◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Modes de vibration de nano-objets : des nanoparticules métalliques aux virus biologiques

Bruno Stephanidis Directeur de thèse : Alain Mermet

Laboratoire de Physico-Chimie des Matériaux Luminescents

22 janvier 2008

INTRODUCTION

DYNAMIQUE DE NANO-OBJETS

CAS DES NANOPARTICULES D'OR

VIRUS CONCLUSION

Plan

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

DYNAMIQUE DE NANO-OBJETS

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- 2 DYNAMIQUE DE NANO-OBJETS
- CAS DES NANOPARTICULES D'OR

- 2 DYNAMIQUE DE NANO-OBJETS
- CAS DES NANOPARTICULES D'OR

- 2 DYNAMIQUE DE NANO-OBJETS
- CAS DES NANOPARTICULES D'OR

▲ロト▲圖ト▲目ト▲目ト 目 のへで

Nanoparticules \Rightarrow Dimensions nanométriques

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Nanoparticules ⇒ Dimensions nanométriques

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Confinement
 → propriétés
 optiques
 ex. : coloration
 des verres
- Rapport S/V grand → propriétés catalytiques

Nanoparticules \Rightarrow Dimensions nanométriques

- Confinement
 → propriétés
 optiques
 ex. : coloration
 des verres
- Rapport S/V grand → propriétés catalytiques
- Modes de vibrations à l'échelle de la nanoparticule

LPCML : étude par diffusion inélastique de lumière

 intérêt fondamental (effet de confinement élastique, couplage élastique, couplage lumière/vibration)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• détermination de la taille ($\nu \propto 1/D$)

LPCML : étude par diffusion inélastique de lumière

• intérêt fondamental (effet de confinement élastique, couplage élastique, couplage lumière/vibration)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• détermination de la taille ($\nu \propto 1/D$)

Pourquoi étudier les virus?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Introduction Les virus : des « nanoparticules biologiques »

Taille \sim 20 nm - quelques centaines de nm \Rightarrow nano-

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction Les virus : des « nanoparticules biologiques »

Taille \sim 20 nm - quelques centaines de nm \Rightarrow nano-

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction Les virus : des « nanoparticules biologiques »

Taille \sim 20 nm - quelques centaines de nm \Rightarrow nano-

• formes très géométriques : sphère

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction Les virus : des « nanoparticules biologiques »

Taille \sim 20 nm - quelques centaines de nm \Rightarrow nano-

• formes très géométriques : sphère

monodisperses

VIRUS CONCLUSION

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction Les virus : des « nanoparticules biologiques »

Taille \sim 20 nm - quelques centaines de nm \Rightarrow nano-

• formes très géométriques : sphère

- monodisperses
- \Rightarrow « nanoparticules biologiques »

・ ・ 同 ・ ・ 三 ・ ・ 三 ・ うへつ

Introduction Les virus : des « nanoparticules biologiques »

Taille \sim 20 nm - quelques centaines de nm \Rightarrow nano-

• formes très géométriques : sphère

cylindre

- monodisperses
- \Rightarrow « nanoparticules biologiques »
- © Faible cohésion et structure virale hétérogène

Introduction Apports d'une étude dynamique des virus

 Etude des changements de conformation du virus (transition compact/gonflé)

Witz et al. 2001

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Tama *et al.* 2005

Introduction Apports d'une étude dynamique des virus

 Etude des changements de conformation du virus (transition compact/gonflé)

Witz et al. 2001

• Détection ($\nu \propto 1/D$)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Tama *et al.* 2005

Introduction Apports d'une étude dynamique des virus

 Etude des changements de conformation du virus (transition compact/gonflé)

Witz et al. 2001

- Détection ($\nu \propto 1/D$)
- Virocidie ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Tama *et al.* 2005

- 2 DYNAMIQUE DE NANO-OBJETS
 - 3 Cas des nanoparticules d'or

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Modes propres d'une nanosphère

Modes propres d'une nanosphère=ondes stationnaires

 1D : superposition de deux ondes progressives se propageant en sens inverse

• 3D (Animations : L. Saviot)

Validité à toutes les échelles / $\nu \propto 1/D$

- planète $D = 13000 \ km \Rightarrow \nu \sim 10^{-3} \ Hz$
- nanoparticule $D = 5 nm \Rightarrow \nu \sim 10^{11} Hz$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Modes propres d'une sphère : calcul

Modèle simple : sphère élastique homogène (Lamb 1881)

$$-\omega^2 \vec{u} = v_L^2 \vec{\nabla} (\vec{\nabla} \cdot \vec{u}) - v_T^2 \vec{\nabla} \times (\vec{\nabla} \times \vec{u})$$

Symétrie sphérique \Rightarrow solutions indexées par ℓ

$$\ell = 0$$

mode de respiration $\ell \ge 1$
torsionnel sphéroïdal

Ordres de grandeurs

$$\nu = \frac{Sv_{L,T}}{D} S$$
 facteur de forme (= 0.5 corde, 0.8 – 0.9 sphère)

$$S = f(v_L/v_T)$$
 (et de ρ si matrice)

Nanosphère « dure » (silice) $\nu = 19 \ cm^{-1}$

Nanosphère « molle » (biologique) $\nu = 5 \ cm^{-1}$

Virus : v_L , v_T , ρ ?

Diffusion inélastique de lumière

Modes propres de nanoparticules \Rightarrow modes « quasi-optiques »

ヘロト 人間 とくほとくほとう

Dispositif expérimental : tandem Fabry-Pérot

triple passage \Rightarrow

- très bonne résolution
- très bon taux de réjection

- 2 DYNAMIQUE DE NANO-OBJETS
- CAS DES NANOPARTICULES D'OR

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Application à l'étude de nanoparticules d'or

Verres complexes (au plomb) de la cristallerie Saint-Louis dopés à l'or recuits à 470° $C \Rightarrow$ couleur rouge

Application à l'étude de nanoparticules d'or

Verres complexes (au plomb) de la cristallerie Saint-Louis dopés à l'or recuits à $470^{\circ}C \Rightarrow$ couleur rouge Spectres d'absorption : résonance plasmon de surface

・ コット (雪) (小田) (コット 日)

・ロト ・ 四ト ・ ヨト ・ ヨト

э

s Conclusio

Application à l'étude de nanoparticules d'or Spectres Raman basse fréquence « basse résolution »

Spectres Raman basse fréquence « basse résolution » ⇒ 2 composantes

+ petite bande

VIRUS CONCLUSI

Application à l'étude de nanoparticules d'or Spectres Raman basse fréquence « haute résolution »

Spectres Raman basse fréquence « haute résolution » \Rightarrow 2 composantes 4 composantes

Application à l'étude de nanoparticules d'or Spectres Raman basse fréquence : fits lorentziens

- Ø polarisée, Ø, Ø et Ø dépolarisée
- $\nu_1/\nu_4 \equiv \nu_{sph}/\nu_{quad}$

composantes 0 et $0 \equiv$ quadrupolaire et sphérique

CAS DES NANOPARTICULES D'OR

VIRUS CONCLUSION

Application à l'étude de nanoparticules d'or Interprétation : levée de dégénérescence

(a) observations au MET
 → (b) morphologie facettée compatible avec un cuboctaèdre tronqué

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

CAS DES NANOPARTICULES D'OR

VIRUS CONCLUSION

Application à l'étude de nanoparticules d'or Interprétation : levée de dégénérescence

(a) observations au MET
 → (b) morphologie facettée compatible avec un cuboctaèdre tronqué

Levée de dégénérescence du mode quadrupolaire 5 fois dégénéré (analogie avec théorie du champ cristallin)

・ロト・日本・日本・日本・日本・日本

Application à l'étude de nanoparticules d'or Interprétation : levée de dégénérescence

•
$$T_{2g} \iff$$
 onde T [100] à $v_{T2g} = \sqrt{C_{44}/\rho}$
• $E_g \iff$ onde T [110] à $v_{E_g} = \sqrt{1/2(C_{11} - C_{12})/\rho}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 T_2

κ

Application à l'étude de nanoparticules d'or Confrontation du modèle avec les données expérimentales

Dans le nanocristal \Rightarrow ondes stationnaires entre faces octogonales (100) et entre faces rectangulaires (110) $\nu_{T2g} \simeq \frac{\nu_{T2g}}{L_{(100)}}$ et $\nu_{Eg} \simeq \frac{\nu_{Eg}}{L_{(110)}}$

Diamètre de la nanosphère \bar{D}

(ロ) (同) (三) (三) (三) (○) (○)

Application à l'étude de nanoparticules d'or Confrontation du modèle avec les données expérimentales

⇒ Le modèle proposé et les données expérimentales sont en bonne adéquation.

composantes ① et $② \equiv$ modes de la nanosphère (quadrupolaire et sphérique) composantes ② et $③ \equiv$ modes « cuboctaédriques » *Eg* et *T*2*g*

- 2 DYNAMIQUE DE NANO-OBJETS
- 3 Cas des nanoparticules d'or

Virus étudiés

Phytovirus

BMV

• Virus humain : Adénovirus 80 nm

Estimation de la fréquence des modes de virus (pour le STMV)

•
$$u_{\ell=0} \sim 100 \, GHz$$

Expériences sur les solutions de virus

Spectre d'une solution de STMV

э.

On n'observe que le signal très intense de la solution. \Rightarrow résultat identique pour tous les virus

Expériences sur les solutions de virus

- $\bullet\,$ fraction volumique en virus dans la solution $\sim 0.2\%\,$
- impédances acoustiques des virus et du solvant proches ⇒ amortissement ?
- activité Raman des modes de virus faible?

Idées

Exalter le signal du virus

- diffusion Raman exaltée par des nanoparticules (SERS) ③
- diffusion inélastique d'UV 🔅

Augmenter la concentration en virus

CAS DES NANOPARTICULES D'OR

VIRUS CONCLUS

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Cristaux bidimensionnels de phytovirus Observations AFM d'un cristal 2D de virus

Réseau hexagonal compact de TBSV sur mica

VIRUS CONCLUSIO

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Cristaux bidimensionnels de phytovirus Observations AFM d'un cristal 2D de virus

Réseau hexagonal compact de TBSV sur mica

Profil 3D

Reconstruction de la surface

CAS DES NANOPARTICULES D'OR

VIRUS CONCLUSION

Cristaux bidimensionnels de phytovirus Observations AFM d'un cristal 2D de virus

Réseau hexagonal compact de TBSV sur mica

Profil 3D

A plus petite échelle

・ コット (雪) (小田) (コット 日)

Reconstruction de la surface

Spectre d'une couche de TBSV sur une lame de silice

Nature du mode de la couche?

- mode de la couche virus
- pas de signal à plus haute énergie
- résultats similaires pour tous les virus

・ロト・日本・日本・日本・日本・日本

Comparaison avec le spectre d'un film de protéines (BSA)

・ロット (雪) (日) (日)

э

Comparaison avec le spectre d'un film de protéines (BSA)

- grandes similitudes avec les spectres de couches de virus
- pic de la couche ou du film systématiquement entre 19 GHz et 23 GHz

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

Comparaison avec le spectre d'un film de protéines (BSA)

- grandes similitudes avec les spectres de couches de virus
- pic de la couche ou du film systématiquement entre 19 GHz et 23 GHz

 \Rightarrow BMV : $v_L \sim 3300 \text{ m.s}^{-1}$, TBSV : $v_L \sim 3800 \text{ m.s}^{-1}$

CAS DES NANOPARTICULES D'OR

VIRUS CON

Cristaux 3D de STMV

Cristaux de virus $(L \sim 300 \,\mu m)$ sous différents conditionnements

CAS DES NANOPARTICULES D'OR

VIRUS CONCLUSI

Cristaux 3D de STMV

Spectres d'un cristal de STMV hydraté

Deux composantes

 mode Brillouin de la solution

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• pic du cristal

Cristaux 3D de STMV

Spectres d'un cristal de STMV hydraté

Deux composantes

- mode Brillouin de la solution
- pic du cristal
 - polarisé

•
$$\nu \equiv \nu(q)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 \Rightarrow mode Brillouin L

Cristaux 3D de STMV

Spectres d'un cristal de STMV hydraté

Deux composantes

- mode Brillouin de la solution
- pic du cristal
 - polarisé

•
$$\nu \equiv \nu(q)$$

 \Rightarrow mode Brillouin L

Evaluation des constantes élastiques de virus « in vivo »

- $v_L = 1920 \pm 70 \ m.s^{-1} \sim calculs des modes$
- module d'Young : *E* = 3.3 *GPa* (compatible avec mesures par indentation AFM)

 \rightarrow cristal sec $E \sim 10$ GPa (rigidité des capsides)

CAS DES NANOPARTICULES D'OR

VIRUS CONCLUS

Cristaux 3D de STMV Recherche de modes à plus haute énergie

Spectre d'un cristal de STMV sec

 \Rightarrow Pas de modes de vibration de virus

Pour quelles raisons?

・ロン ・ 四 と ・ 回 と ・ 回 と

э.

Cas des nanoparticules d'or

VIRUS CONCLUSION

Cristaux 3D de STMV Recherche de modes à plus haute énergie

Spectre d'un cristal de STMV sec

 \Rightarrow Pas de modes de vibration de virus

Pour quelles raisons ?

- pas de mouvements cohérents au sein du virus
- modes amortis par le solvant
- modes de virus de trop faible amplitude ⇒ indétectables par diffusion inélastique de lumière

Derniers résultats Cas d'un gros virus en solution

- PBCV-1 : gros virus (*D* = 190 *nm*)
- Solution-mère très concentrée

(日)

э

Derniers résultats Cas d'un gros virus en solution

- PBCV-1 : gros virus (*D* = 190 *nm*)
- Solution-mère très concentrée

- intensité \propto concentration en virus
- position du pic compatible avec calculs

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Derniers résultats Mode de particule ou mode acoustique ?

Etude de la relation de dispersion

Etude de la relation de dispersion

- variation linéaire de la position du pic (●) du solvant ⇒ mode acoustique
- mode ★ : position varie peu en fonction de q

 \Rightarrow Mode propre de virus !

Etude de la relation de dispersion

 variation linéaire de la position du pic (●) du solvant ⇒ mode acoustique

CONCLUSION

 mode ★ : position varie peu en fonction de q

 \Rightarrow Mode propre de virus !

Etude de la relation de dispersion

- variation linéaire de la position du pic (●) du solvant ⇒ mode acoustique
- mode ★ : position varie peu en fonction de q

 \Rightarrow Mode propre de virus !

Etude de la relation de dispersion

- variation linéaire de la position du pic (●) du solvant ⇒ mode acoustique
- mode ★ : position varie peu en fonction de q

 \Rightarrow Mode propre de virus !

Conclusion Modes de vibration de nanoparticules d'or

Anisotropie élastique \Rightarrow levée de dégénérescence du mode quadrupolaire

Conclusion Modes de vibration de nanoparticules d'or

Anisotropie élastique \Rightarrow levée de dégénérescence du mode quadrupolaire

Perspectives

Etude d'autres systèmes différant par

- la composition : Au/Ag (spectres riches) et Cu
- la morphologie : nanobâtonnets

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion Recherche de modes de virus

Etude de plusieurs virus

• Solutions : petit virus 🔅

gros virus (sensibilité?) ©

 2D et 3D ⇒ première détermination de certaines constantes élastiques de virus

Conclusion Recherche de modes de virus

Etude de plusieurs virus

• Solutions : petit virus 🔅

gros virus (sensibilité ?) ©

- 2D et 3D ⇒ première détermination de certaines constantes élastiques de virus
- Perspectives
 - étude d'autres gros virus (vérification de $\nu \propto 1/D$)
 - exaltation du signal

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Collaborations

Sergei Adichtchev, Sergei Sirotkin, Eugène Duval, LPCML Patrice Gouet, IBCP, Lyon I : Cristaux de virus et de protéines Lucien Saviot, Univ. Bourgogne (Dijon) : Simulations et calculs de modes Alain Polian, IMPMC, Paris VII : Diffusion Brillouin Serge Etienne, Sylvie Migot Ecole des Mines (Nancy) : Verres Saint-Louis Alexander McPherson, Université de Californie (Irvine) : STMV Laure Franqueville, Pierre Boulanger, Laboratoire de Virologie, Lyon 1 : Adénovirus Eric Larguet, Nicolas Boisset, IMPMC, Paris VI : BMV, TBSV James Van Etten, Université de Nebraska-Lincoln : PBCV-1 Diego Guerin, Université du Pays Basque (Bilbao) : GroEl Claudio Masciovecchio, Alessandro Gessini, synchrotron ELETTRA, Trieste (Italie) : IUVS Juliette Tuaillon-Combes, LPMCN, Lyon 1 : Agrégats Stéphane Roux, LPCML : nanoparticules d'or sur virus Armel Descamps, CLAMS (INSA Lyon) : AFM Estela Bernstein, LPMCN, Lyon 1 : MET