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Chapitre 1

Parcours personnel - Introduction

L’essentiel de mon travail de recherche s’est passé au sein du laboratoire Kastler Bros-
sel dans I'équipe Dynamique des systéemes coulombiens. Mon arrivée dans cette équipe
lors de mon stage de DEA (1992) a été le fruit du hasard : le nombre de propositions
de stage étant alors assez limité, nous avions tiré au sort les attributions des stages les
plus intéressant ; ayant perdu, j'hésitais entre plusieurs autres stages quand est arrivée
(bien apres la date requise) la proposition de Dominique Delande, pour laquelle je res-
tait le seul candidat en lice... Ayant extrémement apprécié le mélange chaos-dynamique
quantique, les simulations numériques et ’ambiance de I’équipe, j’ai souhaité y faire mon
travail de these. Celui-ci a porté sur le probleme coulombien a trois corps en mécanique
quantique (atome d’hélium...). Aprés deux années de theése, je suis parti faire mon ser-
vice national (94-96) en tant que coopérant scientifique a 1’Université Libre de Bruxelles
dans I’équipe de Pierre Gaspard, aupres de qui j’ai pu apprendre les subtilités des ap-
proches semi-classiques dans le chaos quantique. L’époque (1997) qui a suivi mon travail
de these a été celle du développement des expériences d’atomes froids dans des potentiels
lumineux tels que I’émission stimulée était rendue négligeable. En particulier, il devenait
possible de faire des expériences de chaos quantique permettant de mesurer, via les dis-
tributions de vitesse, la dynamique du transport chaotique, contrairement aux systemes
coulombiens pour lesquelles les expérimentateurs n’avaient acces qu’a des quantités intégrés
et dans l'espace des énergies (section efficace d’ionisation). Ayant eu la chance de rentrer
au CNRS (1998) et pour mieux connaitre les possibilités des expériences d’atomes froids,
j’ai demandé a Frangois Biraben de participer (& mi-temps) a 1’élaboration de sa nouvelle
expérience de métrologie. Le but était de mesurer tres précisément la période des oscilla-
tions de Bloch d’atomes froids (masse M) dans un réseau optique, ce qui permettait une
détermination tres précise du rapport h/M. En parallele, j’ai commencé a m’intéresser aux
phénomenes physiques liés a la propagation d’ondes dans des milieux désordonnés et plus
particulierement a la lumiere dans les gaz d’atomes froids. Ce sujet de recherche a de nom-
breux points communs avec le chaos quantique, puisque 1’on s’intéresse a des propriétés de
transport mixant les effets d’interférences et une dynamique complexe. Cette thématique
avait déja débuté au sein du groupe, en particulier suite aux expériences menées a 'INLN
(Institut Non-Linéaire de Nice) dans ’équipe dirigée par C. Miniatura et R. Kaiser. Dans

4



ce contexte, les atomes froids se distinguent des diffuseurs classiques par plusieurs aspects :
(i) ils sont résonnants, (ii) ils peuvent présenter une structure interne (sous-niveaux Zee-
man), (iii) les effets non-linéaires (saturation de la transition atomique) sont facilement
observables. Les deux premiers aspects étant bien compris, j'ai donc décidé de m’intéresser
aux aspects non-linéaires, sachant que des expériences dans ce domaine étaient envisagés
a I'INLN. Ce mélange désordre - non-linéaire, méme s’il m’a parfois mené a des diffi-
cultés! un peu décourageantes?, m’a conduit & un domaine ot la physique est extrémement
riche et intéressante, et qui est devenu d’autant plus d’actualité avec le développement des
expériences de transport de condensats de Bose-Einstein dans les potentiels désordonnés.

Au-dela, et anticipant sur les travaux que je présente par la suite, de nombreuses direc-
tions restent encore a explorer. En premier lieu, il apparait clairement que la dynamique
(i.e. au-dela des propriétés stationnaires) du transport reste un enjeu important dans la
compréhension des phénomenes de localisation dus au désordre. Dans ce contexte, il est
tres intéressant de remarquer que la dynamique des systémes désordonnés (instabilités de
speckle, de lumiere ou d’onde de matiere, lasers aléatoires) permet de faire un lien avec
le chaos quantique : on peut considérer les systemes désordonnés comme des systemes dy-
namiques chaotiques de haute dimensionnalité (i.e. avec un tres grand nombre de degrés
de liberté). Dans cette optique, il sera tres intéressant de transférer les outils du chaos
pour mieux comprendre et analyser la dynamique de ces systeémes instables, par exemple
le type de bifurcation, la transition vers le chaos, etc... La moyenne sur le désordre nous
amene ensuite a considérer un ensemble de systemes dynamiques dont on cherche a com-
prendre non seulement les propriétés moyennes, mais également a caractériser les écarts
aux valeurs moyennes. En particulier, dans le régime fortement localisé, on peut s’attendre
a ce que la combinaison entre les fluctuations de speckle et les non-linéarités génere des
propriétés statistiques particulieres, se traduisant probablement dans des comportements
singuliers, comme par exemple dans les spectres d’émission des lasers aléatoires. Ensuite,
il faut noter que la nature quantique (collective) des objets mis en jeu (onde de matiere,
champ électromagnétique...) est amenée & jouer un role de plus en plus important. Ainsi,
dans le cas des lasers aléatoires, I’émission spontanée et plus généralement les corrélations
quantiques du champ sont des ingrédients essentiels. De méme, dans le cas des ondes de
matieres, ces aspects quantiques sont cruciaux pour obtenir et expliquer toutes les tran-
sitions de phase liées au désordre. Quand on observe 'accroissement du nombre de publi-
cations a ce sujet, il est clair que cette direction de recherche est extrémement riche et
prometteuse.

Je tiens a remercier les nombreuses personnes qui m’ont directement ou indirectement
permis de mener a bien ce travail de recherche, notamment I’ensemble des membres du
laboratoire pour avoir rendu si agréable la vie au jour le jour. Je voudrais également
remercier Christian Miniatura et Thomas Wellens dont la collaboration fut a la fois cruciale
et enrichissante. Je voudrais remercier particulierement, Dominique Delande, de m’avoir

LCeci dit, si c’est trop facile, il y a peu de chance que ca soit intéressant...
2¢’est 14 qu’on apprend & calibrer ses choix de recherche en fonction de leur intérét scientifique mais
aussi de ses envies personnelles



soutenu toutes ces années, grace un subtil équilibre entre liberté scientifique (a peine recruté
dans son équipe, il m’a laissé aller travailler & mi-temps sur une expérience d’atomes froids),
conseils scientifiques et discussions approfondies. Merci a Sandra! (et Aubin, Adele et
Elvire) ! Tout ce qu’ils m’apportent m’a souvent permis de prendre du recul par rapport a
la recherche.



Chapitre 2

Chaos quantique



2.1 Cadre général

La notion de chaos en mécanique classique est apparue, & la fin du XIX®™* siecle, avec
les travaux de Poincaré sur le probleme a trois corps. Plus précisément, il a montré que
le nombre de constantes du mouvement était inférieur au nombre de degré de liberté : le
systéme est donc non-intégrable!. Peu apres, les travaux de Lyapunov ont précisé cette
notion en analysant la stabilité des trajectoires classiques : génériquement, i.e. pour un
systeme chaotique, la distance, dans I'espace des phases, entre deux trajectoires, corres-
pondant a des conditions initiales aussi proche que ’on veut, croit exponentiellement avec
le temps. Alors que la dynamique est parfaitement déterministe, la moindre incertitude sur
les conditions initiales empéche toute prédiction a long terme : c¢’est le fameux “effet pa-
pillon”, qui amene parfois un mélange abusif entre chaotique et aléatoire. Au contraire, les
travaux des trente dernieres années sur le chaos ont montré que 'espace des phases d'un
systeme chaotique est extrémement bien structuré par une classe particuliere de trajec-
toires : les orbites périodiques. Celles-ci forment en effet un ensemble dense et leur nombre
croit exponentiellement avec leur période. De plus, elles jouent un role fondamental dans
I’analyse des systeémes quantiques.

Du fait du principe d’incertitude de Heisenberg, la notion de chaos n’est pas bien
définie pour un systeme quantique et le terme chaos quantique est en fait un raccourci
pour désigner ’étude des propriétés quantiques d’un systeme dont la dynamique classique
est chaotique. Essentiellement, on peut distinguer deux approches complémentaires dans le
domaine du chaos quantique. D’un coté, les théories semi-classiques ont pour but d’expli-
quer et de calculer les quantités quantiques (position des niveaux d’énergie, section efficace
de photo-ionisation...) a partir des propriétés de la dynamique classique. De I'autre coté,
comme la dynamique des systemes chaotiques présente, aux temps longs, des aspects uni-
versels, i.e. indépendants des détails du systeme considéré, il y a toute une classe d’études
basées sur des analyses statistiques des propriétés quantiques, comme par exemple les
fluctuations des écarts entre niveaux d’énergie consécutifs.

Lpour étre précis, un systeme non-intégrable n’est pas nécessairement chaotique, mais cette situation
est plutot pathologique



2.2 Aspects statistiques

2.2.1 Le probleme coulombien a trois corps

Ce theme de recherche est la continuation directe de mon travail de these, au cours
duquel j’ai développé une méthode permettant de calculer numériquement les propriétés des
états du probleme coulombien & trois corps (atome d’hélium, ion moléculaire Hy ) : position
en énergie, largeur des résonances, fonctions d’onde, forces d’oscillateur... Cette méthode est
basée sur I'utilisation de toutes les symétries du systeme aussi bien géométriques (invariance
par rotation, parité, échange des particules) que dynamiques (liées a la forme en 1/r des
potentiels).

L’allure schématique du spectre de I'hélium est la suivante : le zéro d’énergie est fixé
comme étant I’énergie de ’atome doublement ionisé Het™. Lorsqu’on lui ajoute un électron,
on obtient I'ion He™ simplement ionisé dont les niveaux forment une série de Rydberg
convergeant vers le seuil de double ionisation. A chacun de ces niveaux vient se greffer
d’autres séries de Rydberg qui correspondent aux niveaux hydrogénoides du deuxieme
électron. On a donc cette structure d’une infinité de séries de Rydberg, dont les seuils de
convergence forment eux-mémes une série de Rydberg (voir figure 2.1), qui elle converge
vers la limite de double ionisation. Au-dela du quatrieme seuil de simple ionisation, les
premiers niveaux d’une série se mélangent aux séries issues du seuil précédent.

Fig. 2.1 -
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-0.20 - '
,,,,,,,,,,,,,,,,, -0.0010 -
-0.40 -
= E 00020 -
-0.60 - o
-0.0030 -
-0.80 -

100 - -0.0040 -

Il faut évidemment raffiner cette allure grossiere en tenant compte de la répulsion inter-
électronique. Un premier effet est de décaler systématiquement les niveaux vers les énergies
plus élevées, tout en levant la dégénérescence entre les niveaux de mémes nombres quan-
tiques principaux n; et no. Le deuxieme effet ne concerne que les séries au-dela du premier
seuil, pour lesquelles les deux électrons sont dans des états excités. Tous les états deviennent
en fait des résonances. En effet, du fait de l'interaction entre les deux électrons, chaque
état est couplé au(x) continuum (continua) issus du ou des seuils plus bas en énergie.
Ces résonances correspondent au phénomene physique d’auto-ionisation : un électron en



tombant dans un niveau plus bas, cede suffisamment d’énergie a I'autre électron pour lui
permettre de s’ioniser. Ce phénomene est impossible pour les états en dessous du pre-
mier seuil d’ionisation et donc ces états restent des états liés, la série est discrete (voir
figure 2.1). Ainsi, les niveaux de He™ donnant les limites d’accumulation des différentes
séries de Rydberg deviennent les seuils de simple ionisation.

Dans le cas de I'atome d’hélium, ces méthodes numériques nous avaient permis de
reproduire parfaitement les résultats expérimentaux obtenus sur les sections efficaces de
photo-ionisation par 1’équipe du Prof. G. Kaindl (Institiit fiir Experimental Physik, Freie
Universitdt, Berlin). Pour ce systéme, on peut montrer que la dynamique chaotique se
manifeste d’autant plus que 1'on se rapproche de la limite de double ionisation, ¢’est-a-dire
pour des états pour lesquels les deux électrons sont tres excités, ce qui se caractérise, par
exemple, par des sections efficaces de photo-ionisation de plus en plus irrégulieres.
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Photo-ionization of the helium atom close to the
double-ionization threshold: Towards the Ericson regime

B. GREMAUD and D. DELANDE

Laboratoire Kastler-Brossel, Université Pierre et Marie Curie
4 Place Jussieu, 75005 Paris, France

(received 21 July 1997; accepted in final form 1 October 1997)

PACS. 05.45+b — Theory and models of chaotic systems.
PACS. 31.15Ar — Ab initio calculations.
PACS. 32.80Fb — Photoionization of atoms and ions.

Abstract. — We calculate the photo-ionization cross-section from the ground state of the
helium atom, using the complex rotation method and diagonalization of sparse matrices. This
produces directly the positions and widths of the doubly excited ' P° resonances together with
the photo-ionization cross-section. Our calculations up to the N = 9 threshold are in perfect
agreement with recent experimental data and show the transition from a regular structure at
low energy to a chaotic one at high energy, where various resonances strongly overlap.

The helium atom is one of the prototype of atomic systems whose classical dynamics is
mainly chaotic and during the past thirty years it has been the matter of numerous studies
from both theoretical [1]-[8] and experimental [9]-[11] points of view. But, unlike other atomic
systems like, for instance, the hydrogen atom in magnetic field, the effects of chaos are not
very well understood and more profound studies are needed. This requires the resolution of
the full quantum problem. Especially, one has to take into account all the degrees of freedom
and all correlations between the two electrons, as well as the autoionizing character of the
doubly excited states.

In this letter, we present numerical calculations of the cross-section of the one-photon
photoionization from the ground state of the helium atom and compare them with the recently
obtained high-resolution spectra of !P° doubly excited states. The agreement with the most
recent experimental data from refs. [10], [11] —up to the N = 9 ionization threshold, less than
1 eV from the double-ionization threshold and corresponding to 64 open channels— is excellent
for the whole energy range, proving the high efficiency of the method. Predictions for better
experimental resolutions are also given. We also show that at low energy the resonances can be
classified with respect to Herrick’s (N, K, T') approximate quantum numbers [2], ((N, K),, Lin’s
simplified notation [3] will be used hereafter). At high energy, this classification progressively
breaks down. Eventually, above the NV = 7 threshold, the various resonances strongly overlap:
the mean energy spacing between consecutive resonances becomes smaller than their typical
width. Oscillations in the photo-ionization cross-section can then no longer be associated with

© Les Editions de Physique
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individual resonances: random-like fluctuations —known as Ericson fluctuations— should be
observed in the cross-section.
The quantum Hamiltonian in atomic units (A = m,.- = 4reg = €2 = 1) is given by

H=-11-2_ = =2, ° 1)

where P; = —ihV; is the momentum operator of electron i, r; its distance to the nucleus and
r12 the inter-electronic distance. All spin-orbits, relativistic and QED effects (at most of the
order of a fraction of meV) are neglected, which is consistent with the experimental resolution
(of the order of 1 meV). The corrections due the finite mass of the nucleus are taken into
account by using the effective values for the double-ionization threshold I, and the Rydberg
constant Rye given in ref. [10], namely I = 79.003 ¢V and Rye = 13.6038 eV.

Using the rotational invariance of the Hamiltonian, the angular dependence of a wave
function can be factorized as follows [12]:

L
* LM
!I/LM = E D&T(¢767 ¢)¢<T )(:v,y, Z) ) (2)
T=—1
where (1,0, ¢) are Euler angles defining the transformation from the laboratory frame to a
molecular-like frame whose 2’ axis is the inter-electronic axis. |T| is then the A (X, IT...)
*
quantum number in a molecule. The D¥,,. are the wave functions of the rigid rotor and reduce
to the usual spherical harmonics for 7' = 0. Finally (z,y,z) are the perimetric coordinates,
symmetric combinations of r1, ro and r12:

T= Tri+ry—ri,
y= T1—T2+T12, (3)
zZ=-r1+1r2+712.

For each pair of good quantum numbers (L, M), we obtain an effective Hamiltonian acting
on the different é1’s (coupled by Coriolis-like terms). The two remaining discrete symmetries
—parity and exchange between the two electrons— are exactly taken into account by adding
constraints on the @7’s [8].

As stated before, above the first ionization threshold, all states become resonances be-
cause of the coupling with the continua (autoionizing states). Using the complex rotation
method [5], [13], we obtain these resonances as complex eigenvalues of a complex Hamiltonian
H(9), which is obtained by the replacements r; — rie’? and P; — P;e ", where 6 is a
real parameter. The fundamental properties of the spectrum of H(f) are the following: the
continua of H are rotated by an angle 26 in the lower complex half-plane around their branching
point. Each other complex eigenvalue E; = ¢; —iI3/2 lies in the lower half-plane and coincides
with a resonance of H with energy ¢; and width I;. These quantities are independent of 0
provided that the complex eigenvalue has been uncovered by the rotated continua. The bound
states, which are resonances with zero width, stay on the real axis. This method also allows to
compute quantities of physical interest, like photo-ionization cross-section, probability densities
or expectation values of operators (e.g., cosfi2), enlightening the contribution of a given
resonance to them. For instance, the cross-section is given by [13]

Tw Eip 2
o(w) = 471111 Z 7519‘7}%2){“2) , (4)
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Fig. 1. — Positions (in eV above the ground state) and widths (logarithmic scale) of 'P° resonances of
the helium atom. The upper plot displays the states below the N = 2 and N = 3 thresholds, where the
various series can be distinguished without ambiguity from their widths, in agreement with Herrick
classification of doubly excited states. In the lower plot, displaying the states below the N = 6,7,8
thresholds, the various series are strongly coupled and overlapping, which is a quantum manifestation
of classical chaos in this system.

T is the dipole operator, hw is the photon energy, |g) is the ground state (of energy E).
(Eip| is the transpose of the eigenvector |E;g) of H(6) for the eigenvalue E;g (i.e. the complex
conjugate of (E;g|). R(6) is the rotation operator, essential to obtain the right (complex)
oscillator strength.

In the preceding formula, each eigenvalue (resonance or continuum) contributes to the
cross-section at energy hw+ Ey, with a Fano profile centered at energy Re E;, of width —2Im E;
whose ¢ parameter is given by [13]

Re(Eio| R(0)T|g)

. : (5)
(B | R(6)Tlo)

Thus, the Fano g-parameter of one resonance is directly and unambiguously obtained from
its associated eigenvector, which is much more efficient than any fitting procedure, especially
above the NV = 6 threshold where the different series strongly overlap (see fig. 1).

For an efficient numerical resolution, the effective Hamiltonian is expanded in the product
of three Sturmian-like basis [n;) ® |ny) ® |n.), one for each perimetric coordinate. The basis
states have the following expression:

(uln) = ¢n(u) = VauLn(ayu)e %, (6)

where ng , . are non-negative integers, oy, . are real positive parameters (the scaling param-
eters) and L, the n-th Laguerre polynomial. This non-orthogonal basis is associated with a
representation of the dynamical group SO(2, 1), which gives rise to selection rules. The matrix
representation of the effective Hamiltonian in this basis is thus sparse and banded, and the
matrix elements are analytically known. Let us emphasize that this approach is “exact” for
the non-relativistic He atom and similar to the one used in ref. [8].

For obvious reasons, the basis has to be truncated, the prescription being n, +ny, +n, <
Nmax (we used up to Nmax = 58). The different scaling parameters are related by a = a; =
20y, = 20, which increases the sparsity of the matrices and gives the correct decrease for
and ry going to infinity. The matrices are diagonalized with the Lanczos algorithm, which is
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Fig. 2. — Real part of the expectation values of —N cos 612 for the various resonances below the N = 2
and N = 3 thresholds. As expected from the Herrick classification scheme of doubly excited states,
the value is almost constant across a series, although it slightly differs from the predicted value
—(N —1) < K < (N —1). At higher energy, this classification breaks down.

a highly efficient iterative method to obtain few eigenvalues of huge matrices in a short CPU
time [14]. Convergence of the results are checked with systematic changes of o and 6. We
have thus computed few hundred 'P° states, which are the only ones populated in one photon
experiment starting from the helium ground state (1S¢). The resulting cross-section from
below the N = 2 up to above the N = 8 threshold —the highest energy where experimental
spectra are available— is shown in fig. 3, convoluted with a Lorentzian at the experimental
resolution (2 meV for N = 2,3 and 4 meV for N = 4,5,6) or at a slightly better resolution
(1 meV above the N = 6 threshold). The agreement with the figures from refs. [10], [11] is
excellent, emphasizing the efficiency of our calculations. The theoretical positions, linewidths
and Fano g-parameters are in good agreement with previous works [8], [10].

Below the N = 2 (respectively, N = 3), three (respectively, five) different series are clearly
distinguishable, either by their widths (see fig. 1) or by the expectation value of cos 62, as
shown in fig. 2, where the real part of — NN cos 615 is plotted (the imaginary part is at least ten
times smaller) vs. the effective principal quantum number neg of the outer electron measured
from the N-th threshold, proving thus the validity of Herrick’s classification in these energy
ranges. Still, the chaotic aspect of the helium atom is already observable in the fluctuations
of the smallest widths (see fig. 1) (and also in the Fano ¢g-parameters), which will be amplified
at higher energies.
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Fig. 3. — Calculated photo-ionization cross-section of the helium atom from the N = 2 (upper plot)
to the N = 8 and 9 (lower plot) series. The raw spectrum has been convoluted by a Lorentzian of
width 2 meV for N = 2,3 and 4 meV for N =4, 5,6 (equal to the experimental resolution) and 1 meV
for N =7,8,9. The calculated cross-section is in excellent agreement with the experimental results of
refs. [10], [11], displaying for N = 7,8,9 new peaks, not yet experimentally observed. At the highest
energies, the various series overlap strongly, leading to irregular fluctuations of the cross-section and
breakdown of the classification. Only the fluctuating part of the cross-section is here represented, the
smooth background being subtracted.

Below the N = 5 and N = 6 thresholds, irregularities due to the interaction with the
6,46 (respectively, 7,57) state from the upper series are visible, in perfect agreement with the
experimental observation. Below the N =7, N = 8 and N = 9 thresholds, the computed cross-
section —represented at a better resolution— reproduces very well the various overlapping
series, with an increasing number of perturbers coming from higher series. Furthermore,
we show new peaks that are not yet experimentally resolved —such as the members of
the 9,7, series— but whose observation could be possible with a (slight) increase of the
experimental resolution and signal-to-noise ratio. In this energy range, the various series
are so strongly coupled and overlapping that the approximate Herrick classification breaks
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Fig. 4. — Ratio between the widths I" of the various ' P° resonances of the helium atom and the local
mean level spacing s, displayed for the N = 4, N = 6 and N = 8 thresholds (from left to right).
The transition between the regime of well-separated resonances to the strong overlapping resonances
regime is observed. For higher thresholds, the number of resonances lying above the I' = s line will
increase, leading to the observation of Ericson fluctuations in the photo-ionization cross-section.
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down [15], [16], giving rise to an irregular spectrum, showed by fig. 1 where no general trend
can be easily recognized in the widths of the various resonances. This irregularity is the
quantum manifestation of the chaotic classical dynamics. In this regime, the photo-ionization
cross-section results from the superposition of various overlapping Fano profiles, eventually
leading to random-like fluctuations in the cross-section known as Ericson fluctuations [17].
Predicted around the N = 30 threshold in the 1-dimensional helium atom [18], this irregular
regime takes place at much lower energy in the real helium atom, because of the increased
density of states. The ratio between the linewidth I" and the local mean level spacing s is
displayed in fig. 4 for the N =4, N = 6 and N = 8 thresholds. We clearly see that for N = 8,
a vast majority of resonances lie above the line I'/s = 1, corresponding to the overlapping
resonances regime. The published experimental results [11] seem to show irregular fluctuations,
the first steps towards the Ericson fluctuations.

In conclusion, our results are, as far as we know, the ab initio calculations for the
double-excited P states of the helium atom at the highest energy ever done. They are
in excellent agreement with the presently available experimental data. Importantly, they show
that the strongly irregular regime where various resonances overlap leading to Ericson fluctu-
ations in the photo-ionization cross-section is almost reached experimentally, which opens the
way to their experimental observation and more generally to a new generation of experiments
probing the chaotic aspects of the helium atom.
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Pour mettre en évidence, le caractere chaotique des spectres, nous avons fait une analyse
statistique des propriétés spectrales. En effet, on peut montrer que la distribution des
espacements entre les niveaux d’énergie voisins est radicalement différente entre un systeme
chaotique et un systeme intégrable. Dans le dernier cas, on obtient une loi de poisson,
tandis que pour un systeme chaotique, les distributions statistiques sont bien décrites par
la théorie des matrice aléatoires. En particulier, la probabilité de trouver deux états a la
meéme énergie est nulle : ¢’est la répulsion de niveau, qui traduit le fait qu’un état quantique
remplit entierement 1’espace accessible a une énergie donnée.

La difficulté dans le cas de I’'hélium est que la dynamique n’est jamais entierement chao-
tique. Plus précisément, lorsque I'un des deux électrons est a tres grande distance, ’autre
électron écrante, en premiere approximation, l'interaction avec le noyau et on retrouve
un atome d’hydrogene. Ceci se traduit par les séries de Rydberg quasi-réguliere juste en
dessous des seuils de simple ionisation. Pour décrire proprement les propriétés statistiques
des spectres, on a donc utilisé un modele de matrices aléatoires? incorporant une partie
réguliere (non aléatoire) couplée a la partie aléatoire (voir schéma 2.2). Les parametres

F1G. 2.2 -
1 1y
GOE Coupling

en

g

= Regular
=
S}

@)

sont d'une part le rapport n;/ns entre la partie chaotique et la partie réguliere et d’autre
part la force du couplage entre les deux. On a pu alors montrer sur la base des résultats
expérimentaux et théorique que plus on s’approchait du seuil de double-ionisation, plus ces
deux parametres augmentaient, démontrant une transition claire vers un régime chaotique,
justifiant ainsi que l'aspect aléatoire des signaux expérimentaux observés était bien une
manifestation du chaos.

2]J. Zakrzewski, K. Dupret and D. Delande, Phys. Rev. Lett 74, 522 (1995)
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The photoionization spectrum of helium shows considerable complexity close to the double-ionization
threshold. By analyzing the results from both our recent experiments and ab initio three- and one-
dimensional calculations, we show that the statistical properties of the spacings between neighboring
energy levels clearly display a transition towards quantum chaos.

DOI: 10.1103/PhysRevLett.86.3747

Since the work of Poincaré, it has been known that the
general classical three-body problem has only global con-
stants of motion, such as energy and angular momentum. It
is thus nonintegrable, since there are not enough nontrivial
constants of motion to allow an analytical solution. This
typically implies that the phase space is a mixture of regu-
lar and chaotic dynamics. Celestial mechanics abounds
with examples, e.g., the prototypical earth-moon-sun sys-
tem [1]. The dynamics of three charged particles is su-
perficially similar since the force law scales also as 1/r2,
but with two possible signs of the coupling constant. The
actual dynamics of the two electrons in helium—the sim-
plest three-body quantum system—is largely chaotic, even
for the simplified situation with the nucleus fixed in space.
Nonetheless, at low energies the quantum states of he-
lium occur in seemingly regular progressions, labeled by
sets of approximately good quantum numbers, and even
the doubly excited states have largely been classified [2].
What then are the manifestations of the underlying clas-
sical chaos in the quantum spectrum of helium?  This
is a fundamental question in quantum-classical correspon-
dence, with regard to the nature of semiclassical approxi-
mations in the presence of chaos, and in quantum chaos
itself. What will be the signatures of the onset of quantum
chaos? One expects that the approximate quantum num-
bers, overviewed, e.g., in Ref. [2], will cease to function,
as series of states overlap and mix so strongly that there are
essentially no good quantum numbers left, except for the
ordering of states by their energies. The doubly excited
states of helium are resonances, which will overlap and
interact strongly when chaos sets in, giving rise to Eric-
son fluctuations well known in phenomenological nuclear
theory [3]. It is the purpose of this Letter to present new
results from experiment and theoretical modeling, which
clearly show that the threshold to this new regime has now
been passed for the first time in a three-body quantum sys-
tem with known Hamiltonian.

The 'P? doubly excited states of helium can be described
in Herrick’s classification scheme by N, K,,, with N (n) de-
noting the principal quantum number of the inner (outer)
electron, and K the angular-correlation quantum number
[4]. For fixed N, the various n, K series converge to
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the single-ionization threshold Iy = —4/N? (in Rydberg
units). Starting with N = 5, the lowest states of the series
lie below Iy—;. As a consequence, they act as perturbers
of the N — 1 series, leading to interferences [5], which
can be reproduced by numerically complicated ab initio
calculations [6]. While up to the N = 8 threshold, Is,
the effects of the perturbers are quite simple, from Iy
on, the increasing proliferation of perturbers tends to com-
plicate the spectra increasingly, and Herrick’s classifica-
tion starts to break down, at least for a large fraction of
states [7].

The most intense series in the spectrum are the prin-
cipal series with K = N — 2. Since K = —N(cos0®),
where O is the angle from the nucleus to the two elec-
trons, O approaches 7 for the principal series with large
N. Therefore, the experimentally observed series can be
related in the semiclassical limit—based on Gutzwiller’s
trace formula [8]—to periodic orbits of the collinear eZe
configuration, with both electrons on opposite sides of the
nucleus. It is well known that the classical dynamics of the
eZe configuration is strongly chaotic in the radial direction
but stable in the angular direction. One can thus expect
a mixing of series with different N but constant N — K,
i.e., a constant number of bending quanta with respect to a
collinear eZe configuration [2]. In other words, for highly
excited series, N — K is expected to be approximately a
good quantum number, while states with the same N — K,
but different (N, n), strongly interact [6].

There are numerous semiclassical studies of helium
based on Gutzwiller’s trace formula (see, e.g., Ref. [2]),
which aim at understanding the structure of quantum
dynamics in terms of its classical counterpart. The
present work focuses on the random-matrix approach [9],
which deals with universal aspects of quantum chaos,
i.e., the general features present in all chaotic quantum
systems. We compare the present experimental spectra
close to Iy with the results of our calculations and find
excellent agreement. In particular, we show that the
statistics of nearest-neighbor level spacings can be well
reproduced by a simple random-matrix model adapted to
intermittency [10], even though N — K is still a good
quantum number. This model mixes regular and chaotic
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spectra and corresponds to an interaction between regular
Rydberg series and chaotic perturbers. Using a simplified
one-dimensional (1D) model of helium, we reproduce the
transition from the regular to a fully chaotic regime.

The experiments were performed at beam line 9.0.1 of
the Advanced Light Source (ALS) in Berkeley, Califor-
nia, using photons with a spectral resolution of =2 meV
(FWHM) and a setup as described in Ref. [11]. The calcu-
lations were performed with the complex-rotation method
on a Cray C98, with details given in Ref. [6].

Figure 1(a) shows the spectrum of the 'P° double exci-
tations in helium in the energy region just below Iy from
78.1175 to 78.2675 eV, with considerably improved res-
olution and signal-to-noise ratio as compared to previous
results [12]. In Fig. 1(b), we also show the theoretical
spectrum, convoluted with a Gaussian of 2-meV width. In
the least-squares fit of the measured spectrum, the theoreti-
cal values for linewidth and Fano g parameter were used,
but the energy positions and intensities of the lines were
adjusted to allow for possible deviations between experi-
ment and theory, spectral drifts, and nonlinearities. De-
tails of this analysis have been given elsewhere [11]. As
a result, the calculated spectrum matches the experimen-
tal data very well. We note that some resonances of the
9,7, principal and the 9,5, secondary series reveal Fano
parameters |g| > 1 (up to |g| = 7, with negative sign, for
9,714), very different from the values found for the prin-
cipal and secondary series below the /5 to Ig thresholds,
with |g| = 1 [12]. However, even these unexpected ¢ val-
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FIG. 1. (a) Double-excitation spectrum of He in the region

of the 9,7, principal Rydberg series, with perturbers 10, 8;o
and 10, 8,; (vertical arrows). The solid line through the data
points represents the best fit. Assignments of the resonances
are made by vertical-bar diagrams on top, including resonances
of the secondary series 9,5, and 9,3,. (b) Ab initio calculated
spectrum in the same region.
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ues are described well by our calculations. This makes
us confident that the energy levels obtained numerically
are sufficiently accurate to perform a statistical analysis on
the nearest-neighbor spacings (NNS), as discussed in the
following.

The NNS distribution, P(s), measures the distribution of
energy spacings between consecutive eigenstates. In order
to allow a comparison of large energy spacings far away
from threshold with small energy spacings close to thresh-
old, the spectra were unfolded; i.e., the energy spacings
were divided by an energy-dependent mean level spac-
ing [13], so that the mean unfolded spacing, s, is unity.
For a single unperturbed Rydberg series (or, more gener-
ally, for any regularly spaced energy levels), this would
lead to a constant unfolded level spacing s = 1, i.e., to
P(s) = 6(s — 1), where § is the delta function. When
a good quantum number exists in a system, the spectrum
can be divided into various noninteracting but overlapping
series. The nearest neighbor of a given state belongs then
typically to another series, and the energies of neighbor-
ing states are thus completely uncorrelated, giving rise to a
Poisson distribution, P(s) = exp(—s). This happens, e.g.,
in integrable multidimensional systems, but also if several
irregular series overlap without interaction. For a fully
chaotic system, the prediction for P(s) can be derived from
random-matrix theory. Because of time reversal symmetry
of the system, a Gaussian orthogonal ensemble (GOE) of
random matrices [13] is used resulting in P(s) to be very
close to a Wigner distribution, P(s) = 5 sexp(—ms%/4).
Since the number of energy levels for the statistical analy-
sis is rather limited in the present case, one obtains a rather
noisy P(s). We therefore use the cumulative NNS distribu-
tion, N(s) = [; P(x)dx, leading to N(s) = 1 — exp(—s)
and N(s) = 1 — exp(—ms2/4) for a Poisson and a Wigner
distribution, respectively.

The spectra were analyzed by two different procedures:
(i) globally by considering all resonances regardless of the
series to which they belong; (ii) individually for each series
associated with a given value of N — K.

We first analyze by the global procedure (i) the cal-
culated levels in the energy region 78.1000—78.2662 eV,
where there are 112 resonances, most of them from the
N = 9 series, with perturbers from higher series. The cu-
mulative NNS distribution is shown in Fig. 2(a) together
with a cumulative Poisson distribution. The agreement
is very good, showing that an approximately good quan-
tum number exists. This is not surprising, since one can
identify experimentally states with different N — K [see
Fig. 1(a)]. Occasionally, these states are mixed with other
series (in the vicinity of perturbers), but N — K is still ap-
proximately a good quantum number. This is also partly
true for other series not observed in the experiment [14]:
the series with positive K are almost independent, while
those with negative K are significantly coupled. In the full
spectrum, the various N — K series are superimposed with
rather weak mixing, resulting mainly in an uncorrelated
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FIG. 2. (a)-(c) Cumulative NNS distributions for the 'P°
states of helium below (b) Iy and (a),(c) Iy. (a) Global
analysis using all levels below Io. The data (solid line) agree
very well with a cumulative Poisson prediction (dashed line).
(b),(c) Distributions below 7, and Iy, respectively, obtained by
analyzing separately individual series with different K. For Iy
(c), the bold line is the distribution derived from experiment.
(d)—(f) Cumulative NNS distributions for singlet states of 1D
helium (horizontal bars) below Iy, I;3, and I,7, respectively.
The solid lines are the fit results (see text). The bold solid line
in (d) is the NNS distribution for states of 3D helium below Io.
The dashed lines in (b)—(f) represent the cumulative Wigner
distribution.

ensemble of levels, which thus obeys Poisson statistics.
This complies with the stability of the eZe collinear con-
figurations with respect to off-collinear perturbations.
Hence, a relevant data analysis must be done individu-
ally for each N — K series [procedure (ii)]. The cumu-
lative NNS distributions, N(s), obtained in this way, are
shown in Fig. 2(b) for resonances below /4 and in Fig. 2(c)
for those below Ig. The statistical accuracies are limited
due to the relatively small number of data points with 71
(60) spacings for 14 (I9). Moreover, for Iy, only series with
K between 0 and 8 were unfolded because of K mixing for
negative K values, while for / all series are used. The I4
distribution clearly reflects the quasiregularity in this en-
ergy region, as it is very close to a step function, which
results from integrating over a delta function. This is the
statistical analog to the fact that the spectrum below 14 is
composed only of N = 4 states and can be described by
single-channel quantum defect theory. Below I, the sit-
uation has slightly changed, although the distribution still
does not match a cumulative Wigner distribution. It means
that the relative density of chaotic perturbers with N > 9
has increased as well as their interaction with the various

Rydberg series. The bold line in Fig. 2(c) shows N(s)
using only the experimentally observed series N — K =
2 and 4. Because of the small number of 17 spacings,
the statistics are relatively poor, but it is striking that the
bold line closely follows the solid line. As a consequence,
the spectrum in Fig. 1(a) represents the first experimental
verification of a transition of the NNS distribution towards
quantum chaos in a three-body Coulomb system.

The complex numerical calculations for 3D helium ren-
der it difficult to obtain enough spacings for a quantita-
tive analysis in the case of N > 9. However, the fact that
N — K remains approximately a good quantum number
means that the bending motion can be essentially frozen in
the eZe configuration. In other words, the quantum prop-
erties are essentially those of 1D helium, a system that has
only 2 degrees of freedom. This leads to much simpler nu-
merics allowing higher ionization thresholds to be reached.
‘We have therefore calculated the resonances of 1D helium
below Iy, 13, and /;7 using a new approach (banded sparse
matrix representation of the Hamiltonian in a 1D perimet-
ric basis, in the spirit of Ref. [6]) that represents a signifi-
cant improvement over previous methods [15].

In order to improve statistics, we calculated spacings in
a given energy region for slightly different values of the nu-
clear charge Z, from 1/Z = 0.45 to 1/Z = 0.55, in steps
of 0.01. These values are statistically uncorrelated and
sufficiently close to Z = 2 of helium, so that the average
density of states and the classical dynamics do not change
significantly. Figures 2(d)—2(f) show the cumulative NNS
distributions for states below Iq, I3, and 7,7, respectively,
as well as the cumulative Wigner distribution and the 3D
result for Iy. The results demonstrate that the statistical
level properties are essentially the same for 1D and 3D
helium and they illustrate the transition from an irregular
regime (Iy), with a distribution intermediate between a step
function and a cumulative Wigner distribution, to a chaotic
regime (/,7), with a distribution that is almost Wigner-like.
For 1,7, the lack of large spacings is the only remnant of
regularity.

This behavior can be understood in a quantitative way by
the model of Zakrzewski et al. [10], which was developed
to understand the NNS statistics of the hydrogen atom in a
magnetic field, whose spectrum is quite similar to that of
helium in the sense that “chaotic” perturber states interact
with a regular series. In this model, the Hilbert space is
composed of two subspaces, a “regular” one and a chaotic
one. The model Hamiltonian is diagonal in the regular
subspace with equally spaced eigenvalues (representing
Rydberg series). In the chaotic subspace (representing
the perturbers), the Hamiltonian is modeled by a random
matrix, with a coupling v between regular and chaotic
states (v in units of the spacing between regular states;
for details, see Ref. [10]). For large matrices, this model
has only two parameters: the weight p of chaotic states
(1 — p of regular states) and the coupling strength v.
Above the first ionization threshold, an imaginary part is
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added to the GOE matrix as in [10], with an additional pa-
rameter measuring the strength of coupling to the continua;
this coupling strength is small playing therefore only a mi-
nor role.

The calculated NNS distributions for 1D helium were
fitted with this model, which turned out as a good descrip-
tion. The fits reproduce the lack of large spacings and re-
sultin p = 0.29, 0.33, and 0.40 for Iy, 1,3, and /7, respec-
tively. A second estimate for p is based on the size of the
cutoff value for the level spacings [see Figs. 2(d)—2(f)],
which can be related to p. In the perturbative regime,
when the coupling between chaotic and regular levels is
not so strong as to modify their densities, two neighbor-
ing states cannot be further apart than two unperturbed
regular states. The reason is that a perturber repels neigh-
boring levels and in this way reduces the NNS between
them. With m = p/(1 — p) being the average number of
chaotic states per regular state, the largest possible spacing
willbe (m + 1) = 1/(1 — p) times the mean level spac-
ing. This procedure leads to p = 0.25, 0.33, and 0.41 for
Iy, 113, and 1,7, respectively.

A further rough estimate for p not based on the model,
but on the physics of the real system, is possible: the local
density of regular states can be estimated assuming that a
Rydberg series converging to Iy sees an effective nuclear
charge of Z — 1 = 1. The density of chaotic states is the
sum of densities of states of all series with higher N. As N
increases, the upper thresholds lie closer and closer leading
to an increase in the fraction of chaotic states. In this way,
we obtain p = 0.23, 0.35, and 0.43, respectively, for Io,
113, and I17. We note that all three approaches provide
rather similar results for p.

The increase of p with N alone, however, is not suf-
ficient to explain the transition to an almost Wigner-like
distribution for /;7: the coupling strength between chaotic
and regular states has to increase, too. This is indeed the
case, with the best fits resulting in v = 0.38, 0.73, and
1.2 for Iy, I;3, and 1,7, respectively. It clearly shows that
the individual influence of each perturber gets more impor-
tant when one approaches higher thresholds. This leads to
a globally chaotic spectrum, where a distinction between
regular levels and perturbers loses more and more of its
meaning.

In conclusion, we have found—on the basis of sta-
tistical analysis—clear evidence of a transition towards
quantum chaos in the doubly excitated spectrum of helium
below /o, with support from the results of our ab initio cal-
culations for 3D and 1D helium. The effects of chaos cor-
respond to a loss of the radial quantum number N, whereas
N — K remains approximately a good quantum number,
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and they are directly related to the instability of the eZe
orbits in the radial direction (i.e., preserving collinearity)
and their stability with respect to bending. The statistical
study of 1D helium provides an estimate for the observa-
tion of a fully chaotic regime in 3D helium (for N = 17).
It may happen that this regime appears even at lower N
values if N — K breaks down. One can hope that future
experiments, as well as numerical calculations for 3D he-
lium in the region above Ig, will provide further insight
into the chaotic regime of helium.
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2.2.2 Systemes quasi-intégrables

Au-dela des systémes chaotiques ou intégrables, il existe des systemes dits pseudo-
intégrables, c’est-a-dire, tels que la dynamique classique n’est ni réguliere, ni chaotique. Par
exemple, la dynamique de I’électron externe d’un atome hydrogénoide (i.e. en présence d'un
coeur diffusant) est essentiellement la méme que celle d'un atome d’hydrogene sauf pour les
trajectoires passant par le coeur. Or, a la limite semi-classique (états tres excités) on peut
montrer que ces trajectoires forment un ensemble de mesure nulle, on ne s’attendrait pas a
une modification des propriétés statistiques des spectres. Pourtant, on peut montrer que ces
dernieres sont bien décrites par une nouvelle classe d’universalité intermédiaire entre celle
des systemes réguliers (Poisson) et celle des systemes chaotiques (matrices aléatoires) : elle
présente a la fois de la répulsion de niveau comme un systeme chaotique et une décroissance
exponentielle a grand espacement comme un systeme régulier.

Un autre exemple de ce type de systemes sont les billards en forme de losange, pour
lesquels la non-intégrabilité provient de la diffraction aux angles. En collaboration avec S.
Jain, nous avons pu montrer que les propriétés statistiques des niveaux d’énergie sont tres
bien décrites par cette nouvelle classe d’universalité. En outre, on a pu mettre en évidence
que ces propriétés dépendent fortement non seulement du caractere irrationnel de 1’angle
du losange, mais aussi de la classe de symétrie de la fonction d’onde.
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Abstract. We show that the spacing distributions of rational rhombus billiards fall in a family
of universality classes distinctly different from the Wigner-Dyson family of random matrix
theory and the Poisson distribution. Some of the distributions find explanation in a recent work
of Bogomolny, Gerland, and Schmit. For the irrational billiards, despite ergodicity, we get the
same distribution for the examples considered—once again, distinct from the Wigner—Dyson
distributions. All the results are obtained numerically by a method that allows us to reach very
high energies.

Statistical analysis of level correlations of a quantum system is one of the many ways to study
the effects of chaotic behaviour of its classical counterpart [1]. For such complex systems,
the fluctuations are very well described by the random matrix theory, giving rise to three
classes of universality corresponding to orthogonal, unitary and symplectic ensembles (OE,
UE and SE). On the other hand, for integrable systems, the short-range correlations follow
the Poisson distribution. Rhombus billiards [2] are peculiar as they are pseudo-integrable
systems and for this reason their statistical properties belong to another class of universality
[3]. These non-integrable systems are termed pseudo-integrable as the dynamics occurs
on a multiply-connected, compact surface in the phase space. For example, in the case
of 7/3-rhombus billiard, the invariant integral surface is a sphere with two handles [2, 4].

It has been shown that the short-range properties (spacing distribution) can be fitted by
Brody distributions [5] with parameters depending on the genus [6]. However, a very small
number of levels were used to achieve the statistics and, as it was outlined by the authors, the
parameters were smoothly changing with the number of levels considered. This last effect
is probably a consequence of the pseudo-integrability and thus one has to consider levels
lying very high in energy to have converged statistics. Furthermore, Brody distributions
are not very convenient for two reasons: (i) they are not on a firm theoretical basis like
random matrix theory and so one cannot gain too much knowledge about the system from
the Brody parameter; (ii) their behaviour at small spacing is not linear, whereas it is so
for rhombus billiards. In contrast, in a recent paper [7], Bogomahwl have proposed

a model derived from the Dyson’s stochastic Coulomb gas model [8, 9]: eigenvalues are
considered as classical particles on a line, with a two-body interaction potential given by
V(x) = —In(x). In contrast to Dyson’s model, where all possible pairs are considered,
the same interaction is restricted only to nearest-neighbours. Hereafter, this model will
be referred to as the short-ranged Dyson’s model (SRDM). The joint probability obtained
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gives rise to spacing distributions showing linear level repulsion and exponential decrease
for large spacing. More precisely, the nearest-neighbour (NN) and next-nearest-neighbour
(NNN) distributions are

P(s) = 4se? and Po(s) = %sge’z". (@8]

It is worth noting that exactly the same functional form was used in the past [10] to
explain the intermediate spacing distribution for a rectangle billiard with a flux line—an
Aharanov—Bohm billiard. In [7] it is also shown that the level statistics of some rhombus
billiards agree very well with these distributions. However, only rhombi with rational
angles and with Dirichlet boundary conditions on both theand y-axis (i.e. right-angled
triangle) were studied. In this letter, we extend the preceding study to rational billiards
with Neumann boundary conditions (i.e. ‘pure’ rhombus) and also to irrational billiards
(both classes of boundary conditions). Of course, in a rhombus, making the shorter (longer)
diagonal Neumann means that one is considering a larger obtuse (acute) triangle. So, the
modifications are expected but here they are non-trivial.

The spectral properties of these systems which are non-integrable and yet non-chaotic
is thus an important unsettled problem. The solution of this problem is partly in devising
numerical technigues that allow one to go to higher energies, and, partly in developing
statistical models like the SRDM [7] mentioned above. In this letter, we first discuss the
method and then use levels in the high-energy range to show agreements and disagreements
with the results in [7]. To give an idea, the efficiency of the method is such that we were
able to compute a very large number of levels (up to 36 000 for a given rhombus and a
given symmetry class), so that the statistical properties are fully converged. In the latter
part of this letter, we show the effects of both the boundary conditions and the irrationality
on the level spacing distributions.

The Schodinger equation for a particle moving freely in a rhombus billiard (shown by
figure 1) is simply

B2 92 92
“2m (ﬁ * 372) Yix,y) = EY(x,) @

with the additional condition that/(x,y) is vanishing on the boundary (Dirichlet
conditions). The geometry of the system leads to a natural change of coordinates: the

RN

Figure 1. Rhombus-shaped enclosure in which the particle moves freely
with elastic bounces on the boundary. The quantum problem corresponds
to imposing the Dirichlet conditions for the wavefunctions. The system
being symmetric under reflections with respect to.tkexis or they-axis,
. Dirichlet or Neumann boundary conditions can be imposed on both the
M axes, leading to four different classes of symmetry. By considering axes
crossing at the centr® of the system and parallel to the edges of the
billiard, a non-orthogonal coordinate system () is constructed in which
the Dirichlet boundary conditions on the enclosure separate (see text).

S

24




Letter to the Editor L639

two new axes cross at the centre and are parallel to the edges of the billiard (see figure 1):
=5 (o5 ~ 5
#=2\coss ~ sing
1/ x y
=2 (cos@ + sine)'
In this new coordinate system, the original rhombus is mapped onto a square of length

L and thus, in this coordinate system, the boundary conditions separate, of course at the
price of a slightly more complicated Sdtlinger equation:

©)

R2(92,, + 02, — 2C0%20)02,)
- o S 20) Y, v) = EY(u, v). (4)

The change: — 2u, v — 2v and E — (2)?4E gives rise to the scaled Séffinger
equation (after multiplication by 2 Sit29)):
— (92, + 92, — 2c0420)9% )Y = 2SiIP(20)EYr (5)

the boundary condition being then at the points= +1 andv = +1.

To solve the eigenvalue problem, a possible idea is to expand any wavefunction in a
basis satisfying the boundary conditions

00
Y v) = Y aln, n)ds, (g, (). (6)
ny,n,=0

The simplest choice is the Fourier sine and cosine series. Unfortunately, the operator
3ﬁv has no selection rules in this basis, thus the matrix representation of the left part
of the Schédinger equation (5) is totally filled. Numerically, we will approximate the
wavefunction by keeping only a (large) number of terms in the preceding series. For this
system and for many other Coulomb-like systems, it has been observed that the rate of
convergence of the series is much slower when the matrix is filled than when selection rules
occur.

To avoid this difficulty, we introduce the following basis for each coordinatend v:

3

) = (1= u2)C,? () )
where C¥ are Gegenbauer polynomials [11]. This basis is complete and all operators
appearing in equation (5) have selection rules. More precisely, we have

[An,l, |An,| < 2 An, + An, =0, +2, +4. (8)

Furthermore, all matrix elements are analytically known and are given by simple polynomial
expressions of the two quantum numbers,,n,). The only difficulty is the non-
orthogonality of the basis: that {&'|n) does not reduce ), but also shows the preceding
selection rules.

This basis also allows us to take directly into account the symmetries of the original
problem, namely the reflections with respect to thaxis (S.) or the y-axis (S,). In (i, v)
coordinates, they become

N
sx{ﬂﬁv s>.[” Y ©)
V= V= —/L.

Using the properties of the Gegenbauer polynomials [11] we are able to construct four
different bases in which the two operatafs and S, are simultaneously diagonal with
eigenvaluese, = +1 ande, = +1. Of course, this transformation preserves the selection
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rules and hence the band structure. We shall denote the eigenfunctions vanishing on both
the diagonals by-{—) and not vanishing on either by-(+) parity classes.

The original Schidinger equation is thus transformed to a generalized eigenvalue
problem:

Aly) = EB|Y) (10)
where A and B are real, sparse and banded matrices. This kind of system is easily solved
using the Lanczos algorithm [12]. It is an iterative method, highly efficient to obtain few
eigenvalues and eigenvectors of very large matrices. We typically obtain 100 eigenvalues of
a 10000x 10000 matrix in a few minutes on a regular workstation. The results presented
here have been obtained by diagonalizing matrices of size up to 203401 for a bandwidth
equal to 903. For such matrices, we obtain 200 eigenvalues in 10 min on a Cray C98.
The number of levelsx%36 000 that we are able to compute in this way is slightly larger
than with usual boundary matching methads20 000, which are nevertheless restricted
to rational angles. On the other hand, very recent methods developed by \é&rgirfil3]
seems to be more efficient (they were able to reach an energy domain around the 142 000th
state for the stadium billiard).

For the present study, various values of angle have been used:

I oobroxox 3 g Tn a1

10 4 7 3 8 18
for both (++) and (——) parityj. For all cases, only levels above the 10000th one have
been considered, to avoid peculiar effects in the statistics and at least 5000 levels (up to
24000) have been used for each case. The convergence of the statistics has been checked
by systematically varying the energy around which levels were taken. This is shown in
figure 2, where we have plotted the following quantity:

/ ” ds (No(s) — N, (s))? (12)
0

with respect to the number, for 31—’6 (top) and3 (bottom) billiards (++) parity). No(s) is

the cumulative NN distribution obtained with the 5000 highest states, whafgas is the
cumulative NN distribution obtained with leveisto n + 4999. One can thus clearly see
that the statistics become energy independent (up to fluctuations) only for levels above the
10000th state, which emphasizes the choice of keeping only those states.

In [7] it was shown that for the%(——) billiard, both NN and NNN statistics were
following the formula (1). We, of course, reproduce this result, as shown in figage 3(
However, the same billiard, but with Neumann—Neumann boundary conditions, does not
follow the same distribution laws but rather lies in between OE and SRDM distributions, as
shown in figure 3§). The deviations are obviously much larger than statistical fluctuations.
The difference is emphasized by looking at the behaviour of the NNN for small spacings
(see figure 3)). Indeed, whereas for the-—) symmetry, the observed power lawsisin
the cumulative distribution (i.es® for P (1, s)), it is close tos® for the (++) case (i.es*
for P(1, s)), which is the OE prediction. This dependency of the statistics with respect to
the boundary conditions has already been observed in other systems like the 3D Anderson
model [14]. However, the present results are more surprising as thefevahees for which
there is practically no difference between the two symmetry classes. Indeed, figure 4 shows
the NN (cumulative) distributions fo?Z and %Z. Besides the statistical fluctuations, one
cannot distinguish between the two symmetry classes, whereas the distributions%iffer:
is well described by SRDM, Where%% lies between OE and SRDM.

 The (——) parity for the  rhombus is not shown as it is integrable.
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Figure 2. ‘Difference’ (see equation (12)) between the NN statistics obtained with the 5000
highest states and the NN statistics obtained with lexeis n + 4999, as a function of, for
both 3110 (top) and 3 (bottom) ¢+ parity). Above the 10 000th level, the distributions become

energy independent (apart fluctuations).

@)

0.6 r i 1

N(s)

04 A
/ Figure 3. (a) The cumulative distribution of NN spacings
0.2 | for the % rhombus. The dotted curve corresponds to
Neumann-Neuman@+-+) boundary conditions on both the
0-000 1‘0 2‘0 3‘0 20 % andy-axis; the full curve corresponds to Dirichlet-

: ’ - : : Dirichlet (——) boundary conditions. The two distributions
are clearly different, the deviation being larger than
statistical fluctuations. Theé-—) symmetry class is exactly
on the top of the distribution introduced by Bogomolny
1 et al (SRDM) given by equation (1), corresponding to the
long broken curve. Thé++) distribution lies in between
1 SRDM and OE prediction (given by the short broken curve).
This difference is emphasized if)( depicting the NNN
1 distributions (cumulative) for the same billiards (In-In plot).
Again, the(——) (full curve) symmetry class is exactly on
the top of SRDM (long broken curve), whereas the+)

, symmetry class (dotted curve) lies in between SRDM and
! . . OE (short broken curve). In particular the behaviours for

00 10 20 small spacing are very different——) shows as* power

In(s) law, whereas it is5 for (++), the OE prediction.

In(N,(s))

The case of thej billiard is the most peculiar, since the-—) parity is integrable
whereas thé++) spacing distributions agree with SRDM.
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Figure 4. Spacing distributions (cumulative) for two Figure 5. (a) NN and @) NNN distributions for two
rational billiards: 3 (full curves) and 75 (dotted jrrational billiards: Z (full curves) and@ (dotted
curves), for both(++) and (——) symmetry classes. curves) for both(++) and (——) symmetry classes.
In contrast to the3% billiard (see figure 3), there is |n contrast to the rational billiards, the genus of these
no difference between the two symmetry classes: failiiard is ‘infinite’ (see text for explanation) and so the
each billiard the two curves lie on top of each othercjassical dynamics is ergodic. The fact that all the four
Furthermore, these two billiards show distinct spacingjistributions lie on top of each other is quite remarkable
distributions, the% one corresponds exactly to SRDM and may be related to the fact that these billiards have
(long broken curve) whereas tHg one is much closer the ‘same’ genus. However, from the ergodicity one
to OE prediction (short broken curve). could expect the distributions to be OE-like, which is
not the case. Rather, they lie between SRDM (long
broken curve) and OE (short broken curve). Still, the
small spacing behaviour of the NNN distributions shows
as® power law, i.e. corresponding to OE.

All the rhombi considered are not ergodic, as their genera are finite (e.g. two for the
n/3-rhombus). In contrast, for an irrational angle the genus is ‘infinite’, and so one could
expect a rather different behaviour. Although the concept of genus is applicable only to
compact surfaces, we have stated the above phrase in quotes in the following sense: as an
irrational rhombus is approximated via continued fraction expansion, the larger and larger
denominators will appear, implying larger genus surfaces, until eventually ‘infinite’. It is
quite possible, and it may, in fact, be true, that this limit is singular. As a result, from the
rational convergents, it may not be possible to say anything about the irrational billiard.

Figure 5 displays NN and NNN statistics fgr and (‘@% (both symmetry classes)
billiards. NN distributions are on top of each other, which is interesting if one believes
that the genus is the relevant parameter. On the other hand, from the ergodicity, one could
expect the distributions to be OE, which is not the case, even if the small spacing behaviour
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of NNN statistics seems to show the same powerdayfor cumulative). Thus, if [7] seems

to give one class of universality, there must be other classes of universality lying between
SRDM and OE, especially for irrational angles. The other possibility is that, although

numerically stationary in a wide range of energy, the spacing distributions of the irrational

rhombus may evolve exceptionally slowly to OE. If that is the case, one will probably have

to find the final answer in a much higher energy range, for which other numerical methods
will have to be used [13].

The present study also raises the question of the semiclassical understanding of the
boundary dependence of the distributions. Due to a change in the boundary conditions, ac-
tions, Maslov indices and also the edge orbits will change resulting in a difference, but the
whole explanation of this boundary dependence probably lies beyond these simple consid-
erations. Spectral fluctuations in some of the pseudo-integrable billiards have been studied
in detail using the periodic orbit theory. From the detailed information about the periodic
orbits [4] it was shown that the spectral rigidity is non-universal [3] with a universal trend.
We hope that the method presented here and the ensuing numerical results will help us to
model the spectral fluctuations of these apparently simple non-integrable quantum systems.

To summarize: we have cast the problem of a particle in rhombus-shaped enclosure
in a way that allows us to go to very high energies. This has led us to confidently obtain
statistical results on spacing distributions which are well converged. Subsequently, we have
shown that for some rational billiards, the fluctuations agree well with the results recently
obtained [7]. However, we have given several examples where the recent model does not
explain the obtained distributions. It has been shown that boundary conditions play an
important role. Finally, for the irrational rhombus billiards, the distributions seem to be
identical for the examples considered. Significantly though, the distribution is still not in
the Wigner-Dyson family. We believe that these results point in the direction of having a
family of universality classes which, in essence, leads to non-universality with a universal
trend for pseudo-integrable billiards.

We acknowledge stimulating discussions with D Delande and E Bogomolny. CPU time
on a Cray C98 computer has been provided by IDRIS. Laboratoire Kastler Brossel is the
laboratory of the Universit Pierre et Marie Curie and of the Ecole Normale &igure,

unité assodé@e 18 du CNRS.

References

[1] Bohigas O, Giannoni M-J and Schmit C 1984ys. Rev. Let52 1
[2] Biswas D and Jain S R 199hys. RevA 42 3170
Eckhardt B, Ford J and Vivaldi F 1982hysical3D 339
for a review, see Jain S R and Lawande S V 1896c. Natl Sci. Acad. India 61 275
[3] Parab H D and Jain S R 1996 Phys. A: Math. Ger29 3903
[4] Jain S R and Parab H D 199R Phys. A: Math. Ger25 6669
[5] Brody T A 1973Lett. Nuovo Cimentd 482
[6] Shudo A and Shimizu Y 1998hys. RevE 47 54
[7] Bogomolny E B, Gerland U and Schmit Bhys. Rev. Lettsubmitted
[8] Mehta M L 1991Random Matrice§London: Academic)
[9] Haake F 199Quantum Signatures of Cha@Berlin: Springer)
[10] Date G, Jain S R and MurghM V N 1995Phys. RevE 51 198
[11] Abramowitz M and Segun A 196Bandbook of Mathematical Functior{dlew York: Dover)
[12] Ericsson T and Ruhe A 198@dath. Comput35 1251 and references therein
[13] Vergini E and Saraceno M 1993hys. RevE 52 2204
[14] Braun D, Montambaux G and Pascaudmiys. Rev. Letsubmitted

29




2.3 Approximation semi-classique

2.3.1 Théorie générale

Le lien entre les propriétés quantiques d'un systeme chaotique (densité d’état, section
efficace de photo-ionisation...) et ses propriétés classiques (trajectoires périodiques et leur
stabilité) est fait par les formules de trace, qui sont la généralisation des méthodes du type
WKB pour des systemes a plusieurs degrés de liberté. A la différence d’'un systeme unidi-
mensionnel, il n’y a pas de lien direct entre une énergie propre du systeme et une trajectoire
précise, mais uniquement une relation globale entre toutes les énergies propres (la densité
d’état) et toutes les trajectoires périodiques, la contribution des grandeurs classiques se
présentant formellement comme un développement asymptotique en puissance de h. Si
le premier terme du développement est bien compris et a déja permis la quantification
semi-classique de nombreux systemes chaotiques, la complexité des termes suivants fait
qu’ils ne sont jamais pris en compte sauf pour des systemes comme les billards, pour les-
quels les trajectoires classiques sont suffisamment simples (suite de vols libres entrecoupés
de rebonds élastiques sur les bords). Or pour des systémes comme 'atome d’hydrogene
en champ magnétique intense, du fait de l'efficacité des méthodes numériques employées
(en particulier, I'inversion harmonique?®), il est maintenant possible d’analyser quantitati-
vement les effets des termes d’ordre supérieur. D’autre part, une des motivations est de
pouvoir affiner les calculs semi-classiques, c¢’est-a-dire, les calculs de propriétés quantiques
a partir des grandeurs classiques.

Le point de départ est I'intégrale des chemins de Feynman pour le propagateur quan-
tique d’un point qg & un point q en un temps 7' :

N-1

KlaanT) = [ dasdas - dav-s [[ @l K(80)]a) (2.1)

n=0

ot At = T/N, K(T) = exp(—iHT/h) et qy = q. Pour un hamiltonien indépendant du
temps se séparant en une partie cinétique et une partie potentiel,

H=2+V(@) (2.2)
I'équation (2.1) devient :

K(a,q90,7T) = /doh dqy - -+ dan_1(2mihAL) =N/

. N—1
1 n - n
% oxp [ﬁ S (%q) At + O(AD)
n=0

ou L(q,q) est le lagrangien classique.

3B. Grémaud and D. Delande, Phys. Rev. A 61, 032504 (2000)
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Pour des petites valeurs de £ (i.e. la limite semi-classique), on peut utiliser la méthode
de la phase stationnaire autour des trajectoires classiques qf'(¢) allant du point qo au
point g en un temps 7'. Chaque orbite donne une contribution K;(q, qo,7’) au propagateur
quantique :

1/2 .
/ (4

LT
Ki(q,q0,T) = exp {th‘:l(q, qo, 1) — z—yl]

82 cl
det (_aqaqOVVZ (q7 qO;T)) 9
(2.4)

ot W (q, qo,T) est laction classique (i.e. fOT dt L(g8\(t), af(t)) ; le déterminant de la ma-
a(?;qo Wel(q, qo, T') est encore appelé déterminant de Van Vleck ; v; est appelé 'indice
de Morse de l'orbite et compte le nombre fois ou le déterminant s’annule, correspondant a
des points conjugués le long de 'orbite.

Comme en général, on s’intéresse plutot a des quantités liées aux propriétés spectrales
du hamiltonien (énergies propres, section efficace de photo-ionisation), on est amené a
considérer les expressions semi-classique pour la résolvante G(z) = 1/(z— H). Le passage se
fait évidemment par transformé de Fourier, laquelle est évaluée par une phase stationnaire

supplémentaire. La contribution de chaque orbite a G(q, qo, F) est la suivante :

2T 1
5\ (f+1)/2
(b= Wi det gy (1)

1
(2mih)f/2

trice

1 T
Gl(qa q07E) = 1/2 exXp |:_Sl(q7 Y0, E) - Z§Vl (25)

h

ol les trajectoires impliquées sont celles joignant les points qq et q, I’énergie de la particule
étant F.

Enfin, la densité d’état quantique n(FE) étant (la partie imaginaire de) la trace de
la résolvante, (i.e. [dqG(q,q,F)), on en obtient une expression semi-classique faisant
intervenir toutes les orbites périodiques du systeme a cette énergie E :

1 1o

GHE) = iy~ 1)~ 3 20

ot 5}(E) = ¢ pdq est Paction réduite de l'orbite, T sa période; m(Tp) est la matrice
(réduite) décrivant la stabilité de l'orbite et y; est 'indice de Maslov.

2.3.2 Au-dela de ’ordre dominant

Les termes correctifs dans les formules précédentes proviennent des différentes approxi-
mations de phase stationnaire nécessaires pour obtenir le résultat final. Dans le cas de la
densité d’état, il y en a trois : quantique — semi-classique, temps —énergie et enfin la
trace de la résolvante. On obtient des expressions relativement compliqués :

1 Ty
i |det (m(Tp) — 1)

Gi(E) 7o [is,(E) _ ﬂm}

n 2
x {1 +ih [Cy(Ty) + CT=P(Ty)] + O(fz?)} (2.7)
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| E— 1V, (o) 3)
C(Tute) = § [ VG (00u(t.6) + 5 / 0tV (1)Gu (0, Gs (1, 1)

/ / dtdt' V. () V2 () [3Gi (6, 1) Gra(t, )G (', ) +2Giu (8, ) G (8, ) Grn (£, 1)

(2.8)
et CT—F(T) est donné par :
®)?
3 | ) woOom g s (W
CT=5(Ty) = W {(cé”) +q§2>} -0 L ——< ) (2.9)

2 2 3
() S
Dans les expressions précédentes interviennent, d’une part, les fonctions de Green

G(t,t") des orbites périodiques, solutions de :

(_%ﬂ - aang [qu(’f)])g(U') =14(t -1 (2.10)

et d’autre part, les dérivés d’ordres supérieures de 'action classique W, et de la matrice de
stabilité de l'orbite (contenue dans Cp).

Toute la difficulté a été de trouver une facon efficace et précise de calculer toutes ces
quantités. Cela a pu étre fait en utilisant de maniere approfondir les propriétés symplec-
tiques de la dynamique classique dans I’espace des phases. On arrive ainsi a calculer toutes
les corrections uniquement en résolvant des systemes équations différentielles le long des
orbites classiques (i.e. du type % = F(X,t)) dans lesquels X et F sont des quantités
parfaitement régulieres. Les résultats obtenus montrent un parfait accord entre la théorie
développée et les calculs quantiques exacts. En particulier, j’ai pu mettre en évidence une
subtilité cachée lors de I’établissement de la formule de trace de Gutzwiller, ce qui engendre
un terme supplémentaire dans le calcul des termes d’ordre supérieur, absent des formules

habituellement publiées.
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The validity of semiclassical expansions in the poweriofor the quantum Green’s function have been
extensively tested for billiards systems, but in the case of chaotic dynamics with smooth potential, even if
formulas are existing, a quantitative comparison is still missing. In this paper, extending the theory developed
by Gasparcet al. [Adv. Chem. Phys90, 105(1995], based on the classical Green’s functions, we present an
efficient method allowing the calculation éf corrections for the propagator, the quantum Green’s function,
and their traces. In particular, we show that the previously published expressidnsdarections to the traces
are incomplete.

DOI: 10.1103/PhysReVE.65.056207 PACS nunier05.45.Mt, 03.65.Sq

I. INTRODUCTION From a numerical point of view, all quantities involved in
the calculation of thé corrections for a given classical path
Gutzwiller's work has now become a milestone in thecan be obtained as solutions of sets of first order differential
understanding of the properties of a quantum system whos@guations to be integrated along this path using standard time
classical counterpart depicts chaotic dynanjith Starting ~ integrators like the Runge-Kutta method. The number of
from Feynman’s path formulation of quantum mechanics, héguations in these sets can be quite large and can be probably
has been able to complete the early studies of Van V[&kk reduced with a deeper_analyss of their structures, in the
deriving expressions for the semiclassical propagator, angdme way that the amplitude in the Gutzwiller trace formula
from this, for the quantum level density: the well-known ora two-dlmen5|ona(2D)_system can be obtained by inte-
Gutzwiller trace formula. The latter is an asymptotic series ind'&ting only a (2¢2) matrix and not the whole monodromy
% and can be separated into two parts; the leading ord matrix[18]. However, it would give rise to more complicated

. xpressions and probably to additional difficulties in the nu-
corresponds to the Thomas-Ferrur extended Thomas- merical implementation, whereas the expressions given in

Fermi when including# corrections average density of yhe haner can be put in the computer as they stand. Also, the
states[3]; the oth(_er part corres_ponds to the_ os_(:lllatlonsamount of CPU time and the memory needed by the codes
around the preceding term and involves contributions fromyre small enough, so that, on a first stage, the reduction of the
all periodic orbits of the system. This formula has been,ymper of equations can be skipped.
widely used to obtain approximate values for the quantum  The paper is divided as follows. In Sec. II, expressions for
energy eigenvalues of classically chaotic systems: the hydrqne classical Green’s functions involved in thecorrection
gen atom in magnetic fiel4,5], the helium atom(6-8], {5 the semiclassical propagatétq,do,T) are derived. Then,
anisotropic Kepler problenil], resonant tunnel diodf9],  \ve explain how to get a numerical implementation of these
billiards [10-13, etc. Since then, the Gutzwiller trace for- tormulas allowing an efficient computation of thecorrec-
mula has also been generalized to take into account contfisy |n Sec. 1l we develop a numerical method to get the
butions of other kinds: diffractive effectsld], continuous  aqgitional terms, arising from the time to energy domain
families of periodic orbit§13,15,16, ghost orbits, etc. transformation, in% correction for the quantum Green's
At the same time, _because the _trace formula as der'Ved_anction G(q,q0,T). In the case of the trace of the propaga-
Gutzwiller only contained the leading term of the asymptoticyy, essential steps for the derivation of thesorrection are
expansion of the quantum level density, the systematic exgegcrined in Sec. IV, leading to the proper formulas, along
pansion of the semiclassical propagator in powerd ¢fas  |yith the way they can be computed. The time to energy
been the purpose of several studje®,13,17. However, yansformation is explained in Sec. V, leading to theor-
these corrections to the trace formula have only been tested o expression in the case of the quantum Green’s func-
for biIIial_'ds, for which both classical and quantum pro_pertiestion_ Finally, Sec. VI shows how to apply theoretical expres-
are easier to calculate. In the present paper, we will showjong gptained in the four preceding sections in the case of
how, for quantum systems whose Hamiltonian separates int\e >p hydrogen in magnetic field and emphasizes the excel-
kinetic and smooth potential energiés corrections can be |gnt agreement with numerical coefficients extracted from
computed with great accuracy, extending the method degyact ~quantum calculation, using harmonic inversion
scribed in Refs[12,13, based on classical Green’s func- 19-21.
tions. In particular, we will show that the previous derivation
[12,13 of the correction to Gutzwiller trace formula is par- I1. THE PROPAGATOR K(q,qp,T)
tially wrong. )
A. Feynman path integral
The starting point is the Feynman path integral, whose
*Electronic address: Benoit.Gremaud@spectro.jussieu.fr discrete version, for a time independent Hamiltonian which
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separates into kinetic and potential energi¢$=p%/2 ® AV
+V(q), reads as follow$13]: B @1—&q0q[q (). ©)
K(g,0o,T)= J' daydas, . . . day_(2mihAL) N2 Furthermore, the fact that both initial and final point are fixed
Y . in the propagatoK (q,d,,T) imposes the following bound-
L N1 . ary conditions on the classical Green’s funct{d3]:
| On+170n
xexg - > L — A O At+O(AD),
" ’ G04)=G(Tt)=0 V' [0T]. )
1)
where At=T/N, qy=gq, and L(q,q) is the classical La- B. Classical Green's function
grangian. If q;(T) is a conjugate point of|,, then the determinant

For small values of: (i.e., the semiclassical limitusing  det(— ag%w,c') in formula (3) is formally infinite, but this
the stationary phase approximation, all preceding 'ntegralﬁappens only for restricted values Bf so that, in this sec-
are expanded around the stationary solutions, that is the Claﬁbn we will focus on the general case, for Wyhiqu) and
sical orbitsq®'(t) going fromqy to q during timeT, each of % are not conjugate points. '
them thus g_iving a contributioKl(q,qo,T) to the propaga- Apart from t=t’, G(t,t') obeying the homogeneous
tor, whose final expression reads formally as folldd3]: Jacobi-Hill equatiorD-G=0, so that, introducing the nota-

tions
Ki(a,00, ) =K{?(a,00, /{1 +i4Cy(q,00, T) + O(A%)},
(3] G_(t,t")=G(t,t") for O<t<t’,

whereKl(O)(q,qo,T) is the dominant semiclassical contribu- g.(tt)=g(tt’) for '<t<T, (8)
tion to the propagatoK(q,qo,T):
one immediately obtains

(?2 12
O)(q.q0.T) = d<_ We(a, 0o, ) - )
Ki™(d,d0.T) it el ~ S99 1(9,90.T) (g',(t,t)>:M(t)(A:(t,))' ©
i - G.(t,t") B.(t")
Xex%%\l\/fl(q,qo,T)—iEvl}, (3)

where M(t) is the (2 x2f) monodromy matrix, depicting
the linear stability around the classical orbit in the phase
space.A. andB. are four fXxf) matrices, whose values
are determined from the boundary conditions at tirme’:

whereW¢(q,qo,T) is the classical action and is the Morse
index of the orbit. TheC4(q,q,,T) expression is given by

[13]
1JT (4) G.(t't")—G_(t',t")=0,
S| dtVEI(DG (1,1 G(t,t)
8 o ikl j ki (j(ji{(t,|t’)7ddgt+ (t’,t’):l (10)

1JTJT @)y
= [ dtdrv@mv@ )
24)0 Jo 1k 5 Fmn and at ime¢=0 andt=T:

X[3Gij (1) G (t,t" ) Gun(t',t")
+2G (4,)Gim(tt") Gin(t, 1) ], 4

g-(ot")=0,

G (T,t")=0. (11

where theV("(t) are higher-order derivatives of the poten-

tial Vv, evaluated atif'(t). For a Hamiltonian which separates between kinetic and
The classical Green’s functiagf(t,t’), associated with the potential energyH=p?/2+V(q), M(t) has the following

classical orbit, is anf(x f) matrix solution of the following Simple structure:

equation[13]:

Jo(t) Ja(t)

D-G(t,t")=158(t—t"), (5 M(t)= 300 30
2 1

: (12

where D is the Jacobi-Hill operator, controlling the linear
stability around the classical orbit in the configuration spacevhich leads us to the following explicit expressions for the
[13] four matricesA. andB..:
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A_(t")=0, right (f X f) submatrix of the matriM, gives the linear dis-
P | Tier placement of the final position for a change in the initial
B_ (1) =35 (') =3, (1) J(T)J, (1), momentum (the initial position being fixed toqo), i.e.,
A (t)=3][(t"), 8q(T)=J1(T)Spg. Thus, J,(T) is the inverse matrix of
B (t') = — 3. (T)3,(T)I] (1), (19 (—agqovvf') which has been supposed to be invertiméT)
andqg are not conjugate poingsFinally, the full expression
provided thatJl’l(T) is invertible. J1(T) being the upper for the classical Green’s function reads

() [I2(t) =3 H(MIATI{ ()] for Ostst’,

[Jz(t)le(t)Jil(T)Jz(T)] Ji(t") for t'<t<T. @4

gt =

Using the symplectic structure ®(T), one can show that expected, the Green’s function vanishes at initial and final
times[i.e., G(0t')=G(T,t")=0] and fort=t’, the deriva-
Gt =G (t,t") (15) tives of each diagonal elemegt,(t’,t") (continuous ling
andg,,(t’,t") (long dashed lingare discontinuous whereas,
from property(15), the two off-diagonal elements are equal

as expected because the operd?and the boundary condi- -
e(do‘(ted and dashed lines

tions are symmetric as it explicitly appears in the discret
version of the problenisee Ref[13]). This is also empha-
sized in Fig. 1, where the four matrix elements of a classical
Green's functiong(t,t’) (for t'/T=0.6) are plotted with re-
spect to time. This example corresponds to a classical orbit
of the 2D hydrogen atom in a magnetic field having initial  From Eq.(4), there are three contributions @ (q,q,,T),
and final points on the nucleus, namely, the closed orbit havhamely,
ing code 0O—and whose trajectory im,p) coordinates is

also shown in the figure(See Sec. VI for all details.As

C. Getting C4(q,qq,T) by integrating a set of first order
differential equations

.
1(T)= fodtvi(,f‘k’l<t>gij<t,t>gk.(t,t>,

0.4
0.3
T (T
02 = [ atdrvovige
— 0Jo
= o4
o X Gii (1,0 G (t,t") Gmn(t',t"), (16)
0

T(T
= [ atdevovige
0 02 04 06 08 1 0o
T X G () Gim( ) Gl 1),
FIG. 1. Example of a classical Green’s functigift,t’) in-
volved in the calculation of thé corrections for the propagator
K(q,90,T), for the caseg=q,=0. It is associated with the closed Even if, in principle, one can compugt,t’) for any (t,t’)
orbit 1243 of the 2D hydrogen atom in magnetic field, whose tra-values using Eq(14), direct evaluation of the double inte-
jectory in (u,v) coordinates is inserted in the pltgee Sec. VI for  gralsl, would be time consuming and numerically ineffi-
all detailg. This trajectory starts and ends at the nucleus, depictedjent using standard integration routines, especially because,
by the black circle. Each curve corresponds to a matrix elemenfrom its definition,G(t,t') is not a smooth function around
G;j(L,U') plotted with respect to timé for t'/T=0.6. As expected 0 nat— ¢/ 1y what follows, we will show that the preced-
from boundary condition§7), the Green’s function vanishes at ini- . . ’ ' . .
ing integrals can be transformed in such a way that their

tial and final timesi.e., G(0t’')=G(T,t’)=0] and fort=t’, the : ) - ) .
derivatives of diagonal element§y,(t',t’) (continuous ling and values can be obtained integrating a set of first order differ-

GoAt’,1") (long dashed lirg are discontinuous whereas, from sym- €ntial equations along the classical or‘bit, in the same way
metry property(15) [i.e., G T (t,t')=G(t’,t)], the two off-diagonal  that, for example, the monodromy matik(T) can be com-
elements are equétiotted and dashed lines puted.

056207-3

35




BENOIT GREMAUD

Separatingt>t’ and t<t’ contributions in|§, using
symmetry property15) of G(t,t') and that the matrix/® is

PHYSICAL REVIEW E 65 056207

(fourth order Runge-Kutta in the present cages mentioned
in the Introduction, the size of the preceding differential set

fully symmetric under index permutations, one gets, afteiis probably not minimal and could be reduced by a deeper

straightforward algebra,
zj dtj dt’ VROVt
Xgij(t!t)gkl(trt/)gmn(t/rt/)i
T t
|g(T):2f dtj dt’ V(D VEL(t")
0 0

XGi (4 Gim(t,1") Gen(t,1). a7

In the preceding expressions the Green’s functi¢nt’) is
used only for {,t") values in the triangle €t'<t<T and is
formally written G(t,t")=BT(t)J] (t') [see Eq.14)], thus
separating andt’ contributions:

T
IJ(T):ZL dt VER()Gij (1,1)Byy(t)
Jdt Vlmn t )‘]llp(t,)gmn(t,yt,),
IZ(T Zj dt Vljk Ei(t)Baj(t)B;I((t)

t
X fodt’vl‘%)n<t'>J1|p<t'>Jlmq<t')Jm(t').

(18

This leads us to introduce two intermediate quantities,

namely,P,(t) andQq,(t) (for p, g andr running from 1
to f):

t
Py(t) = fodt’V.‘%’n<t'>J1|p<t'>gmn(t',t'>,

qur(t)_J. dt’ Vlmn(t ‘]llp(t )‘]1mqt Win(t) (19

in a way such that, (T) [and,(T)] are solutions of the
following set of differential equationgesides equations for
X(t) andM(t)]:

Ijkl )G (t,H)Ga(t,),
I.Dpzvl(ri)n(t Jllp(t)gmn(t!t ’

I3 =VRG;(LHBL(DP(D),
Qpqr= V() Iuip(t) I1mg(t) I1ne (1),
|7 Vljk pl(t)B J(t)Brk(t qur(t)

with initial conditions1,(0)=15(0)= Pp(O) Qpqr(0)=0.
This set of equationd,>+ 412+ 3f+3 in total (i.e., 33 for a

1=V

(20

analysis of the structure of these equations. However, it al-
lows a fast and easy computation of the correction
C1(9,90,T):

(1) find a trajectory going frong, to q in time T;

(2) integrate the differential set fot(t) and M (t) along
the trajectory to obtain the quantiflf M) a(Ty;

(3) integrate the set of Eq&20) along the trajectory to get
the three quantitie,, |5, entering in theC,(q,do,T) ex-
pression.

I11. THE GREEN'S FUNCTION G(q,q,E)
A. Going from time to energy domain

Since the quantum Green’s functi@®{(q,qo,E) is related
to the propagatoK(q,qo,T), through a semisided Fourier
transform, this relation also holds between semiclassical con-
tributions arising from each classical orbit, more precisely,

Gi(a,90.E f dTexp(hET) (0,00, ). (21)

Again, a stationary phase approximation is used to perform
the integral, which, for a given trajectory going frarg to g,
selects its total duratiofy such that the classical motion is
made at energiz. This operation also gives rise to additional
terms in# corrections, to be summed with,(q,q,,T), and
whose explicit expressions can be derived starting from Eq.
(4) formally written as follows[13]:

i
Ki(d,d0,T)= exr{gW(q,qo,T)

1
(2mih)"2
LT
—i51+Co(4,00.T)

+i%C4(9,90,T) (22)

Co(9,qq,T) being the(logarithm o usual semiclassical am-
plitude. ThenW,(q,qo,T) and Cy(q,qo,T) are systemati-
cally expanded around:

5T?
Co(9,00,T)=CO+ 6T CV+ — 5 c®, (23)

with §T=(T—Tg). Terms arising fromC4(T) expansion
would contribute only tdi? correction and can be discarded.
Performing the imaginary Gaussian integrals leads to the ad-

2D system is easily integrated using any standard methodditional # corrections:

056207-4

36




i CORRECTIONS IN SEMICLASSICAL FORMULAS F&. ..

1
T—E _ 1)\2 2
Ci (q,QO,To)*izwl(z)[(Cg )2+ Cf]
wdcd  w® 5 (W)?
- - + .
2(WH2 8w 24 (w23
(24

The preceding formula is similar to the one in REE3],
where the authors have expressed
C15(q,q0.,To) in terms of derivatives of amplitude and ac-
tion with respect to energye. The full expression of
G(9,99,E) is then given by

o E)= 2 1
109,90, (Zﬂ_ih)(Hl)/Z \sz)detJl(To)P’Z
i LT~
X exp +S$(a,00,E) —i 5w

X{1+i%[C1(q,00,To) +C1 "5(0,00.To)]

+0(42)}, (25
whereS,(q,qg,E) is the reduced action and
= it W0,
T=n+1 if W<o, (26)

B. Getting C] F(q,qo,To) by integrating a set of first order
differential equations

In Sec. Il C, we have shown that,(q,qo,T) can be
computed by integrating a set of differential equations alon
the classical orbit going frong, to q in time T,. In this
section we will show that it is also true f&] "5(q,do,To),
which involves derivatives of bothW(q,q,T) and
detJ,(T) with respect toT.

For all T, we have the following functional relatiorgg
andq being fixed:

(9,00, T) _

aT @7

—E(9,90.T),

where E(q,qq,T) is the energy of the classical trajectory,
q(t,T), going fromqg to g in time T, that is, the value of the

HamiltonianH taken at any point on the corresponding phase

space trajectorX(t,T)=[q(t,T),p(t,T)].
Writing T=Ty+ oT, the Taylor expansion o[ X(t,Tg

+6T)] is easily deduced from the Taylor expansion of

X(t,To+ 8T) around the reference trajectox(t, To) [noted
hereafter a(O)(t)]:

PHYSICAL REVIEW E 65 056207
2

5T
X(t, To+ 8T)=XO(t)+ 8T XD(t) + Tx(2>(t)

513
+ ?X(3)(t)+ . (28

and from which one obtains the higher derivatives of the
classical actionV(" at T=T,:

the coefficient

WH=—H[XO )],

W= — XYM

W= — (XPHD+ XOXMOHP),

W= — (XBHD+ 3XDXPH P+ XMXOXOHD),

(29
where all derivatives oH are evaluated ax(©)(t).
Equations forx((t) are deduced from Hamilton’s equa-
tions governingX(t,T) evolution:

xi(l)zzinJ(E)x(l)’

v(2) 2 2 3 1 1
X(P =3 HIPX@)+ 2 HEIXOXD,
(3) 2)y(3 3)y(1)y (2
X =3 HEX(D+ 335 HEXDX(?)

3 XXX, (30

where again all derivatives dfl are evaluated aX(©)(t).
Thus, we are facing three differential sets of the foxif
=3SH@XM+3Y0 (i.e., nonhomogeneous linear differen-
tial equationg with the important property that the vector
Y@ only depends on vectod$t) with j<i, so that they can

be solved one after the other. Solutions of these nonhomoge-
neous linear differential equations are expressed with the

%nonodromy matrixv (©):

XB(t)=MO(t)xM(0),
X@(t)=MO(t)X@(0)+F)t),

X®(t)=MOt)X®)(0)+ FC)(t). (31

Among the 3< (2f)-dimensional space of solutions given by
preceding expressions, the relevant one is selected by trans-
posing on initial valuex®(0) (for i =1,2,3) the two bound-

ary conditions

q(0,To+6T)=q9 and q(To+ T, To+6T)=q. (32

Introducing positiong® and momentump® parts for
vectorsX(), the Taylor expansion of the preceding equations
leads to the following boundary conditions:
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qP(0)=0 qP(Te)=—a(Ty),
q?(0)=0 q(To) == (Tg) —29™(To),
g®0)=0  and BTy =—GO(Ty) —3qM(To)—3q3(Ty). (33

Thus, the initial valuesp(‘)(O) are implicitly determined by stored at the same position in matrdM (Ty)/dT", for
the final valuesq)(T,), through the integral expressions which we will derive general expressions. For this purpose,

(31), which for XV reads

(q‘”<T0>) [32(To) 3u(To)
P(To)) [32(To)  3u(To)

0
( p“)(O)) @9

showing thus thap®(0)= — 37 X(To)qO(Ty).

ThenF®)(T,) andF®)(T,) are easily computed by inte-
grating sets of differential equations obtained from E§),
allowing us to derivep®(0) andp®(0) values from Eq.
(31), solving systems similar to E¢34):

pA(0)=— 37 H(T)[aO(Ty)+2gP(Tg) +1E(Ty)1,
p®(0)=—3; H(To)[aO(Te)+3aD(To)
+39®(To) + (T,

35
where we have introduced the notatidi’(g®™) for vector)s
FO. Quantities likeq®(T,), q™(Ty), and q®(T,) can
also be expressed in terms %f%)(T,) and its derivatives.

At this point, from the values of the three vectot®)(T,)
and using Egs(29) at time T, all derivativesW(™ of the
classical action can be computed.

We now explain how to compute derivatives of dgfT).
More precisely one has to calculate the two coeffici@ffé
andC{, which are derivatives of- In\/[detJ;(T)[, so that,
using the well-known formula

d In|detd])=T J*ldJ
ﬁ(fﬂ etd))=Tr -

daT (38

[J being any(invertible) matrix], expressions oC(()l) and
C{ become

1 _ dJy(Tg)
Cél’?gTr(Jll(To) T

1 d23,(Ty)
(2):77 —1 itto
c§ 2Tr(Jl (To)ide
_ dJi(To) _ dJy(To)
T~ I To—g7— | G

wheredJ;(Ty)/dT means derivative ad,(T,) when chang-
ing total timeT (and thus the classical orhitvhich must not
be confused withl; (time derivative ofJ; along a given
classical orbit J,(T) being the X f) upper right submatrix
of the monodromy matrixM(T), d"J;(Ty)/dT" is also

we first introduce the explicit notatioll (t, T), representing
the value of the monodromy matrix at tinhielong the orbit
going fromq to g in time T. Writing T=T,+ 6T, the Taylor
expansion oM (t,T) for a given timet reads

5T2
M(t,To+8T)=MO(t) + 8T MI)(t)+ 7|v|<2>(t),
(39

whereM©)(t) is the monodromy matrix along the reference
orbit (i.e., going fromqg to q in time Ty). ThendM(T)/dT
andd?M (T,)/dT? are the Taylor coefficients of monodromy
matrix M(To+ 8T, To+ 6T) and thus have the following ex-
pression:

dM(Ty) .

== MOTo) +MOTy),

d2M(Tp) . -
#:M(O)(T0)+2M(l)(To)+M(z)(To)- (39

Equations governind () evolution are easily deduced
from the one forM (t,T):

MY =2 [HPMEP +HEX DM,

MP =S [ HPMP+ 2HR XM

+HEXEM P+ HE XXM, (40)

klmn

with initial conditions M®)(0)=M®)(0)=0. Obviously
these equations are similar to those governiiig evolution,

so thatM®)(To) and M®)(T,) values will be obtained by
integrating similar differential sets. Actually, it can be shown
that all these set§or bothX® andM () can be concatened
in only one(largen set of differential equations, whose inte-
gration can be done at once.

Finally, gathering all quantities in Eq39), the two ma-
tricesdJ;(T,)/d T andd?J,(T,)/d T? are inserted in E¢(37)
thus giving values fo€{ andC{®, which, along with the
values forW(" , allow us to compute the numerical value for
CIﬂE(CLQO,To)-

Obviously, the number of equations in the preceding dif-
ferential sets can be reduced, especially for Hamiltonian
separating into kinetic and potential energy, for whi¢(g!
and Hj(ﬁl)m coefficients are nonvanishing only when 1
<j,k,I,m=f. However, these sets are straightforward to
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implement and need only a small amount of CPU time to be Then, the next step would consist of performing all imagi-
solved using any conventional integratgfourth order nary Gaussian integrals, leaving out the integral along the

Runge-Kutta in the present case orbit. However, in the preceding coordinate transformation
(42), there is an hidden subtlety, affecting orilycorrections,
IV. TRACE OF THE PROPAGATOR K(T) which probably explains why it is not mentioned in usual

) textbooks[1,3], where authors are only looking at leading
The diagonal elements(do.qo,T) of the propagator are  gemijclassical amplitudes.

re_Iated_ to class@cal orbits starting fr(_)q@ and rgturning to Actually, the problem is that the integral ovq% corre-

tl'_ns point after timeT, i.e., clos_ed orbits. Summing aII_ these sponds to the length of the classical orbit, only whigr-0;

diagonal elements_, that is performing the |_ntegralf0r a nonzero value, it will correspond to integration on a

Jdgo K(Go.do 1), will select, through another stationary oo curve, slightly displaced from the original trajectory,

%hoanigr?tﬂrr)rzogrlgq:gﬁg’l-Cg)?asri?)ciiic::rtg:;i;g::\c/)vrr:ggilonr:tslatloalr:adag?alwrlose length will thus depend on tigg value. To enlighten

ing order of the serﬁiclassical contribution KO(T) from this_, let us suppose tha_t we ha_ve a bidim_ensional system, for
which one periodic orbit is a circle of radil, traveled at

g?ﬁgmge”roec\i/'ﬁ)ugb'hS%%nfotﬁhge”r\éei ;c;l(l)?vi\ilgnbgl;]he SAMEconstant speedl,= 2Ry /T. The coordinate transformation
P y propag ' is then easily made using polar coordinatesd}:

A. Feynman path integral N
. . A ) o . r=Ro—& - (44)
Adding the integral over the initial and final positions in

Eq. (1) yields[13] . . . .
The negative sign appears to preserve orientation. The vol-
me elementix dy becomes
Km:f dao day d., ... day_y(2mihAt) N2 ! g
N1 dxdy=rdgdr=(Ry—&;)d0dé&g, (45)
I On+1—0n
xXexp - > L —ir G |At+O(AY
o which shows that, in this casdqﬂ, is not simplyRyd#6, the
(41)  length on the periodic orbit, but is given by
with gqn=0qp- I .
The stationary phase approximation around a given peri- ddp=(Ro—&5)do#Rodo. (46)
odic orbitqf'(t) is made explicit when replacing the preced-
ing Nf integral with[13] This simple example shows actually that the variaifieis
not independent of; , whereas is.

f dqﬂ, d&sd& dé,, ... déy 1 (42 ‘ For a genera\_l system, the variable that can pla}yﬁ!nele
is actually the time, whose variation domaifi0,T] is fixed

with §n=qn—Q|°|(nAt)- Forn=0 (i.e., initial position, only and then obviously independentﬁf. Thus one has to gen-

deviations perpendicular to the periodic orkjt have been eralize the relationlg)= |q°|dt,, valid only on the periodic
introduced because the classical actitif{dg,do,T) is con- orbit. This is done by writing explicitly the coordinate trans-
stant along the orbifdepicted bygl). The contribution ~formationg— (to,):
K,(T) of this periodic orbit toK(T) then read$13]
NN 9=0%(to) + &aiMi(to), @7

= — — I gzt
Ki(T) 27TiﬁT) exl{ﬁwl)J dqgodé; d&;

wheren;(tg) are f—1 orthogonal unit vectors lying in the

i plane perpendicular to the periodic orbit at tilgeThe Jaco-
Xd&;, ... déy_1ex 57 W.antatp bian of the transformation reads
i i

_ _ J\ . .

X1+ 6% W,abc§a§b§c+24ﬁ W,abcdfagbgcfd detﬁ(t%:de(qd.;_ gél ni,Ny,---,Ni_4]
0190
! W, W 43 . 1
7%2 ,abc ,defgagbgcgdgegf ’ ( ) — |qcl| _ |qcl|§$ . CICI. (48)

where¢, = &y whena=(0,i) and¢,=0 whena=(0,0). W,

is, in the largeN limit, the classical action of the periodic Inserting the volume element in E@3), the contribution
orbit. Full expressions fow ,,, W ape, andW 4pcqcan be  K((T) of the periodic orbit now reads, keeping only terms
found in Ref.[13]. giving rise to% corrections,
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Nf/2 i The first# correctionC4(T) to K(O(T) is then obtained
= exp =W, b i he ti i he full iodi
AT 7 y averaging over the timg, (i.e., over the full periodic
orbit) the coefficientC,(T,tp), given by

Ky(T)=

xf o dto dg5d&1dgy, - . dén—s 1T
Ci(T.tp)= gfo dtVi(jkl(t)gij(trt)gkl(tft)

i
xXex Ew,abgaéb)

1 vt ) (T
+37 = fo dt VIR Gi(00G; (L)

1 &V iW |a°?
X +|qc||2+@ ,abcgagbgc 1 (T[T
+§J f dtdt’ V() VIEh(t)[3G;(t.)
. oJo
I V,HW,abc§E§a§b§c
""mw,abcdfa'fbfcfd*‘ﬁ e X G (8t ) Gt 1)

+2G; (4L, Gim(tt) Ginl L)1, (53

1
- jw,abcw,deffagbgcfdfeff

4
724 ' 49

wheret, represents thus the positiog on the periodic orbit
at which boundary conditiong&0) on the classical Green’s

where we have seen thgt'=— dqV and we have introduced function G(t,t") are appliedqy is also the initial(and fina)

the indexd for (0]) position on the periodic orbit for classical motions corre-
As explained i’n .Ref[13], the imaginary Gaussian inte- spondmg to timeg andt’ entered in the preceding expres-
grals can be expressed in terms of another classical Greerr®"

functionsG(t,t"), whose boundary conditions are extracted

when comparing the detailed expression\f,, with the B. Clasdcal Green's function
discrete version of the Jacobi-Hill operatby; see Eq.(6). As in Sec. Il B, where expressions for classical Green's
Especially, it can be shown that, in the lariyelimit, they  functions for the propagatd(q,q,,T) where derived, we
become introduce theg. (t,t") notations andA..(t'), B.(t’) matri-
ces. Using all boundary conditiortat timest=t’, t=0 and
GOt )=gG(T,t'), t=T) gives rise to the following equation:
P, G0t") =P G(T,t')=0,Vt'e[0,T], (50) 1 0 A
9, 3(01")=Q, (T t"), 0 o MMl 1)
where we have introduce@IO the projector along the peri- _ I 0 M(T =3 () 54
odic orbit at timet, and Q; =1—"7P, . In Ref.[13], only the o 9, (M J, ) 4

f2+f boundary conditions corresponding to the first two
lines were given, whereas tHé—f ones corresponding to The preceding set of linear equations, formally writtérm’
the last line were missing. =J3, cannot be solved directly because thé X2f) matrix
Performing all imaginary Gaussian integrals and takingA is obviously singular. More precisely, existence and num-
the largeN limit in Eq. (49), the contribution of the given ber of solutions for the systevd x=b are determined by the
periodic orbit to the trace of the propagator reads as followstwo following properties:
(1) Solutions exists if for all vectory such thatA Ty
© 1T ) =0, theny-b=0.
Ki(T)=K}™(T) 1+|ﬁ?JO dteCy(T,te) +O(%%) ¢, (2) If the preceding condition is fulfilled, and i is a
(51) solution, then for all vectorg, such thatd xo=0, x+Xg Is
also a solution, showing that the dimension of the solution

K©)(T) being the usual semiclassical leading orided 3,2 space is that of the nullspace af
mm 9 g ore 3 In the present case, equati y=0 leads to either

KO(T)= 1 T 1 0 B 0
V2mh | 9T defm(T)—1]|¥2 0 Q, y=0=yx ito) (55)
i
xex;{gwl(T)—i guﬁ-i sgndgT|, (520 or
, , . T, - - Jr o
whereW,(T) is the classical action of the periodic orbit and [M(T)—15]y=0 with y=% y#0. (56)
wy its Maslov index. 0 Qto
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For a generic unstable periodic orbit, the eigenspace associ- 1
ated with the eigenvalue 1 &f(T) (T being the period is
of dimension one and is spanned by the vector parallel to the

flow (see the AppendixX(to) =[q(to),P(to)], SO that, in the
second case, one gets X(t,) andy is a solution of

- b(to>)
o L, (57)
Y ( q(to)

1 0
0 Q,

which is impossible unlesy(ty) =0, which, for Hamiltonian
separating into kinetic and potential energies, corresponds to
a self-retracing periodic orbit, for which a slightly modified
approach should be developed®]. Nevertheless, this caseis  FIG. 2. Example of a classical Green’s functigift,t’) in-
peculiar, and we will suppose in the rest of the section dhat volved in the calculation of thé corrections for the trace of the
never vanishes along the periodic orbit in consideration.  propagatoK(T). Itis associated with the periodic ordi234 of the

Thus, the nullspace oA " being one-dimensional and 2D hydrogen atom in a magnetic field, whose trajectory ufvj

. : : coordinates is inserted in the pltee Sec. VI for all details The

spanned by the vect@ﬂ,q(to)]-, Ea.(549 |mme_d|ately shows black circle depicts the nuclelfs, whereas the cross corresponds to
tha‘t _for any Colun_ﬁn of ma‘trl)()’, we ge_t[O,q(to)]-Bi=(_), the initial and final points on the periodic orbit at whig¢ift,t")
fulfilling thus the first condition. Denotingk, as a solution  fyfilis the boundary conditiong50). Each curve corresponds to a
of Eqg. (54), which can be easily obtained using singular matrix elementg;;(t,t') plotted with respect to time, for t'/T
value decompositioiSVD) of matrix A, and the nullspace =0.3. Actually, we have plotted the coefficient of the rotated matrix
of M(T)—1 being spanned b¥(tg), the general solution of G(t,t'), such that its first row corresponds to the direction parallel

Eq. (54) reads to the orbit; Gy4(t,t") (continuous ling and G, ,(t,t') (dotted ling
are thus equal to zero for initiat€ 0) and final (=T) points. The
X=X+ [aX(to), aX(tg), . . . s X(to)], (58  other boundary conditions can also be verified in the figure; the

] ] dashed line [G,y(t,t')] [respectively, the long dashed line,
wherea; are unknown real parameters still to be determinedg, 1 t')] has not only the same value at initial and final time, but
Actually, in Eq. (54) one boundary condition has not been

- . also the same slope, which means tigt(t,t’) [respectively,
taken into account, namely, th@;og,(o,t’)=0 which, us-

Goo(t,t’)] and its time derivative fulfills the periodic boundary con-

ing that the projectoiD[O reads ditions (50). Finally, for t=t’, the off-diagonal coefficients
Gt ,t') (dotted ling and G,y(t',t') (dashed ling are equal, as
Q(to)qT(to) Qi(to)Qj(to) expected from the symmetry propedy’ (t,t")=G(t’,t).
(Pi=| — = . (59
A Jao? ) Jacto)?

to time t. The starting point, on the periodic orbit is de-

picted by the cross. Actually, we have plotted the coefficient
A_(t) 1 4(te)q " (to) O of the rotated matri)@(t,t’), such that itsjirst row corre-
B (t) =Xp— — 3| L 0 Xy, (60) sponds to the direction parallel to the orlig;,(t,t") (con-

N latto)I* [ p(to)a " (to) tinuous line andG,,(t,t') (dotted ling are thus equal to zero
which, of course, is now independent of the particular solufor initial (t=0) and final ¢=T) points. The other boundary
tion . conditions can also be verified in the figure: the dashed line

Whereas in the case of the propagakt(q,do.T), for  [Ga(t,t’)] [respectively, the long dashed lin@(t,t")] has
which we were able to give an explicit expressidd), the  not only the same value at initial and final time, but also the
classical Green's function associated with the trace of theame slope, which means thal,(t,t') [respectively,
propagatoiK (T) is only defined trough a linear systeisd),
which nevertheless allows us to obtain its numerical valu " ; o g -
for any (t,t"). Although it clearly appears that matri¥/ ,, cpndltli)ns (,50),' Finally, f(?r t=t ’Nthe c’)ﬁ’dlagonal cqefﬂ
expression(see Ref[13]) is symmetric, meaning that the CleNtsYit’,t") (dotted ling and Gpy(t',t") (dashed ling
classical Green's function must fulfill the property &€ €qual, as expected from the symmetry property.

G (t,t")=G(t',t), getting the later directly from Eq54) is

not obvious. However, in the case of the 2D hydrogen in a
magnetic fieldsee Sec. VI for all detailswe have numeri-
cally checked that the property holds. For example, in Fig. 2
the four coefficients of classical Green’s functigft,t’) (for As seen previouslysee Sec. Il ¢ we will explain how
t'/T=0.3) of the periodic orbit 1234 are plotted with respectthe numerical value of coefficien6,(T,t,) can be obtained

allows us to gety; values and, from that, the final expression

5o(t,t")] and its time derivative fulfill the periodic boundary

C. Getting C4(T,tg) by integrating a set of first order
differential equations
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by integrating a set of differential equation, using the stan-
dard Runge-Kutta method. There are now four contributions

T T
(T)= RV NV ONY
to C4(T,to), namely I (T) jo L dtdt’ Vi (O Vimn(t")

T XGij (1,1 Ga(t,t) Gt 1),
Il(T)sz dtVi(ﬁ<)l(t)gij(trt)gkl(trt)v i€ ul (
T(T
= f f dtdt VROVt
0Jo

:
h(T)zfo dt V(DGO Gij (t,1), X G (LGt (L)
I 1 Jmits nlY .

|
The two main difficulties now are th&i(t,t’) does not factorize anymore in a product of matrix at tinaed a matrix at time
t’, nor does the symmetric property' (t,t')=G(t’,t) explicitly appear(even if we have numerically checked that it is
fulfilled). Nevertheless, as seen previously, separating ) and ¢<t') contributions inl; (T) expressions and introducing
four quantitiesPS) for 1<i<4, allows us to computé, , by integrating the following set of differential equations from
t=0 to T [besides equations fot(t) andM(t)]:

PU=ALOVE (DGt ),  PE=31,(OVEL (O Gmd(t1),
PO=B OV (DGm(t.D),  PE=355(OVII (D Gmr(t.1),
13 =VE0Gii (1,0 i) PEID) + VIR Gij (1,0 Iy PE(1)

+ VRO G (L HAO P + VR0 G (1,0B(HPL(t) (62)

with vanishing initial conditions foPS) andl, . For each time step, one must compute matrisesandB_ (and from there
matricesA, and B, ), solving the linear system described in the previous section, using singular value decomposition of
matrix A, which, being independent ¢fis done before starting the Runge-Kutta integration. Skipping intermediate steps, the
differential equations leading tig, (T) computation reads as follow, introducing another eight quam@i%

Qf)lq)rivl(rSnn
Qpi’r—V.ﬁ’n(t)Apl(t Agr(DB(D), QW=
Q¥ = .mn<t>Ap|<t>qu t)Bm<t> Ql=Vv

qu, v ( ()Bi(1)Bn
I = V(1) Iz(1) szq(t Joe(DQEN(t

par

+3V§fk’<t>J2ip<t>Jqu ) I (HQE(
AR (DQEL (D) + VDAL (DA (DB (HQI(T)
+3VERADAL(DB (DB (DQYN1) + VA1) BLi(1)Bg (DB (DQ()

FVROALDAG(L)

with vanishing initial conditions foiQ$), and I;. Finally,
one must add equations leading lfoand I, computation,
namely

1 =Vi (DG (tHG(t,D),

=VROALDG (D), (64)

where we have used(0t)=A(t). Taking into account
equations forX(t) and M(t), this gives rise to a total of
8f3+4f2+7f+3 equations, that is 97 for a 2D system.

d(DATOALD), QL =VI(1)321p() omg(1) Ione(1),

Imn(t)JZIp(t)‘]qu ‘]lnr(t)v
v(®

Imn(t)lep(t)‘]lmq(t Jlnr t),

rn ), Q(s)zvl(r?\)n( 1) I11p(1) J1mg(t) Ianr(t)
)+ 3VEN1) Jip (D) Jjq (D) I1kr (D QD)

() + VR0 I1i5(1)I1jq(D I 1 (D QSE(D)

(63

(1) achieve the SVD decomposition of the matri,
appearing on the left-hand side of E@4), and compute
the projector matrix appearing on the right-hand side of
Eq. (60);

(2) integrate the differential sg63) along the periodic
orbit (starting at point depicted by). At any timet, use the
preceding SVD decomposition to obtain a solutidp and
the projector matrix to get the true solutipA _(t),B_(t)]
and thug A (t),B, (t)], using Eq.(60).

Finally, the coefficient C{(T,ty), being a smooth

In practice, having found a periodic orbit and for a givenfunction of t,, the average over timg,, leading to thef

to along this orbit, the coefficient(T,ty) is computed in
two steps:

correction termC,(T), can be handled by any conventional
integrator.
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V. TRACE OF THE GREEN’S FUNCTION G(E)

Steps leading to the semiclassical contributiGi(E)
from a given periodic orbit to the trace of the Green'’s func-
tion G(E) are identical to those giving th@,(q,qo,E) ex-
pression, so thaB,(E) reads

B To i o
"R Jaetm(ry) 12 A S B T 2

X{1+ih[Cy(To)+Cl E(To)]+0O(#3)}, (65

Gi(E)

whereCJ~§(T) is given by

1
T—E _ (1)y2 (2)
Cl (TO)72WI(2)[(CO ) +CO ]

- W|(3)C(()1) - WI(4) E (Vv|(3))2
2(W|(2))2 8(WI(2))2 24 (Wl(Z))3
(66)

W (respectively,C{) are the Taylor coefficients of the
W (T) [respectivelyCy(T)] expansion around,.

Computation ofW{" is much the same as in the Green's
function case, because the functional relation

[1=M(T)IX®(0)=XO(Ty),

PHYSICAL REVIEW E 65 056207

IW(T)
ot - EM

(67)

still holds for a given periodic orbi(T) being its energy as
function of its period, which is still given by the value of the
HamiltonianH taken at any point on the corresponding phase
space trajectorX(t,T)=[q(t,T),p(t,T)]. Thus, the Taylor
expansion oX(t,T) around the periodic orbX(t,To), will
lead to the same expressions Wf') coefficients[Eq. (29)]

and for X(W(t) equations[Eq. (30)]. The only differences
with the preceding section arise from the boundary condi-
tions fulfilled by XM(t), deduced from the equation
X(0,T)=X(T,T), i.e.,X(t,T) is a periodic orbit of period.
The Taylor expansion of this relation leads to the following
conditions:

X®(0)=X®(T)+XO(Ty),
X@(0)=X@(Tp) +XO(Tg) +2XH(Ty),
X®)(0)=XG)(Tg)+XO(Tg)+3XD(To) +3X 3 (Ty).
(68
Solutions of the differential s€B0) still have the following

formal expressiong31), which, inserted in the boundary
conditions(68), leads to equations oX((0) only:

[1—M(T)1X®(0)=XO(Tg) +2XO(T) + F(Ty),

[1-M(To)IX®(0)=XO(Tg) +3XW(T) +3X(To) + FBN(Ty).

The matrix]l—M(T,) being singular, solving the preceding
linear equations need additional discussion, which, for sim
plicity, will focus on X)(0) only. First, the nullspace of
1-M(To) " is spanned bys X(©)(T,), which is obviously
orthogonal toX(®)(T,), the right-hand side of the equation

for X(1(0), thus showing that this equation admits solutions.

Then, the nullspace df- M (T,) being spanned by(?(T),
the whole set of solutions reads

XD(0)=XP(0) + aXO(Ty), (70)

whereX{Y(0) is a particular solution of the equation. Actu-
ally, the termaX(®)(T,) corresponds to a displacement of
the initial conditions along the flow, which, of course, gives
back the same periodic orbfat first order inT—Ty). We

(69

W= —[XE7(0) = X(O(To) + aXO(To)]- VHIX((To)]

(71

—XE1(0)- VH[XO(T()]

because of the Hamilton's
=3 VH[XO(Ty)].

These two properties also hold in the caseX3#(0) and
X3)(0), but areslightly more complicated to establish be-
cause the right-hand sides of the equations inveiV¥T,)
and derivatives oK (T).

Thus, integrating the same differential sets that were used
for G(q,q0,E), one is able to compute the first four deriva-
tives of the actionW("), with respect to the period.

Starting from theC{”)(T) expression

equationsX(©(T,)

CO(T)=InT—LIn|agT|— iInjdefm(T)—1]] (72

thus expect that this term has a vanishing contribution to

W, which is easily verified when inserting the general
solution in theW(?) expression(taken at timet=T):

and using the fact that:T=1/0{E=— 1/(9$W| , one obtains
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cg”(To):Ti %@—Eiln\de(m(ﬂ—lﬂ,

o W 2dT

C(Z)(TO):_2+1VV|(4)_1(VVI(3))2_1d2|n|de(m(T)_”|’ (73
T2 2w@ 2\w@) 2472

which means that one is left with the calculation of derivatives fafdfim(T) —1]| with respect to the period@. As shown in
the Appendix, dém(T) —1] is given by the determinant of thef X 2f matrix N(T) defined as follows:

N(M=M(T)~[1=P(T)=P.(T)], (74

where we have introduce®|(T) [respectively,P, (T)] the projector on the direction parallel to the fldnespectively,
perpendicular to the energy shelinore precisely, thé(T) andP,(T) expressions are

Pi=e-¢ and P, =e-e/=-3P3, (79

whereg, is the unit vector tangent to the flow at initi@nd thus final time ande, =¢. Now, using again formul&36),
derivatives of d¢tm(T)—1] with respect to the period read

d dN(To)
ﬁ{de(m(T)—]l]}=Tr(N(To)’1 dTO),
d? d?N(To) (To) dN(To)
ﬁ{ole(m(T)—u}ﬂr(N*l(To) T N(To) g N(Ty) =g (76)
with
dN(Tg)  dM(To) = dP(To) dPy(To)
ot~ ar T dr YT dr >
d?N(To)  d®M(To)  d?P(To) _ d*P(To)
= - . 7
dT? dT? i dT? > dT? > 7

As seen previouslySec. Il B), dM(T)/dT andd®M(T,)/dT? are expressed in terms of the coefficielté)(t) of the Taylor
expansion of the monodromy mat(t, T) [associated with the periodic orbit(t,T) of period T] around the periodic orbit
XO)(t) of periodT,, see Eq(39).

Inserting the Taylor expansion éf(T) aroundT, in the P|(T) expression, namely,

1 . .
PT)= ———=X(T)-X(T) ", (78)
e

one obtains the derivatives & (T) with respect toT:

s
dP|(To) 1 o X0
(‘;T =”X(0)”2(X(1)~X(°) +X©@. XM )_ZWPH(TO),
d?P|(To) 1 (XOT.xmy2  xOT.x@  x®T.x1)
— = (X@. X0 4 X0 x4+ 2x D). XV )+ | g—— —2— —2— Pi(To)
a7 [XO? X Ix@pR T xep /e
(0. x(1)
—4%()’(“’-X(O)T+X(°)-X(1)T),
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where allX® are evaluated at time=0. All properties of the classical trajectories of the original
Gathering the preceding expressions into &) allows Hamiltonian can be deduced from the scaled dynamics using
us to compute Indem(T)—1] derivatives, which, inserted the scaling transformatio(81). From the quantum point of
together with derivatives of the action, in E3) gives the view, this scaling introduces an effectisievalue, which is
numerical values foC{(T,) and C(T,), which finally  easily seen on the scaled Satiirmer equationt = ey, for
leads to the additiondl correctionC] "&(To). a fixed scaled energy:
213 T2
VI. APPLICATION TO THE 2D HYDROGEN ATOM Y 1 y

- Tt | Y= €.
IN A MAGNETIC FIELD 2 Fx2+’)~/2 8 b=

The hydrogen atom is one example of a quantum system
whose classical counterpart depicts a chaotic behavior anbhus, the effectivé: is given byy™~ and so at a fixed value
has been widely studietsee, e.g., Refl4] for a complete of the scaled energy, the semiclassical limit is obtained
review). It has now become a very useful tool for testing newwhen y tends to 0.
ideas and tools in the quantum chaos area, both on the semi- The singularity in the classical equations of motion due to
classical[20,23 or universality[24] points of view, espe- the divergence of the Coulomb potentialrat 0 is regular-

cially because computing very highly excited states has bezed using the semiparabolic coordinates=(\r +Xx,v

come a standard task on a regular workstation, allowing the_ \/ﬁ) giving rise to the following effective classical
semiclassical regime to be reached easily. Even if one WO“'ﬁamiItoni’an[4 26]:

have preferred to work with the real hydrogen at@ra., the
three-dimensional onein this paper we will focus on the H=1p241n2— c(u2+12)+ Lu2p2(u2+p2 85
two dimensional hydrogen atom in a magnetic field, because 2Pt 2Py el ) U ). 69
taking into account invariance by rotation around the magine trajectories corresponding to the original problem are ob-

netic field, gives rise to centrifugal terms in the Hamiltonianained when fixing total energy(=2. The associated quan-
(typically L?4%/2r2) which would also contribute td cor-  ;m Hamiltonian reads

rections and would need a study on its own. One must also

(89

1/3

notice that, even if the classical dynamics are identical for B2l 2 5
both cases, the fact that the magnetic field axis is no longer a H(h)=— (2+2>
rotation axis in the 2D case gives rise to slight modifications 2l
in the Maslov indice$18,23,25. 1
—e(u+v?)+ guzvz(UZJrvz), (86)

A. Quantum and Classical Properties

In atomic units the Hamiltonian of the 2D hydrogen in a which separates into kinetic and potential energy, so that the
magnetic field reads semiclassical formula derived in the preceding sections ap-
plied to the associated quantum Green'’s func@{z,# ), the

He E . 1 N E > 2 (80) hydrogen in a magnetic field being recovered #e+2 (ac-
2 P ’7x2+y2 g7 ye tually z/2 corresponds to the nucleus charge
where y=B/B,, with Bo=2.35x 10°T. The classical coun- G(zh)= 1 _s |7 )(7.h]
terpart of this Hamiltonian has a scaling property, that is, if (z.8)= z—H(h) CF N ®7
we define new variables by
~ o3 where|r,#%) is an(normalized eigenvector off((4) for the
=y eigenenergyA (), 7 representing the set of quantum la-
p=vy ", bels, i.e., level number and symmetry properte=e below,
~ describing| 7,71 ). The matrix elementq|G(z,%)|qo), where
t=1t, (81)  g=(u,v) then reads

1
<Q|G(th)|%>:2 lﬁr,h(Q)lﬂr,h(%)m, (88)

- y

23y .
H=y TH= P + g’ (82 vi/herez/fr,ﬁ(q)=(q|r,h> has been supposed to be real, with
‘H(%) being invariant undep— —p. Takingz=N\ on the real
which does not depend opanymore. The classical dynam- @IS, the imaginary part afq|G(z.%)|do), becomes
ics of this Hamiltonian is entirely fixed by the scaled energy
€ given by =~ Im(Al GOV A do)= 2 1,(a)r7,4(do) TN~ N ()]

e=y 2. (83 (89
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to which any classical path going fromto qq at energyi,
gives the following contributiofisee Eq(25)]:

—*|m<Q|G N )| do)i= 2 h)3’2A|{COS( 3+¢|)

i, sin(%Sﬁ-qm) 90)

provided it is far enough from any bifurcation and tijgind

PHYSICAL REVIEW E 65 056207

(2m)3? D U (D, (do)
4 T (¥ i)
_ (277)3/2 iﬁr,g(Q)lﬁr,g(QO)
B TN

xgs’zm—mn—@ A cog S+ ¢y).

9o()= P[0 L, 0],

(95

go are not conjugate points for this trajectory. Amplitudes

and phases being defined by

1
A=
"W detdy(To) |2
S=39(q,q0,M)
T~ 1
b=-7 ntz)

=C1(0,00, To)+C1 50,00, To).- (91)

Neglecting# corrections in Eq(90), the Fourier trans-

form with respect to the variablé=1/4 of the following
function:

( )3/2

2g3/2

1
go({)= *;|m<Q|G()\v§)|QO>

(2 )3/2

2 P d D, (G0 T F2IN=NL(0)]
(92)

will depict peaks at the classical actio§é2, with complex

amplitude A4, exp ¢/2, which has been extensively used to

Moving to the case of the trace of the Green'’s function,
the preceding relation@89) and (90) become

1
——IMTrG(\A) =2 SN =N (#)] 96)
and, see Eq(65):
*ilmTrG()\ #) :7i,4" co Es’turd)tr
™ A wh”! h I
tr o 1 tr tr\
—hC) sin gs +¢'t, (97
whereS/" is the action of the periodic orbit and
A‘f:#
" [detm(To) ~ 1]
m
d’}r: - E,Uq )
=Cy(To)+C1 H(To), (98)

compare the exact quantum Green’s function with its semi-

classical estimation at the leading order7in In the same
way, the Fourier transform of the following function:

(2 )3/2

9:1(H)=— 2 Ve W, (o) Y2

xa[x—um—;El Ajcog{S+¢y) (93

will also depict peaks at the classical actidg®s, whose
complex amplitude, given by

1
SpAIC expid, (94)

allows us to extract the numerical value of thecorrection
C.

The energy\ being fixed, thes[\ —\ ,({)] function se-
lects the valueg .(\) of ¢ for which \ is an eigenvalue,
transforming Eqgs(92) and(93) into

so that the classical quantiti€f, A", and the# correction
C|" can be obtained by taking the Fourier transform of the
following expressions with respect to the varialjle

o0=5 > 2oL L0],

1
7 (r.dp?2lT.0)
ko

1
- 2 -
257 (r,0lp%2 7.0)
—42 Al cog {SI+ o).

1=~ $Boli—L)]

(99

B. Computing quantum quantities

Focusing on the.=2 value, the 2D hydrogen in a mag-
netic field case, one has to find effectitevalues for which
2 is an eigenvalue of the Sclinger equation
FH(h)(u,v)=2¢(u,v), which is conveniently written as
follows:
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Green’s functior{28], and thus to take into account symme-
P(u,v) try properties of the classical Green’s function, which is be-

yond the scope of this paper. For this reason, we also include

the OE and EO series in the remainder of this paper.
Y(u,v) (100 Finally, eigenvalues and eigenvectors are obtained by
solving the matrix representation of the generalized eigen-
value problem A—oB)#=0 in sturmian basegone for
each symmetry clag$4], using the Lanczos algorithm. Typi-
cally, we have computed effective values ranging from 0

1
2+ e(u+v?)— guzvz(u2+l}2)

1 & . a2>
2\ gu?  gv?
such thato=#2 appears to be a solution of a generalized

eigenvalue problemA— oB) =0, with

1 to 124, which for scaled energy=—0.1 corresponds to
A=2+e(UP+0v?)— guzvz(uer v?), roughly 61 000 eigenvalues in total. One must notice that the
) ) generalized eigenvectofs,#), for a fixed# value, are ac-
1) 4 tually orthogonal for the scalar product defined by operator
B=—s|—+—|. (101 _ 2.
2\ gu? g2 B=p2:
~ 2
The preceding operatoss, B, and thusH(%) are invariant (7.h] &|T/ hy=6,, (102
AT P

under all transformations belonging to the symmetry group

C4, , leading to four nondegenerate series of energy levels, _

labeled EEE, EEO, OOE, and OOO according to R¥]  so that the/,A) and|7,A) relations read
and a twofold degenerate series EO and OE, where E means

even and O means odd, the first two letters referring to the 1 J—

u——u andv— —v symmetries, the third letter tacsv. |7h)= —=—=——==I7.h),

Actually, because of the definition of the semiparabolic co- (.| 7.1h)

ordinates (1,v), only eigenvectors invariant under the parity

symmetry(—u,—v)=¢(u,v) correspond to eigenvectors 771 = |7.h), (103
of the 2D hydrogen in magnetic field, allowing us, in prin- |74) \/<7-,ﬁ|B|7-,ﬁ>| )

ciple, to drop the OE and EO serig$,26]. However, from
the semiclassical point of view, one would have to extend algiving rise togg({) (95 and ggvl(g) (99 expressions in
preceding sections to symmetry-projected propagator antérms of the computed eigenvectors:

( 3/2

) ~ ~
90(0)= 5 2 Pl DV (a0 2L~ £(2)],

CL e 512
9=~ =5 2 Ur Do) 2L~ £:2)] = L2 Acos S+ ),

6i0=5 2 im0 ol 2),

T —_—
91(0)= =5 2 {1l 7.0) Lo~ (2)]- (2 Al'cod S+ ¢). (104
T
As explained previously, the Fourier transform of the two C. % corrections for G(q,0o.2)

functionsg, andg{ will depict peaks at classical actions and Orbits having initial and final points at the nucle(i.,

# corrections are obtained from the amplitude of these peak%: go="0) are of special interest because they are involved
However, in the case of signal given by(t) iy semiclassical estimation of the photoionization cross sec-
=3a, explwyt), it is now well known that the harmonic tjon [25,29, which can be directly compared to experimental
inversion method is very well suited and is much more POW~esults [30’3]] Even if the full & expansion of the cross
erful than the conventional Fourier transform to extract unsection does not reduce @&(0,0,2) contributions, all closed
known frequencieso, and amplitudesa,, [20]. In our case  orbits are well known and classified, so that this case remains
the signals are the two functiogs(¢) andgi(¢), which are  a nice example of corrections forG(q,do,2).

of the form=, A,C, sin((S+ ¢,) besides contributions from all The Fourier transforms of both functiorgg(¢) (upper
other types of orbitgghost, continuous family, efc. plot, solid line andg4(¢) (lower plot, solid ling, for scaled
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0.8 discrepancy for the amplitude of the last two peaks. This is
0.4 not due to errors or inaccurate calculations in the semiclas-
w00 — \ sical estimation, but rather a manifestation of the limitations
04 | ya /' /] of the Fourier transform. To emphasize this point, we have
085 t r 20 used the harmonic inversion to extract, for each of these
| 4 \ orbits, the#: correction coefficient€|" , from the quantum
function g4({). The results are compared to the classical
ﬁ <) <\ <D ‘/\] calculationC, in Table Il. The agreement is excellent, the
012 L | relative error on the amplitude_ being Iowgr _than’iDAs _
006 . \ \ usual, the phase extracted using harmonic inversion, being
S A the most sensitive quantity, the agreement on the sign of the
w00 “@f \[ W) G 0 C,, rather nice for the first four orbits, decreases rapidly.
:Z?Z Finally, one must mention that this good agreement between
1o 15 20 quantum and semiclassical calculations has also been found
(action)/2r when considering quantum Green’s functio®d,q,,2)

FIG. 3. Modulus of the windowed Fourier transforifig (solid with other initial or final points.

line, upper plotandF; (solid line, lower plo}, see Eq(105), of the )

quantum functiongy, (leading order in%) and g, (first order# D. #i corrections for Tr G(q,q,2)

correction, see Eq(104), associated with the quantum Green func- Still working at scaled energy=—0.1, Fig. 4 depicts the
tion G(q,do,2) in the case of the 2D hydrogen atom in a magnetu:modulus of the windowed Fourier transformsgg‘(g) and

field and forg=q,=0 (see Sec. VI for all details As expected tr tr - tr )
from semiclassical formulé25), peaks are appearing at actigre., 91(£), Fo (upper plot, solid ling andFy (lower plot, solid

{pdg/2m) corresponding to classical orbits having initial and final 'iN€), defined, as previously, as follows:

positions at the nucleus. For the first five ones, the trajectory in the

(u,v) plane are also plotted, the nucleus being depicted by the F”(s)= 6 ngaxdgg(g _g)gtr({)e—iZﬂsg
black circle. The agreement with the semiclassical estimations of 0 (gmaX)B 0 max 0 '
these functiongdotted lineg is excellent, even if discrepancies in
the amplitude of last two peaks in the lower plot can be observed.

These are actL_JaIIy a manifestatio_n of limitation of th_e Fourie_r trans— Ftlr( 5)= 3J§maxd§ o g)g‘{(g)e’iz”sg-
form and not inaccurate calculations of thecorrections, as it is ({max™70
emphasized by the quantitative comparigasing harmonic inver- (106
sion) displayed by Table II.
5.0
energy e=—0.1, are displayed in Fig. 3. More precisely, 25
do(¢), and g,(¢) being known only on a finite interval w %0 <>
[0,{max], We have plotted the modulus of their windowed -25 ¢ /‘ / v ’
Fourier transforms, defined as follows: 50,5 / 28 70 32 /
Fo(s)= — fmaxdzaz Dgo({)e” 2
S)=— — e ,
oA o 800 L = Y
40 —\ \
6 Cmax iomst 20t \ \\
Fi(s)=—— A {(Emax—£)9a(L)e o = o0 o
({max”J0 w
(105) -2.0
-4.0,
26 238 .30 3.2
As expected, they depict peaks at the classical actions of (action)/2n

_closed OTb'tS' W_hose trajectories !u,(;) plane havg been FIG. 4. Modulus of the windowed Fourier transfori§ (solid
inserted in the figure, the black circle corresponding to thqine. upper plotandEY (solid line, lower plol, see EQ(106), of the

tnu<t:rl1eus pO.S'It'on: InI thi. flthJ_re, the; tc:]otted Ilne;s Cc;rrESpor].dggantum functionsg§ (leading order ink) and g¥ (first order#
0 the semiclassical esimations of the same functions usin rrection, see Eq(104), associated with the trace of the quantum

the_ classical properties gjve_n by Table I The (,:IOSEd, orbit%reen’s function TG(q,q,2) in the case of the 2D hydrogen atom
being either half of a periodic orbit or a periodic orbit, We j, 5 magnetic fieldsee Sec. VI for all detailsAs expected from
label a given cl_osc_e orbit with the four-disk code of the cor-ggmiciassical formula65), peaks are appearing at actidhe.,
responding periodic orb(t32,33. $p dg/2m) corresponding to classical periodic orbits, whose trajec-
For the leading order i (upper plo}, as expected, the tories in the (1,v) plane are plottedthe nucleus being depicted by
agreement between the quantum results and the semiclassiga black circlg. The agreement with the semiclassical estimation
estimation is excellent. For the first ord&rcorrection, the (dotted lineg is excellent, as it is emphasized by the quantitative
agreement is very good, but one can notice that there is eomparisonusing harmonic inversiordisplayed by Table 1V.
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TABLE |. Classical properties of closed orbits involved in the  TABLE Ill. Classical properties of periodic orbits involved in
semiclassical expansion of the quantum Green’s funcifm, qo,2) the semiclassical expansion of the trace of the quantum Green’s
of the 2D hydrogen atom in a magnetic field, for the cgseqq function TrG(q,q,2) of the 2D hydrogen atom in a magnetic field.
=0. Because each closed orbit corresponds either to a half-perioditheir trajectories in they,v) plane are shown in Fig. & is the
orbit or a periodic orbit, we have labeled them with the four-disk reduced actiotti.e., $p dg/2), T, is the period,A[" is the leading
code of the corresponding periodic orf#2,33. Their trajectories  semiclassical amplitudg, is the Maslov index¢|" is the first order

in the (u,v) plane are shown in Fig. 3 is the reduced actiofi.e.,  # correction, given by the surG,(T,)+C] 5(T)), see Eq(98).
Ipdg/2m), T, is the period,4, is the leading semiclassical ampli-
tude, 7, is the Maslov indeT><C|E is the first ordeti correction, given ~ Code s T AT i
by the sumC(0.0.T)+C; "(0.0.T), see Eqlon). 1234 27098513 62041556  0.8278814 4

Code S T A 7 @ 3.1299964  7.2002747  0.6164968 4
— 12434 3.2271681 7.5416406 0.5484791 5
13 10045705 24250933  0.2953426 1 75334  3.2722381  7.7484068 05558806 6
1243 1.564 998 2 3.6001374 0.1523650 2
121343 17910607  4.2862577  0.1095039 3 Code cy(T) cI&T) cr
12124343 1.9335221 47967758 0.0933687 4 —
1212134343 2.0319482 52143233 00861420 5 1234 —0.622577  0.026912  —0.595665

1243 0.166 821 0.051 665 0.218 486

Code C,(00T) CIE0,0T) ¢ 12434 —0.203536  0.058541 —0.144995
f— 123434 —1.41705 0.07241 —1.344 64
13 —0.2027699 0.0165394 —0.1862305
1243 —0.1194093 0.0197412 —0.099 668 1
121343 —0.1482822 0.0411755 —0.1071067 cially the additional term arising from the Jacobian describ-
12124343 —0.1729906 0.0717480 —0.1012427 ing the change from the Cartesian to lo@bng the periodic
1212134343 —0.1929043  0.1174645 —0.0754398 orbit) coordinateg see Eq_.(48)] and which contri_butes toa

large part of the correction for the present orbits.

The trajectories in thew,v) plane associated with the peaks VII. CONCLUSION

are also plotted in the figure. The classical properties of the
corresponding periodic orbits are displayed by Table Il
Again the agreement is excellent between the quantum "'Sions of the propagatdt(q,do,T), its traceK (T), the quan-

sults (solid lineg and the semiclassical estimatiddotted tum Green's functionG(q,do,E) and its traceG(E) for

Iln_es_). Thetguantltatlve comeﬁ\rlson between the classical C0¢haotic systems with smooth potential. The method is based
efficientsC," and the valueg|" extracted from the quantum

e ) h on the classical Green’s functions associated to the relevant
functiong“(¢) is given in Table IV. The agreement is excel- trajectories, that is either going fromto g, in the propaga-
lent for the amplitude of the coefficients and is rather good; case or periodic orbits fok(T), together with adapted
for their phases, which emphasized the validity of the semiyq, ngary conditions. We have shown how all quantities can
classical formula developed in the preceding sections, espgg optained by integrating, using the standard Runge-Kutta
method, sets of differential equations. We have also shown

In summary, we have explained in this paper how to ef-
‘fectively computes corrections in the semiclassical expan-

TABLE II. Numerical comparison between the theoretidal
correctionsC; for the quantum Green's functioB(q,do,2) of the TABLE IV. Numerical comparison between the theoretidal
2D hydrogen atom in a magnetic field, for the caseqo=0and  correctionsC!" for the trace of the quantum Green’s function
the numerical coefficient§|"' extracted from exact quantum func- Ty G(q,q,2) of the 2D hydrogen atom in a magnetic field and the
tion g1(¢) [Eq. (104)] using harmonic inversiofitaking into ac-  numerical coefficient€ | extracted from exact quantum function
count multiplicity). The agreement is excellent for the amplitudes a¥(¢) [Eq. (104] using harmonic inversiofitaking into account
and rather nice on the phases, thus emphasizing the validity of th@ultiplicity). The agreement is excellent for the amplitudes and
present theory. That the agreement becomes less good for the Iagkher nice on the phases, thus emphasizing the validity of the
orbit only shows the limitations of the harmonic inversion method, present theory, especially the additional term due to the transforma-
which usually appear on the phase. tion from the Cartesian coordinates to the local frame along the
periodic orbit[see Eq(48)].

Code G Ict"]  Rel. error  argC"
— tr HI HI
13 ~0.1862305 0.1864 ~8x 104 1.002< Code Ci ICI"l  Rel Brror  argC
1243 —0.0996681 00995 ~2x10°3 101Xw 1234 —0.595665 05058 ~2x10°*  1.005¢w
121343 ~01071067 01072 ~9x10¢ 1.02x= 1243 0218486 02178 ~3x10%  0.04xn
12124343  —0.1012427 0.1016 ~4x10°° 1.04xw 12434  —0.144995 0147 ~1x102 093w
1212134343 —0.0754398 0.0761 ~9%x10 % 1.14x7 123434 —1.34464 1.347 ~2X10°3 0.98% 7
056207-17

49




BENOIT GREMAUD PHYSICAL REVIEW E 65 056207

that in the derivation of the semiclassical expansiorki¢r) 1 a 0 0 0

[and thusG(E)], starting from the Feynman path integral, 0 1 0 o 0

one must take into account additional terms, which affect

only A correction coefficients. This is emphasized by the 0 a; N O 0

excellent agreement observed when comparing, in the case M(T)= 0 0 o |’ (A2)
: L e . ay 2

of the 2D hydrogen atom in a magnetic field, our theoretical ) ] .

results with the numerical coefficients extracted from exact ; ; ;

quantum data, using the harmonic inversion. Obviously, 0 azp_p 0 0 - Ay

there are still many points to be developed. Besides the few

cases, such as self-retracing orbits or continuous families Gfnere we have supposed that all eigenvalues are simple. For
orbits, needing specific extensions, it would be very interestyegenerated eigenvaluesl(T) would be block diagonal.

ing to understand how to include continuous and discretg-gr 4 generic periodic orbitey and a; are nonvanishing
?ymmetr'e)st A]'sov going into the extended phase spacgmphasizing thus tha, is not an eigenvector oM (T).
q,t,p,—E) [22], it would be possible to get a better under- . ~ ) .

standing of similarities observed between the differential Setlsntroducmg the vectog, defined as follows:

leading, on one side to the corrections for the propagator 22
and its trace and, on the other side to the additional terms = _ ; _ 4

arising in thef corrections for the quantum Green'’s function et ,Zl pig with = 1=\ A3)
and its trace.

one immediately gets that
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APPENDIX: FEW PROPERTIES OF M(T)

IXIl
In this Appendix, we consider an isolated unstable peri- XB(0)=—- e (A5)
odic orbit of periodT. We shall use the notatiores and e, I
for the units vectors, which are, respectively, parallel to the h h
flow and perpendicular to the energy shell at the initial point SO that we have
From Hamilton’s equations, we have th(T)-g =g, i.e., )
g is an eigenvector of the matrM(T) for the eigenvalue 1. a)=|X[|oeT. (A6)
The symplectic equation fulfiled byM(T), namely,
M(T)"-3-M(T)=%, implies that, ife and e are two In Sec. V, one needs to compute derivatives with respect
eigenvectors for the eigenvaluas and \j, we have the to the periodT of defm(T)—1], whose expression in terms
following properties: of the nontrivial eigenvalues of the monodromy matrix reads
1 2f-2
M) (Ze)=-(3e), detm(M-11= [ (\;j—-1). (A7)
i j=1
(MNj—1)e'2e=0, (A1)

Introducing? andP, the projectors on the directiosand
showing thus that A is an eigenvalue of1(T) " and, from €., more precisely,
that, of M(T). In addition,M(T) being a real matrixy; and

— T T

1/\; are also eigenvalues dfl(T), so that the nontrivial Pi=e-g and P =e e (A8)
eigenvalueqi.e., #1) either fall in the {,1/\) pair or in )
quadruplet (\’1/7\7;1/{)_ ones defines the matriX(T) as follows:

In the case ok =g, the two preceding equatior{\1)
imply thate, is an eigenvector of1(T) " [but not necessar- N(TM)=M(T)=(1=P=P,). (A9)
ily of M(T)] for the eigenvalue 1 and that for evehly
#1,¢ is an orthogonal to e . In the basis In the basis € ,e ,e, ... .6 »), using orthogonality
(&,e ,e,....&5-2), M(T) entries then read betweene, ande;, entries ofN(T) read
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1 a) 1 Y2 Yat—2 I but this is not necessary in our case. This shows that the
o 1 0 o ... 0 determinant oN(T) is exactlyl1?";%(\;—1). The main ad-
vantage of the matridN(T) is that its expressiofA9) does
N(T) = 0 o M1 0 0 not involve the eigenvectors or the eigenvalue$/dT), so
0 ap 0 No—1 - 0 ' that its determinant can be directly computed, without the
diagonalization stage required when getting[ dgf) —1]
through the eigenvalueg;. Furthermore, derivatives of
L0 azi-2 0 0 o Ngrp— 1] In detN(T) with respect to the period are also straightfor-

(A10)  Ward to obtain, knowing derivatives ofi(T) and of X(T),
whereas derivatives of; would require the knowledge of
wherevy; :q‘T -g, which actually could be related to thg, those of the eigenvectoss.
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2.3.3 Prendre en compte les symétries

En outre, pour pouvoir établir des comparaisons avec des résultats expérimentaux, j’ai
été amené a prendre en compte 'effet des symétries, quelles soient discretes (parité) ou
continues (invariance par rotation). Dans le premier cas, la théorie des groupes fournit
directement les modifications a apporter pour calculer les corrections en A aux formules de
traces restreintes a des états appartenant a une des représentations du groupe de symétrie.
Le cas de 'invariance par rotation est plus délicat puisque, pour une valeur donnée du mo-
ment angulaire, il faut prendre en compte 'effet des termes centrifuges dans le hamiltonien,
typiquement h?L?/2/r?  qui dans la limite i — 0 ne modifient pas la dynamique classique,
mais contribuent aux corrections. La encore, j’ai montré comment prendre proprement en
compte ces termes, en particulier leur singularité en » = 0, pour calculer leur contribution
aux corrections au premier ordre en A aux formules de trace. Les comparaisons numériques,
dans le cas de I'hydrogene en champ magnétique, ont montré ’excellent accord entre ces
prédictions et les calculs quantiques exacts.
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Real atomic systems, like the hydrogen atom in a magnetic field or the helium atom, whose classical
dynamics are chaotic, generally present both discrete and continuous symmetries. In this paper, we explain how
these properties must be taken into account in order to obtain the proper (i.e., symmetry projected) 7 expansion
of semiclassical expressions like the Gutzwiller trace formula. In the case of the hydrogen atom in a magnetic
field, we shed light on the excellent agreement between present theory and exact quantum results.
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In the studies of the quantum properties of systems whose
classical counterparts depict chaotic behavior, semiclassical
formulas are essential links between the two worlds, empha-
sized by Gutzwiller’s work [1]. More specifically, starting
from Feynman’s path formulation of quantum mechanics, he
has been able to express the quantum density of states as a
sum over all (isolated) periodic orbits of the classical dynam-
ics. This formula, and extensions of it, have been widely
used to understand and obtain properties of the energy levels
of many classically chaotic systems, among which is the hy-
drogen atom in a magnetic field [2,3], the helium atom
[4-6], or billiards [7-10].

At the same time, because the trace formula (and its varia-
tions) as derived by Gutzwiller only contained the leading
term of the asymptotic expansion of the quantum level den-
sity, the systematic expansion of the semiclassical propagator
in powers of 7 has been the purpose of several studies
[9-12], but which focused on billiards, for which both clas-
sical and quantum properties are easier to calculate.

In a recent paper [ 13], general equations for efficient com-
putation of 7 corrections in semiclassical formulas for a cha-
otic system with smooth dynamics were presented, together
with explicit calculations for the hydrogen atom in a mag-
netic field. However, only the two-dimensional case was
considered, because for the three-dimensional (3D) case, dis-
crete symmetries and centrifugal terms had to be taken into
account. Actually, this situation occurs in almost all real
atomic systems depicting a chaotic behavior (molecules, two
electron atoms...), for which experimental data involve lev-
els having well defined parity, total angular momentum, and,
if relevant, exchange between particles. In particular, semi-
classical estimations of experimental signals like photoion-
ization cross sections are calculated with closed orbits with
vanishing total angular momentum, whereas they usually in-
volve P (L=1) quantum states, whose positions in energy are
shifted with respect to S (L=0) states. Furthermore, in recent
years, the development of the harmonic inversion method
makes it possible to extract the relevant quantities (position
of peaks, complex amplitudes) from both theoretical and ex-
perimental data with a much higher accuracy than with the
conventional Fourier transform [14]. In particular, it becomes
possible to measure the deviation of the exact quantum re-
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sults from the semiclassical leading order predictions. Thus a
detailed semiclassical analysis of experimental results, be-
yond the leading order in i, requires the understanding and
the calculation of corrections due to both the discrete sym-
metries and centrifugal terms. In addition, we would like to
stress that even if the present analysis is made with the den-
sity of states, it can also be made with the quantum Green
function, which leads to expressions and numerical compu-
tations of the first order 7 corrections for physical quantities
like the photoionization cross section [15,16], which could
either be compared to available experimental data [17,18], or
become a starting point for refined experimental tests of the
quantum-classical correspondence in the chaotic regime.

i corrections and discrete symmetries have already been
discussed, but only for billiards [9,10,12], whereas in the
case of systems with smooth dynamics a detailed study is
still lacking. Also, centrifugal terms and/or rotational sym-
metries have been considered by many authors, but either in
the case of integrable systems [19,20], or for values of the
angular momentum comparable to the action of classical or-
bits [1,21,22]. From this point of view, the present study,
which focuses on fixed values of the quantum angular mo-
mentum and the effect of the centrifugal terms on % correc-
tions for systems with smooth chaotic dynamics, goes be-
yond the preceding considerations. More precisely, in this
paper, we explain how to take into account both discrete
symmetries and centrifugal terms in order to obtain a full
semiclassical description of the first order A corrections for
the 3D hydrogen atom in a magnetic field.

At first, in the case of a chaotic system, whose Hamil-
tonian H=p?/2+V(q) is invariant under a group S of dis-
crete transformations o, the leading order of semiclassical
approximation for the trace of the Green function G(E)
=1/(E-H), restricted to the mth irreducible representation is
given by [23]

T

]2 Xnl D8l E) (1)

n

dm
gu(E)=""2
ih ™
with
1 i T
(0) - - el : il
E)= N , 2
g(l,")( ) |det(A7—1I)|”zeXp{hn l ’”M12:| (2)

where the / sum is taken over all primitive (isolated) orbits
which become periodic through the symmetry operation o
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[i.e., final position (respectively, velocity) is mapped back to
initial position (respectively, velocity) by o;]. x,,(o7) is the
character of ¢/ in the mth irreducible representation of di-
mension d,,. S, is the action of the orbit /, w, is the Maslov
index, T; is the “period,” A represents the Poincaré surface-
of-section map linearized around the orbit, and K] is the sub-
group of S leaving each point of the orbit / invariant. Adding
first order 7 corrections, the preceding equation (1) becomes

dyr T,
n(E)=—2 2

: |Kl|2 Xl oDg(Dy(E)(1+ihC,). (3)

n

C}f, can be derived by a detailed analysis of the stationary
phase approximations starting from the Feynman path inte-
gral, following the same steps as in Refs. [10,13] and reads
as follows:

- 1 nT;

= Clt 7'[ dtoCy,(10), )
nT;J,
where C{;E arises from the time to energy domain transfor-
mation. Cy,(to) (see Ref. [13] for the expressions) involves
the classical Green functions G, ,(1,1'), i.e., the solutions of
the equations controlling the linear stability around the clas-
sical trajectory qi'n(t):
&PV

-l -——[q O] )Gt =1 8t~1). (5

-4 gl 01)g ) =1 8=, )
The fact that the orbits are periodic after the symmetry trans-
formation o] determines the boundary conditions that the
classical Green functions G, ,(¢,¢') must fulfill, namely,

07" GnTit') = Gy, (0,1')
P10, =0

Q,,07" 1Ty t") = Q,,G1,(0,1')

Vv t' €[0,nT}],

(6)

where P,O is the projector along the “periodic” orbit at the
position depicted by time 7, and Qtl):l—P,(]. Of course, for
o,;=1, one recovers the boundary conditions given in Ref.
[13]. Finally, all technical steps of Ref. [13] leading to effi-
cient computation of Q,v,l(t,t’) and # corrections, that is, so-
lutions of sets of first order differential equations, can easily
be adapted to take into account these modified boundary con-
ditions.

As a numerical example, we have considered the 2D hy-
drogen atom in a magnetic field, at scaled energy e=—0.1[2].
More precisely, we have computed the trace of the quantum
Green function, using roughly 8000 states belonging to the
EEE representation [24] of the group D,, corresponding to
effective 1/# values ranging from 0 to 124 (see Ref. [13] for
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FIG. 1. (Color online ) First order # correction to the semiclas-
sical approximation of the trace of the quantum Green function for
the hydrogen atom in a magnetic field for different values of the
magnetic number M, M=1/2 corresponding to the 2D case [13].
Crosses depict the values extracted from the exact quantum func-
tion using harmonic inversion, whereas the solid line corresponds to
the classical results given by Eq. (10). For the three different peri-
odic orbits, whose trajectories in the (u,v) plane are plotted (the
nucleus being depicted by the black dot), the agreement is excellent,
thus emphasizing the validity of Egs. (9) and (10).

present at all multiples of Sts33/2. For both these orbits,
Table I displays the comparison of the present theoretical
calculation and the numerical coefficient Cf',f extracted from
the exact quantum Green function, using harmonic inversion
[13,14]. As one can notice, the agreement is excellent for the
amplitudes and rather good for the phases, which is the usual
behavior of harmonic inversion. Furthermore, the same
agreement has also been found for the other representations,
thus emphasizing the present approach for the calculation of
the first order 7 corrections when taking into account discrete
symmetries.

Contrary to the preceding, calculating first order # correc-
tions due to centrifugal terms is more complicated and is best
explained in the case of the 3D hydrogen atom in a magnetic

TABLE 1. Numerical comparison between the theoretical # cor-
rections C}' for the trace of the quantum Green function, restricted to
the EEE representation, of the 2D hydrogen atom in a magnetic
field and the numerical coefficients C,HI extracted from exact quan-
tum function using harmonic inversion. The agreement is excellent
for the amplitudes and rather good on the phases, thus emphasizing
the validity of the present approach.

further details). In that case, the periodic orbit 1234 [25,26]  Code cr i) Rel. error arg !
(see inset of the top of Fig. 1 for the trajectory in semipara- — ~
bolic coordinates), being (globally) invariant under a rotation 1234 -0.094430  0.09445  ~2X10 0.9996 X
of angle /2, gives rise to contributions in the semiclassical 31234 -0.361689 03611  =2X107  0.996X
approximation of the trace at all multiples of Stz33/4. In the %1234 —0.400 555 0.3992 ~3x1073 1.005 X 77
same way, the periodic orbit 1243 (see middle inset of Fig. 1) 17223 0.049 399 0.0493 ~8X 104  —0.075X
being invariant under a rotation of angle 7, contributions are 2
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field. The regularized Hamiltonian in semiparabolic coordi-
nates, for fixed value M of the projection of the angular
momentum along the field axis, is given by [2]

PR Eapr Nl W)[L L]
) z?u2+(9v2+ 4 u2+v2

1
— e +v) + guzvz(u2 +v?)

S )
=11 2 1 u,v).
H, is then the Hamiltonian of the 2D hydrogen atom in a
magnetic field. If U(u,v) was regular, then the additional
first order % correction for the orbit / would simply be

1<|M|2 E)J‘ﬂd U .
2 T4/, 1 U(uy(1),0,(2)). (8)

One must mention that in this case, the Langer transforma-
tion [27] of the coordinates (u,v) — (exp(—x),exp(-y)) gives
rise to a Hamiltonian which does not separate into kinetic
and potential energies and for which no expressions for 7
corrections are available.

On the other hand, the fact that U(u,v) is singular im-
poses boundary conditions on both classical and quantum
dynamics. The classical trajectories have to make (smooth)
bounces near u=0 and v=0 and for vanishing values of #,
we expect the trajectories of H to be those of H,, but mapped
onto the reduced phase space (u>0,v>0), i.e., making hard
bounces on the (u#,v) axis. From the quantum point of view,
depending on the parity of M, only wave functions belonging
to given representations of D, are allowed. Thus first order 7
corrections due to the singular part of the potential U, are
given by the preceding considerations on the symmetries,
whereas remaining corrections are given by Eq. (8), where U
has to be replaced by a smooth counterpart, namely,

~ 1 1 1 1 1
U= lim ~ + + + .
Eilzl+2<(u+i£)2 (u—-ie)?* (v+ie)? (v—ie)2>

©)

Actually, one can show that the preceding equation gives the
right answers for 7 expansion of the propagator of the free
particle (up to %%) and the harmonic oscillator (up to %), for
which analytical expressions for classical trajectories, classi-
cal Green functions, and quantum propagators exist (higher
orders have not been checked yet). However, even if a de-
tailed analysis of the derivation of the trace formula in pres-
ence of centrifugal terms seems to show that the preceding

PHYSICAL REVIEW E 72, 046208 (2005)

approach works in general cases, rigorous proof of Eq. (9) is
lacking.

Nevertheless, in the case of the 3D hydrogen atom in a
magnetic field, we have compared the first order # correc-
tions, for different periodic orbits and for different values of
the magnetic number M, with the present prediction, namely,

T
C'(M) = C(2D) - é(4\M|2 -1) f dtU(u/(1),v/(1)).
0

(10)

The results are displayed in Fig. 1 for M=0,1,2 and for three
different orbits, namely 1234, 1243, and 12343, whose tra-
jectories in the (u,v) plane are plotted. The solid line is the
theoretical result given by Eq. (10), whereas the crosses are
the values extracted from the trace of the exact quantum
Green function, using harmonic inversion (for scaled energy
e=-0.1, roughly 8000 effective 1/# values ranging from 0 to
124). As one can notice the agreement is excellent, thus giv-
ing strong support for the validity of Egs. (9) and (10). Fur-

thermore, the simplicity of the replacement U may serve as a
guideline for a rigorous treatment of the % corrections arising
from the centrifugal terms. In particular, the calculation of
higher orders involves products of the derivatives of these
centrifugal terms and those of the potential V,,, giving rise to
nontrivial mixing between centrifugal and standard 7 correc-
tions.

In conclusion, we have presented a semiclassical analysis,
beyond the usual Gutzwiller approximation, including first
order 7 corrections, of the quantum properties of real chaotic
systems. More specifically, we have explained the additional
corrections arising when taking into account both discrete
symmetries and centrifugal terms. In the case of the (3D)
hydrogen in a magnetic field, the agreement between the
theory and the numerical data extracted from exact quantum
results is excellent, emphasizing the validity of the analysis,
especially of Egs. (9) and (10).

Finally, since we know how to compute the % corrections,
it would be very interesting to work the other way around,
that is, to perform the semiclassical quantization, thus getting
# corrections in the semiclassical estimations of the quantum
quantities, like the eigenenergies. Of course, this represents a
more considerable amount of work, since the C{, coefficients
must be computed for all relevant orbits and then included in
standard semiclassical quantization schemes, like the cycle
expansion [5,11,28].

The author thanks D. Delande for his kind support during
this work. Laboratoire Kastler Brossel is Laboratoire de
I’Université Pierre et Marie Curie et de 1’Ecole Normale
Supérieure, unité mixte de recherche 8552 du CNRS.
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Chapitre 3

Milieux désordonnés et effets
non-linéaires
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3.1 Cadre général

L’étude de la propagation d’ondes dans les milieux désordonnés est un sujet de re-
cherche actif depuis une centaine d’années environ. Si la motivation premiere a été d’ordre
astrophysique, les concepts et outils qui ont été développés ont eu depuis des applications
dans bien d’autres domaines de la physique (optique, acoustique, sismologie, conduction
électronique, imagerie médicale, etc). Pendant longtemps on a cru que la moyenne sur le
désordre détruisait tous les effets d’interférence. Sous cette hypotheése de phase aléatoire,
le transport est alors décrit a 1’échelle mésoscopique par une succession de diffusions es-
pacées par une propagation dans un milieu moyen (théorie du transfert radiatif) . Cette
marche au hasard induit, dans les cas les plus simples, un processus de diffusion a ’échelle
macroscopique.

En 1958, dans le contexte du transport électronique, Anderson a réfuté cette hypothese
en mettant théoriquement en évidence la possibilité d’une transition métal-isolant induite
par le désordre, c’est a dire la suppression complete du transport diffusif par effet d’in-
terférences destructives (localisation forte). Vingt ans plus tard, 'hypothese du ‘scaling’
montrait que le transport dans les systemes 1D et 2D se faisaient toujours en régime lo-
calisé, alors qu’a 3D il fallait franchir un certain seuil de désordre pour pouvoir atteindre
le régime de localisation forte (critere de loffe-Regel). Durant toutes ces années, il est
également apparu que certaines interférences survivent au désordre et alterent le transport
meéme loin du régime localisé. C’est le cas en particulier de I'interférence associée aux ondes
partielles se propageant en sens opposé le long de boucles de diffusion. Ces interférences
conduisent a des effets macroscopiques observables comme la réduction interférentielle de
la constante de diffusion (localisation faible), les fluctuations universelles de conductance
et le phénomene de rétro-diffusion cohérente.

Dans ce type d’expériences, les atomes froids jouent le role de diffuseurs pour de la
lumiere éclairant le nuage, qui forme un milieu complexe et désordonné. Les effets de dif-
fusion multiple peuvent se voir par exemple sur les propriétés de la lumiere diffusée vers
I’arriere : la rétro-diffusion cohérente. On 1'observe quand on éclaire un échantillon diffu-
seur épais par une lumiere cohérente (laser) : I'intensité moyenne réfléchie présente un pic
centré dans la direction arriere. Ce pic est di a l'interférence qui existe entre ondes par-
tielles se propageant en sens opposé le long des chemins de diffusion multiple. Néanmoins
ces prédictions sont faites sur la base d’approximations fortes (diffuseurs ponctuels et im-
mobiles), qui ne sont pas nécessairement valides dans le cas d’atomes froids. L’enjeu de
ce theme de recherche est donc de comprendre dans quelle mesure sont modifiées les pro-
priétés de la lumiere diffusée. Les atomes peuvent étre des diffuseurs tres résonants avec
des sections efficaces énormes par rapport a leur taille, ce qui augmente considérablement
les effets de diffusion et donc parait favorable a la localisation. Mais ’atome est un objet
quantique qui ne peut étre décrit comme un diffuseur classique, car la diffusion d’un seul
photon modifie notablement son état interne et externe. Ce probleme avait été clarifié, au
cours de leur these, conjointement par T .Jonckheere (LKB) et C. Miiller (LOD, Nice) qui,
en utilisant les symétries du systeme ont montré le role essentiel de la structure interne
des atomes. L’effet de rétrodiffusion cohérente calculé pour des atomes froids correspond
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d’ailleurs bien a l’observation expérimentale effectuée dans le groupe de C. Miniatura et
R. Kaiser a Sophia-Antipolis.

Les résultats numériques (facteur d’amplification, forme du cone...) avaient été obte-
nus en utilisant des calculs du types monte-carlo. Or, dans la géométrie particuliere du
milieu semi-infini, il est possible de calculer analytiquement les résultats, par la méthode
de Wiener-Hopf. Cette méthode se base sur des propriétés d’analyticité des équations du
transfert radiatif, et avait déja été employée dans le cas des diffuseurs dipolaires clas-
siques. A partir des résultats théoriques développés dans la these de C. Miiller, qui tient
compte explicitement de la structure interne des diffuseurs atomiques (sous-niveaux Zee-
man dégénérés), j’ai pu mettre en évidence le changement qualitatif des propriétés dans
le plan complexe des différentes fonctions en jeu : les poles deviennent des singularités
essentielles entrainant la présence de coupures. De la, j’ai montré comment il était possible
d’appliquer la méthode de Wiener-Hopf pour obtenir les différentes quantités physiques!.
Les résultats sont en parfait accord avec les simulations numériques, en particulier cela a
permis de confirmer et calibrer les estimations des erreurs inhérentes a la méthode monte-
carlo. Cela permet ainsi, lors des comparaisons avec les résultats expérimentaux, de préciser
si les déviations observées sont pertinentes ou non.

Tous ces travaux supposent ’hypothese d'un faisceau lumineux incident faible, (i.e. ne
saturant pas la transition atomique), ce qui permet d’utiliser des méthodes perturbatives
pour calculer les propriétés de la lumiere diffusée. Or, une autre différence fondamentale
entre un diffuseur classique et un atome est la possibilité d’observer facilement des effets
non-linéaires de la réponse atomique a un faisceau lumineux intense : l'intensité de la
lumiere diffusée n’est plus proportionelle a la lumiere incidente. De plus, la fréquence
de la lumiere diffusée n’est plus nécessairement conservée puisque la saturation (via les
‘fluctuations du vide’) induit de la diffusion inélastique. De maniere intuitive, on s’attend
a ce que la diffusion inélastique réduit les effets d’interférence en diffusion multiple. Et
en effet, une réduction de la hauteur du cone de rétrodiffusion a été mise en évidence
dans I'expérience. Cependant, ’absence d’une description théorique appropriée ne permet
pas de comprendre quantitativement la dépendance du signal interférentiel en fonction
des parametres du systeme (parametre de saturation s et désaccord laser §). En d’autres
termes, le mécanisme physique a l’origine de cette perte de cohérence de phase n’était pas
bien compris.

Au-dela, I'enjeu est de comprendre et de décrire les effets ondulatoires sur le transport
dans les milieux désordonnés et non-linéaires. A cause des fluctuations locales de speckle,
il n’est pas du tout évident que le transfert radiatif puisse étre décrit par une équation
intégrale fermée, comme c’est le cas du régime linéaire. De plus, ces fluctuations induisent
des fluctuations fortes de I'indice de réfraction du milieu qu’il faut savoir prendre en compte
pour une description correcte de la propagation moyenne entre deux événements de dif-
fusion. D’autres phénomenes complexes d’optique non linéaire (d’ordinaire étudiés dans
les milieux homogenes) devraient se manifester, comme le mélange a quatre ondes, la

'Evidemment, je ne vais pas détailler la méthode utilisée, méme si, personnellement, je trouve ca
extrémement élégant...
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génération d’harmoniques, I'auto-focalisation et la filamentation, la formation de struc-
tures spatiales, instabilités temporelles, etc. Leur impact sur le transport et les corrections
interférentielles au transport est tout simplement inconnu a ce jour. Il faut noter que ces
phénomenes non-linéaires concernent également les effets de localisation observés dans des
expériences faites a ’aide de condensats de Bose-Einstein dans des potentiels lumineux
aléatoires (speckle). Enfin, dans le cas de milieux amplificateurs, la compréhension de ces
effets non-linéaires sont importants pour obtenir une meilleure description qualitative et
quantitative des lasers aléatoires.
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3.2 Approche perturbative

La premiere approche possible consiste a étendre ’approche diagrammatique au dela du
cas linéaire en incluant les évenements o1 deux photons peuvent étre diffusés simultanément
par un atome. L’avantage de cette approche est de donner une interprétation simple de la
diminution de la sur-intensité observée dans la direction arriere; lorsque 1’on envoie deux
photons sur deux atomes, deux diagrammes contribuent au champ diffusé vers I'arriere,
dans un cas (fig. 3.1, a droite) les deux photons laser sont d’abord diffusés inélastiquement
par ’atome 1, puis un des deux photons inélastiques est diffusé par I'atome 2 ; dans l'autre
cas (fig. 3.1, a gauche) un des photons laser est d’abord diffusé élastiquement par 1’atome 2,
puis est diffusé inélastiquement avec l'autre photon sur 'atome 1 (voir figure 3.1). La
différence entre ces deux diagrammes est la donc fréquence du photon “intermédiaire”
(spectre inélastique dans le premier cas, fréquence du laser dans le deuxieme), ce qui fait
que les amplitudes associées, a; et as, sont, a priori, différentes. L’intensité totale étant
donnée par |a; + az|? = |a1|? + |ag]* + 2R(a1a3), le déséquilibre entre les deux amplitudes
empéche 1'égalité entre le terme direct |ai]? + |az|? et croisé 2R(ayal). On voit donc le role
primordial joué a la fois par le spectre inélastique et la réponse atomique?.

path I path IT

’

20-0®

. O)\.O/L " L

20

olfo offo <

Fic. 3.1 -

L’approche précédente peut-étre étendue au cas d’un milieu désordonné composé d’un
nombre quelconque d’atomes. La seule restriction importante est de se limiter au régime
perturbatif de la diffusion a deux photons pour lequel un chemin de diffusion multiple
possede au plus un événement de diffusion inélastique et un nombre quelconque de diffu-
sions linéaires. Ainsi, nous restreignons notre étude aux processus montrés dans la fig. 3.2.
Ceci est justifié lorsque sb*> < 1, ol b est I'épaisseur optique du milieu. Le traitement
théorique de cette situation exige de combiner la matrice de diffusion a deux photons avec
les techniques habituelles de la théorie du transfert radiatif linéaire. Un ingrédient im-
portant a ne pas oublier est évidemment l'interférence qui existe entre paires de chemins
parcourus en sens inverse et qui explique les phénomenes de rétro-diffusion cohérente et
de localisation faible.

Or l'ajout d'un seul événement de diffusion a deux photons n’est absolument pas ano-
din. La non linéarité transforme les paires de chemins renversés en triplets, voir fig. 3.2.

2T. Wellens, B. Grémaud, D. Delande and C. Miniatura, “Coherent backscattering of light by two
atoms in the saturated regime”, Phys. Rev. A 70, 023817 (2004)
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Fi1G. 3.2 — Diagrammes de diffusion représentant la rétro-diffusion de la lumiere par un
milieu désordonné dans le régime de faible non linéarité, avec au plus un événement de
diffusion a deux photons ([J) et un nombre quelconque des diffusions a un photon (e) par
chemin de diffusion. Dans ce régime, il y a en général trois amplitudes différentes dont
I'interférence contribue au signal interférentiel.

Cette interférence a trois amplitudes existe aussi bien pour la diffusion non linéaire (décrite
par une section efficace non linéaire) que pour la propagation non linéaire (décrite par I'in-
dice non linéaire du milieu effectif dans lequel se propage le photon entre les événements de
diffusion). Ainsi la hauteur du cone de rétro-diffusion peut en principe atteindre la valeur
maximale 3 tandis que la valeur 2 n’est jamais dépassée dans le cas linéaire. Bien que cet
effet se manifeste dans n’importe quel milieu désordonné présentant une non linéarité de
type x®, il n’avait jamais été correctement décrit dans la littérature sur le sujet, antérieure
a nos articles®. Ces résultats ont été confirmés en les confrontant & des calculs numériques
dans un modele de non-linéarité de type x® purement élastique. Dans ce cas, pour une
configuration fixe (mais aléatoire) des diffuseurs, on se ramene a la résolution d'un systemes
d’équations non-linéaires ou les inconnues sont les valeurs du champ électromagnétique a la
position de chaque diffuseur. J’ai mis au point des programmes basés sur des méthodes du
type Newton-Krylov pour résoudre de maniere efficace et rapide ces équations. On résout
typiquement un systeme de quelques milliers d’équations non-linéaires couplées en quelques
minutes sur une station de travail. De ces solutions, on déduit I'intensité émise dans toutes
les directions par ces atomes. En réitérant la procédure pour d’autres configurations, on
peut ainsi obtenir les valeurs moyennées sur le désordre. En particulier, nous avons pu
montrer la pertinence des différents diagrammes impliqués dans soit dans la diffusion (voir
figure 3.3), soit dans la propagation (voir figure 3.4)%.

3T. Wellens, B. Grémaud, D. Delande et C. Miniatura, “Coherent Backscattering of Light by Nonlinear
Scatterers”, Phys. Rev. E 71, R055603-(1-4) (2005)

4T. Wellens and B. Grémaud, “Observation of coherent backscattering ‘factor three’ in a numerical
experiment” J. Phys. B : At. Mol. Opt. Phys. 39 (2006) 4719-4731
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Fic. 3.3 — Diagrammes de diffusion représentant les différentes contribution a la rétro-
diffusion de la lumiere par un milieu désordonné. Dans un milieu linéaire usuel, pour chaque
diagramme “Ladder” (a), correspondant a l'intensité moyenne diffusée, il correspond un
diagramme “Crossed” (b) donnant la surintensité dans la direction arriere. Au contraire,
dans le régime de faible non linéarité, c’est-a-dire, avec au plus un événement de diffusion
a deux photons (J) et un nombre quelconque des diffusions a un photon (e) par chemin
de diffusion, pour chaque diagramme “Ladder” (c), il existe deux diagrammes “crossed”

(d) et (e).

Crossed

|
|
|
|
A
|

Fic. 3.4 — Diagrammes de diffusion représentant les différentes contribution a la rétro-
diffusion de la lumiere résultant de la modification de l'indice de réfraction due a la non-
linéarité (effet Kerr). Ici encore, pour chaque diagramme “Ladder” (en haut), il existe deux
diagrammes “crossed” (en bas).
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Il convient toutefois de signaler que cette prédiction du ‘facteur 3’ ne s’applique qu’a
la contribution non linéaire du signal de détection. Finalement, une amplification de la
rétrodiffusion par rapport au cas linéaire n’apparait que pour un milieu a non linéarité
‘positive’ pour lequel la section efficace augmente quand s augmente. Un tel milieu pour-
rait étre produit en utilisant des diffuseurs plongés dans un milieu a absorption saturable.
Malheureusement, dans notre milieu atomique, la non linéarité est ‘négative’ (la section
efficace diminue quand s augmente). Dans ce cas, l'effet global d’interférence a trois ampli-
tudes est de réduire le cone de rétrodiffusion. Pour pouvoir observer un contraste supérieur
a 2 dans un milieu atomique, il faut d’abord exclure, par filtrage adéquat, la contribution
élastique du signal de rétro-diffusion. La prise en compte précise, dans le calcul du signal,
de la polarisation des photons diffusés montre alors qu’on obtient dans ce cas un contraste

égal & 2.5 au lieu de 3, donc bien au-deld de la borne supérieure linéaire®.

5T. Wellens, B. Grémaud, D. Delande et C. Miniatura, “Coherent Backscattering of Light with Nonli-
near Atomic Scatterers”, Phys. Rev. A 73, 013802-(1-17) (2006)
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3.3 Approche non-perturbative, régime stable

3.3.1 cas simple : deux atomes dans le vide

Pour aller au-dela des faibles non-linéarités, les méthodes basées sur les équations de
type Bloch-optique semblaient bien adaptées. L’idée était la suivante : traiter de maniere
non-linéaire la propagation du laser incident dans le milieu atomique, puis d’en déduire a
I’aide des équations de Bloch-optique les susceptibilités non-linéaires. De la, on déduit I'in-
dice effectif du milieu pour les champs multiplement diffusés. En fait cette approche s’est
révélée insuffisante notamment parce que de cette facon on n’obtient que les susceptibilités
a la fréquence du laser incident. Or, des atomes dont la transition atomique est saturée
émettent également un spectre inélastique (triplet de Mollow), qui se propage également
dans le milieu. La bonne approche consiste a travailler, non plus avec les équations de Bloch-
optique, mais avec les équations de Langevin qui décrivent entierement les opérateurs ato-
miques couplés a la fois aux champs incidents et aux fluctuations quantiques (les équations
de Bloch-optique étant déduites des équations de Langevin par moyennage sur les fluctua-
tions quantiques). On obtient ainsi facilement & la fois la réponse atomique a toutes les
fréquences et les parties inélastiques du spectre.

Une autre difficulté est survenue quand on a voulu comparer, dans le cas de deux atomes
sans milieu, les résultats donnés par les équations de bloch-optique a deux atomes et ceux
donnés par 'approche Langevin. Dans ’hypotheése de milieu dilué (distance entre atomes
tres grande devant la longueur d’onde optique), ’approche naive consisterait a supposer
que les fluctuations quantiques pour chaque atome sont totalement décorrélées. En fait,
méme si ces corrélations sont tres faibles, de ordre de 1/kd, ou d est la distance entre
les deux atomes) elles sont du méme ordre de grandeur que le champ rayonné par un
atome vers l'autre. Elles ne peuvent donc pas étre négligées. Plus précisément, j’ai montré
comment les prendre en compte de maniere exacte pour retrouver les résultats donnés par
les équations de Bloch-optique® dans le cas d’une transition J, = 0 — J, = 1. Une grande
différence avec le cas linéaire tient donc dans le fait que, méme en milieu dilué, on ne peut
plus considérer les atomes individuellement pour calculer le champ et 'intensité diffusés :
du fait des non-linéarités, il s’établit des corrélations quantiques entre les atomes.

Avec cette méthode, on a ainsi pu mettre en évidence le role fondamental joué par le
spectre inélastique (voir figure 3.5). Les courbes montrent le spectre inélastique (triplet de
Mollow) de 'intensité rayonnée collectivement par les deux atomes. La courbe noire corres-
pond a la partie isotrope (Ladder term), tandis que la courbe rouge correspond a la partie
dépendant de l'angle entre la direction d’observation et celle du laser incident (Crossed
term). Cette derniere est a l'origine de 'augmentation d’intensité dans la direction arriere :
la rétrodiffusion cohérente. La fréquence du laser correspond a A = 0 et les pointillés vert
dénotent la fréquence de résonance de la transition. Les quatre figures correspondent aux
valeurs suivantes de la saturation et du désaccord : a) s = 0.02, § = wy, —wp = 0, b)

6B. Grémaud, T. Wellens, D. Delande et C. Miniatura, “Coherent backscattering in nonlinear atomic
media : Quantum Langevin approach”, Phys. Rev. A 74, 033808 (2006)
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s=2 6d=0,¢)s=002 d=5letd)s=0>50 6=0.8Sil'oncompare a) et c),
pour lesquels la valeur de la saturation est la méme, on voit immédiatement que le spectre
inélastique est dominé par les photons émis a la fréquence de la résonance atomique et que
la symétrie du triplet de Mollow émis par un atome unique est profondément modifiée. On
comprend bien dans ce cas que la partie inélastique du terme Crossed va étre bien plus
faible que celle du terme Ladder. Il s’ensuit que le facteur de sur-intensité dans la direction
arriere est nettement diminué dans le cas c) : 1.67 au lieu du facteur 2.

3.3.2 Cas d’un milieu atomique

Le but ultime serait de combiner les effets non-linéaires atomiques (incluant les effets
inélastiques et les corrélations quantiques) dans les méthodes diagrammatiques développées
plus haut. Ce travail est toujours en cours, la difficulté principale venant en fait des
corrélations quantiques. Néanmoins, si on se limite a des diffuseurs “classiques” (i.e. pour
lesquels on néglige les effets quantiques en ne prenant en compte que la partie élastique), on
a pu étendre les méthodes diagrammatiques a la fois pour une non-linéarité arbitrairement
grande (i.e., incluant tous les ordres x™) et pour un nombre quelconque d’événements
non-linéaires. L’idée est que dans le régime de localisation faible, d'une part, on peut
toujours séparer les évenements de diffusion et la propagation et, d’autre part, les effets
d’interférences restent des corrections par rapport a l'intensité moyenne dans le milieu.
Dans ce cas, le calcul du cone de rétrodiffusion cohérente se fait en deux étapes.

Dans un premier temps, on écrit une théorie du transport radiatif non-linéaire, c¢’est-
a-dire décrivant l'intensité lumineuse, moyennée sur le désordre, a l'intérieur d’un nuage
de diffuseurs non-linéaires. Dans cette approche, la description du milieu se fait a 'aide
de grandeurs locales (libre parcours moyen, section efficace de diffusion) qui dépendent
de maniére non-linéaire de l'intensité. Comme en chaque point, le champ est simplement
la somme du champ entrant et de tout ce qui est rayonné par le reste du milieu, on se
ramene ainsi a une description auto-consistante de l'intensité en chaque point. Un point
important est de tenir compte proprement du caractere aléatoire du champ diffusé, c’est-
a-dire que localement, il présente des fluctuations gaussienne caractéristiques d’un speckle.
Par exemple, comme le libre parcours moyen ¢(I) en un point dépend de maniere non-
linéaire l'intensité I en ce point, la valeur moyenne (i.e. sur les différentes réalisations
du speckle) du libre parcours moyen (¢(I)) en ce point est tres différente de la valeur
¢({I)). En pratique, on obtient alors un systeme d’équations non-linéaires couplées pour
I'intensité cohérente et l'intensité diffuse en chaque point du milieu. La figure 3.6 montre
la comparaison entre cette théorie effective et le résultat des simulations de type brute-
force (i.e. calcul du champ pour chaque configuration aléatoire des diffuseurs et moyennage
sur différentes configurations). La situation (figure de gauche) correspond & un nuage de
diffuseurs éclairés par une onde plane et la figure de droite montre différentes quantités
calculées dans le milieu le long de I'axe du nuage (-1 correspond a la face d’entrée et
+1 a la face de sortie). Le parametre de saturation est 0.5. Les courbes continues verte
et bleue correspondent aux simulations numériques (1500 diffuseurs, 5000 configurations
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F1G. 3.5 — Les courbes montrent le spectre inélastique (triplet de Mollow) de 'intensité
rayonnée collectivement par les deux atomes. La courbe noire correspond a la partie isotrope
(Ladder term), tandis que la courbe rouge correspond a la partie dépendant de I’angle entre
la direction d’observation et celle du laser incident (Crossed term). Cette derniere est a
I'origine de 'augmentation d’intensité dans la direction arriere : la rétrodiffusion cohérente.
La fréquence du laser correspond a A = 0 et les pointillés vert dénotent la fréquence de
résonance de la transition. Les quatre figures correspondent aux valeurs suivantes de la
saturation et du désaccord : a) s = 0.02, 0 = wp, —wy = 0,b) s =2, 6§ =0, ¢)
s=0.02, 6=>5I"etd) s=>50, & =0.5il'on compare a) et c), pour lesquels la valeur
de la saturation est la méme, on voit immédiatement que le spectre inélastique est dominé
par les photons émis a la fréquence de la résonance atomique et que la symétrie du triplet
de Mollow émis par un atome unique est profondément modifiée. On comprend bien dans
ce cas que la partie inélastique du terme Crossed va étre bien plus faible que celle du terme
Ladder. Il s’ensuit que le facteur de sur-intensité dans la direction arriere est nettement
diminué dans le cas c) : 1.67 au lieu du facteur 2.
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Fic. 3.6 — Comparaison entre la théorie effective et le résultat des simulations de type
brute-force (i.e. calcul du champ pour chaque configuration aléatoire des diffuseurs et
moyennage sur différentes configurations). La situation (figure de gauche) correspond & un
nuage de diffuseurs éclairés par une onde plane et la figure de droite montre différentes
quantités calculées dans le milieu le long de I’axe du nuage (-1 correspond a la face d’entrée
et +1 a la face de sortie). Le parametre de saturation est 0.5. Les courbes continues verte
et bleue correspondent aux simulations numériques (1500 diffuseurs, 5000 configurations
différentes). La courbe bleue est I'intensité cohérente (| < E > |?) tandis que la courbe
verte est l'intensité totale (< |E|? >). Les courbes noires et rouges sont le résultat de la
théorie auto-consistante. On voit que 'accord est tres bon, alors que 'on est déja dans
un régime fortement non-perturbatif (le résultat linéaire est donné par les courbes tiretées
bleues et vertes). Les courbes tiretées court noires et rouges montrent les mémes résultats
si on n’avait pas pris en compte le caractere aléatoire du champ local.
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Fiag. 3.7 — Cones de rétrodiffusion non-linéaire obtenus par calcul numérique exact com-
parés a la théorie effective pour différentes valeurs de la non-linéarité «. La ligne pleine
donne les résultats exacts, la ligne tiretée donne l'intensité moyenne “Ladder” rayonnée
dans la direction 6 (f = 0 correspondant a la direction de rétrodiffusion). La ligne ligne
pointillée donne 'intensité totale dans la direction arriere (i.e. “Ladder”+”Crossed”). La
courbe supplémentaire pour a = 0.2 correspond a l'intensité moyenne obtenue sans prendre
en compte le caractere aléatoire (i.e. du speckle) du champ diffus.

différentes). La courbe bleue est I'intensité cohérente (| < E > |?) tandis que la courbe
verte est l'intensité totale (< |E|? >). Les courbes noires et rouges sont le résultat de la
théorie auto-consistante. On voit que l'accord est tres bon, alors que l'on est déja dans
un régime fortement non-perturbatif (le résultat linéaire est donné par les courbes tiretées
bleues et vertes). Les courbes tiretées court noires et rouges montrent les mémes résultats
si on n’avait pas pris en compte le caractere aléatoire du champ local. L’effet est important,
ce qui renforce la solidité de notre description effective.

Dans un deuxieme temps, on peut calculer les corrections de localisation faible a cette
intensité moyenne. Du fait du caractere non-linéaire du milieu, il y a un plus grand nombre
de blocs élémentaires permettant de calculer les termes du type “crossed”. De plus, on a
pu montrer que I’on ne peut pas enchainer ces blocs de maniere arbitraire, certaines com-
binaisons sont interdites car ne correspondant pas a des processus physiques’. Le résultat
est montré par la figure 3.7.

En conclusion, il faut noter que I’approche développée ne s’applique pas seulement au
cas des diffuseurs ponctuels non-linéaires, mais aussi au cas de diffuseurs linéaires dans
un milieu homogene non-linéaire et également aux ondes de matieres dans des potentiels

"T. Wellens and B. Grémaud, “Nonlinear coherent transport of waves in disordered media”,
Phys. Rev. Lett. 100 033902 (2008)
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désordonnés. Dans ce dernier cas, I'interaction entre atomes, dans une approche type champ
moyen (équation de Gross-Pitaesvskii), donne lieu a un terme non-linéaire.

3.4 Régimes instables

3.4.1 Instabilités de speckle

Pour des milieux homogenes avec une non-linéarité du type x®, a Iintérieur d’une
cavité, on peut observer des effets de multistabilité dus a la coexistence de plusieurs so-
lutions pour l'intensité a l'intérieure de la cavité pour une méme intensité entrante. Ce
méme genre de phénomene a été prédit dans le cas de diffuseurs linéaires plongés dans mi-
lieu non-linéaire. Le role des miroirs est alors assumé par la diffusion multiple qui permet
des chemins extrémement longs a l'intérieur du milieu.

On s’attend également au méme type de comportement dans le cas de diffuseurs ponc-
tuels non-linéaires. Néanmoins, si on garde le modele “classique” atomique, on n’observe
pas de multistabilité, ce que I'on peut relier au fait qu’un atome a deux niveaux dont la
transition est saturée devient un tres mauvais diffuseur : on dégrade la qualité des mi-
roirs de la cavité faite par la diffusion multiple. On a donc considéré un autre type de
non-linéarité décrite par déphasage non-linéaire, i.e. le dipole induit s’écrit

eW(EP) _ 1

_iTE avec 0(I) = 250 + al

Dans ce cas, on peut observer de la multistabilité, comme le montre la figure 3.8. Ces
résultats proviennent de la résolution d’un systeme couplé de N équations (complexes)
non-linéaires ou N est le nombre de diffuseurs, les inconnues étant le champ sur chaque

diffuseur :
F(X,CY) :O Ole: (El,EQ,"' 7EN)
X,

A chaque point de rebroussement (voir figure 3.9), les quantités %> sont infinies. Or, le
long de la solution on a :

0X OF OF
M—+—=0avec M = —
da " Ba X

Comme g—z est finie, on déduit donc que la matrice M a nécessairement une valeur propre

nulle. C’est bien ce que 1'on voit sur la figure 3.10 qui montre I’évolution du module de la
plus petite valeur propre de M en fonction de «.

Pour savoir si la solution stationnaire est instable, il faut considérer la dynamique
autour de cette solution. Pour cela, on modélise la dynamique du systeme comme il suit :
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Fic. 3.8 — Intensité diffusé vers ’arriere par un ensemble de diffuseurs ponctuels non-
linéaires en fonction de la non-linéarité «, 'intensité entrante étant normalisée a 1. On
voit tres clairement la présence de solutions multiples au-dela d’un certain seuil. Pour des
raisons pratiques, on ne montre qu'une partie de la courbe. Parametres : 1000 atomes,
densité : n\3 = 1.

o O

F1G. 3.9 — Point de rebroussement en a., engendrant une multistabilité pour les valeurs de
« inférieures. Au point de rebroussement, la matrice jacobienne g—i a nécessairement une

valeur propre nulle.
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F1G. 3.10 — En haut : intensité rayonnée vers I'arriere par un ensemble diffuseurs ponctuels
en fonction de la force de la non-linéarité o. A chaque point de rebroussement, une des
valeurs propres de la matrice jacobienne M s’annule, comme le montre la figure du bas,
montrant le plus petit module des valeurs propres de M.
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Fi1G. 3.11 — En haut : intensité rayonnée vers I’arriere par un ensemble diffuseurs ponctuels
en fonction de la force de la non-linéarité . En bas : plus petite partie réelle des valeurs
propres de M. Une partie réelle négative indique une solution stationnaire instable.

1/T" donne le temps typique de réponse du dipole. Dans ce cas, on voit que les écarts
x; = E;(t) — E5* a la solution stationnaire sont gouvernés par I’équation linéaire :

oF;

—x;(t

Zti:—

et donc que la solution est stable si toutes les valeurs propres A\; de M ont une partie réelle
positive. La figure 3.11 montre I’évolution de la plus petite partie réelle des valeurs propres
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F1c. 3.12 — Evolution du champ (Re(E), Im(E)) sur un des diffuseurs en fonction de la
non-linéarité (axe vertical), la couleur indique de degré d’instabilité. On voit que pour
a =~ 0.7, le nombre de solutions coexistantes s’est accru et sont toutes instables. On peut
raisonnablement penser que la figure de speckle a cette non-linéarité est instable et qu'on
va plutot observer un comportement fluctuant

de M, en fonction de a. La figure 3.12 montre I’évolution du champ (Re(E), Im(FE)) sur
un des diffuseurs en fonction de la non-linéarité (axe vertical), la couleur indique de degré
d’instabilité. On voit que pour a = 0.7, le nombre de solutions coexistantes s’est accru
et sont toutes instables. On peut raisonnablement penser que la figure de speckle a cette
non-linéarité est instable et qu’on va plutdt observer un comportement fluctuant (voir plus
loin).

Pour chaque configuration, on peut donc estimer le seuil d’instabilité et regarder ensuite
la distribution de probabilité de ces seuils. La figure 3.13 montre, en fonction de «, le nombre
de configurations dont le seuil d’instabilité est plus petit que a. Chaque configuration
comporte 1000 diffuseurs pour une densité nA3> = 1. En comparant ces statistiques pour
différentes valeurs de la densité et du nombre d’atomes (et donc de I’épaisseur optique b
du milieu), on observe une loi d’échelle : la distribution ne dépend que du produit N x nA3
soit encore b® X kfy ol £y est le libre parcours moyen linéaire (voir figure 3.14). Cette loi
d’échelle est différente de celle prédite pour des diffuseurs linéaires dans un milieu non-
linéaire homogene : b* x (b + kfy). Ceci est probablement di au fait que, dans le cas
présent, la non-linéarité est corrélée au désordre local. Finalement, on peut s’intéresser a
la dépendance de quantités en fonction du parametre b3 x kfy. Pour le seuil moyen, la
figure 3.15 montre trés clairement une variation linéaire : (qgeu) =~ (b* X k) L.

C’est un résultat surprenant puisque si 'on fixe I’épaisseur optique b, le seuil moyen
diminue quand on augmente k{, c’est-a-dire si on diminue la force du désordre. Bien str,
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Fi1G. 3.13 — Nombre de configurations dont le seuil d’instabilité est plus petit que a. 1000
diffuseurs, nA\> =1, b~ 4
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Fi1G. 3.14 — Nombre de configurations dont le seuil d’instabilité est plus petit que o pour
différentes valeurs de la densité et de 1’épaisseur optique. On observe une loi d’échelle :
la distribution ne dépend que du produit N x nA? soit encore b> x kf, ol ¢, est le libre
parcours moyen linéaire
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F1G. 3.15 — Valeur moyenne du seuil d’instabilité en fonction de (b* x kfy)~!. La courbe
semble clairement montrer un comportement linéaire.

si on diminue la force du désordre, on doit augmenter la taille physique du systeme (i.e. le
nombre diffuseurs) pour obtenir la méme épaisseur optique. Néanmoins, ceci tend a montrer
que ces instabilités résultent de phénomenes interférentiels et impliquent donc la structure
sous-jacente des modes du champ dans le nuage. Dans cet esprit, on peut imaginer que le
mode pour lequel les effets non-linéaires sont les plus importants est celui qui est le plus
localisé, c’est-a-dire dont la largeur est la plus faible. Pour des petites valeurs de la non-
linéarité, on peut supposer avoir une bonne idée de la physique en regardant les propriétés
du systeme linéaire. On s’est donc intéressé aux distributions statistiques de la largeur I'
du mode le plus localisé pour a = 0. Le résultat est donné par la figure 3.16. On retrouve
clairement la loi d’échelle en p = N xnA3, ce qui tend & corroborer I'idée que c’est le mode le
plus localisé qui devient instable et démontre I'importance des effets des interférences dans
les instabilités de speckle. De plus, une analyse (rapide) de la dépendance de la moyenne
de ces largeurs donne < 1/I"* >oc N2/3(nA\3)?/3, & comparer au temps de Thouless (i.e. le
temps caractéristique que met un photon pour diffuser hors du nuage) qui ne croit qu’en
b2, c’est-a-dire N/3(nA3)*/3.

On peut alors se poser la question des effets de ces instabilités sur les effets cohérents
comme le cone de rétrodiffusion cohérente. La figure 3.17 montre, pour une méme configu-
ration (1000 diffuseurs, nA\* = 1), I’évolution temporelle de I'intensité diffusée vers I’arriere
et pour différente valeurs de la non-linéarité. On évolue clairement d’un régime stationnaire
dans le cas linéaire (ov = 0) vers un régime probablement chaotique (o = 1) en passant par
un régime instable, mais périodique. On remarquera que cette figure est cohérente avec la
figure 3.13, puisque pour o = 0.3, on prédit que la plupart des configurations sont instables.
Néanmoins, quand on moyenne sur un nombre important de configurations, on retrouve un
effet cohérent vers I’arriere comme le montre la figures 3.18 : on trace en fonction du temps
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F1G. 3.16 — Distribution statistiques de la largeur I'* du mode le plus localisé. On retrouve
bien la loi d’échelle en p = N x nA3. De plus, on trouve que la valeur moyenne < 1/I'% >
évolue comme N?3(nA*)2/3 & comparer au temps de Thouless oc b? = N2/3(n\3)4/3,

N=1000 a*1 b=3.95
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Fia. 3.17 — Intensité rayonnée vers ’arriere par un ensemble de diffuseurs non-linéaires en
fonction du temps et pour différentes valeurs de la non-linéarité. On évolue clairement d’un
régime stationnaire dans le cas linéaire (v = 0) vers un régime probablement chaotique
(v = 1) en passant par un régime instable, mais périodique
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F1a. 3.18 — Intensité rayonnée dans la direction 6 (6§ = 0 correspondant a la rétrodiffusion)
en fonction du temps. L’intensité a été moyennée sur 1000 configurations différentes. Non
seulement dans le régime instable (figure du haut a = 0.3 et figure en bas a gauche a = 0.5),
mais aussi dans le régime chaotique (figure en bas a droite a = 1), il reste un effet cohérent
vers |’arriere.
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F1a. 3.19 — Intensité rayonnée dans la direction 6 (8 = 0 correspondant a la rétrodiffusion)
au temps 200I'~!. L’intensité a été moyennée sur 1000 configurations différentes. Méme
dans le régime chaotique a 2 0.8, il reste un effet cohérent vers arriere. Le fait que le cone
s’inverse vient du fait de la non-linéarité, produit un déphasage entre les deux chemins du
“crossed” qui produit une interférence destructive.
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I'intensité diffusée dans la direction 6 par rapport a la direction arriere. Si on se reporte a
la figure 3.13 et 3.17, on se rend compte que non seulement dans le régime instable (figure
du haut o = 0.3 et figure en bas a gauche o = 0.5), mais aussi dans le régime chaotique
(figure en bas a droite o = 1), il reste un effet cohérent vers l'arriere. Cet effet est résumé
par la figure 3.19, qui montre 'intensité diffusé vers l'arriere au temps ¢t = 1000 L. Le
fait que le cone s’inverse vient du fait de la non-linéarité, produit un déphasage entre les
deux chemins du “crossed” qui produit une interférence destructive. Ce genre de compor-
tement est prédit qualitativement par notre approche diagrammatique (voir plus haut) et
a également été observé dans des calculs numériques de condensat de Bose-Einstein (2D)
dans des potentiels aléatoires.

3.4.2 Laser aléatoires

Enfin, dans le cas de milieu actifs, le phénomene du laser aléatoire ou encore laser
sans cavité est maintenant bien établi expérimentalement. Au niveau théorique, il reste de
nombreuses questions ouvertes : dans le régime de la localisation faible pour lequel il n’y
a plus, en moyenne, de modes localisés, quelle est la structure sous-jacente du mode du
laser 7 Au-dessus du seuil, quelle est la dynamique du systeme ? Peut-on prédire les modes
du laser a partir des modes de la cavité passive (i.e. les modes de la diffusion multiple) ?
Quelle est leur statistique? La question de savoir si on pourrait observer cet effet avec
des atomes froids (a deux ou trois niveaux) fait également partie des questions ouvertes.
A titre d’exemple, voici les résultats de simulations numériques dans le cas de nuages
d’atomes a trois niveaux, dans le régime de localisation forte. La figure 3.20 montre le
spectre de la lumiere émise par 250 atomes. A gauche pour nA3> = 30 et & droite pour
nA? = 40. Les deux figures du haut sont dans le régime non-lasant. On voit néanmoins des
pics correspondants aux modes localisés au milieu de la la lorenztienne donnant ’émission
spontanée. Les deux figures du bas sont dans le régime laser au-dessus du seuil. A gauche,
on voit bien qu’il y a déja plusieurs modes en compétition, tandis qu’a droite un seul mode
semble dominer. La transition laser est clairement montrée par la figure 3.21, montrant
I’évolution du spectre (en échelle logarithmique) en fonction dela puissance de pompe W.
On voit bien la transition juste au-dessus de W = 1, puis 'apparition de nouveaux pics.
Enfin la figure 3.22 montre le nombre de seuils laser plus petit que W. Bien str tous
ces résultats sont préliminaires et nécessitent une étude plus approfondie pour en faire
ressortir les propriétés importantes, non seulement statiques (seuils) mais aussi dynamiques
(compétition de modes).
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Fic. 3.20 — Spectre de la lumiere émise par 250 atomes a trois niveaux. A gauche pour
nA? = 30 et & droite pour nA* = 40. Les deux figures du haut sont dans le régime non-
lasant. On voit néanmoins des pics correspondants aux modes localisés au milieu de la la
lorenztienne donnant ’émission spontanée. Les deux figures du bas sont dans le régime
laser au-dessus du seuil. A gauche, on voit bien qu’il y a plusieurs modes en compétition,
tandis qu’a droite un seul mode semble dominer.

Frequency

F1G. 3.21 — Spectre (en échelle logarithmique) de la lumiere émise par 250 atomes a trois
niveaux en fonction de la puissance de pompe W. On voit bien la transition laser juste
au-dessus de W = 1, puis 'apparition de nouveaux pics.
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Fic. 3.22 — Exemple de distribution statistique des seuils de transition laser.
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Coherent backscattering of light by two atoms in the saturated regime
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We present a calculation of coherent backscattering with inelastic scattering by saturated atoms. We consider
the scattering of a quasimonochromatic laser pulse by two distant atoms in free space. By restricting ourselves
to scattering of two photons, we employ a perturbative approach, valid up to second order in the incident laser
intensity. The backscattering enhancement factor is found to be smaller thatefwo excluding single
scattering, indicating a loss of coherence between the doubly scattered light emitted by both atoms. Since the
undetected photon carries information about the path of the detected photon, the coherence loss can be
explained by a which-path argument, in analogy with a double-slit experiment.

DOI: 10.1103/PhysRevA.70.023817 PACS nuniber42.50.Ar, 32.80-t

I. INTRODUCTION high enough to neglect the thermal de-Broglie wavelength of

Weak localization of light in random media was demon-the atoms, i.e., to treat their external motion classically. Fur-
strated for the first time in the 1980&3]. Here, construc- thermore, atoms usually have an internal quantum structure,
tive interference between two waves which interact with thevhich may have a strong impact on coherent backscattering
same particles, but in reversed order, enhances, in averadd6—19. If necessary, this can be circumvented by using at-
scattering in the direction opposite to the incident light. Foroms with a nondegenerate ground state0) [20].
systems obeying the reciprocity symmeti4], the back- Another property of the atom-light interaction, whose im-
scattering enhancement factoie., the light intensity de- pact on coherent backscattering has so far remained almost
tected in exact backscattering direction divided by the backtinexplored, is the strongly nonlinear response of an atom to
ground intensity, is exactly two, provided single scatteringincoming radiation. Since already a single photon is suffi-
can be neglected. If the reversed paths are not linked by th&ent to bring the atom to the excited state, where it rests for
reciprocity symmetry, however, the enhancement factor willquite a long timel'™* without being able to scatter other
be strictly smaller than two. This is known to occur, e.g.,photons, a saturation of the atomic medium can be induced
when detecting the backscattered light with linear polarizaalready with rather moderate laser intensities. Not only the
tion orthogonal to the initial one, in the presence of a mag-atom-photon cross section, but also the spectrum of the light
netic field leading to a rotation of the polarizatioRaraday is affected by saturation. With increasing saturation, it be-
effech, or in the case of a random motion of the scatterercomes more and more probable that an atom scatters inelas-
[5-9. tically, i.e., that it emits photons at a frequency different from

Similar interference effects between multiply scatteredthe one of the incident laser. As we will show in this paper,
waves also affect the properties of transport through disorthis implies a loss of coherence between two reversed scat-
dered media. If the mean free path can be sufficiently retering paths. Similarly, a recent experiment showed coherent
duced, the transport is even expected to come to a completeckscattering by a cloud of cold strontium atoms to be re-
standstill[10]. In experiments on strong localization of light duced when increasing the saturation induced by the probe
[11], however, the role of absorption is discussed controvertaser[21].
sially [12,13. In order to expose the physical mechanism responsible for

One may wonder whether a medium consisting of indi-the loss of coherence as clearly as possible, we will consider
vidual atoms would constitute a good candidate for strongn this paper two two-level atoms in free space, the simplest
localization. In contrast to the classical scenaiaxwell's  system exhibiting coherent backscattering. Effects which
equations in a medium with random dielectric constatiite  arise in the presence of a larger number of atoms, such as the
quantum-mechanical atom-photon interaction exhibits someonlinear index of refraction of an atomic medium, will be
characteristic features, which may affect the coherence beelegated to future publications. With view at the experiment
tween multiply scattered waves. First, the resonance may b@1] performed with a dilute medium, we are interested in
extremely sharp, corresponding to a very narrow linewldth the case where the distance, between the two atoms is
of the excited state. On the one hand, this leads to a largauchlarger than the optical wavelength In this regime,
atom-photon scattering cross section and slow diffusion oboth atoms exchange at most one photon, quite contrary to
light [14], properties in favor of localization. On the other the “Dicke limit” r,<<\, where, due to recurrent exchange
hand, it implies that the atoms have to be cooled to very lowof photons, the atoms may form collective states, leading to
temperatures. Only if the Doppler shift induced by a movingsuper- or subradiancg22,23. Nevertheless, collective ef-
atom is much smaller thah, the interference between two fects, such as coherent backscattering, are also observed in
counterpropagating waves is preserféd]. Typically, this  the dilute limit ry,>X\, provided that the single scattering
regime is reached at about a few mK, which is, however, stilicontribution(arising from two independent atoiris filtered
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out by using a suitable polarization chan(ste Sec. Il B. undegeneratatomic ground stat€J=0). This is important
In contrast to the case of two independently radiating atomsince coherent backscattering may be severely affected by
[24,25, we will see that theloublyscattered light emitted by degeneracyj16-19. The excited state is then threefold de-
both atoms remains partially coherent even in the presence generate(J=1). Which one of the three excited states is
inelastic scattering. Moreover, the ensuing constructive interpopulated depends on the polarization of the absorbed pho-
ference in backscattering direction occurs independently ofon.
the positions of the atoms. With the approximations mentioned above, our Hamil-

To calculate the photodetection signal of the light emittedtonian reads as follows:
by the two atoms, we use scattering theory. Generally, the
higher the intensity of the incoming light, the more photons H=Ho+V, (1)
are scattered inelastically. In the present paper, we restrigipere
ourselves to two-photon scattering. Thereby, we employ a
perturbative approach, valid up to second order in the inci- Ho= @q0 o+ E wka;fsaks, 2
dent intensity. ks

The paper is organized as follows. In Sec. I, we summa-
rize known results about the scattering of two photons by a — iyalkr (ot ekt o yaf
single atom. After introducing the scattering operator in Sec. v kS; (ige" (0" qas~ige™ (v )aly) (3
I B, we obtain the corresponding photodetection signal in . . . »
Sec. Il C, thereby recovering the resonance quorescendéG_nOte the free evolution and the interaction, respectl@_mly
spectrum in second order of the intensity. In Sec. Ill, we addnits wheref:=1). Here, the operators’ and o describe
a second atom to our model. We proceed in a similar way agansitions between the atomic ground and excited states,
in Sec. II, using the results of the single-atom case as ¥ith energy differencas, (in the case of an isolated atom
building block of the two-atom solution. After deriving the Whereas s anday create and annihilate a photon in mdde
scattering operator in Sec. Ill A, we calculate the photode{@ plane wave with wave vectén and polarizationes (per-
tection signal in Sec. Ill B. In contrast to the single-atom Pendicular tok). The coupling constant
case, the latter contains interference between the light emit- 1/2 12
ted by the two atoms, enhancing the detection signal in the g= ( s ) = < Dat ) , (4)

3 3

backscattering direction. In this way, we obtain the main re- 2l 2l
sult of the present paper, the backscattering enhancemefjth | 2 the quantization volumewhich will finally drop out
factor, which is found to be smaller than two, due to inelasticof the equations, when taking the limit— ) and d the
scattering. This fact is interpreted in Sec. Ill C as a 10ss ofnagnitude of the atomic dipole, determines the strength of
coherence between the light scattered by both atoms in 0gne atom-field coupling.
posite order. Regarding the undetected photor_] as a path de- | Eq.(3), we have employed the so-called “rotating wave
tector for the detected photon, we can explain the 10ss ofpproximation”: a transition from one of the excited states to
coherence by an analogy to the double-slit experimenthe ground state is only possible by emitting a photon, and
where the interference pattern is washed out if we try tojice versa by absorption. This is justified since we will re-
observe which slit the particle has passed through. Finallysrict ourselves to near-resonant processes, where only pho-
Sec. Il D concludes the paper. tons with frequencies close to the atomic resonance are im-
portant(i.e., |ox— w.{ < wy). For the same reason, we may
assume a constant value @fin Eq. (4), i.e., neglect its de-
pendence Orwy.

Let us start with discussing the scattering of two photons Due to the coupling to the electromagnetic vacuum, the
by a single atom. This is useful since we will assume lateistate|e) is unstable: after an average lifetime given by
that the second atom is far away from the first one. The > 3 > 213
two-atom scattering process can then be viewed as a succes- - L‘%tz 2g°wal”
sion of two single-atom scattering processes. 3meg 3r

II. SINGLE ATOM

®)

an excited atom decays into the ground state, through spon-
A. Approximations and Hamiltonian taneous emission of a photon. This gives rise to an effective,

) - complex atomic resonance frequenc
We assume a two-level atom located at a fixed position P q Y

As already mentioned above, neglecting the external atomic T

motion is justified at very low temperatures, where the Dop- Wo = Wat™ IE’ (6)
pler shift induced by the atomic motion is small enough.

Also the recoil effect, i.e., the change of the atomic velocitywhere also the real paib, is shifted, as compared to the
when scattering a photon, can be neglected, provided that thgolated atom, Eq2).

number of scattering events is not too large. On the other
hand, the temperature should still be high enough such that
the external atomic motion need not to be treated quantum In the following, we make use of scattering theory in
mechanically. Furthermore, let us stress that we consider aorder to calculate the properties of the light emitted by the

B. Scattering matrix

023817-2
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atoms. Here, the object of interest is the scattering operator C. Photodetection signal
S, which connects the initial and final photon stafigsand Given the final photon staté), the intensity of the pho-
If): todetection signal, as measured by a broadband detgxtor
Iy = Sl %) larization ep) located atR at timet, reads[26]:
I = (FIED(R,HEM(R,1)|f). (12)

The initial and final state of the atom is always the ground

state|g), which we do not explicitly write in the following. Here, the detection of the photon is described by the electric

Furthermore, we will restrict ourselves to the scattering offield operator

two photons, thereby employing a perturbative approach,

valid up to second order in the incident intensity. EMD(R,1) = 92 (Eksfa)é(k'R_“Uaky (13
Since, as we will see below, the two photons may be dics

scattered independently from each other, we consider first the

scattering of a single photon. In order to distinguish betwee

the scattered and nonscattered part of the photon wave

packet, the transition operat®dy is introduced as follows: lin) = VNI > )h(kl) o h(ky)KieL, .. ke, (14)

(kg -k

hich annihilates a photon at positiéh
As initial state, we consider a state Mfphotons

S’.L:Jl_ 27i 5(wf—wi)T1, (8)
where all photons are described by the same single-photon
where theé function implies conservation of the photon’s wave packet
frequency(which follows from energy conservation, since
the state of the atom is the same before and after scattering lip) = 2 h(k)|kep). (15)
For one-photon states, its matrix elements rgzgj: k

2 The factoryN! in Eq. (14) arises from the symmetry under
(kiei|Tolkie) = gi(eie’;)é(ki‘kf”, (9)  exchange of photons as bosonic particles and is required to
Wi~ Wo obtain the correct normalization

The situation changes when considering a second photon. . .\ _\, 2., 2_ 2\N
It is convenient to write the matrix elements in the following (inli) =N (kl‘ZkN) Ihkol--[htknl= (% Ihol )

form:!
=[iqlipN=1. (16)

Since, due to symmetrization, the sum in Et4) does not

include permutations ofk---ky), the factorN! is needed

=(kae Silkiea)(ks€a|Si|k €2 + (Kaea|Si|koeaXKaealSilk1€1)  for the transformation intoN independent SUME -+ Sy
+(K3€3,Ka€4| To| K1 €1, Ko6) . (10) We assume that the wave packet describes an almost plane

wave, i.e., h(k) is sharply peaked around its centley

Here, the first two terms scatter the two photons indepen¢“sharply” means much narrower tha&h. For this reason, we

dently from each othe(There are two terms since the pho- may also neglect in Eq14) the dependence of the initial

tons are indistinguishable: the final photfkyes), for ex- polarization vectorg, on k.

ample, may correspond either to the initial photkie,) or The initial statdiy) corresponds to the following incident

lkzez).) Since, however, the atom cannot interact with theintensity seen by the atom at positiorand timet=0, ob-

second photon while it is excited by the first one, the photongained by insertindiy) instead of|f) in Eq. (12), and sum-

are in fact not completely independent. This gives rise to thening over the detector polarizatiag,:

second ternj27]:

(kzes, k454|82|k1511 Ko€z)

2
g ik 2
lin=N= e*Th(k)|". 1
(kzez kaea| Tolk €1, Ko€r) ned? % (k) 17
4 o
:2Trig Aoy + w; ~ wg “’4)< 1 + 1 ) In the following, we will use a dimensionless quantity, the
(01— @)W~ wg) \wz—wg ws— wy so-called “saturation parameter”
X[(€165)(e26y) + (e2€3)(€16) |6 Katkakakar, (11 242, 2N .
163)(€264) * (€265) (€164 = n__ e IS ehi) 2 g
Although their sum is conserved, the individual frequencies o = wol* o = wol* |

of both photons may be changed By, for that reason we

Py - ) It accounts for the fact that photons interact less strongly
call it “inelastic” scattering.

with the atom if they are far detuned from the atomic reso-

nance(i.e., if o —wg| is large. From the solution of the
YEquation(10) is valid only if kye; # ke, and kzes# ke, We  Optical Bloch equation$26], it is known thats determines

will not consider double occupancy of modes in the following, the ratio between inelastic and elastic scattering, se€3By.

since it can be neglected in the continuous limit of infinite modebelow.

density. In other words: two photons are never exactly in the same We are interested in the photodetection signal measured at

mode, although they may be infinitesimally close to each other. positionR at timet=|R-r| (the time needed for the scattered
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light to reach the detector, in units wheze 1). We assume N
that the detector is placed far away from the atom, such that Ky Knea|t) = VNIETT ki|f2), (24)
t=|R-r| is long enough for the scattering approach to be 1=1

valid. Furthermore, the detector should not be placed in the
direction of the initial wave vectok , such that only scat-
tered photons are detectfice., (R, t)]i;)=0]. (kyo Kool r) = 2 (ki |91>H ilfy, (25
In order to proceed, we have to generalize the scattering
operator for two photons, E@10), to the case oN photons.
For this purpose, we assume that the saturation parasister N-1
Kn-a|thg) = Ay

Nl N-1

I#l

so small that at most one photon pair is scattered inelasti- (ky-+ EE (kik: |gz> H (kilfo),

cally. This yields the photodetection signal up to second or- i1

der ins, see below. Summing over the different pairs), i<j |#Ij
and taking into account all possible permutations of the (26)
photons, we obtain:
and
N
’ ’ ’ = (+)
<k1”'kN|S\l‘kl"'kN>:EH<k|‘s_l_|kPN(|)> E=(0[E™(R,1)|fy), (27)
Py I=1
g2y = EM(R,D)]gy). (28)

+ 2 2 (KK [Tolkp ikpyg) According to Eq.(12), the normI={y|y) gives the total
i;i<=,1 Pn/P2 intensity. Let us first concentrate on the contributions from
= |y and|i). (As we will argue later|#s) can be neglectey.

, We obtain a sum of three terms, from elastic and inelastic

x I (K [Sikpyq)- (190  scattering, and their interference. Usifg|f,)=1 (sinceS,
l':ilj is unitary), we obtain

= 2
(In the following, we do not write explicitly the polarization ler’ = (Yl = NIE?, (29
vectors) Equation(19) contains a sum over all permutations @ _ B =
Py of the N indices{1---N}, modulo a permutation of the 6" = (Yl2) + (Yalgrn) = N(N — DRe{V2E(gy[f)},
two indicesPy(i) and Py(j) in the second term, where the (30

latter permutation is included in the two-photon operaigr

see Eq(11). In the caseN=2, the above expression agrees = _ _ N(N- . N(N-1)(N-2) ; 2
with the one of the previous section, HE40). According to in= (Waly) = 2 (Glgy 2 (falgol*.
Eg. (19), the final photon statf\)=S,|iy) can be expressed 31)

as follows:
Whereas inlj?, the frequency of the detected photon is
fixed to w=w,_ (since one-photon scattering is elagtihis is
not the case fol;,, where the overlagg,|g;) implies an
integral overw. Thereby, we obtain an elastic and inelastic

/N component of the detection signal.
E (kikj |92> H (ki[fy), (20 To complete the calculation, we insert the one- and two-
'J<Jl |¢., photon scattering matrices given in Sec. Il B. Using Egs.
and(9), the final one-photon state reads

N
“klfi = N e

in terms of the one- and two-photon states

2
== 279 ) s - op)(eL e k.
If)=Silip), (21 DL~ o keeg
(32
|92) = Toliz). (22 since the wave packétk;) is quasimonochromatic, we may

Following Eq.(12), we now apply the electric field opera- replace the argument of functions which vary slowilg., on
tor on the final photon state. It may annihilate either an elasthe scale of’) as a function ofw; by the constant value, .
tically or an inelastically scattered photon. CorrespondinglyApplying the electric field operator off), see Eq.(27),

we obtain the following three contributions: yields, under the assumptions given above:
3 3I(e.ep)g
. E= 72 ekith(k;). (33
[0 =EYRYIH=Z %), (23) 4o dR(wL ~ wo)
i=1
Similarly, we obtain for the inelastic part, see E@kl), (22),
with and(28),
023817-4
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[ (Ki=ke)r (1. * o a) : 1
\2¢ Th(k;) (e &) )|kf€f>- (@ | b o5
. i

9 =-26¢ >
o Kokrep (@1 = @0) (20 = wf = 0 ) | .

(34) i T
According to Eqs(29)—«31), we obtain the following inten-
sity 1=19+12+1,, of the photodetection signal:

s N 1 0 -2 o 2 0 2 4 °
_ _ _ (@-oy)r (@-o)T
=y 1= s (35)
FIG. 1. Inelastic resonance fluorescence spectRiffi(w) (in
units of 1'"/T), Eq. (41), for small saturations<1, (a) zero detun-
|o= N_1§+o(s3) (36) ing 6=w —w,=0, and(b) §=2I". The dashed lines indicate the
n=7T"N 2 ’ position of the elastic peak ai, see Eq(39).
with the prefactor
\ 1 = J do P"(w), (40)
(3FIeLeDI)2 -
7\ "4 o |- .
4dw R we obtain
The term proportional t&f,]gy)|? in Eq. (31) gives a con- (. rm 1 1 2
tributi . . . . PN () = + . (41)
ribution to the inelastic component in third orderspfvhich Ar |w-wy 20 -w-wy

can be neglected. As it should be, for lafde-such that the ) ) ) )
first photon can be absorbed without significantly changind™OF Zero detuninge, = w,, the inelastic spectrum consists of
the saturation induced by the remainifid— 1) photons—the @ Ppeak of width 0.6#, whereas for large detuning=w_

above result agrees with the elastic and inelastic components®@a: (1-€- if 43_2>F ), there are two peaks of width at
=w_ t 5, see Fig. £ Note that one of them is centered ex-

s 2 actly at the atomic resonance. Evidently, this will be impor-
le=n"7"3 ln=757 .3 (38 tant if we allow the scattered photons to interact with a sec-
2(1+s 2(1+s) .
ond atom, as we will do now.

of the resonance fluorescence as predicted by the Bloch
equationg26], expanded up to second ordersn

However, we have not yet accounted for the third term I11. TWO ATOMS
|3y in Eq. (23). If we compare Eqg(20), (24), and(26), we
note that|ys)+|ys)=VNE|fy_1), and hence the norm ¢;)
+|4) equals the norm ofy), Eq. (29), provided that the Let us now turn to the case of two atoms alone in vacuum.
norm of |fy_y) is 1. Although the latter condition is not nec- We assume that the second atom is far away from the first
essarily fulfilled if the scattering operator is truncated as inone, compared to the optical wavelength. This means that we
Eqg. (19), its unitarity will be recovered when including may restrict ourselves to processes where at most one of the
higher scattering orders. Similarly, it can be shown that contwo photons is scattered by both atoms. As shown in Appen-
tributions from (| 45)—if they are not of third order in dix A, the corresponding scattering matrix can then be ob-
s—are exactly canceled by other terms which appear irf@ined in a simple way from the single-atom scattering ma-
(] 1) when including into(y,| another inelastically scat- trix, see Eqgs(A9) and (A10): apart from the geometrical
tered photon pair. Hence the tefi) does not contribute to  Phase factorg 1.2 for absorption or emission of a photon
the photodetection signal up to second order in the saturatiolf) by atom 1 or 2, and the terms depending on the polariza-

A. Scattering matrix

parametes. tion, we only have to take into account the “photon exchange
By putting a spectral filter in front of the detector, we can factor”

resolve the power spectruR{w) of the detection signal, i.e., 3rder:

the probability of detecting a photon of a definite frequency B(w) = (42

w. Since elastic scattering conserves the frequency, the spec- 4wrif@— wo)

trum exhibits a sharp peak af (almost as function for our  depending on the frequenay of the doubly scattered pho-

quasimonochromatic initial wave packigt ton. In Eq.(42), we recognize the propagation of a spherical
@ (i) wave from one atom to the other otiaversely proportional
P(w) =1""6(w - o) + P (w), (39 1o their distance ), and the amplitudéw - )t describing

whereas the inelastic component depends smoothlyw.on scattering by a single atom, see E8).

The latter is proportional to the absolute square of the inelas-

tic transition amplitude, Eq11) (with w;=w,=w,_the initial ’The reader may have in mind that the resonance fluorescence
frequency,wz=w the frequency of the detected photon, andactually exhibitsthree peaks[28]. However, the one ab=w, is of
w,= 2w — w). With the correct normalization, higher order ins, since it arises from three-photon scattering.
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FIG. 2. Scattering of a single photon by two distant atoms. In
the coherent backscattering experiment, only the doubly scattered
photon is detected, see diagrais)) and (1e). Consequently, the
diagramg(1a)—1c), with single or no scattering, describe the unde-
tected photon.

In particular, the structure of the scattering operator as a
sum of an elastic single-photon and an inelastic two-photon

AN (2d)
o]

+

\\./
i

component is the same as before, compare @ysnd(10):

(kzes, K 4€4|$2)“‘1€11 ko€

:<k3e3\§12)\k151><k4e4\§12)\k252> + <k3€3|§12)|k252>
><<k4"f4|g12)|k151> + <k353uk454|T(22)|k151’k262>, (43)

where the single-photon component®? contains also the
nonscattered wave, see diagréha) in Fig. 2:

§12) =1-27 8 ws - wi)T(IZ). (44)

<

FIG. 3. Inelastic scattering of two photons by two distant atoms.
Only the doubly scattered phot¢full arrows) is detected. Since the
photon frequencies are changed by the inelastic scattering event at
the atom where both photons meet, the amplitude of the elastic
scattering event at the second atom depends on whether the inelastic
scattering occurs before the elastic ¢(c) and(2d)] or after[(2a)
and (2b)].

multiply the one-atom transition operatk:ef| Tlke), Eq.
(9), with the photon exchange factBfw;), see Eq(42), and

The remaining single-photon processes are also shown i adjust the geometrical phase factor. Furthermore, the fact

Fig. 2. The photon may be scattered by only one atbror
2), or by both(first 1, then 2, and vice versaCorrespond-
ingly, the single-photon transition operator reads:

g2

i — Wo

x{e®i 01 (ge;) + B(w)

X (€A 067 €Kiz 0] + ik (g €)

+B(w) (A€M} (45)

(kref| TP ki) = "

that the photon propagates in the directigr-r, between
the two scattering events implies a projectidy, of the po-
larization vector onto the plane perpendicular rtg-r .
Thereby, the terrrsie; (for scattering by a single atonis
replaced byeA ;€.

In the case of inelastic two-photon scattering, the doubly
scattered photon may be scattered first inelastighlyatom
1 or 2, and then elasticallfby the other atom or vice
versa, compare, e.g., the diagraf@s) and (2d) in Fig. 3.
Correspondingly, the frequency to be inserted in the photon
exchange factoB(w), Eq. (42), is either the final or initial

As mentioned above, for the two double-scattering pro{frequency of this photon, see E#\9) or Eq.(A10). In total,

cesses, see diagranisd) and (1le) in Fig. 2, we have to we obtain:
]
48wy + wy = w3 — 1 1
<k353,k454|T(22)‘k151,k252>:277ig ooy + 07 = g~ ) +
(w1 = wo) (@, = wp) W3~ Wy W4~ Wo

X[ei(k1+k2_k3_k4)r1{(6153)(52621) + B(wy) (€1A12€3) (626,)€¥10270) + B(wy) (€165) (€A 16, €271
+B(ws) (e1A1263) (€26,) € 32770 + B(a)a)(ﬁfg)(52A12€:1)e_ik4(r2_r1)}

+ ei(kﬂkzikfk“)rz{(flf;)(52521) +B(w1) (€1 1263) (626, 61172 + B(wy) (€1€5) (€211 6, €217

+ B(w3)(elAlze;)(EZEZ)e'ik3(’1"2) + B(w4)(515;)(62A1262)e_ik4('1'r2)}:| + (k161 < Koey).

(46)
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opposite to the incident wave, an effect which is known as
™Y coherent backscatteringn the case of two atoms, it arises
./ from double scattering: in the backscattering direction, a
photon scattered first by atom 1, and then by atom 2, inter-
b S

(2e) (2f) \\ an enhanced probability to detect a photon in the direction

feres constructively with the corresponding reversed path.
In order to examine cleanly this interference effect, we
— therefore assume that only doubly scattered photons are de-
tected. Experimentally, this can be realized by using circu-
g) (2h) larly polarized light e =(1,i,0)/\2 (in Euclidean coordi-
g \\ nates, where the axis is parallel tok,), and detecting the
scattered photons in the helicity preserving cham@e@{.
\\ /. /. This implies(e_e,) =0, i.e., no singly scattered photons can
[ ] ] be detected in the helicity preserving polarization channel. If
we look at the inelastic part of the scattering matrix, Eq.
(46), assuming(without loss of generalitythat the photon
o |k4€§) is the getected one, this means that all terms with
(€1€,) or (ey¢,) are filtered out. These are the diagrams
shown in Fig. 4, and only those of Fig. 3 remain.
(2i) (2j) \\ Concerning the elastic single-photon scattering, see Fig.
P PS 2, we keep the single-scattering diagrats)—1c) to de-
scribe the undetected photon. For the sake of completeness,
we will repeat in Appendix B the following calculation for
the case of scalar photons, wheaepriori, all the diagrams
) shown in Figs. 2—4 contribute.
1. Elastic contribution
FIG. 4. Remaining diagrams describing inelastic scattering of Let us begin with the contributiotf) of one-photon scat-
two photons by two atoms. In the coherent backscattering experit— . A ding to Eds(2 d 2|9 it is obtained b
ment, they are filtered out by using tiéh polarization channel ering. According 1o _qs( 7 an (. ), It is o ained by
(see Sec. Il B, in which a singly scattered photqopen arrows applying the e!ecmc field on the final stafy) of 5'”9'9'
cannot be detected. photon scattering. As explained above, only the diagrams
(1d) and(1e) in Fig. 2 contribute. At first, we concentrate on
the phase factors depending on the position of the atoms. If
k_ is the wave vector of the incident photon, and the detector
is located in the directiorky (with |kp|=|k,|, since one-

Here, the last line denotes additional terms arising from ex
changing the initialor, equivalently, fingl photons. We rec-
ognize two terms describing the scattering by atom 1 or hoton scattering conserves the freque :

. : AR : : ncye obtain
alone, see dl_agrarmgl) and(2)) in Fig. 4, and eight different .exp(irl-kL—irz-kD(‘:)] for (1d) and exmirjkL—m-kD) for
terms descrll_)lng the processes where both atoms are "Eie). Evidently, the phases are identicaki§=—k,, i.e., (1d)
volved, see diagram@a~(2H) in Figs. 3 and 4. Note that the and(1le) interfere constructively in the backscattering direc-

terms depending on the polarization allow one to identify th.etion. On the other hand, K, #kp, (more precisely: if the

photon which is scatt_ereq by both atoms. This photon Isangltsz betweerk, andkp is much larger than some charac-

T o 0 o T 1 ohen AWt gty th ererence betwea) and 19

that |k yez) isp the doubly scatte>;ed [))lhoton the.ten termsui':}?anishes when averaging over the positions of the atoms. For
262 , S ) .

Eq. (46) correspond(from top to bottoy to the diagrams simplicity, we fix the distance;, and average only over the

! - angular variables of ;—r,. In this case, the width of the
l('ggpe(gt?/ega) @h), (2d), (2, (2D, (2b). (29), and (20, enhanced backscattering sign@hich is also called “the

cone”) is given by6-=1/(wr4,). In total, we obtain both for
the background intensitgknown in the literature as the “lad-
B. Direct calculation of the enhancement factor der term”L), and the additional intensity in backscattering

Having at hand the scattering matrix, we now determined_irection(the “crossed termC) twice the resultys/2 of the
the intensity of the photodetection signal. In principle, theSingle-atom case,
calculation can be performed in the same way as in the D — ~O) =
single-atom case, Sec. Il C. However, the detection signal LY=C"=7s, (47)
will now depend nontrivially on the position of the atoms o
and the detector, due to the fact that the photons emitted L§Part from a modification of the prefactor
one atom interfere with the photons emitted by the other one. ro\2
Eve_n if we average over the positionsandr, of the atoms, _ %= ( 3 ) (\B(wL)IZ\sLAlzeE,F)r (48)
the interference is not completely washed out. There remains 4dw R 1.2
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3 o2 2 Let us examine first the diagran®a) and(2b), where the
=§ 16dw2Rr o - i) (49) elastic scattering event occurs before the inelastic one. Here,
L% o the single-atom scattering amplitude is multiplied by a con-
Here, Eq.(48) implies an average over the positions of the stant factorB(w; ). This means that—apart from the modifi-
two atoms. The polarization-dependent tef@A,e|2  cation of the prefactop—both |28 and|2bj? give the same
=sirt /4 is given by the angl® between the incident laser result as in the single-atom case, E(l) and(36),
k, and the two atomsy,=r,-r,. Then, a spherical distribu- - 2
tion of r1,, at fixed distance,,, yields the result given in Eq. I = n f dwP™(w) = 7. (52)
(49). The fact that.P=C™® can be traced back to the reci- i 2
procity symmetry{4]. In the other two case&c) and (2d), the fre
- . , quency to be

Next, we examine the |nterf_erenc_e betyveen two'phom.rfnserted in the factoB(w), Eq. (42), equals the final fre-

and one-photon scattering, which gives rise to the elastlcuenc of the detected photoar. equivalently of the unde-
1(2) f the int ity i d ord ]c S q y : p Wv q Y,

component,,” OF the in ens:g_ln Seconad order 6/ See S€C. o ntay” one, sincdB(w)|?=|B(2w, - w)[?). Hence a factor
I C.Act(_:ordmg t? Eq.(tBCt))’ lg 'sdg'venftt’z the gvte”?pdm Lhe |B(w)|? must be inserted in the integral over the inelastic
respective guantum sta #s) and|g,) of the un’ etected pho- power spectrum, Eq40). The resulting integral can be eas-
ton, which amounts to a sum over the latter’s stk (i.e., ily performed, and yields
(91| f) == (01|keXKke|f1)). First, we concentrate on the ’
phase factor exgrik -r; ,) of the undetected photon, depend- 7 f d

_7 W~ Wo
ing on whether it is emitted by atom 1 or 2. Integrating over L= "
the angular variable®, of k (at fixed|k|=w,), we obtain, if
k) is emitted by different atoms: Hence the four diagonal termg4?,...,|2d?, give the fol-

lowing contribution to the inelastic background intensity:

2 £(3 &

> ) (53

w ~ Wg

f koetik(rl—rz) - 4#M <1. (50 ) (7 52
w12 L0 =21, + 21, = n(, + —2)32. (54)
4 T
ote that, for6=0, the contribution from Eq53) is smaller
than the one from Eq52) (by a factor 3/4. This is due to
the fact that, after the inelastic scattering event, the photon
frequencies are no longer exactly on resonance, see (@ig. 1
which reduces the cross section of the scattering by the other
tom. The opposite is the case for large deturingere, the
nelastic scattering brings one of the two photons close to the
atomic resonance, see Figb}, thereby increasing the cor-
sponding contribution to the background signal.
The inelastic component of the enhanced backscattering
ks_ignal arises from the interference(@g) with (2d), and(2b)
ith (20). (Remember that every diagram interferes only
ith those where the undetected photon is emitted by the
same atom.As argued above, equality of the corresponding
geometrical phases, and thereby full constructive interfer-
ence, is guaranteed if the wave vector of the detected photon
L@e) = cl2eh = _ g7¢2, (51) is opposite to the incident wave vector, i.ep=-k,. Obvi-
ously, this condition will not be exactly fulfilled in the pres-
Note that the total elastic ladder term, E47) and Eq.(51),  ence of inelastic scattering, even in exact backscattering di-
equals the total elastic crossed one, B) and Eq.(51).  rection (since in generalkp| # |k, |). The difference can be
This means interference with maximal contrast, correspondaeglected, however, if we assume that the atomic linewlidth
ing to the maximal possible enhancement factor of two.  and the detuning=w, - w,, i.e., the parameters which de-
termine the width of the power spectrum, see Fig. 1, are
2. Inelastic contribution much smaller than the inverse of the distangebetween the
atoms:

Since we have assumaad rq,,>1, the above term can be
neglected. In other words, diagrams where the undetect
photon is emitted by different atoms do not interfere in lead
ing order of 1{w.ryy). If we now select one of the four
diagramg2a)—(2d) describing two-photon scattering, we can
discard among the three one-photon diagrét&—1c), the
one where the undetected photon is scattered by the “wron
atom. The remaining two exactly give the final state of a
photon scattered by a single atom, as described by(Zg,.
Concerning the detected photon of the one-photon s;catteriné(,a
we can choose either diagrafhd) or (1e). As already dis-
cussed above, one of them gives a contribution to the bac
groundL, and the other one to the enhanced backscatterin
signal C. As there are in total four diagrani2a—2d), we
obtain both forL and C four times the result #s? of the
single-atom case:

The inelastic componeny, of the intensity, finally, arises
from two-photon scattering. Here, the overlép |g;), see c
Eq. (31), again implies a sum over the undetected photon, ST < P (59
which now may have a frequency different from. With 12
two atoms,|g;) is a sum of four different contributions, cor- In other words: the propagation time,/c between the at-
responding to the diagram@a)—(2d). Correspondingly, we oms is much smaller than the time scales associated &vith
obtain diagonal termg|24?, ...,]2d?), which contribute to and['. This condition ensures a vanishing geometric phase
the background signal, and interference terms, which maglifference, i.e., eXgk_+kp)-(r;-r,)]=1, and is well ful-
contribute to the backscattering cone, see below. filled in the experimenf21]. What remains is the integration
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over the inelastic spectrum, taking into account the photon 2
exchange factorB(w,) or B(w) in the case$2a) and(2b) or
(20) and(2d), respectively:

- § 3 K
zf do RE{M}F’('”)(LU) =~ s, (56) o
W= wy 4

Here, we have neglected the exponential faaét vz

=1 describing the propagation in the vacuum, the same ap- 12
proximation as above, see E&5). From the two interfering

pairs of diagrams, the inelastic contribution to the back- 1
scattering signal is obtained as twice the result of &) 0 2 4 6 8
with modified prefactofs: %

10

) 3 FIG. 5. The enhancement factor (8 +sq)/ (4 +s) as a function

clim :77552. (57) of the incident intensitys;, and large detuning=w_ —w,. If &is
not large, the displayed curve is valid only up to intensitgs 1

Note thatCi™ is strictly smaller than the inelastic back- *+46/I'%, corresponding to a small saturation parameterl, cf.

ground, Eq.(54), which leads to a reduction of the back- Eq. (61).

scattering enhancement factor, see below. This is consistent

with the fact that two interfering diagrams, e.g2a and the detuningsis of the order of the linewidtt’, this implies

(2d), are no more linked by the reciprocity symmetry: only thatsy must also be small. In this case, E§2) yields

diagrams with identical initial and final photon frequencies

interfere with each other, whereas the reciprocity symmetry a=2- E. (64)
connects diagrams where initial and final frequencies are ex- 4
changed. In principle, however, we may choose also a large value of

the detunings, as long as we stay near resonant, and fulfill
(8IT)2<1/(wr1»)%% This means thas, may be large al-
Adding all contributions, we have thoughs is small, see Eq61). In that case, the enhancement
9 & factor is given by Eq(62), with x=5¢/4, see Fig. 5. This
L=L® 4 @e) g (n =7]<5_ =2+ 752) , (58  equation is valid for all values a corresponding to smad
4 T i.e., 5<1+48/T2
It may appear surprising that the enhancement faator

3. Double scattering enhancement factor

o 5 depends only on the intensity of the incident light, see
—c® 4+ ce) 4 clim = _2 ) 3 ;
C=CU+Co9+C= 7/<5 252>- (59 Eqgs.(62) and(63), whereas the intensity scattered bgiagle
) ) atom is determined by the saturation paramstesee Sec.
Finally, the double scattering enhancement factor reads: || C. This result is related to the form of the inelastic spec-

L+C 8-(19-421?)s trum, see Fig. 1: since one of the two photons is always close
= = o (60) to the atomic resonance after the inelastic scattering, the
L 4-(9-452)s asymmetry between the reversed patbse the following
Remember that single scattering has been removed by trRection is larger for larger initial detuning, ataglven value
helicity-preserving polarization channel. of s. Thereby, we can understand W_hy, at a fixedhe en-
At this stage, it is convenient to introduce the saturation/@ncement factow decreases when increasingHowever,
parameter on resonance: we are not aware of an intuitive explanation why the relevant
parameter turns out to b, and not some other, similar

o

2d%1,, ( 452> combination ofé ands.
= =|1+—]s, 61
0= T4 12 (63
which depends only on the incident intensity (and not on C. Interpretation

the detunings). Then, Eq,(60) can be rewritten: In this section, we discuss the physical mechanism re-

2+X sponsible for the reduction of the backscattering enhance-

a= 1+x’ (62 ment factor. As we have seen above, it originates solely from
inelastic scattering. For this reason, we will only consider
with inelastic scattering in the following.
X= 2 % (63 3
T4-16 4 This condition impliessy|B(wa)|>< 1, see Eqs42) and(61), and

] ] thereby suppresses exchange of more than one resonant photon be-
Here, we have used thatis small, otherwise our perturba- tween the two atoms, leading to terms proportionatt¢or higher
tive treatment(two-photon scatteringwould be invalid. If  ordes.
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path I path II ence pattem(e).4 A further loss of contrast originates from
T the fact that the inelastic scattering may take place either at
; /0 /0 atom 1 or 2. As discussed in the previous section, those two
o * o 0 + cases do not interfere with each other, i.e., they are added
! o incoherently. For reasons of symmetry, the corresponding
® + — D+ (g pairs of scattering amplitudes are identical, except for a

L 0 change of sign of the detection angleHence we obtain the

intensity 1(6) of the detection signal as follows:
FIG. 6. Two reversed scattering paths, whose interference gives

rise to enhanced backscattering. The left atom scatters inelastically, 2

changing the photon frequency from to wp. Consequently, the 1(0) = de(\E|(wD,0) +Ey(wp, O + |Ey(wp,— 0)
amplitudes of the elastic scattering event by the right atom are

different for both paths, see Eq®5) and(66), leading to a reduc- + E\(wp,— 0)|2) (67)

tion of the backscattering enhancement factor.
=21, +1y)[1 +V cogkr, 0)], (68)
1. Coherence loss
with |, the intensity of paths | and Il, respectively, see Egs.

Generally, coherent backscattering arises from construgs2) and(53). Using Eqs(65)—(68) yields the following in-
tive interference between two scattering paths where the deerference contragalso called “visibility”):

tected photon interacts with the respective scatterers in op-

posite order. The maximum enhancement factor of two is B 6

obtained if every path has a counterpropagating counterpart V= 7+ 48RT2 (69)

with the same amplitude. In the case of two photons, a “scat-

tering path” in principle also specifies the final st##¢ of ~ Averaging over the positions, andr, of the atoms does not
the undetected photon. As we have seen above(dBy.the  affect the intensity observed at0; it only reduces the side
average over the angular variables of the undetected photanaxima and determines the shape of the backscattering
destroys interference between paths where the inelastic scdtone.” Thus the contragt=Cli"/L™ equals the ratio of the
tering occurs at different atom@ the atoms are far away “ladder” and “crossed” term calculated in Sec. Ill B, see Eqgs.
from each other Consequently, if we concentrate on the (54) and(57), and is hence directly related to the backscatter-
detected photon, we should compare only the two reverseithg enhancement factor. Remember, however, that we have
paths where the inelastic scattering occurs at the same atoronsidered only thenelasticcomponent of the detection sig-
and the final frequencywp=2w_ —wy is the samedue to  nal so far.

energy conservationas shown in Fig. 6. Here, the left atom  In general, a reduced contrast of two-wave interference
is marked as the one which scatters inelastically. Neglectingriginates either from a loss of coherence or from an asym-
the propagation in the vacuum, see [Eg8p), the amplitudes metry of the individual intensities of the two waves. More
E,, of the two reversed paths are obtained by multiplyingprecisely, let us assume that the interference signal varies
the scattering amplitudes of the elastic and inelastic scattebetweenl ., and | ;. Since the mean valu@ at | min) /2

ing event, Egs(9) and(11). Since the elastic scattering oc- =1, +1, equals the sum of the intensitigs, of wave 1 and 2,
curs at two different frequencies, and wp, the amplitudes the contrast is given bY=(I na—Imin)/(211+215). Then, the

are not identical: degree of coherence (see[30], pp. 499-508is defined as
_ 2141,
1 1 gikr 612 V=y . (70
E = ( + ) , (65) I +1;
wp—wy 2w —wp— wy) wp— wg

In other words, in the asymmetric calse* |, the contrast is
reduced(i.e., V<1) even if the coherence is perfectly pre-
1 1 glkr 012 served(i.e., y=1). This case is analogous to a double slit
By = ( )

+ , (66) experiment performed with a perfect monochromatic plane
wp~wy 20 ~wp=wp wave, but different slit sizes.
In our case, we identify the two interfering waves as the

where 6 denotes the angle between the detector and baclyght emitted by atom 1, on the one hand, and by atom 2, on

scattering directiony, the perpendicular distance between the other one. Taking int_o account that the inelastic scattering
the atoms, and prefactors not dependingagnor 6 are ig-  €/ENt May take place either at atom 1 or 2, we see that the
nored ' corresponding intensities are identical:

Equationg65) and(66) are valid for fixed final frequency
wp. In reality, howeverwp is a random variable, which im- 4n general, fluctuations of the phase and of the absolute value of
plies that the ratioE,/E, between the amplitudes of both E /g, both reduce the degree of coherence. In our case, the phase
paths fluctuates randomly. This leads to a loss of coherendtictuations have a stronger impact, at least for moderate values of
between the two paths, i.e., a loss of contrast in the interferthe detunings (not much larger thai’).

L~ Wg
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li=1=1+1y, 7D DY = (Ey(2w - oy, )€K 1+ E (20, — wy,— 0)eK"2)
ke
i.e., both atoms emit the same intensity. Hence the reduction x|ke) (75)
of contrast can be entirely attributed to a loss of coherence, ’
i.e., V=7v. As mentioned above, it originates both from the Here, we have included the phase facter§ 12 indicating
average over the spectruma®f and from the random choice whether the inelastic scattering occurs at atom 1 or 2. As
of the inelastically scattering event at atom 1 or 2. The relaalready mentioned, interference between those two cases
tive importance of those two noise sources depends on th#goes not contributéin leading order of 1érq,) to the over-
value of the detuning. Indeed, if we consider only one pair lap (D,|D,), see Eq(50). Since|D;) and|D,) are not iden-
of the reversed paths I and II, i.e., if we fix atom 1 or 2 as thesical, the state of the undetected photon contains information
inelastically scattering one, we find a finite average phasabout which path the first photon has taken. According to Eq.
difference (73), this leads to a reduction of the degree of coherepce
which, in our case, equals the contrastsincel,=I,, see
26 Egs.(70) and(71). Thereby, we can rederive the above re-
¢= arctar(§> (72) sult, Eq.(69).

Let us note that the interpretation in terms of a which-path
gxperiment remains valid if we include the elastic compo-
nent of the photodetection signal. Since, here, the undetected
photon(described by the single-photon diagrams in Figis2

between the two paths, i.e., the maximum of the interferenc
pattern is then shifted by an angle=¢/(kr ) away from

the exact backscattering directig=0. The second pair of . - )
reversed paths, where the inelastic scattering occurs at t t correlated with the detected photon, the elastic contribu-

other atom, leads to an identical shift, but in the oppositd'"S t0|Dy and|D,) are identical. This leads to a larger
direction. Hence the random choice of the inelastically scatgjverl""p<Dl‘D2> and, consequently, smaller loss of coher-

tering atom reduces the contrast by a factor(os (1 ;a_ngehthan fcl)r t_he/in_elastic ?ot?tributiqn alone._ In total, we
+482/91'?)712, which is negligible only in the case of very " the result’=C/L=a—1 of the previous section, see Eq.

: (60).
<I. ’ .
small detunings<I Finally, we want to stress that there is no loss of coher-

ence associated with the inelastic scattering “on its own,” but
only in connection with the frequency filtering induced by
An alternative physical explanation of the coherence losghe elastic scattering event. This can be demonstrated as fol-
can be obtained by an analogy to Young's famous double-sli#ows: let us imagine that the response of the second atom is
experiment. As it is well known, interference is necessarilyfrequency-independent, i.eB(w)=const in Eq.(42). Then,
destroyed whenever we observe which slit the particle passdge amplitudes of two reversed paths, see E&fS.and(66),
through(see, e.g.[31)). If |D;) and|D,) denote the quantum are identical, the undetected photon does not carry any
states of the which-path detector corresponding to slits 1 anghich-path information, and we recover the enhancement
2, the degree of coherence is obtained as the overlap of tHactor two, even in the presence of inelastic scattering. Such

2. Which-path information

normalized detector stat¢&9]: a situation can be realized, e.g., by choosing atoms with
different linewidthsl",>T";, such that atom 2 cannot resolve

[(D4|D,)| the spectrum emitted by atom 1. In this case, a significant

= —_— (73 reduction of the enhancement factor is observed only if we
\(D4|D1XD|Dy) increase the distancg, between the atoms, such that the

propagation in the vacuum becomes relevant.
This implies perfect coherence=1, if the paths are indis-
tinguishable(i.e., if the detector states are identicahnd
total loss of coherencey=0, if the paths can be distin-
guished with certaintyi.e., if the detector states are orthogo-  In summary, we have presented a calculation of coherent
nal). The corresponding interference contrast follows via Eqbackscattering in the presence of saturation. For two distant
(70), with 1,=(D4|D;) andl,=(D,|D,). atoms, with single scattering excluded, the slope of the back-
In our case, the path detector is given by the undetectegcattering enhancement factor as a function of the incident
photon. Remember that its frequency is correlated to the on@tensitys, at s,=0 equals ~1/4, independently of the value
of the detected photon, due to conservation of energy at thef the detuning. The reduction of the enhancement factor can
inelastic scattering event. Therefore the different dependendee traced back to the following two random processes: first,
of the amplitudesE, , of paths | and Il on the frequency of the frequency of the photons may be changed by the inelastic

the detected photon, see E¢85) and (66), reflects itself in ~ Scattering event, which may, second, occur either at the first
the final state of the undetected photon: or at the second atom. Both procesfés latter one only for

nonzero detuning, see E.2)] lead to a random phase shift
_ ikr ikr between the doubly scattered light emitted by the first atom,
Dy = 2 (Ei(20 - oy, )™ "1+ Ey (20 - wy,— 0)e7"2) on the one hand, and by the second atom, on the other one,
ke resulting in a loss of coherence. Alternatively, the coherence
G (74) loss can be explained by regarding the undetected photon as

D. Conclusion
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a which-path detector: its final state contains information Ly & Ib) t
about whether the detected photon has been emitted by the 1 ™ 2 1
first or second atom, thereby partially destroying coherence : ;
between those paths. P03 4 P03

Starting from the solution of our model, we can think of 1la) t
extending it to more general scenarios in two different direc- 1 Z*Z%L 2% 1
tions, either increasing the number of photons, to reach
higher values of the saturation parameter, or the number of
atoms, to treat a disordered medium of atoms. Since the 3= 4 B4 3
complexity of the scattering approach increases dramatically Tla) M)
with the number of scattered particles, it may be more prom- L 2
ising to use other methods, such as the optical Bloch equa- 2 1
tions[26], in the case of high saturation. The opposite is true
for a large number of scatterers, where we can resort to
known concepts from the theory of multiple scattering. An
important question, which myst be so_lved in order to inter- g, 7. Diagrams describing scattering of two photons by a
pret the results of the experimef1], is how the average sjngle atom(la,b) and two atoms(lia,b) and (llla,b). The curly
propagation of the two-photon state in the atomic mediumines represent photons and thin or thick lines an atom in the ground
affects the coherent backscattering signal. or excited state. In order to simplify the comparison betw@gand

(I, we split the diagrams into a right and a left hedte texx

4 3 3 4
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APPENDIX A: TWO-ATOM SCATTERING MATRIX other, being scattered by different ator(is at all). This

) . ) means that the evolution operator is the product of the two
In this appendix, we calculate the scattering of two pho'single—photon evolution operators:

tons by two atoms. For this purpose, we use the following
expansion of the evolution operatbi(ty,t)=exd—i(Ho+V) UR(t,1) = UV (t, U2 1y, 1), (A3)

X(t-t)]: and likewise for(la), (Ib), and(llb). Note that the evolution

* ot t t of the first photor(1— 3) depends only oql) or (1), and not
U(tp,t) = E dtlf dty- f dt, Ug(to,t1) on (a) or (b), and vice versa for the second photon. Thereby,

n=0 1o t th-1 if we want to compare the one- and two-atom cases, we have

XVUq(ty, t)V - - VUq(t, 1), (A1)  toconsider only the two single-photon diagrau](§|1>, which

are illustrated in Fig. 9.

whereUq(to,t) =exf —iHo(t—to)] denotes the free evolution.  The first one simply describes the emission of photon
With each interactiorV, see Eq.(3), an atom may emit a |ksez) by an atom located at;, followed by free evolution:
photon or absorb one of the two photons. The corresponding - ) 5\ ikt ion(tety)
“paths” connecting the initial and final two-photon stéite VU (g, 1) = ~ig(e eg)e s Te s, (A4)
=|ky€1,koep) and |f)=|kses kaes) can be represented dia- | the second case, the photon is scattered by the other atom.
grammatically, see Fig. 7. , Here, we have to take the sum over its intermediate state. For

~ Here, (la,b) describes the scattering of two photons by age calculation, it is convenient to express the time evolution
single atom[27], and (lla,b) and (Illa,b) the scattering by
two atoms. Let us first concentrate @la,b) and (lla,b),
where the inelastic scattering event occurs before the elastic % - % + % + etc.
one. Note that in(lla), we have not specified the order in % % %
which the photons are emitted or absorbed. What we mean
by this is a sum over all possible orderings, as indicated in FIG. 8. Independent scattering of two photons by two different
Fig. 8. As we will see below, however, the sum need not beatoms. This diagram appears as a building blocKlm) and(lllb),
explicitly evaluated. Fig. 7.
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Doy, LS ing the diagrams where the two atoms and/or the two pho-
‘%,)Ez& L) "1 tons are exchanged.
ke Y}
ks & kyg APPENDIX B: THE SCALAR CASE
FIG. 9. (I) Emission of a photorksez) at timety. (1) Photon In this appendix, we calculate the photodetection signal
emission and subsequent scattering by the second atom. for scalar photons. Although they are not suited for coherent
backscattering, since single scattering cannot be excluded,
in terms of the corresponding Green’s function: the squtlon_WlII be useful for_ a future comparison Wl_th the
results obtained from the optical Bloch equations, which can
dz b Ived h ily in th |
.1 _ | 97 ity e solved much more easily in the scalar case.
VUIr(t,y o e G @, (AS) As in the vectorial case, we consider contributions to the

. ) o detection signal up to second order in(@/r;,). We neglect
where the contouC™ runs just above the real axis, i.&,  those terms whose order in (I r1,) is changed by the an-
=x+ie, €0, fromx= +o to —», and the Green's function of 4 1ar average over,,.> Furthermore, we consider only con-

the above diagranl) reads: tributions which do not oscillate rapidly as a functionrej;,
D —ig3(e,€) (eep)e ik Tatitk Ky i.e., which survive an average ovep over one wavelength.
CIIGED (A6) First, since the two atoms may scatter independently from

e (27 @(Z-wo)(z- wg) each other, we obtain two times the single-atom result, see

In the continuous limit(L — ), the sum is replaced by an EGs-(35) and(36):

integraI[Ekz(LIZw)3fdk]. The result of the integraA6), in LEO = p(s-28?), (B1)
leading order of 1(wsrq,), reads:
3iTg(eyA 1 pe5)6 Ko7 267102 L0 = 5, (B2)
G Y(z) = 0(€e1A10€3) . A7) . . o .
Awsr 152 = wo) (2~ w3) which contributes to the background intensity Here we

Here,A,, denotes the projection onto the plane orthogonal tdwave to tak? into account that the Ilfetlrﬁea_nd the prefac-
r,—r,. Finally, in the contour integralA5), only the pole at tor 7, are different in the scalar and vectorial cases, respec-
7=, contribu’tes(if t—t,>1/T): ' tively. Instead of Eqs(5) and(37), the following expressions

L ) hold for scalar photons:

VU P(t,1) = ig(€,A e e ko 2eT st Rl
3relws2 I's= 7wat, (B3)
—_—. (A8) 2meg

4wl 19(w3 = wo)
Comparing Eqs(A4) and(A8), we see that the contribution - I's )2
to the two-atom scattering matrix represented(bg,b) is s 2do R/ °
given by the one-atom matri®, times a correction of the

geometrical phase and the polarization, times the photon ex- N€xt, we consider the cases where one photon is ex-
change factoB(ws), see Eq(42). changed between the two atoms. These contribute to the de-

tection signal in second order of (i, r,). Concerning one-

(kses,kaeq|S [k 1€1, ko) = (Kzes kaeq| S|k €1,k €2) photon scattering, only the diagransd) and (1e), Fig. 2,
_ (eA156) are relev_ant, and we obtain the same result as forhtire
x @kalrar) AT g, channel in the vectorial case, see E4jl):

(e1€63)
LD = clelD = 7dBl%s, (B5)

But with modified “photon exchange factor”

(B4)

(A9)

What remains is the contribution, where the elastic scatterin

occurs before the inelastic one, represented by diagrams T

(INa,b) in Fig. 7. The calculation can be repeated in almost

the same way as above, or simply by noting thifa,b) is

related to(lla,b) through time reversal, and the result is compare Eq(42).

_ The elastic contribution quadratic marises from inter-

(kaez KaealSulkaer koep) = (Kaea kaed S kser koer) ference of two-photon and one-photon scattering. Let us first
€A 156,

)( 1212 3)B(wl).

(e163) SThese terms give the corrections of the average photon propaga-
(A10) tion induced by a disordered medium consisting of only a single
atom. In the case of many disordered atoms, they are taken into
Here, the photon exchange fac®fw) is evaluated at the account by renormalizing the single-photon propagation, in order to
frequency of the initial photon. The total scattering matrix isdescribe the mean free path and refractive index of the atomic me-
now readily obtained by adding§, andS,,, and also includ-  dium.

=, (B6)
20T (W~ wp)

X efikl(rrrz
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look at diagram(2a). As before in thehllh channel, it inter-  tribution 2,,, see Eq(52), is multiplied by a factor of 4, and
feres with(1a)+(1b) for the undetected photon, aritld) or  the backscattering cone, E&?7), by a factor of 2. We obtain:
(1e) for the detected photon, giving rise toydB|?s? in back-

grqundL and th_e cone, ljesp'ectllvely. Including single scat L2 =) +8|, = (7 + 72) B2, (B9)

tering, we obtain a contribution: the detected photon may be 4 T

singly scattered1b), and the undetected photon either dou-

bly scatteredle), or singly scattered by the other atdfr). cin2 = 3, |B[2s2 (B10)
=37 .

Here, the statg¢le)+(1c) of the undetected photon exactly
corresponds to the statda+(1b), in the previous case. What we have not taken into account so far is interference
Consequently, we obtain another term¢B|?s? in the back-  petween two diagrams where the undetected photon is emit-
ground. ted by different atoms. According to E¢50), the angular
With diagram(2b), the above considerations can be re-integral over the undetected photon then yields
peated in almost the same way. The difference f(@a is  sin(wr,,)/(wr;,). Hence if one of the two diagrams contains
only that the detected photon propagates in the opposite diz photon exchange, we obtain a contribution proportional to
rection. Consequently, we obtain atermyB|°s”in the cone  |BJ2. However, it can be shown that these contributions are
C, instead of the backgrourid exactly canceled by other contributions originating from the
Diagram(2e) is identical to diagran(2a), since we cannot  diagrams(2g) and (2h), which also have been neglected so
distinguish between singly or doubly scattered photopen  far. For example, the interference (fg) with (1¢) for the
or full arrows in Figs. 2—3in the scalar cas€20), (2d), and  detected photon and.c)+(1e) for the undetected one is can-
(2f), finally, are obtained by exchanging the atoms. Addingceled by the interference @j) with (1c) for the detected

all contributions mentioned above, we get: photon and(le) for the undetected one. Similarly, the term
L2 = — 105 B[?, (B7) |29? is canceled by the interference @g) with (2)). The
underlying reason for all these cancelations is that which the
cleld - _ 8775\8\252. (B8) undetected photon does after the inelastic scattering is irrel-

evant. We are only interested in its norm, which is not
As for the inelastic component, we only have to includechanged by subsequent scattering evésiig to energy con-
the new diagrams(2e,f), which—as already mentioned servation. Hence the final result is given by Egs.
above—are identical t¢2a,h. Hence, the background con- (B1)«(B10).
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We theoretically study the propagation of light in a disordered medium with nonlinear scatterers. We
especially focus on interference effects between reversed multiple scattering paths, which lead to weak local-
ization and coherent backscattering. We show that, in the presence of weakly nonlinear scattering, constructive
interferences exist in general betwehreedifferent scattering amplitudes. This effect influences the nonlinear
backscattering enhancement factor, which may thus exceed the linear barrier two.

DOI: 10.1103/PhysRevE.71.055603 PACS nunid)er42.25.Dd, 32.80-t, 42.65-k

Light transport inside a nonlinear medium gives rise to anonlinearity, CBS arises from interference between three am-
wide variety of phenomena, such as pattern formation, fouplitudes. Depending on the sign of the nonlinearity, this leads
waves mixing, self-focusing effects, dynamical instabilities,to an increase or decrease of the nonlinear CBS enhancement
etc.[1]. These effects are well described and understood witlfactor compared to the linear value two. Since the same
the help of an intensity dependent susceptibility, ex§®,  physics is at work for weak localization corrections to trans-
nonlinearity. However, in these approaches, one usually disyort, a corresponding change of the diffusion constant is ex-
cards the fact that interference phenomena in disordered Sygacted, too. Because, for photons, CBS is easier to observe

tems may significantly alter wave transport properties. INyhan weak localization, we specifically concentrate on the
deed, considering the return probability to a given point, allrgrmer.

scattering paths are now closed loops. Then tthe-wave In this paper, we calculate CBS by a dilute gas of nonlin-

interference between amplitudes contra-propagating alon ar scatterers. We assume that the cross section of a single

these loops typically increases the return probability by a . L ) :
most a factor of 2, inducing a decrease of the diffusion conScatterer situated at positioninside the disordered medium

stant (the weak localization effegt How nonlinear effects depends on the local intensityr) as follows:
affect weak localization is basically unknown and the present o(t) = o[l +al(r)], 1)
paper is aimed at showing that this could be more important
than naively expected. Coherent random lag8fsre prob-  where o denotes the linear cross section, andjuantifies
ably the most striking systems intrinsically combining boththe strength of the nonlinearity, which is proportional to the
nonlinear effects and disorder. Even if in this case one would/® coefficient of the scattering material. The local intensity
require an activéi.e., amplifying medium, a key pointis the I(r) is the intensity due to all external sources, i.e., the light
understanding of the mutual effects between multiple interradiated by all other scatterers and the incident light penetrat-
ferences and nonlinear scattering. ing the medium untilr without being scattered. For future
An effect similar to weak localization isoherent back- convenience, we measure') in units of the incident inten-
scattering(CBS) where an enhancement of the average in'sity I;n (before entrance into the meditinThus, « is dimen-
tensity scattered around the direction opposite to the incider§ignless and also proportional k. The general forn{1) of
wave is observed3]. In the linear scattering regime, CBS the nonlinear cross section is obtained under the assumption
also arises from a two-wave interference between amplitudes; small scatterers, i.e., constant local intensity inside the
entering and leaving the medium in opposite directions andcatterer, wealy® nonlinearity(i.e., higher-order terms like
contrapropagating along all possible scattering paths. Thug negligible, and isotropic scattering. The following treat-
both the CBS and the weak localization are described by thgyent can also be generalized to the nonisotropic case, how-
so-called “maximally crossed diagrampl]. The CBS en-  gyer. At the end, we will present numerical results where we
hancement factor, defined as the signal detected in the exaglke into account the polarization state of the light field.
backscattering direction divided by the diffuse background, Besides the scattering cross section, the second ingredient
never exceeds two. This maximum value is reached if eacheeded for the description of a multiple scattering process is
pair of interfering waves has the same amplitude, and ifhe propagation between two scattering events. Under the
single scattering can be suppressed. Previous studies of thgndition that no other scattering event occurs in between,

nonlinear regime have been restricted to the case of lineahe disorder averaged intensity propagator is given by an
scatterers embedded in a uniform nonlinear medi6AY7].  exponentially damped spherical wave

Here, it has been shown that the maximum enhancement
factor remains two. _ glrrian

As we will show in this paper, however, the situation P(r.r ):m' )
drastically changes in the presence of nonlinear scattéinng
contrast to nonlinear propagatjorin particular, in the per- Here,(1/¢) denotes the mean value of the inverse mean free
turbative regime of at most one scattering event with ~ path along a straight line connecting the two scattering
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events atr andr’. In the linear caséa=0), the mean-free- A
path{, is constant, and is related via = Noy to the linear
cross sectionrg and the scatterer density. This relation is

a consequence of energy conservation, which ensures that
the exponential attenuation of propagating field modes origi-
nates solely from scattering into other modes. Similarly,
since we assume energy conservation for the nonlinear case, ¢\ 7

too (i.e., no absorbing or amplifying scattergr&e can also + + Y

derive the nonlinear mean free path from the nonlinear scat-

tering cross section, E¢l). Since the nonlinear contribution %

to the total intensityo(r)I(r) scattered front is, according FIG. 1. In the perturbative approach, we assume a single non-
to Eq. (1), proportional toal(r)?, we need to know the [inear (), but arbitrarily many linear scattering ever(®). The
disorder-averagedgquaredintensity for this purpose. In a nonlinear event symmetrically connects two linear propagators with
perturbative expansion up to first order i we can here each other. One of them finally reaches the detector placed in back-
replacel(r) by its linear counterpaiy(r), whose fluctuation scattering direction.

properties are well knowfi8]. By assuming uniformly dis-

tributed phases for the fields radiated by the other scatterefgyn. Finally, the average intensity of the backscattering sig-
(which is valid in the case of a dilute medinone obtains 5] follows via

13(r) = 2(r)? - (6702, 3

L =NJ (lre’z<1"”'> X a(NI(r), (7
The second term, witlz the distance from the boundary of vA
the medium tar along the incident direction, represents theWith A the transverse area of the medium. Expanding again
squared intensity of the incident, coherent mode. It accountPO the first order ina, we identify the Iinea.r and nonlinear
for the fact that—in contrast to the diffuse light—ttimean part, L=Lo+L respe:ctively According to whether origi-
coherent mode intensity does not fluctuate for different real-nate’s frorc;”l thlé cross sectic-m or the mean-free-path (or
Izations (.)f the _dlsorder. By equa_ltlng the intensity I.OSS due t%), the latter splits into a nonlinear scattering and nonlinear
propagation with the scattered intensitye., employing en- ropagation component. i.d.=L+L® For a slab ge-
ergy conservation we therefore obtain from Eq3) differ- p pt g . thlf) ; ’I.' 1= lt' Ilth: K gg—L/eg
ent expressions for the mean free paths for diffuse and cgmelry ot lengtnt, 1., (linean optical thickness=L/¢q,
herent light we obtain

b
11 — Lo= f ddlg(0e, (8
) gL 2alen), (4 o

b
11 L =a f ddlo(9)[216%(¢) — ], ©)
- 0

- 1 (r) — —2Z/€
o €O(l+2a|0(r) ae ), (5)

We can now write down a nonlinear radiative transfer o) _ b —, — R
equation for the average intensitfr) inside the disordered L7 =-a | ddo(9[2167(0) — 2" (b) e +e™],
medium. Radiative transport is obtained by represeriting 0
as the incoherent sum of the coherent incident field mode (10

plus the diffuse light radiated from all individual scatterers \ynere we have introduced ttfinean optical depthi=2/¢,.
L Note that the first terms in Eq$9) and (10) cancel each
I(r) = e 21 +/\/f dr'P(r,r’) X o(r’)I(r'),  (6)  other. This is not surprising if one keeps in mind that energy
% conservation ensures the total outgoing flux to equal the in-
. oming one. Thus, the nonlinear contribution vanishes even
where(1/{,) denotes the mean value of the inverse COhereniompletely, if one considers the total detection signal, inte-
mean free path, Eq(S), along the corresponding path of oateqd over all directions in forward and backward direction.
lengthz. In the second term, representing the diffuse Ilght,We have checked that Eq&)—(10) are also obtained by
the disorder average is decorrelated. This is justified by thﬁsing diagrammatic scattering theofg], if only the so-

fact that correlations between intensities at different posi¢gjied “ladder” diagrams are retained—thus neglecting recur-

tions (separated much further than the optical wavelength et scattering effecttl0] and interferences between differ-
can be neglected in the case of a dilute med[di In the ot seattering paths—and if, in addition, all diagrams with

casea=0, Eq. (6) reduces to the familiar linear radiative ,ore than one nonlinear scattering event are discafsieel
transfer equatiofd], whose iterative solution yieldg(r). To Fig. 1.

proceed, we expand E¢6) up to the first order in the non- On top of the above background intensity, a narrow inter-
linearity parametex. Introducing Eq(3), we obtain a closed  ference cone of height is observed, originating from the

equation for the average intensltywhich we solve by itera- interference between reversed scattering paths, which is de-
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(a) ﬁ
<

(©)

L
CP¥=4a f A0 - 20X +e%]. (1)
0

(b)

rﬁ Concerning nonlinear propagation, interference between the

three amplitudes does not ocd&-7]. Formally, the reason
(W (v is that in this case the two incoming propagators are not
connected symmetrically by the nonlinear scattering event.
Instead, they can physically be distinguished from each

other, as one of thenfthe “probe’) keeps the direction of

propagation, whereas the other offpump”) is scattered.
Hence, there are only two interfering amplitudes, obtained
by reversing the path of the probe. Just as for the linear
component, it is sufficient to remove single scattering contri-

< < butions from the background, E¢LO).

The perturbative results derived above allow us to calcu-

late the CBS enhancement factgpr1+C/L up to the first

<

FIG. 2. In the presence of nonlinear scattering, there may be
either (b) two, or (c) three interfering amplitudes contributing to . . - e .
enhanced backscattering, apart from single scattef@gwhich or_der In t_he non_llngarlty coefficient. In p_artlcular, we ob-
only contributes to the background. In general, the dagewhich  tain the first derivative ofy(a) at «=0, which quantifies t.he
corresponds to the maximum enhancement factor three, is realizé@odification of CBS enhancement due to a small nonlinear-
if either both incoming propagators, or one incoming and the outdty. In our case, the strength of the nonlinearity is limited by
going detected propagator exhibit at least one linear scattering evetfie perturbative assumption of at most one nonlinear scatter-
(®) besides the nonlinear one. ing event. In order to estimate roughly its domain of validity,

we have analyzed the statistical distribution of the nuniber

of scattering events in linear backscattering paths, by nu-
scribed by the so-called maximally crossed diagrams. Due tmerical simulations with slab geometry. If we associate with
time reversal symmetry, each maximally crossed diagram hasach scattering event a constant probability proportional to
the same value as the corresponding ladder diagram. In the be nonlineafthereby neglecting the inhomogeneity of the
linear case, there is exactly one reversed counterpart for eadcal intensity, we find that the occurrence of two or more
scattering path, except for those exhibiting only a single scatscattering events can be neglected provided @hat< 1. Let
tering event. Hence, the cone height equals the backgrounds note that a similar condition also ensures the stability of
provided that single scattering is removed from the latter. Irspeckle fluctuations in a nonlinear medifif®].
the presence of nonlinear scattering, however, there may be We want to stress that the above treatment, valid for scalar
either two or three interfering amplitudes. As exemplified inpoint scatterers, can be extended to any kind of nonlinear
Fig. 2, this is due to the fact that two linear propagators arecatterer withy® nonlinearity. Specifically, we have ana-
symmetrically connected by the nonlinear event, which perlyzed the vectorial case, where the polarization of the light
mits, in general, two different possibilities to reverse thefield is taken into account. This case is especially interesting,
propagator that finally reaches the detector. In the expressiagince in the helicity preservin¢hlih) polarization channel
for the background component, E@), the three cases of single scattering contributions are filtered out, thus realizing
Fig. 2 can be identified by writing the local intensity  the maximum linear enhancement factor two. Hence, any
=exp(—¢)+1q as a sum of the coherent and diffuse part, re-deviation of the enhancement factor from two can unambigu-
spectively. Then, all terms of at least second powelgin ously be attributed to the nonlinear effect of interference be-
correspond to the cage), those linear if, to case(b), and  tween three amplitudes. Numerically, we have treated the
the remaining ones to caéa. From this decompositiolG is  vectorial case by using a Monte Carlo method, where the
easily obtained, since the ratio of the cone height to the backsositions of the scattering events are randomly chosen.
ground depends solely on the number of interfering ampli- The results for the scalar and vectori&lh) case are
tudes. In particular, the three-amplitudes cégecontributes  shown in Fig. 3, as a function of the optical thickndss
to the interference cone twice as much as to the backgroungvidently, the slopen= dz/dq|,.-o increases withb, since a
In the two-amplitudes cas), a small complication arises, nonlinear scattering event is more likely to occur at larger
since the right-hand amplitude of Fig(k is twice as large  optical thickness. Thus, for large optical thickness, a signifi-
as the left-hand ongl1]. Only in the latter one, both propa- cant change of; results already from a small nonlinearity
gators arriving at the nonlinear scattering event originaten the vectorial case, the nonlinear influencepis smaller.
from the coherent mode, and hence the asymmetry is relatethe main reason for this is the following: Due its explicit
to the different fluctuation properties of diffuse and coherenidependence on the polarization vectors attached to the two
light, expressed by Eq@3). Here, the ratio between cone incoming and outgoing propagators, the nonlinear scattering
height and background is obtained @s<2+2x1)/(1X1  amplitude does not remain invariant when exchanging a
+2X2)=4/5. Finally, the single scattering ternta) do not  single incoming and outgoing propagat@nly if all propa-
contribute to the cone, and must be removed from @y. gators are reversed, invariance is guaranteed by time-reversal
Thereby, we obtain symmetry) This causes a polarization-induced loss of inter-
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50 An alternative method to observe enhancement factors
20 Iarge_r_than two is provided by _using atomic scatterers. As a
£30 speuﬂqally quantum mechampal property of the atom-
photon interaction, nonlinearity is here intrinsically related to
2 7 — inelasticscattering, where the frequency of scattered photons
10 T changes. On the one hand, inelastic scattering acts as a
= source of decoherence between reversed scattering paths,
0 1 2 3 4 5 with ensuing decrease of the CBS enhancement fagfdr

On the other hand, however, it allows to distinguish linearly
FIG. 3. Modificationm= d7/da],-o of the CBS enhancement and nonlinearly scattered light in terms of its frequency.
factor  induced by a small nonlinearity, for backscattering from  Thereby, the linear componerits andC, can be filtered out
a slab of optical thickness, in the scalar castsolid lineg and the ~ from the detection signal, so that the nonlinear effect of in-
hilh polarization channe(dotted lines. For a large optical thick- terference between three amplitudes can manifest itself espe-
ness, already a small nonlinearity leads to a significant increase ~ Cially clearly, unspoiled by linear contributions. To minimize
decrease, depending on the sigmofof #. In thehiih channel, the ~ decoherence, the frequency filter must be sufficiently narrow
nonlinear CBS modification is smaller than in the scalar case, as @&nd be put as close to the initial frequency as possible, but
consequence of decoherence due to polarization effects. far enough to filter out elastically scattered light. In this
limit, the backscattering enhancement factor is exclusively
ference contrast, i.e., a reduction of the coherent nonlineagiven by the nonlinear scattering components derived above,
scattering componer@;*™® (approximately by a factor 3)4 i.e., n=1+C/L%. For sufficiently large optical thickness,
Nevertheless, the effect of the three-amplitudes interferencge thereby predict maximum values of the CBS enhance-

still prevails, such that in total a positive slope is Observedment factor up to 3scalar caseor 2.5 (hllh channe).
In particular, the CBS enhancement factor is predicted to

exceed the linear barrier two, if the sign of the nonlineadity It is a pleasure to thank Cord Miller for fruitful discus-
is positive. Due to the close relation between CBS and weakions. T.W. has been supported by the DFG Emmy Noether
localization mentioned above, we thus expect that wealprogram. Laboratoire Kastler Brossel is laboratoire de
localization—and possibly also strong localization—are fa-I'Université Pierre et Marie Curie et de I'Ecole Normale

cilitated by positive nonlinearities. Superieure, UMR 8552 du CNRS.
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Abstract

We study coherent backscattering of light by nonlinear scatterers in the weakly
nonlinear regime. We compare full numerical calculations with a diagrammatic
approach; the validity of the latter is demonstrated by the excellent agreement
between these two approaches. Especially it emphasizes the fact that, in the
weakly nonlinear regime, the coherent backscattering phenomenon originates,
in general, from the interference between three different scattering amplitudes.
This effect reveals itself in the first nonlinear correction of the backscattered
intensity, which is enhanced by almost a factor three as compared to the diffuse
background.

1. Introduction

During the past ten years, many experiments studying localization effects in disordered media
have been performed with cold atomic vapours, acting as dilute gases of randomly distributed
atoms multiply scattering an incident monochromatic laser light [1-4]. In this case, the
scattered light field exhibits a speckle-like structure due to (multiple) interference between all
possible scattering paths. The key point is that the disorder average is insufficient to erase all
interference effects. This gives rise to weak or strong localization effects in light transport
depending on the strength of the disorder [5, 6]. A hallmark of this coherent transport regime
is the coherent backscattering (CBS) phenomenon: the average intensity multiply scattered
off an optically thick sample is up to two-times larger than the average background in a small
angular range around the direction of backscattering, opposite to the incoming light [7, 8]. This
effect in cold atomic gases has been the subject of extensive studies in the weak localization
regime, both from theoretical [9-16] and experimental points of view [1-4], proving that these
cold atoms provide a highly efficient and tuneable material.

0953-4075/06/224719+13$30.00 © 2006 IOP Publishing Ltd  Printed in the UK 4719
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Figure 1. Top: in the linear regime, each ‘ladder’ diagram (a) has exactly one ‘crossed’ counterpart
describing interference between reversed scattering paths (b). The coherent backscattering
enhancement factor cannot exceed the maximum value 2. Bottom: nonlinearities lead to an
effective ‘interaction’ between optical waves, which—in the lowest order of the nonlinearity
constant x®—is described by diagrams connecting two incoming and one outgoing intensity
propagator (see section 3). This has an important impact on the phenomenon of coherent
backscattering: for each ladder diagram (c), we now find two distinct pairs of reversed scattering
paths, see diagrams (d) and (e), which both contribute to the detection signal in exact backscattering
directions. Thus, the nonlinear component of the backscattering signal exhibits a backscattering
cone up to two times larger than the diffuse background, corresponding to a maximum enhancement
factor of three (see section 3.3 for details).

Quite naturally, the question of the possible observation of strong localization of light in
these cold atomic clouds has been raised. For the transition to take place, the scatterers must
be brought very close to each other, typically at a distance of the order of the wavelength.
In these conditions, even if the incident light is very weak, the intensity of light scattered
by one atom to one of its nearby neighbours may actually be very high. Then, one faces a
peculiar feature of the atoms: their ability to depict nonlinear behaviour, even for moderate
light intensity. The order of the magnitude of the required laser power is given by the so-called
saturation intensity, whose values are 1.6 mW cm~2 for rubidium atoms and 42 mW cm~2
for strontium atoms, for their usual laser cooling transitions. For this reason, one must have a
correct description and understanding of the impact of the nonlinear behaviour of the atoms
on the coherence properties of the scattered light. A better understanding of the interplay
between disorder and nonlinearity is also relevant for other subjects such as, e.g., the coherent
random laser [17] or the propagation of Bose—Einstein condensates in disordered potentials
[18-20].

In recent papers [13, 14], we have shown that, for moderate intensity, it is possible to use
a scattering approach to describe the nonlinear corrections to all relevant quantities (scattered
intensity, inelastic spectrum ...). In particular, we have predicted that the intensity scattered
in the opposite direction to the incident laser beam is given by the (constructive) interference
of three different amplitudes, allowing, in principle, a maximum enhancement factor equal
to three, see figure 1. However, since this effect has not yet been experimentally observed,
the purpose of the present paper is to confirm the validity of this prediction by numerical
simulations, using a simplified ‘classical’ model for the nonlinear atomic scatterers.

This paper is divided as follows: in section 2, starting from the standard results for a single
two-level atom, we explain the choice of our model. In section 3, the diagrammatic theory
is derived, emphasizing the factor of three due to constructive interferences between three

102




Observation of coherent backscattering ‘factor of three’ in a numerical experiment 4721

different amplitudes in the backward direction. Comparison of these theoretical calculations
and the numerical results is performed in section 4. Conclusions and possible continuations
are given in section 5.

2. “Classical’ nonlinear scatterers

If one considers a two-level atom illuminated by a laser beam at the atomic frequency wy, the
stationary quantities are given by the optical Bloch equations and read [21]

rey
DR =Fi— 1
(D7) Frap (1a)
||
nmy = —— 15
o 2 42| |2 (1)

where I" is the spontaneous emission rate, €21, is the absorption rate induced by the laser (€21,
is proportional to the laser field Ey and |Q|> o I.). D are the raising and lowering dipole
operators and I1° is the population of the excited state. The brackets (- - -) indicate the average
over the quantum fluctuations. From these quantities, one can derive the average field and the
average intensity radiated by the atom

(E(r) oc (D7) Qa)
(I(") = (|EM)I?) o (IT%) (2b)

where the proportionality factor depends on the distance r (see below). For low laser intensities
(|21] <« I'), the scattered intensity is simply proportional to the incident one: we are in the
linear regime. When increasing the laser intensity, the absorption rate eventually becomes
comparable to the spontaneous emission rate, meaning that the atom is no longer able to
scatter all the incident photons: the regime is then nonlinear. However, we also see that, in
the nonlinear regime, (I (r)) # |(E(r))|?, which means that the light is not only elastically
scattered. Actually, for large intensity, the majority of the scattered intensity is inelastic and
the inelastic spectrum is usually derived using the quantum regression theorem.

However, in the case of many two-level atoms, the situation becomes incredibly
complicated because of the nonlinear coupling between all the atoms. In principle, one
would have to derive the optical Bloch equations for the whole density matrix, whose size
exponentially grows with the number of atoms. On the other hand, the ‘factor of three’ (i.e.,
the interference between three amplitudes in the backscattering direction) does not rely on
the exact description of the two-level atoms, but rather on the nonlinear relation between the
scattered light and the incident light. In particular, even if one forgets the inelastic light and
only takes into account the elastic scattering, the diagrammatic approach still involves the
same diagrams (see below). For this reason, we will consider a simpler model—accessible
to a direct numerical simulation—in which we will only take into account the elastic light,
forgetting the quantum fluctuations (i.e., (| E|?) = [(E)|?).

The disordered medium is thus built with a collection of N such ‘classical’ nonlinear
scatterers located at randomly chosen positions r;,i = 1, ..., N, inside a sample volume V
illuminated by a plane wave k. This point scatterer model is especially suitable for numerical
implementation, since it yields a discrete system of equations for the field strengths E; at the
positions of the N scatterers

ED —chom 1y pld)
J#i

EW

1+alEW? ®
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where « is proportional to the incoming intensity, and

ikr;
JC - @
kr,-j
with k = |ki|, is the propagator from j to i in the free space. For simplicity, we restrict

ourselves to the case of a scalar wave within this paper.
In the small « limit, one can neglect the nonlinear behaviour and (3) simply becomes a
linear system [24-26]

ME = E" )
with
1 for i=j
M = {—iP“ﬂf> for i+ ©
and ElL = elkuTi | For increasing (but still weak) incoming intensity c, (3) becomes
E(i) — eikrl”, +i Z P<i’j)(E(j) _ O{|E(j)|2E(j)) (7)

J#i
describing thus a disordered Kerr medium with a nonlinearity of type x®, the latter being
proportional to the incident laser intensity.

3. Diagrammatic theory

In this section, we calculate the detection signal radiated by the system (3) of classical
scatterers up to first order in «, using diagrammatic theory. The calculation follows closely
the one presented in [14] for the case of quantum mechanical scatterers.

At first, we consider the linear regime, @ = 0. Here, the solution of (5) reads formally

00 n—1
EY = e 4 Z Z KT ()" (1‘[ P(.fk~,fk+l)) pUni @®)
n=1 ji,erju k=1

In the following, we will be interested in the next highest order of the perturbative expansion
ED =% (—a)"E® in a. From (7), we obtain

BV =Y P (e + Y |ES) o
J#i
with solution
. i . . n—1
E:z) — Z Z inE(()JI}|E(()Jl)|2 (l—[ P(ﬁy,ﬁﬂ) p Ui (10)
n=1 ji s jn k=1
We note that the perturbative solution of (7) is unique, i.e. multiplicity or instability of
solutions [22, 23] can only exist in the regime where the perturbative approach breaks down.
(The validity of the perturbative approach will be discussed in section 4.)
A diagrammatic representation of the nonlinear field is shown in figure 2. The square
(OJ) denotes the nonlinear scattering event, which, in (10), takes place at the scatterer j;. The
three incoming arrows represent the nonlinear source term E(()j l)|E(()j N |2, while the dashed
arrow denotes the complex conjugate field (E(()/ R )* According to (8), each of the three fields
is obtained as a sum over all scattering paths ending at scatterer j;. Correspondingly, each
incoming arrow in figure 2 represents one such scattering path, whereas the outgoing arrow
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—> [
/ '
1
1
I
Figure 2. Diagrammatic representation of the nonlinear field, see equation (10).

represents a scattering path starting from j; and reaching finally the detector via jy, ..., ji,
see (10).

Let us now consider the average intensity—the quantity which is measured in the end.
The term of first order in « reads

11 =2R6{E1(E0)*}. (11)

This means that we have to add one dashed line to figure 2, which represents the /inear field
(Ep)*. Now, we are ready to perform the ensemble average over the realizationry, ..., ry of
the disordered medium. For this purpose, we use the dilute medium approximation VA3 « 1,
where ' = N/V is the density of scatterers. In this approximation, the only diagrams which
survive the ensemble average are the ‘ladder’ and ‘crossed’ diagrams, i.e., those diagrams
where the solid and dashed lines visit the same sequence of scatterers—either in the same
(ladder) or reversed (crossed) order. Furthermore, recurrent scattering events, where a single
scatterer is visited more than once, can be neglected.

In addition to washing out all except the ladder and crossed diagrams, the ensemble
average leads to a homogeneous effective medium, which is characterized by its refractive
index n. Its linear component reads

i

=1+_— 12
no 3*lo (12)

where the mean free path
Ly = K2/ (4 N) (13)

depends on the density A. The dilute medium approximation is thus valid provided that
klo > 1. Let us note that the real part of the refractive index is unchanged in our specific
scattering model, defined by (3). This, however, presents no restriction since, in the case of a
dilute medium, a small shift of the real part has no significant effect on the average intensity.
Due to the presence of the effective medium, the average field propagation (4) between
two subsequent scattering events is replaced by
B0 = e"’ﬂ""f‘ (14)
krij
Remember that (14) describes linear propagation between i and j. Since we are dealing
with nonlinear scatterers, the refractive index of the effective medium also has a nonlinear
component, which will be calculated below.

3.1. Nonlinear scattering

Before turning to nonlinear propagation, however, we will first calculate the contribution from
nonlinear scattering. In the ladder approximation, it is obtained as follows: (i) the incoming
dashed line in figure 2 forms a ladder diagram (i.e., visiting the same sequence of scatterers)
with one of the two incoming solid lines. (ii) The remaining solid lines form a ladder diagram
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Figure 3. Ladder diagrams describing nonlinear scattering (a) and nonlinear propagation (b).

with the dashed line describing the additional linear field (E()* in (11). This leads us to the
diagram shown in figure 3(a).

Note that each one of the three solid/dashed ladder pairs describes linear transport of
the average intensity in a dilute medium. Let us hence briefly recall the calculation of linear
transport. From (8), and employing the ladder approximation, the average linear intensity is
found to fulfil the following integral equation:

(Io) = e/ 4+ N f | B P (o)), (15)
\4

Here, z denotes the distance from r to the surface of the volume V in the direction opposite
to the incoming laser, —K.. Diagrammatically, (/o(r)) is represented as a solid/dashed ladder
pair pointing to position r. If we assume that the detector is placed in backscattering direction
(kp ~ —kg ), the same function (/(r)) also describes an outgoing ladder pair, starting from r
and pointing to the detector. From (15), the linear ladder component of the detected intensity
results as

dr
_ —z/ly
Lo = /V g o) (16)

where A denotes the transverse area of the scattering sample seen by the incident laser.
(To obtain a dimensionless quantity, the ‘bistatic coefficient’ is defined such that Ly = 1
corresponds to the case where all the incident intensity is scattered uniformly in all directions.)

To obtain the nonlinear scattering ladder component, we have to account for the fact that
the two incoming solid/dashed ladder pairs can be grouped together in two different ways, see
step (i) above. This leads to an additional factor 2 in the final result. An exception is the case
where the four incoming arrows all originate from the same mode, i.e. the coherent incoming
laser mode. With its intensity given by exp(—z/£o), the average square of the linear intensity
is obtained as

(Io(r)*) = 2(Ip(r))* — e~ */% an
and the nonlinear scattering ladder component reads
SC dr
Ly =2 / g o) o)), (18)
0

Here, the factor 2 originates from equation (11), the average squared intensity (Io(r)?) describes
the two incoming propagator pairs and (I(r)) the outgoing one.

3.2. Nonlinear propagation

The diagram describing nonlinear propagation differs from nonlinear scattering only in the
fact that the additional dashed line does not take part in the nonlinear scattering event, see
figure 3(b). Imagine that two linear scattering events take place at scatterers 1 and 2 just
before and after the nonlinear event, respectively. The average propagation of the dashed line
between 1 and 2 is then given by the linear expression (15((,1‘2))*, see (14), since it does not

106




Observation of coherent backscattering ‘factor of three’ in a numerical experiment 4725

participate in the nonlinear event. The propagation of the solid lines forming ladder diagrams
with the above dashed line, however, will be modified by the nonlinear event, depending on
the local intensity represented by the remaining solid/dashed ladder pair. Integrating over the
position r3 of the nonlinear event, we obtain for the nonlinear propagation in first order of the
nonlinearity parameter o

p? :2ij\//dr313(()1‘3)13(()3’2)(10(r3)) (19)
r ~
~ — 2 lo)pyon, PSP (20)
Ly

The factor 2 in (19) again accounts for the fact that the two incoming solid arrows can be
exchanged. Evaluating the integral in leading order of the ‘diluteness parameter’ 1/(k€o)
(stationary phase approximation) yields (20). Only positions r3 located on a straight line
connecting r; and r, give a significant contribution to the integral. Correspondingly, (- - *)r,—r,
denotes the average value along this line.

The same reasoning applies also if the wave propagates from scatterer 1 directly to the
detector (i.e., without another linear event after the nonlinear one). In the linear case, this is
described simply by exp(inokz;). For the nonlinear case, we obtain

5 (1,d 21 inokz
B ﬁ‘>=—[—<lo>w(,e‘ ok (3))
0

Here, ry denotes the intersection of the line from r; to the detector with the boundary of the
medium, and z; = |r; — rp|.

A small complication arises for the propagation of the coherent mode, i.e., if the nonlinear
event takes place before the first linear event at rj. As in the case of nonlinear scattering (see
above), the exchange factor ‘2’ vanishes if the ‘pump intensity’ represented by the solid/dashed
ladder pair arriving at the nonlinear event also originates from the coherent mode. Thereby,
we obtain

meh’l) — _i(z(l())m%rl _ e*m/[o) einnkm' (22)
28y
For the sake of completeness, we also give here the expressions for the nonlinear correction
(first order in «) of the refractive index, which result from (19)—(22), for diffuse and coherent
light, respectively,
i

mm = L ®) 23)
" (r) = ﬁo(zuo(r» — e/, (24)

Again, we note that our model exhibits no real part of the nonlinear index. We have checked
that a non-vanishing real part would have no effect on the average intensity up to first order in
«. (This might change for higher orders of «—a topic presently under investigation.)

What remains for the calculation of the total nonlinear average propagation ladder
component is to add the above three cases (20), (21) and (22). The missing pieces of linear
transport to or from position ry or r, are expressed by (15). This yields

dr - -
Ly =N / g A tloe)) o) 2Re 7 (A7)
\4 0

d _ _ .
+/ S )2 Re{ (B "D + B 0) einikar ) (25)
v Al

As in (11), the term 2 Re{- - -} arises from adding the complex conjugate diagrams.
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Figure 4. Crossed diagrams for nonlinear scattering (al, a2) and nonlinear propagation (b1, b2).
For each ladder diagram, see figures 3(a) and (b), there exist in general two different crossed
diagrams contributing to the interference cone.

If the sample has slab geometry, with infinite length in the x and y directions and length
L in the z direction, (25) can be simplified to

L
L =~ [0 j—juo(z»(zuo(z))z—2<10(L>>2+e*22/‘"—e*-f/“). (26)

3.3. Interference cone

On top of the above ladder components, which define the weakly angle-dependent background
of the average detection signal, one observes a narrow interference cone arising from the
crossed diagrams. In the linear case, they describe the interference of each scattering path
with its time-reversed counterpart. In our case, the two interfering amplitudes are equal in
the exact backscattering direction due to time reversal symmetry. Hence, the height Cy of
the linear backscattering cone is equal to the background Ly—apart from the fact that single
scattering contributions must be subtracted since they do not have a distinct, time-reversed
counterpart

di .
Co=Lo— / e @7

The situation changes in the nonlinear regime. As is obvious from figure 4, there is in general
more than one way to reverse a scattering path in the presence of a nonlinear event. We want
to draw special attention to the nonlinear propagation diagram (b2), which appears somewhat
counter-intuitive at first sight and does not have an easy interpretation. Here, one of the dashed
arrows propagates from left to right, whereas the other one (from below) contributes to the
‘pump intensity’ for the nonlinear event. Concerning the solid lines, one could say that the
left one is scattered downwards, whereas the right one contributes to the pump or vice versa
(these two interpretations cannot be distinguished).

We note that the same diagram (b2) also applies to the case of a homogeneous nonlinear
X ) medium, into which linear scatterers are randomly embedded. (In fact, all results presented
in this section concerning nonlinear propagation are equally valid in this case; only nonlinear
scattering does not occur.) This is the situation examined in [27, 28], where, however, the
diagram (b2) has not been taken into account. Consequently, [27, 28] predict that only the
shape, but not the height of the backscattering cone is modified by the nonlinearity, whereas,
according to our theory, also the cone height (i.e., the backscattering enhancement factor) is
modified. Hence, one of the main motivations for the present paper was to demonstrate the
importance of diagram (b2) by an independent method, i.e. by numerical simulation.
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Due to time reversal symmetry, each of the crossed diagrams in figure 4 gives in general
the same value as the corresponding ladder diagram in figure 3. Thus, the crossed is twice as
large as the ladder contribution, yielding the nonlinear backscattering factor of three. However,
the following special cases must be considered.

(i) As in the linear case, single scattering contributions must be subtracted. These are the
cases where one of the two crossed diagrams is identical to the corresponding ladder or
the two crossed diagrams are identical.

(i) If both incoming solid lines originate from the coherent mode, the exchange factor of two
(see above) must be removed (if present in the corresponding ladder diagram).
(iii) If only one of the incoming solid lines originates from the coherent mode, and the outgoing
solid line propagates from the nonlinear event directly to the detector, the exchange factor
of two must be taken into account (if absent in the corresponding ladder diagram).

Thereby, we find

" H d
9 =218 —4 / =L B{Ip(r)) — 267/ 10y % /to (28)
v Al
d . . intks
P =2L + 3/ i e /N [(Ly(rp)) (1 — e7/%0) 4 2Re[ BV emMnikar}] (29)
\4 0

For a slab geometry, we obtain

Ldzg . : 1 3
cP =21 4 3/ —Z(lo(z))(eﬂ/e" —e 2oy (o — S e/l q /) (30)
o Lo 2 2

4. Numerical results

For the numerical comparison, we will consider the case where the nonlinear scatterers are
randomly distributed inside a sphere, with a homogeneous density. We have two parameters
in our simulations, namely, the number of scatterers N and the radius of the sphere R. The
(linear) optical thickness b along the diameter of the sphere being 2R /£, we get the following
relations:

kR)?

key = (31\/) (31a)
R

b= 2:7, (31b)
0

Typically, we have worked with several thousand scatterers, for optical thickness ranging from
1 to 3 and k£, between 50 and 100. For each configuration, the nonlinear set of equations (3)
is solved using a Newton—Krylov method. Only a few iterations are needed to get a converged
solution with a residual error smaller than 10~!2. From the solution, we calculate the radiated
field and intensity outside the cloud in different directions. This procedure is then repeated with
many different configurations (typically 1000) giving us the disorder averaged field and
intensity. More precisely, the nonlinear system is solved for different values of the parameter
« ranging from O to 1073, and the first nonlinear corrections to the averaged quantities are
obtained as follows:

L) = I(n, o) ; I(n,0) 32)
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Figure 5. Linear intensity Iy (top) and nonlinear correction /| (bottom) averaged over 1000
configurations, in the case of 2500 scatterers in a sphere of optical thickness b = 2.45 with
klp ~ 64. The solid curves are the numerical results, whereas the long dashed ones are
the theoretical calculations. As one can see, the agreement is rather excellent. In particular,
the nonlinear cone clearly exhibits an enhancement factor larger than two, due to the effect of
interference between three amplitudes. The horizontal dashed lines correspond to the intensity in
the exact backward direction, and the dot-dashed line on the bottom plot would be the same result
without taking into account the diagram (b2) of figure 4 contributing to the nonlinear propagation
of the crossed intensity, thus emphasizing its importance.

where n represents the direction of observation and I means configuration average. We have
checked that /; is independent of the value of o. We have also checked that we recover
the same results, if, for each configuration, we first solve the linear system (5) and then get
the first-order nonlinear correction to the field from the linear system (10); from this solution,
we calculate the outgoing intensity and then perform the configuration average.

In the case of 2500 scatterers in a sphere of optical thickness b = 2.45 with k£ ~ 64, the
linear intensity I, and nonlinear correction /; averaged over 1000 configurations are compared
with the theoretical predictions in figure 5. The top plot depicts the linear results and the bottom
one the nonlinear corrections. The solid curves are the numerical results, whereas the long
dashed ones are the theoretical calculations according to the method presented in section 3
(with some straightforward extensions to account for the precise angle dependence of the
backscattered intensity). As one can see, the agreement is rather excellent. The horizontal
dashed lines correspond to the intensity in the exact backward direction and the dot-dashed
line on the bottom plot would be the same result without taking into account the diagram
(b2) of figure 4 contributing to the nonlinear propagation of the crossed intensity. Thus,
even if at first glance, the contribution of this diagram to the backscattered intensity seemed
not to be obvious and, for this reason, was not mentioned in earlier papers on nonlinear
effects in coherent backscattering [13, 27, 28], the comparison with the present numerical
simulations really emphasizes its importance. Finally, the numerical values of the nonlinear
ladder and crossed term are in this case L; = 4.85 and C; = 7.22. Obviously C; is larger
than L;, emphasizing the fact that for each ladder diagram there correspond, in general, two
crossed diagrams. The fact that the nonlinear enhancement factor of three, corresponding to
C, = 2Ly, is not precisely realized in figure 5(b) can be traced back to single scattering and
similar processes, see the discussion before equation (29).
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Figure 6. Comparison between the first and second order in the nonlinearity strength « for the
intensity inside the bulk for different values of the optical thickness b. More precisely, we plot
the intensity along the diameter of the sphere parallel to the incident laser beam. The horizontal

axis is thus the position on the diameter in units of optical thickness b (z = 0 is the centre of the

sphere, z = —% corresponds to the illuminated surface and z = % corresponds to the opposite

surface). The solid lines denote 7 (b, z), whereas the dashed lines correspond to 1> (b, z)/bz. One
can clearly see that for increasing optical thickness b, the two curves are getting closer to each
other, thus emphasizing that, in the large b limit, one has />(b, z) ~ b2 1, (b, z) and, thus, that the
relevant perturbation parameter is b%a.

We note that the angular width of the backscattering cone is roughly the same in the
linear and the nonlinear case, in both cases being mainly determined by the optical thickness
(b = 2.45) and the geometry (sphere) of the scattering medium. For larger values of the
optical thickness, the nonlinear cone is expected to become narrower than the linear one, since
longer light paths are more probably affected by a nonlinear event than shorter ones. This may
eventually lead to the appearance of a ‘dip’ in the total (linear plus nonlinear) backscattering
cone [27, 28].

Finally, we want to discuss the validity of the present approach. Formally, the present
approach is an expansion in powers of «, the strength of the nonlinearity, but the coefficients
of this series depend on the geometry of the medium, especially on the optical thickness b
(omitting bordering effects):

I(a, b) = Io(b) + ali(b) + o> L(b) + - - - (33)

For the present approach to be valid, each term in this series must be much smaller than
the preceding one, that is al,,1(b) < I,(b). In a preceding paper [14], we gave a rough
quantitative estimation, based on the distribution of the number N of scattering events which
a backscattered photon undergoes in a linear random walk. If we assign to each scattering
event the same probability « < 1 to be nonlinear, the ratio p,/p; of the probabilities for two
and one nonlinear events, respectively, follows as p,/p; = a(N?)/2(N). Since, as we have
checked numerically, (N) o b and (N?) o b? (in the limit of large b), the criterion p; < p;
for the validity of the perturbative treatment turns out to be ab® < 1.

This is confirmed by the present numerical simulations. In figure 6, we compared the
first and second order for the intensity inside the bulk for different values of the optical
thickness b. More precisely, we plot the intensity along the diameter of the sphere parallel to
the incident laser beam. The horizontal axis is thus the position on the diameter in units of
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optical thickness b (z = 0 is the centre of the sphere, z = —% corresponds to the illuminated
surface and z = % corresponds to the opposite surface). The fluctuations in the signals
originate from the exceptional presence, in a given configuration, of a scatterer very close
to the diameter (smaller than the wavelength 1), resulting in a large local intensity. These
fluctuations are also present in the linear case and their sizes decrease when increasing the
number of configurations. The solid lines denote 7; (b, z), whereas the dashed lines correspond
to (b, 2)/ b2. For these numerical computations, in order to achieve larger optical thickness,
we have lowered the value k¢y down to ~30, which still leads to correct linear results (i.e., the
dilute medium approximation ko >> 1 is still valid). The number of scatterers is N = 2048
(4000, 6390 and 10 976) for an optical thickness b = 4 (5,6 and 7). The final quantities
results from the average over 1000 different configurations. One sees that in all the four cases
L(b, z) =~ b*I,(b, 7) and, thus, that the relevant perturbation parameter is b>«. The small
change in the ratio between I,(b, z)/b* and I, (b, z), which is observed from b = 4, where
L(b, 7)/b* is slightly larger than I,(b, z), to b = 7, where L (b, z)/b? is equal to I, (b, ),
shows that the large b limit is not yet reached at b = 4.

5. Conclusion

In summary, we have presented a numerical study of nonlinear effects on the coherent
backscattering cone. More precisely, we have considered a simplified model of ‘classical’
two-level atoms, in which the inelastic scattering was removed, only keeping the nonlinear
elastic scattering events. This allowed us to write a closed set of nonlinear equations describing
the electromagnetic field in a cloud of such nonlinear scatterers illuminated by a laser beam.
From its exact numerical solution, we computed the first-order nonlinear corrections C; and
L, to the backscattering cone, which we compared with a diagrammatic approach. The
validity of the latter is proved by the excellent agreement between the two approaches. In
particular, it emphasizes the fact that, in general, the nonlinear scattered intensity results
from the interferences between three amplitudes leading to a nonlinear correction C; of the
interference cone up to two times larger than the nonlinear correction L of the diffuse intensity.
Finally, when comparing the first- and second-order term in « for the intensity inside the bulk,
we have shown that the relevant perturbation parameter is b%«, where b is the optical thickness.

A natural way to extend this work is to relax the perturbative assumption and admit more
than one nonlinear scattering event. Since the number of interfering amplitudes increases if
more than two photons are connected by nonlinear scattering events, we expect the occurrence
of even larger enhancement factors in the nonperturbative regime—especially in the case of
scatterers with positive nonlinearity, i.e. for scatterers whose cross section increases with
increasing intensity.

Furthermore, the relation between coherent backscattering and weak localization in the
presence of nonlinear scattering remains to be explored. Does a large nonlinear enhancement
of coherent backscattering also imply a strong reduction of nonlinear diffusive transport? The
answer to this question could shed new light onto the problem of wave localization in nonlinear
media.
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In this theoretical paper, we investigate coherence properties of the near-resonant light scattered by two
atoms exposed to a strong monochromatic field. To properly incorporate saturation effects, we use a quantum
Langevin approach. In contrast to the standard optical Bloch equations, this method naturally provides the
inelastic spectrum of the radiated light induced by the quantum electromagnetic vacuum fluctuations. However,
to get the right spectral properties of the scattered light, it is essential to correctly describe the statistical
properties of these vacuum fluctuations. Because of the presence of the two atoms, these statistical properties
are not Gaussian: (i) the spatial two-points correlation function displays a specklelike behavior and (ii) the
three-points correlation function does not vanish. We also explain how to incorporate in a simple way propa-
gation with a frequency-dependent scattering mean-free path, meaning that the two atoms are embedded in an
average scattering dispersive medium. Finally we show that saturation-induced nonlinearities strongly modify
the atomic scattering properties and, as a consequence, provide a source of decoherence in multiple scattering.
This is exemplified by considering the coherent backscattering configuration where interference effects are
blurred by this decoherence mechanism. This leads to a decrease of the so-called coherent backscattering

enhancement factor.

DOI: 10.1103/PhysRevA.74.033808

L. INTRODUCTION

Over the past ten years, cold atomic gases have gradually
become a widely employed and highly tunable tool for test-
ing new ideas in many areas of quantum physics: quantum
phase transitions (Bose-Einstein condensation, Fermi degen-
erate gases, Mott-Hubbard transition) [1-3], quantum chaos
[4], applications in metrology [5], and disordered systems
[6-8] to cite a few. In the latter case, cold atomic vapors act
as dilute gases of randomly distributed atoms multiply scat-
tering an incident monochromatic laser light. In this case, the
scattered light field exhibits a specklelike structure due to
(multiple) interference between all possible scattering paths.
The key point is that the disorder average is insufficient to
erase all interference effects. This gives rise to weak or
strong localization effects in light transport depending on the
strength of disorder [9,10]. A hallmark of this coherent trans-
port regime is the coherent backscattering (CBS) phenom-
enon: the average intensity multiply scattered off an optically
thick sample is up to twice larger than the average back-
ground in a small angular range around the direction of back-
scattering, opposite to the incoming light [11]. This interfer-
ence enhancement of the diffuse reflection off the sample is a
manifestation of a two-wave interference. As such, it probes
the coherence properties of the outgoing light [12]. The CBS
effect in cold atomic gases has been the subject of extensive
studies in the weak localization regime, both from theoretical
and experimental points of view [13]. In particular, modifi-
cations brought by atoms, as compared to classical scatterers,
for light transport properties (mean-free path, coherence
length, CBS enhancement factor) have been highlighted.
They are essentially due to the quantum internal atomic
structure [14,15].
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Another interesting feature of atoms is their ability to dis-
play a nonlinear behavior: the scattered light is no more pro-
portional to the incident one. This leads to a wide variety of
phenomena, like pattern formation, four-wave mixing, self-
focusing effects, dynamical instabilities, etc. [16-19]. For a
weak nonlinearity, introducing an intensity-dependent sus-
ceptibility is enough to properly describe these effects, in-
cluding quantum properties [16,20,21], e.g., the Kerr effect
(intensity dependence of the refractive index) can be ob-
tained with a y® nonlinearity. However, when the incident
intensity is large enough, and this is easily achieved with
atoms, perturbation theories eventually fail and a full nonlin-
ear treatment is required. For a single two-level atom, the
solution is usually given by the so-called optical Bloch (OB)
equations. Together with the quantum regression theorem,
they allow for a complete description of the spectral proper-
ties of the fluorescence light [23]. In particular, these equa-
tions show that the atomic nonlinear behavior is intrinsically
linked to the quantum nature of the electromagnetic field.
More specifically, as opposed to classical nonlinear scatter-
ers, the radiated light exhibits quantum fluctuations charac-
terized by peculiar time correlation properties. They define a
power spectrum, known as the Mollow triplet, emphasizing
inelastic scattering processes at work in the emission process
[23-25].

However, even if all these aspects are well understood in
the case of a single atom exposed to a strong monochromatic
field [23], the situation changes dramatically in the case of a
large number of atoms where a detailed analysis including
both quantum nonlinear properties and coherence effects is
still lacking. Until now, the nonlinear coupling between the
atoms and the quantum vacuum fluctuations is either in-
cluded in a perturbative scheme [21,22] or simply described
by a classical noise [26-30]. In the dilute regime N <R
where the light wavelength N\ is much less than the average
particle separation R, one expects the quantum fluctuations to
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reduce the degree of coherence of the scattered light. This
will alter not only propagation parameters (mean-free path,
refraction index), but also weak localization corrections to
transport, and the CBS enhancement factor, which is related
to the coherence properties of the scattered light field
[7,8,12]. We want here to stress that, even beyond interfer-
ence and weak localization phenomena, any transport prop-
erty which may be influenced by saturating the atomic tran-
sition deserves a special and necessary study on its own. The
most striking systems falling in this category where both
nonlinear and disordered descriptions are intimately interwo-
ven are coherent random lasers [31], where interference ef-
fects lead to localized light modes inside the disordered me-
dium, comparable to resonator eigenmodes in chaotic lasers
[32-35]. Even if, in this case, one would require an active
(i.e., amplifying) medium, a key point is the understanding
of the mutual effects between multiple interference and non-
linear scattering.

In the present paper, we will focus on the rather simple
case of two atoms in vacuum. Our aim is threefold. (i) First
to properly calculate quantum correlations between pairs of
atoms as a crucial step towards a better understanding of the
physical mechanisms at work, (i) second to implement a
method allowing for a simple incorporation of frequency-
dependent propagation effects, and (iii) finally to understand,
in the CBS situation, the modifications brought by the (quan-
tum) nonlinearity to the interference properties. We hope that
these points, once mastered, can provide an efficient way to
produce realistic computer models to simulate real experi-
ments. Point (i) alone could easily be solved using the stan-
dard OB method [36,37]. But the latter almost becomes use-
less regarding point (ii), since frequency-dependent
propagation leads to complicated time-correlation functions.
From a numerical point of view, it also leads to such large
linear systems of coupled equations that its practical use is
limited up to only a few atoms, very far from a real experi-
mental situation. For these reasons, we will rather use the
quantum Langevin method for our purposes. This method
not only solves points (i) and (ii), but also leads to a simple
explanation of point (iii), through a direct evaluation of the
quantum noise spectrum. Note however that, in the absence
of any effective medium surrounding the two atoms, and as
long as only the numerical results are concerned (but not the
physical interpretation), the quantum Langevin approach is
completely equivalent to solving the multiatom optical Bloch
equations as in Refs. [36,37].

This paper divides as follows. In Sec. II, the notations are
defined and the quantum Langevin approach is explained for
the single atom case. In Sec. III, the method is adapted to the
case where two atoms are weakly coupled by the dipole in-
teraction. The validity and relevance of the method is con-
trolled by a comparison with a direct calculation using OB
equations. Then, in the CBS configuration, numerical results
for different values of the laser intensity and detuning are
presented and discussed in Sec. IV. In particular, possible
reasons for the reduction of the enhancement factor are put
forward. Conclusions and possible continuations are given in
Sec. V.
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II. SINGLE TWO-LEVEL ATOM CASE
A. Time-domain approach

We consider an atom with a zero angular momentum elec-
tronic ground state (J,=0) exposed to a monochromatic light
field. The light field frequency w; is near-resonant with an
optical dipole transition connecting this ground state to an
excited state with angular momentum J,=1. The angular fre-
quency separation between these two states is w, and the
natural linewidth of the excited state is I". We will denote
hereafter by &; =w; — w, the laser detuning. The ground state
is denoted by |00) while the excited states are denoted by
[1m,), with m,=—1,0,1 the Zeeman magnetic quantum num-
ber. As we assume no magnetic field to be present throughout
this paper, the excited state is triply degenerate.

In the Heisenberg picture, this two-level atom is entirely
characterized by the following set of 16 time-dependent op-
erators:

11 =100)00|, TI¢ ,=|lm)(1m]],

myn,

D,*ne =|1m,)00], D;u =[00)(1m,]|. (1)
The atomic operators obey the completeness constraint
1=TI8+11¢, )

where I1¢ and II°=% 117
o mgm,
atomic population operators.
The full atom-field Hamiltonian 7 is the sum of the free
atom Hamiltonian H,=% well¢, of the free quantized field
Hamiltonian Hp=2y | xf wkaiieaks and of the dipolar inter-
action V=-d-(E;+E,) between the atomic dipole d, the
classical laser field E;, and the quantum electromagnetic
vacuum field Ey. Performing the usual approximations of
quantum optics, i.e., neglecting nonresonant terms (rotating
wave approximation) and assuming Markov-type correla-
tions between the atomic operators and the vacuum field, one
obtains the quantum Langevin equations controlling the time
evolution of any atomic operator O in the rotating frame
[23,26]:

are the ground and excited state

do o
—, =ialoa] - 5; (- D0, DJIOM(R)
i — - r e e
- 5;{ [0.D,]0(R) - E(OH +11°0)
+T2 DIOD, + Fo(R.1), (3)
q

where fo' (QL) are the components of the Rabi frequency
of the positive (negative) frequency parts of the incident la-
ser beam, i.e., 1 =—dE where d is the dipole strength. Fi-
nally Fo(7) is the Langevin force depicting the effects of the
quantum fluctuations of the vacuum electromagnetic field
and reads
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i
Fol == 372 (- DO, DIO% R,
q

- E 5)0_(R,t)[0,7:_], (4)
2 q q q
where Q(H(R,l) is the vacuum Rabi field operator
P

2id i )
QU R == 3 Elw)ealty)e®Riei (s)
ﬁ k.elk

with 7, an initial time far in the past. In the case of a sur-
rounding cavity, one would expand the vacuum Rabi field
onto the cavity modes [34] instead of the free space modes
€ay(1y)e™R-1-e(=1) From the preceding expression, one
can calculate the time correlation functions of the vacuum
field [38]

(- DO R, Q0 (R,1)]=4T 8, ft=1'),  (6)

where f(7) is a function centered around 7=0, whose width
7, is much smaller than any characteristic atomic time scale
(i.e., T.<wy'<T") and whose time integral is equal to
unity. Thus, hereafter, f(7) will be safely replaced by a &
function f(7) — (7).

The time evolution for the expectation values is obtained
by averaging over the initial density matrix of(f), i.e.,
(O(1))=Tr[O(t)o(ty)]. Since the atom and the vacuum field
are supposed to be decoupled initially, of(f,) is simply
a,(t5) ®|0)0] (|0) being the vacuum field state). Because of
the normal ordering, one immediately gets

(Fol)y=0, (7)
and the time correlation functions of the Langevin forces

(Fot) For(t'))
=- F<E [O(z>,1>:,<r>][0'(z'w;(z')]> -1

q
®)

The physical picture of the quantum Langevin approach is
to represent quantum fluctuations by a fluctuating force act-
ing on the system, in analogy with the usual Brownian mo-
tion. Not surprisingly, this leads to a diffusivelike behavior
of expectation values. More precisely, because of the 6 func-
tion in Eq. (8), we can set ¢' =t for the atomic operators and
we finally obtain in the stationary regime 7>>¢,:

r
(FoO)For(t)) = ZDmfﬁ(t— 1), ©)

where D is a matrix of diffusion constants depending only on
the stationary values of the atomic operators. The stationary
hypothesis also results from the fact that these correlation
functions only depend on the time difference r—¢'.

From this, it is possible to prove that the quantum regres-
sion theorem applies [23,39], allowing for the calculation of
two-times correlation functions of the atomic operators and
of their expectation values. From their Fourier transforms,
one can obtain the spectrum of the radiated light. But, for the
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reasons mentioned in the Introduction, we will explain how
these properties can be obtained in a much simpler way by
directly translating the Langevin equations in the Fourier do-
main [39].

B. Frequency-domain approach

First, because of the constraint (2), only 15 atomic opera-
tors are actually independent. More specifically, we will use
the following set, denoted by the column vector X:

o
H:ne = E[Hmem(, - Hg]a

anem; =|lm)1m)|, m,#m), (10)
D;,E = |1m€)(00 s

D, =100)(1m,]|.

The Langevin equations for X then formally read as follows
d
EX(z):MX(t)+L+F(t), (11)

where M is a time-independent matrix depending on the laser
Rabi frequency Q'*, L is a constant vector scaling with I’
and F(7) is a vector characterizing the Langevin forces at
work on the atom (for simplicity, we have dropped the ex-
plicit position dependence). The stationary expectation val-
ues are then simply given by

Xy=-M"L. (12)

The Fourier transforms of the different quantities are de-
fined as follows:

f(A) = J df(n)e™,

A .
0= [ Lpae, (13

leading to the Langevin equations in the frequency domain
(—iAl=M)X(A) =278(A)L + F(A). (14)
Introducing the Green’s function G(A)=(-iAl-M)~!, the
solution of the preceding equations simply reads
X(A)=GA)[278(A)L +F(A)]. (15)

Using G(0)=—M~" and Eq. (12), this solution separates
into a nonfluctuating part X;(A) and a fluctuating
(frequency-dependent) part Xz(A):

X, (A) =278(AKX),

Xr(A)=G(AF (). (16)

From the linearity of the Fourier transform, we still have
(F(A))=0 implying (X;(A))=0. The time correlation func-
tions for the Langevin force components, Eq. (8), become
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(F/(A)F;(A) =278A" + A)TD, 17)

js
where the 27S8(A’+A) function is a direct consequence of
the time-translation invariance, i.e., that we calculate the cor-
relation functions in the stationary regime. This implies that
the correlation function for the components of Xy in the
frequency domain are

(XHA))(Xp(A))y=2m8A + A')GD'G);,  (18)

where the superscript # means matrix transposition.
The field radiated at frequency A by the atom at a distance

r>\ (far-field regime) reads as follows:

eikr

kr (19)

3
. _ 3 _
(=-1)7Q%,(A)= 2I'P;q,Dq,(A)
where we use implicit sum over repeated indices. P" is the
projector onto the plane perpendicular to vector r:

r'r

r_r,
_ _ -4%q
— r — JE— —_ (= q 1
qu, =€,P'e, = eq(]l 2 )eq, =8y —(=1) Z

(20)

where the overbar denotes complex conjugation and where
(r 'r) is a dyadic tensor.

The correlation functions (Q;,(A’)Q;(A)) of the light
emitted by the atom is then proportional to (D;,(A’)D;(A))
and read

(0, (A)Q(A)) o= (2m)*8(4) SA")(D), XD,

+2m8A" +A) X Gy (A)G(A)D1;,
i'i
(21)

where the index i (i") corresponds to D, (D;,). The nonfluc-
tuating part gives rise to a spectral component of the emitted
light at exactly the incident laser frequency and is thus natu-
rally called the elastic part. The fluctuating part gives rise to
the inelastic Mollow triplet spectrum [41], whose properties
(position and width of the peaks) are given by the poles of
G(A), i.e., by the complex eigenvalues of M. Actually, we
simply recover the results of the quantum regression theo-
rem, which states that the atomic time correlation functions
evolve with the same equations than the expectation values

X)=M(X)+L [23,24].
III. TWO-ATOM CASE

A. Optical Bloch equations

We now consider two isolated atoms, located at fixed po-
sitions R, and R,. Defining R=R,-R,;=Ru (with R=|R|
and u the unit vector joining atom 1 to atom 2), we assume
the far-field condition R>>N\ to hold. We also assume that R
is sufficiently small for the light propagation time R/c to
be much smaller than any typical atomic time scales
(-',5",0;"). In this regime, all quantities involving the
two atoms are to be computed at the same time 7. The con-
tribution of the atom-atom dipole interaction in the Langevin
equation for any atomic operator O reads
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do 3r 1+75R y2- 247 5R - ek
o dip»=z4{([O,Dq ]’qu,Dq, +[O,Dq ]’qu,Dq,) R
1 2- 2 1 e R
+(Dy Py [0,D2 1+ DI Py [0,D)]) Tk
(22)

In the OB equations, the two-atom system is entirely de-
scribed by the set of 256 operators X;; made of all possible
products XI-IXJZ-. The stationary expectation values (X;;) are
then obtained as solutions of a linear system resembling Eq.
(12). This is the approach used in Ref. [37], where such
optical Bloch equations are solved.

Since the two atoms are far enough from each other, the
electromagnetic field radiated by one atom onto the other can
be treated as a perturbation with respect to the incident laser
field. More precisely, the solutions (X;;) can be expanded up
to second order in powers of g and g:

Xip) = <Xij>(0) + g(Xij>(g> + §<Xij>(§) + 8§<Xij>(g§)
2 op =) 77)
+ gXX,) + BXX,), (23)
where the complex coupling constant g is

3IMexp(ikR)
g=i—————.

2 kR @4)

In fact, it will be shown below that both terms in g2 and g>
give a vanishing contribution to the coherent backscattering
signal.

As explained in the Introduction, this approach has two
drawbacks: (i) the solutions obtained in this way are global
and, thus, do not provide a simple understanding of the prop-
erties of the emitted light and (ii) when the two atoms are
embedded in a medium whose susceptibility strongly de-
pends on the frequency, the field radiated by one atom onto
the other at a given time ¢ now depends on the atomic op-
erators of the first atom at earlier times (since retardation
effects become frequency dependent). Time correlation func-
tions in the dipole interaction then explicitly show up.

B. Langevin approach

The Langevin equations for the two sets of atomic opera-
tors X¢, with a=1,2, formally read

X= M X"+ L+F*+ g X Py DE + gD P 17 -X°,
(25)

where B denotes the other atom and where 7%* are 15X 15
matrices defined by [X;, D;]=+2T} X, Taking the Fourier
transform of these equations, one gets

X%(A) = GHA) 278 AL + F(A)]
+gGH(A) TPy (X @ DE)(A)

-G A)PR

a4q

TI(DF @ X%)(4),  (26)

where ® is the convolution operator
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(A® B)(A) = i J f dAdALS(A, + Ay — A)A(A)B(A,).

(27)
Introducing, for simplicity, the following notations:
“(8) = GX(A)2mS AL + F(A)],
Gei(A) = GHA)T! P, .
G(A) = GH(A) T PY . (28)
Eq. (26) becomes
“(4) = X" (4) + gGU(A)(X* ® DF)(A)
- 2G™(A)(DIF © X)(4), (29)

from which one gets the expansion in power of g and g (up
to gg) for the atomic operators:

o NO! ot o0 _(0)
X{H(A) =X (A) +gGa(A) (X7 ® DE)(A)
o (O] 20
—~FGHA)DF ® X))
_f at NI - 2+ (0)
—gg(GX; @ G (D © X5 )1(4)
q

+ - (0)
+GHMGHDE" @ x3) © DE)(A)

ll+ E((O —
® Goxa © D))

. (0)

+G; q(A )[Ds

(l))

1)},
(30)

+Gla(A) [Gﬁl’ (XB ®D“‘ ") @

8,

where the notation G/, means the matrix element G;/;» with

i’ such that Xy=Dj. A schematic representation of the pre-
ceding equation is shown in Fig. 1. The thick arrows depict
the incident laser intensity (the pump field). The continuous
arrows depict the propagation of the components of the posi-
tive frequency part of electromagnetic field (i.e., QF),
whereas the dashed arrows correspond to the negative fre-
quency part (i.e., 7). Figure 1(a) represents thus the g co-
efficient in Eq. (30): the atom B is pumped by the incident
laser field and thus emits light (elastic and inelastic) (dipole
operator DB ) which i is then scattered by the atom « (non-

linear suscept1b111t1es G; 'iX“ ) Figure 1(b) depicts the g co-
efficient correspondlng to the case where a forward four-
wave mixing (FFWM) process occurs at the atom a; i.e., the
components of the negative frequency part of the electro-
magnetic field emitted by the atom B and the components of
the positive frequency part of the incident laser field are non-
linearly mixed at the atom « resulting in a radiated field with
a positive frequency part (see Sec. IV C for more details).
Figure 2(a) corresponds to the first gg coefficient and must
be read as follows: the atom a emits light (the negative fre-

quency components D‘“ ) which undergoes a FFWM pro-
cess at the atom B (term GB v XB ), the resulting field is
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8 _>Q

- ()
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FIG. 1. (Color online) A schematic representation of Eq. (30).
The thick arrows depict the incident laser intensity (the pump field).
The continuous arrows depict the propagation of the components of
the positive frequency part of electromagnetic field (i.e., QF),
whereas the dashed arrows correspond to the negative frequency
part (i.e., Q7). (a) represents thus the g coefficient in Eq. (30): the
atom S is pumped by the incident laser ﬁeld and thus emits light

(elastic and inelastic) (dipole operator D/g ) which is then scat-

tered by the atom « (nonlinear susceptibilities G 'iX“ ) The dia-
gram (b) depicts the g coefficient corresponding to Lhe case where a
forward four-wave mixing (FFWM) process occurs at the atom a;
i.e., the components of the negative frequency part of the electro-
magnetic field emitted by the atom S and the components of the
positive frequency part of the incident laser field are non-linearly
mixed at the atom «, resulting in a radiated field with a positive
frequency part (see Sec. IV C for more details). Figure 2(a) corre-
sponds to the first gg coefficient and must be read as follows: the
atom « emits light (the negative frequency components D ar® )

which undergoes a FFWM process at the atom 3 (term GB”[/ Xﬁ );

‘o
the resulting field is then scattered by the atom « (term G,ijXj‘-’ ).

Figure 2(b) corresponds to the second gg coefficient and depicts the
following process: the positive frequency components of the light
emitted by the atom S (term Dfﬁ ) are scattered by the atom «
with nonlinear susceptibilities which are modified by the negative
frequency components emitted by the atom B (term
Gf;;G;r;D5+‘0)XE',(())). Finally the (c) (third gg coefficient) is analog to
Fig. 2(b) with an additional FFWM process at the atom « and Fig.
2(d) (fourth gg coefficient) is analog to Fig. 2(a) with a FFWM
process also at the atom a.

* a0
then scattered by the atom a (term G;ﬂXj‘?‘ ). Figure 2(b)
corresponds to the second gg coefficient and depicts the fol-
lowing process: the positive frequency components of the
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light emitted by the atom B3 (term Dqﬂ'm)) are scattered by the
atom «a with nonlinear susceptibilities which are modified by
the negative frequency components emitted by the atom S
(term GG D8 "x3"). Finally, Fig. 2(c) (third gg coeff-
cient) is analog to Fig. 2(b) with an additional FFWM pro-
cess at the atom « and Fig. 2(d) (fourth gg coefficient) is
analog to Fig. 2(a) with also a FFWM process at the atom a.
For all these figures, one must notice that the regular nonlin-
ear susceptibilities only depend on the intensity of the inci-
dent laser field, whereas the FFWM processes also depend
on the phase of the laser. These properties will play a crucial
role for the calculation of the CBS signal (see Sec. IV C).

Two-body term expansions, obtained from Eq. (30), read
as follows:

X8(Anxe(a) = x5 (anxa" ()
O ot W) _(0)
+e{X (A)GA)(X] ® DI )(A)
+ 6 anE” o D) anxs" @)

B0 0) &0
- gXE(ANGL(A) (D @ XET)(A)

- (0)
+ Gl @ e X anx W)

- 88 {see Eq. (A1)},

” MO (0)
XSANXEA) = X3 (AHxe(A)

0t 20 _(0)
+glX, (ANGH(A) (X ® DI )(A)

(0) 0)

+ 6N @ D) anxe ()

0) (0)

ol e ( o
- gixa A6 @ x ) @)
P ©) PRSI ()]

+ Gl AN o x5 (A)xE (M)}

- 88 {see Eq. (A2)}. (31

The quantities involved in the preceding equations are opera-
tors acting on both atomic and electromagnetic field spaces.
In particular, the quantum fluctuations due to the vacuum
electromagnetic field still appear through the Langevin
terms. A full numerical simulation of these equations would
then take place in the framework of the quantum stochastic
calculus [40]. However, as in the one atom case, we will
show that, from these equations, one can directly obtain the
power expansion of the expectation values (i.e., quantities
averaged over the quantum fluctuations). The latter can be
derived from the quantum average of the preceding equa-
tions, but not as easily as it seems. Indeed, if one formally
writes
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X% (A)X%(A) = X, 0la,b)g",
ab

(X% (ANXAA) = X Cla,b)g R, (32)
ab

then C(a,b) is not simply equal to (O(a,b)). Actually,
C(a,b) depends on all (O(a’,b")) for (a’',b")=(a,b), and
this for two reasons.

For a given atom «, the frequency correlation functions
(F;"(A’)F;‘(A)) are given by 2w8(A'+A)D,,,, where D, de-
pends on the stationary values. But the latter are modified by
the second atom and, thus, must also be expanded in power
of g and g. This implies, for example, that the first term
Xﬁ(O)(A’)Xf(O)(A) in the expansion of X7,(A")X{(A) [Eq. (31)]
will contribute to all coefficients of (X, (A")X{(A)).

The Langevin forces acting on two different atoms are
correlated since they both originate from the vacuum quan-
tum field. More precisely, their frequency correlation func-
tions depend on their relative distance. This dependence is
analogous to the correlation function of a speckle pattern
(resulting from the random superposition of plane waves
with the same wavelength but arbitrary directions):

sin kR
kR

3 '
B A1 Y, _ ’ = + — /B ya
<Fi'(A VFi(A))y=2m78(A +A)2F Yjﬁi,qu,qT?j <Xj’Xj>

1 ,
I 5 ’ —-/vP ya
——2(g+g)2775(A +A)Z?,; ol (XGXT)

i

1
=—§(g+§)277b‘(A’ +A)DEe, (33)

™ B0 al® g ) L
us, terms such as X, (A")(X{ @Dy~ )(A) appearing in
Eq. (31) will also contribute to higher-order coefficients in
the power expansion of (ng, (A")X{*(A)). One must note that,
when R—0, Pg,qﬂgéq/q and one recovers the single atom
correlation functions given by Eq. (17), which emphasizes
the consistency of the present approach.

C. Comparison with optical Bloch results

Despite these subtleties, it is nevertheless possible to cal-
culate power expansions of the atomic correlation functions.
More precisely, in order to emphasize the validity of the
present approach, we will compare the results obtained from
the OB equations and from the Langevin approach. Indeed
from the atomic correlation functions, the stationary solu-
tions can be calculated by inverse Fourier transform as fol-
lows:

1

KX = Gy

f f A AA(ANXT (A, (34)

As a specific example, the coefficient proportional to g in the
perturbative expansion of (Xf,(A’)X;”(A)) is given by

033808-6

119




COHERENT BACKSCATTERING IN NONLINEAR ATOMIC...
(XPANXFA)®
= (¢ anxe ")
+ a6 @ DE ) (a)©
+(6hana" o g ) anx )

= G}, (A)GHANF)(A)FF (M)W

+ Gyt anpE ()
+ G e "anxe @ap®,  (3s)

where we have used the fact that terms such as (X”(O)X'B(O))(O)
(i.e., zeroth order) actually factorize into (X“)(X?) since their
fluctuating parts necessarily give rise to higher orders in g
and g, see Eq. (33). The underlined terms correspond to the
nonvanishing correlations of the quantum vacuum fluctua-
tions evaluated at the two atom positions.

Finally, separating elastic and inelastic part, one gets

(XBAHXH AW

= 2mPaA) A M) (G o)X X"\

(0, 0),

* (OSSN
+ Gl (0)XE D™ X))

1
+2mo(A + A)(— EGﬁ_/,(A/)G;;(A)Dﬁj”

at , ), (0)
+G(A)GE (A Gy (AIDJI (X])

N
X GPi,
vy

’ a ! « aa(o) .B(O)
(A6 (AGDE" >). (36)

The corresponding stationary solution then reads

+ (0)
(xExe® = Gaaopxs " xd o)

(0),

+ (0
+ 62,008 oy

1 1 (0)
J— iyl @ Ba
v f dA(— 56l (- AGHM)D]S

0

af B B 889 1,0
+G(A)Gl (- A)GD;kV(A)Djrkr X7

B a @ Py
XGyt, (= 0)Giye (= M)GHADET (X, >).

(37

All quantities above only depend on the stationary values
without coupling between the atoms and thus can be calcu-
lated from the single atom solutions. Furthermore, the inte-
gration over A can be performed either numerically or ana-
lytically by the theorem of residues once the poles of G (i.e.,
the complex eigenvalues of M) are known. Because of cau-
sality, they all lie in the lower-half of the complex plane. In
practice, we have checked that we effectively recover, from
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the preceding expressions, the results obtained from the full
OB equations. In particular, the contribution of the correla-
tions of the quantum vacuum fluctuations evaluated at the
two atom positions (the underlined term) is essential to get
the correct results.

The same kind of expressions can be derived for gg terms,
but they are slightly more complicated, since they explicitly
involve three-body correlation functions, more precisely
terms like

Gt anee” e D) a)®,

0)

@ x5 o D8 )
(38)

o ’ a (
Gl(AXE(A GH(DY

which require the calculation of three-points Langevin force
correlation functions like

+ 1
qu(A)Gé/,(A/)—ffdAldAza(AﬁAz-A)
1 LA 277

XGR(A) G (A NFE(A V(A FL (8,) ),
q

+ 1
G;;q(A)Gék,(A')—fJdA,dAza(Al+A2_A)
! 21

A B B
XG;!,(AI)GD;k(Al)G

e AR (A FE(A D FL(A) 0.
:

(39)

These correlation functions are nonzero even if they in-
volve an odd number of Langevin forces, emphasizing that
the statistical properties of the vacuum field fluctuations are
far from Gaussian. Nevertheless, the explicit expressions of
the above quantities can be derived (see Appendix B). They
lead to rather complicated and tedious formulas for the
atomic correlation functions at order gg. From that, we get
the corresponding stationary expectations values. Again, we
have checked that we indeed recover the OB results.

D. Incorporation of an effective medium

Finally, and in sharp contrast to optical Bloch equations, it
is very easy to adapt all the preceding results to the case of
propagation in a medium with a frequency-dependent com-
plex susceptibility. Indeed, the quantization of the electro-
magnetic field in dielectrics involves the tensor-valued
Green’s function of the classical problem [42,43], from
which all possible commutation relations of the field opera-
tors can be derived. In particular, for a homogeneous me-
dium, this Green’s function involves the complex-valued per-
mittivity e(w;+A)=1+x(w,+A). Its real part is responsible
for dispersion and its imaginary part for absorption. In the
dilute regime, this allows us to write the field radiated by an
atom at a distance R and at frequency A as follows:
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(= 1)907 (A) = igP;‘,,,D;,(Mexp(— ‘ (40)

&)
217(A))°
where [*(A) is the (complex) scattering mean-free path, de-
fined by 1/kl*(A)=ix(w;+A) with the dilute regime condi-
tion k|I*(A)|>1.

The real part of 1//*(A) describes thus the exponential
attenuation of the field during its propagation in the medium
while the imaginary part describes the additional dephasing
induced by the medium. More complicated formulas, ac-
counting for possible variations of / with position, birefrin-
gence effects, or even nonlinearities in propagation, can be
derived in the same spirit. In all preceding equations, leading
to the calculation of the correlation functions, any occurrence
of the dipole operators must then simply be replaced by

R
2I%(A) ) “1)

D* — D%xp(—
while keeping the same “medium-free” coupling constant g.
In this way, the present approach can be easily extended to
the situation where the two atoms are embedded in a me-
dium. In the case of a nonlinear medium, this could lead to a
self-consistent set of nonlinear equations.

It is important to stress that accounting for the effective
medium is rather straightforward in this frequency-domain
approach but is a much more difficult task in the temporal-
domain approach. Indeed, one basic hypothesis for deducing
OB equations from the Langevin approach—see Sec.
IIT A—is that the light propagation time between the two
atoms is much shorter than any typical atomic time scale.
When this condition is fulfilled, it is possible to evaluate
expectation values at equal times for both atoms, producing
the set of closed OB equations. In the presence of a sur-
rounding medium, propagation between the two atoms is af-
fected and this basic assumption may fail. If the refraction
index of the dilute medium is smoothly varying with fre-
quency, then the corresponding propagation term is also
smoothly varying with frequency and can be factored out.
Thus, except for the exponential attenuation, one may re-
cover the OB equations where equal times must be used for
atoms 1 and 2. On the contrary, if the propagation term has a
complicated frequency dependence, the problem cannot be
simply reduced to OB equations. It will rather involve opera-
tors evaluated at the other atom, but at different times, thus
leading to a much more complicated structure. This difficulty
may even take place in a dilute medium with refraction index
close to unity. Indeed, the important parameter is the time
delay induced by the medium, itself related to the derivative
of the index of refraction with respect to frequency. If the
medium is composed of atoms having sharp resonances, the
effective group velocity can be reduced by several orders of
magnitude, consequently increasing by the same amount the
propagation time between the two atoms. Around the atomic
resonance line, the typical propagation time delay induced by
the medium over one mean-free path depends on the laser
detuning but is of the order of the atomic timescale for the
internal dynamics, namely, I'"! [47]. In this case, only the
full Langevin treatment developed in this paper can properly
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account for the effect of the average atomic medium. Its
practical implementation calls for an investigation on its own
and is thus postponed to a future paper. We must also note
that, if the surrounding medium is composed of the same
atoms than the scatterers, it is not completely clear that
propagation in the medium can be described “classically,”
i.e., that the correlation between the Langevin forces acting
on the scatterers and the Langevin forces acting on the me-
dium can be safely neglected. For the rest of this paper, we
will consider two isolated atoms in vacuum.

IV. MAIN RESULTS

A. Scattered field correlation functions in the CBS
configuration

In the case of a large number of atoms and for a given
configuration, the interference between all possible multiple
scattering paths gives rise to a speckle pattern. When aver-
aging the intensity scattered off the sample over all possible
positions of the atoms, one recovers the CBS phenomenon:
the intensity radiated in the direction opposite to the incident
beam is up to twice larger than the background intensity and
gradually decreases to the background value over an angular
range A scaling essentially as (kl)~!, with [ the scattering
mean-free path. In the present case, the averaging procedure
is performed numerically by integrating over the relative po-
sitions of the two atoms. As will be seen below, the far-field
condition kR>1 allows for an a priori selection of the
dominant terms contributing to the CBS signal.

The field radiated by the two atoms in the direction n at a
distance r>>R>>\, in the polarization channel €™ orthogo-
nal to n (€*"-n=0), is given by

kr

3 ~( A —ikn- Ay kR &
04 (0.8) =~ STEDY ()14 DI (M)

(42)
so that the field correlation function in this channel reads

(QGu(n, A5, (n,4))

r 2
= (%) " ((D)H(A)D) (A)) + (D (A)D; (A))

+eRD2(AYD](A)) + e KDL (A DE (A}
(43)

The CBS effect occurs when the total phase in the inter-
ference terms in the preceding expression becomes indepen-
dent of the positions of the atom. This phase accumulates
during the propagation of the incident laser beam to the at-
oms and during the propagation of the radiated field between
the two atoms. The phase factor due to the incoming laser
beam (a plane wave with wave number k; =kn;) can be ex-
plicitly factorized out of the atomic operators as follows
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et _ myax +ik; R,
D" =Dy e 1 e, (44)
The other components of X, see Eq. (10), are populations and
are not affected by this phase factor. In the single atom case,
the expectation values of the hereby defined operators 5;“

are independent of the positions of the atoms. Defining ¢
=k;-R and

g1=ge'’, gy=ge?, (45)
the Langevin equations (29) then become
X(8) = X" () + g,G(A)(X* © DE)(A)
+2,G(8)(DF @ X9(A). (46)

In the preceding equation, the Green’s functions G are now
independent of the position of the atoms, so that the phase
information due to the incident laser beam is entirely con-
tained in the coefficients g,.

Frequency correlation functions of the Langevin forces
(33) must also be modified accordingly:

~ ~ 1 ~
(FRADFI() = S(gp+82m0A + A)DLT. (47)

Dropping for simplicity the tilde notation, the field correla-
tion function (43), in the backward direction n=-n;, be-
comes

<Q’;ut(_ ng, A,)qut(_ nL»A»

kr
+ e*Zi‘/’(Df,*(A’)D;_(A)) + e2‘¢<D;,+(A’)D3_(A)>}~
(48)

The configuration average is then performed in two steps.
Since we are working in the limit kR > 1, the first one is to
keep only terms with a total phase independent of kR. In the
power expansion with respect to the four parameters g;, g,
g1, and g,, this simply amounts to keep terms with even
powers of g,g,. This obviously cancels any ¢ dependence.
More precisely, the field correlation function in the backward
direction, beside the trivial zeroth order (in g) term, is given
by

(O3~ n. AN,

out

T 2
= (—) EMEM(DL(A)DI(A)) + (D2HA)DZ(A))

(= nL,A»(Z)
r)\? . ] -
= (E) Egutézut{a);(Ar)Dq—(A»(glé’l)
+ ('D;*(A’)sz(A))(gzﬁz) + <D12,+(A’)D:[7(A)>(31§2)
+ (D[])Jr(Af)'sz(A))(gzﬂ)}

T 2

=<;> (L(A",4) + C(A",4)). (49)
-

The preceding field correlation function still depends on
the relative orientation of the atoms through the projector
PR so that, in a second step, an additional average over R
must be performed. In the preceding equation, the first two
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terms correspond to the usual “ladder” terms L(A',A) (they
are actually independent of the direction of observation),
whereas the two other terms correspond to the usual “maxi-
mally crossed” terms C(A’,A):

9 _
L(A,,A) - ZEzulelo)u(«D’l:(A/)D(II—(A)>(§|)€1)

(DA ()52},

2 FOAT - z
C(A",A) = Zéq)utézut{(D; (A )D; (A))&182)

N (’DLJ'(A')D?[(A)WZEI)}' (50)

B. CBS enhancement factor

In the case of linear scatterers, the CBS enhancement fac-
tor achieves its maximal value 2 (recall that the CBS phe-
nomenon is an incoherent sum of two-wave interference pat-
terns all starting with a bright fringe at exact backscattering)
if the single scattering contribution can be removed from the
total signal and provided reciprocity holds. This is the case
for scatterers with spherical symmetry in the so-called polar-
ization preserving channel Kl h [44].

In this polarization channel, we have calculated the rel-
evant quantities for an evaluation of the CBS enhancement
factor when no frequency filtering of the outgoing signal is
made. We have thus derived the elastic and inelastic ladder
terms and the elastic and inelastic crossed terms, together
with their corresponding frequency spectra, for different val-
ues of the on-resonance saturation parameter s,=2|€,|*/T"2.
This parameter measures the intensity strength of the inci-
dent laser beam in units of the natural atomic transition line
width T, i.e., it compares the on-resonance transition rate
induced by the laser to the atomic spontaneous emission rate.
For a detuned laser beam, the saturation parameter is s(&;)
and is defined as

So

@)= a7

(51
In the following, different values of the laser detuning have
also been considered:

(a) 6,=0, s=157=0.02, (b) 5,=0, s=sy=2.00,
(¢) 8,=5T, 55=2.00, s=0.02, (d) &,=0, 5= s5=50.0.

The ladder and crossed terms (49) are separated into their
elastic and inelastic parts according to

L(A",A) =2m5(A + A"{275(A) Lot + Lina(A)},

C(A",A) =278(A + A)278(A)Cy + Ciper(A)}. (52)

The corresponding inelastic spectra Li(A) and Ci(A)
are displayed in Fig. 2. For a sufficiently low saturation pa-
rameter s, the inelastic contribution to the total intensity is
small and the crossed intensity is almost equal to the ladder
one [see graph 2(a)]. For larger saturation parameters [see
graphs 2(b) and 2(d)], there are two effects: first, the inelastic
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FIG. 2. (Color online) Backscattered light spectrum in the
helicity-preserving polarization channel 4llh. The solid lines repre-
sent the ladder term (average background intensity value) and the
long-dashed lines represent the crossed (interference) term. For
both terms, the plotted values correspond to Tl (A)/(C'O'+ L"),
see Eq. (52), where C'+L"™ is the total (elastic plus inelastic)
intensity scattered in the backward direction. The vertical dashed
lines indicate the atomic transition frequency. A corresponds to the
scattered light angular frequency change with respect to the initial
laser angular frequency (A=0 means thus that light is radiated at
w;). Graph (a) corresponds to an on-resonance saturation parameter
50=0.02 and a laser detuning & =0, graph (b) to (so=2,8,.=0),
graph (c) to (sg=2,6;=5I"), and graph (d) to (s9=50, §,=0). At low
50, the inelastic contribution to the total intensity is small and the
ladder intensity is almost equal to the crossed one. For a larger
saturation parameter, first the inelastic contribution becomes com-
parable to the elastic one and second, the crossed term becomes
smaller than the ladder one. For a nonzero detuning, see graph (c),
one clearly observes an asymmetry in the inelastic spectrum, which
reflects the fact that the scattering cross section of the atomic tran-
sition is maximal for resonant light: the symmetric inelastic spec-
trum emitted by a single atom is filtered out when scattered by the
other one. At very large saturation (d), the structure of the radiated
spectrum becomes rather complicated.

contribution becomes comparable to the elastic one and sec-
ond, the crossed term is smaller than the ladder one. For a
nonzero detuning [see graph 2(c)], one clearly observes an
asymmetry in the inelastic spectrum, which reflects that the
scattering cross section of the atomic transition is maximal
for resonant light (indicated by the vertical dashed line): the
symmetric inelastic spectrum emitted by a single atom is
filtered out when scattered by the other one. We also observe
that the crossed spectrum is much more reduced than the
ladder term, highlighting the nonlinear effects in the quan-
tum correlations between the two atoms. Finally, for much
larger saturation parameters [see graph 2(d)], the scattered
light almost entirely originates from the inelastic spectrum,
as for a single atom. However, contrary to the single atom
case (for which the scattered intensity reaches a constant
value), the total intensity scattered by the two atoms de-
creases when increasing the incoming intensity. Indeed, since
the atomic transitions become fully saturated, the nonlinear
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scattering cross section of each atom is decreasing, resulting
in a smaller total intensity scattered by the two atoms com-
pared to the one scattered by a single atom.

The CBS enhancement factor 7 is defined as the peak to
background ratio. It thus reads

Ctot
n=1+ ﬁ (53)

with

dA
A =k

dA
C=Cy+ ;ﬁ::l=cel+f;1_cinel(A)~ (54)

If the CBS phenomenon is reducible to a two-wave inter-
ference, as it is the case here, then the enhancement factor 7
is simply related to the degree of coherence 7y of the scattered
light [45]. If the single scattering contribution can be re-
moved from the detected signal, and this is the case in the
hllh channel, one has simply »=1+7 and consequently y
=C"/L", The maximal value for 7 is 2, meaning that full
coherence y=1 is maintained for the scattered field since
then C*'=L"". If all interference effects disappear, meaning
C''=0, 7 reaches its minimal value 1 and correspondingly
coherence is fully lost y=0. Furthermore, one can show that
in the Allh polarization channel Ly,=Cy [37]. Consequently,
as soon as Cies <L in this channel, the coherence of the
scattered light field is partially destroyed, since then 7<<2
and y<lI.

Our results are summarized in Table I. At low saturation
parameter s, 7 reaches its maximal value 2 and y=1. This is
so because the ladder and crossed inelastic components are
almost equal as evidenced in Fig. 2(a). Increasing s, reduces
further Cio%, with respect to Li%, thus decreasing 7 and y. In
the strongly saturated regime, one thus expects vy to decrease.
However, there is no reason for the ratio Cio,/Li% to tend to
zero as sop— 0. It rather tends to a finite value, which de-
pends on the detuning, in agreement with the results pub-
lished in Ref. [37]. Furthermore, keeping s, fixed and de-
creasing the saturation parameter s, situation (c), # increases,
as expected, but to a value which strongly depends on s,. In
other words, contrary to the single atom case, the properties
of the scattered light are not only determined by the satura-
tion parameter s [20], highlighting the crucial role of the
inelastic processes. Indeed, in both situations (a) and (c), s
has the same (small) value, but the enhancement factor
strongly differs, mainly because the relative contribution of
the inelastic ladder term has increased. A qualitative under-
standing of this behavior can be obtained from the diagram-
matic approach: Fig. 3 displays the basic processes contrib-
uting to the ladder and crossed terms. In the small s regime,
only one nonlinear event is necessary to calculate the first
correction to the linear regime [20], so that we can assume
that inelastic processes occur only at atom 1, whereas atom 2
behaves similar to a linear scatterer. In the case of the ladder
term [Fig. 3(a)], the inelastic light is thus emitted by atom 1
and then (elastically) scattered by atom 2. The crucial point
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TABLE 1. Ladder (average background) and crossed (interference) terms, see Eq. (52), contributing to the
light scattered in the backward direction in the helicity-preserving polarization channel Zll/. The given values
are relative to the incoming saturation parameter s. At low s, the inelastic contributions are small and almost
equal. Thus C**'=~ L** and the maximum enhancement factor 2 of the linear case is thus recovered, meaning
that full coherence y=1 is maintained. At larger s, elastic and inelastic terms become comparable. For very
large s, the contributions from the elastic terms vanish, as in the single atom case. The inelastic contributions
are also decreasing, reflecting the fact that the probability for the light to be scattered by a saturated atom
becomes smaller with increasing saturation. Furthermore, the inelastic crossed term is always smaller than the
inelastic ladder one. This is a signature of a coherence loss y<<1 induced by the quantum vacuum fluctua-
tions. However, the ratio Cio/Li%; does not go to zero as so— but reaches the limit value 0.096 (for &,
=0). Also, contrary to the single atom case, the properties of the scattered light are not solely determined by
the saturation parameter s, but additionally depend on the detuning &;, as exemplified by cases (a) and (c),
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highlighting the role of the inelastic processes.

(a) s=50=0.02,8,=0 (b) s=5¢=2.00,5,=0 (c) s=0.02,57=2.00,8,=5I" (d) s=57=50.0,5,=0

Ly 0.624 0.833x 1072 0.618x 1072 0.998 % 1077

L 0.220x 107! 0.573 X 107! 0.328 X 1072 0.487x 1073

Lt 0.646 0.656 % 107! 0.946 X 1072 0.487x 1073

Cq 0.624 0.833 %1072 0.618x1072 0.998 X 1077
o 0.188x 107! 0.295% 107! 0.157x 1073 0.466 X 1074

crot 0.642 0.378 X 107! 0.634x 1072 0.467 X 1074

n=l+y 1.994 1.576 1.670 1.096

is that one peak of the inelastic light spectrum is exactly at 2

the atomic frequency wy (i.e., corresponding to A=-45;) for
which the scattering cross section of atom 2 is maximum.
More precisely, the inelastic spectrum scattered /(A) by atom
1 is multiplied by the factor

(b)

FIG. 3. A schematic approach of the basic processes contribut-
ing to the inelastic ladder and crossed spectrum, in the small satu-
ration regime [20]. Nonlinear behavior only occurs at the atom 1,
whereas only elastic scattering events take place at the atom 2. In
the case of the ladder term (a), the inelastic light is thus emitted by
atom 1 and then scattered by the atom 2. For nonzero detuning &; of
the incident light, one peak of the inelastic light spectrum is exactly
at the atomic frequency wq (i.e., corresponding to A=-¢;) for
which the scattering cross section of atom 2 is maximum. This
results in the ladder spectrum depicted by Fig. 2(c). In the case of
the crossed term (b), the main difference is that the atom 2 scatters
fields at different frequencies: one still corresponds to the inelastic
light emitted by atom 1 (frequency w;+A) whereas the other cor-
responds to the incident light (frequency w;), which for large de-
tuning &y results in a smaller crossed inelastic spectrum; further-
more, this also explains the dispersive behavior around A=-§5;
depicted by Fig. 2(c).

I2+4(A+ 6,)° (53)

which is maximum for A=-¢;. This results in the ladder
spectrum depicted by Fig. 2(c). In the case of the crossed
term [Fig. 2(b)], the main difference is that atom 2 scatters
fields at different frequencies: one still corresponds to the
inelastic light emitted by atom 1 (frequency w;+A) whereas
the other corresponds to the incident light (frequency w;).
This leads to a new factor [20]

1“2
Re( [T +2(A + 6)]LT + 2(5,)] ) : (56)

where Re(z) is the real part of z. For large detuning &, this
factor is then much smaller than the factor for the ladder
case; furthermore, this also explains the dispersive behavior
around A=-¢; depicted by Fig. 2(c).

Finally, depending on the values of the s and &; param-
eters, a rich variety of situations can be observed, with vari-
ous physical interpretations. These are beyond the scope of
this paper, which instead concentrate on the basic ingredients
of the quantum Langevin approach and will be published
elsewhere.

C. Linear response model

Some insight on the relative behavior of Cj,(A) and
Li,i(A) can be found by comparing the respective formulas
from which these quantities are extracted:
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There are twice as many terms contributing to the ladder
terms as to the crossed terms. A rather simple explanation of
this fact is borrowed from the usual linear response theory.
Indeed, each atom is exposed to two fields: the incoming
monochromatic field (angular frequency w;, wave vector k;)
and the field scattered by the other atom (angular frequency
w +A, wave vector k). In the far-field regime R>>N\, the
incoming field is more intense than the scattered field. It thus
plays the role of a pump beam with angular Rabi frequency
();, while the second weaker field plays the role of a probe
beam with angular Rabi frequency (),,. In this case, the re-
sponse of each atom is simply described by its nonlinear
susceptibility [16,23]. More precisely, forgetting about polar-
ization effects, we have

5D+(A) — e*i(ZkL—kp)»RaXPr(A)Q; + eiikF'Ra/\q,(A)Q_,

oD~ (A) = eikﬂ'Ra)(,Jr(A)Q; + ei(QkL_kﬂ)'RﬂX”(A)Q;,
(59)

where the phases due to the light fields have been explicitly
factorized.

As obviously seen, the two terms y,_ and y_, generate the
forward propagation of the probe whereas the two other
terms x,, and y__ can generate an additional field in the
direction 2k; -k, provided phase-matching conditions are
fulfilled. This corresponds to the usual forward four-wave
mixing mechanism (FFWM) [16,23]. In the low saturation

regime, this corresponds to the following multiphotonic pro-
cess: the atom first absorbs a photon from the pump; then the
probe induces a stimulated emission; finally, another photon
from the pump is absorbed, followed by a final spontaneous
emission at frequency 2w, —w,=w,~A. If we now replace
the probe field by the field radiated by the other atom S, we
get

| R k- -
8D o(8) = ol AR AR (A)D

+ el Ry (A)DR),

) (I )
8D .o(A) = {e MRy (M)

+ ei(ZkL'Ra+kR‘kL'Rﬁ)X__(A)D;}}, (60)

Hence the ladder and crossed contributions are given by
(dropping for sake of clarity any frequency dependence)

C(Z) ~ w;AﬁépﬁAaei(_kL'RmkbRD‘)
~ oML RRY-2UR], X-D:D

+ ok (R~Rg

+ ei[2k -(R,~R /;)+2kR] o X——D; D;} ,

X XD D+ Xo-X-DoDp
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(2) ~ + »
L dDy .(0Dp .,
~ ei[zk,,mﬁ-k,,)—zm]XH XDDj+ X++X--D,EDE
+ X+-X-+D;§D23 + /12K (R R g)+2kR] X+-X-—DEDE )
(61)

Averaging these expressions over the positions R, and Ry of
the atoms while keeping R>>N\ fixed, only terms with
position-independent phases survive, giving rise to

¥ = X, x-.D, D,

L?~ X++X——D;3D2r} + X+—X—+D2;DZ;~ (62)

This simple model allows one to understand clearly why
there are twice more terms in the ladder expression than in
the crossed one. Fields generated in the FFWM process al-
ways interfere constructively in the case of the ladder, since
they originate from the same atom. Of course, in the preced-
ing explanation, we have discarded polarization effects and
inelastic processes in the nonlinear susceptibilities. Never-
theless, even if in that case the situation becomes more in-
volved, the differences between the ladder and crossed ex-
pressions still arise from this local four-wave mixing
process. For example, in the last line of Egs. (57) and (58),

+ (0)
we see that the operator [G;j'i(A)X;-’ ® ] plays the role of a
generalized nonlinear susceptibility (actually, the standard

ones are recovered from the elastic part of X¢ ). Thus we
recover the same structure as previously depicted, which
leads to similar conclusions.

Finally, as mentioned above, for large saturation param-
eters 5o, even if in that case the total scattered intensities
(ladder and crossed) are dominated by the inelastic spectrum,
we numerically observe that the enhancement factor does not
vanish but rather goes to a finite limit 1.096 (for 5;=0). Field
coherence is thus not fully erased, which, at first glance,
could be surprising since the inelastic spectrum is a noise
spectrum at the heart of the temporal decoherence of the
radiated field. This only means that both crossed and ladder
become vanishingly small relative to the incident intensity.
Nevertheless, even if it would be hard to derive it analyti-
cally from Egs. (57) and (58), they actually decrease at the
same rate, resulting in a finite (but small) enhancement fac-
tor.
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V. CONCLUSION

In the case of two atoms, even if the quantum Langevin
approach leads to calculations more tedious and involved
than the direct optical Bloch method, it nevertheless gives
rise to an understanding closer to the usual scattering ap-
proach developed in the linear regime. In this way, one also
gets direct information about the inelastic spectrum of the
radiated light. In particular, it clearly outlines the crucial
roles played by the inelastic nonlinear susceptibilities and by
the quantum correlations of the vacuum fluctuations. Further-
more, since the framework of the quantum Langevin ap-
proach is set in the frequency domain, frequency-dependent
propagation (i.e., frequency-dependent mean-free paths) be-
tween the atoms can be naturally included.

The next step would be to adapt the present approach to
“macroscopic” configurations (i.e., at least many atoms), al-
lowing for a more direct comparison with existing experi-
ments [7,8], for which the observed behavior of the enhance-
ment factor with the saturation parameter is not fully
understood. Especially, in the latter experiment (using atoms
with a degenerate ground level), it strongly depends on the
laser polarization, which suggests that the optical pumping,
whose rate increases with the saturation parameter, plays an
important role. Finally, for given values of the incident laser
intensity and detuning, the nonlinear mean-free path be-
comes negative in well-defined frequency windows. This
means that light amplification can be achieved in these fre-
quency windows [41,46]. The atomic media would then con-
stitute a very simple realization of a coherent random laser.
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APPENDIX A

The gg terms in Eq. (31) read:
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APPENDIX B: THREE-BODY CORRELATION
FUNCTIONS
1. Single atom case

The three-body correlation function for the Langevin
force reads

1
Cord = - [ [ anianasia, + 2= 0s st
X(FG(A")FR(ADF(A,)), (B1)

where f(A) and g(A) are regular functions such that the pre-
ceding integral is well defined. Going back to the time do-
main, C,.(A",A) reads as follows:

1 A Al
CM(A’,A):?J‘fdtdt’e‘me‘“’ ffffdtﬁtﬂgdu
o

X8ty + 1= 1) 8tz + 14— 1) f(t))g(t3)
X(FL (1) Fp(t) FE(t4)). (B2)

Then, from the time correlation properties of the vacuum
field, one can show that

(0)

ik (a2

(F(t (1) Fi(ty))
=478 T 8t — )X ()X, (1 F(1))

4TI T80 = )X (1R (1)XE (1)

+ ATy T 8t = L) )X (1)XE (1)), (B3)
where the 79* are 15X 15 matrices defined by [X,,Dj]
= 127‘{/*X -

When taken at the same time, the atomic operators (in-

cluding the identity 1) define a group entirely characterized
by the group structure constants ef‘l, ie.,

X(0X,(1) = 2 €Xy(0). (B4)
k

so that the preceding equation becomes
(Fa(t)Fy(t)F(1))
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AT To 81" = 1) X5 (D F (1) X (14))
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Injecting the preceding relations in C(a,b,c) and going back
to the frequency domain, we get

_ 1
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where we have introduced the matrix D%***(A’,A) defined by
Dye(A A) = i f f dA B, (A + Ay — A)XIA D FE(A)XEA,)). (B7)
This matrix is calculated using the same strategy (i.e., going back and forth to the time domain) and one finally gets
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It may seem that we have taken a loop path and that we are back to square one.... However, in the last line of the preceding

formula, we immediately recognize the matrix Db,i‘,m(A’ ,A). Thus, the preceding equation is nothing else but a linear system

for this matrix. More precisely, D***(A’,A) is the solution of the following linear system:

D?I{.aau(A/ A) I '(A/) b aaa(A A) ]b avza(A A) (Bg)

ika'c

with
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+ 4TI T, €0 VDS —ffdA dA,8(A + Ay — ANGE(ANGE(A)GE (- A)
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In the preceding equations, the Green’s function G(A) and the diffusion matrix D** only depend on the Rabi field
evaluated at the position of atom a. Thus, for any value of A, numerical values of / and J can be computed, allowing for a

direct calculation of D%***(—=A,A). Furthermore, it is not surprising that the matrix I shows up in the linear system. Indeed,
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the Green’s function G(A) governs the time evolution of X through a Fourier transform. Thus the time evolution of products
of operators X,(r)X;(z) will be simply governed by the Fourier transform of the product of two Green’s functions G(1)G (),
which is precisely the convolution product found in /. Finally, from the knowledge of the matrix D, we can calculate the value
of C(A",A):

Cup(A,A) = 277-5(A+A){4T’+ T €ap Dot fJ‘J'dA dA> (A + Ay — A)f(A)g(A) Gy (— Ay)

’
aa 0(2
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+4Tb’z,7?;,ea/b,“D”“G”(A) ffdA dALS(A |+ Ay — A)F(A))g(A 2)} (B11)

Of course, we recover the global factor 2w8(A+A’), showing that the time correlation function only depends on the time
difference 1’ —t (stationary condition).

2. Two-atom case

The calculation of quantities such as

Capa’ A)—— f f dAdALO(A | + Ay = A)f(A) (A (A FE(ADFY (A))® (B12)

follows, more or less, the way described in the preceding section. In particular, it also involves the calculation of a matrix
®
ka‘“ﬁ”g (A’,A) defined as

@ _
phep (AT Ay = — f f dAdASS(A| + Ay — A NXAADFEA)XE(A,))D. (B13)
The latter is also found to be the solution of a linear system, resembling the preceding one [see Eq. (B9)]:
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Coherent backscattering of light with nonlinear atomic scatterers
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We study coherent backscattering of a monochromatic laser by a dilute gas of cold two-level atoms in the
weakly nonlinear regime. The nonlinear response of the atoms results in a modification of both the average
field propagation (nonlinear refractive index) and the scattering events. Using a perturbative approach, the
nonlinear effects arise from inelastic two-photon scattering processes. We present a detailed diagrammatic
derivation of the elastic and inelastic components of the backscattering signal for both scalar and vectorial
photons. In particular, we show that the coherent backscattering phenomenon originates in some cases from the
interference between three different scattering amplitudes. This is in marked contrast with the linear regime
where it is due to the interference between two different scattering amplitudes. In particular we show that, if
elastically scattered photons are filtered out from the photodetection signal, the nonlinear backscattering en-
hancement factor exceeds the linear barrier of 2, consistently with a three-amplitude interference effect.

DOI: 10.1103/PhysRevA.73.013802

I. INTRODUCTION

Propagation of light waves in disordered media is an ac-
tive research area for 100 years now. The original scientific
motivation came from astrophysical questions about proper-
ties of light radiated by interstellar atmospheres [1,2]. Then,
within the first decades of the 20th century, the foundations
of light transport in this regime were laid, leading to the
radiative transfer equations [3-6]. The basic physical ingre-
dient of these equations is a detailed analysis of energy trans-
fers (scattering, absorption, sources, etc.). Sufficiently far
from any boundaries, the long-time and large-spatial-scale
limits of these equations give rise, in the simplest cases, to a
physically appealing diffusion equation.

One important feature of this theory is to consider that
any possible interference effects are washed out under disor-
der average. This is a random-phase assumption. For a long
time, it was believed that this was still the case on average
for monochromatic light elastically scattered off an optically
thick sample even if, for a given disorder realization, one
observes a speckle pattern [7] indicating that phase coher-
ence is preserved by the scattering process. Theoretical and
experimental work in electronic transport [8—10] soon made
clear that this random-phase assumption was wrong in the
elastic regime. Depending on the disorder strength, partial
(weak-localization regime) or complete (strong-localization
regime) suppression of diffusive behavior has been pre-
dicted, provided phase coherence is preserved over a suffi-
ciently large number of scattering events [11,12]. In turn,
these discoveries have cross-fertilized the field of light trans-
port in the elastic regime [13-16]. In this field, one of the
hallmarks of interference effects in elastic transport is the
coherent backscattering (CBS) phenomenon [17,18]: the av-
erage intensity multiply scattered off an optically thick
sample is larger than the average background in a small an-
gular range around the direction opposite to the ingoing
light. This interference enhancement of the diffuse reflection
off the sample is a manifestation of a two-wave interference.
As such, it probes the coherence properties of the outgoing

1050-2947/2006/73(1)/013802(17)/$23.00
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light and it has been extensively studied both experimentally
and theoretically. It can be shown on general arguments that
the CBS enhancement factor (defined as the ratio of the
backscattering CBS peak to diffuse background) never ex-
ceeds the value 2 and is obtained in the helicity-preserving
polarization channel for scatterers with spherical symmetry
[19].

Whereas these interference modifications of transport are
by now widely understood in the case of linear media, recent
experimental developments have required an extension of
multiple-scattering theory to the nonlinear case. Even if a
few studies already exist, they only cover the simpler case of
classical linear scatterers embedded in a nonlinear medium
[20,21], whereas in our microscopic approach, the nonlinear
behavior of randomly distributed scatterers will affect both
the scattering processes and the average propagation. In par-
ticular, with the advent of laser cooling, on the one hand, it
has become possible to study interference effects in multiple
scattering of light by cold atoms [22-26]. In the regime
where the saturation of the atomic transition sets in, atoms
scatter light nonlinearly, i.e., the scattered light is no longer
proportional to the incident light. One should note that im-
portant nonlinear effects are easily achieved with atoms even
at moderate laser intensities. Considering a given driven op-
tical dipole atomic transition, the order of magnitude of the
required light intensity to induce nonlinear effects is given
by the so-called saturation intensity /; and is generally low.
As typical examples, it is 1.6 mW/cm? for rubidium atoms
and 42 mW/cm? for strontium atoms, for their usual laser
cooling transitions. On the other hand, random lasers—
mirrorless lasers where feedback is provided by multiple
scattering [27]—have been realized experimentally [28,29].
Here, nonlinear effects occur in the regime close to or above
the laser threshold. Since, at least in the regime of coherent
feedback [30], interference is believed to play a decisive role
in the physics of the random laser, a better understanding of
the influence of nonlinearity (and amplification) on the prop-
erties of coherent wave transport becomes necessary.

©2006 The American Physical Society
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II. MOTIVATION AND OUTLINE

In a recent contribution [31], we have shown that nonlin-
ear scattering may fundamentally affect interference in mul-
tiple scattering. Indeed, in the perturbative regime of at most
one scattering event with y© nonlinearity, there are now
three (and no longer two) CBS interfering amplitudes. De-
pending on the sign of the nonlinearity, i.e., depending
whether nonlinear effects enhance or decrease the scattering
cross section, the effect of this three-wave interference effect
leads to a significant increase or decrease of the nonlinear
CBS enhancement factor.

The purpose of the present paper is, on the one hand, to
provide a detailed derivation of the equations for the nonlin-
ear coherent backscattering signal used in [31], and, on the
other one, to extend the treatment of [31] to the case of
atomic scatterers. Here, in contrast to the classical case, light
is scattered inelastically, i.e., the scattered photons may
change their frequencies. This leads to dephasing between
interfering amplitudes and, consequently, to a reduction of
the CBS enhancement factor in addition to the nonlinear
modifications mentioned above. Theoretical studies of this
inelastic decoherence mechanism have been so far restricted
to the case of two atoms [32-34]. Since the total (linear and
nonlinear) elastic signal can be filtered out by means of a
suitable frequency-selective detection, a clear experimental
study of inelastic, nonlinear CBS becomes possible. Please
note that this would be otherwise very difficult to achieve
since for weak intensities—the regime where our theory is
valid—the linear signal generally greatly dominates over the
nonlinear one. In this paper, we will show that the enhance-
ment factor for inelastically scattered light significantly ex-
ceeds the linear barrier of 2 in certain frequency windows. In
contrast, the total enhancement factor—including also elasti-
cally scattered light—is diminished by nonlinear scattering.
This is due to the negative sign of the total nonlinear com-
ponent, since the total (elastic plus inelastic) scattering cross
section is decreased by saturation.

The paper is organized as follows. In Sec. III, we present
the perturbative theory for nonlinear CBS of light scattered
off a sample of cold two-level atoms. “Perturbative” here
means that we restrict ourselves to the regime of scalar—i.e.,
we forget the polarization of the photon—two-photon scat-
tering with at most one nonlinear scattering event. This as-
sumption is valid at sufficiently low probe intensities and not
too large optical thicknesses. After briefly sketching the main
results of the linear case, Sec. Il A, we derive equations for
the nonlinear backscattering signal in Sec. III B. The latter
contains an inelastic and an elastic component. The latter
again splits into a nonlinear and a linear part. In Sec. III C,
supplemented by the Appendix, we show how to generalize
our scalar theory to the vectorial case by explicitly taking
into account the light polarization degrees of freedom. It is
shown that nonlinear polarization effects lead to decoherence
between interfering paths. In contrast to the linear case, this
decoherence mechanism cannot be avoided by a suitable
choice of the polarization detection channel. In order to em-
phasize the generality of our approach, we briefly discuss in
Sec. III D a model of classical, nonlinear scatterers, which
reproduces the elastic backscattering signal of the atomic
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FIG. 1. Scattering path of a single photon entering the medium
and leaving it in the backscattering direction to reach the detector.
Straight lines depict average propagation in the effective medium
while full circles depict scattering events labeled by the r,,.

model. In Sec. IV, we apply our theory to the case of a
disordered atomic medium with slab geometry. We look at
the dependence of the backscattering signal as a function of
the optical thickness and of the detuning of the laser from the
atomic resonance. In particular, we show that the enhance-
ment factor for the inelastic component significantly exceeds
the linear barrier of 2 in certain frequency windows. Finally,
Sec. V concludes the paper.

III. THEORY

In this section, we present the perturbative theory for non-
linear coherent backscattering of light from a gas of cold
two-level atoms. We first treat the linear component of the
backscattering signal, which results from scattering of inde-
pendent photons. Thereby we introduce the reader, in Sec.
IIT A, to standard methods used in linear multiple-scattering
theory [35], which we will then generalize to the nonlinear
case in Sec. III B.

A. Scalar linear regime
1. One-photon scattering amplitude

By definition, the linear component of the photodetection
signal is proportional to the incoming intensity, in particular
to the number of photons in the initial laser mode. Since this
implies that the photons are independent from each other, it
is sufficient to know how a single photon propagates in the
atomic medium (see Fig. 1). This is equivalent to using the
usual Maxwell’s equations for a disordered medium [35].

In the weak-scattering regime, which we will consider
throughout this paper, transport is depicted as a succession of
propagation in an average medium interrupted by scattering
events. The important building block to properly describe
scattering and average propagation is the one-photon scatter-
ing amplitude by a single atom. For near-resonant scattering,
and for atoms with no ground-state internal Zeeman degen-
eracies, it reads

— 4

So="T"" ="
“ k(1 =2idT)

(1

It can be derived from the elastically bound electron model
in the limit of small light detuning 8=w—w,<w,w, [35].
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The atomic angular transition frequency is w, whereas the
atomic transition width I" describes radiative decay. The pho-
ton wave number is k and the photon angular frequency is
w=ck (c being the vacuum speed of light).

For simplicity, we work here with scalar photons, i.e., we
discard the vectorial nature of the light field. Scattering is
then fully isotropic and the differential scattering cross sec-
tion simply reads

do S.|? o
o=l = @
dQ |47 4ar
leading to
o) 4
= =—, 3
TTlreen T ®)

where oy is the on-resonance scattering cross section.

The scalar assumption is not a crucial one: as will be
shown in Sec. III C, the following treatment can be general-
ized to the vectorial case. Please note, however, that the in-
clusion of internal degeneracies is not immediately simple
and requires a separate treatment on its own. This is so be-
cause then the internal dynamics is no longer simple (optical
pumping sets in). In this respect the results presented
throughout this paper only apply to nondegenerate ground-
state atoms. Please note also that internal degeneracies are
already known to strongly reduce the CBS effect in the linear
regime [24,25].

2. Linear refraction index

Between two successive scattering events occurring at r
and r’, the photon experiences an effective atomic medium
with refractive index n,,. Formally, the resulting propagation
is described by the average Green’s function

einwk|r—r’\
G,(rr')=——"" 4
= @
where the refractive index is given by [36]
5 i
Sl 5
R VT Yy ©)

The imaginary part of n, describes depletion by scattering.
This depletion gives rise to the exponential attenuation of the
direct transmission through the sample (Beer-Lambert law)
and defines, via the optical theorem, the linear mean free
path at frequency w as

1
= Vo (6)

where N\ denotes the density number of atoms in the sample.
The weak-scattering condition, where all the previous (and
following) results are valid, then simply reads k€> 1.

3. Linear radiative transfer equation

We have now at hand all the necessary ingredients to
write down the amplitude of a multiple-scattering process
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like the one sketched in Fig. 1. We consider a scattering
volume V exposed to an initial monochromatic field with
amplitude E,, propagating along axis z. The transverse area of
the scattering volume is 3. Since k€> 1, a semiclassical pic-
ture using well-defined scattering paths is appropriate. For a
given scattering path C,,=(r;— -+ —r,) labeled by the col-
lection of scattering events, the corresponding far-field am-
plitude radiated at position R of the detector placed in the
backscattering direction is

ikR

&c,) = A(C,)Eo. ™)

~ 4mkR
The complex amplitude .A(C,,) is simply a product of one-
photon scattering amplitudes (1) and of Green’s functions

4):
n-1
A(C,) = ksmeikn“’(zl+z”)( II Sme(ri:riH)) (8)
i=1

where z; is the distance from the boundary of the medium to
the position where scattering event i occurs. The superposi-
tion principle then gives the total electric field amplitude £ as
a sum over all possible scattering paths C,,:

ikR

=

“arEA A= ; A(C,). 9

n

The total average intensity is obtained by squaring (9) and
averaging over all possible scattering events. We define the
total dimensionless bistatic coefficient as

47R? 1
(1) _ 2 -
Yel = EE(Z) <|$| >dis av = 47_‘_](22

We now assume complete cancellation of interference ef-
fects between different scattering paths (random-phase or
Boltzmann approximation). We then obtain the background
(or “ladder”) component of the backscattering signal:

<|A‘2>dis av: (10)

oM
1 1
yi:l) = Lé(:l)zz 47Tk22JVdrl '“drn‘A(Cn)P' (11)

This formula has a well-defined limit when X — and
thus can be applied to slab geometries. Please note that, in
writing Eq. (11), we have also discarded recurrent scattering
paths, i.e., paths visiting a given scatterer more than once.
Both approximations are justified in the case of a dilute me-
dium, k€>1 [37].

We rewrite Eq. (11) as

dr

L(r)e™", (12)

with
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1,0 =@+ DN | dr,---dr,

n=1 v
n
x e ] [$,Go(ruri) (13)
i=1

where r,,;=r. This dimensionless function describes the av-
erage light intensity at r, in units of the incident intensity
Iy=€,cE2/2 (in W/m?) with €, the vacuum permittivity. The
first term in Eq. (13) represents the exponential attenuation
of the incident light mode, i.e., light which has penetrated to
position r without being scattered (Beer-Lambert law). The
remaining term describes the diffuse intensity, i.e., light
which has been scattered at least once before reaching r.
From Eq. (13), one can easily show that /,(r) satisfies the
radiative transfer integral equation [3]

4
L=+ Tj-rf dr'|G ,(r,r")[1,(r"). (14)
|4

The required solution of Eq. (14) can be obtained numeri-
cally by iteration starting from /,(r)=0.

4. Linear CBS cone

In fact, the preceding Boltzmann approximation yii)
ELS) is wrong around the backscattering direction. Indeed,
on top of the background ladder component, one observes a
narrow cone of height CS) and angular width Afe (k€)™!
[18]. In the regime k€>1, this so-called CBS cone arises
from the interference between amplitudes associated with re-
versed scattering paths C,=(r,—-+-—r,) and C,=(r,
— -+ —r). Of course single scattering paths where n=1 do
not participate to this two-wave interference (since they are
exactly identical to their reversed counterparts) and must be
excluded from C(e}>. Thereby, we obtain the interference (or
“crossed”) contribution as

s M fdr]mdr AC)A(C).  (15)

el = 477](22 v n n n
Thus, the bistatic coefficient in the backscattering direc-
tion reads y(e:)=L(e:)+CS). From Eq. (8), we verify that the
reciprocity symmetry A(C,)=.A(C,) is satisfied for scatter-

ers without any internal ground-state degeneracies. This al-
lows us to rewrite Eq. (15) as

dr 0 —
Co'= | Sellon) =™ Qe =L =5 (16)

where SS) is the single-scattering contribution. Hence, the
linear CBS enhancement factor, defined as

pV=1+ciLl) =2-sYiLly (17

el »

is always smaller than 2. It equals 2 if single scattering can
be filtered out (see Sec. III C).
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B. Scalar nonlinear regime

At higher incident intensities, the successive photon scat-
tering events become correlated. Indeed, absorption of one
single photon brings the atom into its excited state where it
rests for a quite long time I'"! without being able to scatter
other incident photons. This means that saturation of the op-
tical atomic transition sets in, inducing nonlinear effects and
inelastic scattering. In a perturbative expansion of the photo-
detection signal in powers of the incident intensity, the lead-
ing nonlinear term arises from scattering of fwo photons. In
order to generalize the above linear treatment to the two-
photon case, we first need to recall some relevant facts about
scattering of two photons by a single atom [32].

1. O tom two-photon inelastic spectrum

The two-photon scattering matrix S contains an elastic
and an inelastic part. The elastic part corresponds to two
single photons scattered independently from each other,
whereas the inelastic part describes a “true” two-photon scat-
tering process, where the photons become correlated and ex-
change energy with each other. To obtain the intensity of the
photodetection signal, the electric field operator E (evaluated
at the position of the detector) is applied on the final two-
photon state |f)=S|i), with |i) the initial state. Since E anni-
hilates one photon, this yields a single-photon state |¢)
=E|f), which describes the final state of the undetected pho-
ton. Like the scattering matrix S, it consists of an elastic and
an inelastic component:

|l//>=|¢e]>+|¢’in>' (18)

The inelastic part |, is a spherical wave emitted by the
atom, whereas the elastic part |i/,) is a superposition of scat-
tered and unscattered light, thereby taking into account for-
ward scattering of the undetected photon. (Forward scatter-
ing of the detected photon does not need to be taken into
account, since the detector is placed in the backscattering
direction.) Finally, the norm I=(i|#) of |#) defines the in-
tensity of the photodetection signal. According to Eq. (18), /
is the sum of the following three terms:

Ig})=<l//el|ll’el>s (19)
13 =2 Re{(ul i)}, (20)
12 = (ol o) 1)

So far, everything is valid for any two-photon scattering pro-
cess with an elastic and an inelastic component. In the spe-
cific case of a single atom, the following result is obtained:

(1) g

1= Io, 22

o T 4R (22)

12 =—210s, (23)
12 =1, (24)

with the incident intensity /,, and the saturation parameter s
defined by [38]
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sk (E)z 25)
STl en? T BTN

where d is the atomic dipole strength and /; the saturation
intensity of the atomic transition.

The first term, Eqgs. (19) and (22), which arises from two
photons scattered independently from each other, reproduces
the linear single-photon cross section 47o=|S,|*> [see Eq.
(1)]. The following two terms correspond to nonlinear elastic
and inelastic scattering, respectively. For the case of a single
atom, the perturbative two-photon treatment is valid for s
<1, i.e., if the nonlinear terms are small compared to the
linear one.

The frequency SPectrum of the elastically scattered light is
simply Fe](w’)=(le:)+l(;))é(w’—w) whereas the frequency
spectrum of the inelastically scattered light is Fi,(w’)
:Ii(i)P(w’). The continuous spectrum P(w’) is normalized to
unity according to [dw'P(w’)=1. It is obtained as follows
[32]:

r 1 1 2
Plw')=—

—+ - . (26)
4| 8 +il'12 26-8 +il'2

where &' =w’—w, denotes the final detuning. This inelastic
spectrum consists of two peaks with width I', one located at
the atomic resonance (@'=w,), and the other one twice as
far detuned as the incident laser (o' =w,+238). For §<I'/2,
the two peaks merge to a single one centered at o' =w.
Please note that, by going beyond the two-photon scattering
approximation, one would then get three peaks as predicted
by the nonperturbative calculation of the inelastic spectrum,
also known as the Mollow triplet [38].

2. Nonlinear scattering in a dilute medium of atoms

Now, we generalize the above single-atom treatment to a
multiple-scattering process in a dilute medium of atoms.
First, we note that the above perturbative treatment—in par-
ticular Egs. (19)—(21)—remains valid for any form of the
scattering sample, let it be a single atom, two atoms, or ar-
bitrarily many of them. An important difference from the
single-atom case, however, is that the total weight of nonlin-
ear processes may be drastically enhanced if the sample has
a large optical thickness b=L/€, where L is the typical me-
dium size. This implies that the condition s<<1 is not suffi-
cient to guarantee the validity of the perturbative approach.
Instead, as we will argue in Sec. IV, the perturbative condi-
tion reads sb><1.

A typical two-photon scattering path is sketched in Fig. 2.
Here, the incoming photons propagate at first independently
from each other to position r inside the disordered atomic
medium, where they undergo a nonlinear scattering event.
One of the two outgoing photons then propagates back to the
detector. The possibility that the two photons meet again at
another atom can be neglected in the case of a dilute me-
dium, similar to recurrent scattering in the linear case [37].
We can hence restrict our analysis to processes like the one
shown in Fig. 2, with arbitrary numbers of linear scattering
events before and after the nonlinear one. Thus one of the
two incoming photons undergoes n=0 elastic scattering
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v I

FIG. 2. In the perturbative approach, we assume a single non-
linear two-photon scattering event (CJ), but arbitrarily many linear
scattering events (@). One of the two photons is finally annihilated
by the detector, thereby defining the photodetection signal, whereas
the other one is scattered into an arbitrary direction.

events (labeled by u;), while the other undergoes m=0 elas-
tic scattering events (labeled by v;), before merging at r
where they undergo the inelastic scattering event. One of the
outgoing inelastic photons reaches back the detector after
having undergone /=0 elastic scattering events (labeled by
positions w;). For the other undetected inelastic photon, we
may assume, without any loss of generality, that it does not
interact anymore with the atomic medium. This interaction
would anyway be described by a unitary operator (as a con-
sequence of energy conservation), which does not change the
norm of the state |¢) of the undetected photon defining the
detection signal.

In general, the state of the inelastic undetected photon
corresponding to a scattering path C defined by the position
r of the two-photon scattering event and by the collection of
positions of all one-photon scattering events C={u,v,r,w}
is given as follows:

|4n(O)) = ™2 [ ] 8,G (w0, D[] S,Go(v,v120)
i=1 j=1
1

Xf dw,Hw"Win)H Swawr(Wk,Wk+1)

k=1

P {1, n=m=0,
X Mo, (27)
2, n>0orm>0,

with u,,,,=Vv,,, =w,,,=r, II, the projector on photon states
at frequency ', and |¢;,) the inelastic final state of the one-
atom case, Eq. (18). Since the inelastic two-photon scattering
event takes place at position r, this state describes an outgo-
ing spherical wave emitted at r. Furthermore, note that if the
two incoming photons do not both originate from the inci-
dent mode, i.e., if n>0 or m>0, a factor 2 arises due to the
fact that the incoming photons can be distributed in two dif-
ferent ways among the paths {u} and {v}.

The elastic component |#,(C)) is obtained in a similar
way. However, as in the single-atom case, we must take into
account forward scattering of the undetected photon, at the
position r of the nonlinear event. This is done by considering
the superposition of two diagrams where the undetected pho-
ton is scattered or not scattered at r [see Figs. 3(a) and 3(b)].
Since this approach exactly parallels the one known from the
single-atom case [32], it is unnecessary to present the com-
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a) b) <)
< < <
FIG. 3. The elastic component |¢(r,{u,v,w});) of the undetec-
ted photon state arises from a superposition of the following three
processes: (a) both photons elastically scattered at r, (b) only the
detected photon scattered at r, and (c) only the undetected photon
scattered at r. The last two diagrams are necessary to take into

account the nonlinear average propagation of the undetected (b) or
detected (c) photon.

plete calculation of the elastic component in detail—all rel-
evant ingredients to perform the generalization to the multia-
tom case will be contained in the calculation of the inelastic
component. In contrast to the single-atom case, however, the
elastic component will enter in the calculation of the nonlin-
ear average propagation, i.e., the nonlinear modification of
the refractive index (Kerr effect), and will be discussed later.
At first, we concentrate on the processes of nonlinear scat-
tering, i.e., processes changing the direction of propagation
of the detected photon.

As for the linear case, we still assume the same dilute
medium approximations to hold for the “ladder” and
“crossed” contributions. Thus, in order to calculate the aver-
age photodetection signal, we just keep scattering diagrams
obtained by reversing the path of the detected photon. Fur-
thermore, we also neglect interference between diagrams
where the nonlinear scattering event occurs at different at-
oms. This is justified in the dilute case since the overlap
between two spherical waves emitted at r and r’ vanishes if
kle-r'|>1.

3. Nonli ladder contrib

To obtain the inelastic component of the average back-
scattering signal, we first get the total final state of the un-
detected photon by summing Eq. (27) over all possible dif-
ferent scattering paths C. Then we insert this result into Eq.
(21) and we finally average over the random positions of the
scatterers. As argued above, only identical or reversed scat-
tering paths are retained in the average, giving rise to the
background (ladder) and interference (crossed) components.
Thus, the inelastic background component reads as follows:

* j\/‘n+m+l+l n
L0- f w3 S [TauTav, Hdwk
vV (n,m)=0 Vi=1 Jj=1 k=
X (Ul O] ha( O)) X { TrEm=0 o)
1/2  otherwise.

Note that some care must be taken not to sum twice over
the same scattering path. In particular, any exchange of the
two incoming parts {u} and {v} leaves the total scattering
path unchanged since the two incoming photons are identi-
cal. For this reason, a factor 1/2 must be inserted at the end
of Eq. (28). Again, as in Eq. (27), the case n=m=0 is excep-
tional, since then there is no elastic scattering event before

PHYSICAL REVIEW A 73, 013802 (2006)

the nonlinear one: the two incident photons remain in the
same mode.

If we insert now Eq. (27) into Eq. (28), we simply obtain
the inelastic nonlinear ladder contribution as

L =5 f —[21 (r) — e 21 f dw' P(w'),(r), (29)

with 1,(r) the linear average intensity [see Eq. (14)]. In order
to interpret this result, we first note that the inelastic intensity
radiated by the atom at position r is proportional to the mean
squared intensity at r. An alternative, physically transparent
derivation of the latter can be performed as follows. We write
the local field amplitude A=exp(-z/2¢)+Ap as a sum of
coherent and diffuse light amplitudes. The latter term exhib-
its Gaussian speckle statistics [39], i.e., (ReAp)=(Im Ap)
=0,  2A(ReAp)?)=2((Im Ap)*=(| Ap)|»), and (|Apl*
=2(| Ap|*)?. Thereby, we obtain for the mean squared inten-
sity

(A = e+ (| Apl*) + 4e7|Ap) (30)

=2( AP - e (31)

Inserting the average intensity /,=(|.A]>), we immediately
recognize the first integrand in Eq. (29). Then the atom emits
a photon with frequency distribution P(w'). Finally, due to
time-reversal symmetry, the propagation of this photon from
r to the detector is described by the same function I, (r)
which represents propagation of incoming photons to r.

Concerning the elastic component, the diagrammatic cal-
culation via Eq. (20) [see also Figs. 3(a)-3(c)] shows that the
above argument can be repeated in the same way—except
for the fact that the detected photon does not change its fre-
quency. Furthermore, a factor —2 is taken over from the
single-atom expression [cf. Egs. (23) and (24)]. Thereby, we
obtain

L(2,scall) =2

dr .
8 s 2m - m. (2)
The index “scatt” reminds us that we have treated only non-
linear scattering so far. Below (Sec. III B 5), we will add
nonlinear average propagation, which contributes to the elas-
tic nonlinear component, too.

4. Nonlinear crossed contribution

It remains to calculate the crossed contribution, i.e., inter-
ference between reversed paths. In contrast to the linear case,
where there are always two interfering amplitudes (apart
from single scattering), the nonlinear case admits more pos-
sibilities to reverse the path of the detected photon. This is
due to the photon exchange symmetry at the nonlinear scat-
tering event, which does not allow us to distinguish which
one of the two incoming photons finally corresponds to the
detected or undetected one. As evident from Fig. 4(c), each
multiple-scattering path where both incoming photons, or
one incoming and the outgoing detected photon, exhibit at
least one linear scattering event besides the nonlinear one has
two different reversed counterparts, leading in total to three
interfering amplitudes.
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a) % b) ]T ?

< < <
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FIG. 4. In the presence of nonlinear scattering (CJ), there may be
either (b) two, or (c) three interfering amplitudes contributing to
enhanced backscattering, apart from single scattering (a), which
only contributes to the background. In general, the case (c), which
corresponds to maximum enhancement factor 3, is realized if either
both incoming photons or one incoming and the outgoing detected

photon exhibit at least one linear scattering event (@) besides the
nonlinear one.

<

If we look at the scattering process shown in Fig. 2, the
two reversed counterparts are obtained by exchanging the
outgoing detected photon {w} with either one of the incom-
ing photons {u} or {v}. Since both cases are identical in the
ensemble average, we may restrict ourselves to one of them,
let us say {v}. We thus denote by C={u,w,r,v} the reverse
path corresponding to C={u,v,r,w} when {v} and {w} are
exchanged. In total, we obtain for the inelastic interference
component

23

/\/‘n+m+l+l
= f dr Y T
\% (n,m,1)=0 4k 2

n m !
X | [T aw T av,ITdawsa(O)4in(0))
Vi=1 j=1 k=1
{0 ifm=1[=0,
X

. (33)
1 otherwise.

Here, the case m=[=0 identifies processes where the two

reversed paths C and C are indistinguishable. Setting their
contribution equal to zero accounts in particular for the
single-scattering case depicted in Fig. 4(a), i.e., n=m=1=0,
which does not contribute to the interference cone. The case
Fig. 4(b) remains with two contributions (n=m=0, />0, and
n=I[=0, m>0, respectively) in Eq. (33), corresponding to the
fact that two amplitudes interfere. Finally, the case (c) of
three interfering amplitudes is reflected in Eq. (33) by the
absence of the exchange factor 1/2, as compared to the back-
ground Eq. (28). Thereby, the interference contribution can,
in principle, become up to twice larger than the background.

If we insert the state of the undetected photon, Eq. (27),
into Eq. (33), we encounter the following expression:
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Lo (1) = oMo,z 4 E N*| dr,---dr,

n=1 Vv

n
X et ] s, G, (r, ri+1)S:fGZf (ryrip),

=1
(34)

which generalizes the local intensity Eq. (13) to the case
where two different frequencies occur in the interfering
paths. Numerically, it can be obtained as the iterative solu-
tion of

Zuor (1) = X004 NS,S,
xfm@mymym%w@»(m
|4

This function describes the ensemble-averaged product of
two probability amplitudes, one representing an incoming
photon with frequency w propagating to position r, and the
other one the complex conjugate of a photon with frequency
o' propagating from r to the detector. If w# w', then these
amplitudes display a nonvanishing phase difference due both
to scattering and to average propagation in the medium. This
leads on average to a decoherence mechanism and conse-
quently to a loss of interference contrast. Indeed, both the
complex scattering amplitude Eq. (1) and the refractive index
Eq. (5) depend on frequency. In contrast, the phase differ-
ence due to free propagation (i.e., in the vacuum) can be
neglected if I'f < ¢, which is satisfied for typical experimen-
tal parameters [40,41]. In the case w=w' of identical fre-
quencies, g,, ,(r)=1,(r) reduces to the average intensity [see
Eq. (14)].

In terms of the iterative solution of Eq. (34), the inelastic
interference term Eq. (33) is rewritten as follows:

dr
=45 f do' P(') f HALO)|guw (O
A w w vze |g, ‘

—e Re[e"(”w’"m')’“g;w,(r)]
_ [Iw(l‘) _ e—zlf]e—z/f—zlf’}’ (36)

with €’ the linear mean free path at frequency w’. In the
elastic case, where o' =w, dephasing between reversed scat-
tering paths does not occur, and the expression (36) simpli-
fies to:

. d)
g =- sz {2(10,(1‘)3 =21,(r)e 2 4 730
v

(37

Since, in the elastic case, there is no loss of coherence due to
change of frequency, the elastic interference component, Eq.
(37), is completely determined by the relative weights of the
one-, two-, and three-amplitude cases exemplified in Fig. 4.
This can be checked by rewriting the background and inter-
ference components, Egs. (32) and (37), in terms of diffuse
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a)

FIG. 5. Diagrammatic description of nonlinear propagation. A
two-photon process (solid lines) interferes with two independent
single photons (dashed lines). Only one of the latter (the undetected
photon) is scattered at [J, thereby modifying the propagation of the
detected photon (a) between two scattering events at positions 1 and
2, (b) on the way to the detector after the last scattering event at
position 1, or (c) in the coherent mode before the first scattering
event at position 1.

and coherent light, respectively, i.e., by writing I=Ip
+exp(—z/€). One obtains

L& oc (73 4 5110720 4 612077 121,
CBsa e (AL 4 1205 + ALY, (38)
e
(a) (b) (c)

where the angular brackets denote the integral over the vol-
ume V of the medium, and (a), (b), (c) correspond to the
three cases shown in Fig. 4, identified by different powers of
diffuse or coherent light. As expected, the three-amplitude
case (c) implies an interference term twice as large as the
background. In the two-amplitude case (b), a small compli-
cation arises, since one of the two interfering amplitudes is
twice as large as the other one (i.e., the one where both
incoming photons originate from the coherent mode); cf. the
discussion after Eq. (27). In this case, the interference con-
tribution 2X 14+1X2=4 is smaller than the background 2
X2+1X1=5. Finally, as it should be, the single-scattering

term (a) is absent in the interference term CS‘S%‘“).

5. Nonlinear average propagation

So far, we have only considered processes of nonlinear
scattering where the direction of propagation of the detected
photon is changed. It remains to take into account nonlinear
average propagation. This is described by those processes
where, in one of the two interfering amplitudes, the detected
photon is not scattered at the position r of the nonlinear
event [44]. The corresponding diagrams are depicted in Fig.
5, where the two interfering amplitudes are represented by
the solid and dashed lines, respectively. Here, the solid lines
correspond to an inelastic two-photon scattering process (like
the one shown in Fig. 2), whereas the dashed lines represent
an elastic process, where the two photons are independent
from each other [see Fig. 3(c)]. Hence, their interference
contributes to the nonlinear elastic component of the photo-
detection signal [cf. Eq. (20)].

The three diagrams shown in Fig. 5 differ only by the fact
that the nonlinear propagation event takes place either be-
tween two scattering events at positions 1 and 2 (a), on the
way to the detector, i.e., after the last scattering event at
position 1 (b), or in the coherent mode, i.e., before the first
scattering event at position 1 (c). First, let us examine the
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case (a). We imagine that each of the three dots @ may
represent an arbitrary number of scattering events. [Only
note that the number of events corresponding to the dots and
1 and 2 must be larger than zero—otherwise, the diagram
Fig. 5(a) would be identical to Fig. 5(b) or 5(c).] According
to the theory of linear radiative transfer outlined in Sec.
IIT A, the ladder diagrams corresponding to the two incom-
ing photons arriving at 1 (position r;) and at the nonlinear
event [J (position r3) yield the linear local intensities 7,,(r;)
and /,(r3), respectively. Likewise (due to reciprocity symme-
try), the propagation of the outgoing detected photon from 2
(position r,) to the detector—with arbitrary number of scat-
tering events in between—is given by /,,(r,). Hence, the only
ingredient that we have to calculate is the nonlinear propa-
gation between 1 and 2. Note that, when taking the average
over the position r3 of the nonlinear event, non-negligible
contributions arise only if r3 is situated on the straight line
between r; and r,, since this is the only way to satisfy a
stationary-phase (or phase-matching) condition. Thereby, the
“pump intensity” entering in the nonlinear propagation is
given by the average value of the local intensity on this line,
which we denote by (Z,)r, .r,- We do not want to present the
complete calculation here (this requires us to calculate at first
the case of a single atom, which can be done with the tech-
niques described in [32]), but just give the final result:

2515
ey e (9

‘Gf:]’a)(rl,rz)‘zz |Gm(rl,r2)‘2

From this, we deduce the following value for the nonlinear
mean free path:

ﬂ%)(r) = %[1 —2s1,(r)], (40)

which is consistent with Eq. (39), if we expand the resulting
propagator (where the mean free path appears in the expo-
nent) up to first order in s. The same result is also obtained in
the case of diagram Fig. 5(b), i.e., for the propagation after
the last scattering event. Hence, the corresponding propaga-
tor (first order in s) reads

0287
|G(w"1'b)(r1)‘2 g 1/67(10)},.[%,0, (41)

where rp=r;-ze, with e, the unit vector pointing in the
direction of the incident laser, denotes the point where the
photon leaves the medium. In the case (c), a small compli-
cation arises since the photons arriving at the nonlinear event
[0 may originate both from the coherent mode, which re-
duces the two-photon scattering amplitude by a factor 1/2
[cf. the discussion after Eq. (27)]. Hence, the nonlinear mean
free path for photons from the coherent mode reads

1 1
f(T)(r) = E[l —2s1,(r) + Se_z/f], (42)

with the corresponding propagator

013802-8

138




COHERENT BACKSCATTERING OF LIGHT WITH. ..
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d)

FIG. 6. Interference contributions from nonlinear propagation.
The diagrams (a)—(f) are obtained from the ladder diagrams (see
Fig. 5) by reversing the paths of the respective photons. Just as in
the case of nonlinear scattering, there are twice as many diagrams
contributing to the interference cone as to the background.

G52 = e'ﬂ”%%(r) e (43)
The difference between the mean free paths, Egs. (40) and
(42), can also be understood as a consequence of the differ-
ent properties of intensity fluctuations for diffuse and coher-
ent light [see Eq. (30)], which determine the nonlinear
atomic response.

In total, we obtain for the background component

N
Lg'pmp) = ﬂf dl‘ldl'zlw(l'l)lm(rz)|SwG$l’a)(l‘1,rz)|2
v

dr .
+ f LG+ [GE ()2,
30

(44)
In the case of a slab of length L, Eq. (44) can be simplified to

L
dz -
L&D = f ?Iw(z)[Zlﬂ,(z)z —2I(L) + e = 7.
0

(45)

Concerning the interference component, we find the same
phenomenon which we have already observed in the case of
nonlinear scattering: if we exchange outgoing and incoming
propagators, we find twice as many crossed as ladder dia-
grams (see Fig. 6). In particular, the diagrams (d), (e), (f),
which could be seen as a modification of the linear refractive
index by the local crossed intensity—thus affecting the (lad-
der) average propagation—are not considered in previously
published papers, concerning either classical linear scatterers
in a nonlinear medium [20,21] or nonlinear scatterers in the
vacuum [31,42]. Even if, at first sight, these diagrams look
unusual, our numerical calculations (see Sec. III D) suggest
that they play an important role, at least in our situation
where nonlinear scattering and nonlinear propagation origi-
nate from the same microscopic process.

Due to the reciprocity symmetry (remember that nonlin-
ear propagation contributes to the elastic component, i.e., no
decoherence due to change of frequency), each of the dia-
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grams in Fig. 6 gives the same contribution as the corre-
sponding ladder diagram in Fig. 5. Hence, to first approxi-
mation, the interference contribution from nonlinear
propagation equals twice the background Eq. (44). Some
care must be taken, however, if photons arriving at (or de-
parting from) the nonlinear event (or position 1) originate
from the coherent mode. In such cases, it may happen that
some of the diagrams depicted in Figs. 5 and 6 coincide, and
we should not count them twice. [This is analogous to the
distinction between the cases (a), (b), (c) in Fig. 4, or to the
suppression of single scattering in the linear case.]

Taking this into account [for details, we refer to the dis-
cussion after Eq. (A8) in the Appendix], we find

dr .
Carer = 2L -3 f Sl G P
y 30

+1(r)e (1 — e, (46)

In the case of a slab, we obtain

L
dz .
Cg’pmp) = 2L§*P’°P) —-3s f ?I (2) (e = ¢72b)
0

1 3

+ s(* —=e b4 e’3b> s (47)
2 2

where b=L/{ denotes the (linear) optical thickness of the

slab.

Thereby, we have completed the perturbative calculation
of the backscattering signal for the scalar case. The total
signal is obtained as the sum of the various components dis-
cussed above:

L=LY) + L3 4 LGP0 4 12 (48)
C=CW 4 cBsean)  clprop) | (2) (49)

Before we present the numerical results in Sec. IV, we will
generalize the above results to the vectorial case. This is
important since polarization does not only lead to slight
modifications for low scattering orders, as in the linear case.
Apart from that, we will see that it also induces decoherence
between reversed paths, thereby reducing the nonlinear inter-
ference components.

C. Incorporation of polarization: Vectorial case

First, including the polarization modifies the scalar ex-
pressions Egs. (1) and (6) for the linear mean free path and
the atom-photon scattering amplitude by a factor 2/3:

. 48\ K
€=<1+F>6WN,, (50)

§ = — 6
7 k(1-2i8T)"

(51

The Green’s function Eq. (4) remains unchanged, except for
the fact that the modified expression for the mean free path,
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FIG. 7. Polarization vectors associated with the two-photon
scattering matrix for two reversed scattering amplitudes (a) and (b).
Note that the corresponding reversed scattering amplitudes Eqgs.
(54) and (56) are different—even in the helicity-preserving polar-
ization channel, i.e., if Ezv3=e;_3. This leads to a reduction of the
CBS interference cone by a factor 3/4, on average.

Eq. (50), must be inserted in the refractive index. However,
the angular anisotropic character of the atom-photon scatter-
ing is not yet contained in Eq. (51). This is treated by pro-
jection of the polarization vector as follows. If the photon,
with incoming polarization €, is scattered at r;, and the next
scattering event takes place at r,, the new incoming polar-
ization reads

€= Arl,rzél > (52)

where Ar]’rz denotes the projection onto the plane perpen-
dicular to r;-r,. Finally, the detection signal after n scattering
events is obtained as eZe,,, with the detector polarization €p.

Thus, the linear background (ladder) contribution reads
[cf. Egs. (8) and (11)]

w©

L= di}/\/""‘f dry -+ drye
n=1 J AL v

n—1
X (H Sméw(ri’ri-ﬂ)'Z)e—Z”w
i=1

3 .
X E‘EDAr”il,r o

n 'Ar],rZEL|2a (53)
where €, denotes the initial laser polarization. By choosing a
given circular polarization, for example €,=(1,i,0)/12, and
by detecting the signal in the helicity-preserving hllh polar-
ization channel (ep=¢;), then the single-scattering contribu-
tion in Eq. (53) (n=1 term) is filtered out. We thus recover
the enhancement factor 2, meaning C(C}):L(c}). Apart from
that, however, polarization does not play a very important
role: the distribution of higher scattering orders n>1 is only
slightly modified, and the reciprocity symmetry remains
valid, provided that e,):ez.

The situation changes in the nonlinear regime of two-
photon scattering. With the initial and final polarizations e ,
and e, respectively [see Fig. 7(a)], the polarization-
dependent term of the two-photon scattering matrix reads

1 *. H *, *
S,= 5[(5154)(5253) +(€16)(e€)]. (54)
The prefactor 1/2 is chosen such that S, represents correctly
the polarized scattering amplitude in units of the correspond-
ing scalar one. From Eq. (54), the photon exchange symme-
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try becomes evident: the outgoing photon 3, e.g., can equally
well be associated with the incoming photon 1 or 2. If we
trace over the undetected photon, which we may label as
photon 4, for example, we obtain for the ladder component

1 *
H(L)(Els €:6)= 2 |Sp|2 = Z{‘5253|2 + ‘5153|2
€

+2 Re[(€,6) (66, (e3€)]}
(55)

If we assume a random uniform distribution for the polariza-
tion vectors, we obtain (IT”))=2/9, which is smaller than the
linear counterpart (|e,ep|?)=1/3. Hence, in the vectorial
case, the relative weight of the nonlinear contribution is ap-
proximately one-third smaller than in the scalar case—at
least far inside the medium, where the polarization is suffi-
ciently randomized.

Concerning the interference (crossed) contribution, we
exchange the direction of the outgoing detected photon 3 and
one of the incoming photons, for example photon 2. Note
that we obtain in general different polarizations €, ; for the
reversed counterparts of €, 3 [see Fig. 7(b)]. Indeed, the re-
versed photons have the same polarizations, € 3=¢, 3, only if
the laser and detector polarizations are identical (ep=¢;).
Consequently, the scattering amplitude for the complex con-
jugate photon pair reads

S5p=sllae)(&8) +(a&)(&e)]. (56)
Note that even in the helicity-preserving polarization chan-
nel, i.e., E2_3:e;3, the reversed scattering amplitudes Eqs.
(54) and (56) are in general not equal. Only the first term,
where photon 2 is associated with photon 3, remains un-
changed if those two photons are reversed. As a conse-
quence, the polarization induces a loss of coherence, i.e., a
reduction of the crossed term as compared to the scalar case.
The sum over the polarization of photon 4 yields

H(C)(E]a 62’g3’ 63’g2) = E Sp§;

- H(e)@E) + (@e)(@@)ad)

+(e6)(e8)(e) + (€6)(ae)

X(&r63)]. (57)

If we assume E2,3=e;3, i.e., the hllh channel, we obtain
(I1'©)=3/18 on average. Hence, in this channel, the
polarization-induced loss of contrast is approximately
(MO (M y=3/4.

Finally, to obtain the polarization dependence of nonlinear
propagation, we label the photons as shown in Fig. 8. Let us
first examine the ladder term, Fig. 8(a). The solid lines are
described by the two-photon amplitude Eq. (54), whereas the
dashed lines give the complex conjugate of (e€,)(€;€;). Af-
ter integration over photon 4, the result is
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a)

FIG. 8. Polarization dependence of nonlinear propagation for (a)
ladder and (b), (c) crossed diagrams.

1 * * *
Py, 6, €5) = Jllee)(ee)(ae)

+(€,6)(66)(e€)]. (58)

Concerning the crossed diagrams, we distinguish between
the two cases shown in Figs. 8(b) and 8(c). [In Fig. 6, these
correspond to (a), (b), (c), on the one hand, and (d), (e), (f),
on the other hand.] As for the case (b), nothing changes since
the reversed photon does not participate in the nonlinear
event. In case (c), we obtain

—~ ] *. * *
H<C’pr°p)(f1s€2a €.6,6)= 5[(6152)(5352 )(€3€)

+(66)(66) ()], (59)

When determining the average values of the nonlinear propa-
gation terms, it must be taken into account that €; and e; are
not independent from each other, since they propagate in the
same (or opposite) direction. Thus, we find (ITE-PePY=1/3
and (I1(CPP)y=1/6. Hence, the loss of contrast equals 1/2
in case (c), whereas reciprocity remains conserved (i.e., no
loss of contrast) in case (b). Averaging over (b) and (c), this
yields the same contrast 3/4 as for nonlinear scattering.

What remains to be done to obtain the vectorial back-
scattering signal is to incorporate the above expressions into
the corresponding scalar equations. The resulting equations
can be found in the Appendix, together with a description of
the Monte Carlo method which we use for their numerical
solution.

D. Classical model

We want to stress that our perturbative theory of nonlinear
coherent backscattering is not only valid for an atomic me-
dium, but can be adapted to other kinds of nonlinear scatter-
ers. In particular, the effect of interference between three
amplitudes is always present in the perturbative regime of a
small x® nonlinearity. Specifically, we have also examined
the following model: a collection of classical isotropic scat-
terers, situated at positions r;, i=1,...,N. In analogy to the
atomic model, we assume that the field scattered elastically
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by an individual scatterer at position r; is proportional to
E;/(1+s|E;J?), where E, is the local field at r;, and s measures
the strength of the nonlinearity. Writing E; as a sum of the
incident field and the field radiated by all other scatterers, we
obtain the following set of nonlinear equations:

-—e’kL'+zE

5k 1+5|E [>

tkrl/

(60)

Employing diagrammatic theory similar to the one out-
lined above, we have checked that, in the ensemble average
over the positions r;, this model indeed reproduces the elastic
components of the backscattering signal of the atomic model.
We have checked that the results obtained from direct nu-
merical solutions of the field equations (60)—averaged over
a sufficiently large sample of single realizations—agree with
our theoretical predictions, in the perturbative regime of
small nonlinearity s. In particular, the diagrams (d), (e), (f) of
Fig. 6, describing the interference contributions from the
nonlinear propagation, are essential to give the correct re-
sults. A more detailed analysis will be presented elsewhere.

Furthermore, it remains to be clarified whether the dia-
grams (d), (e), (f) are also relevant for the description of
propagation in homogeneous nonlinear media, into which
linear scatterers are embedded at random positions. First
studies of the resulting CBS cone have been presented in
[20,21], without taking into account interference between
three amplitudes, however. Experimentally, this question can
be resolved by measuring the value of the backscattering
enhancement factor 7: whereas 7 is basically unaffected by
the nonlinearity according to [20,21] (i.e., 7=2 apart from
single scattering), our equations (44) and (46), with s propor-
tional to the incoming intensity and to the x® coefficient of
the nonlinear Kerr medium, predict a significant change of »
when varying the incoming intensity.

IV. RESULTS

‘We return to the atomic model, concentrating on the case
of a slab geometry in the following. Using the equations
derived in Secs. III A-III C, we are able to calculate the
backscattered intensity up to first order in the saturation pa-
rameter s. In this section, we will examine its dependence on
the optical thickness b and detuning &, for the scalar and
vectorial cases. The main quantity of interest is the back-
scattering enhancement factor ». It is defined as the ratio
between the total detection signal in the exact backscattering
direction divided by the background component. If we per-
form an expansion up to first order in s, we obtain

L+C
L

= V4 (V-

7= D(ye—yu)s. (61)
Here, =1+C, l)/ L(l is the enhancement factor in the lin-
ear case (1e the limit of vanishing saturation). If single
scattering is excluded (e.g., in the hllh channel), we have
7V=2. Increasing saturation changes the enhancement fac-
tor, and the present approach allows us to calculate the slope
dmlds of this change at s=0. It is given by the difference
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FIG. 9. (Color online) Normalized inelastic ladder and crossed
contributions yi'"c) [cf. Egs. (62) and (63)], for optical thickness b
=0.5, as a function of the laser detuning &. Solid lines: polarized
case (llh channel). Dotted lines: scalar case. For comparison, the
corresponding elastic contributions (independent of &) are y(Ls])
=704 (hllh), —6.53 (scalar), and »"=-9.56 (hllh), —18.8
(scalar).

between the nonlinear crossed and ladder contribution, nor-
malized as follows:

L_L(l)

Y= L (62)
c-c

Y=g (63

Obviously, an important question is the domain of validity
of the linear expansion Eq. (61). Strictly speaking, this ques-
tion can only be answered if we know higher orders of s.
However, a rough quantitative estimation can be given as
follows: if p; (p,,) denotes the probability for a backscat-
tered photon to undergo one (more than one) nonlinear scat-
tering event, the perturbative condition reads p,, <p,. If we
assume that all scattering events have the same probability
(proportional to s) to be nonlinear (thereby neglecting the
inhomogeneity of the local intensity), we obtain p;=(N)s
and p,, =(N?)s?, where N denotes the total number of scat-
tering events, and (...) the statistical average over all back-
scattering paths. Evidently, N and N? are expected to increase
when increasing the optical thickness b. For a slab geometry,
we have found numerically that (N)ob and (N*)«b? (in the
limit of large b), concluding that the perturbative treatment is
valid if sb><1. Let us note that a similar condition also
ensures the stability of speckle fluctuations in a nonlinear
medium [43].

In Fig. 9, we show the inelastic ladder and crossed con-
tributions ygn) and y(c'") for a slab of optical thickness b
=0.5 as a function of the detuning, 6=w—w,, for the polar-
ized (hllh) and scalar case. Since the optical thickness is kept
constant, the elastic quantities are independent of the detun-
ing, and only the inelastic components are affected by &, via
the shape of the power spectrum P(w’) of the inelastically
scattered light, see Eq. (26). The latter exhibits two peaks of
width T", one of which is centered around the atomic reso-
nance. The increase of the ladder term as a function of &
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FIG. 10. (Co_lor online) Normalized inelastic and elastic ladder
and crossed 'y(Le]C’f") [cf. Egs. (62) and (63)], for vanishing detuning
6=0, as a function of the optical thickness »=0.5. Solid lines: po-

larized case (hllh channel). Dotted lines: scalar case.

which is observed in Fig. 9(a) is due to initially detuned
photons, i.e., w=w,+3, which are set to resonance (w’
= w,) by the nonlinear scattering process. For these photons,
the scattering cross section increases, which increases the
contribution to the backscattering signal in the sum over all
scattering orders—especially in the hllh case where single
scattering is filtered out. The same effect also applies for the
crossed term, Fig. 9(b), but here the dephasing between the
reversed paths due to the frequency change—which is more
effective for higher values of the detuning—is dominant,
leading in total to a decrease of y(c'"> as a function of . The
small ripples in Fig. 9(a), for the polarized case (solid line) at
large &, are due to numerical noise in the Monte Carlo inte-
gration.

Figure 10 shows the elastic and inelastic ladder and
crossed contributions, as a function of the optical thickness,
at detuning 6=0. The main purpose of this figure is to show
the increase of the nonlinear contributions as a function of b,
which is important to understand the domain of validity of
the present approach. The origin of this increase is simple to
understand: for larger values of the optical thickness, the
average number of scattering events increases, and so does
also the probability that at least one of them is a nonlinear
one. Thus, for an optically thick medium, even a very small
initial saturation may lead to a large inelastic component of
the backscattered light. Note, however, that the elastic and
inelastic ladder contributions, Figs. 10(a) and 10(c), tend to
cancel each other, such that their sum depends less strongly
on b. Physically, this fact is related to energy conservation.
The latter ensures that the tfotal nonlinear scattered
intensity—integrated over all final directions—vanishes even
exactly, since the total outgoing intensity must equal the in-
cident intensity (meaning a purely linear relationship be-
tween outgoing and incident intensity).

Furthermore, we note that both the elastic and inelastic
ladder components increase significantly more slowly in the
polarized than in the scalar case (solid vs dashed line). This
is due to the fact that, as discussed in Sec. III C, polarization
effects diminish the weight of nonlinear scattering by ap-
proximately 2/3. Concerning the crossed components, Figs.
10(b) and 10(d), the difference is even stronger, due to the
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FIG. 11. (Color online) Slope of backscattering enhancement
factor, for the parameters of Fig. 9 (b=0.5, left half) and Fig. 10
(6=0, right half). Solid lines: polarized case (hlli channel). Dotted
lines: scalar case.

additional polarization-induced loss of contrast by a factor
3/4, on average. Please note that the vertical scale for the
elastic crossed case, Fig. 10(d), is two times larger than in
the other three cases: this reflects the effect of interference
between three amplitudes, which renders the crossed compo-
nent up to two times larger than the ladder. Concerning the
inelastic component Fig. 10(b), this effect is diminished by
decoherence due to the frequency change at inelastic scatter-
ing. Here, crossed and ladder components are of similar
magnitude.

In Fig. 11, we show the slope of the backscattering en-
hancement factor, which follows via Eq. (61) from the data
shown in Figs. 9 and 10. Figure 11(b) again points out the
importance of even small saturation in the case of an opti-
cally thick medium. For example, in the scalar case at b=2,
increasing the saturation from s=0 to s=0.01 decreases the
enhancement factor from 1.73 (<2 due to single scattering)
to 1.55. For very large b, we find a linear decrease of the
slope. At the same time, however, the allowed domain of s
< 1/b?* shrinks to zero quadratically. This allows the en-
hancement factor to remain a continuous function of s, even
in the limit b — o, where its slope at s=0 diverges. In order
to make more precise statements about the behavior in the
limit b — o, however, it is necessary to generalize our theory
to the case of more than one nonlinear scattering event.

On the left-hand side, Fig. 11(a) depicts the dependence
of the enhancement factor on detuning, for #=0.5. As al-
ready discussed above, the decrease of # with increasing &
originates from the form of the inelastic power spectrum,
which results in a stronger dephasing between reversed paths
for larger detuning. Thus, the modification of the enhance-
ment factor with the detuning, keeping fixed the linear opti-
cal thickness, is a signature of the nonlinear atomic response
and has been experimentally observed in Ref. [40]. Let us
stress, however, that in the cases shown in Figs. 9 and 11(a)
and small detuning, the inelastic component gives a positive
contribution to the backscattering enhancement factor.
Hence, the observed negative slope of # originates from the
elastic component, where the nonlinear crossed term is up to
two times larger than the ladder, but with negative sign [see
Figs. 10(c) and 10(d)].
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FIG. 12. (Color online) Spectral dependence of the enhancement
factor, for detuning 5=0 and optical thickness 56=0.5 (dashed line),
1 (solid), and 2 (dotted), in the Allh channel (a) and the scalar case
(b). The vertical dashed line displays the position of the elastic &
peak, which must be filtered out in order to observe an enhancement
factor larger than 2. The inset shows the power spectrum of the
backscattered light (background component), which is almost iden-
tical with the single-atom spectrum.

In order to observe an enhancement factor larger than
2—and thereby demonstrate clearly the effect of interference
between three amplitudes—it is therefore necessary to filter
out the elastic component. In principle, this can be achieved
by means of a spectral filter, i.e., by detecting only photons
with a certain frequency w’, different from the laser fre-
quency w. Thereby, it is possible to measure the spectral
dependence of the backscattering enhancement factor (see
Fig. 12). Here, the upper (a) and lower (b) parts depict the
polarized (hllh) and scalar cases, respectively, for vanishing
laser detuning, 6=0. Evidently, the largest values of the en-
hancement factor are obtained if the final frequency ap-
proaches the initial one, since then the dephasing due to dif-
ferent frequencies vanishes. In the scalar case, the value of
the enhancement factor in the limit 6’ — 0 is completely de-
termined by the relative weights between the one-, two-, and
three-amplitude cases shown in Fig. 4 [cf. Eq. (38)]. As evi-
dent from the dashed line in Fig. 12(b), already at the rather
moderate value »=0.5 of the optical thickness, the three-
amplitude case is sufficiently strong in order to increase the
maximum enhancement factor above the linear barrier 7=2.
With increasing optical thickness (and, if necessary, decreas-
ing saturation parameter, in order to stay in the domain of
validity of the perturbative approach; see above), the number
of linear scattering events increases, which implies that the
three-amplitude case increasingly dominates (see Fig. 4). In
this limit, the enhancement factor approaches the maximum
value 3. At the same time, however, a larger number of scat-
tering events also leads to stronger dephasing due to different
frequencies, ' # w. This results in a narrower shape of 7 as
a function of ' for larger optical thickness. Nevertheless, as
evident from Fig. 12(b), the enhancement factor remains
larger than 2 in a significant range of frequencies ’. The
same is true for the polarized case, Fig. 12(a). However, here
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FIG. 13. (Color online) Spectral dependence of the enhancement
factor, for detuning 5=T" and optical thickness b=0.5 (dashed line),
1 (solid), and 2 (dotted), in the hllh channel (a) and the scalar case
(b). The vertical dashed line displays the position of the elastic &
peak, which must be filtered out in order to observe an enhancement
factor larger than 2. The inset shows the power spectrum of the
backscattered light (background component), revealing the amplifi-
cation of the on-resonance peak with respect to the symmetric
single-atom spectrum.

the enhancement factor cannot exceed the value 2.5, due to
the polarization-induced loss of contrast. At the same time,
the optical thickness has less influence on the maximum en-
hancement factor at 8’ =0, since single scattering, Fig. 4(a)—
and partly also the two-amplitude case, Fig. 4(b)—is filtered
out, so that interference of three amplitudes already prevails
at rather small values of the optical thickness.

In Fig. 13, the influence of an initial detuning (here &
=I") is displayed. Basically, the above conclusions remain
almost equally valid for the detuned case. A small difference
is seen in the scalar case Fig. 13(b), where the maximum of
7(8') is found slightly below &. This is due to the fact that
the weight of single scattering increases with increasing &'.
Furthermore, the inset reveals that the power spectrum of the
backscattered light differs from the single-atom spectrum Eq.
(26), where the two peaks at ' =0 and 26 are equally strong.
In the multiple-scattering case, the on-resonance peak at &’
=0 is amplified, since the scattering cross section is larger for
photons on resonance. As already mentioned above (see the
discussion of Fig. 9), this increases the total contribution to
the detection signal (in the sum over all scattering paths)—
especially in the polarized case, where single scattering is
filtered out.

V. CONCLUSION

In summary, we have presented a detailed diagrammatic
calculation of coherent backscattering of light from a dilute
medium composed of weakly saturated two-level atoms. Our
theory applies in the perturbative two-photon scattering re-
gime (s<1 and sb*< 1), where at most one nonlinear scat-
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tering event occurs. The value of the backscattering enhance-
ment factor is determined by the following three effects.
First, due to the nonlinearity of the atom-photon interaction,
there may be either two or three different amplitudes which
interfere in the backscattering direction. This implies a maxi-
mal enhancement factor between 2 and 3 for the nonlinear
component, where the value 3 is approached for large optical
thickness. However, since the contribution from nonlinear
scattering has a negative sign, the total enhancement factor
(linear plus nonlinear elastic and inelastic components) is
reduced by the effect of three-amplitude interference. Only if
the elastic component is filtered out can a value larger than 2
be observed.

Second, a loss of coherence is implied by the change of
frequency due to inelastic scattering—as in the case of two
atoms [32]. The random frequency change leads to different
scattering phases—and hence on average decoherence—
between reversed paths. Finally, a further loss of contrast is
induced by nonlinear polarization effects—even in the hllh
channel, which exhibits ideal contrast in the linear case. Nev-
ertheless, the enhancement factor remains larger than 2 in
certain frequency windows of the inelastic backscattering
signal. Thus, it is experimentally possible to clearly identify
the effect of interference between three amplitudes—
provided a sufficiently narrow spectral filter is at hand.

A natural way to extend this work is to give up the per-
turbative assumption, and admit more than one nonlinear
scattering event. This is necessary in order to describe media
with large optical thickness, even at small saturation. Since
the number of interfering amplitudes increases if more than
two photons are connected by nonlinear scattering events, we
expect the occurrence of even larger enhancement factors in
the nonperturbative regime—especially in the case of scat-
terers with positive nonlinearity, i.e., for scatterers whose
cross section increases with increasing intensity.

Furthermore, the relation between coherent backscattering
and weak localization in the presence of nonlinear scattering
remains to be explored. Does a large enhancement of coher-
ent backscattering also imply a strong reduction of nonlinear
diffusive transport? If the answer is yes—as is the case in the
linear regime—this implies that wave localization can be fa-
cilitated by introducing appropriate nonlinearities.
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APPENDIX: MONTE CARLO SIMULATION

As discussed in Sec. III C, the incorporation of polariza-
tion effects requires one to take into account the projection of
polarization vectors in the corresponding scalar equations.
For the inelastic ladder component, insertion of the polariza-
tion term Eq. (55) into the scalar expression Eq. (28) yields
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. d - Y ;
L{=s f < f do'P(o') 2 N f du1-~-du,1e‘“"z’f<HSmGw<u,-,u,-+1)|2) f dvy e dv,e il
Al 14 14

n,m,l1=0 i=1

m ! .
A A 5 A a 3 1 ifn=m=0,
X S G, (vi,vii)|? f dw, -+ dw,e "1t S.G(Wewi )P | =TT (e, €, :€,) X
(jlj[lw w(/ ./+1)|) v 1 1 ]!:[llw w( k k+1)| 2 (u v w) 2 ifn>00rm>0,
(A1)
with u,,,;=v,,,;=w,,;=r. Furthermore, the polarization vectors are given by
€u= A"n’“m—] o A"l’"ZEL’
=8y, v, Ay e
€, = Aw,7w1+l T Awl,wzeD- (A2)
The analogous procedure for the interference component, inserting Eq. (57) into Eq. (33), yields
Aln dr = P L o *
C(Z,m) =5 J' — f do' P(w’) E ./\/n+m+lf dlll . dw,e'”l-z/‘(l_[ |Sﬂ,Gm(u,~,u,~+])2)6”‘”1:(”“*"1»’)
Al n.m,1=0 v i=1
m ) 1
X (H SmS,;,/Gm(Vj,Vj+1)G;/(Vj,"jﬂ))€lkw"‘"'("“'+"“")<H S:,Sw'GZ)(Wk,Wkn)Gm'(Wk,Wk+1)>
j=1 k=1
0 ifm=1=0,
3 2 ifn=m=0, [>0,
P L CERCRENARS P (A3)
2 2 ifn=1=0, m>0,
4 otherwise,
with the polarization vectors of the “reversed” photons
&= Avm'vm+l o AVI’VZED’
Ew = Aw,,w]” T Awl,wzeb (A4)

The elastic nonlinear scattering components follow simply by inserting —28(w’ — ) instead of the inelastic power spectrum
P(w') in the above Egs. (A1) and (A3).
The nonlinear propagation term is obtained by inserting Eq. (58) into Eq. (44):

R - S - " gy .
LGP =52 A" | du - du,ﬂ'““@*””l”(ﬂ SmGw(ui’uiH)lz) SN dvydy, f —end

n=1 4 i=1 m=1 v =0 Ju, 4

i 1 ifm=1=0
x(H ﬁmém<v,-,vi+1>|2>H<L'P'°P><el,ev,q) X - (A5)
i1 2 otherwise.

Here, the nonlinear event takes place between w; and u,,;. Correspondingly, [’ ﬁﬁ“ denotes the one-dimensional integral on a

straight line between these points, and up=u,~u, .e, and u,,,=u,—u, e, are defined as the points where the photon enters or
leaves the medium, respectively. The three cases Figs. 5(a)-5(c) correspond to 0<</<n, I=n, and /=0, respectively. The
polarization vectors €; and e; participating in the nonlinear event (cf. Fig. 8) are obtained as

=A A
E] LR UZ,UIEL’

€= Au,,u,_H e Aun_l.u €p.- (A6)

n

Finally, to obtain the interference component ég.prop)’ the last term in Eq. (A5) must be replaced by
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. 4 if[=0, n>1, m>0,
2 ifn>1, (m,) #(0,0) .
PP (e e, e) X1 ifn>1, m=1=0 +I1CPP) (g e €. €. &) X 2 if1=0. n=l. m=0.
B ,’ PSRRI o ifo<i<n,
0 otherwise .
0 otherwise,
(A7)
with
g3 = Au,‘ulﬂ e Aunil.unEL' (AS)

The first term, [T(-Prop), equals the ladder component minus
single scattering (n=1), whereas the second one, T1(C-prop),
describes the additional crossed diagrams shown in Figs.
6(d)-6(f). Here, the case 0<I<n corresponds to Fig. 6(d),
where the nonlinearity occurs between two scattering events.
The remaining diagrams, Figs. 6(e) and 6(f), correspond to
[=0. Here, the case m=0 (“pump photon from the coherent
mode™) does not contribute, since then the diagrams Figs.
6(e) and 6(f) are identical to Figs. 6(b) and 6(c). Further-
more, if n=1 (“probe photon singly scattered”), the two dia-
grams Figs. 6(e) and 6(f) become identical. In this case, we
obtain a factor 2, whereas the sum of diagram (e) plus dia-
gram (f) yields 2+2=4 in the case n>1.

Numerically, we solve the above integrals by a Monte
Carlo method. Here, we proceed as follows. For Egs. (A1)

and (A3) first the position r and frequency wj, of the inelastic
scattering event are chosen randomly. Starting from r, three
photons are launched, two with frequency w; and one with
frequency wp. After each scattering event, the length r of the
next propagation step is determined randomly according to
the distribution P(r)=exp(-r/€)/€, whereas the direction is
chosen uniformly. After all photons have left the medium,
the triple sum over n, m, and [ is performed, taking into
account the projection of the polarization vectors. For the
nonlinear propagation term Eq. (A5), first the probe photon
(path wy,...,u,) is propagated, starting in the laser mode
k;, €. Then, the pump photon is launched from a randomly
chosen position v, on the path of the probe photon. Finally,
the projection of polarization vectors is performed separately
for each given path.
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We present a diagrammatic theory for coherent backscattering from disordered dilute media in the
nonlinear regime. We show that the coherent backscattering enhancement factor is strongly affected by the
nonlinearity, and we corroborate these results by numerical simulations. Our theory can be applied to
several physical scenarios such as scattering of light in a nonlinear Kerr medium or propagation of matter

waves in disordered potentials.

DOI: 10.1103/PhysRevLett.100.033902

The interplay between disorder and—even very weak—
nonlinearity can lead to dramatic changes to the system’s
properties: for example, instabilities occur [1-3], or local-
ization may be destroyed [4]. In the experiments studying
the localization properties of matter waves in speckle
potentials [5], the nonlinear regime, arising from the
atomic interactions, is almost unavoidable. Furthermore,
nonlinear behavior is easily observed in coherent backscat-
tering (CBS) experiments with cold atomic gases [6]. Also
random lasers exhibit nonlinearities which potentially in-
fluence the structure of localized laser modes [7]. In all
these cases, even if the systems are governed by simple
nonlinear wave equations, a precise description of the
impact of this nonlinearity on the interference effects
altering the properties of diffuse wave propagation is still
lacking. Since exact numerical calculations for realistic
situations are at the border of or beyond actual computer
capacities, one needs an efficient theory providing directly
disorder averaged quantities. For this purpose, the present
Letter shows that the standard diagrammatic approach [8]
can be extended to the nonlinear regime. Using ladder and
crossedlike diagrams, we will derive a nonlinear radiative
transfer equation for the averaged wave intensity and then
calculate the interference corrections on top of the non-
linear solution.

The general framework for our approach is as follows:
we assume a nonlinear wave equation with unique and
stationary monochromatic solution, meaning, in particular,
that the nonlinear susceptibilities at harmonics frequencies
are weak enough such that the latter can be neglected. We
also neglect—on the length scale € (mean free path) set by
the disorder—effects like self-focusing, pattern formation,
and solitons [9], which originate from nonlinear variations
Any, of the real part of the refractive index. This assump-
tion is valid if (An,)?k€ << 1 [2]. Our theory also applies
to imaginary Ang, i.e., absorbing or amplifying media,
provided, in the latter case, that the solutions remain stable.
Within this general scenario, comprising examples like a
collection of resonant point scatterers, or a (mean field)
matter wave in a disordered potential, the nonlinear effects

0031-9007/08,/100(3)/033902(4)
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relevant in connection with the disorder are as follows:
first, the wave intensity 7(r) becomes a fluctuating quantity,
which is especially important in the nonlinear regime;
second, the usual picture of weak localization resulting
from interference only between pairs of amplitudes prop-
agating along reversed paths breaks down in the nonlinear
regime. As a consequence of nonlinear mixing between
different partial waves, weak localization must rather be
interpreted as a multiwave interference phenomenon
[10,11]. In particular, we will show that the height of the
coherent backscattering peak is strongly affected by non-
linearities, even if they do respect the reciprocity symme-
try. In contrast to [10,11], the present approach is valid in
the nonperturbative regime of arbitrarily large scattering
media, where expansions in powers of the nonlinearity
strength do not converge and even small nonlinearities
may have a large impact on the wave propagation.

At first, we consider an assembly of N pointlike scat-
terers located at randomly chosen positions r;, i =
1,..., N inside a sample volume V illuminated by a plane
wave k; . We assume the field radiated by each scatterer to
be a nonlinear function f(E;) of the local field E;.
Neglecting higher harmonics, we write f(E) = g(I)E,
where I = EE* is the local intensity, and g(I) is propor-
tional to the polarizability of the scatterers. This results in a
set of nonlinear equations for the field at each scatterer:

E=ehn+ S B EE 1
=€ ;47T|r[—rj|g =5 0
where k = |k, |, and the field is measured in units of the
incident plane wave amplitude. For simplicity, we will
consider only scalar fields in this Letter.

We aim at providing a theory providing the relevant
quantities (local intensities, CBS cone, etc.) averaged
over the random positions of the scatterers. In a first step,
we will derive an equation for the mean intensity (/(r)). In
the dilute regime, where the typical distances |r; — r;| are
much larger than the wavelength, we may neglect correla-
tions between the fields emitted by different scatterers. The
scattered field E,(r) is then a superposition of spherical
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waves with random relative phases, depicting thus a
speckle pattern. The resulting Gaussian statistics for the
complex field E,(r) [12] are completely determined by a
single parameter, the mean diffuse intensity I,(r) =
{|E;(r)|?). In addition to the scattered field, there is also
a nonfluctuating coherent component originating directly
from the incident field. In total, we have E(r) = (E(r)) +
E,(r), and the average intensity splits into a coherent and
diffuse part: (I(r)) = I.(r) + I,(r), with I, = [(E)|>. The
mean density of radiation intensity emitted from point r is
then given by

K(r) = N = N{gUm)PPI(r)), ()

where N' = N/V denotes the density of scatterers, and the
average (...) is taken over the Gaussian statistics of the
scattered field.

Between two scattering events, the wave propagates in
an effective medium made by the scatterers, described by a
refractive index n and mean free path €. Note that, because
of the nonlinear behavior of the scatterers, the effective
medium is modified by the propagating waves themselves.
Because of their different statistical properties, we obtain
therefore different refractive indices for coherent and dif-
fuse fields, respectively. (This effect is also known from
usual pump-probe configurations in nonlinear optics [9].)
In the dilute regime, the diffuse amplitude can be consid-
ered as a weak probe, such that the complex refraction
index reads as follows:

n=1+ £<ﬂ> % = 2kIm{n}, 3

whereas, for the coherent mode, the derivative d/dE is
replaced by 1/(E); ie., n. =1+ N(f)/(2k*E)), and
1/€, = 2kIm{n.}. Since the results of the averages depend
on I.(r) and I,(r), the nonlinear refractive indices also
attain a spatial dependence n(r) and n.(r). They describe
average propagation of one strong and many uncorrelated
weak fields.

Recollecting all preceding ingredients, the transport
equations for the average intensity read as follows:

1(r) = e /%, @

_ / ei‘rirlw /
1,(r) = fv e e KO 3)

Here, z denotes the distance from the surface of V to r, in
the direction of the incident beam. Furthermore, propaga-
tion from r’ to r implies a spatial average of 1/£(r), which
we note as |r—r'|/€ = |r —r/| [} ds/C(r — sr + sr'),
and similarly for (z/€.). Since K, ¢, and €, depend on
I.(r) and 1,(r), the above Egs. (4) and (5) form two coupled
integral equations. Finally, the intensity scattered into
backwards direction, expressed by the “‘bistatic coeffi-
cient‘ [8], results as

dr _—
= —z/¢
r, fv T, ©)

where A denotes the transverse (with respect to the incident
beam) area of the scattering volume V.

The validity of the preceding approach has been tested
using the nonlinear function g(I) = (4mi)/k(1 + al)
which depicts the (elastic) nonlinear behavior of a two-
level atom exposed to an intense laser beam. We must
emphasize that, for this particular model of nonlinearity,
the stationary solution is always found to be unique and
stable, as a consequence of the saturation g(I) — 0 for
large a. From the numerical solution of Eq. (1), we calcu-
late the radiated intensity outside the cloud in different
directions 6. This procedure is then repeated with many
different configurations giving us the disorder averaged
field and intensity. The results presented in this Letter are
obtained with 3000 configurations of 1500 scatterers, ran-
domly distributed inside a sphere with a homogeneous
density (k€ = 67 and optical thickness b = 2 for a = 0).

The results for the average intensity as a function of the
backscattering angle 6 are depicted in Fig. 1 for different
values of the nonlinear parameter « = 0, 0.2, 0.4, and 0.6.
For each plot, the solid line depicts the exact numerical
results, whereas the dashed line corresponds to I';, Eq. (6).
Away from the backward direction, the agreement between
the exact numerical calculations and our theoretical pre-
diction for the background is clearly excellent. This is
emphasized by the additional curve (long dashed line)

0.80

0.70

0.60

0.60 . 0.50
0.60 T 0.50

bistatic coefficient y

0.45 -

0.40 F

0.40 - 0.35 .
-0.5 0 0.5 -0.5 0 0.5

0,/n

ar

FIG. 1 (color online). Coherent backscattering cones obtained
from exact numerical calculations in comparison to the theoreti-
cal approach, for various nonlinearity strengths «. The solid
lines depict the exact numerical results, whereas the dashed lines
correspond to I'; including geometrical effects. The dotted lines
correspond to the sum I'; + I'¢ exactly in the backward direc-
tion. The additional curve (long dashed line) plotted for & = 0.2
depicts I'; obtained when the fluctuating character of the diffuse
field is not taken into account.
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plotted for & = 0.2 depicting the results obtained when
neglecting the fluctuations of I(r), for example, replacing
(8(DI?1) by [g(INIXI) in Eq. (2).

In the backward direction, constructive interference be-
tween reversed scattering paths results in the well-known
coherent backscattering peak. As is obvious from Fig. 1,
the height of this peak is strongly reduced by the nonline-
arity. Nevertheless, we are perfectly able to incorporate
these interference effects in our approach, see the horizon-
tal dotted lines in Fig. 1, which depict the predicted total
bistatic coefficient, I'; + I'¢, see Eq. (12) below, in the
exact backward direction. These results are obtained by a
diagrammatic analysis, whose results we briefly outline in
the following. A detailed derivation will be presented
elsewhere.

In contrast to a previous attempt for a nonlinear dia-
grammatic theory [13], we concentrate on the regime
k€ > 1 of dilute media, which allows us to sum up the
diagrammatic series in a simple, closed form, as shown
below. As for linear media in the dilute regime, we calcu-
late the CBS effect by so-called “crossed” or ““Cooperon”
diagrams [8], describing pairs of reversed scattering paths.
As a first step, we analyze how a single scatterer responds
to two different incident probe fields E and E*, which
represent the two amplitudes propagating along the re-
versed paths. Note that, due to the nonlinearity, the scat-
tered field f and its complex conjugate f* depend on both
E and E*. Hence, depending on whether the probe fields act
on f or f*, we obtain the building blocks depicted in Fig. 2.
Expressing, as in Eq. (3), the scatterer’s response to a small
probe field by d/dE (or d/dE*), the corresponding mathe-

d)

17 3

FIG. 2. (a)—(f) Building blocks for the diagrammatic calcula-
tion of nonlinear CBS. Filled squares (with outgoing solid
arrows) denote the scattered field f, and open squares (with
outgoing dashed arrows) the complex conjugate f*. Incoming
solid (dashed) arrows represent probe fields d/dE (d/dE").
(g) Example of a forbidden combination of diagrams, exhibiting
a closed loop (see the main text).

matical expressions read

4 (A (Al

<= MG o)) M i) @
where k represents the sum of diagram (a) + (c), & the sum
(b) + (d), and

Xt

®

i
2k<

& f*
(dE*)ZdE>

diagram (e). If one of the incident fields originates from
the coherent mode, d/dE is again replaced by 1/(E); i.e.,
ke = N(fdf*/dE")/(E), k. = N(f*df/dE")/(E), and
7. = —iN{(d*f*/(dE*)?)/ 2k(E)).

In the next step, the crossed transport equation is estab-
lished by connecting the building blocks shown in Fig. 2
with each other. However, there are some combinations of
diagrams, for example, the one shown in Fig. 2(g), which
represent unphysical processes. In this diagram the fields
radiated by f* and f mutually depend on one another, and,
therefore, one cannot tell which one of the two events f or
" happens before the other one. In order to avoid closed
loops like the one shown in Fig. 2(g), we ignore all combi-
nations where one of the diagrams Fig. 2(c), 2(d), or 2(e)
occurs after Fig. 2(b), 2(d), or 2(f) when following the
solid arrow along the crossed path.

We account for these forbidden diagrams by splitting the
transport equation into two parts, which we call C; and C,.
The first part, C;, contains only diagrams Figs. 2(a), 2(c),
and 2(e). As soon as one of the events Fig. 2(b), 2(d), or
2(f) occurs, the crossed intensity changes from type C, to
type C,. The subsequent propagation of C, is then given by
diagrams Figs. 2(a), 2(b), and 2(f). Following these rules,
we describe the propagation of C, , by transport equations
similar to Eqgs. (4) and (5):

CL.(I’) — eikz(n(*n*')’ (9)

Cy(r) = fv AP, ¥)(oC, + 0. C)),  (10)

Co(r) = [V AV P(e, V) (0" Cy + 5C, + 5,C)(), (11)

where P(r,1r') = exp(—|r — r'|/€)/(47|r — 1'])? is the
same as in Eq. (5), and the cross sections o result as
follows: o = k + {K7, & = k + ¢K7*, and, similarly,
o.= k., t €K7, and &.= k., + €K7;. Finally, the
crossed bistatic coefficient reads

dr

Te = [ (o + 37)C, + 0t Col(r). (12)
v4mTA

For comparison with the background I'; , we define diffu-
son cross sections by writing K = o @I, + O'(Cd)lc, such
that Eq. (5) attains a form comparable to Eq. (10).
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Exploiting the Gaussian properties of the diffuse field, we
find 0@ = ¢ — &* and 0¥ = o, — &7

How the nonlinearity affects the CBS effect can now be
understood by comparing ¢ and o', For the case of an
absorbing nonlinearity, we find & < 0, and hence o < o@D,
Consequently, the crossed intensity is absorbed more
strongly than the background intensity, which explains
the decrease of the CBS cone observed in Fig. 1. Let us
note that there also exist other models, for example, an
amplifying nonlinearity like g = 4mi(1 + al)/k, where
our theory predicts an enhancement of the CBS cone.
However, these models might suffer from instabilities,
requiring thus further investigations.

To obtain the relatively simple form of Egs. (9)—(12), we
have performed some approximations valid in the case of
large optical thickness b. In the numerical comparison
depicted in Fig. 1, we have used the exact version of
Egs. (9)—(12), which will be published elsewhere.

As explained in the introduction, our theoretical scheme
also applies to other types of nonlinear systems. Instead of
a collection of nonlinear scatterers as described by Eq. (1),
we may, for example, also consider linear scatterers em-
bedded in a homogeneous nonlinear medium:

AE(r) + K*[e(r) + al E(r)]*]E(r) =0 (13)

with 8-correlated disorder e(r) corresponding to a (linear)
mean free path €. Here, the dilute medium approximation
is valid if k€, > 1 and (al)*k{¢, < 1. The latter condition
is automatically fulfilled if we assume that we are in the
stable regime, where Eq. (13) has a unique solution.
According to [2], this is the case (for a € R) if
(al)*b*(k€y + b) < 1, with b the optical thickness.

In this case, the diagrammatic method applies in the
same way as described above. In particular, we obtain the
following expressions for the cross sections:

o(r) = o (r) = ‘;—1’{1 + ikboall,(0) + L], (14)

& =6, = —4mika*(, + 1), 0@ = ¢ = 47 /¢, and
for the mean free paths n = () + a(I, + I;) + i/(2k€,)
and n, = (e) + a(l./2 +1;) + i/(2k,). In the energy
conserving case a € R, it can be shown that C, does not
contribute to the real part of the backscattering coefficient
I'c. Since, in this case, the Cooperon cross section,
Eq. (14), exhibits a complex phase factor, it follows from
Eq. (10) that the nonlinearity introduces a phase difference
A¢p = Mk€yal between reversed paths undergoing M

linear scattering events. Since (M) « b, we predict a sig-
nificant reduction of the CBS peak if bk€yal = 1 (which is
still inside the stable regime if k€, is large).

In summary, we have extended the usual diagrammatic
approach to take into account nonlinear effects for the
coherent transport in disordered systems beyond the per-
turbative regime. The excellent agreement with direct nu-
merical simulations emphasizes the validity of our
approach. It readily applies for different nonlinear wave
equations. Equation (13), for example, is mathematically
equivalent to the Gross-Pitaeskii equation describing non-
linear propagation of matter waves in random potentials. In
this case, our method will allow us to describe not only the
localization properties of the mean field, but also, extend-
ing it within the Bogoliubov framework, the effect of the
noncondensed atoms. Furthermore, nonlinear transport of
light in cold atomic gases [6] can be described by including
inelastic scattering (Mollow’s triplet). Finally, our present
theory, combined with the usual self-consistent approach
of strong localization [14], can possibly allow a quantita-
tive understanding of the impact of the nonlinearity in the
strong scattering regime.

We thank D. Delande and C. Miniatura for fruitful
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