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Chapitre 1

Parcours personnel - Introduction

L’essentiel de mon travail de recherche s’est passé au sein du laboratoire Kastler Bros-
sel dans l’équipe Dynamique des systèmes coulombiens. Mon arrivée dans cette équipe
lors de mon stage de DEA (1992) a été le fruit du hasard : le nombre de propositions
de stage étant alors assez limité, nous avions tiré au sort les attributions des stages les
plus intéressant ; ayant perdu, j’hésitais entre plusieurs autres stages quand est arrivée
(bien après la date requise) la proposition de Dominique Delande, pour laquelle je res-
tait le seul candidat en lice... Ayant extrêmement apprécié le mélange chaos-dynamique
quantique, les simulations numériques et l’ambiance de l’équipe, j’ai souhaité y faire mon
travail de thèse. Celui-ci a porté sur le problème coulombien à trois corps en mécanique
quantique (atome d’hélium...). Après deux années de thèse, je suis parti faire mon ser-
vice national (94-96) en tant que coopérant scientifique à l’Université Libre de Bruxelles
dans l’équipe de Pierre Gaspard, auprès de qui j’ai pu apprendre les subtilités des ap-
proches semi-classiques dans le chaos quantique. L’époque (1997) qui a suivi mon travail
de thèse a été celle du développement des expériences d’atomes froids dans des potentiels
lumineux tels que l’émission stimulée était rendue négligeable. En particulier, il devenait
possible de faire des expériences de chaos quantique permettant de mesurer, via les dis-
tributions de vitesse, la dynamique du transport chaotique, contrairement aux systèmes
coulombiens pour lesquelles les expérimentateurs n’avaient accès qu’à des quantités intégrés
et dans l’espace des énergies (section efficace d’ionisation). Ayant eu la chance de rentrer
au CNRS (1998) et pour mieux connâıtre les possibilités des expériences d’atomes froids,
j’ai demandé à François Biraben de participer (à mi-temps) à l’élaboration de sa nouvelle
expérience de métrologie. Le but était de mesurer très précisément la période des oscilla-
tions de Bloch d’atomes froids (masse M) dans un réseau optique, ce qui permettait une
détermination très précise du rapport h/M . En parallèle, j’ai commencé à m’intéresser aux
phénomènes physiques liés à la propagation d’ondes dans des milieux désordonnés et plus
particulièrement à la lumière dans les gaz d’atomes froids. Ce sujet de recherche a de nom-
breux points communs avec le chaos quantique, puisque l’on s’intéresse à des propriétés de
transport mixant les effets d’interférences et une dynamique complexe. Cette thématique
avait déjà débuté au sein du groupe, en particulier suite aux expériences menées à l’INLN
(Institut Non-Linéaire de Nice) dans l’équipe dirigée par C. Miniatura et R. Kaiser. Dans
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ce contexte, les atomes froids se distinguent des diffuseurs classiques par plusieurs aspects :
(i) ils sont résonnants, (ii) ils peuvent présenter une structure interne (sous-niveaux Zee-
man), (iii) les effets non-linéaires (saturation de la transition atomique) sont facilement
observables. Les deux premiers aspects étant bien compris, j’ai donc décidé de m’intéresser
aux aspects non-linéaires, sachant que des expériences dans ce domaine étaient envisagés
à l’INLN. Ce mélange désordre - non-linéaire, même s’il m’a parfois mené à des diffi-
cultés1 un peu décourageantes2, m’a conduit à un domaine où la physique est extrêmement
riche et intéressante, et qui est devenu d’autant plus d’actualité avec le développement des
expériences de transport de condensats de Bose-Einstein dans les potentiels désordonnés.

Au-delà, et anticipant sur les travaux que je présente par la suite, de nombreuses direc-
tions restent encore à explorer. En premier lieu, il apparâıt clairement que la dynamique
(i.e. au-delà des propriétés stationnaires) du transport reste un enjeu important dans la
compréhension des phénomènes de localisation dus au désordre. Dans ce contexte, il est
très intéressant de remarquer que la dynamique des systèmes désordonnés (instabilités de
speckle, de lumière ou d’onde de matière, lasers aléatoires) permet de faire un lien avec
le chaos quantique : on peut considérer les systèmes désordonnés comme des systèmes dy-
namiques chaotiques de haute dimensionnalité (i.e. avec un très grand nombre de degrés
de liberté). Dans cette optique, il sera très intéressant de transférer les outils du chaos
pour mieux comprendre et analyser la dynamique de ces systèmes instables, par exemple
le type de bifurcation, la transition vers le chaos, etc... La moyenne sur le désordre nous
amène ensuite à considérer un ensemble de systèmes dynamiques dont on cherche à com-
prendre non seulement les propriétés moyennes, mais également à caractériser les écarts
aux valeurs moyennes. En particulier, dans le régime fortement localisé, on peut s’attendre
à ce que la combinaison entre les fluctuations de speckle et les non-linéarités génère des
propriétés statistiques particulières, se traduisant probablement dans des comportements
singuliers, comme par exemple dans les spectres d’émission des lasers aléatoires. Ensuite,
il faut noter que la nature quantique (collective) des objets mis en jeu (onde de matière,
champ électromagnétique...) est amenée à jouer un rôle de plus en plus important. Ainsi,
dans le cas des lasers aléatoires, l’émission spontanée et plus généralement les corrélations
quantiques du champ sont des ingrédients essentiels. De même, dans le cas des ondes de
matières, ces aspects quantiques sont cruciaux pour obtenir et expliquer toutes les tran-
sitions de phase liées au désordre. Quand on observe l’accroissement du nombre de publi-
cations à ce sujet, il est clair que cette direction de recherche est extrêmement riche et
prometteuse.

Je tiens à remercier les nombreuses personnes qui m’ont directement ou indirectement
permis de mener à bien ce travail de recherche, notamment l’ensemble des membres du
laboratoire pour avoir rendu si agréable la vie au jour le jour. Je voudrais également
remercier Christian Miniatura et Thomas Wellens dont la collaboration fut à la fois cruciale
et enrichissante. Je voudrais remercier particulièrement, Dominique Delande, de m’avoir

1Ceci dit, si c’est trop facile, il y a peu de chance que ça soit intéressant...
2c’est là qu’on apprend à calibrer ses choix de recherche en fonction de leur intérêt scientifique mais

aussi de ses envies personnelles
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soutenu toutes ces années, grâce un subtil équilibre entre liberté scientifique (à peine recruté
dans son équipe, il m’a laissé aller travailler à mi-temps sur une expérience d’atomes froids),
conseils scientifiques et discussions approfondies. Merci à Sandra ! (et Aubin, Adèle et
Elvire) ! Tout ce qu’ils m’apportent m’a souvent permis de prendre du recul par rapport à
la recherche.
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Chapitre 2

Chaos quantique
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2.1 Cadre général

La notion de chaos en mécanique classique est apparue, à la fin du XIXème siècle, avec
les travaux de Poincaré sur le problème à trois corps. Plus précisément, il a montré que
le nombre de constantes du mouvement était inférieur au nombre de degré de liberté : le
système est donc non-intégrable1. Peu après, les travaux de Lyapunov ont précisé cette
notion en analysant la stabilité des trajectoires classiques : génériquement, i.e. pour un
système chaotique, la distance, dans l’espace des phases, entre deux trajectoires, corres-
pondant à des conditions initiales aussi proche que l’on veut, crôıt exponentiellement avec
le temps. Alors que la dynamique est parfaitement déterministe, la moindre incertitude sur
les conditions initiales empêche toute prédiction à long terme : c’est le fameux “effet pa-
pillon”, qui amène parfois un mélange abusif entre chaotique et aléatoire. Au contraire, les
travaux des trente dernières années sur le chaos ont montré que l’espace des phases d’un
système chaotique est extrêmement bien structuré par une classe particulière de trajec-
toires : les orbites périodiques. Celles-ci forment en effet un ensemble dense et leur nombre
crôıt exponentiellement avec leur période. De plus, elles jouent un rôle fondamental dans
l’analyse des systèmes quantiques.

Du fait du principe d’incertitude de Heisenberg, la notion de chaos n’est pas bien
définie pour un système quantique et le terme chaos quantique est en fait un raccourci
pour désigner l’étude des propriétés quantiques d’un système dont la dynamique classique
est chaotique. Essentiellement, on peut distinguer deux approches complémentaires dans le
domaine du chaos quantique. D’un coté, les théories semi-classiques ont pour but d’expli-
quer et de calculer les quantités quantiques (position des niveaux d’énergie, section efficace
de photo-ionisation...) à partir des propriétés de la dynamique classique. De l’autre coté,
comme la dynamique des systèmes chaotiques présente, aux temps longs, des aspects uni-
versels, i.e. indépendants des détails du système considéré, il y a toute une classe d’études
basées sur des analyses statistiques des propriétés quantiques, comme par exemple les
fluctuations des écarts entre niveaux d’énergie consécutifs.

1pour être précis, un système non-intégrable n’est pas nécessairement chaotique, mais cette situation
est plutôt pathologique
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2.2 Aspects statistiques

2.2.1 Le problème coulombien à trois corps

Ce thème de recherche est la continuation directe de mon travail de thèse, au cours
duquel j’ai développé une méthode permettant de calculer numériquement les propriétés des
états du problème coulombien à trois corps (atome d’hélium, ion moléculaire H+

2 ) : position
en énergie, largeur des résonances, fonctions d’onde, forces d’oscillateur... Cette méthode est
basée sur l’utilisation de toutes les symétries du système aussi bien géométriques (invariance
par rotation, parité, échange des particules) que dynamiques (liées à la forme en 1/r des
potentiels).

L’allure schématique du spectre de l’hélium est la suivante : le zéro d’énergie est fixé
comme étant l’énergie de l’atome doublement ionisé He++. Lorsqu’on lui ajoute un électron,
on obtient l’ion He+ simplement ionisé dont les niveaux forment une série de Rydberg
convergeant vers le seuil de double ionisation. A chacun de ces niveaux vient se greffer
d’autres séries de Rydberg qui correspondent aux niveaux hydrogénöıdes du deuxième
électron. On a donc cette structure d’une infinité de séries de Rydberg, dont les seuils de
convergence forment eux-mêmes une série de Rydberg (voir figure 2.1), qui elle converge
vers la limite de double ionisation. Au-delà du quatrième seuil de simple ionisation, les
premiers niveaux d’une série se mélangent aux séries issues du seuil précédent.

Fig. 2.1 –
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Il faut évidemment raffiner cette allure grossière en tenant compte de la répulsion inter-
électronique. Un premier effet est de décaler systématiquement les niveaux vers les énergies
plus élevées, tout en levant la dégénérescence entre les niveaux de mêmes nombres quan-
tiques principaux n1 et n2. Le deuxième effet ne concerne que les séries au-delà du premier
seuil, pour lesquelles les deux électrons sont dans des états excités. Tous les états deviennent
en fait des résonances. En effet, du fait de l’interaction entre les deux électrons, chaque
état est couplé au(x) continuum (continua) issus du ou des seuils plus bas en énergie.
Ces résonances correspondent au phénomène physique d’auto-ionisation : un électron en
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tombant dans un niveau plus bas, cède suffisamment d’énergie à l’autre électron pour lui
permettre de s’ioniser. Ce phénomène est impossible pour les états en dessous du pre-
mier seuil d’ionisation et donc ces états restent des états liés, la série est discrète (voir
figure 2.1). Ainsi, les niveaux de He+ donnant les limites d’accumulation des différentes
séries de Rydberg deviennent les seuils de simple ionisation.

Dans le cas de l’atome d’hélium, ces méthodes numériques nous avaient permis de
reproduire parfaitement les résultats expérimentaux obtenus sur les sections efficaces de
photo-ionisation par l’équipe du Prof. G. Kaindl (Institüt für Experimental Physik, Freie
Universität, Berlin). Pour ce système, on peut montrer que la dynamique chaotique se
manifeste d’autant plus que l’on se rapproche de la limite de double ionisation, c’est-à-dire
pour des états pour lesquels les deux électrons sont très excités, ce qui se caractérise, par
exemple, par des sections efficaces de photo-ionisation de plus en plus irrégulières.
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Photo-ionization of the helium atom close to the
double-ionization threshold: Towards the Ericson regime

B. Grémaud and D. Delande

Laboratoire Kastler-Brossel, Université Pierre et Marie Curie

4 Place Jussieu, 75005 Paris, France

(received 21 July 1997; accepted in final form 1 October 1997)

PACS. 05.45+b – Theory and models of chaotic systems.
PACS. 31.15Ar – Ab initio calculations.
PACS. 32.80Fb – Photoionization of atoms and ions.

Abstract. – We calculate the photo-ionization cross-section from the ground state of the
helium atom, using the complex rotation method and diagonalization of sparse matrices. This
produces directly the positions and widths of the doubly excited 1Po resonances together with
the photo-ionization cross-section. Our calculations up to the N = 9 threshold are in perfect
agreement with recent experimental data and show the transition from a regular structure at
low energy to a chaotic one at high energy, where various resonances strongly overlap.

The helium atom is one of the prototype of atomic systems whose classical dynamics is
mainly chaotic and during the past thirty years it has been the matter of numerous studies
from both theoretical [1]-[8] and experimental [9]-[11] points of view. But, unlike other atomic
systems like, for instance, the hydrogen atom in magnetic field, the effects of chaos are not
very well understood and more profound studies are needed. This requires the resolution of
the full quantum problem. Especially, one has to take into account all the degrees of freedom
and all correlations between the two electrons, as well as the autoionizing character of the
doubly excited states.
In this letter, we present numerical calculations of the cross-section of the one-photon

photoionization from the ground state of the helium atom and compare them with the recently
obtained high-resolution spectra of 1Po doubly excited states. The agreement with the most
recent experimental data from refs. [10], [11] —up to the N = 9 ionization threshold, less than
1 eV from the double-ionization threshold and corresponding to 64 open channels— is excellent
for the whole energy range, proving the high efficiency of the method. Predictions for better
experimental resolutions are also given. We also show that at low energy the resonances can be
classified with respect to Herrick’s (N,K, T ) approximate quantum numbers [2], ((N,K)n Lin’s
simplified notation [3] will be used hereafter). At high energy, this classification progressively
breaks down. Eventually, above the N = 7 threshold, the various resonances strongly overlap:
the mean energy spacing between consecutive resonances becomes smaller than their typical
width. Oscillations in the photo-ionization cross-section can then no longer be associated with

c© Les Editions de Physique
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individual resonances: random-like fluctuations —known as Ericson fluctuations— should be
observed in the cross-section.
The quantum Hamiltonian in atomic units (h̄ = me− = 4πǫ0 = e

2 = 1) is given by

H =
P
2
1 +P

2
2

2
− 2
r1
− 2
r2
+
1

r12
, (1)

where Pi = −ih̄∇i is the momentum operator of electron i, ri its distance to the nucleus and
r12 the inter-electronic distance. All spin-orbits, relativistic and QED effects (at most of the
order of a fraction of meV) are neglected, which is consistent with the experimental resolution
(of the order of 1 meV). The corrections due the finite mass of the nucleus are taken into
account by using the effective values for the double-ionization threshold I∞ and the Rydberg
constant RHe given in ref. [10], namely I∞ = 79.003 eV and RHe = 13.6038 eV.
Using the rotational invariance of the Hamiltonian, the angular dependence of a wave

function can be factorized as follows [12]:

ΨLM =
L
∑

T=−L

DL∗MT (ψ, θ, φ)Φ
(LM)
T (x, y, z) , (2)

where (ψ, θ, φ) are Euler angles defining the transformation from the laboratory frame to a
molecular-like frame whose z′ axis is the inter-electronic axis. |T | is then the Λ (Σ, Π. . . )
quantum number in a molecule. The DL∗MT are the wave functions of the rigid rotor and reduce
to the usual spherical harmonics for T = 0. Finally (x, y, z) are the perimetric coordinates,
symmetric combinations of r1, r2 and r12:































x = r1 + r2 − r12 ,

y = r1 − r2 + r12 ,

z = −r1 + r2 + r12 .

(3)

For each pair of good quantum numbers (L,M), we obtain an effective Hamiltonian acting
on the different ΦT ’s (coupled by Coriolis-like terms). The two remaining discrete symmetries
—parity and exchange between the two electrons— are exactly taken into account by adding
constraints on the ΦT ’s [8].
As stated before, above the first ionization threshold, all states become resonances be-

cause of the coupling with the continua (autoionizing states). Using the complex rotation
method [5], [13], we obtain these resonances as complex eigenvalues of a complex Hamiltonian
H(θ), which is obtained by the replacements ri → rie

ıθ and Pi → Pie
−ıθ, where θ is a

real parameter. The fundamental properties of the spectrum of H(θ) are the following: the
continua ofH are rotated by an angle 2θ in the lower complex half-plane around their branching
point. Each other complex eigenvalue Ei = ǫi− iΓi/2 lies in the lower half-plane and coincides
with a resonance of H with energy ǫi and width Γi. These quantities are independent of θ
provided that the complex eigenvalue has been uncovered by the rotated continua. The bound
states, which are resonances with zero width, stay on the real axis. This method also allows to
compute quantities of physical interest, like photo-ionization cross-section, probability densities
or expectation values of operators (e.g., cos θ12), enlightening the contribution of a given
resonance to them. For instance, the cross-section is given by [13]

σ(ω) =
4πω

c
Im
∑

i

〈Eiθ |R(θ)T |g〉2
Eiθ −Eg − h̄ω

, (4)
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b. gremaud et al.: photo-ionization of the helium atom etc. 365

Fig. 1. – Positions (in eV above the ground state) and widths (logarithmic scale) of 1Po resonances of
the helium atom. The upper plot displays the states below the N = 2 and N = 3 thresholds, where the
various series can be distinguished without ambiguity from their widths, in agreement with Herrick
classification of doubly excited states. In the lower plot, displaying the states below the N = 6, 7, 8
thresholds, the various series are strongly coupled and overlapping, which is a quantum manifestation
of classical chaos in this system.

T is the dipole operator, h̄ω is the photon energy, |g〉 is the ground state (of energy Eg).
〈Eiθ | is the transpose of the eigenvector |Eiθ〉 of H(θ) for the eigenvalue Eiθ (i.e. the complex
conjugate of 〈Eiθ|). R(θ) is the rotation operator, essential to obtain the right (complex)
oscillator strength.
In the preceding formula, each eigenvalue (resonance or continuum) contributes to the

cross-section at energy h̄ω+Eg, with a Fano profile centered at energy ReEi, of width −2ImEi
whose q parameter is given by [13]

q = −Re〈Eiθ|R(θ)T |g〉
Im〈Eiθ |R(θ)T |g〉

. (5)

Thus, the Fano q-parameter of one resonance is directly and unambiguously obtained from
its associated eigenvector, which is much more efficient than any fitting procedure, especially
above the N = 6 threshold where the different series strongly overlap (see fig. 1).
For an efficient numerical resolution, the effective Hamiltonian is expanded in the product

of three Sturmian-like basis |nx〉 ⊗ |ny〉 ⊗ |nz〉, one for each perimetric coordinate. The basis
states have the following expression:

〈u|n〉 = φn(u) =
√
αuLn(αuu)e

−αu
u

2 , (6)

where nx,y,z are non-negative integers, αx,y,z are real positive parameters (the scaling param-
eters) and Ln the n-th Laguerre polynomial. This non-orthogonal basis is associated with a
representation of the dynamical group SO(2, 1), which gives rise to selection rules. The matrix
representation of the effective Hamiltonian in this basis is thus sparse and banded, and the
matrix elements are analytically known. Let us emphasize that this approach is “exact” for
the non-relativistic He atom and similar to the one used in ref. [8].
For obvious reasons, the basis has to be truncated, the prescription being nx + ny + nz ≤

Nmax (we used up to Nmax = 58). The different scaling parameters are related by α = αx =
2αy = 2αz, which increases the sparsity of the matrices and gives the correct decrease for r1
and r2 going to infinity. The matrices are diagonalized with the Lanczos algorithm, which is
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Fig. 2. – Real part of the expectation values of −N cos θ12 for the various resonances below the N = 2
and N = 3 thresholds. As expected from the Herrick classification scheme of doubly excited states,
the value is almost constant across a series, although it slightly differs from the predicted value
−(N − 1) ≤ K ≤ (N − 1). At higher energy, this classification breaks down.

a highly efficient iterative method to obtain few eigenvalues of huge matrices in a short CPU
time [14]. Convergence of the results are checked with systematic changes of α and θ. We
have thus computed few hundred 1Po states, which are the only ones populated in one photon
experiment starting from the helium ground state (1Se). The resulting cross-section from
below the N = 2 up to above the N = 8 threshold —the highest energy where experimental
spectra are available— is shown in fig. 3, convoluted with a Lorentzian at the experimental
resolution (2 meV for N = 2, 3 and 4 meV for N = 4, 5, 6) or at a slightly better resolution
(1 meV above the N = 6 threshold). The agreement with the figures from refs. [10], [11] is
excellent, emphasizing the efficiency of our calculations. The theoretical positions, linewidths
and Fano q-parameters are in good agreement with previous works [8], [10].

Below the N = 2 (respectively, N = 3), three (respectively, five) different series are clearly
distinguishable, either by their widths (see fig. 1) or by the expectation value of cos θ12, as
shown in fig. 2, where the real part of −N cos θ12 is plotted (the imaginary part is at least ten
times smaller) vs. the effective principal quantum number neff of the outer electron measured
from the N -th threshold, proving thus the validity of Herrick’s classification in these energy
ranges. Still, the chaotic aspect of the helium atom is already observable in the fluctuations
of the smallest widths (see fig. 1) (and also in the Fano q-parameters), which will be amplified
at higher energies.
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b. gremaud et al.: photo-ionization of the helium atom etc. 367

Fig. 3. – Calculated photo-ionization cross-section of the helium atom from the N = 2 (upper plot)
to the N = 8 and 9 (lower plot) series. The raw spectrum has been convoluted by a Lorentzian of
width 2 meV for N = 2, 3 and 4 meV for N = 4, 5, 6 (equal to the experimental resolution) and 1 meV
for N = 7, 8, 9. The calculated cross-section is in excellent agreement with the experimental results of
refs. [10], [11], displaying for N = 7, 8, 9 new peaks, not yet experimentally observed. At the highest
energies, the various series overlap strongly, leading to irregular fluctuations of the cross-section and
breakdown of the classification. Only the fluctuating part of the cross-section is here represented, the
smooth background being subtracted.

Below the N = 5 and N = 6 thresholds, irregularities due to the interaction with the
6, 46 (respectively, 7, 57) state from the upper series are visible, in perfect agreement with the
experimental observation. Below the N = 7, N = 8 andN = 9 thresholds, the computed cross-
section —represented at a better resolution— reproduces very well the various overlapping
series, with an increasing number of perturbers coming from higher series. Furthermore,
we show new peaks that are not yet experimentally resolved —such as the members of
the 9, 7n series— but whose observation could be possible with a (slight) increase of the
experimental resolution and signal-to-noise ratio. In this energy range, the various series
are so strongly coupled and overlapping that the approximate Herrick classification breaks

Fig. 4. – Ratio between the widths Γ of the various 1Po resonances of the helium atom and the local
mean level spacing s, displayed for the N = 4, N = 6 and N = 8 thresholds (from left to right).
The transition between the regime of well-separated resonances to the strong overlapping resonances
regime is observed. For higher thresholds, the number of resonances lying above the Γ = s line will
increase, leading to the observation of Ericson fluctuations in the photo-ionization cross-section.
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down [15], [16], giving rise to an irregular spectrum, showed by fig. 1 where no general trend
can be easily recognized in the widths of the various resonances. This irregularity is the
quantum manifestation of the chaotic classical dynamics. In this regime, the photo-ionization
cross-section results from the superposition of various overlapping Fano profiles, eventually
leading to random-like fluctuations in the cross-section known as Ericson fluctuations [17].
Predicted around the N = 30 threshold in the 1-dimensional helium atom [18], this irregular
regime takes place at much lower energy in the real helium atom, because of the increased
density of states. The ratio between the linewidth Γ and the local mean level spacing s is
displayed in fig. 4 for the N = 4, N = 6 and N = 8 thresholds. We clearly see that for N = 8,
a vast majority of resonances lie above the line Γ/s = 1, corresponding to the overlapping
resonances regime. The published experimental results [11] seem to show irregular fluctuations,
the first steps towards the Ericson fluctuations.
In conclusion, our results are, as far as we know, the ab initio calculations for the

double-excited 1Po states of the helium atom at the highest energy ever done. They are
in excellent agreement with the presently available experimental data. Importantly, they show
that the strongly irregular regime where various resonances overlap leading to Ericson fluctu-
ations in the photo-ionization cross-section is almost reached experimentally, which opens the
way to their experimental observation and more generally to a new generation of experiments
probing the chaotic aspects of the helium atom.
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Pour mettre en évidence, le caractère chaotique des spectres, nous avons fait une analyse
statistique des propriétés spectrales. En effet, on peut montrer que la distribution des
espacements entre les niveaux d’énergie voisins est radicalement différente entre un système
chaotique et un système intégrable. Dans le dernier cas, on obtient une loi de poisson,
tandis que pour un système chaotique, les distributions statistiques sont bien décrites par
la théorie des matrice aléatoires. En particulier, la probabilité de trouver deux états à la
même énergie est nulle : c’est la répulsion de niveau, qui traduit le fait qu’un état quantique
remplit entièrement l’espace accessible à une énergie donnée.

La difficulté dans le cas de l’hélium est que la dynamique n’est jamais entièrement chao-
tique. Plus précisément, lorsque l’un des deux électrons est à très grande distance, l’autre
électron écrante, en première approximation, l’interaction avec le noyau et on retrouve
un atome d’hydrogène. Ceci se traduit par les séries de Rydberg quasi-régulière juste en
dessous des seuils de simple ionisation. Pour décrire proprement les propriétés statistiques
des spectres, on a donc utilisé un modèle de matrices aléatoires2 incorporant une partie
régulière (non aléatoire) couplée à la partie aléatoire (voir schéma 2.2). Les paramètres

Fig. 2.2 –
n2n1
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o
u
p
li
n
g

CouplingGOE

Regular

sont d’une part le rapport n1/n2 entre la partie chaotique et la partie régulière et d’autre
part la force du couplage entre les deux. On a pu alors montrer sur la base des résultats
expérimentaux et théorique que plus on s’approchait du seuil de double-ionisation, plus ces
deux paramètres augmentaient, démontrant une transition claire vers un régime chaotique,
justifiant ainsi que l’aspect aléatoire des signaux expérimentaux observés était bien une
manifestation du chaos.

2J. Zakrzewski, K. Dupret and D. Delande, Phys. Rev. Lett 74, 522 (1995)
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The photoionization spectrum of helium shows considerable complexity close to the double-ionization
threshold. By analyzing the results from both our recent experiments and ab initio three- and one-
dimensional calculations, we show that the statistical properties of the spacings between neighboring
energy levels clearly display a transition towards quantum chaos.
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Since the work of Poincaré, it has been known that the
general classical three-body problem has only global con-
stants of motion, such as energy and angular momentum. It
is thus nonintegrable, since there are not enough nontrivial
constants of motion to allow an analytical solution. This
typically implies that the phase space is a mixture of regu-
lar and chaotic dynamics. Celestial mechanics abounds
with examples, e.g., the prototypical earth-moon-sun sys-
tem [1]. The dynamics of three charged particles is su-
perficially similar since the force law scales also as 1�r2,
but with two possible signs of the coupling constant. The
actual dynamics of the two electrons in helium—the sim-
plest three-body quantum system—is largely chaotic, even
for the simplified situation with the nucleus fixed in space.
Nonetheless, at low energies the quantum states of he-
lium occur in seemingly regular progressions, labeled by
sets of approximately good quantum numbers, and even
the doubly excited states have largely been classified [2].
What then are the manifestations of the underlying clas-
sical chaos in the quantum spectrum of helium? This
is a fundamental question in quantum-classical correspon-
dence, with regard to the nature of semiclassical approxi-
mations in the presence of chaos, and in quantum chaos
itself. What will be the signatures of the onset of quantum
chaos? One expects that the approximate quantum num-
bers, overviewed, e.g., in Ref. [2], will cease to function,
as series of states overlap and mix so strongly that there are
essentially no good quantum numbers left, except for the
ordering of states by their energies. The doubly excited
states of helium are resonances, which will overlap and
interact strongly when chaos sets in, giving rise to Eric-
son fluctuations well known in phenomenological nuclear
theory [3]. It is the purpose of this Letter to present new
results from experiment and theoretical modeling, which
clearly show that the threshold to this new regime has now
been passed for the first time in a three-body quantum sys-
tem with known Hamiltonian.

The 1Po doubly excited states of helium can be described
in Herrick’s classification scheme by N , Kn, with N (n) de-
noting the principal quantum number of the inner (outer)
electron, and K the angular-correlation quantum number
[4]. For fixed N , the various n, K series converge to

the single-ionization threshold IN � 24�N2 (in Rydberg
units). Starting with N � 5, the lowest states of the series
lie below IN21. As a consequence, they act as perturbers
of the N 2 1 series, leading to interferences [5], which
can be reproduced by numerically complicated ab initio

calculations [6]. While up to the N � 8 threshold, I8,
the effects of the perturbers are quite simple, from I9

on, the increasing proliferation of perturbers tends to com-
plicate the spectra increasingly, and Herrick’s classifica-
tion starts to break down, at least for a large fraction of
states [7].

The most intense series in the spectrum are the prin-
cipal series with K � N 2 2. Since K � 2N�cosQ�,
where Q is the angle from the nucleus to the two elec-
trons, Q approaches p for the principal series with large
N. Therefore, the experimentally observed series can be
related in the semiclassical limit —based on Gutzwiller’s
trace formula [8]—to periodic orbits of the collinear eZe

configuration, with both electrons on opposite sides of the
nucleus. It is well known that the classical dynamics of the
eZe configuration is strongly chaotic in the radial direction
but stable in the angular direction. One can thus expect
a mixing of series with different N but constant N 2 K ,
i.e., a constant number of bending quanta with respect to a
collinear eZe configuration [2]. In other words, for highly
excited series, N 2 K is expected to be approximately a
good quantum number, while states with the same N 2 K ,
but different �N , n�, strongly interact [6].

There are numerous semiclassical studies of helium
based on Gutzwiller’s trace formula (see, e.g., Ref. [2]),
which aim at understanding the structure of quantum
dynamics in terms of its classical counterpart. The
present work focuses on the random-matrix approach [9],
which deals with universal aspects of quantum chaos,
i.e., the general features present in all chaotic quantum
systems. We compare the present experimental spectra
close to I9 with the results of our calculations and find
excellent agreement. In particular, we show that the
statistics of nearest-neighbor level spacings can be well
reproduced by a simple random-matrix model adapted to
intermittency [10], even though N 2 K is still a good
quantum number. This model mixes regular and chaotic

0031-9007�01�86(17)�3747(4)$15.00 © 2001 The American Physical Society 3747
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spectra and corresponds to an interaction between regular
Rydberg series and chaotic perturbers. Using a simplified
one-dimensional (1D) model of helium, we reproduce the
transition from the regular to a fully chaotic regime.

The experiments were performed at beam line 9.0.1 of
the Advanced Light Source (ALS) in Berkeley, Califor-
nia, using photons with a spectral resolution of �2 meV
(FWHM) and a setup as described in Ref. [11]. The calcu-
lations were performed with the complex-rotation method
on a Cray C98, with details given in Ref. [6].

Figure 1(a) shows the spectrum of the 1Po double exci-
tations in helium in the energy region just below I9 from
78.1175 to 78.2675 eV, with considerably improved res-
olution and signal-to-noise ratio as compared to previous
results [12]. In Fig. 1(b), we also show the theoretical
spectrum, convoluted with a Gaussian of 2-meV width. In
the least-squares fit of the measured spectrum, the theoreti-
cal values for linewidth and Fano q parameter were used,
but the energy positions and intensities of the lines were
adjusted to allow for possible deviations between experi-
ment and theory, spectral drifts, and nonlinearities. De-
tails of this analysis have been given elsewhere [11]. As
a result, the calculated spectrum matches the experimen-
tal data very well. We note that some resonances of the
9, 7n principal and the 9, 5n secondary series reveal Fano
parameters jqj ¿ 1 (up to jqj � 7, with negative sign, for
9, 714), very different from the values found for the prin-
cipal and secondary series below the I5 to I8 thresholds,
with jqj # 1 [12]. However, even these unexpected q val-
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FIG. 1. (a) Double-excitation spectrum of He in the region
of the 9, 7n principal Rydberg series, with perturbers 10, 810

and 10, 811 (vertical arrows). The solid line through the data
points represents the best fit. Assignments of the resonances
are made by vertical-bar diagrams on top, including resonances
of the secondary series 9, 5n and 9, 3n. (b) Ab initio calculated
spectrum in the same region.

ues are described well by our calculations. This makes
us confident that the energy levels obtained numerically
are sufficiently accurate to perform a statistical analysis on
the nearest-neighbor spacings (NNS), as discussed in the
following.

The NNS distribution, P�s�, measures the distribution of
energy spacings between consecutive eigenstates. In order
to allow a comparison of large energy spacings far away
from threshold with small energy spacings close to thresh-
old, the spectra were unfolded; i.e., the energy spacings
were divided by an energy-dependent mean level spac-
ing [13], so that the mean unfolded spacing, s, is unity.
For a single unperturbed Rydberg series (or, more gener-
ally, for any regularly spaced energy levels), this would
lead to a constant unfolded level spacing s � 1, i.e., to
P�s� � d�s 2 1�, where d is the delta function. When
a good quantum number exists in a system, the spectrum
can be divided into various noninteracting but overlapping
series. The nearest neighbor of a given state belongs then
typically to another series, and the energies of neighbor-
ing states are thus completely uncorrelated, giving rise to a
Poisson distribution, P�s� � exp�2s�. This happens, e.g.,
in integrable multidimensional systems, but also if several
irregular series overlap without interaction. For a fully
chaotic system, the prediction for P�s� can be derived from
random-matrix theory. Because of time reversal symmetry
of the system, a Gaussian orthogonal ensemble (GOE) of
random matrices [13] is used resulting in P�s� to be very
close to a Wigner distribution, P�s� �

p
2 s exp�2ps2�4�.

Since the number of energy levels for the statistical analy-
sis is rather limited in the present case, one obtains a rather
noisy P�s�. We therefore use the cumulative NNS distribu-
tion, N�s� �

R
s

0 P�x� dx, leading to N�s� � 1 2 exp�2s�
and N�s� � 1 2 exp�2ps2�4� for a Poisson and a Wigner
distribution, respectively.

The spectra were analyzed by two different procedures:
(i) globally by considering all resonances regardless of the
series to which they belong; (ii) individually for each series
associated with a given value of N 2 K .

We first analyze by the global procedure (i) the cal-
culated levels in the energy region 78.1000–78.2662 eV,
where there are 112 resonances, most of them from the
N � 9 series, with perturbers from higher series. The cu-
mulative NNS distribution is shown in Fig. 2(a) together
with a cumulative Poisson distribution. The agreement
is very good, showing that an approximately good quan-
tum number exists. This is not surprising, since one can
identify experimentally states with different N 2 K [see
Fig. 1(a)]. Occasionally, these states are mixed with other
series (in the vicinity of perturbers), but N 2 K is still ap-
proximately a good quantum number. This is also partly
true for other series not observed in the experiment [14]:
the series with positive K are almost independent, while
those with negative K are significantly coupled. In the full
spectrum, the various N 2 K series are superimposed with
rather weak mixing, resulting mainly in an uncorrelated
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FIG. 2. (a)–(c) Cumulative NNS distributions for the 1Po

states of helium below (b) I4 and (a),(c) I9. (a) Global
analysis using all levels below I9. The data (solid line) agree
very well with a cumulative Poisson prediction (dashed line).
(b),(c) Distributions below I4 and I9, respectively, obtained by
analyzing separately individual series with different K . For I9

(c), the bold line is the distribution derived from experiment.
(d)–(f) Cumulative NNS distributions for singlet states of 1D
helium (horizontal bars) below I9, I13, and I17, respectively.
The solid lines are the fit results (see text). The bold solid line
in (d) is the NNS distribution for states of 3D helium below I9.
The dashed lines in (b)–(f) represent the cumulative Wigner
distribution.

ensemble of levels, which thus obeys Poisson statistics.
This complies with the stability of the eZe collinear con-
figurations with respect to off-collinear perturbations.

Hence, a relevant data analysis must be done individu-
ally for each N 2 K series [procedure (ii)]. The cumu-
lative NNS distributions, N�s�, obtained in this way, are
shown in Fig. 2(b) for resonances below I4 and in Fig. 2(c)
for those below I9. The statistical accuracies are limited
due to the relatively small number of data points with 71
(60) spacings for I4 (I9). Moreover, for I9, only series with
K between 0 and 8 were unfolded because of K mixing for
negative K values, while for I4 all series are used. The I4

distribution clearly reflects the quasiregularity in this en-
ergy region, as it is very close to a step function, which
results from integrating over a delta function. This is the
statistical analog to the fact that the spectrum below I4 is
composed only of N � 4 states and can be described by
single-channel quantum defect theory. Below I9, the sit-
uation has slightly changed, although the distribution still
does not match a cumulative Wigner distribution. It means
that the relative density of chaotic perturbers with N . 9

has increased as well as their interaction with the various

Rydberg series. The bold line in Fig. 2(c) shows N�s�
using only the experimentally observed series N 2 K �

2 and 4. Because of the small number of 17 spacings,
the statistics are relatively poor, but it is striking that the
bold line closely follows the solid line. As a consequence,
the spectrum in Fig. 1(a) represents the first experimental

verification of a transition of the NNS distribution towards

quantum chaos in a three-body Coulomb system.

The complex numerical calculations for 3D helium ren-
der it difficult to obtain enough spacings for a quantita-
tive analysis in the case of N . 9. However, the fact that
N 2 K remains approximately a good quantum number
means that the bending motion can be essentially frozen in
the eZe configuration. In other words, the quantum prop-
erties are essentially those of 1D helium, a system that has
only 2 degrees of freedom. This leads to much simpler nu-
merics allowing higher ionization thresholds to be reached.
We have therefore calculated the resonances of 1D helium
below I9, I13, and I17 using a new approach (banded sparse
matrix representation of the Hamiltonian in a 1D perimet-
ric basis, in the spirit of Ref. [6]) that represents a signifi-
cant improvement over previous methods [15].

In order to improve statistics, we calculated spacings in
a given energy region for slightly different values of the nu-
clear charge Z, from 1�Z � 0.45 to 1�Z � 0.55, in steps
of 0.01. These values are statistically uncorrelated and
sufficiently close to Z � 2 of helium, so that the average
density of states and the classical dynamics do not change
significantly. Figures 2(d)–2(f) show the cumulative NNS
distributions for states below I9, I13, and I17, respectively,
as well as the cumulative Wigner distribution and the 3D
result for I9. The results demonstrate that the statistical

level properties are essentially the same for 1D and 3D

helium and they illustrate the transition from an irregular
regime �I9�, with a distribution intermediate between a step
function and a cumulative Wigner distribution, to a chaotic
regime �I17�, with a distribution that is almost Wigner-like.
For I17, the lack of large spacings is the only remnant of
regularity.

This behavior can be understood in a quantitative way by
the model of Zakrzewski et al. [10], which was developed
to understand the NNS statistics of the hydrogen atom in a
magnetic field, whose spectrum is quite similar to that of
helium in the sense that “chaotic” perturber states interact
with a regular series. In this model, the Hilbert space is
composed of two subspaces, a “regular” one and a chaotic
one. The model Hamiltonian is diagonal in the regular
subspace with equally spaced eigenvalues (representing
Rydberg series). In the chaotic subspace (representing
the perturbers), the Hamiltonian is modeled by a random
matrix, with a coupling y between regular and chaotic
states (y in units of the spacing between regular states;
for details, see Ref. [10]). For large matrices, this model
has only two parameters: the weight r of chaotic states
(1 2 r of regular states) and the coupling strength y.
Above the first ionization threshold, an imaginary part is
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added to the GOE matrix as in [10], with an additional pa-
rameter measuring the strength of coupling to the continua;
this coupling strength is small playing therefore only a mi-
nor role.

The calculated NNS distributions for 1D helium were
fitted with this model, which turned out as a good descrip-
tion. The fits reproduce the lack of large spacings and re-
sult in r � 0.29, 0.33, and 0.40 for I9, I13, and I17, respec-
tively. A second estimate for r is based on the size of the
cutoff value for the level spacings [see Figs. 2(d)–2(f)],
which can be related to r. In the perturbative regime,
when the coupling between chaotic and regular levels is
not so strong as to modify their densities, two neighbor-
ing states cannot be further apart than two unperturbed
regular states. The reason is that a perturber repels neigh-
boring levels and in this way reduces the NNS between
them. With m � r��1 2 r� being the average number of
chaotic states per regular state, the largest possible spacing
will be �m 1 1� � 1��1 2 r� times the mean level spac-
ing. This procedure leads to r � 0.25, 0.33, and 0.41 for
I9, I13, and I17, respectively.

A further rough estimate for r not based on the model,
but on the physics of the real system, is possible: the local
density of regular states can be estimated assuming that a
Rydberg series converging to IN sees an effective nuclear
charge of Z 2 1 � 1. The density of chaotic states is the
sum of densities of states of all series with higher N . As N

increases, the upper thresholds lie closer and closer leading
to an increase in the fraction of chaotic states. In this way,
we obtain r � 0.23, 0.35, and 0.43, respectively, for I9,
I13, and I17. We note that all three approaches provide
rather similar results for r.

The increase of r with N alone, however, is not suf-
ficient to explain the transition to an almost Wigner-like
distribution for I17: the coupling strength between chaotic
and regular states has to increase, too. This is indeed the
case, with the best fits resulting in y � 0.38, 0.73, and
1.2 for I9, I13, and I17, respectively. It clearly shows that
the individual influence of each perturber gets more impor-
tant when one approaches higher thresholds. This leads to
a globally chaotic spectrum, where a distinction between
regular levels and perturbers loses more and more of its
meaning.

In conclusion, we have found —on the basis of sta-
tistical analysis —clear evidence of a transition towards
quantum chaos in the doubly excitated spectrum of helium
below I9, with support from the results of our ab initio cal-
culations for 3D and 1D helium. The effects of chaos cor-
respond to a loss of the radial quantum number N , whereas
N 2 K remains approximately a good quantum number,

and they are directly related to the instability of the eZe

orbits in the radial direction (i.e., preserving collinearity)
and their stability with respect to bending. The statistical
study of 1D helium provides an estimate for the observa-
tion of a fully chaotic regime in 3D helium (for N $ 17).
It may happen that this regime appears even at lower N

values if N 2 K breaks down. One can hope that future
experiments, as well as numerical calculations for 3D he-
lium in the region above I9, will provide further insight
into the chaotic regime of helium.
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2.2.2 Systèmes quasi-intégrables

Au-delà des systèmes chaotiques ou intégrables, il existe des systèmes dits pseudo-
intégrables, c’est-à-dire, tels que la dynamique classique n’est ni régulière, ni chaotique. Par
exemple, la dynamique de l’électron externe d’un atome hydrogénöıde (i.e. en présence d’un
coeur diffusant) est essentiellement la même que celle d’un atome d’hydrogène sauf pour les
trajectoires passant par le coeur. Or, à la limite semi-classique (états très excités) on peut
montrer que ces trajectoires forment un ensemble de mesure nulle, on ne s’attendrait pas à
une modification des propriétés statistiques des spectres. Pourtant, on peut montrer que ces
dernières sont bien décrites par une nouvelle classe d’universalité intermédiaire entre celle
des systèmes réguliers (Poisson) et celle des systèmes chaotiques (matrices aléatoires) : elle
présente à la fois de la répulsion de niveau comme un système chaotique et une décroissance
exponentielle à grand espacement comme un système régulier.

Un autre exemple de ce type de systèmes sont les billards en forme de losange, pour
lesquels la non-intégrabilité provient de la diffraction aux angles. En collaboration avec S.
Jain, nous avons pu montrer que les propriétés statistiques des niveaux d’énergie sont très
bien décrites par cette nouvelle classe d’universalité. En outre, on a pu mettre en évidence
que ces propriétés dépendent fortement non seulement du caractère irrationnel de l’angle
du losange, mais aussi de la classe de symétrie de la fonction d’onde.
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Abstract. We show that the spacing distributions of rational rhombus billiards fall in a family
of universality classes distinctly different from the Wigner–Dyson family of random matrix
theory and the Poisson distribution. Some of the distributions find explanation in a recent work
of Bogomolny, Gerland, and Schmit. For the irrational billiards, despite ergodicity, we get the
same distribution for the examples considered—once again, distinct from the Wigner–Dyson
distributions. All the results are obtained numerically by a method that allows us to reach very
high energies.

Statistical analysis of level correlations of a quantum system is one of the many ways to study
the effects of chaotic behaviour of its classical counterpart [1]. For such complex systems,
the fluctuations are very well described by the random matrix theory, giving rise to three
classes of universality corresponding to orthogonal, unitary and symplectic ensembles (OE,
UE and SE). On the other hand, for integrable systems, the short-range correlations follow
the Poisson distribution. Rhombus billiards [2] are peculiar as they are pseudo-integrable
systems and for this reason their statistical properties belong to another class of universality
[3]. These non-integrable systems are termed pseudo-integrable as the dynamics occurs
on a multiply-connected, compact surface in the phase space. For example, in the case
of π/3-rhombus billiard, the invariant integral surface is a sphere with two handles [2, 4].
It has been shown that the short-range properties (spacing distribution) can be fitted by
Brody distributions [5] with parameters depending on the genus [6]. However, a very small
number of levels were used to achieve the statistics and, as it was outlined by the authors, the
parameters were smoothly changing with the number of levels considered. This last effect
is probably a consequence of the pseudo-integrability and thus one has to consider levels
lying very high in energy to have converged statistics. Furthermore, Brody distributions
are not very convenient for two reasons: (i) they are not on a firm theoretical basis like
random matrix theory and so one cannot gain too much knowledge about the system from
the Brody parameter; (ii) their behaviour at small spacing is not linear, whereas it is so
for rhombus billiards. In contrast, in a recent paper [7], Bogomolnyet al have proposed
a model derived from the Dyson’s stochastic Coulomb gas model [8, 9]: eigenvalues are
considered as classical particles on a line, with a two-body interaction potential given by
V (x) = − ln(x). In contrast to Dyson’s model, where all possible pairs are considered,
the same interaction is restricted only to nearest-neighbours. Hereafter, this model will
be referred to as the short-ranged Dyson’s model (SRDM). The joint probability obtained
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gives rise to spacing distributions showing linear level repulsion and exponential decrease
for large spacing. More precisely, the nearest-neighbour (NN) and next-nearest-neighbour
(NNN) distributions are

P(s) = 4se−2s and P2(s) = 8
3s

3e−2s . (1)

It is worth noting that exactly the same functional form was used in the past [10] to
explain the intermediate spacing distribution for a rectangle billiard with a flux line—an
Aharanov–Bohm billiard. In [7] it is also shown that the level statistics of some rhombus
billiards agree very well with these distributions. However, only rhombi with rational
angles and with Dirichlet boundary conditions on both thex- andy-axis (i.e. right-angled
triangle) were studied. In this letter, we extend the preceding study to rational billiards
with Neumann boundary conditions (i.e. ‘pure’ rhombus) and also to irrational billiards
(both classes of boundary conditions). Of course, in a rhombus, making the shorter (longer)
diagonal Neumann means that one is considering a larger obtuse (acute) triangle. So, the
modifications are expected but here they are non-trivial.

The spectral properties of these systems which are non-integrable and yet non-chaotic
is thus an important unsettled problem. The solution of this problem is partly in devising
numerical techniques that allow one to go to higher energies, and, partly in developing
statistical models like the SRDM [7] mentioned above. In this letter, we first discuss the
method and then use levels in the high-energy range to show agreements and disagreements
with the results in [7]. To give an idea, the efficiency of the method is such that we were
able to compute a very large number of levels (up to 36 000 for a given rhombus and a
given symmetry class), so that the statistical properties are fully converged. In the latter
part of this letter, we show the effects of both the boundary conditions and the irrationality
on the level spacing distributions.

The Schr̈odinger equation for a particle moving freely in a rhombus billiard (shown by
figure 1) is simply

−
h̄2

2m

(

∂2

∂x2
+
∂2

∂y2

)

ψ(x, y) = Eψ(x, y) (2)

with the additional condition thatψ(x, y) is vanishing on the boundary (Dirichlet
conditions). The geometry of the system leads to a natural change of coordinates: the

θ

y

ν

x

µ

O

Figure 1. Rhombus-shaped enclosure in which the particle moves freely
with elastic bounces on the boundary. The quantum problem corresponds
to imposing the Dirichlet conditions for the wavefunctions. The system
being symmetric under reflections with respect to thex-axis or they-axis,
Dirichlet or Neumann boundary conditions can be imposed on both the
axes, leading to four different classes of symmetry. By considering axes
crossing at the centreO of the system and parallel to the edges of the
billiard, a non-orthogonal coordinate system (µ, ν) is constructed in which
the Dirichlet boundary conditions on the enclosure separate (see text).
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two new axes cross at the centre and are parallel to the edges of the billiard (see figure 1):

µ =
1

2

( x

cosθ
−

y

sinθ

)

ν =
1

2

( x

cosθ
+

y

sinθ

)

.

(3)

In this new coordinate system, the original rhombus is mapped onto a square of length
L and thus, in this coordinate system, the boundary conditions separate, of course at the
price of a slightly more complicated Schrödinger equation:

−
h̄2(∂2

µµ + ∂2
νν − 2 cos(2θ)∂2

µν)

2m sin2(2θ)
ψ(µ, ν) = Eψ(µ, ν). (4)

The changeµ → 2
L
µ, ν → 2

L
ν andE → ( 2

L
)2 m
h̄2E gives rise to the scaled Schrödinger

equation (after multiplication by 2 sin2(2θ)):

− (∂2
µµ + ∂2

νν − 2 cos(2θ)∂2
µν)ψ = 2 sin2(2θ)Eψ (5)

the boundary condition being then at the pointsµ = ±1 andν = ±1.
To solve the eigenvalue problem, a possible idea is to expand any wavefunction in a

basis satisfying the boundary conditions

ψ(µ, ν) =
∞

∑

nµ,nν=0

a(nµ, nν)φnµ(µ)φnν (ν). (6)

The simplest choice is the Fourier sine and cosine series. Unfortunately, the operator
∂2
µν has no selection rules in this basis, thus the matrix representation of the left part

of the Schr̈odinger equation (5) is totally filled. Numerically, we will approximate the
wavefunction by keeping only a (large) number of terms in the preceding series. For this
system and for many other Coulomb-like systems, it has been observed that the rate of
convergence of the series is much slower when the matrix is filled than when selection rules
occur.

To avoid this difficulty, we introduce the following basis for each coordinateµ andν:

φn(u) = (1 − u2)C
( 3

2 )
n (u) (7)

where Cαn are Gegenbauer polynomials [11]. This basis is complete and all operators
appearing in equation (5) have selection rules. More precisely, we have

|1nµ|, |1nν | 6 2 1nµ +1nν = 0,±2,±4. (8)

Furthermore, all matrix elements are analytically known and are given by simple polynomial
expressions of the two quantum numbers(nµ, nν). The only difficulty is the non-
orthogonality of the basis: that is〈n′|n〉 does not reduce toδnn′ but also shows the preceding
selection rules.

This basis also allows us to take directly into account the symmetries of the original
problem, namely the reflections with respect to thex-axis (Sx) or they-axis (Sy). In (µ, ν)
coordinates, they become

Sx

{

µ → ν

ν → µ
Sy

{

µ → −ν
ν → −µ.

(9)

Using the properties of the Gegenbauer polynomials [11] we are able to construct four
different bases in which the two operatorsSx and Sy are simultaneously diagonal with
eigenvalues,ǫx = ±1 andǫy = ±1. Of course, this transformation preserves the selection
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rules and hence the band structure. We shall denote the eigenfunctions vanishing on both
the diagonals by (−−) and not vanishing on either by (++) parity classes.

The original Schr̈odinger equation is thus transformed to a generalized eigenvalue
problem:

A|ψ〉 = EB|ψ〉 (10)

whereA andB are real, sparse and banded matrices. This kind of system is easily solved
using the Lanczos algorithm [12]. It is an iterative method, highly efficient to obtain few
eigenvalues and eigenvectors of very large matrices. We typically obtain 100 eigenvalues of
a 10 000× 10 000 matrix in a few minutes on a regular workstation. The results presented
here have been obtained by diagonalizing matrices of size up to 203 401 for a bandwidth
equal to 903. For such matrices, we obtain 200 eigenvalues in 10 min on a Cray C98.
The number of levels (≃36 000) that we are able to compute in this way is slightly larger
than with usual boundary matching methods(≃20 000), which are nevertheless restricted
to rational angles. On the other hand, very recent methods developed by Verginiet al [13]
seems to be more efficient (they were able to reach an energy domain around the 142 000th
state for the stadium billiard).

For the present study, various values of angle have been used:

3π

10
,
(
√

5 − 1)π

4
,
π

π
,
π

3
,

3π

8
and

7π

18
(11)

for both (++) and (−−) parity†. For all cases, only levels above the 10 000th one have
been considered, to avoid peculiar effects in the statistics and at least 5000 levels (up to
24 000) have been used for each case. The convergence of the statistics has been checked
by systematically varying the energy around which levels were taken. This is shown in
figure 2, where we have plotted the following quantity:

∫ ∞

0
ds (N0(s)−Nn(s))

2 (12)

with respect to the numbern, for 3π
10 (top) andπ3 (bottom) billiards ((++) parity). N0(s) is

the cumulative NN distribution obtained with the 5000 highest states, whereasNn(s) is the
cumulative NN distribution obtained with levelsn to n + 4999. One can thus clearly see
that the statistics become energy independent (up to fluctuations) only for levels above the
10 000th state, which emphasizes the choice of keeping only those states.

In [7] it was shown that for the3π
10(−−) billiard, both NN and NNN statistics were

following the formula (1). We, of course, reproduce this result, as shown in figure 3(a).
However, the same billiard, but with Neumann–Neumann boundary conditions, does not
follow the same distribution laws but rather lies in between OE and SRDM distributions, as
shown in figure 3(a). The deviations are obviously much larger than statistical fluctuations.
The difference is emphasized by looking at the behaviour of the NNN for small spacings
(see figure 3(b)). Indeed, whereas for the(−−) symmetry, the observed power law iss4 in
the cumulative distribution (i.e.s3 for P(1, s)), it is close tos5 for the (++) case (i.e.s4

for P(1, s)), which is the OE prediction. This dependency of the statistics with respect to
the boundary conditions has already been observed in other systems like the 3D Anderson
model [14]. However, the present results are more surprising as there areθ values for which
there is practically no difference between the two symmetry classes. Indeed, figure 4 shows
the NN (cumulative) distributions for3π8 and 7π

18 . Besides the statistical fluctuations, one
cannot distinguish between the two symmetry classes, whereas the distributions differ:3π

8
is well described by SRDM, whereas7π18 lies between OE and SRDM.

† The (−−) parity for the π
3 rhombus is not shown as it is integrable.
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Figure 2. ‘Difference’ (see equation (12)) between the NN statistics obtained with the 5000
highest states and the NN statistics obtained with levelsn to n + 4999, as a function ofn, for
both 3π

10 (top) and π3 (bottom) (++ parity). Above the 10 000th level, the distributions become
energy independent (apart fluctuations).
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Figure 3. (a) The cumulative distribution of NN spacings
for the 3π

10 rhombus. The dotted curve corresponds to
Neumann–Neumann(++) boundary conditions on both the
x- and y-axis; the full curve corresponds to Dirichlet–
Dirichlet (−−) boundary conditions. The two distributions
are clearly different, the deviation being larger than
statistical fluctuations. The(−−) symmetry class is exactly
on the top of the distribution introduced by Bogomolny
et al (SRDM) given by equation (1), corresponding to the
long broken curve. The(++) distribution lies in between
SRDM and OE prediction (given by the short broken curve).
This difference is emphasized in (b) depicting the NNN
distributions (cumulative) for the same billiards (ln–ln plot).
Again, the(−−) (full curve) symmetry class is exactly on
the top of SRDM (long broken curve), whereas the(++)
symmetry class (dotted curve) lies in between SRDM and
OE (short broken curve). In particular the behaviours for
small spacing are very different:(−−) shows as4 power
law, whereas it iss5 for (++), the OE prediction.

The case of theπ3 billiard is the most peculiar, since the(−−) parity is integrable
whereas the(++) spacing distributions agree with SRDM.
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Figure 4. Spacing distributions (cumulative) for two
rational billiards: 3π

8 (full curves) and 7π
18 (dotted

curves), for both(++) and (−−) symmetry classes.
In contrast to the3π

10 billiard (see figure 3), there is
no difference between the two symmetry classes: for
each billiard the two curves lie on top of each other.
Furthermore, these two billiards show distinct spacing
distributions, the3π

8 one corresponds exactly to SRDM
(long broken curve) whereas the7π18 one is much closer
to OE prediction (short broken curve).

Figure 5. (a) NN and (b) NNN distributions for two

irrational billiards: π
π

(full curves) and(
√

5−1)π
4 (dotted

curves) for both(++) and (−−) symmetry classes.
In contrast to the rational billiards, the genus of these
billiard is ‘infinite’ (see text for explanation) and so the
classical dynamics is ergodic. The fact that all the four
distributions lie on top of each other is quite remarkable
and may be related to the fact that these billiards have
the ‘same’ genus. However, from the ergodicity one
could expect the distributions to be OE-like, which is
not the case. Rather, they lie between SRDM (long
broken curve) and OE (short broken curve). Still, the
small spacing behaviour of the NNN distributions shows
a s5 power law, i.e. corresponding to OE.

All the rhombi considered are not ergodic, as their genera are finite (e.g. two for the
π/3-rhombus). In contrast, for an irrational angle the genus is ‘infinite’, and so one could
expect a rather different behaviour. Although the concept of genus is applicable only to
compact surfaces, we have stated the above phrase in quotes in the following sense: as an
irrational rhombus is approximated via continued fraction expansion, the larger and larger
denominators will appear, implying larger genus surfaces, until eventually ‘infinite’. It is
quite possible, and it may, in fact, be true, that this limit is singular. As a result, from the
rational convergents, it may not be possible to say anything about the irrational billiard.

Figure 5 displays NN and NNN statistics forπ
π

and (
√

5−1)π
4 (both symmetry classes)

billiards. NN distributions are on top of each other, which is interesting if one believes
that the genus is the relevant parameter. On the other hand, from the ergodicity, one could
expect the distributions to be OE, which is not the case, even if the small spacing behaviour
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of NNN statistics seems to show the same power laws5 (for cumulative). Thus, if [7] seems
to give one class of universality, there must be other classes of universality lying between
SRDM and OE, especially for irrational angles. The other possibility is that, although
numerically stationary in a wide range of energy, the spacing distributions of the irrational
rhombus may evolve exceptionally slowly to OE. If that is the case, one will probably have
to find the final answer in a much higher energy range, for which other numerical methods
will have to be used [13].

The present study also raises the question of the semiclassical understanding of the
boundary dependence of the distributions. Due to a change in the boundary conditions, ac-
tions, Maslov indices and also the edge orbits will change resulting in a difference, but the
whole explanation of this boundary dependence probably lies beyond these simple consid-
erations. Spectral fluctuations in some of the pseudo-integrable billiards have been studied
in detail using the periodic orbit theory. From the detailed information about the periodic
orbits [4] it was shown that the spectral rigidity is non-universal [3] with a universal trend.
We hope that the method presented here and the ensuing numerical results will help us to
model the spectral fluctuations of these apparently simple non-integrable quantum systems.

To summarize: we have cast the problem of a particle in rhombus-shaped enclosure
in a way that allows us to go to very high energies. This has led us to confidently obtain
statistical results on spacing distributions which are well converged. Subsequently, we have
shown that for some rational billiards, the fluctuations agree well with the results recently
obtained [7]. However, we have given several examples where the recent model does not
explain the obtained distributions. It has been shown that boundary conditions play an
important role. Finally, for the irrational rhombus billiards, the distributions seem to be
identical for the examples considered. Significantly though, the distribution is still not in
the Wigner–Dyson family. We believe that these results point in the direction of having a
family of universality classes which, in essence, leads to non-universality with a universal
trend for pseudo-integrable billiards.

We acknowledge stimulating discussions with D Delande and E Bogomolny. CPU time
on a Cray C98 computer has been provided by IDRIS. Laboratoire Kastler Brossel is the
laboratory of the Université Pierre et Marie Curie and of the Ecole Normale Supérieure,
unité assocíee 18 du CNRS.
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2.3 Approximation semi-classique

2.3.1 Théorie générale

Le lien entre les propriétés quantiques d’un système chaotique (densité d’état, section
efficace de photo-ionisation...) et ses propriétés classiques (trajectoires périodiques et leur
stabilité) est fait par les formules de trace, qui sont la généralisation des méthodes du type
WKB pour des systèmes à plusieurs degrés de liberté. A la différence d’un système unidi-
mensionnel, il n’y a pas de lien direct entre une énergie propre du système et une trajectoire
précise, mais uniquement une relation globale entre toutes les énergies propres (la densité
d’état) et toutes les trajectoires périodiques, la contribution des grandeurs classiques se
présentant formellement comme un développement asymptotique en puissance de ~. Si
le premier terme du développement est bien compris et a déjà permis la quantification
semi-classique de nombreux systèmes chaotiques, la complexité des termes suivants fait
qu’ils ne sont jamais pris en compte sauf pour des systèmes comme les billards, pour les-
quels les trajectoires classiques sont suffisamment simples (suite de vols libres entrecoupés
de rebonds élastiques sur les bords). Or pour des systèmes comme l’atome d’hydrogène
en champ magnétique intense, du fait de l’efficacité des méthodes numériques employées
(en particulier, l’inversion harmonique3), il est maintenant possible d’analyser quantitati-
vement les effets des termes d’ordre supérieur. D’autre part, une des motivations est de
pouvoir affiner les calculs semi-classiques, c’est-à-dire, les calculs de propriétés quantiques
à partir des grandeurs classiques.

Le point de départ est l’intégrale des chemins de Feynman pour le propagateur quan-
tique d’un point q0 à un point q en un temps T :

K(q,q0, T ) =

∫

dq1 dq2 · · · dqN−1

N−1
∏

n=0

〈qn+1|K̂(∆t)|qn〉 (2.1)

où ∆t = T/N , K̂(T ) = exp (−iĤT/~) et qN = q. Pour un hamiltonien indépendant du
temps se séparant en une partie cinétique et une partie potentiel,

Ĥ =
p̂

2
+ V (q̂) (2.2)

l’équation (2.1) devient :

K(q,q0, T ) =

∫

dq1 dq2 · · · dqN−1(2πi~∆t)−Nf/2

× exp

[

i

~

N−1
∑

n=0

L

(

qn+1 − qn

∆t
,qn

)

∆t + O(∆t)

] (2.3)

où L(q̇,q) est le lagrangien classique.

3B. Grémaud and D. Delande, Phys. Rev. A 61, 032504 (2000)
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Pour des petites valeurs de ~ (i.e. la limite semi-classique), on peut utiliser la méthode
de la phase stationnaire autour des trajectoires classiques qcl

l (t) allant du point q0 au
point q en un temps T . Chaque orbite donne une contribution Kl(q,q0, T ) au propagateur
quantique :

Kl(q,q0, T ) =
1

(2πi~)f/2

∣

∣

∣

∣

det

(

−
∂2

∂q∂q0

W cl
l (q,q0, T )

)∣

∣

∣

∣

1/2

exp

[

i

~
W cl

l (q,q0, T ) − i
π

2
νl

]

(2.4)

où W cl
l (q,q0, T ) est l’action classique (i.e.

∫ T

0
dt L(q̇cl

l (t),qcl
l (t)) ; le déterminant de la ma-

trice ∂2

∂q∂q0

W cl
l (q,q0, T ) est encore appelé déterminant de Van Vleck ; νl est appelé l’indice

de Morse de l’orbite et compte le nombre fois où le déterminant s’annule, correspondant à
des points conjugués le long de l’orbite.

Comme en général, on s’intéresse plutôt à des quantités liées aux propriétés spectrales
du hamiltonien (énergies propres, section efficace de photo-ionisation), on est amené à
considérer les expressions semi-classique pour la résolvante G(z) = 1/(z−H). Le passage se
fait évidemment par transformé de Fourier, laquelle est évaluée par une phase stationnaire
supplémentaire. La contribution de chaque orbite à G(q,q0, E) est la suivante :

Gl(q,q0, E) =
2π

(2πi~)(f+1)/2

1
∣

∣

∣
W

(2)
l det J1(T0)

∣

∣

∣

1/2
exp

[

i

~
Sl(q,q0, E) − i

π

2
ν̃l

]

(2.5)

où les trajectoires impliquées sont celles joignant les points q0 et q, l’énergie de la particule
étant E.

Enfin, la densité d’état quantique n(E) étant (la partie imaginaire de) la trace de
la résolvante, (i.e.

∫

dqG(q,q, E)), on en obtient une expression semi-classique faisant
intervenir toutes les orbites périodiques du système à cette énergie E :

Gl(E) =
1

i~

T0

|det (m(T0) − 11)|1/2
exp

[

i

~
Sl(E) − i

π

2
µl

]

(2.6)

où Sl(E) =
∮

pdq est l’action réduite de l’orbite, T0 sa période ; m(T0) est la matrice
(réduite) décrivant la stabilité de l’orbite et µl est l’indice de Maslov.

2.3.2 Au-delà de l’ordre dominant

Les termes correctifs dans les formules précédentes proviennent des différentes approxi-
mations de phase stationnaire nécessaires pour obtenir le résultat final. Dans le cas de la
densité d’état, il y en a trois : quantique → semi-classique, temps →énergie et enfin la
trace de la résolvante. On obtient des expressions relativement compliqués :

Gl(E) =
1

i~

T0

|det (m(T0) − 11)|1/2
exp

[

i

~
Sl(E) − i

π

2
µl

]

×
{

1 + i~
[

C1(T0) + CT→E
1 (T0)

]

+ O(~2)
}

(2.7)
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où

C1(T, t0) =
1

8

∫ T

0

dt V
(4)
ijkl(t)Gij(t, t)Gkl(t, t) +

1

2

V
(1)
l (t0)

|q̇cl|2

∫ T

0

dt V
(3)
ijk (t)Glk(0, t)Gij(t, t)

+
1

24

∫ T

0

∫ T

0

dtdt′ V
(3)
ijk (t)V

(3)
lmn(t′)

[

3Gij(t, t)Gkl(t, t
′)Gmn(t′, t′)+2Gil(t, t

′)Gjm(t, t′)Gkn(t, t′)
]

(2.8)

et CT→E
1 (T ) est donné par :

CT→E
1 (T0) =

1

2W
(2)
l

[

(

C
(1)
0

)2

+ C
(2)
0

]

−
W

(3)
l C

(1)
0

2
(

W
(2)
l

)2 −
W

(4)
l

8
(

W
(2)
l

)2 +
5

24

(

W
(3)
l

)2

(

W
(2)
l

)3 (2.9)

Dans les expressions précédentes interviennent, d’une part, les fonctions de Green
G(t, t′) des orbites périodiques, solutions de :

(

−
d2

dt2
11 −

∂2V

∂q∂q

[

qcl(t)
]

)

G(t, t′) = 11 δ(t − t′) (2.10)

et d’autre part, les dérivés d’ordres supérieures de l’action classique Wl et de la matrice de
stabilité de l’orbite (contenue dans C0).

Toute la difficulté a été de trouver une façon efficace et précise de calculer toutes ces
quantités. Cela a pu être fait en utilisant de manière approfondir les propriétés symplec-
tiques de la dynamique classique dans l’espace des phases. On arrive ainsi à calculer toutes
les corrections uniquement en résolvant des systèmes équations différentielles le long des
orbites classiques (i.e. du type dX

dt
= F(X, t)) dans lesquels X et F sont des quantités

parfaitement régulières. Les résultats obtenus montrent un parfait accord entre la théorie
développée et les calculs quantiques exacts. En particulier, j’ai pu mettre en évidence une
subtilité cachée lors de l’établissement de la formule de trace de Gutzwiller, ce qui engendre
un terme supplémentaire dans le calcul des termes d’ordre supérieur, absent des formules
habituellement publiées.
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I. INTRODUCTION

Gutzwiller’s work has now become a milestone in the
understanding of the properties of a quantum system whose
classical counterpart depicts chaotic dynamics@1#. Starting
from Feynman’s path formulation of quantum mechanics, he
has been able to complete the early studies of Van Vleck@2#,
deriving expressions for the semiclassical propagator, and
from this, for the quantum level density: the well-known
Gutzwiller trace formula. The latter is an asymptotic series in
\ and can be separated into two parts; the leading order
corresponds to the Thomas-Fermi~or extended Thomas-
Fermi when including\ corrections! average density of
states @3#; the other part corresponds to the oscillations
around the preceding term and involves contributions from
all periodic orbits of the system. This formula has been
widely used to obtain approximate values for the quantum
energy eigenvalues of classically chaotic systems: the hydro-
gen atom in magnetic field@4,5#, the helium atom@6–8#,
anisotropic Kepler problem@1#, resonant tunnel diode@9#,
billiards @10–13#, etc. Since then, the Gutzwiller trace for-
mula has also been generalized to take into account contri-
butions of other kinds: diffractive effects@14#, continuous
families of periodic orbits@13,15,16#, ghost orbits, etc.

At the same time, because the trace formula as derived by
Gutzwiller only contained the leading term of the asymptotic
expansion of the quantum level density, the systematic ex-
pansion of the semiclassical propagator in powers of\ has
been the purpose of several studies@12,13,17#. However,
these corrections to the trace formula have only been tested
for billiards, for which both classical and quantum properties
are easier to calculate. In the present paper, we will show
how, for quantum systems whose Hamiltonian separates into
kinetic and smooth potential energies,\ corrections can be
computed with great accuracy, extending the method de-
scribed in Refs.@12,13#, based on classical Green’s func-
tions. In particular, we will show that the previous derivation
@12,13# of the correction to Gutzwiller trace formula is par-
tially wrong.

From a numerical point of view, all quantities involved in
the calculation of the\ corrections for a given classical path
can be obtained as solutions of sets of first order differential
equations to be integrated along this path using standard time
integrators like the Runge-Kutta method. The number of
equations in these sets can be quite large and can be probably
reduced with a deeper analysis of their structures, in the
same way that the amplitude in the Gutzwiller trace formula
for a two-dimensional~2D! system can be obtained by inte-
grating only a (232) matrix and not the whole monodromy
matrix @18#. However, it would give rise to more complicated
expressions and probably to additional difficulties in the nu-
merical implementation, whereas the expressions given in
the paper can be put in the computer as they stand. Also, the
amount of CPU time and the memory needed by the codes
are small enough, so that, on a first stage, the reduction of the
number of equations can be skipped.

The paper is divided as follows. In Sec. II, expressions for
the classical Green’s functions involved in the\ correction
to the semiclassical propagatorK(q,q0 ,T) are derived. Then,
we explain how to get a numerical implementation of these
formulas allowing an efficient computation of the\ correc-
tion. In Sec. III, we develop a numerical method to get the
additional terms, arising from the time to energy domain
transformation, in\ correction for the quantum Green’s
function G(q,q0 ,T). In the case of the trace of the propaga-
tor, essential steps for the derivation of the\ correction are
described in Sec. IV, leading to the proper formulas, along
with the way they can be computed. The time to energy
transformation is explained in Sec. V, leading to the\ cor-
rection expression in the case of the quantum Green’s func-
tion. Finally, Sec. VI shows how to apply theoretical expres-
sions obtained in the four preceding sections in the case of
the 2D hydrogen in magnetic field and emphasizes the excel-
lent agreement with numerical coefficients extracted from
exact quantum calculation, using harmonic inversion
@19–21#.

II. THE PROPAGATOR K„q,q0 ,T…

A. Feynman path integral

The starting point is the Feynman path integral, whose
discrete version, for a time independent Hamiltonian which*Electronic address: Benoit.Gremaud@spectro.jussieu.fr
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separates into kinetic and potential energies,Ĥ5p̂2/2
1V(q̂), reads as follows@13#:

K~q,q0 ,T!5E dq1dq2 , . . . ,dqN21~2p i\Dt !2N f /2

3expF i

\ (
n50

N21

LS qn112qn

Dt
,qnDDt1O~Dt !G ,

~1!

where Dt5T/N, qN5q, and L(q̇,q) is the classical La-
grangian.

For small values of\ ~i.e., the semiclassical limit!, using
the stationary phase approximation, all preceding integrals
are expanded around the stationary solutions, that is the clas-
sical orbitsql

cl(t) going fromq0 to q during timeT, each of
them thus giving a contributionK l(q,q0 ,T) to the propaga-
tor, whose final expression reads formally as follows@13#:

K l~q,q0 ,T!5K l
(0)~q,q0 ,T!$11 i\C1~q,q0 ,T!1O~\2!%,

~2!

whereK l
(0)(q,q0 ,T) is the dominant semiclassical contribu-

tion to the propagatorK(q,q0 ,T):

K l
(0)~q,q0 ,T!5

1

~2p i\ ! f /2UdetS 2
]2

]q]q0
Wl

cl~q,q0 ,T! D U1/2

3expF i

\
Wl

cl~q,q0 ,T!2 i
p

2
n l G , ~3!

whereWl
cl(q,q0 ,T) is the classical action andn l is the Morse

index of the orbit. TheC1(q,q0 ,T) expression is given by
@13#

1

8E0

T

dt Vi jkl
(4) ~ t !Gi j ~ t,t !Gkl~ t,t !

1
1

24E0

TE
0

T

dt dt8Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3@3Gi j ~ t,t !Gkl~ t,t8!Gmn~ t8,t8!

12Gi l ~ t,t8!Gjm~ t,t8!Gkn~ t,t8!#, ~4!

where theV(n)(t) are higher-order derivatives of the poten-
tial V, evaluated atql

cl(t).
The classical Green’s functionG(t,t8), associated with the

classical orbit, is an (f 3 f ) matrix solution of the following
equation@13#:

D•G~ t,t8!51d~ t2t8!, ~5!

whereD is the Jacobi-Hill operator, controlling the linear
stability around the classical orbit in the configuration space
@13#

D52
d2

dt2
12

]2V

]q]q
@qcl~ t !#. ~6!

Furthermore, the fact that both initial and final point are fixed
in the propagatorK(q,q0 ,T) imposes the following bound-
ary conditions on the classical Green’s function@13#:

G~0,t8!5G~T,t8!50 ; t8P@0,T#. ~7!

B. Classical Green’s function

If ql(T) is a conjugate point ofq0, then the determinant
det(2]qq0

2 Wl
cl) in formula ~3! is formally infinite, but this

happens only for restricted values ofT, so that, in this sec-
tion, we will focus on the general case, for whichql(T) and
q0 are not conjugate points.

Apart from t5t8, G(t,t8) obeying the homogeneous
Jacobi-Hill equationD•G50, so that, introducing the nota-
tions

G2~ t,t8!5G~ t,t8! for 0<t<t8,

G1~ t,t8!5G~ t,t8! for t8<t<T, ~8!

one immediately obtains

S G6~ t,t8!

Ġ6~ t,t8!
D 5M ~ t !S A6~ t8!

B6~ t8!
D , ~9!

whereM (t) is the (2f 32 f ) monodromy matrix, depicting
the linear stability around the classical orbit in the phase
space.A6 and B6 are four (f 3 f ) matrices, whose values
are determined from the boundary conditions at timet5t8:

G1~ t8,t8!2G2~ t8,t8!50,

dG2

dt
~ t8,t8!2

dG1

dt
~ t8,t8!51 ~10!

and at timest50 andt5T:

G2~0,t8!50,

G1~T,t8!50. ~11!

For a Hamiltonian which separates between kinetic and
potential energyH5p2/21V(q), M (t) has the following
simple structure:

M ~ t !5FJ2~ t ! J1~ t !

J̇2~ t ! J̇1~ t !
G , ~12!

which leads us to the following explicit expressions for the
four matricesA6 andB6 :
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A2~ t8!50,

B2~ t8!5J2
Á~ t8!2J1

21~T!J2~T!J1
Á~ t8!,

A1~ t8!5J1
Á~ t8!,

B1~ t8!52J1
21~T!J2~T!J1

Á~ t8!, ~13!

provided thatJ1
21(T) is invertible. J1(T) being the upper

right ( f 3 f ) submatrix of the matrixM, gives the linear dis-
placement of the final position for a change in the initial
momentum ~the initial position being fixed toq0), i.e.,
dq(T)5J1(T)dp0. Thus, J1(T) is the inverse matrix of
(2]qq0

2 Wl
cl) which has been supposed to be invertible@q(T)

andq0 are not conjugate points#. Finally, the full expression
for the classical Green’s function reads

G~ t,t8!5H J1~ t ! @J2
Á~ t8!2J1

21~T!J2~T!J1
Á~ t8!# for 0<t<t8,

@J2~ t !2J1~ t !J1
21~T!J2~T!# J1

Á~ t8! for t8<t<T.
~14!

Using the symplectic structure ofM (T), one can show that

G~ t8,t !5GÁ~ t,t8! ~15!

as expected because the operatorD and the boundary condi-
tions are symmetric as it explicitly appears in the discrete
version of the problem~see Ref.@13#!. This is also empha-
sized in Fig. 1, where the four matrix elements of a classical
Green’s functionG(t,t8) ~for t8/T50.6) are plotted with re-
spect to timet. This example corresponds to a classical orbit
of the 2D hydrogen atom in a magnetic field having initial
and final points on the nucleus, namely, the closed orbit hav-
ing code 0—and whose trajectory in (u,v) coordinates is
also shown in the figure.~See Sec. VI for all details.! As

expected, the Green’s function vanishes at initial and final
times @i.e., G(0,t8)5G(T,t8)50# and for t5t8, the deriva-
tives of each diagonal elementG11(t8,t8) ~continuous line!
andG22(t8,t8) ~long dashed line! are discontinuous whereas,
from property~15!, the two off-diagonal elements are equal
~dotted and dashed lines!.

C. Getting C1„q,q0 ,T… by integrating a set of first order
differential equations

From Eq.~4!, there are three contributions toC1(q,q0 ,T),
namely,

I 1~T!5E
0

T

dt Vi jkl
(4) ~ t !Gi j ~ t,t !Gkl~ t,t !,

I 2
1~T!5E

0

TE
0

T

dt dt8Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3Gi j ~ t,t !Gkl~ t,t8!Gmn~ t8,t8!, ~16!

I 2
2~T!5E

0

TE
0

T

dt dt8Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3Gi l ~ t,t8!Gjm~ t,t8!Gkn~ t,t8!.

Even if, in principle, one can computeG(t,t8) for any (t,t8)
values using Eq.~14!, direct evaluation of the double inte-
grals I 2

6 would be time consuming and numerically ineffi-
cient using standard integration routines, especially because,
from its definition,G(t,t8) is not a smooth function around
the linet5t8. In what follows, we will show that the preced-
ing integrals can be transformed in such a way that their
values can be obtained integrating a set of first order differ-
ential equations along the classical orbit, in the same way
that, for example, the monodromy matrixM (T) can be com-
puted.

FIG. 1. Example of a classical Green’s functionG(t,t8) in-
volved in the calculation of the\ corrections for the propagator
K(q,q0 ,T), for the caseq5q050. It is associated with the closed
orbit 1243 of the 2D hydrogen atom in magnetic field, whose tra-
jectory in (u,v) coordinates is inserted in the plot~see Sec. VI for
all details!. This trajectory starts and ends at the nucleus, depicted
by the black circle. Each curve corresponds to a matrix element
Gi j (t,t8) plotted with respect to timet, for t8/T50.6. As expected
from boundary conditions~7!, the Green’s function vanishes at ini-
tial and final times@i.e., G(0,t8)5G(T,t8)50# and for t5t8, the
derivatives of diagonal elements,G11(t8,t8) ~continuous line! and
G22(t8,t8) ~long dashed line!, are discontinuous whereas, from sym-
metry property~15! @i.e., GÁ(t,t8)5G(t8,t)#, the two off-diagonal
elements are equal~dotted and dashed lines!.
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Separatingt.t8 and t,t8 contributions in I 2
6 , using

symmetry property~15! of G(t,t8) and that the matrixV(3) is
fully symmetric under index permutations, one gets, after
straightforward algebra,

I 2
1~T!52E

0

T

dtE
0

t

dt8 Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3Gi j ~ t,t !Gkl~ t,t8!Gmn~ t8,t8!,

I 2
2~T!52E

0

T

dtE
0

t

dt8 Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3Gi l ~ t,t8!Gjm~ t,t8!Gkn~ t,t8!. ~17!

In the preceding expressions the Green’s functionG(t,t8) is
used only for (t,t8) values in the triangle 0<t8<t<T and is
formally written G(t,t8)5B

2

Á(t)J1
Á(t8) @see Eq.~14!#, thus

separatingt and t8 contributions:

I 2
1~T!52E

0

T

dt Vi jk
(3)~ t !Gi j ~ t,t !Bpk

2 ~ t !

3E
0

t

dt8 Vlmn
(3) ~ t8!J1lp~ t8!Gmn~ t8,t8!,

I 2
2~T!52E

0

T

dt Vi jk
(3)~ t !Bpi

2~ t !Bq j
2 ~ t !Brk

2 ~ t !

3E
0

t

dt8 Vlmn
(3) ~ t8!J1lp~ t8!J1mq~ t8!J1nr~ t8!.

~18!

This leads us to introduce two intermediate quantities,
namely,Pp(t) andQpqr(t) ~for p, q and r running from 1
to f ):

Pp~ t !5E
0

t

dt8 Vlmn
(3) ~ t8!J1lp~ t8!Gmn~ t8,t8!,

Qpqr~ t !5E
0

t

dt8 Vlmn
(3) ~ t8!J1lp~ t8!J1mq~ t8!J1nr~ t8! ~19!

in a way such thatI 2
6(T) @and I 1(T)# are solutions of the

following set of differential equations@besides equations for
X(t) andM (t)#:

İ 15Vi jkl
(4) ~ t !Gi j ~ t,t !Gkl~ t,t !,

Ṗp5Vlmn
(3) ~ t !J1lp~ t !Gmn~ t,t !,

İ 2
1

5Vi jk
(3)~ t !Gi j ~ t,t !Bpk

2 ~ t !Pp~ t !,

Q̇pqr5Vlmn
(3) ~ t !J1lp~ t !J1mq~ t !J1nr~ t !,

İ 2
2

5Vi jk
(3)~ t !Bpi

2~ t !Bq j
2 ~ t !Brk

2 ~ t !Qpqr~ t ! ~20!

with initial conditions I 1(0)5I 2
6(0)5Pp(0)5Qpqr(0)50.

This set of equations,f 3
14 f 2

13 f 13 in total ~i.e., 33 for a
2D system! is easily integrated using any standard method

~fourth order Runge-Kutta in the present case!. As mentioned
in the Introduction, the size of the preceding differential set
is probably not minimal and could be reduced by a deeper
analysis of the structure of these equations. However, it al-
lows a fast and easy computation of the correction
C1(q,q0 ,T):

~1! find a trajectory going fromq0 to q in time T;
~2! integrate the differential set forX(t) andM (t) along

the trajectory to obtain the quantityJ1
21(T)J2(T);

~3! integrate the set of Eqs.~20! along the trajectory to get
the three quantitiesI 1 , I 2

6 , entering in theC1(q,q0 ,T) ex-
pression.

III. THE GREEN’S FUNCTION G„q,q0 ,E…

A. Going from time to energy domain

Since the quantum Green’s functionG(q,q0 ,E) is related
to the propagatorK(q,q0 ,T), through a semisided Fourier
transform, this relation also holds between semiclassical con-
tributions arising from each classical orbit, more precisely,

Gl~q,q0 ,E!5
1

i\E0

1`

dT expS i

\
ETDK l~q,q0 ,T!. ~21!

Again, a stationary phase approximation is used to perform
the integral, which, for a given trajectory going fromq0 to q,
selects its total durationT0 such that the classical motion is
made at energyE. This operation also gives rise to additional
terms in\ corrections, to be summed withC1(q,q0 ,T), and
whose explicit expressions can be derived starting from Eq.
~4! formally written as follows@13#:

K l~q,q0 ,T!5
1

~2p i\ ! f /2
expF i

\
Wl~q,q0 ,T!

2 i
p

2
n l1C0~q,q0 ,T!

1 i\C1~q,q0 ,T!G , ~22!

C0(q,q0 ,T) being the~logarithm of! usual semiclassical am-
plitude. ThenWl(q,q0 ,T) and C0(q,q0 ,T) are systemati-
cally expanded aroundT0:

Wl~q,q0 ,T!5Wl
(0)

1dT Wl
(1)

1
dT2

2
Wl

(2)

1
dT3

6
Wl

(3)
1

dT4

24
Wl

(4) ,

C0~q,q0 ,T!5C0
(0)

1dT C0
(1)

1
dT2

2
C0

(2), ~23!

with dT5(T2T0). Terms arising fromC1(T) expansion
would contribute only to\2 correction and can be discarded.
Performing the imaginary Gaussian integrals leads to the ad-
ditional \ corrections:
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C1
T→E~q,q0 ,T0!5

1

2Wl
(2) @~C0

(1)!2
1C0

(2)#

2
Wl

(3)C0
(1)

2~Wl
(2)!2

2
Wl

(4)

8~Wl
(2)!2

1
5

24

~Wl
(3)!2

~Wl
(2)!3

.

~24!

The preceding formula is similar to the one in Ref.@13#,
where the authors have expressed the coefficient
C1

T→E(q,q0 ,T0) in terms of derivatives of amplitude and ac-
tion with respect to energyE. The full expression of
Gl(q,q0 ,E) is then given by

Gl~q,q0 ,E!5
2p

~2p i\ !( f 11)/2

1

uWl
(2) detJ1~T0!u1/2

3expF i

\
Sl~q,q0 ,E!2 i

p

2
ñ l G

3$11 i\@C1~q,q0 ,T0!1C1
T→E~q,q0 ,T0!#

1O~\2!%, ~25!

whereSl(q,q0 ,E) is the reduced action and

ñ l5n l if Wl
(2)

.0,

ñ l5n l11 if Wl
(2)

,0. ~26!

B. Getting C1
T\E„q,q0 ,T0… by integrating a set of first order

differential equations

In Sec. II C, we have shown thatC1(q,q0 ,T0) can be
computed by integrating a set of differential equations along
the classical orbit going fromq0 to q in time T0. In this
section we will show that it is also true forC1

T→E(q,q0 ,T0),
which involves derivatives of bothWl(q,q0 ,T) and
detJ1(T) with respect toT.

For all T, we have the following functional relation (q0
andq being fixed!:

]Wl~q,q0 ,T!

]T
52E~q,q0 ,T!, ~27!

where E(q,q0 ,T) is the energy of the classical trajectory,
q(t,T), going fromq0 to q in time T, that is, the value of the
HamiltonianH taken at any point on the corresponding phase
space trajectoryX(t,T)5@q(t,T),p(t,T)#.

Writing T5T01dT, the Taylor expansion ofH@X(t,T0
1dT)# is easily deduced from the Taylor expansion of
X(t,T01dT) around the reference trajectoryX(t,T0) @noted
hereafter asX(0)(t)#:

X~ t,T01dT!5X(0)~ t !1dT X(1)~ t !1
dT2

2
X(2)~ t !

1
dT3

6
X(3)~ t !1••• ~28!

and from which one obtains the higher derivatives of the
classical actionWl

(n) at T5T0:

Wl
(1)

52H@X(0)~ t !#,

Wl
(2)

52Xi
(1)H i

(1) ,

Wl
(3)

52~Xi
(2)H i

(1)
1Xi

(1)X j
(1)H i j

(2)!,

Wl
(4)

52~Xi
(3)H i

(1)
13Xi

(1)X j
(2)H i j

(2)
1Xi

(1)X j
(1)Xk

(1)H i jk
(3)!,

~29!

where all derivatives ofH are evaluated atX(0)(t).
Equations forX(n)(t) are deduced from Hamilton’s equa-

tions governingX(t,T) evolution:

Ẋi
(1)

5S i j H jk
(2)Xk

(1) ,

Ẋi
(2)

5S i j H jk
(2)Xk

(2)
1S i j H jkl

(3)Xk
(1)Xl

(1) ,

Ẋi
(3)

5S i j H jk
(2)Xk

(3)
13S i j H jkl

(3)Xk
(1)Xl

(2)

1S i j H jklm
(4) Xk

(1)Xl
(1)Xm

(1) , ~30!

where again all derivatives ofH are evaluated atX(0)(t).
Thus, we are facing three differential sets of the formẊ( i )

5SH (2)X( i )
1SY( i ) ~i.e., nonhomogeneous linear differen-

tial equations!, with the important property that the vector
Y( i ) only depends on vectorsX( j ) with j , i , so that they can
be solved one after the other. Solutions of these nonhomoge-
neous linear differential equations are expressed with the
monodromy matrixM (0):

X(1)~ t !5M (0)~ t !X(1)~0!,

X(2)~ t !5M (0)~ t !X(2)~0!1F(2)~ t !,

X(3)~ t !5M (0)~ t !X(3)~0!1F(3)~ t !. ~31!

Among the 33(2 f )-dimensional space of solutions given by
preceding expressions, the relevant one is selected by trans-
posing on initial valuesX( i )(0) ~for i 51,2,3) the two bound-
ary conditions

q~0,T01dT!5q0 and q~T01dT,T01dT!5q. ~32!

Introducing positionq( i ) and momentump( i ) parts for
vectorsX( i ), the Taylor expansion of the preceding equations
leads to the following boundary conditions:
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q(1)~0!50 q(1)~T0!52q̇(0)~T0!,

q(2)~0!50 q(2)~T0!52q̈(0)~T0!22q̇(1)~T0!,

q(3)~0!50 and q(3)~T0!52q&(0)~T0!23q̈(1)~T0!23q̇(2)~T0!. ~33!

Thus, the initial valuesp( i )(0) are implicitly determined by
the final valuesq( i )(T0), through the integral expressions
~31!, which for X(1) reads

S q(1)~T0!

p(1)~T0!
D 5FJ2~T0! J1~T0!

J̇2~T0! J̇1~T0!
G S 0

p(1)~0!
D , ~34!

showing thus thatp(1)(0)52J1
21(T0)q̇(0)(T0).

ThenF(2)(T0) andF(3)(T0) are easily computed by inte-
grating sets of differential equations obtained from Eq.~30!,
allowing us to derivep(2)(0) and p(3)(0) values from Eq.
~31!, solving systems similar to Eq.~34!:

p(2)~0!52J1
21~T0!@ q̈(0)~T0!12q̇(1)~T0!1f(2)~T0!#,

p(3)~0!52J1
21~T0![ q&(0)~T0!13q̈(1)~T0!

13q̇(2)~T0!1f(3)~T0!],

~35!
where we have introduced the notation (f( i ),g( i )) for vectors
F( i ). Quantities like q̇(1)(T0), q̈(1)(T0), and q̇(2)(T0) can
also be expressed in terms ofX(0)(T0) and its derivatives.

At this point, from the values of the three vectorsX( i )(T0)
and using Eqs.~29! at time T0, all derivativesW(n) of the
classical action can be computed.

We now explain how to compute derivatives of detJ1(T).
More precisely one has to calculate the two coefficientsC0

(1)

andC0
(2) , which are derivatives of2 lnAudetJ1(T)u, so that,

using the well-known formula

d

dT
~ lnudetJu!5TrS J21

dJ

dTD ~36!

@J being any~invertible! matrix#, expressions ofC0
(1) and

C0
(2) become

C0
(1)

52
1

2
TrS J1

21~T0!
dJ1~T0!

dT D ,

C0
(2)

52
1

2
TrS J1

21~T0!
d2J1~T0!

dT2

2J1
21~T0!

dJ1~T0!

dT
J1

21~T0!
dJ1~T0!

dT D , ~37!

wheredJ1(T0)/dT means derivative ofJ1(T0) when chang-
ing total timeT ~and thus the classical orbit!, which must not
be confused withJ̇1 ~time derivative ofJ1 along a given
classical orbit!. J1(T) being the (f 3 f ) upper right submatrix
of the monodromy matrixM (T), dnJ1(T0)/dTn is also

stored at the same position in matrixdnM (T0)/dTn, for
which we will derive general expressions. For this purpose,
we first introduce the explicit notationM (t,T), representing
the value of the monodromy matrix at timet along the orbit
going fromq0 to q in time T. Writing T5T01dT, the Taylor
expansion ofM (t,T) for a given timet reads

M ~ t,T01dT!5M (0)~ t !1dT M(1)~ t !1
dT2

2
M (2)~ t !,

~38!

whereM (0)(t) is the monodromy matrix along the reference
orbit ~i.e., going fromq0 to q in time T0). ThendM(T0)/dT
andd2M (T0)/dT2 are the Taylor coefficients of monodromy
matrix M (T01dT,T01dT) and thus have the following ex-
pression:

dM~T0!

dT
5Ṁ (0)~T0!1M (1)~T0!,

d2M ~T0!

dT2
5M̈ (0)~T0!12Ṁ (1)~T0!1M (2)~T0!. ~39!

Equations governingM ( i )(t) evolution are easily deduced
from the one forM (t,T):

Ṁ i j
(1)

5S ik@Hkl
(2)M l j

(1)
1Hklm

(3) Xm
(1)M l j

(0)#,

Ṁ i j
(2)

5S ik[Hkl
(2)M l j

(2)
12Hklm

(3) Xm
(1)M l j

(1)

1Hklm
(3) Xm

(2)M l j
(0)

1Hklmn
(4) Xm

(1)Xn
(1)M l j

(0)], ~40!

with initial conditions M (1)(0)5M (2)(0)50. Obviously
these equations are similar to those governingX( i ) evolution,
so thatM (1)(T0) and M (2)(T0) values will be obtained by
integrating similar differential sets. Actually, it can be shown
that all these sets~for bothX( i ) andM ( i )) can be concatened
in only one~larger! set of differential equations, whose inte-
gration can be done at once.

Finally, gathering all quantities in Eq.~39!, the two ma-
tricesdJ1(T0)/dT andd2J1(T0)/dT2 are inserted in Eq.~37!
thus giving values forC0

(1) andC0
(2) , which, along with the

values forWl
(n) , allow us to compute the numerical value for

C1
T→E(q,q0 ,T0).
Obviously, the number of equations in the preceding dif-

ferential sets can be reduced, especially for Hamiltonian
separating into kinetic and potential energy, for whichH jkl

(3)

and H jklm
(4) coefficients are nonvanishing only when 1

< j ,k,l ,m< f . However, these sets are straightforward to
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implement and need only a small amount of CPU time to be
solved using any conventional integrator~fourth order
Runge-Kutta in the present case!.

IV. TRACE OF THE PROPAGATOR K„T…

The diagonal elementsK(q0 ,q0 ,T) of the propagator are
related to classical orbits starting fromq0 and returning to
this point after timeT, i.e., closed orbits. Summing all these
diagonal elements, that is performing the integral
*dq0 K(q0 ,q0 ,T), will select, through another stationary
phase approximation, closed orbits for which initial and final
momentum are equal: periodic orbits.\ corrections to lead-
ing order of the semiclassical contribution toK(T) from
each periodic orbit can be derived following the same
scheme previously used for the propagator itself@1,13#.

A. Feynman path integral

Adding the integral over the initial and final positions in
Eq. ~1! yields @13#

K~T!5E dq0 dq1 dq2 , . . . ,dqN21~2p i\Dt !2N f /2

3expF i

\ (
n50

N21

LS qn112qn

Dt
,qnDDt1O~Dt !G

~41!

with qN5q0.
The stationary phase approximation around a given peri-

odic orbit ql
cl(t) is made explicit when replacing the preced-

ing N f integral with @13#

E dq0
i dj0

' dj1 dj2 , . . . ,djN21 ~42!

with jn5qn2ql
cl(nDt). For n50 ~i.e., initial position!, only

deviations perpendicular to the periodic orbitj0
' have been

introduced because the classical actionWl(q0 ,q0 ,T) is con-
stant along the orbit~depicted byq0

i ). The contribution
K l(T) of this periodic orbit toK(T) then reads@13#

K l~T!5S N

2p i\TD N f /2

expS i

\
Wl D E dq0

i dj0
' dj1

3dj2 , . . . ,djN21 expS i

2\
W,abjajbD

3F11
i

6\
W,abcjajbjc1

i

24\
W,abcdjajbjcjd

2
1

72\2
W,abcW,de fjajbjcjdjej f G , ~43!

whereja5j0i
' whena5(0,i ) andja50 whena5(0,0). Wl

is, in the largeN limit, the classical action of the periodic
orbit. Full expressions forW,ab , W,abc , andW,abcd can be
found in Ref.@13#.

Then, the next step would consist of performing all imagi-
nary Gaussian integrals, leaving out the integral along the
orbit. However, in the preceding coordinate transformation
~42!, there is an hidden subtlety, affecting only\ corrections,
which probably explains why it is not mentioned in usual
textbooks@1,3#, where authors are only looking at leading
semiclassical amplitudes.

Actually, the problem is that the integral overq0
i corre-

sponds to the length of the classical orbit, only whenj0
'

50;
for a nonzero value, it will correspond to integration on a
closed curve, slightly displaced from the original trajectory,
whose length will thus depend on thej0

' value. To enlighten
this, let us suppose that we have a bidimensional system, for
which one periodic orbit is a circle of radiusR0, traveled at
constant speedV052pR0 /T. The coordinate transformation
is then easily made using polar coordinates (r ,u):

r 5R02j0
' . ~44!

The negative sign appears to preserve orientation. The vol-
ume elementdx dy becomes

dx dy5rdu dr5~R02j0
'!du dj0

' , ~45!

which shows that, in this case,dq0
i is not simplyR0du, the

length on the periodic orbit, but is given by

dq0
i
5~R02j0

'!duÞR0 du. ~46!

This simple example shows actually that the variableq0
i is

not independent ofj0
' , whereasu is.

For a general system, the variable that can play theu role
is actually the timet, whose variation domain@0,T# is fixed
and then obviously independent ofj0

' . Thus one has to gen-

eralize the relationdq0
i
5uq̇cludt0, valid only on the periodic

orbit. This is done by writing explicitly the coordinate trans-
formationq→(t0 ,j0

'):

q5qcl~ t0!1j0i
' ni~ t0!, ~47!

where ni(t0) are f 21 orthogonal unit vectors lying in the
plane perpendicular to the periodic orbit at timet0. The Jaco-
bian of the transformation reads

det
]q

]~ t0 ,j0
'!

5det@ q̇cl
1j0i

' ṅi ,n1 ,•••,nf 21#

5uq̇clu2
1

uq̇clu
j0

'•q̈cl. ~48!

Inserting the volume element in Eq.~43!, the contribution
K l(T) of the periodic orbit now reads, keeping only terms
giving rise to\ corrections,
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K l~T!5S N

2p i\TD N f /2

expS i

\
Wl D

3E uq̇cludt0 dj0
'dj1dj2 , . . . ,djN21

3expS i

2\
W,abjajbD

3F11
j d̃V,d̃

uq̇clu2
1

i

6\
W,abcjajbjc

1
i

24\
W,abcdjajbjcjd1

i

6\

V,d̃W,abcj d̃jajbjc

uq̇clu2

2
1

72\2
W,abcW,de fjajbjcjdjej f G , ~49!

where we have seen thatq̈cl
52]qV and we have introduced

the indexd̃ for (0,j ).
As explained in Ref.@13#, the imaginary Gaussian inte-

grals can be expressed in terms of another classical Green’s
functionsG(t,t8), whose boundary conditions are extracted
when comparing the detailed expression ofW,ab with the
discrete version of the Jacobi-Hill operatorD, see Eq.~6!.
Especially, it can be shown that, in the largeN limit, they
become

G~0,t8!5G~T,t8!,

Pt0
G~0,t8!5Pt0

G~T,t8!50, ; t8P@0,T#, ~50!

Qt0
Ġ~0,t8!5Qt0

Ġ~T,t8!,

where we have introducedPt0
the projector along the peri-

odic orbit at timet0 andQt0
512Pt0

. In Ref. @13#, only the

f 2
1 f boundary conditions corresponding to the first two

lines were given, whereas thef 2
2 f ones corresponding to

the last line were missing.
Performing all imaginary Gaussian integrals and taking

the largeN limit in Eq. ~49!, the contribution of the given
periodic orbit to the trace of the propagator reads as follows:

K l~T!5K l
(0)~T!H 11 i\

1

TE0

T

dt0C1~T,t0!1O~\2!J ,

~51!

K l
(0)(T) being the usual semiclassical leading order@1,13,22#

K l
(0)~T!5

1

A2p\

T

u]ET det@m~T!21#u1/2

3expF i

\
Wl~T!2 i

p

2
m l1 i sgn]ETG , ~52!

whereWl(T) is the classical action of the periodic orbit and
m l its Maslov index.

The first\ correctionC1(T) to K l
(0)(T) is then obtained

by averaging over the timet0 ~i.e., over the full periodic
orbit! the coefficientC1(T,t0), given by

C1~T,t0!5
1

8E0

T

dt Vi jkl
(4) ~ t !Gi j ~ t,t !Gkl~ t,t !

1
1

2

Vl
(1)~ t0!

uq̇clu2
E

0

T

dt Vi jk
(3)~ t !Glk~0,t !Gi j ~ t,t !

1
1

24E0

TE
0

T

dt dt8 Vi jk
(3)~ t !Vlmn

(3) ~ t8!@3Gi j ~ t,t !

3Gkl~ t,t8!Gmn~ t8,t8!

12Gi l ~ t,t8!Gjm~ t,t8!Gkn~ t,t8!#, ~53!

wheret0 represents thus the positionq0 on the periodic orbit
at which boundary conditions~50! on the classical Green’s
functionG(t,t8) are applied.q0 is also the initial~and final!
position on the periodic orbit for classical motions corre-
sponding to timest and t8 entered in the preceding expres-
sion.

B. Classical Green’s function

As in Sec. II B, where expressions for classical Green’s
functions for the propagatorK(q,q0 ,T) where derived, we
introduce theG6(t,t8) notations andA6(t8), B6(t8) matri-
ces. Using all boundary conditions~at timest5t8, t50 and
t5T) gives rise to the following equation:

F 1 0

0 Qt0
G @M ~T!212 f #S A2~ t8!

B2~ t8!
D

5F 1 0

0 Qt0
GM ~T!S 2J1

Á~ t8!

J2
Á~ t8!

D . ~54!

The preceding set of linear equations, formally writtenAX
5B, cannot be solved directly because the (2f 32 f ) matrix
A is obviously singular. More precisely, existence and num-
ber of solutions for the systemA x5b are determined by the
two following properties:

~1! Solutions exists if for all vectorsy such thatAÁy
50, theny•b50.

~2! If the preceding condition is fulfilled, and ifx is a
solution, then for all vectorsx0 such thatA x050, x1x0 is
also a solution, showing that the dimension of the solution
space is that of the nullspace ofA.

In the present case, equationAÁy50 leads to either

F 1 0

0 Qt0
Gy50⇒y}S 0

q̇~ t0!
D ~55!

or

@M ~T!212 f # ỹ50 with ỹ5SF 1 0

0 Qt0
GyÞ0. ~56!
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For a generic unstable periodic orbit, the eigenspace associ-
ated with the eigenvalue 1 ofM (T) ~T being the period!, is
of dimension one and is spanned by the vector parallel to the
flow ~see the Appendix! Ẋ(t0)5@ q̇(t0),ṗ(t0)#, so that, in the
second case, one getsỹ}Ẋ(t0) andy is a solution of

F 1 0

0 Qt0
Gy}S 2ṗ~ t0!

q̇~ t0!
D , ~57!

which is impossible unlessq̇(t0)50, which, for Hamiltonian
separating into kinetic and potential energies, corresponds to
a self-retracing periodic orbit, for which a slightly modified
approach should be developed@18#. Nevertheless, this case is
peculiar, and we will suppose in the rest of the section thatq̇
never vanishes along the periodic orbit in consideration.

Thus, the nullspace ofAÁ being one-dimensional and
spanned by the vector@0,q̇(t0)#, Eq.~54! immediately shows
that for any column of matrixB, we get @0,q̇(t0)#•Bi50,
fulfilling thus the first condition. DenotingX0 as a solution
of Eq. ~54!, which can be easily obtained using singular
value decomposition~SVD! of matrix A, and the nullspace
of M (T)21 being spanned byẊ(t0), the general solution of
Eq. ~54! reads

X5X01@a1Ẋ~ t0!,a2Ẋ~ t0!, . . . ,a fẊ~ t0!#, ~58!

wherea i are unknown real parameters still to be determined.
Actually, in Eq. ~54! one boundary condition has not been
taken into account, namely, thatPt0

G2(0,t8)50 which, us-

ing that the projectorPt0
reads

~Pt0
! i j 5S q̇~ t0!q̇Á~ t0!

uq̇~ t0!u2
D

i j

5
q̇i~ t0!q̇j~ t0!

uq̇~ t0!u2
, ~59!

allows us to geta i values and, from that, the final expression

S A2~ t8!

B2~ t8!
D 5X02

1

uq̇~ t0!u2
F q̇~ t0!q̇Á~ t0! 0

ṗ~ t0!q̇Á~ t0! 0
GX0 , ~60!

which, of course, is now independent of the particular solu-
tion X0.

Whereas in the case of the propagatorK(q,q0 ,T), for
which we were able to give an explicit expression~14!, the
classical Green’s function associated with the trace of the
propagatorK(T) is only defined trough a linear system~54!,
which nevertheless allows us to obtain its numerical value
for any (t,t8). Although it clearly appears that matrixW,ab
expression~see Ref.@13#! is symmetric, meaning that the
classical Green’s function must fulfill the property
GÁ(t,t8)5G(t8,t), getting the later directly from Eq.~54! is
not obvious. However, in the case of the 2D hydrogen in a
magnetic field~see Sec. VI for all details!, we have numeri-
cally checked that the property holds. For example, in Fig. 2
the four coefficients of classical Green’s functionG(t,t8) ~for
t8/T50.3) of the periodic orbit 1234 are plotted with respect

to time t. The starting pointt0 on the periodic orbit is de-
picted by the cross. Actually, we have plotted the coefficient

of the rotated matrixG̃(t,t8), such that its first row corre-

sponds to the direction parallel to the orbit;G̃11(t,t8) ~con-

tinuous line! andG̃12(t,t8) ~dotted line! are thus equal to zero
for initial ( t50) and final (t5T) points. The other boundary
conditions can also be verified in the figure: the dashed line

@ G̃21(t,t8)# @respectively, the long dashed line,G̃22(t,t8)# has
not only the same value at initial and final time, but also the

same slope, which means thatG̃21(t,t8) @respectively,
G̃22(t,t8)# and its time derivative fulfill the periodic boundary
conditions ~50!. Finally, for t5t8, the off-diagonal coeffi-
cients G̃12(t8,t8) ~dotted line! and G̃21(t8,t8) ~dashed line!
are equal, as expected from the symmetry property.

C. Getting C1„T ,t0… by integrating a set of first order
differential equations

As seen previously~see Sec. II C!, we will explain how
the numerical value of coefficientsC1(T,t0) can be obtained

FIG. 2. Example of a classical Green’s functionG(t,t8) in-
volved in the calculation of the\ corrections for the trace of the
propagatorK(T). It is associated with the periodic orbit1234 of the
2D hydrogen atom in a magnetic field, whose trajectory in (u,v)
coordinates is inserted in the plot~see Sec. VI for all details!. The
black circle depicts the nucleus, whereas the cross corresponds to
the initial and final points on the periodic orbit at whichG(t,t8)
fulfills the boundary conditions~50!. Each curve corresponds to a
matrix elementGi j (t,t8) plotted with respect to timet, for t8/T
50.3. Actually, we have plotted the coefficient of the rotated matrix

G̃(t,t8), such that its first row corresponds to the direction parallel

to the orbit; G̃11(t,t8) ~continuous line! and G̃12(t,t8) ~dotted line!
are thus equal to zero for initial (t50) and final (t5T) points. The
other boundary conditions can also be verified in the figure; the

dashed line @ G̃21(t,t8)# @respectively, the long dashed line,

G̃22(t,t8)# has not only the same value at initial and final time, but

also the same slope, which means thatG̃21(t,t8) @respectively,

G̃22(t,t8)# and its time derivative fulfills the periodic boundary con-
ditions ~50!. Finally, for t5t8, the off-diagonal coefficients

G̃12(t8,t8) ~dotted line! and G̃21(t8,t8) ~dashed line! are equal, as
expected from the symmetry propertyGÁ(t,t8)5G(t8,t).
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by integrating a set of differential equation, using the stan-
dard Runge-Kutta method. There are now four contributions
to C1(T,t0), namely

I 1~T!5E
0

T

dt Vi jkl
(4) ~ t !Gi j ~ t,t !Gkl~ t,t !,

I l~T!5E
0

T

dt Vi jk
(3)~ t !Glk~0,t !Gi j ~ t,t !,

~61!

I 2
1~T!5E

0

TE
0

T

dt dt8 Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3Gi j ~ t,t !Gkl~ t,t8!Gmn~ t8,t8!,

I 2
2~T!5E

0

TE
0

T

dt dt8 Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3Gi l ~ t,t8!Gjm~ t,t8!Gkn~ t,t8!.

The two main difficulties now are thatG(t,t8) does not factorize anymore in a product of matrix at timet and a matrix at time
t8, nor does the symmetric propertyGÁ(t,t8)5G(t8,t) explicitly appear~even if we have numerically checked that it is
fulfilled!. Nevertheless, as seen previously, separating (t.t8) and (t,t8) contributions inI 2

6(T) expressions and introducing
four quantitiesPp

( i ) for 1< i<4, allows us to computeI 2
1 , by integrating the following set of differential equations from

t50 to T @besides equations forX(t) andM (t)#:

Ṗp
(1)

5Apl
1~ t !Vlmn

(3) ~ t !Gmn~ t,t !, Ṗp
(3)

5J1lp~ t !Vlmn
(3) ~ t !Gmn~ t,t !,

Ṗp
(2)

5Bpl
1~ t !Vlmn

(3) ~ t !Gmn~ t,t !, Ṗp
(4)

5J2lp~ t !Vlmn
(3) ~ t !Gmn~ t,t !,

İ 2
1

5Vi jk
(3)~ t !Gi j ~ t,t !J2kp~ t !Pp

(1)~ t !1Vi jk
(3)~ t !Gi j ~ t,t !J1kp~ t !Pp

(2)~ t !

1Vi jk
(3)~ t !Gi j ~ t,t !Apk

2 ~ t !Pp
(3)~ t !1Vi jk

(3)~ t !Gi j ~ t,t !Bpk
2 ~ t !Pp

(4)~ t ! ~62!

with vanishing initial conditions forPp
( i ) andI 2

1 . For each time step, one must compute matricesA2 andB2 ~and from there
matricesA1 and B1), solving the linear system described in the previous section, using singular value decomposition of
matrixA, which, being independent oft, is done before starting the Runge-Kutta integration. Skipping intermediate steps, the
differential equations leading toI 2

2(T) computation reads as follow, introducing another eight quantitiesQpqr
( i ) :

Q̇pqr
(1)

5Vlmn
(3) ~ t !Apl

1~ t !Aqm
1 ~ t !Arn

1 ~ t !, Q̇pqr
(5)

5Vlmn
(3) ~ t !J2lp~ t !J2mq~ t !J2nr~ t !,

Q̇pqr
(2)

5Vlmn
(3) ~ t !Apl

1~ t !Aqm
1 ~ t !Brn

1 ~ t !, Q̇pqr
(6)

5Vlmn
(3) ~ t !J2lp~ t !J2mq~ t !J1nr~ t !,

Q̇pqr
(3)

5Vlmn
(3) ~ t !Apl

1~ t !Bqm
1 ~ t !Brn

1 ~ t !, Q̇pqr
(7)

5Vlmn
(3) ~ t !J2lp~ t !J1mq~ t !J1nr~ t !,

Q̇pqr
(4)

5Vlmn
(3) ~ t !Bpl

1~ t !Bqm
1 ~ t !Brn

1 ~ t !, Q̇pqr
(8)

5Vlmn
(3) ~ t !J1lp~ t !J1mq~ t !J1nr~ t !,

İ 2
2

5Vi jk
(3)~ t !J2ip~ t !J2 jq~ t !J2kr~ t !Qpqr

(1) ~ t !13Vi jk
(3)~ t !J2ip~ t !J2 jq~ t !J1kr~ t !Qpqr

(2) ~ t !

13Vi jk
(3)~ t !J2ip~ t !J1 jq~ t !J1kr~ t !Qpqr

(3) ~ t !1Vi jk
(3)~ t !J1ip~ t !J1 jq~ t !J1kr~ t !Qpqr

(4) ~ t !

1Vi jk
(3)~ t !Api

2~ t !Aq j
2 ~ t !Ark

2 ~ t !Qpqr
(5) ~ t !13Vi jk

(3)~ t !Api
2~ t !Aq j

2 ~ t !Brk
2 ~ t !Qpqr

(6) ~ t !

13Vi jk
(3)~ t !Api

2~ t !Bq j
2 ~ t !Brk

2 ~ t !Qpqr
(7) ~ t !1Vi jk

(3)~ t !Bpi
2~ t !Bq j

2 ~ t !Brk
2 ~ t !Qpqr

(8) ~ t ! ~63!

with vanishing initial conditions forQpqr
( i ) and I 2

2. Finally,
one must add equations leading toI l and I 1 computation,
namely

İ 15Vi jkl
(4) ~ t !Gi j ~ t,t !Gkl~ t,t !,

İ l5Vi jk
(3)~ t !Alk

2~ t !Gi j ~ t,t !, ~64!

where we have usedGlk(0,t)5Alk
2(t). Taking into account

equations forX(t) and M (t), this gives rise to a total of
8 f 3

14 f 2
17 f 13 equations, that is 97 for a 2D system.

In practice, having found a periodic orbit and for a given
t0 along this orbit, the coefficientC1(T,t0) is computed in
two steps:

~1! achieve the SVD decomposition of the matrixA,
appearing on the left-hand side of Eq.~54!, and compute
the projector matrix appearing on the right-hand side of
Eq. ~60!;

~2! integrate the differential set~63! along the periodic
orbit ~starting at point depicted byt0). At any timet, use the
preceding SVD decomposition to obtain a solutionX0 and
the projector matrix to get the true solution@A2(t),B2(t)#
and thus@A1(t),B1(t)#, using Eq.~60!.

Finally, the coefficient C1(T,t0), being a smooth
function of t0, the average over timet0, leading to the\
correction termC1(T), can be handled by any conventional
integrator.
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V. TRACE OF THE GREEN’S FUNCTION G„E…

Steps leading to the semiclassical contributionGl(E)
from a given periodic orbit to the trace of the Green’s func-
tion G(E) are identical to those giving theGl(q,q0 ,E) ex-
pression, so thatGl(E) reads

Gl~E!5
1

i\

T0

udet@m~T0!21#u1/2
expF i

\
Sl~E!2 i

p

2
m l G

3$11 i\@C1~T0!1C1
T→E~T0!#1O~\2!%, ~65!

whereC1
T→E(T) is given by

C1
T→E~T0!5

1

2Wl
(2) @~C0

(1)!2
1C0

(2)#

2
Wl

(3)C0
(1)

2~Wl
(2)!2

2
Wl

(4)

8~Wl
(2)!2

1
5

24

~Wl
(3)!2

~Wl
(2)!3

.

~66!

Wl
( i ) ~respectively,C0

( i )) are the Taylor coefficients of the
Wl(T) @respectively,C0(T)# expansion aroundT0.

Computation ofWl
( i ) is much the same as in the Green’s

function case, because the functional relation

]Wl~T!

]T
52E~T! ~67!

still holds for a given periodic orbit,E(T) being its energy as
function of its period, which is still given by the value of the
HamiltonianH taken at any point on the corresponding phase
space trajectoryX(t,T)5@q(t,T),p(t,T)#. Thus, the Taylor
expansion ofX(t,T) around the periodic orbitX(t,T0), will
lead to the same expressions forWl

( i ) coefficients@Eq. ~29!#
and for X(n)(t) equations@Eq. ~30!#. The only differences
with the preceding section arise from the boundary condi-
tions fulfilled by X(n)(t), deduced from the equation
X(0,T)5X(T,T), i.e.,X(t,T) is a periodic orbit of periodT.
The Taylor expansion of this relation leads to the following
conditions:

X(1)~0!5X(1)~T0!1Ẋ(0)~T0!,

X(2)~0!5X(2)~T0!1Ẍ(0)~T0!12Ẋ(1)~T0!,

X(3)~0!5X(3)~T0!1X& (0)~T0!13Ẍ(1)~T0!13Ẋ(2)~T0!.

~68!

Solutions of the differential set~30! still have the following
formal expressions~31!, which, inserted in the boundary
conditions~68!, leads to equations onX( i )(0) only:

@12M ~T0!#X(1)~0!5Ẋ(0)~T0!,

@12M ~T0!#X(2)~0!5Ẍ(0)~T0!12Ẋ(1)~T0!1F(2)~T0!,

@12M ~T0!#X(3)~0!5X& (0)~T0!13Ẍ(1)~T0!13Ẍ(2)~T0!1F(3)~T0!. ~69!

The matrix12M (T0) being singular, solving the preceding
linear equations need additional discussion, which, for sim-
plicity, will focus on X(1)(0) only. First, the nullspace of
12M (T0)Á is spanned bySẊ(0)(T0), which is obviously
orthogonal toẊ(0)(T0), the right-hand side of the equation
for X(1)(0), thus showing that this equation admits solutions.
Then, the nullspace of12M (T0) being spanned byẊ(0)(T0),
the whole set of solutions reads

X(1)~0!5X0
(1)~0!1aẊ(0)~T0!, ~70!

whereX0
(1)(0) is a particular solution of the equation. Actu-

ally, the termaẊ(0)(T0) corresponds to a displacement of
the initial conditions along the flow, which, of course, gives
back the same periodic orbit~at first order inT2T0). We
thus expect that this term has a vanishing contribution to
Wl

(2) , which is easily verified when inserting the general
solution in theWl

(2) expression~taken at timet5T0):

Wl
(2)

52@X0
(1)~0!2Ẋ(0)~T0!1aẊ(0)~T0!#•“H@X(0)~T0!#

52X0
(1)~0!•“H@X(0)~T0!# ~71!

because of the Hamilton’s equationsẊ(0)(T0)
5S“H@X(0)(T0)#.

These two properties also hold in the cases ofX(2)(0) and
X(3)(0), but areslightly more complicated to establish be-
cause the right-hand sides of the equations involveF( i )(T0)
and derivatives ofX( i )(T0).

Thus, integrating the same differential sets that were used
for G(q,q0 ,E), one is able to compute the first four deriva-
tives of the action,Wl

( i ) , with respect to the period.
Starting from theC0

(0)(T) expression

C0
(0)~T!5 ln T2

1
2 lnu]ETu2 1

2 lnudet@m~T!21#u ~72!

and using the fact that]ET51/]TE521/]T
2Wl , one obtains
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C0
(1)~T0!5

1

T0
1

1

2

Wl
(3)

Wl
(2)

2
1

2

d

dT
lnudet@m~T!21#u,

C0
(2)~T0!52

1

T0
2

1
1

2

Wl
(4)

Wl
(2)

2
1

2 S Wl
(3)

Wl
(2)D 2

2
1

2

d2

dT2
lnudet@m~T!21#u, ~73!

which means that one is left with the calculation of derivatives of lnudet@m(T)21#u with respect to the periodT. As shown in
the Appendix, det@m(T)21# is given by the determinant of the 2f 32 f matrix N(T) defined as follows:

N~T!5M ~T!2@12Pi~T!2P'~T!#, ~74!

where we have introducedPi(T) @respectively,P'(T)# the projector on the direction parallel to the flow~respectively,
perpendicular to the energy shell!, more precisely, thePi(T) andP'(T) expressions are

Pi5ei•ei
Á and P'5e'•e

'

Á
52SPiS, ~75!

whereei is the unit vector tangent to the flow at initial~and thus final! time ande'5Sei . Now, using again formula~36!,
derivatives of det@m(T)21# with respect to the period read

d

dT
$det@m~T!21#%5TrS N~T0!21

dN~T0!

dT D ,

d2

dT2
$det@m~T!21#%5TrS N21~T0!

d2N~T0!

dT2
2N~T0!21

dN~T0!

dT
N~T0!21

dN~T0!

dT D ~76!

with

dN~T0!

dT
5

dM~T0!

dT
1

dPi~T0!

dT
2S

dPi~T0!

dT
S,

d2N~T0!

dT2
5

d2M ~T0!

dT2
1

d2Pi~T0!

dT2
2S

d2Pi~T0!

dT2
S. ~77!

As seen previously~Sec. III B!, dM(T0)/dT andd2M (T0)/dT2 are expressed in terms of the coefficientsM ( i )(t) of the Taylor
expansion of the monodromy matrixM (t,T) @associated with the periodic orbitX(t,T) of periodT# around the periodic orbit
X(0)(t) of periodT0, see Eq.~39!.

Inserting the Taylor expansion ofẊ(T) aroundT0 in thePi(T) expression, namely,

Pi~T!5
1

iẊ~T!i2
Ẋ~T!•Ẋ~T!Á, ~78!

one obtains the derivatives ofPi(T) with respect toT:

dPi~T0!

dT
5

1

iẊ(0)i2
~Ẋ(1)•Ẋ(0)Á

1Ẋ(0)•Ẋ(1)Á

!22
Ẋ(0)Á

•Ẋ(1)

iẊ(0)i2
Pi~T0!,

d2Pi~T0!

dT2
5

1

iẊ(0)i2
~Ẋ(2)•Ẋ(0)Á

1Ẋ(0)•Ẋ(2)Á

12Ẋ(1)•Ẋ(1)Á

!1S 8
~Ẋ(0)Á

•Ẋ(1)!2

iẊ(0)i4
22

Ẋ(0)Á

•Ẋ(2)

iẊ(0)i2
22

Ẋ(1)Á

•Ẋ(1)

iẊ(0)i2 DPi~T0!

24
Ẋ(0)Á

•Ẋ(1)

iẊ(0)i4
~Ẋ(1)•Ẋ(0)Á

1Ẋ(0)•Ẋ(1)Á

!,

~79!
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where allẊ( i ) are evaluated at timet50.
Gathering the preceding expressions into Eq.~76! allows

us to compute ln det@m(T)21# derivatives, which, inserted
together with derivatives of the action, in Eq.~73! gives the
numerical values forC0

(1)(T0) and C0
(2)(T0), which finally

leads to the additional\ correctionC1
T→E(T0).

VI. APPLICATION TO THE 2D HYDROGEN ATOM
IN A MAGNETIC FIELD

The hydrogen atom is one example of a quantum system
whose classical counterpart depicts a chaotic behavior and
has been widely studied~see, e.g., Ref.@4# for a complete
review!. It has now become a very useful tool for testing new
ideas and tools in the quantum chaos area, both on the semi-
classical@20,23# or universality @24# points of view, espe-
cially because computing very highly excited states has be-
come a standard task on a regular workstation, allowing the
semiclassical regime to be reached easily. Even if one would
have preferred to work with the real hydrogen atom~i.e., the
three-dimensional one!, in this paper we will focus on the
two dimensional hydrogen atom in a magnetic field, because
taking into account invariance by rotation around the mag-
netic field, gives rise to centrifugal terms in the Hamiltonian
~typically L2\2/2r 2) which would also contribute to\ cor-
rections and would need a study on its own. One must also
notice that, even if the classical dynamics are identical for
both cases, the fact that the magnetic field axis is no longer a
rotation axis in the 2D case gives rise to slight modifications
in the Maslov indices@18,23,25#.

A. Quantum and Classical Properties

In atomic units the Hamiltonian of the 2D hydrogen in a
magnetic field reads

H5
1

2
p2

2
1

Ax2
1y2

1
1

8
g2y2, ~80!

whereg5B/B0, with B052.353105T. The classical coun-
terpart of this Hamiltonian has a scaling property, that is, if
we define new variables by

r̃5g2/3r,

p̃5g21/3p,

t̃ 5gt, ~81!

we obtain a new HamiltonianH̃ given by

H̃5g22/3H5

p̃2

2
2

1

Ax̃2
1 ỹ2

1

ỹ2

8
, ~82!

which does not depend ong anymore. The classical dynam-
ics of this Hamiltonian is entirely fixed by the scaled energy
e given by

e5g22/3E. ~83!

All properties of the classical trajectories of the original
Hamiltonian can be deduced from the scaled dynamics using
the scaling transformation~81!. From the quantum point of
view, this scaling introduces an effective\ value, which is
easily seen on the scaled Schro¨dinger equation,H̃c5ec, for
a fixed scaled energye:

F2

g2/3

2
D r̃2

1

Ax̃2
1 ỹ2

1

ỹ2

8 Gc5ec. ~84!

Thus, the effective\ is given byg1/3 and so at a fixed value
of the scaled energye, the semiclassical limit is obtained
wheng tends to 0.

The singularity in the classical equations of motion due to
the divergence of the Coulomb potential atr50 is regular-

ized using the semiparabolic coordinates (u5Ar̃ 1 x̃,v

5Ar̃ 2 x̃), giving rise to the following effective classical
Hamiltonian@4,26#:

H5
1
2 pu

2
1

1
2 p

v

2
2e~u2

1v
2!1

1
8 u2

v
2~u2

1v
2!, ~85!

the trajectories corresponding to the original problem are ob-
tained when fixing total energyH52. The associated quan-
tum Hamiltonian reads

Ĥ~\ !52
\2

2 S ]2

]u2
1

]2

]v
2D

2e~u2
1v

2!1
1

8
u2

v
2~u2

1v
2!, ~86!

which separates into kinetic and potential energy, so that the
semiclassical formula derived in the preceding sections ap-
plied to the associated quantum Green’s functionG(z,\), the
hydrogen in a magnetic field being recovered forz52 ~ac-
tually z/2 corresponds to the nucleus charge!

G~z,\ !5
1

z2Ĥ~\ !
5(

t

ut,\&^t,\u
z2lt~\ !

, ~87!

whereut,\& is an ~normalized! eigenvector ofĤ(\) for the
eigenenergylt(\), t representing the set of quantum la-
bels, i.e., level number and symmetry properties~see below!,
describingut,\&. The matrix element̂quG(z,\)uq0&, where
q5(u,v) then reads

^quG~z,\ !uq0&5(
t

ct,\~q!ct,\~q0!
1

z2lt~\ !
, ~88!

wherect,\(q)5^qut,\& has been supposed to be real, with
Ĥ(\) being invariant underp→2p. Takingz5l on the real
axis, the imaginary part of̂quG(z,\)uq0&, becomes

2
1

p
Im^quG~l,\ !uq0&5(

t
ct,\~q!ct,\~q0!d@l2lt~\ !#

~89!
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to which any classical path going fromq to q0 at energyl,
gives the following contribution@see Eq.~25!#:

2
1

p
Im^quG~l,\ !uq0& l5

2

~2p\ !3/2
Al H cosS 1

\
Sl1f l D

2\Cl sinS 1

\
Sl1f l D J ~90!

provided it is far enough from any bifurcation and thatq and
q0 are not conjugate points for this trajectory. Amplitudes
and phases being defined by

Al5
1

uWl
(2) detJ1~T0!u1/2

,

Sl5S~q,q0 ,l !,

f l52
p

2 S ñ l1
1

2D ,

Cl5C1~q,q0 ,T0!1C1
T→E~q,q0 ,T0!. ~91!

Neglecting\ corrections in Eq.~90!, the Fourier trans-
form with respect to the variablez51/\ of the following
function:

g0~z !5
~2p !3/2

2z3/2
32

1

p
Im^quG~l,z !uq0&

5
~2p !3/2

2 (
t

ct,z~q!ct,z~q0!z23/2d@l2lt~z !#

~92!

will depict peaks at the classical actionsSl /2p, with complex
amplitudeAl expifl/2, which has been extensively used to
compare the exact quantum Green’s function with its semi-
classical estimation at the leading order in\. In the same
way, the Fourier transform of the following function:

g1~z !52
~2p !3/2

2 (
t

ct,z~q!ct,z~q0!z21/2

3d@l2lt~z !#2z(
l

Al cos~zSl1f l ! ~93!

will also depict peaks at the classical actionsSl /2p, whose
complex amplitude, given by

1

2i
AlCl expif l ~94!

allows us to extract the numerical value of the\ correction
Cl .

The energyl being fixed, thed@l2lt(z)# function se-
lects the valueszt(l) of z for which l is an eigenvalue,
transforming Eqs.~92! and ~93! into

g0~z !5
~2p !3/2

4 (
t

ct,z~q!ct,z~q0!

^t,zup2/2ut,z&
z3/2d@z2zt~l !#,

g1~z !52
~2p !3/2

4 (
t

ct,z~q!ct,z~q0!

^t,zup2/2ut,z&

3z5/2d@z2zt~l !#2z(
l

Al cos~zSl1f l !.

~95!

Moving to the case of the trace of the Green’s function,
the preceding relations~89! and ~90! become

2
1

p
Im Tr G~l,\ !5(

t
d@l2lt~\ !# ~96!

and, see Eq.~65!:

2
1

p
Im Tr G~l,\ ! l52

1

p\
A l

trH cosS 1

\
Sl

tr
1f l

trD
2\C l

tr sinS 1

\
Sl

tr
1f l

trD J , ~97!

whereSl
tr is the action of the periodic orbit and

A l
tr
5

T0

udet@m~T0!21#u1/2
,

f l
tr
52

p

2
m l ,

C l
tr
5C1~T0!1C1

T→E~T0!, ~98!

so that the classical quantitiesSl
tr , A l

tr , and the\ correction
C l

tr can be obtained by taking the Fourier transform of the
following expressions with respect to the variablez:

g0
tr~z !5

p

2 (
t

1

^t,zup2/2ut,z&
z2d@z2zt~l !#,

g1
tr~z !52

p

2 (
t

1

^t,zup2/2ut,z&
z3d@z2zt~l !#

2z(
l

A l
tr cos~zSl

tr
1f l

tr!. ~99!

B. Computing quantum quantities

Focusing on thel52 value, the 2D hydrogen in a mag-
netic field case, one has to find effective\ values for which
2 is an eigenvalue of the Schro¨dinger equation
Ĥ(\)c(u,v)52c(u,v), which is conveniently written as
follows:
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F21e~u2
1v

2!2
1

8
u2

v
2~u2

1v
2!Gc~u,v !

5\2F2
1

2 S ]2

]u2
1

]2

]v
2D Gc~u,v ! ~100!

such thats5\2 appears to be a solution of a generalized
eigenvalue problem (A2sB)c50, with

A521e~u2
1v

2!2
1

8
u2

v
2~u2

1v
2!,

B52
1

2 S ]2

]u2
1

]2

]v
2D . ~101!

The preceding operatorsA, B, and thusĤ(\) are invariant
under all transformations belonging to the symmetry group
C4v

, leading to four nondegenerate series of energy levels,
labeled EEE, EEO, OOE, and OOO according to Ref.@27#
and a twofold degenerate series EO and OE, where E means
even and O means odd, the first two letters referring to the
u→2u and v→2v symmetries, the third letter tou↔v.
Actually, because of the definition of the semiparabolic co-
ordinates (u,v), only eigenvectors invariant under the parity
symmetryc(2u,2v)5c(u,v) correspond to eigenvectors
of the 2D hydrogen in magnetic field, allowing us, in prin-
ciple, to drop the OE and EO series@4,26#. However, from
the semiclassical point of view, one would have to extend all
preceding sections to symmetry-projected propagator and

Green’s function@28#, and thus to take into account symme-
try properties of the classical Green’s function, which is be-
yond the scope of this paper. For this reason, we also include
the OE and EO series in the remainder of this paper.

Finally, eigenvalues and eigenvectors are obtained by
solving the matrix representation of the generalized eigen-
value problem (A2sB)c50 in sturmian bases~one for
each symmetry class! @4#, using the Lanczos algorithm. Typi-
cally, we have computed effective\ values ranging from 0
to 124, which for scaled energye520.1 corresponds to
roughly 61 000 eigenvalues in total. One must notice that the

generalized eigenvectorsut,\̃&, for a fixed\ value, are ac-
tually orthogonal for the scalar product defined by operator
B5p2/2:

^t,\̃u
p2

2
ut8,\̃ &5dtt8

~102!

so that theut,\̃& and ut,\& relations read

ut,\&5

1

A^t,\̃ut,\̃&
ut,\̃ &,

ut,\̃&5

1

A^t,\uBut,\&
ut,\&, ~103!

giving rise to g0,1(z) ~95! and g0,1
tr (z) ~99! expressions in

terms of the computed eigenvectors:

g0~z !5
~2p !3/2

4 (
t

c̃t,z~q!c̃t,z~q0!z3/2d@z2zt~2!#,

g1~z !52
~2p !3/2

4 (
t

c̃t,z~q!c̃t,z~q0!z5/2d@z2zt~2!#2z(
l

Al cos~zSl1f l !,

g0
tr~z !5

p

2 (
t

^t,z̃ ut,z̃& z2d@z2zt~2!#,

g1
tr~z !52

p

2 (
t

^t,z̃u t,z̃& z3d@z2zt~2!#2z(
l

A l
tr cos~zSl

tr
1f l

tr!. ~104!

As explained previously, the Fourier transform of the two
functionsg1 andg1

tr will depict peaks at classical actions and
\ corrections are obtained from the amplitude of these peaks.
However, in the case of signal given byc(t)
5(an exp(ivnt), it is now well known that the harmonic
inversion method is very well suited and is much more pow-
erful than the conventional Fourier transform to extract un-
known frequenciesvn and amplitudesan @20#. In our case
the signals are the two functionsg1(z) andg1

tr(z), which are
of the form( lAlCl sin(zSl1fl) besides contributions from all
other types of orbits~ghost, continuous family, etc.!.

C. \ corrections for G„q,q0,2…

Orbits having initial and final points at the nucleus~i.e.,
q5q050) are of special interest because they are involved
in semiclassical estimation of the photoionization cross sec-
tion @25,29#, which can be directly compared to experimental
results @30,31#. Even if the full \ expansion of the cross
section does not reduce toG(0,0,2) contributions, all closed
orbits are well known and classified, so that this case remains
a nice example of\ corrections forG(q,q0,2).

The Fourier transforms of both functionsg0(z) ~upper
plot, solid line! andg1(z) ~lower plot, solid line!, for scaled
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energy e520.1, are displayed in Fig. 3. More precisely,
g0(z), and g1(z) being known only on a finite interval
@0,zmax#, we have plotted the modulus of their windowed
Fourier transforms, defined as follows:

F0~s!5
6

~zmax!
3E0

zmax
dz z~zmax2z !g0~z !e2 i2psz,

F1~s!5
6

~zmax!
3E0

zmax
dz z~zmax2z !g1~z !e2 i2psz.

~105!

As expected, they depict peaks at the classical actions of
closed orbits, whose trajectories in (u,v) plane have been
inserted in the figure, the black circle corresponding to the
nucleus position. In the figure, the dotted lines corresponds
to the semiclassical estimations of the same functions using
the classical properties given by Table I. The closed orbits
being either half of a periodic orbit or a periodic orbit, we
label a given close orbit with the four-disk code of the cor-
responding periodic orbit@32,33#.

For the leading order in\ ~upper plot!, as expected, the
agreement between the quantum results and the semiclassical
estimation is excellent. For the first order\ correction, the
agreement is very good, but one can notice that there is a

discrepancy for the amplitude of the last two peaks. This is
not due to errors or inaccurate calculations in the semiclas-
sical estimation, but rather a manifestation of the limitations
of the Fourier transform. To emphasize this point, we have
used the harmonic inversion to extract, for each of these
orbits, the\ correction coefficientsC l

HI , from the quantum
function g1(z). The results are compared to the classical
calculationCl in Table II. The agreement is excellent, the
relative error on the amplitude being lower than 1022. As
usual, the phase extracted using harmonic inversion, being
the most sensitive quantity, the agreement on the sign of the
Cl , rather nice for the first four orbits, decreases rapidly.
Finally, one must mention that this good agreement between
quantum and semiclassical calculations has also been found
when considering quantum Green’s functionsG(q,q0,2)
with other initial or final points.

D. \ corrections for Tr G„q,q,2…

Still working at scaled energye520.1, Fig. 4 depicts the
modulus of the windowed Fourier transforms ofg0

tr(z) and
g1

tr(z), F0
tr ~upper plot, solid line!, andF1

tr ~lower plot, solid
line!, defined, as previously, as follows:

F0
tr~s!5

6

~zmax!
3E0

zmax
dz z~zmax2z !g0

tr~z !e2 i2psz,

F1
tr~s!5

6

~zmax!
3E0

zmax
dz z~zmax2z !g1

tr~z !e2 i2psz.

~106!

FIG. 3. Modulus of the windowed Fourier transformsF0 ~solid
line, upper plot! andF1 ~solid line, lower plot!, see Eq.~105!, of the
quantum functionsg0 ~leading order in\) and g1 ~first order \
correction!, see Eq.~104!, associated with the quantum Green func-
tion G(q,q0,2) in the case of the 2D hydrogen atom in a magnetic
field and for q5q050 ~see Sec. VI for all details!. As expected
from semiclassical formula~25!, peaks are appearing at action~i.e.,
*p dq/2p) corresponding to classical orbits having initial and final
positions at the nucleus. For the first five ones, the trajectory in the
(u,v) plane are also plotted, the nucleus being depicted by the
black circle. The agreement with the semiclassical estimations of
these functions~dotted lines! is excellent, even if discrepancies in
the amplitude of last two peaks in the lower plot can be observed.
These are actually a manifestation of limitation of the Fourier trans-
form and not inaccurate calculations of the\ corrections, as it is
emphasized by the quantitative comparison~using harmonic inver-
sion! displayed by Table II.

FIG. 4. Modulus of the windowed Fourier transformsF0
tr ~solid

line, upper plot! andF1
tr ~solid line, lower plot!, see Eq.~106!, of the

quantum functionsg0
tr ~leading order in\) and g1

tr ~first order \
correction!, see Eq.~104!, associated with the trace of the quantum
Green’s function TrG(q,q,2) in the case of the 2D hydrogen atom
in a magnetic field~see Sec. VI for all details!. As expected from
semiclassical formula~65!, peaks are appearing at action~i.e.,
rp dq/2p) corresponding to classical periodic orbits, whose trajec-
tories in the (u,v) plane are plotted~the nucleus being depicted by
the black circle!. The agreement with the semiclassical estimation
~dotted lines! is excellent, as it is emphasized by the quantitative
comparison~using harmonic inversion! displayed by Table IV.
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The trajectories in the (u,v) plane associated with the peaks
are also plotted in the figure. The classical properties of the
corresponding periodic orbits are displayed by Table III.
Again the agreement is excellent between the quantum re-
sults ~solid lines! and the semiclassical estimation~dotted
lines!. The quantitative comparison between the classical co-
efficientsC l

tr and the valuesC l
HI extracted from the quantum

functiongtr(z) is given in Table IV. The agreement is excel-
lent for the amplitude of the coefficients and is rather good
for their phases, which emphasized the validity of the semi-
classical formula developed in the preceding sections, espe-

cially the additional term arising from the Jacobian describ-
ing the change from the Cartesian to local~along the periodic
orbit! coordinates@see Eq.~48!# and which contributes to a
large part of the\ correction for the present orbits.

VII. CONCLUSION

In summary, we have explained in this paper how to ef-
fectively compute\ corrections in the semiclassical expan-
sions of the propagatorK(q,q0 ,T), its traceK(T), the quan-
tum Green’s functionG(q,q0 ,E) and its traceG(E) for
chaotic systems with smooth potential. The method is based
on the classical Green’s functions associated to the relevant
trajectories, that is either going fromq to q0 in the propaga-
tor case or periodic orbits forK(T), together with adapted
boundary conditions. We have shown how all quantities can
be obtained by integrating, using the standard Runge-Kutta
method, sets of differential equations. We have also shown

TABLE I. Classical properties of closed orbits involved in the
semiclassical expansion of the quantum Green’s functionG(q,q0,2)
of the 2D hydrogen atom in a magnetic field, for the caseq5q0

50. Because each closed orbit corresponds either to a half-periodic
orbit or a periodic orbit, we have labeled them with the four-disk
code of the corresponding periodic orbit@32,33#. Their trajectories
in the (u,v) plane are shown in Fig. 3.Sl is the reduced action~i.e.,
*p dq/2p), Tl is the period,Al is the leading semiclassical ampli-

tude,ñ l is the Maslov index,Cl is the first order\ correction, given
by the sumC1(0,0,Tl)1C1

T→E(0,0,Tl), see Eq.~91!.

Code Sl Tl Al ñ l

13 1.094 570 5 2.425 093 3 0.295 342 6 1

1243 1.564 998 2 3.600 137 4 0.152 365 0 2

121343 1.791 060 7 4.286 257 7 0.109 503 9 3

12124343 1.933 522 1 4.796 775 8 0.093 368 7 4

1212134343 2.031 948 2 5.214 323 3 0.086 142 0 5

Code C1(0,0,Tl) C1
T→E(0,0,Tl) Cl

13 20.202 769 9 0.016 539 4 20.186 230 5

1243 20.119 409 3 0.019 741 2 20.099 668 1

121343 20.148 282 2 0.041 175 5 20.107 106 7

12124343 20.172 990 6 0.071 748 0 20.101 242 7

1212134343 20.192 904 3 0.117 464 5 20.075 439 8

TABLE II. Numerical comparison between the theoretical\
correctionsCl for the quantum Green’s functionG(q,q0,2) of the
2D hydrogen atom in a magnetic field, for the caseq5q050 and
the numerical coefficientsC l

HI extracted from exact quantum func-
tion g1(z) @Eq. ~104!# using harmonic inversion~taking into ac-
count multiplicity!. The agreement is excellent for the amplitudes
and rather nice on the phases, thus emphasizing the validity of the
present theory. That the agreement becomes less good for the last
orbit only shows the limitations of the harmonic inversion method,
which usually appear on the phase.

Code Cl uC l
HI u Rel. error argCl

HI

13 20.186 230 5 0.1864 '831024 1.0023p

1243 20.099 668 1 0.0995 '231023 1.013p

121343 20.107 106 7 0.1072 '931024 1.023p

12124343 20.101 242 7 0.1016 '431023 1.043p

1212134343 20.075 439 8 0.0761 '931023 1.143p

TABLE III. Classical properties of periodic orbits involved in
the semiclassical expansion of the trace of the quantum Green’s
function TrG(q,q,2) of the 2D hydrogen atom in a magnetic field.
Their trajectories in the (u,v) plane are shown in Fig. 4.Sl

tr is the
reduced action~i.e., rp dq/2p), Tl is the period,A l

tr is the leading
semiclassical amplitude,m l is the Maslov index,C l

tr is the first order
\ correction, given by the sumC1(Tl)1C1

T→E(Tl), see Eq.~98!.

Code Sl
tr Tl

tr A l
tr m l

1234 2.709 851 3 6.204 155 6 0.827 881 4 4

1243 3.129 996 4 7.200 274 7 0.616 496 8 4

12434 3.227 168 1 7.541 640 6 0.548 479 1 5

123434 3.272 238 1 7.748 406 8 0.555 880 6 6

Code C1(Tl) C1
T→E(Tl) C l

tr

1234 20.622 577 0.026 912 20.595 665

1243 0.166 821 0.051 665 0.218 486

12434 20.203 536 0.058 541 20.144 995

123434 21.417 05 0.072 41 21.344 64

TABLE IV. Numerical comparison between the theoretical\

correctionsC l
tr for the trace of the quantum Green’s function

Tr G(q,q,2) of the 2D hydrogen atom in a magnetic field and the
numerical coefficientsC l

HI extracted from exact quantum function
g1

tr(z) @Eq. ~104!# using harmonic inversion~taking into account
multiplicity!. The agreement is excellent for the amplitudes and
rather nice on the phases, thus emphasizing the validity of the
present theory, especially the additional term due to the transforma-
tion from the Cartesian coordinates to the local frame along the
periodic orbit@see Eq.~48!#.

Code C l
tr uC l

HI u Rel. Error argC l
HI

1234 20.595 665 0.5958 '231024 1.0053p

1243 0.218 486 0.2178 '331023 0.043p

12434 20.144 995 0.147 '131022 0.933p

123434 21.344 64 1.347 '231023 0.983p
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that in the derivation of the semiclassical expansion forK(T)
@and thusG(E)#, starting from the Feynman path integral,
one must take into account additional terms, which affect
only \ correction coefficients. This is emphasized by the
excellent agreement observed when comparing, in the case
of the 2D hydrogen atom in a magnetic field, our theoretical
results with the numerical coefficients extracted from exact
quantum data, using the harmonic inversion. Obviously,
there are still many points to be developed. Besides the few
cases, such as self-retracing orbits or continuous families of
orbits, needing specific extensions, it would be very interest-
ing to understand how to include continuous and discrete
symmetries. Also, going into the extended phase space
(q,t,p,2E) @22#, it would be possible to get a better under-
standing of similarities observed between the differential sets
leading, on one side to the\ corrections for the propagator
and its trace and, on the other side to the additional terms
arising in the\ corrections for the quantum Green’s function
and its trace.
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cherche 8552 du CNRS.

APPENDIX: FEW PROPERTIES OF M„T…

In this Appendix, we consider an isolated unstable peri-
odic orbit of periodT. We shall use the notationsei ande'

for the units vectors, which are, respectively, parallel to the
flow and perpendicular to the energy shell at the initial point.
From Hamilton’s equations, we have thatM (T)•ei5ei , i.e.,
ei is an eigenvector of the matrixM (T) for the eigenvalue 1.
The symplectic equation fulfilled byM (T), namely,
M (T)Á•S•M (T)5S, implies that, if ei and ej are two
eigenvectors for the eigenvaluesl i and l j , we have the
following properties:

M ~T!Á•~Sei !5
1

l i
~Sei !,

~l il j21!ei
ÁSej50, ~A1!

showing thus that 1/l i is an eigenvalue ofM (T)Á and, from
that, ofM (T). In addition,M (T) being a real matrix,l̄ j and
1/l̄ j are also eigenvalues ofM (T), so that the nontrivial
eigenvalues~i.e., Þ1) either fall in the (l,1/l) pair or in
quadruplet (l,1/l,l̄,1/l̄).

In the case ofei5ei , the two preceding equations~A1!
imply that e' is an eigenvector ofM (T)Á @but not necessar-
ily of M (T)# for the eigenvalue 1 and that for everyl j
Þ1, ej is an orthogonal to e' . In the basis
(ei ,e' ,e1 , . . . ,e2 f 22), M (T) entries then read

M ~T!53
1 a i 0 0 ••• 0

0 1 0 0 ••• 0

0 a1 l1 0 ••• 0

0 a2 0 l2 ••• 0

A A A A � A

0 a2 f 22 0 0 ••• l2 f 22

4 , ~A2!

where we have supposed that all eigenvalues are simple. For
degenerated eigenvalues,M (T) would be block diagonal.
For a generic periodic orbit,a i and a i are nonvanishing
emphasizing thus thate' is not an eigenvector ofM (T).
Introducing the vectorẽ' defined as follows:

ẽ'5e'1 (
j 51

2 f 22

b jej with b j5
a j

12l j
~A3!

one immediately gets that

M ~T!ẽ'5 ẽ'1a iei . ~A4!

In the casea i50, we have thus found another eigenvector
for the eigenvalue 1, which means that a small displacement
of initial conditions in theẽ' direction leads to another pe-
riodic motion with the same periodT, and thus that the pe-
riodic orbit is actually embedded in a continuous family. In-
deed, using notations from Sec. V, one can show that

X(1)~0!52
iẊi
a i

ẽ' ~A5!

so that we have

a i5iẊi2]ET. ~A6!

In Sec. V, one needs to compute derivatives with respect
to the periodT of det@m(T)21#, whose expression in terms
of the nontrivial eigenvalues of the monodromy matrix reads

det@m~T!21#5 )
j 51

2 f 22

~l j21!. ~A7!

IntroducingPi andP' the projectors on the directionsei and
e' , more precisely,

Pi5ei•ei
Á and P'5e'•e

'

Á ~A8!

ones defines the matrixN(T) as follows:

N~T!5M ~T!2~12Pi2P'!. ~A9!

In the basis (ei ,e' ,e1 , . . . ,e2 f 22), using orthogonality
betweene' andej , entries ofN(T) read
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N~T!53
1 a i g1 g2 ••• g2 f 22

0 1 0 0 ••• 0

0 a1 l121 0 ••• 0

0 a2 0 l221 ••• 0

A A A A � A

0 a2 f 22 0 0 ••• l2 f 2221

4 ,

~A10!

whereg j5ei
Á•ej , which actually could be related to thea j ,

but this is not necessary in our case. This shows that the
determinant ofN(T) is exactly) j 51

2 f 22(l j21). The main ad-
vantage of the matrixN(T) is that its expression~A9! does
not involve the eigenvectors or the eigenvalues ofM (T), so
that its determinant can be directly computed, without the
diagonalization stage required when getting det@m(T)21#
through the eigenvaluesl j . Furthermore, derivatives of
ln detN(T) with respect to the periodT are also straightfor-

ward to obtain, knowing derivatives ofM (T) and of Ẋ(T),
whereas derivatives ofl j would require the knowledge of
those of the eigenvectorsej .
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2.3.3 Prendre en compte les symétries

En outre, pour pouvoir établir des comparaisons avec des résultats expérimentaux, j’ai
été amené à prendre en compte l’effet des symétries, quelles soient discrètes (parité) ou
continues (invariance par rotation). Dans le premier cas, la théorie des groupes fournit
directement les modifications à apporter pour calculer les corrections en ~ aux formules de
traces restreintes à des états appartenant à une des représentations du groupe de symétrie.
Le cas de l’invariance par rotation est plus délicat puisque, pour une valeur donnée du mo-
ment angulaire, il faut prendre en compte l’effet des termes centrifuges dans le hamiltonien,
typiquement ~

2L2/2/r2, qui dans la limite ~ → 0 ne modifient pas la dynamique classique,
mais contribuent aux corrections. Là encore, j’ai montré comment prendre proprement en
compte ces termes, en particulier leur singularité en r = 0, pour calculer leur contribution
aux corrections au premier ordre en ~ aux formules de trace. Les comparaisons numériques,
dans le cas de l’hydrogène en champ magnétique, ont montré l’excellent accord entre ces
prédictions et les calculs quantiques exacts.
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Real atomic systems, like the hydrogen atom in a magnetic field or the helium atom, whose classical
dynamics are chaotic, generally present both discrete and continuous symmetries. In this paper, we explain how
these properties must be taken into account in order to obtain the proper �i.e., symmetry projected� � expansion
of semiclassical expressions like the Gutzwiller trace formula. In the case of the hydrogen atom in a magnetic
field, we shed light on the excellent agreement between present theory and exact quantum results.
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In the studies of the quantum properties of systems whose
classical counterparts depict chaotic behavior, semiclassical
formulas are essential links between the two worlds, empha-
sized by Gutzwiller’s work �1�. More specifically, starting
from Feynman’s path formulation of quantum mechanics, he
has been able to express the quantum density of states as a
sum over all �isolated� periodic orbits of the classical dynam-
ics. This formula, and extensions of it, have been widely
used to understand and obtain properties of the energy levels
of many classically chaotic systems, among which is the hy-
drogen atom in a magnetic field �2,3�, the helium atom
�4–6�, or billiards �7–10�.

At the same time, because the trace formula �and its varia-
tions� as derived by Gutzwiller only contained the leading
term of the asymptotic expansion of the quantum level den-
sity, the systematic expansion of the semiclassical propagator
in powers of � has been the purpose of several studies
�9–12�, but which focused on billiards, for which both clas-
sical and quantum properties are easier to calculate.

In a recent paper �13�, general equations for efficient com-
putation of � corrections in semiclassical formulas for a cha-
otic system with smooth dynamics were presented, together
with explicit calculations for the hydrogen atom in a mag-
netic field. However, only the two-dimensional case was
considered, because for the three-dimensional �3D� case, dis-
crete symmetries and centrifugal terms had to be taken into
account. Actually, this situation occurs in almost all real
atomic systems depicting a chaotic behavior �molecules, two
electron atoms…�, for which experimental data involve lev-
els having well defined parity, total angular momentum, and,
if relevant, exchange between particles. In particular, semi-
classical estimations of experimental signals like photoion-
ization cross sections are calculated with closed orbits with
vanishing total angular momentum, whereas they usually in-
volve P �L=1� quantum states, whose positions in energy are
shifted with respect to S �L=0� states. Furthermore, in recent
years, the development of the harmonic inversion method
makes it possible to extract the relevant quantities �position
of peaks, complex amplitudes� from both theoretical and ex-
perimental data with a much higher accuracy than with the
conventional Fourier transform �14�. In particular, it becomes
possible to measure the deviation of the exact quantum re-

sults from the semiclassical leading order predictions. Thus a
detailed semiclassical analysis of experimental results, be-
yond the leading order in �, requires the understanding and
the calculation of corrections due to both the discrete sym-
metries and centrifugal terms. In addition, we would like to
stress that even if the present analysis is made with the den-
sity of states, it can also be made with the quantum Green
function, which leads to expressions and numerical compu-
tations of the first order � corrections for physical quantities
like the photoionization cross section �15,16�, which could
either be compared to available experimental data �17,18�, or
become a starting point for refined experimental tests of the
quantum-classical correspondence in the chaotic regime.

� corrections and discrete symmetries have already been
discussed, but only for billiards �9,10,12�, whereas in the
case of systems with smooth dynamics a detailed study is
still lacking. Also, centrifugal terms and/or rotational sym-
metries have been considered by many authors, but either in
the case of integrable systems �19,20�, or for values of the
angular momentum comparable to the action of classical or-
bits �1,21,22�. From this point of view, the present study,
which focuses on fixed values of the quantum angular mo-
mentum and the effect of the centrifugal terms on � correc-
tions for systems with smooth chaotic dynamics, goes be-
yond the preceding considerations. More precisely, in this
paper, we explain how to take into account both discrete
symmetries and centrifugal terms in order to obtain a full
semiclassical description of the first order � corrections for
the 3D hydrogen atom in a magnetic field.

At first, in the case of a chaotic system, whose Hamil-
tonian H=p2 /2+V�q� is invariant under a group S of dis-
crete transformations �, the leading order of semiclassical
approximation for the trace of the Green function G�E�
=1/ �E−H�, restricted to the mth irreducible representation is
given by �23�

gm
sc�E� =

dm

i�
�

l

Tl

�Kl�
�

n

�m��l
n�g�l,n�

�0� �E� �1�

with

g�l,n�
�0� �E� =

1

�det�Al
n − 1��1/2exp� i

�
nSl − in�l

�

2
� , �2�

where the l sum is taken over all primitive �isolated� orbits
which become periodic through the symmetry operation �l*Electronic address: Benoit.Gremaud@spectro.jussieu.fr
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�i.e., final position �respectively, velocity� is mapped back to
initial position �respectively, velocity� by �l�. �m��l

n� is the
character of �l

n in the mth irreducible representation of di-
mension dm. Sl is the action of the orbit l , �l is the Maslov
index, Tl is the “period,” Al

n represents the Poincaré surface-
of-section map linearized around the orbit, and Kl is the sub-
group of S leaving each point of the orbit l invariant. Adding
first order � corrections, the preceding equation �1� becomes

gm
sc�E� =

dm

i�
�

l

Tl

�Kl�
�

n

�m��l
n�g�l,n�

�0� �E��1 + i�C�l,n�
tr � . �3�

Cl,n
tr can be derived by a detailed analysis of the stationary

phase approximations starting from the Feynman path inte-
gral, following the same steps as in Refs. �10,13� and reads
as follows:

Cl,n
tr = Cl,n

T→E +
1

nTl

	
0

nTl

dt0Cl,n�t0� , �4�

where Cl,n
T→E arises from the time to energy domain transfor-

mation. Cl,n�t0� �see Ref. �13� for the expressions� involves
the classical Green functions Gl,n�t , t��, i.e., the solutions of
the equations controlling the linear stability around the clas-
sical trajectory ql,n

cl �t�:


−
d2

dt21 −
�

2V

�q � q
�ql,n

cl �t���Gl,n�t,t�� = 1 ��t − t�� . �5�

The fact that the orbits are periodic after the symmetry trans-
formation �l

n determines the boundary conditions that the
classical Green functions Gl,n�t , t�� must fulfill, namely,

�
�l

−nGl,n�nTl,t�� = Gl,n�0,t��

Pt0
Gl,n�0,t�� = 0 ∀ t� � �0,nTl� ,

Qt0
�l

−nĠl,n�nTl,t�� = Qt0
Ġl,n�0,t��



�6�

where Pt0
is the projector along the “periodic” orbit at the

position depicted by time t0 and Qt0
=1−Pt0

. Of course, for
�l=1, one recovers the boundary conditions given in Ref.
�13�. Finally, all technical steps of Ref. �13� leading to effi-
cient computation of Gl,n�t , t�� and � corrections, that is, so-
lutions of sets of first order differential equations, can easily
be adapted to take into account these modified boundary con-
ditions.

As a numerical example, we have considered the 2D hy-
drogen atom in a magnetic field, at scaled energy �=−0.1 �2�.
More precisely, we have computed the trace of the quantum
Green function, using roughly 8000 states belonging to the
EEE representation �24� of the group D4, corresponding to
effective 1/� values ranging from 0 to 124 �see Ref. �13� for
further details�. In that case, the periodic orbit 1234 �25,26�
�see inset of the top of Fig. 1 for the trajectory in semipara-
bolic coordinates�, being �globally� invariant under a rotation
of angle � /2, gives rise to contributions in the semiclassical
approximation of the trace at all multiples of S1234 /4. In the
same way, the periodic orbit 1243 �see middle inset of Fig. 1�
being invariant under a rotation of angle �, contributions are

present at all multiples of S1243 /2. For both these orbits,
Table I displays the comparison of the present theoretical
calculation and the numerical coefficient Cl,n

HI, extracted from
the exact quantum Green function, using harmonic inversion
�13,14�. As one can notice, the agreement is excellent for the
amplitudes and rather good for the phases, which is the usual
behavior of harmonic inversion. Furthermore, the same
agreement has also been found for the other representations,
thus emphasizing the present approach for the calculation of
the first order � corrections when taking into account discrete
symmetries.

Contrary to the preceding, calculating first order � correc-
tions due to centrifugal terms is more complicated and is best
explained in the case of the 3D hydrogen atom in a magnetic

FIG. 1. �Color online � First order � correction to the semiclas-
sical approximation of the trace of the quantum Green function for
the hydrogen atom in a magnetic field for different values of the
magnetic number M , M =1/2 corresponding to the 2D case �13�.
Crosses depict the values extracted from the exact quantum func-
tion using harmonic inversion, whereas the solid line corresponds to
the classical results given by Eq. �10�. For the three different peri-
odic orbits, whose trajectories in the �u ,v� plane are plotted �the
nucleus being depicted by the black dot�, the agreement is excellent,
thus emphasizing the validity of Eqs. �9� and �10�.

TABLE I. Numerical comparison between the theoretical � cor-
rections Cl

tr for the trace of the quantum Green function, restricted to
the EEE representation, of the 2D hydrogen atom in a magnetic
field and the numerical coefficients Cl

HI extracted from exact quan-
tum function using harmonic inversion. The agreement is excellent
for the amplitudes and rather good on the phases, thus emphasizing
the validity of the present approach.

Code Cl
tr �Cl

HI� Rel. error arg Cl
HI

1
41234 −0.094 430 0.09445 �2	10−4 0.9996	�
1
21234 −0.361 689 0.3611 �2	10−3 0.996	�
3
41234 −0.400 555 0.3992 �3	10−3 1.005	�
1
21243 0.049 399 0.0493 �8	10−4 −0.075	�
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field. The regularized Hamiltonian in semiparabolic coordi-
nates, for fixed value M of the projection of the angular
momentum along the field axis, is given by �2�

H = −
�2

2
� �

2

�u2 +
�

2

�v
2 + 
1

4
− �M�2�� 1

u2 +
1

v
2��

− ��u2 + v
2� +

1

8
u2

v
2�u2 + v

2�

= H0 +
�2

2

�M�2 −

1

4
�U�u,v� . �7�

H0 is then the Hamiltonian of the 2D hydrogen atom in a
magnetic field. If U�u ,v� was regular, then the additional
first order � correction for the orbit l would simply be

−
1

2

�M�2 −

1

4
�	

0

Tl

dt U„ul�t�,vl�t�… . �8�

One must mention that in this case, the Langer transforma-
tion �27� of the coordinates �u ,v�→ (exp�−x� , exp�−y�) gives
rise to a Hamiltonian which does not separate into kinetic
and potential energies and for which no expressions for �
corrections are available.

On the other hand, the fact that U�u ,v� is singular im-
poses boundary conditions on both classical and quantum
dynamics. The classical trajectories have to make �smooth�
bounces near u=0 and v=0 and for vanishing values of �,
we expect the trajectories of H to be those of H0, but mapped
onto the reduced phase space �u
0,v
0�, i.e., making hard
bounces on the �u ,v� axis. From the quantum point of view,
depending on the parity of M, only wave functions belonging
to given representations of D4 are allowed. Thus first order �
corrections due to the singular part of the potential U, are
given by the preceding considerations on the symmetries,
whereas remaining corrections are given by Eq. �8�, where U

has to be replaced by a smooth counterpart, namely,

Ũ = lim
�→0+

1

2

 1

�u + i��2 +
1

�u − i��2 +
1

�v + i��2 +
1

�v − i��2� .

�9�

Actually, one can show that the preceding equation gives the
right answers for � expansion of the propagator of the free
particle �up to �3� and the harmonic oscillator �up to �2�, for
which analytical expressions for classical trajectories, classi-
cal Green functions, and quantum propagators exist �higher
orders have not been checked yet�. However, even if a de-
tailed analysis of the derivation of the trace formula in pres-
ence of centrifugal terms seems to show that the preceding

approach works in general cases, rigorous proof of Eq. �9� is
lacking.

Nevertheless, in the case of the 3D hydrogen atom in a
magnetic field, we have compared the first order � correc-
tions, for different periodic orbits and for different values of
the magnetic number M, with the present prediction, namely,

Cl
tr�M� = Cl

tr�2D� −
1

8
�4�M�2 − 1�	

0

Tl

dtŨ„ul�t�,vl�t�… .

�10�

The results are displayed in Fig. 1 for M =0,1,2 and for three
different orbits, namely 1234, 1243, and 12343, whose tra-
jectories in the �u ,v� plane are plotted. The solid line is the
theoretical result given by Eq. �10�, whereas the crosses are
the values extracted from the trace of the exact quantum
Green function, using harmonic inversion �for scaled energy
�=−0.1, roughly 8000 effective 1/� values ranging from 0 to
124�. As one can notice the agreement is excellent, thus giv-
ing strong support for the validity of Eqs. �9� and �10�. Fur-

thermore, the simplicity of the replacement Ũ may serve as a
guideline for a rigorous treatment of the � corrections arising
from the centrifugal terms. In particular, the calculation of
higher orders involves products of the derivatives of these
centrifugal terms and those of the potential V0, giving rise to
nontrivial mixing between centrifugal and standard � correc-
tions.

In conclusion, we have presented a semiclassical analysis,
beyond the usual Gutzwiller approximation, including first
order � corrections, of the quantum properties of real chaotic
systems. More specifically, we have explained the additional
corrections arising when taking into account both discrete
symmetries and centrifugal terms. In the case of the �3D�
hydrogen in a magnetic field, the agreement between the
theory and the numerical data extracted from exact quantum
results is excellent, emphasizing the validity of the analysis,
especially of Eqs. �9� and �10�.

Finally, since we know how to compute the � corrections,
it would be very interesting to work the other way around,
that is, to perform the semiclassical quantization, thus getting
� corrections in the semiclassical estimations of the quantum
quantities, like the eigenenergies. Of course, this represents a
more considerable amount of work, since the Cl,n

tr coefficients
must be computed for all relevant orbits and then included in
standard semiclassical quantization schemes, like the cycle
expansion �5,11,28�.

The author thanks D. Delande for his kind support during
this work. Laboratoire Kastler Brossel is Laboratoire de
l’Université Pierre et Marie Curie et de l’Ecole Normale
Supérieure, unité mixte de recherche 8552 du CNRS.
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Chapitre 3

Milieux désordonnés et effets

non-linéaires
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3.1 Cadre général

L’étude de la propagation d’ondes dans les milieux désordonnés est un sujet de re-
cherche actif depuis une centaine d’années environ. Si la motivation première a été d’ordre
astrophysique, les concepts et outils qui ont été développés ont eu depuis des applications
dans bien d’autres domaines de la physique (optique, acoustique, sismologie, conduction
électronique, imagerie médicale, etc). Pendant longtemps on a cru que la moyenne sur le
désordre détruisait tous les effets d’interférence. Sous cette hypothèse de phase aléatoire,
le transport est alors décrit à l’échelle mésoscopique par une succession de diffusions es-
pacées par une propagation dans un milieu moyen (théorie du transfert radiatif) . Cette
marche au hasard induit, dans les cas les plus simples, un processus de diffusion à l’échelle
macroscopique.

En 1958, dans le contexte du transport électronique, Anderson a réfuté cette hypothèse
en mettant théoriquement en évidence la possibilité d’une transition métal-isolant induite
par le désordre, c’est à dire la suppression complète du transport diffusif par effet d’in-
terférences destructives (localisation forte). Vingt ans plus tard, l’hypothèse du ‘scaling’
montrait que le transport dans les systèmes 1D et 2D se faisaient toujours en régime lo-
calisé, alors qu’à 3D il fallait franchir un certain seuil de désordre pour pouvoir atteindre
le régime de localisation forte (critère de Ioffe-Regel). Durant toutes ces années, il est
également apparu que certaines interférences survivent au désordre et altèrent le transport
même loin du régime localisé. C’est le cas en particulier de l’interférence associée aux ondes
partielles se propageant en sens opposé le long de boucles de diffusion. Ces interférences
conduisent à des effets macroscopiques observables comme la réduction interférentielle de
la constante de diffusion (localisation faible), les fluctuations universelles de conductance
et le phénomène de rétro-diffusion cohérente.

Dans ce type d’expériences, les atomes froids jouent le rôle de diffuseurs pour de la
lumière éclairant le nuage, qui forme un milieu complexe et désordonné. Les effets de dif-
fusion multiple peuvent se voir par exemple sur les propriétés de la lumière diffusée vers
l’arrière : la rétro-diffusion cohérente. On l’observe quand on éclaire un échantillon diffu-
seur épais par une lumière cohérente (laser) : l’intensité moyenne réfléchie présente un pic
centré dans la direction arrière. Ce pic est dû à l’interférence qui existe entre ondes par-
tielles se propageant en sens opposé le long des chemins de diffusion multiple. Néanmoins
ces prédictions sont faites sur la base d’approximations fortes (diffuseurs ponctuels et im-
mobiles), qui ne sont pas nécessairement valides dans le cas d’atomes froids. L’enjeu de
ce thème de recherche est donc de comprendre dans quelle mesure sont modifiées les pro-
priétés de la lumière diffusée. Les atomes peuvent être des diffuseurs très résonants avec
des sections efficaces énormes par rapport à leur taille, ce qui augmente considérablement
les effets de diffusion et donc parâıt favorable à la localisation. Mais l’atome est un objet
quantique qui ne peut être décrit comme un diffuseur classique, car la diffusion d’un seul
photon modifie notablement son état interne et externe. Ce problème avait été clarifié, au
cours de leur thèse, conjointement par T .Jonckheere (LKB) et C. Müller (LOD, Nice) qui,
en utilisant les symétries du système ont montré le rôle essentiel de la structure interne
des atomes. L’effet de rétrodiffusion cohérente calculé pour des atomes froids correspond
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d’ailleurs bien à l’observation expérimentale effectuée dans le groupe de C. Miniatura et
R. Kaiser à Sophia-Antipolis.

Les résultats numériques (facteur d’amplification, forme du cône...) avaient été obte-
nus en utilisant des calculs du types monte-carlo. Or, dans la géométrie particulière du
milieu semi-infini, il est possible de calculer analytiquement les résultats, par la méthode
de Wiener-Hopf. Cette méthode se base sur des propriétés d’analyticité des équations du
transfert radiatif, et avait déjà été employée dans le cas des diffuseurs dipolaires clas-
siques. À partir des résultats théoriques développés dans la thèse de C. Müller, qui tient
compte explicitement de la structure interne des diffuseurs atomiques (sous-niveaux Zee-
man dégénérés), j’ai pu mettre en évidence le changement qualitatif des propriétés dans
le plan complexe des différentes fonctions en jeu : les pôles deviennent des singularités
essentielles entrâınant la présence de coupures. De là, j’ai montré comment il était possible
d’appliquer la méthode de Wiener-Hopf pour obtenir les différentes quantités physiques1.
Les résultats sont en parfait accord avec les simulations numériques, en particulier cela a
permis de confirmer et calibrer les estimations des erreurs inhérentes à la méthode monte-
carlo. Cela permet ainsi, lors des comparaisons avec les résultats expérimentaux, de préciser
si les déviations observées sont pertinentes ou non.

Tous ces travaux supposent l’hypothèse d’un faisceau lumineux incident faible, (i.e. ne
saturant pas la transition atomique), ce qui permet d’utiliser des méthodes perturbatives
pour calculer les propriétés de la lumière diffusée. Or, une autre différence fondamentale
entre un diffuseur classique et un atome est la possibilité d’observer facilement des effets
non-linéaires de la réponse atomique à un faisceau lumineux intense : l’intensité de la
lumière diffusée n’est plus proportionelle à la lumière incidente. De plus, la fréquence
de la lumière diffusée n’est plus nécessairement conservée puisque la saturation (via les
‘fluctuations du vide’) induit de la diffusion inélastique. De manière intuitive, on s’attend
à ce que la diffusion inélastique réduit les effets d’interférence en diffusion multiple. Et
en effet, une réduction de la hauteur du cône de rétrodiffusion a été mise en évidence
dans l’expérience. Cependant, l’absence d’une description théorique appropriée ne permet
pas de comprendre quantitativement la dépendance du signal interférentiel en fonction
des paramètres du système (paramètre de saturation s et désaccord laser δ). En d’autres
termes, le mécanisme physique à l’origine de cette perte de cohérence de phase n’était pas
bien compris.

Au-delà, l’enjeu est de comprendre et de décrire les effets ondulatoires sur le transport
dans les milieux désordonnés et non-linéaires. A cause des fluctuations locales de speckle,
il n’est pas du tout évident que le transfert radiatif puisse être décrit par une équation
intégrale fermée, comme c’est le cas du régime linéaire. De plus, ces fluctuations induisent
des fluctuations fortes de l’indice de réfraction du milieu qu’il faut savoir prendre en compte
pour une description correcte de la propagation moyenne entre deux événements de dif-
fusion. D’autres phénomènes complexes d’optique non linéaire (d’ordinaire étudiés dans
les milieux homogènes) devraient se manifester, comme le mélange à quatre ondes, la

1Evidemment, je ne vais pas détailler la méthode utilisée, même si, personnellement, je trouve ça
extrêmement élégant...
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génération d’harmoniques, l’auto-focalisation et la filamentation, la formation de struc-
tures spatiales, instabilités temporelles, etc. Leur impact sur le transport et les corrections
interférentielles au transport est tout simplement inconnu à ce jour. Il faut noter que ces
phénomènes non-linéaires concernent également les effets de localisation observés dans des
expériences faites à l’aide de condensats de Bose-Einstein dans des potentiels lumineux
aléatoires (speckle). Enfin, dans le cas de milieux amplificateurs, la compréhension de ces
effets non-linéaires sont importants pour obtenir une meilleure description qualitative et
quantitative des lasers aléatoires.
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3.2 Approche perturbative

La première approche possible consiste à étendre l’approche diagrammatique au delà du
cas linéaire en incluant les évènements où deux photons peuvent être diffusés simultanément
par un atome. L’avantage de cette approche est de donner une interprétation simple de la
diminution de la sur-intensité observée dans la direction arrière ; lorsque l’on envoie deux
photons sur deux atomes, deux diagrammes contribuent au champ diffusé vers l’arrière,
dans un cas (fig. 3.1, à droite) les deux photons laser sont d’abord diffusés inélastiquement
par l’atome 1, puis un des deux photons inélastiques est diffusé par l’atome 2 ; dans l’autre
cas (fig. 3.1, à gauche) un des photons laser est d’abord diffusé élastiquement par l’atome 2,
puis est diffusé inélastiquement avec l’autre photon sur l’atome 1 (voir figure 3.1). La
différence entre ces deux diagrammes est la donc fréquence du photon “intermédiaire”
(spectre inélastique dans le premier cas, fréquence du laser dans le deuxième), ce qui fait
que les amplitudes associées, a1 et a2, sont, a priori, différentes. L’intensité totale étant
donnée par |a1 + a2|

2 = |a1|
2 + |a2|

2 + 2ℜ(a1a
∗
2), le déséquilibre entre les deux amplitudes

empêche l’égalité entre le terme direct |a1|
2 + |a2|

2 et croisé 2ℜ(a1a
∗
2). On voit donc le rôle

primordial joué à la fois par le spectre inélastique et la réponse atomique2.

ω ω ω’ω

ω ω’
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2 ω
_

ω’ 2 ω
_
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Fig. 3.1 –

L’approche précédente peut-être étendue au cas d’un milieu désordonné composé d’un
nombre quelconque d’atomes. La seule restriction importante est de se limiter au régime
perturbatif de la diffusion à deux photons pour lequel un chemin de diffusion multiple
possède au plus un événement de diffusion inélastique et un nombre quelconque de diffu-
sions linéaires. Ainsi, nous restreignons notre étude aux processus montrés dans la fig. 3.2.
Ceci est justifié lorsque sb2 ≪ 1, où b est l’épaisseur optique du milieu. Le traitement
théorique de cette situation exige de combiner la matrice de diffusion à deux photons avec
les techniques habituelles de la théorie du transfert radiatif linéaire. Un ingrédient im-
portant à ne pas oublier est évidemment l’interférence qui existe entre paires de chemins
parcourus en sens inverse et qui explique les phénomènes de rétro-diffusion cohérente et
de localisation faible.

Or l’ajout d’un seul événement de diffusion à deux photons n’est absolument pas ano-
din. La non linéarité transforme les paires de chemins renversés en triplets, voir fig. 3.2.

2T. Wellens, B. Grémaud, D. Delande and C. Miniatura, “Coherent backscattering of light by two
atoms in the saturated regime”, Phys. Rev. A 70, 023817 (2004)
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Fig. 3.2 – Diagrammes de diffusion représentant la rétro-diffusion de la lumière par un
milieu désordonné dans le régime de faible non linéarité, avec au plus un événement de
diffusion à deux photons (�) et un nombre quelconque des diffusions à un photon (•) par
chemin de diffusion. Dans ce régime, il y a en général trois amplitudes différentes dont
l’interférence contribue au signal interférentiel.

Cette interférence à trois amplitudes existe aussi bien pour la diffusion non linéaire (décrite
par une section efficace non linéaire) que pour la propagation non linéaire (décrite par l’in-
dice non linéaire du milieu effectif dans lequel se propage le photon entre les événements de
diffusion). Ainsi la hauteur du cône de rétro-diffusion peut en principe atteindre la valeur
maximale 3 tandis que la valeur 2 n’est jamais dépassée dans le cas linéaire. Bien que cet
effet se manifeste dans n’importe quel milieu désordonné présentant une non linéarité de
type χ(3), il n’avait jamais été correctement décrit dans la littérature sur le sujet, antérieure
à nos articles3. Ces résultats ont été confirmés en les confrontant à des calculs numériques
dans un modèle de non-linéarité de type χ(3) purement élastique. Dans ce cas, pour une
configuration fixe (mais aléatoire) des diffuseurs, on se ramène à la résolution d’un systèmes
d’équations non-linéaires où les inconnues sont les valeurs du champ électromagnétique à la
position de chaque diffuseur. J’ai mis au point des programmes basés sur des méthodes du
type Newton-Krylov pour résoudre de manière efficace et rapide ces équations. On résout
typiquement un système de quelques milliers d’équations non-linéaires couplées en quelques
minutes sur une station de travail. De ces solutions, on déduit l’intensité émise dans toutes
les directions par ces atomes. En réitérant la procédure pour d’autres configurations, on
peut ainsi obtenir les valeurs moyennées sur le désordre. En particulier, nous avons pu
montrer la pertinence des différents diagrammes impliqués dans soit dans la diffusion (voir
figure 3.3), soit dans la propagation (voir figure 3.4)4.

3T. Wellens, B. Grémaud, D. Delande et C. Miniatura, “Coherent Backscattering of Light by Nonlinear
Scatterers”, Phys. Rev. E 71, R055603-(1-4) (2005)

4T. Wellens and B. Grémaud, “Observation of coherent backscattering ‘factor three’ in a numerical
experiment” J. Phys. B : At. Mol. Opt. Phys. 39 (2006) 4719-4731
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Fig. 3.3 – Diagrammes de diffusion représentant les différentes contribution à la rétro-
diffusion de la lumière par un milieu désordonné. Dans un milieu linéaire usuel, pour chaque
diagramme “Ladder” (a), correspondant à l’intensité moyenne diffusée, il correspond un
diagramme “Crossed” (b) donnant la surintensité dans la direction arrière. Au contraire,
dans le régime de faible non linéarité, c’est-à-dire, avec au plus un événement de diffusion
à deux photons (�) et un nombre quelconque des diffusions à un photon (•) par chemin
de diffusion, pour chaque diagramme “Ladder” (c), il existe deux diagrammes “crossed”
(d) et (e).
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Crossed

Fig. 3.4 – Diagrammes de diffusion représentant les différentes contribution à la rétro-
diffusion de la lumière résultant de la modification de l’indice de réfraction due à la non-
linéarité (effet Kerr). Ici encore, pour chaque diagramme “Ladder” (en haut), il existe deux
diagrammes “crossed” (en bas).
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Il convient toutefois de signaler que cette prédiction du ‘facteur 3’ ne s’applique qu’à
la contribution non linéaire du signal de détection. Finalement, une amplification de la
rétrodiffusion par rapport au cas linéaire n’apparâıt que pour un milieu à non linéarité
‘positive’ pour lequel la section efficace augmente quand s augmente. Un tel milieu pour-
rait être produit en utilisant des diffuseurs plongés dans un milieu à absorption saturable.
Malheureusement, dans notre milieu atomique, la non linéarité est ‘négative’ (la section
efficace diminue quand s augmente). Dans ce cas, l’effet global d’interférence à trois ampli-
tudes est de réduire le cône de rétrodiffusion. Pour pouvoir observer un contraste supérieur
à 2 dans un milieu atomique, il faut d’abord exclure, par filtrage adéquat, la contribution
élastique du signal de rétro-diffusion. La prise en compte précise, dans le calcul du signal,
de la polarisation des photons diffusés montre alors qu’on obtient dans ce cas un contraste
égal à 2.5 au lieu de 3, donc bien au-delà de la borne supérieure linéaire5.

5T. Wellens, B. Grémaud, D. Delande et C. Miniatura, “Coherent Backscattering of Light with Nonli-
near Atomic Scatterers”, Phys. Rev. A 73, 013802-(1-17) (2006)
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3.3 Approche non-perturbative, régime stable

3.3.1 cas simple : deux atomes dans le vide

Pour aller au-delà des faibles non-linéarités, les méthodes basées sur les équations de
type Bloch-optique semblaient bien adaptées. L’idée était la suivante : traiter de manière
non-linéaire la propagation du laser incident dans le milieu atomique, puis d’en déduire à
l’aide des équations de Bloch-optique les susceptibilités non-linéaires. De là, on déduit l’in-
dice effectif du milieu pour les champs multiplement diffusés. En fait cette approche s’est
révélée insuffisante notamment parce que de cette façon on n’obtient que les susceptibilités
à la fréquence du laser incident. Or, des atomes dont la transition atomique est saturée
émettent également un spectre inélastique (triplet de Mollow), qui se propage également
dans le milieu. La bonne approche consiste à travailler, non plus avec les équations de Bloch-
optique, mais avec les équations de Langevin qui décrivent entièrement les opérateurs ato-
miques couplés à la fois aux champs incidents et aux fluctuations quantiques (les équations
de Bloch-optique étant déduites des équations de Langevin par moyennage sur les fluctua-
tions quantiques). On obtient ainsi facilement à la fois la réponse atomique à toutes les
fréquences et les parties inélastiques du spectre.

Une autre difficulté est survenue quand on a voulu comparer, dans le cas de deux atomes
sans milieu, les résultats donnés par les équations de bloch-optique à deux atomes et ceux
donnés par l’approche Langevin. Dans l’hypothèse de milieu dilué (distance entre atomes
très grande devant la longueur d’onde optique), l’approche näıve consisterait à supposer
que les fluctuations quantiques pour chaque atome sont totalement décorrélées. En fait,
même si ces corrélations sont très faibles, de l’ordre de 1/kd, où d est la distance entre
les deux atomes) elles sont du même ordre de grandeur que le champ rayonné par un
atome vers l’autre. Elles ne peuvent donc pas être négligées. Plus précisément, j’ai montré
comment les prendre en compte de manière exacte pour retrouver les résultats donnés par
les équations de Bloch-optique6 dans le cas d’une transition Jg = 0 → Je = 1. Une grande
différence avec le cas linéaire tient donc dans le fait que, même en milieu dilué, on ne peut
plus considérer les atomes individuellement pour calculer le champ et l’intensité diffusés :
du fait des non-linéarités, il s’établit des corrélations quantiques entre les atomes.

Avec cette méthode, on a ainsi pu mettre en évidence le rôle fondamental joué par le
spectre inélastique (voir figure 3.5). Les courbes montrent le spectre inélastique (triplet de
Mollow) de l’intensité rayonnée collectivement par les deux atomes. La courbe noire corres-
pond à la partie isotrope (Ladder term), tandis que la courbe rouge correspond à la partie
dépendant de l’angle entre la direction d’observation et celle du laser incident (Crossed
term). Cette dernière est à l’origine de l’augmentation d’intensité dans la direction arrière :
la rétrodiffusion cohérente. La fréquence du laser correspond à ∆ = 0 et les pointillés vert
dénotent la fréquence de résonance de la transition. Les quatre figures correspondent aux
valeurs suivantes de la saturation et du désaccord : a) s = 0.02, δ = ωL − ω0 = 0, b)

6B. Grémaud, T. Wellens, D. Delande et C. Miniatura, “Coherent backscattering in nonlinear atomic
media : Quantum Langevin approach”, Phys. Rev. A 74, 033808 (2006)
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s = 2, δ = 0, c) s = 0.02, δ = 5Γ et d) s = 50, δ = 0. Si l’on compare a) et c),
pour lesquels la valeur de la saturation est la même, on voit immédiatement que le spectre
inélastique est dominé par les photons émis à la fréquence de la résonance atomique et que
la symétrie du triplet de Mollow émis par un atome unique est profondément modifiée. On
comprend bien dans ce cas que la partie inélastique du terme Crossed va être bien plus
faible que celle du terme Ladder. Il s’ensuit que le facteur de sur-intensité dans la direction
arrière est nettement diminué dans le cas c) : 1.67 au lieu du facteur 2.

3.3.2 Cas d’un milieu atomique

Le but ultime serait de combiner les effets non-linéaires atomiques (incluant les effets
inélastiques et les corrélations quantiques) dans les méthodes diagrammatiques développées
plus haut. Ce travail est toujours en cours, la difficulté principale venant en fait des
corrélations quantiques. Néanmoins, si on se limite à des diffuseurs “classiques” (i.e. pour
lesquels on néglige les effets quantiques en ne prenant en compte que la partie élastique), on
a pu étendre les méthodes diagrammatiques à la fois pour une non-linéarité arbitrairement
grande (i.e., incluant tous les ordres χ(n)) et pour un nombre quelconque d’évènements
non-linéaires. L’idée est que dans le régime de localisation faible, d’une part, on peut
toujours séparer les évènements de diffusion et la propagation et, d’autre part, les effets
d’interférences restent des corrections par rapport à l’intensité moyenne dans le milieu.
Dans ce cas, le calcul du cône de rétrodiffusion cohérente se fait en deux étapes.

Dans un premier temps, on écrit une théorie du transport radiatif non-linéaire, c’est-
à-dire décrivant l’intensité lumineuse, moyennée sur le désordre, à l’intérieur d’un nuage
de diffuseurs non-linéaires. Dans cette approche, la description du milieu se fait à l’aide
de grandeurs locales (libre parcours moyen, section efficace de diffusion) qui dépendent
de manière non-linéaire de l’intensité. Comme en chaque point, le champ est simplement
la somme du champ entrant et de tout ce qui est rayonné par le reste du milieu, on se
ramène ainsi à une description auto-consistante de l’intensité en chaque point. Un point
important est de tenir compte proprement du caractère aléatoire du champ diffusé, c’est-
à-dire que localement, il présente des fluctuations gaussienne caractéristiques d’un speckle.
Par exemple, comme le libre parcours moyen ℓ(I) en un point dépend de manière non-
linéaire l’intensité I en ce point, la valeur moyenne (i.e. sur les différentes réalisations
du speckle) du libre parcours moyen 〈ℓ(I)〉 en ce point est très différente de la valeur
ℓ(〈I〉). En pratique, on obtient alors un système d’équations non-linéaires couplées pour
l’intensité cohérente et l’intensité diffuse en chaque point du milieu. La figure 3.6 montre
la comparaison entre cette théorie effective et le résultat des simulations de type brute-
force (i.e. calcul du champ pour chaque configuration aléatoire des diffuseurs et moyennage
sur différentes configurations). La situation (figure de gauche) correspond à un nuage de
diffuseurs éclairés par une onde plane et la figure de droite montre différentes quantités
calculées dans le milieu le long de l’axe du nuage (-1 correspond à la face d’entrée et
+1 à la face de sortie). Le paramètre de saturation est 0.5. Les courbes continues verte
et bleue correspondent aux simulations numériques (1500 diffuseurs, 5000 configurations
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Fig. 3.5 – Les courbes montrent le spectre inélastique (triplet de Mollow) de l’intensité
rayonnée collectivement par les deux atomes. La courbe noire correspond à la partie isotrope
(Ladder term), tandis que la courbe rouge correspond à la partie dépendant de l’angle entre
la direction d’observation et celle du laser incident (Crossed term). Cette dernière est à
l’origine de l’augmentation d’intensité dans la direction arrière : la rétrodiffusion cohérente.
La fréquence du laser correspond à ∆ = 0 et les pointillés vert dénotent la fréquence de
résonance de la transition. Les quatre figures correspondent aux valeurs suivantes de la
saturation et du désaccord : a) s = 0.02, δ = ωL − ω0 = 0, b) s = 2, δ = 0, c)
s = 0.02, δ = 5Γ et d) s = 50, δ = 0. Si l’on compare a) et c), pour lesquels la valeur
de la saturation est la même, on voit immédiatement que le spectre inélastique est dominé
par les photons émis à la fréquence de la résonance atomique et que la symétrie du triplet
de Mollow émis par un atome unique est profondément modifiée. On comprend bien dans
ce cas que la partie inélastique du terme Crossed va être bien plus faible que celle du terme
Ladder. Il s’ensuit que le facteur de sur-intensité dans la direction arrière est nettement
diminué dans le cas c) : 1.67 au lieu du facteur 2.
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Fig. 3.6 – Comparaison entre la théorie effective et le résultat des simulations de type
brute-force (i.e. calcul du champ pour chaque configuration aléatoire des diffuseurs et
moyennage sur différentes configurations). La situation (figure de gauche) correspond à un
nuage de diffuseurs éclairés par une onde plane et la figure de droite montre différentes
quantités calculées dans le milieu le long de l’axe du nuage (-1 correspond à la face d’entrée
et +1 à la face de sortie). Le paramètre de saturation est 0.5. Les courbes continues verte
et bleue correspondent aux simulations numériques (1500 diffuseurs, 5000 configurations
différentes). La courbe bleue est l’intensité cohérente (| < E > |2) tandis que la courbe
verte est l’intensité totale (< |E|2 >). Les courbes noires et rouges sont le résultat de la
théorie auto-consistante. On voit que l’accord est très bon, alors que l’on est déjà dans
un régime fortement non-perturbatif (le résultat linéaire est donné par les courbes tiretées
bleues et vertes). Les courbes tiretées court noires et rouges montrent les mêmes résultats
si on n’avait pas pris en compte le caractère aléatoire du champ local.
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Fig. 3.7 – Cônes de rétrodiffusion non-linéaire obtenus par calcul numérique exact com-
parés à la théorie effective pour différentes valeurs de la non-linéarité α. La ligne pleine
donne les résultats exacts, la ligne tiretée donne l’intensité moyenne “Ladder” rayonnée
dans la direction θ (θ = 0 correspondant à la direction de rétrodiffusion). La ligne ligne
pointillée donne l’intensité totale dans la direction arrière (i.e. “Ladder”+”Crossed”). La
courbe supplémentaire pour α = 0.2 correspond à l’intensité moyenne obtenue sans prendre
en compte le caractère aléatoire (i.e. du speckle) du champ diffus.

différentes). La courbe bleue est l’intensité cohérente (| < E > |2) tandis que la courbe
verte est l’intensité totale (< |E|2 >). Les courbes noires et rouges sont le résultat de la
théorie auto-consistante. On voit que l’accord est très bon, alors que l’on est déjà dans
un régime fortement non-perturbatif (le résultat linéaire est donné par les courbes tiretées
bleues et vertes). Les courbes tiretées court noires et rouges montrent les mêmes résultats
si on n’avait pas pris en compte le caractère aléatoire du champ local. L’effet est important,
ce qui renforce la solidité de notre description effective.

Dans un deuxième temps, on peut calculer les corrections de localisation faible à cette
intensité moyenne. Du fait du caractère non-linéaire du milieu, il y a un plus grand nombre
de blocs élémentaires permettant de calculer les termes du type “crossed”. De plus, on a
pu montrer que l’on ne peut pas enchâıner ces blocs de manière arbitraire, certaines com-
binaisons sont interdites car ne correspondant pas à des processus physiques7. Le résultat
est montré par la figure 3.7.

En conclusion, il faut noter que l’approche développée ne s’applique pas seulement au
cas des diffuseurs ponctuels non-linéaires, mais aussi au cas de diffuseurs linéaires dans
un milieu homogène non-linéaire et également aux ondes de matières dans des potentiels

7T. Wellens and B. Grémaud, “Nonlinear coherent transport of waves in disordered media”,
Phys. Rev. Lett. 100 033902 (2008)
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désordonnés. Dans ce dernier cas, l’interaction entre atomes, dans une approche type champ
moyen (équation de Gross-Pitaesvskii), donne lieu à un terme non-linéaire.

3.4 Régimes instables

3.4.1 Instabilités de speckle

Pour des milieux homogènes avec une non-linéarité du type χ(3), à l’intérieur d’une
cavité, on peut observer des effets de multistabilité dus à la coexistence de plusieurs so-
lutions pour l’intensité à l’intérieure de la cavité pour une même intensité entrante. Ce
même genre de phénomène a été prédit dans le cas de diffuseurs linéaires plongés dans mi-
lieu non-linéaire. Le rôle des miroirs est alors assumé par la diffusion multiple qui permet
des chemins extrêmement longs à l’intérieur du milieu.

On s’attend également au même type de comportement dans le cas de diffuseurs ponc-
tuels non-linéaires. Néanmoins, si on garde le modèle “classique” atomique, on n’observe
pas de multistabilité, ce que l’on peut relier au fait qu’un atome à deux niveaux dont la
transition est saturée devient un très mauvais diffuseur : on dégrade la qualité des mi-
roirs de la cavité faite par la diffusion multiple. On a donc considéré un autre type de
non-linéarité décrite par déphasage non-linéaire, i.e. le dipôle induit s’écrit

−i
eiδ(|E|2) − 1

2
E avec δ(I) = 2δ0 + αI

Dans ce cas, on peut observer de la multistabilité, comme le montre la figure 3.8. Ces
résultats proviennent de la résolution d’un système couplé de N équations (complexes)
non-linéaires où N est le nombre de diffuseurs, les inconnues étant le champ sur chaque
diffuseur :

F(X, α) = 0 où X = (E1, E2, · · · , EN)

A chaque point de rebroussement (voir figure 3.9), les quantités ∂Xi

∂α
sont infinies. Or, le

long de la solution on a :

M
∂X

∂α
+

∂F

∂α
= 0 avec M =

∂F

∂X

Comme ∂F

∂α
est finie, on déduit donc que la matrice M a nécessairement une valeur propre

nulle. C’est bien ce que l’on voit sur la figure 3.10 qui montre l’évolution du module de la
plus petite valeur propre de M en fonction de α.

Pour savoir si la solution stationnaire est instable, il faut considérer la dynamique
autour de cette solution. Pour cela, on modélise la dynamique du système comme il suit :

Ei(t) = Ein
i −

∑

j 6=i

eikrij

krij

dj(t)

ḋj = −Γ

(

dj(t) − (−i
eiδ(|Ej |

2) − 1

2
Ej)

)
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Fig. 3.8 – Intensité diffusé vers l’arrière par un ensemble de diffuseurs ponctuels non-
linéaires en fonction de la non-linéarité α, l’intensité entrante étant normalisée à 1. On
voit très clairement la présence de solutions multiples au-delà d’un certain seuil. Pour des
raisons pratiques, on ne montre qu’une partie de la courbe. Paramètres : 1000 atomes,
densité : nλ3 = 1.
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Fig. 3.9 – Point de rebroussement en αc, engendrant une multistabilité pour les valeurs de
α inférieures. Au point de rebroussement, la matrice jacobienne ∂F

∂X
a nécessairement une

valeur propre nulle.
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en fonction de la force de la non-linéarité α. A chaque point de rebroussement, une des
valeurs propres de la matrice jacobienne M s’annule, comme le montre la figure du bas,
montrant le plus petit module des valeurs propres de M .
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Fig. 3.11 – En haut : intensité rayonnée vers l’arrière par un ensemble diffuseurs ponctuels
en fonction de la force de la non-linéarité α. En bas : plus petite partie réelle des valeurs
propres de M . Une partie réelle négative indique une solution stationnaire instable.

1/Γ donne le temps typique de réponse du dipôle. Dans ce cas, on voit que les écarts
xi = Ei(t) − Est

i à la solution stationnaire sont gouvernés par l’équation linéaire :

ẋi = −Γ
∑

j

∂Fi

∂Xj

xi(t)

et donc que la solution est stable si toutes les valeurs propres λi de M ont une partie réelle
positive. La figure 3.11 montre l’évolution de la plus petite partie réelle des valeurs propres
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Fig. 3.12 – Evolution du champ (Re(E), Im(E)) sur un des diffuseurs en fonction de la
non-linéarité (axe vertical), la couleur indique de degré d’instabilité. On voit que pour
α ≈ 0.7, le nombre de solutions coexistantes s’est accru et sont toutes instables. On peut
raisonnablement penser que la figure de speckle à cette non-linéarité est instable et qu’on
va plutôt observer un comportement fluctuant

de M , en fonction de α. La figure 3.12 montre l’évolution du champ (Re(E), Im(E)) sur
un des diffuseurs en fonction de la non-linéarité (axe vertical), la couleur indique de degré
d’instabilité. On voit que pour α ≈ 0.7, le nombre de solutions coexistantes s’est accru
et sont toutes instables. On peut raisonnablement penser que la figure de speckle à cette
non-linéarité est instable et qu’on va plutôt observer un comportement fluctuant (voir plus
loin).

Pour chaque configuration, on peut donc estimer le seuil d’instabilité et regarder ensuite
la distribution de probabilité de ces seuils. La figure 3.13 montre, en fonction de α, le nombre
de configurations dont le seuil d’instabilité est plus petit que α. Chaque configuration
comporte 1000 diffuseurs pour une densité nλ3 = 1. En comparant ces statistiques pour
différentes valeurs de la densité et du nombre d’atomes (et donc de l’épaisseur optique b
du milieu), on observe une loi d’échelle : la distribution ne dépend que du produit N ×nλ3

soit encore b3 × kℓ0 où ℓ0 est le libre parcours moyen linéaire (voir figure 3.14). Cette loi
d’échelle est différente de celle prédite pour des diffuseurs linéaires dans un milieu non-
linéaire homogène : b2 × (b + kℓ0). Ceci est probablement dû au fait que, dans le cas
présent, la non-linéarité est corrélée au désordre local. Finalement, on peut s’intéresser à
la dépendance de quantités en fonction du paramètre b3 × kℓ0. Pour le seuil moyen, la
figure 3.15 montre très clairement une variation linéaire : 〈αseuil〉 ≃ (b3 × kℓ0)

−1.
C’est un résultat surprenant puisque si l’on fixe l’épaisseur optique b, le seuil moyen

diminue quand on augmente kℓ, c’est-à-dire si on diminue la force du désordre. Bien sûr,
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Fig. 3.13 – Nombre de configurations dont le seuil d’instabilité est plus petit que α. 1000
diffuseurs, nλ3 = 1, b ≈ 4
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Fig. 3.15 – Valeur moyenne du seuil d’instabilité en fonction de (b3 × kℓ0)
−1. La courbe

semble clairement montrer un comportement linéaire.

si on diminue la force du désordre, on doit augmenter la taille physique du système (i.e. le
nombre diffuseurs) pour obtenir la même épaisseur optique. Néanmoins, ceci tend à montrer
que ces instabilités résultent de phénomènes interférentiels et impliquent donc la structure
sous-jacente des modes du champ dans le nuage. Dans cet esprit, on peut imaginer que le
mode pour lequel les effets non-linéaires sont les plus importants est celui qui est le plus
localisé, c’est-à-dire dont la largeur est la plus faible. Pour des petites valeurs de la non-
linéarité, on peut supposer avoir une bonne idée de la physique en regardant les propriétés
du système linéaire. On s’est donc intéressé aux distributions statistiques de la largeur Γs

du mode le plus localisé pour α = 0. Le résultat est donné par la figure 3.16. On retrouve
clairement la loi d’échelle en p = N×nλ3, ce qui tend à corroborer l’idée que c’est le mode le
plus localisé qui devient instable et démontre l’importance des effets des interférences dans
les instabilités de speckle. De plus, une analyse (rapide) de la dépendance de la moyenne
de ces largeurs donne < 1/Γs >∝ N2/3(nλ3)2/3, à comparer au temps de Thouless (i.e. le
temps caractéristique que met un photon pour diffuser hors du nuage) qui ne crôıt qu’en
b2, c’est-à-dire N2/3(nλ3)4/3.

On peut alors se poser la question des effets de ces instabilités sur les effets cohérents
comme le cône de rétrodiffusion cohérente. La figure 3.17 montre, pour une même configu-
ration (1000 diffuseurs, nλ3 = 1), l’évolution temporelle de l’intensité diffusée vers l’arrière
et pour différente valeurs de la non-linéarité. On évolue clairement d’un régime stationnaire
dans le cas linéaire (α = 0) vers un régime probablement chaotique (α = 1) en passant par
un régime instable, mais périodique. On remarquera que cette figure est cohérente avec la
figure 3.13, puisque pour α = 0.3, on prédit que la plupart des configurations sont instables.
Néanmoins, quand on moyenne sur un nombre important de configurations, on retrouve un
effet cohérent vers l’arrière comme le montre la figures 3.18 : on trace en fonction du temps
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Fig. 3.17 – Intensité rayonnée vers l’arrière par un ensemble de diffuseurs non-linéaires en
fonction du temps et pour différentes valeurs de la non-linéarité. On évolue clairement d’un
régime stationnaire dans le cas linéaire (α = 0) vers un régime probablement chaotique
(α = 1) en passant par un régime instable, mais périodique
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Fig. 3.18 – Intensité rayonnée dans la direction θ (θ = 0 correspondant à la rétrodiffusion)
en fonction du temps. L’intensité a été moyennée sur 1000 configurations différentes. Non
seulement dans le régime instable (figure du haut α = 0.3 et figure en bas à gauche α = 0.5),
mais aussi dans le régime chaotique (figure en bas à droite α = 1), il reste un effet cohérent
vers l’arrière.
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Fig. 3.19 – Intensité rayonnée dans la direction θ (θ = 0 correspondant à la rétrodiffusion)
au temps 200Γ−1. L’intensité a été moyennée sur 1000 configurations différentes. Même
dans le régime chaotique α & 0.8, il reste un effet cohérent vers l’arrière. Le fait que le cône
s’inverse vient du fait de la non-linéarité, produit un déphasage entre les deux chemins du
“crossed” qui produit une interférence destructive.
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l’intensité diffusée dans la direction θ par rapport à la direction arrière. Si on se reporte à
la figure 3.13 et 3.17, on se rend compte que non seulement dans le régime instable (figure
du haut α = 0.3 et figure en bas à gauche α = 0.5), mais aussi dans le régime chaotique
(figure en bas à droite α = 1), il reste un effet cohérent vers l’arrière. Cet effet est résumé
par la figure 3.19, qui montre l’intensité diffusé vers l’arrière au temps t = 1000Γ−1. Le
fait que le cône s’inverse vient du fait de la non-linéarité, produit un déphasage entre les
deux chemins du “crossed” qui produit une interférence destructive. Ce genre de compor-
tement est prédit qualitativement par notre approche diagrammatique (voir plus haut) et
a également été observé dans des calculs numériques de condensat de Bose-Einstein (2D)
dans des potentiels aléatoires.

3.4.2 Laser aléatoires

Enfin, dans le cas de milieu actifs, le phénomène du laser aléatoire ou encore laser
sans cavité est maintenant bien établi expérimentalement. Au niveau théorique, il reste de
nombreuses questions ouvertes : dans le régime de la localisation faible pour lequel il n’y
a plus, en moyenne, de modes localisés, quelle est la structure sous-jacente du mode du
laser ? Au-dessus du seuil, quelle est la dynamique du système ? Peut-on prédire les modes
du laser à partir des modes de la cavité passive (i.e. les modes de la diffusion multiple) ?
Quelle est leur statistique ? La question de savoir si on pourrait observer cet effet avec
des atomes froids (à deux ou trois niveaux) fait également partie des questions ouvertes.
A titre d’exemple, voici les résultats de simulations numériques dans le cas de nuages
d’atomes à trois niveaux, dans le régime de localisation forte. La figure 3.20 montre le
spectre de la lumière émise par 250 atomes. A gauche pour nλ3 = 30 et à droite pour
nλ3 = 40. Les deux figures du haut sont dans le régime non-lasant. On voit néanmoins des
pics correspondants aux modes localisés au milieu de la la lorenztienne donnant l’émission
spontanée. Les deux figures du bas sont dans le régime laser au-dessus du seuil. A gauche,
on voit bien qu’il y a déjà plusieurs modes en compétition, tandis qu’à droite un seul mode
semble dominer. La transition laser est clairement montrée par la figure 3.21, montrant
l’évolution du spectre (en échelle logarithmique) en fonction delà puissance de pompe W .
On voit bien la transition juste au-dessus de W = 1, puis l’apparition de nouveaux pics.
Enfin la figure 3.22 montre le nombre de seuils laser plus petit que W . Bien sûr tous
ces résultats sont préliminaires et nécessitent une étude plus approfondie pour en faire
ressortir les propriétés importantes, non seulement statiques (seuils) mais aussi dynamiques
(compétition de modes).
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Fig. 3.20 – Spectre de la lumière émise par 250 atomes à trois niveaux. A gauche pour
nλ3 = 30 et à droite pour nλ3 = 40. Les deux figures du haut sont dans le régime non-
lasant. On voit néanmoins des pics correspondants aux modes localisés au milieu de la la
lorenztienne donnant l’émission spontanée. Les deux figures du bas sont dans le régime
laser au-dessus du seuil. A gauche, on voit bien qu’il y a plusieurs modes en compétition,
tandis qu’à droite un seul mode semble dominer.

Fig. 3.21 – Spectre (en échelle logarithmique) de la lumière émise par 250 atomes à trois
niveaux en fonction de la puissance de pompe W . On voit bien la transition laser juste
au-dessus de W = 1, puis l’apparition de nouveaux pics.
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Fig. 3.22 – Exemple de distribution statistique des seuils de transition laser.
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Coherent backscattering of light by two atoms in the saturated regime
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We present a calculation of coherent backscattering with inelastic scattering by saturated atoms. We consider
the scattering of a quasimonochromatic laser pulse by two distant atoms in free space. By restricting ourselves
to scattering of two photons, we employ a perturbative approach, valid up to second order in the incident laser
intensity. The backscattering enhancement factor is found to be smaller than two(after excluding single
scattering), indicating a loss of coherence between the doubly scattered light emitted by both atoms. Since the
undetected photon carries information about the path of the detected photon, the coherence loss can be
explained by a which-path argument, in analogy with a double-slit experiment.

DOI: 10.1103/PhysRevA.70.023817 PACS number(s): 42.50.Ar, 32.80.2t

I. INTRODUCTION

Weak localization of light in random media was demon-
strated for the first time in the 1980s[1–3]. Here, construc-
tive interference between two waves which interact with the
same particles, but in reversed order, enhances, in average,
scattering in the direction opposite to the incident light. For
systems obeying the reciprocity symmetry[4], the back-
scattering enhancement factor, i.e., the light intensity de-
tected in exact backscattering direction divided by the back-
ground intensity, is exactly two, provided single scattering
can be neglected. If the reversed paths are not linked by the
reciprocity symmetry, however, the enhancement factor will
be strictly smaller than two. This is known to occur, e.g.,
when detecting the backscattered light with linear polariza-
tion orthogonal to the initial one, in the presence of a mag-
netic field leading to a rotation of the polarization(Faraday
effect), or in the case of a random motion of the scatterers
[5–9].

Similar interference effects between multiply scattered
waves also affect the properties of transport through disor-
dered media. If the mean free path can be sufficiently re-
duced, the transport is even expected to come to a complete
standstill[10]. In experiments on strong localization of light
[11], however, the role of absorption is discussed controver-
sially [12,13].

One may wonder whether a medium consisting of indi-
vidual atoms would constitute a good candidate for strong
localization. In contrast to the classical scenario(Maxwell’s
equations in a medium with random dielectric constant), the
quantum-mechanical atom-photon interaction exhibits some
characteristic features, which may affect the coherence be-
tween multiply scattered waves. First, the resonance may be
extremely sharp, corresponding to a very narrow linewidthG
of the excited state. On the one hand, this leads to a large
atom-photon scattering cross section and slow diffusion of
light [14], properties in favor of localization. On the other
hand, it implies that the atoms have to be cooled to very low
temperatures. Only if the Doppler shift induced by a moving
atom is much smaller thanG, the interference between two
counterpropagating waves is preserved[15]. Typically, this
regime is reached at about a few mK, which is, however, still

high enough to neglect the thermal de-Broglie wavelength of
the atoms, i.e., to treat their external motion classically. Fur-
thermore, atoms usually have an internal quantum structure,
which may have a strong impact on coherent backscattering
[16–19]. If necessary, this can be circumvented by using at-
oms with a nondegenerate ground statesJ=0d [20].

Another property of the atom-light interaction, whose im-
pact on coherent backscattering has so far remained almost
unexplored, is the strongly nonlinear response of an atom to
incoming radiation. Since already a single photon is suffi-
cient to bring the atom to the excited state, where it rests for
quite a long timeG−1 without being able to scatter other
photons, a saturation of the atomic medium can be induced
already with rather moderate laser intensities. Not only the
atom-photon cross section, but also the spectrum of the light
is affected by saturation. With increasing saturation, it be-
comes more and more probable that an atom scatters inelas-
tically, i.e., that it emits photons at a frequency different from
the one of the incident laser. As we will show in this paper,
this implies a loss of coherence between two reversed scat-
tering paths. Similarly, a recent experiment showed coherent
backscattering by a cloud of cold strontium atoms to be re-
duced when increasing the saturation induced by the probe
laser[21].

In order to expose the physical mechanism responsible for
the loss of coherence as clearly as possible, we will consider
in this paper two two-level atoms in free space, the simplest
system exhibiting coherent backscattering. Effects which
arise in the presence of a larger number of atoms, such as the
nonlinear index of refraction of an atomic medium, will be
relegated to future publications. With view at the experiment
[21] performed with a dilute medium, we are interested in
the case where the distancer12 between the two atoms is
much larger than the optical wavelengthl. In this regime,
both atoms exchange at most one photon, quite contrary to
the “Dicke limit” r12!l, where, due to recurrent exchange
of photons, the atoms may form collective states, leading to
super- or subradiance[22,23]. Nevertheless, collective ef-
fects, such as coherent backscattering, are also observed in
the dilute limit r12@l, provided that the single scattering
contribution(arising from two independent atoms) is filtered
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out by using a suitable polarization channel(see Sec. III B).
In contrast to the case of two independently radiating atoms
[24,25], we will see that thedoublyscattered light emitted by
both atoms remains partially coherent even in the presence of
inelastic scattering. Moreover, the ensuing constructive inter-
ference in backscattering direction occurs independently of
the positions of the atoms.

To calculate the photodetection signal of the light emitted
by the two atoms, we use scattering theory. Generally, the
higher the intensity of the incoming light, the more photons
are scattered inelastically. In the present paper, we restrict
ourselves to two-photon scattering. Thereby, we employ a
perturbative approach, valid up to second order in the inci-
dent intensity.

The paper is organized as follows. In Sec. II, we summa-
rize known results about the scattering of two photons by a
single atom. After introducing the scattering operator in Sec.
II B, we obtain the corresponding photodetection signal in
Sec. II C, thereby recovering the resonance fluorescence
spectrum in second order of the intensity. In Sec. III, we add
a second atom to our model. We proceed in a similar way as
in Sec. II, using the results of the single-atom case as a
building block of the two-atom solution. After deriving the
scattering operator in Sec. III A, we calculate the photode-
tection signal in Sec. III B. In contrast to the single-atom
case, the latter contains interference between the light emit-
ted by the two atoms, enhancing the detection signal in the
backscattering direction. In this way, we obtain the main re-
sult of the present paper, the backscattering enhancement
factor, which is found to be smaller than two, due to inelastic
scattering. This fact is interpreted in Sec. III C as a loss of
coherence between the light scattered by both atoms in op-
posite order. Regarding the undetected photon as a path de-
tector for the detected photon, we can explain the loss of
coherence by an analogy to the double-slit experiment,
where the interference pattern is washed out if we try to
observe which slit the particle has passed through. Finally,
Sec. III D concludes the paper.

II. SINGLE ATOM

Let us start with discussing the scattering of two photons
by a single atom. This is useful since we will assume later
that the second atom is far away from the first one. The
two-atom scattering process can then be viewed as a succes-
sion of two single-atom scattering processes.

A. Approximations and Hamiltonian

We assume a two-level atom located at a fixed positionr.
As already mentioned above, neglecting the external atomic
motion is justified at very low temperatures, where the Dop-
pler shift induced by the atomic motion is small enough.
Also the recoil effect, i.e., the change of the atomic velocity
when scattering a photon, can be neglected, provided that the
number of scattering events is not too large. On the other
hand, the temperature should still be high enough such that
the external atomic motion need not to be treated quantum
mechanically. Furthermore, let us stress that we consider an

undegenerateatomic ground statesJ=0d. This is important
since coherent backscattering may be severely affected by
degeneracy[16–19]. The excited state is then threefold de-
generatesJ=1d. Which one of the three excited states is
populated depends on the polarization of the absorbed pho-
ton.

With the approximations mentioned above, our Hamil-
tonian reads as follows:

H = H0 + V, s1d

where

H0 = ṽats
†s + o

k,s
vkaks

† aks, s2d

V = o
k,s

sigeik·rss†eksdaks − ige−ik·rsseks
* daks

† d s3d

denote the free evolution and the interaction, respectively(in
units where"=1). Here, the operatorss† and s describe
transitions between the atomic ground and excited states,
with energy differenceṽat (in the case of an isolated atom),
whereasaks

† andaks create and annihilate a photon in modek
(a plane wave with wave vectork) and polarizationeks (per-
pendicular tok). The coupling constant

g = dS vk

2e0L
3D1/2

. dS vat

2e0L
3D1/2

, s4d

with L3 the quantization volume(which will finally drop out
of the equations, when taking the limitL→`) and d the
magnitude of the atomic dipole, determines the strength of
the atom-field coupling.

In Eq. (3), we have employed the so-called “rotating wave
approximation”: a transition from one of the excited states to
the ground state is only possible by emitting a photon, and
vice versa by absorption. This is justified since we will re-
strict ourselves to near-resonant processes, where only pho-
tons with frequencies close to the atomic resonance are im-
portant (i.e., uvk−vatu!vat). For the same reason, we may
assume a constant value ofg in Eq. (4), i.e., neglect its de-
pendence onvk.

Due to the coupling to the electromagnetic vacuum, the
stateuel is unstable: after an average lifetime given by

G =
d2vat

3

3pe0
=

2g2vat
2L3

3p
, s5d

an excited atom decays into the ground state, through spon-
taneous emission of a photon. This gives rise to an effective,
complex atomic resonance frequency

v0 = vat − i
G

2
, s6d

where also the real partvat is shifted, as compared to the
isolated atom, Eq.(2).

B. Scattering matrix

In the following, we make use of scattering theory in
order to calculate the properties of the light emitted by the
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atoms. Here, the object of interest is the scattering operator
S, which connects the initial and final photon statesuil and
ufl:

ufl = Suil. s7d

The initial and final state of the atom is always the ground
stateugl, which we do not explicitly write in the following.
Furthermore, we will restrict ourselves to the scattering of
two photons, thereby employing a perturbative approach,
valid up to second order in the incident intensity.

Since, as we will see below, the two photons may be
scattered independently from each other, we consider first the
scattering of a single photon. In order to distinguish between
the scattered and nonscattered part of the photon wave
packet, the transition operatorT1 is introduced as follows:

S1 = 1 − 2pidsv f − vidT1, s8d

where thed function implies conservation of the photon’s
frequency(which follows from energy conservation, since
the state of the atom is the same before and after scattering).
For one-photon states, its matrix elements read[26]:

kk fe fuT1ukieil =
g2

vi − v0
seie f

*deiski−kfdr. s9d

The situation changes when considering a second photon.
It is convenient to write the matrix elements in the following
form:1

kk3e3,k4e4uS2uk1e1,k2e2l

=kk3e3uS1uk1e1lkk4e4uS1uk2e2l + kk3e3uS1uk2e2lkk4e4uS1uk1e1l

+ kk3e3,k4e4uT2uk1e1,k2e2l. s10d

Here, the first two terms scatter the two photons indepen-
dently from each other.(There are two terms since the pho-
tons are indistinguishable: the final photonuk3e3l, for ex-
ample, may correspond either to the initial photonuk1e1l or
uk2e2l.) Since, however, the atom cannot interact with the
second photon while it is excited by the first one, the photons
are in fact not completely independent. This gives rise to the
second term[27]:

kk3e3,k4e4uT2uk1e1,k2e2l

=2pi
g4dsv1 + v2 − v3 − v4d

sv1 − v0dsv2 − v0d
S 1

v3 − v0
+

1

v4 − v0
D

3fse1e3
*dse2e4

*d + se2e3
*dse1e4

*dgeisk1+k2−k3−k4dr. s11d

Although their sum is conserved, the individual frequencies
of both photons may be changed byT2, for that reason we
call it “inelastic” scattering.

C. Photodetection signal

Given the final photon stateufl, the intensity of the pho-
todetection signal, as measured by a broadband detector(po-
larizationeD) located atR at time t, reads[26]:

I = kf uEs−dsR,tdEs+dsR,tdufl. s12d

Here, the detection of the photon is described by the electric
field operator

Es+dsR,td =
g

d
o
k,s

sekseD
* deisk·R−vtdaks, s13d

which annihilates a photon at positionR.
As initial state, we consider a state ofN photons

uiNl = ÎN! o
sk1¯kNd

hsk1d ¯ hskNduk1eL,…,kNeLl, s14d

where all photons are described by the same single-photon
wave packet

ui1l = o
k

hskdukeLl. s15d

The factorÎN! in Eq. (14) arises from the symmetry under
exchange of photons as bosonic particles and is required to
obtain the correct normalization

kiNuiNl = N ! o
sk1¯kNd

uhsk1du2 ¯ uhskNdu2 = So
k

uhskdu2DN

= uki1ui1luN = 1. s16d

Since, due to symmetrization, the sum in Eq.(14) does not
include permutations ofsk1¯kNd, the factorN! is needed
for the transformation intoN independent sumsok1

¯okN
.

We assume that the wave packet describes an almost plane
wave, i.e., hskd is sharply peaked around its centerkL

(“sharply” means much narrower thanG). For this reason, we
may also neglect in Eq.(14) the dependence of the initial
polarization vectoreL on k.

The initial stateuiNl corresponds to the following incident
intensity seen by the atom at positionr and timet=0, ob-
tained by insertinguiNl instead ofufl in Eq. (12), and sum-
ming over the detector polarizationeD:

I in = N
g2

d2Uo
k

eik·rhskdU2
. s17d

In the following, we will use a dimensionless quantity, the
so-called “saturation parameter”

s=
2d2I in

uvL − v0u2
=

2Ng2

uvL − v0u2Uok
eik·rhskdU2

. s18d

It accounts for the fact that photons interact less strongly
with the atom if they are far detuned from the atomic reso-
nance(i.e., if uvL−v0u is large). From the solution of the
optical Bloch equations[26], it is known thats determines
the ratio between inelastic and elastic scattering, see Eq.(38)

below.
We are interested in the photodetection signal measured at

positionR at timet= uR−ru (the time needed for the scattered

1Equation(10) is valid only if k1e1Þk2e2 and k3e3Þk4e4. We
will not consider double occupancy of modes in the following,
since it can be neglected in the continuous limit of infinite mode
density. In other words: two photons are never exactly in the same
mode, although they may be infinitesimally close to each other.
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light to reach the detector, in units wherec=1). We assume
that the detector is placed far away from the atom, such that
t= uR−ru is long enough for the scattering approach to be
valid. Furthermore, the detector should not be placed in the
direction of the initial wave vectorkL, such that only scat-
tered photons are detected[i.e., Es+dsR ,tdui1l=0].

In order to proceed, we have to generalize the scattering
operator for two photons, Eq.(10), to the case ofN photons.
For this purpose, we assume that the saturation parameters is
so small that at most one photon pair is scattered inelasti-
cally. This yields the photodetection signal up to second or-
der in s, see below. Summing over the different pairssi , jd,
and taking into account all possible permutations of theN
photons, we obtain:

kk18 ¯ kN8 uSNuk1 ¯ kNl = o
PN

p
l=1

N

kkl8uS1ukPNsldl

+ o
i,j=1
i, j

N

o
PN/P2

kki8k j8uT2ukPNsidkPNs jdl

3 p
l=1

lÞi,j

N

kkl8uS1ukPNsldl. s19d

(In the following, we do not write explicitly the polarization
vectors.) Equation(19) contains a sum over all permutations
PN of the N indices h1¯Nj, modulo a permutation of the
two indicesPNsid and PNs jd in the second term, where the
latter permutation is included in the two-photon operatorT2,
see Eq.(11). In the caseN=2, the above expression agrees
with the one of the previous section, Eq.(10). According to
Eq. (19), the final photon stateufNl=SNuiNl can be expressed
as follows:

kk1 ¯ kNufNl = ÎN!p
l=1

N

kkluf1l

+ÎN!

2 o
i,j=1
i, j

N

kkik jug2l p
l=1

lÞi,j

N

kkluf1l, s20d

in terms of the one- and two-photon states

uf1l = S1ui1l, s21d

ug2l = T2ui2l. s22d

Following Eq.(12), we now apply the electric field opera-
tor on the final photon state. It may annihilate either an elas-
tically or an inelastically scattered photon. Correspondingly,
we obtain the following three contributions:

ucl = Es+dsR,tdufl = o
i=1

3

ucil, s23d

with

kk1 ¯ kN−1uc1l = ÎN!Ep
l=1

N−1

kkluf1l, s24d

kk1 ¯ kN−1uc2l =ÎN!

2 o
i=1

N−1

kkiug1lp
l=1
lÞi

N−1

kkluf1l, s25d

kk1 ¯ kN−1uc3l =ÎN!

2
E o

i,j=1
i, j

N−1

kkik jug2l p
l=1

lÞi,j

N−1

kkluf1l,

s26d

and

E = k0uEs+dsR,tduf1l, s27d

ug1l = Es+dsR,tdug2l. s28d

According to Eq.(12), the norm I =kc ucl gives the total
intensity. Let us first concentrate on the contributions from
uc1l anduc2l. (As we will argue later,uc3l can be neglected.)

We obtain a sum of three terms, from elastic and inelastic
scattering, and their interference. Usingkf1u f1l=1 (sinceS1

is unitary), we obtain

Iel
s1d = kc1uc1l = NuEu2, s29d

Iel
s2d = kc1uc2l + kc2uc1l = NsN − 1dRehÎ2Ekg1uf1lj,

s30d

I in = kc2uc2l =
NsN − 1d

2
kg1ug1l +

NsN − 1dsN − 2d

2
ukf1ug1lu2.

s31d

Whereas inIel
s1,2d, the frequency of the detected photon is

fixed tov=vL (since one-photon scattering is elastic), this is
not the case forI in, where the overlapkg1ug1l implies an
integral overv. Thereby, we obtain an elastic and inelastic
component of the detection signal.

To complete the calculation, we insert the one- and two-
photon scattering matrices given in Sec. II B. Using Eqs.(8)

and (9), the final one-photon state reads

uf1l = ui1l −
2pig2

vL − v0
o

ki,kfef

hskiddsvi − v fdseLe f
*deiski−kfdruk fe fl.

s32d

Since the wave packethskid is quasimonochromatic, we may
replace the argument of functions which vary slowly(i.e., on
the scale ofG) as a function ofvi by the constant valuevL.
Applying the electric field operator onuf1l, see Eq.(27),
yields, under the assumptions given above:

E =
− 3GseLeD

* dg

4vLdRsvL − v0doki

eiki·rhskid. s33d

Similarly, we obtain for the inelastic part, see Eqs.(11), (22),
and (28),
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ug1l = − 2Eg2 o
ki,kfef

Î2eiski−kfdrhskidseLe f
*d

sv f − v0ds2vL − v f − v0d
uk fe fl.

s34d

According to Eqs.(29)–(31), we obtain the following inten-
sity I = Iel

s1d+ Iel
s2d+ I in of the photodetection signal:

Iel
s1d = h

s

2
, Iel

s2d = − h
N − 1

N
s2, s35d

I in = h
N − 1

N

s2

2
+ oss3d, s36d

with the prefactor

h = S3GueLeD
* u

4dvLR
D2

. s37d

The term proportional toukf1ug1lu2 in Eq. (31) gives a con-
tribution to the inelastic component in third order ofs, which
can be neglected. As it should be, for largeN—such that the
first photon can be absorbed without significantly changing
the saturation induced by the remainingsN−1d photons—the
above result agrees with the elastic and inelastic components

Iel = h
s

2s1 + sd2, I in = h
s2

2s1 + sd2 s38d

of the resonance fluorescence as predicted by the Bloch
equations[26], expanded up to second order ins.

However, we have not yet accounted for the third term
uc3l in Eq. (23). If we compare Eqs.(20), (24), and(26), we
note thatuc1l+ uc3l=ÎNEufN−1l, and hence the norm ofuc1l
+ uc3l equals the norm ofuc1l, Eq. (29), provided that the
norm of ufN−1l is 1. Although the latter condition is not nec-
essarily fulfilled if the scattering operator is truncated as in
Eq. (19), its unitarity will be recovered when including
higher scattering orders. Similarly, it can be shown that con-
tributions from kc2uc3l—if they are not of third order in
s—are exactly canceled by other terms which appear in
kc2uc1l when including intokc2u another inelastically scat-
tered photon pair. Hence the termuc3l does not contribute to
the photodetection signal up to second order in the saturation
parameters.

By putting a spectral filter in front of the detector, we can
resolve the power spectrumPsvd of the detection signal, i.e.,
the probability of detecting a photon of a definite frequency
v. Since elastic scattering conserves the frequency, the spec-
trum exhibits a sharp peak atvL (almost ad function for our
quasimonochromatic initial wave packetf),

Psvd = I seldd fsv − vLd + Psindsvd, s39d

whereas the inelastic component depends smoothly onv.
The latter is proportional to the absolute square of the inelas-
tic transition amplitude, Eq.(11) (with v1=v2=vL the initial
frequency,v3=v the frequency of the detected photon, and
v4=2vL−v). With the correct normalization,

I sind =E dv Psindsvd, s40d

we obtain

Psindsvd =
GI sind

4p
U 1

v − v0
+

1

2vL − v − v0
U2

. s41d

For zero detuning,vL=vat, the inelastic spectrum consists of
a peak of width 0.64G, whereas for large detuningd=vL
−vat (i.e., if 4d2@G2), there are two peaks of widthG at v
=vL±d, see Fig. 1.2 Note that one of them is centered ex-
actly at the atomic resonance. Evidently, this will be impor-
tant if we allow the scattered photons to interact with a sec-
ond atom, as we will do now.

III. TWO ATOMS

A. Scattering matrix

Let us now turn to the case of two atoms alone in vacuum.
We assume that the second atom is far away from the first
one, compared to the optical wavelength. This means that we
may restrict ourselves to processes where at most one of the
two photons is scattered by both atoms. As shown in Appen-
dix A, the corresponding scattering matrix can then be ob-
tained in a simple way from the single-atom scattering ma-
trix, see Eqs.(A9) and (A10): apart from the geometrical
phase factorse±ik·r1,2 for absorption or emission of a photon
ukl by atom 1 or 2, and the terms depending on the polariza-
tion, we only have to take into account the “photon exchange
factor”

Bsvd = −
3Geivr12

4vr12sv − v0d
, s42d

depending on the frequencyv of the doubly scattered pho-
ton. In Eq.(42), we recognize the propagation of a spherical
wave from one atom to the other one(inversely proportional
to their distancer12), and the amplitudesv−v0d−1 describing
scattering by a single atom, see Eq.(9).

2The reader may have in mind that the resonance fluorescence
actually exhibitsthreepeaks[28]. However, the one atv=vL is of
higher order ins, since it arises from three-photon scattering.

FIG. 1. Inelastic resonance fluorescence spectrumPsindsvd (in
units of I sind /G), Eq. (41), for small saturation,s!1, (a) zero detun-
ing d=vL−vat=0, and (b) d=2G. The dashed lines indicate the
position of the elastic peak atvL, see Eq.(39).
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In particular, the structure of the scattering operator as a
sum of an elastic single-photon and an inelastic two-photon
component is the same as before, compare Eqs.(8) and(10):

kk3e3,K4e4uS2
s2duk1e1,k2e2l

=kk3e3uS1
s2duk1e1lkk4e4uS1

s2duk2e2l + kk3e3uS1
s2duk2e2l

3kk4e4uS1
s2duk1e1l + kk3e3,k4e4uT2

s2duk1e1,k2e2l, s43d

where the single-photon component ofSs2d contains also the
nonscattered wave, see diagram(1a) in Fig. 2:

S1
s2d = 1 − 2pidsv f − vidT1

s2d. s44d

The remaining single-photon processes are also shown in
Fig. 2. The photon may be scattered by only one atom(1 or
2), or by both(first 1, then 2, and vice versa). Correspond-
ingly, the single-photon transition operator reads:

kk fe fuT1
s2dukieil =

g2

vi − v0

3heiski−kfdr1fseie f
*d + Bsvid

3seiD12e f
*deikisr2−r1dg + eiski−kfdr2fseie f

*d

+ BsvidseiD12e f
*deikisr2−r1dgj . s45d

As mentioned above, for the two double-scattering pro-
cesses, see diagrams(1d) and (1e) in Fig. 2, we have to

multiply the one-atom transition operatorkk fe fuTukieil, Eq.
(9), with the photon exchange factorBsvid, see Eq.(42), and
to adjust the geometrical phase factor. Furthermore, the fact
that the photon propagates in the directionr2−r1 between
the two scattering events implies a projectionD12 of the po-
larization vector onto the plane perpendicular tor2−r1.
Thereby, the termeie f

* (for scattering by a single atom) is
replaced byeiD12e f

* .
In the case of inelastic two-photon scattering, the doubly

scattered photon may be scattered first inelastically(by atom
1 or 2), and then elastically(by the other atom), or vice
versa, compare, e.g., the diagrams(2a) and (2d) in Fig. 3.
Correspondingly, the frequency to be inserted in the photon
exchange factorBsvd, Eq. (42), is either the final or initial
frequency of this photon, see Eq.(A9) or Eq.(A10). In total,
we obtain:

kk3e3,k4e4uT2
s2duk1e1,k2e2l=2pi

g4dsv1 + v2 − v3 − v4d

sv1 − v0dsv2 − v0d
S 1

v3 − v0
+

1

v4 − v0
D

3feisk1+k2−k3−k4dr1hse1e3
*dse2e4

*d + Bsv1dse1D12e3
*dse2e4

*deik1sr2−r1d + Bsv2dse1e3
*dse2D12e4

*deik2sr2−r1d

+ Bsv3dse1D12e3
*dse2e4

*de−ik3sr2−r1d + Bsv4dse1e3
*dse2D12e4

*de−ik4sr2−r1dj
+ eisk1+k2−k3−k4dr2hse1e3

*dse2e4
*d + Bsv1dse1D12e3

*dse2e4
*deik1sr1−r2d + Bsv2dse1e3

*dse2D12e4
*deik2sr1−r2d

+ Bsv3dse1D12e3
*dse2e4

*de−ik3sr1−r2d + Bsv4dse1e3
*dse2D12e4

*de−ik4sr1−r2djg + sk1e1 ↔ k2e2d. s46d

FIG. 2. Scattering of a single photon by two distant atoms. In
the coherent backscattering experiment, only the doubly scattered
photon is detected, see diagrams(1d) and (1e). Consequently, the
diagrams(1a)–(1c), with single or no scattering, describe the unde-
tected photon.

FIG. 3. Inelastic scattering of two photons by two distant atoms.
Only the doubly scattered photon(full arrows) is detected. Since the
photon frequencies are changed by the inelastic scattering event at
the atom where both photons meet, the amplitude of the elastic
scattering event at the second atom depends on whether the inelastic
scattering occurs before the elastic one[(2c) and(2d)] or after[(2a)

and (2b)].
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Here, the last line denotes additional terms arising from ex-
changing the initial(or, equivalently, final) photons. We rec-
ognize two terms describing the scattering by atom 1 or 2
alone, see diagrams(2i) and(2j) in Fig. 4, and eight different
terms describing the processes where both atoms are in-
volved, see diagrams(2a)–(2h) in Figs. 3 and 4. Note that the
terms depending on the polarization allow one to identify the
photon which is scattered by both atoms. This photon is
marked by full arrows in Figs. 2–4, whereas the open arrows
denote the photon scattered by only one atom. If we assume
that uk4e4l is the doubly scattered photon, the ten terms in
Eq. (46) correspond(from top to bottom) to the diagrams
(2i), (2e), (2a), (2h), (2d), (2j), (2f), (2b), (2g), and (2c),
respectively.

B. Direct calculation of the enhancement factor

Having at hand the scattering matrix, we now determine
the intensity of the photodetection signal. In principle, the
calculation can be performed in the same way as in the
single-atom case, Sec. II C. However, the detection signal
will now depend nontrivially on the position of the atoms
and the detector, due to the fact that the photons emitted by
one atom interfere with the photons emitted by the other one.
Even if we average over the positionsr1 andr2 of the atoms,
the interference is not completely washed out. There remains

an enhanced probability to detect a photon in the direction
opposite to the incident wave, an effect which is known as
coherent backscattering. In the case of two atoms, it arises
from double scattering: in the backscattering direction, a
photon scattered first by atom 1, and then by atom 2, inter-
feres constructively with the corresponding reversed path.

In order to examine cleanly this interference effect, we
therefore assume that only doubly scattered photons are de-
tected. Experimentally, this can be realized by using circu-
larly polarized light eL=s1,i ,0d /Î2 (in Euclidean coordi-
nates, where thez axis is parallel tokL), and detecting the
scattered photons in the helicity preserving channeleD=eL

* .
This impliesseLeD

* d=0, i.e., no singly scattered photons can
be detected in the helicity preserving polarization channel. If
we look at the inelastic part of the scattering matrix, Eq.
(46), assuming(without loss of generality) that the photon
uk4e4l is the detected one, this means that all terms with
se1e4

*d or se2e4
*d are filtered out. These are the diagrams

shown in Fig. 4, and only those of Fig. 3 remain.
Concerning the elastic single-photon scattering, see Fig.

2, we keep the single-scattering diagrams(1a)–(1c) to de-
scribe the undetected photon. For the sake of completeness,
we will repeat in Appendix B the following calculation for
the case of scalar photons, where,a priori, all the diagrams
shown in Figs. 2–4 contribute.

1. Elastic contribution

Let us begin with the contributionIel
s1d of one-photon scat-

tering. According to Eqs.(27) and (29), it is obtained by
applying the electric field on the final stateuf1l of single-
photon scattering. As explained above, only the diagrams
(1d) and(1e) in Fig. 2 contribute. At first, we concentrate on
the phase factors depending on the position of the atoms. If
kL is the wave vector of the incident photon, and the detector
is located in the directionkD (with ukDu= ukLu, since one-
photon scattering conserves the frequency), we obtain
expsir1·kL− ir2·kDd for (1d) and expsir2·kL− ir1·kDd for
(1e). Evidently, the phases are identical ifkD=−kL, i.e., (1d)

and (1e) interfere constructively in the backscattering direc-
tion. On the other hand, ifkLÞkD (more precisely: if the
angle betweenkL and kD is much larger than some charac-
teristic quantityuC), the interference between(1d) and (1e)

vanishes when averaging over the positions of the atoms. For
simplicity, we fix the distancer12 and average only over the
angular variables ofr1−r2. In this case, the width of the
enhanced backscattering signal(which is also called “the
cone”) is given byuC=1/svr12d. In total, we obtain both for
the background intensity(known in the literature as the “lad-
der term” L), and the additional intensity in backscattering
direction(the “crossed term”C) twice the resulths/2 of the
single-atom case,

Ls1d = Cs1d = h̃s, s47d

apart from a modification of the prefactor

h̃ = S 3G

4dvLR
D2

kuBsvLdu2ueLD12eD
* u2lr1,2

s48d

FIG. 4. Remaining diagrams describing inelastic scattering of
two photons by two atoms. In the coherent backscattering experi-
ment, they are filtered out by using thehih polarization channel
(see Sec. III B), in which a singly scattered photon(open arrows)
cannot be detected.
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=
3

8
S 9G2

16dvL
2Rr12uvL − v0u

D2

. s49d

Here, Eq.(48) implies an average over the positions of the
two atoms. The polarization-dependent termueLD12eD

* u2

=sin4 u /4 is given by the angleu between the incident laser
kL and the two atomsr12=r1−r2. Then, a spherical distribu-
tion of r12, at fixed distancer12, yields the result given in Eq.
(49). The fact thatLs1d=Cs1d can be traced back to the reci-
procity symmetry[4].

Next, we examine the interference between two-photon
and one-photon scattering, which gives rise to the elastic
componentIel

s2d of the intensity in second order ofs, see Sec.
II C. According to Eq.(30), Iel

s2d is given by the overlap of the
respective quantum statesuf1l andug1l of the undetected pho-
ton, which amounts to a sum over the latter’s stateukel (i.e.,
kg1u f1l=ok,ekg1ukelkke u f1l). First, we concentrate on the
phase factor exps−ik ·r1,2d of the undetected photon, depend-
ing on whether it is emitted by atom 1 or 2. Integrating over
the angular variablesVk of k (at fixeduku=vL), we obtain, if
ukl is emitted by different atoms:

E dVke±iksr1−r2d = 4p
sinsvLr12d

vLr12
! 1. s50d

Since we have assumedvLr12@1, the above term can be
neglected. In other words, diagrams where the undetected
photon is emitted by different atoms do not interfere in lead-
ing order of 1/svLr12d. If we now select one of the four
diagrams(2a)–(2d) describing two-photon scattering, we can
discard among the three one-photon diagrams(1a)–(1c), the
one where the undetected photon is scattered by the “wrong”
atom. The remaining two exactly give the final state of a
photon scattered by a single atom, as described by Eq.(21).
Concerning the detected photon of the one-photon scattering,
we can choose either diagram(1d) or (1e). As already dis-
cussed above, one of them gives a contribution to the back-
groundL, and the other one to the enhanced backscattering
signal C. As there are in total four diagrams(2a)–(2d), we
obtain both forL and C four times the result −hs2 of the
single-atom case:

Ls2,eld = Cs2,eld = − 4h̃s2. s51d

Note that the total elastic ladder term, Eq.(47) and Eq.(51),
equals the total elastic crossed one, Eq.(47) and Eq.(51).
This means interference with maximal contrast, correspond-
ing to the maximal possible enhancement factor of two.

2. Inelastic contribution

The inelastic componentI in of the intensity, finally, arises
from two-photon scattering. Here, the overlapkg1ug1l, see
Eq. (31), again implies a sum over the undetected photon,
which now may have a frequency different fromvL. With
two atoms,ug1l is a sum of four different contributions, cor-
responding to the diagrams(2a)–(2d). Correspondingly, we
obtain diagonal termssu2au2,… , u2du2d, which contribute to
the background signal, and interference terms, which may
contribute to the backscattering cone, see below.

Let us examine first the diagrams(2a) and(2b), where the
elastic scattering event occurs before the inelastic one. Here,
the single-atom scattering amplitude is multiplied by a con-
stant factorBsvLd. This means that—apart from the modifi-
cation of the prefactorh—both u2au2 and u2bu2 give the same
result as in the single-atom case, Eqs.(31) and (36),

I II =
h̃

h
E dvPsindsvd = h̃

s2

2
. s52d

In the other two cases(2c) and (2d), the frequency to be
inserted in the factorBsvd, Eq. (42), equals the final fre-
quency of the detected photon(or, equivalently, of the unde-
tected one, sinceuBsvdu2= uBs2vL−vdu2). Hence a factor
uBsvdu2 must be inserted in the integral over the inelastic
power spectrum, Eq.(40). The resulting integral can be eas-
ily performed, and yields

I I =
h̃

h
E dvUvL − v0

v − v0
U2

Psindsvd = h̃
s2

2
S3

4
+

d2

G2D . s53d

Hence the four diagonal termsu2au2,… , u2du2, give the fol-
lowing contribution to the inelastic background intensity:

Lsind = 2I I + 2I II = h̃S7

4
+

d2

G2Ds2. s54d

Note that, ford=0, the contribution from Eq.(53) is smaller
than the one from Eq.(52) (by a factor 3/4). This is due to
the fact that, after the inelastic scattering event, the photon
frequencies are no longer exactly on resonance, see Fig. 1(a),
which reduces the cross section of the scattering by the other
atom. The opposite is the case for large detuningd: here, the
inelastic scattering brings one of the two photons close to the
atomic resonance, see Fig. 1(b), thereby increasing the cor-
responding contribution to the background signal.

The inelastic component of the enhanced backscattering
signal arises from the interference of(2a) with (2d), and(2b)

with (2c). (Remember that every diagram interferes only
with those where the undetected photon is emitted by the
same atom.) As argued above, equality of the corresponding
geometrical phases, and thereby full constructive interfer-
ence, is guaranteed if the wave vector of the detected photon
is opposite to the incident wave vector, i.e.,kD=−kL. Obvi-
ously, this condition will not be exactly fulfilled in the pres-
ence of inelastic scattering, even in exact backscattering di-
rection (since in generalukDuÞ ukLu). The difference can be
neglected, however, if we assume that the atomic linewidthG
and the detuningd=vL−vat, i.e., the parameters which de-
termine the width of the power spectrum, see Fig. 1, are
much smaller than the inverse of the distancer12 between the
atoms:

d,G !
c

r12
. s55d

In other words: the propagation timer12/c between the at-
oms is much smaller than the time scales associated withd
and G. This condition ensures a vanishing geometric phase
difference, i.e., expfskL+kDd ·sr1−r2dg.1, and is well ful-
filled in the experiment[21]. What remains is the integration

WELLENS et al. PHYSICAL REVIEW A 70, 023817(2004)

023817-8

90



over the inelastic spectrum, taking into account the photon
exchange factorsBsvLd or Bsvd in the cases(2a) and(2b) or
(2c) and (2d), respectively:

2E dv ReHvL − v0

v − v0
JPsindsvd =

3

4
hs2. s56d

Here, we have neglected the exponential factoreisv−vLdr12

.1 describing the propagation in the vacuum, the same ap-
proximation as above, see Eq.(55). From the two interfering
pairs of diagrams, the inelastic contribution to the back-
scattering signal is obtained as twice the result of Eq.(56)

with modified prefactorh̃:

Csind = h̃
3

2
s2. s57d

Note that Csind is strictly smaller than the inelastic back-
ground, Eq.(54), which leads to a reduction of the back-
scattering enhancement factor, see below. This is consistent
with the fact that two interfering diagrams, e.g.,(2a) and
(2d), are no more linked by the reciprocity symmetry: only
diagrams with identical initial and final photon frequencies
interfere with each other, whereas the reciprocity symmetry
connects diagrams where initial and final frequencies are ex-
changed.

3. Double scattering enhancement factor

Adding all contributions, we have

L = Ls1d + Ls2,eld + Lsind = h̃Ss−
9

4
s2 +

d2

G2s2D , s58d

C = Cs1d + Cs2,eld + Csind = h̃Ss−
5

2
s2D . s59d

Finally, the double scattering enhancement factor reads:

a =
L + C

L
=

8 − s19 − 4d2/G2ds

4 − s9 − 4d2/G2ds
. s60d

Remember that single scattering has been removed by the
helicity-preserving polarization channel.

At this stage, it is convenient to introduce the saturation
parameter on resonance:

s0 =
2d2I in

G2/4
= S1 +

4d2

G2 Ds, s61d

which depends only on the incident intensityI in (and not on
the detuningd). Then, Eq.(60) can be rewritten:

a =
2 + x

1 + x
, s62d

with

x =
s0

4 − 10s
.

s0

4
. s63d

Here, we have used thats is small, otherwise our perturba-
tive treatment(two-photon scattering) would be invalid. If

the detuningd is of the order of the linewidthG, this implies
that s0 must also be small. In this case, Eq.(62) yields

a . 2 −
s0

4
. s64d

In principle, however, we may choose also a large value of
the detuningd, as long as we stay near resonant, and fulfill
sd /Gd2!1/svr12d

2.3 This means thats0 may be large al-
thoughs is small, see Eq.(61). In that case, the enhancement
factor is given by Eq.(62), with x=s0/4, see Fig. 5. This
equation is valid for all values ofs0 corresponding to smalls,
i.e., s0!1+4d2/G2.

It may appear surprising that the enhancement factora
depends only on the intensitys0 of the incident light, see
Eqs.(62) and(63), whereas the intensity scattered by asingle
atom is determined by the saturation parameters, see Sec.
II C. This result is related to the form of the inelastic spec-
trum, see Fig. 1: since one of the two photons is always close
to the atomic resonance after the inelastic scattering, the
asymmetry between the reversed paths(see the following
section) is larger for larger initial detuningd, at a given value
of s. Thereby, we can understand why, at a fixeds, the en-
hancement factora decreases when increasingd. However,
we are not aware of an intuitive explanation why the relevant
parameter turns out to bes0, and not some other, similar
combination ofd ands.

C. Interpretation

In this section, we discuss the physical mechanism re-
sponsible for the reduction of the backscattering enhance-
ment factor. As we have seen above, it originates solely from
inelastic scattering. For this reason, we will only consider
inelastic scattering in the following.

3This condition impliess0uBsvatdu
2!1, see Eqs.(42) and(61), and

thereby suppresses exchange of more than one resonant photon be-
tween the two atoms, leading to terms proportional tos0

2 (or higher
order).

FIG. 5. The enhancement factora=s8+s0d / s4+s0d as a function
of the incident intensitys0, and large detuningd=vL−vat. If d is
not large, the displayed curve is valid only up to intensitiess0!1
+4d2/G2, corresponding to a small saturation parameters!1, cf.
Eq. (61).
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1. Coherence loss

Generally, coherent backscattering arises from construc-
tive interference between two scattering paths where the de-
tected photon interacts with the respective scatterers in op-
posite order. The maximum enhancement factor of two is
obtained if every path has a counterpropagating counterpart
with the same amplitude. In the case of two photons, a “scat-
tering path” in principle also specifies the final stateukl of
the undetected photon. As we have seen above, Eq.(50), the
average over the angular variables of the undetected photon
destroys interference between paths where the inelastic scat-
tering occurs at different atoms(if the atoms are far away
from each other). Consequently, if we concentrate on the
detected photon, we should compare only the two reversed
paths where the inelastic scattering occurs at the same atom,
and the final frequencyvD=2vL−vk is the same(due to
energy conservation), as shown in Fig. 6. Here, the left atom
is marked as the one which scatters inelastically. Neglecting
the propagation in the vacuum, see Eq.(55), the amplitudes
EI,II of the two reversed paths are obtained by multiplying
the scattering amplitudes of the elastic and inelastic scatter-
ing event, Eqs.(9) and (11). Since the elastic scattering oc-
curs at two different frequenciesvL andvD, the amplitudes
are not identical:

EI = S 1

vD − v0
+

1

2vL − vD − v0
D e−ikr

'
u/2

vD − v0
, s65d

EII = S 1

vD − v0
+

1

2vL − vD − v0
D eikr

'
u/2

vL − v0
, s66d

where u denotes the angle between the detector and back-
scattering direction,r' the perpendicular distance between
the atoms, and prefactors not depending onvD or u are ig-
nored.

Equations(65) and(66) are valid for fixed final frequency
vD. In reality, however,vD is a random variable, which im-
plies that the ratioEI /EII between the amplitudes of both
paths fluctuates randomly. This leads to a loss of coherence
between the two paths, i.e., a loss of contrast in the interfer-

ence patternIsud.4 A further loss of contrast originates from
the fact that the inelastic scattering may take place either at
atom 1 or 2. As discussed in the previous section, those two
cases do not interfere with each other, i.e., they are added
incoherently. For reasons of symmetry, the corresponding
pairs of scattering amplitudes are identical, except for a
change of sign of the detection angleu. Hence we obtain the
intensity Isud of the detection signal as follows:

Isud =E dvDsuEIsvD,ud + EIIsvD,udu2 + uEIIsvD,− ud

+ EIsvD,− udu2d s67d

=2sI I + I IIdf1 +V cosskr'udg, s68d

with I I,II the intensity of paths I and II, respectively, see Eqs.
(52) and (53). Using Eqs.(65)–(68) yields the following in-
terference contrast(also called “visibility”):

V =
6

7 + 4d2/G2 . s69d

Averaging over the positionsr1 andr2 of the atoms does not
affect the intensity observed atu=0; it only reduces the side
maxima and determines the shape of the backscattering
“cone.” Thus the contrastV=Csind /Lsind equals the ratio of the
“ladder” and “crossed” term calculated in Sec. III B, see Eqs.
(54) and(57), and is hence directly related to the backscatter-
ing enhancement factor. Remember, however, that we have
considered only theinelasticcomponent of the detection sig-
nal so far.

In general, a reduced contrast of two-wave interference
originates either from a loss of coherence or from an asym-
metry of the individual intensities of the two waves. More
precisely, let us assume that the interference signal varies
betweenImax and Imin. Since the mean valuesImax+ Imind /2
= I1+ I2 equals the sum of the intensitiesI1,2 of wave 1 and 2,
the contrast is given byV=sImax− Imind / s2I1+2I2d. Then, the
degree of coherenceg (see[30], pp. 499–503) is defined as

V = g
2ÎI1I2

I1 + I2
. s70d

In other words, in the asymmetric caseI1Þ I2, the contrast is
reduced(i.e., V,1) even if the coherence is perfectly pre-
served(i.e., g=1). This case is analogous to a double slit
experiment performed with a perfect monochromatic plane
wave, but different slit sizes.

In our case, we identify the two interfering waves as the
light emitted by atom 1, on the one hand, and by atom 2, on
the other one. Taking into account that the inelastic scattering
event may take place either at atom 1 or 2, we see that the
corresponding intensities are identical:

4In general, fluctuations of the phase and of the absolute value of
EI /EII both reduce the degree of coherence. In our case, the phase
fluctuations have a stronger impact, at least for moderate values of
the detuningd (not much larger thanG).

FIG. 6. Two reversed scattering paths, whose interference gives
rise to enhanced backscattering. The left atom scatters inelastically,
changing the photon frequency fromvL to vD. Consequently, the
amplitudes of the elastic scattering event by the right atom are
different for both paths, see Eqs.(65) and(66), leading to a reduc-
tion of the backscattering enhancement factor.
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I1 = I2 = I I + I II , s71d

i.e., both atoms emit the same intensity. Hence the reduction
of contrast can be entirely attributed to a loss of coherence,
i.e., V=g. As mentioned above, it originates both from the
average over the spectrum ofvD and from the random choice
of the inelastically scattering event at atom 1 or 2. The rela-
tive importance of those two noise sources depends on the
value of the detuningd. Indeed, if we consider only one pair
of the reversed paths I and II, i.e., if we fix atom 1 or 2 as the
inelastically scattering one, we find a finite average phase
difference

f = arctanS 2d

3G
D s72d

between the two paths, i.e., the maximum of the interference
pattern is then shifted by an angleDu=f / skr'd away from
the exact backscattering directionu=0. The second pair of
reversed paths, where the inelastic scattering occurs at the
other atom, leads to an identical shift, but in the opposite
direction. Hence the random choice of the inelastically scat-
tering atom reduces the contrast by a factor cossfd=s1
+4d2/9G2d−1/2, which is negligible only in the case of very
small detuning,d!G.

2. Which-path information

An alternative physical explanation of the coherence loss
can be obtained by an analogy to Young’s famous double-slit
experiment. As it is well known, interference is necessarily
destroyed whenever we observe which slit the particle passes
through(see, e.g.,[31]). If uD1l anduD2l denote the quantum
states of the which-path detector corresponding to slits 1 and
2, the degree of coherence is obtained as the overlap of the
normalized detector states[29]:

g =
ukD1uD2lu

ÎkD1uD1lkD2uD2l
. s73d

This implies perfect coherence,g=1, if the paths are indis-
tinguishable(i.e., if the detector states are identical), and
total loss of coherence,g=0, if the paths can be distin-
guished with certainty(i.e., if the detector states are orthogo-
nal). The corresponding interference contrast follows via Eq.
(70), with I1=kD1uD1l and I2=kD2uD2l.

In our case, the path detector is given by the undetected
photon. Remember that its frequency is correlated to the one
of the detected photon, due to conservation of energy at the
inelastic scattering event. Therefore the different dependence
of the amplitudesEI,II of paths I and II on the frequency of
the detected photon, see Eqs.(65) and (66), reflects itself in
the final state of the undetected photon:

uD1l = o
ke

sEIs2vL − vk,ude−ik·r1 + EIIs2vL − vk,− ude−ik·r2d

3ukel, s74d

uD2l = o
ke

sEIIs2vL − vk,ude−ik·r1 + EIs2vL − vk,− ude−ik·r2d

3ukel. s75d

Here, we have included the phase factorse−ik·r1,2 indicating
whether the inelastic scattering occurs at atom 1 or 2. As
already mentioned, interference between those two cases
does not contribute(in leading order of 1/vr12) to the over-
lap kD1uD2l, see Eq.(50). SinceuD1l and uD2l are not iden-
tical, the state of the undetected photon contains information
about which path the first photon has taken. According to Eq.
(73), this leads to a reduction of the degree of coherenceg,
which, in our case, equals the contrastV, since I1= I2, see
Eqs. (70) and (71). Thereby, we can rederive the above re-
sult, Eq.(69).

Let us note that the interpretation in terms of a which-path
experiment remains valid if we include the elastic compo-
nent of the photodetection signal. Since, here, the undetected
photon(described by the single-photon diagrams in Fig. 2) is
not correlated with the detected photon, the elastic contribu-
tions to uD1l and uD2l are identical. This leads to a larger
overlap kD1uD2l and, consequently, smaller loss of coher-
ence than for the inelastic contribution alone. In total, we
find the resultV=C/L=a−1 of the previous section, see Eq.
(60).

Finally, we want to stress that there is no loss of coher-
ence associated with the inelastic scattering “on its own,” but
only in connection with the frequency filtering induced by
the elastic scattering event. This can be demonstrated as fol-
lows: let us imagine that the response of the second atom is
frequency-independent, i.e.,Bsvd=const in Eq.(42). Then,
the amplitudes of two reversed paths, see Eqs.(65) and(66),
are identical, the undetected photon does not carry any
which-path information, and we recover the enhancement
factor two, even in the presence of inelastic scattering. Such
a situation can be realized, e.g., by choosing atoms with
different linewidthsG2@G1, such that atom 2 cannot resolve
the spectrum emitted by atom 1. In this case, a significant
reduction of the enhancement factor is observed only if we
increase the distancer12 between the atoms, such that the
propagation in the vacuum becomes relevant.

D. Conclusion

In summary, we have presented a calculation of coherent
backscattering in the presence of saturation. For two distant
atoms, with single scattering excluded, the slope of the back-
scattering enhancement factor as a function of the incident
intensitys0 at s0=0 equals −1/4, independently of the value
of the detuning. The reduction of the enhancement factor can
be traced back to the following two random processes: first,
the frequency of the photons may be changed by the inelastic
scattering event, which may, second, occur either at the first
or at the second atom. Both processes[the latter one only for
nonzero detuning, see Eq.(72)] lead to a random phase shift
between the doubly scattered light emitted by the first atom,
on the one hand, and by the second atom, on the other one,
resulting in a loss of coherence. Alternatively, the coherence
loss can be explained by regarding the undetected photon as
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a which-path detector: its final state contains information
about whether the detected photon has been emitted by the
first or second atom, thereby partially destroying coherence
between those paths.

Starting from the solution of our model, we can think of
extending it to more general scenarios in two different direc-
tions, either increasing the number of photons, to reach
higher values of the saturation parameter, or the number of
atoms, to treat a disordered medium of atoms. Since the
complexity of the scattering approach increases dramatically
with the number of scattered particles, it may be more prom-
ising to use other methods, such as the optical Bloch equa-
tions [26], in the case of high saturation. The opposite is true
for a large number of scatterers, where we can resort to
known concepts from the theory of multiple scattering. An
important question, which must be solved in order to inter-
pret the results of the experiment[21], is how the average
propagation of the two-photon state in the atomic medium
affects the coherent backscattering signal.
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APPENDIX A: TWO-ATOM SCATTERING MATRIX

In this appendix, we calculate the scattering of two pho-
tons by two atoms. For this purpose, we use the following
expansion of the evolution operatorUst0,td=expf−isH0+Vd
3st− t0dg:

Ust0,td = o
n=0

`

E
t0

t

dt1E
t1

t

dt2 ¯ E
tn−1

t

dtn U0st0,t1d

3VU0st1,t2dV ¯ VU0stn,td, sA1d

whereU0st0,td=expf−iH0st− t0dg denotes the free evolution.
With each interactionV, see Eq.(3), an atom may emit a
photon or absorb one of the two photons. The corresponding
“paths” connecting the initial and final two-photon stateuil
= uk1e1,k2e2l and ufl= uk3e3,k4e4l can be represented dia-
grammatically, see Fig. 7.

Here, (Ia,b) describes the scattering of two photons by a
single atom[27], and (IIa,b) and (IIIa,b) the scattering by
two atoms. Let us first concentrate on(Ia,b) and (IIa,b),
where the inelastic scattering event occurs before the elastic
one. Note that in(IIa), we have not specified the order in
which the photons are emitted or absorbed. What we mean
by this is a sum over all possible orderings, as indicated in
Fig. 8. As we will see below, however, the sum need not be
explicitly evaluated.

Furthermore, we have selected one of the interaction op-
eratorsV in the expansion(A1), at which we split the dia-
grams into a right and left half, denoted byUsl,rd in the fol-
lowing. According to Eq.(A1), we may write

UIIast0,td =E
t0

t

dt1UIIa
sldst0,t1dVUIIa

srdst1,td, sA2d

and similarly for the other three diagrams(Ia), (Ib), and(IIb).
Obviously, the left half is identical in the one- and two-atom
cases I and II, respectively. In the right half, on the other
hand, the two photons are always independent from each
other, being scattered by different atoms(if at all). This
means that the evolution operator is the product of the two
single-photon evolution operators:

UIIa
srdst1,td = UII

sr,1dst1,tdUa
sr,2dst1,td, sA3d

and likewise for(Ia), (Ib), and(IIb). Note that the evolution
of the first photons1→3d depends only on(I) or (II ), and not
on (a) or (b), and vice versa for the second photon. Thereby,
if we want to compare the one- and two-atom cases, we have
to consider only the two single-photon diagramsUI,II

sr,1d, which
are illustrated in Fig. 9.

The first one simply describes the emission of photon
uk3e3l by an atom located atr1, followed by free evolution:

VUI
sr,1dst1,td = − igse1e3

*de−ik3·r1e−iv3st−t1d. sA4d

In the second case, the photon is scattered by the other atom.
Here, we have to take the sum over its intermediate state. For
the calculation, it is convenient to express the time evolution

FIG. 7. Diagrams describing scattering of two photons by a
single atom(Ia,b) and two atoms,(IIa,b) and (IIIa,b). The curly
lines represent photons and thin or thick lines an atom in the ground
or excited state. In order to simplify the comparison between(I) and
(II ), we split the diagrams into a right and a left half(see text).

FIG. 8. Independent scattering of two photons by two different
atoms. This diagram appears as a building block in(IIa) and(IIIb ),
Fig. 7.
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in terms of the corresponding Green’s function:

VUII
sr,1dst1,td =E

C+

dz

2pi
e−izst−t1dGII

sr,1dszd, sA5d

where the contourC+ runs just above the real axis, i.e.,z
=x+ ie ,e.0, fromx= +` to −`, and the Green’s function of
the above diagram(II ) reads:

GII
sr,1dszd = o

k,e

− ig3se1e*dsee3
*de−ik·r1+isk−k3dr2

sz− vkdsz− v0dsz− v3d
. sA6d

In the continuous limitsL→`d, the sum is replaced by an
integralfok=sL /2pd3edkg. The result of the integral(A6), in
leading order of 1/sv3r12d, reads:

GII
sr,1dszd =

3iGgse1D12e3
*de−ik3·r2eizr12

4v3r12sz− v0dsz− v3d
. sA7d

Here,D12 denotes the projection onto the plane orthogonal to
r2−r1. Finally, in the contour integral(A5), only the pole at
z=v3 contributes(if t− t1@1/G):

VUII
sr,1dst1,td = igse1D12e3

*de−ik3·r2e−iv3st−t1d

3
3Geiv3r12

4v3r12sv3 − v0d
. sA8d

Comparing Eqs.(A4) and(A8), we see that the contribution
to the two-atom scattering matrix represented by(IIa,b) is
given by the one-atom matrixSI, times a correction of the
geometrical phase and the polarization, times the photon ex-
change factorBsv3d, see Eq.(42).

kk3e3,k4e4uSII uk1e1,k2e2l = kk3e3,k4e4uSIuk1e1,k2e2l

3 eik3sr1−r2d se1D12e3
*d

se1e3
*d

Bsv3d.

sA9d

What remains is the contribution, where the elastic scattering
occurs before the inelastic one, represented by diagrams
(IIIa,b) in Fig. 7. The calculation can be repeated in almost
the same way as above, or simply by noting that(IIIa,b) is
related to(IIa,b) through time reversal, and the result is

kk3e3,k4e4uSIII uk1e1,k2e2l = kk3e3,k4e4uSIuk1e1,k2e2l

3 e−ik1sr1−r2d se1D12e3
*d

se1e3
*d

Bsv1d.

sA10d

Here, the photon exchange factorBsvd is evaluated at the
frequency of the initial photon. The total scattering matrix is
now readily obtained by addingSII andSIII , and also includ-

ing the diagrams where the two atoms and/or the two pho-
tons are exchanged.

APPENDIX B: THE SCALAR CASE

In this appendix, we calculate the photodetection signal
for scalar photons. Although they are not suited for coherent
backscattering, since single scattering cannot be excluded,
the solution will be useful for a future comparison with the
results obtained from the optical Bloch equations, which can
be solved much more easily in the scalar case.

As in the vectorial case, we consider contributions to the
detection signal up to second order in 1/svLr12d. We neglect
those terms whose order in 1/svLr12d is changed by the an-
gular average overr12.

5 Furthermore, we consider only con-
tributions which do not oscillate rapidly as a function ofr12,
i.e., which survive an average overr12 over one wavelength.

First, since the two atoms may scatter independently from
each other, we obtain two times the single-atom result, see
Eqs.(35) and (36):

Lsel,0d = hsss− 2s2d, sB1d

Lsin,0d = hss
2, sB2d

which contributes to the background intensityL. Here we
have to take into account that the lifetimeG, and the prefac-
tor h, are different in the scalar and vectorial cases, respec-
tively. Instead of Eqs.(5) and(37), the following expressions
hold for scalar photons:

Gs =
d2vat

3

2pe0
, sB3d

hs = S Gs

2dvLR
D2

. sB4d

Next, we consider the cases where one photon is ex-
changed between the two atoms. These contribute to the de-
tection signal in second order of 1/svLr12d. Concerning one-
photon scattering, only the diagrams(1d) and (1e), Fig. 2,
are relevant, and we obtain the same result as for thehih
channel in the vectorial case, see Eq.(47):

Lsel,1d = Csel,1d = hsuBu2s, sB5d

but with modified “photon exchange factor”

B =
G

2vLr12svL − v0d
, sB6d

compare Eq.(42).
The elastic contribution quadratic ins arises from inter-

ference of two-photon and one-photon scattering. Let us first

5These terms give the corrections of the average photon propaga-
tion induced by a disordered medium consisting of only a single
atom. In the case of many disordered atoms, they are taken into
account by renormalizing the single-photon propagation, in order to
describe the mean free path and refractive index of the atomic me-
dium.

FIG. 9. (I) Emission of a photonuk3e3l at time t1. (II ) Photon
emission and subsequent scattering by the second atom.
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look at diagram(2a). As before in thehih channel, it inter-
feres with(1a)1(1b) for the undetected photon, and(1d) or
(1e) for the detected photon, giving rise to −hsuBu2s2 in back-
groundL and the coneC, respectively. Including single scat-
tering, we obtain a contribution: the detected photon may be
singly scattered(1b), and the undetected photon either dou-
bly scattered(1e), or singly scattered by the other atom(1c).
Here, the state(1e)1(1c) of the undetected photon exactly
corresponds to the state(1a)1(1b), in the previous case.
Consequently, we obtain another term −hsuBu2s2 in the back-
ground.

With diagram(2b), the above considerations can be re-
peated in almost the same way. The difference from(2a) is
only that the detected photon propagates in the opposite di-
rection. Consequently, we obtain a term −hsuBu2s2 in the cone
C, instead of the backgroundL.

Diagram(2e) is identical to diagram(2a), since we cannot
distinguish between singly or doubly scattered photons(open
or full arrows in Figs. 2–4) in the scalar case.(2c), (2d), and
(2f), finally, are obtained by exchanging the atoms. Adding
all contributions mentioned above, we get:

Lsel,2d = − 10hsuBu2s2, sB7d

Csel,2d = − 8hsuBu2s2. sB8d

As for the inelastic component, we only have to include
the new diagrams(2e,f), which—as already mentioned
above—are identical to(2a,b). Hence, the background con-

tribution 2I II, see Eq.(52), is multiplied by a factor of 4, and
the backscattering cone, Eq.(57), by a factor of 2. We obtain:

Lsin,2d = 2I I + 8I II = S19

4
+

d2

G2DhsuBu2s2, sB9d

Csin,2d = 3hsuBu2s2. sB10d

What we have not taken into account so far is interference
between two diagrams where the undetected photon is emit-
ted by different atoms. According to Eq.(50), the angular
integral over the undetected photon then yields
sinsvr12d / svr12d. Hence if one of the two diagrams contains
a photon exchange, we obtain a contribution proportional to
uBu2. However, it can be shown that these contributions are
exactly canceled by other contributions originating from the
diagrams(2g) and (2h), which also have been neglected so
far. For example, the interference of(2g) with (1c) for the
detected photon and(1c)1(1e) for the undetected one is can-
celed by the interference of(2j) with (1c) for the detected
photon and(1e) for the undetected one. Similarly, the term
u2gu2 is canceled by the interference of(2g) with (2j). The
underlying reason for all these cancelations is that which the
undetected photon does after the inelastic scattering is irrel-
evant. We are only interested in its norm, which is not
changed by subsequent scattering events(due to energy con-
servation). Hence the final result is given by Eqs.
(B1)–(B10).
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We theoretically study the propagation of light in a disordered medium with nonlinear scatterers. We
especially focus on interference effects between reversed multiple scattering paths, which lead to weak local-
ization and coherent backscattering. We show that, in the presence of weakly nonlinear scattering, constructive
interferences exist in general betweenthreedifferent scattering amplitudes. This effect influences the nonlinear
backscattering enhancement factor, which may thus exceed the linear barrier two.

DOI: 10.1103/PhysRevE.71.055603 PACS numberssd: 42.25.Dd, 32.80.2t, 42.65.2k

Light transport inside a nonlinear medium gives rise to a
wide variety of phenomena, such as pattern formation, four
waves mixing, self-focusing effects, dynamical instabilities,
etc.f1g. These effects are well described and understood with
the help of an intensity dependent susceptibility, e.g.,xs3d

nonlinearity. However, in these approaches, one usually dis-
cards the fact that interference phenomena in disordered sys-
tems may significantly alter wave transport properties. In-
deed, considering the return probability to a given point, all
scattering paths are now closed loops. Then thetwo-wave
interference between amplitudes contra-propagating along
these loops typically increases the return probability by at
most a factor of 2, inducing a decrease of the diffusion con-
stant sthe weak localization effectd. How nonlinear effects
affect weak localization is basically unknown and the present
paper is aimed at showing that this could be more important
than naively expected. Coherent random lasersf2g are prob-
ably the most striking systems intrinsically combining both
nonlinear effects and disorder. Even if in this case one would
require an activesi.e., amplifyingd medium, a key point is the
understanding of the mutual effects between multiple inter-
ferences and nonlinear scattering.

An effect similar to weak localization iscoherent back-
scatteringsCBSd where an enhancement of the average in-
tensity scattered around the direction opposite to the incident
wave is observedf3g. In the linear scattering regime, CBS
also arises from a two-wave interference between amplitudes
entering and leaving the medium in opposite directions and
contrapropagating along all possible scattering paths. Thus
both the CBS and the weak localization are described by the
so-called “maximally crossed diagrams”f4g. The CBS en-
hancement factor, defined as the signal detected in the exact
backscattering direction divided by the diffuse background,
never exceeds two. This maximum value is reached if each
pair of interfering waves has the same amplitude, and if
single scattering can be suppressed. Previous studies of the
nonlinear regime have been restricted to the case of linear
scatterers embedded in a uniform nonlinear mediumf5–7g.
Here, it has been shown that the maximum enhancement
factor remains two.

As we will show in this paper, however, the situation
drastically changes in the presence of nonlinear scatteringsin
contrast to nonlinear propagationd. In particular, in the per-
turbative regime of at most one scattering event withxs3d

nonlinearity, CBS arises from interference between three am-
plitudes. Depending on the sign of the nonlinearity, this leads
to an increase or decrease of the nonlinear CBS enhancement
factor compared to the linear value two. Since the same
physics is at work for weak localization corrections to trans-
port, a corresponding change of the diffusion constant is ex-
pected, too. Because, for photons, CBS is easier to observe
than weak localization, we specifically concentrate on the
former.

In this paper, we calculate CBS by a dilute gas of nonlin-
ear scatterers. We assume that the cross section of a single
scatterer situated at positionr inside the disordered medium
depends on the local intensityIsrd as follows:

ssrd = s0f1 + aIsrdg, s1d

wheres0 denotes the linear cross section, anda quantifies
the strength of the nonlinearity, which is proportional to the
xs3d coefficient of the scattering material. The local intensity
Isrd is the intensity due to all external sources, i.e., the light
radiated by all other scatterers and the incident light penetrat-
ing the medium untilr without being scattered. For future
convenience, we measureIsrd in units of the incident inten-
sity I in sbefore entrance into the mediumd. Thus,a is dimen-
sionless and also proportional toI in. The general forms1d of
the nonlinear cross section is obtained under the assumption
of small scatterers, i.e., constant local intensity inside the
scatterer, weakxs3d nonlinearitysi.e., higher-order terms like
I2 negligibled, and isotropic scattering. The following treat-
ment can also be generalized to the nonisotropic case, how-
ever. At the end, we will present numerical results where we
take into account the polarization state of the light field.

Besides the scattering cross section, the second ingredient
needed for the description of a multiple scattering process is
the propagation between two scattering events. Under the
condition that no other scattering event occurs in between,
the disorder averaged intensity propagator is given by an
exponentially damped spherical wave

Psr,r8d =
e−ur−r8uk1/,l

4pur − r8u2
. s2d

Here,k1/,l denotes the mean value of the inverse mean free
path along a straight line connecting the two scattering

PHYSICAL REVIEW E 71, 055603sRd s2005d

RAPID COMMUNICATIONS

1539-3755/2005/71s5d/055603s4d/$23.00 ©2005 The American Physical Society055603-1

97



events atr andr8. In the linear casesa=0d, the mean-free-
path,0 is constant, and is related via 1/,0=Ns0 to the linear
cross sections0 and the scatterer densityN. This relation is
a consequence of energy conservation, which ensures that
the exponential attenuation of propagating field modes origi-
nates solely from scattering into other modes. Similarly,
since we assume energy conservation for the nonlinear case,
too si.e., no absorbing or amplifying scatterersd, we can also
derive the nonlinear mean free path from the nonlinear scat-
tering cross section, Eq.s1d. Since the nonlinear contribution
to the total intensityssrdIsrd scattered fromr is, according
to Eq. s1d, proportional toaIsrd2, we need to know the
disorder-averagedsquared intensity for this purpose. In a
perturbative expansion up to first order ina, we can here
replaceIsrd by its linear counterpartI0srd, whose fluctuation
properties are well knownf8g. By assuming uniformly dis-
tributed phases for the fields radiated by the other scatterers
swhich is valid in the case of a dilute mediumd, one obtains

I0
2srd = 2I0srd2 − se−z/,0d2. s3d

The second term, withz the distance from the boundary of
the medium tor along the incident direction, represents the
squared intensity of the incident, coherent mode. It accounts
for the fact that—in contrast to the diffuse light—theslineard
coherent mode intensity does not fluctuate for different real-
izations of the disorder. By equating the intensity loss due to
propagation with the scattered intensitysi.e., employing en-
ergy conservationd, we therefore obtain from Eq.s3d differ-
ent expressions for the mean free paths for diffuse and co-
herent light

1

,srd
=

1

,0
s1 + 2aI0srdd, s4d

1

,csrd
=

1

,0
s1 + 2aI0srd − ae−z/,0d. s5d

We can now write down a nonlinear radiative transfer
equation for the average intensityIsrd inside the disordered
medium. Radiative transport is obtained by representingIsrd
as the incoherent sum of the coherent incident field mode
plus the diffuse light radiated from all individual scatterers

Isrd = e−zk1/,cl + NE
V

dr8Psr,r8d 3 ssr8dIsr8d, s6d

wherek1/,cl denotes the mean value of the inverse coherent
mean free path, Eq.s5d, along the corresponding path of
length z. In the second term, representing the diffuse light,
the disorder average is decorrelated. This is justified by the
fact that correlations between intensities at different posi-
tions sseparated much further than the optical wavelengthd
can be neglected in the case of a dilute mediumf4g. In the
casea=0, Eq. s6d reduces to the familiar linear radiative
transfer equationf4g, whose iterative solution yieldsI0srd. To
proceed, we expand Eq.s6d up to the first order in the non-
linearity parametera. Introducing Eq.s3d, we obtain a closed

equation for the average intensityĪ, which we solve by itera-

tion. Finally, the average intensity of the backscattering sig-
nal follows via

L = NE
V

dr

A
e−zk1/,l 3 ssrdIsrd, s7d

with A the transverse area of the medium. Expanding again
to the first order ina, we identify the linear and nonlinear
part, L=L0+L1, respectively. According to whethera origi-
nates from the cross sections or the mean-free-path, sor
,cd, the latter splits into a nonlinear scattering and nonlinear
propagation component, i.e.,L1=L1

sscd+L1
sprd. For a slab ge-

ometry of lengthL, i.e., slineard optical thicknessb=L /,0,
we obtain

L0 =E
0

b

dzI0szde−z, s8d

L1
sscd = aE

0

b

dzI0szdf2I0
2szd − e−2zg, s9d

L1
sprd = − aE

0

b

dzI0szdf2I0
2szd − 2I0

2sbd − e−z + e−2zg,

s10d

where we have introduced theslineard optical depthz=z/,0.
Note that the first terms in Eqs.s9d and s10d cancel each
other. This is not surprising if one keeps in mind that energy
conservation ensures the total outgoing flux to equal the in-
coming one. Thus, the nonlinear contribution vanishes even
completely, if one considers the total detection signal, inte-
grated over all directions in forward and backward direction.
We have checked that Eqs.s8d–s10d are also obtained by
using diagrammatic scattering theoryf9g, if only the so-
called “ladder” diagrams are retained—thus neglecting recur-
rent scattering effectsf10g and interferences between differ-
ent scattering paths—and if, in addition, all diagrams with
more than one nonlinear scattering event are discardedssee
Fig. 1d.

On top of the above background intensity, a narrow inter-
ference cone of heightC is observed, originating from the
interference between reversed scattering paths, which is de-

FIG. 1. In the perturbative approach, we assume a single non-
linear shd, but arbitrarily many linear scattering eventssPd. The
nonlinear event symmetrically connects two linear propagators with
each other. One of them finally reaches the detector placed in back-
scattering direction.
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scribed by the so-called maximally crossed diagrams. Due to
time reversal symmetry, each maximally crossed diagram has
the same value as the corresponding ladder diagram. In the
linear case, there is exactly one reversed counterpart for each
scattering path, except for those exhibiting only a single scat-
tering event. Hence, the cone height equals the background,
provided that single scattering is removed from the latter. In
the presence of nonlinear scattering, however, there may be
either two or three interfering amplitudes. As exemplified in
Fig. 2, this is due to the fact that two linear propagators are
symmetrically connected by the nonlinear event, which per-
mits, in general, two different possibilities to reverse the
propagator that finally reaches the detector. In the expression
for the background component, Eq.s9d, the three cases of
Fig. 2 can be identified by writing the local intensityI0
=exps−zd+ Id as a sum of the coherent and diffuse part, re-
spectively. Then, all terms of at least second power inId
correspond to the casescd, those linear inId to casesbd, and
the remaining ones to casesad. From this decomposition,C is
easily obtained, since the ratio of the cone height to the back-
ground depends solely on the number of interfering ampli-
tudes. In particular, the three-amplitudes casescd contributes
to the interference cone twice as much as to the background.
In the two-amplitudes casesbd, a small complication arises,
since the right-hand amplitude of Fig. 2sbd is twice as large
as the left-hand onef11g. Only in the latter one, both propa-
gators arriving at the nonlinear scattering event originate
from the coherent mode, and hence the asymmetry is related
to the different fluctuation properties of diffuse and coherent
light, expressed by Eq.s3d. Here, the ratio between cone
height and background is obtained ass132+231d / s131
+232d=4/5. Finally, the single scattering termssad do not
contribute to the cone, and must be removed from Eq.s9d.
Thereby, we obtain

C1
sscd = 4aE

0

L

dzfI0
3szd − 2I0szde−2z + e−3zg. s11d

Concerning nonlinear propagation, interference between the
three amplitudes does not occurf5–7g. Formally, the reason
is that in this case the two incoming propagators are not
connected symmetrically by the nonlinear scattering event.
Instead, they can physically be distinguished from each
other, as one of themsthe “probe”d keeps the direction of
propagation, whereas the other ones“pump”d is scattered.
Hence, there are only two interfering amplitudes, obtained
by reversing the path of the probe. Just as for the linear
component, it is sufficient to remove single scattering contri-
butions from the background, Eq.s10d.

The perturbative results derived above allow us to calcu-
late the CBS enhancement factorh=1+C/L up to the first
order in the nonlinearity coefficienta. In particular, we ob-
tain the first derivative ofhsad at a=0, which quantifies the
modification of CBS enhancement due to a small nonlinear-
ity. In our case, the strength of the nonlinearity is limited by
the perturbative assumption of at most one nonlinear scatter-
ing event. In order to estimate roughly its domain of validity,
we have analyzed the statistical distribution of the numberN
of scattering events in linear backscattering paths, by nu-
merical simulations with slab geometry. If we associate with
each scattering event a constant probability proportional toa
to be nonlinearsthereby neglecting the inhomogeneity of the
local intensityd, we find that the occurrence of two or more
scattering events can be neglected provided thatab2!1. Let
us note that a similar condition also ensures the stability of
speckle fluctuations in a nonlinear mediumf12g.

We want to stress that the above treatment, valid for scalar
point scatterers, can be extended to any kind of nonlinear
scatterer withxs3d nonlinearity. Specifically, we have ana-
lyzed the vectorial case, where the polarization of the light
field is taken into account. This case is especially interesting,
since in the helicity preservingshihd polarization channel
single scattering contributions are filtered out, thus realizing
the maximum linear enhancement factor two. Hence, any
deviation of the enhancement factor from two can unambigu-
ously be attributed to the nonlinear effect of interference be-
tween three amplitudes. Numerically, we have treated the
vectorial case by using a Monte Carlo method, where the
positions of the scattering events are randomly chosen.

The results for the scalar and vectorialshihd case are
shown in Fig. 3, as a function of the optical thicknessb.
Evidently, the slopem= udh /daua=0 increases withb, since a
nonlinear scattering event is more likely to occur at larger
optical thickness. Thus, for large optical thickness, a signifi-
cant change ofh results already from a small nonlinearitya.
In the vectorial case, the nonlinear influence onh is smaller.
The main reason for this is the following: Due its explicit
dependence on the polarization vectors attached to the two
incoming and outgoing propagators, the nonlinear scattering
amplitude does not remain invariant when exchanging a
single incoming and outgoing propagator.sOnly if all propa-
gators are reversed, invariance is guaranteed by time-reversal
symmetry.d This causes a polarization-induced loss of inter-

FIG. 2. In the presence of nonlinear scatteringshd, there may be
either sbd two, or scd three interfering amplitudes contributing to
enhanced backscattering, apart from single scatteringsad, which
only contributes to the background. In general, the casescd, which
corresponds to the maximum enhancement factor three, is realized
if either both incoming propagators, or one incoming and the out-
going detected propagator exhibit at least one linear scattering event
sPd besides the nonlinear one.
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ference contrast, i.e., a reduction of the coherent nonlinear
scattering componentC1

sscd sapproximately by a factor 3/4d.
Nevertheless, the effect of the three-amplitudes interference
still prevails, such that in total a positive slope is observed.
In particular, the CBS enhancement factor is predicted to
exceed the linear barrier two, if the sign of the nonlinearitya
is positive. Due to the close relation between CBS and weak
localization mentioned above, we thus expect that weak
localization—and possibly also strong localization—are fa-
cilitated by positive nonlinearities.

An alternative method to observe enhancement factors
larger than two is provided by using atomic scatterers. As a
specifically quantum mechanical property of the atom-
photon interaction, nonlinearity is here intrinsically related to
inelasticscattering, where the frequency of scattered photons
changes. On the one hand, inelastic scattering acts as a
source of decoherence between reversed scattering paths,
with ensuing decrease of the CBS enhancement factorf11g.
On the other hand, however, it allows to distinguish linearly
and nonlinearly scattered light in terms of its frequency.
Thereby, the linear componentsL0 andC0 can be filtered out
from the detection signal, so that the nonlinear effect of in-
terference between three amplitudes can manifest itself espe-
cially clearly, unspoiled by linear contributions. To minimize
decoherence, the frequency filter must be sufficiently narrow
and be put as close to the initial frequency as possible, but
far enough to filter out elastically scattered light. In this
limit, the backscattering enhancement factor is exclusively
given by the nonlinear scattering components derived above,
i.e., h=1+C1

sscd /L1
sscd. For sufficiently large optical thickness,

we thereby predict maximum values of the CBS enhance-
ment factor up to 3sscalar cased or 2.5 shih channeld.
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FIG. 3. Modificationm= udh /daua=0 of the CBS enhancement
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nonlinear CBS modification is smaller than in the scalar case, as a
consequence of decoherence due to polarization effects.
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Abstract

We study coherent backscattering of light by nonlinear scatterers in the weakly

nonlinear regime. We compare full numerical calculations with a diagrammatic

approach; the validity of the latter is demonstrated by the excellent agreement

between these two approaches. Especially it emphasizes the fact that, in the

weakly nonlinear regime, the coherent backscattering phenomenon originates,

in general, from the interference between three different scattering amplitudes.

This effect reveals itself in the first nonlinear correction of the backscattered

intensity, which is enhanced by almost a factor three as compared to the diffuse

background.

1. Introduction

During the past ten years, many experiments studying localization effects in disordered media

have been performed with cold atomic vapours, acting as dilute gases of randomly distributed

atoms multiply scattering an incident monochromatic laser light [1–4]. In this case, the

scattered light field exhibits a speckle-like structure due to (multiple) interference between all

possible scattering paths. The key point is that the disorder average is insufficient to erase all

interference effects. This gives rise to weak or strong localization effects in light transport

depending on the strength of the disorder [5, 6]. A hallmark of this coherent transport regime

is the coherent backscattering (CBS) phenomenon: the average intensity multiply scattered

off an optically thick sample is up to two-times larger than the average background in a small

angular range around the direction of backscattering, opposite to the incoming light [7, 8]. This

effect in cold atomic gases has been the subject of extensive studies in the weak localization

regime, both from theoretical [9–16] and experimental points of view [1–4], proving that these

cold atoms provide a highly efficient and tuneable material.
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Figure 1. Top: in the linear regime, each ‘ladder’ diagram (a) has exactly one ‘crossed’ counterpart

describing interference between reversed scattering paths (b). The coherent backscattering

enhancement factor cannot exceed the maximum value 2. Bottom: nonlinearities lead to an

effective ‘interaction’ between optical waves, which—in the lowest order of the nonlinearity

constant χ (3)—is described by diagrams connecting two incoming and one outgoing intensity

propagator (see section 3). This has an important impact on the phenomenon of coherent

backscattering: for each ladder diagram (c), we now find two distinct pairs of reversed scattering

paths, see diagrams (d) and (e), which both contribute to the detection signal in exact backscattering

directions. Thus, the nonlinear component of the backscattering signal exhibits a backscattering

cone up to two times larger than the diffuse background, corresponding to a maximum enhancement

factor of three (see section 3.3 for details).

Quite naturally, the question of the possible observation of strong localization of light in

these cold atomic clouds has been raised. For the transition to take place, the scatterers must

be brought very close to each other, typically at a distance of the order of the wavelength.

In these conditions, even if the incident light is very weak, the intensity of light scattered

by one atom to one of its nearby neighbours may actually be very high. Then, one faces a

peculiar feature of the atoms: their ability to depict nonlinear behaviour, even for moderate

light intensity. The order of the magnitude of the required laser power is given by the so-called

saturation intensity, whose values are 1.6 mW cm−2 for rubidium atoms and 42 mW cm−2

for strontium atoms, for their usual laser cooling transitions. For this reason, one must have a

correct description and understanding of the impact of the nonlinear behaviour of the atoms

on the coherence properties of the scattered light. A better understanding of the interplay

between disorder and nonlinearity is also relevant for other subjects such as, e.g., the coherent

random laser [17] or the propagation of Bose–Einstein condensates in disordered potentials

[18–20].

In recent papers [13, 14], we have shown that, for moderate intensity, it is possible to use

a scattering approach to describe the nonlinear corrections to all relevant quantities (scattered

intensity, inelastic spectrum . . .). In particular, we have predicted that the intensity scattered

in the opposite direction to the incident laser beam is given by the (constructive) interference

of three different amplitudes, allowing, in principle, a maximum enhancement factor equal

to three, see figure 1. However, since this effect has not yet been experimentally observed,

the purpose of the present paper is to confirm the validity of this prediction by numerical

simulations, using a simplified ‘classical’ model for the nonlinear atomic scatterers.

This paper is divided as follows: in section 2, starting from the standard results for a single

two-level atom, we explain the choice of our model. In section 3, the diagrammatic theory

is derived, emphasizing the factor of three due to constructive interferences between three
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different amplitudes in the backward direction. Comparison of these theoretical calculations

and the numerical results is performed in section 4. Conclusions and possible continuations

are given in section 5.

2. ‘Classical’ nonlinear scatterers

If one considers a two-level atom illuminated by a laser beam at the atomic frequency ω0, the

stationary quantities are given by the optical Bloch equations and read [21]

〈D±〉 = ∓i
Ŵ�L

Ŵ2 + 2|�L|2
(1a)

〈�e〉 =
|�L|2

Ŵ2 + 2|�L|2
(1b)

where Ŵ is the spontaneous emission rate, �L is the absorption rate induced by the laser (�L

is proportional to the laser field EL and |�L|2 ∝ IL). D± are the raising and lowering dipole

operators and �e is the population of the excited state. The brackets 〈· · ·〉 indicate the average

over the quantum fluctuations. From these quantities, one can derive the average field and the

average intensity radiated by the atom

〈E(r)〉 ∝ 〈D−〉 (2a)

〈I (r)〉 = 〈|E(r)|2〉 ∝ 〈�e〉 (2b)

where the proportionality factor depends on the distance r (see below). For low laser intensities

(|�L| ≪ Ŵ), the scattered intensity is simply proportional to the incident one: we are in the

linear regime. When increasing the laser intensity, the absorption rate eventually becomes

comparable to the spontaneous emission rate, meaning that the atom is no longer able to

scatter all the incident photons: the regime is then nonlinear. However, we also see that, in

the nonlinear regime, 〈I (r)〉 �= |〈E(r)〉|2, which means that the light is not only elastically

scattered. Actually, for large intensity, the majority of the scattered intensity is inelastic and

the inelastic spectrum is usually derived using the quantum regression theorem.

However, in the case of many two-level atoms, the situation becomes incredibly

complicated because of the nonlinear coupling between all the atoms. In principle, one

would have to derive the optical Bloch equations for the whole density matrix, whose size

exponentially grows with the number of atoms. On the other hand, the ‘factor of three’ (i.e.,

the interference between three amplitudes in the backscattering direction) does not rely on

the exact description of the two-level atoms, but rather on the nonlinear relation between the

scattered light and the incident light. In particular, even if one forgets the inelastic light and

only takes into account the elastic scattering, the diagrammatic approach still involves the

same diagrams (see below). For this reason, we will consider a simpler model—accessible

to a direct numerical simulation—in which we will only take into account the elastic light,

forgetting the quantum fluctuations (i.e., 〈|E|2〉 = |〈E〉|2).

The disordered medium is thus built with a collection of N such ‘classical’ nonlinear

scatterers located at randomly chosen positions ri, i = 1, . . . , N , inside a sample volume V

illuminated by a plane wave kL. This point scatterer model is especially suitable for numerical

implementation, since it yields a discrete system of equations for the field strengths Ei at the

positions of the N scatterers

E(i) = eikL·ri + i
∑

j �=i

P (i,j) E(j)

1 + α|E(j)|2
(3)
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where α is proportional to the incoming intensity, and

P (i,j) =
eikrij

krij

(4)

with k = |kL|, is the propagator from j to i in the free space. For simplicity, we restrict

ourselves to the case of a scalar wave within this paper.

In the small α limit, one can neglect the nonlinear behaviour and (3) simply becomes a

linear system [24–26]

ME = EL (5)

with

Mij =

{

1 for i = j

−iP (i,j) for i �= j
(6)

and EL
i = eikL·ri . For increasing (but still weak) incoming intensity α, (3) becomes

E(i) = eikl ·ri + i
∑

j �=i

P (i,j)(E(j) − α|E(j)|2E(j)) (7)

describing thus a disordered Kerr medium with a nonlinearity of type χ (3), the latter being

proportional to the incident laser intensity.

3. Diagrammatic theory

In this section, we calculate the detection signal radiated by the system (3) of classical

scatterers up to first order in α, using diagrammatic theory. The calculation follows closely

the one presented in [14] for the case of quantum mechanical scatterers.

At first, we consider the linear regime, α = 0. Here, the solution of (5) reads formally

E
(i)
0 = eikL·ri +

∞
∑

n=1

∑

j1,...,jn

eikL·rj1 (i)n

(

n−1
∏

k=1

P (jk ,jk+1)

)

P (jn,i). (8)

In the following, we will be interested in the next highest order of the perturbative expansion

E(i) =
∑

n(−α)nE(i)
n in α. From (7), we obtain

E
(i)
1 = i

∑

j �=i

P (i,j)
(

E
(j)

1 + E
(j)

0

∣

∣E
(j)

0

∣

∣

2)
(9)

with solution

E
(i)
1 =

∞
∑

n=1

∑

j1,...,jn

inE
(j1)

0

∣

∣E
(j1)

0

∣

∣

2

(

n−1
∏

k=1

P (jk ,jk+1)

)

P (jn,i). (10)

We note that the perturbative solution of (7) is unique, i.e. multiplicity or instability of

solutions [22, 23] can only exist in the regime where the perturbative approach breaks down.

(The validity of the perturbative approach will be discussed in section 4.)

A diagrammatic representation of the nonlinear field is shown in figure 2. The square

(�) denotes the nonlinear scattering event, which, in (10), takes place at the scatterer j1. The

three incoming arrows represent the nonlinear source term E
(j1)

0

∣

∣E
(j1)

0

∣

∣

2
, while the dashed

arrow denotes the complex conjugate field
(

E
(j1)

0

)∗
. According to (8), each of the three fields

is obtained as a sum over all scattering paths ending at scatterer j1. Correspondingly, each

incoming arrow in figure 2 represents one such scattering path, whereas the outgoing arrow
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Figure 2. Diagrammatic representation of the nonlinear field, see equation (10).

represents a scattering path starting from j1 and reaching finally the detector via j2, . . . , jn,

see (10).

Let us now consider the average intensity—the quantity which is measured in the end.

The term of first order in α reads

I1 = 2 Re{E1(E0)
∗}. (11)

This means that we have to add one dashed line to figure 2, which represents the linear field

(E0)
∗. Now, we are ready to perform the ensemble average over the realization r1, . . . , rN of

the disordered medium. For this purpose, we use the dilute medium approximation Nλ3 ≪ 1,

where N = N/V is the density of scatterers. In this approximation, the only diagrams which

survive the ensemble average are the ‘ladder’ and ‘crossed’ diagrams, i.e., those diagrams

where the solid and dashed lines visit the same sequence of scatterers—either in the same

(ladder) or reversed (crossed) order. Furthermore, recurrent scattering events, where a single

scatterer is visited more than once, can be neglected.

In addition to washing out all except the ladder and crossed diagrams, the ensemble

average leads to a homogeneous effective medium, which is characterized by its refractive

index n. Its linear component reads

n0 = 1 +
i

2kℓ0

(12)

where the mean free path

ℓ0 = k2/(4πN ) (13)

depends on the density N . The dilute medium approximation is thus valid provided that

kℓ0 ≫ 1. Let us note that the real part of the refractive index is unchanged in our specific

scattering model, defined by (3). This, however, presents no restriction since, in the case of a

dilute medium, a small shift of the real part has no significant effect on the average intensity.

Due to the presence of the effective medium, the average field propagation (4) between

two subsequent scattering events is replaced by

P̃0
(i,j)

=
ein0krij

krij

. (14)

Remember that (14) describes linear propagation between i and j . Since we are dealing

with nonlinear scatterers, the refractive index of the effective medium also has a nonlinear

component, which will be calculated below.

3.1. Nonlinear scattering

Before turning to nonlinear propagation, however, we will first calculate the contribution from

nonlinear scattering. In the ladder approximation, it is obtained as follows: (i) the incoming

dashed line in figure 2 forms a ladder diagram (i.e., visiting the same sequence of scatterers)

with one of the two incoming solid lines. (ii) The remaining solid lines form a ladder diagram
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(a) (b)

Figure 3. Ladder diagrams describing nonlinear scattering (a) and nonlinear propagation (b).

with the dashed line describing the additional linear field (E0)
∗ in (11). This leads us to the

diagram shown in figure 3(a).

Note that each one of the three solid/dashed ladder pairs describes linear transport of

the average intensity in a dilute medium. Let us hence briefly recall the calculation of linear

transport. From (8), and employing the ladder approximation, the average linear intensity is

found to fulfil the following integral equation:

〈I0(r)〉 = e−z/ℓ0 + N

∫

V

dr′
∣

∣P̃0
(r,r′)∣

∣

2
〈I0(r

′)〉. (15)

Here, z denotes the distance from r to the surface of the volume V in the direction opposite

to the incoming laser, −kL. Diagrammatically, 〈I0(r)〉 is represented as a solid/dashed ladder

pair pointing to position r. If we assume that the detector is placed in backscattering direction

(kD ≃ −kL), the same function 〈I0(r)〉 also describes an outgoing ladder pair, starting from r

and pointing to the detector. From (15), the linear ladder component of the detected intensity

results as

L0 =

∫

V

dr

Aℓ0

〈I0(r)〉 e−z/ℓ0 (16)

where A denotes the transverse area of the scattering sample seen by the incident laser.

(To obtain a dimensionless quantity, the ‘bistatic coefficient’ is defined such that L0 = 1

corresponds to the case where all the incident intensity is scattered uniformly in all directions.)

To obtain the nonlinear scattering ladder component, we have to account for the fact that

the two incoming solid/dashed ladder pairs can be grouped together in two different ways, see

step (i) above. This leads to an additional factor 2 in the final result. An exception is the case

where the four incoming arrows all originate from the same mode, i.e. the coherent incoming

laser mode. With its intensity given by exp(−z/ℓ0), the average square of the linear intensity

is obtained as

〈I0(r)
2〉 = 2〈I0(r)〉

2 − e−2z/ℓ0 (17)

and the nonlinear scattering ladder component reads

L
(sc)
1 = 2

∫

dr

Aℓ0

〈I0(r)
2〉〈I0(r)〉. (18)

Here, the factor 2 originates from equation (11), the average squared intensity 〈I0(r)
2〉 describes

the two incoming propagator pairs and 〈I0(r)〉 the outgoing one.

3.2. Nonlinear propagation

The diagram describing nonlinear propagation differs from nonlinear scattering only in the

fact that the additional dashed line does not take part in the nonlinear scattering event, see

figure 3(b). Imagine that two linear scattering events take place at scatterers 1 and 2 just

before and after the nonlinear event, respectively. The average propagation of the dashed line

between 1 and 2 is then given by the linear expression
(

P̃
(1,2)
0

)∗
, see (14), since it does not
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participate in the nonlinear event. The propagation of the solid lines forming ladder diagrams

with the above dashed line, however, will be modified by the nonlinear event, depending on

the local intensity represented by the remaining solid/dashed ladder pair. Integrating over the

position r3 of the nonlinear event, we obtain for the nonlinear propagation in first order of the

nonlinearity parameter α

P̃
(1,2)
1 = 2iN

∫

dr3P̃
(1,3)
0 P̃

(3,2)
0 〈I0(r3)〉 (19)

≃ −
r12

ℓ0

〈I0〉r1→r2
P̃

(1,2)
0 . (20)

The factor 2 in (19) again accounts for the fact that the two incoming solid arrows can be

exchanged. Evaluating the integral in leading order of the ‘diluteness parameter’ 1/(kℓ0)

(stationary phase approximation) yields (20). Only positions r3 located on a straight line

connecting r1 and r2 give a significant contribution to the integral. Correspondingly, 〈· · ·〉r1→r2

denotes the average value along this line.

The same reasoning applies also if the wave propagates from scatterer 1 directly to the

detector (i.e., without another linear event after the nonlinear one). In the linear case, this is

described simply by exp(in0kz1). For the nonlinear case, we obtain

P̃1
(1,det)

= −
z1

ℓ0

〈I0〉r1→r0
ein0kz1 . (21)

Here, r0 denotes the intersection of the line from r1 to the detector with the boundary of the

medium, and z1 = |r1 − r0|.

A small complication arises for the propagation of the coherent mode, i.e., if the nonlinear

event takes place before the first linear event at r1. As in the case of nonlinear scattering (see

above), the exchange factor ‘2’ vanishes if the ‘pump intensity’ represented by the solid/dashed

ladder pair arriving at the nonlinear event also originates from the coherent mode. Thereby,

we obtain

P̃
(coh,1)
1 = −

z1

2ℓ0

(

2〈I0〉r0→r1
− e−z1/ℓ0

)

ein0kz1 . (22)

For the sake of completeness, we also give here the expressions for the nonlinear correction

(first order in α) of the refractive index, which result from (19)–(22), for diffuse and coherent

light, respectively,

n1(r) =
i

kℓ0

〈I0(r)〉 (23)

n
(coh)
1 (r) =

i

2kℓ0

(2〈I0(r)〉 − e−z/ℓ0). (24)

Again, we note that our model exhibits no real part of the nonlinear index. We have checked

that a non-vanishing real part would have no effect on the average intensity up to first order in

α. (This might change for higher orders of α—a topic presently under investigation.)

What remains for the calculation of the total nonlinear average propagation ladder

component is to add the above three cases (20), (21) and (22). The missing pieces of linear

transport to or from position r1 or r2 are expressed by (15). This yields

L
(prop)

1 = N

∫

V

dr1

Aℓ0

dr2〈I0(r1)〉〈I0(r2)〉2 Re
{

P̃1
(1,2)(

P̃0
(1,2))∗}

+

∫

V

dr1

Aℓ0

〈I0(r1)〉2 Re
{(

P̃1
(coh,1)

+ P̃1
(1,det))

e−in∗
0kz1

}

. (25)

As in (11), the term 2 Re{· · ·} arises from adding the complex conjugate diagrams.

107



4726 T Wellens and B Grémaud

(a1)

(a2)

(b1)

(b2)

Figure 4. Crossed diagrams for nonlinear scattering (a1, a2) and nonlinear propagation (b1, b2).

For each ladder diagram, see figures 3(a) and (b), there exist in general two different crossed

diagrams contributing to the interference cone.

If the sample has slab geometry, with infinite length in the x and y directions and length

L in the z direction, (25) can be simplified to

L
(prop)

1 = −

∫ L

0

dz

ℓ0

〈I0(z)〉(2〈I0(z)〉
2 − 2〈I0(L)〉2 + e−2z/ℓ0 − e−z/ℓ0). (26)

3.3. Interference cone

On top of the above ladder components, which define the weakly angle-dependent background

of the average detection signal, one observes a narrow interference cone arising from the

crossed diagrams. In the linear case, they describe the interference of each scattering path

with its time-reversed counterpart. In our case, the two interfering amplitudes are equal in

the exact backscattering direction due to time reversal symmetry. Hence, the height C0 of

the linear backscattering cone is equal to the background L0—apart from the fact that single

scattering contributions must be subtracted since they do not have a distinct, time-reversed

counterpart

C0 = L0 −

∫

dr

Aℓ0

e−2z/ℓ0 . (27)

The situation changes in the nonlinear regime. As is obvious from figure 4, there is in general

more than one way to reverse a scattering path in the presence of a nonlinear event. We want

to draw special attention to the nonlinear propagation diagram (b2), which appears somewhat

counter-intuitive at first sight and does not have an easy interpretation. Here, one of the dashed

arrows propagates from left to right, whereas the other one (from below) contributes to the

‘pump intensity’ for the nonlinear event. Concerning the solid lines, one could say that the

left one is scattered downwards, whereas the right one contributes to the pump or vice versa

(these two interpretations cannot be distinguished).

We note that the same diagram (b2) also applies to the case of a homogeneous nonlinear

χ (3) medium, into which linear scatterers are randomly embedded. (In fact, all results presented

in this section concerning nonlinear propagation are equally valid in this case; only nonlinear

scattering does not occur.) This is the situation examined in [27, 28], where, however, the

diagram (b2) has not been taken into account. Consequently, [27, 28] predict that only the

shape, but not the height of the backscattering cone is modified by the nonlinearity, whereas,

according to our theory, also the cone height (i.e., the backscattering enhancement factor) is

modified. Hence, one of the main motivations for the present paper was to demonstrate the

importance of diagram (b2) by an independent method, i.e. by numerical simulation.
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Due to time reversal symmetry, each of the crossed diagrams in figure 4 gives in general

the same value as the corresponding ladder diagram in figure 3. Thus, the crossed is twice as

large as the ladder contribution, yielding the nonlinear backscattering factor of three. However,

the following special cases must be considered.

(i) As in the linear case, single scattering contributions must be subtracted. These are the

cases where one of the two crossed diagrams is identical to the corresponding ladder or

the two crossed diagrams are identical.

(ii) If both incoming solid lines originate from the coherent mode, the exchange factor of two

(see above) must be removed (if present in the corresponding ladder diagram).

(iii) If only one of the incoming solid lines originates from the coherent mode, and the outgoing

solid line propagates from the nonlinear event directly to the detector, the exchange factor

of two must be taken into account (if absent in the corresponding ladder diagram).

Thereby, we find

C
(sc)
1 = 2L

(sc)
1 − 4

∫

V

dr

Aℓ0

(3〈I0(r)〉 − 2e−z/ℓ0) e−2z/ℓ0 (28)

C
(pr)
1 = 2L

(pr)
1 + 3

∫

V

dr1

Aℓ0

e−z1/ℓ0
[

〈I0(r1)〉(1 − e−z1/ℓ0) + 2 Re
{

P̃
(coh,1)
1 e−in∗

0kz1
}]

. (29)

For a slab geometry, we obtain

C
(pr)
1 = 2L

(pr)
1 + 3

∫ L

0

dz

ℓ0

〈I0(z)〉(e
−z/ℓ0 − e−2L/ℓ0) −

(

1

2
−

3

2
e−2L/ℓ0 + e−3L/ℓ0

)

. (30)

4. Numerical results

For the numerical comparison, we will consider the case where the nonlinear scatterers are

randomly distributed inside a sphere, with a homogeneous density. We have two parameters

in our simulations, namely, the number of scatterers N and the radius of the sphere R. The

(linear) optical thickness b along the diameter of the sphere being 2R/ℓ0, we get the following

relations:

kℓ0 =
(kR)3

3N
(31a)

b = 2
kR

kℓ0

. (31b)

Typically, we have worked with several thousand scatterers, for optical thickness ranging from

1 to 3 and kℓ0 between 50 and 100. For each configuration, the nonlinear set of equations (3)

is solved using a Newton–Krylov method. Only a few iterations are needed to get a converged

solution with a residual error smaller than 10−12. From the solution, we calculate the radiated

field and intensity outside the cloud in different directions. This procedure is then repeated with

many different configurations (typically 1000) giving us the disorder averaged field and

intensity. More precisely, the nonlinear system is solved for different values of the parameter

α ranging from 0 to 10−3, and the first nonlinear corrections to the averaged quantities are

obtained as follows:

I1(n) =
I (n, α) − I (n, 0)

α
(32)
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Figure 5. Linear intensity I0 (top) and nonlinear correction I1 (bottom) averaged over 1000

configurations, in the case of 2500 scatterers in a sphere of optical thickness b = 2.45 with

kℓ0 ≈ 64. The solid curves are the numerical results, whereas the long dashed ones are

the theoretical calculations. As one can see, the agreement is rather excellent. In particular,

the nonlinear cone clearly exhibits an enhancement factor larger than two, due to the effect of

interference between three amplitudes. The horizontal dashed lines correspond to the intensity in

the exact backward direction, and the dot-dashed line on the bottom plot would be the same result

without taking into account the diagram (b2) of figure 4 contributing to the nonlinear propagation

of the crossed intensity, thus emphasizing its importance.

where n represents the direction of observation and I means configuration average. We have

checked that I1 is independent of the value of α. We have also checked that we recover

the same results, if, for each configuration, we first solve the linear system (5) and then get

the first-order nonlinear correction to the field from the linear system (10); from this solution,

we calculate the outgoing intensity and then perform the configuration average.

In the case of 2500 scatterers in a sphere of optical thickness b = 2.45 with kℓ0 ≈ 64, the

linear intensity I0 and nonlinear correction I1 averaged over 1000 configurations are compared

with the theoretical predictions in figure 5. The top plot depicts the linear results and the bottom

one the nonlinear corrections. The solid curves are the numerical results, whereas the long

dashed ones are the theoretical calculations according to the method presented in section 3

(with some straightforward extensions to account for the precise angle dependence of the

backscattered intensity). As one can see, the agreement is rather excellent. The horizontal

dashed lines correspond to the intensity in the exact backward direction and the dot-dashed

line on the bottom plot would be the same result without taking into account the diagram

(b2) of figure 4 contributing to the nonlinear propagation of the crossed intensity. Thus,

even if at first glance, the contribution of this diagram to the backscattered intensity seemed

not to be obvious and, for this reason, was not mentioned in earlier papers on nonlinear

effects in coherent backscattering [13, 27, 28], the comparison with the present numerical

simulations really emphasizes its importance. Finally, the numerical values of the nonlinear

ladder and crossed term are in this case L1 = 4.85 and C1 = 7.22. Obviously C1 is larger

than L1, emphasizing the fact that for each ladder diagram there correspond, in general, two

crossed diagrams. The fact that the nonlinear enhancement factor of three, corresponding to

C1 = 2L1, is not precisely realized in figure 5(b) can be traced back to single scattering and

similar processes, see the discussion before equation (29).
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Figure 6. Comparison between the first and second order in the nonlinearity strength α for the

intensity inside the bulk for different values of the optical thickness b. More precisely, we plot

the intensity along the diameter of the sphere parallel to the incident laser beam. The horizontal

axis is thus the position on the diameter in units of optical thickness b (z = 0 is the centre of the

sphere, z = − 1
2

corresponds to the illuminated surface and z = 1
2

corresponds to the opposite

surface). The solid lines denote I1(b, z), whereas the dashed lines correspond to I2(b, z)/b2. One

can clearly see that for increasing optical thickness b, the two curves are getting closer to each

other, thus emphasizing that, in the large b limit, one has I2(b, z) ≈ b2I1(b, z) and, thus, that the

relevant perturbation parameter is b2α.

We note that the angular width of the backscattering cone is roughly the same in the

linear and the nonlinear case, in both cases being mainly determined by the optical thickness

(b = 2.45) and the geometry (sphere) of the scattering medium. For larger values of the

optical thickness, the nonlinear cone is expected to become narrower than the linear one, since

longer light paths are more probably affected by a nonlinear event than shorter ones. This may

eventually lead to the appearance of a ‘dip’ in the total (linear plus nonlinear) backscattering

cone [27, 28].

Finally, we want to discuss the validity of the present approach. Formally, the present

approach is an expansion in powers of α, the strength of the nonlinearity, but the coefficients

of this series depend on the geometry of the medium, especially on the optical thickness b

(omitting bordering effects):

I (α, b) = I0(b) + αI1(b) + α2I2(b) + · · · . (33)

For the present approach to be valid, each term in this series must be much smaller than

the preceding one, that is αIn+1(b) ≪ In(b). In a preceding paper [14], we gave a rough

quantitative estimation, based on the distribution of the number N of scattering events which

a backscattered photon undergoes in a linear random walk. If we assign to each scattering

event the same probability α ≪ 1 to be nonlinear, the ratio p2/p1 of the probabilities for two

and one nonlinear events, respectively, follows as p2/p1 = α〈N2〉/2〈N〉. Since, as we have

checked numerically, 〈N〉 ∝ b and 〈N2〉 ∝ b3 (in the limit of large b), the criterion p2 ≪ p1

for the validity of the perturbative treatment turns out to be αb2 ≪ 1.

This is confirmed by the present numerical simulations. In figure 6, we compared the

first and second order for the intensity inside the bulk for different values of the optical

thickness b. More precisely, we plot the intensity along the diameter of the sphere parallel to

the incident laser beam. The horizontal axis is thus the position on the diameter in units of
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optical thickness b (z = 0 is the centre of the sphere, z = − 1
2

corresponds to the illuminated

surface and z = 1
2

corresponds to the opposite surface). The fluctuations in the signals

originate from the exceptional presence, in a given configuration, of a scatterer very close

to the diameter (smaller than the wavelength λ), resulting in a large local intensity. These

fluctuations are also present in the linear case and their sizes decrease when increasing the

number of configurations. The solid lines denote I1(b, z), whereas the dashed lines correspond

to I2(b, z)/b2. For these numerical computations, in order to achieve larger optical thickness,

we have lowered the value kℓ0 down to ≈30, which still leads to correct linear results (i.e., the

dilute medium approximation kℓ0 ≫ 1 is still valid). The number of scatterers is N = 2048

(4000, 6390 and 10 976) for an optical thickness b = 4 (5, 6 and 7). The final quantities

results from the average over 1000 different configurations. One sees that in all the four cases

I2(b, z) ≈ b2I1(b, z) and, thus, that the relevant perturbation parameter is b2α. The small

change in the ratio between I2(b, z)/b2 and I1(b, z), which is observed from b = 4, where

I2(b, z)/b2 is slightly larger than I1(b, z), to b = 7, where I2(b, z)/b2 is equal to I1(b, z),

shows that the large b limit is not yet reached at b = 4.

5. Conclusion

In summary, we have presented a numerical study of nonlinear effects on the coherent

backscattering cone. More precisely, we have considered a simplified model of ‘classical’

two-level atoms, in which the inelastic scattering was removed, only keeping the nonlinear

elastic scattering events. This allowed us to write a closed set of nonlinear equations describing

the electromagnetic field in a cloud of such nonlinear scatterers illuminated by a laser beam.

From its exact numerical solution, we computed the first-order nonlinear corrections C1 and

L1 to the backscattering cone, which we compared with a diagrammatic approach. The

validity of the latter is proved by the excellent agreement between the two approaches. In

particular, it emphasizes the fact that, in general, the nonlinear scattered intensity results

from the interferences between three amplitudes leading to a nonlinear correction C1 of the

interference cone up to two times larger than the nonlinear correction L1 of the diffuse intensity.

Finally, when comparing the first- and second-order term in α for the intensity inside the bulk,

we have shown that the relevant perturbation parameter is b2α, where b is the optical thickness.

A natural way to extend this work is to relax the perturbative assumption and admit more

than one nonlinear scattering event. Since the number of interfering amplitudes increases if

more than two photons are connected by nonlinear scattering events, we expect the occurrence

of even larger enhancement factors in the nonperturbative regime—especially in the case of

scatterers with positive nonlinearity, i.e. for scatterers whose cross section increases with

increasing intensity.

Furthermore, the relation between coherent backscattering and weak localization in the

presence of nonlinear scattering remains to be explored. Does a large nonlinear enhancement

of coherent backscattering also imply a strong reduction of nonlinear diffusive transport? The

answer to this question could shed new light onto the problem of wave localization in nonlinear

media.
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In this theoretical paper, we investigate coherence properties of the near-resonant light scattered by two
atoms exposed to a strong monochromatic field. To properly incorporate saturation effects, we use a quantum
Langevin approach. In contrast to the standard optical Bloch equations, this method naturally provides the
inelastic spectrum of the radiated light induced by the quantum electromagnetic vacuum fluctuations. However,
to get the right spectral properties of the scattered light, it is essential to correctly describe the statistical
properties of these vacuum fluctuations. Because of the presence of the two atoms, these statistical properties
are not Gaussian: �i� the spatial two-points correlation function displays a specklelike behavior and �ii� the
three-points correlation function does not vanish. We also explain how to incorporate in a simple way propa-
gation with a frequency-dependent scattering mean-free path, meaning that the two atoms are embedded in an
average scattering dispersive medium. Finally we show that saturation-induced nonlinearities strongly modify
the atomic scattering properties and, as a consequence, provide a source of decoherence in multiple scattering.
This is exemplified by considering the coherent backscattering configuration where interference effects are
blurred by this decoherence mechanism. This leads to a decrease of the so-called coherent backscattering
enhancement factor.

DOI: 10.1103/PhysRevA.74.033808 PACS number�s�: 42.50.Lc, 42.65.�k, 42.50.Ar, 42.25.Dd

I. INTRODUCTION

Over the past ten years, cold atomic gases have gradually
become a widely employed and highly tunable tool for test-
ing new ideas in many areas of quantum physics: quantum
phase transitions �Bose-Einstein condensation, Fermi degen-
erate gases, Mott-Hubbard transition� �1–3�, quantum chaos
�4�, applications in metrology �5�, and disordered systems
�6–8� to cite a few. In the latter case, cold atomic vapors act
as dilute gases of randomly distributed atoms multiply scat-
tering an incident monochromatic laser light. In this case, the
scattered light field exhibits a specklelike structure due to
�multiple� interference between all possible scattering paths.
The key point is that the disorder average is insufficient to
erase all interference effects. This gives rise to weak or
strong localization effects in light transport depending on the
strength of disorder �9,10�. A hallmark of this coherent trans-
port regime is the coherent backscattering �CBS� phenom-
enon: the average intensity multiply scattered off an optically
thick sample is up to twice larger than the average back-
ground in a small angular range around the direction of back-
scattering, opposite to the incoming light �11�. This interfer-
ence enhancement of the diffuse reflection off the sample is a
manifestation of a two-wave interference. As such, it probes
the coherence properties of the outgoing light �12�. The CBS
effect in cold atomic gases has been the subject of extensive
studies in the weak localization regime, both from theoretical
and experimental points of view �13�. In particular, modifi-
cations brought by atoms, as compared to classical scatterers,
for light transport properties �mean-free path, coherence
length, CBS enhancement factor� have been highlighted.
They are essentially due to the quantum internal atomic
structure �14,15�.

Another interesting feature of atoms is their ability to dis-
play a nonlinear behavior: the scattered light is no more pro-
portional to the incident one. This leads to a wide variety of
phenomena, like pattern formation, four-wave mixing, self-
focusing effects, dynamical instabilities, etc. �16–19�. For a
weak nonlinearity, introducing an intensity-dependent sus-
ceptibility is enough to properly describe these effects, in-
cluding quantum properties �16,20,21�, e.g., the Kerr effect
�intensity dependence of the refractive index� can be ob-
tained with a ��3� nonlinearity. However, when the incident
intensity is large enough, and this is easily achieved with
atoms, perturbation theories eventually fail and a full nonlin-
ear treatment is required. For a single two-level atom, the
solution is usually given by the so-called optical Bloch �OB�
equations. Together with the quantum regression theorem,
they allow for a complete description of the spectral proper-
ties of the fluorescence light �23�. In particular, these equa-
tions show that the atomic nonlinear behavior is intrinsically
linked to the quantum nature of the electromagnetic field.
More specifically, as opposed to classical nonlinear scatter-
ers, the radiated light exhibits quantum fluctuations charac-
terized by peculiar time correlation properties. They define a
power spectrum, known as the Mollow triplet, emphasizing
inelastic scattering processes at work in the emission process
�23–25�.

However, even if all these aspects are well understood in
the case of a single atom exposed to a strong monochromatic
field �23�, the situation changes dramatically in the case of a
large number of atoms where a detailed analysis including
both quantum nonlinear properties and coherence effects is
still lacking. Until now, the nonlinear coupling between the
atoms and the quantum vacuum fluctuations is either in-
cluded in a perturbative scheme �21,22� or simply described
by a classical noise �26–30�. In the dilute regime �≪R
where the light wavelength � is much less than the average
particle separation R, one expects the quantum fluctuations to*Electronic address: Benoit.Gremaud@spectro.jussieu.fr
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reduce the degree of coherence of the scattered light. This
will alter not only propagation parameters �mean-free path,
refraction index�, but also weak localization corrections to
transport, and the CBS enhancement factor, which is related
to the coherence properties of the scattered light field
�7,8,12�. We want here to stress that, even beyond interfer-
ence and weak localization phenomena, any transport prop-
erty which may be influenced by saturating the atomic tran-
sition deserves a special and necessary study on its own. The
most striking systems falling in this category where both
nonlinear and disordered descriptions are intimately interwo-
ven are coherent random lasers �31�, where interference ef-
fects lead to localized light modes inside the disordered me-
dium, comparable to resonator eigenmodes in chaotic lasers
�32–35�. Even if, in this case, one would require an active
�i.e., amplifying� medium, a key point is the understanding
of the mutual effects between multiple interference and non-
linear scattering.

In the present paper, we will focus on the rather simple
case of two atoms in vacuum. Our aim is threefold. �i� First
to properly calculate quantum correlations between pairs of
atoms as a crucial step towards a better understanding of the
physical mechanisms at work, �ii� second to implement a
method allowing for a simple incorporation of frequency-
dependent propagation effects, and �iii� finally to understand,
in the CBS situation, the modifications brought by the �quan-
tum� nonlinearity to the interference properties. We hope that
these points, once mastered, can provide an efficient way to
produce realistic computer models to simulate real experi-
ments. Point �i� alone could easily be solved using the stan-
dard OB method �36,37�. But the latter almost becomes use-
less regarding point �ii�, since frequency-dependent
propagation leads to complicated time-correlation functions.
From a numerical point of view, it also leads to such large
linear systems of coupled equations that its practical use is
limited up to only a few atoms, very far from a real experi-
mental situation. For these reasons, we will rather use the
quantum Langevin method for our purposes. This method
not only solves points �i� and �ii�, but also leads to a simple
explanation of point �iii�, through a direct evaluation of the
quantum noise spectrum. Note however that, in the absence
of any effective medium surrounding the two atoms, and as
long as only the numerical results are concerned �but not the
physical interpretation�, the quantum Langevin approach is
completely equivalent to solving the multiatom optical Bloch
equations as in Refs. �36,37�.

This paper divides as follows. In Sec. II, the notations are
defined and the quantum Langevin approach is explained for
the single atom case. In Sec. III, the method is adapted to the
case where two atoms are weakly coupled by the dipole in-
teraction. The validity and relevance of the method is con-
trolled by a comparison with a direct calculation using OB
equations. Then, in the CBS configuration, numerical results
for different values of the laser intensity and detuning are
presented and discussed in Sec. IV. In particular, possible
reasons for the reduction of the enhancement factor are put
forward. Conclusions and possible continuations are given in
Sec. V.

II. SINGLE TWO-LEVEL ATOM CASE

A. Time-domain approach

We consider an atom with a zero angular momentum elec-
tronic ground state �Jg=0� exposed to a monochromatic light
field. The light field frequency �L is near-resonant with an
optical dipole transition connecting this ground state to an
excited state with angular momentum Je=1. The angular fre-
quency separation between these two states is �0 and the
natural linewidth of the excited state is �. We will denote
hereafter by �L=�L−�0 the laser detuning. The ground state
is denoted by �00� while the excited states are denoted by
�1me�, with me=−1,0 ,1 the Zeeman magnetic quantum num-
ber. As we assume no magnetic field to be present throughout
this paper, the excited state is triply degenerate.

In the Heisenberg picture, this two-level atom is entirely
characterized by the following set of 16 time-dependent op-
erators:

�g = �00��00�, �meme�

e = �1me��1me��,

Dme

+ = �1me��00�, Dme

− = �00��1me� . �1�

The atomic operators obey the completeness constraint

1 = �g + �e, �2�

where �g and �e=�me
�meme

e are the ground and excited state
atomic population operators.

The full atom-field Hamiltonian H is the sum of the free
atom Hamiltonian HA= ��0�e, of the free quantized field
Hamiltonian HF=�k,��k��kak�

† ak� and of the dipolar inter-
action V=−d · �EL+EV� between the atomic dipole d, the
classical laser field EL, and the quantum electromagnetic
vacuum field EV. Performing the usual approximations of
quantum optics, i.e., neglecting nonresonant terms �rotating
wave approximation� and assuming Markov-type correla-
tions between the atomic operators and the vacuum field, one
obtains the quantum Langevin equations controlling the time
evolution of any atomic operator O in the rotating frame
�23,26�:

dO

dt
= i�L�O,�e� −

i

2�
q

�− 1�q�O,Dq
+�	−q

L+�R�

−
i

2�
q

�O,Dq
−�	q

L−�R� −
�

2
�O�e + �eO�

+ ��
q

Dq
+ODq

− + FO�R,t� , �3�

where 	q
L+ �	q

L−� are the components of the Rabi frequency
of the positive �negative� frequency parts of the incident la-
ser beam, i.e., ��=−dE where d is the dipole strength. Fi-
nally FO�t� is the Langevin force depicting the effects of the
quantum fluctuations of the vacuum electromagnetic field
and reads

GRÉMAUD et al. PHYSICAL REVIEW A 74, 033808 �2006�

033808-2

115



FO�t� = −
i

2�
q

�− 1�q�O,Dq
+�	−q

0+�R,t�

−
i

2�
q

	q
0−�R,t��O,Dq

−� , �4�

where 	0+�R , t� is the vacuum Rabi field operator

�
0+�R,t� = −

2id

�
�

k,��k

E����ak��t0�eik·R−i��−�L��t−t0� �5�

with t0 an initial time far in the past. In the case of a sur-
rounding cavity, one would expand the vacuum Rabi field
onto the cavity modes �34� instead of the free space modes
�ak��t0�eik·R−i��−�L��t−t0�. From the preceding expression, one
can calculate the time correlation functions of the vacuum
field �38�

�− 1�q�	−q
0+�R,t�,	q�

0−�R,t��� = 4��qq�f�t − t�� , �6�

where f�
� is a function centered around 
=0, whose width

c is much smaller than any characteristic atomic time scale
�i.e., 
c≪�0

−1
≪�−1� and whose time integral is equal to

unity. Thus, hereafter, f�
� will be safely replaced by a �
function f�
�→��
�.

The time evolution for the expectation values is obtained
by averaging over the initial density matrix ��t0�, i.e.,
�O�t��=Tr�O�t���t0��. Since the atom and the vacuum field
are supposed to be decoupled initially, ��t0� is simply
�at�t0� � �0��0� ��0� being the vacuum field state�. Because of
the normal ordering, one immediately gets

�FO�t�� = 0, �7�

and the time correlation functions of the Langevin forces

�FO�t�FO�
�t���

= − �	�
q

�O�t�,Dq
+�t���O��t��,Dq

−�t���
��t − t�� .

�8�

The physical picture of the quantum Langevin approach is
to represent quantum fluctuations by a fluctuating force act-
ing on the system, in analogy with the usual Brownian mo-
tion. Not surprisingly, this leads to a diffusivelike behavior
of expectation values. More precisely, because of the � func-
tion in Eq. �8�, we can set t�= t for the atomic operators and
we finally obtain in the stationary regime t≫ t0:

�FO�t�FO�
�t��� =

�

4
DOO�

��t − t�� , �9�

where D is a matrix of diffusion constants depending only on
the stationary values of the atomic operators. The stationary
hypothesis also results from the fact that these correlation
functions only depend on the time difference t− t�.

From this, it is possible to prove that the quantum regres-
sion theorem applies �23,39�, allowing for the calculation of
two-times correlation functions of the atomic operators and
of their expectation values. From their Fourier transforms,
one can obtain the spectrum of the radiated light. But, for the

reasons mentioned in the Introduction, we will explain how
these properties can be obtained in a much simpler way by
directly translating the Langevin equations in the Fourier do-
main �39�.

B. Frequency-domain approach

First, because of the constraint �2�, only 15 atomic opera-
tors are actually independent. More specifically, we will use
the following set, denoted by the column vector X:

�me

z =
1

2
��meme

e − �g� ,

�meme�

e = �1me��1me��, me � me�,

Dme

+ = �1me��00� ,

Dme

− = �00��1me� .

�10�

The Langevin equations for X then formally read as follows

d

dt
X�t� = MX�t� + L + F�t� , �11�

where M is a time-independent matrix depending on the laser
Rabi frequency 	L±, L is a constant vector scaling with �
and F�t� is a vector characterizing the Langevin forces at
work on the atom �for simplicity, we have dropped the ex-
plicit position dependence�. The stationary expectation val-
ues are then simply given by

�X� = − M−1L . �12�

The Fourier transforms of the different quantities are de-
fined as follows:

f��� =� dtf�t�ei�t,

f�t� =� d�

2

f���e−i�t, �13�

leading to the Langevin equations in the frequency domain

�− i�1 − M�X��� = 2
����L + F��� . �14�

Introducing the Green’s function G���= �−i�1−M�−1, the
solution of the preceding equations simply reads

X��� = G����2
����L + F���� . �15�

Using G�0�=−M−1 and Eq. �12�, this solution separates
into a nonfluctuating part XL��� and a fluctuating
�frequency-dependent� part XF���:

XL��� = 2
�����X� ,

XF��� = G���F��� . �16�

From the linearity of the Fourier transform, we still have
�F����=0 implying �XF����=0. The time correlation func-
tions for the Langevin force components, Eq. �8�, become
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�Fi����F j���� = 2
���� + ���Dij , �17�

where the 2
����+�� function is a direct consequence of
the time-translation invariance, i.e., that we calculate the cor-
relation functions in the stationary regime. This implies that
the correlation function for the components of XF in the
frequency domain are

�„XF����…i„XF���… j� = 2
��� + ����GDtG�ij , �18�

where the superscript t means matrix transposition.
The field radiated at frequency � by the atom at a distance

r≫� �far-field regime� reads as follows:

�− 1�q	−q
+ ��� = −

3

2
�Pqq�

r Dq�

− ���
eikr

kr
, �19�

where we use implicit sum over repeated indices. Pr is the
projector onto the plane perpendicular to vector r:

Pqq�

r = �̄qP
r
�q� = �̄q�1 −

r tr

r2 
�q� = �qq� − �− 1�q
r−qrq�

r2 ,

�20�

where the overbar denotes complex conjugation and where
�r tr� is a dyadic tensor.

The correlation functions �	q�

− ����	q
+���� of the light

emitted by the atom is then proportional to �Dq�

+ ����Dq
−����

and read

�	q�

− ����	q
+���� � �2
�2����������Dq�

+ ��Dq
−�

+ 2
���� + ���
j�j

Gi�j�����Gij���D j�j ,

�21�

where the index i �i�� corresponds to Dq
− �Dq�

+ �. The nonfluc-
tuating part gives rise to a spectral component of the emitted
light at exactly the incident laser frequency and is thus natu-
rally called the elastic part. The fluctuating part gives rise to
the inelastic Mollow triplet spectrum �41�, whose properties
�position and width of the peaks� are given by the poles of
G���, i.e., by the complex eigenvalues of M. Actually, we
simply recover the results of the quantum regression theo-
rem, which states that the atomic time correlation functions
evolve with the same equations than the expectation values

�X�˙ =M�X�+L �23,24�.

III. TWO-ATOM CASE

A. Optical Bloch equations

We now consider two isolated atoms, located at fixed po-
sitions R1 and R2. Defining R=R2−R1=Ru �with R= �R�
and u the unit vector joining atom 1 to atom 2�, we assume
the far-field condition R≫� to hold. We also assume that R
is sufficiently small for the light propagation time R /c to
be much smaller than any typical atomic time scales
��−1 ,�−1 ,	L

−1�. In this regime, all quantities involving the
two atoms are to be computed at the same time t. The con-
tribution of the atom-atom dipole interaction in the Langevin
equation for any atomic operator O reads

� dO

dt
�

dip.
= i

3�

4
���O,Dq

1+�Pqq�

R Dq�

2− + �O,Dq
2+�Pqq�

R Dq�

1−�
eikR

kR

+ �Dq
1+Pqq�

R �O,Dq�

2−� + Dq
2+Pqq�

R �O,Dq�

1−��
e−ikR

kR
� .

�22�

In the OB equations, the two-atom system is entirely de-
scribed by the set of 256 operators Xij made of all possible
products Xi

1X j
2. The stationary expectation values �Xij� are

then obtained as solutions of a linear system resembling Eq.
�12�. This is the approach used in Ref. �37�, where such
optical Bloch equations are solved.

Since the two atoms are far enough from each other, the
electromagnetic field radiated by one atom onto the other can
be treated as a perturbation with respect to the incident laser
field. More precisely, the solutions �Xij� can be expanded up
to second order in powers of g and ḡ:

�Xij� = �Xij�
�0� + g�Xij�

�g� + ḡ�Xij�
�ḡ� + gḡ�Xij�

�gḡ�

+ g2�Xij�
�gg� + ḡ2�Xij�

�ḡḡ�, �23�

where the complex coupling constant g is

g = i
3�

2

exp�ikR�

kR
. �24�

In fact, it will be shown below that both terms in g2 and ḡ2

give a vanishing contribution to the coherent backscattering
signal.

As explained in the Introduction, this approach has two
drawbacks: �i� the solutions obtained in this way are global
and, thus, do not provide a simple understanding of the prop-
erties of the emitted light and �ii� when the two atoms are
embedded in a medium whose susceptibility strongly de-
pends on the frequency, the field radiated by one atom onto
the other at a given time t now depends on the atomic op-
erators of the first atom at earlier times �since retardation
effects become frequency dependent�. Time correlation func-
tions in the dipole interaction then explicitly show up.

B. Langevin approach

The Langevin equations for the two sets of atomic opera-
tors X�, with �=1,2, formally read

Ẋ� = M�X� + L + F� + gTq+X�Pqq�

R Dq�

�− + ḡDq
�+Pqq�

R Tq�−X�,

�25�

where � denotes the other atom and where Tq± are 15�15
matrices defined by �Xi ,Dq

±�= ±2Tij
q±X j. Taking the Fourier

transform of these equations, one gets

X���� = G�����2
����L + F�����

+ gG����Tq+Pqq�

R �X�
� Dq�

�−����

− ḡG����Pqq�

R Tq�−�Dq
�+

� X����� , �26�

where � is the convolution operator
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�A � B���� =
1

2

� � d�1d�2���1 + �2 − ��A��1�B��2� .

�27�

Introducing, for simplicity, the following notations:

X��0�
��� = G�����2
����L + F����� ,

G�q
+
��� = G����Tq�+Pq�q

R ,

G�q
−
��� = G����Tq�−Pqq�

R , �28�

Eq. �26� becomes

X���� = X��0�
��� + gG�q

+
����X�

� Dq
�−����

− ḡG�q
−
����Dq

�+
� X����� , �29�

from which one gets the expansion in power of g and ḡ �up
to gḡ� for the atomic operators:

Xi
���� = Xi

��0�
��� + gGij

�q
+

����X j
��0�

� Dq
�−�0�

����

− ḡGij
�q

−

����Dq
�+�0�

� X j
��0�

����

− gḡ�Gij
�q

+

����X j
��0�

� G
Dq

−j�

�p
−

�Dp
�+�0�

� X j�

��0�
�����

+ Gij
�q

+

����G j j�

�p
−

�Dp
�+�0�

� X j�

��0�
� � Dq

�−�0�
����

+ Gij
�q

−

����Dq
�+�0�

� G j j�

�p
+

�X j�

��0�
� Dp

�−�0�
�����

+ Gij
�q

−

����G
Dq

−j�

�p
+

�X j�

��0�
� Dp

�−�0�
� � X j

��0�
����� ,

�30�

where the notation G
Dq

−j�

�p
−

means the matrix element Gi�j� with

i� such that Xi�=Dq
−. A schematic representation of the pre-

ceding equation is shown in Fig. 1. The thick arrows depict
the incident laser intensity �the pump field�. The continuous
arrows depict the propagation of the components of the posi-
tive frequency part of electromagnetic field �i.e., 	+�,
whereas the dashed arrows correspond to the negative fre-
quency part �i.e., 	−�. Figure 1�a� represents thus the g co-
efficient in Eq. �30�: the atom � is pumped by the incident
laser field and thus emits light �elastic and inelastic� �dipole

operator Dq
�−�0�

�, which is then scattered by the atom � �non-

linear susceptibilities Gij
�q

+

X j
��0�

�. Figure 1�b� depicts the ḡ co-
efficient corresponding to the case where a forward four-
wave mixing �FFWM� process occurs at the atom �; i.e., the
components of the negative frequency part of the electro-
magnetic field emitted by the atom � and the components of
the positive frequency part of the incident laser field are non-
linearly mixed at the atom � resulting in a radiated field with
a positive frequency part �see Sec. IV C for more details�.
Figure 2�a� corresponds to the first gḡ coefficient and must
be read as follows: the atom � emits light �the negative fre-

quency components Dp
�+�0�

�, which undergoes a FFWM pro-

cess at the atom � �term G
Dq

−j�

�p
−

X j�

��0�
�, the resulting field is

then scattered by the atom � �term Gij
�q

+

X j
��0�

�. Figure 2�b�
corresponds to the second gḡ coefficient and depicts the fol-
lowing process: the positive frequency components of the

FIG. 1. �Color online� A schematic representation of Eq. �30�.
The thick arrows depict the incident laser intensity �the pump field�.
The continuous arrows depict the propagation of the components of
the positive frequency part of electromagnetic field �i.e., 	+�,
whereas the dashed arrows correspond to the negative frequency
part �i.e., 	−�. �a� represents thus the g coefficient in Eq. �30�: the
atom � is pumped by the incident laser field and thus emits light

�elastic and inelastic� �dipole operator Dq
�−�0�

�, which is then scat-

tered by the atom � �nonlinear susceptibilities Gij
�q

+

X j
��0�

�. The dia-
gram �b� depicts the ḡ coefficient corresponding to the case where a
forward four-wave mixing �FFWM� process occurs at the atom �;
i.e., the components of the negative frequency part of the electro-
magnetic field emitted by the atom � and the components of the
positive frequency part of the incident laser field are non-linearly
mixed at the atom �, resulting in a radiated field with a positive
frequency part �see Sec. IV C for more details�. Figure 2�a� corre-
sponds to the first gḡ coefficient and must be read as follows: the

atom � emits light �the negative frequency components Dp
�+�0�

�,

which undergoes a FFWM process at the atom � �term G
Dq

−j�

�p
−

X j�

��0�
�;

the resulting field is then scattered by the atom � �term Gij
�q

+

X j
��0�

�.
Figure 2�b� corresponds to the second gḡ coefficient and depicts the
following process: the positive frequency components of the light

emitted by the atom � �term Dq
�−�0�

� are scattered by the atom �

with nonlinear susceptibilities which are modified by the negative
frequency components emitted by the atom � �term

Gij
�q

+

G j j�

�p
−

Dp
�+�0�

X j�

��0�
�. Finally the �c� �third gḡ coefficient� is analog to

Fig. 2�b� with an additional FFWM process at the atom � and Fig.
2�d� �fourth gḡ coefficient� is analog to Fig. 2�a� with a FFWM
process also at the atom �.
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light emitted by the atom � �term Dq
�−�0�

� are scattered by the
atom � with nonlinear susceptibilities which are modified by
the negative frequency components emitted by the atom �

�term Gij
�q

+

G j j�

�p
−

Dp
�+�0�

X j�

��0�
�. Finally, Fig. 2�c� �third gḡ coeffi-

cient� is analog to Fig. 2�b� with an additional FFWM pro-
cess at the atom � and Fig. 2�d� �fourth gḡ coefficient� is
analog to Fig. 2�a� with also a FFWM process at the atom �.
For all these figures, one must notice that the regular nonlin-
ear susceptibilities only depend on the intensity of the inci-
dent laser field, whereas the FFWM processes also depend
on the phase of the laser. These properties will play a crucial
role for the calculation of the CBS signal �see Sec. IV C�.

Two-body term expansions, obtained from Eq. �30�, read
as follows:

Xi�

� ����Xi
���� = Xi�

��0�
����Xi

��0�
���

+ g�Xi�

��0�
����Gij

�q
+

����X j
��0�

� Dq
�−�0�

����

+ Gi�j�

�q
+

�����X j�

��0�
� Dq

�−�0�
�����Xi

��0�
����

− ḡ�Xi�

��0�
����Gij

�q
−

����Dq
�+�0�

� X j
��0�

����

+ Gi�j�

�q
−

�����Dq
�+�0�

� X j�

��0�
�����Xi

��0�
����

− gḡ �see Eq. �A1�� ,

Xi�

� ����Xi
���� = Xi�

��0�
����Xi

��0�
���

+ g�Xi�

��0�
����Gij

�q
+

����X j
��0�

� Dq
�−�0�

����

+ Gi�j�

�q
+

�����X j�

��0�
� Dq

�−�0�
�����Xi

��0�
����

− ḡ�Xi�

��0�
����Gij

�q
−

����Dq
�+�0�

� X j
��0�

����

+ Gi�j�

�q
−

�����Dq
�+�0�

� X j�

��0�
�����Xi

��0�
����

− gḡ �see Eq. �A2�� . �31�

The quantities involved in the preceding equations are opera-
tors acting on both atomic and electromagnetic field spaces.
In particular, the quantum fluctuations due to the vacuum
electromagnetic field still appear through the Langevin
terms. A full numerical simulation of these equations would
then take place in the framework of the quantum stochastic
calculus �40�. However, as in the one atom case, we will
show that, from these equations, one can directly obtain the
power expansion of the expectation values �i.e., quantities
averaged over the quantum fluctuations�. The latter can be
derived from the quantum average of the preceding equa-
tions, but not as easily as it seems. Indeed, if one formally
writes

Xi�

������Xi
���� = �

ab

O�a,b�gaḡb,

�Xi�

������Xi
����� = �

ab

C�a,b�gaḡb, �32�

then C�a ,b� is not simply equal to �O�a ,b��. Actually,
C�a ,b� depends on all �O�a� ,b��� for �a� ,b��� �a ,b�, and
this for two reasons.

For a given atom �, the frequency correlation functions
�Fp

�����Fq
����� are given by 2
����+��Dpq, where Dpq de-

pends on the stationary values. But the latter are modified by
the second atom and, thus, must also be expanded in power
of g and ḡ. This implies, for example, that the first term

Xi�

��0�
����Xi

��0�
��� in the expansion of Xi�

� ����Xi
���� �Eq. �31��

will contribute to all coefficients of �Xi�

� ����Xi
�����.

The Langevin forces acting on two different atoms are
correlated since they both originate from the vacuum quan-
tum field. More precisely, their frequency correlation func-
tions depend on their relative distance. This dependence is
analogous to the correlation function of a speckle pattern
�resulting from the random superposition of plane waves
with the same wavelength but arbitrary directions�:

�Fi�

� ����Fi
����� = 2
���� + ��

3

2
�

sin kR

kR
Ti�j�

q�+Pq�q
R Tij

q−�X j�

� X j
��

= −
1

2
�g + ḡ�2
���� + ��Ti�j�

q�+Pq�q
R Tij

q−�X j�

� X j
��

= −
1

2
�g + ḡ�2
���� + ��Di�i

��. �33�

Thus, terms such as Xi�

��0�
�����X j

��0�
�Dq

�−�0�
���� appearing in

Eq. �31� will also contribute to higher-order coefficients in
the power expansion of �Xi�

� ����Xi
�����. One must note that,

when R→0, Pq�q
R

→
2
3�q�q and one recovers the single atom

correlation functions given by Eq. �17�, which emphasizes
the consistency of the present approach.

C. Comparison with optical Bloch results

Despite these subtleties, it is nevertheless possible to cal-
culate power expansions of the atomic correlation functions.
More precisely, in order to emphasize the validity of the
present approach, we will compare the results obtained from
the OB equations and from the Langevin approach. Indeed
from the atomic correlation functions, the stationary solu-
tions can be calculated by inverse Fourier transform as fol-
lows:

�Xi�

�Xi
��� =

1

�2
�2 � � d��d��Xi�

� ����Xi
������ . �34�

As a specific example, the coefficient proportional to g in the
perturbative expansion of �Xi�

� ����Xi
����� is given by
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�Xi�

� ����Xi
������g�

= �Xi�

��0�
����Xi

��0�
�����g�

+ �Xi�

��0�
����Gij

�q
+

����X j
��0�

� Dq
�−�0�

������0�

+ �Gi�j�

�q
+

�����X j�

��0�
� Dq

�−�0�
�����Xi

��0�
�����0�

= Gi�j�

� ����Gij
�����F j�

� ����F j
������g�

+ Gij
�q

+

����X j
��0�

��Xi�

��0�
����Dq

�−�0�
�����0�

+ Gi�j�

�q
+

�����X j�

��0�
��Dq

�−�0�
����Xi

��0�
�����0�, �35�

where we have used the fact that terms such as �X��0�
X��0�

��0�

�i.e., zeroth order� actually factorize into �X���X�� since their
fluctuating parts necessarily give rise to higher orders in g
and ḡ, see Eq. �33�. The underlined terms correspond to the
nonvanishing correlations of the quantum vacuum fluctua-
tions evaluated at the two atom positions.

Finally, separating elastic and inelastic part, one gets

�Xi�

� ����Xi
������g�

= �2
�2����������Gij
�q

+

�0��X j
��0�

��Xi�

��0�
��Dq

�−�0�
�

+ Gi�j�

�q
+

�0��X j�

��0�
��Dq

�−�0�
��Xi

��0�
��

+ 2
���� + ���−
1

2
Gi�j�

� ����Gij
����D j�j

���0�

+ Gij
�q

+

���Gi�j�

� ����GDq
−k�

� ���D j�k�

���0�
�X j

��0�
�

�Gi�j�

�q
+

����GDq
−k

� ����Gij
����Dkj

���0�
�X j�

��0�
�
 . �36�

The corresponding stationary solution then reads

�Xi�

�Xi
���g� = Gij

�q
+

�0��X j
��0�

��Xi�

��0�
��Dq

�−�0�
�

+ Gi�j�

�q
+

�0��X j�

��0�
��Dq

�−�0�
��Xi

��0�
�

+
1

2

� d��−

1

2
Gi�j�

� �− ��Gij
����D j�j

���0�

+ Gij
�q

+

���Gi�j�

� �− ��GDq
−k�

� ���D j�k�

���0�
�X j

��0�
�

�Gi�j�

�q
+

�− ��GDq
−k

� �− ��Gij
����Dkj

���0�
�X j�

��0�
�
 .

�37�

All quantities above only depend on the stationary values
without coupling between the atoms and thus can be calcu-
lated from the single atom solutions. Furthermore, the inte-
gration over � can be performed either numerically or ana-
lytically by the theorem of residues once the poles of G �i.e.,
the complex eigenvalues of M� are known. Because of cau-
sality, they all lie in the lower-half of the complex plane. In
practice, we have checked that we effectively recover, from

the preceding expressions, the results obtained from the full
OB equations. In particular, the contribution of the correla-
tions of the quantum vacuum fluctuations evaluated at the
two atom positions �the underlined term� is essential to get
the correct results.

The same kind of expressions can be derived for gḡ terms,
but they are slightly more complicated, since they explicitly
involve three-body correlation functions, more precisely
terms like

Gij
�q

+

����Xi�

��0�
�����X j

��0�
� Dq

�−�0�
������ḡ�,

Gij
�q

+

����Xi�

� �����G j j�

�p
−

�Dp
�+�0�

� X j�

��0�
� � Dq

�−�0�
������0�

�38�

which require the calculation of three-points Langevin force
correlation functions like

Gij
�q

+

���Gi�j�

� ����
1

2

� � d�1d�2���1 + �2 − ��

�G jk
� ��1�GDq

−k�

� ��2��F j�

� ����Fk
���1�Fk�

� ��2���ḡ�,

Gij
�q

+

���Gi�k�

� ����
1

2

� � d�1d�2���1 + �2 − ��

�G j j�

�p
−

��1�GDp
+k

� ��1�GDp
+k�

� ��2��Fk�

� ����Fk
���1�Fk�

� ��2���0�.

�39�

These correlation functions are nonzero even if they in-
volve an odd number of Langevin forces, emphasizing that
the statistical properties of the vacuum field fluctuations are
far from Gaussian. Nevertheless, the explicit expressions of
the above quantities can be derived �see Appendix B�. They
lead to rather complicated and tedious formulas for the
atomic correlation functions at order gḡ. From that, we get
the corresponding stationary expectations values. Again, we
have checked that we indeed recover the OB results.

D. Incorporation of an effective medium

Finally, and in sharp contrast to optical Bloch equations, it
is very easy to adapt all the preceding results to the case of
propagation in a medium with a frequency-dependent com-
plex susceptibility. Indeed, the quantization of the electro-
magnetic field in dielectrics involves the tensor-valued
Green’s function of the classical problem �42,43�, from
which all possible commutation relations of the field opera-
tors can be derived. In particular, for a homogeneous me-
dium, this Green’s function involves the complex-valued per-
mittivity ���L+��=1+���L+��. Its real part is responsible
for dispersion and its imaginary part for absorption. In the
dilute regime, this allows us to write the field radiated by an
atom at a distance R and at frequency � as follows:
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�− 1�q	−q
+ ��� = igPqq�

R Dq�

− ���exp�−
1

2

R

l+���

 , �40�

where l+��� is the �complex� scattering mean-free path, de-
fined by 1/kl+���= i���L+�� with the dilute regime condi-
tion k � l+��� � ≫1.

The real part of 1 / l+��� describes thus the exponential
attenuation of the field during its propagation in the medium
while the imaginary part describes the additional dephasing
induced by the medium. More complicated formulas, ac-
counting for possible variations of l with position, birefrin-
gence effects, or even nonlinearities in propagation, can be
derived in the same spirit. In all preceding equations, leading
to the calculation of the correlation functions, any occurrence
of the dipole operators must then simply be replaced by

D�
→D

�exp�−
R

2l±���

 �41�

while keeping the same “medium-free” coupling constant g.
In this way, the present approach can be easily extended to
the situation where the two atoms are embedded in a me-
dium. In the case of a nonlinear medium, this could lead to a
self-consistent set of nonlinear equations.

It is important to stress that accounting for the effective
medium is rather straightforward in this frequency-domain
approach but is a much more difficult task in the temporal-
domain approach. Indeed, one basic hypothesis for deducing
OB equations from the Langevin approach—see Sec.
III A—is that the light propagation time between the two
atoms is much shorter than any typical atomic time scale.
When this condition is fulfilled, it is possible to evaluate
expectation values at equal times for both atoms, producing
the set of closed OB equations. In the presence of a sur-
rounding medium, propagation between the two atoms is af-
fected and this basic assumption may fail. If the refraction
index of the dilute medium is smoothly varying with fre-
quency, then the corresponding propagation term is also
smoothly varying with frequency and can be factored out.
Thus, except for the exponential attenuation, one may re-
cover the OB equations where equal times must be used for
atoms 1 and 2. On the contrary, if the propagation term has a
complicated frequency dependence, the problem cannot be
simply reduced to OB equations. It will rather involve opera-
tors evaluated at the other atom, but at different times, thus
leading to a much more complicated structure. This difficulty
may even take place in a dilute medium with refraction index
close to unity. Indeed, the important parameter is the time
delay induced by the medium, itself related to the derivative
of the index of refraction with respect to frequency. If the
medium is composed of atoms having sharp resonances, the
effective group velocity can be reduced by several orders of
magnitude, consequently increasing by the same amount the
propagation time between the two atoms. Around the atomic
resonance line, the typical propagation time delay induced by
the medium over one mean-free path depends on the laser
detuning but is of the order of the atomic timescale for the
internal dynamics, namely, �−1 �47�. In this case, only the
full Langevin treatment developed in this paper can properly

account for the effect of the average atomic medium. Its
practical implementation calls for an investigation on its own
and is thus postponed to a future paper. We must also note
that, if the surrounding medium is composed of the same
atoms than the scatterers, it is not completely clear that
propagation in the medium can be described “classically,”
i.e., that the correlation between the Langevin forces acting
on the scatterers and the Langevin forces acting on the me-
dium can be safely neglected. For the rest of this paper, we
will consider two isolated atoms in vacuum.

IV. MAIN RESULTS

A. Scattered field correlation functions in the CBS

configuration

In the case of a large number of atoms and for a given
configuration, the interference between all possible multiple
scattering paths gives rise to a speckle pattern. When aver-
aging the intensity scattered off the sample over all possible
positions of the atoms, one recovers the CBS phenomenon:
the intensity radiated in the direction opposite to the incident
beam is up to twice larger than the background intensity and
gradually decreases to the background value over an angular
range �� scaling essentially as �kl�−1, with l the scattering
mean-free path. In the present case, the averaging procedure
is performed numerically by integrating over the relative po-
sitions of the two atoms. As will be seen below, the far-field
condition kR≫1 allows for an a priori selection of the
dominant terms contributing to the CBS signal.

The field radiated by the two atoms in the direction n at a
distance r≫R≫�, in the polarization channel �out orthogo-
nal to n ��out ·n=0�, is given by

	out
+ �n,�� = −

3

2
��q

out�Dq
1−���e−ikn·R1 + Dq

2−���e−ikn·R2�
eikr

kr
,

�42�

so that the field correlation function in this channel reads

�	out
− �n,���	out

+ �n,���

= � 3�

2kr

2

�q
out�p

out��Dp
1+����Dq

1−���� + �Dp
2+����Dq

2−����

+ eikn·R�Dp
2+����Dq

1−���� + e−ikn·R�Dp
1+����Dq

2−����� .

�43�

The CBS effect occurs when the total phase in the inter-
ference terms in the preceding expression becomes indepen-
dent of the positions of the atom. This phase accumulates
during the propagation of the incident laser beam to the at-
oms and during the propagation of the radiated field between
the two atoms. The phase factor due to the incoming laser
beam �a plane wave with wave number kL=knL� can be ex-
plicitly factorized out of the atomic operators as follows

GRÉMAUD et al. PHYSICAL REVIEW A 74, 033808 �2006�

033808-8

121



D̃q
�± = Dq

�±e±ikL·R�. �44�

The other components of X̃, see Eq. �10�, are populations and
are not affected by this phase factor. In the single atom case,

the expectation values of the hereby defined operators D̃q
�±

are independent of the positions of the atoms. Defining �
=kL ·R and

g1 = gei�, g2 = ge−i�, �45�

the Langevin equations �29� then become

X̃���� = X̃��0�
��� + g�G̃�q

+
����X̃�

� D̃q
�−����

+ ḡ�G̃�q
−
����D̃q

�+
� X̃����� . �46�

In the preceding equation, the Green’s functions G̃ are now
independent of the position of the atoms, so that the phase
information due to the incident laser beam is entirely con-
tained in the coefficients g�.

Frequency correlation functions of the Langevin forces
�33� must also be modified accordingly:

�F̃i�

� ����F̃i
����� = −

1

2
�g� + ḡ��2
���� + ��D̃i�i

��. �47�

Dropping for simplicity the tilde notation, the field correla-
tion function �43�, in the backward direction n=−nL, be-
comes

�	out
− �− nL,���	out

+ �− nL,���

= � �

kr

2

�q
out�p

out��Dp
1+����Dq

1−���� + �Dp
2+����Dq

2−����

+ e−2i��Dp
2+����Dq

1−���� + e2i��Dp
1+����Dq

2−����� .

�48�

The configuration average is then performed in two steps.
Since we are working in the limit kR≫1, the first one is to
keep only terms with a total phase independent of kR. In the
power expansion with respect to the four parameters g1, g2,
ḡ1, and ḡ2, this simply amounts to keep terms with even
powers of g�ḡ��

. This obviously cancels any � dependence.
More precisely, the field correlation function in the backward
direction, beside the trivial zeroth order �in g� term, is given
by

�	out
− �− nL,���	out

+ �− nL,����2�

= � �

kr

2

�q
out�p

out��Dp
1+����Dq

1−�����g1ḡ1�

+ �Dp
2+����Dq

2−�����g2ḡ2� + �Dp
2+����Dq

1−�����g1ḡ2�

+ �Dp
1+����Dq

2−�����g2ḡ1��

= � �

kr

2

�L���,�� + C���,��� . �49�

The preceding field correlation function still depends on
the relative orientation of the atoms through the projector
PR, so that, in a second step, an additional average over R

must be performed. In the preceding equation, the first two

terms correspond to the usual “ladder” terms L��� ,�� �they
are actually independent of the direction of observation�,
whereas the two other terms correspond to the usual “maxi-
mally crossed” terms C��� ,��:

L���,�� =
9

4
�q

out�p
out��Dp

1+����Dq
1−�����g1ḡ1�

+ �Dp
2+����Dq

2−�����g2ḡ2�� ,

C���,�� =
9

4
�q

out�p
out��Dp

2+����Dq
1−�����g1ḡ2�

+ �Dp
1+����Dq

2−�����g2ḡ1�� . �50�

B. CBS enhancement factor

In the case of linear scatterers, the CBS enhancement fac-
tor achieves its maximal value 2 �recall that the CBS phe-
nomenon is an incoherent sum of two-wave interference pat-
terns all starting with a bright fringe at exact backscattering�
if the single scattering contribution can be removed from the
total signal and provided reciprocity holds. This is the case
for scatterers with spherical symmetry in the so-called polar-
ization preserving channel h �h �44�.

In this polarization channel, we have calculated the rel-
evant quantities for an evaluation of the CBS enhancement
factor when no frequency filtering of the outgoing signal is
made. We have thus derived the elastic and inelastic ladder
terms and the elastic and inelastic crossed terms, together
with their corresponding frequency spectra, for different val-
ues of the on-resonance saturation parameter s0=2 �	L�2 /�2.
This parameter measures the intensity strength of the inci-
dent laser beam in units of the natural atomic transition line
width �, i.e., it compares the on-resonance transition rate
induced by the laser to the atomic spontaneous emission rate.
For a detuned laser beam, the saturation parameter is s��L�
and is defined as

s��L� =
s0

1 + �2�L/��2 . �51�

In the following, different values of the laser detuning have
also been considered:

�a� �L = 0, s = s0 = 0.02, �b� �L = 0, s = s0 = 2.00,

�c� �L = 5�, s0 = 2.00, s = 0.02, �d� �L = 0, s = s0 = 50.0.

The ladder and crossed terms �49� are separated into their
elastic and inelastic parts according to

L���,�� = 2
��� + ����2
����Lel + Linel���� ,

C���,�� = 2
��� + ����2
����Cel + Cinel���� . �52�

The corresponding inelastic spectra Linel��� and Cinel���
are displayed in Fig. 2. For a sufficiently low saturation pa-
rameter s0, the inelastic contribution to the total intensity is
small and the crossed intensity is almost equal to the ladder
one �see graph 2�a��. For larger saturation parameters �see
graphs 2�b� and 2�d��, there are two effects: first, the inelastic
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contribution becomes comparable to the elastic one and sec-
ond, the crossed term is smaller than the ladder one. For a
nonzero detuning �see graph 2�c��, one clearly observes an
asymmetry in the inelastic spectrum, which reflects that the
scattering cross section of the atomic transition is maximal
for resonant light �indicated by the vertical dashed line�: the
symmetric inelastic spectrum emitted by a single atom is
filtered out when scattered by the other one. We also observe
that the crossed spectrum is much more reduced than the
ladder term, highlighting the nonlinear effects in the quan-
tum correlations between the two atoms. Finally, for much
larger saturation parameters �see graph 2�d��, the scattered
light almost entirely originates from the inelastic spectrum,
as for a single atom. However, contrary to the single atom
case �for which the scattered intensity reaches a constant
value�, the total intensity scattered by the two atoms de-
creases when increasing the incoming intensity. Indeed, since
the atomic transitions become fully saturated, the nonlinear

scattering cross section of each atom is decreasing, resulting
in a smaller total intensity scattered by the two atoms com-
pared to the one scattered by a single atom.

The CBS enhancement factor � is defined as the peak to
background ratio. It thus reads

� = 1 +
Ctot

Ltot �53�

with

Ltot = Lel + Linel
tot = Lel +� d�

2

Linel��� ,

Ctot = Cel + Cinel
tot = Cel +� d�

2

Cinel��� . �54�

If the CBS phenomenon is reducible to a two-wave inter-
ference, as it is the case here, then the enhancement factor �
is simply related to the degree of coherence � of the scattered
light �45�. If the single scattering contribution can be re-
moved from the detected signal, and this is the case in the
h �h channel, one has simply �=1+� and consequently �
=Ctot /Ltot. The maximal value for � is 2, meaning that full
coherence �=1 is maintained for the scattered field since
then Ctot=Ltot. If all interference effects disappear, meaning
Ctot=0, � reaches its minimal value 1 and correspondingly
coherence is fully lost �=0. Furthermore, one can show that
in the h �h polarization channel Lel=Cel �37�. Consequently,
as soon as Cinel

tot �Linel
tot in this channel, the coherence of the

scattered light field is partially destroyed, since then ��2
and ��1.

Our results are summarized in Table I. At low saturation
parameter s0, � reaches its maximal value 2 and �=1. This is
so because the ladder and crossed inelastic components are
almost equal as evidenced in Fig. 2�a�. Increasing s0 reduces
further Cinel

tot with respect to Linel
tot , thus decreasing � and �. In

the strongly saturated regime, one thus expects � to decrease.
However, there is no reason for the ratio Cinel

tot /Linel
tot to tend to

zero as s0→ � . It rather tends to a finite value, which de-
pends on the detuning, in agreement with the results pub-
lished in Ref. �37�. Furthermore, keeping s0 fixed and de-
creasing the saturation parameter s, situation �c�, � increases,
as expected, but to a value which strongly depends on s0. In
other words, contrary to the single atom case, the properties
of the scattered light are not only determined by the satura-
tion parameter s �20�, highlighting the crucial role of the
inelastic processes. Indeed, in both situations �a� and �c�, s
has the same �small� value, but the enhancement factor
strongly differs, mainly because the relative contribution of
the inelastic ladder term has increased. A qualitative under-
standing of this behavior can be obtained from the diagram-
matic approach: Fig. 3 displays the basic processes contrib-
uting to the ladder and crossed terms. In the small s regime,
only one nonlinear event is necessary to calculate the first
correction to the linear regime �20�, so that we can assume
that inelastic processes occur only at atom 1, whereas atom 2
behaves similar to a linear scatterer. In the case of the ladder
term �Fig. 3�a��, the inelastic light is thus emitted by atom 1
and then �elastically� scattered by atom 2. The crucial point

FIG. 2. �Color online� Backscattered light spectrum in the
helicity-preserving polarization channel h �h. The solid lines repre-
sent the ladder term �average background intensity value� and the
long-dashed lines represent the crossed �interference� term. For
both terms, the plotted values correspond to �Iinel��� / �Ctot+Ltot�,
see Eq. �52�, where Ctot+Ltot is the total �elastic plus inelastic�
intensity scattered in the backward direction. The vertical dashed
lines indicate the atomic transition frequency. � corresponds to the
scattered light angular frequency change with respect to the initial
laser angular frequency ��=0 means thus that light is radiated at
�L�. Graph �a� corresponds to an on-resonance saturation parameter
s0=0.02 and a laser detuning �L=0, graph �b� to �s0=2,�L=0�,
graph �c� to �s0=2,�L=5��, and graph �d� to �s0=50,�L=0�. At low
s0, the inelastic contribution to the total intensity is small and the
ladder intensity is almost equal to the crossed one. For a larger
saturation parameter, first the inelastic contribution becomes com-
parable to the elastic one and second, the crossed term becomes
smaller than the ladder one. For a nonzero detuning, see graph �c�,
one clearly observes an asymmetry in the inelastic spectrum, which
reflects the fact that the scattering cross section of the atomic tran-
sition is maximal for resonant light: the symmetric inelastic spec-
trum emitted by a single atom is filtered out when scattered by the
other one. At very large saturation �d�, the structure of the radiated
spectrum becomes rather complicated.
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is that one peak of the inelastic light spectrum is exactly at
the atomic frequency �0 �i.e., corresponding to �=−�L� for
which the scattering cross section of atom 2 is maximum.
More precisely, the inelastic spectrum scattered I��� by atom
1 is multiplied by the factor

�2

�2 + 4�� + �L�2 �55�

which is maximum for �=−�L. This results in the ladder
spectrum depicted by Fig. 2�c�. In the case of the crossed
term �Fig. 2�b��, the main difference is that atom 2 scatters
fields at different frequencies: one still corresponds to the
inelastic light emitted by atom 1 �frequency �L+�� whereas
the other corresponds to the incident light �frequency �L�.
This leads to a new factor �20�

Re� �2

�i� + 2�� + �L���i� + 2��L��

 , �56�

where Re�z� is the real part of z. For large detuning �L, this
factor is then much smaller than the factor for the ladder
case; furthermore, this also explains the dispersive behavior
around �=−�L depicted by Fig. 2�c�.

Finally, depending on the values of the s and �L param-
eters, a rich variety of situations can be observed, with vari-
ous physical interpretations. These are beyond the scope of
this paper, which instead concentrate on the basic ingredients
of the quantum Langevin approach and will be published
elsewhere.

C. Linear response model

Some insight on the relative behavior of Cinel��� and
Linel��� can be found by comparing the respective formulas
from which these quantities are extracted:

TABLE I. Ladder �average background� and crossed �interference� terms, see Eq. �52�, contributing to the
light scattered in the backward direction in the helicity-preserving polarization channel h �h. The given values
are relative to the incoming saturation parameter s. At low s0, the inelastic contributions are small and almost
equal. Thus Ctot�Ltot and the maximum enhancement factor 2 of the linear case is thus recovered, meaning
that full coherence �=1 is maintained. At larger s0, elastic and inelastic terms become comparable. For very
large s0, the contributions from the elastic terms vanish, as in the single atom case. The inelastic contributions
are also decreasing, reflecting the fact that the probability for the light to be scattered by a saturated atom
becomes smaller with increasing saturation. Furthermore, the inelastic crossed term is always smaller than the
inelastic ladder one. This is a signature of a coherence loss ��1 induced by the quantum vacuum fluctua-
tions. However, the ratio Cinel

tot /Linel
tot does not go to zero as s0→� but reaches the limit value 0.096 �for �L

=0�. Also, contrary to the single atom case, the properties of the scattered light are not solely determined by
the saturation parameter s, but additionally depend on the detuning �L, as exemplified by cases �a� and �c�,
highlighting the role of the inelastic processes.

�a� s=s0=0.02,�L=0 �b� s=s0=2.00,�L=0 �c� s=0.02,s0=2.00,�L=5� �d� s=s0=50.0,�L=0

Lel 0.624 0.833�10−2 0.618�10−2 0.998�10−7

Linel
tot 0.220�10−1 0.573�10−1 0.328�10−2 0.487�10−3

Ltot 0.646 0.656�10−1 0.946�10−2 0.487�10−3

Cel 0.624 0.833�10−2 0.618�10−2 0.998�10−7

Cinel
tot 0.188�10−1 0.295�10−1 0.157�10−3 0.466�10−4

Ctot 0.642 0.378�10−1 0.634�10−2 0.467�10−4

�=1+� 1.994 1.576 1.670 1.096

FIG. 3. A schematic approach of the basic processes contribut-
ing to the inelastic ladder and crossed spectrum, in the small satu-
ration regime �20�. Nonlinear behavior only occurs at the atom 1,
whereas only elastic scattering events take place at the atom 2. In
the case of the ladder term �a�, the inelastic light is thus emitted by
atom 1 and then scattered by the atom 2. For nonzero detuning �L of
the incident light, one peak of the inelastic light spectrum is exactly
at the atomic frequency �0 �i.e., corresponding to �=−�L� for
which the scattering cross section of atom 2 is maximum. This
results in the ladder spectrum depicted by Fig. 2�c�. In the case of
the crossed term �b�, the main difference is that the atom 2 scatters
fields at different frequencies: one still corresponds to the inelastic
light emitted by atom 1 �frequency �L+�� whereas the other cor-
responds to the incident light �frequency �L�, which for large de-
tuning �L results in a smaller crossed inelastic spectrum; further-
more, this also explains the dispersive behavior around �=−�L

depicted by Fig. 2�c�.
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and
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There are twice as many terms contributing to the ladder
terms as to the crossed terms. A rather simple explanation of
this fact is borrowed from the usual linear response theory.
Indeed, each atom is exposed to two fields: the incoming
monochromatic field �angular frequency �L, wave vector kL�
and the field scattered by the other atom �angular frequency
�L+�, wave vector kp�. In the far-field regime R≫�, the
incoming field is more intense than the scattered field. It thus
plays the role of a pump beam with angular Rabi frequency
	L, while the second weaker field plays the role of a probe
beam with angular Rabi frequency 	p. In this case, the re-
sponse of each atom is simply described by its nonlinear
susceptibility �16,23�. More precisely, forgetting about polar-
ization effects, we have

�D+��� = e−i�2kL−kp�·R��++���	p
+ + e−ikp·R��+−���	p

−,

�D−��� = eikp·R��−+���	p
+ + ei�2kL−kp�·R��−−���	p

−,

�59�

where the phases due to the light fields have been explicitly
factorized.

As obviously seen, the two terms �+− and �−+ generate the
forward propagation of the probe whereas the two other
terms �++ and �−− can generate an additional field in the
direction 2kL−kp provided phase-matching conditions are
fulfilled. This corresponds to the usual forward four-wave
mixing mechanism �FFWM� �16,23�. In the low saturation

regime, this corresponds to the following multiphotonic pro-
cess: the atom first absorbs a photon from the pump; then the
probe induces a stimulated emission; finally, another photon
from the pump is absorbed, followed by a final spontaneous
emission at frequency 2�L−�p=�L−�. If we now replace
the probe field by the field radiated by the other atom �, we
get

�D�→�
+ ��� =

1

kR
�e−i�kR+2kL·R�−kL·R���++���D�

−

+ ei�kR−kL·R���+−���D�
+� ,

�D�→�
− ��� =

1

kR
�e−i�kR−kL·R���−+���D�

−

+ ei�2kL·R�+kR−kL·R���−−���D�
+� . �60�

Hence the ladder and crossed contributions are given by
�dropping for sake of clarity any frequency dependence�

C�2� � �D�→�
+ �D�→�

− ei�−kL·R�+kL·R��

� ei�2kL·�R�−R��−2kR��++�−+D�
−
D�

−

+ e4ikL·�R�−R���++�−−D�
−
D�

+ + �+−�−+D�
+
D�

−

+ ei�2kL·�R�−R��+2kR��+−�−−D�
+
D�

+ ,
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L�2� � �D�→�
+ �D�→�

−

� ei�2kL·�R�−R��−2kR��++�−+D�
−
D�

− + �++�−−D�
−
D�

+

+ �+−�−+D�
+
D�

− + ei�2kL·�R�−R��+2kR��+−�−−D�
+
D�

+ .

�61�

Averaging these expressions over the positions R� and R� of
the atoms while keeping R≫� fixed, only terms with
position-independent phases survive, giving rise to

C�2� � �+−�−+D�
+
D�

− ,

L�2� � �++�−−D�
−
D�

+ + �+−�−+D�
+
D�

− . �62�

This simple model allows one to understand clearly why
there are twice more terms in the ladder expression than in
the crossed one. Fields generated in the FFWM process al-
ways interfere constructively in the case of the ladder, since
they originate from the same atom. Of course, in the preced-
ing explanation, we have discarded polarization effects and
inelastic processes in the nonlinear susceptibilities. Never-
theless, even if in that case the situation becomes more in-
volved, the differences between the ladder and crossed ex-
pressions still arise from this local four-wave mixing
process. For example, in the last line of Eqs. �57� and �58�,

we see that the operator �Gij
�q

+

���X j
��0�

� � plays the role of a
generalized nonlinear susceptibility �actually, the standard

ones are recovered from the elastic part of X j
��0�

�. Thus we
recover the same structure as previously depicted, which
leads to similar conclusions.

Finally, as mentioned above, for large saturation param-
eters s0, even if in that case the total scattered intensities
�ladder and crossed� are dominated by the inelastic spectrum,
we numerically observe that the enhancement factor does not
vanish but rather goes to a finite limit 1.096 �for �L=0�. Field
coherence is thus not fully erased, which, at first glance,
could be surprising since the inelastic spectrum is a noise
spectrum at the heart of the temporal decoherence of the
radiated field. This only means that both crossed and ladder
become vanishingly small relative to the incident intensity.
Nevertheless, even if it would be hard to derive it analyti-
cally from Eqs. �57� and �58�, they actually decrease at the
same rate, resulting in a finite �but small� enhancement fac-
tor.

V. CONCLUSION

In the case of two atoms, even if the quantum Langevin
approach leads to calculations more tedious and involved
than the direct optical Bloch method, it nevertheless gives
rise to an understanding closer to the usual scattering ap-
proach developed in the linear regime. In this way, one also
gets direct information about the inelastic spectrum of the
radiated light. In particular, it clearly outlines the crucial
roles played by the inelastic nonlinear susceptibilities and by
the quantum correlations of the vacuum fluctuations. Further-
more, since the framework of the quantum Langevin ap-
proach is set in the frequency domain, frequency-dependent
propagation �i.e., frequency-dependent mean-free paths� be-
tween the atoms can be naturally included.

The next step would be to adapt the present approach to
“macroscopic” configurations �i.e., at least many atoms�, al-
lowing for a more direct comparison with existing experi-
ments �7,8�, for which the observed behavior of the enhance-
ment factor with the saturation parameter is not fully
understood. Especially, in the latter experiment �using atoms
with a degenerate ground level�, it strongly depends on the
laser polarization, which suggests that the optical pumping,
whose rate increases with the saturation parameter, plays an
important role. Finally, for given values of the incident laser
intensity and detuning, the nonlinear mean-free path be-
comes negative in well-defined frequency windows. This
means that light amplification can be achieved in these fre-
quency windows �41,46�. The atomic media would then con-
stitute a very simple realization of a coherent random laser.
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APPENDIX A

The gḡ terms in Eq. �31� read:
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�����X j�

��0�
� Dp

�−�0�
������
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���Gij
�q

−

����Dq
�+�0�

� X j
��0�

�����+ �Gi�j�

�p
−

�����Dp
�+�0�

� X j�

��0�
�������Gij

�q
+

����X j
��0�

� Dq
�−�0�

������ , �A1�

Xi�

� ����Xi
���� = ¯− gḡ�Xi�

� �����Gij
�q

+

����X j
��0�

� G
Dq

−j�

�p
−

�Dp
�+�0�

� X j�

��0�
�����
��

+ Gij
�q

+

����G j j�

�p
−

�Dp
�+�0�

� X j�

��0�
� � Dq

�−�0�
����

+ Gij
�q

−

����Dq
�+�0�

� G j j�

�p
+

�X j�

��0�
� Dp

�−�0�
����� + Gij

�q
−

����G
Dq

−j�

�p
+

�X j�

��0�
� Dp

�−�0�
� � X j

��0�
����


+ �Gi�j�

�q
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�����X j�

��0�
� G

Dq
−j

�p
−

�Dp
�+�0�

� X j
��0�

������

+ Gi�j�

�q
+

�����G j�j
�p

−

�Dp
�+�0�

� X j
��0�

� � Dq
�−�0�

�����+ Gi�j�

�q
−

�����Dq
�+�0�

� G j�j
�p

+

�X j
��0�

� Dp
�−�0�

������

+ Gi�j�

�q
−

�����G
Dq

−j

�p
+

�X j
��0�

� Dp
�−�0�

� � X j�

��0�
�����
Xi

��0�
���+ �Gi�j�

�p
+

�����X j�

��0�
� Dp

�−�0�
������

���Gij
�q

−

����Dq
�+�0�

� X j
��0�

�����+ �Gi�j�

�p
−

�����Dp
�+�0�

� X j�

��0�
�������Gij

�q
+

����X j
��0�

� Dq
�−�0�

������ . �A2�

APPENDIX B: THREE-BODY CORRELATION

FUNCTIONS

1. Single atom case

The three-body correlation function for the Langevin
force reads

Cabc���,�� =
1

2

� � d�1d�2���1 + �2 − ��f��1�g��2�

��Fa
�����Fb

���1�Fc
���2�� , �B1�

where f��� and g��� are regular functions such that the pre-
ceding integral is well defined. Going back to the time do-
main, Cabc��� ,�� reads as follows:

Cabc���,�� =
1

2

� � dtdt�ei�tei��t�� � � � dt1dt2dt3dt4

���t1 + t2 − t���t3 + t4 − t�f�t1�g�t3�

��Fa
��t��Fb

��t2�Fc
��t4�� . �B2�

Then, from the time correlation properties of the vacuum
field, one can show that

�Fa
��t��Fb

��t2�Fc
��t4��

= 4Taa�

q+ Tbb�

q−
��t� − t2��Xa�

� �t��Xb�

� �t��Fc
��t4��

+ 4Taa�

q+ Tcc�

q−
��t� − t4��Xa�

� �t��Fb
��t2�Xc�

� �t4��

+ 4Tbb�

q+ Tcc�

q−
��t2 − t4��Fa

��t��Xb�

� �t2�Xc�

� �t2�� , �B3�

where the Tq± are 15�15 matrices defined by �Xi ,Dq
±�

= ±2Tij
q±X j.

When taken at the same time, the atomic operators �in-
cluding the identity 1� define a group entirely characterized
by the group structure constants �ij

k , i.e.,

Xi�t�X j�t� = �
k

�ij
k Xk�t� , �B4�

so that the preceding equation becomes

�Fa
��t��Fb

��t2�Fc
��t4��

= 4Taa�

q+ Tbb�

q−
��t� − t2��a�b�

u�Xu
��t��Fc

��t4��

+ 4Taa�

q+ Tcc�

q−
��t� − t4��Xa�

� �t��Fb
��t2�Xc�

� �t4��

+ 4Tbb�

q+ Tcc�

q−
��t2 − t4��a�b�

uFa
��t��Xu

��t2� . �B5�

Injecting the preceding relations in C�a ,b ,c� and going back
to the frequency domain, we get

Cabc���,�� = 4Taa�

q+ Tbb�

q−
�a�b�

u 1

2

� � d�1d�2���1 + �2 − ��f��1�g��2��Xu

���� + �1�Fc
���2��

+ 4Taa�

q+ Tcc�

q− 1

2

� d�3g��3�f�� − �3�Da�c�

b,������ + �3,� − �3�

+ 4Tbb�

q+ Tcc�

q−
�a�b�

u�Fa
�����Xu

�����
1

2

� � d�1d�2���1 + �2 − ��f��1�g��2�
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= 4Taa�

q+ Tbb�

q−
�a�b�

u 1

2

� � d�1d�2���1 + �2 − ��f��1�g��2�Guv

� ��� + �1��F
v

���� + �1�Fc
���2��

+ 4Taa�

q+ Tcc�

q− 1

2

� d�3g��3�f�� − �3�Da�c�

b,������ + �3,� − �3�

+ 4Tbb�

q+ Tcc�

q−
�a�b�

uGuv

� ����Fa
�����F

v

�����
1

2

� � d�1d�2���1 + �2 − ��f��1�g��2�

= 2
��� + ���4Taa�

q+ Tbb�

q−
�a�b�

uD
vc
�� 1

2

� � d�1d�2���1 + �2 − ��f��1�g��2�Guv

� �− �2�

+ 4Taa�

q+ Tcc�

q− 1

2

� d�3g��3�f�� − �3�Da�c�

b,������ + �3,� − �3�

+ 2
��� + ���4Tbb�

q+ Tcc�

q−
�a�b�

uDav

��Guv

� ���
1

2

� � d�1d�2���1 + �2 − ��f��1�g��2� , �B6�

where we have introduced the matrix Dik
b,������ ,�� defined by

Dik
b,������,�� =

1

2

� � d�1d�2���1 + �2 − ����Xi

���1�Fb
����Xk

���2�� . �B7�

This matrix is calculated using the same strategy �i.e., going back and forth to the time domain� and one finally gets

Dik
b,������,�� = 2
��� + ����Gia

� �0�La
�Gkc

� ����D̃bc
�� + Gia

� ����Gkc
� �0�Lc

�D̃ab
��

+ 4Tbb�

q+ Tcc�

q−
�b�c�

vD̃au
�� 1

2

� � d�1d�2���1 + �2 − ���Gia

� ��1�Gkc
� ��2�G

vu
� �− �1�

+ 4Taa�

+ Tbb�

−
�a�b�

vD̃uc
�� 1

2

� � d�1d�2���1 + �2 − ���Gia

� ��1�Gkc
� ��2�G

vu
� �− �2��

+ 4Taa�

q+ Tcc�

q− � 1

2

� � d�3d�4���3 + �4 − ���Gia

� ��3�Gkc
� ��4�


�� 1

2

� � d�1d�2���1 + �2 − ����Xa�

� ��1�Fb
����Xc�

� ��2��
 . �B8�

It may seem that we have taken a loop path and that we are back to square one¼. However, in the last line of the preceding
formula, we immediately recognize the matrix Da�b�

b,������ ,��. Thus, the preceding equation is nothing else but a linear system
for this matrix. More precisely, Dik

b,������ ,�� is the solution of the following linear system:

Dik
b,������,�� − Iik,a�c�

�� ����Da�c�

b,������,�� = Jik
b,������,�� , �B9�

with

Iik,a�c�

�� ���� = 4Taa�

q+ Tcc�

q− 1

2

� � d�3d�4���3 + �4 − ���Gia

� ��3�Gkc
� ��4� ,

Jik
b,������,�� = 2
��� + ����Gia

� �0�La
�Gkc

� ����D̃bc
�� + Gia

� ����Gkc
� �0�Lc

�D̃ab
��

+ 4Tbb�

q+ Tcc�

q−
�b�c�

vD̃au
�� 1

2

� � d�1d�2���1 + �2 − ���Gia

� ��1�Gkc
� ��2�G

vu
� �− �1�

+ 4Taa�

+ Tbb�

−
�a�b�

vD̃uc
�� 1

2

� � d�1d�2���1 + �2 − ���Gia

� ��1�Gkc
� ��2�G

vu
� �− �2�� . �B10�

In the preceding equations, the Green’s function G��� and the diffusion matrix D�� only depend on the Rabi field 	L

evaluated at the position of atom �. Thus, for any value of �, numerical values of I and J can be computed, allowing for a
direct calculation of Dik

b,����−� ,��. Furthermore, it is not surprising that the matrix I shows up in the linear system. Indeed,
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the Green’s function G��� governs the time evolution of X through a Fourier transform. Thus the time evolution of products
of operators Xi�t�X j�t� will be simply governed by the Fourier transform of the product of two Green’s functions G�t�G�t�,
which is precisely the convolution product found in I. Finally, from the knowledge of the matrix D, we can calculate the value
of Cabc��� ,��:

Cabc���,�� = 2
��� + ����4Taa�

q+ Tbb�

q−
�a�b�

uD
vc
�� 1

2

� � d�1d�2���1 + �2 − ��f��1�g��2�Guv

� �− �2�

+ 4Taa�

q+ Tcc�

q− 1

2

� � d�1d�2���1 + �2 − ��f��1�g��2�Da�c�

b,����− �1,�1�

+ 4Tbb�

q+ Tcc�

q−
�a�b�

uDav

��Guv

� ���
1

2

� � d�1d�2���1 + �2 − ��f��1�g��2�� . �B11�

Of course, we recover the global factor 2
���+���, showing that the time correlation function only depends on the time
difference t�− t �stationary condition�.

2. Two-atom case

The calculation of quantities such as

Cabc
�� ���,�� =

1

2

� � d�1d�2���1 + �2 − ��f��1�g��2��F j�

� ����Fk
���1�Fk�

� ��2���ḡ� �B12�

follows, more or less, the way described in the preceding section. In particular, it also involves the calculation of a matrix

Dik
b,����ḡ�

��� ,�� defined as

Dik
b,����ḡ�

���,�� =
1

2

� � d�1d�2���1 + �2 − ����Xi

���1�Fb
����Xk

���2���ḡ�. �B13�

The latter is also found to be the solution of a linear system, resembling the preceding one �see Eq. �B9��:

Dik
b,����ḡ�

���,�� − Iik,a�c�

�� ����Da�c�

b,����ḡ�
���,�� = Jik

b,����ḡ�
���,�� , �B14�

with

Jik
b,����ḡ�

���,�� = − �1

2

2
��� + ����Gia

� �0�La
�Gkc

� ����D̃bc
���0�

+ Gia
� ����Gkc

� �0�Lc
�D̃ab

���0�

+ 4Tbb�

q+ �Xb�

��0�
�

1

2

� � d�1d�2���1 + �2 − ���Gia

� ��1�Gkc
�q

−

��2�Gcu
� �− �1�D̃au

���0�

+ 4Tbb�

q− �Xb�

��0�
�

1

2

� � d�1d�2���1 + �2 − ���Gia

�q
+

��1�Gkc
� ��2�Gau

� �− �2�D̃uc
���0�

− 2GDq
+u

� ����D̃ub
���0� 1

2

� � d�1d�2���1 + �2 − ���Gia

�q
−

��1��X̃a
��0�

�− �2�X̃k
��0�

��2���0�

− 2GDq
+u

� ����D̃bu
���0� 1

2

� � d�1d�2���1 + �2 − ���Gkc

�q
−

��2��X̃i
��0�

��1�X̃c
��0�

�− �1���0�� . �B15�
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We study coherent backscattering of a monochromatic laser by a dilute gas of cold two-level atoms in the

weakly nonlinear regime. The nonlinear response of the atoms results in a modification of both the average

field propagation �nonlinear refractive index� and the scattering events. Using a perturbative approach, the

nonlinear effects arise from inelastic two-photon scattering processes. We present a detailed diagrammatic

derivation of the elastic and inelastic components of the backscattering signal for both scalar and vectorial

photons. In particular, we show that the coherent backscattering phenomenon originates in some cases from the

interference between three different scattering amplitudes. This is in marked contrast with the linear regime

where it is due to the interference between two different scattering amplitudes. In particular we show that, if

elastically scattered photons are filtered out from the photodetection signal, the nonlinear backscattering en-

hancement factor exceeds the linear barrier of 2, consistently with a three-amplitude interference effect.

DOI: 10.1103/PhysRevA.73.013802 PACS number�s�: 42.65.�k, 32.80.�t, 42.25.Dd

I. INTRODUCTION

Propagation of light waves in disordered media is an ac-
tive research area for 100 years now. The original scientific
motivation came from astrophysical questions about proper-
ties of light radiated by interstellar atmospheres �1,2�. Then,
within the first decades of the 20th century, the foundations
of light transport in this regime were laid, leading to the
radiative transfer equations �3–6�. The basic physical ingre-
dient of these equations is a detailed analysis of energy trans-
fers �scattering, absorption, sources, etc.�. Sufficiently far
from any boundaries, the long-time and large-spatial-scale
limits of these equations give rise, in the simplest cases, to a
physically appealing diffusion equation.

One important feature of this theory is to consider that
any possible interference effects are washed out under disor-
der average. This is a random-phase assumption. For a long
time, it was believed that this was still the case on average
for monochromatic light elastically scattered off an optically
thick sample even if, for a given disorder realization, one
observes a speckle pattern �7� indicating that phase coher-
ence is preserved by the scattering process. Theoretical and
experimental work in electronic transport �8–10� soon made
clear that this random-phase assumption was wrong in the
elastic regime. Depending on the disorder strength, partial
�weak-localization regime� or complete �strong-localization
regime� suppression of diffusive behavior has been pre-
dicted, provided phase coherence is preserved over a suffi-
ciently large number of scattering events �11,12�. In turn,
these discoveries have cross-fertilized the field of light trans-
port in the elastic regime �13–16�. In this field, one of the
hallmarks of interference effects in elastic transport is the
coherent backscattering �CBS� phenomenon �17,18�: the av-
erage intensity multiply scattered off an optically thick
sample is larger than the average background in a small an-
gular range around the direction opposite to the ingoing
light. This interference enhancement of the diffuse reflection
off the sample is a manifestation of a two-wave interference.
As such, it probes the coherence properties of the outgoing

light and it has been extensively studied both experimentally

and theoretically. It can be shown on general arguments that

the CBS enhancement factor �defined as the ratio of the
backscattering CBS peak to diffuse background� never ex-
ceeds the value 2 and is obtained in the helicity-preserving
polarization channel for scatterers with spherical symmetry
�19�.

Whereas these interference modifications of transport are
by now widely understood in the case of linear media, recent
experimental developments have required an extension of
multiple-scattering theory to the nonlinear case. Even if a
few studies already exist, they only cover the simpler case of
classical linear scatterers embedded in a nonlinear medium
�20,21�, whereas in our microscopic approach, the nonlinear
behavior of randomly distributed scatterers will affect both
the scattering processes and the average propagation. In par-
ticular, with the advent of laser cooling, on the one hand, it
has become possible to study interference effects in multiple
scattering of light by cold atoms �22–26�. In the regime
where the saturation of the atomic transition sets in, atoms
scatter light nonlinearly, i.e., the scattered light is no longer
proportional to the incident light. One should note that im-
portant nonlinear effects are easily achieved with atoms even
at moderate laser intensities. Considering a given driven op-
tical dipole atomic transition, the order of magnitude of the
required light intensity to induce nonlinear effects is given
by the so-called saturation intensity Is and is generally low.
As typical examples, it is 1.6 mW/cm2 for rubidium atoms
and 42 mW/cm2 for strontium atoms, for their usual laser
cooling transitions. On the other hand, random lasers—
mirrorless lasers where feedback is provided by multiple
scattering �27�—have been realized experimentally �28,29�.
Here, nonlinear effects occur in the regime close to or above
the laser threshold. Since, at least in the regime of coherent
feedback �30�, interference is believed to play a decisive role
in the physics of the random laser, a better understanding of
the influence of nonlinearity �and amplification� on the prop-
erties of coherent wave transport becomes necessary.
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II. MOTIVATION AND OUTLINE

In a recent contribution �31�, we have shown that nonlin-
ear scattering may fundamentally affect interference in mul-
tiple scattering. Indeed, in the perturbative regime of at most
one scattering event with ��3� nonlinearity, there are now
three �and no longer two� CBS interfering amplitudes. De-
pending on the sign of the nonlinearity, i.e., depending
whether nonlinear effects enhance or decrease the scattering
cross section, the effect of this three-wave interference effect
leads to a significant increase or decrease of the nonlinear
CBS enhancement factor.

The purpose of the present paper is, on the one hand, to
provide a detailed derivation of the equations for the nonlin-
ear coherent backscattering signal used in �31�, and, on the
other one, to extend the treatment of �31� to the case of
atomic scatterers. Here, in contrast to the classical case, light
is scattered inelastically, i.e., the scattered photons may
change their frequencies. This leads to dephasing between
interfering amplitudes and, consequently, to a reduction of
the CBS enhancement factor in addition to the nonlinear
modifications mentioned above. Theoretical studies of this
inelastic decoherence mechanism have been so far restricted
to the case of two atoms �32–34�. Since the total �linear and
nonlinear� elastic signal can be filtered out by means of a
suitable frequency-selective detection, a clear experimental
study of inelastic, nonlinear CBS becomes possible. Please
note that this would be otherwise very difficult to achieve
since for weak intensities—the regime where our theory is
valid—the linear signal generally greatly dominates over the
nonlinear one. In this paper, we will show that the enhance-
ment factor for inelastically scattered light significantly ex-
ceeds the linear barrier of 2 in certain frequency windows. In
contrast, the total enhancement factor—including also elasti-
cally scattered light—is diminished by nonlinear scattering.
This is due to the negative sign of the total nonlinear com-
ponent, since the total �elastic plus inelastic� scattering cross
section is decreased by saturation.

The paper is organized as follows. In Sec. III, we present
the perturbative theory for nonlinear CBS of light scattered
off a sample of cold two-level atoms. “Perturbative” here
means that we restrict ourselves to the regime of scalar—i.e.,
we forget the polarization of the photon—two-photon scat-
tering with at most one nonlinear scattering event. This as-
sumption is valid at sufficiently low probe intensities and not
too large optical thicknesses. After briefly sketching the main
results of the linear case, Sec. III A, we derive equations for
the nonlinear backscattering signal in Sec. III B. The latter
contains an inelastic and an elastic component. The latter
again splits into a nonlinear and a linear part. In Sec. III C,
supplemented by the Appendix, we show how to generalize
our scalar theory to the vectorial case by explicitly taking
into account the light polarization degrees of freedom. It is
shown that nonlinear polarization effects lead to decoherence
between interfering paths. In contrast to the linear case, this
decoherence mechanism cannot be avoided by a suitable
choice of the polarization detection channel. In order to em-
phasize the generality of our approach, we briefly discuss in
Sec. III D a model of classical, nonlinear scatterers, which
reproduces the elastic backscattering signal of the atomic

model. In Sec. IV, we apply our theory to the case of a
disordered atomic medium with slab geometry. We look at
the dependence of the backscattering signal as a function of
the optical thickness and of the detuning of the laser from the
atomic resonance. In particular, we show that the enhance-
ment factor for the inelastic component significantly exceeds
the linear barrier of 2 in certain frequency windows. Finally,
Sec. V concludes the paper.

III. THEORY

In this section, we present the perturbative theory for non-
linear coherent backscattering of light from a gas of cold
two-level atoms. We first treat the linear component of the
backscattering signal, which results from scattering of inde-
pendent photons. Thereby we introduce the reader, in Sec.
III A, to standard methods used in linear multiple-scattering
theory �35�, which we will then generalize to the nonlinear
case in Sec. III B.

A. Scalar linear regime

1. One-photon scattering amplitude

By definition, the linear component of the photodetection
signal is proportional to the incoming intensity, in particular
to the number of photons in the initial laser mode. Since this
implies that the photons are independent from each other, it
is sufficient to know how a single photon propagates in the
atomic medium �see Fig. 1�. This is equivalent to using the
usual Maxwell’s equations for a disordered medium �35�.

In the weak-scattering regime, which we will consider
throughout this paper, transport is depicted as a succession of
propagation in an average medium interrupted by scattering
events. The important building block to properly describe
scattering and average propagation is the one-photon scatter-
ing amplitude by a single atom. For near-resonant scattering,
and for atoms with no ground-state internal Zeeman degen-
eracies, it reads

S� =
− 4�i

k�1 − 2i�/��
. �1�

It can be derived from the elastically bound electron model
in the limit of small light detuning �=�−�at�� ,�at �35�.

FIG. 1. Scattering path of a single photon entering the medium

and leaving it in the backscattering direction to reach the detector.

Straight lines depict average propagation in the effective medium

while full circles depict scattering events labeled by the rn.
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The atomic angular transition frequency is �at whereas the
atomic transition width � describes radiative decay. The pho-
ton wave number is k and the photon angular frequency is
�=ck �c being the vacuum speed of light�.

For simplicity, we work here with scalar photons, i.e., we
discard the vectorial nature of the light field. Scattering is
then fully isotropic and the differential scattering cross sec-
tion simply reads

d�

d	
= � S�

4�
�2

=
�

4�
�2�

leading to

� =
�0

1 + �2�/��2 , �0 =
4�

k2 , �3�

where �0 is the on-resonance scattering cross section.
The scalar assumption is not a crucial one: as will be

shown in Sec. III C, the following treatment can be general-
ized to the vectorial case. Please note, however, that the in-
clusion of internal degeneracies is not immediately simple
and requires a separate treatment on its own. This is so be-
cause then the internal dynamics is no longer simple �optical
pumping sets in�. In this respect the results presented
throughout this paper only apply to nondegenerate ground-
state atoms. Please note also that internal degeneracies are
already known to strongly reduce the CBS effect in the linear
regime �24,25�.

2. Linear refraction index

Between two successive scattering events occurring at r

and r�, the photon experiences an effective atomic medium
with refractive index n�. Formally, the resulting propagation
is described by the average Green’s function

G��r,r�� = −
ein�k�r−r��

4��r − r��
, �4�

where the refractive index is given by �36�

n� = 1 −
�

�k�
+

i

2k�
. �5�

The imaginary part of n� describes depletion by scattering.
This depletion gives rise to the exponential attenuation of the
direct transmission through the sample �Beer-Lambert law�
and defines, via the optical theorem, the linear mean free
path at frequency � as

� =
1

N�
�6�

where N denotes the density number of atoms in the sample.
The weak-scattering condition, where all the previous �and
following� results are valid, then simply reads k�
1.

3. Linear radiative transfer equation

We have now at hand all the necessary ingredients to
write down the amplitude of a multiple-scattering process

like the one sketched in Fig. 1. We consider a scattering
volume V exposed to an initial monochromatic field with
amplitude E0 propagating along axis z. The transverse area of
the scattering volume is �. Since k�
1, a semiclassical pic-
ture using well-defined scattering paths is appropriate. For a
given scattering path Cn��r1→ ¯ →rn� labeled by the col-

lection of scattering events, the corresponding far-field am-
plitude radiated at position R of the detector placed in the
backscattering direction is

E�Cn� = −
eikR

4�kR
A�Cn�E0. �7�

The complex amplitude A�Cn� is simply a product of one-

photon scattering amplitudes �1� and of Green’s functions
�4�:

A�Cn� = kS�eikn��z1+zn��	
i=1

n−1

S�G��ri,ri+1�
 �8�

where zi is the distance from the boundary of the medium to
the position where scattering event i occurs. The superposi-
tion principle then gives the total electric field amplitude E as
a sum over all possible scattering paths Cn:

E = −
eikR

4�kR
E0A, A = �

Cn

A�Cn� . �9�

The total average intensity is obtained by squaring �9� and
averaging over all possible scattering events. We define the
total dimensionless bistatic coefficient as

�el
�1� =

4�R2

�E0
2 ��E�2
dis av =

1

4�k2�
��A�2
dis av. �10�

We now assume complete cancellation of interference ef-
fects between different scattering paths �random-phase or
Boltzmann approximation�. We then obtain the background
�or “ladder”� component of the backscattering signal:

�el
�1� � Lel

�1� = �
n=1



Nn

4�k2�
�

V

dr1 ¯ drn�A�Cn��2. �11�

This formula has a well-defined limit when �→
 and
thus can be applied to slab geometries. Please note that, in
writing Eq. �11�, we have also discarded recurrent scattering
paths, i.e., paths visiting a given scatterer more than once.
Both approximations are justified in the case of a dilute me-
dium, k�
1 �37�.

We rewrite Eq. �11� as

Lel
�1� =� dr

��
I��r�e−z/�, �12�

with
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I��r� = e−z/� + �
n=1




Nn�
V

dr1 ¯ drn

� e−z1/�	
i=1

n

�S�G��ri,ri+1��2, �13�

where rn+1=r. This dimensionless function describes the av-
erage light intensity at r, in units of the incident intensity
I0=�0cE0

2 /2 �in W/m2� with �0 the vacuum permittivity. The
first term in Eq. �13� represents the exponential attenuation
of the incident light mode, i.e., light which has penetrated to
position r without being scattered �Beer-Lambert law�. The
remaining term describes the diffuse intensity, i.e., light
which has been scattered at least once before reaching r.
From Eq. �13�, one can easily show that I��r� satisfies the

radiative transfer integral equation �3�

I��r� = e−z/� +
4�

�
�

V

dr��G��r,r���2I��r�� . �14�

The required solution of Eq. �14� can be obtained numeri-
cally by iteration starting from I��r�=0.

4. Linear CBS cone

In fact, the preceding Boltzmann approximation �el
�1�

�Lel
�1�

is wrong around the backscattering direction. Indeed,
on top of the background ladder component, one observes a

narrow cone of height Cel
�1�

and angular width ��� �k��−1

�18�. In the regime k�
1, this so-called CBS cone arises
from the interference between amplitudes associated with re-

versed scattering paths Cn��r1→ ¯ →rn� and Cñ��rn

→ ¯ →r1�. Of course single scattering paths where n=1 do

not participate to this two-wave interference �since they are
exactly identical to their reversed counterparts� and must be

excluded from Cel
�1�

. Thereby, we obtain the interference �or
“crossed”� contribution as

Cel
�1� = �

n=2



Nn

4�k2�
�

V

dr1 ¯ drnA�Cn�A*�Cn�̃ . �15�

Thus, the bistatic coefficient in the backscattering direc-

tion reads �el
�1�

=Lel
�1�

+Cel
�1�

. From Eq. �8�, we verify that the

reciprocity symmetry A�Cn�=A�Cn
˜ � is satisfied for scatter-

ers without any internal ground-state degeneracies. This al-
lows us to rewrite Eq. �15� as

Cel
�1� =� dr

��
�I��r� − e−z/��e−z/� = Lel

�1� − Sel
�1� �16�

where Sel
�1�

is the single-scattering contribution. Hence, the
linear CBS enhancement factor, defined as

��1� = 1 + Cel
�1�/Lel

�1� = 2 − Sel
�1�/Lel

�1�, �17�

is always smaller than 2. It equals 2 if single scattering can
be filtered out �see Sec. III C�.

B. Scalar nonlinear regime

At higher incident intensities, the successive photon scat-
tering events become correlated. Indeed, absorption of one
single photon brings the atom into its excited state where it
rests for a quite long time �−1 without being able to scatter
other incident photons. This means that saturation of the op-
tical atomic transition sets in, inducing nonlinear effects and
inelastic scattering. In a perturbative expansion of the photo-
detection signal in powers of the incident intensity, the lead-
ing nonlinear term arises from scattering of two photons. In
order to generalize the above linear treatment to the two-
photon case, we first need to recall some relevant facts about
scattering of two photons by a single atom �32�.

1. One-atom two-photon inelastic spectrum

The two-photon scattering matrix S contains an elastic
and an inelastic part. The elastic part corresponds to two
single photons scattered independently from each other,
whereas the inelastic part describes a “true” two-photon scat-
tering process, where the photons become correlated and ex-
change energy with each other. To obtain the intensity of the
photodetection signal, the electric field operator E �evaluated
at the position of the detector� is applied on the final two-
photon state �f
=S�i
, with �i
 the initial state. Since E anni-
hilates one photon, this yields a single-photon state ��

=E�f
, which describes the final state of the undetected pho-
ton. Like the scattering matrix S, it consists of an elastic and
an inelastic component:

��
 = ��el
 + ��in
 . �18�

The inelastic part ��in
 is a spherical wave emitted by the
atom, whereas the elastic part ��el
 is a superposition of scat-
tered and unscattered light, thereby taking into account for-
ward scattering of the undetected photon. �Forward scatter-
ing of the detected photon does not need to be taken into
account, since the detector is placed in the backscattering
direction.� Finally, the norm I= �� ��
 of ��
 defines the in-

tensity of the photodetection signal. According to Eq. �18�, I
is the sum of the following three terms:

Iel
�1� = ��el��el
 , �19�

Iel
�2� = 2 Re���el��in
� , �20�

Iin
�2� = ��in��in
 . �21�

So far, everything is valid for any two-photon scattering pro-
cess with an elastic and an inelastic component. In the spe-
cific case of a single atom, the following result is obtained:

Iel
�1� =

�

4�R2 I0, �22�

Iel
�2� = − 2Iel

�1�s , �23�

Iin
�2� = Iel

�1�s , �24�

with the incident intensity I0, and the saturation parameter s
defined by �38�
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s =
s0

1 + �2�/��2 , s0 =
I0

Is
, Is = �0c���

2d

2

�25�

where d is the atomic dipole strength and Is the saturation
intensity of the atomic transition.

The first term, Eqs. �19� and �22�, which arises from two
photons scattered independently from each other, reproduces
the linear single-photon cross section 4��= �S��2 �see Eq.
�1��. The following two terms correspond to nonlinear elastic
and inelastic scattering, respectively. For the case of a single
atom, the perturbative two-photon treatment is valid for s
�1, i.e., if the nonlinear terms are small compared to the
linear one.

The frequency spectrum of the elastically scattered light is

simply Fel����= �Iel
�1�

+ Iel
�2������−�� whereas the frequency

spectrum of the inelastically scattered light is Fin����
= Iin

�2�P����. The continuous spectrum P���� is normalized to

unity according to �d��P����=1. It is obtained as follows

�32�:

P���� =
�

4�
� 1

�� + i�/2
+

1

2� − �� + i�/2
�2

, �26�

where ��=��−�at denotes the final detuning. This inelastic
spectrum consists of two peaks with width �, one located at
the atomic resonance ���=�at�, and the other one twice as

far detuned as the incident laser ���=�at+2��. For ��� /2,

the two peaks merge to a single one centered at ��=�.
Please note that, by going beyond the two-photon scattering
approximation, one would then get three peaks as predicted
by the nonperturbative calculation of the inelastic spectrum,
also known as the Mollow triplet �38�.

2. Nonlinear scattering in a dilute medium of atoms

Now, we generalize the above single-atom treatment to a
multiple-scattering process in a dilute medium of atoms.
First, we note that the above perturbative treatment—in par-
ticular Eqs. �19�–�21�—remains valid for any form of the
scattering sample, let it be a single atom, two atoms, or ar-
bitrarily many of them. An important difference from the
single-atom case, however, is that the total weight of nonlin-
ear processes may be drastically enhanced if the sample has
a large optical thickness b=L /�, where L is the typical me-
dium size. This implies that the condition s�1 is not suffi-
cient to guarantee the validity of the perturbative approach.
Instead, as we will argue in Sec. IV, the perturbative condi-
tion reads sb2�1.

A typical two-photon scattering path is sketched in Fig. 2.
Here, the incoming photons propagate at first independently
from each other to position r inside the disordered atomic
medium, where they undergo a nonlinear scattering event.
One of the two outgoing photons then propagates back to the
detector. The possibility that the two photons meet again at
another atom can be neglected in the case of a dilute me-
dium, similar to recurrent scattering in the linear case �37�.
We can hence restrict our analysis to processes like the one
shown in Fig. 2, with arbitrary numbers of linear scattering
events before and after the nonlinear one. Thus one of the
two incoming photons undergoes n�0 elastic scattering

events �labeled by ui�, while the other undergoes m�0 elas-
tic scattering events �labeled by v j�, before merging at r

where they undergo the inelastic scattering event. One of the
outgoing inelastic photons reaches back the detector after
having undergone l�0 elastic scattering events �labeled by
positions wk�. For the other undetected inelastic photon, we
may assume, without any loss of generality, that it does not
interact anymore with the atomic medium. This interaction
would anyway be described by a unitary operator �as a con-
sequence of energy conservation�, which does not change the
norm of the state ��
 of the undetected photon defining the
detection signal.

In general, the state of the inelastic undetected photon
corresponding to a scattering path C defined by the position
r of the two-photon scattering event and by the collection of
positions of all one-photon scattering events C��u ,v ,r ,w�
is given as follows:

��in�C�
 = eikn��zu1
+z

v1
�	
i=1

n

S�G��ui,ui+1�	
j=1

m

S�G��v j,v j+1�

�� d�����
��in
	

k=1

l

S��
G��

�wk,wk+1�

�eikn��zw1�1, n = m = 0,

2, n � 0 or m � 0,
� �27�

with un+1=vm+1=wl+1=r, ���
the projector on photon states

at frequency ��, and ��in
 the inelastic final state of the one-
atom case, Eq. �18�. Since the inelastic two-photon scattering
event takes place at position r, this state describes an outgo-
ing spherical wave emitted at r. Furthermore, note that if the
two incoming photons do not both originate from the inci-
dent mode, i.e., if n�0 or m�0, a factor 2 arises due to the
fact that the incoming photons can be distributed in two dif-
ferent ways among the paths �u� and �v�.

The elastic component ��el�C�
 is obtained in a similar

way. However, as in the single-atom case, we must take into
account forward scattering of the undetected photon, at the
position r of the nonlinear event. This is done by considering
the superposition of two diagrams where the undetected pho-
ton is scattered or not scattered at r �see Figs. 3�a� and 3�b��.
Since this approach exactly parallels the one known from the
single-atom case �32�, it is unnecessary to present the com-

FIG. 2. In the perturbative approach, we assume a single non-

linear two-photon scattering event ���, but arbitrarily many linear

scattering events ���. One of the two photons is finally annihilated

by the detector, thereby defining the photodetection signal, whereas

the other one is scattered into an arbitrary direction.
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plete calculation of the elastic component in detail—all rel-
evant ingredients to perform the generalization to the multia-
tom case will be contained in the calculation of the inelastic
component. In contrast to the single-atom case, however, the
elastic component will enter in the calculation of the nonlin-
ear average propagation, i.e., the nonlinear modification of
the refractive index �Kerr effect�, and will be discussed later.
At first, we concentrate on the processes of nonlinear scat-
tering, i.e., processes changing the direction of propagation
of the detected photon.

As for the linear case, we still assume the same dilute
medium approximations to hold for the “ladder” and
“crossed” contributions. Thus, in order to calculate the aver-
age photodetection signal, we just keep scattering diagrams
obtained by reversing the path of the detected photon. Fur-
thermore, we also neglect interference between diagrams
where the nonlinear scattering event occurs at different at-
oms. This is justified in the dilute case since the overlap
between two spherical waves emitted at r and r� vanishes if
k�r−r��
1.

3. Nonlinear ladder contribution

To obtain the inelastic component of the average back-
scattering signal, we first get the total final state of the un-
detected photon by summing Eq. �27� over all possible dif-
ferent scattering paths C. Then we insert this result into Eq.
�21� and we finally average over the random positions of the
scatterers. As argued above, only identical or reversed scat-
tering paths are retained in the average, giving rise to the
background �ladder� and interference �crossed� components.
Thus, the inelastic background component reads as follows:

Lin
�2� = �

V

dr �
�n,m,l�=0



Nn+m+l+1

4�k2�
�

V
	
i=1

n

dui	
j=1

m

dv j	
k=1

l

dwk

� ��in�C���in�C�
 � �1 if n = m = 0,

1/2 otherwise.
� �28�

Note that some care must be taken not to sum twice over
the same scattering path. In particular, any exchange of the
two incoming parts �u� and �v� leaves the total scattering

path unchanged since the two incoming photons are identi-
cal. For this reason, a factor 1 /2 must be inserted at the end
of Eq. �28�. Again, as in Eq. �27�, the case n=m=0 is excep-
tional, since then there is no elastic scattering event before

the nonlinear one: the two incident photons remain in the
same mode.

If we insert now Eq. �27� into Eq. �28�, we simply obtain
the inelastic nonlinear ladder contribution as

Lin
�2� = s� dr

��
�2I�

2 �r� − e−2z/��� d��P����I��
�r� , �29�

with I��r� the linear average intensity �see Eq. �14��. In order

to interpret this result, we first note that the inelastic intensity
radiated by the atom at position r is proportional to the mean
squared intensity at r. An alternative, physically transparent
derivation of the latter can be performed as follows. We write
the local field amplitude A=exp�−z /2��+AD as a sum of

coherent and diffuse light amplitudes. The latter term exhib-
its Gaussian speckle statistics �39�, i.e., �ReAD
= �Im AD

=0, 2��ReAD�2
=2��Im AD�2
= ���AD��2
, and ��AD�4

=2��AD�2
2. Thereby, we obtain for the mean squared inten-

sity

��A�4
 = e−2z/� + ��AD�4
 + 4e−z/���AD�2
 �30�

=2��A�2
2 − e−2z/�. �31�

Inserting the average intensity I�= ��A�2
, we immediately

recognize the first integrand in Eq. �29�. Then the atom emits
a photon with frequency distribution P����. Finally, due to

time-reversal symmetry, the propagation of this photon from
r to the detector is described by the same function I��

�r�
which represents propagation of incoming photons to r.

Concerning the elastic component, the diagrammatic cal-
culation via Eq. �20� �see also Figs. 3�a�–3�c�� shows that the
above argument can be repeated in the same way—except
for the fact that the detected photon does not change its fre-
quency. Furthermore, a factor −2 is taken over from the
single-atom expression �cf. Eqs. �23� and �24��. Thereby, we
obtain

Lel
�2,scatt� = − 2s� dr

��
�2I�

2 �r� − e−2z/��I��r� . �32�

The index “scatt” reminds us that we have treated only non-
linear scattering so far. Below �Sec. III B 5�, we will add
nonlinear average propagation, which contributes to the elas-
tic nonlinear component, too.

4. Nonlinear crossed contribution

It remains to calculate the crossed contribution, i.e., inter-
ference between reversed paths. In contrast to the linear case,
where there are always two interfering amplitudes �apart
from single scattering�, the nonlinear case admits more pos-
sibilities to reverse the path of the detected photon. This is
due to the photon exchange symmetry at the nonlinear scat-
tering event, which does not allow us to distinguish which
one of the two incoming photons finally corresponds to the
detected or undetected one. As evident from Fig. 4�c�, each
multiple-scattering path where both incoming photons, or
one incoming and the outgoing detected photon, exhibit at
least one linear scattering event besides the nonlinear one has
two different reversed counterparts, leading in total to three
interfering amplitudes.

FIG. 3. The elastic component ���r , �u ,v ,w��el
 of the undetec-

ted photon state arises from a superposition of the following three

processes: �a� both photons elastically scattered at r, �b� only the

detected photon scattered at r, and �c� only the undetected photon

scattered at r. The last two diagrams are necessary to take into

account the nonlinear average propagation of the undetected �b� or

detected �c� photon.
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If we look at the scattering process shown in Fig. 2, the
two reversed counterparts are obtained by exchanging the
outgoing detected photon �w� with either one of the incom-

ing photons �u� or �v�. Since both cases are identical in the

ensemble average, we may restrict ourselves to one of them,

let us say �v�. We thus denote by C̃��u ,w ,r ,v� the reverse

path corresponding to C��u ,v ,r ,w� when �v� and �w� are

exchanged. In total, we obtain for the inelastic interference
component

Cin
�2� = �

V

dr �
�n,m,l�=0



Nn+m+l+1

4�k2�

� �
V
	
i=1

n

dui	
j=1

m

dv j	
k=1

l

dwk��in�C���in�C̃�


� �0 if m = l = 0,

1 otherwise.
� �33�

Here, the case m= l=0 identifies processes where the two

reversed paths C and C̃ are indistinguishable. Setting their
contribution equal to zero accounts in particular for the
single-scattering case depicted in Fig. 4�a�, i.e., n=m= l=0,
which does not contribute to the interference cone. The case
Fig. 4�b� remains with two contributions �n=m=0, l�0, and
n= l=0, m�0, respectively� in Eq. �33�, corresponding to the
fact that two amplitudes interfere. Finally, the case �c� of
three interfering amplitudes is reflected in Eq. �33� by the
absence of the exchange factor 1 /2, as compared to the back-
ground Eq. �28�. Thereby, the interference contribution can,
in principle, become up to twice larger than the background.

If we insert the state of the undetected photon, Eq. �27�,
into Eq. �33�, we encounter the following expression:

g�,��
�r� = eik�n�−n

��

*
�z + �

n=1




Nn�
V

dr1 ¯ drn

� eik�n�−n
��

*
�z1	

i=1

n

S�G��ri,ri+1�S��

* G��

* �ri,ri+1� ,

�34�

which generalizes the local intensity Eq. �13� to the case
where two different frequencies occur in the interfering
paths. Numerically, it can be obtained as the iterative solu-
tion of

g�,��
�r� = eik�n�−n

��

*
�z + NS�S��

*

� �
V

dr�G��r,r��G��

* �r,r��g�,��
�r�� . �35�

This function describes the ensemble-averaged product of
two probability amplitudes, one representing an incoming
photon with frequency � propagating to position r, and the
other one the complex conjugate of a photon with frequency
�� propagating from r to the detector. If ����, then these
amplitudes display a nonvanishing phase difference due both
to scattering and to average propagation in the medium. This
leads on average to a decoherence mechanism and conse-
quently to a loss of interference contrast. Indeed, both the
complex scattering amplitude Eq. �1� and the refractive index
Eq. �5� depend on frequency. In contrast, the phase differ-
ence due to free propagation �i.e., in the vacuum� can be
neglected if ���c, which is satisfied for typical experimen-
tal parameters �40,41�. In the case �=�� of identical fre-
quencies, g�,��r�= I��r� reduces to the average intensity �see

Eq. �14��.
In terms of the iterative solution of Eq. �34�, the inelastic

interference term Eq. �33� is rewritten as follows:

Cin
�2� = 4s� d��P�����

V

dr

��
�I��r��g�,��

�r��2

− e−z/� Re�ei�n�−n
��

*
�kzg�,��

* �r��

− �I��r� − e−z/��e−z/�−z/��� , �36�

with �� the linear mean free path at frequency ��. In the
elastic case, where ��=�, dephasing between reversed scat-
tering paths does not occur, and the expression �36� simpli-
fies to:

Cel
�2,scatt� = − 8s�

V

dr

��
�I��r�3 − 2I��r�e−2z/� + e−3z/�� .

�37�

Since, in the elastic case, there is no loss of coherence due to
change of frequency, the elastic interference component, Eq.
�37�, is completely determined by the relative weights of the
one-, two-, and three-amplitude cases exemplified in Fig. 4.
This can be checked by rewriting the background and inter-
ference components, Eqs. �32� and �37�, in terms of diffuse

FIG. 4. In the presence of nonlinear scattering ���, there may be

either �b� two, or �c� three interfering amplitudes contributing to

enhanced backscattering, apart from single scattering �a�, which

only contributes to the background. In general, the case �c�, which

corresponds to maximum enhancement factor 3, is realized if either

both incoming photons or one incoming and the outgoing detected

photon exhibit at least one linear scattering event ��� besides the

nonlinear one.
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and coherent light, respectively, i.e., by writing I= ID
+exp�−z /��. One obtains

�38�

where the angular brackets denote the integral over the vol-
ume V of the medium, and �a�, �b�, �c� correspond to the
three cases shown in Fig. 4, identified by different powers of
diffuse or coherent light. As expected, the three-amplitude
case �c� implies an interference term twice as large as the
background. In the two-amplitude case �b�, a small compli-
cation arises, since one of the two interfering amplitudes is
twice as large as the other one �i.e., the one where both
incoming photons originate from the coherent mode�; cf. the
discussion after Eq. �27�. In this case, the interference con-
tribution 2�1+1�2=4 is smaller than the background 2
�2+1�1=5. Finally, as it should be, the single-scattering

term �a� is absent in the interference term Cel
�2,scatt�

.

5. Nonlinear average propagation

So far, we have only considered processes of nonlinear
scattering where the direction of propagation of the detected
photon is changed. It remains to take into account nonlinear
average propagation. This is described by those processes
where, in one of the two interfering amplitudes, the detected
photon is not scattered at the position r of the nonlinear
event �44�. The corresponding diagrams are depicted in Fig.
5, where the two interfering amplitudes are represented by
the solid and dashed lines, respectively. Here, the solid lines
correspond to an inelastic two-photon scattering process �like
the one shown in Fig. 2�, whereas the dashed lines represent
an elastic process, where the two photons are independent
from each other �see Fig. 3�c��. Hence, their interference
contributes to the nonlinear elastic component of the photo-
detection signal �cf. Eq. �20��.

The three diagrams shown in Fig. 5 differ only by the fact
that the nonlinear propagation event takes place either be-
tween two scattering events at positions 1 and 2 �a�, on the
way to the detector, i.e., after the last scattering event at
position 1 �b�, or in the coherent mode, i.e., before the first
scattering event at position 1 �c�. First, let us examine the

case �a�. We imagine that each of the three dots � may
represent an arbitrary number of scattering events. �Only
note that the number of events corresponding to the dots and
1 and 2 must be larger than zero—otherwise, the diagram
Fig. 5�a� would be identical to Fig. 5�b� or 5�c�.� According
to the theory of linear radiative transfer outlined in Sec.
III A, the ladder diagrams corresponding to the two incom-
ing photons arriving at 1 �position r1� and at the nonlinear
event � �position r3� yield the linear local intensities I��r1�
and I��r3�, respectively. Likewise �due to reciprocity symme-

try�, the propagation of the outgoing detected photon from 2
�position r2� to the detector—with arbitrary number of scat-
tering events in between—is given by I��r2�. Hence, the only

ingredient that we have to calculate is the nonlinear propa-
gation between 1 and 2. Note that, when taking the average
over the position r3 of the nonlinear event, non-negligible
contributions arise only if r3 is situated on the straight line
between r1 and r2, since this is the only way to satisfy a
stationary-phase �or phase-matching� condition. Thereby, the
“pump intensity” entering in the nonlinear propagation is
given by the average value of the local intensity on this line,
which we denote by �I�
r1→r2

. We do not want to present the

complete calculation here �this requires us to calculate at first
the case of a single atom, which can be done with the tech-
niques described in �32��, but just give the final result:

�G�
�nl,a��r1,r2��2 = �G��r1,r2��2

2sr12

�
�I�
r1→r2

. �39�

From this, we deduce the following value for the nonlinear
mean free path:

1

�
�nl��r�

=
1

�
�1 − 2sI��r�� , �40�

which is consistent with Eq. �39�, if we expand the resulting
propagator �where the mean free path appears in the expo-
nent� up to first order in s. The same result is also obtained in
the case of diagram Fig. 5�b�, i.e., for the propagation after
the last scattering event. Hence, the corresponding propaga-
tor �first order in s� reads

�G�
�nl,b��r1��2 = e−z1/�

2sz1

�
�I�
r1→r0

, �41�

where r0=r1−z1ez, with ez the unit vector pointing in the
direction of the incident laser, denotes the point where the
photon leaves the medium. In the case �c�, a small compli-
cation arises since the photons arriving at the nonlinear event
� may originate both from the coherent mode, which re-
duces the two-photon scattering amplitude by a factor 1 /2
�cf. the discussion after Eq. �27��. Hence, the nonlinear mean
free path for photons from the coherent mode reads

1

�c
�nl��r�

=
1

�
�1 − 2sI��r� + se−z/�� , �42�

with the corresponding propagator

FIG. 5. Diagrammatic description of nonlinear propagation. A

two-photon process �solid lines� interferes with two independent

single photons �dashed lines�. Only one of the latter �the undetected

photon� is scattered at �, thereby modifying the propagation of the

detected photon �a� between two scattering events at positions 1 and

2, �b� on the way to the detector after the last scattering event at

position 1, or �c� in the coherent mode before the first scattering

event at position 1.
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�G�
�nl,c��r1��2 = e−z1/�

sz1

�
�2I��r� − e−z/�
r0→r1

. �43�

The difference between the mean free paths, Eqs. �40� and
�42�, can also be understood as a consequence of the differ-
ent properties of intensity fluctuations for diffuse and coher-
ent light �see Eq. �30��, which determine the nonlinear
atomic response.

In total, we obtain for the background component

Lel
�2,prop� =

N

��
�

V

dr1dr2I��r1�I��r2��S�G�
�nl,a��r1,r2��2

+ �
V

dr1

��
I��r1���G�

�nl,b��r1��2 + �G�
�nl,c��r1��2� .

�44�

In the case of a slab of length L, Eq. �44� can be simplified to

Lel
�2,prop� = s�

0

L dz

�
I��z��2I��z�2 − 2I�

2 �L� + e−2z/� − e−z/�� .

�45�

Concerning the interference component, we find the same
phenomenon which we have already observed in the case of
nonlinear scattering: if we exchange outgoing and incoming
propagators, we find twice as many crossed as ladder dia-
grams �see Fig. 6�. In particular, the diagrams �d�, �e�, �f�,
which could be seen as a modification of the linear refractive
index by the local crossed intensity—thus affecting the �lad-
der� average propagation—are not considered in previously
published papers, concerning either classical linear scatterers
in a nonlinear medium �20,21� or nonlinear scatterers in the
vacuum �31,42�. Even if, at first sight, these diagrams look
unusual, our numerical calculations �see Sec. III D� suggest
that they play an important role, at least in our situation
where nonlinear scattering and nonlinear propagation origi-
nate from the same microscopic process.

Due to the reciprocity symmetry �remember that nonlin-
ear propagation contributes to the elastic component, i.e., no
decoherence due to change of frequency�, each of the dia-

grams in Fig. 6 gives the same contribution as the corre-
sponding ladder diagram in Fig. 5. Hence, to first approxi-
mation, the interference contribution from nonlinear
propagation equals twice the background Eq. �44�. Some
care must be taken, however, if photons arriving at �or de-
parting from� the nonlinear event �or position 1� originate
from the coherent mode. In such cases, it may happen that
some of the diagrams depicted in Figs. 5 and 6 coincide, and
we should not count them twice. �This is analogous to the
distinction between the cases �a�, �b�, �c� in Fig. 4, or to the
suppression of single scattering in the linear case.�

Taking this into account �for details, we refer to the dis-
cussion after Eq. �A8� in the Appendix�, we find

Cel
�2,prop� = 2Lel

�2,prop� − 3�
V

dr1

��
�e−z1/��G�

�nl,c��r1��2

+ I�r1�e−z1/�s�1 − e−z1/��� . �46�

In the case of a slab, we obtain

Cel
�2,prop� = 2Lel

�2,prop� − 3s�
0

L dz

�
I�z��e−z/� − e−2b�

+ s�1

2
−

3

2
e−2b + e−3b
 , �47�

where b=L /� denotes the �linear� optical thickness of the
slab.

Thereby, we have completed the perturbative calculation
of the backscattering signal for the scalar case. The total
signal is obtained as the sum of the various components dis-
cussed above:

L = Lel
�1� + Lel

�2,scatt� + Lel
�2,prop� + Lin

�2�, �48�

C = Cel
�1� + Cel

�2,scatt� + Cel
�2,prop� + Cin

�2�. �49�

Before we present the numerical results in Sec. IV, we will
generalize the above results to the vectorial case. This is
important since polarization does not only lead to slight
modifications for low scattering orders, as in the linear case.
Apart from that, we will see that it also induces decoherence
between reversed paths, thereby reducing the nonlinear inter-
ference components.

C. Incorporation of polarization: Vectorial case

First, including the polarization modifies the scalar ex-
pressions Eqs. �1� and �6� for the linear mean free path and
the atom-photon scattering amplitude by a factor 2 /3:

�̂ = �1 +
4�2

�2 
 k2

6�N
, �50�

S̃� =
− 6�i

k�1 − 2i�/��
. �51�

The Green’s function Eq. �4� remains unchanged, except for
the fact that the modified expression for the mean free path,

FIG. 6. Interference contributions from nonlinear propagation.

The diagrams �a�–�f� are obtained from the ladder diagrams �see

Fig. 5� by reversing the paths of the respective photons. Just as in

the case of nonlinear scattering, there are twice as many diagrams

contributing to the interference cone as to the background.
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Eq. �50�, must be inserted in the refractive index. However,
the angular anisotropic character of the atom-photon scatter-
ing is not yet contained in Eq. �51�. This is treated by pro-
jection of the polarization vector as follows. If the photon,
with incoming polarization �1 is scattered at r1, and the next
scattering event takes place at r2, the new incoming polar-
ization reads

�2 = �r1,r2
�1, �52�

where �r1,r2
denotes the projection onto the plane perpen-

dicular to r1-r2. Finally, the detection signal after n scattering
events is obtained as �D

* �n, with the detector polarization �D.
Thus, the linear background �ladder� contribution reads

�cf. Eqs. �8� and �11��

L̂�1,el� = �
n=1


 � dr1

A�̂

Nn−1�
V

dr2 ¯ drne−z1/�̂

� �	
i=1

n−1

�Ŝ�Ĝ��ri,ri+1��2
e−zn/�̂

�
3

2
��D

* �rn−1,rn
¯ �r1,r2

�L�2, �53�

where �L denotes the initial laser polarization. By choosing a
given circular polarization, for example �L= �1, i ,0� /�2, and

by detecting the signal in the helicity-preserving h �h polar-
ization channel ��D=�L

*�, then the single-scattering contribu-

tion in Eq. �53� �n=1 term� is filtered out. We thus recover

the enhancement factor 2, meaning Cel
�1�

=Lel
�1�

. Apart from
that, however, polarization does not play a very important
role: the distribution of higher scattering orders n�1 is only
slightly modified, and the reciprocity symmetry remains
valid, provided that �D=�L

*.
The situation changes in the nonlinear regime of two-

photon scattering. With the initial and final polarizations �1,2

and �3,4, respectively �see Fig. 7�a��, the polarization-
dependent term of the two-photon scattering matrix reads

Sp =
1

2
���1�4

*���2�3
*� + ��1�3

*���2�4
*�� . �54�

The prefactor 1 /2 is chosen such that Sp represents correctly
the polarized scattering amplitude in units of the correspond-
ing scalar one. From Eq. �54�, the photon exchange symme-

try becomes evident: the outgoing photon 3, e.g., can equally
well be associated with the incoming photon 1 or 2. If we
trace over the undetected photon, which we may label as
photon 4, for example, we obtain for the ladder component

��L���1,�2;�3� = �
�4

�Sp�2 =
1

4
���2�3

*�2 + ��1�3
*�2

+ 2 Re���1�2
*���2�3

*���3�1
*��� .

�55�

If we assume a random uniform distribution for the polariza-
tion vectors, we obtain ���L�
=2/9, which is smaller than the

linear counterpart ���n�D
* �2
=1/3. Hence, in the vectorial

case, the relative weight of the nonlinear contribution is ap-
proximately one-third smaller than in the scalar case—at
least far inside the medium, where the polarization is suffi-
ciently randomized.

Concerning the interference �crossed� contribution, we
exchange the direction of the outgoing detected photon 3 and
one of the incoming photons, for example photon 2. Note
that we obtain in general different polarizations �̃2,3 for the
reversed counterparts of �2,3 �see Fig. 7�b��. Indeed, the re-
versed photons have the same polarizations, �̃2,3=�2,3, only if
the laser and detector polarizations are identical ��D=�L�.
Consequently, the scattering amplitude for the complex con-
jugate photon pair reads

S̃p =
1

2
���1�4

*���̃3�̃2
*� + ��1�̃2

*���̃3�4
*�� . �56�

Note that even in the helicity-preserving polarization chan-
nel, i.e., �̃2,3=�2,3

* , the reversed scattering amplitudes Eqs.
�54� and �56� are in general not equal. Only the first term,
where photon 2 is associated with photon 3, remains un-
changed if those two photons are reversed. As a conse-
quence, the polarization induces a loss of coherence, i.e., a
reduction of the crossed term as compared to the scalar case.
The sum over the polarization of photon 4 yields

��C���1,�2, �̃3,�3, �̃2� = �
�4

SpS̃p
*

=
1

4
���2�3

*���̃2�̃3
*� + ��2�3

*���1�̃3
*���2�1

*�

+ ��1�3
*���2�̃3

*���2�1
*� + ��1�3

*���2�1
*�

���2�3
*�� . �57�

If we assume �̃2,3=�2,3
* , i.e., the h �h channel, we obtain

���C�
=3/18 on average. Hence, in this channel, the

polarization-induced loss of contrast is approximately
���C�
 / ���L�
=3/4.

Finally, to obtain the polarization dependence of nonlinear
propagation, we label the photons as shown in Fig. 8. Let us
first examine the ladder term, Fig. 8�a�. The solid lines are
described by the two-photon amplitude Eq. �54�, whereas the
dashed lines give the complex conjugate of ��2�4

*���1�3
*�. Af-

ter integration over photon 4, the result is

FIG. 7. Polarization vectors associated with the two-photon

scattering matrix for two reversed scattering amplitudes �a� and �b�.
Note that the corresponding reversed scattering amplitudes Eqs.

�54� and �56� are different—even in the helicity-preserving polar-

ization channel, i.e., if �̃2,3=�2,3
* . This leads to a reduction of the

CBS interference cone by a factor 3 /4, on average.
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��L,prop���1,�2,�3� =
1

2
���1�2

*���2�3
*���3�1

*�

+ ��1�3
*���2�2

*���3�1
*�� . �58�

Concerning the crossed diagrams, we distinguish between
the two cases shown in Figs. 8�b� and 8�c�. �In Fig. 6, these
correspond to �a�, �b�, �c�, on the one hand, and �d�, �e�, �f�,
on the other hand.� As for the case �b�, nothing changes since
the reversed photon does not participate in the nonlinear
event. In case �c�, we obtain

��C,prop���1,�2,�3, �̃2, �̃3� =
1

2
���1�2

*���3�2
*���3�1

*�

+ ��1�2
*���3�2

*���3�1
*�� . �59�

When determining the average values of the nonlinear propa-
gation terms, it must be taken into account that �1 and �3 are
not independent from each other, since they propagate in the
same �or opposite� direction. Thus, we find ���L,prop�
=1/3

and ���C,prop�
=1/6. Hence, the loss of contrast equals 1 /2

in case �c�, whereas reciprocity remains conserved �i.e., no
loss of contrast� in case �b�. Averaging over �b� and �c�, this
yields the same contrast 3 /4 as for nonlinear scattering.

What remains to be done to obtain the vectorial back-
scattering signal is to incorporate the above expressions into
the corresponding scalar equations. The resulting equations
can be found in the Appendix, together with a description of
the Monte Carlo method which we use for their numerical
solution.

D. Classical model

We want to stress that our perturbative theory of nonlinear
coherent backscattering is not only valid for an atomic me-
dium, but can be adapted to other kinds of nonlinear scatter-
ers. In particular, the effect of interference between three
amplitudes is always present in the perturbative regime of a
small ��3� nonlinearity. Specifically, we have also examined
the following model: a collection of classical isotropic scat-
terers, situated at positions ri, i=1, . . . ,N. In analogy to the
atomic model, we assume that the field scattered elastically

by an individual scatterer at position ri is proportional to
Ei / �1+s�Ei�2�, where Ei is the local field at ri, and s measures

the strength of the nonlinearity. Writing Ei as a sum of the
incident field and the field radiated by all other scatterers, we
obtain the following set of nonlinear equations:

Ei = eikL·ri + i�
j�i

eikrij

krij

E j

1 + s�E j�
2 . �60�

Employing diagrammatic theory similar to the one out-
lined above, we have checked that, in the ensemble average
over the positions ri, this model indeed reproduces the elastic
components of the backscattering signal of the atomic model.
We have checked that the results obtained from direct nu-
merical solutions of the field equations �60�—averaged over
a sufficiently large sample of single realizations—agree with
our theoretical predictions, in the perturbative regime of
small nonlinearity s. In particular, the diagrams �d�, �e�, �f� of
Fig. 6, describing the interference contributions from the
nonlinear propagation, are essential to give the correct re-
sults. A more detailed analysis will be presented elsewhere.

Furthermore, it remains to be clarified whether the dia-
grams �d�, �e�, �f� are also relevant for the description of
propagation in homogeneous nonlinear media, into which
linear scatterers are embedded at random positions. First
studies of the resulting CBS cone have been presented in
�20,21�, without taking into account interference between
three amplitudes, however. Experimentally, this question can
be resolved by measuring the value of the backscattering
enhancement factor �: whereas � is basically unaffected by
the nonlinearity according to �20,21� �i.e., �=2 apart from
single scattering�, our equations �44� and �46�, with s propor-
tional to the incoming intensity and to the ��3� coefficient of
the nonlinear Kerr medium, predict a significant change of �
when varying the incoming intensity.

IV. RESULTS

We return to the atomic model, concentrating on the case
of a slab geometry in the following. Using the equations
derived in Secs. III A–III C, we are able to calculate the
backscattered intensity up to first order in the saturation pa-
rameter s. In this section, we will examine its dependence on
the optical thickness b and detuning �, for the scalar and
vectorial cases. The main quantity of interest is the back-
scattering enhancement factor �. It is defined as the ratio
between the total detection signal in the exact backscattering
direction divided by the background component. If we per-
form an expansion up to first order in s, we obtain

� =
L + C

L
� ��1� + ���1� − 1���C − �L�s . �61�

Here, ��1�=1+Cel
�1�

/Lel
�1�

is the enhancement factor in the lin-
ear case �i.e., the limit of vanishing saturation�. If single
scattering is excluded �e.g., in the h �h channel�, we have
��1�=2. Increasing saturation changes the enhancement fac-
tor, and the present approach allows us to calculate the slope
d� /ds of this change at s=0. It is given by the difference

FIG. 8. Polarization dependence of nonlinear propagation for �a�
ladder and �b�, �c� crossed diagrams.
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between the nonlinear crossed and ladder contribution, nor-
malized as follows:

�L =
L − L�1�

sL�1� , �62�

�C =
C − C�1�

sC�1� . �63�

Obviously, an important question is the domain of validity
of the linear expansion Eq. �61�. Strictly speaking, this ques-
tion can only be answered if we know higher orders of s.
However, a rough quantitative estimation can be given as
follows: if p1 �p2+� denotes the probability for a backscat-
tered photon to undergo one �more than one� nonlinear scat-
tering event, the perturbative condition reads p2+� p1. If we
assume that all scattering events have the same probability
�proportional to s� to be nonlinear �thereby neglecting the
inhomogeneity of the local intensity�, we obtain p1��N
s
and p2+��N2
s2, where N denotes the total number of scat-

tering events, and �…
 the statistical average over all back-
scattering paths. Evidently, N and N2 are expected to increase
when increasing the optical thickness b. For a slab geometry,
we have found numerically that �N
�b and �N2
�b3 �in the

limit of large b�, concluding that the perturbative treatment is
valid if sb2�1. Let us note that a similar condition also
ensures the stability of speckle fluctuations in a nonlinear
medium �43�.

In Fig. 9, we show the inelastic ladder and crossed con-

tributions �L
�in�

and �C
�in�

for a slab of optical thickness b
=0.5 as a function of the detuning, �=�−�at, for the polar-
ized �h �h� and scalar case. Since the optical thickness is kept

constant, the elastic quantities are independent of the detun-
ing, and only the inelastic components are affected by �, via
the shape of the power spectrum P���� of the inelastically

scattered light, see Eq. �26�. The latter exhibits two peaks of
width �, one of which is centered around the atomic reso-
nance. The increase of the ladder term as a function of �

which is observed in Fig. 9�a� is due to initially detuned
photons, i.e., �=�at+�, which are set to resonance ���

��at� by the nonlinear scattering process. For these photons,

the scattering cross section increases, which increases the
contribution to the backscattering signal in the sum over all
scattering orders—especially in the h �h case where single
scattering is filtered out. The same effect also applies for the
crossed term, Fig. 9�b�, but here the dephasing between the
reversed paths due to the frequency change—which is more
effective for higher values of the detuning—is dominant,

leading in total to a decrease of �C
�in�

as a function of �. The
small ripples in Fig. 9�a�, for the polarized case �solid line� at
large �, are due to numerical noise in the Monte Carlo inte-
gration.

Figure 10 shows the elastic and inelastic ladder and
crossed contributions, as a function of the optical thickness,
at detuning �=0. The main purpose of this figure is to show
the increase of the nonlinear contributions as a function of b,
which is important to understand the domain of validity of
the present approach. The origin of this increase is simple to
understand: for larger values of the optical thickness, the
average number of scattering events increases, and so does
also the probability that at least one of them is a nonlinear
one. Thus, for an optically thick medium, even a very small
initial saturation may lead to a large inelastic component of
the backscattered light. Note, however, that the elastic and
inelastic ladder contributions, Figs. 10�a� and 10�c�, tend to
cancel each other, such that their sum depends less strongly
on b. Physically, this fact is related to energy conservation.
The latter ensures that the total nonlinear scattered
intensity—integrated over all final directions—vanishes even
exactly, since the total outgoing intensity must equal the in-
cident intensity �meaning a purely linear relationship be-
tween outgoing and incident intensity�.

Furthermore, we note that both the elastic and inelastic
ladder components increase significantly more slowly in the
polarized than in the scalar case �solid vs dashed line�. This
is due to the fact that, as discussed in Sec. III C, polarization
effects diminish the weight of nonlinear scattering by ap-
proximately 2/3. Concerning the crossed components, Figs.
10�b� and 10�d�, the difference is even stronger, due to the

FIG. 9. �Color online� Normalized inelastic ladder and crossed

contributions �L,C
�in� �cf. Eqs. �62� and �63��, for optical thickness b

=0.5, as a function of the laser detuning �. Solid lines: polarized

case �h �h channel�. Dotted lines: scalar case. For comparison, the

corresponding elastic contributions �independent of �� are �L
�el�

=−7.04 �h �h�, −6.53 �scalar�, and �C
�el�

=−9.56 �h �h�, −18.8

�scalar�.

FIG. 10. �Color online� Normalized inelastic and elastic ladder

and crossed �L,C
�el,in� �cf. Eqs. �62� and �63��, for vanishing detuning

�=0, as a function of the optical thickness b=0.5. Solid lines: po-

larized case �h �h channel�. Dotted lines: scalar case.
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additional polarization-induced loss of contrast by a factor
3 /4, on average. Please note that the vertical scale for the
elastic crossed case, Fig. 10�d�, is two times larger than in
the other three cases: this reflects the effect of interference
between three amplitudes, which renders the crossed compo-
nent up to two times larger than the ladder. Concerning the
inelastic component Fig. 10�b�, this effect is diminished by
decoherence due to the frequency change at inelastic scatter-
ing. Here, crossed and ladder components are of similar
magnitude.

In Fig. 11, we show the slope of the backscattering en-
hancement factor, which follows via Eq. �61� from the data
shown in Figs. 9 and 10. Figure 11�b� again points out the
importance of even small saturation in the case of an opti-
cally thick medium. For example, in the scalar case at b=2,
increasing the saturation from s=0 to s=0.01 decreases the
enhancement factor from 1.73 ��2 due to single scattering�
to 1.55. For very large b, we find a linear decrease of the
slope. At the same time, however, the allowed domain of s
�1/b2 shrinks to zero quadratically. This allows the en-
hancement factor to remain a continuous function of s, even
in the limit b→
, where its slope at s=0 diverges. In order
to make more precise statements about the behavior in the
limit b→
, however, it is necessary to generalize our theory
to the case of more than one nonlinear scattering event.

On the left-hand side, Fig. 11�a� depicts the dependence
of the enhancement factor on detuning, for b=0.5. As al-
ready discussed above, the decrease of � with increasing �
originates from the form of the inelastic power spectrum,
which results in a stronger dephasing between reversed paths
for larger detuning. Thus, the modification of the enhance-
ment factor with the detuning, keeping fixed the linear opti-
cal thickness, is a signature of the nonlinear atomic response
and has been experimentally observed in Ref. �40�. Let us
stress, however, that in the cases shown in Figs. 9 and 11�a�
and small detuning, the inelastic component gives a positive
contribution to the backscattering enhancement factor.
Hence, the observed negative slope of � originates from the
elastic component, where the nonlinear crossed term is up to
two times larger than the ladder, but with negative sign �see
Figs. 10�c� and 10�d��.

In order to observe an enhancement factor larger than
2—and thereby demonstrate clearly the effect of interference
between three amplitudes—it is therefore necessary to filter
out the elastic component. In principle, this can be achieved
by means of a spectral filter, i.e., by detecting only photons
with a certain frequency ��, different from the laser fre-
quency �. Thereby, it is possible to measure the spectral
dependence of the backscattering enhancement factor �see
Fig. 12�. Here, the upper �a� and lower �b� parts depict the
polarized �h �h� and scalar cases, respectively, for vanishing

laser detuning, �=0. Evidently, the largest values of the en-
hancement factor are obtained if the final frequency ap-
proaches the initial one, since then the dephasing due to dif-
ferent frequencies vanishes. In the scalar case, the value of
the enhancement factor in the limit ��→0 is completely de-
termined by the relative weights between the one-, two-, and
three-amplitude cases shown in Fig. 4 �cf. Eq. �38��. As evi-
dent from the dashed line in Fig. 12�b�, already at the rather
moderate value b=0.5 of the optical thickness, the three-
amplitude case is sufficiently strong in order to increase the
maximum enhancement factor above the linear barrier �=2.
With increasing optical thickness �and, if necessary, decreas-
ing saturation parameter, in order to stay in the domain of
validity of the perturbative approach; see above�, the number
of linear scattering events increases, which implies that the
three-amplitude case increasingly dominates �see Fig. 4�. In
this limit, the enhancement factor approaches the maximum
value 3. At the same time, however, a larger number of scat-
tering events also leads to stronger dephasing due to different
frequencies, ����. This results in a narrower shape of � as
a function of �� for larger optical thickness. Nevertheless, as
evident from Fig. 12�b�, the enhancement factor remains
larger than 2 in a significant range of frequencies ��. The
same is true for the polarized case, Fig. 12�a�. However, here

FIG. 11. �Color online� Slope of backscattering enhancement

factor, for the parameters of Fig. 9 �b=0.5, left half� and Fig. 10

��=0, right half�. Solid lines: polarized case �h �h channel�. Dotted

lines: scalar case.
FIG. 12. �Color online� Spectral dependence of the enhancement

factor, for detuning �=0 and optical thickness b=0.5 �dashed line�,
1 �solid�, and 2 �dotted�, in the h �h channel �a� and the scalar case

�b�. The vertical dashed line displays the position of the elastic �
peak, which must be filtered out in order to observe an enhancement

factor larger than 2. The inset shows the power spectrum of the

backscattered light �background component�, which is almost iden-

tical with the single-atom spectrum.
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the enhancement factor cannot exceed the value 2.5, due to
the polarization-induced loss of contrast. At the same time,
the optical thickness has less influence on the maximum en-
hancement factor at ��=0, since single scattering, Fig. 4�a�—
and partly also the two-amplitude case, Fig. 4�b�—is filtered
out, so that interference of three amplitudes already prevails
at rather small values of the optical thickness.

In Fig. 13, the influence of an initial detuning �here �
=�� is displayed. Basically, the above conclusions remain
almost equally valid for the detuned case. A small difference
is seen in the scalar case Fig. 13�b�, where the maximum of
����� is found slightly below �. This is due to the fact that

the weight of single scattering increases with increasing ��.
Furthermore, the inset reveals that the power spectrum of the
backscattered light differs from the single-atom spectrum Eq.
�26�, where the two peaks at ��=0 and 2� are equally strong.
In the multiple-scattering case, the on-resonance peak at ��

=0 is amplified, since the scattering cross section is larger for
photons on resonance. As already mentioned above �see the
discussion of Fig. 9�, this increases the total contribution to
the detection signal �in the sum over all scattering paths�—
especially in the polarized case, where single scattering is
filtered out.

V. CONCLUSION

In summary, we have presented a detailed diagrammatic
calculation of coherent backscattering of light from a dilute
medium composed of weakly saturated two-level atoms. Our
theory applies in the perturbative two-photon scattering re-
gime �s�1 and sb2�1�, where at most one nonlinear scat-

tering event occurs. The value of the backscattering enhance-
ment factor is determined by the following three effects.
First, due to the nonlinearity of the atom-photon interaction,
there may be either two or three different amplitudes which
interfere in the backscattering direction. This implies a maxi-
mal enhancement factor between 2 and 3 for the nonlinear
component, where the value 3 is approached for large optical
thickness. However, since the contribution from nonlinear
scattering has a negative sign, the total enhancement factor
�linear plus nonlinear elastic and inelastic components� is
reduced by the effect of three-amplitude interference. Only if
the elastic component is filtered out can a value larger than 2
be observed.

Second, a loss of coherence is implied by the change of
frequency due to inelastic scattering—as in the case of two
atoms �32�. The random frequency change leads to different
scattering phases—and hence on average decoherence—
between reversed paths. Finally, a further loss of contrast is
induced by nonlinear polarization effects—even in the h �h
channel, which exhibits ideal contrast in the linear case. Nev-
ertheless, the enhancement factor remains larger than 2 in
certain frequency windows of the inelastic backscattering
signal. Thus, it is experimentally possible to clearly identify
the effect of interference between three amplitudes—
provided a sufficiently narrow spectral filter is at hand.

A natural way to extend this work is to give up the per-
turbative assumption, and admit more than one nonlinear
scattering event. This is necessary in order to describe media
with large optical thickness, even at small saturation. Since
the number of interfering amplitudes increases if more than
two photons are connected by nonlinear scattering events, we
expect the occurrence of even larger enhancement factors in
the nonperturbative regime—especially in the case of scat-
terers with positive nonlinearity, i.e., for scatterers whose
cross section increases with increasing intensity.

Furthermore, the relation between coherent backscattering
and weak localization in the presence of nonlinear scattering
remains to be explored. Does a large enhancement of coher-
ent backscattering also imply a strong reduction of nonlinear
diffusive transport? If the answer is yes—as is the case in the
linear regime—this implies that wave localization can be fa-
cilitated by introducing appropriate nonlinearities.
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APPENDIX: MONTE CARLO SIMULATION

As discussed in Sec. III C, the incorporation of polariza-
tion effects requires one to take into account the projection of
polarization vectors in the corresponding scalar equations.
For the inelastic ladder component, insertion of the polariza-
tion term Eq. �55� into the scalar expression Eq. �28� yields

FIG. 13. �Color online� Spectral dependence of the enhancement

factor, for detuning �=� and optical thickness b=0.5 �dashed line�,
1 �solid�, and 2 �dotted�, in the h �h channel �a� and the scalar case

�b�. The vertical dashed line displays the position of the elastic �
peak, which must be filtered out in order to observe an enhancement

factor larger than 2. The inset shows the power spectrum of the

backscattered light �background component�, revealing the amplifi-

cation of the on-resonance peak with respect to the symmetric

single-atom spectrum.
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L̂in
�2� = s� dr

A�̂

� d��P���� �
n,m,l=0




Nn+m+l�
V

du1 ¯ dune−u1,z/�̂�	
i=1

n

�Ŝ�Ĝ��ui,ui+1��2
�
V

dv1 ¯ dvme−v1,z/�̂

��	
j=1

m

�Ŝ�Ĝ��v j,v j+1��2
�
V

dw1 ¯ dwle
−w1,z/�̂��	

k=1

l

�Ŝ��
Ĝ��

�wk,wk+1��2
3

2
��L���u,�

v
;�w� � �1 if n = m = 0,

2 if n � 0 or m � 0,
�

�A1�

with un+1=vm+1=wl+1=r. Furthermore, the polarization vectors are given by

�u = �un,un+1
¯ �u1,u2

�L,

�
v

= �vm,vm+1
¯ �v1,v2

�L,

�w = �wl,wl+1
¯ �w1,w2

�D. �A2�

The analogous procedure for the interference component, inserting Eq. �57� into Eq. �33�, yields

Ĉ�2,in� = s� dr

A�̂

� d��P���� �
n,m,l=0




Nn+m+l�
V

du1 ¯ dwle
−u1,z/�̂�	

i=1

n

�Ŝ�Ĝ��ui,ui+1��2
eikv1,z�n�+n
��

*
�

��	
j=1

m

Ŝ�Ŝ��

* Ĝ��v j,v j+1�Ĝ��

* �v j,v j+1�
eikw1,z�n�
*

+n����	
k=1

l

Ŝ�
* Ŝ��

Ĝ�
* �wk,wk+1�Ĝ��

�wk,wk+1�

�

3

2
��C���u,�

v
, �̃w,�w, �̃

v
� � �

0 if m = l = 0,

2 if n = m = 0, l � 0,

2 if n = l = 0, m � 0,

4 otherwise,
� �A3�

with the polarization vectors of the “reversed” photons

�̃
v

= �vm,vm+1
¯ �v1,v2

�D,

�̃w = �wl,wl+1
¯ �w1,w2

�L. �A4�

The elastic nonlinear scattering components follow simply by inserting −2����−�� instead of the inelastic power spectrum

P���� in the above Eqs. �A1� and �A3�.
The nonlinear propagation term is obtained by inserting Eq. �58� into Eq. �44�:

L̂el
�2,prop� = s�

n=1




Nn�
V

du1 ¯ dune−�u1,z+un,z�/�̂�	
i=1

n

�Ŝ�Ĝ��ui,ui+1��2
�
m=1




Nm−1�
V

dv1 ¯ dvm−1�
l=0

n �
ul

ul+1 dvm

�̂

e−v1,z/�̂

��	
i=1

m−1

�Ŝ�Ĝ��vi,vi+1��2
��L,prop���1,�
v
,�3� � �1 if m = l = 0,

2 otherwise.
� �A5�

Here, the nonlinear event takes place between ul and ul+1. Correspondingly, �ul

ul+1 denotes the one-dimensional integral on a

straight line between these points, and u0=u1−u1,zez and un+1=un−un,zez are defined as the points where the photon enters or
leaves the medium, respectively. The three cases Figs. 5�a�–5�c� correspond to 0� l�n, l=n, and l=0, respectively. The
polarization vectors �1 and �3 participating in the nonlinear event �cf. Fig. 8� are obtained as

�1 = �ul+1,ul
¯ �u2,u1

�L,

�3 = �ul,ul+1
¯ �un−1,un

�D. �A6�

Finally, to obtain the interference component Ĉel
�2,prop�

, the last term in Eq. �A5� must be replaced by
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��L,prop���1,�
v
,�3� � �

2 if n � 1, �m,l� � �0,0�
1 if n � 1, m = l = 0

0 otherwise
� + ��C,prop���1,�

v
,�3, �̃

v
, �̃3� � �

4 if l = 0, n � 1, m � 0,

2 if l = 0, n = 1, m � 0,

2 if 0 � l � n ,

0 otherwise,
�
�A7�

with

�̃3 = �ul,ul+1
¯ �un−1,un

�L. �A8�

The first term, ��L,prop�, equals the ladder component minus
single scattering �n=1�, whereas the second one, ��C,prop�,

describes the additional crossed diagrams shown in Figs.
6�d�–6�f�. Here, the case 0� l�n corresponds to Fig. 6�d�,
where the nonlinearity occurs between two scattering events.
The remaining diagrams, Figs. 6�e� and 6�f�, correspond to
l=0. Here, the case m=0 �“pump photon from the coherent
mode”� does not contribute, since then the diagrams Figs.
6�e� and 6�f� are identical to Figs. 6�b� and 6�c�. Further-
more, if n=1 �“probe photon singly scattered”�, the two dia-
grams Figs. 6�e� and 6�f� become identical. In this case, we
obtain a factor 2, whereas the sum of diagram �e� plus dia-
gram �f� yields 2+2=4 in the case n�1.

Numerically, we solve the above integrals by a Monte
Carlo method. Here, we proceed as follows. For Eqs. �A1�

and �A3� first the position r and frequency �D of the inelastic
scattering event are chosen randomly. Starting from r, three
photons are launched, two with frequency �L and one with
frequency �D. After each scattering event, the length r of the
next propagation step is determined randomly according to
the distribution P�r�=exp�−r /�� /�, whereas the direction is

chosen uniformly. After all photons have left the medium,
the triple sum over n, m, and l is performed, taking into
account the projection of the polarization vectors. For the
nonlinear propagation term Eq. �A5�, first the probe photon
�path u1 , . . . ,un� is propagated, starting in the laser mode
kL ,�L. Then, the pump photon is launched from a randomly
chosen position vm on the path of the probe photon. Finally,
the projection of polarization vectors is performed separately
for each given path.
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We present a diagrammatic theory for coherent backscattering from disordered dilute media in the

nonlinear regime. We show that the coherent backscattering enhancement factor is strongly affected by the

nonlinearity, and we corroborate these results by numerical simulations. Our theory can be applied to

several physical scenarios such as scattering of light in a nonlinear Kerr medium or propagation of matter

waves in disordered potentials.
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The interplay between disorder and—even very weak—

nonlinearity can lead to dramatic changes to the system’s

properties: for example, instabilities occur [1–3], or local-

ization may be destroyed [4]. In the experiments studying

the localization properties of matter waves in speckle

potentials [5], the nonlinear regime, arising from the

atomic interactions, is almost unavoidable. Furthermore,

nonlinear behavior is easily observed in coherent backscat-

tering (CBS) experiments with cold atomic gases [6]. Also

random lasers exhibit nonlinearities which potentially in-

fluence the structure of localized laser modes [7]. In all

these cases, even if the systems are governed by simple

nonlinear wave equations, a precise description of the

impact of this nonlinearity on the interference effects

altering the properties of diffuse wave propagation is still

lacking. Since exact numerical calculations for realistic

situations are at the border of or beyond actual computer

capacities, one needs an efficient theory providing directly

disorder averaged quantities. For this purpose, the present

Letter shows that the standard diagrammatic approach [8]

can be extended to the nonlinear regime. Using ladder and

crossedlike diagrams, we will derive a nonlinear radiative

transfer equation for the averaged wave intensity and then

calculate the interference corrections on top of the non-

linear solution.

The general framework for our approach is as follows:

we assume a nonlinear wave equation with unique and

stationary monochromatic solution, meaning, in particular,

that the nonlinear susceptibilities at harmonics frequencies

are weak enough such that the latter can be neglected. We

also neglect—on the length scale ‘ (mean free path) set by

the disorder—effects like self-focusing, pattern formation,

and solitons [9], which originate from nonlinear variations

�nnl of the real part of the refractive index. This assump-

tion is valid if ��nnl�
2k‘ � 1 [2]. Our theory also applies

to imaginary �nnl, i.e., absorbing or amplifying media,

provided, in the latter case, that the solutions remain stable.

Within this general scenario, comprising examples like a

collection of resonant point scatterers, or a (mean field)

matter wave in a disordered potential, the nonlinear effects

relevant in connection with the disorder are as follows:

first, the wave intensity I�r� becomes a fluctuating quantity,

which is especially important in the nonlinear regime;

second, the usual picture of weak localization resulting

from interference only between pairs of amplitudes prop-

agating along reversed paths breaks down in the nonlinear

regime. As a consequence of nonlinear mixing between

different partial waves, weak localization must rather be

interpreted as a multiwave interference phenomenon

[10,11]. In particular, we will show that the height of the

coherent backscattering peak is strongly affected by non-

linearities, even if they do respect the reciprocity symme-

try. In contrast to [10,11], the present approach is valid in

the nonperturbative regime of arbitrarily large scattering

media, where expansions in powers of the nonlinearity

strength do not converge and even small nonlinearities

may have a large impact on the wave propagation.

At first, we consider an assembly of N pointlike scat-

terers located at randomly chosen positions ri, i �
1; . . . ; N inside a sample volume V illuminated by a plane

wave kL. We assume the field radiated by each scatterer to

be a nonlinear function f�Ei� of the local field Ei.

Neglecting higher harmonics, we write f�E� � g�I�E,

where I � EE� is the local intensity, and g�I� is propor-

tional to the polarizability of the scatterers. This results in a

set of nonlinear equations for the field at each scatterer:

 Ei � eikL�ri �
X

j�i

eikjri�rjj

4�jri � rjj
g�EjE

�
j �Ej; (1)

where k � jkLj, and the field is measured in units of the

incident plane wave amplitude. For simplicity, we will

consider only scalar fields in this Letter.

We aim at providing a theory providing the relevant

quantities (local intensities, CBS cone, etc.) averaged

over the random positions of the scatterers. In a first step,

we will derive an equation for the mean intensity hI�r�i. In

the dilute regime, where the typical distances jri � rjj are

much larger than the wavelength, we may neglect correla-

tions between the fields emitted by different scatterers. The

scattered field Ed�r� is then a superposition of spherical
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waves with random relative phases, depicting thus a

speckle pattern. The resulting Gaussian statistics for the

complex field Ed�r� [12] are completely determined by a

single parameter, the mean diffuse intensity Id�r� �
hjEd�r�j

2i. In addition to the scattered field, there is also

a nonfluctuating coherent component originating directly

from the incident field. In total, we have E�r� � hE�r�i �
Ed�r�, and the average intensity splits into a coherent and

diffuse part: hI�r�i � Ic�r� � Id�r�, with Ic � jhEij2. The

mean density of radiation intensity emitted from point r is

then given by

 K�r� � N hff�i � N hjg�I�r��j2I�r�i; (2)

where N � N=V denotes the density of scatterers, and the

average h. . .i is taken over the Gaussian statistics of the

scattered field.

Between two scattering events, the wave propagates in

an effective medium made by the scatterers, described by a

refractive index n and mean free path ‘. Note that, because

of the nonlinear behavior of the scatterers, the effective

medium is modified by the propagating waves themselves.

Because of their different statistical properties, we obtain

therefore different refractive indices for coherent and dif-

fuse fields, respectively. (This effect is also known from

usual pump-probe configurations in nonlinear optics [9].)

In the dilute regime, the diffuse amplitude can be consid-

ered as a weak probe, such that the complex refraction

index reads as follows:

 n � 1�
N

2k2

�
df

dE

�

;
1

‘
� 2kImfng; (3)

whereas, for the coherent mode, the derivative d=dE is

replaced by 1=hEi; i.e., nc � 1�N hfi=�2k2hEi�, and

1=‘c � 2kImfncg. Since the results of the averages depend

on Ic�r� and Id�r�, the nonlinear refractive indices also

attain a spatial dependence n�r� and nc�r�. They describe

average propagation of one strong and many uncorrelated

weak fields.

Recollecting all preceding ingredients, the transport

equations for the average intensity read as follows:

 Ic�r� � e�z=‘c ; (4)

 Id�r� �
Z

V
dr0

e�jr�r
0j=‘

�4�jr� r
0j�2

K�r0�: (5)

Here, z denotes the distance from the surface of V to r, in

the direction of the incident beam. Furthermore, propaga-

tion from r
0 to r implies a spatial average of 1=‘�r�, which

we note as jr� r
0j=‘ :� jr� r

0j
R
1
0 ds=‘�r� sr� sr0�,

and similarly for (z=‘c). Since K, ‘, and ‘c depend on

Ic�r� and Id�r�, the above Eqs. (4) and (5) form two coupled

integral equations. Finally, the intensity scattered into

backwards direction, expressed by the ‘‘bistatic coeffi-

cient‘‘ [8], results as

 �L �
Z

V

dr

4�A
e�z=‘K�r�; (6)

where A denotes the transverse (with respect to the incident

beam) area of the scattering volume V.

The validity of the preceding approach has been tested

using the nonlinear function g�I� � �4�i�=k�1� �I�
which depicts the (elastic) nonlinear behavior of a two-

level atom exposed to an intense laser beam. We must

emphasize that, for this particular model of nonlinearity,

the stationary solution is always found to be unique and

stable, as a consequence of the saturation g�I� ! 0 for

large �. From the numerical solution of Eq. (1), we calcu-

late the radiated intensity outside the cloud in different

directions �. This procedure is then repeated with many

different configurations giving us the disorder averaged

field and intensity. The results presented in this Letter are

obtained with 3000 configurations of 1500 scatterers, ran-

domly distributed inside a sphere with a homogeneous

density (k‘ � 67 and optical thickness b � 2 for � � 0).

The results for the average intensity as a function of the

backscattering angle � are depicted in Fig. 1 for different

values of the nonlinear parameter � � 0, 0.2, 0.4, and 0.6.

For each plot, the solid line depicts the exact numerical

results, whereas the dashed line corresponds to �L, Eq. (6).

Away from the backward direction, the agreement between

the exact numerical calculations and our theoretical pre-

diction for the background is clearly excellent. This is

emphasized by the additional curve (long dashed line)
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FIG. 1 (color online). Coherent backscattering cones obtained

from exact numerical calculations in comparison to the theoreti-

cal approach, for various nonlinearity strengths �. The solid

lines depict the exact numerical results, whereas the dashed lines

correspond to �L including geometrical effects. The dotted lines

correspond to the sum �L � �C exactly in the backward direc-

tion. The additional curve (long dashed line) plotted for � � 0:2
depicts �L obtained when the fluctuating character of the diffuse

field is not taken into account.
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plotted for � � 0:2 depicting the results obtained when

neglecting the fluctuations of I�r�, for example, replacing

hjg�I�j2Ii by jg�hIi�j2hIi in Eq. (2).

In the backward direction, constructive interference be-

tween reversed scattering paths results in the well-known

coherent backscattering peak. As is obvious from Fig. 1,

the height of this peak is strongly reduced by the nonline-

arity. Nevertheless, we are perfectly able to incorporate

these interference effects in our approach, see the horizon-

tal dotted lines in Fig. 1, which depict the predicted total

bistatic coefficient, �L � �C, see Eq. (12) below, in the

exact backward direction. These results are obtained by a

diagrammatic analysis, whose results we briefly outline in

the following. A detailed derivation will be presented

elsewhere.

In contrast to a previous attempt for a nonlinear dia-

grammatic theory [13], we concentrate on the regime

k‘ 	 1 of dilute media, which allows us to sum up the

diagrammatic series in a simple, closed form, as shown

below. As for linear media in the dilute regime, we calcu-

late the CBS effect by so-called ‘‘crossed’’ or ‘‘Cooperon’’

diagrams [8], describing pairs of reversed scattering paths.

As a first step, we analyze how a single scatterer responds

to two different incident probe fields E and E�, which

represent the two amplitudes propagating along the re-

versed paths. Note that, due to the nonlinearity, the scat-

tered field f and its complex conjugate f� depend on both

E and E�. Hence, depending on whether the probe fields act

on f or f�, we obtain the building blocks depicted in Fig. 2.

Expressing, as in Eq. (3), the scatterer’s response to a small

probe field by d=dE (or d=dE�), the corresponding mathe-

matical expressions read

 � � N

�
d

dE

�

f
df�

dE�

��

; ~� � N

�
d

dE

�

f�
df

dE�

��

; (7)

where � represents the sum of diagram �a� � �c�, ~� the sum

�b� � �d�, and

 � � �
iN

2k

�
d3f�

�dE��2dE

�

(8)

diagram (e). If one of the incident fields originates from

the coherent mode, d=dE is again replaced by 1=hEi; i.e.,

�c � N hf df�=dE�i=hEi, ~�c � N hf� df=dE�i=hEi, and

�c � �iN hd2f�=�dE��2i=�2khEi�.
In the next step, the crossed transport equation is estab-

lished by connecting the building blocks shown in Fig. 2

with each other. However, there are some combinations of

diagrams, for example, the one shown in Fig. 2(g), which

represent unphysical processes. In this diagram the fields

radiated by f� and f mutually depend on one another, and,

therefore, one cannot tell which one of the two events f or

f� happens before the other one. In order to avoid closed

loops like the one shown in Fig. 2(g), we ignore all combi-

nations where one of the diagrams Fig. 2(c), 2(d), or 2(e)

occurs after Fig. 2(b), 2(d), or 2(f) when following the

solid arrow along the crossed path.

We account for these forbidden diagrams by splitting the

transport equation into two parts, which we call C1 and C2.

The first part, C1, contains only diagrams Figs. 2(a), 2(c),

and 2(e). As soon as one of the events Fig. 2(b), 2(d), or

2(f) occurs, the crossed intensity changes from type C1 to

type C2. The subsequent propagation of C2 is then given by

diagrams Figs. 2(a), 2(b), and 2(f). Following these rules,

we describe the propagation of C1;2 by transport equations

similar to Eqs. (4) and (5):

 Cc�r� � eikz�nc�n��; (9)

 C1�r� �
Z

V
dr0P�r; r0���C1 � �cCc��r

0�; (10)

 C2�r� �
Z

V
dr0P�r; r0����C2 � ~�C1 � ~�cCc��r

0�; (11)

where P�r; r0� � exp��jr� r
0j=‘�=�4�jr� r

0j�2 is the

same as in Eq. (5), and the cross sections � result as

follows: � � �� ‘K�, ~� � ~�� ‘K��, and, similarly,

�c � �c � ‘K�c and ~�c � ~�c � ‘K��c. Finally, the

crossed bistatic coefficient reads

 �C �
Z

V

dr

4�A
eikz�n�n�c�
���

c � ~��
c�C1 � ��

cC2��r�: (12)

For comparison with the background �L, we define diffu-

son cross sections by writing K � ��d�Id � ��d�
c Ic, such

that Eq. (5) attains a form comparable to Eq. (10).

a)

e)

b) c) d)

g)
f)

FIG. 2. (a)–(f) Building blocks for the diagrammatic calcula-

tion of nonlinear CBS. Filled squares (with outgoing solid

arrows) denote the scattered field f, and open squares (with

outgoing dashed arrows) the complex conjugate f�. Incoming

solid (dashed) arrows represent probe fields d=dE (d=dE�).

(g) Example of a forbidden combination of diagrams, exhibiting

a closed loop (see the main text).
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Exploiting the Gaussian properties of the diffuse field, we

find ��d� � �� ~�� and ��d�
c � �c � ~��

c.

How the nonlinearity affects the CBS effect can now be

understood by comparing � and ��d�. For the case of an

absorbing nonlinearity, we find ~�< 0, and hence �< ��d�.

Consequently, the crossed intensity is absorbed more

strongly than the background intensity, which explains

the decrease of the CBS cone observed in Fig. 1. Let us

note that there also exist other models, for example, an

amplifying nonlinearity like g � 4�i�1� �I�=k, where

our theory predicts an enhancement of the CBS cone.

However, these models might suffer from instabilities,

requiring thus further investigations.

To obtain the relatively simple form of Eqs. (9)–(12), we

have performed some approximations valid in the case of

large optical thickness b. In the numerical comparison

depicted in Fig. 1, we have used the exact version of

Eqs. (9)–(12), which will be published elsewhere.

As explained in the introduction, our theoretical scheme

also applies to other types of nonlinear systems. Instead of

a collection of nonlinear scatterers as described by Eq. (1),

we may, for example, also consider linear scatterers em-

bedded in a homogeneous nonlinear medium:

 �E�r� � k2
��r� � �jE�r�j2�E�r� � 0 (13)

with �-correlated disorder ��r� corresponding to a (linear)

mean free path ‘0. Here, the dilute medium approximation

is valid if k‘0 	 1 and ��I�2k‘0 � 1. The latter condition

is automatically fulfilled if we assume that we are in the

stable regime, where Eq. (13) has a unique solution.

According to [2], this is the case (for � 2 R) if

��I�2b2�k‘0 � b�< 1, with b the optical thickness.

In this case, the diagrammatic method applies in the

same way as described above. In particular, we obtain the

following expressions for the cross sections:

 ��r� � �c�r� �
4�

‘0
f1� ik‘0�
Ic�r� � Id�r��g; (14)

~� � ~�c � �4�ik���Ic � Id�, �
�d� � ��d�

c � 4�=‘0, and

for the mean free paths n � h�i � ��Ic � Id� � i=�2k‘0�
and nc � h�i � ��Ic=2� Id� � i=�2k‘0�. In the energy

conserving case � 2 R, it can be shown that C2 does not

contribute to the real part of the backscattering coefficient

�C. Since, in this case, the Cooperon cross section,

Eq. (14), exhibits a complex phase factor, it follows from

Eq. (10) that the nonlinearity introduces a phase difference

�	 � Mk‘0�I between reversed paths undergoing M

linear scattering events. Since hMi / b, we predict a sig-

nificant reduction of the CBS peak if bk‘0�I ’ 1 (which is

still inside the stable regime if k‘0 is large).

In summary, we have extended the usual diagrammatic

approach to take into account nonlinear effects for the

coherent transport in disordered systems beyond the per-

turbative regime. The excellent agreement with direct nu-

merical simulations emphasizes the validity of our

approach. It readily applies for different nonlinear wave

equations. Equation (13), for example, is mathematically

equivalent to the Gross-Pitaeskii equation describing non-

linear propagation of matter waves in random potentials. In

this case, our method will allow us to describe not only the

localization properties of the mean field, but also, extend-

ing it within the Bogoliubov framework, the effect of the

noncondensed atoms. Furthermore, nonlinear transport of

light in cold atomic gases [6] can be described by including

inelastic scattering (Mollow’s triplet). Finally, our present

theory, combined with the usual self-consistent approach

of strong localization [14], can possibly allow a quantita-

tive understanding of the impact of the nonlinearity in the

strong scattering regime.
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