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Etude de la dualité des modèles

bond graphs. Application à la

commande

La clé de voute de ce travail de recherche est l’étude de la propriété de dualité.

Cette notion a émergé comme concept philosophique et la plupart des sys-

tèmes philosophiques et spirituels l’ont adopté. C’est vrai qu’on ne retrouve

pas la dualité " homme-femme " ou " bien-mal " ou encore " matériel-spirituel

" dans l’automatique, mais différents types de dualité peuvent être définis à

partir des concepts mathématiques et pas seulement.

Le concept de dualité a été défini d’un point de vue mathématique et

beaucoup de recherches ont été menées en utilisant comme représentation

mathématique, pour un système physique, la représentation d’état ou la

représentation par un module. L’étude des systèmes dynamiques, en partic-

ulier l’étude de lois de commande, est au cœur de notre travail de recherche.

Dans ce contexte, notre démarche essaie de développer le concept de dualité

à travers les propriétés des systèmes dynamiques et les lois de commande

associées en utilisant une approche graphique. Les deux représentations

graphiques utilisées dans ce rapport sont les modèles bond graphs et les sys-

tèmes structurés. Ces outils, historiquement utilisés comme moyens de mod-

élisation et d’analyse sont aussi employées ici comme outils pour la génération

de lois de commande. Cette recherche répond aux besoins des industriels qui

exploitent des machines de plus en plus performantes. Les approches pro-

posées exigent une connaissance précise des phénomènes physiques mis en jeu

dans ces processus et la possibilité d’adaptabilité à des situations différentes.

L’automatique est une discipline qui regroupe de nombreuses activités,

comme la modélisation des systèmes dynamiques, l’analyse des modèles et
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la conception des lois de commande. Ce travail de recherche est focalisé sur

l’étude d’un point vue graphique de la dualité au niveau de l’analyse et de

la conception de lois de commande sur des modèles linéaires, à paramètres

invariants ou variables dans le temps, et des extensions pour des modèles non

linéaires.

La première étape du notre travail a été de définir d’un point de vue

graphique le concept de model dual. En utilisant la définition mathématique

proposée par Kalman dans la représentation d’état et généralisée pour des

systèmes linéaires à paramètres variant dans le temps (LTV) par van der

Schaft (où le modèle dual est appelé " adjoint model "[58]) et la définition

introduite par Rudolf en 1996 en utilisant la théorie des modules [50], nous

avons reformulé ce concept de model dual pour les modèles bond graphs et

les systèmes structurés. Si pour les systèmes structurés la démarche pour

obtenir le model dual est très simple, car le lien entre un système structuré

et la représentation d’état est évidente, pour les modèles bond graphs la

technique d’obtention du model dual est plus complexe. Le modèle bond

graph dual est obtenu en trois étapes : transformations graphiques au niveau

du model bond graph, inversion du signe des signaux de sortie et changement

de variable pour le vecteur d’état. Ces transformations restent néanmoins

élémentaires, aussi bien d’un point de vue graphique que mathématique. De

plus, contrairement à un modèle d’état quelconque, pour lequel les variables

du modèle dual n’ont pas de sens physique, pour un modèle bond graph,

les variables du modèle dual sont les variables de co-énergie, c’est à dire des

variables d’effort et de flux. De plus, les notions de chemin causal et de

boucle causale sont les mêmes pour le bond graph dual, mais pour prendre

en compte la modification du vecteur état, de nouvelles procédures de calcul

des gains des chemins et boucles causales sont proposées. Elles sont peu

différentes des techniques classiques. Le point essentiel est que l’équation

d’état du modèle bond graph dual est bien la même que celle obtenue par

une approche purement mathématique (Equation d’état ou module).

Au niveau de l’analyse structurelle des modèles linéaires à paramètres

variant dans le temps, tous les concepts étaient à définir, aussi bien pour les

modèles bond graphs, que pour les modèles structurés. Nous avons intro-

duit le concept de modèle structuré de commandabilité et modèle structuré

d’observabilité. Les concepts similaires de bond graph de commandabilité et
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bond graph d’observabilité ont été définis. Avec ces nouvelles représentations

nous avons pu développer des procédures graphiques de calcul des matrices de

commandabilité et d’observabilité. Mais l’objectif était d’étudier graphique-

ment les propriétés structurelles de commandabilité et d’observabilité, en

généralisant les techniques connues pour les modèles LTI. En utilisant le

concept de cycle et familles de cycles introduit par Reinschke [47] et les

définitions des systèmes structurés LTV, nous avons proposé une technique

graphique pour l’analyse des propriétés de commandabilité/observabilité.

Grâce à ces nouveaux modèles structurés, obtenus par simples ajouts d’arcs,

nous avons pu reformuler les procédures d’analyse en appliquant exactement

les mêmes critères graphiques que dans le cas LTI. Pour les modèles bond

graph, une extension du cas LTI est aussi possible, elle est présentée dans les

travaux de Chalh. Dans ce cas, les travaux démontrent que pour l’analyse de

la propriété d’observabilité, le passage par le modèle dual, et ainsi étude de

la commandabilité du modèle dual, simplifie considérablement la complexité

du problème, car la propriété d’observabilité est plus difficile à étudier dans

le cas des modèles bond graphs LTV. Cette complexité n’apparaît dans le

cas des systèmes structurés.

L’étude de la dualité des systèmes par une approche graphique nous

a ainsi permis de mettre en avant la dualité entre la commandabilité et

l’observabilité, aussi bien d’un point de vue graphique, c’est-à-dire sur les

modèles de commandabilité et d’observabilité, que sur les propriétés elles-

mêmes et que sur les techniques de calcul des matrices de commandabilité et

d’observabilité (par approche mathématique ou graphique).

Le dernier stade dans notre travail de recherche a été d’étudier la dualité

entre deux lois de commande: le retour d’état et l’injection sortie. La problé-

matique que nous avons abordée est le découplage quasi-statique des modèles

LTV. Ce type de problématique nécessite l’étude de la structure à l’infini du

modèle (pour la vérification de la propriété de découplabilité) et de la struc-

ture finie (pour la vérification de la stabilité du modèle découplé). De plus,

pour le calcul de l’expression de la loi de commande, l’approche géométrique

utilisant les concepts d’(A,B) et de (C,A)-invariance est exploitée.

Une première étape à permis de mettre en évidence la dualité de la struc-

ture à l’infini en ligne (utilisée dans le cadre du retour d’état) et la structure

à l’infini en colonne (utilisée dans le cadre de l’injection de sortie). Les pro-
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priétés de découplabilité peuvent ainsi être étudiées de manière équivalente

sur le modèle initial ou le modèle dual. De la même manière, il a été montré

que les espaces invariants sont duaux, et qu’il est donc possible de caractériser

ces espaces sur le modèle initial et le modèle dual. Nous en avons conclu que

les lois de commande de type retour d’état et injection de sortie sont carac-

térisées par une formulation duale. Ainsi, les matrices du retour d’état sont

obtenues par simple transposition de matrices d’injection de sortie, obtenues

sur le modèle dual.

Ces techniques permettent de conclure, que l’utilisateur a le choix de

travailler soit sur le modèle initial, soit sur le modèle dual, tout en conservant

les techniques classiques d’analyse. Ces méthodes ont été généralisées pour

des systèmes non linéaires en utilisant les modèles variationels.

De nombreuses perspectives sont envisagées. La dualité dans les modèles

bond graphs a été développée à partir des notions mathématiques connues,

en particulier la théorie des modules (ou représentation d’état) et nous avons

mis en évidence la dualité entre les variables d’énergie (variables d’état du

modèle bond graph initial) et les variables de co-énergie (variables d’état du

modèle bond graph dual), ce qui n’est pas le cas dans une représentation

d’état classique. Ces aspects physiques permettent d’envisager une possible

connexion avec les techniques bond graphs développées autour de la représen-

tation dite " Hamiltonienne ". En effet cette dernière approche s’attache à

retrouver des propriétés physiques du système et il serait intéressant de com-

parer les résultats obtenus par ces deux approches.

Certaines caractéristiques qui définissent le bond graph dual sont aussi

communes avec le modèle bond graph adjoint qui est utilisé pour la synthèse

de la commande optimale. Même si les procédures actuelle pour la caractéri-

sation de la commande optimale concernent seulement les systèmes LTI, une

extension aux modèles LTV est envisagée si nous considérons une procédure

similaire à celle de dualisation.

Pour le découplage entrée-sortie des systèmes dynamiques, nous n’avons

pas abordé le problème de stabilité, c’est-à-dire l’étude de la structure finie.

Pour les systèmes LTI, cette étude consiste à trouver les zéros invariants. Une

première question serait de comparer les zéros invariants du modèle initial et

ceux du modèle dual. Ces zéros sont obtenus d’un point de vue mathématique

par l’analyse de la matrice système, et il est donc assez naturel de dire que le
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modèle dual contient les même zéros invariants. Par contre, cette notion est

plus complexes dans le cadre des système LTV, et dans ce cas une étude plus

approfondie reste à faire. Cette extension permettrait ainsi de caractériser

de nouveaux sous-espaces invariants assurant le découplage avec stabilité,

lorsque ce découplage avec stabilité est possible.

La dualité entre l’(A,B)-invariance et la (C,A)-invariance doit aussi être

généralisée pour les modèles non linéaires. Cette extension permettrait de

faciliter le calcul de lois de commande pour le découplage des systèmes LTV

et non-linéaires, en exploitant par exemple le modèle variationnel.

En utilisant le concept d’injection sortie, on peut aussi considérer les

problèmes de synthèse d’observateur. En effet, la synthèse d’observateur

peut être assimilé au problème de commande par injection de sortie. On

peut montrer par exemple que l’expression de la loi de commande pour la

synthèse d’un observateur avec rejet de perturbation est la même que celle

avec injection de sortie. Cette constatation amène à penser que les prob-

lèmes de commande par retour d’état, par injection de sortie et le problème

de synthèse d’estimateur d’état et peuvent être définis dans un même formal-

isme. Une extension concerne bien entendu le problème de commande par

retour de mesure qui est plus exploitable que le retour d’état, puisqu’il exige

la connaissance de moins d’information.

Cette première étude de la dualité en est juste à ses balbutiements, et

nous espérons développer des résultats intéressants concernant les problèmes

d’observation d’estimation, mais aussi dans le domaine de la surveillance.



x



Contents

Acknoledgements v

Résumé en francais x

Table of Contents xiii

1 Duality. Theoretic Background 5

1.1 Mathematical Apparatus . . . . . . . . . . . . . . . . . . . . . 6

1.2 Linear Systems & Modules . . . . . . . . . . . . . . . . . . . . 7

1.3 Dual System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Module Theoretical Approach . . . . . . . . . . . . . . 9

1.3.2 State Space Representation . . . . . . . . . . . . . . . 10

1.4 Dual Properties in System Analysis . . . . . . . . . . . . . . . 12

1.4.1 Module Theoretical Approach . . . . . . . . . . . . . . 13

1.4.2 State Space Approach . . . . . . . . . . . . . . . . . . 14

1.5 Duality in Control Laws . . . . . . . . . . . . . . . . . . . . . 15

1.5.1 Controllability and Observability Indices . . . . . . . . 15

1.5.2 State Feedback and Output Injection . . . . . . . . . . 18

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Graphical Methods in System Analysis and Control Synthesis 23

2.1 Linear Structured Systems . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Directed Graphs . . . . . . . . . . . . . . . . . . . . . 25

2.2 Bond Graph Modeling . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Bond Graph Language . . . . . . . . . . . . . . . . . . 27

2.2.2 Vectorial Representation . . . . . . . . . . . . . . . . . 33

2.3 Graphical Methods in System Analysis . . . . . . . . . . . . . 36

xi



xii Contents

2.3.1 System Analysis for Structured Systems . . . . . . . . 37

2.3.2 System Analysis with a Bond Graph Approach . . . . . 37

2.4 Decoupling Problem with a Graphical Approach . . . . . . . . 39

2.4.1 System Analysis . . . . . . . . . . . . . . . . . . . . . . 40

2.4.2 Control Synthesis . . . . . . . . . . . . . . . . . . . . . 42

2.5 Decoupling Problem with Stability . . . . . . . . . . . . . . . 44

2.5.1 Graphical Methods for Determining the Control Law . 45

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Dual Model. Dual Properties 47

3.1 Dual Model. A Graphical Approach . . . . . . . . . . . . . . . 47

3.1.1 A Structured System Procedure . . . . . . . . . . . . . 48

3.1.2 Dual Bond graph Model . . . . . . . . . . . . . . . . . 49

3.1.3 Graphic Computational Rules for the Dual Bond Graph Model 59

3.2 Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Definition of new LTV Graphical Models . . . . . . . . 66

3.2.2 Controllability and Observability Matrices . . . . . . . 72

3.2.3 System Analysis using Graphical Procedures . . . . . . 75

3.2.4 Duality in System Analysis . . . . . . . . . . . . . . . . 82

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Duality in Control Synthesis 93

4.1 Infinite Structure . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.2 Duality between Row and Column Infinite Structure . 95

4.2 Decoupling Problem for LTV Models . . . . . . . . . . . . . . 95

4.2.1 State Feedback . . . . . . . . . . . . . . . . . . . . . . 96

4.2.2 Output Injection . . . . . . . . . . . . . . . . . . . . . 101

4.2.3 Duality between State Feedback and Output Injection . 106

4.2.4 Application . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Decoupling Problem with Pole Placement for LTV Models . . 118

4.3.1 Geometrical Approach . . . . . . . . . . . . . . . . . . 118

4.4 Decoupling and Input-Output Linearization of Nonlinear Systems123

4.4.1 Variational Model . . . . . . . . . . . . . . . . . . . . . 124

4.4.2 State Feedback . . . . . . . . . . . . . . . . . . . . . . 126



Contents xiii

4.4.3 Output Injection . . . . . . . . . . . . . . . . . . . . . 127

4.4.4 Application - Nonlinear Structured System . . . . . . . 127

4.4.5 Application - Nonlinear Bond Graph Model . . . . . . 129

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Conclusions and Perspectives 140

References 140

A Appendix 147

A.1 Some Matrix Definitions . . . . . . . . . . . . . . . . . . . . . 147

A.2 Dualization effects upon the vectorial representation . . . . . . 149





Introduction

This report is mainly focused on the study of the duality in linear systems

from a graphic point of view. The two graphical representations which are

used through-out this study are the bond graphs and the structured sys-

tems.

The concept of duality emerged as a philosophical concept and almost all

philosophical systems have discussed the essence of duality, starting from

the ancient Chinese duality between Yin and Yang till the classical philoso-

phers of the XIX th century. Engineers have borrowed this concept and have

exploited it in system control. First, in the study of linear time-invariant

models, where the duality was synonymous with transposing some matrices

from the state space representation, some results were developed in [22], [29]

and [30]. Later on, some results concerning the linear time-variant models

have been introduced. In [29] and [58], the dual (adjoint) model was pre-

sented by transposing and changing signs in the state space representation

of the linear model.

Beside the state space representation, which sees the duality only as alge-

braic operation which is applied on the matrices of the state representation,

in the mid 1990’s, J. Rudolph presented in [50], a study of the duality in

linear systems using a module theoretic approach. This approach is based

on the module theory introduced by Fliess [20], which may be seen as a more

conceptual version of the polynomial perspective. In this approach a system

is defined as a left module, while the dual model is defined using the corre-

sponding right module. Therefore, we obtain a simple and elegant way to

pass from the presentation matrix of one system to the presentation matrix

of its dual. In his study, Rudolph tackled two types of duality which appear

in system control: the duality between the controllability and observability

from the analysis stage and the duality between two control laws: state feed-

1



2 Contents

back and output injection.

This study tries to the approach developed in [50]. Firstly, we wanted to

use a graphical approach and secondly to give a physical interpretation to

the variables of the dual model. The focus was set on the bond graphs, but

we also used the structured systems representation to give a global graphical

perspective. One of the difficulties of this study was that, the bond graph

methodology already had the concept of "duality" [6]. Just like the bond

graph models which are mid-way between the physical model and the math-

ematical system, the concept of "duality" was based on physical concepts.

The "dual" model was obtained by interchanging the flow and effort variables

on the bond graph model. Unfortunately, this type of duality did not change

anything on a mathematical level, i.e. the state space representation of the

"dual" was equivalent to those of the given system. This report presents a

definition of duality on the bond graph model which introduces in the bond

graph methodology the same concept of duality as the ones used in the state

space representation or in the module theoretical approach. From this per-

spective the state variables of the dual model are the co-energy variables of

the dynamic elements in integral causality. For the structured systems the

scope of action was limited to the linear time-invariant models (see [18] for

an in-depth survey of the state of the art on structured systems). Here, we

have extended their use to linear models in general, time-invariant or not.

The concept of duality has been introduced also for structured systems using

the state space representation since the two are closely related.

The next step was to study the duality between the controllability and observ-

ability. The graphic procedures developed for the study of these properties

for LTI models (in [25], [43], [47] and [51] for structured systems and in [56]

for bond graphs) are not valid for LTV systems. In [40], we have introduced

some graphic procedures for determining these properties graphically, using

the structured systems. In [9], a procedure for determining the controllability

of LTV bond graphs has been proposed. We have extended this procedure

to observability using the duality and applying the same procedure for the

controllability of the dual bond graph model.

After the analysis part, we concentrated on the duality between two control

laws: state feedback and output injection (according to [50]). For our study,

this duality has been developed via the solution of the static decoupling prob-
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lem. Graphical procedures have been proposed for the decoupling of LTV

bond graph models and structured systems. A short passage through the

geometrical approach allowed us to develop two control laws for decoupling

with pole placement. The study of the duality between (A, B) and (C, A)-

invariance from [27] gave us the possibility to develop graphical procedures

for the graphical synthesis of the two control laws.

The last part of the study was focused on the extension of these procedures

for nonlinear models. The solution which we have implemented is based on

the use of variational models. The variational (tangential) system is an LTV

model and the linear time-varying procedures can be applied.

This report is structured into four chapters. The first one concerns the defi-

nition of the concept of duality in the literature. The second chapter presents

a discussion of the graphical tools which are used in the sequel. In the third

chapter, we introduce the concept of duality in the bond graph and struc-

tured systems methodologies. The graphical procedures for obtaining the

dual model are developed. In the last part of this chapter, we tackle the sys-

tem analysis and the duality between controllability and observability. The

last chapter is the largest because it concerns the study of duality between

control laws. We discuss here the problem of system decoupling by state

feedback and by output injection both with and without pole placement. In

the end, we extend these procedures to nonlinear models.

The graphical procedures developed in this report are always followed by

applied examples on which we show how these methods can be used.

The last part of this report is dedicated to conclusions and perspectives.

A vast range of possible developments are presented, from the physical as-

pects (the use of Hamiltonians with the concept of duality), to the study of

geometrical approach for nonlinear models and the design of observers.
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Chapter 1

Duality. Theoretic Background

This chapter is focused on the mathematical framework which will be used in

the report and the presentation of the concept of duality in linear models as it

appears in the system control literature. The duality concept is an old issue,

well-known to the control community. This introductory chapter gathers the

most important research activities concerning this problem. For time-varying

linear systems the question of systems duality has been introduced either by

transposing matrices and changing signs in state space representation [58]

or by opposed module in the theoretical module approach [50]. Contrary to

the time-invariant case, matrices transposing is not satisfactory for defining

the dual system in the linear time-varying case (see [30],[29] and [22]). Of

course, we can not directly present the duality concept without recalling first

the mathematical apparatus used by the two approaches. Moreover, as we

shall see in the sequel, the algebraic theory is more adequate to system anal-

ysis and control synthesis using graphical approaches.

The structure of this chapter is logically linked to the order of the stages in

which the duality concept has been developed. In the first section, the alge-

braic tool based on the differential modules is recalled. Here, we present the

basic concepts of algebraic structures: group, ring, field, module, as well as

their differential extensions, i.e. differential field and differential module. For

more details on algebraic structures, [10] and [34] are highly recommended.

In the second section, we present the relation between the mathematical

structures and linear systems using the module theoretical approach. Then

using this perspective, we tackle the concept of duality. In the last three

sections, we recall the duality concept as it was developed in [50], passing by

5
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definition, dual properties and the duality between control laws.

1.1 Mathematical Apparatus

Differential algebra is the discipline which extends the methods of abstract

algebra for the study of linear and nonlinear differential equation systems.

The bases of differential algebra have been posed by [33] and [49]. Here, we

briefly recall some definitions of differential algebra.

Let k be an ordinary differential field, i.e. a commutative field equipped

with a single derivation d
dt

(in the sequel denoted also as s) such that, for all

a, b ∈ k properties (1.1) are verified.














da
dt

∈ k,
d
dt

(a + b) = da
dt

+ db
dt

,
d
dt

(ab) = da
dt

b + adb
dt

.

(1.1)

For notational convenience ȧ denotes da
dt

. A constant is an element c ∈ k

such that ċ = 0. A differential sub-field of k, whose elements are constants,

is called a field of constants.

If R is a field, then an R-module is a vector space. Modules are thus gen-

eralizations of vector spaces, and much of the theory of modules consists of

recovering desirable properties of vector spaces in the realm of modules over

certain rings.

A left R-module over the ring R consists of an abelian group (M, +) and an

operation R × M → M such that: ∀r, s ∈ R and ∀x, y ∈ M , we have

• r(x + y) = rx + ry

• (r + s)x = rx + sx

• (rs)x = r(sx)

• 1x = x

A R-module M is called free if it has a basis, i.e. there exists a family ei

such that: M is generated by this family, and the elements ei are R-linearly

independent. This means that any element m ∈ M can be written, in an
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unique manner, in the form: m =
∑

i λiei.

Let N be a submodule of an R-module M and x ∈ M . The class of x(modN)

is the set of all y ∈ M such that x−y ∈ N ; this class is denoted by x̄ = x+N .

The set of all classes x̄, x ∈ M is also a R-module, called quotient module.

An element τ ∈ M is a torsion element if ∃a ∈ R, a 6= 0 such that aτ = 0.

The set of all torsion elements of a R-module M is a R-module, called the

torsion sub-module of M .

The non-commutative ring k[s] of the polynomials of the form (1.2) is denoted

as R. Its elements can be understood as linear differential operators.

∑

finite

αis
i, αi ∈ k (1.2)

The multiplication in R is defined by (1.3).

sa = as + ȧ, a ∈ k (1.3)

Obviously, k[s] is commutative if and only if k is a field of constants. In

general, non-commutative case, k[s] is a principal ideal ring [10].

1.2 Linear Systems & Modules

The module theoretical approach as introduced in [20],[50] is based on finitely

generated modules over the ring R = k[s]. Given a family z = (z1, z2, . . . , zq),

the module generated by z is denoted by [z]. The elements of the (left) R-

module [z] are the finite sums of the form
∑q

i=1 aizi, ai ∈ R.

A linear system
∑

is a finitely generated left R-module. The system is called

constant, if the field k of the coefficients of the polynomials in R = k[s] is a

field of constants. It is called time-varying otherwise. Our interest is mainly

in the second case since the first one can be seen as a particular case.

Consider a finite system of linear differential equations in the variables ω1, ω2, . . . , ωr,

with coefficients in k. With the differential operators in R, this can be writ-

ten as (1.4), or, using the matrix notation, as Sω = 0, with S = (sj,i) over

R and ω = (ω1, ω2, . . . , ωr)
T . S is the presentation matrix of

∑

.

r
∑

i=1

sj,iωi = 0, j = 1, . . . , q (1.4)
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Note that the presentation matrix S is not unique, and it depends on the

choice of variables ω used to write the defining equations (1.4) of
∑

.

A linear dynamics is a finitely generated left R-module
∑

containing a finite

set u = (u1, u2, . . . , um) of elements, called the input, such that the quotient
∑

/[u] is a torsion module. This implies that any other element of the module

is R-linearly dependent on u, i.e. ∀σ ∈
∑

, ∃a(s), bi(s) ∈ R, with a(s) 6= 0

such that (1.5) is verified.

a(s)σ +
m

∑

i=1

bi(s)ui = 0 (1.5)

The output of the system is a set y = (y1, y2, . . . , yp) of elements of
∑

.

According to 1.5, this is equivalent to:

aj(s)yj +
m

∑

i=1

bj,i(s)ui = 0 (1.6)

for j = 1, . . . , p and aj(s), bj,i ∈ R with aj(s) 6= 0.

A state of a dynamics
∑

is a subset of elements of
∑

such that their residues

in the quotient
∑

/[u] form a basis of this quotient, considered as a k-vector

space. Let x = (x1, x2, . . . , xn) be a state. Then the canonical image x+ being

basis of
∑

/[u], the derivatives of x+ satisfies ẋ+
l =

∑n

i=1 al,ix
+
i . Therefore,

the components of x satisfy differential equations of form:

ẋl =
n

∑

i=1

al,ixi +
m

∑

j=1

bl,j(s)uj (1.7)

1.3 Dual System

The aim of this section is to present two approaches to define the dual system,

a module theoretical approach and a state space perspective. In the first case,

the multiplication rule of the ring of the dual module(=system) is changed,

in the second, a new state representation is defined. These two approaches

are proven to be equivalent in [50].

In the following, a notation is introduced to distinguish the variables and the

parameters related to the given system and to its dual. For instance, if the

state variable of the system is x then the state variable of the dual model is

x̄. The same notational trademark applies also to the matrices in the state

space representation.
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1.3.1 Module Theoretical Approach

Consider the ring R. An opposite ring R◦ with a new multiplication rule has

been defined in [10] and used by [50] to extend the duality concept in the

module theoretical framework.

The opposite ring R◦ is the ring with the same additive group structure

as R but with the reverse multiplication ([10]), i.e. a ◦ b = ba. From the

multiplication rule of R relation (1.8) is obtained.

a ◦ s = sa = as + ȧ = s ◦ a + ȧ (1.8)

Replacing s by −s and ◦ by the usual multiplication is equivalent to (1.9),

which is the multiplication rule of R.

a(−s) = −sa + ȧ (1.9)

Therefore, passing to the opposite ring R◦ is equivalent to using the same

multiplication rule and replacing s with −s.

The multiplication rule can be applied to the product of matrices also.

A(s)B(s) over R is mapped to BT (−s)AT (−s) over R◦, where the elements

of the matrices A(s) and B(s) are polynomials in s.

Obviously, the opposite of R◦ is R. In the commutative case reversing the

multiplication does not lead to a new ring. Because of the way the opposite

ring R◦ is introduced, it is easy to observe that any left R-module can be

considered as right R◦-module ([50]).

The first step is to determine the ring of the dual system, the second is to

determine the dual system presentation matrix.

In the previous section, we have seen that a presentation matrix can be asso-

ciated nonuniquely with the system
∑

. We will choose a generating family

of
∑

in such a way that it contains the input u and the output y, if the

latter is defined. Let ω = (ω1, ω2, . . . , ωn) be a family of elements of
∑

such

that (u1, . . . , um, y1, . . . , yp, ω1, . . . , ωn) = (u, y, ω) is generating
∑

. To such

a choice of generators corresponds a presentation matrix S over R such that

S(u, y, ω)T = 0.

Consider the system
∑

= [u, y, ω], with input u and output y, satisfying

S(u, y, ω)T = 0. Let ¯∑ be the right R-module generated by the family

ω̄ = (ω̄1, . . . , ω̄r), where r is the number of rows of matrix S, such that

(−ȳ, ū, 0) + ω̄S = 0 (1.10)
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Definition 1. [50] "The equations of the dual system are obtained by passing

to the left module over the opposite ring R◦, which yields:

(−ȳ, ū, 0)T + ST (−s)ω̄T = 0, (1.11)

where ST (−s) indicates that s is replaced by −s in the entries of S."

Example 1. Consider the linear differential equations system
∑

as in the

equation (1.12).














ω̇1 + Rr

Lr
ω1 + KΦ(t)

J
ω2 − u = 0

ω̇2 −
KΦ(t)

Lr
ω1 + f

J
ω2 = 0

y = 1
J
ω2

(1.12)

The presentation matrix for system
∑

= [u, y, ω1, ω2] in (1.12) is:

S =









−1 0 s + Rr

Lr

KΦ(t)
J

0 0 −KΦ(t)
Lr

s + f

J

0 1 0 − 1
J









(1.13)

To obtain the equations for the dual system ¯∑, we apply the procedure from

definition 1 which leads to:













−ȳ

ū

0

0













+













−1 0 0

0 0 1

−s + Rr

Lr
−KΦ(t)

Lr
0

KΦ(t)
J

−s + f

J
− 1

J





















ω̄1

ω̄2

ω̄3









= 0 (1.14)

Equation (1.14) is equivalent to:

¯∑
:















˙̄ω1 −
Rr

Lr
ω̄1 + KΦ(t)

Lr
ω̄2 = 0

˙̄ω2 −
KΦ(t)

J
ω̄1 −

f

J
ω̄2 −

1
J
ū = 0

ȳ = −ω̄1

(1.15)

1.3.2 State Space Representation

For the state space representation, the concept of dual model is well known in

the literature [20],[29],[58]. The relations between the matrix representation

of the given system and its dual are recalled (1.16)-(1.19).

Ā(t) = −AT (t) (1.16)



1.3 Dual System 11

B̄(t) = CT (t) (1.17)

C̄(t) = −BT (t) (1.18)

D̄(t) = DT (t) (1.19)

It is easy to prove that the two representations, state representation and

module representation, for the dual system are similar. Consider the linear

system (1.20), whose presentation matrix in module representation is given

by equation (1.21).
{

ẋ(t) = A(t)x(t) + B(t)u(t) +
∑

k Bk(t)u
(k)(t)

y(t) = C(t)x(t) + D(t)u(t) +
∑

k Dk(t)u
(k)(t)

(1.20)

Remark 1. In the following, we do not use the derivatives of the inputs since

in the graphical representations which are the scope of this report we can not

obtain these terms in the state space representation.

For notational simplicity, the variables in the state space representation

are considered as column vectors, while in module representation they are

row vectors.
(

−B(t) 0 sI − A(t)

−D(t) I −C(t)

)

(

u y x
)T

= 0 (1.21)

Applying the procedure described in definition 1 yields:

(−ȳ, ū, 0)T +









−BT (t) −DT (t)

0 I

−sI − AT (t) −CT (t)









(

ω̄T
1

ω̄T
2

)

= 0, (1.22)

where the row vector ω̄ has been partitioned in ω̄1 and ω̄2 according to the

number of state variables and inputs, respectively. Rewriting the equations

of the dual system, where the input is obviously ū = −ω̄2 and a state vector

is x̄ = ω̄1, leads to equation (1.23), where the similarity between the two

approaches is evident.
{

˙̄x = −AT (t)x̄ + CT (t)ū

ȳ = −BT (t)x̄ + DT (t)ū
(1.23)
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In equation (1.23), if the variable change ˜̄x = −x̄ is performed then the

following state space representation is obtained:

{

˙̄̃x = −AT (t)˜̄x − CT (t)ū

ȳ = BT (t)˜̄x + DT (t)ū
(1.24)

Relation (1.24) presents a known results to the control community, which

in [58] is called adjoint system. In fact in [50], it has been proved that the

adjoint system and the dual system are the same.

In the state space representation, dualizing directly according to definition

1 is not reversible, the dualization should be performed on the dual model

after the basis change in order to obtain the given system. In figure 1.1, a

schema regarding the results of the dualizing procedure on the different state

space representations of the system and its dual is reproduced.

Σ(A,B,C,D)

Σ(A,-B,-C,D)

Σ(-AT,CT,-BT,DT)

Σ(-AT,-CT,BT,DT)

x=-x~
x=-x
~− −

dual

dual

dualdual

Figure 1.1: Duality in State Space Representation

1.4 Dual Properties in System Analysis

The concept of duality between the controllability property and the observ-

ability property is well-known to the control system community. This duality

concept between the two structural properties is the aim of this section. In

the sequel all the references concerning these two properties mean structural

properties.

Even though there are two approaches, the module theoretical approach and

the state space representation, for determining this duality there is a theorem

which is valid in both cases.
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Theorem 1. [50] The system
∑

is observable if and only if the dual system
¯∑ is controllable, and vice versa.

In the following subsections, the concept of duality between the control-

lability and the observability is reached firstly using the module description

and secondly using the state representation.

1.4.1 Module Theoretical Approach

Controllability means there are no variable which are k-linear dependent of

the other variables of the module.

Theorem 2. [20]
∑

is controllable if and only if it is free, i.e. T is trivial,

where T is the torsion sub-module.

Observability means that any element in
∑

can be computed by a k-

linear equation from the output y, the input u and a finite number of their

derivatives.

Theorem 3. [20]
∑

is observable if and only if
∑

and [u, y] coincide.

The proof of theorem 1 using the module theoretical approach in [50] is

based on the theorems 2 and 3.

Remark 2. [50] "The controllability of Σ does not depend on the choice of

an input. Contrariwise, the observability depends on the choice of the input

and of the output. Hence, there is an asymmetry or "lack of duality" between

these two structural properties. However, the definition of the dual system

depends on the choice of the module generated by the input and the output,

too."

Example 2. Let us consider the example (1.12) as in the previous section.

The properties of controllability and observability are studied for both the

system
∑

(eq. (1.12)) and its dual ¯∑ (eq. (1.15)), using their module

representations.

The R-module
∑

is free since ω2 form a basis, therefore the system
∑

is

controllable. Analogously one can observe that ω̄1 form a basis for the R◦-

module ¯∑ and that the system ¯∑ is also controllable.

For determining the observability property of system
∑

, it is sufficient to
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express the system variables ω1 and ω2 as functions of the input and output

and their derivatives.

ω1 =
Lr

KΦ(t)
(Jẏ + fy) (1.25)

and

ω2 = Jy (1.26)

and therefore the system
∑

is observable.

The same technique is applied to determine whether the dual system is ob-

servable.

ω̄1 = −ȳ (1.27)

and

ω̄2 =
Lr

KΦ(t)
˙̄y −

Rr

KΦ(t)
ȳ (1.28)

and therefore the dual system ¯∑ is observable too.

This example illustrates the results obtained by theorem 1 in the module the-

oretical approach. The system
∑

is controllable and its dual system ¯∑ is

observable and vice-versa.

1.4.2 State Space Approach

The study of controllability and observability has also been performed from

the state space perspective (see [52] and [29]). This study is based on the

computation of the controllability and observability matrices, on which a

rank condition is imposed.

According to [52] and [20], an LTV system is controllable, respectively ob-

servable if the rank of the matrices (1.29) and (1.30) respectively is full.

R(t) =
(

B(t) (A(t) − d
dt

)B(t) · · · (A(t) − d
dt

)n−1B(t)
)

(1.29)

O(t) =















(C(t)T )T

((A(t)T + d
dt

)C(t)T )T

...

((A(t)T + d
dt

)n−1C(t)T )T















(1.30)

Remark 3. In the two rank conditions above, we have considered that the

functions involved do not present any singularities.
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The differences between the LTI and the LTV case cases concern mostly

the derivatives ± d
dt

. Therefore in order to extend the procedures designed

for LTI models to the LTV models, the use of these derivatives must be

emphasized.

1.5 Duality in Control Laws

In this section, we are recalling perhaps one of the most important duality

in system control, the duality between state feedback and output injection.

This concept is discussed for the static state feedback and its dual the static

output injection. In [50], this duality is presented with a module theoretical

approach, using Brunovsky forms and filtration (for an in-depth discussion

see [8] and [14] respectively). Without presenting the details from [50], we

just recall the most important aspects of this duality. In fact we can divide

this discussion into two parts: the invariant indices under the state feedback

and under output injection and the duality between the two control laws.

1.5.1 Controllability and Observability Indices

1.5.1.1 Definitions

The definition for controllability and observability indices has been provided

for LTI systems using the state space representation. Analogously, using

the controllability and observability matrices, these definitions have been ex-

tended to LTV models in [22] and [29]. First we recall the definitions for

these indices and then we prove that they are dual.

As we are going to use the controllability and observability matrices from

relations (1.29) and (1.30), let us first define two operators which will make

the notation easier. Consider the operator N = A− d
dt

for controllability and

L = AT + d
dt

for observability. The definitions are similar in the two cases,

therefore we are going to focus on the controllability indices first.

Theorem 4. [29] An LTV system Σ(A,B) is controllable iff

rk(B,NB, . . . ,N n−1B) = n (1.31)

where n is the dimension of the state space.
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Remark 4. An LTV system presents parameters which are time-dependent,

in our study, we do not consider the case when the value of time is negative

or when, for a particular moment of time t, we observe a discontinuity.

Let us consider the integers li, starting with rk(B) = l0 and we may set

rk(B,NB) = l0 + l1,. . .,rk(B,NB, . . . ,N n−1B) = l0 + . . . + ln−1.

Definition 2. The integers λi = card {k|lk ≥ i}, i = 1, . . . , m are called

controllability indices.

The observability indices are defined in the same way.

The integers ki, obtained from the relations rk(CT ) = k0, rk(CT ,LCT ) =

k0 + k1,. . .,rk(CT ,LCT , . . . ,Ln−1CT ) = k0 + . . . + kn−1.

Definition 3. The integers µj = card {i|ki ≥ j}, j = 1, . . . , p are called

observability indices.

1.5.1.2 Duality between Controllability and Observability Indices

The concept of duality between controllability and observability can be ex-

tended to the controllability and observability indices.

Theorem 5. The set of observability indices of a system Σ is equal to the

set of controllability indices of the dual system Σ̄ and vice versa.

Proof:

Given the system

Σ :

{

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t)
(1.32)

its dual system is:

Σ̄ :

{

˙̄x(t) = Ā(t)x̄(t) + B̄(t)ū(t)

ȳ(t) = C̄(t)x̄(t)
(1.33)

where Ā(t) = −AT (t), B̄(t) = CT (t) and C̄(t) = −BT (t).

According to definition 3, we know that the observability indices of the

system Σ are defined using the integers ki, from the series rk(CT ) = k0,

rk(CT ,LCT ) = k0 + k1,. . ., rk(CT ,LCT , . . . ,Ln−1CT ) = k0 + . . . + kn−1. Ac-

cording to definition 2, the controllability indices of the dual system Σ̄ are de-

fined using the integers l̄i, from the series rk(B̄) = l̄0, rk(B̄, N̄ B̄) = l̄0+ l̄1,. . .,
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rk(B̄, N̄ B̄, . . . , N̄ n−1B̄) = l̄0 + . . . + l̄n−1. This series can also be written in

terms of matrices A, B, C of the system Σ as: rk(CT ) = l̄0, rk(CT , (−AT −

sI)CT ) = l̄0 + l̄1,. . ., rk(CT , (−AT − sI)CT , . . . , (−AT − sI)n−1CT ) = l̄0 +

. . . + l̄n−1. Multiplying the column vectors of a matrix by a constant scalar

does not change the rank of the matrix, therefore the above series is equiva-

lent to the following series: rk(CT ) = l̄0, rk(CT , (AT + sI)CT ) = l̄0 + l̄1,. . .,

rk(CT , (AT +sI)CT , . . . , (AT +sI)n−1CT ) = l̄0+ . . .+ l̄n−1, which is the series

for determining the observability indices the system Σ. Therefore ki = l̄i and

µj = λ̄j. Analogously, we can prove that the controllability indices λj of

system Σ are equal to the observability indices µ̄j of the dual system Σ̄.

Example 3. Let us consider the following system:























































ẋ1 = tx2 + x4

ẋ2 = x3

ẋ3 = x1 + x2 + x3

ẋ4 = t2x1

y1 = (t + 1)x1 + x2

y2 = x3

y3 = x2

(1.34)

which means A =













0 t 0 1

0 0 1 0

1 1 1 0

t2 0 0 0













and C =









t + 1 1 0 0

0 0 1 0

0 1 0 0









. For cal-

culating the observability indices, definition 3 is used.

• k0 = rk(CT ) = 3.

• k1 = rk(CT , (AT + sI)CT ) − k0 = 4 − 3 = 1

• k2 = 0

• k3 = 0

Therefore µ1 = 2, µ2 = 1 and µ3 = 1.
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Let us now consider the dual system of model (1.34).























˙̄x1 = −x̄3 − t2x̄4 + (t + 1)ū1

˙̄x2 = −tx̄1 − x̄3 + ū1 + ū3

˙̄x3 = −x̄2 − x̄3 + ū2

˙̄x4 = −x̄1

(1.35)

with matrices Ā = −AT =













0 0 −1 −t2

−t 0 −1 0

0 −1 −1 0

−1 0 0 0













and B̄ = CT =













t + 1 0 0

1 0 1

0 1 0

0 0 0













.

For calculating the controllability indices, definition 2 is used.

• l̄0 = rk(B̄) = 3.

• l̄1 = rk(B̄, (Ā − sI)B̄) − l̄0 = 4 − 3 = 1

• l̄2 = 0

• l̄3 = 0

Therefore λ̄1 = 2, λ̄2 = 1 and λ̄3 = 1.

On this simple example, it is easy to observe that the observability indices of

the system Σ are identical to the controllability indices of the dual system Σ̄

and that the duality between the two sets of indices holds.

1.5.2 State Feedback and Output Injection

The concept of duality in linear models can be defined not only for the

controllability property and the observability property as can be seen in the

previous section, but also it can be extended to the control laws. A state

feedback control can be considered as the dual of an input injection control

law [50]. These concepts are valid for linear and non linear models, in a state

space description or in a module theoretical framework.

But let us first define these control laws, and afterwards we continue with

the duality between them.
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1.5.2.1 Definitions

State feedback and output injection are two well-known control laws. We are

recalling here their definitions.

Definition 4. Given a linear system (in fact these control laws can be defined

for any linear or nonlinear system, but for simplicity we have chosen only

the linear models):

{

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t)
(1.36)

a static state feedback control law is defined by

u(t) = F (t)x(t) + G(t)v(t) (1.37)

where F and G are matrices of appropriate dimensions and v(t) is a new

input vector (see figure 1.2).

A

s-1

F

B Cu xx y
+

+
.v G

+

+

Figure 1.2: Control scheme for state feedback

Output injection was defined in the literature for quite some time, see [4],

even though it has not been used. Its expression is:

{

ẋ(t) = A(t)x(t) + B(t)u(t) + K(t)y(t)

y(t) = C(t)x(t)
(1.38)

Equation (1.38) is equivalent to:

{

ẋ(t) = (A(t) + K(t)C(t))x(t) + B(t)u(t)

y(t) = C(t)x(t)
(1.39)
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where the state matrix of the global system is A + KC.

In [4], this control law has been defined regarding the pole placement prob-

lem, while in [50], the control law has been extended by taking into account

the duality concept. This way a new output injection control law has been

introduced.

Definition 5. Given a linear system (1.36), the output injection control law

is:














ẋ(t) = A(t)x(t) + B(t)u(t) + K(t)y(t)

y(t) = C(t)x(t)

z(t) = L(t)y(t)

(1.40)

where z(t) is a new output vector (see figure 1.3).

A

s-1

K

B C Lu xx y z
+

+
.

Figure 1.3: Control scheme for output injection

1.5.2.2 Duality between State Feedback and Output Injection

In this section, we recall the approach described in [50] for defining the duality

between the two control laws.

Theorem 6. State feedback control law is the dual of output injection control

law.

Proof:

Let us consider an LTV system:

Σ :

{

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t)
(1.41)
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and its dual system:

Σ̄ :

{

˙̄x(t) = Ā(t)x̄(t) + B̄(t)ū(t)

ȳ(t) = C̄(t)x̄(t)
(1.42)

where Ā(t) = −AT (t), B̄(t) = CT (t) and C̄(t) = −BT (t).

If we consider the state feedback control for system (1.41) and the output

injection control law for system (1.42), then we obtain relations (1.43) and

(1.44) respectively.

Σsf :

{

ẋ(t) = (A(t) + B(t)F (t))x(t) + B(t)G(t)v(t)

y(t) = C(t)x(t)
(1.43)

Σ̄oi :

{

˙̄x(t) = (Ā(t) + K̄(t)C̄(t))x̄(t) + B̄(t)ū(t)

z̄(t) = L̄(t)C̄(t)x̄(t)
(1.44)

And now, if the duality procedure from definition 1 is applied on system

(1.43), we obtain:

Σ̄sf :

{

˙̃x(t) = −(AT (t) + F T (t)BT (t))x̃(t) + CT (t)ũ(t)

ỹ(t) = −GT (t)BT (t)x̃(t)
(1.45)

From confronting equations (1.44) and (1.45), we can easily observe that

K̄(t) = F T (t) and L̄(t) = GT (t).

1.6 Conclusions

In this chapter, we have recalled a part of the studies on the concept of

duality in the control literature, starting with the definition of dual system,

then duality between system properties (controllability and observability)

and in the end the duality between control laws (state feedback versus output

injection).This chapter was focused on linear systems, time-invariant or not.

These results will be discussed in detail in the following chapters through

graphical representations: the structured systems and the bond graphs.
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Chapter 2

Graphical Methods in System

Analysis and Control Synthesis

The study of graphical procedures for system analysis and control synthesis

needs the definition of graphical representations of systems. Two representa-

tions have been considered in this report: the structured systems (introduced

by [43]) and the bond graphs (introduced by [45]).

As stated in the title of this chapter, after the definition of these graphical

representations, we recall the graphical procedures which have been devel-

oped for system analysis and control synthesis. For the control synthesis,

we focus mostly on a well-known problem, the decoupling by state feedback

problem without and with stability.

All the procedures described in this chapter for LTI models are extended in

the following chapters for LTV models.

2.1 Linear Structured Systems

2.1.1 Definition

So far, the study of structured systems concerned only the linear time-

invariant systems of type (2.1),
{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.1)

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
p denote the state, input and

respectively output vectors of the system. The matrices A, B, C and D are

23
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real valued matrices of suitable dimensions.

The basic idea behind the expression "structured systems" is that only the

zero/nonzero information in the matrices of the state space representation is

kept. The fixed zeros are conserved, while the nonzero entries are replaced by

free parameters. If the system has f nonzeros, then it can be parameterized

by means of a parameter vector λ ∈ Λ = R
f . The set of parameterized

system thus obtained is the structured system (2.2).

{

ẋ(t) = Aλx(t) + Bλu(t)

y(t) = Cλx(t) + Dλu(t)
(2.2)

In [18] it is assumed, and we quote, that "the actual value of each of the

nonzeros is unknown" and that it "can take any real value". The generic

properties can be obtained on a structured based representation, but in or-

der to determine the control laws the actual values are imperiously needed.

Therefore even if certain properties are "structurally" determined, we have

to choose a λ ∈ Λ, so that the system (2.2) becomes completely known as

in equation (2.1). In the following, we shall consider that the structured

systems have the actual parameters instead of λ, this way no confusion is

possible. But we keep in mind that we speak about "generical" properties

and real control laws.

Structured systems can be represented by means of directed graphs. The

set G = (V, E) of a structured system (2.2) is defined by a vertex set V

and an edge set E. The vertex set V is given by V = U
⋃

X
⋃

Y with

U = {u1, u2, . . . , um} the set of input vertices, X = {x1, x2, . . . , xn} the

set of state vertices and Y = {y1, y2, . . . , yp} the set of output vertices.

If (a, b) represents a directed edge from the vertex a ∈ V to the vertex

b ∈ V , the edge set E is composed by E = EA

⋃

EB

⋃

EC

⋃

ED with EA =

{(xj, xi) | Aλ,ij 6= 0}, EB = {(uj, xi) | Bλ,ij 6= 0}, EC = {(xj, yi) | Cλ,ij 6= 0}

and ED = {(uj, yi) | Dλ,ij 6= 0}.

Example 4. Let us consider a separately excited direct current motor (SEDCM).

The physical system presents a nonlinear behavior, but we consider here a

simplified model in which we assimilate the nonlinear behavior of the control

circuit with a time-varying modulation of the flux in the stator ([1]). This
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model can be depicted by system (2.3),

{

LdIr(t)
dt

+ RIr(t) = Vr(t) − KΦΩr(t)

J dΩ(t)
dt

+ fΩ(t) = KΦIr(t)
(2.3)

where Φ is the flux induced by the stator, Ir(t) and Vr(t) are the current and

the voltage respectively in the rotor (the last variable is the input source) and

Ω(t), the rotational speed of the motor, is the output variable. If the state

vector is defined as x(t)T = (Ir(t), Ω(t))T , the input variable u(t) = Vr(t) and

the output variable y(t) = Ω(t), then a state space representation (2.1) can

be obtained, where

A =

[

−R
L

−KΦ
L

KΦ
J

− f

J

]

B =

[

1
L

0

]

C =
[

0 1
]

(2.4)

Figure 2.1 presents the representation in the structured system methodology

of the SEDCM.

x1
x2u y1

L

R
L

K   
L

1

f
J

Φ

K   
J
Φ

Figure 2.1: Graph of the SEDCM

2.1.2 Directed Graphs

The structured systems are graphically defined by a directed graph. Proper-

ties of directed graphs are fundamental for the procedures proposed for deal-

ing with structured systems. Therefore, in the following, we present some

of the most important definitions concerning directed graphs and structured

systems. These definitions belong to graph theory, but their use in the study
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of structured systems imposes that we briefly recall them.

Definition 6. A path between vertex v0 ∈ V and vertex vt ∈ V is a sequence

of t edges (v0, v1), (v1, v2), . . . , (vt−1, vt), with vi ∈ V and (vi−1, vi) ∈ E

The vertex v0 ∈ V is called the beginning vertex and vt ∈ V is called

the end vertex. Another way of expressing definition 6, is to say that the

path contains the vertices v0, v1, . . . , vt, where it may happen that some

vertices occur more than once. In fact the same path can be written as

v0 → v1 → . . . → vt. A path is called simple path if each vertex on the path

occurs only once.

Definition 7. 1. Two paths are disjoint if they consist of disjoint sets of

vertices.

p (p ≥ 2) paths are disjoint if they are mutually disjoint, i.e. whichever

two paths among the p paths are disjoint.

2. An U-rooted path is a path which has the beginning vertex in the set U .

3. The set of mutually disjoint U-rooted paths forms an U-rooted path

family.

4. An Y -toped path is a path which has the end vertex in the set Y .

5. The set of mutually disjoint Y -toped paths forms a Y -toped path family.

6. A cycle (loop) is a path where the beginning and the end vertex are

identical.

7. A cycle family is a set of mutually disjoint cycles.

2.2 Bond Graph Modeling

As an intermediary representation between the mathematical level and the

technical one, the bond graph tool is a graphical framework for modeling

physical systems. This methodology has been introduced in 1960’s by [45].

In the 1990’s, the bond graph methodology has extended its scope. A set
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of analysis procedures and even graphical control synthesis methods using

bond graph representation have been developed in [56],[23],[5] and [1].

In this section, we present the bond graph elements and the modeling method-

ology and the vectorial representation which describes the relation between

the bond graph model with the physical, power flow linkage and the state

space representation.

2.2.1 Bond Graph Language

The first part of this section concerns the presentation of the most impor-

tant definitions for reading and handling a bond graph model. We recall first

different elements which build up a bond graph model and their physical

significance as in [31]. Afterwards, we present some graphical rules such as

causal path, and the procedures for determining the gains of causal paths

and causal loops.

A bond graph consists of subgraphs linked together by half arrows, repre-

senting power bonds. They exchange instantaneous energy at places called

ports inside or outside the same physical domain. The variables that are

forced to be identical when two ports are connected are the power vari-

ables, considered as functions of time. The various power variables are clas-

sified in a universal scheme, and called either effort e(t) or flow f(t). Their

product P (t) = e(t)f(t) is the instantaneous power flowing between the

ports. For system characterization, there are two more important variables,

called energy variables: the momentum p(t) =
∫

e(t)dt and the displacement

q(t) =
∫

f(t)dt in generalized notation. Tables 2.1 and 2.2 show power and

energy variables for several physical domains.

Table 2.1: Power variables for several physical domains

Effort e Flow f

Mechanical(Transl.) force, F velocity v

Mechanical(Rot.) torque, τ angular velocity, ω

Hydraulic pressure, P volume flow rate, Q

Electrical voltage, u current, i
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Table 2.2: Energy variables for several physical domains

Momentum p Displacement q

Mechanical(Transl.) momentum, p displacement x

Mechanical(Rot.) angular momentum, h angle, θ

Hydraulic pressure momentum, pP volume, V

Electrical flux linkage, λ charge, q

2.2.1.1 Bond Graph Elements

A few basic types of elements are required in order to represent models in

a variety of energy domains. In the following we regrouped basic 1-port el-

ements. A causal stroke, placed perpendicularly to the bond, shows up the

way the constitutive relations in an element have to be written.

1. Resistor Element

An R element is a passive dissipative element. It allows modeling the energy

dissipation phenomena, characterized by a relation between the effort and the

flow. Regarding the causality imposed on the element, this relation can be

e = ΦR(f) for figure 2.2.a or f = Φ−1
R (e) for figure 2.2.b. A few examples of

technical components which present a dissipative behavior: electrical resistor,

mechanical damper, dashpot, friction, hydraulic restriction.

R
R

(a)

(b)

Figure 2.2: Bond Graph Symbol for resistor

2. Capacitor Element

A C element is a dynamic element. It allows modeling the energy storage

phenomena, characterized by a relation between the effort and the integrate

of the flow. Regarding the causality imposed on the element, this relation

can be e = Φ−1
C (

∫

fdt) for figure 2.3.a or f = dΦC(e)
dt

for figure 2.3.b. A

few examples of technical components which are assimilated to a C element:

electrical capacitor, mechanical spring, torsion bar, tank, accumulator.

3. Inductance Element
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C
C

(a)

(b)

Figure 2.3: Bond Graph Symbol for capacitor

An I element is a dynamic element. It allows modeling the energy storage

phenomena, characterized by a relation between the flow and the integrate

of the effort. Regarding the causality imposed on the element, this relation

can be f = Φ−1
I (

∫

edt) for figure 2.4.a or e = dΦI(f)
dt

for figure 2.4.b. A

few examples of technical components which are assimilated to an I element:

electrical inductance, mass, inertia.

I

I(a)

(b)

Figure 2.4: Bond Graph Symbol for inductance

4. Source Element

A source element Se, Sf is an active element. It allows modeling the active

phenomena, represented by power sources. An Se element is an effort source,

such as: voltage supply, pressure supply, gravity. An Sf element is a flow

source, such as: current supply, pump. In figure 2.5, the causality for each

type of source is presented.

Sf
Se

Figure 2.5: Bond Graph Symbol for sources

5. Detector Element

The detectors are used for sensors, supposed to be ideal (no power is dissi-

pated and no power is stored). An De element is an effort detector, such

as: voltmeter, force sensor, pressure sensor. An Df element is a flow detec-
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tor, such as: ampermeter, flow rate sensor, tachometer. In figure 2.6, the

causality for each type of source is presented.

Df
De

Figure 2.6: Bond Graph Symbol for sources

In a bond graph model the elements are connected by power bonds and

junction elements. The junction structure elements with their causality re-

strictions are presented in the following. They are power conservative.

1. 0-junction

An 0-junction is a common effort junction characterized by the following

relations e1 = e2 = . . . = en and
∑

fi = 0.

0

i

1

2

n

Figure 2.7: 0-junction

2. 1-junction

An 1-junction is a common flow junction characterized by the following re-

lations f1 = f2 = . . . = fn and
∑

ei = 0.

1

i

1

2

n

Figure 2.8: 1-junction

3. Transformer

A transformer element TF is a 2-port element. Regarding the causality

imposed on the element, this relation can be

{

e2 = 1
m

e1

f1 = 1
m

f2

for figure 2.9.a or

{

e1 = me2

f2 = mf1

for figure 2.9.b. A few examples of technical components which
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present this behavior: electrical transformer, lever, gear pair, hydraulic ram.

TF

TF
m

(a)

(b)
m

e2
f2
e2
f2

e1
f1
e1
f1

Figure 2.9: Transformer

4. Gyrator

A gyrator element GY is a 2-port element. Regarding the causality im-

posed on the element, this relation can be

{

f1 = 1
r
e2

f2 = 1
r
e1

for figure 2.10.a

or

{

e1 = rf2

e2 = rf1

for figure 2.10.b. A few examples of technical components

which which presents this behavior: hall effect sensor, gyroscope, voice coil,

DC motor.

GY
r

(a)

(b)
r

e2
f2
e2
f2

e1
f1
e1
f1

GY

Figure 2.10: Gyrator

2.2.1.2 Causal Analysis

The causal structure of a bond graph provides interesting characteristics

through the causal analysis. Among these characteristics are the notions of

causal paths, causal loops, very useful in calculating the transfer function,

the state space representation and control synthesis [12]. In this part of the

section, we recall the most important definitions concerning these character-

istics.

Definition 8. Given two sets J1 and J2 composed by the following elements:

J1 = {C, I, R, Se, Sf} and J2 = {C, I, R, De, Df}. A causal path between
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an element of the set J1 and an element of the set J2 is a chain of interca-

lated power bonds, junctions and elements such that a complete and correct

causality is given to all the sequence; two bonds connected to the same node

(element) have opposed causalities.

The notion of causal path on a bond graph model is similar to the one of

path on an oriented graph model. Nevertheless, on an oriented graph model,

a path can not be defined between resistive elements and/or storage elements

in derivative causality. Definition 8 allows the introduction of the concept of

causal loop.

Definition 9. A causal loop is a closed causal path between two elements

of the set {C, I, R}. This path starts from the element and returns to the

same element without passing any bond more than once, following the same

variable.

Remark 5. [60] A causal mesh is a causal loop which does not pass through

any element (dynamic or dissipative element).

In this study the concepts of causal loop and causal mesh do not hold an

essential place. Nevertheless, the concept of causal path is used a lot, mostly

using two characteristics: the length of the path and the gain of the path.

Definition 10. a. On a bond graph model which presents only dynamic

elements in integral causality, the length of a causal path from an element in

the set J1 = {C, I,R, Se, Sf} to an element in the set J2 = {C, I, R, De, Df}

is equal to the number of dynamic elements I and C on the causal path, +1

if the element in J2 is a dynamic element in integral causality.

b. On a bond graph model in integral causality, which still presents dynamic

elements in derivative causality, the generalized length of a causal path is

equal to the difference between the number of dynamic elements in integral

causality and the number of dynamic elements in derivative causality along

the path, +1 if the element in J2 is a dynamic element.

Definition 11. The gain of the causal path is defined as being the function

which connects the input variable of the element on one end to the output

variable of the element on the other end of the causal path. In the LTI case,
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the gain of the causal path is:

Ti = (−1)n0+n1

∏

i

mi
ki

∏

j

rj
lj

∏

e

ge (2.5)

where:

• n0: number of orientation switches in 0 junctions when the flow variable

is followed;

• n1: number of orientation switches in 1 junctions when the effort vari-

able is followed;

• mi: gain of the element TFi (transformer) along the causal path, with

ki = +1 or ki = −1, according to the causality on the transformer;

• rj: gain of the element GYj (gyrator) along the causal path, with lj =

+1 or lj = −1, according to the causality on the gyrator;

• ge: gain of the R, I and C elements along the causal path.

2.2.2 Vectorial Representation

A bond graph model is composed by basic elements, associated to ports, I

and C elements for energy storage, R elements for energy dissipation, Se, Sf ,

MSe and MSf for energy sources and De, Df for detectors. The elements 0,

1 (junctions), MTF , TF (transformers) and MGY , GY (gyrators) compose

the junction structure, which exchanges energy with various parts of the

dynamic system and which must insure energy conservation. The vectorial

representation is presented in figure 2.11. The algebraic representation for

linear models is given by equation (2.6).



















ẋi

zd

Din

y

z



















=



















S11 S12 S13 S14 S15

S21 S22 S23 S24 S25

S31 S32 S33 S34 S35

S41 S42 S43 S44 S45

S51 S52 S53 S54 S55





































zi

ẋd

Dout

u

d



















(2.6)

State vector xi is composed by energy variables p for I elements and q for

C elements in integral causality. xd is the vector of the variables associated
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Sources

Se,Sf,MSe,MSf

Energy Storage Junction Structure

I,C 0,1,TF,GY

Energy Dissipation

Real Detectors De,Df

Virtual Detectors De*,Df*

R

xi

xd ud

Din

Dout

y m

xi

zi
zd

xd

.

.

x=
zi

zd

z=

eI

fC

x=
. fI

eC

z=
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Figure 2.11: Vectorial representation of a bond graph model

to dynamic elements (I and C) in derivative causality. While zi and zd are

their complementary vectors which contain power variables (f for I elements

and e for C elements). Din and Dout regroup the efforts and the flows of the

dissipative elements R.

For linear bond graph models, Sij are matrices of appropriate dimensions,

whose values depend on the junction structure. The matrices S11 and S33

are skew-symmetric (eq. (2.7)) because the gains of causal paths between

dynamic elements in integral causality or between dissipative elements are

opposite when the same causal path is considered from each end. Using the

same remark concerning the gains of the causal path, equation (2.8) presents

the relation between four other matrices.

{

S11 = −ST
11

S33 = −ST
33

(2.7)

{

S21 = −ST
12

S31 = −ST
13

(2.8)
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The elementary laws associated to bond graph elements (R, I and C), also

called constitutive laws, are presented for the linear case by equation (2.9),















Dout = LDin

zi = Fixi

zd = Fdxd

(2.9)

where the matrices L, Fi and Fd are diagonal matrices containing the informa-

tion characterizing the dissipation laws, the relations between the effort and

the flow in storage elements in integral and respectively derivative causality.

Remark 6. In the definition of vectorial representation of linear bond graphs,

two hypothesis have been considered:

• Two storage elements in derivative causality are not causally linked,

i.e. S22 = 0. Otherwise, switching the causality along this causal path

brings the two elements in integral causality.

• An R element can not be causally linked with a dynamic element in

derivative causality , i.e. S23 = S32 = 0. Otherwise, changing the

causality along this path brings the dynamic element in integral causal-

ity ([31]).

Determining the state space representation (2.10) from the vectorial rep-

resentation is very easy in the linear case.














ẋi = Axi + Buu + Bdd

y = Cyxi + Duu + Ddd

z = Czxi + Ruu + Rdd

(2.10)

Equations (2.11)-(2.15) present the relations between state space represen-

tation and the vectorial representation supposing that there are no dynamic

elements in derivative causality on the bond graph model.

A = [S11 + S13(I − LS33)
−1LS31]Fi (2.11)

{

Bu = S14 + S13(I − LS33)
−1LS34

Bd = S15 + S13(I − LS33)
−1LS35

(2.12)
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{

Cy = [S41 + S43(I − LS33)
−1LS31]Fi

Cz = [S51 + S53(I − LS33)
−1LS31]Fi

(2.13)

{

Du = S44 + S43(I − LS33)
−1LS34

Dd = S45 + S43(I − LS33)
−1LS35

(2.14)

{

Ru = S54 + S53(I − LS33)
−1LS34

Rd = S55 + S53(I − LS33)
−1LS35

(2.15)

2.3 Graphical Methods in System Analysis

The graphical procedures developed for structured systems and LTI bond

graph models for system analysis are similar. In this section, these methods

are presented in the two cases. The focus is mainly on the study of controlla-

bility property, while procedures for determining the observability property

are tackled only superficially.

Structured system are based on "non-zero" cells in the state space represen-

tation, while in the bond graph models the elements are considered without

the exact numerical value of the physical components. In both cases, for

certain values of the parameters the controllability and observability prop-

erties can be easily determined using numerical criterion (rank condition for

the controllability/observability matrix). For some values a property may be

true, while for other values not. However, it turns out that once a property

is true for one parameter value, it is true for almost all parameter values.

Therefore, a property which is true for almost all parameter values, is also

often said to be true generically ([13]). The aim of this section is to recall

the graphical procedures which have been introduced for studying structural

properties.

From this point of view, there is a difference between the structural proper-

ties for structured systems and bond graphs. On the structured system the

parameters are localized on the gains of the arcs, while on the bond graphs

the parameters are localized in the elements. This means that on the struc-

tured systems some parameters may appear on different arcs, while on the

bond graph this problem does not appear. In practice this can generate some

erroneous results for the structured systems because a rank condition may
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be false due to the connection of parameters. Therefore the results obtained

with the bond graph methodology are more reliable than the ones obtained

on structured systems.

2.3.1 System Analysis for Structured Systems

Structural properties have been studied since the 1970’s. In [25], [43], [47],

[48] and [51], some results concerning structural system analysis have been

provided. In this section, we recall the most important methods for deter-

mining structural properties. Controllability and observability properties can

be determined using the following two theorems.

Theorem 7. [47] An LTI structured system is generically controllable if and

only if in the graph G, every state vertex is the end vertex of an U-rooted

path and there exists a disjoint union of U-rooted path family and a cycle

family that covers all state vertices.

Theorem 8. [47] An LTI structured system is generically observable if and

only if in the graph G, every state vertex is the start vertex of an Y -toped path

and there exists a disjoint union of Y -toped path family and a cycle family

that covers all state vertices.

These theorems allows to check the structural controllability, respectively

observability, of the system on the associated graph.

2.3.2 System Analysis with a Bond Graph Approach

The structural controllability and observability properties can be determined

for a given LTI system using its bond graph representation and graphical

transformations, without calculating the rank of the controllability matrix

and of the observability matrix respectively. These results have been intro-

duced in [56].

Consider n as the number of dynamic elements in integral causality on the

bond graph model in integral causality.

Prior to giving the procedure for determining whether a bond graph model

of an LTI system is controllable/observable or not, a few definitions should

be made.
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Definition 12. [56] c is the number of dynamical elements which are still in

integral causality after the following transformations are performed:

• derivative causality is imposed on the bond graph model.

• all the necessary dualisations of the input sources have been made to

eliminate the dynamic elements which keep on the integral causality,

without introducing unsolvable causal loops.

Definition 13. [56] Consider the matrix [A B], the bond graph rank of this

matrix is noted bg_rk[A B] and is calculated according to equation (2.16).

bg_rk[A B] = n − c (2.16)

Using these definitions the condition for structural controllability of a

bond graph model can be expressed as in theorem 9.

Theorem 9. [56] A bond graph model is structurally controllable iff :

• bg_rk[A B] = n.

• each dynamic element in integral causality on the bond graph in integral

causality is causally linked to an input source.

Using the same steps, the observability property can be determined based

on the bond graph model.

Definition 14. [56] o is the number of dynamical elements which are still in

integral causality after the following transformations are performed:

• derivative causality is imposed on the bond graph model.

• all the necessary dualisations of the output detectors have been made

to eliminate the dynamic elements which keep on the integral causality,

without introducing unsolvable causal loops.

Definition 15. [56] Consider the matrix

[

C

A

]

, the bond graph rank of this

matrix is noted bg_rk

[

C

A

]

and is calculated according to equation (2.17).

bg_rk

[

C

A

]

= n − o (2.17)
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Observability of a bond graph model can be determined using theorem

10.

Theorem 10. [56] A bond graph model is structurally observable iff :

• bg_rk

[

C

A

]

= n.

• each dynamic element in integral causality on the bond graph in integral

causality is causally linked to an output detector.

Remark 7. The concept of dualization used in definitions 12 and 14 repre-

sents the old type of duality (described in [6] and recalled in section 3.1.2.1)

which consists of interchanging the flow and the effort variables. In the case

of these two definitions, this means that a flow source or a flow detector can

be replaced by an effort source or an effort detector and vice versa.

2.4 Decoupling Problem with a Graphical Ap-

proach

The decoupling or noninteracting control problem is one of the most famous

problems of control theory. Besides its practical interest, it has also led

to a number of fundamental results of general interest in system theory.

Let us recall the formulation of the problem (also known as the row-by-row

decoupling problem or Morgan’s problem) and graphical procedures which

were proposed for the decoupling of LTI models.

Given an LTI system of type (2.1), where we assume that the system is

square, i.e. the system has the same number of inputs and outputs (m = p).

The plant described by (2.1) is combined with the feedback law

u(t) = Fx(t) + Gv(t) (2.18)

where v is an m-tuple and the matrices F and G have appropriate dimen-

sions. The plant is said to be decoupled if the ith input affects only the ith

output for i = 1, 2, . . . , m (of course the renumbering of inputs/outputs is

possible).

It has been shown in [15] that this problem has a solution if and only if the
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infinite structure of the global system Σ(C, A, B) coincides with the union of

the infinite structures of the m row subsystems Σ(ci, A, B), i = 1, 2, . . . , m

obtained by focusing on each output component individually as the output

of system.

In the following, two graphical approaches, first the structured systems ap-

proach and secondly the bond graph approach, are presented for solving the

decoupling problem for LTI models. These two perspectives are presented in

parallel since they resemble a lot and they are based on the same mathemat-

ical background.

2.4.1 System Analysis

This section concerns the system analysis part of the decoupling problem.

Graphical procedures exist in both cases, structured systems and bond graphs,

for deciding whether an LTI model can be decoupled or not by a static state

feedback control law of type (2.18). As stated before, these procedure are

based on the global and row infinite structure, therefore they can be reduced

to determining these infinite structures. Some definitions concerning the

global and row infinite structure are recalled. Then, we are going to focus on

graphical methods for the determining the infinite structures of structured

systems and afterwards using bond graph models.

2.4.1.1 Infinite Structure. Definitions

Infinite zero orders of a global system are defined using the infinite Smith-

McMillan form.

Definition 16. [26] Given a rational matrix T (s) ∈ R
p×m
rat of rank r, it

is always possible to find two bicausal matrices U(s) and V (s) which verify

equations (2.19) and (2.20), where Φ(s) is called the infinite Smith-McMillan

form.

T (s) = U(s)Φ(s)V (s) (2.19)
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Φ(s) =















s−n′

1 0 · · · 0

0
. . . . . .

...
...

. . . s−n′

r 0

0 · · · 0 0















(2.20)

The coefficients n′

1 are ordered decreasingly in the matrix Φ(s). They

characterize the infinite orders of poles or zeros of the matrix T (s), as can

be seen from the following theorem.

Theorem 11. [16] Given a rational matrix T (s) ∈ R
p×m
rat of rank r, the

infinite Smith-McMillan form of T (s) is unique. If n′

i is positive then it is

called infinite zero order. If n′

i is negative then it is called infinite pole order.

Definition 17. [15] The infinite structure of the global system Σ(C, A,B) is

composed by the set of orders of zero at infinity of its transfer matrix.

The relation between the input-output perspective and infinite structure

of the global system is given by the following property.

Property 1. [19] The global orders of zero at infinity are equal to the mini-

mal number of derivatives of each output variable necessary so that the input

variables appear explicitly and independently in the equations.

For each row subsystem Σ(ci, A, B), it is associated an infinite structure,

called row infinite structure. This structure characterizes each output vari-

able taken separately.

Definition 18. The order of zero at infinity of the row subsystem Σ(ci, A,B)

is the integer ni, which verifies equation (2.21).

ni = min
{

j ∈ N|ciA
j−1B 6= 0

}

(2.21)

Property 2. The integer ni is equal to the number of derivatives of the

output variable yi(t) necessary so that an input variable appears explicitly.

2.4.1.2 Graphical methods for LTI Structured Systems

In this subsection, we recall a graph theoretic characterization of the generic

infinite structure of a structured system. These results have been presented

in [11],[55] and [59].
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Property 3. The order of zero at infinity for the row sub-system Σ(ci, A, B)

is equal to the length of the shortest path between the ith output vertex yi and

the set of input vertices.

Property 4. The global orders of zero at infinity of an invertible model are

calculated according to equation (2.22), where Lk is the smallest sum of the

lengths of k different input-output paths.

{

n′

1 = L1

n′

k = Lk − Lk−1

(2.22)

Using these properties and the result proposed in [15], we can decide

graphically whether an LTI system can be decoupled by a state feedback

control law.

2.4.1.3 Bond Graph Approach

The results concerning the infinite structure for LTI bond graph models have

been developed in [57]. The graphical procedures for determining the infinite

structure on a bond graph model are based on the following properties.

Property 5. [57] The order of the at infinity ni of the row subsystem Σ(ci, A, B)

is equal to the length of the shortest causal path between the output detector

and the set of input sources.

Property 6. [57] The number of zeros at infinity of the global system rep-

resented by a bond graph is equal to the maximal number of different input-

output causal paths.

Property 7. [57] The orders of zero at infinity n′

i of the global invertible

system Σ(C, A, B) are determined according to equation (2.23), where Lk is

the smallest sum of the lengths of k different input-output causal paths on a

bond graph model.
{

n′

1 = L1

n′

k = Lk − Lk−1

(2.23)

2.4.2 Control Synthesis

Theorem 12. [15] An LTI square system can be decoupled by a regular static

state feedback control law if and only if the set of orders of zero at infinity of
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the global system Σ(C,A, B) is equal to the set of orders of zero at infinity

of the row sub-systems Σ(ci, A,B), i = 1, 2, . . . ,m.

If the conditions from theorem 12 are fulfilled then the decoupling state

feedback law (2.18) has the following expression([19] and [61]):

F = −Ω−1









c1A
n1

...

cmAnm









(2.24)

G = Ω−1diag(gi)i=1,...,m (2.25)

where Ω is given by relation (2.26) and diag(gi) is a diagonal matrix with

parameters gi influencing the statical gain of each input-output decoupled

channel.

Ω =









c1A
n1−1B
...

cmAnm−1B









(2.26)

The graphical methods for control synthesis concern the computation of the

matrices Ω and









c1A
n1

...

cmAnm









. In fact this means calculating the vectors ciA
ni

and ciA
ni−1B.

Determining the vectors ciA
ni and ciA

ni−1B is similar for the structured

systems and for the bond graph models, therefore we present these graphical

procedures together.

The vectors ciA
ni represent the gains of the paths of length ni between the

output vertex yi and state vertices xj, j = 1, . . . , n on a structured system.

The gain of each path is obtained by multiplying the gains of the arcs along

the path. Analogously, on a bond graph model, the vectors ciA
ni represent

the gains of the causal paths of length ni between the ith output detector and

the dynamic elements in integral causality. These gains can be determined

according to definition 11.

For the vectors ciA
ni−1B we have to take into account the gains of the path of

length ni between the output vertex yi and the input vertices uk, k = 1, . . . , m

on the graph representation of the structured system. Similarly, on the bond

graph model, we have to determine the gains of the causal path of length ni
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between the ith output detector and the input sources in order to determine

the vectors ciA
ni−1B.

Once the matrices Ω and









c1A
n1

...

cmAnm









are determined graphically, the results

are introduced in equations (2.24) and (2.25) and we obtain the decoupling

state feedback control law.

2.5 Decoupling Problem with Stability

Supposing that, for a given system, the existence of a solution for the decou-

pling by static state feedback control problem is proven, we want to find the

solution which allows to decouple the system and to insure system stability.

This problem has been introduced for LTI systems by [19] and [24] at the end

of the 1960’s. For square systems, it has been proven that by imposing a de-

coupled structure by a state feedback control law, some modes of the closed

loop system could not be freely assigned. In [61] and [44], these modes are

called fixed modes. In this section, we are only interested in the most simple

type of system decoupling which does not interfere with the invariant zeros.

If the system can be decoupled with stability by a state feedback control law,

then the decoupling state feedback control law:

u(t) = Fx(t) + Gv(t) (2.27)

is given be relations (2.28) and (2.29).

F = −Ω−1(ciA
ni +

ni−1
∑

j=0

pijciA
j)i=1,...,m (2.28)

G = Ω−1diag(gi)i=1,...,m (2.29)

where the parameters pij are used for defining the dynamic behavior of the

closed loop decoupled system by pole placement.

If we note by Z(C,A, B) the set of invariant zeros of the global system

Σ(C,A, B) and by Z(ci, A, B) the set of invariant zeros of the row subsystem

Σ(ci, A, B), the fixed modes are Z(C, A, B) −
⋃

i Z(ci, A,B). If they are

stable, we can find the control law (2.28), which stabilizes the system. The
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control law (2.28) does not allow to make reappear the invariant zeros, which

become unassigned poles.

2.5.1 Graphical Methods for Determining the Control

Law

Determining the solution for the decoupling with stability problem means

that beside calculating the vectors ciA
ni , we have to determine also the vec-

tors ciA
j, with j < ni. Graphical computation is similar in the two cases.

On a structured system graph, the vectors ciA
j are determined using the

gains of the paths of length j between the ith output vertex and all the state

vertices.

On a bond graph model, the vectors ciA
j are determined using the gains

of the causal paths of length j between the ith output detector and all the

dynamic elements in integral causality.

2.6 Conclusions

In this chapter, we have recalled two of the graphical representations which

will be used through this report: the structured systems and the bond graphs.

These representations offer a graphical framework on which we have devel-

oped different procedures for the study of the duality.

System analysis for LTI models using graphical procedures, both on struc-

tured systems and on bond graphs, will be extended in the next chapter for

LTV models. The study of controllability and observability properties for

LTV models has not been done graphically, yet. In chapter 3, we tackle this

problem focusing on the duality between these two structural properties. The

different approaches for structured systems and bond graphs will be pointed

out in the next chapter.

We have recalled here, the graphical solution for the decoupling problem be-

cause, in chapter 4, we are going to discuss the duality between the state

feedback and output injection control laws where we consider as application

the decoupling problem, both without and with pole placement. As these

decoupling procedures do not exist for LTV case, we have presented the LTI
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case so that the reader may be familiar with the graphical approach.



Chapter 3

Dual Model. Dual Properties

The concept of duality is one of the cornerstones of this study. We have

worked in two research directions: the structured systems and the bond

graph models. These results have been published in [40] for the structured

systems and in [37] for the bond graphs. In both cases we have developed the

concept of dual system introduced in [50] through graphical representations.

The natural way for starting a study of duality is by defining the dual system.

As our study is divided for the structured systems and bond graphs, we keep

the two studies in parallel.

In the second part of this chapter, we focus on the concept of duality in

the system analysis. Graphical methods are proposed for the study of the

controllability and observability properties.

3.1 Dual Model. A Graphical Approach

The study of the duality in linear systems begins with the definition of a dual

model. In chapter 1, we have seen the definition of duality from the state

space representation point of view and with the module theoretical approach.

This part of chapter 3 presents the dual model from a graphical perspective,

using the graph representation of a structured system and of a bond graph

model.

47
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3.1.1 A Structured System Procedure

There is a direct link between the state space representation and the struc-

tured system, therefore the definition of the dual structured system is ob-

tained from the definition of the dual model in the state space representation.

The dual of the system Σ(A,B, C, D) is Σ̄(−AT , CT ,−BT , DT ).

x2 x3

x1

u1 y1

u2 y2

b11

b22

c11

c23

a21 a31

a11

a22 a33

a23

a32

Figure 3.1: Structured system

x2 x3

x1

u1
y1

u2y2

=-b11

=-b22

=c11

=c23

=-a21 =-a31

=-a11

=-a22 =-a33

=-a23

=-a32
c22

c11

a12

a32

a23

a13

a11

b11

b32

a22 a33

Figure 3.2: Dual Structured System
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Procedure

Given a structured system like in figure 3.1. The dual model of the structured

system is obtained if the following steps are performed:

1. Draw the graph of the system Σ.

2. Multiply the gains of the arcs between the input vertices and the state

vertices by −1: gain((ui, xj)) := −gain((ui, xj)),∀i, j.

3. Multiply the gains of the arcs between the state vertices by −1: gain((xi, xj)) :=

−gain((xi, xj)),∀i, j.

4. Switch the sense of the arcs.

5. Rename the vertices:

• u → ȳ

• y → ū

• x → x̄

Using this procedure, the dual structured system of the model in figure 3.1

is the model in figure 3.2. A remark is nonetheless needed regarding this

procedure. The schema of transformations presented in figure 1.1, which

concern the duality procedure in the state space representation, is also true

in the case of structured systems.

3.1.2 Dual Bond graph Model

Before this study had begun, the bond graph methodology, already con-

tained the concept of duality. This concept of duality, based on physical

and graphical considerations, is recalled in the first part of this section. In

the second part, we introduce the new concept of dual bond graph model, a

definition which is based on the mathematical results from [50]. In fact, this

definition of duality is the cornerstone of this report, most of the results are

fundamentally linked to it.
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3.1.2.1 Duality in Bond graph Methodology

The concept of duality is widely known in the bond graph community. The

results concerning this duality have been presented in [6]. This type of dual-

ity concern the pair effort-flow. In the following, we recall the most impor-

tant definitions which have been introduced in [6] and their applications. Of

course, we are going to point out some disadvantages of this method, disad-

vantages which are over-passed with the new type of duality.

Definition 19. [6] Let B be a bond graph. The dual bond graph of B, denoted

by B∗, is the bond graph which is identical to B, except that the labels on the

junctions are exactly opposite to those of B.

By definition, the 0-junctions of B correspond to the 1-junctions of B∗

and vice versa. In fact, the dualization procedure consists of the following

interchanges:

• 0-junction ↔ 1-junction

• Effort source Se ↔ Flow source Sf

• Effort detector De ↔ Flow detector Df

• C-element ↔ I-element

But, the most important transformation which occurs is the switch of causal-

ity.

1

I

Se

R

Df

Figure 3.3: Simple bond graph model

Example 5. In figure 3.3, we have consider an example. The dual bond

graph is presented in figure 3.4. The state space representation in the two
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C

0 DeSf

R

Figure 3.4: Dual bond graph model

case are identical. For the system in figure 3.3, the state space representation

(3.1) is obtained, while for its dual bond graph from figure (3.4), we obtain

relation (3.2).
{

ṗI = −R
I
pI + u

y = 1
I
pI

(3.1)

{

q̇C = − 1
RC

qC + u

y = 1
C
qC

(3.2)

Due to the switch of causality the value of the dissipative element on the

dual bond graph is inverse. But beside that, the two representations are

identical.

Even though from the physical point of view, this type of duality offers an

elegant switch between the effort and flow variables, from the mathematical

point of view it does not provide any information since the two represen-

tations are mathematically equivalent. This is the reason why a new type

of duality which offers a physical and mathematical perspective should be

introduced. The next section concerns the definition of this new concept of

duality.

3.1.2.2 Dual Bond graph Model in the Algebraic Framework

The dualization procedure proposed in [50], and recalled in section 1.3.1, of-

fers a mathematical approach to the study of duality. The aim of this section

is to define the dual bond graph model using the same algebraic background.

In the following, we present a graphical procedure for determining the dual

bond graph and in the end we provide a proof that the model which is ob-

tained offers the same mathematical structure as the procedure from section
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1.3.1.

Three steps must be performed for obtaining the dual bond graph model:

1. Graphic transformations on bond graph model.

2. Reverse the outputs.

3. State variable change.

Each step is going to be discussed in the following subsections and in the

end a proof is performed to prove that the dual bond graph model respects

the definition used in [50], from the module theory point of view, and in [58]

with the state space representation.

Graphic Transformations on Bond Graph Model

Using the bond graph of the system
∑

the following transformations are

performed:

1. The sources become the detectors;

2. The detectors become the sources;

3. The R : R elements have their value changed into R : (−R)

4. For each time varying C-element in integral causality, add a dissipative

element with the gain R : − 1
dC(t)

dt

(see figure 3.5).

5. For each time varying I-element in integral causality, add a dissipative

element with the gain R : −dI(t)
dt

(see figure 3.5).

C(t)

C(t)

0 R:-

I(t)

I(t)

1
dC(t)

dt

R:-dI(t)
dtdual dual

1

Figure 3.5: Supplementary dissipative elements
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These changes affect only some of the matrices in the vectorial representation

of the bond-graph (eq. (2.6)). These modifications will be used in the proof

which follows the procedure. The modifications are in appendix A.2, due to

the repetitive explanations.

Remark 8. For LTI models, the dualization procedure stops after the step

3; the steps 4 and 5 of the procedure are not considered because there are no

dynamic elements with time-varying gains.

Reverse the outputs

The value of the outputs is considered with a negative value, i.e. ȳ = −y.

This change influences the computations on the matrices C̄ and D̄, and brings

a similar perspective as in the module theoretical approach when the same

principle is applied to the outputs.

State variable change

The state variable of the dual system Σ̄ is x̄ = Fx, where F is a square

diagonal matrix that contains the information about the dynamic elements in

the bond graph and is the same as the one used in the vectorial representation

of the bond graph, and x is the state vector of the given system Σ.

Remark 9. If on the bond graph model of the system Σ, the state variables

are the energy variables of the storage elements (the generalized momentum

pI for I-elements and the generalized displacement qC for C-elements), on

the dual bond graph model the state variables are the co-energy variables of

the storage elements (the flow fI for I-elements and the effort eC for C-

elements).

Theorem 13. If the graphical procedure presented above is performed, then

the resulting bond graph model is the dual system, i.e. the state space repre-

sentation of the dual system is given by equations (1.16-1.19).

Proof

As the module theoretical approach and the state space representation ap-

proach are already proved to be similar in [50], our interest is to prove that

the bond graph perspective is similar with only one of them. The state space

representation is chosen here because it is more intuitive.
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Because of the lack of space only the computation of the matrix Ā is pre-

sented. For the others, only the final result is given.

We want to prove that Ā = −AT . The expression of Ā should be calcu-

lated on the dual bond graph model ¯∑, and the expression of AT on the

bond graph model
∑

. In both cases the vectorial representation of the bond

graph model is used, further information can be found in annexe A.2.

Firstly the matrix Ā has to be calculated. Consider the state vector of the

dual bond graph model as x, then

ẋ = Ãx + B̃ū, (3.3)

where

Ã = [S̄11 + S̄13(I − L̄S̄33)
−1L̄S̄31]F. (3.4)

If the state variable change x̄ = Fx is performed, then

˙(F−1)x̄ + F−1 ˙̄x = ÃF−1x̄ + B̃ū, (3.5)

which is equivalent to

˙̄x = F (ÃF−1 − ˙(F−1))x̄ + FB̃ū, (3.6)

and therefore

Ā = F (ÃF−1 − ˙(F−1)) = F [S̄11 + S̄13(I − L̄S̄33)
−1L̄S̄31 − ˙(F−1)], (3.7)

which implies, after the modifications in appendix A.2 and the notations

form appendix A.1 that

Ā = F [S11 +
(

S13 In×q

)

(I +

(

−L 0nR×q

0q×nR
−Ld

)(

S33 0nR×q

0q×nR
0q×q

)

)−1

(

−L 0nR×q

0q×nR
−Ld

)(

S31

−Iq×n

)

− ˙(F−1)].

(3.8)

After some simple matrix computations we obtain:

Ā = F [S11 − S13(I + LS33)
−1LS31 + In×qLdIq×n − ˙(F−1)]. (3.9)

But according to property 37 In×qLdIq×n = d
dt

(F−1), which means that the

last two terms cancel each other and we obtain:

Ā = F [S11 − S13(I + LS33)
−1LS31]. (3.10)



3.1 Dual Model. A Graphical Approach 55

Secondly the matrix AT has to be calculated using the bond graph model
∑

. Its expression is as follows:

AT = F T [ST
11 + ST

31L
T (I − ST

33L
T )−1ST

13]

= F [−S11 + S13L(I + S33L)−1S31].
(3.11)

As matrix L is invertible,

L(I + S33L)−1 = (I + LS33)
−1L, (3.12)

and therefore
AT = F [−S11 + S13(I + LS33)

−1LS31]

= −F [S11 − S13(I + LS33)
−1LS31].

(3.13)

From the expressions of Ā and AT we can conclude that

Ā = −AT (3.14)

From equation(3.5), we obtain also that B̄ = FB̃, which means that:

B̄ = F (S̄14 + S̄13(I − L̄S̄33)
−1L̄S̄34) (3.15)

Let us now consider the transformations which appear on the S-matrices

from appendix A.2. This means that:

B̄ = F T (ST
41 − ST

31(I + LS33)
−1LST

43) (3.16)

On the other hand, we determine the matrix CT by transposing the matrix

C of the system Σ:

CT = F T (ST
41 + ST

31L(I − ST
33L

T )−1ST
43) (3.17)

Using relations (2.8) and (3.12), we obtain:

CT = F T (ST
41 − S13(I + LS33)

−1LST
43) (3.18)

By comparing expressions (3.16) and (3.18), we observe that

B̄ = CT (3.19)

The output expression of the dual bond graph is:

−ȳ = C̃x̃ + D̃ū (3.20)
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After the variable change x̄ = Fx, we obtain:

−ȳ = C̃F−1x̄ + D̃ū (3.21)

which means that C̄ = −C̃F−1 and D̄ = −D̃.

Let us determine first the C̄.

C̄ = −C̃F−1 = −(S̄41 + S̄43(I − L̄S̄33)
−1L̄S̄31) (3.22)

Using the transformations from appendix A.2, we obtain:

C̄ = −(ST
14 − ST

34(I + LS33)
−1LS31) (3.23)

On the other hand, we determine the matrix BT by transposing the matrix

B of the system Σ:

BT = ST
14 + ST

34L(I − ST
33L

T )−1ST
13 (3.24)

Using relations (2.8) and (3.12), we obtain:

BT = ST
14 − ST

34(I + LS33)
−1LS31 (3.25)

By comparing expressions (3.23) and (3.25), we observe that

C̄ = −BT (3.26)

Following the same approach, we continue with the matrix D̄.

D̄ = −(S̄44 + S̄43(I − L̄S̄33)
−1L̄S̄34) (3.27)

After the transformations from appendix A.2, this is equivalent to:

D̄ = −(−ST
44 − ST

34(I + LS33)
−1LST

43) (3.28)

The expression of DT is:

DT = ST
44 + ST

34L
T (I − ST

33L
T )−1ST

43 (3.29)

By using relations (2.8) and (3.12), this is equivalent to:

DT = ST
44 + ST

34(I + LS33)
−1LST

43 (3.30)

By comparing expressions (3.28) and (3.30), we observe that:

D̄ = DT (3.31)
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Even though, as was mentioned before, there are not any relations between

the variables in the state representation and in the module representations,

the bond graph model offers a lead. It is well known that the state variables

of a bond graph model are the energy variables of the dynamic elements in

integral causality. For the dual bond graph model, it can be concluded that

the state variables are the co-energy variables of the same dynamic elements

in integral causality. In the case of physical model, the dual variables can be

related to the physical variables.

Remark 10. In the bond graph literature, the concept of adjoint bond graph

has been introduced in [62] for LTI models using a similar procedure.

Example 6. Let us consider the separately excited direct current motor

(SEDCM). The physical behavior of this motor is nonlinear, but depending

on the desired outcome one can use a linear time-varying model instead.

In this section, the latter case is considered, a SEDCM in which the flux in

the stator varies in time. This model can be depicted by relation (3.32),















dλLr (t)

dt
= −Rr

Lr
λLr

(t) − KΦ(t)
J

hJ(t) + Vr(t)
dhJ (t)

dt
= KΦ(t)

Lr
λLr

(t) − f

J
hJ(t)

y = 1
J
hJ(t)

(3.32)

where Φ(t) is the flux induced by the stator, λLr
(t) and Vr(t) are the flux

linkage and the voltage respectively in the rotor (the latter variable is the

input source), hJ(t) is the angular momentum of the rotor and the angular

velocity is the output variable. The problem is to obtain a constant value

for the rotational speed in spite of an induced flux which is under a periodic

perturbation of form (3.33).

Φ(t) = Φ0(1 + αsin(ωt)) (3.33)

The bond graph model of the SEDCM is presented in figure 3.6, where the

state variables are the generalized momenta of the I-elements, x =

(

pI1

pI2

)

=

(

λLr

hJ

)

.

The dual model can be constructed using the bond graph in integral causality

and the procedure presented above. The dual bond graph model is presented
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1 1

I1:Lr

Se DfMGY

R1:Rr

I2:J

R2:f

KΦ(t)

Figure 3.6: Bond Graph of the SEDCM

1 1

I1:Lr

Se-Df MGY

R1:-Rr

I2:J

R2:-f

KΦ(t)

Figure 3.7: Dual Bond Graph Model

in figure 3.7. As one can see, the input and output are reversed and the

resistances have negative values. The state space representation of the bond

graph in figure 3.7, with the state vector x̃(t) =

(

x̃1(t)

x̃2(t)

)

=

(

λLr

hJ

)

is:















˙̃x1 = Rr

Lr
x̃1 −

KΦ(t)
J

x̃2

˙̃x2 = KΦ(t)
Lr

x̃1 + f

J
x̃2 + ū

ȳ = − 1
Lr

x̃1

(3.34)

The last part of the dualization procedure is the state variable change x̄ =

Fx̃ =

(

1
Lr

0

0 1
J

)

(

λLr

hJ

)

. Therefore, we obtain the state space representation of the dual

bond graph model:














˙̄x1 = Rr

Lr
x̄1 −

KΦ(t)
Lr

x̄2

˙̄x2 = KΦ(t)
J

x̄1 + f

J
x̄2 + 1

J
ū

ȳ = −x̄1

(3.35)
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3.1.3 Graphic Computational Rules for the Dual Bond

Graph Model

The state vector change x̄ = Fx, which is synonymous with choosing the

power variables as the state variables, causes the modification of the graphical

procedures for calculating the gain of a causal path. In this section, we

formulate some rules for determining the gain of the causal paths between

a dynamic element in integral causality (DE) and a source, a detector and

another storage element in integral causality, knowing that the state variables

are the flow of the I elements and the effort of the C elements. These

computational rules can be used directly on the dual bond graph model

and do not require the state variable change. In fact, instead of using the

regular bond graph laws and perform the state variable change in the end,

these rules can be applied directly. We are going to use these rules for

synthesizing control laws for the dual bond graph model in the next chapter.

For notational convenience, we have consider that the I and C elements in

integral causality present a generic parameter DE.

Property 8. The gain of the causal path between a source and a dynamic

element in integral causality is:

GSource→DE = (−1)n0+n1(
∏

i

mi
ki)(

∏

j

rj
lj)(

∏

p

Rp
vp)

1

DE
(3.36)

where:

• n0: number of orientation switches in 0 junctions when the flow variable

is followed;

• n1: number of orientation switches in 1 junctions when the effort vari-

able is followed;

• mi: gain of the element TFi (transformer) along the causal path, with

ki = +1 or ki = −1, according to the causality on the transformer;

• rj: gain of the element GYj (gyrator) along the causal path, with lj =

+1 or lj = −1, according to the causality on the gyrator;

• Rp: gain of the dissipative element Rp along the causal path, with vp =

+1 or vp = −1, according to the causality on the R-element.
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• DE: gain of the dynamic element in integral causality at the end of the

causal path.

Property 9. The gain of the causal path between a dynamic element in

integral causality and a detector is:

GDE→Detector = (−1)n0+n1(
∏

i

mi
ki)(

∏

j

rj
lj)(

∏

p

Rp
vp) (3.37)

where:

• n0: number of orientation switches in 0 junctions when the flow variable

is followed;

• n1: number of orientation switches in 1 junctions when the effort vari-

able is followed;

• mi: gain of the element TFi (transformer) along the causal path, with

ki = +1 or ki = −1, according to the causality on the transformer;

• rj: gain of the element GYj (gyrator) along the causal path, with lj =

+1 or lj = −1, according to the causality on the gyrator.

• Rp: gain of the dissipative element Rp along the causal path, with vp =

+1 or vp = −1, according to the causality on the R-element.

Property 10. The gain of the causal path between a dynamic element in

integral causality DEi and another dynamic element in integral causality DEj

is:

GDEin→DEout
= (−1)n0+n1(

∏

i

mi
ki)(

∏

j

rj
lj)(

∏

p

Rp
vp)

1

DEin

(3.38)

where:

• n0: number of orientation switches in 0 junctions when the flow variable

is followed;

• n1: number of orientation switches in 1 junctions when the effort vari-

able is followed;

• mi: gain of the element TFi (transformer) along the causal path, with

ki = +1 or ki = −1, according to the causality on the transformer;
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• rj: gain of the element GYj (gyrator) along the causal path, with lj =

+1 or lj = −1, according to the causality on the gyrator.

• Rp: gain of the dissipative element Rp along the causal path, with vp =

+1 or vp = −1, according to the causality on the R-element.

• DEin: gain of the dynamic element in integral causality at the beginning

of the causal path.

Remark 11. The gain of the causal loop between a time-varying dynamic

element and the corresponding dissipative element which is added on the dual

bond graph model is 0.

1I(t) RI:-
dI(t)
dtfI

eI

fR

eR

Figure 3.8: Causal loop between dynamic element and its dissipative element

Consider the case of an I-element with its dissipative element on the

bond graph model from figure 3.8. For this causal loop, we calculate the

gain between the state derivative and the state variable. The state variable

of the dual bond graph model is the flow in the I-element xi = fI . The

state derivative is ẋi = ḟI = d
dt

(

pI

I(t)

)

= d
dt

(

1
I(t)

)

pI + 1
I(t)

dpI

dt
= − İ(t)

I2(t)
I(t)fI +

1
I(t)

eI = − İ(t)
I(t)

fI + 1
I(t)

İ(t)fR = − İ(t)
I(t)

fI + İ(t)
I(t)

fI = 0. The gain of the causal

loop between a time-varying dynamic element and its dissipative element

on the dual bond graph model is null because the goal for introducing this

dissipative element is to compensate the derivative element which appears

when we use a time-varying variable change.

In the sequel, we consider an example and we make a comparative discussion

concerning the gains of the causal path if the state variables are the energy

variables and if the state variables are the power variables.

Example 7. Let us consider the electric circuit from figure 3.9, where the

gain of the inductance is time-varying. The bond graph model of this circuit

is presented in figure 3.10. The state space representation of this bond graph
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I(t)

VC RE

Figure 3.9: Electric circuit

C

01

R

Se

I(t)

De

Figure 3.10: Bond Graph Model

model is:

A(t) =

(

0 − 1
C

1
I(t)

− 1
RC

)

B =

(

1

0

)

C =
(

0 1
C

)

(3.39)

The dual bond graph model is obtained following the procedure presented in

the previous section. In figure 3.11, the dual bond graph model is pictured.

Using this model, we illustrate each type of causal path and the way of com-

puting its gain in the two cases, when the state vector contains the energy

variables and when the state vector is composed by the power variables.

In figure 3.12, the causal path between the source Sf and the dynamic C

element is presented. This gain g represents the connection between the state

derivative and the input ẋ = gu. Here the input u is the flow of the source.

In the first case, the regular computational bond graph methodology, the state

variable is the generalized displacement of the C-element qC and the gain of
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C

01

-R

-Df

I(t)

Sf

RI:-
dI(t)
dt

Figure 3.11: Dual Bond Graph Model

C0Sf
f=u fC

eC

Figure 3.12: Causal path between source and dynamic element

the causal path can be obtained from equation:

ẋ = ˙qC = fC = f = u (3.40)

therefore the gain is 1. In the second case, when the state variable is the

effort on the C-element eC, the gain of the causal path is determined from

relation:

ẋ = ˙eC =
1

C
fC =

1

C
f =

1

C
u (3.41)

The gain of the causal path in this case is 1
C
, which is the same results which

is obtained with property 8.

In figure 3.13, the causal path between the detector Df and the dynamic

1-Df I(t)y=-f fI

eI

Figure 3.13: Causal path between a detector and a dynamic element

I element is presented. This gain g represents the connection between the

output and the state variable y = gx. Here the output y is the flow of the 1-

junction. In the first case, the regular computational bond graph methodology,



64 Dual Model. Dual Properties

the state variable is the generalized momentum of the I-element pI and the

gain of the causal path can be obtained from equation:

y = −f = −fI = −
1

I
pI = −

1

I
x (3.42)

therefore the gain is −1
I
. In the second case, when the state variable is the

flow on the I-element fI , the gain of the causal path is determined from

relation:

y = −f = −fI = −x (3.43)

The gain of the causal path in this case is −1, which is the same results which

is obtained with property 9.

In figure 3.14, the causal path between the C-element and the I element is

C 0 1 I(t)
fC

eC

fI

eI

Figure 3.14: Causal path between two dynamic elements

presented. This gain g represents the connection between the state derivative

and the state variable ẋin = gxout. In the first case, the regular computational

bond graph methodology, the state variables are the generalized momentum of

the I-element pI and the generalized displacement of the C-element qC and

the gain of the causal path can be obtained from equation:

ẋin = q̇C = fC = fI =
1

I
pI =

1

I
xout (3.44)

therefore the gain is 1
I
. In the second case, when the state variables are the

flow on the I-element fI and the effort on the C-element eC, the gain of the

causal path is determined from relation:

ẋin = ėC =
1

C
fC =

1

C
fI =

1

C
xout (3.45)

The gain of the causal path in this case is 1
C
, which is the same results which

is obtained with property 10.

Using these results, we can graphically obtain the state space representation

in the two cases.
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• when the state variables are the generalized momentum of the I-element

pI and the generalized displacement of the C-element qC, the state space

representation is:

Ã =

(

−RI

I
− 1

C

1
I

1
RC

)

B̃ =

(

0

1

)

C̃ =
(

−1
I

0
)

(3.46)

But, for passing to the dual system, we have to perform the state change

x̄ = Fx̃ =

(

1
I

0

0 1
C

)

x̃, which leads to the following Kalman represen-

tation:

Ā = FÃF−1 − F ˙(F−1) =

(

0 − 1
I(t)

1
C

1
RC

)

(3.47)

B̄ = FB̃ =

(

0
1
C

)

(3.48)

C̄ = C̃F−1 =
(

−1 0
)

(3.49)

• when the state variables are the flows of the I-elements fI and the

efforts of the C-elements eC, by using properties 8-10, we can directly

obtain the state space representation of the dual bond graph model:

Ā =

(

0 − 1
I(t)

1
C

1
RC

)

B̄ =

(

0
1
C

)

C̄ =
(

−1 0
)

(3.50)

Remark 12. The term −F ˙(F−1) in the expression of Ā is compensated

using the dissipative elements which are added on the dual bond graph model.

Without the dissipative elements R(t), the time-varying state variable change

x̄ = F (t)x̃ is not mathematically correct.

3.2 Structural Analysis

In this section, the focus is mainly on the duality between the structural

controllability and observability properties. The rank conditions imposed

on the controllability (equation (1.29)) and observability matrices (equation
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(1.30)) are one of the possibilities for determining these properties. As the

two relations recalled before are expressed in the temporal domain, the entire

section deals with a temporal approach. Without getting into further details,

we pass to defining the LTV structured systems and the bond graph repre-

sentations which allows computation of the controllability and observability

matrices. In fact, there are two graphical models, one for the controllabil-

ity (input perspective) and one for the observability (output perspective) for

each of graphical representations (structured systems and bond graphs).

Remark 13. For notational simplicity, we denote by n the number of state

vertices of the structured system graph and the number of dynamic elements

in integral causality on the bond graph model.

3.2.1 Definition of new LTV Graphical Models

The new LTV graphical models which are proposed in this section are built

up for computational reasons. The controllability and observability matri-

ces present some supplementary time-derivatives which should be taken into

account. In order to preserve the graphical procedures developed for LTI

models and to use them in the LTV case, we are going to alter the represen-

tation of LTV models. In practice, we still use the LTV model, but we add

some extra-elements which emulate the action of the derivatives.

3.2.1.1 Structured Systems

Controllability Structured Graph

A graphical representation called the Controllability Structured Graph (CSG)

is drawn for the LTV model (3.51).

{

d
dt

x(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t)
(3.51)

Definition 20. A differential arc is an arc (x, x), with x ∈ X, X-the set of

state vertices, and the gain g((x, x)) = ± d
dt

.

Definition 21. The length of a path is equal to the number of state vertices

on the path.
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Definition 22. A CSG is a graph G = (V,E) defined in section 2.1.1, with

some new differential arcs defined with the following procedure.

Procedure

1. For each state vertex determine the paths which start from an input

vertex and end at that vertex, with length smaller than n and with at

least one arc with time-dependent gain.

2. For each of the paths determined on the previous step:

• Check the first apparition of an arc with a time-dependent gain

along the path.

• For each of the vertices following this arc along the path, add a

differential arc with the gain − d
dt

(maximum one − d
dt

for a vertex).

This new graph is similar to the graph G = (V, E) defined in the LTI or LTV

case, but with some arcs defined by g((xi, xi)) = Aii −
d
dt

. The procedure is

presented on an example.

Let us consider the system in figure 3.15. This is the classical representation

x1u
 

x3

x2

yα

β

γ

Figure 3.15: LTI Structured System

where the parameters α, β and γ are constants. Let us now consider that at

least one parameter(let that be γ) is time dependent. The CSG is presented

in figure 3.16. A new arc is drawn, with gain − d
dt

on the vertex x3 because

x
1

u
 

x
3

x
2

dt
d

(t) y

α

β

γ

Figure 3.16: CSG of the LTV model
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on the path u → x1 → x3, parameter γ(t) is time-dependent.

Observability Structured Graph

Using a similar approach with the CSG case, but considering as the starting

point the observability matrix, we define the OSG (Observability Structured

Graph).

Definition 23. The OSG of an LTV model (3.51) is a graph G = (V,E) de-

fined as in the LTI case (beside that the gains of the arcs are time-dependent),

with some new differential arcs defined by the following procedure.

Procedure

1. For each state vertex determine the paths which start from that vertex

and end in an output vertex, with a length smaller than n and at least

one arc with a time-varying gain.

2. For each of the paths determined on the previous step:

• Check the last apparition of an arc with a time-dependent gain

along the path.

• For each of the vertices before this arc along the path, add a

differential arc with the gain d
dt

(maximum one d
dt

for a vertex).

This new graph is similar to the usual structured system representation, but

with some arcs defined by g((xi, xi)) = Aii + d
dt

.

The differences between the CSG and OSG concern the position of the dif-

ferential arcs relative to the arcs with time-dependent gains and the gains of

these arcs.

3.2.1.2 Bond graph models

The procedures defined for computing the controllability and observability

matrices for LTI case can not be directly applied on the LTV bond graphs.

The existence of the time derivatives in the expression of the controllability

and observability matrices provokes this problem. In order to preserve the

same procedures, we have to alter the bond graph representation. The solu-

tion is to emulate the use of the time-derivatives on the bond graph model.
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In the following, we define two types of LTV bond graph models, one for

controllability and one for observability.

Controllability Bond Graph

A graphical representation called the Controllability Bond Graph (CBG) is

drawn.

Definition 24. A differential loop is the transformation of a storage element

on the bond graph in integral casuality (BGI) like in figure 3.17, where the

dissipative element R has a value so that the gain of the differential loop is

− d
dt

.

When a differential path is part of a causal path, the gain of the path

is taken into consideration for calculating the gain of the causal path. This

means that the product of all the gains which appear after the differential

loop on the path are derived. For simplification, we introduce a dissipative

element, whose value can be assigned so that the user can use the same

techniques as in the LTI case. When transforming a C-element, the R-

element which is added has the value R : 1
d
dt

(C∗)
. For an I-element, the

supplementary R-element has the value R : d
dt

(I∗). C∗ and I∗ mean that

the product of the gains which follow should be derived. This way − 1
RC

and

−R
I
, which are the gains of the differential loops, are equal to − d

dt
.

C

C

0

I

I

1 R:
(C*)

R:
d
dt

1 (I*)d
dt

a) C - element b) I - element 

Figure 3.17: Differential Loop Transformation

Definition 25. A CBG is a bond graph, with some new differential loops

defined with the following procedure.

Procedure
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1. For each dynamic element in integral causality on the BGI, determine

all the causal paths of length smaller than n, which start from a source

and end in that element.

2. For each of the causal paths determined on the previous step:

• Check the first apparition of an element with a time-dependent

gain along the causal path.

• For each of the dynamical element following this time-dependent

gain along the causal path, add a differential loop with the gain

− d
dt

(maximum one − d
dt

for each storage element).

Observability Bond Graph

A graphical representation called the Observability Bond Graph (OBG) is

drawn.

Definition 26. An OBG is a bond graph, with some new differential loops

with the gain d
dt

defined with the following procedure. The dissipative elements

which are added are similar to the ones designed for CBG, but with a negative

gain (see figure 3.18).

Procedure

1. For each dynamic element in integral causality on the BGI, determine

all the causal paths of length smaller than n − 1, which start from an

output detector and end in that element.

2. For each of the causal paths determined on the previous step:

• Check the first apparition of an element with a time-dependent

gain along the causal path.

• For each of the dynamical element following this time-dependent

element along the causal path, add a differential loop with the

gain d
dt

(maximum one d
dt

for each storage element).

These new bond graph models are similar to the normal model, but with

some supplementary dissipative elements.
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C

C

0

I

I

1 R:-
(C*)

R:-
d
dt

1

a) C - element b) I - element 

(I*)d
dt

Figure 3.18: Differential Loop Transformation

3.2.1.3 Example

A simple electric circuit has been chosen to exemplify the techniques intro-

duced above. The system is composed by three capacitors and two induc-

tances linked by a transformer like in figure 3.19. Let us now consider that

A

C1

C2

C3 I1

I2

m(t)

I

Figure 3.19: System proposed for analysis

the gain of the transformer is time-varying. We propose to represent the

Observability Bond Graph so that we can exemplify the use of the design

techniques described above. The bond graph model of this system is pre-

sented in figure 3.20.

The causal paths of length 4, which start from the output detector and pass

through the time-varying transformer are: Df → I1 → C1 → TF → I2 → C3

and Df → I1 → C1 → TF → I2 → TF → C1. This means that we have to

add differential loops on the dynamic elements which appear after the time-

dependent transformer on the causal path presented above, i.e. I2, C3 and

C1. In figure 3.21, we present the observability bond graph (OBG) associated

to the LTV bond graph model from figure 3.20.
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C1

0 10 01

I1 C2

Sf

I2C3

Df

TF

m(t)

Figure 3.20: Bond Graph in Integral Causality of the LTV model

C1

0 10 01

I1 C2

Sf

I2C3

Df

TF
m(t)

RC3
:-

(C3*)
RI2:- (I2*) RC1

:-
(C1*)d

dt

1
d
dt

1d
dt

Figure 3.21: Observability Bond Graph Model

3.2.2 Controllability and Observability Matrices

3.2.2.1 Computational Methods using the Graph Representation

The controllability and observability matrices can be deduced graphically

from the CSG and OSG (Observability Structured Graph) respectively. If

the matrix B(t) is partitioned by columns, the vectors bi(t) are obtained.

Therefore the problem is reduced to the calculation of the vectors (A(t) −
d
dt

)k−1bi(t).

Property 11. The vectors (A(t) − d
dt

)k−1bi(t) are determined according to

the formula (3.52), where pk
ij is the number of paths of length k between the
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ith input and the jth state variable and Gα(ui, xj) is the product of the gains

of the arcs along the considered path in the order from the top toward the

root of the path.

[(A(t) −
d

dt
)k−1bi(t)]j =

pk
ij

∑

α=1

Gα(ui, xj) (3.52)

For the observability matrix, the matrix C(t) is partitioned by rows, the

vectors ci(t) are obtained. Property 12 is used for calculating the vectors

(AT (t) + d
dt

)k−1cT
i (t), which compose the observability matrix.

Property 12. The vectors (AT (t) + d
dt

)k−1cT
i (t) are determined on the OSG

according to the formula (3.53), where pk
ij is the number of paths of length

k − 1 between the ith output vertex and the jth state variable vertex and

Gα(xj, yi) is the product of the gains of the elements along the considered

path in the order from the state vertex toward the output vertex.

[(AT (t) +
d

dt
)k−1cT

i (t)]j =

pk
ij

∑

α=1

Gα(xj, yi) (3.53)

Remark 14. For the differential arcs, the gains which follow have to be

derived, except for this particularity, the procedure is the same as for the LTI

case, due to the definition of the CSG/OSG.

Example 8. Let us consider the model from figure 3.15. In the LTI case the

controllability matrix [ B AB A2B ] is not of full rank and the model is

not controllable.

In the LTV case, the paths of the CSG (figure 3.16) are gathered in table 3.1.

Therefore the controllability matrix is:

Table 3.1: Gains and paths on the CSG

Path Length Gain

u → x1 1 α

u → x1 → x2 2 βα

u → x1 → x3 2 γ(t)α

u → x1 → x3 → x3 3 − d
dt

(γ(t)α) = −γ̇(t)α
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R =









α 0 0

0 βα 0

0 γ(t)α −γ̇(t)α









(3.54)

The rank(R) = 3, which means that the LTV structured system is control-

lable.

3.2.2.2 Computational Methods using the Bond Graph Represen-

tation

The controllability matrix can be deduced graphically from the CBG. If the

matrix B(t) is partitioned by columns, the vectors bi(t) are obtained. There-

fore the problem is reduced to the calculation of the vectors (A(t)− d
dt

)k−1bi(t).

Property 13. The vectors (A(t)− d
dt

)k−1bi(t) are determined according to the

formula (3.55), where pk
ij is the number of causal paths of length k between

the ith input source and the jth state variable and Gα(ui, xj) is the product of

the gains of the elements (R, I, C, TF , GY ) along the considered path in the

order from the dynamic element toward the input source with the sign given

by the passage of the 0 and 1-junctions by the flow or the effort variables.

[(A(t) −
d

dt
)k−1bi(t)]j =

pk
ij

∑

α=1

Gα(ui, xj) (3.55)

Similarly, we can determine the observability matrix using the same pro-

cedure, but with the matrices C(t) and A(t) on the OBG. If the matrix C(t)

is partitioned by rows, the vectors ci(t) are obtained. Therefore the problem

is reduced to the calculation of the vectors (AT (t) + d
dt

)k−1cT
i (t).

Property 14. The vectors (AT (t) + d
dt

)k−1cT
i (t) are determined according to

the formula (3.56), where pk
ij is the number of causal paths of length k − 1

between the ith output source and the jth state variable and Gα(xj, yi) is the

product of the gains of the elements along the considered path in the order

from the dynamic element toward the output detector with the sign given by

the passage of the 0 and 1-junctions by the flow or the effort variables.

[(AT (t) +
d

dt
)k−1cT

i (t)]j =

pk
ij

∑

α=1

Gα(xj, yi) (3.56)



3.2 Structural Analysis 75

Remark 15. For the differential loops, the gains which follow have to be

derived, except for this particularity, the procedure is the same as for the LTI

case, due to the definition of the CBG/OBG.

Remark 16. The controllability and observability matrices are calculated on

the CBG and OBG respectively, which are associated to the same bond graph

model. Even though, we represent transpose matrices (for the observability

matrix), it is just a matter of writing the relations and it is not related to the

dual bond graph model. In the last part of this section, we discuss the duality

between the CBG and the OBG.

Example 9. We are going to continue with the example from figure 3.21, for

which we propose to determine the observability matrix. In table 3.2, we have

determined all the causal paths and their gains. Using these information for

building up observability matrix is obvious.

3.2.3 System Analysis using Graphical Procedures

Graphical methods for determining the structural properties have been de-

veloped, both for LTV structured systems and for LTV bond graphs. These

results have been published in [40] and [9]. In this section, we discuss each

of these approaches.

3.2.3.1 Structured Systems

In order to determine the controllability and observability properties, it is

not necessary to calculate the controllability and observability matrices and

check a rank condition.

The controllability property for an LTV structured system can be obtained

according to the theorem 14 proposed in [43],[48],[18] just like for LTI models,

but they should be applied on the CSG.

Theorem 14. An LTV structured system is generically controllable if on

the CSG every state vertex is the end of a U-rooted path and there exists a

disjoint union of a U-rooted path family and a cycle family that covers all

state vertices.

The same extension can be used for observability, this time theorem 15

should be applied on the OSG.
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Table 3.2: Gains and paths on the OBG

Path Length Gain

Df ← I1 0 1
I1

Df ← I1 ← C1 1 1
C1

1
I1

Df ← I1 ← C2 1 − 1
C2

1
I1

Df ← I1 ← C1 ← I1 2 − 1
I1

1
C1

1
I1

Df ← I1 ← C2 ← I1 2 − 1
I1

1
C2

1
I1

Df ← I1 ← C1 ← RC1 ← C1 2 0

Df ← I1 ← C1 ← TF ← I2 2 − 1
I2

m 1
C1

1
I1

Df ← I1 ← C1 ← RC1 ← C1 ← RC1 ← C1 3 0

Df ← I1 ← C1 ← RC1 ← C1 ← TF ← I2 3 0

Df ← I1 ← C1 ← TF ← I2 ← TF ← C1 3 − 1
C1

m 1
I2

m 1
C1

1
I1

Df ← I1 ← C1 ← TF ← I2 ← RI2 ← I2 3 d
dt

1
I2

m 1
C1

1
I1

Df ← I1 ← C1 ← TF ← I2 ← C3 3 1
C3

1
I2

m 1
C1

1
I1

Df ← I1 ← C1 ← I1 ← C1 3 − 1
C1

1
I1

1
C1

1
I1

Df ← I1 ← C1 ← I1 ← C2 3 1
C2

1
I1

1
C1

1
I1

Df ← I1 ← C2 ← I1 ← C1 3 − 1
C1

1
I1

1
C2

1
I1

Df ← I1 ← C2 ← I1 ← C2 3 1
C2

1
I1

1
C2

1
I1

Df ← I1 ← C1 ← RC1 ← C1 ← RC1 ← C1 ← TF ← I2 4 0

Df ← I1 ← C1 ← RC1 ← C1 ← RC1 ← C1 ← RC1 ← C1 4 0

Df ← I1 ← C1 ← RC1 ← C1 ← RC1 ← C1 ← I1 4 0

Df ← I1 ← C1 ← RC1 ← C1 ← TF ← I2 ← RI2 ← I2 4 0

Df ← I1 ← C1 ← RC1 ← C1 ← TF ← I2 ← C3 4 0

Df ← I1 ← C1 ← RC1 ← C1 ← TF ← I2 ← TF ← C1 4 0

Df ← I1 ← C1 ← TF ← I2 ← TF ← C1 ← TF ← I2 4 1
I2

m 1
C1

m 1
I2

m 1
C1

1
I1

Df ← I1 ← C1 ← TF ← I2 ← TF ← C1 ← RC1 ← C1 4 − d
dt

1
C1

m 1
I2

m 1
C1

1
I1

Df ← I1 ← C1 ← TF ← I2 ← TF ← C1 ← I1 4 1
I1

1
C1

m 1
I2

m 1
C1

1
I1

Df ← I1 ← C1 ← TF ← I2 ← RI2 ← I2 ← RI2 ← I2 4 d
dt

d
dt

1
I2

m 1
C1

1
I1

Df ← I1 ← C1 ← TF ← I2 ← RI2 ← I2 ← C3 4 − 1
C3

d
dt

1
I2

m 1
C1

1
I1

Df ← I1 ← C1 ← TF ← I2 ← RI2 ← I2 ← TF ← C1 4 1
C1

m d
dt

1
I2

m 1
C1

1
I1

Df ← I1 ← C1 ← TF ← I2 ← C3 ← I2 4 1
I2

1
C3

1
I2

m 1
C1

1
I1

Df ← I1 ← C1 ← TF ← I2 ← C3 ← RC3 ← C3 4 d
dt

1
C3

1
I2

m 1
C1

1
I1
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Table 3.3: Gains and paths on the OBG

Path Length Gain

Df ← I1 ← C1 ← I1 ← C1 ← TF ← I2 4 1
I2

m 1
C1

1
I1

1
C1

1
I1

Df ← I1 ← C1 ← I1 ← C1 ← RC1 ← C1 4 − d
dt

1
C1

1
I1

1
C1

1
I1

Df ← I1 ← C1 ← I1 ← C1 ← I1 4 1
I1

1
C1

1
I1

1
C1

1
I1

Df ← I1 ← C1 ← I1 ← C2 ← I1 4 1
I1

1
C2

1
I1

1
C1

1
I1

Df ← I1 ← C2 ← I1 ← C1 ← TF ← I2 4 1
I2

m 1
C1

1
I1

1
C2

1
I1

Df ← I1 ← C2 ← I1 ← C1 ← RC1 ← C1 4 − d
dt

1
C1

1
I1

1
C2

1
I1

Df ← I1 ← C2 ← I1 ← C1 ← I1 4 1
I1

1
C1

1
I1

1
C2

1
I1

Df ← I1 ← C2 ← I1 ← C2 ← I1 4 1
I1

1
C2

1
I1

1
C2

1
I1

Theorem 15. An LTV structured system is generically observable if on the

OSG every state vertex is the start of a Y -topped path and there exists a

disjoint union of a Y -topped path family and a cycle family that covers all

state vertices.

The LTI model from figure 3.15 does not contain a cycle family that

covers all the states. On the contrary, the CSG model (figure 3.16) has this

property. The LTV structured system is structurally controllable.

Remark 17. If the structured system is structurally controllable/observable

using the structured graph, without adding the differential arcs, then it is also

structurally controllable/observable after adding the differential arcs. The

inverse is not always true.

3.2.3.2 Bond Graph Approach

As the structured systems and the bond graph resembles, one might think

that a simple translation of the LTI procedures for system analysis in the

LTV case would be enough. Unfortunately, applying theorem 9 on the CBG

does not provide a reliable result all the time. Even though in practice, most

of the times, this is true, the counterexample in figure 3.22, shows that the

bond graphs provide more information through the connectivity and causal-

ity than the structured systems.

Let us first present this counterexample for the study of the controllability
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property, which shows why the theorem 9 does not work on the CBG, when

the equivalent theorem for structured systems, theorem 14 provides an ac-

ceptable (even though false) response.

R

0 11

I1(t)

SfDe

I2(t)

Figure 3.22: Counterexample

R

0 11

SfDe
RI1: RI2:

I1(t) I2(t)

(I2*)
d
dt(I1*)

d
dt

Figure 3.23: CBG in integral causality

Example 10. The CBG of the bond graph model from figure 3.22 is pre-

sented in figure 3.23, where we have considered that the dissipative element

R is time-dependent. Applying the theorem 9 on the CBG means passing to

derivative causality (figure 3.24) and verifying whether all the dynamic ele-

ments pass to derivative causality. It can easily be seen that apparently all

the conditions for the controllability property are met.

On the other hand, if we determine the controllability matrix on the CBG,

we obtain:

R(A,B)(t) =

(

R −R2

I1
− R2

I2
− dR

dt

R −R2

I1
− R2

I2
− dR

dt

)

(3.57)
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R

0 11

SfDe

I1(t) I2(t)

RI1: RI2: (I2*)
d
dt(I1*)

d
dt

Figure 3.24: CBG in derivative causality

But rank(R(A,B)(t)) = 1, therefore the system is not controllable, which

means that the supposed procedure is not valid.

Theorem 9 on the CBG does not provide a correct answer because contrary to

the LTI case where passing to derivative causality is a method for determin-

ing the inverse of the state matrix A, here we would determine the inverse of

the matrix A(t) − I d
dt

.

If we consider the structured system associated to the bond graph from fig-

x
1

x
2

u y

I
1

R

I
1

R

I
2

R

I
2

R

R

R

I
1

R

I
2

R

Figure 3.25: Structured system for the same bond graph model

ure 3.22, we obtain the graph from figure 3.25. In the structured systems

methodology, this model is equivalent with the one from figure 3.26, which in
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Figure 3.26: Equivalent Structured System

fact is controllable. The problem is that the gains of the arcs are not inde-

pendent. And according to the definition of "structural" properties this is an

"acceptable" fault for the structured systems methodology.

The main difference between the structured systems representation and

the bond graph representation is that on the bond graph model the pa-

rameters are localized in the elements, while for the structured systems the

parameters are on the gains of the edges. Due to this draw-back, the struc-

tured systems procedures are less accurate than the bond graph methods.

Retracing the approach proposed for LTI bond graph models for studying the

controllability, we can find the right method for the LTV models. The study

of structural controllability for an LTI bond graph model consists of deter-

mining the rank of matrix
(

A B
)

. If the rank of this matrix is smaller

than n, then there are some linear relation between the rows of this matrix,

which means, according to the state space equation ẋ(t) = Ax(t) + Bu(t),

that there are the same relations between variables ẋi. Thanks to these re-

lations, it is possible to find the orthogonal complement of the controllable

part in the LTI models. In [9], it has been proven that it is possible to obtain

the same result for LTV bond graph models using the modules.

The particularity of bond graph models (LTI or LTV) is that the same linear

relations between the variables ẋi are obtained directly on the model after
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applying the derivative causality ([56]). The dynamic elements which keep

the integral causality are causally linked with dynamic elements in deriva-

tive causality. For an I-element in integral causality, for example, the un-

known variable is the effort, therefore the derivative of state variable. This

variable can be represented as a linear combination of known variables of

the I-elements (effort eI) and C-elements (flows fC) in derivative causality

which are derivatives of the state variables. This way, we can find graphically

all the linear relations (with constant coefficients for the LTI case and with

time-dependent coefficients for the LTV case) between the derivatives of state

variables. These linear relations define the torsion submodule. According to

theorem 2, an LTV system is controllable if the torsion submodule of the

module associated to the system is trivial.

In [9], a graphical method for determining the controllability for LTV mod-

els using the bond graph representation is proposed. The aim of the method

proposed in [9] is to determine the equations of the torsion submodule. For

that we transform the bond graph according to the following procedure:

• Implement a derivative causality on the bond graph model.

• Dualize the maximum number of input sources (switch Se ↔ Sf) in

order to eliminate, if possible, the elements remaining in integral causal-

ity.

Afterwards, we consider the variables gi, which are either the effort variable

eI of the I-elements in derivative causality or the flow variable fC of the

C-elements in derivative causality. We can write the relation:

gk −
∑

i

αk
i (t)gi = 0 (3.58)

where αk
i (t) is the gain of the causal path between the corresponding dynamic

elements.

The relations (3.58) represent the equations candidate for the torsion sub-

module. If the parameters α are constant then relation (3.58) define the

torsion submodule and therefore the torsion submodule is not trivial, i.e. the

system is not controllable.

Using the same example as in figure 3.22, we get first the LTV bond graph
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R

0 11

SfDe

f1e1 f2
e2

I1(t) I2(t)

Figure 3.27: Bond graph in derivative causality

in derivative causality (figure 3.27). The only dynamic element which re-

mains in integral causality is I2. Therefore we can write an equation similar

to (3.58):

e1 − e2 = 0 (3.59)

In terms of state variables, it is equivalent with sx1 − sx2 = 0, which defines

the torsion submodule s(x1−x2) = 0. Therefore the system is not controllable

as we have also seen with the rank condition on the controllability matrix.

Concerning the observability property, there is no specific graphical method

for determining this property for LTV bond graph models, since obtaining the

quotient submodule Σ/[u, y] graphically is not very simple. Yet we propose

to use the duality between controllability and observability to determine via

the dual bond graph model the observability property. The next section

is dedicated to the study of duality in system analysis, both in structured

systems and bond graphs. The study of observability through the study of

the controllability of the dual bond graph model is discussed in the next

section.

3.2.4 Duality in System Analysis

The study of duality in system analysis is divided in two parts. First we dis-

cuss the duality which appear in the study of structured systems. Secondly,

we concentrate on the study of the observability property through the study

of the controllability property of the dual bond graph model.
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3.2.4.1 Duality between CSG and OSG

The aim of this part of the section is to present the duality which can be

observed between the two graphical representations which have been intro-

duced, the Controllability Structured Graph and the Observability Struc-

tured Graph. The problem can be put in terms of the duality procedure

which has been presented in the previous section.

If the CSG of a system Σ is considered, then what is the representation

which is obtained after the dualizing procedure is applied? Is it the OSG of

the dual system Σ̄?

The answer to this question is positive and the proof is intuitive. As the

main difference between the CSG and the OSG are the derivatives ± d
dt

which

appear on the diagonal of the matrix A(t), we are going to concentrate on

the expression of state matrix. If A(t) is the state matrix of the system Σ,

then the state matrix of the dual system Σ̄ is, according to the dualization

procedure, Ā(t) = −AT . On the other hand, if we consider the CSG of the

system Σ, we obtain the matrix A(t)− d
dt

I. Applying the graphical dualization

procedure on the CSG means to switch the arcs on the CSG and to multiply

the gains of inner arcs by −1. In algebraic terms, this means that on the dual

graph, we obtain the matrix −(A(t) − d
dt

I)T = −AT (t) + d
dt

I. But the OSG

of the dual system Σ̄ presents also the matrix Ā(t) + d
dt

I = −AT (t) + d
dt

I.

Therefore we can conclude that the dual system of the CSG is the OSG of

the dual system.

Using the same approach as in figure 1.1, in figure 3.28 we present the duality

between the CSG and OSG.

Example 11. Let us consider the LTV structured system from figure 3.29.

For constructing the CSG, we need to determine the paths which start in the

vertex u and have a length smaller than 3, the number of state vertices. The

only path with a time-varying gain is u → x1 → x3. Therefore, we must add

a differential loop on vertex x3 and we obtain the CSG form figure 3.30. On

the other hand, if we dualize the structured system from figure 3.29, we obtain

the dual model from figure 3.31. For the dual model, we want to construct

the OSG. The only path which starts from ȳ, has the length smaller than 3

and a time-varying gain is ȳ ← x̄1 ← x̄3, and therefore we have to put a

differential loop on the vertex x̄3. In figure 3.32, we have pictured the OSG
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Figure 3.28: Duality between CSG and OSG
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Figure 3.30: CSG of the Structured System

of the dual model.

Performing the dualization procedure directly on the CSG of the structured

system can lead also to a graph representation. By inspection, we observe

that the dual of the CSG is exactly the OSG of the dual model from figure

3.32.
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Figure 3.31: Dual of the Structured System
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Figure 3.32: OSG of the dual structured system

3.2.4.2 Duality between CBG and OBG

Similarly to the relation of duality between the CSG and the OSG for the

structured systems, we can develop the duality between the CBG and the

OBG in the bond graph representation. The mathematical foundation is the

same as in the structured systems case and the proof is analogous. In the

following, we consider an example on which we perform the same duality

transformations.

C

01Se

R(t)

De

Figure 3.33: Bond graph model

Example 12. Let us consider the LTV bond graph model from figure 3.33.

For constructing the CBG, we need to determine the causal paths which start

in the source Se and have a length smaller than 1, the number of dynamic
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elements. The only path with a time-varying gain is Se → R → C. There-

fore, we must add a differential loop for the C-element and we obtain the

CBG form figure 3.34. On the other hand, if we dualize the bond graph from

C

01Se

R(t)

De

RC:
(C*)dt

1
d

Figure 3.34: CBG of the LTV bond graph model

figure 3.33, we obtain the dual model from figure 3.35. For the dual model,

we want to construct the OBG. The only path which starts from −Df , has

the length smaller than 1 and a time-varying gain is −Df ← R ← C, and

therefore we have to put a differential loop for the C element. In figure 3.36,

we have pictured the OBG of the dual model.

Performing the dualization procedure directly on the CBG (figure 3.34) can

C

01-Df

-R(t)

Sf

Figure 3.35: Dual bond graph model

lead also to a dual bond graph representation. By inspection, we observe that

the dual of the CBG is exactly the OBG of the dual model from figure 3.36.

3.2.4.3 Duality. Key for determining the observability property

Using the duality property of LTV systems, we can obtain the solution for

determining the observability property. The aim of this section is to deter-
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Figure 3.36: OBG of the dual bond graph model

mine whether a bond graph is observable by studying the controllability of

the dual model.

The procedure for determining the observability property can be defined as

follows:

1. Draw the bond graph.

2. Dualize the bond graph model.

3. Apply the controllability procedure and decide whether the dual bond

graph model is controllable or not.

4. Dualize the solution. If the dual system is controllable then the system

is observable, if not then the model is not observable.

Two examples are considered here, to show how does this procedure work on

bond graph models.

Example 13. Let us consider the bond graph model from figure 3.37, where

the I-elements are time-dependent. For determining the observability, we fol-

low the procedure presented above. The dual bond graph model is presented

in figure 3.38. On the dual bond graph model in derivative causality (figure

3.39), we observe there are no dynamic elements in integral causality. There-

fore the dual bond graph model is controllable. Through the duality between

the controllability and the observability, we conclude that the bond graph from

figure 3.37 is observable. Of course, if we calculate the observability matrix,

we obtain that it is full rank and that the system is observable.
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Figure 3.37: LTV Bond Graph Model
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Figure 3.38: Dual Bond Graph
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Figure 3.39: Dual Bond Graph in Derivative Causality

Example 14. Let us consider another example, the one form figure 3.40,

where the only time-dependent element is the dissipative element R. Using

the same procedure, we have pictured in figure 3.41, the dual bond graph model

and in figure 3.42, the dual bond graph model in derivative causality. This

time, we observe that the element I2 remains in integral causality and there is
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Figure 3.40: LTV Bond Graph Model

-R(t)

0 11

I1

Sf-De

I2

Figure 3.41: Dual Bond Graph
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Figure 3.42: Dual Bond Graph in Derivative Causality

a causal path between I2 and I1. Therefore we obtain the relation eI2−eI1 = 0,

which is equivalent with d
dt

pI2 −
d
dt

pI1 = 0. It results that d
dt

I2fI2 −
d
dt

I1fI1 = 0.

As I1 and I2 have constant gains and the state variables are x1 = fI1 and

x2 = fI2, we obtain I2
dx2

dt
− I1

dx1

dt
= 0. This equation defines the torsion

submodule and therefore the dual system is not controllable. By duality, we

obtain that the bond graph from figure 3.40 is not observable.



90 Dual Model. Dual Properties

3.3 Conclusions

In this chapter, we have introduced a methodology for studying the duality

in system analysis for LTV models. Our study of duality begun by defin-

ing the dual graphical representations for the structured systems and for the

bond graphs. For structured systems, defining the dual model is easy due to

the relation between the state space representation and the graph represen-

tation. On the other hand, for bond graph model, defining the dual model

presents a more complicated procedure. The most important point of this

procedure is the time-dependent state variable change x̄ = F (t)x. Contrary

to the mathematical approach, either state space representation or module

theoretical approach, or even the graphical structured systems approach, on

the dual bond graph model the state variables have a physical meaning, they

are the efforts of the C elements in integral causality and the flows of the

I elements in integral causality. With the state variable change on the dual

bond graph model, we had to develop some new rules for calculating the

gains of the causal loops and causal paths.

In the second part of the chapter, we tackled the system analysis prob-

Table 3.4: System Analysis Methodology

SS Bond graph

Computational method → Controllability CSG CBG

Computational method → Observability OSG OBG

Graphical method → Controllability CSG LTV BG

Graphical method → Observability OSG Dual BG +

Controllability procedure

lem. In order to study the duality between controllability and observability,

we have introduced some graphical methods for studying these properties.

Firstly, we provide some graphical computational methods for calculating

the controllability and observability matrices. These procedures are applied

on the Controllability/Observability Structured Graph and the Controlla-

bility/Observability Bond Graph, respectively. Secondly, we present some

graphical direct methods for determining these structural properties. For

the structured systems these procedures are also applied on the CSG/OSG.

But, for the bond graphs we have to use a different approach because of the
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localization of the time-dependent parameters on the elements. The control-

lability procedure applied in an LTV bond graph model introduced in [9] is

reused here. For the observability procedure, we use the dual bond graph

model on which we apply the controllability procedure. In table 3.4, we have

gathered the graphical procedures which have been introduced in this chapter

for system analysis of LTV models.
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Chapter 4

Duality in Control Synthesis

The concept of duality in linear models can be defined not only for the con-

trollability property and the observability property as can be seen in the

previous chapter, but also it can be extended to the control laws. A state

feedback control can be considered as the dual of an input injection control

law [50]. These concepts are valid for linear and non linear models, in a state

space description or in a module theoretical framework. Our interest is the

study of the duality for linear and non linear models.

The focus of this section is on a graphical procedure, which may offer a more

global perspective for the decoupling by state feedback and output injection

problems using the structured systems and the bond graph representations.

The solution of the decoupling problem by state feedback for LTI models

is based on the infinite structure of the model. This study proposes similar

procedure for LTV models and therefore we have to explore the infinite struc-

ture of LTV systems first. Then, in the second section, we pass to solving a

well-known problem, the decoupling problem for LTV models. This problem

is studied through the concept of duality between the state feedback and

output injection. The decoupling by output injection problem has not been

tackled so far in the control literature. Even though the application of this

problem on a physical system is impossible, considering the definition of out-

put injection, our approach is a first step towards solving the decoupling by

output feedback problem and the construction of observers. The duality be-

tween state feedback and output injection is discussed both mathematically

and graphically. In the third part of this chapter, we tackle the decoupling

with pole placement problem. For this, we use the geometrical approach

93
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introduced by [27] for LTV systems. In the last part, we provide a nonlinear

extension for the input-output and linearization of nonlinear models, using

the variational model.

4.1 Infinite Structure

The infinite structure of LTV multivariable models is characterized by three

sets: {n′

i} the set of infinite zero orders of the global model Σ(C,A, B), {ni}

the set of row infinite zero orders of the row sub-system Σ(ci, A,B) and {nj}

the set of column infinite zero orders of the column sub-system Σ(C, A, Bj).

In the following, when using the underscript index i, we refer to character-

istics of the row system Σ(ci, A, B), when using the upperscript index j, we

refer to characteristics of the column sub-system Σ(C, A, Bj) and when we

do not use these indices we refer to the global system Σ(C,A, B).

4.1.1 Definitions

Definition 27. [7] The orders of zero at infinity of a global LTV model

are characterized by the Smith-McMillan matrix of the input-output relation

T (σ, t), where σ = s−1.

Property 15. [19] The global orders of zero at infinity are equal to the

minimal number of derivations of each output variable necessary so that the

input variables appear explicitly and independently in the equations.

Definition 28. The row order of zero at infinity for the row sub-system

Σ(ci, A, B) is the integer ni, which verifies condition (4.1).

ni = min

{

k|BT (t)((AT (t) + I
d

dt
)(k−1)cT

i )(t) 6= 0

}

(4.1)

Property 16. ni is equal to the number of derivations of the output variable

yi(t) necessary for at least one of the input variables to appear explicitly.

Definition 29. The column order of zero at infinity for the column sub-

system Σ(C, A, Bj) is the integer nj, which verifies condition (4.2).

nj = min

{

k|C(t)((A(t) − I
d

dt
)(k−1)Bj)(t) 6= 0

}

(4.2)

Property 17. nj is equal to the number of integrations of the input variable

uj(t) necessary for at least one output variable to appear explicitly.
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4.1.2 Duality between Row and Column Infinite Struc-

ture

The aim of this subsection is to show the relation between the row infinite

structure and the column infinite structure of the dual system. This duality

is presented by the following theorem.

Theorem 16. The set of the infinite zero orders of the column subsystems

Σ(C,A, Bj) is equal to the set of the infinite zero orders of the dual row

subsystems Σ̄(c̄i, Ā, B̄) and vice versa.

Proof:

If condition (4.1) is written for the dual row subsystem Σ̄(c̄i, Ā, B̄), then we

obtain:

B̄T (t)((ĀT (t) + I
d

dt
)(k−1)c̄T

i )(t) 6= 0 (4.3)

Equation (4.3) is equivalent to relation (4.4), if the substitutions (1.16)-(1.18)

are applied.

(CT )T (t)(((−AT )T (t) + I
d

dt
)(k−1)(−BT )T

i )(t) 6= 0 (4.4)

But as we know that transpose of the row of a matrix is the column of the

transposed matrix, equation (4.4) is equivalent to:

(−1)kC(t)((A(t) − I
d

dt
)(k−1)Bi)(t) 6= 0 (4.5)

Multiplying equation (4.5) by (−1)k leads to condition (4.2), which is the

condition for obtaining the infinite zero orders of the column subsystems

Σ(C,A, Bj). This means that the same condition applies for obtaining the

two sets.

The proof for the equality between the infinite zero orders of the row sub-

system Σ(ci, A, B) and the infinite zero orders of the dual column subsystem

Σ̄(C̄, Ā, B̄j) is similar and is not detailed here.

4.2 Decoupling Problem for LTV Models

The decoupling problem, or non-interacting control problem is a well-known

issue in system control literature. A square system is called decoupled if the
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ith output is influenced only by the ith input.

Here this problem has been solved by the two control laws: state feedback and

output injection. Not only, the proposed procedures are similar for system

decoupling by the two control laws, but also, as is presented in the last part

of this section, the obtained control laws are dual.

4.2.1 State Feedback

4.2.1.1 Analytical procedure

The procedure proposed by [46] for input-output decoupling of linear time-

varying systems is recalled. The algorithm is defined for numerical purposes,

but it offers a lead over the steps to be followed.

The problem is to determine whether the LTV system (3.51) can be decoupled

using a state feedback control law as in relation (4.6), where ū is an m-tuple

which represents the new input of the system and the matrices F (t) and

G(t) have compatible dimensions. The plant is said to be decoupled if the

ith input affects only the ith output, for i = 1, 2, . . . ,m.

u(t) = F (t)x(t) + G(t)ū(t) (4.6)

The differential operator L = AT + I d
dt

is defined. It can be applied to the

state vector as defined in (4.7).

(Lx)(t) =
d

dt
x(t) + AT (t)x(t) (4.7)

Indices ni can be defined as in equation (4.8).

ni = min
{

j|BT (t)(L(j−1)cT
i )(t) 6= 0

}

(4.8)

Using the differential operator and the indices defined above, the matrices Ã

and B̃ are defined like in equations (4.9) and (4.10) respectively.

Ã(t) =









(L(n1−1)cT
1 )T (t)

...

(L(nm−1)cT
m)T (t)









(4.9)

B̃(t) = Ã(t)B(t) (4.10)
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Property 18. [46] The LTV model defined by (3.51) can be decoupled by a

static feedback (4.6) if and only if matrix B̃(t) is non-singular.

The relations (4.11) and (4.12) give the expression of matrices F (t) and

G(t), where Λ(t) is an arbitrary diagonal matrix which may impose a desired

behavior to the decoupled system [46].

F (t) = −B̃−1(t)[Ã(t)A(t) +
d

dt
Ã(t)] (4.11)

G(t) = B̃−1(t)Λ(t) (4.12)

The steps taken for the decoupling of linear time-varying systems in [46] are:

1. Determine the indices ni for each output;

2. Calculate the matrices Ã(t) and B̃(t);

3. Verify whether proposition 18 is true, if not the procedure stops;

4. Calculate the inverse matrix for B̃(t);

5. Determine matrices F (t) and G(t) according to the relations (4.11) and

(4.12).

The algorithm can be split into two separated parts: the first three steps

represent the analysis part and the last two the synthesis of the decoupling

law.

In [15], the analysis part has been solved using the infinite structure of LTI

models and here an extension for LTV systems is proposed.

Theorem 17. An LTV square system can be decoupled by a regular static

state feedback control law if and only if the set of infinite zero orders of the

global system Σ(C, A, B) is equal to the set of infinite zero orders of the row

sub-systems Σ(ci, A, B), i = 1, 2, . . . , m.

The result for LTI models from [15] is based on the Smith-McMillan fac-

torization at infinity of rational matrix functions ([16]), while a study of the

infinite structure of time-varying systems ([7]) presents the same approach

but on LTV models. The generalization of theorem 17 from the LTI case to

the LTV case is straight-forward using these previous results.
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4.2.1.2 Graphical procedure

Even though in [17], a structured system approach has been proposed for the

decoupling of LTI systems, this perspective has it is limitations and it can

not be applied for the linear time-varying models. Similar procedures have

been proposed in [5], for decoupling of LTI bond graph models, unfortunately

this approach is also not appropriate for LTV models. These algorithms have

to be generalized to fit the new mathematical specifications.

The aim of this section is to offer a graphical technique, by means of the

graph representation to determine whether the structured system can be de-

coupled and, if so, to calculate the state feedback control law which decouples

the LTV system.

A. System Analysis

Using theorem 17, the analysis part consists of determining the infinite struc-

ture, the orders of infinite zeros of the global and row subsystems. In the

sequel, we consider the two graphical representations and for each case we

define graphical procedure for calculating the infinite structures.

Structured Systems

Property 19. The orders of the infinite zeros of a global invertible structured

system are calculated according to equation (4.13), where Lk is the sum of

the lengths of the k shortest different input-output paths.
{

n′

1 = L1

n′

k = Lk − Lk−1

(4.13)

Property 20. The order of the infinite zero for the row sub-system Σ(ci, A, B)

is equal to the length of the shortest path between the ith output vertex yi and

the set of input vertices.

According to properties 19 and 20 and theorem 17, it is then possible to

conclude on the decoupling property of the structured system only with a

graphical approach.

This algorithm is identical to the one proposed by [17] for the LTI structured

models. Either calculating the shortest paths on the graph with the time-

dependent coefficients or on the OSG leads to the same result, because for
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the shortest path the loops on the same state vertex are useless (or the path

is no more the shortest).

Bond Graph Models

Generalizing a result which was introduced in [56] for LTI bond graph models,

in [3] and [35], it has been proposed the following property which allows

computation of infinite structure for global system and for row subsystems.

Property 21. [3],[35] The orders of infinite zero of a global invertible bond

graph model are calculated according to equation (4.14), where Lk is the sum

of the lengths of the k shortest different input-output causal paths.

{

n′

1 = L1

n′

k = Lk − Lk−1

(4.14)

Property 22. [3],[35] The order of infinite zero for the row sub-system

Σ(ci, A, B) is equal to the length of the shortest causal path between the ith

output detector Di and the set of input sources.

Properties 21 and 22 and theorem 17 provide a graphical procedure for

determining the infinite structure of the global system and its row subsys-

tems using the bond graph representation.

This algorithm is identical to the one proposed by [56] for the LTI structured

models. Either calculating the shortest causal paths on the bond graph

graph with the time-dependent coefficients or on the OBG (with the differ-

ential loops) leads to the same result, because for the shortest causal path

the differential loops are not taken into account.

B. Control Synthesis

Once the indices ni are determined and if the decoupling problem has a

solution, the next step is to determine the matrices Ã(t) and B̃(t), which

consists in calculating the vectors (AT + I d
dt

)ni−1cT
i and BT (AT + I d

dt
)ni−1cT

i

respectively. The procedure is similar for determining the two matrices,

therefore we focus on Ã(t), afterwards the differences for calculating B̃(t)

will be pointed out. Just as for system analysis, we present first the proce-

dure for structured systems and afterwards the one for bond graph models.
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Structured Systems Procedure

We have presented this graphical result in [41] for the synthesis of the state

feedback decoupling control law for LTV structured systems.

Property 23. [41] The vectors (AT (t)+ I d
dt

)ni−1cT
i (t) are determined on the

OSG according to the formula (4.15), where pni−1
ij is the number of paths of

length ni − 1 between the ith output vertex and the jth state variable vertex

and Gα(xj, yi) is the product of the gains of the arcs along the considered

path in the order from the root toward the top of the path.

[(AT (t) + I
d

dt
)ni−1cT

i (t)]j =

p
ni−1
ij
∑

α=1

Gα(xj, yi) (4.15)

Using proposition 23, we determine the formal expression of the vectors

directly using a graphical technique.

Matrix B̃(t) can be determined by considering the paths between the input

vertices and the output vertices. With the matrices Ã(t) and B̃(t) calcu-

lated, matrices F (t) and G(t) are determined according to relations (4.11)

and (4.12) respectively.

Bond Graph Approach

In [35], we have proposed a graphical solution for LTV system decoupling

by state feedback using a bond graph approach. The control synthesis of

this procedure, which consists of determining the matrices Ã(t) and B̃(t), is

presented here.

Property 24. The vectors (AT (t)+I d
dt

)ni−1cT
i (t) are determined on the OBG

according to the formula (4.16), where pni−1
ij is the number of causal paths

of length ni − 1 between the ith output detector and the jth dynamic element

in integral causality and Gα(xj, yi) is the product of the gains elements along

the considered causal path in the order from the dynamic element toward the

output detector.

[(AT (t) + I
d

dt
)ni−1cT

i (t)]j =

p
ni−1
ij
∑

α=1

Gα(xj, yi) (4.16)

Proposition 24 allows calculating the formal expression of the vectors di-

rectly using a graphical technique on the bond graph model. A multiplication
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of time-varying coefficients and derivation operators is needed for obtaining

the result.

For determining the matrix B̃(t) the only difference which should be added

is that instead of using the causal paths between the storage elements in in-

tegral causality and the output detectors, the causal paths between the input

sources and the output detectors have to be used. Once the matrices Ã(t)

and B̃(t) are calculated, matrices F (t) and G(t) are obtained, according to

relations (4.11) and (4.12) respectively.

4.2.2 Output Injection

The decoupling by static output injection problem has not been tackled be-

fore this study begun. In fact, we have begun exploring this possibility

keeping in mind the duality which might appear. We considered first the

decoupling by output injection problem for LTI models. In [42], we have

publish some results concerning a graphical procedure for solving this prob-

lem for LTI bond graph problems. In the following, we concentrated on LTV

models, both structured system representation and bond graph models. The

results from the LTV case are a generalization of the results form LTI case,

therefore we present here directly the LTV procedures. Most of these pro-

cedures can be further simplified for LTI case, but our interest is mostly in

linear systems in general and into possible extensions for nonlinear models.

4.2.2.1 Analytical procedure

The procedure proposed by [46] for input-output decoupling of linear time-

varying systems by state feedback has been used to extend the numerical

solution to output injection case.

The differential operator N = A − d
dt

I is defined. It can be applied to the

state vector as defined in (4.17).

(Nx)(t) = A(t)x(t) −
d

dt
x(t) (4.17)

If Bj, j = 1, 2, . . . , m denotes the jth column of the matrix B, then indices

nj can be defined as in equation (4.18).

nj = min
{

i|C(t)(N (i−1)Bj(t)) 6= 0
}

(4.18)
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It is also interesting to examine the mapping Z, which is computed by the

equation:

(Zx)(t) = (Nx)(t) + K(t)C(t) (4.19)

Concerning Z, we have property 25.

Property 25. (Z(i)Bj)(t) =

{

(N (i)Bj)(t), i = 0, 1, . . . , nj − 1

(Z(i−nj+1)N (nj
−1)Bj)(t), i ≥ nj

This property may be established by direct examination, and for brevity

the details are omitted here. Similarly, the following two corollaries are stated

without proof. The results are analogous to the ones obtained in [46] for the

state feedback decoupling problem.

Corollary 1. (CZ(i)Bj)(t) =

{

0, i = 0, 1, . . . , nj − 2

(CZ(i−nj+1)N (nj
−1)Bj)(t), i ≥ nj − 1

This corollary also follows from property 25 and the definition of indices

nj.

The definition of output injection control law (1.40) can be rewritten as (4.20)

to show the presence of the mapping Z.

{

[A(t) − d
dt

]x(t) + K(t)C(t)x(t) + B(t)u(t) = 0

z(t) = L(t)C(t)x(t)
(4.20)

The state equation can be expressed as (Zx)(t) + B(t)u(t) = 0 or (Zx)(t) +
∑m

j=1 Bj(t)uj(t) = 0. And, if we consider only one input at the time, the

equation becomes:

(Zx)(t) + Bj(t)uj(t) = 0 (4.21)

Multiplying relation (4.21) by CZnj
−1 leads to:

(CZnj

x)(t) + CZnj
−1Bj(t)uj(t) = 0 (4.22)

If (CN nj
−1Bj(t))j=1,...,m is nonsingular, then

u(t) = −((CN nj
−1Bj(t))j=1,...,m)−1(CZnj

x)(t) (4.23)

which is equivalent to:

uj(t) = −(CN nj
−1Bj(t))−1(CZnj

x)(t) (4.24)
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Let us now define the matrices Ã and C̃ like in equations (4.25) and (4.26)

respectively.

Ã(t) =
(

(N (n1
−1)B1)(t) . . . (N (nm

−1)Bm)(t)
)

(4.25)

C̃(t) = C(t)Ã(t) (4.26)

In order to obtain the decoupling by output injection, we have to integrate

equation 4.24 nj times, which should lead to the expression of z, the new

output vector, from relation 4.20. The solution of this problem is offered by

the following property.

Property 26. The LTV model defined by relation (1.40) is decoupled by an

output injection control law if and only if matrix C̃ is non-singular.

The relations (4.27) and (4.28) give the expression of matrices K(t) and

L(t), where Λ is an arbitrary diagonal matrix which may impose the static

gain to the decoupled system.

K(t) = −[A(t)Ã(t) −
d

dt
Ã(t)]C̃−1(t) (4.27)

L(t) = ΛC̃−1(t) (4.28)

Replacing the expression of K(t) in equation 4.24 in the expression of the

operator Z and L(t) in the output equation of system (4.20) and performing

the nj times integration leads to identity with the expression of the new

output vector.

The steps taken for the decoupling of linear time-varying systems by output

injection are:

1. Determine the indices nj for each input;

2. Calculate the matrices Ã(t) and C̃(t);

3. Verify whether property 26 is true, if not the procedure stops;

4. Calculate the inverse matrix for C̃(t);

5. Determine matrices K(t) and L(t) according to the relations (4.27) and

(4.28).
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4.2.2.2 Graphical Procedure

Just like in the state feedback decoupling case, the problem is split into two

parts: the analysis which determines whether the decoupling by output in-

jection is possible and the control synthesis which consists of calculating the

decoupling matrices.

A. System Analysis

For analysis, the following theorem is used:

Theorem 18. [38], [41] The LTV square system Σ(C(t), A(t), B(t)) can be

decoupled by a static regular output injection control law if and only if the set

of global infinite zero orders is equal to the set of infinite zero orders of the

column sub-systems Σ(C(t), A(t), Bj(t)), j = 1, 2, . . . , m.

Structured Systems Procedure

Theorem 18 can be graphically implemented on LTV structured systems by

using properties 19 and 27.

Property 27. [41] The column infinite zero order for the column sub-system

Σ(C,A, Bj) is equal to the length of the shortest path between the jth input

vertex uj and the set of output vertices.

Remark 18. The properties concerning the graphical computation of infinite

zero orders for the row and column subsystems can be applied on CSG, on

OSG or on the graph without the differential arcs, because they take into

consideration only the shortest paths and therefore all the paths which contain

differential arcs are discarded.

Bond Graph Models

The bond graph procedure for implementing graphically theorem 18 is based

on properties 21 and 28.

Property 28. [38] The column infinite zero order of the column subsystem

Σ(C,A, Bj) is equal to the length of the shortest causal path between the jth

input source and the set of output detectors.

Remark 19. Similarly to the structured system case, the properties con-

cerning the graphical computation of orders of infinite zero for the row and
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column subsystems can be applied on CBG, on OBG or on bond graph with-

out differential loops, because they take into consideration only the shortest

causal paths and therefore all the causal paths which contain differential loops

are discarded (passing through a differential loop once means increasing the

length of the pass by one).

B. Control Synthesis

The second part of the algorithm concerns the synthesis of the control law.

In the sequel, we present two graphical computation methods for determin-

ing the matrices Ã(t) and C̃(t) using the structured systems representation

and then the bond graph representation.

Structured Systems

The matrices Ã(t) and C̃(t) consist in calculating the vectors (A−I d
dt

)nj
−1Bj

and C(A − I d
dt

)nj
−1Bj respectively. Therefore this graphical procedure has

to be performed on the CSG, which presents the differential arcs with gains

− d
dt

. The procedure is similar for determining the two matrices, therefore we

focus on Ã(t).

Property 29. [41] The vectors (A− I d
dt

)nj
−1Bj are determined on the CSG

according to the formula (4.29), where pnj
−1

ij is the number of paths of length

nj between the jth input vertex and the ith state variable vertex and Gα(uj, xi)

is the product of the gains of the arcs along the considered path in the order

from the top toward the root of the path.

[(A − I
d

dt
)nj

−1Bj]i =

pnj
−1

ij
∑

α=1

Gα(uj, xi) (4.29)

Property 29 allows calculating the formal expression of the vectors di-

rectly using a graphical technique. The expression determined for these

vectors after the procedure presented above represents a multiplication of

time-varying coefficients and time-derivative operators.

For determining the matrix C̃(t) the only difference which should be added is

that instead of using the paths between the input and the state vertices, the

paths between the input and the output have to be used. Once the matrices

Ã(t) and C̃(t) are calculated, matrices K(t) and L(t) are obtained, according



106 Duality in Control Synthesis

to relation (4.27) and (4.28) respectively.

Bond Graph Procedure

For calculating the vectors (A−I d
dt

)nj
−1Bj and C(A−I d

dt
)nj

−1Bj respectively,

we need to use the CBG because we have to pass by the differential loops

with the gain − d
dt

.

Property 30. The vectors (A − I d
dt

)nj
−1Bj are determined on the CBG

according to the formula (4.30), where pnj
−1

ij is the number of causal paths of

length nj between the jth input source and the ith dynamic element in integral

causality and Gα(uj, xi) is the product of the gains of the elements along the

considered causal path in the order from the dynamic elements toward the

source.

[(A − I
d

dt
)nj

−1Bj]i =

pnj
−1

ij
∑

α=1

Gα(uj, xi) (4.30)

The formal expression for vectors (A− I d
dt

)nj
−1Bj is obtained graphically

using property 30. For determining the matrix C̃(t) the only difference which

should be added is that instead of using the causal paths between the input

source and the dynamic elements in integral causality, we have to take into

account the causal paths between the input source and the output detectors.

The last step of this algorithm is to use relations (4.27) and (4.28) to calculate

matrices K(t) and L(t).

4.2.3 Duality between State Feedback and Output In-

jection

The main part of this section is focused on the duality between the two

control laws presented above. More specifically, we are interested in the

duality between the solutions of the decoupling problem in the two cases.

Theorem 19. The decoupling State Feedback and Output Injection control

laws are dual.(i.e. there is a direct relation between the two control laws which

permits calculating one from the other and vice-versa).

Proof:

In order to observe this duality the following steps are performed:
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1. Given the system Σ(A,B,C), determine the dual system Σ̄(Ā, B̄, C̄).

2. Apply the decoupling by output injection procedure for the dual model

Σ̄(Ā,−B̄,−C̄) after the state variable change ˜̄x = −x̄ has been per-

formed.

3. Apply the dualization procedure for decoupled system Σ̄(Ā+K̄C̄,−B̄,−L̄C̄).

4. Apply the decoupling by state feedback procedure for the system Σ(A, B, C).

5. Verify that the decoupled systems obtained in the two previous steps

are identical.

For the first step, the same procedure as in section 1.3.2 is used. This leads

to equation (4.31).














Ā = −AT

B̄ = CT

C̄ = −BT

(4.31)

The dual adjoint system for the model in equation (4.31) is obtained after

the state variable change ¯̃x = −x̄, (see model (4.32)).















¯̃A = Ā = −AT

¯̃B = −B̄ = −CT

¯̃C = −C̄ = BT

(4.32)

On system (4.32), the output injection procedure is applied. The matrices K̄

and L̄ are calculated according to equations (4.27) and (4.28) respectively.

After using the substitutions (4.32), the following expressions are obtained

for K̄ and L̄.

K̄(t) = −((−AT−
d

dt
)nj

(−cj)
T )j=1,...,m)∗(BT (−AT−

d

dt
)nj

−1(−cj)
T )j=1,...,m)−1

(4.33)

L̄(t) = Λ(BT (−AT −
d

dt
)nj

−1(−cj)
T )j=1,...,m)−1 (4.34)

In equation (4.33), for the expression of K̄ the multiplication of two matrices

build up by column vectors are used. In expression (4.34), L̄ is the inverse of

a matrix composed by column vectors. We can easily remark that for each
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column vectors we can pass a factor (−1)nj

. Therefore relations (4.33) and

(4.34) can be rewritten as:

K̄(t) = −(−(−1)nj

(AT +
d

dt
)nj

(cj)
T )j=1,...,m)∗((−1)nj

BT (AT +
d

dt
)nj

−1(cj)
T )j=1,...,m)−1

(4.35)

L̄(t) = Λ((−1)nj

BT (AT +
d

dt
)nj

−1(cj)
T )j=1,...,m)−1 (4.36)

As each column of the matrices is multiplied by (−1)nj

, then the matrix

can be written as a product of a matrix which contains the vector columns

without the factor (−1)nj

and a diagonal matrix which contains in the corre-

sponding cell the factor (−1)nj

. If we consider that U = diag((−1)nj

), then

equations (4.35) and (4.36) become:

K̄(t) = −(−(AT +
d

dt
)nj

(cj)
T )j=1,...,m)∗U∗(BT (AT +

d

dt
)nj

−1(cj)
T )j=1,...,m∗U)−1

(4.37)

L̄(t) = Λ(BT (AT +
d

dt
)nj

−1(cj)
T )j=1,...,m ∗ U)−1 (4.38)

Knowing that (M ∗ N)−1 = N−1 ∗ M−1 and that U−1 = U , we obtain:

K̄(t) = ((AT +
d

dt
)nj

(cj)
T )j=1,...,m)∗(BT (AT +

d

dt
)nj

−1(cj)
T )j=1,...,m)−1 (4.39)

L̄(t) = ΛU ∗ (BT (AT +
d

dt
)nj

−1(cj)
T )j=1,...,m)−1 (4.40)

The dual of system Σ̄(Ā + K̄C̄,−B̄,−L̄C̄) is Σ(A + BK̄T , BL̄T , C). On

the other hand, if the procedure for state feedback decoupling is applied on

model Σ(A,B, C), then the decoupled system is Σ(A + BF, BG,C), with F

and G from equations (4.11) and (4.12) respectively. By simple inspection,

it can be concluded that:

F = K̄T (4.41)

G = L̄T ∗ diag((−1)nj

)j=1,...,m (4.42)

The last step is to confront equations (4.11) and (4.39) and (4.12) and (4.40)

respectively to prove that the two relations above are true. After simple

algebraic operations we obtain the validation of equations (4.41) and (4.42).
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4.2.4 Application

The procedures presented in this section concerning system decoupling by

state feedback and output injection are used on two simple applications.

First, we consider a structured system and then a bond graph model. All

the procedures described in this section are tested on these examples.

4.2.4.1 Decoupling of LTV Structured Systems

In order to prove that the inverse statement of theorem 19 is also valid, we are

going to consider an LTV system application and determine the output in-

jection control law for system decoupling. Then using the adjoint of the dual

system, we calculate the state feedback control law for system decoupling.

In the end, we should verify that relations (4.41) and (4.42) are validated by

our computations on this example.

Let us consider the system (4.43), where a and b are time-dependent func-

tions, u = (u1, u2)
T is the input vector, x = (x1, x2, x3)

T is the state variable

vector and y = (y1, y2)
T is the output vector. Obviously, system (4.43) is

a linear time-dependent system. We have chosen to represent directly the

controllability structured graph associated to this model in figure 4.1 because

we want to determine the output injection control law which decouples this

model and as presented above the graphical procedures are applied on the

CSG.


































ẋ1 = a(t)u1

ẋ2 = b(t)u2

ẋ3 = x1 + x2

y1 = x1

y2 = x3

(4.43)

Just like in the above procedure concerning the decoupling by output injec-

tion problem, the first step is to verify whether the decoupling problem can be

solved. For the analysis stage, we have to determine the infinite zero orders

of the column systems Σ(C,A, Bj) and the infinite zero orders of the global

system Σ(C, A,B). Using propositions 19 and 27 provides the solution for

this stage of the problem. The shortest path for u1 is u1 → x1 → y1, which

has the length 1 and therefore n1 = 1. Analogously, the shortest path for u2

is u2 → x2 → x3 → y2 and n2 = 2. For the infinite zero orders of the global
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Figure 4.1: CSG for output injection decoupling

system we observe that the shortest input-output path is u1 → x1 → y1

and has a length of 1, therefore L1 = n′

1 = 1. The two shortest disjoint

paths are u1 → x1 → y1 and u2 → x2 → x3 → y2, therefore L2 = 3 and

n′

2 = L2 −L1 = 2. The orders of the infinite zeros of the column sub-systems

are {1, 2} and the orders of the infinite zeros of the global system are {1, 2}.

According to theorem 18, this model can be decoupled by a regular static

output injection control law.

The next step is to determine the output injection control law, i.e. the ma-

trices K(t) and L(t). For this, we must determine first the vectors C(A −

I d
dt

)nj
−1Bj for C̃(t) and (A − I d

dt
)nj

Bj for K(t). In table 4.1, the paths and

the gains for calculating the vectors C(A−I d
dt

)nj
−1Bj are presented. For the

Table 4.1: I/O paths

Path Length Gain

u1 → x1 → y1 1 a

u2 → x2 → x3 → y2 2 b

vectors (A − I d
dt

)nj

Bj, we take into consideration the paths of length nj + 1

between the state nodes and the input nodes. The results are collected in ta-

ble 4.2. Using the results from tables 4.1 and 4.2 we obtain C̃(t) =

(

a 0

0 b

)
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Table 4.2: Input/State paths

Path Length Gain

u1 → x1 → x1 2 − d
dt

a

u1 → x1 → x3 2 a

u2 → x2 → x2 → x2 3 d2

dt2
b

u2 → x2 → x2 → x3 3 − d
dt

b

u2 → x2 → x3 → x3 3 − d
dt

b

and (A − d
dt

)nj

Bj =









−da
dt

0

0 d2b
dt2

a −2db
dt









. This means that, according to rela-

tions (4.27) and (4.28), the control law is defined by:

K(t) =









ȧ
a

0

0 − b̈
b

−1 2ḃ
b









(4.44)

L(t) =

(

1
a

0

0 1
b

)

(4.45)

Let us now consider the adjoint of the dual system for the model (4.43). This

dual model is defined by equation (4.46) and the associated structured system

is represented in figure 4.1. We have chosen the observability structured

graph because the procedure for the decoupling by state feedback is applied

on the OSG.


































˙̄x1 = −x̄3 − ū1

˙̄x2 = −x̄3

˙̄x3 = −ū2

ȳ1 = ax̄1

ȳ2 = bx̄2

(4.46)

For the decoupling problem by static state feedback, we have also two stages,

firstly the analysis and secondly the control synthesis. For the analysis stage,

we must determine the infinite structure for the global and row sub-systems

and then apply theorem 17. The shortest input-output path for ȳ1 is ū1 →

x̄1 → ȳ1 of length 1, therefore n1 = 1. The shortest path for ȳ2 is ū2 → x̄3 →
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Figure 4.2: OSG for state feedback decoupling

x̄2 → ȳ2 of length 2, therefore n2 = 2. The shortest input-output path of

the system is ū1 → x̄1 → ȳ1 and therefore L1 = n′

1 = 1. The two shortest

disjoint paths are ū1 → x̄1 → ȳ1 and ū2 → x̄3 → x̄2 → ȳ2, therefore L2 = 3

and n′

2 = L2−L1 = 2. The orders of the infinite zeros of the row sub-systems

are {1, 2} and the orders of the infinite zeros of the global system are {1, 2}.

According to theorem 17, this model can be decoupled by a regular static

state feedback control law.

Control synthesis is based on the computation of the vectors (AT + I d
dt

)nicT
i

and BT (AT + I d
dt

)ni−1cT
i . In tables 4.3 and 4.4, we present each path and

its gain. Using these results, we can conclude that B̃(t) =

(

a 0

0 b

)

Table 4.3: I/O paths

Path Length Gain

ū1 → x̄1 → ȳ1 1 a

ū2 → x̄3 → x̄2 → ȳ2 2 b

and (AT + d
dt

)nicT
i =

(

−da
dt

0 −a

0 d2b
dt2

−2db
dt

)

. This means that, according to

relations (4.11) and (4.12), the decoupling matrices are:

F (t) =

(

ȧ
a

0 −1

0 − b̈
b

2ḃ
b

)

(4.47)
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Table 4.4: State/Output paths

Path Length Gain

x̄1 → x̄1 → ȳ1 2 − d
dt

a

x̄3 → x̄1 → ȳ1 2 −a

x̄2 → x̄2 → x̄2 → ȳ2 3 d2

dt2
b

x̄3 → x̄2 → x̄2 → ȳ2 3 − d
dt

b

x̄3 → x̄3 → x̄2 → ȳ2 3 − d
dt

b

G(t) =

(

− 1
a

0

0 1
b

)

(4.48)

A simple inspection of relations (4.44) and (4.53), as well as (4.45) and (4.54)

prove that the relations (4.41) and (4.42) are validated for this example.

4.2.4.2 Decoupling of LTV Bond Graph Models

The graphical procedures which were developed in this section are applied

on a bond graph model. Just like for the structured system, we consider a

LTV bond graph example and we determine the decoupling output injection

control law. Then, we dualize the bond graph model and we calculate the

state feedback control law which decouples the dual bond graph. In the end

we compare the two solutions.

Let us consider the system from figure 4.3, where the dissipative elements R1

and R2 have time-dependent values. Our primary aim is to determine the

decoupling output injection control law. For this, we need to construct the

CBG. For obtaining the CBG, we need the causal paths which start from

the input sources and end in dynamic elements in integral causality. The

causal paths which present time-varying gains are: E1 → R1 → C1 → I and

E2 → R2 → C2 → I. Therefore each one of the dynamic elements receive

a differential loop. In figure 4.4, we represented the CBG. Now, we have

to check whether the LTV bond graph model can be decoupled by static

output injection. For this, we must determine the infinite zero orders of the

global system and of the column subsystems. Properties 21 and 28 offer a

graphical procedure for calculating the infinite structure of the global system
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and of the column subsystems respectively. The shortest input-output causal

path which begins with source E1 : De is E1 → R1 → C1 → D1, which

has a length of 1 and therefore n1 = 1. For the second input source, the

shortest input-output causal path is E2 → R2 → C2 → I → D2, which has

a length of 2, and therefore n2 = 2. Now, let us concentrate on the infinite

structure of the global system. The shortest input-output causal path is

E1 → R1 → C1 → D1, with a length of 1 and therefore L1 = n′

1 = 1.

The two shortest different causal paths are E1 → R1 → C1 → D1 and
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E2 → R2 → C2 → I → D2, with a cumulated length L2 = 3. It results that

n′

2 = L2 −L1 = 2. If we compare the set of infinite zero orders of the column

subsystems {1, 2} with the set of infinite zero orders of the global system

{1, 2}, we observe that they are equal. According to theorem 18, the LTV

bond graph model can be decoupled by a static output injection control law.

The next step is to determine the output injection control law, i.e. the

matrices K(t) and L(t). For this, we must determine first the vectors C(A−

I d
dt

)nj
−1Bj for C̃(t) and (A − I d

dt
)nj

Bj for K(t). In table 4.5, the paths and

the gains for calculating the vectors C(A − I d
dt

)nj
−1Bj are presented. For

Table 4.5: I/O causal paths

Path Length Gain

E1 → R1 → C1 → D1 1 1
C1

1
R1

E2 → R2 → C2 → I → D2 2 1
I

1
C2

1
R2

the vectors (A − I d
dt

)nj

Bj, we take into consideration the causal paths of

length nj + 1 between the dynamic elements in integral causality and the

input sources. The results are collected in table 4.6. Using the results from

Table 4.6: Input/Dynamic Elements causal paths

Path Length Gain

E1 → R1 → C1 → RC1 → C1 2 − d
dt

1
R1

E1 → R1 → C1 → R1 → C1 2 − 1
R1

1
C1

1
R1

E1 → R1 → C1 → I 2 1
C1

1
R1

E2 → R2 → C2 → R2 → C2 → R2 → C2 3 1
R2

1
C2

1
R2

1
C2

1
R2

E2 → R2 → C2 → R2 → C2 → RC2 → C2 3 d
dt

1
R2

1
C2

1
R2

E2 → R2 → C2 → RC2 → C2 → R2 → C2 3 1
R2

1
C2

d
dt

1
R2

E2 → R2 → C2 → RC2 → C2 → RC2 → C2 3 d
dt

d
dt

1
R2

E2 → R2 → C2 → R2 → C2 → I 3 − 1
C2

1
R2

1
C2

1
R2

E2 → R2 → C2 → RC2 → C2 → I 3 − 1
C2

d
dt

1
R2

E2 → R2 → C2 → I → C2 3 −1
I

1
C2

1
R2

E2 → R2 → C2 → I → RI → I 3 − d
dt

1
C2

1
R2

E2 → R2 → C2 → I → C1 3 −1
I

1
C2

1
R2
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tables 4.5 and 4.6, we obtain:

C̃(t) =

(

1
C1R1

0

0 1
R2IC2

)

(4.49)

(A −
d

dt
)nj

Bj =









1
C1R1

− 1
R2

2C2
2

+ 2Ṙ2

R2
2C2

− 1
R2

1C1
+ Ṙ1

R2
1

− 1
R2IC2

0 − 1
R2IC2

+ 1
R3

2C2
2
− 3Ṙ2

R3
2C2

− R̈2

R2
2

+
2Ṙ2

2

R3
2









(4.50)

According to relations (4.27) and (4.28), the decoupling matrices are:

K(t) =









−1 I( 1
R2C2

− 2Ṙ2

R2
)

C1(
1

R1C1
− Ṙ1

R1
) 1

0 IC2(
1

IC2
− 1

R2
2C2

2
+ 3Ṙ2

R2
2C2

+ R̈2

R2
−

2Ṙ2
2

R2
2
)









(4.51)

L(t) =

(

R1C1 0

0 R2IC2

)

(4.52)

Let us consider now the dual bond graph model from figure 4.3. As our

C1

1

01

IC2-R2(t)

01

E1:Sf

-R1(t)

E2:Sf

D1:-Df

D2:-De

RC2
:- 1

d/dt(C2*)

RI: -d/dt(I*)

RC1
:- 1

d/dt(C1*)

Figure 4.5: OBG of Dual Bond Graph Model

interest is to determine the decoupling state feedback control law, we have

to construct first the OBG. In figure 4.5, the OBG of the dual bond graph

model is pictured.

The shortest input/output causal path for D̄1 is D̄1 ← R1 ← C1 ← Ē1 of
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length 1, therefore n1 = 1. The shortest causal path for D̄2 is D̄2 ← R2 ←

C2 ← I ← Ē2 of length 2 and therefore n2 = 2. The shortest input-output

causal path of the system is D̄1 ← R1 ← C1 ← Ē1 and therefore L1 = n′

1 = 1.

The two shortest disjoint causal paths are D̄1 ← R1 ← C1 ← Ē1 and

D̄2 ← R2 ← C2 ← I ← Ē2, therefore L2 = 3 and n′

2 = L2 − L1 = 2.

The orders of the infinite zeros of the row sub-systems are {1, 2} and the

orders of the infinite zeros of the global system are {1, 2}. According to

theorem 17, this model can be decoupled by a regular static state feedback

control law.

Control synthesis is based on the computation of the vectors (AT + I d
dt

)nicT
i

and BT (AT + I d
dt

)ni−1cT
i . In tables 4.7 and 4.8, we present each path and its

gain.

Using these results, we can conclude that B̃(t) =

(

1
C1

1
R1

0

0 −1
I

1
C2

1
R2

)

and

Table 4.7: I/O causal paths

Path Length Gain

D̄1 ← R1 ← C1 ← Ē1 1 1
C1

1
R1

D̄2 ← R2 ← C2 ← I ← Ē2 2 −1
I

1
C2

1
R2

(AT + d
dt

)nicT
i =





1
C1R1

− 1
R2

1C1
+ Ṙ1

R2
1

0

1
R2

2C2
2
− 2Ṙ2

R2
2C2

1
R2IC2

1
R2IC2

− 1
R3

2C2
2

+ 3Ṙ2

R3
2C2

+ R̈2

R2
2
−

2Ṙ2
2

R3
2



.

This means that, according to relations (4.11) and (4.12), the decoupling ma-

trices are:

F (t) =

(

−1 C1(
1

R1C1
− Ṙ1

R1
) 0

I( 1
R2C2

− 2Ṙ2

R2
) 1 IC2(

1
IC2

− 1
R2

2C2
2

+ 3Ṙ2

R2
2C2

+ R̈2

R2
−

2Ṙ2
2

R2
2
)

)

(4.53)

G(t) =

(

R1C1 0

0 −R2IC2

)

(4.54)

A simple inspection of relations (4.44) and (4.53), as well as (4.45) and (4.54)

prove that the relations (4.41) and (4.42) are validated for this example.



118 Duality in Control Synthesis

Table 4.8: Dynamic element/Output Detector causal paths

Path Length Gain

D̄1 ← R1 ← C1 ← RC1 ← C1 1 − d
dt

1
R1

D̄1 ← R1 ← C1 ← R1 ← C1 1 − 1
R1

1
C1

1
R1

D̄1 ← R1 ← C1 ← I 1 1
C1

1
R1

D̄2 ← R2 ← C2 ← R2 ← C2 ← R2 ← C2 2 − 1
R2

1
C2

1
R2

1
C2

1
R2

D̄2 ← R2 ← C2 ← R2 ← C2 ← RC2 ← C2 2 − d
dt

1
R2

1
C2

1
R2

D̄2 ← R2 ← C2 ← RC2 ← C2 ← R2 ← C2 2 − 1
R2

1
C2

d
dt

1
R2

D̄2 ← R2 ← C2 ← RC2 ← C2 ← RC2 ← C2 2 − d
dt

d
dt

1
R2

D̄2 ← R2 ← C2 ← R2 ← C2 ← I 2 1
C2

1
R2

1
C2

1
R2

D̄2 ← R2 ← C2 ← RC2 ← C2 ← I 2 1
C2

d
dt

1
R2

D̄2 ← R2 ← C2 ← I ← C2 2 1
I

1
C2

1
R2

D̄2 ← R2 ← C2 ← I ← RI ← I 2 d
dt

1
C2

1
R2

D̄2 ← R2 ← C2 ← I ← C1 2 1
I

1
C2

1
R2

4.3 Decoupling Problem with Pole Placement

for LTV Models

4.3.1 Geometrical Approach

4.3.1.1 A. (A,B) - invariance and state feedback

The aim of this section is to present a geometrical approach for the decoupling

problem with stability of linear systems. In the first part, some geometrical

results are recalled and invariant subspaces used in the input-output decou-

pling problem are defined.

The concept of (A, B)-invariance has been introduced by [61] to solve various

decoupling and pole-assignment problems for linear time-invariant multivari-

able systems. For LTI structured systems, the problem of decoupling with

stability was solved by [11]. In [27] the concepts have been generalized for

linear time-varying systems. Therefore, we briefly present the results ob-

tained, even though in [27], the problem of input-output decoupling is solved

without tackling the stability problem.
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Definition 30. [27] Suppose that (A,B) ∈ A
n×n
p ×A

n×m
p and that ν is gen-

erated by V ∈ A
n×k
p , where Ap is the ring of piecewise real analytic functions.

Then ν is called meromorphically (A,B)-invariant if there exist N ∈ M
k×k
p

and M ∈ M
n×k
p , where Mp is the ring of piecewise meromorphical functions,

such that

(δI − A)V = V N + BM (4.55)

ν is called (A,B)-invariant if (4.55) holds true for some N and M with en-

tries in Ap instead of Mp.

In terms of state feedback, ν is an (A,B)-invariant subspace if there exists a

set F(A,B; ν) of state feedback matrices F such that (δI − A − BF )ν ⊂ ν.

Let be L(A,B; kerC) the set of (A,B)-invariant subspaces included in the

subspace kerC. This subspace is closed for addition; it thus contains a supre-

mal element.

Property 31. [27] The subspace L(A,B; kerC) contains a supremal element

denoted ν∗ = supL(A,B; kerC).

For control purposes, the orthogonal complement of the subspace ν∗ is

used. It is the limit of algorithm (4.56):

{

ν0⊥ = 0

νµ⊥ = (kerC)⊥ + (δI + AT )((ImB)⊥
⋂

(νµ−1)⊥)
(4.56)

Stable dynamics are associated with a second set of (A,B)-invariant sub-

spaces: stabilizable subspaces.

Definition 31. ν is a stabilizable (A,B)-invariant subspace if there exists a

set of state feedback matrices F ∈ F(A,B; ν) verifying equation (4.57).

σ(ν|A + BF |ν) ⊂ C− (4.57)

Theorem 20. An LTV system can be decoupled by static state feedback if

ν∗ =
⋂m

i=1 ν∗

i .

This theorem leads to the procedure for calculating the control law, which

is based on the following property.

Property 32. Let Σ be a square LTV system (3.51) which can be decoupled

by a regular static state feedback law (4.6). If B̃(t) is its decoupling matrix
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and {ni} is its row infinite structure, consider {ν∗

i } a family of geometric

supports, solution of the decoupling problem, then the matrices F (t) and G(t)

are calculated according to equations (4.58).















hi(t)ν
∗

i (t) = 0, i = 1, . . . , m

F (t) = −B̃−1(t)(hi(t) + ((AT + δI)nicT
i )T (t))i=1,...,m

G(t) = B̃−1(t)diag(gi)i=1,...,m

(4.58)

This property allows the computation of matrices F (t) and G(t) based on

a family of subspace solutions of the decoupling problem. The parameters gi,

i = 1, . . . ,m can be freely chosen; they set the static gain of the closed-loop

system. The row vectors hi(t) are a linear combination of the base vectors

of the subspace ν∗⊥

i . Therefore it introduces in the control law a number of

degrees of freedom equal to the dimension of this subspace. The choice of

the decoupling subspaces allows one to determine the total number of degree

of freedom of the control law.

4.3.1.2 B. (C,A) - invariance and output injection

For solving the decoupling with stability by state feedback problem, a geo-

metrical approach, based on (A,B)-invariance is used. Naturally, for output

injection (C, A)-invariance is used.

Definition 32. [27] Suppose that (C, A) ∈ A
n×m
p ×A

n×n
p and that S ∈ Wn is

generated by V ∈ A
n×k
p . Then S is called meromorphically (C,A)-invariant

if there exist N ∈ M
k×k
p and M ∈ M

n×k
p such that

(A − sIn)V = V N + MC (4.59)

S is called (C, A)-invariant if (4.59) holds true for some N and M with

entries in Ap instead of Mp.

In terms of output injection, S is a (C, A)-invariant subspace if there exists a

set K(C, A;S) of output injection matrices K such that (sIn−A−KC)S ⊂ S.

Let L(kerC, A; ImB) be the set of (C,A)- invariant subspaces including the

subspace ImB.

Property 33. [27] The subspace L(kerC, A; ImB) contains a infinimum

element denoted S∗ = infL(kerC,A; ImB).
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For control purposes, the subspace is the limit of algorithm (4.60):

{

S0 = 0

Sµ = (ImB) + (A − sI)((kerC)
⋂

(Sµ−1))
(4.60)

Stable dynamics are associated with a second set of (C, A)-invariant sub-

spaces: stabilizable subspaces.

Definition 33. [27] S is a stabilizable (C, A)-invariant subspace if there

exists a set of output injection matrices K ∈ (C,A;S) verifying equation:

Re(σ(S|A + KC|S)) < 0 (4.61)

Theorem 21. An LTV system can be decoupled by static output injection if

S∗ =
⋂m

j=1 S
∗

j .

This theorem leads to the procedure for calculating the control law, which

is based on the following property.

Property 34. Let Σ be a square LTV system (3.51) which can be decoupled

by a regular static output injection law. If C̃(t) is its decoupling matrix

and {nj} is its column infinite structure, consider S∗

j a family of geometric

supports, solution of the decoupling problem, then the matrices K and L are

calculated according to equations (4.62).















S∗

j (t)hj(t) = 0, j = 1, . . . , m

K(t) = −(hj(t) + A(t)Ã(t) − d
dt

Ã(t))C̃−1(t)

L(t) = diag(λj)j=1,...,mC̃−1(t)

(4.62)

This property allows the computation of matrices K and L based on a

family of subspace solutions of the decoupling problem. The parameters λj,

j = 1, . . . , m can be freely chosen; they set the static gain of the closed-loop

system. The column vectors hj are a linear combination of the base vectors

of the subspace S∗

j . Therefore it introduces in the control law a number of

degrees of freedom equal to the dimension of this subspace. The choice of

the decoupling subspaces allows one to determine the total number of degree

of freedom of the control law.
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4.3.1.3 Graphical Procedure

In order to solve the equations (4.58) and (4.62) respectively, computation

of the base vectors of the subspaces ν∗⊥

i and S∗

j are needed. The aim of this

subsection is to identify a graphical method for calculating these vectors.

The following properties are used:

Property 35. ν∗⊥

i = span
{

((AT + δI)jcT
i )T (t) , 0 ≤ j ≤ ni − 1}, where {ni}

is the set of row infinite zero orders of the row system Σ(ci, A,B).

Property 36. S∗

j = span
{

((A − I d
dt

)kBj)(t), 0 ≤ k ≤ nj − 1
}

,where nj is

the infinite zero order of the column system Σ(C,A, Bj).

Both for structured systems and for bond graphs, the graphical proce-

dures which were developed at the beginning of the previous section can be

used for determining the vectors ((AT + δI)jcT
i )T (t) and ((A − I d

dt
)kBj)(t).

Structured Systems

Spanning these vectors is easy because the vectors ((AT + δI)jcT
i )T (t) can

be calculated according to the formula (4.15), where the paths between the

ith output vertex and the set of state vertices of length j are taken into con-

sideration. And for the vectors ((A − I d
dt

)kBj)(t), the formula (4.29) can be

applied, where the causal paths between the jth input source and the set of

state variables of length k are taken into consideration. The only difference

is that proposition 35 is applied on the OSG and property 36 is applied on

the CSG.

Bond Graph Approach

For calculating the vectors ((AT + δI)jcT
i )T (t) on a bond graph , we apply

property 24 on the OBG, but we consider only the causal paths of length j.

Analogously, for vectors ((A − I d
dt

)kBj)(t), we use property 30 on the CBG,

with the causal paths of length k.

4.3.1.4 Duality between (A,B) and (C, A) Invariance

The two invariant concepts have been discussed in [27] for LTV models. Our

interest is with the duality between (A,B) and (C, A) invariance and more

specific with the duality between the relations (4.58) and (4.62). The aim
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is to obtain formulas (4.41) and (4.42) for the decoupling with partial pole

placement.

Theorem 22. The state feedback control law which decouples with partial

pole placement a system Σ is equal to the output injection control law which

decouples with partial pole placement the dual system Σ̄ and viceversa, if the

same poles and static gains are assigned.

Starting from equations (4.58) and (4.62), we can easily observe that the

duality holds if the duality between the base vectors of the subspaces ν∗⊥

i

and S∗

j holds. If propositions 35 and 36 are used, then the duality is based

on vectors ((AT + I d
dt

)jcT
i )T (t) and ((A− I d

dt
)kBj)(t). In order to prove this

duality, the same approach used for proving theorem 16 should be applied.

Remark 20. The eigenvalues of the matrix A and the eigenvalues of the

state matrix of the dual system Ā = −AT are opposed, therefore if in one

case an eigenvalue is stable it is unstable for the dual model.

The unassigned poles by the state feedback control law or the output

injection control law are invariant zeros. Using the duality between the state

feedback and the output injection, we can make the following observation:

Remark 21. The invariant zeros of a bond graph model Σ under the state

feedback control are the same as the invariant zeros of the dual bond graph

model Σ̄ under the output injection control law.

The pole placement problem is not completely solved because it is difficult

to determine the explicit expression for the control law graphically on the

LTV model. A perspective for determining the complete pole placement

control law can be considered by proving that the ν∗

stab and S∗

stab are dual.

But, for the time-being, we have not fully exploited the possibilities of this

approach.

4.4 Decoupling and Input-Output Linearization

of Nonlinear Systems

The decoupling problem for nonlinear systems has been tackled since the

early 1970’s. Analytical solutions have been proposed in [53], [21] and [54].
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A geometrical approach has been introduced in [28]. Our interest was to offer

a graphical approach. Therefore, we focused on extending the LTV proce-

dures to the nonlinear case.

System decoupling for nonlinear models can be done graphically, if we use

the variational model (see [36], [39], [38] and [41]). Using the variational

model presents two major advantages. Firstly, we can reconstruct the non-

linear control law, after we have determined the control law on the linearized

model. Secondly, we can perform the procedures graphically on the struc-

tured system representations or on the bond graphs.

This section is split into three parts; in the first part, we define a variational

model, in the second part, we solve the decoupling by state feedback prob-

lem for nonlinear system and in the third, the decoupling by output injection

problem. At the end of this section, we present some examples which illus-

trate the use of the techniques introduced in this section and in the previous

one.

4.4.1 Variational Model

A variational model, also called tangential system, is a linear system which

is attached to a nonlinear system.

ΣNL :

{

ẋ = f(x, u)

y = h(x, u)
(4.63)

Definition 34. Given a nonlinear system (4.63), a variational (tangential)

system is obtained by differentiating like in equation 4.64:

ΣV ar :

{

ḋx = ∂f(x,u)
∂x

dx + ∂f(x,u)
∂u

du

dy = ∂h(x,u)
∂x

dx + ∂h(x,u)
∂u

du
(4.64)

If we consider that the variable dx are independent of variable x, then we

can consider that the variational model is a linear time-varying system, with

the state vector dx. Graphical methods have been proposed for constructing

the variational model both for structured systems ([41]) and bond graphs

([2]).
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4.4.1.1 Structured Systems

So far, the structured systems had not been used extensively for nonlinear

systems. In fact, the graph representation is compatible only with linear sys-

tems. Some solutions for the decoupling problem of nonlinear models using

the structured systems has been proposed in [32] and [48].

In order to use the structured systems procedures, we have defined the

variational structured system, which consist of representing the linear time-

varying system (4.64), with the input vertices du, the output vertices dy and

the state vertices dx. For a detailed example on the procedure for obtaining

the tangential structured system, at the end of this section we have consider

the example of a separated excited DC motor.

4.4.1.2 Variational Bond Graph

The variational bond graph is the bond graph model which has the alge-

braic representation of the tangential system. It is obtained by considering

the derivatives of the nonlinear functions associated with the bond graph

elements. A short example is provided, considering the nonlinearity of a

0 1
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f
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Figure 4.6: Variational Bond Graph of a Nonlinear Modulated Transformer

modulated transformer. On the nonlinear bond graph, the modulated trans-

former has a nonlinear gain

{

e2 = me1

f1 = mf2

. Applying the differential operator

leads us to

{

de2 = mde1 + dme1

df1 = mdf2 + dmf2

In figure 4.6 this operation is explained.
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Two modulated sources are added so that the equations for 1-junction and

0-junction respectively on the variational bond graph are the same as the

ones above. If we consider that dx is the state vector, du the input vector

and dy the output vector of the variational bond graph, then the variational

bond graph is a linear time-varying model.

4.4.2 State Feedback

The aim of this section is to solve the problem of input-output decoupling

by state feedback problem for nonlinear systems.

Given a nonlinear system (4.63), can it be decoupled by a static state feedback

control law u = α(x)+β(x, ū), where by decoupled we understand that the ith

output yi is influenced only by the ith input ūi? If so, what are the functions

α(x) and β(x, ū)?

Our solution is based on the use of the tangential system.

As the variational system is a time-varying model the procedure described in

the previous section can be used to determine whether it can be decoupled or

not. Afterwards we continue with the procedure for the control law synthesis

for the LTV model. But we do not have to determine the matrices F (t) and

G(t). It is sufficient to calculate matrices Ã(t) and B̃(t) from equation 4.9 and

4.10 respectivelly. Using this information, the equation for the decoupling of

the variational model can be written as:

(ÃA + δÃ)dx + B̃du = dū (4.65)

Equation (4.65) is a total integral and after integration the expression of

the static decoupling law is obtained. Moreover, if we consider the control

law which decouples the variational model with pole placement, then the

equation (4.66) is obtained, where pij are the parameters used for the pole

placement.

(
∑ni−1

j=0 pij((A
T + δI)jcT

i )T (t)+

((AT + δI)nicT
i )T (t))i=1,...,mdx + B̃du = dū

(4.66)

Equation (4.66) is also a total integral and after computations it leads to the

synthesis of the decoupling law for the nonlinear model, with pole placement

and linearization of the model, if the zero dynamics are stable.
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4.4.3 Output Injection

Given a nonlinear system as in equation (4.67), can it be decoupled by a static

output injection control law, where by decoupled we understand that the ith

output zi is influenced only by the ith input ui? If so, what are the functions

k(y) and l(y)?














ẋ(t) = f(x(t), u(t)) + k(y(t))

y(t) = h(x(t), u(t))

z(t) = l(y(t))

(4.67)

The solution is based on the use of the variational model, just like in the

case of state feedback. As the variational system is a time-varying model

the procedure described above can be used to determine whether it can be

decoupled or not. Afterwards we continue with the procedure for the control

law synthesis for the LTV model by determining the matrices Ã and C̃ from

relations 4.25 and 4.26 respectively.

In the end, equation (4.68) has to be integrated to obtain the decoupled

system and equation (4.69) for the linearized and stable system. In order to

obtain the functions k(y) and l(y) both equations have to be expressed in

format (4.70).

{

ḋx = (A − AÃC̃−1C + d
dt

(Ã)C̃−1C)dx + Bdu

dz = C̃−1Cdx
(4.68)

{

ḋx = ((A − AÃC̃−1C + d
dt

(Ã)C̃−1C) + (
∑nj

−1
i=0 pij(A − I d

dt
)iBj)j=1,...,m)dx + Bdu

dz = C̃−1Cdx

(4.69)

{

ẋ = f(x, u) + k(h(x, u))

z = l(h(x, u))
(4.70)

4.4.4 Application - Nonlinear Structured System

The example which is proposed to present the use of the procedures intro-

duced in this section is a separately excited DC motor(SEDCM). The system
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is defined by the following equations:


































Le
dIe(t)

dt
+ ReIe(t) = Ve(t)

Lr
dIr(t)

dt
+ RrIr(t) = Vr(t) − KLeIe(t)Ω(t)

J dΩ(t)
dt

+ fΩ(t) = KLeIe(t)Ir(t)

y1 = Ie(t)

y2 = Ω(t)

(4.71)

Let us consider

x(t) = (Ie(t), Ir(t), Ω(t))T = (x1, x2, x3)
T (t) as the state vector and u(t) =

(Ve(t), Vr(t))
T = (u1, u2)

T (t) as the input vector. The system (4.71) is non-

linear, and if we want to decouple this nonlinear system we have to determine

the tangential system first. The variational system is:


































˙dx1 = −Re

Le
dx1 + 1

Le
du1

˙dx2 = −KLe

Lr
x3dx1 −

Rr

Lr
dx2 −

KLe

Lr
x1dx3 + 1

Lr
du2

˙dx3 = KLe

J
x2dx1 + KLe

J
x1dx2 −

f

J
dx3

dy1 = dx1

dy2 = dx3

(4.72)

Using the variational graph of the motor we can apply the procedures de-

dx2 dx3
1

R
L
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Lr

f
J

J

dx1

Re
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x1

du1 dy1

du2 dy2Lr

1
Le KLe 

Lr
x3

KLe x1

J
KLe x2

1

1

+

+dt
d

dt
d

Figure 4.7: OSG of the Variational model for the SEDCM

scribed in the previous sections to determine whether or not the system can

be decoupled.

The first step consists in determining the infinite zero orders ni for each
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sub-system Σ(ci, A, B). The shortest path for dy1 is du1 → dx1 → dy1,

which has the length 1 and therefore n1 = 1. Analogously the shortest path

for the second output dy2 is du2 → dx2 → dx3 → dy2 and n2 = 2. Sec-

ondly the infinite zero orders of the global model have to be determined.

The shortest path is du1 → dx1 → dy1 and has a length of 1, therefore

L1 = n′

1 = 1. The two shortest different paths are du1 → dx1 → dy1 and dy2

is du2 → dx2 → dx3 → dy2, therefore L2 = 3 and n′

2 = 2. The orders of the

infinite zeros of the row sub-systems are {1, 2} and the orders of the infinite

zeros of the global system are {1, 2}. According to theorem 17, this model

can be decoupled by a regular static state feedback control law.

Once the stage of system analysis has been finished, we can proceed to the

computation of the matrices Ã(t) and B̃(t) and equation (4.66) can be inte-

grated. The last part of the solution was too difficult to be calculated directly;

therefore a formal calculus program (MAPLE) was used. The static control

law for the decoupling by state feedback was determined; its expression is

given in equation (4.73). Similar procedure is developed for input-output

linearization.














u1 = Rex1 + Lev1

u2 = KL1x1x3 + R2x2 + L2f

J
x2 −

L2f2

KL1J
x3

x1

−l2
x2

x1
v1 + L2J

KL1x1
v2

(4.73)

4.4.5 Application - Nonlinear Bond Graph Model

For this application we have chosen a well known example: a two-link robot

manipulator (figure 4.8). The inputs of the system are the torques in each

x

l1
m1

m2
l2

y

θ
1

θ
2

Figure 4.8: Two-link robot manipulator
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joint and the outputs are the angles θ. Following the bond graph methodol-

ogy for creating the bond graph representation, we consider the equations of

the velocities on the two axes are:






















ẋ1 = l1θ̇1cosθ1

ẏ1 = −l1θ̇1sinθ1

ẋ2 = ẋ1 + l2(θ̇1 + θ̇2)cos(θ1 + θ2)

ẏ2 = ẏ1 − l2(θ̇1 + θ̇2)sin(θ1 + θ2)

(4.74)

The bond graph model on the nonlinear system is presented in figure 4.9,

where:






















z1 = cosθ1

z2 = sinθ1

z3 = cos(θ1 + θ2)

z4 = sin(θ1 + θ2)

(4.75)

Obtaining the nonlinear bond graph model is just the first stage of the de-
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Figure 4.9: Nonlinear Bond Graph model with algebraic equations

coupling procedure. The second stage is to determine the variational bond

graph. Using the algorithm presented in section 4.4.1.2, we obtain the linear

time-varying bond graph model.

In the following, we perform the procedure of system decoupling by output

injection and the procedure for system decoupling with stability by state
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feedback for this bond graph model.

The procedure presented in the previous section for decoupling by state feed-

back for LTV models uses the Observability Bond Graph, while the decou-

pling by output injection uses the Controllability Bond Graph. But in our

variational bond graph the inputs and the outputs share the same junctions

and the same causality. This means that beside the sign of the gain of the

differential loop, the CBG and the OBG are identical. As all the modulated

transformers have time-dependent parameters and all the causal paths pass

by at least one transformer, all the dynamic elements in integral causality on

the BGI get a differential loop (the dissipative elements R1 and R2). which

is presented in figure 4.10.
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Figure 4.10: Observability Bond Graph model

Output Injection

Using the variational graph of the robot we can apply the procedures de-

scribed in the previous sections to determine whether or not the system can

be decoupled.

For system analysis, we have to determine the infinite zero orders ni for each
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sub-system Σ(C, A,Bj). The shortest causal path for MSe1 is MSe1 →

I2 → Df1, which has the length 1 and therefore n1 = 1. Analogously the

shortest causal path for the second source MSe2 is MSe2 → I4 → Df2 and

n2 = 1.

Secondly the infinite zero orders of the global model have to be deter-

Table 4.9: Causal paths for decoupling by output injection

Causal Path Length

MSe1 → MTF2 → I2 → MTF2 → Df1 1

MSe1 → MTF2 → I2 → MTF4 → Df2 1

MSe2 → MTF4 → I4 → MTF4 → Df2 1

MSe1 → MTF2 → I2 → R1 → I2 2

MSe1 → MTF2 → I2 → MTF4 → MTF3 → I3 → MTF3 → MTF4 → I4 2

MSe1 → MTF2 → I2 → MTF4 → MTF3 → I3 → MTF3 → MTF4 → I2 2

MSe1 → MTF2 → I2 → MTF2 → MTF1 → I1 → MTF1 → MTF2 → I2 2

MSe1 → MTF2 → I2 → MTF2 → MTF1 → I3 → MTF1 → MTF2 → I2 2

MSe1 → MTF2 → I2 → MTF2 → MTF1 → I3 → MTF3 → MTF4 → I2 2

MSe1 → MTF2 → I2 → MTF2 → MTF1 → I3 → MTF3 → MTF4 → I4 2

MSe2 → MTF4 → I4 → R2 → I4 2

MSe2 → MTF4 → I4 → MTF4 → MTF3 → I3 → MTF3 → MTF4 → I4 2

MSe2 → MTF4 → I4 → MTF4 → MTF3 → I3 → MTF3 → MTF4 → I2 2

MSe2 → MTF4 → I4 → MTF4 → MTF3 → I3 → MTF1 → MTF2 → I2 2

MSe2 → MTF4 → I2 → R1 → I2 2

MSe2 → MTF4 → I2 → MTF4 → MTF3 → I3 → MTF3 → MTF4 → I4 2

MSe2 → MTF4 → I2 → MTF4 → MTF3 → I3 → MTF3 → MTF4 → I2 2

MSe2 → MTF4 → I2 → MTF4 → MTF3 → I3 → MTF1 → MTF2 → I2 2

MSe2 → MTF4 → I2 → MTF2 → MTF1 → I1 → MTF1 → MTF2 → I2 2

MSe2 → MTF4 → I2 → MTF2 → MTF1 → I3 → MTF1 → MTF2 → I2 2

MSe2 → MTF4 → I2 → MTF2 → MTF1 → I1 → MTF3 → MTF4 → I2 2

MSe2 → MTF4 → I2 → MTF2 → MTF1 → I1 → MTF3 → MTF4 → I4 2

mined. The shortest causal path is MSe1 → I2 → Df1 and has a length

of 1, therefore L1 = n′

1 = 1. The two shortest different causal paths are

MSe1 → I2 → Df1 and MSe2 → I4 → Df2, therefore L2 = 2 and n′

2 = 1.

The orders of the infinite zeros of the row sub-systems are {1, 1} and the
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orders of the infinite zeros of the global system are {1, 1}. According to

theorem 18, this model can be decoupled by a regular static state feedback

control law.

Once the stage of system analysis has been finished, we can proceed to the

computation of the matrices Ã(t) and C̃(t) using the gains of the causal

paths from table 4.9. Then equation (4.69) can be integrated. For calculat-

ing the output injection control law, we have used a formal calculus program

(MAPLE). The solution of this problem takes a lot of space and is not ap-

propriate to be presented here.

State Feedback

Now, we perform the same task, but this time we search for the state feedback

control law which decouples the bond graph model with stability.

The first step consists in determining the infinite zero orders ni for each sub-

system Σ(ci, A,B). The shortest path for Df1 is MSe1 → I2 → Df1, which

has the length 1 and therefore n1 = 1. Analogously the shortest causal path

for the second output Df2 is MSe2 → I4 → Df2 and n2 = 1.

Secondly we focus on the infinite zero orders of the global model. The shortest

causal path is MSe1 → I2 → Df1 and has a length of 1, therefore L1 = n′

1 =

1. The two shortest different causal paths are MSe1 → I2 → Df1 and

MSe2 → I4 → Df2, therefore L2 = 2 and n′

2 = 1. The orders of the infinite

zeros of the row sub-systems are {1, 1} and the orders of the infinite zeros

of the global system are {1, 1}. According to theorem 17, this model can be

decoupled by a regular static state feedback control law.

The computation of the matrices Ã(t) and B̃(t) using the gains of the causal

paths from table 4.10 is proceeded and equation (4.66) can be integrated.

The static control law for the decoupling and linearization, determined with

MAPLE, has been introduced in simulation with the program 20sim in which

we have modeled this example. In figure 4.11, we present the inputs and the

outputs of the system after input-output linearization and assignation of the

poles p1 = −2 on the first channel and p2 = −5 on the second channel.



134 Duality in Control Synthesis

Table 4.10: Causal paths for decoupling by state feedback

Causal Path Length

Df1 ← MTF2 ← I2 ← MTF2 ← MSe1 1

Df1 ← MTF2 ← I2 ← MTF4 ← MSe2 1

Df2 ← MTF4 ← I4 ← MTF4 ← MSe2 1

Df1 ← MTF2 ← I2 ← R1 ← I2 2

Df1 ← MTF2 ← I2 ← MTF4 ← MTF3 ← I3 ← MTF3 ← MTF4 ← I4 2

Df1 ← MTF2 ← I2 ← MTF4 ← MTF3 ← I3 ← MTF3 ← MTF4 ← I2 2

Df1 ← MTF2 ← I2 ← MTF2 ← MTF1 ← I1 ← MTF1 ← MTF2 ← I2 2

Df1 ← MTF2 ← I2 ← MTF2 ← MTF1 ← I3 ← MTF1 ← MTF2 ← I2 2

Df1 ← MTF2 ← I2 ← MTF2 ← MTF1 ← I3 ← MTF3 ← MTF4 ← I2 2

Df1 ← MTF2 ← I2 ← MTF2 ← MTF1 ← I3 ← MTF3 ← MTF4 ← I4 2

Df2 ← MTF4 ← I4 ← R2 ← I4 2

Df2 ← MTF4 ← I4 ← MTF4 ← MTF3 ← I3 ← MTF3 ← MTF4 ← I4 2

Df2 ← MTF4 ← I4 ← MTF4 ← MTF3 ← I3 ← MTF3 ← MTF4 ← I2 2

Df2 ← MTF4 ← I4 ← MTF4 ← MTF3 ← I3 ← MTF1 ← MTF2 ← I2 2

Df2 ← MTF4 ← I2 ← R1 ← I2 2

Df2 ← MTF4 ← I2 ← MTF4 ← MTF3 ← I3 ← MTF3 ← MTF4 ← I4 2

Df2 ← MTF4 ← I2 ← MTF4 ← MTF3 ← I3 ← MTF3 ← MTF4 ← I2 2

Df2 ← MTF4 ← I2 ← MTF4 ← MTF3 ← I3 ← MTF1 ← MTF2 ← I2 2

Df2 ← MTF4 ← I2 ← MTF2 ← MTF1 ← I1 ← MTF1 ← MTF2 ← I2 2

Df2 ← MTF4 ← I2 ← MTF2 ← MTF1 ← I3 ← MTF1 ← MTF2 ← I2 2

Df2 ← MTF4 ← I2 ← MTF2 ← MTF1 ← I1 ← MTF3 ← MTF4 ← I2 2

Df2 ← MTF4 ← I2 ← MTF2 ← MTF1 ← I1 ← MTF3 ← MTF4 ← I4 2

4.5 Conclusions

In this chapter, we have presented a study of the concept of duality in control

laws for linear time-varying models. We have used the duality between the

state feedback and the output injection control laws. As an application for

this duality, we have considered the decoupling problem. In table 4.11, we

have gathered the graphical procedures which have been developed for the

decoupling problem on the structured systems and bond graphs. The de-

coupling by state feedback problem for LTV systems was numerically solved

in [46], but we have extended this approach to output injection using the
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Figure 4.11: Time-response of the decoupled robot system

Table 4.11: Decoupling problem

SS Bond graph

Decoupling by SF of LTV systems finished finished

Decoupling by OI of LTV systems finished finished

Decoupling with pole placement simple law simple law

by SF of LTV systems further developing further developing

Decoupling with pole placement simple law simple law

by OI of LTV systems further developing further developing

Decoupling/Linearization finished finished

by SF of nonlinear systems

Decoupling/Linearization finished finished

by OI of nonlinear systems

duality between the two control laws. The decoupling with pole placement

problem needs further investigations because we have used here the simplest

law possible. Further study of the invariant zeros may be considered for a

better control law. For nonlinear models, we have used the passage through

the variational model in order to obtain a decoupling law. By using the pole

placement procedure, we developed a nonlinear control law which linearizes

the model.
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The study of duality has been focused on three directions:

• Duality between infinite structure.

• Duality between state feedback and output injection.

• Duality between (A,B) and (C, A)-invariance.



Conclusions and Perspectives

In this report, we have proposed a study of the concept of duality in system

analysis and control synthesis for linear time-varying models. Graphic proce-

dures, using the structured systems representation and bond graph represen-

tation, have been proposed to illustrate the duality between controllability

and observability, as well as the duality between state feedback and output

injection.

Using the concept of duality defined in [50] with the module theoretical ap-

proach, this study defines for structured systems and bond graphs the concept

of dual model, using a graphical perspective.

The duality between controllability and observability is well-known to the

control community, especially for LTI case. Our approach for dealing with

system analysis presents two stages. First, we focused on the computational

methods which permit determining graphically the controllability and observ-

ability matrices. For this computational procedures, we had to develop some

graphic representations which emulate the noncommutative aspects which

characterize the LTV systems. The CSG and OSG for structured systems

and the CBG and OGB for bond graphs are graphical tools which allow to

extend the LTI methods for LTV systems. The second stage concerns graph-

ical procedures for determining the controllability and observability directly

on the structured systems and bond graphs. For determining the observabil-

ity property for LTV bond graph models, the only solution so far is to pass

through the dual bond graph and to evaluate the controllability of the dual

model.

For the study of the duality between the state feedback and output injection,

we have considered a classic problem, the decoupling problem. The decou-

pling by state feedback is a known problem, but the use of output injection

to solve this problem is new, because given the definition of output injection,

137
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its application on physical systems is impossible since we can not directly

interfere on the state dynamics of the system. We have proposed graphic

methods for both decoupling by state feedback and output injection of LTV

models. The extension for the decoupling problem with pole placement came

out naturally by extending some LTI methods.

The control synthesis for the decoupling problem has been taken one step

further when we tackled the problem for nonlinear systems. The use of the

variational model is essential in this case. On one hand for structured sys-

tems, nonlinear methods are not so widely spread ([48]). On the other hand,

the use of the variational model, which is a LTV system, can be the solution

for a graphical procedure for nonlinear systems decoupling.

This study is a development which can be extended into different directions.

The duality in bond graph model has been based on some physical notions,

the duality between the energy and the co-energy variables. These physical

aspects may represent a possible link between the physical representation

(Hamiltonian) and mathematical descriptions (state space representation,

modules).

Certain aspects which define a dual bond graph model characterize also the

adjoint bond graph model which has been developed for synthesis of optimal

control. Even though the optimal control procedures for bond graph models

concern only LTI models, a possible extension for LTV models can be consid-

ered if we develop similar procedure to the dualization procedure introduced

in chapter 3.

For system decoupling, we have used the simplest laws, more research are

to be made for the study of invariant zeros and the possibility of assigning

these modes. The duality between (A,B) and (C,A) invariance needs further

developing. We can even consider the duality between the (f, g) and (h, f)

invariance for nonlinear systems. This extension for the geometric approach

may provide some better decoupling laws, both for linear and nonlinear mod-

els.

Another research direction which can be developed using the concept of du-

ality is in surveillance. The duality between captors and actuators may offer

some interesting solutions for some supervision problems.

Using the output injection we can consider the synthesis of an observer using

graphic procedures. In fact, this theoretical study of the duality in control



4.5 Conclusions 139

laws is just the beginning of an approach which might develop interesting

results concerning the observation problems. The state feedback and output

injection results can be mixed for obtaining an output feedback solution.
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Appendix

A.1 Some Matrix Definitions

In this appendix, we introduce some definitions which simplify the writing

of the modifications which are performed on the dual bond graph. For that,

let us consider that on the bond graph model there are n dynamic elements

in integral causality, from which q have time-dependent gains, nR dissipative

elements, m input sources and p output detectors.

Definition 35. We denote by In×q the sparse matrix with n rows and q

columns, where In×q[i, j] = 1, if the ith dynamic element in integral causal-

ity (DEi) is time-dependent (i = 1, . . . , n) and the (nR + j)th dissipative

element is the supplementary dissipative element which is added by the du-

alization procedure for the ith dynamic element which is time-dependent and

In×q[i, j] = 0, otherwise.

Definition 36. We denote by Iq×n = IT
n×q.

Definition 37. Let Ld ∈ R(t)q×q be a diagonal matrix:

Ld = diag(
dDEi(t)

dt
) (A.1)

where DEi is the gain of the ith time-varying dynamic element, i = 1, . . . , q,

either Ii(t) or Ci(t).

Ld is a square matrix which contains on the diagonal the gains of the

supplementary dissipative elements which have been added by the dualization

procedure.
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Property 37. In×qLdIq×n = d
dt

(F−1)

Proof:

Let us first determine the product Id = In×qLd.

Id(i, j) =

q
∑

k=1

In×q(i, k)Ld(k, j) (A.2)

But Ld is a diagonal matrix, therefore:

Id(i, j) = In×q(i, j)Ld(j, j) (A.3)

and as the In×q is a sparse matrix with unitary values, then Id(i, j) = Ld(j, j),

if In×q(i, j) = 1, otherwise Id(i, j) = 0.

The product IdIq×n is easy to evaluate, because in matrix Id we have nonzero

elements in positions (i, j), which are the same with the positions of nonzero

elements from matrix In×q and Iq×n is the transpose of matrix In×q, with

nonzero elements in positions (j, i). Therefore the product will present

nonzero element only on the diagonal. Moreover, the nonzero elements ap-

pear on the rows which correspond to the time-varying elements, according

to the definition of matrix In×q. In conclusion, the product In×qLdIq×n =

diag(dDEi(t)
dt

), if the ith dynamic element has a time-varying gain and 0, oth-

erwise. But, knowing that the derivative of a constant is 0, we can extrapolate

the writing and simply say that:

In×qLdIq×n = diag(
dDEi(t)

dt
) (A.4)

On the other hand, F = diag( 1
DEi

) and its inverse is F−1 = diag(DEi).

Therefore
d

dt
(F−1) = diag(

dDEi(t)

dt
) (A.5)

From equation (A.4) and (A.5), we obtain that In×qLdIq×n = d
dt

(F−1).
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A.2 Dualization effects upon the vectorial rep-

resentation

In this appendix, we present the transformations which are inflicted on the

vectorial representation of a bond graph model after the dualization proce-

dure presented in section 3.1.2 is performed.

Remark 22. In this appendix, we use the same notations which have been

proposed in appendix A.1.

The following modifications occur on the vectorial representation of the

dual system bond graph:

• S̄11 = S11, because the positions of the I and C elements remain un-

changed.

• S̄13 =
(

S13 In×q

)

, because the positions of the dynamic elements

and the R elements remain unchanged and the dynamic element with

time-varying gains are causally linked with their supplementary dissi-

pative elements by a causal path with the gain 1.

• S̄31 =

(

S31

−Iq×n

)

, because the positions of the dynamic elements and

the R elements remain unchanged and the supplementary dissipative

elements are causally linked only with the dynamic element which has

generated their presence by a causal path with the gain −1.

• S̄33 =

(

S33 0nR×q

0q×nR
0q×q

)

, because the positions of the R elements re-

main unchanged and therefore the causal path between them is the

same and the supplementary dissipative elements are not linked with

any other element beside the time-varying dynamic element which gen-

erated them.

• S̄14 = ST
41, because the inputs and the outputs change places and there-

fore the causal path that was between the dynamic elements and the

outputs is now the causal path between the dynamic elements and the

inputs.
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• S̄34 =

(

ST
43

0q×p

)

, because the inputs and the outputs change places

and therefore the causal path that was between the R elements and

the outputs is now the causal path between the R elements and the

inputs and the supplementary dissipative elements are not linked with

any input sources.

• S̄41 = ST
14, because the inputs and the outputs change places and there-

fore the causal path that was between the dynamic elements and the

inputs is now the causal path between the dynamic elements and the

outputs and the output are reversed.

• S̄43 =
(

ST
34 Im×q

)

, because the inputs and the outputs change places

and therefore the causal path that was between the R elements and the

inputs is now the causal path between the R elements and the reversed

outputs and the supplementary dissipative elements are not linked with

any output detectors.

• S̄44 = −ST
44, because the inputs and the outputs change places and

therefore the causal path is the same, the only thing that changes is

that the path has different starting and ending points and the output

in reversed.

• L̄ =

(

−L 0nR×q

0q×nR
−Ld

)

, because the value of the R elements is opposite

from the one they previously had and we have added the q supplemen-

tary dissipative elements.

• F̄ = F , because the value and the causality of the C and I elements

remain unchanged.


