

Lasers à cascade quantique à plasmons de surface et leurs applications aux cristaux photoniques

Michaël Bahriz Directeur de thèse : Raffaele Colombelli

OptoGaN Institut d'Électronique Fondamentale CNRS UMR 8622

Plan

Introduction aux Lasers à Cascade Quantique (LCQ)

Partie 1:

Les guides à plasmons de surface argent

Partie 2 :

Mesure des pertes des guides à plasmons de surface

Partie 3 :

Les guides à plasmons de surface appliqués aux cristaux photoniques

Conclusions et perspectives

Deux grandes familles de lasers à semiconducteurs :

- Lasers interbandes (Diode laser)
- Lasers intersousbandes (LCQ)

Introduction aux LCQs – lasers intersousbandes

Caractéristiques des transitions intersousbandes

- Importante force d'oscillateur
- Temps de transition ultra rapide (~ps) / transition interbande (~ns)
- Transition optique polarisée TM
- Liberté dans le choix de la longueur d'onde

Introduction aux LCQs – les puits couplés

Les puits couplés permettent : - Une plus grande liberté dans le dessin des niveaux d'énergie - Obtenir de faible différence d'énergie.

5

Introduction aux LCQs – les puits couplés

Région active d'un LCQ :

- 3 puits couplés
- Système à 3 niveaux

 Inversion de population grâce à un phonon optique (τ < ps)

6

Introduction aux LCQs – *Ie concept de cascade*

Le concept de cascade :

 Les lasers à cascade quantique sont constitués d'une section de plusieurs régions actives.

- Un électron peut ainsi émettre plusieurs photons.

Introduction aux LCQs – l'injecteur

Introduction aux LCQs – les étapes historiques

1994 - Bell Labs

LCQ - λ~4,2 μm - InGaAs/AllnAs/InP Fonctionnant en mode pulsé à température cryogénique

1998 - Thomson-CSF

LCQ - λ~9,4 µm - <u>AIGaAs/GaAs</u> Fonctionnant en mode pulsé à température cryogénique

2002 – Université de Neuchâtel

LCQ - λ~9 μm - InGaAs/AlInAs/InP Fonctionnant en mode <u>continu</u>à température <u>ambiante</u>

2002 – Scuola Normale Superiore LCQ – λ ~68 µm - THz - GaAs/ AlAs Fonctionnant en mode continu à 30 Kelvin

2006 - Université de Montpellier

 $LCQ - \lambda \sim 3, 1-3, 3 \mu m - InAs/AISb$

Fonctionnant en mode continu à basse température

2007 - Université de Montpellier LCQ – λ<3μm - InAs/AISb

Introduction aux LCQs – les étapes historiques

1994 - Bell Labs

LCQ - λ~4,2 μm - InGaAs/AlinAs/InP Fonctionnant en mode pulsé à température cryogénique

1998 - Thomson-CSF

LCQ - λ~9,4 µm - <u>AIGaAs/GaAs</u> Fonctionnant en mode pulsé à température cryogénique

2002 – Université de Neuchâtel

LCQ - λ~9 μm - InGaAs/AlInAs/InP Fonctionnant en mode <u>continu</u>à température <u>ambiante</u>

2002 – Scuola Normale Superiore LCQ – λ ~68 µm - THz - GaAs/ AlAs Fonctionnant en mode continu à 30 Kelvin

2006 - Université de Montpellier

 $LCQ - \lambda \sim 3, 1-3, 3 \mu m - InAs/AISb$

Fonctionnant en mode continu à basse température

2007 - Université de Montpellier LCQ – λ<3μm - InAs/AISb

Plan

Introduction aux Lasers à Cascade Quantique (LCQ)

Partie 1 : Les guides à plasmons de surface argent

Partie 2:

Mesure des pertes des guides à plasmons de surface

Partie 3 :

Les guides à plasmons de surface appliqués aux cristaux photoniques

Conclusions et perspectives

Guides à plasmons Ag et Au – les cavités optiques

Émission par la tranche Diffusion Émission par la surface

Image MEB de trois cavités laser

Guides à plasmons Ag et Au – le laser ruban (ridge)

Embase sur laquelle sont montés plusieurs lasers ruban

Schéma d'un laser ruban (ridge) moyen-infrarouge

Guides à plasmons Ag et Au – le guide diélectrique

Guides à plasmons Ag et Au – les plasmons de surface

$$\operatorname{Re}(\varepsilon_{M}) < 0 \quad et \quad \operatorname{Re}(\varepsilon_{D}) > 0$$
polarisation TM

Guide à plasmons de surface

Guides à plasmons Ag et Au – le guide à plasmons

- **A. Tredicucci et al.**, Surface plasmon QCL at $\lambda \sim 19 \mu m$, Appl. Phys. Lett. 77, 2285 (2000)
- R. Colombelli et al., Far-infrared surface-plasmon quantum-cascade lasers..., Appl. Phys. Lett., 78, 2620, (2001)

Guides à plasmons Ag et Au – les pertes du guide

 α = pertes (cm⁻¹)

n_{métal} = partie réelle de l'indice de réfraction du métal

 $\mathbf{k}_{métal}$ = partie imaginaire de l'indice de réfraction du métal

 n_D = partie réelle de l'indice de réfraction du diélectrique

 λ = la longueur d'onde d'émission du laser

Métal	n _m	k _m	n _m /k _m ³	α (cm ⁻¹)	
Titane (Ti)	6.31	14	2.3 x 10 ⁻	1414	
Or (Au)	4.33	54	2.8 x 10⁻	16,72	
Argent (Ag)	2.94	54	1.8 x 10⁻	11,15	

Valeurs n,k @ λ =7.5 microns *

* M. A. Ordal and al., App. Optics 22, 1099 (1983)

Guides à plasmons Ag et Au – les dispositifs fabriqués

Guides à plasmons Ag et Au – la région active

Guides à plasmons Ag et Au – mesures électriques

Caractéristique électrique des guides or et argent :

- Même tension

d'alignement

- Même caractéristique

électrique

20

Guides à plasmons Ag et Au – mesures optiques

Mesures effectuées en mode pulsé : 84 kHz 50 ns

Guides à plasmons Ag et Au – mesures optiques

Facteur T₀: - Caractérise le comportement de la région active lorsque la température augmente

Guides à plasmons Ag et Au – conclusion sur les mesures

Valeurs expérimentales

	Or	Argent
Τ _{ΜΑΧ} (κ)	260	300
J _{th} @ 78K (kA/cm²)	2,9±0,4	1,5±0,2
Т ₀ (К)	123±16	128±12
Puissance Pic @ 78 K (mW)	70	30

M. Bahriz et al., Room-temperature operation of 7.5 μm surface-plasmon quantum cascade lasers. 23 Applied Physics Letters, 88 :181103, Februar 2006.

Plan

Introduction aux Lasers à Cascade Quantique (LCQ)

Partie 1 : Les guides à plasmons de surface argent

Partie 2 :

Mesure des pertes des guides à plasmons de surface

Partie 3 :

Les guides à plasmons de surface appliqués aux cristaux photoniques

Conclusions et perspectives

Mesure des pertes – les différentes techniques

D. G. Revin et al., Measurements of optical losses in mid-infrared semiconductor lasers using Fabry Perot transmission oscillations. Journal of applied physics, 95 :7584, June 2004.

transmission oscillations. Journal of applied physics, 95 :7584, June 2004.

Mesure des pertes – *méthode 1/L*

S. Barbieri et al., Gain measurements on GaAs QCL..., IEEE Journal of Quantum Electronics, 36 :736, 2000

Mesure des pertes – sur guides à plasmons de surface

Mesure des pertes – sur guides à plasmons de surface

Mesure des pertes – sur substrat très dopé (1-2.10¹⁸)

Mesure d'un guide à plasmons OR AISb $\lambda \sim 8,6 \ \mu m$ Substrat très dopé 1-2.10¹⁸

Avec un substrat très dopé :

- Le mode ne se propage plus à travers le substrat car il y est totalement absorbé.

Mesure des pertes – sur substrat très dopé (1-2.10¹⁸)

Mesure d'un guide à plasmons OR AISb λ ~ 8,6 μm Substrat très dopé 1-2.10¹⁸

Mesure des pertes – influence de la taille des séparations

Mesure des pertes – conclusion

- Très bien adaptée au guide à plasmons de surface

- Précise

┢

- Nécessite qu'un seul dispositif

- Mesure indirecte ou - Séparation < 1 µm

0.9 totale 0.8 Transmission 0.7 0.6 0.5 TM 0.4 0.3 12 14 ō 2 10 Séparation (µm)

(utilisation de la technologie FIB)

Conclusions – 1^e partie et 2^e partie

Conclusions

• Démonstration de guide à plasmons de surface pour les courtes longueurs d'onde (λ ~7,5 µm)

 Réalisation du premier LCQ à plasmons de surface fonctionnant à température ambiante

• Mise au point d'une technique efficace de mesure des pertes et du gain dans les guides à plasmons de surface

Perspectives

• Utiliser les avantages des guides à plasmons de surface pour la réalisation de lasers DFB (*Distributed FeedBack*) et à cristal photonique

Plan

Partie 2 :

Mesure des pertes des guides à plasmons de surface

Partie 3 :

Les guides à plasmons de surface appliqués aux cristaux photoniques

Avantages des cristaux photoniques :

- Miniaturisation
- Émission par la surface
- Contrôle de la longueur d'onde
- Microcavité

Conclusions et perspectives

Cristal photonique – miroir de Bragg

Cristal photonique – miroir de Bragg 2D

Miroir de Bragg

Cristal Photonique

Le cristal photonique

peut être vu comme une extension en 2D du miroir de Bragg

Cristal photonique – avantage du guide à plasmons

Cristal photonique – cristaux photoniques pour les LCQs

Laser bord de bande

R. Colombelli et al., Quantum cascade photonic-crystal surface-emitting laser. Science, 302 :1374, (2004).

A. Benz et al., *Terahertz photonic crystal resonators in double-metal waveguides,* OPTICS EXPRESS, 15, 12418-12424 (2007)

L. Sirigu et al., Terahertz photonic crystal, OPTICS EXPRESS, 15, 16822 (2007)

Cristal photonique – choix du cristal photonique

Une microcavité pour un LCQ :

- Un gap TM , car les transitions intersousbandes sont polarisées TM
- Une structure connectée pour l'injection électrique

Structure connectée :

- Idéale pour l'injection électrique,
- Ne comporte pas de gap TM

Structure déconnectée:

- Injection électrique très difficile
- Présence d'un gap TM

Cristal photonique – le réseau nid d'abeille 2D

Cristal photonique – microcavité

a/X

Microcavité:

Pour créer la microcavité, on retire six trous d'air au centre du cristal

Méthode supercell : Le défaut brise la périodicité du système. On recrée artificiellement cette périodicité grâce à une approche supercell

Vecteur d'onde

đ

Cristal photonique – modes de défaut

Cristal photonique – simulation 3D pour le moyen-IR

Laser moyen-IR: Le dispositif simulé est la réplique d'une structure réelle à plasmons de surface.

0,3 µm Métal parfait Région active $\Gamma = 90\%$ 2,7 µm Simulations FDTD : InGaAs/AllnAS (n=3,27) -Pour modéliser en 3D les Couche de confinement 0,5 µm dispositifs. InGaAs (n=3,34) - Pour calculer le facteur de qualité des cristaux Substrat Guide à plasmon InP (n=3,05) photoniques. de surface

Cristal photonique – résultats 3D pour le moyen-IR

Mode de défaut dans le plan (E_z) : Le facteur de Qualité = 300 pour une structure de 7x4 périodes, ce qui équivaut à des pertes de 70 cm⁻¹.

Coupe du mode de défaut Y-dipôle ($|E_z|^2$): Grâce au guide à plasmons de surface le mode optique est très proche de la surface.

Cristal photonique – simulations 3D pour le THz

Guide métal-métal pour les lasers THz Permet d'obtenir un confinement optique très proche de l'unité avec de faibles pertes.

 $=\frac{4\pi\cdot n_{metal}\cdot n_D^3}{k_{metal}^3\cdot\lambda}$ $\alpha = -$

En diminuant l'épaisseur de la région active, on augmente l'efficacité du cristal photonique.

Cristal photonique – mode de défaut de la µ-cavité THz

Taille du cristal photonique

M. Bahriz et al., Design of mid-ir and thz quantum cascade laser cavities with complete tm photonic bandgap. Optics Express, 15:5948–5965, May 2007.

Conclusions

Conclusions 1^e et 2^e partie

- Démonstration de guide à plasmons de surface pour les courtes longueurs d'onde (λ ~7,5 µm)
- Réalisation du premier LCQ à plasmons de surface fonctionnant à température ambiante.
- Mise au point d'une technique efficace de mesure des pertes et du gain dans les guides à plasmons de surface

Conclusions 3^e partie

• Démonstration à partir d'un CP à structure connectée de micro-cavité pour LCQ moyen-IR et THz.

• Mise en évidence d'un phénomène nouveau permettant d'obtenir un cristal photonique en gravant uniquement le métal supérieur

Conclusions – perspectives

Moyen-IR

Laser DFB à plasmons de surface
Cristaux photoniques à µ-cavité en utilisant les guides à plasmons de surface

THz

- Structures fines (régions actives)
- Cristaux photoniques bord de bande
- Cristaux photoniques à µ-cavité

Merci pour votre attention.

Je remercie l'ensemble de l'équipe OptoGaN (par ordre alphabétique) :

Adel BOUSSEKSOU Yannick CHASSAGNEUX Raffaele COLOMBELLI Jean-René COUDEVYLLE Laetitia DOYENNETTE Nasrin ESSNER François JULIEN Houssaine MACHHADANI Adrien MICHON Virginie MOREAU Laurent NEVOU Maria TCHERNYCHEVA Elias WARDE Gangyi XU

et de la CTU :

Sylvain DAVID

José PALOMO

Indices

Métaux	n_m	k_m	n_m/k_m^3	$\alpha (cm^{-1})$
Ag	2,94	54, 13	$1,85.10^{-5}$	11, 15
Or	4,33	53, 84	$2,78.10^{-5}$	16,72
Al	18,96	82, 50	$3, 38.10^{-5}$	20, 33
Ni	4,84	27,70	$2,27.10^{-4}$	137, 1
Pd	4,40	16, 25	$1, 10.10^{-3}$	617, 4
Ti	6, 31	13,90	$2, 30.10^{-3}$	1414

Matériaux	Masse effective (m_0)	au (ps)	n (à $10 \mu m$)	n (à 8, 5 μm)	n (à 7, 5 μm)
GaAs 0,067		0,15	3,273	3,281	3,2864
$Al_{0,45}Ga_{0,55}As$	0,1046	0,15	3,0647	3,0751	3,0821
In _{0,53} Ga _{0,47} As (sur InP)	0,0427	0,15	3,3414	3,3473	3,3540
$Al_{0,48}In_{0,52}As \;(sur\;InP)$	0,076	0,15	3,1178	3,1264	3,1349
InP	0,08	0,15	3,038	3,0575	3,0655
InAs	0,027	0,15	3,402	3.406	3.414
AlSb	0,12	0,15	3.157	3.170	3.180
AlAs	0,15	0,15	2.81	2.8235	2.8325

64

Gain

$$G(J_A, \lambda) = \frac{1}{L_A} ln \left(\frac{I_{tot}(J_S, J_A, \lambda) - I_{tot}(J_S = 0, J_A, \lambda)}{I_{tot}(J_S, J_A = 0, \lambda)} \right)$$
$$I_{tot}(J_S = 0, J_A, \lambda) = I_A(J_A, \lambda)(1 - R)$$
$$I_{tot}(J_S, J_A = 0, \lambda) = I_S(J_S, \lambda) exp(-\alpha_w L_A)(1 - R)$$

66

Self-absorption

Facteur de qualité

$$Q_{//} = \frac{2\pi n_{eff}}{\lambda_0 \alpha_{cp}} \Leftrightarrow \alpha_{cp} = \frac{2\pi n_{eff}}{\lambda_0 Q_{//}}$$

Épaisseur (μm)	1.5	3	3.5	5	7
Contraste d'indice $\frac{\Delta n_{eff}}{n_{eff}}$ (%)	38,3	37,2	37,0	36,7	36,4
Pertes $\alpha_m (cm^{-1})$	50,6	25,8	22,2	15,5	10,5
Facteur de qualité Q_m	45	88	102	146	215

Périodes	3×2	5×3	7×4	9×5	11×6
$Q_{//}$	38	72	139	354	729

68