
HAL Id: tel-00293982
https://theses.hal.science/tel-00293982

Submitted on 8 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Un composant logiciel pour la gestion et l’exécution de
plan en robotique: Application aux systèmes

multi-robots
Sylvain Joyeux

To cite this version:
Sylvain Joyeux. Un composant logiciel pour la gestion et l’exécution de plan en robotique: Application
aux systèmes multi-robots. Génie logiciel [cs.SE]. Institut Superieur de l’Aéronautique et de l’Espace,
2007. Français. �NNT : �. �tel-00293982�

https://theses.hal.science/tel-00293982
https://hal.archives-ouvertes.fr

Thèse

en vue de l’obtention du Doctorat de l’Université de Toulouse

délivré par l’ISAE

(Domaine: Systèmes Informatiques Critiques)

présentée et soutenue par Sylvain Joyeux

le 6 Décembre 2007

A Software Framework for Plan Management and

Execution in Robotics :

Application to Multi-Robot Systems

Un composant logiciel pour la gestion et l’exécution de

plan en robotique :

Application aux systèmes multi-robots

Thèse préparée au Laboratoire d’Analyse et d’Architecture des Systèmes

sous la direction de M. Simon Lacroix et M. Rachid Alami

Jury

M. Jacques Malenfant Rapporteur, Président

M. Michael Beetz Rapporteur

Mme Delphine Dufourd Examinatrice

M. Michel Lemâıtre Examinateur

M. Simon Lacroix Directeur de Thèse

M. Rachid Alami Directeur de Thèse

Laboratoire d’Analyse et d’Architecture des Systèmes – UPR 8001

Contents

Introduction 15

1 Problem statement 17

1.1 Decision-making in single robotic systems . 18

1.1.1 The main approaches in mono-robot architectures 18

1.1.2 Where does decision take place ? . 19

1.1.3 The effects of knowledge separation . 20

1.1.4 Towards unified representations . 21

1.1.5 Error representation and management . 22

1.1.6 Conclusion . 24

1.2 Multi-robot systems . 24

1.2.1 Decision in multi-robot systems . 24

1.2.2 Executing multi-robot plans . 26

1.2.3 Conclusion . 26

1.3 Overall approach . 26

1.4 Supporting scenario . 29

1.4.1 Scenario: rover navigation in unknown environment 29

1.4.2 Dala functional layer . 30

1.4.3 Ressac functional layer . 31

2 A Plan Model 33

2.1 Plan Objects . 34

2.1.1 Representing the execution flow: events 34

2.1.2 Representing activities: tasks . 37

2.1.3 Hierarchies of task models and the substitution principle 38

2.2 Task Relations . 40

2.2.1 Defining task relations . 41

2.2.2 Hard dependencies: the depends on relation 41

2.2.3 Planning tasks: the planned by relation 42

2.2.4 Execution agents: the executed by relation 43

2.2.5 Soft dependencies: the influenced by relation 44

2.2.6 Interpreting the task structure: queries and triggers 45

2.3 Multi-robot plans . 46

3

4 · A Software Framework for Plan Management and Execution in Robotics

2.3.1 What are multi-robot plans ? . 46

2.3.2 Ownership . 46

2.3.3 Representing roles . 47

2.4 Translation from other plan models . 48

2.4.1 From the IxTeT plan model . 48

2.4.2 (PO)MDP execution policies . 51

2.5 Summary . 54

3 Plan Execution 57

3.1 Reaction to events . 57

3.1.1 Local propagation patterns . 58

3.1.2 Global propagation algorithm . 61

3.1.3 Explicit and implicit model . 62

3.2 Error management . 63

3.2.1 Error definitions . 63

3.2.2 Handling errors . 65

3.2.3 Handling remaining errors . 69

3.3 Garbage collection . 70

3.3.1 Useful tasks . 70

3.3.2 Killing the tasks . 71

3.4 Distributed execution . 72

3.4.1 Communication with other plan managers 72

3.4.2 Handling joint events . 73

3.4.3 Behaviour differences between local plans and mixed plans 74

3.5 Summary . 75

4 Plan Management 77

4.1 Simultaneous plan modification and execution . 78

4.1.1 Motivation . 78

4.1.2 Representing plan modifications . 79

4.1.3 Conflicts between execution and planning: transaction edition cycle . . . 80

4.1.4 Transactions as distributed whiteboards 82

4.2 Modifying plans . 84

4.2.1 Ownership and online plan modification 86

4.2.2 Switching plans . 86

4.2.3 Interrupting and resuming activities . 90

4.3 Summary . 94

5 Implementation and results 95

5.1 Implementation: the Roby application framework 95

5.1.1 Definition of tasks and events . 95

5.1.2 Binding GenoM into Roby . 96

4

· 5

5.1.3 Testing . 98

5.1.4 Performance . 99

5.2 The Dala/Ressac Experiment . 99

5.2.1 Supervision of the Dala Rover . 99

5.2.2 Cooperation: simulation results . 103

5.3 From the experiment, back to the implementation 108

6 Conclusion 109

6.1 Summary . 109

6.2 Future Work . 110

6.2.1 Extensions to the Roby software system 110

6.2.2 Perspectives . 111

Bibliography 113

5

6 · A Software Framework for Plan Management and Execution in Robotics

Résumé en français

Introduction 123

1 Problématique 125

1.1 Prise de décision dans un robot seul . 125

1.1.1 Principales approches dans les architectures mono-robot 125

1.1.2 Où sont prises les décisions ? . 126

1.1.3 Les effets de la séparation d’information 126

1.1.4 Vers des représentations unifiées . 126

1.1.5 Représenter et gérer les erreurs . 126

1.2 Systèmes multi-robot . 127

1.2.1 Décision dans les systèmes multi-robot . 127

1.2.2 Exécution de plans multi-robots . 127

1.3 Notre approche . 127

1.4 Scénario illustratif . 128

2 Un modèle de plan 129

2.1 Composition des plans . 129

2.1.1 Représentation du flot d’exécution : évènements 129

2.1.2 Représentation des activités : tâches . 130

2.1.3 Hiérarchie de modèles et principe de substitution 130

2.2 Relations entre tâches . 130

2.2.1 Dépendance directe : la relation depends on 130

2.2.2 Processus de planification : la relation planned by 131

2.2.3 Supports d’exécution : la relation executed by 131

2.2.4 Influence : la relation influenced by . 131

2.2.5 Interprétation de la structure des tâches : requêtes et notifications 131

2.3 Plans multi-robots . 131

2.3.1 Qu’est-ce qu’un plan multi-robot ? . 131

2.3.2 La notion d’appartenance . 132

2.3.3 Représentation des rôles . 132

2.4 Résumé . 132

3 Exécution des plans 133

3.1 Réaction aux évènements . 133

3.1.1 Propagation locale . 133

3.1.2 Algorithme de propagation globale . 133

3.2 Gestion des erreurs . 134

3.2.1 Définition des erreurs . 134

3.2.2 Gérer les erreurs . 134

3.2.3 Réaction aux erreurs non gérées . 135

6

· 7

3.3 Garbage collection . 135

3.3.1 Notion de tâche utile . 135

3.3.2 Interruption automatique de tâches . 136

3.4 Exécution distribuée . 136

3.4.1 Communication avec d’autres gestionnaires de plans 136

3.4.2 Gestion d’évènements joints . 136

3.4.3 Différences à l’exécution entre plans mono et multi-robots 137

3.5 Résumé . 137

4 Gestion de plans 139

4.1 Exécution et modification simultanée des plans 139

4.1.1 Motivation . 139

4.1.2 Représenter les modifications du plan . 139

4.1.3 Gestion de conflits entre exécution et modification du plan 140

4.1.4 Transactions comme outils distribués de modification de plan 140

4.2 Modifier le plan . 140

4.2.1 Notion d’appartenance et modification directe du plan en cours d’exécution140

4.2.2 Échange de sous-plans . 140

4.2.3 Interrompre et reprendre des activités . 141

4.3 Résumé . 141

5 Implémentation et résultats 143

5.1 Implémentation : développement d’un contrôleur Roby 143

5.1.1 Définition de tâches et d’évènements . 143

5.1.2 Contrôler GenoM depuis Roby . 143

5.1.3 Test d’applications Roby . 144

5.1.4 Performance . 144

5.2 Éxpérimentation . 144

5.2.1 Supervision du rover Dala . 144

5.2.2 Résultats . 144

5.3 Résumé . 145

6 Conclusion 147

6.1 Résumé . 147

6.2 Perspectives . 147

7

8 · A Software Framework for Plan Management and Execution in Robotics

8

List of Figures

1.1 Dependability tree . 22

1.2 The different software components and the data which make a Roby application 27

1.3 The three phases of the rover/UAV cooperation 29

1.4 Dala’s functional layer . 31

1.5 Ressac’s component architecture . 32

2.1 Notations related to events . 35

2.2 Example of two task models: the generic task model on which all other are based

and a less generic one . 37

2.3 Partial view of the task model hierarchy for Dala 39

2.4 Nav::MoveTo depends on subtree . 41

2.5 planned by relation . 42

2.6 executed by relation . 44

2.7 Task structure for the rover-UAV interaction . 47

2.8 Example IxTeT plan . 50

2.9 Partial view of an IxTeT plan translated into Roby 52

2.10 Pattern in MDP policy translations . 53

2.11 Handling of branches during the translation process 54

3.1 Overview of the execution cycle . 58

3.2 Overview of the event propagation phase . 59

3.3 Local propagation patterns . 59

3.4 Achieving an event by using an external task . 60

3.5 Initialization of the Pom::Localization . 61

3.6 Requirements of the global event propagation . 61

3.7 Overview of the error handling phase . 66

3.8 Instantaneous plan repair . 66

3.9 error handling relation . 68

3.10 Overview of the garbage collection phase . 70

4.1 Broken trigger because of incremental plan change 79

4.2 Example of a transaction . 80

4.3 Result of the transaction on Fig. 4.2 when it is committed 81

4.4 Architecture: transaction edition . 83

9

10 · A Software Framework for Plan Management and Execution in Robotics

4.5 Distributed transactions . 85

4.6 Transition between motion modalities . 89

4.7 Starting point of the split of Fig. 4.8 . 91

4.8 Split algorithm for Nav::MoveTo . 92

5.1 Code example: definition of the generic MoveTo task model mentioned on Fig. 2.3 96

5.2 How GenoM activities are represented by Roby tasks 97

5.3 Unit-testing a functional module . 98

5.4 Testing the plan generation capabilities of our rover 98

5.5 Performance measurement of the Roby executive 100

5.6 Trigger of the DEM mapping loop based on a state event 101

5.7 Representation of the Dtm perception loop in the real robot 102

5.8 GenoM functional layer of the Dala rover used in simulation 104

5.9 Two stages of execution in the rover/UAV cooperation 105

5.10 Maps used for the simulation of our rover/UAV scenario 106

5.11 Progression of the UAV/rover cooperation in simulation 107

3.1 Propagation locale . 134

10

Résumé

Dans les années 90, le problème de l’intégration des nombreuses fonctionalités nécessaires

à l’autonomie de robots a donné naissance aux architectures robotiques, qui permettent aux

différentes fonctions nécessaires aux robots autonomes de bien s’articuler entre elles. la percep-

tion, la décision et l’action. L’expérience dans ce domaine a montré les limites des différentes

approches alors proposées. Récemment, de nouvelles architectures ont tenté de dépasser ces

limites, principalement en unifiant la représentation du plan. Cette thèse propose à la fois

un modèle de plan permettant de représenter les résultats de différents formalismes de décision,

d’exécuter le plan qui en résulte, et de l’adapter en ligne. Ce modèle et le composant d’exécution

et d’adaptation construit autour de lui ont été pensé dès l’origine pour le multi-robot: il s’agit de

permettre l’exécution et l’adaptation de plans joints, c’est à dire de plans dans lesquels plusieurs

robots coopèrent. Le composant logiciel construit durant cette thèse a de plus donné lieu à une

validation expérimentale pour une coopération aéro-terrestre

Abstract

During the 90s, the integration of the many functionalities needed to make robot autonomous

has given birth to robotic architectures, which allow cooperation between perception, decision

and action in robotic systems. Experience with these architectures has shown that they suffer

from limitations. More recently, new paradigms have appeared to tackle these limitations, based

mainly on the idea that plan representation should be unified. This thesis contribution is a plan

model which allows the integration of the result of different decision formalisms, to execute them

and to adapt them online. Moreover, this model and the execution and adaptation component

built around it have been designed with multi-robot in mind: it allows to build, execute and

adapt joint plans, in which more than one robot are involved. The software component written

during this thesis has been tested experimentally, in an aero-terrestrial cooperation scenario.

12 · A Software Framework for Plan Management and Execution in Robotics

12

Remerciements

Ce manuscrit de thèse est le résultat de trois années de travail au LAAS/CNRS, à Toulouse.

Je souhaite, par ces quelques mots, remercier les personnes qui ont rendu ces trois années riches

à la fois humainement et scientifiquement.

Tout d’abord, merci à Malik Gallahb – directeur du laboratoire, Raja Chatila – chef du

groupe de robotique puis directeur du laboratoire – et Rachid Alami – actuel chef de groupe –

de m’avoir accueilli dans l’équipe de robotique du LAAS.

Merci à Simon Lacroix, mon directeur de thèse, pour avoir toujours cru en moi et avoir

toujours espéré que de grandes choses ressortent de ce travail.

Merci à mes deux rapporteurs, Michael Beetz et Jacques Malenfant, pour avoir eu une lecture

“différente” de ce manuscrit : leurs rapports en ont changé ma propre vision, à un moment où

on a surtout “le nez dans le guidon”.

Merci à ceux qui m’ont aidé à réaliser la partie expérimentale de cette thèse, partie à la fois

la plus riche et la plus frustrante : Matthieu, Thierry et Arnaud au LAAS, Roger, Vincent et

Alain au sein du projet Ressac de l’ONERA.

Merci à tous ceux qui ont rendu ces trois années aussi riches humainement. Les membres

du groupe de thésards anonymes de 16h, ceux qui demandent si ”ça va”, et s’intéressent à la

réponse, quand ils vous croisent à 20h (merci Patrick), ceux qui savent avoir le mot juste quand il

faut. Merci à tous d’avoir supporté mes (nombreux) coups de gueule, parfois – je dois l’admettre

– un peu répétitifs. Vous citer un par un serait un exercice certes intéressant, mais j’aurais trop

peur d’en oublier un ... J’imagine que vous vous reconnâıtrez.

Enfin, merci à ceux et celles (et celle) qui m’ont fait oublier le travail dans des périodes où

il devenait trop envahissant.

14 · A Software Framework for Plan Management and Execution in Robotics

14

Introduction

The last ten years have seen tremendous progresses in the domain of autonomous robots: many

technologies are now available which could allow to make autonomous robots go out of the

research labs. Yet, no robots with high level of autonomy are out there, in the “real world”: the

martian rovers Spirit and Opportunity, while a remarkable success, have very few capabilities for

decision-making. As we all tell when we present our research, autonomous robotic systems have

many applications. But a lot of work is still needed to make them available out of research labs,

because these applications require that humans simply tell the robot what to do, but no longer

how to do it. An interesting exception is the Remote Agent experiment [15], where NASA let

an autonomous system control a space probe for a few days. But it is still an exception, not the

norm.

Recently, focus has been given on multi-robot systems: one single robot cannot achieve a lot,

particularly when humans cannot be directly involved in the goal realizations, either because

the task is too dangerous – like in fire-fighting or nuclear environments – or because we would

like to achieve a 24/7 coverage – like in forest survey [32] or zone surveillance.

Focus

The work presented in this thesis contributes to that particular branch of the robotic research:

multi-robot systems. It will also focus, for demonstration purposes, on an aero-terrestrial appli-

cation.

In that context, our main focus is the definition and implementation of a software architec-

ture, which is a widely, yet vaguely defined, concept. An interesting sentence about architecture

is R. Simmons’s: “architecture is the backbone of robotic systems” [64]. Architecture is, indeed,

what should tie together all the software pieces a robot is made of. We will go forward in that way

and say that architectures should shape how the developer (in our case, the people developing

this software) should think about integrating their piece of work in the whole robot. Moreover,

while conceptual architectures are sometimes defined separated to its actual implementation,

we think it leads to define some very generic concepts which in no way helps in guiding actual

developments. It is true that concepts are not tied to a particular implementation, but while a

“conceptual” approach gives interesting insight about what components should be and how they

should interact, it often does so at a level that does not help in actually getting things done.

Moreover, extensive work has already been done in defining modular architectures for basic

functionalities, all of these architectures being more or less based on the notion of modules and

15

16 · A Software Framework for Plan Management and Execution in Robotics

data flow, now common in software engineering. But to our knowledge very few architectures do

try to integrate decision-making as an external component [2; 72; 27; 49]: while many systems

have been deployed, in which decision making exists and is integrated, it is often done in an

ad-hoc way. Since there is hardly one-fits-all automated planning tool, in particular in the

case of multi-robot systems, we feel that generic integration of decision-making into a robotic

architecture is a must-have. This is the leitmotiv of this work: one of our goals has been to

provide a software framework in which it is possible to experiment in the integration of different

decision-making tools, providing in the process a basis of reflexion for this integration.

Contributions

The main contributions of this thesis are:

• the definition of a generic software component for plan management, which defines the

tools to build and to execute plans, to adapt them during execution, and to recover from

various kind of errors.

• the definition of an architecture based on that component, which shows how it allows to

integrate decision-making during the lifetime of the system.

• the adaptation of this architecture to the specificities of multi-robot systems: representa-

tion and manipulation of the notion of cooperation, limited communications.

• implementation of this system, and test both in simulation and in an experimental setup

with two robots.

Outline

In the first chapter, we describe various approaches existing in the literature, analyzing their

strength and drawbacks for both mono-robot and multi-robot systems. During this study of

existing architectures, we try to show what are, in our opinion, the problems that architectures

should solve. We finally describe our approach, how it relates to the state of the art, and

introduce a supporting scenario which is used for illustration purposes in the remaining chapters.

In the second chapter, we describe what is a plan and how it is described in our system. We

also show that plans from other plan models can be easily translated in our plan model.

In chapter 3, we show how these plans, once they are built, are executed by our system. We

also show how non-nominal situations are handled.

Chapter 4 ties everything together by describing how our architecture allows to adapt plans

during their execution, and how decision-making is handled during the system lifetime.

Then, chapter 5 describes issues specific to our implementation, and the related technical

choices. It also describes how our system has been used to develop a controller for the two

robots of our supporting scenario, and presents experimental results both in the field and in

simulation.

Finally, chapter 6 summarizes our contributions, the obtained results and discusses the

limitations of our system and how we would like to see it evolve.

16

1
Problem statement

The management of an autonomous robot – let alone a team of robots – is something challenging:

it integrates lots of basic functionalities which should be put to work together to allow an

autonomous behaviour in a complex, partially known, dynamic environment:

complex since it is the real world, either human-centric or natural. Because of this complexity,

any model we can use to allow reasoning in our robot is bound to be imperfect – and thus

the reasoning itself will be imperfect.

partially known even if the internal models the robot uses to reason were sufficiently close

to reality, perception is an imperfect process and thus the knowledge the robot has of its

environment is also imperfect. Autonomous robots have to reason on imperfect data and

imperfect models.

dynamic the environment the robot evolves in changes over time. So, the estimate of the world

state and the models the robot reason on at a particular time can become invalid while

the robot is reasoning on them.

Since the 80’s an area of robotic research has been to define architectures: principles and tools

helping the process of managing the whole robotic system, acknowledging the fact that a robot

must continuously adapt. Architecture deals with the integration of the multiple functionalities

needed for the robot to work: it is the “backbone of robotic systems” [64]. Reflexions on

architecture have given birth to many software systems which apply different approaches to

build the software system of an autonomous robot.

This chapter gives an overview of the existing approaches for single robot and multi-robot

control, showing how the integration of decision-making is integrated in existing systems, and the

limits of the existing approaches. It also describes the problems specific to multi-robot systems

and how these problems are handled by currently existing architectures. We will describe, based

17

18 · A Software Framework for Plan Management and Execution in Robotics

on that reflexion, how our system is designed and a supporting scenario which will provide the

examples needed in this dissertation, and show the viability of our approach.

First, how decision-making has been integrated in a single robot is presented (section 1.1).

Then section 1.2 discusses the specific requirements of multi-robot systems and what approaches

have been developed in that regard. Section 1.3 describes the approach we developed in order

to handle the problems presented in the first two sections. Finally, section 1.4 describes the

experimental scenario which allowed us to validate our system.

1.1 Decision-making in single robotic systems

The integration of decision-making in autonomous robots remains a challenge. As we will see,

the complexity of decision-making algorithms impose to split the decision problems into smaller

problems. The problem the architecture designer has then to face is to do that in a sound way:

how to make the different decision-making components cooperate nicely ?

First, an overview of the two main architecture paradigms is presented. Then, we discuss

the structure of decision making in robotic systems, how the separation of decision making into

small components can impact the overall system behaviour and how some architectures mitigate

these impacts. Finally, we give an overview of the notions of error and error handling, which

is central in the problem of system dependability, and how this problem is handled in current

architectures.

1.1.1 The main approaches in mono-robot architectures

Traditionally, robotic architectures are classified in two main paradigms: the behaviour based

architectures and the hybrid architectures. We took in this section some of the arguments and

ideas presented in [35], which provides – in our opinion – a good historical and conceptual

introduction to classical robot architectures.

In behaviour-based systems the robot control is implemented through a particular compo-

sition of simple behaviours. Brooks [19] basic idea, which is at the origin of this concept, was

that the classical sense-plan-act loop of robot control could be reduced into a sense-act – re-

moving the need for explicit representation of the robot state and an ahead of time reasoning

about its future. From this original idea, each specific architecture defined its own concept of

behaviour, and the way to compose them. Arkin’s motor schemas [7], for instance are force-field

generation procedures defining specific motion behaviours (for instance, avoid-static-obstacles or

move-ahead). These specific behaviours are then composed by a weighted average of the force

fields.

Layered architectures [2; 35; 65] – also called hybrid architectures – integrated the “plan”

step on top of a behaviour-like system, to use classical AI techniques like task planning. As

Bonasso et al. [16] put it:

“Others sought to integrate traditional reasoning systems with the reactive style, a

kind of “plan-sense-act approach”. What emerged was a software control architecture

18

Problem statement · 19

with a lowest layer of reactivity, a topmost layer of traditional AI planning, and

a middle layer which transformed the state-space representation of plans into the

continuous actions of the robot.“

For this reason, these architectures are also called 3-layer architectures since they are more

or less all based on the three-layers depicted above. It is interesting to see that “classical”

behaviour architectures have integrated reconfiguration systems, based either on behaviours

themselves [53; 54] or on other paradigms. AuRa [8], for instance, has a finite-state automata

(FSA) which chooses the right configuration of motor schemas for the current situation the robot

is in. Arkin et al. have extended this FSA-based approach to allow non-specialists to specify

and monitor the robot missions, especially in military contexts [6]. This way of specifying the

robot controller has been successful both in the field and in simulation for many applications 1.

In this thesis, we adopted the point of view of hybrid architectures: behaviours and ahead-

of-time decision-making are complementary approaches, and architectures should support their

integration. The next section therefore focuses on the structure of decision-making in robotic

architectures: how decision is integrated in the classical architectures presented above, what

are their limitations and what attempts have been made to address these limitations in modern

architectures.

1.1.2 Where does decision take place ?

What is decision making in robotic architectures is a difficult question, and we do not pretend

to give a definitive answer here. We only try to give, through examples, a feeling of the following

three categories:

• the components which are definitely taking decisions.

• the components which are definitely not taking decisions.

• the grey area in which it is difficult to choose.

Low-level behaviours like “go forward” or “turn left” are obviously not decision-making

components. Another example is a module to control motors, or a pilot module for an UAV.

It does not choose anything: it has a very short-term order (for instance the desired path the

robot should follow) and the role of these components are to stick to this order regardless of

external influence (wind for the UAV for instance).

Action planning deals with deciding the future actions of the robot, given its goals, its

current state, a model of its environment and a model of how it can change its own state in this

environment. Action planning is definitely in the domain of decision making: it chooses, in the

set of actions the robot can perform, the ones that are the most likely to make it reach its goal.

In the gray area, there is path planning, or – more generally – all processes which involve

choosing the place the robot should move (for instance, a perception planner which tells where

perception should be done). This kind of planning deals with choosing the right path for

1the interested reader can look at GeorgiaTech Mobile Robots’ lab webpage at http://www-static.cc.gatech.
edu/ai/robot-lab

19

20 · A Software Framework for Plan Management and Execution in Robotics

the robot, given a goal. One should argue that given the environment cost function and the

geometrical model of the robot, there is only one optimal path. To that, we can answer that,

most of the time, a whole class of paths are equivalent from the robot mission point of view

and that most of the planning algorithms choose a single path in all the possible equivalent

ones. Path planning modules therefore do choose a path among the possible ones: they make a

decision which constrains the whole robot.

This can be seen as a definition of decision-making: any component which chooses one of the

possible, “sensible” futures of the robot do take a decision. As such, they are all planners: they

do a projection of the robot into its possible futures and choose one (or many) among them.

As we will see in the next section, it is important to understand the interaction between the

different decision-making components – and to allow them to have rich interactions – as these

interactions are critical for the overall robot performance.

1.1.3 The effects of knowledge separation

The example of path planning also illustrates well the problem of model inconsistency which

appears when more than one component take decisions. Let’s consider a robot which has an

action to perform at a given location L. The classical architectural solution is for a “high level”

action planner to select a movement towards L, and then let the functional layer plan it and

execute the resulting path. The problem is on what criteria the path planning algorithm chooses

the “right” path ? It is very easy to see that the method chosen is critical for the overall robot

performance: let’s consider a “good” path planning algorithm, which is able to make the robot

reach its goal. Now, let’s consider the two following situations:

• a “minor” goal is given to the robot during its movement, either because an operator has

chosen to do so or because of its interactions with other robots. The chosen path can make

that minor goal too costly to reach. If the path choice had taken the possible actions of

the robot into account, then the right path would have been chosen. However, this would

require to make the path planner have the knowledge of the robot action model.

• let’s consider a more problematic case: the robot interacts with other robots and all the

robots share their model of the environment. Path planning would have, in this case, to

choose between paths that are known to be good, and paths that are partially unknown

to it, but for which another robot accepts to perform a perception. Choosing the right

path then becomes a process of cooperation between multiple robots, taking both the path

planning process per se and the action planning processes into account.

One solution is to have a single planner which takes both sides into account [39]. However,

this kind of inter-mixed geometric/symbolic planning is very expensive from a complexity point

of view. It appears that keeping path planning and action planning separate is an order of

magnitude more efficient from a computational complexity point of view.

However, if the action planning process is able to reason about the path, then another solution

would be available in-between these two: (i) path planning generates a set of reasonable paths

20

Problem statement · 21

and (ii) action planning then selects the “right” path based on its own action model. In the multi-

robot example above, this would require to represent the dependencies between the execution

of each generated paths and the perceptions of regions of interest.

One would therefore need to represent, in the action plan, the paths generated by the path

planning tool, along with the dependencies between these paths and other actions. In both

cases, the path planning algorithm would still be a decision making process: it would choose

what is “reasonable” and what is not, but in a way which does not over-constrain the rest of

decision making.

1.1.4 Towards unified representations

This problem also appears between action planners: in architectures where action planning is

split into hierarchies – like the decision layers advocated by [2; 1] – the lower layers have a very

partial knowledge of the plans of the upper layers: their knowledge is limited to the actions that

should be executed right now. In these schemes, there is not the possibility to choose, in the

lower layers, the optimal actions given the future plan of the upper layer. The lower layers can

therefore over-constrain the upper layer.

Moreover, in the case of action planning, there is another problem to consider: layers may

not share the same action model. This is known as the hierarchy of abstraction: the upper levels

manipulate simpler models than lower layers. This has three consequences:

• the boundaries between the robot actions are defined beforehand. Therefore, one can not

change the planner dynamically according to the situation. This is a problem since there

is no (or at least, not yet) a universal planner: one must have the ability to choose the

right planner for the job at hand.

• one can not check that the overall plan is coherent, since one does not have a representation

of this overall plan.

• it is possible that the plan of the upper layer is in conflict with the plan of the lower layer:

when executed, one of the two execution components detects a violation of its own model

and make the action fail.

These problems have already been addressed at least partially in different ways by three

systems: the Coupled Layer Architecture for Robotic Autonomy (CLARAty) [72; 73; 52], the

IDEA architecture [49; 29] and the Concurrent Reactive Plans [12].

CLARAty addresses the problems outlined above by coupling a Casper planner [20] with

a TDL execution layer [63] through a new component: the CLEaR System [21]. The goal of

this component is to offer a view of the overall plan, and to check that this plan is globally

coherent. Future goals for this system are the integration of more reasoning tools – as for

instance the Casper scheduling engine – directly into CLEaR. For now, the only problem with

the implementation of Claraty is that the execution is done by TDL, not by CLEaR itself: so,

the global plan is not the executed one.

IDEA has chosen a completely different approach: the core principle in IDEA is that there

are multiple planning engines, but that they must (i) share the same model and (ii) cooperate

21

22 · A Software Framework for Plan Management and Execution in Robotics

Figure 1.1: Dependability tree

so that the system guarantees a global consistency of the global plan. To achieve that, the

designer of IDEA added the constraint that all agents must share the same planning model.

IDEA can therefore only integrate tools which reason directly on this planning model, which is

a very strong constraint. Nonetheless, the IDEA agent is a great achievement: it has proven that

controlling robots by using only planning is possible. The same approach has successfully been

used previously during the Remote Agent Experiment [41; 15], of which IDEA is a successor.

The Concurrent Reactive Plans system is also based on a plan-based control of robotic agents

in which the plan is dynamically adapted to its changing environment. The main focus of this

work is to first define a generic executable plan model and then develop transformation planning:

given a plan and a change of situation, how to specify changes to the plan to make it compatible

with the new situation. It is a very interesting work from our point of view because it shows

that, given a rich enough plan model which can be different to the models used by the plan

generation tool, one can (i) define a generic tool to adapt the plans in a sound manner and (ii)

develop global plan analysis tools like plan-based state prediction [14].

1.1.5 Error representation and management

A good introduction to the problem of dependability and the underlying definitions (Fig. 1.1)

can be found in [9]. [46] – from which comes the following definitions – applies this concepts to

the robotic domain.

In the domain of dependability, one defines a failure as an event that occurs when the

delivered service deviates from correct service. An error is that part of the system state which

can cause a failure. An error is detected if its presence is indicated by an error message A fault

is the adjudged or hypothesized cause of an error.

22

Problem statement · 23

The means to make a system dependable are then regrouped in four concepts: (a) fault

prevention, that is how to prevent the occurrence or introduction of faults, (b) fault removal,

that is how to reduce the number or severity of faults, (c) fault tolerance, that is how to deliver

correct service in the presence of faults, and (d) fault forecasting, that is how to estimate the

present number, the future incidence, and the likely consequences of faults.

On one hand, in all the architectures we already mentioned but IDEA, the domain of fault

prevention is taken by planning: the plan represents reactions to nominal and non-nominal sit-

uations, allowing a plan-based reaction in the presence of errors. Note that planners themselves

are subject to faults, and even if the planning engine was perfect, it is possible to have error in

models [46].

On the other hand, fault removal is traditionally handled by the tools designed to develop

the intermediate layer of three-layer systems. Outside the IDEA approach, the traditional way

to build that layer has been to develop languages or software libraries in which the robotic

engineer writes procedures. These procedures are supposed to handle the details of translating

the high-levels models manipulated by the planners into the orders which can be sent to the

functional layer. They also have a role of fault removal: they handle some of the errors in the

system, to reduce the complexity of the system from the planner point of view – which has then

to handle only the remaining errors.

TDL [63], ESL [34], PRS [40] are examples of tools designed to help handling this process.

They are all more or less based on the notion of context-based reactive refinement of the high

level plan into low-level orders. The layers written in these systems are often called supervision

layers as they send orders to the functional layer and supervise the correct execution of these

orders.

The three tools mentioned above have in common that they are “not [designed] to serve

as a representation for automated reasoning or formal analysis (although nothing precludes its

use for these purposes)” [34]. Recently, systems have been designed to take into account the

problem that procedures written in these systems are written by humans, and as such could

contain faults. Without the help of automated formal analysis it is impossible to prove that the

procedures would behave well. In robotic systems, it can have possibly dramatic consequences

in the physical world.

Three main approaches exist. The first approach is to develop a provably-right supervision

layer, for instance through Petri nets [10], finite-state automata [71], synchronous languages [50].

The second approach is the use of a “safety bag”: continue to use supervision tools not based on

models, but insert a thin model-based layer which checks that the orders sent by this supervision

layer are acceptable [11; 58]. The third approach is – of course – the IDEA approach: to develop

a whole model-based fault-tolerant architecture like [74].

The problem with the first two approaches are the limits of error representation: for these

systems to be able to handle inconsistencies in the orders sent by upper layers and error reports

coming from the lower layers, they must be able to represent and reason about them. The

experience of the Request and Resource Checker (R2C [58]) at LAAS showed that, since the

PRS-based supervision layer was unable to reason about the errors detected by the safety bag,

23

24 · A Software Framework for Plan Management and Execution in Robotics

the system as a whole was sometimes unable to properly handle that error: the supervision

system was unable to differentiate between “the task failed to start” and “the safety bag did

not allow to start it” which are two different things. This is yet another example of the limits

of model separation: the models manipulated by the two layers are too different for them to

interact properly.

1.1.6 Conclusion

In this section, we presented the most critical problems in layered decision-making: how separa-

tion of knowledge and model inconsistencies can impact a robotic system as a whole. Because of

these observations, we decided to base our approach on the notion of a single plan management

component: a component which gathers the results of all the decision making processes into a

single central plan, and which executes that plan. Having this central place with the representa-

tion of the whole system plan should allow to develop online plan verification, conflict handling,

. . . which benefit greatly of a global representation of the robot plan.

The next section focuses on the problem of multi-robot in today’s architectures: how multi-

robot imposes new requirements on the robot architectures.

1.2 Multi-robot systems

Multi-robot systems induced multiple interesting problems when compared to the management

of a single robot:

• the need for new planning models in which the presence of multiple, possibly heterogeneous,

agents is taken into account: they need to represent the fact that all actions can not be

performed by all robots.

• the need for new execution frameworks which take into account the fact that multiple

robot are loosely coupled when compared to what is required by the management of a

single robot.

• they must operate under limited communications: the robots may not have the ability

to communicate at all times, and even when they do, the communication bandwidth is

limited when compared to what’s available in a single computer system.

Behavioural approaches [54; 47] exist for multi-robot systems: they are based on exactly

the same principles that in mono-robot and have shown interesting results. Nonetheless, for

the same reasons than outlined in the first section, we will not focus our attention on these

architectures. Instead, our focus is planning in multi-robot systems.

1.2.1 Decision in multi-robot systems

When it comes to decision-making for multi-robot systems, one essential question is the location

of the decision making process: decision-making can be either decentralized – each robot takes

its own decisions – or centralized – one robot does all the decision making for all the other

robots.

24

Problem statement · 25

The interest of the first approach is robustness: to operate, the multi-robot system does not

depend on one single decision-making system. The second approach is nonetheless interesting

since the decision making process is not limited anymore by the communication problem: time

is no more spent on communication, and the planner can manipulate more information about

each robot.

The first difference between decision making for a single robot and for multi-robot systems

is that one should decide and represent who is doing what. Task allocation is the most simple

instance of that process: given a set of activities to realize, decide what robot will do what

activity.

The Contract Net Protocol (CNP) is a very simple, yet very effective, protocol which has

been designed to solve this problem [67]: a manager robot presents a set of tasks to be allocated,

and the other robots bid for the tasks, based on their own capabilities and their other activities.

The highest bidder is allocated the task and has then a contract with the bidding robot. The

original protocol is a very effective one when the tasks are not coupled (i.e. there is never the

constraint that two tasks must be allocated to the same robot): it is simple and completely

decentralized. Extensions to the original protocol are the auction of task groups, the ability for

robots to form groups, the group being the bidding entity. These approaches are now called

“market based” because of their auction structure, and numerous works exist in that area [18;

36; 25; 44]. [37] presents and compares a few variants of CNP. It also compares them against

behaviour-based approaches to task allocation.

The main limitation of the task allocation approach is that it models the robots as individual

entities, and do not represent – for instance – that they have a common goal. Tambe et al. have

centered their work on the representation of teams [69; 61; 59; 55]. In the context of these

teams, the task allocation problem is replaced by the role allocation problem: in the team, the

robot has no more a single activity but instead it is supposed to stick to solve a certain part of

the problem. Another way to put it is that, when a robot is assigned a role, it accepts to realize

a certain set of tasks, which are needed to achieve the team goal.

The second difference between decision making for a single robot and for multi-robot systems

is that the existence of cooperation between robots create new ways to optimize the multi-robot

system as a whole. For instance, the action of one robot can indirectly impact the actions of

another: the possibilities of “soft” or “hard” interactions between each robot plans are much

greater. For decentralized decision-making processes, it calls for new schemes of interaction to

handle possible conflicts, or reduce redundancies. Examples of these schemes are plan merg-

ing [75; 3; 4; 1] and tools to detect the possibility of opportunistic cooperation [5; 1]. The

GPGP/TAEMS [45; 24] approach is also an interesting one: in TAEMS, multi-robot plans are

represented as network of tasks, each task being assigned to one single robot. TAEMS plans

around a notion of influence: how an action of a given robot impacts the actions of another

robot. For instance, GPGP/TAEMS is able to reason on the influence of the perception of an

information on the path planning process of another robot. The plan is built cooperatively using

a blackboard system in which each robot can change the multi-robot plan.

25

26 · A Software Framework for Plan Management and Execution in Robotics

1.2.2 Executing multi-robot plans

The main specificity of multi-robot plan execution is that communication is not be available

at all times. This is something seldom taken into account in most systems: for instance, the

developers of GPGP explicitly avoided that issue.

Based on their work on teamwork, Tambe et al. developed the Machinetta proxies [61] as a

way to decentralize the execution of the team plan. Each system has a representation, through

Machinetta proxies of an estimation of the involvements the other teammates have into the team

plan. If the proxy estimates that a teammate can not be relied upon, the system will act as if

the teammate actually confirmed it has left the team. This approach is interesting since it uses

as much communication as possible, making the estimation as good as possible.

Another approach to handle communication loss is the decentralized classes of MDP plan-

ning: DEC-(PO)MDP are centralized planning processes which generates decentralized strate-

gies. This means that, once the strategy is generated the robots can act without explicit com-

munication at all. This is not very practical at the moment – since most of the time, if commu-

nication is possible, the multi-robot system will behave much better by using it. However, the

modelling of communication acts in decentralized MDPs is a topic currently under development.

1.2.3 Conclusion

A common architectural approach to integrate multi-robot paradigms is to separate the archi-

tecture into three components [31]:

• the description of the problem, and the description of the resulting joint plan. The first

part is for instance a description of robot capabilities and of the task requirements with

respect to these capabilities. The second part is the notion of allocated task or role.

• the negotiation protocol through which we build the joint plan: contract net, teamwork,

. . .

• the execution engine which handles the problem of multi-robot plan execution.

Our focus, in this thesis is the representation and execution of the joint plans. Since one

of our goals is also simultaneous plan execution and modification, we also provide a generic

blackboard-like tool supporting plan-based negotiation. Nonetheless, this tools does not con-

stitute a negotiation protocol: it constitutes instead a basis for the development of negociation

protocols.

1.3 Overall approach

Based on the reflexion we just outlined, we decided to base our approach on a plan management

component. This component offers a representation of a plan which includes all the robot

activities, an execution scheme based on that information, and the tools needed to modify that

plan while it is being executed. This plan management component aims at providing a basis for

the integration of existing decision-making tools and the development of new ones based on its

capabilities: planners, cooperation protocols, . . .

26

Problem statement · 27

Controller

Executive
External

events

Decision

Control

Plan

Generation

Tools

Main plan

object

instances

object

graphs

Models

object

models

application

code

Modifies

application

code

Interaction

for online

decision

and

planning/execution

conflict resolution

Builds or

repairs

Other robots

Functional layer

User

Figure 1.2: The different software components and the data which make a Roby application

Therefore, our plan manager aims at addressing the following issues:

1. represent all the robot activities and the interactions between these activities: avoid the

partition of information brought by the separation into layers. Moreover, represent one

robot activity in the context of the other robots activities, including the notion of team.

2. provide a generic execution scheme for that plan, in both mono and multi-robot.

3. dynamic plans: allow plan modifications while they are executed, and do so in a multi-

robot context. Integrate in that context various plan generation tools, including the plan

repair capabilities that these tools can have.

4. reflexion on the need for online decision making: where and how it is needed to make

explicit decisions during the plan execution.

In our system, a controller – which we also call a plan manager – is a complete application

tailored for the control of a specific robot. Such an application is made of models – the formal

description of the objects in the system – and code – either generic code written for all controllers

or specific code written for the robot.

27

28 · A Software Framework for Plan Management and Execution in Robotics

In a controller, the following components can be singled-out (Fig. 1.2). Each component is

directly related to the goals outlined above:

1. the models are only data. It includes application code provided by the user, and the

definition of the different objects the system will be able to manipulate in the plan. The

models are then used as a basis for the definition of the main plan: networks of objects

which are built according to the models. The design of this plan model has been driven

by the goals outlined above: multi-robot plans, translation from multiple plan generation

tools, representation of all the robot activities.

2. the executive is a software component which reads external events and reacts to them,

basing itself on the data in the main plan. In particular, it calls application code when

needed. This executive handles both single-robot and multi-robot execution of plans.

3. the plan generation tools are external tools which are called to build new plans asyn-

chronously, or – if they have that capability – to repair their current view of the plan, the

repair being then integrated back into the main plan. To integrate these tools, the system

provides generic mechanisms to modify the plan safely while it is being transformed.

4. finally, the decision control is a software component which is called when the plan execution

requires decision: arbitration between conflicting parts of the plan, different possibilities

of repair, We will see in each chapter that it is involved in all online decision-making,

making the decisions whenever it is needed during execution.

To demonstrate the mechanisms presented in this thesis, we have developed the Roby soft-

ware library and the associated application development framework. In this implementation,

the controller is a whole application: it is a set of models, planners, decision control, interaction

and team-management functions which are used to control a given robot. This controller is

written in the Ruby programming language, and we distinguish the framework code – the code

in the Roby library and framework itself – from the application code which is written outside

the Roby library, designed for specific needs.

The next chapter deals with the definition of the models and the definition of the plan.

Then, chapter 3 describes the executive: what is the process from which we transform the plan

into orders for the functional layer. Chapter 4 then describes the plan adaptation capabilities

of our system. Finally, chapter 5 outlines some key points of the implementation and some

experimental results. Since the decision control component is involved in all the steps of the

plan management, its functions are described when they are needed.

28

Problem statement · 29

Movement helped by Ressac mapping

Inject

mission:

Move(A, B)

Dala

builds its

plan

Choose a

zone and

perceive it at the

needed altitude

Integrate

traversability

data

Ressac is

notified of the

Move activity

Dala

begins to

move

Build zone

list for

Ressac

Legend

Dala actions

Ressac actions Action sequence

Build the

cooperation

plan

Initialize cooperation

Figure 1.3: The three phases of the rover/UAV cooperation. “Dala” is the name of our rover
and “Ressac” the name of the UAV.

1.4 Supporting scenario

To demonstrate the viability of our system, we have designed an experiment of Rover/UAV

cooperation. This scenario satisfies the following requirements:

• the functional layer of the rover is complex enough to demonstrate the flexibility of our

plan manager.

• the rover/UAV interaction is rich enough to demonstrate the viability of our system to

manage multi-robot systems.

This scenario has been extensively tested, both using our simulation system and in the field.

The results, as well as key points of the implementation of our plan manager are presented in

chapter 5. This section will present that scenario, as well as the capabilities and overall software

architecture of the two robots involved in it.

As you will notice, the actual multi-robot scenario is a two-robot one. Implementing the

multi-robot communication layer which would have been required by a full multi-robot system

has not been possible during this thesis. However, we believe that the mechanisms presented in

this dissertation are not limited to two-robot systems and will scale well in multi-robot systems.

1.4.1 Scenario: rover navigation in unknown environment

The goal of this scenario is to make a rover reach a goal efficiently in a completely unknown

environment. The Dala rover is able to locally update a traversability map of its environment and

plan a path into this map. The Ressac UAV helps the rover by also building a traversability map.

29

30 · A Software Framework for Plan Management and Execution in Robotics

The Ressac UAV is a RMAX helicopter which is owned and operated by the ONERA/CERT

lab in Toulouse, in cooperation with which we put this experiment into place. The Dala rover

is an ATRV, is owned by the LAAS/CNRS.

On the UAV side, we make the assumption that its movement is free of obstacles – no

object detection and path planning is therefore needed for the UAV. Moreover, the quality of

the information returned by the UAV is affected by its altitude. To avoid the well-known issue

of path planning constantly “switching” between completely different paths, the perception is

done at two altitudes: Ressac performs a high-level, low-confidence mapping of the regions for

which there is no information at all, thus giving a lot of low-confidence information which is

enough to stabilize the path planning algorithm. Once there is information for all the current

rover’s planned path, the UAV performs a more fine-grained mapping of regions of interest for

the rover.

The scenario general timeline is as follows:

1. an operator specifies a global goal in the rover’s plan. The rover generates a plan for this

goal and starts executing it.

2. once the rover and the UAV are able to communicate, the UAV “notices” the rover’s goal,

and it notices that this movement depends on traversability information. It proposes the

rover to cooperate. Both robots then cooperatively build their joint plan, a plan in which

the UAV generates a traversability map for the rover.

3. the two robots execute their joint plan, and react to errors which may appear in each

robot’s plan and in the joint plan.

The remaining of this section presents the functional layer of Dala since we rely on it for

most of our example. Ressac’s control, which is presented next, is in comparison much more

simple: the plan management system simply sends “zone mapping” orders to a “black box”

which handles the UAV movement and the map building process.

1.4.2 Dala functional layer

The Dala rover is an ATRV from iRobot, which is not capable of running in difficult terrain,

but can still go into “rough” terrain. We describe briefly three parts of the functional layer

presented on Fig. 1.4: the path planning part and the two navigation modalities (for flat and

rough terrains). The functional layer uses GenoM, which is a generic framework for integration

of modular functional layers [30].

The traversability mapping and path planning processes are as follows:

• from stereovision, a digital terrain map is produced by the Dtm module. This terrain map

is a local one: the module exports only a zone roughly 10 meters wide around the robot.

• from this terrain, a virtual robot is placed at each point of the map. From its resulting

attitude is deduced a difficulty value in [0 1] [56].

• this local difficulty map is then integrated in a global one by the Bitmap module.

• finally, the Nav module plans a path in this traversability map using a D* algorithm [33].

30

Problem statement · 31

Rough terrain navigation
Camera

Stereo Dtm

Difmap Bitmap Nav

P3D

Image

3D points

elevation:

local map

local

difficulty

map

global

traversability

map

steering

command

global

trajectory

steering

command

Sick

Laser

ranges

(180°)

Aspect
NDD

Laser

ranges

(180°)

Path planning

Flat terrain navigation

Locomotion

estimated

robot

position

GPS

POM

position

Localization

IMU

attitude

Gyro

heading

Rflex

odometry

Figure 1.4: Dala’s functional layer. The rectangles are the functional modules and are attached
to the data they produce. The arrows represent the data flow. The links between the position
poster and the rest of the system are not represented. Neither are the links between the motion
command and the locomotion module. Note that only one of the two navigation modality is
active at any given time.

The rover has two motion modalities. The first one is based on the detection of obstacles by

a laser range finder and as such is only available on flat terrain – where there is no problematic

obstacles under the laser plane. The NDD local obstacle avoidance method is an evolution of

the Nearness Diagram method [48]. The second motion modality is based on the same principle

than the difficulty map generation: a local path is planned into the terrain map based on the

estimated attitudes of the robot, hence the name P3D [17].

Both modalities are local : they do only a short-range planning of their future path. They are

used to execute the long range path from the Nav path planning module: this module generates

a set of local goals which are executed in sequence by the motion modality modules. Of course,

the two modalities are not used at the same time. We will see that our system has the ability

to switch between the two motion modalities seamlessly.

1.4.3 Ressac functional layer

The structure of the UAV functional layer is presented on Fig. 1.5. This functional layer is partly

based on the layer used during the Ressac experiment described in [28]. From the supervision

system point of view, the functional layer can execute very few orders: a movement towards a

GPS point or the mapping of a zone, this zone being defined by an altitude and two points.

The main particularity of this layer is that the tasks cannot be interrupted. It has actually

be an important point during integration as, once a mapping is started, the supervision system

cannot stop it to start another.

31

32 · A Software Framework for Plan Management and Execution in Robotics

Roby controller

Functional Server Flight Management

Figure 1.5: Ressac: component architecture. The functional server is the blackbox the Roby
controller is interfaced with. The actual UAV control is achieved by a separate fligh management
CPU.

32

2
A Plan Model

As we saw in the previous chapter, being able to represent all the execution context and all

of the current robot plans into one single software component helps the integration of multi-

mission robots through the use of multiple planners, re-use of supervision code, and promotes

the integration of global plan analysis tools not tied to a particular planner.

In this chapter, we describe the plan model used by our software component. The goal is

not to provide a generic planning framework, but a model generic enough to represent what’s

needed for execution, situation representation, supervision and plan adaptation. It has been

designed to be simple enough to allow the translation of the execution-related information from

other plan models while expressive enough to allow complex supervision schemes.

To design this plan model, we have to define what is a plan from a supervision point of view.

For the goal outlined above, it should include the following:

• a representation of the situation. This means that not only it must have a notion of what

the robot is doing (the set of running activities), but also why (dependencies between

activities), and how it got there (history).

• a representation of what may occur in the future. It is usually described as the set of

state changes that may happen considering the current situation and/or as a set of events

which can be observed next. Note that the two notions overlap: the state changes are

often deduced from events (state transitions based on the success of a given activity for

instance).

• a representation of how the system will have to react when a set of events occur, or in an

equivalent way when a given state is reached.

• since we want to express multi-robot systems, a representation of who is doing what (role).

First, we will describe the objects we manipulate, using our rover as an illustration of the

33

34 · A Software Framework for Plan Management and Execution in Robotics

various parts of the model. We introduce the notions of events and tasks (section 2.1), and

define the various relations between tasks (section 2.2). Then, in section 2.4, we show that it

is possible to translate various plan models into ours: execution policies, the Hierarchical Task

Network (HTN) model [38] and the plan model of the IxTeT temporal planner [43].

2.1 Plan Objects

Our plans are made of graphs of two kinds of objects, events and tasks. The event graph

represents the planned execution flow : how the system should evolves during execution. The

task graph represents the state of the system activities, and how they interact with each other:

how they interact now, and how we plan that they interact later. We will not talk here about

how the plan is managed during execution (this is presented in chapters 3 and 4): we will only

show how events, tasks and their graphs allow to model expressive plans.

Separation of tasks and events, as we do here, is not done in all plan representations: most

use time operators between tasks (for instance, running activities in sequence or in parallel).

Some representations, like in the IxTeT plan model, do use both tasks and events, but in their

case the task structure is not very expressive: most of the information needed to interpret

the plan is contained in the event structure1. The separation of both structures allows to

have an expressive temporal representation (like combinations of events, representation of time

constraints, progressive tasks), while having a representation of the relationships between parallel

activities (something that IxTeT is lacking for instance). Moreover, since our goal is to provide

a plan manager for multi-robot systems, parts of the model are multi-robot specific.

We first describe how the execution flow is represented through events and the event graphs,

and then we describe how tasks represent the robot activities. Task graphs (also called task

relations) are described in the next section.

2.1.1 Representing the execution flow: events

Our execution model is event based: the system execution is represented by a succession of events

which represent specific achievements (see Fig. 2.1 for notations related to events). When this

particular situation is met, we say that the corresponding event occurred or that it has been

emitted. The system can then be controlled by the set of events which have an event command.

This command represents the mean to achieve events in a deterministic way: if the command

is called, then the event will be emitted (deterministic occurrence) in the future. Of course,

there can be a delay between the command call and the event occurrence. We can for instance

have a ebrakes on event: its command sets the robot brakes and it is emitted when the brakes

are actually set on the robot.

As it is commonly done in event-based representations, we distinguish between controllable

events and contingent events. In our system, contingent events have no command and the

system can therefore not force their achievement: they will be emitted because of situations

not controlled by the robot. They can for instance be used to represent non-controllable state

1what we call an event is called a timepoint in the IxTeT plan model

34

A Plan Model · 35

In text

an event named
“event name” is

written as eevent name

On figures

a b

a ba

a
contingent event

controlable event

a
sig
−→ b

a
fwd
−−→ b

Figure 2.1: Notations related to events

changes like a elow battery event. Note also that a controllable event can be emitted because of

external conditions: ebrakes on is emitted when the robot’s bumpers touch an obstacle.

We can now represent through events what happens during the plan execution. What we

are lacking is a way to represent what to do when a particular situation is reached. In our plan

model, this is represented by event graphs, also known as event relations. There are two event

graphs. The first one is the signalling graph: a ea
sig
−−→ eb relation in the plan means that the

command of eb has to be called when ea is emitted (therefore, eb has to be controllable). This

graph therefore represents the reaction to events: it makes the robot do something (represented

by eb’s command) when another event is emitted.

The second relation is the forwarding graph, which represents generalization between events.

A simple example is the end of an activity: let’s assume we have a simple activity which can

end either successfully or with failure, something represented by two events esuccess and efailed.

We also may simply want to know that the activity did finish, and for that we define estop. Now,

we see that esuccess and efailed are subcases of estop : when the activity finished successfully or

with failure, it has finished. estop should therefore be emitted whenever the two other events

are emitted. Nonetheless, we cannot use signals here since estop already occurred after esuccess

is emitted. The estop command should not be called, estop should simply be emitted. The

forwarding relation does just that: when a ea
fwd
−−→ eb relation exists, eb is emitted as soon as ea

is. Unlike for signals, eb can be contingent.

There is no explicit model about when or how events are emitted: we consider that adding

this kind of model would constrain too much what we can integrate in our plan database2. The

only event state that is represented is the unreachable state. An event enters this state when

the system knows for sure that it is impossible that it will be ever emitted. Reachability is a

common problem in execution supervision, and as we will see later it is needed to track errors

in plans: it allows to track problems where the system is waiting for an event that will never be

emitted.

2of course, it is always possible to add it as an extension of the software component

35

36 · A Software Framework for Plan Management and Execution in Robotics

Now, let’s summarize the definitions concerning events:

Definition

Event definition

• an event is emitted or it occurs if the situation it represents has been met by

the system.

• an event is controllable if the system can make sure it will be emitted. In this

case, the event command is the procedure able to make that happen.

• an event is contingent if its achievement is controlled by the environment and

not by the system.

Event relations

• if a signal relation e1

sig
−−→ e2 exists, then the command of the controllable event

e2 will be called when e1 is emitted.

• if a forward relation e1

fwd
−−→ e2 exists, then e2 is emitted as soon as e1 is emitted.

As an example of what can be done using this event model, we will describe how a set of

event aggregates have been implemented.

The and(ea, eb, · · ·) event is emitted when all its source
a

b

c

&events have been emitted. Each source event signals the and

event. Its command then keeps track of which source event has

been emitted and which has not, and emits the and event when

all sources have been emitted. It becomes unreachable when any of its sources does.

The or(ea, eb, · · ·) event is emitted once, the first time one
a

b

c

||of its source events is emitted. This is done by making all source

events forward to the or event and remove all source relations

when the or event is emitted. It becomes unreachable when all

of its sources are.

The until(elimit, ea, eb, · · ·) event forwards its sources as

a

b

c

limit

|
long as elimit is not emitted. An event handler, called when the

until event is emitted, makes the event stop the forwarding by

removing all the source relations. It becomes unreachable either

when all its sources are or when elimit is emitted.

The sequence(e1, e2, e3, . . .) event is a controllable event which calls or waits for the emis-

sion of its arguments in sequence. More specifically it does the following: considering an event

ei in the sequence, it either calls the event command if ei is controllable or waits for its emission

if ei is contingent. When the sequence is called, it handles e1, and the event sequence is emitted

when its last event has been handled. The sequence is unreachable when one of its source events

has not occurred and becomes unreachable.

36

A Plan Model · 37

success

stop

failedaborted

start

Roby::Task()

(a) The generic
Roby::Task task model

success

stop

failed

aborted

start

MoveTo(x, y, yaw)

blocked

(b) The MoveTo task
model

Figure 2.2: Example of two task models: the generic task model on which all other are based
and a less generic one

2.1.2 Representing activities: tasks

Using events, we have a way to express milestones in the plan execution, but we do not represent

why these events are emitted: what processes (external or internal) make these event occur. We

therefore need a way to represent the system activities. In our plan model, tasks are the objects

which represent this: a task instance manages the set of events which can be emitted because of

the activity it represents. In our implementation, tasks also define event commands, a monitoring

routine – which can poll for event achievement – and error handling. In this section, we will

distinguish task models, which are abstract models of specific tasks, and the task instances of a

given model, which are the objects actually used in the plan.

A task model is defined by the following:

• a set of events.

• a set of internal relations (signal and forwarding) between its own events.

• a set of arguments, which allow the parametrization of a specific instance based on the

task model.

As an example, the generic task model Roby::Task represented on Fig. 2.2 has no argument

and four events – estart, esuccess, eaborted, efailed and estop. The internal relations express that

eaborted is a special case of efailed and that both efailed and esuccess are special cases of estop.

Moreover, none of these events are controllable (they are contingent), as we cannot define at

this level a meaningful command for them. Only one temporal constraint is enforced by the

task implementation: estart must be the first event ever emitted by the task, and estop must be

the last. However, these temporal constraints are not directly represented by our plan model.

Representing time and temporal constraint is a very important feature for plan representation,

but as we stated earlier, we have chosen to design a minimal plan model designed for our needs.

As we just saw, estart is the first event which can be emitted by the task and estop is the last.

Moreover, we say than an event is terminal if estop is reachable from it through the forwarding

relation: estop will be emitted as soon as this event is emitted. Non-terminal event are called

intermediate events and allow, for instance, to represent achievements in progressive processes

like incremental mapping, anytime planning, milestones during motions. . .

37

38 · A Software Framework for Plan Management and Execution in Robotics

A less generic task model is the MoveTo task model represented on Fig. 2.2. In the case of our

rover, this task model takes three arguments: x, y and yaw. That way, two different motions

would be represented using two instances of the same task model with different arguments. On

the event side, estart is made controllable since starting the movement is definitely something

the model should know how to do. To express the fact that it is possible to stop the task at any

time, estop is made controllable too. From an implementation point of view, the interruption

routine is efailed’s command, and the command of estop calls efailed. eblocked, which is not in

Roby::Task, is emitted when the motion modality does not know how to progress towards the

goal.

In our system, some models are abstract models, which means that they define an activity

model but not a way to actually make the robot achieve that activity. This is the case, for

instance, of the MoveTo model we just described. We will see later that specific motion modalities

will rely on this abstract model to define non-abstract motion models.

Finally, task instances (or task objects) are defined by a set of task models and an assig-

nation of values to the models arguments. This assignation does not have to be complete: the

task instance is partially instantiated if its models’ arguments are not all set, and fully instan-

tiated otherwise. A task instance is then executable if its models are not abstract and if it is

fully instantiated. estart cannot be emitted on a non-executable task even if the event is itself

controllable.

2.1.3 Hierarchies of task models and the substitution principle

The task models build an abstraction hierarchy: all task models but Roby::Task have parent

model(s). In this inheritance relationship, a task instance of the child model must realize at

least the same function than one of its parent. In a plan, an instance of a given task model can

therefore be replaced by a task of a child model while not changing the plan results, provided

that the two tasks arguments are the same. This is called the substitution principle and has

been put into place for the following uses:

• it is possible to represent the fact that two tasks are equivalent from the point of view of

the rest of the plan.

• an plan manager does not need to know all specific task models of all the other plan

managers. To have multiple robots interact on the basis of their plan, we only need to

have a common set of abstract task models.

• it is possible to express abstract plans by including tasks of high-level models and to choose

later what specific task implementation to use.

• at the implementation level, this allows to easily reuse code thanks to the inheritance

mechanisms of object-oriented languages.

To enforce this principle, we need to express how a child model is constrained by its parent

model: in a plan, one must be able to manipulate instances of a child model as if they were of

a parent model. We therefore defined the following rules:

38

A Plan Model · 39

success

stop

failedaborted

start

Roby::Task()

P3D::MoveTo

(x, y, yaw)

NDD::MoveTo

(x, y, yaw)

Nav::MoveTo

(x, y, yaw)

no_path

path_update

success

stop

failed

aborted

start

MoveTo(x, y, yaw)

blocked

start

start

TraversabilityMapping

updated

success

stop

failedaborted

Bitmap::Mapping RemoteMapping

Figure 2.3: Partial view of the task model hierarchy for Dala

• the event set of the child includes the event set of the parent.

• any controllable event of the parent must be controllable on the child.

• the argument set of the child includes the argument set of the parent.

As an example, we can see on Fig. 2.3 part of the task model hierarchy of the Dala rover.

In this hierarchy, we can see the three motion modalities Nav, P3D and NDD described in

section 1.4. Each of these modalities defines specific MoveTo tasks which are children of the

generic MoveTo task we talked about earlier. The Nav modality differs from the other two

because of two new events: epath update and eno path. This is because the NDD and P3D motion

modalities are reactive modalities while Nav plans a long-term path. The two new events account

for this path planning process: epath update is an intermediate event which is emitted when a new

path has been computed, its command starting one iteration of the path planning process, while

eno path is emitted when no path can be found.

On the TraversabilityMapping branch, we can see that all mapping activities must define

a contingent event eupdated, this event being emitted when the map has been updated by the

algorithm. This non-terminal event represents that the TraversabilityMapping tasks are pro-

gressive. In the case of Dala’s mapping task, Bitmap::Mapping, the robot updates its map by

doing a perception “here and now” and fuses this perception into the global map. We therefore

decided to make eupdated controllable, thus modelling the map update as an atomic operation.

In the case of our UAV, this is not possible: perception requires some properties of the robot

motions, which makes it a more complex action. We decided not to model it as an atomic action

by keeping RemoteMapping’s eupdated contingent.

39

40 · A Software Framework for Plan Management and Execution in Robotics

The same kind of substitution mechanism already exists in other systems. In PRS, for

instance, OPs are chosen given the context, and it is common to add arguments to OPs which

only distinguish a specific method to achieve some abstract goal. For instance, the multiple

motion modality described above could be implemented by defining a MOTION OP whose first

argument is the method name (for instance). Since OPs are selected using unification, one could

select the right OP given the first called argument. This method, however, does not explicitly

define an abstraction hierarchy (there is at most one level of hierarchy possible) and does not

allow to reuse code between specializations of the same model.

In task-based representations like HTNs or TDL, the decomposition hierarchy has both

the role of refinement (decompose a high-level task into a set of specific actions) and of task

selection (choose a specific method for the given task). The plan would not contain directly the

information that, for instance, the current motion modality is the P3D one. Instead, one would

have to analyze the plan structure to deduce that information. The main problem with this

approach is therefore that it gets difficult to distinguish between the two uses, which forbids to

share complete plans between agents with only a partial knowledge of the other agents models

the way we can in our system.

2.2 Task Relations

While the set of running tasks represent what the robot is doing, the task relations will describe

why. This is not a new notion in supervision systems: in [64], Reid Simmons notes that common

supervision systems describe the notion of task hierarchy as a way to express refinement of high

level tasks into low-level actions, thus keeping the why along with the what. This is also present

in other plan representations [20; 43] through the use of causal links: the system represents that

a goal state is reached by a given set of tasks. However, these systems lack a representation of

a hierarchy of abstraction: interpreting causal links as refinement hierarchy is not enough as we

will see when we discuss the integration of IxTeT plan models in our system.

What TDL [63] and the Concurrent Reactive Plans system [12] lack is a representation of

a task graph: even in mono-robot context, it is very common that one low-level task is being

used by more than one parent: for instance, a localization activity is depended upon by many

other activities. And it becomes even more important in multi-robot systems: for instance, in

our scenario, the motion task of multiple rovers could be linked to the mapping task of the same

UAV. Task trees are therefore not enough to represent the activity relations of a whole robotic

system, and we choose to manage the tasks in graphs, or more specifically directed acyclic

graphs. We will see that using graphs has interesting consequences for plan management. Note

that this notion of task graph is necessary to fully represent plan models based on causal links,

in which it is common to see one single task enable multiple tasks.

Moreover, we classify task relations into more than one category: using one single relation

to represent activity interactions is not rich enough. Using multiple relations type allows to

have a higher-level representation of the why we mentioned earlier. This section presents how

relation allows to structure the plan and the execution. Then, it presents the four task relations

40

A Plan Model · 41

POM::Localization

P3d::TrackPath Nav::Path

Nav::MoveTo(x, y, yaw)

Localization

PathTracking Path2D

MoveTo(x, y, yaw)

depends_on

Figure 2.4: depends on relation: (left) subtree of a Nav::MoveTo task and (right) represen-
tation of the same tree based on the parent models of the models presented on the left. (Only
the part of the plan needed for example purposes is represented here)

defined by the current implementation of our plan manager: the hard dependency and soft

dependency relations depends on and infludenced by, the planning relation planned by

and the representation of execution support processes executed by.

2.2.1 Defining task relations

In our plan model, we adopted the convention that if a task tb is the child of a task ta, then tb is

used in some way by ta. It means that the result of the ta task has no direct effect on tb, while

the execution of tb has a direct effect on ta, effect which is actually modeled by the relation.

From the execution point of view, a ta
rel
−−→ tb relation holds two informations:

requirements: what the parent task ta expects of tb. Once these requirements are met, the ta

does not depend anymore on tb.

error conditions: what is an error from the point of view of ta. This includes failure to meet

the requirements, but it is not limited to that: we can also specify undesirable events for

instance.

When the requirements cannot be reached anymore, or when an error condition is met, it

is represented as an error condition by the software system and we say that the relation failed.

We will mention what type of error represents these failure to meet relation constraints. The

ways to handle these errors are described in the next chapter.

This section presents the four main task relations we defined in our plan model. We will use

the subplan required by a Nav::MoveTo task to illustrate the usefulness of each relation. Then,

we will show how our rover-UAV plan is built using these relations.

2.2.2 Hard dependencies: the depends on relation

Definition

The depends on relation expresses an action refinement: a task T is depends on

a set of child tasks if these tasks are necessary to the achievement of T ’s function.

41

42 · A Software Framework for Plan Management and Execution in Robotics

Bmap::MappingPOM::Localization

P3d::TrackPath

Nav::Path

Nav::PathPlanning

Nav::MoveTo(x, y, yaw)

depends_on

planned_by

MoveTo(x, y, yaw)

PlanningTask

planned_by

PlanningTask

Figure 2.5: planned by relation: representation of an action planning and a path planning
activity inside the Nav::MoveTo subgraph of Fig. 2.4. The left plan is the initial plan of the
rover, with only the rover’s mission and the planning task which will generate the plan for this
mission.

As an example, let’s look at the child tree of a Nav::MoveTo task on Fig. 2.4. This motion

modality is based on a long-range path planning algorithm (not yet represented on this plan),

which updates a Nav::Path task. This long-range path is then fed to a local motion modality

which is supposed to execute that path. We choose here the P3D motion modality, but the

NDD motion modality could have been chosen as well.

A depends on link is defined by the following:

• a task model and a set of arguments defining what kind of task instances can be used as

children of this relation. In our example, these are (Path2D, ∅) and (PathTracking, ∅).

• a set Esuccess of events which enumerate what events the parent task requires its child task

to achieve. If all of these events are unreachable, this relation fails. A common value for

this set is {esuccess}, i.e. the parent task expects its child task to finish successfully.

• a set Efailure of events which enumerate what events of the child task the parent does not

want to occur: the relation fails as soon as one of these events are achieved. This set is

commonly empty: since esuccess of a task is marked as unreachable as soon as efailed is

emitted, we do not need to add efailed to Efailure.

A failed depends on relation is represented by a DependencyFailedError error.

2.2.3 Planning tasks: the planned by relation

Representing the planning processes is interesting for several reasons: it is possible to represent

and handle a failed plan search using the same mechanisms than for the rest of the tasks, to

represent how the planning process depends on information-gathering actions, to constrain how

much time is allowed before a plan is needed and how the system should react if this constraint

is not met,. . . Moreover, it would be possible to schedule planning processes as some systems do

for other tasks, thus taking into account the limited CPU resource and/or the trade-off between

plan availability and information quality. Finally, it allows the integration of the planner’s repair

capabilities by making planning tasks part of the error recovery process.

42

A Plan Model · 43

Definition

A task T is planned by another task P if P ’s goal is to produces a plan which

realizes T function, or adapt T to the changing environment (continuous planning).

One planning task can produce an executable plan for many planned tasks while a

planned task can have only one planning task.

As an example, let’s look at Fig. 2.5. In this plan, we added to planning tasks in the plan

on the right of Fig. 2.4:

• PlanningTask is the task which generated the plan graph of Nav::MoveTo. The original

graph, before the plan was generated is represented on the left of the same figure.

• Nav::PathPlanning is the task which generates the path represented by Nav::Path. This

latter task holds the path points as its internal data, and its event eupdated data is emitted

whenever Nav::PathPlanning updates the path.

In this plan, the dependency of the path generation task on both the localization service and

the traversability mapping is represented. Using a planned by relation here allows to express

a different kind of error when there is a planning failure: it is possible, when a planner fails

to find a better plan, to keep the old plan and try executing it, even though the execution of

the old plan is likely to be suboptimal. There is a trade-off here between aborting the mission

and executing a plan which is imperfect but nonetheless executable. This trade-off should be

handled by external decision-making tools through the decision control interface.

Therefore, if a planning task fails, a planned by relation will fail only if the planned task

is abstract – no executable plan has already been found for it. A failed planned by relation is

represented by a PlanningFailed error.

2.2.4 Execution agents: the executed by relation

Modularity is commonly accepted as a must-have for today’s modern functional layers: it allows

to have a reconfigurable system – including moving towards service oriented architectures [51],

to manage the services implementation more easily, and it avoids having bugs in one service

impact too much on other services. For all these reasons, we think that it is useful to represent

the modules themselves as part of the supervised plan: the modules consume resources, which

should be accounted for, and failures must be represented and handled if possible.

Definition

A task T is executed by another task A, called the execution agent, if A is the

support process of T . It is also possible for A to be a representation of an underlying

hardware module.

In the case of the Dala rover, for instance, each Genom module is represented using a

Genom::RunnerTask task (Fig. 2.6). This task handles the initialization of the module, allows

to kill the module and notifies its unexpected death through efailed.

43

44 · A Software Framework for Plan Management and Execution in Robotics

Bmap::MappingPom::Localization

P3d::TrackPath

Nav::Path

Nav::PathPlanning

Nav::MoveTo(x, y, yaw)Nav::MoveTo(x, y, yaw)

Nav::Runner

Pom::Runner

P3d::Runner

planned_by

depends_on

executed_by

Figure 2.6: executed by relation: introduction of the Genom UNIX processes in the plan
representation. Tasks that do not have an execution agent are entirely defined inside the Roby
system, while the other represent activities managed inside the Genom modules.

Using the depends on relation here is not possible: the death of a process supporting an

activity is not a “normal” failure since we do not know in what state the activity was at the

time it failed. In normal operation, when an activity fails, we expect it to have done some kind

of cleanup before returning the failure. When the execution agent dies, we cannot expect these

operations to have been performed, and this can have important consequences: for instance, the

platform can remain in a “moving” state and the supervision system does not have any means

to stop it anymore.

To represent this difference in behaviour, when an execution agent fails, all executed tasks

have eaborted emitted. Specific error handlers can then be defined for this context, to manage

the undetermined situations described above.

2.2.5 Soft dependencies: the influenced by relation

While the depends on relation describes a hard dependency, in which the parent task fails if

the child task fails, we also need means to express cases where a task influences one another,

but in which a failure of the child task does not mean that the parent task failed. This is a very

important feature of the GPGP/TAEMS [26; 23; 45] coordination framework: this framework

expresses the effect of a task on a set of characteristics of another task (which are usually a

quality metric and the task duration), and then schedules tasks based on that information.

Definition

A task T1 is influenced by a task T2 if there is a soft dependency of T1 on T2: the

results or execution of T2 improves the result or execution of T1.

We did not integrate all the decision-related tools built around this relation in TAEMS.

However, extending our software system to use TAEMS-based tools (in particular schedulers)

44

A Plan Model · 45

should not be, in our opinion, very hard to do. It would be a very interesting addition when

combined with the representation of planning tasks: we could be able to represent the effect of

information quality on planner results, and schedule various sensing tasks based on that.

In our example, this influenced by relation is used to express the relation between the

rover’s mapping task Bitmap::Mapping and the UAV’s mapping task RemoteMapping : if the

UAV stops its mapping task – or if its mapping fails for any reason – the rover is able to continue

without it, only in a less efficient manner.

2.2.6 Interpreting the task structure: queries and triggers

One of the interesting consequence of specializing task relations as we do is that it is now

possible to put semantic on the task structure. For instance, in the rover/UAV interaction we are

interested in, one of the functionality of the UAV is to build traversability maps either for itself3

or for other robots. To handle the latter, the UAV informs the plan managers it is connected to

(in our case, the rover’s plan manager) that it is interested in TraversabilityMapping tasks.

Moreover, during a negotiation phase between the rover and the UAV, the UAV could interpret

the rover’s plan to know how useful the TraversabilityMapping task is for the rover. It could

then discover, for instance, what the rover movement – which depends on the traversability

mapping – is used for.

Our plan manager defines two tools based on this notion of using task structure to represent

the semantic of the task relations. The first one is the query, which allows to match patterns in

plans:

• model and arguments.

• attributes like the executable predicate, or ownership, . . . This latter attribute is related

to multi-robot and presented later.

• the task state, deduced from what events have already been emitted: running, stopped,

finished, failed, . . .

• presence of some specific event, and the state of the corresponding event (if it has ever

occurred, if it is controllable, . . .).

• matching parents and children in given task relations.

For instance, on Fig. 2.6, the Bmap::Mapping task would be matched by the following query:

Task.which_fullfills(TraversabilityMapping).

running.

useful_for(Task.which_fullfills(Nav::MoveTo))

The which_fullfills predicate being the one matching the model, and the useful_for

predicate matching only if the considered task is reachable from a task matching the included

query (which_fullfills(Nav::MoveTo)) through any task graph.

Given a query, the plan manager returns the task set matching it. Triggers are built upon

this: a plan manager can send queries on remote plans that will permanently make the remote

3for instance to detect landing areas

45

46 · A Software Framework for Plan Management and Execution in Robotics

plan send matching tasks. This allows a plan manager to track some useful plan patterns on

other plans.

2.3 Multi-robot plans

This section presents the multi-robot specific parts of our plan model: what a multi-robot plan

is, how each robot activity is managed in a single plan manager and finally how the notion of

role is represented in our plans.

2.3.1 What are multi-robot plans ?

From our point of view, a multi-robot plan is a form of weak contract between the robots that

are interacting through it: a contract, because all the robots did agree on that common plan

and should stick to it but a weak one since any robot in the team can decide at any moment

that it should leave it. This form of weak contract is something we share with the approach of

TAEMS [26; 23; 45]. The other thing we share with TAEMS, or actually GPGP, is the fact that

one given robot has only a partial view of other robot plans. This is done for obvious practical

reasons: one single robot cannot have a full view on the plan of all other robots, or its plan

would become quickly unmanageable4.

This partial view – which is called the subjective view in TAEMS – is built through a

subscription mechanism: when robots are building their common plan, they see all the tasks of

all robots that are related to that new common plan, and they can choose what tasks they should

subscribe to and what tasks they do not need to see. Moreover, a given robot is automatically

subscribed to all tasks which are directly related with one of its own.

We now need two things in order to express multi-robot plans: first, we have to express

who can change what, and second we have to express the notion of role. The first is needed to

handle authority management: since the plan represents what the agents will do in the future,

changing the plan is equivalent to send orders to the agents involved in that plan. Therefore,

if a plan manager is able to change some parts of the plan, it is actually able to send orders to

the robots also involved in it. The second is needed to represent the robots’ teamwork through

the use of roles: the work of Tambe [68] on teamwork and all the following literature shows that

representing roles is an efficient, expressive way to manage teams.

2.3.2 Ownership

In our plan manager, a task ownership attribute holds the set of plan managers who are allowed

to change the task attributes and relations. From the point of view of a single manager, a

joint task [68] is a task with many owners, a remote task is a task which is not owned by the

considered robot and a local task is a task whose sole owner is the considered robot. This notion

of ownership is already present in the STEAM [61] model of Tambe et. al. Our contribution

here is the link with our event-based execution model, presented in the next chapter.

4we do not consider here the problem of having two adverse robots giving each other information as limited
as possible

46

A Plan Model · 47

Bmap::TravMapping

P3d::TrackPath

Nav::Path

Nav::MoveTo(x, y, yaw)

RegionsOfInterest

RemoteMapping

DataTransfer

realized_by

influenced_by

executed_by

planned_by

Legend: task relations

P3d::Runner

Pom::Runner Nav::Runner

Nav::PathPlanning

POM::Localization

Figure 2.7: Task structure for the rover-UAV interaction from the point of view of the rover.
RemoteMapping is owned by the UAV and influences the Mapping task of the rover. The
RemoteMapping task is then realized by the UAV’s mapping capability and a data transfer
task, which is a joint task between the UAV and the rover.

For instance, let’s consider the tasks directly representing the rover-UAV interaction on

Fig. 2.7:

• a Bitmap::Mapping task owned by the rover, which represents the traversability mapping

process.

• a RemoteMapping task owned by the UAV, which represents the UAV mapping the terrain

traversability on behalf of other robots. A Plid::Mapping task, also owned by the UAV,

will then represent the UAV’s traversability mapping itself.

• a DataTransfer task owned jointly by the UAV and the rover, which represents the UAV

sending the traversability maps to the rover. This task is obviously a joint task of both

robots.

2.3.3 Representing roles

To quote Tambe in [70]:

“A role is an abstract specification of the set of activities an individual or a subteam

undertakes in service of the team’s overall activity.”

One can clearly see that in our plan model, roles can be specified as “an individual or a

subteam” set of tasks that are depended-upon the joint task of the team. Representing this

notion of role explicitly in our plan model is important because doing so allows to integrate

team management tools in our plan manager directly. This section presents the two ways we

use to represent roles in our system.

47

48 · A Software Framework for Plan Management and Execution in Robotics

The simple way to represent roles in our plan is to fill a mapping from role names to plan

managers, and to express this way what owner holds what role. Note that a robot which has a

role must be owner of the task, but an owner can have no role. In the rover-UAV plan of Fig. 2.7,

the DataTransfer task has for instance two roles: the UAV will have the “sender” role while the

rover has the “receiver” role. One drawback of this method is that team management is separated

from the plan management: the plan manager cannot replace one task and automatically know

the implication of that replacement in the robot teams.

To address that issue, it is possible to represent roles through a combination of the ownership

attributes and the task relations. For instance, a subteam B,C of a team A,B, C can be

represented by a joint task owned by A,B, C with a child task owned by B,C. The type of

the child task then represents what role this subteam is handling in the task jointly owned by

A,B, C. This is actually an extension of the approach used by Tambe in STEAM: the role

structure is represented by a hierarchy, assigning at each node of the hierarchy a subteam to

a role. This notion of role in task models is not present – and is lacking in our opinion –

in TAEMS [45]. The COMETS [32; 31] architecture do have roles, but they are not directly

represented in the executed plan (what is handled by the Multi-Level Executive in COMETS

terms): they are only represented in a separate component which handles interactions with other

robots, the Interaction Manager. As already said, we are trying to avoid this kind of separation

in our plan manager.

In our system, it is modeled by associating query objects to role names in the model of joint

tasks. In the context of the DataTransfer task, this is done by adding depended-upon tasks

DataSend and DataReceive, the first one being owned by the rover and the second one by the

UAV.

2.4 Translation from other plan models

There are three issues when interfacing with planners:

• express the planning problems in our system (i.e. as tasks).

• translate the resulting plan in our plan model.

• for planners which support it, revision of the current plan when the situation evolves.

This section deals only with the second issue. The first and the third are still an open

question in our system. We will first discuss the translation of the IxTeT plan model, for which

a prototype has been implemented and a real plan translated and tested. Then, we will discuss

the translation of MDP execution policies, with an extension to POMDPs. This translation has

not been tested yet because we do not have such a planner and an example policy.

2.4.1 From the IxTeT plan model

The IxTeT planner is a temporal planner whose plan model is related to the STRIPS model.

In this plan model, a set of attributes evolve over time. A goal is expressed as an assignation

of a subset of the attributes (i.e. desired values for some attributes). A subset of an IxTeT

48

A Plan Model · 49

plan realizing a multiple goals is represented on Fig. 2.8: the goals are two PICTURE(...):DONE

goals, and a COMMUNICATION(...):DONE one.

In IxTeT, the plan is built using the following objects (see [43] for a full presentation of the

IxTeT planner and its model):

timepoint A timepoint is a point in time. All other objects are attached to a timepoint or a

range of timepoints to express their place in the timeflow, or a range in this timeflow.

event An event represents a state transition. Events can be controllable or contingent. Example

of a contingent event is the visibility window for communication represented by two events

on Fig. 2.8(b). Example of a controllable event is the result of actions as the IDLE -> DONE

event at the end of the TAKE_PICTURE(...) action (timepoints t_1 and t_2 on 2.8(a)).

hold A hold predicate expresses that the value of an attribute is fixed between two timepoints.

For instance the robot should stay put during the communication: there is an hold of the

attribute ROBOT_STATUS to STILL between the timepoints 27 and 28.

goals Goals are a set of holds: they are described by a state in which the planner should bring

the system.

task A task is an action (for instance TAKE PICTURE or MOVE). It is defined by a set of arguments:

in our plan, MOVE is defined by a start point (x1, y1) and a goal point (x2, y2). Task is

defined by a name and by arguments which are assigned a value in the final plan. From an

attribute point of view, the task is represented by a set of starting events, stopping events

and holds. For instance, the MOVE task is defined by (column t 3 - t 4 on Fig. 2.8(a))

• two starting events which changes the position attributes AT ROBOT X and AT ROBOT Y

from the current robot position (x1, y1) to IDLE, expressing that the movement

requires the position to be the one computed during planning, and that this position

is unknown to the planner while the robot moves.

• a starting event which changes ROBOT STATUS from STILL to MOVING. This event

forbids to have two movements at the same time.

• a hold which requires that PTU POS to be STRAIGHT since the movement requires

the cameras to be looking front. For the same reason, there is a hold which sets

PTU STATUS to STILL.

• a hold which requires MVT INIT to be TRUE for obvious reasons.

• end events which sets the robot position attributes to the final position and reini-

tializes the ROBOT STATUS attribute.

To be valid, all events and holds in the produced plan must be explained : there must be

another event or hold which sets the attributes to the desired value. This event can be the

“origin”, i.e. the current state of the robot.

Finally, the IxTeT plan model defines a temporal constraint structure. Since our plan model

does not yet integrate such a structure, we will only consider the notion of sequence (i.e. one

timepoint which must be executed before another). The future integration of time in our system

would allow to explicitely integrate this part of the IxTeT plan model as well.

49

50 · A Software Framework for Plan Management and Execution in Robotics

zo

t_8t_7

IN

STILL

NONE DONE

IDLE

IN

OUTOUT

IN

0.0

0.0

t_start t_goal t_end

DONE

DONE

AT_ROBOT_X

0.0

ROBOT_STATUS

STILL

PTU_POS

STRAIGHT

PTU_STATUS

STILL

NONE

COMMUNICATION(W1)

NONE

COMMUNICATION(W2)

OUT

VISIBILITY(W1)

OUT

VISIBILITY(W2)

NONE

PICTURE(OBJ2,?x2,?y2)

TRUE

PTU_INIT

TRUE

MVT_INIT

AT_ROBOT_Y

0.0

PICTURE(OBJ1,?x1,?y1)

NONE

t_2t_1t_3

STILL

STRAIGHT

TRUE

STILLSTILL

MOVING

IDLE

2.30.0

IDLE

0.0 3.2

t_4 t_5 t_6

STILL

TRUE

STILLSTILL

MOVING

IDLE

STRAIGHT DOWN

t_end_w1t_start_w1

STILL

DOWN

STILL

3.2

2.3

IDLE

DONENONE

move move_ptu take_picturecommunicate

(a) Chronicles: evolution of the various state variables, representation of events and how events/holds are linked
to one another

27 28

COMMUNICATE(w: W1)
(ROBOT_STATUS():STILL)

(VISIBILITY_WINDOW(w: W1):IN)

16 7
(PICTURE(OBJ2, 4.5, −0.5):DONE)

33 34

1110

17 18

TAKE_PICTURE(obj: OBJ3, x: 3.5, y: −3.5)
(PAN_TILT_UNIT_POSITION():DOWN)

(AT_ROBOT_Y():−3.5)
(AT_ROBOT_X():3.5)

23 24

MOVE(x1: 4.5, y1: −0.5, x2: 3.5, y2: −3.5)

(MVT_GENERATION_INITIALIZED():T)

(PAN_TILT_UNIT_POSITION():STRAIGHT)

8

35 36

41 42

19 20

TAKE_PICTURE(obj: OBJ2, x: 4.5, y: −0.5)
(PAN_TILT_UNIT_POSITION():DOWN)

(AT_ROBOT_Y():−0.5)
(AT_ROBOT_X():4.5)

9

(PICTURE(OBJ3, 3.5, −3.5):DONE)

(COMMUNICATION(W1):DONE)

VISIBILITY_WINDOW(W1)

(OUT,IN)

VISIBILITY_WINDOW(W1)

(IN,OUT)

MOVE_PAN_TILT_UNIT(initpos: STRAIGHT,

(PTU_DRIVER_INITIALIZED():T)

finpos: DOWN)

MOVE_PAN_TILT_UNIT(initpos: DOWN,

(PTU_DRIVER_INITIALIZED():T)
finpos: STRAIGHT)

MOVE_PAN_TILT_UNIT(initpos: STRAIGHT,

(PTU_DRIVER_INITIALIZED():T)
finpos: DOWN)

(b) Ordering of the tasks, goals, holds and contingent events in the resulting plan

Figure 2.8: Example IxTeT plan: a robot is supposed to take two pictures at two different
locations. It is also supposed to communicate during a predefined window. It cannot move and
communicate at the same time.

50

A Plan Model · 51

To translate these plans, one needs first to define a mapping from the action description

of IxTeT into our set of task instances. This can be done either by hand or automatically if

some kind of convention is used in the naming of actions and tasks. For instance, translate

a MOVE PAN TILT UNIT() would be translated into a MovePanTiltUnit task (the former is not

valid Ruby), while keeping the argument names.

It is possible to derive a notion of dependency from the notion of explanation we described

above: a given task T directly depends on the successful execution of all the tasks which estab-

lishes the attributes values its events and holds require. This dependency is however not the

same than the one defined by the depends on relation. In the dependency relation we derive

from event explanation, the relation is temporal: the task can only be executed if all the task it

depends on have finished successfully. In a depends on relation, the tasks are being executed

in parallel. However, it is possible to derive the activity structure as the goals being parent of

all tasks which are required for their achievement: a task is generated for each goals in the plan,

and the goal tasks depend on all tasks which are needed to reach that goal.

The event structure is built from the sequences extracted from both the structure and the

event explanation. Given a task T and its start event estart, we build a andT event for eT
start in

the following manner:

• the esuccess events of all the tasks T directly depends on in the meaning of IxTeT are added

to andT : T cannot be executed if they have not all finished successfully.

• the estop events of all the tasks which are just before T in the temporal constraints are

added to andT : T can be executed whenever they have finished, regardless of their result.

• the contingent events which are just before T in the temporal constraint graph are added

to andT as well.

The translation of the plan of Fig. 2.8 is on Fig. 2.9. The combination of task and event

relations allows to analyze the global plan structure on failure: for instance, if in the translated

plan the first TakePicture was to fail – or if the first Picture goal was abandoned – the plan

would still be executable for the other goals. Moreover, a plan merging mechanism which would

detect the redundancy in the new plan (i.e. the consecutive MovePanTiltUnit for instance)

could remove the redundancies in the new plan.

2.4.2 (PO)MDP execution policies

Generally speaking, execution policies are the most generic interface between planning and

execution: it is an expression of the “act” part of the Sense-Plan-Act cycle as a blackbox. Our

focus in this section will be (PO)MDP policies, for which the policy returns the action to perform

based on either the state of the system or a set of observations (for instance, sensor readings).

A MDP policy gives at each step i the action Ai to perform given the current robot state

Si. Executing a MDP policy is therefore:

51

52 · A Software Framework for Plan Management and Execution in Robotics

MovePanTiltUnit

success

success

successstart

MovePanTiltUnit

start success stop

Move

start stopsuccess

TakePicture

Picture
success

Picture

start success stop

MovePanTiltUnit

start success

TakePicture

&

&

&

Figure 2.9: Partial view of an IxTeT plan translated into Roby

update the state Si = ReadState()

get the action to perform Ai = Policy(Si)

execute that action

The simplest way to integrate this decision process in our system is to reactively interact

with it: get the current action to perform, and when this action is finished ask the new one to

the policy.

A plan-based integration is available when the planner allows to extract the most “interest-

ing” paths of execution. It is not practical to extract all possible paths of execution: policies

enumerate all reachable situations or states described by the planning model, which is in general

a huge set. However, by making the planner extract for us the “most probable” execution paths

we can translate the meaningful part of the policy into our system. This could be implemented

by the following process:

• extract the most probable path of execution. This is done by following, at each step, the

most probable outcomes of each actions and is completely straigthforward to implement

in MDP planners.

• at each step of this central path, extract the branches whose probability to be executed is

higher than a certain threshold. Chosing the threshold – and ultimately making it adaptive

– is the real challenge here.

• adapt the generated subplan continuously: while the robot executes its plan, it is likely

that the subplan extracted by this method will evolve as well.

Using this method, it is possible to represent a partial view of the robot’s future actions in

our plan manager, and update this view when the situation evolves.

To translate the policy, we assume that we have, as for the IxTeT translation, a mapping

from the policy actions into both a task model and a complete assignment to the task arguments,

52

A Plan Model · 53

stop

start

start

start

π
Ti

AiAi

SiSi

S0
i+1S0
i+1

S1
i+1S1
i+1

S2
i+1S2
i+1

A0
i+1A0
i+1

A1
i+1A1
i+1

A2
i+1A2
i+1

T 0
i+1

T 1
i+1

T 2
i+1

p0p0

p1p1

p2p2

Figure 2.10: Pattern in MDP policy translations: each policy step is represented by a link from
the task Ti mapped to the current action Ti and the possible following tasks T

j
i+1

through a
policy event π. During the execution, the event π reads the policy to get the next action which
should actually be executed given the measured state of the robot.

thus defining a task instance. It is also possible that the policy actions map to task events, but

that will not be discussed here. It is then possible to compute a representation of the policy

by using, at each step, the plan pattern represented on Fig. 2.10. This pattern expresses two

things: (1) the possible subsequent actions of the robot and (2) that the policy will choose which

action to perform during the execution, through the π event.

Finally, during the translation process, a branch which maps to a given system state is reused

if that same state is found in another branch (Fig. 2.11): the Markov no-memory property

dictates that, if the outcome of the action Ai is the same than the outcome of another action

Aj – if Si+1 = Sj+1 – then the policy starting from i + 1 and the one starting from j + 1 will be

the same.

POMDP policies are more complicated: instead of manipulating a state Si, they manipulate

a belief state Bi: a distribution of probability over the possible states of the system. This belief

state being updated by a observation Oi which is a reading of the measurements in the system.

The policy execution is then a four-stage process:

read the observation Oi = ReadObservation()

update the belief state Bi = UpdateBeliefState(Oi)

get the action to perform Ai = Policy(Bi)

execute that action

The main issue is therefore the enumeration of the most probable belief states at the end

of one action. One this information is known, one can use the same method than for the MDP

translation. The most direct way is to enumerate the possible observations – something the

POMDP planning model specifies. However, this is only possible if the observation space is

discreet and not continuous. At this stage of our reflexion, this is still an open problem.

The representation of (PO)MDP policies we described in this section does not seem very

expressive: while the probable outcomes of each actions is represented, there is no information

on what will make the policy choose one path or another. However, this integration is a first step

53

54 · A Software Framework for Plan Management and Execution in Robotics

stop start

start

stop

start

start

start

π

π

Sj

S1
j+1

S2
j+1

Aj A1
j+1

A2
j+1

Tj T 1
j+1

T 2
j+1

Si

S0
i+1

S2
i+1

Ai

A0
i+1

A1
i+1

Ti

T 0
i+1

T 1
i+1

A2
i+1 = A0

j+1

S2
i+1 = S0

j+1

T 2
i+1 = T 0

j+1

Figure 2.11: Handling of branches during the translation process: in the policy, the outcome of
two different branches can be the same state. The following policy would therefore be the same
as well.

from which it would be possible to integrate MDP planners – which are not able to handle big

problems – in the context of other “classical” planners, other MDP planners and/or robot-robot

interaction contexts. Ultimately, it would be possible to export probabilistic information like the

probabilities of executing one action or another from the MDP policy, enriching the information

in the Roby plan.

This is actually what one could gain by integrating different planners in the same system: use

the right model at the right place and implement rich planner/planner interactions through the

use of a common plan. It would be for instance possible to implement generic planner/planner

interaction schemes: the representation of the possible outcomes of the system can allow to

negotiate based on that plan: one other planner – or one other robot – could announce that it is

interested in some future actions contained in the policy, allowing to update the utility function

of the MDP planner, replan, and check if the action is more likely or not to be executed.

2.5 Summary

This chapter presented the way plans are modeled in our plan management system. The main

contribution of this plan model is the separation between the representation of activities and

of the execution flow: unlike most comparable systems, the execution flow is not defined as an

aggregation of tasks (sequences, parallel tasks). The activities are represented through tasks,

and their interactions through four main task relations:

• the depends on relation for hard dependencies, and the related influenced by relation

for soft dependencies.

54

A Plan Model · 55

• the planned by relation to represent planning processes.

• the executed by relation to represent the external support processes (hardware, . . .).

Each task defines a set of events which represent milestones in the task execution, events

which can be either contingent if they occur only because of external conditions or controllable

if the system can make them occur.

The representation of the execution flow through events allows a great flexibility in its defi-

nition: these events can be aggregated through temporal operators (and, or, until, sequence) to

define directly in the plan the appropriate reactions to events. This reaction is defined by the

network of event relations:

• the signal relation expresses that the command of an event should be called whenever the

source event is emitted.

• the forward relation expresses the event generalization: its semantics is that the child

event (the forwarded event) is a more generic representation of the situation represented

by the source event. It is a common tool to represent specific faults in a task: each specific

fault is forwarded to the efailed event.

This plan model is also able to represent multi-robot contexts through a combination of

an ownership attribute and a representation of roles. Roles are represented either directly by

mapping the role to a robot involved in the task, or by mapping the role to a pattern in the

plan.

The next chapter will present how these relations are used to make the system evolve ac-

cording to external events and of its plan, how errors are defined and how they are handled, and

how all the whole plan execution is managed in multi-robot contexts.

55

56 · A Software Framework for Plan Management and Execution in Robotics

56

3
Plan Execution

Now that we have seen how one can express a set of activities and an execution flow in our

plan model, we explain how plans are executed: how the controller reacts to external events

and execution errors. The next chapter will present how plans are simultaneously built and

executed.

In the plan manager component, execution is based on a fixed-length execution cycle in

which external events are read and propagated in the event structure. When this propagation

phase is done, the plan structure is checked for errors (non-nominal situations) and different

schemes allow to recover from these errors. Finally, the tasks for which errors remain and the

tasks that are not useful anymore are killed. This execution cycle is therefore as presented on

Fig. 3.1.

The first section shows how our system propagates events using the two relations presented

in the previous chapter (section 3.1). Section 3.2 describes the errors that are recognized by our

plan manager, along with the means to handle them in both a proactive and reactive manner.

Then, we will see the garbage collection mechanism, which gives flexibility in the management

of running activities (section 3.3). Finally, the multi-robot specificities of plan execution is

presented in section 3.4.

3.1 Reaction to events

As explained in the previous chapter, the event structure of our plan model describes the execu-

tion flow during the plan execution. This section describes how, given a set E of events that have

occurred (notifications from external processes, sensor readings, diagnostic), event commands

are called and other events are emitted. Plan adaptation, which is also part of this phase of the

execution cycle, is outside the scope of our work: our system provides tools to change plans as

57

58 · A Software Framework for Plan Management and Execution in Robotics

1. Event

Propagation

2. Error

Handling

3. Garbage

Collection

determine what events should

be emitted and/or called, and

propagate the events in the

event relation graphs.

detect errors as violation of the

constraints defined by the

relation graphs, and try to

recover from them.

kill and remove the tasks that are either not

useful for the completion of the robot goals,

or for which errors have not been recovered.

Figure 3.1: Overview of the three main phases of the execution cycle

they are executed, but it does not handle the task of deciding what to change and into what.

Interesting reads on this topic includes Beetz [13; 12], GPGP [45], and more generally work on

repairing plans [43] and on contingency planning [57].

In our system, event propagation is the process by which, given a set of pending events E,

an event is chosen to be called and/or emitted, and how this process continues as long as there

are events to propagate. This process is illustrated on Fig. 3.2.

Propagation is in fact not represented by a set of events but by a set of local propagation steps,

each step representing what operation – call or emission – should be applied on an event, and the

set of source events which caused that operation. This section first describes local propagation

patterns: how one event can locally affects others during the “local propagation” step on the

figure. Then, we present the global algorithm, which, given a set of local propagations, chooses

the next one to apply.

3.1.1 Local propagation patterns

Fig. 3.3 shows the graphical representation of what can happen to a single event during the

propagation phase. This representation will be used in the rest of this dissertation. Then, when

one event is called or emitted, it can affect other events in the following ways:

• the event is parent of other events in the signal and forward relations.

• the event command calls or emits other events.

• event handlers, which are piece of code that are executed when an event is emitted, call

or emit other events.

The event command and event handlers are user code. If an error is detected while executing

this code, the error is inserted in a separate error set, this set being processed by the error

handling phase.

58

Plan Execution · 59

1. Event Propagation

2. Error

Handling

3. Garbage

Collection

External notifications

Internal notifications

(polling, monitoring, ...)

Choose a

step to

perform

Local

propagation

Event commands

Event handlers

Event relations

Set of pending

propagations

Error

set

Initial set of

propagations

Add exceptions

caught during

the execution of

user code

Add new

emission

and calls

Plan model

User code

User code

Figure 3.2: Overview of the event propagation phase: events are called or emitted by one by
one, based on a set of pending operations, the plan and the user code.

controlable, called and emitted

controlable, emitted

contingent, emitted

controlable, called

Figure 3.3: Local propagation patterns. Leftmost: the different representation of an event
during execution. Left to right: an event forwards and signals another event using the relation
graphs or inside the event handlers. Another event emits and calls other events in its command
(see that the source event on the right is only called, not emitted)

59

60 · A Software Framework for Plan Management and Execution in Robotics

successstart stop

start

Figure 3.4: Achieving an event by using an external task. This pattern is used to abstract away
the fact that the parent task’s estart is in fact a complex action.

Fig. 3.3 shows how all these cases are represented by our plan status display. In this repre-

sentation, a propagation step caused by an event handler is represented in the same way than

if a relation was used (for instance, emitting another event from an event handler is equivalent

as using a forward relation). Thus, there is actually an explicit event propagation model (the

relation graphs) and an implicit one (the effect of event handlers and event commands). This

allows to implement more complex propagation schemes than what is allowed by the event re-

lation model (for instance, chosing an event to emit based on the current robot state) without

having to add new types of events and having to modify the propagation engine. There is of

course a trade-off here between simplicity and the completeness of the explicit model, which is

the only one plan analysis tools can access.

Another useful pattern is the achievement of a given event by an external task (Fig. 3.4).

This is a variation on calling other events from an event command presented earlier, where the

event command of estart calls the start event estart of another task, and emits when the esuccess

event of that same task is emitted. It seems, at first, an inconsistency: a task, which is non-

atomic and whose result is non-predictable, is used to perform the action of an event, which

is both atomic and predictable. From our point of view, this pattern is a way to represent a

hierarchy of abstraction: at a certain level (the parent task), an action is represented as being

atomic (its event estart), but at a lower level (the child task), this action is not atomic. As

described later, our system is able to handle failures that could be generated by the use of this

pattern.

A real-world use of this pattern is, on our rover, the Pom::Localization task. The startup

(Fig. 3.5) of this task is based on three stages:

1. motion and sensor estimators, which respectively provide separate estimates of the rover

and sensors positions, are started. When all estimators are started, estarted estimators is

emitted.

2. EstimatePosition produces a current estimate of the rover position. This estimate can

be based on GPS readings like it is done here, but also on a priori knowledge – like the

last robot known position – or other position estimation methods.

3. Pom::Localization’s eready event sets the current position and starts fusing the estima-

tions. This is an example of the pattern described above: eready is actually achieved by a

sequence of two subtasks.

60

Plan Execution · 61

&

EstimatePosition

start done success stop
Platine::SensorEstimator

start

Pom::Localization

start started_estimators estimated_position ready

Rflex::MotionEstimator

startGPS::MotionEstimator

start

Pom::SetPos

successstart stop

Pom::RunControl

start success stop

Sequence

start stopsuccess

Figure 3.5: Initialization of the Pom::Localization task for our Dala rover. This figure shows
the three stages of initialization outlined in section 3.1.1. The whole initialization spans more
than one execution cycle.

a

stopinter

(a) a partial ordering constraint should
be added between einter and estop so that
einter is called before estop when ea occurs

a

b

c

d

(b) the propagation algorithm must en-
sure that d is emitted last, or it will be
emitted twice even if the situation it rep-
resents occurred only once.

Figure 3.6: Two event structures which require a global propagation phase. In both cases, the
event propagation must follow a specific order

3.1.2 Global propagation algorithm

During execution, many events can occur in the same cycle and they must all be propagated at

the same time in the event graph. The problem with this global event propagation is that it

must enforce a partial ordering of events:

• for event commands and handlers to be usable from the programmer point of view, it

should be possible to assume some partial ordering of events.

Let’s assume for instance that we want the plan manager to enforce the following rule:

“no intermediate event shall be emitted after estop has been”. A natural way to implement

that is to check whether estop has been emitted or not whenever an intermediate event

einter is being called or emitted. This fails on Fig. 3.6(a) if there is no ordering between

estop and einter : estop can be emitted first during propagation, and einter’s call will then

be considered as an error.

• in diamond patterns like on Fig. 3.6(b), the event d should be emitted only once since the

situation it represents has been reached only once. The use of the and aggregator is not a

solution: we still want d to be emitted if only one of b or c are emitted.

61

62 · A Software Framework for Plan Management and Execution in Robotics

In our scheme, the propagation is directed by a causality directed acyclic graph (DAG)

PropagationOrdering in which there is an edge between two events e1 and e2 if e2 can be

emitted because of e1’s command or emission, including the event handlers. Obviously, this

ordering graph is a superset of both the signalling and forwarding graphs. Based on that model,

the event propagation algorithm outlined in Alg. 3.1 marks an event as emitted after all its

parents and before all its children.

Algorithm 3.1: Global event propagation which calls and/or emits events in the plan
based on an initial set of external events (observations) and the signalling and forwarding
graphs.

Input: two initial set of events: Ecalls is the set of events whose command should be
called, and Eemit the set of events which should be emitted

function: topological sort(graph): returns the topological ordering of graph. In this
ordering, the first element has no parent and the last element has no child.
graph must be a DAG.

function: call event(e): call e’s command. Updates the event sets if event commands
and/or event emission is caused by this call.

function: fire event(e): mark e as emitted and call its handlers. Updates the event
sets if new calls and/or emissions are caused by its handlers.

while one of Ecall and Eemit is not empty do
Ordering = topological sort(CausalityGraph)
e = minimal element of Eemit ∪ Ecall in the order defined by Ordering

if e ∈ Ecall then
call event(e)
remove e from Ecall

else
fire event(e)
remove e from Eemit

end

end

Note that it is possible that an event is present in both event sets. In that case, we do call

the command and let the emission in Eemit. This behaviour ensures that if the command emits

the event immediately, the event is emitted only once.

3.1.3 Explicit and implicit model

Our system, like most systems, has two models:

• the first one, the explicit model, is the one the system can reason about. In our case, it is

the definition of task models, the arguments of task instances and the relation graphs.

• this model is a subset of an implicit model. In our case, the implicit model is hidden in the

user code our plan manager calls during the execution. Since this user code is for instance

allowed to emit events, call commands or test whether or not an event has been already

emitted, this part of the model can be important for the whole system behaviour.

62

Plan Execution · 63

Therefore, unlike what exists in synchronous languages, we cannot offer strong guarantees

about the system behaviour: parts of the event propagation is by design hidden in commands

and handlers. Moreover, the programming language we use is not a formal language and as

such cannot be subject to formal program analysis. For instance, in the case of the until event

a elimit → until(limit) is added in the PropagationOrdering graph to make sure that if both

elimit and a source of the until event are emitted in the same cycle, then elimit will be emitted

before the until event is. until will therefore not forward its arguments in this cycle. We lost

the ability to prove the system behaviour for practical concerns, but we could get that ability

back by constraining the allowed actions in the user code.

3.2 Error management

Robots are autonomous agents evolving in dynamic environments. Because of the “dynamic”

part of the environment, making a perfect (also known as “universal”) plan is nearly impossible:

plan generation manipulates simplified models of the environment, the environment is only

partially known (sensor reading are noisy, state estimation is also based on imperfect models

and as such is subject to errors, . . .). As a consequence of all this, systems designed to control

robots must be able to represent and handle failures.

There are mainly three different approaches to this problem, which are not mutually exclusive

(Beetz hierarchical controllers do for instance both 1 and 3):

1. in hierarchical controllers [62; 63; 64; 40; 12] an error is either a localized event generated

by a task or a constraint which is violated by some task. The exception propagation

mechanism consists in going up in the controller hierarchy to find an exception handler.

Exception handlers are piece of application code responsible to find an appropriate response

to the problem.

2. the plan itself takes into account multiple path of execution. In classical planning, it is done

by conditional or contingent planning [57]. This approach is also inherent in probabilistic

planning approaches [60]. Note that this approach does not preclude the use of other error

management schemes: the generated plans will not handle all possible errors – only the

most likely ones.

3. the plan does not take into account the problem, but the planner which generated it is able

to either repair the plan, or generate a new plan, whenever the current execution violates

constraints described in the plan [43].

In our opinion, the three approaches have specific interests, and our system implements all

of them. This section describes first the various errors that are detected in our system, and how

they are represented. Then, we present how our system offers these three approaches of error

management in the context of our plan model.

3.2.1 Error definitions

An error is defined by two things:

63

64 · A Software Framework for Plan Management and Execution in Robotics

• a type, and associated data, which describes the specific error.

• a point of failure which is the object in the plan the system determined as being the cause

of the error. It also allows to determine where a repair is needed.

In our system, errors can have three origins:

• they can come from the plan management code itself, in which case it is most likely a bug.

• they can come from user code: code in event commands or handlers, or some polling code

associated to a task. It can for instance be a bug, or because the code performs itself some

internal checks and one of them failed.

• they can come from a constraint violation: during the plan execution, some task violated

a constraint which was specified in the plan.

This section presents first how code-related errors are detected and how they may be inserted

in the error-handling process. Then, the errors related to the violation of the constraints defined

by our task relations are described. For each error, we describe how its point of failure is

determined.

3.2.1.1 Code-related errors

When we talk about an error in code, we are essentially talking about the exception mechanisms

which exist in most modern all-purposes language1. The language we use for our implementation,

Ruby, has this kind of control construct and when we refer as an error in user code, we talk

about an exception which has been raised by user code and has been caught at the boundaries

between the “plan management code” and the “user code”.

Errors in the plan management code itself are in general very difficult to properly handle,

as it would mean that we have a model of the consequences of all possible errors on the overall

system. There are however places where it is possible to determine that errors in the plan

management code have effects only on a single event or task. The critical path is then defined

as the code for which we cannot determine the effect of the error. If such an error occurs, the

only alternative is to terminate the plan manager and assume that some higher level mechanism

of fault-tolerance will take over.

In the case of event handlers and event commands, the point of failure is obviously the

corresponding event. For these, the following errors are defined:

CommandFailedError(event, failure) is generated when the command code of event

raised the failure exception.

EmissionFailedError(event) is generated when the command of event has been called,

but it is impossible for the event to be emitted.

UserCodeError(object, failure) is generated when controller code associated with an

event or task raises an error. failure is then the failure object raised by the code. The point of

failure for this error is object.

1see http://en.wikipedia.org/wiki/Exception handling for an introduction

64

Plan Execution · 65

3.2.1.2 Constraint-related errors

For the constraints defined by our task relations, the following errors are defined:

DependencyFailedError(parent, child, reason) is generated when a depends on rela-

tion is violated. reason is either an event from the failure event set of the depends on relation,

which has occured, or the set of reasons why all positive events are unreachable: when an event

eu becomes unreachable the system can give an event ef whose emission is the cause of eu’s

unreachability, if such an event exists. In this case, ef defines the reason and point of failure of

the error. Otherwise, the reason is task-specific and the point of failure is the task itself.

For instance, let’s assume a simple depends on relation PickUp(object, x, y)
depends on
−−−−−−−→

MoveTo(x, y) where MoveTo’s eblocked is emitted. In that situation, the depends on relation

fails because MoveTo’s esuccess is unreachable and the system blames the most specific error

event for it; the most specific event which is emitted and forwarded to efailed (for instance eblocked,

see Fig. 2.3 on page 39). The error is therefore represented by DependencyFailedError(t1,

t2, eblocked).

PlanningFailedError(task, planner) is generated when a planned by relation is vio-

lated. The point of failure for that error is the task.

3.2.2 Handling errors

Code-related errors are detected in the first stage of the execution cycle. However, the system

does not immediately react to them: they are handled during the second phase of the cycle along

with a set of errors detected by global plan analysis procedures which run at the beginning of

the second phase of the execution cycle: the error handling phase (Fig. 3.7).

3.2.2.1 Handling errors during the event propagation

Since the error detection through plan analysis is done after the event propagation stage, it is

possible – if repairing the plan is instantaneous – to handle some errors without using the special

tools designed for that. For instance, our rover’s operating system is not real time. Therefore,

under heavy CPU load, the locomotion control module Rflex sometimes determines that its

command source (P3d for instance) did not update the command, in which case it stops the

robot and fails with a POSTER NOT UPDATED message. In our task model, this error is mapped to

a corresponding eposter not updated event and since it is really a benign error, the handler of this

event simply starts a new Rflex control task Rflex::TrackSpeedStart and replaces the failed

one by the current one (Fig. 3.8). Because of this operation, the task failure is not seen by error

management.

3.2.2.2 Plan repairs

For each error, the plan is first checked for plan repairs. A plan repair is an association between

a set of points of failures Sfail, a running task T and a timeout tmax. As long as the task is

running, an exception whose point of failure is included in Sfail is ignored. The plan repair is

65

66 · A Software Framework for Plan Management and Execution in Robotics

2. Error Handling

3. Garbage

Collection

Exception handlers

Plan repairs

User code

1. Event

Propagation

Global plan

analysis

Filter out

errors which

are being

repaired

Start

handling

tasks

error_handling

relations

Use exception

handlers if

possible

depends_on and

planned_by relations
Plan model

Phase 1

errors

Constraint

violations

Remaining

phase 1 errors

Remaining

constraint

violationsGlobal plan

analysis

Failing

tasks

Remaining

Phase 1

Rem.

Constraints

Violations

Figure 3.7: Overview of the error handling phase. The errors that are detected are filtered
through the three steps of the error handling phase. For the remaining errors, we mark the
corresponding tasks for garbage collection

Rflex::TrackSpeedStart

failed stopposter_not_updated

Rflex::TrackSpeedStart

start

P3d::PathTracking

Rflex::TrackSpeedStart

start

P3d::PathTracking

start

Figure 3.8: Repairing the plan during event propagation: the eposter not updated event of
Rflex::TrackSpeedStart is a “spurious” error. To handle it, an event handler is defined on it
which simply replaces the failed task instance with a new instance of the same model. (left)
the initial situation and (right) the repaired plan

66

Plan Execution · 67

removed as soon as the task finishes and/or the timeout is reached. Once the plan repair is

removed, the corresponding errors are not inhibited anymore.

If no repair exists for the error we consider, the system looks for a error handling relation

t1
error handling
−−−−−−−−−→ t2 which is defined by a set of events e1, e2, Such a relation exists if t2 is

able to handle the situation where any event e1, e2, . . . of t1 is the point of failure of an error.

If that situation is encountered, t2 is started and a plan repair is automatically added.

One specificity here is that the plan repair is associated with all events that are forwarded

to the given point of failure: since the forwarding relation has an abstraction semantic between

events, we consider that a repair on a more-generic event automatically handles the ones for

less-generic events. So, for instance, error handling relation on the efailed event of the MoveTo

task we talked about earlier would also handle the eblocked event, but a error handling on

eblocked does not handle errors in efailed. If more than one error handling relation applies, the

decision control component is supposed to choose one for the executive.

As an example, let’s look at the handling of the P3D::TrackPath task in our controller, in

the context of the Nav long-term path planner. eblocked is emitted by P3D when the subgoal

given by Nav is not reachable according to P3D’s model of the terrain. To handle this situation,

we mark the zone in front of the robot as “non-traversable” and regenerate a subplan for the

P3D::TrackPath instance (Fig. 3.9). However, the issue of starting that new subplan is task-

specific: the planner and/or the parent task are supposed to have defined event handlers able

to deal with that. In our case, we can simply start the new subplan. Our system also provides

a plan merging mechanism, which is presented in the next chapter, to help dealing with that

issue.

3.2.2.3 Exception propagation

If no plan repair exists and no error handling relation applies, the error is managed by ex-

ception propagation. In our system, exception handlers are associated with task models. We

therefore need to associate all errors with a task:

• if the failure point is a task or a task event, the error is associated with that task.

• if the failure point is an event outside a task, the error is associated with all tasks whose

events are linked to this event through the event structure.

Once this is done, we propagate each error up in the depends on graph. At each level, we

check if the task model of the considered instance defines an exception handler which handles

the error. If a handler exists, the propagation is stopped. Otherwise, we look for one on the

planning task if there is one, and finally go up in the graph if the planning task does not handle

the error either.

However, unlike other plan models which define exception handling, we do not manipulate

trees but graphs. There is therefore the possibility that, during the propagation, two different

branches have two different handlers which can handle the error. Such cases are taken into

account through Alg. 3.2. The only problematic situation is to decide what to do when more

67

68 · A Software Framework for Plan Management and Execution in Robotics

Rflex::TrackSpeedStart

Nav::MoveTo

P3d::TrackPath PlanningTask

Pom::LocalizationPlanningTask

error_handling

(a) Starting point: the error handling relation in red handles
the eblocked event of P3d::TrackPath

PlanningTask

start

Nav::MoveTo

Rflex::TrackSpeedStart

P3d::TrackPath

blocked failed stop
PlanningTask

Pom::Localization

error_handling

(b) The P3d::TrackPath task emits eblocked to announce that
there is no path, according to its model, to the subgoal pro-
vided by the Nav path planner. This error is handled by the
PlanningTask task

PlanningTask

Nav::MoveTo

Rflex::TrackSpeedStart

P3d::TrackPath
PlanningTask

Pom::Localization

error_handling

(c) While the new P3d::TrackPath subplan is being generated,
the error is inhibited

PlanningTask

success stop

Nav::MoveTo
Rflex::TrackSpeedStart

failed stop
P3d::TrackPath

PlanningTask

Pom::Localization
Rflex::TrackSpeedStart

start

P3d::TrackPath

start

(d) Once the new P3d::TrackPath subplan is generated, it is inserted
and started to replace the one that failed

Figure 3.9: Example of a error handling relation allows to manage the eblocked event of our
P3d motion modality

68

Plan Execution · 69

Algorithm 3.2: Propagation of an exceptions in the task graph. The basic idea of this
algorithm is to get a propagation order through a topological sort of the tasks in the
depends on relation

input: the error to propagate
blamed tasks = {t1, t2, . . .} the set of tasks associated with the error
handling tasks = {h1, h2, . . .} the set of tasks in the plan so that:

1. hi or the planning task of hi is able to handle the error which is being propagated.

2. there is at least one element of blamed tasks which can be reached from hi through the
depends on relation.

if handling tasks = ∅ then
the error is not handled

else if handling tasks = {h} then
only one candidate, call the error handler defined by h or its planning task

else
Let h be an element of handling tasks so that all other tasks of handling tasks are
parents of h through depends on
if h exists then

call the error handler defined by h or its planning task
else

multiple candidates, call decision control to handle the situation
end

end

than one task can handle the error is still an open problem in our system: exception propagation

has no choice but to call the decision control component.

Finally, note that since planning tasks are involved in the exception propagation, integrating

the repair capabilities of a planner is simply done by calling the planner when exceptions are

caught by the corresponding planning task.

3.2.3 Handling remaining errors

After this error handling phase, the system acts upon the following remaining errors:

• all errors found during the execution phase of the cycle that have not been handled. These

errors are the errors related to exceptions thrown by user code.

• the errors returned by a second pass of the global plan analysis procedures. This second

pass is there to make sure that the exception handlers did repair the plan.

At this stage, it is not possible to repair or handle these errors. The system marks the

involved tasks for garbage collection, so that they are interrupted and removed from the plan:

• if the failure point is a task or a task event, we mark the task event and all tasks that are

parent of this task through any task relation graph.

• if the failure point is an event outside a task, we mark all tasks linked to this event through

any event relation graph (child and parents).

69

70 · A Software Framework for Plan Management and Execution in Robotics

2. Error

handling

1. Event

Propagation

Rflex::TrackSpeedStart

Nav::MoveTo

P3d::TrackPath

PlanningTask

Pom::Localization

PlanningTask

Stop unused

or failing

toplevel tasks

Set of stop

events to call

Remove

toplevel tasks

which are not

running

Failing

tasks

3. Garbage collection

Remaining

failing tasks from

previous cycles

Plan

Figure 3.10: Overview of the garbage collection cycle: the unused or failing toplevel tasks that
are still running are killed and removed only when they are finished.

This scheme can be summarized as follows: if an error has been found, and if nothing handled

it, then kill all activities which are involved in this error. We simply assume that the plan as it

is is broken, and that all possible ways to handle the problems have already failed.

3.3 Garbage collection

The last stage of the execution cycle, the garbage collection cycle, is to detect and remove tasks

that are either no longer needed by the plan or cannot be kept because they are involved in an

unresolved error. Unlike in other hierarchical task-based systems, we do not expect each task to

handle that for its children: doing it in a separate phase, in which the plan is analyzed globally,

allows more flexibility. For instance, tasks which share a common child do not have to care

about when to kill that child. Another example of its usefulness is that an activity management

strategy can be based on global concerns: for instance, a task can be kept because a planner

claims that it will be using it in the plan it is currently generating or because a remote plan

manager claims that it depends on it.

Fig. 3.10 presents an overview of the garbage collection phase.

3.3.1 Useful tasks

As already mentioned, task relations express a notion of usefulness: in a t1 → t2 relation, t2 is

useful to t1. This is a central notion for garbage collection as it allows to trace the usefulness of

each task in the plan: given a set of tasks that are marked as useful by definition – see below –

70

Plan Execution · 71

the system computes the set of tasks that are useful for the system as a whole. The tasks that

are “garbage” are then remaining tasks.

The following tasks are always useful:

• missions, which are the tasks which are the current high-level goals of the robot.

• permanent tasks, which are a set of tasks that should not be automatically garbage-

collected. This is used mainly to start some common services (like localization) once

and for all and keep them running.

• tasks used by plans being built. Our plan manager represents the plans that are currently

being built, allowing to keep the tasks that are not immediately useful in the current plan,

but may become useful in the future evolutions of that plan.

• the garbage collection of tasks involving other plan managers is presented in the next

section, dedicated to multi-robot plan execution.

The tasks that have been marked by the error handling phase are always included in the set

of tasks to be killed.

3.3.2 Killing the tasks

The second part of the garbage collection phase is to actually kill the tasks. To do that, the set

of tasks that are immediately unneeded is computed: in the set Tu of tasks just computed, some

of them still have parents which are in Tu as well. It is therefore not possible to stop these tasks

since they are still useful for their parents and killing them now could break the termination

process of their parents. Therefore, at this stage, the only tasks that are killed are the tasks in

Tu that have no parents.

Among those, the garbage collection scheme removes the tasks that are not started and

terminates the tasks for which it is possible: the ones for which the estop event is controllable.

Moreover, the following cases must be taken into account during garbage collection:

• the task is being started: its estart event has been called but is not emitted yet. In that

case, garbage collection must wait for it to be emitted before calling estop.

• the task is starting, but its estart event failed to emit: either a CommandFailedError or an

EmissionFailedError have been found for that event.

• estop is controllable, has been called but fails to emit: either a CommandFailedError or an

EmissionFailedError have been found for that event.

For the second and third items, the plan manager places these tasks in a quarantine zone

where they are kept. The plan manager itself can do nothing more with these tasks – it does

not try to stop them again for instance.

Note that shutting down the plan manager is simply marking all tasks for garbage collection.

The plan manager is then shut down when the quarantine zone is empty and all removable tasks

are removed (i.e. estop is not controllable on the remaining tasks).

71

72 · A Software Framework for Plan Management and Execution in Robotics

3.4 Distributed execution

The execution of joint plans – plans which involve more than one robot – requires of course some

specific mechanisms. We present here how our plan managers executes multi-robot plans in an

environment where communication is not always available. What our system achieves is to have

the “distributed” part of the execution being completely transparent, while taking into account

the specificities of multi-robot execution. In that regard FIRE [66], an extension of TDL for

multi robots, and PRS as used in multi-robot [4] do not consider multi-robot systems as being

specific: FIRE for instance allows to develop TDL’s task trees among multiple controllers but

does not handles problems linked to the asynchronous nature of robot-to-robot communication.

COMETS [32; 31], on the other hand, has been designed with multi-robot in mind. However, it

has been done by completely removing the management of joint tasks from the “central” plan.

Joint tasks are completely managed by a separate component and do not share the same task

model than the central planner. This separation of models and tools contrasts with our goal

to provide a central tool for plan management. Finally, the TAEMS task model and the tools

built around it does handle execution of multi-robot plans. However, the TAEMS task model

does not represent joint tasks activities, and thus does not allow to manage a teamwork model

around TAEMS plans, something which is needed in our opinion.

This section first describes the communication protocol used between plan managers. Then,

it shows how to handle events in a multi-robot plan. Finally, it discusses the fact that the trans-

parency we are aiming at is not perfect: there are behaviour differences between the execution

of a local-only plan and a joint plan.

3.4.1 Communication with other plan managers

In order for our system to handle the loss of communication, we have to define two distinct

notions to manage the communication with another plan manager:

connection two plan managers are connected if they are involved with each other. Upon

connection, a ConnectionTask task instance is created and started in the plan. This task

instance is terminated when the connection is closed or when a protocol error occurs (i.e.

if there is a bug in the communication layer).

communication link the communication link is either alive if it is possible to send data to

the peer, or dead otherwise.

The notion of communication represents the physical communication link between to plan

managers, while the notion of connection represents the fact that two plan managers have

accepted to work together. One could see it as a logical connection between the two plan

managers. For instance, if two peers break their connection with one another, then both can

assume that their joint tasks are broken.

Then, the data flow between two plan managers is based on a set of messages which describe:

• execution-related changes: such as event emission, signal or forwarding between a local

event and a remote event.

72

Plan Execution · 73

• changes of attributes such as added and removed owners for a task.

• structure-related changes such as added and removed tasks, added and removed relations.

• barriers, which is a specific message which stops message processing between a given set

of hosts until all hosts have processed the corresponding barrier message. This is needed

when synchronization points have to be set among multiple plan managers: a barrier

guarantees that any message received after the barrier would be processed only when all

involved hosts have processed all messages received before it.

Of course, a plan manager is only notified of events which involve either one of its own

objects or one of the objects it is subscribed to. Moreover, we do not resend messages received

from other plan managers. This is to avoid having the same message received from multiple

different routes by a plan manager, which is a hard problem to solve and is outside the scope of

this thesis.

Because of the structure of our execution engine, we consider that all messages generated

during one cycle should be sent as a whole. Each plan manager gathers this set of messages

and processes them during the first phase of its execution cycle, while keeping the message

order. More specifically, given a set of messages {e1,m2, e3, . . . , ei,mi+1, . . .} where ei is an

event-related message (emission, signal or forward) and mi another kind of message, we process

mi only after all ej have been emitted so that j < i. This guarantees that a non-event operation

is done only *after* all events that might have been its cause.

Causality, however, is not guaranteed between events which come from different plan man-

agers: assume there is a chain of events a
sig
−−→ b

sig
−−→ c where each event is owned by a different

plan manager, and that the plan manager of c is subscribed to both a and b. The notification

of a
sig
−−→ b will come from Pa and the notification of b

sig
−−→ c will come from Pb. Since there are

no guarantee of ordering there, it is possible that Pc is notified of b
sig
−−→ c before it is notified of

a
sig
−−→ b. This is a limitation of the current implementation, but it can be solved in future evo-

lutions by keeping track of the causality between the messages of one system and the messages

of another system.

3.4.2 Handling joint events

Events of joint tasks cannot be handled as local events are: since these “joint events” are to

be handled by more than one plan manager, we have to put into place rules that guarantee

synchronization between the involved plan managers. The following rules are in effect:

1. when the command of a joint event is called, it is called on every plan managers owning

this event. The command which is called can be role-specific or do nothing, but all plan

managers that are involved in the management of this event must be called.

2. the event is emitted only when all the owning plan managers declare they are ready to

emit it.

The notification mechanism described in the previous section guarantees the application of

the first rule: a plan manager, when signalling the joint event, will notify all its owners of this

73

74 · A Software Framework for Plan Management and Execution in Robotics

signal. The second rule is, however, truly multi-robot specific. It is implemented by electing a

master among the owning managers when the event is being emitted. This master is notified

when the remaining owners are ready to emit the event. When all owners have done so, the

master emits the event. Since the other managers are also subscribed to the joint event, they

are notified of the emission in the normal way. Note that this mechanism is not a specific one: a

mono-robot task being, in our plan, a task with a single owner, the joint tasks and mono-robot

tasks are not treated differently by the executive.

This handling of joint events is a representation of the establishment of a mutual belief in

the joint action theory of Cohen and Levesque [22]: when a robot believes that it must start a

task (“goal” in the joint action theory), the system informs the other robots of that fact and

the robot can start its action only when all the involved robots have (i) been informed that the

joint action is to be executed and (ii) accepted to do their part. The emission of the estart event

of a task is therefore the equivalent of the establishment of the realization of that task as a joint

persistent goal:

• all the robot mutually believe that the task is not yet achieved.

• they all accepted to make the task achieved (i.e. they want the task to be achieved).

• they will continue to believe so until they have reached the belief that either the task is

achieved or it is not achievable.

The rest of the information transmitted about the joint tasks helps to share the robot’s beliefs

about the task possibility of success. For instance, if a child task fails, the other robots will be

notified as soon as possible of this fact: the robots which are affected by it will be eventually

notified of the efailed event emission.

3.4.3 Behaviour differences between local plans and mixed plans

Some behaviours differ between local plans – in which there are tasks from only one plan manager

– and mixed plans. At the frontier between the plans of two different managers:

• the propagation of a
fwd
−−→ b is no more synchronous when b is handled by a plan manager

Mb and a by another plan manager Ma. b can be emitted in Mb only if Ma notifies that

it is, so there is at least one execution cycle between the emission of a and the emission of

b. Even more so in a chain a
fwd
−−→ b

fwd
−−→ c when c is also handled by Ma.

• exception handling does not allow plan reparation to cross the borders of each plan man-

ager: an exception generated by a constraint violation in one plan manager will not be

passed to another one. Moreover, exception handling is a synchronous process (the plan

must be repaired “just after” the exception propagation phase) and our plan manager is

built with the idea that communication links are not always available. The only generic

way to specify error handling as one robot repairing for another robot is therefore plan

repairs.

Moreover, there is an intrinsic asynchronicity between event propagation and plan changes:

a remote plan manager can always remove a signal while we have already queued its emission.

74

Plan Execution · 75

Such a situation is not an error in the communication protocol. It is simply an error in the plan:

either the remote peer broke the plan because of some error or critical situation (it decided to

drop the joint plan), or there is a lack of synchronization which led to this fault. This error is

handled as a normal error, through a RemoteEmissionError which is associated with the source

events of the signalling or forwarding operation.

Finally, the garbage collection mechanism must take into account the fact that the plan

includes tasks which are useful for other plan managers. If the plan contains a remote task

tr, then any local task tl which is linked to tr are marked as useful. This is done because, in

the system, the plan is used as a form of weak contract: when the plan manager allowed the

tr → tl relation to be added, it announced that it would try to achieve tl for the remote peer(s).

Therefore, tl cannot be automatically removed.

3.5 Summary

This chapter has presented the different processes defined for plan execution. The execution

cycle is divided into three processes:

• the propagation phase in which the system reacts to external events according to its plan.

This phase involves a pseudo-synchronous propagation algorithms which enforces a partial

ordering of events. During this phase, the application code defined for the event commands

and the events handlers is called.

• the error handling phase offers a way to handle the various detected errors. Our system

classifies the errors into two main categories: code errors which have been raised by event

handlers or event commands, and the constraint violations which are detected by global

plan analysis procedures.

• the garbage collection phase which kills and removes the tasks which are not useful anymore

for our system.

As we stated in the first section, the event propagation phase is a necessity for a system

based on discrete events like ours. The main contributions of our plan execution scheme is the

implementation of multiple error handling schemes and the garbage collection process.

Our system offers multiple ways to handle errors. Simple errors can be recovered by modi-

fying the main plan directly in event handlers. As this is done in conditional planning, the way

to recover from common errors can be defined directly in the plan through plan repairs and

the error handling relations. Finally, an exception mechanism allows to integrate non-local

repairs: a high-level task can repair a low-level task by defining the corresponding exception

handling procedure. This integration of these three main error handling schemes allows to use

the right scheme for the right situation, and keep the error handling part of the plan and of the

application code simple.

By having a separate garbage collection phase to remove unused task, we remove the burden

to determine which tasks are unused and how to stop them from the developer which write the

task models. Moreover, since our system represents task graphs and partially built plans, the

75

76 · A Software Framework for Plan Management and Execution in Robotics

determination of the set of unused tasks truly requires a global analysis procedure like the one

we implemented.

Finally, during plan execution, the decision control component is used to arbitrate between

multiple ways to handle errors:

• choose between multiple matching error handling relations.

• choose between multiple candidate exception handlers.

Our execution model is inherently multi-robot: event propagation and the constraints defined

by task relations, combined with the notion of ownership, allows multi-robot execution. The only

multi-robot specific addition is the handling of joint events, which are used as synchronization

point: they can be emitted only if all the involved robots agreed to their occurence.

The next chapter will present how plans can be safely adapted while they are being executed,

and what operations our plan management component offers to transform plans during their

execution.

76

4
Plan Management

The previous two chapters have presented what is the model used to describe plan in our plan

manager and how a plan is executed once it has been built. This chapter ties the two things

together by explaining the tools offered to change plans and to change them while they are being

executed.

Most supervision systems allow some kind of online plan modification: either because an error

makes the current development backtrack and develop another possible branch (PRS and TDL

behave this way), or because they are trying to instantiate a plan which is better with respect

to the robot updated beliefs (Structured Reactive Controllers, TAEMS). Contingent planning is

also another instance of online plan modification strategy. In our plan manager, a central tool

is used to support the safe concurrent modification and execution of plans: transactions.

The first section presents these transactions, how they work and discusses what they achieve

(section 4.1). This is a central tool in our system, used to change the plan being executed and

to negotiate on plans, in particular in multi-robot context. It is also central in that it allows

to handle the conflicts which may appear between the changes brought by execution and the

changes described by the transaction.

Then section 4.2 describes two basic modification operators, and more importantly how these

adaptation operators interact with execution. These two modification operators are example of

what can be built upon our plan model and our execution scheme.

Finally, section 4.3 will present a short summary of the concepts implemented in our plan

management component to adapt plans as they are being executed.

77

78 · A Software Framework for Plan Management and Execution in Robotics

4.1 Simultaneous plan modification and execution

None of the systems we just mentioned really deal with the issue of preparing modifications

for a plan which is currently being executed. Beetz, for instance, considers cases where a

planner builds a new improved plan while the current one is being executed. He does not,

however, considers that the plan being built can become incompatible with the execution, how

to represent this conflict and how to react. We will show in this chapter that our system provides

such a mechanism.

In the Claraty architecture, this issue is dealt with by using a “floating line” which separates

the part given to the executive, which is in fact being executed, and the part given to the

planner, which can be modified. This does not really fix the problem, as failures on the short-

term plan can impact the plans that are being built by the high level planner. This is not really

an issue if the planning times are short with respect to the dynamics of the system, and as

such it is a successful scheme in mono-robot context. But in the case of multi-robot systems,

communication latencies can lead to long negotiation and robots need to consider the execution

status and how this status evolves while they are building a joint plan.

4.1.1 Motivation

Our system does not have the model needed to check that the robot state is compatible with

starting a task (for instance): our plan manager relies on the task and event relations to assess

what is broken and what is not. The executable should therefore not consider a plan in which

relations are not yet established and/or tasks are missing for execution. Note that such a

“sound plan” can be a non-executable plan: it is possible that a plan includes tasks that are

either abstract or partially instantiated: in that case, this non-executable plan is sound as it

gives the information needed to develop a fully executable plan which is coherent.

The golden rule of plan management in our system is therefore the following:

Rule

The plan which is seen by the executive, also called the “executed plan” or the main

plan, is always sound as long as the plan generators build sound plans.

It is easy to see that this rule cannot be enforced if the main plan is concurrently modified

and executed: at some point there would be some task, event or relation missing. We need

something to represent a plan change outside of the main plan, and we need to be able to apply

these changes all at once to the main plan.

Note that such a scheme is also required for some of the mechanisms already presented to

work as expected: if one was to add a single task in the plan, this task would most likely be

garbage-collected. Moreover, we can see on Fig. 4.1 that not having this tool could break the

notion of trigger.

Our plan manager provides the transaction as the mechanism to modify plans. Transactions

are already common in the database world: they represent a set of modifications to a database,

78

Plan Management · 79

A

Trigger:

 (model=A)

 with a child(model=B)

 without a child(model=C)

A

B

A

B C

Figure 4.1: how incrementally changing the main plan can break triggers: A matches the trigger
in the second step, while it should not since the final “sound” plan is the third step and the
trigger does not match here

guaranteeing that these modifications are applied either all at once – in which case the transac-

tion is said to be committed – or not at all – in which case it is discarded. This idea has been

adapted to the management of plans.

First, we present how transactions represent a set of changes to plans. Then, we show that

they also provide a basis of negotiation in multi-robot context. Finally, the interactions between

the plan which is being built and the changes that are done to the main plan because of its

execution are described.

4.1.2 Representing plan modifications

Transactions are represented as a new state of part of the plan: they tell how, all other things

being equal, a set of tasks and events should have their relations set to form a new sound plan.

This differs from Beetz’s approach to plan transformation: in Structured Reactive Controllers,

the plan model expresses what transformation to apply and when to apply it. In our case, we

do not want to provide predefined models of plan modifications: we want, as a new plan is being

formed, to be able to track how it changes the main plan and make the executive and planning

systems interact. Then, any part of our architecture (decision control, plan generation or task

code) can change the plan when needed. The parts “what to change” and “when needed” are

not represented in our plan manager.

To better describe how transactions work, let’s take a simple example: the repair of the

P3d::TrackPath task already presented earlier (Fig. 4.2). This transaction represents the change

from the main plan in which the task failed into a repaired plan. We see that transactions contain

two kind of tasks: the tasks that are already in the main plan (white and blue tasks) and the

ones that are being added (blue tasks).

A transaction is therefore defined by a tuple (P,Onew, Oremoved, Oproxies, R), where:

• P is the plan the transaction applies on. In our example, it is the main plan, i.e. the plan

being executed, but it can also be another transaction.

• Onew is a set of tasks and events that are not in P . In our example it is P3d::TrackPath

and a new Rflex::TrackSpeedStart.

• Oremoved is a set of tasks and events that are in P but should not be in the new plan. It

is usually empty as task removal is handled by the garbage collection pass: the tasks that

79

80 · A Software Framework for Plan Management and Execution in Robotics

Pom::Localization Rflex::TrackSpeedStart

P3d::TrackPath

Pom::Localization

PlanningTask

Nav::MoveTo

Rflex::TrackSpeedStart

P3d::TrackPath PlanningTask

Rflex::TrackSpeedStart

Nav::MoveTo

PlanningTask

P3d::TrackPath

Figure 4.2: Example of a transaction: in the plan being executed, on the left, P3d::TrackPath
has failed (red). On the right, PlanningTask is using a transaction to generate a new valid
plan. The tasks in white and blue are transaction proxies: placeholders for tasks in the main
plan which are affected by the transaction.

are not useful for the new plan are removed automatically.

• Oproxies is a set of tasks that are in the plan and have a representation in the transaction.

In our example, this is the set of tasks that are represented in blue and white.

• R is a set of relations between the objects in Onew ∪Oproxies. This defines what should be

the set of relations between these objects in the new plan. In our example, we see that,

for instance, there is no relation between Nav::MoveTo and the old path tracking task

but there is one between Nav::MoveTo and the new one. The new plan should have these

modifications as well.

A tasks which is in neither Oremoved nor in Oproxies is not modified by the transaction. A

transaction can also change the attributes of a task: set argument values for partially instantiated

tasks, set a task as mission or remove it from the set of missions, add or remove owners,

. . . Virtually anything which defines a task can be changed in a transaction.

Once a transaction is finished from the point of view of the plan generation components, it

can be applied to the plan. This operation is called a commit and it is done by changing the

relations, adding new tasks and removing the tasks that should be. The tasks that are left over

after the commit are then removed by the garbage collection pass (Fig. 4.3). At any time, the

transaction can be discarded : it is simply removed from the list of active transactions.

4.1.3 Conflicts between execution and planning: transaction edition cycle

As transactions represent a change of the main plan, it is easy to track how the changes in the

execution of the main plan affects the new plan which is being built. This section deals with

that issue: what execution-related changes makes a transaction invalid and how these situations

are handled in our architecture. In particular, we will see that the decision control component

has a central role: it acts as a mediator between execution and planning.

80

Plan Management · 81

PlanningTask

success stop

Nav::MoveTo
Rflex::TrackSpeedStart

failed stop
P3d::TrackPath

PlanningTask

Pom::Localization
Rflex::TrackSpeedStart

start

P3d::TrackPath

start

Figure 4.3: Result of the transaction on Fig. 4.2 when it is committed. The plan manager
garbage-collected the old Rflex::TrackSpeedStart since it is not marked as useful anymore

This problem is for instance solved in Claraty by freezing the short-term plan: the designer

assume that, by forbidding the change of the short-term plan, no conflict will ever arise. This

is a problem in general for obvious reasons:

• one cannot modify the short term plan as you modify the long-term one.

• planning is hardly a time-bounded process, and as such it is difficult to know where to put

the limit between “long term” and “short term”.

• the plan being built can depend on activities already on the short-term one (for instance,

localization). So, when the new plan is built, it already depends on the outcome of the

short-term part of the plan. Freezing the short-term plan did not really solve the problem.

Conflict sources are multiple: Fig. 4.1 lists the conflicts currently detected by our system.

An interesting case is the “event called” case: the plan execution lead to calling an event whose

emission breaks the plan structure in the transaction. It is interesting since this is a controllable

action: in our plan manager, this case is detected before the event is called and decision control

can choose to favor the transaction over the main plan. In this case, the transaction is still

valid and EmissionFailedError is generated in the main plan (cf. section 3.2.1). Note that

handling situations where, for instance, generating the EmissionFailedError would also break

the transaction is to be considered by decision control. We therefore have two kind of conflicts:

• contingent conflicts, which the execution engine cannot avoid. In that case, the only option

is to change the transaction. An example is the violation of a constraint induced by the

emission of a contingent event.

• controllable conflicts, which it is possible to solve at the execution level.

An obvious interesting extension to this conflict management would be to compare transac-

tions one with the others, and fix potential conflicts which would appear if one transaction was

to be committed. We did not investigate this yet though.

To support the communication process between the execution, the planner and the decision

control component, we now define the edition cycle: from the point of view of the executive,

81

82 · A Software Framework for Plan Management and Execution in Robotics

Type Description Possible resolution

Relation
change

• a relation in R has been removed
from the plan.

• a relation has been added in the
plan between two objects in the
transaction, and this relation is
not in R.

• make R match the plan: add or
remove from the transaction the
corresponding relation.

• acknowledge the difference be-
tween the transaction and the
plan (i.e. accept the new plan as
the new basis for the transaction).

Constraint
violation

A constraint induced by a task or
event relation is violated in the
transaction, possibly because of an
event emission

Change the transaction so that there
is no constraint violation anymore in
it.

An event, whose emission would
break a constraint violation, is called
in the plan

• change the transaction.

• do not call the event.

Table 4.1: Possible conflicts between execution and transactions. While the list of conflicts
is extensive given the current implementation of our system, the possible resolutions are only
examples.

transaction management is mostly asynchronous. Only controllable conflicts require decision

control to act as a mediator. Note that the corresponding decision must be taken quickly with

respect to the system execution cycle length, since the execution engine waits for decision control.

The planner must take into account the conflicts. Editing the transaction must be done in

a cycle in which plan modification phases is interleaved with communication with the decision

control component. The overall communication inside our architecture is depicted on Fig. 4.4.

When a conflict appears, the transaction is immediately marked as invalid and remains so until

the conflict is solved. While the transaction is invalid, it cannot be committed. Note that even if

this process requires the planner to have some kind of planning/interaction cycle, we do not lose

generality here: (1) most planners do have a “main loop” in which this cycle can be implemented

and (2) if the planner cannot or should not be modified, this cycle can be implemented inside

the plan manager itself, it would just be less efficient than (1).

4.1.4 Transactions as distributed whiteboards

Transactions are distributed objects: they can be used to build joint plans and more importantly

to negotiate on the structure of these plans. We will see in this section the specifics of building

multi-robot plans using transactions.

First, let’s review the edition cycle just presented above. In multi-robot plans, more than one

robot modifies the transaction, so we need to explicitly express who is modifying the transaction.

Moreover, as we already mentioned, we want the resulting plan to be a contract between the

involved robots. Therefore, the transaction commit should be a way for the robots to sign this

contract: it guarantees that the transaction is committed in all involved plans or not at all.

82

Plan Management · 83

Pom::Localization

Rflex::TrackSpeedStart

P3d::TrackPath

Pom::Localization
PlanningTask

Nav::MoveTo

P3d::TrackPath PlanningTask

Nav::MoveTo

PlanningTask

P3d::TrackPath

failed stop

Conflict: the depends_on relation

is broken in the transaction

Decision Control

Marks the transaction as invalid

Sends the conflict to the planner

Planner

Interaction

w/ decision

control

Plan

generation

Switches between plan generation and

interaction with the decision control

Figure 4.4: the process of transaction edition: how the conflicts detected by the execution engine
are transmitted to decision control, and from there to the planner. The planner then receives
that information during an interaction phase and adapts the transaction (or discards it) during
a planning phase. The modification of the transaction can be done asynchronously during the
planning phase.

83

84 · A Software Framework for Plan Management and Execution in Robotics

For these reasons, we added an ownership attribute to transactions, which lists the plan

managers which are allowed to modify it, and the edition cycle is changed as follows: the

transition between the two states of the planners (Fig. 4.4) now depends on the availability

of an edition token. This edition token is passed among the owners of the transaction in a

token-ring protocol. Moreover, the token keeps two informations: who changed the transaction

and who did not change it, and who asks for the token back again once. A transaction can be

committed only when the token has been passed once among all the owners but none changed

the transaction, and none asked for the token again: when that happens, we can indeed assume

that everybody agrees on the transaction result.

The transaction commit is then done in two steps:

1. a “prepare to commit” message is sent to all peers, which can accept it or not. If one of

them refuses it, the transaction is discarded.

2. if all plan managers accepted the previous message, a “commit” message is sent, followed

by a barrier (cf. section 3.4.1). All plan managers must commit. If one plan manager

fails its commit, an recovery process ensures that all tasks that have been changed by the

commit are killed.

The first step has been added so that the processing of the commit message is as fast as

possible, reducing the probability that a commit recovery is needed. This is a basic flaw in

distributed commits: there is no tool, as for now, to properly recover from a failed commit.

In addition to this changed edition process, the following specificities are to be taken into

account when plans are built into distributed transactions:

• subscription: if the default mechanism of automatic subscription is not enough (see sec-

tion 2.3), the planners must add explicit subscription to the plan. Note that, while the

transaction is being built, there is no “partial view” of the transaction: everybody sees all

tasks that are added to the transaction.

• ownership: adding tasks to the transaction is not enough, the planners must also properly

set the ownership attribute.

Distributed transactions are the central tool in which plan-based negotiation can take place.

In our experiment, the joint plan of the UAV and the rover is of course built using a distributed

transaction (Fig. 4.5). They are not a negociation protocol but a basis for the development of

such protocols – and for the integration of already existing ones.

4.2 Modifying plans

Now that plans can be modified either synchronously online or asynchronously by using trans-

actions, we will discuss the tools of plan adaptation: first, the online modifications of plans in

multi-robot context are presented. Then basic plan modification operators are described. Fi-

nally, the plan merging system, an online plan adaptation scheme built within our plan manager,

is described. This last section will show the benefits of centralizing the plan representation: once

this plan merging is in place, it can adapt all plans regardless of what planner generated it.

84

Plan Management · 85

Services::RemoteTraversabilityMapping

[ressac]

MainPlanner::Mapping

[dala]

(a) The Ressac UAV is notified of the presence of a
Services::TraversabilityMapping task in the rover
plan. It builds a transaction which at this point ex-
presses that it can help the rover through the use of
an abstract Services::RemoteTraversabilityMapping

task. The transaction is sent to the rover.

Services::RemoteTraversabilityMapping

[ressac]

Roby::Genom::Nav::PathPlanning

[dala]

Roby::Genom::Nav::RegionsOfInterest

[dala]

MainPlanner::Mapping

[dala]

(b) The rover accepts the transaction and cre-
ates a RegionOfInterest task representing
its ability to generate a set of regions to be
perceived by the UAV.

MapPath

[ressac]

DataTransfer

[ressac, dala]

Roby::PlanningLoop

[ressac]

UAVMapping::MapAlongPath

[ressac]

Roby::PlanningLoop

[ressac]

Services::RemoteTraversabilityMapping

[ressac]

Roby::Genom::Nav::PathPlanning

[dala]

Roby::Genom::Nav::RegionsOfInterest

[dala]

MainPlanner::Mapping

[dala]

(c) Based on the available information, the UAV chooses its mapping modality (MapAlongPath) and replaces the
abstract Services::RemoteTraversabilityMapping by it. It generates the rest of the plan. The transaction can
be committed.

MainPlanner::Mapping

[dala]

Roby::Genom::Bitmap::Runner

[dala]

Roby::Genom::Nav::ComputePath

[dala]

MapPath

[ressac]

UAVMapping::MapAlongPath

[ressac]

Roby::PlanningTask

[dala]

DataTransfer

[ressac, dala]

Roby::PlanningLoop

[ressac]

Roby::PlanningLoop

[dala]

Roby::Genom::Nav::RegionsOfInterest

[dala]

Roby::Genom::Nav::Runner

[dala]

Roby::Genom::Nav::PathPlanning

[dala]

Roby::Distributed::ConnectionTask

[ressac_rc]

(d) Final plan from the point of view of the rover: the tasks in black are the tasks removed because they are not
useful for the rover’s plan. They would have been kept if the rover explicitly subscribed to them.

Figure 4.5: Building the rover/UAV joint plan through a distributed transaction

85

86 · A Software Framework for Plan Management and Execution in Robotics

These operators may be the very reason why supervision systems like our plan manager,

separated from the planning systems, are useful from an engineering point of view: they can

properly handle the specifics of execution-related problems and let the planners reason on more

high-level models.

4.2.1 Ownership and online plan modification

In our system, plans describe who is doing what through the ownership attribute. Allowing a

plan manager to change the plan as it sees fit would therefore be equivalent to having let any

plan manager have authority on all the other plan managers. This is something we want to

avoid in our system:

Rule

A plan manager can add activities or activity relations on the plan of others only

through negotiation. Moreover, it cannot add an event relation pointing to the plan

of another manager.

Note that if a plan manager adds an event relation pointing to one of its local event, it simply

asks for notification – and it could be done “by hand” using subscription. This modification is

can therefore be done freely.

Because of this rule, the only way to change plans without restriction is to use transactions:

a plan change is only allowed if all involved plan managers commit the transaction: negotiation

is required in that context.1

However, online changes to a joint plan are not forbidden. As we already mentioned, the

plan forms a contract between the involved plan managers, but this contract is weak and can

be broken if needed:

Rule

A plan manager can remove its tasks from a joint plan at all times.

This means that a plan manager can always remove a relation if it is the only owner of one

of the two objects involved in it. Moreover, it can remove itself from the list of owners of a joint

task. In addition, this operation can be performed by the garbage collection phase: if a joint

task is marked as being not useful for the robot – for instance because it has been removed from

the robot’s set of missions – garbage collection removes automatically the robot from the joint

task’s owners.

4.2.2 Switching plans

The most basic plan modification mechanism available in our plan manager is the modification

of relations. In order to simplify the development of controllers, we defined more high-level

1note that having a master robot which can change the other plans freely is some kind of degenerate case
where the other robots accept blindly the master’s transactions

86

Plan Management · 87

modification operators based on this idea: how to replace one task instance by another (or one

subplan by another) during execution. The replace task and replace plan operators handle

this.

4.2.2.1 Replacement operators

There are two operators to switch between task instances in plans, which have different uses:

replace task and replace plan. replace plan is closely related to the SWAP PLAN operator

of Structured Reactive Controllers, but adapted to the problematic of plan graphs. The next

section discusses the case where the new subplan conflicts with the old one, and as such that

the two tasks being swapped cannot run at the same time.

The motivation is as follows: given a plan and a task T in this plan, how can we keep

the plan sound while exchanging the particular task instance of T with another instance T ′.

For instance, the Dala rover switches its motion modality by exchanging P3d::TrackPath and

NDD::TrackPath. In order to perform this operation, we have to determine the following things:

compatibility of model is T ′ a valid replacement for T ?

compatibility of state if T is running, how can we make sure that T ′ is in an execution state

equivalent to the one of T ?

These two questions are answered by the notion of fulfilled model : given a task T the fulfilled

model of T is the model which is required by T ’s parents in the relation graphs. For instance,

take the depends on relation – in which a child is tagged with a (model, arguments) pair the

parent is depending on: T ′ can replace T only if it is compatible with all the models defined

by all depends on relations in which T is a child. Any task relation can define this kind of

constraint, and the two replace operators first check the compatibility of model on this basis.

The compatibility of state is not directly handled by our plan manager. Each task model

is supposed to provide a make state compatible(T, T ′) routine whose job is to set up T ′ so

that its execution state matches the one of T with respect to the model considered. The very

fact that T is already in this state proves that the various models do not conflict with their

notion of execution state (i.e. if T ′ matches the required model, then it can be brought to the

right execution state since T is in this execution state). This method, however, does not apply

if T ′ is used to replace T because T failed. make state compatible(T, T ′) must also be able

to make T ′ match the execution state of T in the past : in the case of a failed task, we specify

that the execution state we want to reach is the one that T had before a certain event (which

in a case of a failed task is the failure point of the error). The default behaviour (i.e. the

make state compatible routine of Roby::Task) simply starts T ′ if T is running or failed. Note

that the replacement may not be instantaneous, and may not be simple if it is impossible to

have T and T ′ running together. The handling of this transition phase is described in the next

section.

Once the two tasks are in a compatible state, one can apply the two plan modification

operators defined for task replacement:

87

88 · A Software Framework for Plan Management and Execution in Robotics

Definition

replace task(T, T ′) replaces T by T ′ in all task relations T is involved with.

Moreover, all events of T are replaced by their equivalent in T ′ – if there is one – in

all event relations they are part of.

The direct application of this operator is simply to replace one single task without modifying

anything else. This operator allows, for instance, to simply restart a failed task when we know

that the failure did not influence anything else in the plan. This is how we do the replacement

of Rflex::TrackSpeedStart on Fig. 3.8 (section 3.2.2.1 page 65).

However, this operator is obviously not applicable in the modality switch we described:

the two task implementations have different children, and it would be inconsistent to add the

children of the old modality to the new modality. Another operator is used in this case:

Definition

replace plan(T, T ′) replaces T by T ′ in all task relations in which T is a child.

An event eT of T is replaced by its equivalent eT ′ in T ′ – if there is one – in an event

relations eT → e or e → eT only when e is not an event of the subplan of T .

The subplan of T being defined as the set of tasks which can be reached from T

through the task relation graphs.

The event side of replace plan actually defines some kind of notion of internal event rela-

tion: we separate the event relations that are needed to manage the subplan of T and the ones

that are used for synchronization with the rest of the plan.

Finally, we have to handle replacements done in a transaction: since transactions represent

plan changes, we cannot allow tasks to be started inside a transaction (or the transaction cannot

be discarded anymore). To handle replacements in that context, we record all replacements that

have been performed in the transaction, and the relation changes related to them. When the

transaction is committed, the following happens:

• the transaction is committed, but without the relations changes induced by replacements.

• the replacements are done as usual, thus taking into account the execution context.

4.2.2.2 Handling non-instantaneous task swapping: transitions

The problem with the swapping of tasks is that there is no guarantee that the new task (or

the new subplan) can be started without some kind of conflict with the old one (Fig. 4.6). To

handle that, we keep the set of task swapping which are in progress in the main plan, which is

known as the list of transitions.

If a conflict is detected by the execution engine, the conflict is first compared with the set

of active transitions. If a transition is found the following happens:

• the conflict is solved by giving priority to the task in the new plan. The old task is stopped

and the new task is started when the old one has finished (Fig. 4.6(a) and 4.6(b)).

88

Plan Management · 89

Nav::PathPlanning

Rflex::TrackSpeedStart

P3d::TrackPath

Dtm::Mapping

Nav::Path

Nav::MoveTo

Pom::Localization

Bitmap::Mapping

P3d::Track

Aspect::Segments

NDD::ExecTraj

Sick::Ranges

NDD::TrackPath

Rflex::TrackSpeedStart

start

start

start

start

start

stop

(a) The NDD::MoveTo task is brought to a state compatible with the one of P3d::MoveTo. During this process, the
conflict is detected and the old TrackSpeedStart is stopped to solve it. The exception generated by the failing
relation P3d::TrackPath and Rflex::TrackSpeedStart is inhibited while the transition is active.

Nav::PathPlanning

Rflex::TrackSpeedStart

P3d::TrackPath

Dtm::Mapping

Nav::Path

Nav::MoveTo

Pom::Localization

Bitmap::Mapping

P3d::Track

Aspect::Segments

NDD::ExecTraj

Sick::Ranges

NDD::TrackPath

Rflex::TrackSpeedStart

start

start

stopfailed

(b) One the old TrackSpeedStart has finished, the initialization of the new motion modality continues. The old
modality is then replaced and can be garbage-collected.

Figure 4.6: Switching motion modalities requires the use of a transition because the new modality
conflicts with the old one.

89

90 · A Software Framework for Plan Management and Execution in Robotics

• the exceptions raised because of this conflict resolution are inhibited while the new task is

starting.

The transition is removed from the main plan set of transitions when one of the two following

things happen:

• the new subplan fails to be put into the right execution state. The exception inhibition

inserted if a conflict has occured is removed, and the normal error handling mechanisms

are used.

• the new subplan is brought into the right execution state and the replace operation is

finished (Fig. 4.6(b)).

4.2.3 Interrupting and resuming activities

In the plan manager, the interruption of activities is based on a split operator: interrupting a

task is an operation which can split a subplan into two parts: the past in which the tasks are

interrupted, and the future in which they have been resumed.

Let’s consider a single task. The split operation is defined as follows:

Definition

Task modifications: T0, T1 = split task(T) is an operation which is specific to the

task T and returns two tasks so that T0 represents the interrupted part of T and

T1 the resumable part of it. The estart event of T1 must therefore be controllable,

but the estop event of T0 can be contingent if the interruption process is not entirely

controlled. Moreover, T0 must be in the same execution state than T .

Event modifications: split task(T) must transfer the semantic of T ’s events on

T0 and T1 by changing the events relations. For instance, the estop event of T is

equivalent to the estop event of T1 but not to the one of T0.

Default implementation: if the estop event of T is controllable, the default im-

plementation of split task is to create a new task T ′ of the same model with the

same arguments. Trying to split a non-interruptible task is an error if there is no

user-defined split task operator defined for its model.

From this per-task split task operator, we have to build a global split operator which

handles task relationships: on the one hand, T has parents in the plan which depend on it

and can therefore not continue their execution while T is interrupted. On the other hand, T ’s

children can remain running since they should not depend directly on the fact that T is running.

In a plan, the split operator is therefore defined as follows:

90

Plan Management · 91

P3d::TrackPath

Rflex::TrackSpeedStart

Dtm::Mapping

Bitmap::Mapping

Nav::Path

Nav::MoveTo

PlanningTask

PlanningLoop

Nav::PathPlanning P3d::Track Sequence

Figure 4.7: Starting point of the split of Fig. 4.8: a running Nav::MoveTo and its direct subplan.

Definition

Let PT = T1, T2, . . . , T the set of tasks from which it is possible to reach T through

the task relation graphs. This set is ordered topologically.

einter, eresume = split(T) is then defined by the algorithm 4.1. This algorithm is

designed on the assumption that it is possible for split task(Ti) to (i) queue some

of its children for splitting and (ii) update the event graphs to specify some event

orderings of interruption and resume.

See 4.8 for a broken-down example of how this algorithm works.

The behaviour of the split operator explains its name: the operator does not perform the

operation itself (it does not stop the interruptible part of the new plan). It only transforms the

plan into a plan in which the interruption is represented.

This split operation is central in the handling of conflicts: if the estart event of a task T ′ is in

conflict with an already running task T , one possible resolution is to interrupt T and start T ′.

This is actually a common pattern in plan reparation: let’s assume that the localization task

of our Dala rover fails. The error handler for this task is based on trying to get a centimetric

GPS reading, something which is obviously in conflict with the movement of the robot, i.e. the

Rflex::TrackSpeedStart task (Fig. 4.8).

Now let’s assume that the current position of the robot does not allow a relocalization. In

that case, the robot would have to go back to a place where it knows it can read the GPS –

for instance by going back on its tracks using both a local avoidance method and its known

path. This would then conflict with any Services::MoveTo task in the system – in our case,

the Nav::MoveTo. The current movement would have to be split and resumed later.

91

92 · A Software Framework for Plan Management and Execution in Robotics

Nav::MoveTo
1
(x, y)Nav::MoveTo

0
(x0, y0)

P3d::TrackPath

Rflex::TrackSpeedStart

Nav::Path

PlanningTask

P3d::Track

T 0 = MoveTo(x, y)
PT = {TrackPath}

(a) The Nav::MoveTo’s implementation of split task explicitly queues its child P3d::TrackPath for splitting
since it wants the robot to stop. Moreover, the “past” part of the split has its (x, y) arguments updated to the
current robot position.

P3d::TrackPath
1P3d::TrackPath

0

Nav::MoveTo
1
(x, y)

Nav::MoveTo
0
(x0, y0)

Rflex::TrackSpeedStart

Nav::Path
PlanningTask

P3d::Track

blocked

blocked

stop
blocked start

startstop

T 1 = TrackPath
PT = {Track, TrackSpeedStart}

(b) The P3d::TrackPath’s implementation of split task explicitly queues its children for splitting for the same
reason than Nav::MoveTo. Moreover, it updates the event relations to specify an interruption and resume ordering:
TrackPath, which is the data source for TrackSpeedStart, should be stopped after it and restarted before it.

blocked start

P3d::TrackPath
0

Rflex::TrackSpeedStart

PlanningTask

P3d::Track
0

P3d::TrackPath
1

blocked stop
blocked start

blocked start

stop

P3d::Track
1

Nav::MoveTo
1
(x, y)

Nav::MoveTo
0
(x0, y0)

Nav::Path
T 2 = Track
PT = {TrackSpeedStart}

(c) The event relations set up by the previous stage are distributed onto Track0 and Track1 by the split algorithm.

blocked start

P3d::TrackPath
0

Rflex::TrackSpeedStart
0

PlanningTask

P3d::Track
0

P3d::TrackPath
1

blocked stop
blocked start

blocked start

stop

P3d::Track
1

Rflex::TrackSpeedStart
1

stop

Nav::MoveTo
1
(x, y)

Nav::MoveTo
0
(x0, y0)

Nav::Path

T 3 = TrackSpeedStart
PT = {}

(d) Final plan

Figure 4.8: Splitting operation for a Nav::MoveTo task. The initial plan is represented on
Fig. 4.7

92

Plan Management · 93

Algorithm 4.1: splitting a subplan into a part in which a specific task T is interrupted
and a part in which T and the activities which depend on it are resumed. The algorithm
recomputes the set of tasks to be handled at each loop: since a task can add its children
to PT , these new tasks can have other parents which should be split as well.

Input: the set PT of tasks and the operation split task as defined in section 4.2.3
Data: Split the set of tasks already split
Data: involved task(S) returns the set of tasks which can reach any tasks in S through

the task relation graphs
Data: topological sort(S) sorts the task set S topologically, using the task relations

graphs
Output: two event sequences einter and eresume

let i = 0
while PT is not empty do

PT = topological sort(reachable tasks(PT) − Split)
let i = i + 1, remove the first element T i of PT

// split T i

Split = Split ∪ {Ti}
T i

0, T
i
1 = split task(T i)

add the estop event of T i
0 to the end of einter

add the estart event of T i
1 to the end of eresume

// First, copy the relations internal to the split subplan

foreach j < i do

copy the task relations of T
j
0
→ T i on (T j

1
, T i

1)
replace eT i by the corresponding event of T i

1 in all relations e
T

j
1

↔ eT i

end

// Second, update the relations between the split subplan and the other

tasks

foreach tc child of T i in any task relation do
establish the same relations T i → tc on (T i

1, tc)
end

/* the terminal events of T i are equivalent to the terminal events of

T i
1 and not the ones of T i

0 */

foreach et terminal event of T i do
replace et by the corresponding event of T i

1 in all relations e ↔ et if e is not an
event of a T k, k < i

end
do replace plan(Ti, T

i
0)

end

93

94 · A Software Framework for Plan Management and Execution in Robotics

4.3 Summary

This chapter has presented how our system allows to handle the problem of plan adaptation:

(i) how plans can be simultaneously modified and executed through the use of transactions and

(ii) examples of plan modification operators built upon our plan model.

Transactions are the central mechanism through which plans are built. Our system separates

the main plan, which is the only one the executive can act on, and the plans which are in the

process of being built, so that the executive always interprets sound plans. Transactions allow

to build a plan modification, negotiate these modifications in multi-robot context and – if the

resulting plan is satisfactory – to actually change the executable plan. In that context, the

decision control component plays a central role as it is the middle-man between the plan changes

brought by the execution and the changes which are being added to transactions.

The plan modification operators described in this chapter show how it is possible, by using

basic relation modifications, to build more complex adaptation operators. The replace plan

operator uses the notion of fullfilled model to determine if one task can be replaced by another,

and if it is the case, allows the replacement. If the replacement involves bringing the new

subplan in a given execution state, the use of transitions allows to handle non-instantaneous

replacements as well. Finally, the split operator allows to modify the plan so that it represents

an interruption and resume of parts of its current activities.

94

5
Implementation and results

5.1 Implementation: the Roby application framework

The current implementation of our plan management system is written in Ruby1, which is an

interpreted object-oriented language. As we will see, we chose this language for its expressiveness

and flexibility. This last characteristic allowed to develop a very extensible framework, allowing

to quickly prototype new features in the system. Finally, the use of an all-purpose language like

Ruby allowed to develop an application framework, in which multiple aspects of robotic software

development are integrated around the plan manager: testing, simulation, logging, . . .

This section presents different aspects of this implementation. First, how task and event

models are defined in the Roby system. Second, the bindings between our Roby system and

the GenoM[30] functional layer – used on the Dala rover – is presented as an example of how

a functional layer can be plugged in our plan management framework. The testing part of the

Roby application framework is then outlined. Finally, we present some performance results for

the existing implementation.

5.1.1 Definition of tasks and events

Our representation of the relationships between task models is very close to the object-oriented

(OO) paradigm: a base model is a more generic model than a model which is built upon it.

In OO, a model is called a class, and the class inheritance mechanisms allow to represent the

relationships between the different models. Moreover, by using object orientation as a basis for

our implementation of models and task instances, we benefit from the reuse of task-related code

(event commands, handlers, exception handlers).

1www.ruby-lang.org

95

96 · A Software Framework for Plan Management and Execution in Robotics

c l a s s MoveTo < Roby : : Task
abs t r a c t
te rminates

event : s t a r t , : c on t r o l ab l e => t rue
event : b locked
forward : blocked => : f a i l e d

end

Figure 5.1: Code example: definition of the generic MoveTo task model mentioned on Fig. 2.3

Thanks to Ruby capabilities, we have been able to define a task and event definition language

directly in the Ruby language 2: the model definition code is itself a Ruby script. For instance,

to define the abstract MoveTo model defined in chapter 2.1, one would write the code on Fig. 5.1.

This code does the following:

• it creates a MoveTo class derived from the generic Roby::Task model. Among other things,

it inherits the events already defined in this generic model (eaborted and esuccess do not

have to be redefined) and the relations between these events (for instance, there is no need

to read a forwarding relation between esuccess and estop).

• it declares that this model is abstract.

• it declares that task instances of this model terminates naturally. This statement is equiv-

alent to writing

event : f a i l e d do

emit : f a i l e d

end

event : stop do

f a i l e d !

end

I.e. to make efailed a pass-through event, and to define a command for estop which calls

the efailed event. This is actually how the terminates statement is defined.

• it creates a new contingent event eblocked (events are contingent by default) and forwards

this event to efailed.

Since this model definition language is itself Ruby code, extending the language with new

often-used statements like terminates is easy to do. Moreover, it is possible to define classes on

the fly, which is used to map anonymous local classes to represent unknown classes of remote

plan managers.

5.1.2 Binding GenoM into Roby

The functional layer of our Dala rover is made from a set of GenoM functional modules. To

represent these modules into our Roby applications, we wrote a small plugin which loads the

2these days, this is called an embedded Domain Specific Language (DSL)

96

Implementation and results · 97

GenoM module

success
stop

failed
aborted

start

Roby task: P3d::TrackPath

blocked

interrupted

Request
Intermediate

Reply

Success
Start the

activity
Activity

runs
Failed

Final report:

success

Dispatch

error message

Final report:

failure message

Figure 5.2: How GenoM activities are represented by Roby tasks. The P3d::TaskPath defines
a BLOCKED failure message which, when returned, causes eblocked to be emitted

GenoM module definition files and automatically generates the required models. As defining

models is done through Ruby code, this plugin has been quite straightforward to write, and

does not require any code generation. This section presents this Roby/GenoM binding: how

GenoM modules are defined and how they are mapped onto Roby models.

A given GenoM module defines a set of requests, each request corresponding to a possible

service which can be performed by the module. Requests accept a set of input parameters and

can return a set of output values.

When a request is sent and accepted by the module, the module registers an activity – a

representation of the request as it is being executed. During the activity lifetime, the module

notifies the caller of two things:

• an intermediate reply is sent to acknowledge that the module has started to handle the

request.

• a final reply is sent when the activity has finished. A final reply can either notify of a

success or return an error value which represents the failure of the activity. The set of

possible errors is specified by the request definition.

When a module is to be used in Roby, the Roby/GenoM bindings load the module definition

file and defines a task model for each request available in the module. Each task model has for

argument set the set of arguments the request requires. The generic representation of GenoM

request by Roby tasks is illustrated on Fig. 5.2.

The GenoM module itself is represented in our framework: a Roby::Genom::RunnerTask

instance represents, in our plan, the process of the GenoM module itself. Moreover, all requests

are executed by this task (see Fig. 2.6). This allows to gracefully handle both an unexpected

termination of a GenoM module and to make Roby both start and terminate the process at

97

98 · A Software Framework for Plan Management and Execution in Robotics

Difmap

local

terrain

map

local

difficulty

map

logged

live data

generated

fake data

automatic validation

(regression testing)

user validation

Figure 5.3: Unit-testing a functional module

Difmap Bitmap

Nav

local

terrain

map

local

difficulty

map

global

traversability

map

global

trajectory

logged

live data

generated

fake data

Mocked−up

control: move

x, y to next waypoint

Figure 5.4: Testing the plan generation capabilities of our rover

application start and end. This feature is essential for automatic module testing, which we will

discuss in the next section.

5.1.3 Testing

Integration of a robotic application requires testing. Because our system is able to manage

every components in the system – from the functional layer processes up to the planners – and

thanks to the complete integration of the software framework into a generic language it has been

possible to integrate a testing framework in the Roby application framework.

Testing a robotic systems can be done at various levels of details:

functional layer service test one service in the functional layer. This involves checking data

processing functions against reference dataset or some other simple test datasets and check-

ing the result.

functional layer integration it is the same that the previous, but instead of testing each

module separately, we inject datasets at the beginning of the dataflow and check the

output at the end of the module chain. This checks that our modules are compatible in a

more dynamic way.

plan generation this is much more high-level: the low-level control tasks are replaced by

mockups written directly in Ruby. For instance, the path planning algorithm and the

plan generated for our Nav::MoveTo task can be tested by using a fake TrackPath task.

The path tracking task which in the real system is implemented by one of our two motion

modalities is replaced by a task which changes the position of the robot linearly towards

its goal (Fig. 5.4).

integrated simulation run the whole system in a simulation environment. This requires that

98

Implementation and results · 99

most of the functional layer can run in the simulation environment. It is the case for our

system [42].

field testing of course.

In the domain of functional layer testing, a common method is to rely on a module service

to load some a priori data. For instance, our P3D module requires the DTM module output. One

could insert a request in DTM to load a priori data and make it export that data as if it were the

perceived one. This is a mistake for several reasons:

• it makes the testing of the P3D module rely on the internals of the DTM module, which

should be avoided during unit-testing.

• the data exported by the source module will often not be incremental. For instance, in

the case of the DTM module, one would not dump the internal data everytime, but only

once in a while: exporting it continuously would greatly impact the performance of the

system. One is therefore not testing the algorithms on the data they will have to manage

in the real world.

For those reasons, we developped a tool which is able to log the dataflow exported by our

GenoM modules and replay it. These samples are then used during the testing as input of the

tested modules.

5.1.4 Performance

On our Dala rover, the average data processing length is 10ms for a mean of 55 tasks in the

plan. This is no surprise since all the algorithms used are at most O(N). However, there are

performance issues with the Ruby interpreter itself, this is why we fixed the cycle length at

50ms.

The Ruby language is garbage collected. As such, an internal garbage collection process runs

whenever needed (Fig 5.5). This is a known issue in realtime applications: the garbage collection

process of programming languages is often a performance hog. However, we don’t consider it to

be a problem in our case as the realtime part of the robot behaviours is handled by the functional

layer: a bound of 300ms for the system response time is enough for our applications. If more

were needed, time-bounded garbage collection has seen interesting progresses, allowing to have

real-time garbage collected languages in embedded systems. It is therefore possible to imagine

having a dynamic language like Ruby use a time-bounded garbage collection in the future.

5.2 The Dala/Ressac Experiment

5.2.1 Supervision of the Dala Rover

The supervision of the Dala rover has been the first interesting application for our plan manager.

The way the functional layer is designed, the supervision system is supposed to handle the

following:

99

100 · A Software Framework for Plan Management and Execution in Robotics

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-2000 0 2000 4000 6000 8000 10000 12000 14000

processing
sleep

Ruby GC

Figure 5.5: Performance measurement of the Roby executive: milliseconds versus cycle index.
Since we have a fixed-length cycle, the executive has to sleep to wait the beginning of the next
cycle (green). The blue part is the time spent by the Ruby interpreter for its own garbage
collection. Aberrant sleep and processing times are certainly due to the lack of a realtime OS
on our robot, since the measurement uses gettimeofday.

100

Implementation and results · 101

event = State . on de l t a (: d => 0 . 5) .
or (: t => 5) .
or (: yaw => 0 . 3)

event . s i g n a l mapping . event (: l o o p s t a r t)

Figure 5.6: Trigger of the DEM mapping loop based on a state event. The eloop start event of
the mapping task is called if the robot moves for more than 30cm, terns for more than 0.3rad
or more than 5 seconds have passed.

• the digital terrain map and the traversability map updates are not automatic. The super-

vision system is supposed to trigger them when needed.

• due to limitations of the perception system, specific error handling procedures have been

defined for the integration of the Nav/P3D couple.

The perception loops has used the implementation of the following constructs:

state events which are emitted when a pre-defined state is reached, or when the state has

changed more than a given threshold. This events are used in our case to trigger the

perception based on threshold on time, position and heading (Fig. 5.6).

loop construct the PlanningLoop task is a planning task which generates the same procedure

in loops (Fig. 5.7). This generation can be either triggered periodically or by the command

of the eloop start event. Since our goal is to represent the future of the system, it is possible

to manage the loop ahead of time: to develop a fixed amount of iterations before they are

needed.

The P3D motion modality uses a digital elevation map (DEM) generated from stereovision.

Defaults in the DEM are quite common since the errors in localization – in particular attitude

estimation – have big effects on the resulting DEM. To mitigate those effects, a two-stage error

handler is installed on the P3d::TrackPath task. This error uses the error handling relation

so that it is transparent to any other task using the P3D motion. This scheme makes the P3D

implementation more robust to perception problems, without the rest of the system noticing.

1. the first handler only does a perception of the front of the robot.

2. if the movement still fails after this DEM update, the DEM is completely reinitialized

and we do a map of the robot surroundings through a sequence of perceptions around the

robot.

3. if the movement still fails, then the task is not repaired: an exception is raised.

101

10
2

·
A

S
oftw

are
F
ram

ew
ork

for
P
lan

M
an

agem
en

t
an

d
E
xecu

tion
in

R
ob

otics

PlanningTask

Bitmap::Mapping

Camera::OneShot

Dtm::Perception

Nav::MoveTo

Dtm::FillP3dPoster Dtm::FuseDtmStereopixel::Perception PlanningTask

Nav::Path

Stereopixel::Runner

Dtm::Perception

Stereopixel::PerceptionDtm::FillP3dPoster Dtm::FuseDtm

Stereopixel::ComputeCamera::OneShot

Dtm::Mapping

PlanningTask

PlanningLoop

Stereopixel::Compute Dtm::Runner

Camera::Runner

P3d::TrackPathNav::PathPlanning

Figure 5.7: Representation of the Dtm perception loop in the real robot. Two patterns are developped at this point: one pattern is running
(on the right) and one has been developped ahead of time.

102

Implementation and results · 103

In this latter case, the robot is most likely in a situation where the long range path planner,

nav, and the local motion modality do not agree on their model of the environment: P3D cannot

reach the target given by nav. Because of that, if the P3d::TrackPath fails, an exception

handler on Nav::MoveTo updates Nav’s model of the environment to mark the zone in front of

the robot as not traversable. The P3D motion task is then restarted. This exception handler is

independent of the actual motion modality used: it is a repair which is defined by the parent of

a depends on relation to mitigate problems in its interactions with its child.

In the three cases (two local repairs using the error handling relation and one using an

exception handler), the repair schemes are reset when the robots moves significantly (in our

case, the threshold is set at 1 meter). For instance, when this treshold is met, the current

error handling relation put on the P3d::TrackPath task is replaced by the subplan for the

first stage handler.

5.2.2 Cooperation: simulation results

The cooperation has been tested in simulation. For this simulation, few modules have been

modified to read the robot state from the simulation system instead than from the hardware –

while keeping the same interfaces – and two modules have been removed (Fig. 5.8). This allows

to have very few differences between the controller used in simulation and the one used on the

real robot.

The execution of the cooperation is a cycle: the rover generates regions of interest based on

the traversability map, the UAV perceives these regions and updates the rover map (Fig. 5.9).

In our current implementation of the scenario, the UAV is able to perceive at two altitudes.

This information is present in the regions generated by the rover: it chooses a preferred zone

size based on the information which is currently available: if very few information is available

around the planned path, then a rough high-altitude zone is inserted in order to quickly acquire

traversability information. If the zone is already known, a low-altitude perception is inserted to

refine the knowledge of that particular area.

The initial terrain and the apriori traversability maps used to simulate the UAV perception

are shown on Fig. 5.10. The UAV maps are generated based on the elevation data based on

limits on the terrain slope and random confidence. For the high altitude map, the confidence is

within the [0.12, 0.25] range, while it is within the [0.25, 0.5] range for low altitude perception.

Images of the navigation progressions are shown on Fig. 5.11. The whole navigation is done in

roughly 30 minutes for 400 meters at maximum 1 m/s for the rover.

103

104 · A Software Framework for Plan Management and Execution in Robotics

Rough terrain navigation
Camera

Stereo Dtm

Difmap Bitmap Nav

P3D

Image

3D points

elevation:

local map

local

difficulty

map

global

traversability

map

steering

command

global

trajectory

steering

command

Sick

Laser

ranges

(180°)

Aspect
NDD

Laser

ranges

(180°)

Path planning

Flat terrain navigation

Locomotion

estimated

robot

position

GPS

POM

position

Localization

IMU

attitude

Gyro

heading

Rflex

odometry

A priori

DEM file

Data from the simulation system (gazebo)
Module also used

on the real robot

Simulation−only version

of a real module

Module not present in

simulation

Figure 5.8: GenoM functional layer of the Dala rover used in simulation. Modules like Rflex are
interfaced with a simulation-only version of their hardware access library: the servoing or data
processing code remains untouched.

104

Im
p
lem

en
tation

an
d

resu
lts

·
105

MapPath

[ressac]

updated_data reached_waypointupdated_path

UAVMapping::MapAlongPath

[ressac]

RMClient

[ressac]

Nav::RegionsOfInterest

[dala]

updated_data

PlanningLoop

[ressac]

loop_startloop_success loop_end

ZoneMapping

[ressac]

success stop

ZoneMapping

[ressac]

start

PlanningTask

[ressac]

successstart stop

[ressac]

||

&

(a) The rover generates a path and a list of regions of inter-
est. The UAV is notified of this update through a eupdated data

event. The path itself is also transmitted by Roby, as the in-
ternal data of the RegionsOfInterest task. The UAV then
starts mapping based on the information contained in the
RegionsOfInterest task. It chooses a region to perceive
and starts the mapping (ZoneMapping task). The Roby con-
troller cannot, at this point, interrupt a ZoneMapping task.
Therefore, the loop simply waits for the end of the previous
ZoneMapping task before starting a new one. The event struc-
ture at the bottom-right is part of the internal implementation
of the PlanningLoop task

DataCopy

[ressac]

stopsuccessstart

ZoneMapping::Export

[ressac]

successstart stop

Genom::Bitmap::Mapping

[dala]

UAVMapping::MapAlongPath

[ressac]

Nav::PathPlanning

[dala]

MapPath

[ressac]

reached_waypoint

TransferSink

[dala]

pulled

TransferSource

[ressac]

pushed

Nav::RegionsOfInterest

[dala]

PlanningLoop

[ressac]

loop_success loop_endloop_start

[ressac]

[ressac]

&

(b) When the mapping is finished, the rover is notified that new infor-
mation is available. The data itself is passed through another channel
established by the TransferSink/TransferSource pair. The rover inte-
grates this new information and may update the list of regions of interest.
We do not use a joint task for data transfer because the handling of joint
tasks is still too experimental in our implementation.

Figure 5.9: Two stages of execution in the rover/UAV cooperation

105

106 · A Software Framework for Plan Management and Execution in Robotics

(a) Elevation map of the terrain used in simulation

(b) Traversability and confidence maps for simulated high altitude perception

(c) Traversability and confidence maps for simulated low altitude perception

Figure 5.10: Maps used for the simulation of our rover/UAV scenario. The confidence maps are
random maps generated so that they form small “patches” of constant confidence.

106

Im
p
lem

en
tation

an
d

resu
lts

·
107

(a) The UAV perceived the first zone for the
rover. Low-altitude goals (blue circles) are gen-
erated in this newly perceived zone. High alti-
tude goals remain for the terrain still unknown

(b) The rover does not have any perception
goal left for the UAV

(c) New perception goals are injected by the
rover, to cover an unknown area which may be
of interest

(d) Final situation

Figure 5.11: Progression of the UAV/rover cooperation in simulation. The small red/green spheres are the navigation waypoints of the rover,
while the blue circles are the regions of interest. The traversability information is displayed in green for fully traversable and red for fully
obstacle. Its transparency is proportional to the confidence we have in the information: thus, brighter areas are high-confidence data and
darker ones low-confidence.

107

108 · A Software Framework for Plan Management and Execution in Robotics

5.3 From the experiment, back to the implementation

The implementation of both controllers and the implementation of the cooperation scenario

allowed us to test the basic concepts of the controller.

Transactions All plan generation in the Dala rover is done asynchronously, so as to test the

concept of transactions. They have been needed so as to deal properly with the interaction

between asynchronous plan building and garbage collection and – when unexpected problems

show up – with the reconfiguration of the plan. The use of distributed transactions, queries and

triggers for the rover/UAV cooperation have been an elegant way to implement the interaction

between our two robots.

Use of a central plan management component The management of all the robot activities in

a single system has also been a great asset for the development of our controllers: the system was

able to represent and handle the problems which showed up because of bugs in the functional

layer or in the controller code being developed.

Extensibility Building more complex objects – as for instance the state events or the planning

loops – on top of the basic system presented in this thesis has been quite easy. This shows

that our plan model and execution schemes are expressive enough to build complex plans in our

system. It also shows that our implementation allows to easily implement these extensions.

108

6
Conclusion

6.1 Summary

The plan management component presented in this thesis has been designed for the plan-based

control of robots – and of robot teams, meeting the requirements for the integration of multiple

decision-making tools in a central component:

• a plan model which is both rich enough to represent the information needed for supervision

and simple enough that it is possible to translate plans produced through other plan models

into it. This plan model has two main contributions: the separation of activity structure

and execution flow through the separation of tasks and event relations, and the integration

of multi-robot requirements in a rich task-based system.

• an execution scheme for this plan model, which is multi-robot aware. The main contri-

bution is here to define execution mechanisms based on the task/event dichotomy and on

the presence of task graphs – as opposed to task trees. Moreover, the execution engine

defines multiple ways to define and handle errors, including the capability of representing

error handling in the plan itself, and to represent asynchronous plan repairs – in which

the system represents the task which is being repaired, the context in which this task was

used and the subplan which is repairing it.

• generic tools for plan adaptation. Our main contribution is here the definition of trans-

actions: a generic mechanism allowing to safely modify a plan while it is being executed.

Transactions are also used in multi-robot contexts to build joint plans, using the trans-

action as a basis for negotiation. We also developped plan adaptation operators which

take explicitely into account the problems related to changing plans while they are being

executed, showing that more complex plan adaptation schemes can be built on the plan

109

110 · A Software Framework for Plan Management and Execution in Robotics

model we defined.

The final aim of this software system is both the integration of existing decision-making tools

(planning systems, cooperation protocols, . . .) and the development of new ones, designed with

the specificities of plan execution in mind. This software system has been successfully used in

the supervision of a rover/UAV team, for the realization of a cooperation scenario in which the

UAV provides information for the rover’s navigation. This scenario has allowed to develop two

controllers on our software implementation, and to illustrate the mechanisms we described in

this thesis.

6.2 Future Work

6.2.1 Extensions to the Roby software system

6.2.1.1 Plan model and plan execution

Explicit representation of time This is the most obvious extension to our plan management.

The management of a robotic system cannot be completely done without an explicit representa-

tion and management of time. This extension is twofold. First, a time prediction scheme can be

implemented through the use of the event networks and duration estimation functions provided

by the task models. Second, time constraint networks could be integrated, allowing for instance

to express constraints over the instant of emission of events, or how long a depends on relation

can remain broken during a plan repair. The integration of time during the execution would

indeed require to extend our execution scheme as well.

Scheduling Based on the explicit representation of time outlined above, our system would

greatly gain from the integration of a scheduler: since we represent all activities in the system, the

scheduling of these activities – and particulary the interactions between planning and execution

– would be a great contribution.

State prediction Using our plan model and state prediction functions provided by the task

models, we could estimate the future state of the robot based on its current state and the

plan itself. Monte-carlo techniques have already been used for that same goal, for instance in

Structured Reactive Controllers. A challenge would be a joint prediction of both state and time.

Plan merging In its current state, the plan model only provides the means to determine if

two tasks are actually performing the same action. To implement plan merging – removing

redundancies in plans – more information would be added to both the plan model and the

execution state of the tasks:

• a temporal notion of effects for tasks: an event which determines for how long the result

of a given task remains reusable by the rest of the plan.

• a notion of commutativity : whether or not the execution of the sequence T1 + T2 is the

same than executing the sequence T2 + T1.

110

Conclusion · 111

• extending the plan model towards multi-robot constraints: specifying the set of agents

which could execute the child of a relation, allowing to know if it is possible to replace the

task of one agent by the task of another one.

A first step towards the implementation of plan merging is the online removal of redundancies:

whenever a task is started, check if another task is not realizing the same goal. A more interesting

scheme is to plan the merge: determine ahead of time the tasks which are most likely to be

merged and modify the plan accordingly.

6.2.1.2 Plan management

While we believe that the current system can integrate multiple planning tools, it is not done

in practice – apart from a prototype translation plugin for IxTeT. This area must definitely be

extended. State and time prediction in plans would be an asset here: it would allow us to create

planning problems based on the future estimated state of the robot, instead of building the plan

from its current state.

6.2.2 Perspectives

The capabilities of robotic systems would greatly gain by focusing on the integration of the

various subsystems needed to make a robot work. While the integration of functional layer

has already seen extensive work, not a lot is done towards the integration of decision-making

components. From our point of view, the integration of fault-tolerance and diagnosis at the plan

level could greatly benefit the overall robot reliability. Moreover, if possible, the integration of

such tools in a plan manager like our own would allow a greater reusability of the separate tools.

To achieve that, the plan model we described in this thesis, and the execution scheme built

upon it, could gain by a formal definition. Such a formal definition could for instance allow to

prove the equivalence between plan models.

111

112 · A Software Framework for Plan Management and Execution in Robotics

112

Bibliography

[1] R. Alami and S. Botelho. Plan-based multi-robot cooperation. In Advances in Plan-Based

Control of Robotic Agents, Lecture Notes in Computer Science. Springer, 2001.

[2] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture for autonomy.

International Journal of Robotics Research, 17(4):315–337, apr 1998.

[3] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and S. Qutub. Operating a large fleet of mobile

robots using the plan-merging paradigm. In Proceedings of the IEEE ICRA. IEEE, 1997.

[4] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Multi-robot cooperation in the

martha project. IEEE Robotics and Automation Magazine, 1998.

[5] R. Alami, F. Ingrand, and S. Qutub. A scheme for coordinating multi-robot planning activ-

ities and plans execution. In Proceedings of European Conference On Artifical Intelligence,

1998.

[6] R. Arkin, T. Collins, and Y. Endo. Tactical mobile robot mission specification and execution.

In Proceedings of Mobile Robots XIV, 1999.

[7] R. C. Arkin. Motor schema based navigation for a mobile robot: An approach to pro-

gramming by behavior. In Proceedings of the International Conference On Robotics and

Automation ICRA’87, 1987.

[8] R. C. Arkin and T. R. Balch. Aura: Principles and practice in review. Journal of Experi-

mental and Theoretical Artificial Intelligence(JETAI), pages 175–188, 1997.

[9] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Dependability and its threats:

A taxonomy. In Building the information society, 18th IFIP World Computer Congress,

2004.

[10] C. Barrouil and J. Lemaire. Advanced real-time mission management for an AUV. In SCI

NATO RESTRICTED Symposium on Advanced Mission Management and System Integra-

tion Technologies for Improved Tactical Operations, 1999.

113

114 · A Software Framework for Plan Management and Execution in Robotics

[11] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in BIP. In

Proceedings of the 4th IEEE International Conference on Software Engineering and Formal

Methods, 2006.

[12] M. Beetz. Concurrent Reactive Plans. Springer-Verlag, 2000.

[13] M. Beetz, T. Arbuckle, T.Belker, A. B. Cremers, D. Schultz, M. Bennewitz, W. Burgard,

D. Hähnel, D. Fox, and H. Grosskreutz. Integrated, plan-based control of autonomous robots

in human environments. IEEE Intelligent Systems, 2001.

[14] M. Beetz and H. Grosskreutz. Causal models of mobile service robot behavior. In Proceedings

of AIPS, pages 163–170, 1998.

[15] DE. Bernard, GA. Dorais, C. Fry, EB. Gamble Jr., B. Kanefsky, J. Kurien, W. Millar,

N. Muscettola, P. Pandurang Nayak, B. Pell, K. Rajan, N. Rouquette, B. Smith, and BC.

Williams. Design of the remote agent experiment for spacecraft autonomy. In Proceedings

of the IEEE Aerospace Conference, 1998.

[16] R. P. Bonasso, D. Kortenkamp, and T. Whitney. Using a robot control architecture to

automate space shuttle operations. In Proceedings of the 1997 National Conference on

Artificial Intelligence. AAAI, 1997.

[17] D. Bonnafous, S. Lacroix, and T. Siméon. Motion generation for a rover on rough terrains.

In International Conference on Intelligent Robots and Systems, Maui, Hawai (USA), Oct.

2001.

[18] S. C. Botelho and R. Alami. M+: a scheme for multi-robot cooperation through negotiated

task allocation and achievement. In Proceedings of IEEE ICRA, 1999.

[19] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139–159, 1991.

[20] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau. Using iterative repair to

improve the responsiveness of planning and scheduling. In Proceedings of AIPS, 2004.

[21] C. Chouinard, T. Estlin, D. Gaines, and F. Fisher. Intelligent rover decision-making in

response to exogenous events. In Proceedings of i-SAIRAS, 2005.

[22] P. Cohen, H. Levesque, and I. Smith. On team formation. Contemporary Action Theory,

1998.

[23] K. Decker and V. Lesser. Generalizing the Partial Global Planning Algorithm. International

Journal on Intelligent Cooperative Information Systems, 1(2), 1992.

114

Bibliography · 115

[24] Keith Decker. TAEMS: A Framework for Environment Centered Analysis & Design of

Coordination Mechanisms. In Foundations of Distributed Artificial Intelligence, Chapter

16, pages 429–448. G. O’Hare and N. Jennings (eds.), Wiley Inter-Science, January 1996.

[25] B. Dias. TraderBots: A New Paradigm For Robust and Efficient Multirobot Coordination in

Dynamic Environments. PhD thesis, The Robotics Institute - Carnegie Mellon University,

2004.

[26] E.H. Durfee and V.R. Lesser. Partial Global Planning: A Coordination Framework for

Distributed Hypothesis Formation. IEEE Transactions on Systems, Man, and Cybernetics,

21(5):1167–1183, September 1991.

[27] T. Estlin, R. Volpe, I. A. D. Nesnas, D. Mutz, F. Fisher, B. Engelhardt, and S. Chien.

Decision-making in a robotic architecture for autonomy. In Proceedings of 6th i-SAIRAS,

2001.

[28] Patrick Fabiani, Vincent Fuertes, Guy Le Besnerais, Alain Piquereau, Roger Mampey, and

Florent Teichteil. ReSSAC: UAV exploring, deciding and landing in a partially known

environment. In Proceedings of the IFAC IAV Symposium, 2007.

[29] A. Finzi, F. Ingrand, and N. Muscettola. Robot action planning and execution control. In

Proceedings of IWPSS, 2004.

[30] S. Fleury, M. Herrb, and R. Chatila. Genom: A tool for the specification and the imple-

mentation of operating modules in a distributed robot architecture. In Proceedings of IROS,

1997.

[31] J. Gancet. Systemes multi-robots aeriens : architecture pour la planification, la supervision

et la cooperation. PhD thesis, Institut Polytechnique de Toulouse, 2005.

[32] J. Gancet, G. Hattenberger, R. Alami, and S. Lacroix. Task planning and control for a

multi-UAV system: architecture and algorithms. In Proceedings of IEEE IROS, 2005.

[33] J. Gancet and S. Lacroix. Pg2p: A perception-guided path planning approach for long

range autonomous navigation in unknown natural environments. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, Las Vegas (USA), Oct. 2003.

[34] E. Gat. ESL: a language for supporting robust plan execution in embedded autonomous

agents. In Proceedings of the IEEE Aerospace Conference, 1997.

[35] E. Gat. On three-layer architectures. In Artificial Intelligence and Mobile Robots. AAAI

Press, 1998.

115

116 · A Software Framework for Plan Management and Execution in Robotics

[36] B. P. Gerkey and M. J. Mataric. Sold!: Auction methods for multirobot coordination. IEEE

Transactions on Robotics and Automation, 2002.

[37] B. P. Gerkey and M. J. Mataric. Multi-robot task allocation: analyzing the complexity and

optimality of key architectures. In Proceedings of IEEE ICRA, 2003.

[38] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice. Morgan

Kaufmann, 2004.

[39] F. Gravot, S. Cambon, and R. Alami. aSyMov: a planner that deals with intricate symbolic

and geometric problems. In 11th International Symposium on Robotics Research, 2003.

Invited paper.

[40] F. Ingrand, R. Chatila, R. Alami, and F. Robert. PRS: A high level supervision and

control language for autonomous mobile robots. In Proceedings of the IEEE International

Conference on Robotics and Automation, 1996.

[41] A. K. Jonsson, P. H. Morrisa, N. Muscettola, K. Rajan, and B. D. Smith. Planning in

interplanetary space: Theory and practice. In Proceedings of Artificial Intelligence Planning

Systems AIPS’00, pages 177–186, 2000.

[42] Sylvain Joyeux, Alexandre Lampe, Simon Lacroix, and Rachid Alami. Simulation in the

LAAS architecture. In Workshop in Software development in robotics, ICRA 2005, 2005.

[43] S. Lemai-Chenevier. IxTeT-eXeC: Planning, Plan Repair and Execution Control with Time

and Rescource Constraints. PhD thesis, Institut Polytechnique de Toulouse, 2004.

[44] T. Lemaire, R. Alami, and S. Lacroix. A distributed tasks allocation scheme in multi-UAV

context. In IEEE 2004 International Conference On Robotics and Automation (ICRA),

2004.

[45] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman, R. Podor-

ozhny, M. Nagendra Prasad, A. Raja, R. Vincent, P. Xuan, and X.Q. Zhang. Evolution

of the GPGP/TAEMS Domain-Independent Coordination Framework. Autonomous Agents

and Multi-Agent Systems, 9(1):87–143, July 2004.

[46] B. Lussier, M. Gallien, J. Guiochet, F. Ingrand, M. Killijian, and D. Powell. Planning with

diversified models for fault-tolerant robots. In Proceedings of ICAPS, 2007.

[47] Maja J. Matarić. Behavior-based control: Examples from navigation, learning, and group

behavior. Journal of Experimental & Theoretical Artificial Intelligence, 1997.

116

Bibliography · 117

[48] J. Minguez, J. Osuna, and L. Montano. A divide and conquer strategy based on situations

to achieve reactive collision avoidance in troublesome scenarios. In Proceedings of IEEE

ICRA, 2004.

[49] N. Muscettola, G. A. Dorals, C. Fry, R. Levinson, and C. Plaunt. IDEA: Planning at the

core of autonomous reactive agents. In Proceedings of the 3rd International NASA Workshop

on Planning and Scheduling for Space, October 2002.

[50] L. Nana, F. Singhoff, J. Legrand, J. Vareille, P. Le Parc, F. Monin, D. Massé, L. Marcé,

J. Opderbecke, M. Perrier, and V. Rigaud. Embedded intelligent supervision and piloting

for oceanographic AUV. In Proceedings of the Oceans conference, 2005.

[51] I Nesnas, R Volpe, T Estlin, H Das, R Petras, and D. Mutz. Toward developing reusable

software components for robotic applications. In Proceeding of the International Conference

on Intelligent Robots and Systems IROS, 2001.

[52] I.A.D. Nesnas, R. Simmons, D. Gaines, C. Kunz, A. Diaz-Calderon, T. Estlin, R. Madison,

J. Guineau, M. McHenry, I-H. Shu, and D. Apfelbaum. CLARAty: Challenges and steps

toward reusable robotic software. International Journal of Robotic Research, 3(1):23–30,

2005.

[53] L. E. Parker. Alliance: An architecture for fault tolerant, cooperative control of heteroge-

neous mobile robots. In Proceedings of IROS, pages 776–783, 1994.

[54] L. E. Parker. Adaptive heterogeneous multi-robot teams. Neurocomputing, special issue of

NEURAP ’98: Neural Networks and Their Applications, 28:75–92, 1999.

[55] P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Towards a formalization of teamwork

with resource constraints. In Proc. of the International Joint Conference On Autonomous

Agents and Multiagent Systems, AAMAS 2004, 2004.

[56] T. Peynot and S. Lacroix. A probabilistic framework to monitor a multi-mode outdoor

robot. In Proceedings of IEEE IROS, 2005.

[57] Louise Pryor and Gregg Collins. Planning for contingencies: A decision-based approach.

Journal of Artificial Intelligence Research, 4:287–339, 1996.

[58] F. Py and F. Ingrand. Dependable execution control for autonomous robots. In Proceedings

of IEEE IROS, 2004.

[59] D. V. Pynadath and M. Tambe. Multiagent teamwork: Analyzing the optimality and

complexity of key theories and models. In Proceedings of the International Conference On

117

118 · A Software Framework for Plan Management and Execution in Robotics

Autonomous Agents and Multiagent Systems. ACM, 2002.

[60] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Educatio,

2003.

[61] N. Schurr, S. Okamoto, R. T. Maheswaran, P. Scerri, and M. Tambe. Evolution of a

teamwork model. Cognitive Modeling and Multi-Agent Interactions, 2005.

[62] R. Simmons. Structured control for autonomous robots. IEEE Transactions on Robotics

and Automation, 1994.

[63] R. Simmons and D. Apfelbaum. A task description language for robot control. In Proceedings

of IEEE IROS, 1998.

[64] R. Simmons and E. Coste-Manière. Architecture, the backbone of robotics systems. In

Proceedings of ICRA, 2000.

[65] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, and J. Sullivan. A layered architecture for

office delivery robots. In First International Conference On Autonomous Agents, pages 235

– 242, 1997.

[66] R. Simmons, T. Smith, M. B. Dias, D. Goldberg, D. Hershberger, A. Stentz, and R. M.

Zlot. A layered architecture for coordination of mobile robots. In Proceedings From the

NRL Workshop On Multi-Robot Systems. Kluwer Academic Publishers, 2002.

[67] R. G. Smith. The contract net protocol: High-level communication and control in a dis-

tributed problem solver. In IEEE Transaction on Computers, number 12 in C-29, pages

1104–1113, 1980.

[68] M. Tambe. Agent architectures for flexible, practical teamwork. In T. Senator and

B. Buchanan, editors, Proceedings of the Fourteenth National Conference On Artificial In-

telligence and the Ninth Innovative Applications of Artificial Intelligence Conference, pages

22–28, Menlo Park, California, 1996. American Association For Artificial Intelligence, AAAI

Press.

[69] M. Tambe. Teamwork in real-world, dynamic environments. In Victor Lesser, editor, Pro-

ceedings of the Second International Conference On Multiagent Systems (ICMAS’96), Kyoto,

Japan, 1996.

[70] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research, 9 1997.

118

Bibliography · 119

[71] Vandi Verma, Ari Jonsson, Corina Pasareanu, and Michael Iatauro. Universal executive and

PLEXIL: Engine and language for robust spacecraft control and operations. In AIAA Space

Conference, 2006.

[72] R Volpe, I Nesnas, T Estlin, D Mutz, R Petras, and H. Das. CLARAty: Coupled layer

architecture for robotic autonomy. Technical report, NASA Jet Propulsion Laboratory,

2000.

[73] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das. The CLARAty architecture

for robotic autonomy. In Aerospace Conference, pages 121–132, 2001.

[74] B. C. Williams, M. Ingham, S. Chung, P. Elliott, and M. Hofbaur. Model-based program-

ming of fault-aware systems. AI Magazine, 2004.

[75] Q. Yang. Intelligent planning: a decomposition and abstraction based approach. Springer,

1997.

119

120 · A Software Framework for Plan Management and Execution in Robotics

120

Résumé en français

121

122 · A Software Framework for Plan Management and Execution in Robotics

122

Introduction

Le sujet de cette thèse est le développement d’un composant logiciel de gestion de plan,

développement motivé par la nécessité de développer des architectures où les systèmes de prise

de décision peuvent être intégrés, et où la séparation entre les différents composants de décisions

est éliminée.

Les principales contributions de cette thèse sont :

– la définition et l’implémentation d’un tel composant logiciel, permettant la gestion de plan

dans un contexte multi-robot. Ce composant intègre les outils nécessaires à la construction de

plans, leur exécution, leur adaptation et la gestion d’erreur durant cette exécution.

– la définition d’une architecture basée sur ce composant, mettant en avant différentes fonc-

tions nécessaires à l’intégration de plusieurs systèmes de décision dans un même robot.

– la mise en adéquation d’une telle architecture à la problématique du multi-robot.

– la mise en place d’une expérimentation de coopération rover/UAV démontrant les capacités

du système présenté dans ce manuscrit.

Dans un premier chapitre, nous analysons les forces et les faiblesses des approches décrites

dans la littérature, dans les cadres du mono et du multi-robot. Au cours de cette analyse, nous

présentons quelles sont, à notre avis, les problèmes qu’une architecture robotique devrait résoudre

vis-a-vis des systèmes de décision. Enfin, nous présentons notre approche et un scénario qui

servira d’exemple au long de ce manuscrit et qui a servi de support à la validation expérimentale

de notre approche.

Au cours du second chapitre, nous présentons ce qu’est un plan et comment il est représenté

dans notre système.

Le chapitre 3 décrit comment un plan est exécuté par notre système. Ce chapitre présente

également comment les situations non nominales peuvent être gérées.

Le chapitre 4 décrit comment, dans notre architecture, les plans peuvent être modifiés en

cours d’exécution.

Au cours du chapitre 5, nous décrivons certains points clefs de notre implémentation. Nous

présentons également des résultats obtenus au cours de l’implémentation de notre scénario de

coopération rover/UAV.

Enfin, le chapitre 6 résume nos contributions et discute des limitations de notre système et

comment nous le voyons évoluer.

123

124 · A Software Framework for Plan Management and Execution in Robotics

124

1
Problématique

La gestion d’un robot autonome – sans parler d’équipes de robots – est une problématique

difficile : il s’agit d’intégrer de nombreuses fonctionnalités pour donner au(x) robot(s) un compor-

tement autonome dans un environnement complexe, partiellement connu, et dynamique. Pour

permettre l’intégration de ces fonctionnalités, des architectures ont été définies : ce sont des

principes et outils guidant l’intégration.

Le sujet principal de cette thèse est l’intégration d’outils de decision. Ce chapitre présente

dans un premier temps quelles sont les approches principales en matière d’achitecture pour un

robot seul, comment la décision y est traitée et la limitation de ces approches ¡¡classiques¿¿.

Puis, nous présentons des architectures plus atypiques qui ont essayé de corriger ces défauts,

et enfin les problèmes liés à la gestion d’erreurs. Dans un deuxième temps, nous présentons

les approches multi-robot, toujours en centrant notre discours autour de la notion de prise de

décision. En se basant sur ces considérations, nous présentons notre approche puis un scénario

illustratif qui sera utilisé tout au long de ce manuscrit.

1.1 Prise de décision dans un robot seul

1.1.1 Principales approches dans les architectures mono-robot

En matière d’architectures, deux approches principales se sont imposées ces dix dernières

années : la première approche a été fondée sur l’idée que la partie ¡¡décision¿¿ du cycle classique

perception-décision-action pouvait être omise : il est possible d’atteindre un comportement au-

tonome sans définir d’outils spécifiques pour la prise de décision. Cette approche est dite ¡¡com-

portementale¿¿ car elle se base sur l’idée que, à long terme, l’émergence d’un comportement

autonome peut être basé purement sur la définition de réactions aux stimuli de l’environnement

125

126 · A Software Framework for Plan Management and Execution in Robotics

et à la présence de stimuli ¡¡motivateurs¿¿.

L’autre approche est fondée sur l’intégration d’outils spécifiques à la prise de décision pour

contrôler un système comportemental. L’idée est donc de contrôler un système réactif – la

couche comportementale – à partir d’un système capable de raisonner à plus long terme. Ces

approches ont pris le nom d’approches ¡¡hybrides¿¿ ou ¡¡trois couches¿¿ car basées sur une couche

décisionnelle, une couche comportementale et une couche de traduction entre les deux.

Notre travail s’inscrit dans la approche : à notre avis, comportements et prise de décision à

long terme sont complémentaires. La suite de cette thèse présente donc les structures de décision

dans les architectures hybrides multi-couches, quels sont les limitations de ces architectures et

comment d’autres architectures plus atypiques ont tenté de corriger ces limitations.

1.1.2 Où sont prises les décisions ?

La décision n’est pas un processus localisé : nous pouvons définir un processus de décision

comme tout processus qui fait des choix : un processus qui limite l’ensemble des futurs possibles

du robot. Alors que les processus de planification appartiennent clairement à cette catégories, il

est plus difficile de se prononcer sur d’autres processus comme la planification de chemin.

Délimiter les processus de décision est important : par de mauvaises interactions, il est

possible qu’une décision soit prise qui limite les options d’autres processus de décision, et donc

les possibilités du robot. Il est donc important qu’une architecture permette le dialogue entre

les différents processus de décision.

1.1.3 Les effets de la séparation d’information

L’exemple du planificateur de chemin n’a pas été pris par hasard : dans la plupart des cas, un

seul chemin est renvoyé par ceux-ci. L’emplacement physique du robot ayant, de toute évidence,

une influence énorme sur ses possibilités d’actions, ce processus – pour être optimal – devrait

prendre en compte la planification d’action : les actions rendues impossible par la prise de tel ou

tel chemin, les possibilités d’interactions, . . . Toutefois, une telle approche est trop complexe. Il

faut donc définir un entre-deux permettant un dialogue riche entre les différents planificateurs :

partager plus d’informations que dans les systèmes hiérarchiques classiques, mais moins que

dans un planificateur qui prendrait explicitement en compte tous les paramètres du problème.

1.1.4 Vers des représentations unifiées

De plus, une telle zone d’échange est également rendue nécessaire par le fait que les différents

planificateurs manipulent des modèles différents. Cette partie du problème est traitée par cer-

taines architectures apparues récemment, qui présentent une représentation unifiée de la notion

de plan et permettent ainsi l’intégration de plans provenant de plusieurs planificateurs, garan-

tissant leur cohérence.

1.1.5 Représenter et gérer les erreurs

La représentation et la gestion d’erreurs peut être séparée en trois parties :

126

Problématique · 127

1. prendre les ¡¡bonnes¿¿ décisions : ne jamais conduire le système dans une situation qui n’a

pas été prévue. C’est le rôle des systèmes de planification.

2. définir et détecter des erreurs, qu’elles viennent des couches de décision ou de la perception.

C’est le rôle du diagnostic.

3. récupérer les erreurs qui ont été détectées mais qui ne sont pas prises en compte par

le modèle utilisé par les planificateurs. C’est le rôle des systèmes dit de supervision :

récupérer des situations non-nominales sans qu’elles aient été prises en compte par les

outils de planification.

Le problème majeur entre ces trois points est la capacité à représenter les erreurs : la

détection d’erreur n’est pas utile si le système de supervision n’est pas capable de la représenter.

Un autre problème est d’être capable de représenter la reprise sur erreur : comment – lorsqu’une

erreur est détectée – la gérer pour qu’elle ne nuise pas au bon fonctionnement du robot.

1.2 Systèmes multi-robot

1.2.1 Décision dans les systèmes multi-robot

La première différence entre la prise de décision dans un système multi-robot et dans un

système mono-robot est qu’en multi-robot la décision doit décider de qui fait quoi. Deux ap-

proches principales existent :

– l’allocation de tâche, qui réduit le problème à décider de quel agent doit être responsable

de quelle tâche.

– l’allocation de rôles, qui définit la notion d’équipe : il ne s’agit plus d’allouer un agent pour

chaque tâche à réaliser, mais de définir, de manière globale, quelle doit être le comportement

de chaque agent au cours du temps pour mener à bien la mission de l’équipe.

La deuxième différence est qu’il existe beaucoup plus de possibilités d’interaction entre les

actions des différents robots : notion d’opportunisme, conflits entre robots, . . .

1.2.2 Exécution de plans multi-robots

Le problème principal pour l’exécution de plans multi-robot est que les différents robots

ne peuvent pas communiquer à tout instant. Ce problème commence à être géré en planifica-

tion par les extensions décentralisées des problèmes de planification probabilistes. Toutefois, la

représentation de l’échange d’information dans les systèmes de planification n’est pas encore très

développée.

1.3 Notre approche

Notre approche est centrée autour d’un composant de gestion de plans qui présente les

caractéristiques suivantes :

1. représente toutes les activités des robots, ainsi que leurs interactions.

127

128 · A Software Framework for Plan Management and Execution in Robotics

2. définit un système d’exécution générique pour le plan ainsi définit.

3. fournit les outils nécessaires à sa modification en ligne : modifier et exécuter les plans

simultanément.

4. fournit une base de réflexion autour de la notion de prise de décision en ligne : quelles

décisions doivent être prises durant l’exécution des plans pour permettre par exemple de

gérer des défauts du plan.

1.4 Scénario illustratif

Pour illustrer les capacités de notre approche, nous avons mis en place – à la fois en simulation

et sur le terrain – un scénario basé sur la navigation d’un robot terrestre en environnement

inconnu. Ce robot terrestre est aidé par un robot aérien : ce dernier peut fournir une information

de traversabilité sur le terrain.

Le rôle de ce scénario est double :

– la couche fonctionnelle du robot terrestre, Dala, est assez riche pour illustrer les capacités

de notre système en tant que superviseur.

– l’interaction entre Dala et le robot aérien Ressac permet d’illustrer la création et l’exécution

de plans multi-robots.

128

2
Un modèle de plan

Ce chapitre présente comment nos plans permettent de représenter les différentes activités

du système, leurs interactions et le flot d’exécution. Nous présentons également comment ce

modèle est adapté aux systèmes multi-robot.

2.1 Composition des plans

Les plans sont composés de deux types d’objets : les tâches représentent les différentes

activités du robot et les évènements représentent des instants remarquable durant l’exécution

du plan. Cette séparation permet une plus grande expressivité que dans d’autres modèles de

plans où les deux notions (flot d’exécution et activités) sont étroitement liées.

2.1.1 Représentation du flot d’exécution : évènements

Les évènements présents dans le plan représentent les instants remarquables de l’exécution.

Un exemple d’évènement est ainsi ebrakes on qui est émit (ou atteint) à l’instant où les freins

du robot sont mis, ou les évènements estart des activités. Un sous-ensemble de ces évènements

sont contrôlables : leur émission peut être provoquée par le système grâce à la présence d’une

commande qui, dans notre implémentation, est une procédure à exécuter pour s’assurer que

l’évènement sera émis.

La évènements sont structurés par deux relations, qui définissent la réaction du système

lorsqu’un ou plusieurs évènements sont atteints :

– la relation signal e1

sig
−−→ e2 déclare que la commande de l’évènement contrôlable e2 doit

être appelée quand l’évènement e1 est émis.

– la relation forward e1

fwd
−−→ e2 déclare que l’évènement e2 doit être émis quand e1 l’est.

129

130 · A Software Framework for Plan Management and Execution in Robotics

Cette relation définit une notion d’équivalence : e2 est une généralisation de l’évènement e1

car e2 sera toujours émis quand e1 l’est. Comme nous allons le voir, un exemple d’utilisation

de cette notion est la représentation des différents modes de fautes dans les activités.

2.1.2 Représentation des activités : tâches

Dans notre système, les activités sont représentées par des tâches. Ces tâches sont définies

par un modèle basé sur trois ensembles :

– un ensemble d’évènements qui représentent les instants remarquables de l’exécution de la

tâche. Le modèle générique de tâche définit par exemple les évènements estart, esuccess, efailed

et estop.

– un ensemble de relations internes entre ces évènements. Comme esuccess et efailed sont des

cas particuliers de estop, deux relations forward sont toujours définies.

– un ensemble d’arguments qui permettent de paramétrer une instance de tâche particulière,

en se basant sur un modèle générique. Le modèle de mouvement MoveTo prend par exemple

deux arguments : x et y.

Un ensemble de relations, présentées plus loin, permettent de représenter comment ces acti-

vités interagissent entre elles.

2.1.3 Hiérarchie de modèles et principe de substitution

Afin de représenter les relations de généralisation entre modèles, les différents modèles de

tâches forment un arbre. Par exemple, le modèle MoveTo mentionné plus haut est spécialisé,

dans notre robot terrestre, par les modèles de mouvements de deux modalités de déplacement

P3d : :MoveTo et NDD : :MoveTo, et est lui même une spécialisation du modèle générique

Roby : :Task. Cette représentation de l’abstraction permet d’échanger une tâche pour une

autre à partir du moment que ces deux tâches remplissent le même rôle : le système peut, par

exemple, déterminer qu’il est possible d’échanger deux modalités de déplacement à l’endroit ou

une tâche MoveTo est nécessaire, mais refusera de remplacer une modalité de déplacement par

une tâche de perception.

2.2 Relations entre tâches

Dans nos plans, les tâches sont insérées dans différents graphes acycliques orientés (DAG)

qui représentent leurs interactions. Cette section décrit les différentes relations qui sont pour

l’instant définies dans notre système.

2.2.1 Dépendance directe : la relation depends on

Une tâche T1 dépend directement d’une tâche T2 si la réalisation de T1 nécessite l’exécution

ou la réalisation de T2. La relations depends on est définie par trois paramètres :

– un modèle de tâche et un ensemble d’arguments décrivant le type d’activité requis par T1.

130

Un modèle de plan · 131

– un ensemble d’évènements désirés Esuccess qui sont les évènements dont l’émission est

nécessaire à la bonne exécution de T1.

– un ensemble d’évènements non désirés Efailure dont T1 interdit l’émission.

2.2.2 Processus de planification : la relation planned by

Lorsque le plan réalisant une tâche T a été généré par un processus particulier P , une relation

planned by est ajoutée entre ces deux tâches. Ainsi, il est possible de représenter le processus

de planification lui-même : l’évènement esuccess de P représente l’instant auquel T pourra être

exécuté.

2.2.3 Supports d’exécution : la relation executed by

Dans un système complet, il est commun – pour des raisons de modularité – que différentes

tâches soient réalisées par différents processus (au sens “sytème d’exploitation” du terme) ou

différents matériels. La relation de dépendance entre la tâche T et le processus externe E qui

l’exécute est particulière : lorsque E échoue, de toute évidence T échoue également sans possi-

bilité de reprise. La relation executed by représente ce lien particulier.

2.2.4 Influence : la relation influenced by

Dans une relation T1influenced byT2, l’exécution de la tâche T2 améliore ou au contraire

rend plus difficile l’exécution de la tâche parente T1. Cette relation représente donc une dépendance

“douce”.

2.2.5 Interprétation de la structure des tâches : requêtes et notifications

La richesse de la structure de tâches permet de reconnâıtre des configurations par la re-

connaissance de motifs dans le plan. Notre gestionnaire de plan définit à cette fin la notion de

requête : un language de définition de motif (basé sur les modèles de tâches, les arguments, les

relations entre tâches) et un système permettant de récupérer l’ensemble des tâches du système

correspondant au motif décrit.

En multi-robot, ces requêtes permettent de définir des notifications : un gestionnaire de plan

installe une requête sur un autre gestionnaire de plan afin que ce dernier le notifie de l’apparition

de tâches correspondant au motif. Par exemple, notre UAV installe une notification sur notre

rover pour détecter la présence d’une tâche de cartographie de traversabilité. Cette notification

étant, dans notre cas, le déclencheur de la mise en place de l’interaction entre le rover et l’UAV.

2.3 Plans multi-robots

2.3.1 Qu’est-ce qu’un plan multi-robot ?

De notre point de vue, les plans multi-robot définissent une forme de contrat entre les

différents robots : les robots négocient lorsqu’ils créent leur plan commun (aussi appelé plan

131

132 · A Software Framework for Plan Management and Execution in Robotics

joint) et, lorsque les différents robots acceptent le résultats, ils acceptent également d’être liés à

ce résultat.

Toutefois, un robot autonome n’est pas totalement contraint par un plan joint : il peut, si

nécessaire, en partir.

2.3.2 La notion d’appartenance

Afin de représenter les différents robots dans un même plan, notre modèle définit la notion

d’appartenance : chaque tâche appartient à un ensemble de gestionnaires de plans. Si on considère

un robot donné, une tâche peut ainsi être locale si elle appartient uniquement à ce robot, distante

si elle ne lui appartient pas ou jointe si elle appartient à plusieurs robots dont celui-ci.

Afin de limiter les communications et la complexité de la gestion de plan, un robot donné

n’a qu’une vue partielle des plans des autres robots. Cette vue contient bien entendu toutes les

tâches qui lui appartiennent. Elle contient également toutes les tâches qui sont directement en

interaction avec ses propres tâches : elles ont une influence directe sur son propre plan. Enfin,

si nécessaire, il peut souscrire explicitement à des tâches distantes.

2.3.3 Représentation des rôles

Un rôle est une représentation abstraite de l’ensemble de tâches que doit réaliser un agent

ou un ensemble d’agents afin de permettre la réalisation d’une but pour l’équipe complète.

Dans notre gestionnaire de plan, les rôles peuvent être représentés de deux manières : soit

explicitement en associant un des agents à qui appartient la tâche à un rôle, soit via la structure

du plan en associant une requête à un rôle : ainsi, le système adaptera la liste des rôles des

robots au fur et à mesure de l’adaptation du plan.

2.4 Résumé

Ce chapitre a présenté le modèle de plan qui est utilisé par notre composant de gestion de

plan. Les principales contributions de ce modèle sont la séparation entre structure d’activités

et flot d’exécution et l’intégration du multi-robot dans un modèle de plan basé sur la notion de

tâche.

132

3
Exécution des plans

Maintenant que nous avons définit comment notre système décrit son plan, nous allons

présenter comment ce plan est géré au cours de l’exécution. Nous définissons dans ce chapitre

un cycle d’exécution, qui est un cycle de durée fixe, basé sur trois étapes :

1. le système détermine quels évènements doivent être émis pour des raisons extérieures

(stimuli). Ces évènements sont propagés sur d’autres évènements via les relations signal

et forward.

2. les erreurs sont détectées et gérées.

3. les tâches qui sont inutiles pour les missions du robot sont automatiquement interrompues,

ainsi que les tâches pour lesquelles des erreurs ont été détectées et pour lesquelles ces erreurs

n’ont pas été réparées.

3.1 Réaction aux évènements

3.1.1 Propagation locale

Lorsque plusieurs évènements sont émis, d’autres évènements doivent être émis ou appelés,

suivant ce qui est définit par les relations signal et forward. Les différents cas de propagation

locale sont représentés sur la Fig. 3.1.

3.1.2 Algorithme de propagation globale

Lors de la propagation, il est nécessaire de respecter un ordre global : l’évènement estop d’une

tâche doit, par exemple, être le dernier évènement de cette tâche à être émis. Afin de respecter

ces contraintes d’ordre, nous avons mis en place un algorithme de propagation globale, basé sur

133

134 · A Software Framework for Plan Management and Execution in Robotics

controlable, called and emitted

controlable, emitted

contingent, emitted

controlable, called

Fig. 3.1 – Propagation locale. A gauche : les différentes représentation d’un évènement du-
rant l’exécution. De gauche à droite : l’émission d’un évènement provoque l’émission ou l’appel
d’un autre évènement. Un évènement émet ou appelle d’autres évènements dans sa commande
(l’évènement source à droite est seulement appelé, pas émis).

un graphe d’ordonnancement des évènements qui est un sur-ensemble des relations signal et

forward.

3.2 Gestion des erreurs

3.2.1 Définition des erreurs

Notre système définit deux types d’erreurs :

– les erreurs liées au code. Cela peut être le code de notre cadre applicatif lui-même ou le code

propre au robot. Ces dernières sont détectées durant la phase de propagation d’évènements.

– les erreurs liées à des violations de contraintes : les différentes relations entre tâches

définissent un ensemble de contraintes sur ce qui est nominal pour le plan. Ainsi, une re-

lation depends on décrit un ensemble d’évènements qui ne sont pas acceptables dans le

cadre de cette relation. Une relation planned by échoue si la tâche planifiée est abstraite (ne

peut pas être exécutée par le système) et si la tâche de planification a échoué. Ces erreurs

sont listées dans la deuxième phase du cycle d’exécution en appelant des routines d’analyse

globale du plan.

Pour pouvoir être gérée, une erreur particulière doit être associée à un point d’échec dans le

plan. Ce point d’échec est l’objet du plan (tâche ou évènement) qui a été déterminé comme étant

l’objet à la source de l’erreur. Il est nécessaire aux mécanismes de reprises que nous décrivons

ici : pour cette raison, les erreurs liées au code de notre applicatif ne peuvent en général pas être

reprises. En effet, un problème dans le code de propagation d’évènements, par exemple, ne peut

être directement associé à un objet du plan.

3.2.2 Gérer les erreurs

Notre système définit trois manières de reprendre une erreur :

– il est possible de réparer directement durant la phase de propagation. Cela permet de

corriger des erreurs dont la reprise est connue et simples sans recourir à des mécanismes plus

complexes.

– il est possible de représenter des réparations directement dans le plan : on associe une

tâche à un évènement. Quand une erreur qui provient de cet évènement est détectée, la tâche

est lancée. Pendant que la tâche de réparation s’exécute, l’erreur est en cours de réparation et

134

Exécution des plans · 135

le système l’ignore. Lorsque la tâche finit – ou si la réparation prend trop de temps – le plan

doit soit être réparé, soit l’erreur est à nouveau prise en compte normalement. La relation de

tâches error handling automatise cette procédure.

– l’erreur est propagée dans la hiérarchie de tâches, en remontant la relation depends on.

A chaque étape, des procédures spécifiques, appelées gestionnaires d’exceptions, sont appelés.

Ces procédures doivent, si possible, réparer l’erreur. De plus, si au cours de la propagation

de l’exception une tâche possède une tâche de planification, nous appelons les gestionnaires

d’exceptions sur cette dernière, afin d’insérer les processus de planification dans le système de

réparation de plan.

3.2.3 Réaction aux erreurs non gérées

Après cette phase de gestion d’erreur, le système régénère la liste de violations de contrainte

restantes en rappelant les procédures d’analyse du plan. Les tâches qui sont marquées par les

erreurs ainsi détectées sont tuées, ainsi que toutes les tâches qui en dépendent via n’importe

lequel des graphes de relation.

En effet, ces erreurs soit sont des erreurs non récupérées par la phase de gestion d’erreur, soit

des erreurs provenant des réparations elles-même. Dans les deux cas, il semble déraisonnable de

rappeler une phase de réparation.

3.3 Garbage collection

Notre plan est construit autour de graphes de tâches. Parce que nous manipulons des graphes,

il n’est pas pratique de demander que chaque tâche interrompe les tâches qui ne lui sont plus

utiles : seule une analyse globale du plan peut déterminer quelles tâches doivent être interrompue

car une tâche qui n’est plus utile à une activité donnée peut encore l’être pour une autre.

Terminer ces tâches inutiles est le rôle de la troisième phase du cycle d’exécution : la phase de

garbage collection.

3.3.1 Notion de tâche utile

Les tâches d’un plan sont séparées en trois parties :

– les tâches qui sont marquées comme utiles, comme par exemple les missions qui ont été

données au système.

– les tâches qui permettent de réaliser les tâches de la première catégorie.

– le reste des tâches, qui ne sont pas ou plus utiles au système.

Une tâche est marquée comme utile si elle fait partie d’un de ces quatre ensembles :

– l’ensemble de missions, qui est l’ensemble des tâches que le robot tente de réaliser.

– l’ensemble des tâches permanente, qui est l’ensemble de tâches qui ne doivent pas être

interrompues automatiquement.

– l’ensemble des tâches utilisées dans les plans en cours de construction.

– l’ensemble des tâches utilisées dans une interaction. Cette catégorie sera décrite plus en

détail dans la prochaine section.

135

136 · A Software Framework for Plan Management and Execution in Robotics

L’ensemble des tâches pour lesquelles une erreur non gérée a été détectée est toujours inclus

dans l’ensemble des tâches à interrompre.

3.3.2 Interruption automatique de tâches

Notre système interrompt tâches inutiles incluses dans le plan en commençant par le haut

du plan : le système ne doit pas terminer une tâche si d’autre tâches en dépendent encore.

Les tâches qui n’ont de parent dans aucune relations sont donc interrompues en appelant leur

évènement estop si il est contrôlable. Lorsque ces tâches sont terminées – donc potentiellement

dans des cycles d’exécution suivants – le système tue les tâches qui n’ont plus de parents et ainsi

de suite.

Une tâche dont l’évènement estop est non contrôlable est de toute évidence pas considérée

par ce mécanisme d’interruption. Toutefois, si cette tâche est l’origine d’une erreur, ou si la

commande de l’évènement estop échoue, la tâche est mise en quarantaine : elle n’est plus sujet à

garbage-collection, mais elle ne peut plus non plus être utilisée par le reste du plan.

3.4 Exécution distribuée

3.4.1 Communication avec d’autres gestionnaires de plans

Quand ils sont en interaction, les gestionnaires de plans maintiennent deux états :

– ils sont en communication si un lien de communication existe entre les deux composants.

– ils sont connectés si ils interagissent. Deux gestionnaires de plans peuvent être connectés et

n’avoir pas de lien de communication. Toutes parties d’un plan qui dépend d’un gestionnaire

de plan distant est bien évidemment dépendante de cette connexion.

Quand un gestionnaire local est connecté à d’autres gestionnaires, il notifie ces gestionnaires

distants des modifications apparues dans son plan (structure et exécution). Les messages ne sont

envoyés que pour les parties du plan pour lesquelles le gestionnaire distant est souscrit.

Afin de représenter la dépendance du plan joint aux connexions, une tâche spécifique est

insérée dans le plan pour tout gestionnaire de plan distant, et toutes les tâches qui appar-

tiennent à ce gestionnaire sont executed by cette tâche. Ainsi, si la connexion est perdue – par

exemple parce que le gestionnaire local a pu déterminer que le gestionnaire distant n’est plus

capable de remplir ses engagements – l’évènement efailed de cette tâche est émis et les tâches

correspondantes sont terminées.

3.4.2 Gestion d’évènements joints

La gestion d’un évènement joint est basé sur les règles suivantes :

1. la commande d’un évènement joint doit être appelée sur tous les gestionnaires de plan à

qui appartiennent cet évènement.

2. l’évènement n’est émis que lorsque tous les gestionnaires de plans à qui il appartient ont

annoncé qu’ils pouvaient l’émettre.

136

Exécution des plans · 137

Ces deux règles permettent de représenter les mécanismes de la théorie des intentions jointes

de Cohen et Levesque via le système de tâche/évènement. Ainsi, une tâche jointe peut être vue

comme un but joint persistant :

– tous les robots pensent que la tâche n’est pas encore achevée

– ils ont tous acceptés d’accomplir la tâche jointe.

– ils vont tous tenter de l’accomplir tant qu’ils ne sauront pas qu’elle est accomplie ou qu’elle

ne peut pas être accomplie.

3.4.3 Différences à l’exécution entre plans mono et multi-robots

Lorsque le système manipule des plans joints, quelques différences de comportement existent

dûs à la perte du caractère synchrone de mécanismes de l’exécution : propagation des évènements,

propagation des exceptions.

De plus, le système de garbage collection doit être capable de gérer les tâches qui ne sont

plus directement utiles pour le gestionnaire local, mais le sont pour les gestionnaires distants.

3.5 Résumé

Ce chapitre a présenté les mécanismes qui rentrent en jeu au cours de l’exécution de du plan.

Le cycle d’exécution est basé sur trois phases :

1. la phase de propagation d’évènements, où un algorithme de propagation globale permet

de répondre aux évènements extérieurs.

2. la phase de gestion d’erreur, où les erreurs détectées pendant la phase de propagation, et

les violations de contraintes présentes dans le plan, sont traitées.

3. la phase de garbage collection, ou un algorithme d’analyse globale du plan termine les

tâches qui ne sont plus utiles pour la réalisation des buts du système et les tâches pour

lesquelles des erreurs ont été détectées.

137

138 · A Software Framework for Plan Management and Execution in Robotics

138

4
Gestion de plans

Par “gestion”, nous entendons la capacité de modifier le plan en cours d’exécution. Ce cha-

pitre présente d’une part les transactions, qui sont un mécanisme central pour la modification des

plans dans notre composant. D’autre part, il présente deux opérateurs de modification du plan

qui prennent en compte l’état courant d’exécution du système, démontrant le développement

d’opérateurs de modification de plans plus complexes sur la base de notre modèle de plan et de

notre système d’exécution.

4.1 Exécution et modification simultanée des plans

4.1.1 Motivation

Notre modèle de plan ne permet pas, à l’exécution, de vérifier si chaque tâche prise à part

peut ou non être exécutée dans la situation courante. En effet, notre gestionnaire de plan s’appuie

sur les relations entre tâches et entre évènements pour déterminer cela. Il est donc critique que

le plan vu par l’exécutif soit toujours complet : il ne doit pas y manquer d’objets ou de relations.

Cette propriété doit être maintenue alors que le plan est modifié. À cette fin, nous avons

développé un mécanisme central dans notre système de gestion de plan : la transaction.

4.1.2 Représenter les modifications du plan

Une transaction est une représentation d’un ensemble de modifications qui permettront de

transformer le plan courant en un nouveau plan, lui aussi complet. Cette idée est empruntée

au monde des bases de données, adaptée à notre problématique de gestion de plan. Dans notre

système, les transactions contiennent l’ensemble des modifications nécessaires pour transformer

le plan courant en un nouveau plan. Ces modifications peuvent être appliquées au plan courant

139

140 · A Software Framework for Plan Management and Execution in Robotics

quand la transaction est complète via une opération de commit. Si la transaction n’est plus

valide ou plus nécessaire, elle eut être abandonnée (opération de discard).

4.1.3 Gestion de conflits entre exécution et modification du plan

La construction d’un nouveau plan est une opération potentiellement longue. Si nous voulons

que notre système puisse évoluer pendant que de nouveaux plans sont construits, il est nécessaire

de gérer les conflits pouvant apparâıtre entre les modifications du plan dues à l’exécution est les

modifications représentées dans les transactions.

Nous définissons un ensemble de conflits pouvant ainsi apparâıtre, et nous définissons un

cycle d’interaction entre le producteur de plan qui construit la transaction, l’exécutif et un

composant à part, appelé le contrôle de décision.

4.1.4 Transactions comme outils distribués de modification de plan

Le mécanisme des transactions est très bien adapté à la modification de plan distribuée :

chaque robot peut dans une transaction librement modifier son propre plan et les plans de

ses pairs. De plus, une transaction distribuée ne peut être appliquée au plan que lorsque tous

les gestionnaires de plans qui la gèrent l’acceptent. Si un consensus ne peut être atteint, la

transaction est abandonnée. Les transactions sont donc un outil central en multi-robot pour

négocier en se basant sur les plans.

4.2 Modifier le plan

4.2.1 Notion d’appartenance et modification directe du plan en cours d’exécution

Lorsqu’une relation est ajoutée entre deux tâche, ou lorsqu’un signal est ajouté entre deux

évènements, une contrainte est ajoutée sur le gestionnaire de plan à qui appartient les tâches

ou les évènements. Dans notre système, nous avons voulu que de tels ajouts de contraintes ne

puissent être réalisés que via une phase de négociation. Le gestionnaire de plan interdit donc ce

type de modifications.

À l’inverse, tout gestionnaire de plan peut enlever une relation si celle-ci s’applique sur au

moins un objet qui lui appartient. En effet, un gestionnaire de plan doit garder autorité sur le

système : il doit pouvoir, si nécessaire, se retirer de toute interactions qui le contraint.

4.2.2 Échange de sous-plans

Comme nous l’avons décrit en section 2.1.3, notre modèle de plan permet de représenter le

fait qu’une tâche peut en remplacer une autre. Nous décrivons ici cette opération, ainsi que ses

possibles interactions avec l’exécution.

4.2.2.1 Échanger deux sous-plans

Deux opérateurs sont définis :

140

Gestion de plans · 141

– l’opérateur replace task remplace simplement une tâche par une autre dans toutes les

relations dont faisait partie la tâche d’origine. Cela permet, par exemple, de relancer une tâche

qui a échoué, le reste du plan restant tel quel.

– l’opérateur replace plan remplace une tâche ainsi que tous le sous-plan de cette tâche.

Cet opérateur permet de remplacer, par exemple, une modalité de déplacement par une autre.

De plus, l’état d’exécution de la tâche de remplacement doit être comparé à celui de la tâche

remplacée. En particulier, une tâche en cours d’exécution doit être remplacée par une tâche en

cours d’exécution. Nous utilisons à cette fin une routine spécifique à chaque modèle de tâche,

chargée de rendre les deux états d’exécution compatibles.

4.2.2.2 Gestion d’échanges non instantanés : transitions

Dans les cas simples, il est possible d’amener la nouvelle tâche à l’état d’exécution désiré,

puis de réaliser le remplacement. Toutefois, dans certains cas cela est impossible car les deux

tâches sont en conflits et ne peuvent s’exécuter en même temps. Le mécanisme de transition

autorise de telles modifications en prenant en compte l’opération de remplacement lorsque la

tâche d’origine est stoppée.

4.2.3 Interrompre et reprendre des activités

L’opérateur split “découpe” un plan en deux parties : une partie où un certain nombre

d’activités sont interrompues, et une partie où elles sont relancées. Cet opérateur prend en

compte l’état courant des tâches en question, et peut également prendre en compte des routines

spécifiques à certains modèles de tâche.

4.3 Résumé

Ce chapitre a présenté l’outil central définit par notre système pour la modifications des

plans : la transaction. Cette outil permet de modifier le plan du système pendant qu’il est

exécuté, dans des contextes mono et multi robot.

Nous avons également présenté deux exemples d’opérateurs de modification du plan. Ces

opérateurs démontrent la faisabilité de construire des mécanismes plus complexes sur la base de

notre modèle de plan et de nos mécanismes d’exécution.

141

142 · A Software Framework for Plan Management and Execution in Robotics

142

5
Implémentation et résultats

5.1 Implémentation : développement d’un contrôleur Roby

L’implémentation actuelle de notre système a été réalisée dans le langage de programmation

Ruby. Notre choix s’est porté vers ce language car c’est un langage orienté-objet qui permet de

manipuler les classes comme des objects, et cela a eu un impact intéressant pour la partie de

notre système qui doit manipuler les modèles de tâches.

5.1.1 Définition de tâches et d’évènements

Les relations entre modèles de tâches se marient bien avec les notions propres au paradigme

orienté objet : les modèles sont des classes et l’héritage permet de représenter la hiérarchie

de modèles que nous avons présenté. Dans notre implémentation, nous avons pu utiliser les

capacités d’introspection et les capacités de metaprogramming pour ne pas avoir à définir un

langage de définition à part : les modèles, procédure et les bibliothèques de gestion de plan sont

écrits directement dans le même langage. Cela nous a donné une grande flexibilité vis-a-vis de

l’extension de notre système.

5.1.2 Contrôler GenoM depuis Roby

La couche fonctionnelle du rover Dala est fait d’un ensemble de modules fonctionnels Ge-

noM. Afin de contrôler cette couche fonctionnelle depuis notre gestionnaire de plan, nous avons

développé une couche de compatibilité entre Roby et Genom, permettant de représenter les ac-

tivités des modules GenoM par des tâches dans le plan. Le développement de cette couche a

permis par ailleurs de démontrer la simplicité d’intégration d’un outil comme GenoM dans notre

système.

143

144 · A Software Framework for Plan Management and Execution in Robotics

5.1.3 Test d’applications Roby

Le test est une composante essentielle du développement d’une application robotique. Afin

de faciliter cette étape, nous avons intégré dans notre système un cadre de tests unitaires, dans

lequel nous avons été capable de mettre en place des tests à plusieurs niveaux de détail :

– test unitaire d’un unique service de la couche fonctionnelle ;

– test d’intégration de plusieurs services ;

– test de la génération de plan ;

– simulation intégrée ;

– tests sur le terrain ;

Le mâıtre mot est ici l’intégration : afin de permettre l’utilisation d’ensembles de tests, il est

nécessaire de pouvoir lancer et quitter de manière automatique une application complète. Cela

nécessite un grand niveau d’intégration des différents outils composant le système, niveau offert

par notre applicatif.

5.1.4 Performance

Sur notre rover, le temps moyen d’un cycle d’exécution est d’environ 10ms pour une moyenne

de 55 tâches. Des problèmes de latence liés au garbage collector de l’interpréteur Ruby lui-même

nous a toutefois poussé à fixer ce cycle à 50ms, ce qui est largement suffisant dans le cas de notre

application : les réactions qui doivent être faites en temps borné doivent être implémentés dans

la couche fonctionnelle GenoM.

5.2 Éxpérimentation

5.2.1 Supervision du rover Dala

La supervision de notre rover a permis d’utiliser notre système extensivement, et en parti-

culier d’utiliser les mécanismes de reprise d’erreur

Cette section présente deux des points principaux liés à la supervision de Dala :

– le système doit prendre en charge l’activation des cycles de mise à jour de la carte de

terrain et de la carte de traversabilité. En pratique, cela est réalisé en utilisant deux outils

– des évènements lié à l’état du robot : changement de position supérieur à une certaine

valeur, timeout, . . . Ces évènements peuvent être composés par des opérateurs et et ou.

– un gestionnaire de boucle, une tâche de planification qui permet de développer dynamique-

ment des séquences d’une même action.

– le système de navigation nécessite plusieurs gestionnaires d’erreur, utilisant à la fois les

exceptions et la relation error handling.

5.2.2 Résultats

Le scénario complet a été implémenté et testé en simulation. Par ailleurs, supervision du rover

Dala a également été testée sur le terrain. Notre système de simulation permettant d’utiliser

144

Implémentation et résultats · 145

inchangés la plupart des modules du robot réel, le passage à l’expérimental n’a posé aucun

problème majeur du point de vue du système de supervision.

La simulation est basée sur un terrain de 400x500m. Deux cartes de traversabilités sont

générées : une pour simuler la perception à haute altitude et une pour simuler la perception à

basse altitude.

5.3 Résumé

Notre implémentation et sa validation expérimentale ont été d’une grande importance au

cours du développement des concepts présentés dans ce manuscrit. Ainsi, la gestion des deux

robots ainsi que la gestion de leur interaction a mis en exergue plusieurs caractéristiques de

notre approche :

Transactions Toute génération de plan dans Dala est faite de manière asynchrone, en utilisant

des transactions. Cette caractéristique s’est montrée très utile par exemple lorsque le plan échoue

au cours de son adaptation. De plus, l’utilisation des notifications et des transactions distribuées

pour la gestion de l’interaction entre les deux robots s’est montrée être une approche élégante.

Gestion centralisée de toutes les activités du robot Cette caractéristique s’est également

montrée très importante lors du développement de nos deux robots : elle a permis une robus-

tesse et une flexibilité certaines lorsque des problèmes sont apparus dans le logiciel en cours de

développement.

Exensible La mise en place de ce scénario a nécessité le développement d’outils de plus haut

niveau, directement basés sur notre modèle de plan et sur notre mécanisme d’exécution. Ces

outils ont montré que notre système pouvait supporter le développement de mécanismes plus

complexes.

145

146 · A Software Framework for Plan Management and Execution in Robotics

146

6
Conclusion

6.1 Résumé

Le composant de gestion de plan présenté dans cette thèse a été conçu pour le contrôle basé

sur des plans d’équipes de robots. Ce composant répond aux besoins suivants :

– un modèle de plan permettant la traduction de plans provenant d’autres planificateurs,

et assez riche pour permettre l’intégration de mécanismes de supervision et d’adaptation

complexes.

– un mécanisme d’exécution pour ce modèle.

– des outils génériques pour l’adaptation de plan. Principalement, le mécanisme de transac-

tion permet d’adapter et d’exécuter simultanément le plan en prenant en compte les conflits

entre l’exécution et les plans en cours de construction.

Cet outil logiciel a été testé en simulation pour la partie multi-robot et sur le terrain pour

la gestion du robot seul.

6.2 Perspectives

Notre système profiterait grandement d’une représentation explicite du temps : d’une part de

la prédiction de l’instant d’émission des évènements, et d’autre part de l’intégration de réseaux

de contraintes temporels. La prédiction d’état est également une extension assez évidente à un

système comme le nôtre.

En se basant sur ces deux extensions, l’intégration d’un mécanisme d’ordonnancement per-

mettrait de profiter pleinement du fait que notre système représente toutes les activités du

système, y compris les tâches de planification.

147

148 · A Software Framework for Plan Management and Execution in Robotics

Enfin, un mécanisme de plan merging permettrait une intégration plus directe de plusieurs

plans dans le plan commun.

De manière générale, l’intégration de plusieurs systèmes de décision dans un même robot est

à la fois une nécessité et un problème difficile. Alors que l’intégration des couches fonctionnelles

est un sujet abondamment traité par la littérature, l’intégration d’outils décisionnels l’est peu.

L’intégration de tels outils, mais également d’outils de diagnostic et de reprise de fautes, dans un

système centralisé de gestion de plan comme le nôtre serait à la fois une avancée significative pour

la robotique, mais permettrait également – à plus court terme – une plus grande réutilisation

des différents outils logiciels.

Cette intégration serait par ailleurs certainement facilitée par une formalisation de notre

modèle de plan et des mécanismes que nous avons construit autour de lui.

148

Author: Sylvain Joyeux

Title: A Software Framework for Plan Management and Execution in Robotics: Application

to Multi-Robot Systems

Abstract: During the 90s, the integration of the many functionalities needed to make robot

autonomous has given birth to robotic architectures, which allow cooperation between

perception, decision and action in robotic systems. Experience with these architectures

has shown that they suffer from limitations. More recently, new paradigms have appeared

to tackle these limitations, based mainly on the idea that plan representation should be

unified. This thesis contribution is a plan model which allows the integration of the result

of different decision formalisms, to execute them and to adapt them online. Moreover, this

model and the execution and adaptation component built around it have been designed

with multi-robot in mind: it allows to build, execute and adapt joint plans, in which more

than one robot are involved. The software component written during this thesis has been

tested experimentally, in an aero-terrestrial cooperation scenario.

Keywords: architecture, planning, multi-robot

Auteur : Sylvain Joyeux

Titre : Un composant logiciel pour la gestion et l’exécution de plan en robotique : Application

aux systèmes multi-robots

Directeurs de thèse : Simon Lacroixet Rachid Alami

Thèse soutenue le 6 Décembre 2007au LAAS/CNRS, Toulouse, France

Thèse préparée au Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS/CNRS)

7 av du Colonel Roche

31077 Toulouse Cedex 4

Discipline : Systèmes informatiques critiques

Résumé : Dans les années 90, le problème de l’intégration des nombreuses fonctionalités nécessaires

à l’autonomie de robots a donné naissance aux architectures robotiques, qui permettent

aux différentes fonctions nécessaires aux robots autonomes de bien s’articuler entre elles.

la perception, la décision et l’action. L’expérience dans ce domaine a montré les limites

des différentes approches alors proposées. Récemment, de nouvelles architectures ont tenté

de dépasser ces limites, principalement en unifiant la représentation du plan. Cette thèse

propose à la fois un modèle de plan permettant de représenter les résultats de différents

formalismes de décision, d’exécuter le plan qui en résulte, et de l’adapter en ligne. Ce

modèle et le composant d’exécution et d’adaptation construit autour de lui ont été pensé

dès l’origine pour le multi-robot : il s’agit de permettre l’exécution et l’adaptation de plans

joints, c’est à dire de plans dans lesquels plusieurs robots coopèrent. Le composant logiciel

construit durant cette thèse a de plus donné lieu à une validation expérimentale pour une

coopération aéro-terrestre

Mots-clés : architecture, planification, multi-robots

