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Geometric methods of learning 

Introduction 
 

In many problems of (supervised and unsupervised) learning, pattern recognition, and clustering 

there is a need to take in account the internal (intrinsic) structure of the underlying space, which 

is not necessary Euclidean. Such tasks include associative memories [1], independent component 

analysis [2], signal processing [3], etc.  

 

Spaces emerging in these problems can be Riemannian spaces, in particular Lie groups and 

homogeneous spaces, or metric spaces without any Riemannian structure etc. 

 

In recent publications [7, 8 etc.] we find several types of such problems posed for neural 

networks, Kalman–like filters, and blind signal separation… Amari (1998) [5] showed that 

gradient methods on manifolds are suitable for feedforward-like neural networks. Fiori [6] 

proposed several types of learning algorithms on homogeneous Riemannian manifolds (like 

orthogonal groups, Stiefel and Grassmann manifolds) for independent component analysis 

(ICA), and blind signal separation. Celledoni and Fiori [9] use rigid-body dynamical model for 

learning. In [4] Lie groups are used for recognition and model identification.  

In the present thesis we present several methods on Riemannian spaces (calculation of geodesics, 

Newton methods, conjugate-gradient methods), then we develop some algorithms for learning on 

Riemannian and metric spaces, and provide experimental evidence on academic tests and real-

life problems. 

 

Chapter 1 is devoted to the Newton method and geodesic calculations in Riemannian manifolds. 

Geodesic computation is itself  a nontrivial problem. The traditional way of geodesic 

computation is based on local coordinates and Christoffel symbols. Unfortunately, this way is 

difficult to implement because there is no universal procedure of chart changing.  

We propose here a technique based on global coordinates in Euclidean spaces (Rn), where the 

manifold is embedded. In this space we write the Hamilton equations describing the trajectory of 

a free particle attached to the manifold. Classical mechanic shows that such trajectories are 

precisely geodesics on this manifold.  Then we compute these trajectories using symplectic 

Runge-Kutta methods. The corresponding paper is published in Journal of Complexity vol 21. 

(2005) pp. 487-501. 

 



 

 

 

 

 

In Chapter 2 we study generalized averaging on Grassmann manifolds. Then we show that the 

space of pseudo-inverse associative memories with fixed dimension is isomorphic to a 

Grassmann manifold, and develop an algorithm of unsupervised learning and clustering for 

Hopfield-like Neural Associative memory. This procedure enables us to endow the associative 

memory with ability of data generalization. After the synthesis of associative memory containing 

generalized data, cluster centers are retrieved using procedure of associative recall with random 

starts. The algorithm is tested for artificial data problem of unsupervised image recognition and 

for a set of real-life small images (MNIST database). The corresponding papers are submitted to 

Neural Networks (2007) and published in Proc. ESANN 2005, Bruges, Belgium, April, 27-29.  

 

In Chapter 3 kernel methods of neural associative memory are presented. In combination of the 

algorithm from Chapter 3 they provide an unsupervised learning for wider class of tasks. Kernel 

methods, including support vector machines (SVM), least square SVM, and some more 

techniques, are based on implicit extension of a feature space, than only scalar product in the 

new (high or even infinite-dimensional) space is used. Currently, kernel machines are mostly 

applied to the tasks of pattern recognition and classification. Here we expand their use to 

Hopfield-like neural associative memories and use them for recognition and associative recall. 

The corresponding paper is published in   Proc. IJCNN’04, Budapest, Hungary, July 25-28. 

 

In Chapter 4 there is a method of generalized averaging in the space of signal trajectories in the 

phase space. Such a space can also be treated as an orbit space with respect to infinite Lie group 

of time changes: 

)(tt θ→  

where θ is a monotonic twice differentiable function. This approach is used for constructing a 

nonlinear algorithm for suppression of artifacts of deep brain stimulation from records of neural 

activity. The corresponding paper is submitted to Neural Computation (2007). 

 

In Chapter 5 some of described approaches are used for a real-life problem: a system of odor 

recognition (electronic nose). We provide experimental evidence that our proposed methods are 

competitive in comparison with classical techniques and often outperform them. Corresponding 



 

papers are published in Sensors and Actuators B, vol. 106 (2005), pp.  158-163 and Proc. of Int. 

Conf. on Neural Information Processing, Singapore 2002. 

 

 

To conclude this brief description of the manuscript I would say that our point of view was to 

treat all the aspects of the considered problems: from real life to the mathematical model then, 

via a good algorithmic, to the various aspects of the implementation and then back to real life. 

Our objective was to design algorithms which respect the geometric structure of the problem.  

 

This thesis has been elaborated both in Kiev (Institute of Cybernetics of NASU) under  the 

direction of Naum Shor then  Alexander Reznik and in Toulouse (Institut de Mathématiques) 

under the direction of Jean-Pierre Dedieu. It was supported by a grant from the French 

government.  

 

I would like here to thank my advisors for directing this multidisciplinary work, Luca Amodei 

for his suggestions on symplectic methods, Tamara Bardadym and Petro Stetisiuk for their 

advices on nonsmooth optimization, Jean-Claude Yakoubson and Mohammed Masmoudi for 

collaboration in Neural Networks, optimization, and finding zeros on manifolds, Jean-Marie 

Morvan and Tatiana Aksenova for reviewing this thesis, as well all my collegues from Dept. of 

Neural Technologies and Institute of Cybernetics, Kiev and the Laboratory MIP, Toulouse for 

many helpful discussions, the pleasant and supportive atmosphere, and hospitality.  
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Symplectic Methods for the Approximation of

the Exponential Map and the Newton Iteration

on Riemannian Submanifolds.

Jean-Pierre Dedieu∗ Dmitry Nowicki†

June 15, 2004

1 Introduction.

Let V be a p−dimensional Riemannian real complete manifold. In this paper we
study computational aspects of the Newton method for finding zeros of smooth
mappings f : V → R

p. The Newton operator is defined by

Nf (x) = expx(−Df(x)−1f(x)) (1)

Here expx : TxV → V is the exponential map, which ”projects” the tangent
space at x on the manifold. The Newton method has two important properties:
fixed points for Nf correspond to zeros for f and the convergence of the Newton
sequences (x0 = x and xk+1 = Nf (xk)) is quadratic for any starting point x in a
neighborhood of a nonsingular zero.

When V = R
n, the exponential map is just a translation: expx(u) = x + u

and the Newton operator has the usual form:

Nf (x) = x − Df(x)−1f(x)

but for a general manifold this is no more true. Except for some cases the expo-
nential map has no analytic expression and we have to compute it numerically:
this is the main subject of this paper.

Newton method for maps or vector fields defined on manifolds has already
been considered by many authors: Shub 1986 [29] defines Newton’s method for

∗MIP. Département de Mathématique, Université Paul Sabatier, 31062 Toulouse cedex 04,
France (dedieu@mip.ups-tlse.fr).

†MIP. Département de Mathématique, Université Paul Sabatier, 31062 Toulouse cedex 04,
France (nowicki@mip.ups-tlse.fr).
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the problem of finding the zeros of a vector field on a manifold and uses retrac-
tions to send a neighborhood of the origin in the tangent space onto the manifold
itself. Udriste 1994 [35] studies Newton’s method to find the zeros of a gradi-
ent vector field defined on a Riemannian manifold; Owren and Welfert 1996 [27]
define Newton iteration for solving the equation f(x) = 0 where f is a map
from a Lie group to its corresponding Lie algebra; Smith 1994 [34] and Edelman-
Arias-Smith 1998 [10] develop Newton and conjugate gradient algorithms on the
Grassmann and Stiefel manifolds. Shub 1993 [30], Shub and Smale 1993-1996
[31], [32], [33], see also, Blum-Cucker-Shub-Smale 1998 [4], Malajovich 1994 [22],
Dedieu and Shub 2000 [7] introduce and study the Newton method on projec-
tive spaces and their products. Another paper on this subject is Adler-Dedieu-
Margulies-Martens-Shub 2001 [3] where qualitative aspects of Newton method
on Riemannian manifolds are investigated for both mappings and vector fields.
This paper contains an application to a geometric model for the human spine
represented as a 18−tuple of 3×3 orthogonal matrices. Recently Ferreira-Svaiter
[11] give a Kantorovich like theorem for Newton method for vector fields defined
on Riemannian manifolds and Dedieu-Malajovich-Priouret [6] study alpha-theory
for both mappings and vector fields.

The computation of the exponential map depends mainly on the considered
data structure. In some cases the exponential is given explicitely (Euclidean or
projective spaces, spheres . . . ) or may be computed via linear algebra packages
(the orthogonal group, Stiefel or Grassmann manifolds [10], [34]). The classical
description uses local coordinates and the second order system which gives the
geodesic curve x(t) with initial conditions x(0) = x, and ẋ(0) = u:

ẍi(t) +
∑

j,k

Γi
jkẋj(t)ẋk(t) = 0, 1 ≤ i ≤ n,

x(0) = x, ẋ(0) = u.

In these equations Γi
jk are the Christoffel symbols and the exponential is equal to

expx(u) = x(1), see Do Carmo [9] or others textbooks on this subject: Dieudonné
[8], Gallot-Hulin-Lafontaine [13], Helgason [17]. Such an approach is used by
Noakes [25] who considers the problem of finding geodesics joining two given
points. We notice that the computation of local coordinates and of the Christoffel
symbols may be itself a very serious problem and depends again on the data
structure giving the manifold V .

In [5] Celledoni and Iserles consider the approximation of the exponential for
finite dimentional Lie groups contained in the general linear group using splitting
techniques. Munthe-Kaas-Zanna [36] approximate the matrix exponential by the
use of a generalized polar decomposition. See also Munthe-Kaas-Quispel-Zanna
[36] for the generalized polar decomposition on Lie groups, Krogstad-Munthe-
Kaas-Zanna [21] and Iserles-Munthe-Kaas-Nørset-Zanna [19].
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In this paper we concentrate our efforts on submanifolds. Let F : U → R
m

be a C2 map where U ⊂ R
n is open. Let V denote its zero set: V = F−1(0) ⊂

U ⊂ R
n. We suppose that DF (x) : R

n → R
m is onto for each x ∈ U . In that

case, V is a C2 submanifold contained in R
n and its dimension is equal to p =

n−m. V is equipped with the Riemannian structure inherited from R
n: the scalar

product on TxV is the restriction of the usual scalar product in R
n. This case is

particularly important in optimization theory when V , the set of feasible points,
is defined by equality constraints. In this framework, to compute the geodesic
curves with initial value conditions, we take a mechanical approach: a geodesic
is the trajectory of a free particle attached to the submanifold V , see Abraham-
Marsden [1] or Marsden-Ratiu [23]. We give a first description of this trajectory
in terms of Lagrangian equations and then, via an optimal control approach
and Pontryagin’s maximum principle, in terms of Hamiltonian equations. Our
numerical methods are based on this last system: we use symplectic methods to
solve it (second, fourth or sixth order Gauss method).

We are now able to compute the Newton operator attached to a system of
equations defined on V , say f : V → R

n−m. The last section is devoted to
numerical examples. We compare this Riemannian Newton method (called here
GNI for ”Geometric Newton Iteration”) with the usual Euclidean Newton method
(called CNI for ”Classical Newton Iteration”) which solves the extended system
f(x) = 0, and F (x) = 0 with x ∈ R

n. Both methods, for these examples, give
comparable results with a smaller number of iterates for the GNI and a slightly
better accuracy for the CNI.

Other numerical methods for problems posed on Riemannian manifolds re-
quiere the computation of the exponential map. This will be the purpose of a
second paper. We thanks here Luca Amodei for valuable discussions about this
symplectic approach.

2 The equations defining the geodesics.

The exponential map expx : TxV → V is defined in the following way: for x ∈ V
and u ∈ TxV let x(t), t ∈ R, be the geodesic curve such that x(0) = x and

ẋ(0) = dx(t)
dt

|t=0 = u. Then expx(u) = x(1). Let us denote by NxV the normal
space at x. We have

TxV = Ker DF (x) and NxV = (TxV )⊥ = Im DF (x)∗.

This geodesic is characterized by the following system:

x(t) ∈ V,
ẍ(t) ∈ Nx(t)V,
x(0) = x, ẋ(0) = u.

(2)
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We introduce a Lagrange multiplier λ(t) ∈ R
m so that the system 2 becomes

F (x(t)) = 0,
ẍ(t) = −DF (x(t))∗λ(t),
x(0) = x, ẋ(0) = u.

(3)

This geodesic curve may be interpreted as the trajectory of a free particle attached
to V . Using the formalism of Lagrangian mechanics, see Marsden-Ratiu [23]
section 8.3, we notice that this system is given by the Euler-Lagrange equation
associated with the following Lagrangian:

L(x, ẋ, λ) =
1

2
‖ẋ‖2 −

m
∑

i=1

λiFi(x) (4)

that is
F (x(t)) = 0,
d

dt

∂L

∂ẋ
=

∂L

∂x
,

x(0) = x, ẋ(0) = u.

(5)

Definition 2.1 For a linear operator A : E → F between two Euclidean spaces,
we denote by A† its generalized inverse. It is the composition of three maps,
A† = i ◦ B−1 ◦ ΠIm A

with ΠIm A
the orthogonal projection from F onto Im A,

B : (Ker A)⊥ → Im A the restriction of A, i : (Ker A)⊥ → E the canonical
injection.

The operator AA† is equal to the orthogonal projection F → Im A and A†A
is the orthogonal projection E → (Ker A)⊥. When A is onto one has A† =
A∗(AA∗)−1 and AA† = idF while, when A is injective, A† = (A∗A)−1A∗ and
A†A = idE.

Proposition 2.1 For any x ∈ V and u ∈ TxV the system 3 is equivalent to:

ẍ(t) = −DF (x(t))†D2F (x(t))(ẋ(t), ẋ(t)),

λ(t) = (DF (x(t))DF (x(t))∗)−1 D2F (x(t))(ẋ(t), ẋ(t)),
x(0) = x, ẋ(0) = u.

(6)

Proof. To obtain 6 from 3 we differentiate two times F (x(t)) = 0 so that

D2F (x(t))(ẋ(t), ẋ(t)) + DF (x(t))ẍ(t) = 0.

By 3 we get

D2F (x(t))(ẋ(t), ẋ(t)) − DF (x(t))DF (x(t))∗λ(t) = 0.

4



Since DF (x(t)) is onto, DF (x(t))DF (x(t))∗ is nonsingular and this gives λ(t)
and ẍ(t). Conversely, 6 gives

ẍ(t) = −DF (x(t))†D2F (x(t))(ẋ(t), ẋ(t)) = −DF (x(t))∗λ(t).

Moreover
DF (x(t))ẍ(t) = −D2F (x(t))(ẋ(t), ẋ(t))

that is
d2

dt2
F (x(t)) = 0.

This gives

F (x(t)) = F (x(0))+DF (x(0))ẋ(0)+
1

2

∫ t

0

d2

dt2
F (x(s))ds = F (x)+DF (x)u+0 = 0.

Let us now introduce the Hamilton equations. To obtain them we consider
the problem of finding a minimizing geodesic with two given endpoints as the
following optimal control problem (see Udriste [35]):

min

∫ T

0

‖u(t)‖2dt

subject to the constraints ẋ = u, x(0) = x0, x(1) = x1, F (x(t)) = 0 for every
t ∈ [0, T ], where x0 and x1 are given points in V . According to Pontryagin’s
maximum principle, the Hamiltonian for problems like

min

∫ T

0

f0(x, u, t)dt

subject to the constraints ẋ = f(x, u, t), x(0) = x0, x(1) = x1, F (x(t)) = 0 for
every t ∈ [0, T ], can be written as

H(p, x, µ) = −f0 + 〈p, f〉 +
m

∑

i=1

µiDFi(x)ẋ.

In our case we obtain

H(x, p, µ) = 〈p, ẋ〉 −
1

2
‖ẋ‖2 +

m
∑

i=1

µiDFi(x)ẋ

with p ∈ R
n, µ ∈ R

m. The Hamilton equations are

ṗ(t) = −
∂H

∂x
(x(t), p(t), µ(t)),

p(t) = ẋ(t) − DF (x(t))∗µ(t),
µ̇(t) = −λ(t), µ(0) = 0.

(7)
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Proposition 2.2 Let x ∈ V and u ∈ TxV be given. The system 7 is equivalent
to

ṗ(t) = −
∑m

i=1 µiD
2Fi(x(t))ẋ(t),

ẋ(t) = ΠTx(t)V p(t) =
(

id − DF (x(t))†DF (x(t))
)

p(t),

µ(t) = −DF (x(t))∗†p(t),
x(0) = x, p(0) = u

(8)

which is also equivalent to the system 3.

Proof. To obtain 8.1 from 7 we differentiate H with respect to x to obtain

∂H

∂x
=

〈

p,
∂ẋ

∂x

〉

−

〈

ẋ,
∂ẋ

∂x

〉

+
m

∑

i=1

µiDFi(x)
∂ẋ

∂x
+

m
∑

i=1

µiD
2Fi(x)ẋ =

m
∑

i=1

µiD
2Fi(x)ẋ

by 7.2. The two other equations in 8 are obtained from 7.2 by projecting p(t) on
Ker DF (x(t)) and Ker DF (x(t))⊥ = Im DF (x(t))∗ so that

ẋ(t) = ΠTx(t)V
p(t)

and
−DF (x(t))∗µ(t) = ΠIm DF (x(t))∗

p(t).

Since DF (x(t)) is injective we get

µ(t) = DF (x(t))∗†DF (x(t))∗µ(t) =

−DF (x(t))∗†ΠIm DF (x(t))∗
p(t) = −DF (x(t))∗†p(t).

To obtain 8.1 from 3 and 6 we differentiate 7 to obtain

ṗ(t) = ẍ(t) − DF (x(t))∗µ̇(t) −
m

∑

i=1

µiD
2Fi(x(t))ẋ(t) =

ẍ(t) + DF (x(t))∗λ(t) −
m

∑

i=1

µiD
2Fi(x(t))ẋ(t) = −

m
∑

i=1

µiD
2Fi(x(t))ẋ(t).

The initial condition 8.4 is given by

p(0) = ẋ(0) − DF (x(0))∗µ(0) = u.

To obtain 3 from 8 we differentiate ẋ(t) = p(t) + DF (x(t))∗µ(t) to get

ẍ(t) = ṗ(t) +
m

∑

i=1

µiD
2Fi(x(t))ẋ(t) + DF (x(t))∗µ̇(t) = DF (x(t))∗λ(t).

By the same equation we get

ẋ(0) = p(0) + DF (x(0))∗µ(0) = u.

6



Moreover,
DF (x(t))ẋ(t) = DF (x(t))ΠKer DF (x(t))

p(t) = 0,

by integrating we get

F (x(t)) = F (x(0)) +

∫ t

0

DF (x(s))ẋ(s)ds = 0

and we are done.

3 Numerical integration of Hamilton Equations.

3.1 Symplectic Runge-Kutta methods.

To integrate the Hamiltonian system (8) we use symplectic Runge-Kutta meth-
ods. We do not use partitioned Runge-Kutta methods like Stormer-Verlet because
our Hamiltonnian is not separable. Let us consider an autonomous system:

ẏ = G(y) : U → R
p (9)

defined over an open set U ⊂ R
p. In the case considered here y = (x, p) ∈ R

n×R
n

and G(x, p) is given by (8).
Let us denote by Φt(y) the associated integral flow : y(t) = Φt(y) is the

solution of (9) with the initial condition y(0) = y. The implicit Runge-Kutta
method we have implemented is given by

y0 = y(0)

yk+1 = yk + τ
s

∑

i=1

biG(Yi)

Yi = yk + τ
s

∑

j=1

aijG(Yj), 1 ≤ i ≤ s.

(10)

Here τ > 0 is the given step size, s is a given integer, Y1, . . . , Ys are auxil-
liary variables , (aij)1≤i,j≤s , (bi)1≤i≤s are the coefficients defining the considered
method. For our experiments we use Gauss methods of order 2, 4 and 6. The
corresponding coefficients are

• Order 2: s = 1, a11 = 1
2

and b1 = 1.

• Order 4: s = 2,

aij

1
4

1
4
−

√
3

6
1
4

+
√

3
6

1
4

bi
1
2

1
2
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• Order 6: s = 3,

aij

5
36

2
9
−

√
15

15
5
36

−
√

15
30

5
36

+
√

15
24

2
9

5
36

−
√

15
24

5
36

+
√

15
30

2
9

+
√

15
15

5
36

bi
5
18

4
9

5
18

see Hairer-Norsett-Wanner [16] or Sanz-Serna-Calvo [28] about these methods.
Let us denote ψt : R

p → R
p which outputs yk+1 in terms of yk. Let us consider

again the case of (8) with y = (x, p). The properties of these methods are the
following

• They are symplectic i. e.

ω2(ψt(y)) = ω2(y)

for any Hamiltonian system and for any τ > 0 where ω2 is the differential
2-form

ω2 =
n

∑

i=1

dxi ∧ dpi. (11)

To solve equations 10 we have chosen a successive approximation scheme.
These iterations are convergent when the following inequality

‖DG‖‖A‖τ < 1

is satisfied. The norm of DG could be estimated by a direct derivation of the
right-hand side of system 7. This lead to the following inequality

‖DG‖ ≤ ‖D2F‖2‖(DFDF ∗)−1‖ + ‖D2F‖2‖(DFDF ∗)−1‖2‖DF‖2+

‖DF‖‖D3F‖‖(DFDF ∗)−1‖.

Let ν denotes the index of internal iteration inside the k-th step. For a given
tolerance tol our termination criterion is

‖Y ν+1 − Y ν‖ ≤ τ.tol.

In our experiments we have chosen tol ≈ 10−8. Further decreasing of the tolerance
did not lead to better accuracy of the geometric Newton method.
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3.2 Backward error analysis.

We apply the backward error analysis techniques from Hairer-Lubich [15] and
Hairer [14] to the case of the system (8) integrated by symplectic methods. We
show that the computed points xk (yk = (xk, pk) are arbitrarily close to the
geodesic corresponding to a nearby Riemannian structure and the same initial
conditions as in the exact problem. We also estimate the distance between these
two Riemannian distances. More precisely

Theorem 3.1 Let V ⊂ R
n be a Riemannian submanifold defined by the equation

F (x) = 0, where F : U ⊂ R
n → R

m is analytic on a certain neighbourhood of D
in C

n. Let I be a symplectic numerical integrator of order r with a sufficiently
small step size τ > 0. Let us denote by g(x) the n × n positive definite matrix
defining the Riemannian metric at x ∈ V . Then V can be endowed with a new
Riemannian metric g̃(x, τ) such that

1.
‖g(x) − g̃(x, τ)‖ = O(τ r+1), (12)

2. There exists τ ∗ > 0 such that for any initial condition

x(0) = x0 ∈ V, ẋ(0) = u0 ∈ Tx0V (13)

we have

‖xk − x̃(kτ)‖ = O(exp(−
τ ∗

2τ
)) (14)

for any k such that kτ ≤ T = τexp (τ ∗/2τ) , where xk is the numerical solution
provided by the integrator and x̃(t) is the exact geodesic associated with the metric
g̃(x, τ) and the same initial conditions ( 13).

Proof. We apply the Corollary 6 from Hairer-Lubich 1997 [15] to our system.
See also Hairer [14] where constrained Hamiltonian systems are considered. From
this corollary, we get a Hamiltonian

H̃(x, p, τ) = H(x, p) + O(τ r+1) (15)

such that its trajectories satisfy the estimate (14). The Riemannian metric g̃ is
built from the kinetic energy of this new Hamiltonian (see Arnold [2], chapter 9).
This metric satisfies the inequality (12). The trajectories of the Hamiltonian 15
are the geodesics of this metric.
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4 The Newton operator

How do we compute a Newton step ? Let us first recall the geometric context.
Let F : U → R

m be a C2 map where U ⊂ R
n is open. Let V denote its

zero set: V = F−1(0) ⊂ U ⊂ R
n and let f : U → R

n−m be given, as smooth as
necessary. We also denote by f̂ its restriction to V .

To compute the Newton operator

Nf̂ (x) = expx(−Df̂(x)−1f̂(x))

we need the derivative Df̂(x) : TxV → R
n−m. This derivative is the projection

onto the tangent space TxV of the derivative Df(x) : R
n → R

n−m. Since this
projection is equal to I − DF (x)†DF (x) (see Definition 2.1) we obtain

Df̂(x) = πTxV Df(x) = (I − DF (x)†DF (x))Df(x).

5 Experimental results.

Example 5.1 Quadratic manifold.

In this example we consider the quadratic manifold:

V = {x ∈ R
100 :

5
∑

k=1

x2
k

k
−

100
∑

k=6

x2
k

k
= 1}.

To compute the geodesics we use the Gauss method of order 4 with τ = 0.01.
On this manifold we solve the following problems:

1. A linear system Bx = 0, where B is a random 99 × 100 matrix,

2. A quadratic system: Bx + c‖x‖2 = 0, where c is a given random vector in
R

99.

The initial point x0 ∈ R
100 of the Newton sequence is taken at random in

following sense. Each component x0k, k = 1 . . . 99, is taken randomly in [−1, 1]
with respect to the uniform distribution and x0,100 is computed to satisfy the
equation defining V .

The corresponding results are displayed in the table 1 in the column ”Geo-
metric Newton Iteration” or ”GNI”.

For comparison we also display the results obtained for the same problems
using the classical Newton method to the extended system

(F, f) : U → R
m × R

n−m

We call ”Classical Newton Iteration” or ”CNI” the corresponding sequence.
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The typical behaviour of these iterations is shown in Fig. 1 and Table 1. They
show a quadratic convergence obtained in few steps. Then we reach a limit due to
round-off errors. The number of Newton steps is better for the geometric method
than for the classical one but the precision is better for the classical method than
for the geometric one. This is due to the amount of computation which is more
important for the GNI.

0 2 4 6 8 10 12 14 16 18 20
−16

−14

−12

−10

−8

−6

−4

−2

0

2

iterations

P
re

ci
si

on

GNI
CNI

Figure 1: Convergence of geometric and classical Newton methods for the
quadratic manifold. ◦ stands for GNI and + for CNI.

Problem # of GNI steps GNI Precision # of CNI steps CNI Precision
Linear 7 1.01 · 10−14 8 2.2 · 10−16

Quadratic 10 1.06 · 10−15 12 3.0 ·10−16

Table 1: Results for the quadratic manifold

Example 5.2 ”Distorted” quadratic manifolds.

In this example we consider the following manifold:

V = {x ∈ R
100 :

5
∑

k=1

sin(xk)
2

k
−

100
∑

k=6

sin(xk)
2

k
= 1}.
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On this manifold we solved the same test problems with the same parameters
as in Example 1. This manifold has an infinite number of connected components.
We restrict our study to the connected component V0 such that |xi| ≤ π/2 for
each x ∈ V0. The initial point was taken randomly in V0 like in the previous
example. Under these conditions two solutions were found. The corresponding
results are displayed in the table 2.

Problem # of GNI steps GNI Precision # of CNI steps CNI Precision
Linear 7 7.1 · 10−15 11 1.4 · 10−16

Quadratic 9 2.1 · 10−14 12 2.2 · 10−16

Table 2: Results for the distorted quadratic manifold.

Example 5.3 Katsura’s system.

The following equations appear in a problem of magnetism in physics. For more
details see Katsura-Sasaki [20], and also the web site [37].

um =
N
∑

i=−N

uium−i ; m = 0 . . . N − 1

N
∑

i=−N

ui = 1

u−m = um ; m = 1 . . . 2N − 1
um = 0; m = N + 1 . . . 2N − 1

(16)

After eliminating um for m /∈ 0 . . . N we obtain N + 1 equations in R
N+1 :

um =
N
∑

i=m+1

uiui−m +
N−m
∑

i=0

uiui+m +
m
∑

i=1

uium−i ; m = 0 . . . N − 1

2
N
∑

i=1

ui + u0 = 1

(17)

This system is not a priori posed on a manifold. For this reason we split the
equations into two groups: the M first equations from (17) (for m = 0 . . . M −
1) define a manifold VM of codimension M , and the remaining equations are
considered as a system on VM . The GNI starts at a random point x0 ∈ VM . To
find such a point we take at random a point y0 in a box containing VM (such a box
is easy to compute from the structure of Katsura’s system). Then we ”project”
y0 on V via the Newton-Gauss method in R

N+1.
In the next table we display the results for N = 40 and different values for M .

We use the 4-order Gauss numerical integrator with τ = 0.01. The results for the
classical Newton method are also included: they correspond to the codimension
M = 0. We don’t know the number of real solutions of this system. During the
test we found 4 different solutions.
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In the following Figure we illustrate the same example with N = 2 and
M = 1. The four first GNI iterates are located on the surface: x0, x1g, x2g, x3g and
x4g while the iterates corresponding to the CNI ( x0, x1c, x2c, x3c, x4c) are clearly
located outside the surface. We notice the same facts as in our first example:
better numerical behaviour for the CNI but a better complexity in terms of the
number of iterates for the GNI.

Figure 2: Convergence of CNI and GNI for the Katsura’s example, N=2, M=1.

M # of GNI steps Precision
0 (CNI) 14 1.78 · 10−16

1 12 4.4 · 10−14

5 9 6.7 · 10−15

10 9 5.6 · 10−15

20 7 1.0 · 10−14

40 7 3.2 · 10−15

Table 3: Results for Katsura’s example.

Example 5.4 The generalised Brown system
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This example is a generalizaion of Brown’s system, see Floudas-Pardolos [12]
(Chapter 14, test problem 14.1.5):

∑

1 ≤ i ≤ N,
i 6= k

xi + 2xr
k = N + 1, k = 1 . . . N − 1

∏

1≤i≤N

xi = 1

(18)

The case N = 5 and r = 1 corresponds to the original system.
Like in the previous example, this system is not a priori posed on a manifold.

Its equations are also split into two groups in the same way.
The GNI starts at a random point x0 in the manifold V of codimension M .

To find such a point we take at random a point y0 in the box 0.5 ≤ xk ≤ 1.5,
k = 1 . . . N with respect to the uniform distribution. Then, we project y0 on V
via the Newton-Gauss method in R

N .
In the table 5 we display the results for N = 10, r = 3, and different values

for M . We use the 4-order Gauss numerical integrator with τ = 0.01. The
results for the classical Newton method are also included: they correspond to the
codimension M = 0. We don’t know the number of real solution of this system.
During the test we found the solution : x = (1, . . . , 1)T .

M # of GNI steps Precision
0 (CNI) 8 2.3 · 10−15

1 7 4.7 · 10−14

3 6 7.2 · 10−14

5 6 7.6 · 10−14

9 6 1.8 · 10−14

Table 4: Results for generalized Brown example.
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ABSTRACT: This paper is dedicated to the new algorithm for unsupervised learning and 

clustering. This algorithm is based on Hopfield-type pseudoinverse associative memory. We 

propose to represent synaptic matrices of this type of neural network as points on the Grassmann 

manifold. Then we establish the procedure of generalized averaging on this manifold. This 

procedure enables us to endow the associative memory with ability of data generalization. In the 

paper we provide experimental testing for the algorithm using simulated random data. After the 

synthesis of associative memory containing generalized data.  Cluster centers are retrieved using 

procedure of associative recall with random starts. 

 

 

1. Introduction 

 
In this paper we apply geometric methods to neural associative memories. We use Riemannian 

manifolds arising from Linear algebra (like Stifel and Grassmann manifold) for representation of 

synaptic matrices of Hopfield-type neural networks. Using this approach we shall develop a 

neural algorithm for unsupervised learning and clustering.  

 

Our algorithm is based on pseudoinverse associative memory [1]. Such a memory like other 

Hopfield-type networks is able to perform some kind of “unsupervised learning”: it can 

memorize unlabeled data. But such networks could not be used for clustering because they 

cannot generalize: training patterns are memorized “as is”. So, the network cannot retrieve 



cluster centroids from large amount of data patterns.  

 

In [2] and [3] there is developed a modification of projective associative memory that could do 

that. This algorithm possesses some properties of data generalization but weight matrix of the 

network is not projective. So, the network deteriorates as number of memorized data is 

augmented. Since certain number of training patterns the ability of associative recall is 

completely lost.  

 

Unlike [2, 3] our method always produces projective matrices. Using techniques of generalized 

averaging over Riemannian manifold we construct the synaptic matrix of our network. 

Associative memory with such a matrix contains vectors generalizing training data. So, these 

vectors might be used as centroids of the clusters. 

This method is related to averaging of subspaces [4], and optimization technique on the 

Grassmann manifold [5]. Applications of geometric methods to adaptive filtering are considered 

in [6]. Statistical estimation of invariant subspaces is investigated in [7] there Cramer-Rao 

bounds on Grassmann manifold are developed.  

 

Since our method is based on non-iterative neural paradigm it has a good speed; only small 

number of epochs is needed even for large data sets. This feature makes associative-memory 

algorithm competitive in comparison with self-organizing maps (SOM) of Kohonen [8], the most 

known neural paradigm used for the purpose of clustering. Unfortunately training of SOMs is 

often very slow; millions of epochs are required for training of sufficiently-large network.  

 

We provide experimental evidence for the associative-memory clustering. This method was 

tested using sufficiently large simulated data sets with intrinsic clustered structure.  

 

2. Preliminaries  
 

2.1. Projective associative memories  

 

Our algorithms are based on associative memory with pseudoinverse learning rule [1]. This is a 

Hopfield-type auto-associative memory; memorized vectors are bipolar: vk∈{-1, 1}n, k=1…m. 

Suppose these vectors are columns of n×m matrix V.  Then synaptic matrix C of the memory is 

given by: 



C=VV+,   (1) 

where V+ is a Moore-Penrose pseudoinverse or generalized inverse of V. It might be computed 

directly as V+= (VTV)−1VT  (for linearly independent columns of V) or using Greville formulae 

(see, e.g., [9]) .  

 

Associative recall is performed using following examination procedure: the input vector x0 is a 

starting point of the iterations: 

)(1 tt f Cxx =+    (2) 

where f is a monotonic odd function such that 1)(lim ±=±∞→ sfs  taken componentwise. The 

stable fixed point of this discrete-time dynamical system is called an attractor; the maximum 

Hamming distance between x0 and a memorized pattern vk such that the examination procedure 

still converges to vk is called an attraction radius. 

We shall also use a distinction coefficient r(x, C) between a vector x and a projective matrix C. Ii 

is given by: 

( )( ) ( )
),-),(

2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
==

x
xCI

x
xxCIxCr   (3) 

Note that r(C,x)=0 if  x∈imC and r(C,x)=1  if x∈kerC.  

 

2.2 The Grassmann Manifold 

 

The Grassmann manifold is a Riemannian manifold coming from linear algebra. This is the 

manifold of all m-dimensional subspaces in Rn, it is denoted by Gn,m. The Grassmann manifold 

could be defined as follows: at first we introduce the Stifiel manifold – a set of orthogonal n×m-

matrices Y, YTY=Im×m, endowed with Riemannian metric (this metric is induced by Euclidian 

norm in the space of n×m-matrices). Then, we say that two matrices are equivalent if their 

columns span the same m-dimensional subspace. Equivalently, two matrices Y and Y′ are 

equivalent if they are related by right multiplication of an orthogonal m×m matrix U: Y′=YU. 

 

Some computational algorithms on Grassmann manifold might be found in [5]. There are several 

representations of Grassmann manifold. We can represent elements of Gn,m as (symmetric) n×n 

projection matrices of rank m. Indeed, there is one-to-one correspondence between such matrices 

and m-dimensional subspaces in Rn.  



There are several ways to measure distance on Gn,m. Geodesic distance in Riemannian metric 

could be computed using SVD-decomposition (see [4]). One also can define a distance as a norm 

of difference between projective matrices. In this case the matrix 2-norm is usually taken. In 

order to reduce computational complexity of generalized averaging we use Frobenius matrix 

norm. So, the distance between projective matrices X and Y is  

FroYXYX −=),(ρ  

 

 

3. The Algorithm 
 

 

3.1 Problem statement 

 

Let us have a training sample containing K patterns x1…xK∈ Rn. Associative memory with 

generalized patterns is constructed as follows: 

 

At first we create N groups of training vectors; each group contains m vectors. For each group 

data vectors are picked randomly from the training sample.  The number m<n should not exceed 

n; it is more or equal to desired quantity of clusters. Then we make N instances of pseudoinverse 

associative memory, each matrix stores one group of m training vectors. Synaptic matrices of 

these networks are Ck, k=1…N. To join all these instances of associative memory in one 

“generalized” network we use the procedure of generalized averaging. 

 

3.2 Generalized averaging on the manifold 

 

Consider a metric space M with metric ρ(x,y) and a finite set Mx N
ii ⊂=1}{ . The element 

( )∑
=

∈=
N

i
iMx xxx

1

2),(min ρ   (4) 

is called the generalized average of points of this set. Similarly, the point 

∑
=

∈=
N

i
iMxm xxx

1
),(min ρ   (5) 

is a generalized median of the same set. If M is an Euclidian space generalized average and 

median are usual average and median respectively. Generalized averaging is considered in [8], 



problem of generalized averaging on homogenous manifolds might be found in [4].  

 

 

3.3 Computing generalized average on the Grassmann manifold 

 

Here we use representation of points of the Grassmann manifold Gn,m as n×n (symmetric) 

projective matrices of rank m; the metric is induced by the Frobenius norm. Hence the problem 

of generalized average is equivalent to the following minimization problem: 
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Transform the objective function in the following way: 
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Thus the problem (5) has been reduced to finding projective matrix of rank m closest to the 

simple average C of the matrices Ck.  

 

Such a problem might be solved using Newton or conjugated-gradient methods on Grassmann 

manifold described in [5], [4] but for high-dimensional vectors this became computationally 

hard. In this paper we use a simplified approach. 

 

 

 

3.4. Implementation 

 

For tasks of neural networks there is need for computation with large matrices; typical dimension 

is several hundreds or thousands. So, many algorithms of constrained optimization or 



optimization on Riemannian manifolds became inapplicable.  

 

In order to simplify computation we construct a solution that is, in general, suboptimal. It is 

based on following suggestions:  

Note that the Frobenius norm is invariant with respect to changing orthonormal basis. So, we can 

choose the basis of eigenvectors of C . Let them be ranged by way of decreasing of 

corresponding eigenvalues. In this basis C is diagonal. We choose X equal to  

 

))diag(( 1
m
kk =δ   (7) 

 

in this basis; where δk=1; k=1…m and δk=0 otherwise. Such a matrix is the closest to C  

amongst projective matrices of rank m. Indeed, making non-diagonal elements non-zero just 

increases 2CX − . Since X is diagonal (7) is the optimal solution. Thus X is a matrix of 

projection to the linear hull of m first eigenvectors of C .  

 

3.5. Statistical Estimation 

 

Now we introduce a model of random vector representing clustered data. We assume that this 

vector consists of finite number of centers (for each realization of this vector a center is taken 

randomly with certain probability) and additive noise. Under this assumption we can provide 

some estimation for the algorithm of associative clustering.  

Proposition 3.1. Suppose the random vector x could be represented in the ξxx += 0 , where 

random vector x0 takes values 0)1( ,
0 pxx K , and ξ is a random uncorrelated vector (with 

covariance matrix σ2I). Let matrix C be a projection matrix to the subspace spanned by m>p 

vectors from this distribution. Then the invariant subspace of expectation of C is a subspace 

spanned by the centers. 

Proof. We use orthogonal decomposition of C, C=YYT: YTY=I. The orthogonal matrix Y could 

be represented in the form Y=Y0+η, where columns of Y0 span the same subspace as 
0)1( ,

0 pxx K , and η  is a zero-mean uncorrelated random matrix. One can compute the mean of C:  
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So, the matrix EC commutates with C0; therefore they have common invariant subspace. ■ 

 

The matrix computed according to section 3.4 from the sample average is close to the matrix C0 

of projection to the subspace spanned by the cluster centers. Associative memory with such a 

synaptic matrix stores vectors which approximate unknown centers; these vectors could be 

extracted using the procedure of associative recall. 

 

 

4. Experimental Technique 

 
The goal of these series of experiments is to demonstrate network’s ability to deal with data 

having predefined “clustered” structure. Training data could be divided into subsets grouping 

around the known centers. We are able to tell when the algorithm is able to retrieve these centers.  

 

4.1. The Data  

 

All experiments were carried out using 256-dimensional data vectors with bipolar component 

values {+1,-1}. The training set was generated as follows: 

 

At first p cluster centers were produced; they were random bipolar vectors with equal probability 

of values. Then, data vectors themselves were constructed by adding a bipolar noise to center. 

More precisely, to make a data vector we took h randomly selected components of a center and 

changed their signs. Noise intensity h was random uniformly distributed number from 1 to H. 

We shall say that H is a cluster radius. For each cluster we generated equal number N of data 

points. We took K=1000 for all tests. Before entering to the network data were shuffled.  

 

4.2. The Network 

 

At first, N instances of associative memory were trained using pseudoinverse learning rule. Each 

network memorized m randomly picked data vectors. Synaptic matrices of these networks were 

averaged using the algorithm described above; and the resulting projective matrix X was 

obtained. The network with this matrix was used for simulations in order to retrieve cluster 

centers. 

 

4.3. Finding Attractors  



 

In order to find attractors we performed examination procedure (2) with activation function 

f(x)=sign(x). Initial point was taken randomly; iterations were continued until a fixed point was 

reached.  

Recall procedure ran T=10000 times; all attractors found were stored. Then the attractors were 

sorted by frequency or distinction coefficient.  

 

5. Experimental results 
 

In order to investigate network’s behavior we performed experiments described above for 

different values of parameters. We used a network of 256 neurons and clusters with radius H=64. 

The matrix of the resulting network was computed by generalized averaging of N=1000 

projective matrices. In these experiments all cluster centers were found by convergence from 

random starts. This was verified by comparing attractors found with centers; first p attractors 

were identical to centers.  
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Fig. 1. Frequencies of attractors of associative clustering network for different m, p=8 

 

Figure 1. corresponds to the case of constant number of clusters p=8; we varied invariant 

subspace dimension m. This parameter also means a number of data patterns stored in each 

instance of pseudoinverse associative memory. We can see that the algorithm works for large 

range of m>p. However, if m is large probability of convergence to a center decreases and 



number of spurious attractors grows. For m=32 these probabilities have the same order; further 

increasing of m makes them identical; and centers will be lost.  

 

The second series of experiments is related to the case of m=p. In the Fig. 2 attractors are sorted 

by frequency; difference between centers and spurious equilibria decreases as number of clusters 

grows. For m=p=32 the network was not able to solve its task; only 24 centers of 32 were found.  
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Fig. 2 Frequencies of attractors of associative clustering network for different p, and m=p 

 

Figure 3 demonstrates another way of selecting attractors; here they are sorted by distinction 

coefficient r(x,X) (3) with network’s synaptic matrix. Results of this experiments show that 

difference of this measure between centers and spurious attractors is much stronger than for 

frequencies. This ratio is almost the same for different network configurations. So, the 

distinction coefficient might be used to reveal centers efficiently. Unfortunately, usage of this 

criterion combining with random starts cannot guarantee that number of network runs was 

sufficient to retrieve all centers. This can be seen from the results on fig. 3 for p = 32 – only 28 

out of 32 centers were found using the value of distinction coefficient. 



0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35
Attractors

D
is

tin
ct

io
n 

C
oe

ffi
ci

en
t

p = 8
p = 16
p = 24
p = 32

 
Fig. 3. Distinction coefficients of attractors of associative clustering network for different p, and m=p 

 

Note also that usage of successive iterations (2) is necessary to find interesting attractors. If 

convergence to a stable state is not performed than the probabilities of finding cluster center or 

any spurious state are practically equal (especially for larger m). 

 

6. The MNIST data 
 
We also tested our method using the MNIST database of handwritten digits []. There are ten 

different classes of grayscale images (from ’0’ to ’9’, each of 28×28 pixels in size) together with 

their class labels. The training and test sets consist of 60,000 and 10,000 images respectively. 

The number of images in the training set varies from 5,842 to 6,742 per class and it is about 

1,000 images per class in the test set. Each image was transformed into a n-dimensional vector (n 

= 28 × 28 = 784). Then vectors were made bipolar using thresholding procedure.  

 
.  



 
Fig. 4. Attractors of the associative memory obtained from MNIST data 

 
In these experiment network’s synaptic matrix was obtained as a generalized average of N=3750 

matrices Ck. Each of them contained m=16 randomly selected images. Such a network has many 

attractors; there are several attractors for each class. So, direct estimations of network’s 

performance are difficult. Examples of attractors looking like 10 digits are displayed in fig. 3. 

These are generalized images of digits; they show that the network “knows” about the training 

data. Apart digit-like attractors the memory has some spurious ones looking like senseless 

shapes. 

 

 

 

7. Conclusion 
 

Experimental results described above show that proposed associative memories are able to 

generalize patterns. This makes them a good tool for clustering. Non-iterative nature of neural 

associative memories makes them quite attractive in comparison with many other neural 

algorithms of unsupervised learning. 

 

Unfortunately, setting the value of parameter m in associative-memory clustering algorithms 

requires some a priori knowledge about data to be clustered. This value must be greater or equal 

than the number of clusters p, but, in the same time, must not exceed this number considerably. 

Moreover, m is bounded by the well known limitation on memory capacity of Hopfield-type 

NNs (which is of order n, preferably m<0.3n). This limitation might beeliminated by changing 

type of the manifold and/or metric used in of the main algorithm. 

 

Note that this approach is based on optimization on Riemannian manifolds. This is a powerful 

technique that could be applied for some other tasks of learning and neural networks. In this 



paper we used specific manifolds (Grassmann). For this manifold we selected only one type of 

distance (based on the Frobenius norm) and averaging. Moreover, the solution of corresponding 

optimization task was not exact. We expect that usage of different metric combining with exact 

geometric optimization may yield better performance of the associative-memory clustering. 

Development of appropriate techniques of high-dimensional optimization is a subject of the 

future work.  

 

The proposed method may also be generalized for wider class of manifolds. In this case we 

should use geometric computation that works for arbitrary manifold (e.g. described in [10]). This 

extension of associative-clustering technique will enable to solve wider class of tasks. 
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Abstract– We propose a new approach to pseudo-
inverse associative memories using kernel machine 
methodology. Basing on Hopfield-type pseudoinverse 
associative memories we developed a series of kernel-
based hetero- and auto-associative algorithms. There 
are convergence processes possible during 
examination procedures even for continuous data. 
Kernel approach enables to overcome capacity 
limitations inherent to Hopfield-type networks. 
Memory capacity virtually does not depend on data 
dimension. We provide theoretical investigation for 
proposed methods and prove its attraction properties. 
Also we have experimentally tested them for tasks of 
classification and associative retrieval. 

I. INTRODUCTION 

Nowadays there is a drastic growth in the domain of 
kernel machines. These methods and techniques are 
widely applied for pattern recognition, regression, 
classification and clustering. All kernel methods use 
feature space whose dimension is significantly larger than 
the dimension of original space. Original and feature 
spaces are connected by the nonlinear mapping: 

.: XX EE ′→ϕ  

Dimensionality of E'X might be very large or even 
infinite. So it is difficult or impossible to operate with 
vectors in this space explicitly. However sometimes one 
needs to know only inner (scalar) product in E'X as a 
function of elements of EX. This function is called kernel: 

))(),((),( vuvuK ϕϕ=       (1) 

Most of kernel methods like SVM [1], LS-SVM [2] 
are used for classification, regression, and pattern 
recognition. Thus it will be interesting to construct kernel 
machines with other functions such as associative recall. 
The aim of this paper is to construct associative memory 
(AM) based on kernel machine. 

 Linear independence of memorized vectors is 
required by Hopfield-type associative memories. 
Moreover, their linear independence must be “sufficiently 
strong” i.e. every vector must be sufficiently far from the 
linear  hull  of  all  remaining   ones.   It  implies  that  the 
*This research was supported by INTAS grant #01-0257 

number of patterns to memorize must be less than their 
dimension. In practice this number does not exceed 25% 
(pseudoinverse learning rule, [3]) or 70% of vectors’ 
dimension (desaturation technique, see [4]). Diagonal 
elements of the synaptic matrix dominate if the number of 
patterns is close to this limit. This implies drastic 
decrease of attraction properties and deterioration of 
associative memory’s capabilities.  

Using kernel machines one can change over to the 
space where memorized data set becomes linearly 
independent. We use pseudoinverse hetero- and auto-
associative memory as a prototype. Usage of kernel 
machines in scope of this paradigm enables to overcome 
limitations due to linearity of the basic model. In 
particular, we can remove capacity limitations of these 
memories. Using this approach we also constructed 
associative memory capable to iterative convergence 
during examination process with the continuous data. 

II. THE ALGORITHM 

Lets consider pseudoinverse heteroassociative 
memory. Suppose EX and EX are input and output spaces 
with dimensionalities n and p respectively. We should 
store m pairs of vectors miEyEx YiXi Κ1,, =∈∈ . These 
vectors are supposed to form columns of matrices X and 
Y respectively. In order to provide appropriate 
heteroassociative behavior matrix B can be specified as: 
 

YBX=  
whose solution is: 

+= YXB         (2) 

This matrix defines a projective operator 

YX EE →:B such that ii yBx =  for all i. We denote 
by operator “+” the Moore-Penrose pseudoinverse of X 
(see e.g. [5]). In case of linearly independent columns 
pseudoinverse matrix can be found as 

.)( 11 TTT XSXXXX −−+ ==                (3) 

The elements of m×m-sized matrix S are computed as 
pairwise scalar products of memorized vectors: 

).,( jiij xxs =              (4) 



Examination procedure takes an arbitrary input 
vector x. We should produce network’s response y. This 
cold be done as follows: 
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;1
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xXz

zYSB

ii
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z

xy

=
=

== −

        (5) 

Note that we need to know only scalar products of 
memorized vectors themselves and input vector x. 

We use this property of heteroassociative memory to 
construct the kernel algorithm. We replace EX by E'X 
whose dimensionality is nn >>′  (E'X may also be an 
infinite-dimensional Hilbert space). Vectors in E'X are 
evaluated using nonlinear transformation XX EE ′→ϕ : . 
E'X is called feature space. 

Let Xiii Exxx ∈= ),(' ϕ be input vectors of training 
dataset, and ))(),((),( vuvu ϕϕ=K  be a kernel.  

Then, like (3-5) we get: 
 

).,(

);,(

xxKz

xxKs

ii

jiij

=

=
         (6) 

Expressions (2-3, 5-6) could be evaluated by means 
of kernel only, without explicit usage of E'X , this leading 
to kernel-based procedures of learning and examination. 

This is a basic algorithm for kernel associative 
memory.  

Corollary 1 of Mercer’s theorem:  If K(u,v) is a 
Mercer’s kernel [1] then 

1) Hilbert space E'X and a mapping XX EE ′→:ϕ  
exist such that ))(),((),( vuvuK ϕϕ=  

2) For each set of pairs miEyEx YiXi Κ1,, =∈∈  
matrix S is nonnegative-defined  

3) If in addition dim(Ex')>m, there exists a operator 
YX EEB →′:  such that ii yBx ='  for all i. 

 
Proof:  
1) follows directly from Mercer’s theorem 
2) this is true because the matrix S consists of 

pairwise scalar products of Xi Ex ′∈′ (it is a Gram 
matrix of this set of vectors)  

3) such an operator could be built on the  

(m-dimensional) linear hull of X
m
ii E ′∈>′< =1x  

and extended continuously to the whole E′x.� 
Mercer’s condition is formulated as follows. Let 

ℜ→×QQK :),( vu  be a continuous symmetric function 
and Q be a compact set in Ex. Then, a space E'x and a 
mapping XX EE ′→:ϕ  such   that 

xEX KEQvu
′

=⊂∈∀ )(),(),(, vuvu ϕϕ exist if and only 

if for any )(2 QLg ∈  following inequality holds: 

0)()(),(
,

≥∫∫
∈

vgugvuK
Qvu

 

Unfortunately, we cannot guarantee non-singularity 

of the matrix S. It is invertible if X
m
ii Ex ′∈>′< =1  are 

linearly independent. This condition may not hold for 
certain kernels and specific vector sets. In practice, one 
can suppress this problem using Tikhonov’s 
regularization: instead of S using the matrix:  

 
ISS µµ +=  

for small µ>0. This matrix is always invertible since S is 
nonnegative definite. 

Another approach to this problem uses incremental 
construction of the matrix S. During each step of the 
algorithm its dimensionality is increased by one with the 
addition of each next memorized vector. If this leads to 
singular matrix, the vector is rejected. For inversion of S 
we use the technique for block matrices [5,6]. 

To memorize m patterns in this network we need to 
store m×m-sized matrix S. We can say that kernel 
associative memory is capable to store as many images as 
neurons it has. This is a maximum estimation which is 
sometimes unreachable in practice. For instance, in case 
of scalar-product kernel this machine is identical to 
conventional neural heteroassociative memory. 

III. MODIFICATIONS OF THE KERNEL ALGORITHM 

A. Autoassociative memory 

The algorithm described above might be also used 
for autoassociative memory. In this case Ex and Ey are 
identical, miyxEyEx iiYiXi Κ1,,, ==∈∈ . Matrix S is 
calculated by formula (6).  There is an iterative 
examination procedure: the vector xt is sent to the 
network’s input, using (5-6) we obtain postsynaptic 
potential yt. Then, in case of bipolar data we apply 
activation function and compute the next state of the 
system:  

)(1 tt yfx =+       (7) 

This procedure is iterated until a stable state 
(attractor) has been reached. Attractors of such systems 
are described by  

Theorem 1. Suppose for autoassociative memory (4-
8) conditions of the corollary 1 hold, and matrix S is 
invertible. Then attractors of corresponding examination 
procedure are only fixed points or 2-cycles 

Proof: We construct energy function in the way 
similar to the corresponding proof for Hopfield networks: 



),(
2
1- ttt yxKE =    (8) 

By corollary from Mercer’s theorem a self-
conjugated operator yx EEC →′:  exists such that 
Cx't=yt. Applying properties of scalar product in E'x we 
get: 
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Since the kernel is monotonic function with respect 
to distance between x and y expression (9) is non-
negative, it is zero if and only if the fixed point is 
reached.� 

The scheme of examination algorithm for auto-
associative memory is displayed in the fig. 1. 

 

 
Fig. 1. Scheme of the kernel autoassociative memory 

 
B. Internal activation function 

Consider the vector zSw 1−= . It  corresponds  exactly  
to k-th memorized pattern if and only if ikiw δ= . To 
provide a better convergence to such w we apply internal 
activation function: 

)(: iwwF θ=′′→ ww  
where ]1,0[]1,0[: →θ  is smooth monotonic function 
such that 0)1()0(;1)1(,0)0( =′=′== θθθθ  . 

IV. EXPERIMENTAL RESULTS 
Our models and algorithms were experimentally 

tested for several tasks of auto- and heteroassociative 
recall and classification. Here we display results or auto-
associative memory working with simulated data arrays 

and real-world data (images). For experiments we used 
following three types of kernel: 

1. Polynomial 

      ( )
integer positive,0

,),(1),(
−>

+=
βα

α βyxyxK                 (10) 

2. Gaussian  RBF 
     ( ) 0,exp),( 2 >−−= αα yxyxK                  (11) 

3. Power RBF: 

     ( ) 0,0,1),( 2 >>−+= βαα
β

yxyxK     (12) 

We studied attraction properties of kernel associative 
memory. All experiments were performed using internal 
activation function and iterative examination procedure. 
Algorithms were implemented using neural-network 
software package NeuroLand [7]. 
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Fig. 2. Attraction radius of kernel AM for bipolar data 

A. Simulated bipolar data 

To study attraction properties of kernel associative 
memory for bipolar data we choose a network 
memorizing 264 64-dimensional patterns. Bipolar data 



vectors were randomly generated, probabilities of values 
+1 and -1 for each component were equal, and 
components were independent.  

Attraction radius was measured as a maximum value 
of bipolar noise such that the network still gave correct 
responses for all memorized patterns. In fig. 2 we display 
attraction radius depending on parameters for kernels (10-
12). 

B. Image data 

In these experiments we used 30×30 gray-scale 
photographs of faces. They were presented as real-valued 
vectors with components normalized to [-1;1], the kernel 
AM memorized 61 images. 
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Fig. 3. Attraction radius of kernel AM for picture data 

 
 
 
 
 
 
 
 

Input vectors were obtained from original patterns by 
adding Gaussian noise with zero mean. Standard 
deviation σ of this noise served as a measure of attraction 
radius. More precisely, attraction radius was set equal to 
σ such that all images were restored with fixed precision 
ε. Attraction radius depending on parameters for kernels 
(10-12) is displayed in fig. 3. 

V. CONCLUSION 
This article introduces associative memory based on 

kernel machine. We present theoretical justification and 
experimental tests for these techniques. 

Unlike [8], where author uses high order 
generalization of the Hopfield model that includes 
interactions between more than two neurons, we restrict 
ourselves to two component Hamiltonian (energy 
function). Doing so we are able to provide analytical 
solution for the stability equation (2). 

Experimental results show that proposed kernel 
algorithm successfully works as auto- and 
heteroassociative memory. We demonstrate attraction 
properties of kernel AM for different types of data. It may 
also be used for classification and pattern recognition. 
Using kernel methods we can construct iterative 
examination procedure even for continuous data. Also we 
can increase capacity of associative memory and 
overcome limitations inherent to Hopfield-type neural 
networks.  
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Abstract–We consider re-learning ability of a Hopfield-type 
network after killing some neurons. Neurons were "killed" by 
means of nullification of corresponding rows and columns of the 
synaptic matrix. We show that one can restore recognition 
ability of this network using re-training with the vectors, which 
were memorized before. The number of vectors needed is equal 
to the number of deleted neurons. It does not depend on 
network's size and on volume of stored data. 
 

INTRODUCTION 
 

It is known that a classical Hopfield network has 
decreasing convergence ability with respect to number of 
memorized vectors. Such a network cannot store more 
vectors than 14% of neurons' number [1]. Pseudoinverse 
learning rule enables to increase this ratio up to 25% [2]. In 
this case we must to store exact weight values in the synaptic 
matrix (at least 7 bits per weight, [3]). But sometimes 
disturbance of accurate weight values does not decreases 
convergence ability of the Hopfield-type network. On the 
contrary, some distortions may make it work better as an 
associative memory. Let us note some examples of such 
"useful distortions": methods of desaturation [4], which 
allows increasing of the memorize ability about 5 times, 
pseudoinverse adaptive filter [5], method of weight selection 
(it enables to reduce number of weights to 30% of original 
quantity not worsening associative-memory capabilities, [6]). 
These examples illustrate the effect of information 
redundancy inherent to Hopfield-type associative memories  

Therefore the following question seems to be interesting: 
Does the redundancy effect work if some neurons of the 
Hopfield-type network are completely destroyed?  Could one 
recover the associative memory in this case? To answer these 
questions we consider a pseudo-inverse network with some 
neurons "killed" by means of nullification of all their synaptic 
weights (both for the inputs and the outputs). Once exposed 
to such a distortion, the network loses its ability to converge, 
i.e. the destruction of associative memory takes place and all 
its content becomes inaccessible. We show that it is possible 
to recover the network completely via retraining it with some 
of the previously stored vectors. The number of vectors 
needed is equal to the number of deleted neurons. It does not 
depend on network's size and on volume of stored data. This 
phenomenon looks like recovery of amnesia patients after 
reminding them significant events of their past. 

 
*This research was supported by INTAS-01-0257 

THE MODEL OF NEURAL NETWORK 
 

According to the J. Hopfield’s scheme each neuron is 
connected to each other and itself; forward and backward 
connections have the same weight. Weighted sum of output 
signals forms a postsynaptic potential (PSP). Depending on a 
sign of this sum the neuron's output possess the values +1 or -
1. The outputs form a N-dimensional vector of current 
network's state, and weights form a synaptic matrix C. Under 
certain conditions for this matrix the network has stable states 
called attractors. If a network state isn't an attractor the 
process of convergence will take place. Convergence ends in 
a nearest attractor. The convergence process looks like an 
associative recall, that's why networks of this type are known 
as associative memories. The algorithm for calculation of 
synaptic matrix from given set of attractors  [2] is based on 
solution of the stable state equation: 

 
CU = U.                                        (1) 

 
Here U is a matrix M × N. The vectors of desired attractor 

states are its columns.  The solution of this equation has a 
form: 

 
C = UU+,                                      (2)  

 
Besides the main attractors defined by equation (1) the 

network has spurious equilibria defined as solutions of non-
linear stability equation. 

If there are many spurious attractors the network may stop 
at them before converging to main attractors. Spurious 
attractors exert influence only if M/N > 1/10. For slightly 
saturated networks they could be neglected. The 
pseudoinverse algorithm is commonly used to compute value 
of the matrix C. It enables to successively update the matrix 
in memorizing of each vector from U [4].  

 
Cm= Cm-1 + ∆m; 

∆M= (I- Cm-1)UUT(I- Cm-1)/ UT(I- Cm-1)U,           (3) 
 

where Cm is a value of synaptic matrix after 
memorizing M vectors. 

 
An expression for ∆m could be rewritten in the form: 
 

∆ij
M = (ui - si) (uj - sj)/q,                        (4) 
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where  is a postsynaptic potential of  

j-th neuron; q  

∑ =
= N

j jiji uCs
1

∑
=

−=
N

j
j su

1
( jj u)

A normed value of q is called coefficient of distinction. It 
describes a component of vector U orthogonal to m-1 
previously stored vectors. 

k = q /N.                                        (5) 

The value of k decreases as U approaches to linear hull of 
Ui and reaches zero when U belongs to this linear hull. Such a 
behavior resembles the resonance effect as it emphasizes the 
difference between similar stored vectors.      

Quality of associative memories could be also described in 
terms of attraction radius. Direct attraction radius is the 
largest value of Hamming distance between initial point and 
the attractor for that the examination procedure starting at this 
point will still converge to the corresponding attractor during 
one iteration. 

The value of direct attraction radius depends on data nature 
and could be estimated by the following expression [4]: 

1])/(/][/)1(1[)1(5.0 5,025,0 +−+−−< −NMNMNMNH α   (6) 

A positive value α<1 is called desaturation coefficient. 
Diagonal terms of the matrix should be multiplied by this 
value to fasten convergence and to resist saturation effects. 

 During experimentation we use the concept of the full 
attraction radius, which is the maximum Hamming distance 
covered by the network as it reaches the state of attraction 
(regardless of the number of iterations). The full attraction 
radius normally is 3-5 times greater than attraction radius 
given by (6) and is more important for the practical 
applications.    
 

CHANGE OF ATTRACTION PROPERTIES AFTER REMOVING 
CONNECTIONS 

 
Partial removal of connections causes change of the PSP. 

Small changes do not affect its sign; so they don't cause 
network's state changes. In this case the effect could be seen 
due to change of the distinction coefficient. This coefficient 
describes network's behavior in the neighborhood of the 
attractor. 

The histograms of k are for the network of 256 neurons 
displayed in the fig. 1. In this network all connections of n 
(randomly selected) neurons were destroyed after 
memorizing M vectors. For these experiments the NeuroLand 
software package [6] was used.  Memorized and test vectors 
were generated randomly. We can see that the distribution of 
k looks like normal. The removal of just 10% of neurons 
leads to the significant non-zero k values that signifies the 
loss of the synaptic matrix projective properties and the 
deterioration of the network recall capacities.       
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Fig. 1. The k value distinction for various memory saturations (M/N) and 
“killed” neuron portions. 

 

TRAINING DISTORTED NEURAL NETWORK 
 

In the fig. 1 we can see resonance properties of the NN 
changed. These changes increase a probability of stop in the 
spurious attractors. So the volume of data recalled is 
decreased. Moreover, loss of projectivity of the synaptic 
matrix may damage memorizing recall abilities more 
seriously. If one uses formulae (3, 4) to correct perturbed 
matrix then distortion will be only cumulated. That does 
finally completely destroy the associative memory. To verify 
these assumptions we have made some experiments. Under 
certain conditions the results were completely opposite. 

The results for memorizing 120 vectors and “killing” 40 
neurons in the network of 256 neurons are presented in the 
figs. 2 and 3. For examination we used desaturation with α = 
0.1. According to formula (6) H = 8.7, and the complete 
attraction radius was about 35. To obtain the AR 
experimentally we use noisy values of stored vectors as initial 
conditions for the convergence process. Complete attraction 
radius was defined as a maximum value of H for that network 
was converged to the correct image for 95 of 100 noise 
instances. 

Data for “killing” 40 neurons and re-memorizing 10, 30, 
and 40 vectors are displayed in the fig. 2, 3. Vectors for 
retrain were randomly selected from images initially stored. 
Fig 2 depicts the values of attraction radius for the remaining 
part of the network (216 neurons). 

We can see that the destroyed network completely losses 
its convergence ability. Only for one of 120 initially stored 
images (#100) attraction radius was non-zero. During 
additional training attraction radius is recovered completely 
for retrain images and partially fore the rest. As number of 
retrain vectors gets equal to number of “killed” neurons 
attraction properties of the network are completely restored. 
The distinction coefficient with respect to retrain dynamics is 
shown the figure 3. Unlike fig. 2 this graph takes into account 
all 256 neurons of the network. Dynamics of k with respect to 
retrain looks like attraction radius dependencies. After re-
memorizing 40 vectors it turns to zero for all stored images. 

The recovery effect for associative memories takes place if  
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Fig. 2. The changes of attraction radius with net retrain. 
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Fig. 3. The changes of distinction coefficient with net retrain 
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Fig. 4. The change of attraction radius with net extra train 

and only if retrain data belongs to a set of initial images. If 
we take different vectors attraction abilities of the network 
could not be restored.  That follows from fig. 4:  attraction 
radius after storing 15 new vectors in the network. These are 
vectors #121 and more. The dependencies for new training 
that is done immediately after killing 40 neurons (bold line) 
or following retraining (thin line) are displayed in this graph. 
We can see that without retraining attraction radius is zero for 
all previously stored vectors. For the new stored vectors 
attraction radius (it was more than 40) increases in 
comparison with the value before damaging network. It could 
be explained by the fact that the trace of the synaptic matrix 
was decreased by the neurons removal, thus the sum of 

eigenvalues defining the associative memory saturation 
became smaller.  

 
SPECTRA OF DISTORTED SYNAPTIC MATRICES 

 
The recovery process of associative memory could be 

observed by examining spectra of synaptic matrices. Data for 
the matrix 256×256 with 120 stored vectors after nullification 
of 40 rows and columns are displayed in fig 5. There are 
graphs of sorted spectra before retraining and after 10, 30, 
and 40 retrain vectors. We can see that "killing" neurons 
preserves rank of the matrix, although values of 40 
eigenvalues of 120 strongly decreased. After storing each 
following vector rank of the matrix increases by one, an 
eigenvector with value of 1 is added, 40 weakened 
eigenvalues are changing. After retrain they form a tail of the 
spectrum; these eigenvalues are less than 0.47. There is an 
orthogonal component with respect to original memorized 
vectors in eigenvectors of the corrupted matrix. 
Fig. 5   displays   data  for dense    filling    of the   memory 
(M/N>=0.47) after removal of 15% of neurons. Fig. 6 
displays data for slight filling of the same network 
(M/N>=0.15) after removal of  10  neurons only. There are 
spectra before retraining, after 5 and 10 retrain vectors and 
after additional training with 20 new vectors. 
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Fig. 5. Spectra evolution during the net retrain (M = 120) 
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Fig. 6. Spectra evolution during net retrain and extra train with new data 
(M = 40+20) 
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Note that 20 new eigenvectors with λ = 1 almost do not 
influence on 10 small eigenvalues (appeared after 
corruption). 

For slightly saturated memory non-projectivity of the 
matrix does not practically influence on the network's 
behavior. However for strongly filled memory there are many 
spurious attractors; so, available associative memory is 
reduced. We can depress spurious attractors using 
desaturation. To reduce non-projectivity more drastically one 
could raise the synaptic matrix to high power; so only 
eigenvalues close to 1 would be preserved. 
 

CONCLUSION 
 

Considering the results of our experiments it is worth to 
emphasize that the discussed phenomenon covers not only a 
simple substitution of “killed” neurons and their connections, 
but also the complete recovery of the autoassociative memory 
functions for the remaining part of the net (its functionality 
was lost due to the loss of the network ability to converge 
towards attractors).  Therefore it is possible to say about the 
recovery both of stored data and the autoassociative access 
mechanism.   

We have done experiments on network recovery for 
Hopfield-type networks with 64 to 2048 neurons for different 
levels of saturation and corruption. In all the case the network 
could be completely recovered using retraining with original 
data. 

The number of retrained images needed for the complete 
recovery was always equal to the number of deleted neurons. 
We have not revealed any differences caused by the various 
possible selections of retrained images from the already 
stored ones in the network. Such independence on the retrain 
set selection could be used for designing of ultra stable 
systems that are capable to preserve their features in spite of 
constant resource degradation. In order to achieve it, these 
systems must undergo recovery via retraining of a control 
dataset more intensively than the resource degradation 
occurs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This phenomenon looks like recovery of amnesia patients 

after reminding them significant events of their past. So, we 
can make the conjecture that in the biological neural systems 
there are mechanisms working like pseudo-inverse 
associative memories. We can cite some facts of biological 
neuroscience to support this conjecture. Not that most nerve 
fibers are less than 2 mm long; size of the dendrite branching 
area (0.1-0.4 mm) has the same order. In 1 mm2 there are 
thousands strongly connected neurons. So, they form local 
structures of 100-1000 neurons looking like Hopfield-type 
networks. We can suppose that these structures perform 
information memorizing and retrieval. In scope of our model 
and results long-term memory acts by systematic reactivation 
of local structures; they are re-training with previously 
memorized patterns. Memory corruption is prevented due to 
continuous conscious and subconscious work of the brain; 
also due to the dream activity. The further research in 
cooperation with specialists in biological neuroscience and 
psychologists is needed to verify these conjectures.  
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ABSTRACT 

The present paper is devoted to suppression of spurious signals (artifacts) in records of 
neural activity during deep brain stimulation.. An approach based on nonlinear adaptive 
model with self-oscillations is proposed. We developed an algorithm of adaptative 
filtering basing on this approach. The proposed algorithm was tested using records 
collected from patients during the stimulation. Then it was compared to existing methods, 
and showed the best performance. 

 
1. Introduction  
 

This paper presents an approach for filtering signals of neuronal activity during Deep 
Brain Stimulation (DBS) using nonlinear oscillatory models. High-frequency (100-300 
Hz) DBS is a surgical procedure for treating a variety of disabling neurological symptoms, 
in particular due to Parkinson’s disease. In spite of its clinical efficiency over 20 years the 
mechanism of action of DBS is still a matter of debate (Benabid et al, 2005; McIntyre CC 
et all, 2004). Understanding how DBS at high frequency works is of paramount 
importance as this will provide the understanding of the circuitry of basal ganglia. The 
major difficulty of to study the mechanism of action of DBS is that the appropriate signal 
of neuronal activity during the stimulation, namely the extracellular microelectrode 
recording of action potentials (spikes), cannot  be analyzed directly due to stimulation 
artifacts present in the records (Fig. 1a, 2a). The artifacts are induced by the periodically 
repeated electrical impulses delivered to the target zone in the brain. The artifacts have a 
common waveform but are not identical due sampling errors and irregularities of stimulus 
production. The Artifact-to-Signal Ratio (ASR), which is the ratio of the mean of 
amplitudes of artifacts to the averaged amplitude of spikes of neuronal activity observed 
before the stimulation, varies between 5 to 20. Typical artifact duration in the timeline is 
20-50% of each stimulation period (Fig. 3a) although the pulse width of the stimulating 
pulse (60µs) is less than 1% 
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a)

b)

 
Figure 1. Record #2548, ASR = 2.2 : (a) signal of neuronal activity before and during 
DBS; (b) the same signal after filtering.  
 
a)

 
b)

 
Figure 2. Record #S1529, ASR= 5.1: (a) signal of neuronal activity before, during and 
after DBS; (b) the same signal after filtering.  
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There are several recent studies focused on removal, subtraction, or filtering of 
stimulation artifacts from electrophysiological signals: electroencephalogram (EEG), 
electromyograms (EMG), local field potentials (LFPs) and extracellular microelectrode 
recording of neuronal action potentials. 
Hardware techniques include hardware blanking (Robby&Lettich, 1975),(Knaflitz & 
Merletti, 1988) hardware filtering (Solomonow et al., 1985), varying amplifier gain 
(Roskar & Roskar, 1983) or their composition (Rossi et al., 2007). Algorithms of digital 
signal processing exploit several ideas. Time segments containing artifact peaks are cut 
off from the record at (O’Keeffee et al., 2001, Hines et al., 1996, etc.). An estimate the 
stimulus artefact waveform and subtracting from the signal is a basic idea of another 
group of algorithms.  
An efficiency of the use of software or hardware blanking depends on the assumption that 
the stimulus artefacts and the biopotentials are well separated in time domain. In the case 
of extracellular microelectrode recording of neuronal action potentials during High-
frequency DBS these techniques lead to loss of substantial part of information because of 
artifact duration is 20-50% of stimulation period while stimulus artifacts and action 
potentials are overlapping in the time. The overlapping of the stimulus artefacts and 
action potentials in frequency domain (Wichmann, 2000) leads to the loss of high 
frequency components of extracellular microelectrode recording of neuronal action 
potentials in case of the use of band pass filters. 
To avoid the suppression of the high frequency components subtraction techniques were 
developed. However, most subtraction techniques suffer from an inability to adapt to the 
nonlinear dynamic of artefacts and hence suffer from the residual artefacts (O’Keeffee et 
al., 2001). Stimulus artifact suppression by subtraction of locally fitted polynomials is 
proposed in (Wagenaar & Potter, 2002). An advantage of this approach is that it doesn’t 
depend on the stability of stimulus artefact waveform. Each artefact is considered as 
independent. This method enables to reduce a time interval after stimulation when action 
potentials can not be detected to 2 ms. Nevertheless high frequency interval of stimulus 
artefact (about 25% of record time for DBS 130Hz) is lost. 
Estimates of representative stimulus artefact waveform was studied by Wichmann 
(2000). Template is generated by averaging a set of peri-stimulus segments adjusted by 
time shifting and scaling. Hashimoto et al. (2002) create several templates in order to 
account for artifact variability. Residual artefacts of 0.8-0.9 ms duration (Hashimoto et al 
(2002), and Tai et Al (2004)) are cut from the signal before further analysis. This part 
(about 11% of record time for DBS 130Hz) is no longer available for spike sorting, etc. 
Such a cut-off can still significantly corrupt spike trains obtained from the analyzed 
records. 
 
This paper presents an algorithm for filtering the signal of neuronal activity during DBS. 
It is based on the use of a nonlinear oscillation model to explain variability of the 
artefacts of stimulation and provides signal synchronization in phase space 
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Figure 3. Signal  #S1529, ASR= 5.1 sliced into the stimulation-period windows (a) 
before filtering; (b) after filtering based on the model with additive noise; (c) after 
filtering according to phase-space algorithm. 
 
2. Methods 
 
2.1. Signal Characteristics 
 
The following indices of original and processed signal are used. Artifact level AL is a 
mean of maximal (original or processed) signal absolute values, such maxima were taken 
across artifact peaks. Spike level (SL) is a mean of maxima taken in spikes with no 
stimulation. Confidence interval (at confidence level 0.95) in assumption of Gaussian 
distribution of noise was used to estimate Noise level. The centered signal of neuronal 
activity observed before stimulation was used for its estimation. Because of presence of 
outliers in the data due to spikes, confidence intervals were estimated using median 
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absolute deviation MD. In case of normal distribution, the (theoretical) standard deviation 
σ and the absolute median deviation μ are linked via equation: 

2
1

2
2)Pr(

0

2 2

2

==≤ ∫
−

dtet
tμ
σ

π
μ  

Solving this equation we obtain μ=aσ, where 67448975.0≈a . Therefore, for a given 
confidence level we can use an estimation NL≅ (1.959965/a)*MD. From these values 
ASR=AL/SL, artifact-noise ratio ANR=AL/NL, spike-noise ratio SNR= SL/NL were 
derived.  
 
2.2. Modelling  
 
Basic methods (Hashimoto et al, 2002, 2003) treat artifacts as a periodic function with 
additive noise: 

xSt (t + kT ) = xSt
0 (t) +ξk (t),   0 < t ≤ T,     (1) 

where T is the period of stimulation; k is the number of stimuli; xSt
0 (t)  is the mean 

stimulus; ξk (t) are independent random variables with zero mean and finite variance 
σξ

2 (t) . In this case, the mean artifact can be estimated by averaging the observed signals 
of stimulation. Subtracting this mean from the signal can achieve relatively rough signal 
cleaning. The results of filtering according to Eq.1 are presented in Fig. 3b. The signals 
presented as examples in the articles (Hashimoto et al, 2002, Tai et al, 2004) have an 
ASR approximately equal to 3 - 6. After template subtraction, they still contained artifact 
residuals 1.5-2 times greater than spikes.  
 
The quality of filtering is characterized also by the phase dependent standard deviations 
of the residuals STD(t), 0 < t ≤ T  (Fig. 4). 
 
a) 

b) 
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Figure 4. Record #S1529: a) derivative of mean artifact of stimulation; b) phase-
dependent artifact STDs based on the representation of signal by the model with additive 
noise (Eq.1) (dash line) and by the nonlinear model of oscillations (continuous line) 
(Eq.2). 
 
We note that the maxima of STDs correspond to the extrema of the derivative of artifact 
when the signal changes fast (Fig 4). Thus the reason for the loss of quality of filtering 
could be the loss of synchronization. In the present paper, we propose an approach for 
DBS signal filtration based on the synchronization in phase space. 
 
We consider the observed signal x(t), t =1,2,…  as a sum of the stimulation artifacts xSt (t) 
and the signal xNr (t) of neuronal activity:  x(t) = xSt (t) + xNr (t). Observations are 
available for discrete time moments.  So, these signals can be considered to be smooth 
enough for the following model. The signal of stimulation is assumed to be a solution of 
an ordinary differential equation with perturbation 

d n xSt

dt n = f x,..., d n−1xSt

dt n−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + F xSt ,...,

d n−1xSt

dt n−1 , t
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,    (2) 

where n is the order of the equation, F( ) is a perturbation function, and equation  
d n xSt

dt n = f xSt ,...,
d n−1xSt

dt n−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟        (3) 

describes a self-oscillating system with stable limit cycle ))(),...,(()( 00
1

0 ′= txtxt nx , 0 < 

t ≤ T,  in phase space with co-ordinates x1 = x St , x 2 =
dx St

dt
, ..., x n =

d n −1x St

dt n −1 .  Here T is the 

period of stable oscillations which is the period of stimulation. The perturbation function 
F(), bounded by a small value, is a random process with a zero mean and a correlation 
time Δtcorr which is small in comparison to the period of stable oscillations: 
B(F(⋅ , t),  F(⋅ , t+Δt))≈ 0 if Δt > Δtcorr , Δtcorr<<T. 
 
In the case of stable oscillations (Eq. 3), the trajectory of the signal tends to the limit 
cycle whenever it is found in the neighbourhood. It provides the periodic solution if the 
initial point locates on the limit cycle. The perturbation function F() in Eq. (2) tends to 
displace the trajectories of the signal out from the limit trajectory. However, if the 
perturbation is small enough, the trajectories stay in the neighbourhood of the limit cycle 
x0(t), 0 < t ≤ T i.e., the solutions of Eq. (2) are similar to one another but they never 
coincide.  
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Let us introduce the local coordinates in the neighbourhood of the limit cycle following 
Gudzenko (1962).  Let us fix an arbitrary point on the limit cycle P0 as a starting point. 
The position of any arbitrary point P on the limit trajectory can be described by its phase 
θ, which is a time movement along the limit cycle from a starting point P0 , defined as 
P0 (θ =  0). Let us assume that function f() in Eq. (2,3) is twice continuously differentiable 
on all the arguments of the function, thus providing a necessary smoothness. At a point P 
with phase θ  it is possible to construct a hyperplane (and only one such hyperplane) that 
is normal to the limit cycle. Let us consider an arbitrary trajectory Eq. (2) in the 
neighbourhood of the limit cycle. Denote M(θ ) the point of its intersection to the 
hyperplane of phase θ  and set the point of phase zero M(0), θ = 0  as the initial point for 
analyzed trajectory. Any trajectory can be described by variables n(θ) and t(θ) (Fig. 5) 
where n(θ) is a vector of normal deviation defined by M(θ ) and its orthogonal projection 
P(θ ) on the limit cycle. The second variable t(θ) is a time movement along the trajectory 
from the initial point M(0) to the analyzed point M(θ ). Thus, the limit trajectory is 
defined by n(θ)≡ 0  and t(θ)≡θ, where 0 is a vector with all components equal to 0. 

M: n(θ), t(θ)

P0

P(θ)

 M0

n(θ)

 
Figure 5. The local coordinates in the neighbourhood of stable limit cycle. 
 
Let γ(θ) be the phase deviation, γ(θ) = t(θ)−θ.  Eq. (2) could be rewritten in linear 
approximation (Gudzenko, 1962) in the deviations n(θ) and γ(θ) as follows: 

n(θ ) dθ + N n[ ]= Fn (θ )       
dγ dθ + (Θ ⋅ n) = Fγ (θ ) .      (4) 

Here N(θ) and Θ(θ)  are the functions of the parameters. As a result the signal trajectory 
in phase space is presented in linear approximation as a sum of periodic components of 
limit cycle and function of deviation   x(t(θ))=x0(θ) + n(θ), where n(θ) and t(θ)=γ(θ)-θ  
are following Eq.4. 
 
Thus, both models of the artifacts (Eq. 1 and Eq. 2) describe signals close to periodic 
ones. The model with additive noise (Eq. 1) explains the distortion of the amplitude of 
the signal only, while the model of nonlinear oscillations with perturbations (Eq. 2) 
explains the distortion of both amplitude and phase (Eq. 4). 
 
For the following artifact filtering, the limit cycle that presents a periodic component of 
signal should be estimated. The limit cycle is described as x0(θ), 0<θ ≤ T, phase running 
from 0 to T.  Let us consider the segments of an arbitrary signal trajectory xi (t(θ)), 0<θ ≤ 



 8

T with phase θ running from 0 to T, referred to as cycles. General population X = {xi 
(t(θ)), 0<θ ≤ T} is formed by cycles and corresponds to the realizations of the artifacts of 
stimulation. The limit trajectory x0(θ), 0 < θ ≤ T corresponds to an ideal “undisturbed 
artifact of stimulation”. The arbitrary cycle is presented as  

xi(t(θ))=x0(θ) + ni(θ) , 0<θ ≤ T     (5) 
where ni(θ) is determined by (Eq. 4). The mean trajectory converges to the limit cycle 
x0(θ) in linear approximation if the number of averaged trajectories increases infinitely 
(Gudzenko, 1962). It allows estimating the limit cycle x0(θ) by calculating the mean of 
the observed cycles xi (t(θ)), 0<θ ≤ T  in the phase space. 

˜ x 0 ( ˜ θ ) =
1
k

x i (t i (θ ))
i=1

k

∑ ,    ˜ θ = 1
k

ti (θ )
i=1

k

∑ .      (6) 

Other statistics could be also used, taking into account that ni(θ) and γi(θ) are 
characterized by an asymptotically Gaussian distribution for any θ  in the case of 
uncorrelated noise F() (Gudzenko 1962).  
After the estimation of the mean of the artifacts of stimulation ˜ x 0 ( ˜ θ )  in phase space, it is 
subtracted from the signal. For this purpose, local coordinates t i ( ˜ θ ) are calculated for 
each cycle. Then the functions of the vectors of normal deviations ni ( ˜ θ ) = x i (t i ( ˜ θ )) − ˜ x 0 ( ˜ θ ), 
0< ˜ θ ≤ T  represent the signal after filtering in phase space. The first coordinates of the 
normal deviations represent the residuals of the artifacts in the time domain xfilt(t) = n1(t) 
+ xNr(t), t=1,2,…. Spline interpolation is used for regular partition in time. 
 
2.3. Algorithm and its implementation  

 
The implemented algorithm consists of following stages: (1) Unsupervised learning 
procedure; (2) On-line filtering.  
 
Unsupervised learning procedure. 
 

1. Approximate the signal trajectories in phase space and detect artifacts. For this 
purpose we compute the smoothed signal and the approximation of signal 
derivatives using Gaussian convolution. So, the derivatives x(k) (t), k=0,1,…, n-1  
are approximated by: 

Dk x(t) = x(s) d k

dt k exp (t − s)2

2α 2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−∞

∞

∫  ds      (7) 

Artifact is detected by smoothed signal D0x(t) threshold crossing. The maximum 
over exceed threshold interval is chosen to be a center ti  of a segment containing 
a separate artifact xi (t), t∈[ti-T/2,ti+T/2].  

2. Collect N periods of stimulation to the training set XN = x j (t){ }
j=1

N
 

3. Estimate a limit cycle. In case of a symmetrical unimodal distribution density, the 
mathematical expectation x0 provides the maximum of P(d(x, x0)<R) for any 
given parameter R. Here d(x, x0) is a distance. Then, the element from training set 

0~x  that provides the maximum of probability density in the neighbourhood were 
used to estimate the limit cycle (Aksenova et al., 2003) 

˜ x 0 = arg max
x ∈X N

{y ∈ XN : d (x,y) < R} ,     (8) 
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where ⎜⋅ ⎜ is the number of elements of a set. Euclidian distance in ℜnT  was 
employed as d(x,y) 

,)( yxyx, −=d  .,...,1     ,))((
2

1
2

10
T

dt
txd

nj
j

j

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ ∑

−≤≤

θθ
θ

x  (9) 

The function of synchronisation t j(θ),  0<θ ≤ T of observed cycle xj(t) to limit 
cycle )(0 θx is not known. Therefore the distance between two cycles xi (t) and 
xj(t), 0<t ≤ T   was approximated by  

∑
=

=
T

t

ji td
0

22 )(),( δxx ,    )()(min)(
  ),( maxmax

τδ
τττ

+−=
−∈

ttt ii xx ,  (10) 

using a spline interpolation of the signals. Here τmax is a maximum of phase 
deviation.  
The time scale of the estimated limit cycle 0~x  was considered as a phase. 
 

On-line filtering has the following steps. 
 
1. Approximate the signal trajectories in phase space and detect i-th artifact 

xi(t). 
2. Synchronize artifact with the limit cycle by computing 

 t i (θ ) = arg min
(θ −τ max ,θ +τ max )

d (θ ) = arg min
t ∈(θ −τ max ,θ +τ max ) 

x i (t) − ˜ x 0 (θ )) .    (11) 

3. Subtract the mean cycle from each artifact in phase space, according to the 
synchronization. 

4. Present the result in time domain.  
On-line filtering is made for training set and for the following recoding. 
 
The parameters of algorithms were chosen as follows.  
 
Degree of the model. According to the model there are no points of self-intersections on 
the limit cycle in phase space. Only one normal hyperplane is constructed at each point of 
limit cycle for parameterization. Thus the degree of the model n was set to avoid points 
of self-intersections. For the records #S1529 and #2548 n=3 allows observing (Fig. 8) the 
limit cycles without self-intersection in the region of peak of artifact 

d 3xSt

dt 3 = f x, dxSt

dt
, d 2xSt

dt 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + F ⋅(). 

Nevertheless because of presence of low frequency component in the signal to avoid 
additional filtration the model 

d 4 xSt

dt 4 = ˜ f dxSt

dt
, d 2xSt

dt 2 , d 3xSt

dt 3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + F ⋅() 

was used. It provides less variance of trajectories in phase space because of Gaussian 
convolution applied for numerical differentiation act as a band pass filter. 
 
Parameter of smoothness in Gaussian convolution. We decided to apply the same 
parameter α for all derivative approximations in (Eq.7). This strategy can assure that 
approximations of ODEs are identical to the original equations up to second-order terms. 
We use transfer functions as a criterion of suitable α. For operators Dk , the transfer 
functions have the following form: 
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ϕ (k) = const ⋅ω 2ke−α 2ω 2        (12) 

Location of its maximum is ωk
* =

k
α

. We use a characteristic frequency calculated from 

the mean of the maxima ∑
=⋅

=
3

1

*

23
1

k
kcf ω

π
. This leads to an optimal α = 6.25*10-5 sec and  

fc=3.52 kHz. This value of fc agrees the best with the observed spectral band for spikes 
and artifacts. In the analyzed signals, most energy is concentrated in the band from 0.5 to 
8 kHz. In order to simplify the calculations of convolutions, we restrict α to integer 
number of sampling ticks. 
 
Size of training data set. In order to find a suitable training sample size N median 
behaviour with respect to N was explored. Mean distance to the sample median for 
different N were calculated for two reference records #2548 and #S1529. N = 1000 
provided stabilisation of mean distance and was selected as a training set size. Results of 
this experiment are depicted in the fig 6. 
 

0

5

10

15

20

25

30

35

40

100 250 500 750 1000 1500 2000
N

D
m

ea
n

S1529
2548

 
 
Figure 6. Mean distance to the sample median depending on training size N for two 
reference records #2548 and #S1529.  
 
Threshold for artifact detection is set by user. 
 
Maximal phase deviation. According to the model described above phase deviation γ (θ) 
has asymptotically normal distribution with variance that increases with time motion 
through limit cycle from starting point of parameterization θ0 (Gudzenko 1962). In the 
algorithm synchronisation is carried out for each cycle of oscillation. Thus variance of 
phase deviation γ (θ) reaches their maximum for θ - θ0  equals to period of oscillation. If 
time of the artifact peak is considered as a starting point two subsequent peak moments 
provide the maximal variance of phase deviation. Thus sampling distribution of times of 
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the artifact maximal peak were used to estimate maximal phase deviation τmax . The 
difference between two subsequent peak moments equals  

Δt p (k) = T + γ k (θ p ) − γ k−1(θ p )       (13) 
where θp  is the phase of peak and γ k (θp ) is the phase deviation for the k-th artifact. 
Taking into account the short correlation time of the perturbation function, we considered 
γ k (θp ) as independent random variables with a variance σ p

2 = σ 2 (θ p ) . In this case it holds 
σ 2 (Δt p ) = 2σ p

2 . We estimated σ (Δt p ) directly from a set of peak times. Then the maximal 
phase deviation was fixed as τmax = 3σp. In the case of asymptotically normally 
distributed γ  k (θp ),  it corresponds to the confidence level 0.997. For example, for the 
signal #S1529 we obtained σp=2.5927⋅10-5 sec. The maximal phase deviation was fixed 
as τmax = 3σp  =  7.7782⋅10-5 sec. Then τmax was adjusted by rounding to the nearest integer 
number of sampling ticks (4 ticks in case of sampling rate 48KHz). 
 
Basic radius R. The radius parameter is calculated according to the variance of the 
observed cycles of artifact. Namely the sampling fractiles are used. As we have 
mentioned above, the cycles x(θ), 0<θ ≤ T could be considered as normally distributed in 
the Euclidian space nTℜ . The difference of two independent x and y is also Gaussian. 
Thus the random values 2 x − Ex( ) and z = x-y are identically distributed as well as the 
Euclidian distances d 2 (x,Ex) = x - Ex 2  and d 2 (x,y) 2 = z 2 2. While the expectation of 
cycles is not known, we estimate the distribution density function of d 2 (x,y) 2 . For this 
purpose, we generated random pairs of cycles from the training set and we built a 
histogram. The position of a maximum was taken as a basic radius R, that corresponds 
approximately to the fractiles q0.34   –  q0.35 . To calculate the fractiles, we approximate the 
histograms by χd

2   distributions. The effective degrees of freedom d were estimated as 7-
8, which leads to the fractiles mentioned above. So 34.1 – 35.4% of cycles have to fall in 
the R-ball of limit cycle. In our experiments, we obtained 35-40% of cycles in the ball of 
radius R by direct count. 
 
3. Experimental Results 
 
3.1 Data Description  
 
Real Data Description. Eight records collected from five human patients during DBS 
surgery were used to test the algorithm. Neuronal activity is recorded before, during, and 
after high-frequency stimulation within the subthalamic nucleus, Globus Pallidus or 
Substantia Nigra (for some records the post-stimulation segment is not available). Signals 
were obtained using Medtronic external stimulator, and captured using AlphaOmega 
recording system. They were measured in volts after amplification. The records with a 
sampling rate of 48 kHz have 9 to 100 seconds duration, stimulation lasting 7-80 seconds. 
Periodic stimuli were delivered through microelectrodes placed 2mm apart in the same 
brain nucleus, with a frequency at 130Hz (i.e. with period approx 370 sampling ticks) and 
pulse duration 60 μs. Pulse intensities were in the range of 1000 µA - 6000 µA. 
 
Synthetic Dataset. In order to explore algorithm’s behaviour depending on artifact 
amplitude we constructed a set of artificial signals with predefined ASR. To the record 
(6-second segment) containing artifacts with no neuronal activity another signal with 
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single-neuron spikes and no stimulation were added. Appropriate constant K gives 
desired value of ASR: 

XSyntethic (t) = XArtifacts(t) +K XSingle-Neuron(t).  
Collection of such signals for ASR from 2 to 20 was generated. 
 
3.2 Tests of the Algorithm  
 
To compare the quality of signal description by the standard model with additive noise 
(Eq.1) and model (Eq.2) the appropriate phase dependent standard deviations (Fig. 4) of 
the residuals STD(t), 0 < t ≤ T  were calculated. We estimated standard deviationsσξ (t) , 
0 < t ≤ T of additive noise ξk (t) in the model (Eq.1) and σ n1

(θ ) , 0 < θ ≤ T, standard 
deviations of n1(t), the first coordinates of the vectors of normal deviation (Eq.5). Values 
n1(t) represent the residuals of artifacts in the time domain for the model (Eq.2).  
 
Eight real data records described above were used to estimate STD(t). The phase model 
(Eq.2) produces much smaller variances especially close to the peak (Table 1). The sums 
of STD across residual were in average 2.13 times less and the maxima of STD were 1.5-
2.1 (1.8 in average) times less for the phase model. 
 
Table 1: STD of artifact residuals in the artifact peak zone 

Filtering in time domain Filtering in phase space Record # 
Max. STD Sum of STDa 

across residual 
Max. STD Sum of STDa 

across residual 
2548 0.106611 4.34 0.057173 1.76 

S1529 0.118543 2.57 0.058254 1.251 
F096K 0.088063 6.22 0.018505 2.04 
N0047 0.151444 3.52 0.095315 1.84 
N0023 0.14377 3.96 0.072804 2.20 

DUG1581 0.086437 3.86 0.051635 1.935 
DUG4821 0.201742 3.88 0.147963 2.18 

S467 0.037689 1.646 0.023234 0.822 
 
Tests of the Algorithm with Synthetic data.  The test intends to reveal what happens to 
spike trains and spikes itself in presence of stimuli and cleaning procedures. Spike trains 
obtained from an original signal of neuronal activity XSingle-Neuron(t)  before mixing with 
artifacts and after full processing were compared. Simple threshold filter was used for 
spike trains extraction. Percentages of spikes found in processed signal at their correct 
positions were measured. Let us note that summation of signals with coefficient K 
changes the spike-noise ratio. The graphs of errors of spike detection depending on ASR 
and corresponding SNR are depicted in the Fig. 7a, 7c. Fig. 7b represents variances of 
two first principal components of spikes depending on ASR. We can see that spikes rest 
practically intact up to ASR about 10-12.  



 13

 
a) 

Wrong Spike Detection

0

2

4

6

8

0 2 4 8 12 16
ASR

Er
ro

r %

 

b) 
PC Standard Deviation

0

0.25

0.5

0.75

1

1.25

1.5

0 2 4 8 12 16ASR

ST
D

PC1
PC2

                                     c) 
SNR vs ASR before processing

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 8 12 16ASR

SN
R

 
Figure 7. Post-filtering spike quality for synthetic data: a) percentage of errors of spike 
detection after filtering; b) variance of first two principal components for detected spikes; 
(c) SNR in synthetic signals used for the test. ASR=0 corresponds to original neuron 
activity with no stimulation added.  
 
3.3 Real Data filtering 
 
The records described above were used to test the algorithm on real data. The signals are 
characterized by ASR ∈ [1.3, 14], ANR ∈ [3, 160] and SNR ∈ [1.4, 5.1].  Examples of 
original and filtered signals are shown in Fig. 1,2. Fig. 3 display signal sliced into sets of 
stimulation-period windows, before and after filtering. The figure demonstrates the shape 
of the original artifacts and of the residuals left after full processing. One can see also the 
neuronal spikes. Phase portraits in 3D of appropriate artifact sets are depicted in the Fig. 
8. In the Fig 8a we can see spike trajectories (smaller orbit) of record #2548. 
 
a) 
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Figure 8.  Artifact trajectories in the phase space projection with coordinates D1x(t), 
D2x(t), D3x(t) for records #2548 (a) and #S1529 (b).  
 
Dependences between Artifact Spike Ratio before and after signals filtering, both in 
phase space and time domain are presented in the Fig 9. For comparison, we have also 
shown such results for synthetic data. As a result we can see curves being in good fit with 
real-data cases.  
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Figure 9. Residual-spike ratio depending on pre-filtering ASR comparing time-domain 
and phase-space algorithms for synthetic and real data. Results for eight real records 
(markers) and synthetic signals (dash and continuous lines) are in a good fit.  
 
4. Discussion 
 
The most commonly known algorithm for artifact subtraction (Hashimoto et al, 2002) is 
based on making artifact templates by averaging the set of peri-stimulus segments in time 
domain. After template subtraction 11% (DBS 130Hz) of record time are removed from 
the signal. This paper presents a new method for the filtering of the signal of neuronal 
activity during DBS with artifact template subtraction. It is based on nonlinear oscillation 
model with perturbation as a basic model of stimulus artifacts instead of model with 
additive noise. This model explains signal distortion in both amplitude and phase. The set 
of synchronised in phase space artifact is used to estimate 3D artifact template with mean 
or median. Template is subtracted from the signal according to synchronization. The use 
of the proposed method and algorithms allows a 2-3 times reduction of the residual 
artifact of stimulation in comparison with the standard model with additive noise. The 
tests with artificial signals that are the combination of real signals of neuronal activity 
and stimulus artifacts showed that spike trains are less corrupted. This promising 
approach will enable analysis of neuronal activity during DBS to more effectively study 
the mechanism and to therefore improve the DBS technique.  
 
Let us note that all data in this paper were obtained using standard elecrophysiological 
equipment. Such devices limit suitable artifact amplitude because of their insufficient 
dynamic range. In future research, the use of dedicated (more precise) recording systems 
will allow studding the problem of filtering of stimulus artifacts of higher amplitude and 
variance. 
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Preprocessing of matrix QCM sensors data for the
classification by means of neural network
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Abstract

An experimental comparison of linear and non-linear pre-processing methods for olfactory data is made. The original data are formed
by 280 values of reaction from six quartz crystal microbalance (QCM) sensors taken at 1 s intervals. Data vectors are processed with the
non-linear maximum filter or by the linear averaging filter and are used as inputs of a feedforward neural network using the back-propagation
learning rule, one hidden layer containing from 5 to 15 neurons. The filter window size is 5–10.

The learning set is composed of 60 sensor reactions for six types of cologne. The neural network correctly classifies 82–86% of
independent examples. The usage of the maximum filter with a small window size allows an increase of the classification rate by 3–5%.
The best results (86%) are obtained when only first 50 measurements of sensor reaction are used.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Neural networks; Odour recognition; QCM sensors; Data preprocessing

1. Introduction

The usage of neural networks for the odour recognition is
based on their ability to identify the differences in response
to the sensors reacting in different ways for various aroma
substances[1,2]. The values of matrix sensor reactions ana-
lyzed by the neural network contain redundant components
and fluctuations that complicate the learning process and
distort classification results. In order to depress these fac-
tors data preprocessing is used which includes filtration and
normalization to the [−1, +1] range, corresponding to the
neuron activation values. In a number of cases the effective-
ness of a neural network could be increased with the help
of the non-linear transform of input data. This phenomenon
is caused by the change of Vapnik–Chervonenkis dimen-
sion and is used in SVM classifier[3], which resolves the
most difficult classification problems where the data are not
linearly separable. The same principle of non-linear prepro-
cessing operations can be used to improve the classification
of linearly inseparable data by a feedforward neural network.

At the present time there are two dominant methods of
approach to the preprocessing of olfactory data classified by
a neural network.

∗ Corresponding author. Tel.:+340 44 2665548; fax:+340 44 2666457.
E-mail address: neuro@immsp.kiev.ua (A.M. Reznik).

1. The training of a neural network with redundant archi-
tecture followed by the removal of elements of little in-
formation (connections and/or neurons).

2. The usage of the principle components technique to re-
duce the data redundancy at the input of a network.

In the first case, the preprocessing functions are laid on the
neurons of the first hidden layer and their required functions
are formed during the training process. The training of a
neural net consists of a few phases. At the end of each phase
the information density, i.e. the influence of each component
(connection/neuron) on a behaviour of the entire network is
estimated and the least significant components are removed.
This method, also known as “pruning”[4], is effective in
cases when the network learning process has a sufficient
degree of convergence. Unfortunately, it is not always easy
to find such a network.

The method of principal components (often referred as
principal components analysis (PCA)) is based on an extrac-
tion of senior components of data decomposition into the
basis formed by the correlation matrix eigenvectors. These
senior components hold the most signal energy and the ratio
of their amplitudes is often sufficient to identify the sensor
reaction[5]. Usually, the method is used to increase infor-
mation density and to decrease the dimension of input data
fed to a neural network[6].

The PCA method exploits the model of Gaussian distri-
bution of data. The experimental comparison[7] of the op-

0925-4005/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.snb.2004.05.047
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timal classifier based on such a model along with the neural
network trained with the same data shows that the neural
network provides better classification results. It also finds
more effective data representation than correlative depen-
dencies used by the Gaussian model. One can conclude that
the limitation of the number of principal components in-
creases the risk of loosing some specific input data features
whereas these features can be found by the neural network
on its own.

Among new research to the given problem the work[8]
should be mentioned that offers a method combining the two
approaches named above. The PCA method is used to form
the weights of the first hidden layer omitting the direct neural
network training. Next, the network is trained and then the
pruning procedure is used to delete the connections and the
input components of little information. A combination of
different approaches will help to decrease the probability of
the training process being stuck in local minimum, and to
decrease the degree of network specialization. Authors of[8]
managed to decrease in hundreds of times the dimensions
of input data and the number of sensors used. It is still not
clear whether or not this approach remains effective for the
classification of linearly inseparable data that requires large
networks with dozens of neurons and/or a few hidden layers.

The aim of the given research is to discover the possi-
bility of improvement of a neural network used to classify
quartz crystal microbalance (QCM) odour data with the help
of non-linear input data transform by the maximum filter. A
feedforward neural network with one hidden layer is used
with the QCM sensors[6] data fed into its input. The exper-
iments were made using the NeuroLand[9] software with
the experimental dataset used in[6] for the odour classifi-
cation by means of associative memory.

2. The research formulation

In the problem, we consider the signals entering the
network input are formed by the sequences of resonance
frequency values measured from the QCM sensors. These
values are decreased over time reflecting the pace of odour
molecules absorption process. A neural network should
disclose the differences in dynamics of these sequences in
order to make the proper classification. The natural infor-
mational features revealed by the network are unknown, but
one can conclude the introduction of non-linear input data
transform could improve the efficiency of network usage.
So as to verify this assumption experimentally, we used the
maximum filter, which is a non-linear data transform via
selecting the maximum value within a given observation
window. In favour of this approach two points of argument
can be pointed out.

Firstly, the effectiveness of a suggested approach can
easily be verified by its comparison with the similar data
obtained with the help of averaging within the same obser-
vation window.

Secondly, the probability distribution of transformed data
that corresponds to the high-order rank statistics within the
window of widthH has a simple relationship with the prob-
ability distributionP(x) of the original data:

FH(x) = P(XH ≤ x) = PH(x) (1)

This indicates that transformed data retain the statistical mo-
ments of high order, which, presumably, play an important
role in formation of classification features used for the neu-
ral net training.

The basic obstacle for the direct usage of maximum selec-
tion method is the non-stationarity of QCM sensor responses
with exponential time dependence. The ratio of subsequent
reaction values was used in order to eliminate this depen-
dence. It provides the equalization of average signal values
at the input of neural network:

u(t) = x(t)

x(t − 1)
= x(t0)expα(t0 − t)

x(t0)expα(t0 − t + 1)
= expα, (2)

where x(t) is the average value of sensor reaction at the
momentt andα is the speed of sensor reaction change.

During preprocessing the sequence of measurements of
each sensor was divided into equal intervals (observation
windows) containingH measurements and for each of them
the maximum values were found:

w(k) = max[u(h)], kH ≤ h < (k + 1)H (3)

These maximum values were fed to the neural net in-
put.Another set of experiments was carried out using the
averaging filter instead of the maximum filter:

v(k) = 1

H

(k+1)H∑

h=kH+1

u(h) (3)

The task of research was to compare the results of net-
work training using the maximum filter and the averaging fil-
ter. Experiments were carried out with different observation
window sizes and different numbers of neurons in network’s
hidden layer. At the same time it was intended to estimate
the degree of information density of various sensors’ mea-
surements and, particularly, to elaborate the results of ex-
periments that were done[6].

3. Experiment description

3.1. Initial data

The data of quartz sensors based on the microbalance
principle (QCM) were used during the experiment. These
sensors are the quartz resonators with fundamental frequen-
cies of about 10 MHz whose surface is covered by the sen-
sible layers of various substances (calixarenes, etc). The ex-
perimental device had seven sensors of this type and an
electronic unit that provides measurement and recording of
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Fig. 1. Sensors’ response for the ethanol sample.

sensors’ fundamental frequencies with 1 s interval for the
duration of 280 s. The result of each experiment is the se-
quence of 1960 integer measurement values.Fig. 1 depicts
an example of such a sequence obtained for the ethanol sam-
ple.

The list of substances used and their total amount is shown
in Table 1.

3.2. Neural network

Neural network of feedforward type contained one hid-
den layer with 5, 10 or 15 neurons. Data coming to each of
the net inputs were normalized to the [0, 1] range. Normal-
izing coefficients were calculated using the training dataset.
The neural network was trained using the standard online
back-propagation algorithm. The learning rate was set to
0.05 and the moment coefficient was 0.15. Save Best Method
was used during the training that lasted for 5000 epochs.
Output neurons were used in classification mode, i.e. the
network reaction was determined according to the maximum
value of the post-synaptic potential. Experiments were car-
ried out using the NeuroLand software package[9].

Taking into account a comparably small amount of input
data, we used six variants of decomposition of initial dataset
into train and independent test parts. These datasets were
formed by random selection of 20 train examples from the
initial data. Every variant of selection contained examples
of all analyzed classes. Thus, for each reported classification
result network training and testing was made six times with

Table 1
Classes of chemical images

Class Substance Number of images

1 Ethanol 11
2 Landish 5
3 Russki Les 8
4 Roksolana 6
5 Shipr 12
6 Siren 15
7 Water 3

independent parts of data and final result was derived as the
average of these tests.

4. Experimental results

The results of testing of the neural network with different
number of hidden neurons are depicted inFigs. 2–4. The
average percentage values of correctly classified odour pat-
terns are shown for the maximum filter and the averaging fil-
ter depending on the observation window size. These results
were obtained using three subsets of sensor reaction values:
values collected during the first 50 s, collected in the interval
50–200 s, and all 280 values of reaction of each sensor.

Comparing the results obtained, one may note that as
the sizes of hidden layer and observation window increases,
the difference between two types of preprocessing vanishes.
The greatest difference is observed with the window size
of 3. The network with five hidden neurons plus using the
first 50 values of sensor reaction had the highest results.
The maximum classification value, about 86% of correct
responses, was obtained using the maximum filter with the
window size of 3. Under the same conditions the results
of averaging filter were 6% lower. Networks with greater
number of hidden neurons also exhibited better results with
the maximum filter (about 83.5%).

The results of experiments estimating the influence of
used normalization methods on the classification results are
given onFigs. 5 and 6. These figures depict the dependen-
cies of correct classification value on the number of hidden
neurons for the original data and the data normalized us-
ing (1). The experiments were made with the complete data
vectors containing 280 values and with truncated ones that
contain reaction values collected for the first 50 s. The re-
sults for the maximum filter are shown onFig. 5 and the
results for the averaging filter are shown onFig. 6. In both
experiments the observation window size was set to 3.

For the normalized input data the best results—about 86%
are obtained using the maximum filter with the network hav-
ing five hidden neurons and truncated data vectors. With-
out normalization both the maximum and averaging filters
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Fig. 2. Classification results for the network with five hidden neurons and normalized input data.

Fig. 3. Classification results for the network with 10 hidden neurons and normalized input data.

Fig. 4. Classification results for the network with 15 hidden neurons and normalized input data.
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Fig. 5. Classification results for the maximum filter with window size 3.

Fig. 6. Classification results for the averaging filter with window size 3.

achieved the same result, but it requires a network with 15
hidden neurons and complete data vectors.

The usage of normalization does not affect the results of
the averaging filter but considerably worsens the maximum
filter results in the case of using complete data vectors.

5. Discussion

Analyzing the results of experiments made it is necessary
to take into account that the non-linear transform does not
always improve the neural network operation. This transfor-
mation changes the character of the error surface thus in-
fluencing the speed and the results of neural network train-
ing. Its consequences could be positive as well as negative
depending upon the character of data, the neural network
architecture and its parameters.

The experimental results proved the assumption about the
improvement of neural network training by the maximum

filter and non-linear normalization of QCM sensor reactions.
This improvement amounts up to 5% and is obtained for the
network with five hidden neurons and rather small observa-
tion window (3 s) using the first part of sensor reactions (first
50 s). This is a quite good result taking into account that the
same classification value can be obtained using the network
three times as big (15 hidden neurons) that operates with the
whole range of sensor reaction taken from 280 s intervals.
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ABSTRACT 
 

We consider application of neural associative memories to 
chemical image recognition. Chemical image recognition 
is identification of substance using chemical sensors’ data. 
The primary advantage of associative memories as 
compared with feed-forward neural networks is high-
speed learning. We have made experiments on odour 
recognition using hetero-associative and modular auto-
associative memories.  We have also tested 
backpropagation NNs with one hidden layer. Associative 
memories displayed recognition quality not worse than 
backpropagation networks. 

  

1.INTRODUCTION 
 

Chemical image (CI) recognition is identification of 
substance using chemical sensors’ data. To solve these 
problems one generally use classical methods of statistical 
analysis such as principal component (PCA), discriminant 
factor analysis et c. Nowadays Feed-Forward neural 
networks and Kohonen’s self-organizing maps are also 
introduced (applied)[1,2]. In this case one can reduce 
system tuning to training neural networks using 
experimental data. Unfortunately, training neural networks 
takes a lot of time, so their application is often 
discouraged. Therefore, associative memories are 
welcomed because of their greatly faster training (only 
within one iteration for Hopfield-type networks) [3]. The 
major disadvantage of associative memories is a rather 
low generalizing ability that increases sensor stability 
requirements. Although, new learning algorithms and 
architectures of associative memory enable to overcome 
these difficulties. In particular, modular and hetero-
associative memories could be used. 

In the case of piezoelectric transducers adsorption 
process can be directly characterized with the resonance 
frequency change values (at different moments) and their 
time derivatives, as well as various combinations of the 
above values. One should specially note that use of 

approaches based on experimental curves fitting with 
analytical functions to obtain the response parameters 
seems to be inappropriate in this case. The reason is that 
very often the simple kinetic models for adsorption cannot 
adequately describe the curves for the sensor array 
response, because of Multi-Component Mixture’s (MCM) 
components diffusion into the sensitive coating bulk, 
change of its structure, uncontrolled fluctuation of 
temperature and pressure. Indeed, if one uses for MCM CI 
formation only stationary values (i.e., those that 
characterize a system after an equilibrium has 
established), then one may omit important information 
concerning character of interaction between highly 
volatile components with different mobilities/activities 
and the sensitive layer. And the sensitive layer prehistory 
strongly affects the features of the receptor/analyte 
interaction in the initial portion of the kinetic curve. Thus 
the problem how to choose an optimal range of the initial 
data that could take into account the kinetic and stationary 
features of the sensor array response, as well as some 
leveling effects of the pre-starting procedure, are 
important for both fundamental science and practical 
applications. 

The goal of this paper is to prove possibility of 
practical application of associative memories to chemical 
image recognition. We have made a series of experiments 
on learning to recognize some different substances 
(perfumes, ethanol, et c.) using associative and Feed-
Forward neural networks. The research was done using 
neural software package NeuroLand designed at Institute 
of Mathematical Machines and Systems of NASU and the 
multi-sensor piezo-crystal gas analyzer designed at 
Institute of Semiconductor Physics of NASU [3]. 

 
2.EXPERIMENTAL TECHNIQUE  

AND GIVEN DATA  
 
To obtain chemical images we have used an experimental 
assembly based on Quartz Crystal Microbalance (QCM). 
The universal neural computer NeuroLand was used to 
process digitised data: It enables to model different types 
of neural networks, train and test them.  



 

 
Fig. 1. Overall view of QCM experimental appliance 

 
2.1.The QCM experimental assembly 
 

In sensors based on piezoelectric physical transducers 
there is the dependence between resonance frequency f of 
acoustical resonator and mass Δm of a substance at 
sensor’s surface. It is used to detect intermolecular 
interactions. For measurements in gas phase dependence 
between the resonance frequency change Δf and the mass 
change Δm on its surface is assumed to be linear in 
accordance with well-known Sauerbreu’s equation. 

In this work QCM-based arrays were used as 
prototypes an artificial nose for testing of some perfumes 
and vapors. For experiments a full-automatic 10-MHz 
quartz crystals (AT-cut, RK169) based on 8-channel 
systems with a measurement step of 1 s were used. The e-
Nose instrument involves the following units: a 
thermostatic measuring chamber with a flow-type sensor 
array; a quartz oscillator unit; a frequency counter with 
RS232 interface based on AT89C2051 microprocessor; a 
gas mixtures generator; a computerized system to collect 
and process information. The general view of the e-Nose 
instrument is shown in Fig. 1. The sensor units have a 
specially designed Teflon holder in which the quartz 
crystals were fixed along its perimeter. So, only one side 
of quartz crystal was covered by sensing material and 
contacted with changing ambient. The flow of buffer gas 
(argon) was used for recovery thin film coating after 
adsorption phase. It was shown that construction with 
fixation of quartz crystals along perimeter is preferable 
due to strong decrease of noise. 

The measuring procedure involved the following 
stages at the temperature 37±0.3 ОС: argon circulation 
until the transducer frequency is stabilized (±2 Hz); vapor-
gas mixture circulation at a gas-carrier rate of 20-50 
ml/min.; circulation with argon air until the QCM 
frequency returns to its initial value. 

The following five types of perfumes (GOST 17237-
93) as typical MCM were tested: éau-de-Cológne “Siren”, 

“Landish” (produced by “Effect”, Kharkov); éau-de-
Cológne “Russkij Les” (OAO, produced by “Kombinat 
Krimskaja Rosa”, Simferopol), éau-de-Cológne “Shipr” 
and “Roksolana” (produced by PKK “ROSO”, Zhovka) as 
well as water ant ethyl alcohol. The sample volume was 
12 ml in every case. 

 
Fig. 2. Response of 7 sensors (A, B, D-H) 

 for ethanol's smell 

 

Table 1. Classes of chemical images 

Class # Substance Number of images 
1. Ethanol 11 
2. “Landish” 5 
3. “Russki Les” 8 
4. “Roksolana” 6 
5. “Shipr” 12 
6. “Siren” 15 
7. Water 3 

 
2.2Input data for training NN 
 

For numerical experiments we have used measurements 
for seven substances (see Table 1). 

Most of chemical images contained data for 7 sensors. 
Time series for each sensor were 286 ticks long. For 
instance, in the Fig. 2 we can see 7 sensors’ output for the 
odour of ethanol. 

 Approximately, these regularities are close to 
exponential. On the other hand, a noise component is 
rather strong, and starting pieces of time series are 
sometimes instable. Note that different chemical images 
for each class are also highly scattered. For certain images 
intra-class dispersion may exceed 10%.  

Data might enter into NN’s input immediately, or 
after PCA preprocessing. Principal components were 
computed using the entire training sample. Otherwise NNs 
were trained and tested using 6 classes only (57 images, 
classes #1-6).  

In this paper we evaluate maximum classification 
quality using different NNs. Also we try to find optimal 



parameters of preprocessing technique. Sample window 
metrics (size and starting point) and number of PCs were 
such tuneable parameters.  

The “correctly recognized images”/”all test images” 
ratio is called classification rate. Each value of 
classification rate was obtained in averaging over several 
“training/test” dissections of the sample. These dissections 
were randomly generated holding all other experiment 
conditions constant. To determine recognition quality we 
have used 50 for the modular associative classifier, and 10 
dissections for the hetero-associative one. For the Feed-
Forward NN recognition quality was estimated in 
averaging over 10 results with different initial states of the 
network. 

 
3. ARCHITECTURE AND ALGORITHMS OF 

NEURAL NETWORKS  
 
3.1. Associative memories 
 
Associative memories are preferred due to fast 

learning done within single iteration in computing all 
neurons’ weights. Unfortunately, most common models 
like Hopfield networks or bi-directional associative 
memories deal with bipolar data only [4]. It’s needed to 
use convergence examination for restoration of corrupted 
data. But we need only classify chemical sensors’ data. 
So, we should build an associative-memory classifier, 
which will use real data vectors. We have considered two 
associative memory classifiers: hetero-associative and a 
modular one. 

 
3.1.1.Hetero-assaciative classifier 

Hetero-associative classifier is a single-layered network 
with linear activation function; chemical sensors’ data are 
directed to its N inputs. The quantity of neurons K is equal 
to number of classes (chemical substances). Weights are 
computed using pseudo-inverse learning rule [6]. These 
rules cold be obtained solving stability equation:  

ii yBx = , (1) 
where: B is a K×N weight matrix of thee network, xi –  

N-dimensional input vector, yi – K-dimensional output 
vector,its k-th component  is equal to +1 if corresponding 
input  belongs to class k, the rest of components are –1. 

The training data array could be represented as two 
matrices: X contains M data vectors, and Y contains M 
desired network’s responses. 

Solution of (1) is:  
+= YXB ,  (2) 

where X+ is a pseudo-inverse matrix to X.  
X+  is usually computed using Greville’s formulae [6].  
 
3.1.2. Modular auto-associative classifier 

It consists of K neural modules; each of them is a 
conventional auto-associative network with real stored 

images. Every module memorise N-dimensional data 
vectors for certain class. Data are memorised in k-th 
module computing projection matrix. 

+= kkk XXC ,  (3) 
where Xk is a matrix containing data vectors for k-th 

class.  
During recognition of an input vector z the post-

synaptic potential is computed:  
sk = Ck z,  (4) 

The letter is a projection of an input vector to linear 
span of training images for k-th class. The decision on 
belonging of input image is made maximizing scalar 
product:  

qk = sk zT  (5) 
where zT is a conjugate vector to z. 
The vector z is treated as belonging to k* that have 

max* →kq . 
 
3.2. Classifier using Feed-forward NN 
 

Nowadays feed-forward neural networks and back-
propagation learning algorithms are conventional 
techniques for chemical image recognition [1,2]. Strength 
and weaknesses of these NNs are well known; therefore 
we used such networks, basically, as a benchmark for 
associative-memory classifiers.  

We have used NNs with one hidden layer. Hidden 
neurons had a sigmoid activation function, without a bias. 
Number of inputs is a dimension of input vector; for each 
class there is one output neuron. Data were normalized to 
[0, 1] range. We have tested networks with 5, 10 and 15 
hidden neurons. Learning algorithm was a standard online 
backpropagation with learning rate 0.01 and momentum 
0.15. Learning took 6000 epochs (about 10 min. of CPU 
time for Intel Celeron 600 MHz); so mean square error 
could be decreased to 10-2 - 5⋅10-3.  

 
4.CLASSIFICATION QUALITY DEPENDING 

ON SIZE OF TRAINING SAMPLE 
 
For these series of experiments we have used raw data 

for all available ticks from 1st to 286th. In the case of usage 
of principal components the 50 highest ones were entered 
into classifier. Learning took about 4 sec. of CPU time for 
Intel Celeron 600 MHz. Results for modular and hetero-
associative classifier are shown in Fig. 3. 
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Fig. 3. Classification quality subject  

to training image number 
.  

 
Fig. 4. Recognition quality subject to initial measurement 

and number of ticks used for modular network 

For modular classifier the PC results are almost 
identical to ones for raw data. The best results – 70% – are 
achieved under use et least 4 learning examples. So, 
principal components are not strongly needed, because all 
useful information is extracted by NN itself. 

For hetero-associative network classification quality 
decreases if training sample contains more than 60% of 
available vectors. It is caused by overflow of hetero-
associative memory when number of memorized images 
exceeds 50% of data dimension. In this case data vectors 
consist of 50 components; there were 57 images, 60% of 
them (i.e. 34) were memorized. In a modular classifier 

memorizes images of one class only; so there was no 
overflow 

 
Fig. 5. Recognition quality subject to initial measurement 
and number of ticks used for hetero-associative network 

 
5. DEPENDENCES ON WINDOW SIZE 

 
These experiments were dedicated to find optimal 
parameters of data window for entering data into network. 
All types of NNs were tested. Modular network was 
trained using 4 examples for each class; training sample 
for hetero-associative one took 60% of available images. 
Positions of initial and final time ticks were scanned with 
step of 15 ticks.  

Dependences of classification quality on size of data 
vector for associative memories are shown in the Fig. 4,5. 
Such dependences for Feed-forward NNs are displayed in 
Fig. 6. Starting point of a windows serves as a parameter 
in all the figures.  

Note that both classifiers achieve best quality in 
excluding starting segment of data (100-150 ticks) and 
taking not more than 150-200 points for the network input. 
This may be explained taking into account instability of 
starting part of curves shown in fig 2. Note also that 
hetero-associative memory displays slightly better quality 
than modular one (73% vs. 71%). This might be caused 
only by experimental error.  

Results for Feed-Forward networks show that initial 
parts of sensor response curves have low information. 
Best classification rates – 75-77% - were obtained 
excluding first 100 ticks and taking data for 50-100 ticks 
of the middle of response curves.  

 
6. CLASSIFICATION RATIO SUBJECT TO 

NUMBER OF PRINCIPAL COMPONENTS 
 

These experiments were dedicated to find minimal 
quantity of PCs required to keep admissible classification 
rat for associative memories. Modular network was 
trained using 4 examples for each class; training sample 
for hetero-associative one took 60% of available images. 
Test results are shown in Fig. 7.  



 

 

 

Fig. 6.Recognition quality subject to initial measurement 
and number of ticks used for feed forward networks with 

different number of hidden neurons. 

 
Fig. 7. Recognition quality subject to number of PCs for 

hetero-associative and modular NNs 

Modular network displays the best classification rate if 
more than 25 PCs are used; hetero-associative one 
requires 50 PCs. It is caused by overflow of hetero-
associative memory when number of memorized images 
exceeds 50% of data dimension (cf. Fig. 3.). We can avoid 
memory overflow taking well over 34 components. 

 
7. CONCLUSION  
 

Experimental results described above show that 
associative memories provide approximately the same 
recognition quality as feed-forward neural networks. We 
stress that non-iterative nature of neural associative 
memories makes them quite attractive. This is not only 
high-speed learning but also learning independent on a 
(random) network initialization. Even a low generalisation 
ability of associative memories may be turned into 
advantage; using more stable chemical sensors they will 
be able to recognise thousands sorts of chemical 
substance.  
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