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Summary 
 

This thesis describes the research focused on development of an automatic system for 

classification of polysomnographic recordings into different sleep/wake stages. 

Polysomnographic recordings are typically composed of three signals (EEG, EOG and EMG) 

and are used to characterize whole night sleep of a person. The aim of the thesis is to propose 

a complex classification system that would be capable to deal with various artifacts that are 

rather common in the real physiological signals (EEG, EOG and EMG). Moreover, 

employment of only the relevant parameters computed from the analyzed signals is desired so 

as to perform accurate classification of the recordings. 

The manuscript is composed of six main chapters. The general overview presented in   

chapter 1 describes the background of the polysomnography. The chapter clearly presents all 

the information and terminology needed to understand the field of sleep analysis. It mainly 

introduces physiological signals monitored, individual sleep/wake stages, rules of visual sleep 

classification as well as the overview of actual state of automatic sleep analysis. Database of 

polysomnographic recording analyzed in this thesis is presented at the end of the chapter. 

Chapter 2 introduces the difficulty related to the existence of artifacts that can be present in 

the real polysomnographic recordings. Existence of artifacts can significantly decrease 

reliability of the automatic sleep/wake stage classification performed using parameters 

computed from the contaminated signals. In the first part of the chapter, several possible 

artifacts are categorized and characterized and after it various artifact processing methods are 

presented. Then, artifact processing strategy employed in this thesis is introduced in detail. In 

the last part, performance of the strategy applied to a database composed of several 

polysomnographic recordings is presented and analyzed. 

Chapter 3 focuses on the selection of the most relevant features. In the first part, a list of all 

features extracted from the monitored signals (EEG, EOG and EMG) is presented. Then, the 

importance of the selection of the most relevant features is discussed and the feature selection 

methodology proposed in this thesis is presented in detail. At the end of the chapter, the most 

relevant features selected by the selection method are listed and their importance for 

automatic classification is discussed. 
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The complex automatic classification system proposed in this thesis is presented in chapter 4. 

The system is designed so as to combine the artifact identification strategy proposed in 

chapter 2 and the feature selection strategy developed in chapter 3. The complex classification 

system is then able to effectively deal with artifacts and to perform accurate classification of 

the recordings.  

Chapter 5 describes the results obtained on a database composed of 47 polysomnographic 

recordings. The results present evident improvement in classification of NREM I and REM 

stages whose discrimination is traditionally difficult. The improved classification is especially 

caused by employment of only artifact-free EOG and EMG signals as well as by employment 

of nontraditional time domain parameters like mobility, entropy and kurtosis.  

The last chapter concludes the research performed in the thesis and discusses further possible 

improvements in the field of automatic human sleep analysis. 

 

Keywords: decision making, diagnosis, medical applications, pattern recognition, signal 

processing 
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Résumé 
 

Cette thèse décrit notre recherche sur le développement d’un système de classification 

automatique d’enregistrements de signaux poly-somnographiques en phases de sommeil/éveil. 

Les enregistrements poly-somnographiques sont composés de trois signaux (EEG, EOG et 

EMG) et sont classiquement utilisés pour décrire une nuit de sommeil. Le but de cette thèse 

est de proposer un système de classification capable de prendre en compte les nombreux 

artefacts présents dans les signaux physiologiques de type EEG, EMG et EOG, tout en 

n’utilisant que les caractéristiques extraites des signaux les plus discriminantes, en proposant 

une méthode judicieuse de sélection de celles-ci. 

Le manuscrit est composé de 6 chapitres. Le chapitre 1 décrit de manière générale l’analyse 

polysomnographique. Il présente les informations nécessaires à la compréhension de l’analyse 

du sommeil ainsi que la terminologie du domaine. Plus particulièrement, il détaille les 

signaux physiologiques enregistrés, les différentes phases de sommeil/éveil, les règles de 

classification visuelles utilisées par les experts ainsi qu’un état de l’art de l’analyse 

automatique du sommeil. La base de signaux utilisée pour mettre au point et valider les 

méthodes proposées dans cette thèse est introduite à la fin du chapitre. 

Le chapitre 2 met en évidence, dans un premier temps, les difficultés liées  à l’occurrence 

d’artéfacts dans les signaux enregistrés. Ceux-ci peuvent diminuer de manière significative la 

fiabilité des classifieurs automatiques. En début de chapitre, plusieurs artefacts parmi les plus 

courants sont décrits et quelques méthodes de détection et de rejet sont présentées. Ensuite, la 

méthode de détection utilisée dans cette thèse est décrite en détail et les performances 

obtenues sur la base de signaux disponible sont présentées et discutées. 

Le chapitre 3 s’intéresse plus particulièrement à la sélection des caractéristiques les plus 

discriminantes. Dans un premier temps, une liste de caractéristiques qu’il est possible 

d’extraire des signaux polysomnographiques est réalisée puis une méthode judicieuse de 

sélection de caractéristiques spécialement adaptée aux signaux polysomnographiques est 

proposée. A la fin du chapitre, les caractéristiques retenues par la méthode sont listées et leurs 

effets sur les performances en classification en phases de sommeil/éveil sont discutées. 

Le système de classification en deux étapes est décrit au chapitre 4. Ce système combine la 

stratégie de rejet d’artefacts développée au chapitre 2 avec les résultats de la sélection de 
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caractéristiques présentés au chapitre 3, ce qui lui permet d’être robuste à la présence 

d’artéfacts dans les signaux et de réaliser une classification performante.  

Les résultats obtenus sur la base de signaux constituée de 47 enregistrements de nuits de 

sommeil sont résumés au chapitre 5. Ils mettent en évidence une nette amélioration de la 

classification des phases NREM I et REM, traditionnellement difficiles à discriminer, grâce à 

l’utilisation de signaux EOG et EMG non corrompus ainsi qu’à l’utilisation de 

caractéristiques temporelles peu classiques, comme la mobilité, l’entropie ou le kurtosis.  

Enfin, le dernier chapitre conclut sur les travaux réalisés au cours de cette thèse et ouvre des 

perspectives pour de nouvelles recherches en classification automatique de sommeil humain. 

 

Les mots clés: décision, diagnostic, application médicales, reconnaissance de formes, 

traitement du signal 
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Introduction 
Sleep is an important human behaviour that not only positively affects the quality of human 

life but can also be indicative of some health diseases. Human interest in sleep, its role, its 

mechanism or its importance has been joined to the mankind since the beginning of its 

existence. The fact that this phenomenon considered to be self-evident in our lives is not well-

researched till now can be thus really surprising. There is no doubt that it is caused by the fact 

that the clinical sleep medicine and sleep research are relatively young fields compared to the 

other branches of science. 

A detailed analysis and an exact interpretation of a human whole night sleep can contribute to 

the identification or the diagnosis of a wide spectrum of sleep diseases and disorders and can 

also subsequently give to the physicians some precise instructions on how to treat the patients 

suffering from sleep disorders. Sleep analysis and its results can also be important for the 

medical diagnosis of some serious diseases, because they are frequently accompanied by 

sleep disorders as accessory symptoms. 

This thesis deals with the process and analysis of physiological recordings recorded during 

the whole night sleep. The set of measured signals is denoted as a polysomnographic 

recording and the information contained in it is used to characterize the actual state of the 

person during the sleep or to diagnose and treat the disorders in the organism. The analysis of 

the polysomnographic recordings is essentially aimed at classifying the whole recording into a 

succession of sleep/wake stages. The physician or medical expert typically splits the 

polysomnographic recordings into segments with a constant duration - epochs. Then, the 

physician classifies the epochs into sleep/wake stages on the basis of information extracted 

from the signals monitored. An experienced physician is also able to deal with possible 

artifacts or noise that can occur in the polysomnographic recording. He should be able to 

ignore the artifacts and make his classification upon the information directly associated with 

the actual state of the sleeping subject. The visual analysis of the polysomnographic 

recordings is typically a tedious task, because the human expert must analyze long-time 

recordings representing the whole night sleep of the person. In order to facilitate the work of 

the physician, an automatic classification system would be worthwhile. The existence of such 
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an automatic system would also avoid differences in the inter-expert classification which 

occur when visual analysis is performed. 

Though many researches have been made on the choice of the best classifiers to perform 

automatic sleep classification and many results were published, there are still problems to be 

solved. One of them corresponds to the occurrence of artifacts in the polysomnographic 

signals. The artifacts should be excluded from the signals so as to avoid the devaluation of the 

information contained in them. Another problem encountered during processing of the 

polysomnographic signals is the selection of the most relevant information to be used for 

subsequent classification. This thesis focuses on both these problems – proper processing of 

artifacts as well as selection and application of relevant features computed from the available 

signals, in order to design a complex automatic classifier of human polysomnographic 

recordings. 

The first part of the research realized in this thesis focuses on the identification of artifacts 

and rejection of contaminated segments from the signals monitored (electroencephalogram, 

electrooculogram and electromyogram). Artifact identification methods capable to detect 

several technical and biological artifacts are employed in order to separately clean up the 

individual signals contained in the polysomnographic recording. A strategy evaluating artifact 

contamination of the epochs is then proposed so as to reduce loss of data caused by presence 

of artifacts. 

The second part of the thesis focuses on the process of extraction and selection of relevant 

features used for classification. A selection strategy based on a suitable classification criterion 

is proposed in order to determine the relevant features that discriminate the individual 

seep/wake stages the most accurately. The application of only the relevant features can lead to 

an increase in the classification accuracy as well as to a decrease in the computational time 

needed to perform classification. 

In the last part of the thesis, a complex automatic classification system combining artifact 

identification with extraction of relevant features from available signals is presented. Since 

artifact identification and rejection is performed separately on each monitored signals, some 

values can be missing in the feature set containing features computed from all three signals. 

To be able to deal with possible missing values, a classification system using a bank of 
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classifiers is proposed as a suitable solution. The structure of the system will be presented in 

detail later. 

The outline of this thesis is the following. Chapter 1 provides a general introduction to 

polysomnography. The chapter contains all the terminology and information needed to 

understand the field of sleep analysis. Physiological signals, individual sleep/wake stages and 

characteristic of visual sleep classification are presented. 

In chapter 2, some problems connected with the existence of artifacts are introduced. Firstly, a 

number of possible artifacts are categorized and characterized. Then, several artifact 

processing methods are presented. In the last part, the artifact processing strategy employed in 

this thesis is characterized in detail and the results obtained when applying this strategy on a 

data set composed of several polysomnographic recordings are presented. 

Chapter 3 focuses on the selection of the most relevant features. In the first part, a list of 

features extracted from the monitored signals (EEG, EOG and EMG) is presented. Then, the 

importance of the selection of relevant features for automatic classification is discussed and 

the feature selection methodology proposed in this thesis is presented in detail. At the end of 

the chapter, the most relevant features selected by our method are listed and the importance of 

each of them is discussed. 

The complex automatic classification system is presented and characterized in detail in 

chapter 4. It combines the artifact identification strategy proposed in chapter 2 and the feature 

selection strategy developed in chapter 3 to design a classifier able to deal with artifacts 

without losing too many data. 

Chapter 5 describes the experiments performed in order to evaluate and compare the 

performances of the complex two-step automatic classification system. The results obtained in 

this thesis are summarized at the end. 

The last chapter concludes the research performed in the thesis and discusses further possible 

improvements in the field of automatic sleep analysis.  
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Chapter 1  

Polysomnography 

The basic diagnostic method used to analyze the human sleep is the polysomnographic 

examination – polysomnography. The principle of this method can be evident from the name. 

During polysomnographic examination are simultaneously monitored and recorded several 

physiological parameters related to the sleep and vigilance states. Most commonly, this 

examination takes place in the specialized sleep laboratories and is indicated to analyze the 

whole night sleep. Then, its results can lead to diagnosis of various sleep disorders [RBRM95], 

[BBJCC05], [Ling].  

First chapter of the thesis will introduce the field of sleep analysis. Before any sophisticated 

proposition of automatic classification system can be done, it is necessary to understand the 

theoretical background characterizing the whole process of sleep staging. So, firstly the 

polysomnographic signals and single sleep/wake stages will be characterized. Such a general 

description is also needed so as to be able to evaluate the actual state of research in the field of 

automatic sleep/wake stage classification and to find out the possibility of potential 

improvements that could be done. 

1.1 History of modern polysomnography 

The history of the modern polysomnography is closely connected with the first successful 

experiments of human brain activity monitoring (Electroencephalogram or EEG) realized by 

German physician H. Berger in 1920s and 1930s [Berger29]. In the middle of 1930s, team of 

authors chaired by Loomis observed that the electrical activity of the brain is not homogenous 

during a night sleep [LHH37a]. This finding led to the determination of different sleep stages 
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characterized on the basis of the EEG analysis. In 1953, E. Aserinsky and N. Kleitman 

observed presence of rapid eye movements (REMs) during the sleep [AK53]. With a 

discovery of the rapid eye movements was determined a new state of sleep – rapid eye 

movement sleep. At the end of 1950s, the sleep analysis was extended by a new monitored 

physiological signal – electromyogram (EMG). Importance of the EMG for sleep analysis is 

mainly related to the discovery of muscle atonia during the REM sleep stage characterized in 

the work of Jouvet et al. [JM59], [JMC59]. During the early evolution of the sleep analysis 

there was not any worldwide accepted set of criteria used for both description of sleep/wake 

stages and for subsequent classification of polysomnographic recordings. It was the main 

reason why the inter-rater agreement between the different laboratories was low [Monroe67]. 

As lately as in 1968, Rechtschaffen and Kales published “A Manual of Standardized 

Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects” [RK68]. 

This manual defines a set of rules, criteria and guidelines for classification of the sleep/wake 

stages in humans. This manual is regarded as the golden standard used for human sleep 

evaluation. Since 1968, several supplements and updates of this manual have been published 

especially in order to increase intra- and inter-rater agreement as well as to facilitate 

development of automatic systems for sleep analysis [HSKS+01], [PHHC+07]. 

Implementation of the unified system created for sleep analysis and sleep/wake stages 

classification made possible wide and effective expansion of the polysomnography as the 

universal diagnostic method. 

1.2 A polysomnographic examination 

A polysomnographic examination consists in simultaneous monitoring of several 

physiological parameters during a whole night sleep. According to the international 

standardization, standard polysomnographic recording is formed by monitoring of three 

essential physiological signals: 

• Electroencephalogram (EEG) – monitoring of brain activity 

• Electrooculogram (EOG) – monitoring of eye movements 

• Electromyography (EMG) – monitoring of muscle activity. 

Comparing these three polysomnographic signals, the electroencephalogram characterizing 

the human brain activity during the sleep can be thought of as the most important information 
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source for classification and discernment of the sleep/wake stages. Application of only the 

EEG signal gives us rather precise information for initial sleep/wake stages classification. 

This is in conformity with the historical development of the polysomnography that is mainly 

based on the different signs in the brain activity monitored during the night sleep. The EOG 

and EMG signals have indispensable contribution in the classification of the stages 

characterized by the similar brain activity. It concerns for example with detection of rapid eye 

movements using the EOG signal and classification of the REM sleep stage. 

If there is a need of a concrete or special diagnosis assessment, the number of monitored 

physiological parameters can be arbitrarily extended. Polysomnography can be for example 

indicated to diagnose some breath disorders during the sleep (e.g. snoring) and occurs then 

demand on simultaneous monitoring of some breath parameters of the sleeping subject. There 

are many other physiological signals or parameters that can be monitored during the extended 

polysomnographic examination at the same time with the three initial signals listed above. 

The arbitrary parameters include the following: 

• Electrocardiogram (ECG) – monitoring of heart activity 

• Breath parameters 

• Oxygen Saturation measurement 

• Blood Pressure measurement 

• Monitoring of body position and movements 

• Sound recordings to measure snoring 

• Core body temperature measurement 

Polysomnographic recording containing predefined number of monitored signals is the main 

basis for analysis and classification of the sleep. The analysis of polysomnographic recording 

is divided into several phases. To be able to observe and evaluate all changes in the state of 

the sleeping subject during the whole night, the polysomnographic recording (all recorded 

signals) is fragmented into the succession of shorter segments. In the medical practice is the 

recording split into the succession of segments with a constant length. The segments of the 

recording are called epochs and most frequently last 20 seconds. The length of the epoch can 

vary depending on the actual medical application, aim of the analysis, recording devices used 

or the custom practice (e.g. in the USA the common length of epoch is 30 seconds). So that 

for example a sleep recording that lasts 8 hours is subsequently represented by the means of 
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1440 epochs with the uniform duration of 20 sec. In the next phase, each epoch prepared from 

the whole night recording is classified into one of the predefined sleep/wake stages. There are 

six traditional sleep/wake stages discerned in the human sleep. They are: wakefulness, NREM 

sleep stages I, II, III and IV, and REM sleep. Classification is performed on the basis of the 

characteristics of the monitored signals in the intervals corresponding to the currently 

processed epoch. Thanks to the development of computer science and information technology 

over the last decades is the whole process of pre-processing, analysis and evaluation of the 

polysomnographic recordings partially automated. Nowadays, computer assistance is 

especially common in the visualization of the monitored parameters (signals and variables). 

All of them can be on-line displayed and initially analysed with a help of the computer. In the 

case of sleep analysis, physician or sleep expert can use the computer to extract different 

parameters and attributes from the polysomnographic recording. The extracted characteristics 

then can be used to describe and classify the epochs of the recording. Until now, the analysis 

and classification of the whole night sleep is made visually by the physician, who scores 

every 20sec epoch into one of the sleep/wake stages. The classification is performed epoch by 

epoch according to the classical sleep/wake stages classification manual [RK68]. When the 

polysomnographic recording is classified into the sleep/wake stages, it is possible to represent 

the sleep structure graphically by the means of the hypnogram, an example of which is 

presented in the Fig. 1. Thus, hypnogram is an overall representation of the sleep architecture 

and presents chronological succession of the sleep/wake stages recognized in the whole night 

recording. The results of the sleep analysis presented in the form of a hypnogram can be 

consequently used to diagnose some sleep disorders that can be characterized by atypical 

distribution of the sleep/wake stages during the night sleep. 

The manual classification of the polysomnographic recordings is a tedious and time-

consuming task. It is possible to tell, that the main principle of the manual classification 

performed by the physician consists in the analysis and evaluation of the EEG signal course. 

During the visual analysis, the physician primarily focuses on the evaluation of brain activity. 

In the concrete, the expert observes and analyses the rhythmic activity of the EEG signal. If 

the information and characteristics extracted from the EEG signal give ambiguous 

information about the actual sleep/wake stage, the expert focuses more precisely on the other 

available data (electrooculogram and electromyogram). The precise description of all 

sleep/wake stages is presented in section 1.4.  
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The classification performed by the physician is partly influenced by its internal opinion as 

well as by its experience. This influence can be significant mainly at classification of the 

stages which are not characterized by some dominant feature or parameter as well as at 

classification of the transitions between individual sleep/wake stages. Transitions between the 

two consecutive stages are mostly slow and gradual and can last for several epochs. This fact 

causes ambiguities at classification of some epochs during the transition states. 

 

 
Fig. 1 An example of a hypnogram obtained from a night-time PSG recording. 

 

1.3 Polysomnographic signals 

Modern polysomnography is based on monitoring and recording of three physiological 

parameters; electroencephalogram, electrooculogram and electromyogram. From the primary 

description of the sleep analysis mentioned above can be evident, that correct and precise 

analysis of the EEG signal is required for initial classification of the sleep recordings. 

Therefore the description of electroencephalographic signal will be the most detailed. The 

signals will be characterized especially from polysomnographic point of view.  

1.3.1 Electroencephalography 

Electroencephalography is the neurophysiologic diagnostic method used to monitor electrical 

potentials that arise during the brain activity. In the other words, it monitors electric activity 

of the brain. The signal registered during this measurement is called Electroencephalogram 

(EEG). Electroencephalogram reflects the complex spatio-temporal biopotential changes that 

rise at signal regulation and processing of information in the Central nervous system (CNS). 

EEG presents an electrical signal from a large number of structurally and hierarchically 

interconnected neurons and cellular structures of the Central nervous system. 
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To the main advantages of the EEG belongs not only simplicity and reliability of the method, 

but also availability and noninvasive realization of this method (invasive measurement is not 

common in the sleep medicine). The main advantage and importance of the EEG is the fact 

that it monitors functional manifestations of the brain activity. Thus, the 

electroencephalography is a function test and therefore can be indicated as a diagnostic 

method used to diagnose various malfunctions and injuries of the brain. 

The conventional scalp EEG measurement is realized by means of surface electrodes placed 

on the scalp of a person. The scalp area should be abraded and special conductive gel should 

be applied before the electrodes are attached. EEG electrodes must be placed according to the 

predefined system. The best known and worldwide used system is the International 10-20 

EEG System of Electrodes Placement defined by H. Jasper in 1958 [Jasper58]. The title of 

the system is derived from the principle of electrode placement. Distances on the scalp, from 

the outer limits in both longitudinal and transversal planes, are divided into segments with a 

length of 10% and 20% of the total measured distance. The outer limits represent the nasion, 

inion and the preaurical points nearby the ear lobes. The EEG montage contains 21 electrodes, 

19 of them are placed on the skull and the two other (reference electrodes) are placed on the 

ear-lobe. Position of each electrode is labeled with a letter identifying the concrete brain lobe 

and with a number or another letter identifying the hemisphere. Electrodes labeled with the 

odd numbers are placed on the left hemisphere and electrodes placed on the right hemisphere 

are labeled with even numbers (Fig. 2). The middle of the skull is labeled with index z. For 

the need of electroencephalography, brain activity is monitored from six areas of the brain 

corresponding to the main brain lobes. The main areas are labeled as follows: 

• F: Frontal 

• Fp: Fronto-polar 

• C: Central 

• P: Parietal 

• O: Occipital 

• T: Temporal 
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Fig. 2 EEG - electrode placement; 10-20 system. [MP95] 

 

The electrode placement is the first parameter that affects the resulting EEG signal trace. The 

second important parameter is an electrode montage. It corresponds to the manner how the 

pairs of electrodes are connected to the amplifiers in the EEG machine. In actual practice, 

there are two basic types of electrode montage [COS74], [PITK04]: 

• unipolar (reference) 

• bipolar (differential) 

Unipolar leads process the signal from more than one pair of electrodes. Electrical potential is 

measured between the electrode placed somewhere on the scalp and the reference electrode, 

which is common for all leads or group of individual leads. The advantage of this montage is 

the fact that the signal represents undistorted information about the shape and form of 

amplitude changes in the brain activity (EEG waves). On the contrary, the main problem of 

this method is location of electrically inactive reference electrode. If the reference electrode is 

placed close to the source of an electrical activity, it could generate false signals and artifacts 

into the original measured signal. There are several ways to create the reference electrode in 

the unipolar montage. The two most widely used methods are these: 

 AVR (averaged reference) – In this method, activity from all the electrodes is 

measured and then the average value is computed. The resulting averaged signal is 

then used as the virtual reference electrode and is passed to the amplifier. 
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 CR (common reference) – This method typically uses a pair of electrodes to create the 

common reference. The electrodes are typically placed either over the ear-lobes 

(A1/A2) or over the mastoid processes (M1/M2), see Fig. 3. Then, various 

combinations of the reference electrodes can be used to create the reference electrode 

common for all channels. 

 

Fig. 3 Unipolar EEG montage – common reference. [PITK04] 

 

In the case of the bipolar mode, the resulting signal is computed in the amplifier as a 

difference of successive pairs of electrodes. Thus, there is not any electrode common for more 

channels (Fig. 4). The main advantage of using a differential recording between closely 

spaced electrodes is more precise localization of the brain activity. It is caused by cancellation 

of remote sources of electrical activity that are common to both electrodes. The disadvantage 

of the method is deformation of the EEG wave shape. There are also several ways to arrange 

the bipolar mode. The best known are longitudinal and transversal montage that differ in 

relative combination of the electrodes [Clark98]. 
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Fig. 4 Bipolar EEG montage. [PITK04] 

 

For the need of sleep analysis, the electric activity of the brain is typically recorded from the 

scalp of the monitored subject. The brain activity is recorded in the form of continuous brain 

waves with typical amplitude of 10-400 µV. The waves with amplitude 10-30 µV are referred 

to as low amplitude waves, contrariwise the waves with amplitude higher than 80 µV are 

referred to as high amplitude waves. The frequencies of the brain waves are typically from the 

range [0.5-100] Hz and highly depend on the degree of brain activity. The predominant 

activity of the EEG signal is in the frequency range [0.5-50] Hz. The sleep medicine deals 

mainly with the EEG activity in the frequency range [0.5-30] Hz. In practice, this EEG 

spectrum can be split into several frequency bands characterizing the typical brain activities. 

The main EEG frequency bands are as follows: 

• delta; 0.5-4.5 Hz 

• theta; 4.5-8.5 Hz 

• alpha; 8.5-11.5 Hz 

• sigma; 11.5-15.5 Hz 

• beta; 15.5-30 Hz 

Delta activity: In adults, this activity is normally present in the EEG during a deep sleep in 

NREM III and NREM IV stages. If delta waves occur at any other time it could indicate brain 

dysfunction. It is also dominant rhythm in infants. The amplitude of the waves is typically 

over 75 µV.  
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Theta activity: This activity is present when the person is drowsy and falls asleep. It is also 

normal activity in childhood and young adulthood. In adults, it is abnormal in wakefulness. 

The amplitude typically reaches 25 µV but can be even higher up to 100 µV. Theta activity 

also reflects creativity, intuition, fantasizing, emotions, etc. 

Alpha activity: Rhythmic alpha waves are characteristic of a relaxed state and are dominant 

when the eyes are closed. The waves are attenuated when the eyes are opened or when the 

person falls asleep. Alpha activity is best recorded over the occipital cortex. The amplitude of 

the waves is variable but is mostly below 50 µV in adults. When the alpha activity is to be 

characterized, it is necessary to mention inter-individual variability in the EEG alpha rhythm 

amplitude observed in the human population. Human subjects can be classified as either 

“alpha producers” or “non alpha producers”. Several authors propose more detailed 

categorization of alpha production. Davis and Davis [DD36] propose four types of EEG alpha 

records: dominant alpha (20% of healthy adults), subdominant alpha (35%), mixed alpha 

(20%), and rare alpha (25%). Golla et al. [GHW43] distinguished three alpha types: M 

(minimal), P (persistent), and R (responsive). 

Sigma activity: Rhythmic activity with amplitude approximately 50µV. This frequency band 

characterizes mainly the sleep spindles present during NREM II stage. 

Beta activity: Beta activity occurs particularly during intense mental activity. It is not 

attenuated if the eyes are opened or closed. It is best recorded over the frontal and central 

areas. Beta activity seldom exceeds 30 µV. This activity can be affected by the effect of drugs.  

EEG is characterized as stochastic signal and therefore it can be described implicitly by the 

means of characteristics both in the time and frequency domain. 

1.3.2 Electrooculography 

Electrooculography is a diagnostic method monitoring the electrical activity of the eye – in 

the concrete the resting potential of the retina. EOG is based on the fact that the cornea has a 

positive electric potential compared to the negative potential of the retina. The eye-bulb can 

be then represented as steady electric dipole (corneal-retinal potential). When it is supposed 

that the corneal-retinal potential is constant, the resulting potential of the dipole can be used to 

determine the actual position of the eye. The dipole is oriented along the anterior-posterior 

axis and its direction veers a little bit from optic axis of the eye. The orientation of the dipole 
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changes when the eye-bulb moves. Electrooculogram is the resulting signal (potential) and 

characterizes the position of the eye.  

The electrooculograph is a machine used to measure and register the potential difference with 

the surface electrodes placed close to the eyes. The typical electrode placement corresponds to 

the locations shown in the Fig. 5. Electrooculography using this electrode placement allows 

monitoring of both horizontal and vertical component of the EOG signal. To determine the 

horizontal component of the EOG, potential difference monitored by the means of the 

electrodes placed on the left and on the right from the eye (electrodes 1 and 2) is analyzed. 

The vertical EOG component is monitored with electrodes placed above and below the eye 

(electrodes 3 and 4). Sometimes, there is need to monitor the potential difference against the 

reference electrode – unipolar monitoring. The reference electrode is then typically placed 

above the nose (electrode 5) or in an electrically inactive area, e.g. ear-lobe. In this case, the 

horizontal component is monitored between the reference electrode and the electrodes 1 and 2. 

The vertical movements are then monitored between the reference electrode and the 

electrodes 3 and 4 [FF06]. 

 

Fig. 5 EOG - electrode placement. 

 

The signal registered by the EOG machine depends on the actual eye position (orientation of 

optic eye axis). If the person looks straight ahead the steady dipole is oriented symmetrically 

between the electrodes and consequently the resulting EOG signal is zero. When the eye 

moves from the center position to the left, the positive potential of the cornea moves closer to 

the left electrode and makes the electrode electrically more positive. By analogy, when the 

gaze is shifted to the right, the right electrode becomes to be more positive. The relationship 
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between the horizontal angle of the optic axis and the EOG output is almost linear in the 

range of ±30° of arc. The typical resolution is 1-2° of arc, thus it is difficult to record small 

eye movements (less than 2°). The bandwidth of the EOG signal is approximately tens of 

hertz. The monitored signal can be confounded by the artifacts generated mainly by the EEG, 

EMG and the recording equipment [Clark98]. 

EOG signal reflects the activity and movements of the eyes and also the actual state of the 

person. Frequency content of the EOG signal mainly ranges from 0.5 to 15 Hz. The EOG has 

relatively high DC component compared to the other biopotentials. The amplitude of the EOG 

signal is typically lower than 2 mV; it ranges from 50-3500µV. The movement of the eye of 

about 1° of arc evokes the amplitude change approximately 20µV [BBML99]. 

Slow (rolling) eye movements are in the EOG displayed as long moderate waves. Rapid 

jerking movements are displayed as sharply contoured fast waves. Blinking of the eyes is 

presented as rapid vertical movements. An eye blink typically lasts only up to 200 ms. 

1.3.3 Electromyography 

Electromyography is a diagnostic method monitoring the bioelectrical signals generated by 

the activity of the skeletal muscles. The resulting recording of the muscle activity is called 

electromyogram (EMG). 

Skeletal muscles can be described as compact structures compound of the muscle fibers. 

Contraction of the muscles is controlled by the Central nervous system (CNS). The activation 

of the muscle appears from the CNS and the impulse (action potential) moves through the 

spinal cord and then through the motor neuron to the muscle. The area where the nerve 

contacts the muscle is called the neuromuscular junction. The action potential then activates 

all the muscle fibers corresponding to the motor neuron. One motor neuron (motoneuron) can 

activate (innervate) a number of muscle fibers. But on the contrary, each muscle fiber can be 

activated by only one motor neuron. The elementary function unit of the muscle apparatus is 

the motor unit. Motor unit represents one motoneuron and all the skeletal muscle fibers that it 

innervates. The number of muscle fibers activated by one motoneuron can vary from 10 (the 

smallest muscles) up to about 2000 in the case of a large muscle. The motor unit represents 

the smallest unit of the muscle apparatus that can be activated by a volitional effort. Then all 

the corresponding muscle fibers are activated synchronously [RHM06], [PITK04], [Clark98]. 
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There are two main types of electrodes that can be used to acquire the muscle signal: invasive 

electrodes and non-invasive electrodes. Invasive measurement is characterized by the use of 

wire or needle electrodes that allow a precise localization of the signal source. This method is 

indicated if the individual muscle fiber action potentials shall be measured. 

At the sleep analysis, the non-invasive measurement is typically used. The EMG signal is 

acquired by the electrodes placed directly on the skin. The method is called surface 

electromyography (sEMG). Non-invasive measurement allows measuring of the action 

potentials generated by all the muscle fibers occurring in the muscles under the skin where the 

surface electrode is placed. The EMG signal acquired by the surface electrode is characterized 

as overleap of the potentials generated by the number of motor units. These action potentials 

are independent and therefore they can occur at random intervals. Thus, in the tissue under the 

electrode occur a lot of various time delayed signals. The resulting EMG signal is not purely 

determined as the simple summation of these signals. The EMG signal is also modified by the 

interference of the single action potentials in the volume conductor composed of the muscles, 

subcutaneous fat, skin, surface electrodes etc. [KO72], [KOS90], [SSA94], [Rodova00]. At the 

sleep analysis, the surface electrodes are typically placed on the chin or at the jaw of the 

subject. 

Amplitude of the electric impulses in the single muscle fibers is low (µV). Each motor unit 

contains several muscle fibers, and that is why the resulting signal is high enough to be 

recorded by the surface electrode placed on the skin. Amplitude of the EMG signal acquired 

with the surface electrodes ranges from the low µV to the low mV range. Huge amount of the 

tissue between the electrodes and muscle fibers as well as the electrode-skin interface limits 

the frequency range of the EMG signal up to 500 Hz. The signal components over this limit 

can not be discerned from the noise. The maximal amount of the surface EMG signal power is 

spread in the frequency band [50-150] Hz [Day02]. For the need of sleep analysis, the 

information content over 10Hz is typically used and analyzed. 

1.4 Sleep/wake stages 

Analogous to the brain activity, also muscular activity and eye movements are not 

homogenous during the whole night sleep. The way to discern single phases of the night sleep 

is based on detailed analysis of changes in the main physiological signals (EEG, EOG and 
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EMG) during the whole night recording. The criteria for description and classification of 

sleep/wake stages are defined in the manual elaborated by the team of authors co-chaired by 

Rechtschaffen and Kales [RK68]. According to the only worldwide accepted and applied 

standard can be the human sleep characterized by six stages that are repeated through the 

whole night. The sleep/wake stages are as follows: 

 awake state (wakefulness) 

 NREM sleep 

- NREM I 

- NREM II 

- NREM III & IV 

 REM sleep (Paradoxical Sleep) 

From the list of the sleep/wake stages presented above is evident that the whole night sleep is 

essentially formed by three main states. The first state is a state referred to as like awake state 

or wakefulness. The whole night sleep can be then characterized as periodic alternation of two 

main types of sleep – NREM sleep and REM sleep. These types of sleep represent two 

different sleep mechanisms characterized by different manifestations of brain activity as well 

as different activity of eyes and muscles. Normal sleep cycle characterized by alternation of 

the NREM and REM sleep phases was firstly described in 1957 [DK57]. Depending on the 

aim of the analysis, the Rechtschaffen and Kales manual defines one more class that could be 

scored in the whole night sleep recording. A movement time can be scored, if more than half 

of an epoch is unrecognizable or masked by muscle artifact. In general, this class does not 

represent any specific state of the vigilance or sleep. It reflects presence of artifacts in the 

monitored signals. These artifacts are especially caused by body movement. All the epochs 

scored as movement time are generally excluded from the recording and are not analyzed any 

more. All the sleep/wake stages are characterized in the next part of the thesis. Each stage is 

characterized by the predominant brain activity (EEG), typical eye movements (EOG) and 

muscular activity (EMG). 

1.4.1 Awake state 

In general, at the beginning of the polysomnographic recording there is a few epochs 

belonging to the awake stage. Short, only a few seconds lasting intervals of awake stage can 

be also detected during the whole night recording. Especially at the beginning of the night 
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(before fall asleep) is this stage formed by two linked phases. The first phase is so-called 

active vigilance. This phase represents the real beginning of the recording, when the subject is 

restful and lies still with opened eyes. EEG signal is characterized by dominant activity of fast 

beta waves with typical amplitude in range 10-30 µV. The first phase of awake stage then 

gradually passes to the second phase, so-called relaxed vigilance state. In this phase, eyes are 

already closed and the brain activity becomes to be slower. Thus, beta waves are replaced by 

the slower alpha waves activity. The awake state can also appear for a short interval later 

during the night. 

In the first phase, the EOG can show the eye blinking and rapid eye movement corresponding 

to the visual scanning. Later in the relaxed phase the EOG signal becomes to be characterized 

by slow, rolling eye movements. 

During the active vigilance phase, the EMG signal characterizes the high-frequency muscle 

contraction and movement artifact that are rather frequent. In the relaxed phase, the muscle 

activity becomes to be less prominent nevertheless the EMG tonic activity is still elevated. 

1.4.2 NREM I 

Phase of transition from wakefulness to sleep is classified as NREM I stage (NREM sleep 

stage 1). This stage can be called as transition stage and is referred to as drowsiness. The most 

significant feature of NREM I stage, especially to discern it from wakefulness, is the portion 

of alpha wave activity in the EEG signal in the actual epoch. Beginning of the sleep is directly 

linked to gradual reduction of alpha activity, so the brain activity slows down to the lower 

frequencies. Thus, NREM I stage is scored, if the total amount of the EEG alpha activity is 

less than 50% of the actual epoch. The rest of the epoch is characterized by mixed frequency 

content. By analogy to this description, the Awake stage is classified if the alpha activity 

takes over 50% of the epoch. Transition from wakefulness to NREM I stage is broad and 

gradual and it of course brings serious complication for manual classification as well as for 

design of the automatic analysis. Interpretation of the activity portion at manual classification 

is really subjective task and that is why the classification performed by various experts can 

show differences. 

The reduced EEG alpha activity is mainly replaced by increasing theta wave brain activity. So, 

the background EEG activity is characterized as low voltage mixed frequency activity with 
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the highest amplitude in the frequency range [2-7] Hz. In the NREM I stage can be also 

present the vertex sharp waves; their amplitude is about 100-150 µV. NREM I stage lasts only 

a short time and represents only about 5% of the total sleep time. 

The EOG signal is still characterized by slow eye movements (SEMs). Rapid eye movements 

are not present during NREM I stage.  

The activity of chin muscles is decreased compared to the wakefulness but the amplitude of 

the signal is still moderately high. Reduction of muscular activity is still gradual. 

1.4.3 NREM II 

The “true” sleep begins with NREM II stage (NREM sleep stage 2). This stage is dominant in 

the whole sleep architecture and occupies about 45-55 % of the total night sleep. At the 

beginning, it is characterized mainly by the presence of the slow theta waves and the alpha 

activity that becomes already minimal. The slow wave delta activity begins to appear, but it 

takes less than 20% of the epoch duration. The theta activity does not significantly overtop the 

other brain activities. The background EEG is represented by moderately low voltage mixed 

frequency activity that is interspersed with two special transient phenomena typically 

characterizing this stage. K-complexes and sleep spindles can appear in the EEG signal. 

K-complexes are characterized as slow biphasic high-amplitude waves often followed by a 

sleep spindle [CBDK+74]. They are characterized as low-frequency activity with frequency 

approximately 1-4 Hz and with total duration of at least 0.5 sec. In general, there is not a 

special minimal amplitude criterion for K-complex identification; however these complexes 

clearly stand out from the EEG background. The amplitude is at least 75 µV or approximately 

double of the background EEG amplitude [CRS02], [HCD01]. There are several types of K-

complexes that can be discerned. K-complexes can differ either in their origin (spontaneous, 

evoked) [SJ68], their form and morphology [JK68], [PR91] or in their relation to the sleep 

spindles [EEMSN81]. 

The second relevant phenomena characterizing NREM II stage are the sleep spindles. Sleep 

spindles are short and rhythmical oscillations with the frequency 12-14 Hz lasting at least 0.5 

sec. This frequency band activity is referred to as sigma waves. Typical amplitude criterion 

for the sleep spindle identification used during visual and automatic analysis is 15 µV 

[Nied98]. The name of this phenomenon, spindle, has been derived from its typical spindle 
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shape. Their appearance in the EEG signal trace represents the first sign of beginning of the 

sleep [Berger33], [LHH38b]. Sleep spindles frequently occur close to the K-complexes 

[Jansen90]. Presence of K-complexes and/or sleep spindles in the EEG signal is not an 

absolute indicator for NREM II stage classification. NREM II stage is classified, if the 

interval between two succeeding K-complexes or sleep spindles is shorter than 3 minutes. If 

the interval is longer than 3 minutes, the actual interval of the sleep recording is scored as 

NREM I stage. 

The EEG activity in the NREM II stage becomes to be more synchronized compared to the 

previous stages of sleep. The NREM sleep is characterized as synchronized sleep. It is caused 

by the fact that during the whole NREM sleep the waves generated in different brain lobes are 

mutually synchronized. 

There is no specific characteristic for EOG and EMG signal in the stage NREM II. Eye 

movements are rare and muscular activity is weak and is represented by the EMG signal with 

a low amplitude. 

1.4.4 NREM III & IV 

For the purpose of detailed analysis of the human sleep, two more NREM sleep stages 

(NREM III and NREM IV) can be discerned. Brain activity during both the stages is 

characterized by a dominant delta wave activity. Mainly the waves with frequency below 2 

Hz are present. The brainwaves in both the stages are very slow and that is why these stages 

are usually referred as Slow wave sleep (SWS) and form a unique stage. This stage (SWS) 

represents a deep sleep of the sleeping subject, where the reactivity threshold to the external 

stimuli is high. In the other words, it is very difficult to wake someone from the slow wave 

sleep. The amplitude of the EEG signal is typically higher than 75µV. 

The only one real difference between NREM III and NREM IV stages is the portion of delta 

wave activity in the epoch. The epoch is scored as NREM III stage if 20-50% of the epoch 

contains delta waves. The rest is occupied by the background theta activity. If the slow delta 

activity appears in more than 50% of the epoch, it is scored as NREM IV stage. The Sleep 

spindles and K-complexes may or may not be present. 

There are no specific criteria for EOG and EMG signal. Tonic chin muscle activity is usually 

present during Slow wave sleep. The activity of eyes is almost totally inhibited and the 
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activity recorded in the EOG channel mostly represents the EEG activity transmitted from the 

frontal and anterior temporal regions of the brain. 

1.4.5 REM sleep 

The brain activity typical for the REM sleep differs from the characteristic activity of almost 

whole NREM sleep (mainly the Slow wave sleep). REM sleep EEG signal shows relatively 

low voltage amplitude with mixed frequency content. The brainwave activity is 

desynchronized [Siegel00]. In the EEG signal can occur the saw-tooth waves characterized as 

signal with moderately high amplitude, frequency content about 2-5 Hz and triangular shaped 

waves. The saw-tooth waves are referred as phasic manifestation of REM sleep.  

The brain activity of REM sleep seems to be similar to the NREM I stage and partially to the 

wakefulness stage. It makes the classification based only on the EEG sometimes insufficient 

for correct discrimination of these stages – wakefulness, NREM I stage and REM sleep. 

Because some of the REM sleep waves or manifestations are similar to the wakefulness stage, 

the REM sleep stage is also called Paradoxical Sleep (PS). 

The REM sleep is in polysomnography also defined by two criteria reflecting important 

phenomena in the electrooculogram and electromyogram. The EOG signal shows evident 

high amplitude rapid eye movements (REMs). These typical movements are not present 

during the whole REM sleep. The REM sleep stage can be theoretically divided into two 

types of sleep – tonic REM sleep and phasic REM sleep. Rapid eye movements are present 

during the phasic REM sleep in contrast to the tonic REM sleep phase. 

Tonic EMG activity of chin muscles is in the REM sleep very low or even totally absent 

[JM59], [JMC59]. Muscular activity is monotonic; almost all voluntary muscle groups are 

inhibited or paralyzed. Phasic activity, represented by short eruptions of muscular activity, is 

in the EMG prominent and irregularly present. 

1.5 Sleep cycle 

As mentioned above, the whole night sleep can be characterized as cyclic alternation of two 

fundamental phases of sleep. The sleep structure consists of NREM sleep phase and REM 

sleep phase. Combination of one NREM sleep phase and one successive REM sleep phase is 

defined as the sleep cycle. When we fall asleep, first NREM sleep phase begins and lasts 
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typically about 70 to 90 minutes. Then the first REM sleep phase occurs. REM sleep phase 

lasts at the beginning of the sleep for about 5 to 12 minutes. Thus, one sleep cycle lasts for 90 

to 100 minutes on average. Through the night, the REM sleep phase becomes longer in 

comparison to the proportion of the NREM sleep phase (mainly the Slow wave sleep) that 

decreases. At the end of the night, the SWS can be even totally absent. The sleep cycle 

(combination of NREM sleep and REM sleep phases) repeats 3-6 times during the whole 

night sleep. This structure of the sleep characterizes the typical sleep where the pathological 

symptoms are not present. 

1.6 Automatic classification of sleep 

Large expansion of computer technology in the last few decades influenced positively also the 

medical science. Nowadays, modern computers evidently expand into the field of medical 

diagnosis. This chapter focuses on automatization of sleep analysis, in the concrete sleep 

staging. 

There are many tasks in the sleep analysis where the computer science can be engaged. Four 

main tasks could be mentioned. Firstly, the computers are used as useful machines for 

visualization of the recording and for extraction of various parameters from them. It is the 

first step, how the computer technology can facilitate the work of physicians. These systems 

are already widespread in the medical practice. The last three tasks are still in progress. There 

is large research in the fields of artifact detection and minimization, identification of 

characteristic phenomena and/or waveforms in the signals, and last but not least in the 

development of automatic classifiers. The current research in automatic processing of artifacts 

is summarized in the Chapter 2 of this thesis. Identification of characteristic waveforms in the 

signal is a task relatively close to the detection of artifacts or noise. As the most typical 

waveforms identified in the polysomnographic signals can be mentioned sleep spindles and 

K-complexes in the EEG signal [Laing02], [HCD01], [RL98], and rapid eye movements in the 

EOG signal [TSISN00], [Wallner96]. 

The main interest in the field of sleep analysis focuses on development of suitable automatic 

sleep stage classifier. The field of artificial intelligence provides a broad range of methods and 

algorithms that have been tested in the last years in order to propose reliable automatic system 

of sleep/wake stages classification. Some of the favorable attempts are described in this 

section. 
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The principle of the automatic classification is the following: at first, the polysomnographic 

signals recorded during an epoch are processed using signal processing techniques. This first 

step transforms the raw signals into a set of characteristics describing the signals shape during 

the epoch. These characteristics are grouped into a vector called the feature vector. Then, in a 

second step, the feature vector is used as an input for a classifier. Most researches publish the 

use of new techniques to process polysomnographic signals to create new features or focus on 

the design and results obtained by some specific classifier. 

One of the most popular classifiers used in the literature is the neural network, and more 

precisely the multi-layer perceptron. Robert et al. [RGL98] present the overview of neural 

network applications in the sleep research at the end of the 20th century. Authors of the paper 

briefly characterize some of the important attempts in automatic sleep analysis. Some of them 

are briefly characterized below. Schaltenbrand et al. propose in their two projects [SLM93], 

[SLTL+96] systems focused on scoring of human sleep into seven stages (movement, wake, 

NREM I – IV and REM sleep. The systems use information extracted from the EEG, EOG 

and EMG signals. A set of 17 features used to characterize the 30-sec epochs of the sleep was 

prepared as an input for the multilayer perceptron network trained with the classical 

bacpropagation algorithm. In the first study [SLM93], a set of 11 whole night recordings was 

scored with a global agreement of about 80.6%. In the second study [SLTL+96], 60 

recordings were scored (20 healthy subjects, 20 depressive patients and 20 insomniac 

patients). Agreement for the healthy subjects’ recordings was 84.5%, for the depressive 

subjects 81.5% and 81% for the insomniac ones. In some projects, the two basic types of 

sleep (NREM and REM) are analyzed. Grözinger et al. [GRK95] proposed an automatic 

system for detection of REM sleep in the human sleep. The system is based also on the neural 

networks and uses data extracted only from one EEG channel. The signal was digitally 

filtered into six different frequency bands by Fourier transformation, rectangular windowing 

and retransformation. The root mean square value of each filtered signal was computed for 

each 20-sec epoch of the EEG signal. So, a set of six values (features) was used as input of 

the neural network classifier. The fully connected network was also trained with the classical 

backpropagation algorithm. A set of 13 polysomnographic recording from healthy subjects 

was used to evaluate the accuracy of the proposed system. Accuracy of the system reached 

89% when the NREM sleep and REM sleep were discerned. In the later research, Grözinger et 

al. [GFR01] evaluated importance of some nonlinear and nonconventional stochastic EEG 
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parameters for classification of REM sleep. They investigated nonlinear features like highest 

Lyapunov exponent and correlation dimension, and stochastic parameters like spectral 

entropy and entropy of amplitudes. No improvement in classification was achieved when 

these new features have been added to the traditional spectral features used earlier. But, when 

only the new features (nonlinear and stochastic) have been used, the classification accuracy 

decreased by about 10%. The overview of neural network applications also refers to the sleep 

analysis performed on animals which is much desired in the medical science. The need for 

automatic sleep analysis performed on animals is mainly due to the fact that almost any 

pharmacological and/or medical experiments and methods have to be firstly tested and 

evaluated on animals. Sleep analysis in rats is processed in the work of Robert et al. 

[RKNL96]. The system was proposed to discern three stages of vigilance - wake, NREM and 

REM sleep. Five features were extracted from each 8-sec epoch of the EEG signal and then 

processed by the neural network. Six 24-hour recordings were scored during the tests with 

final classification agreement over 94%. 

As presented above, many various algorithms have been already used to classify 

polysomnographic data. Becq et al. [BCCB+05] have evaluated and compared performances 

of five common classifiers. The classifiers used in the research can be regrouped into two 

distinct categories. Classifiers in the first group can be characterized as probabilistic 

classifiers based upon Bayes’s rules (linear classifier, quadratic classifier, k-nearest neighbor 

classifier and Parzen estimator). A multilayer perceptron (MLP) is used to represent the 

classifiers that compute frontiers in the representation space directly from the data. This 

research also evaluates influence of proper data pre-processing; in the concrete data 

transformation towards normal distribution. Performance of all classifiers is compared both 

for raw data and transformed data. When the raw data have been used, the lowest 

classification error was reached for the MLP classifier. The classification error was about 

29% on the validation sets. Classification error of the other classifier has been significantly 

higher (over 40%). Then, when the transformed data were used, evident decrease of 

classification error for all classifiers except MLP classifier was observed. MLP classifier 

obtained about the same classification error as before when raw data have been used. Highest 

improvement has been observed in the performance of k-nearest neighbor classifier and 

Parzen estimator which increased their classification error of about 20% and could be 

compared to the performance of the MLP classifier. The study has been realized over 11 
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recordings scored by an expert into the six different stages: wake and movement, NREM I, 

NREM II, NREM III, NREM IV, REM sleep. Eight features have been extracted from the 

polysomnographic recording and then used as input for the automatic classifiers. The features 

are: relative spectral powers in the six EEG frequency bands, standard deviation of the EEG 

and standard deviation of the EMG. This study demonstrates that proper data pre-processing 

as well as selection of classification algorithm are important for effective sleep analysis. 

Various techniques of feature extraction performing both in the time and frequency domain 

have been used in the researches presented above. In the frequency domain, the Fourier 

transformation is the most frequently used technique. Another approach was tested in the 

work of Oropesa et al. [OCJ99]. The system combines the wavelet analysis of the signal and 

neural networks (multi-layer perceptron) used as automatic classifiers. Each 30-sec epoch of 

the EEG signal is processed by the wavelet packet transformation and decomposed into eight 

levels. The mean quadratic values of specially selected wavelet coefficient arrays were 

computed to determine 13 features characterizing the actual epoch. During the tests, testing 

set of 590 30-sec epochs was classified with global accuracy of 77.6%. But only four stages 

(wake, NREM I, NREM II and REM sleep) have been scored during this research. 

There are also other techniques used in development of automatic sleep classification. Flexer 

et al. [FGD05] propose a probabilistic continuous sleep stager using only single EEG signal. 

The system uses the technique of Hidden Markov models that are based on the probabilistic 

principle. In the concrete, the Gaussian observation Hidden Markov model (GOHMM) is used. 

The proposed model deals with continuous probability traces defined for the three 

fundamental vigilance states (wake, deep sleep, REM). Then, six sleep/wake stages (wake, 

NREM I, NREM II, NREM III, deep sleep and REM) are scored with time resolution of 1-sec. 

The proposed automatic system is tested on two sets of data. The first testing set contains 20 

whole night recordings. The classification accuracy of wake and deep sleep is about 80%. 

Classification of epochs scored by R&K scoring manual as REM sleep stage is quite lower, 

about 68%. The other NREM stages are characterized by low classification accuracy that does 

not exceed 40%. The second testing set contains 14 whole night recordings. In this case, the 

REM sleep and deep sleep stages kept their accuracies, but the classification accuracy of wake 

stage fell to 25%. There are also other attempts in the area of contextual analysis of 

sleep/wake stages [Shen02]. 
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There is one more research project that should be surely mentioned in the overview of current 

research in automatic sleep staging. In the SIESTA project, a group of researchers developed 

and subsequently optimized an automatic classification system called “Somnolyzer 24 x 7”. 

The final system processes one central EEG, two EOG channels and one chin EMG channel. 

An expert system is used to perform the sleep/wake stage classification itself. The system 

scores each 30-sec epoch using a set of features extracted from the monitored signals. The 

features characterize two types of information contained in the actual epoch. Firstly, the 

quantitative parameters characterizing the background activity are extracted from the epochs. 

The second group of features results from the identification of special waveforms 

characterizing the actual sleep/wake stage. Presence of the special waveforms is characterized 

in the term of theirs density, intensity, amplitude etc. The results of the system published in 

the paper [AGPW+05] indicate the overall classification accuracy about 80% obtained when 

270,100 30-sec epochs were automatically scored. Agreement in classification of the wake 

and NREM IV stages is about 80%. Classification accuracy of NREM stage II and REM sleep 

exceed 86%. Only the NREM I and NREM III stages are scored with a low agreement (about 

50%) with the scoring of a human expert. The SIESTA project research group made also 

practical research in the fields of artifact detection and identification of sleep related 

waveforms. 

The survey of the research presented above shows, that the main interest of the current 

research focuses on the sleep stage classification and artifact processing. Various techniques 

and algorithms have been already performed and evaluated in order to propose proper 

automatic classifier. As it will be seen later in the chapter 2, there have been also some 

attempts to propose effective artifact processing strategy. It could be said that both the areas 

of research are already quite well explored. So, this thesis focuses neither on the development 

of some specific classification algorithm nor on the proposition of a new artifact detection 

technique. The aim of this thesis is to propose a classification system that would effectively 

combine the results obtained by: 

- artifact identification methods, so as to develop an automatic system that takes into 

account and overcomes the problem of pollution of the signals by artifacts 

with the results obtained by: 
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- feature selection methods, so as to feed the classifier taking the decision of classification 

into sleep/wake stages with the most relevant characteristics extracted from the 

monitored signals. 

Indeed, the study of the bibliography showed that almost no projects had been dealing with 

the selection of relevant features from the analyzed signals. Major part of the projects simply 

uses empirically determined features as inputs for the classifiers and does not perform any 

sophisticated selection over available features computed from the signals. It is caused by the 

fact, that polysomnographic recording can contain a lot of various signals and until now there 

is not any worldwide accepted set of optimal features. 

To be able to perform a reliable selection of relevant features and to evaluate the results 

obtained by an automatic classification system, it is necessary to analyze a sufficiently large 

and representative database of polysomnographic recordings. Analysis of only a small number 

of recordings can not provide any useful information that could be consequently applicable 

for analysis of another data. Next section of this chapter describes the database of 

polysomnographic recordings analyzed during this thesis. 

1.7 Presentation of the polysomnographic database used in this 

thesis 

In this thesis, a large database of polysomnographic recordings has been used for the 

experiments. The full database contains 47 night-time polysomnographic recordings obtained 

from 13 healthy adult subjects (19–47 years old). Recordings were made continuously during 

the night sleep (typically 8 hours between 22:00h and 06:00h). Each polysomnographic 

recording contains four EEG channels (C3-A2, P3-A2, C4-A1, and P4-A1), one transversal 

electrooculogram, one chin electromyogram and one electrocardiogram. The analog signals 

were then digitized with an 8-bit A/D converter at a sampling frequency fs = 128 Hz. Only the 

EEG (C3-A2 channel), EOG and EMG signals were analyzed in this thesis. The EEG leads 

were attached onto the scalp according to the International 10-20 EEG System of Electrodes 

Placement [Jasper58]. Concrete protocol of the investigation is described in the papers 

[CPCBB03], [BMPN95]. 

All the 47 PSG recordings were visually scored by two independent sleep physicians. Visual 

sleep/wake stage scoring was performed with constant epoch duration of 20 sec according to 
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the conventional rules of the R&K manual [RK68]. Each epoch was thus classified into one of 

six different sleep/wake stages: wakefulness, NREM sleep stage I, NREM sleep stage II, 

NREM sleep stage III, NREM sleep stage IV, and REM sleep. When the signals were 

confused, the class labeled as “undefined” was scored. For the need of the successive analysis 

realized in this thesis are the single classifications performed by the two experts labeled as 

“EXPERT 1” and “EXPERT 2”. The total number of epochs extracted from all 47 recordings 

is 77,649. The Tab. 1 summarizes the classification of all recordings and confronts the 

classifications of both experts. From the table it can be seen, that the inter-expert agreement 

complicates the automatic sleep analysis. As presented in the international research the epoch 

by epoch inter-rater expert agreement typically varies from 75 to 90% [KKHMK92], 

[SLTL+96], [NPSWR00], [DKGK+04], [AGPW+05]. The relatively low inter-rater expert 

agreement can be caused by many negative factors. As the main factors could be mentioned 

ambiguity of the sleep staging rules, broad transitions between the consecutive stages, long 

length of the epoch (20s or 30s), difference in the medical equipment, the experience of the 

physician etc. 

Number of 
epochs Awake NREM I NREM II NREM III NREM IV REM Undefined

EXPERT 1 8,275 2,913 36,744 3,894 9,194 16,567 62 

EXPERT 2 5,643 5,231 35,924 7,862 5,440 16,847 702 

Tab. 1 Comparison of expert classification - whole PSG database. 

 

The total database of 77,649 epochs was in the next step reduced in order to avoid 

introduction of the expert ambiguity into the automatic classification. Three constraint 

conditions were defined to make the database more accurate. The stages NREM III and 

NREM IV were joined to form a SWS stage. Then, all the epochs which were scored by at 

least one expert as “undefined” were removed. The last condition results from the inter-expert 

agreement test. Only the epochs scored by both experts in the same stage were considered in 

this thesis. As the result of the limitation, 750 epochs were removed because of scoring as 

“undefined” class and 9,513 more because of expert disagreement. Thus, the total number of 

epochs used in the analysis is 67,386 and it represents 87% of the whole data. The reduced 
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database (Both experts database) is characterized in the Tab. 2 that presents number of epochs 

in the sleep/wake stages used for automatic classification. 

Number of 
epochs Awake NREM I NREM II SWS REM 

Both 
experts 5,376 1,998 33,100 11,498 15,414 

Tab. 2 Number of epochs in the sleep/wake stages – Both experts database. 

 

Specialized software is used to visualize and analyze the polysomnographic recordings. The 

PRANA (Polygraphic Recording ANAlyser) software package is developed by the PhiTools®. 

The software is suitable for analysis of polygraphic recordings (EEG, EOG, EMG, etc.) and 

topographic EEG recordings. It contains many tools specialized on conventional and 

advanced signal analysis and signal processing methods. PRANA is based on the MATLAB 

environment and allows the user to implement some original algorithms that can be integrated 

as user plugins into the PRANA software. More information about the PRANA software can 

be found in the PRANA User Guide [PRANA05]. 

1.8 Chapter conclusion 

Sleep analysis consists mainly in classification of the polysomnographic recording into 

various sleep/wake stages. The typical polysomnographic recording contains three essential 

physiologic signals – electroencephalogram, electrooculogram and electromyogram. All the 

three signals seem to be important and helpful for correct classification of the sleep/wake 

stages. The general terminology used in the polysomnography defines six stages representing 

different states of vigilance and sleep (wakefulness, NREM sleep stages I-IV, REM sleep). 

For a need of practical applications, these six stages can be reduced to a set of five stages, 

when the NREM sleep stages III and IV are joined together. In this project, these two stages 

have been joined and then form a single stage marked as Slow wave sleep (SWS). 

Study of the state of the art in the sleep/wake stage classification has been used as a 

background for proposition of a two-step classification system. The classification system will 

combine the results of an artifact identification procedure performed in a first phase with 

some classification realized in a second phase. The classification is achieved using features 

selected as the most relevant by a feature selection procedure. To be able to propose a reliable 
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automatic system, its development as well as its evaluation must be done with a use of a large 

base of polysomnographic recordings. The polysomnographic database has been presented in 

detail at the end of this chapter. 
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Chapter 2  

Analysis of artifacts 

Exact definition of the terminology and characteristic of different sleep/wake stages eminently 

helps to improve the quality and accuracy of the sleep analysis. However, quality of the 

signals contained in the polysomnographic recording also affects the results of sleep analysis. 

Scoring of the polysomnographic recording (electroencephalogram, electrooculogram and 

electromyogram) that contains a lot of various artifacts can be easily misled during the sleep 

analysis. Existence of artifacts and their influence on sleep analysis have been slightly 

mentioned in the presentation of different sleep/wake stages. For example, movement time is 

defined as a special state, where the signals in the epoch are defaced with the presence of 

artifacts. 

The second chapter of the thesis will focus on artifacts that are typical for polysomnographic 

recordings. In the first part, the various artifacts will be characterized and categorized. Then, 

the general artifact processing techniques will be discussed and some concrete applications 

characterizing the current research in the field of artifact processing will be presented. There 

are two main strategies that could be used to process artifacts – artifact identification and 

artifact minimization. The concrete strategy employed in this thesis is based on the artifact 

identification performed and is performed on short segments of analyzed signals. Detailed 

description of the artifact processing strategy employed in the proposed two-step automatic 

classifier form the base of this chapter. In the last section of this chapter, the results of artifact 

identification performed on the available polysomnographic recordings are presented and 

discussed. 
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2.1 General characteristics of artifacts 

In general, artifact is a phenomenon that has not any physiological background in the 

monitored organ. The potential difference marked as an artifact originates in other source than 

in the monitored organ. In the other words, an artifact can be characterized as a defect that can 

appear in the expected course of the monitored signal. So that, for example, as an artifact in 

the EEG can be marked any potential difference (symptom) that is not generated directly by 

the brain activity. The artifacts in the other signals can be defined by analogy. There are 

several moments in the whole process of the sleep analysis (monitoring and recording of the 

physiological signals, data processing) that can introduce an undesirable noise (artifact) into 

the original signal. 

There are many criteria that can be used to categorize the artifacts or to group different types 

of artifacts together. One of the frequent methods used to split the artifacts is a method based 

on the difference in the origin of the artifacts. According to this criterion, two types of 

artifacts can be discerned – biological (physiological origin) and technical (non-physiological 

origin). 

2.1.1 Technical artifacts 

The artifacts caused by the non-physiological source can be split into two groups: 

• Artifacts caused by the external source or by the equipment 

• Electrode artifacts 

The artifacts of the first group are mainly caused by the existence of external sources of 

electrostatic and/or electromagnetic fields in the room where the examination takes place. 

Existence of the external sources close to the measuring device or patient can contaminate the 

measured signal. As the typical example can be mentioned 50/60 Hz mains interference 

(power line artifact) or other diagnostic or therapeutic devices placed in the exam room. The 

measurement can be also obscured by the presence of persons and devices that could be a 

source of electrostatic field. To avoid this artifact, utmost care should be focused on 

placement of the patient and also on proper shielding of the medical devices. 

The second group of technical artifacts contains the artifacts caused by the electrodes or by 

the leads. There are several causes of these artifacts, but the main cause can be characterized 
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as movement of the electrodes placed on the skin of the monitored person. In the concrete, the 

motion artifacts can origin from movement in the electrode-electrolyte interface or from skin-

stretch. The movement of the electrode (relative to the electrolyte) causes change in the 

distribution of the equilibrium charge at the electrode-electrolyte interface. This mechanical 

disturbance of the charge leads to a momentary change of the half-cell potential until the 

equilibrium state is reestablished. If a pair of electrodes (with electrolyte) is used and one of 

them moves, a potential difference appears between these two electrodes. This potential is 

referred as motion artifact and is common for polarizable electrodes [Neuman98]. These 

artifacts can be reduced using modern Ag-AgCl recessed electrodes. The skin-stretch can be 

reduced by the use of electrodes that puncture the skin or by abrading the skin before the 

electrodes are placed. The electrode-skin interface is not the only weak point resulting in a 

motion artifact. When the leads are moved or handled, an artifact can be electrostatically 

induced. The motion artifact can be characterized as slow-wave and high-amplitude 

phenomenon. Frequency range of the motion artifacts can reach 20 Hz, but the predominant 

frequency range is [1-10] Hz. Very typical is also so called electrode pop artifact (contact 

noise artifact) that originates at the electrode-skin interface. This artifact rises from loss of 

contact between the electrode and the skin which is caused by the electrode movement 

relative to the skin. In the recording it is manifested as a sharp rise of the amplitude followed 

by an exponential decay. 

During a long-time measurement, the electrode may detach totally. This event is very 

common in the polysomnography because the measurement lasts about 8 hours and the person 

moves during the night. There is another risk of long-time monitoring. The electric 

parameters of the electrodes can change during the time. It is mainly problem of the electrode 

impedance increase during the measurement. Thus, also the electrode attachment and 

conductive gel should be checked. 

There is no way to totally avoid occurrence of technical artifacts. But we can try to reduce 

chance of their occurrence and reduce their undesirable effects. Using of high-quality material 

and equipment (electrodes, leads, regular test of electrode parameters, etc), optimized 

recording techniques and training of high-qualified medical stuff can lead to minimization of 

technical artifacts. 
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Electrodermal artifacts represent another noise that can contaminate the signal. Typically, the 

source of theirs origin is due to the person’s sweating. Sweat can disturb the electrical 

property of both the skin and the electrode (e.g. melting of the electrolyte gel). This artifacts 

manifest in the recording as extremely slow waves. Their frequency is lower than 1 Hz, 

typically [0.25-0.5] Hz. 

2.1.2 Biological artifacts 

Biological artifacts are caused by the sources inside the body of the person. Moreover, 

biological artifacts typically originate from the normal activity of the organism and therefore 

they are common in medical practice. It is very difficult to avoid their occurrence; in some 

cases it is even impossible. Their occurrence can be partially suppressed if the examination 

takes place in the comfortable environment where the person can be relaxed and without fear 

or anxiety. 

The typical signals monitored in polysomnography are electromyogram, electrooculogram 

and electromyogram. It is evident that not all physiological phenomena are referred as artifact 

in all these signals. For example, ocular manifestations can not be detected as artifact in the 

EOG signal but are undesirable in the EEG signal. Great majority of all the possible artifacts 

will be characterized in this section together. 

Ocular artifacts 
Ocular artifacts in polysomnographic recordings originate in movement of the eye-bulb or 

from eye-blinking. The physiological background characterizing ocular activity has been 

described in the chapter 1. Ocular artifacts contaminate especially the EEG signal. It is mainly 

due to the fact, that according to the 10-20 system are the Frontal (F) and Frontopolar (Fp) 

electrodes placed close to the eyes. Occurrence of the ocular artifacts decreases in dependence 

on the distance from the eyes [ZBDHR02]. The primary frequency range of the ocular artifacts 

can be defined as [0.5-4] Hz. Thus, these artifacts confound mainly the delta EEG frequency 

band. The low theta frequency band can be also slightly contaminated by these artifacts. 

Nevertheless, the ocular artifacts caused by eye-blinking can have frequency components up 

to 20 Hz. Artifacts caused by eye movements and blinking are of relatively high amplitude 

when recorded in the EEG recording. 
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Muscle artifacts 
There are several manifestations that can be marked as a muscle artifact. They are typically 

caused by muscle tension (facial muscles) or by the muscle activity (movement of the head, 

body or limbs). Involuntary movements are present when the person is not relaxed (anxiety, 

fear or uncomfortable environment). Large disturbances can appear when the person executes 

some movements that activate the muscles on the head (e.g. movement of the head, chewing 

or swallowing). Muscle artifact can manifest as single spikes or oscillations or can be 

represented as continuous interference. In general, they markedly stand out from the 

background activity of the monitored signal; therefore they can be readily identified. The 

frequency range of the muscle artifact is broad. Maximum of the muscle artifact activity is 

over 25 Hz. In general, there are two ways to identify manifestations of the muscle artifacts. 

Firstly, the sudden amplitude abnormality characterizing the bursts can be detected in the 

signal trace. On the contrary, the second strategy of muscle artifact detection is based on the 

analysis in the frequency domain. It is based on the evaluation of the high-frequency activity 

in the spectrum of the signal.  

Influence of the muscle artifacts on the monitored signal (EEG) is well described in the work 

of Bruner et al. [BVDM+96]. According to them, muscle artifacts contaminate the entire 

frequency band [0.25-32] Hz. The EEG signal is substantially contaminated from the 

frequency of 15Hz. Contribution of muscle artifacts can cover from 20 to 70% of power 

density of the artifacted epochs. Significant effect of muscle artifacts is also observed in the 

low delta frequency band and in the frequencies over 6 Hz. 

ECG and pulse artifacts 

Activity of the heart can generate two different types of artifacts. The first type originates 

directly from the electrical field generated by the heart. Total electrical activity of the heart 

can be characterized as an electrical dipole. The dipole is represented by the vector that is 

oriented from the negative charge to the positive charge. Orientation of the dipole depends on 

the actual phase of the heart cycle, thus it changes in the time. This artifact is well readable 

when the monitored signal has low amplitude. In the case of the EEG monitoring, the 

electrical dipole can contaminate several leads of the EEG recording when the referential 

montage is used. ECG artifacts are rhythmic and are synchronous with the QRS complex of 

the electrocardiogram. Contamination of the recording by the ECG artifact is more frequent 

when obese or short-neck subjects are monitored [COS84]. 
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Pulse artifacts may originate when the electrode is placed over a surface artery. The pulsation 

of the artery periodically moves the electrode and in the signal it is manifested as slow waves. 

The waves are also connected to the heart cycle; they are slightly delayed behind the QRS 

complex. The pulse artifacts contaminate only leads that are adherent to electrode placed over 

the artery. 

Respiration artifacts 
Respiration is inseparably accompanied by the rhythmic movement of the chest, neck and 

head. Movement of the head can cause small movement of the electrodes used to monitor the 

polysomnographic signals. The respiration thus introduces some slow wave artifacts. The 

artifacts are synchronous with inhalation and exhalation. 

2.2 Theory of artifact processing 

Some of the artifacts mentioned in the previous part of the thesis can be avoided. Using of 

high-quality equipment in combination with high-qualified medical stuff can be considered as 

an initial way to deal with (avoid) artifacts. Unfortunately, some of the artifacts are 

characterized as unavoidable. It means that their source of the origin can not be completely 

suppressed. These artifacts must be processed using an optimal method so as to they do not 

distort the information used in the subsequent sleep analysis. There are two basic strategies to 

deal with unavoidable artifacts [ARSG+99]: 

• Artifact identification 

• Artifact minimization 

Artifact identification strategy leads to irreversible and complete loss of artifacted segments. 

On the contrary, the artifact minimization algorithm is implemented so as to clean up the 

segments of the artifacts and to allow analysis of the cleaned epochs. Detailed characteristic 

of both the strategies will be presented in the next two sections of the thesis. 

2.2.1 Artifact identification and rejection 

Artifact identification strategy is based on identification of the artifacted intervals in the 

analyzed recording. So, the whole recording is scanned segment by segment in order to 

identify possible artifacts. When an artifact is identified in a segment of the signal, the 

artifacted segment is then excluded from the recording. It is evident that such an artifacted 
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segment is then excluded from any subsequent analysis. Such a procedure based on rejection 

of contaminated epochs can lead to enormous reduction of the available data in the analyzed 

database. This effect is evident especially in the tasks, where the segments of recording to be 

analyzed are too long. In such a case, presence of only a brief artifact leads to unreasonable 

removing of the whole segment of the recording. So, adequate length of analyzed segments 

should be used. In some tasks, the artifacted segments do not have to be necessarily excluded. 

It can be kept in the recording and a supplementary parameter indicating presence of an 

artifact is only assigned to the segment of the recording. 

The basic idea of artifact identification is based on application of a model for the artifact that 

should be detected. This method uses characteristic parameters of the signal (amplitude, 

frequency, energy, correlation coefficient, etc.) that represent the artifact in the best way and 

allow discerning artifact-free and artifacted segments of the signal. The parameters extracted 

from the signals should be as discriminative as possible. Once the parameters that describe the 

artifact best have been chosen, a detection procedure can be applied. Most often, it consists in 

comparing the value of the extracted parameter to a threshold value. If the parameter value is 

above (or below) a given value, the segment is artifact free. Otherwise, it is artifacted. The 

most complicated task is then to tune the threshold value. The process of threshold setting is 

mainly based on the experimental knowledge and/or on a trial and error method. There are 

two types of thresholds used in artifact identification. They can be either absolute or adaptive. 

The absolute threshold value is set at the beginning of the analysis and stays constant during 

the whole analysis. On the contrary, in the case of the adaptive threshold strategy the 

threshold value is periodically updated during the analysis. To update the threshold value, a so 

called moving window is used. The moving window moves step by step along the whole 

recording and at each step it delimits the interval of the signal that is then used to compute the 

local threshold value.  

The value of the absolute threshold represents the extreme (maximal or minimal value) of the 

analyzed characteristic parameter. An artifact is thus characterized by a value that is out of the 

range characterizing artifact-free segments. Detection algorithms using adaptive thresholds 

are especially used to detect artifacts that manifest as a sharp and sudden change in the signal 

trace. The artifact should stand out from the local area demarcated by the moving window. 

Artifact identification strategy is wide-spread in artifact processing and can be characterized 

as general methodological approach. Various types of artifacts or noise can be identified by 
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the automatic detector using the proper parameters extracted from the signal combined with 

the suitable threshold value. 

One of the examples of the absolute threshold application is presented in the work of Schlögl 

et al. [SKPK+99]. This work focuses on detection of overflow artifacts and represents a 

typical example of absolute threshold application. Overflow artifact can be characterized as a 

saturation of the amplifier and/or the analog-to-digital converter caused by its limited 

dynamic range. The limit value of the device then can be used to determine the absolute 

threshold value. The threshold value then can be compared with the (absolute) amplitude 

values of the signal in the epochs or in shorter sub-epochs. In the work of Durka et al. 

[DKBSN03] are proposed methods for detection of several types of artifacts. The authors 

present two types of artifact detection using absolute threshold. The first part of the artifact 

detectors deals with the constant threshold value that can be used if the parameters extracted 

from the signal are insensitive to the calibration or to another setting of the recording. If the 

extracted parameters are sensitive to the recording setting or can vary between the persons or 

recordings, then the threshold value is set relatively to the statistics of the actual recording to 

be processed. The statistical properties of the extracted parameter are estimated over the 

whole signal. In general, mean value or median value is computed from all values of the 

parameter calculated on the signal contained in the actual recording. Value of the statistical 

parameter multiplied by a certain factor is then used to determine the statistical absolute 

threshold. So, the constant threshold is set by an expert and is the same for all recordings, 

whereas the statistical absolute threshold varies for individual recordings. Van de Velde et al. 

[VEC98] compares constant and statistical absolute thresholds for detection of muscle 

artifacts. The authors use five parameters extracted from the EEG signal of 21 volunteer 

subjects. The parameters are computed both in the time and frequency domain. The 

parameters are as follows: maximum slope, maximum and minimum amplitude, absolute and 

relative high beta power, and spectral edge frequency. The research also focuses on selection 

of adequate length of the analyzed segment of signal. The authors conclude that the 

performance is significantly higher when the constant threshold is used. When absolute high 

beta power or slope parameter values have been computed from 1-sec segments of the signal, 

the highest sensitivity and specificity were reached. Performances of these two parameters 

combined with constant thresholds are near the expert’s performance (sensitivity 81% and 

specificity 92%). The sensitivity for absolute high beta power parameter is about 80% with a 
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specificity of about 90%. When the statistical thresholds have been used, no one parameter 

got near the expert’s performance. 

Artifact detection using an adaptive threshold allows local modification (update) of the 

threshold value during detection of the artifacts in the whole signal. To update the threshold 

value, local background information defined by the moving window is used. So, the threshold 

value reflects much more the local course and the activity of the analyzed signal. The way to 

define the adaptive threshold is similar to the previous method. The only difference is that the 

values of the characteristic parameter defining the threshold must be periodically updated in 

concordance with the actual interval defined by the moving window. The adaptive threshold 

method is powerful if the artifacts to be detected manifest as temporary phenomena that stand 

out from the local background activity and whose occurrence is not frequent or permanent. If 

the artifacts are frequent, a soever long moving window can be used, but the background 

activity still will not differ from the characteristic of the actually processed artifacted interval. 

Application of the adaptive threshold detection is well described in the work of Bruner et al. 

[BVDM+96]. The aim of this work is to prepare a detector of muscle artifacts. The proposed 

method is based on the fact that the muscle artifacts characterizing bursts of myogenic activity 

can be characterized as relatively high-frequency phenomena. To characterize the artifacts, 

spectral power density in the frequency range [26.25-32] Hz was computed and used as the 

parameter. The parameter was computed for a 4-sec epochs in the entire recording. A 3-min 

symmetric moving window was used to define the local background high-frequency activity 

for each 4-sec epoch. The adaptive threshold was then determined as a median of the 45 

values of the parameter in the actual 3-min window. Then, a 4-sec epoch is marked as 

artifacted, if its high-frequency activity exceeds local threshold value (local activity) by the 

factor of 4. 

Another method to discern artifact-free and artifacted intervals employs the model of artifact-

free data. Compare to the previous method, now in this case the aim is to define the model of 

a signal that is not contaminated by any artifact or noise. However, this method does not 

detect the single artifact types. 

Schaltenbrand et al. [SLM93] prepared an unsupervised neural network (NeoART) that could 

be used to identify the artifact-free data. Their network is learned on the learning sets that 

contain only artifact-free data. At the end of the learning process, the learning sets are 
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described by a union of hyperspheres characterizing the individual prototypes. Outputs of the 

NeoART network correspond to the prototypes. Then new observations can be classified. If at 

least one output cell of the NeoART network fires, the observation is supposed to be artifact-

free. Otherwise, a new prototype would be generated by the unsupervised network and the 

observation is then supposed to be artifacted. So, the unsupervised network could be used to 

exclude artifacted epochs from the subsequent analysis. 

2.2.2 Artifact minimization 

While at artifact identification the artifacted segments are totally rejected from the signal, the 

aim of the artifact minimization strategy is to extract or attenuate only the contribution of an 

artifact and leave the corrected segments of the signal to be processed. The advantage, as 

compared to the artifact identification, is the fact that artifact minimization does not lead to 

the loss of available data since it does not reject the artifacted segments. The idea of the 

method is to clear the signal of the artifacts and noise. Artifact minimization can be performed 

when the original source of the artifact is available and can be thus used to clean the artifacted 

signal. 

It is supposed that the recorded signal (SIGrec(i)) can be characterized as a linear combination 

of the original (true) signal (SIGorig(i))and a source of artifacts (AForig(i)). The source of the 

artifacts can be either directly recorded (monitoring of an additional signal) or reconstructed 

(e.g. reconstruction from other monitored signals). So, if both the recorded signal and the 

source of the artifacts are available, the propagation coefficients (transmission coefficient or 

scaling factor) θ must be determined in order to remove the artifact from the recorded signal. 

The propagation coefficients determine the proportion of the artifact in the recorded signal 

SIGrec(i). Then, the adequate portion of the artifact source signal (AForig(i)) can be subtracted 

and the original true signal (SIGorig(i)) can be finally obtained. 

( ) ( ) ( )iSIGiAFiSIG origorigrec +⋅= θ                                                        ( 1 ) 

There are two main problems to be solved so as to perform reliable artifact minimization. 

Firstly, the precision of the propagation coefficients θ affects the accuracy of this method. 

There are several methods to determine the propagation coefficients. As the first method, the 

visual analysis performed by the physician should be mentioned. This method is very 

subjective, time consuming and also inaccurate. There are also much more sophisticated 
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methods used to determine the interference of the artifacts in the monitored signal. These 

methods typically use a regression analysis – both in time or frequency domain. Their typical 

application is to remove ocular artifacts from the EEG signal. Some of the applications can be 

found in [SASP86], [GSM86], [KMVS91]. The propagation coefficients determined using a 

frequency domain approach vary with frequency in comparison to those determined by the 

time domain approach [Ille01]. The second problem of the artifact minimization consists in 

the fact that this method supposes that the source of the artifact is not contaminated by 

another source of artifacts. But it is evident that the source of the artifacts can be also 

contaminated by some other artifacts or that the original activity of the monitored organ can 

intrude the artifact source signal. This fact is crucial for this method of artifact minimization. 

Moreover, in some analysis, the source of the artifacts is not available. In this case, 

reconstruction of the artifact source must be done. These methods can be referred as spatial 

filters. The spatial filters methods are based on the modeling and presence of the topographic 

data – topographies of the original signal and artifact. Modeling of both the topographies 

enables a distortion-free artifact removal. As the two main techniques should be mentioned 

these: Multiple source approach and Independent component analysis (ICA). These 

techniques differ in the way how both the topographies are estimated. The Multiple source 

approach is mainly used to the correction of ocular artifacts. Then, the concrete method 

published by P. Berg and M. Scherg [BS91a], [BS91b], [BS94] is called Multiple Source Eye 

Correction (MSEC). MSEC technique consists of two phases. In the first phase, the artifact 

topographies are determined using the principal component analysis (PCA). Then, in the 

second phase, the original signal topographies can be estimated by the spatio-temporal dipole 

source analysis [SC85], [Scherg90].  

If the ICA technique is used, both the topographies are estimated together in a one step. From 

the nature of the method, ICA decomposes the recorded data (set of m channels) into m 

statistically independent processes and corresponding topographies. So, if the original signal 

activity and the artifact activity are independent (in general, this presumption is fulfilled), 

they can be separated into different components. The weakness of this method is that the 

independent artifact components then have to be detected manually. Some of the ICA artifact 

processing applications can be found in [MBJS96], [Vigario97]. The two techniques slightly 

presented here can be considered as the introduction to the spatial analysis used to artifact 

removal. 
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There is another strategy that can be characterized as artifact minimization. Application of an 

appropriate digital filtration is one of the best known methods of artifact minimization. 

Application of this method is mainly limited by the relative location of the artifact frequency 

range compared to the frequency range of the original signal. If both the frequency bands are 

not intermingled, problem of artifact minimization is transformed to the design of a suitable 

digital filter (low-pass or high-pass filter). For example, the electrodermal or respiration 

artifacts (characterized by very low frequency range, typically less than 0.5 Hz) can be 

attenuated by the use of high-pass filter. Design of the digital filter then consists in the 

analysis of the filter type, structure, cut-off frequency or the order. Design of the digital filter 

should also pay attention to the linear phase characteristic. This requirement is necessary so as 

to ensure that the time proportions in the signals stay unchanged. It can be, for example, 

required when the signal differences are computed [Gotman83]. 

2.3 Methods used to process artifacts 

When the polysomnographic recording is already recorded, the whole recording should be 

tested for artifacts before whatever analysis of the monitored signals begins. Presence of the 

artifacts can markedly confuse the quantitative analysis performed as the initial phase of the 

sleep classification process. Although the development of artifact detection methods is not the 

main goal of this thesis, the effect of proper artifact detection strategy on sleep/wake stage 

classification is also explored. 

The artifact detection strategy employed in this thesis goes from the artifact identification 

strategy presented earlier in this chapter. This method excludes the segments of signal where 

an artifact is identified. It could lead to excessive and undesirable reduction of the available 

data when the analyzed segments are too long. This unwanted effect has been notably 

eliminated by decrease of the epoch length. Increase of the signal time resolution is also 

useful for the artifact detection algorithms. Since most of the artifacts are present only for a 

few seconds and do not contaminate the entire epoch of the recording (20 sec), employment 

of the short segments during artifact identification leads to precise localization of the artifacts. 

So, detection algorithms dealing with shorter intervals can be thus more effective, powerful 

and at last but not least thrifty of the data. 

The practical tests and experiments realized during this thesis use a set of polysomnographic 

recordings scored by the sleep experts. The recordings are scored epoch by epoch with 
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constant epoch duration of 20-sec. The 20-sec interval is long too much for its complete 

rejection from the recording by the reason of possible artifact presence. Each whole night 

recording has been for the need of artifact analysis split into shorter intervals. To perform 

precise and also sensitive artifact identification the segments with duration of 2-sec have been 

used. So, during the artifact identification process, each 2-sec segment of the 

polysomnographic recording has been checked for possible occurrence of an artifact in the 

monitored signals. For the sleep/wake stage classification itself, the link between the 

hypnogram representing scoring of the polysomnographic recordings and results of artifact 

detection must be kept because proposed automatic classification will be done with a time 

resolution of 20-sec epochs. So, each original 20-sec epoch has been actually split into 

succession of ten consecutive 2-sec segments.  

A lucid strategy is then employed so as to decide if the entire 20-sec epoch will be marked as 

artifacted or not. If more than 20% of the epoch duration contains any kind of artifact then the 

entire 20-sec epoch is said to be artifacted. The threshold value of 20% of epoch duration 

corresponds to two segments with a length of 2 sec. All the 20-sec epochs marked as 

artifacted are then excluded from the subsequent analysis – sleep/wake stage scoring. On the 

contrary, if number of artifacted segments is less or equal to two, the corresponding 20-sec 

epoch is said to be artifact-free and can be used in subsequent analysis. But, all the 2-sec 

segments contaminated with an artifact are cut off from the epoch trace. This artifact strategy 

avoids undesirable loss of available data and on the other hand provides an adequate rejection 

of artifacted segments (brief artifacts) or entire epochs (large, long-lasting artifacts). The 

criterion defined to distinguish artifact-free and artifacted epochs is based on portion of 

segments contaminated with an artifact. The concrete value of the threshold (20% of epoch 

duration) has been set in order to provide intervals of the signals long enough for 

quantification of the signals (extraction of the features). Tuning of the threshold value 

representing portion of artifacted segments is thus a trade-off between unreasonable rejections 

of the epochs and acquisition of sufficient and undistorted data. If more than 20% of an epoch 

could be contaminated with an artifact in an epoch marked as artifact-free, the information in 

the uncontaminated rest of the epoch could be insufficient to unambiguously characterize the 

actual state of the subject. Thus, it would lead to decrease in accuracy of the automatic 

classification. 
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The artifact identification strategy proposed in this work was achieved using the PRANA 

software which is equipped with a universal automatic detection algorithm performing both 

variants of artifact identification – absolute and adaptive threshold method. The general 

principle of the artifact identification implemented in the PRANA software can be described 

in three main steps. At the beginning, the signal to be analyzed can be digitally filtered in 

order to isolate the activity of the interest. Some of the artifacts are characterized by typical 

activity in a particular frequency band. In the second step, the characteristic feature 

(parameter of the signal) is computed from the signal. In the concrete, the feature is computed 

from each segment of the signal. In the last step, the computed values of the characteristic 

feature are compared with either absolute or adaptive threshold values. If the absolute 

threshold is employed in the detection algorithm, a concrete threshold value and a comparison 

operator (more or less) are required. When the adaptive threshold is used, local changes of the 

signal in the moving window characterizing background activity are being detected. To 

perform adaptive threshold method, length of a moving window and a multiplication factor 

are required. To define the actual adaptive threshold value, the median of all elementary 

feature values computed over the selected background window and the multiplication factor 

are multiplied. So, the multiplication factor indicates how much the activity of an artifact 

exceeds the local background activity. Concrete algorithms used in the proposed classification 

system to identify artifacts will be characterized in the next part of the thesis. 

2.3.1 Setting of artifact identification algorithm 

As presented in the first part of this chapter, various kinds of artifact can occur during 

monitoring of the polysomnographic signals. Some of the artifacts (e.g. electrodermal or 

respiration) can be simply attenuated by band-pass filtration performed during the phase of 

signal processing prior to feature extraction. Polysomnographic signals are filtered in order to 

pick up the activity that is important for the sleep analysis. Artifact detection plugin has been 

used to detect eight artifacts frequently present in the polysomnographic recordings. An 

overview of the artifacts detected in this project and general characteristics of the 

corresponding detection algorithms is presented below. 

Since the available polysomnographic recordings were not analyzed by the experts for 

presence of artifacts, tuning of the artifact detectors (i.e. setting of the thresholds) could not be 

properly validated on the recordings with visually marked artifacts. So, setting of the 
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detection algorithms has been done empirically. It is evident, that proper setting of the 

threshold values affects both sensitivity and specificity of the artifact detectors. 

Overflow detection 
Overflow artifact can be typically characterized as a saturation effect caused by the limited 

dynamic range of the amplifier and/or analog-to-digital converter. In a case of saturation 

effect, the trace of the recorded signal does not represent the true signal any more. The trace 

typically represents only the maximal/minimal value of the quantification range. An example 

of an overflow in the EMG signal is presented in the Fig. 6. 

Since an 8-bit quantification was used to digitize the signals, the data in the monitored signals 

range from -127 to 127. The overflow artifact is detected, if the absolute amplitude in the 2-

sec segment is greater than or equal to 125 µV. It is a simple example of constant absolute 

threshold algorithm. 

 

Fig. 6 Overflow in the electromyogram. 

 

Flat-line detection 
Flat-line artifact stands for a markedly low-amplitude activity present in the signal trace 

instead of expected moving or oscillating activity. It could be mainly caused by the saturation 

of the amplifier that causes insufficient amplification of the signal. So, the segments of the 

signal that contain flat-line artifacts do not reflect the actual activity of the monitored organ. 

The Fig. 7 shows an example of a flat-line artifact in the EMG signal during a wake stage. 
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An algorithm computing peak-to-peak amplitude (difference between the maximum positive 

and the maximum negative amplitudes) of the filtered signal is used to detect flat-line artifact 

in the signal trace. If the peak-to-peak amplitude in the segment is lower than 5 µV, then the 

segment is marked as contaminated by the flat-line artifact. 

 

Fig. 7 A continuous flat-line artifact in the electromyogram. 

 

Loss of signal detection 
During a long-time monitoring of the physiological signals it can happen that a brief loss of 

the signal can appear. It can mainly correspond to detachment of an electrode. In the 

recording, this event can be demonstrated as constant “zero amplitude signal”. An example of 

this artifact can be seen in the Fig. 8. 

In the proposed automatic system, a loss of signal artifact is detected whenever the amplitude 

of the signal is equal to zero during an interval longer than 15 samples. The length of the 

interval (15 samples) has been set on the base of trial and error approach.  
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Fig. 8 A brief loss of signal in all monitored signals. 

 

Power line artifact 
Existence of the power line artifact is caused by interference of the 50/60 Hz mains into the 

monitored signal. In the recording, the power line artifact manifests itself as a substantial 

activity in the frequency range close to the 50/60 Hz. In Europe, 50 Hz mains power is used. 

To detect a power line artifact, peak-to-peak amplitude is computed for each segment of the 

band-passed signal (45-64 Hz). If the peak-to-peak amplitude in the 2-sec segment of the 

filtered signal is higher than 50 µV, a power line artifact is then identified. The threshold 

value has been set so as to identify only the segments contaminated with high activity in the 

frequency range [45-64] Hz. If the activity in this frequency range is low or moderate, the 

segment is not marked as an artifact, because this low activity should be normally attenuated 

(removed) using a band-pass filtration during subsequent phase of signal processing. 

 

High-frequency artifact 
Compared to the normal activity of the polysomnographic signals, high-frequency artifact is 

characterized as an activity or phenomenon with substantial frequency content in a range of 

high frequencies. Sometimes, frequencies characterizing the artifact are even over the range 

of our interest. Typically, muscular activity is a prominent source of high-frequency artifacts 

in the polysomnographic recordings. Maximum of the activity characterizing the muscular 
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activity is typically over 25 Hz. So, as could be expected, the artifact is characterized as 

dominant high-frequency activity present in the signal.  

To characterize the contribution of the high-frequency activity in the signal, the spectral edge 

frequency parameter is used in the detection algorithm. In the concrete, the spectral edge 

frequency 95 (SEF 95) indicating the highest frequency below which 95% of the total power 

is located is used to detect high-frequency artifacts. Since the upper frequency range 

(frequency range of our interest) of the polysomnographic signals usually reaches about 30 

Hz, a high-frequency artifact is detected if the SEF95 computed for the 2-sec segment exceeds 

30 Hz. 

 
Fig. 9 A high-frequency artifact in the electroencephalogram. 

 

ECG artifact 
Disturbance of the monitored signal by the ECG signal leads to a special type of artifact. The 

ECG artifact manifests as a sharp peak similar to the original QRS complex of the 

electrocardiogram. The ECG artifact is well recognizable when the monitored signal has very 

low amplitude. Typical contamination of the EMG signal with ECG artifacts is presented in 

the Fig. 10. The proposed detector can be also used to detect other sudden and unwanted 

sharp peaks in the signals. 

In order to identify an ECG artifact, two parameters characterizing the first derivation of the 

filtered signal are computed. Firstly, the peak-to-peak amplitude (pk-pk) of the signal 

derivation is computed. It should reflect the sharpest deflection in the signal. Then, the 
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interquartile range (IQR) is computed from the signal first derivation. Since the IQR 

computes the range of the middle 50% of the data it is not affected by outliers or extreme 

values typically caused by the sharp peaks (artifacts) in the signal trace. At the end, the ratio 

of the peak-to-peak amplitude and IQR is computed and then compared to the absolute 

threshold value. The algorithm is based on the fact that the sharp peaks characterizing the 

ECG artifact stand out from the signal background. 

 
Fig. 10 Continuous contamination of the electromyogram - ECG artifact. 

 

All the algorithms presented above use an absolute threshold value to detect the arifacted 

segments. The second part of the artifact detection algorithms (characterized below) uses an 

adaptive threshold depending on the local background activity of the signal determined by the 

background window. The threshold value determined for the adaptive threshold method is 

calculated using the median value of the characteristic parameter values computed for the 

elementary 2-sec segments contained in the selected moving background window. The 

median value is then multiplied by a certain factor. In both the algorithms, a 60-sec symmetric 

moving background window is used to update the threshold. 

 

Low-frequency artifact 
Some of the artifacts can manifest as a low-frequency activity. The extremely low frequencies 

are successfully attenuated by high-pass filtration. Nevertheless, some of the artifacts can 
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intermingle with the desired physiological signal and then manifest in the signal trace as slow 

waves.  

To detect these artifacts, an algorithm characterizing activity of the signal in the low-

frequency range [0-2] Hz is applied. Peak-to-peak amplitude is computed as the parameter 

from the filtered signal. A low-frequency artifact is detected whenever the peak-to-peak 

amplitude is above an adaptive threshold. 

 

Muscular activity detection 
A muscular activity artifact typically consists in a high-frequency burst of high amplitude 

spikes present in the signal trace. The outlying values of the artifact clearly stand out from the 

background signal. So, time domain features can be used to characterize the manifestation of 

the muscular activity. Muscular activity, especially its high frequency character can also be 

identified by the high-frequency artifact detector presented earlier. 

The algorithm computes the variance of the filtered signal in order to identify the muscular 

activity artifacts. An artifact is detected whenever the variance of the signal in [5-64] Hz 

range is higher than an adaptive threshold. The weak point of this algorithm is that it can 

detect some sleep spindles and mark them as muscular activity. 

 
Fig. 11 A muscular activity arftifact in the electroencephalogram. 
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Parameters of all artifact detection algorithms are summarized in the Tab. 3. The abbreviation 

fN stands for the Nyquist frequency. The actual value of the Nyquist frequency is determined 

from the sampling frequency of the signals in the recording. The sampling frequency of the 

polysomnographic recordings used in this project is 128 Hz, so the Nyquist frequency is 64 

Hz. It is defined as half of the sampling frequency. Last column of the table shows the length 

of the moving window used to define the local activity interval. Naturally, in the case of the 

absolute threshold method, the value is not defined. 

Artifact Filtration 
[Hz] Parameter Threshold Background 

[sec] 

Overflow NO Max absolute 
value >125 µV - 

Flat-line 1 – fN
Peak to peak 

amplitude <5 µV - 

Loss of signal NO Length of zero >15 samples - 

Power line 45 – 64 Peak to peak 
amplitude >50 µV - 

High-frequency 1 – fN SEF95 >30 Hz - 

ECG 3 – 32 1st derivation 
(pk-pk / IQR) >13 - 

Low-frequency 0 – 2 Peak to peak 
amplitude >7,5 60 

Muscular activity 5 – fN Variance >3.5 60 

Tab. 3 Setting of individual artifact identification algorithms. 

 

Identification of all the artifacts mentioned above was performed in this work. All 47 

polysomnographic recordings were analyzed in order to identify and reject the artifacted 

segments of the signals (EEG, EOG and EMG). 

2.4 Results of artifact identification 

Signal analysis focused on artifact identification represents the first step in the general 

structure of the automatic sleep/wake stage classification. Then, automatic classification is 

performed using the features extracted from three signals (EEG, EOG and EMG signal). 

Firstly, to present the results of artifact identification in a comprehensible form, a transparent 

notation must be defined. The aim of the artifact analysis is to identify the artifacts in the 

signal trace and remove the segments contaminated with artifacts. Artifact identification is 
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performed on 2-sec segments of the signals. Then, succession of ten consecutive 2-sec 

segments is used to evaluate the 20-sec epoch. The 20-sec epoch can be marked either as 

artifact-free or as artifacted. The artifact-free epochs can be subsequently used in the 

automatic classification. On the contrary, the artifacted epochs are excluded from the 

recording (signal) and are not used any more. If the 20-sec epoch does not contain any 

artifacted segment, it is marked as clear epoch. The polysomnographic signals (EEG, EOG, 

and EMG) were analyzed separately. The labeling of the epochs defined here (artifact-free, 

artifacted, clear) is used it the following tables, that summarizes the artifact identification 

analysis. 

2.4.1 Preliminary analysis of the full polysomnographic database 

The full database composed of 47 polysomnographic recordings has been analyzed in order to 

identify presence of possible artifacts. The results characterize artifact identification 

performed on the reduced database (Both experts database) described in the Tab. 2. The 

database contains 67,386 epochs with a constant length of 20-sec. The general summary of 

artifact identification performed on the three polysomnographic signals is presented in the 

Tab. 4. The table shows number of artifact-free, artifacted and clear epochs in the analyzed 

signals. 

Both 
experts EEG EOG EMG 

artifact-
free 62,674 59,247 56,263 

artifacted 4,712 8,139 11,123 

clear 51,727 44,049 47,144 

Tab. 4 Analysis of artifact contamination in the physiological signals – Both experts database. 

 

As it can be seen, the highest number of artifacted epochs is present in the electromyogram. 

The 11,123 epochs marked as artifacted represent about 16% of the whole data. This value 

should be regarded as high. So, detailed analysis of individual artifacts recognized in the 

recordings is needed in order to explain the high artifact contamination of the data. 

Since the artifact identification is performed on 2-sec segments of the signals, it is necessary 

to present a more detailed analysis of the results. It means analysis of the artifact presence on 
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the level of individual 2-sec segments. This type of analysis provides estimation of presence 

of various types of identified artifacts. Since the epochs stored in the Both experts database 

are used, the total number of 2-sec segments is 673,860. 

signal 
artifact EEG EOG EMG 

Overflow 5,106 14,717 44,182 

Flat-line 0 1,435 8,106 

Loss of signal 95 2,192 881 

Power line 18 3 550 

High-frequency 28,313 32,186 0 

ECG artifact 91 1,801 16,328 

Low-frequency 501 449 213 

Muscular activity 8,687 7,423 8,142 

Tab. 5 Analysis of individual artifacts in the physiological signals – Both experts database. 

 

Tab. 5 characterizes number of occurrence determined for individual types of artifacts 

detected in the polysomnographic signals. The results show quite a high contamination of the 

analyzed signals with the overflow artifact. Especially the electromyogram is heavily 

contaminated with overflow. The muscular activity artifacts and high-frequency artifacts are 

also frequent in the polysomnographic recordings analyzed during the tests. There could be 

also seen high number of 2-sec segments of the EMG signal contaminated with flat-line and 

ECG artifacts. To explain high contamination with some concrete artifacts, special analysis of 

individual recordings could be useful. Results of such analysis are presented below. 

The results presented in the Tab. 5 characterize the overall information about the individual 

artifacts. The values come from all 47 recordings together and are determined as sum over all 

recordings. A detailed analysis of the single recordings is also needed in order to discover 

possible signals that could be extremely degraded with some artifacts. If some recording 

contains a lot of artifacts (compared to the other recordings), it can confuse the estimate of the 

average artifact contamination. The inspection of the artifact detection results showed several 

excessively artifacted recordings. An overview of such recordings is presented in the Tab. 6. 

The table shows the recording identification (label), actual type of the artifact, and also the 

number of artifacted 2-sec segments in the concrete physiological signal.  
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There is a lot of recordings that have at least one of the signals markedly confused with the 

overflow artifact. It is mainly the case of the EMG signal. There are at least nine recordings 

that have extremely high portion of overflow artifacts in the EMG signal. For example, the 

recording 101t7 contains 4,415 2-sec segments contaminated with overflow artifacts in the 

EMG signal trace. It makes about 30% of the whole night recording. It can be said, that the 

set of the polysomnographic recordings used in this thesis is characterized by relatively high 

presence of overflow artifacts. This fact could be mainly explained by insufficient setting of 

the recording device (e.g. only 8-bit quantification). 

The second case of huge artifact contamination is linked with presence of flat-line artifacts. 

There are 6,320 2-sec segments identified as flat-line artifact in the EMG signal of the 

recording with label 121t2. The flat-line artifact occupies about 45% of this whole night 

recording. The artifact (flat-line signal) is present during all sleep/wake stages, so it does not 

reflect any characteristic activity/inactivity of the person during a sleep. It is probably caused 

by some error occurred during monitoring and recording of the signal. There is also quite high 

number of artifacted 2-sec segments in the EMG signal of the recording 146t2. The recording 

146t1, in the concrete the EOG signal, is also contaminated with flat-line and loss of signal 

artifact. In total, there are 3,517 segments contaminated with low amplitude artifacts. So, it 

seems that amplitude of the monitored EOG signal is in large part of the night extremely low. 

The high-frequency artifacts are frequently present in the polysomnographic recordings. In 

general, they can reflect the muscular activity of the person and thus can also be linked with 

muscular activity artifacts and/or overflow. The EEG signal of the 105t1 recording is 

contaminated with high-frequency artifact. A detailed analysis of the recording revealed 

continuous high-frequency activity that intrudes the EEG signal. It could be explained as 

disturbance caused by some external source – medical device or other equipment. The other 

recordings presented in the table characterize the high-frequency interference mainly caused 

by the muscle activity. The analysis of the EMG signal shows both high-frequency and sharp 

high-amplitude muscular activity in the intervals where the artifacts are detected. Large 

number of high-frequency artifacts in the 124t7 recording is also caused by abnormal 

structure of the whole night sleep. There is extremely long interval at the beginning of the 

night (approximately 210 minutes) when the person is awake. During this time, muscle 

tension and high-frequency activity are almost permanently present in the EMG signal of the 

recording. 
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Application of the ECG artifact detector leads to identification of ECG artifacts in the signals. 

There are four recordings in the set of the polysomnographic recording that are highly 

contaminated with ECG artifacts. In the recording 146t1, there is high portion of ECG 

artifacts in the middle of the EOG signal. The other three recordings have ECG artifacts in the 

EMG signal. In the recordings 101t7 and 122t6 are the ECG artifacts uniformly distributed 

during the entire recording. It leads to a large number of artifacted 2-sec segments in both the 

recordings. The number of artifacted segments in these two recordings is 5,665 and 7,339 

respectively. The recording with label 121t6 is disturbed by the ECG artifacts mainly at the 

end of the recording. 

signal 
artifact EEG EOG EMG 

Overflow - s101t7 (1,821) 
s146t1 (2,120) 

s101t2 (2,015) 
s101t7 (4,415) 
s105t7 (2,036) 
s121t6 (2,536) 
s123t7 (2,268) 
s141t1 (2,079) 
s141t2 (2,032) 
s143t2 (3,052) 
s144t2 (2,586) 

Flat-line - s146t1 (1,435) s121t2 (6,320) 
s146t2 (1,764) 

Loss of signal - s146t1 (2,082) - 

High-
frequency 

s105t1 (8,004) 
s124t7 (2,985) 

s121t2 (2,679) 
s121t6 (3,793) 
s121t7 (3,088) 
s123t6 (2,003) 

- 

ECG artifact - s146t1 (1,765) 
s101t7 (5,665) 
s121t6 (1,106) 
s122t6 (7,339) 

Tab. 6 Overview of extremely artifacted recordings. 

 

The other types of artifacts do not show such extreme examples in contamination of the 

individual recordings. But one recording should be mentioned again. As mentioned above, the 

recording 146t2 is characterized by a high number of flat-line artifacts in the EMG. In 

addition, the EMG signal contains also 1,047 segments identified as overflow. In this signal, 

two other artifacts are characterized with slightly increased number of occurrence. 785 

segments are identified as loss of signal and 476 segments are identified as power line artifact. 

As it can be seen in the Tab. 5, the recording 146t2 contains a major part of these artifacts 

identified in all 47 recordings. In total, the EMG signal of the recording contains 4,350 
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segments contaminated by different artifacts. The other artifacts are almost evenly distributed 

in the 47 recordings, so no recording notably exceeds the others in the number of some 

concrete artifact. It is also the case of muscular activity artifacts. Since the total number of 

contaminated segments is high, there is no recording that would have an extreme number of 

segments contaminated with muscular activity artifacts. 

On the basis of the detailed analysis presented above, six recordings (s101t7, s105t1, s121t2, 

s122t6, s146t1 and s146t2) should be excluded from the analysis of artifact processing phase. 

These recordings contain extremely high number of artifacted segments and thus they could 

confuse the analysis of artifacts. So, the reduction of the database is necessary in order to 

provide reliable analysis of artifacts in the recordings. 

2.4.2 Analysis of the modified database 

When the six extremely artifacted recordings have been excluded, the total number of epochs 

was reduced from 67,386 to 58,968 epochs. The new database is characterized in the Tab. 7. 

The table presents number of epochs in the sleep/wake stages recognized by the proposed 

system. 

Number of 
epochs wake  NREM I NREM II SWS REM 

Modified 
database 4,626 1,854 28,858 9,989 13,641 

Tab. 7 Description of the database used for analysis of artifact detection – Modified database. 

 

The first results of artifact identification performed on the modified database are presented in 

the Fig. 12. The figure provides information about relative artifact contamination of the 

epochs contained in the modified database. Each histogram characterizes one of the 

physiological signals (EEG, EOG and EMG). In each graph, the horizontal axis indicates 

number of artifacted 2-sec segments in the 20-sec epoch. The vertical axis indicates number 

of epochs. It can be seen that the absolute majority out of the 58,968 epochs does not contain 

any artifacted segment. Contrariwise, the number of extremely contaminated epochs 

containing long-lasting artifacts is low. It is mainly due to the fact, that the extremely 

contaminated recordings have been excluded. So, the data in the actual database are not 
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biased by the presence of abnormal recordings characterized from the point of view of artifact 

contamination. 

 

Fig. 12 Histograms characterizing degree of artifact contamination determined for analyzed epochs. 

 

The results presented in the Fig. 12 also justify the strategy proposed to evaluate degree of 

contamination of the 20-sec epochs. As it can be seen, there is a lot of epochs containing only 

brief artifacts in the data. In this table, these epochs could be characterized by presence of 

only two artifacted segments at most. So, in the tasks, where the artifact identification is 

performed on entire 20-sec epochs, a large number of slightly contaminated epochs would be 

excluded unnecessarily. So, this approach would lead to a large reduction of the number of 

available data. 

To provide overall information about artifact contamination, it is also necessary to present 

results of artifact analysis performed on 20-sec epochs. In the Tab. 8, the number of epochs in 

different sleep/wake stages depending on degree of artifact interference is presented. The 

results show that the wake stage is characterized by high number of artifacted 20-sec epochs. 

High artifact contamination can be seen for all three physiologic signals. An increase in the 

absolute number of artifacted epochs in the EOG and EMG signals during NREM II and 

REM sleep stages can be observed compared to the EEG signal. It is also reflected in the total 

number of artifacted epochs. In the case of the EEG, the number of artifacted epochs is the 

lowest. On the contrary, the numbers of epochs marked as artifacted in the EOG and EMG are 

significantly higher. 
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Number of 
epochs wake NREM

I 
NREM 

II SWS REM total 

artifact-
free 1,992 1,773 28,473 9,913 13,341 55,492 

artifacted 2,634 81 385 76 300 3,476 
E

E
G

 

clear 1,101 1,415 23,087 8,713 11,661 45,977 

artifact-
free 2,325 1,593 27,537 9,921 11,361 52,737 

artifacted 2,301 261 1,321 68 2,280 6,231 

E
O

G
 

clear 931 1,031 21,188 9,518 6,723 39,391 

artifact-
free 2,811 1,569 26,126 9,060 12,359 51,925 

artifacted 1,815 285 2,732 929 1,282 7,043 

E
M

G
 

clear 1,814 1,196 22,877 7,908 9,880 43,675 

Tab. 8 Analysis of artifact contamination – Modified database. Absolute contamination of the stages. 

 

To provide a relative comparison of artifact contamination, the Tab. 9 shows the percentual 

evaluation of artifact-free, artifacted and clear epochs determined for individual sleep/wake 

stages.  

% wake NREM
I 

NREM 
II SWS REM total 

artifact-
free 43,1 95,6 98,7 99,2 97,8 94,1 

artifacted 56,9 4,4 1,3 0,8 2,2 5,9 

E
E

G
 

clear 23,8 76,3 80,0 87,2 85,5 78,0 

artifact-
free 50,3 85,9 95,4 99,3 83,3 89,4 

artifacted 49,7 14,1 4,6 0,7 16,7 10,6 

E
O

G
 

clear 20,1 55,6 73,4 95,3 49,3 66,8 

artifact-
free 60,8 84,6 90,5 90,7 90,6 88,1 

artifacted 39,2 15,4 9,5 9,3 9,4 11,9 

E
M

G
 

clear 39,2 64,5 79,3 79,2 72,4 74,1 

Tab. 9 Analysis of artifact contamination – Modified database. Relative contamination of the stages. 
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As it can be seen in the Tab. 9, wake stage can be regarded as the stage with the highest 

portion of artifacted epochs. The relative contamination of the wake stage highly exceeds 

contamination of the other four stages. For the EEG and EOG signals, about 50% of all 

epochs scored as wake are artifacted and thus excluded from the automatic classification. In 

the case of the EMG, the percentage is slightly lower (about 40% of all wake epochs), but still 

very high. The percentage of artifact contamination observed in other stages is significantly 

lower (lower than 15%). The lowest relative contamination is in the SWS. In the EEG and 

EOG signals, only less than 1% of all SWS epochs is artifacted. 

Until now, analysis of the modified database did not focus on evaluation of individual 

artifacts. Information about types of dominant artifacts could be important in order to analyze 

quality of the signals monitored. In consequence, such information could be useful to prevent 

or reduce presence of the dominant artifacts. Thus, the quality of the signals monitored as 

well as the accuracy of the sleep/wake stage classification could increase. 

2.4.3 Detailed analysis of individual artifacts 

Now, the detailed analysis of individual artifacts on the level of 2-sec segments created from 

the modified database described in the Tab. 7 will be presented. In total, 589,680 segments 

are contained in the 41 recordings. Number of 2-sec segments contaminated by individual 

types of artifacts detected in the polysomnographic signals is presented in the Tab. 10. 

signal 
artifact EEG EOG EMG 

Overflow 4,202 10,437 36,437 

Flat-line 0 0 0 

Loss of signal 88 105 69 

Power line 15 3 67 

High-frequency 19,094 27,815 0 

ECG artifact 65 25 3,140 

Low-frequency 455 411 187 

Muscular activity 7,390 6,385 7,669 

Tab. 10 Analysis of individual artifacts in the physiological signals – Modified database. 

 

The results presented above show that the physiologic signals are mainly contaminated by 

overflow, high-frequency and muscular activity artifacts. So, these three types of artifacts will 
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be closely analyzed in the next part. All the other artifacts are rarely present in the 

polysomnographic recordings. However, though their occurrence is not typically frequent, 

their detection is needful in order to discover some specially contaminated recordings, like 

those presented in the Tab. 6. The extreme value representing number of ECG artifacts in the 

EMG signal is mainly caused by two recordings. The recordings are labelled as 121t6 and 

141t4 and contain 1,106 and 850 artifacted segments respectively. In total, these two 

recordings contain 1,956 segments contaminated with ECG artifact. 

A detailed analysis of the identified artifacts depending on the different sleep/wake stages is 

presented in the next part of this chapter. For each physiological signal (EEG, EOG, EMG) a 

table characterizing the distribution of the individual artifacts (eight types of artifacts) in the 

sleep/wake stages is prepared. It is necessary to keep in mind that the number of epochs over 

the different sleep/wake stages is not equal in the typical whole night sleep. So, the values in 

all the tables should be interpreted relatively to the total number of epochs in the 

corresponding stage. As mentioned above, mainly the overflow, high-frequency artifacts and 

muscular activity artifacts will be discussed. 

EEG 
artifact wake NREM I NREM II SWS REM 

Overflow 1,816 38 573 1,539 236 

Flat-line 0 0 0 0 0 

Loss of signal 68 0 10 3 7 

Power line 15 0 0 0 0 

High-frequency 14,592 642 1,323 41 2,496 

ECG artifact 60 0 1 1 3 

Low-frequency 181 8 209 0 57 

Muscular activity 882 106 5,639 97 666 

No artifact 28,646 17,746 280,825 98,209 132,945 

Tab. 11 Analysis of individual artifacts in different sleep/wake stages. EEG signal. 

 

Distribution of the artifacts in the EEG signal is presented in the Tab. 11. As it can be seen, 

the overflow artifact is most frequent in the wake and in the SWS stage. In the wake stage, the 

high-amplitude signal that can characterize the fast brain activity as well as disturbance of the 

EEG signal caused by abrupt body movements can lead to overflow. Electroencephalogram of 

the SWS stage is characterized by slow high-amplitude waves. These waves can also lead to 
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unwanted overflow artifact. In the other stages, the overflow artifacts are not so frequent. 

High-frequency artifacts frequently present during the wake stage can be explained as 

manifestation of muscular activity transmitted to the EEG signal. Muscular activity can also 

contaminate the EOG signal as shown in Fig. 13. Moreover, the recording 124t7 contains 

2,966 segments contaminated with high-frequency artifacts. It forms a big part of all the 

artifacted segments. A large number of muscular activity artifacts in NREM II stage can be 

explained by transition of the high-amplitude and high-frequency activity (artifacts) generated 

by the muscles. These artifacts are frequently identified in the NREM II stage of the EMG 

signals contained in the base of recordings. Nevertheless, some of the manifestations 

identified as muscular activity artifacts in the NREM II stage can be characterized as false 

positive detections. As mentioned during the description of the detection algorithms proposed, 

the muscular activity detector can misclassify some of the sleep spindles present in the signal 

trace. It is a drawback due to the fact that the tuning of the artifact detectors has not been 

properly validated on the data with artifacts identified by an expert. Visual inspection of the 

automatically analyzed recordings revealed a low number of sleep spindles misclassified as 

muscular artifacts. Since the sleep spindles are characterized as brief phenomena, no more 

than one segment of an epoch is typically identified as an artifact. Thus, the total reduction of 

available epochs is not high. Moreover, the majority of the sleep spindles is still kept in the 

signal and thus the informational content of the epochs is not decreased. 

 

Fig. 13 Example of high-frequency contamination in the EEG and EOG. 
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The EOG signal is more contaminated with overflow artifacts compared to the EEG signal. 

The overflow is frequent in wakefulness and REM sleep stage. The characteristic movement 

of the eyes called REMs can be considered as the cause for the increased presence of 

overflow in the EOG signal. As well as in the EEG, most of the high-frequency and muscular 

activity artifacts corresponds to bursts of muscular activity that can be intermingled with the 

EOG signal. Moreover, the application of the muscular activity detector leads to the detection 

of some sleep spindles transmitted from the brain. 

EOG 
artifact wake NREM I NREM II SWS REM 

Overflow 4,319 135 502 457 5,024 

Flat-line 0 0 0 0 0 

Loss of signal 61 6 20 3 15 

Power line 3 0 0 0 0 

High-frequency 8,606 1,637 8,215 75 9,282 

ECG artifact 22 0 0 1 2 

Low-frequency 37 9 69 0 296 

Muscular activity 570 99 4,261 189 1,266 

No artifact 32,642 16,654 275,513 99,165 120,525 

Tab. 12 Analysis of individual artifacts in different sleep/wake stages. EOG signal. 

 

EMG is mainly degraded by the frequent presence of the overflow. The high-amplitude 

muscular activity often leads to the overflow of the monitoring and/or recording device. 

Overflow is identified in 36,437 2-sec segments of the EMG signal. This fact leads to massive 

loss of information useful for the need of the automatic sleep classification. As can be seen in 

Tab. 13, the presence of the overflow is uniformly spread during the entire night sleep. 

Presence of ECG artifacts detected in the EMG is practically restricted to the case of two 

recordings presented earlier. Since the frequency range of the EMG signal is wide and the 

signal is typically characterized with activity in the range of high frequencies, the high-

frequency artifacts have not been detected in the EMG. Thus the extreme bursts of muscles 

are mainly characterized by overflow and muscular activity artifacts. These bursts are 

frequent during wake and REM sleep stage. In REM sleep stage, it can correspond to 

manifestations of the phasic REM sleep. 
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EMG 
artifact wake NREM I NREM II SWS REM 

Overflow 8,760 1,301 14,725 5,548 6,103 

Flat-line 0 0 0 0 0 

Loss of signal 53 0 7 3 6 

Power line 63 1 2 1 0 

High-frequency 0 0 0 0 0 

ECG artifact 484 101 1,921 124 510 

Low-frequency 67 6 56 4 54 

Muscular activity 1,929 495 2,085 336 2,824 

No artifact 34,904 16,636 269,784 93,874 126,913 

Tab. 13 Analysis of individual artifacts in different sleep/wake stages. EMG signal. 

 

2.5 Chapter conclusion 

Various types of artifacts or noise can be unwillingly introduced into the monitored signals 

and bias the results obtained by further signal processing methods. So, suitable artifact 

processing strategy is inevitably needed in whatever automatic system. A combination of a 

short time artifact identification and a subsequent decision strategy evaluating the 20-sec 

epoch is used in this thesis. Both absolute and adaptive threshold methods are used as the 

principle of the artifact identification. In the concrete, 2-sec segments of the signals are 

searched through in order to detect presence of possible artifacts. Each 20-sec epoch is then 

presented by artifact characteristics of ten corresponding 2-sec segments. Then the 20-sec 

epochs are marked as either artifact-free or artifacted according to the presence of artifacts in 

the segments. If more than 2 segments in the 20-sec epoch are intermingled with an artifact, 

the epoch is marked as artifacted and excluded from the future analysis. So, if an epoch is 

only slightly contaminated with artifacts, it does not have to be completely rejected and it can 

be used in the analysis. Such a decision reduces enormous loss of data that could be caused by 

the artifact detection. 

The results on the polysomnographic recordings show a high amount of epochs degraded with 

overflow artifacts. This artifact is present mainly in the EMG signal. High-frequency artifacts 

and muscular activity artifacts are also frequent in the data. They mostly reflect the increased 

activity of the muscles. The analysis of the detailed results points out a few recordings (s101t7, 
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s105t1, s121t2, s122t6, s146t1 and s146t2) that contain one or more signals extremely 

contaminated and degraded with artifacts. These recordings have been excluded from the base 

of polysomnographic recordings for the need of analysis of identified artifacts presented in 

this chapter. In spite of the fact that the settings of the individual artifact detectors have not 

been properly validated on data with artifacts manually detected by an expert, the results 

confirm the importance to correctly process artifacts as a mean to increase the quality of the 

data to be further processed by classification systems. 
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Chapter 3  

Feature extraction and selection of 

relevant features 

Manual sleep/wake stage classification is based on visual inspection of polysomnographic 

recordings. An experienced physician is able to analyze the signal traces visually, deal with 

possible artifacts and then score an epoch into one of predefined sleep/wake stages. When an 

automatic classification is performed, a set of relevant parameters (features) computed from 

the signal traces should be prepared for the automatic classifier. 

In this chapter, an approach proposed to determine a set of relevant features needed for 

automatic classification is presented. Sequential selection methods are presented as suitable 

tools for selection of relevant feature set out of a pool of features. The initial pool of features 

extracted from all the monitored signals contains various features computed in the time 

domain as well as in the frequency domain. 

The selection methods are applied on different combinations of signals among EEG, EOG and 

EMG, to take into account that some signals may be missing. At the end of this chapter, the 

relevant feature sets obtained are presented and analyzed.   

3.1 Data mining and decision systems 

Many tasks try to describe and then effectively apply the knowledge hidden in the databases 

or in large data warehouses. Knowledge acquiring methods can be used to extract unknown 

and potentially effective and useful information from the data or to find relationships hidden 
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in the data. The principle of these methods is mainly based on the application of analytic 

methods. They typically use specially preprocessed data as an input and return knowledge 

information as an output. This branch of science is also called Data mining, Information 

harvesting or Knowledge discovery in databases. 

All the methods are based on the main hypothesis that each single object (case) can be 

described with attributes (features) so that all objects belonging to the same class have similar 

characteristics (e.g. attribute values). That is why these methods are sometimes called 

Similarity based learning. Then, it is considered that each object is described by vector of N 

attribute values and that each such an object can be in the N-dimensional Euclidean 

description space represented as a single point. All the objects that belong to the same class 

then form a cluster of points in the N-dimensional space. The main idea of learning process is 

to find a suitable representation of the single clusters or to find frontiers separating the 

clusters in the N-dimensional space. 

The whole process of data mining consists of several phases. There is a generally accepted 

standard that defines the single phases of the data mining process. This international standard 

is called Cross-Industry Standard Process for Data Mining (CRISP-DM). CRISP-DM 

characterizes data mining as an iteration task containing internal feedbacks in various phases 

of the whole process. Six phases are defined within the data mining process: 

1. Business understanding – This phase consists in understanding of the project objectives 

and requirements and leads to task formulation. 

2. Data understanding – This phase starts with an initial data collection. A knowledge 

engineer should appreciate data quality and data significance to the task specification. 

3. Data preparation – In this phase, raw data are transformed into a data set structure that will 

be fed into the modeling tool. In general, the initial data set is not characterized by an 

acceptable format. There are also other data preparation techniques that can be realized 

(e.g. continuous record sampling, attribute values standardization, continuous attribute 

values categorization). 

4. Modeling – This phase can be presented as the heart of the data mining process. In this 

phase, various modeling techniques can be selected and applied. The main aim is to tune 

their parameters. 
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5. Evaluation – Testing of the system on real data and results consultations. Before the 

model can be finally processed, it is important to evaluate the model more accurately. At 

the end of this phase, a decision on the use of the data mining model should be reached. 

6. Deployment – Application of the system for knowledge acquiring. It is the most important 

phase for the customer. 

During a modeling phase, new information that can lead to changes in the data preparation or 

to formulation of a new task can be revealed. A loop of the functions (phases) then starts 

again from the beginning. 

The first two phases of the data mining cycle characterize the initial introduction presented in 

the first chapter of this thesis. The first phase consists of description of sleep analysis and 

polysomnography. In this phase, the sleep/wake stages and all the monitored physiological 

signals are presented and described in detail in order to understand the field of sleep analysis. 

The flow of the automatic sleep analysis is also explored. The description of the database of 

polysomnographic recordings and all monitored physiologic signals correspond to the second 

phase – data understanding. During this phase, the initial analysis of the raw data and 

component 20-sec epochs is performed. 

The third phase begins with artifact detection presented in the chapter 2. The tables presenting 

the numbers of artifacted and/or artifact-free 20-sec epochs or 2-sec segments can be seen as 

the first results. Artifact detection represents the first modification of the raw 

polysomnographic recordings and leads to the increase of the data quality. The phase of data 

preparation contains another very important modification of the original data. The raw data 

must be transformed into the N-dimensional description space that can be used during the 

phase of automatic classifier modeling. The transformation of recordings is recommended to 

extract the most suitable description of the data. Various data processing techniques can be 

used in this task. This chapter describes processes of feature extraction, data transformation, 

and selection of relevant features. Then, the phases of modeling, evaluation and deployment 

of the automatic system are performed. Modeling phase consists in choosing and training an 

automatic classifier from the data. The evaluation phase is analyzed using the classification 

accuracies obtained with the classifiers. These phases are presented at the end of this chapter. 
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3.2 Extraction of features 

As could be seen in section 1.6, various signal processing techniques have been already 

proposed in the literature and tested in order to extract useful information from the 

physiological signals processed. The proper extraction of relevant features from the signals is 

a crucial task in the development of an automatic system of sleep/wake stage classification. 

Absolute and/or relative spectral powers in the EEG frequency bands are said to be the basic 

information extracted from the EEG signal during sleep analysis. It is given by the fact that 

almost each sleep/wake stage is characterized by a characteristic pattern of frequency content. 

Extraction of these features corresponds to the initial visual analysis performed by the sleep 

expert or physician who first analyzes the EEG activity. So, processing of the signal in the 

frequency domain is the most frequently used technique. In the concrete, Fourier 

transformation and wavelet transformation should be mentioned [GRK95], [OCJ99]. Then 

another signal processing techniques have been also used in the previous projects realized by 

various groups of researchers [GFR01]. Biological signal processing performed in the time 

domain (statistical analysis, chaos theory, etc.) is also frequently used in the area of sleep 

analysis. 

All epochs used in the tests performed during this thesis consist of a 20 seconds recording of 

three signals (one EEG C3-A2 channel, one EOG and one EMG). Since the signals monitored 

were sampled at 128 Hz, each one of the three recorded time series contains 2,560 samples. 

Such a set of 2,560 samples is not suitable input information for an automatic classifier. So, 

various signal processing techniques have been used in order to extract several features from 

the three signals of each actually processed epoch. 

There are eight types of features that have been extracted during this thesis from the 

physiological signals included in the polysomnographic recordings. To present all of them, 

the features can be split into two general groups. The first group contains the features that 

represent the frequency information computed by the means of Fourier transformation. On the 

contrary, the second group of features contains all the features computed in the time domain. 

The overview of the features completed with their short description is presented in the next 

sections. 

To ensure that the signals can be assumed stationary during the signal processing, each epoch 

is split into a succession of 2-sec segments, which are short enough to fulfill the assumption 
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of stationarity. The same 2-sec segments were used during artifact detection performed before. 

So, the feature extraction algorithms can profit from the artifact identification procedure 

performed prior to the feature extraction. If a 20-sec epoch is marked as artifacted on the basis 

of artifact identification strategy (more than two 2-sec segments contain artifacts), it is not 

processed by feature extraction algorithms. So, the computational time requirements are 

reduced. In the case of epochs marked as artifact-free (at most two 2-sec segments of signal 

contain artifacts), all the contaminated segments are excluded from the feature extraction. 

Then, two different mechanisms of feature extraction are proposed for the artifact-free epochs. 

The first mechanism can be denoted as averaging technique. It is inspired by the averaging 

technique proposed by Welch [Welch67]. This mechanism is used especially to calculate the 

power spectrum of a signal. Each 20-sec epoch marked as artifact-free consists of ten 2-sec 

segments. The power spectra are calculated from all 2-sec segments that do not contain any 

artifacts, averaged, and assigned to the actual epoch. 

The second feature extraction mechanism can be denoted as sequence technique. The 

segments contaminated by artifacts are simply cut off from the trace of the 20-sec epoch and 

the features are calculated on the remaining part. The methods of time domain analysis are not 

too much sensitive to the presence of the unexpected discontinuity of the processed signal 

trace that can appear when one or two artifacted segments are cut off from the epoch. 

Before the process of feature extraction starts, the physiological signals should be filtered in 

order to localize the characteristic information present in the signals better. So, each signal 

has been separately digitally filtered using a band pass filter prior to feature extraction. The 

frequency ranges passed by the individual digital filters are: 

• EEG; 0.5-32.5 Hz 

• EOG; 0.5-15 Hz 

• EMG; 8-32 Hz. 

 

They represent the total frequency bands defined for the individual signals. So, these 

frequency bands are then used to characterize total spectral powers of the signals (P(EEG, 

total), P(EOG, total), P(EMG, total)). 
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3.2.1 Frequency domain features 

A set of nine frequency domain features is computed from the EEG, EOG and EMG. The 

individual features are presented below.  

- A set of five features is used to describe the spectral activity of the EEG signal in 

traditional frequency bands – delta, theta, alpha, sigma and beta. The features have been 

calculated using Fourier transformation. Relative powers in the five frequency bands have 

been computed by dividing absolute powers in each frequency range by the sum of powers 

in the EEG total frequency band. 

• Prel(EEG,δFT) with δFT = [0.5 ; 4.5] Hz; 

• Prel(EEG,θFT) with θFT = [4.5 ; 8.5] Hz;  

• Prel(EEG,αFT) with αFT = [8.5 ; 11.5] Hz; 

• Prel(EEG,σFT) with σFT = [11.5 ; 15.5] Hz; 

• Prel(EEG,βFT) with βFT = [15.5 ; 32.5] Hz. 

 

- The relative power of the EMG signal in a high frequency band [12.5 ; 32] Hz has been 

calculated as: 
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- Spectral edge frequency 95 (SEF 95) is the third parameter characterizing the frequency 

activity of the physiologic signals. Spectral edge frequency 95 indicates the highest 

frequency below which 95% of the total spectral power is located. SEF 95 was computed 

for all physiologic signals. Spectral edge frequency function is described in the work of 

Rampil et al. ([RSSHF80]). 

3.2.2 Time domain features 

- The standard deviation of a random variable characterizes the spread of its values. It is 

defined as: 
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where n is the number of samples y(i) of the measured signal y in the epoch and 
_
y  

represents the mean value of the signal y. 
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- Skewness is a factor characterizing the shape of the probability distribution function of a 

signal. It measures degree of the asymmetry of the probability distribution function of a 

signal. Skewness is defined as a normalized form of the third central moment. 
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The k-th central moment Mk is defined as: 
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- Kurtosis is also a factor characterizing the shape of the probability distribution function of 

a signal. In the concrete, it determines the degree of peakedness of a distribution. Kurtosis 

is determined as a normalized form of the fourth central moment M4 and is defined by the 

equation (7). 
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- The 75th percentile defines the value below which 75% of the random variable values are 

located. So, the value separates lowest 75% and highest 25% of the data. It is also called 

upper quartile or third quartile. The 75th percentile of the signal distribution is defined as  

{ }
100
7575)(/)( nprctileiyiycard EEG

⋅
=<                                       ( 8 ) 

where n is the number of samples y(i) of the measured signal y in the epoch and card 

stands for the number of elements in the set. 
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- The entropy has been computed from a histogram of the signal during one epoch. It is 

defined as: 
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where n is the number of samples y(i) of the measured signal y in the epoch, N is the 

number of bins used for the calculation of the histogram and nj is the number of samples 

y(i) which values are within the jth bin. In this study, N is chosen as the largest integer 

inferior to n squared root; it is the same for each epoch. The algorithm was published in the 

work of Moddemeijer [Modd89]. 

 

- A set of quantitative parameters defined by Hjorth has been computed. In his works 

[Hjorth70], [Hjorth73] three parameters – activity, mobility and complexity were 

introduced and described. The parameters are defined using a standard deviation function 

computed for the signal amplitude and signal derivation. The symbol σa stands for the 

standard deviation of the signal amplitude, the symbol σd stands for the standard deviation 

of the signal first derivation and the symbol σdd stands for the standard deviation of the 

signal second derivation. The Hjorth parameters are also called normalized slope 

descriptors. 

 Activity is defined as squared standard deviation of the signal amplitude in the epoch. It is 

also referred to as variance or mean power. 

22 )(ystdActivity a == σ                                                                       ( 10 ) 

Mobility is defined as the standard deviation of the slope (signal first derivation) with 

reference to the standard deviation of the signal amplitude. The ratio depends only on the 

curve shape and thus it measures the relative average slope. Mobility is expressed as a ratio 

per time unit and may be considered also as a mean frequency. For example, [MH96] 

shows significant correlation between Hjorth mobility parameter and mean frequency 

estimated by the means of the FFT. 
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Complexity is defined as the ratio of the mobility of the first derivate of the signal to the 

mobility of the signal amplitude. It expresses the average wave-shape in relation to the 

pure sin wave that is characterized by the minimum value of the complexity. Complexity 

can be also considered as an estimate of the bandwidth of the signal. 
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All time domain features described above have been extracted from all physiological signals 

(EEG, EOG, EMG) contained in the processed polysomnographic recordings. Complete list 

of all features extracted from each epoch of the polysomnographic recordings is presented in 

the table Tab. 14. On the whole, a set of 33 features is used to characterize each epoch. 

Prelδ,  Prelθ,  Prelα,  Prelσ,  Prelβ 
SEF95EEG

EEG 
signal stdEEG,  skewEEG,  kurtEEG, prctile75EEG

entrEEG,   
activityEEG, mobilityEEG, complexityEEG,     

SEF95EOG

EOG 
signal stdEOG,  skewEOG,  kurtEOG, prctile75EOG

entrEOG,   
activityEOG, mobilityEOG, complexityEOG,     

Prel high, SEF95EMG

EMG 
signal stdEMG,  skewEMG,  kurtEMG, prctile75EMG

entrEMG,   
activityEMG, mobilityEMG, complexityEMG,     

Tab. 14 The complete set of features used in this thesis to characterize an epoch. 

 

3.3 Transformation of the extracted features 

When dealing with a raw biological data, a widespread of the values and inhomogeneity of 

the data are typically observed. In order to reduce the influence of extreme values that are 

often observed on features extracted from physiological signals, each feature of the database 

was transformed using a non-linear transformation. A set of transformations towards normal 
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distribution was introduced by T. Gasser. In [GBM82], the transformations were used in order 

to normalize the EEG spectral parameters. 

Each whole night polysomnographic recording was processed as follows. Firstly, several 

artifacts were identified in the signals monitored. Then the features were extracted from the 

recording using signal processing techniques and extraction mechanisms described above. In 

the next phase, each feature was transformed using an appropriate non-linear function. The 

selection of concrete transformation functions was inspired by the paper [BCCB+05]. The 

concrete list of transformations that were applied in this thesis to each feature is presented in 

the Tab. 15. After this transformation, each feature x was normalised into a new variable z, 

using a z-score normalisation: 

 σ
µ−

=
xz                                                              ( 13 ) 

where µ is the mean value of the transformed feature x computed over the whole night 

recording and σ is the standard deviation of the transformed feature. 

Feature Transformation 

Prelδ,  Prelθ, 
Prel(EMG,high)

( )xarcsin  

Prelα,  Prelσ,  Prelβ,   ⎟
⎠
⎞

⎜
⎝
⎛

− x
x

1
log

 

SEF95EEG, SEF95EOG, SEF95EMG, 

entrEEG,  entrEOG,  entrEMG, 

activityEEG, activityEOG, activityEMG, 

mobilityEEG, mobilityEOG, mobilityEMG, 

complexityEEG, complexityEOG, complexityEMG, 

stdEEG,  stdEOG,  stdEMG, 

kurtEEG,  kurtEOG,  kurtEMG, 
prctile75EEG,  prctile75EOG, prctile75EMG

)1log( x+  

skewEEG,  skewEMG,  skewEOG tanh(x) 

Tab. 15 Transformations toward normal distribution. 
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3.4 Selection of relevant feature subset 

From now on, each epoch is represented as a single point in the N-dimensional Euclidean 

description space, where N = 33. It corresponds to the list of all features extracted from the 

EEG, EOG and EMG signals showed in the Tab. 14. The extracted features were supposed to 

be important for the classification of sleep/wake stages. In practice, the classification can be 

misled or extremely slow when a lot of features are used together or when irrelevant features 

are contained in the feature set. So, the selection of features is needed in order to reduce the 

number of features used during the classification itself. It is used to reduce the number of 

features required for accurate representation of each epoch. It results in the selection of a 

feature subset from the initial set of all features already extracted. The feature selection is 

performed between the feature extraction process and classification. The feature selection 

ensures that only relevant features from the initial set of features will be used and then fed 

into the classifier. The irrelevant or redundant features will be removed from the set of 

features.  

3.4.1 Sequential selection of relevant features 

In this section, the methods used to select the most relevant features are presented. Sequential 

methods were implemented, increasing or decreasing the number of features to be used 

according to the value of a criterion J. Though these methods are not optimal, they were used 

because the results they provide are easy to analyze. 

Let 1, 2 ,...., nf f f  be a set of n features to select. Let F be a subset of these n features and F  be 

the subset of features that are not in F: 

{ }1, 2,...., nF F f f f

F F

=

=∅

U

I  

Let J be a criterion to be maximized and J(F), the criterion J that is calculated with the 

features contained in the subset F. The sequential selection is an iterative technique which 

selects at each step i the subset Fi of features that maximizes the criterion J. 

Sequential Forward Selection (SFS) 

The method consists in increasing at each step i the number of features contained in the subset 

Fi-1 by one. Let Fi-1 be the subset of features selected at step i-1, that maximizes J(Fi-1). Fi-1 
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contains i-1 features, which were previously selected. On the contrary, the subset 1iF − contains 

the n-i+1 features still to be selected. At step i, a new feature fi is selected out of 1iF −  as 

1 1( ) max( ( ) with i i i k k i 1J F f J F f f F− −⊕ = ⊕ ∈ − . The first subset is initialized as the empty 

set { }0F = ∅ . 

Sequential Backward Selection (SBS) 
It consists in decreasing at each step i the number of features contained in Fi-1 by one. Let Fi-1 

be the subset of features selected at step i-1, that maximizes J(Fi-1). Fi-1 contains n-i+1 

features, which were previously selected. On the contrary, the subset 1iF −  contains the i-1 

features that were rejected. At step i, a new feature fi is rejected out of Fi-1 as 

. The first subset is initialized to the subset containing 

all the features. 

111 ))(max()( −−− ∈−=− ikkiii FfwithfFJfFJ

{ }0 1 2, ,..., nF f f f= . 

3.4.2 Criterion 

In this work, the criterion J to be maximized is a function of the percentage of epochs 

correctly classified by a classifier C. 

To perform the process of relevant feature selection, seven subsets, S = {S1, S2,..., S7} were 

created from the set of all artifact-free epochs. Each subset Sk contains 550 epochs. Each of 

the five classes to be recognized is represented in the Sk with about the same number of 

epochs. The way how the subsets were prepared is precisely characterized later in this chapter. 

A classifier C is trained on one subset Sk and validated on the other six subsets kS , 

,  with k kkS S S S S∈ = k− . 

An accuracy function is calculated on each of the 6 subsets kS  as: 
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                              ( 14 ) 

where epoch(i) is an epoch belonging to kS , C(epoch(i)) is the class assigned to epoch(i) by 

the classifier C, trained on the subset k. E(epoch(i)) is the class assigned by the experts to 

epoch(i). 
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A circular permutation is performed on the 7 subsets Sk. The classifier is trained 7 times using 

the different data sets Sk. Thus, 42 values of ( , )Acc k k are obtained. The criterion J used to 

select the features is: 
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J(Fi) is the value of criterion J defined by (15) and (14) using the features contained in the 

feature subset Fi. In the equation (15), the term in brackets corresponds to the mean accuracy 

obtained on the 6 validation sets, when the classifier C is trained on one training set. J 

corresponds to the mean accuracy obtained on the validation sets, when the classifier C is 

trained 7 times with 7 different training sets. Computing J this way ensures that the accuracy 

obtained is insensitive to the training set used. The standard deviation of the accuracy Acc 

obtained using classifier C is computed by the equation (16). 
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stdAcc is an indicator of the dispersion of the classification accuracies. It can be used to check 

the homogeneity of the classifications performed by seven classifiers at each individual step 

of feature selection or to determine whether the accuracies obtained using different features 

are statistically different or not. 

To be able to evaluate the feature selection method in terms of a subset of relevant features, a 

stopping criterion should be defined for each selection method. The stopping criterion used in 

this thesis goes from the estimate of significant difference. At each step of the selection, a 

significant difference of two separate vectors containing accuracy values computed at two 

successive steps is evaluated. In the case of the sequential forward selection, a new feature fi 

is added to the subset of selected features at step i if J(Fi) is higher then J(Fi-1) and if the 

vectors of accuracy values computed at step i-1 and i are significantly different. If at least one 

of these conditions fails, the process of feature selection should be stopped because the 

relevant feature set is already reached. It characterizes the situation, when no more 

information added to the classifier can significantly improve the classification accuracy. On 

the contrary, in the case of the sequential backward selection, the relevant subset of features is 
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reached at the step i-1 if J(Fi) is lower then J(Fi-1) and if the vectors of accuracy values 

computed at step i-1 and i are significantly different. It means that no more features can be 

removed from the subset of features without significant decrease of the classification accuracy. 

To evaluate the significant difference of a pair of accuracy values vectors, statistical tests are 

used. In general, the tests require normal distribution of the analyzed data. Such tests are 

called parametric tests. On the other hand, nonparametric statistical tests do not require 

normal distribution of the data. The parametric tests are said to be more powerful and precise. 

Two tests implemented in the MATLAB environment have been used. When all the data 

contained in the vectors of accuracy values follow normal distribution, paired t-test were used 

to evaluate the significant difference. When the data do not follow normal distribution, 

Wilcoxon paired test were used. To test the hypothesis of the normal distribution, the 

Lillieforst test was used. 

3.4.3 Multi-layer perceptron 

The selection of a proper automatic classifier is important to select the features as well as to 

obtain accurate results in sleep staging. The type and structure of the automatic classifier may 

affect the choice of the features selected as relevant.  

As showed in the first chapter, various techniques can be used to build an automatic classifier. 

The artificial neural networks, and more specifically the multi-layer perceptrons (MLP), are 

supposed to be attractive techniques for sleep staging and entire sleep analysis. In this thesis, 

the selection of a multi-layer perceptron as an automatic classifier was based on previous 

projects realized in the laboratory. Firstly, Becq et al. [BCCB+05] compared the classification 

accuracy of five automatic classifiers learned to classify sleep recordings. Zoubek et al. 

[ZCLBC07] compared three different types of automatic classifiers (multi-layer perceptron, 

quadratic classifier and k-nearest neighbor) using the same database of 47 polysomnographic 

recordings as presented in section 1.7. In both the projects, the best results were obtained with 

a MLP classifier. A short description of the multi-layer perceptron is presented below. More 

details about MLP can be found in [FS91], [Fausett94], [Patt96], [Gurney97], [HNNSP02].  

Artificial neural networks (ANN) are said to be a useful and powerful tool for complex data 

analysis. They are inspired by the architecture and function of the human brain. Artificial 

neural nets consist of many various process units - neurons. Each such a process unit can be 
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compared to a real neuron of the human brain. All the neurons that form a neural net are 

interconnected and form the single layers in the structure of the ANN. Each connection of two 

neurons is characterized with a quantity parameter called a weight. Each neural network can 

be characterized by three basic parameters: 

• topology 

• activation function 

• learning technique 

Artificial neurons forming the multi-layer perceptron are interconnected and organized into 

individual layers. Three types of layers are defined in the terminology of artificial neural 

networks: input, hidden and output layer. The input layer only serves to introduce the 

information into the network. Since it usually does not consist of standard neurons it is not 

generally included in the description of the neural network. The hidden layers represent a 

connection between the input and output layers. The name of this layer is derived from the 

fact that the outputs of the neurons are fed to the neurons of upper layers and thus are hidden 

for the user who can only observe the input and output of the entire neural network. The 

complexity of the final approximation is determined by the structure (number of neurons, 

interconnection, etc.) as well as by the number of the hidden layers in the neural network 

structure. If at least one hidden layer is used, the structure is called “multilayer perceptron 

neural network”. Multilayer perceptrons are defined to solve nonlinear tasks (e.g. 

classification of nonlinear separable data). Neurons in the output layer form the final output of 

the whole network. The number of neurons in the input and output layers is typically 

determined by the actual problem which should be solved, i.e. the number of classes to be 

recognized. All neurons in adjacent layers are interconnected and each connection is defined 

as a weight and is represented with a rational number. The particularity of multi-layer 

perceptrons is that the information is always transmitted in one way: from the inputs to the 

hidden layer and then to the outputs.  They are a sub-group of the so-called feed forward 

neural networks. 

Each neuron is defined by its activation function. An activation function is a linear or 

nonlinear transformation that transfers the weighted sum of the inputs of the neuron to its 

output. Various activation functions can be used in neural networks; e.g. linear, sigmoidal or 
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threshold functions. The selection of the activation functions affects the behavior of the whole 

neural network. 

Ability to learn knowledge from data is probably the most important characteristic of artificial 

neural networks. During the phase of learning, examples characterizing the problem to be 

solved are exposed to the network. These data are called the training dataset. Learning of the 

neural network then consists in tuning the connections between pairs of neurons, i.e. tuning 

the weights. Two types of learning can be defined – supervised and unsupervised learning. If 

supervised learning is used, the data in the training dataset contain output information 

characterizing the desired class. The number of target classes is thus known in advance. MLP 

neural networks belong to the class of supervised networks.  

In this work, a multi-layer perceptron with three layers has been implemented as an automatic 

classifier. Its structure (number of neurons in the hidden layer and their activation function) 

was selected from a trial and error procedure performed using a data-subset. The number of 

neurons in the first layer is defined by the number of input features describing the actual 

epoch to be processed. So, it differs for each combination of features during feature selection. 

The transfer function of the neurons in the first layer is a hyperbolic tangent function. The 

second hidden layer of the network contains 6 neurons; the transfer function is a logarithmic 

sigmoid function. The output layer of the network consists of 5 neurons; the transfer function 

of each neuron is a hyperbolic tangent. The number of neurons in the output layer is 

determined by the number of target sleep/wake stages to be classified. The neural network is 

learned using error backpropagation gradient algorithm. The weights representing connections 

between the neurons were randomly initiated at the beginning of the learning phase. For each 

learning subset, the network was learned ten times with ten different random initialisations so 

as to avoid being trapped in a local minimum during the training phase and not reach the 

global minimum. Then the network with the highest classification accuracy calculated on the 

validation subsets was kept. This strategy has been employed for all seven learning subsets. 

3.5 Results of feature selection 

In this section, the subsets used to learn the neural network classifiers are firstly presented. 

They have been built so as to fairly represent all the sleep/wake stages. Then, the feature sets 

containing relevant features are presented and the performances obtained for the 

corresponding automatic classifiers are evaluated. In the last part of this section, the 
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individual features selected as relevant are characterized and their contribution to accurate 

classification is analyzed. 

3.5.1 Presentation of the learning subsets 

To realize the selection of relevant features characterizing the sleep/wake stages, a special 

database of epochs has been prepared. In order to be able to process all features extracted 

from the polysomnographic recording, only the epochs that have all three signals (EEG, EOG 

and EMG) marked as artifact-free have been used to form the database. On the basis of 

artifact identification (see section 2.4.1), six polysomnographic recordings were excluded 

from the original set of 47 recordings. When these six recordings were excluded, the initial 

number of epochs was reduced from 67,386 to 58,968 epochs. Then, out of these 58,968 

epochs were selected only the epochs with all three signals marked as artifact-free. The 

database (Artifact-free database) is characterized in the Tab. 16. The first line of the table 

characterizes the database that contains only the epochs that have all three monitored signals 

artifact-free. The database contains 46,283 epochs in total.  

 wake NREM I NREM II SWS REM 

Artifact-free 
database 1,075 1,321 24,758 8,969 10,160 

Test database 762 762 783 770 773 

Tab. 16 Description of the database used for selection of relevant features. 

 

As it can be seen, the sleep/wake stages are unevenly distributed in the database. It 

corresponds to the distribution of the stages during the whole night sleep (see tables Tab. 1 

and Tab. 2 that characterize the complete database of epochs contained in the 47 

polysomnographic recordings). The transition stage NREM I lasts for only about 2-5% of the 

night sleep. NREM sleep stage II is a dominant stage during the sleep and lasts about 45-60% 

of the night. Slow wave sleep (SWS) lasts about 20% of the night sleep. And at last, the REM 

sleep lasts about 20-25% of the night.  

In order to avoid errors induced by difference in representation of the individual sleep/wake 

stages, a special test database S was prepared. The database is characterized in the second line 
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of the Tab. 16. It contains about the same number of epochs scored in every sleep/wake stage. 

The epochs in each stage were selected randomly from the artifact-free database.  

Thus, the complete test database S used for feature selection contains 3,850 epochs. The test 

database S was then split into seven subsets Sk, S = {S1, S2,..., S7}. Each subset Sk contains 550 

epochs, so that each one of the five sleep/wake stages is represented with about the same 

number of epochs. The condition of equal distribution of the sleep/wake stages is crucial; it 

ensures that the method selects the features able to classify all stages with the highest 

classification accuracy. If the epochs were distributed unevenly, the selection algorithm 

(sequential selection and accuracy criterion J) would favor the stages represented with a large 

number of epochs in the subsets Sk and on the contrary would miss out the infrequent 

sleep/wake stages. 

The size of the subsets Sk (550 epochs) was determined according to the results of a study 

[BCCB+05] whose partial goal was to analyze the effect of the number of examples on the 

classification error. The conclusion of the paper was that a minimal number of 500 examples 

(epochs) was sufficient to train and validate an automatic classifier on a sleep/wake 

classification problem and to get an unbiased evaluation of the classification accuracy. 

Increases in the number of epochs did not bring significant improvement in the classification 

accuracy. The structure of learning subsets Sk used in this thesis was also influenced by the 

number of epochs in the artifact-free database. Two stages are represented with a low number 

of epochs; wakefulness (1,075 epochs) and NREM I stage (1,321 epochs). These low values 

of epochs limit the two main parameters determining the structure of the subsets. The 

parameters are number of the subsets and size of each subset Sk. On the basis of a compromise 

between the requested number of epochs in a subset and the number of available data, seven 

subsets with a uniform size of 550 epochs each were randomly prepared from the artifact-free 

database presented above. Obviously, each subset contains about the same number of epochs 

in each sleep/wake stage. 

3.5.2 Relevant feature sets 

The EEG signal characterizes the fundamental information needed for proper sleep analysis. 

So, the EEG is considered as obligatory for automatic classification realized by the proposed 

classification system. Thus, there are four possible combinations of the monitored signals. 

The combinations are as follows: EEG, EEG + EOG, EEG + EMG, and EEG + EOG + EMG. 
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Each combination is characterized with the list of features selected as the most relevant and 

with classification accuracy reached during validation on the seven subsets Sk containing only 

artifact-free epochs. The classification accuracy is characterized by the means of two 

parameters.  

− The minimal and maximal values, mean value (criterion J), standard deviation, and 

median value calculated over the 42 values of the accuracy parameter Acc (14). These 

general statistics computed for the four diverse sets of relevant features are summarized in 

the Tab. 21.  

− The confusion matrix, which focuses on classification accuracy of each sleep/wake stage. 

The confusion matrix is a conventional tool used for more detailed analysis of a 

classification task. Confusion matrix combines information about the actual stages (scored 

by physician, expert) and stages predicted by the automatic classifier. All the rows 

represent the stages scored by the physician, thus an object is presented in particular row 

if it belongs to the stage that corresponds to the actual row. On the other hand, the 

columns represent the stages predicted by the automatic classifier. An object belongs to 

the column if it is classified to the corresponding stage. Each case (i,j) corresponds to the 

number of examples classified as i by both experts and j by the classifier, expressed as a 

percentage of the examples classified as i by the expert. A classifier that performs perfect 

classification is represented with confusion matrix containing zeros everywhere except a 

central diagonal. 

 

Moreover, for each combination of signals, a figure presenting the improvement of the global 

classification accuracy at each step of the selection is displayed. In each figure, the dots 

represent the classification accuracy (15) obtained at each step of the feature selection. The 

bars express the corresponding standard deviation (16). The axis of abscissas shows the 

features selected at each step. The vertical line represents the limit determined by the stopping 

criteria. It corresponds to the situation when no more features added to the classifier can 

significantly improve the classification accuracy. 
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EEG  
When only the EEG signal is used, the initial pool of features contains 14 features. Using the 

sequential selection method, a set of four relevant features has been selected. The relevant 

features are Prelβ, entrEEG, Prelσ and Prelα. The order of the features corresponds to the order 

of their selection. The overall classification accuracy is 74.70 ± 1.19%. 

 

classifier 
% 

wake NREM I NREM II SWS REM 

wake 79.77 11.87 3.92 0.61 3.83 

NREM I 12.34 49.61 7.35 0.61 30.09 

NREM II 1.83 5.75 85.37 6.09 0.96 

SWS 0.11 0.04 4.52 95.33 0 

ex
pe

rt
 

REM 3.60 30.56 2.40 0.39 63.05 

Tab. 17 Confusion matrix. Relevant features extracted from the EEG signal. 

 

The classification accuracies of NREM sleep stage I and REM sleep are very low. The other 

stages are rather well scored on the basis of EEG features. 
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Fig. 14 Selection of relevant features when only EEG features are used. 
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EEG + EOG 
When the EEG and EOG are available, the initial pool of features contains 23 features, 14 of 

them extracted from the EEG and 9 features from the EOG signal. The set of relevant features 

consists of Prelβ, mobilityEOG, Prelα, entrEEG, Prelσ, kurtEOG and Prelθ. The overall 

classification accuracy is 80.71 ± 1.25%. 

 

classifier 
% 

wake NREM I NREM II SWS REM 

wake 84.43 9.95 2.54 0.37 2.71 

NREM I 8.86 72.11 5.32 0.37 13.34 

NREM II 0.47 6.56 85.27 6.17 1.53 

SWS 0.28 0.13 4.35 95.24 0 

ex
pe

rt
 

REM 3.53 27.90 1.79 0.37 66.41 

Tab. 18 Confusion matrix. Relevant features extracted from EEG and EOG signals. 

 

Though the EOG signal was added, the classification accuracy of REM sleep is still rather 

low. A high number of REM epochs are still classified by the automatic system as NREM I 

stage. However, the classification of NREM I is significantly improved. 
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Fig. 15 Selection of relevant features when only EEG and EOG features are used. 
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EEG + EMG 
The set of available features contains 24 features, 14 features extracted from the EEG and 10 

features extracted from the EMG. The relevant set of features contains Prelβ, mobilityEMG, 

Prelα, Prelσ, entrEEG and Prelθ. The overall classification accuracy is 80.34 ± 1.02%. 

 

Classifier 
% 

wake NREM I NREM II SWS REM 

wake 82.70 10.98 3.39 0.74 2.19 

NREM I 10.46 55.64 6.08 0.61 27.21 

NREM II 1.19 4.69 85.01 5.90 3.21 

SWS 0.09 0 4.89 95.02 0 

ex
pe

rt
 

REM 1.66 13.34 1.64 0.39 82.97 

Tab. 19 Confusion matrix. Relevant features extracted from EEG and EMG signals. 

 

The addition of the EMG causes high improvement in classification of REM sleep. However, 

a lot of NREM I is misclassified as REM sleep. Wake, NREM II and SWS stages are well 

classified. 
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Fig. 16 Selection of relevant features when only EEG and EMG features are used. 
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EEG + EOG + EMG 
When all three signals are used, the initial set of features contains 33 features. A set of seven 

relevant features has been selected. The relevant features are Prelβ, mobilityEMG, Prelα, Prelσ, 

entrEOG, entrEEG and kurtEOG. The overall classification accuracy is 82.52 ± 1.21%. 

 

classifier 
% 

wake NREM I NREM II SWS REM 

wake 84.64 8.73 3.04 0.59 3.00 

NREM I 9.01 69.55 5.91 0.50 15.03 

NREM II 0.68 5.32 84.61 7.09 2.30 

SWS 0.13 0.06 3.38 96.39 0.04 

ex
pe

rt
 

REM 2.35 18.33 1.70 0.32 77.30 

Tab. 20 Confusion matrix. Relevant features extracted from all physiological signals. 

 

No sleep/wake stage is classified with markedly low accuracy compared to the others. The 

lowest accuracy is reached for NREM I stage (about 70%).  
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Fig. 17 Selection of relevant features when EEG, EOG and EMG features are used. 

 

A global overview of classification accuracies is presented in the Tab. 21. As it can be seen, 

the lowest averaged classification accuracy (15) is obtained when only the EEG features are 

used to characterize the epochs. In this case, only four features were selected as relevant and 
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used as inputs for the neural network classifiers. The confusion matrix (Tab. 17) reveals high 

disagreements in scoring of NREM I and REM sleep stages. Only about 50% of NREM I 

epochs are correctly scored. 

When the EOG signal is added (Tab. 18), the classification accuracy of the NREM I stage is 

increased of about 20% in average. The other stages are also slightly improved. On the 

contrary, when the EMG signal is added to the EEG and the EMG features are used in the 

classification (Tab. 19), a high improvement in classification of REM sleep arises. The 

classification accuracy of REM sleep is increased of about 20%. These two findings are in 

concordance with the hypothesis that the EOG and EMG signals are helpful for classification 

of these two stages, which are characterized by a similar EEG activity. In the REM sleep 

stage, the EOG signal is characterized by the presence of the rapid eye movements. 

Improvement obtained by adding the EMG signal can be explained by the variable muscular 

activity (muscle tone) during the night sleep. In the REM sleep, the EMG activity is totally 

absent and the voluntary muscle groups are inhibited. On the contrary, in the wakefulness or 

NREM I stages is the muscular activity present. The EMG trace is characterized as high-

frequency activity with moderately high amplitude. Thus, as could be expected, when both 

EOG and EMG signals are added to the single EEG signal (Tab. 20), classification accuracies 

of wake, NREM I and REM sleep stages are significantly increased. When the confusion 

matrixes for only EEG (Tab. 17) and for EEG + EOG + EMG signals (Tab. 20) are compared, 

it can be seen that the EOG and EMG evidently help to discern wakefulness, NREM I and 

REM sleep. Especially the NREM I and REM sleep are better discerned. 

 mean value standard 
deviation min max median 

EEG 74.70 1.19 71.82 76.91 74.73 

EEG + EOG 80.71 1.25 78.00 83.09 80.73 

EEG + EMG 80.34 1.02 78.18 82.54 80.36 

EEG + EOG + EMG 82.52 1.21 80.54 84.91 82.37 

Tab. 21 Statistics characterizing performances of four possible combinations of signals. 

 

As can be seen in the Tab. 21, the values of standard deviation estimated from the values of 

accuracy parameters are relatively low. This fact confirms the homogeneity of the seven 
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classifiers learned for each combination of signals. So, the mean values can be considered as 

accurate estimates of the classification accuracy. 

3.5.3 Importance of the relevant features 

This section focuses on analysis of the relevant features in terms of improvement of 

classification accuracy of the sleep/wake stages. In the previous section, the four sets of 

relevant features have been presented in the terms of classification accuracy reached when the 

single classifiers are used on 7 subsets of data. Now, the individual relevant features will be 

characterized in detail and the gain in classification accuracy of individual sleep/wake stages 

will be discussed. Relevant features will also be characterized with a help of figures 

illustrating improvement in discrimination of sleep/wake stages. The figures represent the 

epochs stored in the seven subsets of data used for selection of relevant features. Moreover, 

four figures are placed through this section so as to show percentage of correct classification 

obtained for individual sleep/wake stages at each step of selection (SFS). Each figure 

characterizes one combination of available signals. 

Features extracted from the EEG. 

The detailed analysis of the sets of relevant features reveals one interesting fact. The set of 

four relevant features extracted from the EEG signal (Prelβ, entrEEG, Prelσ and Prelα) has 

been also selected for all the other combinations of signals (i.e. EEG + EOG, EEG + EMG, 

EEG + EOG + EMG). This fact is similar to the manual scoring performed by the physician. 

During a manual scoring, physician primarily analyzes the EEG signal trace and only when 

his decision is not clear focuses on the information contained in the EOG and/or EMG signals. 

Data mining methods selected a set of four features representing the core of the information 

stored in the EEG. The features selected from the other signals can be then interpreted as 

additional information used to precise the scoring. So, the four relevant EEG features are 

characterized in the next sections. Firstly, the effect of three spectral features on classification 

of sleep/wake stages will be discussed. 
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Fig. 18 Classification accuracy of sleep/wake stages obtained at each step of selection - EEG features. 

 

Prelβ 

The most relevant feature is the relative power in beta frequency band; Prelβ. It was selected 

by the SFS as the most relevant for all combinations of monitored signals. When using only 

the Prelβ, the slow wave sleep (SWS) is scored with classification accuracy of about 95% 

when computed over the seven subsets. This stage is characterized by dominant slow delta 

activity and consequently the fast beta waves are nearly absent in the SWS stage. The lowest 

classification accuracy is for the NREM I stage. Only about 13% of the NREM I epochs are 

correctly scored on the basis of the EEG beta relative power. NREM I stage is mainly 

misclassified by either wakefulness (about 25% of NREM I) or REM sleep (about 50% of 

NREM I). The classification accuracy of the remaining stages (wakefulness, NREM II and 

REM sleep) is about 70%. The active vigilance – first phase of the wakefulness is typically 

characterized by dominant high-frequency beta activity that takes the highest part of the epoch 

compared to the other stages. So, a significant part of the wake can be scored on the basis of 

the beta activity. On the contrary, NREM II stage is characterized by only a low amount of 

the beta activity and thus is well discerned from the other stages, especially from the wake, 

NREM sleep stage I and SWS. The mean values of relative beta power computed for different 

sleep/wake stages are presented in the Fig. 19. 
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Fig. 19 Mean values and standard deviations of the beta relative power feature computed for different 
sleep/wake stages. 

 

Prelσ 

The sigma relative power Prelσ is the second relevant feature characterizing the frequency 

content of the EEG signal. Sigma waves are mainly related to the presence of sleep spindles 

which are typical for NREM II stage. A detailed analysis of the confusion matrix, when the 

sigma relative power feature is added, confirms improvement in scoring of NREM II stage. 

The amount of sigma activity is also a useful parameter to distinguish NREM I and REM 

sleep stages from the NREM II stage. The improvement in discrimination of NREM II and 

REM sleep stages is characterized in Fig. 20. So, in total, classification accuracy of NREM I, 

NREM II and REM sleep is markedly increased. Sigma relative power does not really 

improve scoring of wake stage. It is caused mainly by the fact that a part of the wake stage is 

characterized by the transition from beta activity to alpha activity. So, the waves with 

frequencies corresponding to the transient sigma frequency band are present within the 

 - 102 -  



wakefulness and that is why sigma activity does not really help to distinguish wakefulness 

and NREM II stage that is interspersed with sleep spindles. 

 

Fig. 20 Effect of the sigma relative power on discrimination of NREM II and REM sleep. 

 

Prelα 

Alpha activity is dominant during the so-called relaxed vigilance state which is the second 

phase of the wake stage. Then, in the subsequent phases of the sleep, contribution of alpha 

activity is gradually reduced. The main importance of this feature is thus the improvement in 

discrimination of NREM I stage and REM sleep from the wakefulness (see Fig. 21). This 

improvement leads mainly to the increase of classification accuracy of wakefulness and 

NREM I stages. On the other hand, alpha activity does not significantly improve 

discrimination of NREM I and REM sleep stages that are characterized by similar EEG 

activity. 
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Fig. 21 Effect of the alpha relative power on discrimination of wake and REM sleep. 

 

entrEEG

Entropy is a stochastic time domain parameter which characterizes the regularity of the signal. 

In other words, it quantifies a degree of disorder of the signal amplitude distribution. The 

entropy calculation used in this thesis reflects the homogeneity of the amplitude values in the 

epoch of a signal. The computation also reflects the actual range (minimal and maximal 

values) of the values within the epoch. Entropy is a measure of the signal variability: the more 

variant the signal, the higher the entropy. The results of the analysis of entropy values for the 

different sleep/wake stages showed that the highest values of EEG entropy are computed for 

the SWS stage. It reflects a homogeneous distribution of the signal amplitude during SWS 

characterized by the slow and high-amplitude trace. An evident increase of the entropy values 

is observed when the person goes from NREM I to SWS through NREM II stage. Low values 

of entropy are computed for wake, NREM I and REM sleep stages. When the EEG entropy is 

added to the feature set, the classification accuracy of wake, NREM I and NREM II stages is 

increased. The EEG entropy helps to discern these three stages from REM sleep and leads to a 
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decrease in false classification of epoch into REM sleep stage. The improvement in 

discrimination of NREM II and REM sleep can be seen in the Fig. 22. 

 

Fig. 22 Effect of the EEG entropy on discrimination of NREM II and REM sleep. 

 

Prelθ 

Theta relative power, Prelθ, is the last EEG feature selected by the proposed selection 

strategy as relevant. It has been selected only for EEG + EOG and EEG + EMG combinations 

of signals. When theta relative power is compared over the five sleep/wake stages, the only 

one stage that markedly varies from the others is the SWS stage, which has the lowest portion 

of theta activity. This parameter discerns only partially the NREM I and REM sleep stages 

from wake and NREM II stages. The stages NREM I and REM sleep contain the highest 

portion of theta activity compared to the other stages. Since the differences in theta activity 

for various sleep/wake stages are not distinctive, this feature has been selected as the last 

relevant one. However, importance of theta activity for sleep/wake stage classification seems 

to be increased when it is combined with the other features selected in the previous steps of 

relevant features selection (see Fig. 23 and Fig. 28). Theta relative power improves the 

 - 105 -  



classification of wake, NREM I and REM sleep stages. Especially, the classification of wake 

stage is improved at the expense of false scoring of NREM I and conversely. 

 

Features extracted from the EOG and EMG. 

Four relevant features were selected from the EOG and EMG signals. Firstly, the features 

extracted from the EOG will be characterized. 
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Fig. 23 Classification accuracy of sleep/wake stages obtained at each step of selection - EEG and EOG 
features. 

 

entrEOG

EOG entropy shows large variations of values in the wake and REM sleep stages. In the wake 

stage, this variation reflects the transition between active and relaxed vigilance. In the case of 

the REM sleep, the variation in entropy is due to the alternation of the phasic and tonic REM 

sleep phases. When continuous REMs (Rapid Eye Movements) are present in the epoch, the 

entropy value is increased. The REMs can be present during active vigilance and phasic REM 

sleep phase. This fact especially leads to better differentiation of wake and REM sleep stages 

from NREM I stage (Fig. 24), so the classification accuracy of wake and NREM I stages is 

mainly improved. 
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Fig. 24 Effect of the EOG entropy on discrimination of wake and NREM I stages. 

 

kurtEOG

Kurtosis is a measure of whether the distribution is peaked or flat relative to the normal 

distribution. The kurtosis of a signal measures the presence of irregular values such as 

transitory sharp variations in the signal. Sharp variations related to the presence of rapid eyes 

movements (REMs) can occur in the EOG during REM sleep (phasic REM sleep) and active 

vigilance, and explain why EOG kurtosis is higher for some epochs of REM sleep and 

wakefulness. Thus, EOG kurtosis helps to increase the classification accuracy of NREM I and 

REM sleep stages, as presented in Fig. 25. 
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Fig. 25 Effect of the EOG kurtosis on discrimination of NREM I and REM sleep. 

 

mobilityEOG

The analysis of the confusion matrix, when the mobility of EOG is added, shows increase in 

classification accuracies of the NREM I and NREM II stages. EOG mobility helps to discern 

them especially from the REM sleep stage (Fig. 26). Since the mobility of EOG is selected as 

the second feature (when EEG and EOG signals are used) and beta relative power has a very 

low classification accuracy of the NREM I stage, adding EOG mobility improves the 

classification of the NREM I stage of about 30%. The analysis of EOG mobility computed for 

individual sleep/wake stages shows that the highest values of this parameter are computed for 

epochs representing NREM II stage. This fact might reflect frequent presence of the sleep 

spindles transmitted to the EOG signal. 
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Fig. 26 Effect of the EOG mobility feature on discrimination of NREM II and REM sleep. 

 

mobilityEMG

As presented in the description of the Hjorth parameters, the Hjorth mobility should reflect 

the mean frequency of the signal. Activity of the muscles decreases when the person goes 

from wake to SWS stage. During the REM sleep stage, the EMG activity is very low or even 

totally absent. The only activity (short eruptions of muscles) is present during the phasic REM 

sleep. This description of muscular activity is then reflected in the analysis of EMG mobility 

values over the sleep/wake stages. The highest values of the mobility represent the 

wakefulness. It corresponds to the high-amplitude activity especially in the phase of active 

vigilance. Then, the mean values of the Hjorth mobility of EMG decrease gradually. The 

lowest mean value characterizes the REM sleep stage, though several outliers characterizing 

phasic REM sleep can be observed. The EMG mobility brings improvement mainly in scoring 

of NREM I and REM sleep stages (Fig. 27). There is also slight improvement in classification 

of the wake stage. 
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Fig. 27 Effect of the EMG mobility on discrimination of NREM I and REM sleep. 
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Fig. 28 Classification accuracy of sleep/wake stages obtained at each step of selection - EEG and EMG 
features. 
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Global importance of selected features. 

To perform selection of relevant features, a special set of seven subsets has been prepared so 

as to equally represent all sleep/wake stages. This condition ensures that the accuracy 

functions Acc (14) and the classification criterion J (15) computed over the seven subsets 

represent a fair compromise between all stages scored in this thesis. Thus, the whole process 

of feature selection does not favor one stage to another one and the final feature set is the 

most relevant for accurate classification of the set of five sleep/wake stages (wakefulness, 

NREM I, NREM II, SWS, and REM sleep). As can be seen for example in Fig. 18 and Fig. 29, 

the first feature selected as relevant is the beta relative power Prelβ. When only Prelβ is used, 

the neural network classifier is capable to correctly score about 95% of SWS epochs. There is 

no increase in classification accuracy of SWS when the other relevant features are added. So, 

the selection of relevant features focuses on improvement in classification of the remaining 

stages, especially NREM I stage whose classification accuracy is extremely low (only about 

13%) when only Prelβ is used. 
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Fig. 29 Classification accuracy of sleep/wake stages obtained at each step of selection - EEG, EOG and 
EMG features. 

 

The results of feature selection show that appropriate selection of the features significantly 

improves classification accuracy of sleep/wake stages. The features especially help to 

distinguish wake, NREM I and REM sleep stages and therefore lead to increase in 
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classification accuracy of these stages. The biggest gain in accuracy is achieved in 

classification of the NREM I stage. Nevertheless, in the case when the EOG signal is not used 

as an input for the classifier, the classification accuracy of the NREM I stage is still low. It is 

only slightly over 50% of agreement. But it mainly corresponds to the information contained 

in the EOG signal that can not be used when the EOG signal is artifacted. 

The results also confirmed the hypothesis that frequency analysis of the EEG signal is 

essential in the sleep analysis. Activity of the EEG signal is mainly characterized by the help 

of the spectral powers computed in the typical EEG frequency bands. It corresponds to the 

description of the individual sleep/wake stages, where presence of the characteristic waves 

determines the actual stage. The relative powers in the beta β, sigma σ and alpha α frequency 

bands have been selected by the sequential selection method as relevant features that are 

important for proper sleep/wake stage classification. 

Then, five features computed in the time domain have been selected as relevant for sleep 

staging. Two of them, although computed in the time domain, can give an estimate of 

frequency information characterizing EOG and EMG activity. These features are Hjorth 

mobility parameters computed from the EOG and EMG. Hjorth mobility is considered to 

characterize the mean frequency of the analyzed signal. This fact could indicate the need of 

proper frequency analysis performed also on the EOG and EMG signals. Until now, 

frequency analysis of only EEG signal has been considered as powerful approach in sleep 

analysis. There is evident advantage of the Hjorth mobility compared to the frequency 

analysis performed by the means of Fourier transformation. The Hjorth parameters require 

low calculation time since they are based on simple computations of standard deviation and 

signal derivation. 

The last three features, entrEEG, entrEOG and kurtEOG, represent the time domain parameters 

that characterize the regularity of distribution of the signal. These parameters analyze the 

monitored signal as a random variable. Both the functions (entropy and kurtosis) come from 

the histogram of the random variable representing the signal. 

3.6 Chapter conclusion 

Application of signal processing techniques is necessary in order to extract descriptive 

parameters from the analyzed signals. Signal processing techniques performing both in the 
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time and frequency domain have been used. As presented in the Tab. 14, the original pool of 

features extracted from the three polysomnographic signals (EEG, EOG and EMG) contains 

33 features in total. Then, a sequential selection strategy has been used so as to determine the 

most relevant features needed for accurate sleep classification. The selection strategy used is 

proposed so as to maximize the classification accuracy and do not favor one stage to another 

one. A multilayer perceptron is employed as an automatic classifier used during feature 

selection. 

The process of feature selection has been realized for four various combinations of signals 

and in total determined nine relevant features that will be then used in the complex 

classification system presented in the next chapter. Four out of the nine features are present in 

all tested combinations. Unfortunately, only these four features have been selected as the most 

relevant when only the EEG signal is used for classification. The low number of features in 

the feature set could be the reason of the relatively low classification accuracy achieved with 

EEG features. But it could also indicate that the proposed signal processing techniques are not 

capable to extract more useful information from the EEG signal and that the information 

content of the EEG is limited. For the other combinations of signals, the numbers of relevant 

features as well as the overall classification accuracies are higher. There are six relevant 

features in the case of EEG + EMG and seven features selected for the combinations EEG + 

EOG and EEG + EOG + EMG. 

The results of feature selection show that the EEG signal can be considered as indispensable 

for automatic sleep/wake stage classification because the majority of the relevant features is 

computed from the EEG signal. Moreover, frequency analysis of the EEG is especially 

needed. When only the EEG signal is used, three stages (wake, NREM II, and SWS) are 

correctly recognized. Classification accuracies of the individual stages are over 80%. 

However, NREM I and REM sleep are highly confused. When the EOG and EMG signals are 

added to the EEG, discrimination between these two stages significantly increases. 

As it can be seen, the real challenge in automatic sleep analysis is the successful 

discrimination of NREM I and REM stages. At visual analysis, trained physicians are able to 

do it effectively using the three polysomnographic signals (EEG, EOG and EMG). An 

automatic classifier should also be able to perform accurate discrimination of NREM I and 

REM sleep, if correct and relevant features computed from all three signals would be used. So, 
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future research should focus on the extraction of these useful features. The three other stages 

(wake, NREM II and SWS) are already correctly classified with classification accuracies of at 

least 85% when EEG, EOG and EMG are used. The classification errors occur on adjacent 

sleep phases. It is mainly due to the periods of transitions from one sleep stage to another. 

Correct classification of transitions of sleep/wake stages is difficult even for human expert. 
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Chapter 4  

Two-step system for sleep analysis 

The results presented in chapter 2 and chapter 3 enable the development of an automatic 

classification system able to deal with artifacts in the polysomnographic signals. The structure 

of the proposed system is a two-step classification system presented in the Fig. 30. The main 

idea is to use a different classifier for each epoch to be classified, depending on the quality of 

the three polysomnographic signals (EEG, EOG, and EMG) during the epoch. 

 

Selected 
signals 

EEG EOG EMG

Artifact 
identification 

Selection of the classifier 
Extraction of features 

 
EEG

EEG
EOG

EEG
 

EMG

EEG
EOG
EMG
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Fig. 30 Scheme of the two-step classification system. 
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The first step consists in checking all the three signals to determine if any artifact is present in 

the epoch to be classified. The concrete strategy was presented in detail in chapter 2. The 

output of this part is then Boolean information determined for each analyzed signal: artifacted 

(1) or artifact-free (0). The concatenation of Boolean information characterizing individual 

signals provides a diagnosis on each epoch that is used in the second part of the complex 

system. 

The second step consists in performing the classification of the actual epoch. Each epoch can 

be classified in one of the five sleep/wake stages (wake, NREM I, NREM II, SWS, REM). 

The classification is achieved using a suitable classifier from a bank of four various classifiers. 

Selection of the classifier to be used is performed according to the output of the first step. 

Criteria for selection of a suitable classifier are summarized in the Tab. 22. The inputs needed 

for each classifier are described in chapter 3. It is necessary to keep in mind, that the 

electroencephalogram (EEG) is assumed to be crucial signal for sleep/wake classification. 

Thus, if the EEG is artifacted, no classification can be performed and the epoch is excluded. 

EEG EOG EMG Classifier / signals 

0 1 1 classifier1 / (EEG) 

0 0 1 classifier2 / (EEG + EOG) 

0 1 0 classifier3 / (EEG + EMG) 

0 0 0 classifier4 / (EEG + EOG + EMG) 

Tab. 22 Criteria for selection of a classifier from a bank of classifiers. (0 = artifact-free, 1 = artifacted) 

 

For the need of practical implementation of the proposed system, each of the four various 

classifiers has been learned and validated using the seven subsets of data presented in section 

3.5.1. So, for each combination of input features, seven neural networks have been learned. 

Each neural network classifier has been learned using one of the seven subsets of data and 

validated on the other six subsets. In the final implementation of the two-step classification 

system, only one of the seven neural networks has been selected for each combination of 

physiological signals. In the concrete, the neural network classifier characterized with the 

highest classification accuracy computed on the corresponding six subsets has been chosen 

and stored in the bank of classifiers. This means that only 550 epochs were used to train the 
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classifiers, i.e. 0.8% of the data base. The proposed system is then ready to be used to score 

the whole night polysomnographic recordings. 

The two-step system based on a bank of classifiers has been chosen so as to allow dealing 

with incomplete data caused by the presence of artifacts in the analyzed physiological signals. 

When all signals are available, the set of relevant features contains seven features in total - 

four features extracted from the EEG, two features extracted from the EOG and one feature 

computed from the EMG. So, all monitored signals are important for accurate sleep scoring. 

Missing values can appear when at least one signal out of the three monitored is artifacted. 

For example, if EMG is marked as artifacted, the set of seven relevant features needed for 

classification based on information extracted from all signals will contain one missing value 

(mobilityEMG). Such an incomplete feature set can not be processed by an ordinary 

automatic classifier and the corresponding epoch can not be scored. Excluding the epochs that 

contain at least one artifacted signal leads to a great loss of analyzed data and in consequence 

decreases the applicability of the classification system. The proposed bank of classifiers 

allows classification of the epochs containing an artifacted signal using features extracted 

from available artifact-free signals. So, the proposed system markedly reduces the number of 

epoch that must be excluded (not classified) because of artifacts confusing some of the 

analyzed signals. 

Various techniques can be employed to deal with missing values. The best known methods 

are based on the principle of substitution of the missing value with a substitute. In the 

simplest approach, the missing values are replaced with a global value. There are various 

techniques to estimate the substitute value. The global substitute value can be estimated as a 

mean value, median, or modus computed from a corresponding row of data or can be set as 

zero value. Such a simple approach can mislead the subsequent classification. Several 

publications can be found where application of k-nearest neighbors is used to impute the 

missing values [TCSB01], [NWC04]. Methods based on regression analysis have also been 

used to estimate the missing values [ZWD03]. All the methods based on imputation of 

missing value are biased by the number of missing values in the concrete set of data. A 

statistic estimate of the substitute (mean, median, etc.) as well as a prediction of the missing 

value from the available data using regression methods require representative amount of 

available data. If the portion of missing values is high and the number of available data is low, 
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the estimate of the substitute can be inaccurate and in consequence can degrade the entire 

analysis. 

Another approach used to deal with missing values modifies directly the structure of the 

classification system used. This approach is partially similar to the bank of classifiers 

proposed in this thesis. For example, P.K. Shape and R.J. Solly [SS95] use Multiple Neural 

Network classifiers for dealing with missing values. Multiple neural networks (MNN) 

represent a strongly separated architecture where each network works independently of the 

others. Each network is trained and specialized for its specific task and the final decision is 

then made on the results of the individual expert networks. There can be various techniques to 

implement the decision strategy. For example, it can be based on the application of a rule 

based decision system or another neural network can be employed to process the outputs of 

the expert networks. Contrary to the bank of classifiers proposed, all the individual networks 

are used to classify each object. In the case of a bank of classifiers proposed in this thesis, 

each time only one network (classifier) is used to process new set of input data. The selection 

of the network and input features used is based on the results of artifact identification 

performed on the three monitored signals in the first phase of the complex classification 

system. 
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Chapter 5  

Results of practical experiments 

This chapter describes the results obtained on the data presented in section 1.7 when using the 

two-step sleep/wake stages classification system. The performance of the system proposed is 

then compared with two traditional neural network classifiers using features extracted from all 

three signals. The first classifier employs the same artifact identification strategy as the 

proposed two-step system. The second one does not perform any artifact analysis. At the end 

of this section, the results of the experiments are compared and discussed. 

The polysomnographic database has been described at the end of the first chapter. The 

database contains 47 whole night recordings. Since the EEG signal is considered as crucial for 

sleep staging, the quality of the EEG signal affects the experimental tests performed on the 

database. According to the results of artifact identification, the recording s105t1 has been 

excluded from the database used for the need of the final tests. The EEG signal of this 

recording is highly contaminated with continuous high-frequency artifacts. So, there are 46 

polysomnographic recordings that have been analyzed. The same criteria as in the description 

of the initial Both experts database have been applied. The stages NREM III and NREM IV 

have been joined into SWS stage, epochs scored as “undefined” have been excludes and only 

the epochs with consensual scoring of both experts have been used. So, the final database 

(Both experts-test) contains 66,164 epochs. The distribution of the epochs into individual 

sleep/wake stages is shown in the Tab. 23. 
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Number of 
epochs 

Awake 
state NREM I NREM II SWS REM 

Both 
experts-test 5,298 1,981 32,462 11,210 15,213 

Tab. 23 Description of the test database; Both experts-test database. 

 

5.1 Application of the two-step system 

The analysis of the results obtained with the two-step system on the 46 night recordings starts 

with the artifact identification performed for each epoch of the three signals monitored. 

Before the performance of the proposed two-step system is presented in terms of 

classification accuracy, the results of classification are presented by the distribution of 

classifiers used. Tab. 24 shows how many epochs were either scored by the diverse classifiers 

or excluded. The first line of the table shows the absolute numbers of epochs processed by 

each individual classifier. In the second line of the table, the same information is expressed 

using percentage values calculated on the whole base of epochs. The last line of the table 

presents percentage values calculated when the unclassified epochs (3,765 epochs) are not 

included into the calculation. 

EEG EEG   
EOG 

EEG  
EMG 

EEG   
EOG  
EMG  

classifier 1 classifier 2 classifier 3 classifier 4 

excluded 

Number of 
epochs 1,525 7,717 4,534 48,623 3,765 

%         
(all) 2.3 11.7 6.8 73.5 5.7 

%  
(scored) 2.4 12.4 7.3 77.9 - 

Tab. 24 Analysis of the classification process. 

 

Tab. 25 provides a detailed analysis of the epochs contained in the recordings. The table 

shows the absolute number of epochs processed by each individual classifier depending on 

individual sleep/wake stages.  
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 classifier 1 classifier 2 classifier 3 classifier 4 excluded 

wake 445 329 535 1,162 2,827 

NREM I 73 268 207 1,345 88 

NREM II 358 4,131 1,587 25,931 455 

SWS 56 1,295 96 9,678 85 

REM 593 1,694 2,109 10,507 310 

Tab. 25 Numbers of epochs analyzed by individual classifiers - distribution into sleep/wake stages. 

 

From Tab. 24, it can be seen that 3,765 epochs (5.7%) have been excluded and thus not 

classified into sleep/wake stages by the system. These epochs have been excluded because the 

EEG signal is marked as “artifacted”. The rest of the database, 62,399 epochs (94.3%) in total, 

has been scored in the second block of the proposed classification system. Each epoch has 

been scored using one of the four classifiers stored in the bank of classifiers. As can be seen 

in Tab. 24, the majority of the data (48,623 epochs) has been scored using the classifier 4, 

which uses features computed from all three signals. This means that about 80% of the epochs 

classified by one of the four classifiers were classified by the classifier 4. On the contrary, 

only 1,525 epochs (about 2.5%) have EOG and EMG signals marked as artifacted and thus 

have to be scored by the classifier 1 using only EEG features. 

The overall classification accuracy obtained by the two-step system, computed over the 

62,399 epochs, is 85.48%. This accuracy is slightly above the performances of existing 

automatic classification systems. Some of them have been presented in the overview of 

current automatic sleep analysis presented in chapter 1. For example, the automatic system 

proposed by Schaltenbrand et al. [SLTL+96] reached classification accuracy of 84.5% when 

20 recordings from healthy subjects were classified. Sleep stager proposed by the SIESTA 

group [AGPW+05] is characterized with global classification accuracy of about 80%. 

However, this automatic system does not join together stages NREM III and NREM IV. 

Probabilistic continuous sleep stager proposed by Flexer et al. [FGD05] was evaluated on 20 

whole night recordings. The system was able to correctly classify only 68% of epochs scored 

by expert as REM sleep. Moreover, classification accuracy of stages NREM I, NREM II and 

NREM III was below 40%.  
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The detailed analysis of the results is presented in the Tab. 26 which shows the corresponding 

confusion matrix. 

classifier 
% 

wake NREM I NREM II SWS REM 

wake 78.07 12.79 3.40 2.10 3.64 

NREM I 8.14 64.77 7.13 0.63 19.33 

NREM II 1.80 4.65 86.92 4.80 1.83 

SWS 0.15 0 5.09 94.75 0.01 

ex
pe

rt
 

REM 2.13 16.30 1.75 0.49 79.33 

Tab. 26 Confusion matrix. Performance of the complex two-step classification system. 

 

As can be seen in the confusion matrix, the two-step system is very successful in 

classification of NREM sleep stage II and SWS. Classification accuracy of these stages 

exceeds 85% (about 87% and 95% respectively). These stages are traditionally well classified 

during automatic classification. The classification accuracy of wake and REM sleep stages is 

slightly below 80%. The lowest classification accuracy is obtained for NREM I stage and 

reaches only about 65%. This stage is still confused with wake and REM sleep. 

In the following, the performances of each of the four classifiers (1 to 4) are evaluated 

separately. The presented values are obtained during application of the two-step automatic 

classifier on the data in the Both experts-test database. 

Classifier 1: EEG 

1,525 epochs have only the EEG signal marked as artifact-free. These epochs are thus scored 

by the classifier 1. This classifier reached a classification accuracy of 72.72%. This value is 

the lowest over the four classifiers used. It could be partially explained by the fact that these 

epochs have both EOG and EMG signals artifacted. Therefore, one can imagine that the 

quality of the EEG signal may also be slightly degraded by the presence of transmitted 

artifacts. Some improvements in artifact identification strategy could lead to more effective 

detection of such noise.  

Tab. 27 shows the confusion matrix obtained. Compared to the performance obtained by the 

classifier on the 7 subsets Sk during feature selection (see Tab. 17), a decrease in classification 
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of NREM II stage and increase in classification of REM sleep can be observed The 

classification accuracy of NREM I stage is low, as it was already observed in section 3.5.2. 

classifier 
% 

wake NREM I NREM II SWS REM 

wake 80.67 9.66 4.94 4.50 0.23 

NREM I 15.07 47.94 2.74 0 34.25 

NREM II 5.31 19.27 70.39 3.07 1.96 

SWS 1.79 0 0 98.21 0 

ex
pe

rt
 

REM 2.53 21.25 3.20 4.22 68.80 

Tab. 27 Confusion matrix. Performance of the classifier 1 (EEG signal). 

 

Classifier 2: EEG + EOG 

Classifier 2 scored 7,717 epochs and correctly classified 82.62% of these epochs. The analysis 

of the confusion matrix (Tab. 28) shows a decrease in accuracy of wake and NREM I when 

compared to the Tab. 18 presenting the performance obtained on subsets Sk. The decrease of 

classification accuracy in NREM I stage is especially surprising, because, from the feature 

selection process, EOG signal was supposed to be useful for classification of this stage.  

classifier 
% 

wake NREM I NREM II SWS REM 

wake 60.49 22.80 6.38 1.52 8.81 

NREM I 10.08 55.22 9.70 1.87 23.13 

NREM II 0.68 4.11 89.52 5.16 0.53 

SWS 0.08 0 6.41 93.51 0 

ex
pe

rt
 

REM 3.13 27.98 2.42 0.35 66.12 

Tab. 28 Confusion matrix. Performance of the classifier 2 (EEG and EOG signals). 

 

Classifier 3: EEG + EMG 

Classifier 3 scored 4,534 epochs. The classification accuracy reached 80.19%. The confusion 

matrix is presented in Tab. 29. The low accuracy obtained for stage NREM I is due to the 

absence of EOG signal as presented in Chapter 3. A decrease in classification accuracy of 

NREM II stage is observed compared to Tab. 19. 
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classifier 
% 

wake NREM I NREM II SWS REM 

wake 82.62 9.16 1.49 4.11 2.62 

NREM I 14.98 55.07 2.90 0.48 26.57 

NREM II 3.59 10.78 77.25 2.14 6.24 

SWS 0 0 1.04 98.96 0 

ex
pe

rt
 

REM 2.28 11.85 1.19 1.28 83.40 

Tab. 29 Confusion matrix. Performance of the classifier 3 (EEG and EMG signals). 

 

Classifier 4: EEG + EOG + EMG 

48,623 epochs were classified with classifier 4. The classification accuracy is 86.82%. This 

classifier obtains the highest classification accuracy compared to the other classifiers 

contained in the bank of classifiers. The analysis of the confusion matrix (Tab. 30) obtained 

with this classifier does not show any significant decrease in classification accuracy. All the 

accuracies computed for individual sleep/wake stages are comparable to the values reached 

during feature selection (Tab. 20). 

classifier 
% 

wake NREM I NREM II SWS REM 

wake 79.95 12.82 2.84 0.43 3.96 

NREM I 6.32 69.07 7.51 0.45 16.65 

NREM II 1.82 4.15 87.33 4.93 1.77 

SWS 0.16 0 4.98 94.85 0.01 

ex
pe

rt
 

REM 1.91 15.04 1.68 0.14 81.23 

Tab. 30 Confusion matrix. Performance of the classifier 4 (EEG, EOG and EMG signals). 

 

General discussion 

The results show that the classification of NREM I stage is still a problem and is affected by 

the quality of the signals. When at least one signal is artifacted, the accuracy of NREM I stage 

is lower than the accuracy reached in the section 3.5.2, even when EOG is used. Only when 

all the signals are marked as artifact-free, the classification accuracy of NREM I stage is 

acceptable (69%). 
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The fact that some decrease in classification accuracies was observed, compare to the results 

obtained in chapter 3, can be explained by the concrete setting of the learning phase. All the 

neural network classifiers stored in the bank of classifiers have been learned on epochs where 

all the three signals were marked as artifact-free. Thus, the probability that undetected noise 

was present in the signals analyzed has been low. But, when an artifacted signal is identified 

in an epoch, the other signals can be contaminated by some noise transmitted from the 

artifacted signal. The features extracted could then be biased, which could explain the 

decreases in accuracy. 

Although the classifiers using incomplete set of signals (classifiers 1-3) bring some slight 

decrease in global classification accuracy, the proposed approach dealing with missing values 

seems to be effective. It allows the correct classification of epochs that would be excluded 

because of the presence of artifacts in at least one of the monitored signals. The classification 

accuracy computed for these 13,776 artifacted epochs is 80.72%. This value alone is high 

enough to conclude on the interest of the method presented in this thesis. The classification of 

sleep epochs using an incomplete set of signals to overcome the presence of artifacts is worth 

the effort. But it is evident that artifact identification should be improved in order to better 

identify noise transmitted from artifacted signals. 

5.2 Comparison with simple classifiers 

The proposed two-step classification system is compared with two single sleep stagers 

composed of only one neural network instead of a bank of classifiers. The first one is 

equipped with the artifact identification step. It makes a decision (classification) when all the 

three signals are detected as artifact-free. The rest of the epochs is excluded from the 

classification. The second automatic sleep stager is not equipped with artifact identification 

step. It makes a decision whether the signals are artifacted or not. No epochs are excluded.  

 

Simple classifier using artifact identification 

This single classifier processes epochs which have all three signals (EEG, EOG and EMG) 

artifact-free and thus available, and excludes all the others. It performs the same artifact 

identification strategy as employed in the two-step classification system. This classifier 

corresponds to the classifier 4 used in the two-step system using bank of classifiers. 
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The overall classification accuracy of the stager is 86.82%. The confusion matrix is presented 

in Tab. 30. This automatic classifier is able to score 48,623 epochs out of the 66,164 epochs 

contained in the whole Both experts-test database. It represents only 73.5% of the data. The 

rest of the database, 17,541 epochs (26.5%), is excluded from the analysis and classification 

of these epochs is not performed. 

 

Simple classifier without artifact identification 

The second neural network classifier used to compare the proposed classification system does 

not perform any artifact analysis of the polysomnographic recordings. The relevant features 

are only computed from EEG, EOG and EMG and then used as inputs for the classifier. A 

complete elaboration phase was achieved to build this classifier, from the selection of relevant 

features to the training of the neural network. The selection of relevant features was achieved 

using the selection strategy presented in Chapter 3. Seven data subsets containing 550 

possibly artifacted epochs were created. SFS selected seven relevant features: Prelβ, entrEMG, 

Prelσ, entrEOG, entrEEG, Prelα and Prelθ. 

The overall classification accuracy obtained on the whole database of polysomnographic 

recordings is 83.24%, which is slightly lower than the classification accuracy of the complex 

two-step system. However, this single classifier classifies the whole base of 66,164 epochs 

(Both experts-test database). The confusion matrix is presented in Tab. 31. The comparison 

between this matrix and the confusion matrix obtained for the two-step system (Tab. 26) 

shows that the classification accuracy of the REM sleep obtained with the single classifier has 

decreased by 10%. REM epochs were wrongly classified as NREM I stage. This increase in 

the number of REM sleep epochs misclassified as NREM sleep stage I is slightly counter-

balanced by a decrease in the number of NREM I epochs wrongly classified in REM by 1.5%. 

On the whole, the two-step system using a bank of classifiers performs a better discrimination 

between REM sleep and NREM I stage. The system without artifact processing misclassifies 

4,201 epochs of stages NREM I and REM sleep. When the two-step system is used, the 

number of misclassified epochs scored by both experts as NREM I and REM sleep is equal to 

2,762 epochs. So, the absolute number of misclassified epochs has been reduced by 1,439. 

However, as presented in Tab. 25, some epochs scored by both experts as NREM I and REM 

sleep were excluded when the two-step classification system was used. In total, 398 epochs 
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scored as NREM I and REM sleep were excluded from the classification process, because of 

artifacts in EEG. Nevertheless, still 1,041 epochs of NREM I and REM sleep were correctly 

classified by the two-step system using a bank of classifiers and wrongly classified by the 

single classifier. Thus, the improvement in discerning NREM I and REM sleep stages is 

mainly due to the elimination of artifacted segments contained in the analyzed signals. Indeed, 

as presented in Tab. 8 and Tab. 9, the EOG and EMG signals contain a high number of 

artifacted epochs in NREM I and REM sleep stages. 

 

classifier 
% 

wake NREM I NREM II SWS REM 

wake 80.99 14.01 1.94 1.78 1.28 

NREM I 5.71 67.64 8.58 0.25 17.82 

NREM II 1.29 4.98 86.96 4.86 1.91 

SWS 0.74 0.01 5.15 93.95 0.15 

ex
pe

rt
 

REM 1.49 25.29 2.41 0.55 70.26 

Tab. 31 Confusion matrix. Performance of the classifier without phase of artifact identification. 

 

The confusion matrix of the simple stager without a phase of artifact identification also shows 

a slight increase of the classification accuracy in the wake stage. The classification accuracy 

of wake increased by 3% compared to the two-step system. It could be explained by the high 

artifact contamination of the wake stage. About half of the wake epochs are detected as 

artifacted (high-amplitude and high-frequency artifacts). It seems that the sleep stager, learnt 

on possibly artifacted data, misinterpreted these high-amplitude artifacts as a true high 

amplitude signal, which is typical for the wake stage. This artifact manifestation then 

facilitated classification of epochs into wake stage. 
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5.3 Comparison of the three different classifiers 

Tab. 32 summarizes the accuracies reached by the three automatic classifiers, as well as the 

numbers of epochs classified. 

Type Accuracy Number of 
epochs 

Complex two-step 
classifier 85.48% 62,399 

Classifier with 
artifact detection 86.82% 48,623 

Classifier without 
artifact detection 83.24% 66,164 

Tab. 32 Classification results for different classifiers compared in this chapter. 

 

The highest value of classification accuracy is reached when a unique classifier using all three 

signals is used in combination with an artifact identification strategy. However, this high 

classification accuracy is ransomed by a high number of data that can not be classified by the 

unique classifier. More than 25% of the whole data are not classified because of presence of 

artifacts in at least one signal. This high number of excluded epochs limits the usability of the 

system. 

When the two-step classification system is used, only a slight decrease of classification 

accuracy is noticed. But the number of processed epochs is much higher. Only about 6% of 

the whole data can not be classified by the system. So, the strategy using a bank of classifiers 

enables the classification of 13,776 epochs excluded when only the unique classifier is used. 

When the classification is performed without artifact processing, the final classification 

accuracy computed over the whole database is the lowest although the classifier is fed only 

with features computed from all signals. The difference in classification accuracy obtained for 

the classifiers with and without artifact identification justifies the need of an effective artifact 

processing strategy for sleep/wake stage classification. 

5.4 Chapter conclusion 

The two-step classification system that combines results of artifact identification with a bank 

of classifiers has been tested in this chapter. The structure of a bank of classifiers has been 

selected so as to enable the analysis of epochs containing missing values caused by the 
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presence of artifacts in some of the signals. The results showed that, when an automatic 

classifier that requires a complete set of features to be computed from all three artifact-free 

signals is used, a high number of epochs cannot be scored because of artifacts identified in the 

signals. However, most of the epochs containing artifacts in EOG and/or EMG can be 

correctly classified using features extracted from the artifact-free signals. So, the bank of 

classifiers represents an effective approach for automatic sleep analysis. 

The results also show that artifact identification and rejection performed prior to the 

classification is the cause of higher quality of features extracted from the signals. It is mainly 

evident in the increased ability to distinguish stages NREM I and REM sleep when the two-

step automatic system is employed. As can be seen in Tab. 9, these stages contain a high 

portion of artifacted epochs in the EOG and EMG signals. Since these two signals are 

supposed to be important for discrimination of wake, NREM I and REM sleep stages, their 

quality as well as the quality of the features extracted from them is crucial for correct and 

precise automatic classification. 
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Chapter 6  

Conclusion 

This thesis proposes a complex two-step decision system for classification of human sleep 

recordings into sleep/wake stages. Its general idea is the following. In the first step, artifacts 

are detected in the analyzed signals and so called artifact-free signals are consequently 

determined for each epoch of the whole recording. In the second step of the analysis, relevant 

parameters are computed from the available artifact-free signals and processed using an 

adequate automatic classifier stored in a bank of classifiers. The bank of classifiers is 

composed of four neural networks, each of them using inputs extracted from a different 

combination of polysomnographic signals.  

This system has been designed so as to meet two fundamental requirements: 

- Effective processing of artifacts without loosing too many data. 

- Employment of the most relevant parameters computed from the available signals. 

The results of the research presented in this work can be interpreted as the testification of the 

structure proposed for the two-step automatic classification system.  

The analysis of the results revealed that a high portion of the epochs is contaminated briefly 

by very short artifacts. About 25% of the epochs stored in the database contain at least a 

segment of 2 seconds contaminated by an artifact. However, only less than 10% of all the 

analyzed epochs contain more than 4 seconds of artifacted signal. Thus, the automatic artifact 

identification we proposed, using a 2-sec time resolution combined with a strategy designed 

to evaluate the entire 20-sec epoch, is not only effective in signal denoising, but in addition it 

also helps to reduce the loss of available data. The epochs of the signal in which at most two 
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2-sec segments contain any kind of artifact are marked as artifact-free and can be then 

processed in the subsequent analysis. It is evident that all the 2-sec segments containing an 

artifact are removed from the signal trace of these epochs. In addition to this, since the 

artifacts are identified in each signal separately, the quality of the individual signals contained 

in the sleep recording can be indeed evaluated independently (artifact-free or artifacted). 

Therefore, presence of artifacts in whatever signal monitored does not have to lead to the 

automatic rejection of the whole epoch of the recording.  

The artifact analysis designed and performed this way allows the classification of sleep 

recordings using a structure based on a bank of classifiers. The bank of classifiers contains 

four neural network classifiers. The relevant parameters selected for diverse combinations of 

signals contained in the sleep recordings are used as inputs for the individual automatic 

classifiers. The artifact identification strategy proposed predetermines the general structure of 

the complex automatic classification system. This is an effective way to deal with artifacts, 

without losing a large amount of data. The originality of this proposition lays in the fact that 

each epoch can be classified by a different classifier which uses different features as input, 

depending on the quality of the three signals monitored. The different sets of features used by 

individual classifiers were selected as the most relevant by an appropriate selection of features. 

In the second part of the research, a sequential method was proposed to determine the most 

relevant parameters which describe the various sleep/wake stages in the best way. The 

proposed method of feature selection used an adequately selected data subset as well as an 

appropriate selecting criterion combined with a statistical test to end the selection. The 

method was designed so as not to favor one sleep/wake stage to another and to be insensitive 

to the training data used. The relevant feature sets have been selected out of 33 features 

computed from the EEG, EOG and EMG signals. The results of the feature selection lead to 

propose alternative methods to process the signal in the time domain. As instance, the entropy 

or the kurtosis of signals were preferred by the selection method to the more traditional 

standard deviation. The results also confirmed the importance of the EEG signal in sleep 

analysis, with the consequence that only four combinations of signals monitored (EEG, EEG 

+ EOG, EEG + EMG, EEG + EOG + EMG) could be used in the bank of classifiers.  

Moreover, the results showed that a correct classification of wake, NREM II and SWS stages 

could be achieved using EEG only, with an accuracy above 80% for each stage. However, 
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information contained in the EEG signal is insufficient to correctly discriminate NREM I 

from REM, which are highly confused. The classification accuracy of these two stages is 

significantly improved when the EEG signal is analyzed together with the EOG and EMG 

signals. 

The performance of the two-step classification system was evaluated on a large base of 

polysomnographic recordings containing 66,164 epochs. The classification system proposed 

reached 85.5% of global accuracy with 94% of the 20-sec epochs actually classified. Only 

about 6% of the data (i.e. 3,765 epochs) were rejected because of artifacts in EEG signal. 

Moreover, the results showed that the two-step classification system enables a successful 

classification of the epochs containing artifacts in EOG or EMG (about 81 % of global 

accuracy was reached on these epochs). These epochs, which represent 20% of the complete 

database, would be rejected by a traditional system. The effectiveness of the two-step 

classification system is evident both in the global classification accuracy reached as well as in 

the total number of epochs that can be actually scored. 

Future researches in the field of automatic sleep analysis should focus both on improving the 

artifact processing strategy and on the extraction of new relevant parameters computed from 

the physiological signals analyzed. As presented in chapter 2, the actual settings of the artifact 

detection algorithms were not properly evaluated. The performances of the automatic 

classification system could be improved by optimizing the artifact detection algorithms, 

which could lead to a more accurate identification of artifacts. Moreover, other types of 

artifacts, such as ocular artifact for instance, should be identified by an automatic 

classification system. Indeed, effective artifact processing strategy is necessary to extract 

more reliable information from polysomnographic signals. 

A key issue in automatic classification of sleep stages is the discrimination of NREM I from 

REM stages. New parameters able to discriminate these two stages should be proposed, using 

advanced signal processing techniques.  

Finally, automatic classification techniques able to include contextual information could be 

useful. Until now, polysomnographic recordings are processed epoch by epoch and 

classification is typically performed using only information extracted from the epoch to be 

scored. Information contained in the epochs preceding the current one is not taken into 
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account. Moreover, smoothing rules could be implemented so as to avoid sudden and 

incorrect shifts in the hypnogram. 
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Automatic classification of human sleep recordings combining artifact 
identification and relevant features selection 

Lukáš Zoubek 
 

Keywords: decision making, diagnosis, medical applications, pattern recognition, signal 
processing 

This thesis engages in automatic analysis of human sleep. It mainly focuses on the development of an 
automatic system for classification of polysomnographic recordings, composed of three signals: EEG, 
EOG and EMG. This thesis proposes a complex classification system, which is capable to deal with 
various artifacts possibly present in the physiological signals and which uses the most relevant 
parameters computed from the analyzed signals. 

The first part of this thesis presents a procedure to automatically identify eight common artifacts in 2-
sec segments of the analyzed signals. Then, a strategy is applied in order to evaluate quality of the 
signals characterizing each 20-sec epoch of the recording. 

In the second part of this thesis, an iterative feature selection method is proposed and applied on a 
large database of polysomnographic recordings, so as to select the most relevant parameters that will 
serve as inputs for the automatic classifier. 

Then, as a result of the two first parts, a complex two-step sleep/wake stages automatic classification 
system is proposed. In a first step, an artifact detection system selects the artifact-free 
polysomnographic signals in the epoch to be scored. In the second step, the features selected as the 
most relevant are extracted from the artifact-free signals and classified using a neural network 
classifier chosen among a bank of four classifiers, which differs one from the others by the signals 
used. Thus, the final classification system allows classification using relevant features computed from 
artifact-free signals, without loosing many. 

 

Classification automatique d'enregistrements de sommeil humain combinant 
l'identification d'artéfacts et la sélection de caractéristiques pertinentes 

 
Les mots clés: décision, diagnostic, application médicales, reconnaissance de formes, 
traitement du signal 

Cette thèse porte sur la classification automatique de sommeil humain et plus précisément le 
développement d’un système automatique de classification d’enregistrements polysomnographiques 
composés de trois signaux: EEG, EOG et EMG. Le système développé est conçu pour prendre en 
compte l’occurrence d’artéfacts polluant ces signaux en utilisant les caractéristiques les plus 
discriminantes issus de ces signaux. 

La première partie de la thèse présente une procédure permettant l’identification automatique, sur des 
plages de signaux de 2 secondes, de 8 types d’artéfacts parmi les plus courants ainsi qu’une stratégie 
permettant d’évaluer la qualité globale d’un signal sur une période de 20 secondes.  

Dans une deuxième partie, une méthode de sélection de caractéristiques est proposée puis appliquée 
sur une base de signaux, afin de sélectionner les caractéristiques qui serviront d’entrées au classifieur. 

Enfin, en conséquence des deux premières parties, un système de classification automatique à deux 
étapes est proposé. Dans une première étape, un système de détection d’artéfacts permet de 
sélectionner les signaux ne présentant pas d’artéfacts au cours de l’epoch à classer. Dans la deuxième 
étape, les caractéristiques les plus discriminantes sont extraites et classées à l’aide d’un réseau de 
neurones sélectionné parmi un ensemble de quatre classifieurs, chaque classifieur utilisant des 
caractéristiques d’entrées extraites de combinaisons de signaux différentes. Le système proposé 
permet la classification des enregistrements de nuits de sommeil à partir de caractéristiques extraites 
de signaux non pollués par des artefacts, sans perdre un trop grand nombre d’epochs. 

   


	Polysomnography
	History of modern polysomnography
	A polysomnographic examination
	Polysomnographic signals
	Electroencephalography
	Electrooculography
	Electromyography

	Sleep/wake stages
	Awake state
	NREM I
	NREM II
	NREM III & IV
	REM sleep

	Sleep cycle
	Automatic classification of sleep
	Presentation of the polysomnographic database used in this t
	Chapter conclusion

	Analysis of artifacts
	General characteristics of artifacts
	Technical artifacts
	Biological artifacts

	Theory of artifact processing
	Artifact identification and rejection
	Artifact minimization

	Methods used to process artifacts
	Setting of artifact identification algorithm

	Results of artifact identification
	Preliminary analysis of the full polysomnographic database
	Analysis of the modified database
	Detailed analysis of individual artifacts

	Chapter conclusion

	Feature extraction and selection of relevant features
	Data mining and decision systems
	Extraction of features
	Frequency domain features
	Time domain features

	Transformation of the extracted features
	Selection of relevant feature subset
	Sequential selection of relevant features
	Criterion
	Multi-layer perceptron

	Results of feature selection
	Presentation of the learning subsets
	Relevant feature sets
	Importance of the relevant features

	Chapter conclusion

	Two-step system for sleep analysis
	Results of practical experiments
	Application of the two-step system
	Comparison with simple classifiers
	Comparison of the three different classifiers
	Chapter conclusion

	Conclusion

