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Introduction 

 
 
 

Exchange bias (EB) occurs in magnetic bilayers (or multilayers) as a result of the 
interfacial exchange coupling existing at an interface between a ferromagnetic material and an 
antiferromagnetic one. This phenomenon was discovered more than 50 years ago by Meiklejohn 
and Bean [1] and it was initially termed exchange anisotropy. It manifests itself as a shift of the 
ferromagnetic hysteresis cycle along the field axis. This shift appears when the bilayer is cooled 
under field from above the Néel temperature of the antiferromagnet. Qualitatively, the shift of the 
cycle may be understood as resulting from the broken symmetry of the antiferromagnetic-
ferromagnetic coupling at the interface. In addition to the loop shift, an increase in the 
ferromagnet coercivity is most generally observed. 

The exchange bias phenomenon is exploited in GMR sensors, based on spin-valve 
structures, to pin the ferromagnetic magnetization of one of the two ferromagnetic layers 
involved. A resistivity change occurs which results from the rotation of the other ferromagnetic 
layer magnetization, the free layer, with respect to that of the pinned layer. The exploitation of 
exchange bias in GMR sensors represents the first industrial application of antiferromagnetism. 
These GMR sensors are primarily used in reading heads of hard disk drives. Current effort along 
the same line aims at the development of MRAM s in which the same concept of EB-pinned 
ferromagnetic layers is involved. 

The interfacial exchange-coupling between the ferromagnetic and antiferromagnetic 
materials involved in exchange bias systems, may involve various energy terms, which are 
strongly competing. As a result, complex frustrated interfacial magnetic configurations may exist, 
which are further very difficult to characterise experimentally. This explains that, despite intense 
recent experimental and theoretical effort, exchange-bias is not quantitatively understood. Yet, 
when one examines which are the most studied EB systems (Co or FeNi as a ferromagnet and  
CoO, NiO, FeMn, PtMn or IrMn as an antiferromagnet), it appears that they are perhaps not 
always the most appropriate to progress in the understanding of exchange-bias. In particular, in 
all these systems, except CoO, the Néel temperature of the antiferromagnet is above room 
temperature. In the present thesis, I have studied the EB properties of Co/MnPd. MnPd is an 
antiferromagnet which orders at TN=170K. It was thus possible to study the exchange-bias 
properties of this system from low temperature up to the MnPd Néel temperature. 
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Introduction 

 
In the first Chapter of this manuscript, I present a brief overview of the experimental 

studies of exchange-bias systems and associated theoretical studies of this phenomenon. In 
particular, I try to identify which are the most significant contributions to the analysis of 
exchange-bias, and I discuss the validity of the hypotheses which are at the basis of the various 
models developed to describe this phenomenon. 
 

The study of magnetic-after effects in EB systems, constitute an originality of my work. In 
the second Chapter of the present manuscript, I present the well known Fatuzzo-Labrune [2] 
model, very often used to analyse magnetization processes in hard magnetic films. This model is 
valid under the conditions that a small number of energy barriers (only one barrier in principle) 
is involved in the nucleation of reversed magnetic domains and similarly only one another 
barrier for their propagation. This appeared not to apply to the MnPd/Co system under all 
conditions. Then, models which assume the existence of a broad distribution of barriers are more 
appropriate. This is the case of the models used to describe magnetic after effects in hard 
magnets, which are presented in the second part of this Chapter  
 

The various experimental tools used in the course of this work are presented in Chapter 3. 
Essentially, these are sputtering for sample preparation, X-ray diffraction and reflectometry for 
structural characterisation, and VSM and SQUID for magnetic measurements. 
 

The preparation of the various samples is described in Chapter 4, as well as the results of 
their structural characterisation.  
 

Chapter 5 is devoted to the description of the magnetic measurements on the various 
MnPd/Co samples. The hysteresis cycles were measured systematically from low temperature to 
above TN and the temperature dependence of the exchange-bias field, HE, and coercive field, Hc, 
derived. The specific influence of the applied field on exchange-bias close to TN is examined. In 
the second part of this Chapter, a model is proposed in which the ferromagnetic molecular field 
on the antiferromagnet is formally equivalent to an applied external magnetic field. The model 
presents similarities to the Koon’s [3] or Schulthess and Butler [4] approaches of exchange-bias. 
However, the very strong canting which emerges for the first antiferromagnetic layer leads to 
unexpected behaviours. 
 

Chapter 6 is devoted to the description of magnetic after effect measurements and to their 
discussion. The behaviours characterising the first hysteresis cycle are found to differ very 
substantially from the ones observed on the subsequent cycles. The various behaviours are 
analysed quantitatively permitting a consistent picture to emerge. Finally, the temperature 
dependence of the coercive field is briefly discussed.  
 

The main results of this work are summarised in the conclusion and perspectives are 
presented. 
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Introduction 

 
 
 
 
 

Exchange bias (EB) ou le décalage d’échange est observé lorsque l’on met en contact un 
matériau ferromagnétique (FM) avec un matériau antiferromagnétique (AF). Ce phénomène a été 
découvert il y a plus de 50 ans par Meiklejohn et Bean [1] et il a été initialement appelé 
« anisotropie magnétique d’échange ». Le phénomène trouve son origine dans le couplage  
interfacial d’échange et il se manifeste par un décalage en champ magnétique du cycle 
d’hystérésis. Ce comportement  apparaît lorsque la bicouche FM/AF est refroidie sous champ au-
dessus de la température Néel de l’antiferromagnétique. Qualitativement, le décalage du cycle est 
le résultant de la brisure de  la symétrie du couplage antiferromagnétique - ferromagnétique à 
l'interface. De plus, une augmentation de la cœrcivité  du matériau ferromagnétique est 
conjointement observée.  

 
         Le phénomène de décalage d’échange est exploité dans les capteurs à magnétorésistance 
géante (GMR), à base de structures vanne de spin. Toute rotation de la aimantation de la couche 
ferromagnétique libre par rapport à la couche de référence (bloquée) induit une modification de la 
résistance. La couche de référence est piégée par couplage d’échange avec une couche 
antiferromagnétique, c’est qui fait des capteurs GMR la première application industrielle de  
l’antiferromagnétisme. Une des applications la plus courante ce sont les têtes de lecture de 
disques durs.  

 
Le couplage d'échange entre les matériaux ferromagnétiques et antiferromagnétique 

impliqués dans les systèmes à décalage d'échange, qui présentent différents types de ordre 
magnétiques, peuvent faire appel à différentes terme d'énergie, qui sont fortement concurrentes. 
Par conséquence, des configurations interfaciales magnétiques très frustrées peuvent exister, dont 
la caractérisation expérimentale s’avère très complexe voire impossible. Cela explique que, 
malgré les efforts théoriques et expérimentaux récents, le décalage d'échange demeure 
quantitativement mal compris. Pourtant, quand on regarde les systèmes EB les plus étudiées (Co 
ou FeNi comme matériau ferromagnétique et CoO, NiO, FeMn, PtMn ou IrMn comme un 
matériau  antiferromagnétique), il apparaît que ce sont peut-être pas les matériaux les plus 
appropriés pour avancer dans la compréhension de ce phénomène. En particulier, dans tous ces 
systèmes, à l'exception du CoO, la température de Néel du matériau antiferromagnétique est au-
dessus de la température ambiante. Cette thèse a eu pour but l’étude du phénomène de décalage 
d’échange dans le système Co/MnPd.  La température critique du MnPd étant de TN = 170K, une 
analyse sur une large plage de températures a été possible.  
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Introduction 

 
        Le premier chapitre de ce manuscrit fait le point sur les  études expérimentales menées sur 
les systèmes au décalage d'échange ainsi que sur les modèles théoriques associés. En particulier, je 
tente d'identifier qui sont les plus importantes contributions à l'analyse de décalage d'échange, et je 
discute la validité des hypothèses qui sont à la base des différents modèles développés pour décrire 
ce phénomène.  

 
 L'étude des effets traînage dans les systèmes EB, constitue une originalité de mon travail. 
Dans le deuxième chapitre de ce mémoire, je présente le modèle du Fatuzzo Labrune [2], très 
souvent utilisé pour décrire le renversement de l’aimantation dans les couches magnétiques dures. 
Ce modèle est valable lorsqu’on considère une seule barrière d'énergie dans la nucléation des 
domaines magnétiques et une seule barrière pour la propagation des parois. L’expérience montre 
que ce n’est pas le cas pour  le système Co/MnPd, en générale, pour lequel, les modèles qui 
supposent l'existence d'une large distribution des barrières d’énergie semblaient plus adéquats.      

C'est le cas des modèles utilisés pour décrire les effets magnétiques dans les aimants dur, qui 
sont présentés dans la deuxième partie de ce chapitre.  
 

Les différents outils expérimentaux utilisés dans le cadre de ces travaux sont présentés dans 
le chapitre 3. Essentiellement, il s'agit de la technique de la pulvérisation cathodique pour la 
préparation des échantillons, de la diffraction de rayons X et de la réflectométrie pour la 
caractérisation structurale, et  du SQUID et VSM  pour les mesures magnétiques.  
 

La préparation des différents échantillons est décrite dans le chapitre 4, ainsi que les 
résultats de leur caractérisation structurale.  

 
          Le chapitre 5 est consacré à la description des mesures magnétiques sur les différents 
échantillons Co/MnPd. Les cycles d'hystérésis sont mesurés systématiquement à partir de  basses 
températures au-dessus de TN et la variation en fonction de la température du champ coercitif, Hc, 
et du champ bias HE sont déduites. L'influence spécifique du champ appliquée sur le champ bias 
aux températures proche du TN, est examinée. Dans la deuxième partie de ce chapitre, un modèle 
est proposé dans lequel le champ magnétique moléculaire sur la couche antiferromagnétique est 
modélisé comme un champ magnétique extérieur appliqué. Le modèle présente des similitudes 
avec les approches du Koon [3] ou Schulthess et Butler [4] Cependant, la très forte  tilt qui 
apparaît pour la première couche antiferromagnétique conduit à des comportements inattendus. 

  
 Le chapitre 6 résume les mesures de traînage et  leur interprétation. Les valeurs du volume 
d’activation sur la premier partie du cycle d'hystérésis sont presque identique a celles déterminée 
sur les parties suivant du cycle. Enfin, la dépendance en température du champ coercitif est 
brièvement discutée. 

  
         Les principaux résultats de ce travail sont énumérés dans la conclusion générale  suivis par 
les perspectives. 
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Chapter 1 
 
 
 
 

Exchange bias: systems and models 
 

 
1.1. The exchange-bias phenomenon 
 
 

 Exchange bias, also called exchange anisotropy, is a phenomenon which characterises 
systems in which antiferromagnetic (AFM) and ferromagnetic (FM) materials are coupled. This 
phenomenon manifests itself by a shift of the center of the hysteresis loop from H=0. It was 
discovered in 1956 by Meiklejohn and Bean when studying Co particles embedded in their native 
ferromagnetic oxide (CoO) [1]. These authors observed that the M-H loops measured at T=77K 
were displaced along the field axis (see Figure 1.1) when the particles were cooled under field 
through the Néel temperature of CoO (TN=291K). Since the discovery of this effect, extensive 
work has been carried out to study various kinds of exchange bias systems. However, the 
microscopic origin of this phenomenon is still poorly understood [2]. Its present application in 
spin-valve based sensors and other application for magnetic recording has triggered a renewed 
interest into this phenomenon. 

 

  
 

Figure 1.1. Hysteresis loops at 77K of partially oxidized Co particles. Curve (1) shows the 
resulting loop cooling the compact in a 1T field. Curve (2) shows the loop when cooled in the 

absence of magnetic filed (zero field cooling-after [1]). 
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Chapter 1. Phenomenology 
 

A qualitative description of the exchange-bias phenomenon is presented in the following 
sections. 
 
 

1.1.1. Qualitative description 
 
 

Figure1.2. provides the Meiklejohn-Bean picture of exchange bias. When a field is applied 
in the temperature range TN< T< TC, (where TC is the Curie temperature of the ferromagnetic 
layer) the FM spins line up with the field while the AFM spins remain random (see Figure 1.2 
(i)).When cooling to T< TN, in the presence of the field, due to the interaction at the interface, the 
AFM spins next to the FM align ferromagnetically to those of the FM layer. The other spin 
planes in the AFM “follow” the AFM order so as to produce zero net total magnetization(see 
Figure 1.2 (ii)).When the field is reversed, the FM spins start to rotate. However, the AFM spins 
remain unchanged (see Figure 1.2 (iii)). The interfacial interaction between the FM/AFM spins at 
the interface, tries to align ferromagnetically the FM spins at the interface, i.e. the AFM spins at 
the interface exert a macroscopic torque on the FM spins, to keep them in their original position 
(see Figure 1.2 (iii)).This is the origin of exchange bias. 

                                                 

  
Figure 1.2. Schematic diagram of the spin con-figuration of an FM/AFM bilayer at 

different stages (i) - (v) of an exchange- bias hysteresis loop (after [2]). 
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Chapter 1. Exchange-bias: systems and models 
    

 
This picture for EB provides a simple explanation for the phenomenon. However, it fails to 

predict the magnitude of exchange-bias field. The exchange-bias field, according to this model, is 
several orders of magnitude larger than the experimental one.  

For example [8], in the system of FeMn / NiFe ( NiFe = Ni81Fe19 ) it is plausible that the 
interfacial exchange interaction (JINT) should be comparable to the effective exchange 
interactions of NiFe or FeMn, (JFM < JINT < JAFM), namely, of order 10-14 SI. Applying Meiklejohn 
and Bean’s model to FeMn/NiFe system with permalloy thickness of about 40nm, the exchange-
bias field is predicted of about 0,5T. However, the observed exchange-bias field in the system is 
only 5mT.The factor of discrepancy needs to be explained. 

 
 
 

1.2. Physical parameters governing exchange - bias 
 
 
1.2.1. Exchange bias and coercive field 
 
 

An interface coupling due to exchange anisotropy is observed when cooling the AFM/FM 
couple in the presence of a static magnetic field from temperature above TN, below TC 
(TN<T<TC) to a temperature T<TN. After such a field cooling procedure the hysteresis loop of the 
AFM/FM system at T<TN is shifted along the field axis generally in the opposite direction to the 
cooling field direction (“negative “exchange bias). This loop shift defines the exchange bias field, 
HE (see Figure 1.3). 
 

  
 

Figure 1.3. Hysteresis loop, m(H), of a FeF2/Fe bilayer at T=10K after field cooling . The 
exchange bias, HE, and the coercivity, HC, are indicated in Figure  (after [2]). 
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Chapter 1. Physical parameters governing exchange-bias 
 
 

The coercivity, HC, which is defined as the half width of the loop, increases generally as 
well after the cooling procedure. Both the loop shift and the increased coercivity disappear at, or 
close to, the AFM Néel temperature confirming that it is the presence of the AFM material, 
which causes these effects [1, 2]. The coercivity increase below TB

1, tends to characterise low-
anisotropy AFM systems [3].  

It can be understood as follows: in the case of an AFM with small anisotropy, when the FM 
rotates it”drags” the AFM spins irreversibly, increasing the FM coercivity. For a large AFM 
anisotropy, the FM decouples from the AFM because it cannot drag the AFM spins, in this case 
the coercivity increase is much less [4, 5]. 

 
 
 

1.2.2. Field cooling (FC) and zero field cooling (ZFC) 
 
 
         As already mentioned to induce unidirectional anisotropy and thus exchange bias, the 
AFM/FM layer systems are usually cooled (or grown) below the AFM Néel temperature, in the 
presence of a static magnetic field, which allows the ferromagnetic layer to be saturated. Larger 
cooling fields do not further affect the FM layer. It is generally considered that the exchange bias 
field is zero after zero field cooling (ZFC). 

However, Miltényi et Gierlings [7] have shown that exchange bias field HE, can be tuned by 
cooling in zero field from different magnetization states (see Figure 1.4.), in agreement with 
several other studies [6], this confirms that the role of cooling field is not to induce HE but only to 
have a single FM domain state above TN and thus a maximum exchange bias effect.  
 

  
 

Figure 1.4. Hysteresis loops for a FeF2/Fe bilayer at T=10K cooled in zero field from T= 85K in 
different magnetization states (a) m = 3.46×10-4 emu, (b) m = 1.89×10-4 emu,   

(c) m = -0, 92 ×10-4 emu, (d) m= -3.29 ×10-4 emu ( after [7] ). 
                                                           
1 Blocking temperature of the system starting from which the exchange bias field vanishes. 
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It allows to select the desired value of exchange-bias using a simple postgrowth cooling 

procedure. The study was done on FeF2/Fe and CoO/Co systems both of which allow for easy 
cooling and warming of the sample across the AFM Néel temperature, TN(FeF2)=78K and 
TN(CoO)=291K. 

 
 
 
1.2.3. Thickness dependence 
 
 
FM thickness 
 
 

Generally the exchange bias field is roughly inversely proportional to the thickness of the 
FM layers indicating that exchange bias is an interface effect. 

 

FM
E t

H 1
∝                                                         (1.1) 

 
This relation holds for rather thick and continuous FM layers. However, if the FM layer is 

very thin, the relation is no longer valid which can be attributed to the fact that the FM layer 
becomes discontinuous. The dependence of coercive field on FM thickness is, more complex and 
may be strongly sample dependent [2, 8]. 

 
 

 
AFM thickness  
 
 

In general, for thick AFM layers, typically over 20 nm, HE does not depend on the thickness 
of the AFM layer .This is expected considering that exchange bias is an interface phenomenon 
and that, to approximation, the AFM magnetization does not couple to the applied field. However 
as the AFM thickness is reduced, HE decreases abruptly and finally, for thin enough AFM layers 
(usually a few nm) HE becomes zero, as shown in Figure 1.5. and Figure 1.6. 
 

This decrease of HE can be attributed to various phenomena. At very low thickness, the 
AFM structure can be affected. Also, it should be remembered that the total AFM anisotropy is 
involved in exchange bias as illustrated by the Meiklejohn-Bean condition for exchange bias: 
          

KAFM tAFM ≥JINT 
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where KAFM is the anisotropy of the AFM layer, tAFM the thickness of the AFM layer and JINT the 
interface coupling constant. 

  

 
 

 
 
Figure 1.5. Dependence of exchange 

bias HE (square symbols)  and coercivity HC ( 
triangular symbols) for the [111] oriented 
sample for 32 and 70Å Ni80Fe20 systems 
(after [8]). 

 

  

 
 
 
Figure 1.6. Dependence of exchange bias 

HE (square symbols) and coercivity HC 
(triangular symbols) for the [011] oriented 
sample for 32 and 70Å Ni80Fe20 systems (after 
[8]).

1.2.4. Temperature dependence and blocking temperature 
 
 
         Generally, the exchange bias field decreases as the temperature increases. The blocking 
temperature (TB) is defined as the temperature at which the exchange bias vanishes. As already 
mentioned in very thin AFM films, TB is in general close to TN [9] (see Figure 1.7.). There are 
however systems in which TB is much lower then TN. This phenomenon seems to be related to the 
grain size and thickness of the AFM layer, through finite size effects.  
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Figure 1.7. Exchange-bias field HE 

and coercive field HC versus measurement 
temperature for two permalloy (200Å)/CoO 
samples: (square symbols) annealed at 
1100°C for 36h prior to deposition, (circular 
symbols), without annealing (after [9]).

 
 
1.2.5. Negative and positive exchange bias 
 
 
          The shift of the hysteresis loop is usually in the reversed direction of the cooling field, 
denoted as negative exchange bias or normal exchange bias. Positive exchange bias (PEB), i.e. a 
shift in the same direction of the cooling field, was first observed by Noguès et al. [11] in 
FeF2/Fe bilayers cooled in a very high field(HFC=7T) whereas negative exchange bias was 
observed when cooled in lower field (HFC=0,2T).  

 PEB may constitute an important clue to understand the mechanism that governs EB in 
general. The value of the cooling field needed to obtain a positive shift of the hysteresis cycle is 
an important parameter influenced by the structure of the sample, and the interfacial coupling. In 
the case of a strong interfacial coupling a larger cooling field is necessary to obtain a positive 
shift [12]. 

 To explain PEB, Kiwi et al. [13] have proposed that, at high cooling fields, the interface 
layer of the antiferromagnet aligns ferromagnetically with the external applied field and therefore 
ferromagnetically with the F itself. As the preferred orientation between the interface spins of the 
F layer and AFM layer is the antiparallel one (antiferromagnetic coupling), the EB becomes 
positive. 
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1.2.6. Asymmetry of the hysteresis loops-training effect 
 
 

A curious characteristic of the exchange bias observed in several systems is the fact that the 
two branches of the hysteresis loop are different: the descending part is steeper and the ascending 
one is more rounded. Such an asymmetry is observed in exchange biased bilayers with thin 
antiferromagnetic layers or for systems containing low anisotropy antiferromagnets [14] (see 
Figure 1.8.). 
 

 

 
 

 
 
Figure 1.8. Hysteresis loop for the Fe-

MnF2 sample and the orientation of the 
cooling field, HFC=0.64T, relative to the 

MnF2 domains (after [14]).

 
This phenomenon is due to the fact that AFM moment configuration is not fully frozen and 

tends to follow the FM moments at the interface. After FM moments reversal, a torque exists in 
the AFM moments which favour progressive moment rotation at the expense of nucleation / 
propagation observed during the first half cycle [15, 16] (see Figure 1.9).  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.9. Magnetic hysteresis loops of (a) a uniform FeF2(200 Å)/Fe(150 Å)/Al(40 Å) 

film, and (b) a uniform FeF2(200 Å)/networked-Fe(150 Å)Al(40 Å) at 10 K, after field cooling in 
0.5T from 300 K. Different parts of the reversal process are labelled I, II, and III (after[15]). 
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Further in many exchange-biased film systems, HE depends on the number of 

measurements, a property often called a training effect [17, 18, 19, 20]. If several consecutive 
hysteresis loops are measured, the shift (HE) of the consecutive loops will decrease. It was often 
found experimentally that nHH EE /1∝− ∞ , where n indicated the total number of consecutive 
loops (see Figure 1.10). 
 

 

 
 
 

 
Figure 1.10. Coercive fields for the 

increasing field branch, Hα, and decreasing 
field branch, Hβ, of the hysteresis loop as a 
function of measurement order, n, for an 
Fe20Ni80/ FeNiMn bilayer at room 
temperature(after [20]). 

 
 

This phenomenon, often more important in polycrystalline AFM seems to be related to 
partial reorientation of the AFM domains due to FM magnetization reversal [21].  
 
 
1.3. Exchange bias systems 
 
 

After the discovery by Meiklejohn and Bean [1] in 1957, of exchange bias in Co/CoO small 
particles, exchange bias has been observed in a great number of materials. Initially most studies 
concerned exchange bias with oxide systems (Co or NiO) coupled to a simple ferromagnet such 
as Fe, Co FeNi .More recently most studies focused on exchange bias in films and in many 
instances the AFM was a metallic alloy in particular with Mn. 

A brief summary of the different systems studied is presented in Table1, together with their 
essential magnetic properties [2]. 

It is unfortunate that the exchange bias parameters shown in this table are not always 
meaningful since they correspond to room temperature (where Δσ represents the variation in 
interfacial exchange coupling energy which occurs when the FM layer magnetization is reversed 
and will be discussed more in detail in Chapter 5 section 5.4). 
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Table1. Calculated parameters associated to different metallic AFM’s. 
 
 
 
 
1.4. Models and theories 
 
 

Since the discovery of exchange-bias, many models have been introduced to explain the 
properties of this effect. Up to now, there is no model that can give a full explanation to this 
phenomenon. 
 
 
1.4.1. Meiklejohn and Bean’s model 
 
 

In their paper, Meiklejohn and Bean proposed for the first time a model to explain the 
exchange-bias and its related effect. They assumed coherent rotation of the FM and AFM 
magnetization. The energy per unit interface can be written [1] as: 
 

)cos()(sin)(sin)cos( 22
0 αβαββθμ −−++−−= INTAFMAFMFMFMFMFMapp JtKtKtMHE      (1.2) 

 
where Happ is the applied  magnetic field, MFM the spontaneous magnetization of the 
ferromagnetic layer, tFM the thickness of the FM layer, tAFM the thickness of the AFM layer, KFM 
the anisotropy of the FM layer (in J/m3), KAFM the anisotropy of the AFM layer (in J/m3) and JINT 
the interface coupling constant (in J/m2), equal to 2/σΔ .  
 
 

 

 
AFM material 

 

 
Δσ(10-3* J/m2) 

 
TB(K) 

 
TN(K) 

CoO 0.4 183 290 
NiO 0.09 480 520 

Ir20Mn80 0.19 520 690 
Pt56Mn44 0.032 650 980 
Ni50Mn50 0.27 520 1070 
Fe46Mn54 0.09 330 490 
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The angles are defined as follows: α is the angle between MAFM and the AFM anisotropy 
axis, β is the angle between MFM and the FM anisotropy axis and θ is the angle between H and 
the FM anisotropy axis (see Figure 1.11.). 

Neglecting the FM anisotropy, which in general is considerably smaller than KAFM and 
minimizing the energy with respect to α and β, the exchange bias field is given by: 
 

FMFM

INT
E tM

JH =0μ                                                      (1.3) 

 
Another important result from this minimization is the condition: 
 

INTAFMAFM JKt ≥                                                 (1.4) 
 

 which is required for the observation of exchange-bias. 
 

When KAFMtAFM>> JINT, the AFM magnetization remains frozen (α is a constant) when the 
FM magnetization rotates (β vanishes).By contrast for KAFMtAFM <<JINT, the FM moments drag 
with them the AFM moments during their reversal.  

 
 
 

  

 
 
 
 

Figure 1.11. Schematic diagram of angels 
involved in an exchange-bias system. The AFM 
and the FM anisotropy axes are assumed to be 
collinear (after [2]). 
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1.4.2. Interfacial domain wall 
 
 

In the following section, the main physical parameters governing exchange bias are 
described (section.1.2) and the various models performed to approach more qualitatively this 
phenomenon are presented (1.3). 
 
 
 
1.4.2.1. Néel-Mauri’s model 
 
 

In order to account for the discrepancy of the Meiklejohn and Bean model with experiment, 
Néel in 1967 [22] and Mauri et al. [23] in 1987 proposed an explanation  for the reduced bias 
fields by showing that the formation of a domain wall parallel to the interface dramatically lowers 
the energy required to reversed the magnetization. The Mauri model is illustrated in Figure 1.12. 
The infinitely thick AFM is assumed to have a uniaxial anisotropy in the z direction. To simplify 
the Figure, spins of only one sublattice are shown.  

The FM spins rotate coherently, when the applied magnetic field is swept as to measure the 
hysteresis loop. The first interfacial AFM monolayer is oriented away from the FM spins making 
an angle α  with the direction of the field cooling direction and with the anisotropy axis of the 
AFM layer. The next AFM monolayers are oriented away from the interfacial AFM spins as to 
form a domain wall parallel to the interface.  

 
 

Figure 1.12. Magnetic model for the interface of a thin ferromagnetic film on a thick 
antiferromagnetic substrate. The uniaxial anisotropy of the antiferromagnet is along the z axis. 
External magnetic field is applied opposite to z and the exchange coupling across the interface 
with thickness ξ is positive. The spins of only one sublattice of the antiferromagnet are shown 
(after Mauri et al. [23] ). 
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The spins of only one AFM sublattice are depicted, the spins of the other sublattice being 
oppositely oriented as to complete the AFM order.  

 
Using the Stoner-Wohlfarth model, the energy can be written as: 
 

))cos(1(2)cos()(sin)cos( 2
0 ααβββθμ −−−−+−−= AFMAFMINTFMFMFMFMapp KAJtKtMHE  

(1.5) 
 

where the first term is the Zeeman energy of the ferromagnet in an applied magnetic field, the 
second term is the anisotropy term of the FM layer, the third term is the interfacial exchange 
energy and, the forth term is the energy of the partial domain wall. The new parameter in the 
equation above is the exchange stiffness AAFM. As in the case of Meiklejohn and Bean model, the 
interfacial exchange coupling parameter JINT [J/m2] is again left undefined.  

The free energy can be written in units of AFMAFM KA2 , which is the energy per unit 
surface of a 90° domain wall in the AF layer: 
 

                    [ ] ))cos(1()cos(1)cos())cos(1( 2 αβαλβμβ −+−−++−= ke                           (1.6) 
 

 where: )2/( AFMAFMINT KAJ=λ , is the interface exchange, with JINT being redefined as 

ξ/AFMFMINT AJ −= , where ξ is the interface thickness. AFMAFMFMFM KAtK 2/=μ  is the reduced 

ferromagnet anisotropy, and AFMAFMFMFME KAtMHk 2/0μ=  is the reduced external magnetic 
field. 

Mauri et al. [23] have calculated the magnetization curves by numerical minimization of the 
reduced free energy equation (1.6). Several values of the λ and μ parameters were considered 
providing quite realistic hysteresis loops. Their analysis highlighted two limiting cases, which 
delivers the following expressions for the exchange bias field: 
 

]/)/[( 00 FMFMAFMFME tMAH μξμ −−=            for λ<<1                              (1.7) 
 
                                  FMFMAFMAFME MtKAH /)(2 2/1

0 −=μ           for λ>>1                              (1.8)       
 

For the limiting case λ<<1 (strong coupling) the value of exchange bias field is similar to 
the value given by the Meiklejohn and Bean model. For this situation, practically no important 
differences between the predictions of the two models exist. When the coupling is weak λ>>1, 
the Mauri model delivers a reduced exchange bias field which, practically is independent of the 
interfacial exchange energy. It depends on the domain wall energy and the parameters of the 
ferromagnet. The ”1/tFM ” law is preserved by the Mauri model. 
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1.4.3. Frustration 
 
 
1.4.3.1. Malozemoff’s model 
 
 

Malozemoff noted that the Néel –Mauri type of models were unlikely to provide a realistic 
description of EB systems because atomistically perfect uncompensated interfaces are assumed. 
Based on this idea Malozemoff (1987) proposed a new mechanism for exchange anisotropy 
postulating a random nature of the exchange interactions at the FM-AFM interface [24, 25]. 
Malozemoff noted that the exchange field created by a saturated ferromagnet on an 
antiferromagnet is equivalent to a random field. He argued than that, starting from an initially 
compensated interface, the antiferromagnet will spontaneously break up into magnetic domains 
of typical size δ, the AFM domain width (see Figure 1.13). 

 
 

 
 

Figure 1.13. Schematic side view of FM/AFM bilayer with FM domain wall driven by an 
applied field (after [24]). 

 
 

Assuming that the number of defects is equal to N, the interfacial energy becomes: 

Nl /σσ = where 2a
Jzl ±=σ  represents the interfacial energy per defect, a  is the lattice 

parameter and z a parameter of the unity order. 
When the antiferromagnet breaks up into domains, domain walls perpendicular to the 

interface are formed (see Figure 1.14).The exchange bias field is given by the competition 
between the interface energy gained when the domains are formed and the domain wall energy 
lost. One obtains: 
 

FMFM
E tM

H
20

σμ Δ
=                                                          (1.9) 
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where MFM and tFM are the magnetization and thickness of the ferromagnet.  

  

 
 

Figure 1.14. Schematic view of a vertical domain wall in the AFM layer. It appears as an 
energetic favourable state of FM/AFM system with rough interfaces. 

 
By analyzing the stability of the magnetic domains in the presence of  the random field, a 

characteristic length L of the frozen-in AFM domains and their characteristic height, h, are 
obtained: FMAFM KAL /π≈  and h = L/2, where AAFM is the exchange stiffness constant and h is 
the characteristic height of the created AFM domains. 
 

Once these domains are fixed, flipping the ferromagnetic orientation causes an energy 
change per unit area of aLzJ πσ /4=Δ , which further leads to the following expression for the 
EB field: 
 

   
FMFM

AFMAFM
E tM

KAz
H 20

2
π

μ =                                                 (1.10) 

 
This form is remarkably similar to equation (1.8) and therefore equally able to explain the 

order of magnitude of the exchange anisotropy effect, unfortunately the model is specifically 
formulated for single AFM systems and does not clearly propose how the model can be extended 
to polycrystalline systems.  
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1.4.4. Perpendicular coupling 
 
 
1.4.4.1. Koon’s model 
 
 

In the system NiFe / FeMn, Jungblut et al. [8, 26] made the very surprising observation that 
the ferromagnetic moments were perpendicular to the antiferromagnetic ones.  

 
Koon [27] tackled the problem of explaining EB in thin films with compensated FM/AFM 

interfaces by means of a micromagnetic calculation. His calculations indicate the stability of 
interfacial exchange coupling with a perpendicular orientation between the FM and AFM axes 
directions. He refers to the perpendicular interfacial coupling as “spin-flop” coupling (see Figure 
1.15). To observe perpendicular interfacial coupling, his model specifies the structure and 
orientation of the AFM layer, and the relative orientation between the AFM and FM layer. The 
model utilizes a single-crystal body centered tetragonal (bct) AFM structure which gives place to 
have a fully uncompensated interfacial spin plane (1 0 0) or a fully compensated interfacial spin 
plane (1 1 0). 

He included uniaxial anisotropy in the AFM crystal along the (0 0 1) axis, and the FM layer 
was modeled with no intrinsic anisotropy. The model was applied to two different cases of the 
AFM interfacial spin plane: (1) a fully compensated interface and (2) a fully uncompensated 
interface. 

 

 
 
 
 

 
Figure 1.15. (a) Magnetic structure of 

a <1 1 0 > oriented AFM body centered 
tetragonal crystal. The exchange bonds are 
represented by the dashed lines. (b) Lowest 
energy spin configuration near the interface 
plane. The interfacial AFM plane (L15) is 
fully compensated, and the interfacial FM 
plane (F16) is oriented perpendicular (90° 
coupling) (after [27]). 
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For both cases, he calculated the interfacial energy density as a function of the angle 

between the FM spins and the Néel axis of the AFM spins. The fully uncompensated interface 
gives a collinear coupling, and a minimum at θ=0°. The fully compensated interface gives the 
surprising result of an energy minimum at θ=90° indicating perpendicular interfacial coupling 
between the FM and AFM spins (see Figure 1.16).  

 

 

 
 
Figure 1.16. Energy per unit area of 

a 15/15ML (110) FM/AFM bilayer as a 
function of  the angle between FM and 
AFM magnetization axes. The dotted curve 
corresponds to a structurally identical film 
with only AFM or FM spins. For both 
films |J|=1meV (after [27]). 

 
Apart from similar success obtained by  the preceding models, the model proposed by 

Koon can explain the exchange bias observed in compensated interface while the others can 
only explain that in uncompensated interface. This model is very consistent with experimental 
results from Nogués et al. [28].  
 

Schulthess and Butler [29] combined Malozemoff’s random interface field model, where 
surface defects are introduced assuming a interfacial unit cell with on interfacial FM site 
occupied by an AFM moment, with Koon’s orthogonal magnetic arrangement model.
According to this authors Koon’s model fails to yield exchange bias HE=0, but leads to 
coercivity. In the case of flat interfaces the FM/AFM coupling that results does not yield 
unidirectional anisotropy which is the source of bias but irreversible magnetization curves with 
finite coercivity is obtained.  
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1.4.4.2. Kiwi’s model  
 
 

Kiwi et al. [30, 31] proposed an extension of Koon’s model to give an explanation for the 
dependence of the sign of the exchange bias on the cooling field magnitude.  

This model is based on an incomplete domain wall in the FM and it assumes that the AFM 
interface monolayer reconstructs, close to Néel temperature, into an almost rigid canted magnetic 
structure. Moreover, it remains frozen, in a metastable state, during the cycling of the external 
magnetic field, when perform for H<HFC. The model is specified analytically by the following 
Hamiltonian:  
 

 
H   = HAFM + HFM/AFM + HFM                                                                      (1.11) 

 
where: HAFM, HFM/AFM and HFM describe the AFM substrate, interface coupling and the FM slab, 
respectively.  

The interface spin configuration of the bilayer after field cooling through TN is illustrated in 
Figure 1.17. The left panel of Figure 1.17 corresponds to cooling under low HFC field such that 
the interfacial exchange energy is larger than the Zeeman energy; on the contrary.  
 

 

 
 

Figure 1.17. Spin configuration of the AFM interface monolayer and both the FM and the 
two AFM monolayers closest to the interface, after it is field-cooled through TN. The left panel is 
in case of low cooling field and the corresponded canting angle is larger than 90°. The right 
panel is for high cooling field and the canting angle is smaller than 90° (after Kiwi et al. [30]). 

 
 
 

 



 35

Chapter 1. Exchange-bias: systems and models 
 
 
By contrast, the right result panel corresponds to cooling under high magnetic field. In both 

cases the FM slab magnetization is fully saturated and the AFM spins are fixed, except those at 
the interface monolayer. Therefore, the only energy difference is due to changes of interface 
configuration. From the above equation, it is obtained:  

 

θμπθπθθ cos)2()
2

(cos)
2

cos()2cos(2 /
2

FCBAFMFMAFMAFM HgJKJE −+−−⎥⎦
⎤

⎢⎣
⎡ ++=     (1.12) 

 
where E is the energy per spin (  the constant terms have been neglected), JAFM and KAFM the 
exchange and anisotropy parameters for the antiferromagnetic layer, μB the Bohr magneton, g the 
gyromagnetic ration and JFM/JAFM the interfacial exchange between the FM layer and the AFM 
layer. 
 

0sin)2(cos22sin4( / =−−−−=
∂
∂ θμθθ

θ FCBAFMFMAFMAFMAFM HgJJJKE                (1.13) 

 
 

Solving the above equation with respect to θ, the dependence of the sign of exchange bias 
(positive or negative) on the cooling field magnitude can be explained qualitatively. For low 
cooling fields (HFC<2|JFM/AFM|/μBg), the energy is minimum for θ=θc>π/2, where θc is the canting 
angle of the AFM interface monolayer measured relative to HFC (see the left panel of Figure 
1.17.). Taking the projection of the AFM spin vectors on the field cooling direction, it can be 
deduced that the exchange bias is in the reversed direction of the cooling field. 

 Therefore this configuration accounts for negative exchange bias. Reciprocally, in the case 
of high cooling field (HFC>2|JFM/AFM|/μBg), the minimum of E shifts to θ = θc< π/2, thus leading to 
positive exchange bias. If HFC=2|JFM/AFM|/μBg then the energy is minimum for θ = θc= π/2, and the 
exchange bias vanishes. 
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1.4.5. Compensated versus non compensated interfaces 
 
 
1.4.5.1. Stamps approach 
 
 

The approach developed by Stamps and co-workers [32, 33, 34] follows from the work of 
Néel and Mauri et al. [22, 23] extending the model of planar domain wall to the formation of 
partial domain wall in the AFM layer. Biquadratic (spin-flop) and bilinear coupling energies are 
considered. The model applies to compensated, partially compensated, and uncompensated 
interfaces. 

 
In this model defects are simulated by mixing both ferromagnetic and antiferromagnetic 

spins at the interface. This is shown in the cross-sectional diagram of Figure 1.18. A single site 
defect in Figure s 1.18 (a) and 1.18 (b) is referred to as a line defect. Results for a step defect 
where two or more defects are introduced are shown in Figure s. 1.18 (c) and 1.18(d). 

Introducing a line defect in a compensated surface this creates an asymmetry between the 
number of ‘‘up’’ and ‘‘down’’ spins at the interface. The impact of this asymmetry was studied 
by plotting the ‘‘natural’’ angle of the ferromagnet θnat measured relative to the antiferromagnet 
anisotropy axis, for different sizes of the unit cell in the [001] direction .This size is denoted by 
Λ. The angle θnat was determined by calculating the equilibrium orientation of the ferromagnet 
spins from an initial randomized state, in the absence of an applied field. Large exchange energy 
in the ferromagnetic layer is present so that all ferromagnet spins are aligned parallel. 
 
 

 
 
 
Figure 1.18. Schematic diagram showing line defects [(a) and (b)] and step defects [(c) and (d)] 

at compensated and uncompensated interfaces [32, 33]. 
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The largest asymmetry was found for Λ=2 where only one antiferromagnet sublattice spin 

is present at the interface. This is uncompensated like in behaviour and results in θnat = 50°. In the 
limit of a perfect interface Λ→∞, the ratio of the antiferromagnet sublattice interfacial spins 
become nearly equal and results in the tendency θnat→ 90°. For the uncompensated case, an 
opposite trend is observed with a compensated like interface at Λ= 2 (θnat = 90°) and θnat = 0° as 
Λ→∞.  

 

 
 

Figure 1.19. The natural angle θnat as a function of defect spacing for compensated and 
uncompensated interfaces [33]. 

 
 
The natural angle defines an axis along which a magnetization curve measurement attains 

the largest value of HE, since this is the equilibrium orientation of the ferromagnetic layer. 
The values of these angles for the perfect uncompensated interfaces are 90° and 0°, 

respectively (at 0° K, θnat is strongly temperature dependent) (as shown in Figure 1.19).  
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1.4.6. Final remarks 
 
 
 Although the phenomenon of exchange bias was discovered a long time ago, the physical 
origin of this effect remains poorly understood. Kiwi [31] has proposed a useful summary of the 
main features of the various models described in this section. The main conclusion are gathered in 
the table below:  
  
 

Model Main features Interface magnetic 
structure 

Main results 

 
Meiklejohn's model 

 
Coherent FM and AFM 

magnetization 

Uncompensated AFM 
interface layer; 

collinear coupling 
between FM and AFM 

 
H

E 
much larger than observed 

experimentally 

 
Néel-Mauri's model 

 
FM interface coupling;  thin 

FM film 

Uncompensated AFM 
interface layer; 

collinear coupling 
between FM and AFM 

 
Reasonable H

E 
values 

 
Malozemoff's model 

 
Random defects create 

random fields 

Uncompensated AFM 
interface layer; 

collinear coupling 
between FM and AFM 

 
Reasonable H

E 
values; depend 

on structure 

 
Koon/Schulthess model 

 
Canting of the AFM 

interface spins 

Compensated AFM 
interface layer; 

perpendicular coupling 
between FM and AFM 

 
Realistic coupling mechanism 

 
Kiwi's model 

 
Spin glass like AFM canted 

interface layer 

Compensated AFM 
interface layer; 

perpendicular coupling 
between FM and AFM 

 
Reasonable H

E 
as a function of 

H
FC

 

 
 

Table2. Brief outline of the main characteristics and results of the mentioned above 
models (adapted from Kiwi [31]). 
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Chapter 2 
 
 
 
 

Introduction to magnetization reversal processes and magnetic after 
effect 

 
 
 
 

An important parameter to characterize hard magnetic systems is coercivity [1].Let us 
assume that a magnetic field is applied along the direction denoted (-). Coercivity appears when 
low field domain wall motion does not take place, either the magnetization being already 
saturated in zero field along the (+) direction, or domain walls being pinned at structural 
heterogeneities. Under such circumstances, the magnetic configuration of the system is an energy 
minimum in the field. This energy minimum vanishes at H=HC, the coercive field. Then 
magnetization reversal takes place and the system reaches the lowest energy state. 

The existence of coercivity is linked to that of magnetic anisotropy. This can be illustrated 
in a simple model due to Stoner and Wohlfarth [2], where magnetization is assumed to be 
uniform and magnetization reversal can only occur by coherent rotation. The Stoner-Wohlfarth 
model is briefly described in the first part of this Chapter. In real systems, the coercive field is 
much weaker then the anisotropy field. At most HC reaches approximately 0.1HA. Actually 
coercivity is determined by structural defects. Various models to describe the link existing 
between coercivity and anisotropy have been proposed, which are explained in the second part of 
this Chapter  
 
 
2.1. Coercivity 
 
 
2.1.1. The classical Stoner-Wohlfarth model 
 
 

In the Stoner-Wohlfarth [2] model coherent rotation of the magnetization is assumed and 
uniform magnetization is preserved during magnetization reversal. In uniaxial system, the energy 
in an applied magnetic field H can be written as:  

 
DHS EKHME ++−−−= θθθπμθ 2

10 sin)cos()(                                 (2.1) 
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In relation (2.1) the first term represents the Zeeman energy, the second term represents the 

magnetocrystalline anisotropy and the third one ED, represents the dipolar energy. MS is the 
spontaneous magnetization, θ the angle between MS and the easy axis c, θH the angle between H 
and the easy axis c and K1 the second order anisotropy constant (see Figure 2.1.).  

 
If the sample is an ellipsoid of revolution whose major axis coincides with the c-axis, ED 

can be written as: 
 
 

[ ]θμ 22
//

2
//0 sin)(2/ SSD MNNMNE −+= ⊥                                      (2.2)    

 
where N// and ⊥N  are the demagnetizing factors along c and perpendicular to c. 
 
The equilibrium solutions for θ are deduced from: 
 
 

02sin)sin(/ '
10 =+−−−=∂∂ θθθπμθ KHME HS                                     (2.3) 

 
 

and           02cos2)cos(/ '
10

22 ≥+−−=∂∂ θθθπμθ KHsME HS                                 (2.4) 
 
 

where                          [ ]2
//01

'
1 )( SMNNKK −+= ⊥μ                                               (2.5) 

 
is an effective anisotropy constant including shape and magneto-crystalline anisotropies. If the 
applied magnetic field is initially antiparallel to the magnetization, the absolute minimum of 
energy, which corresponds to a parallel coupling between the moments and the field, is obtained 
for θ=π: 
 

2
//00 )2/()( SS MNHME μμπ +−=                                            (2.6) 

 
 

As long as H< 2K1
’/μ0MS, a second minimum exists corresponding to antiparallel alignment 

of the magnetization and the field: 
 

2
//00 )2/()0( SS MNHME μμ +=                                                 (2.7) 

 
The two minimum energy states are separated by an energy maximum (see Figure 2.1.): 
 

2
//0

'
1

2
0

'
1 )2/(4/)()0( SS MNKHMKE μμ ++=                                     (2.8)   
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where )2/arccos( '

10 KHM Sμθ =  
 
As H reaches the value of the effective anisotropy field: 
 

[ ] SSSA MMNNKMKHH 0
2

//010
'

1
' /)(2/2 μμμ −+=== ⊥                        (2.9) 

 
the energy barrier is reduced to zero. If the magnetization was initially antiparallel to the field, it 
then rotates abruptly into the field direction: the coercive field HC is calculated to be equal to the 
effective anisotropy field H’

A.  
 

 
 
Figure 2.1. Energy barrier at the origin of coercivity in the Stoner-Wohlfarth model (after [1]). 

 
 

In real systems the coercive field is much weaker than H’
A. This may be attributed to the 

influence of structural defects. At defect position, a small volume of inverted magnetization may 
nucleate and magnetization reversal may develop from there. A description for the associated 
phenomenon will be presented in the next section. 
 
 
2.1.2. Magnetic reversal in real systems 
 
 

In this section and the following we will consider high anisotropy systems in which the 
magnetocrystalline anisotropy largely dominates shape anisotropy, which may be neglected. 

The first deviation from saturation, true nucleation, occurs at a local (surface) defect when 
the reversal field, HR, reaches the value of the nucleation field, Hn (HR being  the sum of the 
applied magnetic field H, and of the dipolar field within matter, Hdip) .According to SW, HR is 
necessarily higher than the local defect anisotropy field, Hdefect.  

 
 

Δ 
Energy 
barrier Δ 

Θ (degree) 
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A nucleus is then formed in which the magnetization is not fully aligned along the initial 

easy direction. The moment configuration within the nucleus has necessarily similarities with a 
magnetic wall since a wall constitutes the non-uniform moment configuration of the lowest 
energy.  

Following nucleation, the nucleus grows and enters into the main phase: the wall energy, γ, 
(passage mechanism) and its surface area (expansion mechanism) vary. The associated 
characteristic critical fields are Hpass and Hexpans, respectively. Finally, possible domain wall 
pinning – depinning may occur when the magnetic properties vary locally within the main phase 
and the corresponding critical field is Hdepin. The effective reversal field HR is the largest of this 
series of critical fields, and it defines the determinant coercivity process.  

These processes occur within a local critical volume under an effective critical field. This 
provides the physical definition of the activation volume v.  
 
 
2.1.2.1. Nucleation and expansion 

 
 
 

In regions where coercivity is reduced, a zone with inverse magnetization is created. It is 
exchange coupled to the rest of the material which is considered to have ideal properties. This 
regions with reversed magnetization may be assumed to be separated from the bulk by a domain 
wall of energy γ. Let’s assume now that an additional volume v of reversed magnetization is 
created (see scheme in Figure 2.2.). 

 

                                                    
 
 

                 Figure 2.2. Schema of the nucleation and expansion process. 
 
 

We ask ourselves whether this volume will collapse or expend to infinity and thus lead to 
full magnetization reversal. The energy variation )(vEδ associated to the creation of v is: 

 

v 

Reversed 
magnetization volume
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vHMsvE S02)( μγδ −=                                                    (2.10) 
 
  

where s is the additional surface area resulting from the creation of v. 
 
The volume will expend in the case when Eδ  is negative, thus: 
  
 

HMs
v

S02μ
γ

〉                                                       (2.11) 

 
Expression (2.11) describes the fundamental nucleation mechanism. Solving it explicitly is 

difficult since neither γ nor v/s are known.  
 
 
 
2.1.2.2. Domain wall pinning  
 
 

In this section, we assume that nucleation-expansion takes place in low fields. Then in a 
homogenous material, domain wall motion can take place even under vanishingly small internal 
magnetic field. No coercivity is associated to this phenomenon. This occurs for instance in a 
single crystal, or in a perfect thin film [3]. 

In heterogeneous systems however, the energy of the domain walls varies with their 
position, thus providing another possible source of coercivity:  

 

dx
dx

HdxMxE S
δγμ +−= 02)(                                        (2.12) 

 
where the first term represents the variation in Zeeman energy associated to a domain wall 
displacement dx and the second term represents the associated variation in the domain wall 
energy. 
 

Due to irregularities in the dγ/dx profile, various energy minima and maxima exist for the 
domain wall energy γ, and they will set up energy barriers to domain wall motion (see Figure 
2.3.). 
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Figure 2.3. Schematic view of the energy barriers overcome by the domain wall (in grey). 
 
 

 The ⎟
⎠
⎞

⎜
⎝
⎛

dx
dγ value determining coercivity corresponds to the maximum, 

max
⎟
⎠
⎞

⎜
⎝
⎛

dx
dγ  [4]. To 

this the maximum pinning force can be related. The coercive field HC is deduced to be: 
 

max
0 2

1
⎟
⎠
⎞

⎜
⎝
⎛=

dx
d

M
H

S
C

γμ                                                        (2.13) 

 
 
2.2. Thermal activation in coercive systems 
 
 
 

 Whatever the exact coercivity mechanism is, thermal activation adds to the energy of 
physical systems a factor fluctuating in course of time. If the considered system is in a stable 
state, the thermal activation cannot affect it irreversibly, and thus the physical parameters which 
characterise this state remain invariable during the measurement. By contrast, the system state 
may evolve with time when (i) it corresponds to a metastable state and (ii) the energy barrier to 
be overcome and reach the minimum energy is of the same order of magnitude as thermal 
activation energy. 

 
The above concept applies to hard magnetic materials. When a field is applied antiparallel 

to the magnetization the system tends to reach the state of minimum energy in which the 
magnetization is parallel to the field. The magnetization variation with time becomes important  
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when the applied magnetic field approaches the coercive field and the energy barrier Δ to be 
overcome is reduced (see Figure 2.4). 

 
The average time τ necessary to overcome the energy barrier Δ, is given by the Arrhenius 

law (see Figure 2.4): 
 

⎟
⎠
⎞

⎜
⎝
⎛ Δ

=
kT

exp0ττ                                                       (2.14) 

 
where τ0 is the minimum relaxation time, of the order 10-9 s  to 10-10 s  . 
 

 

 
 

  
                             Figure 2.4. Schematic view of the energy states. 

 
The phenomenon of overcoming the barrier under the effect of thermal activation is referred 

to as “nucleation”. Here nucleation refers to the thermally activated nucleus which forms 
whatever the physical mechanism determining coercivity is (nucleation, expansion or 
propagation). It is unfortunate that the same term is used to describe two different effects. In the 
rest of this manuscript, the term nucleation mostly refer to the thermal activation on the energy 
barrier, without specifying which is the actual physical phenomenon involved.   

 
For an ergodic system, the probability for nucleation during time t is : 
 

τ
dtdp =                                                             (2.15) 
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where τ is the characteristic time necessary to overcome the barrier (in the following we will 
sometimes use the parameter R representing the nucleation rate, R=1/τ). 
 
The total number of activated reversed nucleus N(t) at time t is derived to be: 

 
)1()( /

0
τteNtN −−=                                                 (2.16.a) 

 
where N0 is the total number of nucleation sites per unit area. 
 

Assuming that to each nucleation event, the same variation of magnetization 2M is 
associated, one derives directly from (2.16.a) the time variation of the magnetization: 

 
)1()( /

0
τteMtM −−=                                               (2.16.b) 

 
mNM 00 =                                                          (2.17) 

 
where M0 is the magnetization in the saturated state. 
 

 

                              
 

Figure 2.5. Temperature dependence of the mean nucleation (Hn1) and propagation fields 
(Hp) for a GdFe(1000 Å)/TbFe(2 Å )/GdFe(500 Å)(after[5]). 
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2.2.1. Fatuzzo-Labrune’s model 
 
 
 

E. Fatuzzo, in 1962, proposed a model for describing the reversal of the polarization under 
the effect of thermal activation in ferroelectric crystals [6].This model was later adapted for 
magnetic materials by Labrune et al. [7] in 1989, and used to study magnetic after effect in hard 
films [8] and in exchange bias systems with perpendicular anisotropy [9]. 

The model assumes that domain nucleation takes place randomly on the surface of the 
sample according to a statistical process. The domains formed expand sideways with a constant 
velocity v. During this expansion, a second domain, may be formed from a new nucleus (of the 
same type as the first one), which will start to grow as well (see Figure 2.6); then a third domain 
is formed and so on. After a certain time, these domains are large enough to join each other, or to 
“coalesce” until, through successive steps of nucleation, sideway growth and “coalescence”, 
magnetization is completely reversed in the whole sample. 
 
 
 

 
 

 
 
 
 
 
 

 
 
 

 
 
 
Figure 2.6. Scheme of Magnetization reversal by nucleation (a), propagation (b, c) and 

coalescence (d). 
 
 
Neglecting coalescence, the area covered by the switched domains can be expressed as: 

 

dsrtv
dt
dNtA st

s

t

−−⎟
⎠
⎞

⎜
⎝
⎛= ∫ )()( 2

0
22

0
π                                         (2.18) 

 
where r0 is the nucleus radius and v is the expansion velocity. 
 

 

(a) (b) 

(c) (d) 
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The value of A tends to infinity when t→∞ which is physically impossible. The reason for 

this is precisely the fact that the coalescence of domains and the possibility that nucleation sites 
are located in already reversed regions have not been considered. The actual area B(t) obtained 
when this is taken into account can be calculated from the area A , using a  theorem due to 
Avrami [10]: 
 

B(t) = exp(-A(t))                                                               (2.19) 
 

This theorem, however neglects the area covered by the nucleus at its birth. Taking this into 
account, it is found that (see Eq.30 in the Appendix in [6]): 
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2
00

2
0 tN

S
r

S
RtNr

tAtB
ππ

                                  (2.20) 

 
where S  is the sample total area. 

 
From this, one derives the fractional area B (t) not yet reversed at time t: 

  
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−−−+++−−= −−−− )1(

2
1)1)(exp()(

2
1)(12exp)( 212112 RtkkRtkRtkRtktB   (2.21) 

where k= v/Rr0 . 
 

Figure  2.7 (a) shows the variation of magnetization M or B(t)=(M(t)+MS)/2MS, versus time 
for different applied field values. It was found that all the curves B(t) can be merged into a unique 
curve, magnetization versus reduced time tR, where tR=t/t50(H), t50(H) being the time needed 
under an applied field H to reverse the magnetization in half the volume of the sample ( see 
Figure 2.7.(b)). 

  
Figure 2.7. (a) Magnetization change versus time for different applied field; (b) same curves 

expressed in reduced time tR (after [7]). 
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According to equation (2.21) magnetization reversal versus reduced time curves are plotted 

in Figure 2.8. for different values of the parameter k. Nucleation governs the reversal process for 
low value of k. Conversely, for large values of k, domain propagation will be dominant.  

 
The shape of the reversal curves in Figure  2.8. depend on the “ratio” between nucleation 

and propagation: 
 
-in the case of dominant nucleation (k<<1) we get from equation (2.21): 
 

B(t)= exp(-Rt)≈ exp t/τ                         and                         t50=(1/R)ln2     
 

where R is the probability for nucleation. The magnetization varies exponentially with time (see 
Figure 2.8.). 
 

-in the case of domain wall motion only (k>>1) equation (2.21) is reduced to: 
 

B(t)=exp(-k2R3t3/3)                  which gives          t50=(3ln2)1/2/Rk2/3 

 
 

  
 
 
Figre.2.8.Calculated magnetization reversal curves for different values of the parameter k 

(after [7]). 
 
 
For high k values the relaxation curve has an S shape as shown in Figure 2.8. 

 
 
 

 



 54

Chapter 2. Introduction to magnetization reversal processes  
 
 
2.2.2. Large distribution of energy barriers 
 
 

 Hard magnetic systems, objects of our interest, are not homogenous in general. This aspect 
was not considered in the previous section where only one energy barrier was assumed to govern 
magnetization reversal. Actually, when a large distribution of barriers is present, thermal 
activation is profoundly modified. To discuss this, we consider that, in an inverse applied 
magnetic field μ0H, each element of matter of volume v, is in a metastable state separated from 
the stable state by an energy barrier Δ, variable from one element to another. If we indicate by 
n(Δ) the number of  such elements (of average volume v) for which the energy barrier is between 
Δ and Δ+dΔ, the irreversible variation of the system  magnetic moment ,dμirr , resulting from the 
magnetization reversal  of the n(Δ)d Δ elements will be: 

 
ΔΔ= dvnMd Sirr )(2μ                                                   (2.22) 

 
which corresponds to an irreversible magnetization variation of the system dMirr =dμirr/VS ( VS= 
total volume of the considered system) given by: 
 

ΔΔ= dnV
vMdM

S
Sirr )(2                                               (2.23) 

 

(note that ∫
∞

=ΔΔ
0

)( SVdvn ). Posing )()( Δ=Δ n
V
vf
S

(the distribution function of the volume 

elements associated to one energy barrier Δ):  
 

ΔΔ= dfMdM Sirr )(2                                                   (2.24) 
 

Let us discuss thermal activation effects under such conditions. The probability to overcome a 
given barrier Δ between time 0 and time t can be written as (see equation 2.17.(a)): 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

−=
τ

ttP exp1)(                                                   (2.25) 

 
where τ is the characteristic relaxation time of the considered barrier, given by relation (2.14). 
Considering the properties of the exponential function : 
 
                          0)( ≈tP     for τ≤t       and        1)( ≈tP       for   τ≥t  
 

Thus, for a barrier of given high, Δ, the real time t may be identified with the characteristic 
time τ: 
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kT
t Δ

= exp0τ       

 
From this, it results that the barrier Δ may be considered to be overcome at time t, such that: 
 

0

ln
τ
tkT=Δ                                                            (2.26) 

 
Differentiating (2.24) and taking into account (2.26) the irreversible variation of 

magnetization with time is derived as: 
 

)(2
ln

Δ== kTfM
td

dM
S S

irr                                                   (2.27) 

 
with S representing  the magnetic viscosity parameter. 

In the case where f(Δ) is a constant, the magnetization varies linearly with the logarithm of 
time. Such a liner variation is often observed experimentally. This observation implies that during 
time dt a small area dΔ of the energy function f(Δ) is explored (see Figure 2.9.). 
 

 
 
 

Figure 2.9.Energy function associated to the energy barrier (the variation of f(Δ) with dΔ is 
sufficiently small so that f(Δ)≈ cte). 

 
When this applies to the entire domain of time explored, the variation of magnetization with 

the logarithm of time (T and μ0H fixed) is linear. 
Another parameter that can be deduced from magnetic after effect measurements is the 

magnetic susceptibility χ which represents the magnetization variation under the effect of H. Two 
types of variations can take place under the effect of this field: a reversible variation essentially 
due to the exerted torque on the moments which are not collinear with the field direction (χrev) 
and the irreversible variation due to the magnetization reversal over energy barriers (χirr).The total 
susceptibility χtot can be written as:            

 

dΔ
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                                                      irrrevtot χχχ +=  
 

From relation (2.24), the irreversible susceptibility H
M irr

irr ∂
∂=χ  can be expressed: 

 
 

T
Sirr H

fM ⎟
⎠
⎞

⎜
⎝
⎛

∂
Δ∂

Δ= )(2χ                                              (2.28) 

 
From (2.27) and (2.28) we can define the magnetic viscosity coefficient Sv as: 
 

Tirr
v H

kTSS
)/( ∂Δ∂

==
χ

                                             (2.29) 

 
 Sv and thus ( H∂Δ∂ / )T are the essential parameter that can be deduced from magnetic after 

effect measurements. Wohlfarth [2] introduced the concept of the activation volume,va, by 
writing the dimensional equation: 
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aS

T SM
kTvM

H 0
0 μ

μ ==⎟
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⎞
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∂
Δ∂                                           (2.30) 

 
 

va  is the activation volume which can be identified with the volume v introduced in relation 
(2.10). Relation (2.30) is very generally used to derive va from experimental data. 
 
 
 
2.2.3. Coercive field model 
 
 

We have already explained that in real systems, the coercive field is most generally much 
weaker than the anisotropy field. Magnetization reversal is actually governed by sample defects. 
Because the defect properties are unknown, a qualitative analysis of coercivity is very difficult. 
 

In the experimental analysis of coercivity it is common to express the reversal field as a 
function of the main phase anisotropy field HA [12, 13]: 

 
AR HH 00 αμμ =                                                         (2.32) 
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   where                                  dipCR HHH 000 μμμ +=                                                       (2.33) 
 
       

and  α represents the detrimental effect of defects on coercivity ( Hc is the experimental coercive 
field and dipH0μ  represents the dipolar interactions which are present in heterogeneous magnetic 
systems). 

An alternative expression for RH0μ  is obtained in the global model [10]:  
 

Sa
R Mv

H 3/10
γαμ =                                                            (2.34) 

 
where γ is the main phase domain wall energy and v the activation volume. 
 

Both expressions (2.32) and (2.34) are based on a questionable hypothesis: the coercive 
field Hc is assumed to be proportional to some intrinsic parameters of the hard magnetic phase HA 
in (2.32), γ in (2.34). Actually, there is no a priori reason for the intrinsic magnetic parameters in 
defect regions to be proportional to the intrinsic parameters of the main phase. 
 

Givord et al. [13] proposed a model which does not rest on such assumptions. Under the 
condition that second order anisotropy only is involved during reversal, the value of the reversal 
field was derived to be: 
 

)(
)(

3/20 TMv
TAH

Sa
R αμ =                                                         (2.35) 

 
 

Expression (2.35) relates the critical field to the activation volume. The main phase 
parameters introduced are the exchange constant A (T), and the magnetization MS(T). Assuming 
that the exchange constant and the spontaneous magnetization are proportional to the same 
parameters in the main phase is a much less drastic assumption than assuming proportionality 
between critical volume and main phase anisotropies. This model was tested successfully on 
several hard magnetic materials [13]. 
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Chapter  3 
 
 
 
 

Experimental techniques 
 

 
 
3.1 Sample preparation 
 
 
3.1.1. Sputtering deposition 
 
 
         We have used the sputtering method to prepare the films examined in this work. This 
technique was chosen due to its simplicity and possibility to prepare alloy films of any chosen 
composition. The RF sputtering is commonly used due to the ability to work with both 
conducting and insulating materials [1].  

For the sample preparation, a RF sputtering system model Alcatel SCM-400 was used. This 
set-up was refurbished in Laboratory Louis Néel in 2002, and it is now installed in ITIMS 
(Hanoi, Vietnam). A schema of this set-up is shown in Figure 3.1. In addition the deposition of a 
coating layer to prevent sample oxidation, was realised in Néel Institute (Laboratory Louis Néel) 
using a face to face target arrangement. 

 
 

 
 

Figure 3.1. RF sputtering principle. 
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The various samples prepared were Co/MnPd bilayers deposited on a Si substrate. Samples 

with structure Si (100)/ MnPd/ Co were grown at room temperature by RF sputtering technique 
(collaboration with Prof. N.P.Thuy and co-workers  at the Hanoi University of Technology) 
under base pressure of 10-6mbar and Ar pressure of 10-3 mbar. During the growth, an in plane 
biasing field of 300 Oe was applied.  

Two targets were used for sample preparation: a Co target and a MnPd target. The Co target 
was a simple Co disk, 5 cm in diameter and 5 mm thick. The MnPd target was a composite target 
made of a Pd disk at the surface of which Mn chips were bonded (see Figure 3.2.). Before 
preparing the MnPd/Co exchange-bias samples simple MnPd films were prepared. As expected, 
the composition of these films was found to be linked to the fraction of the target area covered by 
Mn chips. This fraction was adjusted in order to obtain the desired composition [2].  

 
         The deposition rate obtained for Co and MnPd was then determined by depositing films of 
about 1 μm thickness, as deduced from DEKTAK measurements. For both Co and MnPd targets, 
the deposition rate was of the order of 0.1nm /s.  
 
 

 
 
 

        Figure  3.2. Pd target with square Mn chips bonded to it (Top view). 
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3.1.2. Film protection  
 
 

In Institut Néel (Laboratoire Louis Néel), the 10nm W coating layer was deposited on 
already prepared samples to avoid the natural oxidation of the Co top layer. More specifically, we 
concentrated on three samples:  S1 (MnPd 12nm/Co 18nm), S2 (MnPd 6nm/Co 18nm), S3 (MnPd 
3nm/Co18 nm) and S4 (MnPd 180nm). 

The sputtering system used involves a facing target configuration which is schematically 
shown in Figure 3.3. (a).Two disks-shape targets are arranged parallel, face to face, and the 
plasma established in this space. A magnetic field of a proper intensity is established 
perpendicular to the target surface in order to confine the high energy electrons and focus the 
plasma in the space between the target planes. Since the confinement of electrons can promote 
the ionization of the gas in the space between the targets and increase the number of sputtering 
ions, it raises the sputtering speed and results in high rate deposition. 
 

                       
 

Figure 3.3. The target configuration of sputtering machine: (a) Magnetron type; (b) Facing 
targets type. H and E represent the directions of magnetic field and electric field (after [3]). 
 

 
The targets are fixed on stainless steel supports, which are vertical at a distance of 3 cm the 

one from the other. On each target support a rectangular piece is attached, which can receive a 
particular target. The substrate support is a circular disk of 2 cm diameter on which 4 substrates 
can be placed.  
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During deposition the ions required for bombardment were created from argon introduced 

in the chamber for keeping the pressure value between 10-3 and 10-1 Torr. Before sputtering the 
target and the substrate were introduced in the chamber, which was evacuated down to 5.10-8 

Torr.  
                                          
 
3.2. Structural characterisation 
 
 
3.2.1. X-ray diffraction (XRD)               
 
 
 
            In order to determine the structural properties of the thin films, it is common to use  X-ray 
diffraction (XRD). We used θ-2θ measurements. A narrow and parallel X-ray beam, generated 
by an X-ray tube is incident on the sample at an angle θ with respect to the film normal (see 
Figure 3.4.). The beam direction is fixed while the sample and the detector are rotated so that the 
configuration θ-2θ is preserved during the measurements. 2θ is typically chosen to be in the 
range from 20° to 100°, depending on the sample. The signal recorded from the detector is 
plotted versus 2θ. X-ray diffraction was observed using KαCu radiation on a Seifert 3003 XRD 
TT system (λ=1.5418Ǻ) in collaboration with XENOCS - Grenoble. The typical time to record a 
diagram is 10 seconds for one point using a step of 0.01°. 
 

 
        

 
Figure  3.4. Schematic view of XRD measurements in the θ-2θ mode. 

 
 

 

Incident  beam 

Crystal lattice 

   Reflected beam 



 65

Chapter 3. Experimental techniques 
 
 
3.2.2. Scanning electronic microscope (SEM) 
 
 

A Scanning electronic microscope (JEOL JSM-840 A ) was used to investigate the 
structure of the samples. SEM uses a filament of tungsten, to produce electrons through thermo 
ionic emission and it functions as a cathode. A voltage is applied to the loop, causing it to heat 
up. The anode, which is positive with respect to the filament, forms powerful attractive forces for 
electrons. This causes electrons to accelerate toward the anode (see Figure 3.5.). The acceleration 
voltage is between 2.5-50 kV. The electrons are directed toward one point, by a system of lenses 
to produce an electronic ray spreading all over the sample. The incident electronic ray reacts with 
the sample, generating several types of signals. The signals are then collected in detectors, and 
their output is multiplied to adjust intensity on CRT2 screen. Scanning electronic ray is 
synchronized with the output on CRT screen. The noticeable variations in light intensity are 
generated as a consequence of signal variations from point to point of the sample surface.  

 
 
 

 
 
 

                             Figure  3.5. Schematic drawing of the electron source. 
 

 
                                                           
2 CRT (cathode ray tube) works by moving an electron beam back and forth across the back of the screen. Each time 
the beam makes a pass across the screen, it lights up phosphor dots on the inside of the glass tube, thereby 
illuminating the active portions of the screen. By drawing many such lines from the top to the bottom of the screen, it 
creates an entire screenful of images. 
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The sample to be studied is placed on an aluminium support, with a glue or double-sided 

adhesive tape. A conductive layer must be spread on the sample’s surface, to prevent electronic 
charge formation, with a possible reaction with incident electronic beam. In our case the 
protective layer was a 10nm thick W (tungsten) layer . The sample and the sample holder were 
placed on a stand, permitting full control of the sample positioning. On the surface and below it, 
certain phenomena take place when a high-energetic electron beam hits the sample. Two kinds of 
secondary electron signals, and background scattering electrons are generated. The secondary 
electrons are detected by a scintillation material that produces photons created by the electrons. 
This are detected and amplified by a photomultiplier tube. Due to their low energy they originate 
from the upper nanometers of the surface and hence, give a picture of the object’s topography. 

The back scattered electrons are high energy electrons. The intensity of the signal is 
dependent from the average atomic number. This mode gives us information about the 
compositional characteristics of the sample. 
         
 
 
3.2.3 Energy Dispersive X-ray (EDX) analysis 
 
 
 

 Energy Dispersive X-ray analysis or EDAX analysis was used to determine the 
composition of the sample both in thin film and in bulk material. The EDX analysis system used 
in this thesis is the system manufactured by JEOL JSM-840 A . 
 

During EDX Analysis, the specimen is bombarded with an electron beam inside the 
scanning electron microscope. The bombarding electrons collide with the specimen atoms' own 
electrons, knocking some of them off in the process. A position vacated by an ejected inner shell 
electron is eventually occupied by a higher-energy electron from an outer shell. To be able to do 
so the transferring outer electron must give up some of its energy by emitting an X-ray.     

The amount of energy released by the transferring electron depends on which shell it is 
transferring from, as well as which shell it is transferring to. The atom of every element releases 
X-rays with unique amounts of energy during the transferring process. Thus, by measuring the 
amounts of energy present in the X-rays being released by a specimen during electron beam 
bombardment, the identity of the atom from which the X-ray was emitted can be established. 

EDX spectrum (see Figure 3.6.) is just a plot of how frequently an X-ray is received for 
each energy level. Each of these peaks is unique to an atom, and therefore corresponds to a single 
element. The higher a peak in a spectrum, the more concentrated the element is in the specimen. 

An EDX spectrum plot not only identifies the element corresponding to each of its peaks, 
but the type of X-ray to which it corresponds as well. For example, a peak corresponding to the 
amount of energy possessed by X-rays emitted by an electron in the L-shell going down to the K-
shell is identified as a K-α peak.  
 
 

 

http://www.siliconfareast.com/edxwdx2.htm
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Figure 3.6. Example of an EXD spectrum. 
 

 
 

 
 
 

Figure 3.7. Schematic view of the energy shells. 
 
 
The peak corresponding to X-rays emitted by M-shell electrons going to the K-shell is 

identified as K-Beta peaks see Figure 3.7. 
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3.2.4. X-ray-reflectometry (XRR) 
 
 
3.2.4.1. The Principle 
 
 

XRR is a non-destructive and non-contact technique for thickness determination between 2-
200 nm with a precision of about 0.1-0.3 nm. In addition to thickness determination, this technique 
also brings information about film density and roughness. In stacks of layers, the property of each 
individual layer can be obtained. 
         The XRR method involves monitoring the intensity of the x-ray beam reflected by a sample 
at grazing angles. A monochromatic x-ray beam of wavelength λ irradiates a sample at a grazing angle 
ω and the reflected intensity at an angle 2θ is recorded by a detector (see Figure  3.8).  
         The reflection at the surface and interfaces is due to the different electron densities in the 
different layers (films), which correspond to different reflective indexes in the classical optics. For 
incident angles θ below a critical angle θc, total external reflection occurs. The critical angle for most 
materials is less than 0.3°. The density of the material is determined from the critical angle. Above qc 
the reflections from the different interfaces interfere and give rise to interference fringes called 
Kiessig fringes [4].  
         The period of the interference fringes and the fall in the intensity are related to the thickness and 
the roughness of the layers. The reflection can be analyzed using the classical theory (Fresnel 
equation).  The typical range for these measurements is between 0° and 5° in θ. For these experiments 
we have used an experimental set-up of the type Seifert 3003 XRD TT installed at XENOCS-
Grenoble. 

 

 
 

Figure 3.8. θ/2θ -Scan: The condition of incident angle ω = (2θ)/2 = θ - outgoing angle is 
satisfied. The detector D rotates at twice the speed of the sample P. This arrangement is sensitive 
only to the planes parallel to the surface of the sample. The beam makes an incident angle ω with 
the surface of the sample P. The reflected intensity at angle of 2θ is measured.  
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 Both the rotation of the sample ω  and the detector (2θ) are about the same axis MP (perpendicular 
to the drawing). The sample is adjusted so that the rotation axis lies on the sample surface. The 
Detector circle is fixed through the (programmable) detector slit. The anode focus, F of the tube lies 
on the detector circle.  

 

 
3.2.4.2. Film density 
 
 
        The final experimental information given by XRR is the film density. The complex 
refractive index in the x-ray region is slightly less than 1 and is given by   
 

                                                         ñ = 1 - δ + iβ                                                         (3.1)                       
 
where δ and β represent the dispersion and absorption, respectively. For frequencies far greater 
than the resonance frequencies, υ0, of the atom δ can be given by the expression: 
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where r0 is the Bohr atomic radius and ne is the electron density.  The electron density is given by 
ne = Z · nAtom where Z is the number of electrons per atom. For a more precise expression of δ, Z is 
usually replaced with the a complex atom form factor f = f0 + f’ + if’’ = Z +f’ +if’’. The term f’ 
+if’’ is due to dispersion and absorption and describes the x-ray absorption edge. It follows that 
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The magnitudes of δ and β are of the order of 10-5 and 10-6, respectively. Since the atomic 
concentration is given as: 
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it is apparent that, the density of the material can be determined from the values of δ and β.         
Here NA is the Avogadro’s number and A the atomic weight.  The density of a compound 
material of known stoichiometry can also be determined from d and b with slight modifications in 
the formula.  
       For qualitative discussion, it is adequate to consider an absorption free film i.e β = 0 but it 
should be noted that β cannot be ignored in the simulation of XRR measurements. We consider 
reflection at an interface between air, nair = 1 and another material, n1 = 1 - δ. For incident angles 
below a critical angle, θc, (θ < θc), total reflection occurs. By applying Snell’s law and small 
angle approximations, the critical angle, θc can be expressed as: 
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3.2.4.3. Film thickness 
 

 

         For incident angles greater than θc, (θ > θc) the x-ray beam penetrates inside the film. Reflection 
therefore occurs at the top and the bottom surfaces of the film. The interference between the rays 
reflected from the top and the bottom of the film surfaces results in interference fringes which 
does not depend on the frequency like in the case of optical spectroscopy but are angle 
dependent. Due to the low amplitude reflection coefficient (ρv,h ~1/ sin2 θ ; Rv,h = |rv,h| ~ 1/ sin4 θ 
≈ 1/θ4) of interface between adjacent layers, contributions of multiply reflected beams can be 
neglected. The m-th interference maximum for a path difference Δ = mλ, is located at: 
 
 

                                                  mλ=Δ=2dÑX,1(θm)                                                           (3.5) 
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        If the substrate is optically denser than the film, a phase difference of π occurs at the 
reflection film / substrate interface and m is replaced by m+1/2.  
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Employing equation (3.7)  and the difference between two neighbouring maxima and 
minima, the thickness can be determined and is given by: 
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     for  θm >>θC                        (3.8) 

 
 
         The thickness is often determined with a precision better than 0.1 nm for measurements 
exhibiting interference fringes in a large angular range.   
 
 
 
 
3.2.4.4. Surface Roughness  
 
 
        Another important quantity determined from XRR measurements is the surface-and 
interface-roughness. Roughness gives rise to diffuse scattering, resulting to less intensity in the 
specularly reflected beam. General scattering formalism has been developed that calculate the 
scattered fields for both specular and non-specular scattering. In one of the formalism, Névot and Croce 
[3] considered roughness by assuming non-homogeneous thickness. They assumed that the thickness 
has a Gaussian distribution with a mean value d and a standard deviations σ. With this 
assumption ,they corrected the Fresnel coefficients of reflection ρv,h as:  
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3.3. Magnetization measurements 
 
 
3.3.1. VSM magnetometer 
 
 
Measurement principle using a VSM 
 
 
 
         A Vibrating Sample Magnetometer (VSM) was used for magnetization measurements. It is 
a commercial system developed by Oxford Instruments. This magnetometer uses a technique 
which consists in measuring the variation of the magnetic induction produced by the movement 
of the sample through the detecting coils. The sample is placed at the end of a stick, which is 
introduced into a cylindrical cryostat, surrounded by the coils. At the other end, the stick is 
attached to a Mössbauer type vibrator which vibrates at a frequency of 55Hz. The magnetic field 
is applied along the sample moving direction.  
 
         If a sample of any material is placed in the uniform magnetic field, created between the 
poles of the cryomagnet, a dipole moment will be induced. The oscillatory movement of the 
sample induces a flux variation ΔΦ in the detection coils: ΔΦ=αM. This implies the appearance 
in the coils of an electromotive force given by:    
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The signal has the same frequency of vibration and its amplitude is proportional to the 
magnetic moment, amplitude, and relative position with respect to the pick-up coils system.  

In addition to the main signal generated by the sample, parasitic signals are detected by the 
coils, due to the combination of coil vibration and non-uniformity of the DC field. To minimize 
this effect, the coil assembly is made by four coils, assembled in such a way that the signal due to 
field heterogeneities almost cancels out, but the sample signal does not (see Figure 3.9) [5]. 
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3.3.1.1. Oxford VSM system 
 

 
         The magnetic field is generated by an NbTi superconducting coil. The maximum field that 
can be applied on the sample is ±8T. The field bore is at room temperature.  

The detecting coils are placed within the main coil cryostat. They consist of 2 parts, located 
at a distance of 1 cm the one from the other, each being made of 140 000 turns. The sample 
temperature may be varied between 10K and room temperature by circulating cold helium inside 
the sample cryostat at a pressure of 10-1mbar. The voltmeter sensitivity is approximately 5.10-

9Am2 (5.10-6uem) 
 
 

           
                                    
                                   Figure  3.9. Measuring coil of an VSM. 
 
 
3.3.2. SQUID magnetometer 

 
 

 
Measurement principle using a SQUID 
 
 
         A superconducting quantum interference device (SQUID) is a system used to measure 
extremely weak signals specialised in the characterisation of magnetic materials that need a high 
sensitivity under a large temperature range. The principle of measurement is based on the vertical 
displacement of the sample inside coils(c), themselves placed inside the coil generating the 
magnetic field. 
 

 

Sample

Measuring coil 
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The signal detected by the coils is measured using a superconducting niobium ring, closed 
by a Josephson junction, named SQUID (Superconducting Quantum Interference Device). 

In the laboratory system of radio frequency type, the SQUID is coupled by mutual 
inductance, on the one part with the couple of coils (c) assembled in opposition and on the other 
part to a resonant high frequency circuit (see Figure 3.10). The displacement of the sample of 
magnetization M induces a flow variation in the measuring coils: 
 

ΔΦ = αM                                                                     (3.9) 
 
The current which circulate in the coils is given by: 
 

I = ΔΦ/ (2L1+L2 )                                                              (3.10) 
 
In turn, the current induces a flux variation in the superconducting ring via the coefficient of 
mutual inductance M1 (see Figure 3.10.): 
 
 

                                                           ΔΦJ=M1i                                                                   (3.11) 
 

 
 

 
 
 

Figure 3.10. Schematic view of the operating principle of the SQUID. 
 

 
By the action of the mutual inductance M2 the voltage change ΔVT measured at the out-put 

of the oscillating circuit: 
 

ΔVT = ZTi = LTωΔΦJ / M2                                                                           (3.12) 
 

 
 

Coils (c ) 
SQUID 

High frequency 
circuit 
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Finally according to the principle of” flow controlled mode” a system of negative feedback using 
the same oscillating circuit, reinjects a current icr  to maintain VT constant and to create an 
opposite flux variation ΔΦJ in the  Josephson loop. The flow which the ring sees is constant: 
 

ΔΦJ = M1i + M2icr =  M1ΔΦ ( 2L1+L2 ) + M2icr                                             (3.13) 
 

 
The negative feedback current is directly proportional to the flow sent by the sample, thus 

in this case proportional to the magnetic moment. It results that the measurement of the flux 
variation of the negative feedback current necessary to maintain constant the flux in the 
superconducting ring is directly proportional to the sample magnetic moment. 
 
 
3.3.2.1. Quantum design system 
 
 

The SQUID used in this thesis is a commercial instrument manufactured by Quantum 
Design model MPMS-XL (see Figure 3.11.)[6]. 

 
 

 
 

Figure  3.11. Cross Section of the SQUID. 
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The main elements of the magnetometer are: 

 
• a superconducting magnet to produce the high magnetic fields 
• two detection rings and two compensation rings 
• a SQUID connected by  superconducting wires to the detection coils 
• surrounding shielding of the SQUID 

 
The magnetic field is produced by an NbTi superconducting magnet of a 36 cm length with 

a 5cm diameter. The field can be varied between 10Oe (the remnant field of the magnet) and 
50kOe with a homogeneity of 0,1%  over a length of 8cm higher than the displacement range of 
the sample. The magnet is cooled in an helium bath placed in the cryostat. 

The sample is introduced into the anti-cryostat with gas helium flow, connected to the 
helium bath by a capillary exchanger. A primary pumping systems maintains in the enclosure a 
pressure from 1 to 3 Torr and makes it possible to reach a temperature of 4K. The sample heating 
is made of two stages. First the gas is heated to the desired temperature; in addition, a 
homogenisation heater which is laid out near to the sample accelerates the thermalisation of the 
sample and sample holder. 

The sample temperature is given by resistive measurement of a carbon probe for T < 50K 
and by a platinum probe for T >50K. The sample temperature may be varied between 4K and 400 
K. Sensitivity value of the detection system is around 10-10Am2 (10-7uem). 

For measurements in parallel field on the sample surface we have used as sample holder 
polypropylene straws and in addition adhesive kapton over the entire length of the straw to fix the 
sample. The sample was fixed to a sample rod mounted to an electrical part which allows the 
extraction of the sample.  
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Chapter 4 

 
 
 
 

Preparation and structural characterisation of the samples 
 

 
 
 
 

The samples studied in this thesis were prepared at Hanoi University of Technology in the 
framework of a collaboration with Institut Néel ( Laboratoire Louis Néel ).The sample 
preparation is described in this Chapter  together with the associated structural characterisation. 

 
 

 
 

4.1. MnPd phase diagram 
 
 
 
MnxPd1-x alloys exist for values of x between 0 and 1. For x < 29%, the alloys crystallise in 

the fcc structure of Pd. Under thermal treatment, superstructures may appear in the fcc phase 
which characterise the existence of a certain ordering between Mn and Pd atoms. In quenched 
alloys at low Mn concentration, the ordering is very limited [1, 2, 3] (see Figure 4.1.).  
 

  

 
 
 
 
 
Figure 4.1.Various Mn-Pd phases appearing 
in the composition range between Pd-10% 
Mn and Pd-33,3% Mn (after[1]). 
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As shown in Figure 4.2, the a parameter of MnxPd1-X alloys increases with the increase in 
Mn content from 0.389 nm at x=0 to 0.391 at x= 33 (see Figure 4.2.). 
 
 

  

 
 

 
 
Figure 4.2.The room temperature 

lattice parameters of the α phase in Pd-Mn 
alloys as a function of manganese content, 
together with previously reported results 
(after[1]). 

 
The crystallographic and magnetic structure data collected by neutron diffraction for the 

Mn-Pd alloys studied in [2] are presented in table 1 (where a, c are the lattice parameters, S is the 
long range order parameter and cϕ  represents the angle between the direction of the magnetic 
moments and the axis c). 

 
 

  at % Mn 19.5 22.7 25.3 30.4 
a(nm) 0.387 0.387 0.387 0.393 
c(nm) - 1.548 1.548 1.505 

c/a 1 4 4 3.83 
S - 0.85±0.05 0.9±0.05 1±0.05 

μMn( μB) - 4.2±0.3 4.1±0.3 4.1±0.3 
φC (°) - 0±2 8±2 90±2 

TN(°K) - 205±15 220±10 235±10 
 
 
          Table 1. Crystal and magnetic structure data for Mn-Pd alloys measured at T=77K [1]. 
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4.2. Sample preparation 
 
 

A series Co/MnPd bilayers were prepared in which the Co nominal thickness was 18nm 
and the MnPd thickness was 12nm (sample S1), 6nm (sample S2) and 3nm (sample S3) 
respectively (see Table2). 
 
 

Material 
(Name) 

MnPd thickness 
(nm) 

Co  thickness 
(nm) 

Co/MnPd (S1) 12 18 

Co/MnPd (S2) 6 18 

Co/MnPd (S3) 3 18 

MnPd        (S4) 180 - 

                               
 

Table 2. Different prepared Co/MnPd samples. 
 
 

The samples were grown at room temperature by RF sputtering (see Chapter  3) in the 
group of Prof. N.P.Thuy at the Hanoi University of Technology. A simple scheme illustrating 
the layer stacking is presented in Figure 4.3. 

A protective 10nm W coating layer was deposited at Institut Néel using the facing 
targets sputtering (see Chapter  3) on already prepared samples. 
 
 
 
 
 
 
 
 
 
 

Figure 4.3. Scheme illustrating the stacking of the layers constituting the various samples. 
 
 
 
 

 

Coating layer-W (post deposited) 

MnPd layer (3nm-12nm) 

Co layer 18nm 

Si substrate 
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4.3. Structural and topological characterisation 
 
 
4.3.1. X-ray diffraction on the MnPd sample (XRD)               
 
 
 

Due to the very small thickness of the various films prepared, the X-ray analysis could 
not be used for their structural characterisation. However a 180nm thick MnPd film was 
specifically prepared for characterisation of the antiferromagnetic MnPd layers, using the 
same fabrication technique.  

The associated X-ray diagram is shown in Figure 4.4. taken with the KαCu (λ=1.5418 
Ǻ), radiation on a Seifert 3003 XRD TT spectrometer.  

  
                                                
 
                       Figure 4.4. X-ray diffraction measurement for the 180nm MnPd film. 
 
 
          The intense peaks at 2θ = 28.5°, 2θ = 58,9° and 2θ = 94,9° are parasitic signals due to 
the substrate and /or sample holder as was shown by measuring the diagram of a virgin 
substrate. The three broader peaks at 2θ = 40°, 2θ = 46.6° and 2θ = 68° may be indexed as 
(111), (200) and (220) fcc-disordered α-phase reflections of MnPd, with a~0,3896nm (see 
Table 3).The associated chemical composition is Mn16Pd84 as derived from [1]. 
 

 

Sample 
(111) Sample 

(200) 

Sample 
(220) 
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2θ θ sinθ 

=
++

θ
λ

sin2

222 lkh
 

a(nm) 
40 20 0.342 0.3897 

46.6 23.3 0.395 0.3894 

68 34 0.559 0.3896 

 
 
Table 3. Values of the crystallographic a parameter for the (111), (200) and (220) reflections 

deduced from the analysis of the180nm MnPd film. 
 

EDX analysis was performed on the same sample, MnxPd1-x alloys. The x value derived 
from this analysis is around 0,16 (see table attached to Figure 4.5) in agreement with the value  
derived from X-Ray measurement and a little less then the desired value x ≈ 0.2. 
 

 
 
 
   

Results Chemical analysis  
Elt Line lnt Err W% A% ZAF 

Si K 555 1 0,00 0,00 1 
Mn K 14 0,2 8,9 15,9 1 
Pd L 141 0,7 91,1 84,1 0,8 
Total    100 100  

 
 

Figure 4.5. EDX spectrum for the MnPd sample with t=180nm. 
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In our analysis it will be implicitly assumed that the thin films which are part of the   
Co/ MnPd bilayers have the same characteristic structure as the above MnPd film. 
 
 
 
4.3.2. Scanning electronic microscope analysis (SEM) 
 
 

 The sample topology was characterised using Scanning electronic microscope (JEOL 
JSM-840 A) by collecting the secondary electrons. In most cases the images were acquired 
using an acceleration voltage of 20kV, leading to a spatial resolution around 2μm.  As shown 
in Figure 4.6 all the samples were found to be continuous. For the 3nm and 6 nm Co/MnPd 
films the images reveal features with typical size around 20nm which we think represents the 
sample grain size. In the case of the 12nm film the typical size is around 50nm. 

 
 

                                          
 
 
 
 

 
 

 
 
                                  Figure 4.6. SEM observation on the Co/ MnPd films. 
 
 
 

 

MnPd thickness 6nm 
 
 

MnPd thickness 12nm

MnPd thickness 3nm 
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4.3.3. Energy Dispersive X-ray (EDX) analysis 
 
 

EDX spectra of three different samples are presented in Figure  4.7. (a) corresponding to 
sample S1, (b ) corresponding to sample S2 and, (c) corresponding to sample S3. In addition to 
the large silicon signal, which comes from the substrate, we may distinguish several peaks 
corresponding to: Mn, Co and Pd. The evolution of the CoKα, MnKα and PdLα peaks intensity 
gives information about the thickness variation from one sample to another. 

The normalised intensities of the CoKα peaks have always the same value testifying for 
a constant Co thickness in the three analysed samples. Comparing now the normalised 
intensities of the PdLα peaks in the different samples the ratio between sample S1 (Figure  4.7. 
(a)) and sample S3 (Figure  4.7. (c)) is 1/4 corresponding to the value of the ratio of the MnPd 
layer thickness (12nm in S1 and 3nm in S3).  

 
 
 

    
 
 
 

 
 

                            Figure 4.7 EDX spectrums for the sample S1, S2 and S3.. 
 

 

(a)

(c)

(b)
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Finally in Figure 4.7 (c), the relative intensities of the MnKα peak is again smaller than 
in Figure 4.7. (a) and Figure 4.7 (b). This agrees with the fact that the MnPd thickness in 
sample S3 is reduced to 3nm. 

 
 As shown in Table 4.(a) for sample S1, the intensity ratio MnKα,/ PdLα is approximately 

0.1, indicating that the chemical composition of the MnPd thin films in the bilayer systems is 
of the same order as in the 180nm thick  layer (see Table 4. (b)), of the order of Mn16 Pd 81. 

 
 

Results Chemical analysis 
Elt Line lnt Err W% A% ZAF 

Si K 868 1,7 0,00 0,00 1 
Mn K 2 0,08 7 14 1 
Co K 8 0,16 0,00 0,00 1 
Pd L 20 0,25 93 86 8 
Total    100 100  

 
Results Chemical analysis  

Elt Line lnt Err W% A% ZAF 
Si K 555 1 0,00 0,00 1 
Mn K 14 0,2 8,9 15,9 1 
Pd L 141 0,7 91,1 84,1 0,8 
Total    100 100  

 
 
 

Table 4. (a) . Chemical composition values in sample S1  (b). Quantitative values of the 
chemical composition in the 180nm thick MnPd layer. 

 
 
 
4.3.4. X-ray-reflectometry (XRR) 
 
 

We tempted to use X-ray reflectometry for analysing the layer thicknesses. These 
measurements where performed at XENOCS with the support of Ing. Dan Cenda. The 
reflectometer used is of the type Seifert 3003 XRD TT system.  

The reflectivity intensities were collected at low angles between 0°-2° using the θ-θ 
measurement mode. Two samples were analysed: sample S‘

1 (Co/MnPd 12nm/18nm) and S‘
2  

(Co/MnPd 6nm/18nm) from the same family as the samples S1 and S2 but without the 
protective  10nm W coating layer. The choice felt on S‘

1 sample and S‘
2 due to the reduced 

dimension of samples S1 and S2. The results are presented in Figure 4.8 and Figure 4.9 
respectively. Oscillations are clearly seen which are characteristic of such ultra-thin stacks of 
various layers. The data were analysed using the software IMD.4.1.1. The other free 
parameters considered in the analysis were:  

 
 

 

(a) 

(b) 
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-the thickness of the Co and MnPd layers, the roughness of the top CoO layer, the 

roughness of the Co layer, the interfacial roughness between the Co and MnPd and between 
the MnPd layer and the Si layer, MnPd layer density. Unfortunately it was not possible to 
obtain a really satisfying fit of these data, so that the conclusions deriving from this analysis 
remain at a very qualitative level. 

 
The experimental thicknesses derived from XRR analysis is in reasonable agreement 

with the expected ones (see Table 5). However, due to the poor correspondence between 
experimental data and calculated ones these results should be treated with a certain care. Note 
also that it was needed to assume that a 2nm CoO layer is formed at the sample surface.  
 
 

 
 
 

 
Sample S1 

Co- Layer 
thickness(nm) 

 
Nominal : 18 
From XRR :14 
From mag .meas. :13 
 

MnPd- Layer 
thickness(nm) 

 
Nominal :12 
From XRR :11 
 

MnPd- roughness 
σ(Å) 

 
 

From XRR :12,8 

Co/MnPd 
Interfacial 

roughness σ(Å) 
 

From XRR :8 

 
 
Sample S2  

 
Nominal : 18 
From XRR :12 
From mag .meas. :14 
 

 
 
Nominal :6 
From XRR :4,5 
 

 
 
From XRR :12,8 

 
 
From XRR :10 

 
Table 5. Layer thickness and interface roughness values (σ (Å) ) for samples S1, S2 determined 

from X-ray measurements and magnetic measurements data. 
 
 

 
 
 

Figure 4.8. X-ray specular reflectivity and fit for sample S’
1. 
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Figure 4.9. X-ray specular reflectivity and fit for sample S’
2. 

 
 

 
 
4.3.5. Co thickness derived from magnetization measurements 
 
 

Magnetization measurements were also used as an alternative method to determine the 
Co thickness in the various samples. In this analysis, it was assumed that Co atoms only 
contribute to the saturated magnetization in high fields. Thus the sample moment mS may be 
expressed as: 

 
CoCoS VMm ∗=  

 
where MCo is the Co magnetization( MCo=1,37*106A/m) and Vco is the Co volume which may 
be written as: 
 

CoCoCo tAV ∗=  
 

where ACo is the sample area. 
 

Since the deposited layer covers all the silicon substrate, ACo is identical to the silicon 
substrate area ASi. To determine ASi, we used the fact that the sample thickness (and mass) is 
much less then that of the Si substrate.  
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Thus, from the known Si density (ρSi = 2,33*103 kg/m3) and substrate thickness (tSi = 

0,44*10-3m) the sample surface area ACo is derived by weighting and identifying the weighted 
mass to that of the substrate only: 

 

siSi

Si
SiCo t

mAA
ρ

==  

 
The thickness of the Co layer is thus calculated using the expression. 

 

CoCo

S
Co AM

m
t =  

 
The tCo values obtained by this method are listed in Table 5. They are in good agreement 

with both the expected values and X-ray reflectometry values. 
 

 
4.4. Conclusions 
 
 

The analysed systems in this thesis were fabricated from a Co layer deposited on the top 
of a MnPd layer and recovered by a 2nm thick CoO layer as it was found by XRR 
reflectometry, due to the natural oxidation of the Co. This implies that the Co ferromagnetic 
layer is coupled to an antiferromagnetic layer on both sides: MnPd on one side and CoO on 
the other. The question thus arises whether exchange bias is dominated by Co-MnPd coupling 
or by Co-CoO coupling.  

Several studies on Co/CoO systems [4, 5, 6], where the CoO layer was obtained by 
natural oxidation (exposure to atmosphere) having a thickness of 2,5nm and the Co nominal 
thickness being around 9nm, have found as maximum value for the interface coupling energy 
Δ 23 /1056.0 mJ−×=σ . 

For the studied Co/MnPd systems, in this thesis, the values for the interface coupling 
energy was found to be: Δ 23 /1046,2 mJ−×=σ ,for an  exchange bias field °μ HE=0,055T 
measured at T=15K knowing that the thickness of the Co layer is tCo =18nm.We are thus lead 
to conclude that in the present system exchange bias is largely dominated by Co-MnPd 
coupling. 
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Chapter 5 
 
 
 
 

Exchange-biased hysteresis loops 
 

 
 
5.1. Observing exchange-bias at 15K 
 
 
          In this Chapter, the magnetic properties of the prepared Co/MnPd bilayers are 
investigated. In particular we concentrate on measurements of the hysteresis cycles at 
different temperatures. 
 

Let us consider sample S2 (Co/MnPd 6nm/18nm) as an arbitrary chosen example. The 
hysteresis cycle shown in Figure 5.1 was obtained by cooling the sample from room 
temperature under a field of 4T, down to T=15K. Once at T=15K, decreasing the field values 
to μ0H =0T the magnetization remains essentially saturated (m = 0.35·10-6Am2). 

As the field is reversed and its amplitude increased, the magnetization remains almost 
saturated until the field reaches the value μ0H=-0,22T. At this value, a sudden reversal of 
magnetization is observed and the magnetization reversal is almost complete at μ0H=-
0,25T.The field dependence of the magnetic differential susceptibility associated to these 
measurements, and characterising the 1st branch of the hysteresis cycle, is plotted in Figure 
5.2. The susceptibility peak (χ = 0,034* 10-3 Am2/T) is observed for μ0H1= -0,23T which 
defines the critical field value. 
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    Sample S2

 
      Figure 5.1. Hysteresis cycle measured at T=15K (sample S2). 
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After reversal, the magnetization progressively approaches full saturation. As the field is 
reduced back the magnetization starts to decrease from μ0H = -0.2T to μ0H=0T (Figure 5.1). 
In weak positive field the magnetization varies rapidly. At μ0H = 0.08T, the magnetization has 
approximately the same value it had at μ0H = -0,25T during first reversal. The susceptibility 
as a function of the applied magnetic field along this second branch of the cycle provides the 
value of the field H2= 0,027T as shown in Figure 5.2. Note that the associated susceptibility  
χ2=0,012*10-3Am2/T is three times smaller than the one at H1 illustrating that this latter 
process is more progressive that the former one. 
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0,04
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χ(
10

-3
Am

2 /T
)

H (T)

 
Figure 5.2. Irreversible susceptibility versus applied magnetic field for sample S2 at 

T=15K. 
 

Measuring again the hysteresis cycle for a second time (and further times) it appears that 
reversal in negative applied field differs strongly from first reversal. The switching field value 
H1

*along the associated third branch is μ0H*
1= -0,13T instead of μ0H1= -0,23T. The hysteresis 

cycle is almost stabilised during further measurements. The progressive change in the 
hysteresis cycle found as the field swept several times from positive values to negative ones 
and reciprocally is a property of many exchange bias systems, called training effect [1, 2, 3]. 
 

At T=15K, the second and third branches of the hysteresis cycle are simply shifted the 
one with respect to the other by a constant value (equal to μ0H*

1+ μ0H2). As a result the 
magnetization dependence of the irreversible susceptibility along these two branches are 
almost exactly superimposed (see Figure 5.3. (a)). As temperature is progressively increased, 
reversal along the second and third branches becomes more abrupt and the magnetization 
dependence of the irreversible susceptibility along these two branches is different (see Figure 
5.3.(b)).  
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          Figure 5.3. (a). Irreversible susceptibility values versus magnetization for sample S2 at 
T=15K. 

(b). Irreversible susceptibility values versus magnetization for sample S2 at T=100K. 
 

 
In the forthcoming discussion, we will concentrate mostly on the stabilised hysteresis 

cycles, and thus we will define the exchange bias field HE and the coercive field HC as: 
 
 

                           HE= 2
2

*
1 HH +

;            HC= 2
2

*
1 HH −

 

 
          At 15K it is found that μ0HE = 0.05T and μ0HC = 0.070T. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) (b)
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5.2. Exchange bias field and coercive field as a function of temperature 
 
          Following the procedure described in 5.1, the hysteresis cycles were measured on the 
different samples at different temperatures from 15K to 300K (see Figure 5.4 for sample S2). 
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      Figure 5.4. Hysteresis cycles measured at different temperatures on sample S2. 

(Note that due to the measuring procedures used, the 1st branch of the cycle is not properly 
measured). 
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The used measuring sequence was the following: the samples were cooled down from 
room temperature under an applied field μ0H= 4T to the first measurement temperature, 
T=15K. At this temperature, the hysteresis cycles were measured between μ0H= 0.4T and 
μ0H= -0.4T. The following cycles at different temperature values from T= 15K to T= 140K 
were measured then without another cooling process from room temperature. The temperature 
dependence of H1

* and H2 thus deduced for the three different samples are shown in Figure 
5.5. (a), Figure 5.6. (a) and Figure 5.7.(a).By applying this process, the 1st branch of the 
hysteresis cycle is not really measured. This explains that the temperature dependence of H1 is 
not plotted here. 

The derived temperature dependence of HC and HE are shown in Figure 5.5.(b) for 
sample S1, Figure 5.6.(b) for sample S2 and Figure 5.7.(b) for sample S3. 
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Figure 5.5. (a) Field values versus temperature for samples S1. (b) Bias field and coercive 

field versus temperature for samples S1. 
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Figure 5.6. (a) Field values versus temperature for samples S2. (b) Bias field and coercive 
field versus temperature for samples S2 . 
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Both the exchange bias field and coercive field decrease monotonously as temperature is 
increased. The exchange bias field HE vanishes at T≈140K whereas HC keeps a significant 
value up to T=240K. 
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Figure 5.7. (a) Field values versus temperature for samples S3. (b)Bias field and coercive 
field versus temperature for samples S3. 

 
For all studied samples S1, S2 and S3 the value of χmax at H*

1 and H2 for T=15K is the 
same. Both χ’

1max and χ’
2max increases with temperature. This effect may be related to the 

decrease in HC, and thus decrease in ΔHC, the width of the coercive field distribution, as 
temperature increases. Further, χ’

1max and χ’
2max which have equal values at low temperatures 

tend to differ slightly at higher T (χ’
2max> χ’

1max). 
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Figure 5.8. Irreversible susceptibility values versus temperature for sample S1, S2  and S3 along 

different branches of the hysteresis cycle. 
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The coercive field HC and exchange bias field HE in the various samples at T=15K are 

compared in Figure 5.9.These fields have similar values in the different samples. This indicates 
that, for the thickness range considered, the thickness of the AFM layer has almost no impact 
on the magnetization behaviour. 
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Figure 5.9. The coercivity and exchange bias field of the three Co/MnPd samples as a 

function of the MnPd thickness measured at 15 K. 
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5.3. Additional measurements of the hysteresis loops in sample S1 and S2 
 
 
 
          The results of the magnetic measurements on the three considered samples are similar. 
In order to analyse further the observed hysteresis cycles, additional measurements were 
realised on samples S1 and  S2. 
 
 
 
5.3.1. Hysteresis cycle as a function of the cooling temperature under μ0H= 
0.4T (sample S1) 
 
 
 
          The hysteresis cycles of sample S1 presented in Figure 5.10 were measured according to 
the following procedure: the sample was cooled from T=300K to the temperature Tcool  under 
μ0H= 0T. At Tcool the field μ0Hcool= 0.4T was applied and the sample was further cooled down 
to T=15K. The hysteresis cycles then measured at T=15K are shown in Figure 5.10. 
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          Figure 5.10. Hysteresis loops of sample S1 as a function of the cooling temperature. 
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The first branch of the hysteresis cycle is significantly dependent on the value of Tcool, 
as illustrated by the Tcool dependence of μ0H1 shown in Figure 5.11. By contrast the other 
branches are little dependent on Tcool. Qualitatively this behaviour suggests that the 
magnetization processes along the first branch depends whether the magnetization of the FM 
layer is fully saturated or not. By contrast along the other branches such condition is not 
required (see Figure 5.11). 
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Figure 5.11. Values of the reversal field as a function of the cooling temperature, under 
a field of 0.4T. 
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5.3.2. Applied field effects 
 

 
The hysteresis cycle measured in sample S2 after cooling under μ0H = +5T from T = 

300K  to T = 120K is plotted in Figure 5.12 as black dots. An original behaviour was found 
after applying μ0H =-5T. Reversal around H2 was shifted to higher magnetic fields by 
approximately μ0δH =10mT, whereas the reversal around H*

1 was not modified. At T=130K 
the same effect was found but the shift reduced to μ0δH =8mT. By contrast, below T=100K 
no shift of the hysteresis cycle could be detected. 

At each temperature, it was found that this field-induced shift disappeared during further 
measurements of the cycle and normal exchange-bias at this temperature recovered. In other 
words, first magnetization reversal only is affected by the applied field.  

It is expected that the saturation of the FM layer is obtained in relatively low field and 
thus under μ0H = +5T it is the whole AFM layer magnetization which must be affected 
primely. It tends to rotate according to the usual spin – flop process. When this happens the 
exchange coupling between the first AFM layer and the next one is reduced .The 
magnetization configuration of the first AFM layer (together with that of the FM layer) are 
stabilised at the expense of the anisotropy energy lost within the AFM layer. This explains 
qualitatively the observed increase in H2. 

However, the modification of the AFM magnetic configuration induces by the field is 
highly metastable. It is lost at first reversal of the FM layer and thus the initial cycle is 
recovered. 

In agreement with the present analysis field enhanced coercivity (and bias)  was found 
in Co/NiO by Camarero et al. [4].These authors attributed this phenomenon to the action of 
the applied field on the whole AFM layer. 

However, in their analysis they focused on the uncompensated AFM moment which 
may exist in a highly disordered antiferromagnet. If this would happen in the present case the 
bias field measured in low field after applying μ0H =-5T would remain during further 
measurements. 
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Figure 5.12. Hysteresis cycles measured at T=120K and T=130K for sample S2. 
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Cooling from T=300K to T=140K, a further striking effect appears during 

magnetization measurements at T=140K, leading to reduction in the value of HE. The 
hysteresis cycle is now shifted along the direction of the applied magnetic field (see Figure 
5.13). from μ0HE= -7(1) mT to μ0HE= + 1(1) mT at T=130K. The same behaviour is observed 
at T=150K, the exchange bias initially equal to μ0HE= -2 (1) mT vanishes after the applying 
of  μ0H =-5T  to μ0HE=0mT. 

In the spirit of Malozemoff model the exchange bias is due to uncompensated AFM 
moments which are induced by the applied magnetic field. Close to TN, the applied field is 
able to reverse partially these uncompensated moments, thus leading to the observed 
reduction in HE. 

 

 

-0,06 -0,04 -0,02 0,00 0,02 0,04 0,06
-0,60

-0,40

-0,20

0,00

0,20

0,40

0,60

μ
0
H=0,018T μ

0
H=0,02T

μ
0
H=-0,02T

μ
0
H=-0,022T

FC5TFC-5T

Τ=150Κ

m
(1

0-6
Am

2 )

μ
0
H(T)

 Cooling under μ
0
Η=5Τ

 Cooling under μ
0
Η=−5Τ

 
       

Figure 5.13. Hysteresis cycles measured at T=130K and T=140K for sample S2.                       
(The superconducting coil remanent field, of the order of 1mT, was subtracted from the data.) 
 
 
 

 
 Note on the Squid magnetometer remanent field value 

 
 

The exchange bias field values given in the present section are very small and they may 
be affected by the remanent field generated by the superconducting coil. In order to establish 
unambiguously the validity of the measurements, the remanent field value of the coil was 
measured accurately. 

For these measurements, a paramagnetic compound, gadolinium sulphate octahydrate, 
Gd2(SO4)3 *8 H2O was given to us by G. Fillion (see Figure 5.14). 

At the temperature of the measurements the susceptibility is field independent in the 
considered field range. The field variation of the magnetization was measured at the three 
temperatures of interest, namely 120K, 130K and 140K. The following field sweeping 
sequence was used: a field of +5T was initially applied and the magnetization measured from 
+0.5T to -0.5T and back to +0.5T. 
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Figure 5.14. Magnetic moment versus applied field for Gd2(SO4)3 *8 H2O at a given 
temperature. 

 
 

The associated M(H) obtained is shown in Figure 5.14. The coil remanent field for the 
sequence +5T ,-0.5T and +0.5T was found constant and equal to μ0Hrem= +0.0011T. For the 
negative field sequence -5T, +0,5T, -0.5T the same constant value was found μ0Hrem= -
0.0011T. These values were used in order to correct the Squid data discussed in the section 
above.  
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5.4. Discussion 
 
 
5.4.1. Experimental exchange-bias compared to usual models 
 
 

The exchange bias field and the coercive field found in the Co/MnPd alloys studied in 
this thesis are larger than most values found in systems which exhibit exchange bias 
phenomenon (see Table1 Chapter1). The interfacial exchange bias coupling energy 

EFF HtM02μσ =Δ  reaches a value of 23 /1046,2 mJ−×=Δσ at T=15K. In particular, this 
value is five times higher then typically reported in polycrystalline Co/CoO exchange bias 
systems. This shows that the thin CoO layer formed at the surface of the samples doesn’t 
significantly affect the bias effect arising from the Co/MnPd interface. 

 
When discussing the exchange bias strength in a given system, it is usual to compare the 

experimental exchange bias field to the bias field predicted by the Meiklejohn and Bean model. 
The MB expression for exchange bias, already given in Chapter 1 (relation1.3), may be re- 

expressed in terms of the molecular field coefficient WA-F representing the interfacial 
coupling  

between the ferromagnet FM and the antiferromagnet AFM, as well as of the 
magnetization MFM of the FM layer and of the magnetization MAFM of each AFM sublattice.  

 
It reads: 
 
 

FMFM

AFMAFMFMFA

FMFM

INT
E Mt

aMMW
Mt

J
H −

° == 0μ
μ  

 
 

where, in the classical molecular field model, FMFA MW −0μ , is the molecular field created by 
the ferromagnetic moments on the antiferromagnetic ones. 

For the present numerical calculation, MFM was taken as the Co magnetization: 
mAM FM /1037,1 6×= . MAFM was obtained by assuming that the Mn magnetic moment has the 

same value as in MnPd bulk alloys of similar compositions ( BMn μμ 2.4= ) (see [5] and table 1 
in Chapter 4 ) and that the alloy contained 16% of Mn atoms as derived from EDX analysis 
(see Table 4 in Chapter 4). The Pd magnetic moment was assumed to be zero in agreement 
with the neutron diffraction study of Kren and Kadar [5 ]. The AFM sublattice magnetization 
thus deduced is mAM AFM /102.0 6×= . 

 
The molecular field coefficient WA-F was derived from the following assumption:  
 

22
'

2
1

FMFFAFMAAFMAFMFA MWMWMMW −−− ×=  or equivalently : 
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FFAAFA WWW −−− ×= '
2
1  

 
WF-F =2100 was derived from the Curie-Weiss expression: FFCBCoFF MTkNW 2

0/3 μ=−  
( 327 /1087 matNCo ×= - number of the Co atoms per unit volume and the Curie temperature 
TC= 1394 K ) assuming that the Co moments are classical moments which follow the Langevin 
function. In the above expression, the coefficient 1/2 expresses the fact that the interfacial FM-
AFM involves atoms in a strongly intermixed plane which contains as many atoms of each 
kind.  

The WA-A’ and WA-A molecular field coefficients were assumed to be equal and applying 

the molecular field model given by: 
AFM

NBPdMn
AA M

TkN
W 2

02
3

'
μ

−
−

= . 2345' =−= −− AAAA WW  

( 327 /1069 matN PdMn ×=− -number of “Mn-Pd” atoms of a given sublattice per unit volume) 
was obtained. WA-F = 1100 is thus derived.  

 
The calculated bias field reaches: 

 
 

TH E 3
10181037,1

102,0102,01037,11100104
96

9667

0 =
×××

×××××××××
= −

−−πμ  

 
This field is approximately 100 times higher then the experimental bias field 

( TH E 05,00 =μ  (0.11T on the first part of the hysteresis cycle) at T=15K). Such a discrepancy 
is systematically found in EB systems. It results from the fact that the fully AFM 
uncompensated interface assumed in the MB model is very unreal to occur in reality. Further, 
in case it would occur other interfacial magnetic configurations are energetically much more 
favourable than the antiparallel coupling between interfacial moments.                      

Beyond the Meiklejohn-Bean model, the interfacial magnetic domain wall assumed in the 
Mauri’s model [6] is the most natural magnetic configuration one may think of for an 
uncompensated antiferromagnetic layer. Considering that a domain wall constitutes the 
configuration which permits magnetization reversal at the least energy cost, it provides actually 
the lowest bias-field for a perfectly coupled, fully uncompensated interface. In this model, the 
interfacial energy, σ, is equal to the interfacial domain wall energy. Assuming that the wall is 
confined in the antiferromagnetic layer, AFMAFMAFM KA4== γσ . The value of the exchange 
stiffness, mJAAFM /102,3 12−×= , was derived from the MnPd Néel temperature. In the 
absence of existing experimental data, the value of the anisotropy coefficient KAFM was taken 
arbitrarily equal to 36 /105 mJ× , a relatively large value as it is expected for Pd alloys.  

The value of γ derived is: 23 /1016 mJAFM
−×=γ . The exchange bias field reaches: 

T
tM

H
FMFM

AFM
E 32.0

20 ==
γ

μ  which is already much closer to the experimental bias field, but 

still significantly too high.  
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Considering the approximation made in this bias field evaluation, one could argue that 

the Mauri’s model provides a reasonable value to the experimental results. However, it is much 
more likely that the present model which assumes fully uncompensated interface cannot 
describe the real process observed. This led us to develop a simple phenomenological model of 
EB and apply it to the present system. 

 
 
 
5.4.2. Phenomenological description of exchange-bias 
 
 

Of the various models proposed to describe exchange bias, the random field description 
proposed by Malozemoff [7] permits an uncompensated antiferromagnetic moment to appear 
in a very natural way on an essentially compensated interface, as a result of the disordered 
nature of the interface. Unfortunately, Malozemoff assumed a priori that the ferromagnetic 
magnetization aligned along the uncompensated antiferromagnetic magnetization. As realised 
by Koon [8], and, after him, by Schulthess and Butler [9], it is most likely that perpendicular 
coupling should exist between the FM and AFM magnetizations. 

 
 
Model: 
 
Our own approach to this problem assumes a compensated or weakly uncompensated 

antiferromagnetic interface, in agreement with the above description. This corresponds to the 
most general magnetic configuration expected for an antiferromagnetic interface. Only in the 
case where the interfacial plane is perpendicular to the propagation vector of the 
antiferromagnetic structure may a large non compensated moment arrangement be expected.  
Further, for an interface which is uncompensated in principle, many authors have discussed the 
fact that defects will ultimately lead to the formation of an essentially compensated interface. 

We describe the ferromagnetic-antiferromagnetic coupling within classical molecular 
field formalism. Four terms enter into the expression for the magnetic energy : 
 
 

AFMAFMFMFMAFMFAAFMF aMMWE ×−−= −− )cos( 1101 θθμ      (1) 
 

AFMAFMFMFMAFMFAAFMF aMMWE ×−−= −− )cos( 2202 θθμ      (2) 
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Expression (1) and (2) represent the coupling between the FM magnetization and the 

magnetization on each AFM sublattice and expression (3) represents the coupling within the 
interfacial AFM layer. The last term (4) represents the coupling between the interfacial AFM 
layer and the second AFM layer resulting from the possible canting of the interfacial AFM 
layer. 

In these expressions, MFM is the ferromagnetic magnetization, MAFM1 and MAFM2 are the 
antiferromagnetic magnetizations of the 1st and 2nd sublattice respectively. FMθ , 1AFMθ  and 

2AFMθ  are the associated angles measured with respect to the reference axis z (see Figure 5.15 
below). ϕ  represents the direction of the AFM easy axis. In our calculation, °= 90ϕ  was 
assumed, which does not affect the generality of the analysis. 

 
 

                                      
 
 
 

Figure 5.15. Schematic view of the angle notation used in the model. MFM is the 
ferromagnetic moment, MAFM1 and MAFM2 are the AFM moments in the interfacial AFM layer, 

'
1AFMM and '

2AFMM are the moments in the next AFM layer. 
 

 
The molecular field coefficient P

AAW '−  represents the in-plane interactions in the AFM 
plane (see below). For a stacking of fcc plane along the direction (111) there are 6 neighbours 
in-plane, 3 above and 3 below thus, '' 5.0 AA

P
AA WW −− =  was assumed.  

In expression (4) the coefficient 0.25 corresponds to the product of two terms, both equal 
to 0.5. The first of these terms comes from the fact that the energy terms representing the 
exchange energy within the 1st AFM sublattice and within the second AFM sublattice are 
separated in (4) whereas they are grouped in expression (3). The second term 0.5 comes from 
the fact that the molecular field coefficients between antiferromagnetic planes 'PP

AAW −
− and '

'
PP

AAW −
−  

were assumed to amount to half the in-plane molecular field coefficient, P
AAW −  and 'P

AAW −  (this 
is based on the same type of hypothesis as used to determine WA-A).  

The minimum energy configuration was then obtained for WA-F varying from zero to the 
value evaluated above (WA-F = 1100) taken as a maximum. 
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Evidence for large canted AFM configurations 
 

 

Let us consider first, the fully compensated case, 21 AFMAFM MM = . Obviously the AFM 
moment configuration is canted symmetrically with respect to the FM moment direction (see 
Figure 5.16 (a)).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.16. Calculated values for FMθ , 1AFMθ , 2AFMθ representing the various possible 
configurations :(a) fully compensated case 21 AFMAFM MM =  and different uncompensated 

situations ((b) 21 9.0 AFMAFM MM = ,(c) 21 5.0 AFMAFM MM = ,(d) 01 =AFMM ) 
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As WA-F increases from 0 to the maximum value, the canting angle closes progressively. 

It is striking that for WA-F ≈ 1000 the canting angle is already below 10°. The interface FM-
AFM coupling forces quasi-alignment of the moments in the interfacial AFM layer. This 
result was unexpected since most calculations in the literature conclude to a weak interfacial 
canting angle. Yet, in our calculation, the values of the exchange interactions correspond 
typically to those usually assumed. 

In most exchange-bias systems, the interfacial AFM layer is assumed to be at least 
partially uncompensated and we have thus calculated the minimum energy configuration for 
various uncompensated situations. The results are shown in Figure 5.16 (b) to 5.16 (d). 

Let us consider the case 21 9.0 AFMAFM MM =  which corresponds to realistic 
uncompensation (see chapter 1 section 1.4.3 and the next section in this chapter) (Figure 5.16 
(b)). For very small WA-F values, the ferromagnetic moments are almost aligned along the 
uncompensated moment, 12 AFMAFM MM − . This corresponds to the usual exchange bias 
picture. However, as soon as 100≥−FAW , strong canting is present. Note that due to 
uncompensation, the angles 1AFMθ and 2AFMθ are not equal anymore. 

For strong uncompensation (Figure 5.16 (c)), the classical exchange bias picture is 
recovered but as noted already, such uncompensation is very unlikely to appear 

 
 

 
Exchange-bias 
 
 

These observations of strong interface canting may have substantial implication for 
our understanding of exchange-bias. Indeed, the coupling between the interfacial 
antiferromagnetic layer and the second layer may be strongly reduced as a result of canting. A 
convincing way to realise this is to assume full alignment of the interfacial AFM moments 
along the FM moments. In the case where WA-A = -WA-A’, relations (1) to (4) above show that 
the two layers become fully decoupled.  

In the general case where the AFM moments are not fully aligned, along the FM ones, 
and |WA-A| and |WA-A’| are not equal, a certain coupling remains between the two AFM layers.  

However, it is expected to be much less than between the FM layer and the interfacial 
AFM layer. Thus exchange bias should be essentially governed by the coupling between the 
two AFM layers rather than by the coupling between the FM and the AFM interfacial layers. 

More generally, Schulthess and Butler [9] already noted that uncompensation is required 
to give rise to exchange bias.  In view of evaluating the strength of the bias field, we need to 
evaluate realistically the uncompensated AFM moment. Our approach is based on 
Malozemoff’s model [7] that the AFM layer decomposes into domains of which size is of the 
order of the AFM wall thickness. From the values of AAFM and KAFM assumed above, 

AFMAFM KA /πδ = ≈ 3 nm is obtained. The associated surface area contains around 200 
atoms. We consider further that mixing between atoms occurs at the FM-AFM interface. The 
largest uncompensation is expected in a plane in which half the AFM atoms are replaced by 
FM ones. From statistics, the unbalance in the occupation of the two AFM sublattices by FM 
atoms is of the order of 100 =10 and the derived uncompensated AFM moments is of the 
order of 10%.  
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Figure 5.17. Scheme  of the spin configuration in an uncompensated layer in order to 

obtain bias field (a) favoured orientation; (b) obtained after reversal- unfavoured orientation. 
MAFM1 and MAFM2 refers to the moments in the interface layer whereas M’

AFM1 and M’
AFM2 

refers to the moments in the second AFM layer. 
 

 
In the spirit of the present model, EB results from the coupling of this uncompensated 

interfacial AFM moment with the AFM moments in the second layer. For each WA-F values 
the exchange bias field value was then calculated by comparing the interfacial coupling 
energy for two different configurations: 

 
(i)  the configuration for minimum energy calculated in the previous section 
 
(ii) the configuration of minimum energy with the constraint that the FM moment is 
reversed 180° with respect to the configuration (i). 
 

The bias field as a function of WA-F is plotted in Figure 5.18. 
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Figure 5.18. Bias field versus molecular field coefficient WA-F. 
 
 

The calculated bias field matches the experimental one for WA-F≈ 50 which corresponds 
to very weak coupling. At larger WA-F values the very small value of the bias field is a direct 
consequence of the decoupling explained above.  

Concluding this section, the model provides a simple and realistic picture for exchange-
bias coupling, in the present system and possibly more generally. It may permit as well to 
understand the bias-field reduction found, between 150 K and 170 K, in the vicinity of the 
blocking temperature. The applied magnetic field tends to force a spin-flop configuration of 
the antiferromagnet, of which major axis (the angle bisector between the two moment 
directions) is aligned with its own direction. As we mentioned already, the bias field is zero 
for such a symmetrical configuration. 
 
 
 

 
Coercivity 

 
 
           In the above analysis, the interfacial antiferromagnetic moments were assumed to follow 
the ferromagnetic moments during magnetization reversal. As compared to reversal of a 
simple ferromagnetic layer we may expect some coercivity increase due to the fact that the 
antiferromagnetic layer has substantial anisotropy. In the previous section, we have arbitrarily 
assumed that the second order anisotropy constant of MnPd amounts to 36 /105 mJK AFM ×= . 
Assuming that the AFM moment rotates trough their difficult magnetization direction, the 
associated coercive field for coherent rotation amounts to:  
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FMFM

AFMAFM
C tM

aKH ×
=

2
0μ                                                      (5) 

 
 
 
        This gives μ0HC = 0.081 T to be compared to the experimental value 0.07 T. This 
agreement may indicate that magnetization reversal occurs by coherent rotation. Considering 
the non verified assumptions made in the analysis, it should be considered with great care and 
be largely fortuitous.  

 
An original phenomenon found in Co/MnPd is the fact that a sufficiently large applied 

magnetic field may affect the magnetization reversal processes. We have attributed this to an 
increase in the coercive field of the ferromagnetic layer, which is active on first reversal only. 
J. Camarero et al. [4] have observed a similar coercive field enhancement in Co/NiO, and 
showed, by XMCD studies, that it was due to the modification of the NiO uncompensated 
magnetization. The increased coercive field in Co/MnPd requires the application of a large 
applied magnetic field, of the order of 5T. For such field strength, the Co ferromagnetic 
magnetization is expected to be fully saturated. It is thus natural to attribute this to a 
rearrangement of the interfacial AFM moment configuration, as it is the case in Co/NiO. Note 
that the subsequent hysteresis cycles are not modified, which implies that the modified 
interfacial antiferromagnetic rearrangement does not survive on subsequent hysteresis cycles. 
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Chapter 6 
 
 
 
 

Magnetic after effect measurements 
 

 
 
 

As discussed in Chapter 2, it is well known that in systems where irreversible 
magnetization processes occur, time dependent effects are found as well. In this Chapter, time 
dependent measurements realised on the Co/MnPd samples S1 and S2 will be presented.  
 
 
 
6.1. Time dependent measurements in sample S1 and S2 
 

 

 

           The time dependence of the magnetization on samples S1 and S2 was measured at 
different temperatures between 15K and 120K in all the temperature range where significant 
exchange bias exists. The measurements were performed on the different branches of the 
hysteresis cycle. Their aim was to determine whether different reversal mechanisms are 
involved on different branches of the cycle as it is often suggested for exchange biased 
systems (see section 5.1). 
 
 
 
 
6.1.1 Time dependent effects on the 1st branch of the hysteresis cycle in 
sample S1. 
 

 
The magnetic after effect measurements were performed by cooling the system from 

room temperature under an applied field of typically 5T to the desired temperature value and 
field value. Then the magnetization was measured during a time duration t=1800s. The field 
values applied during the measurements were just before the knee occurring in the second 
quadrant of the hysteresis cycle. This is illustrated in Figure 6.1 for sample S1 at T=50K. The 
field at which the knee occurs is μ0H= -0,21T (measured in the VSM point by point mode at a 
field variation rate of 0,002T/s), and the field values selected for magnetic after effect 
measurements were: μ0H= -0,19T, μ0H= -0,20T and μ0H= -0,21T respectively. 
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Figure 6.1. Hysteresis cycle measured at T=50K for sample S1 showing the knee at 
μ0H=-0,21T on the first branch of the hysteresis cycle . 

 
 
The time dependence of the magnetization thus obtained is shown in Figure 6.2, for time 

t up to 500s corresponding to the time window in which the most significant part of the 
magnetization variation takes place. Under μ0H= -0,19T, the time dependence of the 
magnetization is very weak. By contrast, under μ0H= -0,20T the magnetization evolves from 
M= 0, 36*10-6 Am2 to M= -0,36*10-6Am2 after t=1800s. Finally, for μ0H= -0,21T, the 
magnetization evolves from M ≈ 0, 36*10-6Am2 at t=0 to M≈ -0,38*10-6Am2

 already reached at 
t ≈ 100s. 
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                 Figure 6.2.Variation of magnetization versus time at T=50K for sample S1. 
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Following  Fatuzzo [1] and Labrune et al. [2], the parameter b (t) is introduced such that: 

 

                                           
S

S

M
MtM

tb
2
)(

)(
+

=                                                                             (6.1) 

 
The various b(t) obtained at a given temperature (Figure 6.3 a for T=50K) were plotted 

as a function of tR=t/t50 where t50 is the time at which M=0. By this process it was found that 
the various b(tR) curves at a given temperature merge into a unique curve ( Figure 6.3 b for 
T=50K and Figure 6.4 a, b, c for T=75K,T=100k and T=120K). 
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Figure 6.3. (a) Normalized experimental curves b(t) versus t obtained for different field 
values. (b) Normalized experimental curves  b(tR) versus tR obtained for different field values.

 

0 2 4 6 8 10
0,0

0,2

0,4

0,6

0,8

1,0

tR

b(
t R

)

Along the first branch of the cycle
                       T=75K
                   Sample S1

 μ
0
H=-0,150T

 μ
0
H=-0,152T

 μ
0
H=-0,158T

 μ
0
H=-0,160T

0 2 4 6 8 10
0,0

0,2

0,4

0,6

0,8

1,0

b(
t R

)

tR

Alonf the first branch of the cycle
                      T=100K
                   Sample S1

 μ
0
Η=−0,084Τ

 μ
0
Η=−0,09Τ

 

 
 

 

(a) (b) 

(a) (b) 



 116

Chapter 6.Time dependent effects on the 1st branch  
 

0 2 4 6 8 10
0,0

0,2

0,4

0,6

0,8

1,0

tR

b(
t R

)

Along the first branch of the cycle
T=120K

Sample S1

 μ
0
Η=−0,058Τ

μ
0
Η=−0,06Τ

 
Figure 6.4.Normalized experimental curves obtained for different field values and 

temperature values up to T=120K for sample S1. 
 

These behaviors are of the features expected within the Fatuzzo-Labrune model [2]. 
  

Indeed b (t) is expressed as (see Chapter 2 relation (2.21)): 
 

))1(
2
1)1()(

2
1)1(2exp()( 222112 RtkkekRtkRtktb Rt −−−−+++−−= −−−−−       (6.2) 

 
( b(t) depends on two free parameters, R(=1/τ) which is the probability rate for nucleation and 
k=v/Rr0 the parameter related to propagation, with r0 being the nucleus initial radius and v the 
wall velocity). 
 
Considering that 50ttt R=  , b(t) may be reexpressed as b(tR): 
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RRR
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(6.3) 
 

Since R (=1/τ) and t50 is proportional to τ, the factor Rt50 is expected to be a constant 
under the condition that a unique energy barrier is considered. If k is a constant as well which 
implies that propagation is governed by a unique mechanism, b(tR) at a given temperature 
appears to be a unique function, as observed experimentally. 
 

Fitting experimental data, we obtained the best agreement in all cases for k ≈ 0, which 
corresponds to pure nucleation (see Chapter 2, page 37). Accordingly Rt50 is in the range 0, 7 
to 1 close to the value, Ln2, expected for pure nucleation (see Figure 6.5). As shown in Figure 
6.5, the agreement between experimental and calculated time dependence of the 
magnetization is very satisfactory at all temperatures. 

 
 

 

(c) 
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Figure 6.5. Experimental curve versus calculated curves obtained with the Fatuzzo- 
Labrune’s model for the first branch of the hysteresis cycle in sample S1. 
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6.1.2. Thermal activation on the 2nd and 3rd branches of the hysteresis cycle  
 

 
To analyze time dependent effects on the second and further branches of the hysteresis 

cycle the same type of measurements, as on the first branch, were performed. The sample was 
cooled under μ0H= 5T from room temperature to the desired measurement temperature. At 
this temperature, a hysteresis cycle was measured to determine accurately the measurement 
field values distributed on both sides of the coercive field (see Figure 6.6). 
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Figure 6.6. Hysteresis cycle measured at T=100K for sample S1 (the fields at which 

magnetic after effect was measured are indicated by crosses). 
 
 At each field value thus determined, the time dependence of the magnetization was 

measured during t= 6000s (the measurement duration was larger  than t=1800s as for the first 
branch due to the fact that the magnetization relaxation is reduced - see Figure 6.7. for sample 
S1 at T=100K). 
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Figure 6.7. Variation of magnetization function of time in sample S1 on the second and 
third branch of the hysteresis cycle at T=100K. 
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Figure 6.8. Normalized experimental data for the2nd and 3rd branch of the hysteresis cycle at 
T=100K in sample S1. 

 
From these M(t) curves, b(tR) curves were deduced following the same procedure as in 

the above section (see Figure 6.8). In this case, it appeared that neither on the second branch, 
nor on the third one, do the b(tR) curves merge into a unique curve. From the discussion 
presented in the above section, such a result implies that a certain distribution barriers is 
involved, either in the nucleation process or in the propagation one. Thus, we are led to tempt 
analyzing the data within the formalism described in section 2.2.2 from Chapter 2, for a 
distribution of barriers.  

Following the usual procedure under such circumstances, the variation of magnetization 
as a function of Lnt is shown in Figure 6.9 for sample S2 at T=25K and T=100K. 

 
Compared to usual hard magnets, we note that the time dependence of the magnetization 

is very large and that, the Lnt dependence of magnetization is far from linear in particular at 
high temperatures. This means that the magnetic viscosity S is not a constant. 
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Figure 6.9. Magnetization dependence versus lnt  for  sample S2 at T=25K and T=100K on 

the 2nd and 3rd branch of the hysteresis cycle. 
 

From such M(lnt) curves, the magnetic viscosity S was derived at each magnetization 
values. The curves S(M) thus obtained at T=25K and T=100K are plotted in Figure 6.10 for 
sample S2 along the 2nd and 3rd branch of the hysteresis cycle. 
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         Figure 6.10. Magnetic viscosity versus magnetization for sample S2. 
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An important feature already emerge: at a given temperature, the various S (M) curves 
measured under different applied fields constitute a unique curve.  

The other parameter required to derive the magnetic viscosity coefficient 
revtotv SS χχ −= /  is the susceptibility )( irrrevtot χχχ ≈−  . The  revχ  contribution was 

derived by small field excursions along the hysteresis cycle. 
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Figure 6.11. a) Irreversible susceptibility irrχ  as a function of Field; b) Irreversible 
susceptibility irrχ  as a function of magnetization. 

 

From revtot χχ − (H) shown in Figure 6.11 .a, revtot χχ − (M) was derived (Figure 6.11.b). 
At a given temperature, the magnetization dependence of revtot χχ −  matches exactly 

the S(M) (see Figure 6.12).  
 
Altogether these striking results have several implications: 

 
(i) The fact that magnetic viscosity and susceptibility may be compared when 

plotted as a function of the magnetization implies that along a given branch a 
given magnetic state of the system is determined to the first approximation by 
the magnetization value only. 

 
(ii)  The proportionality between S(M)  and )(Mrevtot χχ − establishes that 

magnetic after effect may adequately be represented by an effective magnetic 
field . 

 
(iii) The fact that the magnetization dependence of revtot χχ −  mimics that of S 

implies that Sv is a constant (see Chapter 2, section.2.2.2.).This will be 
discussed further in the next section. Further, the Sv values obtained are about 
the same on both hysteresis cycle branches. This is illustrated in Figure 6.13. 
where Sv(T) is plotted from T=25K to T=100K. 

 

(a) (b) 
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        Figure 6.12. Magnetic viscosity versus susceptibility for sample S2. 
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Figure 6.13. Viscosity coefficient versus temperature on the 2nd and 3rd branch of the 

hysteresis cycle in sample S2. 
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6.2. Analysis and discussion of time dependent effects 
 
6.2.1 Thermal activation on the 1st branch of the hysteresis cycle 
 
 

As we already showed in section 6.1.1.and 6.1.2, the Fatuzzo- Labrune model describes 
the properties of the present systems along the 1st branch of the hysteresis cycle. Good 
agreement between experimental data and calculated ones was obtained when considering that 
the reversal on the first branch is dominated by nucleation over a single energy barrier (k ≈ 0). 

 
Let Δ(H) be the height of the field dependent energy barrier. As shown by Victora [3] 

for an isotropic system, the energy barrier Δ involved in a thermally activated process may be 
expressed as: 
 

                                                                                                                             (6.4) 
 
where H0 refers to the energy barrier  Δ0 in  zero applied magnetic field. 
 

Δ(H) in relation (6.4) was approximated by )/ln()( 0ττkTH =Δ with 2ln/50t=τ  and 
s9

0 10−=τ , an arbitrary classical value. At each temperature T, Δ2/3 thus deduced was plotted 
as a function of (H0-H) (Figure 6.14) .For such an exchange bias system, the reference H0 
field may be defined either with respect to the applied magnetic field or with respect to the 
bias field. In the former case, the energy barrier Δ0 may be expressed phenomenological as: 
 

(6.5) 
 
In the later case, the energy barrier Δ’

0  is given by the relation: 
 

 (6.6) 
 

 
The energy barriers Δ0 and Δ’

0 obtained at different temperatures are listed in Table 1. 
 
 
 
T(K) 

 
 
H1(T) 

 
 
HE(T) 

 
 
HC(T) 

 
 

Δ’
0 

*10-20J 

 
 
Δ0 

*10-20J 

 
 
H0extr 

(T) 

 
 
H0-HE 

(T) 

00

0

HM
v

Sμ
Δ

=

         (nm3) 
)( 00

0
'

ES HHM
v

−
Δ

=
μ

 
(nm3) 

 
15 0,310 0,146 0,168 1,6 3,04 0,44 0,30 32 24 
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120 0,056 0,013 0,043 6,4 7,38 0,18 0,165 191 180 

 
Table1. Values of Δ0 and Δ’

0 calculated by extrapolation to H=0 and to H=HE 
respectively, in the case of sample S1. 
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Figure 6.14. Δ2/3 versus H at T=15K on the first branch of the hysteresis cycle for sample S1. 

 
For both cases (Δ0, H0) and (Δ’

0, H’
0) the activation volume may be deduced. In principle 

the two values should obviously be identical. This is verified to ± 10%, except at T=15K 
where the two values differ by 30%. 

The variation of the activation volume versus temperature on the first branch of the 
hysteresis cycle is presented in Figure 6.15. 
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Figure 6.15. Variation of the activation volume versus temperature on the first part of the 

cycle (in black) dominated by nucleation for sample S1 . 
 

The activation volume increases with temperature, a property which is very generally 
observed in hard magnetic systems. Since domain wall nucleation involves the formation of a 
magnetization heterogeneity which must resemble a domain wall, it is usual to compare v1/3 to 
the domain wall thickness. In the present case, v1/3 increases from 3nm at T=15K to 6nm at 
T=120K.  
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6.2.2. Activation volume along the 2nd and 3rd branches of the cycle 
 
 

The activation volumes versus temperature on the second and third branches of the cycle 
are plotted in Figure 6.16.for samples S1 and S2 .  
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                  Figure 6.16. Activation volume versus temperature for sample S1 and S2. 
 

 
As it was the case on the 1st branch of the hysteresis cycle, the activation volume 

increases with temperature. 
 
Three main observations can be made: 
 
 

 As already mentioned the activation volume has a constant value along a certain 
branch of the hysteresis cycle. 

 
 At all measuring temperatures the activation volume has the same value along 

the 2nd and 3rd branches of the cycle. 
 

 The activation volume is two to three times larger than along the 1st branch of 
the cycle. 

 
 
 
 
 
 
 
 
 
 

 
 

S1 S2 
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6.2.3. General remarks concerning the activation volume 
 

 

The viscosity coefficient is inversely proportional to the activation volume, 
a

v v
S 1

=  

(see relation 2.30). Further, as shown by Barbier [quoted by Wohlfarth in [4]] it is 
approximately proportional to the coercive field. Thus, it is natural to find a smaller value for 
the activation volume on the first branch of the hysteresis cycle (see Figure 6.16). 

In hard magnets the activation volume is generally found to be of the order of 310δ≈v , 
where δ is the domain wall width (Nd2Fe4B nm3.5≈δ , K=15MJ/m3 at T=4.2K ). In our 
Co/MnPd samples, 380nmva ≈  at T=15K, whereas, 3δ  for Co is much larger, of the order of 

3310 nm .The coupling between the ferromagnetic and antiferromagnetic layer may be the 
source of an additional anisotropy. However, this will not influence δ  and thus the expected 
value of av  in this approach very significantly.  

The above result suggests that in the present system, the activation volume as compared 
to 3δ  is smaller than in usual hard magnetic systems. This may be attributed to the highly 
disordered nature of the interface structure. Several authors [5, 6] have shown that exchange 
bias systems present properties which are reminiscent of spin- glass systems. In such systems, 
it is well known that a number of states with similar energies exist and the magnetization 
variation occurs by overcoming a large number of small energy barriers. 

The large distribution in reversal fields which is seen on the hysteresis cycle is related in 
usual hard magnets to a distribution of energy barriers and a distribution in activation volume 
should be found as well. By contrast, the constant value of the activation volume found here 
indicates that the distribution in reversal field is not due to a distribution in energy barrier. A 
natural way to account for this is to assume that there exists a distribution in bias fields, which 
would lead to a distribution in the total local field acting on the ferromagnetic moments. The 
identical values in the activation volume along the two other branches of the hysteresis cycle 
may be interpreted with the same argument. 
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6.2.4. Coercive field model along the 2nd and 3rd branches of the cycle 
 
 

In the case of hard magnets, Givord et al. [7] showed that (see section 2.2.3 in chapter 
2), the activation volume may be related to the coercive field through the following relation:  

 
 

Seff
S

R MN
TMv

AH 03/20 )(
μαμ −=                                        (6.7) 

 
where the first term represents the coercivity strength and the second term represents dipolar 
interactions within matter. 

We have applied the same approach to the studied Co/MnPd systems. The coercive field 
versus 3/2/1 av  for sample S1 and S2 is shown in Figure 6.17.  
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         Figure 6.17. Activation volume V2/3 versus coercive field in samples S1 and S2. 
 
 

An approximate linear variation is obtained (except for the points corresponding to 
measurements at T=15K in sample S1) and the line cut the axes at origin. In the present case, 
the exchange constant A= ACo =10-11J/m and the saturation magnetization MS = MCo = 
1.37*106A/m. The phenomenological parameters α and Neff are derived to be: α= 0,2 and Neff 
=0.  

The parameter α is significantly weaker than in usual hard magnets. This is not 
surprising when considering the highly disordered nature of the studied systems so that 
reversal involves a large distribution of relatively weak barriers. 
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The value Neff= 0 means that reversal is not significantly influenced by dipolar 

interactions. This is often found in systems where magnetization reversal involves 
propagation of domain wall.  

Altogether this analysis indicates that magnetization reversal in exchange bias systems 
resemble the one in hard magnets. 
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Conclusion 
 

 
 
 
 

In this thesis, I have studied exchange-bias in three different Co/MnPd samples.  
 
Having analysed the results obtained in various exchange-bias systems previously 

studied as well as models developed to describe this phenomenon, I embarked on the study of 
a system which was a priori well adapted to the study exchange-bias in the whole 
temperature range from low T up to the Néel Temperature of the antiferromagnet.  
 

Unfortunately it turned out to be difficult to characterise properly the structural and 
magnetic properties of the MnPd antiferromagnetic layer. Thus, we were led to assume that 
this layer had the same properties (magnetic structure in particular) as reported for MnPd 
alloys of similar composition [1, 2, 3]. The exchange-bias field, HE, and coercive field, Hc, 
were determined in the whole temperature range, up to TN of MnPd. The value of the 
interfacial coupling energy was found to be significantly larger than in most exchange-bias 
systems previously studied. In a certain temperature range (T=120K-130K), the bias-field HE 
could be increased under a sufficiently large field applied at a given temperature. By contrast, 
above 130K, the exchange-bias field was found to be reduced under Happ. These features, 
never observed previously, indicate that the interfacial AFM moment configuration is 
modified under Happ. 

In view of approaching the physical understanding of exchange-bias, a simple 
phenomenological model of exchange-bias was developed, in which the interfacial molecular 
field created by the ferromagnet on the antiferromagnet was modelled essentially as an 
external applied field. This model has similarities with the Koon’s or Schulthess and Butler’s 
approaches. However, an unexpected result was to show that for a range of realistic 
molecular field coefficient, the moments in the first antiferromagnetic layer almost aligns 
along the ferromagnetic moments. This has very significant consequences for the coupling 
mechanism. A striking feature is to suggest that the HE field may be determined by the 
coupling existing between the first and the second antiferromagnetic layers. Exchange bias 
fields which are consistent with experimental values are then obtained. 
 

Magnetic after effect was studied in great detail for the first time in an exchange -bias 
system. We showed that the Fatuzzo-Labrune model permits thermal activation to be 
described along the first branch of the hysteresis cycle. This implies that reversal is governed 
by nucleation over a very small number of barriers. Along the second and further branches of 
the hysteresis cycle, magnetization reversal involves overcoming energy barriers which are 
characterised by a broad energy distribution so that the models which are usually used to 
describe magnetization reversal in hard magnetic materials are now adequate. 
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A striking difference with usual hard magnets, is the fact that a very large fraction of 

the hysteresis cycle may be described by thermal activation alone under fixed applied 
magnetic field. This property is related to the very small size of the activation volume (v ≈ 
δ3, instead of v ≈ 10 δ3), a property which characterises more generally highley disordered 
systems, such as spin glasses [4, 5]. Further this large thermal activation effect permitted us 
to reveal the validity of the usual analogy made between the effects of thermal activation and 
those of an applied magnetic field.  

  
As final concluding remarks, I would like to indicate possible directions of research 

which could be initiated to progress further into the understanding of exchange-bias. In 
particular, it would be meaningful to test the generality of results obtained in this work by 
examining other exchange-bias systems. This would permit to test the validity of the model 
proposed in our work, as well as to examine whether the original features of magnetic after 
effect found in MnPd/Co exist in other EB systems as well. Additionally, in the spirit of the 
Malozemoff’s description of exchange-bias, the magnitude of the uncompensated interfacial 
antiferromagnetic moment is determined by the size of some characteristic correlation length 
of the system. In this respect, the study of exchange-bias in nanostructures, may offer another 
promising approach to the understanding of this phenomenon. Very few results were already 
published on this topic, and they are often contradictory. This type of studies is now being 
developed in Institut Néel.  
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Conclusion 
 

 
 
 
 
Dans cette thèse, j'ai étudié le phénomène de décalage d’échange dans trois échantillons 

différentes de Co / MnPd. 
 

         Après avoir analysé les résultats obtenus dans les différents systèmes a la décalage 
d’échange précédemment étudié, ainsi que les modèles développés pour décrire ce 
phénomène, j'ai entrepris l'étude d'un système qui était a priori bien adapté à l'étude de 
exchange bias dans une grande gamme de température a partir de  basse température  jusqu à 
la température Néel du couche antiferromagnétique.  
 
         Malheureusement, il s'est difficile de caractériser correctement les propriétés 
structurales de la couche antiferromagnétique MnPd. Ainsi, nous avons été amenés à penser 
que cette couche as les mêmes propriétés magnétiques (structure magnétique en particulier) 
comme indiqué pour les alliages MnPd de composition similaire [1, 2, 3]. Les valeurs du 
champ bias HE, et du champ coercitif, HC ont été déterminées dans toute la plage de 
température, jusqu'à la température Néel  TN du MnPd. La valeur de l'énergie interfaciale 
d’échange   est sensiblement plus importante que dans la plupart des systèmes d’échanges 
précédemment étudiés. Dans une certaine plage de température (T = 120K-130K), la valeur 
du  champ bias HE, augmente  pour une certaine  valeur du champ appliqué et pour une 
température donnée. En revanche, au-dessus de 130K,  la valeur du  champ bias HE êtait 
réduite sous Happ. Ces caractéristiques, jamais observé auparavant, indiquent que la 
configuration interfaciale de moment AFM est modifiée sous Happ.  

Pour une meilleure compréhension des phénomènes physiques implique dans le 
phénomène de décalage d’échange, un simple modèle phénoménologique a été développé, 
dans lequel le champ moléculaire interfacial créé par la couche ferromagnétique sur la couche 
antiferromagnétique a été modélisé essentiellement comme un champ externe appliquée. Ce 
modèle présente des similitudes avec les approches du  Koon ou Schulthess et Butler. 
Toutefois, un résultat inattendu a été montré : pour des valeur réaliste du cœfficient champ 
moléculaire, les moments dans la première couche antiferromagnétique  sont presque alignée 
le long des moments ferromagnétiques. Ceci a des conséquences très importantes pour le 
mécanisme d’échange. Une caractéristique frappante est de suggérer que le champ bias HE 
peut être déterminé par le couplage existant entre la première et la deuxième couches 
antiferromagnétique. Des valeur compatibles avec les valeurs expérimentales sont alors 
obtenus pour le champ d’decalage. 

  
         Les  effet traînage magnétique on été étudié dans le détail pour la première fois dans un 
système a la décalage d'échange. Nous avons montré que le model de Fatuzzo-Labrune 
permet la description de l'activation thermique sur la première branche du cycle d'hystérésis.  

 
 
 

 



 134

Conclusion 
 
 

Cela implique que le renversement est dominé par  la nucléation sur un très petit nombre 
de barrières d’énergie. Pour les deuxième et troisième branches du cycle, le renversement  
d’aimantation implique la surmonte des barrières d'énergie caractérisés par une large 
distribution de l'énergie afin que les modèles qui sont généralement utilisés pour décrire la 
renversement de l’aimantation en matériaux magnétiques durs sont désormais adéquates.   
 
         Une différence frappante par rapport ou aimants durs habituels, c’est le fait qu'une très 
grande partie du cycle d'hystérésis peut être décrit par l'activation thermique sous un champ 
magnétique appliqué fixe. Cette propriété est liée à la très petite taille du volume d’activation 
( 3δ≈v par rapport au 310δ≈v ) une propriété qui caractérise les systèmes  très désordonnés, 
comme les verres de spin [4, 5]. Ce large effet d’activation thermique nous a permis de faire 
un lien entre les effets de l'activation thermique et celles d'un champ magnétique appliqué.  
   
          Comme dernière conclusion, je tiens à indiquer les orientations possibles dans  la 
recherche qui pourrait être entrepris pour progresser dans la compréhension des systèmes à la 
décalage d’échange. En particulier, il serait utile de tester la généralité des résultats obtenus 
dans ce travail en examinant d'autres systèmes de type exchange bias. Cela permettrait de 
tester la validité du modèle proposé dans nos travaux, ainsi que d'examiner  si les 
caractéristiques originaux des effet traînage trouvée dans MnPd / Co existent dans d'autres 
systèmes. Dans l'esprit du model du Malozemoff, l'ampleur des moments interfacials 
antiferromagnétiques noncompensée  est déterminée par la taille de certaines longueurs 
caractéristiques du système. À cet égard, l'étude de décalage d’échange dans les 
nanostructures, peut offrir une autre approche prometteuse pour la compréhension de ce 
phénomène. Très peu de résultats ont été publiés sur ce sujet, et ils sont souvent 
contradictoires. Ce type d'études est en cours de développement dans l'Institut Néel. 
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EXCHANGE BIAS IN Co/MnPd SYSTEM 
 
Abstract: 
 
This thesis concerns the study of Co/MnPd an exchange-biased system.  
The samples were structurally characterised using X-ray diffraction and reflectometry and 

magnetically VSM and SQUID magnetic measurements. 
In view of approaching the physical understanding of exchange-bias, a simple 

phenomenological model of exchange-bias was developed, in which the interfacial molecular 
field created by the ferromagnet on the antiferromagnet is essentially equivalent to an external 
applied field. A striking feature is to show that the HE field is determined by the coupling 
existing between the first and the second antiferromagnetic layers. Exchange bias fields which 
are consistent with experimental values are then obtained. 

Magnetic after effect was studied in great detail for the first time in an exchange -bias 
system. We showed that the Fatuzzo-Labrune model permits thermal activation to be described 
along the first branch of the hysteresis cycle. This implies that reversal is governed by nucleation 
over a very small number of barriers. Along the second and further branches of the hysteresis 
cycle magnetization reversal involve overcoming of energy barriers which are characterised by a 
broad energy distribution so that the models which are usually used to describe magnetization 
reversal in hard magnetic materials are now adequate. 

 
Keywords: 

magnetism, magnetic measurements, model, thermal activation, nucleation, propagation, 
magnetic after effect, energy barrier. 
 

DECALAGE D’ECHANGE DANS LE SYSTEME Co/MnPd 
 
Résume : 
 
Ce travail de thèse porte sur l'étude du décalage d’échange dans le system Co / MnPd. 
Les échantillons ont été caractérisée structuralement en utilisant la diffraction et la 

réflectométrie de rayons X et magnétiquement en utilisant un magnétomètre VSM et un 
magnétomètre SQUID pour les mesures magnétiques. 

 Compte tenu de la difficulté dans la compréhension des phénomènes physiques impliqués 
dans le décalage d’échange, un modèle phénoménologique simple a été développé dans lequel le 
champ magnétique moléculaire sur la couche antiferromagnétique est modélisé comme un champ 
magnétique extérieur appliqué. La valeur du champ de décalage est déterminée par le couplage 
existant entre la première et la deuxième couche AFM. 
        L'étude des effets traînage dans les systèmes à décalage d’échange, constitue une originalité 
de ce travail. Le modèle de Fatuzzo Labrune, très souvent utilisé pour décrire le renversement de 
l’aimantation dans les couches magnétiques dures  a permis la description de l’activation 
thermique sur la première partie du cycle dé hysteresis. Ce modèle est valable lorsqu’on considère 
une seule barrière d'énergie dans la nucléation des domaines magnétiques et une seule barrière 
pour la propagation des parois. Au delà du premier cycle d’hysteresis, les résultat expérimentaux 
ne peuvent être décrits par ce modèle. Les modèles qui supposent l'existence d'une large 
distribution des barrières d’énergie permet alors une très bonne description des effets observés.  

 
Mots clés : 

magnétisme, mesures magnétique, model, activation thermique, nucléation, propagation, traînage 
magnétique, barrière d’énergie. 
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