sparse ring dataset.
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templeRing templeSparseRing

accu. (mm) compl. (%) accu. (mm) compl. (%)

Lambertian 0.88 84.3 1.05 81.9

specular 0.71 99.0 0.79 96.8

median 0.70 97.4 0.84 94.2

worst 1.86 84.3 2.77 56.6

best 0.52 99.5 0.48 99.2

dinoRing dinoSparseRing

accu. (mm) compl. (%) accu. (mm) compl. (%)

Lambertian 0.60 92.9 0.76 90.7

specular 0.47 97.6 0.50 97.7

median 0.55 96.9 0.65 94.8

worst 2.81 57.8 1.41 26.0

best 0.33 99.6 0.38 99.2

Table 5.2: Results for the temple and dino datasets. For each dataset, accuracy and

completeness scores are given for Lambertian model and for the model estimating

a specular component. The median, the worst and the best scores submitted to the

evaluation are given for comparison purposes.

surface is trying to reconstruct the bench onto which the temple is standing. This

is because we assume the background to be black, and the bench is dark, but not

black. In the following section we present a simple extension of the model that

palliates these two problems.

In order to test the possibility of using the level set representation to recon-

struct high-resolution models, we tested the algorithm on the Leuven dataset. The

data set contains 7 high-resolution images (3000x2000 pixels) of a corner of the

Leuven’s City Hall. The resolution of the level set grid should be on a par with

the resolution of the images, thus we downsampled the images. At the finest level

of resolution, we used the images downsampled at 1500x1000 pixels and a voxel

grid of 500x500x750 voxels. To avoid the memory cost of storing all these voxels,

we used the Hierarchical Run Length Encoding sparse data structure [68] to store

only the voxels in a narrowband arrown the surface. We also manually masked

some parts of the images in order to reconstruct only the central part of the scene.

Figure 5.11 shows the input images and the reconstructed model.
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Figure 5.11: The seven manually segmented input images of the Leuven’s City

Hall (top), and two renderings of the reconstructed surface.
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5.8.3 Dealing with Non-Lambertian Effects

Most real world scenes are not Lambertian. Even the temple and the dino objects,

which were intentionally chosen for being Lambertian, exhibit a certain amount

of specular reflection. In this section, we present a modification of the Lambertian

model (5.54) to take into account deviations from the constant brightness assump-

tion without explicitly modeling the reflectance properties of the scene.

The idea is to consider that the predicted images are the sum of the images that

would be produced by a Lambertian object, plus a specular component, and try to

estimate both the Lambertian color C and the specular components of the images

S : I → R
3. In order to constrain the problem, we assume that the specular

component will be smooth.

Another issue with the previous model, is that the background was assumed

to have a constant color. In the temple and dino images, this is clearly not the

case. Ideally, we would have the images of the background without the object, but

sometimes we don’t. To solve this, we will also estimate the background images,

F : I → R
3, under the single assumption that these images are smooth.

The predicted image is then

I∗(u) =

{

C(π−1
Γ (u)) + S(u) if π−1

Γ (u) ∈ Γ

F (u) if π−1
Γ (u) ∈ B .

(5.72)

The energy to be minimized for every image is

E(Γ, C, S, F ) =
1

2

∫

I

(

I(u) − I∗(u)
)2
du

+
λ

2

∫

R3

|∇S|2 dx +
λ

2

∫

I

|∇F |2 du .

(5.73)

The minimization can be done by gradient descent on the surface Γ, the specular

component S, and the background images B. The optimal Lambertian color C
can still be computed directly as in the previous model, but removing the specular

component from the input images first.

The gradient of the energy with respect to the specular component, S, is

−
(

I − C − S
)

f − λ∆S (5.74)

where the foreground indicator function, f : I → {0, 1}, is defined as

f(u) =

{

1 if π−1
Γ (u) ∈ Γ

0 if π−1
Γ (u) ∈ B .

(5.75)
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Figure 5.12: Reconstruction obtained for the temple ring and dino ring datasets,

while estimating the specular component and the background.

The gradient with respect to the background image, F , is

−
(

I − F
)

(1 − f) − λ∆F (5.76)

We executed the minimization on the temple and dino datasets, to see whether

the model improves the results. The accuracy and completeness scores appear in

Table 5.2 under the label specular. All the scores improved very significantly with

respect to the ones obtained without estimating the specular component (Lamber-

tian label). Figure 5.12 shows the reconstructed models, where we can see, for

example, that the stairs of the temple are better reconstructed, and that this time

the bench is not recunstructed.

Figure 5.13 we show some of the estimated specular and background images.
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We observe that the estimated specular component, has a characteristic pattern in

all the images: one side of the image is green while, the other is magenta. The

green side always correspond to the upper part of the camera’s sensor, and the

magenta to the lower part. We think that this must be due to some chromatic

aberration of the camera itself and not due to the reflectance properties of the

objects. Thus, although the specular component estimation was added to deal

with specularities, it turned out to be useful for correcting camera’s errors.

The estimated background images globally correspond to the real background.

Near the silhouette of the objects a bit of foreground color is being estimated as

background. This did apparently not affect the results.

5.9 Conclusion

In this chapter we compute the derivative of the reprojection error functional. The

difficult part has been to correctly take into account the visibility changes that

occur while the surface moves, which is one of the most challenging problems

in surface reconstruction from images. The reward is that it is now possible to

minimize the reprojection error via surface evolution.

The benefit of this minimization is that the reconstructed surface is the one

that best reproduces the observed images. In particular, as demonstrated in the

experiments, the evolution moves the contour generators of the surface so that the

apparent contours appear at their correct location in the images. This is a direct

consequence of the correct minimization of the reprojection error itself. There-

fore, current methods using additional silhouettes or apparent contour constraints

can now be understood and justified by the single criterion of the reprojection

error.
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Figure 5.13: From left to right: the input image, the projection of the estimated

Lambertian color, the estimated specular component, and the estimated back-

ground. The values of the specular and the background images are scaled for

better visualization.
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Conclusion

6.1 Sumary

In this thesis we have addressed the multi-view stereo problem using generative

models. The process by which images are generated from objects has been de-

scribed and Bayesian inference used for inverting the process and recovering the

objects’ shape. The relationship between the shape of the objects and the ob-

served images is particularly complex due to the occlusions happening during the

image formation process. Additionally, the shape space, into which inference has

to be done, is itself complex and infinite dimensional. Thus, performing Bayesian

inference on it is difficult.

We have developed two models using finite dimensional representations of

shapes: first using depth maps, and then using voxels. Depth maps proved effi-

cient at recovering high resolution models. However, the need of a special prior

to make the different depth maps coincide, and the difficulty of moving depth

discontinuities during the optimization suggested that a shape representation in-

dependent of the images may be preferable.

We have therefore developed a generative model of multi-view images using

a voxel representation of the shape. The model includes the basic deterministic

relationship between occupancy and depth. Therefore it explains the geometric

occlusions exactly. Graphically, the model has the form of a factor graph, where

the occupancies of all the voxels on the viewing ray of each pixel are linked by

the factor computing the pixel’s likelihood. Indeed, to compute the probability of

observing a certain color on a pixel, one needs to know which voxel is visible on

that pixel, and for this, the occupancy of all the voxels in the viewing ray has to

be known. The graph is huge, loopy and has very high order factors; current state

of the art inference methods performed poorly on it and the results let room for

improvement.

149
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Finally the continuous version of the occupancy–depth model has been con-

sidered. In this case, the shape is defined by the occupancy of every point in the

space and not only voxels. Thus, the factor graph interpretation is no longer pos-

sible. We have approached the inference problem using gradient descent surface

evolution. For this purpose, we have computed the differential of the reprojec-

tion error (the negative log-likelihood of the images) with respect to shapes. This

was not trivial because the relation between the reprojection error and the shape is

given by the image formation process, which involves occlusions. The computed

differential takes into account the changes of visibility that occur while the sur-

face moves, which were ignored by previous works. As a consequence, during the

gradient descent evolution of the reprojection error, the shape of the objects can

grow in order to explain unexplained pixels, and the minimal surface bias present

in many other formulations of the problem is avoided.

Seeing things a posteriori, I think that addressing specific shape representa-

tions was not fruitful enough, and delayed the understanding of the fundamental

problem of minimizing the reprojection error, which appears whatever shape rep-

resentation is used. Computing the differential of the reprojection error is the first

step towards this end, and is the main contribution of this thesis.

The discrete occupancy–depth model is nevertheless valuable, because in small

baseline situations, with multiple objects at very different depths, the surface evo-

lution approach may not be applicable, and a layered representation may be prefer-

able. Additionally, with a finite dimensional representation, it is possible to apply

optimization methods unavailable in infinite dimensional spaces.

6.2 Future Work

There are two complementary ways in which the work of this thesis can be con-

tinued. Firstly, better optimization algorithms for minimizing the reprojection

error, both on in discrete and continuous versions, should be found. Secondly,

more elaborated generative models of multi-view images, taking into account non-

Lambertian reflectance properties should be studied.

6.2.1 Better algorithms

In the discrete setting, the tested message passing techniques performed very

poorly. Kolmogorov and Rother [83] have shown that for highly connected graphs,

loopy belief propagation and its re-weighted versions perform poorly, while graph

cuts techniques do much better. Therefore, a first thing to do is to study the appli-

cability of graph cuts techniques to the occupancy–depth model. This is not trivial
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because the occupancy–depth factor graph contains very high order factors, and

graph cuts has been primary studied for factors of two or three variables [85].

We have done some preliminary investigations on this direction. The occupancy–

depth model can actually be expressed in the form of a pair-wise Markov random

field, by adding—or not removing (see section 4.2.4)—the redundant depth vari-

ables. In this case, the depth of each pixel is connected to every voxel on its

viewing ray, and there are no direct connections between the voxels other than the

smoothing terms. We tried to adapt the α-expansion algorithm [84] to this graph,

but found that the binary energies to be optimized were not regular, and thus the

graph cuts algorithm could not be applied. Other approaches must be studied.

In the continuous setting, gradient descent surface evolution worked fine. How-

ever, gradient descent is a local method that should be used only when the initial

surface is already close to the solution; otherwise, there is no guarantee that the

global minimum of the energy will be reached. In our experiments we relied on

the multi-resolution scheme to provide good initializations at each scale. This

method is unlikely to work for thin objects, which will not be reconstructed on the

first levels of resolution.

Recently, convex relaxation methods for minimizing the weighted area func-

tional have been developed [108, 18]. These methods are guaranteed to converge

to the global minimum of the functional. They are also simpler to implement and

faster to run than surface evolution. It would be very interesting to study whether

these techniques can be adapted to work with the reprojection error functional.

In this thesis, we have strictly followed the energy minimization approach to

the stereo problem. All the presented methods consist in defining an energy (us-

ing generative models), and then minimizing the energy. We have tried to avoid

heuristic algorithms for reconstructing the surface, so that the solution of the prob-

lem is precisely defined as the minimum of a functional, even if the optimization

method is not able to compute it.

The radically different approach taken by direct bottom-up methods is to apply

heuristics to robustly detect the surface. While these methods are harder to study

theoretically, in practice they give very good results. Indeed, some reconstructions

computed by these algorithms actually have a very low reprojection error, even

though the method did not explicitly seek to minimize it. An interesting direction

of research is to understand why these methods work, and to find the way of using

their key ideas while ensuring that we are minimizing the reprojection error.



152 Chapter 6: Conclusion

6.2.2 Better models

In this thesis we have assumed a very simple image formation model, and very

simple priors. To improve accuracy and robustness, both the likelihood and the

prior should be improved.

Better likelihood The real world is not Lambertian. The generative approach

can be extended to more realistic image formation models taking into account

more complex reflectance properties. Modeling the way light reflects onto the

surface will give information about the surface orientation. The likelihood of a

pixel will no longer depend only on the position of its backprojection onto the

surface, but also on the normal at that point. In such a model shape from shading

and multi-view stereo will be integrated into a single problem [178].

However, solving the problem will be challenging: shadows (light occlusions)

will bring more visibility problems similar to the ones addressed in this work,

and inter-reflections will add more dependencies between different parts of the

surface. There is a compromise to be taken between the accuracy of the model

and the feasibility of optimizing it. It is my belief, that accurate models including

arbitrary reflectance properties and accounting for light inter-reflections can be

useful once a good estimation of the shape is known. However, it is less clear

whether these models can be used to find the shape simply by minimizing the

posterior blindly.

Better prior When many images are available, their likelihood may be strong

enough and dominate over the prior, and determine a solution regardless of what

the prior is. In this thesis, for example, we have only used simple smoothing

priors. The results that we obtained are clearly due to the likelihood term, and

only slightly affected by the smoothing prior. However, if we want to reconstruct

scenes from few images, or even a single one—like humans do—the likelihood

term will not determine the solution, better priors on what is an object should be

used.

In particular, useful priors should relate the shape of the object with its appear-

ance. Humans understand the contents of pictures. This can not be due to a good

shape prior coded in their brains; it has to be due to a good joint prior on shape

and appearance because only the appearance is observed.

As an example, consider a stereo pair and a pixel of the left image, whose

corresponding 3D point is occluded on the right image. The depth of this pixel is

not determined by the likelihood because it is only visible in one image. Thus, the

depth will only be determined by the prior. If we have a smoothing shape prior,

the depth will be determined by the depth of the neighboring pixels. However, if

we have prior on both the shape and the appearance of the world, the depth of the
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occluded pixel will be determined both by the depth of the neighboring pixels and

by the color of the pixel itself. If the pixel is red, and there are a lot of red objects

at a certain depth, we will expect the pixel to be at that depth. This is an enormous

gain of information, that can resolve the ambiguity at the occlusions effectively

by bringing segmentation cues to the stereo problem.

In summary, for applications where many images are available, we should

develop more accurate and robust likelihood terms, as well as better and faster

optimization algorithms. For applications where only a few images are available,

better priors relating the shape with its appearance should be developed to solve

the ambiguities.
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