USE OF REMOTE SENSING FOR MONITORING WETLAND PARAMETERS RELEVANT TO BIRD CONSERVATION

AURELIE DAVRANCHE

TOUR DU VALAT ONCFS UNIVERSITY OF PROVENCE – AIX-MARSEILLE 1 UFR « Sciences géographiques et de l'aménagement » University - CNRS 6012 E.S.P.A.C.E

Camargue : Rhône river delta

Dynamic system: water and sediment inputs from the Rhône and the sea

90 000 ha of natural habitats mostly wetlands

2/3 on relatively small private estates

Specific objectives

These tools will help to :

map the vegetation of Camargue marshes (common reed, clubrush, aquatic beds) to follow their spatial evolution over time

map <u>flooded areas</u> irrespective of vegetation density to follow their spatial evolution monthly

map vegetation parameters that are associated with ecological requirements of vulnerable birds in reed marshes

Methodology

Sampling

Fields campaigns : reedbeds, club-rush, aquatic beds, water levels, GPS

Digitalizations : Others

Image processing: radiometric normalization

6S atmospheric model vs. pseudo-invariant features (PIF)

Similarity index (Euclidian distance): Estimation of radiometric variation of PIF

Spectral variations

Natural and artificial phenomena characterizing Camargue wetlands require a multispectral and multitemporal imagery for their monitoring

Statistical modelling : two approaches

- 1 Qualitative approach : presence/absence
 - Presence of reed, club-rush and aquatic beds
 - Presence of water in differing conditions of vegetation density

Classification trees

- 2 Quantitative approach : prediction of continuous variables
 - Diagnostic parameters of reedbeds
 - Quality for reed harvesting

• Suitability for vulnerable reed birds species (passerines, Purple heron, Eurasian bitterns)

Generalized Linear Models

Classification tree algorithm Rpart based on the algorithm CART (classification and regression tree) Breiman et al, 1984; implemented in R. **Advantages Method Recursive partioning based Hierarchical classification strategy:** on gini index easy interpretation of results **Binary tree Optimal for presence/absence** Leaf N₃ Leaf Lea Leaf Leaf **Cross-validation (k-fold) Small samples and reproducibility Unbalanced samples Prior parameter**

Recursive partioning

A two-dimension example with two variables selected for reedbeds classification

Tree: example for reedbeds classification

Maps resulting from the formula

Tree for flooded areas classification

Classification accuracy and validation

Classification accuracy (%) for the 3 types of marsh vegetation in Camargue:

	2005	2006
Reedbeds	91,9	92,6
Club-rush	93	Marine
Aquatic beds	88,3	84,9

Acquisition in October instead of September + extremely small class ?

Aquatic beds in brackish marshes mixed with Club-rush + acquisition in October?

Classification accuracy (%) for flooded areas in 2006:

	All marshes	Open marshes	Vegetated marshes	Best results: first
Flooded areas	76	86	70	half of the year ar
	1119	S A HIER	AT A DAY	SHALVA IVERTING

Generalized Linear Models (GLM)

Equation for p descriptives variables: Y=a1x1+a2x2+...+aixi+...apxp+b

Model selection : Coefficient of determination : R²

- ► $R^2 = 1 \rightarrow 100$ % variance explained
- ► R² increases with the number of variables
- → Best model : maximum R² with minimum number of variables

Variable selection : Forward stepwise (FSW)

Sequence of F-tests (Fischer statistic) : inclusion and exclusion of « statistically significant » descriptive variables

End: when no additional variable contribute to increase significantly the variance explained

Problem : the first variables selected have a big influence on the resulting model

Pre-selection of descriptive variables necessary

Variables pre-selection

Criterions for pre-selection : stability

Spectral response: correlation between two consecutive years

Mean spectral response : no significant difference between two consecutive years

20 of the 90 variables are pre-selected !

1 - What is the efficiency of these variables for modelling reedbed parameters ?

2 - What is the minimum number of images required for modelling reedbed parameters ?

Percentage of explained variance

Reedbed parameters	One descriptive variable = one date	Two dates	Best model = multidate
Height of stems	44	54	66
Number of dry reeds		59	61
Panicles number	MAR ANDAN	38	47-
Number of green reeds		35	60
Ratio dry/green		STIMULE.	56
Percentage of open areas		50	60

Best predicted parameter: height of stems

Best models : validation in 2006

Purcentage of explained variance (*p=0.05, **p=0.01, ***p=0.001) :

	2005	2006
Height of green reeds	66***	46***
Number of dry reeds	61***	30**
Panicles number	47***	19*//
Number of green reeds	60***	
Ratio dry/green	56***	43***
Percentage of open areas	60***	17*

Number of panicles: binomial distribution \rightarrow Rpart?

Green reeds: bi-modal distribution \rightarrow GAM?

% of open areas: methodological imprecision

Application for monitoring: reedbeds evolution

Influence of water management, salinity...

Application for monitoring: reedbeds evolution

Influence of water management, salinity...

Application for monitoring: Birds habitats

Great Reed-Warbler reedbeds: height of stems >195 cm

Application for monitoring: flooding duration

Remote sensing and statistical modelling for wetland monitoring : sustainability, precision, affordablility

SPOT 5: multispectral and multitemporal modes optimal for wetland monitoring on large areas

Roles reversed : field campaigns as a complementary tool for wetland monitoring with satellite remote sensing

Perspectives: improvements

More descriptive variables : TC wetness, index differences

Additional field campaigns to monitor reed harvesting

Monitoring of water levels with the IME

Number of panicles and green reeds : Rpart? GAM?

Automatization of the methodology: simplicity for managers

Perspectives: other applications

► <u>Rice cultivation:</u>

Perspectives: other applications

Rice cultivation:

