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Bruno Palpant (Referee)
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The physical properties of a metal object change when its charcteristic size is reduced

down to few nanometers. This is related to the quantum confinement of electronic states

and to the importance of surface excitations in small objects. The combination of these

effects with those derived from its inclusion in a host matrix allows the design of new

materials with special macroscopic properties. Thus, the control of the size and shape of

embedded structures within a few nanometers is one of the most challenging issues faced

by nanoscience. In particular, noble metal nanoparticles (NPs) embedded in a dielectric

matrix have widely been studied in recent years, since their unique optical properties

make them promising materials for optical applications if a good control over the spectral

response is achieved. This work focuses on the particular case of thin amorphous Al2O3

(a-Al2O3) films containing nano-designed Ag nanostructures. The optical properties of

Ag nanostructures are characterized by the absorption at the surface plasmon resonance

(SPR) wavelength that depends on the nanoparticles morphology. Further tuning of

the SPR can be achieved through the synthesis of ordered nanoparticles with complex

shapes and controlled morphology. This possibility is particularly challenging, since new

optical properties should arise from this “nano-design”.

Among the possible ways to control the morphology, we have developed a new route to

produce thin films containing such shaped nanoparticles, based on the alternate pulsed

laser deposition (a-PLD) technique, which allows the deposition of multilayered thin

films, offers an excellent control of deposition sequence, and in the case of nanoparti-

cles, allows partial control of the nanoparticles morphology. Using this route we have

produced nanostructured thin films containing spherical Ag nanoparticles, nanolentils

or nanocolumns, to study the relationship between morphology and optical properties,

as well as mixed structures containing alternate layers of Co and Ag nanoparticles to

study the plasmon-vibration interaction regime.

The morphology of the nanostructured thin films has been studied using transmission

electron microscopy (TEM). The analysis of plan-view and cross section images has

shown that we were able to produce spherical Ag nanoparticles with diameters in the

range from 2 to 5 nm, nanolentils with an average in-plane diameter of 10 nm and an

average height of 6 nm and finally, nanocolumns with average diameters in the range

from 2 to 3 nm and a height that as been varied from 6.5 to 65 nm, which corresponds

to aspect ratios from 0.6 to 25. Nevertheless, some discontinuities have been observed in

the case of nanocolumns, that are most likely related to the production procedure. In the

case of samples containing Co and Ag nanoparticles, TEM images show the formation

of layers containing spherical Co nanoparticles with an average diameter of 2.7 nm and
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Ag nanolentils with an average diameter of 10 nm and an average height of 6 nm. The

in-depth sparation between the layers of Co and Ag NPs has been varied from 4 to 8

nm.

The optical properties of these nanostructures have been studied using optical ab-

sorption spectra and low frequency Raman spectroscopy. The presence of non-spherical

Ag nanoparticles is evidenced in the optical absorption spectrum through the presence of

two surface plasmon resonances, the longitudinal and transverse SPR. When the aspect

ratio is larger than 1 (nanocolumns) these SPR are located respectively at higher and

lower wavelength than that of spherical nanoparticles, while for aspect ratios smaller

than 1 (nanolentils) the opposite occurs. Moreover, the well defined longitudinal and

transverse SPR modes confirm the self-orientation perpendicular to the substrate surface

in the case of the nanocolumns. These results are confirmed by the confined acoustic vi-

bration bands observed in the Raman spectra. In the case of spherical nanoparticles the

band observed is due to the degenerated quadrupolar vibration mode (l = 2; m = ±0,1,2;

n = 0). When the aspect ratio differs from 1 the five fold of the quadrupolar vibration

mode are not longer degenerated and the frequency of the band observed is shifted with

respect to the case of spherical nanoparticles. The vibrations modes observed for sam-

ples containing nanolentils or nanocolumns have been identified as spheroidal-like modes

(l = 2; m = ±0,1; n = 0) and (l = 2; m = ±2; n = 0), respectively.

The final part of the work is devoted to the study of the Raman response of samples

containing Co nanoparticles and Ag nanolentils. Raman scattering, of samples con-

taining only Ag nanolentils, excited at a wavelength close to the SPR reveals confined

acoustic phonons of the silver nanolentils, while no vibration bands were observed in

samples containing only Co nanoparticles. In mixed systems the vibration band cor-

responding to Ag nanolentils remains constant, while a new band related to acoustic

vibrations of Co nanoparticles appears when the distance between Co nanoparticles

and Ag nanolentils layers decreases below a certain threshold. The analysis of the Ra-

man scattering suggests the existence of coupling between Co and Ag nanoparticles for

separations shorter than 6 nm that is most likely related to the interaction of the Co

quadrupolar acoustic vibrations with the electric field generated by the SPR of the Ag

nanolentils.

The experimental results presented have also been compared to theory, which has al-

lowed relating the morphology of the nanostructures with their optical properties, and at

the same time, studying different couplings: plasmon-plasmon (between nanocolumns)

and plasmon-vibration in the samples containing either Ag nanocolumns or Co and Ag



v

layers of nanoparticles and nanolentils, respectively.
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Spanish abstract

Se han desarrollado nuevos conceptos de fabricación de materiales nanoestructurados en

lámina delgada basados en el depósito por láser pulsado alterno de un metal (Ag) y un

dieléctrico (Al2O3), que han permitido alcanzar un control óptimo sobre los parámetros

morfológicos de las nanoestructuras que determinan su respuesta óptica. Se han pro-

ducido nanoesferas, “nanolentils” y nanocolumnas auto-ensambladas orientadas. Se ha

correlacionado su respuesta óptica lineal con su morfoloǵıa y se ha simulado la respuesta

óptica utilizando diferentes modelos teóricos. En paralelo al estudio óptico, se ha anal-

izado la respuesta vibracional de las nanoestructuras mediante dispersión Raman de baja

frecuencia. Por último, se han fabricado nanoestructuras que contienen capas alternas

de nanopart́ıculas de Co y de Ag separadas por una distancia de unos pocos nanometros,

en las que se ha observado que la interacción entre el plasmon superficial y los modos

vibracionales esferoidales de las nanopart́ıculas activa la señal Raman.

French abstract

Nous avons développé de nouveaux concepts de fabrication de matériaux nanostruc-

turés en couche mince basés sur le dépôt par ablation laser alterné d’un métal (Ag)

et d’un diélectrique (Al2O3). Cette technique permet d’atteindre un contrôle optimal

sur les paramètres morphologiques des nanostructures qui déterminent la réponse op-

tique des couches minces. Nous avons produit des nanosphères, des ”nanolentils” et

des nanocolonnes, auto-organisées et orientées, encapsulées dans une matrice d’alumine

amorphe. Leur réponse optique a été étudiée en fonction de leur morphologie et com-

parée á des simulations théoriques. En parallèle á cette étude, la réponse vibrationnelle

des nanostructures a été analysée par spectrométrie Raman basse fréquence. Finale-

ment, des nanostructures contenant des couches alternées de nanoparticules de Co et

d’Ag séparées par une distance de quelques nanomètres ont aussi été fabriquées. Il a

été montré que l’interaction entre le plasmon de surface et les modes sphéröıdaux de

vibration des nanoparticules active le signal Raman.
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In his talk: “There’s plenty of room at the bottom”, given at an American Society

meeting at Caltech in 1959, the physicist and chemist Richard Feynman? put the first

stone of the future “Nano-Technology” building. Feynman anticipated the possibilities of

organizing the matter at the nanometric scale. He underlined that from this nano-scale

should arise new physical properties. For example, the physical properties of a metal ob-

ject change when its characteristic size is reduced down to a few nanometers,?,? making

this new material more competitive. This basic idea made its way during the sixties gen-

erating interest among the scientists and in 1974 Professor Norio Taniguchi from Tokyo

Science University finally named this new field of investigation: “Nano-technology” and

re-defined it as follows:“Nano-technology mainly consists of the processing of, separa-

tion, consolidation, and deformation of materials by one atom or by one molecule”.?

Finally, during the 1980s the definition of nano-technology was extended as a field of

applied science and technology whose final goal is the control of matter at the atomic

and molecular scale, typically 1 to 100 nanometers, and the fabrication of devices with

critical dimensions that lie within that size range.

In addition to their indispensable roles in nanoscience, nanostructures are at the

centre of the development of a broad range of emerging and exciting technological ap-

plications, while the potential applications of fundamental research in nanotechnology

include goals such as improved electronics, sensors, biomedical devices, catalysts and

futuristic ones such as nanorobots, molecular machines, molecular electronics, etc...?,?

Thus, to satisfy the technological demand for ever-decreasing device feature sizes and

ever-increasing device performances, it is imperative to explore size and shape-dependent

optical,?,?,? magnetic,? catalytic,? thermodynamic,? electric transport? and electrochem-

ical? properties of materials at the nanoscale.

Size, shape and nano-organization in the volume (or surface) of nanostructures are re-

sponsible for the modification of the physical properties, and thus, the synthesis method

is critical to tune the physical properties at the nanometric scale. There are several

methods to nano-design materials, each one being more or less efficient to control size,

shape or organization. However, none of them are able to control all parameters at the

same time. In particular, this work is focused to the study of metal nanoparticles (NPs)

in which small variations of these parameters induce changes in the optical response.

Although NPs are often considered as an invention of modern technology, the use

of noble metal NPs for “artistic” applications is not new at all. The first known uses

date back from the Roman Empire. Artisans discovered that small quantities of gold

powder diluted in the blend used to produce glass changed its color,? and what it was
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(a) View of the glass at
the day ligth (reflexion).

(b) View of the glass
when held up to the ligth
(transmission).

Figure 1: Lycurgus cup.?

more amazing: when looking at the light transmitted through the glass, this looked

completely different. This must have been a tremendous innovation at the time, and

unfortunately just one example of this technology has been preserved. Figure 1 shows

the “Lycurgus cup” (4th century AD).? This extraordinary cup is the only complete

example of a very special type of glass, known as dichroic, which changes color when

held up to the light. The opaque green cup (Fig. 1(a)) turns to a glowing translucent red

(Fig. 1(b)) when light is shone through it. This is due to the tiny amounts of colloidal

gold and silver embedded inside the glass.?

During the Middle Age, as the height of the buildings increased, so did the size of the

windows and the first stained glass windows were then produced for decorative purposes.

Figure 2 shows a picture of a stained glass window dated from the XIII century, taken

from the Chartres Cathedral (France). The technique was improved since the Roman

empire and the variety of color was increased using new metal powders, such as silver

or copper.

Indeed, the pottery from the Middle Ages and Renaissance often retain a distinct

gold, silver or copper colored metallic glitter. This so called lustre is caused by a metallic

film that was applied to the transparent surface of a glazing. The lustre originates within
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Figure 2: Stained glass window of Chartres Cathedral.

the film itself, which contains silver and copper nanoparticles, dispersed homogeneously

in the glassy matrix of the ceramic glaze. They can be somewhat considered as the first

nanocomposites.

However, the fabrication and use of nanoparticles remained essentially empirical for

many centuries and it was only in 1857, when Faraday reported a systematic study of

the synthesis and colors of colloidal gold.? He prepared the first pure sample of colloidal

gold, which he called “activated gold”. He used phosphorus to reduce a solution of gold

chloride and demonstrated that the color of the solution was due to the size of the gold

particles. In 1905 Maxwell Garnett formulated the first theoretical description of these

results which relate the color with the size and volume fraction of NPs inside the glass.

Finally, the pioneering work by Gustav Mie in 1908? proposed that the interaction of

light with Ag NPs can give rise to collective oscillations of the free electrons commonly

known as surface plasmons. Peaks appear in the extinction spectra whenever surface

plasmons are excited by the electric field of incident light under resonant conditions.

All metal NPs have a surface plasmon resonance (SPR), however in most cases, the
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(a) Sphere. (b) Cube

(c) Prolate ellipsoid.

Figure 3: Calculated spectra of the optical coefficients of silver nanostructures having
different shapes.?

SPR is located in the ultra-violet range of the spectrum. In this respect, noble metals

(Ag, Au and Cu) are unique since their densities of free electrons are in the proper range

to give their NPs SPR in the visible region of the spectrum. Figure 3? shows calculated

optical coefficient spectra for Ag NPs of different shapes. For a spherical Ag particle,

the SPR is located around 400 nm (Fig. 3(a)). When the shape of the NP changes, the

physical properties are modified, which induces changes in the optical response such as

the appearance of multipolar SPRs (Fig. 3(b)) or the splitting of the SPR into different

modes (Fig. 3(c)). Thus, the shape of the NPs is an important parameter for tuning the

wavelength of the SPR. However, it is much easier to manufacture spherical NPs than to

produce well controlled non-spherical shapes. Moreover, size and shape of the NPs are

not the only parameters inducing change in the SPR. The environment is also an essential

factor. The sensitive response of SPR peaks to environmental changes is interesting for

many applications. It can be exploited to optically detect and monitor binding events
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on the metal NP surface, which lead to the realization of probes? or all integrated gas

sensors.? Alternatively, they can be used for probing the interactions between small

proteins,? SPR imaging detection of DNA hybridization? or SPR transmissions.?

A direct application of the NPs is surface enhanced Raman scattering?,? (SERS).

This phenomenon has first been observed in the seventies for molecules deposited on

rough metallic surfaces, through an enhancement of their Raman signal. This is related

to the enhancement of the electromagnetic field in the vicinity of the metal roughness

when excited close to the SPR. The efficiency of SERS increases when the rough surface

is replaced by a high density of NPs deposited on a dielectric substrate. Moreover,

the spatial organization as well as the control of the morphology of the NPs on large

surface is actually a challenge since the enhancement of the Raman signal is related to

the appearance of multipolar interactions between NPs.?,?

Guiding the light at nanometer scale is also important to develop all integrated

optical systems. Linear chains of spherical Au or Ag nanoparticles can channel the light

over distances of hundreds of nanometers without significant loss, using the interactions

among the SPRs of the NPs.? The major requirement is the spatial organization of

the NPs, since they must be separated by gaps narrow enough (<1 nm) to obtain an

efficient coupling between the SPR modes. The use of different shapes might also be

interesting. For example, the use of prolate ellipsoids in the linear chains would allow

guiding different SPR modes by switching the polarization of the light.

The current challenge in producing solid systems containing NPs is the control and

tuning of the SPR through nano-design of the NPs features and distributions. Indeed

the response of nanocomposites formed by metal nano-objects embedded in dielectrics

depends on the metal type, the substrate, the matrix, but over all on the size, shape, and

organization of the NPs at the nanometric scale. It is essential to develop a synthesis

method allowing to control all this parameters.

There are different approaches to produce such nanocomposites with controlled NPs

morphology. They can be produced trough different physical or chemical synthesis

techniques, and after their production, they can also be processed (thermally, with a

laser, etc...) to enhance the quality of the nanostructures.

The methods based on chemical reactions in solution are widely used and one of the

most popular is probably the citrate reduction method.? It consists in the preparation

of Au or Ag nanospheres dispersed in water reducing HAuCl4 in a boiling sodium citrate

solution.? Another method is the seeded growth method. It uses preformed Ag or Au
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Figure 4: Left: Transmission electron micrographs of (a) Au nanospheres and
nanorods (b) and Ag nanoprisms (c) formed using citrate reduction, seeded growth,
and DMF reduction, respectively. Right: Photographs of colloidal dispersions of AuAg
alloy NPs with increasing Au concentration (d), Au nanorods of increasing aspect ratio
(e), and Ag nanoprisms with increasing lateral size (f).?

seeds on which additional metal is grown in solution by means of a mild ascorbic agent

(ascorbic acid) allowing to produce elongated nanorods with controlled aspect ratio as

a function of the paramaters employed.?,? Finally the DMF (N,N-dimethylformamide)

reduction method reported by Liz-Marzan et al.? allowed the formation of anisotropic

shapes such as nanoprisms. An overview of the results obtained using these methods is

presented in Fig. 4,? which clearly evidence the influence of the size and shape on the

SPR wavelength.

These methods allow tuning easily the shape of the NPs; but do not allow the spa-

tial organization of NPs, for example on a substrate surface that is necessary in many

applications. An alternative is the production of NPs directly on the surface or “inside”

a matrix using, for example, the template method. This method allows synthesizing

the desired material within the pores of nanoporous alumina? or polymer? membrane.

Metals can be deposited within the pores of the template membranes by electrochemical

reduction of the appropriate metal ions. Electrochemical deposition is accomplished by

simply coating one face of the membrane with a metal film and using this metal film as

a cathode for electroplating. An example of gold nanorods within the pores of alumina

template membrane is shown in Fig. 5, where the dark regions are the gold nanorods.?
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The main disadvantage of this technique is the template itself, since the size of the pores

are limited to ≈50 nm. Thus one can only obtain rods with large diameters (≈40 nm).

Figure 5: Transmission electron micrograph of an alumina template membrane show-
ing 70 nm diameter Au nanowires within the pores.?

A more versatile method for producing NPs on a surface with controlled dimensions,

size, shape and organization is electron beam lithography.? In this case the substrate

is covered with a conductive resin sensitive to electrons like PMMA. Then an electron

beam is projected through a pattern to irradiate the resin. The exposed or non-exposed

resin is eliminated through a chemical treatment. The metal is thus removed from the

substrate leading to the pattern once the rest of the resin is eliminated. Despite the

high degree of control that can be achieved with this method, the high cost, limitations

in the minimum size of the NPs (≈20 nm?) and the maximum extension of the sample

(≈ µm2) prevents a wide spread use of this technique.

Angle resolved nanosphere lithography? is also interesting for spatial organization.

In a first step, a nanosphere mask is self-assembled onto a surface followed by metal

deposition trough this mask. In general the set mask/substrate is positioned normal

to the direction of metal deposition, but an alternative method consists in tilting this

set allowing a better control over the size, shape and separation between metal NPs.

However, the minimum size of the NPs that can be produced is higher than 70 nm, and

the preparation of the mask on a large area is difficult.

As opposed to the methods presented above, physical methods have the great ad-

vantage to produce NPs onto or inside a solid matrix on large surfaces (∼ cm2). Ion

implantation is one of them. Metal is implanted inside the matrix but in general, the size
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dispersion is large and post-implantation thermal treatment are typically required.?,? It

is very difficult to achieve a good control over the morphology of the NPs, moreover, the

depth of implantation is limited, which prevents control of the in-depth organization.

Thin film deposition techniques are more versatile methods since they allow pro-

ducing not only NPs on a surface, or at a certain depth as ion implantation, but also

nanocomposites in which metal NPs and matrix are produced in the same environment.

The deposition process is made under controlled atmosphere (vacuum or gas) and materi-

als with high purity and complex stochiometry can be produced. Among these methods,

the more relevant ones are sputtering,?,? and pulsed laser deposition.?,?The sputtering

technique is a physical vapor deposition process in which atoms in a solid target are

ejected into the gas phase due to the bombardment of the material by energetic ions.

However, this method has limitations drawbacks when producing certain type of mate-

rials such as good quality dielectric oxides. In Pulsed Laser Deposition (PLD) a high

power pulsed laser beam is focused inside a vacuum chamber on a target of the desired

composition. Material is then ejected from the target and deposited as a thin film on a

substrate facing the target.? It is a very simple technique from the experimental point

of view, since the target can have almost any geometry, and it does not require polar-

izing or cooling the target. PLD can occur in ultra high vacuum or in the presence of

a background gas and the composition of the thin film reproduces quite well that of

the target. In the configuration of alternate PLD , i.e. using a multiple target holder

controlled by computer, it is possible to produce multilayers in a single step process.

The characteristics of the deposit can be controlled trough several parameters such as

the energy density of the laser, the number of laser pulses on the target, the pressure

inside the chamber during the deposit, the configuration of the target-substrate hold-

ers, the use of static or rotating substrate holder, etc... Unique features of PLD are its

pulsed character and the directionality of the expansion of the plasma generated by laser

ablation. While the former favours deposition rates (∼103 nm.s−1),? the latter induces

a non homogenous deposit of the thin film.?

Earlier works performed at the ”Grupo de Procesado por Laser” (GPL) of the In-

stituto de Óptica (IO) have demonstrated the high versatility of this technique for the

production of nanocomposite thin films containing metal NPs (Au,? Fe,? Bi,? Ag,? Cu,?

Co?) embedded in a-Al2O3. Moreover, there are many works from other groups report-

ing the production by PLD of other type of NPs (Au,? Si,? Co,? Pt,? Ge,? CdTe?)

embedded in Al2O3, TiO2 or ZnO. Until now, the works done in the LPG mainly stud-

ied the relation between the number of laser pulses used to ablate the metal and the
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morphological characteristics as well as the optical response of the nanocomposite thin

films. In some cases, NPs embedded in a-Al2O3 have also been produced using different

ablation fluences for the metal?, ? or for the a-Al2O3
? matrix. These earlier works have

shown that the size and shape dispersions of NPs produced by PLD is quite reduced

for small NPs (< 3 nm), but both increase when the average size increases. Thus, it is

imperative to determine the parameters of the PLD or to develop an alternative process

which allows reducing the size dispersion and controlling the shape.

Aim of this work

The aim of this work is to determine the experimental conditions that allows “nano-

designing” nanocomposite systems containing embedded Ag NPs with small size disper-

sion and controlled shape and to relate their optical response to the NPs morphology.

When the NPs are elongated (spheroids or nanorods) two distinct SPR bands related

to transverse and longitudinal electron oscillations are observed in the optical response,

and the latter SPR is very sensitive to the aspect ratio? of NPs. In this respect, it is

challenging to produce elongated NPs with high aspect ratios to tune the longitudinal

SPR into the near infra-red. We have chosen Ag as the metal because its SPR is well

separated from interband transitions. To reach the objective we have extended the well

known alternate deposition conditions for Ag NPs embedded in Al2O3.? The starting

hypothesis is that reducing the in-depth separation between consecutive layers of Ag

NPs until they became in contact, the NPs of the consecutive layers might connect and

form a stack of NPs, that we will refered to as nanocolumns (NCls).

This work started with the study of the optical properties of Ag NPs as a function

of the number of pulses used to ablate the Ag target. This allowed us to relate the

morphology of the NPs with their optical properties. At the same time, the conditions

to achieve a fine tuning of the a-Al2O3 thickness as a function of the pulse number were

identified. In both cases the geometry of the target-substrate holders was optimized in

order to obtain homogenous samples. Once this calibration process was completed we

started to produce multilayers of Ag NPs decreasing the thickness of a-Al2O3. These

samples were first characterized by electron microscopy to relate the morphology of

the NPs with the parameters used to produce them, and thus, to demonstrate that it

is possible to nano-design NCls using a-PLD. In order to demonstrate that we were

able to tune the SPR, a systematic study of the optical properties of these samples
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as a function of angle of incidence and polarization of the light was performed. The

experimental results were analyzed within Mie theory and its extension to anisotropic

isolated NP (Rayleigh-Gans). The discrepancies between experimental and theoretical

results required to introduce a new parameter: the density of NPs, and for this reason

we also used an effective medium theory (Maxwell-Garnett). More recently one of our

collaborators∗ also made more precise calculations using the open source DDSCAT?

code.

To solve this problem we had used a different type of spectroscopy, i.e. the low fre-

quency Raman spectroscopy (LFRS), which gives access to the vibration modes of the

NPs. The study of the metal nanostructures, by LFRS, has been initiated by Gersten

in 1980, with the first observation of vibration modes in rough copper and silver elec-

trodes.? Since then, several works have been performed in this direction and especially

for NPs.?,?,?,?,?,?,? It has been demonstrated that the acoustic vibration of a metal NP

is directly related to the size of the particles and, in particular, Lamb theory? provides

excellent results for estimating NP size. It has also been shown that the vibration of

the NPs depends on their geometry,?,? and as in the case of the SPR, the vibration

modes split into different branches when the NPs are anisotropic. Finally, Bachelier et

al. demonstrated that the vibrations of the NPs are directly related to the SPR,? since

the vibration modulates the polarization at the surface of the NPs which affects the os-

cillating electrons and thus the SPR. These experiments were performed in Toulouse at

the LPST and the interpretation of the results were performed in collaboration with sev-

eral researchers around the world†. The results were then compared to the morphology

and the SPR features. The results show that combining extinction spectra and LFRS,

which are both accesible and non destructive techniques, one can assess the morphology

of NPs.

In parallel to this work, small spherical Co and CoO NPs were produced to study

their magnetic properties in collaboration with different research groups‡§. The most

important results of these fruitful collaborations can be found in references.?,?,? We used

the knowledge obtained in producing Ag and Co NPs to produce complex nanocompos-

ites formed by pairs of Ag and Co NPs layers with well defined separations. Since Ag

and Co NPs have specific optical and magnetic properties, respectively, when they are

separated, the first aim was to study the effect of this coupling on the magneto-optical

∗Dr A. Arbouet, CEMES, Toulouse, France
†D.B. Murray, University of British Columbia, and L. Saviot, Université Carnot de Bourgogne
‡Prof. Peter Lievens, and his team, Katholieke Universiteit Leuven
§Prof. G. Armelles and his team, Instituto de Microelectronica de Madrid
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properties of these samples but, as it happens some times in research, the results ob-

tained were not concluding. However, we decided to study these samples using LFRS to

further investigate the relationship between SPR and acoustic vibrations. This allowed

us detecting the vibration of Co NPs when their distance to Ag NPs decreases. The

size parameters were used to calculate∗ the electric field generated by the SPR in the

vicinity of a Ag NPs. This allowed us to demonstrate that the vibrations of Co NPs are

excited when the NPs are located in the near field generated by the SPR of the Ag NPs.

Structure of this work

The work is divided in five parts. Part I introduces the work.

Part II focuses on the nano-design. It starts describing the alternate PLD technique:

history, principle and experimental setup (Chapter 1). It is followed by the description

of the protocol used to nano-design our samples (Chapter 2). Finally, we present the

morphology of the samples obtained by this method of production (Chapter 3).

Part III introduces the theoretical optical and vibrational properties of nanocompos-

ite thin films containing NPs. We start with the simple case of a bulk metal (Chapter

4) and then, as dimensions are reduced, we present the special properties of metal NPs

(Chapter 5).

Part IV presents the optical properties of the thin films produced. The techniques

used to acquire the spectra and the special configuration used to study the splitting

of the SPRs and vibrations are first shown (Chapter 6). Then we present the results,

and analyze them within the theoretical models (Chapter 7). Finally, the SP-SP and

SP-vibration coupling are discussed (Chapter 8).

Finally, Part V concludes this work.

∗Boris Luk’Yanchuk and his team at the Data Storage institute in Singapore.
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1
Alternate-Pulsed Laser Deposition of Thin

Films

Pulsed laser deposition (PLD) is one of numerous physical thin film deposition

techniques. Other methods include molecular beam epitaxy (MBE) or sputtering depo-

sition (RF, Magnetron, ...) for instance. In comparison PLD offers a higher flexibility

including a wider choice of target material, laser parameters, target-substrate geometry,

and ambient gas and pressure. The PLD technique is based on laser-matter interaction

process: a high power pulsed laser beam is focused inside a vacuum chamber to strike a

target of a material from which we want to produce a thin film. If the power density is

high enough, material is ejected from the target surface, generating a plasma that ex-

pands along the direction normal to the target surface. Finally, if a substrate is placed

in an appropriate position, a fraction of the ejected material is deposited leading to the

growth of a thin film. The experimental conditions: laser fluence, substrate tempera-

ture, type and pressure of ambient gas, and geometry of the target-substrate system,

determine the characteristics of the deposited films. For example, film growth can take

place either in ultra high vacuum or in the presence of a background gas, such as oxygen,

which is commonly required when depositing oxides.
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In this chapter the basic concepts of the PLD technique are introduced. However, a

detailed description is out of the scope of the present work and can be found elsewhere.?

1.1 Pulsed Laser Deposition

1.1.1 Introduction

History

The history of laser-assisted film growth started soon after the technical accomplish-

ment of the first laser in 1960 by Maiman.? In 1962, Breech and Cross? showed the

ablation of material by laser radiation and studied the laser-ejection and excitation of

atoms from solids surfaces. Few years later, in 1965, Smith and Turner demonstrated for

the first time the deposition of thin films by ablating materials such as stibnite, ZnTe,

PbTe or Ge, with a pulsed ruby laser.? However, the quality of the deposited films was

not as good as that obtained by other techniques which prevented the development of

the technique. In the early 1980’s, a few research groups achieved remarkable results on

manufacturing thin film using lasers; but the real breakthrough came in 1987 when Di-

jkkamp and coworkers? used PLD to produce thin films of the then new high-temperature

superconductor YBa2Cu3O4−δ (YBCO) with a control over the crystalline quality and

the stoichiometry superior to that achieved with any other physical and chemical de-

position technique. Since then, PLD has demonstrated its potential to produce high

quality crystalline and amorphous films, including ceramic oxides, nitride films, metallic

multilayers and various superlattices among other materials. Today PLD is recognized

as the best technique for the deposition of oxide thin films. Finally, the development

of alternate PLD, which is based on the sequential ablation of different materials, has

allowed during the last decade depositing complex structures in thin film configuration

such as thin films composed by metallic nanoparticles embedded inside an oxide matrix

and multilayers structures.?, ? Nowadays, the development of new laser technologies, i.e.

more competitive lasers having higher repetition rates, energies and new wavelengths,

has made PLD a very competitive tool for the production of thin films with well defined

complex stoichiometry and complex structures.
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Basic principles

The most important deposition parameters concern the laser (e.g. wavelength, pulse

duration, beam profile and pulse energy), the target (e.g. density, absorption coefficient,

thermal conductivity, melting temperature, target morphology), the substrate (e.g. ma-

terial, crystallinity, temperature), the deposition geometry (substrate placed in or out

the expanding plasma), and the gas background (e.g. type of gas and its pressure).?

The appropriate choice of them will determine the final characteristics of the deposited

material.

Figure 1.1: Ablation and deposition processes

The processes involved in the film growth by PLD are schematically summarized in

Fig. 1.1. A pulsed laser beam is focused on a piece of material we want to grow in thin

film configuration: the target. Focusing the laser beam results in a high energy density

(fluence) on the target surface, inducing an increase of the temperature immediately

followed by the melting and then the ejection of the material. This ejected material is

partially ionized and highly excited, and behaves as a transient plasma, which explains

the light emission. Due to its shape this plasma is also known as “plume”.

Figure 1.2 shows the light emission of a Ag plasma, the Ag target being ablated using

an Excimer UV laser at 193 nm. The kinetic energy of ejected species depends on the

angle of incidence of the laser, Φ, and their ejection angle, θ with respect to the target

normal (Fig. 1.1). The plasma expands primarily along the normal to the target surface.

In this configuration, a fraction of the ablated species reaches the substrate leading to

the growth of thin films. Different processes, as diffusion, adsorption, or desorption,

may take place at the substrate surface depending on the kinetic energy of the species

reaching the substrate. In addition, PLD differs from other physical thin-film deposition
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Figure 1.2: Plasma plume produced by laser ablation of a Silver target.

techniques by a relatively high instantaneous deposition rate (103 nm s−1) and by a

significant fraction of ions reaching the substrate with high kinetic energy.

Plasma generation and expansion

When laser radiation is absorbed in the surface region of a condensed-matter tar-

get, the electromagnetic energy is immediately converted into electronic excitation in

the form of plasmons, unbound electrons and, in the case of insulators, excitons. The

response is regulated by the optical and thermal properties of the target. For pulses

longer than 20 ps, ablation is mainly thermally driven. The excited electrons transfer

their energy to the lattice within a few picoseconds and heating begins within the opti-

cal absorption depth of the material 1/α, where α is the optical absorption coefficient.

Then the ejection of atoms from the bulk material induced by the laser pulse occurs in

a non-equilibrium state.

Ablation of metals is somehow different. Since the penetration depth is typically of 10

nm. Thus, all the photonic energy is absorbed into this very thin layer, and is efficiently

transfered to the rest of the target due to its high thermal conductivity. Moreover, for

ns pulse ablation, the situation is complicated by ionization of the nascent erosion cloud

before the laser pulse is over, which has the effect of dissociating species ejected from

the surface.

The temperature of the plasma is typically few thousands of kelvin degrees. This

plasma is characterized by an extremely high degree of supersaturation (105 J/mole),
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i.e. far away from the thermodynamical equilibrium, a high degree of ionization, and by

the presence of species having high kinetic energies. Depending on the laser parameters

and the background gases these kinetic energies can range from 10−1 eV to several 102’s

eV.

Characteristics of PLD

One of the advantages of this technique is that the vacuum system is totally indepen-

dent from the laser source. This implies that PLD can easily be adapted to different

operational modes without any constraints imposed by the use of internally powered

evaporation sources. This allows modifying the ablation conditions by modifying the

laser parameters. Moreover, in the case of alternate PLD, targets of different materials

are moved alternatively into the beam, thus allowing the alternate deposition of different

materials leading to the growth of multilayer structures in a single step process, without

breaking the vacuum conditions. The stoichiometry of the target is generally preserved

in the deposited films. This makes PLD suitable for the deposition of complex oxides

with the desired composition, although in many cases an O2 background is required to

achieve the stoichiometry.

1.1.2 Film growth mechanisms

The deposition of the material ejected from the target generally starts by the formation

of small clusters on the substrate surface. The formation (nucleation) of these clusters

involves several processes, as illustrated in Fig. 1.3. The species arrive to the surface at

a rate that depends on their kinetic energies and therefore on the ablation parameters.

These atoms can subsequently diffuse over the substrate or cluster surface, encounter

other mobile atoms to form moving or fixed clusters, attach to pre-existing film-atom

clusters, to be re-evaporated from the substrate or from a cluster, or be detached from

a cluster and remain on the substrate surface.

All these processes depend strongly on the presence of a background gas and on the

substrate temperature as they affect the kinetics of the plasma species and the mobility

of the atoms on the surface, respectively. In this work all the samples have been produced

in vacuum and at room temperature. Hence, the kinetic energy and the mobility of the

species depend only on the laser parameters and target characteristics.?
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Figure 1.3: Possible nucleation mechanisms during film growth

The formation of clusters and their growth at the surface, depend mainly on the

interaction energies of substrate atoms and atoms reaching the surface; i.e. adatoms.

Perfect flat surfaces do not exist in nature, and defects, such as dislocations, vacancies,

and edges, act as favorable nucleation sites. Thus, the comparison of the bond strength

of the adatom with the substrate to the bond strength of adatom to its surrounding

neighbors determines the initial stage of film growth. The relation between the surface

energy of the substrate γs and the surface energy of the growing film γf is given by

Young’s equation,

γs = γi + γf cos φ, (1.1)

where γi is the film-substrate interface energy and φ is the wetting angle of a nucleus

on the substrate. Depending on the relative values of these interaction energies one can

distinguish three modes of film growth? (Fig. 1.4):

• a) Frank-van-der-Merwe: Layer-by-Layer growth: In this case the interaction

between substrate atoms and adatoms is higher than between adjacent adatoms

(γs>γf+γi). Energetically, it is more favorable to form layers. Full-monolayer

growth still involves the nucleation and growth of islands, but these are only one
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Figure 1.4: Possible film growth modes

monolayer thick and essentially lead to complete coalescence before significant

clustering occurs.

• b) Volmer-Weber mode: Island growth: Separated three-dimensional islands

are formed on the substrate if the interaction between adatoms is higher than

between adatoms and substrate atoms (γs<γf+γi). Island growth occurs mainly

by surface diffusion of adatoms, which leads to condensation of the adatoms in

clusters and finally to the growth of islands.

• c) Stranski-Krastanov mode: Layer-plus-Island : This mode is an hybrid form

of the two growth modes described above. The adatoms initially form complete

monolayers (Frank-van-der-Merwe), typically 1 to 5 monolayers. Then, since the

stress induced by the mismatched lattice spacings increases with the thickness

of the deposited layer, adatoms begin to condensate on the surface and nucleate

(Volmer-Weber).

Thin film growth mode will thus depend on the pair substrate-film atoms. The

amorphous-Al2O3 (a-Al2O3) has been deposited on top of silicon (covered by a native
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SiO2 layer) or glass substrates, following in both cases the Franck-van-der-Merwe growth

mode. Instead, we take advantage of the Volmer-Weber growth mode of a metal layer

on top of an oxide surface to nucleate metal nanoparticles (NPs) on a-Al2O3.?, ? If the

amount of deposited metal is below a certain threshold, the atoms agglomerate forming

NPs. Above this threshold, the distance among NPs decreases leading to coalescence of

neighbouring NPs. Figure 1.5 is a simplified scheme of the coalescence process that can

be defined roughly as “a melting of contiguous NPs into one unique NP”. If we increase

the amount of metal above the coalescence threshold, the percolation of all NPs occurs

and the process ends with the formation of a continuous layer. Then, the film follows

the Franck-van-der-Merwe growth mode.

Figure 1.5: Schematic of the coalescence process.

1.1.3 Relevant features of PLD: Implantation and Re-Sputtering

As mentioned above, a significative fraction of species present in the plasma have high

kinetic energies (>100 eV). These species can influence both positively and negatively

the growth process, since they can either improve or deteriorate the overall morphology,

stoichiometry, and microstructure of the growing film depending on their actual value
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of the kinetic energy.? In the negative side, the impact of high-energy species on the

surface of the growing film can result in bond breaking, subsurface vacancy production

and displacement or removal of surface atoms. Implantation and re-sputtering are direct

consequence of these phenomena. Indeed, high speed species can be implanted into the

substrate, meanwhile others can be ejected from the substrate (Fig. 1.6). Although it

is possible to minimize these effects through an adequate control of the experimental

parameters, they always exist and must be taken into account for better understanding

of the final morphology of the samples.

Substrate

Re-sputtering

Implantation

Figure 1.6: Schematic of the implantation and re-sputtering effects

1.2 Experimental equipment

The PLD set-up used in this work is schematically shown in Fig. 1.7. The main

component is a stainless steel vacuum chamber containing target and substrate holders.

An ArF excimer laser (Lambda Physics LPX 210i) operating at a wavelength, λArF =

193 nm and having a pulse duration of τArF = 20 ns (FWHM) was computer controlled

via a frequency generator.

The beam enters the vacuum chamber at an angle of incidence of 45◦ with respect

to the target normal. A lens was used to focus the beam on the target surface (focal

length = 250 cm). The spot size at the target surface was typically ≈ 0.02 cm2 and

the average fluence used 2.0 ± 0.2 J/cm2. This fluence was kept constant for all the

experiments. However, there is an uncertainty in the fluence related to the pulse-to-pulse
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Figure 1.7: PLD experimental setup

energy stability (≈ 10%) and the indetermination on the spot size. In all cases, thin

films were produced in vacuum at room temperature. We used targets of Ag (≥ 99.99%),

Co (≥ 99.99%), and polycrystalline Al2O3 that were pre-ablated prior to the deposition

process to remove any possible surface contamination. The repetition rate was varied

from ν = 5 Hz to 20 Hz depending on the target type. Prior to ablation, the chamber

was evacuated with a turbo molecular pump down to p1 = 2.0×10−6 mbar, for Ag and

Al2O3, and p2 = 8.0×10−7 mbar for Co.

Target and substrate holders were both rotating and their relative geometries, shown

in Fig.1.8, were chosen to improve the thickness uniformity of the deposit in a large area

(≈ cm2). The substrate was placed at a distance of 35 mm in front of the target and

rotated by an angle θsub of 32◦ with respect to the vertical. As shown in Fig. 1.8 it

is possible to attach up to four targets and four substrates in their respective holders.

This design has the advantage that multi-layered systems and several samples can be

prepared without opening the vacuum chamber. To avoid any undesired deposition,

three unused substrates are placed behind a protective screen. A mobile screen can also
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Figure 1.8: Geometrical configuration of the Target-Substrate holders system

be placed between the target and the remaining substrate to avoid deposition during

cleaning of the target surface. The duration of an ablation sequence is defined by the

number of laser pulses, laser frequency and the time required for the displacements of

the target holders.

In this work, three types of substrates have been used: glass, silicon covered with its

native SiO2, and carbon coated mica. Prior to deposition, glass and silicon substrates

were ultrasonically cleaned in a sequence of trichlorethylene, acetone, and ethanol. Glass

was used for the optical characterization, whereas silicon and carbon coated mica were

used for cross-section and planview imaging by electron microscopy. Samples were si-

multaneously produced on the three types of substrates to ensure that the film structure

was the same.

Film thickness and growth rate were determined by “in-situ reflectometry” using a

He-Ne laser (λHeNe= 632.8 nm) and a lock-in detection technique. This measurement

was performed on a silicon substrate since it leads to a better reflectivity contrast.

However, the change of substrate type does not have a significant influence on the

growth rate. A more complete description of the reflectivity measurements is given in

Chapter 2.
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2
Nano-Design with a-PLD

Whatever the technique used, the requirement for material nano-engineering is always

the same: control over the size and shape parameters of the nanostructures

with a high precision and reduced size dispersion. This chapter presents the

protocol, developed in the GPL during the last years, used to embed metals NPs in an

oxide matrix. This protocol takes advantage of the special features of PLD described in

Chapter 1. After a short description of the relevant features for the implementation of

the structures presented in this work, detailed guidelines for metal:oxide nanocomposite

preparation using PLD are given. These guidelines describes the production of structures

containing multilayers of NPs and nanocolumns (NCls) produced in this work.

2.1 Control of deposition rates

In order to achieve the required size control, it is first necessary to relate the deposition

rate to the characteristic size parameters of both the a-Al2O3 matrix (layer thickness)

and metal NPs (average diameter).
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Amorphous-Al2O3 deposition rate

The deposition rate of a-Al2O3 is determined from “in-situ” reflectivity measurements

obtained during deposition.

Figure 2.1: Simulated and measured reflectivity (632.8 nm) of a growing a-Al2O3

film on silicon as a function of film thickness and ablation time respectively.

Figure 2.1 presents the reflectivity of a growing a-Al2O3 on top of a silicon substrate

simulated using the refractive index of a-Al2O3 deduced from previous measurements?

and considering that the film grows in the Franck van der Merwe mode. The experimen-

tal data obtained with a repetition rate of 20 Hz are compared to the simulated data.

The observed behavior is typical of dielectric materials on absorbing substrate showing

interference maxima and minima as thickness increases. The comparison of Rexp and

Rsim allows converting time into thickness (bottom and top horizontal axis of Fig. 2.1,

respectively). In the experimental conditions used in this work, we have determined an

average deposition rate of ∼0.05 nm/s at 20 Hz, i.e 2.7×10−3 nm/pulse and we estimate

that the precision over the total deposited thickness is close to ± 0.1 nm.
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Figure 2.2: Simulated and measured reflectivity of a growing Ag film on a-Al2O3 as
a function of film thickness and ablation time, respectively.

Metal deposition rate

The growth rate is more difficult to estimate in this case since metal strongly absorbs

light. Figure 2.2 presents the simulated reflectivity Rsim of a growing Ag film on a-

Al2O3, for which the metal film is again considered to grow in a layer-by-layer mode.

The simulation does not take into account the formation of metal clusters on the oxide

surface. However, the measured data does evidence this fact as it is shown in Fig. 2.2

for a film deposited at a repetition rate of 5 Hz. We observe that the real reflectivity,

Rexp, is higher than the simulated one at the initial stages of growth while for longer

times both the experimental and simulated values become similar. This initial difference

is the signature of metal NPs formation. Thus, it is possible to distinguish three regimes

in the growth process of metal on an oxide surface.

• Regime I: Volmer Weber regime: Metals atoms form well separated NPs.

• Regime II: Coalescence regime: The amount of metal deposited is large enough

for NPs becoming close enough and coalesce.
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• Regime III: Franck van der Merwe regime: The percolation threshold has been

reached. The space among the NPs is filled and metal growth follows a layer-by-

layer mode.

The separation between regimes I and II is only approximate. We consider it occurs

when ∆R = Rexp − Rsim is maximum. Therefore, it is necessary to remain in regime I,

to achieve control over the morphology of the NPs, as coalescence is a random process,

which prevents precise control.

Thus, in regimes I and II, the ablation time is first related to the equivalent thickness

of metal if the metal layer were continuous. From this value, it is possible to deduce

the average diameter knowing the NPs number density on the surface. Figure 2.3 shows

schematically the relation between the equivalent thickness of Ag XAg and the final

diameter of the Ag NPs DAg.

Figure 2.3: Schematic view showing the relationship between XAg and DAg

If we consider an area of 1 cm2, the volume occupied by XAg nm of silver is:

V (nm)3 = XAg × 1014 (2.1)

This volume is equal to that occupied by the NPs whose number density is ρNPs

expressed in (NPs/cm2). If we consider that all NPs are spheres of diameter DAg, the

diameter of one NP is:

DAg (nm) =

(
6

πρNPs
× 1014XAg

)1/3

(2.2)

For example, if the number density of Ag NPs is ρNPs =8×1012 NPs/cm2 and XAg=2

nm, the diameter of the NPs should be DAg ≈3.6 nm. However the areal density of NPs

produced by PLD, ρNPs, depends on the NPs size.?, ? Thus, it is necessary to calibrate

the morphological characteristics of the NPs as a function of the number of pulses used
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to ablate the target. Fortunately, such a calibration is available from the previous

experience of the GPL? in the deposition of Ag NPs. Concerning the case of Co, this

calibration has been done during this thesis.

Equivalent thickness of a-Al2O3

Figure 2.4: Schematic showing the relationship between XAg and DAg

In the previous cases we have considered that the substrate surface is perfectly flat.

Yet, the NPs are embedded, which means that the layer of a-Al2O3, that covers them,

is deposited on a rough surface. The result will be a nanocomposite layer formed by

metal NPs embedded in a-Al2O3 matrix. In this case, for the same deposition time of

a-Al2O3, the layer produced will be apparently thicker than the value determined using

the procedure described above.

Then, it is also necessary to introduce the concept of equivalent thickness of a-Al2O3

to tailor correctly the nanostructures. In this case, the value is defined as the thickness of

a-Al2O3 deposited among the space between NPs, i.e. the thickness of the nanocomposite

layer, plus the thickness of the a-Al2O3 layer deposited further. Figure 2.4 presents a

schematic to understand these considerations.

As a first step, it is necessary to determine the volume of a single NP (VNP ), which

is defined as following:

VNP (nm3) =
4

3
π × a× b× c (2.3)

where a,b and c are the three semi-axis in the general case of a non-spherical NP given

in nm. Then the total volume (VtotalNPs) occupied by the NPs on a surface of 1 cm2 is
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calculated as:

VtotalNPs (nm3) = VNP × ρNPs (2.4)

where ρNPs is the number density of NPs by surface unit. The total volume of the

parallelepiped is defined as:

Vtotalpara (nm3) = 1× 1014 × X (2.5)

where X is the desired equivalent thickness of a-Al2O3 expressed in nm. The real volume

of a-Al2O3 we need to deposit is the volume of a layer of thickness T , which is given by:

Va−Al2O3 (nm3) = Vtotalpara − VtotalNPs = T × 1014 (nm3) (2.6)

Where T is the real thickness of a-Al2O3 required to obtain a nanocomposite layer

having an equivalent thickness X. For example, an equivalent thickness X of 6 nm,

that includes Ag NPs with diameter of 3 nm and number density of 8×1012 NPs/cm2,

corresponds to a thickness T of 4.8 nm.

2.2 Production of complex nanostructures

Basic principle for the production of homogenous“multi-layered” thin films

containing metal NPs

Figure 2.5: Schematic for the production of metal nanostructures
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The deposition protocol is illustrated in Fig. 2.5 and described below.

1. Deposition of a thin layer of oxide. This layer acts as a buffer layer to smooth

any possible defect as long as they are smaller than few nanometers as well as

providing the same surface for NPs to nucleate in the multilayer nanostructure.

2. Growth of NPs. If the equivalent thickness, XAg, is lower than 5 nm, metal NPs

will be produced.

3. Deposition of an oxide layer. The spaces among the NPs are first “filled” in leading

to a continuous layer and then the desired thickness of oxide is deposited on top

of it.

4. Repetition of steps 2 and 3 as many times (N) as desired.

5. Deposition of a final protective layer of oxide.

According to the structure of the desired thin film, the appropriate parameters (repe-

tition rate, laser energy, deposition times) must be selected. The number of targets, the

ablation sequence, the parameters in each step, etc... can indeed be modified to obtain

more elaborated structures, such as those described in the following sections.

Production of heterogenous “multi-layered” thin films containing metal NPs.

Here we describe the extension of the growth protocol to the case of multilayers

containing bilayers of Co and Ag NPs. Figure 2.6 shows cross-section schematics of

one of these heterogenous “multi-layers” that consists of five “bilayers” of Co and Ag

NPs layers embedded in a-Al2O3. The spacing between the bilayers was fixed to 25

nm. Co NPs are spherical and defined by their diameter DCo while Ag NPs are oblate

spheroids defined by their average diameter, DAg and height HAg. The spacing X within

the bilayers can easily be controlled through the deposition of the matrix following the

procedure described above.
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Figure 2.6: Schematic for the production of CoAg multilayers

The deposition protocol can be summarized as:

1. Deposition of a thin a-Al2O3 buffer layer.

2. Growth of Co NPs. The ablation time was chosen to obtain spherical NPs.

3. Deposition of an equivalent thickness X of a-Al2O3.

4. Growth of coalesced Ag NPs to obtain oblate spheroids.

5. Deposition of a second layer of a-Al2O3, having a thickness of (25−X) nm.

6. This protocol is repeated from the step 2 as many times as the number of desired

bilayers.

7. The last layer of NPs is covered with an equivalent thickness of 10 nm of a-Al2O3.
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Figure 2.7: Schematic for the production of Ag NCls

Production of Ag NCls

The procedure used to produce NCls is an extension of the approach used to produce

Co-Ag NPs bilayers. Figure 2.7 shows cross-section schematics of one film that consists

of “multilayers” of Ag NPs embedded in a-Al2O3 with average diameters DAg. In this

case, the spacing X between consecutive layers of Ag NPs was reduced down to values

close to DAg.

The first layer of Ag NPs acts as a pattern that defines the number density and

the diameter of the final NCls produced, while the matrix acts as a template allowing

their oriented growth. The critical step for the production of NCls resides in the very

precise control (i.e. within less than 1 nm) of the equivalent thickness of both metal and

a-Al2O3.

The sequence can be repeated an arbitrary number of times N to increase the height

of the NCls to lead to the situation sketched in Fig. 2.7. The produced NCls are oriented

perpendicular to the substrate.
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3
Morphology of nanodesigned structures

produced by a-PLD

In Chapter 2 we have presented the protocols used in this work to produce the nanos-

tructures. In this chapter we describe the morphology of the resulting Co:Ag:a-Al2O3

and Ag:a-Al2O3 nanocomposite thin films. First, we briefly present the techniques used

for the morphological characterization of our samples. Then we describe the morphology

of the samples produced and its dependence on the deposition parameters.

3.1 Electron microscropy

The morphology and structure of the films have been studied by transmission electron

microscopy (TEM), high resolution TEM (HREM) and scanning TEM (STEM) in col-

laboration with M.I. Ortiz and C. Ballesteros from the University Carlos III of Madrid

(Spain) and U. Hörmann, M.D. Rossell and G. Van Tendeloo from the University of

Antwerp (Belgium). These three types of microscopies have been employed to access

different types of information such as: NP size and morphology, NP distribution and
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crystallinity, and metal distribution.

The electron beam is generated in all cases by thermo-electronic emission from a

tungsten filament. The beam is accelerated by a difference of potential of few hundred

kV, whose value determines the wavelength of the electrons (typically 10−1 to 10−3 Å).

It is then focused on the sample by a condensing electromagnetic lens. The whole system

is in vacuum to avoid interactions of electrons with impurities and the beam transmitted

through the sample is acquired using a CCD camera or a photographic plate.

In TEM (or HREM) images dark areas correspond to the material that absorbs the

electrons. The material interacts with the electron beam mostly by diffraction, although

the intensity of the transmitted beam is affected by the volume and density of the

material through which it passes. Thus, dark areas in the TEM images correspond to a

high electronic density, which in our samples corresponds to the metals. Using HREM

(with a resolution of 0.2 nm) it is possible to obtain images of the lattice fringes of

crystalline areas. In STEM, the process to obtain images is different as the electron

optics focus the beam into a narrow spot which is scanned over the sample. By coupling

the STEM with an electron dispersive X-ray (EDX) detector, it is possible to obtain

atomic resolution images in which the contrast is directly related to the atomic number.

Thus, bright areas correspond to the heaviest material, i.e. the metal in our case.

One of the challenges in electron microscopy is the preparation of samples thin enough

(less than 15 nm) to allow the transmission of electrons. In the case of plan-view images,

sandwich thin films were directly deposited on top of carbon coated mica substrates.

These films consist of buffer and covering a-Al2O3 layers and a single layer of NPs in order

to avoid overlapping images of NPs laying in different layers. They were separated from

the substrate by immersion in de-ionized water and collected on top of 3 mm diameter

grids. In the case of cross-section views, the preparation is much more complex. We

have used two techniques to obtain samples thin enough. The first technique consists

in polishing mechanically the sample to obtain 200 nm thick samples. The thickness of

the samples is further reduced by dimpling and finishing with ion beam milling. This

technique is time consuming and delicate. An alternative is the use of a focused ion

beam (FIB) technique. It allows milling very thin membranes from a specific area of the

sample. For this preparation we have used the FIB with internal lift out FEI Nova 200

NanoLab dual beam SEM/FIB system.

The microscopes used and their characteristics are summarized below:
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• A Philips Tecnai 20F FEG, TEM/STEM operating at 200 kV with point-to-point

resolution of 0.20 nm and equipped with an EDX detector, and a dark-field high

angle annular detector for Z-contrast analysis. (Madrid)

• A JEOL 4000EX, TEM operating at 400kV with point-to-point resolution of 0.18

nm. (Antwerp)

3.2 Nanoparticles

Before presenting the results on the complex structures produced in this work, it

is convenient to present some results obtained for the simple case of embedded NPs.

Indeed, the essential point of the nano-design process is inherent to the NPs since the

starting NPs morphology determines the properties of the complex nanostructures, and

in the case of the production of Ag NCls, the nano-design itself.

As it was mentioned in chapter 1, NPs produced by PLD in vacuum are nucleated

on the substrate surface and they evolve from small spheres to oblate ellipsoids due to

coalescence. However, this evolution depends on the type of metal. The expertise of the

GPL has shown that magnetic metals (such as Co,?, ? Ni, Fe?) tend to form continuous

layer very quickly, while noble metals (such as Ag,? Au?) coalesce in large NPs before

forming a continuous layer. Thus, the obtainable Co NPs are always almost spherical

with a diameter varying in the range from 2 to 4 nm. Instead, in the case of Ag NPs, the

in-plane average dimensions of the NPs increases as the amount of Ag increases while

the dimension along the direction perpendicular to the substrate surface remains smaller

and tends to a saturation value.

Figure 3.1: Plan-view TEM image of Co NPs in a-Al2O3.
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Figure 3.1 shows the image of a sandwich film containing a single Co NPs layer

embedded in a-Al2O3, grown on carbon coated mica. Since most particles are round and

their size dispersion is quite small, we can conclude that the NPs are spherical with a

mean diameter of 2.7 ± 0.3 nm and they are well separated from each other.

Figure 3.2: Plan-view TEM images of two samples containing (a) spherical and (b)
coalesced Ag NPs embedded in a-Al2O3.

Figure 3.2 shows two TEM plan view images of Ag NPs produced using different

deposition times before (Fig. 3.2 a.) and after (Fig. 3.2 b.) the onset of coalescence

(Chapter 2). Figure 3.2 a. shows spherical NPs with an average diameter Dsph= 3.4 ±
0.2 nm. When the amount of Ag is large enough and the NPs start to coalesce (Fig. 3.2

b.), a fraction of the NPs simply increase their volume, while others “connect” to form

ellipsoids. This leads to smaller number density of NPs and to the increase of size and

shape dispersions. The NPs in Fig. 3.2 b. have an average in-plane diameter Dobl= 9

± 1 nm and a height Hobl= 5.2 ± 0.2 nm.

The use of long deposition times leading to non-spherical NPs is a problem for the

production of NCls, since once nucleated, the ellipsoidal NPs are randomly oriented on

the surface and thus, it is extremely difficult to anticipate if the self-organization will be

preserved.

3.3 Co-Ag bilayers

In order to study the relationship between spatial organization and optical properties

of the nanocomposite thin films we have produced samples containing spherical Co and

oblate Ag NPs pair of layers (bilayers) within which we have varied the separation, X,

between the layers of Co and Ag NPs as described in Chapter 2.

Figure 3.3 shows cross-section HREM images of individual Ag and Co NPs where it

is clearly evidenced the crystalline structure of both type of particles. The Ag NP is

polycrystalline (Fig. 3.3 a.), while the small Co NP is monocrystalline (Fig. 3.3 b.).



3.3. CO-AG BILAYERS 43

Figure 3.3: Cross-section HREM images of: (a) individual Ag NP which grew as
random polycrystals; (b) individual monocrystalline Co NP.

These images also allowed us to determine the average heigth HAg= 6.0 ± 0.5 nm and

diameter DAg= 10 ± 2 nm of Ag NPs, and the diameter DCo= 3.0 ± 0.4 nm of Co NPs.

To produce this sample the time deposition, tdep, of Co and Ag was slightly longer than

in the situations presented in the previous section, which explains the larger NPs sizes.

However, plan-view and cross-section images confirm respectively the spherical and the

oblate shape of the Co and Ag NPs, produced in this work.

20 nm

Figure 3.4: Cross-section TEM images of a thin film containing five pairs of NPs
layers Co-Ag separated by 25 nm.

Figure 3.4 shows a cross section TEM image of a nanocomposite film containing

layers of Co NPs and Ag NPs. The composite system is build up of five bilayers of NPs

in which the large oblate NPs are made of Ag while the small spherical ones are made of

Co. The structure is defined by the average in depth spacing X= 4.0 ± 0.2 nm between

the layers of Co and Ag NPs within each bilayer and the spacing of 25 nm between

bilayers. This image also shows the very good reproducibility achieved in the samples,

which evidences the high degree of control achievable by a-PLD in the production of

nanostructures.
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8 ± 0.2 nm

6 ± 0.2 nm

4 ± 0.2 nm

Figure 3.5: Cross-section TEM images. From top to bottom the images correspond
to X= 4.0, 6.0 and 8.0 nm (The error is estimated to be ∆X±0.2 nm).

In this work we have only modified the in-depth separation between the Co NPs and

Ag NPs layers of each bilayer while maintaining constant the size of Ag and Co NPs and

the separation between bilayers. Figure 3.5 shows TEM images of three bilayers with

different in depth spacings: X= 4.0 ± 0.2 nm, 6.0 ± 0.2 nm and 8.0 ± 0.2 nm. This

image again illustrates that the reproducibility of the NPs size, is also preserved from

sample to sample.

3.4 Ag nanocolumns

As presented in Chapter 2, the nanodesign of NCls is determined by the features of the

NPs in the first layer. Once selected the deposition time of Ag in order to obtain Ag NPs

with the correct size for the “pattern-template layer”, the fundamental parameter that

determines the formation of oriented NCls, consecutive planes of Ag NPs or randomly

distributed nano-wires is the amount of a-Al2O3 deposited between consecutive layers

of NPs. To analyze its influence, we selected a tdep= 25 seconds for the Ag, which

correspond to NPs having average diameter D≈ 2 nm and a number of cycles N=5,

while the thickness of the matrix layer was varied from X= 2D to X= 0.5D. The

cross-section TEM images are shown in Fig. 3.6.

For X= 2D, no columnar growth occurs, instead the formation of 5 well separated

layers of Ag NPs is observed. In this case, the value of X is large enough to totally cover

the NPs with a thin layer of a-Al2O3 on which the following NPs nucleate randomly.
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Figure 3.6: Cross-section TEM images of films produced using different effective
thicknesses of the matrix layer X with respect to the diameter D of Ag NPs.

When decreasing X to D it is not possible to distinguish 5 consecutive layers of NPs.

Instead, elongated dark areas perpendicular to the substrate (oriented along the growth

direction) are observed. It is also seen that these elongated structures are well separated

one from another for X≈ D.

Figure 3.7: Height, H, of NCls as a function of the effective thickness of the matrix
layer X and cross-section HREM image of one of the NCls produced with X=D.

If we reduce further X (X=0,9D), the height of the NCls slightly increases, but some
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discontinuities appear as if the thin film was composed by both NCls and NPs. Reducing

X further down to 0.5D leads to a drastic decrease of the height (5.5 ± 0,2 nm).

The height H of these elongated structures as a function of X is summarized in

Fig. 3.7. The figure also shows a high resolution image of one of the NCls obtained

for X=D where lattice fringes are observed evidencing their crystalline structure. The

NCls are not single crystals since regions having fringes with different orientations are

clearly visible. This fact is most likely due to the growth procedure, i.e. each NCl is

made from a stack of five NPs. From the results presented in Fig. 3.6 and Fig. 3.7 it is

evident that the highest value of H and the best morphology is achieved for X≈ D.

Figure 3.8: Plan-view TEM and STEM images of the sample produced with X=D,
the latter being imaged with Ag signal. The plot includes the diameter dispersion
measured from the TEM image.

Figure 3.8 shows plan view images of the sample grown with X=D obtained both with

TEM and STEM microscopy, the latter showing the areas having large concentration of

Ag as bright areas. The good match of dark and bright areas in both images together

with the X-ray fluoresence spectra confirms that the NCls are isolated and oriented in
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the direction perpendicular to the substrate. The NCls have an approximately round

section of 2.7 ± 0.2 nm as shown in the histogram included in Fig. 3.8. It is worth to

point out the very low size and shape dispersion achieved.

The results presented in this section confirm the efficiency of the protocol introduced

in Chapter 2 for producing NCls. The pair “first layer of NPs + matrix” acts indeed as

a “pattern-template” mask for the production of NCls. The next ablated metal atoms

nucleate preferentially on top of the previous metal NP layer that is partially uncovered.

This is due to the higher metal/metal than metal/oxide adhesion energy and the high

mobility of the atoms at the surface due to the high kinetic energies involved in PLD.?

This self-organization process leads to the production of self assembled NCls when the

process is repeated a number N of times. The first layer of NPs constitutes thus the

seeds for the NCls and determines their number density.

Figure 3.9: Cross-section TEM images of films produced with N=5, 10 and 50 (a.,
b., and c., respectively) with X= D. The red arrow shows discontinuites while the
green one shows misalignement of NCls

The thickness X of the matrix layer has to have a critical value D≤XT≤ 2D within

which the self-organization process starts. If the NPs are not covered, the next metal

atoms nucleate on almost all the surface of the NPs and leads to coalesced NPs. Instead,

if they are totally covered, there is no preferential nucleation sites, and well separated

layer of NPs will be produced. It is thus essential to keep a small part of NPs uncovered.
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As X decreases below this value, the size of the uncovered areas in the matrix template

and the amount of metal exposed to next metal arrival increases thus promoting NCls

with larger diameter and consequently shorter height.
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Figure 3.10: Average heigth H as function of the number of cycles N . The red line
is a linear fit.

In principle, the maximum height of the NCls achievable by this method is defined by

the number of cycles N and thus, only limited by the stability of the production system.

We have explored this limit by increasing the number of cycles in order to increase the

aspect ratio of the NCls. We have maintained constant the conditions previously defined

to produce the NCls, in order to achieve the same average diameter D≈ 2.7 nm while

increasing N . Figure 3.9 shows cross-section TEM images of samples produced with X=

D and increasing number of cycles N (5, 10, and 50). H clearly increases with N and the

aspect ratio was varied from 2.5 (N = 5) to 25 (N = 50). The height H of these NCls

is plotted in Fig. 3.10 as a function of N . As it was expected H increases linearly with

N . Nevertheless, Fig. 3.9 c. shows that there are some defects in the NCls for N = 50.

Two types of defects can be observed in this figure. The first one are discontinuities in

the NCls (Fig. 3.9 c. red), as if some of the NPs did not nucleate correctly or in the

good position. The other defect is the misalignment of some of the NCls (Fig. 3.9 c.

green), i.e some of the NCls close to each other are linked. This defects are most likely

related to slight variations in the ablation parameters and the NP nucleation conditions

during growth.
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3.5 Conclusion

In this chapter we have presented the results obtained with our approach to “nano-

design” structures based on the alternate-PLD technique described in Chapter 2. The

protocols we have implemented allow achieving a precise control on the size, shape and

spatial organization of metallic nanostructures embedded in an oxide matrix. In the

first part we have demonstrated how to control the equivalent thickness of a-Al2O3, X,

in order to produce Co-Ag bilayers, having in-depth separations from 8 to 4 nm.

This excellent in-depth control allowed us to decrease X until NPs of consecutive

layers got in contact and led to Ag NCls. The number density, diameter and height of

NCls can potentially be controlled by varying the amount of metal deposited in the first

cycle (deposition time), the amount of metal deposited in subsequent cycles and the

number of cycles, respectively. These results open new possibilities for material nano-

engineering since they provide a simple route based on a single step process at room

temperature to produce oriented metal nanocolumns with diameters typically ≤4 nm

and with low dimension and shape dispersion. These features are not easily accessible

with other techniques.

In Chapters 7 and 8 we present the results related to the optical and vibrational

properties of the nanostructures produced and shown in this Chapter. However, in

order to fully understand these results, Chapters 4 and 5 introduce the basic theory

needed to understand and interpret these results.



50



Part III

Optical and vibrational properties

of metallic nanoparticles
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4
Introduction to the optical and vibrational

properties of bulk metals

In this chapter we describe the optical and vibrational properties of bulk metals, and

particularly that of noble metals, that will be used for the analysis of the experimental

results in Part IV. All the equations are given in the international system of units.

4.1 Optical properties

The optical properties of metals are determined by the response of the conduction

band electrons to an applied electromagnetic field. The first approach is to consider

that these electrons are free. This ideal situation is described by the Drude model. We

will also use this classical approach to introduce the notion of dielectric function, which

characterizes of the optical properties of a solid. We will finally show that the core

electrons affect the optical properties in the case of noble metals.
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4.1.1 Dielectric function and electric susceptibility

The electric field E , and the electric displacement D in a material, are related by the

following expression:

D = ε0E + P , (4.1)

where ε0 is the vacuum permitivity and P the polarization induced by the electric field

E . In a linear, homogenous and infinite medium, the polarization P is linearly related

to E through the electric susceptibility, χ̃, of the medium:

P = ε0χ̃E (4.2)

which allows to establish a relationship between D and E through the complex dielectric

function, ε̃:

D = ε0ε̃E with ε̃ = 1 + χ̃. (4.3)

We must note that for an anisotropic medium, χ̃ is a tensor. Consequently ε̃ is

similarly a tensor, which is generally written under a complex form given by:

ε̃ = ε1 + iε2. (4.4)

4.1.2 Absorption coefficient

When a metal is placed in an electromagnetic field, a polarization is induced inside

the metal. This optical response can be described by the dielectric constant ε̃(ω). Let

us assume that the metal is placed in vacuum. Then, the electric wave equation is given

by (Helmholtz):?

∇2E +
ω2

c2
ε̃(ω)E = 0, (4.5)

where c is the light velocity in vacuum. The solutions of this equation are of the type

of a plane monochromatic wave, E = E 0 exp[i(kz − ωt)] which leads to a particular
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solution of the form:

E = E 0 exp

[
iω

(
ñ

c
z − t

)]
. (4.6)

ñ is the complex refractive index of the metal, defined by:

ñ = n + iκ =
√

ε̃. (4.7)

where n is the refractive index and κ the extinction coefficient of the metal. When

the wave propagates in an absorbing material, damping (energy loss) occurs leading to a

decrease of intensity. In the case of a plane wave the intensity is related to the amplitude

of the electric field by:

I =
n

2
c ε0〈E2〉 (4.8)

We can therefore conclude from Eq. 4.6 that the intensity falls off exponentially in

the medium as:

exp(−2ωκ

c
z). (4.9)

On comparing this to the Lambert-Beer’s law (I(z) = I0exp(−αz)) we can define the

absorption coefficient of the material as:

αabs(ω) = 2
ω

c
κ(ω). (4.10)

4.1.3 The Drude model

The dielectric function of an electron gas can be obtained from the equation of motion

of a free electron immersed in an electrtic field E . For a free electron, of mass me and

charge −e this equation is given by:

d2u

dt2
= − e

me
E , (4.11)

where u stands for the vector displacement of the electron. However, when the electron

is moving inside a material, the forces due to the presence of the atoms affect its motion.

The concept of effective mass, meff , is introduced to take this into account.?
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In order to describe the situation of the electron in a material, with the correspond-

ing interactions (electron-phonon, electron-electron,...), the Drude model introduces a

damping factor γ0, which is inversely proportional to the mean free path l of the electron

in the metal and is given by:

γ0 =
vF

l
, (4.12)

where vF is the Fermi velocity. This damping factor is introduced in the equation of

motion as an additional term in the form:

d2u

dt2
+ γ0

du

dt
= − e

meff
E . (4.13)

In the case of a monochromatic planar light wave of frequency ω, we can express the

electric field as:?

E = E 0(r)exp(−iωt). (4.14)

Equation 4.13 allows a solution of the type u = u0exp(−iωt), leading to:

−meffω
2u0 − i(meffγ0ωu0) = −eE 0 with u0 =

e

meffω(ω + iγ0)
E 0 (4.15)

The displacement of the electrons from their equilibrium position produces a time

varying dipole moment (e.u). If N is the number of free electrons per volume unit, then:

P = Neu = P0exp(−iωt) with P0 = (1− ε̃(ω))ε0E 0 (4.16)

From Eqs. 4.15 and 4.16 we can deduce the Drude expression for the dielectric

function:

ε̃Drude(ω) = 1−
ω2

p

ω(ω + iγ0)
, (4.17)

where

ωp =

√
Ne2

meffε0
(4.18)
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is the plasma frequency. For optical frequencies (ω >> γ0), the real and imaginary parts

of the dielectric function are:?

εDrude
1 (ω) ≈ 1−

ω2
p

ω2
and εDrude

2 (ω) ≈
ω2

p

ω3
γ0. (4.19)

4.1.4 Noble metals

The traditional definition of noble metals is that they are resistant to corrosion or

oxidation, for example Au, Ag, Ta, Pt, Pd and Rh. However, a more precise physical

definition of a noble metal is that the d-bands of the electronic structure are completely

filled. Taking this into account, only Cu, Ag and Au are “true” noble metals.

For these metals, the Drude approximation, which involves only the response of free

electrons, is not valid, since, in most cases, the core electrons influence the response of

the metal when excited by an electromagnetic wave.

Figure 4.1: Schematic of the evolution of the electronic structure characteristic of
the noble metals, from atomic energy level to bulk energy bands. Interband and
intraband transitions can correspond to photons energies in the visible or UV region
of the spectra. h̄ωib is the threshold energy for interband transitions.?

Figure 4.1? schematizes for noble metals the evolution of the band structure from

the energy levels charcteristic of an atom to the bulk energy bands. The fact that the

“s” and “p” bands overlap in bulk metals lead to the hybridization of the conduction
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band. The transitions involving levels within the conduction band are called intraband

transitions (Fig. 4.1), and the intraband contribution to the dielectric constant is given

by the Drude model (Eq. 4.17):

ε̃Intra = ε̃D = 1−
ω2

p

ω(ω + iγ0)
. (4.20)

Noble metals are charcterized by the presence of a filled “d” band (valence) very close

to the conduction band. Transitions from the core levels of the “d” band to the levels of

the conduction band located above the Fermi level are thus possible. These transitions

are called interband transitions, and are allowed when the energy of the photon is larger

than a threshold value h̄ωib (interband threshold). In the particular case of the noble

metals this threshold lies in the visible (Au and Cu) or near UV (Ag) range.

Figure 4.2 compares the real and imaginary parts of the experimental? (ε̃(ω)) and

calculated (ε̃Intra(ω)) dielectric functions.
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Figure 4.2: Real, ε1, and imaginary ε2, parts (black) of the experimental dielectric
function of bulk Ag, ε̃(ω), and (red) calculated intraband contribution to the dielectric
function ε̃Intra(ω).

There is a clear difference between the experimental and calculated values, particu-

larly for energies higher than 3.9 eV. Moreover, a strong increase of the experimental

value of ε2 is observed around 3.9 eV, which marks the beginning of the interband transi-
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tions h̄ωib. For photons with energy lower than h̄ωib, only the electrons of the conduction

band can be excited (intraband transitions), while for higher energies, the electrons of

the “d” band can be excited to levels above the Fermi level and thus contribute to the

dielectric function of the metal.
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Figure 4.3: (continuous line) Real, εinter
1 , and (dash line) imaginary, εinter

2 , parts of
the interband contribution to the dielectric function, ε̃inter, of Ag deduced from Eq.
4.21.

Hence it is necessary to add a new term to account for that contribution, which leads

to:?

ε̃(ω) = ε̃intra(ω) + ε̃inter(ω), (4.21)

Interband transitions are characterized by a broad light absorption, which leads to an

increase of the imaginary part of ε̃inter(ω) above the interband threshold. Such increase

is visible in Fig. 4.3 where the real and imaginary parts of ε̃inter are plotted in the case

of Ag. The spectra have been deduced from Eqs. 4.21 using the experimental value of

the dielectric function? and the parameters presented in Table 4.1 for Ag.

We observe a sharp increase of εinter
2 above the interband threshold and the appear-

ance of one peak in the spectrum of εinter
1 around 3.9 eV. These behaviors are responsible

for the color of noble metals; yellow, red-orange, and gray, for bulk Au, Cu, and Ag re-

spectively. Table 4.1? summarizes the essential electronic properties of Cu, Ag and Au.
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Metal Electronic structure εF (eV) meff/me h̄ωp (eV) h̄ωInter (eV)

Cu [Ar]3d104s1 4.67 1.5 8.82 2.1

Ag [Kr]4d105s1 5.49 1 8.98 3.9

Au [Xe]4f 145d106s1 5.53 1 9.01 2.4

Table 4.1: Electronic properties of noble metals: electronic configuration, energy
of the Fermi level, relative effective mass, plasma energy, threshold energy of the
interband transitions.

4.2 Vibrational properties

In this section we recall some general notions of inelastic light scattering by a crystal

and we especially describe the Raman process. However, a detailed description is out of

the scope of the present work and can be found elsewhere.?,?

4.2.1 Vibrations of a crystal

At room temperature each atom of the crystal is moving. The motion of each atom

is coupled with its neighbors. Due to these atomic displacements and to the translation

symmetry of the crystal, delocalized vibrations appear in the whole crystal. The energy

of the vibrations is quantized: these “phonons” can be defined as a vibrational quantum

of energy? by analogy with photons and electromagnetic waves. A phonon is also char-

acterized by a frequency Ω and a wave vector Q. This is illustrated in Fig. 4.4 where

the dispersion curves of phonons in Ag measured at room temperature are shown.?

In the case of Ag there is only one atom in the primitive cell, thus only acoustic

branches are observed in the phonon dispersion curves. In Fig. 4.4, T1 and T2 label the

branches associated to transverses waves (the direction of propagation is perpendicular

to the motion of the atoms), while the L branches are related to longitudinal waves (the

direction of propagation is parallel to the motion of the atoms). For each branch, the

number of eigenmodes of vibration is equal to the number of atoms Nc in the crystal.

In the case of bulk crystals, Nc is very large and the vibrational energy levels form

a quasi-continuum of energy. The energy of a vibration mode is h̄Ω and the number

of excitations occupying this mode is given by n(Ω) that, at thermal equilibrium and
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Figure 4.4: Phonon dispersion curve of Ag determined at room temperature using
inelastic scattering of neutrons.?

temperature T , is given by the Bose-Einstein distribution:

n(Ω) =
1

exp
(

h̄ω
kBT

)
− 1

, (4.22)

where kB is the Boltzmann constant.

4.2.2 Mechanism for light scattering

Inelastic light scattering describes the phenomenon by which a light beam is scattered

by a medium and changes its frequency and wavevector during the process.

The detection of the scattered light offers valuable information on the structure of the

scattering medium. We provide a basic description of the light scattering by a crystal,

although the problem of the interaction of an electromagnetic wave with a crystal will

not be described in detail.

Origin of the scattering

The response of the charges to the optical excitation is defined by the electric sus-

ceptibility tensor χ̃. The motion of the atoms induces small variations of the electric
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susceptibility tensor that is expressed as a function of time and position (χ̃(r, t)). The

tensor χ̃(r, t) can be thus written under the form:

χ̃(r, t) = χ̃0 + δχ̃(r, t), (4.23)

where χ̃0 is a constant and δχ̃(r, t) denotes the fluctuations of the electric susceptibility.

Eq. 4.2 can be then rewritten as:

P(r, t) = ε0 [χ̃0 + δχ̃(r, t)]E(r, t). (4.24)

For an incident electromagnetic plane wave of wave vector k0 and circular frequency

ω0, the polarization is thus given by:

P(r, t) = ε0E0 [χ̃0 + δχ̃(r, t)] exp [i(k0.r− ω0t)]. (4.25)

The electric field, scattered by the crystal, generated at a point r and at an instant

t by the oscillation of the polarization can be written as:?,?

Esca(r, t) =
1

4πε0c2

∫
1

‖r− r′‖

(
∂2P(r′, t′)

∂t′2
× eu

)
× eud3r′, (4.26)

where t′ = t − ‖r − r′‖/cn is the delayed time, cn is the light velocity of a medium of

index n and eu is a unitary vector in direction r− r′. When the electric field oscillates

quickly compared to the fluctuations of the susceptibility we have

∂2P

∂t′2
≈ −ω2

0P, (4.27)

and,

k0.r
′ − ω0t

′ = (k0 − ks).r
′ + ks.r− ω0 (4.28)

where ks is the wave vector of the scattered light.
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We can finally deduce the electric field E(r, t):

Esca(r, t) ∝ ω2
0 exp [i(ks.r− ω0t)](E× eu)× eu

∫
[χ̃0 + δχ̃(r′, t′)] exp [i(k0 − ks).r

′]d3r′.

(4.29)

This expression is the sum of two terms. The term containing χ̃0, refers to the incident

wave of frequency ω0, which propagates along k0, while the other containing δχ̃ shows

that the scattered field is indeed due to fluctuations of the electric susceptibility δχ̃. From

this second term it is thus possible to differentiate two types of light scattering:?, ?, ?, ?

• Static fluctuations, i.e. δχ̃(r, t) ∼ δχ̃(r). The radiation is scattered with the same

frequency as the incident light one. This process is known as Rayleigh scattering.

The light is elastically scattered along all directions ks.

• If the fluctuations of the susceptibility are caused by a periodic modulation of the

atomic bonds in the crystal, typically by vibrational waves, the light scattering is

inelastic. This scattering is known as Raman scattering.?

Thus, Raman scattering relates to vibration modes of the crystal under light excita-

tion. The vibrational wave modifies the optical properties of the crystal, modifying its

refractive index, and thus can interact with the incident electromagnetic wave. Recip-

rocally, the incident electromagnetic wave generates a periodic mechanic deformation,

i.e. a vibrational wave, and thus, modifies the elastic properties of the medium. In the

following we describe in more detail the Raman scattering process.

4.2.3 Raman scattering process

A vibration mode j propagating with a wave vector Qj and a frequency Ωj generates

fluctuations of the susceptibility that can be written as follows:?

δχ̃j(r
′, t′) = δχ̃j(Qj) exp [i(Qj.r

′ − Ωj(Qj)t
′)]. (4.30)

The electric field associated to the scattered wave induced by these fluctuations is

given by:
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Esca
j (r, t) ∝ (ω0Ωj)

2exp{i[ksca.r− (ω0 ± Ωj(Qj))t]}(E0 × u)× uδχ(Qj) (4.31)

×
∫

exp[i(k0 − ksQj).r
′]d3r′. (4.32)

In this process, the scattered wave has not the same energy as the excitation wave.

There is an inelastic scattering of a photon with creation or annihilation of a phonon.

Indeed, if ksca and ωsca are the wave vector and frequency of the scattered photon,

respectively, the laws of wave vector and energy conservation provide the following re-

lations:

• Conservation of the wave vector:

kinc = ksca ±Q, (4.33)

• Conservation of energy:

h̄ωinc = h̄ωsca ± h̄Ω, (4.34)

where Q and Ω are the wave vector and frequency of the phonon, respectively. When

the energy of the scattered photon is smaller than the energy of the incident photon,

the scattering process is know as Stokes scattering. The creation of a phonon (Q, Ω)

is accompanied by a scattered photon of frequency ωsca = ωinc − Ω. The crystal gains

an energy h̄Ω and is excited from the vibrational level n to the level n + 1. A process

in which a phonon is annihilated is called anti-Stokes. The crystal, passing from a

vibrational level n to n − 1, losses energy h̄Ω. Therefore the scattered photon has an

energy higher than the incident photon. This is illustrated in Figure 4.5 which shows

Stokes (Fig. 4.5(a)) and anti-Stokes (Fig. 4.5(b)) diagrams of the Raman scattering.
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(a) Creation of a phonon (Stokes) (b) Annihilation of a phonon (anti-
Stokes)

Figure 4.5: Diagrams representing the inelastic scattering process of a photon
(kinc, ωinc) with (a) creation or (b) annihilation of a phonon (Q,Ω). The scattered
photon is characterized by (ksca, ωsca).
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5
Optical and vibrational properties of metal

nanoparticles

The optical and vibrational properties of bulk metals have been presented in Chapter

4. In this chapter we will describe the effect of reducing the characteristic dimensions

of metals down to the nanometer scale and structuring the NPs (organization, size and

shape).

5.1 The dielectric constant

In the case of a finite system, such as a metal NP with characteristic dimensions of few

nanometers, two size related effects that have a strong influence on the optical properties

of the NPs appear. The energy levels of the conduction band are discrete and second,

there are collisions of the electrons of the conduction band with the NP surface. Both

processes have a clear impact on the electronic susceptibility and thus on the dielectric

function.?,?

67
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We have seen in Chapter 4 that the dielectric constant can be expressed as the sum of

the intraband and interband contributions. When we reduce the size of the system, the

interband contribution is almost independent of the size for diameters > 1 nm,?, ? while

the intraband contribution is size-dependent. In finite systems the Drude model is no

longer valid to calculate the intraband contribution, ε̃intra, but it is still possible to obtain

a similar expression to Eq. 4.17 where the size dependence of the dielectric constant is

taken into account by introducing an additional term to the damping constant (γ0) that

depends on the NP diameter, D, and frequency, ω. The intraband contribution is then

given by:

ε̃Intra(ω) = 1−
ω2

p

ω2 + iωγ(ω, D)
(5.1)

with

γ(ω, D) = γ0 + gs(ω)
2vF

D
, (5.2)

where vF is the Fermi velocity and gs(ω) ≈ 1 is a coefficient slowly varying with ω.? γ0

is the bulk damping due to collisions (electron-phonon, electron-electron, and electron-

defects), while the term 2gs(ω)vf/D accounts for the damping due to the size reduction

(collision with the surface). This damping is important when the diameter of the particle,

D, becomes comparable or smaller than the mean free path of the electrons. Thus the

dielectric constant of a spherical NP with diameter D can be deduced from Eq. 5.1 and

Eq. 4.21 using the data available for bulk materials (ε̃exp(ω)):?

ε̃(ω, D) = ε̃exp(ω) +
ω2

p

ω2 + iωγ0
−

ω2
p

ω2 + iωγ(ω, D)
. (5.3)

Figure 5.1 shows the behavior of the real and imaginary part of the dielectric constant

in the case of bulk Ag? and Ag NPs with diameter of 20 and 4 nm. As the diameter of

the NP decreases, the values of the real and imaginary parts of the dielectric function

increase. This is clearly visible for wavelengths above the interband transition threshold

3.9 eV (≈320 nm). The figure also shows the importance of the size dispersion since a

small variation of the diameter induces a large change of the dielectric function. These

changes will affect the optical properties of the NP, and thus the optical properties of



5.2. OPTICAL PROPERTIES OF EMBEDDED METAL NANOPARTICLES 69

300 400 500 600 700 800 900

-40

-20

0

20

  !
1
 (bulk Ag)

  !
2
 (bulk Ag)

  !
1
 (D=4 nm)

  !
2
 (D=4 nm)

  !
1
 (D=20 nm)

  !
2
 (D=20 nm)

 

 
e 1, e

2

Wavelength (nm)

Figure 5.1: Real (ε1) and imaginary (ε2) parts of the dielectric function of bulk silver
and Ag NPs having diameters of 20 nm and 4 nm.

the nanocomposites. The next section introduces the optical properties of metal NPs.

From now on, ε̃(ω) will refer to the size dependent dielectric function of the NP.

5.2 Optical properties of embedded metal nanopar-

ticles

In addition to the modification of the dielectric function, the reduced size of the metal

NPs introduces spatial limits that impose new boundary conditions to the electromag-

netic field and thus, new electromagnetic states, known as plasmons, appear.
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5.2.1 Plasmons, plasmon-polaritons, volume plasmons, surface

plasmons:

Before describing the optical properties of metal NPs we aim in this section to clarify

the nomenclature used in this work. Plasmons are collective oscillations of the free

electron gas. When these plasmons interact strongly with light, this results in a mixing

of collective electronic oscillations with light known as plasmon-polaritons. Moreover,

there are two types of plasmons. If a NP is excited by an electron beam, charges are

generated inside the volume of the NP which induces fluctuations of the electron density

inside the NP (volume plasmon). On the contrary, if the NP is excited with light,

polarization charge oscillations, namely the surface plasmon oscillations, are generated

at the surface. The surface plasmons are surface plasmon-polaritons in the sense that

they are coupled to the incident light.

In this work, we will deal with surface plasmons (SPs) of Ag NPs. In the following

we describe their origin using different models. We start first with the simplest case of

an isolated spheroidal NP in vacuum, and we consecutively introduce new parameters,

such as the matrix, the size, the shape, and the number density of NPs, by considering

more elaborated models.

5.2.2 Isolated spherical particle

Quasi static approximation

We consider in Fig.5.2 an isolated spherical NP of diameter D characterized by the size

dependent dielectric function, ε̃(ω, D), introduced above, and embedded in a dielectric

matrix with a real dielectric function, εm. This NP is immersed in the electric field E

of a plane electromagnetic wave of frequency ω, and wavelength λ >> D. In this case

we can consider that an instant t, the electromagnetic field is uniform. Thus, we can

consider the quasi static approximation (only the term dipolar electric is considered in

the determination of the optical response). Under these conditions, the electric field

inside the sphere is given by the Clausius-Mossotti formula extended to the mesoscopic

scale:?
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Figure 5.2: Interaction of a spherical particle of diameter D with an electromagnetic
wave in the quasi-static approximation.

Ei =
3εm

ε(ω) + 2εm
E (5.4)

In the medium surrounding the NP, the electromagnetic field is the sum of the applied

field and the field generated by a dipole located at the center of the NP. The dipolar

moment is given by

p = 3V ε0εm
ε̃− εm

ε̃ + 2εm
E (5.5)

where V is the volume of the NP. The polarizability α̃(ω) of a dipole immersed in a

dielectric medium of dielectric function εm in the presence of a field E of frequency ω is

defined by the relation:

p = ε0εmα̃(ω)E (5.6)

Then, from Eqs. 5.5 and 5.6, the polarizability can be written as:
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α̃(ω) = 3V
ε̃− εm

ε̃ + 2εm
(5.7)

The absorption cross section is related to the polarizability by:?

σabs =
ω
√

εm

c
Im[α̃(ω)], (5.8)

where Im[α̃(ω)] is the imaginary part of the NP polarizability, c is the light velocity in

vacuum. Thus, from Eqs. 5.7 and 5.8 we can deduce the expression of the absorption

cross section:

σabs =
9V ωε3/2

m

c

ε2

(ε1 + 2εm)2 + ε2
2

. (5.9)

σabs varies with the frequency ω, and shows a resonant behavior when:

(ε1(ω) + 2εm)2 + ε2
2(ω) is minimum. (5.10)

Thus the resonance condition is:

ε1(ωSPR) = −2εωSPR
m (5.11)

where ωSPR is the frequency of the SP resonance. At ωSPR, the electric field inside the

particle (Eq. 5.4), is also strongly enhanced. Considering that ε1 ≈ εinter
1 − ω2

p/ω
2 (Eq.

4.18), the frequency of the surface plasmon resonance is given by:

ωSPR =
ωp√

εinter
1 (ωSPR) + 2εm

(5.12)

From the previous equation we see that, in the quasistatic approximation and for
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a given metal, the SPR wavelength only depends on the dielectric function of the sur-

rounding medium. Figure 5.3 shows extinction cross section of a silver NP of diameter

4 nm, embedded in different matrices, calculated using Eq. 5.9 and using the dielectric

constant of the Ag NP obtained from equation 5.3 considering gs = 1.
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Figure 5.3: Calculated extinction spectra of Ag NP of a 4 nm diameter embedded
in different matrices

It can be seen in Fig.5.3 that h̄ωSPR is always well separated from the interband

absorption edge. It also shows that the SPR wavelength shifts to the red when increasing

the refractive index of the matrix. In the present work, the matrix used is a-Al2O3

(n = 1.67).

The quasi-static approximation is valid in the case of small NPs. However, as the

diameter of the NP increases multipolar terms must be taken into account. Gustav Mie?

developed in 1908 a theory for the interaction of an electromagnetic wave with a metallic

particle based on the multipolar development of the electromagnetic field.

Mie theory

In this case, the NP is placed in an electromagnetic field varying in time and space,

i.e. at an instant t, the electromagnetic field is no longer uniform. Fig. 5.4 presents

a scheme of the problem considered. The NP is placed into an electromagnetic field
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Figure 5.4: Surface polarization charges distribution inside “a large particle” which
gives rise to a quadrupolar contribution to the SPR.

polarized along the x-axis. Mie theory? describes the wave scattered by this metallic

particle as a linear superposition of diverging spherical waves, each wave being radiated

by an electric or magnetic multi-pole with amplitude al and bl, where l is the order of

the multipole, respectively given by:?, ?,?

al =
nψl(nx)ψ′

l(nmx)− nmψ′
l(nx)ψl(nmx)

nψl(nx)η′l(nmx)− nψ′
l(nx)ηl(nmx)

(5.13)

bl =
nmψl(nx)ψ′

l(nmx)− nψ′
l(nx)ψl(nmx)

nmψl(nx)η′l(nmx)− nψ′
l(nx)ηl(nmx)

(5.14)

with n = ñ =
√

ε̃ and nm =
√

εm. ψl(z) =
√

πz/2Jl+1/2(z) is a Bessel-Riccati function

((Jl+1/2) is a Bessel function (semi-integer)), and ηl(z) =
√

πz/2H(1)
l+1/2(z) (H(1)

l+1/2 is a

Hankel function semi-integer of the first kind). In these expressions, x = k0R where k0

is the wave vector of the incident wave in vaccum and R the radius of the sphere. The

scattering cross section of the particle, independent of the state of polarization of the

incident wave, is the sum of contributions of the different multi-poles. The l = 1 term

is the dipolar term, l = 2 the quadrupolar, etc...The scattering cross section is given by:
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σsca =
2π

n2
mk2

0

∞∑

l=1

(2l + 1){|al|2 + |bl|2}, (5.15)

while the extinction cross section is given by:

σext =
2π

n2
mk2

0

∞∑

l=1

(2l + 1)Re{a2
l + b2

l }. (5.16)

The absorption cross section is deduced from σsca and σext:

σabs = σext − σsca. (5.17)

As we have seen before, the SPR appears as a peak in the absorption cross section.

However, experimentally we always measure the extinction cross section, in which both

scattering and absorption contribute. We have used Mie theory to calculate the extinc-

tion, scattering and absorption cross sections. Figure 5.5 shows the results obtained for

Ag NPs of 4 nm (Fig. 5.5(a)) and 100 nm of diameter (Fig. 5.5(b))

In the case of small particles σsca ≈ 0 and σabs ≈ σext. This is valid for NPs hav-

ing diameters smaller than 10 nm, which corresponds to the quasistatic approximation

(λ << D). However, when the diameter increases (>10 nm), the extinction spectra is

dominated by scattering and presents several peaks (Fig. 5.5(b)). These peaks are due

to multi-poles induced in this large NP, as it will be shown at the end of this section.

Only the extinction cross-section is plotted in the following.

The extinction cross-section spectra calculated using the Mie theory are plotted in

Fig. 5.6, as a function of the diameter. For diameters smaller than 10 nm the SPR

peak remains at the same wavelength since the dipolar term is dominant. Indeed, the

lower term in σext is the dipolar term determined with the quasi static approximation.

When the NP size increases (D > 10nm) multi-polar terms are not negligible and the

SPR shifts to the red. As the diameter of the particle increases these multi-polar terms

are also responsible for the multi-polar SPR peaks observed in Fig. 5.5(b) and in the

calculated spectra presented in Fig. 5.7.
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Figure 5.5: Calculated extinction, scattering and absorption spectra of spherical Ag
NPs embedded in a−Al2O3, calculated using Mie theory for (a) D= 4 nm and (b) D=
100 nm.
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Figure 5.6: Calculated extinction cross-section of Ag NPs embedded in a−Al2O3

with diameter ranging from 5 nm to 30 nm

As discussed above, multipolar peaks are not observed in the experimental spectra

measured in the present work, since the NPs produced are smaller than 10 nm.
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Figure 5.7: Calculated extinction of Ag NPs embedded in a−Al2O3 with diame-
ter ranging from 30 nm to 100 nm. 2-polar, 4-polar, and 8-polar stand for dipolar,
quadrupolar, and octupolar modes, respectively.

We have presented the case of an isolated spherical NP embedded in a dielectric

matrix. Since in this work we are also interested in elongated NPs, we need to modify

these models for spheroids. This was done by Gans who extended Mie’s theory to non-

spherical particles.?

5.2.3 Isolated spheroidal particle: Rayleigh-Gans Model

An ellipsoidal particle is defined by three axis a, b, and c with a-=b-=c. In the case

of b=c, then a is parallel to the revolution axis. This is a particular ellipsoid named

spheroid. If a<b=c the spheroid is oblate, while if a>b=c the spheroid is prolate as

shown in Fig. 5.8.

The extinction cross-section of a prolate ellipsoid is given by the Rayleigh-Gans

model:?, ?, ?
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Figure 5.8: Prolate spheroid. Two of its axes are equal (b = c) and shorter than the
third one a > b, c.

σext =
2ω
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]
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[
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+ ε2
2

(5.18)

where Pj is the depolarization factor along the j axis of the ellipsoid given by:

Pa =
1− e2

e2

[
1

2e
ln

(
1 + e

1− e

)
− 1

]
, (5.19)

and

Pb = Pc =
1− Pa

2
, (5.20)

with

e =

[
1−

(a

b

)2
]1/2

. (5.21)

Figure 5.9 shows a calculated extinction cross section spectrum of an isolated prolate

Ag NP considering that the z-axis forms an angle of 45◦ with respect to the direction
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Figure 5.9: Calculated extinction of a prolate Ag NP with a = 7 nm and b = c = 3
nm embedded in a−Al2O3.

of light propagation. Two peaks are observed at 390 nm and 600 nm corresponding to

the transverse SPR (oscillations of the electron gas in the plane defined by x and y) and

to the longitudinal SPR (oscillations of the electron gas along a direction parallel to the

z-axis) respectively. Obviously, the shape (prolate or oblate) affects the SPRs. This is

shown in fig. 5.10 where the wavelengths of the transverse and longitudinal SPR are

plotted as a function of the aspect ratio a/b.

For a spherical NP both SPRs are degenerated due to the spherical symmetry: the

amplitude of the oscillations is the same along all axes of symmetry. When the parti-

cle evolves to a spheroid, the SPRs are not longer degenerated and the splitting into

transverse and longitudinal SPRs appears.?, ? In the case of prolate particles the longi-

tudinal mode is shifted to longer wavelengths (high amplitude of oscillations). In the

case of oblate particles it is instead shifted to shorter wavelengths (small amplitude of

oscillations).

At this point, we are able to calculate the extinction cross section of small isolated

NPs of different shapes. However, in real samples, NPs are rarely isolated. Thus, it is

necessary to take into account the number density of NPs. The simplest way to take

into account the number density is to use effective medium theory.
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Figure 5.10: Calculated position of the transverse, SPRT , and longitudinal, SPRL,
SPRs of a Ag ellipsoidal NP embedded in a−Al2O3 as a function of the aspect ratio
a/b

5.2.4 Effective medium containing spheroidal nanoparticles:

Maxwell-Garnett

Effective medium theories are valid when the NPs are much smaller than the optical

wavelength. In this case the material formed by the NPs embedded in a matrix can be

approximated to an optically homogenous medium that is characterized by an effective

dielectric constant.

In the case of Maxwell-Garnett theory,?, ? the distribution of the NPs in the medium

is described by the volume fraction of metal f dispersed in the dielectric matrix. The

interaction of the electromagnetic wave with this composite medium is described by the

total induced polarization: sum of the polarization due to the metal NPs (PNPs) and to

the dielectric matrix (Pm). In the quasi static approximation we obtain:

P = PNPs + Pm =
f

V
p + ε0(εm − 1)E (5.22)

where p is the dipolar momentum of one NP. In the case of an ellipsoid we have seen

that the dipolar momentum can be expressed as a function of the depolarization factors
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Figure 5.11: Calculated position of transverse, SPRT , and longitudinal, SPRL, SPRs
of Ag NPs (f = 30%) embedded in a−Al2O3 as a function of the aspect ratio a/b.
The dot lines show the calculations for isolated NP (Gans model)

Pj. Thus, the effective dielectric constant of the composite medium ε̃eff is defined using

the relation ε̃effε0E = ε0E + P that gives, replacing all the terms in Eq. 5.22, the

Maxwell-Garnett relation:

εeff
j = εm + fεm

ε̃− εm

εm + (Pj − f
3 )(ε̃ + 2εm)

. (5.23)

As seen in this equation, this effective medium theory neglect the interactions among

NPs.

The total absorption cross-section is obtained by replacing ε̃ by ε̃eff
j in Eq. 5.9.

Figure 5.11 shows the wavelength of the SPRs for f=30%, as a function of the aspect

ratio of spheroidal Ag NPs embedded in a-Al2O3. The values are compared to the case

of an isolated NP. We observe that both the transverse and longitudinal SPR modes

are red-shifted with respect to the case of an isolated particle. For prolate ellipsoids

the predicted split between both modes is much larger in the case of Maxwell-Garnett

model.
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5.3 Vibrational properties of metal nanoparticles

5.3.1 Vibration of a spherical nanoparticle

When the size of a metal is reduced down to the nanoscale, the vibrations of the metal

atoms are confined leading to size quantization of the vibrational density of states. The

free oscillations of an isotropic and homogenous elastic sphere were studied very early

by Lamb? using the theory of elasticity. This model is valid for NPs with sizes much

larger than the inter-atomic distance, which is generally the case in this work since the

diameter of the particles studied ranges from 1 to 10 nm. In this section we present

the most important steps needed to define the vibration modes and to calculate their

vibration frequencies.

When a vibration wave propagates in a medium, an elementary volume dV is dis-

placed by a quantity U with respect to its original position. This generates a deformation

characterized by a deformation tensor given by:?, ?

εi,j =
1

2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
. (5.24)

To describe the vibrational properties, it is imperative to know the forces that are

imposed by the external medium on the element dV . They are pressure forces, that can

be introduced using a tensor of stress σ. The sum of forces applied to the surface is thus

given by:?

F =

∮
σen.dS (5.25)

where en is the vector normal to the surface. The relation between stress and deforma-

tion is not trivial. However in the case of an isotrope medium, we can use the Lamé

coefficients,? λ and µ, to express the stress tensor:

σi,j = λδij

∑

k

εkk + 2µεij (5.26)
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where δij is the Kronecker symbol. Neglecting the volume forces, we obtain:?

ρ
∂2U

∂t2
= (λ + 2µ)∇(∇ •U)− µ∇× (∇×U) (5.27)

where ρ is the volume mass. This is the equation of Navier which allows to introduce

the longitudinal, vl, and transverse, vt, velocities given by:

vl =

√
λ + 2µ

ρ
and vt =

√
µ

ρ
. (5.28)

In the case of a NP in vacuum, the Navier equation must be solved in spherical

coordinates and written as:

ρ
∂2U

∂t2
= Al∇[jl(Qlr)Ylm(θ, φ)] + Bl∇× [jl(Qtr)Ylm(θ, φ)r] + Cl∇× (∇× [jl(Qtr)Ylm(θ, φ)r])

(5.29)

where Ql and Qt are defined as:

Ql =
Ω

vl
and Qt =

Ω

vt
(5.30)

Each vibration mode is labeled by integer numbers l = 0,1,2,3 ... and −l ≤ m ≤ l,

according to the spherical harmonic Y m
l (θ, ϕ) functions. The vibration mode frequency

ωl,m is 2l + 1 fold degenerated. The additional integer n ≥ 1 refers to the harmonic

frequencies.

Then, surface forces are given by:

F =

[
λ∇ •U + µ

U.er

r

]
+ µ∇(U.er) + µ

∂U

∂r
− µ

U

r
(5.31)
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where er is a unitary vector along r. For a free standing NP, the forces at the NP

surface are null, thus:

F(Rer) = 0. (5.32)

Two types of vibration modes, U, are solutions for this equation:

1. Torsional modes, purely transverse. The volume of the NP remains constant, the

vibration propagates “rotating” around the axis of symmetry of the sphere whose

number is infinite.

2. Spheroidal modes. The vibration propagates along the radius of the NP which

induces volume changes.

The torsional modes are not observed by Raman scattering? and will be thus disre-

garded in the following. Moreover, only two types of spheroidal modes contribute to the

Raman scattering :

• the radial mode not degenerated (l = 0, n)

• the quadrupolar mode which is five-fold degenerated (l = 2, n).

Experimentally it has been observed that mainly quadrupolar modes (n, l= 2) con-

tribute to the low-frequency Raman scattering,?,?,? since the modulations of the dipolar

SPPs produced by the radial modes (n, l=0) are much weaker. The vibration band

observed experimentally arises from the modulation of surface polarization charges via

a deformation potential mechanism. The modulation is due to a modification of the NP

surface orientation during the NP oscillations.?,?

For a homogenous sphere of diameter D, the frequency of a vibration mode expressed

in cm−1 and characterized by the numbers l and n is inversely proportional to the sphere

diameter, and is given by:

ωl,n = Sl,n
vl

Dc
, (5.33)
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where Sl,n is a coefficient which depends on the vl/vt ratio for each pair of l and n values.

In this equation, the diameter of the sphere and the light velocity must be expressed in

centimeters and vl in cm.s−1. Table 5.1 shows some values of this coefficient for the case

of a Ag sphere.?

Sl,n n = 1 n = 2 n = 3

l = 0 0.90 1.96 2.97

l = 1 0.53 1.06 1.36

l = 2 0.38 0.75 1.26

Table 5.1: First values of Sl,n for a free Ag sphere

We have chosen here to introduce the simple Lamb’s model. However, the vibra-

tion frequencies calculated in the rest of this work have been obtained using Molecular

Dynamic simulations or the resonant ultra sound method.?

5.3.2 Some considerations for the case of an ellipsoid

In the case of ellipsoidal NPs, such as those presented above for the Gans model, to

the equation 5.32 must be solved in spheroidal coordinates. In that case the quadrupo-

lar vibration modes are not truly spheroidal, and will be referred to as spheroidal-like

modes. Since the symmetry is different from that of spherical NPs, vibrations with dif-

ferent amplitudes will appear along the axis of symmetry, exactly as in the case of the

transverse and longitudinal SPR. When increasing the aspect ratio, the degeneracy of

the spheroidal-like modes is partially lifted. Then if a -= b -= c, three levels of energy

corresponding to m = ±2, m = ±1 and m = 0 appears and thus, three vibration peaks

are expected in the Raman spectrum. Nevertheless, these vibration modes depend on

the incident light polarization and wavelength, and therefore might not be necessarily

simultaneously observed.

5.4 Conclusions

The theoretical models used to describe the optical and vibrational properties sum-

marized in this chapter have pointed out the importance of several parameters on the
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final properties of our nanostructures, since each parameter induces changes on the SPR

and vibrations modes. The main parameters are:

• The matrix: The SPR shifts to the red as εm increases.

• The NP Size: The dielectric function, the SPR and the acoustic vibration modes

are generally size dependent. Nevertheless, for NPs having a diameter smaller than

10 nm, which is the case considered in this work, the SPR wavelength is almost

not affected while the acoustic vibrations are clearly affected, since the frequency

of vibration shifts to lower values as D increase. Moreover, the orientation of the

incident electric field plays an important role in the case of spheroidal NPs.

• The NP shape: The SPR and acoustic vibration modes of a spherical NP are

degenerated. However, when the aspect ratio of NPs is different from one, this

degeneracy is broken leading to the appearence of transverse and longitudinal

SPRs and vibration modes with different frequencies. Thus, it is possible to tune

the SPR wavelength and acoustic vibrations frequency by changing the shape.

• The NPs number density and volume fraction: The splitting of the trans-

verse and longitudinal SPR is dependent on the number density of NPs, while

the acoustic vibration modes are not affected since they are confined to the NPs

volume. In this work, the number density of Ag NPs is kept almost constant,

nevertheless this parameter should be taken into account in future work.

In the present work εm ≈2.8 in the spectral range studied, the metal is Ag, the

characteristic dimensions of the NPs are smaller than 10 nm, and the volume fraction

is almost constant (f = 30%) in all the sampe containing only Ag NPs. Therefore, the

parameters that can be varied are the shape and the size.



Part IV

Optical and Vibrational properties

of the nanocomposite thin films
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6
Optical & vibrational characterization

This chapter describes the experimental techniques used in this work for the optical

and vibrational characterization of the nanocomposite films. The extinction/transmission

measurements and the low frequency Raman spectroscopy are complementary tools for

the analysis of ”nano-designed” samples, since they provide information on the optical

and vibrational properties that can be related to the morphology and organization of

the metal NPs.

6.1 Optical extinction of thin films

The optical measurements were recorded using a WVASE JA Woollman spectroscopic

ellipsometer. A scheme of the setup is presented in Fig. 6.1. The sample is mounted

on a substrate holder, and placed into the light beam. The light transmitted trough the

sample is detected by a photo-multiplier (detector) and the signal is recorded by the

computer. The angle of incidence can be varied by rotating the sample holder and the

light beam can be either p- or s-polarized. The spectral resolution of the monochromator

is ∆λ=3.5 nm and the investigated spectral range is 300-800 nm.

89
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Figure 6.1: Scheme of the experimental setup used for extinction measurements. The
letters p and s in the scheme correspond to the p- and s-polarization of the incident
electric field, respectively.

According to the Lambert-Beer law, the transmitted light intensity is:

I(x) = I0e
−αx, with ln(1/T ) = ln(I0/I(x)) = αx (6.1)

where T is the transmission, x the thickness of the absorbing medium, and I0 and I(x)

are the incident and transmitted intensities, respectively. Thus, the extinction spectrum

α(λ)x is given by ln(1/T ).

In this case, we need to take into account the reflections at the air/film and film/substrate

interfaces. Figure 6.2 presents a schematic of a thin film, having a complex refractive

index ñ = n + iκ, deposited on top of a purely dielectric transparent material with

refractive index n2, the whole sample being in air (n0 = 1).

The incident wave impinges on the thin film with an angle of incidence θinc. This

corresponds to an angle of incidence θmat inside the thin film given by the Snell-Descartes

law:?

n0 sin θinc = Re(ñ) sin θmat. (6.2)
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Figure 6.2: Reflected and transmitted beams at the interface between the air and
an optical thin film of thickness X and refractive index ñ, deposited on top of a semi-
infinite dielectric medium with refractive index n2. The reflected and transmitted
waves are ri and ti, respectively.

Reflected and transmitted waves are formed by the superposition of the reflected and

transmitted beams at both interfaces. r1 and t1 are the principal reflected and trans-

mitted waves respectively, while r2,3,... and t2,3,... correspond to the partial reflected and

transmitted waves. The transmitted wave is thus the sum of the principal transmitted

wave, t1, with all the partial transmitted waves t2,3,... which are de-phased due to the

different paths followed by the waves.

Transmission of thin films containing NPs

In thin a-Al2O3 films containing NPs, optical extinction is caused by the NPs since

a− Al2O3 is transparent in the visible optical range (κ ≈ 0).

Figure 6.3 shows a schematic of a thin film containing metal NPs of different shapes

(a) prolate ellipsoid, (b) sphere, and (c) oblate ellipsoid with their symmetry axis per-

pendicular to the substrate surface. For spherical NPs whatever the polarization of the

light, the SPR should not change due to the spherical symmetry. However, in the case

of oblate or prolate NPs there is only one axis of symmetry, along the revolution axis

z. If the incident beam is s-polarized, whatever the angle of incidence, the polarization

is perpendicular to z and only the transverse SPR can be observed. When the light is

p-polarized the polarization has two components along x and z. In this case the extinc-
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Figure 6.3: Schematics of a thin film containing NPs of different shapes. From left
to right prolate, spherical and oblate NPs. The angle of incidence is 65◦ outside of
the thin film and 33◦ inside it. P and S stand for the components of E parallel and
perpendicular to incident plane.

tion spectra presents two peaks corresponding to the transverse (x) and longitudinal (z)

SPRs for prolate and oblate spheroids.
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Figure 6.4: Experimental extinction spectra of Ag NCls recorded using p- (continous
line) and s-polarized light (dotted line) and an angle of incidence of 65◦.

Most of the measurements presented in this work correspond to p-polarization at an

angle of incidence of 65 degrees since this allowed to clearly observe the splitting of the

SPRs upon a modification of the NP shape. Figure 6.4 presents a typical extinction

spectrum of NCls obtained under these conditions. As expected, for p-polarization,
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two peaks are observed at 390 nm and 470 nm, which correspond to the transverse

and longitudinal SPR, respectively, whereas only the transverse SPR is observed for

s-polarization.

6.2 Low Frequency Raman Spectroscopy

Raman experiments have been performed using a triple spectrometer with a high

rejection of the Rayleigh scattering, which is presented schematically in Fig. 6.5. The

sample is excited using the emission lines of Argon or Krypton lasers that cover the 400 to

800 nm wavelength range. The sample is kept in vacuum to avoid the low frequency lines

of air. The scattered light is then analyzed by a triple monochromator (CODERG T800).

Each monochromator uses a diffraction grating of 1800 grooves/millimeter. Finally, a

photomultiplier (single channel detector) is used for the photon counting.

Figure 6.5: Scheme of the experimental setup used for Raman analysis. The scattered
beam is analyzed using a triple monochromator (Coderg T800). The letters G in the
scheme correspond to the diffraction gratings, S to the entrance and exit slits, and M
to the mirrors.

Raman spectra have been acquired mostly in p-polarization close to the SPRT or

SPRL. In Fig. 6.6 a typical Raman spectrum of a sample containing NCls (H = 6.7

nm and D = 2.7 nm) is plotted. The central peak at 0 cm−1 corresponds to Rayleigh

scattering. Anti-Stokes and Stokes Raman signals due to acoustic vibrations of the NCls

are observed. In the following, we will often present only the Stokes part.
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Figure 6.6: Experimental Stokes and anti-Stokes room temperature Raman spectrum
of Ag NCls excited at 488 nm. The incident laser beam was p-polarized and the
polarization of the scattered beam was not analyzed.

The band observed at ≈ 20 cm−1 correspond to the acoustic vibration modes of Ag

NCls. Its position depends on the morphology of the NPs. Therefore, the combination

of the extinction and Raman analysis provides useful information about the morphology

of the nanostructures. In Chapters 7 and 8 we used these techniques to characterize our

samples and we present the results of these studies.



7
Tuning Plasmons and Vibrations of Ag

nanostructures

We have shown in Chapter 3 that it is possible to modify the size, shape and distri-

bution of metal NPs using a-PLD, while in Chapter 5 we have introduced the models

that describe their optical response. In this chapter we study the optical behavior of

the nanocomposites produced by PLD described in Chapter 3. In order to establish the

correlation between the deposition parameters and the SPR features, each deposition

parameter is studied independently to avoid simultaneous contributions to the optical

response.

7.1 Size and shape effects on the optical and vibra-

tional response

In Chapter 3 we have shown that we can increase the size of the NPs by increasing the

ablation time of the Ag target. When the multipolar terms are neglected, the models

95
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presented in Chapter 5 predict for the case of perfectly spherical and isolated NPs that

the SPR should not be affected by a change of the NPs size for diameters smaller than

∼10 nm. Therefore, we can check if these models allow explaining the observed optical

and vibrational response of the produced NPs. Fig. 7.1 shows the optical extinction

spectra, measured using the configuration presented in Chapter 6, of samples consisting

of Ag NPs embedded in a-Al2O3. The deposition time of the Ag NPs has been varied

in the range from 30 to 70 seconds, which, according to Fig. 2.2 in Chapter 2, leads to

NPs of average diameters ranging from 3 to 5 nm.
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Figure 7.1: Experimental extinction spectra of samples containing silver NPs
recorded using p-polarized light at normal incidence.

For tAg= 30 seconds and 40 seconds, the wavelength of the SPR and the FWHM are

almost constant, which implies that the NPs diameters are small and the size dispersion

is low. For t>40 seconds, the SPR shifts to the red as the NP diameter increases while

the SPR width broadens. The origin of this discrepancy with the theoretical models lies

is twofold. First, the experimental NP size dispersion (σ) is not zero and second, the

shape of the NPs changes from spherical to oblate spheroidal once the amount of metal

deposited reaches a certain threshold (limit between Region I and Region II Fig. 2.2).

This is due to the coalescence effect described in Chapter 2. As it would be expected,

this behavior is much more evident for the sample containing the largest NPs.

The evidence for non-spherical NPs is shown in Fig. 7.2, where the optical exctinction

spectra measured for the largest NPs using p-polarized light at two angles of incidence
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Figure 7.2: Experimental extinction spectra of silver NPs (tAg=70 sec) recorded
using p-polarized light and an angle of incidence of (dotted-line) 0◦ and (continuous-
line) 65◦.

(0◦ and 65◦) are presented. As expected for normal incidence, only the transverse SPR

is observed at 470 nm (see Chapter 6), while for non-normal incidence two peaks are

visible. The transverse SPR is still observed at 470 nm while the longitudinal peak

appears around 360 nm. The blue shift of the longitudinal SPR and the red shift of

the transverse SPR are characteristic of oblate spheroidal NPs, and confirm the in plane

coalescence.

We have measured the low frequency Raman spectra of these NPs. Figure 7.3 shows

the Stokes Raman spectra recorded at low frequencies close to the Rayleigh scattering

(centered at 0 cm−1)∗. Fig. 7.3 presents spectra excited at λ=413 nm, which is close to

resonance with the SPR for tAg in the range 30 to 50 seconds (Fig. 7.1). However,this

wavelength is out of resonance with transverse or longitudinal SPR for the case of tAg=70

seconds. As discussed in Chapter 5 the observed Raman bands are associated with the

quadrupolar acoustic modes of the NPs. Their frequencies are in the range 15 cm−1

to 20 cm−1, and downshift of the Raman signal is observed with increasing NPs size

(tAg increases). The frequencies, ω, at the maximum intensity of the Raman peaks

are summarized in Table 7.1. We have used Lamb’s theory (Chapter 5) to calculate

the diameters, Dcal, of the NPs using the experimental values of ω. They are also

∗This has been performed recently on a new T64000 spectrometer
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Figure 7.3: Experimental Stokes Raman spectra of Ag NPs of different sizes excited
at 413 nm. The incident laser beam was p-polarized and the polarization was not
analyzed.

summarized in Table 7.1.

tAg ω (cm−1) Dcal (nm)

30 sec 18 ± 1 2.8 ± 0.1

40 sec 15 ± 1 3.3 ± 0.1

50 sec 13.5 ± 1 3.6 ± 0.1

70 sec 14.5 ± 1 3.5 ± 0.1

Table 7.1: Raman peak frequencies and estimated diameters

For tAg = 30, 40 and 50 seconds, Dcal values agree very well with the expected

diameters, while in the case of tAg = 70 seconds, Dcal is smaller than expected. For

tAg < 50 seconds, the NPs are nearly spherical, and the samples are excited close to the

resonance with the SPR. Instead, for tAg = 70 seconds, this is not the case, since the NPs

are clearly oblate spheroids (Fig. 7.2). As shown in Chapter 6, the experimented were

performed using p-polarized light under an incidence of 65 degrees, thus both plasmons

can be excited. Here, at 413 nm, neither the transverse nor the longitudinal SPR are

excited in resonance. In this case, the shape effect should be taken into account and thus
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the diameters cannot be calculated using the Lamb’s model. Nevertheless, extinction

and Raman spectra and the simple Lamb’s model provide already relevant information

on the size and shape of NPs.

7.2 Shape effect: From nanolentils to nanocolumns

Figure 7.4: Different NPs shapes considered in the present work

We have studied the optical response of the three different NP morphologies that

have been produced by a-PLD : spheres (nanospheres: NSs), oblate spheroids (nanolen-

tils: NLs), and prolate spheroids (nanocolumns: NCls).?,?,? Figure 7.4 illustrates these

different shapes that are considered in this section.

TEM images of the samples were presented in Fig. 3.2 and Fig. 3.6, therefore we

summarize in table 7.2 their average diameter D and height H.

Shape D (nm) H (nm)

NS 3.4±0.2 3.4±0.2

NL 9.1±1.0 5.2±0.2

NCl 2.7±0.2 6.7±0.2

Table 7.2: Average diameter, D, and height, H, determined from TEM analysis of
the NPs considered in this section.

The production of NPs having different morphologies is based on the different nu-

cleation and growth mechanisms that were discussed in Chapter 2. The production of

NSs is limited to small NPs and requires to remain below the coalescence threshold. On
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the contrary, oblate NPs arise from coalescence and thus, their in-plane average dimen-

sions increase as the amount of metal increases, while the dimension along the direction

perpendicular to the substrate remains smaller and tends to saturate. Such spheroids

are randomly oriented in the plane parallel to the substrate, and their optical response

is dominated by the NP average in-plane dimension. Therefore, the randomly oriented

coalesced NPs behave optically as NLs characterized by their diameter, D, and height,

H. Finally, prolate ellipsoids or NCls are obtained by producing nearly overlapping

layers of spherical NPs as it was described in Chapter 2.

Figure 7.5: Experimental extinction spectra of samples containing NCls, NSs, and
NLs, recorded using p-polarized light and an angle of incidence of 65◦. T and L
indicates the transverse and longitudinal modes of the SPR.

Figure 7.5 shows extinction spectra of nanocomposite films containing each type of

NPs recorded using p-polarized light. As expected, the transverse and the longitudinal

SPRs are degenerate in the case of NSs due to spherical symmetry, and a single SPR band

appears at 420 nm. When the NPs are distorted to NLs or NCls, the spherical symmetry

is broken and the SPR band splits into transverse, observed at 470 and 390 nm, and

longitudinal SPRs at 360 and 470 nm, for NCls and NLs, respectively. According to the

models presented in Chapter 5, this splitting depends on the aspect ratio of the NPs

and their number density. The transverse resonance is shifted into the blue when H/D

is smaller than 1 and the opposite occurs for H/D larger than 1. The experimental

observation of splitting evidences that it is possible to identify the oblate or prolate

shape of the NPs through the spectral shifts of the transverse and longitudinal modes.
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Figure 7.6: Experimental Stokes Raman spectra of Ag NCls, NSs, and NLs excited
at 413 nm (NCls and NSs) and 514 nm (NLs). The incident laser beam was p-polarized
and the polarization of the scattered light was not analyzed.

As discussed in section 7.1, the Raman spectra are also influenced by the shape of

the NPs. We can analyze in detail this issue by comparing the Raman spectra of the

three types of NPs. Figure 7.5 shows low-frequency Raman spectra of NCls, NSs, and

NLs where it is seen that the vibration band shifts to lower frequencies as the shape

evolves from NCl to NL. The Raman spectra are measured with p-polarized light, and

the wavelength was chosen to be close to the SPR (NSs) or SPRT (NLs and NCls). The

band observed at 15± 1 cm−1 for NSs is due to the scattering by spherical quadrupolar

acoustic vibration modes. The calculated diameter using Lamb’s model is Dcal = 3.3

± 0.1 nm, which agrees very well with the diameters determined by TEM (Table 7.2).

Vibration bands close to 19 ± 1 cm−1 and 8 ± 1 cm−2 are associated with acoustic

vibrations of NCls and NLs, and are shifted to higher or lower frequencies with respect

to that of the NSs. In the experimental conditions used?, ? the shifts are not only due to

change in diameter D as predicted by Lamb’s theory, but also due to change in shape.?, ?

The vibration modes are not degenerated in the case of NCls and NLs and the change

of the NP geometry from spherical to oblate or prolate spheroids splits the five-fold-

degenerate quadrupolar vibration modes. However, due to selection rules (Chapter 5),

the splitting is not observed, and only one band can be observed in the Raman spectrum.
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To identify the vibration modes observed it was necessary to calculate the frequency

of vibrations of each fold for NCls and NLs. These frequencies have been calculated

using the resonant ultra-sound,?, ?,? or molecular dynamics methods?, ?, ? using the values

of D and H shown in table 7.2. These models do not take into account the effect of

the matrix. However, in the case of Ag NPs embedded in a-Al2O3, we have been able

to determine that the matrix induces a blue shift of 2 cm−1 (i.e. to higher frequencies).

Taking into account this effect, in the case of NCls, we found that the active vibration

fold (l = 2, m = ±2, n = 0), has a frequency of vibration of 19.2 cm−1, while, for NLs,

the active vibration fold (l = 2, m = 0, n = 0) has a frequency of 8.8 cm−1. These

values are in very good agreement with the experimental values presented in Fig. 7.5.

In this section we have seen that the modification of the aspect ratio, H/D, allows

tuning the transverse (NLs) or longitudinal (NCls) SPRs into the infra red. However,

the control is partial in the first case, since the growth of the NLs is random. On the

contrary it is possible to achieve a very good control over the aspect ratio of the NCls

trough the control of D and/or H, and this should lead to a better control of the optical

response.

7.3 Silver nanocolumns

In Chapter 2 we introduced the protocol used to produce oriented NCls. The method

consists basically to reduce the thickness X of a-Al2O3 (Fig. 7.7), deposited after each

layer of Ag NPs, to a value equivalent to the average diameter, D, of the NPs. According

to this procedure there are two possible ways to modify the aspect-ratio of the NCls :

increasing the number of cycles, N , for X constant, or changing X with a fixed N .

Figure 7.7: Equivalent thickness X of the a-Al2O3 layer between consecutive NP
layers.



7.3. SILVER NANOCOLUMNS 103

7.3.1 Control of the aspect ratio.

The first approach is to modify the aspect-ratio by increasing N . This should lead

to an increase of H while maintaining D constant. Figure 7.8 shows the extinction

spectra of four samples obtained by increasing N : 5, 10, 20, and 50, which corresponds

to estimated aspect-ratios of 2.5, 5, 10, 25 . All spectra present both transverse and

longitudinal SPRs, and their peak wavelengths are summarized in table 7.3.
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Figure 7.8: Experimental extinction spectra of samples containing Ag NCls produced
with increasing N , recorded using p-polarized light and an angle of incidence of 65◦.
SPRT and SPRL stands for transverse and longitudinal SPR, respectively.

As expected the transverse and longitudinal SPRs shift to the blue and red spectral

regions, respectively, as the aspect ratio increases. Even though these shifts are small

they confirm the increase of the aspect-ratio of the NCls as seen in Fig. 3.9 of Chapter

3 for N = 5, 10 and 50. Nevertheless, the shift is much smaller than expected.

The increase of the height cannot be observed in the Raman spectra. Nevertheless,

Raman analysis can demonstrate that D is kept constant when N is increased. Fig. 7.9

shows stokes Raman spectra of the four samples excited with p-polarized light at 488

nm, which is close to the longitudinal SPR.

For N = 5 to 20 the maximum of the vibration band is observed around ≈ 19 cm−1

which corresponds to NCls with D ≈ 2.7 nm. This is in good agreement with the TEM

values presented in Chapter 3. However, for N = 50 in addition to the band at ≈ 19
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number of cycles λ(SPRT ) (nm) λ(SPRL) (nm)

5 389 490

10 388 492

20 384 497

50 379 500

Table 7.3: Experimental wavelengths of the SPRs as a function of the number of
cycles N .
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Figure 7.9: Experimental Stokes Raman spectra of Ag NCls with increasing N , ex-
cited at 488 nm. The laser beam was p-polarized and the polarization of the scattered
light was not analyzed.

cm−1, an additional vibration appears at ≈ 13 cm−1. This is evidenced by the double

peak structure observed as a broad band in Fig. 7.9.

To understand this result, we must remember the morphology of the sample produced

with N = 50. Figure 7.10 shows a cross-section TEM image of that sample. A careful

inspection of the NCls shows two important features. We observe discontinuities in

certain NCls, while others present a clear misalignment. The discontinuities, about 1

nm, lead to NCls with different heights. However this fact has no effect on the Raman

spectra. We must also remember that vibrations are confined in the NCls volume. Thus a

modification of the volume should induce a shift of the vibration frequency. However, the
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Figure 7.10: Cross-section TEM image of the sample N = 50. The red arrow shows
discontinuities while the green one shows misalignment of NCLs.

volume changes are due to a variation of H, but the experimental Raman configuration

used is only sensitive to changes of D. Thus the the band around 13 cm−1 should not

be due to the discontinuities.

On the contrary the misalignement of the NCls (red arrow in Fig. 7.10) leads to

“connecting zones” that have effective D in the range of 3 nm to 4 nm that should

be detected. This is in good agreement with the fact that using the simple model of

Lamb, we can calculate roughly that the vibration frequencies associated to this range of

diameters should occur at ≈ 12 cm−1. However, this question is still under investigation

at the time of writing this thesis.

The second way to modify the aspect ratio of the NCls is to vary X while maintaining

the amount of Ag and the number of cycles constant. Figure 7.11 presents the extinction

spectra of three samples having decreasing a-Al2O3 deposition times, tAl2O3 of 50 seconds

(X50), 30 seconds (X30), and 25 seconds (X25), N =10 and D= 2.2 ± 0.2 nm. For X50

only one broad peak is observed in the extinction spectra. This indicates that the NPs

layers are well separated (one peak) although close enough to interact (broad peak).

When tAl2O3 is reduced, two peaks appear in the extinction spectra, which evidences the

formation of NCls. From the deposition rate determined in Chapter 2 we have estimated

the X values Xcal. They are summarized in table 7.4 together with the wavelengths of
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Figure 7.11: Experimental extinction spectra of samples containing Ag NCls pro-
duced with decreasing X, recorded using p-polarized light and an angle of incidence
of 65◦ .

the SPRs. We recall that X is defined as the thickness of a-Al2O3 deposited among the

space between NPs, i.e. the thickness of the nanocomposite layer, plus the thickness

(Tcover) of the a-Al2O3 deposited further, defined as Tcover = X-D. For X50, a thin

a-Al2O3 layer of thickness Tcover = 1.6 nm covers the nanocomposite. The consecutive

layers of Ag NPs are physically well separated as suggested by the extinction spectrum

shown in Fig. 7.11.

Sample name tAl2O3 Xcal (nm) λ(SPRT ) (nm) λ(SPRL) (nm)

X50 50 3.8 405 405

X30 30 2.7 363 610

X25 25 2.5 380 540

Table 7.4: Experimental wavelengths of the SPRs as a function of the Al2O3 depo-
sition time. The values Xcal are determined using the deposition rates.

When X decreases, the consecutive NPs layers start to “connect” forming the NCls.

This is confirmed by the appearance of transverse and longitudinal SPRs in the extinc-

tion spectra (Fig. 7.11). However, the thickness Tcover of a-Al2O3 deposited between

consecutive NPs layers should be 0.5 and 0.3 nm, for 30 sec and 25 sec, respectively.
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These values of Tcover could be due to an error in the determination of X or related

to the amount of material re-sputtered during deposition of Ag or a-Al2O3.? Cross-

section images of these samples confirm the formation of NCls as shown in Fig. 7.12.

In addition, NCls embedded in sample X25 (H25 = 11.2 ± 0.2) are shorter than those

embedded in X30 (H30 = 13.4 ± 0.2). This is confirmed by the extinction spectra since

the splitting of the transverse and longitudinal mode is larger in the latter case (∆λ25

= 160 nm < ∆λ30 = 247 nm).

Figure 7.12: Cross-section TEM images of NCls thin films produced with (left) X25

and (rigth) X30.

Figure 7.13 is a scheme of the proposed morphology of the NCls as a function of

X. In the case X25, consecutive NPs layers overlap while they simply connect for X30.

Thus, the latter leads to higher NCls. The pattern (first layer of NPs) as well as the

quantity of metal deposited is similar in both cases. Thus, the diameter of the NCls

for X25 should be larger, and the in-plane surface to surface distance between two NCl

should be smaller than in the case of X30.

Figure 7.13: Proposed morphology for NCls produced with (a) X25 = 2.5 nm and
(b) X30 = 2.7 nm.
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For X25 we must have then a change of diameter that should be observed in the Ra-

man spectra. Fig. 7.14 presents the stokes Raman spectra of the three nanocomposites.

The frequencies of the observed peaks and the average diameter calculated using Lamb’s

model∗ are summarized in table 7.5.
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Figure 7.14: Experimental Stokes Raman spectra of samples containing Ag NCls
produced with decreasing X. The incident laser beam was p-polarized and the polar-
ization of the scattered light was not analyzed. Dashed lines are only guides for the
eyes.

Sample name ω (cm−1) Dcal(nm)

X50 24.0 ± 1 2.1 ± 0.5

X30 19.5 ± 1 2.6 ± 0.5

X25 18.0 ± 1 2.8 ± 0.5

Table 7.5: Experimental frequencies of the Raman bands as a function of the Al2O3

deposition time.

For X50, the Raman spectrum shows the typical vibration peak due to the quadrupo-

lar vibration mode of a spherical NP, for which Dcal agrees well with the expected di-

ameter. When X is small enough to nucleate NCls, the peaks shifts to lower frequencies

∗We consider NPs with the same diameter as the NCl
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indicating that the diameter has slightly increased for the shortest values of X. More-

over, the small variation of ω demonstrates that the diameter slightly increases for the

shortest value of X.

In this section we have shown that the splitting of transverse and longitudinal SPRs

is smaller when N increases than when X decreases. This is due to the small changes

observed in the NCls diameter, as shown by the Raman measurements. Thus, the

variation of the in-plane NCls surface to surface distance must be taken into account.

This factor can affect the optical response of the nanocomposites as described in the

next section.

7.3.2 Real morphology: from theory to experiment

Up to now, we have considered that the NCls are perfect prolate ellipsoids oriented

along the same direction. However, section 7.3.1 has shown that we must take into ac-

count that while NSs and NLs nucleate in a one-step process, the NCls can be considered

as a stack of NSs, more or less overlapped, which nucleate in a multiple step process

that leads to the formation of a kind of “nanonut” (NN) (Fig. 7.13), rather than a NCl.

The formation of one or another type of nanostructure is relevant since it may affect the

characteristic morphological parameters that determine the SPR.

Figure 7.15 shows the experimental extinction spectrum of a sample having NCls

produced with 10 cycles and having D and H values of 2.3 ± 0.2 nm and 10.5 ± 0.3

nm, respectively. We clearly observe a splitting of the transverse and longitudinal SPRs

peaking at 390 and 535 nm, respectively. We have calculated the optical extinction

spectra using the average values of D and H in order to correlate the measured SPR

wavelengths to the aspect ratio of the NCls. In a first approximation we have assumed

that the NCls are prolate spheroids and we have considered Gans model for an isolated

prolate NP. The simulated spectrum is included in Fig. 7.15. It predicts a longitudinal

SPR at 900 nm, which is red-shifted by 365 nm with respect to the experimental value.

Alternatively, we have considered a NN structure formed by a stack of 5 NPs of

diameter D slightly overlapped and a total height H using the discrete dipole approx-

imation.∗ Figure 7.16 illustrates the NNs morphology. The optical extinction spectra

obtained by this method is also included in Fig. 7.15. The longitudinal SPR now ap-

pears at 750 nm, whereas the transverse SPR is at 378 nm, both values being closer to

∗Simulations made by A. Arbouet, CEMES, France
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Figure 7.15: Experimental extinction spectrum recorded using p-polarized light and
an angle of incidence of 65◦. Theoretical extinction spectra are calculated for an
isolated prolate NCls (Gans model) and an isolated NN (DDSCAT).

experimental values than the ones obtained with Gans model. However, there is still a

huge discrepancy between experimental and calculated extinction spectra. Nevertheless,

these results indicate that the NCls may be closer to NNs than to prolate ellipsoids.

Figure 7.16: Schematic of the NNs shape (cross-section) used for DDSCAT calcula-
tions.

In order to evaluate the effect of the high NCls number density we have calculated

extinction spectra using Maxwell-Garnet model for prolate ellipsoids having D= 2.3±0.2
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nm and H= 10.5 ± 0.3 nm and a NCl number density of 7.8 × 1012 NCls/cm2, which

corresponds to a volume fraction of f . 30%.

Figure 7.17: Experimental extinction spectra of Ag NCls (blue), recorded using p-
polarized light and an angle of incidence of 65◦. Green and red curves, respectively,
show the spectra calculated using Maxwell-Garnett model, adapted to prolate NPs,
and DDSCAT considering 21 NNs.

The calculated spectra is shown in Fig. 7.17 where the experimental spectrum is also

included for comparison. The transverse SPR wavelength is slightly red-shifted with

respect to the experimental longitudinal SPR wavelength.

Finally, we have considered the interaction between NNs within the discrete dipole

approximation. This has been performed by considering 21 NNs (Fig. 7.16) separated by

3 nm (average separation surface to surface observed by TEM) and organized according

the scheme shown in Fig. 7.18. We had to restrict the simulation to 21 NNs only,

due to computer limitations. Extinction spectra have been calculated using DDSCAT?

numerical software averaging among 10 different orientations to take into account that

there is no two dimensional organization.∗ The results obtained are also shown in Fig.

7.17. The longitudinal SPR now appears at 535 nm and the transverse SPR at 390

nm, both in very good agreement with the experimental values. This confirms that the

samples must be considered as formed by NNs with a high number density. Both, the

NN shape and the interaction between neighbour NNs are responsible for the blue shift

of the longitudinal SPR with respect to the case of isolated prolate ellipsoids.

∗Simulations made by A. Arbouet, CEMES, France
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Figure 7.18: Schematic of the NNs distribution (plan-view) used for DDSCAT cal-
culations.



8
Coupling between surface plasmons and

confined acoustic vibrations

In this chapter we focus on the coupling between surface plasmons and confined acoustic

vibrations in systems containing a single type of NPs such as the Ag NCls, or two types

of NPs: Ag and Co NPs.

8.1 Nanocolumns

Chapter 7 has demonstrated that acoustic vibrations and SPRs are related to the size

and shape of NPs. Moreover in section 7.1 we have observed that the vibration frequency

of a spherical NP is related to the excitation wavelength. This behavior is due to both

inhomogenous broadening of the Raman band and to the different size dependence of

the resonant and non-resonant Raman scattering efficiencies mediated by SP.? In the

following we study the coupling between surface plasmons and acoustic vibrations of

silver NCls.?, ?

113
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Figure 8.1 shows the extinction spectrum for a sample containing NCls with aspect

ratio 2.5 (Fig. 3.9 a.) together with the frequency of the maximum of the Raman

bands as a function of the excitation wavelength. The laser beam, used to excite the

Raman scattering, was always p-polarized, and the scattered light was not analyzed.

The extinction spectrum shows the expected splitting of the transverse and longitudinal

modes of the SPR already discussed in Chapter 7.
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Figure 8.1: (Filled squares) Experimental frequencies of the vibrations of the NCls
versus excitation wavelength. The laser beam was p-polarized, and the polarization
of the scattered light was not analyzed. The dotted line is a guide to the eye. (blue)
Experimental extinction spectrum of the NCls, recorded using p-polarized light and
an angle of incidence of 65◦.

The frequencies of the maximum of the vibration peaks are ≈18 cm−1 for excitation

wavelengths that are away from the maximum of the longitudinal SPR, while a shift of

the Raman bands to higher frequencies (∆ω ≈ 4 cm−1) is observed when the excitation

approaches the longitudinal SPR. At these wavelengths we excite the longitudinal SP

associated to the oscillation of the electrons along the long axis of the NCls, and generate

a polarization, PSPR, along it. Meanwhile, the confined acoustic quadrupolar vibration

mode (l = 2, m = ± 2, n = 0) of the NCls induces a displacement of the surface charges.

The SP and the vibration interact generating a polarization vector with two components

along the long and short axis of the NCls. The latter is responsible for the observation

of the vibration peak in the Raman spectra. As we approach the resonance with the

longitudinal SPR, the coupling between longitudinal SP and vibrations increases. When

exciting the NCls with the 413 nm line (i.e. close to the transverse SPR) the Raman
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peak appears at 20 cm−1, due to the possible coupling of the transverse SP.

In order to further investigate the interactions between SP modes and confined acous-

tic vibrations, we have recorded the Raman spectra for various incident and scattered

light polarizations. We have used the 488 nm line of the Argon laser to excite the NCls

close to the resonance with the longitudinal SPR. Figure 8.2 shows the Raman signal as

a function of the polarization of the incident and the scattered light. The inset in Fig.

8.2 shows the evolution of the Raman intensity as a function of the incident polarization

angle from p- (0 degree) to s- (90 degrees) polarizations. The measured intensity has

been normalized to that of the optical phonon of the silicon substrate. In that way, the

Raman intensity changes are only due to the coupling with the SP.

Figure 8.2: Experimental Raman spectra of samples containing NCls excited at
488 nm and using different polarizations. “s-p” stands for (s) and (p) incident and
scattered polarizations, respectively. The inset shows the intensity variation of the low-
frequency Raman band versus excitation polarization angle (from p to s) normalized
with respect to that of the optical phonon of silicon. The continous line is an empirical
cos2(θ) fit.

The scattered intensity varies as cos2(θ) which means that the vibration intensity

is maximum when the intensity of the electric field along the long axis of the NCl is

maximum. In addition, the vibration is observable only when the incident light is p-

polarized irrespective of the polarization of the scattered light. This means that the
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Raman band is observable only when the longitudinal SP is excited.

Moreover, in our experimental conditions the detected electric field is always along the

plane perpendicular to the major axis of the NCls (Chapter 6), and thus, is perpendicular

to the field generated by the longitudinal SP. Therefore, since the NCls have symmetry

of revolution around their long-axis, the scattered intensity should be the same in both

p-p and p-s configurations as observed experimentally in Fig. 8.2. The longitudinal SP

excitation must be transfered to the short axis of the NCls through its interaction with

the quadrupolar vibrations. As a consequence, the transverse SP is excited and we can

conclude that surface plasmons excitations act as intermediate collective electronic state,

which contributes to the recorded Raman response. Instead, when the transverse SP is

directly excited, the field perpendicular to the long axis of the NCls, generated by the

SP and modulated by the quadrupolar vibration, is directly detected, and a vibration

band appears in the Raman spectrum.

8.2 Surface Plasmon-Acoustic Vibration interaction

in Co-Ag bilayers

In this section we study the vibrational response of the Co-Ag bilayers described in

Chapter 3 and whose cross-section TEM image was shown in Fig. 3.3. The scheme of

the samples structure is reminded in Fig. 8.3. The samples are composed of spherical

Co NPs (DCo = 2.7 ± 0.4) and Ag NLs (DAg = 10 ± 2, H Ag = 6.0 ± 0.5). The

average in-depth vertical spacing between Co and Ag NPs is X=4, 6 or 8 nm within

each bilayer, while the separation between consecutive Co-Ag bilayers is fixed to 25 nm.

Samples containing only Co NPs or Ag NLs with the same dimensions are also studied

for comparison.

In the case of Co NPs, the SPR is located in the near UV, while that of Ag NPs lies

in the blue region of the visible spectrum. The inset of Fig. 8.4 shows the SPR of Co

NPs and Ag NPs embedded in a-Al2O3, calculated using Mie’s theory. As shown the

SP of Co NPs is not excited by the 488 nm laser line. Thus the vibrations of Co NPs

should not be observed in the Raman spectra. Instead, the SP of Ag NLs is excited and

therefore the vibrations of Ag NLs are expected in the Raman spectra.

The Raman spectra of samples containing only Co NPs or Ag NPs layers are presented

in Fig. 8.4. As expected, the featureless spectrum corresponds to the sample containing
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Figure 8.3: Schematic of the Co-Ag bi-layers nanostructures

only Co NPs, whereas a vibration band at ≈ 8 cm−1 is observed in the case of the

sample containing only Ag NPs. As discussed in the previous sections, this vibration

mode corresponds to the quadrupolar vibration of Ag NLs having characteristics sizes

of DAg = 10 ± 2 and H Ag = 6.0 ± 0.5. Thus, Raman scattering from Co NPs should

not be expected from Co-Ag bilayer samples.

The Raman spectra of Co-Ag NPs bilayers are also presented in Fig. 8.4 for decreas-

ing in-depth spacings, X . Two bands are clearly observed for X= 4 and 6 nm. The low

frequency band at 8 cm−1 is due to the Ag NPs while the broader band at ∼ 28 cm−1

is neither observed in samples containing only Ag nor only Co NPs. This band is not

resolved for X= 8 nm, although it appears as a shoulder on the high energy tail of the

Raman signal due to the Ag NPs.

In order to determine the origin of the Raman band at ≈ 28 cm−1 we have calculated

the acoustic vibration frequencies of each type of NPs. We have used the resonant

ultra-sound (RUS) simulation method introduced by Visscher et al.?, ?, ? to calculate the

NPs vibration frequencies.∗ The eigenfrequencies (and associated displacements) of the

NPs have been calculated in the frame of the continuum elastic approximation using

the “xyz algorithm”.† This method allows determining the acoustic vibrations whatever

the shape of the NPs, which is particularly relevant for the case of our Ag NLs. Taking

into account the effect of the matrix, the model predicts that the fivefold degenerate

∗simulations made by L. Saviot, Université Carnot de Bourgogne (France), and D. Murray, Univer-
sity of British Columbia (Canada)

†A detailled description of this algorithm is out of the scope of this work.
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Figure 8.4: Experimental Stokes Raman spectra of samples containing Co-Ag bi-
layers excited at 488 nm. The incident beam was p-polarized and the polarization of
the scattered light was not analyzed. (purple) Samples containing Co NPs or (green)
oblate Ag NPs monolayers and samples containing Co-Ag bilayers spaced (black) X= 4
nm, (red) X= 6 nm, and (blue) X= 8 nm are included. Solid lines are guides for
the eyes. The inset shows the wavelength of SPRs of Co and Ag NPs embedded in
a-Al2O3 calculated using Mie theory. The vertical blue line in the inset corresponds
to the Raman excitation wavelength (488 nm).

quadrupolar vibration modes (l = 2; m = 0,±1,±2; n = 0) split into three different

frequencies associated to spheroid-like modes when the aspect ratio becomes smaller than

1 as in the present case: 7.1 cm−1 (two fold degenerate), 8.3 cm−1 (non-degenerate) and

8.4 cm−1 (two fold degenerate). These frequencies are in agreement with the frequency

of the measured Raman band at 8 cm−1. The other vibration mode of the Ag NLs

theoretically observable is the breathing mode (l = 0; m = 0; n = 0) whose frequency is

found at 15.0 cm−1. However the coupling of this vibration mode with the SP is much

less efficient, and thus the Raman band corresponding to this vibration is not observed

in the spectra. This calculation is consistent with the fact that only the quadrupolar

vibration is visible in the spectrum of the sample containing Ag NLs layers only. Thus,

the vibration responsible for the appearance of the Raman band at ≈28.0 cm−1 appears

to be due to the Co NPs.
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In a first step, we have estimated the vibration frequency of Co NPs using Lamb’s

model. In the case of spherical Co NPs of diameter, DCo = 2.7 ± 0.4 (nm) and using

the transverse sound velocity in Co at 295 K (2886 m.s−1)? (Chapter 4) we found the

vibration frequency of the quadrupolar mode at ≈ 30 cm−1. This value has been con-

firmed using the RUS simulation code. We obtain 29.0 cm−1 for the vibration frequency

of the quadrupolar vibration mode of a free standing spherical Co NP. Thus, calcula-

tions indicate that the Raman band observed at ≈28.0 cm−1 is most likely due to the

vibration of Co NPs.? However, since the SP of Co NPs is not directly excited by the

laser beam,? other mechanisms should explain the presence of this band.

A possible explanation for the observation of the Co NPs vibrations could be their

coupling with the electric field generated by the SP of the Ag NLs. Indeed, the Ag SP

near field expands out of the NL into the matrix. Thus if the Co NP is close enough

to the Ag NL, the Co NP quadrupolar vibrations interact with the SP allowing the

observation of its vibration band in the Raman spectra. This coupling between the

Co NP confined acoustic vibrations and the Ag NL SP is related to the modulation

of the surface charges due to NP vibrations, therefore it is important to investigate the

distribution of the surrounding electric field generated by the Ag SP. Figure 8.5 shows the

electric field pattern, calculated using the Finite Difference Time Domain CST software∗

and considering Ag NL and spherical Co NPs with the real size and shape of the samples

studied, X fixed to = 4 nm. The calculation considers that the electric field is generated

by a monochromic wave at 488 nm with an angle of incidence of 65◦ with respect to the

normal of the sample surface, which corresponds to the experimental conditions used.

The electric fields for X= 6 nm, 8 nm and 10 nm have also been calculated but are not

shown in the figure.

The electric field at the Co NP surface is very weak (Fig. 8.5(a)) since the SP of the

Co NP is not directly excited by the incident laser beam contrary to that of the Ag NL.

The presence of the Co NP in the near field of the Ag NL (Fig. 8.5(b)) has a strong

impact on the electric field distribution.?,? A hot spot characteristic of the electric

field enhancement emerges in the region between the Ag and Co NPs for X= 4 nm.

Moreover, the electric field in the vicinity of the Co NP surface, increases by an order of

magnitude when X decreases from 12 to 4 nm. According to the electromagnetic theory

of surface enhanced Raman scattering, this enhancement factor should lead to a factor

≈ 10000 in the Raman scattering intensity due to the photon absorption and emission

events.

∗Calculation made at the DSI in Singapore
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(a)

(b)

Figure 8.5: False color distribution of the electric field generated by Ag SP in the
vicinity of an oblate Ag NP with a neighbour Co NP at a distance X of (a) 12 nm
and (b) 4 nm. Note that the scales are different.

Therefore, combination of Raman experiments and modeling allows us to conclude

that the coupling between the Co NP quadrupolar vibrations and the Ag NL SP ef-

fectively occurs. The Ag NL SP generates polarization charges at the surface of the

Co NPs that are modulated by the quadrupolar vibrations, which are detected in the

Raman spectra.
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The main conclusion of this thesis is that the production of Ag nanostructures

with well defined morphology using PLD is feasible. Nanospheres, nanolentils

(oblate ellipsoids) and oriented nanocolumns (prolate ellipsoids) embedded in amor-

phous Al2O3 have been produced using alternate pulsed laser deposition. The effect of

the deposition parameters on the morphological characteristics of the nanoparticles (size,

aspect ratio, concentration) has been determined, and this has made finally possible the

study of the relationships between nanoparticles morphology and optical properties of

the thin film nanostructures, as well as the analysis of the interaction between surface

plasmons and confined acoustic vibrations.

Standard a-PLD allowed us to produce Ag:Al2O3 nanostructures consisting of con-

secutive layers of Ag nanoparticles separated by layers of amorphous Al2O3. Using this

approach we have synthesized nanospheres and nanolentils. We have found that

their number density and diameter can be controlled by varying the amount of metal

deposited. Below a certain threshold that depends on the metal type (8×1015 atoms

cm−2 in the case of Ag), nanoparticles are spherical, well separated and present a sharp

size distribution. Above this threshold, nanoparticles start to coalesce in the plane which

leads to the formation of oblate spheroid nanoparticles, i.e. nanolentils with typical

sizes D= 10 nm and H= 6 nm. However, coalescence is a random process and, as a

consequence, the degree of control over the morphological parameters and organization

of the nanostructures is dramatically reduced.

In order to achieve a good control over the morphological parameters of the nanos-

tructures we have developed a new deposition route that takes advantage of coales-

cence to produce self-oriented nanocolumns. The approach is based on the reduction

of the in-depth separation between consecutive layers of Ag nanospheres embedded

in a-Al2O3. We have demonstrated the production of nanocolumns when the in-

depth separation is close to the diameter of the Ag nanospheres (typical size 2.7 nm).

The number density, and diameter of the nanocolumns can be controlled through the

amount of metal deposited in the first metal layer, while the amount of metal deposited

in subsequent cycles, the number of cycles and finally, the amount of a-Al2O3 deposited

after each layer of metal NPs determines the height of the nanocolumns. These results

open new possibilities for material nano-design since they provide a simple route based on

a single step process at room temperature to produce, nanolentils and nanocolumns

with diameters typically <10 nm and with low size and shape dispersion, features that

are not easily accessible for other techniques.

The linear optical response of the different types of nanostructures has been char-
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acterized and we have reported the relationship between surface plasmon resonance and

the morphology of Ag nanoparticles. The splitting of the surface plasmon resonance into

longitudinal and transverse modes has been observed when the spherical symmetry is

broken. As predicted theoretically, the transverse surface plasmon resonance is shifted

into the red and the longitudinal surface plasmon resonance into the blue when the as-

pect ratio is smaller than 1 (nanolentils), while the opposite behavior is observed when

the aspect ratio is higher than 1 (nanocolumns).

Optical analysis has confirmed that the nanocolumns are self-oriented perpendic-

ularly to the substrate surface, and it has been shown that the shift of the longitudinal

surface plasmon resonance into the red is limited to a maximum value. Numerical

simulation of the extinction spectra using different models (Gans, Maxwell-Garnett,

DDSCAT) has shown that this behaviour is caused by the existence of electromag-

netic interaction among nanocolumns, which demonstrates the importance of the

number density of nanocolumns on the optical response of the nanostructures. Finally,

these simulations also suggest that nanocolumns must be considered as an aggregation

of contacting nanospheres ordered along the direction perpendicular to the substrate

surface (nanonuts) rather than a single structure (prolate ellpsoids, or cylinders).

Low frequency Raman scattering has allowed studying the confined acoustic

vibrations of the nanostructures embedded in the amorphous host. The vibration bands

observed in the spectra are due to the quadrupolar acoustic vibration mode that is

mainly dominated by size effects, namely by the average in-plane diameter. The avail-

ability of nanostructured thin films having NPs with well defined morphology and ori-

entation has made possible to investigate in detail the effect of the nanoparticle shape

on the vibrational response. In the case of nanospheres the quadrupolar mode

is fivefold degenerated. This degeneracy partially disappears when the spherical sym-

metry is broken. The combination of experimental Raman analysis with numerical

simulations performed using molecular dynamics and resonant ultrasound calculations

has made possible to identify the folds observed in each case. For aspect ratios smaller

than 1 (nanolentils) the active modes observed correspond to the threefold degenerate

spheroidal modes (l = 2; m = 0,±1; n = 0). On the contrary, the twofold degenerate

spheroidal modes (l = 2; m = ±2; n = 0) are observed in the case of nanocolumns. Fi-

nally, we have identified that the Raman scattering acoustic vibrations signal is enhanced

by the interaction between the longitudinal surface plasmon mode and the vibrational

spheroidal modes: the polarization generated by the surface plasmon is modulated by

the quadrupolar vibrational mode.
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The work has been completed by expanding the nano-design approach to complex

nanostructures containing nanoparticles of different metals. In particular, we have

produced samples containing alternate layers of Co nanospheres and Ag nanolentils,

in which we have controlled the separation between these layers in the range from 4 nm to

8 nm. We have demonstrated the existence of interaction between surface plasmons

and confined acoustic vibrations of nanoparticles of different metals. Namely we

have excited the acoustic vibrations of Co nanoparticles by embedding them into the

near field region of Ag nanolentils. In this case numerical modelling shows that the

intensity of the electric field near the surfaces of Ag nanolentils and Co nanoparticles

is strongly enhanced for separations of few nanometers (≤ 6 nm) and for excitation

wavelengths close to that of the surface plasmon resonance of Ag nanolentils. This

interaction promotes the Raman scattering by the confined acoustic vibrations of Co

nanoparticles. This prediction has been confirmed experimentally.
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Conclusiones

La principal conclusión de esta tesis es que es posible sintetizar nanoestructuras de Ag

con una morfoloǵıa bien definida mediante depósito por láser pulsado. Para ello, se ha de-

sarrollado un procedimiento que permite producir nanoesferas, “nanolentils” (elipsoides

oblatos), y nanocolumnas (elipsoides prolatos) auto-ensambladas inmersas en a-Al2O3 y

orientadas. Se ha determinado cómo afectan las condiciones experimentales de śıntesis

a las caracteŕısticas morfológicas de las nanocolumnas y se ha establecido asimismo en

qué condiciones es posible maximizar la relacién de aspecto (altura/dimetro).

Se ha correlacionado la respuesta óptica lineal de las diferentes nanoestructuras con

su morfoloǵıa y se ha simulado la respuesta óptica utilizando diferentes modelos (Gans,

Maxwell-Garnett, DDSCAT). Dicho estudio ha confirmado el carácter orientado de las

nanocolumnas, demostrándose que su respuesta depende de la polarización del haz in-

cidente. En el caso de la nanopart́ıculas no esféricas se observan las resonancias de

los modos transversal y longitudinal del plasmon de superficie. Ambas resonancias se

desplazan espectralmente en función de la relación de aspecto de las nanopart́ıculas.

Se ha analizado la respuesta vibracional de las nanoestructuras producidas medi-

ante dispersión Raman de baja frecuencia, determinándose que los modos vibracionales

activos son los cuadrupolares. Se ha estudiado en detalle el efecto de la forma de las

nanopart́ıculas en la respuesta vibracional. En el caso de nanoesferas el modo cuadrupo-

lar está múltiplemente degenerado. La combinación de los resultados experimentales con

simulaciones numéricas basadas en dinámica molecular y cálculos de ultrasonidos reso-

nantes ha hecho posible determinar cómo se rompe la degeneración en cada caso: Para

relaciones de aspecto menores a 1 (nanolentils) los modos observados corresponden a los

modos esferoidales: l = 2; m = 0,±1; n = 0, mientras que para las nanocolumnas, cuya

relación de aspecto es mayor que 1, los modos observados son: l = 2; m = ±2; n = 0.

Por último, el trabajo desarrollado ha permitido concluir que la señal Raman es

activada por la interacción entre el plasmon de superfice de las nanolentils de Ag y los

modos vibracionales de las nanoparticulas de Co. Se ha observado cómo excitando el

sistema a una longitud de onda próxima a la de la resonancia del plasmon de superficie

de las nanolentils de Ag, es posible activar modos de vibración en las nanopart́ıculas de

Co. Este comportamiento se ha relacionado con un aumento intenso del campo eléctrico

en las proximidades de la superficie de las nanopart́ıculas de Ag y Co, que es predicho

por la modelización efectuada.
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Conclusions

La conclusion principale de cette thèse est qu’il est possible de synthétiser des nanostruc-

tures d’Ag avec une morphologie bien définie en utilisant la méthode de dépôt par abla-

tion laser pulsé. Pour cela, nous avons développé une procédure qui permet de produire

des nanosphères, des nanolentilles (ellipsöıdes oblates), et des nanocolonnes (ellipsöıdes

prolates) auto-assemblés, orientées et encapsulées dans une matrice d’a-Al2O3. Nous

avons démontré comment les conditions expérimentales de synthèse affectent les car-

actéristiques morphologiques des nanocolonnes, et nous avons pu déterminer ainsi quelles

sont les conditions optimum pour maximiser la rapport d’aspect (hauteur/diamètre).

Nous avons corrélé la réponse optique linéaire des différentes nanostructures avec

leur morphologies, et nous avons simulé la réponse optique en utilisant différent modèles

(Gans, Maxwell-Garnett, DDSCAT). Cette étude a confirmé l’orientation des nano-

colonnes, en démontrant que leur réponse dépend de la polarisation du faisceau inci-

dent. Dans le cas de nanoparticules non-sphériques on observe les résonances des modes

transverse et longitudinal du plasmon de surface.

Nous avons aussi analysé la réponse vibrationnelle des nanostructures produites

en utilisant la spectrométrie Raman basse fréquence, grâce à laquelle nous avons pu

déterminer que les modes actifs de vibration sont les modes quadrupolaires. Nous avons

étudié en détail l’effet de la forme des nanoparticules sur la réponse vibrationnelle. La

combinaison des résultats expérimentaux et des simulations numériques basées sur la

dynamique moléculaire et les calculs d’“ultrasons résonants” a permis de déterminer

comment se lève la dégénérescence dans chacun des cas: Pour des rapports d’aspect

inférieure à 1 (nanolentils) les modes observés correspondent aux modes sphéröıdaux:

l = 2; m = 0,±1; n = 0, alors que pour les nanocolonnes, cette rapport d’aspect est

supérieur à 1, les modes observés sont: l = 2; m = ±2; n = 0.

Pour finir, le travail développé a permis de conclure que le signal Raman est activé par

l’interaction entre le plasmon de surface des nanolentilles d’Ag, et les modes de vibration

des nanoparticules de Co. Lorsque le système est excité à une longueur d’onde proche

de la résonance du plasmon de surface des nanolentilles d’Ag, il est possible d’activer les

modes de vibration dans les nanoparticules de Co. L’importante augmentation du champ

électrique au voisinage de la surface des nanoparticules d’Ag et de Co, qui a également

été observé dans les simulations, est responsable de l’observation de la vibration des

nanoparticules de Co.
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