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Integrability in AdS/CFT correspondence:
quasiclassical analysis and bootstrap approach

Abstract

In this thesis we consider a quasi-classical method applicable to integrable field theories

which is based on classical integrable structure - the algebraic curve. We apply it to the

Green-Schwarz superstring on AdS5 × S5 space. We show that the proposed method

reproduces perfectly the earlier results obtained by expanding the string action for some

simple classical solutions. The construction is explicitly covariant and is not based on a

particular parametrization of the fields and as a result is free from ambiguities.

On the other hand, the finite size corrections in some particulary important scaling

limit are studied in this thesis for a system of Bethe equations. For the general superal-

gebra su(N|K) the result for the 1/L corrections obtained. We find an integral equation

which describes these corrections in a closed form. As a by-product of this computation

we found a new type of the duality among the systems of Bethe equations.

As an application we consider the conjectured Beisert-Staudacher (BS) equations with

the Hernandez-Lopez dressing factor where the finite size corrections should reproduce

quasi-classical results around general classical solution. Indeed, we show that our in-

tegral equation can be interpreted as a sum of all physical fluctuations and thus prove

the complete 1-loop consistency of the BS equations. We demonstrate that any local con-

served charge (including the AdS Energy) computed from the BS equations is indeed

given at 1-loop by the sum of charges of fluctuations with an exponential precision for

large S5 angular momentum of the string.

As an independent result, the BS equations in su(2) sub-sector were derived from the

Zamolodchikovs’ S-matrix.
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Résumé

Dans cette thèse, nous considérons une méthode quasi-classique applicable aux théories

des champs intégrables, basée sur la structure classique intégrable codifiée dans la courbe

algébrique. Nous appliquons cette methode à la supercorde de Green - Schwarz sur

l’espace AdS5 × S5. Nous montrons que la méthode proposée reproduit parfaitement

les résultats deja obtenus précédemment par l’expansion de l’action autour de certaines

solutions simples classiques.

D’autre part, les corrections de taille finie, dans une certaine limite importante, sont

étudiées dans cette thèse pour un système des équations de Bethe. Le résultat pour les cor-

rections 1/L a aussi été obtenu pour le supergroupe général su(N|K). Nous trouvons une

équation qui décrit ces corrections dans une forme compléte. Comme un sous-produit

de ce calcul, nous avons trouvé un nouveau type de la dualité entre les systèmes des

équations de Bethe.

Comme application, nous avons examiné les équations conjoncturées par Beisert et

Staudacher (BS) avec un facteur de ”dressing” de Hernandez et Lopez où les correc-

tions de taille finie devraient reproduire les calculs quasiclassiques autour du mouvement

classique de la supercorde dans l’espace AdS5 × S5. En effet, nous montrons que notre

équation intégrale peut être interprétée comme une somme sur toutes les fluctuations

physiques et ainsi nous prouvons que les équations de BS sont cohérentes avec la quan-

tification quasiclassique. Autrement dit, nous démontrons que toutes les charges locales

(y compris l’énergie AdS) calculées à partir des équations BS sont effectivement données

á la première boucle par la somme des charges des fluctuations.

Un autre resultat présenté ici: nous avons obtenu les équations BS pour sous-secteur

su(2) á partir de la matrice S de Zamolodchikov et Zamolodchikov.

Mots clés

Théorie de jauge, Théorie des cordes, Integrabilité, Dualité
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Résumé substantiel

L’histoire de la mécanique quantique commence à partir de la suggestion de Louis de

Broglie que les particules libres peuvent être décrites en termes des ondes, à l’instar des

photons. Cette suggestion a été brillamment confirmé par l’observation des effets des in-

terférences des électrons sur des cristaux. L’étape prochaine a été de décrire les particules

dans un potentiel extérieure. Ce problème a été résolu par Schödinger, qui a découvert

l’équation non relativiste correspondante. Cependant, sa généralisation relativiste avait

un problème de densité négative et la description des systèmes des particules en interac-

tion relativistes s’est trouvée inconsistent.

Grâce à la découverte de la théorie des champs la majorité de vieux problèmes a été

résolue ou, au moins, clarifié mais les nouveaux difficultés des divergences ont apparues

dans la théorie perturbative. Toutefois, pour décrire tous les phénomènes physiques

qui peuvent être observés dans les conditions terrestes, les difficultés peuvent être sur-

montées. La description quasi complète des données expérimentales existantantes a été

donnée jusqu’ici par le Modèle Standard. Le seul ingrédient du Modèle Standard, qui

manque encore de support expérimental est le boson de Higgs. On peut conclure, que à

ce moment, il n’y a pas de nécessité directe expérimentale de sortir des competences du

Modèle Standard.

D’autre part, il existe de nombreuses raisons théoriques pour aller au delá des compe-

tences du Modèle Standard. Le Modèle Standard est une théorie des champs quantiques

relativistes, qui décrit trois interactions fondamentales de la nature. La théorie quan-

tique cohérente, qui décrit toutes les quatres interactions connues , y compris la gravité

quantique, en même temps, n’existe pas. Actuellement, un des problèmes principaux

de la physique théorique est l’unification de la mécanique quantique et de la relativité

générale, et ainsi l’unification des interactions gravitationnelles avec les autres. Jusqu’à

présent, la théorie des cordes a été et le seul candidat, qui pouvait les unir. La plupart

des problèmes de la gravité quantique semble être résolue dans la théorie des cordes.

En particulier, les divergences sont régularisées sur l’échelle de Planck, d’une façon na-

turelle. Malheureusement, la théorie des cordes peut être formulée seulement dans dix

dimensions d’espace-temps, mais il semble qu’il y a beaucoup de façons á compactifier

six parmi eux et ainsi rester avec quatre dimensions du monde réel.

En dehors de ce problème d’absence de la ”théorie de tout” il y a beaucoup de ques-

tions ouvertes à l’intérieur du Modèle Standard. En particulier, le Modèle Standard décrit

l’interaction forte, qui est en effet la plus forte interaction de la nature. Il est respons-

able de la majeure partie de la masse des baryons. L’interaction forte lie les nucléons

dans les noyaux. La partie du Modèle Standard, décrivant l’interaction forte, la Chro-
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modinamique Quantique (QCD), a les quarks et les gluons comme les degrés de lib-

erté fondamentales. Toutefois, la compréhension du monde physique implique aussi

la compréhension du fait comment ces constituants fondamentaux interagissent et pro-

duisent la diversité des objets physiques qui composent l’Univers. Une des propriétés

importantes de l’interaction forte, le confinement des quarks, est toujours une énigme

pour les théoriciens.

Si on connaissait la théorie duale à QCD, dans laquelle la théorie des perturbations

donne le développement en puissances inverses de la constante de couplage g, on pour-

rait résoudre ces problèmes. Malheureusement on n’a pas encore trouvé une telle théorie.

Mais cependant il y a quelques indications que cette théorie sera de type de la théorie des

cordes.

L’origine de la théorie des cordes est étroitement liée à la théorie de l’interaction forte.

D’abord, elle a été formulée comme une théorie des hadrons. Or, après l’apparition de

QCD, la plupart de la recherche dans la théorie des cordes a été transférée à l’échelle de

Planck. La théorie des cordes, dans la théorie de l’interaction forte, est devenue un outil

phénoménologique. Néanmoins, l’espoir, que les théories de jauge avec le groupe de

jauge SU(N) , peuvent être décrites par les cordes, provient de la limite de grand N de

’t Hooft. Á cette limite, les graphes de Feynman avec les topologies non-planaires sont

suprimés par les puissances de 1/N. Chaque graphe comporte un facteur topologique

Nχ, où χ est la caractéristique d’Euler de la graphe. Cela rappelle fortement la théorie

des cordes avec une constante du couplage 1/N. En s’appuyant sur cela, ’t Hooft a pro-

posé une conjecturé, qu’à cette limite QCD est décrit par une théorie des cordes. Cette

idée est également soutenue par le fait expérimental que les hadrons se situent approxi-

mativement sur des trajectoires linéaires de Regge.

En soit meme, la dualité de théorie jauge/corde est un sujet vieux mais toujours actuel

qui apparait dans de nombreuses situations. Un exemple très connu de cette dualité

est une description par le modèle des matrices de la gravité quantique à deux dimen-

sions et la théorie des cordes noncritiques. D’autre part, il y a des exemples des théories,

qu’on peut résoudre exactement á la limite des grandes N. Les modèles des matrices et

QCD á deux dimensions sont les deux exemples dans lesquels la limite des grands N est

intégrable.

La découverte récente d’intégrabilité de la théorie de Yang-Mills avec la supersymétrie

N = 4 (SYM) á trois premières boucles, ainsi que l’observation d’intégrabilité au niveau

classique de son dual, la corde sur le fond AdS5 × S5 a fait renaı̂tre les espoirs, que

quelques théories de jauge à 4 dimensions pourraient être exactement résolubles. Pour

SYM N = 4, l’intégrabilité se manifeste comme une possibilité de calculer, en utilisant les

techniques de l’ansatz de Bethe, les dimensions, comme fonctions de constante de cou-
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plage λ = Ng2, de tous les opérateurs locaux de la théorie. Pour l’instant, cette fonction

a été calculée jusqúa O(λ4), et la corde AdS5 × S5 donne l’asymptotique de cette fonction

à λ → ∞ pour les ”longues” opérateurs, qui sont un produit de beaucoup de champs

fondamentaux de SYM dans le même point d’espace.

La thèse est consacrée a l’étude de cette intégrabilité.

L’approche quasi-classique est un des moyens les plus importants en mécanique quan-

tique. Dans cette thèse nous considérons une méthode applicable aux théories des champs

intégrables qui est basée sur la structure classique intégrable de la courbe algébrique.

Nous appliquons cette method à la supercorde de Green - Schwarz sur l’espace AdS5 × S5.

Nous montrons que la méthode proposée reproduit parfaitement les résultats obtenus

précédemment par l’expansion d’action autour des certaines solutions simples classiques.

La construction est explicitement covariante, s’est á dire elle et n’est pas basée sur une

paramétrisation particuliers des champs.

D’autre part, les corrections de taille finie, dans une certaine limite importante, sont

étudiées dans cette thèse pour un système d’équations de Bethe. Dans le cas simple de

la chaı̂ne sl(2) des spins de Heisenberg integrable, les corrections sous-dominantes sont

calculées. Ce calcul exige une analyse attentive de la position des racines Bethe près de

leurs bords de distribution. Cela rappelle la limite de “double scaling” dans les modèles

des matrices.

Les corrections 1/L ont aussi été obtenu pour le supergroup général su(N|K). Nous

trouvons une équation qui décrit ces corrections dans une forme fermée. Comme un sous-

produit de ce calcul, nous avons trouvé un nouveau type de la dualité entre les systèmes

des équations de Bethe, ”dualié particule-trou”, qui peut simplifier une distribution com-

plexe des racines de Bethe.

Comme une application de la méthode développée pour les chaı̂nes de Heisenberg,

nous avons examiné les équations conjoncturées par Beisert et Staudacher (BS) corrigé par

le ”drerssing factor” de Hernandez et Lopez, où les corrections de taille finie devraient re-

produire les calculs quasiclassiques autour du mouvement classique de supercorde dans

l’espace AdS5 × S5. En effet, nous montrons que notre équation intégrale peut être in-

terprété comme une somme sur toutes les fluctuations physiques et ainsi nous prouvons,

que les equations de BS sont cohérentes avec la quantification quasiclassique. Autrement

dire, nous démontrons que toutes les charges locales (y compris l’énergie AdS) calculées

à partir des équations BS sont effectivement données á la première boucle par la somme

des charges des fluctuations, avec la precision exponentielle par rapport a une grandeur

d’une impulsion angulaire de la corde. Pour les corrections de taille finie, qui ont été

limitées aux configurations simples, le traitement présenté ici est totalement général.

Un autre resultat présenté ici: nous obtenons les équations BS pour le sous-sector su(2)
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á partir de la matrice S de Zamolodchikov et Zamolodchikov, qui a été proposé il y a déjà

30 ans.



NOTATIONS

Qr - local conserved charges

λ = g2
YMN - ’t Hooft coupling

z = x + 1/x

m - winding of the string in S5 around its angular momentum direction

n - mode number

L - total spin chain length

Ka - number of the Bethe roots of the type a

J = L/
√

λ

α(x) = 4π√
λ

x2

x2−1

Indexes

i, j, k - to number sheets of the Riemann surface, take values 1, . . . , 8 or 1̂, . . . , 4̂, 1̃, . . . , 4̃

a, b - type of the magnon, corresponds to the node in the Dynkin diagram

i, j - take values 1, . . . , Ka
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1. INTRODUCTION

T
HE HISTORY OF THE QUANTUM MECHANICS starts from Louis de Broglie, who sug-

gested that the free particles could be described in terms of waves, like photons.

This suggestion was brilliantly confirmed by the observed interference effects in the scat-

tering of electrons from crystals. The next step was to describe the particles in external

potential. This problem was solved by Schrodinger, who discovered the non-relativistic

wave equation. However, its relativistic generalization had a puzzling property of nega-

tive densities and the description of systems of interacting relativistic particles turned out

to be inconsistent.

After discovering the field theory, lots of old problems were resolved or at least clar-

ified but new difficulties of divergences in perturbative theory appeared. However, to

describe all physical phenomena, which can be observed on Earth, these difficulties can

be overcome. The complete description of the existing experimental data so far is given

by the Standard Model. The only ingredient of the Standard Model, which still lacks ex-

perimental support, is the Higgs boson particle. One can, therefore, conclude that at this

moment there is no direct experimental need to go beyond the Standard Model.

On the other hand there are lots of theoretical reasons to go beyond the Standard

Model. The Standard Model is a relativistic quantum field theory, which describes three

fundamental interactions existing in nature. The consistent quantum theory, which de-

scribes all the four known interactions at the same time, does not exist today. One of the

main problems of today physics is the integration of quantum mechanics and general rel-

ativity which leads to unification the gravitational interaction with the others. Until now,

the most reasonable and the only existing candidate has been string theory. In this theory,

several problems of the quantum gravity seem to be resolved. In particular, the divergen-

cies are regularized on the Planck scale in some natural way. Unfortunately, string theory

can be formulated consistently only in ten dimensional space-time and it seems that there

are too many ways to compactify it to the four dimensions of the real world.

Besides the problem of finding the “theory of everything”, there are many open ques-

tions inside the Standard Model. In particular, the Standard Model describes the strong

interaction, which is indeed the strongest force of nature. It is responsible for the major

part of baryon mass, and thus for major part of all masses on the Earth. Strong interactions
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bind nucleons in nuclei which, being dressed with electrons and bound into molecules by

the much weaker electro-magnetic force, give rise to the variety of the chemical proper-

ties. The part of the Standard Model, describing the strong interaction, Quantum Chro-

modynamics (QCD), has quarks and gluons as fundamental degrees of freedom. How-

ever, understanding the physical world implies also understanding how these funda-

mental constituents interact and bring into existence the entire variety of physical objects

composing the universe. One of the most important features of the strong interactions –

quark confinement is still a mystery for the theorists.

String theory from its very origin is closely related to the theory of the strong interac-

tions. It was first formulated as a theory of hadrons. However, after invention of QCD,

the string research was shifted to the Planck scale. String theory in the theory of the

strong interactions converted into a phenomenological tool. Nevertheless, the hope that

the gauge theories with SU(N) gauge group can be described by strings was coming from

the large N ’t Hooft limit. In this limit the Feynman graph with non-planar topology are

suppressed by the powers of N. Each graph carries a topological factor Nχ, where χ is the

Euler characteristic of the graph. This strongly reminds some string theory with 1/N cou-

pling. Basing on this it was conjectured that in this limit QCD is described by some string

theory. This idea is also supported by the experimental fact that hadrons approximately

lie on linear Regge trajectories.

Then it was understood that the string theory dual to a particular 4 dimensional gauge

theory lives on a curved, higher dimensional manifold [1]. The formulation of this duality

could be made precise in the case of N = 4 Super Yang-Mills. Maldacena conjectured that

it is dual to the type IIB string theory on AdS5 × S5 [2, 3, 4]. A great technical advantage

of the string side of duality is that string theory in the tree approximation is a two dimen-

sional σ-model and the string interactions are not relevant in the planar ’t Hooft limit.

On the other hand, there are numerous examples of the exactly solvable two-dimensional

σ-models possessing an integrability. This gives us some hope that N = 4 super Yang-

Mills theory is the first interacting four dimensional gauge theory which could be solved

at least in the planar ’t Hooft limit.

In support of this hope, the 1-loop integrability was discovered in N = 4 SYM in [5]

for the bosonic sector1 where the dilatation operator was identified with the Hamiltonian

of an integrable 1-dimensional spin chain. Soon after, the classical integrability of the

full superstring σ-model on AdS5 × S5 was demonstrated in [8]. We will focus on this

construction of major importance in the next section.

1 Integrable spin chains have been discovered in (non-supersymmetric) gauge theories earlier [6, 7].
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1.1 Integrability

T
HE GREEN-SCHWARZ (GS) SUPERSTRING on AdS5 × S5 can be represented as a coset

model with the target super-space [9]

PSU(2, 2|4)

SP(2, 2) × SP(4)

whose bosonic part is
SU(2,2)
SP(2,2)

× SU(4)
SP(4)

which is precisely AdS5 × S5.

The matrix superalgebra su(2, 2|4) is spanned by the 8 × 8 supertraceless supermatri-

ces

M =




A B

C D



 (1.1)

where A and D belong to u(2, 2) and u(4) respectively while the fermionic components

are related by

C = B†

(

I2×2 0

0 −I2×2

)

.

The psu(2, 2|4) superalgebra is the quotient of this algebra by the matrices proportional

to the identity. Then we note that the psu(2, 2|4) algebra enjoys the automorphism

Ω ◦ M =

(

EATE −ECTE

EBTE EDTE

)

, E =








0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0








, (1.2)

such that Ω4 = 1. This automatically implies that the algebra is endowed with a Z4

grading. This means that any algebra element can be decomposed into ∑
3
i=0 M(i), where

Ω ◦ M(n) = in M(n). More explicitly

M(0,2) = 1
2

(

A ± EATE 0

0 D ± EDTE

)

M(1,3) = 1
2

(

0 B ± iECTE

C ∓ iEBTE 0

) . (1.3)

We see that the M(0) elements belong, by definition, to the denominator algebra sp(2, 2)×
sp(4) of the coset. Then, the remaining bosonic elements, M(2), orthogonal to the former,

generate the (orthogonal) complement of sp(2, 2) × sp(4) in su(2, 2) × su(4).

The Metsaev-Tseytlin action for the GS superstring in AdS5 × S5 is then given in terms

of the algebra current

J = −g−1dg , (1.4)
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where g(σ, τ) is a group element of PSU(2, 2|4), by

S =

√
λ

4π

∫

str
(

J(2) ∧ ∗J(2) − J(1) ∧ J(3)
)

, (1.5)

Besides the obvious global PSU(2, 2|4) left multiplication symmetry the action (1.5) pos-

sesses a local gauge symmetry, g → gH with H ∈ SP(2, 2) × SP(4), under which

J(i) → H−1 J(i)H , i = 1, 2, 3

while J(0) transforms as a connection. The equations of motion following from (1.5) are

equivalent to the conservation of the Noether current associated with the global left mul-

tiplication symmetry

d ∗ k = 0 (1.6)

where k = gKg−1 and K = J(2) + 1
2 ∗ J(1) − 1

2 ∗ J(3).

For a purely bosonic representative g we can write

g =




Q 0

0 R



 .

where R ∈ SU(4) and Q ∈ SU(2, 2). Then we see that U ≡ RERT is invariant under

the gauge transformation U → RHEHTRT = U for H ∈ SP(4) and thus is a good

parametrization of

SU(4)/SP(4) ∼ S5 .

In the same way V ≡ QEQT describes the AdS5 space. It is instructive to define the

embedding coordinates u and v by the simple relations

ujΣS
j = U , vjΣA

j = V , (1.7)

where ΣS, ΣA are the gamma matrices of SO(6) and SO(4, 2). By construction these coor-

dinates will automatically satisfy

1 = u2
6 + u2

5 + u2
4 + u2

3 + u2
2 + u2

1 ,

1 = v2
6 + v2

5 − v2
4 − v2

3 − v2
2 − v2

1 . (1.8)

Then the bosonic part of the action can be expressed in the usual non–linear σ model form

Sb =

√
λ

4π

∫ 2π

0
dσ

∫

dτ
√

hhµν(∂µu · ∂νu − ∂µv · ∂νv) .
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One can also expand the action in powers of fermions. It is convenient to use the following

parametrization of the PSU(2, 2|4) group element [10]

g = exp




0 θ

θ̄ 0



 ×



Q 0

0 R



 (1.9)

In this parametrization the fermionic part of the action reads

S f =

√
λ

8π

∫

d2σ
√

hhµνtr4

[
V∂µV̄

(
θ∂νθ̄ − ∂νθ θ̄

)
+ U∂µŪ

(
∂νθ̄ θ − θ̄∂νθ

)]

± i

√
λ

8π

∫

d2σ ǫµν tr4

[
V∂µθ̄tŪ∂νθ̄ + ∂µθU∂νθtV̄

]
+ O(θ4) (1.10)

1.1.1 Integrability and algebraic curve

As follows from the equations of motion and the flatness condition,

dJ − J ∧ J = 0 , (1.11)

the connection

A(x) = J(0) +
x2 + 1

x2 − 1
J(2) − 2x

x2 − 1

(

∗J(2) − Λ
)

+

√

x + 1

x − 1
J(1) +

√

x − 1

x + 1
J(3) (1.12)

is flat for any complex number x [8]. This is the crucial observation which indicates the

model to be (at least classically) integrable. Indeed, we can define the monodromy matrix

Ω(x) = Pexp
∮

γ
A(x) (1.13)

where γ is any path starting and ending at some point (σ, τ) and wrapping the worldsheet

cylinder once. Since the flatness of the connection ensures path independence we can

choose γ to be the constant τ path. Moreover, placing this loop at some other value

of τ just amounts to a similarity transformation of the monodromy matrix. Thus we

conclude that the eigenvalues of Ω(x) are time independent. Since they depend on a

generic complex number x, we have obtained in this way an infinite number of conserved

charges thus assuring integrability.

Let us construct the algebraic curve of Beisert, Kazakov, Sakai and Zarembo [11] which

gives the classification of the classical motions of the super string on AdS5 × S5. We will

argue below that the action variables are represented in a transparent way in terms of the

algebraic curve and thus give a good starting point for the quasi-classical quantization of

the superstring action.
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Fig. 1.1: The 8 sheets of the Riemann surface of the “Finite gap” method. The sheets could be

connected by the cuts or have synchronized poles. The surface is also restricted by the

x → 1/x symmetry. The singularities outside the unit circle are also reflected inside the

unit circle.

To proceed, we notice that under periodic SP(2, 2)× SP(4) gauge transformations the

monodromy matrix transforms by a simple similarity transformation so that the eigen-

values are also gauge invariant. We denote them as follows

{ei p̂1 , ei p̂2 , ei p̂3 , ei p̂4 |ei p̃1 , ei p̃2 , ei p̃3 , ei p̃4} . (1.14)

In the rest of this section we shall review the results of [11] and analyze the analytical

properties the quasi-momenta p̂ and p̃. The eigenvalues are the roots of the characteris-

tic polynomial equation and thus they define an 8–sheet Riemann surface. These sheets

are connected by several cuts – see fig.1.1 – whose branchpoints are the loci where the

eigenvalues of the monodromy matrix become equal. The quasi-momenta can jump by a

multiple of 2π at points connected by a cut2. For example, for a cut going from the first

to the second sheet , we will have

p̂+
1 − p̂−2 = 2πn , x ∈ C 1̂2̂

n , (1.15)

where p̃± stands for the value of the quasi-momenta immediately above/below the cut.

This integer n, together with the filling fraction we shall introduce in next section, label

each of the cuts. Generically, we can summarize all equations as

p+
i − p−j = 2πnij , x ∈ C ij

n , (1.16)

2 Note that the derivative of the quasi-momenta is a single valued function on the Riemann surface while

p(x) is not.
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where the indices i and j take values

i = 1̃, 2̃, 1̂, 2̂ , j = 3̃, 4̃, 3̂, 4̂ (1.17)

and we denote

p1̃,2̃,3̃,4̃ ≡ p̃1,2,3,4 , p1̂,2̂,3̂,4̂ ≡ p̂1,2,3,4 . (1.18)

For each cut we also associate the filling fraction

Sij = ±
√

λ

8π2i

∮

Cij

(

1 − 1

x2

)

pi(x)dx. (1.19)

obtained by integrating the quasi-momenta around the square root cut. As before, the

indices run over (1.17) and we should chose the plus sign for i = 1̂, 2̂ and the minus sign

for the remaining excitations with i = 1̃, 2̃. Let us explain why we chose to integrate the

quasi-momenta p(x) around the cut with the seemingly mysterious 1 − 1/x2 weight. It

was pointed out in [12, 11] and shown in [13] that these filling fractions are the action

variables of the theory. From the AdS/CFT correspondence these filling fractions are also

expected to be integers since they correspond to an integer number of Bethe roots [14, 15].

Indeed, the likely existence of the Bethe ansatz description [16, 18] of the AdS5 × S5 su-

perstring also implies this pole structure of the exact quasi-momentum in a semi-classical

limit. Moreover, in chapter 5 where the S5 subsector is studied from the “Bootstrap”

point of view we will clearly see that the quasi-momenta p(z) coming from the quantum

Bethe ansatz equations appears in the usual form
∮

p(z)dz, for the Zhukovsky variable

z = x + 1/x. Thus (1.19) is the good starting point for the string quasi-classical quantiza-

tion.

From (1.3),(1.12) it follows that

C−1 Ω(x) C = Ω−ST(1/x), C =




E 0

0 −E



 (1.20)

which translates into the inversion symmetry

p̃1,2(x) = −2πm − p̃2,1(1/x)

p̃3,4(x) = +2πm − p̃4,3(1/x) (1.21)

p̂1,2,3,4(x) = − p̂2,1,4,3(1/x)

for the quasi-momenta3.

3 Note that for p̂ there is no 2πm imposed by requiring absence of time windings [19, 11].
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The singularities of the connection at x = ±1 result in simple poles for the quasi-

momenta. These singularities come from the current J(2) in (1.12). This current is super-

traceless because it belongs to psu(2, 2|4) and so is its square due to the Virasoro con-

straints following from the variation of the action with respect to the worldsheet metric.

Together with the inversion symmetry this forces the various residues to organize as fol-

lows

{ p̂1, p̂2, p̂3, p̂4| p̃1, p̃2, p̃3, p̃4} ≃ {α±, α±, β±, β±|α±, α±, β±, β±}
x ± 1

. (1.22)

i.e. the residues at these points are synchronized and must be the same for the S5 and the

AdS5 quasi-momenta p̂i and p̃i. This is the crucial role of the Virasoro constraints which

will be of utmost importance in the remaining of this chapter.

Finally, for large x, one has

Aσ ≃ −g−1

(

∂σ +
2

x
kτ

)

g (1.23)

where k, defined bellow (1.6), is the Noether current associated with the left global sym-

metry. Thus, from the behavior at infinity we can read the conserved global charges4[20]



















p̂1

p̂2

p̂3

p̂4

p̃1

p̃2

p̃3

p̃4



















≃ 2π

x
√

λ



















+E − S1 + S2

+E + S1 − S2

−E − S1 − S2

−E + S1 + S2

+J1 + J2 − J3

+J1 − J2 + J3

−J1 + J2 + J3

−J1 − J2 − J3



















. (1.24)

The finite gap method allow us to build, at least implicitly, classical solutions of the

nonlinear equations of motion from the analytical properties of the quasi-momenta5.

As we shall see in chapter 3, the algebraic curve can also be turned into a powerful

tool to study the quantum spectrum, i.e. the energy level spacing, for energies close to

that of a given classical string solution.

4 These are the bosonic charges, the ones which are present for a classical solution. Latter we shall con-

sider all kind of fluctuations, including the fermionic ones. Then we shall slightly generalize this expression

to (3.19).

5 For the inverse problem of recovering the solutions from the algebraic curve see the monographs [21,

22] for the general formalism and [13] where this is carried over in the context of string theory for the

classical bosonic string in R × S3 ⊂ AdS5 × S5 described by the KMMZ algebraic curve [14].
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Integrability from the string side appears in the classical theory and its essence is con-

tained in the algebraical curve. From the gauge side of the duality, the integrability shows

up in the study of the anomalous dimensions of the long operators, where the mixing ma-

trix acts on the single trace operators as a spin chain Hamiltonian. An important tool in

studying the integrable spin chains is Bethe ansatz reviewed in the next sections.

1.2 Bethe ansatz equation

I
N 1931 HANS BETHE presented a method for obtaining the exact eigenvalues and eigen-

vectors of the one dimensional spin-1/2 Heisenberg model, a linear array of elec-

trons with uniform interaction between nearest neighbors. Bethe’s parametrization of the

eigenvectors, the Bethe ansatz, has become influential to an extent not imagined at the

time. Today, many other systems are known to be solvable by some variant of the Bethe

ansatz, and the method has been generalized and expanded far beyond the calculational

tool it was originally. In particular, it seems to be a key ingredient in the AdS/CFT duality

[2, 3, 4] between N = 4 SYM and type IIB superstring theory on AdS5 × S5.

It is very instructive to follow the Bethe’s original work to understand the physics

beyond the algebraical constructions. The spin-1/2 Heisenberg spin chain is described in

terms of the spin operators σ̂n by the Hamiltonian

H = −2
L

∑
n=1

(

σ̂n · σ̂n+1 −
1

4

)

(1.25)

with periodic boundary conditions σ̂L+1 = σ̂1. H acts on a Hilbert space of dimension 2L

spanned by the orthogonal basis vectors |σ1 . . . σL〉, where each σn is ↑ or ↓.

The ferromagnetic state |F〉 = | ↑ . . . ↑〉 is obviously an eigenstate with zero energy.

To diagonalize the sector with one spin flipped we can use the translational symmetry,

which implies the plane wave form of the eigenstates

|p〉 =
L

∑
n=1

eipn|n〉 (1.26)

where |n〉 is the ferromagnetic state with the nth spin flipped. We can also express it as

|n〉 = σ̂−
n |F〉. Since the states |p〉 with Lp = 2πm, m = 0, . . . , L − 1 constitute the basis

in the sector with one flipped spin they are automatically eigenstates of the Hamiltonian

with eigenvalues

E = 2(1 − cos p) (1.27)
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one can also use the parametrization u = 1
2 cot

p
2 of the momentum of the excitation. We

will call this new quantity u - the Bethe root. In the new parametrization one has

E =
1

u2 + 1/4
. (1.28)

Let us consider two excitations (or magnons). When the two flipped spins are far from

each other the Hamiltonian acts on them independently and so it is natural to assume the

plane wave behavior of the wave-function

|ψ〉 = ∑
1≤n1<n2≤L

ei(p1n1+p2n2)σ̂−
n1

σ̂−
n2
|F〉 + A ∑

1≤n2<n1≤L

ei(p1n1+p2n2)σ̂−
n1

σ̂−
n2
|F〉 (1.29)

where the second term represent the result of the scattering of one excitation on another.

Acting on this state by the Hamiltonian one finds

A = − ei(p1+p2) + 1 − 2eip2

ei(p1+p2) + 1 − 2eip1
=

u1 − u2 − i

u1 − u2 + i
(1.30)

we see that the scattering phase take a nice form in terms of u’s. The periodicity of the

wave function implies

Aeip1L = 1 , eip2L = A (1.31)

or
(

u + i/2

u − i/2

)L

= 1 , i = 1, . . . , K (1.32)

eipL = 1 , i = 1, . . . , K (1.33)
(

ui + i/2

ui − i/2

)L

=
K

∏
j 6=i

ui − uj + i

ui − uj − i
, i = 1, . . . , K (1.34)

with K = 2. Increasing further the number of excitations will simply lead to the same

equation with K equal to the number of the magnons. This set of the equations is called

the Bethe ansatz equations. Energy of the state is given by

E = ∑
i

1

u2
i + 1/4

. (1.35)

This seemingly surprising fact that the multi-magnon scattering is described by the prod-

uct of the two magnon phases is due to the existence of the large number of the conserved

charges. They are commuting with the hamiltonian and thus can be diagonalized in the

same basis. Their eigenvalues are given by

Qr =
K

∑
j=1

i

r − 1

(

1

(uj + i/2)r−1
− 1

(uj − i/2)r−1

)

. (1.36)
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1.2.1 Bethe ansatz in the AdS/CFT correspondence

The N = 4 SYM dilatation operator in the planar limit can be perturbatively computed

in powers of the ’t Hooft coupling λ. In the seminal work of Minahan and Zarembo

[5] it was shown that the 1-loop dilatation operator acts on the six real scalars of the

theory exactly like an integrable SO(6) Heisenberg spin chain Hamiltonian. Restricting

ourselves to two complex scalars we obtain the same Hamiltonian considered above. The

full N = 4 1-loop dilatation operator [23] is also governed by an integrable Hamiltonian

whose spectrum is given by a system of seven Bethe equations [24], corresponding to the

seven nodes of the psu(2, 2|4) Dynkin diagram. In [25] the all loop generalization of the

Bethe equation for the SU(2) sector (1.34) was conjectured to be

(
y+

j

y−j

)L

=
K

∏
j 6=i

ui − uj + i

ui − uj − i
, (1.37)

where yj(uj) and y±j (uj) are given by

y +
1

y
=

4π√
λ

u , y± +
1

y±
=

4π√
λ

(

u ± i

2

)

. (1.38)

On the other hand, for the same sector but from the string side of the correspondence, a

map between classical string solutions and Riemann surfaces was proposed [14] and then

generalized to the full super string coset [11], as we review above.

The resemblance between the cuts connecting the different sheets of these Riemann

surfaces and the distribution of roots of the Bethe equations in some limit seemed to indi-

cate that the former could be the continuous limit of some quantum string Bethe ansatz.

We will give more details about this so-called scaling limit in the next sections. In [16]

these equations were proposed to be

(
y+

j

y−j

)L

=
K

∏
j 6=i

ui − uj + i

ui − uj − i
σ2

AFS(ui, uj) , (1.39)

where

σAFS(ui, uj) =
1 − 1/(y+

j y−i )

1 − 1/(y−j y+
i )

(
y−j y−i − 1

y−j y+
i − 1

y+
j y+

i − 1

y+
j y−i − 1

)i(uj−ui)

. (1.40)

In Chapter 5 we will show how to derive (1.39) from the Bootstrap approach. The strik-

ing similarity between (1.37) and (1.39) naturally leads to the proposal that both sides

of the correspondence would be described by the same equation with a scalar factor σ2

interpolating from σ2
AFS for large t’Hooft coupling to 1 for small λ.
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In [17, 18] Beisert and Staudacher (BS) conjectured the all-loop Bethe equations for the

full PSU(2, 2|4) group is

eiηφ1−iηφ2 =
K2

∏
j=1

u1,k − u2,j +
i
2

u1,k − u2,j − i
2

K4

∏
j=1

1 − 1/x1,kx+
4,j

1 − 1/x1,kx−4,j

,

eiηφ2−iηφ3 =
K2

∏
j 6=k

u2,k − u2,j − i

u2,k − u2,j + i

K3

∏
j=1

u2,k − u3,j +
i
2

u2,k − u3,j − i
2

K1

∏
j=1

u2,k − u1,j +
i
2

u2,k − u1,j − i
2

,

eiηφ3−iηφ4 =
K2

∏
j=1

u3,k − u2,j +
i
2

u3,k − u2,j − i
2

K4

∏
j=1

x3,k − x+
4,j

x3,k − x−4,j

,

eiηφ4−iηφ5 =

(

x−4,k

x+
4,k

)ηL K4

∏
j 6=k

u4,k − u4,j + i

u4,k − u4,j − i

K4

∏
j

(
1 − 1/x+

4,kx−4,j

1 − 1/x−4,kx+
4,j

)η−1

σ
2η
AFS(x4,k, x4,j)e−iηV(u4,k,u4,j)

×
K1

∏
j=1

1 − 1/x−4,kx1,j

1 − 1/x+
4,kx1,j

K3

∏
j=1

x−4,k − x3,j

x+
4,k − x3,j

K5

∏
j=1

x−4,k − x5,j

x+
4,k − x5,j

K7

∏
j=1

1 − 1/x−4,kx7,j

1 − 1/x+
4,kx7,j

, (1.41)

eiηφ5−iηφ6 =
K6

∏
j=1

u5,k − u6,j +
i
2

u5,k − u6,j − i
2

K4

∏
j=1

x5,k − x+
4,j

x5,k − x−4,j

,

eiηφ6−iηφ7 =
K6

∏
j 6=k

u6,k − u6,j − i

u6,k − u6,j + i

K5

∏
j=1

u6,k − u5,j +
i
2

u6,k − u5,j − i
2

K7

∏
j=1

u6,k − u7,j +
i
2

u6,k − u7,j − i
2

,

eiηφ7−iηφ8 =
K6

∏
j=1

u7,k − u6,j +
i
2

u7,k − u6,j − i
2

K4

∏
j=1

1 − 1/x7,kx+
4,j

1 − 1/x7,kx−4,j

.

Where η = ±1. Sets of equations with different η are related between each other

by duality transformation, which we will discuss below. We inserted some additional

parameters φi, called twists. Strictly speaking they all should be zero. However, as we

will see the situation when all the twists are vanishing is a very degenerate one. We will

also assume that the twists are restricted by

φ1 − φ2 − φ3 + φ4 = φ7 − φ8 − φ5 + φ6 = 2πm − η
K4

∑
j=1

1

i
log

x+
4

x−4
. (1.42)

The phase V(y4,j) should be responsible for the interpolation between the YM and the

string equations for small and large t’Hooft coupling λ.

When some configuration of the Bethe roots ua,j is found the energy of the state (or

anomalous dimension of the SYM operators) is given by

∆ =

√
λ

2π

K4

∑
i=1

(

i

y+
4,j

− i

y−4,j

)

. (1.43)
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and the generalized expression for the local conserved changes is

Qr =
1

r − 1

K4

∑
j=1

(

i

(y+
4,j)

r−1
− i

(y−4,j)
r−1

)

. (1.44)

In terms of them one can rewrite the AFS phase (1.40) as

σ2
AFS(uj, uk) = exp

(

2ig
∞

∑
r=2

(
Qr(uk)Qr+1(uj) −Qr+1(uk)Qr(uj)

)

)

. (1.45)

In [26], based on an hypothesis for a natural extension for the quantum symmetry of

the theory, Beisert found (up to a scalar factor) an S-matrix from which the BS equations

would be derived. The scalar factor V was then conjectured in [27, 28] from the string

side – using the Janik’s crossing relation [29] – and Beisert, Eden and Staudacher (BES) in

[30, 31] from the gauge theory point of view – based on several heuristic considerations

[32]. Similarly to (1.45) one can write

V(uk, uj) = ∑
r=2

∑
s=r+1

cr,s(g)
(
Qr(uk)Qs(uj) −Qs(uk)Qr(uj)

)
(1.46)

with

cr,s(g) =
∞

∑
n=1

g1−n ((−1)r+s − 1)ζ(n)

(−2π)nΓ(n − 1)
(r − 1)(s − 1)

Γ s+r+n−3
2 Γ s−r+n−1

2

Γ s+r−n+1
2 Γ s−r−n+3

2

(1.47)

≃ ((−1)r+s − 1)

(
2(r − 1)(s − 1)

π(r − s)(r + s − 2)
+

1

12g
(r − 1)(s − 1) + . . .

)

.

The leading coefficient for g → ∞ was first obtained by Hernandez and Lopez [89].

From the gauge theory side these equations were tested quite recently up to four loops

[44, 34, 35]. From the string theory point of view the scalar factor recently passed several

nontrivial checks [36, 37, 38, 39] where several loops were probed at strong coupling. Also

at strong coupling, the full structure of the BS equations was derived up to two loops in

[40, 41] in a particular limit [42] where the sigma model is drastically simplified.

Another efficient way of testing the predictions of the Bethe ansatz equations is via

anomalous dimensions of the twist-two operators (i.e. local operators with two scalars

and S derivatives, traceless and symmetric in Lorenz indexes). In the regime of large num-

ber of derivatives, their anomalous dimensions scale logarithmical ∆ − S = f (g) log S.

f (g) is a universal scaling function, computed up to four loops in YM [43, 44, 45]. It is

also can be computed up to 2-loops from the string side [46, 47, 48].

It is therefore fair to say that the advance in the last four years was spectacular. On the

other hand it is also true that there is a great deal of conjectures involved one should both

check and, hopefully, prove (or disprove).
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In this work we will check that the BS equations reproduce the 1–loop shift around

any classical string soliton solution with exponential precision in the large angular mo-

mentum of the string state J ≡ L/
√

λ.

1.2.2 Thermodynamical limit

I
N THIS SECTION we will review a special limit of the Bethe ansatz equations, follow-

ing closely [14, 19]. It is so-called thermodynamical or scaling limit. It corresponds

to the ferromagnetic regime of low energies E ∼ 1/L.6 Consider for example an sl(2)

Heisenberg spin chain Bethe ansatz, which will be studied in details in the next chapter

−
(

uj − i/2

uj + i/2

)L

=
K

∏
k=1

uj − uk + i

uj − uk − i
, j = 1, . . . , K. (1.48)

Note that under the formal replacement L → −L it becomes the described above su(2)

spin chain. An important property which simplifies the analysis is that the solutions of

this set of the equations are always real, which is not the case for the su(2) spin chain.

Taking log of both parts of (2.2) we have7

2πinj + L log
uj − i/2

uj + i/2
=

K ,

∑
k=1

log
uj − uk + i

uj − uk − i
. (1.49)

As we shell see in a moment in the limit L → ∞, K ∼ L and with nj ∼ 1 the Bethe roots

scales like L. It means that the chain is very long and the spins are very smoothly changing

along it. The typical length of spin-waves (magnons) is of the order of the length L. And

it is instructive to introduce xj = uj/L. We can then write (1.49) in the form

2πnj −
1

xj
=

2

L

K ,

∑
k=1

1

xj − xk
(1.50)

where we expanded (1.49) for large L. There is a potential danger arises from the right

hand side, since uj − uk could be of order of 1. As we will see in the chapter 2 this terms

with uj − uk ∼ 1 are responsible for the 1/L correction and are not important at the

leading order.

Now let us consider the situation with a finite number of different mode numbers nj,

and assume that the number of Bethe roots with the same mode number is of order L.

6 It is different from a more traditional regime E ∼ L widely studied since many years, especially in the

condensed matter literature.

7 Note that i
2 log x+i

x−i = arctan(x) − π
2 sign(x) for standard definition of the log.
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If we take the ratio K/L to be small we can neglect the right hand side of (1.50) to get

xj = 1/(2πnj). We see that the points xj with the same mode number are very close

to each other and separated from the others roots by ∼ 1. For K/L ∼ 1 the picture is

similar. The points xj with the same mode number are constituting some continuous

distributions. The supports of these distributions corresponding to the different mode

numbers are separated by a finite distance ∼ 1. Hence, roots with the same mode number

form a continuous cut in the complex plane x. One can characterize the distributions by

the density

ρ(x) ≡ 1

L ∑
j

δ(x − xj) (1.51)

or by resolvent

G(x) ≡ 1

L

K

∑
j=1

1

x − xj
≃

∫

C
ρ(y)dy

x − y
. (1.52)

The density is non-zero on a set of cuts in the complex plane which in general consists of

several non-overlapping cuts, C =
⋃

i Ci, where the ith cut Ci represents roots with mode

number ni. In the considered case of the sl(2) spin chain the roots are always real and the

cuts belong to the real axe.

In the scaling limit of the Bethe equations can be rewritten as an integral equation for

the density

2/G = 2
∫

C
− ρ(y)dy

x − y
= 2πni −

1

x
, x ∈ Ci , (1.53)

where 2/G(x) ≡ G(x + i0) + G(x − i0). One can solve this integral equation numerically

and compare with the actual density of the Bethe roots, also found numerically. For the

three cut configuration this comparison is given on the fig.1.2 revealing the perfect con-

sistence of the above analysis.

Let us introduce

p(x) =
1

2x
+ G(x) (1.54)

which we shall call the quasi-momentum for reasons which will be clear soon. In terms

of the analytic function p(x) the above equation becomes

p/(x) = πni , x ∈ Ci (1.55)

by another words it implies that eip and e−ip are two sheets of the same two sheet Riemann

surface. This reminds the eigenvalues of the monodromy matrix in the classical finite

gap analysis of 1.1.1. However we see that our p(x) has a simple pole in the origin,

whereas the quasimomenta of the AdS5 × S5 string had two poles at ±1. But, the BS

equations (1.41) are designed in such a way that the analogous quasimomenta arising in



1. Introduction 27
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2.5

ΡHxL for 3-cut solution, S=300

Fig. 1.2: Density of roots. The dots correspond to numerical 3-cut solution with total number of

Bethe roots K = 300 and equal fractions αi = 1/6, and ni = {−1, 3, 1}. They are fixed

from the numerical values of the roots by the (2.13). Solid line is the density at L = ∞

computed analytically from the corresponding hyper-elliptic curve. x coordinates of the

dots are
uj+uj+1

2L so that the solitary points in the middle of empty cuts are artifacts of this

definition.

the thermodynamical limit have exactly the same analytical properties as the ones of the

classical “finite-gap” analysis.

Indeed, for J = L/
√

λ fixed and L ∼ Ka ≫ 1 the BS equations can be summarized by

p/i − p/j = 2πnij for

p1 = +
2πJ x − δη,+1Q1 + δη,−1Q2x

x2 − 1
+ η (−H1 − H̄3 + H̄4) + φ1

p2 = +
2πJ x − δη,−1Q1 + δη,+1Q2x

x2 − 1
+ η (−H1 + H2 + H̄2 − H̄3) + φ2

p3 = +
2πJ x − δη,−1Q1 + δη,+1Q2x

x2 − 1
+ η (−H2 + H3 + H̄1 − H̄2) + φ3

p4 = +
2πJ x − δη,+1Q1 + δη,−1Q2x

x2 − 1
+ η (+H3 − H4 + H̄1) + φ4

p5 = −2πJ x − δη,+1Q1 + δη,−1Q2x

x2 − 1
+ η (−H5 + H4 − H̄7) + φ5

p6 = −2πJ x − δη,−1Q1 + δη,+1Q2x

x2 − 1
+ η (−H5 + H6 + H̄6 − H̄7) + φ6

p7 = −2πJ x − δη,−1Q1 + δη,+1Q2x

x2 − 1
+ η (−H6 + H7 + H̄5 − H̄6) + φ7

p8 = −2πJ x − δη,+1Q1 + δη,−1Q2x

x2 − 1
+ η (+H7 + H̄5 − H̄4) + φ8

(1.56)
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Where we introduced

Ga(x) =
Ka

∑
j=1

α(ya,j)

x − ya,j
, Ha(x) =

Ka

∑
j=1

α(x)

x − ya,j
, α(x) =

4π√
λ

x2

x2 − 1
.

For η = 1 we will also use the following notations

p̃1 = p1 , p̃2 = p4 , p̃3 = p5 , p̃4 = p8 , (1.57)

p̂1 = p2 , p̂2 = p3 , p̂3 = p6 , p̂4 = p7 .

The local conserved charges are encoded into the “middle node” resolvent G4(x) ≡
−∑

∞
n=0 Qn+1xn. To leading order, these quasi-momenta define an eight-sheet Riemann

surface with exactly the same properties as in the classical analysis of the first section.

1.3 Overview

I
N THIS THESIS we will perform several nontrivial tests of the conjectures involved into

the AdS/CFT correspondence.

• In chapter 2 we show how the finite size corrections to the scaling limit could be

computed in a systematic way to arbitrary order in 1/L. The procedure is similar to

the standard WKB expansion. We find Airy type behavior of the Bethe roots close

to the edge of the distribution. The Bethe roots are located at zeros of the function

f (v) = Ai

[

a1/3

(

v − 1

4ax2∗L1/3
+

a2 + 12b

60aL2/3
v2

)]

, (1.58)

where v = (x − x∗)L2/3, x∗ is a position of the branch point of the quasi-momenta,

a and b are two paratemers, which could be fixed. Matching assumptotic expantion

for large v’s with the expantion in powers of 1/L of quasi-momenta allows us to fix

all ambiguities.

For a single cut solution for the sl(2) subsector we explicitly computed the energy

up to the 1/L2 order. The result is quite complicated and is given in (2.76).

Then we consider nested Bethe ansatz. As a technical tool we use a curious duality

among the systems of the Bethe ansatz equations, which we call bosonic duality. In

the scaling limit it allows one to interchange the sheets of the Riemann surface. We

find some integral equation describing the leading finite size corrections in a closed

form. For an su(1|2) spin chain we have

1

x
+ 2

∫

C23

− ρ(y)dy

x − y
+

∫

C13

ρ(y)dy

x − y
= 2πnA

23 + φ2 − φ3 −
1

L



cot23 −
∫

C13

∆ cot12

x − y

dy

2πi




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where cotij are some functions of the leading densities.

• In chapter 3 we propose a method of computation of the quasiclassical corrections

to the classical spectrum of string theory in the AdS5 × S5 background, based solely

on the classical integrable structure of the theory. The idea of this method is inspired

by the analytical structure of the quasi-momenta of the one-dimensional quantum

mechanical systems. The quantum excitations are identified with the poles on the

algebraic surface (see fig.1.1) with the residue fixed by the integer value of the clas-

sical action variables of the theory.

For a circular string solution we get the following spectrum of excitations

κ δE = ∑
n

(

N1̃3̃
n + N2̃4̃

n

) (

ωS
n+m −J

)

+ N2̃3̃
n ω

S−
n+2m + N1̃4̃

n

(

ω
S+
n − 2J

)

+ ∑
n

(

N1̂4̃
n + N2̂4̃

n + N3̂1̃
n + N4̂1̃

n

) (

ωF
n −J +

κ

2

)

+ ∑
n

(

N1̂3̃
n + N2̂3̃

n + N3̂2̃
n + N4̂2̃

n

) (

ωF
n+m − κ

2

)

+ ∑
n

(

N1̂3̂
n + N1̂4̂

n + N2̂3̂
n + N2̂4̂

n

)

ωA
n . (1.59)

where

eigenmodes notation

S5

√

2J 2 + n2 ± 2
√
J 4 + n2J 2 + m2n2

√
J 2 + n2 − m2

ω
S±
n

ωS
n

Fermions
√
J 2 + n2 ωF

n

AdS5

√
J 2 + n2 + m2 ωA

n

In this way we reproduced results of the previous direct calculations based on the

string action. The developed method could be as well applied to the wide range of

the integrable field theories for which the classical curve is known.

• In chapter 4 we show that the finite size corrections are related to the sea of the

virtual quasi classical fluctuations and can be interpreted as zero point energy os-

cillations. The condition that the finite size corrections match the quasi classical ex-

citations is a very nontrivial restriction of the underling system of the Bethe ansatz

equation. We also note that to match BS equations in the infinite volume J with

exponential precision one have to introduce an extra potential into the BAE

1

2

[

∑
i≤4

∮

α(x)
(−1)Fi5(p′i − p′5)

x − y
sign(Im y)

dy

2π
+ . . .

]

(1.60)
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=
∮ [

α(x)

x − y
− α(1/x)

1/x − y

]

(p′4 − p′3 − p′2 + p′1) sign(Im y)
dy

2π
= −2ηV(x)

which one can rewrite as

V(x) = α(x)
∞

∑
r, s = 2

r+s ∈ Odd

1

π

(r − 1)(s − 1)

(s − r)(r + s − 2)

(Qr

xs
− Qs

xr

)

(1.61)

where we recognize precisely the Hernandez-Lopez coefficients (1.47).

• Finally in chapter 5 we show how the BS equations in su(2) sector could be derived

from the old bootstrap approach. We show that in the su(2) sector the BS equations

(which are AFS equations in this case) could be considered as effective equations

coming from the simple nested equations with a clear physical meaning. Namely,

by excluding rapidities θα of the relativistic particles from the set of the usual BAE

equations

2πmα = µ sinh πθα −
L

∑
β 6=α

i log S 2
0

(
θα − θβ

)

−
Ju

∑
j

i log
θα − uj + i/2

θα − uj − i/2
, (1.62)

2πnu
j =

L

∑
β

i log
uj − θβ − i/2

uj − θβ + i/2
+

Ju

∑
i 6=j

i log
uj − ui + i

uj − ui − i
, , (1.63)

we get precisely AFS equations with non-relativistic dispersion relation for the magnons!

All the complicated structure of the AFS phase should thus be a manifestation of the

existence of a hidden extra degree of freedom which was integrated out.



2. FINITE SIZE CORRECTIONS IN HEISENBERG SPIN CHAIN

T
HIS CHAPTER IS DEVOTED to the study of the 1/L finite size corrections in Bethe ansatz

equations. Our main motivation to study the finite size corrections in Bethe ansatz

comes from the AdS/CFT correspondence. From the string side of the duality the finite

size corrections corresponds to the worldsheet loop expansion. Thus the careful analysis

of the finite size corrections can bring a new insight and can serve as a very nontrivial

test of the different conjectures involved into the AdS/CFT correspondence. The main

result of this chapter will be the integral equation, describing in a closed form the finite

size corrections to the classical limit in the BS equation.

The similarity, and even the coincidence in a certain regime of the finite size corrections

from the Bethe ansatz side and 1-loop corrections to the classical limit from the string side

was already observed earlier on particular string and chain solutions, having only one

support for the Bethe roots distribution [49, 50, 51, 52, 53, 54, 55, 56]. 1/L corrections were

first studied for BMN states in [5], where the integrable spin chain for N = 4 SYM was

first proposed, and then in [16]. The Airy edge behavior, we will find in this chapter, also

seems to be an important feature, because it provides some information about the system

at all orders in 1/L.

2.1 Finite size corrections in sl(2) Heisenberg spin chain

I
N THIS SECTION WE STUDY the integrable periodic Heisenberg XXXs chain of noncom-

pact quantum spins transforming under the representation s = −1/2 of sl(2), in

the thermodynamical limit reviewed in the introduction. We will develop some gen-

eral methods of the systematic 1/L expansion. In the next section we will generalize it

to the so called nested Bethe ansatz, which arises for the spin chains with a higher rang

symmetry group.

The sl(2) spin chain is known to be solvable by the Bethe ansatz (see for example

[57]) and the energy of a state of K magnons in dimensionless units is given by a simple

formula

E =
K

∑
k=1

1

u2
k + 1/4

, (2.1)
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where the Bethe roots uj, j = 1, 2, · · · , K, parameterizing the momenta of magnons, are

solutions of a system of polynomial Bethe ansatz equations (BAE)

−
(

uj − i/2

uj + i/2

)L

=
K

∏
k=1

uj − uk + i

uj − uk − i
, j = 1, . . . , K. (2.2)

It can be proven that for this model the roots are always real.

Our goal is to study the limiting L → ∞ distributions of Bethe roots and the finite vol-

ume 1/L corrections to these distributions, to the energy and higher conserved charges.

As we mentioned in the introduction in the main order this thermodynamical limit for

the compact Heisenberg XXX1/2 chain of su(2) spins was already considered in [58], and

later in [59] in relation to the integrable dilatation hamiltonian in planar perturbative su-

perconformal N = 4 super-Yang-Mills (SYM) theory. Its description and the general so-

lution in terms of algebraic curves was proposed in [14] for the su(2) case1 and in [61, 19]

for the sl(2) chain.

The study of 1/L corrections in these systems was started recently in the papers [49,

50] for the simplest single support, or one cut distribution, whereas a similar quantum h̄

correction to the classical KdV solitons was already found earlier in the general multi-cut

case in [62].

This section we will get the following results:

1. The explicit formulas for the 1/L and 1/L2 corrections to the general multi-cut

distribution of Bethe roots and to the corresponding energy of a Bethe state in terms of

the underlying algebraic curve.

2. The universal description of the distribution of Bethe roots in the vicinity of an edge

of a support in terms of zeroes of the Airy function, similar to the double scaling limit in

the matrix models.

3. Asymptotics of conserved local charges Qn(K, L) in the large n limit.

Unlike the papers [49, 50] using the method of singular integral equation corrected by

so called anomaly term2, we will use here the exact Baxter equation written directly for

the analytical function - the resolvent of the root distribution (similar approach was used

in [61]). This approach is more general and can be generalized to the higher orders in

1/L. As and example we apply the method to the simplest 1-cut configuration.

In the next sections we will generalize the method developed here for the more general

systems of the equations and finally apply it in chapter 4 to the conjectured string BS

equations. Then in the next chapter we will show how the finite size corrections of BS

1 Following a similar approach of [60] to a somewhat different limit of large spin

2 This phenomenon of anomaly, or the contribution of close eigenvalues in the thermodynamical limit of

BAE was first observed in [15]



2. Finite size corrections in Heisenberg spin chain 33

equations match with the 1-loop corrections to the classical energy levels in the general

classical background.

2.1.1 Hamiltonian, Transfer-matrix and Higher Charges of sl(2) chain

The hamiltonian of interaction of the neighboring spins sl, sl+1 can be written in an ex-

plicit way [63]

H−1/2 =
L

∑
l=1

Ĥl,l+1
−1/2 (2.3)

with the Hamiltonian density

Ĥl,l+1
−1/2|k, m − k〉 =

m

∑
k′=0

(

δk=k′ (h(k) + h(m − k)) − δk 6=k′

|k − k′|

)

|k′, m − k′〉, (2.4)

where |k1, . . . , kl, kl+1, . . . , kL〉 is a state vector labeled by L integers k j (s = −1/2 spin

components) and h(k) = ∑
k
j=1

1
j are harmonic numbers.

The total momentum P(u)

eiP(uj) =
uj − i/2

uj + i/2
(2.5)

satisfies the (quasi-)periodicity condition following directly from (2.2)

Ptot =
K

∑
j=1

P(uj) = 2πk/L, k ∈ Z. (2.6)

In application to the anomalous dimensions of operators3 in N = 4 SYM theory one

selects only purely periodic Bethe states

Ptot = 2πm, m ∈ Z. (2.7)

We can also study other physically interesting quantities of this model, such as the

local conserved charges Q̂r. They are defined as follows

T̂(v) = exp

(

i
∞

∑
r=1

Q̂rvr−1

)

, (2.8)

where the quantum transfer matrix T̂(v) ≡ T̂(v; 0, 0, · · · , 0) is a particular case of the

inhomogeneous transfer matrix

T̂(v; v1, · · · , vL) = Tr0

[
R̂0,1(v − v1) · · · R̂0,L(v − vL)

]
(2.9)

3 The operators of the type Tr
(

∇k1 Z · · · ∇kL Z
)

in SYM, where ∇ = ∂ + A is a covariant derivative in a

null direction and Z is a complex scalar, represent the state vectors |k1, . . . , kl , kl+1, . . . , kL〉 and the dilatation

hamiltonian is given at one loop by the XXX−1/2 hamiltonian.
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and R̂0,j is the universal sl(2) R-matrix defined as [64]

R̂0,1(v) =
∞

∑
j=0

Rj(v)P (j)
0,1 , Rj(v) =

j

∏
k=1

v − ik

v + ik
(2.10)

with P (j)
01 being the operator projecting the direct product of two neighboring spins s0 =

s1 = −1/2 to the representation j. Recall that

[
T̂(v; v1, · · · , vL), T̂(v′; v1, · · · , vL)

]
= 0 (2.11)

for any pair v, v′, due to Yang-Baxter equations on the R̂-matrix.

The direct calculation shows that P̂tot = −Q̂1 is the operator of the momentum and

Ĥ−1/2 = Q̂2 is the hamiltonian (2.3), etc. Those charges are local, in the sense that the

charge density of Qk contains ≤ k consecutive spins.

Due to the integrability manifestly expressed by (2.11) all these charges commute and

their eigenvalues on a Bethe state characterized by a set of Bethe roots satisfying (2.2)

(enforcing the periodicity of the chain or the quasi-periodicity of the Bethe state) are given

by [7]

Qr =
K

∑
j=1

i

r − 1

(

1

(uj + i/2)r−1
− 1

(uj − i/2)r−1

)

. (2.12)

We will later estimate the behavior of Qr at r → ∞ and high orders of 1/L expansion.

2.1.2 1/L expansion of BAE

Let us start from reviewing one of the method of solving (2.2) in the thermodynamical

limit L → ∞, uk ∼ L ∼ K, before sticking with the most efficient one using the Baxter

equation.

As we mentioned the (2.2) has only real solutions, i.e. all the roots lie on the real

axis. We label the roots so that uj+1 > uj. Suppose there exists a smooth function X(x)

parameterizing the Bethe roots

uk = LX(k/L), ̺(X(x)) ≡ 1

X′(x)
≃ 1

uk+1 − uk
. (2.13)

For large K the function ̺(x) has a meaning of density of Bethe roots. As follows from

definition (2.13) its normalization is

∫

dx̺(x) = α (2.14)
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with α = K/L. In the thermodynamical limit we can rewrite (1.49) assuming k to be far

from the edges, as follows

∑
j

′
i log

(

uj − uk + i

uj − uk − i

)

= −2∑
j

′ 1

uj − uk
+

2

3∑
j

′ 1

(uj − uk)3
(2.15)

−2

5∑
j

′ 1

(uj − uk)5
+

2

7∑
j

′ 1

(uj − uk)7
+

π̺′[coth(π̺)]6
L

− 1

12L3

(

(π̺′)3

[

coth(π̺)

sinh2(π̺)

]

2

− 2π2̺′̺′′
[

1

sinh(π̺)

]

3

+ π̺(3)[coth(π̺)]4

)

+ O
(

1

L5

)

,

were we introduce the notation defined by [ f (̺)]n ≡ f (̺) − ∑
n−1
i=0 f (i)(0) ̺i

i! for the func-

tions regular at zero. For singular functions the Taylor series should be substituted by the

Laurent series so that [ f (̺)]n is zero for ̺ = 0 and has first n − 1 zero derivatives at this

point. The terms in the first line represent the naive expansion of the l.h.s. in 1/(uj − uk).

It works well for the terms in the sum with uj ≫ uk. The terms in the second line describe

the anomalous contribution at uj ∼ uk, for close roots with i ∼ j. In this case we can

expand

uj − uk =
j − k

̺(uj/L)
+ O(1/L) (2.16)

and calculate the corresponding converging sum giving the terms in the second line. This

anomaly was noticed in the Bethe ansatz context in [15] although this phenomenon was

known since long in the large N matrix integrals or similar character expansions [65, 66].

In our case when L → ∞ it is obvious from (2.15,1.49) that the anomaly does not

contribute to the main order and the Bethe ansatz equation becomes a singular integral

equation (see sec. 1.2.2)

2πnk −
1

x
= 2

∫

Ctot

dy ̺0(y)

x − y
, x ∈ Ck, k = 1, · · · , K. (2.17)

2.1.3 Large L limit and 1/L-corrections from Baxter equation

Eq. (2.2) can be also obtained as the condition that the transfer matrix eigenvalue T(u) is

a polynomial of degree L (see for example [67])

T(u) = W(u + i/2)
Q(u + i)

Q(u)
+ W(u − i/2)

Q(u − i)

Q(u)
, (2.18)

where Q(u) = ∏
K
k=1(u − uk), W(u) = uL. That is clear from the very construction of

a Bethe state in the algebraic Bethe ansatz approach [57]. The Bethe equations (2.2) is

simply a condition that T(u) has no poles.
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Introducing notations: x = u/L, Φ(x) = 1
L ∑

K
k=1 log(x − xk), V(x) = log x, 2t(x) =

T(Lx)/(Lx)L we rewrite (2.18) as

2t(x) = exp L

[

Φ

(

x +
i

L

)

− Φ(x) + V

(

x +
i

2L

)

− V(x)

]

+ c.c.. (2.19)

In this notations the quasi-momentum (1.54) takes the form (exactly in 1/L)

p(x) ≡ Φ′ + V ′/2 (2.20)

and expanding the Baxter equation in 1/L we get

t(x) = cos p(x)

[

1 − 1

L

(
p′(x)

2
− V′′(x)

8

)

+
1

2L2

(
p′(x)

2
− V ′′(x)

8

)2
]

(2.21)

+
1

L2
sin p(x)

(

p′′(x)

6
− V(3)(x)

16

)

+ O

(
1

L3

)

.

According to our definition p(x) is a function of L. We will expand p(x) = p0(x) +
1
L p1(x) + 1

L2 p2(x) +O(1/L3), t(x) = t0(x) + 1
L t1(x) + 1

L2 t2(x) +O(1/L3) and plug it into

the last equation. Since t(x) has no singularities, except x = 0 it is natural to assume that

the coefficients of expansion t0(x), t1(x), t2(x), . . . are the entire functions on the plane x

with no cuts, having only a singularity at x = 0.

The quasi-periodicity property of the total momentum (2.6) reads up to 3 first orders

as follows

Ptot = −∑
j

1

uj
+ ∑

j

1

12u3
j

+ O
(

1

L4

)

= 2πk/L (2.22)

and in the purely periodic case we select only the states with k = mL, with integer m.

Algebraical curve from Baxter equation

Let us restore from the Baxter equation the zero order result of the previous section. In

the zero order approximation we get from (2.21)

cos p0(x) = t0(x) (2.23)

or

p′0(x) =
2t′0(x)

√

1 − t2
0

. (2.24)

since t0(x) is an entire functions all the branch cuts of p0 come from the square root in

denominator, after the Bethe roots condense to a set C1, · · · , CK of dense supports in the

L → ∞ limit. In this way we reproduced the thermodynamical limit.
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1/L correction from Baxter equation

To find the 1/L correction to the leading approximation to the density of roots we deduce

from (2.21)

p1 = (−p′0/2 + V ′′/8) cot p0 −
t1

sin p0
, (2.25)

From (2.24) and (1.55) we know about p0(x) that

p+
0 = πnj − πiρ0, p−0 = πnj + πiρ0 (2.26)

so that

sin p+
0 = − sin p−0 (2.27)

and thus we have for the real and imaginary parts of p0(x) on the cuts

πiρ1 =

(
V′′

8
t0 − t1

)
1

sin p−0
, (2.28)

p/1 = −p′0 cot p0/2. (2.29)

We will solve these equations below and restore the explicit form p1.

Moreover we see from (2.22) that

p1(0) = 0 (2.30)

and p1(x) should decreases as O(1/x2) for large x.

We can build a general solution of Riemann-Hilbert problem (2.29)

p1(x) =
x

4πi f (x)

∮

C
f (y)p′0(y) cot p0(y)

y(y − x)
dy +

K−2

∑
j=1

ajx
j

f (x)
, (2.31)

where f 2(x) = ∏
2K
j=1(x − xj) and the contour encircles all cuts Ck (but no other singulari-

ties). The first term in the r.h.s. represents the Cauchy integral restoring the function from

its real part on the cuts and having a zero at the origin (the value of the quasi-momentum

p(x) at x = 0, ∞ was already fixed for p0) whereas the second one is purely imaginary on

the cuts, with the polynomial in the numerator chosen in such a way that it does not spoil

the behavior of p(x) at x = 0, ∞.4

Thus for K < 3 the solution is unique. In particular, for K = 1 we restore from here the

1-cut solution of [49]. For K ≥ 3 we have to fix K − 2 parameters aj. To do this we have to

4 We could also add terms 1
f 3 , 1

f 5 , . . . but they are too singular at the branch points as we shell see in the

next section.



2. Finite size corrections in Heisenberg spin chain 38

use K additional conditions ensuring the right fractions αj of the roots already chosen for

p0:
∮

Cl

p1(x)dx = 0, l = 1, . . . , K, (2.32)

in fact only K − 2 of them are linear independent (since we have already fixed the total

filling fraction by the asymptotic properties of (2.31) at x = ∞: p1(x) = O(1/x2). Eq.(2.30)

also restricts some linear combination of the conditions (2.32)). Hence we completely

fixed all parameters of our K-cut solution for the 1/L correction p1 knowing the zero

order solution (algebraic curve) for p0.

1/L2 corrections from Baxter relation

Expanding (2.21) up to 1/L2 we obtain

p2 = −1

2
∂x[cot(p0)I] − 1

8x3
− t̃2

2 sin(p0)
, (2.33)

where

I = − t̃1

sin(p0)
= p1 +

p′0
2

cot p0. (2.34)

We introduced here the notations

t̃1 = t1 +
cos p0

8x2
,

t̃2 = t2 −
cos p0

128x4
+

t̃1

8x2
− cos(2p0) + 5

24 sin p0
p′′0 +

cos p0

8 sin2 p0

(

3(p′0)
2 + 4t̃2

1

)

(2.35)

so that t̃1 and t̃2 are single valued functions on the complex plane.

Note that above the cut I+ = πiρ1. We will find the explicit solution of these equa-

tions later, but we will need for that some results of the next section where we study the

behavior of p(x) near the branch points.

2.1.4 Double scaling solution near the branch point

As we stated above the branch point singularities come only from the square roots of the

denominator of (2.24). We define an exact branch point as a point x∗ where t(x∗) = ±1 .

If we approach one of the branch points x → x∗ we can expand

t(x) ≃ ±[1 − a(x − x∗)/2 − b(x − x∗)2/2]. (2.36)

Note that x∗, a, b themselves depend on L. We assume that they have a regular expansion

in 1/L and define x∗ = x0 + x1/L + . . .. We call x0 a classical branch point and x1/L a

branch point displacement.
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Fig. 2.1: Quasi-momentum near branch point as a function of the scaling variable v for K = 200.

The poles corresponds to the positions of Bethe roots ui. Red dashed line - ”exact” numer-

ical value, light grey - zero order approximation given by Airy function Ai(a1/3x), grey -

first order and black - second order approximation.

Denoting v = (x − x∗)L2/3 which will be our double scaling variable v ∼ 1, we get

from (2.18) up to 1/L2 terms

±2

(

1 − av

2L2/3
− bv2

2L4/3

)

Q(u) = Q(u + i)
W(u + i/2)

W(u)
+ Q(u − i)

W(u − i/2)

W(u)
. (2.37)

In terms of a new function

q(v) = e−nπvL1/3
e

vL1/3

2x∗ Q(x∗L + vL1/3) , (2.38)

where n is such that t(x∗) = eiπn, and after expansion in 1/L the last eq. takes the form

q′′ − avq =
1

L1/3

4vq′ + q

4x2∗
+

1

L2/3

[
1

12
q(4)(v) − v2q(v)

4

(
1

x4∗
− 4b

)]

+ O
(

1

L

)

. (2.39)

In fact, this equation can be easily solved in terms of q0

q ∝

[

1 +
v2

4x2∗L1/3
+

1

L2/3

(
v4

32x4∗
− 3b − a2

15a
v

)]

q0

(

v − 1

4ax2∗L1/3
+

a2 + 12b

60aL2/3
v2

)

, (2.40)

where q0(v) = Ai(a1/3v) (the Airy function). The second solution of the (2.39), Bi(a1/3v)

has a wrong asymptotic as we will see. The sign ∝ means that the solution is defined up

to a constant multiplier but this unknown multiplier doesn’t affect the quasi-momentum.

Now we can express the quasi-momentum only through our scaling function q(v)

p
(

x∗ +
v

L2/3

)

=
∂vq(v, L)

q(v, L)L1/3
+ πn +

1

2x∗

(

1

1 + v
x∗L2/3

− 1

)

. (2.41)

The first two terms in the r.h.s., if we substitute q(v) → q0(v), represent the principal

contribution to the double scaling limit near the edge, valid up to the corrections of the
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order 1/L2/3. We see from the definition (2.38) that the zeros of q(v) are nothing but the

positions ui of Bethe roots. Thus we know these positions with a precision 1/L2/3 (see

fig.3).

The large v asymptotic will be very helpful in fixing some unknown constant in the

1/L2 corrections given in the next section

p(x∗+vL−2/3) = πn+
1

L1/3







−
√

av
︸︷︷︸

1

− 1

4v
︸︷︷︸

1/L

+
5

32v2
√

av
︸ ︷︷ ︸

1/L2

+ . . .








(2.42)

+
1

L2/3








1

8x2∗
√

av
︸ ︷︷ ︸

1/L

− 1

16ax2∗v2
︸ ︷︷ ︸

1/L2

+. . .








+ . . . ,

where the cut corresponds to negative v for a > 0. Introducing the notation y = vL−2/3

and rearranging the terms by the powers 1/L we have

p(x∗ + y) = πn +

[

−√
ay − (a2 + 12b)y3/2

24
√

a
+ . . .

]

+
1

L

[

− 1

4y
+

1

8x2∗
√

ay
+

a2 − 4b

16a
+ . . .

]

(2.43)

+
1

L2

[
5

32y2√ay
− 1

16ay2x2∗
+

6 − x4
∗(a2 + 12b)

768x4∗(ay)3/2
+ . . .

]

+ . . . .

Doing this re-expansion we assume that L−1 ≪ y ≪ 1, trying to sew together the double

scaling region with the 1/L corrections to the thermodynamical limit. This procedure

is similar to the one used in higher orders of the WKB approximation in the usual one

dimensional quantum mechanics (see for example [68]).

To compare with p0, p1 and p2 we have to re-expand around x0

p(x0 + y) = p(x∗ + y) +
x1

L

√
a

2
√

y
+

1

L2

[

− x1

4y2
+

x1

16x2
0y
√

ay
+

√
ax2

1

8y
√

y

]

(2.44)

or, introducing notation

x1 =
2A√

a
− 1

4x2
0a

(2.45)

we get

p(x0 + y) = πn +

[

−√
ay − (a2 + 12b)y2

24
√

ay
+ . . .

]

(2.46)
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+
1

L

[

− 1

4y
+

A√
y

+
a2 − 4b

16a
+ . . .

]

+
1

L2

[
5

32y2√ay
− A

2
√

ay2
+

(
A2

2y
√

ay
− b

64(ay)3/2
−

√
ay

768y2

)

+ . . .

]

+ . . . .

Near the left branch point (i.e for a < 0 and y < 0) we have

p(x0 + y) = πn +

[√
ay +

(a2 + 12b)y2

24
√

ay
+ . . .

]

(2.47)

+
1

L

[

− 1

4y
− A√−y

+
a2 − 4b

16a
+ . . .

]

+
1

L2

[

− 5

32y2√ay
+

A

2
√−ay2

+

(
A2

2y
√

ay
+

b

64(ay)3/2
+

√
ay

768y2

)

+ . . .

]

+ . . . .

Now we can compare it with our results of the previous sections and fix a, b and x1.

Let us note that similar Airy type oscillations were observed in the papers on random

matrices where this behavior occurs near an endpoint of a distribution of eigenvalues

[69].

Comparison with 1/L expansion

It is instructive to establish the relations between a, b, A and the parameters of the alge-

braic curve.

For that we use the expansion (2.36) defining a, b and find from (2.23) for y > 0

p0(x0 + y) = πn + arccos t0 ≃ πn −√
ay − a2 + 12b

24
√

a
y3/2 + O(y5/2), (2.48)

in agreement with (2.46,2.47). We can fix a and b up to O (1/L) corrections from here

through the parameters of the solution for p0.

To calculate a and b up to O (1/L) and to fix A, we use the expansion (2.36) with

(2.25). Note that we have the minus sign in front of
√

ay which ensures the positivity of

the density on the cut (i.e. for y < 0 and a > 0) ρ(y) ≃
√

a(−y)/π. If we had Bi instead

of Ai the sign would be plus and the density would be negative.

Now we compare this near-cut behavior to p1. Consider the regular part first

p/1 = −1

2
p′0 cot p0 ≃ − 1

4y
+

a2 − 4b

16a
+ O(y), (2.49)

which agrees with (2.43). From (2.31) we see that

p1(x0 + y) − p/1(x0 + y) ≃ A√
y

+ O
(

1

y3/2

)

, (2.50)

where A can be written explicitly, again using p0.

For the example of one-cut solution see (2.73).
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2.1.5 General solution for p2 and E2

Now we have enough of information to construct p2 in the most general situation of an

arbitrary number of cuts.

We start from a formula which immediately follows from (2.33)

p/2 = −1

2
∂x

[

cot(p0)

(

p1 +
p′0
2

cot p0

)]

− 1

8x3
, (2.51)

where p1 is given by (2.31). The behaviors near zero and at infinity are the following.

Since from (2.6) and (2.22) it follows that G(0) − 1
24L2 G′′(0) = 2πk/L + O( 1

L4 ) we can

conclude that

p2(0) =
1

24
G′′

0 (0). (2.52)

For large x we have again

p2(x) = O
(

1/x2
)

. (2.53)

Repeating the arguments of the previous subsection we have

p2(x) =
x

4πi f (x)

∮

C
f (y)

y(y − x)

(
1

4y3
+ ∂y [cot(p0)p1]

)

+
5K−1

∑
j=0

cjx
j

f 5(x)
, (2.54)

where the path C is defined as in (2.31). Again the first term guarantees that p2 satisfies

(2.51). We drop out the p′0 coth p0 for simplicity. We can do this since together with f (y) it

forms a single-valued function without cuts and the integral is given by the poles inside

of the path of integration. In fact there are only poles at each branch point so that the

result can be absorbed into the second term in (2.54).

So far the second term in (2.54) was restricted only by the conditions (2.52) and (2.53).

Of cause this does not explain why we should restrict ourselves by the fifth power of f (x)

in denominator. A natural explanation comes from the known behavior near the branch

points (2.46,2.47) from where we can see that

p2(xi
0 + y)=







5
32y2√aiy

− Ai

2
√

aiy2 +

(
A2

i
2y
√

aiy
− bi

64(aiy)3/2 −
√

aiy

768y2

)

+O
(

1
y

)

, ai, y > 0

− 5
32y2√aiy

+ Ai

2
√−aiy2 +

(
A2

i
2y
√

aiy
+ bi

64(aiy)3/2 +
√

aiy

768y2

)

+O
(

1
y

)

, ai, y < 0
,

(2.55)

where all 6K constants ai, b, Ai for i = 1, . . . , 2K are known since they can be determined

from the near branch point behavior of p0 and p1 (2.46,2.47). ai and bi follow from p0

p0(xi
0 + y) =







−√
aiy − (a2

i +12bi)y2

24
√

aiy
+ O

(
y5/2

)
, ai > 0, y > 0

√
aiy +

(a2
i +12bi)y2

24
√

aiy
+ O

(
y5/2

)
, ai < 0, y < 0

(2.56)
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and Ai comes from p1

p1(xi
0 + y) =

{

− 1
4y + Ai√

y + O
(
y0

)
, ai > 0, y > 0

− 1
4y −

Ai√−y
+ O

(
y0

)
, ai < 0, y < 0

. (2.57)

In fact (2.55) gives only two nontrivial conditions for each branch point which are the

coefficient before the half-integer power of y so that we have 4K conditions. The extra K

conditions come from zero A-period constraints signifying the absence of corrections to

the filling fractions αi. ∮

Cl

p2(x)dx = 0, l = 1, . . . , K. (2.58)

To reduce the number of unknown constants consider a branch point x0. We can see

that for small y = x − x0 (we assume that the cut is on the left i.e. ai > 0)

I1 ≡ x

4πi f (x)

∮

C
f (z)

z(z − x)

(
1

4z3
+ ∂z(p1 cotp0)

)

(2.59)

=
3

16y2√ay
− A

2
√

ay2
+

1

y3/2

(
b

32a3/2
− 5

√
a

128

)

+ O
(

1

y

)

.

Introducing the following integral

I2 ≡ x

4πi f (x)

∮

C
f (z)

z(z − x)

(

(p1 + p′0 cotp0)p1 cotp0 −
p′′0
12

)

(2.60)

= − 1

32y2√ay
+

1

y3/2

(
A2

2
√

a
− 3b

64a3/2
+

29
√

a

768

)

+ O
(

1

y

)

,

we see that I1 + I2 reproduces the right series expansion near the branch points given

by (2.43) and (2.43). Moreover, on the cuts I2(x + i0) + I2(x − i0) = 0 since the function

under integral is single valued. We can simply take

p2(x) = I1(x) + I2(x) +
K−1

∑
j=0

c̃jx
j

f (x)
, (2.61)

where the remaining K constants are fixed from (2.58). Using that p2(0) = G′′(0)/24 we

can fix one constant c̃0 = G′′(0) f (0)
24 before imposing the condition (2.58).

This is our final result for the second quantum correction to the quasi-momentum. In

the section 2.1.7 we will specify this result for the example of the one-cut solution where

it can be made much more explicit.

2.1.6 Energy

To find 1/L corrections to the energy we represent the exact formula (2.1) as follows

E = − 1

L
G′(0) +

1

24L3
G(3)(0) + O

(
1

L5

)

, (2.62)
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Fig. 2.2: Resolvent far from branch point as a function of x. Red dashed line - ”exact” numerical

value for one cut solution with K = 10, n = 2, m = 1, light grey - zero order approxima-

tion, grey - first order given by (2.31) and black - second order approximation given by

(2.61). Note that near branch point (x0 = 0.02) the approximation explodes and instead of

it we should use the Airy function of (2.41), like in the usual WKB near a turning point.

We still have to expand G(x) = − 1
2x + p0(x) + 1

L p1(x) + 1
L2 p2(x) + O(1/L3).

Finally, we obtain for the energy:

E =
1

L
E0(x) +

1

L2
E1 +

1

L3
E2 + O

(
1

L4

)

, (2.63)

where

E0 = −G′
0(0), (2.64)

E1 = −p′1(0) = − Q′(0)

4πi f (0)

∮

C
f (y)p′(y) cot p(y)

Q(y)y
dy, (2.65)

and Q(x) = ∑
K−2
k=1 bkxk is related to the last term in (2.31). For E2 we have from (2.61) the

following representation

E2 =
G

(3)
0 (0)

24
− p′2(0) = − c1

f (0)
+

G′′
0 (0) f ′(0)

24 f (0)
+

G
(3)
0 (0)

24
(2.66)

− 1

4πi f (0)

∮
f (y)

y2

(
1

4z3
+ ∂z(p1 cot p0) −

p′′0
12

+ (p1 + p′0 cot p0)p1 cot p0

)

.

Note that for 1-cut we should take c1 = 0. We can compare our results with numerical

calculations, as it is done for a few 1-cut solutions in the fig.2.3

2.1.7 One cut case

In this section we express corrections to the energy in terms of infinite sums for the sim-

plest case of one-cut solution. For this solution the hyperelliptic curve is a sphere. It is
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Fig. 2.3: Relative deviation δE(K)/E(K) of analytical computations of the energy E(K) from its ”exact”

value Eexact(K) for the one cut distribution found numerically by Mathematica (solid line corre-

sponds to δE(K) = 0), for a finite number of roots K and a finite length L for zero order (light

gray), first order (gray) and second order (black) approximation. Details are summarized in the

table
# 1 2 3 4 5

m, n 1, 2 2, 1 1, 3 2, 2 1, 5

E0 12π2 24π2 16π2 32π2 24π2

E1 −558.4 −1563 −855.3 −2401 −1563

E2 1160. 5464. 1592. 8982. 1504.

K 10 40 7 20 5

L 20 20 21 20 25

Enumerical 4.66004 8.54515 5.7359 10.7876 7.0232

E0 + E1
L + E2

L2 4.670 8.619 5.752 10.912 7.070

two complex planes connected by a single cut. The density of the Bethe roots is given by

a simple formula [19]

ρ(x) =

√

8πmx − (2πnx − 1)2

2πx
. (2.67)

We can easily find explicit expressions for ai and bi of (2.55). With the notation M =
√

m(m + n) ai and bi become

a1 = − 8Mn4π3

(
√

4M2 + n2 − 2M)2
, (2.68)

b1 =
4π4n6

3(
√

4M2 + n2 − 2M)4

(

12M
√

4M2 + n2 + 3n2 − 4n2π2M2 − 24M2
)

and

a2 =
8Mn4π3

(
√

4M2 + n2 + 2M)2
, (2.69)
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b2 = − 4π4n6

3(
√

4M2 + n2 + 2M)4

(

12M
√

4M2 + n2 − 3n2 + 4n2π2M2 + 24M2
)

.

It may be more convenient for comparison with string theory results [47] to express A

defined by (2.46) as an infinite sum. We have to evaluate the integral in (2.31) and find A

from the behavior near a branch point. We compute the integral by poles. To that end we

use that the solutions to the equation sin(p0(x±l )) = 0 are

x±l =
1

2π

1√
4M2 + n2 ∓

√
4M2 + l2

, l ≥ 0. (2.70)

The points x±l=0 are the branch points. They are inside the contour of integration and thus

do not contribute.

Using that f (x±l )/x±l = ± l
n and

1

x+
l − x0,1

− 1

x−l − x0,1
= −

√
l2 + 4M2

l2

1

πx2
0,1

(2.71)

1

x+
l − x0,2

− 1

x−l − x0,2
= −

√
l2 + 4M2

l2

1

πx2
0,2

.

We can evaluate the integral (2.31) for x → x0 (we also take x inside the contour to drop

irrelevant symmetric part of p1)

1

2πi

∮

C
f (y)p′(y) cot p(y)

y(y − x)
dy → − 1

iπnx2
0

[
∞

∑
l=1

(√
l2 + 4M2

l
− 1

)

− 1

2

]

(2.72)

we can conclude that

A2 = − 1

2x2
2

√
a2

[
∞

∑
l=1

(√
l2 + 4M2

l
− 1

)

− 1

2

]

(2.73)

A1 = − 1

2x2
1

√−a1

[
∞

∑
l=1

(√
l2 + 4M2

l
− 1

)

− 1

2

]

,

We reproduce the result of [49] for E1 in terms of a sum from (2.65)

E1 = −p′1(0) = 4π2
∞

∑
l=1

l
√

l2 + 4M2 (2.74)

with ζ-function regularization assumed.

We can also express our result for the next correction to the energy E2 given by (2.66)

as a double sum. We will need the following quantity

p1(x±k ) =
±1

2π(x±k )2k

[
∞

∑
l=1

(

l
√

l2 + 4M2 − k
√

k2 + 4M2

l2 − k2
− 1

)

+

√
k2 + 4M2

2k
− 1

2

]

. (2.75)
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Evaluating the integrals in (2.66) we express E2 as a double sum

E2 = −(I1 + I2 + I3 + I4), (2.76)

where

I1 ≡ 1

4πi f (0)

∮
f (z)

z2
∂z(p1 cot p0) = −2p′1(0)

+
∞

∑
k=1

[

2π ∑
±

(
√

4M2 + n2 ± 2
k2 + 2M2

√
k2 + 4M2

)

p1(x±k ) − 4p′1(0)

]

I2 ≡ 1

4πi f (0)

∮
f (z)

4z5
= 4π4M2(n2 + 5M2) (2.77)

I3 ≡ I′2(0) =
1

16

(

1

x2
0,1

+
1

x2
0,2

)

+
1

x0,1

(
7a1

96
− b1

8a1
− A2

1

)

+
1

x0,2

(
7a2

96
− b2

8a2
+ A2

2

)

I4 ≡ −G′′
0 (0) f ′(0)

24 f (0)
− G

(3)
0 (0)

24
=

4

3
M2(2n2 + 11M2)π4.

Note that in our new notations 1/x0,i = 4πM ± 2π
√

4M2 + n2. Expressions for ai, bi and

Ai are given in (2.68,2.69) and (2.73).

2.1.8 Local charges

In this we will calculate local charges Qr in all powers of 1/L but for the large r from the

behavior near the relevant branch point. The idea of this calculation is taken from the

double scaling approach in matrix models. Namely, one can compare it to the calculation

of the resolvent of eigenvalues in a gaussian unitary matrix ensemble

HN(x) =
∫

dN2
M

(2π)N2 exp

(

−N

2
Tr M2

)

Tr(x − M)−1 =
∞

∑
g=1

N2−2g
∞

∑
n=0

x−2n−1H(g,n) (2.78)

where M is a hermitian matrix of large size N. The coefficients H(g,n) actually give the

number of specific planar graphs: it is given by the number of surfaces of genus g which

can be done from a polygon with 2n edges, by the pairwise gluing of these edges. To

extract the large n asymptotics of H(g,n) for any g one can use that in the large N limit

the density (which is the imaginary part of the resolvent on the support of eigenvalues)

is given by the Wigner’s semi-circle law, and the near-edge behavior is described by the

Airy functional asymptotics [69, 70] showing the traces of individual eigenvalues in the

continuous semi-circle distribution. We will try to extract the similar asymptotics for

the distribution of Bethe roots. The role of 1/N expansion will be played by the 1/L

expansion, whether as the order of the 1/x expansion in the matrix model will be now

played by the label r of the charge.
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We start from expanding (2.12)

Qr =
∞

∑
m=0

1

Lr+2m−1

(−1)m+1G(r+2m−1)(0)

(2m + 1)!(r − 1)!22m
. (2.79)

As we shell see, for large r only the m = 0 term contributes. We express the derivative

as a contour integral around cuts

G(n)(0) = − n!

2πi

∮

C
G(x)

xn+1
dx. (2.80)

For large n only a small neighborhood of the closest to zero branch point x0 contributes

due to the exponential suppression by the 1/xn+1 factor. Near the branch point x0 we

have from (2.46) (see also (2.47,2.41))

Gk(x) = δk0

(

πni−
1

2x0

)

+







ck(x − x0)
1
2− 3k

2 |a| 1
2− k

2 + O
(

(x − x0)
1− 3k

2

)

,

a > 0, x0 < 0

(−1)k+1ck(x0 − x)
1
2− 3k

2 |a| 1
2− k

2 + O
(

(x0 − x)1− 3k
2

)

,

a < 0, x0 > 0

(2.81)

where the universal constants ck can be computed from the known asymptotic of Airy

function

Ai(z) =
e−

2z3/2

3

2
√

πz1/4





n

∑
k=0

(
1
6

)

k

(
5
6

)

k

k!

(

− 3

4z3/2

)k

+ O
(

1

z3(n+1)/2

)


 (2.82)

so that

ck =
Ai′(z)

Ai(z)

∣
∣
∣
∣
z−

3k−1
2

, (2.83)

in particular c0 = −1, c1 = −1
4 , c2 = 5

32 , c3 = −15
64 , c4 = 1105

2048 , c5 = − 1695
1024 , c6 =

414125
65536 , c7 = −59025

2048 .

These coefficients behave asymptotically as ck ∼ (−1)kk! at k → ∞.

We assume that k ≪ n, r and expand (for x0 < 0)

∮ 0

−y0

(y + x0)
−nyβdy = |x0|β+1−n(−1)n

∮ 0

−y0

yβe−n log(1−y)dy

≃ |x0|β+1−n(−1)n
∮ 0

−∞
yβenydy. (2.84)

For the last integral the path of integration starts at −∞ − i0, encircles the origin in the

counterclockwise direction, and returns to the point −∞ + i0. For the first integral the

path is finite: it starts at some point −y0 − i0 where 0 < y0 < |x0| and ends at −y0 + i0.
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The dependence on the y0 is exponentially suppressed. The last integral is nothing but

the Hankel’s contour integral

∮ 0

−y0

(y + x0)
−nyβdy = (−1)n|x0|β+1−nn−β−1 2πi

Γ(−β)

(

1 + O
(

1

n

))

(2.85)

similarly

∮ y0

0
(y + x0)

−n(−y)βdy = −|x0|β+1−nn−β−1 2πi

Γ(−β)

(

1 + O
(

1

n

))

(2.86)

so that

G
(n)
k (0)

n!
=







(−1)n ck|a|
1
2−

k
2 n

3k
2 − 3

2 |x0|
1
2−

3k
2 −n

Γ( 3k
2 − 1

2)

(

1 + O
(

1
n

))

, a > 0, x0 < 0

(−1)k+1 ck|a|
1
2−

k
2 n

3k
2 − 3

2 |x0|
1
2−

3k
2 −n

Γ( 3k
2 − 1

2)

(

1 + O
(

1
n

))

, a < 0, x0 > 0

. (2.87)

As we can see from here, only the term with m = 0 in (2.79) contributes at large n. The

others are suppressed as 1/n and the final result is

Qk,r =







(−1)r ck|a|
1
2−

k
2 r

3k
2 − 3

2 |x0|
3
2−

3k
2 −r

Γ( 3k
2 − 1

2)

(
1 + O

(
r−1/2

))
, a > 0, x0 < 0

(−1)k ck|a|
1
2−

k
2 r

3k
2 − 3

2 |x0|
3
2−

3k
2 −r

Γ( 3k
2 − 1

2)

(
1 + O

(
r−1/2

))
, a < 0, x0 > 0

, (2.88)

where we introduced the notation

Qr =
1

Lr−1

∞

∑
k=0

Qk,r
1

Lk
. (2.89)

Note that Qk,r is similar to Hg,n of the matrix model.

2.1.9 Summary

We showed in this section on the example of sl(2) Heisenberg spin chain, how to find

finite size corrections in the thermodynamical limit. We also propose a double scaling

analysis of the near edge distribution of Bethe roots, which gives some interesting results

for the asymptotics of high conserved charges for the finite size corrections of any order.

The methods presented here can be easily carried over to the su(2) quantum chain as

well, though some peculiarities of this model, like complex distributions of roots and the

presence of ”string” condensates with equally distributed roots [59], should be taken into

account. Only slight modifications of our results will allow to find the 1/L corrections in

the nonlocal integrable deformations of the su(2) spin chain described in [71, 72]. As for

more complicated models solved by nested Bethe ansatz, the 1/L will be discussed in the

next section.
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2.2 Finite size corrections in su(1,2) Heisenberg spin chain

I
N THIS SECTION we stick mainly to the simple example of su(1, 2) spin chain. This

simple toy model has already contained all the nontrivial new features appearing

due to the Nested nature of the Bethe ansatz. The generalization to other (super)groups

is straightforward and in particular, we shall focus on the Bethe ansatz describing the

superstring in AdS5 × S5 in Chapter 4.

The scattering of excitations in this model is governed not by a simple phase factor as

it was in su(2) case considered in the introduction but rather by S-matrix. To derive the

Bethe ansatz restricting the momenta of the excitations due to the periodical boundaries

we have to solve a diagonalization problem

e−ipk L|ψ〉 =
K

∏
j 6=k

S
(

pk, pj

)
|ψ〉 (2.90)

where S(pk, pj) is a matrix and |ψ〉 is the multi-particle wave function. One can consider

the matrix in the r.h.s. as a spin chain hamiltonian, depending on the momenta of the

initial excitations pi as on a parameters. One can show that this Hamiltonian is also inte-

grable. The scattering of the excitations with some momenta p̃i in this auxiliary spin chain

is governed by a smaller size S-matrix. Continuing in this way we will get finally a scalar

S-matrix for which (2.90) is trivial. Thus for integrable rank r spin chains each quantum

state is parameterized by a set {ua,j} of Bethe roots where a = 1, . . . , r and j = 1, . . . , Ka

where Ka is the excitation number of magnons of type a. The nested Bethe ansatz equations

(NBA) from which we find these roots is given by

eiτa

(

ua,j +
i
2Va

ua,j − i
2Va

)L

= −
r

∏
b=1

Qb

(

ua,j +
i
2 Mab

)

Qb

(

ua,j − i
2 Mab

) , (2.91)

where

Qa(u) =
Ka

∏
j=1

(
u − ua,j

)

are the Baxter polynomials, Va are the Dynkin labels of the representation considered

and Mab the Cartan matrix. In fact, contrary to what happens for the usual Lie algebras,

for super algebras the Dynkin diagram (and thus the Cartan matrix) is not unique. Take

for example the su(K|M) super algebra. The different possible Dynkin diagrams can be

identified [73] as the different paths starting from (M, K) and finishing at (0, 0) (always

approaching this point with each step) in a rectangular lattice of size M × K as in figure

2.4. The turns in this path represent the fermionic nodes whereas the bosonic nodes are
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Fig. 2.4: For su(K|M) super algebras the Dynkin diagram is not unique. The several possible

choices can be represented as the paths going from the up right corner (M, K) to the origin

always approaching this point with each step. The turns are the fermionic nodes whereas

the straight lines correspond to the usual bosonic nodes. Different paths will correspond

to different sets of Bethe equations which are related by fermionic dualities which flip a

left–down fermionic turn into down–left turn or vice-versa [73].

those which are crossed by a straight line – see figure 2.4 (the index a goes along the path

as indicated). The Cartan matrix Mab is then given by

Mab = (pa + pa+1) δab − pa+1δa+1,b − paδa,b+1

where pa is associated with the link between the node a and a + 1 and is equal to +1 (−1)

if this link is vertical (horizontal).

Here we are considering twisted (quasi-periodic) boundary conditions. I.e. we are

restricting to the states which are periodical up to the multiplication by

g = diag
(

eiφ1 , . . . , eiφK , eiϕ1 , . . . , eiϕM

)

∈ SU(K|M) (2.92)

and the twists τa, appearing in (2.91) and associated to a Dynkin node located at (m, k) in

the M × K network depicted in figure 2.4, are then given by [74]

τa = φk − φk+1 for a bosonic along a vertical segment of the path

τa = ϕm+1 − ϕm for a bosonic along a horizontal segment of the path

τa = ϕm+1 − φk + π for a fermionic node in a Γ like turn that is with pa−1 = −pa = 1

τa = φk+1 − ϕm + π for a fermionic node with pa−1 = −pa = −1

Notice that since g ∈ SU(K|M) we have ∑k φk − ∑m ϕm = 0 mod 2π. We shall study

these Bethe equations with generic twists and we will see that the usual case (τa = 0) is

in fact quite degenerate.
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Fig. 2.5: The middle node Bethe roots u2 can condense into a line as depicted in figure 2.5a (The

spins in this spin chain transform in a non-compact representation and thus the cuts are

typically real. For the su(2) Heisenberg magnet the solutions are distributed in the com-

plex plane as some umbrella shaped curves [59].). Roots of different types can form bound

states, called stacks [15], as shown in figure 2.5b. The stacks behave as fundamental exci-

tations and can also form cuts of stacks as represented in figure 2.5c.

As mentioned above, we find already all the ingredients we will need for the study

of the BS equations in the simple example of a su(1, 2) spin chain in the fundamental

representation described by the following system of NBA equations5

eiφ1−iφ2 = −Q1

(
u1,j + i

)

Q1

(
u1,j − i

)
Q2

(
u1,j − i/2

)

Q2

(
u1,j + i/2

) , j = 1 . . . K1 (2.93)

eiφ2−iφ3

(

u2,j − i
2

u2,j +
i
2

)L

= −Q2

(
u2,j + i

)

Q2

(
u2,j − i

)
Q1

(
u2,j − i/2

)

Q1

(
u2,j + i/2

) , j = 1 . . . K2 . (2.94)

The eigenvalues of the local conserved charges are functions of the roots u2,j only and are

given by

Qr =
K2

∑
j=1

i

r − 1

(

1

(u2,j + i/2)r−1
− 1

(u2,j − i/2)r−1

)

. (2.95)

We will often call these momentum carrying roots carrying charges by middle node roots.6

First, consider only middle node excitations, K1 = 0 6= K2 in the equations reduces to

the sl(2) case considered above

2πnA + φ2 − φ3 =
1

x
+ 2 /G2(x) , x ∈ CA (2.96)

where we introduce the resolvents

Ga(x) =
∫

ρa(y)

x − y
, ρa(y) =

1

L

Ka

∑
j=1

δ(x − xa,j) (2.97)

5 These equations are exactly the same as for the su(3) spin chain except for the sign of the Dynkin labels

which makes the system simpler because the Bethe roots are in general real.

6 This name is not very proper in this situation. For the BS equations the momentum carrying roots are

indeed in the middle of the Dynkin diagram.



2. Finite size corrections in Heisenberg spin chain 53

Fig. 2.6: In the scaling limit, to the leading order, the bosonic duality reads Q2 ≃ Q1Q̃1 with Qa =

∏
Ka

k=1(u − ua). Thus, if we start with the configuration in figure 2.6a where the K1 roots

u1 form a cut of stacks together with K1 out of the K2 middle node roots u2 and apply

the bosonic duality to this configuration, the K2 − K1 new roots ũ1 must be close to the

roots u2 which were previously single while the cut of stacks in the left of figure 2.6a will

become, after the duality, a cut of simple roots – see figure 2.6b.

Let us also introduce some notation useful for what will follow. Defining the quasi-

momenta as

p1 = − 1

2x
+ G1 − φ1 ,

p2 = − 1

2x
− G1 + G2 − φ2 , (2.98)

p3 = − 3

2x
− G2 − φ3 ,

we can add the indices 23 to the mode number nA and to the cut CA in (2.96) and recast

this equation as

2πnA
23 = p/2 − p/3 , x ∈ CA

23 . (2.99)

Next let us consider a state with only two roots u2,1 ≡ u and u1,1 ≡ v with different

flavors, that is K1 = K2 = 1. Bethe equations then yield

u =
1

2
cot

φ1 − φ3 + 2πn

2L
, v = u +

1

2
cot

φ1 − φ2

2
(2.100)

which tells us that if n ∼ 1 we are in the scaling limit where v ∼ u ∼ L and v = u +

O(1) – the two Bethe roots form a bound state, called stack [15], and can be thought

as a fundamental excitation – see figure 2.5b. On the other hand we notice that, strictly

speaking, for the usual untwisted Bethe ansatz with φa = 0 the stack no longer exists.

Since the stack in figure 2.5b seems to behave as a fundamental excitation one might

wonder whether there exists a cut with K1 = K2 roots of type u1 and u2, like in figure 2.5c,

dual to the configuration plotted in figure 2.5a. To answer affirmatively to this question

let us introduce a novel kind of duality in Bethe ansatz which we shall call bosonic duality.
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Fig. 2.7: In the scaling limit the configurations in figure 2.6 condense into some disjoint segments,

cuts, and we obtain a Riemann surface whose sheets are the quasi-momenta. In this con-

tinuous limit the duality corresponds to the exchange of the Riemann sheets.

Indeed, as we explain in detail in section 2.2.4, given a configuration of K1 roots of

type u1 and K2 roots of type u2, we can write

2i sin (τ/2) Q2(u) = eiτ/2Q1(u − i/2)Q̃1(u + i/2) − e−τ/2Q1(u + i/2)Q̃1(u − i/2) ,

(2.101)

where

Q̃1(u) =
K̃1

∏
j=1

(
u − ũ1,j

)
, K̃1 = K2 − K1 ,

and τ = φ1 − φ2. Moreover this decomposition is unique and thus defines unambigu-

ously the position of the new set of roots ũ1. Then, as we explain in section 2.2.4, the new

set of roots {ũ1, u2} is a solution of the same set of Bethe equations (2.91) with

φ1 ↔ φ2 .

Let us then apply this duality to a configuration like the one in figure 2.5a where the roots

u2 ∼ L are in the scaling limit and where there are no roots of type u1, K1 = 0. To the

leading order, we see that the ũ1 in (2.101) will scale like L so that the ±i/2 inside the

Baxter polynomials can be dropped and we find Q2 ≃ Q̃1, that is

ũ1,j = u2,j + O(1)

and therefore we will indeed obtain a configuration like the one depicted in figure 2.5c.

Moreover the local charges (2.95) of this dual cut are exactly the same as those of the

original cut 2.5a since they are carried by the middle node roots u2 which are untouched

during the duality transformation.

Finally, if we apply the duality transformation to some configuration like that in figure

2.6a in the scaling limit we find, by the same reasons as above, that Q2(u) ≃ Q1(u)Q̃1(u).

This means that the dual roots ũ1 will be close to the roots u2 which are not yet part of a

stack – the ones making the cut in the right in figure 2.6a. Thus, after the duality, we will

obtain a configuration like the one in figure 2.6b.
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We conclude that, in the scaling limit with a large number of roots, the distributions of

Bethe roots condense into cuts in such a way that the quasi-momenta pi introduced above

become the three sheets of a Riemann surface, see figure 2.7a, obeying

2πnA
ij = p/i − p/j , x ∈ CA

ij . (2.102)

when x belongs to a cut joining sheets i and j with mode number nA
ij . The duality trans-

formation amount to a reshuffling of sheets 1 and 2 of this Riemann surface7 so that a

surface like the one plotted in figure 2.7a transforms into the one indicated in figure 2.7b.

2.2.1 Finite size correction to Nested Bethe Ansatz equations

In this section we will study the leading 1/L corrections to the scaling equations (2.102).

Moreover since the charges of the solutions are expressed through middle node roots u2

and since these roots are duality invariant it is useful to write the Bethe equations in

terms of these roots only to have duality invariant equations. Let us then consider a

given configuration of roots condensed into some simple cuts C23 and some cuts of stacks

C13. Then, to leading order, at cuts C23 we have

1

x
+ 2

∫

C23

− ρ2(y)dy

x − y
+

∫

C13

ρ2(y)dy

x − y
= 2πnA

23 + φ2 − φ3 , x ∈ C23 (2.103)

because in a cut C13 we have ρ1 ≃ ρ2 + O (1/L). To study finite size corrections to

this equation two contributions must be considered. On the one hand, as we saw in the

previous section, when expanding the self interaction we get [53, 75, 49, 50, 52, 76]

∑
j 6=k

i log
u2,k − u2,j − i

u2,k − u2,j + i
= 2

∫

C23

− ρ2(y)dy

x − y
+ 2

∫

C13

ρ2(y)dy

x − y
+

1

L
πρ′2 cot πρ2

where the 1/L correction comes from the contribution to the sum from the roots separated

by O(1). On the other hand the auxiliary roots appear as8

∑
j

i log
u2,k − u1,j + i/2

u2,k − u1,j − i/2
= −

∫

C13

ρ1(y)

x − y
dy = −

∫

C13

ρ2(y)

x − y
dy −

∫

C13

ρ1(y) − ρ2(y)

x − y
dy

where the last term accounts for the mismatch in densities in cuts C13 and is clearly also a

O(1/L) effect. Bellow we will compute this mismatch and find

ρ1(x) − ρ2(x) =
∆ cot12

2πiL
=

cot+21 − cot+23

2πiL
, x ∈ C13 (2.104)

7 As we shall see in the next section this interpretation can be made exact, and not only valid in the

scaling limit.

8 recall that the Bethe roots u2,k belongs to a C23 cut and therefore is always well separated from u1,j roots

which always belong to C13 cuts.
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where ∆ f ≡ f (x + i0) − f (x − i0) and

cotij ≡
p′i − p′j

2
cot

pi − pj

2
. (2.105)

Thus we find, for x ∈ C23,

1

x
+ 2

∫

C23

− ρ2(y)dy

x − y
+

∫

C13

ρ2(y)dy

x − y
= 2πnA

23 + φ2 − φ3 −
1

L



cot23 −
∫

C13

∆ cot12

x − y

dy

2πi



(2.106)

As explained before, if we apply the duality transformation, cuts C23 become cuts C13 and

vice-versa and, to leading order, p1 ↔ p2. Thus for cuts C13 we find precisely the same

equation (2.106) with 1 ↔ 2, so that for x ∈ C13

1

x
+ 2

∫

C13

− ρ2(y)dy

x − y
+

∫

C23

ρ2(y)dy

x − y
= 2πnA

13 + φ1 − φ3 −
1

L



cot13 −
∫

C23

∆ cot12

x − y

dy

2πi



(2.107)

These two equations describing the finite size corrections for the two types of cuts of the

su(1, 2) spin chain are the main results of this section.

In what follows we will derive this result from two different approaches. Namely,

we will find this finite size corrections using a Baxter formalism, similar to the one con-

sidered in the previous section, based on transfer matrices for this spin chain in several

representations and by exploiting the duality we mentioned in the previous section. It

will become clear that the generalization to other NBA equations based on higher rank

symmetry groups is straightforward.

2.2.2 Derivation using the transfer matrices

The central object in the study of integrable systems is the transfer matrix T̂(u). The alge-

braic Bethe ansatz formalism has the diagonalization of such objects as main goal and the

Bethe equations appear in the process of diagonalization (see [57] and references therein

for an introduction to the algebraic Bethe ansatz). As functions of a spectral parameter u

and of the Bethe roots ua,j these transfer matrices seem to have some poles at the positions

of the Bethe roots. On the other hand they are defined as a product of R operators which

do not have these singularities. This means that the residues of these apparent poles must

vanish. These analyticity conditions (on the Bethe roots) turn out to be precisely the Bethe

equations, and thus, if we manage to obtain the eigenvalues of the transfer matrices, we

can use this condition of pole cancelation to obtain the Bethe equations without going

through the algebraic Bethe ansatz procedure, see for example [77, 78, 67, 73]. For the
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su(1, 2) spin chain we have the following transfer matrices in the anti-symmetric repre-

sentations:

T (u) = e−iφ2
Q1(u − 3i

4 )

Q1(u + i
4)

Q2(u + 3i
4 )

Q2(u − i
4)

(

u − 5i
4

u − 3i
4

)L

(2.108)

+ e−iφ1
Q1(u + 5i

4 )

Q1(u + i
4)

(

u − 5i
4

u − 3i
4

)L

+ e−iφ3
Q2(u − 5i

4 )

Q2(u − i
4)

(

u − 5i
4

u + i
4

)L

,

T (u) = T̄ (ū)

(

u − 5i
4

u + 5i
4

)L

, T (u) =

(

u − 5i
4

u + 5i
4

)L

.

One can easily see that the Bethe equations do follow from requiring analyticity of these

transfer matrices.

In the previous section it was shown and emphasized that the TQ Baxter relations are

the most powerful method to extract finite size corrections to the scaling limit of Bethe

equations.

In this section we will use the transfer matrices presented above along with the fact

that, due to the Bethe equations, they are good analytical functions of u to find what are

the finite size corrections to this Nested Bethe ansatz. Since for generic (super) nested

Bethe ansatz the transfer matrices in the several representations are known, this proce-

dure can be easily generalized for other NBA’s.

The key idea to find the finite size corrections to NBA is to use the transfer matrices in

the various representations to define a new set of quasi-momenta qi as the solutions of an

algebraic equation whose coefficients are these transfer matrices. For example, to leading

order,

T (u) ≃ eip1 + eip2 + eip3 ,

T (u) ≃ ei(p1+p2) + ei(p2+p3) + ei(p3+p1) ,

T (u) ≃ ei(p1+p2+p3) ,

so that if we define a set of exact quasimomenta qi by

T (u) − eiq T (u)

(

1 − L

4u2

)

+ e2iq T (u)

(

1 − L

4u2

)

− e3iq = 0 , (2.109)

then, to leading order, qi ≃ pi. Notice however that the coefficients in this equation have

no singularities except some fixed poles close to u = 0. Thus, defined in this way, the

quasi-momenta qi constitute a 4 sheet algebraic surface (modulo 2π ambiguities) such

that

q/i − q/j = 2πnA
ij , x ∈ Cij , (2.110)
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and, needless to say, this is an exact result in L, it is not a classical (scaling limit) leading

result like (2.102). On the other hand, the expansion at large L of the above algebraic

equation yields

q1 = p1 +
1

2L
(+ cot12 + cot13)

q2 = p2 +
1

2L
(− cot21 + cot23)

q3 = p3 +
1

2L
(− cot31 − cot32) ,

which follows from the expansion

T (u)

(

1 − L

4u2

)

= eip1 + eip2 + eip3

− 1

4L

[

eip1(2p′1 − p′2 − p′3) + eip2(p′1 − p′3) + eip3(p′1 + p′2 − 2p′3)
]

+ O
(

1

L2

)

T (u)

(

1 − L

4u2

)

= ei(p1+p2) + ei(p2+p3) + ei(p3+p1)

− 1

4L

[

ei(p1+p2)(p′1 + p′2 − 2p′3) + ei(p1+p3)(p′1 − p′3) + ei(p2+p3)(2p′1 − p′2 − p′3)
]

+ O
(

1

L2

)

,

T (u) = ei(p1+p2+p3) + O
(

1

L2

)

.

of the several transfer matrices. Then, to the first order in 1/L the exact equation (2.110)

gives, for the quasi-momenta pi introduced in (5.15),

p/2 − p/3 = 2πnA
23 −

1

L
cot23 , x ∈ C23 (2.111)

p/1 − p/3 = 2πnA
13 −

1

2L
(cot12 +2 cot13 + cot32) , x ∈ C13 (2.112)

where in (2.111) we use the fact that function cot31 − cot21 vanishes under the slash on the

cut C23 since

cot+ij = cot−kj , x ∈ Cik . (2.113)

Equations (2.111),(2.112) are the finite size corrections we aimed at.

Finally q2 must have no discontinuity at a cut C13 and therefore

∆p2 = 2πi (ρ1 − ρ2) =
1

L
(cot+21 − cot+23) , x ∈ C13 . (2.114)

Thus, replacing the quasi-momenta pi by its expressions in terms of resolvents (5.15) and

relating the density of auxiliary roots ρ1 to that of the middle node roots ρ2 through (2.114),

we recover precisely (2.106) and (2.107) as announced.
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We would like to stress the efficiency of the TQ relations. We were able to find the usual

cot contributions (coming from the expansion of the log’s of the Bethe equations when the

Bethe roots are close to each other) plus the mismatch in densities of the different types of

roots making the cuts of stacks using only the fact that due to Bethe equations the transfer

matrices in several representations were analytical functions of u. The computation done

in this way is by far more economical than a brute force expansion of the Bethe equations.

Finally let us make an important remark. To derive (2.107) from (2.112) one should

use

cot12 = − 1

2πi

∫

C13∪C23

∆ cot12

x − y
dy (2.115)

which is clearly a valid relation if cot12 has only branch cuts as singularities. For generic

twists and for small enough cuts C13 and C23 this is the case. Indeed, in the absence of

Bethe roots we have no cuts at all and thus p1 − p2 = φ2 − φ1. Suppose φ2 − φ1 6= 2πn.

Then, by continuity, when we slowly open some cuts C23 and C13 then p1 − p2 will start

taking positive values around φ2 − φ1 without ever being zero. Thus, if the cuts are small

enough we will never get poles in cot12. In the section 2.2.4 we will see that the stacks

as described in [11] only exist when this assumption of absence of poles is right and are

destroyed when p1 − p2 reaches 2πn.

2.2.3 Re-derivation using the bosonic duality in the scaling limit

In this section let us re-derive the mismatch formula (2.104) using the bosonic duality

(2.116). Besides the obvious advantage for what concerns our comprehension of having

a second derivation there are systems for which the Bethe equations are known but the

algebraic formalism behind these equations is still not well developed (this is the case for

example for the AdS/CFT Bethe equations proposed by Beisert and Staudacher which

we will study in chapter 4.2).

Denoting

u1,i = u2,i − ǫi , ũ1,i = u2,i − ǫ̃i , ǫ ∼ 1

and expanding the bosonic duality (2.116) in the scaling limit (L → ∞) we get

sin(τ/2) = sin

(
1

2

(
G̃1 − G1 + τ

)
)

exp

(
K1

∑
i=1

ǫi

u − u1
i

+
K̃1

∑
i=1

ǫ̃i

u − u1
i

)

,

where τ = φ1 − φ2. Taking the logarithm of this equation and differentiating with respect

to u we get

∑
ǫi

(u − u1
i )

2
+ ∑

ǫ̃i

(u − u1
i )

2
=

G̃′
1 − G′

1

2L
cot

G̃1 − G1 + τ

2



2. Finite size corrections in Heisenberg spin chain 60

where we notice that the left hand side is precisely the difference of resolvents G2 − G1 −
G̃1. Thus we find

G2 − G1 − G̃1 =
G̃′

1 − G′
1

2L
cot

G̃1 − G1 + τ

2
≃ G′

2 − 2G′
1

2L
cot

G2 − 2G1 + τ

2
=

1

L
cot12 .

Finally, by computing the discontinuity of this expression at the cuts C13 we will get the

mismatch of the densities of the roots in a cut of stacks9

ρ1 − ρ2 =
∆ cot12

2πiL
=

cot+21 − cot+23

2πiL
,

which was the gap in the chain of arguments presented in the beginning of the section

2.2.1 and leading to (2.106).

Finally let us show that the bosonic duality amounts to a simple exchange of Riemann

sheets in the scaling limit. Consider for example

p̃1 = − 1

2x
+ G̃1 − φ̃1 = − 1

2x
+ G2 − G1 − φ̃1 = p2

since, as we will see more carefully in the next section, φ̃1,2 = φ2,1.

2.2.4 More about bosonic duality

In this section we will explain some details behind the bosonic duality (2.101) mentioned

in section 2.2. There are two main steps to be considered. On the one hand we have

to prove that for a set of K2 generic complex numbers u2 and K1 roots u1 obeying the

auxiliary Bethe equations (2.93) it is possible to write (τ = φ1 − φ2)

2i sin (τ/2) Q2(u) = eiτ/2Q1(u − i/2)Q̃1(u + i/2) − e−iτ/2Q1(u + i/2)Q̃1(u − i/2) ,

(2.116)

and that, in doing so, we define the position of a new set of numbers ũ1. A priori this

is not at all a trivial statement because we have a polynomial of degree K2 on the left

whereas on the right hand side we have only K2 − K1 parameters to fix. However, as we

will see, if K1 equations (2.93) are satisfied it is possible to write Q2(u) in this form. This

will be the subject of the section 2.2.4.

Assuming (2.116) to be proved we can use this relation to show that in the original

Bethe equations we can replace the roots u1 by the new roots ũ1 with the simultaneous

exchange φ1 ↔ φ2. Indeed if we evaluate the duality at u = u2,j we find

Q1(u2,j − i/2)

Q1(u2,j + i/2)
= ei(φ2−φ1)

Q̃1(u2,j − i/2)

Q̃1(u2,j + i/2)
,

9 ∆ f = f + − f−, so that ρ = − ∆G
2πi
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meaning that in the equation (2.94) for the u2 roots we can replace the roots u1 by the dual

roots ũ1 provided we replace φ1 ↔ φ2. Moreover if we take u = ũ1,j ± i/2 we will get

eiφ2−iφ1 = − Q̃1(ũ1 + i)

Q̃1(ũ1 − i)

Q2(ũ1 − i/2)

Q2(ũ1 + i/2)
,

which we recognize as equation (2.93) with K2 − K1 roots ũ1 in place of the K1 original

roots u1 and with φ1 ↔ φ2. Finally evaluating (2.116) at u = u1,j ± i/2 we will get the

original equation (2.93) so that we see that it must be satisfied in order to equation (2.116)

to be valid.

In section 2.2.4 we will also see that the transfer matrices are invariant under the

bosonic duality accompanied by an appropriate reshuffling of the phases φa. In section

2.2.5 some curious examples of dual states will be given.

Decomposition proof

In this section we shall prove that one can always decompose Q2(u) as in (2.116) and that

this decomposition uniquely fixes the position of the new set of roots ũ1. In other words,

let us show that we can set the polynomial

P(u) ≡ e+i τ
2 Q1(u − i/2)Q̃1(u + i/2) − e−i τ

2 Q1(u + i/2)Q̃1(u − i/2) − 2i sin
τ

2
Q2(u)

to zero through a unique choice of the dual roots ũ1.

• Consider first the case K1 = 0. Then it is trivial to see that we can always find unique

polynomial Q̃1 = uK2 + ∑
K2
n=1 anun−1 such that

e+i τ
2 Q̃1(u + i/2) − e−i τ

2 Q̃1(u − i/2) = 2i sin
τ

2
Q2(u) .

because this amounts to solving K2 linear equations for K2 coefficients an with non-

degenerate triangular matrix.

• Next let us consider K1 ≤ K2/2. First we choose Q̃1 to satisfy K1 equations

Q̃1(u1
p) = 2ie−i τ

2 sin
τ

2

Q2(u1
p − i/2)

Q1(u1
p − i)

≡ cp , p = 1, . . . , K1

these conditions will define Q̃1(u) up to a homogeneous solution proportional to

Q1(u),

Q̃1(u) = Q1(u)q̃1(u) +
K1

∑
p=1

Q1(u)

Q′
1(u1

p)(u − u1
p)

cp
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where q̃1(u) is some polynomial of the degree K2 − 2K1. Now from (2.93) we notice

that with this choice of Q̃1 we have

P(u1
p + i/2)

Q2(u1
p + i/2)

=
P(u1

p − i/2)

Q2(u1
p − i/2)

= 0 , p = 1, . . . , K3

and thus

P(u) = Q1(u + i/2)Q1(u − i/2)p(u)

where

p(u) = ei τ
2 q̃1(u + i/2) − e−i τ

2 q̃1(u − i/2) − 2i sin
τ

2
q2(u)

and q2 is a polynomial. Thus we are left to the same problem as above where K1 =

0. For completeness let us note that we can write q2(u) explicitly in terms of the

original roots u1 and u2,

q2(u) =
Q2(u)

Q1(u + i/2)Q1(u − i/2)
− poles

where the last term is a simple collection of poles at u = u1
p ± i/2 whose residues

are such that q2(u) is indeed a polynomial.

• We can see that the number of the solutions of (2.93) with K1 = K and K1 = K2 − K

is the same (see [57] for examples of states counting). Thus for each solution with

K1 ≥ K2/2 we can always find one dual solution with K1 ≤ K2/2 and in this way

we prove our statement for K1 ≥ K2/2

• Finally let us stress the uniqueness of the Q̃1. If K1 > K̃1 we have nothing to show

since we saw explicitly above how the bosonic duality constrains uniquely the dual

polynomial Q̃1. Let us then consider K1 < K̃1 and assume we have two different

solutions Q̃1
1 and Q̃2

1. Then from the duality relation (2.116) for either solution we

find

ei τ
2 Q1(u − i/2)

(

Q̃1
1(u + i/2) − Q̃2

1(u + i/2)
)

=

e−i τ
2 Q1(u + i/2)

(

Q̃1
1(u − i/2) − Q̃2

1(u − i/2)
)

.

Evaluating this expression at u = u1,j + i/2 we find that Q̃1
1(u1,j) − Q̃2

1(u1,j) = 0 so

that Q̃1
1(u1) − Q̃2

1(u1) = Q1(u)h(u) and therefore

ei τ
2 h(u + i/2) = e−i τ

2 h(u − i/2)

which is clearly impossible for polynomial h(u) – for large u we can neglect the i/2’s

to obtain eiτ = 1 thus leading to a contradiction.
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Transfer matrix invariance under the bosonic duality

In this section we will examine the transformation properties of the transfer matrices un-

der the bosonic duality. In Appendix A we consider this problem for the general su(N|M)

group. For now let us just take T for su(1, 2) from (2.108). Using (2.116) we can express

ratios of Q1’s through Q̃1 and Q2 so that

T (u) = e−iφ2

(

+
2i sin τ

2 e−i τ
2 Q2(u − i

4)

Q1(u + i
4)Q̃1(u + i

4)
+ e−iτ Q̃1(u − 3i

4 )

Q̃1(u + i
4)

)

Q2(u + 3i
4 )

Q2(u − i
4)

(

u − 5i
4

u − 3i
4

)L

+ e−iφ1

(

−2i sin τ
2 e+i τ

2 Q2(u + 3i
4 )

Q1(u + i
4)Q̃1(u + i

4)
+ e+iτ Q̃1(u + 5i

4 )

Q̃1(u + i
4)

) (

u − 5i
4

u − 3i
4

)L

+ e−iφ3
Q2(u − 5i

4 )

Q2(u − i
4)

(

u − 5i
4

u + i
4

)L

.

We see that for τ = φ1 − φ2 the terms with sin τ
2 cancel and we get the old expression for

T with u1 replaced by ũ1 and φ1 ↔ φ2.

This simple transformation property of the transfer matrices automatically implies

that the Riemann surface defined by the algebraic equation (2.109) is untouched under

the duality transformation (to all orders in L), so that the duality can cause at most some

reshuffling of the sheets. However, as we will see in the next section, not necessarily the

sheets as a whole are exchanged – this operation will be in general done in a piecewise

manner.

2.2.5 Examples of the dual configurations

In this section we will study some curious Bethe roots distributions for the twisted su(1, 2)

spin chain described by the nested Bethe equations (2.93) and (2.94) and for the usual

su(2) Heisenberg chain,
(

u1,j +
i
2

u1,j − i
2

)L

= −Q1

(
u1,j + i

)

Q1

(
u1,j − i

) . (2.117)

Using the first example we shall understand the importance of twists to stabilize big cuts

of stacks like the ones depicted in figures 2.5a, 2.5b and explain how the stacks gets de-

stroyed as we decrease the twists.

We can dualize su(2) solutions of the twisted10 Heisenberg ring using the same duality

(2.101) as before with Q2(u) → uL. We will consider the dual solutions to the vacuum and

to a 1-cut solution for the Heisenberg spin chain (2.117).

10 For zero twist the duality becomes degenerate and we will see below that it needs to be slightly modi-

fied.



2. Finite size corrections in Heisenberg spin chain 64

Fig. 2.8: The upper and the lower configuration of Bethe roots are dual to one another. Big blue

dots are middle node roots u2, yellow dots are auxiliary roots u1. The formation of cuts

of stacks is manifest for this situation where the twists are large (like π/2) and the filling

fractions are small.

Fig. 2.9: Disintegration of the stack configuration. When the twist is large (the top left corner) the

auxiliary roots form bound states together with the middle node ones and constitute a cut

of stacks. As we decrease the twist fluctuation n23 = 1 (the red crossed dot) enters the

cut of stacks (the top right corner) and subsequently partly disintegrate the cut of stacks

forming some zipper like configuration (the bottom left corner). At some very small value

of the twist the configuration of Bethe roots bears no resemblance with a cut of stacks.

Big enough twists, small enough fillings and zippers

In the previous sections we saw that the introduction of twists in the NBA equations are

needed to have a configuration with auxiliary roots u1 close to some momentum carrying

roots u2. In figure 2.8 we have two numerical solutions of the Bethe equations which

are related by the bosonic duality. In either of them we see a configuration of Bethe roots

with a simple cut with middle roots only (in blue) and a cut of stacks (containing blue and

yellow roots). In this situation it is clearly reasonable to think of stacks as bound states of

different types of roots and we see that they indeed condense into multicolor cuts.

We will examine what happens when we decrease the twists (or increase filling frac-

tions, which is the same qualitatively). For simplicity we consider the configuration, dual

to the simple one cut solution (K2 = K and K1 = 0) with no twist for the middle node

roots, φ2 − φ3 = 0, and some generic twist φ1 − φ2 = τ for the auxiliary roots. Bosonic

duality will leave untouched middle node roots u2 and create K new axillary roots u1.
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Fig. 2.10: In the scaling limit the algebraic curves for eipj are the same before the duality (blue cut

only) and after the duality (when the auxiliary roots are created). The duality causes

interchange of the sheets outside the bubble, while keeping the order untouched inside.

This follows from the need of a positive density for the “virtual” cut. In other words

the duality is indeed only interchanging the sheets of the Riemann surface although it is

interchanging them in a piecewise way.

In the upper left corner of figure 2.9 we applied the duality for some big twist τ = 4.6

while in the bottom right corner of the same figure we have a configuration of Bethe roots

with some small twist τ = 0.2. In this latter case the auxiliary (yellow) roots clearly do

not form stacks together with the middle node (blue) roots!, rather they form a bubble,

containing the original cut of roots u2.

To understand what happens in the scaling limit consider the position of n23 = 1

fluctuation, given by (4.3), which would be a small infinitesimal cut between p2 and p3. In

figure 2.9 the position of this virtual fluctuation is marked by a red crossed dot. When the

twist is big enough (and filling fraction is small enough) the fluctuation is to the left from

the cut. When we start decreasing the twist the fluctuation approaches the cut (upper

right picture on fig 2.9) and at this point we have at the same time

p2(xn) − p3(xn) = 2π

and

p1(xn) − p3(xn) = 2π ,

which implies p1 − p2 = 0 so that equation (2.115) becomes wrong at this point. When

we continue decreasing the twist the fluctuation passes through the cut and becomes a

n12 = 0 fluctuation. If we think of the fluctuation as being a small cut along the real axis

we see that density becomes negative after crossing the cut:

0 < ρ
f luc
23 = −∆(p2 − p3)

4πi
= −∆(−p1 − p2)

4πi
= −ρ

f luc
12

This means that two branch points of the infinitesimal cut should not be connected di-

rectly, but rather by some macroscopical curve with real positive density! This curves

z(t) can be calculated from the equation ρ(z)dz ∈ R
+ or

p1(z) − p2(z)

2πi
∂tz = ±1



2. Finite size corrections in Heisenberg spin chain 66

and the resulting curve is plotted in black on the two bottom pictures on the figure 2.9.

This is very similar to what happens when a fluctuation passes through the 1 cut su(2)

configuration [79]. In the scaling limit the black curve corresponds to the cut connecting

p1 and p2 like on the figure 2.10.

At first sight these figures seem to be defying our previous results. Indeed we checked

in the previous section that the transfer matrices themselves are invariant under the

bosonic duality. Thus the algebraic curves obtained from (2.109) should be the same after

and before duality and thus what one naturally expects is a simple interchange of Rie-

mann sheets p1 ↔ p2 under the duality transformation. What really happens is a bit

more tricky. The quasimomenta are indeed only exchanged but this exchange operation

is done in a piecewise manner. That is,if we denote the new quasi-momenta by pnew
i and

the old ones by pold
i and if we denote the bubble in figure 2.10 by R then we have

pnew
1 =

{

pold
2 , outside R

pold
1 , inside R , pnew

2 =

{

pold
1 , outside R

pold
2 , inside R , pnew

3 = pold
3

where the border of the region R can be precisely determined in the scaling limit as ex-

plained above.

Dualizing momentum carrying roots

In this section we will consider an example of application of the bosonic duality to the

Heisenberg magnet11. The duality (2.101) can be applied to the roots u1 obeying (2.117)

provided we replace Q2(u) → uL. In fact if we want to consider strictly zero twist we

need a new duality because that one is clearly degenerate in this limiting case. The proper

modified expression is in this case

i(K̃1 − K1)uL = Q1(u − i/2)Q̃1(u + i/2) − Q1(u + i/2)Q̃1(u − i/2) .

and the number of dual roots is now L − K1 + 1. Contrary to what happened with non-

zero twists, here, the dual solution is not unique. Indeed if K̃1 > K1 we can as well use

Q̃α
1 ≡ α Q1 + Q̃1 . (2.118)

All these solutions, parameterized by the constant α, have the same charges because the

transfer matrix is invariant under this transformation – see Appendix A. Notice that if

initially we have a physical state with K1 < L/2 roots then all dual states (2.118) are

unphysical with K̃1 > L/2 violating the half-filling condition. Still, it is interesting, at the

11 This section beneficed a lot from the insightful discussions with T. Bargheer and N. Beisert whom we

should thank.
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Fig. 2.11: Three configurations of Bethe roots dual to the ferromagnetic vacuum of the untwisted

Heisenberg spin chain. For each physical solution (below half filling) of the Bethe equa-

tions there is a one parameter (α) family of dual unphysical solutions. To the left,

α is large and the roots distribute themselves along a circle with radius Rα given by

(RαL)L = α. Decreasing α the circle will touch the fluctuations n = ±1. Similarly to the

previous section the virtual infinitesimal cuts become macroscopical bubble cuts with

cusps at the position of the fluctuations. Intersection points of the new cuts with the

circle are connected by condensates, which are logarithmic cuts on the algebraic curve

[79].

level of Bethe equations, to understand how these solutions look like. First of all let us

single out a particular Q̃1 out of the various solutions to (2.118) so that

Q̃α
1 = uK̃1 +

K̃1−1

∑
l=0

cα
l ul (2.119)

becomes well defined through (2.118). We chose Q̃1 = Q̃0
1 to be the dual solution with

c0
0 = 0.

Consider for example the vacuum state for which Q1 = 1. Let us first take α to be very

large so that we can write

α + Q̃0
1 ≃ α + (xL)L . (2.120)

We see for large α the dual roots will be on a circle of radius |α|1/L

L . The corresponding

configuration is present on the first picture on the figure 2.11. In this figure we also plotted

a circle with this radius and one can see that the Bethe roots belong perfectly to the circle.

Let us now understand this configuration from the algebraic curve point of view. The

the quasi-momenta p1 = −p2 ≡ p = 1
2x − G, in the absence of Bethe roots, are simply

given by p = 1
2x . Let us find the curves with positive densities and mode number n = 0.

The density is given by ρ(x) = 1
2πi

1
x and we have to find the curves where ρ(x)dx is real.

It is easy to see that the only possibility is the circle centered at the origin with an arbitrary

radius. From the above arguments one can expect that for any α the roots will belong to
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Fig. 2.12: Dual configuration to 1-cut solution. Similar to the previous example for the large α the

dual roots are distributed along the big circle and cut (first picture). When the α decreases

and the circle crosses the cut we have to choose another curve with the positive density

(second and third pictures).

some circle. However, we analyzed only the curves with zero mode number and as we

see on the figure 2.11 for smaller α’s the circle develops four tails and two vertical lines.

Along these vertical lines the roots are separated by i (for L → ∞) forming the so called

condensates or Bethe strings. The tails meet at the points where the virtual fluctuation is

and the corresponding curves are given by

p(z) ± π

πi
∂tz = ±1 (2.121)

analogously to the previous section. In the last configuration on figure 2.11 the circle is

completely absent. There are only two n = ±1 curves which, at the interceptions, become

a 4π jump log condensate with the Bethe roots separated by i/2.

We also built the dual configurations to the 1-cut solution (see figure 2.12). The situa-

tion is similar to the vacuum, the only difference being that two tails (out of four) do not

tend to touch each other, but rather end at the branch points of the initial cut.

Appendix A: Transfer matrix invariance and the bosonic duality for

SU(K|M) supergroups

In this section we review the formalism of [73] which allows one to derive the trans-

fer matrices of usual (super) spin chains in any representation. We will use this general

formalism to prove the invariance under the bosonic dualities of all possible transfer ma-

trices one can build. The transfer matrices presented in section 2.108 can be obtained

trivially using this formalism12.
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As mentioned in section 2.2, for the standard SU(K|M) super spin chains (based on

the standard R–matrix R(u) = u + iP with P the super permutation) we can find the

(twisted) transfer matrix eigenvalues for the single column young tableau with a boxes

through the non-commutative generating functions [73, 74]

∞

∑
a=0

(−1)aeia∂u
Ta(u)

QK,M(u + (a − K + M + 1) i/2)
eia∂u =

−→
∏(x,n)∈γ

V̂−1
x,n (u) (2.122)

where γ is a path starting from (M, K) and finishing at (0, 0) (always approaching this

point with each step) in a rectangular lattice of size M × K as in figure 2.413, x = (m, k) is

point in this path and n = (0,−1) or (−1, 0) is the unit vector looking along the next step

of the path. Each path describes in this way a possible Dynkin diagram of the SU(K|M)

super group with corners denoting fermionic nodes and straight lines bosonic ones, see

figure 2.4. Finally,

V̂−1
(m,k),(0,−1)

(u) = eiφk
Qk,m(u + i(m − k − 1)/2)

Qk,m(u + i(m − k + 1)/2)

Qk−1,m(u + i(m − k + 2)/2)

Qk−1,m(u + i(m − k + 0)/2)
− ei∂u

V̂−1
(m,k),(−1,0)

(u) =

(

eiϕm
Qk,m−1(u + i(m − k − 2)/2)

Qk,m−1(u + i(m − k + 0)/2)

Qk,m(u + i(m − k + 1)/2)

Qk,m(u + i(m − k − 1)/2)
− ei∂u

)−1

where Qk,m is the Baxter polynomial for the roots of the corresponding node14 and {φk, ϕm}
are twists introduced in the transfer matrix [74]. Let us then consider a bosonic node like

the one in the middle of figure 2.4 (the vertical bosonic node is treated in the same fash-

ion). If the position of this node on the M × K lattice is given by (m, k) then it is obvious

that the only combination containing Qm,k in the right hand side of (2.122) comes from

the product of V̂−1
(m,k),(−1,0)

(u)V̂−1
(m+1,k),(−1,0)

(u) which reads

[

eiϕm+ϕm+1
Qk,m+1(u + i(m − k + 2)/2)

Qk,m+1(u + i(m − k + 0)/2)

Qk,m−1(u + i(m − k − 2)/2)

Qk,m−1(u + i(m − k + 0)/2)
+ e2i∂u−

−
(

eiϕm+1
Qk,m(u + i(m − k − 1)/2)

Qk,m(u + i(m − k + 1)/2)

Qk,m+1(u + i(m − k + 2)/2)

Qk,m+1(u + i(m − k + 0)/2)
+

+eiϕm
Qk,m−1(u + i(m − k + 0)/2)

Qk,m−1(u + i(m − k + 2)/2)

Qk,m(u + i(m − k + 3)/2)

Qk,m(u + i(m − k + 1)/2)

)

ei∂u

]−1

(2.123)

12 We should mention that the transfer matrices in section 2.108 are not exactly the same we have in this

Appendix but can be obtained from these via a trivial rescaling in u which obviously does not spoil the

invariance of these objects.

13 Notice that the path goes in opposite direction compared to the labeling a of the Baxter polynomial Qa

used before. In the notation of this section Qk,m corresponds to the node is at position (m,k) in this lattice.

14 Q̂0,0 is normalized to 1. If we are considering a spin in the representation where the first Dynkin node

has a nonzero Dynkin label then QM,K will play the role of the potential term. In general the situation is

more complicated, see [73]. In any case we are mainly interested in the dualization of roots which are not

momentum carrying thus we need not care about such matters.
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So, if we want to study the bosonic duality on the node (k, m) and its relation with the

invariance of several transfer matrices we need to study the last two lines of this ex-

pression. For simplicity let us shift u, omit the subscript k in the Baxter polynomials

Qk,m−1, Qk,m, Qk,m+1 and define the reduced transfer matrix as

t(u, ϕm, ϕm+1) ≡ eiϕm+1
Qm(u − i)

Qm(u)

Qm+1(u + i/2)

Qm+1(u − i/2)
+ eiϕm

Qm−1(u − i/2)

Qm−1(u + i/2)

Qm(u + i)

Qm(u)
.

(2.124)

Notice that the absence of poles at the zeros of Qm yields precisely the Bethe equations

for this auxiliary node.

Bosonic duality ⇒ Transfer matrices invariance

Thus, to check the invariance of the transfer matrices in all representations it suffices to

verify that the reduced transfer matrix t(u, ϕm, ϕm+1) is invariant under ϕm ↔ ϕm+1 and

Qm → Q̃m where

2i sin

(
ϕm+1 − ϕm

2

)

Qm−1(u)Qm+1(u) = (2.125)

ei
ϕm+1−ϕm

2 Qm(u − i/2)Q̃m(u + i/2) − e−i
ϕm+1−ϕm

2 Qm(u + i/2)Q̃m(u − i/2) .

which can be easily verified. If suffices to replace, in t(u, ϕm, ϕm+1) in (2.124),

Qm(u − i)

Qm(u)
→ e−i(ϕm+1−ϕm) Q̃m(u − i)

Q̃m(u)

+2ie−i
ϕm+1−ϕm

2 sin

(
ϕm+1 − ϕm

2

)
Qm−1(u + i/2)Qm+1(u + i/2)

Qm(u)Q̃m(u)
,

Qm(u + i)

Qm(u)
→ e+i(ϕm+1−ϕm) Q̃m(u + i)

Q̃m(u)

−2ie−i
ϕm+1−ϕm

2 sin

(
ϕm+1 − ϕm

2

)
Qm−1(u − i/2)Qm+1(u − i/2)

Qm(u)Q̃m(u)
,

which are obvious consequences of the bosonic duality.

Transfer matrix invariance ⇒ Bosonic duality

On the other hand suppose we have two solutions of Bethe equations, one of them charac-

terized by the Baxter polynomials {. . . , Qm−1, Qm, Qm+1, . . .} with twists {. . . , ϕm, ϕm+1, . . .

and another with {. . . , Qm−1, Q̃m, Qm+1, . . .} with twists {. . . , ϕm+1, ϕm, . . .} for which the

transfer matrices are the same, that is

t(u, ϕm, ϕm+1) = t̃(u, ϕm+1, ϕm) . (2.126)
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Then we can show that these two solutions are related by the bosonic duality (2.125).

Indeed if we build the Wronskian15 like object

W(u) ≡ ei
ϕm+1−ϕm

2
Qm(u − i/2)Q̃m(u + i/2)

Qm−1(u)Qm+1(u)
− e−i

ϕm+1−ϕm
2

Qm(u + i/2)Q̃m(u − i/2)

Qm−1(u)Qm+1(u)
.

we can easily check that

W(u + i/2) − W(u − i/2) =

−e−i
ϕm+1+ϕm

2
Qm(u)Q̃m(u)

Qm−1(u − i/2)Qm+1(u + i/2)
(t(u, ϕm, ϕm+1) − t̃(u, ϕm+1, ϕm)) = 0

Since by definition W(u) is a rational function this means it must be a constant. Thus if

ϕm 6= ϕm+1 we must have Km + K̃m = Km + Km+1 and the value of W can be read from the

large u behavior. In this way we obtain precisely the bosonic duality (2.125). If ϕm = ϕm+1

then we see that Km + K̃m = Km + Km+1 + 1 and we will obtain a different value for the

constant W which will correspond to the untwisted bosonic duality described in section

2.2.5.

15 We would like to thank A.Zabrodin and V.Kazakov for suggesting this nice interpretation for the

bosonic duality



3. QUASI-CLASSICAL QUANTIZATION AND FLUCTUATIONS

3.1 Preface

I
N THIS CHAPTER we will study the semi-classical quantization of the AdS5 ×S5 Metsaev-

Tseytlin superstring [9]. We will see that the semi-classical quantization of this very

nontrivial field theory is not conceptually much difficult the one-dimensional non-relativistic

particle in a smooth potential. Let us consider this very instructive example.

In terms of the quasi-momenta

p(x) ≡ h̄

i

ψ′(x)

ψ(x)
, (3.1)

the Schrodinger equation for the wave function ψ takes the Riccati form

p2 − ih̄p′ = 2m (E − V) . (3.2)

What do we know about p(x)? It is an analytical function which has, by definition (3.1),

a pole with residue

α =
h̄

i
(3.3)

at each of the zeros of the wave function. For the N-th excited state we will have N poles.

On the other hand, for very excited states, the right hand side in (3.2) is much larger than

h̄ and

p ≃ pcl ≡
√

2m (E − V) (3.4)

describes now a two-sheet Riemann surface. What happened was that, as N → ∞, the

poles in p(x) started to be denser and denser, condensing in a square root cut. Thus, in

the semiclassical limit we retrieve the Bohr-Sommerfeld quantization

1

2πh̄

∮

C
pcl(z) dz ≃ 1

2πh̄

∮

C
p(z) dz = N , (3.5)

where C encircles the cut. The first integral is precisely the action variable of the classical

motion.
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Fig. 3.1: Analytical structure of a quasi-momenta p(x) of a one dimensional system. Left: for low

lying states p(x) is a collection of poles. Right: for high energy states the poles condense

into a square root branch cut.

When we consider more degrees of freedom, in particular when we move to higher

dimensions, let us say two, the situation is not just a little worse. Indeed, we have no

proper generic recipe, except from lattice calculations, to extract the quantum spectrum,

or a part of it, of an interacting quantum field theory. However, if we are lucky, it might

happen that the theory is integrable. If it is the case, we can identify the action variables,

apply the Bohr-Sommerfield condition and find the quasi-classical spectrum of the theory.

For a wide class of two dimensional sigma models this happens to be the case and the

procedure is known explicitly. The central object is a collection of quasi-momenta, pi(x),

whose derivative defines a many-sheet Riemann surface. These sheets can be connected

by several cuts, to each of which we can associate a filling fraction by integrating the quasi-

momenta around the cut as in (3.5). These are the action variables of the theory. Grosso

modo, these filling fractions measure the size of the cut. Finally, when going through

these cuts the quasi-momenta can jump by 2πn with n being an integer labeling the cut .

The superstring on AdS5 × S5 background falls into this class of theories – the model

is known to be classically integrable [80, 8], as we show in the introduction. The algebraic

curve was built [11], and thus one can try to quasi-classically quantize the string. In

the string language, when we choose which Riemann sheets we connect by a cut we are

choosing which string polarization, i.e. which degree of freedom, to excite. The number

n and the filling fraction associated to the cut are in strict analogy with the mode number

and amplitude of a Fourier mode in a free theory such as the string in flat space [11].

Going back to our simple example, we can see that the existence of such discrete equa-

tions is indeed highly natural. For that purpose let us consider a simple harmonic oscil-

lator, V = m ω2x2

2 . From (3.2) it follows that p(x) = imωx + O(1/x). Since the quasi-

momentum is a meromorphic function with N poles on the real axis, it must be given

by

p(x) = imωx +
h̄

i

N

∑
i=1

1

x − xi
. (3.6)
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Fig. 3.2: A possible analytical stricture of the quasi-momenta of an integrable sigma model. Many

types of cuts are now possible. Cuts can join different sheets and each cut is marked by

its “mode number” nij. In flat space limit they become numbers of fourier modes. The

number of microscopical poles constituting the given cut is called a “filling fraction” and

can be calculated as a contour integral (3.5).

Then, from the large x behavior in (3.2) we read immediately

E = h̄ω

(

N +
1

2

)

(3.7)

while from the cancelation of each of the xi poles in the same equation we get1

xi =
h̄

2ωm

N

∑
j 6=i

1

xi − xj
(3.8)

which strongly resembles the equations one finds in the Bethe ansatz context.

When we expand the superstring action around some classical solution, characterized

by some conserved charges, we obtain, for the oscillations, a quadratic Lagrangian whose

quantization yields, for the semiclassical spectrum,

E = Ecl + ∑
A,n

NA,n EA,n , (3.9)

where we have dropped the zero energy excitation and denoted the number of quanta

with energy EA,n by NA,n. The subscript A labels the several possible string polarizations

we can excite while the mode number n is the Fourier mode of the quantum fluctuation.

In this article we shall address the question of finding this quasi-classical spectrum for

the AdS5 × S5 superstring using the algebraic curve mentioned above.

Let us explain the idea behind the computation. There are basically two main steps

involved. First we construct the curve associated with the classical solution around which

we want to consider the quantum fluctuations following the procedure explained in the

introduction. The second step consist of considering the small excitations around this

1 Its solution is given by the zeros of the Hermite polynomials, HN

(√
2mω

h̄ xi

)

= 0 .
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classical solution in the spirit of [52]. In terms of the algebraic curve this means adding

some microscopic cuts to this Riemann surface. By microscopic cuts we mean some finite

number of poles, just like in the simple example (3.3). Then, by construction, the energy

of the perturbed configuration is quantized as in (3.9).

As an application of this method we compute the fluctuation frequencies around the

circular su(2) and sl(2) string. These solutions belong to a family of circular solutions

whose quasi-momenta we computed explicitly in Appendix A. The frequencies we com-

pute in this way were obtained in [81, 82] and [83, 84] by direct analysis of the expanded

Lagrangian around these solutions in the Metsaev-Tseytlin GS superstring action.

3.2 Circular string solutions

I
N THIS SECTION we will write down an important class of rigid circular strings stud-

ied in [83]. As we explain below they are particularly simple from the algebraic

curve point of view and will therefore provide us an excellent playground to check our

method for some simple choice of parameters. In terms of the AdS5 and S5 embedding

coordinates, we can represent this general class of strings solutions with global charges

E =
√

λ E , J1 =
√

λJ1, . . ., as [83]

u2 + iu1 =

√

J3

w3
ei(w3τ+m3σ) , v2 + iv1 =

√

S2

w2
ei(w2τ+k2σ) ,

u4 + iu3 =

√

J2

w2
ei(w2τ+m2σ) , v4 + iv3 =

√

S1

w1
ei(w1τ+k1σ) , (3.10)

u6 + iu5 =

√

J1

w1
ei(w1τ+m1σ) , v6 + iv5 =

√

E
κ

eiκτ ,

where the equations of motion and Virasoro constraints impose

1 =
3

∑
i=1

Ji

wi
, 1 =

E
κ
−

2

∑
j=1

Sj

wj
, 0 =

2

∑
j=1

k jSj +
3

∑
i=1

miJi ,

w2
j = κ2 + k2

j , κ2 =
2

∑
j=1

Sj

2k2
j

wj
+

3

∑
i=1

Ji
w2

i + m2
i

wi
, (3.11)

w2
i = ν2 + m2

i , ν2 ≡
3

∑
i=1

Ji
w2

i − m2
i

wi
.

As explained in Appendix A, for this family of solutions the representative g can be writ-

ten as

g = eϕσσ+ϕττ · g0
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Fig. 3.3: Some configuration of poles on the algebraic curve corresponding to the S5 excitations

(red) and AdS5 excitations (blue). Black line denotes poles at ±1, connecting 4 sheets

with equal residues. The crosses correspond to the residue +α(x), while circles to residue

−α(x). Physical domain of the surface lies outside the unit circle.

where ϕσ,τ are linear combinations of Cartan generators and g0 is a constant matrix. Then

we see that the current

J = −g−1dg ,

and therefore also the flat connection A(x) in (1.12), are constant matrices! Then the

computation of the path order exponential (1.13) is trivial and the quasi-momenta p(x)

are simply obtained from the eigenvalues of 2π
i A(x). For a detailed account see Appendix

A.

3.3 Frequencies from the algebraic curve

I
N THIS SECTION we will consider the quasi-classical quantization of the AdS5 × S5 su-

perstring in the language of the algebraic curve. As an example we will find the low

lying energy spectrum for the excitations around some simple classical string solutions.

As we have already mentioned in the introduction and in section 1.1.1 the exact quasi-

momenta is made out of a large collection of poles. From (1.19) we infer the residue of

each pole,

p ≃
Sn

∑
a=k

α(xk)

x − xk
+ . . . , (3.12)
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Fig. 3.4: Some configuration of poles on the algebraic curve corresponding to the 8 fermionic

excitations. Black line denotes poles at ±1, connecting 4 sheets with equal residues. The

crosses correspond to the residue α(x), while circles to residue −α(x). Physical domain

of the surface lies outside the unit circle.

with

α(x) =
4π√

λ

x2

x2 − 1
. (3.13)

These poles may then condense into square root cuts forming a classical Riemann surface

like in fig. 3.1. The filling fraction and mode number of the cuts are in strict analogy

with the amplitude and mode number of a fourier mode in the usual flat space string.

Then, to consider the quantum fluctuations around this classical solution, amounts to

adding small cuts, i.e. poles, to this curve. The key ingredient allowing us to do so is

the knowledge of the residue (3.13) just like in the example (3.3) in the introduction. The

several possible choices of sheets to be connected by these poles correspond to the several

possible polarizations of the superstring, i.e. to the different quantum numbers. The 16

physical excitations are the 4 + 4 modes in AdS5 and S5 (fig 3.3) plus the 8 fermionic

fluctuations (fig 3.4).

Let us give a bit more of flavor to the discussion above. As we mentioned in the

introduction, the equations describing the eight sheet quasi-momenta can be discretized

[16] yielding a set of Bethe ansatz equations for the roots xi making up the cuts. The

resulting equations resemble (3.8) with an extra 2πni in the left hand side

∑
j 6=i

1

xi − xj
= 2πni + V(xi) .

This means that we can think of xi as being the position of a particle interacting with

many other particles via a two-dimensional Coulomb interaction, placed in an external
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potential2 and feeling an external force 2πni. What we are doing is, then, first considering

a large number of particles which will condense in some disjoint supports, the cuts, with

each cut being made out of particles with the same mode number ni. Then we add an

extra particle with some other mode number n. At the leading order, two things happen.

The particle will seek its equilibrium point in this background and will backreact, shifting

this background slightly by its presence [52]. The (AdS global time) energy E of the new

configuration is then shifted. When adding N particles we get precisely the quantum

steps in the spectrum, i.e. (3.9).

Technically the computations can be divided into two main steps. In what follows we

will use the notation (1.18) intensively. We must solve (1.16) for all cuts of the Riemann

surface where we now have p(x) → p(x) + δp(x) where p(x) is the quasi-momenta asso-

ciated with the classical solution.

• When applied to the microscopic cut, i.e. pole, equation (1.16) gives us, to leading

order, the position x
ij
n of the pole,

pi(x
ij
n) − pj(x

ij
n) = 2πn, |xij

n| > 1 , (3.14)

where i < j are taking values 1̂, 2̂, 3̂, 4̂, 1̃, 2̃, 3̃, 4̃ and indicate which two sheets share

the pole. We refer to domain |x| > 1 as physical domain. The interior of the unit circle

is just the mirror image of the physical domain, as we saw in the previous section

(1.21).

• Then, to find δp, and in particular the energy shift δE, we must solve the same

equations but now in the macroscopic cuts

δp+
i − δp−j = 0 , x ∈ C ij

n . (3.15)

This linear problem is to be supplemented with the known analytical properties of

δp(x) namely the asymptotic behavior presented below and the simple pole sin-

gularities with residues (3.13). In this way we are computing the backreaction de-

scribed above.

Before proceeding it is useful to introduce some simple notation. We shall consider N
ij
n

excitations with mode number n between sheet pi and pj such that

Nij ≡ ∑
n

N
ij
n (3.16)

is the total number of poles connecting these two sheets. Moreover, each excitation

has their own quantum numbers according to the global symmetry. The S5, AdS5 and

2 in (3.8) the potential is a quadratic one, for the actual Bethe equations it is something else
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fermionic excitations can then be identified as the several possible choices of sheets to be

connected, see figs 3.3 and 3.4,

S5 , (i, j) = (1̃, 3̃), (1̃, 4̃), (2̃, 3̃), (2̃, 4̃)

AdS5 , (i, j) = (1̂, 3̂), (1̂, 4̂), (2̂, 3̂), (2̂, 4̂)

Fermions , (i, j) = (1̃, 3̂), (1̃, 4̂), (2̃, 3̂), (2̃, 4̂), (3.17)

(1̂, 3̃), (1̂, 4̃), (2̂, 3̃), (2̂, 4̃)

The 16 physical degrees of freedom of the superstring are precisely these 16 elementary

excitations, also called momentum carrying excitations [11, 15].

When adding extra poles to the classical solutions its energy will be shifted by

δE = δ∆ + ∑
AdS5

Nij +
1

2 ∑
Ferm

Nij , (3.18)

where we isolated the anomalous part δ∆ of the energy shift from the trivial bare part.

Then, it is convenient to recast (1.24), for the excitations, as

δ



















p̂1

p̂2

p̂3

p̂4

p̃1

p̃2

p̃3

p̃4



















≃ 4π

x
√

λ



















+δ∆/2 +N1̂4̂ + N1̂3̂ +N1̂3̃ + N1̂4̃

+δ∆/2 +N2̂3̂ + N2̂4̂ +N2̂4̃ + N2̂3̃

−δ∆/2 −N2̂3̂ − N1̂3̂ −N1̃3̂ − N2̃3̂

−δ∆/2 −N1̂4̂ − N2̂4̂ −N2̃4̂ − N1̃4̂

−N1̃4̃ − N1̃3̃ −N1̃3̂ − N1̃4̂

−N2̃3̃ − N2̃4̃ −N2̃4̂ − N2̃3̂

+N2̃3̃ + N1̃3̃ +N1̂3̃ + N2̂3̃

+N1̃4̃ + N2̃4̃ +N2̂4̃ + N1̂4̃



















(3.19)

These filling fractions Nn
ij are not independent. Any algebraic curve must obey the Rie-

mann bilinear identity (see eqs. 3.38 and 3.44 in [11]). Since this was already the case

for the classical solution around which we are expanding, the new filling fractions are

constrained by

∑
n

n ∑
All ij

N
ij
n = 0 , (3.20)

which is nothing but the string level matching condition in the algebraic curve language.

It is also important to note that sign of the residues can be summarized by the follow-

ing formula

res
x=x

ij
n

p̂k =
(

δik̂ − δjk̂

)

α(x
ij
n)N

ij
n , res

x=x
ij
n

p̃k =
(

δjk̃ − δik̃

)

α(x
ij
n)N

ij
n , (3.21)
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with k = 1, 2, 3, 4 and i < j taking values 1̂, 2̂, 3̂, 4̂, 1̃, 2̃, 3̃, 4̃, as summarized in figs.3.3 and

3.4.

In the following sections we shall analyze the quantum fluctuations around some sim-

ple classical solutions belonging to the family of rigid circular strings (3.10). We will do

it in three main steps. First we compute the quasi-momenta3 associated to each classical

solution as explained in section 3.2 and in greater detail in Appendix A. Then we shall

consider the fluctuations around the classical solution which appear as new poles in the

quasi-momenta. As explained above, we start by finding the position of these new roots

using (3.14) and then we shall compute the perturbation δp of the quasi-momenta by us-

ing, again, the analytical properties described in section 1.1.1 plus the knowledge of the

poles’ positions found in the second step.

We can already notice that, using this procedure, one relies uniquely on considera-

tions of analyticity and needs not introduce any particular parametrization of the group

element g(σ, τ) for the fluctuations around the classical solution, contrary to what is usu-

ally done in this type of analysis [81, 82, 83, 84]. It is also nice to see that the fermionic

and bosonic frequencies appear, in our approach, on a completely equal footing, both cor-

responding to simple poles which differ only by the sheets they unite - see figs.3.3 and

3.4. Finally, in principle, we can apply our method to any classical solution whereas the

same generalization seems to be highly non-trivial to do directly in the action since we no

longer have a simple field redefinition to make it time and space independent as was the

case in [82, 84]. This method will allow us to prove some general statements about the

quasi-classical spectrum and its relation to the finite-size corrections in the BS equations.

3.3.1 The BMN string

We shall consider the simplest possible solution amongst the family of circular strings

presented in section 3.2, the rotating point like BMN string [85] moving around a big

circle of S5. For this solution all spins except for

J1 = J

are set to zero. Then we have m1 = 0 , w1 = J , E = κ = J . For this solution the

connection A(x) presented in Appendix A is not only constant but also diagonal so we

immediately find

p̃1,2 = − p̃3,4 = p̂1,2 = − p̂3,4 =
2πJ x

x2 − 1
. (3.22)

3 Due to the simplicity of these solutions we could have computed the quasi-momenta by an alternative

method, namely using just the analytical properties presented in section 1.1.1. This was done for the su(2)

and sl(2) circular solutions in [14] and [19].
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We see that this is indeed the simplest 8 sheet algebraic curve we could have built – it has

neither poles nor cuts connecting its sheets other than the trivial ones at x = ±1 (1.22).

We shall now study the quantum fluctuations around this solution. For the sake of

clarity we shall not write explicitly many of the quantities computed in the intermediate

steps – they can be found in Appendix B.

To consider the 16 types of physical excitations we add all types of poles on the fig 3.3

and 3.4. From (3.14) we find that the poles in the physical domain with |x| > 1, for this

simple case, are all located at the same position

x
ij
n = xn =

1

n

(

J +
√

J 2 + n2
)

. (3.23)

Now we must find the quasi-momenta p(x) + δp(x)

• with poles located at (3.23) with residues (3.21) connecting the several sheets,

• obeying the x → 1/x symmetry property (1.21),

• with residues ±1 grouped as in (1.22),

• with large x behavior given by (3.19).

From the requirements listed above one can easily write the expression for the quasi-

momenta. For example

δ p̂2 = â +
δα+

x − 1
+

δα−
x + 1

+ ∑
i=3̂,4̂,3̃,4̃

∑
n

α(x2̂i
n )N2̂i

n

x − x2̂i
n

− ∑
i=3̂,4̂,3̃,4̃

∑
n

α(x1̂i
n )N1̂i

n

1/x − x1̂i
n

(3.24)

δ p̂3 = b̂ +
δβ+

x − 1
+

δβ−
x + 1

− ∑
i=1̂,2̂,1̃,2̃

∑
n

α(x3̂i
n )N3̂i

n

x − x3̂i
n

+ ∑
i=1̂,2̂,1̃,2̃

∑
n

α(x4̂i
n )N4̂i

n

1/x − x4̂i
n

(3.25)

where â, b̂ and δα±, δβ± are constants to be fixed and the last terms ensure the right poles

in physical domain for δ p̂1,4(x) = −δ p̂2,3(1/x). Similar expressions can be immediately

written down for δ p̂2,3 with the introduction of two new constants ã and b̃.

At this point we are left with the problem of fixing the eight constants

â, b̂, ã, b̃, δα+, δα−, δβ+, δβ− .

This is precisely the number of conditions one obtains by imposing the 1/x behavior at

large x for the quasi-momenta (3.19) . The asymptotic of p̂2, p̂3, p̃2, p̃3 fix the first four con-

stants while the remaining four equations, solvable only if the level matching condition

(3.20) is satisfied, fix the remaining coefficients and yield

δE = ∑
All

∑
n

√
n2 + J 2 −J

J N
ij
n + ∑

AdS5

Nij +
1

2 ∑
Ferm

Nij (3.26)
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where we indeed recognize the famous BMN frequencies [85] in the anomalous part of

the energy shift.

3.3.2 The circular string in S3, the 1 cut su(2) solution

The next less trivial example is the simple su(2) rigid circular string [81]. Still it is simple

enough so that all results are explicit. This solution is obtained from the family of circular

strings in section 3.2 by setting

m1 = −m2 = m , J1 = J2 = J (3.27)

with all other spins set to zero. For this solution

E = κ =
√

J 2 + m2 . (3.28)

The quasi-momenta can be computed as explained in Appendix A. The AdS5 quasi-

momenta are obtained as for the BMN string

p̂1,2 = − p̂3,4 =
2πκ x

x2 − 1
(3.29)

while for the S5 components p̃i we find that this solution corresponds to 1 cut between p̃2

and p̃3 with mode number k = −2m, given by [14]








p̃1

p̃2

p̃3

p̃4








= 2π









+ x
x2−1

K(1/x)

+ x
x2−1

K(x) − m

− x
x2−1

K(x) + m

− x
x2−1

K(1/x)









, K(x) ≡
√

m2x2 + J 2. (3.30)

where we assume that m > 0 and branch cut goes to the left of x = −1 so that

K(x) = mx + O(1/x) , K(x) = J + O(x)

K(1) = K(−1) = κ > 0

In the rest of this section we will compute the quantum spectrum of the low lying ex-

citations around this solution. For simplicity we will consider the AdS5, S5 and fermionic

fluctuations independently assuming the level matching condition (3.20) to be satisfied

for each of the sectors separately. The result we give, however, is valid under the softer

constraint (3.20) for all sectors, as one can easily check.
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Method of computation

Suppose we want to compute the variation of the quasi-momenta δp(x) when a small

pole is added to some general finite gap solution with some square root cuts. Since the

branch points will be slightly displaced we conclude that δp(x) behaves like ∂x0

√
x − x0

∼ 1/
√

x − x0 near each such point.

We are dealing with a 1-cut finite gap solution. Then, for δ p̃2, we can assume the most

general analytical function with one branch cut, namely f (x) + g(x)/K(x) where f and

g are some rational functions and K(x) was defined in (3.30). To obtain δ p̃3 it suffices to

notice that (3.15) is simply telling us that δ p̃3 is the analytical continuation of δ p̃2 trough

the cut. The remaining quasi-momentum δ p̃1,4 can then be obtained from this ones by the

inversion symmetry (1.21). We conclude that








δ p̃1

δ p̃2

δ p̃3

δ p̃4








=










− f (1/x) − g(1/x)
K(1/x)

f (x) + g(x)
K(x)

f (x) − g(x)
K(x)

− f (1/x) + g(1/x)
K(1/x)










. (3.31)

The only singularity of δ p̃2 apart from the branch cut are eventual simple poles at ±1

and xn and so the same must be true for f (x) and g(x). Then, just like in the previous

example, these functions are uniquely fixed by the large x asymptotics (3.19) and by the

residues at xn (3.21) of the quasi-momenta.

Finally, since the AdS5 part of the quasi-momenta of the non-perturbed finite gap solu-

tion has no branch cuts their variations δ p̂i have the same form (3.24),(3.25) as for simplest

BMN string.

The AdS5 excitations

This part is the simplest. The excitations live in the empty AdS5 sheets where the only

impact of the S5 classical solution comes through the Virasoro constraints, by the residues

at ±1 (1.22). Thus the p̃ are nonperturbed and δ p̂i are the same as in BMN case (3.24,3.25)

with only AdS5 filling fractions N’s being nonzero. Indeed, comparing (3.22) and (3.29)

we see that we can completely recycle the previous computation provided we replace J
by κ in the expression (3.23) for the pole’s position. This leads immediately to

δE = ∑
AdS5

∑
n

√
J 2 + m2 + n2
√
J 2 + m2

N
ij
n (3.32)
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The S5 excitations

We must now analyze the shift in quasi-momenta due to the excitation of the algebraic

curve by the four type of poles (1̃3̃, 2̃4̃, 2̃3̃, 1̃4̃). Since the AdS quasi-momenta are trivial,

with no cuts, we obtain for δ p̂ the same kind of expression we had for the BMN string

(3.22), that is

δ p̂1,2 = −δ p̂3,4 =
2πδE√

λ

x

x2 − 1
, (3.33)

where the constant factor was fixed by the asymptotics (3.19)

δ p̂1,2 ≃ −δ p̂3,4 ≃ 2πδE√
λ

1

x
. (3.34)

Due to the Virasoro constraints the poles at ±1 in the AdS5 and S5 sectors are synchro-

nized (1.22) so that we merely need to compute f (x) and g(x) from the large x asymptotics

(3.19) and the residue condition (3.21) and extract, from these two functions, the residues

at ±1. This is done in Appendix C.1. Let us just provide a glimpse of reasoning involved.

Since the difference

δ p̃3 = f (x) − g(x)/K(x)

must have a single pole at x1̃3̃
n with residue α(x1̃3̃

n ) whereas the sum

δ p̃2 = f (x) + g(x)/K(x)

must be analytical, we can, in this way, read the residues of both f and g at this point.

This kind reasoning should be carried over for all the other excitations and for the points

x = ±1 and leads to the ansatz (3.58,3.61) where the only 3 constants left to be found can

be fixed by the large x asymptotics of the quasi-momenta.

One can then read of the energy shift from the large x asymptotics of the quasi-

momenta

δE = ∑
n

(N1̃3̃
n + N2̃4̃

n )
x1̃3̃

n (m + n) −J − K(x1̃3̃
n )

κ
+ N1̃4̃

n
n x1̃4̃

n − 2J
κ

+ N2̃3̃
n

2m + n

x2̃3̃
n κ

(3.35)

in terms of the positions of the roots obtained from the original algebraic curve through

(3.14).

Fermionic excitations

We have 8 fermionic excitations but since p̂1 = p̂2 = − p̂3 = − p̂4 and p̃1,2 = − p̃4,3 we

will get the same result for the (1̂3̃, 2̂3̃, 3̂2̃, 4̂2̃) poles and possibly another result for the

(1̂4̃, 2̂4̃, 3̂1̃, 4̂1̃) excitations. We can repeat the same kind of calculations we did for the
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S5 excitations to fix completely the quasi-momenta – see Appendix C.2. Then, from the

asymptotics (3.19) we get

δ∆ = ∑
n

(

N1̂3̃
n + N2̂3̃

n + N3̂2̃
n + N4̂2̃

n

) m + n

x1̂3̃
n κ

+
(

N1̂4̃
n + N2̂4̃

n + N3̂1̃
n + N4̂1̃

n

) n x1̂4̃
n −J − κ

κ
.(3.36)

3.3.3 The circular string in AdS3, the 1 cut sl(2) solution

In section 3.3.2 we analyzed in detail a simple su(2) solution with a particular mode num-

ber k = −2m. In Appendix D we repeat the analysis for the general sl(2) circular string

[83, 84] which also corresponds to a 1–cut algebraic curve but this time with an arbitrary

mode number k for the cut [19]. This solution is again contained in the family of circular

strings written in section 3.2. It corresponds to two non zero spins

S1 = S , J1 = J

with mode numbers m1 = m, k1 = k constrained by the level matching condition

Sk + J m = 0

and frequencies w1 = J and w1 = w fixed by

w3 − (k2 + m2 + J 2)w + 2kmJ = 0 . (3.37)

For this solution κ =
√

w2 − k2 and the energy can be found from

E = κ

(

1 +
S
w

)

(3.38)

In Appendix D we present the quasi-momenta associated to this classical solution and

compute the fluctuation frequencies as we did for the su(2) string. These results, together

with the ones for the su(2) circular string, are summarized and discussed in the following

sections.

3.4 Results, interpretation and 1-loop shift

I
N THIS SECTION we list all our results and introduce the notations usually used in the

literature. In the next section we shall analyze them, compare them and draw some

conclusions.
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3.4.1 Simple su(2) circular string

In section 3.3.2 we found the level spacings around the simple su(2) circular solution, that

is the fluctuation frequencies of the effective quadratic Lagrangian obtained by expand-

ing the Metsaev-Tseytlin action (1.5) around this classical solution. In [82] this compu-

tation was performed having in mind the stability analysis and computation of the one

loop shift. The various frequencies and corresponding degeneracies and origin can be

summarized in table 3.14. Using the notation introduced in this table we can replace the

Tab. 3.1: Simple su(2) frequencies

eigenmodes notation

S5

√

2J 2 + n2 ± 2
√
J 4 + n2J 2 + m2n2

√
J 2 + n2 − m2

ω
S±
n

ωS
n

Fermions
√
J 2 + n2 ωF

n

AdS5

√
J 2 + n2 + m2 ωA

n

explicit expressions for the position of the roots found from (3.14) and recast our results

(3.32,3.35,3.36) as

κ δE = ∑
n

(

N1̃3̃
n + N2̃4̃

n

) (

ωS
n+m −J

)

+ N2̃3̃
n ω

S−
n+2m + N1̃4̃

n

(

ω
S+
n − 2J

)

+ ∑
n

(

N1̂4̃
n + N2̂4̃

n + N3̂1̃
n + N4̂1̃

n

) (

ωF
n −J +

κ

2

)

+ ∑
n

(

N1̂3̃
n + N2̂3̃

n + N3̂2̃
n + N4̂2̃

n

) (

ωF
n+m − κ

2

)

+ ∑
n

(

N1̂3̂
n + N1̂4̂

n + N2̂3̂
n + N2̂4̂

n

)

ωA
n . (3.39)

We notice the appearance of constant shifts and relabeling of the frequencies when com-

pared to those in table 3.1. We shall discuss this point below.

4 By expanding the GS action without imposing the Virasoro conditions from the beginning, one obtains,

apart from the frequencies listed in the above table, some massless modes with ω = n [81]. In the chapter

5 we will see this Virasoro modes from the Bethe ansatz point of view if an extra level of particles with

rapidities θ is introduced [86]
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3.4.2 General sl(2) circular string

The same analysis can be carried over for the sl(2) circular string. In [83, 84] this frequen-

cies were computed and the result can be summarized in table 3.25.

Tab. 3.2: General sl(2) frequencies

eigenmodes notation

AdS5

(
ω2 − n2

)2
+ 4S

w κ2ω2 − 4E
κ (ωw − kn)2 = 0√

n2 + κ2

ω
A+
n > ω

A−
n

ωA
n

Fermions

√
(

n +
√

w2−J 2

2

)2
+ 1

2 (κ2 + J 2 − m2) ωF
n

S5
√
J 2 + n2 − m2 ωS

n

In the notation of the above table, the results (3.78),(3.73),(3.66)(3.65) derived in Ap-

pendix D can be put together as

κ δE = ∑
n

(

N1̂3̂
n + N2̂4̂

n

)

ωA
n + N2̂3̂

n

(

ω
A−
n−k + w

)

+ N1̂4̂
n

(

ω
A+
n+k − w

)

+ ∑
n

(

N2̂3̃
n + N2̂4̃

n + N3̂1̃
n + N3̂2̃

n

) (

ωF
n+m/2−k/2 − ωF

m/2−k/2 +
1

2
κ

)

+ ∑
n

(

N1̂3̃
n + N1̂4̃

n + N4̂1̃
n + N4̂2̃

n

) (

ωF
−n−m/2−k/2 − ωF

−m/2−k/2 +
1

2
κ

)

+ ∑
n

(

N1̃3̃
n + N1̃4̃

n + N2̃3̃
n + N2̃4̃

n

) (

ωS
n+m −J

)

. (3.40)

3.4.3 Explanation of shifts

Let us first look at the su(2) result (3.39) and pick one if the frequencies, say the first one

ωS
n+m −J . (3.41)

We find two kinds of shifts relatively to the frequencies listed in the table 1, namely the

constant shift J and the shift in the fourier mode n → n + m. The same shifts we observe

for the sl(2) frequencies.

5 The results in this table are slightly simplified compared to those usually presented in the literature,

especially the fermionic frequencies.
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Let us understand the origin of this shifts. For that purpose consider a system of two

harmonic oscillators,

Lx =
ẋ2

1 + ẋ2
2

2
− ω2

2

(

x2
1 + x2

2

)

,

and suppose that, instead of quantizing this system, we chose to quantize the system

obtained by rotating x1, x2 with angular velocity J , i.e. we move to the y frame

x1 + ix2 = (y1 + iy2) eiJ t . (3.42)

Then, we obtain6

Hy = Hx + J Lz ,

where Lz is the usual angular momentum, so that

E
y
n1,n2

= ω + (ω −J ) n1 + (ω + J ) n2 .

Thus for the radially symmetric wave function, for which n1 = n2 (and in particular for

the ground state energy), the constant shifts cancel and we obtain the same energies as for

the first system. That, in general, the two results are different is obvious since the energy

depends on the observer.

The constant shifts mentioned above have exactly this origin. In fact, when expanding

the Metsaev-Tseytlin string action around the classical su(2) circular string one obtains

an effective time and space dependent Lagrangian whose σ, τ dependence can be killed by a

change of frame

δX = R(σ, τ)δY (3.43)

where δX are the (bosonic) components of the fluctuations and R is a time and space

dependent rotation matrix – see for instance expression (2.14) in [82]7. The same kind

of field redefinitions are also present for the fermion fields. The time dependence of the

rotation matrix gives the constant shifts as in the simple example we just considered while

the space dependence in this change of frame is responsible for the relabeling of the mode

numbers.

To make contact with the algebraic curve let us return to the frequency (3.41) we

picked as illustration. It corresponds to a pole from sheet p̃1 to p̃3 (or from p̃2 to p̃4)

6 In the y frame the Lagrangian takes the form 2Ly = ẏ2
1 + ẏ2

2 − (ω2 −J 2)
(

x2
1 + x2

2

)
+ 2J y1ẏ2 − 2J ẏ1y2 .

7 The same is true for the sl(2) circular string. The authors have moved to a different frame through a

time and space dependent rotation – see for instance equation 4.11 in [84] – and should, therefore, measure

shifted energies.
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whose position is fixed by (3.14). The result in the rotated frame, ωS
n , would correspond

to a pole with mode number n + m whose position is given by

p̃1(x1̃3̃
n ) − p̃3(x1̃3̃

n ) = 2πn + 2πm . (3.44)

When plugging the actual expressions (3.30) for p̃1 and p̃3 in this equation we see that

the 2πm disappears and the equation looks simpler than (3.14). However, for several cut

solutions there is no such obvious choice of mode numbers (or field redefinition which

kills the time dependence in the Lagrangian).

3.4.4 1–loop shift and prescription for labeling fluctuation frequencies

To compute the 1-loop shift to the classical energy of a given solution, according to [47],

one has to sum over all energies of the modes in the expansion around the classical con-

figuration

δE1−loop =
1

2κ
lim

N→∞

N

∑
n=−N

(
8

∑
i=1

ΩB
i,n −

8

∑
i=1

ΩF
i,n

)

. (3.45)

However, the right hand side is hard to define rigorously. For n → ±∞ each frequency

behaves like

ΩB
i,n ≃ |n| ± cB

i + dB
i , ΩF

i,n ≃ |n| ± cF
i + dF

i , (3.46)

and thus the sum is sensible to the labeling of the frequencies. The seemingly innocent

redefinition

ΩB
i,n → ΩB

i,n+ki
, ΩF

i,n → ΩF
i,n+li

, (3.47)

with integer shifts constrained by ∑i ki − li = 0 to ensure the convergence of the sum, does

change the result

δE1−loop → δE1−loop + ∑(k2
i − l2

i + 2cB
i ki − 2cF

i li) . (3.48)

In appendix E we discuss in greater detail the effect of these shifts.

One way to compute the frequencies is to expand the Metsaev-Tseytlin action around

some classical solution. Generically, the resulting quadratic Lagrangian is time and space

dependent. To eliminate this dependence, when possible, a field redefinition is per-

formed. However, there are several ways to do the field redefinition to get a time and

space independent action. Different choices will give different sets of frequencies related

by transformations like (3.47) and will therefore lead to different results. In appendix E

we analyze this kind of dangers by focusing on two explicit examples. Thus we need a

solid prescription for the labeling of the frequencies.

Suppose we were semi-classically quantizing around some classical string solution in

flat space. Then we would expect to find some fluctuation frequencies, the zero modes,
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corresponding to an overall translation of the string solution and which should, therefore,

carry no energy at all. Then the usual prescription is to take Ωi,0 = 0.

The zero modes should also exist for a string in the AdS5 × S5 space with a large

amount of isometries. Indeed, let us take our results and denote the contribution at n = 0

in (3.39) and (3.40) by δE
su(2)
0 and δE

sl(2)
0 . Then we find that they are equal and given by

δE0 = ∑
AdS5

Nij +
1

2 ∑
Ferm

Nij . (3.49)

In other words, the contribution to the anomalous part δ∆ of zero modes for our labeling

is zero! Thus the prescription we used seems to be the precise analogue of the flat space

fourier modes prescription.

Moreover, by construction, we have a good BMN limit. That is, when in the limit of

very small cuts with m → 0 we recover the result (3.26) without any unusual shifts8.

Then, from (3.39) and (3.40), we can write the 1-loop shifts for the 1-cut circular solu-

tions9

E
su(2)
1−loop =

1

2κ
lim

N→∞

N

∑
n=−N

4 ωA
n + ωS

n+m + ω
S−
n+2m + ω

S+
n − 4 ωF

n − 4 ωF
n+m ,

E
sl(2)
1−loop =

1

2κ
lim

N→∞

N

∑
n=−N

2 ωA
n + ω

A+
n+k + ω

A−
n−k + 4 ωS

n+m − 4 ωF
n+ m−k

2
− 4 ωF

−n−m+k
2

.

3.4.5 General su(2) results

Another interesting solution contained in the family of circular solutions described in

section 3.2 is the generalization of the simple su(2) solution to the case of two non-equal

spins J1,2 with two different mode numbers m1,2. The fluctuation frequencies associated

with this solution can be listed in table 3.3 [83]10

Now, armed with our prescription, we can write the one loop shift unambiguously.

Imposing

8 This is not the case for the frequencies listed in table 2 for instance. For example, from this expression,

we find, for the fermionic frequencies, ωF
n ≃

√

(n + k/2)2 + J 2. See also discussion in Appendix E.

9 As for the simple example of the harmonic oscillators in the previous section, the sum of all constant

shifts appearing in (3.39) and (3.40) cancel so that only the shifts in mode number lead to a change of the

final result. The difference with respect to the sum with no shifts can be obtained from (3.48) and is equal

to m2/κ in both cases.

10 The fermionic frequencies for the general circular string of section 3.2 can be computed (we shall pub-

lish our findings elsewhere). In particular, for the su(2) general circular string we find the results listed in

table 3.3.
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Tab. 3.3: General su(2) frequencies

eigenmodes notation

S5

(
ω2 − n2

)2 − 4J2
w2

(ωw1 − m1n)2 − 4J1
w1

(ωw2 − m2n)2 = 0√
n2 + ν2

ω
S+
n > ω

S−
n

ωS
n

Fermions

√
(

n −
√

w2
1+m2

2−κ2

2

)2

+ J1w1 + J2w2 ωF
n

AdS5

√
n2 + κ2 ωA

n

• Good BMN limit (3.26) for vanishing filling fractions,

• Proper zero mode behavior with n = 0 frequencies having trivial anomalous, part

(3.49).

• For m1 = −m2 = m we should retrieve the simple su(2) result (3.39),

we get (for m1 + m2 ≤ 0)

κ δE = ∑
n

(

N1̃3̃
n + N2̃4̃

n

) (

ωS
n+m1

− w1

)

+ N2̃3̃
n

(

ω
S−
n+m1−m2 + w2 − w1

)

+ ∑
n

N1̃4̃
n

(

ω
S+
n+m1+m2

− w2 − w1

)

+ ∑
n

(

N1̂3̂
n + N1̂4̂

n + N2̂3̂
n + N2̂4̂

n

)

ωA
n

+ ∑
n

(

N1̂4̃
n + N2̂4̃

n + N3̂1̃
n + N4̂1̃

n

) (

ωF

n+
m1+m2

2

− ωF
m1+m2

2

+
κ

2

)

+ ∑
n

(

N1̂3̃
n + N2̂3̃

n + N3̂2̃
n + N4̂2̃

n

) (

ωF

−n−m1−m2
2

− ωF

−m1−m2
2

+
κ

2

)

.

3.5 Summary

I
N THIS CHAPTER we explain how to compute the quantum fluctuations around any

classical superstring motion in AdS5 × S5. These excitations include the fermionic,

AdS5 and S5 modes. We showed that each mode correspond to adding a pole to a specific

pair of sheets i, j of the algebraic curve. The position of the pole is determined from the

equation

pi(x
ij
n) − pj(x

ij
n) = 2πn, (3.50)

and thus provides one with an unambiguous labeling for the frequencies. In particular

we observe the nice feature that for n = 0 this equation prescribes the pole at infinity,
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that is we find the expected zero modes associated with global transformations under the

isometries of the target superspace.

Technically we computed the change in quasi-momenta due to the addition of these

new poles and read, from the large x asymptotics, the global charge corresponding to the

AdS Energy, that is the frequencies. However, since we computed explicitly the perturbed

quasi-momenta we have obtained not only the energy shift but actually all conserved

charges!

In the next chapters we will use this method to prove some general statements about

the quasi-classical spectrum around any classical string solution.

Appendix A: Quasi-momenta for a generic rigid circular string

To establish the link between the embedding coordinates solution (3.10) with the coset’s

notations we introduce the matrices

R =
3

∏
i=1

e
i
2 (wiτ+miσ)Φi · R0 ∈ SU(4)

and

Q = e
i
2 κτΦ1 ·

2

∏
i=1

e−
i
2 (wiτ+kiσ)Φi+1 · Q0 ∈ SU(2, 2) .

where Φi are the Cartan generators,

Φ1 = diag (+, +,−,−) , Φ2 = diag (+,−, +,−) , Φ3 = diag (−, +, +,−) ,

and R0 = eΦ42θeΦ64γ and Q0 = eΦ′
42ψeΦ′

64ρ are constant matrices with

(cos γ, sin γ cos θ, sin γ sin θ) =

(√

J1

w1
,

√

J2

w2
,

√

J3

w3

)

,

(cosh ρ, sinh ρ cos ψ, sinh ρ sin ψ) =

(√

E
κ

,

√

S1

w1
,

√

S2

w2

)

and Φ42, Φ64, Φ′
42, Φ′

64 given respectively by

1

2








0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0








,








0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0








,
1

2








0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0








,
1

2








0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0








.
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Let us ignore for a moment the fact that, for a generic choice of mode numbers mi, k j,

these matrices are not always periodic. Then, to describe the circular solutions we can

use, as representative g ∈ PSU(2, 2|4), the block diagonal matrix

g =




Q 0

0 R



 , (3.51)

which indeed leads to (3.10) under the map (1.7).

What is particular about this solution is that, as follows trivially from the form of the

matrices R and Q, the current

J = −g−1dg ,

and therefore also the flat connection A(x) in (1.12), are constant matrices! Then the

computation of (1.13) is trivial and the quasi-momenta p(x) are simply obtained from the

eigenvalues of 2π
i A(x).

Before going on let us comment on the subtle point ignored above – the periodicity

of the rotation matrices R (and Q). For some integers mi we see that this matrix could

become anti-periodic. This means that in principle we should use another representative,

Rperiodic, for which we should still have (1.7) but which should be periodic. However,

if both R and Rperiodic obey these equations this means that they are related by an anti-

periodic SP(4) gauge transformation. This means that for the purpose of computing the

quasi-momenta p(x) we can indeed always use the element (3.51) provided we keep in

mind that if R is antiperiodic we can recover the real quasi-momenta through

{ei p̂1 , ei p̂2 , ei p̂3 , ei p̂4 |ei p̃1 , ei p̃2 , ei p̃3 , ei p̃4}
For the true

representative Rperiodic

= {ei p̂1 , ei p̂2 , ei p̂3 , ei p̂4 | − ei p̃1 ,−ei p̃2 ,−ei p̃3 ,−ei p̃4}
Using the anti − periodic

Rinstead

.

The same kind of statement hold for the AdS element Q.

The computation of the quasi-momenta is then straightforward. The S5 components
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p̃i are given in terms of the eigenvalues11 of the symmetric matrix

Ã(x) = π








−ã+(1/x) b̃+ −c̃(1/x) d̃(x)

b̃+ ã+(x) d̃(1/x) c̃(x)

−c̃(1/x) d̃(1/x) ã−(x) b̃−
d̃(x) c̃(x) b̃− −ã−(1/x)








(3.52)

with

ã±(x) = ±ã(x) − m3 cos θ

ã(x) = −m1 − w1x + (m2 − w2x) cos θ + x cos 2γ(−w1 + m1x + (w2 − m2x) cos θ)

x2 − 1

b̃± = (m2 ∓ m3) cos γ sin θ

c̃(x) =
(m2 + m3)x2 − (m2 − m3) − 2w3x

x2 − 1
sin γ sin θ

d̃(x) =
−m1 + w1x + (m2 − w2 x) cos θ

x2 − 1
sin 2γ

while the AdS quasi-momenta p̂i are the eigenvalues of

Â(x) = π








−â+(1/x) b̂+ −ĉ(x) d̂(x)

b̂+ â+(x) d̂(x) ĉ(x)

ĉ(x) −d̂(x) â−(x) b̂−
−d̂(x) −ĉ(x) b̂− −â−(1/x)








(3.53)

with

â±(x) = ±2πκ − k1

(
x2 − 1

)
cos θ

x2 − 1
cosh ρ + k2 cos ψ

b̂± = (k2 cosh ρ ∓ k1) sin ψ

ĉ(x) =
k2

(
x2 + 1

)
− 2w2x

x2 − 1
sin ψ sinh ρ

d̂(x) =
k1

(
x2 + 1

)
− 2w1x

x2 − 1
cos ψ sinh ρ

For the simple su(2) or sl(2) solutions we have, amongst other conditions, θ = ψ = 0

which simplifies the computation drastically.

11 To each eigenvalues we might need to add a multiple of π in such a way that its asymptotics become

those prescribed in section 1.1.1. If R is periodic this multiple should contain an even number of π’s

whereas if it is anti-periodic, we should add πn with n odd to each quasi-momenta – see discussion in the

text.
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Appendix B: BMN string, details

This appendix serves as a complement to section 3.3.1. The quasi-momenta with the

correct poles located at (3.23) and residues given by (3.21) is given by

δ p̂2 = â +
δα+

x − 1
+

δα−
x + 1

+ ∑
i=3̂,4̂,3̃,4̃

∑
n

α(x2̂i
n )N2̂i

n

x − x2̂i
n

− ∑
i=3̂,4̂,3̃,4̃

∑
n

α(x1̂i
n )N1̂i

n

1/x − x1̂i
n

δ p̂3 = b̂ +
δβ+

x − 1
+

δβ−
x + 1

− ∑
i=1̂,2̂,1̃,2̃

∑
n

α(x3̂i
n )N3̂i

n

x − x3̂i
n

+ ∑
i=1̂,2̂,1̃,2̃

∑
n

α(x4̂i
n )N4̂i

n

1/x − x4̂i
n

where the last term guaranties that δ p̂1,4(x) = −δ p̂2,3(1/x) have the right poles with the

appropriate residues in the physical domain. Analogously

δ p̃2 = ã +
δα+

x − 1
+

δα−
x + 1

− ∑
i=3̂,4̂,3̃,4̃

∑
n

α(x2̃i
n )N2̃i

n

x − x2̃i
n

+ ∑
i=3̂,4̂,3̃,4̃

∑
n

α(x1̃i
n )N1̃i

n

1/x − x1̃i
n

(3.54)

δ p̃3 = b̃ +
δβ+

x − 1
+

δβ−
x + 1

+ ∑
i=1̂,2̂,1̃,2̃

∑
n

α(x3̃i
n )N3̃i

n

x − x3̃i
n

− ∑
i=1̂,2̂,1̃,2̃

∑
n

α(x4̃i
n )N4̃i

n

1/x − x4̃i
n

(3.55)

and δ p̃1,4(x) = −δ p̃2,3(1/x). From the large x behavior of these quasi-momenta one

obtains

â = −∑
n

2πn√
λJ ∑

i=3̂,4̂,3̃,4̃

N1̂i
n , b̂ = + ∑

n

2πn√
λJ ∑

i=1̂,2̂,1̃,2̃

N4̂i
n ,

ã = + ∑
n

2πn√
λJ ∑

i=3̂,4̂,3̃,4̃

N1̃i
n , b̃ = −∑

n

2πn√
λJ ∑

i=1̂,2̂,1̃,2̃

N4̃i
n ,

the level matching condition (3.20) and

δα+ − δα− = −∑
n

2πn√
λJ ∑

i=3̂,4̂,3̃,4̃

∑
j=1̂,2̂

N
ij
n ,

δβ+ − δβ− = −∑
n

2πn√
λJ ∑

i=3̂,4̂,3̃,4̃

∑
j=3̃,4̃

N
ij
n .

Appendix C: su(2) circular string, details

In this appendix we present the details of the calculations from section 3.3.2 of the fluctu-

ation frequencies around the 1-cut su(2) solution.
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C.1 S5 modes

We start from the ansatz (3.31). We have four types of poles (1̃3̃, 2̃4̃, 2̃3̃, 1̃4̃). Thus

f (x) =
1

2
(δ p̃2(x) + δ p̃3(x)) (3.56)

must have simple poles at x2̃4̃
n , x1̃3̃

n with residues 1
2 α(x1̃3̃

n ) and −1
2 α(x2̃4̃

n ) respectively (see

fig.3.3 or (3.21)). The same holds for

f (1/x) = −1

2
(δ p̃4(x) + δ p̃1(x)) . (3.57)

Moreover, since the residues of δ p̃i are connected to the AdS quasi-momenta (1.22) and

these are given by (3.33) we conclude that f (x) should be regular at x = ±1. Thus we

obtain

f (x) = −∑
n

(

N2̃4̃
n

2

[

α(x2̃4̃
n )

x − x2̃4̃
n

+
α(x2̃4̃

n )

x2̃4̃
n (1 − xx2̃4̃

n )

]

− (2̃4̃ → 1̃3̃)

)

(3.58)

Then

g(x) =
K(x)

2
(δ p̃2(x) − δ p̃3(x)) (3.59)

must have simple poles at x2̃4̃
n , x1̃3̃

n and x2̃3̃
n with residues −1

2 α(x1̃3̃
n ), − 1

2 α(x2̃4̃
n ) and −α(x2̃3̃

n )

respectively while

g(1/x) =
K(x)

2
(δ p̃4(x) − δ p̃1(x)) (3.60)

must have simple poles at x2̃4̃
n , x1̃3̃

n and x1̃4̃
n with residues 1

2 α(x1̃3̃
n ), 1

2 α(x2̃4̃
n ) and α(x1̃4̃

n )

respectively. Contrary to f (x), this function may have poles at ±1 so we arrive at

g(x) = a +
α−

x2 − 1
+

xα+

x2 − 1
+ ∑

n

(

N1̃4̃
n

α(x1̃4̃
n )K(1/x1̃4̃

n )

x1̃4̃
n (1 − xx1̃4̃

n )
− N2̃3̃

n
α(x2̃3̃

n )K(x2̃3̃
n )

x − x2̃3̃
n

)

+ ∑
n

(

N2̃4̃
n

2

[

α(x2̃4̃
n )K(1/x2̃4̃

n )

x2̃4̃
n (1 − xx2̃4̃

n )
− α(x2̃4̃

n )K(x2̃4̃
n )

x − x2̃4̃
n

]

+ (2̃4̃ → 1̃3̃)

)

. (3.61)

Finally the remaining constants are fixed by the large x asymptotic (3.19) to be

a = − 2π√
λ

∑
n

[

m(N1̃3̃
n + N2̃4̃

n ) + 2mN2̃3̃
n

]

α+ =
2π√

λ
∑
n

[

(N1̃3̃
n + N2̃4̃

n )
(

x1̃3̃
n (m + n) −J − K(x1̃3̃

n )
)

+ N1̃4̃
n (x1̃4̃

n n − 2J ) + N2̃3̃
n

2m + n

x2̃3̃
n

]

α− =
2π√

λ
∑
n

[

N1̃3̃
n + N1̃4̃

n + N2̃3̃
n + N2̃4̃

n

]

n .

Then, from the residue at x = 1 we read δE = α+√
m2+J 2

.
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C.2 Fermionic modes

Arguments similar to the ones in the previous section lead to

f (x) =
2π√

λ

x

x2 − 1 ∑
n

[

N1̂4̃
n + N2̂4̃

n − N3̂1̃
n − N4̂1̃

n

xx1̂4̃
n − 1

+ x
N3̂2̃

n + N4̂2̃
n − N1̂3̃

n − N2̂3̃
n

x − x3̂2̃
n

]

and

g(x) = b +
β−

x2 − 1
+

xβ+

x2 − 1

+
2π√

λ
∑
n





(√
m2 + J 2xn + n(1 − x2

n)
)

(N1̂4̃
n + N2̂4̃

n + N3̂1̃
n + N4̂1̃

n )

(1 − xxn)(x2
n − 1)

− xn

(√
m2 + J 2xn + (n + m)(1 − x2

n)
)

(N3̂2̃
n + N4̂2̃

n + N1̂3̃
n + N2̂3̃

n )

(x − xn)(x2
n − 1)





where

b =
2πm√

λ
∑
n

(N1̂3̃
n + N2̂3̃

n + N1̂3̃
n + N1̂3̃

n )

β− =
2π√

λ
∑
n

(

xn

√
m2 + J 2

x2
n − 1

− n

)

(N1̂3̃
n + N1̂4̃

n + N2̂3̃
n + N2̂4̃

n + N3̂1̃
n + N3̂2̃

n + N4̂1̃
n + N4̂2̃

n )

β+ =
2π√

λ
∑
n

[(

J − nxn +
x2

n

√
m2 + J 2

x2
n − 1

)

(N1̂4̃
n + N2̂4̃

n + N3̂1̃
n + N4̂1̃

n )

+

(√
m2 + J 2

x2
n − 1

− m + n

xn

)

(N1̂3̃
n + N2̂3̃

n + N3̂2̃
n + N4̂2̃

n )

]

.

The AdS5 part of the quasi-momenta is given by

δ p̂2(x) =
2π√

λ

x

x2 − 1

(

+δ∆ − 2
N1̂3̃

n + N1̂4̃
n

xxn − 1
− 2x

N2̂3̃
n + N2̂4̃

n

xn − x

)

δ p̂3(x) =
2π√

λ

x

x2 − 1

(

−δ∆ + 2
N4̂1̃

n + N4̂2̃
n

xxn − 1
+ 2x

N3̂1̃
n + N3̂2̃

n

xn − x

)

and δ p̂1,4(x) = −δ p̂2,3(1/x). The constant ∆ can be found from fixing the residues at ±1

for δ p̂i and δ p̃i to be equal (1.22) and is given in the main text (3.36).

Appendix D: sl(2) circular string

The eigenvalues of (3.52) and (3.53) for the sl(2) circular string described in the beginning

of section 3.3.3 yield the most general 1-cut quasi-momentum connecting p̂2 and p̂3 (Due
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to the x → 1/x symmetry, p̂1 and p̂4 will be also connected by a cut, but this will be in

unphysical domain, that is inside the unit circle). Explicitly, we find

p̃1,2 = − p̃3,4 = 2π
J x + m

x2 − 1
. (3.62)

and








p̂1

p̂2

p̂3

p̂4








=








− p̂2(1/x)

+ p̂2(x)

− p̂2(x)

+ p̂2(1/x)








.

where [19]

p̂2 = kπ

(

1 − (Cx + 1)
√

x2 − 2BCx + C2

C(x2 − 1)

)

. (3.63)

and

w ≡ k

2

(

C +
1

C

)

, B = 1 +
2S
w

. (3.64)

From all solutions of (3.37,3.64) for solutions for C and B we should pick the one for which

we have a real cut outside the unit circle.

In the rest of this appendix we will excite this solution by adding poles to quasi-

momenta as we did for the su(2) solution. In this way we shall find the energy shifts

around this classical solution. Moreover, as for the su(2) string, we shall consider the

AdS5, S5 and fermions separately, assuming for simplicity the Riemann identity (3.20) to

be satisfied for each of the sectors separately – the result, as before, holds if we relax this

stronger assumption.

D.1 The AdS5 excitations

For these excitations the S5 quasi-momenta remains untouched because its asymptotics

do not change and it is still only allowed to have simple poles at ±1. Due to the Virasoro

coupling of these quasi-momenta to the AdS5 ones through the poles at ±1 (1.22), we

see that δ p̂i must have no poles at these points. The only poles of these quasi-momenta

should be located at x
î ĵ
n with residues given by (3.21) – see fig.3.3. Finally, as explained in

section 3.3.2, the perturbed quasi-momenta should have inverse square behavior close to

the branch points of the classical solution.

Thus, from the same kind of reasoning we saw in the previous section for the su(2) cir-

cular string, we find (3.67) for the AdS3 excitations connecting sheets ( p̂2, p̂3) and ( p̂1, p̂4)
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and (3.70) for the remaining AdS5 excitations uniting ( p̂1, p̂3) and ( p̂2, p̂4). From the large

x behavior (3.19) of these quasi-momenta we read the energy shifts12

δE = ∑
n

(

N2̂3̂
n

[

k − n

k

x2̂3̂
n − C−1

x2̂3̂
n + C−1

+
nw

kκ

]

+ N1̂4̂
n

[

k + n

k

x1̂4̂
n − C

x1̂4̂
n + C

+
nw

kκ

])

(3.65)

and

δE = ∑
n

N1̂3̂
n

[

K(x1̂3̂
n )k + n(x1̂3̂

n − C)

k(x1̂3̂
n + C)

+
nw

kκ

]

+ N2̂4̂
n

[

K(x2̂4̂
n )k + n(x2̂4̂

n − C)

k(x2̂4̂
n + C)

+
nw

kκ

]

(3.66)

where, as for the su(2) string, we denote the square root in the classical solution (3.63) by

K(x).

D.1.1 AdS3 excitations – details

In strict analogy to what we have already seen in for su(2) solution, the two (left and

right) physical excitations inside the sl(2) sector described by the AdS3 σ−model, are

given by the poles, connecting the pairs of sheets ( p̂2, p̂3) and ( p̂1, p̂4). The number of

such poles we denote N2̂3̂ and N1̂4̂ respectively.

As explained above, the AdS5 excitations shifts of p̂’s have no poles at ±1 and must

present an inverse square root behavior close to the branch points of the classical solution.

Thus we can write

δ p̂2(x) =
2π√

λK(x)
∑
n

(

N2̂3̂
n

xan

x − x2̂3̂
n

+ N1̂4̂
n

xān

x − 1/x1̂4̂
n

)

(3.67)

where

K(x) ≡
√

x2 − 2BC x + C2

and the position of the roots is given by (3.14). Fixing the residues at x2̂3̂
n and x1̂4̂

n according

to (3.21) we have

an =
2Cx2̂3̂

n (k − n)

k(Cx2̂3̂
n + 1)

, ān = − 2C(k + n)

k(C + x1̂4̂
n )

(3.68)

The large x asymptotic (3.19) is consistent if Riemann bilinear identity (3.20) is satisfied

∑
n

(

N2̂3̂
n + N1̂4̂

n

)

n = 0 (3.69)

and then the energy shift is given by (3.65).

12 these AdS3 excitations were also found in a similar way by K.Zarembo in relation with the finite size

corrections computation [51] (according to the private communication).
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D.1.2 The remaining AdS5 excitations – details

These correspond to simple poles connecting ( p̂1, p̂3) and ( p̂2, p̂4) for which

δ p̂2(x) =
2π√

λ
∑
n




N1̂3̂

n x
(

an + bn+cnx
K(x)

)

(x − x1̂3̂
n )(x − 1/x1̂3̂

n )
+

N2̂4̂
n x

(

ān + b̄n+c̄nx
K(x)

)

(x − x2̂4̂
n )(x − 1/x2̂4̂

n )



 . (3.70)

Then δ p̂3, just as we saw for the su(2) solution, is the analytical continuation of δ p̂2

through the cut. In simpler terms, it corresponds to a simple change of sign of K(x)

in the above expression. Finally δ p̂1,4(x) = −δ p̂2,3(1/x).

The undetermined coefficients are fixed by the residues

res
x=x1̂3̂

n

p̂1,3 = ±α
(

x1̂3̂
n

)

N1̂3̂
n , res

x=x1̂3̂
n

p̂2,4 = 0

res
x=x2̂4̂

n

p̂2,4 = ±α
(

x2̂4̂
n

)

N2̂4̂
n , res

x=x2̂4̂
n

p̂1,3 = 0

to be

an = −1, bn = C
2nx1̂3̂

n + kK(x1̂3̂
n )

k(x1̂3̂
n + C)

, cn =
kK(x1̂3̂

n ) − 2Cn

k(C + x1̂3̂
n )

ān = 1, b̄n = C
2nx2̂4̂

n + kK(x2̂4̂
n )

k(x2̂4̂
n + C)

, c̄n =
kK(x2̂4̂

n ) − 2Cn

k(C + x2̂4̂
n )

Hence, with the level matching condition

∑
n

(

N1̂3̂
n + N2̂4̂

n

)

n = 0 , (3.71)

we find, from the large x behavior, the energy shift (3.66).

D.2 The S5 excitations

The S5 quasi-momentum (3.62) has no branch cuts and thus δ p̃i will be of the same form

as we found for the BMN string except that the position of the roots, found from (3.14) is

now given by

x̃n ≡ x1̃3̃
n = x1̃4̃

n = x2̃3̃
n = x1̃4̃

n =
J +

√

J 2 + (n + m)2 − m2

n
(3.72)

instead of (3.23). The explicit expressions for δ p̃i are given in (3.74). This perturbation

shifts the residues at ±1 from

π (J ∓ m)
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to some other values which we parameterize by

π
(

J + δJ e f f ∓
(

m + δme f f
))

.

The precise expressions for these shifts can be found in (3.74,3.75). But then, since the

AdS5 quasi-momenta only knows about the S5 sector though the residues at these points,

the perturbed quasi-momenta p̂i + δ p̂i will be given by the same expression (3.63) with

the trivial replacement

J , m → J + δJ e f f , m + δme f f .

The same is true for the energy, given in (3.64) so that – see Appendix D.2 for details – we

can immediately find

δE =
1

κ ∑
n

(

N1̃3̃
n + N1̃4̃

n + N2̃3̃
n + N2̃4̃

n

) (√

(n + m)2 − m2 + J 2 −J
)

. (3.73)

D.2.1 The S5 excitations – details

As explained above the perturbed S5 quasi-momenta are of the BMN form (3.54,3.55)

δ p̃2(x) = +
4π√

λ

x2

x2 − 1 ∑
n

(

N2̃3̃
n + N2̃4̃

n

x̃n − x
+

N1̃3̃
n + N1̃4̃

n

x2x̃n − x

)

δ p̃3(x) = − 4π√
λ

x2

x2 − 1 ∑
n

(

N1̃3̃
n + N2̃3̃

n

x̃n − x
+

N2̃4̃
n + N1̃4̃

n

x2x̃n − x

)

where x̃n is given by (3.72). Then, in the notation introduced above, the shift in the x = ±1

residues is given by

δJ eff =
∑n

(

N1̃3̃
n + N1̃4̃

n + N2̃3̃
n + N2̃4̃

n

) (

mn + J 2 −J
√
J 2 + n2 + 2mn

)

√
λ(m2 −J 2)

(3.74)

while δmeff is given by

J δmeff + δJ effm =
1√
λ

∑
n

(

N1̃3̃
n + N1̃4̃

n + N2̃3̃
n + N2̃4̃

n

)

n = 0 (3.75)

due to the Riemann condition. Then, from (3.64,3.37), we have

δE =
w3 − kmJ

w2κ
δw =

w(k2 + m2 + J 2) − 3kmJ
w2κ

δw (3.76)

where, using (3.37,3.75), we have

δw = −δJ e f f

J
w2(m2 −J 2)

w(k2 + m2 + J 2) − 3kmJ (3.77)

so that δE will be given by (3.73)
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D.3 Fermionic excitations

The fermionic excitations can be treated as for the su(2) string. As before we expect at

most two different answers for the energy shifts – one coming from the poles uniting

the (1̂3̃, 1̂4̃, 4̂1̃, 4̂2̃) sheets another result for the (2̂3̃, 2̂4̃, 3̂1̃, 3̂2̃). From the expressions in

Appendix C.3 we find

δ∆ = ∑
n

(

N1̂3̃
n + N1̂4̃

n + N4̂1̃
n + N4̂2̃

n

)

δ∆
(1)
n + ∑

n

(

N2̂3̃
n + N2̂4̃

n + N3̂1̃
n + N3̂2̃

n

)

δ∆
(2)
n , (3.78)

where

δ∆
(1)
n =

(2m + k) − 2J C − kC2

k(C2 − 1)(C−1x1̂3̃
n + 1)

+
n(C−1x1̂3̃

n − 1)

k(C−1x1̂3̃
n + 1)

+
nw

kκ

δ∆
(2)
n =

(2m − k)C2 − 2J C + k

k(C2 − 1)(Cx2̂3̃
n + 1)

− n(Cx2̂3̃
n − 1)

k(Cx2̂3̃
n + 1)

+
nw

kκ

with the position of the fermionic poles being given by (3.14), in terms of the algebraic

curve for the classical solution.

D.3.1 Fermionic excitations – details

The S5 part of the quasi-momenta is given by

p̃2(x) = +
4πx√

λ(x2 − 1)
∑
n

(

N3̂1̃
n + N4̂1̃

n

xx3̂1̃
n − 1

− x
N3̂2̃

n + N4̂2̃
n

x − x3̂1̃
n

)

p̃3(x) = − 4πx√
λ(x2 − 1)

∑
n

(

N1̂4̃
n + N2̂4̃

n

xx3̂1̃
n − 1

− x
N1̂3̃

n + N2̂3̃
n

x − x3̂1̃
n

)

whereas the AdS5 part is more complicated. Parameterizing δ p̂ as we did for the su(2)

string in (3.31), we have

f (x) =
x

x2 − 1 ∑
n

(

x
N2̂3̃

n + N2̂4̃
n − N3̂1̃

n − N3̂2̃
n

x − x2̂3̃
n

+
N2̂3̃

n + N2̂4̃
n − N3̂1̃

n − N3̂2̃
n

xx2̂3̃
n − 1

)

g(x) =
x

x2 − 1 ∑
n

([

xK(x2̂3̃
n )

x − x2̂3̃
n

+ anx + bn

]

(N2̂3̃
n + N2̂4̃

n + N3̂1̃
n + N3̂2̃

n )

−
[

xx1̂3̃
n K(1/x1̂3̃

n )

xx1̂3̃
n − 1

+ ānx + b̄n

]
(

N1̂3̃
n + N1̂4̃

n + N4̂1̃
n + N4̂2̃

n

)
)

where the remain constants are given by

an = C
(C2 − 1)(k − 2n)x2̂3̃

n + 2Cm − 2J
(C2 − 1)(Cx2̂3̃

n + 1)k
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ān = C
(C2 − 1)k − 2(m + n) + 2C(Cn + J )

(C2 − 1)(C + x1̂3̃
n )k

bn = C
(C2 − 1)k − 2C2(m + n) + 2(n + CJ )

(C2 − 1)(C + x2̂3̃
n )k

b̄n = −C
(C2 − 1)(k + 2n)x1̂3̃

n + 2Cm − 2C2J
(C2 − 1)(C + x1̂3̃

n )k

Then the energy shifts can be read from the large x asymptotics and are given in (3.78).

Appendix E: Ambiguities due to shifts

To compute the 1-loop shift one must sum all frequencies. This sum, however, is sensitive

to the way the frequencies are labeled. Let us demonstrate this on a simple example.

Consider the sum
1

2

∞

∑
n=−∞

(2ωn − ωn+m − ωn−m) (3.79)

with ωn = ω−n and assume that for large mode number, ωn ≃ |n|+ . . .. Naively this sum

is zero if m is integer, since all terms cancels among each other if we allow renumbering

of the terms. However a more careful analysis shows that this is not the case

1

2

N

∑
n=−N

(2ωn − ωn+m − ωn−m) =
N

∑
n=N−m+1

(ωn − ωn−m) = m2 + O (1/N) . (3.80)

Thus one should be very careful calculating 1-loop shift having a frequencies at hand

because ambiguities can easily arise. Consider, for example, the equation for the bosonic

frequencies for the general 3J solution [83]

PJ1 J2 J3
8 (ω) =

(

ω2 − n2
)4

− 4
(

ω2 − n2
)2 3

∑
i 6=j

Ji

wi

(
wj ω − mj n

)2

+ 8
3

∑
i 6=j 6=k 6=i

Ji

wi

(
wj ω − mj n

)2
(wk ω − mk n)2 = 0 .

This solution can be smoothly deformed to general su(2) solution for which J3 → 0 while

preserving all constraints (1.8). In this limit we find

PJ1 J20
8 (ω) = P

su(2)
4 (ω)

(
(

ω2 − n2
)2

− 4

(

m3n − ω
√

m2
3 + ν2

)2
)

(3.81)

where the quartic polynomial P
su(2)
4 (ω) is the one appearing in table 3 and gives us the

usual su(2) modes whereas the remaining equations yields the frequencies
√

(n + m3)2 + ν2 + w3,
√

(n − m3)2 + ν2 − w3 (3.82)
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instead of the two
√

n2 + ν2 we read from table 3. From the above explanation this ambi-

guity converts into an extra contribution of m2
3/κ to the 1-loop shift.

Moreover, we also found contradictory results in the literature. For the simple su(2)

solution, in [82, 87, 88] the sum over fermionic frequencies ωF
n is taken over the integers

for even m and over Z + 1/2 for odd m while in [49, 89] the sum always goes over the

integers. We found that the fermions will indeed be summed over integer n’s. The same

kind of mismatch appears for the sl(2) circular string. For example, in [51, 53, 89, 84] the

fermionic frequencies ωF
n are summed with n integer whereas we found ωF

n+m/2−k/2 and

ωF
−n−m/2−k/2 that is, the frequencies have half–integer arguments if m + k is odd – see

(3.40). In view of this discrepancies we also repeated the calculation for the frequencies

directly from the expansion of the string action using a coset representative parameter-

ized as in [10]. We also found the same kind of field redefinitions which are trivially

related to the R and Q matrices written in section 3.2. For the simple su(2) solution the

field redefinitions always leave the fermions periodic whereas for the sl(2) string they are

periodic (anti–periodic) for m + k even (odd) in agreement with the calculation presented

in this paper. Shifts changing integers into half-integers are no longer are related by the

simple expressions of the form m2/κ like in the previous example. However, the sum

over fermions can be replaced by integral with exponential precision and therefore this

shifts may end up being not so harmful.



4. MATCHING FINITE SIZE CORRECTIONS AND FLUCTUATIONS

I
N THE CHAPTER 2 we developed a method to compute the finite size corrections in

the thermodynamical limit. The conjectured BS equations depend on the ’t Hooft

coupling λ and should describe the spectrum of the AdS/CFT system (in the planar limit)

for the asymptotical states, i.e. for large angular momentum of the string J = L/
√

λ ≫ 1.

The analog of the thermodynamical limit for the BS equations is Ka ∼ L ∼
√

λ → ∞ as

we already mentioned in the introduction. The BS equations are constructed to reproduce

the classical algebraical curve of the “finite-gap” method in the leading thermodynamical

limit. The finite size 1/L corrections are also 1/
√

λ corrections to the classical spectrum

and thus should be related to the quasi-classical quantization considered in chapter 3.

In this section we will apply the method developed in the chapter 2 to the BS equations

to extract their finite size corrections. Then, we will show that they are, in fact, related to

the fluctuations, considered in the previous chapter, in such a way, that the 1-loop 1/
√

λ

correction to the classical energy of a state is given by a sum of zero point oscillations.

This proves the complete 1-loop consistency of the BS equations.

4.1 Heisenberg spin chain

I
N THIS SECTION we will demonstrate the interplay between fluctuations and finite size

corrections in NBA’s in the scaling limit. For simplicity we first consider the su(1, 2)

spin chain and then generalize to the general su(N) case.

In the chapter 2 we explained how to obtain the spectrum of the fluctuation energies

around any classical string solution using the algebraic curve by adding a pole to this

curve. In particular, we reproduced in this way some previous results [81, 82, 83, 84]

where the semi-classical quantization around some simple circular string motions were

computed by directly expanding the Metsaev-Tseytlin action [9] around some classical

solutions and quantizing the resulting quadratic action. Using the fact that one extra

pole in the algebraic curve means one quantum fluctuation, we can compute the leading

quantum corrections to the classical energy of a state from the field theory considerations

using the algebraic curve alone, as we mentioned in the introduction. This implies a

nontrivial relation between fluctuations on algebraic curve and finite size corrections in
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Bethe ansatz.

• Suppose we compute the energy shift δE ij
n due to the addition of a stack with mode

number n uniting sheets pi and pj to a given configuration with some finite cuts C.

• Suppose on the other hand that we compute 1/L energy expansion E = E (0) +
1
LE (1) + . . . of the configuration with the finite cuts C.

From the field theory point of view the first quantity corresponds to one of the fluctuation

energies around a classical solution parameterized by the configuration with the cuts C
whereas the second quantity, E (1), is the 1-loop shift [47] around this classical solution

with energy E (0). This 1-loop shift, or ground state energy, is given by the sum of halves

of the fluctuation energies [47]

E (1) =
1

2

N

∑
n=−N

∑
ij

δE ij
n (4.1)

In fact for usual (non super-symmetric) field theories this sum is divergent and needs

to be regularized. We will see that (4.1) can be generalized and holds for arbitrary local

charges

Q(1)
r =

1

2

N

∑
n=−N

∑
ij

δQij
r,n . (4.2)

where N is some large cut-off.

Let us stress once more that from the Bethe ansatz point of view these quantities are

computed independently and there is a priori no obvious reason why such relation be-

tween fluctuations and finite size corrections should hold. In this section we will show

that Nested Bethe Ansatz’s describing (super) spin chains with arbitrary rank do indeed

obey such property with some particular regularization procedure (for the Heisenberg

su(2) spin chain a similar treatment was carried in [52]). Moreover we will see that the

regularization mentioned above also appears naturally from the Bethe ansatz point of

view as some integrals around the origin.

4.1.1 1-loop shift and fluctuations

We will follow the logic of the previous chapter to compute the charges of the fluctuations,

around a given configuration of the roots. Let us pick the leading order integral equation

for the densities of the Bethe roots in the scaling limit (2.103) and perturb it by a single

stack, connecting pi with pj. According to (2.97) this simply implies ρ2 → ρ2 + 1
L δ(x − xij),

where xij is position of the new stack. Finally, the positions where one can put an extra
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stack, as it follows from the BAE (2.93,2.94), can be parameterized by one integer mod

number n

pi(x
ij
n) − pj(x

ij
n) = 2πn . (4.3)

Therefore, for i = 2, j = 3 the perturbed equation (2.103) reads

1

x
+ 2

∫

C23

− ρ(y)

x − y
+

∫

C13

ρ(y)

x − y
+

1

L

2

x − x23
n

= 2πk23 + φ2 − φ3 , x ∈ C23 . (4.4)

and this perturbation will lead to some perturbation of the density δρ(y), which will lead

to the perturbation in the local charges (2.95) as

δQ23
r,n =

∫
δρ(y)

yr
dy +

1

L(x23
n )r

, (4.5)

the local charges of the fluctuation with polarization 23 and mode number n.

Thus, by linearity, if we want to obtain the 1-loop shift (4.2) (or rather a large N reg-

ularized version of this quantity where the sum over n goes from −N to N) we have to

solve the following integral equation for densities

1

x
+ 2

∫

C23

− ρ(y)

x − y
+

∫

C13

ρ(y)

x − y
+

N

∑
n=−N

1

2L

[
2

x − x23
n

+
1

x − x13
n

]

= 2πk23 , x ∈ C23 . (4.6)

and then the 1-loop shifted charges are given

Qr =
∫

C13∪C23

ρ(y)

yr
dy +

N

∑
n=−N

1

2L

[
1

(x23
n )r

+
1

(x13
n )r

]

(4.7)

=
∫

C13∪C23

ρ(y)

yr
dy +

N

∑
n=−N

1

2L

[ ∮

x23
n

cot23

yr

dy

2πi
+

∮

x13
n

cot13

yr

dy

2πi

]

. (4.8)

To pass from the first line to the second in the above expression we use that cotij has poles

at x
ij
n with unit residue. We will now understand how to redefine the density in such a

way that the second term is absorbed into the first one. We start by opening the contours

in (4.8) around the excitation points x
ij
n. These contours will then end up around the

cuts Ckl of the classical solution and around the origin. We will not consider the contour

around x = 0 – this contribution would lead to a regularization of the divergent sum in

r.h.s. of (4.2). We will analyze it carefully in the super-string case, where it leads to the

Hernandez-Lopez phase factor. Then we get

Qr =
∫

C13∪C23

ρ(y)

yr
dy +

1

2L

[ ∮

C13

cot23

yr

dy

2πi
+

∮

C23

cot13

yr

dy

2πi

]

(4.9)
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Fig. 4.1: Illustration of an identity used in the main text.

Noting that

cot+ij = cot−kj , x ∈ Cik , (4.10)

where the superscript + (−) indicates that x is slightly above (below) the cut, we can

write

Qr =
∫

C13∪C23

ρ(y)

yr
dy − 1

2L

∫

C13∪C23

∆ cot12

yr

dy

2πi
(4.11)

so that we see that it is natural to introduce a new density, “dressed” by the virtual parti-

cles,

̺ = ρ − 1

2L

∆ cot12

2πi
(4.12)

so that the expression for the local charges takes the standard form

Qr =
∫

C13∪C23

̺(y)

yr
dy .

Let us now rewrite our original integral equation (4.6) in terms of this dressed density.

We will see that the integral equation we are constructing for this density by requiring

a proper semi-classical quantization will be precisely the equation (2.106) (up to some

contribution coming from the region around the x = 0. Subtraction of this contribution

could be considered as a regularization of the divergent sum (4.2)) which is the finite size

corrected integral equation arising from the NBA for the spin chain! This will thus prove

the announced property relating finite size corrections and 1-loop shift.

Consider for example the first summand in (4.6) (recall that x ∈ C23),

∑
n

1

x − x23
n

= ∑
n

∮

x23
n

cot23

x − y

dy

2πi
= cot23 +

∮

C13

cot23

x − y

dy

2πi
= cot23 −

∫

C13

∆ cot12

x − y

dy

2πi
,

(4.13)

Note that cot23 has branch cut singularities at C13 which we have to encircle when we

blow up the contour, which leads to the second term. The first term comes from the pole

at x = y. Finally, to write the second term as it is we used (4.10). Analogously (see figure

4.1 for a pictorial explanation of the second equality)

∑
n

1

x − x13
n

=
∮

C23

cot13

x − y

dy

2πi
= cot/ 13 +

∫

C23

− ∆ cot13

x − y

dy

2πi
= cot/ 13 −

∫

C23

− ∆ cot12

x − y

dy

2πi
. (4.14)
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Then we note that (see (2.115))

cot/ 13 = cot/ 12 = −
∫

C13∪C23

− ∆ cot12

x − y

dy

2πi

so that (4.6) reads

1

x
+ 2

∫

C23

− ρ(y)

x − y
+

∫

C13

ρ(y)

x − y
+

1

2L



2 cot23 −2
∫

C23

− ∆ cot12

x − y

dy

2πi
− 3

∫

C13

∆ cot12

x − y

dy

2πi



 = 2πk23 + φ2 −φ3

which in terms of the redefined density ̺ becomes

1

x
+ 2

∫

C23

− ̺(y)

x − y
+

∫

C13

̺(y)

x − y
+

1

L



cot23 −
∫

C13

∆ cot12

x − y

dy

2πi



 = 2πk23 + φ2 − φ3

which coincides precisely with (2.106) as announced above! Thus the finite size correc-

tions to the charge of any given configuration will indeed be equal to the field theoretical

prediction, that is to the 1-loop shift around the classical solution.

4.1.2 Generalization

Here we consider a su(n) NBA with the Dynkin labels Va being +1 for a particular a

only. In this section we generalize the results from the section 4.1.1. For the spin chain

su(n) NBA, in the classical limit, we will have n quasi-momenta each one above or below

each of the n − 1 Dynkin nodes1. We label these quasi-momenta by pi (pj) with i, i′ (j, j′)
taking positive (negative) values for quasi-momenta above (below) the node for which

Va 6= 0. Then let us mention how the equations in the previous section are generalized.

We consider a middle node cut C1,−1. The analogue of equation (4.6) is now

−1

x
+ ∑

j

∫

C1,j

δρ(y)

x − y
+ ∑

i

∫

Ci,−1

δρ(y)

x − y
+

N

∑
n=−N

1

2L

[

∑
i

1

x − xi,−1
n

+ ∑
j

1

x − x
1,j
n

]

= 0 (4.15)

and the charges (4.7), (4.8), (4.9) and (4.11) become2

Qr −
∫

C

ρ(y)

yr
dy = + ∑

n
∑
ij

1

2L

1

(x
ij
n)r

= +
1

2L ∑
ij

1

2J

∮

x
ij
n

cotij

yr

dy

2πi
(4.16)

1 See figure 4.2 for an example of such pattern for a super group which clearly resembles su(8).

2 as in the previous section, we are ignoring the regularization of the charges coming from the contribu-

tion of the contour around the origin which would appear in the second line from opening the contours

around the excitation points x
ij
n.
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= +
1

2L ∑
ii′ j

∮

Ci′ j

cotij

yr

dy

2πi
+

1

2L ∑
ijj′

∮

Cij′

cotij

yr

dy

2πi
(4.17)

= − 1

2L ∑
ii′ j

∮

Ci′ j

cotii′

yr

dy

2πi
− 1

2L ∑
ijj′

∮

Cij′

cotjj′

yr

dy

2πi
(4.18)

= − 1

2L

∫

C

∑i<i′ ∆ cotii′ + ∑j<j′ ∆ cotjj′

yr

dy

2πi
, (4.19)

so that the natural definition of the dressed density becomes now

̺ = ρ +
1

4Lπi
∆

(

∑
i<i′

cotii′ + ∑
j<j′

cotjj′

)

. (4.20)

Next step is to rewrite the integral equation (4.15) in terms of this new density. We proceed

exactly as in (4.13), (4.14) using now

cot1,i = −∑
j

(

I1i
1,j + I1i

i,j

)

, Ikl
ij ≡

∫

Cij

cotkl(y)

x − y

dy

2πi
,

which is the analog of (2.115) for this su(n) setup, so that at the end we obtain the follow-

ing equation

∑
j

∫

C1,j

δ̺(y)

x − y
+ ∑

i

∫

Ci,−1

δ̺(y)

x − y
+

1

L

(

cot1,−1 −∑
ij

∫

Cij

∆ cot1,i +∆ cotj,−1

x − y

dy

2πi

)

= 0 (4.21)

for δ̺ = ̺ − ̺0 where ̺0 obeys the leading order equation

−1

x
+ ∑

j

∫

C1,j

̺0(y)

x − y
+ ∑

i

∫

Ci,−1

̺0(y)

x − y
= 2πk1,−1 . (4.22)

This corrected equation is precisely the one we would obtain from finite size corrections

to the su(n) NBA equations. To find this equation from the Bethe ansatz point of view

one can simply repeat either of the derivations in section 2.2.1, that is the known transfer

matrices in various representations or the bosonic duality described in the previous sec-

tions. In section 4.2 we consider the AdS/CFT Bethe ansatz equations which are based on

a large rank symmetry group, namely PSU(2, 2|4). There one can see an example of how

this could be done explicitly.
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Fig. 4.2: The several physical fluctuations in the string Bethe ansatz. The 16 elementary physical

excitations are the stacks (bound states) containing the middle node root. From the left

to the right we have four S5 fluctuations, four AdS5 modes and eight fermionic excita-

tions. The bosonic (fermionic) stacks contain an even (odd) number of fermionic roots

represented by a cross in the psu(2, 2|4) Dynkin diagram in the left.

4.2 Matching of finite size corrections and fluctuations in AdS/CFT

4.2.1 Middle node anomaly

In this section we will expand BS equations in the scaling limit for the roots belonging to

a cut containing middle node roots x4 only. We do not assume that all the others cuts are

of the same type, rather they can be cuts of stacks of several sizes. In the section 2.2.5 we

will generalize the results obtained in this section to an arbitrary cut, assuming, as in the

previous section, that the cuts are small enough and twists are not zero so that stacks are

stable. We will discus in section 4.3 what happens when one takes all twists to zero.

To leading order, the middle node equation (1.41) can be simply written as p/4 − p/5 =

2πn while at 1–loop the first product in the r.h.s. of (1.41) corrects this equation due to

(2.15)

1

i
log

K4

∏
j 6=k

(

u4,k − u4,j + i

u4,k − u4,j − i

)

≃ 2 /F4(x) + α(x)πρ′(x) cot(πρ(x)) (4.23)

where F4(x) = ∑
K4
j

1
u(x)−u4,j

, ρ(x) = dk
duk

. Expansion of the remaining terms in (1.41) will

not lead to the appearance of such anomaly like terms since the roots of another types are

separated by ∼ 1 from x4,k. Thus we have simply

2πn = p/4 − p/5 − η α(x)πρ′(x) cot(πρ(x)) , x ∈ C45 (4.24)

In the next sections we will use dualities of the BS equations to get some extra information

about cuts of stacks and generalize the above equation to any possible type of cut. To
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achieve this we shall recast this equation in terms of the middle node roots x4 only. Finally,

in this section we will use

cotij ≡ α(x)
p′i − p′j

2
cot

pi − pj

2

which is similar (but should not be confused) with (2.105).

4.2.2 Dualities in the string Bethe ansatz

Obviously, the behavior of the Bethe roots will be as described in section 2.2 for a simpler

example of a su(1, 2) spin chain, that is, we will have simple cuts made out of x4 roots only

and also cuts of stacks with x2, x3 and x4 roots for example. Consider such cut of stacks.

Clearly, to be able to write the middle node equation (1.41) or (4.24) we need to compute

the density mismatches ρ2 − ρ3 and ρ3 − ρ4 which are 1-loop contributions we must take

into account if we want to write an integral equation for the middle node equation in

terms of the density ρ4 of momentum carrying roots only. In this section we shall analyze

the dualities present in the BS Bethe equations. By analyzing them in the scaling limit we

will then be able to derive the desired density mismatches.

Fermionic duality in scaling limit

In [18] it was shown that the BS equations obey a very important fermionic duality. Since

we chose to work with a subset of the possible Bethe equations, that is the ones with

η1 = η2 = η present in [18], we should apply the duality present below not only to

the fermionic roots x1 and x3 (as described below) but also to the Bethe roots x5 and x7.

Obviously the duality for x5 and x7 is exactly the same as for x1 and x3 and so we will

focus simply on the latter while keeping implicit that we always dualize all the fermionic

roots at the same time.

We construct the polynomial (τ = η (φ4 − φ3))

P(x) = e+i τ
2

K4

∏
j=1

(x − x+
4,j)

K2

∏
j=1

(x − x−2,j)(x − 1/x−2,j)

− e−i τ
2

K4

∏
j=1

(x − x−4,j)
K2

∏
j=1

(x − x+
2,j)(x − 1/x+

2,j) (4.25)

of degree K4 + 2K2 which clearly admits x = x3,j and x = 1/x1,j as K3 + K1 zeros3 . The

remaining K4 + 2K2 − K3 − K1 roots are denoted by x̃3,j or 1/x̃1,j depending on whether

3 we also have 1/x1 has zeros because, due to (1.42), the equation for x1,j is the same as the equation for

x3,j if we replace x3,j by 1/x1,j. This is why the restriction (1.42) of the twists is so important.
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they are outside or inside the unit circle respectively,

P(x) = 2i sin(τ/2)
K1

∏
j=1

(x − 1/x1,j)
K̃1

∏
j=1

(x − 1/x̃1,j)
K3

∏
j=1

(x − x3,j)
K̃3

∏
j=1

(x − x̃3,j) (4.26)

Then we can replace the roots x1,j, x3,j by the roots x̃1,j, x̃3,j in the BS equations provided

we change the grading η → −η and interchange the twists φ1 ↔ φ2 and φ3 ↔ φ4. In

fact, since we should also dualize the remaining fermionic roots, we should also change

φ5 ↔ φ6 and φ7 ↔ φ8 and replace the remaining fermionic roots x5 and x7.

Since to the leading order x± ≃ x each root will belong to a stack which must always

contain a momentum carrying root x4. We have therefore K̃1 = K2 − K1 and K̃3 = K2 +

K4 − K3. Thus we label the Bethe roots as

x1,j = x4,j − ǫ1,j , j = 1, . . . , K1

x̃1,j = x4,j+K1
− ǫ̃1,j , j = 1, . . . , K̃1

x2,j = x4,j − ǫ2,j , j = 1, . . . , K2

x3,j = x4,j − ǫ3,j , j = 1, . . . , K3

x̃3,j = x4,j+K3
− ǫ̃3,j , j = 1, . . . , K̃3

with ǫ ∼ 1/
√

λ. Dividing (4.25) and (4.26) by ∏
K4
j=1(x − x4,j) ∏

K2
j=1(x − x4,j)(x − 1/x4,j)

we have

e+i τ
2

K4

∏
j=1

x − x+
4,j

x − x4,j

K2

∏
j=1

x − x−2,j

x − x4,j

x − 1/x−2,j

x − 1/x4,j
− e−i τ

2

K4

∏
j=1

x − x+
4,j

x − x4,j

K2

∏
j=1

x − x+
2,j

x − x4,j

x − 1/x+
2,j

x − 1/x4,j

= 2i sin(τ/2)
K1

∏
j=1

x − 1/x1,j

x − 1/x4,j

K̃1

∏
j=1

x − 1/x̃1,j

x − 1/x4,K1+j

K3

∏
j=1

x − x3,j

x − x4,j

K̃3

∏
j=1

x − x̃3,j

x − x4,K3+j
(4.27)

In this form it is easy to expand the duality relation in powers of 1/
√

λ. By expanding all

factors in (4.27) such as

K2

∏
j=1

x − x±2,j

x − x4,j
= exp

(
K2

∑
j=1

log
x − x±2,j

x − x4,j

)

≃ exp

(

∓ i

2
G2(x) +

K2

∑
j

ǫ2,j

x − x2,j

)

,

we find

sin

(
η(p4 − p3)

2

)

= sin
(τ

2

)

exp

(

+ ∑
ǫ3

x − x3
+ ∑

ǫ̃3

x − x3
− ∑

ǫ2

x − x2

)

× exp

(

−∑
ǫ1/x2

1

x − 1/x1
− ∑

ǫ̃1/x̃2
1

x − 1/x̃1
+ ∑

ǫ2/x2
2

x − 1/x2

)

.
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Then, similarly to what we had in section 2.2.3 for the bosonic duality, we notice that

α(x)∂x

(

∑
ǫ3

x − x3
+ ∑

ǫ̃3

x − x̃3
− ∑

ǫ2

x − x̃2

)

= H3 + H3̃ − H4 − H2 ,

with a similar expression for the argument of the second exponential. Thus finally we get

(H4 + H2 − H3 − H3̃) + (H̄2 − H̄1 − H̄1̃) = − cot34 ,

or alternatively, using the x → 1/x symmetry transformation properties of the quasi-

momenta,

(H̄4 + H̄2 − H̄3 − H̄3̃) + (H2 − H1 − H1̃) = − cot12 .

From this expressions we can deduce several properties of the density mismatches we

wanted to obtain. For example, if we compute the discontinuity of (4.2.2) at a cut contain-

ing roots x1, that is in a large cut of stacks C1,i>4, we immediately get

ρ1 − ρ2 = −∆ cot12

2πi
, x ∈ C1,i>4 . (4.28)

Proceeding in a similar way we find

ρ3 − ρ4 = −∆ cot34

2πi
, x ∈ C3,i>4 , (4.29)

ρ3 − ρ4 = ρ2 − ρ3̃ , x ∈ C1,i>4 ∪ C2,i>4 . (4.30)

Let us now show that in the scaling limit the fermionic duality corresponds just to the

exchange of the sheets {pi} of the Riemann surface. For illustration let us pick p1 and see

how it transforms under the duality. By definition the fermionic duality corresponds to

the replacement η → −η, H1 → H1̃, H3 → H3̃ and φ1 ↔ φ2, φ3 ↔ φ4, so that

p1 → 2πJ x − δη,−1Q1 + δη,+1Q2x

x2 − 1
− η (−H1̃ − H̄3̃ + H̄4) + φ2 = p2 + η cot12

In the same way we get

p2 → p1 + η cot12 , p3 → p4 − η cot34 , p4 → p3 − η cot34 ,

and since cotij ∼ 1/
√

λ we see that to the leading order the duality indeed just exchanges

the sheets.

Bosonic duality in scaling limit

The bosonic nodes of the BS equations are precisely as in the usual Bethe ansatz discussed

in the first sections so that we can just briefly mention the results. The duality (τ =

η(φ2 − φ3))

e+i τ
2 Q̃2(u − i/2)Q2(u + i/2) − e−i τ

2 Q̃2(u + i/2)Q2(u − i/2) = 2i sin
τ

2
Q1(u)Q3(u)
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Fig. 4.3: Action of the duality on a long stack. By successively applying the fermionic and the

bosonic dualities we can reduce the size of any large cut. One should not forget to change

the sign of the grading η after applying the fermionic duality.

leads to

(H1 + H3 − H2 − H2̃) + (H̄1 + H̄3 − H̄2 − H̄2̃) = cot23 (4.31)

which implies

ρ2 − ρ3 = +
∆ cot23

2πi
, x ∈ C2,i>4 .

As we already discussed in section 2.2 the bosonic duality also amounts to an ex-

change of Riemann sheets. Indeed, under the replacement H2 → H2̃ and φ2 ↔ φ3, we

find

p2 → p3 − η cot23 , p3 → p2 + η cot23

which again, to the leading order in
√

λ, is just the exchange of the sheets of the curve.

Dualities and the missing mismatches

Using bosonic and fermionic dualities separately we already got some information about

the several possible mismatches of the densities inside the stack. To compute the missing

mismatches we have to use both dualities together. For example suppose we want to

compute ρ3 − ρ4 in a cut C1,i>4. We start by one such large cut of stacks (see figure 4.3a)

and we apply the fermionic duality to this configuration so that we obtain a smaller cut

as depicted in figure 4.3b. For this configuration we can use (4.2.2) to get

ρ2 − ρ3̃ = +
∆ cot14

2πi
.

However, from (4.30), this is also equal to the mismatch we wanted to compute, that is

ρ3 − ρ4 = +
∆ cot14

2πi
, x ∈ C1,i>4 .
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Tab. 4.1: Densities mismatches

C1,i C2,i C3,i

2πi(ρ1 − ρ2) −∆ cot12

2πi(ρ2 − ρ3) −∆ cot13 +∆ cot23

2πi(ρ3 − ρ4) +∆ cot14 −∆ cot24 −∆ cot34

To compute the last mismatch we apply the bosonic duality to get a yet smaller cut as in

figure 4.3c for which we use (4.29) to get

ρ3̃ − ρ4 = −∆ cot13

2πi
.

Again, from (4.30), we can revert this result into a mismatch for the configuration before

duality, that is

ρ2 − ρ3 = −∆ cot13

2πi
, x ∈ C1,i>4 .

Let us then summarize all densities mismatches in table 4.1.

4.2.3 Integral equation

In this section we shall recast equation (4.24) or

η
4πJ x − 2δη,+1Q1 − 2δη,−1Q2x

x2 − 1
+ 2 /H4 − H3 − H5 − H̄1 − H̄7 = 2πn + ηφ4 − ηφ5 − cot45

(4.32)

in terms of the density ρ4(x) of the middle roots x4. To do so we only need to replace the

several densities by the middle node density ρ4(x) using the several density mismatches

presented in table 4.1. Defining

Hij(x) ≡
∫

Cij

α(x)

α(y)

ρ4(y)

x − y
dy

we can then rewrite equation (4.32) in terms of the middle node roots only,

η
4πJ x − 2δη,+1Q1 − 2δη,−1Q2x

x2 − 1
+ 2 /H45 + H15 + H48 − 2H̄18 − H̄15 − H̄48

= 2πn + ηφ4 − ηφ5 − cot45 + ∑
1≤i≤4
5≤j≤8

(I i4
ij + I5j

ij ) + ∑
1≤i≤4
5≤j≤8

(Ī i1
1j + Ī8j

i8) (4.33)

where x ∈ C45 and

Ikl
ij (x) = (−1)Fkl

∫

Cij

α(x)

α(y)

∆ cotkl

x − y

dy

2πi
, Ikk

ij (x) ≡ 0 , Īkl
ij (x) = Ikl

ij (1/x) .
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The several dualities amount to an exchange of Riemann sheets so that the cuts Cij → Ci′j′

with the subscripts in Hij changing accordingly. The middle roots x4 are never touched in

the process. Moreover to leading order pi ↔ pi′ and thus the r.h.s. of (4.33) is also trivially

changed under the dualities. Therefore, as in section 2.2.1 (see (2.106) and (2.107)), we can

now trivially write the corrected equation when x belongs to any possible type of cut of

stacks by applying the several dualities to equation (4.33).

4.2.4 Fluctuations

In this section we shall find the integral equation (4.33) from the field theoretical point of

view like we did in section 4.1. That is, we will find what the corrections to the classical

(leading order) equations [11]

η
4πJ x − 2δη,+1Q1 − 2δη,−1Q2x

x2 − 1
+ 2 /H4 − H3 − H5 − H̄1 − H̄7 = 2πn + ηφ4 − ηφ5 , (4.34)

should be in order to describe properly the semi-classical quantization of the string (and not only

the classical limit). We will find that this construction leads precisely to the integral equa-

tion (4.33) thus showing that the BS nested Bethe ansatz equations do reproduce the 1-

loop shift around any (stable) classical solution with exponential precision (in some large

charge of the classical solution). This section is very similar to section 4.1 and thus we

will often omit lengthy but straightforward intermediate steps. We assume i = 1, . . . , 4

and j = 5, . . . , 8 in all sums.

As in (4.6) and (4.15), we add 1
2(−1)F of a virtual excitation for each possible mode

number n and polarization ij to each quasi-momenta. Notice that for this super-symmetric

model the fluctuations can also be fermionic and indeed the grading (−1)F equals +1

(−1) for bosonic (fermionic) fluctuations, see figure 4.2, as usual for bosonic (fermi-onic)

harmonic oscillators.

We denote ρ = ρ0 + δρ where ρ0 is the leading density, solution of the leading (classi-

cal) equation (4.34), while ρ obeys the corrected (semi-classical) equation. For example, if

we consider x ∈ C4,5, the starting point should be (see [90] for a similar analysis)

0 =
−2xδη,−1δQ1

x2 − 1
+ 2

∫

C45

α(x)

α(y)

δρ(y)

x − y
+

∫

C15

α(x)

α(y)

δρ(y)

x − y
+

∫

C48

α(x)

α(y)

δρ(y)

x − y

−2
∫

C18

α(1/x)

α(y)

δρ(y)

1/x − y
−

∫

C15

α(1/x)

α(y)

δρ(y)

1/x − y
−

∫

C48

α(1/x)

α(y)

δρ(y)

1/x − y
(4.35)

+
N

∑
n=−N

1

2

[

∑
i≤4

(−1)Fi5α(x)

x − xi5
n

+ ∑
j≥5

(−1)F4jα(x)

x − x
4j
n

− ∑
i≤4

(−1)Fi8α(1/x)

1/x − xi8
n

− ∑
j≥5

(−1)F1jα(1/x)

1/x − x
1j
n

]
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Then, by construction, the charges

Qr =
∫

C
ρ(y)

yr
dy + ∑

n
∑
ij

(−1)Fij
α(x

ij
n)

2(x
ij
n)r

=
∫

C
ρ(y)

yr
dy + ∑

ij

(−1)Fij

2

∮

x
ij
n

cotij

yr

dy

2πi
(4.36)

will take the 1/
√

λ corrected values. It is clear that, as before, we do not include the new

virtual excitations in the density ρ(x). Similarly to (4.12) and (4.20), if we want the charges

to have the standard form

Qr =
∫

̺(y)

yr
dy

we must redefine the density as

̺ = ρ +
1

4πi

(

∑
i<i′≤4

(−1)Fii′ ∆ cotii′ + ∑
j>j′≥5

(−1)Fjj′ ∆ cotjj′

)

.

Now we want to go back to the integral equation (4.35) and rewrite it using the density

δ̺ = ̺ − ρ0. For example, for x ∈ C45,

2
∫

C45

α(x)

α(y)

δρ(y)

x − y
+

∫

C15

α(x)

α(y)

δρ(y)

x − y
+

∫

C48

α(x)

α(y)

δρ(y)

x − y

+
N

∑
n=−N

1

2

[

∑
i

(−1)Fi5α(x)

x − xi5
n

+ ∑
j

(−1)F4jα(x)

x − x
4j
n

]

=

2
∫

C45

α(x)

α(y)

δ̺(y)

x − y
+

∫

C15

α(x)

α(y)

δ̺(y)

x − y
+

∫

C48

α(x)

α(y)

δ̺(y)

x − y

+ cot45 −∑
ij

(

I4i
ij + I j5

ij

)

− 1

2 ∑
ij

(

Ī8i
8j + Ī1j

1i + Ī8i
ij + Ī1j

ij

)

where the identity

(−1)F4i cot4,i = −∑
j

(

I4i
4j + I4i

ij

)

− ∑
j

(

Ī1ī
1j + Ī1ī

īj

)

,

where ¯̄i = i, 1̄ = 4, 2̄ = 3, is being used. Now, when x ∈ C18, we will get

2
∫

C18

α(x)

α(y)

δρ(y)

x − y
+

∫

C15

α(x)

α(y)

δρ(y)

x − y
+

∫

C48

α(x)

α(y)

δρ(y)

x − y

+
N

∑
n=−N

1

2

[

∑
i

(−1)Fi8α(x)

x − xi8
n

+ ∑
j

(−1)F1jα(x)

x − x
1j
n

]

=

2
∫

C18

α(x)

α(y)

δ̺(y)

x − y
+

∫

C15

α(x)

α(y)

δ̺(y)

x − y
+

∫

C48

α(x)

α(y)

δ̺(y)

x − y

−1

2 ∑
ij

(

I1i
ij + I j8

ij − I8i
8j − I1j

1i

)
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Finally we can use the x to 1/x symmetry to translate last equality into one for x ∈ C45.

Subtracting it from the previous equation we see that the 1/
√

λ corrected equation will

correspond to adding

− cot45 + ∑
ij

(

I4i
ij + I5i

ij + Ī1i
1j + Ī8j

8i

)

to the r.h.s. of (4.34) thus obtaining, after the identification ̺ = ρ4, precisely the finite size

corrected equation (4.33) obtained from the NBA point of view!

In this section we showed that the one loop shift as a sum of all fluctuation energies (or

others local charges) perfectly matches the finite size corrections in the NBA equations.

However we systematically dropped the contours around the unit circle. In the next

section we will accurately take it into account.

4.3 The unit circle and the Hernandez-Lopez phase

C
ONSIDER again the sum in the equation (4.35). We can rewrite it as an integral around

each x
ij
n and then blow the contour to encircle all the singularities of cotij and the

circle going through the points x
ij
N and x

ij
−N, which are close to 1 and −1 correspondingly.

The contributions coming from the contours encircling the cuts of cotij we have already

considered in the previous section and show that they reproduce the finite size corrections

in the BS equations. Let us show that the unit circle contributions accounts for the HL

phase factor. We will drop systematically the contributions considered in the previous

section.

N

∑
n=−N

1

2

[

∑
i≤4

(−1)Fi5α(x)

x − xi5
n

+ ∑
j≥5

(−1)F4jα(x)

x − x
4j
n

− ∑
i≤4

(−1)Fi8α(1/x)

1/x − xi8
n

− ∑
j≥5

(−1)F1jα(1/x)

1/x − x
1j
n

]

=
1

2

[

∑
i≤4

∮
α(x)

α(y)

(−1)Fi5 coti5

x − y

dy

2πi
+ . . .

]

(4.37)

Now let us assume that everywhere we can replace cot
(

pi(x)−pj(x)
2

)

by i sign(Im x)

with exponential precision in L√
λ
≫ 1. This is reasonable for generic points in the unit

circle, where the imaginary part of pi(x) − pj(x) is large, but one has to carefully analyze

the neighborhood of the real axis, where this imaginary part vanishes. We will analyze

this step carefully in the next section. Assuming this could be done we will get

1

2

[

∑
i≤4

∮

α(x)
(−1)Fi5(p′i − p′5)

x − y
sign(Im y)

dy

2π
+ . . .

]

(4.38)

=
∮ [

α(x)

x − y
− α(1/x)

1/x − y

]

(p′4 − p′3 − p′2 + p′1) sign(Im y)
dy

2π
= −2ηV(x)
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Finally, as we can see from (1.56), the combination of quasi-momenta appearing in (4.38)

is precisely the one from which one reads the local charges Qn,

p′4 − p′3 − p′2 + p′1 = −η∂y [G4(y) − G4(1/y)] . (4.39)

where

G4(y) = −
∞

∑
n=0

Qn+1yn , (4.40)

so that we can expand the denominators in (4.38) for large x and obtain

V(x) = α(x)
∞

∑
r, s = 2

r+s ∈ Odd

1

π

(r − 1)(s − 1)

(s − r)(r + s − 2)

(Qr

xs
− Qs

xr

)

(4.41)

where we recognize precisely the Hernandez-Lopez coefficients! To obtain the values of

the potential for |x| < 1 we can simply use the exact symmetry V(x) = −V(1/x) which

is not manifest in the form (4.41).

Unit circle contribution

In this section we show that for the “unit circle” contribution we can replace cotij by

i sign Im(x) if the ration L/
√

λ is large.

Let us focus on the vicinity of x = 1 where we have the following expansion of the

quasi-momenta
pi(x) − pj(x)

2
=

βij

x − 1
+ . . .

where βij is usually of order L/
√

λ. We will consider the circle with radius x
ij
N+1/2 ≃

1 + 1
πNβij

, where N is some large cutoff in the sum of fluctuations (4.35). We want to

estimate ∫

α(x) f (x)

[

cot

(
pi − pj

2

)

+ i sign(Im x)

]

(p′i − p′j)dx .

This integral is dominated for x ≃ ±1 and can be performed by saddle point. The contri-

bution for x ≃ 1 is
∫

α(x) f (x)

[

cot

(
pi − pj

2

)

+ i sign(Im x)

]

(p′i − p′j)dx =
iπ3 f (1)

6βij

√
λ

+ O
(

1

N

)

which is zero under the sum over all polarizations. For example

(−1)F45

β45
= − (−1)F35

β35
.

Thus we can indeed can replace cot’s when integrating over the unit circle by a simple

sign function. In the Appendix A we will carefully analyze the N → ∞ limit and the

numbering of the frequencies problem.
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Summary

Although we always assumed the twists to be sufficiently large and the fillings to be

sufficiently small we can always analytically continue the results towards zero twists or

large filling fractions. Let us briefly explain why. In the scaling limit, for large twists, the

bosonic duality we introduced amounts to a simple exchange of sheets in some Riemann

surface, pa(x) ↔ pb(x). As we saw in section 2.2.5 what happens when the twists start to

become very small is that the quasi-momenta are still simply exchanged but in a piecewise

manner, that is, we can always split the complex planes in some finite number of regions

where the bosonic duality simply means pa(x) ↔ pb(x). Thus, from the eip algebraic

curve point of view nothing special occurs for what analyticity is concerned and therefore

we can safely analytically continue our findings to any value of the twists. Exactly the

same analysis holds for the filling fractions. Moreover, for the usual Bethe system, we

defined a set of quasi-momenta, which constitute an algebraic curve to any order in 1/L,

and therefore we don’t expect analyticity to break down at any order in 1/L.

We also preformed a high precision numerical check concluding that there is no sin-

gularity when the configuration of the Bethe roots is affected by this partial reshuffling of

the sheets and that finite size corrections are still related to the same sum of fluctuations,

which are analytical functions w.r.t. the twists.

Appendix A: Large N limit

In the x plane the contour in figure 4a is mapped to that in figure 4b. For large N the

contour starts at −1 − ǫ
ij
−(N) and ends at +1 + ǫ

ij
+(N). In this appendix we perform a

careful analysis of the large N limit.

A.1 Asymptotics of quasimomenta and expansion of xn

Let us take η = 1 and use notations (1.57). Large n’s are mapped to the vicinity of ±1

where

p̂2 ≃ +
α±

x ∓ 1
+ ∑

n=0

â±n (x ∓ 1)n , p̃2 ≃ +
α±

x ∓ 1
+ ∑

n=0

ã±n (x ∓ 1)n ,

p̂3 ≃ − α±
x ∓ 1

+ ∑
n=0

b̂±n (x ∓ 1)n , p̃3 ≃ − α±
x ∓ 1

+ ∑
n=0

b̃±n (x ∓ 1)n .

The remaining quasimomenta are fixed by the x → 1/x symmetry

p̃1,2(x) = −2πm − p̃2,1(1/x)

p̃3,4(x) = +2πm − p̃4,3(1/x) (4.42)

p̂1,2,3,4(x) = − p̂2,1,4,3(1/x) .
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From this expansion we can read the large n behavior of x
ij
n defined by (1.7). Let us,

however, use a more general definition

pi(x
ij
n) − pj(x

ij
n) = 2π(n − mi + mj). (4.43)

For n → ±∞ all x
ij
n are close to ±1 and we find

x
ij
n = ±1 +

α±

πn
+ O

(

1/n2
)

(4.44)

where we notice that the first 1/n coefficient is universal and fixed uniquely by the

residues of the quasi-momenta.

A.2 Large N versus ǫ regularization

The main goal of this appendix is to justify the integration path used in the main text

where for all ij the integral in the x plane starts from −1 − ǫ and ends at 1 + ǫ as de-

picted on the figure 4.2b. However by definition (4.2) we have to start from the large N

regularization. These two regularization in principal are not equivalent, since x
ij
N’s are

not exactly equal for all ij and thus we should calculate the difference between both regu-

larizations. In particular in (4.37) we will have slightly different contours of integrations

after replacement of the cot’s by sign. One would like to make all the contours to be the

circle of the radius 1 + ǫ. However, while changing the contours of integration one will

get some unwelcome contribution proportional to

(
1

α+
− 1

α−

)
(
m + m1̂ + m2̂ − m1̃ − m2̃

) (
m + m3̃ + m4̃ − m3̂ − m4̂

)
.

Fortunately it is possible to choose mi in such a way that it is always zero, and this trans-

formation is possible. For example

m1̃ = m , m4̃ = −m (4.45)

and all the others mi are zero. This amounts to some prescription for the mode numbers.

For obvious reasons let us denote it by Bethe ansatz friendly prescription. Contrary to

what we had in the chapter 3 we have no obvious argument in favor of this new prescrip-

tion. For the sl(2) and su(2) one cut solutions this prescription gives the same result (with

exponential precision in large J ) as in [81, 82, 83, 84, 53, 51].
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T
HE CLASSICAL INTEGRABLE TWO-DIMENSIONAL NON-LINEAR SIGMA MODELS are rel-

atively easy to solve. At least, when the corresponding Lax pair is known, one can

construct a large class of the so called classical finite gap solutions [92]. These solutions

are known to constitute a dense (in the sense of parameters of initial conditions) subset in

the space of solutions of the model.

However, the quantization of such classically integrable sigma-models usually creates

substantial problems and is known to be virtually impossible to do in the direct way, in

terms of the original degrees of freedom of the classical action. The existing quantum

solutions are usually based on plausible assumptions which are difficult to prove in a

systematic way.

There were a few successful, though not completely justified, attempts to find the

quantum solutions of SU(N) principal chiral field model (PCF), starting from the original

action. A. Zamolodchikov and Al. Zamolodchikov [93] found the factorizable bootstrap

S-matrices for the O(N) sigma models, later generalized to many other sigma models.

The O(4) case which we are focused on in this chapter, is equivalent to the SU(2) PCF.

Polyakov and Wiegmann [94, 95] found the equivalent non-relativistic integrable Thirring

model reducible in a special limit to the PCF. Faddeev and Reshetikhin [96] proposed the

”equivalent” double spin chain for the SU(2) PCF. In both cases, the equivalence is based

on subtle assumptions, difficult to verify.

The verification of such solutions is usually based on the perturbation theory, large N

limit or Monte-Carlo simulations [93, 97, 98, 99].

Here we address this question in a more systematic way. Namely, we will reproduce

all classical finite gap solutions of a sigma model from the Bethe ansatz solution for a

system of physical particles on the space circle, in a special large density and large energy

limit. We shall call it the continuous limit though, as we show, it is the actual classical limit

of the theory. We will see that in this limit the Bethe Ansatz equations (BAE) diagonalizing

the periodicity condition, will be reduced to a Riemann-Hilbert problem. This chapter is

inspired by [100] and contains many original results.

In [86] we also repeated this construction for the O(6) sigma-model and explained

how the generalization to the O(2n) model can be done in a trivial way. In fact, as it



5. Relativistic bootstrap approach in AdS/CFT 124

will be clear below, the method seems to be general enough to work for all sigma-models

described by a factorizable bootstrap S-matrix. Hence it gives a new way to relate, in a

general and systematic way, the classical and quantum integrability.

The classical action of the SU(2) PCF is

S =

√
λ

8π

∫

dσdτ tr ∂ag†∂ag, g ∈ SU(2) . (5.1)

it is equivalent to the O(4) sigma model where the fundamental field is the four dimen-

sional unit vector ~X(σ, τ). Therefore, at least classically, it can be used to study a string

on the S3 × R1 background. Indeed, our main motivation for this study was the search

for new approaches in the quantization of the Green–Schwarts–Metsaev–Tseytlin super-

string on the AdS5 × S5 which is classically (and most-likely quantum-mechanically as

well) an integrable field theory as we discus in the introduction. The simplest nontriv-

ial subsector of it is described by the sigma model on the subspace S3 × Rt, where Rt is

the coordinate corresponding to the AdS time. The time direction will be almost com-

pletely decoupled from the dynamics of the rest of the string coordinates, appearing only

through the Virasoro conditions. These conditions are a selection rule for the states of the

theory or, better to say, for the classical solutions appearing when we pick the classical

limit in Bethe equations. The degrees of freedom eliminated in this way are the longitu-

dinal modes associated with the reparametrization invariance of the string.

Of course, in the absence of the fermions and of the AdS part of the full 10d superstring

theory, this model will be asymptotically free and will not be suitable as a viable to de-

scribe the quantum string theory. Nevertheless, in the classical limit we shall encounter

the full finite gap solution of the string in the SO(4) sector found in [14]. The method

can be generalized to the SO(6) sector in [12] and hopefully to the full Green–Schwarts–

Metsaev–Tseytlin superstring on the AdS5 × S5 space, including fermions, where the fi-

nite gap solution was constructed in [12] (although it appears to be more difficult for the

last, and the most interesting, system).

At the end of the paper we go slightly further and derive from these BAE the conjec-

tured asymptotic string Bethe ansatz (the so called AFS-equation [16]) with its nontrivial

dressing factor to the leading order in large λ. According to the quasi-classical analysis in

the previous chapters it captures the information about the quantum spectrum up to the

1/
√

λ order for large L/
√

λ.

5.1 Classical SU(2) Principal Chiral Field

In this section we will review the classical finite gap solution of the SU(2) principal chiral

field. This construction can be obtained by the reduction of the full PSU(2, 2|4) algebraic
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curve constructed in the introduction to the SU(2) subsector. This can be achieved by

dropping all quasi-momenta except p̃2 and p̃3. But for self consistency of this chapter and

to fix some notations we will go through the construction of [14]1 for the easy comparison

with the quantum Bethe ansatz solution of the model.

Classically this model can be used to describe the string on S3 × Rt ⊂ AdS5 × S5. At

the quantum level, even dropping all the rest of the degrees of freedom, one might still

expect to capture some features of the full superstring theory. As we will see in the latter

sections, this is indeed the case.

The action (5.1) possesses the obvious global symmetry under the right and left mul-

tiplication by SU(2) group element. The currents associated with this symmetry are,

respectively,

jR ≡ j = g−1dg , jL = dgg−1 , (5.2)

and the corresponding Noether charges read

QR =
i
√

λ

4π

∫ 2π

0
dσ tr

(

jR
τ τ3

)

, QL =
i
√

λ

4π

∫ 2π

0
dσ tr

(

jL
τ τ3

)

. (5.3)

In the quantum theory these charges are positive integers2.

Virasoro conditions read tr (jτ ± jσ)2 = −2 κ2
±, where we used the residual reparametriza-

tion symmetry to fix the AdS global time Y to

Y =
κ+

2
(τ + σ) +

κ−
2

(τ − σ) . (5.4)

Finally, from the action, we read off the energy and momentum as

E cl ± P cl = −
√

λ

8π

∫ 2π

0
tr (jτ ± jσ)2 dσ =

√
λ

2
κ2
± . (5.5)

5.1.1 Classical Integrability and Finite Gap Solution

The equations of motion can be encoded into a single flatness condition for a Lax connec-

tion over the world-sheet [92],
[

∂σ −
x jτ + jσ
x2 − 1

, ∂τ −
x jσ + jτ
x2 − 1

]

= 0. (5.6)

In particular, we can then use this flat connection to define the monodromy matrix

Ω(x) =
←
P exp

∫ 2π

0
dσ

xjτ + jσ
x2 − 1

. (5.7)

1 with a little generalization to the excitations of both left and right sectors

2 It will be important for future comparisons to notice that the normalization of the generators is such

that the smallest possible charge is 1 as follows from the Poisson brackets for the current.
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Fig. 5.1: Algebraic curve from the finite gap method. u and v cuts correspond to cuts inside and outside the

unit circle respectively.

By construction Ω(x) is a unimodular matrix (and also unitary for real x) whose eigen-

values can therefore be written as

(

ei p̃(x), e−i p̃(x)
)

(5.8)

where p̃(x) is called the quasi-momentum. These functions of x do not depend on time

τ due to (5.6) and provide therefore an infinite set of classical integrals of motion of the

model.

From the explicit expression (5.7) we can determine the behavior of the quasi-momentum

close to x = ±1, 0, ∞. Using (5.5) and (5.3), we obtain

p̃(x) ≃ − πκ±
x ∓ 1

, (5.9)

p̃(x) ≃ 2πm +
2πQL√

λ
x , (5.10)

p̃(x) ≃ −2πQR√
λ

1

x
. (5.11)

Since, by construction, Ω(x) is analytical in the whole plane except at x = ±1 where it de-

velops essential singularities, it follows from (5.12) that for x 6= ±1 the only singularities

of

p̃ ′(x) = − 1
√

4 − (tr Ω(x))2

d

dx
tr Ω(x) . (5.12)

are of the form

p̃ ′ (x → xk) ≃
1√

x − xk
. (5.13)

If we are looking for a finite gap solution the number K of these cuts is finite and

we conclude that p̃′(x),− p̃′(x) are two branches of an analytical function defined by a
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hyperelliptic curve (see fig.1),

(p′)2 =
P2(x)

Q(x)
, (5.14)

where Q(x) has 2K zeros and the order of P(x) is fixed by the large x asymptotics (5.11).

We denote the branch cuts of p′(x) by u (v) cuts if they are inside (outside) the unit circle.

These cuts are the loci where the eigenvalues of the monodromy matrix become degener-

ate. Thus, when crossing such cut the quasi-momentum may at most jump by a multiple

of 2π which characterizes each cut,

p̃/(x) = πnk, x ∈ Ck (5.15)

where p̃/(x) is the average of the quasi-momentum above and below the cut,

p̃/(x) ≡ 1

2
( p̃(x + i0) + p̃(x − i0)) . (5.16)

Each cut is also parameterized by the filling fraction numbers which we define as

integrals along A-cycles of the curve (see fig.1) 3

Sv
i = −

√
λ

8π2i

∮

Av
i

p̃(x)

(

1 − 1

x2

)

dx, Su
i =

√
λ

8π2i

∮

Au
i

p̃(x)

(

1 − 1

x2

)

dx . (5.17)

Finally, imposing (5.15,5.17,5.9,5.10,5.11) one fixes completely the undetermined constants

in (5.14).

5.2 Quantum Bethe Ansatz and Classical Limit: O(4) Sigma-Model

W
E WILL DESCRIBE a quantum state of the O(4) sigma model by a system of L rela-

tivistic particles of mass µ/2π put on a circle of the length 2π. The momentum and

the energy of each particle can be suitably parameterized by its rapidity as p = µ
2π sinh θ

and e = µ
2π cosh θ so that the total energy and momentum will be given by

P =
µ

2π

L

∑
α=1

sinh(πθα) , (5.18)

E =
µ

2π

L

∑
α=1

cosh(πθα) . (5.19)

3 It was pointed out in [12, 15] and shown in [13] that Su,v
i are the action variables so that quasi-classically

they indeed become integers. We will also find a striking evidence for this quantization on the string side

when finding the classics from the quantum Bethe ansatz where these quantities are naturally quantized.

Indeed, from the AdS/CFT correspondence these filling fractions are expected to be integers since this is

obvious on the SYM side [14, 15]. We used their integrability to quasi-classically quantize the AdS/CFT

string in chapter 3.
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These particles transform in the vector representation under O(4) symmetry group or in

the bi-fundamental representations of SU(2)R × SU(2)L. The scattering of the particles

in this theory is known to be elastic and factorizable: the relativistic S-matrix Ŝ (θ1 − θ2)

depends only on the difference of rapidities of scattering particles θ1 and θ2 and obeys

the Yang–Baxter equations. As was shown in [93] (and in [95, 97, 101, 102] for the general

principle chiral field) these properties, together with the unitarity and crossing-invariance,

define essentially unambiguously the S-matrix Ŝ. Let us recall briefly how the bootstrap

program goes. From the symmetry of the problem we know that

Ŝ = ŜL × ŜR (5.20)

where SL,R are built by use of the two SU(2) invariant tensors and can therefore be written

as

ŜR,L(θ)a′b′
a b =

S0(θ)

θ − i

(

θ δa′
a δb′

b − i f (θ) δb′
a δa′

b

)

.

Imposing the Yang-Baxter equation on Ŝ yields f (θ) = 1, while the unitarity constrains

the remaining unknown function to obey

S0(θ)S0(−θ) = 1 (5.21)

and crossing symmetry requires

S0(θ) =

(

1 − i

θ

)

S0(i − θ) . (5.22)

From (5.21), (5.22) and the absence of poles on the physical strip 0 < θ < 2 one can

compute the scalar factor: S0(θ) =
Γ(− θ

2i )Γ( 1
2 + θ

2i )
Γ( θ

2i )Γ( 1
2− θ

2i )
. For our purpose we just need the much

easier to extract large θ asymptotics. From (5.22) and (5.21) it follows immediately that

i log S2
0(θ) = 1/θ + O(1/θ3) . (5.23)

5.2.1 Bethe Equations for Particles on a Circle

When this system of particles is put into a finite 1-dimensional periodic box of the length

L the set of rapidities of the particles {θα} is constrained by the condition of periodicity

of the wave function |ψ〉 of the system,

|ψ〉 = eiµ sinh πθα

←−
α−1

∏
1

Ŝ
(
θα − θβ

)
−→
α+1

∏
N

Ŝ
(
θα − θβ

)
|ψ〉 , (5.24)

where the first term is due to the free phase of the particle and the second is the product

of the scattering phases with the other particles. The arrows stand for ordering of the



5. Relativistic bootstrap approach in AdS/CFT 129

terms in the product and µ = m0L is a dimensionless parameter. Diagonalization of both

the L and R factors in the process of fixing the periodicity (5.24) leads to the following set

of Bethe equations [103] which may be found from (5.24) by the algebraic Bethe ansatz

method [104, 64]. We took the logarithms of the Bethe ansatz equations in their standard,

product form. This leads to the integers mα, nu
j , nv

j defining the choice of the branch of

logarithms

2πmα = µ sinh πθα −
L

∑
β 6=α

i log S 2
0

(
θα − θβ

)

−
Ju

∑
j

i log
θα − uj + i/2

θα − uj − i/2
−

Jv

∑
k

i log
θα − vk + i/2

θα − vk − i/2
, (5.25)

2πnu
j =

L

∑
β

i log
uj − θβ − i/2

uj − θβ + i/2
+

Ju

∑
i 6=j

i log
uj − ui + i

uj − ui − i
, (5.26)

2πnv
j =

L

∑
β

i log
vk − θβ − i/2

vk − θβ + i/2
+

Jv

∑
l 6=k

i log
vk − vl + i

vk − vl − i
, (5.27)

where u’s and v’s are the Bethe roots appearing from the diagonalization of (5.24) and

characterizing each quantum state. A quantum state with no such roots corresponds to

the highest weight ferromagnetic state where all spins of both kinds are up. Adding a u (v)

roots corresponds to flipping one of the right (left) SU(2) spins, thus creating a magnon.

The left and right charges of the wave function, associated with the two SU(2) spins are

given by

QL = L − 2Ju , QR = L − 2Jv . (5.28)

This model with massive relativistic particles and the asymptotically free UV behavior

cannot look like a consistent quantum string theory. Only in the classical limit we can

view it as a string toy model obeying the classical conformal symmetry. In the classical

case it is also easy to impose the Virasoro conditions. In the quasi-classical limit , we still

can try to impose the Virasoro conditions as some natural constraints on the quantum

states. We will discuss this point latter.

5.3 Quasi-classical limit

I
N THE CLASSICAL LIMIT the physical mass of the particle 4

4 For the O(N) sigma model the beta function for the coupling is given by β ≡ ∂
∂ log Λ

√

λ(Λ) = N − 2

where Λ is the cutoff of the theory. The dynamically generated mass must be of the form µ = Λ f (
√

λ ). The
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Fig. 5.2: We plot V(z) for M = 1, 5, 9, 13 (lighter to darker gray). It is clear that the potential

approaches the blue box potential as M → ∞.

µ

2π
∼ e−

√
λ/2 , (5.29)

where λ is the physical coupling at the scale of the size of the box 2π, vanishes since

λ → ∞. Moreover we should focus on quantum states with large quantum numbers, i.e.

we shall consider a large number L → ∞ of particles on the ring.

Let us now think of (5.25-5.27) as of the equations for the equilibrium condition for

a system of three kinds of particles: (θα, uj and vk), interacting between themselves and

experiencing the external constant forces (2πmα, 2πnu
j and 2πnv

k). The particles of the θ

kind are also placed into the external confining potential

V(z) = µ cosh(πMz) , z = θ/M (5.30)

where

M ≡ − log µ

2π
≃

√
λ

4π
. (5.31)

In the classical limit the potential becomes a square box potential with the infinite

walls at z = ±2 (see fig.5.2). Moreover, since this is a large box for the original variables

we can use the asymptotics (5.23) for the force between particles of the θ (or z) type. The

box potential provides the appropriate boundary conditions for the density of particles

interacting by the Coulomb force. Since they repeal each other the density should be

peaked around z = ±2. To find the correct asymptotics close to these two points, we can

consider (5.25) as the equilibrium condition for the gas of Coulomb particles in the box.

functional form of f is fixed by the β function upon imposing independence on the cutoff of this physical

quantity. Thus, for general N, − log µ =
√

λ
N−2 + O(1).
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If the right and left modes (magnons) are not excited we have only the states with

U(1) modes. In the classical limit, using the Coulomb approximation (5.23), we have for

this sector the following Bethe equation

µ sinh πMzα − 2π m = − 1

M

L

∑
β 6=α

1

zα − zβ
.

In the continuous limit, the equation for the asymptotic density, L ∼ M → ∞, is given,

through the resolvent Gθ(z) = 1
M ∑

L
β=1

1
z−zβ

by

/Gθ(z) = −2πm, z ∈ Cθ , (5.32)

with inverse square root boundary conditions near ±2. The analytical function Gθ(x)

having a real part on the cut defined by (5.32), with support [−2, 2], with inverse square

root boundary conditions (the only compatible with the asymptotics at z → ∞: Gθ(z) →
L
M

1
z , is completely fixed:

Gθ(z) =

(

2πm z + L
M√

z2 − 4
− 2πm

)

, L > 4π|m|M (5.33)

which gives for the density

ρθ(z) =
1

π

(

2πm z + L
M√

4 − z2

)

. (5.34)

For a general solution with u and v magnons we will also find the same asymptotics

ρ(z) ≡ 1

M

L

∑
α=1

δ (z − zα) ≃
2κ±√
2 ∓ z

, z → ±2. (5.35)

with κ± yet to be determined through the energy and momentum of the solution, as we

shall explain in the next section.

We will be considering the scenario where we have the same mode number mα = m

for all z particles. As proposed in [86, 100] this is the adequate set of states which will

obey the Virasoro constraints in the classical limit.

First, we will relate the z behavior close to the walls, characterized by the constants

κ± with the energy and momentum E, P of the quantum state, as given by (5.36,5.19).

Then we shall eliminate the θ’s from the system of Bethe equations by explicitly solving

the first one in the considered limit. Finally, we will justify why we take the same mode

number m for all θ’s by identifying the longitudinal modes to the excited mode numbers

mi in the Bethe ansatz setup. This constraint on the states will correspond to the Virasoro

conditions, at least in the classical limit.
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5.3.1 Energy and momentum

The total momentum can be calculated exactly, before any classical limit5

P =
µ

2π ∑
α

sinh(πθα) = mpLp − ∑
p

npSu
p − ∑

p

npSv
p (5.36)

where Lp, Su
p, Sv

p are the numbers of Bethe roots with a given mode numbers mp, nu,p, nv,p.

To prove this, it suffices to sum the (5.25) for all roots θα. The contribution of S0(θ) terms

cancels due to antisymmetry while the second and third sums in the r.h.s. of (5.25) are

replaced using (5.26) and (5.27), respectively.

Let us show how to calculate the energy (5.19) which is a fare less trivial task [86].

As a byproduct we will also reproduce the total momentum from the behavior at the

singularities at z = ±2 described by the residua κ±. We want to compute the sum

E ≡ µ

2π ∑
α

cosh(πθα) , (5.37)

but we cannot simply replace this sum by an integral and use the asymptotic density ρθ(z)

to compute the energy. That is because the main contribution to the energy comes from

large θ’s, near the walls, where the expression for the asymptotic density is no longer

accurate. It is natural for the classical limit since the particles become effectively massless

and the contributions of right and left modes are clearly distinguishable and located far

from θ = 0. We notice that the energy is dominated by large θ’s where, with exponential

precision, we can replace cosh πθα by ± sinh πθα for positive (negative) θα. Furthermore,

the contribution from the θ’s in the middle of the box is also exponentially suppressed

since µ is very small. Thus we can pick a point a somewhere in the box not too close to

the walls. One can think of a as being somewhere in the middle. Then,

E = ∑
zα>a

µ

2π
sinh (πzαM) − ∑

zα<a

µ

2π
sinh (πzαM) , (5.38)

where, let us stress, the result is correct independently of the point a within the interval

−2 < a < 2 with the exponential precision. Each sum of sinh πθα can be substituted by

the corresponding r.h.s. of the Bethe equation (5.25), thus giving

E ≃ i

π ∑
zβ<a<zα

log S2
0

(
M

[
zα − zβ

])
+ ∑

α

m sign(zα − a) (5.39)

− 1

2π ∑
j,α

sign(zα − a)i log
Mzα − uj + i/2

Mzα − uj − i/2
− 1

2π ∑
k,α

sign(zα − a)i log
Mzα − vk + i/2

Mzα − vk − i/2

5 For the closed string theory we should take P = 0 which gives the level matching condition. Moreover,

as we shall explain latter, we should also pick the same mode number for all particles, mα = m.
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As mentioned above we assume all mα to be the same 6. Now we can safely go to the

continuous limit since in the first term the distances between z’s are now mostly of the

order 17. This allows to rewrite the energy, with 1/M precision, as follows

E ≃ −M

π

∫ a

−2
dz

∫ 2

a
dw

ρθ(z)ρθ(w)

z − w
− M

2π

∫
ρθ(z)ρu(w)

z − w
sign(z − a) dz dw

− M

2π

∫
ρθ(z)ρv(w)

z − w
sign(z − a) dz dw + m M

∫

ρθ(z)sign(z − a) dz (5.40)

where we are now free to use the asymptotic density ρθ(z). By the use of Bethe equations,

we managed to transform the original sum over cosh’s, highly peaked at the walls, into a

much smoother sum where the main contribution is now softly distributed along the bulk

and where the continuous limit does not look suspicious. From the previous discussion

we know that this expression does not depend on a provided a is not too close to the walls.

In fact, we can easily see that it does not depend on a at all after taking the continuous

limit leading to the perfect box-like potential. To prove it one notices that due to Bethe

equations (5.25) the a-derivative of (5.40) is zero for all a ∈] − 2, 2[. Hence we can even

send a close to a wall: a = −2 + ǫ, where ǫ is very small. But then the last three terms

in (5.40) are precisely the momentum (5.36), as explained in the beginning of this section.

To compute the first term we can now use the asymptotics (5.23,5.35). The contribution of

this term is then given by

−M

π

∫ −2+ǫ

−2
dz

∫ 2

−2+ǫ
dw

ρθ(z)ρθ(w)

z − w

≃ −
∫ −2+ǫ

−2
dz

∫ 2

−2+ǫ
dw

4Mκ2
−

π(z − w)
√

2 + z
√

2 + w
≃ 2πMκ2

− (5.41)

so that

E ≃ 2Mκ2
−π + P . (5.42)

If we compute the a-independent integral (5.40) near the other wall, i.e. for a = 2 − ǫ, we

find

E ≃ 2Mκ2
+π − P .

6 as we will show it is this choice of states which reproduces the finite gap solution of [14] we mentioned

in the first section. We will come back to this point at a latter stage

7 Moreover, it is very important that the contribution from z’s near the walls ±2 is now suppressed since

(5.23)

| log S2
0(M(2 − zβ))| > | log S2

0(M(2 − a))| ∼ 1/M.
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Therefore, equating the results one obtains the desired expressions for the energy and

momentum

E ± P = 2π M κ2
± (5.43)

through the singularities of the density of rapidities at z = ±2, described by κ±. Together

with (5.31) this is precisely the classical formula (5.5)!

5.4 Elimination of θ’s and AFS equations

I
N THIS SECTION we will show how the AFS equations (1.39), which are restriction of

the BS equations on the su(2) subsector, can be derived from the bootstrap approach.

It is useful for what follows, to introduce some new notations. Using the Zhukovsky map

z = x(z) +
1

x(z)
, |x(z)| > 1 (5.44)

we define

y±
j ≡ x

(
uj ± i/2

M

)

, yj ≡ x

(
uj

M

)

(5.45)

with the similar expressions for vl given by ỹ±l and ỹl.

In this section, for the purposes of comparison with the asymptotic AFS Bethe ansatz

for the N=4 SYM theory, let drop the v magnons, Jv = 0. Their contributions will be easily

restored later. As explained at the beginning of this section we can write the first Bethe

equation, (5.25) as

/Gθ(z) + 2πm =
K

∑
j=1

i log
Mz − uj − i/2

Mz − uj + i/2
, (5.46)

Where

Gθ(z) =
1

M ∑
α

1

z − θα/M
=

∫ 2

−2

dz′ρθ(z′)
z − z′

(5.47)

and /Gθ(z) is a real part of Gθ(z). We can find Gθ(z) as a function of uj.

Performing the inverse Zhukovsky map (5.44,5.45) we obtain the equation

/Gθ(z) + 2πm = i
K

∑
j=1

(

log
x − y+

j

x − y−j
+ log

x − 1/y+
j

x − 1/y−j

)

(5.48)

Introducing

H(x) = Gθ (z(x)) (5.49)
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we obtain from (5.48)

1

2
[H(x) + H(1/x)] = −2πm + i

K

∑
j=1

(

log
x − y+

j

x − y−j
+ log

x − 1/y+
j

x − 1/y−j

)

. (5.50)

The solution of this equation, with the right asymptotics at infinity H(1/ǫ) = Gθ (1/ǫ) ≃
L/Mǫ, is as follows

H(x) = i
K

∑
j=1







2x

x2 − 1

(

1

y+
j

− 1

y−j

)

−
2x2 log

y+
j

y−j

x2 − 1
+ 2 log

y+
j x − 1

y−j x − 1







+
L

2M + 2πm

x − 1
+

L
2M − 2πm

x + 1
. (5.51)

We can also compute the density of θ’s as the imaginary part of the resolvent Gθ(z)

ρθ(Z(x)) =
ImGθ(Z(x))

π
=

i

2π
[H(x) − H(1/x)] (5.52)

Then from (5.43,5.35) we see that in classical limit (5.36,5.19) can be expressed through

poles of H(x) in x = ±1. Extracting the residues of H(x) at the poles x = ±1 we can see

that

∆ = L + 2iM
K

∑
j=1

(

1

y+
j

− 1

y−j

)

(5.53)

P =

(

m − i

2π

K

∑
j=1

log
y+

j

y−j

)

∆ = 0 (5.54)

(5.53) is precisely the expression for the anomalous dimension (1.43) and (5.54) gives pre-

cisely the zero momentum condition for the AFS equation (1.42) (for zero twists)!

5.4.1 Derivation of AFS formula

In this section we will exclude θ variables from (5.26,5.27) using the θ-density calculated

above, and obtain the AFS equation (1.39). We are trying here to go the same way as

the authors of [105], where the similar variables were excluded in favor of the magnon

variables in Lieb-Wu equations for the Hubbard model.

Let us now exclude θ’s from (5.26), using the result (5.51). Taking the log of (5.26) we

obtain

∑
j 6=k

log
uk − uj + i

uk − uj − i
+ 2πink = ∑

β

log
uk − θβ + i/2

uk − θβ − i/2
≡ ipk (5.55)
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rewriting pk through density we have

ipk = M
∫ 2

−2
log

z − w+
k

z − w−
k

ρθ(z)dz (5.56)

where w±
k = uk±i/2

M . The function ρθ(z) is given by (5.52,5.51). In Appendix A we perform

the integration and obtain the following result

ipk = ∑
j

[

2 log
y−k y+

j (y−j y+
k − 1)

y+
k y−j (y+

j y−k − 1)
− 2i(uj − uk) log

(y−j y−k − 1)(y+
j y+

k − 1)

(y−j y+
k − 1)(y+

j y−k − 1)

]

− 2M

(

1

y+
k

− 1

y−k

) [

2πm − i ∑
j

log
y+

j

y−j

]

+ L log
y+

k

y−k
(5.57)

It leads to the following equations

(

y+
k

y−k

)L

=
K

∏
j 6=k

y+
k − y−j

y−k − y+
j

(
1 − 1/(y−j y+

k )

1 − 1/(y+
j y−k )

)−1 (
(y−j y−k − 1)

(y−j y+
k − 1)

(y+
j y+

k − 1)

(y+
j y−k − 1)

)2i(uj−uk)

(5.58)

which precisely coincide with the AFS [16] (1.39), including the expressions for energy

and momentum (5.53,5.54).

5.4.2 Classical limit and KMMZ algebraic curve

To consider the classical limit we trivially restore the v roots from the previous calculation,

to find
(

y+
k

y−k

)L

=
Ju

∏
j 6=k

uk − uj + i

uk − uj − i
σ2(uj, uk)

Jv

∏
l=1

σ2(vl, uk) , (5.59)

and similarly for ỹk, and consider the limit where Ju, Jv, L ∼ M, so that the u and v roots

also scale as M. Then the expansion of this equation, after taking the log’s, gives to the

leading order in 1/M

πnk =
L

2M yk + 2πm

1 − y2
k

+
1

y2
k − 1

1

M

Jv

∑
l=1

1

1/yk − ỹl
+

y2
k

y2
k − 1

1

M

Ju

∑
j 6=k

1

yk − yj
. (5.60)

Finally we can define the quasimomentum [106]

p(x) =
L

2M x + 2πm

1 − x2
+

1

x2 − 1

1

M

Jv

∑
j=1

1

1/x − ỹj
+

x2

x2 − 1

1

M

Ju

∑
j=1

1

x − yj
. (5.61)

Let us explain how it becomes precisely the quasimomentum we had in the context of the

algebraic curve in section 5.1.1 in the classical theory. It is clear that we indeed have the
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asymptotics (5.10,5.11) close to x = 0, ∞. Then, to relate the residues of (5.61) to the ones

found from the algebraic curve in (5.9), we expand (5.53) in our limit as follows:

∆ = L + ∑
j

2

y2
j − 1

+ ∑
l

2

ỹ2
l − 1

(5.62)

and check that this is indeed what one finds from the quasimomenta we just defined.

Finally, when we consider a large number of magnons Ju, Jv the roots in (5.61) condense

into a number of one dimensional supports, the sums becoming the integrals along these

lines giving the same square root cuts as we had in the finite gap construction.

5.4.3 Geometric proof

The roots solving (5.25,5.26,5.27) with the same mode number will condense into a single

square root cut. When we consider more than one type of mode numbers we see that the

particles condense into a few distinct supports, one for each distinct mode number

C = C1 ∪ . . . ∪ CK .

We can now rescale the Bethe roots

(u, v, θ) = M(x, y, z) (5.63)

and define

p1 = −p2 =
1

M

Ju

∑
i=1

1

z − xi
− 1

2M

L

∑
β=1

1

z − zβ

p3 = −p4 =
1

M

Jv

∑
l=1

1

z − yl
− 1

2M

L

∑
β=1

1

z − zβ
. (5.64)

Then we can recast the Bethe equations in this scaling limit as follows

x ∈ Cu, p1
+ − p2

− = 2πnu

x ∈ Cθ, p2
+ − p3

− = 2πm (5.65)

x ∈ Cv, p3
+ − p4

− = 2πnv

x ∈ Cθ, p4
+ − p1

− = 2πm,

where we

• considered, as in the preceding section, one single mode number m for all rapidities;

• dropped the momentum µ sinh θ. As we explained in section 5.3 we can do this

provided we replace it by the boundary conditions (5.35).
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Fig. 5.3: Structure of the curve coming from the Bethe ansatz side. This figure is related with fig.1

by means of the Zhukovsky map.

These equations tell us that p′1(z), p′2(z), p′3(z), p′4(z) form four sheets of the Riemann sur-

face of an analytical function p′(z) (see fig.5.3).

They can also be written as holomorphic integrals around the infinite B-cycles:

∮

Bu
j

dp = 2πnu,j nj = 1, . . . , Ku

∮

Bv
j

dp = 2πnv,j nj = 1, . . . , Kv (5.66)

∮

Bθ
dp = 2πm

where the first two conditions correspond to the equations in the first and third line of

(5.65), respectively, while the last one corresponds to any of the equations of the second

and fourth lines of (5.65). The B cycles are defined as in fig.5.3.

We found two Riemann surfaces which we plotted in figures 1 and 5.3. The equiva-

lence between these two curves is achieved through the Zhukovsky map [86]

z = x +
1

x

and amounts to the equivalence between the finite gap solutions for the classical theory

and the Bethe ansatz solutions in the scaling limit.
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5.5 Virasoro modes

W
E ESTABLISHED THE EQUIVALENCE between

• all classical solutions following from the PCF action (5.1) and subject to the Virasoro

conditions tr (jτ ± jσ)2 = −2κ2
± as described by the construction of the algebraic

curve of section 5.1.1.

• and the Bethe ansatz quantum solution (5.25-5.26) in the scaling limit (5.63) with all

rapidities θα having the same mode number m.

In the context of string theory one is interested in quantizing the Polyakov string

action

S =

√
λ

8π

∫

dσdτ
√

h hab
(

tr ∂ag†∂bg − ∂aY∂bY
)

. (5.67)

Due to its local reparametrization and Weyl symmetries one can then fix the target space

time Y as in (5.4) and reduce the action to (5.1). However, due to the residual reparametriza-

tion symmetry

τ ± σ → f±(τ ± σ) , (5.68)

one must keep in mind that the original presence of the world-sheet metric field imposes

that the stress energy tensor vanishes. This is precisely the Virasoro conditions.

On the other hand, from the field theory point of view the Bethe ansatz equations

(5.25-5.27) should describe all possible states of the theory, not only those for which

〈ψ|Tab|φ〉 = 0 . (5.69)

Thus, in view of the equivalence we proved, we are lead to the conclusion that if we

start with some classical solution with one θ cut and some u and v cuts, the excitation

of additional microscopic θ cuts should correspond to the inclusion of the longitudinal

modes which we drop in the context of string theory. Indeed, these massless (from the

world-sheet point of view) excitations coming from our conformal gauge choice, appear

if one expands the action around the classical solution without fixing the Virasoro condi-

tions from the beginning (see for instance expression 2.7 and the discussion following it

in [82]). In this section we verify this claim therefore justifying this single θ cut restriction,

first proposed in [100] and given the interpretation as the Virasoro condition in [86].

In (5.39) we computed the energy of a quantum state where all mode numbers mα = m

were the same. If we change the mode numbers of a few θ’s we will have a macroscopic

support with particles having the mode number m surrounded by some microscopic do-

mains, linear supports, with mode numbers mβ < m (to the left of it) and mβ > m (to its

right).
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Let us assume that we excite them one at a time and focus on the first particle whose

mode number we change. Before we do it, it is in equilibrium due to the exponential

force exerted by the wall of the box (5.30) and by (an equal) force produced by all the

other particles and by the constant force 2πm – see (5.25). When we change the particle

mode number the constant force increases pushing the particle against the wall. However

since the forces are exponential the shift will be very small, much smaller than 1/M - the

characteristic distance between the neighboring rapidities. Then let us consider the parti-

cles in the middle of the box, the ones whose position is well described by the asymptotic

density ρ(z). They only feel the change in mode number through the new position of

the corresponding θ particle. Since this shift is very small the asymptotic density, to the

order we are interested, is not changed. Thus, in this procedure of changing a few mode

numbers we conclude that, when going to the continuous limit in (5.39), only the second

term will lead to a different result so that

δE = ∑
n

|n|Nm+n (5.70)

where Nn is the number of particles with mode number n. We found in this way the

massless (world-sheet) modes associated with the local reparametrization symmetry of

the world-sheet. These modes appear when considering the fluctuations around a classi-

cal solution [82] and are the only ones not taken into account by the finite gap algebraic

curve (see chapter 3).

Appendix A: Derivation of AFS formula for asymptotic string BAE’s

In this appendix we evaluate integral (5.56) and obtain AFS BAE.

We can simplify expression for H(x) (5.51) assuming that in (5.54) P = 0

H(x) = −4πm +
∆

M

x

x2 − 1
+ 2i ∑

j

log
y+

j x − 1

y−j x − 1
(5.71)

we rewrite (5.56) in x variable

ipk = −M

2

∮
i

2π
(H(x) − H(1/x))

(

log
x − y+

k

x − y−k
+ log

x − 1/y+
k

x − 1/y−k

) (

1 − 1

x2

)

dx (5.72)

where contour goes in counterclockwise direction around unit circle, y±k = X
(
w±

k

)
. Note

that terms with H(1/x) are equal to that with H(x) after change of the variable x → 1/x.

So that

ipk = M
∮

H(x)

(

log
x − y+

k

x − y−k
+ log

x − 1/y+
k

x − 1/y−k

) (
x2 − 1

x2

)
dx

2πi
(5.73)
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Various terms are

I1 ≡
∮ (

−4πm +
∆

M

x

x2 − 1

)

log
x − y+

k

x − y−k

(
x2 − 1

x2

)
dx

2πi
(5.74)

I2 ≡
∮ (

−4πm +
∆

M

x

x2 − 1

)

log
x − 1/y+

k

x − 1/y−k

(
x2 − 1

x2

)
dx

2πi
(5.75)

I3 ≡ 2i
∮

log
y+

j x − 1

y−j x − 1
log

x − y+
k

x − y−k

(
x2 − 1

x2

)
dx

2πi
(5.76)

I4 ≡ 2i
∮

log
y+

j x − 1

y−j x − 1
log

x − 1/y+
k

x − 1/y−k

(
x2 − 1

x2

)
dx

2πi
(5.77)

Integral I1 can be calculated by residue in x = 0, since |y±k | > 1.

I1 =
∆

M
log

y+
k

y−k
− 4πm

(

1

y+
k

− 1

y−k

)

(5.78)

Similar I2 and I4 are given by residue at infinity.

I2 = 4πm

(

1

y+
k

− 1

y−k

)

(5.79)

I4 = −2i

(

1

y+
k

− 1

y−k

)

log
y+

j

y−j
(5.80)

Calculation of I3 is slightly more difficult. One can differentiate it with respect to y+
j to

kill one of the logarithms and then calculate it by poles at x = 0

∂y+
j

I3 = 2i log
y+

k

y−k
+ 2i




1

y+
j

2
− 1



 log
y+

k y+
j − 1

y−k y+
j − 1

, I3 =
∫ y+

j

y−j
∂y+

j
I3 dy+

j (5.81)

thus

I3 = 2i
uj − uk

M
log

(y+
j y−k − 1)(y−j y+

k − 1)

(y+
j y+

k − 1)(y−j y−k − 1)
+

2

M
log

y−j y+
k − 1

y+
j y−k − 1

+ 2i

(

(y+
j − y−j ) log

y+
k

y−k
− (y+

k − y−k ) log
y+

j

y−j

)

(5.82)

Finally

ipk = M
4

∑
a=1

Ia = L log
y+

k

y−k

+ ∑
j

(

2 log
1 − 1/y−j y+

k

1 − 1/y+
j y−k

+ 2i(uj − uk) log
(y+

j y−k − 1)(y−j y+
k − 1)

(y+
j y+

k − 1)(y−j y−k − 1)

)

(5.83)

thus we prove (5.57) assuming P = 0. This immediately leads to AFS BAE (5.58).
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