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Introduction

The Standard Model of elementary particles is the theory that describes three of the four
fundamental interactions (the strong, weak and electromagnetic ones) in a coherent frame-
work. This theory gives an excellent description of all the phenomena observed in the particle
physics domain up to energies explored by LEP, SLL and Tevatron.

Nonetheless the Standard Model is known to be incomplete, since it does not account
for some experimental evidences, such as the presence of dark matter, the fermion masses
hierarchy and the quantitative asymmetry between matter and antimatter of the universe.
In order to find effects that go beyond the Standard Model theory, needed to explain these
missing pieces, it is very important to constraint the Standard Model parameters as precisely
as possible.

In the 90’s, experiments started to study B physics and thus to test the Standard Model
in the fermion sector. With the B-factory experiments having collected data for almost ten
years, flavour physics is now in its mature age. A primary main goal of these experiments is to
access and test, in an indirect way, the presence of New Physics effects beyond the Standard
Model at scales that will be directly accessible only after the start of the Large Hadron
Collider experiments. The fermion sector of the Standard Model concerns the masses of the
quarks and charged leptons and the quark mixing matrix, named CKM (from the names of
N. Cabibbo, M. Kobayashi and T. Maskawa). In the Standard Model, the couplings of weak
interactions among quarks are described by this matrix, translating the fact that the quarks
that participate to the weak interactions are a linear combination of the mass eigenstates.
The CKM matrix contains four free parameters (A, λ, ρ, η), one of which (η) is complex and
alone accounts for all the CP violation phenomena in the Standard Model. The unitarity of
the CKM matrix can be visualized as a triangle (the Unitarity Triangle) in the (ρ-η) plane,
with height given by the value of η. Many quantities depending on ρ and η can be measured
and, if the Standard Model is correct, they should give compatible results, within the errors,
for these two parameters. To do that, the sides and angles (α, β, γ) of the Unitarity Triangle
have to be measured and the B-factories have played a central role in this physics program.
In the first part of the thesis (chapters 1, 2) these subjects are detailed and explained.

The main topics of this thesis are the studies of CP violation in the B mesons sector and
in particular the measurements of the angle γ of the Unitarity Triangle using data collected
with the BABAR detector (described in chapter 3). Being the relative weak phase between Vub

and Vcb elements of the CKM matrix, the angle γ is accessible from the studies of interference
between b→ u and b→ c transitions.

The efforts within the scientific community have lead to measurements of the angle γ,
from the combination of several different experimental techniques, up to a precision that
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was not supposed to be accessible at the B-factories experiments. Despite this fact, this
parameter is one of the less precisely known. The reason for that is that the sensitivity to γ
is driven by the value of the ratios r between b→ u and b→ c amplitudes for each particular
decay mode used for the measurement. The values of these parameters are small and have
to be determined on data. In particular, up to now, the angle γ of the Unitarity Triangle
has been determined, using different methods, from the study of charged B decays into final
states with a neutral D(∗) meson and a charged K(∗) meson. The present knowledge on γ
and the different methods used for its determination are described in chapter 2.

The experimental work presented in this thesis is composed of two measurements of γ
and the ratio r, using the decays of neutral B mesons into final states with a neutral D
meson and a neutral K∗ meson. These decays are less abundant than the charged ones, but
the value of the ratio r (called rS, in these channels) is expected to be larger and thus to
give a good sensitivity to γ. The analyses techniques are described in chapter 4.

The neutral B decay channels studied in this thesis are: B0 → D̄0(D0)K∗0 with K∗0 →
K+π− and similarly B̄0 → D0(D̄0)K̄∗0 with K̄∗0 → K−π+. The electric charge of the kaons
produced in neutral K∗ decays identifies unambiguously the flavor of the neutral B mesons
allowing for a measurement of γ (chapter 2). In the first analysis presented in this thesis
(chapter 5), neutral D mesons are reconstructed into K∓π±, K∓π±π0 and K∓π±π±π∓ final
modes and studied with the ADS method, allowing for a determination of rS.

In the second analysis presented in this thesis (chapter 6), neutral D mesons are recon-
structed in three-body CP eigenstate mode KSπ

+π− and analysed with the Dalitz technique.
This analysis, combined with the ADS one, allows for a first determination of the angle γ
using neutral B decays.

In chapter 7, we conclude and we discuss the perspectives of the measurements of γ and
rS from neutral B decays in higher luminosity scenarios.



Chapter 1

CP violation in the Standard Model
and the CKM matrix

Symmetries are very important in physics, since they establish relations within quantities in
principle uncorrelated. In a field theory described by a Lagrangian L, a transformation is a
symmetry of the theory if L does not change under the transformation. On a generic state,
described by a four 4-vector (t, ~x), one can define the following operations:

• parity P : P (t, ~x) = (t,−~x) ;

• time inversion T : T (t, ~x) = (−t, ~x) ;

• charge conjugation, that transforms a particle in its antiparticle.

Those are discrete symmetries that can be combined, for example the operation CP
changes a particle in its antiparticle and inverts its momentum and helicity. The transfor-
mation CPT must be a symmetry for every local field theory [1] and it is confirmed to be
conserved by all experimental searches up to now.

There is no experimental evidence that strong and electromagnetic interactions violate
C, P or T , while weak interactions violate C and P separately, conserving, in first approxi-
mation, their product CP . The CP violation of the weak interactions has been observed for
the first time in 1964 [3] in the study of rare decays in the neutral kaon system and recently
observed also in B meson decays, thanks to the data collected by the B-factory experiments.

The Standard Model of elementary particles is the theory that describes in a common
framework the strong, electromagnetic and weak interactions. This theory successfully de-
scribes all CP violation related measurements up to now.

This chapter describes the Standard Model picture of the CP violation (1.1), which leads
to the Cabibbo-Kobayashi-Maskawa quark mixing matrix (1.2) and the Unitarity Triangle.

1.1 CP violation in the Standard Model

The Standard Model describes in a common framework the strong, electromagnetic and weak
interactions starting from the elementary particles, that are:

3
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• six leptons (and six antileptons), organized in three families;

(

νe

e

)

,

(

νµ

µ

)

,

(

ντ

τ

)

• six flavors of quarks (and six antiquarks), organized in three generations;

(

u
d

)

,

(

c
s

)

,

(

t
b

)

• a gauge boson for the electromagnetic interaction, the photon γ;

• three gauge bosons for the weak interaction: W+ , W− and Z0;

• eight gauge bosons for the strong interaction, the gluons;

• the Higgs boson, H (not yet experimentally observed).

The Standard Model is built on the symmetry group SU(3)C ⊗ SU(2)I ⊗ U(1)Y , where
SU(3)C describes the color symmetry of strong interactions, SU(2)I the weak isospin sym-
metry and U(1)Y the symmetry under hypercharge transformations.

The Lagrangian for this theory will be the sum of the strong interactions term LQCD and
the term that accounts for electroweak interactions LEW (SU(2)I ⊗ U(1)Y ).

The quarks are organized in multiplets:

Qint.
L =

(

U int.
L

Dint.
L

)

= (3, 2)+1/6

uint.
R = (3, 1)+2/3 dint.

R = (3, 1)−1/3

and a similar structure holds for the leptons:

Ψint.
L =

(

νint.
L

lint.
L

)

= (3, 2)−1/2

lint.
R = (3, 1)−1 νint.

R = (3, 1)0

where, for example, (3, 1)−1 is a triplet in SU(3) (color) a singlet of weak isospin SU(2) and
has hypercharge Y = Q− I3 = −1, φL/R(x) = (1∓ γ5)φ(x) are the left handed (1− γ5) and
right handed (1 + γ5) helicity components of the field φ.

The electroweak term of the Lagrangian is:

LEW = i{Qint.
L (x)γµDµQint.

L (x) + uint.
R (x)γµDµuint.

R (x) + d
int.

R (x)γµDµdint.
R (x) +

Ψ
int.
L (x)γµDµΨint.

L (x) + ν int.
R (x)γµDµνint.

R (x) + l
int.

R (x)γµDµlint.
R (x) }

where the covariant derivative Dµ is defined by the expression:

Dµ = ∂µ + i
g

2
τjW

µ
j + 2ig′Y Bµ (1.1)
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g and g′ are the coupling constants associated to the gauge fields Wj (j = 1, 2, 3) and B
(related to the isospin SU(2) and hypercharge U(1) symmetry groups) and τj are the Pauli
matrices in the SU(2)L space.

The W± bosons are related to the W1,2 components of the Wj gauge field, the photon
and the Z0 to the W3 component and to the B field through the weak angle θW [4]). In more
detail, for the charged boson one defines the field:

W µ+(x) =
W µ

1 − iW µ
2√

2

and its hermitian conjugate, related to W+ and W− respectively. For the neutral bosons
one can write:

W µ
3 = cos θWZ

µ − sin θWA
µ

Bµ = − sin θWZ
µ + cos θWA

µ

where sin2 θW = 0.2326±0.0008, Zµ is the field associated to the Z0 and Aµ with the photon.
The following relation holds for the weak angle:

g

sin θW
=

g′

cos θW
= e

with e the positron electric charge.
The Lagrangian can be split into a free theory and an interaction part: LEW = L0 +LI .

The interaction Lagrangian is composed of a charged current term LCC and a neutral current
term LNC .

The charged current term can be written in terms of the observable boson fields:

LCC =
gW

2
√

2

(

J+
µ (x)W µ(x) + J−

µ (x)W †µ(x)
)

where:

J+
µ = ūint.γµ(1 − γ5)d

int. + c̄int.γµ(1 − γ5)s
int. + t̄int.γµ(1 − γ5)b

int. +

ν̄int.
e γµ(1 − γ5)e

int. + ν̄int.
µ γµ(1 − γ5)µ

int. + ν̄int.
τ γµ(1 − γ5)τ

int.

and the neutral current one:

LNC = eJem
µ (x)Aµ(x) +

gW

2 cos θW
J0

µ(x)Z0µ(x)

where

Jem
µ =

∑

f

Qf f̄γµf

J0
µ =

∑

f

f̄γµ(vf − afγ5)f

vf = τ f
3 − 2Qf sin2 θW af = τ f

3



6CHAPTER 1. CP VIOLATION IN THE STANDARD MODEL AND THE CKM MATRIX

and the index f runs over all the flavors.
Experimentally the W+, W− and Z0 bosons have been observed to have non zero masses.

These masses are explained in the theory thanks to the presence of the Higgs field and the
spontaneous symmetry breaking mechanism.

The Higgs field is an isospin doublet of complex scalar fields:

Φ =

(

φ+

φ0

)

Φ̃ = i · τ2 · Φ =

(

φ∗
0

φ−

)

The Lagrangian for the Higgs field is written as follows:

DµΦ†DµΦ − µ2Φ†Φ − λ(Φ†Φ)2

where the covariant derivative is defined in eq. 1.1:
The Higgs field potential (V (Φ) = −µ2Φ†Φ − λ(Φ†Φ)2) has a relative maximum at

Φ(x) = 0 and reaches an absolute minimum for all the points belonging to the circle

Φ(x) =
√

−µ2

2λ
. This means that the state of minimum energy, the vacuum state, is not

unique but is degenerate. The choice of one of the infinite possible vacuum states implies
the spontaneous symmetry breaking, in which some symmetries of the Lagrangian are lost
and some of the massless particles acquire a non zero mass.

With the spontaneous breaking, the symmetry group SU(2)I⊗U(1)Y is reduced to U(1)Q

(with Q the electric charge) and the three gauge bosons (W+, W− and Z0) acquire a mass
(the photon, related to the electric charge conservation, stays massless).

The choice of the minimum energy state is operated by assigning a non zero expectation
value for the Higgs field in the vacuum state. A usual choice is:

〈0|Φ|0〉 =

(

0
v√
2

)

with v =
√

−µ2

2λ
.

The mass terms for the W± and Z0 bosons arise from the kinetic term and the masses
have the values MW = vg

2
and MZ = vg

2cosθW
.

Leptons and quarks masses arise from the Yukawa coupling terms of leptons and quarks
with the Higgs field:

LM = Y d
ij Q

int.
Li

Φ dint.
Rj

+ Y u
ij Q

int.
Li

Φ̃ uint.
Rj

+

Y l
ij L

int.
Li

Φ lint.
Rj

+ h.c.

Writing explicitly the Φ field, one obtains for the quarks:

LM = Md
ij d

int.

Lj
dint.

Rj
+Mu

ij u
int.
j uint.

Rj
+ h.c.

where

Mu,d
ij =

Y u,d
ij · v√

2
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is the quark mass matrix.
It can be shown that the conservation of the symmetry CP is described by the matrix

M being real. Any complex term would on the other hand transform under CP into its
complex conjugate, hence producing CP violation. Generally speaking, the M matrix is not
diagonal in the weak interaction eigenstates basis (that we have used up to now), since the
weak interaction eigenstates are not also mass eigenstates. One can always pass to the mass
eigenstates basis simply by diagonalizing the M matrix; this can be done with a pair of
unitary matrices, VL and VR:

Mu,d = V u,d
L Mu,dV u,d

R

with Mf diagonal (f = u, d). These unitary matrices change the interaction eigenstates
into mass eigenstates.

dLi
= (V d

L )ijd
int.
Lj

; dRi
= (V d

R)ijd
int.
Rj

uLi
= (V u

L )iju
int.
Lj

; uRi
= (V u

R )iju
int.
Rj

In the mass eigenstates basis, the Lagrangian mass term is diagonal and the electroweak
charged current term becomes:

LCC = i
g

2
uLi

γµ(V u
Lik
V d†

Lkj
)dLj

τaW
a
µ .

V = V u
Lik
V d†

Lkj
being a 3×3 matrix, it can always be parametrized with three Euler angles

(real parameters) and six phases (complex parameters). Five of these six phases disappear
under transformations that redefine the phase of the quark fields in the quark mass eigenstate
basis and leave the diagonal mass matrix unchanged. One of the six phases is irreducible.
The presence of this phase accounts for the CP violation in the Standard Model.

The choice of operating in the quark mass eigenstates basis has hence moved the CP
violation description from the mass sector to the electroweak Lagrangian sector, where it is
described by the quark mixing matrix V = V u

Lik
V d†

Lkj
.

This matrix, that is the generalization of the Cabibbo mechanism to the three quark
generations case, is know as CKM matrix (from Cabibbo, Kobayashi and Maskawa) [2]:

VCKM = V u
Lik
V d†

Lkj

1.2 The CKM matrix

The CKM matrix, the unitary matrix that relates the weak interaction eigenstates with the
mass eigenstates, can be written as:

VCKM =







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







where Vq1q2 is the coupling related to the transition q2 → q1. Many parametrizations exist
in the literature, the most used are the standard parametrization [5], and a generalization of
the Wolfenstein parametrization [6] as presented in [7].
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In the standard parametrization, also used by the Particle Data Group [8], the CKM
matrix is written as:

VCKM =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −s23c12 − s12c23s13e
iδ c23c13







where cij = cos θij and sij = sin θij with θij the mixing angles between the different families
and δ is the CP violating phase. Because s13 and s23 are small and of the order of O(10−3)
and O(10−2) respectively, the standard choice for the four independent parameters is:

s12 = |Vus| , s13 ∼ |Vub| , s23 ∼ |Vcb| and δ

Starting from the consideration that the mixing angles are small, the Wolfenstein parametriza-
tion [6] emphasizes a hierarchy in the magnitudes of the VCKM elements: the ones on the
diagonal are of order 1, and the others become smaller the more they are far from the diago-
nal. In the Wolfenstein parametrization, the matrix elements are the result of an expansion
in terms of a small parameter λ = |Vus| ∼ 0.22. The four independent parameters are in this
case:

λ , A , ρ and η.

where η is the CP violating phase and the matrix is written:

VCKM =







1 − λ2

2
λ Aλ3(ρ− iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1





 + O(λ4) (1.2)

If we define:

s12 = λ , s23 = Aλ2 , s13e
iδ = Aλ3(ρ− iη) (1.3)

to all orders in λ, then

ρ =
s13

s12s23
cos δ , η =

s13

s12s23
sin δ

and the CKM matrix, as a function of (λ,A, ρ, η), satisfies the unitarity condition exactly.
Substituting the expressions given in 1.3 into the standard parametrization one obtains the
CKM parameters as Taylor expansions with terms of order O(λ4) and higher orders.

With respect to the Wolfenstein parametrization, given in 1.2, the corrections to diagonal
elements and to Vts are of order O(λ4), corrections to Vcd and Vtd are of order O(λ5), while
additional terms to Vus and Vcb only appear at the orders O(λ7) and O(λ8) and the expression
for Vub stay unchanged. The main corrections to imaginary parts are ∆Vcd = −iA2λ5η and
∆Vts = −iAλ4η.

Thanks to the use of the variables:

ρ = ρ(1 − λ2

2
) , η = η(1 − λ2

2
)

the orders O(λ5) can be included in the expression of Vtd

Vtd = Aλ3(1 − ρ̄− iη̄)
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and the CKM matrix can be expressed as:

VCKM =









1 − λ2

2
− λ4

8
λ Aλ3(ρ̄− iη̄)

−λ + A2λ5

2
(1 − 2(ρ̄+ iη̄)) 1 − λ2

2
− λ4(1/8 + A2/2) Aλ2

Aλ3(1 − ρ̄− iη̄) −Aλ2 + 1
2
Aλ4 + Aλ4(ρ̄+ iη̄) 1 − A2λ4

2









+ O(λ6)

1.3 The Unitarity Triangle

The unitarity of the VCKM matrix,

VCKMV
†
CKM = V †

CKMVCKM = 1,

implies several relations between its elements:

3
∑

i=1

VijV
∗
ik = δjk and

3
∑

j=1

VijV
∗
kj = δik.

The six independent vanishing relations are listed below:

V ∗
udVus + V ∗

cdVcs + V ∗
tdVts = 0 (three terms of the order, respectively, λ, λ, λ5 ) ;

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0 (three terms of the order, respectively, λ3, λ3, λ3 ) ;

V ∗
usVub + V ∗

csVcb + V ∗
tsVtb = 0 (three terms of the order, respectively, λ4, λ2, λ2) .

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0 (three terms of the order, respectively, λ, λ, λ5 ) ;

VtdV
∗
ud + VtsV

∗
us + VtbV

∗
ub = 0 (three terms of the order, respectively, λ3, λ3, λ3 ) ;

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0 (three terms of the order, respectively, λ4, λ2, λ2) .

Each one of these relations can be represented as a triangle in the (ρ, η) plane, where the
ones obtained by product of neighboring rows or columns are nearly degenerate. The areas
of all these triangles are equal to half of the Jarlskog invariant J , which is a phase convention
measurement of CP violation, defined by:

Im{VijVklV
∗
ilV

∗
kj} = J

3
∑

m,n=1

εikmεjln

where εabc is the antisymmetric tensor. The presence of a non-zero CKM phase, and hence
of CP violation, requires J 6= 0.

Within the six relations, we choose the second one, V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0, whose

elements can be determined by B physics measurements. This triangle is particularly at-
tracting from the experimental point of view, since it has all the sides of order λ3. Dividing
all the terms of the relation by |V ∗

cbVcd|, one obtains:

V ∗
ubVud

V ∗
cbVcd

+ 1 +
V ∗

tbVtd

V ∗
cbVcd

= 0

which is represented by the triangle in Fig. 1.1.
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ρ+iη 1−ρ−iη

βγ

α

C=(0,0) B=(1,0)

A=(ρ,η)

Figure 1.1: Unitarity Triangle, represented in the (ρ̄, η̄) plane.

The imaginary coordinate of the apex is η̄, the CP violating phase and, as already stated,
the presence of CP violation, i.e. η̄ 6= 0, is described by the area of the triangle being non-
vanishing. The sides of the triangle can be expressed in terms of ρ and η:

AC = Rb =
|V ∗

ubVud|
|V ∗

cbVcd|
=
√

ρ2 + η2

AB = Rt =
|V ∗

tbVtd|
|V ∗

cbVcd|
=
√

(1 − ρ)2 + η2,

and each angle is the relative phase between two adjacent sides:

α = arg
[V ∗

ubVud

V ∗
tbVtd

]

β = arg
[V ∗

tbVtd

V ∗
cbVcd

]

γ = arg
[ V ∗

cbVcd

V ∗
ubVud

]

.

In the Wolfenstein parametrization the only complex elements, up to terms of order
O(λ5), are Vub and Vtd and the phases γ and β can be directly related to them:

Vtd = |Vtd|e−iβ , Vub = |Vub|e−iγ.

The angles of the Unitarity Triangle, or quantities strictly related to them, are accessible by
different experimental techniques.

1.4 Numerical Unitarity Triangle analysis

Various methods have been proposed for the data statistical treatment to obtain the com-
bined constraint on the ρ̄− η̄ plane from the different results: we refer here to the Bayesian
method. In this method, the probability density functions (pdf) for the free parameters that
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have to be determined are written in terms of quantities that are either experimentally mea-
sured or theoretically calculated. With a simulation procedure (called Toy Monte Carlo) a
large sample is extracted for the free parameters and to each extraction a weight is assigned.
The extractions are made in reasonable intervals and following homogeneous a-priori distri-
butions. The weight for each extraction is given by e−

∏

i
fi , where fi are the experimental

pdf for the measured quantities; in other words the result of each extraction is considered
more or less likely, depending on the agreement of the corresponding measured quantities
with the actual experimental results.

In this way an a-posteriori pdf for each parameter is obtained, generally different from
the a-priori one, because of the weighting procedure. More details on the Bayesian approach
to Unitarity Triangle fits are given in [9].

Several measurements, resulting in different constraints on the ρ̄− η̄ plane, are included
in the Unitarity Triangle analysis:

• |Vub| and |Vcb|
B mesons can decay through the b → c and b → u transitions. Semileptonic decays
offer a relatively large branching fraction (' 10 %) and corresponding measurements
can be interpreted using a well established theoretical framework. The relative rate of
charmless over charmed b-hadron semileptonic decays is proportional to the square of
the ratio:

|Vub|
|Vcb|

=
λ

1 − λ2

2

√

ρ̄2 + η̄2 , (1.4)

and it allows to measure the length of the side AC of the Unitarity triangle.

• ∆md

In the Standard Model, B0 − B̄0 oscillations occur through a second-order process, a
box diagram, with a loop that contains W and up-type quarks. The box diagram with
the exchange of a top quark gives the dominant contribution. The time oscillation
frequency, which can be related to the mass difference between the light and heavy
mass eigenstates of the B0

d − B0
d system, is expressed, in the SM, as1:

∆md =
G2

F

6π2
m2

W ηbS(xt) A
2λ6 [(1 − ρ̄)2 + η̄2] mBd

f 2
Bd
B̂Bd

, (1.5)

where S(xt) is the Inami-Lim function [12] and xt = m2
t /M

2
W , mt is the top quark

mass and ηb is the perturbative QCD short-distance NLO correction. The scale for the
evaluation of those corrections entering into ηb and the running of the t quark mass
have to be defined in a consistent way. The value of ηb = 0.55±0.01 has been obtained
in [13] and, in order to be consistent, the measured value of the pole top quark mass,
obtained by CDF and D0 collaborations, mt = (172.6 ± 1.4) GeV/c2 [14], has to be
corrected downwards by (7 ± 1) GeV/c2.

The remaining factor, f 2
Bd
B̂Bd

, encodes the information of non-perturbative QCD. The
constant fBd

translates the size of the B meson wave function at the origin. The bag

factor B̂Bd
is also introduced to take into account all possible deviation from vacuum

1∆mq is usually expressed in ps−1 unit. 1 ps−1 corresponds to 6.58 10−4 eV.
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saturation approximation. The values of the non-perturbative QCD parameters fBd
,

B̂Bd
are obtained from lattice QCD calculations. The measurement of ∆md gives a

constraint on the length of the side AB of the Unitarity Triangle.

• ∆md/∆ms

The B0
s − B0

s time oscillation frequency, which can be related to the mass difference
between the light and heavy mass eigenstates of the B0

s − B0
s system, is proportional

to the square of the |Vts| element. Neglecting terms of order O(λ4), | Vts | is inde-
pendent of ρ̄ and η̄. The measurement of ∆ms then give a strong constraint on the
non-perturbative QCD parameter f 2

Bs
B̂Bs

. The ratio between the values of the mass
difference between the mass eigenstates measured in the Bd and in the Bs systems can
be used in the Unitarity Triangle analyses:

∆md

∆ms

=
mBd

f 2
Bd
B̂Bd

mBs
f 2

Bs
B̂Bs

(

λ

1 − λ2

2

)2
(1 − ρ̄)2 + η̄2

(

1 + λ2

1−λ2

2

ρ̄
)2

+ λ4η̄2

. (1.6)

Using the ratio ∆md

∆ms
, instead of ∆md and ∆ms separately, exploits the fact that

ξ = fBs

√

B̂Bs
/fBd

√

B̂Bd
is better determined from lattice QCD than the individual

quantities entering into its expression. The measurement of the ratio ∆md/∆ms gives
a similar type of constraint as ∆md, on the length of the side AB of the Unitarity
triangle.

• εK
Indirect CP violation in the K0 − K0 system is usually expressed in terms of the εK
parameter, which is the fraction of CP -violating component in the mass eigenstates.
In the SM, the following equation is obtained

εK = Cε A
2λ6 η̄ × (1.7)

[

−η1S(xc)

(

1 − λ2

2

)

+ η2S(xt)A
2λ4 (1 − ρ̄) + η3S(xc, xt)

]

B̂K

where Cε =
G2

F
f2

K
mKm2

W

6
√

2π2∆mK
. S(xi) and S(xi, xj) are the appropriate Inami-Lim func-

tions [12] depending on xq = m2
q/m

2
W , including the next-to-leading order QCD cor-

rections [13, 15, 10]. An important theoretical uncertainty comes from the non-
perturbative QCD bag parameter B̂K, that is evaluated from lattice QCD calculations.
The constraint brought by the measurement of εK corresponds to an hyperbola in the
(ρ̄, η̄) plane.

• CP violation measurements in the B sector
The advent of the B-factories has allowed the measurement of many observables related
to the Unitarity Triangle angles. The studied decays and constrained quantities are
briefly listed below.

– sin 2β, the first CP -violating quantity measured by the B-factories that is now
a precision measurement, can be determined from the mixing induced CP asym-
metry in b→ cc̄s decays. The golden observable is AJ/ΨK0 in B0

d → J/ΨKS(KL)
decays, which has a very small theoretical uncertainty.
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Figure 1.2: Selected regions for (ρ, η) from the Unitarity Triangle analysis during the years.

– the angle α is constrained by the study of B → ππ, B → ρρ and B → ρπ decays.

– the angle γ, the main topic of this thesis, is measured in several B → DK decays.

– the combination of Unitarity Triangle angles 2β + γ, is constrained using B0 →
Dπ, B0 → D∗π, B0 → Dρ and B0 → DK0π decays;

– cos 2β or directly the angle β, can be determined from B → J/ψK∗0(KSπ
0) and

B0 → D0ρ0 decays. These measurements do not give a very precise measurement
of the phase β, but are useful in removing the ambiguity between β and π/2− β
coming from the measurement of sin 2β.

If these observables were determined with infinite precision, they would be represented
by a curve in the ρ̄− η̄ plane. Assuming the validity of the Standard Model, all these curves
would intersect in one point, (ρ, η): the apex of the Unitarity Triangle. In real life, these
measured quantities are known with experimental and theoretical errors and each constraint
results, not in a curve, but in a region on the ρ̄− η̄ plane. The Unitarity Triangle analyses
determines the region in which the apex of the Unitarity Triangle has to be with a given
probability.

The increasing precision of the measurements and of the theoretical calculations in the
last twenty years, significantly improved the knowledge on the allowed region for the apex
position (ρ, η) (Fig. 1.2).

The measurements of CP -violating quantities from the B-factories are nowadays so abun-
dant and precise that the CKM parameters can be constrained using only the determina-
tion of the Unitarity Triangle angles, as can be seen in Fig. 1.3, right plot. On the other
hand, an independent determination can be obtained using experimental information on CP -
conserving processes ( |Vub|

|Vcb| from semileptonic B decays, ∆md and ∆ms from the Bd− B̄d and
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Bs − B̄s oscillations) and the direct CP violation measurements in the kaon sector, εK (see
Fig. 1.3, left plot). This was indeed the strategy used to predict the value of sin 2β before
the precise BABAR and Belle measurements [16].
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Figure 1.3: Allowed regions for ρ− η, as given by the measurement of |Vub|/|Vcb|, ∆md, ∆ms

and εK (left plot) and as given by the measurements of the angles α, sin 2β, γ, 2β+γ, β and
cos 2β (right plot). The closed contours show the 68% and 95% probability regions for the
triangle apex, while the colored zones are the 95% probability regions for each constraint.
The experimental values are updated using results presented at the 2008 winter conferences.
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In Fig. 1.4, we show the allowed regions for ρ̄ and η̄, as given by all the available
measurements. Numerical results are summarized in Tab. 1.1.
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Figure 1.4: Allowed regions for ρ − η, as given by |Vub|/|Vcb|, ∆md, ∆ms, εK , α, sin 2β, γ,
2β+γ, β and cos 2β. The closed contours show the 68% and 95% probability regions for the
triangle apex, while the colored zones are the 95% probability regions for each constraint.
The experimental values are updated using results presented at the 2008 winter conferences.

Parameter 68% probability 95% probability

ρ 0.146 ± 0.028 [0.092,0.202]
η 0.342 ± 0.016 [0.311,0.374]

α[◦] 91.1 ± 4.3 [82.9,99.8]
β[◦] 21.8 ± 0.9 [20.0,23.7]
γ[◦] 66.8 ± 4.4 [58.1,75.2]

Table 1.1: 68% and 95% probability regions for the Unitarity Triangle parameters, obtained
with the experimental values updated to the 2008 winter conferences results.

Other Unitarity Triangle analyses use a frequentistic approach, based on a χ2 minimiza-
tion [17] or scanning methods [18].

1.5 Search for New Physics: looking for discrepancies

As a general fact, as it can be seen in Fig. 1.4, the Standard Model description of CP violation
through the CKM mechanism appears as a very successful framework, able to account for
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all the measured observables up to the current precision. In this situation, any effect from
physics beyond the Standard Model should appear as a correction to the CKM picture.

The agreement of all the measured quantities is somehow quantified in the so called
compatibility plots [19], in which the comparison between indirect parameter determinations
and their direct experimental measurement can be used as a test for the Standard Model
description of flavour physics. The indirect determination of a particular quantity obtained
performing the Unitarity Triangle complete fit, including all the available constraints except
from the direct measurement of the parameter of interest, gives a prediction of the quantity
based on formulas which are valid in the Standard Model. The comparison between this pre-
diction and a direct measurement can thus quantify the agreement of the single measurement
with the overall fit and possibly reveal new physics phenomena.

In Unitarity Triangle fits based on a χ2 minimization, a conventional evaluation of com-
patibility stems automatically from the value of the χ2 at its minimum. The compatibility
between constraints in the Bayesian approach is simply done by comparing two different
p.d.f.’s.

Let us consider, for instance, two p.d.f.’s for a given quantity obtained from the Unitarity
Triangle fit, f(x1), and from a direct measurement, f(x2): their compatibility is evaluated
by constructing the p.d.f. of the difference variable, x2 − x1, and by estimating the distance
of the most probable value from zero in units of standard deviations. The latter is done by
integrating this p.d.f. between zero and the most probable value and converting it into the
equivalent number of standard deviations for a Gaussian distribution 1. The advantage of
this approach is that no approximation is made on the shape of p.d.f.’s. In the following
analysis, f(x1) is the p.d.f. predicted by the Unitarity Triangle fit while the p.d.f of the mea-
sured quantity, f(x2), is taken Gaussian for simplicity. The number of standard deviations
between the measured value, x̄2 ± σ(x2), and the predicted value (distributed according to
f(x1)) is plotted as a function of x̄2 (x-axis) and σ(x2) (y-axis). The compatibility between
x1 and x2 can be then directly estimated on the plot, for any central value and error of the
measurement of x2.
The compatbility plots for α, sin 2β, γ and ∆ms are shown in Fig. 1.5. The direct values
obtained for α and ∆ms are in very good agreement, within 1σ, with the indirect determi-
nation, although for the latter the effectiveness of the comparison is limited by the precision
on the theoretical inputs, inducing a big error (compared to the experimental one) on the
prediction from the rest of the fit.

The determination of γ from direct measurement yields a value slightly higher, (80±13)o,
than the indirect one from the overall fit, (65 ± 7)o; the two determinations are compatible
within 1σ.

We also observe that the direct determination for sin 2β from the measurement of the CP
asymmetry in B0 → J/ψK0 is slightly shifted, with respect to the indirect determination,
still being compatible with it within 2σ. This effect is visually evident in Fig. 1.6, left, where
the 68% and 95% probability regions for ρ̄ and η̄, as given by |Vub|/|Vcb|, ∆md, ∆ms and εK
are compared with the 95% probability regions given by the measurements of angles.

1In the case of Gaussian distributions for both x1 and x2, this quantity coincides with the pull, which is
defined as the difference between the central values of the two distributions divided by the sum in quadrature
of the r.m.s of the distributions themselves.
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This slight tension in the Unitarity Triangle fit has been studied in the latest years [20]
and can be related to the fact that the present experimental measurement of sin 2β favours a
value of |Vub| that is more compatible with the direct determination of |Vub| using exclusive
methods rather than the one obtained using the inclusive ones. In Fig. 1.6, right, we show
the compatibility separately for the exclusive and the inclusive direct determination of |Vub|.
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Figure 1.5: Compatibility plots for α, sin 2β, γ and ∆ms. The color code indicates the com-
patibility between direct and indirect determinations, given in terms of standard deviations,
as a function of the measured value and its experimental uncertainty. The crosses indicate
the direct world average measurement values respectively for α, sin 2β from the measurement
of the CP asymmetry in B0 → J/ψK0, γ and ∆ms.

In conclusion, it is interesting to monitor the compatibility of each single measurement
with the overall Unitarity Triangle fit, because any effect from new physics beyond the
Standard Model, would appear as a disagreement in such comparisons. Given the present
experimental measurements, no significant deviation from the CKM picture is observed.
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Figure 1.6: Left plot: allowed regions for ρ̄ and η̄ obtained by using the measurements of
|Vub|/|Vcb|, ∆md, ∆ms and εK . The coloured zones indicate the 68% and 95% probability
regions for the angles measurements, which are not included in the fit. Right plot: compat-
ibility plot for Vub. The color code indicates the compatibility between direct and indirect
determinations, given in terms of standard deviations, as a function of the measured value
and its experimental uncertainty. The cross and the star indicate the exclusive and inclusive
measurement values respectively



Chapter 2

Measurements of the angle γ of the
Unitarity Triangle

In the Wolfenstein parametrization, γ is the weak phase of the CKM element V ∗
ub =|Vub|eiγ.

Several methods aim to access this phase exploiting the interference between b→ u and
b → c transitions in B → DK decays. After a brief introduction (sec. 2.1) on B → DK
phenomenology, in section 2.2 the common characteristics of γ measurements in B → DK
decays are presented. In sections 2.2.1, 2.2.2 and 2.2.3, the different experimental methods
are described. The present knowledge of γ comes from the combination of several analyses
of charged B → DK channels using all these methods. These results are listed in section
2.3, where the current constraint on γ, from their combination, is also shown.

The work presented in this thesis concerns measurements of γ in neutral B → DK decays,
that are introduced in section 2.6.

Some analyses also try to measure γ from charmless B decay, where b → u transitions
appear in penguin diagrams, making use of the SU(3) symmetry. In this thesis, these methods
will not be discussed.

2.1 Phenomenology of B → DK decays

The amplitudes for the B → DK decays of interest can be expressed as:

A (B+ → D
0
K+) = Vus V

∗
cb(T + C) ;

A (B0 → D
0
K0) = Vus V

∗
cbC ;

A (B+ → D0K+) = Vcs V
∗
ub(C̄ + A) ;

A (B0 → D0K0) = Vcs V
∗
ubC̄ .

where T , C, C̄ and A refer to the tree, color-suppressed and annihilation topologies respec-
tively. In Fig. 2.1 and 2.2, the possible diagrams for the B+ → D(∗)0K(∗)+ and B0 →
D(∗)0K(∗)0 respectively are shown. In the amplitudes we have written for the charged
B → DK decays, the T parameter will account for the tree diagram (a), C and C̄ for the
color-suppressed diagrams (b) and (c) respectively and A for the (d) annihilation diagram.
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For the neutral B → DK decays, both the diagrams for the b→ c and b→ u transitions are
color-suppressed and their amplitudes are described by the C and C̄ parameters respectively.

V ∗
cb

Vus

B+ D̄(∗)0

K(∗)+

b̄

u

c̄ s̄

u(a)

V ∗
cb

Vus

b̄

u

c̄

u

s̄B+
K(∗)+

D(∗)0
(b)

V ∗
ub

Vcs

b̄

u

ū

c

s̄B+
K(∗)+

D(∗)0
(c)

b̄

u

V ∗
ub

Vcs

ū
c

s̄
u

B+
K(∗)+

D(∗)0
(d)

Figure 2.1: Feynman diagrams for the decay B+ → D(∗)0K(∗)+ (a and b) and B+ →
D(∗)0K(∗)+ (c and d).

V ∗
cb

Vus

b̄

d

c̄

u

s̄B0
K(∗)0

D(∗)0
(a)

V ∗
ub

Vcs

b̄

d

ū

c

s̄B0
K(∗)0

D(∗)0
(b)

Figure 2.2: Feynman diagrams for the decays B0 → D(∗)0K(∗)0 (a) and B0 → D(∗)0K(∗)0 (b).

This parametrization, with the different contributions arising from the diagrams shown in
fig 2.1 and 2.2, is often used but it is not exact. The correct treatment, exploits the fact that
the non leptonic two-body decays of the B mesons can be described in the Standard Model
using the Operator Product Expansion (OPE) and the renormalization group techniques
[10]. In this formalism, the B decays are described with an effective hamiltonian and the
amplitude for a B decaying into a final state f is expressed by:

A(B → f) = 〈f |Heff |B〉 =

=
GF√

2
·
∑

i

V CKM
i Ci(µ)〈f |Qi(µ)|B〉

where Qi are local operators that have the right quantum numbers to describe the particular
transition. Each operator contributes to the Hamiltonian with a weight given by the product
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of the CKM factors V CKM
i and Wilson coefficients Ci(µ). GF is the Fermi constant, expressed

by GF√
2

= gW

8·M2
W

, and its value is GF = 1.16639(9) · 10−5GeV −2.

The scale µ marks the separation between long distance contributions (the ones arising
from energies higher than the scale µ), contained in the Wilson coefficients Ci(µ) and short
distance contributions (relative to energy scales lower than µ), described by the hadronic
matrix elements 〈f |Qi(µ)|B〉. The µ scale is arbitrary, but its value is normally assumed to
be of the order of the b quark mass (µ = 4.3GeV

c2
). The dependence of the Wilson coefficients

on this µ scale and on the renormalization scheme has to compensate the hadronic matrix
elements one in such a way that the physical amplitudes do not show any dependence on
the choice of the scale. This cancellation of the dependence is limited by the order at which
the Wilson coefficients are calculated in perturbation theory.

Generally speaking, in order to describe the B → DK decays, eight operators are needed
and the effective hamiltonian can be written as:

Heff =
GF√

2
· {V ∗

ubVcs · [C1(µ)Qscu
1 (µ) + C2(µ)Qscu

2 (µ)] + (2.1)

+ V ∗
cbVus · [C1(µ)Qsuc

1 (µ) + C2(µ)Qsuc
2 (µ)] +

+ V ∗
ubVcd · [C1(µ)Qdcu

1 (µ) + C2(µ)Qdcu
2 (µ)] +

+ V ∗
cbVud · [C1(µ)Qduc

1 (µ) + C2(µ)Qduc
2 (µ)]}

where the Q1 and Q2 operators are called current-current operators and are defined by:

Q
diujuk

1 = (b̄uk)V −A(ūjdi)V −A

Q
diujuk

2 = (b̄di)V −A(ūjuk)V −A.

The fact that, in the B → DK channels used to measure γ, there are no penguin
contributions can be seen from the expression of the current-current operators, where the
currents are never expressed by two quarks of the same flavor (qq̄), since all the four quarks
on the final state have different flavor.

The Wilson coefficients can be calculated with perturbative techniques, while there is not
yet an agreement, within the theoretical community, on how to calculate the hadronic matrix
elements and different approaches have been proposed. In the approach called factorization,
the hadronic matrix elements are calculated as product of weak currents matrix elements,
expressed in terms of form factors and decay constants of the interested mesons.

As an example, the matrix element

〈D−K+|(b̄c)V −A(ūs)V −A|B0〉

is expressed in factorization as

〈D−K+|(b̄c)V −A(ūs)V −A|B0〉 = 〈D−|(b̄c)V −A|B0〉 · 〈K+|(ūs)V −A|0〉 (2.2)

where the process is split into two different subprocesses: the B meson decay into a D meson
(described by the form factor FB→D), and a kaon created from the vacuum (described by
the kaon decay constant fK).
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An intuitive way of explaining the factorization hypothesis is provided by the color trans-
parency argument, proposed for the first time by Bjorken [22]. The emitted meson is defined
as the one that does not contain the B spectator quark. In the hypothesis that the emitted
meson is produced with large momentum, its two quarks (that have opposite colors) will
have a large momentum along the meson flight direction and a relatively low momentum in
the transverse direction. The exchange of soft gluons with other fermionic lines is hence sup-
pressed because the gluon cannot discriminate the two quarks inside the meson that appears
as a color singlet. In this assumption, the emitted meson creation can then be considered,
to first approximation, a standalone process with respect to the rest of the decay.

Since this argument relies on the emitted meson having a large momentum, it is more
plausible for light emitted mesons and cannot be valid in case the emitted meson is a D.
Nonetheless, even in the cases of light emitted mesons, factorization cannot account for all
the contributions to the amplitude and it is generally considered as insufficient. However it
can be considered very useful for first approximation evaluations [21, 24].

As already stated, the amplitude for a B decaying to a final state f = DK is given by
〈f |Heff |B〉, where the effective Hamiltonian is expressed in eq. 2.1. Following the diagram-
matic approach, presented in [23], the amplitudes are written as sums of the contributions
from all the possible topologies resulting from the Wick contractions, between initial and
final state, of the different effective Hamiltonian operators (Qq1q2q3

1,2 in expression 2.1). In
this framework, the amplitudes for the decays can be expressed in terms of renormalization
scheme and scale independent parameters, that are linear combinations of Wick contractions
for different operators, weighted with their Wilson coefficients. Fig. 2.3 shows the topolo-
gies that are relevant for the B → DK decays: Disconnected Emission (DE), Connected
Emission (CE), Disconnected Annihilation (DA) and Connected Annihilation (CA).

The following emission parameters can be defined as:

E1 = C1〈Q1〉DE + C2〈Q2〉CE ;

E2 = C1〈Q1〉CE + C2〈Q2〉DE ;

and similarly for the annihilation:

A1 = C1〈Q1〉DA + C2〈Q2〉CA .

where 〈Qi〉DE,CE,DA,CA (i = 1, 2) indicates the insertion of the Qi operator inside a topology
of the kind of DE, CE, DA, CA respectively. More explicitly:

E1(q1, q2, q3,M1,M2) = C1DE(q1, q2, q3,M1,M2) + C2CE(q1, q2, q3,M1,M2) ;

E2(q1, q2, q3,M1,M2) = C1CE(q1, q2, q3,M1,M2) + C2DE(q1, q2, q3,M1,M2) ;

A1(q1, q2, q3,M1,M2) = C1DA(q1, q2, q3,M1,M2) + C2CA(q1, q2, q3,M1,M2) .

In the case of the DE topology, a sum can be performed on the color of the q2 and q3
quarks forming the emitted meson, on the contrary in the CE topology, the colors of the q2

and q1 quarks are determined by the colors of the q3 quark and of the B spectator quark



2.1. PHENOMENOLOGY OF B → DK DECAYS 23

Figure 2.3: Relevant topologies for the B → DK decays amplitudes.

respectively (see Fig. 2.3). For this reason, the CE contribution is expected to be suppressed
by a factor 1/NC (where NC is the number of colors) with respect to the contributions from
DE. The contributions of the annihilation topologies are also expected to be suppressed with
respect to DE.

The amplitudes for the B → DK decays of interest can be expressed as follows (with
l = u, d):

A (B+ → D̄0K+) = Vus V
∗
cb(E1 (s, l, c,K,D) + E2 (c, l, s, D,K)) ;

A (B0 → D̄0K0) = Vus V
∗
cb(E2 (c, l, s, D,K)) ;

A (B+ → D0K+) = Vcs V
∗
ub(E2 (l, c, s,D,K) + A1 (s, l, c,K,D)) ;

A (B0 → D0K0) = Vcs V
∗
ubE2 (l, c, s,D,K) .
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Due to the values of the Wilson coefficients, the E1 and E2 parameters are dominated by
the DE and CE topologies respectively.

As already stressed, the values of those hadronic parameters cannot be calculated in a
model-independent way. Moreover, these parameters are complex quantities and their actual
contributions to the amplitudes depend on the relative strong phases that again cannot be
predicted.

2.2 Measurements of the angle γ in B → DK decays

The idea of measuring a relative phase φ through the interference between two amplitudes
A1 and A2e

iφ connecting the same initial and final states is based on the fact that the decay
rate between these two states is proportional to: |A1 + A2e

iφ|2 = A2
1 + A2

2 + 2A1A2 cosφ
and hence the interference term gives sensitivity to the relative phase φ (here A1 and A2 are
real).

B+

D0K+

D0K+

[f ]K+

V ∗
ub

V ∗
cb

A(D0 → f)

A(D0 → f)

Figure 2.4: Interference scheme for B+ → D0K+ and B+ → D0K+ decays .

In Fig. 2.4 we show an interference scheme for B+ mesons decays giving sensitivity to γ.
The B+ can decay either to D0K+ through a b→ c transition or to D0K+ through a b→ u
transition. If both the D0 and the D0 decay to the same final state f , the study of the decay
B+ → [f ]K+ gives sensitivity to the relative phase between the two decay amplitudes.

The amplitude for b → c and b → u transitions can be written as A(b → u) ≡
|Vub|eiγAue

iδu and A(b → c) ≡ |Vcb|Ace
iδc, where Au(c) and δu(c) are the absolute value

and the phase of the strong interaction contribution to the amplitude. If the neutral D
decay is also considered, a term ADe

iδD (or AD̄e
iδD̄) has to be included. In the following we

denote δ = δD − δD̄ + δu − δc. In case of B+, the interference term in the decay rate will
be proportional to cos(δ + γ). A similar diagram can be drawn for the CP conjugate decay
(B− → [f ]K−), in this case the interference term will be proportional to cos(δ − γ), since
the strong interactions conserve CP .

The example shown in Fig. 2.4 refers to the B+ → D0(D0)K+, but equivalent arguments
can be done for all the B+ → D(∗)0(D(∗)0)K+ and B− → D(∗)0(D(∗)0)K− as well as for the
B0 → D(∗)0(D(∗)0)K(∗)0 and B0 → D(∗)0(D(∗)0)K(∗)0 decays.

There are several methods that aim at the measurement of γ in B → DK decays, all
based on the strategy sketched in Fig. 2.4, that differ because of the neutral D final states
f they reconstruct and consequently because of different experimental analysis techniques
they use.



2.2. MEASUREMENTS OF THE ANGLE γ IN B → DK DECAYS 25

A fundamental quantity in all these measurements is the parameter rB = |A(b→u)|
|A(b→c)| . Being

the absolute value of the ratio of the b → u to the b → c transition amplitudes, rB drives
the sensitivity to γ in each channel. The big challenge of measuring γ is related to the fact
that rB is small or, in other words, the b→ u transitions are suppressed with respect to the
b→ c ones.

Looking at the possible diagrams in Fig. 2.1 and 2.2, rB for charged B → DK channels
can be written as:

rCH
B ≡ rB(D0K+) =

|A(B+ → D0K+)|
|A(B+ → D0K+)| =

|VcsV
∗
ub|

|VusV ∗
cb|

|C̄ + A|
|T + C| ; (2.3)

and, for neutral decays, as:

rNEUT
B ≡ rB(D0K0) =

|A(B0 → D0K0)|
|A(B0 → D0K0)| =

|VcsV
∗
ub|

|VusV ∗
cb|

|C̄|
|C| . (2.4)

In the expressions 2.3 and 2.4, the term
|VcsV ∗

ub
|

|VusV ∗
cb
| only depends on absolute values of CKM

parameters and is known to be
√
ρ̄2 + η̄2 = 0.372± 0.012 [25], while the terms depending on

the hadronic parameters are not easily predictable, although one can make some argument
for their evaluation, typically based on the fact that the color-suppressed and annihilation
diagram contributions are suppressed with respect to the tree ones.

From simple arguments of this kind, one would expect rCH
B ≈ 0.1 for the charged B →

DK channels and rNEUT
B ≈ 0.4 for the neutral B → DK ones. This assumes that the

ratio between the two color-suppressed diagrams (C and C̄) is ≈ 1 [23], |C|/|T | ≈ 0.3 and
|A|/|T | ≈ 0.5 [26]. A more quantitative evaluation is given in sec. 2.4.

In conclusion, the measurements of γ are difficult because b→ u transitions are strongly
suppressed with respect to b→ c ones, as described by rB ratios 1, and each analysis aiming
to determine γ has to simultaneously measure the rB ratio (for the particular analyzed
channel) or either make some assumption on it. More explicitly, see Fig. 2.4, the unknowns
in any γ analysis are γ itself, the rB ratio and a strong phase δ. These are usually called
polar coordinates. Some analyses make use of the “cartesian coordinates”, defined in terms
of the polar coordinates as:

x± = rB cos(δ ± γ) ; y± = rB sin(δ ± γ) (2.5)

The present knowledge on γ comes from the combination of measurements of several
channels with different methods, described in section 2.2.1, 2.2.2 and 2.2.3. As we will see,
some of the methods are more sensitive to γ itself, while some others are particularly powerful
in measuring the rB ratios. For the sake of simplicity, in sections 2.2.1, 2.2.2 and 2.2.3 the
formulas and graphs will refer to the case of B+ → D0(D0)K+, while the methods are of
course valid for all the B+ → D(∗)0(D(∗)0)K+ and B− → D(∗)0(D(∗)0)K− decays as well as
for the B0 → D(∗)0(D(∗)0)K(∗)0 and B0 → D(∗)0(D(∗)0)K(∗)0 decays.

1It has to be stressed that the parameters rB are ratios between amplitudes, the ratio between number
of events from b → u and b → c transitions will be proportional to rB

2.
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2.2.1 The GLW method

In the GLW method [28, 29], γ is measured from the study of B decays to D0
±K final states,

where D0
± is a CP eigenstate with eigenvalues ±1, defined as:

|D0
±〉 =

1√
2
(|D0〉 ± |D̄0〉)

From the definition of D0
±, it follows:

√
2 · A(B+ → D0

±K
+) = A(B+ → D0K+) ± A(B+ → D0K+)√

2 · A(B− → D0
±K

−) = A(B− → D0K−) ± A(B− → D0K−).

The amplitudes can be written as follows:

A(B+ → D0K+) = V ∗
ub|A|eiα = |Vub|eiγ|A|eiα;

A(B− → D0K−) = Vub|A|eiα = |Vub|e−iγ|A|eiα;

and the following relation, for the amplitudes of the b→ u processes, holds:

A(B+ → D0K+) = e2iγA(B− → D0K−).

The amplitudes for the b→ c processes are related by the following expressions:

A(B+ → D0K+) = A(B− → D0K−).

These relations can be represented in a complex plane as two triangles, as shown in Fig. 2.5,
and the presence of CP violation is described by |A(B+ → D0

+K
+)| being different from

|A(B− → D0
+K

−)|. The following observables are measured:

2γ

D  K  )0 --A(B

-

=D  K  )0 +A(B+

D  K  )0 -A(B-

2 A(B D  K  )+
0 ++

D  K  )0 +A(B+ 2 A(B D  K  )+
0 -

Figure 2.5: Representation, in a complex plane, of the amplitudes used in the GLW method.

RCP± =
Γ(B+ → D0

±K
+) + Γ(B− → D0

±K
−)

Γ(B+ → D0K+) + Γ(B− → D̄0K−)
= 1 + rB

2 ± 2rB cos γ cos δB

ACP± =
Γ(B+ → D0

±K
+) − Γ(B− → D0

±K
−)

Γ(B+ → D0
±K+) + Γ(B− → D0

±K−)
=

±2rB sin γ sin δB
RCP±
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where δB is the relative strong phase between the two B decay amplitudes, γ the weak phase,
and rB is the ratio rB = |A(b→u)|

|A(b→c)| .
In the GLW method, four observables, ACP± and RCP±, are measured to constrain three

unknowns, γ, δ and rB. It is instructive to see that ACP± and RCP± are invariant under the
following operations:

• Ssign : γ ↔ −γ and δB ↔ −δB;

• Sexchange : γ ↔ δB;

• Sπ : γ → γ + π and δB → δB + π.

It follows that the GLW method suffers of an irreducible four-fold ambiguity on the deter-
mination of the phases. With the present available statistics, is very useful in measuring rB,
but has typically a low sensitivity to γ.

2.2.2 The ADS method

In the ADS method [30, 31], γ is measured from the study of B → DK decays, where D
mesons decay into non CP eigenstate final states. In this method the suppression of b → u
transition with respect to the b → c one is partly overcome by the study of decays of the B
meson in final states which can proceed in two ways: either through a favored b→ c B decay
followed by a suppressed D decay (D0 → f , or D̄0 → f̄), or through a suppressed b → u B
decay followed by a favored D decay (D0 → f̄ or D̄0 → f), as sketched in Fig. 2.6. In this
way the two amplitudes are comparable and one can expect larger interference terms.

A typical final state f used in ADS analyses is f = K+π− (hence f̄ = K−π+). The D0

decay in this state is unfavoured with respect to the D̄0 decay because of the CKM elements
in the amplitudes:

|A(D0 → f)|
|A(D0 → f̄)| ∼

|V ∗
cdVus|

|V ∗
udVcs|

= λ2 (2.6)

with λ = sin θC ∼ 0.22. For this reason, the decays D0 → f̄ and D0 → f are called Cabibbo-
allowed (CA) and doubly-Cabibbo-suppressed (DCS) respectively.
In the ADS method, one measures the observables:

RADS =
Γ(B+ → f̄K+) + Γ(B− → fK−)

Γ(B+ → fK+) + Γ(B− → f̄K−)
(2.7)

AADS =
Γ(B− → fK−) − Γ(B+ → f̄K+)

Γ(B− → fK−) + Γ(B+ → f̄K+)
. (2.8)

In the following, we will assume that CP is conserved in D decays. We define:

A(B+ → D0K+) = A(B− → D0K−) = AB;

A(B+ → D0K+) = rBABe
i(δB+γ);

A(B− → D0K−) = rBABe
i(δB−γ);

A(D0 → f̄) = A(D0 → f) = AD(CA) = AD;

A(D0 → f) = A(D0 → f̄) = AD(DCS) = rDADe
iδD .
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OPPOSITE SIGN MODE

B+ → D̄0K+

B+ → D0K+ D0 → f̄

D̄0 → f̄

final state
same

suppressed (b→ u)

favored (b→ c)

favored (∝ 1)

suppressed (∝ λ2)
B+ → [K−π+]D̄0K+

B+ → [K−π+]D0K+

SAME SIGN MODE

B+ → D̄0K+

B+ → D0K+ D0 → f

D̄0 → f

final state
same

suppressed (b→ u)

favored (b→ c)

suppressed (∝ λ2)

favored (∝ 1)

B+ → [K+π−]D̄0K+

B+ → [K+π−]D0K+

Figure 2.6: Scheme for the ADS method: B+ mesons decaying to the same final state,
through two different decay chains, for “opposite sign” events (top) and for “same sign”
events (bottom). The scheme is shown for the D final state f = K+π−

Two new quantities have been introduced: δD, which is the relative strong phase between
Cabibbo-allowed and doubly-Cabibbo-suppressed D decay amplitudes, and rD, which is the
ratio between the absolute values of the amplitudes, as in eq. 2.6, rD = |AD(DCS)|/|AD(CA)| ∝
||V ∗

cdVus|/|V ∗
udVcs| = λ2.

The numerator of the ratio RADS is the sum of the contribution from B+ decays:

|ABADrBe
i(δB+γ) + ABADrDe

iδD |2 =

A2
BA

2
D[r2

B + r2
D + 2rBrD cos(δ + γ)],

where δ = δB+δD is the sum of the strong phase differences in the B and in theD amplitudes,
and the contribution from B− decays:

|ABADrBe
i(δB−γ) + ABADrDe

iδD |2 =

A2
BA

2
D[r2

B + r2
D + 2rBrD cos(δ − γ)]

resulting in:

2A2
BA

2
D[r2

B + r2
D + rBrD(cos(δ + γ) + cos(δ − γ))] =

2A2
BA

2
D[r2

B + r2
D + 2rBrD cos γ cos δ]

The denominator of RADS is the sum of the contribution from B+ decays:

|ABAD + ABADrDrBe
i(δB+δD+γ)|2 =

A2
BA

2
D[1 + r2

Br
2
D + 2rBrD cos(δ + γ)] = A2

BA
2
D[1 + x+] ≈ A2

BA
2
D
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and the contribution from B− decays:

|ABAD + ABADrDrBe
i(δB+δD−γ)|2 =

A2
BA

2
D[1 + r2

Br
2
D + 2rBrD cos(δ − γ)] = A2

BA
2
D[1 + x−] ≈ A2

BA
2
D

resulting in:

A2
BA

2
D[2 + 2r2

Br
2
D + rBrD(cos(δ + γ) + cos(δ − γ))] =

A2
BA

2
D[2 + x+ + x−] ≈ 2A2

BA
2
D

where the terms x+ and x− are defined as:

x+ = r2
Br

2
D + 2rBrD cos(δ + γ);

x− = r2
Br

2
D + 2rBrD cos(δ − γ)].

The ratio RADS can hence be written as following:

RADS ' (r2
D + rB

2 + 2rBrD cos γ cos(δ))[1 − x+ − x−
2

].

The terms x+ and x− are small with respect to the leading contribution (which is of the
order ∼ 1), since they are proportional to rBrD (of the order of a few percent) and can be
neglected. Let’s see the meaning of neglecting these terms. The decay amplitude for each
channel contributing to the denominator of RADS is the sum of two amplitudes: AB(b →
c)AD(CA) + AB(b → u)AD(DCS), where the first is the leading one. Neglecting the terms
x+ and x− corresponds to neglect the term AB(b→ u)AD(DCS) (i.e. the amplitude for the
b→ u suppressed decay of the B, followed by a doubly Cabibbo suppressed decay of the D)
and approximating the denominator with its leading term AB(b→ c)AD(CA).

In a similar way, for AADS we obtain the following expression:

AADS ' rBrD[− cos(δ + γ) + cos(δ − γ)]
1 − x+−x−

2

RADS
.

If we neglect the terms x+ and x− in RADS, the observables RADS and AADS can be
written as follows:

RADS = r2
D + rB

2 + 2rBrD cos γ cos(δB + δD)

AADS = rBrD[− cos(δ + γ) + cos(δ − γ)]/RADS

= 2rBrD sin γ sin δ/RADS.

This method is very useful in measuring rB, but normally it has very low sensitivity to γ.
Even in the hypothesis of very high statistics, where both RADS and AADS can be measured
with a good precision, the ADS method would suffer from having three unknowns (rB,γ and
δ, the rD ratios being known) and only two observables (RADS and AADS). In this thesis,
as for other ADS analyses, the ratio RADS is measured but not the asymmetry AADS . The
observable AADS is the direct CP asymmetry built up using only the opposite sign events.
With the statistics available for the studies presented in this thesis (∼ 400 fb−1), the error
on AADS would be too large to allow to extract any useful information on rB, γ and δ.
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2.2.3 The GGSZ Dalitz method

In this method [32] γ is measured from the B → DK decays with the D decaying to multi-
body CP eigenstate final states. Multi-body decays are usually described by the isobar
model, in which the decay amplitude is written as a sum of amplitudes with quasi two-body
intermediate states.

The amplitude for a three-body neutral D decay D0 →M1M2M3 is written as a sum of
amplitudes for decays of the kind D0 → MrM3, where Mr are resonances that decay to M1,
M2 final states. These decays are studied in the Dalitz plane (s12, s13) , where sij = (pi +pj)

2

is the invariant mass of the couple MiMj of the D decay products.
The isobar model parametrizes the amplitude A = Ake

iδk , at each point k of the D Dalitz
plane, as a sum of two-body decay matrix elements plus a non resonant part, according to
the following expression:

Ake
iδk =

∑

j

aje
iδjBW j

k (m,Γ, s) + anre
iΦnr (2.9)

where BW j
k (m,Γ, s) is the expression for the relativistic Breit-Wigner describing the decay

through an intermediate jth resonance characterised by its spin s, its mass m and decay
width Γ.

A typical Dalitz plane distribution can be seen in Fig. 2.7, where the Dalitz plot for a
large sample of D0 → KSπ

+π− events is shown, and the zones of higher density represent
the contributions from different resonances.

Figure 2.7: Dalitz plane distribution for a D0 decaying to a final state KSπ
+π−.

Analyses of large tagged neutral D data samples (typically from decays of D∗+ → D0π+

and D∗− → D0π−) allow for a good determination of amplitudes and relative strong phases
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of the different resonances contributing to the D Dalitz distributions. As explained, those
samples are studied assuming an isobar model and writing the sum of amplitudes from
the different quasi-two-body intermediate states with resonances as a sum of Breit-Wigner
functions. Some components that are not easily explained with resonances are described by
effective parametrizations, such as the K-matrix approach [62, 63], which will be discussed
in more detail in chapter 6.

This information is used as input to the Dalitz analyses aiming to measure γ, where
the complete and rich structure of the multi-body D decay is exploited and detectable
interference terms are expected because of the presence of different strong phases. This
method is indeed very powerful and it is so far the one that gives the best error on the weak
phase γ.

Continuing on the example of the KSπ
+π− final state, we define

AD(s12, s13) = A12,13e
iδ12,13 = A(D0 → KS(p1)π

−(p2)π
+(p3)) =

= A(D̄0 → KS(p1)π
+(p2)π

−(p3)) ;

where sij = (pi + pj)
2 and p1, p2, p3 are the 4−momenta of KS, π

− and π+ respectively,
A12,13 > 0 and 0 < δ12,13 < 2π.

We have, for the decay rates:

dΓ(B− → [Ksπ
−π+]K−) ∝ (A2

12,13 + r2
BA

2
13,12 +

+2rBRe [ AD(s12, s13)A
∗
D(s13, s12))e

i(δB−γ) ] )ds12ds13 ; (2.10)

dΓ(B+ → [Ksπ
+π−]K+) ∝ (A2

13,12 + r2
BA

2
12,13 +

+2rBRe [ AD(s13, s12)A
∗
D(s12, s13))e

i(δB+γ) ] )ds12ds13 . (2.11)

From the study of these decays we are hence sensitive to rB, γ and δB (the relative strong
phase between the B amplitudes).

2.3 State-of-the-art for measurements of γ and rB

As already stated, the knowledge on the angle γ comes from the combination of results
obtained from many channels with different methods (listed in sec. 2.2.1, 2.2.2 and 2.2.3).
So far these results are obtained using charged B → DK decays. The available experimental
results are:

• GLW analyses of B± → D0
CP±K

±, B± → D∗0
CP±K

± and B± → D0
CP±K

∗±, performed
both by BABAR [64] and Belle collaborations [65].

• ADS analyses of B± → D0(D0)K± with the neutral D reconstructed in K±π∓, per-
formed both by BABAR [66] and Belle collaborations [68].

• BABAR also performed an ADS measurement in the channels B± → D∗0(D∗0)K± and
B± → D0(D0)K∗±, with the neutral D reconstructed in K±π∓, and a measurement in
the channel B± → D0(D0)K± with the neutral D reconstructed into K±π∓π0 [66, 67].
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• Dalitz measurement of the channels B± → D0
CP±K

±, B± → D∗0
CP±K

± and B± →
D0

CP±K
∗±, with the neutral D reconstructed in KSπ

+π− final state by the Belle col-
laboration [70], and both in KSπ

+π− and in KSK
+K− final states by the BABAR col-

laboration [69].

• BABAR also performed a Dalitz analysis of the channel B± → D0
CP±K

±, with the
neutral D reconstructed in π+π−π0 [71].

The pdf for γ obtained from the combination of all these analyses (using all the available
measurements presented at the 2008 winter conferences) is shown in Fig. 2.8, where the dark
and light zones indicate the 68% and 95% probability regions. It results in γ = (80 ± 13)o.
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Figure 2.8: One-dimensional pdf for γ from the combination of all the analyses in the charged
B → DK modes (left). The dark and light colored zones show the 68% and 95% probability
regions respectively. In the right plot pdfs are shown separately for γ from GLW and ADS
and from Dalitz analyses separately. The combination is also shown, but is barely visible
since it is almost coinciding with the result from Dalitz analysis alone. These results are
obtained using experimental data available for the 2008 winter conferences.

The pdf obtained for the rB ratios, for the B± → D0
CP±K

±, B± → D∗0
CP±K

± and
B± → D0

CP±K
∗± channels, are shown in Fig. 2.9, where the dark and light zones represent

the 68% and 95% probability regions respectively. The numerical results are:

rB(D0K+) = 0.10 ± 0.02;

rB(D∗0K+) = 0.09 ± 0.04;

rB(D0K∗+) = 0.13 ± 0.09. (2.12)

In Fig. 2.9 we also show the pdf for the rB ratios separately from GLW and ADS and from
Dalitz analyses.
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Figure 2.9: One-dimensional pdf of the rB ratios for B± → D0
CP±K

±, B± → D∗0
CP±K

± and
B± → D0

CP±K
∗± channels from the combination of all the analyses in the charged B → DK

modes. In the top row, the dark and light colored zones show the 68% and 95% probability
regions respectively. In the bottom row, the pdf for these ratios obtained separately from
GLW and ADS analyses and from Dalitz analyses separately and from their combination is
also shown. These results are obtained using experimental data available for the 2008 winter
conferences.

It is noteworthy that, while the Dalitz method gives the leading contribution in con-
straining γ, the GLW and ADS analyses have an important weight in the determination of
the rB ratios.
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2.4 (Great) expectations for rB in neutral B → DK

decays

As shown in [27], we can give an evaluation of the rNEUT
B ratios for neutral B channels,

starting from the values of rCH
B , exploiting the fact that the two ratios can be expressed in

terms of some common parameters (eqs. 2.3 and 2.4). We first consider the case in which
annihilation can be neglected (we thus make the hypothesis that |A|=0). In this case, the
following relation holds:

rNEUT
j = Rjr

CH
j

where Rj = C+T
C

and j = DK, D∗K or DK∗. The values for Rj can be obtained from
the measurement of the following branching fractions: BrC+T = Br(B+ → D̄(∗)0K(∗)+) ∝
|C + T |2, and BrC = Br(B0 → D̄(∗)0K(∗)0) ∝ |C|2.

If annihilation process is not neglected, the previous relation becomes more complicated:

rNEUT
j = Rj

1√
1 + x2 + 2xcosφAC̄

rCH
j

where x = |A|/|C̄| and cosφAC̄ is the strong phase between the color-suppressed and the
annihilation amplitudes in b → u processes. The term |A| is constrained by the measurement
of the branching fraction BrA = Br(B+ → D+K∗0). So far, only upper limits exist.

Using a bayesian toy Monte Carlo procedure, we have evaluated the ratios rNEUT , using
the branching fractions shown in Tab.2.1 and the values for rCH , obtained combining all the
available measurements presented at the winter conferences (see eq. 2.12).

System Br(B+ → D̄(∗)0K(∗)+) Br(B0 → D̄(∗)0K(∗)0) BrA = Br(B+ → D̄(∗)+K(∗)0)
DK (4.02 ± 0.33) × 10−4 (5.2 ± 0.7) × 10−5 < 5.0 × 10−6 @ 90% probability
D∗K (4.16 ± 0.33) × 10−4 (3.2 ± 1.2) × 10−5 < 9.0 × 10−6 @ 90% probability
DK∗ (5.3 ± 0.4) × 10−4 (4.2 ± 0.6) × 10−5 -

Table 2.1: Branching fractions (Br) for the b → c mediated processes used in the study, for
the B → DK, B → D∗K and B → DK∗ channels [8].

The study has been performed both assuming the annihilations to be negligible and using
for them the experimental information, when available. In the latter case, cos φAC̄ is assumed
to be flat within its full range. The results of the study are summarized in Tab. 2.2.

The evaluations we have shown make use of some SU(2) assumption and suffer from the
fact that we cannot determine the strong phases of the hadronic parameters, but are very
useful as first approximations. These results show that indeed the rNEUT

B ratios are expected
to be larger that the rCH

B ratios. This feature overcomes the fact that these decays are less
abundant, since it gives higher sensitivity to γ.

Of course, the final knowledge on the rB ratios has to be extracted form data.
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System R rCH
B rNEUT

B |A|=0 rNEUT
B |A| ∝

√
BrA

DK (2.8 ± 0.4) (0.10 ± 0.02) (0.25 ± 0.06) (0.23 ± 0.08)
D∗K (3.6 ± 1.4) (0.09 ± 0.04) (0.24 ± 0.13) (0.23 ± 0.14)
DK∗ (3.6 ± 0.6) (0.13 ± 0.09) (0.42 ± 0.21) -

Table 2.2: The first column gives the results for R =
√

BrT+C

BrC
. In the second column we recall

the values for rCH (2.12) as obtained from the combination of all the available measurements
presented at the 2008 winter conferences. In the third and fourth columns we give the result
for rNEUT in case |A|=0 and using for |A| the experimental measurements respectively.

2.5 Comparison between different methods

In this paragraph we perform a study to compare the expected relative errors obtained on
rB with the different analysis techniques, GLW, ADS and Dalitz. To do that, we use a toy
Monte Carlo bayesian procedure:

• a large number of experiments is generated, by extracting rB, γ and δ within their
definition ranges.

• For each extraction i, the values of the observables (Ri
CP±and Ai

CP± for the GLW
method, Ri

ADS for the ADS method, xi
± and yi

± for the Dalitz method) are calculated.

• To each extraction of (rB,γ,δ) is assigned a weight wi, depending on its agreement
with the measured values (for example, if RADS is measured and found to be Gaussian
RADS = µ ± σ, then the weight is wi = e−(Ri

ADS
−µ)2/σ2

). All the measurements are
assumed to be Gaussian in this study.

• The distribution of the values of the variables (rB,γ,δ), reweighted with wi for each
extraction, is normalized to unit area, resulting in the a-posteriori pdf for the given
variable.

• The error on rB is calculated from the interval obtained by integrating the pdf for rB,
starting from the most probable value, until we get the 68% of the total area.

For this study we assume fake central values for the observables, calculated assuming
rB = 0.1, γ = 60o and δB = 40o. The errors are taken from the latest BABAR results for the
B± → D0(D0)K±. In these measurements, the neutral D is reconstructed in π+π−, K+K−

(CP -even) and KSπ
0, KSω (CP -odd) for the GLW method on 363 fb−1; K±π∓ and K±π∓π0

for the ADS method with 210 fb−1; KSπ
+π− and KSK

+K− for the Dalitz method on 363
fb−1. The statistical errors are then rescaled to 450 fb−1 and 1 ab−1 assuming that they
scale as 1/

√
Lumi, while the systematic errors stay unchanged.

It is interesting to note that the ADS method gives the best determination of rB at low
statistics (300–400 fb−1). However the evolution of the relative error on rB from ADS tends
to saturate at about 30%. We recall here the definition of RADS :

RADS = r2
B + r2

D + 2rBrD cos γ cos δ = r2
B + r2

D + 2rBrDK (2.13)
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Figure 2.10: Expected relative errors on rB from different experimental measurement tech-
niques, assuming rB = 0.1.

where K = cos γ cos δ ∈ [−1, 1]. Solving the eq.2.13, the expression for rB (keeping only the
positive solution) is the following:

rB = −rDK +
√

r2
DK

2 − r2
D −RADS . (2.14)

It follows that the error on rB is:

σ(rB) = (rD +
2r2

DK

2
√

r2
DK

2 − r2
D −RADS

)σ(K) ⊕ σ(RADS)

2
√

r2
DK

2 − r2
D − RADS

(2.15)

which, neglecting the terms proportional to r2
D and assuming the average of K to be zero,

becomes:

σ(rB) = rDσ(K) ⊕ σ(RADS)

2
√

RADS − r2
D

. (2.16)

with the hypothesis that rD is known. This relation shows that, for very small σ(RADS), the
error on rB tends to an irreducible contribution from the term σlimit = rDσ(K). Considering
that K is flat distributed between -1 and 1, we have:

σlimit =
rD√

3
∼ [0.02, 0.04], (2.17)
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where the interval is due to different values of rD for the three D channels. It follows that,
for rB = 0.1, σlimit/rB ∼ 30%. The presence of this irreducible error is due to the fact
that we use only one observable, RADS , to determine three unknowns (rB, γ and δ). This
problem is not present for GLW and Dalitz methods. It is noteworthy that for higher values
of rB (rB = 0.3), as expected for neutral B decays (see sec. 2.4), the contribution of this
irreducible error would be less important. The comparison of the relative errors on rB from
GLW, ADS and Dalitz methods with a statistics of 10 ab−1 is summarized in Tab. 2.3, for
rB = 0.1 and rB = 0.3.

GLW ADS Dalitz
rB = 0.1 0.17 0.26 0.07
rB = 0.3 0.07 0.08 0.06

Table 2.3: Relative error on rB obtained with GLW, ADS and Dalitz method for fake mea-
surements using 10 ab−1, assuming rB = 0.1 and rB = 0.3.

For the extrapolation to rB = 0.3 configuration, we make the hypothesis that we have
the same number of b→ u events as in the case of rB = 0.1. Only statistical errors are taken
into account in this study.

It should be finally stressed that, for 10 ab−1, the Dalitz method would give an error of
4o on γ with a two-fold ambiguity (γ ↔ γ + π). With the same statistics, the GLW method
would allow for a determination of γ with 16o error and a four-fold ambiguity. The ADS
method, with RADS as only observable, cannot determine the angle γ.

2.6 Measuring γ using the B0 → D0(D0)K∗0 and B0 →
D0(D0)K∗0 decays

As we have seen, the neutral B → DK decays amplitudes proceed both through b → c and
b→ u transitions, and are sensitive to γ through their interference.

However, in the case of B0 decays, the phenomenon of B0 − B0 mixing has to be con-
sidered. If both B0 and B0 can decay to the same final state f , then it has to be taken into
account that f can be reached from an initial B0 state, by a b → c or b → u (technically,
here we should write, b̄ → c̄ and b̄ → ū, but we avoid doing that for simplicity and, by
b → u, we mean both b → u and b̄ → ū transitions) transition, but also from an initial B0

state that mixed, followed by a b→ c or b→ u transition of the B0 meson.
CP violation studies of these decays will give sensitivity to γ (the weak phase of V ∗

ub,
V ∗

ub = |Vub|eiγ) through the interference of the decay amplitudes and also to β (the weak
phase of Vtd, Vtd = |Vtd|eiβ) through the mixing process. These decays can be used to
measure the combination of weak phases 2β+ γ and, from the experimental point of view, a
tagging procedure of the neutral B meson flavor and a time-dependent analysis are necessary
to access this information.

The arising of a β phase and the need of a time-dependent analysis can be avoided if
the final states contain a particle which allows to unambiguously identify if a B0 or B̄0 has



38CHAPTER 2. MEASUREMENTS OF THE ANGLE γ OF THE UNITARITY TRIANGLE

decayed. This is the case of neutral B0 mesons decaying into D̄0K∗0[K+π−] final states
through the sign of the electric charge of the K.

The work presented in this thesis, performed in the spirit of continuing to investigate
several methods to constraint γ, consists of studying the decay modes B0 → D0(D0)K∗0

and B0 → D0(D0)K∗0, where the K∗0 is reconstructed into K+π− and the K∗0 into K−π+.
In this case, the presence of a K+ in the final state will tag the neutral B that decayed as a
B0 while the presence of a K− in the final state will tag the neutral B that decayed as a B0.

The two measurements here presented are:

• The Dalitz analysis, with neutral D reconstructed in the KSπ
+π− final state.

• The ADS analysis, with neutralD reconstructed in theK±π∓, K±π∓π0 andK±π∓π∓π±

final states.

Now that almost all the possible analyses have been performed with the charged B → DK
decays, the work presented here is a starting point for constraining γ from neutral B → DK
decays. One thing that has to be kept in mind about neutral B → DK decays is that, despite
the fact that the branching fraction are smaller than the ones for charged B → DK decays

(by a factor of approximately |C|2
|T |2 ), the rB ratio is expected to be larger (of the order ≈ 0.4

instead of ≈ 0.1, see eq. 2.3 and 2.4). This rB ratio has never been measured for any neutral
B → DK channel and BABAR , with low statistics, sets a limit on rB(D0K∗0) < 0.4 @ 90%
probability [73]. Depending on the value of rB, the measurement of γ using neutral decays
can be as precise (or better) than the one obtained from charged B decays. A large value of
rB in these decay modes can also be of interest for future experiments, as LHCb, since these
channels involve only charged particles in the final state.

2.6.1 Introducing k, δS and rS parameters

In contrast with B+ → D0(D0)K+, for B0 → D0K∗0 decays, the natural width of the K∗0

being not small (∼50 MeV), the interference with other B0 → D0(Kπ)0
non−K∗ processes may

not be negligible. This changes the relationships between the unitarity angle γ and the
experimental observables. We follow here the formalism and the idea suggested in [33]. The
amplitudes of the B0 → (D0X0

s )p and B0 → (D0X0
s )p processes, can be expressed as:

A(B0 → (D0X0
s )p) = Ac(p)e

iδc(p) (2.18)

A(B0 → (D0X0
s )p) = Au(p)e

iδu(p)e−iγ (2.19)

A(D0 → f) = Afe
iδf (2.20)

A(D0 → f̄) = Af̄e
iδf̄ , (2.21)

where Ac(p), Au(p), Af and Af̄ are real and positive, X0
s is a state with strangeness and p

indicates a point in the phase space of the final state D0X0
s (Ac, Au, δc and δu vary as a

function of p). The subscript c and u refer to the b→ c and b→ u transitions, respectively.
The amplitudes Ac(p)e

iδc(p) and Aupe
iδupe−iγ include both the resonant B0 → D0/D0K∗0

processes and the non-resonant contributions.
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The amplitude of the process B0 → D[→ f ]X0
s , where D indicates either a D0 or a D0

decaying to the final state f , can be written as

A(B0 → (D[→ f ]X0
s )p) = A(B0 → (D0X0

s )p)A(D0 → f) + A(B0 → (D0X0
s )p)A(D0 → f) =

Ac(p)Afe
i(δc(p)+δf ) + Au(p)Af̄e

i(δu(p)+δf̄−γ) . (2.22)

and the rate of the process B0 → D[→ f ]X0
s is

Γ(B0 → D[→ f ]X0
s ) =

∫

dp
(

A2
c(p)A

2
f + A2

u(p)A
2
f̄ + 2Ac(p)AfAu(p)Af̄Re(e

i(δ(p)+δD−γ))
)

,

(2.23)
where δ(p) = δu(p) − δc(p) and δD = δf̄ − δf . The rate for the charge-conjugated mode is
the one in Eq. (2.23) with γ → −γ.
From the expression for the amplitudes in 2.18 and 2.19, the partial rates Γ(B0 → D0X0

s )
and Γ(B0 → D0X0

s ) are

Γ(B0 → D0X0
s ) =

∫

dp |A2
c(p)| , (2.24)

Γ(B0 → D0X0
s ) =

∫

dp |A2
u(p)| . (2.25)

In case of a Dalitz analysis, the partial decay rate in eq. 2.11 becomes:

dΓ(B0 → D[→ f ]X0
s ) ∝ A2

f +

∫

dpA2
u(p)

∫

dpA2
c(p)

A2
f̄ + 2

∫

dpAc(p)Au(p)Re(e
i(δ(p)+δD−γ))

∫

dpA2
c(p)

AfAf̄ =

A2
f +

∫

dpA2
u(p)

∫

dpA2
c(p)

A2
f̄ + 2

√

√

√

√

∫

dpA2
u(p)

∫

dpA2
c(p)

∫

dpAc(p)Au(p)Re(e
i(δ(p)+δD−γ))

√

∫

dpA2
c(p)

∫

dpA2
u(p)

AfAf̄ ,

where p is the coordinate of the B Dalitz plane and the dependence of Af and Af̄ on the D
Dalitz plane point is not explicit (with respect to eq. 2.11, here Af ≡ A12,13 and Af̄ ≡ A13,12).

Following the same notation as in [33], we introduce the quantities rS, k and δS:

r2
S =

Γ(B0 → D0X0
S)

Γ(B0 → D0X0
S)

=

∫

dp |A2
u(p)|

∫

dp |A2
c(p)|

(2.26)

keiδS =

∫

dp Ac(p)Au(p)e
iδ(p)

√

∫

dp |A2
c(p)|

∫

dp |A2
u(p)|

, (2.27)

where 0 ≤ k ≤ 1 for the Schwartz inequality and δS ∈ [0, 2π]. The parameters k and rS

allow to write the observables for B → DK∗ channels in a functional form similar to the
two-body case, as it is shown below with two examples (the partial decay rate for a Dalitz
analysis and RADS).

Substituting the definitions in eq. 2.26 and eq. 2.27, the expression for the partial decay
rate is written:

dΓ(B0 → D[→ f ]X0
S) ∝ A2

f + r2
SA

2
f̄ + 2rSkRe

(

AfAf̄e
iδDeiδS+γ

)

. (2.28)
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In case of an ADS analysis, starting from the expression in eq. 2.7, RADS will be written
as follows (neglecting the small term x, as discussed in sec. 2.2.2):

RADS =
Γ(B+ → f̄K+) + Γ(B− → fK−)

Γ(B+ → fK+) + Γ(B− → f̄K−)
=

2
∫

dpA2
u(p)A

2
f + 2

∫

dpA2
c(p)A

2
f̄ + 4

∫

dpAc(p)Au(p)Reei(δ(p)+δD) cos γAfAf̄

2
∫

dpA2
c(p)A

2
f

=

∫

dpA2
u(p)

∫

dpA2
c(p)

+
A2

f̄

A2
f

+ 2

√

√

√

√

∫

dpA2
u(p)

∫

dpA2
c(p)

Af̄

Af

∫

dpAc(p)Au(p)Af̄Re(e
i(δ(p)+δD))

√

∫

dpA2
c(p)

∫

dpA2
u(p)

cos γ

which leads to:

RADS = r2
S + r2

D + 2krSrD cos(δS + δD) cos γ

In the limit of a B →2-body decay, such as B0 → DK̄0, we have:

rS → rB ≡ |A(B0 → D0K̄0)|
|A(B0 → D0K̄0)| ,

δS → δB ≡ strong phase of
A(B0 → D0K̄0)

A(B0 → D0K̄0)
,

k → 1 . (2.29)

Although we show here only two examples (the partial decay rate for a Dalitz analysis
and RADS), it is in general true that, in B → DK∗ decays, the observables for the GLW,
ADS and Dalitz method can be written in a functional form similar to the one used for the
two-body B → DK decay, provided that the change of variables r2

B → r2
S, δB → δS and

rB → rSk is performed. With respect to the two-body decay case, in presence of a K∗0

the parameter k, that accounts for possible contributions from other (Kπ)0
non−K∗ processes,

is an additional unknown of the system and should in principle be determined on data. In
order to avoid this additional unknown, a study has been performed to evaluate the possible
variations of k, as detailed in sec. 2.6.2.

2.6.2 Evaluation of k and rS in B0 → D0(D0)[K+π−] and B0 →
D0(D0)[K−π+] decays

To evaluate the expected values for the parameters rS and k we have built a hadronic model
for the B0 → D̄0K+π− decay. In fact we have seen in the previous section that these
parameters are the result of an effective parametrization of the variation of rB and of the
strong phases over the B Dalitz plane and can be obtained by integrating over some portion
of the B Dalitz plot, corresponding in our case to the K∗0 region.

Resonance contributions

We discuss now the hadronic model for the B0 → D̄0K+π− decay. Following the processes
explained in the previous paragraph, the Dalitz plot can be modelled in terms of the following
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resonances :

B → D̄0X X → K+π− X = (K∗(892), K∗
0(1430), K∗

2(1430), K∗(1680))(2.30)

B → K+Y Y → D̄0π− Y = (D∗
0(2308)0, D∗

2(2460)0)

B → π−Z Z → D̄0K+ Z = (Ds,2(2573)±)

The model assumed for the decay parametrises the amplitude A at each point k of the
Dalitz plot as a sum of two-body decay matrix elements and a non-resonant term according
to the following expression :

Ack(uk)e
iδck(uk) =

∑

j

aje
iδjBW j

k (m,Γ, s) + anre
iφnr (2.31)

where ck (uk) indicates the Cabibbo allowed (suppressed) decay in each point k of the Dalitz
plot. Each term of the sum is parametrized with an amplitude (aj or anr) and a phase
(δj or φnr). The factor BW j

k (mj,Γj, sj) is the Lorentz invariant expression for the matrix
element of a resonance j as a function of the position k in the B Dalitz plot; the functional
dependence varies with the spin sj of the resonance according to the isobar model [49]. The
total phase and amplitude are arbitrary. For building the decay model we used, whenever
available, experimental information. When this was missing, we made reasonable hypotheses,
as detailed in the following.

The branching fraction B0 → D̄0K∗0 has been measured [8]:

Br(B̄0 → D̄0K∗0) × Br(K∗0 → K+π−) = (2.3 ± 0.3) × 10−5. (2.32)

The contribution from higher K∗∗ resonances can be evaluated by using measurements per-
formed in the B0 sector with a final states containing a D− meson ([50, 51]) :

B0 → D−K∗+(892)(KSπ
+)

B0 → D−KSπ+
= 0.66 ± 0.08 (2.33)

The use of this information is rather clean, since the processes which are contributing to the
production ofD−Ksπ

+ final states are largely dominated by the two body intermediate states
containing K∗0 and higher K∗∗ resonances [52]. We make a SU(2) hypothesis, assuming that
this relative contribution is not affected when exchanging D− → D0 and K∗+ → K∗0.

A measurement is also available to partially define the D∗∗ part of the Dalitz plot [8]:

Br(B0 → D∗∗−
J=2K

+) × Br(D∗∗−
J=2 → D̄0π−) = (1.8 ± 0.4 ± 0.3) × 10−5 (2.34)

The measurement on the D∗∗ production from the above branching fractions involves only
diagrams at the tree level (T). Nevertheless, only 2+ final states have been measured so far.
We can make the hypothesis that the 0+ states decaying into Dπ modes are as abundant
as the 2+ states. The measurements presented so far are relative to b → c transitions, to
account for b → u transition some hypothesis has to be made. For the nominal model the
ratio between the b→ u and the b→ c amplitudes in case of K∗0 and excited K mesons has
been taken to be equal to 0.4. The phases have been taken arbitrarily.

The results are summarized in Tab. 2.4 and a corresponding Dalitz plot (with all the
strong phases set to zero) is shown in Fig.2.11 for illustration.
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Figure 2.11: Dalitz plot for B0 → D̄0K+π− using the values of the amplitudes given in Tab.
2.4. All strong phases have been all set to zero.

Mass(GeV/c2) Width(GeV/c2) JP a(b→ c) a(b→ u)
Ds,2(2573)± 2.572 0.015 2+ - 0.02
D∗

2(2460)± 2.459 0.029 2+ 1.0 -
D∗

0(2308)± 2.403 0.283 0+ 1.0 -
D∗

0(2010)± 2.0100 0.000096 1− not included -
K∗(892)0 0.89610 0.0507 1− 1.0 0.4
K∗

0(1430)0 1.412 0.294 0+ 0.3 0.12
K∗

2(1430)0 1.4324 0.109 2+ 0.15 0.06
K∗(1680)0 1.717 0.322 1− 0.2 0.08
Non resonant - - - not included not included

Table 2.4: List of mass, widths and quantum numbers of the resonances considered in our
model. The last two columns present the chosen values of the coefficients aj in Eq. 2.31 for
the b → c and b → u transitions respectively. Note that the phase δj are not indicated and
their choice is arbitrary, since no experimental information is available. Fig. 2.11 corresponds
to a Dalitz model obtained with the amplitudes given here and all the strong phases set to
zero.
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Figure 2.12: Pollution of non-K∗0 events in the K∗0 mass region (±50 MeV around its
nominal mass), as defined in eq. 2.35,. The distribution is obtained by randomly varying all
the strong phases and the amplitudes within ± 30% the nominal values given in Tab. 2.4.

Numerical analysis

To give an idea of the overlap of the different resonances in Fig. 2.12 we show the pollution
of non-K∗0(892) events in the mass region defined within ±50 MeV/c2 around its nominal
mass. The pollution has been defined as the ratio of the integrals, in the K∗0 mass region,
of the K∗0 amplitudes (Vub and Vcb) over the total.

pollution =

∫

dp |Ap(K
∗)|2

∫

dp |Ap(total)|2
(2.35)

The distribution shown in Fig. 2.12 has been obtained by randomly varying all the strong
phases (between [0-2π]) and amplitudes (between [0.7-1.3] of their nominal value given in
Tab. 2.4). It can be noticed that the pollution of non-K∗ events in the K∗ mass region can
be quite important and up to 40%. Finally, in Fig. 2.13 we show the variation of rB along
the Dalitz plot.

We have seen in the previous section that following the the formalism and the ideas
suggested in [33] we can integrate over some portion of the B Dalitz plot and to use an
effective parametrization of the variation of rB and of the strong phases, resulting in the
introduction of three new variables rS, δS and k.

In the following we caracterize the B Dalitz plot in terms of the parameters k and rs of
the new parametrization.

We first consider a region within ±50 MeV/c2 of the nominal mass of the K∗0(892)
resonance. In Fig. 2.14 we show the distribution of rS, k and krS obtained by randomly
varying all the strong phases between 0 and 2π and the amplitudes between 0.7 and 1.3 of
their nominal value. The amplitudes for Ds,2(2573)± are varied between 0 and twice their
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Figure 2.13: Variation of rS along the Dalitz plot (plots on the left side). If the value of rB

is found to be larger than unity it is not displayed in the same plot but in a separate one
(plots on the right side) as 1/rB. All the plots have been obtained with the amplitudes set
to the nominal values of Table 2.4. For the plots on the top row all strong phases have been
set to zero. For the plots on the bottom row a random set of strong phases has been taken.
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Figure 2.14: Distribution of rS, k and krS in a region within ± 50 MeV the nominal mass
of the K∗0(892) resonance (mKπ in the range [0.7159, 0.8951] GeV2/c4). These distributions
have been obtained by randomly varying all the strong phases between 0 and 2π, the am-
plitudes between 0.7 and 1.3 of their nominal value. The relative b→ u contribution for K∗

has been fixed to 0.4 and he b → u amplitude of the Ds,2(2573)± has been varied between 0
and twice its nominal value. The nominal model is given in Tab. 2.4).

nominal value. The b → u contribution of K∗0 has been fixed to 0.4. From these plots
we can notice that, in K∗0(892) mass region, rS can vary between 0.3 and 0.45 depending
upon the values of the phases and of the amplitudes contributing in the K∗0 region. In the
absence of pollution we would have expected rS = rB = 0.4. The distribution of k is quite
narrow and the possible values are lower than unity (k < 1 by definition) by no more than
10%. We expect that, in the majority of the cases, the sensitivity (see the distribution of
krS) of the analysis is reduced due to the presence of other resonances in the K∗ region.
However it should be noted that the reduction of the sensitivity is not dramatic. Because
the distribution of k is rather peaked, the value of k can be assumed as a fixed value and
varied in the systematics. This is important since, for example for the Dalitz analysis, where
rS is fitted on data, it reduces the number of free parameters in the final fit.

For the sake of completeness (not used for the analyses presented in this thesis), we repeat
the same exercise in two different regions of the Dalitz plot. The corresponding distributions
of rS, k and krS are shown in Fig. 2.15. The distributions of rS and k are quite broad and
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Figure 2.15: Distributions of rs, k and krS in two different regions of the Dalitz plot. Left:
within ± 80 MeV the nominal mass of the K∗

0 (1430) resonance (m2
Kπ in the range [1.8290,

2.2873] GeV2/c4. Right: in the region of m2
Kπ in the range [2.3, 3.5] GeV2/c4, this region is

centered around the nominal K∗(1680)0 mass.

they translate in a broad distribution for krs with a central value centered around 0.1. The
sensitivity to γ is thus much reduced and it is strongly dependent upon the values of the
amplitudes and of the strong phases which compose the Dalitz plot.

From these studies we conclude that only the region around the K∗0 is interesting to
measure the angle γ using a portion of the Dalitz space. To efficiently use the signal events
in the other regions a complete Dalitz analysis (fitting the amplitudes and the strong phases)
has to be performed.



Chapter 3

The BABAR Experiment

The BABAR experiment, located at the Stanford Linear Accelerator Center (SLAC) in Cali-
fornia, has been optimized for the systematic study of CP violation in the B meson system.
It involves a large international collaboration of more than 500 physicists. The experiment
consists of a detector [35] built around the interactionregion of the high luminosity e+e−

asymmetric collider PEP-II [36]. The geometry of the detector as well as the technical
requirements of the main components have been designed in order to obtain the cleanest
environment and the best efficiency to reconstruct the B meson decays.

In this chapter we describe the main features and performances of PEP-II and the
BABAR detector.

3.1 The PEP-II accelerator

The PEP-II B-Factory is an asymmetric-energy e+e− collider designed to operate at a center
of mass energy of ECM = 10.58 GeV, corresponding to the mass of the Υ(4S) vector meson
resonance. The Υ(4S) has a mass slightly above the BB̄ threshold, and thus it decays almost
exclusively into BB0 or B+B− pairs.

If the Υ is produced at rest, then the B mesons would have an average residual momentum

of the order of
√

(MΥ(4S)/2)2 −M2
B ∼ 325 MeV/c 1. With this momentum, the average

distance covered by a B meson would be of the order of 2 βγcτB ∼ 30µm and it would be
experimentally very difficult to measure the separation between the decay points of the two
B mesons.

The PEP-II machine collides a 9.0 GeV electron beam head-on with a 3.1 GeV positron
beam, in this way the Lorentz boost of the Υ(4S) is βγ =

E
e−

−E
e+

ECM
∼ 0.56, resulting in an

average separation between the two B meson of the order of 250 µm, compatible with the
BABAR vertex resolution, as it will be shown in the following.

An overview of the accelerator is shown in Fig. 3.1.
Electrons and positrons are accelerated in the 3.2 km long SLAC linac and accumulated

into two 2.2 km long storage rings, called HER (high-energy ring, in which the electrons cir-

1We use MΥ(4S) =10.58 GeV/c2 and MB = 5.28 GeV/c2.
2The factor βγ arising from a momentum of the B of 325 MeV/c is βγ ∼ 0.061 and the B meson lifetime

is τB = (1.530± 0.009)× 10−12s[8].

47



48 CHAPTER 3. THE BABAR EXPERIMENT

Figure 3.1: Overview of the PEP-II B-Factory.

culate) and LER (low-energy ring, in which the positrons, produced in the linac by collisions
of 30 GeV electrons on a target, circulate).

In proximity of the interaction region the beams are focused by a series of offset quadrupoles
(labelled Qx) and bent by means of a pair of dipole magnets, which allow the bunches to
collide head-on and then to separate. The tapered B1 dipoles, located at ± 21 cm on either
side of the interaction point (IP), and the Q1 quadrupoles operate inside the field of the
BABAR superconducting solenoid, while Q2, Q4, and Q5, are located outside or in the fringe
field of the solenoid (Fig. 3.3). The interaction region is enclosed in a water-cooled beam
pipe consisting of two thin layers of beryllium with a water channel in between. Its outer
radius is about 28 mm. The total thickness of the central beam pipe section at normal
incidence corresponds to 1.06 % of a radiation length.

The beam pipe, the permanent magnets and the Silicon Vertex Tracker (SVT) are as-
sembled, aligned and then enclosed in a 4.5 m long support tube. This rigid structure is
inserted into the BABAR detector, spanning the IP.

The BABAR data taking, started with the first collissions in PEP-II at the end of 1999
and ended in the first days of April 2008. BABAR has recorded an integrated luminosity of
about 531 fb−1, including about 54 fb−1 just below the Υ(4S) resonance, 433 fb−1 recorded
at the Υ(4S) and 44 fb−1 at other Υ resonances. The BABAR recorded luminosity until the
end of data taking is shown in Fig. 3.2.

PEP-II surpassed its design performances, both in terms of the instantaneous lumi-
nosity and the daily integrated luminosity (see Tab. 3.1), achieving the peak value of
1.2 × 1034 cm−2 s−1 during Run 6. A significant improvement to the integrated luminosity
has been achieved between December 2003 and March 2004 with the implementation of a
novel mode of operation of PEP-II, called “trickle injection”. Until the end of 2003, PEP-II
typically operated in a series of 40-minute fills during which the colliding beams coasted:
at the end of each fill, it took about three to five minutes to replenish the beams for the
next fill, and during this period the BABAR data acquisition system had to be turned off for
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Figure 3.2: PEP-II delivered and BABAR recorded integrated luminosity in Run 1 to Run
7 (from October 1999 to April 2008).

Parameters Design 2007
Energy HER/LER (GeV) 9.0/3.1 9.0/3.1
Current HER/LER (A) 0.75/2.15 1.9/2.9
# of bunches 1658 1722
Bunch length (mm) 15 11–12
Luminosity (1033cm2/s) 3 12
Integrated luminosity (pb−1/day) 135 911

Table 3.1: PEP beam parameters. Values are given both for the design and for the records
achieved during 2007.

detector safety. With the new technique, the BABAR detector can keep taking data virtually
uninterrupted while the linac continuously injects electron and positron bunches (at a rate
up to 10 Hz in the HER and 20Hz in the LER) into the two PEP-II storage rings. This novel
mode of operation allows an increase of 20 to 30% of the integrated luminosity. Moreover,
the continuous injection makes the storage of particles more stable, so that PEP-II rings
are easier to operate and beam losses are far less frequent than with the previous opera-
tional mode. This result is very important since, after a loss of the stored beams, it takes
approximately 15 minutes to refill the two beams during which obviously no data taking is
allowed.
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3.2 The BABAR detector

The design of the BABAR detector is optimized for CP violation studies, but it is also well
suited to do precision measurements in other B and non B physics. To achieve the goal of
performing accurate measurements there are many requirements:

• a large and uniform acceptance, in particular down to small polar angles relative to
the boost direction, to avoid particle losses. Although the boost originated by the
asymmetric beams is not a big one, optimizing the detector acceptance leads to an
asymmetric detector;

• a good vertex resolution;

• an excellent detection efficiency and an excellent precision on the momentum measure-
ment for charged particles with transverse momentum ranging between 60 MeV/c and
4 GeV/c;

• an excellent energy and angular resolution for photons and π0 s with energy down to
20 MeV and up to 5 GeV;

• a good discrimination between e, µ, π,K, p over a wide kinematic range;

• neutral hadrons identification capability.

Since the average momentum of charged particles produced in B meson decays is below
1 GeV/c, the errors on the measured track parameters are dominated by multiple Coulomb
scattering, rather than intrinsic spatial resolution of the detectors. Similarly, the detection
efficiency and energy resolution of low energy photons are severely impacted by material
in front of the calorimeter. Thus, special care has been given to keep the material in the
active volume of the detector to a minimum. A schematic view of the BABAR detector is
shown in Fig. 3.3. The BABAR superconducting solenoid, which produces a 1.5 T axial
magnetic field, contains a set of nested detectors, which are – going from inside to outside
– a five layers Silicon Vertex Tracker (SVT), a central Drift Chamber (DCH) for charged
particles detection and momentum measurement, a fused-silica Cherenkov radiation detector
(DIRC) for particle identification, and a CsI(Tl) crystal electromagnetic calorimeter for
detection of photons and electrons. The calorimeter has a barrel and an end-cap which
extends asymmetrically into the forward direction (e− beam direction), where many of the
collision products emerge. All the detectors located inside the magnet have practically full
acceptance in azimuth (φ). The flux return outside the cryostat is composed of 18 layers of
steel, which increase in thickness outwards, and are instrumented (the IFR) with 19 layers of
planar resistive plate chambers (RPCs) or limited streamer tubes (LSTs) in the barrel and
18 in the end-caps. The IFR allows the muon identification, and also detects penetrating
neutral hadrons. The right-handed coordinate system is indicated in Fig. 3.3. The z axis
corresponds to the magnetic field axis and is offset relative to the beam axis by about 20
mrad in the horizontal plane. It is oriented in the direction of electrons. The positive y-axis
points upward and the positive x-axis points away from the center of the PEP-II storage
rings. A schematic view of the interaction region is shown in Fig. 3.4.

The next sections are dedicated to a description of each subsystem.
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Figure 3.3: BABAR detector front view (top) and side view (bottom).
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Figure 3.4: Transverse view of the interaction region.

3.2.1 The Silicon Vertex Tracker

The Silicon Vertex Tracker (SVT) provides a precise measurement of the decay vertices and
of the charged particle trajectories near the interaction region. The mean vertex resolution
along the z-axis for a fully reconstructed B decay must be better than 80 µm in order to
avoid a significant impact on the time-dependent CP asymmetry measurement precision;
a 100µm resolution in the x − y transverse plane is necessary in reconstructing decays of
bottom and charm mesons, as well as τ leptons. The SVT also provides standalone tracking
for particles with transverse momentum too low to reach the drift chamber, like soft pions
fromD∗ decays and many charged particles produced in multi-body B meson decays. Finally,
the SVT supplies particle identification (PID) information both for low and high momentum
tracks. For low momentum tracks the SVT dE/dx measurement is the only PID information
available, for high momentum tracks the SVT provides the best measurement of the track
angles, required to achieve the design resolution on the Cherenkov angle measured by the
DIRC.

The design of the SVT is constrained by the components of the storage ring which have
been arranged so as to allow maximum SVT coverage in the forward direction: the SVT
extends down to 20◦ (30◦) in polar angle from the beam line in the forward (backward)
direction. Furthermore, it must have a small amount of material, so to reduce the multiple
scattering which would affect the performance of the outer subdetectors. The solution which
was adopted is a five-layer device with 340 double-sided silicon wafers mounted on a carbon-
fiber frame (see Fig. 3.5). On the inner (outer) face of each wafer, strip sensors are located
running orthogonal (parallel) to the beam direction, measuring the z (φ) coordinate of the
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tracks. The wafers are organized in modules split into forward and backward sections: they
are read out on their respective ends and the charge deposited by a particle is determined by
the time over threshold of the signal on each strip. In total, 150,000 read-out channels are
present. The inner three layers, containing six modules each, are placed close to the beam
pipe (at 3.3, 4 and 5.9 cm from it) and dominate the determination of tracks position and
angles. The outer two layers, containing 16 and 18 modules respectively, are arch-shaped,
thus minimizing the amount of silicon needed to cover the solid angle, and placed close to
the DCH (between 9.1 and 14.6 cm from the beam pipe) to help the track matching between
the two detectors.

Beam Pipe 27.8mm radius

Layer 5a

Layer 5b

Layer 4b

Layer 4a

Layer 3

Layer 2

Layer 1

580 mm

350 mrad520 mrad

ee +-

Beam Pipe

Space Frame 

Fwd. support
        cone

Bkwd.
support
cone

Front end 
electronics

Figure 3.5: Schematic view of the SVT, transverse section (upper plot) and longitudinal
section (bottom plot).

The total active silicon area is 0.96 m2 and the geometrical acceptance is 90% of the solid
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angle in the center-of-mass frame. The material traversed by particles corresponds to ∼ 4%
of a radiation length.

The SVT efficiency is calculated for each section of the modules by comparing the number
of associated hits to the number of tracks crossing the active area of the module and is found
to be 97%. The spatial resolution of SVT hits is determined by measuring the distance
between the track trajectory and the hit for high-momentum tracks in two-prong events: it is
generally better than 40µm in all layers for all track angles, allowing a precise determination
of decay vertices to better than 70µm (see Fig. 3.6).
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Figure 3.6: SVT resolution (layer 1) on the single hit, as a function of the track angle.

The SVT provides stand-alone tracking for low momentum particles that do not reach the
drift chamber, with an efficiency estimated to be 20% for particles with transverse momenta
of 50 MeV/c, rapidly increasing to over 80% at 70 MeV/c. Limited particle ID information
for low momentum particles that do not reach the drift chamber and the Cherenkov detector
is provided by the SVT through the measurement of the specific ionization loss, dE/dx, as
derived from the total charge deposited in each silicon layer (see sec. 4.3).

3.2.2 The Drift Chamber

The Drift Chamber (DCH) is the main tracking device for charged particles with transverse
momenta pT above ∼ 120 MeV/c, providing the measurement of pT from the curvature of
the particle’s trajectory inside the 1.5 T solenoidal magnetic field. The DCH also allows
the reconstruction of secondary vertices located outside the silicon detector volume, such
as those from KS → π+π− decays. For this purpose, the chamber is able to measure not
only the transverse coordinate, but also the longitudinal (z) position of tracks with good
resolution (about 1 mm). Good z resolution also aids in matching DCH and SVT tracks,
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and in projecting tracks to the DIRC and the calorimeter. For low momentum particles
the DCH provides particle identification by measurement of ionization loss (dE/dx), thus
allowing for K/π separation up to ≈ 600 MeV/c. This capability is complementary to that
of the DIRC in the barrel region, while it is the only mean to discriminate between different
particle hypotheses in the extreme backward and forward directions which fall outside of the
geometric acceptance of the DIRC. Finally, the DCH provides real-time information used
in the first level trigger system. The DCH is a 2.80 m long cylinder with an inner radius
of 23.6 cm and an outer radius of 80.9 cm (Fig. 3.7). Given the asymmetry of the beam
energies, the DCH center is displaced by about 37 cm with respect to the interaction point
in the forward direction. The active volume provides charged particle tracking over the polar
angle range −0.92 < cos θ < 0.96.
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Figure 3.7: Schematic view of the DCH (longitudinal section).

The drift system consists of 7104 hexagonal cells, approximately 1.8 cm wide by 1.2 cm
high, arranged in 10 superlayers of 4 layers each, for a total of 40 concentric layers (Fig. 3.8).
Each cell consists of one sense wire surrounded by six field wires. The sense wires are 20 µm
Rh-W gold-plated wires operating nominally in the range 1900-1960 V;

the field wires are 120 µm Al wires operating at 340 V. Within a given superlayer, the
sense and field wires are organized with the same orientation. For measuring also the z
coordinate, the superlayers alternate in orientation: first an axial view, then a pair of small
angle stereo views (one with positive, one with negative angle), as indicated in Fig. 3.8.

The layers are housed between a 1 mm beryllium inner wall and a 9 mm carbonfiber outer
wall (corresponding to 0.28% and 1.5% radiation lengths, respectively) both to facilitate the
matching between the SVT and DCH tracks and to minimize the amount of material in front
of the DIRC and the calorimeter. The counting gas is a 80:20 mixture of helium: isobutane,
which again satisfies the requirement of keeping the multiple scattering at minimum. Overall,
the multiple scattering inside the DCH is limited by less than 0.2% radiation lengths of
material.

The drift chamber reconstruction efficiency has been measured on data in selected samples
of multi-track events by exploiting the fact that tracks can be reconstructed independently
in the SVT and the DCH. The absolute drift chamber tracking efficiency is determined as
the fraction of all tracks detected in the SVT which are also reconstructed by the DCH when
they fall within its acceptance. Its dependency on the transverse momentum and polar angle
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Figure 3.8: Schematic layout of the drift cells for the four innermost superlayers. The
numbers on the right side give the stereo angles (mrad) of sense wires in each layer.

is shown in Fig. 3.9 [35]. At the design voltage of 1960V the reconstruction efficiency of the
drift chamber averages 98 ± 1% for tracks above 200 MeV/c and polar angle θ > 500 mrad
(29◦).

The pT resolution is measured as a function of pT in cosmic ray studies:

σpT

pT
= (0.13 ± 0.01)% · pT + (0.45 ± 0.03)%, (3.1)

where pT is expressed in GeV/c. The first contribution, dominating at high pT , comes from
the curvature error due to finite spatial measurement resolution; the second contribution,
dominating at low momenta, is due to multiple Coulomb scattering. The specific ionization
loss dE/dx for charged particles traversing the drift chamber is derived from the total charge
deposited in each drift cell. The resolution achieved to date is typically about 7.5% (as shown
in Fig. 3.10 for e± from Bhabha scattering). A 3σ separation between kaons and pions can
be achieved up to momenta of about 700 MeV/c [44].
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Figure 3.9: Track reconstruction efficiency in the drift chamber at operating voltages of 1900
V and 1960 V, as a function of transverse momentum (a) and polar angle (b).
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3.2.3 The Cherenkov detector

The particle identification (PID) at low momenta exploits primarily the dE/dxmeasurements
in the DCH and SVT. However, above the threshold of 700 MeV/c, the dE/dx information
does not allow to separate pions and kaons. The Detector of Internally Reflected Cherenkov
radiation (DIRC) is employed primarily for the separation of pions and kaons from about 500
MeV/c to the kinematic limit of 4 GeV/c reached in rare B decays like B → π+π−/K+K−.
The principle of the DIRC is based on the detection of Cherenkov light generated by a
charged particle in a medium of refractive index n, when its velocity v is greater than c/n.
The photons are emitted on a cone of half-angle θc with respect to the particle direction,
where cosθc = 1/βn, β = v/c. Knowing the particle momentum thanks to the SVT and the
DCH, the measurement of θc allows the mass measurement, so the particle identification,
with the relation:

m2c2 =
1 − β2

β2
p2 (3.2)

Fig. 3.11 illustrates the principles of light production, transport, and imaging.
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Figure 3.11: Schematics of the DIRC fused silica radiator bar and imaging region.

The radiator material of the DIRC is synthetic fused silica (refraction index n = 1.473)
in the form of 144 long, thin bars with regular rectangular cross section. The bars, which are
17 mm thick, 35 mm wide and 4.9 m long, are arranged in a 12-sided polygonal barrel, each
side being composed of 12 adjacent bars placed into sealed containers called bar boxes. Dry
nitrogen gas flows through each bar box, and humidity levels are measured to monitor that
the bar box to water interface remains sealed. The solid angle subtended by the radiator
bars corresponds to 94% of the azimuth and 83% of the cosine of the polar angle in the
center-of-mass system. The bars serve both as radiators and as light pipes for the portion of
the light trapped in the radiator by total internal reflection. For particles with β ≈ 1, some
photons will always lie within the total internal reflection limit, and will be transported to
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either one or both ends of the bar, depending on the particle incident angle. To avoid having
to instrument both bar ends with photon detectors, a mirror is placed at the forward end,
perpendicular to the bar axis, to reflect incident photons to the backward (instrumented)
bar end.

Once photons arrive at the instrumented end, most of them emerge into an expansion
region filled with 6000 litres of purified water (n = 1.346), called the stand-off box (see Fig.
3.12). A fused silica wedge at the exit of the bar reflects photons at large angles and thereby
reduces the size of the required detection surface. The photons are detected by an array of
densely packed photo-multiplier tubes (PMTs), each surrounded by reflecting “light catcher”
cones to capture light which would otherwise miss the PMT active area. The PMTs, arranged
in 12 sectors of 896 phototubes each, have a diameter of 29 mm and are placed at a distance
of about 1.2 m from the bar end. The expected Cherenkov light pattern at this surface
is essentially a conic section, whose cone opening-angle is the Cherenkov production angle
modified by refraction at the exit from the fused silica window. By knowing the location
of the PMT that observes a Cherenkov photon and the charged particle direction from the
tracking system, the Cherenkov angle can be determined. In addition, the time taken for the
photon to travel from its point of origin to the PMT is used to effectively suppress hits from
beam-generated background and from other tracks in the same event, and also to resolve
some ambiguities in the association between the PMT hits and the track (for instance, the
forward-backward ambiguity between photons that have or haven’t been reflected by the
mirror at the forward end of the bars).

~2 m

~5 m

Quartz Bar Sector

Plane Mirror (12)

Hinged Cover (12)

PMT Module 

Standoff Cone

Figure 3.12: Schematic view of the DIRC.

The relevant observable to distinguish between signal and background photons is the
difference between the measured and expected photon time, δtγ . It is calculated for each
photon using the track time-of-flight, the measured time of the candidate signal in the PMT
and the photon propagation time within the bar and the water filled standoff box. The
resolution on this quantity, as measured in dimuon events is 1.7 ns, close to the intrinsic 1.5
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ns transit time spread of the photoelectrons in the PMTs. Applying the time information
substantially improves the correct matching of photons with tracks and reduces the number
of accelerator induced background hits by approximately a factor 40, as can be seen in
Fig. 3.13 [46]. The reconstruction routine provides a likelihood value for each of the five
stable particle types (e, µ, π, K, p) if the track passes through the active volume of the
DIRC. These likelihoods are calculated in an iterative process by maximising the likelihood
value for the entire event while testing different hypotheses for each track. If enough photons
are found, a fit of θc and the number of observed signal and background photons are calculated
for each track.

Figure 3.13: Display of one e+e− → µ+µ− event reconstructed in BABAR with two different
time cuts. On the left, all DIRC PMTs that were hit within the ±300 ns trigger window are
shown. On the right, only those PMTs that were hit within 8 ns of the expected Cherenkov
photon arrival time are displayed.

The DIRC uses two independent approaches for a calibration of the unknown PMT time
response and the delays introduced by the electronic and the fast control system. The first
one is a conventional pulser calibration: 1 ns duration light pulses are emitted from 12 blue
LEDs (one per sector), with a rate of 2 kHz. A calibration run requires a few minutes and
is taken about three times a week. The second calibration system uses reconstructed tracks
from the collision data (“rolling calibration”). It performs a calibration of the global time
delay, and the time delay sector by sector.

Fig. 3.14 shows the number of photons detected as a function of the polar angle in di-
muons events. It increases from a minimum of about 20 at the center of the barrel (θ ≈ 90◦) to
well over 50 in the forward and backward directions, corresponding to the fact that the path-
length in the radiator is longer for tracks emitted at large dip angles (therefore the number of
Cherenkov photons produced in the bars is greater) and the fraction of photons trapped by
total internal reflection rises. This feature is very useful in the BABAR environment, where,
due to the boost of the center-of-mass, particles are emitted preferentially in the forward
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Figure 3.14: Number of detected photoelectrons versus track polar angle for reconstructed
di-muon events in data and simulation.

direction. The bump at cos θ = 0 is a result of the fact that for tracks at small angles internal
reflection of the Cherenkov photons occurs in both the forward and backward direction. The
small decrease of the number of photons from the backward direction to the forward one
is a consequence of the photon absorption along the bar before reaching the stand-off box
in the backward end. The combination of the single photon Cherenkov angle resolution,
the distribution of the number of detected photons versus polar angle and the polar angle
distribution of charged tracks yields a typical track Cherenkov angle resolution which is
about 2.5 mrad in di-muon events.

The pion-kaon separation power is defined as the difference of the mean Cherenkov angles
for pions and kaons assuming a Gaussian-like distribution, divided by the measured track
Cherenkov angle resolution. As shown in Fig. 3.15, left, the separation between kaons and
pions at 3 GeV/c is about 4.3 σ. The efficiency for correctly identifying a charged kaon hitting
a radiator bar and the probability of wrongly identifying a pion as a kaon are determined
using D0 decays kinematically selected from inclusive D∗ meson production (Fig. 3.15): the
kaon identification efficiency and pion mis-identification probability are about 96% and 2%,
respectively.

3.2.4 The Electromagnetic Calorimeter

The BABAR electromagnetic calorimeter (EMC) is designed to detect and measure electro-
magnetic showers with high efficiency and very good energy and angular resolution over a
wide energy range between 20 MeV and 9 GeV. This allows the reconstruction of π0 → γγ
and η → γγ decays where the photons can have very low energy, as well as the reconstruction
of Bhabha events and processes like e+e− → γγ, important for luminosity monitoring and
calibration, where the electron and photon energies can be as large as 9 GeV. The EMC also
provides the primary information for electron identification and electron-hadron separation.
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Figure 3.15: Left plot: average difference between the expected value of θC for kaons and
pions, divided by the uncertainty, as a function of momentum. Right plot: efficiency and
misidentification probability for the selection of charged kaons as a function of track momen-
tum.

Energy deposit clusters in the EMC with lateral shape consistent with the expected pat-
tern from an electromagnetic shower are identified as photons when they are not associated
to any charged tracks extrapolated from the SVT and the drift chamber, and as electrons if
they are matched to a charged track and if the ratio between the energy E measured in the
EMC and the momentum p measured by the tracking system is E/p ≈ 1.

The EMC contains 6580 CsI crystals doped with Tl (Fig. 3.16). CsI(Tl) has a high light
yield (50,000 photons/ MeV) and a small Molière radius (3.8 cm), which provide the required
energy and angular resolution; its radiation length of 1.86 cm guarantees complete shower
containment at the BABAR energies.
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Figure 3.16: Longitudinal section of the top half of the EMC. Dimensions are in mm.

Each crystal is a truncated trapezoidal pyramid and ranges from 16 to 17.5 radiation
lengths in thickness. The front faces are typically about 5 cm in each dimension. The crystals
are arranged to form a barrel and a forward endcap giving a 90% solid-angle coverage in
the center-of-mass frame. The barrel has 48 rows of crystals in θ and 120 in φ; the forward
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endcap contains 8 rings in θ. Overall the EMC extends from an inner radius of 91 cm to an
outer radius of 136 cm and is displaced asymmetrically with respect to the interaction point.

The crystals are read out by two independent 1 cm2 PIN photodiodes, glued to their
rear faces, which are connected to low-noise preamplifiers that shape the signal with a short
shaping time (400 ns) so to reduce soft beam-related photon backgrounds.

For the purpose of precise calibration and monitoring, use is made of a neutron activated
fluorocarbon fluid, which produces a radioactive source (16N) originating a 6.1 MeV photon
peak in each crystal. A light pulser system injecting light into the rear of each crystal is
also used. In addition, signals from data, including π0 decays and e+e− → e+e−/γγ/µ+µ−

events, provide an energy calibration and resolution determination.
The efficiency of the EMC exceeds 96% for the detection of photons with energy above

20 MeV. The energy resolution is usually parameterized by

σE

E
=

σ1

E1/4( GeV)
⊕ σ2, (3.3)

where σ1 = 2.32 ± 0.30% and σ2 = 1.85 ± 0.12%, as determined using the above mentioned
sources. The first term in Eq. 3.3 arises from fluctuations in photon statistics and is dominant
for energies below about 2.5 GeV, while the constant term takes into account several effects,
such as fluctuations in shower containment, non-uniformities, calibration uncertainties and
electronic noise.
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Figure 3.17: Energy (left) and angular (right) resolutions measured using a variety of data.
The solid curves represent a fit to the data using Equation 3.3 and 3.4 respectively.

The decays of π0 and η candidates in which the two photons have approximately equal
energy are used to infer angular resolution. It varies between about 12 mrad at low energies
and 3 mrad at high energy. The data fit the empirical parameterization:

σθ,φ =





(3.87 ± 0.07)
√

E( GeV)
+ (0.00 ± 0.04)



mrad (3.4)
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Fig. 3.17 [47] shows the energy and angular resolution measured as a function of the photon
energy.

3.2.5 The Instrumented Flux Return

The Instrumented Flux Return (IFR) is designed to identify muons and neutral hadrons
(primarily KL and neutrons). Muons are important for tagging the flavor of neutral B
mesons via semi-leptonic decays, for the reconstruction of vector mesons, like the J/ψ, and
the study of semi-leptonic and rare decays involving leptons from B and D mesons and τ
leptons. KL detection allows for the study of exclusive B decays, in particular CP eigenstates.
The principal requirements for IFR are large solid angle coverage, good efficiency and high
background rejection for muons down to momenta below 1 GeV/c. For neutral hadrons, high
efficiency and good angular resolution are most important. The IFR uses the steel flux return
of the magnet as muon filter and hadron absorber, limiting pion contamination in the muon
identification. Originally single gap resistive plate chambers (RPC) with two-coordinate
readout, operated in limited streamer mode constituted the active part of the detector [48],
with 19 layers in the barrel and 18 in each endcap. The RPC were installed in the gaps of
the finely segmented steel of the six barrel sectors and the two end-doors of the flux return,
as illustrated in Fig. 3.18. The steel segmentation has been optimized on the basis of Monte
Carlo studies of muon penetration and charged and neutral hadron interactions. In addition,
two layers of cylindrical RPCs were installed between the EMC and the magnet cryostat to
detect particles exiting the EMC. RPCs contain a 2 mm Bakelite gap with ∼ 8 kV across
it. Ionizing particles which cross the gap create streamers of ions and electrons in the gas
mixture (Argon, freon and isobutane), which in turn creates signals via capacitive coupling
on the strips mounted on each side of the RPC. Soon after the installation (which took place
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Figure 3.18: Overview of the IFR Barrel sectors and forward and backward end-doors; the
shape of the RPC modules and the way they are stratified is shown.
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in Summer 1999), the efficiency of a significant fraction of the chambers (initially greater
then 90%) has started to deteriorate at a rate of 0.5-1%/month. In order to solve some of the
inefficiency problems, an extensive improvement program has been developed. The forward
endcap was retrofitted with new improved RPCs in 2002, their efficiency has not significatly
decreased since then. In the barrel, the RPCs have been replaced in 2004 and 2006 by 12
layers of limited streamer tube (LST) detectors and 6 layers of brass have been added to
improve hadron absorption. The tubes have performed well since their installation with an
efficiency of all layers at the geometrically expected level of 90%. The pion rejection versus
muon efficiency is shown in Fig. 3.19 for the LSTs and RPCs. The LSTs efficiency is better
than the efficiency that the RPCs had, even during the Run1.

Figure 3.19: Pion rejection versus muon efficiency for two different momentum ranges (left:
2 < p < 4 GeV/c, right 0.5 < p < 2 GeV/c). The LST efficiency (blue) is compared with
the RPC one for different Runs. We see the deterioration of the RPC performance between
2000 (red) and 2005 (green).

3.2.6 Trigger

The BABAR trigger is designed to select a large variety of physics processes (efficiency greater
than 99% for BB̄ events) while keeping the output rate below 400 Hz to satisfy computing
limitations of the offline processing farms (beam induced background rates with at least one
track with pt > 120 MeV/c or at least one EMC cluster with E > 100 MeV are typically 20
kHz). The trigger accepts also 95 % of continuum hadronic events and more than 90 % of
τ+τ− events. It is implemented as a two level hierarchy, the hardware Level 1 (L1) followed
by the software Level 3 (L3).

The L1 trigger has an output rate of the order of 1 kHz to 3 kHz, depending on the
luminosity and background conditions. It is based on charged tracks in the DCH above
a preset transverse momentum, showers in the EMC, and track detected in the IFR. L3
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L3 Trigger εbb̄ εB→π0π0 εB→τν εcc̄ εuds εττ

Combined DCH filters 99.4 89.1 96.6 97.1 95.4 95.5

Combined EMC filters 93.5 95.7 62.3 87.4 85.6 46.3

Combined DCH+EMC filters >99.9 99.3 98.1 99.0 97.6 97.3

Combined L1+L3 >99.9 99.1 97.8 98.9 95.8 92.0

Table 3.2: L3 trigger efficiency (%) for various physics processes, derived from Monte Carlo
simulation.

operates by refining and augmenting the selection methods used in L1. Based on both
the complete event and L1 trigger information, the L3 software algorithm selects events of
interest allowing them to be transferred to mass storage data for further analysis. It uses an
algorithm based on the drift chamber tracking, which rejects beam-induced charged particle
background produced in the material close to the IP, and a second algorithm based on the
calorimeter clustering. Then, based on the L3 tracks and clusters, a variety of filters perform
event classification and background reduction. Tab. 3.2 shows the L3 and L1+L3 trigger
efficiency for some relevant physics processes, derived from simulated events.

3.3 Data acquisition and Online system

The BABAR online data acquisition collects the data from all the BABAR subdetectors and the
information of the Level1 trigger and merges them into raw data, that are then the object
of reconstruction and production processes. The online data acquisition system also allows
for real-time data quality monitoring during data taking.

The BABAR Online Data Flow system communicates with the front-end electronics of the
detector components through read out modules, which are organized in crates, each including
a master read out module. Each master read out module builds part of the event collecting
data from the other modules of the crate and send them to the nodes of the Online Event
Processing farm (OEP). The Data Flow system also contains a Fast Control and Timing
module, which phases BABAR ans PEP-II timing.

The farm nodes in OEP apply the Level3 trigger algorithm and perform first data quality
monitoring functions; events that pass the Level3 trigger are then sent to a logging manager
process that writes them to disk. The data quality monitoring results, collected from all
OEP nodes, are merged and displayed to the BABAR operators, who check and compare the
data against references constantly during the data taking.

The online computing system includes other additional components, such as the Online
Detector Control, and the Online Run Control. The Detector Control provides environmental
monitoring and control (low and high voltages, temperatures, gas flow etc..together with
some parameter of the collider) and is responsible of the communication between BABAR and
PEP-II. The Run Control allows the BABAR operators to manage the data taking, and
interlocks data acquisition with safe detector conditions.
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3.4 Babar and PEP-II backgrounds

The PEP-II high luminosity environment implies different background sources that have to
be monitored since they can affect BABAR data taking and damage the detector, limiting
its lifetime. For this reason, the backgrounds generated by PEP-II have been studied in
detail and the interaction region has been carefully designed. In addition, BABAR background
monitoring provides an important feedback to PEP-II operators allowing for an improvement
of the running conditions.

For these reasons, the background conditions are constantly monitored in BABAR , using
information from all the subdetectors and from a dedicated Radiation Monitoring and Pro-
tection System of the SVT detector, called SVTRAD, that will be briefly described in the
following.
The main sources of background are the following [39]:

• synchrotron radiation, generated by the bending dipoles B1 and final focusing quadrupoles
near the interaction point (see fig. 3.4). This background is not an issue in PEP-II due
to an attentive design of the interaction region.

• beam-gas background, arising from the interaction (bremsstrahlung or Compton scat-
tering) of incoming electrons and positrons with residual gas in the beam pipes. These
interactions reduce the particle energy. The separating dipoles B1 (see fig. 3.4) bend
some of these off-energy or off-angle electrons and positrons to hit the detector along
the horizontal plane. Primary source of radiation damage and particularly worrying
for the SVT, this background is monitored by the SVTRAD system, which, in case of
too high radiation dose, can abort the beams to prevent damages to the detector.

• luminosity background, generated from off-energy outgoing electrons and positrons
from radiative Bhabha reactions, e+e− → e+e−γ, that are bent by the B1 dipole
magnets (see fig. 3.4) and strike against vacuum components within a few meters from
the interaction point. This background source is strictly linear with the luminosity.
For geometrical reasons, it is not seen by the SVT system, but affects the DCH and
DIRC.

• beam-beam background arising from instabilities created by the interactions between
the two beams. These effects are characterized thanks to data collected in single-beam
runs. The occupancies in the different subdetectors are studied in single-beam runs
(when either only positrons or only electrons are circulated in the rings) and during
running with both the beams filled, allowing for a disentanglement of the HER and
LER contribution. In these studies, the effect of the interaction between the two beams
is observed in all the subdetectors.

• trickle injection (see sec. 3.1) background, arising from bad quality or bad orbit of
the beam that has been injected. This background is monitored by the study of the
average radiation dose per injected bunch recorded by the SVTRAD system and by
the number of triggers generated in the DCH and EMC per injection pulse.
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As already said, the risks of damage to the detector, and especially to its inner part,
the SVT, depend on the radiation dose near the interaction point, which is measured by
SVTRAD. The SVTRAD system consists of 12 PIN diodes grouped into four modules: two
of them in the forward region (on the east and west side of the beamline respectively 1)
and the other two in the backward region (on the east and west side respectively). Each
module contains three diodes, one located in the bending plane of the magnet (and which,
for this reason, receive higher radiation doses) and the other two located respectively above
and below this plane. A schematic overview of the SVTRAD system is shown in figure 3.20.

Figure 3.20: Schematic overview of the SVTRAD system. The east and west sides correspond
to positive and negative x coordinates respectively

The temperature of each diode is measured by 2 surrounding thermistors. The output
current from a PIN diode, apart from a pedestal current that has to be subtracted, is pro-
portional to the instantaneous radiation dose. In 2002, two diamond detectors of roughly
the same size as the PIN diodes were installed in the backward end of the support tube. For
those diodes the pedestal currents are lower and are almost independent from the tempera-
ture. The reading of the radiation dose by means of sensors in different positions along the
beamline allows to correlate the background with one beam or the other (due to the design
of the interaction point, the east side of the detector is more sensitive to effects from the
positrons low energy ring and the west side is more sensitive to effects from the electrons
high energy ring). The radiation dose evolution over time can be correlated with the status
of the vacuum inside the PEP-II beam pipes, which is constantly monitored along the rings.
The SVTRAD is the only subsystem that can abort the beams. This can happen in two
different ways:

1Where the east and west sides correspond to positive and negative x coordinates respectively, in the
BABAR right-handed coordinate system, defined in sec. 3.2



3.4. BABAR AND PEP-II BACKGROUNDS 69

• Soft aborts: an abort timer starts whenever the radiation rises above 100 mRad/s and
the BABAR shifters and PEP-II operators are notified. After 10 minutes continuously
over threshold, the SVTRAD causes a beam abort.

• Fast aborts: they occur when there are very high and rapid spikes of radiation. Fast
aborts can occur when the radiation dose exceeds 1.25 Rad/s and 5 Rad are integrated
or when the radiation dose exceeds 400 Rad/s (radiation occurrences of this kind can
happen on a time scale of the order of ms).

Other quantities used to monitor the background conditions in BABAR are the occupancies
in each subdetectors and the current in the Drift Chamber wires: when this current is too
high in one of them, the corresponding HV group is ramped off and the voltage of the
other groups is lowered, waiting for the conditions to improve. During this period, the data
acquisition is paused. For each one of the twelve sectors of the DIRC, one phototube is used
as a scaler, i.e. it simply counts the number of hits it receives. The average rate read by the
DIRC scalers is also monitored.

The presence of background can cause high deadtime and hence affect the BABAR data
taking efficiency. The total deadtime is the sum of three components: busy deadtime, full
deadtime and inhibit deadtime, defined as follows:

• The busy deadtime, proportional to the L1 trigger rate. BABAR data acquisition system
structure implies a 2.7 µs irreducible deadtime each time there is an output of the L1
trigger (L1accept). For example, for a L1 trigger rate of 3 kHz, the busy deadtime
would be 0.8%.

• The full deadtime, which occurs when the data acquisition system is unable to keep
up with the rate of L1 trigger output. This contribution to the deadtime is not linear
with the L1 trigger rate (it is negligible under a threshold and can increase rapidly
above it) and is for this reason critical for the data acquisition.

• The inhibit deadtime, due to the L1accept that are inhibited because of the trickle
injection. The trickle injection procedure allows to refill single bunches inside one
beam. The injected bunches are noisy after the injection and for that reason the data
acquisition from collisions involving these particular bunches and their neighbours is
inhibited for a given interval of time right after injection. The hardware inhibited
L1accept correspond to a deadtime of 0.055% for each kHz in the L1 trigger rate for
each beam. A further cut is applied at reconstruction level, corresponding, respectively
for the LER and the HER, to 0.19% and 0.28% for each kHz in the L1 trigger rate.

At the end of Run6 (August 2007), the average deadtime was around 1.5%-2%, with a relative
contribution of 50% from busy deadtime, 30% from full deadtime and 20% from inhibit
deadtime. In fig. 3.21, we show the Level1 trigger rate as a function of the luminosity, for two
different periods of running, corresponding to a part of the Run5 and the Run6 BABAR data
taking (from January until August 2006 and from March until June 2007 respectively).
For the same luminosity, a higher Level1 trigger rate, that implies a higher deadtime, is a
symptom of degraded background conditions. The behaviour of the deadtime as a function
of the L1 trigger rate is linear for the Run5 and not for the Run6, sign of worst background
conditions.
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Figure 3.21: Level 1 trigger rate (in Hz) as a function of the luminosity, for two different
periods of data taking: January-August 2006 (during Run5 data taking period) and March-
June 2007 (during Run6 data taking period)



Chapter 4

Event reconstruction and background
rejection

The events from B decays we are interested in are selected starting from the full data sample
produced in e+e− collisions at a center-of-mass energy corresponding to the Υ(4S) resonance.
Only a fraction of the e+e− collisions actually produces an Υ(4S) and hence a pair of B
mesons (e+e− → Υ(4S) → BB̄). The other events are of the kind e+e− → uū, dd̄, ss̄, cc̄ (so
called continuum events) or e+e− → ll̄ and e+e− → γγ. In Tab. 4.1 the cross sections for the
main processes are shown [37]. While the QED processes can be easily distinguished from
the e+e− → qq̄ looking at the tracks multiplicity and at the visible energy in each event, the
e+e− → cc̄, uū, dd̄, ss̄ are more similar to e+e− → bb̄ and normally represent a background to
analyses of B decays. In order to caracterize this kind of events, a fraction of the BABAR data
(tipically 10%) are collected from e+e− collisions at a center-of-mass energy 40 MeV below
the Υ(4S) resonance, where the production of BB̄ meson pairs is kinematically forbidden.
This sample is called off-resonance data and is very useful for background studies.

Cross section Value [nb]

σ(bb̄) 1.05
σ(cc̄) 1.30

σ(uū, dd̄, ss̄) 2.09
σ(τ+τ−) 0.94
σ(µ+µ−) 1.16
σ(e+e−) 40

Table 4.1: Cross section for different processes for e+e− collisions at a center-of-mass energy√
s = M(Υ(4S)). The Bhabha cross section value takes into account the detector acceptance.

71
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4.1 From raw data to B meson reconstruction: a typi-

cal analysis structure

In this chapter we describe how the B-meson candidates are reconstructed starting from their
decay products, using the information measured by the BABAR experimental apparatus, that
allows to detect charged tracks and neutral energy deposits. For each event, photons and
charged tracks (sec. 4.3) are reconstructed and dedicated “selectors” are applied to determine
if the track is an electron, muon, charged pion or charged kaon. The charged particles, π0 and
KS candidates (described in sec.4.4 and sec.4.5 respectively) are combined to reconstruct the
neutralD in the given decay channel (sec. 4.7), and finally the B candidates are reconstructed
(sec 4.8).

All the quantities are measured in the laboratory frame, but often studied in the Υ(4S)
rest frame, also called the center-of-mass (CM) frame. The detector response, reconstruction
and selection procedures are test on Monte Carlo simulated events (MC), generated using
GEANT-based software.

In sec. 4.3, the charged particle reconstruction and identification are described. In sec. 4.4
we describe the π0 reconstruction. The variables and procedures described in these two
first sections are directly taken from BABAR reconstruction software and are used in many
BABAR analyses. The reconstructions of KS, neutral D (in different decay modes) and finally
neutral B mesons, described in sec. 4.5 and following, are specific to the analyses presented
in this thesis.

The procedures described in this chapter result in a reconstructed sample of B candidates
(in some cases, more than one candidate per event). For each candidate, several variables
caracterizing the B meson and its decay products (the candidate particles used to reconstruct
the particular B candidate) are stored. In addition, some global information on the event
containing the candidate is also stored. In a typical event in BABAR , many tracks and
neutral clusters are present, and the reconstruction procedure can results in B candidates
from events in which no real B meson actually decayed in the reconstructed channel. These
candidates belong to the category of background events. The sources of background to the
analyses presented in this thesis are of two kinds:

• BB̄ background
These are BB̄ non-signal events that pass the selection. Most of them can be rejected
using selection criteria. Dedicated studies have to be devoted, within the BB̄ back-
ground, to particular channels that could lead to the same final state as the signal.
For these events, also called peaking background events, some crucial variable has a
distribution similar to that of the signal.

• Continuum background
This is defined as e+e− →qq̄ (q = u, d, s, c) events that pass the selection. It is a
common fact that in exclusive B decays analyses (like the analyses shown in this thesis)
the main source of background are continuum events. These events are abundant, but
can be discriminated from the signal using several global variables, which are described
in sec. 4.9.
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A selection procedure, in which some of the stored variables are requested to fulfill specific
conditions, is applied to the reconstructed sample. Whenever, after the selection, more
than one B candidate is present in a given event, the best one is chosen, according to
some criteria. Finally, a maximum likelihood fit is performed on the selected sample, in
order to distinguish between signal and background events and to extract the quantities of
interest. These last steps, selection, best candidate choice and maximum likelihood fit, will
be described separately for the two analyses in chapters 5 and 6.

4.2 Decay vertex reconstruction and kinematic fits

Since the vertexing procedure is used in the reconstruction of all the particles described
below, it is introduced here once for all. The four-momentum of a charged particle or π0

is calculated starting from the available information on its momentum or energy, making
an assumption on its mass. Depending on the studied channel, the tracks and clusters are
associated to a decay vertex and used to determine the position and the four-momentum of
the decaying particle. In the vertex determination procedure, also the four-momenta of the
decay products are readjusted, as briefly explained in the following

The decay point of a particle is determined by finding the best intersection of the tracks
using a χ2 minimization. Since the tracks trajectories are bent by the magnetic field, the
problem is not linear and we make use of an iterative search for local solutions until the χ2

between one iteration and the next one is below 0.01. The maximum number of possible
iterations is six.

The χ2 is minimized by varying the position and four-momentum components of the
decay products. In addition, the energy and momentum conservation is applied by use of
the Lagrange multipliers and the mass of the decaying particle can be fixed to its nominal
mass.

4.3 Charged track identification

Charged tracks are identified using selectors that combine different information from all the
BABAR subdetectors. These selectors provide various working points, ranked in terms of
purity and efficiency.

Most of the tracks produced in an event are pions. The tracks are basically requested
to have at least five hits (either in the SVT or in the DCH), to have a maximum distance
of closest approach in the x − y plane of 1.5 cm and their θ angle has to be in the interval
0.4 rad < θ < 2.54 rad

In the channels we are interested in, we reconstruct, toghether with pions, also charged
kaons. In sec. 4.3.1 the kaons selection criteria are described. Electrons and muons, described
in sec. 4.3.2 and 4.3.3, are mainly used to reconstruct the second B in the event.

4.3.1 Charged kaon identification

Kaons and pions are produced in B decays in a ratio of about one to seven. The selectors
discriminating between charged kaons and pions make use of the loss of energy, dE/dx, as
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measured by the SVT and DCH, and the Cerenkov angle, θC , as measured by the DIRC.
Coming from different detectors, these measurements can be considered as uncorrelated and
their combination improves the discriminating power.

As can be seen in Fig. 4.1, the dE/dx variable has a good discriminating power for track
momenta up to ∼700 MeV/c for the DCH and up to ∼600 MeV/c for the SVT. For momenta
higher than ∼700 MeV/c, the Cerenkov angle θC information from the DIRC is necessary,
as shown in Fig. 4.2.

Figure 4.1: Energy loss dE/dx (in arbitrary units), as a function of the track momentum,
in the DCH (left) and in the SVT (right) for different types of particles. The curves are the
theoretical behaviours following the Bethe-Bloch formula.

Both analyses presented here do not use directly the information on dE/dx and θC , but
make use of selection criteria developed in BABAR during the years. In order to identify a
track, a pdf for each particle hypothesis (e, µ, π, p, K) is constructed. These pdf are then
combined to construct a likelihood for the electron hypothesis, Le, a likelihood for the kaon
hypothesis, LK, and so on... The selectors are then defined by different cuts on the ratios
LK/Lp, LK/Lπ and they differ in efficiency and purity. The following information is used:

• for track momenta p < 500 MeV/c, dE/dx measurements from SVT and DCH are
combined;

• for track momenta 500 MeV/c < p < 600 MeV/c, dE/dx measurement from DCH
only is used;

• for track momenta p > 600 MeV/c, the θC measurement from DIRC is used.

In both analyses presented in this thesis, the charged kaon from theK∗0 decay is requested
to pass the KLHTight selector criteria, which has a average efficiency on kaons of about
85% and an efficiency of reconstructing a pion as a kaon of about 1%. In the ADS analysis,
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Figure 4.2: Cerenkov angle θC , as a function of the track momentum, for samples of identified
kaons (left) and pions (right). The curves describe the typical functional behaviours for
different charged particles.

for the charged kaons produced in the neutral D decays, we use the KLHLoose selector,
which has a average efficiency on kaons of about 90% and an efficiency of reconstructing a
pion as a kaon of about 2%. The efficiency of reconstructing electrons, muons or protons as
kaons are normally lower than the efficiency of reconstructing a pion as a kaon, for both the
selectors. In Fig. 4.3, we show the efficiency using the KLHTight and KLHLoose criteria
for kaons. In Fig. 4.4 we show the probability of reconstructing a pion as a kaon, for the
two selectors. The efficiency of the selectors obtained on data and on simulated events are
in good agreement.
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Figure 4.3: Efficiency on kaons (i.e. probability of reconstruncting kaons as kaons) using
the KLHTight and the KLHLoose selectors (upper and lower plots respectively), as a
function of the polar angle θ for different track momentum intervals (from left to right:
0.25 ≤ p[GeV/c] < 0.75; 0.75 ≤ p[GeV/c] < 2.00; 2.00 ≤ p[GeV/c] < 5.00).
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Figure 4.4: Probability of reconstructing a pion as a kaon using the KLHTight selector, as
a function of the polar angle θ for different track momentum intervals (from left to right:
0.25 ≤ p[GeV/c] < 0.75; 0.75 ≤ p[GeV/c] < 2.00; 2.00 ≤ p[GeV/c] < 5.00).
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4.3.2 Electron identification

Electron identification is based on EMC information, since the electrons that reach the
calorimeter produce electromagnetic showers depositing their energy in the crystals.

Also hadrons that reach the EMC interact and start to produce a shower. However an
electromagnetic shower has a symmetric shape around the particle flight direction, while an
hadronic shower has an irregular distribution. In addition, the hadronic interaction length of
the EMC being much larger than the electromagnetic one, the hadrons deposit only part of
their energy in the EMC, while the electrons deposit all their energy. The electron candidates
are identified from energy deposits in a fiducial volume, defined by 0.36 rad < θ < 2.372 rad.
More details on the electromagnetic showers are given in sec. 4.4, while describing the photon
reconstruction.

4.3.3 Muon identification

The detector dedicated to the muon identification in BABAR is the IFR. In order to associate
the DCH information to each energy deposit in the IFR, all the charged tracks reconstructed
in the DCH are extrapolated to the IFR, taking into account the bending due to the magnetic
field. Only tracks that intersect the layers close to a hit are associated with a charged cluster.

4.4 Reconstruction of π0 mesons

The π0 mesons, used in the ADS analysis (see chapter 5) to reconstruct the neutral D
decaying to K±π∓π0 final state, are reconstructed from pairs of photons detected in the
EMC. Each photon produces an electromagnetic shower in the EMC, distinguishable from
an hadronic shower because of the different shape. In order to select photons the following
condition is required on the lateral energy distribution:

LAT < 0.8 where LAT =

∑N
i=3Eir

2
i

∑N
i=3Eir2

i + E1r2
0 + E2r2

0

;

where N is the number of crystals touched by the shower, Ei the energy of the i-th crystal
(with Ei > Ei+1), ri the distance between the i-th crystal and the shower axis, as shown in
Fig. 4.5 and r0 is the average distance between the two most energetic crystals (typically,
r0 = 5 cm). The distribution of the LAT variable for reconstructed photons is shown in
Fig. 4.5.

To ensure that the electromagnetic shower was generated by a photon and not by an
electron, photon candidates for which the DCH has detected a charged track pointing to the
direction of the energy deposit in the EMC are rejected.

Any pair of two photons, each one with energy higher that 30 MeV and with a total energy
sum larger than 200 MeV makes a candidate π0, provided that its invariant mass is in the
interval 110 MeV/c2 < mγγ < 160 MeV (the π0 nominal mass being mπ0 = 135 MeV/c2

[8]). The π0 four-momentum is determined from a fit to the two photons, in which the π0

reconstructed mass is constrained to be equal to the nominal π0 mass (see sec. 4.2).
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Figure 4.5: Graphical representation of the variables caracterizing an energy deposit in the
EMC (left) and LAT distribution for reconstructed photons (right).

4.5 Reconstruction of KS mesons

In the Dalitz analysis presented in chapter 6, we reconstruct KS produced in neutral D
decays to KSπ

+π− final states. The KS candidates are reconstructed from pairs of oppositely
charged pions (BR(KS → π+π−) = (69.2 ± 0.05)10−2) originating from a common vertex.
The KS four-momentum is obtained from its decay products through a fit in which the KS

reconstructed mass is constrained to be equal to the nominal KS mass (see sec. 4.2).

4.6 Reconstruction of the neutral K∗ mesons

In both analyses presented in this thesis, for the reasons explained in 2.6, the neutral K∗

candidates are reconstructed in the final state K±π∓. In the following, unless not specified
otherwise, K∗0 refers to K∗0(892).

The charged kaon is required to pass the KLHTight selection while no particular require-
ments are asked for the pion. The K∗ four-momentum is determined by a fit to its decay
products, and we require the fit to have converged (referred to as “P [χ2(K∗0)vtx, ndof ] > 0”
in the following, with ndof the number of degrees of freedom).

K∗0 candidates are selected using the invariant mass of the K∗0 and the cosine of the
helicity angle of the K∗0 decay products, cos θHel. The helicity angle θHel is defined as the
angle in the K∗ rest frame between the direction of flight of a K∗ decay product with respect
to the direction of flight of the K∗ in the B rest frame. The K∗ has spin 1, therefore the
angular distribution is a function of the helicity angle, dN

d(cos θHel)
∝ cos2 θHel. The distribution

for background events is expected to be flat. It has to be stressed here that the selection of
the K∗ candidates has an effect on the numerical evaluation of the factor k. The knowledge
of the parameter k is important, as explained in sec. 2.6 and 2.6.2, since it modifies the
relations between the observables we measure and the quantities we want to determine (γ,
rS and δS). Thus, it is important that both the ADS and Dalitz analyses apply the same
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cuts on the K∗0 mass and helicity. To define the optimal selection criteria on the invariant
mass of the K∗0 and on cos θHel, we use the statistical significance S/

√
S +B, where S and

B are the expected numbers of signal and background events respectively. For the evaluation
of the number of signal events S, we assume rS = 0.3 and RADS ∼ r2

S = 0.09. In Fig. 4.6
we show the distribution of the invariant mass of the K∗0 and on cos θK∗0Hel for signal and
the variation of the statistical significance as a function of the value of the cuts on the two
variables. The shown distributions has been obtained on one particular channel (the Kπ
mode) studied in the ADS analysis (following a procedure that will be explained in more
detail in sec. 5.2.3), however tests have been made to see that the chosen cuts are suitable for
all the analyzed modes. We apply the following cuts: |mK∗ −mK∗(nominal)| < 48 MeV/c2

and | cos θHel| > 0.3.
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Figure 4.6: Variation of the statistical significance S/
√
S +B (where S and B are the

number of signal and background events respectively) for different values of the cuts on the
invariant mass of the K∗ and on the cosine of the helicity angle of the K∗ decay products.
The distribution has been obtained on simulated events and the bin marked with a (red)
box corresponds to the highest significance.

4.7 Reconstruction of the neutral D mesons

In the two analyses presented in this thesis, the neutral D mesons are reconstructed in:
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• K±π∓, K±π∓π0 and K±π∓π∓π±, for the ADS analysis
The charged kaon is requested to pass the KLHLoose selector (see sec. 4.3.1) in all
the three modes. The neutral D four-momentum is determined from a fit to its decay
products in which the D reconstructed mass is constrained to be equal to the nominal
D0 mass. We require this fit to have converged (P [χ2(D0)vtx, ndof ] > 0) for the
K±π∓ and K±π∓π0 modes, while for the K±π∓π∓π± mode the requirement on the χ2

probability of the fit is tighter (P [χ2(D0)vtx, ndof ] > 0.001), because of the presence
of abundant combinatorial background.

• KSπ
+π− final state, for the Dalitz analysis

The neutral D is reconstructed from KS candidates and a couple of oppositely charged
pions. The neutral D four-momentum is determined from a fit to its decay products
in which the D reconstructed mass is constrained to be equal to the nominal D0 mass,
we require this fit to have converged (P [χ2(D0)vtx, ndof ] > 0).

The D candidate invariant mass distributions, for all the four decays analyzed in this
thesis, are shown in fig 4.7 and the corresponding resolutions are listed in Tab. 4.2. These
results are obtained on dedicated samples of simulated signal events.
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Figure 4.7: D0 mass distribution for B0 → D0K∗0 MC generated signal events with D0

decaying to Ksπ
+π− (up left), K±π∓ (up right), K±π∓π0 (down left), K±π∓π∓π± (down

right).
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KSππ Kπ Kππ0 Kπππ
σM

D0 [ MeV/c2] 6.0 7.2 13.5 5.7

Table 4.2: MD0 distribution resolutions for the different decay modes analyzed in this thesis.

4.8 Reconstruction of the neutral B mesons

The neutral B meson is reconstructed from a (mass constrained) D and a K∗. A kinematic
fit, in which the D and the K∗ are constrained to originate from the interaction point
(beamspot constraint), is applied to the B. In the beamspot constrained fit, the error on the
determination of the interaction point, which is about 10 µm in y, 200 µm in x and 8 mm
in z, is taken into account.

4.8.1 The mES and ∆E variables

The B mesons are caracterized by two almost independent kinematic variables: the beam-
energy substituted mass

mES ≡
√

(E∗2
0 /2 + ~p0 · ~pB)2/E2

0 − pB
2 (4.1)

and the energy difference

∆E ≡ E∗
B − E∗

0/2 , (4.2)

where E and p are the energy and the momentum respectively, the subscripts B and 0 refer to
the candidate B and to the e+e− system respectively and the asterisk denotes the e+e− CM
frame. The two variables are not correlated, as can be seen in Fig. 4.8, where a distribution
of mES as a function of ∆E is shown on signal MC events and on off-resonance data.

) [GeV]π E (K∆
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

]2
) 

[G
eV

/c
π

 (
K

E
S

m

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

) [GeV]π E (K∆
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

]2
) 

[G
eV

/c
π

 (
K

E
S

m

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

Figure 4.8: Distribution of mES as a function of ∆E on B0 → D0K∗0 MC generated signal
events (left) and on off-resonance events (right). The D0 mesons are reconstructed in K±π∓

final state.

A typical mES distribution for MC signal events, as shown in Fig. 4.9, is described by a
Gaussian distribution centered at the B mass value. The width of the mES distribution does
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not depend on the reconstructed channel. Indeed, if we look at the simplified expression in
the center-of-mass frame (mES

2 = E∗2
0 − p∗2B ), we can see that :

∆mES ∝
√

| E
∗
0

mES
|2∆E∗

0 + | p
∗
B

mES
|2∆p∗B

and the contribution coming from the B momentum resolution is suppressed by the factor
| p∗

B

mES
|2 ≈ | 0.3

5.28
|2. The mES resolution only depends on the error on the energy of the beams,

which is known with a very high precision. The mES distribution is usually fitted with a
Gaussian with a typical resolution is 2.6 MeV/c2.
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Figure 4.9: Distribution of mES on B0 → D0K∗0 MC generated signal events. The D0 meson
is reconstructed into K±π∓ final state.

Continuum and BB̄ background events have a different mES distribution. A typical
distribution for continuum events, obtained on off-resonance data, is shown in Fig. 4.10.
Similar distributions are obtained for BB̄ background events.

This distribution is normally fitted using an Argus function A(x), defined as follows:

A(x) = x

√

1 − (
x

x0
)2 · ec (1−( x

x0
)2)
, (4.3)

where the x0 parameter represents the maximum allowed value for the variable x described
by A(x) and c accounts for the shape of the distribution.

On the other hand, the ∆E distribution is centered at zero for signal events and its
resolution depends on the reconstructed channel through E∗

B. The ∆E distributions, for all
the decays analyzed in this thesis, are shown in fig 4.11. These distributions are fitted with
a Gaussian and the corresponding resolutions are listed in Tab. 4.3.

A typical ∆E distribution for continuum background, obtained on off-resonance events,
is shown in Fig. 4.12. ∆E distributions are usually fitted with a polynomial function. Similar
distributions are obtained for BB̄ background events.
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Figure 4.10: Distribution of mES for off-resonance continuum events.
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Figure 4.11: ∆E distribution of B0 → D0K∗0 MC-generated signal events with D0 decaying
to KSπ

+π− (top left), K±π∓ (top right), K±π∓π0 (bottom left), K±π∓π∓π± (bottom right).

4.8.2 Best candidate choice

If more than one B candidate is reconstructed in the same event (the fraction of events
in which this happens is of the order of 1%), we choose the one with smallest (MD0 −
Mnominal

D0 )/σ(MD0)2 (where Mnominal
D0 is the nominal D0 mass). In case of two B candidates
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KSππ Kπ Kππ0 Kπππ
σ∆E [ MeV] 12.5 12.5 13.5 13.5

Table 4.3: ∆E distribution resolutions for the different decay modes analyzed in this thesis.
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Figure 4.12: Distribution of ∆E for off-resonance continuum events.

reconstructed from the same D meson, we choose the one that has the largest absolute value
of the cosine of the K∗0 helicity angle, in the Dalitz analysis, and the one with smallest
absolute value of ∆E for the ADS analysis.

4.9 Event shape variables

Since e+e− collide at
√
s = M(Υ(4S)), the Υ(4S) resonance is produced almost at rest.

Given the mass of the Υ(4S), MΥ(4S) = 10.58 GeV/c2, and the mass of the B, MB = 5.279
GeV/c2, the B mesons have a very low momentum (of the order of 330 MeV/c) in the
CM frame. On the other hand, qq̄ pairs are produced with large momenta because the
quark q is lighter than the quark b; the two quarks fly in opposite directions and hadronize
independently. For this reason, qq̄ events have a jet-like spatial shape, different from the
spherically distributed shape of BB̄ events.

This shape difference is reflected in several variables that can be used to distinguish
continuum events from BB̄ ones. These variables contain global information on the event
shape and normally use all the tracks and energy clusters in the event, not only the ones used
to reconstruct the B candidates. The variables used in the analysis presented in this thesis
are (other variables have been tried, but are not used because they don’t give significant
gain in sensitivity):

• | cos(θthrust)|, the absolute value of the cosine of the angle between the B direction
and the rest of the event thrust axis (where the thrust axis is defined as the direction
that maximizes the sum of the longitudinal momenta of all the particles), in the e+e−
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center-of-mass frame. Since continuum events have a jet-like topology, the | cos(θthrust)|
distribution is peaked at 1, while for BB events (that are spherically distributed in the
space) it is uniform.

• Legendre Moments, L10 and L12, defined as follows:

L10 =
roe
∑

i=0

pi ,

L12 =
roe
∑

i=0

pi ·
1

2
· (3 cos2(θi) − 1) ,

where pi and θi are the momentum and the polar angle of the particle i, in the e+e−

center-of-mass frame. The index i runs on all the charged tracks and neutrals coming
from the rest of the events (i.e. that do not belong to the reconstructed B).

• |∆t|, the absolute value of the proper time interval between the two B decays. This is
calculated from the measured separation, ∆z, between the decay points of the recon-
structed B (Brec) and the other B (Both) along the beam direction. The Brec decay
point is the common vertex of the two B decay products. The Both decay point is
obtained using tracks which do not belong to Brec and imposing constraints from the
beam energy and the beam-spot location on the Brec momentum and decay point. For
events in which the B has been correctly reconstructed, the |∆t| distribution is the
convolution of a decreasing exponential function (with B lifetime τB) with the resolu-
tion on ∆z from the detector reconstruction. The distribution is then wider than in
the case of continuum events, in which just the resolution effect is observed.

These variables can be either used separately or, as it is often done, can be combined in
a Fisher discriminant.

The Fisher discriminant [53] is a technique allowing to discriminate between two classes
of events. Starting from a set of discriminating variables, an iterative procedure (training)
computes the linear combination of these variables that maximizes the separation between
the two classes. We consider a sample of nvar variables xk, their mean values xk, their mean
values when considering only the signal or only the background samples xS(B),k, and the
total covariance matrix C of these variables. The covariance matrix can be decomposed into
the sum of a within-class matrix (W ) and a between-class matrix (B). They respectively
describe the dispersion of events relative to the means of their own class, and relative to the
overall sample means:

Wkl =
∑

U=S,B

〈xU,k − xU,k〉〈xU,l − xU,l〉

Bkl =
1

2

∑

U=S,B

(xU,k − xk) (xU,l − xl)

The Fisher coefficients, Fk, are then given by:

Fk =

√
NSNB

NS +NB

nvar
∑

l=1

W−1
kl (xS,l − xB,l)
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where NS,(B) are the number of signal (background) events in the sample. The Fisher dis-
criminant y(i) for event i is given by

y(i) = F0 +
nvar
∑

k=1

Fkxk(i);

where the offset F0 centers the sample mean y of all NS +NB events at zero.



Chapter 5

ADS analysis of B0 → D0K∗0 decay
channel

In this chapter we report on the study of B0 → [D0/D̄0]K∗0 decays through the ADS method,
performed on 433 fb−1 (444×106 BB̄ pairs) of data collected with the BABAR detector,
corresponding to the full data sample collected by BABAR at the Υ(4S) center of mass
energy.
The reconstructed D final states (see Fig. 5.1) are f = K+π−, f = K+π−π0 and f =
K+π−π+π−.

As already presented in sec. 2.2.2, the ADS method aims at bypassing the problem of
the magnitude difference between the amplitudes A(B0 → D0K∗0) and A(B0 → D̄0K∗0) by
considering decays of the neutral B meson to final states that can be reached in two ways:
either through a favoured B decay (B0 → D̄0K∗0) followed by a doubly Cabibbo suppressed
D0 decay (D̄0 → f̄), or through a suppressed B decay (B0 → D0K∗0) followed by a favoured
(not Cabibbo suppressed) D0 decay (D0 → f̄).

As shown in Fig. 5.1, there are two classes of events, which can be distinguished experi-
mentally because of the sign of the electric charge of the two kaons in the final state. Either
the two kaons have opposite electric charge (these events will be denoted as “opposite sign”
in the following), or same electric charge (these events will be denoted as “same sign” in the
following).

The measured observables are RADS , which is the ratio between the opposite sign and
same sign events, and AADS , defined as follows:

RADS =
Γ(B0 → f̄K∗0) + Γ(B0 → fK∗0)

Γ(B0 → fK∗0) + Γ(B0 → f̄K∗0)
. (5.1)

AADS =
Γ(B0 → fK∗0) − Γ(B0 → f̄K∗0)

Γ(B0 → fK∗0) + Γ(B0 → f̄K∗0)
. (5.2)

In our analysis, as in other ADS studies, the AADS is not measured, as explained in
sec. 2.2.2.

87
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OPPOSITE SIGN MODE

B0 → D̄0K∗0

B0 → D0K∗0 D0 → f̄

D̄0 → f̄

final state
same

suppressed (b→ u)

favored (b→ c)

favored (∝ 1)

suppressed (∝ λ2)

B0 → [K−π+]D̄0 [K+π−]K∗0

B0 → [K−π+]D0 [K+π−]K∗0

SAME SIGN MODE

B0 → D̄0K∗0

B0 → D0K∗0 D0 → f

D̄0 → f

final state
same

suppressed (b→ u)

favored (b→ c)

suppressed (∝ λ2)

favored (∝ 1)

B0 → [K+π−]D̄0 [K+π−]K∗0

B0 → [K+π−]D0 [K+π−]K∗0

Figure 5.1: Scheme for the ADS method: B0 mesons decaying to the same final state,
through two different decay chains, for “opposite sign” events and for “same sign” events.
The scheme is shown for the D final state f ≡ K+π−

5.1 Analysis overview: ADS method at work

5.1.1 Neutral D decays into two-body final states (D0 → K+π−)

For a D0 decay to a two-body final state f (for example f ≡ K+π−) we can write:

A(D0 → f) = rD|A(D0 → f̄)|eiδD (5.3)

where δD is the relative strong phase between D0 → f and D0 → f̄ decay amplitudes, and
rD is the ratio between the absolute values of the two amplitudes, defined as:

rD =
|A(D0 → f)|
|A(D0 → f̄)| . (5.4)

The measured value of r2
D for the D0 → K+π− mode, is r2

D = (3.76 ± 0.09) × 10−3 [8]. As
shown in sec. 2.2.2 and 2.6.1, the following relations can be obtained:

RADS =
Γ(B̄0 → [f ]DK̄∗0) + Γ(B0 → [f ]DK

∗0)

Γ(B̄0 → [f ]DK̄∗0) + Γ(B0 → [f ]DK∗0)
(5.5)

= r2
D + r2

S + 2rSkrD cos γ cos(δS + δD)

AADS =
Γ(B̄0 → [f ]DK̄∗0) − Γ(B0 → [f ]DK

∗0)

Γ(B̄0 → [f ]DK̄∗0) + Γ(B0 → [f ]DK∗0)
(5.6)

= 2krSrD sin γ sin(δS + δD)/RADS
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The factor cos γ cos(δS + δD) can vary in the range [−1, 1], which implies that RADS can
vary in the range [r2

D + r2
S − 2krSrD, r

2
D + r2

S + 2krSrD]. Taking into account the error on
rD, the range of variation of RKπ

ADS as a function of rS is shown in Fig. 5.2.
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Figure 5.2: Ranges of variation of RKπ
ADS for different values of rS.

Eventually, the strong phase δD can be measured in quantum correlated DD̄ decays by
CLEO-c.

5.1.2 Neutral D decays to multi-body final states (D0 → K+π−π0,

D0 → K+π−π+π−)

We now consider the multi-body final states f =K+π−π0 (f̄ = K−π+π0) and f = K+π−π−π+

(f̄ = K−π+π+π−). Since we are dealing with a three (or four) body D0 decay, the decay
amplitude is a function of the point represented by the D0 decay final state in the 3-body
(4-body) phase space. The amplitude for the D0 → Kππ0 decay will be written as a func-
tion of m2

Kπ and m2
Kπ0 and for the amplitude of D0 → Kπππ the Cabibbo-Maksymowicz

variables [54] can be used: m2
Kπ, m

2
ππ, θK−π− , θπ+π+ and φ. These variables are defined as

follows:

• m2
ab is the squared invariant mass of the couple of particles a and b.

• θab is the angle between the momentum of the particle a in the rest frame of the ab
system and the momentum of the ab system in the D rest frame.

• for D0 → Kπππ decays, φ is the angle between the K∓π∓ and the π±π± decay planes.

More explicitly, if the considered D final state is f = K+π−π0 or K+π−π+π−, then m2
Kπ =

m2
K+π−, m2

Kπ0 = m2
K+π0 , m2

ππ = m2
π+π−, θKπ = θK+π+, θππ = θπ−π− and φ is the angle

between the K+π+ decay plane and the π−π− decay plane in the rest frame of the D meson.
On the other hand, if the D considered final state is f̄ , then m2

Kπ = m2
K−π+, m2

Kπ0 = m2
K−π0 ,

m2
ππ = m2

π−π+, θKπ = θK−π−, θππ = θπ+π+ and φ is the angle between the K−π− decay plane
and the π+π+ decay plane in the rest frame of the D meson.

The following definitions are used, where m indicates the generic point in the Dalitz plane
(m = mKπ, mKπ0 for the D → Kππ0 decay and m = m2

Kπ, m
2
ππ, θKπ, θππ, φ):
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BB = BR(B0 → D̄0K∗0) (5.7)

BD = BR(D0 → f) (5.8)

AD(m)eiδ(m) = A(D0 → f) = A(D̄0 → f̄) (5.9)

AD(m)eiδ(m) = A(D0 → f̄) = A(D̄0 → f) (5.10)

rSe
i(γ+δS) =

A(B0 → D0K∗0)

A(B0 → D̄0K∗0)
(5.11)

rD =

√

√

√

√

∫ |AD|2dm
∫ |AD|2dm

(5.12)

Equation 5.9 is a formulation of the CP conservation in D decays and more specifically we
can write:

A(D0 → K+(p1)π
−(p2)π

0(p3)) = A(D̄0 → K−(p′1)π
+(p′2)π

0(p′3)) (5.13)

or, for the Kπππ mode,

A(D0 → K+(p1)π
−(p2)π

−(p3)π
+(p4)) = A(D̄0 → K−(p′1)π

+(p′2)π
+(p′3)π

−(p′4)) (5.14)

where the primed 4-momenta have the spatial components with opposite sign and therefore
|pi + pj|2 = |p′i + p′j|2.

In the following, we calculate RADS and AADS in case of multibody D decays. The
branching fractions have to be expressed as integrals over the Dalitz plane:

BR(B0 → fK∗0) = BB

∫

|rSe
i(γ+δS)AD(m)eiδ(m) + AD(m)eiδ(m)|

2
dm = (5.15)

= BB

∫

[|rSAD|2 + |AD|2 + 2rSADAD cos(γ + δS + δ − δ)]dm =

= BBBD · [r2
S + r2

D +
2rS

BD

∫

ADAD(cos ∆ cos γ − sin ∆ sin γ)dm] =

= BBBD · [r2
S + r2

D + 2rSrD(C cos γ − S sin γ)]

where ∆ = δS + δ − δ and

C =
1

BDrD

∫

AD(m)AD(m) cos ∆dm , (5.16)

S =
1

BDrD

∫

AD(m)AD(m) sin ∆dm . (5.17)

The terms BDrD can be written as:

BDrD =
∫

|AD(m)|2dm ·
√

√

√

√

∫ |AD(m)|2dm
∫ |AD(m)|2dm =

√

∫

|AD(m)|2dm ·
∫

|AD(m)|2dm (5.18)



5.1. ANALYSIS OVERVIEW: ADS METHOD AT WORK 91

and C and S as:

C ≡
∫ AD(m)AD(m) cos ∆dm

√

∫ |AD(m)|2dm · ∫ |AD(m)|2dm
(5.19)

S ≡
∫ AD(m)AD(m) sin ∆dm

√

∫ |AD(m)|2dm · ∫ |AD(m)|2dm
. (5.20)

The expression of the branching ratios for opposite sign events, that enter in the definition
of the numerator of RADS , is the following:

BR(B0 → fK∗0) = BBBD(r2
S + r2

D

+ 2rSrD(C cos γ − S sin γ)); (5.21)

BR(B̄0 → fK̄∗0) = BBBD(r2
S + r2

D

+ 2rSrD(C cos γ + S sin γ)). (5.22)

(5.23)

The expression of the branching ratios of same sign events, that enter in the definition of
the denominator of RADS , making the same approximation as in sec. 2.2.2, is the following

BR(B0 → fK∗0) = BBBD(1 + r2
Sr

2
D

+ 2rSrD(C cos γ − S sin γ)) ∼ BBBD (5.24)

BR(B̄0 → fK̄∗0) = BBBD(1 + r2
Sr

2
D

+ 2rSrD(C cos γ + S sin γ)) ∼ BBBD (5.25)

(5.26)

where the quantities C and S are the same for the B0 and the B̄0 if no CP violation is
assumed in D decays since the CP transformation of the D decay amplitudes does not change
the Dalitz variables mKπ and mKπ0 (see Eq. 5.14 and related comment). The expression for
RADS and AADS are the following:

RADS = r2
S + r2

D + 2rSrDC cos γ (5.27)

AADS = 2rSrDS sin γ/RADS . (5.28)

We now consider the expression for C in eq. 5.19. The following inequality holds:

∫

dmdm′[AD(m)2AD(m′)
2 −AD(m)AD(m)AD(m′)AD(m′)] =

=
1

2

∫

dmdm′[AD(m)AD(m′) −AD(m′)AD(m)]2 ≥ 0. (5.29)

from which it follows that:
∫

|AD|2dm ·
∫

|AD|2dm− [
∫

AD(m)AD(m)dm]2 ≥ 0,
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and since the following relations are valid:

−
∫

ADADdm ≤
∫

ADAD cos ∆dm ≤
∫

ADADdm;

−
∫

ADADdm ≤
∫

ADAD sin ∆dm ≤
∫

ADADdm; (5.30)

hence the following inequalities hold:

−
√

∫

|AD|2dm ·
∫

|AD|2dm ≤
∫

ADAD cos ∆dm ≤
√

∫

|AD|2dm ·
∫

|AD|2dm;

−
√

∫

|AD|2dm ·
∫

|AD|2dm ≤
∫

ADAD sin ∆dm ≤
√

∫

|AD|2dm ·
∫

|AD|2dm;

which imply

−1 ≤ C ≤ 1; (5.31)

−1 ≤ S ≤ 1; (5.32)

and therefore:

r2
S + r2

D − 2rSrD cos γ ≤ RADS ≤ r2
S + r2

D + 2rSrD cos γ. (5.33)

−2rSrD sin γ/RADS ≤ AADS ≤ 2rSrD sin γ/RADS. (5.34)

The experimental values for the ratios r2
D, integrated over the whole Dalitz plane, for the

Kππ0 and Kπππ modes, are [8]:

r2
D(Kππ0) = (2.18 ± 0.10)10−3, (5.35)

r2
D(Kπππ) = (3.23 ± 0.24)10−3. (5.36)

(5.37)

Taking into account the variation of C and S in their full range ([−1, 1]) and the experimental
error on rD, we give in Fig. 5.3 the variation for RKππ0

ADS and RKπππ
ADS as a function of rS.

It can be seen that the C and S parameters can be determined from a measurements of
the Dalitz structure of the allowed and suppressed multibody D decays. Singling out the B
decay strong phase, one can indeed write:

C = PccosδS − PssinδS (5.38)

S = PcsinδS + PscosδS

where

Pc =

∫ ADAD cos(δ(m) − δ(m))dm
√

∫ |AD|2dm · ∫ |AD|2dm
(5.39)

Ps =

∫ ADAD sin(δ(m) − δ(m))dm
√

∫ |AD|2dm · ∫ |AD|2dm
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Figure 5.3: Ranges of variation of RKππ0

ADS and RKπππ
ADS for different values of rS.

which can be derived knowing the Dalitz structure.

An alternative formalism, formally identical to the one presented in [33] (that we use
for describing B → DK∗ decays, see sec. 2.6.1), is obtained starting from the following
definition:

kde
iδD

S =

∫ ADADe
i(δ(m)−δ(m))dm

√

∫ |AD|2dm · ∫ |AD|2dm
. (5.40)

The quantities introduced in eq. 5.39 are simply related to the ones introduced in eq. 5.40
by:

Pc = kD cos δD
S ;

Ps = kD sin δD
S ;

and consequently:

C = kD cos(δD
S + δS);

S = kD sin(δD
S + δS).

The use of the definitions in eq. 5.40, that makes the expressions for multi-body decay
formally identical to the ones for two-body decays (except for the kD parameter), is adopted
by the CLEO-c collaboration, where these parameters can be measured exploiting the quan-
tum correlation in DD̄ decays. The general expression for RADS and AADS in this formalism
are the following:

RADS = r2
S + r2

D + 2rSrDkkD cos γ cos(δD
S + δS); (5.41)

AADS = 2rSrDkkD sin γ sin(δD
S + δS)/RADS; (5.42)

where kD and δD
S result from integrals over the D Dalitz plane and depend on the D decay

mode. The case of a two-body decay is obtained with kD → 1, δD
S → δD.
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5.1.3 Combination of the three channels

Recently, a measurement of the relative strong phase δD has been perfomed by the CLEO-c
collaboration [55] and preliminary results for the coherence factor kD and the strong phase
δD
S for the Kπππ channel have been presented at the conference on ”Flavour physics and
CP violation” in Taipei, Taiwan (May 2008).

As a general fact, the knowledge of the strong phase for the Kπ mode and of kD and
δD
S for Kππ0 and Kπππ would reduce the unknowns of the system to γ, rS and δS. Also

measuring only the ratios RADS in the three channels would then allow to close the system,
since there would be three unknowns and three measured observables.

As a matter of fact, the preliminary results presented by CLEO-c on the Kπππ mode
seem to prefer a value for kKπππ

D significantly smaller than unity. This would reduce the
sensitivity to the phases, but improve the sensitivity to rS.

5.2 Selection and background caracterization

The selection criteria are chosen, separately for each channel, in order to maximize the
sensitivity to RADS . Assuming rS = 0.3 and rD � rS the ratios RADS are expected to
be roughly of the order of 0.1 (see Fig. 5.2 and 5.3). We then expect to have ten times
more “same sign” than “opposite sign” events and the error on the RADS ratios will mainly
depend on the error on the latter. Moreover, as it will be shown in the following, we expect
more background in the opposite sign sample than in the same sign. For these reasons,
the selection criteria have been optimized in order to minimize the error on the number of
“opposite sign” signal events, which leads the sensitivity to RADS .

The selection studies are based on MC generated events for the signal modes and for
the different backgrounds and, whenever possible, directly on data. The agreement of the
relevant variables distribution between data and MC has also been checked. To allow us to
properly reweight the events according to different Dalitz structures, the same and opposite
sign signal Monte Carlo samples are generated with the neutral D decaying isotropically
(phase space), without assuming any resonance model. The MC samples for the background
have been instead generated according to the measured Dalitz model for the favored D0

decay. The data and MC samples used for the ADS analysis are summarized in Tab. 5.1.

5.2.1 Preselection criteria

The first step of the analysis consists of some loose preselection cuts, described below. The
main reason for this step is to reduce the size of the initial sample without losing almost
any signal efficiency. The optimization of the final selection cuts is made on events that pass
these first loose cuts.

The described preselection criteria are summarized below:

• mES ∈ [5.2,5.3] GeV/c2;

• |∆E| < 0.06GeV (∼ 4.8σ for Kπ and Kπππ and ∼ 4.4σ for Kππ0);

• 0.105 GeV/c2 < Mπ0 < 0.155 GeV/c2;
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Sample # of events cross section - BR Leq

On-resonance data - - 423fb−1

Off-resonance data - - 41.3fb−1

Same Sign signal (Kπ) 60 k 1.68 fb 36ab−1

Opposite Sign signal (Kπ) 60 k 0.27 fb 400ab−1

Same Sign signal (Kππ0) 60 k 5.95 fb 10ab−1

Opposite Sign signal (Kππ0) 60 k 0.95 fb 111ab−1

Same Sign signal (Kπππ) 60 k 3.40 fb 18ab−1

Opposite Sign signal (Kπππ) 60 k 0.54 fb 200ab−1

Generic B+B− 685 M 0.55 nb 1245fb−1

Generic B0B̄0 686 M 0.55 nb 1247fb−1

Generic cc 1100 M 1.30 nb 837fb−1

Generic uds 906 M 2.09 nb 433fb−1

Table 5.1: Data and MC samples used in the analysis in terms of number of events and of
equivalent integrated luminosity (Leq). The cross section of each process is also shown. The
value of the branching fraction (BR) for the signal modes are estimated assuming rS = 0.3.

• K(D0) KLHLoose;

• K(K∗0) KLHVeryLoose;

• |MD0 −Mnominal
D0 | < 0.036(Kπ), 0.068(Kππ0), 0.029(Kπππ) GeV/c2 (5σ);

• |MK∗0 −Mnominal
K∗0 | < 0.065 GeV/c2;

5.2.2 Continuum background caracterization and Fisher discrim-
inant

As already discussed in sec. 4.9, in the center of mass frame, continuum events have a
jet-like spatial distribution, while BB̄ events are spherically distributed. Several variables
account for this difference, allowing for a discrimination of the two kinds of events. In this
analysis, the variables | cos(θthrust)|, ∆t, L10 and L12, defined in sec. 4.9, are combined into a
linear combination, the Fisher discriminant (introduced in sec. 4.9), that is used in the final
maximum likelihood fit. The expression for the Fisher is:

Fisher = 0.9402 − 0.1706| cos(θthrust) + 0.3067L10 − 1.2224L12 + 0.2730|∆t|.

The distributions of the four variables of interest, for simulated signal events, off-resonance
data and simulated BB background events, are shown in Fig. 5.5. In addition to the prese-
lection, the following cuts are also applied:

• mES > 5.27 GeV/c2.

• |∆E| < 0.025 GeV/c for Kπ and |∆E| < 0.02 GeV/c for Kππ0 and Kπππ.
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• |MD0 −Mnominal
D0 | < 2σM

D0
GeV/c2 for each channel.

• |MK0∗ −Mnominal
K∗0 | < 0.048 GeV/c2.

• | cos θK∗0

HEL| > 0.29.

• Prob(χ2
B0) > 0.001, Prob(χ2

D0) > 0.001, Prob(χ2
K∗0) > 0.001.

• 0.120 GeV/c2 < |Mπ0 − 0.135| < 0.143 GeV/c2

These additional selection criteria have been applied in order to perform the continuum
rejection studies on a sample similar to the final selected sample of this analysis. It should
be stressed that the final cuts on the above listed variables are different and result from an
optimization procedure as will be explained in sec. 5.2.3. The Fisher discriminant is used
for the final cut optimization and for this reason we introduce it here.

Fig. 5.6 shows the agreement between off-resonance and simulated events for the different
variables used for building the Fisher discriminant. The agreement is satisfactory and for this
reason the simulated events have been used to train the Fisher discriminant (see sec. 4.9).
In Fig. 5.7, the top plots show the agreement between off-resonance and simulated events
for the Fisher distribution and the distributions for simulated signal and continuum events.
In Fig. 5.7 the bottom plot shows the efficiency on the signal as a function of the efficiency
on the background, for different cuts on the Fisher discriminant. The Fisher distributions
shown in Fig. 5.7 are obtained using the three D0 decay modes together. Tests performed
building the Fisher discriminant using the three D modes separately give compatible results.
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Figure 5.4: Distributions of |cos(θthrust)| (left) and |∆t| for simulated signal events, off-
resonance data and simulated BB background events for Kπ (top plots), Kππ0 (middle
plots) and Kπππ events (bottom plots).
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Figure 5.5: Distributions of L10 and L12 for simulated signal events, off-resonance data and
simulated BB background events for Kπ (top plots), Kππ0 (middle plots) and Kπππ events
(bottom plots).
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Figure 5.6: Distributions of the variables | cos(θthrust)| (top left), |∆t| (top right), L10 (bottom
left) and L12 (bottom right) obtained using simulated uds and cc̄ events, a weighted sum of
te two (according to their cross sections) and off-resonance data. All the distributions are
normalized to the off-resonance data luminosity (41.3 fb−1).
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Figure 5.7: Top left: Fisher distribution obtained using simulated uds and cc̄ events, a
weighted sum of the two (according to their cross sections) and off-resonance data (all the
distributions are normalized to the off-resonance data luminosity, 41.3 fb−1). Top right:
Fisher distribution for simulated signal and continuum events. Bottom plot: efficiency
on simulated continuum events as a function of the efficiency on simulated signal events.
The different curves are obtained using | cos(θthrust)| and L10, | cos(θthrust)|, L10 and L12,
| cos(θthrust)|, L10, L12 and |∆t|.
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5.2.3 Selection cut optimization

An optimization procedure has been used to find the optimal cuts for the following variables:
∆E, MD0 , probability of the χ2 of the vertex fit for B, D and K∗, particle identification
of the kaons produced in the K∗ and D decays, Mπ0 and the π0 momentum in the e+e−

center of mass frame pCM
π0 (the latter two variables only refer to the Kππ0 decay mode). The

optimization procedure consists in finding the cuts that maximize the variable S/
√
S +B,

where S and B are the numbers of selected events in simulated signal and background
samples respectively. The choice of the cuts on MK∗0 and cos θK∗0

HEL is common to the two
analyses presented in this thesis and was described in sec. 4.6.

The optimization is made using only opposite sign events. This choice is motivated by
the fact that we want to suppress the background mainly in the opposite sign sample, which
drives the error on RADS and hence the sensitivity to rS. We then apply the same cuts to all
the events because we are interested in having the same efficiency on same sign and opposite
sign samples.

Since the extraction of signal and background is performed through a maximum likelihood
fit to the variables mES and Fisher, the quantities S/

√
S +B and S/

√
B are evaluated for

events that satisfy the additional criteria mES > 5.27 GeV/c2 and Fisher>0. The variation
of S/

√
S +B and S/

√
B, for different choices of the cuts on MD0 , ∆E and Mπ0 are shown

in Figs. 5.8–5.11.
The variation of S/

√
S +B for different cuts on the kaon particle identification, on the

probability of the χ2 of the vertex fit for B, D and K∗0 and on the momentum of the π0

in the center of mass frame (for the Kππ0 mode) are shown in Tabs. 5.2 and 5.3. From
these studies we decided to use the additional selection criteria: Prob χ2

BV tx > 0.001 and
|pCM

π0 | > 0.3 GeV/c.
The calculation of S/

√
S +B depends on the assumed branching fraction for the signal, i.e.

what assumption is made on rS. This dependence is not present when the quantity S/
√
B

is maximized instead. It has been checked that very similar results are obtained when using
S/

√
S +B or S/

√
B (as shown in Fig. 5.8–5.10). In the following, S/

√
S +B is used.
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Figure 5.8: [Kπ mode - selection cuts optimization]. Variation of S/
√
S +B (top plots) and

S/
√
B (bottom plots) as a function of the cut on |MD0 −Mnominal

D0 | (left) and ∆E (right).
The optimization has been made on opposite sign events only, assuming rS = 0.3, using
preselection cuts, with the addition of mES > 5.27 GeV/c2 and Fisher> 0.
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Figure 5.9: [Kππ0 mode - selection cuts optimization]. Variation of S/
√
S +B (top plots)

and S/
√
B (bottom plots) as a function of the cut on |MD0Mnominal

D0 | (left) and ∆E (right).
The optimization has been made on opposite sign events only, assuming rS = 0.3, using
preselection cuts, with the addition of mES > 5.27 GeV/c2 and Fisher> 0.
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√
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and S/
√
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π0 and Mnominal
π0 − Mπ0 .

The optimization has been made on opposite sign events only, assuming rS = 0.3, using
preselection cuts, with the addition of mES > 5.27 GeV/c2 and Fisher> 0.
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Figure 5.11: [Kπππ mode - selection cuts optimization]. Variation of S/
√
S +B (top plots)

and S/
√
B (bottom plots) as a function of the cut on |MD0 − Mnominal

D0 | (left) and ∆E
(right). The optimization has been made on opposite sign events only, assuming rS = 0.3,
using preselection cuts, with the addition of mES > 5.27 GeV/c2 and Fisher> 0.
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Cut S/
√
S +B(Kπ) S/

√
S +B(Kππ0) S/

√
S +B(Kπππ)

Default value 1.038 0.517 0.459
Prob χ2

BV tx > 0.001 1.071 0.527 0.476
Prob χ2

DV tx > 0.001 1.037 0.516 0.467
Prob χ2

K∗V tx > 0.001 1.03 0.515 0.461
K from K∗0 PID KLHTight 1.020 0.510 0.455
K from D0 PID KLHTight 1.017 0.516 0.458

Table 5.2: [selection cuts optimization]. Values of S/
√
S +B for different cuts for the three

D decay modes, obtained using opposite sign events. The first row corresponds to the
optimized selection cuts for |∆E|, MD0 , MK∗0, cosθK∗0

HEL and Mπ0 (for the Kππ0 mode),
with the addition of mES > 5.27 GeV/c2 and Fisher> 0. The value of S/

√
S +B in each

row is the consequence of the addition of the indicated cut. We decided to use a cut if its
application gives an improvement on S/

√
S +B, with respect to the value quoted in the

first row.

Cut S/
√
S +B

Default value 0.49
pCM

π0 > 0.1 GeV/c 0.49
pCM

π0 > 0.2 GeV/c 0.51
pCM

π0 > 0.3 GeV/c 0.53
pCM

π0 > 0.4 GeV/c 0.52
pCM

π0 > 0.5 GeV/c 0.51

Table 5.3: [selection cuts optimization]. Values of S/
√
S +B for different cuts on on pCM

π0 ,
obtained using opposite sign Kππ0 decay mode events. The first row corresponds to the
optimized selection cuts on |∆E|, MD0 , MK∗0, cosθK∗0

HEL and Mπ0 , with the addition of mES >
5.27 GeV/c2 and Fisher> 0. The value of S/

√
S +B in each row is the consequence of the

addition of the indicated cut. We decided to use a cut if its application gives an improvement
on S/

√
S +B, with respect to the value quoted in the first row.
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5.2.4 Studies of peaking background events

A special attention has been put, within the BB̄ background, on possible sources of peaking
background. Peaking background consists of processes that lead to the same final state as
for the reconstructed signal. Indeed the mES and Fisher distributions of these events are
rather similar to the ones of the reconstructed signal.

The possible peaking background contributions have been identified from a study of BB̄
simulated events. The contributing modes are listed in Tab. 5.4, where it is also indicated
for which reconstructed D mode they are a background and if they are reconstructed as
same sign (SameS) or opposite sign (OppS). In order to reconstruct some of the modes
listed in Tab. 5.4 as signal, a misidentification of a π± as a K± is necessary (marked “wrong
PID” in the table). To precisely evaluate the contribution of all these possible sources
of peaking background, dedicated simulated samples have been generated, the equivalent
luminosity of these samples is shown in Tab. 5.4. The most worrying backgrounds are those
contributing to the opposite sign category: the decay modes B0 → D−[K∗0K−]π+ for the
Kπ reconstructed channel, B0 → D−[K∗0K−]ρ+[π+π0] for the Kππ0 reconstructed channel,
and B0 → D−[K∗0K−]a+

1 [π+π+π−] for the Kπππ reconstructed channel.

B decay mode background for category gen. lumi [ab−1]

B0 → D−[K+π−π−]K+ Kπ mode SameS 1.0
B0 → D−[K∗0K−]π+ Kπ mode OppS 1.9
B0 → D−[K∗0K−]ρ+[π+π0] Kππ0 mode OppS 0.8
B0 → D−[K∗0K−]a+

1 [π+π−π−] Kπππ mode OppS 1.1
B0 → D0ρ0 (D0 → Kπ) Kπ mode (wrong PID) SameS 6.8
B0 → D0ρ0 (D0 → Kππ0) Kππ0 mode (wrong PID) SameS 1.9
B0 → D0ρ0 (D0 → Kπππ) Kπππ mode (wrong PID) SameS 3.4
B0 → D∗−[D0π−]π+ (D0 → Kπ) Kπ mode (wrong PID) SameS 8.0
B0 → D∗−[D0π−]π+ (D0 → Kππ0) Kππ0 mode (wrong PID) SameS 2.3
B0 → D∗−[D0π−]π+ (D0 → Kπππ) Kπππ mode (wrong PID) SameS 4.0

Table 5.4: Equivalent luminosity of dedicated MC generated samples for peaking background
studies and equivalent luminosities (calculated assuming the nominal values for the different
branching fractions).

To suppress the B0 → D−[K∗0K−]π+(or ρ+, or a+
1 ) background that could simulate

opposite-sign signal events, we veto all the candidates for which the invariant mass of the
K∗0 and the K− from the D0 is within ±6 MeV from the nominal D− mass (the efficiencies
of these vetoes on signal are εKπ = (99.84 ± 0.01)%, εKππ0 = (98.89 ± 0.03)% and εKπππ =
(99.97 ± 0.01)%). The distribution of the invariant mass for signal Kπ, Kππ0 and Kπππ
events can be seen in Fig. 5.12.

The effect of the cut on the invariant mass of the K∗0 and the K− from the D0 can be
observed in Tab. 5.5, where the number of expected events in the opposite sign mode, for
Kπ, Kππ0 and Kπππ decay modes is shown. The cut on the invariant mass is very effective
and it has been added to the final selection.
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Figure 5.12: Invariant mass of the K∗0 and the K− from the D0 for Kπ (left) and Kππ0

(center), Kπππ (right) simulated signal events.

All the possible peaking sources have been studied and a cut on the particle identification
(KLHTight) of the kaon from the K∗0 has been found useful to reject peaking background
from D0ρ0 modes. A summary of these studies is shown in tb. 5.6.

With the addition, presented in sec. 5.2.3, to the optimized selection cuts, of the cuts on
the particle identification (KLHTight) of the kaon from the K∗0 and on the invariant mass
of the K∗0 and the K− from the D0 all the possible sources of peaking background give a
negligible contribution, as listed in Tab. 5.7.
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D−[K∗0K−]π+ D−[K∗0K−]ρ+ D−[K∗0K−]a+
1

Cut (Kπ OS) (Kππ0 OS) (Kπππ OS)

- 3.1 ± 0.9 3.0 ± 0.4 0.39 ± 0.30
|mK∗0K −MD+ | > 6 MeV/c2 <0.07 @ 95% <0.05 @ 95% <0.12 @ 95%

Table 5.5: Number of expected peaking background events, in 423 fb−1 of on-resonance
data, for the indicated modes. The first row corresponds to the number of events selected
after the cuts on |∆E|, | cos θB

CM |, MD0 , MK∗0 and | cos θK∗0
HEL|.

D0[Kπ]ρ0 D0[Kππ0]ρ0 D0[Kπππ]ρ0

Cut (Kπ SS) (Kππ0 SS) (Kπππ SS)
- 0.24 ±0.14 0.85±0.61 1.1±0.4

K∗0 KLHTight 0.16 ± 0.12 0.43 ± 0.43 0.6 ± 0.3

Cut (Kπ OS) (Kππ0 OS) (Kπππ OS)

- (1.0 ± 0.6) 10−4 (3.4 ± 2.4) 10−4 (4.4 ± 1.5) 10−4

K∗0 KLHTight (0.6 ± 0.5) 10−4 (1.7 ± 1.7) 10−4 (2.4 ± 1.1) 10−4

Table 5.6: Number of expected peaking background events, in 423 fb−1 on-resonance data,
for the indicated modes. The first row corresponds to the number of events selected after
the cuts on |∆E|, |cosθB

CM |, MD0, MK∗0 and |cosθK∗0
HEL|.

mode Kπ SS Kππ0 SS Kπππ SS

B0 → D−[K+π−π−]K+ < 0.12 @95% - -
B0 → D0ρ0 < 0.09 @95% (0.6 ± 0.6)10−4 (0.6 ± 0.6)10−4

B0 → D∗−[D0π−]π+ < 0.05 @95% < 0.16 @95% < 0.09 @95%

mode Kπ OS Kππ0 OS Kπππ OS

B0 → D0ρ0 (1.0 ± 0.6)10−4 (1.0 ± 0.6)10−4 (1.0 ± 1.0)10−4

B0 → D∗−[D0π−]π+ < 0.05 @95% < 0.16 @95% < 0.09 @95%
B0 → D−[K∗0K−]π+ < 0.07 @95% - -
B0 → D−[K∗0K−]π+ - < 0.05 @95% -
B0 → D−[K∗0K−]ρ+ - - < 0.12 @95%

Table 5.7: Summary of the expected number of events from all the peaking background
categories, after all the selection criteria have been applied, with the addition of the cuts on
the particle identification (KLHTight) of the kaon from the K∗0 and on the invariant mass
of the K∗0 and the K− from the D0 (see Tab. 5.5).
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A further possible source of peaking background comes from charmless event (i.e. events
with no real neutral D) of the kind B0 → K∗0Kπ. For these events, the branching fractions
are not very well known and not all the decay modes are included in the simulated events.
Thus, the possible sources of background from charmless events have been evaluated on data
with a fit to the mES variable using the MD0 sidebands (i.e. using only events for which
the reconstructed D mass is more than 5σ away form the nominal D0 mass), after all the
selection cuts (with the exception of the cut on MD0) and after a cut on Fisher > −1.
The resulting mES distribution has two components, a Gaussian distribution, as for the
signal events (the peaking contribution) and an Argus distribution (defined in eq. 4.3). The
parameters of the Argus function have been left free in the fit on data. The results obtained
in the three samples (Kπ, Kππ0 and Kπππ) are shown in Fig. 5.13 and summarized in
Tab. 5.8. The number of fitted events have to be rescaled according to the MD0 range in the
selected sample. The rescaled number of events are given in Tab. 5.8.

All these studies are consistent with the hypothesis of negligible peaking contributions
from charmless events, although in some cases the errors on the number of peaking events
is rather large, considering that we expect order of 10 events in each opposite sign sample.
Under the assumption that the charmless contributions are not sensibly different in the three
D decay mode channels, the number of rescaled events can be combined. In this case, the
contributions from charmless peaking events are found to be compatible with zero with a
precision of ±0.5 and ±1.2 events for the same sign and opposite sign samples respectively.
The peaking contributions will be assumed to be negligible in the final fit and these precisions
will be used for the evaluation of the systematic uncertainty arising from this assumption.

Kπ SS Kππ0 SS Kπππ SS Kπ OS Kππ0 OS Kπππ OS

Npeak −3.5 ± 4.6 0.5 ± 14.9 3.2 ± 9.7 2.7 ± 6.5 −31 ± 22 0.8 ± 13.8
NNopeak 300 ± 17 2173 ± 49 877 ± 31 394 ± 21 5150 ± 75 1929 ± 46
Npeak rescaled 0.8 ± 1.2 0.1 ± 3.2 0.5 ± 2.4 0.7 ± 1.6 −6 ± 5 0.1 ± 2.0
Npeak combined 0.5 ± 0.5 0.06 ± 1.21

Table 5.8: Results of a fit to mES on 423 fb−1 of on resonance data in the MD0 sidebands
(|MD0 −Mnominal

D0 | > 5σ) for the three modes, Kπ, Kππ0 and Kπππ, for same and opposite
sign events separately. The number of peaking and non peaking events is shown, together
with the number of peaking events rescaled according to the MD0 range in the selected
sample. Finally, we give the number of peaking events obtained when the results obtained
on the three samples are combined.

5.2.5 Final selection criteria

The final selection cuts are summarized in table 5.9, for the three D decay modes. Some
additional cuts (namely the cut on the particle identification of the charged kaon from the
K∗ and the cut on mInv

K∗0K) have been added to the final selection. Though they do not
improve the statistical significance, they are very effective in rejecting specific background
categories, as it was shown in sec. 5.2.4.
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Figure 5.13: Fit to the mES distribution of data events in the MD0 sidebands (|MD0 −
Mnominal

D0 | > 5σ) for same sign (left plot) and opposite sign (right plot) events for the three
modes, Kπ (top plots), Kππ0 (middle plots) and Kπππ (bottom plots).

Cut Kπ Kππ0 Kπππ

mES[GeV/c2] 5.2 < − < 5.29 5.2 < − < 5.29 5.2 < − < 5.29
|∆E|[GeV] < 0.016 (1.3σ) < 0.020 (1.5σ) < 0.019 (1.5σ)
| cos θB

CM | < 0.9 < 0.9 < 0.9
K from K∗0 PID KLHTight KLHTight KLHTight
Prob χ2

BV tx > 0.001 > 0.001 > 0.001
Prob χ2

DV tx − − > 0.001
|MD0 − 1.8641|[GeV/c2] 0.014(2.0σ) 0.020(1.5σ) 0.009(1.6σ)
|Mπ0 − 0.135|[GeV/c2] − (2.8σ)0.120 < − < 0.143(1.5σ) −
|pCM

π0 |[ GeV/c ] − > 0.3 −
|MK∗0 − 0.8961|[GeV/c2] < 0.048 < 0.048 < 0.048
| cos θK∗0

HEL| > 0.29 > 0.29 > 0.29
|mInv

K∗0K − 1.8694|[GeV/c2] > 0.006 > 0.006 -

Table 5.9: Summary of the selection criteria for the three D decay modes.
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5.2.6 Selection efficiencies and background composition

The efficiencies on the signal and background events for the three neutral D decay modes
are listed in Tab. 5.10.

Same sign Kπ
Cut B0B̄0 B+B− signal εSIG uds cc̄

Selection 11 29 91 (13.2±0.1)% 142 270
mES > 5.27GeV/c2 4 13 91 (13.2±0.1)% 17 46

Fisher > 0. 3 9 79 (11.5±0.1)% 3 10
Opposite sign Kπ

Cut B0B̄0 B+B− signal εSIG uds cc̄

Selection 21 27 10 (13.2±0.1)% 273 1433
mES > 5.27GeV/c2 6 6 10 (13.2±0.1)% 46 254

Fisher > 0. 4 5 8 (11.5±0.1)% 5 38
Same sign Kππ0

Cut B0B̄0 B+B− signal εSIG uds cc̄

Selection 84 99 128 (5.2±0.1)% 1120 1540
mES > 5.27GeV/c2 23 29 127 (5.2±0.1)% 173 230

Fisher > 0. 18 22 110 (4.5±0.1)% 3 10
Opposite sign Kππ0

Cut B0B̄0 B+B− signal εSIG uds cc̄

Selection 113 139 11 (5.2±0.1)% 2260 5878
mES > 5.27GeV/c2 27 24 11 (5.2±0.1)% 368 942

Fisher > 0. 19 17 9 (4.5±0.1)% 59 194
Same sign Kπππ

Cut B0B̄0 B+B− signal εSIG uds cc̄

Selection 82 104 90 (6.5±0.1)% 638 1211
mES > 5.27GeV/c2 24 35 89 (6.5±0.1)% 101 187

Fisher > 0. 19 29 74 (5.4±0.1)% 10 36
Opposite sign Kπππ

Cut B0B̄0 B+B− signal εSIG uds cc̄

Selection 113 110 8 (6.5±0.1)% 1250 4644
mES > 5.27GeV/c2 24 16 8 (6.5±0.1)% 231 761

Fisher > 0. 19 11 7 (4.5±0.1)% 39 143

Table 5.10: Number of expected signal and background events, same and opposite sign, for
the three D modes, Kπ, Kππ0 and Kπππ. All the numbers of events are rescaled to a 423
fb−1 luminosity. For the signal, we also show the efficiencies.
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5.2.7 Cross-feed between same sign and opposite sign events

The efficiency of reconstructing a same sign event as an opposite sign one or vice versa (by
exchanging the charged kaon with a charged pion in the final state for the D decay) has been
checked on simulated events. The values are summarized in Tab. 5.11.

Cross-feed efficiency (%)

εCF
Kπ 0.035 ± 0.005

εCF
Kππ0 0.046 ± 0.006
εCF
Kπππ 0.019 ± 0.004

Table 5.11: Efficiency of reconstructing a same sign event as an opposite sign one or vice
versa for the three D channels, using the default selection.

These efficiencies are small, however we have considered the possibility of vetoing neutral
D candidates for which the invariant mass constructed from the D decay products, exchang-
ing the kaon with a charged pion, is within 18 MeV/c2 of the nominal D0 mass, as done in
other similar analyses [66, 67]. The cross-feed efficiencies for the three neutral D channels,
after the use of this criterium, as summarized in Tab. 5.12, do not decrease significantly. On
the other hand, the reconstruction efficiencies drop by 1% as a consequence of the veto. For
these reasons, the veto has not been applied. The effects of cross-feed are taken into account
in the systematic uncertainties evaluation.

Cross-feed efficiency (%)

εCF
Kπ 0.014 ± 0.003

εCF
Kππ0 0.041 ± 0.006
εCF
Kπππ 0.014 ± 0.003

Table 5.12: Efficiency of reconstructing a same sign event as an opposite sign one or vice
versa for the three D channels, after D0 veto criterium is applied, as described in the text.

5.2.8 Opposite sign to same sign efficiency ratio for Kππ0 and

Kπππ mode

In the Kππ0 and Kπππ decay modes, the efficiencies in selecting the signal is evaluated
using events generated with a flat Dalitz distribution. However the same sign sample is
mainly constituted of b → c transition events with the neutral D decaying through Cabibbo-
allowed mode, while the opposite sign sample is composed of b→ c transition events with the
neutral D decaying through doubly-Cabibbo-suppressed Cabibbo mode and b→ u transition
events with the neutral D decaying through Cabibbo-allowed mode (see Fig. 5.1). Due to
the fact that the Cabibbo-allowed and doubly-Cabibbo-suppressed neutral D decays are
kinematically different, and hence have different distributions over the Dalitz plane, the
selection efficiencies in same sign and opposite sign samples could be different.
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• Kππ0 decay mode
We reweight the simulated events according to the Dalitz distributions of Cabibbo-
allowed or the one of doubly-Cabibbo-suppressed events, obtained on data by BABAR [57].
We calculate the efficiencies of the selection criteria on Cabibbo-allowed or doubly-
Cabibbo-suppressed reweighted events (εD0

CA
and εD0

DCS
) and the efficiency evaluated

on the simulated events, generated with a flat Dalitz distribution (εD0
PHSP

). The
reweighted efficiencies for the two modes are found to be compatible with εD0

PHSP
.

We thus calculate εD0
CA
/εD0

DCS
to be 1.002 ± 0.03. We can hence assume that the effi-

ciencies on Cabibbo-allowed and doubly-Cabibbo-suppressed event is the same within
a precision of 3%. An uncertainty of 3% on the ratio of the efficiency on same sign and
opposite sign events will be taken into account in the systematic evaluation.

• Kπππ

For the Kπππ, the Cabibbo-allowed decay Dalitz distribution has been studied but we
do not have Dalitz distributions obtained for doubly-Cabibbo-suppressed events.

In order to evaluate how much the efficiency could change using different Dalitz mod-
els, we assume a resonance structure consistent with the measurements. We use
the nominal branching fractions for neutral D decaying to the different intermedi-
ate states, obtained on the Cabibbo-allowed mode [8], which are shown in Tab. 5.13
thus we generate D0 → Kπππ events in 10 different configurations by varying the
fractions of events in each resonance by ±10%. The ratio of the efficiency com-

decay modes BR

D0 → K−π+ρ0 tot. (6.4 ± 0.4)%
D0 → K̄∗0ρ0 (1.00 ± 0.22)%
D0 → K−a+

1 (3.6 ± 0.6)%
D0 → K̄∗0π+π− tot (1.5 ± 0.4)%

D0 → K−
1 π

+ (0.29 ± 0.3)%
D0 → K−π+π+π− N.R. (1.80 ± 0.25)%

Table 5.13: Branching ratios for D0 decaying to the different intermediate states considered
in the study. The values are taken from [8].

puted using the Cabibbo-allowed Dalitz model (see Tab. 5.13) over the efficiency
obtained using the flat Dalitz distribution for the Cabibbo allowed decay is found to
be rCA = εD0

CA
/εD0

PHSP
= 1.02 ± 0.04. The values of this ratio, when assuming the 10

different configurations for the D0 Dalitz structure are distributed as can be seen in
Fig. 5.14.

The maximum deviation from unity is of 5% and the RMS of the distribution is 3%.
By varying the amplitudes in this way, we think we account for the possible differ-
ences between the Cabibbo-allowed and doubly-Cabibbo-suppressed Kπππ mode. We
conclude that these eventual differences would have a small impact on the efficiency
of our selection. An uncertainty of 3% on the ratio of the efficiency on same sign and
opposite sign events will be taken into account in the systematic evaluation.
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Figure 5.14: Values of the ratio r = εD0
Dal
/εD0

PHSP
using 10 different Dalitz distributions for

the neutral D decay mode into Kπππ final states.

5.3 Comparison between data and simulated events

In Fig. 5.15-5.18, we show the distributions of mES and Fisher in the mES sidebands
(mES < 5.27 GeV/c2) as obtained for data and simulated events. We notice we found
more simulated events with respect to data for the K3π mode and viceversa for the Kππ0

mode. Nevertheless, it can be noted that the shapes of all the distributions are in good
agreement. The latter is important, because the number of signal and background events
(hence the overall normalization and the relative contributions) are left free in the fit on
data.
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Figure 5.15: [Kπ mode] Data-MC comparison of the mES (left) and Fisher (right) distri-
butions, for mES < 5.27GeV/c2. The distributions are shown for Kπ events (top plots),
Kπ same sign events (middle plots) and Kπ opposite sign events (bottom plots). All the
distributions are rescaled to the data luminosity (423 fb−1).



5.3. COMPARISON BETWEEN DATA AND SIMULATED EVENTS 115

    )2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27
0

200

400

600

800

1000

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27
0

200

400

600

800

1000 Data
 MCcc

uds MC

 MC0B0B
 MC-B+B

Fisher
-4 -3 -2 -1 0 1 2 3 4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

-4 -3 -2 -1 0 1 2 3 4
0

200

400

600

800

1000

1200

1400

1600

1800

2000 Data
 MCcc

uds MC

 MC0B0B
 MC-B+B

    )2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27
0

50

100

150

200

250

300

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27
0

50

100

150

200

250

300 Data
 MCcc

uds MC

 MC0B0B
 MC-B+B

Fisher
-4 -3 -2 -1 0 1 2 3 4

0

100

200

300

400

500

-4 -3 -2 -1 0 1 2 3 4
0

100

200

300

400

500 Data
 MCcc

uds MC

 MC0B0B
 MC-B+B

    )2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27
0

100

200

300

400

500

600

700

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27
0

100

200

300

400

500

600

700 Data
 MCcc

uds MC

 MC0B0B
 MC-B+B

Fisher
-4 -3 -2 -1 0 1 2 3 4

0

200

400

600

800

1000

1200

1400

1600

-4 -3 -2 -1 0 1 2 3 4
0

200

400

600

800

1000

1200

1400

1600 Data
 MCcc

uds MC

 MC0B0B
 MC-B+B

Figure 5.16: [Kππ0 mode] Data-MC comparison of the mES (left) and Fisher (right) distri-
butions, for mES < 5.27GeV/c2. The distributions are shown for Kππ0 events (top plots),
Kππ0 same sign events (middle plots) and Kππ0 opposite sign events (bottom plots). All
the distributions are rescaled to the data luminosity (423 fb−1).
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Figure 5.17: [Kπππ mode] Data-MC comparison of the mES (left) and Fisher (right) distri-
butions, for mES < 5.27GeV/c2. The distributions are shown for Kπππ events (top plot),
Kπππ same sign events (middle plot) and Kπππ opposite sign events (bottom plots). All
the distributions are rescaled to the data luminosity (423 fb−1).
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Figure 5.18: [All D modes] Data-MC comparison of the mES (left) and Fisher (right) dis-
tributions (for mES < 5.27 GeV/c2), for all the modes together. All the distributions are
rescaled to the data luminosity (423 fb−1).
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5.4 Maximum likelihood fit

5.4.1 Structure of the fit model

To extract RADS we perform an extended maximum likelihood fit to the set of variables:
{mES,Fisher, sgnK}, where sgnK is a discrete variable equal to −1 for opposite sign events
and equal to +1 for same sign events. We write the extended likelihood L as:

L =
e−N ′

N !
N ′N

N
∏

j=1

f(xj | θ,N ′) ,

with f(x | θ,N ′) =
NSfS(x|θ) +

∑

iNBi
fBi

(x|θ)
N ′ ,

where fS(x|θ) and fBi
(x|θ) are the probability density functions (pdfs) of the hypothesis that

the event is a signal or a background event (Bi are the different background categories used
in the fit). The variables are indicated by the vector x and θ indicates a set of parameters.
The total pdf (f(x | θ,N ′)) is a linear combination of the pfds for the signal and background
categories, with coefficients equal to the number of signal and background events, normalized
by N ′ (and not N = NS +

∑

iNBi
), where N ′ is the expectation value for the total number

of events.

There are two signal categories in the fit: one for the opposite sign “NOppS
SIG ” and one for

the same sign “NSameS
SIG ” mode, so we can write:

f(x | θ,N ′) =
1

N ′ {
RADSNDK∗

1 +RADS

fOppS
SIG (x|θOppS

SIG ) +
NDK∗

1 +RADS

fSameS
SIG (x|θSameS

SIG ) +

+ NOppS
cont f

OppS
cont (x|θOppS

cont ) +NSameS
cont fSameS

cont (x|θSameS
cont ) +

+ NOppS
BB fOppS

BB (x|θOppS
BB ) +NSameS

BB fSameS
BB (x|θSameS

BB )}

where NDK∗ is the sum of the number of opposite sign and same sign signal events:

NDK∗ = NOppS
SIG +NSameS

SIG ;

RADS =
NOppS

SIG

NSameS
SIG

.

NSameS
cont , NOppS

cont , NSameS
BB and NOppS

BB are the number of same and opposite sign events for
continuum and BB̄ background. Each pdf (for a given category) is a function of all the
variables. Since the correlations among the variables are negligible, we write the pdf as the
product of the one-dimensional pdfs for the single variables.

The variable sgnK is always parametrized with a two bin step function 1: one bin for
the value sgnK = −1 and one for sgnK = +1. For the opposite sign mode fsgnK(sgnK =
−1) = 1 and fsgnK(sgnK = +1) = 0, while for the same sign mode fsgnK(sgnK = −1) = 0
and fsgnK(sgnK = +1) = 1.

1A function that has a constant value in each one of the intervals in which its domain is divided.
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5.4.2 Parametrizations of the distributions used in the fit: mES,

Fisher

In this section we show the parametrizations of the pdf for mES and Fisher for signal and
background events. The parametrizations have been obtained on simulated events.

Signal

For both mES and Fisher distributions, the same sign and opposite sign signal events have
been parametrized using the same probability density functions (pdf). The distribution of
mES is parametrized with a Gaussian function, while the Fisher discriminant is parametrized
with a double Gaussian distribution. The parametrizations are shown in Fig. 5.19. Details
on the fitted parameters are given in appendix A.
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Figure 5.19: mES (left) and Fisher (right) distributions for simulated signal events for Kπ
(top plots), Kππ0 (middle plots) and Kπππ (bottom plots) modes. The superimposed curve
is the result of a fit with a Gaussian function for mES, and the result of a fit with a double
Gaussian function for the Fisher discriminant.
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BB background

For the BB background, the variable mES is parametrized with an Argus function and the
Fisher is parametrized using a double Gaussian distribution. For this category of background,
we observed that the mES distribution has a different shape for same sign (sgnK = 1) and
opposite sign (sgnK = −1) events, so the parameters of the pdfs are evaluated separately in
the two categories. The results of the parametrizations are shown in Fig. 5.20 for mES and
in Fig. 5.21 for Fisher discriminant. Details on the fitted parameters are given in appendix
A.
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Figure 5.20: mES distribution for BB simulated events for Kπ (top plots), Kππ0 (middle
plots) and Kπππ (bottom plots) modes. The distributions for same and opposite sign events
are shown on the left and on the right respectively. The superimposed curves are the result
of a fit with an Argus function.
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Figure 5.21: Fisher distribution for BB simulated events for Kπ (top plots), Kππ0 (middle
plots) and Kπππ (bottom plots) modes. The superimposed curve is the result of a fit with
a sum of two Gaussian functions.
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Continuum background

For the continuum background, the variable mES is parametrized with an Argus function and
the Fisher is parametrized using a Gaussian distribution. For this category of background,
we observed that the mES distribution has a different shape for same sign (sgnK = 1) and
opposite sign (sgnK = −1) events, so the parameters of the pdfs are evaluated separately for
the two categories. The results of the parametrizations are shown in Fig. 5.22 for mES and
in Fig. 5.23 for Fisher discriminant. Details on the fitted parameters are given in appendix
A.
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Figure 5.22: mES distribution for continuum simulated events for Kπ (top plots), Kππ0

(middle plots) and Kπππ (bottom plots) modes. The distributions for same and opposite
sign events are shown on the left and on the right respectively. The superimposed curves are
the result of a fit with an Argus function.
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Figure 5.23: Fisher distribution for continuum simulated events for Kπ (up), Kππ0 (middle)
and Kπππ (down) modes. The superimposed curve is the result of a fit with a Gaussian
function.
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5.4.3 Fit validation using a Toy Monte Carlo procedure

The fit procedure has been validated by means of a toy Monte Carlo (toy MC) technique:
1000 samples for each one of the three decay channels are generated from the fit model,
according to the distributions of mES and Fisher and using the parameters values listed
in Tab. A.1, A.2 and A.3 in appendix A. The number of generated events are chosen
following Poisson distributions with expected values equal to the expected number of events,
as estimated on simulated events and reported in the Tab. 5.10. The fit is then performed
on every generated sample.

In all the tests shown in the following the parameters left free to vary in the fit procedure
are:

• the sum of the number of opposite sign and same sign signal events, NDK∗, and RADS ;

• the number of same and opposite sign events for the backgrounds (NSameS
cont , NOppS

cont ,
NSameS

BB and NOppS
BB );

• the mean value for the Gaussian describing mES for signal events;

• the parameters of the Argus function describing mES for continuum events.

We define the pull for a variable x as the difference between the fitted and the generated
value, divided by its error: xpull = (xfit − xgen)/xerr. We look at the distribution of the pull
variable for the quantities of interest (mainly NDK∗ and RADS) for all the generated toy-MC
samples. If the likelihood of the fitted variable x is well described by a Gaussian, we expect
the mean value of its pull distribution (xpull) to be consistent with zero and its resolution to
be consistent with unity.

In Fig. 5.24, we show the pull of NDK∗, for the three D0 channels. In Figs. 5.25, 5.26
and 5.27, we show the distribution of RADS , its error and its pull for the three D0 channels.
More details on the toy Monte Carlo results are shown in appendix B.

We also show the negative and positive errors we get for RADS when we fit for it with
asymmetric errors and the corresponding pull distributions. When calculating the pull with
asymmetric errors the negative error is used for fitted values that are smaller than the gener-
ated one, while the positive error is used for fitted values that are higher than the generated
one. For all the three channels, the likelihood for RADS from the toy-MC experiments is
not Gaussian and hence the pull for RADS , calculated using Gaussian errors, does not have
a mean consistent with zero nor an RMS consistent with unity. On the other hand, the
asymmetric pull distributions show a good behaviour, which means that the result for RADS

is well described by a bifurcated Gaussian. The final outcome of the analysis will be a
likelihood scan for the variables RADS for the three channels, thus independent from any
Gaussian assumption.
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Figure 5.24: [toy Monte Carlo]. Pull distributions for NDK∗ (the sum of the number of
opposite- and same sign signal events) obtained from the toy MC described in the text for
the Kπ (top), Kππ0 and Kπππ (bottom) channels.
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Figure 5.25: [toy Monte Carlo Kπ mode]. Distributions of the fitted value for RADS and
its (symmetric error) (top plots), its negative and positive errors (middle plots) and the
symmetric and asymmetric pulls (bottom plots) obtained from the toy MC described in the
text. The generated value is RADS = 0.09.
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Figure 5.26: [toy Monte Carlo Kππ0 mode]. Distributions of the fitted value for RADS and
its (symmetric error) (top plots), its negative and positive errors (middle plots) and the
symmetric and asymmetric pulls (bottom plots) obtained from the toy MC described in the
text. The generated value is RADS = 0.09.
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Figure 5.27: [toy Monte Carlo Kπππ mode]. Distributions of the fitted value for RADS and
its (symmetric error) (top plots), its negative and positive errors (middle plots) and the
symmetric and asymmetric pulls (bottom plots) obtained from the toy MC described in the
text. The generated value is RADS = 0.09.
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5.4.4 Fit validation on a fully simulated sample

As a further test of the fit procedure, the fit has been performed on three MC samples, one
for each neutral D decay mode. The samples are constructed merging fully simulated signal
and background events according to the expected number of events listed in Tab. 5.10. This
check is useful to see the impact on the fit of possible correlations between the variables
which have been assumed uncorrelated. On the other hand, the simulated events are enough
to construct just one completely statistically independent sample, while the toy MC allows
for more extensive tests and for this reason both validation procedures have been followed.
The results of the fit on the three samples, for the Kπ, Kππ0 and Kπππ modes respectively,
are shown in the Tabs. 5.14, 5.15 and 5.16. The fit results are compatible with the generated
values, for all the three neutral D decay modes. The projections of the fit over the variables
mES and Fisher are shown in Fig. 5.28 to Fig. 5.30.

Parameter value ± error generated value

NSameS
BB 34 ± 13 40

NOppS
BB 47 ± 20 48

NSameS
cont 415 ± 22 412

NOppS
cont 1712 ± 45 1706

NDK∗ 95 ± 12 101

RADS 0.040 ± 0.050 0.09

SameS cont mES cutoff [GeV/c2] 5.28883 ± 0.00034 5.2886
SameS cont mES shape −41.5 ± 6.0 −39.5

OppS cont mES cutoff [GeV/c2] 5.28911 ± 0.00006 5.2892
OppS cont mES shape −45.4 ± 2.7 −49.3
Sig mES µ [GeV/c2] 5.27949 ± 0.00032 5.2795

Table 5.14: [Simulated Kπ sample]. Results of the fit performed on a simulated sample.
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Parameter value ± error generated value

NSameS
BB 170 ± 42 183

NOppS
BB 248 ± 31 252

NSameS
cont 2591 ± 56 2660

NOppS
cont 8219 ± 100 8138

NDK∗ 148 ± 18 139

RADS 0.134 ± 0.058 0.09

SameS cont mES cutoff [GeV/c2] 5.28911 ± 0.00014 5.2891
SameS cont mES shape −26.3 ± 2.3 −29.3

OppS cont mES cutoff [GeV/c2] 5.28892 ± 0.00008 5.2890
OppS cont mES shape −33.5 ± 1.3 −33.4
Sig mES µ [GeV/c2] 5.27969 ± 0.00031 5.2795

Table 5.15: [Simulated Kππ0 sample]. Results of the fit performed on a simulated sample.

Parameter value ± error generated value

NSameS
BB 258 ± 33 186

NOppS
BB 202 ± 42 223

NSameS
cont 1773 ± 50 1849

NOppS
cont 5808 ± 85 5894

NDK∗ 102 ± 16 98

RADS 0.125 ± 0.102 0.09

SameS cont mES cutoff [GeV/c2] 5.28920 ± 0.00022 5.2887
SameS cont mES shape −30.9 ± 2.9 −34.0

OppS cont mES cutoff [GeV/c2] 5.28910 ± 0.00012 5.2888
OppS cont mES shape −35.0 ± 1.5 −34.3
Sig mES µ [GeV/c2] 5.28028 ± 0.00041 5.2795

Table 5.16: [Simulated Kπππ sample]. Results of the fit performed on a simulated sample.
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Figure 5.28: [Simulated Kπ events]. Projections of the fit over the variables mES and Fisher
for the same sign (top plots) and opposite sign (middle plots) Kπ events. In the bottom plot,
the projection of the fit over the variables mES after a cut on Fisher> 0, in order to enhance
the signal, is shown for opposite sign Kπ events. The point with error bars are simulated
events and the superimposed curves are the result of the fit procedure as described in sec. 5.4.
The dashed, dotted and dash-dotted lines represent the signal, continuum background and
BB̄ background contributions respectively.
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Figure 5.29: [Simulated Kππ0 events]. Projections of the fit over the variables mES and
Fisher for the same sign (top plots) and opposite sign (middle plots) Kππ0 events. In the
bottom plot, the projection of the fit over the variables mES after a cut on Fisher> 0, in
order to enhance the signal, is shown for opposite sign Kππ0 events. The points with error
bars are simulated events and the superimposed curves are the result of the fit procedure
as described in sec. 5.4. The dashed, dotted and dash-dotted lines represent the signal,
continuum background and BB̄ background contributions respectively.
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Figure 5.30: [Simulated Kπππ events]. Projections of the fit over the variables mES and
Fisher for the same sign (top plots) and opposite sign (middle plots) Kπππ events. In the
bottom plot, the projection of the fit over the variables mES after a cut on Fisher> 0, in
order to enhance the signal, is shown for opposite sign Kπππ events. The points with error
bars are simulated events and the superimposed curves are the result of the fit procedure
as described in sec. 5.4. The dashed, dotted and dash-dotted lines represent the signal,
continuum background and BB̄ background contributions respectively.
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5.5 Results on data

In this chapter we present the results of the ADS analysis of B0 → D0(D0)K∗0 decays,
with neutral D reconstructed into Kπ, Kππ0 and Kπππ final states, obtained using a data
sample of 423 fb−1. In sec. 5.5.1 we show the results of the fit on data and the values for the
RADS ratios and in sec. 5.5.4, we discuss the systematic uncertainties.

5.5.1 Fit on real data

The fit has been performed on a data sample of 423 fb−1 collected at the Υ(4S) peak. The
results of the fit are shown in the Tabs. 5.17, 5.18 and 5.19, for the Kπ, Kππ0 and Kπππ
respectively. From toy-MC studies it has been proved that the likelihood for RADS can be
described by asymmetric Gaussians and for this reason the fit on data is performed with
asymmetric errors. In the end, a likelihood scan for the RADS ratios will be performed. The
projections of the fit over the variables mES and Fisher are shown in Fig. 5.31 and 5.32 for
Kπ same and opposite sign events, in Fig. .5.37 and 5.38 for Kππ0 same and opposite sign
events, and in Fig. 5.35 and 5.36 for Kπππ same and opposite sign events. Projections of
the fit over the variables mES after a cut on Fisher is applied, in order to visually enhance
the signal contribution, are shown in Fig. 5.38 for the opposite sign samples and in Fig. 5.37
for the same sign samples.

Parameter value ± error

NSameS
BB 75 ± 16

NOppS
BB 40 ± 17

NSameS
cont 387 ± 22

NOppS
cont 1602 ± 41

NDK∗ 74 ± 12

RADS 0.062+0.067
−0.059

SameS cont mES cutoff [GeV/c2] 5.28856 ± 0.00040
SameS cont mES shape −54.1 ± 6.4

OppS cont mES cutoff [GeV/c2] 5.28841 ± 0.00020
OppS cont mES shape −49.1 ± 2.9
Sig mES µ [GeV/c2] 5.28030 ± 0.00041

Table 5.17: [Data Kπ mode] Results, for the Kπ mode, of the fit on a data sample with an
integrated luminosity of 423 fb−1.
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Parameter value ± error

NSameS
BB 265 ± 33

NOppS
BB 215 ± 41

NSameS
cont 2497 ± 56

NOppS
cont 7793 ± 96

NDK∗ 146 ± 17

RADS 0.057+0.046
−0.037

SameS cont mES cutoff [GeV/c2] 5.28860 ± 0.00013
SameS cont mES shape −32.7 ± 2.4

OppS cont mES cutoff [GeV/c2] 5.28848 ± 0.00009
OppS cont mES shape −31.0 ± 1.3
Sig mES µ [GeV/c2] 5.27961 ± 0.00032

Table 5.18: [Data Kππ0 mode] Results, for the Kππ0 mode, of the fit on a data sample with
an integrated luminosity of 423 fb−1.

Parameter value ± error

NSameS
BB 345 ± 35

NOppS
BB 327 ± 48

NSameS
cont 2058 ± 53

NOppS
cont 6372 ± 91

NDK∗ 101 ± 17

RADS 0.136+0.107
−0.098

SameS cont mES cutoff [GeV/c2] 5.28891 ± 0.00014
SameS cont mES shape −32.8 ± 2.7

OppS cont mES cutoff [GeV/c2] 5.28907 ± 0.00004
OppS cont mES shape −33.4 ± 1.4
Sig mES µ [GeV/c2] 5.27999 ± 0.00043

Table 5.19: [Data Kπππ mode] Results, for the Kπππ mode, of the fit on a data sample
with an integrated luminosity of 423 fb−1.
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Figure 5.31: [Data Kπ mode - same sign] Projections of the fit over the variables mES and
Fisher for same sign Kπ events. The points with error bars are data, and the superimposed
curves are the result of the fit procedure as described in sec. 5.4. The dashed, dotted and
dash-dotted lines represent the signal, continuum background and BB̄ background contri-
butions respectively.
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Figure 5.32: [Data Kπ mode - opposite sign] Projections of the fit over the variables mES

and Fisher for opposite sign Kπ events. The points with error bars are data, and the super-
imposed curves are the result of the fit procedure as described in sec. 5.4. The dashed, dotted
and dash-dotted lines represent the signal, continuum background and BB̄ background con-
tributions respectively.
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Figure 5.33: [Data Kππ0 mode - same sign] Projections of the fit over the variables mES and
Fisher for same sign Kππ0 events. The points with error bars are data, and the superim-
posed curves are the result of the fit procedure as described in sec. 5.4. The dashed, dotted
and dash-dotted lines represent the signal, continuum background and BB̄ background con-
tributions respectively.
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Figure 5.34: [Data Kππ0 mode - opposite sign] Projections of the fit over the variables
mES and Fisher for opposite sign Kππ0 events. The points with error bars are data, and
the superimposed curves are the result of the fit procedure as described in sec. 5.4. The
dashed, dotted and dash-dotted lines represent the signal, continuum background and BB̄
background contributions respectively.
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Figure 5.35: [Data Kπππ mode - same sign] Projections of the fit over the variables mES and
Fisher for same sign Kπππ events. The points with error bars are data, and the superim-
posed curves are the result of the fit procedure as described in sec. 5.4. The dashed, dotted
and dash-dotted lines represent the signal, continuum background and BB̄ background con-
tributions respectively.
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Figure 5.36: [Data Kπππ mode - opposite sign] Projections of the fit over the variables
mES and Fisher for opposite sign Kπππ events. The points with error bars are data, and
the superimposed curves are the result of the fit procedure as described in sec. 5.4. The
dashed, dotted and dash-dotted lines represent the signal, continuum background and BB̄
background contributions respectively.
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Figure 5.37: [Data - same sign] Projections of the fit over the variables mES after a cut on
Fisher is applied (Fisher> 0.5 for Kπ, Fisher> 0.7 for Kππ0 and Fisher> 1. for Kπππ), to
visually enhance the signal, for Kπ (top), Kππ0 (middle) and Kπππ (bottom) same sign
events. The points with error bars are data, and the superimposed curves are the result of
the fit procedure as described in sec. 5.4. The dashed, dotted and dash-dotted lines represent
the signal, continuum background and BB̄ background contributions respectively.
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Figure 5.38: [Data - opposite sign] Projections of the fit over the variables mES after a cut on
Fisher is applied (Fisher> 0.5 for Kπ, Fisher> 0.7 for Kππ0 and Fisher> 1. for Kπππ), to
visually enhance the signal, for Kπ (top), Kππ0 (middle) and Kπππ (bottom) opposite sign
events. The points with error bars are data, and the superimposed curves are the result of
the fit procedure as described in sec. 5.4. The dashed, dotted and dash-dotted lines represent
the signal, continuum background and BB̄ background contributions respectively.
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5.5.2 Likelihood scan for RADS

In order not to depend on any Gaussian assumption, a likelihood scan with respect to the
variable RADS has been performed: RADS is fixed to different values in a reasonable interval
and for each value the fit is repeated letting all the other floating parameters free to vary.
Each time the fit returns the likelihood value. Fig. 5.39 shows the scan of the −∆lnL (where
the difference is calculated with respect to the value obtained when RADS is left floating)
and of the likelihood itself, for the three channels.
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Figure 5.39: [Data - likelihood scan] Scan of −∆lnL (left plots) and of the likelihood L
(right plots) for Kπ (up), Kππ0 (middle) and Kπππ (bottom).

The second minimum for the likelihood of RADS(Kππ0) has been investigated and found
to be due to a fluctuation in the number of opposite-sign events for negative values. Since
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it is well above the principal one, it is not particularly worrying.

5.5.3 Comparison with the expected sensitivity

The errors we would expect on RADS from toy Monte Carlo studies (see sec. 5.4.3), for the
central values we find on data are summarized in Tab. 5.20. All the values obtained on data
are within less than 1.5 standard deviation from toy Monte Carlo expectations.

Parameter expected range value on data

RKπ
ADS negative error 0.044 ± 0.010 0.059

RKπ
ADS positive error 0.055 ± 0.011 0.067

RKππ0

ADS negative error 0.048 ± 0.010 0.037

RKππ0

ADS positive error 0.056 ± 0.010 0.046
RKπππ

ADS negative error 0.139 ± 0.030 0.098
RKπππ

ADS positive error 0.160 ± 0.038 0.107

Table 5.20: Expected negative and positive errors on RADS ratios from toy Monte Carlo
studies are compared with the errors found in the fit on data.

5.5.4 Systematic uncertainties on the RADS ratios

The systematic uncertainties on the fitted values for RADS can arise from the following
sources:

• mES and Fisher.
All the parameters fixed in the fit are varied by ±1σ and the fit is repeated. The
corresponding variation on the central value of RADS is taken as systematic uncertainty.

• Peaking background assumptions.
The number of peaking background events is evaluated on simulated events and on
MD0 sidebands data trough a fit to the mES distribution. The different sources of
peaking backgrounds are found to be compatible with zero within the errors and fixed
to zero in the fit. The fit is performed letting the number of peaking events vary
within its error and the corresponding variation of the central value of RADS is taken
as systematic uncertainty.

• Crossfeed between same sign and opposite sign events.
In sec. 5.2.7, the efficiency of the cross-feed between opposite sign and same sign
events, εCF has been evaluated for the three D channels. The associated systematic
uncertainty on RADS is calculated according to the following expression:

RADS =
NOppS ±NSameSεCF

NSameS ±NOppSεCF
∼ NOppS

NSameS
± εCF ,

where the approximation results from neglecting the effect of opposite sign events
wrongly reconstructed as same sign events.
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• Efficiency ratio for same sign and opposite sign events.
As explained in section 5.2.8, it has been verified that the efficiencies for same sign
and opposite sign events are the same within a precision of 3% for Kππ0. We hence
assign as systematic error on RKππ0

ADS the variation of RKππ0

ADS when we fit assuming the
efficiencies ratio to be 1.03 and 0.97. For Kπππ we evaluated on MC studies that the
average variation of the efficiency ratio due to an eventual different Dalitz distribution
for CA and DCS decays is around 3%. We assign as systematic error on RKπππ

ADS the
variation of RKπππ

ADS when we fit assuming the efficiencies ratio to be 1.03 and 0.97.

The systematic uncertainties on RADS are summarized in tabs. 5.21, 5.22 and 5.23. The
different contributions are considered to be Gaussian and uncorrelated and for this reason
we sum them in quadrature.

Source systematics on RADS ×10−2

Sig. PDF parameters 0.19
Cont. PDF parameters 0.32
BB̄ PDF parameters 0.57

Peaking bkg 1.70
SS-OS cross-feed 0.04

TOTAL 1.80

Table 5.21: [Data Kπ mode] Summary of systematic uncertainties, evaluated on 423 fb−1

Kπ events.

Source systematics on RADS ×10−2

Sig. PDF parameters 0.11
Cont. PDF parameters 0.02
BB̄ PDF parameters 0.16

εCA/εDCS 0.17
Peaking bkg 0.87

SS-OS cross-feed 0.05

TOTAL 0.91

Table 5.22: [Data Kππ0 mode] Summary of systematic uncertainties, evaluated on 423 fb−1

Kππ0 events.

The systematics on RADS from the variations of the PDF parameters are also shown in
Fig. 5.40.

The likelihood obtained for RADS , for each channel, is convoluted with a Gaussian of
width equivalent to the total systematic uncertainty. Since the measurements for the RADS

ratios are not statistically significant, 95% probability limits are calculated by integrating the
likelihoods, starting from RADS = 0, obtaining RADS(Kπ) < 0.244, RADS(Kππ0) < 0.181
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Source systematics on RADS ×10−2

Sig. PDF parameters 0.82
Cont. PDF parameters 0.29
BB̄ PDF parameters 1.48

εCA/εDCS 0.39
Peaking bkg 1.40

SS-OS cross-feed 0.02

TOTAL 2.20

Table 5.23: [Data Kπππ mode] Summary of systematic uncertainties, evaluated on 423 fb−1

Kπππ events.

and RADS(Kπππ) < 0.391 at 95% probability. The 68% probability regions are also calcu-
lated, limited by the two values ofRADS for which L = Lmin and 68% =

∫

L(RADS)>Lmin
L(RADS)dRADS,

obtaining:

RKπ
ADS = 0.067+0.071

−0.057; (5.43)

RKππ0

ADS = 0.060+0.055
−0.038;

RKπππ
ADS = 0.137+0.114

−0.097.

The likelihood distributions, and the 68% and 95% probability regions, are shown in
Fig. 5.41.

The results for RKπ
ADS, RKππ0

ADS and RKπππ
ADS , are summarized in Fig. 5.42. The total number

of opposite sign signal events in the three channels, as obtained from the fit, is NOppS
sig =

24.4+13.7
−10.9. Although strictly speaking making an average of the three RADS has no meaning,

since they are different observables, it is useful to have an idea of the probability with which
we exclude zero from the combination of the three measurements. Making this average
corresponds to neglect differences in the rD parameters and in the strong phases between
the three channels. The statistical average of the three RADS measurements, including the
systematic errors, is 0.078+0.037

−0.035, indicating a signal with a 2.2 σ significance.
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Figure 5.40: Variation of the fitted value of RADS , for the three D decay modes, when varying
by ±1σ the mES and Fisher pdf parameters that are fixed in the fit, for signal, continuum
background and BB̄ background components. In the legenda, we also quote the resolution
(rms) of the distributions.
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Figure 5.41: [Data - likelihood scan] Scan of −∆lnL (left plots) and of the likelihood L
(right plots) for Kπ (up), Kππ0 (middle) and Kπππ (bottom).
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Figure 5.42: 68% probability regions for RADS for the three channels, including statistical
and systematic errors.
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5.6 Extraction of rS parameter

In this chapter the procedure for the extraction of rS from the measurements of the RADS

ratios is presented. This procedure is first validated on results obtained from toy Monte
Carlo (shown in sec. 5.6.1) and finally applied to the results obtained on data (sec. 5.6.2).

The outcome of the analysis are the likelihood distributions for the variables RKπ
ADS ,

RKππ0

ADS and RKπππ
ADS . To convert the results on the RADS ratios into probability regions for rS,

a bayesian approach is used. The ratios RADS for the three channels can be expressed as
(see equation 5.33):

RKπ
ADS = r2

S + r2
DKπ + 2krSrDKπ cos(δS + δDKπ) cos γ;

RKππ0

ADS = r2
S + r2

DKππ0 + 2krSkDKππ0rDKππ0 cos(δDKππ0

S + δS) cos γ;

RK3π
ADS = r2

S + r2
DK3π + 2krSkDK3πrDK3π cos(δDK3π

S + δS) cos γ. (5.44)

The three observables depend on quantities that are channel-dependent, but they all de-
pend on rS, γ and δS and k. Hence, a constraint on rS from the combination of the three
measurements can be derived.

The a-posteriori pdf of rS from an RADS measurement is defined as

L(rS) =

∫

p(rS, γ, δS, k, ~ξ)L(RADS(rS, γ, δS, k, ~ξ))dγdδSdkd~ξ
∫

p(rS, γ, δS, k, ~ξ)L(RADS(rS, γ, δS, k, ~ξ))dγdδSdkd~ξdrS

(5.45)

(5.46)

With ~ξ = {rD, δD} for the two-body case and ξ = {rD, δ
D
S , kD} for the multi-body cases.

Here p(rS, γ, δS, k, ~ξ) is the a-priori probability for the quantities rS, γ, δS, k, ~ξ, which are
considered uncorrelated. The ratio rS is extracted from a flat distribution in [0, 1] and kD is
extracted from a flat distribution in [0, 1] for Kππ0. The a-priori distribution for δDKπ

S is a
Gaussian following the measurement presented in [55]. The parameters δDKπππ

S and kDKπππ

are extracted following the measurement presented in [56]. All the remaining phases are
sampled form a flat distribution in [0, 2π] range. All the remaining phases are extracted
form a flat distribution in [0, 2π] range. The a-priori probabilities for the rD ratios are
Gaussian distributions with mean and standard deviation taken from the measurements and
the a-priori distribution for k is Gaussian with mean and standard deviation equal to 0.95
and 0.03 respectively (see sec. 2.6.2). Technically, the histogram of L as a function of rS is
filled using a toy MC procedure:

• large number of experiments is generated by extracting rS, γ, δS, k, ~ξ within their ranges.

• in each experiment the value of RADS is computed according to eqs. 5.44.

• for each experiment a weight L(RADS) is computed, where L(RADS) is calculated from
the experimental likelihood obtained for RADS , after convolution with the systemtic
errors. An entry is added, to the content of the appropriate bin for the extracted value
of rS, with weight p(rS, γ, δS, k, ~ξ)L(RADS).

• the histogram is normalized to unit area.
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The 68% probability region is limited by the two values of rS for which L = lmin where

68% =
∫

L>lmin

L(rS)drS (5.47)

The interval is symmetrized (which means that the quoted central value is not the maximum
of the likelihood).

5.6.1 Validation of rS extraction procedure using toy Monte Carlo

The extraction procedure has been tested on toy MC results, assuming the likelihood for
the three RADS to be described by bifurcated Gaussians, for simplicity. The procedure to
extract rS, as presented in 5.6 has been followed, starting from the measurements:

RKπ
ADS = 0.090+0.079

−0.065

RKππ0

ADS = 0.090+0.088
−0.076

RK3π
ADS = 0.090+0.110

−0.090

where the central values for the three ratios are calculated assuming rS = 0.3 and rD = 0
and the negative and positive errors are taken from the toy MC studies (see Fig. 5.25, 5.26
and 5.27). With these values, the extraction procedure for rS leads to the result shown in
Fig. 5.43, and corresponding to the 68% probability region rS = 0.29+0.08

−0.011, which is consistent
with the generated value. The distribution obtained for rS is not Gaussian, in particular the
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Figure 5.43: [Toy Monte Carlo] Constraint on rS from fake RKπ
ADS , RKππ0

ADS and RK3π
ADS mea-

surements. The parameter rS is assumed to be 0.3 and the (asymmetric) errors for the ratios
RADS are taken from toy MC studies. The 68% and 95 % probability regions are shown in
light and dark colors respectively.

tail observed for low rS results from the functional dependence RADS ∼ r2
S and accounts for

the fact that we cannot exclude zero with a higher probability for rS than for the combined
result for RADS.
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5.6.2 Extraction of rS on real data

The 68% probability intervals obtained, on a sample of 423 fb−1 data and after having
included systematics effects, for the RADS ratios are:

RKπ
ADS = 0.067+0.071

−0.057; (5.48)

RKππ0

ADS = 0.060+0.055
−0.038;

RKπππ
ADS = 0.137+0.114

−0.097.

Following the procedure explained in sec.5.6, the information on rS from the three RADS

measurement has been extracted. The results for rS, separately from the three channels, are
the following:

rKπ
S = 0.250+0.114

−0.165, rS ∈ [0.0, 0.451] at 95%probability.

rKππ0

S = 0.238+0.106
−0.104, rS ∈ [0.0, 0.394] at 95%probability.

rKπππ
S = 0.363+0.149

−0.190, rS ∈ [0.0, 0.579] at 95%probability.

(5.49)

and from the combination of all the three channels:

rS = 0.26+0.077
−0.088, (5.50)

rS ∈ [0.05, 0.396] at 95%probability.

The probability density functions for rS from the single measurements and from their com-
bination are shown in Fig. 5.44. The results for rS from the three channels separately and
from their combination, are shown in Fig. 5.45.
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Figure 5.44: [Data] Results for rS from the measurement of RADS in the three modes (upper
plots) and from their combination (lower plot).
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Figure 5.45: [Data] 68% (solid line) and 95% (dotted line) probability regions obtained for
rS from the measurement of RADS in the three modes and from their combination.
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Chapter 6

Dalitz analysis of B0 → D0K∗0 decay
channel

In this chapter we present the analysis of B0 → D̄0(D0)K∗0 with K∗0 → K−π+ (and
B0 → D0(D̄0)K∗0 with K̄∗0 → K+π−), where the neutral D is reconstructed in the KSπ

+π−

CP eigenstate. The decay chain is analyzed with the Dalitz technique, allowing for the
extraction of rS, δS and γ parameters. We use a data set of 353 fb−1 (371 106 BB̄ pairs)
collected with the BABAR detector at the Υ(4S) center of mass energy.

The Dalitz method [32], presented in sec. 2.2.3, aims to measure γ from the B → DK
decays with the D decaying to multi-body CP eigenstate final states. As shown in sec. 2.3
and 2.5, the Dalitz method is the one with highest sensitivity to the angle γ.

The interest of this measurement, as explained in sec. 2.6, is the fact that the ratio
between the b → u and b → c amplitudes of the neutral B decays is expected to be higher
than the one for charged B. The results shown in chapter 5 confirm this expectation.

6.1 Analysis overview: Dalitz method at work

For the case of B0 → D0K∗0 decays, as discussed in sec. 2.6.1, the natural width of the K∗0

being not small (∼50 MeV), the interference with other B0 → D0(Kπ)0
non−K∗ processes may

not be negligible. For this reason, following the formalism suggested in [33], the effective
quantities rS, k and δS are introduced. Following this formalism, it has been shown in
sec. 2.6.1 that the expression for the partial decay rate is (see eq. 2.28):

dΓ(B0 → D[→ f ]X0
S) ∝ A2

f + r2
SA

2
f̄ + 2rSkRe

(

AfAf̄e
iδDeiδS+γ

)

;

where δD = δf̄ − δf . In the case of D decaying into KSππ final states,

Afe
iδf = f(m2

−, m
2
+);

Af̄e
iδf̄ = f(m2

+, m
2
−);

where m− andm+ are the invariant masses of the systems (KS, π
−) and (KS, π

+) respectively.
The amplitude for the process B̄0(B0) → D[→ K0

Sπ
−π+]X̄0

S(X0
S) can be written as follows:

A(B̄0(B0) → D[→ K0
Sπ

−π+]X̄0
S(X0

S)) = Ac(p)e
iδc(p)f(m2

∓, m
2
±) + Au(p)e

iδu(p)∓γf(m2
±, m

2
∓) ,

(6.1)
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where Ac, Au, δc and δu vary as a function of the point p over the B0 → D0K∗0 Dalitz plane
as explained in sec. 2.6.1. The rate is expressed by:

Γ(B̄0(B0) → D[→ K0
Sπ

−π+]X̄0
S(X0

S)) ∝ (6.2)

|f∓|2 + r2
S|f±|2 + 2krS

{

cos(δS ∓ γ)Re[f∓f
∗
±] + sin(δS ∓ γ)Im[f∓f

∗
±]
}

≡
|f∓|2 + r2

S|f±|2 + 2krS|f∓||f±| cos(δS + δD(m2
∓, m

2
±) ∓ γ) ,

where δD(m2
∓, m

2
±) = δf̄ (m

2
∓, m

2
±) − δf(m

2
∓, m

2
±) is the strong phase difference between

f(m2
±, m

2
∓) and f(m2

∓, m
2
±) and rS, k and δS are defined as following (see eqs. ?? and 2.27):

r2
S =

Γ(B0 → D0X0
S)

Γ(B0 → D0X0
S)

=

∫

dp |A2
u(p)|

∫

dp |A2
c(p)|

;

keiδS =

∫

dp Ac(p)Au(p)e
iδ(p)

√

∫

dp |A2
c(p)|

∫

dp |A2
u(p)|

.

In the following we use the simplified notation f± ≡ f(m2
±, m

2
∓) and f∓ ≡ f(m2

∓, m
2
±).

The amplitude for the neutral D decays into KSπ
+π− final states is used as an input in

this analysis, and the results obtained from the Dalitz BABAR analysis of charged B decays
[59] have been used. In sec. 6.1.1, the technique for extracting this amplitude used in BABAR is
briefly described, in the study presented in this thesis no original work on the subject has
been done.

6.1.1 The Dalitz model for neutral D decays into KSπ
+π− final

state

The D0 → KSππ decay amplitude is determined in BABAR from a Dalitz plot analysis of D0

mesons from D∗+ → D0π+ decays produced in e+e− → cc̄ events. The charge of the low
momentum π+ from the D∗+ decay identifies the flavor of the D0. The signal purity for this
analysis (±2σ cutoff on MD, where σ stands for the MD resolution) is of 97.7%, with about
500000 selected candidates.

The P- and D-waves of the D0 → KSππ decay amplitude are described using a total of 6
resonances leading to 8 two-body decay amplitudes: the Cabibbo allowed (CA) K∗(892)−,
K∗(1680)−, K∗

2 (1430)−, the doubly-Cabibbo suppressed (DCS) K∗(892)+, K∗
2(1430)+, and

the CP eigenstates ρ(770)0, ω(782), and f2(1270). The contributions from these resonances
are parametrized using the isobar model, as described in sec. 2.2.3. The dynamics for the
ππ S-wave in D0 → KSππ decays [60] is caracterized by the overlap of several broad scalar
resonances. While these contributions were parametrized with the isobar model (see for
example the old BABAR Dalitz analysis publication [61]) it has been found that they are
better described through the use of a K-matrix formalism [62] with the P -vector approxi-
mation [63]. Thus the Dalitz plot amplitude f(m) (where m indicates the Dalitz plane point
m = (m2

±, m
2
∓)) can be written as follows:

f(m) = F1(s) +
∑

r 6=(ππ)L=0

are
iφrAr(m) + aNRe

iφNR , (6.3)
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where F1(s) is the contribution of ππ S-wave states written in terms of the K-matrix for-
malism,

F1(s) =
∑

j

[I − iK(s)ρ(s)]−1
1j Pj(s). (6.4)

The parameter s = m2
0 is the squared invariant mass of the π+π− system, I is the identity

matrix, K is the matrix describing the S-wave scattering process, ρ is the phase-space matrix,
and P is the initial production vector (P -vector). The parametrization and parameter values
for the K-matrix used in the BABAR analysis are taken from [72], where they have been
obtained from a global analysis of the available ππ scattering data from threshold up to
1900 MeV/c2 [72].

6.2 Selection and background caracterization

6.2.1 Selection criteria and background composition

The selection studies are based on simulated events for the signal modes and for the differ-
ent backgrounds and, whenever possible, directly on data. The agreement of the relevant
variables distribution between data and simulation has also been checked. The data and
simulated samples used in this analysis are summarized in Tab. 6.1.

Sample Events Leq (fb−1)

BB0 385M 733
B+B− 394M 751
cc̄ 267M 206

uū,dd̄,ss̄ 324M 155
Signal 185k 304·103

D0ρ0 MC 100k 16 · 103

D0K∗(D0 → 4π) MC 10k 48 · 103

Data (On-peak) 353
Data (Off-peak) 37

Table 6.1: Data and MC samples used in the analysis in terms of number of events and of
equivalent integrated luminosity (Leq). The integrated luminosity for data is also given.

The assumptions for the branching fractions and cross sections used to get the values of
Tab. 6.1 are summarized in Tab. 6.2. These values have been used to rescale the signal and
the different background components to the integrated luminosity of data.

We reconstruct B0 → D̄0(D0)K∗0 events with K∗0 → K+π−, D0 → KSπ
+π− and KS →

π+π−. For this analysis, apart from the K∗0 (and K̄∗0) selection, which has been optimized
and presented in sec. 4.6, we have applied standard selection criteria, also used in similar
BABAR analyses. The KS from the D0 is reconstructed from pairs of oppositely charged pions
and their invariant mass is required to be within ± 7 MeV/c2 of the nominal KS mass [8].
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Quantity Value

Br(B0 → D0K∗0) (5.3 ± 0.8) · 10−5 [50]
Br(B0 → D0ρ0) (2.3 ± 0.9) · 10−4 [50]

Br(D0 → K̄0π−π+) 0.0597 ± 0.0035 [50]
Br(D0 → π−π+π−π+) 7.3 ± 0.5 · 10−3 [50]

Br(K̄0 → KS) 1/2
Br(KS → π+π−) 0.6895 ± 0.0014 [50]

Table 6.2: Branching ratios and cross sections used to get the values of Tab. 6.1. These
values have been used to normalize the signal and the different background components.

The KS candidates are also requested to satisfy the condition cosαKS
(D0) > 0.997 where

αKS
(D0) is the angle between the KS line of flight (line between the D0 vertex and the

KS vertex) and its momentum (reconstructed with the two pions momentum). This cut is
particularly helpful in removing the D0 → 4π background, as explained in sec. 6.2.5.

The D0 is selected by combining KS candidates with two oppositely charged pions and
requiring its invariant mass to be within ± 11 MeV/c2 of the nominal mass. Charged
kaon identification, based on Cerenkov angle and dE/dx measurements, is required for the
charged kaon produced in K∗0 and K̄∗0 decays. The D0 and K∗0 vertex fits are requested to
have converged (“P [χ2(D0)vtx, ndof ] > 0” and “P [χ2(K∗0)vtx, ndof ] > 0” in the following).
In order to suppress combinatorial background, the probability of the B vertex χ2

vtx(B) per
number of degree of freedom (ndof) is required to be greater than 0.001, P [χ2(B)vtx, ndof ] >
0.001. The absolute value of ∆E is required to be smaller than 25 MeV and the absolute
value of the cosine of the B polar angle in the center of mass frame, cos θB, to be less than
0.9.

In summary, the applied selection criteria are:

• |mKS
−mKS

(nominal)| < 7 MeV/c2

• |mD0 −mD0(nominal)| < 11 MeV/c2

• P (χ2, D0) > 0 , P (χ2, K∗) > 0

• P (χ2, B) > 0.001

• cosαKS
> 0.997

• |mK∗ −mK∗(nominal)| < 48 MeV/c2

• | cos θHel| > 0.3

• K± from K∗0/K̄∗0: KLHTight

• | cos θ∗B| < 0.9

• |∆E| < 25 MeV
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• mES > 5.2 MeV/c2

• |∆t| < 20 ps

• |∆terr| < 2.5 ps

The selection efficiency for signal, evaluated on simulated events, is εsig = (10.8 ± 0.5)%.

In Tab. 6.3 we list the number of expected events, on 353fb−1, for signal and different
background components. The significance of the signal in the final signal region mES >
5.27 GeV/c2 is S/

√
S +B = 1.7.

Sample Signal B0B0 B+B− cc uu, dd, ss

Final Selection 35 46 80 1589 671
+mES > 5.27 GeV/c2 35 11 19 264 90

Table 6.3: Number of expected signal and background events, evaluated on simulated events,
rescaled to an integrated luminosity of 353 fb−1.

6.2.2 Efficiency variations over the Dalitz plot for signal events

The Dalitz model presented in sec. 6.1.1 has to be convoluted with the theoretical phase
space distribution, namely F (m) = f(m) ⊗ PStheo. To account for possible variations of
the efficiency across the Dalitz plot, the Dalitz distribution F (m) we use in the final fit to
extract γ, δ and rS is:

F (m) = f(m) ⊗ PStheoPS
after cuts

PStheo
. (6.5)

As said before, the simulated signal events have been generated using a phase space model
for the D0 → KSπ

+π− decay. Thus the distribution of PSafter cuts can be obtained using
signal simulated events, and performing an unbinned fit over the Dalitz plane. The function
used in this fit is a third order polynomial in two dimensions (where the variables x and y
in this case are the squared invariant masses x = m2

+ and y = m2
−), expressed by:

P (x, y) = PSafter cuts = 1 + a1 (x+ y) + a2 (x2 + y2 + xy) + a3 (x3 + y3 + x2y + xy2) .(6.6)

The parameterization has been symmetrized for x = m2
+ and y = m2

−. Fig. 6.1 shows the
m2

+ and m2
− projections for signal simulated events. The resulting coefficients from the fit

are given in Tab. 6.4.

6.2.3 Background containing real neutral D mesons

The background events have been divided in two classes. The events for which the recon-
structed neutral D is a real D that decays to KSπ

+π− (denoted “true D0” in the following)
and the rest, namely events not containing a “true D0”. The two classes of events have
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Figure 6.1: Dalitz distribution of signal simulated events (phase space). The curve is the
projection on m2

KSπ+ (left) and on m2
KSπ− (right) of the result of an unbinned likelihood fit

using a third order polynomial (symmetric under m2
KSπ+ → m2

KSπ−, see eq. 6.6).

Parameters a1 a2 a3

Signal 1.30 ± 0.63 −0.34 ± 0.20 0.04 ± 0.03

Table 6.4: The values and the errors of the parameters of the third-order polynomial function,
eq. (6.6), obtained from the unbinned likelihood fit to the Dalitz distribution of simulated
signal events.

to be treated separately because of their different distribution on the D Dalitz plane. The
fractions of true D0 have been evaluated on simulated events (separately for BB̄ and con-
tinuum background) and also on data, considering the mES sidebands. The fraction can be
extracted from a fit to the D0 invariant mass using as pdf, a Gaussian for the D0 signal and
a constant for the background. In these fits the mean of the Gaussian has been fixed to the
nominal D0 mass, µD0 = 1864.1 MeV/c2. The fractions of events with a true D0 for BB̄ and
continuum backgrounds are found compatible within the errors and also compatible with
the value found on data. In order to not depend on simulated events, we assume both the
values to be equal to the one found on data. The difference will be taken into account in the
systematics. The values are reported in Tab. 6.5.

Background events with final states containing D0h+π− or D0h−π+, where h± is a can-
didate K±, can mimic b → u signal events (we recall here that the sign of the K± from
the neutral K∗ identifies the flavour of the neutral B). The fraction of these b → u-like

D0 events, defined as RWS =
N

D0h+π−+N
D0h−π+

N
D0h−π++N

D0h−π++N
D0h+π−+N

D0h+π−
is evaluated on simulated

events and reported in Tab. 6.5.

The Dalitz distribution for true D0 events is the same as the one used for signal events,
described in sec. 6.1.1. The Dalitz distribution for background events with no true D0 has
been studied and parametrized using simulated events, where all the events with true D0

have been excluded. Both for continuum and BB̄ background a third order polynomial has
been used (eq. 6.6) to parametrize the distributions. In this case both for continuum and
BB̄ background we observe the presence of a K∗(892) resonance in the mass projections. In
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Parameters Fitted values
RCont (true D0 fraction in continuum) 0.268 ± 0.037
RBB̄ (true D0 fraction in BB̄) 0.309 ± 0.072
RDATA (true D0 fraction in data) 0.289 ± 0.028
RWS

Cont
(D0 K+ in continuum) 0.88 ± 0.02

RWS
BB̄

(D0 K+ in BB̄) 0.45 ± 0.12

Table 6.5: Fraction of background events with a “true D0”, estimated from data and simu-
lated events.

order to describe the presence of the K∗, a Breit-Wigner function is added to the polynomial
one in the fit to the Dalitz shape and its fraction is fitted. The fraction of resonant events
fK∗ is also extracted from the fit.

The distributions and fit results are shown in Fig. 6.2, for continuum and BB̄ simulated
events respectively. The values of the parameters, polynomial terms and fraction of K∗0

events, are given in Tab. 6.6.
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Figure 6.2: Dalitz distribution of simulated events with no true D0, for BB̄ (top) and con-
tinuum events (bottom). The curve is the projection on mKSπ+ (left) and on mKSπ− (right)
of the result of an unbinned likelihood fit using a third order polynomial (symmetric under
mKSπ+ → mKSπ−) and a Breit-Wigner, to account for the presence of the K∗0 resonance.
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Samples a1 a2 a3 fK∗

continuum −0.701 ± 0.010 0.224 ± 0.007 −0.019 ± 0.016 0.029 ± 0.021
BB̄ −0.538 ± 0.017 0.064 ± 0.005 0.017 ± 0.002 0.062 ± 0.049

Table 6.6: Values and the errors of the parameters of the third-order polynomial function,
eq. (6.6), obtained from the unbinned likelihood fit to the Dalitz distribution of background
events with no true D0 (BB̄ and continuum separately). The fraction of K∗0 events, fitted
using a Breit-Wigner function is also given in the last column.

6.2.4 Continuum background caracterization and Fisher discrim-
inant

As already discussed, several variables account for the fact that, in the center of mass frame,
continuum events have a jet-like spatial distribution, while BB̄ events are spherically dis-
tributed (see sec. 4.9). In this analysis, the variables |cos(θthrust)|, L10 and L12, defined in
sec. 4.9, are combined into a Fisher discriminant, that is used in the final maximum like-
lihood fit. The discriminant has been trained (see sec. 4.9) using simulated signal events
and off-resonance data. The distributions for these three variables are shown in Fig. 6.3, for
signal MC, off-resonance data and BB background simulated events. The distribution of
the Fisher discriminant, for signal simulated events and for off-resonance data, is shown in
Fig. 6.4 (left). The efficiency of a cut on the Fisher on off-resonance events as a function of
the efficiency on simulated signal events is also shown in Fig. 6.4 (right). The expression for
the Fisher is:

Fisher = 2.484 − 0.7811|cos(θthrust)| + 0.1884L10 − 1.2567L12.

To further discriminate between signal and continuum background events, the variable
∆t, introduced in sec. 4.9, is used in the likelihood fit.
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Figure 6.3: Distributions of simulated signal events (solid histograms), off-resonance data
(points with error bars) and BB background simulated events (dashed histograms) for the
three variables used in the Fisher: |cos(θthrust)|, L10 and L12.
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events as a function of the efficiency on signal events.
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6.2.5 Studies of peaking background events

A special attention has been put, within the BB̄ background, on possible sources of peaking
background events. Peaking background consists of processes that lead to the same final
state as for the reconstructed signal. The final state we are considering is:

D0K∗0 = [(π+π−)KS
π+π−]D0 [K+π−]K∗0.

From simulated events studies we identified three possible sources of peaking BB̄ background:

• B0 → D0K∗0 events with K∗0 → K+π− and D0 → π+π−π+π−,

• B0 → D0ρ0 events with ρ0 → π+π− and D0 → KSπ
+π−,

• charmless events of the kind B0 → K∗0KSKS.

As far as the first two categories are concerned, dedicated simulation studies give a selection
efficiency of (0.036±0.019)% for the D0ρ0 channel and a selection efficiency of (0.18±0.04)%
for the D0K∗0 with D0 → π+π−π+π−. In the latter case, the cut on αKS

is very important,
while for the D0ρ0 the cuts on ∆E and the PID of the K± are the most effective ones.
With these efficiencies, we expect about 0.9 D0ρ0 events and 0.1 D0[π+π−π+π−]K∗0 events
(assuming the branching fraction in Tab. 6.2) on 353 fb−1 . The results are summarized in
Tab. 6.7.

D0ρ0

Selection cuts except the cuts on ∆E and KLHTight 76.0 ± 4.6
|∆E| < 0.025 GeV/c2 9.7 ± 1.6

KLHTight 0.9 ± 0.6
D0 → 4π

Selection cuts except the cut on αKS
0.8 ± 0.5

αKS
> 0.997 0.1 ± 0.2

Table 6.7: Number of expected D0ρ0 and D0[π+π−π+π−]K∗0 peaking background events.

The number of peaking charmless events is evaluated from a fit to the mES variable,
using data in the MD0 sidebands (i.e. events that satisfy the condition |MD0 −Mnominal

D0 | >
0.025 GeV/c2). In Fig. 6.5 we show the distribution of the neutral D mass, after we have
applied all the cuts but the cut on MD0 . The projection of the fit over the variable mES is
shown in Fig. 6.5. The number of peaking events, rescaled to the selected region (|MD0 −
Mnominal

D0 | < 0.011 GeV/c2) is Npeak = −5 ± 7.

The total number of peaking events in the BB̄ background is then assumed to be negli-
gible and fixed to zero in the fit. The effect of this assumption is taken into account in the
evaluation of the systematic uncertainties.
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Figure 6.5: Left: D0 mass distribution in data after all selection cuts are applied (except
the cut on MD0). Right: mES distribution in data of events in the MD0 sidebands (|MD0 −
Mnominal

D0 | > 0.025 GeV/c2), after all selection criteria are applied. No evidence of peaking
events is found.

6.3 Comparison between data and simulated events

The agreement between data and simulated distributions of the relevant variables used in this
analysis has been checked after all cuts are applied but the one on the showed variable (see
Figs. 6.6 and 6.7). The colored histograms represent the different Monte Carlo components
and the points with error bars are the data. Each component is rescaled to 353 fb−1, the
luminosity of the on-resonance data. In each case the agreement is satisfactory.
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Figure 6.6: Comparison between data and simulation for the relevant variables used in the
selection. From the top left to the bottom right the following quantities are shown: MD0 ,
MKS

, αKS
, ∆E, MK∗ and Fisher. The events each plot are selected applying all the cuts

but the one on the displayed variable.
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Figure 6.7: Comparison between data and simulation for the relevant variables used in
the selection. From the top left to the bottom right the following quantities are reported:
cos θHel, cos θ∗B , mES and ∆t. The events in each plot are selected applying all the cuts but
the one on the displayed variable.
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6.4 Maximum likelihood fit

6.4.1 Structure of the fit model

The extraction of the number of signal and background events and CP parameters is per-
formed maximizing an extended unbinned likelihood function

Lext =
e−ηηN

N !

N
∏

i=1

P(xi) , (6.7)

where P(i) is the total probability density function (pdf) given by eq. (6.8) for event i and
x indicates the set of variables used in the likelihood fit x = {mES, F isher,∆t,m

2
+, m

2
−}.

Here N is the total number of observed events and η its expected value according to Poisson
statistics.

Based on the background caracterization, we consider three different components in the
probability density function: signal (sig), continuum (Cont) and BB̄ (BB̄) events. Both the
continuum and BB̄ background component are subdivided into two categories, which differ
only in the term depending on {m2

+, m
2
−}:

• combinatorial (not true) D0 (Comb);

• true D0 (D0). Inside this category, we distinguish between real D0 mesons with a right
sign (RS) random K∗ (i.e. D0K− or D0K+) or a wrong sign (WS) random K∗ (i.e.
D0K+ or D0K−). This splitting is needed in order to account for the misinterpretation
of D0 decays as D0 (and vice versa), relevant to parametrize correctly the Dalitz
structure. This background component does not contain CP -violating effects.

The total pdf P can then be written as:

P = fsigPsig +

fCont

{

(1 −RCont)P
Comb
Cont

+RCont

[

RRS
Cont

Pα
Cont

+ (1 − RRS
Cont

)Pα
Cont

]

}

+

fBB̄

{

(1 − RBB̄)PComb
BB̄

+RBB̄

[

RRS
BB̄

Pα
BB̄

+ (1 −RRS
BB̄

)Pα
BB̄

]

}

(6.8)

where

• Psig ≡ Psig(mES)Psig(Fisher)Psig(∆t)P(m2
+, m

2
−) with P(m2

+, m
2
−) = |f−|2+r2

S|f+|2+
2krS

{

cos(δS − γ)Re[f−f
∗
+] + sin(δS − γ)Im[f−f

∗
+]
}

in the case of B̄0 and P(m2
+, m

2
−) =

|f+|2 + r2
S|f−|2 + 2krS

{

cos(δS + γ)Re[f+f
∗
−] + sin(δS + γ)Im[f+f

∗
−]
}

in the case of B0

and f+ is given by eq. (6.3),

• α = D
0 in the case of B̄0 and D̄

0
in the case of B0, and α denotes the CP conjugate

state of α;

• fk is the fraction for component k = sig,Cont,BB̄ over the expected value of total
events;
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• RCont (RBB̄) is the fraction of real D0/D0 in Cont (BB̄) background component;

• RRS
Cont

(RRS
BB̄

) is the fraction of right sign D0/D0 in Cont (BB̄) background component;

• Pα
k is the pdf for component k and real D0 (α = D

0) or D0 (α = D̄
0
), while PComb

k is
the pdf for the component k and fake D0.

Pα
k (and similarly PComb

k ) is parametrized as follows:

Pα
k ≡ Pα

k (mES)Pα
k (Fisher)Pα

k (∆t)Pα
k (m2

+, m
2
−) , (6.9)

.
The pdf is the product of a “yield” pdf Pα

j (mES)Pα
j (F)Pα

j (∆t) (written as a product
of one-dimensional pdfs since mES, F and ∆t are not correlated) and of the Dalitz plot
dependent part: Pα

j (m2
+, m

2
−), multiplied by the phase space distribution after selection

criteria, P (m2
+, m

2
−) = PSafter cuts. Pα(m2

+, m
2
−) = f(m) is given by eq. (6.3) for true-D0

events and is parametrized by a third order polynomial for non true-D0 events (see sec. 6.2.3).
In the following, with “yield fit”, we refer to the fit using only the “yield” pdf, that will allow
for the extraction of the number of signal and background events. Similarly, the term “CP
fit” refers the fit using the Dalitz plot dependent pdf (and hence giving sensitivity to γ).
The yield fit is first performed and validated (see sec. 6.5.1, 6.5.2 and 6.5.3), the number of
events and the CP parameters (rS, δS, γ) are then determined in the CP fit. The validation
of the CP fit are shown in sec. 6.5.4.

6.4.2 Parametrizations of the distributions of the variables used

in the fit: mES, Fisher and ∆t

The variable mES is parametrized as a Gaussian for the signal and as an Argus both for
continuum and BB̄ background events. The Fisher discriminant is parametrized using a
bifurcate Gaussian for the signal and BB̄ background and using the sum of two Gaussians
for the continuum background. For the signal, ∆t is parametrized (see equation 6.10) with a
resolution function convoluted with an exponential in which τ = τB0 . For the backgrounds,
to parametrize the fraction of events in which a B is misreconstructed, we convolve the
resolution function with an exponential with effective lifetime τ0 and, for events in which there
is no real neutral B (fracShort), we convolve the resolution function with an exponential in
which τ = 0. The resolution function R(∆t, σ∆t) is a sum of a core Gaussian (whose sigma
depends on the error on ∆t event per event), a tail Gaussian and an outlier Gaussian:

R(∆t, σ∆t) = (1 − φtail − φout)G(∆t, µcore, scoreσ∆t) + φtailG(∆t, µtail, σtail) +

+φoutG(∆t, µout, σout)

The parametrizations have been obtained on simulated events for signal and BB̄ back-
ground and, for continuum background, using off-resonance data. Fig. 6.8, 6.9 and 6.10
show the distributions so obtained for mES Fisher and ∆t for signal, BB̄ and continuum
background events respectively.

Tab. C.1 (in appendix C) shows the values of the parameters determined in the parametriza-
tion fits and used in the final fit on data.
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Figure 6.8: mES (top), Fisher (middle) and ∆t (bottom) distributions of simulated signal
events.
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Figure 6.9: mES (top), Fisher (middle) and ∆t (bottom) distributions of off-resonance events.
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Figure 6.10: mES (top), Fisher (middle) and ∆t (bottom) distributions of simulated BB̄
events.
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The correlation between mES, F and ∆t have been found to be negligible for all the
background components (of the order of a few percent). For signal the correlations are at
the level of −1.5%, −0.1% and 1.0% respectively for mES as a function of Fisher, mES as
a function of ∆t and ∆t as a function of Fisher. This allows to write the total pdf in the
likelihood fit as a product of one-dimensional pdfs for the single variables.

6.5 Results on real data

6.5.1 Fit on data: results for the yields

A first fit has been performed on data (fit of the “yields”) to extract the number of signal
and background events. The parameters left free to vary in the fit procedure on data are:

• the number of signal events, NSIG;

• the number of continuum and BB̄ events, NCONT and NBB respectively;

• the mean value for the Gaussian describing mES for signal events;

• the parameters of the Argus function describing mES for BB̄ background events.

The fit projections for mES, F and ∆t are shown in Fig. 6.11. The corresponding results of
the fit are given in Tab. 6.8: we find 39 ± 9 signal events with a purity of NSIG

σNSIG
2 ≈ 0.48.

In Fig. 6.12 we show the projection of the “yield” fit over the variable mES, after a cut on
Fisher> 0.4 has been applied, in order to visually enhance the signal.

Parameter Fitted value
NSIG 39 ± 9
NCONT 1772 ± 48
NBB 231 ± 28

Sig mES µ [GeV/c2] 5.2798 ± 0.0001 GeV/c2

BB̄ mES shape −64.97 ± 14.69

Table 6.8: [Data - yield fit] Results for the yield fit on 353 fb−1 on-resonance data.
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Figure 6.11: [Data - yield fit] Projections of the “yield” fit over the variables mES, Fisher and
∆t. The fit has been performed on 353fb−1 on-resonance data. The different fit components
are shown: sig (red), BB̄ (blue) and Cont (green).
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Figure 6.12: [Data - yield fit] Projections of the “yield” fit over the variable mES, after a
cut on Fisher> 0.4 in order to visually enhance the signal. The fit has been performed on
353fb−1 on-resonance data. The different fit components are shown: signal (red dashed),
BB̄ (blue dotted) and continuum (green dash-dotted).
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6.5.2 Validation for the yields fit using a Toy-Monte Carlo proce-

dure

The “yield” fit has been validated with a toy Monte Carlo procedure. We generate 1000
experiments from the fit model, using the values in Tab. C.1 (in appendix C) for the param-
eters describing the different pdfs (mES, Fisher, ∆t). The number of events are generated
according to Poisson distributions with expected values equal to the values found on data
(see Tab. 6.8). These samples are then fitted using the same fit model used for their gener-
ation. In Fig. 6.13 we show the distribution of NSIG, its error and pull, obtained from this
study. The pull for the number of signal events is well behaved, its mean value is consistent
with zero and its resolution with unity. The fit procedure tends to overestimate the number
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Figure 6.13: [Validation - toy Monte Carlo]. Distributions of the fitted value (top left),
the error (top right) and the pull (bottom) for NSIG obtained from 1000 toy Monte Carlo
experiments.

of BB̄ events (and consequently underestimate the number of continuum events). The pull
distribution for the number of BB̄ events has a bias of about 15%. The only impact of
that is on the total fraction of b→ u-like real D0 events, which will be fixed in the final fit.
In continuum background events, the number of b → u-like real D0 events is almost twice
that in BB̄ events (see Tab. 6.5). This effect is taken into account in the systematic error
evaluation.
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6.5.3 Crosschecks for the yield fit using the sPlot technique

A qualitative agreement of the presence of real signal events in the data can be obtained
using the sPlot technique [58]. In this technique, each event is reweighted using a weight
Wsig defined as following:

W i
sig ≡

∑

j Vsig,j Pij(m
i
ES,∆t

i)
∑

j Nj Pij(mi
ES,∆t

i)
, (6.10)

where Nj is the number of events of each component j (signal, continuum, BB) and Pij is
the product of probability density functions of mi

ES and ∆ti for the event i, Vsig,j is the
signal row of the covariance matrix of the component yields. The covariance matrix Vsig,j is
obtained from a yield fit in which all the parameters (but the yields) are fixed to the values
obtained in the nominal fit.

The sPlots of the variables ∆t and mES are shown (for signal, BB̄ and continuum back-
ground) in Fig. 6.14 and Fig. 6.15 respectively. The curves are illustration of the expected
shapes for the different components. For the signal, the error bars are quite large (reflect-
ing the small signal yield) but the data distributions weighted by Wsig are in reasonable
agreement with the simulated events shapes for signal, BB̄ and continuum components.
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Figure 6.14: [Data - sPlot]. sPlot distributions of ∆t in data for signal, continuum and
BB̄ background. Shapes obtained from signal MC, BB̄ MC and off-resonance data are
superimposed for comparison.
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Figure 6.15: [Data - sPlot]. sPlot distributions of mES in data for signal, continuum and
BB̄ background. Shapes obtained from signal MC, BB̄ MC and off-resonance data are
superimposed for comparison.
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6.5.4 Validation of the CP Dalitz fit: testing the polar coordinates

In order to validate the CP fit, we made many toy-MC tests both in polar and cartesian
coordinates (defined in chapter 2.2). All the tests are made using the number of signal and
background events obtained on data and summarized in Tab. 6.8.

Toy-MC tests have been first performed in polar coordinates, rS, γ and δS: these three
parameters are all floated in the fit in addition to the number of signal and background
events, to the mean value for the Gaussian describing mES for the signal and the shape
parameter of the Argus pdf describing mES for the BB̄ background. The parameter k is
fixed in the fit to k = 0.95 (see 2.6.2).

Due to the dependence of the likelihood on rS, we tend to get from the fit a value of
rS larger than the generated one and consequently, since rS leads the sensitivity to γ, to
underestimate the error on γ, this feature is known as the “linearity problem”.

In Fig. 6.16 (left plot), we summarize the results of many toy Monte Carlo tests made
generating different values for rS. The number of signal and background events are generated
according to the yields found in 353 fb−1 of data. The plots show the fitted value rfit

S as a
function of the generated one rGEN

S .
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Figure 6.16: Distribution of rFIT
S vs rGEN

S from toy MC for different generated values. The
toy-MC samples have been generated assuming for the yields the results obtained with 353
fb−1 of on-resonance data (NSIG = 37, NCont = 1810 and NBB = 258) (left) and for ten
times the statistics (right).

In Fig. 6.16 (left) it can be seen that, also for high values of rGEN
S , the results for rfit

S as
a function of rGEN

S do not converge to the curve rfit
S = rGEN

S (the black curve in the plots).
We name this feature “low statistics problem”, since it disappears in the results of toy Monte
Carlo with ten times the statistics (Fig. 6.16, right).

In conclusion, with the available statistics for this analysis, the fit in polar coordinates
is not feasible (with rS, γ and δS floating) because of the two effects: the “linearity” and
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the “low statistics” problems, and that, for rS of order rS ≈ 0.3, it is the second one that
dominates.

Tests have also been performed in polar coordinates for rS fixed in the fit. For different
values of rGEN

S we fit fixing rS each time to the generated value. In this configuration, also
for the available statistics, the fit shows a good behaviour for γ and δS.

6.5.5 Validation for the CP Dalitz fit: testing the cartesian coor-

dinates

Toy-Monte Carlo studies have been performed also using in the fit the cartesian coordinates
(already defined in eq. 2.5 in chapter 2.2):

x± = rB cos(δ ± γ) ; y± = rB sin(δ ± γ). (6.11)

The use of these coordinates has become usual for the Dalitz analyses of charged B mesons,
since it solves the “linearity problem” [61].

In Tab. 6.9, we summarize the results of toy Monte Carlo corresponding to 353 fb−1 of
on-resonance data (left column) and with ten times larger statistics (right column). From
the simulation, with the present statistics, the four variables (x±, y±) show a non-Gaussian
behaviour and appear to be biased; the mean values of their pull distributions are not con-
sistent with zero and the resolutions are not compatibles with unity. This effect disappears
at high statistics (right column). We conclude that, with the available statistics, we cannot
perform the measurement in cartesian coordinates either.

- 353 fb−1 3.5 ab−1

µPULL
x+

−0.52 ± 0.05 −0.04 ± 0.05

σPULL
x+

0.82 ± 0.03 0.97 ± 0.04

µPULL
x−

−0.07 ± 0.05 −0.02 ± 0.05

σPULL
x−

0.78 ± 0.04 0.99 ± 0.04

µPULL
y+

−0.18 ± 0.05 −0.05 ± 0.06

σPULL
y+

0.79 ± 0.04 1.01 ± 0.04

µPULL
y−

0.40 ± 0.05 −0.03 ± 0.05

σPULL
y−

0.79 ± 0.04 1.03 ± 0.04

Table 6.9: Pull distributions for cartesian coordinates obtained from 500 toy-MC in a con-
figuration similar to the one we find on data (left column) and for ten times the statistics
(right column).

6.5.6 Adopted strategy for the CP fit

As shown in section 6.5.4, given the available statistics, an unbiased fit cannot be performed
neither in polar coordinates, with γ, δ and rS floating, neither in cartesian coordinates. The
performed simulation studies show that the problem for the CP fit is mostly due to the lack
of signal statistics.
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To avoid this problem, we extract from the fit a three-dimensional likelihood for the
variables γ, δ and rS and we combine it with an additional rS measurement, as the one
obtained from the ADS analysis. The combination is obtained from the product of the
two pdf: the three-dimensional pdf (100 × 360 × 360 bins in rS, γ and δ) and the one-
dimensional Gaussian pdf for rS from the ADS analysis. The height of each bin (rSi, γj, δk)
is multiplied by the corresponding height of the ADS pdf for rSi and the three-dimensional
distribution obtained in this way is the pdf for the combined measurements. Whenever the
pdf is projected on any of the three variables (or on a set of them), an integral is performed
on the other variables.

This procedure has been tested on ten different samples, generated with a toy-Monte
Carlo procedure, using for the yields the values found on data and assuming rS = 0.3.
For each sample, the three-dimensional likelihood has been extracted and combined with
an hypothetical Gaussian measurement of rS = 0.30 ± 0.15, where the central value is
consistent with the one generated for the ten samples. The results of these tests show that
γ, δ and rS can be extracted with no bias, provided that it is combined with an additional rS

measurement, even with an error of 50%. The precision we get from the ADS measurement
is better than that, being rS = 0.271+0.060

−0.076.

In conclusion, the output of the Dalitz measurement presented here, for the reasons
explained above, is a three dimensional likelihood scan in rS, γ and δ. Simulation studies
show that results on the single variables can be safely obtained by projecting the three-
dimensional likelihood, provided that it has been combined with an external information on
rS, as the one from the B0 → D0(D0)K∗0 ADS analysis.

6.5.7 Fit on real data: results for the CP parameters: γ, rS, δS

A three-dimensional likelihood scan for γ, δ and rS is extracted from the fit to 353 fb−1 of
on-resonance data. The three-dimensional likelihood is an histogram with 100 × 360 × 360
bins in (rS, γ, δ).

In Fig. 6.17 we show the 68% probability regions obtained for γ, at different rS values (we
divide the interval [0, 1] for rS in 20 bins, rS = 0; 0.05; 0.1....0.95). As expected, moving the
value of the (fixed) rS does not affect the central value of γ, but only its error. For example,
for rS fixed at 0.35, we obtain γ = (162 ± 45)◦. On toy-MC for the same fit configuration,
the average error is 39◦ with a RMS of 12◦. All the distributions shown in the following are
obtained after the combination of the three-dimensional likelihood with the experimental
likelihood for rS from ADS analysis (see eq. 5.50). The projection of the three-dimensional
likelihood on the two-dimensional plane rS vs γ is shown in Fig. 6.18. The projection of the
three-dimensional likelihood on the three variables, rS, γ and δ, are shown in Fig. 6.19. The
dark and light colored zones are the 68% and 95% probability regions.

The corresponding values we obtain are:

γ = (162 ± 56)◦or(342 ± 56)◦;

δS = (62 ± 56)◦or; (242 ± 56)◦

rS = 0.273+0.058
−0.071 , rS ∈ [0.12, 0.38]@95%.
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Figure 6.17: 68% probability regions obtained for γ, at different values of rS. A 68% proba-
bility region cannot be obtained at values of rS lower than 0.2. The results are obtained on
353 fb−1 on-resonance data.
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Figure 6.18: Projections, on the two-dimensional plane γ vs rS, of the three-dimensional
likelihood, combined with the measurement of rS. The dark and light colored zones are the
68% and 95% probability regions.

6.5.8 Systematic uncertainties

In this section we discuss the sources of systematic uncertainties. These effects are assumed to
be Gaussian and uncorrelated between the three variables rS, γ and δS. The total systematic
error is calculated for each variable separately. After that a 3-dimensional Gaussian is
built having as width, for each variable, the value of its systematic uncertainty. The three-
dimensional likelihood from the fit is then convoluted with this three-dimensional Gaussian
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Figure 6.19: Projections of the three-dimensional likelihood, combined with the rS measure-
ment from the ADS analysis, on rS (top plot), γ (bottom left) and δS (bottom right). The
dark and light colored zones are the 68% and 95% probability regions.

to obtain the final three-dimensional pdf.
In order not to be sensitive to problems due to the low statistics of the sample in the

evaluation of the systematics, we evaluate the uncertainties on high statistics toy-MC. For
γ and δ, we study the systematics using a toy-MC for a fixed value of rS. As a matter of
fact, the systematics do not depend on the rS value: the only difference between different rS

values is the number of b → u events and so the number of events that we should generate
in order to be in a “high statistic” condition.

• mES and Fisher shapes and parameters in yields fit.
The systematics from pdfs shapes are evaluated by varying all the fixed parameters
by ±1σ. In addition, for continuum background, the fit is also performed using the
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parameters obtained on simulated events (instead of off-resonance data).

• Peaking background assumptions
The number of peaking background events, evaluated on simulated events and on MD0

sidebands data trough a fit to the mES distribution, is found consistent with zero and
fixed to zero in the fit. The systematic due to this assumption are evaluated by varying
the number of peaking background events within their statistical errors.

• True-D0 fractions in background
The background true-D0 fraction is evaluated on data through a D0 mass fit in the
mES sidebands region. The uncertainty due to this assumption is evaluated by varying
the value within its statistical error.

• b→ c-like events fractions in background
The b → c-like (and complementary the b → u-like) events fractions for combinatorial
background are evaluated on simulated events. This value is bigger for the case of
continuum background than for the case of BB̄ background (it is almost the double,
see Tab. 6.5). Toy-Monte Carlo studies show that the yield fit tends to overestimate
the number of BB̄ background events and so to underestimate the number of b → u-
like events in combinatorial background (see sec. 6.2.3). The systematic uncertainty
due to this effect is evaluated by fixing the number of BB̄ to the MC one and repeating
the CP-fit.

• Signal efficiency over the Dalitz plot
The variations of the efficiency over the Dalitz have been considered by using a phase
space distribution corrected after having applied the selection criteria. For the eval-
uation of the systematic effect the fit has been repeated using only the phase space
distribution PStheo (see eq. 6.5).

• Dalitz shape for fake-D0 background
The Dalitz shape for combinatorial background are evaluated on simulated events (see
sec. 6.2.3). To evaluate the systematic effect due to this assumption, we repeat the fit
assuming a flat Dalitz distribution (without the presence of a K∗ contribution).

• Systematics from the assumptions on the k parameter
The k parameter is fixed in the fit to 0.95. We evaluate the systematics effect of this
assumption by varying the value to which we fix k in the interval [0.88, 1.] as determined
in 2.6.2.

• D0 → KSπ
+π− Dalitz model parametrization The systematic uncertainty coming

from the parametrization of the D Dalitz model is evaluated by performing the fit on
data assuming different Dalitz models, including or not the K-matrix formalism or
parametrizing the ππ S-wave component using the scalar resonances σ1 and σ2.

The systematic uncertainties are summarized in Tab. 6.10, and a detail of the different
contributions can be found in Tab. D.1 in appendix D.
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Systematics source ∆γ[o] ∆δS[o] ∆rS(10−2)
pdf shapes 1.5 2.5 5.2

Peaking background 0.14 0.12 0.04
True D0 in the background 0.05 0.03 1.0

Rb→u 0.01 1.1 1.9
Dalitz not true D0 0.31 0.62 0.61

Dalitz background param. 0.03 0.27 0.2
k parameter 0.07 1.2 7.1

Dalitz model for signal 6.5 15.8 6.0
Total 6.7 16.1 11

Table 6.10: [Data - systematics] Systematic uncertainties on γ , δS , and rS.

The results for γ, rS and δS, taking into account the systematic effects and after the
combination with the rS measurement from the ADS analysis presented in chapter 5 are:

γ = (162 ± 56)◦ or (342 ± 56)◦; (6.12)

δS = (62 ± 57)◦ or (242 ± 57)◦;

rS = 0.273+0.058
−0.071 ; ∈ [0.120, 0.381] at 95% probability.
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6.5.9 Tests on B0 and B̄0 samples separately

In Dalitz analyses the phases γ and δ are constrained by the simultaneous use of B0 and B̄0

samples, which are sensitive to δ+γ and δ−γ respectively (see eqs.2.11 and 2.11). Fig. 6.20
shows the pdf of γ as a function of δ as obtained on data, after having integrated on rS. It
is evident that for this measurement the sensitivity is higher on the combination δ + γ than
on the combination δ− γ. To better understand this feature, some tests have been made on
data considering separately the B0 and B̄0 samples. In Fig. 6.21 we show the yield fit results
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Figure 6.20: Projections, on the two-dimensional plane γ vs rS of the three-dimensional pdf,
combined with the rS measurement from the ADS measurement.

on the B0 and B̄0 samples respectively. The results of this fit are summarized in Tab. 6.11.

parameter B0 sample B̄0 sample
NSIG 16 ± 6 18 ± 6
NCONT 897 ± 35 898 ± 34
NBB 111 ± 21 106 ± 20

Table 6.11: Results of the yield fit, separately for B0 and B̄0, on 353fb−1 on-resonance data.

Fig. 6.22 shows the likelihood scan 1 for γ as a function of δ, for rS fixed to 0.35, for
the B0 and for the B̄0 sample respectively. The tests show that, despite the fact that the
number of signal events is comparable in the two samples, the B̄0 sample is less sensitive
to γ and δS than the B0 one. That is probably due to the different position, for the two

1The plots show the −∆lnL, hence the preferred value is the minimum and the −∆lnL=0.5 determines
the 1σ region
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Figure 6.21: mES (top), Fisher (middle) and ∆t (bottom) distributions extracted from the
fit on 353 fb−1 of on-resonance data for B0 only (left) and B̄0 only (right). The different
components are also shown: signal (red), BB̄ (blue) and continuum (green).

samples, of the signal and background events in the Dalitz plot plane and is an effect that
is expected to disappear when more data are used.
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Figure 6.22: −∆lnL as a function of γ and δS for rS fixed in the fit, for B0 only (top) and
for B̄0 only (bottom). The distribution is obtained on 353 fb−1 B0 on-resonance data.
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6.5.10 Comparison with expected sensitivity

Despite the large value of rS (around 0.3), the obtained error on γ is large. A partial
explanation of this effect is given in the previous paragraph ( 6.5.9). To further clarify this
situation, we have generated 1000 toy Monte Carlo experiments with the same generation
and fit configuration as the one used for the data. The number of signal and background
events and all the parameters that are free to vary in the fit are generated according to the
values we find on data and rS is generated, according to the result of the ADS analysis,
rS = 0.26 and fixed in the fit. In Fig. 6.23 we show the distribution of the error on γ. The
error on γ obtained on data (displayed as a red dotted line in Fig. 6.23) is σγ = 56o, while
the mean value of the distribution for the 1000 toy Monte Carlo experiments is < σγ >=41o.
The test has been repeated assuming values at plus and minus one standard deviation from
rS = 0.26: rS = 0.17 and rS = 0.34. The mean values and rms of the distributions of the
error on γ, assuming rS = 0.17 and rS = 0.34, are (51 ± 13)o and (38 ± 10)o respectively.
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Figure 6.23: Distribution of the error on γ obtained on 1000 different toy Monte Carlo
experiments for the Dalitz analysis in which rS has been generated at the value rS = 0.26
and fixed in the fit. The error obtained in the fit on data is also shown with the dotted line
at σγ = 56o.



Chapter 7

Conclusions and perspectives

7.1 Summary of the results

In this thesis the first measurement of rS and of the angle γ from neutral B0 → D0(D̄0)K∗0

decays has been presented. As a first result (see chapter 5), the ratios RADS for the B0 →
D0(D̄0)K∗0, with D0 → K±π∓, K±π∓π0 and K±π∓π∓π± have been measured with the ADS
technique using 423 fb−1 of data, resulting in the following 68% probability intervals:

RKπ
ADS = 0.067+0.071

−0.057; (7.1)

RKππ0

ADS = 0.060+0.055
−0.038;

RKπππ
ADS = 0.137+0.114

−0.097.

Since the single measurements for the RADS ratios are not statistically significant, 95% prob-
ability limits are calculated by integrating the likelihoods, starting from RADS = 0, obtaining
RADS(Kπ) < 0.244, RADS(Kππ0) < 0.181 and RADS(Kπππ) < 0.391 at 95% probability.
The statistical average of the three RADS measurements, including the systematic effects
and ignoring differences in the rD parameters and in the strong phases between the three
channels, is 0.078+0.037

−0.035, thus indicating a signal with a 2.2 σ significance.
From these results we infer the ratio rS to be 1:

rS = 0.26+0.077
−0.088,

rS ∈ [0.05, 0.396] at 95% probability.

This result is consistent with the expectations for a larger value of this parameter in
case of neutral B decays, with respect to charged B decays and clearly states the interest of
studies of B0 → D0(D̄0)K∗0 decays to measure γ.

A first step in this direction, the Dalitz analysis of B0 → D0(D̄0)K∗0 with neutral D
decaying into KSπ

+π− final states based on 353 fb−1 data, is presented in chapter 6 of the
thesis. The information on the rS parameter is very helpful for extracting γ from this Dalitz

1Which is consistent with the only experimental information on rS , the upper bound (rS < 0.4) put on
this parameter from a low statistics BABAR analysis [73].

193
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analysis. Indeed, the analysis suffers from low statistics effects and simulation studies have
proved that, only when combining the three-dimensional likelihood obtained from the Dalitz
measurement with the external information on rS, the weak phase γ can be safely extracted.
The values obtained for rS, γ and δS from the combination of the ADS and Dalitz analyses
are:

γ = (162 ± 56)◦ or (342 ± 56)◦; (7.2)

δS = (62 ± 57)◦ or (242 ± 57)◦;

rS = 0.259+0.073
−0.079 ; ∈ [0.08, 0.397] at 95% probability.

As commented in sec. 6.5.10, the error (of 56o) on γ is rather large (see Fig. 6.23), being
expected in average to be around 41o from data driven simulation studies. In Fig. 7.1,
the value obtained for rS is compared with the equivalent ratios for charged B channels. In
Fig. 7.2, we show the comparison of the measured value with the expectation for rS evaluated
as explained in sec. 2.4.
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Figure 7.1: Values for the rB (rS) ratios for different charged channels, D0K+, D∗0K+ and
D0K∗+ ([25]) and for our analysis D0K∗0.

7.2 Perspectives

In the following we show some extrapolations to higher luminosity scenarios for the mea-
surements presented in this thesis.

In Fig. 7.3 (left plot), the evolution of the error on rS from an ADS analysis using
separately the three channels studied in this thesis (Kπ, Kππ0 and Kπππ) is shown. The
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Figure 7.2: The measured value for rS, represented by the point with error bars, is compared
with the 68% probability region expected for rS for D0K∗0 decays from the evaluation
presented in sec. 2.4 (left plot). In the right plot, the 68% probability regions expected for
rS for D0K0 and D∗0K0 decays are also shown.

error on rS is analytically calculated (up to a scenario of 10 ab−1) according to the expression
obtained in 2.16. In this test, rS is assumed to be rS = 0.26, the relative errors on the RADS

ratios are taken from the measurement presented in chapter 5 and they are assumed to scale

with the luminosity (∝ 1/
√
N). The “limit” error on RADS , rD/

√

(3), is also shown in the

plot. This term being proportional to rD, it is lower for Kππ0 than for the other two D
decay modes. Fig. 7.3 (right plot) shows the variation, up to a scenario of 10 ab−1, of the
error on rS from the combination of the three D channels.

In Fig. 7.4 (left plot), the variation of the error on γ from the Dalitz analysis of B0 →
D0(D̄0)K∗0 decays is shown. The values are obtained (for a statistics of 353 fb−1, 450 fb−1

and 1 ab−1) from toy Monte Carlo studies, for three different values of rS, corresponding to
the central value found on data and values at plus and minus one standard deviation from it
(rS = 0.17, rS = 0.26 and rS = 0.34). In the toy Monte Carlo procedure rS is fixed in the fit,
while γ, δS and the yield parameters are left free to vary. With a statistics of 1 ab−1, and for
rS = 0.26, an error of ∼25o can be obtained on γ from this analysis. In Fig. 7.4 (right plot),
the variation of the error on γ from the Dalitz analysis of B0 → D0(D̄0)K∗0 decays (for
rS = 0.26, corresponding to the central value found on data), for a statistics of 353 fb−1, 450
fb−1 and 1 ab−1, is compared with the variation of the error on γ from the Dalitz analysis
of D0K∗+, D0K+ and D∗0K+, with D0 → KSπ

+π−. The values for the errors on γ from
the D0K∗+, D0K+ and D∗0K+ measurements separately are evaluated from the results of
the Dalitz BABAR analysis [59] for the number of events, the ratios rB, r∗B and rS and γ. It
can be noted that the use of neutral B meson decays, B0 → D0(D̄0)K∗0, proposed in this
thesis, has the second best single-channel sensitivity for measuring γ.
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Figure 7.3: Left plot: evolution of the error on rS from the ADS analysis using separately the
three D modes studied in this thesis (Kπ, Kππ0 and Kπππ). The error on rS is analytically
calculated (up to a scenario of 10 ab−1). The “limit” error on RADS coming from the term
containing the phases is also shown. Right plot: variation of the error on rS from an ADS
analysis combining the three channels studied in this thesis (Kπ, Kππ0 and Kπππ). The
error on rS is analytically calculated (up to a scenario of 10 ab−1).
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Figure 7.4: Left plot: variation of the error on γ from the Dalitz analysis of B0 → D0(D̄0)K∗0

decays, for a statistics of 353 fb−1, 450 fb−1 and 1 ab−1, for three different values of rS

(rS = 0.17, rS = 0.26 and rS = 0.34). Right plot: variation of the error on γ from the Dalitz
analysis of B0 → D0(D̄0)K∗0 decays (for rS = 0.26), for a statistics of 353 fb−1, 450 fb−1 and
1 ab−1, is compared with the variation of the error on γ from the Dalitz analysis of D0K∗+,
D0K+ and D∗0K+, with D0 → KSπ

+π−.



Appendix A

Values of the pdf parameters for mES
and Fisher used in the ADS analysis

In Tabs. A.1, A.2 and A.3 we show the values of the pdf parameters, as obtained on MC,
for the Kπ, Kππ0 and Kπππ modes respectively. The choice of the fitting functions are
described in sec. 5.4.2, where the plots for the distributions of mES and Fisher are also shown
(Figs. 5.19–5.23). The values shown for the fixed parameters are used for the fit validation
with a toy Monte Carlo procedure as explained in sec. 5.4.3 and on a fully simulated sample
(sec. 5.4.4). The fitted values (marked as “floated” in the tables, left free to vary in the fit)
can be compared with those obtained in the fits to fully simulated samples (see tabs. 5.14–
5.16).
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Parameter value In final fit
Sig mES µ[GeV/c2] 5.27950 ± 0.00002 floated
Sig mES σ[GeV/c2] 0.002480 ± 0.000014 fixed
Sig Fisher µ1 1.135 ± 0.022 fixed
Sig Fisher µ2 1.708 ± 0.020 fixed
Sig Fisher σ1 0.571 ± 0.024 fixed
Sig Fisher σ2 1.024 ± 0.014 fixed
Sig Fisher frac 0.356 ± 0.034 fixed
Same Sign Cont mES cutoff [GeV/c2] 5.2886 ± 0.0004 floated
Same Sign Cont mES shape -39.5 ± 5.5 floated
Opposite Sign Cont mES cutoff [GeV/c2] 5.2892 ± 0.0001 floated
Opposite Sign Cont mES shape -49.3 ± 2.7 floated
Cont Fisher µ -0.88 ± 0.02 fixed
Cont Fisher σ 0.964 ± 0.015 fixed
Same Sign BB̄ mES cutoff [GeV/c2] 5.2876 ± 0.0006 fixed
Same Sign BB̄ mES shape -136.5 ± 13.2 fixed
Opposite Sign BB̄ mES cutoff [GeV/c2] 5.2889 ± 0.0009 fixed
Opposite Sign BB̄ mES shape -50.5 ± 9.8 fixed
BB̄ Fisher µ1 0.93 ± 0.15 fixed
BB̄ Fisher µ2 0.65 ± 0.08 fixed
BB̄ Fisher σ1 0.33 ± 0.12 fixed
BB̄ Fisher σ2 1.01 ± 0.06 fixed
BB̄ Fisher frac 0.13 ± 0.08 fixed

Table A.1: [ADS analysis - Kπ mode] Fitted and fixed parameters for the pdf of mES and
Fisher, for Kπ mode, obtained on simulated events.
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Parameter value In final fit
Sig mES µ[GeV/c2] 5.2795 ± 0.00002 floated
Sig mES σ[GeV/c2] 0.002540 ± 0.000023 fixed
Sig Fisher µ1 0.787 ± 0.029 fixed
Sig Fisher µ2 1.131 ± 0.041 fixed
Sig Fisher σ1 1.015 ± 0.024 fixed
Sig Fisher σ2 0.564 ± 0.051 fixed
Sig Fisher frac 0.685 ± 0.066 fixed
Same Sign Cont mES cutoff [GeV/c2] 5.28910 ± 0.00015 floated
Same Sign Cont mES shape -29.3 ± 2.1 floated
Opposite Sign Cont mES cutoff [GeV/c2] 5.28900 ± 0.00004 floated
Opposite Sign Cont mES shape -33.4 ± 1.2 floated
Cont Fisher µ -0.852 ± 0.009 fixed
Cont Fisher σ 0.948 ± 0.006 fixed
Same Sign BB̄ mES cutoff [GeV/c2] 5.2893 ± 0.0004 fixed
Same Sign BB̄ mES shape -63.5 ± 5.0 fixed
Opposite Sign BB̄ mES cutoff [GeV/c2] 5.2891 ± 0.0003 fixed
Opposite Sign BB̄ mES shape -35.3 ± 4.1 fixed
BB̄ Fisher µ1 0.73 ± 0.08 fixed
BB̄ Fisher µ2 0.26 ± 0.20 fixed
BB̄ Fisher σ1 0.74 ± 0.08 fixed
BB̄ Fisher σ2 1.2 ± 0.1 fixed
BB̄ Fisher frac 0.72 ± 0.19 fixed

Table A.2: [ADS analysis - Kππ0 mode] Fitted and fixed parameters for the pdf of mES and
Fisher, for the Kππ0 mode, obtained on simulated events.
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Parameter value In final fit
Sig mES µ[GeV/c2] 5.2795 ± 0.00003 floated
Sig mES σ[GeV/c2] 0.002462 ± 0.000020 fixed
Sig Fisher µ1 0.75 ± 0.03 fixed
Sig Fisher µ2 1.05 ± 0.03 fixed
Sig Fisher σ1 1.03 ± 0.02 fixed
Sig Fisher σ2 0.56 ± 0.04 fixed
Sig Fisher frac 0.64 ± 0.05 fixed
Same Sign Cont mES cutoff [GeV/c2] 5.2887 ± 0.0002 floated
Same Sign Cont mES shape -34.0 ± 2.6 floated
Opposite Sign Cont mES cutoff [GeV/c2] 5.2891 ± 0.0001 floated
Opposite Sign Cont mES shape -35.6 ± 1.5 floated
Cont Fisher µ -0.86 ± 0.01 fixed
Cont Fisher σ 0.930 ± 0.007 fixed
Same Sign BB̄ mES cutoff [GeV/c2] 5.2887 ± 0.0004 fixed
Same Sign BB̄ mES shape -80.0 ± 5.2 fixed
Opposite Sign BB̄ mES cutoff [GeV/c2] 5.2888 ± 0.0006 fixed
Opposite SignBB̄ mES shape -34.3 ± 4.6 fixed
BB̄ Fisher µ1 0.59 ± 0.05 fixed
BB̄ Fisher µ2 0.24 ± 0.14 fixed
BB̄ Fisher σ1 0.72 ± 0.07 fixed
BB̄ Fisher σ2 1.2 ± 0.1 fixed
BB̄ Fisher frac 0.71 ± 0.15 fixed

Table A.3: [ADS analysis - Kπππ mode] Fitted and fixed parameters for the pdf of mES

and Fisher, for K3π mode, obtained on simulated events.



Appendix B

More details on toy Monte Carlo
results for the ADS analysis

The fit validation using a toy Monte Carlo procedure is presented in sec. 5.4.3. More details
are given in the following. In Fig. B.1, B.2 and B.3, we show the distribution of NDK∗

and of its error for the three D0 channels. For the three D modes, we also show the pull
distributions for continuum and BB̄ background events are shown in Fig. B.4, B.5 and B.6.
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Figure B.1: [Kπ mode] Distributions of the fitted value (left), the error (middle) and the
pull (right) for NDK∗ obtained with the toy MC described in the text for the Kπ channel.
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Figure B.2: [Kππ0 mode] Distributions of the fitted value (left), the error (middle) and the
pull (right) for NDK∗ obtained with the toy MC described in the text for the Kππ0 channel.
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Figure B.3: [Kπππ mode] Distributions of the fitted value (top left), the error (top right)
and the pull (bottom) for NDK∗ obtained with the toy MC described in the text for the K3π
channel.
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Figure B.4: [Kπ mode] Pull distributions for continuum same sign (top left), continuum
opposite sign (top right), BB̄ same sign background (bottom left) and BB̄ opposite sign
background (bottom right) for the Kπ channel.
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Figure B.5: [Kππ0 mode] Pull distributions for continuum same sign (top left), continuum
opposite sign (top right), BB̄ same sign background (bottom left) and BB̄ opposite sign
background (bottom right) for the Kππ0 channel.
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Figure B.6: [Kπππ mode] Pull distributions for continuum same sign (top left), continuum
opposite sign (top right), BB̄ same sign background (bottom left) and BB̄ opposite sign
background (bottom right) for the K3π channel.
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Appendix C

Values of the pdf parameters for mES,
Fisher and ∆t used in the Dalitz
analysis

Tab. C.1 summarizes the values of the pdf parameters used in the “yield” fit for the Dalitz
analysis. The table also shows which of these parameters are floated in the final fit on data
(in addition to the number of events for sig, Cont and BB̄).

The choice of the fitting functions are described in sec. 6.4.2, where the plots for the dis-
tributions of mES, Fisher and ∆t are also shown (Figs. 6.8, 6.9 and 6.10). The values shown
for the fixed parameters are used for the fit validation with a toy Monte Carlo procedure
as explained in sec.6.5.2. The shapes of the distributions have been checked with an sPlot
technique (sec. 6.5.3). The fitted values (marked as “floated” in the tables, left free to vary
in the fit) can be compared with those obtained in the fit on real data (see tab. 6.8).
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Shape parameter value status in final fit on data
mES

Sig µmES 5.27957 ± 0.00002 GeV/c2 floated
Sig σmES 2.48 ± 0.01 MeV/c2 fixed

Cont cutoffmES 5.29 GeV/c2 fixed
Cont slopemES −32.5 ± 8.2 fixed
BB̄ cutoffmES 5.29 GeV/c2 fixed
BB̄ slopemES −56.0 ± 6.7 floated

F
Sig µFish 1.69 ± 0.02 fixed

Sig σL Fish 1.41 ± 0.01 fixed
Sig σR Fish 0.52 ± 0.01 fixed
Cont fFish 0.08 ± 0.03 fixed

Cont µ1 Fish 1.0 ± 0.6 fixed
Cont µ2 Fish −9.68 ± 0.07 fixed
Cont σ1 Fish 0.63 ± 0.12 fixed
Cont σ2 Fish 0.92 ± 0.55 fixed
BB̄ µFish 1.19 ± 0.19 fixed
BB̄ σL Fish 1.46 ± 0.13 fixed
BB̄ σR Fish 0.63 ± 0.11 fixed

∆t
Sig ∆t µCore (−0.3087 ± 0.102) · 10−12s fixed

Sig ∆t scaleσ Core 1.269 ± 0.166 fixed
Sig ∆t µTail (−7.21 ± 0.85) · 10−12s fixed
Sig ∆t σTail (1.36 ± 1.7) · 10−12s fixed
Sig ∆t µOut 0. · 10−12s fixed
Sig ∆t σOut 8. · 10−12s fixed
Sig ∆t fTail 0.0079 ± 0.0060 fixed
Sig ∆t fOut 0.0053 ± 0.0100 fixed
τB+B− 1.53 · 10−12s fixed

Cont ∆t µCore (−0.0717 ± 0.365) · 10−12s fixed
Cont ∆t scaleσ Core 0.146 ± 0.22 fixed

Cont ∆t fShort 0.897 ± 0.112 fixed
BB̄ ∆t µCore (0.074 ± 0.365) · 10−12s fixed

BB̄ ∆t scaleσ Core 1.773 ± 0.222 fixed
BB̄ ∆t µTail (−0.73 ± 0.56) · 10−12s fixed
BB̄ ∆t σTail (1.52 ± 0.35) · 10−12s fixed
BB̄ ∆t fTail 0.36 ± 0.19 fixed
BB̄ ∆t fOut 0.72 ± 0.13 fixed

Table C.1: PDF parameters as extracted from themES F and ∆t fit on MC and offresonance
data.



Appendix D

Details on Dalitz analysis systematic
uncertainties

The systematic uncertainties for the Dalitz analysis are presented in sec. 6.5.8 and summa-
rized in Tab. 6.10. In Tab. D.1 we give more details on the single contributions.

Parameter val ± err ∆γ[o] ∆δ[o] ∆rS

Sig mES pdf TOT sys 4.7 10−1 9.4 10−1 5.3 10−3

Sig Fisher pdf TOT sys 3.7 10−2 1. 10−1 8.9 10−4

Sig ∆t pdf TOT sys 2.5 10−1 2.5 10−1 1.6 10−3

Cont mES pdf TOT sys −32.5± 8.2 1.8 10−1 1.1 10−1 8.5 10−3

Cont Fisher pdf TOT sys 8.8 10−1 1.15 5 10−2

Cont ∆t pdf TOT sys 1.0 1.5 7.3 10−3

BB̄ mES pdf TOT sys −48.3± 10.0 2.1 10−2 4.5 10−2 1.5 10−3

BB̄ Fisher pdf TOT sys 3.5 10−1 1.1 1.2 10−2

BB̄ ∆ t pdf TOT sys 3.9 10−1 5.9 10−1 1.8 10−3

TOT sys from pdf 1.5 2.5 5.2 10−2

Peaking bkg assumptions 1.4 10−1 1.2 10−1 3.5 10−4

fracD0ContandBB 0.289± 0.028 5.2 10−2 3.2 10−2 1.0 10−2

k parameter 0.95 7.2 10−2 1.2 7.1 10−2

Dalitz model (K-matrix) 2.9 5.5 3 10−3

Dalitz model (no σ1 and σ2) 6.4 15.8 6 10−2

Sig eff. over the Dalitz plot 3.1 10−1 6.2 10−1 6.0 10−3

Dalitz shape for fake-D0 bkg 3.0 10−2 2.7 10−1 2.0 10−3

BB̄ Vcb-like evt fraction 1.0 10−2 1.0 10−1 4.7 10−3

Cont Vcb-like evt fraction 5.0 10−3 3.5 10−2 1.9 10−2

TOT syst (3.2) 6.6 (6.2) 16.1 (8.9) 1.0 10−1

Table D.1: Systematics contributions to the determination of γ, δ and rS.
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Abstract

In this thesis we present CP violation studies in the B mesons system, and in particular
measurements of the angle γ of the Unitarity Triangle, using data collected by the BABAR ex-
periment. The angle γ is the relative weak phase between the Vub and Vcb elements of the
CKM matrix. A crucial parameter, which drives the sensitivity to γ, is the ratio r between
b→ u and b→ c transition amplitudes.

In the first part of the thesis, general issues on γ studies and the status of the present
measurements are introduced.

The experimental work is then detailed. It is composed of two different analyses of
B0 → D0(D̄0)K∗0. In the first analysis, these decays are studied through the ADS method,
where the neutral D mesons are reconstructed into K±π∓, K±π∓π0 and K±π∓π±π∓ final
states. This analysis allows to determine, for the first time, the ratio r for B0 → D0(D̄0)K∗0,
which is found to be r = 0.260+0.077

−0.088. The large value for the parameter r makes the use of
this channel interesting for present and future facilities, for the determination of γ.

In the second analysis, tha channel B0 → D0(D̄0)K∗0 is studied with a Dalitz method
and the neutral D mesons are reconstructed into KSπ

+π− final states. The determination
of γ from this analysis is γ = (162 ± 56)◦, with a 180◦ ambiguity. The result for r from
the combination of the two analyses is: r = 0.259+0.073

−0.079. These results represent the first
contraints on γ and r obtained from neutral B decays.

Finally, data driven simulation studies are discussed, which show that the study of the
B0 → D0(D̄0)K∗0 is competitive, for the determination of γ, with the other analysis aiming
to extract γ from charged B decays.

Key words: CP violation, CKM, BABAR experiment, UTfit, weak phase γ, b→ u amplitude,
ADS method, Dalitz method
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Résumé

Cette thèse porte sur l’ étude de la violation de CP dans le secteur des mésons B et en par-
ticulier les mesures de l’angle γ du Triangle d’Unitarité, en utilisant les données enregistrées
par le détecteur BABAR . L’angle γ est la phase relative entre les éléments Vub et Vcb de la
matrice CKM. Un paramètre très important dans les mesures de γ est le rapport r entre
les amplitudes des désintégrations qui comportent une transition des quarks b → u et les
désintégrations qui comportent une transition b → c. La sensibilité à γ est proportionelle à
la valeur de ce paramètre.

Dans la première partie de cette thèse, les problematiques liées à l’étude de l’angle γ ainsi
que l’état actuel des mesures sont presentés.

Le travail experimental est ensuite présenté, il comporte deux analyses en utilisant les
désintégrations B0 → D0(D̄0)K∗0. Dans la première analyse, le canal B0 → D0(D̄0)K∗0 est
étudié en utilisant une méthode ADS et les mésons D neutres sont reconstruits dans les états
finals K±π∓, K±π∓π0 et K±π∓π±π∓. Cette analyse permet de mesurer, pour la première
fois, le rapport r pour le canal B0 → D0K∗0. On obtient: r = 0.260+0.077

−0.088. La grande valeur
obtenue pour r rend l’utilisation de ce canal très intéressante pour les expériences présentes
et futures, pour la détermination de l’angle γ.

Dans la deuxième analyse, le canal B0 → D0(D̄0)K∗0 est étudié avec une méthode Dalitz
et les mésons D neutres sont reconstruits dans l’état final KSπ

+π−. Cette analyse permet
une mesure de l’angle γ. On obtient γ = (162 ± 56)◦ avec une ambiguité de 180◦. La
détermination du paramètre r par les deux analyses combinées est: r = 0.259+0.073

−0.079. Ces
analyses donnent les premièrs resultats sur γ et r obtenus à partir des études des mésons B
neutres.

Finalement, des études de simulation, basés sur les données, sont presentés. Ces études
montrent que l’utilisation des canaux B0 → D0(D̄0)K∗0 peut donner une sensitivité a γ
comparable avec celle des autres analyses, qui utilisent les mésons B chargés.

Key words: violation de CP , CKM, experience BABAR , UTfit, phase faible γ, amplitude
b→ u, méthode ADS, méthode Dalitz
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enrichissante, je veux remercier tous les gens qui m’ont aidé et avec lesquelles j’ai travaillé.
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