
HAL Id: tel-00293905
https://theses.hal.science/tel-00293905

Submitted on 7 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The versatility of using explanations within constraint
programming
Narendra Jussien

To cite this version:
Narendra Jussien. The versatility of using explanations within constraint programming. Other
[cs.OH]. Université de Nantes, 2003. �tel-00293905�

https://theses.hal.science/tel-00293905
https://hal.archives-ouvertes.fr

Dossier d’Habilitation à Diriger les Recherches

The versatility of using explanations within constraint

programming

Narendra JUSSIEN jussien@emn.fr

École des Mines de Nantes, 4 rue Alfred Kastler, BP 20722,

F-44307 Nantes Cedex 3, France

Résumé

La programmation par contraintes est un sujet de recherche qui tire profit de nombreuses
autres disciplines : mathématiques discrètes, analyse numérique, intelligence artificielle, recherche
opérationnelle et calcul formel. Elle a prouvé son intérêt et son efficacité dans de nombreux
domaines : optimisation combinatoire, ordonnancement, finance, simulation et synthèse de com-
posants, diagnostic de panne, biologie moléculaire, ou encore problèmes géométriques. Néanmoins,
un certain nombre de limitations et de difficultés ont été identifiées dans le domaine : conception
d’algorithmes génériques et stables, traitement des problèmes dynamiques, accessibilité des con-
cepts et des outils, ...

Dans ce document, nous plaidons pour l’utilisation de la notion d’explication au sein de la
programmation par contraintes. Notre but est double : non seulement présenter un tableau général
des explications (définition, génération et utilisations) mais aussi montrer comment leur utilisation
permet de contribuer à lever certains des problèmes ouverts en programmation par contraintes.
Nous présentons aussi une démarche générale de résolution de problème dans un environnement
expliqué. Enfin, nous montrons comment ce nouveau sujet semble promis à un bel avenir.

Abstract

Constraint programming is a research topic benefiting from many other areas: discrete math-
ematics, numerical analysis, artificial intelligence, operations research, and formal calculus. It has
proven its interest and its efficiency in various domains: combinatorial optimization, scheduling,
finance, simulation and synthesis, diagnosis, molecular biology, or geometrical problems. How-
ever, some limitations and difficulties remain: designing stable and generic algorithms, handling
dynamic problems, opening constraint programming to non-specialists, etc.

In this document, we advocate the use of explanations within constraint programming. Our
aim is two-fold: drawing the big picture about explanations (definition, generation, management
and use) and showing that they can help address several issues in constraint programming. We
also introduce a new general explanation-based search technique that has been successfully used
to design new efficient algorithms. Finally, current open issues and research topics in this field are
presented.

1

Synthèse scientifique

Contents

I Introduction 3

II Definitions 5

1 Constraint Satisfaction Problems 5
1.1 The constraint network . 5
1.2 Domain reduction and propagation . 6
1.3 Enumeration . 7

2 Explanations for constraint propagation 8
2.1 The basics: explanation-sets . 8
2.2 More information: explanation-trees . 8
2.3 Basic properties of explanations . 9
2.4 Related concepts . 10

III Computing explanations: techniques and implementation 11

3 Computing explanations 11
3.1 Using the formal definition . 11
3.2 Event-based finite domain constraint solvers . 11
3.3 From theory to practice . 12

4 Implementing an explanation-based constraint solver 12
4.1 Introducing explanations within an existing solver . 12
4.2 Handling global constraints . 13
4.3 Complexity issues . 14
4.4 The PALM system . 15

5 Other computation techniques 15
5.1 Off-line techniques . 15
5.2 Non-intrusive techniques . 16

IV Applications 18

6 Explanations for user interaction 18
6.1 Explanation-related queries . 18
6.2 Application: the PTIDEJ system . 18
6.3 Open issues: user accessibility . 19

7 Explanations for incremental handling of dynamic problems 22
7.1 Incremental constraint retraction . 22
7.2 Efficient re-propagation of constraints . 23
7.3 Over-constrained problems . 23
7.4 Application: solving dynamic RCPSP . 24

8 Explanations for search in constraint programming 28
8.1 From backtrack-based to explanation-based solving . 28
8.2 A new family of algorithms: decision-repair . 32

9 A case study: solving open-shop scheduling problems 33
9.1 Open-shop scheduling problems . 33
9.2 An intelligent backtracker . 33
9.3 An efficient heuristic technique . 34
9.4 Analysis . 38

V Conclusion and further work 39

2

Dossier d’Habilitation à Diriger les Recherches

I. Introduction

Constraint programming is a research topic that benefits from various other areas: discrete math-
ematics, numerical analysis, artificial intelligence, operations research, and formal calculus. It has
proven its interest and its efficiency in various domains: combinatorial optimization, scheduling,
finance, simulation and synthesis, diagnosis, molecular biology, or geometrical problems.

The efficiency of constraint programming is due to several reasons:

• one of the hypotheses of constraint programming, search of solutions in a bounded domain, is
often naturally verified in practice where unknown values represent physical values;

• tools and methods are of very general application, they are not restricted to a particular
problem;

• developed techniques remain usable even when considering modifications of the structure of
the used constraints evolves.

However, there are still limitations to constraint programming. Many difficulties have not yet
been satisfactorily solved:

• designing stable and generic techniques for solving any kind of problem;

• handling dynamic problems (for which the constraint system evolves): how not to solve a
problem from scratch each time a modification occurs, how to only undo what is necessary
when handling modifications, etc;

• providing debugging and analysis tools for promoting constraint programming to non-specialists.

Using conflict sets (contradictory subsets of constraints) or explanations (subsets of constraints
justifying solver events) is not a new idea in constraint programming. They have been used to design
innovative search techniques: Conflict-based BackJumping (cbj) [66], Dynamic Backtracking [37],
Nogood recording [72] and more recently mac-dbt [51] and decision-repair [52]. They (or related
concepts) are used to design incremental algorithms for solving dynamic Constraint Satisfaction
Problems : [11] and [50]. Finally, but surprisingly only recently, explanations have been used to
introduce user interaction within constraint programming: either for debugging [55] or analysis
purposes [75].

This versatility in the use of explanations within constraint programming advocates for their
generalization in constraint solvers. The aim of this document is two-fold: to provide an overview of
how explanations can be generated, managed and used in a constraint programming language and,
secondly, as a result, to introduce their different possible usage and to show how they can overcome
some limitations of constraint programming. In this document, we try to point out the main issues
as well as to illustrate the main applications with our past experience. Moreover, we exhibit several
important side effects of our work: from theoretical results (e.g. correctness of constraint retraction
[26]) to practical one (e.g. a new family of search algorithms [52]).

3

Synthèse scientifique

This document is organized as follows:

• in the first part, the formal framework in which we are working is introduced in Section 1,
then the notion of explanation is introduced in Section 2;

• in the second part, the way of using the theory of explanations to implement an explanation-
based solver is presented in Section 3. Implementation issues are then addressed (Section 4),
before introducing other existing approaches in Section 5;

• in the third part, the variety of possible uses of the notion of explanation is described from
three angles: user information (Section 6), incremental handling of dynamic problems (Sec-
tion 7) and search improvements (Section 8). Ending this final part, a case study of the
open-shop scheduling problem (Section 9) is presented.

Notice that, in the following, we will use the choco1 free constraint solver [59] as the basis for
our implementations.

1. choco is an open source constraint engine developed as the kernel of the OCRE project. The OCRE project
(its name stands for Outil Contraintes pour la Recherche et l’Enseignement, i.e. constraint tool for research

and education) aims at building free Constraint Programming tools that anyone in the Constraint Programming
community can use. For more information see choco-constraints.net .

4

http://www.choco-constraints.net

Dossier d’Habilitation à Diriger les Recherches

II. Definitions

In this second part, we introduce the formal framework for constraint programming in
which we define our explanations. Moreover, some related concepts are addressed.

1. Constraint Satisfaction Problems

Constraint satisfaction problems (csp) [78] have proven to be an efficient model for solving many
combinatorial and complex problems. We introduce here a formal model for representing both the
constraint network and its resolution (domain reductions, constraint propagation and enumeration).

1.1 The constraint network

Following [78], a Constraint Satisfaction Problem is made of two parts: a syntactic part and a
semantic part. The syntactic part is a finite set V of variables, a finite set C of constraints and a
function var : C → P(V), which associates a set of related variables to each constraint. Indeed,
a constraint may involve only a subset of V . For the semantic part, we need to consider various
families f = (fi)i∈I . Such a family is referred to by the function i 7→ fi or by the set {(i, fi) | i ∈ I}.

1.1.1 Domains

(Dx)x∈V is a family where each Dx is a finite non-empty set of possible values for x. We define the
domain of computation by D =

⋃

x∈V ({x}×Dx). This domain allows simple and uniform definitions
of (local consistency) operators on a power-set. For reduction, we consider subsets d of D. Such a
subset is called an environment. Let d ⊆ D, W ⊆ V , we denote by d|W = {(x, e) ∈ d | x ∈ W}. d is
actually a family (dx)x∈V with dx ⊆ Dx: for x ∈ V , we define dx = {e ∈ Dx | (x, e) ∈ d}. dx is the
domain of variable x.

1.1.2 Constraints as a set of allowed tuples

Constraints are defined by their set of allowed tuples. A tuple t on W ⊆ V is a particular environment
such that each variable of W appears only once: t ⊆ D|W and ∀x ∈ W, ∃e ∈ Dx, t|{x} = {(x, e)}.
For each c ∈ C, Tc is a set of tuples on var(c), called the solutions of c. Note that a tuple t ∈ Tc is
equivalent to a family (ex)x∈var(c) and t is identified with {(x, ex) | x ∈ var(c)}.

We can now formally define a csp and a solution to it.

Definition 1 A Constraint Satisfaction Problem (csp) is defined by:

• a finite set V of variables;

• a finite set C of constraints;

• a function var : C → P(V);

• a family (Dx)x∈V (the domains);

• a family (Tc)c∈C (the constraint semantics).

Definition 2 A solution for a csp (V, C, var, (Dx)x∈V , (Tc)c∈C) is a tuple s on V such that ∀c ∈
C, s|var(c) ∈ Tc.

5

Synthèse scientifique

1.2 Domain reduction and propagation

Two more key concepts need some details: the domain reduction mechanism and the propagation
mechanism itself.

1.2.1 Local propagators

A constraint is fully characterized by its behavior regarding modifications of the environments of the
variables. Local consistency operators are associated with constraints. Such an operator has a type
(Win ,Wout) with Win ,Wout ⊆ V . For the sake of clarity, we will consider in our formal presentation
that each operator is applied to the whole environment but, in practice, it only removes from the
environments of Wout some values which are inconsistent with respect to the environments of Win .

Definition 3 A local consistency operator of type (Win ,Wout), with Win ,Wout ⊆ V , is a mono-
tonic function r : P(D)→ P(D) such that: ∀d ⊆ D, r(d)|V \Wout

= D|V \Wout
, and r(d) = r(d|Win

)

Example 1 (Constraint x ≥ y + c):
x ≥ y + c is one of the basic constraints in choco. It is represented by the GreaterOrEqualxyc

class. Reacting to an upper bound update for this constraint can be stated as: if the upper bound
of x is modified then the upper bound of y should be lowered to the new value of the upper bound
of x (taking into account the constant c). This is encoded as:

[awakeOnSup(c:GreaterOrEqualxyc,idx:integer)

-> if (idx = 1)

updateSup(c.v2,c.v1.sup - c.cste)]

idx is the index of the variable of the constraint whose bound (the upper bound here) has been
modified. This particular constraint only reacts to modification of the upper bound of variable x

(c.v1 in the choco representation of the constraint). The updateSup method only modifies the
value of y (c.v2 in the constraint) when the upper bound is really updated.
The awakeOnSup method can be considered as a local consistency operator with Win = {c.v1} and
Wout = {c.v2}.

Classically [79, 31, 9, 6], reduction operators are considered as monotonic, contractant and idem-
potent functions. However, on the one hand, contractance is not mandatory because environment
reduction after applying a given operator r can be forced by intersecting its result with the current
environment, that is d ∩ r(d). On the other hand, idempotence is useless from a theoretical point
of view (it is only useful in practice for managing the propagation queue). This is generally not
mandatory to design effective constraint solvers. We can therefore use only monotonic functions in
Definition 3.

The solver semantics are completely described by the set of such operators associated with the
handled constraints. More or less accurate local consistency operators may be selected for each
constraint. Moreover, this framework is not limited to arc-consistency but may handle any local
consistency which boils down to domain reduction as shown in [32].

Of course local consistency operators should be correct with respect to the constraints. In
practice, to each constraint c ∈ C is associated a set of local consistency operators R(c). The set
R(c) is such that for each r ∈ R(c): let (Win ,Wout) be the type of r with Win ,Wout ⊆ var(c); for
each d ⊆ D, t ∈ Tc: t ⊆ d⇒ t ⊆ r(d).

1.2.2 Constraint propagation

Propagation is handled through a propagation queue (containing events or conversely operators to
awake). Informally, starting from the given initial environment for the problem, a local consistency
operator is selected from the propagation queue (initialized with all the operators) and applied to

6

Dossier d’Habilitation à Diriger les Recherches

the environment resulting in a new one. If an environment/domain reduction occurs, new operators
(or new events) are added to the propagation queue.

Termination is reached when:

1. a variable environment is emptied: there is no solution to the associated problem;

2. the propagation queue is emptied: a common fix-point (or a desired consistency state) is
reached ensuring that further propagation will not modify the result.

The resulting environment is actually obtained by sequentially applying a given sequence of
operators. To formalize this result, let us consider iterations.

Definition 4 The iteration [6] from the initial environment d ⊆ D with respect to an infinite se-
quence of operators of R: r1, r2, . . . is the infinite sequence of environments d0, d1, d2, . . . inductively
defined by:

• d0 = d;

• ∀i ∈ N
∗, di+1 = di ∩ ri+1(di).

Its limit is ∩i∈Ndi.
A chaotic iteration is an iteration with respect to a sequence of operators of R where each r ∈ R

appears infinitely often.

The most accurate set that can be computed using a set of local consistency operators in the
framework of domain reduction is the downward closure. Chaotic iterations have been introduced
for this aim in [30].

Definition 5 The downward closure of d by a set of operators R is CL ↓ (d, R) = max{d′ | d′ ⊆
d, ∀r ∈ R, d′ ⊆ r(d′)}.

Note that if R′ ⊆ R, then CL ↓ (d, R) ⊆ CL ↓ (d, R′).
Obviously, each solution to the csp is in the downward closure. It is easy to check that CL ↓ (d, R)

exists and can be obtained by iteration of the operator d′ 7→ d′ ∩
⋂

r∈R r(d′). Using chaotic iteration
provides another way to compute CL ↓ (d, R) [22]. Iterations proceed by elementary steps. Chaotic
iteration is a convenient theoretical definition but, in practice, each iteration is finite and fair in
some sense.

Lemma 1 The limit of every chaotic iteration of the set of local consistency operators R from d ⊆ D

is the downward closure of d by R.

This well-known result of confluence [22, 30] ensures that any chaotic iteration reaches the closure.
Notice that, since ⊆ is a well-founded ordering (i.e. D is a finite set), every iteration from d ⊆ D

(obviously decreasing) is stationary, that is, ∃i ∈ N, ∀j ≥ i, dj = di: in practice, computation ends
when a common fix-point is reached (e.g. using a propagation queue).

1.3 Enumeration

The computation of a solution to a constraint problem often needs a so-called enumeration phase.
Indeed, on many occasions, constraint propagation alone is not sufficient to reduce the environment
to a set of singletons.

The enumeration phase can be modeled as a sequence of constraint additions and retractions
(backtracks). As long as no solution is found, a variable with a domain with at least two values is
selected and a decision is made: reducing the domain2. This reduction can be considered as the
addition of a decision constraint to the current constraint system.

2. Classically, such a decision amounts to reducing the current domain to a single value (variable assignment) but this
can be more general as in numeric csp where a splitting is made, or for scheduling problems where a precedence
constraint is posted.

7

Synthèse scientifique

Definition 6 A decision constraint is a constraint that helps to reduce at least one domain in an
environment when solving a constraint satisfaction problem.

Then, a propagation step is performed. As usual, if a domain is emptied, a backtrack occurs
(the last decision is retracted); if the current environment is not reduced to a set of singletons, the
decision process is repeated until a solution is found or no decision constraint is left to be retracted
(the problem is over-constrained). This is a tree-based search process.

As the constraints system evolves throughout resolution, a notion of context is needed to describe
a given state of the resolution.

Definition 7 A context for a constraint satisfaction problem is composed of two sets: the set of the
original constraints of the problem and a set of decision constraints. Typically, the latter represents
the current path in the search tree that is being explored.

2. Explanations for constraint propagation

Informally, an explanation-set is a set of constraints that justifies a domain reduction. As we will
see through the concept of explanation-tree, explanations can be derived from the resolution of the
csp.

2.1 The basics: explanation-sets

Definition 8 Let R be the set of all local consistency operators. Let h ∈ D and d ⊆ D. We call an
explanation-set for h w.r.t. d a set of local consistency operators E ⊆ R such that h 6∈ CL ↓ (d, E).

Since E ⊆ R, CL ↓ (d, R) ⊆ CL ↓ (d, E). Hence, if E is an explanation-set for h then each
super-set of E is an explanation-set for h. An explanation-set E is independent of any chaotic
iteration with respect to R.

For each h 6∈ CL ↓ (d, R), expl(h) represents any explanation-set for h. Notice that for any
h ∈ CL ↓ (d, R), expl(h) does not exist.

2.2 More information: explanation-trees

Explanation-sets are a compact representation of a sufficient set of constraints to achieve a given
domain reduction. A more complete description of the interaction of the constraints responsible
for this domain reduction can be introduced through explanation-trees. We need to introduce the
notion of deduction rule related to local consistency operators.

2.2.1 Deduction rules and local consistency operators

Definition 9 A deduction rule of type (Win ,Wout) is a rule h ← B such that h ∈ D|Wout
and

B ⊆ D|Win
.

The intended semantics of a deduction rule h← B can be presented as follows: if all the elements
of B are removed from the environment, then h does not appear in any solution of the csp and may
be removed harmlessly. B is a support set for h.

A set of deduction rules Rr may be associated with each local consistency operator r. It is
intuitively obvious that this is true for arc-consistency enforcement but it has been proved in [32]
that for any local consistency which boils down to domain reduction it is possible to associate such a
set of rules (moreover it shows that there exists a natural set of rules for classical local consistencies).
It is important to note that, in the general case, there may exist several rules with the same head
but different bodies.

8

Dossier d’Habilitation à Diriger les Recherches

We consider the set R of all the deduction rules for all the local consistency operators of R
defined by R = ∪r∈RRr .

The initial environment must be taken into account in the set of deduction rules: the iteration
starts from an environment d ⊆ D; it is therefore necessary to add facts (deduction rules with an
empty body) in order to directly deduce the elements of d: let Rd = {h← ∅ | h ∈ d} be this set.

2.2.2 Proof-trees

Definition 10 A proof-tree with respect to a set of rules R∪Rd is a finite tree such that for each
node labelled by h, let B be the set of labels of its children, h← B ∈ R ∪Rd.

Proof-trees are closely related to the computation of environment/domain reduction. Let d =
d0, . . . , di, . . . be an iteration. For each i, if h 6∈ di then h is the root of a proof-tree with respect to
R∪Rd. More generally, CL ↓ (d, R) is the set of the roots of proof trees with respect to R∪Rd.

Each deduction rule used in a proof-tree comes from a pack of deduction rules, either from a
pack Rr defining a local consistency operator r, or from Rd.

A set of local consistency operators can be associated with a proof-tree:

Definition 11 Let t be a proof-tree. A set X of local consistency operators associated with t is
such that, for each node of t: let h be the label of the node and B the set of labels of its children:
either h 6∈ d (and B = ∅); or there exists r ∈ X, h← B ∈ Rr.

Note that there may be several sets associated with a proof-tree. Moreover, each super-set of a set
associated with a proof-tree is also convenient (R is associated with all proof-trees). It is important
to recall that the root of a proof-tree does not belong to the closure of the initial environment d by
the set of local consistency operators R. So there exists an explanation-set (Definition 8) for this
value.

Lemma 2 If t is a proof-tree, then each set of local consistency operators associated with t is an
explanation-set for the root of t.

From now on, a proof tree with respect toR∪Rd is therefore called an explanation-tree. Lemma 2
shows explanation-sets can be computed from explanation-trees.

2.3 Basic properties of explanations

Characterizing explanations is helpful when comparing or using explanations. We introduce several
concepts that will be used later in this document: preciseness, validity and k-relevance.

2.3.1 Preciseness

Definition 12 An explanation-set e1 is said to be more precise than explanation-set e2 iff e1 ⊂ e2.

This is a simple way of defining precise explanation-sets. However, there are other possibilities:
preciseness could be defined regarding the reduction power of operators, the scope (number of
involved variables) of the constraints, etc.

Notice that determining for any value removal the most precise explanation-set (at least one of
them as several non-comparable ones may exist) often amounts to solving an NP-hard problem.

2.3.2 Validity and k-relevance

Explanation-sets are a self-contained concept. However, a given explanation-set may not be relevant
in the current context (the set of constraints and active decisions).

9

Synthèse scientifique

Definition 13 An explanation-set e is said to be valid or relevant w.r.t. the current context C iff

{c|∃r ∈ e, r ∈ R(c)} ⊂ C

Following [8], we introduce the concept of k-relevance for explanation-sets to measure their
distance from full validity.

Definition 14 An explanation-set e is said to be k-relevant w.r.t. the current context C iff

#{c|∃r ∈ e, r ∈ R(c), c 6∈ C} < k

We have recently developed several tools based on k-relevance that are presented in [62].

2.4 Related concepts

Explanations, as presented here, generalize justifications from [11, 25] that were introduced to dy-
namically remove constraints. A justification for a value removal is represented by the constraint
(or the propagation operator) that actually removed the value.

Conflict-sets (a.k.a. nogoods [72]) are also a specific case of our explanations. Indeed, a conflict-
set is a set of assigned variables that is contradictory w.r.t. the constraints of the problem. An
explanation-set can be derived from this conflict by considering the associated decision constraints.

Contradiction explanations for [46] for configuration problems are sets of original constraints for
which propagation leads to at least one empty variable domain. They do not take into account deci-
sion constraints and therefore are limited to local consistency contradictions and do not encompass
global consistency contradictions. Such a limitation allows the design of polynomial algorithms to
determine explanations.

Explanations for [75, 33] are a user-related concept. User-relevant information is associated
to each constraint in advance and provided to the user in case of a contradiction. Our approach
is different in the sense that we would like to automatically generate explanations for any given
constraint set without determining in advance the nature of the explanations to provide.

Summary

In this second part, we introduced a formal framework for constraint programming in
which we defined the notion of explanation. We introduced two different representations
of explanations: a detailed one (explanation-trees) and a compact one (explanation-sets).
Moreover, we characterized explanations in order to discriminate different explanations
for a same event. Finally, we related our explanations to previous concepts such as
justifications, conflict-sets and contradiction explanations.

10

Dossier d’Habilitation à Diriger les Recherches

III. Computing explanations: techniques and

implementation

This third part is dedicated to the different techniques used to compute explanations.
Our own implementation is described.

3. Computing explanations

As we have seen earlier, explanation-sets are closely related to explanation-trees which are themselves
closely related to the actual constraint propagation. More formally, we introduce a dynamic way of
computing explanation-trees during propagation, first from a theoretical point of view and secondly
from an operational point of view.

3.1 Using the formal definition

Let us consider a fixed iteration d = d0, d1, . . . , di, . . . of R with respect to r1, r2, In order
to incrementally define explanation-trees during an iteration, let (Si)i∈N be the family recursively
defined as:

• S0 = {cons(h, ∅) | h 6∈ d};

• Si+1 = Si ∪ {cons(h, T) | h ∈ di, T ⊆ Si, h← {root(t) | t ∈ T } ∈ Rri+1}

where cons(h, T) is the tree defined by h the label of its root and T the set of its subtrees, and where
root(cons(h, T)) = h.

It is important to note that some explanation-trees do not correspond to any iteration, but when
a value is removed there is always an explanation-tree in

⋃

i Si for this value removal.
Among the explanation-sets associated with an explanation-tree t ∈ Si, one is preferred. This

explanation-set is denoted by expl(t) and defined as follows (where t = cons(h, T)):

• if t ∈ S0 then expl(t) = ∅;

• else if there exists i > 0 such that t ∈ Si \ Si−1, then expl(t) = {ri} ∪
⋃

t′∈T expl(t′).

In fact, expl(t) is expl(h) previously defined where t is rooted by h.
We will associate a single explanation-tree, and therefore a single explanation-set, to each element

h removed during the computation. This set will be denoted by expl(h).

3.2 Event-based finite domain constraint solvers

We consider here constraint solvers that manipulate finite domain variables and constraints imple-
mented as local consistency operators as presented above. The computation of the greatest common
fix-point for a set of constraints (operators) is done through an event-based system: operators are
awakened/called each time a variable domain is reduced (this is an event). Those same operator
calls can (and should) themselves generate new events3.

In such a constraint solver, a constraint is fully characterized by the set of local consistency
operators to be applied upon an event: a value removal, a domain bound update, a variable instan-
tiation, a set of value removals, etc. In the following, we will focus our presentation on the first two
events since all the others can be expressed in terms of these first two.

3. As recalled in [59], this architecture is well suited to solvers that maintain a local consistency (arc-consistency
and others) but is not so well suited to consistencies that are defined upon several constraints at the same time.

11

Synthèse scientifique

Many existing solvers fit this description: prolog based solvers (e.g. eclipse, sicstus, etc.),
c++ based solvers (e.g. ilog solver, figaro, chip++), java based solvers (e.g. ilog jsolver)
and claire based solvers (e.g. choco).

In the following, we will illustrate implementation concepts with choco. Local consistency
operators for a given constraint are implemented in choco using a specific method for each handled
event (possibly referring to the same generic method): awakeOnRem for a value removal, awakeOnInf
for a lower bound modification and awakeOnSup for an upper bound modification. Example 1
describes the awakeOnSup method for constraint x ≥ y + c.

3.3 From theory to practice

The previous formal presentation of an interactive computation of explanations during constraint
propagation (an iteration) can easily be used in an actual implementation. Obviously, in constraint
solvers, deduction rules are often not explicitly stated in the constraint propagation code. However,
their effect is always implemented: it is the actual domain reduction. Therefore, an obvious way
to implement an explanation-based constraint system is to enhance the constraint propagation code
with the deduction rules that are being applied.

For example, if we consider constraint x ≥ y+c as presented in Example 1, the proper position to
compute an explanation for a domain modification (here an update on the upper bound of a variable)
is when actually calling the updateSup method (and not within that same method, because we
would have lost the actual reason why the constraint performed the domain modification). Section 4
presents how to actually compute explanations in that position. More generally, an explanation is
to be computed and stored each time the solver performs a domain reduction.

In the following, for the sake of clarity, we will choose to manipulate not explanation-trees but
explanation-sets (deduced from the explanation-trees) and to manipulate directly constraints instead
of operators. Therefore, all explanations that will be used will simply be a set of constraints.

4. Implementing an explanation-based constraint solver

In this section, we introduce the palm system: our explanation-based constraint solver built on
top of choco. Notice that what we present here remains valid for any event-based finite domain
constraint solver.

4.1 Introducing explanations within an existing solver

Explanation-trees are collapsed into explanation-sets, themselves collapsed into a set of constraints
(explanations for short) instead of sets of local consistency operators. Moreover, we only consider a
single explanation for a given event.

4.1.1 Storing and retrieving explanations

Explanations are stored in the following way:

• for variables represented by their lower and upper bound, two stacks of explanations are stored:
one for each bound.

• for variables represented by the set of all possible values, an explanation is associated with
each value.

In the following, we will use a general explanation building method: becauseOf which builds
up an explanation by joining explanations associated with a list of event-related information that is
provided as a parameter. The following parameters are available:

12

Dossier d’Habilitation à Diriger les Recherches

• theSup(x) (resp. theInf(x)) for explaining the current upper (resp. lower) bound of variable
x. If the variable domain is represented by its two bounds, this amounts to checking the last
entry in the associated stack; if the variable domain is represented as a set of possibles values,
the union of the explanation for the values above (resp. below) the current bound is returned.

• theDom(x) for explaining the current domain of variable x. This amounts to joining the
explanations for all the value removals (or for the two current bounds) for the variable.

• theHole(x,v) for explaining the removal of value v from x.

• theConstraint(c) for adding a given constraint to the computed explanation.

4.1.2 Instrumenting the propagation code

Explanations for events need to be computed and attached when the events are generated i.e.
within the propagation code of the constraints (namely the awakeOnXXX methods of choco). We
therefore need to add extra information to the updateInf, updateSup or removeVal calls: the actual
explanation. Example 2 shows how such an explanation can be computed and what the resulting
code is for a basic constraint.

Example 2 (Modifying the solver):
It is quite simple to make modifications considering Example 1. Indeed, all the information is at
hand in the awakeOnSup method. The modification of the upper bound of variable c.v2 (y) is due
to:

(a) the use of the constraint itself (it will be added to the computed explanation);

(b) the previous modification of the upper bound of variable c.v1 (x) that we captured through
the calling variable (idx).

The source code is therefore modified in the following way (the additional third parameter for
updateSup contains the explanation attached to the intended modification):

[awakeOnSup(c:GreaterOrEqualxyc,idx:integer)

-> if (idx = 1)
updateSup(c.v2, c.v1.sup - c.cste, becauseOf(theConstraint(c), theSup(c.v1)))]

More generally, if we consider explanations for classical binary csp (arc-consistency enforcement)
where constraints are expressed by a list of allowed tuples of values for their variables (i.e. given in
extension), when applying constraint cxy between variables x and y, we want to remove value a from
the domain of x if and only if all supporting values for a in the domain of y regarding constraint cxy

have been removed. This can be expressed this way:

expl(x 6= a) = cxy

⋃

b supp. a

expl(y 6= b)

These modifications added to each local consistency rapidly give an explanation-friendly con-
straint solver.

4.2 Handling global constraints

Global constraints are now widely used within constraint programming. They are often used to
encompass in a single constraint the resolution of a whole complex problem: allDifferent [68]
solves a matching problem between a set of variables and a set of values, cumulative [1] solves a
cumulative problem on a given resource, stretch [63] for solving a shift assignment problem, etc.

13

Synthèse scientifique

4.2.1 Global constraints and explanations

Although providing precise explanations is quite easy for basic constraints because the existing code
explicitly states what the real triggering conditions are (as in Example 2), instrumenting global
constraints is not so easy. Indeed, as some complex data structures are maintained, value removals
occur when an accumulation of information modifies them enough to trigger some specific rules.
Example 3 roughly describes the behavior of the allDifferent constraint and the problem of
computing precise explanations.

Example 3 (The allDifferent constraint):
The allDifferent constraint [68] aims at ensuring that there is a maximal matching between
variables and their values (i.e. it is possible to assign all variables to different values). It is handled
using graph theory results. In a few words, the maintained data structure allows the removal of a
value from the domain of a variable as soon as these two (variable and value) appear in different
strongly connected components in a specific graph updated throughout the computation. What
would be an explanation for such a value removal ? If no information is kept or no rewriting is done,
the only information would be that the removal is due to the current state of all the variables that
appear in the constraint. This is not really precise information. However, analyzing the algorithm
itself makes it possible to provide more precise information (i.e. restrict the explanation) [2].

When triggering the propagation rule, not all of these pieces of information are kept. There is
always a generic explanation: the current state of the domains of each variable of the constraints.
Such an explanation is useless if used with all the constraints of the system because everything will
depend on everything else!

When adding explanations to global constraints, it is highly recommended to get back to the
overall algorithm in order to make it explanation-friendly i.e. implemented in such a way that
computation of precise explanations will be easy. Moreover, notice that such an explanation-friendly
algorithm can act as self-documentation for the constraint. This is illustrated in a recent work
presented in [70] where several global constraint are studied in order to provide precise explanations.

4.2.2 An example: scheduling-related constraints

For solving scheduling problems, one of the key techniques used is called immediate selection. It
is a domain reduction technique for unary resource constraints [19]. The main idea of immediate
selection is to identify a task t and a set S of tasks that share a common unary resource such that
it can be proven that t cannot be scheduled before all the tasks in set S. Then, the lower bound for
the starting time of task t can be modified in order to reflect that new information. There are (at
least) two implementations of immediate selection:

• one [19] does not explicitly compute set S but only the adjustment that can be made to the
starting time of task t: it is not explanation-friendly. There is no way of precisely explaining
the adjustments.

• another one [20] uses another point of view. The idea is to maintain a set of tasks (prospective
sets S) that fit in a given evolutive interval of time (namely task-intervals) and to check
whether a candidate task t exists for adjustments. This is an equally efficient technique as the
first one but it is clearly explanation-friendly. Indeed, an explanation for any adjustment can
be restricted to explanations of the current domains of the tasks in set S that is here explicitly
available. [52] shows the interest of such a technique for explanations.

4.3 Complexity issues

One of the major interests of our approach is that both space and time complexities remain polyno-
mial. As the explanation network traces the behavior of the solver, when a single value is removed

14

Dossier d’Habilitation à Diriger les Recherches

(which happens at most once for each possible value) a single (but still usable) explanation will be
generated. Thus, the space complexity for a csp defined upon n discrete variables of maximum
domain size d upon which are posted e constraints is in O((e + n)×n× d). There are at most n× d
explanations (one for each value) of maximum size e (all the constraints of the problem) +n (one
decision4 constraint for each variable).

Experimental results presented in [51, 69] show that computing explanations while filtering lead to
a time overhead due to actual computing and storing of explanations, but this overhead remains quite
constant whatever the nature of the problem (highly constrained problems vs. under-constrained
problems). Moreover, this overhead is rewarded when we actively use these explanations for, for
example, guiding the search as we will see in Section 8.

4.4 The PALM system

palm5 is our explanation-based constraint solver [48]. It is provided as a free choco library. It
implements concepts and algorithms presented here.

The main feature of palm is that it provides tools to explicitly compute, store and retrieve
explanations for every domain modification in a given problem. But, it is also a constraint solver:

• palm is a classic constraint solver: it can be used to solve problems as if it were choco.

• palm is a dynamic constraint solver: it handles dynamic addition and retraction of constraints
before, during or after resolution (see why in Section 7.1).

• palm is an explanation-based constraint solver: it provides specific search algorithms that
make an active use of explanations (see why in Section 8).

In the following, we will provide examples and experiments using the palm system.

5. Other computation techniques

Our approach amounts to tracing a constraint solver without modifying the classical mechanisms of
constraint programming (filtering and enumeration). Our computed explanations therefore cannot
be guaranteed to be minimal (although experiments show that they remain quite precise) nor exhaus-
tive (other explanations may exist). Moreover, they are highly dependent on the solver mechanisms
and implementation. It is a pragmatic point of view about explanation/conflict computation.

There are alternatives:

• off-line techniques: computing all possible explanations before computation or computing on
demand explanations only when a contradiction has been identified.

• non-intrusive techniques: computing explanations during computation without modifying the
existing solver.

5.1 Off-line techniques

There are several off-line techniques to compute explanations. In these techniques, computing ex-
planations is completely independent from solving the actual problem. A priori techniques compute
sets of explanations before solving a problem in order to instantaneously answer user queries after
resolution has terminated. A posteriori techniques aim at quickly computing relevant information
upon a user query.

4. We consider here decision constraints as assignment constraints. There are at most n such constraints in any
given context: only one value can be assigned to a single variable.

5. e-constraints.net

15

http://www.e-constraints.net

Synthèse scientifique

5.1.1 A priori techniques

[75] introduce explanations while solving logic puzzles. The idea is to use an inference-based solver
that generates a pre-compiled explanation for each event.
[5] are interested in the design of interactive and diagnosis tools in decision support systems for
configuration problems. There are two main differences with our explanations:

• the csp representing the initial problem is considered to be persistent and compiled into an
automaton;

• as a consequence, a user can only interact by retracting/adding decision constraints.

Our explanations are not restricted to decision constraints.

5.1.2 A posteriori techniques

QuickXPlain [46] following work from [24] and [7] iteratively tests the local consistency of subsets
of the constraints to compute a minimal conflict for a given inconsistent set of constraints following
the ideas of the QuickSort algorithm. QuickXPlain is therefore a polynomial algorithm that
computes a subset of existing explanations for contradictions (see Section 2.4).

5.2 Non-intrusive techniques

Non-intrusive techniques do not need to modify existing propagation code in order to provide ex-
planations. Obviously off-line techniques are non-intrusive techniques. However, we are currently
investigating new techniques that can be used to monitor a constraint solver from the outside while
it runs and still provide precise explanations for its behavior. These techniques are based on a recent
tool: Aspect Oriented Programming (aop) [57].

5.2.1 Aspect Oriented Programming

Separation of concerns is a well-known topic in software engineering. For instance, the Apache web
server6 can be decomposed at the design level into a series of concerns: xml parsing, url pattern
matching, session logging, etc. At the code level, it is often impossible, when a system is complex,
to find an architecture that expresses the different concerns in a modular way. For example, in
the Apache web server there is no module for session logging. Indeed, the corresponding code is
distributed in many places in the other modules as shown on the slide7 in Figure 1. Each vertical
white bar represents a module, and each horizontal gray line in a white bar represents a line of code
implementing session logging.

This slide can be used to describe the explanation computation code within a constraint solver.
Computing explanations as presented above amounts to systematically modifying existing solvers in
order to add the explanation-related instructions.

Current constraint programming tools and languages do not support crosscutting concerns, and
the programmer must tediously insert the explanation computation code by hand in all modules (see
Section 4.1). Moreover, the lack of modularity of such a crosscutting concern makes its maintenance
difficult. aop [57] is a new programming paradigm supporting crosscutting concerns. It allows the
programmer to define the different concerns in a modular way; and it provides the programmer
with a weaver responsible for mixing the different pieces of code together to generate the complete
application.

Aspect-J8 [56] is an extension of Java that supports aop. First, a base program is written in
Java, and several aspects are defined in Aspect-J. Second, the aspect-weaver, basically (but not only)

6. apache.org

7. O’Reilly Conference on Enterprise Java, March 29, 2001, pdf and ppt available at
aspectj.org/doc/papersAndSlides .

8. aspectj.org

16

http://www.apache.org
http://www.aspectj.org/doc/papersAndSlides
http://www.aspectj.org

Dossier d’Habilitation à Diriger les Recherches

Figure 1: In Apache, session logging crosscuts the other concerns.

a preprocessor9, inserts calls to the aspectual code into the base program to generate the complete
program.

5.2.2 First steps with AOP for computing explanations

In order to validate the use of aop in an explanation computation context, we presented in [27]
the addition of explanation capabilities into a toy solver designed in Java. This minimal solver was
meant to illustrate the basic concepts of constraint solvers: constraints implemented as propagators,
a propagation queue, search performed through enumeration, etc. (as in Section 3.2).

We designed several aspects for: computing explanations, using explanations to help search, etc.
This successful use of aop leaves many interesting open points: how to compute precise explanations
for global constraints from the outside; how to design explanation-related aspects in existing solvers;
etc.

The main point to address is, in our opinion, that Aspect-J (and more generally aop) is meant to
access the support language of programs. Constraint programming has many identified concepts that
one would like to be able to refer to when designing aspects (e.g. variable removing, backtrack, etc.)
but that are not easily accessible in the support language (being implemented using several lines of
code). We strongly believe that a way of overcoming this issue is to design an Aspect-Constraint
language that would only manipulate constraint programming concepts.

Summary

This third part was dedicated to the computation of explanations. We showed how the
theoretical framework introduced in the previous part could be implemented in an existing
constraint solver. We emphasized the issues of adding explanation capabilities to global
constraints. Finally, we introduced other computation techniques: off-line approaches
and non-intrusive techniques. For the latter, we introduced the promising use of aspect-
oriented programming.

9. However, it is believed that its semantics are easier to understand from a monitoring perspective [28].

17

Synthèse scientifique

IV. Applications

This fourth part is dedicated to the many possible uses of explanations: providing user
information, incrementally handling dynamic problems and designing new conflict-based
search techniques. A case study is detailed: solving open-shop scheduling problems.

6. Explanations for user interaction

Using constraint solvers or developing constraint-based systems may be a tedious and frustrating
task. A classical way of exploiting trace-like information (such as explanations) is to use them as
analysis tools.

6.1 Explanation-related queries

Using an explanation-based constraint solver helps to answer some classical queries when looking at
a solution (or a no-solution message) for a csp.

• Why does my problem have no solution ?
When the domain of a variable v is empty (no value exists that will respect all the constraints
on that variable), constraint systems usually notify users that there is no solution. Checking
the explanation for this situation (i.e. computing

⋃

a∈v expl(v 6= a)) helps to understand
why this is so by narrowing the problem to relevant constraints. In palm, the command
becauseOf(theDom(v)), if v is the emptied variable, will give such an explanation.

• Why cannot variable x take the value a ?
Checking the associated removal explanation (i.e. expl(x 6= a)) helps to answer the question.
In palm, we simply use the command becauseOf(theHole(x, a)).

• What if constraint c gets back into the system ?
In this situation, constraint c has been retracted. Keeping track of explanations that contained
constraint c before its retraction will allow a glimpse (a necessarily partial but still valid one)
of the effects of the re-activation of c. Indeed, events attached to those explanations would
become valid. k-relevant explanations is a way of keeping track of past explanations [62].

6.2 Application: the PTIDEJ system

We experimented the usage of explanations in a debugging and analysis context in the ptidej system
[3]. ptidej (Pattern Trace Identification, Detection and Enhancement in Java) is an automated
system for identifying distorted micro-architectures in object-oriented source code.

The production of quality source code is an important issue for the software industry. A quality
source code facilitates evolutions and maintenance: addition of new functionalities, bug corrections,
adaptation to new platforms, integration with new class libraries. In object-oriented programming, a
quality source code has two aspects: efficient and clearly-written algorithms, respecting conventions
and idioms, and an elegant class architecture. A micro-architecture describes the structure of a
subset of the classes of an object-oriented program. The solutions proposed by design patterns [34]
are examples of good micro-architectures: they capture the experience of skillful developers.

However, it is not easy to write directly source code that carefully respects design patterns.
Thus, most of the time, only distorted design patterns are present in the source code (i.e. micro-
architectures similar to – not identical to – those proposed by the design patterns). There is a lack of

18

Dossier d’Habilitation à Diriger les Recherches

tools helping to identify distorted versions of design patterns in existing source code and indicating
possible improvements by pointing out differences with the exact design pattern.

The ptidej system is such a tool. Its aim is to identify distorted micro-architectures in object
source code. The idea of ptidej is to define a csp whose structure (variables and constraints)
represents the wanted design patterns and whose semantics (domains and constraint semantics) are
derived from the object source code. Finding solutions to this csp gives exact matching micro-
architectures in the code. For finding distorted ones, ptidej uses an explanation-based constraint
solver to determine why the exact structure cannot be found and to guide the user towards the
removal of unverified constraints.

ptidej is the first existing tool able to identify distorted micro-architectures [42]. Moreover, it is
able to explain why the answer it gives is indeed a distorted design-pattern. This is quite important
because coding is often considered as an art and therefore automatic systems are often not well
received by developers.

6.3 Open issues: user accessibility

As they are defined, explanations are sets of local consistency operators (or, in the applications
section, low-level constraints). Only a specialist (or the system itself) can understand and correctly
interpret the provided information10. When dealing with real users, we cannot use the explanations
as they are. We need to provide translation tools to make the low-level constraints accessible to any
user.

To address this issue, we introduced the use of user-friendly explanations [55]. The idea is to use
the expertise of the developer of the final application. Indeed, when developing an application, such
an expert needs to translate the problem from the high-level representation (the user’s comprehension
of the problem) to the low-level representation (the actual constraints in the system). This is a user

→ system translation. To interact with the user, we need the reverse translation: from the low-level
constraints (solver-adapted) to the user-comprehensible constraints (higher level of abstraction). We
note this translation a system → user translation. It is usually not explicitly coded in the system.
Asking a developer to provide such a translator while coding would be quite strange for him. We
chose to automatize this translation in a transparent way.

This idea relies on a single hypothesis: all aspects of a constraint-based application can be
represented in a hierarchical way. Indeed, any object appearing in a constraint problem is attached
to, at most, a single father-object. Note that a given father-object may have several children-objects.
For example, Figure 2 gives a graphical representation of a conference organization problem described
in Example 4 and modeled in Example 5.

10. For example, x + 3 ≥ y is not informative, however the expression it comes from, task x with duration 3 must

precede task y, is more understandable.

19

Synthèse scientifique

Example 4 (A conference problem):
Michael, Peter and Alan are organizing a two-day seminar to write a report on their work. In order
to be efficient, Peter and Alan need to present their work to Michael and Michael needs to present
his work to Alan and Peter (actually Peter and Alan work in the same lab). Those presentations
are scheduled for a whole half-day each. Michael wants to know what Peter and Alan have done
before presenting his own work. Moreover, Michael would prefer not to come in the afternoon of
the second day because he has a very long ride home. Finally, Michael would really prefer not to
present his work to Peter and Alan at the same time.

Example 5 (A constraint model for a conference problem):
A constraint model for this problem is described as follows: let Ma, Mp, Am, Pm be the variables
representing four presentations (M and m are respectively for Michael as a speaker and as a listener).
Their domain will be [1, 2, 3, 4] (1 is for the morning of the first day and 4 for the afternoon of the
second day). Several constraints are contained in the problem: implicit constraints regarding the
organization of presentations and the constraints expressed by Michael.
The implicit constraints are: a speaker cannot be a listener in the same half-day (i.e. c1 : Ma 6= Am,
c2 : Mp 6= Pm, c3 : Ma 6= Pm and c4 : Mp 6= Am) and no one can attend two presentations at the

same time (i.e. c5 : Am 6= Pm).
Michael’s constraints are: he wants to speak after Peter and Alan (c6 : Ma > Am, c7 : Ma > Pm,
c8 : Mp > Am and c9 : Mp > Pm); he does not want to come on the fourth half-day (c10 : Ma 6= 4,
c11 : Mp 6= 4, c12 : Am 6= 4 and c13 : Pm 6= 4) and he does not want to present to Peter and Alan

at the same time (c14 : Ma 6= Mp).

While developing a constraint application, the user only needs to explicitly state the underlying
hierarchy of his problem. Only the leaves of this structure, namely the low-level constraints, can be
used by the constraint solver. But, as we have seen, the leaves may be too low-level for a typical
user of the final application. However, he can understand higher levels in the hierarchy. What
allows the hierarchy hypothesis is the building, with no effort for the developer, of a hierarchical
representation of the problem. Once built, this representation can be used to interact with any user
through user-friendly explanations. Such explanations are provided using procedures converting low-
level constraints into user-understandable pieces of the hierarchy. These procedures are completely
problem-independent and may be provided within the constraint solver.

The user perception of a given problem can be seen as a cut in the hierarchical view of the consid-
ered problem. For example, let us suppose that the user is Michael who does not want to deal with
implicit constraints, although he does understand his own wishes. Therefore, his view of the problem

would be: The conf. problem , P&A before , Not 4th 1/2 day and P&A not same time .

Our example has no solution, one explanation for that situation is: {c1, c2, c3, c4, c5, c6}. If
Michael looks at the explanation from his point of view, we need to project the concrete explanation
onto his representation. The projection consists in projecting the constraints {c1, c2, c3, c4, c5, c6}
from the bottom to the top of the hierarchy representing the problem (see Figure 2) until a user-
understandable box is reached.

For example, the projection of the constraints {c1, c2, c3, c4} gives at first the Speaker vs. Listener

box. Unfortunately, this box is not understandable by Michael. In this case, the projection con-

tinues to the father box: Implicit constraints . Once again, this box is not understandable by

Michael and the projection gets to The conf. problem . Finally, we reach The conf. problem box

which Michael can deal with. The projection of c5 gives the same box through Listener vs. 2 pers.

and Implicit constraints . For c6, the projection is easier because the first box reached is user-

understandable. The final projection gives: The conf. problem and P&A before .

20

Dossier d’Habilitation à Diriger les Recherches

The conference problem

Implicit constraints Michael constraints

No listener for two pres.
at the same time

No Peter and Alan at the
same time

Speaker vs. Listener in-
consistencies

No presentation on
the 4th half-day

Peter and Alan before
Michael’s presentation

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

Figure 2: A hierarchical view of a conference problem

21

Synthèse scientifique

User-friendly boxes are implemented in the palm system. It is only a first step towards a user-
friendly explanations. The hierarchical hypothesis is to be confirmed11, interactive tools need to be
designed, etc.

7. Explanations for incremental handling of dynamic problems

Incremental constraint addition to a problem is a well-known issue in classical constraint program-
ming solvers: it is often the usual way constraints are added to the constraint system. However,
incremental constraint retraction is not so easy. Several extensions have been proposed to handle
dynamic retraction of constraints: some of them [10, 35] analyze the reduction operators to be able
to determine the past effect of a constraint and so incrementally retract it; others, following [11],
store information to achieve that determination.

Explanations (or simplifications) may be used as past effect determination tools (see for example
[25, 49, 50]). We detail in this section how incremental constraint retraction can be achieved using
explanations.

7.1 Incremental constraint retraction

Let us consider a finite iteration from an initial environment d with respect to a set of operators R.
At the step i of this iteration, the computation is stopped. The current environment is di. Note that
this environment is not necessarily the closure of d by R (we have CL ↓ (d, R) ⊆ di ⊆ d). At this
ith step of the computation, some constraints have to be retracted. Performing constraint retraction
amounts to [35, 47]:

1. Disconnecting The first step is to cut the retracted constraint c from the constraint net-
work. c needs to be completely disconnected (and therefore will never get propagated again
in the future). Disconnecting a constraint c amounts to removing all its related operators
from the current set of active operators. The resulting set of operators is Rnew ⊆ R, where
Rnew =

⋃

c′∈C\{c} R(c′) where R(c′) is the set of local consistency operators associated with

c′. Constraint retraction amounts to computing the closure of d by Rnew.

2. Setting back values The second step is to undo the past effects of the constraints, both
the direct (each time the constraint operators have been applied) and indirect (further con-
sequences of the constraint through operators of other constraints) effects of that constraint.
This step results in the enlargement of the environment: values are put back.

Here, we want to benefit from the previous computation of di instead of starting a new iteration
from d. Thanks to explanation-sets, we know the values of d\di that have been removed because
of a retracted operator (that is an operator from R \ Rnew). This set of values is defined by
d′ = {h ∈ d | ∃r ∈ R \Rnew, r ∈ expl(h)} and must be re-introduced into the domain. Notice
that all incremental algorithms for constraint retraction amount to computing a (often strict)
super-set of this set. We have proven that we obtain the same closure if the computation
starts from d or from di∪d′. Moreover, any constraint retraction algorithm that re-introduces
a super-set of d′ remains correct [26].

3. Controlling what has been done Some of the values put back can be removed apply-
ing other active operators (i.e. operators associated with non retracted constraints). These
environment reductions need to be performed and propagated as usual.

In practice, the iteration is done with respect to a sequence of operators, which is dynamically
computed thanks to a propagation queue. At the ith step, before setting values back, the set of
operators that are in the propagation queue is Ri. Obviously, the operators of Ri∩Rnew must

11. Although we did not find any problem that would not verify this assumption.

22

Dossier d’Habilitation à Diriger les Recherches

stay in the propagation queue. The other operators (Rnew \Ri) cannot remove any element of
di, but they may remove an element of d′ (the set of re-introduced values). So we have to put
some of them back in the propagation queue: the operators of the set R′ = {r ∈ Rnew | ∃h←
B ∈ Rr, h ∈ d′}. We have proven that the operators that are not in Ri∪R′ do not modify the
environment di ∪ d′, so it is useless to put them back into the propagation queue. Moreover,
any constraint retraction algorithm that re-introduces a super-set of R′ in the propagation
queue remains correct [26].

At the end of this process, the system is in a consistent state. It is exactly the state that would
have been obtained if the retracted constraint (c) had not been introduced into the system12.

7.2 Efficient re-propagation of constraints

Although determining the past effect of a constraint c is quite easily done by referring to the ex-
planations that do contain any reference to c, efficient re-propagation is not provided in classical
constraint solvers. Indeed, another event needs to be handled: value restoration (or bound restora-
tion). Instead of calling a general local consistency operator for handling this new event, it is possible
to design new operators dedicated to this re-propagation phase i.e. to confirm the validity of value
restorations: methods awakeOnRestoreInf, awakeOnRestoreSup and awakeOnRestoreVal.

Example 6 shows what such methods look like in palm.

Example 6 (Value restoration for x >= y + c):
Let us consider a GreaterOrEqualxyc constraint. When the upper bound of the second variable of
such a constraint is increased (this is a value restoration), we need to check if that new value is
compatible with the constraint. An easy way to achieve this behavior is simply to pretend that the
upper bound of the first variable has been modified, which gives the following code:

[awakeOnRestoreSup(c: GreaterOrEqualxyc, idx: integer)
-> if (idx = 2) awakeOnSup(c, 1)]

Conversely, if the lower bound of the first variable is restored we can use the following code:

[awakeOnRestoreInf(c: GreaterOrEqualxyc, idx: integer)

-> if (idx = 1) awakeOnInf(c, 2)]

Like in Example 1, idx is the index of the variable whose upper (resp. lower) bound has been
restored.

More generally, awakeOnRestoreXXXmethods should call (portions of) awakeOnXXXmethods that
would modify the part of the domain concerned by the event called with the method.

In an explanation-based solver, a constraint is therefore characterized by its reaction to all its
domain modification events: value removals (awakeOnInf, awakeOnSup, and awakeOnRem methods)
and value restorations (awakeOnRestoreInf, awakeOnRestoreSup, and awakeOnRestoreVal meth-
ods).

7.3 Over-constrained problems

We can use the same tool (explanation-sets) for both computing explanations for conflicts and
for incrementally removing a constraint from a given constraint system. This naturally leads to
considering using explanations for solving over-constrained problems.

We introduced in [50] a simple strategy: solve the complete constraint system as usual and, if
necessary (i.e. once the problem has been proven over-constrained), use the conflict explanation
to identify the next constraint system to consider (using a comparator [80] that takes into account

12. Notice that the state of the domain is the state that would have been obtained if the constraint was not originally
in the system. But, the set of current explanations is only one of the several different states that are associated
to the initial set of constraints without c.

23

Synthèse scientifique

the user’s preferences) and perform the constraint modification (retraction(s) and/or addition(s))
incrementally still using explanations. This process is iterated as long as no suitable solution is
found. The use of the comparator guarantees the optimality of the solution. Moreover, operational
semantics in terms of tree search modification can be defined [50].

The originality of this approach is two-fold:

• all constraints of the problem can be propagated from the beginning of the search. The use of
comparison criteria can be delayed until the last moment [50]. Indeed, choice criteria (reflecting
the user opinion about relaxing constraints) are used only for selecting a set of constraints from
among the ones appearing in the current conflict. Thus, classifying constraints is only needed
when a contradiction is encountered and only between relevant constraints. We therefore do
not need to provide user’s advice on all the constraints of the system but instead we can design
an interactive interrogation of the user when needed.

• search is made in the space of possible relaxations in opposition to the space of possible affec-
tations in more classical approaches ([15] or [73]). Indeed, we perform search by dynamically
adding or retracting constraints until an optimal configuration is reached. [15] uses a hierar-
chy of constraints introduced constraints level by level (from the more important to the less
important ones) and [73] performs search by modifying complete assignments using constraint
violations as guides for the search.

If we consider the classical enumeration process used to ultimately solve csp as a dynamic
sequence of constraint additions (assigning variables) and retractions (backtracks), we can see that
the method that we introduced for solving over-constrained problems can be adapted to replace that
enumeration process. In Section 8 we introduce this point of view in what we call explanation-based
constraint programming.

7.4 Application: solving dynamic RCPSP

The Resource Constrained Project Scheduling Problem (rcpsp) is a general scheduling problem. It
consists of a set of activities and a set of renewable resources. Each resource is available in a given
constant amount. Each activity has a duration and requires a constant amount of resource to be
processed. Preemption is not allowed. Activities are related by two sets of constraints: temporal
constraints modeled through precedence constraints, and resource constraints that state that for
each time period and for each resource, the total demand cannot exceed the resource capacity. The
objective considered here is the minimization of the makespan (total duration) of the project. This
problem is NP-hard [13].

Most work about rcpsp considers static problems in which activities are known in advance
and constraints are fixed. However, every schedule is subject to unexpected events (consider for
example a new activity to schedule, or a resource failure e.g. machine breakdown). When such a
situation arises, a new solution, taking these events into account, is needed in a preferably short
time. Two classical methods used to solve such problems are: recomputing a new schedule from
scratch each time an event occurs (a quite time-consuming technique) and constructing a partial
schedule and completing it progressively as time goes by (like in on-line scheduling problems – this
is not compatible with planning purposes).

7.4.1 Explaining scheduling global constraints

csp are increasingly used for solving scheduling problems. Many global temporal and resource
constraints have been developed for solving such problems [21, 20, 58]. In [29] we introduce our
application of explanation-based constraint programming to solve dynamic rcpsp. In order to use
the capabilities of explanation for handling dynamic constraint addition and retraction, we need to
add explanations to the specific constraints used for solving scheduling problems.

24

Dossier d’Habilitation à Diriger les Recherches

1 2 3 4 5 6 7 8 9

2

4

3

1 2 3 4 5 6 7 8 9

4

CT(2)

CT(3)

CT(4)

 2

 3

level histogram

(0, 0, 2, 2, 9,7, 4,0,0)

({},{},{3},{3},{2,3,4},{2,4},{4},{},{})

activity histogram
2 4 2 4 3

4 5 2 4 4

3 4 1 2 2

i p r f a i i i i1

Figure 3: Example of timetable.

For example, we used the resource-histogram technique [21, 20] whose principle is to associate to
each resource k an array level(k) in order to keep a timetable of the resource requirements. This
histogram is used for detecting a contradiction and reducing the time-window of activities.

The core-times technique [58] is used for computing lower bounds using a destructive method.
A core-time CT(i) is associated to each activity i. It is defined as the interval of time during which
a portion of an activity is always executed whether it starts at its earliest or latest starting time.
The lower bound of the schedule is obtained when considering only the core-time of each activity.
If a resource-conflict is detected then some lower bounds can be upgraded.

Combining these two techniques provides an efficient resource-conflict detecting constraint. A
timetable for each resource is computed as follows: for each activity i, its core-time CT(i) = [fi, ri+pi)
(fi is the latest starting time of i, ri its earliest starting time and pi is the duration of task i) is
computed and the amount aik of resource k for each time interval [fi, fi +1), . . . , [ri +pi−1, ri +pi)
is reserved. We associate to each timetable constraint two histograms (see Fig. 3):

• a level histogram which contains the amount of resource required at each time interval [t−1, t).

• an activity histogram which contains the sets St of activities which require any amount of
resource for each time period [t− 1, t). It will essentially be used for providing explanations.

These histograms are used in the following ways:

• detecting resource conflicts when the required level of a resource k at one time period t ex-
ceeds the resource capacity. The explanation-set associated to this contradictory situation is
constituted from the set of activities (St) stored in slot t of the activity histogram. We obtain

(c being the histogram constraint itself):
(

∧

v∈St

(

∧

a∈d(v) expl(v 6= a)
))

∧

c.

• tightening the time-window of an activity. It may occur that the current bounds of the time-
window of an activity are not compatible with the other activities. In that situation, the
tightening of the time-window will be explained by the set St of activities requiring the re-
sources during the incompatible time-period [t − 1, t). We obtain (c being the histogram

constraint itself):
(

∧

v∈St

(

∧

a∈d(v) expl(v 6= a)
))

∧

c.

.

7.4.2 An interactive system

We developed a branch-and-bound search algorithm using explanation-based techniques (see Sec-
tion 8 for the general philosophy of this algorithm) based upon a branch-and-bound from [18]. This
algorithm is the core part of an interactive rcpsp solving system.

This interactive system accepts several types of modification of the scheduling problem: temporal
events (adding/removing precedence/overlapping/disjunctive relations, modifying time-windows),
activity related events (adding/removing), resource related events (adding/removing/modifying).
Each particular event is handled as a series of incremental constraint additions/retractions.

25

Synthèse scientifique

7.4.3 Experimental results

We present here some first experimental results on dynamic rcpsp. Our experiment consists in
comparing our dynamic scheduler with a static scheduler: a scheduling problem P is first optimally
solved. Then, an event e is added to this problem. We then compare a re-execution from scratch
(as a static scheduler would do) and the dynamic addition of the related constraints in terms of cpu
time.

We use here some rcpsp test problems13 introduced by Patterson14.
For this set of problems, we tried to evaluate the impact of a single modification when comparing

static and dynamic scheduling approaches. The following events were evaluated:

• Adding a precedence constraint. Table 1 presents the results obtained on original problems
from Patterson from which a single precedence constraint has been removed (which gives the
starting problem) then added (which gives the final problem – the original Patterson one15).

• Adding a generalized precedence constraint with a fixed delay between two tasks. Table 2
presents the results obtained on original problems from Patterson to which a generalized prece-
dence constraint is added (this constraint is an existing precedence in the optimal solution for
which the existing time lag is increased).

• Adding a generalized precedence constraint with a bounded delay between two tasks. Table 3
presents the results obtained on original problems from Patterson to which a generalized prece-
dence constraint is added (this constraint is an existing precedence in the optimal solution for
which the existing time lag is increased).

• Adding an overlapping constraint. Table 4 presents the results obtained on original problems
from Patterson to which a randomly chosen overlapping constraint is added.

.
In all the tests, activities i and j are randomly selected. In all the tables, we designate by:

• # Act: the number of activities of the problem;

• # Res: the number of resources of the problem;

• tp: the cpu time in seconds needed for solving optimally problem P ;

• te: the cpu time in seconds spent solving this problem after dynamically adding the event e

• tpe: the cpu time in seconds needed to obtain an optimal solution of the problem P ∪{e} from
scratch.

• tpe−te

tpe
: the overall interest of using a dynamic scheduler compared to a static scheduler ex-

pressed as the percentage of improvement.

These results clearly show that using a dynamic scheduling solver is of great use compared to
solving a series of static problems. In our first experiments, the improvement is never less than 23%
and can even reach 98.8 %!

Our second set of reported experiments performed on Kolish, Sprecher and Drexl rcpsp in-
stances16 considers 4 consecutive modifications (any kind of event17) to an original problem. As

13. All experimental data and results are available online at emn.fr/jussien/RCPSP.
14. bwl.uni-kiel.de/Prod/psplib/dataob.html

15. This explains why some results obtained for the static solver are the same: the final problem is the same but not
the original one as a different constraint has been removed.

16. wior.uni-karlsruhe.de/RCPSP/ProGen.html

17. See emn.fr/jussien/RCPSP for the details for each instance.

26

http://www.emn.fr/jussien/RCPSP
http://www.bwl.uni-kiel.de/Prod/psplib/dataob.html
http://www.wior.uni-karlsruhe.de/RCPSP/ProGen.html
http://www.emn.fr/jussien/RCPSP

Dossier d’Habilitation à Diriger les Recherches

Name #Act #Res tp te tpe
tpe−te

tpe
%

T1P1a 14 3 7.26 1.16 6.96 83.3
T1P1b 22 3 6.75 0.23 6.96 96.7
T1P2 7 3 0.23 0.02 0.19 89.5
T1P3a 13 3 25.82 4.16 12.58 67.0
T1P3b 13 3 15.64 1.21 12.58 90.4
T1P4a 22 3 8.01 1.46 3.63 59.8
T1P4b 22 3 4.50 0.50 3.63 86.2
T1P5a 22 3 20.37 8.70 13.80 37.0
T1P5b 22 3 11.34 1.76 13.80 87.3
T1P6a 22 3 135.11 19.60 78.61 75.1
T1P6b 22 3 36.70 7.81 78.61 90.1
T1P6c 22 3 87.80 0.96 78.61 98.8
T1P8 9 1 2.11 0.32 2.30 86.1
T1P10 8 2 0.34 0.06 0.25 76.0

Table 1: Adding a precedence constraint

Name #Act #Res tp te tpe
tpe−te

tpe
%

T2P1a 14 3 7.31 0.87 8.84 90.2
T2P1b 14 3 6.58 0.82 9.55 91.4
T2P5a 22 3 14.90 3.45 8.33 58.6
T2P5b 22 3 16.90 3.44 8.19 58.0
T2P5c 22 3 13.82 3.50 8.22 57.4
T2P6a 22 3 62.45 5.14 24.43 79.0
T2P6b 22 3 64.42 1.87 19.56 90.5
T2P6c 22 3 62.50 1.24 23.40 94.7
T2P8 9 1 2.19 0.22 2.58 91.5
T2P10 8 2 0.18 0.02 0.26 92.3
T2P11 8 2 0.39 0.20 0.42 52.4

Table 2: Adding a generalized precedence constraint

Name #Act #Res tp te tpe
tpe−te

tpe
%

T3P1a 14 3 7.12 0.81 8.50 90.5
T3P1b 14 3 9.69 0.61 9.81 93.8
T3P3 13 3 17.49 0.45 14.34 96.9
T3P5a 22 3 14.46 4.82 7.59 36.5
T3P5b 22 3 15.25 3.10 7.81 60.3
T3P6a 22 3 68.38 9.63 19.30 50.1
T3P6b 22 3 75.88 2.52 21.12 88.1
T3P6c 22 3 66.00 17.74 27.34 35.1
T3P6d 22 3 65.45 16.25 30.65 47.0
T3P8 9 1 2.90 0.12 2.84 95.8

Table 3: Adding a generalized precedence constraint

Name #Act #Res tp te tpe
tpe−te

tpe
%

T4P1 14 3 7.43 0.38 10.62 96.4
T4P5 22 3 15.16 16.39 24.84 34.0
T4P6a 22 3 77.73 8.44 14.60 42.2
T4P6b 22 3 70.45 6.63 18.59 64.3
T4P6c 22 3 64.87 9.85 12.86 23.4
T4P8a 9 1 2.37 0.38 2.35 83.9
T4P8b 9 1 2.27 0.12 2.64 95.5

Table 4: Adding an overlapping constraint

27

Synthèse scientifique

12 act./4 res. Modif. 1 Modif. 2 Modif. 3 Modif. 4
T1KSD1 12.76 26.09 35.84 35.58
T1KSD2 46.24 54.92 62.68 63.13
T1KSD3 35.88 44.12 45.82 45.87
T1KSD5 32.01 67.90 75.15 75.65
T1KSD6 3.81 26.38 46.62 55.92
T1KSD8 22.13 10.64 21.08 22.21
T1KSD9 46.72 52.58 47.75 49.27
T1KSD10 -29.21 -0.35 15.74 30.27

Table 5: Some Kolish, Sprecher and Drexl instances (4 consecutive dynamic events). Relative speed-
up (in %)

22 act./4 res. Modif. 1 Modif. 2 Modif. 3 Modif. 4 Modif. 5
T2KSD11 47.15 12.49 5.87 6.89 -1.98
T2KSD13a 34.81 43.55 43.04 49.89 50.98
T2KSD13b 39.19 -126.79 -174.22 -216.67 -146.42
T2KSD15 -47.62 -42.50 -41.00 -65.06 -88.20
T2KSD17a -2.40 1.65 -5.90 -16.23 -43.06
T2KSD17b 3.58 13.11 -12.76 -10.51 -74.91
T2KSD18a 30.61 26.76 -52.76 -19.07 0.85
T2KSD18b 40.39 56.09 40.54 42.56 45.15

Table 6: Other Kolish, Sprecher and Drexl instances (5 consecutive dynamic events). Relative speed-
up (in %)

we can see in Table 5, our results are quite promising. Even bad results (instance T1KSD10) get
better in the long run. However, notice that some results (see Table 6 – results for 5 consecutive
modifications) show that dynamic handling is not always the panacea and rescheduling from scratch
can be very quick.

8. Explanations for search in constraint programming

Looking at the way variables and constraints interact together through explanations [36] leads to
consider a more intricate usage of explanations within constraint programming languages. Therefore,
one can design new programming gimmicks and new approaches. These new approaches are designed
under the name explanation-based constraint programming (e-constraints for short).

8.1 From backtrack-based to explanation-based solving

Most csp solving algorithms are derived from a backtrack-based complete search. The drawbacks
of this approach have been known for a long time: thrashing and backtracking to irrelevant choice
points. The previously developed fancy backtrackers were not really convincing to address this
issue (time or space overhead, no real advantages) [12]. Nevertheless, more recently, the mac-dbt

algorithm [51] showed that explanation-based algorithms could compete well with backtrack-based
algorithms in real-world situations. The mac-dbt algorithm is to dbt what mac is to sb. It can
be described using a very generic algorithm that appears as the archetype of explanation-based
constraint solving.

28

Dossier d’Habilitation à Diriger les Recherches

8.1.1 From standard backtracking to dynamic backtracking

Most complete search algorithms over Constraint Satisfaction Problems (csp) are based on Stan-
dard Backtracking (sb): a depth-first search is performed using chronological backtracking. Various
intelligent backtrackers have been proposed: Conflict-directed BackJumping (cbj) [67], Dynamic
Backtracking (dbt) [37], Partial order Dynamic Backtracking (pdb) [38], Generalized Dynamic Back-
tracking (gpb) [14], etc. In these algorithms, information (namely a special case of explanations:
nogoods) is kept when encountering inconsistencies so that the forthcoming search will not get back
to already known traps in the search space.

Dependency Directed Backtracking (ddb) [76] was the first algorithm to use this enhancement,
however it has an important drawback: its space complexity is exponential since the number of
nogoods it stores increases monotically. To address this problem, algorithms such as cbj or dbt

eliminate nogoods that are no longer relevant to the current variable assignment. By doing so, the
space complexity remains polynomial.

When a failure occurs, these algorithms have to identify the assignment to be reconsidered
(suspected to be a culprit for the failure).

• sb always considers the most recent assignment to be a culprit. This selection may be com-
pletely irrelevant for the current failure leading to useless exploration of parts of the search
tree already known to be dead-ends (thrashing).

• In cbj a conflict-set is associated to each variable: CSvi
(for the variable vi) contains the set

of the assigned variables whose value is in conflict with the value of vi. When identifying a
dead-end while assigning vi, cbj considers the most recent variable in CSvi

to be a culprit. A
backtrack then occurs: the conflict-sets and domains of the future variables are reset to their
original value. By doing so, cbj forgets a lot of information that could have been useful. This
also leads to thrashing.

• dbt selects the most recent variable in the computed nogood (the conflict-set of cbj) in order
to undo the assignment. However, thanks to the explanations, dbt only removes related
information that depends on it and so avoids thrashing: useful information is kept. Indeed,
there is no real backtracking in dbt and, like in a repair method, only the assignments that
caused the contradiction are undone.

Notice that sb can also be considered as selecting the most recent assignment of a nogood,
namely the nogood that contains all the current variable assignments (which fails to give really
relevant information).

8.1.2 Integrating constraint propagation within dynamic backtracking

Constraint propagation has been included in sb leading to forward checking fc and to the Maintain-
ing Arc-Consistency algorithm (mac) [71]. mac is nowadays considered as one of the best algorithms
for solving csp [12].

Several attempts to integrate constraint propagation within intelligent backtrackers have been
made: for example, Prosser has proposed mac-cbj which maintains arc consistency in cbj [67]. But,
Bessière and Régin [12] have stopped further research in that field by showing that mac-cbj was
very rarely better than mac. They concluded that there was no need to spend time nor space on
intelligent backtracking because the brute force of mac simply does it more quickly. From our point
of view, the inadequacy of mac-cbj is more related to the fact that cbj does not avoid thrashing18

than to the cost of the management of nogoods. When backtracking occurs, cbj comes back to a
relevant assignment, and then forgets all the search space developed since this assignment has been
performed: like sb, cbj has a multiplicative behavior on independent sub-problems. dbt does not

18. A thrashing behavior consists in repeatedly performing the same search work due to the backtrack mechanism.

29

Synthèse scientifique

function solve(pb: Problem): boolean

(1) begin

(2) unassignedVars ← pb.vars

(3) try (

(4) while not(empty(unassignedVars))

(5) let idx ← nextVarToAssign(pb) // variable choice

(6) v ← unassignedVars[idx]

(7) a ← selectValToAssign(pb, v) // value choice

(8) in (

(9) try (

(10) unassignedVars :delete v

(11) post(pb, v == a) // instantiation

(12) propagate(pb)

(13))

(14) catch LabelingContradiction // An empty domain found

(15) handleContradiction(pb) // classically: BACKTRACK

(16))

(17))

(18) endwhile

(19) true

(20))

(21) catch ProblemContradiction

(22) false // No solution

(23))

(24) end

Figure 4: Solving a CSP

only use nogoods to perform intelligent backtracking but also to avoid thrashing and so becomes
additive on independent sub-problems [37]. [12] had another point preventing the use of nogoods:
it is always possible to find an intelligent labeling heuristic so that a standard backtracking-based
algorithm will perform a search as efficiently as an intelligent backtracker. In our experience, using a
good heuristic reduces the number of problems on which the algorithm thrashes but does not make it
additive on independent subproblems: there are still problems on which the heuristic cannot prevent
thrashing.

In [51], we introduced the mac-dbt algorithm which shows the efficient integration of constraint
propagation within dbt thanks to the use of explanations. The general behavior of mac-dbt is
described in the algorithm in Figure 4: as long as no solution has been found, choose a variable and
a value for it, assign the value to the variable (line 11), propagate this new information (line 12). If
a contradiction occurs during that process, use a special handling contradiction procedure (line 15
and the algorithm in Figure 5).

This special handling contradiction procedure merely amounts to a backtrack if a standard
backtrack-based search is desired. However, if one wants to benefit from an explanation-based
solver, an explanation for this failure can be computed (see line 2 in the algorithm in Figure 5)
and, if possible, a choice (an assignment constraint) to undo19 is selected (line 7). At this point, an
intelligent backtracker can be defined by performing a classical backtrack to that selected choice. In
order to use explanations as much as possible, a dynamic constraint removal should be performed
(line 12), followed by the posting within a given context20 of the negation of the undone decision
and the propagation of the new information (line 15). It is important to recursively handle any
contradiction that may appear (line 18).

19. Notice that this choice is tightly guided by the completeness requirements of the algorithms (see [14]).
20. Line 14 in the algorithm in Figure 5 introduces the constraint opposite(ct) which will remain active as long as

the context e remains valid. See [51] for more information on that point.

30

Dossier d’Habilitation à Diriger les Recherches

procedure handleContradiction(pb: Problem)

(1) begin

(2) let e← becauseOf(theDom(getFailingVariable(pb))) // conflict explanation

(3) in (

(4) if e empty then

(5) raiseProblemContradiction()

(6) else

(7) let ct ← selectConstraint(e) // select a to be removed choice

(8) in (

(9) if ct exists then

(10) unassignedVars :add ct.v1

(11) try (

(12) remove(ct) // perform constraint removal

(13) e :delete ct

(14) post(pb, opposite(ct), e) // the context-guarded negation is added

(15) propagate(pb)) // achieving consistency

(16))

(17) catch LabelingContradiction

(18) handleContradiction(pb) // recursive handling

(19))

(20) else

(21) raiseProblemContradiction()

(22) endif

(23))

(24) endif

(25))

(26) end

Figure 5: Contradiction handling

8.1.3 A generic algorithm

One can identify three different components21 in the algorithms in Figures 4 and 5 that help under-
stand and generalize their behavior:

• a propagation component that is used to propagate information throughout the constraint
network when a decision is made during search. Two operators are needed: filtering and
checking if a solution can exist.

• a learning component that is used to make sure that the search mechanism will avoid (as
much as possible) getting back to states that have been explored and proved to be solution-
less. Using a rough analogy with the brain, we will use two operators: a recording operator
that learns new pieces of information and a forgetting operator that will make room for new
information to be learnt.

• a moving component whose aim is, unlike the other two components, to explore the search
space instead of pruning it. There are two moving operators: repair to be used when the
current constraint system is contradictory and needs some modification and extend to poten-
tially add new information when no contradiction has yet been detected but when no solution
has been found.

These three components can be used to design a generic csp solving algorithm (the plm algorithm
– see Figure 6) that encompasses complete and incomplete searches, prospective and retrospective
algorithms [54, 53]:

• search starts from an initial set of decision constraints that may range from the empty set
(typically for backtrack-based search) or a total assignment (typically for a local search algo-
rithm)

21. A formal description of these components can be found in [53].

31

Synthèse scientifique

procedure PLM(V ,C,CD)

(1) begin

(2) P ← {V, C, CD}
(3) repeat

(4) P ← filter(P)
(5) switch check(P)
(6) case no solution :

(7) P ← forget(repair(record(P)))
(8) case solution found :

(9) return P

(10) case not enough information :

(11) P ← extend(P)
(12) endswitch

(13) until conditions of termination
(14) end

Figure 6: A generic algorithm for the plm components

• decisions are made (extend) and propagated (filter) until a contradiction occurs

• when a contradiction does occur (line 6), the information related to the dead-end (e.g. a conflict
explanation) is learnt (record), the current state is repaired (repair) and some information
is forgotten (forget).

• search terminates as soon as a solution is found (line 8) or the conditions of termination
(line 13) are fulfilled. Conditions of termination can be for example a maximum number of
iterations, the exhibition of a proof that no solution exists, etc.

Using explanations greatly helps to implement concretely such a generic framework. Indeed,
explanations can be used to determine precise conflict explanations, perform dynamic reparations
of any constraint system, etc. The palm system effortlessly implements this generic framework.

8.2 A new family of algorithms: decision-repair

The plm generic algorithm has been used to describe several well-known algorithms [53]:

• systematic algorithms such as sb, cbj, dbt, mac, mac-dbt, etc.

• non-systematic algorithms such as tabu search [39], gsat [74], etc.

The plm generic algorithm has also been used to design new algorithms: the decision-repair

family [52]. The idea of decision-repair is to combine the propagation-based nature of mac-dbt
and the true freedom (in the search space exploration) given by a local search algorithm such as
tabu search. Therefore, in terms of the plm generic algorithm, we have:

• the starting set of decision constraints is empty;

• filter uses a standard filtering algorithm for reducing the domain of the variables of the
problem;

• record computes an explanation-set for the current contradiction and stores it in a tabu list
of fixed size K;

• forget erases the oldest stored explanation-set if the tabu list is full;

• extend classically adds new decisions (variable assignment, domain splitting, etc.) as long as
no solution has been found yet;

32

Dossier d’Habilitation à Diriger les Recherches

• repair heuristically selects a decision to undo from the last computed explanation-sets (and
whose negation is compatible with the stored explanation-sets).

As several parameters remain unspecified (the way of handling the tabu list, the heuristic to be
used to select decisions to undo, etc.), decision-repair is a family of algorithms. However, the
two main points of this algorithm are: it makes use of a repair algorithm (local search) as a basis,
and it works on a partial instantiation in order to be able to use filtering techniques.

A comprehensive study of the behavior of decision-repair has shown that the key components
of this algorithm are: its explanation-directed heuristics and its ability both to perform a local search
and to prune the search space [52]. Experiments with decision-repair have shown good results
for open-shop scheduling problems (see Section 9.3).

9. A case study: solving open-shop scheduling problems

We have experimented using explanation-based constraint programming algorithms for solving open-
shop scheduling problems for several years now. First we developed intelligent backtrackers that pro-
vided good first results and greatly improved our techniques using more explanation-based features
of e-constraints. This section provides some details about these results.

9.1 Open-shop scheduling problems

Classical scheduling shop problems, for which a set J of n jobs consisting each of m tasks (operations)
must be scheduled on a set M of m machines, can be considered as csp22. One of these problems is
called the open-shop problem [40]. For this problem, operations for a given job may be sequenced
as wanted but only one at a time. We will consider here the building of non-preemptive schedules
of minimal makespan23.

The open-shop scheduling problem is NP-hard as soon as min(n, m) ≥ 3. This problem although
quite simple to enunciate is really hard to solve optimally: instances of size 6× 6 (i.e. 36) variables
remain unsolved !

Only two branch-and-bound methods for this problem have been published so far. The first one
[16] is based on the resolution of a one-machine problem with positive and negative time-lags. The
second one, [18], consists, in each node, in fixing disjunctions on the critical path of a heuristic
solution. It combines two concepts:

• a generalization of a branching scheme first introduced by Grabowski et al. [41] for one-machine
problems with release dates and due dates;

• immediate selections [19], a method initially designed to fix disjunctions in Job-Shop problems.

We used this method as a basis for our experiments and enhanced it in two steps:

1. designing an intelligent backtracker by using an explanation-based constraint solver to propa-
gate new decisions made during search;

2. using the decision-repair family of algorithms to design a new efficient heuristic for solving
open-shop scheduling problems.

9.2 An intelligent backtracker

In [43], we presented an intelligent backtracker for solving classical open-shop scheduling problems.
This first use of an explanation-based search led us to solve an open instance for the first time.

22. The variables of the csp are the starting dates of the tasks. Bounds thus represent the least feasible starting time
and the least feasible ending time of the associated task.

23. Ending time of the last task.

33

Synthèse scientifique

Table 7 presents the results obtained on Taillard’s benchmarks [77]. These benchmarks are
composed of 10 square instances of size 4, 5, 7 and 10. Among the problems of size 10, 4 were still
unsolved at that time24.

For each problem, a lower bound LB, an upper bound UB (initial solution) and the optimal
solution OPT (unknown for four problems of size 10) are given. This table also contains the number
of backtracks. We stopped the search at 250 000 backtracks. If the optimal solution is not reached
at that limit, the best solution found is indicated between brackets. The optimal solution of the
open problem we solved is outlined.

Although it is difficult to generalize, the results having been obtained on only 40 problems, it
seems that the bigger the problem, the more efficient the technique is: indeed, this technique has no
effect on the 4x4 problems of Taillard, the number of backtracks is reduced for 9 problems of size 5,
and for all problems of size 7x7.

For 10x10 problems, the improvement is very large: three problems are solved by our technique,
among which is an open problem (the one with outlined optimal value) in only 4843 backtracks,
whereas without intelligent backtracking, no problem of that size is solved in less than 250 000
backtracks. And for the other 10x10 problems, our technique generally provides better solutions at
the limit of backtrack numbers.

As regards execution times, the version with intelligent backtracking is about two times slower
than the initial version in each node. But this waste of time is widely compensated by the decreased
number of explored nodes. Thus for the open problem we solved, the execution time is reduced by
at least 90% (since the problem is not solved after 250 000 backtracks in the initial version).

These very good first results led us to go further in using explanations and to fully use the power
of e-constraint programming.

9.3 An efficient heuristic technique

Because the open-shop problem is very hard to solve exactly, various heuristics have been proposed25:
greedy heuristics such as specific list heuristics [44] or local searches such as highly specialized tabu
searches [4, 61] or genetic algorithms [64], etc.

We tried decision-repair on the open-shop problem using one of its implementations described
below:

Filtering technique Precedence constraints are handled with 2B-consistency filtering [23, 60] and
resource usage constraints are handled through task-intervals [20] (see also Section 4.2.2).

Search strategy For shop scheduling problems, enumeration is usually performed on the relative
order in which tasks are scheduled on the resources. The decision constraints are thus prece-
dence constraints between tasks26. We use the branching scheme introduced in [18] to select
such decisions.

Tabu list The implementation uses a tabu list of size 7.

Repair The repair function we used records in the tabu list the newly computed contradiction
explanation k (it is a conflict). It tries to find one decision in k such that negating this decision
makes the decision set compatible with all the stored conflicts. When several decisions can be
negated, we use the following weighting-conflict heuristics: a weight is associated with each
decision; the weight characterizes the number of times that the decision has appeared in any
conflict. The repair function chooses to negate the decision with the greatest weight that,

24. This is no longer true
25. We mention here heuristics that are considered to be the best techniques to solve open-shop scheduling problems.
26. When every possible precedence has been posted, setting the starting date of the variable to its smallest value

provides a feasible solution.

34

Dossier d’Habilitation à Diriger les Recherches

Size OPT LB UB without intelligent backtracking with intelligent backtracking
number of backtracks number of backtracks

4 193 186 197 18 18
4 236 229 253 37 37
4 271 262 272 29 29
4 250 245 260 26 26
4 295 287 305 55 55
4 189 185 193 19 19
4 201 197 203 22 22
4 217 212 217 14 14
4 261 258 268 32 32
4 217 213 224 31 31
5 300 295 303 273 270
5 262 255 266 252 238
5 323 321 347 943 940
5 310 306 319 678 678
5 326 321 330 840 836
5 312 307 325 756 737
5 303 298 308 420 411
5 300 292 304 853 851
5 353 349 368 1000 987
5 326 321 337 2377 2377
7 435 435 452 2840 1860
7 443 443 465 18196 16862
7 468 468 495 98903 96502
7 463 463 482 1494 1410
7 416 416 425 317 256
7 451 451 471 21492 20364
7 422 422 449 56944 53773
7 424 424 433 1939 1552
7 458 458 476 560 535
7 398 398 411 731 710
10 637 654 > 250000 (644) > 250000 (644)
10 588 588 600 > 250000 (594) > 250000 (591)
10 598 611 > 250000 (610) > 250000 (604)
10 577 577 588 > 250000 (584) 26777
10 640 640 661 > 250000 (658) > 250000 (658)
10 538 538 544 > 250000 (544) > 250000 (544)
10 616 616 633 > 250000 (633) 4843
10 595 595 604 > 250000 (604) > 250000 (604)
10 595 595 612 > 250000 (597) 245100
10 596 612 > 250000 (611) > 250000 (606)

Table 7: Results of our intelligent backtracker on Taillard’s problems. Bold figures indicate im-
provements

35

Synthèse scientifique

procedure minimise-makespan(C)

(1) begin

(2) CD ← initial decision set
(3) bound← +∞
(4) lastSolution ← failure
(5) repeat

(6) C ← C ∪ { makespan < bound}
(7) solution ← decision-repair(C)

(8) if solution = failure then

(9) return lastSolution
(10) else

(11) bound← value of makespan in solution
(12) lastSolution ← solution
(13) endif

(14) until false
(15) end

Figure 7: Algorithm used to solve open-shop problems

when negated, makes the new decision set compatible with all the conflicts in the tabu list. If
such a decision does not exist, it is considered as a stopping criterion for the overall algorithm.

Stopping criterion The failure conditions specifying the exit of decision-repair are either a
stop returned by the repair function or 3000 iterations without improvement since the last
solution reached.

Minimization of the makespan The open-shop problems we consider are optimization problems.
This requires a main loop that calls decision-repair until improvement is no longer possi-
ble. (See Figure 7.) Improvements are forced by adding a constraint that specifies that the
makespan is less than the current best solution found. The initial decision set for each call
of the function decision-repair is the latest set of decisions (which defines the last solution
found).

We studied three series of reference problems:

1. Taillard’s problems [77] (see section 9.2).

2. Brucker et al. problems [17]: 52 problems of size 3 × 3 to 8 × 8. These problems are
characterized by a common LB (the classical lower bound27) value: 1000.

3. Guéret and Prins’ problems28: Those 80 problems (8 series of 10 problems of size 3× 3 to
10 × 10) have been generated using results presented in [45] for generating really hard open-
shop instances. They all share a common LB (classical lower bound) value and the fact that
another lower bound [45] gives a much greater value.

decision-repair (referred to as TDR in the results) is compared with the best published
solving techniques for the open-shop problem:

• For Taillard’s instances, our results are compared with two highly specialized tabu searches
tailored for solving open-shop problems, one presented in [4] (referred to as TS-A97 in the
results) and one presented in [61] (referred to as TS-L98 in the results).

• For all the instances, our results are also compared with a genetic algorithm introduced in [64]
(referred to as GA-P99 in the results) which gives very good results on all these problems.

27. Maximum load of the involved machines and jobs.
28. Available at emn.fr/gueret/OpenShop/OpenShop.html .

36

http://www.emn.fr/gueret/OpenShop/OpenShop.html

Dossier d’Habilitation à Diriger les Recherches

Figure 8 presents the results obtained on Taillard’s problems, Figure 9 on Brucker’s instances,
and finally Figure 10 on Guéret and Prins’ problems. Cpu time is not available in [61], [4], nor
in [64]29. Average cpu time for decision-repair is not really significant since cpu time strongly
depends on the instance of the problem. Just to give an idea, for Taillard’s instances, 10×10 average
cpu time is 15 hours and for 7× 7 average cpu time is 2 hours. For Brucker’s instances and Guéret
and Prins’ problems, 10× 10 average cpu time is 3 to 4 hours and, for size less than 8× 8, average
cpu time is less than 4 minutes.

Series TS-L98 TS-A97 GA-P99 TDR
4× 4 0 / 0 (10) (*) 0.31 / 1.84 (8) 0 / 0 (10)
5× 5 0.09 / 0.93 (9) (*) 1.26 / 3.72 (1) 0 / 0 (10)
7× 7 0.56 / 1.77 (6) 0.75 / 1.71 (2) 0.41 / 0.95 (4) 0.44 / 1.92 (6)

10× 10 0.29 / 1.41 (6) 0.73 / 1.67 (1) 0 / 0 (10) 2.02 / 3.19 (0)

Table 8: Results on Taillard’s instances. Results are presented in the following format: “average deviation
from the optimal value” / “maximum deviation from the optimal value” (“number of optimally solved
instances”) (*) Only results for 7 problems of size 7× 7 and 3 of size 10 × 10 are given in the paper.

Series GA-P99 TDR
3× 3 (8 pbs) 0 / 0 (8) 0 / 0 (8)
4× 4 (9 pbs) 0 / 0 (9) 0 / 0 (9)
5× 5 (9 pbs) 0.36 / 2.07 (6) 0 / 0 (9)
6× 6 (9 pbs) 0.92 / 2.27 (3) 0.71 / 3.50 (6)
7× 7 (9 pbs) 3.82 / 8.20 (6) 4.40 / 11.5 (5)
8× 8 (8 pbs) 3.10 / 7.50 (8) 4.95 / 11.8 (2)

Table 9: Results on Brucker’s instances. Results are presented according to the following format: “av-
erage deviation from the optimal value” / “maximum deviation from the optimal value” (“number of
optimally solved instances”) except for 7× 7 and 8× 8 time for which the deviation is computed from the
LB value (1000 for each problem).

Series BB-G00 GA-P99 TDR Open instances TDR yield
3× 3 10 / 10 10 / 10 10 / 10 0 -
4× 4 10 / 10 10 / 10 10 / 10 0 -
5× 5 10 / 10 8 / 8 10 / 10 0 -
6× 6 9 / 7 2 / 1 10 / 8 3 1 / 1
7× 7 3 / 1 6 / 3 10 / 4 9 1 / 3
8× 8 2 / 1 2 / 1 10 / 4 9 3 / 7
9× 9 1 / 1 0 / 0 10 / 2 9 1 / 9

10 × 10 0 / 0 5 / 0 5 / 0 10 0 / 5

Table 10: Results on Guéret and Prins’ problems. Results are presented according to the following
format: “number of problems solved giving the best results” / “number of optimally solved problems”.
BB-G00 reports the results of our intelligent backtracker described in Section 9.2 and stopped after 350
000 backtracks (which represents around 24 hours of cpu time). What tabu decision-repair gave to the
solving of these problems (TDR yield) is indicated by “the number of closed instances” / “the number of
newly improved instances”

29. This is quite usual for open-shop scheduling results. Indeed, as the problem itself is really hard, what is important
is the quality of the solution and not the time required to obtain it. Moreover, in real-life applications such as
satellite scheduling problems [65] improving a solution by one unit can save so much money that satellite operators
are ready to wait as long as a full day for that improvement!

37

Synthèse scientifique

Recall that decision-repair is a generic algorithm that has been instantiated simply to solve a
very specific problem which has its own research community. The results obtained on the three sets
of problems are therefore very interesting because they show that our algorithm is a competitive
algorithm compared with the other techniques.

As far as Taillard’s instances are concerned, decision-repair gives comparable results but the
tabu search of [61] is still the best technique except for 10×10 problems where the genetic algorithm
shows the best results.

On Brucker’s instances, decision-repair is far better than the genetic algorithm on small
instances but the latter becomes better on larger problems.

For the third set of problems (the really hard instances of Guéret and Prins) decision-repair
shows all the interest of combining local search and constraint propagation: decision-repair

closed30 6 of these instances. Furthermore, it provided new best results for 19 other instances; thus
it improved known results for 25 instances out of 40 open ones.

Up to size 9 × 9, decision-repair gives far better results than both the genetic algorithm
and branch-and-bound search (that has been truncated by a time criterion). For 10× 10 problems,
decision-repair is still better than the branch-and-bound but is matched by the genetic algorithm.

Such a good behavior of decision-repair was quite surprising because, unlike the other spe-
cialized algorithms, our implementation remains general and does not need any tuning of complex
parameters. This is probably due to the search used for the open-shop problem, which dynam-
ically builds independent sub-problems by adding precedence constraints: classical backtracking
algorithms may start by partially solving a sub-problem, then go to another one, solve it, and then
continue to solve the first sub-problem. In cases where it has to backtrack to choices in the first part
of its work, the search spaces of the two sub-problems are multiplied. decision-repair, thanks to
its use of explanations, can identify independent sub-problems and stay in a sub-problem until it has
been solved. Also the heuristic we have introduced seems to be good. Once again, this is another
benefit from the use of explanations.

9.4 Analysis

We performed a comprehensive study of the behavior of decision-repair in [52]. It showed that the
key components of this algorithm are its conflict-directed heuristics and its ability both to perform
a local search and to prune the search space. These results clearly advocate the use of explanations
within constraint programming for providing new techniques and new programmation gimmicks.

Summary

In this fourth part, we introduced possible usage of explanations within constraint pro-
gramming in a gradated way: from immediate usage to in-depth usage. First, we showed
how to use explanation to provide user information and addressed the user-accessibility
issue of produced explanations. Second, we introduced the use of explanations for solv-
ing dynamic problems: incremental correct constraint retraction, implementation issues,
and over-constrained problems handling. Third, we introduced a more in-depth use of
explanations for improving search in constraint programming whose main result is the e-
constraints philosophy: a new way of considering search within constraint programming
(decomposing search into three components: propagation, learning, and move). More-
over, we introduce the decision-repair family of algorithms which provides an original
way of combining constraint propagation and local search. Finally, we illustrated the
application of our work to the solving of open-shop scheduling problems.

30. An optimal solution was found and proved – a lower bound is known – for the first time.

38

Dossier d’Habilitation à Diriger les Recherches

V. Conclusion and further work

In this document, we have presented an introduction to explanations in constraint programming and
shown how to compute and use them. We introduced a formal framework for constraint programming
in which we defined our notion of explanation. We detailed different levels and different quality of
explanations and related them to previous concepts such as justifications and conflict-sets. Moreover,
we introduced different possible ways of computing explanations from off-line techniques to on-line
techniques. We described both an intrusive approach (the one provided by the palm system) and a
promising non-intrusive technique based on aspect-oriented programming.

We introduced possible usage of explanation within constraint programming. We first promote
explanations as a tool for the user information during/after solving a constraint problem (pointing
out some open issues on user interaction) and then introduced the use of explanations for han-
dling dynamic constraint solving (from user interaction to automatic handling of over-constrained
problems) through the example of solving dynamic scheduling problems.

We have also illustrated how programming habits are changed when a complete use of explana-
tions is made leading to a general framework for designing new search algorithms: the plm approach
which decomposes search techniques into three components (propagation, learning, and move). Such
an explanation-based constraint programming approach led us to design two new efficient algorithms:
a complete one (mac-dbt) and its incomplete generalization (the decision-repair family) which
harmoniously mixes local search and constraint propagation. Finally, we illustrated the use of our
new techniques for solving open-shop scheduling problems.

This recent field in constraint programming opens up several perspectives:

• regarding explanation computation, the following topics spring to mind: finding mecha-
nisms or enumeration orderings that are efficient for producing both solutions and explanations;
computing explanations in a lazy way (keeping less information – as in [11, 25]); designing con-
straint propagation algorithms with explanations in mind and therefore being able to provide
a formal presentation of the explanations together with the operational semantics of the con-
straints; investing in monitoring explanation computation systems (like our proposition with
aop in Section 5.2.1) which can really help the diffusion of that technology; or investing in
explanations and radically modifying solving mechanisms;

• regarding user interaction, our user-friendly explanations are only a first step towards making
explanations accessible to anyone: the tree-based problem representation of our user-friendly
explanations is a limitation; much work remains to be done: for example, one could consider
several ontologies to be used for clustering the information contained in an explanation in
concepts that the current user would understand.

• regarding explanation-based constraint programming, mac-dbt and decision-repair

are efficient explanation-based search algorithms. The potential of explanations has not been
completely explored yet (especially within the plm framework) and should provide new pow-
erful algorithms.

We strongly believe that explanations for constraint programming is a really a hot topic for the
future. Notice that there now exists a web portal on the subject: e-constraints.net.

39

http://www.e-constraints.net

Synthèse scientifique

References

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex scheduling and
placement problems. Mathl. Comput. Modelling, 17(7):57–73, 1993.

[2] M. Ågren. Tracing and explaining the execution of clp(fd) programs in SICStus prolog. Mas-
ter’s thesis, Computer Science Department, Uppsala University, Sweden, July 2002.

[3] H. Albin-Amiot, P. Cointe, Y.-G. Guéhéneuc, and N. Jussien. Instantiating and detecting
design patterns: Putting bits and pieces together. In 16th IEEE conference on Automated Soft-
ware Engineering (ASE’01), pages 166–173, San Diego, USA, November 2001. IEEE Computer
Society Press.

[4] D. Alcaide, J. Sicilia, and D. Vigo. A tabu search algorithm for the open shop problem.
TOP : Trabajos de Investigación Operativa, 5(2):283–296, 1997.

[5] J. Amilhastre, H. Fargier, and P. Marquis. Consistency restoration and explanations in
dynamic csps - application to configuration. Artificial Intelligence, 135(2002):199–234, 2002.

[6] K. R. Apt. The essence of constraint propagation. Theoretical Computer Science, 221(1–
2):179–210, 1999.

[7] R. Bakker, F. Dikker, F. Tempelman, and P. Wognum. Diagnosing and solving over-
determined constraint satisfaction problems. In Proceedings IJCAI’93, pages 276–281, 1993.

[8] R. J. Bayardo Jr. and D. P. Miranker. A complexity analysis of space-bounded learning
algorithms for the constraint satisfaction problem. In AAAI’96, 1996.

[9] F. Benhamou. Heterogeneous constraint solving. In M. Hanus and M. Rofŕıguez-Artalejo,
editors, International Conference on Algebraic and Logic Programming, volume 1139 of Lecture
Notes in Computer Science, pages 62–76. Springer-Verlag, 1996.

[10] P. Berlandier and B. Neveu. Arc-consistency for dynamic constraint problems: A rms-
free approach. In T. Schiex and C. Bessiére, editors, Proceedings ECAI’94 Workshop on
Constraint Satisfaction Issues raised by Practical Applications, Amsterdam, August 1994.

[11] C. Bessière. Arc consistency in dynamic constraint satisfaction problems. In Proceedings
AAAI’91, 1991.

[12] C. Bessière and J.-C. Régin. MAC and combined heuristics: Two reasons to forsake FC (and
CBJ?) on hard problem. In CP’96, Cambridge, MA, 1996.

[13] J. Blazewicz, J. Lenstra, and A. R. Kan. Scheduling projects subject to resource constraints:
classification and complexity. Discrete Applied Mathematics, 5:11–24, 1983.

[14] C. Bliek. Generalizing partial order and dynamic backtracking. In Proceedings of AAAI, 1998.

[15] A. Borning, M. Maher, A. Martindale, and M. Wilson. Constraint hierarchies and logic
programming. In G. Levi and M. Martelli, editors, ICLP’89: Proceedings 6th International
Conference on Logic Programming, pages 149–164, Lisbon, Portugal, June 1989. MIT Press.

[16] P. Brucker, T. Hilbig, and J. Hurink. A branch and bound algorithm for scheduling prob-
lems with positive and negative time-lags. Technical report, Osnabrueck University, May 1996.

[17] P. Brucker, B. Jurish, B. Sievers, and B. Wöstmann. A branch and bound algorithm for
the open-shop problem. Discrete Applied Mathematics, 76:43–49, 1997.

40

Dossier d’Habilitation à Diriger les Recherches

[18] P. Brucker, S. Knust, A. Schoo, and O. Thiele. A branch and bound algorithm for the
resource-constrained project scheduling problem. European Journal of Operational Research,
107:272–288, 1998.

[19] J. Carlier and E. Pinson. Adjustment of heads and tails for the job-shop problem. European
Journal of Operational Research, 78:146–161, 1994.

[20] Y. Caseau and F. Laburthe. Improving clp scheduling with task intervals. In P. V. Hen-

tenryck, editor, Proc. of the 11th International Conference on Logic Programming, ICLP’94,
pages 369–383. MIT Press, 1994.

[21] Y. Caseau and F. Laburthe. Cumulative scheduling with task intervals. In Joint International
Conference and Symposium on Logic Programming. MIT Press, 1996.

[22] P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions mathematical
foundation. In Symposium on Artificial Intelligence and Programming Languages, volume 12(8)
of ACM SIGPLAN Not., pages 1–12, 1977.

[23] E. Davis. Constraint propagation with interval labels. Artificial Intelligence, 32(2):281–331,
1987.

[24] N. de Siqueira and J. Puget. Explanation-based generalisation of failures. In Proceedings
ECAI’88, pages 339–344, Munich, Germany, 1988.

[25] R. Debruyne. Arc-consistency in dynamic CSPs is no more prohibitive. In 8th Conference on
Tools with Artificial Intelligence (TAI’96), pages 299–306, Toulouse, France, 1996.

[26] R. Debruyne, G. Ferrand, N. Jussien, W. Lesaint, S. Ouis, and A. Tessier. Correctness
of constraint retraction algorithms. In FLAIRS’03: Sixteenth international Florida Artificial
Intelligence Research Society conference, pages 172–176, St. Augustine, Florida, USA, May
2003. AAAI press.

[27] R. Douence and N. Jussien. Non-intrusive constraint solver enhancements. In Colloquium on
Implementation of Constraint and LOgic Programming Systems (CICLOPS’02), volume 344 of
CW Reports, pages 26–36, July 2002.

[28] R. Douence, O. Motelet, and M. Sudholt. A formal definition of crosscuts. In Reflection,
pages 170–186, 2001.

[29] A. Elkhyari, C. Guéret, and N. Jussien. Conflict-based repair techniques for solving dy-
namic scheduling problems. In Principles and Practice of Constraint Programming (CP 2002),
number 2470 in Lecture Notes in Computer Science, pages 702–707, Ithaca, NY, USA, Septem-
ber 2002. Springer-Verlag. Short paper.

[30] F. Fages, J. Fowler, and T. Sola. A reactive constraint logic programming scheme. In
International Conference of Logic Programming, ICLP’95, Tokyo, 1995.

[31] F. Fages, J. Fowler, and T. Sola. Experiments in reactive constraint logic programming.
Journal of Logic Programming, 37(1-3):185–212, 1998.

[32] G. Ferrand, W. Lesaint, and A. Tessier. Theoretical foundations of value withdrawal
explanations for domain reduction. Electronic Notes in Theoretical Computer Science, 76,
2002.

[33] E. C. Freuder, C. Likitvivatanavong, and R. J. Wallace. A case study in explanation
and implication. In CP2000 Workshop on Analysis and Visualization of Constraint Programs
and Solvers, 2000.

41

Synthèse scientifique

[34] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[35] Y. Georget, P. Codognet, and F. Rossi. Constraint retraction in clp(fd): Formal framework
and performance results. Constraints, an International Journal, 4(1):5–42, 1999.

[36] M. Ghoniem, N. Jussien, and J.-D. Fekete. Visualizing explanations to exhibit dynamic
structure in constraint problems. In CP03 Workshop on User-Interaction in Constraint Satis-
faction (UICS’03), Kinsale, Ireland, September 2003.

[37] M. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research, 1:25–46,
1993.

[38] M. Ginsberg and D. A. McAllester. Gsat and dynamic backtracking. In International
Conference on the Principles of Knowledge Representation (KR94), pages 226–237, 1994.

[39] F. Glover and M. Laguna. Modern Heuristic Techniques for Combinatorial Problems, chapter
Tabu Search, C. Reeves. Blackwell Scientific Publishing, 1993.

[40] T. Gonzales and S. Sahni. Open-shop scheduling to minimize finish time. Journal of the
Association for Computing Machinery, 23(4):665–679, 1976.

[41] J. Grabowski, E. Nowicki, and S. Zdrzalka. A block approach for single-machine scheduling
with release dates and due dates. European Journal of Operations Research, 26:278–285, 1986.

[42] Y.-G. Guéhéneuc and N. Jussien. Using explanations for design-patterns identification. In
IJCAI’01 Workshop on Modelling and Solving problems with constraints, pages 57–64, Seattle,
WA, USA, August 2001.

[43] C. Guéret, N. Jussien, and C. Prins. Using intelligent backtracking to improve branch
and bound methods: an application to open-shop problems. European Journal of Operational
Research, 127(2):344–354, 2000.

[44] C. Guéret and C. Prins. Classical and new heuristics for the open-shop problem. European
Journal of Operations Research, 107(2):306–314, 1998.

[45] C. Guéret and C. Prins. A new lower bound for the open-shop problem. AOR (Annals of
Operations Research), 92:165–183, 1999.

[46] U. Junker. QUICKXPLAIN: Conflict detection for arbitrary constraint propagation algo-
rithms. In IJCAI’01 Workshop on Modelling and Solving problems with constraints, Seattle,
WA, USA, August 2001.

[47] N. Jussien. e-constraints: explanation-based constraint programming. In CP01 Workshop on
User-Interaction in Constraint Satisfaction, Paphos, Cyprus, 1 December 2001.

[48] N. Jussien and V. Barichard. The PaLM system: explanation-based constraint programming.
In Proceedings of TRICS: Techniques foR Implementing Constraint programming Systems, a
post-conference workshop of CP 2000, pages 118–133, Singapore, September 2000.

[49] N. Jussien and P. Boizumault. Implementing constraint relaxation over finite domains using
ATMS. In M. Jampel, E. Freuder, and M. Maher, editors, Over-Constrained Systems,
number 1106 in Lecture Notes in Computer Science, pages 265–280. Springer-Verlag, 1996.

[50] N. Jussien and P. Boizumault. Best-first search for property maintenance in reactive con-
straints systems. In International Logic Programming Symposium, pages 339–353, Port Jeffer-
son, N.Y., USA, October 1997. MIT Press.

42

Dossier d’Habilitation à Diriger les Recherches

[51] N. Jussien, R. Debruyne, and P. Boizumault. Maintaining arc-consistency within dynamic
backtracking. In Principles and Practice of Constraint Programming (CP 2000), number 1894
in Lecture Notes in Computer Science, pages 249–261, Singapore, September 2000. Springer-
Verlag.

[52] N. Jussien and O. Lhomme. Local search with constraint propagation and conflict-based
heuristics. Artificial Intelligence, 139(1):21–45, July 2002.

[53] N. Jussien and O. Lhomme. Unifying search algorithms for CSP. Research Report 02-3-INFO,
École des Mines de Nantes, Nantes, France, 2002.

[54] N. Jussien and O. Lhomme. Combining constraint programming and local search to design
new powerful heuristics. In 5th Metaheuristics International Conference (MIC’2003), Kyoto,
Japan, August 2003.

[55] N. Jussien and S. Ouis. User-friendly explanations for constraint programming. In ICLP’01
11th Workshop on Logic Programming Environments (WLPE’01), Paphos, Cyprus, 1 December
2001.

[56] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of AspectJ. In European Conference on Object-Oriented Programming (ECOOP),
pages 327–353, 2001.

[57] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Akşit and S. Matsuoka, editors, 11th Euro-
pean Conference on Object-Oriented Programming (ECOOP’97), volume 1241 of LNCS, pages
220–242, Jyväskylä, Finland, 1997. Springer Verlag.

[58] R. Klein and A. Scholl. Computing lower bounds by destructive improvement: an appli-
cation to Resource-Constrained Project Scheduling Problem. European Journal of Operational
Research, 112:322–345, 1999.

[59] F. Laburthe. CHOCO: implementing a CP kernel. In CP00 Post Conference Workshop on
Techniques for Implementing Constraint programming Systems (TRICS), Singapore, September
2000.

[60] O. Lhomme. Consistency techniques for numeric CSPs. In IJCAI’93, pages 232–238, Chambéry,
France, August 1993.

[61] C.-F. Liaw. A tabu search algorithm for the open shop scheduling problem. Computers and
Operations Research, 26, 1998.

[62] S. Ouis, N. Jussien, and P. Boizumault. k-relevant explanations for constraint program-
ming. In FLAIRS’03: Sixteenth international Florida Artificial Intelligence Research Society
conference, pages 192–196, St. Augustine, Florida, USA, May 2003. AAAI press.

[63] G. Pesant. A filtering algorithm for the stretch constraint. In Springer-Verlag, editor,
Principles and Practice of Constraints Programming (CP 2001), number 2239 in Lecture Notes
in Computer Science, pages 183–195, Paphos, Cyprus, 2001.

[64] C. Prins. Competitive genetic algorithms for the open shop scheduling problem. Mathematical
Methods of Operations Research, 52(3):389–411, 2000.

[65] C. Prins and J. Carlier. Resource optimization in a TDMA/DSI system: the eutelsat ap-
proach. In Proceedings of the International Conference on Digital Satellite Communications
(ICDSC 7), pages 511–518, Munich, Germany, 1986.

43

Synthèse scientifique

[66] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational Intelli-
gence, 9(3):268–299, August 1993. (Also available as Technical Report AISL-46-91, Strathclyde,
1991).

[67] P. Prosser. MAC-CBJ: maintaining arc-consistency with conflict-directed backjumping. Re-
search Report 95/177, Department of Computer Science – University of Strathclyde, 1995.

[68] J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In AAAI 94, Twelth
National Conference on Artificial Intelligence, pages 362–367, Seattle, Washington, 1994.

[69] G. Rochart and N. Jussien. Explanations for global constraints: instrumenting the stretch
constraint. Research Report 03-01-INFO, École des Mines de Nantes, Nantes, France, 2003.

[70] G. Rochart, N. Jussien, and F. Laburthe. Challenging explanations for global constraints.
In CP03 Workshop on User-Interaction in Constraint Satisfaction (UICS’03), Kinsale, Ireland,
September 2003.

[71] D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction. In
A. Borning, editor, Principles and Practice of Constraint Programming, volume 874 of Lecture
Notes in Computer Science. Springer, May 1994. (PPCP’94: Second International Workshop,
Orcas Island, Seattle, USA).

[72] T. Schiex and G. Verfaillie. Nogood Recording for Static and Dynamic Constraint Satis-
faction Problems. International Journal of Artificial Intelligence Tools, 3(2):187–207, 1994.

[73] T. Schiex and G. Verfaillie. Valued constraint satisfaction problems: Hard and easy prob-
lems. In C. Mellish, editor, IJCAI’95: Proceedings International Joint Conference on Artificial
Intelligence, Montreal, August 1995.

[74] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. In AAAI-92: Proceedings 10th National Conference on AI, pages 440–446, San Jose,
July 1992.

[75] M. H. Sqalli and E. C. Freuder. Inference-based constraint satisfaction supports explanation.
In AAAI: National Conference on Artificial Intelligence, pages 318–325, 1996.

[76] R. M. Stallman and G. J. Sussman. Forward reasoning and dependency directed backtracking
in a system for computer-aided circuit analysis. Artificial Intelligence, 9:135–196, 1977.

[77] É. Taillard. Benchmarks for basic scheduling problems. European Journal of Operations
Research, 64:278–285, 1993.

[78] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[79] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Programming
Series. MIT Press, Cambridge, MA, 1989.

[80] M. Wilson and A. Borning. Hierarchical constraint logic programming. Journal of Logic
Programming, 16(3):277–318, July 1993.

44

	I Introduction
	II Definitions
	Constraint Satisfaction Problems
	The constraint network
	Domain reduction and propagation
	Enumeration

	Explanations for constraint propagation
	The basics: explanation-sets
	More information: explanation-trees
	Basic properties of explanations
	Related concepts

	III Computing explanations: techniques and implementation
	Computing explanations
	Using the formal definition
	Event-based finite domain constraint solvers
	From theory to practice

	Implementing an explanation-based constraint solver
	Introducing explanations within an existing solver
	Handling global constraints
	Complexity issues
	The PALM system

	Other computation techniques
	Off-line techniques
	Non-intrusive techniques

	IV Applications
	Explanations for user interaction
	Explanation-related queries
	Application: the PTIDEJ system
	Open issues: user accessibility

	Explanations for incremental handling of dynamic problems
	Incremental constraint retraction
	Efficient re-propagation of constraints
	Over-constrained problems
	Application: solving dynamic RCPSP

	Explanations for search in constraint programming
	From backtrack-based to explanation-based solving
	A new family of algorithms: decision-repair

	A case study: solving open-shop scheduling problems
	Open-shop scheduling problems
	An intelligent backtracker
	An efficient heuristic technique
	Analysis

	V Conclusion and further work

