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Integrability in AdS/CFT correspondence:
quasiclassical analysis and bootstrap approach

Abstract

In this thesis we consider a quasi-classical method applicable to integrable field theories
which is based on classical integrable structure - the algebraic curve. We apply it to the
Green-Schwarz superstring on AdSs x S° space. We show that the proposed method
reproduces perfectly the earlier results obtained by expanding the string action for some
simple classical solutions. The construction is explicitly covariant and is not based on a
particular parametrization of the fields and as a result is free from ambiguities.

On the other hand, the finite size corrections in some particulary important scaling
limit are studied in this thesis for a system of Bethe equations. For the general superal-
gebra su(N|K) the result for the 1/L corrections obtained. We find an integral equation
which describes these corrections in a closed form. As a by-product of this computation
we found a new type of the duality among the systems of Bethe equations.

As an application we consider the conjectured Beisert-Staudacher (BS) equations with
the Hernandez-Lopez dressing factor where the finite size corrections should reproduce
quasi-classical results around general classical solution. Indeed, we show that our in-
tegral equation can be interpreted as a sum of all physical fluctuations and thus prove
the complete 1-loop consistency of the BS equations. We demonstrate that any local con-
served charge (including the AdS Energy) computed from the BS equations is indeed
given at 1-loop by the sum of charges of fluctuations with an exponential precision for
large S° angular momentum of the string.

As an independent result, the BS equations in su(2) sub-sector were derived from the
Zamolodchikovs’ S-matrix.
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Résumé

Dans cette these, nous considérons une méthode quasi-classique applicable aux théories
des champs intégrables, basée sur la structure classique intégrable codifiée dans la courbe
algébrique. Nous appliquons cette methode a la supercorde de Green - Schwarz sur
'espace AdSs x S°. Nous montrons que la méthode proposée reproduit parfaitement
les résultats deja obtenus précédemment par 1’expansion de 1’action autour de certaines
solutions simples classiques.

D’autre part, les corrections de taille finie, dans une certaine limite importante, sont
étudiées dans cette these pour un systeme des équations de Bethe. Le résultat pour les cor-
rections 1/L a aussi été obtenu pour le supergroupe général su(N|K). Nous trouvons une
équation qui décrit ces corrections dans une forme compléte. Comme un sous-produit
de ce calcul, nous avons trouvé un nouveau type de la dualité entre les systemes des
équations de Bethe.

Comme application, nous avons examiné les équations conjoncturées par Beisert et
Staudacher (BS) avec un facteur de “dressing” de Hernandez et Lopez ou les correc-
tions de taille finie devraient reproduire les calculs quasiclassiques autour du mouvement
classique de la supercorde dans l'espace AdSs x S°. En effet, nous montrons que notre
équation intégrale peut étre interprétée comme une somme sur toutes les fluctuations
physiques et ainsi nous prouvons que les équations de BS sont cohérentes avec la quan-
tification quasiclassique. Autrement dit, nous démontrons que toutes les charges locales
(y compris 'énergie AdS) calculées a partir des équations BS sont effectivement données
a la premiere boucle par la somme des charges des fluctuations.

Un autre resultat présenté ici: nous avons obtenu les équations BS pour sous-secteur
su(2) & partir de la matrice S de Zamolodchikov et Zamolodchikov.

Mots clés

Théorie de jauge, Théorie des cordes, Integrabilité, Dualité



Résumé substantiel

L’histoire de la mécanique quantique commence a partir de la suggestion de Louis de
Broglie que les particules libres peuvent étre décrites en termes des ondes, a l'instar des
photons. Cette suggestion a été brillamment confirmé par 'observation des effets des in-
terférences des électrons sur des cristaux. L'étape prochaine a été de décrire les particules
dans un potentiel extérieure. Ce probleme a été résolu par Schodinger, qui a découvert
I’équation non relativiste correspondante. Cependant, sa généralisation relativiste avait
un probléme de densité négative et la description des systemes des particules en interac-
tion relativistes s’est trouvée inconsistent.

Grace a la découverte de la théorie des champs la majorité de vieux problemes a été
résolue ou, au moins, clarifié mais les nouveaux difficultés des divergences ont apparues
dans la théorie perturbative. Toutefois, pour décrire tous les phénoménes physiques
qui peuvent étre observés dans les conditions terrestes, les difficultés peuvent étre sur-
montées. La description quasi complete des données expérimentales existantantes a été
donnée jusqu’ici par le Modéle Standard. Le seul ingrédient du Modele Standard, qui
manque encore de support expérimental est le boson de Higgs. On peut conclure, que a
ce moment, il n'y a pas de nécessité directe expérimentale de sortir des competences du
Modeéle Standard.

D’autre part, il existe de nombreuses raisons théoriques pour aller au deld des compe-
tences du Modele Standard. Le Modele Standard est une théorie des champs quantiques
relativistes, qui décrit trois interactions fondamentales de la nature. La théorie quan-
tique cohérente, qui décrit toutes les quatres interactions connues , y compris la gravité
quantique, en méme temps, n’existe pas. Actuellement, un des problémes principaux
de la physique théorique est l'unification de la mécanique quantique et de la relativité
générale, et ainsi 1'unification des interactions gravitationnelles avec les autres. Jusqu’a
présent, la théorie des cordes a été et le seul candidat, qui pouvait les unir. La plupart
des problémes de la gravité quantique semble étre résolue dans la théorie des cordes.
En particulier, les divergences sont régularisées sur 1’échelle de Planck, d"une fagon na-
turelle. Malheureusement, la théorie des cordes peut étre formulée seulement dans dix
dimensions d’espace-temps, mais il semble qu’il y a beaucoup de fagons & compactifier
six parmi eux et ainsi rester avec quatre dimensions du monde réel.

En dehors de ce probleme d’absence de la “théorie de tout” il y a beaucoup de ques-
tions ouvertes a I'intérieur du Modele Standard. En particulier, le Modéle Standard décrit
I'interaction forte, qui est en effet la plus forte interaction de la nature. II est respons-
able de la majeure partie de la masse des baryons. L’interaction forte lie les nucléons
dans les noyaux. La partie du Modele Standard, décrivant l'interaction forte, la Chro-



modinamique Quantique (QCD), a les quarks et les gluons comme les degrés de lib-
erté fondamentales. Toutefois, la compréhension du monde physique implique aussi
la compréhension du fait comment ces constituants fondamentaux interagissent et pro-
duisent la diversité des objets physiques qui composent 1'Univers. Une des propriétés
importantes de l'interaction forte, le confinement des quarks, est toujours une énigme
pour les théoriciens.

Si on connaissait la théorie duale a QCD, dans laquelle la théorie des perturbations
donne le développement en puissances inverses de la constante de couplage g, on pour-
rait résoudre ces problémes. Malheureusement on n’a pas encore trouvé une telle théorie.
Mais cependant il y a quelques indications que cette théorie sera de type de la théorie des
cordes.

L’origine de la théorie des cordes est étroitement liée a la théorie de 1'interaction forte.
D’abord, elle a été formulée comme une théorie des hadrons. Or, apres 1’apparition de
QCD, la plupart de la recherche dans la théorie des cordes a été transférée a 1’échelle de
Planck. La théorie des cordes, dans la théorie de l'interaction forte, est devenue un outil
phénoménologique. Néanmoins, l'espoir, que les théories de jauge avec le groupe de
jauge SU(N) , peuvent étre décrites par les cordes, provient de la limite de grand N de
't Hooft. A cette limite, les graphes de Feynman avec les topologies non-planaires sont
suprimés par les puissances de 1/N. Chaque graphe comporte un facteur topologique
NX, ou x est la caractéristique d’Euler de la graphe. Cela rappelle fortement la théorie
des cordes avec une constante du couplage 1/N. En s’appuyant sur cela, 't Hooft a pro-
posé une conjecturé, qu’a cette limite QCD est décrit par une théorie des cordes. Cette
idée est également soutenue par le fait expérimental que les hadrons se situent approxi-
mativement sur des trajectoires linéaires de Regge.

En soit meme, la dualité de théorie jauge/corde est un sujet vieux mais toujours actuel
qui apparait dans de nombreuses situations. Un exemple tres connu de cette dualité
est une description par le modele des matrices de la gravité quantique a deux dimen-
sions et la théorie des cordes noncritiques. D’autre part, il y a des exemples des théories,
qu’on peut résoudre exactement & la limite des grandes N. Les modéles des matrices et
QCD & deux dimensions sont les deux exemples dans lesquels la limite des grands N est
intégrable.

La découverte récente d’intégrabilité de la théorie de Yang-Mills avec la supersymétrie
N =4 (SYM) 4 trois premieres boucles, ainsi que 1’observation d’intégrabilité au niveau
classique de son dual, la corde sur le fond AdSs x S° a fait renaitre les espoirs, que
quelques théories de jauge a 4 dimensions pourraient étre exactement résolubles. Pour
SYM N =4, I'intégrabilité se manifeste comme une possibilité de calculer, en utilisant les
techniques de l'ansatz de Bethe, les dimensions, comme fonctions de constante de cou-



plage A = Ng?, de tous les opérateurs locaux de la théorie. Pour l'instant, cette fonction
a été calculée jusqia O(A%), et la corde AdSs x S° donne I'asymptotique de cette fonction
a A — oo pour les “longues” opérateurs, qui sont un produit de beaucoup de champs
fondamentaux de SYM dans le méme point d’espace.

La these est consacrée a 1’étude de cette intégrabilité.

L’approche quasi-classique est un des moyens les plus importants en mécanique quan-
tique. Dans cette these nous considérons une méthode applicable aux théories des champs
intégrables qui est basée sur la structure classique intégrable de la courbe algébrique.
Nous appliquons cette method a la supercorde de Green - Schwarz sur I'espace AdSs x S°.
Nous montrons que la méthode proposée reproduit parfaitement les résultats obtenus
précédemment par 1’'expansion d’action autour des certaines solutions simples classiques.
La construction est explicitement covariante, s’est & dire elle et n’est pas basée sur une
paramétrisation particuliers des champs.

D’autre part, les corrections de taille finie, dans une certaine limite importante, sont
étudiées dans cette thése pour un systéme d’équations de Bethe. Dans le cas simple de
la chaine s[(2) des spins de Heisenberg integrable, les corrections sous-dominantes sont
calculées. Ce calcul exige une analyse attentive de la position des racines Bethe pres de
leurs bords de distribution. Cela rappelle la limite de “double scaling” dans les modeles
des matrices.

Les corrections 1/L ont aussi été obtenu pour le supergroup général su(N|K). Nous
trouvons une équation qui décrit ces corrections dans une forme fermée. Comme un sous-
produit de ce calcul, nous avons trouvé un nouveau type de la dualité entre les systemes
des équations de Bethe, “dualié particule-trou”, qui peut simplifier une distribution com-
plexe des racines de Bethe.

Comme une application de la méthode développée pour les chaines de Heisenberg,
nous avons examiné les équations conjoncturées par Beisert et Staudacher (BS) corrigé par
le ”drerssing factor” de Hernandez et Lopez, ot les corrections de taille finie devraient re-
produire les calculs quasiclassiques autour du mouvement classique de supercorde dans
'espace AdSs x S°. En effet, nous montrons que notre équation intégrale peut étre in-
terprété comme une somme sur toutes les fluctuations physiques et ainsi nous prouvons,
que les equations de BS sont cohérentes avec la quantification quasiclassique. Autrement
dire, nous démontrons que toutes les charges locales (y compris I’énergie AdS) calculées
a partir des équations BS sont effectivement données & la premiére boucle par la somme
des charges des fluctuations, avec la precision exponentielle par rapport a une grandeur
d’une impulsion angulaire de la corde. Pour les corrections de taille finie, qui ont été
limitées aux configurations simples, le traitement présenté ici est totalement général.

Un autre resultat présenté ici: nous obtenons les équations BS pour le sous-sector su(2)



a partir de la matrice S de Zamolodchikov et Zamolodchikov, qui a été proposé il y a déja
30 ans.



NOTATIONS

9, - local conserved charges

A = g2 ;N - 't Hooft coupling

z=x+1/x

m - winding of the string in S° around its angular momentum direction
n - mode number

L - total spin chain length

K, - number of the Bethe roots of the type a

J=L/VA 2
a(x) = Z 45

Indexes

i,j, k - to number sheets of the Riemann surface, take values 1, ..., 8 or i,...,4,1,...

a,b - type of the magnon, corresponds to the node in the Dynkin diagram
i,j-take values1,...,K,
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1. INTRODUCTION

THE HISTORY OF THE QUANTUM MECHANICS starts from Louis de Broglie, who sug-
gested that the free particles could be described in terms of waves, like photons.
This suggestion was brilliantly confirmed by the observed interference effects in the scat-
tering of electrons from crystals. The next step was to describe the particles in external
potential. This problem was solved by Schrodinger, who discovered the non-relativistic
wave equation. However, its relativistic generalization had a puzzling property of nega-
tive densities and the description of systems of interacting relativistic particles turned out
to be inconsistent.

After discovering the field theory, lots of old problems were resolved or at least clar-
ified but new difficulties of divergences in perturbative theory appeared. However, to
describe all physical phenomena, which can be observed on Earth, these difficulties can
be overcome. The complete description of the existing experimental data so far is given
by the Standard Model. The only ingredient of the Standard Model, which still lacks ex-
perimental support, is the Higgs boson particle. One can, therefore, conclude that at this
moment there is no direct experimental need to go beyond the Standard Model.

On the other hand there are lots of theoretical reasons to go beyond the Standard
Model. The Standard Model is a relativistic quantum field theory, which describes three
fundamental interactions existing in nature. The consistent quantum theory, which de-
scribes all the four known interactions at the same time, does not exist today. One of the
main problems of today physics is the integration of quantum mechanics and general rel-
ativity which leads to unification the gravitational interaction with the others. Until now,
the most reasonable and the only existing candidate has been string theory. In this theory,
several problems of the quantum gravity seem to be resolved. In particular, the divergen-
cies are regularized on the Planck scale in some natural way. Unfortunately, string theory
can be formulated consistently only in ten dimensional space-time and it seems that there
are too many ways to compactify it to the four dimensions of the real world.

Besides the problem of finding the “theory of everything”, there are many open ques-
tions inside the Standard Model. In particular, the Standard Model describes the strong
interaction, which is indeed the strongest force of nature. It is responsible for the major
part of baryon mass, and thus for major part of all masses on the Earth. Strong interactions
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bind nucleons in nuclei which, being dressed with electrons and bound into molecules by
the much weaker electro-magnetic force, give rise to the variety of the chemical proper-
ties. The part of the Standard Model, describing the strong interaction, Quantum Chro-
modynamics (QCD), has quarks and gluons as fundamental degrees of freedom. How-
ever, understanding the physical world implies also understanding how these funda-
mental constituents interact and bring into existence the entire variety of physical objects
composing the universe. One of the most important features of the strong interactions —
quark confinement is still a mystery for the theorists.

String theory from its very origin is closely related to the theory of the strong interac-
tions. It was first formulated as a theory of hadrons. However, after invention of QCD,
the string research was shifted to the Planck scale. String theory in the theory of the
strong interactions converted into a phenomenological tool. Nevertheless, the hope that
the gauge theories with SU(N) gauge group can be described by strings was coming from
the large N "t Hooft limit. In this limit the Feynman graph with non-planar topology are
suppressed by the powers of N. Each graph carries a topological factor NX, where x is the
Euler characteristic of the graph. This strongly reminds some string theory with 1/N cou-
pling. Basing on this it was conjectured that in this limit QCD is described by some string
theory. This idea is also supported by the experimental fact that hadrons approximately
lie on linear Regge trajectories.

Then it was understood that the string theory dual to a particular 4 dimensional gauge
theory lives on a curved, higher dimensional manifold [1]. The formulation of this duality
could be made precise in the case of N' = 4 Super Yang-Mills. Maldacena conjectured that
it is dual to the type IIB string theory on AdSs x S° [2,13,/4]. A great technical advantage
of the string side of duality is that string theory in the tree approximation is a two dimen-
sional o-model and the string interactions are not relevant in the planar 't Hooft limit.
On the other hand, there are numerous examples of the exactly solvable two-dimensional
o-models possessing an integrability. This gives us some hope that A/ = 4 super Yang-
Mills theory is the first interacting four dimensional gauge theory which could be solved
at least in the planar "t Hooft limit.

In support of this hope, the 1-loop integrability was discovered in N' = 4 SYM in [5]
for the bosonic sector! where the dilatation operator was identified with the Hamiltonian
of an integrable 1-dimensional spin chain. Soon after, the classical integrability of the
full superstring c-model on AdSs x S°> was demonstrated in [8]. We will focus on this
construction of major importance in the next section.

! Integrable spin chains have been discovered in (non-supersymmetric) gauge theories earlier [6, 7].
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1.1 Integrability

HE GREEN-SCHWARZ (GS) SUPERSTRING on AdSs x S° can be represented as a coset
model with the target super-space [9]
PSU(2,2|4)
SP(2,2) x SP(4)

SUu(22) _ SU(4)
SP(22) © SP(4)
The matrix superalgebra su(2,2[4) is spanned by the 8 x 8 supertraceless supermatri-

&%)
M = (1.1)
C|D

where A and D belong to u(2,2) and u(4) respectively while the fermionic components

c_pgt I 0
0 —Ihx2

The psu(2,2|4) superalgebra is the quotient of this algebra by the matrices proportional

whose bosonic part is which is precisely AdSs x S°.

X

ces

are related by

to the identity. Then we note that the psu(2,2|4) algebra enjoys the automorphism

0 -1 0 0
EATE —ECTE 1
QoM = . CT ,E= 000 , (1.2)
EBTE EDTE 0 0 0 —1
0 0 1 0

such that O* = 1. This automatically implies that the algebra is endowed with a Z,
grading. This means that any algebra element can be decomposed into Y'>_, M), where
QoM™ ="M, More explicitly

02) L [ AL EATE 0
M\ = ) T
0 D+ ED'E
: (1.3)
(13) . 0 B +iECTE
M\ = 5 . T
C FiEBTE 0

We see that the M(%) elements belong, by definition, to the denominator algebra sp(2,2) x
sp(4) of the coset. Then, the remaining bosonic elements, M (2), orthogonal to the former,
generate the (orthogonal) complement of sp(2,2) x sp(4) in su(2,2) x su(4).

The Metsaev-Tseytlin action for the GS superstring in AdSs x S° is then given in terms
of the algebra current

] =-g ldg, (1.4)
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where g(c, T) is a group element of PSU(2,2|4), by

A
5 4{_; [str (1 n g — 0 OV (15)

Besides the obvious global PSU(2,2|4) left multiplication symmetry the action (1.5) pos-
sesses a local gauge symmetry, ¢ — ¢H with H € SP(2,2) x SP(4), under which

O — g YOH | i=1,23

while ) transforms as a connection. The equations of motion following from (1.5) are
equivalent to the conservation of the Noether current associated with the global left mul-
tiplication symmetry

dxk=0 (1.6)

where k = gKg~'and K = J®) + % % J() — % 5 J3).
For a purely bosonic representative ¢ we can write

where R € SU(4) and Q € SU(2,2). Then we see that U = RER! is invariant under
the gauge transformation U — RHEHT'RT = U for H € SP(4) and thus is a good

parametrization of
SU(4)/SP(4) ~ S°.

In the same way V = QEQT describes the AdSs space. It is instructive to define the
embedding coordinates 1 and v by the simple relations

weP =U, o2t =V, (1.7)

where ©°, 24 are the gamma matrices of SO(6) and SO(4,2). By construction these coor-
dinates will automatically satisfy

1 = w2+ud+ud+ud+us+ui,
2 2 2 2 2 2
1 — U6+05_U4_U3_02_01. (18)

Then the bosonic part of the action can be expressed in the usual non-linear ¢ model form

Vg

%=1 o

7T
do [ dov/In (@u- 0,1~ 3,0-9,0)
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One can also expand the action in powers of fermions. It is convenient to use the following
parametrization of the PSU(2,2|4) group element [10]

coNE
g=exp|—| X (1.9)
60 0 | R

In this parametrization the fermionic part of the action reads

VA o _ o
S = 2= / oIty VO,V (00,0 — 0,0 8) + Ud, U (3,00 — 80,6)]
+ ig/—z / d*o e try [V0,0'U0,0 + 0,0U0,0'V] + O(6%) (1.10)

1.1.1 Integrability and algebraic curve

As follows from the equations of motion and the flatness condition,
d[—JAN] =0, (1.11)

the connection

2
_ (0) x—i—l 2) 2x 2) X+1 (1) x—1 (3)

Alx) =] +x2—1] x2—1<*] A>+ x—1] + x~|—1] (112)
is flat for any complex number x [8]. This is the crucial observation which indicates the
model to be (at least classically) integrable. Indeed, we can define the monodromy matrix

Q(x) = Pexp ﬁA(x) (1.13)

where 7y is any path starting and ending at some point (¢, T) and wrapping the worldsheet
cylinder once. Since the flatness of the connection ensures path independence we can
choose < to be the constant T path. Moreover, placing this loop at some other value
of T just amounts to a similarity transformation of the monodromy matrix. Thus we
conclude that the eigenvalues of Q)(x) are time independent. Since they depend on a
generic complex number x, we have obtained in this way an infinite number of conserved
charges thus assuring integrability.

Let us construct the algebraic curve of Beisert, Kazakov, Sakai and Zarembo [11] which
gives the classification of the classical motions of the super string on AdSs x S°. We will
argue below that the action variables are represented in a transparent way in terms of the
algebraic curve and thus give a good starting point for the quasi-classical quantization of
the superstring action.
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Fig. 1.1: The 8 sheets of the Riemann surface of the “Finite gap” method. The sheets could be
connected by the cuts or have synchronized poles. The surface is also restricted by the
x — 1/x symmetry. The singularities outside the unit circle are also reflected inside the

unit circle.

To proceed, we notice that under periodic SP(2,2) x SP(4) gauge transformations the
monodromy matrix transforms by a simple similarity transformation so that the eigen-
values are also gauge invariant. We denote them as follows

(61, 6iP2 oiP3 oiP|oiP1 oiP2 oiP5 oiPsY, (1.14)

In the rest of this section we shall review the results of [11] and analyze the analytical
properties the quasi-momenta p and f. The eigenvalues are the roots of the characteris-
tic polynomial equation and thus they define an 8-sheet Riemann surface. These sheets
are connected by several cuts — see fig.1.1 — whose branchpoints are the loci where the
eigenvalues of the monodromy matrix become equal. The quasi-momenta can jump by a
multiple of 27t at points connected by a cut?. For example, for a cut going from the first
to the second sheet , we will have

pt—py, =2mn, xeCl2, (1.15)

where ﬁi stands for the value of the quasi-momenta immediately above/below the cut.
This integer n, together with the filling fraction we shall introduce in next section, label
each of the cuts. Generically, we can summarize all equations as

pi—p; =27y, x€C, (1.16)

2 Note that the derivative of the quasi-momenta is a single valued function on the Riemann surface while
p(x) is not.
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where the indices i and j take values

i=1,2,1,2,j=343,4 (1.17)
and we denote
Pi33i = P1234 7 Pip3a = P1234- (1.18)
For each cut we also associate the filling fraction
VA 1
Sij ==+ 8% , (1 - P) pi(x)dx. (1.19)

obtained by integrating the quasi-momenta around the square root cut. As before, the
indices run over (1.17) and we should chose the plus sign for i = 1,2 and the minus sign
for the remaining excitations with i = 1,2. Let us explain why we chose to integrate the
quasi-momenta p(x) around the cut with the seemingly mysterious 1 — 1/x? weight. It
was pointed out in [12, 11] and shown in [13] that these filling fractions are the action
variables of the theory. From the AdS/CFT correspondence these filling fractions are also
expected to be integers since they correspond to an integer number of Bethe roots [14, 15].
Indeed, the likely existence of the Bethe ansatz description [16, 18] of the AdSs X S° su-
perstring also implies this pole structure of the exact quasi-momentum in a semi-classical
limit. Moreover, in chapter 5 where the S° subsector is studied from the “Bootstrap”
point of view we will clearly see that the quasi-momenta p(z) coming from the quantum
Bethe ansatz equations appears in the usual form §¢ p(z)dz, for the Zhukovsky variable
z = x +1/x. Thus (1.19) is the good starting point for the string quasi-classical quantiza-
tion.
From (1.3),(1.12) it follows that

E| 0
claxc=0""T1/x), C=|—— (1.20)
0|-E
which translates into the inversion symmetry
ﬁl,z(x) = —2mtm — ﬁzll(l/x)
P3a(x) = +2mm — pys3(1/x) (1.21)

P1234(x) = —po1a3(1/x)

for the quasi-momenta®.

3 Note that for p there is no 27tm imposed by requiring absence of time windings [19) 11].
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The singularities of the connection at x = =£1 result in simple poles for the quasi-
momenta. These singularities come from the current ](2) in (1.12). This current is super-
traceless because it belongs to psu(2,2]4) and so is its square due to the Virasoro con-
straints following from the variation of the action with respect to the worldsheet metric.
Together with the inversion symmetry this forces the various residues to organize as fol-

lows

A oA oA A I = = X4, 04, ’ 4,04, ’
{pll pZI P3/ p4|p1/ PZ/ p3/ P4} = { S lBi ﬁxi:l:]% & lBi ﬁi} . (122)

i.e. the residues at these points are synchronized and must be the same for the S° and the
AdSs quasi-momenta p; and pj. This is the crucial role of the Virasoro constraints which
will be of utmost importance in the remaining of this chapter.

Finally, for large x, one has

2
Ay~ —g (ag +° kT) q (1.23)

where k, defined bellow (1.6), is the Noether current associated with the left global sym-
metry. Thus, from the behavior at infinity we can read the conserved global charges4[20]

ﬁl +E—-5+5;
p2 +E+51—52
Ps3 —-E-5 -5
Pa N 277 —E+51+5; (1.24)
p1 WAl 4+ L -5
p2 +h—L+]
pPs3 “h+h+]3
Pa “h—h—J3

The finite gap method allow us to build, at least implicitly, classical solutions of the
nonlinear equations of motion from the analytical properties of the quasi-momenta®.

As we shall see in chapter 3, the algebraic curve can also be turned into a powerful
tool to study the quantum spectrum, i.e. the energy level spacing, for energies close to
that of a given classical string solution.

4 These are the bosonic charges, the ones which are present for a classical solution. Latter we shall con-
sider all kind of fluctuations, including the fermionic ones. Then we shall slightly generalize this expression
to (3.19).

> For the inverse problem of recovering the solutions from the algebraic curve see the monographs [21]
22] for the general formalism and [13] where this is carried over in the context of string theory for the
classical bosonic string in R x $3 C AdSs x S° described by the KMMZ algebraic curve [14].
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Integrability from the string side appears in the classical theory and its essence is con-
tained in the algebraical curve. From the gauge side of the duality, the integrability shows
up in the study of the anomalous dimensions of the long operators, where the mixing ma-
trix acts on the single trace operators as a spin chain Hamiltonian. An important tool in
studying the integrable spin chains is Bethe ansatz reviewed in the next sections.

1.2 Bethe ansatz equation

IN 1931 HANS BETHE presented a method for obtaining the exact eigenvalues and eigen-
vectors of the one dimensional spin-1/2 Heisenberg model, a linear array of elec-
trons with uniform interaction between nearest neighbors. Bethe’s parametrization of the
eigenvectors, the Bethe ansatz, has become influential to an extent not imagined at the
time. Today, many other systems are known to be solvable by some variant of the Bethe
ansatz, and the method has been generalized and expanded far beyond the calculational
tool it was originally. In particular, it seems to be a key ingredient in the AdS/CFT duality
[2,3, 4] between A/ = 4 SYM and type IIB superstring theory on AdSs x S°.

It is very instructive to follow the Bethe’s original work to understand the physics
beyond the algebraical constructions. The spin-1/2 Heisenberg spin chain is described in
terms of the spin operators &; by the Hamiltonian

L
H= —2;;1 (an Oy — 31) (1.25)
with periodic boundary conditions 67 11 = 7. H acts on a Hilbert space of dimension 2&
spanned by the orthogonal basis vectors |07 ... 0r), where each 0, is T or |.

The ferromagnetic state |F) = | T ... T) is obviously an eigenstate with zero energy.
To diagonalize the sector with one spin flipped we can use the translational symmetry,
which implies the plane wave form of the eigenstates

L .
p) =) eP"n) (1.26)
n=1

where |n) is the ferromagnetic state with the n" spin flipped. We can also express it as
|n) = 6,/ |F). Since the states |p) with Lp = 27tm, m = 0,...,L — 1 constitute the basis
in the sector with one flipped spin they are automatically eigenstates of the Hamiltonian
with eigenvalues

E =2(1—cosp) (1.27)
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one can also use the parametrization u = % cot 5 of the momentum of the excitation. We
will call this new quantity u - the Bethe root. In the new parametrization one has

1

E=——72—. 1.28
u2+4+1/4 (1.28)

Let us consider two excitations (or magnons). When the two flipped spins are far from
each other the Hamiltonian acts on them independently and so it is natural to assume the
plane wave behavior of the wave-function

)y =) ei(m”l*mm)@;&,{z Fy+A ) ei(mnﬁﬁznz)(fa@qu |F) (1.29)
1<n<ny<L 1<n,<m <L
where the second term represent the result of the scattering of one excitation on another.
Acting on this state by the Hamiltonian one finds

A=—— — = -
ei(p1+p2) + 1 — 2¢tP1 Uy — Uy +1

(1.30)

we see that the scattering phase take a nice form in terms of u’s. The periodicity of the
wave function implies

Al =1 | ¢l = A (1.31)
or L
u-+1i/2 )

(u_4/2> =1, i=1,...,K (1.32)
érl=1,i=1,...,K (1.33)

ri/2\Y K w—ui+i
(ELfi1_> D i et B (1.34)

u;, —1i/2 i Wi U

with K = 2. Increasing further the number of excitations will simply lead to the same
equation with K equal to the number of the magnons. This set of the equations is called
the Bethe ansatz equations. Energy of the state is given by

E:Z—;L— (1.35)

~ur+1/4°
This seemingly surprising fact that the multi-magnon scattering is described by the prod-
uct of the two magnon phases is due to the existence of the large number of the conserved
charges. They are commuting with the hamiltonian and thus can be diagonalized in the
same basis. Their eigenvalues are given by

K . )
& = 2 r—1 ((uj+i/2)r—1 B (u]._i/z)r—1> : (1.36)

j=1
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1.2.1 Bethe ansatz in the AdS/CFT correspondence

The N/ = 4 SYM dilatation operator in the planar limit can be perturbatively computed
in powers of the 't Hooft coupling A. In the seminal work of Minahan and Zarembo
[5] it was shown that the 1-loop dilatation operator acts on the six real scalars of the
theory exactly like an integrable SO(6) Heisenberg spin chain Hamiltonian. Restricting
ourselves to two complex scalars we obtain the same Hamiltonian considered above. The
full N = 4 1-loop dilatation operator [23] is also governed by an integrable Hamiltonian
whose spectrum is given by a system of seven Bethe equations [24], corresponding to the
seven nodes of the psu(2,2[4) Dynkin diagram. In [25] the all loop generalization of the
Bethe equation for the SU(2) sector (1.34) was conjectured to be

NE ok,
(y%) i (1.37)

j#iui—uj—z

where y;(u;) and y]i (u;) are given by

+$:4—\/7%u , yi+yii:4—\/7%(uié). (1.38)
On the other hand, for the same sector but from the string side of the correspondence, a
map between classical string solutions and Riemann surfaces was proposed [14] and then
generalized to the full super string coset [11], as we review above.

The resemblance between the cuts connecting the different sheets of these Riemann
surfaces and the distribution of roots of the Bethe equations in some limit seemed to indi-
cate that the former could be the continuous limit of some quantum string Bethe ansatz.
We will give more details about this so-called scaling limit in the next sections. In [16]

these equations were proposed to be
i\ L .
i K owi—u;+i
(4) 1A R ), 139)
jAet
where

(1.40)

L=/ y) (y7yr =1y =1\
oars (Ui, uj) = .

1=1/(y;yi) \yy v — 1y yr -1
In Chapter 5 we will show how to derive (1.39) from the Bootstrap approach. The strik-
ing similarity between (1.37) and (1.39) naturally leads to the proposal that both sides
of the correspondence would be described by the same equation with a scalar factor o

interpolating from 0% g for large t'Hooft coupling to 1 for small A.



1. Introduction 23

In [17,18] Beisert and Staudacher (BS) conjectured the all-loop Bethe equations for the
full PSU(2,2|4) group is

. ) Ky — LKy 1 —1/xq kx5
e g — Uzt 5 H L’y
T UL — Uo —1/xqpx,
j=1 U1k — U2j— 2 j= 1 4]
K e '
ﬂ@4ws__riwk—wf “M_”%+2 Ligf— i+ 3
ik U2k — U2 +i j=1 U2k — U3 — 3 j=1 U2k —Urj— 3
. , Ko — | Ka xgp — X
gings—ings _ T M3k 2t 2 Sk
j=1 U3k —Uzj— 3 =1 X3k = Xy
_ nL K . K 4+ -\ 11
. . X 4 ynr — a1 K (1 —1/x] x,. ‘
elﬂ(P4—l}’]475 — 4’k M & 0'2’7 (x X .)e_lﬂv(u4,k'u4,j)
Tt Uit — Un: — 1 1—1/x.x" AFS\ M4 ks 4]
4k jAk Ak T P j 4kt4,]
K — _ Cxe Kr 1 = o
+ , _ + :
_1/x4,kx1]] 1x4k X3,j = 1x4k X551 1= 1/x;,%7,
) , K6 i Ky xe, —xT
o5 —ings Usg — Ug,j + 2 5k 4, ,
: -
j=1 Usk — Uej— 7 j=1 X5k = Xy
, , K¢ —qy, . — i Ks e 4 LKy PP
endo=inty = T Uok —Uej — 1y ek — Usj+ 5 pptek — U7t 2 ,
ik Wek — Uej + 15T Ug g — s — % 7 Uk — U7 — %
o Ko — 1—1/x7.x;
gner-ings — T4 %WZH A
P Uz — Ug i 1-— 1/X7kx7-
j=1"7, 6j 2 j=1 k4,
Where 7 = +£1. Sets of equations with different 7 are related between each other

by duality transformation, which we will discuss below. We inserted some additional
parameters ¢;, called twists. Strictly speaking they all should be zero. However, as we
will see the situation when all the twists are vanishing is a very degenerate one. We will
also assume that the twists are restricted by
X
1 — P2 — 3+ s = P7 — ps — p5 + P = 27tm — UZ—M;4- (1.42)
Xy
The phase V(y4,) should be responsible for the interpolation between the YM and the
string equations for small and large t'Hooft coupling A.
When some configuration of the Bethe roots 1, is found the energy of the state (or
anomalous dimension of the SYM operators) is given by

Ky . .
:15 (L_éd, (1.43)

27 | VI]' Ya,
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and the generalized expression for the local conserved changes is

1 & i i
Q, = — — : 1.44
r—1 ]; <<yij)r_1 (y4,j)r_1> (1.44)

In terms of them one can rewrite the AFS phase (1.40) as

Tars(Uj, k) = exp <2ig Zz (Qr (1) Qry (1) — Qr+1(uk)Qr(u]-))) . (1.45)
r—
In [26], based on an hypothesis for a natural extension for the quantum symmetry of
the theory, Beisert found (up to a scalar factor) an S-matrix from which the BS equations
would be derived. The scalar factor V was then conjectured in [27, 28] from the string
side — using the Janik’s crossing relation [29] — and Beisert, Eden and Staudacher (BES) in
[30, 31] from the gauge theory point of view — based on several heuristic considerations
[32]. Similarly to (1.45) one can write

V(ug, u] Z Z Crs (Qr uk)QS(”]) QS(”k)Qr(”j)) (1.46)
r=2s=r+1
with
B 00 Ln ((_1)r+s _ 1)€(Tl) rs+r—|2—n—31—~s—r—5n—1
crs(8) = 1;15’ (—27)"T (1 — 1) (r=1)(s-1) [sH_nElps=r—td (1.47)

~ (1) 1) (n(zr(r__s)l()r(i; i)z) + 1;g(r 1) (s—1)+.. ) .

The leading coefficient for ¢ — oo was first obtained by Hernandez and Lopez [89].

From the gauge theory side these equations were tested quite recently up to four loops
[44, 34, 35]. From the string theory point of view the scalar factor recently passed several
nontrivial checks [36, 37, 38,139] where several loops were probed at strong coupling. Also
at strong coupling, the full structure of the BS equations was derived up to two loops in
[40,'41] in a particular limit [42] where the sigma model is drastically simplified.

Another efficient way of testing the predictions of the Bethe ansatz equations is via
anomalous dimensions of the twist-two operators (i.e. local operators with two scalars
and S derivatives, traceless and symmetric in Lorenz indexes). In the regime of large num-
ber of derivatives, their anomalous dimensions scale logarithmical A — S = f(g)logS.
f(g) is a universal scaling function, computed up to four loops in YM [43, 44, 45]. It is
also can be computed up to 2-loops from the string side [46, 47, 48].

It is therefore fair to say that the advance in the last four years was spectacular. On the
other hand it is also true that there is a great deal of conjectures involved one should both
check and, hopefully, prove (or disprove).
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In this work we will check that the BS equations reproduce the 1-loop shift around
any classical string soliton solution with exponential precision in the large angular mo-
mentum of the string state 7 = L/ VA

1.2.2 Thermodynamical limit

IN THIS SECTION we will review a special limit of the Bethe ansatz equations, follow-
ing closely [14, 19]. It is so-called thermodynamical or scaling limit. It corresponds
to the ferromagnetic regime of low energies E ~ 1/L.° Consider for example an s[(2)
Heisenberg spin chain Bethe ansatz, which will be studied in details in the next chapter

L
. K .
uj—1/2 uj — Uy + i )
— | =] = -, j=1,...,K 1.48

<u]~+z/2 ,Euj—uk—z J (1.48)

Note that under the formal replacement L — —L it becomes the described above su(2)

spin chain. An important property which simplifies the analysis is that the solutions of

this set of the equations are always real, which is not the case for the su(2) spin chain.
Taking log of both parts of (2.2) we have’

2mm+ng +4m Z:o . (1.49)

As we shell see in a moment in the limit L — oo, K ~ L and with nj~1 the Bethe roots
scales like L. It means that the chain is very long and the spins are very smoothly changing
along it. The typical length of spin-waves (magnons) is of the order of the length L. And
it is instructive to introduce x; = u;/L. We can then write (1.49) in the form

2K
MW——ZZZ (1.50)

where we expanded (1.49) for large L. There is a potential danger arises from the right

hand side, since u; — uy could be of order of 1. As we will see in the chapter 2 this terms
with u; —u ~ 1 are responsible for the 1/L correction and are not important at the
leading order.

Now let us consider the situation with a finite number of different mode numbers 7;,
and assume that the number of Bethe roots with the same mode number is of order L.

® It is different from a more traditional regime E ~ L widely studied since many years, especially in the
condensed matter literature.

7 Note that } log ¥/ = arctan(x) — Zsign(x) for standard definition of the log.
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If we take the ratio K/L to be small we can neglect the right hand side of (1.50) to get
xj = 1/(27mnj). We see that the points x; with the same mode number are very close
to each other and separated from the others roots by ~ 1. For K/L ~ 1 the picture is
similar. The points x; with the same mode number are constituting some continuous
distributions. The supports of these distributions corresponding to the different mode
numbers are separated by a finite distance ~ 1. Hence, roots with the same mode number
form a continuous cut in the complex plane x. One can characterize the distributions by

the density
1
p(x) = T Zd(x - xj) (1.51)
]
or by resolvent
_lg 1 p(y)dy

The density is non-zero on a set of cuts in the complex plane which in general consists of
several non-overlapping cuts, C = |J; C;, where the i cut C; represents roots with mode
number #;. In the considered case of the s[(2) spin chain the roots are always real and the
cuts belong to the real axe.

In the scaling limit of the Bethe equations can be rewritten as an integral equation for
the density

2@:2][ %zZﬂﬂi—%,xeCh (1.53)
C

where 2¢(x) = G(x 4 i0) + G(x — i0). One can solve this integral equation numerically
and compare with the actual density of the Bethe roots, also found numerically. For the
three cut configuration this comparison is given on the fig.1.2/ revealing the perfect con-
sistence of the above analysis.
Let us introduce
p(x) = 1 + G(x) (1.54)
2x

which we shall call the quasi-momentum for reasons which will be clear soon. In terms
of the analytic function p(x) the above equation becomes

p(x)=rmn; , x€(; (1.55)

by another words it implies that ¢’ and e~'? are two sheets of the same two sheet Riemann
surface. This reminds the eigenvalues of the monodromy matrix in the classical finite
gap analysis of [1.1.1. However we see that our p(x) has a simple pole in the origin,
whereas the quasimomenta of the AdSs x S° string had two poles at +1. But, the BS
equations (1.41) are designed in such a way that the analogous quasimomenta arising in
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p(x) for 3-cut solution, S=300

2.5
ol
1.5/
.l
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Fig. 1.2: Density of roots. The dots correspond to numerical 3-cut solution with total number of
Bethe roots K = 300 and equal fractions a; = 1/6, and n; = {—1,3,1}. They are fixed
from the numerical values of the roots by the (2.13). Solid line is the density at L = oo
computed analytically from the corresponding hyper-elliptic curve. x coordinates of the
dots are % so that the solitary points in the middle of empty cuts are artifacts of this
definition.

the thermodynamical limit have exactly the same analytical properties as the ones of the
classical “finite-gap” analysis.

Indeed, for 7 = L/+/A fixed and L ~ K; > 1 the BS equations can be summarized by
lji — ﬂ] = 27T1’lij for

2T x — 6y,4191 + 6,1 Q0x

pr=+ 21 +n (—Hi — Hs + Hy) + 1

by — +27c.7x — (5,7,;21 ?11+ Oy, +192x o (CHy 4yt Fy— F3) + o

py= 4225 5”’; %ﬁ P19 by g Hy By B+

py = 22X 5”’;21 %ﬁ 190X G Hy — Hy+ 1) + g4 s
ps = — 2T E" 5'7';21 ?T 190X Hs 4 Hy— Fy) + ¢ |

Pe = _27zj — %/le ?11—1_ (SWIH 9 + 1 (—Hs+ Hg + H¢ — H7) + P

p7 = A %,le ?11+ Op192n +1 (—He + Hy + Hs — Hg) + ¢7

2n I x — 6y 1191 + 6y -1 QX - _
ps = — T +1 (+Hy + Hs — Hy) + ¢s
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Where we introduced

K o(y,,) K a(x) 4 x?
Gu(x) = ’],Hux: , d(x) = ——-—.
()= Loy i) = Lo ) =

For 1 = 1 we will also use the following notations

Pr=p1, P2=ps, P3=p5, Pa=1ps, (1.57)
pr=p2, p2=p3, P3=pe , Pa=p7 -
The local conserved charges are encoded into the “middle node” resolvent G4(x) =

— Yoo Qui1x". To leading order, these quasi-momenta define an eight-sheet Riemann
surface with exactly the same properties as in the classical analysis of the first section.

1.3 Overview

IN THIS THESIS we will perform several nontrivial tests of the conjectures involved into
the AdS/CFT correspondence.

e In chapter 2 we show how the finite size corrections to the scaling limit could be
computed in a systematic way to arbitrary order in 1/L. The procedure is similar to
the standard WKB expansion. We find Airy type behavior of the Bethe roots close
to the edge of the distribution. The Bethe roots are located at zeros of the function

F(o) = Ai [am <v— L o+, )} , (1.58)

4ax2[1/3 60aL2/3 "

where v = (x — x.)L?/3, x, is a position of the branch point of the quasi-momenta,
a and b are two paratemers, which could be fixed. Matching assumptotic expantion
for large v’s with the expantion in powers of 1/L of quasi-momenta allows us to fix
all ambiguities.

For a single cut solution for the s[(2) subsector we explicitly computed the energy
up to the 1/L? order. The result is quite complicated and is given in (2.76).

Then we consider nested Bethe ansatz. As a technical tool we use a curious duality
among the systems of the Bethe ansatz equations, which we call bosonic duality. In
the scaling limit it allows one to interchange the sheets of the Riemann surface. We
find some integral equation describing the leading finite size corrections in a closed
form. For an su(1|2) spin chain we have

y)d d 1
2][ p_y p(y)y_27m§‘3—|—4)2—4>3—— cotps —

/ ACOtlzd_y
X—y L

xX—y 27mi
Ci3
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where cot;; are some functions of the leading densities.

e In chapter 3 we propose a method of computation of the quasiclassical corrections
to the classical spectrum of string theory in the AdSs x S® background, based solely
on the classical integrable structure of the theory. The idea of this method is inspired
by the analytical structure of the quasi-momenta of the one-dimensional quantum
mechanical systems. The quantum excitations are identified with the poles on the
algebraic surface (see fig.1.1) with the residue fixed by the integer value of the clas-
sical action variables of the theory.

For a circular string solution we get the following spectrum of excitations

Kk 0E = Z(Nig—l—Nii) (w,‘jer—j)—l—Nza n+2m+N2‘1(w,§+—2j)

+ (N14—|—N24—|-N31—|-N41> ( )

+ Z( },3+N23+N32+N42>( Wk, — )

+ ¥ (N13 + NI NB N24> (1.59)

n
where
‘ eigenmodes notation
g5 V2T2 4+ 12 £ 2/ T8+ 272 + m2n? | wi*
VI? 4 n?—m? w;

Fermions | v 72 + n? 5
AdSs VI?+n?+m? A

In this way we reproduced results of the previous direct calculations based on the
string action. The developed method could be as well applied to the wide range of
the integrable field theories for which the classical curve is known.

e In chapter 4 we show that the finite size corrections are related to the sea of the
virtual quasi classical fluctuations and can be interpreted as zero point energy os-
cillations. The condition that the finite size corrections match the quasi classical ex-
citations is a very nontrivial restriction of the underling system of the Bethe ansatz
equation. We also note that to match BS equations in the infinite volume J with
exponential precision one have to introduce an extra potential into the BAE

15 / d
[Z% p;/ ps) sign(im )22 + .. (1.60)
i<4
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1/ / / / / . d
B }4 B(_xz/ - f/(x _xz/ (Ps — p3 — p2 + p1) sign(Im y)% = -2V (x)

which one can rewrite as

g S 1 -)6-1) (9 Q
YO =e) L o s (x__x_) 161

r,s=2
r+s € Odd

where we recognize precisely the Hernandez-Lopez coefficients (1.47).

e Finally in chapter 5'we show how the BS equations in s1(2) sector could be derived
from the old bootstrap approach. We show that in the su(2) sector the BS equations
(which are AFS equations in this case) could be considered as effective equations
coming from the simple nested equations with a clear physical meaning. Namely,
by excluding rapidities 0, of the relativistic particles from the set of the usual BAE

equations
L
27tm, = psinh 7y — ) ilog S2 (6 — 6p)
p7a
Ju O —u;+1/2
- Yl ! 1.
Zlogea—u]—z/Z' (1.62)
—0g—i/2 v uj+i
- P o A
27tn] Zzlog o, /2+l§]1108 g (1.63)

we get precisely AFS equations with non-relativistic dispersion relation for the magnons!
All the complicated structure of the AFS phase should thus be a manifestation of the
existence of a hidden extra degree of freedom which was integrated out.



2. FINITE SIZE CORRECTIONS IN HEISENBERG SPIN CHAIN

THIS CHAPTER IS DEVOTED to the study of the 1/ L finite size corrections in Bethe ansatz
equations. Our main motivation to study the finite size corrections in Bethe ansatz
comes from the AdS/CFT correspondence. From the string side of the duality the finite
size corrections corresponds to the worldsheet loop expansion. Thus the careful analysis
of the finite size corrections can bring a new insight and can serve as a very nontrivial
test of the different conjectures involved into the AdS/CFT correspondence. The main
result of this chapter will be the integral equation, describing in a closed form the finite
size corrections to the classical limit in the BS equation.

The similarity, and even the coincidence in a certain regime of the finite size corrections
from the Bethe ansatz side and 1-loop corrections to the classical limit from the string side
was already observed earlier on particular string and chain solutions, having only one
support for the Bethe roots distribution [49, 50, 51} 52, 53, 54, 55, 56]. 1/ L corrections were
first studied for BMN states in [5], where the integrable spin chain for N' = 4 SYM was
tirst proposed, and then in [16]. The Airy edge behavior, we will find in this chapter, also
seems to be an important feature, because it provides some information about the system
at all ordersin 1/L.

2.1 Finite size corrections in s((2) Heisenberg spin chain

IN THIS SECTION WE STUDY the integrable periodic Heisenberg X X X chain of noncom-
pact quantum spins transforming under the representation s = —1/2 of s((2), in
the thermodynamical limit reviewed in the introduction. We will develop some gen-
eral methods of the systematic 1/L expansion. In the next section we will generalize it
to the so called nested Bethe ansatz, which arises for the spin chains with a higher rang
symmetry group.

The s[(2) spin chain is known to be solvable by the Bethe ansatz (see for example
[57]) and the energy of a state of K magnons in dimensionless units is given by a simple
formula

K
“ Lt + 1/4 &1

k=1 Yk
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where the Bethe roots uj, j =1,2,---,K, parameterizing the momenta of magnons, are
solutions of a system of polynomial Bethe ansatz equations (BAE)

L

u:—1i/2 K ou:—u+i

—<J—> =T, j=1...,K (2.2)
uj+i/2 o W~ ug—1

It can be proven that for this model the roots are always real.

Our goal is to study the limiting L — oo distributions of Bethe roots and the finite vol-
ume 1/L corrections to these distributions, to the energy and higher conserved charges.
As we mentioned in the introduction in the main order this thermodynamical limit for
the compact Heisenberg XXX /, chain of su(2) spins was already considered in [58], and
later in [59] in relation to the integrable dilatation hamiltonian in planar perturbative su-
perconformal N = 4 super-Yang-Mills (SYM) theory. Its description and the general so-
lution in terms of algebraic curves was proposed in [14] for the su(2) case! and in [61}19]
for the s((2) chain.

The study of 1/L corrections in these systems was started recently in the papers [49,
50] for the simplest single support, or one cut distribution, whereas a similar quantum #
correction to the classical KdV solitons was already found earlier in the general multi-cut
case in [62].

This section we will get the following results:

1. The explicit formulas for the 1/L and 1/L? corrections to the general multi-cut
distribution of Bethe roots and to the corresponding energy of a Bethe state in terms of
the underlying algebraic curve.

2. The universal description of the distribution of Bethe roots in the vicinity of an edge
of a support in terms of zeroes of the Airy function, similar to the double scaling limit in
the matrix models.

3. Asymptotics of conserved local charges Q, (K, L) in the large n limit.

Unlike the papers [49, 50] using the method of singular integral equation corrected by
so called anomaly term?, we will use here the exact Baxter equation written directly for
the analytical function - the resolvent of the root distribution (similar approach was used
in [61]). This approach is more general and can be generalized to the higher orders in
1/L. As and example we apply the method to the simplest 1-cut configuration.

In the next sections we will generalize the method developed here for the more general
systems of the equations and finally apply it in chapter 4 to the conjectured string BS
equations. Then in the next chapter we will show how the finite size corrections of BS

! Following a similar approach of [60] to a somewhat different limit of large spin

2 This phenomenon of anomaly, or the contribution of close eigenvalues in the thermodynamical limit of
BAE was first observed in [15]
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equations match with the 1-loop corrections to the classical energy levels in the general
classical background.

2.1.1 Hamiltonian, Transfer-matrix and Higher Charges of s[(2) chain

The hamiltonian of interaction of the neighboring spins s;,s;,1 can be written in an ex-

plicit way [63]
L
=y A"} (2.3)
I=1
with the Hamiltonian density
ALk, m — k) = (S (1() + h(m — k) — Ok K, m—k),  (24)
1/21/% 1M = k;ﬂ K=k ( m T ) Kom =K, :
where |ky,..., k;, kg, ... kL> is a state vector labeled by L integers k; (s = —1/2 spin
components) and h(k) = Z 17 1 are harmonic numbers.
The total momentum P( )
iP(u) _ Y —i/2 5
T uTin 25)
satisfies the (quasi-)periodicity condition following directly from (2.2)
K
Pt =) P(u;) =2nk/L, keZ (2.6)
j=1

In application to the anomalous dimensions of operators® in A/ = 4 SYM theory one
selects only purely periodic Bethe states

Ptot = 27'[m, m e Z. (27)

We can also study other physically interesting quantities of this model, such as the
local conserved charges Q,. They are defined as follows

T = exp ( 2 o, > , (2.8)

where the quantum transfer matrix T(v) = T(v;0,0,---,0) is a particular case of the
inhomogeneous transfer matrix

A

T(v;v1,-++,01) = Tro [Ro1(v —v1) - Ro,.(v —v1)] (2.9)

3 The operators of the type Tr (Vklz VR Z) in SYM, where V = 0 4 A is a covariant derivative in a
null direction and Z is a complex scalar, represent the state vectors |ky, ..., k;, k;y1,. .., k) and the dilatation
hamiltonian is given at one loop by the XXX _4,, hamiltonian.
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and Ry is the universal s[(2) R-matrix defined as [64]

- d ; o —ik
Ros(v) = g&-(v)ﬁéﬁ% Ri) =I5 (2.10)
]: =

with PO({) being the operator projecting the direct product of two neighboring spins sy =
s1 = —1/2 to the representation j. Recall that

[T(UI 01, /vL)l T(vl; 01, IUL):| =0 (211)

for any pair v, v/, due to Yang-Baxter equations on the R-matrix.

The direct calculation shows that P,y = — QO is the operator of the momentum and
A, /2 = 0, is the hamiltonian (2.3), etc. Those charges are local, in the sense that the
charge density of Q contains < k consecutive spins.

Due to the integrability manifestly expressed by (2.11) all these charges commute and
their eigenvalues on a Bethe state characterized by a set of Bethe roots satisfying (2.2)
(enforcing the periodicity of the chain or the quasi-periodicity of the Bethe state) are given

by [7]

K . )
Q= 2 r—1 ((u]-+i/2)7—1 B (u]._i/z)r—1> : (2.12)

j=1

We will later estimate the behavior of Q, at r — oo and high orders of 1/L expansion.

2.1.2 1/L expansion of BAE

Let us start from reviewing one of the method of solving (2.2) in the thermodynamical
limit L — oo, uy ~ L ~ K, before sticking with the most efficient one using the Baxter
equation.

As we mentioned the (2.2) has only real solutions, i.e. all the roots lie on the real
axis. We label the roots so that u;;1 > u;. Suppose there exists a smooth function X(x)
parameterizing the Bethe roots

1 1
~ (2.13)

we= LX(/L), 0(X(x)) = g =

For large K the function ¢(x) has a meaning of density of Bethe roots. As follows from
definition (2.13) its normalization is

/dxg(x) = (2.14)
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with &« = K/L. In the thermodynamical limit we can rewrite (1.49) assuming k to be far
from the edges, as follows

Zzlog (%"“) = —22’ ' L + %2’; (2.15)
] ]

- — U (uj —ug)?

——Z AR ¢/ [coth (o)l
]

— ug)’ L
, coth(mo L
_121L—3 ((ﬂg ) LmLZ((nQ))] 2 — 27‘(2Q Y {ﬁ} + 7'(@(3) [coth(ﬂg)h) + 0O (%) ,

were we introduce the notation defined by [f(0)], = f(0) — Z?:_()l () (O)?-—; for the func-
tions regular at zero. For singular functions the Taylor series should be substituted by the
Laurent series so that [f(0)], is zero for ¢ = 0 and has first n — 1 zero derivatives at this
point. The terms in the first line represent the naive expansion of the Lh.s. in 1/ (u i~ U).
It works well for the terms in the sum with u; >> 1. The terms in the second line describe
the anomalous contribution at u; ~ uy, for close roots with i ~ j. In this case we can

expand

THE Q(]T/kL) +O(1/L) (2.16)
and calculate the corresponding converging sum giving the terms in the second line. This
anomaly was noticed in the Bethe ansatz context in [15] although this phenomenon was
known since long in the large N matrix integrals or similar character expansions [65)} 66].

In our case when L — oo it is obvious from (2.15,1.49) that the anomaly does not
contribute to the main order and the Bethe ansatz equation becomes a singular integral
equation (see sec. 1.2.2)

o Lo [ W) ek (2.17)
X Coot XY

2.1.3 Large L limit and 1/ L-corrections from Baxter equation

Eq. (2.2) can be also obtained as the condition that the transfer matrix eigenvalue T(u) is
a polynomial of degree L (see for example [67])

Qu+1i) Qu—1i)
Q(u) Qu)

where Q(u) = TIK | (u — uy), W(u) = u. That is clear from the very construction of

T(u) = W(u+i/2) +W(u—i/2) (2.18)

a Bethe state in the algebraic Bethe ansatz approach [57]. The Bethe equations (2.2) is
simply a condition that T'(u) has no poles.
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Introducing notations: x = u/L, ®(x) = 1 ¥ ;log(x — x;), V(x) = logx, 2t(x) =
T(Lx)/(Lx)" we rewrite (2.18) as

2t(x) = expL {(D (x + %) —P(x)+V (x + ZL) V(x)} + c.c.. (2.19)
In this notations the quasi-momentum (1.54) takes the form (exactly in 1/L)
p(x) =@ +V'/2 (2.20)

and expanding the Baxter equation in 1/L we get

(5 "(x (x " (x 2
t(x) = cosp(x) [1_%(115) V8( ))+2L2 <p§)_V8( )>] (2.21)
)

+ ésinp(x) <p 6(x) 16(x >+O <L3>

According to our definition p(x) is a function of L. We will expand p(x) = po(x) +
1P1(x) + f2p2(x) + O(1/L3), t(x) = to(x) + 111(x) + 72t2(x) + O(1/L%) and plug it into
the last equation. Since #(x) has no singularities, except x = 0 it is natural to assume that

the coefficients of expansion ty(x), f1(x), t2(x), ... are the entire functions on the plane x
with no cuts, having only a singularity at x = 0.

The quasi-periodicity property of the total momentum (2.6) reads up to 3 first orders
as follows

Prot ==}, — +212—3+0< >:27rk/L (2.22)
j

and in the purely periodic case we select only the states with k = mL, with integer m.

Algebraical curve from Baxter equation

Let us restore from the Baxter equation the zero order result of the previous section. In
the zero order approximation we get from (2.21)

cos po(x) = to(x) (2.23)

or .

po(x) = () (2.24)
\/1—13

since fo(x) is an entire functions all the branch cuts of pyp come from the square root in

denominator, after the Bethe roots condense to a set Cy, - - -, Cx of dense supports in the

L — oo limit. In this way we reproduced the thermodynamical limit.
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1/L correction from Baxter equation

To find the 1/L correction to the leading approximation to the density of roots we deduce
from (2.21)

t
p1 = (—ph/2+V"/8) cot py — Sinlpo, (2.25)

From (2.24) and (1.55) we know about py(x) that
pg = TN — mipy,  py = 7tnj+ ipg (2.26)

so that
sinpy = —sinp, (2.27)

and thus we have for the real and imaginary parts of po(x) on the cuts

v 1
] = —tg—t , 2.28
TTipq ( g fo 1) sinpe (2.28)
1 = —p6 cotpp/2. (2.29)

We will solve these equations below and restore the explicit form p;.
Moreover we see from (2.22) that

p1(0) =0 (2.30)

and p;(x) should decreases as O(1/x?) for large x.
We can build a general solution of Riemann-Hilbert problem (2.29)

-2
y) cot po(y a]

pr(x) = 4mf %f —X) +

where f2(x) = lefl (x — xj) and the contour encircles all cuts Cy (but no other singulari-

(2.31)

ties). The first term in the r.h.s. represents the Cauchy integral restoring the function from
its real part on the cuts and having a zero at the origin (the value of the quasi-momentum
p(x) at x = 0, 00 was already fixed for po) whereas the second one is purely imaginary on
the cuts, with the polynomial in the numerator chosen in such a way that it does not spoil
the behavior of p(x) at x = 0, 0.4

Thus for K < 3 the solution is unique. In particular, for K = 1 we restore from here the
1-cut solution of [49]. For K > 3 we have to fix K — 2 parameters a;. To do this we have to

4 We could also add terms -

1
P

. but they are too singular at the branch points as we shell see in the
next section.
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use K additional conditions ensuring the right fractions «; of the roots already chosen for

po:
, pi(x)dx=0, [1=1,...,K (2.32)
1

in fact only K — 2 of them are linear independent (since we have already fixed the total
filling fraction by the asymptotic properties of (2.31) at x = co: p1(x) = O(1/x?). Eq.(2.30)
also restricts some linear combination of the conditions (2.32)). Hence we completely
tixed all parameters of our K-cut solution for the 1/L correction p; knowing the zero
order solution (algebraic curve) for py.

1/ L? corrections from Baxter relation

Expanding (2.21) up to 1/L? we obtain

p2 = —%ax[COt(Po)I] - % = Seinlon) sirt12(p0)’ (2.33)
where
3 Po
I = _sin(po) =p1+ 03 cot po. (2.34)
We introduced here the notations
=t+ €S Po

8x2
cospg . B cos(2py)+5 ,  cospo N D
- P Y ——— (3 4t 2.35
128x% = 8x2 24 sin pg 0t 8sin po ( (Po)”+ 1) (2.35)

fh=t

so that f; and f, are single valued functions on the complex plane.

Note that above the cut [T = mip;. We will find the explicit solution of these equa-
tions later, but we will need for that some results of the next section where we study the
behavior of p(x) near the branch points.

2.1.4 Double scaling solution near the branch point

As we stated above the branch point singularities come only from the square roots of the
denominator of (2.24). We define an exact branch point as a point x, where f(x,) = +1.
If we approach one of the branch points x — x, we can expand

H(x) o~ £[1 —a(x — x.) /2 — b(x — x,)%/2]. (2.36)

Note that x,, a, b themselves depend on L. We assume that they have a regular expansion
in 1/L and define x, = xp 4+ x1/L +.... We call xg a classical branch point and x;/L a
branch point displacement.
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0.5

Fig. 2.1: Quasi-momentum near branch point as a function of the scaling variable v for K = 200.
The poles corresponds to the positions of Bethe roots ;. Red dashed line - “exact” numer-
ical value, light grey - zero order approximation given by Airy function Ai(a'/3x), grey -
tirst order and black - second order approximation.

Denoting v = (x — x,)L?/3 which will be our double scaling variable v ~ 1, we get
from (2.18) up to 1/L? terms

av bv? B AW(u+i/2) W(u—1i/2)
In terms of a new function
o173
q(v) = e~ o Q(x.L +vL3), (2.38)

where 7 is such that t(x*) = ¢™

” 1 4og'+q 1 1y v*q(v) (1 1
g —avq = 473 12 + 1375 |12 (v) — 1 x_§_4b +0 7/ (2.39)

, and after expansion in 1/L the last eq. takes the form

In fact, this equation can be easily solved in terms of gg

2 4 2 2
v 1 v 3b—a 1 a-+12b ,

. _ _ , (240
1T gans s (32x;& 15a vﬂ ’70(0 2020173 60a1273° ) (2.40)

where go(v) = Ai(a'/3v) (the Airy function). The second solution of the (2.39), Bi(a'/3v)
has a wrong asymptotic as we will see. The sign o means that the solution is defined up

to a constant multiplier but this unknown multiplier doesn’t affect the quasi-momentum.
Now we can express the quasi-momentum only through our scaling function g(v)

% av‘](z}, L) 1 1
" = ~-1]. 241
P(x +L2/3) q(v,L)L1/3+ml+2x* [ (2.41)

The first two terms in the rh.s., if we substitute g(v) — go(v), represent the principal

contribution to the double scaling limit near the edge, valid up to the corrections of the
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order 1/L%/3. We see from the definition (2.38) that the zeros of 4(v) are nothing but the
positions u; of Bethe roots. Thus we know these positions with a precision 1/L%/3 (see
tig.3).

The large v asymptotic will be very helpful in fixing some unknown constant in the
1/L? corrections given in the next section

1 5

1
(oL = —Yau- 2.42
plato ) T ~ 3202\/% (242)
VL qyp2
. 1 11 o
L2/3| 8x2\/av 16ax2v2 "
1/L 1/12
where the cut corresponds to negative v for a > 0. Introducing the notation y = vL=2/3
and rearranging the terms by the powers 1/L we have
_ (a* +12b)y>/?
p(xs+y) = mn+ |—\/ay 24y +...
1 1 1 a* —4b
— | = 243
* L{ 4y+8x§,/ay+ Ta } (2.43)
L 5 1 +6—xj§(a2+12b) N
L2 |32y2,/ay  16ay?x2 768x%(ay)3/2 | T

Doing this re-expansion we assume that L~ < y < 1, trying to sew together the double
scaling region with the 1/L corrections to the thermodynamical limit. This procedure
is similar to the one used in higher orders of the WKB approximation in the usual one
dimensional quantum mechanics (see for example [68]).

To compare with pg, p1 and p, we have to re-expand around x

x1 va 1 x1 X1 Vax?
= p(xs — == 2.44
p(xo+y) = plrs+y) + L2f+ 2 162y gy (2.44)
or, introducing notation
2A 1
=——— 2.45
& Vva  4xa (2.45)
we get
B B B (a® + 12b)y?
p(xo+y) = nmn+ |—/ay “oagay +... (2.46)
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1{ 1 A a2 —4b ]

A TR T

1 5 A A2 b Ay .
2 (322 a  2vayp  \2yyay  elay)2 7esy) T T
Near the left branch point (i.e for a < 0 and y < 0) we have

B (a® + 12b)y?
p(xo+y) = 7m+[\/@+—24\/@ +...
17 1 A +a2—4b+
4 /—y 16a
1 5 A A? b Vay

Now we can compare it with our results of the previous sections and fix a,b and x;.

(2.47)

_|_

Let us note that similar Airy type oscillations were observed in the papers on random
matrices where this behavior occurs near an endpoint of a distribution of eigenvalues
[69].

Comparison with 1/ L expansion

It is instructive to establish the relations between a,b, A and the parameters of the alge-
braic curve.

For that we use the expansion (2.36) defining 4, b and find from (2.23) for y > 0

a>+12b 5/,
24\/a

in agreement with (2.46,2.47). We can fix a and b up to O (1/L) corrections from here

po(xo +y) = mn + arccos ty ~ mn — \/ay — +0(y"?), (2.48)

through the parameters of the solution for py.

To calculate a and b up to O (1/L) and to fix A, we use the expansion (2.36) with
(2.25). Note that we have the minus sign in front of ,/ay which ensures the positivity of
the density on the cut (i.e. fory < 0 and a > 0) p(y) =~ v/a(—y) /7. If we had Bi instead
of Ai the sign would be plus and the density would be negative.

Now we compare this near-cut behavior to p;. Consider the regular part first

1, a® — 4b
Y11= —5Pocotpo = —@—k T + O(y), (2.49)
which agrees with (2.43). From (2.31) we see that
A 1
pl(xo—l—y) —}/1(X() —|—y) ~ ﬁ—i-o (W) , (2.50)

where A can be written explicitly, again using po.
For the example of one-cut solution see (2.73).
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2.1.5 General solution for p; and E;

Now we have enough of information to construct p, in the most general situation of an
arbitrary number of cuts.
We start from a formula which immediately follows from (2.33)

. Po 1
po= _Eax [COt(PO) (P1 + > cot po)} YL (2.51)
where p; is given by (2.31). The behaviors near zero and at infinity are the following.
Since from (2.6) and (2.22) it follows that G(0) — WG”(O) = 2ntk/L + (’)(%) we can
conclude that ,
_
p2(0) = 24G0 (0). (2.52)
For large x we have again
p2(x) =0 (1 / xz) - (2.53)

Repeating the arguments of the previous subsection we have

x v (1 KT g
) = i o (s ool ) + 1 IR ETC
where the path C is defined as in (2.31). Again the first term guarantees that p; satisfies
(2.51). We drop out the pj, coth py for simplicity. We can do this since together with f(y) it
forms a single-valued function without cuts and the integral is given by the poles inside
of the path of integration. In fact there are only poles at each branch point so that the
result can be absorbed into the second term in (2.54).

So far the second term in (2.54) was restricted only by the conditions (2.52) and (2.53).
Of cause this does not explain why we should restrict ourselves by the fifth power of f(x)
in denominator. A natural explanation comes from the known behavior near the branch
points (2.46,2.47) from where we can see that

5 SR (S +o(l) a;, y >0
SN 2@2 2 /4y 64<a1-y>3/2 768y ) Y

2 A7 Vaiy 1 ,
N 2\/7y2 t (ny 64(a; )3/2 + 76847 )"‘O <y> , 4, y<0
(2.55)
where all 6K constants a;, b, A; fori =1,...,2K are known since they can be determined

pa(xh+y)=

from the near branch point behavior of py and p; (2.462.47). a; and b; follow from pg

— /iy — (a ZZ}/be)y +0(y?), a;>0,y>0

Vi +a21\1/2b—y +0 %), a;<0,y<0

po(xg+y) = { (2.56)
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and A; comes from p;

A
—y+ETO0W), a>0y>0

Pl(X6+y)={ h

% . (2.57)
_@_\/_—7-'_0(]/0)’ a; <0, y<0

In fact (2.55) gives only two nontrivial conditions for each branch point which are the
coefficient before the half-integer power of y so that we have 4K conditions. The extra K
conditions come from zero A-period constraints signifying the absence of corrections to
the filling fractions «;.

ji pa(x)dx =0, I1=1,...,K (2.58)
1

To reduce the number of unknown constants consider a branch point xy. We can see
that for small y = x — xg (we assume that the cut is on the lefti.e. a; > 0)

_ x f(z) 1
L = () ]iz(z_x) (@Jraz(m cotpo)) (2.59)

B 3 A 1 b 5Va Lol
- leyryay  2v/ayr  y3/2 \ 32432 128 y)’

Introducing the following integral

h = 47Ti;(x) fi; z(jzf(j)x) <(P1 + p{ cotpg) p1 cotpy — 119_3) (2.60)

1 1 [ A? 3b 29\/a 1
~ T3y, T3 T az T +O0(~ ]
32y%./ay y 2\/a  64a 768 y
we see that I} + I, reproduces the right series expansion near the branch points given
by (2.43) and (2.43). Moreover, on the cuts I, (x +i0) + I(x — i0) = 0 since the function
under integral is single valued. We can simply take

K-1 éjxj
pa(x) = L(x)+ L(x)+ ) ——, (2.61)
j=0 f(x)
where the remaining K constants are fixed from (2.58). Using that p,(0) = G”(0)/24 we
can fix one constant ¢y = % before imposing the condition (2.58).

This is our final result for the second quantum correction to the quasi-momentum. In
the section 2.1.7 we will specify this result for the example of the one-cut solution where
it can be made much more explicit.

2.1.6 Energy

To find 1/L corrections to the energy we represent the exact formula (2.1) as follows

_ 1 1 ~p 1
E=—7G(0)+55690)+0( 5], (2.62)
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-0.04 -0.03 -0.02 -0.01 0.01 0.02

Fig. 2.2: Resolvent far from branch point as a function of x. Red dashed line - “exact” numerical
value for one cut solution with K = 10, n = 2, m = 1, light grey - zero order approxima-
tion, grey - first order given by (2.31) and black - second order approximation given by

(2.61). Note that near branch point (xo = 0.02) the approximation explodes and instead of
it we should use the Airy function of (2.41), like in the usual WKB near a turning point.

We still have to expand G(x) = — 5 + po(x) + 1p1(x) + %pz(x) +O(1/13).
Finally, we obtain for the energy:

E= T Eo(x) + 5E1+ 5Ea + O (Ll ) , (2.63)

where
Ep = —Gy(0), (2.64)
. o

and Q(x) = Zsz_lz bixk is related to the last term in (2.31). For E, we have from (2.61) the
following representation

3) 70O £ (3)
G024( R CE _fiz)) " Goz(i?{ )(O) * G024(0) (2.66)

1
B 4mf f{f (423 + 9z(p1cotpg) — P_o + (p1 + p§ cot po) py cot Po) )

E;

Note that for 1-cut we should take ¢c; = 0. We can compare our results with numerical
calculations, as it is done for a few 1-cut solutions in the fig.2.3
2.1.7 One cut case

In this section we express corrections to the energy in terms of infinite sums for the sim-
plest case of one-cut solution. For this solution the hyperelliptic curve is a sphere. It is
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%

1 2 3 4 5

Fig. 2.3: Relative deviation 6E(K)/E(K) of analytical computations of the energy E(K) from its "exact”
value Eeoxaet(K) for the one cut distribution found numerically by Mathematica (solid line corre-
sponds to 6E(K) = 0), for a finite number of roots K and a finite length L for zero order (light
gray), first order (gray) and second order (black) approximation. Details are summarized in the

table
# 1 2 3 4 5
m,n 1,2 2,1 1,3 2,2 1,5
Eo 1272 24772 167> | 327% | 2472
Eq —558.4 | —1563 | —855.3 | —2401 | —1563
E, 1160. | 5464. | 1592. | 8982. | 1504.
K 10 40 7 20 5
L 20 20 21 20 25
Enumerical | 4.66004 | 8.54515 | 5.7359 | 10.7876 | 7.0232
Eo+ 5+ % 4670 | 8619 | 5752 | 10912 | 7.070

two complex planes connected by a single cut. The density of the Bethe roots is given by
a simple formula [19]

_/8mmx — (2rtnx — 1)2
p(x) = 27x '

We can easily find explicit expressions for a; and b; of (2.55). With the notation M =
vm(m+n) a; and b; become

8Mntr®
(VAMZ +n2 —2M)?’

4714n°
by = 12MV/ 4M2 + n2 + 3n? — 4n? 2 M? — 24 M>
LT 3(VAMZ + 12 — 2M)* ( )

(2.67)

= — (2.68)

and
8Mn*r3
(VAM2 + n2 4+ 2M)?’

4 = (2.69)
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47t*nb
by = — 12MV/4M? + 12 — 3n* + 4n*0* M? + 24M? ) .
2T 3(VAMZ £ 12 +2M)* ( )
It may be more convenient for comparison with string theory results [47] to express A
defined by (2.46) as an infinite sum. We have to evaluate the integral in (2.31) and find A
from the behavior near a branch point. We compute the integral by poles. To that end we
use that the solutions to the equation sin(po(x;")) = 0 are

1 1
+

X, = — ,
L2 AME + 2 T VAME £ 2

(2.70)

The points xli:O are the branch points. They are inside the contour of integration and thus
do not contribute.
Using that f(x;°)/x;" = £ and

11 Ry 1 o)
X" —x01 X —xon 12 xg | '

1 1 _\/12+4M2 1

+ R 2 2
X" —X02 X, —Xop [ TTXG 5

We can evaluate the integral (2.31) for x — x (we also take x inside the contour to drop
irrelevant symmetric part of p1)

o 2 2
ij{f Cotp(y)dy_) . 1 i [Z (ﬂ_g _%] (2.72)

innxg | =

we can conclude that

B 1 [ (VETame 1
T YA R
B 1 V124 4M? 1
A= 2x1\/7[2< z _1>_§]'

We reproduce the result of [49] for E; in terms of a sum from (2.65)
Ey = —p;(0) = 47 Y 1VI2 + 4M2 (2.74)
=1

with {-function regularization assumed.
We can also express our result for the next correction to the energy E; given by (2.66)
as a double sum. We will need the following quantity

N +1 [i <l\/12 TAMZ — kVRE T AME 1) VR 1

prxc) = 27(xt )2k | = [y 2k 2

] . (2.75)
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Evaluating the integrals in (2.66) we express E; as a double sum

Eo=—(T1+ T+ T3+ Ty), (2.76)
where
n = 4711‘;( 0) fz(,;) 9z(p1 cot pg) = —2p;(0)
+ k; lznz(m +2 %) pr(xf) —4pa<o>]
I, = 4711;(0) Q(ZS) = 47t*M?(n® + 5M?) (2.77)
v o) () (g

Note that in our new notations 1/x(; = 4TM =+ 271v/4M? + n?. Expressions for 4;, b; and
A; are given in (2.68,2.69) and (2.73).

2.1.8 Local charges

In this we will calculate local charges Q) in all powers of 1/L but for the large r from the
behavior near the relevant branch point. The idea of this calculation is taken from the
double scaling approach in matrix models. Namely, one can compare it to the calculation
of the resolvent of eigenvalues in a gaussian unitary matrix ensemble

Hy(x) = / aM exp Ny Tr(x — M)~ = i N2~2%8 i x~lg (2.78)
(2m)N? 2 = = (gm) =

where M is a hermitian matrix of large size N. The coefficients H, ,) actually give the
number of specific planar graphs: it is given by the number of surfaces of genus ¢ which
can be done from a polygon with 2n edges, by the pairwise gluing of these edges. To
extract the large n asymptotics of H(, ) for any g one can use that in the large N limit
the density (which is the imaginary part of the resolvent on the support of eigenvalues)
is given by the Wigner’s semi-circle law, and the near-edge behavior is described by the
Airy functional asymptotics [69, 70] showing the traces of individual eigenvalues in the
continuous semi-circle distribution. We will try to extract the similar asymptotics for
the distribution of Bethe roots. The role of 1/N expansion will be played by the 1/L
expansion, whether as the order of the 1/x expansion in the matrix model will be now
played by the label r of the charge.
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We start from expanding (2.12)

0, — i 1 (_1)m+lG(r+2m—1)(O)
T Lr+2m=1 (2m 4+ 1)!(r — 1)122m

m=0

(2.79)

As we shell see, for large r only the m = 0 term contributes. We express the derivative
as a contour integral around cuts

G (o) = — - ?f G(¥) 4 (2.80)

27 Jo an 1T

For large n only a small neighborhood of the closest to zero branch point xy contributes
due to the exponential suppression by the 1/x"*! factor. Near the branch point xo we
have from (2.46) (see also (2.47,2.41))

(
n(x = x0) % a8 4+ 0 ((x - x0)' 7 ¥),
1 a>0,x0<0
Gi(x) = o <7T71‘——) + (2.81)
) b 2xg (—1)k+1ck(x0 — x)%_%a 35 +0O <(x0 _ x)l—%) )
\ a<0,x0>0

where the universal constants c; can be computed from the known asymptotic of Airy

function
_232 1) (3 k
. e 3 & (6) K (6)k 3 1
Ai(z) = Nl kZE) Kl (_423/2> +0 (23(n+1)/2> (2.82)
so that )
Ai'(z
= 2.

Ck Ai(z) Zf3k271 4 ( 83)
in particular ¢cg = —1, ¢ = _zly ) = %, 3 = —g, Cy = %, 5 = —%, Ce =
414125 . _ _ 59025
65536 7 7 2048 -

These coefficients behave asymptotically as c; ~ (—1)*k! at k — co.
We assume that k < n, r and expand (for xp < 0)
0 0
§ a0y =[xl ) e st vy
—Yo —Yo
0
~ |x0|ﬁ+1_”(—1)”% yPedy. (2.84)

For the last integral the path of integration starts at —co — i0, encircles the origin in the
counterclockwise direction, and returns to the point —co + i0. For the first integral the
path is finite: it starts at some point —yo — i0 where 0 < yo < |xg| and ends at —yg + 0.
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The dependence on the y( is exponentially suppressed. The last integral is nothing but
the Hankel’s contour integral

%oyo (y + x0) "yPdy = (—1)n|x0|ﬁ+1_nn—ﬁ—1r(2f;) (1 +0 (%)) (2.85)

similarly

f{)ye (v +x0) " (—y)Pdy = —|xo|PT1 " P 27t (1 +0 (%)) (2.86)

I'(=p)
so that
1.k 3%k.3 1.3k,
G(n)(()) (_1)an|u|2 n zikjgxo\z 2 (1 + O (%)) , a>0,x<0
: = My . (2.87)
! _q\k+1ca|272n2 "2 ]xp|27 2 7 1
(-1) T (1+0(}), a<0 x>0

As we can see from here, only the term with m = 0 in (2.79) contributes at large n. The
others are suppressed as 1/n and the final result is

1 _k 3k_3 3_3k
2

r(F-1) - (1+0(r1?7), a>0,xy<0
Qk,r = Lk o3 3k, , (2.88)
140 (2),  a<0,x0>0

where we introduced the notation
1 & 1
Q= 5 ¥ Qi (289)
k=0
Note that Oy, is similar to Hg , of the matrix model.

2.1.9 Summary

We showed in this section on the example of s[(2) Heisenberg spin chain, how to find
finite size corrections in the thermodynamical limit. We also propose a double scaling
analysis of the near edge distribution of Bethe roots, which gives some interesting results
for the asymptotics of high conserved charges for the finite size corrections of any order.

The methods presented here can be easily carried over to the su(2) quantum chain as
well, though some peculiarities of this model, like complex distributions of roots and the
presence of “string” condensates with equally distributed roots [59], should be taken into
account. Only slight modifications of our results will allow to find the 1/L corrections in
the nonlocal integrable deformations of the su(2) spin chain described in [71, [72]. As for
more complicated models solved by nested Bethe ansatz, the 1/L will be discussed in the
next section.
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2.2 Finite size corrections in su(1,2) Heisenberg spin chain

IN THIS SECTION we stick mainly to the simple example of su(1,2) spin chain. This
simple toy model has already contained all the nontrivial new features appearing
due to the Nested nature of the Bethe ansatz. The generalization to other (super)groups
is straightforward and in particular, we shall focus on the Bethe ansatz describing the
superstring in AdSs x S° in Chapter 4.

The scattering of excitations in this model is governed not by a simple phase factor as
it was in su(2) case considered in the introduction but rather by S-matrix. To derive the
Bethe ansatz restricting the momenta of the excitations due to the periodical boundaries
we have to solve a diagonalization problem

K
e M) =T TS (popi) 1) (2.90)
j#k

where S(py, pj) is a matrix and [¢) is the multi-particle wave function. One can consider
the matrix in the r.h.s. as a spin chain hamiltonian, depending on the momenta of the
initial excitations p; as on a parameters. One can show that this Hamiltonian is also inte-
grable. The scattering of the excitations with some momenta f; in this auxiliary spin chain
is governed by a smaller size S-matrix. Continuing in this way we will get finally a scalar
S-matrix for which (2.90) is trivial. Thus for integrable rank r spin chains each quantum
state is parameterized by a set {ua,j} of Bethe roots wherea =1,...,randj =1,...,K;
where K is the excitation number of magnons of type a. The nested Bethe ansatz equations
(NBA) from which we find these roots is given by

j L 4L
eiTu (Ma,]' + %Va> ’ Qb (Ma/] + 2Mab> (291)

4

Ugj — Va b=1 Qp (Ma,j - %Mab)
where
K,
Qa(u) =[] (u—ugy)
i=1

are the Baxter polynomials, V, are the Dynkin labels of the representation considered
and M,;, the Cartan matrix. In fact, contrary to what happens for the usual Lie algebras,
for super algebras the Dynkin diagram (and thus the Cartan matrix) is not unique. Take
for example the su(K|M) super algebra. The different possible Dynkin diagrams can be
identified [73] as the different paths starting from (M, K) and finishing at (0,0) (always
approaching this point with each step) in a rectangular lattice of size M x K as in figure
2.4. The turns in this path represent the fermionic nodes whereas the bosonic nodes are
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r=K+M-1

K+M

< >

Fig. 2.4: For su(K|M) super algebras the Dynkin diagram is not unique. The several possible
choices can be represented as the paths going from the up right corner (M, K) to the origin
always approaching this point with each step. The turns are the fermionic nodes whereas
the straight lines correspond to the usual bosonic nodes. Different paths will correspond
to different sets of Bethe equations which are related by fermionic dualities which flip a
left—down fermionic turn into down—left turn or vice-versa [73].

those which are crossed by a straight line — see figure 2.4 |(the index a goes along the path
as indicated). The Cartan matrix M, is then given by

My, = (Pa + Pat1) Oab — Pa+10a+1, — Padapt1

where p, is associated with the link between the node a and 4 4 1 and is equal to 4+1 (—1)
if this link is vertical (horizontal).

Here we are considering twisted (quasi-periodic) boundary conditions. lL.e. we are
restricting to the states which are periodical up to the multiplication by

¢ = diag (ei4’1,. ..,ei‘PK,ei(”l,...,ei(PM) € SU(K|M) (2.92)

N 01

and the twists 7,, appearing in (2:91) and associated to a Dynkin node located at (m, k) in
the M x K network depicted in figure 2.4; are then given by [74]

To = Px — Prr1 for a bosonic along a vertical segment of the path

T = Pm+1 — Pm for a bosonic along a horizontal segment of the path

Ty = Qm+1 — Px + 7T for a fermionic node in a I like turn that is with p,_1 = —p, =1
Ty = P11 — @m + 7T for a fermionic node with p,—1 = —p, = —1

Notice that since g € SU(K|M) we have Yy ¢ — Y., om = 0 mod 271. We shall study
these Bethe equations with generic twists and we will see that the usual case (7, = 0) is
in fact quite degenerate.
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Fig. 2.5: The middle node Bethe roots u; can condense into a line as depicted in figure 2.5a (The
spins in this spin chain transform in a non-compact representation and thus the cuts are
typically real. For the su(2) Heisenberg magnet the solutions are distributed in the com-
plex plane as some umbrella shaped curves [59].). Roots of different types can form bound
states, called stacks [15], as shown in figure 2.5b. The stacks behave as fundamental exci-

tations and can also form cuts of stacks as represented in figure 2.5c.

As mentioned above, we find already all the ingredients we will need for the study
of the BS equations in the simple example of a su(1,2) spin chain in the fundamental

representation described by the following system of NBA equations®
o upi+i upi—1i/2
el(Pl—l(PZ — _ Ql ( 1/] ) Q2 ( 1/] / ) , ] — 1 . Kl (293)
Qu (11— i) Q2 (1 +1/2)
i\ L
o [ Upi— 5 upyi+i Uyi—1i/2
eitrioa (D21 72) Q2 (12 ,) Q1 (12 ,/ ) ,i=1...Ky. (2.94)
Ui+ Qa (up; —1) Q1 (up; +1/2)
The eigenvalues of the local conserved charges are functions of the roots u5 ; only and are
given by
& i 1 1
Q, = : - . . (2.95)
’ ]; r—1 ((qu +1i/2)r-1 (up; — 1/2)V1>

We will often call these momentum carrying roots carrying charges by middle node roots.®
First, consider only middle node excitations, K; = 0 # K, in the equations reduces to
the s1(2) case considered above

1
2 + ¢y — 3 = —+2Ga(x), x € cA (2.96)
where we introduce the resolvents
[ paly) IR Y
Ga(x) = x _y‘ , Paly) = ngé(x xa,]) (2.97)

® These equations are exactly the same as for the su(3) spin chain except for the sign of the Dynkin labels
which makes the system simpler because the Bethe roots are in general real.

6 This name is not very proper in this situation. For the BS equations the momentum carrying roots are
indeed in the middle of the Dynkin diagram.
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Fig. 2.6: In the scaling limit, to the leading order, the bosonic duality reads Q> ~ Q1 O with Q, =
szl( — u,). Thus, if we start with the configuration in figure 2.6a where the Kj roots
uq form a cut of stacks together with K; out of the K, middle node roots u; and apply
the bosonic duality to this configuration, the K; — K; new roots ii; must be close to the
roots 1, which were previously single while the cut of stacks in the left of figure 2.6a will
become, after the duality, a cut of simple roots — see figure 2.6b.

Let us also introduce some notation useful for what will follow. Defining the quasi-
momenta as

1

p1 = —E+G1 —¢1,
1

P2 = —5.~ G1+ G2 — ¢2, (2.98)
3

ps = —52 — Gy — ¢3,

we can add the indices 23 to the mode number #4 and to the cut C4 in (2.96) and recast
this equation as
27tnss = Yo — Pz, x € Ciy. (2.99)

Next let us consider a state with only two roots u1 = u and u;; = v with different
flavors, that is K; = K = 1. Bethe equations then yield

§b1 473 + 271tn (Pl gbz
= 2.1
u= th oL , 0 u+2cot > (2.100)

which tells us that if n ~ 1 we are in the scaling limit where v ~ u ~ Land v = u +
O(1) - the two Bethe roots form a bound state, called stack [15], and can be thought
as a fundamental excitation — see figure 2.5b. On the other hand we notice that, strictly
speaking, for the usual untwisted Bethe ansatz with ¢, = 0 the stack no longer exists.
Since the stack in figure 2.5b seems to behave as a fundamental excitation one might
wonder whether there exists a cut with K; = Kj roots of type 11 and u5, like in figure 2.5¢,
dual to the configuration plotted in figure 2.54. To answer affirmatively to this question
let us introduce a novel kind of duality in Bethe ansatz which we shall call bosonic duality.
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i
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Fig. 2.7: In the scaling limit the configurations in figure 2.6 condense into some disjoint segments,

Ps

b

cuts, and we obtain a Riemann surface whose sheets are the quasi-momenta. In this con-
tinuous limit the duality corresponds to the exchange of the Riemann sheets.

Indeed, as we explain in detail in section 2.2.4, given a configuration of K; roots of
type u; and K; roots of type up, we can write

2isin (t/2) Qa(u) = ™ 2Qu(u—i/2)Q1(u+i/2) —e 2Q1(u+i/2)QO1(u —i/2),
(2.101)
where

Ky
Ql(u) :H(u—ﬁllj) , Kl :Kz—Kl,

j=1

and T = ¢; — ¢p. Moreover this decomposition is unique and thus defines unambigu-
ously the position of the new set of roots ii;. Then, as we explain in section 2.2.4, the new
set of roots {il1, uy } is a solution of the same set of Bethe equations (2.91) with

P1 = P2

Let us then apply this duality to a configuration like the one in figure2.5a where the roots
up ~ L are in the scaling limit and where there are no roots of type u;, K; = 0. To the
leading order, we see that the i7; in (2.101) will scale like L so that the +i/2 inside the
Baxter polynomials can be dropped and we find Q; ~ Qy, that is

1:[1/]' = Uy + 0(1)

and therefore we will indeed obtain a configuration like the one depicted in figure 2.5¢.
Moreover the local charges (2.95) of this dual cut are exactly the same as those of the
original cut 2.5a since they are carried by the middle node roots u; which are untouched
during the duality transformation.

Finally, if we apply the duality transformation to some configuration like that in figure
2.6a in the scaling limit we find, by the same reasons as above, that Q> () ~ Q1 (u)Q (u).
This means that the dual roots ii; will be close to the roots 1, which are not yet part of a
stack — the ones making the cut in the right in figure 2.6a. Thus, after the duality, we will
obtain a configuration like the one in figure 2.6b.
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We conclude that, in the scaling limit with a large number of roots, the distributions of
Bethe roots condense into cuts in such a way that the quasi-momenta p; introduced above
become the three sheets of a Riemann surface, see figure 2.74, obeying

2mnf = pi— 9, x €C{'. (2.102)

when x belongs to a cut joining sheets i and j with mode number n . The duality trans-
formation amount to a reshuffling of sheets 1 and 2 of this Rlemann surface” so that a
surface like the one plotted in figure 2.7a transforms into the one indicated in figure 2.7b.

2.2.1 Finite size correction to Nested Bethe Ansatz equations

In this section we will study the leading 1/L corrections to the scaling equations (2.102).
Moreover since the charges of the solutions are expressed through middle node roots u,
and since these roots are duality invariant it is useful to write the Bethe equations in
terms of these roots only to have duality invariant equations. Let us then consider a
given configuration of roots condensed into some simple cuts C3 and some cuts of stacks
C13. Then, to leading order, at cuts Cp3 we have
2][ P2 d]/ pz(y)dy 27'[1’1?3 + gbz - 4)3 , X € 023 (2.103)
13 * y
because in a cut C13 we have p; ~ po + O (1/L). To study finite size corrections to
this equation two contributions must be considered. On the one hand, as we saw in the
previous section, when expanding the self interaction we get [53, 75,49, /50, 52, 76]

Yilog kT2 Tt [ p2Wdy |y feWdy 1o
o Upf — Upj+ 1 -y -y L

where the 1/L correction comes from the contribution to the sum from the roots separated

by O(1). On the other hand the auxiliary roots appear as®

U — Uy +1/2 01(y) / 02(y) / 01(y) — p2(y)
ilo e (e, [P, [P T2Y)
Z guz,k—ullj—z/Z x—yy ; x—yy ; X—y Y

C13
where the last term accounts for the mismatch in densities in cuts Cy3 and is clearly also a
O(1/L) effect. Bellow we will compute this mismatch and find
_ Acoty; _ coty; —coty
pr(x) —p2x) = " = —r

, X €Ci3 (2.104)

7 As we shall see in the next section this interpretation can be made exact, and not only valid in the
scaling limit.

8 recall that the Bethe roots u; ; belongs to a Ca3 cut and therefore is always well separated from uy,j roots
which always belong to C;3 cuts.
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where Af = f(x +1i0) — f(x —i0) and

cotjj = ——— cot——. (2.105)
Thus we find, for x € Cy3,
p2y)dy [ p2(y)dy P o1 B / A cotyn dy
+ ][ _ -y =273+ ¢2 — ¢3 — 7 | cotys oy 57 |(2106)
13 13

As explained before, if we apply the duality transformation, cuts Cp3 become cuts C13 and
vice-versa and, to leading order, p; < py. Thus for cuts Ci3 we find precisely the same
equation (2.106) with 1 < 2, so that for x € Ci3

][ p2(y)dy [ p2(y)dy Acotiz dy |5 107

A 1
x—y —2nn13+¢1—¢3—z COtlg—/ x—y 27
C13 Cas Co3

These two equations describing the finite size corrections for the two types of cuts of the
su(1,2) spin chain are the main results of this section.

In what follows we will derive this result from two different approaches. Namely,
we will find this finite size corrections using a Baxter formalism, similar to the one con-
sidered in the previous section, based on transfer matrices for this spin chain in several
representations and by exploiting the duality we mentioned in the previous section. It
will become clear that the generalization to other NBA equations based on higher rank
symmetry groups is straightforward.

2.2.2 Derivation using the transfer matrices

The central object in the study of integrable systems is the transfer matrix T(u). The alge-
braic Bethe ansatz formalism has the diagonalization of such objects as main goal and the
Bethe equations appear in the process of diagonalization (see [57] and references therein
for an introduction to the algebraic Bethe ansatz). As functions of a spectral parameter u
and of the Bethe roots u, ; these transfer matrices seem to have some poles at the positions
of the Bethe roots. On the other hand they are defined as a product of R operators which
do not have these singularities. This means that the residues of these apparent poles must
vanish. These analyticity conditions (on the Bethe roots) turn out to be precisely the Bethe
equations, and thus, if we manage to obtain the eigenvalues of the transfer matrices, we
can use this condition of pole cancelation to obtain the Bethe equations without going
through the algebraic Bethe ansatz procedure, see for example [77, 78, 67, 73]. For the
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su(1,2) spin chain we have the following transfer matrices in the anti-symmetric repre-

sentations:
Q=) Qo+ 3) (5—>L
Ta = ¢ 2 4 4 4 2.108
) = e D) Qau—1) \u=3 (2109
+ —1¢1Q1(u+%) <u_% L+ —1<P3Q2<u_%) (”%)L
Quu+i) \u-3 Qu—4) \u+i)
L

) _5i u— 5\t
Tg (1) = n(m<;:é> ,YEW):<u+§>.
4 4

One can easily see that the Bethe equations do follow from requiring analyticity of these
transfer matrices.

In the previous section it was shown and emphasized that the TQ Baxter relations are
the most powerful method to extract finite size corrections to the scaling limit of Bethe
equations.

In this section we will use the transfer matrices presented above along with the fact
that, due to the Bethe equations, they are good analytical functions of u to find what are
the finite size corrections to this Nested Bethe ansatz. Since for generic (super) nested
Bethe ansatz the transfer matrices in the several representations are known, this proce-
dure can be easily generalized for other NBA's.

The key idea to find the finite size corrections to NBA is to use the transfer matrices in
the various representations to define a new set of quasi-momenta g; as the solutions of an
algebraic equation whose coefficients are these transfer matrices. For example, to leading
order,

To (u) ~ eiP1 4 olP2 4 ¢iP3
Tg (u) ~ el (P1tp2) y oi(patps) o pilpster)
TE (u) ~ et(Prtpetps)

so that if we define a set of exact quasimomenta g; by

Tﬁ (u) — e Tg (u) <1 — ﬁ) + €% Ta (u) (1 — ﬁ) — =0, (2.109)

then, to leading order, q; >~ p;. Notice however that the coefficients in this equation have
no singularities except some fixed poles close to u = 0. Thus, defined in this way, the
quasi-momenta g; constitute a 4 sheet algebraic surface (modulo 27t ambiguities) such
that

di—qj=2mmnf , xeC (2.110)

ij s
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and, needless to say, this is an exact result in L, it is not a classical (scaling limit) leading
result like (2.102). On the other hand, the expansion at large L of the above algebraic
equation yields

1
71=p1+ i(—i— cotypr + C0t13)

1
g2 = p2 + i(_ cotyy + cotysz)

= +1( t t3n)
q3 = ps3 oL COot31 — COt32) ,

which follows from the expansion
L i i i
To(u) ([1—— ) =Pt +eP2 4¢3

Lo i i 1
— 7 [¢71@Ph — ph = ph) + e2(p — ph) + € (s + py —2p3) | + O (g)

TE (u) (1 — ﬁ) = ei(p1+p2) —+ ei(p2+P3) —+ ei(p3+P1)

171 ‘ ‘ .
~i7 [ez(r’ﬁpz)(m + ph —2p}) +ez(P1+p3)(p/1 —ph) +el(p2+p3)(2p/1 o — Plg)} Lo (ﬁ) /

Tﬁ (u) = el (PFpr2trs) L O (%) _

of the several transfer matrices. Then, to the first order in 1/L the exact equation (2.110)
gives, for the quasi-momenta p; introduced in (5.15),

1

Ya—¥s = 27np— ooty , x € Cx (2.111)
1

71—VY3 = 27'[71{‘3 ~ 57 (cotyp +2 cotyz +cotzy) , x € Cy3 (2.112)

where in (2.111) we use the fact that function cotz; — coty; vanishes under the slash on the
cut Cr3 since
cot;]f = cot]:]. , x €Ci. (2.113)

Equations (2.111),(2.112) are the finite size corrections we aimed at.
Finally g, must have no discontinuity at a cut C;3 and therefore

. 1
Apy = 2mi (01 — p2) = Z(co’cj1 —coty;) , x €Cy3. (2.114)

Thus, replacing the quasi-momenta p; by its expressions in terms of resolvents (5.15) and
relating the density of auxiliary roots p; to that of the middle node roots p, through (2.114),
we recover precisely (2.106) and (2.107) as announced.
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We would like to stress the efficiency of the TQ relations. We were able to find the usual
cot contributions (coming from the expansion of the log’s of the Bethe equations when the
Bethe roots are close to each other) plus the mismatch in densities of the different types of
roots making the cuts of stacks using only the fact that due to Bethe equations the transfer
matrices in several representations were analytical functions of u. The computation done
in this way is by far more economical than a brute force expansion of the Bethe equations.

Finally let us make an important remark. To derive (2.107) from (2.112) one should
use

cotpy = — / Acotiz (2.115)
271 X—y
C13UCx3
which is clearly a valid relation if cot;, has only branch cuts as singularities. For generic
twists and for small enough cuts C;3 and Cp3 this is the case. Indeed, in the absence of
Bethe roots we have no cuts at all and thus p; — p2 = ¢2 — ¢1. Suppose ¢ — $1 # 27n.
Then, by continuity, when we slowly open some cuts C3 and Cy3 then p; — po will start
taking positive values around ¢, — ¢; without ever being zero. Thus, if the cuts are small
enough we will never get poles in cotyp. In the section 2.2.4 we will see that the stacks
as described in [11] only exist when this assumption of absence of poles is right and are

destroyed when p; — p, reaches 27tn.

2.2.3 Re-derivation using the bosonic duality in the scaling limit

In this section let us re-derive the mismatch formula (2.104) using the bosonic duality
(2.116). Besides the obvious advantage for what concerns our comprehension of having
a second derivation there are systems for which the Bethe equations are known but the
algebraic formalism behind these equations is still not well developed (this is the case for
example for the AdS/CFT Bethe equations proposed by Beisert and Staudacher which
we will study in chapter 4.2).

Denoting

Uy, =up;—€ , thy;=up; — & , €~1

and expanding the bosonic duality (2.116) in the scaling limit (L — c0) we get

sin(t/2) = sin (1 (G1—G1+ T)) exp (i Gy % €i )
- ~ 1 — Y1l ’
2 Su—up Hu—u

where T = ¢ — ¢». Taking the logarithm of this equation and differentiating with respect

to u we get .
€; €; Gi—Gi Gl—Gl-l-T
LA = t
Z(u—u})2 +Z(u—u1)2 oL 2
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where we notice that the left hand side is precisely the difference of resolvents G, — G; —
Gy. Thus we find

Gi—Gi COtGl_G1+TN Gé—ZGi COtG2_2G1+T:lCOt
2L 2 - 2L 2 L2

Finally, by computing the discontinuity of this expression at the cuts C13 we will get the

Gz—Gl—Glz

mismatch of the densities of the roots in a cut of stacks”
_ Acotyy  coty; —coty
=02 =%mL = 2ml
which was the gap in the chain of arguments presented in the beginning of the section

2.2.1/and leading to (2.106).
Finally let us show that the bosonic duality amounts to a simple exchange of Riemann

sheets in the scaling limit. Consider for example

1 ~ - 1 ~
DG = — — —_ = —_-— G —G —_ —
P1 oy +G1—¢1 7x + G 1—¢1=p2

since, as we will see more carefully in the next section, ¢1, = ¢, 1.

2.2.4 More about bosonic duality

In this section we will explain some details behind the bosonic duality (2.101) mentioned
in section 2.2. There are two main steps to be considered. On the one hand we have
to prove that for a set of K, generic complex numbers u; and Kj roots u; obeying the
auxiliary Bethe equations (2.93) it is possible to write (T = ¢1 — ¢2)

2isin (7/2) Qa(u) = 2Q1(u —i/2)Q1(u+i/2) —e "2Q1(u+i/2)01(u—1i/2),
(2.116)

and that, in doing so, we define the position of a new set of numbers ;. A priori this
is not at all a trivial statement because we have a polynomial of degree K, on the left
whereas on the right hand side we have only K, — K; parameters to fix. However, as we
will see, if K; equations (2.93) are satisfied it is possible to write Q,(u) in this form. This
will be the subject of the section 2.2.4.

Assuming (2.116) to be proved we can use this relation to show that in the original
Bethe equations we can replace the roots #; by the new roots ii; with the simultaneous
exchange ¢ < ¢,. Indeed if we evaluate the duality at u = u, ; we find

Ql(uz,j - i/2) _ilga—n) Q1(u2,j — i/2)
Q1(upj+i/2)’

Q1(uzj+i/2)

9Af = f* — f~sothatp = 4G

27ti
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meaning that in the equation (2.94) for the u; roots we can replace the roots u; by the dual
roots i1 provided we replace ¢; <> ¢. Moreover if we take u = 7y j +1/2 we will get

gin—ioy _ Qi +1) Qo —i/2)
Q1 (i1 — i) Qa(ity +i/2)”

which we recognize as equation (2.93) with K, — Kj roots i in place of the K; original

roots u; and with ¢ < ¢». Finally evaluating (2.116) at u = u;; +i/2 we will get the
original equation (2.93) so that we see that it must be satisfied in order to equation (2.116)
to be valid.

In section 2.2.4 we will also see that the transfer matrices are invariant under the
bosonic duality accompanied by an appropriate reshuffling of the phases ¢,. In section
2.2.5 some curious examples of dual states will be given.

Decomposition proof

In this section we shall prove that one can always decompose Q;(u) as in (2.116) and that
this decomposition uniquely fixes the position of the new set of roots i7;. In other words,
let us show that we can set the polynomial

Pu)=et2Qi(u—i/2)01(u+i/2) —e 2Q1(u+i/2)Q1(u—i/2) — 2isin %Qz(u)
to zero through a unique choice of the dual roots ;.

e Consider first the case K; = 0. Then it is trivial to see that we can always find unique
polynomial Q; = 12 + Y2 2,471 such that

e 20 (u+i/2) —e Qi (u—i/2) = 2isin%Q2(”) '

because this amounts to solving K; linear equations for K, coefficients a,, with non-
degenerate triangular matrix.

e Next let us consider K; < K, /2. First we choose Q; to satisfy K; equations

these conditions will define Q;(u) up to a homogeneous solution proportional to

Q1(u),

Q1(u) = Qi (u g T (u)_u%)cp
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where 71 (1) is some polynomial of the degree K; — 2K;. Now from (2.93) we notice
that with this choice of Q; we have

P(uy+i/2)  P(up—i/2)
Qa(up +1/2)  Qo(up —i/2)

=0, p=1,...,K;

and thus
P(u) = Q1(u+i/2)Qi(u—i/2)p(u)
where
p(u) = ei%ql(u +i/2) — e_i%ql(u —1i/2) —2i sing g2 (1)

and g is a polynomial. Thus we are left to the same problem as above where K; =
0. For completeness let us note that we can write gp(u) explicitly in terms of the
original roots 1 and uy,

_ Qo (u)
2 = S T )~ i72)

— poles

where the last term is a simple collection of poles at u = u}, +i/2 whose residues
are such that g, (u) is indeed a polynomial.

We can see that the number of the solutions of (2.93) with K; = Kand K; = K, — K
is the same (see [57] for examples of states counting). Thus for each solution with
K; > K;/2 we can always find one dual solution with K; < K,/2 and in this way
we prove our statement for K; > K, /2

Finally let us stress the uniqueness of the Q;. If K; > K; we have nothing to show
since we saw explicitly above how the bosonic duality constrains uniquely the dual
polynomial Q1. Let us then consider K; < K; and assume we have two different
solutions Q% and Q% Then from the duality relation (2.116) for either solution we
find

e Q1(u—i/2) (Ol(u+i/2) - Qu+i/2)) =

e 301 (u+1/2) (Q}(u i/2)— OPu— i/z)) .
Evaluating this expression at u = 11,; +i/2 we find that Qf (u1,) — Q% (u1;) = 00
that Qf (u1) — Q% (u1) = Q1(u)h(u) and therefore

e h(u4i/2) = e Th(u—1i/2)

which is clearly impossible for polynomial /1(u) — for large u we can neglect the i /2’s
to obtain ¢'” = 1 thus leading to a contradiction.
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Transter matrix invariance under the bosonic duality

In this section we will examine the transformation properties of the transfer matrices un-
der the bosonic duality. In Appendix A we consider this problem for the general su(N|M)
group. For now let us just take To for su(1,2) from (2.108). Using (2.116) we can express
ratios of Qy’s through Q; and Q> so that

i <+2i5m %e__lggz(“ ~ ﬁ) LT Q}(” -9
Qu(u+ 7)Qu(u+7) Qi(u+3)

Ta (u) =
o (1) n
ot : - - A\ L
L i _21s1n§e+12Q2(u+%)+e+iTQ1(u+%’) u—3
+ 1) u

Qu(u+ )01 (u+4) Q1 (u
+ei%Q“”%)<”%>L.
Qo(u—g) \uty

We see that for T = ¢; — ¢, the terms with sin 5 cancel and we get the old expression for

Tw with ug replaced by ii; and ¢; < ¢».

This simple transformation property of the transfer matrices automatically implies
that the Riemann surface defined by the algebraic equation (2.109) is untouched under
the duality transformation (to all orders in L), so that the duality can cause at most some
reshuffling of the sheets. However, as we will see in the next section, not necessarily the
sheets as a whole are exchanged — this operation will be in general done in a piecewise
manner.

2.2.5 Examples of the dual configurations

In this section we will study some curious Bethe roots distributions for the twisted su(1,2)
spin chain described by the nested Bethe equations (2.93) and (2.94) and for the usual
su(2) Heisenberg chain,

-\ L
wits\ Qi (w,+i)
( i) oY (2.117)

Mij=2
Using the first example we shall understand the importance of twists to stabilize big cuts
of stacks like the ones depicted in figures 2.5a, 2.5b and explain how the stacks gets de-
stroyed as we decrease the twists.
We can dualize su(2) solutions of the twisted ! Heisenberg ring using the same duality
(2.101) as before with Qp(u) — u®. We will consider the dual solutions to the vacuum and
to a 1-cut solution for the Heisenberg spin chain (2.117).

10 For zero twist the duality becomes degenerate and we will see below that it needs to be slightly modi-
fied.
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Fig. 2.8: The upper and the lower configuration of Bethe roots are dual to one another. Big blue
dots are middle node roots u,, yellow dots are auxiliary roots u;. The formation of cuts
of stacks is manifest for this situation where the twists are large (like 77/2) and the filling
fractions are small.
T=4.7 =17

O

=0 T=0.6 T=0.2

Fig. 2.9: Disintegration of the stack configuration. When the twist is large (the top left corner) the
auxiliary roots form bound states together with the middle node ones and constitute a cut
of stacks. As we decrease the twist fluctuation np3 = 1 (the red crossed dot) enters the
cut of stacks (the top right corner) and subsequently partly disintegrate the cut of stacks
forming some zipper like configuration (the bottom left corner). At some very small value
of the twist the configuration of Bethe roots bears no resemblance with a cut of stacks.

Big enough twists, small enough fillings and zippers

In the previous sections we saw that the introduction of twists in the NBA equations are
needed to have a configuration with auxiliary roots u; close to some momentum carrying
roots up. In figure 2.8 we have two numerical solutions of the Bethe equations which
are related by the bosonic duality. In either of them we see a configuration of Bethe roots
with a simple cut with middle roots only (in blue) and a cut of stacks (containing blue and
yellow roots). In this situation it is clearly reasonable to think of stacks as bound states of
different types of roots and we see that they indeed condense into multicolor cuts.

We will examine what happens when we decrease the twists (or increase filling frac-
tions, which is the same qualitatively). For simplicity we consider the configuration, dual
to the simple one cut solution (K, = K and K; = 0) with no twist for the middle node
roots, ¢» — ¢3 = 0, and some generic twist ¢ — ¢o = T for the auxiliary roots. Bosonic
duality will leave untouched middle node roots u; and create K new axillary roots ;.
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= 7

P:
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Fig. 2.10: In the scaling limit the algebraic curves for ¢’”/ are the same before the duality (blue cut
only) and after the duality (when the auxiliary roots are created). The duality causes
interchange of the sheets outside the bubble, while keeping the order untouched inside.
This follows from the need of a positive density for the “virtual” cut. In other words
the duality is indeed only interchanging the sheets of the Riemann surface although it is
interchanging them in a piecewise way.

In the upper left corner of figure 2.9 we applied the duality for some big twist T = 4.6
while in the bottom right corner of the same figure we have a configuration of Bethe roots
with some small twist T = 0.2. In this latter case the auxiliary (yellow) roots clearly do
not form stacks together with the middle node (blue) roots!, rather they form a bubble,
containing the original cut of roots u5.

To understand what happens in the scaling limit consider the position of 13 = 1
fluctuation, given by (4.3), which would be a small infinitesimal cut between p; and p3. In
figure 2.9 the position of this virtual fluctuation is marked by a red crossed dot. When the
twist is big enough (and filling fraction is small enough) the fluctuation is to the left from
the cut. When we start decreasing the twist the fluctuation approaches the cut (upper
right picture on fig 2.9) and at this point we have at the same time

p2(xn) — p3(xn) = 27
and

p1(xn) — pa(xn) =27,
which implies p; — p» = 0 so that equation (2.115) becomes wrong at this point. When
we continue decreasing the twist the fluctuation passes through the cut and becomes a

n12 = 0 fluctuation. If we think of the fluctuation as being a small cut along the real axis
we see that density becomes negative after crossing the cut:

luc A(p2 — p3 A(—p1—p2 Tuc
0 < pllve — _ (P4mp):_ ( Zm’ P):_p{z
This means that two branch points of the infinitesimal cut should not be connected di-
rectly, but rather by some macroscopical curve with real positive density! This curves
z(t) can be calculated from the equation p(z)dz € R or
pE —pE)y 4y
27ti
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and the resulting curve is plotted in black on the two bottom pictures on the figure 2.9.
This is very similar to what happens when a fluctuation passes through the 1 cut su(2)
configuration [79]. In the scaling limit the black curve corresponds to the cut connecting
p1 and p; like on the figure 2.10.

At first sight these figures seem to be defying our previous results. Indeed we checked
in the previous section that the transfer matrices themselves are invariant under the
bosonic duality. Thus the algebraic curves obtained from (2.109) should be the same after
and before duality and thus what one naturally expects is a simple interchange of Rie-
mann sheets p; < p; under the duality transformation. What really happens is a bit
more tricky. The quasimomenta are indeed only exchanged but this exchange operation
is done in a piecewise manner. That is,if we denote the new quasi-momenta by p'*“ and
the old ones by p?/

1

pew _ { pgld ,outside R new { p‘l’ld ,outside R new _ old
new — —

and if we denote the bubble in figure 2.10 by R then we have

pldinside R ' P2 psiinside R’ P =P

where the border of the region R can be precisely determined in the scaling limit as ex-
plained above.

Dualizing momentum carrying roots

In this section we will consider an example of application of the bosonic duality to the
Heisenberg magnet!'!. The duality (2.101) can be applied to the roots u1 obeying (2.117)
provided we replace Q;(u) — ul. In fact if we want to consider strictly zero twist we
need a new duality because that one is clearly degenerate in this limiting case. The proper
modified expression is in this case

i(Ry — Ky)uh = Qu(u—i/2)Qu(u+1/2) — Qu(u+i/2)Qi(u—1/2).

and the number of dual roots is now L — K; + 1. Contrary to what happened with non-
zero twists, here, the dual solution is not unique. Indeed if K; > K; we can as well use

Qf=aQ1+0Qs. (2.118)

All these solutions, parameterized by the constant «, have the same charges because the
transfer matrix is invariant under this transformation — see Appendix A. Notice that if
initially we have a physical state with K; < L/2 roots then all dual states (2.118) are
unphysical with Ky >L/2 violating the half-filling condition. Still, it is interesting, at the

U1 This section beneficed a lot from the insightful discussions with T. Bargheer and N. Beisert whom we
should thank.
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Fig. 2.11: Three configurations of Bethe roots dual to the ferromagnetic vacuum of the untwisted
Heisenberg spin chain. For each physical solution (below half filling) of the Bethe equa-
tions there is a one parameter (x) family of dual unphysical solutions. To the left,
« is large and the roots distribute themselves along a circle with radius R, given by
(RyL)t = a. Decreasing  the circle will touch the fluctuations n = +1. Similarly to the
previous section the virtual infinitesimal cuts become macroscopical bubble cuts with
cusps at the position of the fluctuations. Intersection points of the new cuts with the
circle are connected by condensates, which are logarithmic cuts on the algebraic curve
[79].

level of Bethe equations, to understand how these solutions look like. First of all let us
single out a particular Q; out of the various solutions to (2.118) so that

Qf =ufi 4 ¥ il (2.119)
=0

becomes well defined through (2.118). We chose Q; = QY to be the dual solution with
) =0.
Consider for example the vacuum state for which Q; = 1. Let us first take a to be very
large so that we can write
a+ Q) ~ a4+ (xL)L. (2.120)

1/L
We see for large « the dual roots will be on a circle of radius WL . The corresponding

a circle with this radius and one can see that the Bethe roots belong perfectly to the circle.
Let us now understand this configuration from the algebraic curve point of view. The
the quasi-momenta p; = —p2 = p = 5. — G, in the absence of Bethe roots, are simply
given by p = 5. Let us find the curves with positive densities and mode number n = 0.
o . 11

The density is given by p(x) = 5+
It is easy to see that the only possibility is the circle centered at the origin with an arbitrary

and we have to find the curves where p(x)dx is real.

radius. From the above arguments one can expect that for any « the roots will belong to
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Fig. 2.12: Dual configuration to 1-cut solution. Similar to the previous example for the large « the
dual roots are distributed along the big circle and cut (first picture). When the a decreases
and the circle crosses the cut we have to choose another curve with the positive density
(second and third pictures).

some circle. However, we analyzed only the curves with zero mode number and as we
see on the figure 2.11 for smaller «’s the circle develops four tails and two vertical lines.
Along these vertical lines the roots are separated by i (for L — oo) forming the so called
condensates or Bethe strings. The tails meet at the points where the virtual fluctuation is
and the corresponding curves are given by

Pzj=n (ZBT Zi "oz = +1 (2.121)

analogously to the previous section. In the last configuration on figure 2.11/the circle is
completely absent. There are only two n = 31 curves which, at the interceptions, become
a 47t jump log condensate with the Bethe roots separated by i/2.

We also built the dual configurations to the 1-cut solution (see figure 2.12). The situa-
tion is similar to the vacuum, the only difference being that two tails (out of four) do not
tend to touch each other, but rather end at the branch points of the initial cut.

Appendix A: Transfer matrix invariance and the bosonic duality for
SU(K|M) supergroups

In this section we review the formalism of [73] which allows one to derive the trans-
fer matrices of usual (super) spin chains in any representation. We will use this general
formalism to prove the invariance under the bosonic dualities of all possible transfer ma-
trices one can build. The transfer matrices presented in section 2.108| can be obtained
trivially using this formalism!<.
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As mentioned in section 2.2, for the standard SU(K|M) super spin chains (based on
the standard R-matrix R(u) = u + iP with P the super permutation) we can find the
(twisted) transfer matrix eigenvalues for the single column young tableau with a boxes
through the non-commutative generating functions [73,74]

00 __1\a,iady Tu(u) a9, o
a;)( Lye Qm(u+ (a—K+M+1) i/z)e = ﬁ(x,n)evi,n (u) (2.122)

where v is a path starting from (M, K) and finishing at (0,0) (always approaching this
point with each step) in a rectangular lattice of size M x K as in figure 2.41%, x = (m, k) is
point in this path and n = (0, —1) or (—1,0) is the unit vector looking along the next step
of the path. Each path describes in this way a possible Dynkin diagram of the SU(K|M)
super group with corners denoting fermionic nodes and straight lines bosonic ones, see
tigure 2.4. Finally,

it Qiom (1 +i(m —k—1)/2) Qgm(u +i(m —k+2)/2)

r—1 _ idy

Vim,0,-1) () = Qrm(u+i(m—k+1)/2) Qx1,m(u+i(m—k+0)/2) -~

71 () = (e - Qrm— 1(u+ilm—k—2)/2) Qum(u+iim—k+1)/2) elau)—l
a1 = S W i(m — K+ 0)/2) Qe+ i(m — K —1)/2)

where Qy ,, is the Baxter polynomial for the roots of the corresponding node'* and { ¢y, ¢ }
are twists introduced in the transfer matrix [74]. Let us then consider a bosonic node like
the one in the middle of figure 2.4/ (the vertical bosonic node is treated in the same fash-
ion). If the position of this node on the M x K lattice is given by (m, k) then it is obvious
that the only combination containing Q,, ; in the right hand side of (2.122) comes from

the product of V(_lk) (-1 )( )V(m1+1 K,(~10) (u) which reads

{wmwmﬂkaH(“ﬂLl(m k+2)/2) Qrm-1(u+i(m—k—2)/2)

Qims1(u+i(m—k+0)/2) Qpum_1(u+i(m—k+0)/2)
(1(pm+1ka(u+l(m k_l)/Z)ka+l(u+l(m k+2)/2)
ka(”+l(m k+1)/2)ka+1(u+l(m k+0)/2)

Qi1 (u+i(m —k+0)/2) Qe +i(m —k+3)/2)\ 517", .

RS (e atya o e e 1) Ll INCAC

12 We should mention that the transfer matrices in section 2.108 are not exactly the same we have in this

1 Q2

+e'Pn

Appendix but can be obtained from these via a trivial rescaling in # which obviously does not spoil the
invariance of these objects.

13 Notice that the path goes in opposite direction compared to the labeling a of the Baxter polynomial Q,
used before. In the notation of this section Qy ,, corresponds to the node is at position (m,k) in this lattice.

4 Q0,0 is normalized to 1. If we are considering a spin in the representation where the first Dynkin node
has a nonzero Dynkin label then Qp x will play the role of the potential term. In general the situation is
more complicated, see [73]. In any case we are mainly interested in the dualization of roots which are not

momentum carrying thus we need not care about such matters.
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So, if we want to study the bosonic duality on the node (k,m) and its relation with the
invariance of several transfer matrices we need to study the last two lines of this ex-
pression. For simplicity let us shift u, omit the subscript k in the Baxter polynomials
Qkm—1, Qk.ms Qk m+1 and define the reduced transfer matrix as

siomar Qutt = 1) Quia(u+/2) iy, Qua(u —1/2) Qu(u+1i)

tHu, Qm, Q1) = Om(1) Qmi1(u—1i/2) Qum-1(u+i/2) Qum(u)
(2.124)

Notice that the absence of poles at the zeros of Q;, yields precisely the Bethe equations

+e

for this auxiliary node.

Bosonic duality = Transfer matrices invariance

Thus, to check the invariance of the transfer matrices in all representations it suffices to
verify that the reduced transfer matrix t(u, ¢m, ¢n,11) is invariant under ¢, < ¢, +1 and
Qm — O where

2isin <M) Qi1 (1) Qpyn (1) = (2.125)

2
l-f/’erl*(Pm l-(/’erl*‘Pm

e 7 Quu—i/2)Omu+i/2)—e " 7 Qu(u+i/2)Qu(u—i/2).

which can be easily verified. If suffices to replace, in t(u, ¢, ¢ +1) in (2.124),

Qm(u _ Z) — efi((Pm+1*(Pm)—Qn1(u _ 1)

Qm(u) Qm(”)
it Qi1 — @\ Qu—1 (U +1/2) Qe (u+1/2)
e o ( 2 ) Qi (1) O (1) /
Qm(u +1) s ptil@mi1—om) Qni(” +1)
Qm(u) Qm(”)
Y _i(”mﬂz_‘pm . Pm+1 — Pm Qm—l(u — i/z)Qm+1(u — 1/2)
e o ( 2 ) Qo (1) O () ’

which are obvious consequences of the bosonic duality.

Transfer matrix invariance = Bosonic duality

On the other hand suppose we have two solutions of Bethe equations, one of them charac-
terized by the Baxter polynomials {. .., Qy—1, Qm, Qn+1, - .-} with twists {..., @n, @1, - - -
and another with {..., Qy_1, Om, Qui1, - ..} with twists {..., @1, @m, ...} for which the
transfer matrices are the same, that is

t(tt, @y Q1) = E(t, Qs @) - (2.126)
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Then we can show that these two solutions are related by the bosonic duality (2.125).
Indeed if we build the Wronskian™ like object

j P Z9m Qm(u — i/Z)Qm(u +1/2) B e—ii"’mﬂz_‘”’” Qm(u + i/z)Qm(” —i/2)
Qu—1(4)Quy1(u) Qum—1(u)Qumy1(u)

we can easily check that

W(u)=e

Wu+i/2) —W(u—i/2) =

ﬂ'w Qm(u)Qm(u)
Qm—l(” - i/z)Qm—i—l(u +1i/2

Since by definition W(u) is a rational function this means it must be a constant. Thus if

—¢ ) (t(u/ Pm, Q’m—&-l) - E(u/ Pm+1, (Pm)) =0

®m 7 ¢m+1 we must have K, + K, = Ky + K41 and the value of W can be read from the
large u behavior. In this way we obtain precisely the bosonic duality (2.125). If ¢, = @41
then we see that K,, + K, = K,y + K11 + 1 and we will obtain a different value for the
constant W which will correspond to the untwisted bosonic duality described in section
2.2.5.

15 We would like to thank A.Zabrodin and V.Kazakov for suggesting this nice interpretation for the
bosonic duality



3. QUASI-CLASSICAL QUANTIZATION AND FLUCTUATIONS

3.1 Preface

IN THIS CHAPTER we will study the semi-classical quantization of the AdSs x S° Metsaev-
Tseytlin superstring [9]. We will see that the semi-classical quantization of this very
nontrivial field theory is not conceptually much difficult the one-dimensional non-relativistic
particle in a smooth potential. Let us consider this very instructive example.

In terms of the quasi-momenta

Y (x)
Ty .

the Schrodinger equation for the wave function 1 takes the Riccati form
p? —ihp' =2m (E—V). (3.2)

What do we know about p(x)? It is an analytical function which has, by definition (3.1),
a pole with residue

at each of the zeros of the wave function. For the N-th excited state we will have N poles.
On the other hand, for very excited states, the right hand side in (3.2) is much larger than
h and

p~pq=+/2m(E-V) (3.4)

describes now a two-sheet Riemann surface. What happened was that, as N — oo, the
poles in p(x) started to be denser and denser, condensing in a square root cut. Thus, in
the semiclassical limit we retrieve the Bohr-Sommerfeld quantization

1 1
ﬁfc pei(z) dz ~ ﬁfc p(z)dz =N, (3.5)

where C encircles the cut. The first integral is precisely the action variable of the classical
motion.
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P

Fig. 3.1: Analytical structure of a quasi-momenta p(x) of a one dimensional system. Left: for low
lying states p(x) is a collection of poles. Right: for high energy states the poles condense
into a square root branch cut.

When we consider more degrees of freedom, in particular when we move to higher
dimensions, let us say two, the situation is not just a little worse. Indeed, we have no
proper generic recipe, except from lattice calculations, to extract the quantum spectrum,
or a part of it, of an interacting quantum field theory. However, if we are lucky, it might
happen that the theory is integrable. If it is the case, we can identify the action variables,
apply the Bohr-Sommerfield condition and find the quasi-classical spectrum of the theory.

For a wide class of two dimensional sigma models this happens to be the case and the
procedure is known explicitly. The central object is a collection of quasi-momenta, p;(x),
whose derivative defines a many-sheet Riemann surface. These sheets can be connected
by several cuts, to each of which we can associate a filling fraction by integrating the quasi-
momenta around the cut as in (3.5). These are the action variables of the theory. Grosso
modo, these filling fractions measure the size of the cut. Finally, when going through
these cuts the quasi-momenta can jump by 271 with n being an integer labeling the cut .

The superstring on AdSs x S® background falls into this class of theories — the model
is known to be classically integrable [80,8], as we show in the introduction. The algebraic
curve was built [11], and thus one can try to quasi-classically quantize the string. In
the string language, when we choose which Riemann sheets we connect by a cut we are
choosing which string polarization, i.e. which degree of freedom, to excite. The number
n and the filling fraction associated to the cut are in strict analogy with the mode number
and amplitude of a Fourier mode in a free theory such as the string in flat space [11].

Going back to our simple example, we can see that the existence of such discrete equa-
tions is indeed highly natural. For that purpose let us consider a simple harmonic oscil-
lator, V = %2"2 From (3.2) it follows that p(x) = imwx + O(1/x). Since the quasi-
momentum is a meromorphic function with N poles on the real axis, it must be given

by

(3.6)

(x)—imwx-l—ﬁﬁ L
P = i = x—x
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P i —
b —

> .

Fig. 3.2: A possible analytical stricture of the quasi-momenta of an integrable sigma model. Many
types of cuts are now possible. Cuts can join different sheets and each cut is marked by
its “mode number” n;. In flat space limit they become numbers of fourier modes. The
number of microscopical poles constituting the given cut is called a “filling fraction” and
can be calculated as a contour integral (3.5).

Then, from the large x behavior in (3.2) we read immediately

E = hw (N + %) (3.7)

while from the cancelation of each of the x; poles in the same equation we get'

/AN |

2wm i Xi X

X (38)
which strongly resembles the equations one finds in the Bethe ansatz context.

When we expand the superstring action around some classical solution, characterized
by some conserved charges, we obtain, for the oscillations, a quadratic Lagrangian whose
quantization yields, for the semiclassical spectrum,

E=E;+ 2 NA,n gA,n ’ (3.9)
An
where we have dropped the zero energy excitation and denoted the number of quanta
with energy €4 , by N4 ,,. The subscript A labels the several possible string polarizations
we can excite while the mode number 7 is the Fourier mode of the quantum fluctuation.
In this article we shall address the question of finding this quasi-classical spectrum for
the AdSs x S° superstring using the algebraic curve mentioned above.

Let us explain the idea behind the computation. There are basically two main steps
involved. First we construct the curve associated with the classical solution around which
we want to consider the quantum fluctuations following the procedure explained in the
introduction. The second step consist of considering the small excitations around this

! Its solution is given by the zeros of the Hermite polynomials, Hy (1 / 27%""@) =0.
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classical solution in the spirit of [52]. In terms of the algebraic curve this means adding
some microscopic cuts to this Riemann surface. By microscopic cuts we mean some finite
number of poles, just like in the simple example (3.3). Then, by construction, the energy
of the perturbed configuration is quantized as in (3.9).

As an application of this method we compute the fluctuation frequencies around the
circular su(2) and sl(2) string. These solutions belong to a family of circular solutions
whose quasi-momenta we computed explicitly in Appendix A. The frequencies we com-
pute in this way were obtained in [81,82] and [83, 84] by direct analysis of the expanded
Lagrangian around these solutions in the Metsaev-Tseytlin GS superstring action.

3.2 Circular string solutions

IN THIS SECTION we will write down an important class of rigid circular strings stud-
ied in [83]. As we explain below they are particularly simple from the algebraic
curve point of view and will therefore provide us an excellent playground to check our
method for some simple choice of parameters. In terms of the AdSs and S° embedding
coordinates, we can represent this general class of strings solutions with global charges

E=VAE 1 =VAT, ... as[83]

. VR . S
U + iy = J3 el(W3T+1’ﬂ30’) . Uy v = 2 ez(w27+k2(7) ,
w3 W2

Uy + iz = /é L (waT+my0) , Uyt ivy = /ﬁ el (W1T+ki0) , (3.10)
(%) W1

Ug + iUus = \/ ﬂ el (w1 T+mo) , U+ 105 = 14/ § e T ,
w1 K

where the equations of motion and Virasoro constraints impose

3 : £ 2. S 2 3
— W K — i — —
i=1 j=1""] j=1 i=1
2 2Kk2 3 w? + m2
2 __ .2 2 2 ] ] ]
j=1 ] i=1 1
2 2
i — M

As explained in Appendix A, for this family of solutions the representative g can be writ-

ten as
g = ePo0t¢T - 90
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Fig. 3.3: Some configuration of poles on the algebraic curve corresponding to the S° excitations
(red) and AdSs excitations (blue). Black line denotes poles at +1, connecting 4 sheets
with equal residues. The crosses correspond to the residue +a(x), while circles to residue
—u(x). Physical domain of the surface lies outside the unit circle.

where ¢, ; are linear combinations of Cartan generators and gy is a constant matrix. Then
we see that the current

]: _g_ldg/
and therefore also the flat connection A(x) in (1.12), are constant matrices! Then the
computation of the path order exponential (1.13) is trivial and the quasi-momenta p(x)

are simply obtained from the eigenvalues of ZT”A (x). For a detailed account see Appendix
A.

3.3 Frequencies from the algebraic curve

IN THIS SECTION we will consider the quasi-classical quantization of the AdSs x S° su-
perstring in the language of the algebraic curve. As an example we will find the low
lying energy spectrum for the excitations around some simple classical string solutions.

As we have already mentioned in the introduction and in section 1.1.1 the exact quasi-
momenta is made out of a large collection of poles. From (1.19) we infer the residue of
each pole,

p~ Y ?) o (3.12)
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Fig. 3.4: Some configuration of poles on the algebraic curve corresponding to the 8 fermionic
excitations. Black line denotes poles at 1, connecting 4 sheets with equal residues. The
crosses correspond to the residue a(x), while circles to residue —a(x). Physical domain

of the surface lies outside the unit circle.

with A )
T X
a(x) = NSk (3.13)
These poles may then condense into square root cuts forming a classical Riemann surface
like in fig. 3.1. The filling fraction and mode number of the cuts are in strict analogy
with the amplitude and mode number of a fourier mode in the usual flat space string.
Then, to consider the quantum fluctuations around this classical solution, amounts to
adding small cuts, i.e. poles, to this curve. The key ingredient allowing us to do so is
the knowledge of the residue (3.13) just like in the example (3.3) in the introduction. The
several possible choices of sheets to be connected by these poles correspond to the several
possible polarizations of the superstring, i.e. to the different quantum numbers. The 16
physical excitations are the 4 + 4 modes in AdSs and S° (fig 3.3) plus the 8 fermionic
fluctuations (fig 3.4).

Let us give a bit more of flavor to the discussion above. As we mentioned in the
introduction, the equations describing the eight sheet quasi-momenta can be discretized
[16] yielding a set of Bethe ansatz equations for the roots x; making up the cuts. The
resulting equations resemble (3.8) with an extra 27tn; in the left hand side

1

AN

=27n; + V(x;).

This means that we can think of x; as being the position of a particle interacting with
many other particles via a two-dimensional Coulomb interaction, placed in an external
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potential® and feeling an external force 27t11;. What we are doing is, then, first considering
a large number of particles which will condense in some disjoint supports, the cuts, with
each cut being made out of particles with the same mode number n;. Then we add an
extra particle with some other mode number n. At the leading order, two things happen.
The particle will seek its equilibrium point in this background and will backreact, shifting
this background slightly by its presence [52]. The (AdS global time) energy E of the new
configuration is then shifted. When adding N particles we get precisely the quantum
steps in the spectrum, i.e. (3.9).

Technically the computations can be divided into two main steps. In what follows we
will use the notation (1.18) intensively. We must solve (1.16) for all cuts of the Riemann
surface where we now have p(x) — p(x) + dp(x) where p(x) is the quasi-momenta asso-
ciated with the classical solution.

e When applied to the microscopic cut, i.e. pole, equation (1.16) gives us, to leading
order, the position x, of the pole,

pi(xn) — py(xn) =2mn, |y > 1, (3.14)

AAAAAAAA

the pole. We refer to domain |x| > 1 as physical domain. The interior of the unit circle
is just the mirror image of the physical domain, as we saw in the previous section
(L.21).

e Then, to find dp, and in particular the energy shift JE, we must solve the same
equations but now in the macroscopic cuts

opi —opT =0, x €. (3.15)

This linear problem is to be supplemented with the known analytical properties of
dp(x) namely the asymptotic behavior presented below and the simple pole sin-
gularities with residues (3.13). In this way we are computing the backreaction de-
scribed above.

Before proceeding it is useful to introduce some simple notation. We shall consider N}
excitations with mode number 1 between sheet p; and p; such that

n

is the total number of poles connecting these two sheets. Moreover, each excitation
has their own quantum numbers according to the global symmetry. The S°, AdSs and

2 in (3.8) the potential is a quadratic one, for the actual Bethe equations it is something else
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fermionic excitations can then be identified as the several possible choices of sheets to be
connected, see figs 3.3 and 3.4,

s, (Lj)=(13),(1,4),(23),(249

AdSs , (i,j) = (1,3),(1,4),(2,3),(3,%)
Fermions , (i,j) = (1,3),(1,4),(2,3),(2,4), (3.17)

1,3),(1,4),(2,3),(2,4)

The 16 physical degrees of freedom of the superstring are precisely these 16 elementary
excitations, also called momentum carrying excitations [11,15].
When adding extra poles to the classical solutions its energy will be shifted by

SE=0A+ ) Nj +% Y N, (3.18)

AdS® Ferm

where we isolated the anomalous part JA of the energy shift from the trivial bare part.
Then, it is convenient to recast (1.24), for the excitations, as

p1 +0A/2 +Njy+ Nig +Njz + Nig
p2 +0A/2 +Njs + Nyy +Nyj + Ny
ps —0A/2 —Nzp3— Nj —Nijz — N33
5 Pa | _ 4n —0A/2 —Njj — Ny —Nyz — Ny (3.19)
P xVA —Niz —Niz —Nijz— Ny
p2 —Ns3 — N3z —Ns; — Ny
P3 N33 + Ny +Nijs + N
P +Niz + N3z +Nsz + Nig

These filling fractions Njf are not independent. Any algebraic curve must obey the Rie-
mann bilinear identity (see eqs. 3.38 and 3.44 in [11]). Since this was already the case
for the classical solution around which we are expanding, the new filling fractions are

Y Y NI =0,

n Alljj

constrained by
(3.20)

which is nothing but the string level matching condition in the algebraic curve language.
It is also important to note that sign of the residues can be summarized by the follow-
ing formula

res Pk = (5112 - 51']2) oc(xﬂ)N}}, res Pr = (5]7( — (5”;) oc(xﬂ)N,? ,
x=1ty x=x,

(3.21)
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AAAAAAAA

3.4.

In the following sections we shall analyze the quantum fluctuations around some sim-
ple classical solutions belonging to the family of rigid circular strings (3.10). We will do
it in three main steps. First we compute the quasi-momenta® associated to each classical
solution as explained in section 3.2 and in greater detail in Appendix A. Then we shall
consider the fluctuations around the classical solution which appear as new poles in the
quasi-momenta. As explained above, we start by finding the position of these new roots
using (3.14) and then we shall compute the perturbation p of the quasi-momenta by us-
ing, again, the analytical properties described in section 1.1.1 plus the knowledge of the
poles’” positions found in the second step.

We can already notice that, using this procedure, one relies uniquely on considera-
tions of analyticity and needs not introduce any particular parametrization of the group
element g(c, 7) for the fluctuations around the classical solution, contrary to what is usu-
ally done in this type of analysis [81, 82, 83, 84]. It is also nice to see that the fermionic
and bosonic frequencies appear, in our approach, on a completely equal footing, both cor-
responding to simple poles which differ only by the sheets they unite - see figs.3.3 and
3.4. Finally, in principle, we can apply our method to any classical solution whereas the
same generalization seems to be highly non-trivial to do directly in the action since we no
longer have a simple field redefinition to make it time and space independent as was the
case in [82, 84]. This method will allow us to prove some general statements about the
quasi-classical spectrum and its relation to the finite-size corrections in the BS equations.

3.3.1 The BMN string

We shall consider the simplest possible solution amongst the family of circular strings
presented in section 3.2, the rotating point like BMN string [85] moving around a big
circle of S°. For this solution all spins except for

=T

are set to zero. Then we have my = 0, wy = J , £ = k« = J . For this solution the
connection A(x) presented in Appendix A is not only constant but also diagonal so we

immediately find
3 _ . . 2T x
PL2a=—P3a=P12= "P34= 57"

(3.22)

3 Due to the simplicity of these solutions we could have computed the quasi-momenta by an alternative
method, namely using just the analytical properties presented in section/1.1.1l This was done for the su(2)
and s[(2) circular solutions in [14] and [19].
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We see that this is indeed the simplest 8 sheet algebraic curve we could have built — it has
neither poles nor cuts connecting its sheets other than the trivial ones at x = £1 (1.22).

We shall now study the quantum fluctuations around this solution. For the sake of
clarity we shall not write explicitly many of the quantities computed in the intermediate
steps — they can be found in Appendix B.

To consider the 16 types of physical excitations we add all types of poles on the fig/3.3
and 3.4, From (3.14) we find that the poles in the physical domain with |x| > 1, for this
simple case, are all located at the same position

o=y, = % (j VT2 + n2> . (3.23)

Now we must find the quasi-momenta p(x) + dp(x)

with poles located at (3.23) with residues (3.21) connecting the several sheets,

obeying the x — 1/x symmetry property (1.21),

with residues £1 grouped as in (1.22),

with large x behavior given by (3.19).

From the requirements listed above one can easily write the expression for the quasi-
momenta. For example

5 S 2iy N2 1iy i
Spr = 22t 00y el y 2Nty
e Ny y PR ek -y ¥ PRTaS VE S ot
. . 516-1- 5‘3_ lx(x3i)N§>i a(xfli)Nfli
5p3:b+x—1+x+1_ Z 2 i éin+ Z Z - Zi (3.25)
i—igizm X~ Xn  ippam L/X—xy

where 4,b and éa, 6 B+ are constants to be fixed and the last terms ensure the right poles
in physical domain for 6p; 4(x) = —dp2,3(1/x). Similar expressions can be immediately
written down for 5 3 with the introduction of two new constants & and b.

At this point we are left with the problem of fixing the eight constants

a,b,a,b,00,,00_,0B.,0B_.

This is precisely the number of conditions one obtains by imposing the 1/x behavior at
large x for the quasi-momenta (3.19) . The asymptotic of py, p3, P2, P3 fix the first four con-
stants while the remaining four equations, solvable only if the level matching condition
(3.20) is satisfied, fix the remaining coefficients and yield

A/ n2 2 _ s . .
SE=Y Y YT +jj jN,lerZNl]Jr%ZN” (3.26)

All n AdS® Ferm
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where we indeed recognize the famous BMN frequencies [85] in the anomalous part of
the energy shift.

3.3.2 The circular string in S, the 1 cut su(2) solution

The next less trivial example is the simple su(2) rigid circular string [81]. Still it is simple
enough so that all results are explicit. This solution is obtained from the family of circular
strings in section 3.2 by setting

m=-my=m, Nh=5h=J (3.27)
with all other spins set to zero. For this solution

E=x=VT*+m2. (3.28)

The quasi-momenta can be computed as explained in Appendix A. The AdSs quasi-
momenta are obtained as for the BMN string

R . 27K X
P12 =—P34= 57 (3.29)

while for the S° components 7; we find that this solution corresponds to 1 cut between f,
and p3 with mode number k = —2m, given by [14]

p1 K(1/x )
p K
122 =21 x (x) = , K(x) = vm2x2 4+ J2. (3.30)
p3 K(x)
P K1/ x)
where we assume that m > 0 and branch cut goes to the left of x = —1 so that

K(x) =mx+0O(1/x), K(x) =T + O(x)
K(1) =K(-1)=x > 0

In the rest of this section we will compute the quantum spectrum of the low lying ex-
citations around this solution. For simplicity we will consider the AdSs, S° and fermionic
fluctuations independently assuming the level matching condition (3.20) to be satisfied
for each of the sectors separately. The result we give, however, is valid under the softer
constraint (3.20) for all sectors, as one can easily check.
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Method of computation

Suppose we want to compute the variation of the quasi-momenta ép(x) when a small
pole is added to some general finite gap solution with some square root cuts. Since the
branch points will be slightly displaced we conclude that dp(x) behaves like d,1/x — x¢
~ 1/+/x — x¢ near each such point.

We are dealing with a 1-cut finite gap solution. Then, for 6, we can assume the most
general analytical function with one branch cut, namely f(x) 4+ ¢(x)/K(x) where f and
¢ are some rational functions and K(x) was defined in (3.30). To obtain é73 it suffices to
notice that (3.15) is simply telling us that 63 is the analytical continuation of Jf, trough
the cut. The remaining quasi-momentum Jf; 4 can then be obtained from this ones by the
inversion symmetry (1.21). We conclude that

op1 (K()l/x)

op f(x) + &5

5’32 — K : (3.31)
p3 f(x) = K(x)

P ~F/0)+ {7

The only singularity of §f; apart from the branch cut are eventual simple poles at +1
and x, and so the same must be true for f(x) and g(x). Then, just like in the previous
example, these functions are uniquely fixed by the large x asymptotics (3.19) and by the
residues at x;, (3.21) of the quasi-momenta.

Finally, since the AdSs part of the quasi-momenta of the non-perturbed finite gap solu-
tion has no branch cuts their variations ép; have the same form (3.24),(3.25) as for simplest
BMN string.

The AdSs excitations

This part is the simplest. The excitations live in the empty AdSs sheets where the only
impact of the S° classical solution comes through the Virasoro constraints, by the residues
at =1 (1.22). Thus the p are nonperturbed and Jp; are the same as in BMN case (3.24,3.25)
with only AdSs filling fractions N’s being nonzero. Indeed, comparing (3.2