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INTRODUCTION






Dans sa conférence sur "L'avenir des Mathématiques”, au Congrés de Roma
en 19068, POINCARE a remarqué que l'on devait pouvolr appliquer la théorie des
equations intégrales linéaires & la théorie des équations différentielles
ordipaires non linéaires. Un premier pas pour réaliser 1'idée de Poincaré a
été fait par Fredholm dans une Note dans les Comptes Rendus 23 aBut 18920.
FREDHOLM arrive & une équation intégrale linéaire mais il constate en méme
temps que 1'état actuel de la théorie des équations intégrales ne parait
cependant pas permettre une étude suffisamment approfandie dé:l'équation

obtenus...

A Stockolm, le 18 mars 1932

TORSTEN CARLEMAN






INTRODUCTION

Cette thése se compose de deux parties : une partie traitant de

problémes intégraux et une autre de problémes différentiels.

A) T est un opérateur intégral lindaire compact

Il s'agit de trouver une approximation numérique du probléme

(1) Tx = zx + £ , xeX ( X : espace de Banach)
par des méthodes de projections.

-

On supposera que 0 # z appartient a 1'ensemble résolvant de T ce qui
assurera l'existence et l'unicitéd de x

solution du probléme . L'quothwim1xhestsoluthnlde:

(2) L (Txne Z xn—f)=0 , xnexn (X_ : sous espace de dimension

n
finie de X)}

~

01 L est une projection de X dans X , ponctuellement convergent
n

‘T étant compact (2) admet une solution unique pour n assez grand.

En 1976 I,H.SLOAN a considéré 1'itéré du point_fixe kn de

1 1

1'équation x = Z Ix + Z f 4 partir de 1'approximation X,

4
X, = % Txn + % f , et a démontré que
||§n~xii < g lx -x|| ou £, > 0 quand n » =,

En 1978 F.CHATELIN a introduit la suite des itérés des &éléments

propres ¢£k) et Agk) associés a une valeur propre simple, dont

elle a démontré la convergence.

I.G.GRAHAM en collaboration avec I.H.SLOAN a donné en 1979 une

-~

caractérisation de la compacité des opérateurs intégraux i noyau ;
. - « Y

puis en 1980 il a soutenu une thé&se sur la superconvergence de X,

associé a un opérateur intégral dont le noyau est un noyau de

convolution faiblement singulier.



Cependant en 1979 G.A.CHANDLER (sous la direction d'Anderson)

démontre dans sa thése que si Xn = Pr A oli A est une partition
, .

quasiuniforme et si m, €st la projection orthogonale définie de

X dans Xn alors

Hx-x || = o™
||x—§n|| = 0(h2r+2) Si le noyau est lisse,
2
I(x—%n)(ti)l = ()(h21~+ ) Si le noyau est de Green,

(h étant le plus grand pas de la maille ),

B) T est un opérateur différentiel d'ordre p

Il s'agit de chercher une approximation numérique du probléme :

p-1
(Ty)(t) := y(P(ey - ;
, i=0

(3) sous p conditions aux limites linéairement indépendantes

a_ (t) y@ (1) = £(1), tero,12

sur 1'espace des polyndmes de degré p-1.

Sous les hypothé&ses que
i) 1le probléme (3) admet une solution unique

.. . r+l
ii) les aj sont de classe C[O,l]

(mais cependant sans aucune hypothése sur la partition

a = (ed)ig )

C. de BOOR et B.SWARTZ ont démontré en 1973 que la solution Yn

du probléme (4) vérifie :

y-y, 11 = O™ 1*P)
[-y ) (£)] = o(h®™*% 1<is<n
(4) étant

(Tyn)(ri]) f(Tij) 1<isn  , 1<jsr+l

Y, Vérifiant leSp conditions aux limites, et appartenant 3

(4) 1'espace Pp;; A des' polynqmes par morceaux de degré s p+r
»

Gui se raccordent aux noeuds de la partition & jusqu'ad 1'ordre n-1.



ol les riJ 1<jsr+1 , sont les (r+1) points de Gauss du sous

intervalle [tj.1 ,t;l de [0,11 , 1<is<n .

Ils ont démontré ensuite en 1979 que sous les mémes hypothéses
qu'en 1973 et toujours en interpolant aux points de Gauss, 1la
moyenne arithmétique ;n , des m valeurs propres qui approximent
la valeur propre A de multiplicité algébrique M finie, est elle
aussi en O(h%T*%) cad

~

[r- 2 |= o(n®r*?

n
Enfin en 1980, ils ont démontré que leurs résultats de 1973 et
1979 ne sont pas valables uniquement pour l'interpolation aux points

de Gauss : collocation aux points de Gauss, mais pour toute une
classe de méthodes dérivant de projections qu'ils ont appelées les
”superprojécteurs".

Les "superprojecteurs" sont au fait des projections '"mixtes" cad
elles sont de la projection orthogonale sur une partie de la partiti
et de la collocation sur l1'autre. Ainsi, ils semblent
avoir appliqué la méthode de collocation a la projection orthogonale
Il en va tout autrement dans cette thése, surtout dans le Zeme

article ou le lien entre 1'interpolation aux points de Gauss et 1la

projection orthogonale est clairement &tabli.

Le tableau qui suit est un résumé des parties A) et B) de
1'introduction. Nous y avons adopté la notation :

[o] + [&] si les idées de[g]dérivent ou s'inspirent de celles de



De plus celui-ci présente également les quatre articles qui
constituent cette thése, en précisant les différentes interactions
pouvant exister entre chacun des articles ou des théses jusqu'ici
présentées. Ces quatre articles sont rédigés indépendamment des
uns des autres , chacun possédant une introduction propre et une

bibliographie propre.

Cette thése enfin se termine par une expérimentation numérique

de quelques exemples de superconvergence,
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T operateur intégral i novau k

Sloan 1976
H] T compact
introduction de ¥ Chatelin 1978
%n:= % Txn+f 117{T‘compac§, la valeur propre
N “t X est simple
llxn-x]|5en||xn—n|| introduction de la suite d'itéréﬁ
d'éléments propres ¢ (k) | (k)
€, 0 gdno-»w qui converge vers ¢,\,
Graham - Sloan 1979 Chandler 1979
Conditions nécessaires et T compact
suffisantes de compacité [ vl H, ! A quasi uniforme
d'un opérateur intégral i m, Projection orthogonale
noyau

Hx, x| [= o™
||§n—x||= 0(h2r+2) si k est lisse
| & -x)(ti)] = 0(h®™*?) si K est de Gre

Chatelin - Lebbar 1980

The iterated projection

solution for the Fredholm
integral equation of —b
second kind

Chatelin - Lebbar 1981(a)

Superconvergence results for

applied to a second kind
Fredholm integral equations
and eigenvalue problem.

|

the iterated projection method -




T opérateur differentiel d'ordre p

de Boor-Swartz 1973

2r+2
Hy § %€ 90,17
" ¢
N de Gauss

T : fermé de domaine D

: collocation aux points

R f Hyyll= o™ 1P
|y, M)l =en?™?

l

de Boor-Swartz 1979

Sous les hyp. H3

R, [ -a=om*?

Chatelin-Lebbar 1981 (b)

Superconvergence results for
differentiel eigenvalue problems:
a Galerkin method on the integral
formulation

de Boor-Swartz 1980

Sous les hyp H

+ W
n

3
superprojecteur ,
R; et R4 sont encore vrais

Lebbar 1981

Superconvergence of the
generalized eigenvectors
., of differential and
. integral operators at
the knots.

t
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THE ITERATED PROJECTION SOLUTION FOR THE
FREDHOLM INTEGRAL EQUATION OF SECOND KIND

FRANGCOISE CHATELIN and RACHID LEBBAR

(Received 21 August 1980)

(Revised 11 November 1980)

Abstract

We arc concerned with the solution of the second kind Fredholm equation (and
cigenvalue problem) by a projection method, where the projection is cither an orthogo-
nal projection on a sct of piecewise polynomials or an mtcrpolatory projection at the
Gauss points of subintervals.

We study these cases of superconvergence of the Sloan iterated solution: global
superconvergence for a smooth kernel, and superconvergence at the partition points for
a kernel of “Green’s function” type. The mathematical analysis applies for the solution
of the inhomogeneous equation as well as for an eigenvector.

1. Introduction

We consider some projection methods for the solution of second kind integral
equations of the form

C(Tx)(s) — zx(s) = f(s), O<s<1, )
where T is the operator defined by

x(s) > fo 'k(s, Ox() di, O<s< L

Along with (1), we consider the eigenvalue problem
(To)(s) = Ap(s), O0<s<1,¢+0. (2

(D and (2) are regarded as equations in an appropriate subspace X of the

complex Banach space L%(0, 1) with the norm | - || . T is supposed to be

©Copyright Australian Mathematical Society 1981
439
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compact and z € p(T), the resolvent set of T, so that (T — z)™! is bounded with
domain X. Let X, be a finite dimensional subspace of X and let II, be a
projection onto X,. Then the projection method consists in approximating (1)
and (2) respectively by

(11, T—-z)x =ILf, x€X, ‘ 3)

ILT¢, =Ny, - O0F# ¢, € )
where x, (resp. ¢,) is the projection solution (resp. elgenvector) corresponding
to the approximation T = I, T of T (P for projection).

Given a projection A = {£,}g of [0, 1}, 4, = 0, ¢, = 1, let X, be a space S, of
piecewise polynomials of degree < r on each subinterval A, = [r,_,, 4],
i=1...,n Weseth= max,<,<,,(z‘ t;_,). We shall consider two types of
projection methods:

() IT,, is the orthogonal projection (in L*0, 1)) on S,,

(b) II, is an interpolatory projection defined so that Il x is the piecewise
polynomial of degree < r which interpolates x at r + 1 points {'x} };;’.i, on each
A,i=1,...,n

Case (a) corresponds to a Galerkin method, and case (b) to a collocation
method at the collocation points {7/}.

Ifz+#0 (resp. A, # 0) we consider the iterated progecnon solution X, (resp.
eigenvector qb,,) introduced by Sloan [13}, [14] and given by the formulae:

., 1 _ ~ __.__L
Xp = Z(Tx“ f)’ ¢n - An T(Pn’

where %, and ¢, are solutions of the equations
(Tnn - Z)x~u = f, : (5)

and

I, = N o (6)
corresponding to the approximation T° = TTI, of T (S for Sloan). Now
I, %, = x, and II_$, = ¢,, so that in case (b), the iterated solutions and the
solutions themselves agree at the collocation points. |

If k and f are smooth enough, it is known that ||x, — x||,, = O(h"*}), while
1%, — x|l = O(h**?) for case (b) for example, provided that the {7/} are the
r + 1 Gauss points on A, i =1,...,n The optimal rate of convergence,
relative to S,, which is inf,cglx — yll, = O(h"*"), is then overshot by
x, & S, when k and f are smooth. Such fast convergence is often called
superconvergence.

When k is the Green’s function of an ordinary differential equation (o.d.e.) of
order p with smooth coefficients, X, is still superconvergent at the partition
points {73, but not globally: the global rate of convergence is now O(h"*!*7),

“
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Similar results hold for ¢,. This problein is studied for the equation (1) and th
Galerkin method in Chandler’s thesis [6]. The collocation method for a non
linear o.d.e. has been looked at by de Boor-Swartz (see [1] for the solution of (1),
and [2), [3] for the linear eigenvalue problem (2)), where T is the associated
differential operator. In de Boor-Swartz [4] the “essential” least squares method
(or local moment method) for an o.d.e. is also studied. '

We present in this paper an analysis of the convergence rates which is a blend
of the techniques of Chandler and of de Boor-Swartz. It applies for the iterated
solution X, as well as for the iterated eigenvector «},, (the result seems to be new
for the eigenvector in the most general case). It is. ased on a study of the error at
the point ¢ of [0, 1] in terms of the scalar product {J, (1 — IL, )X, (resp.
ad, (1 - II,,)@,, >) where /, (resp. /) is a function having the same smoothness
properties as k() := k(¢, -), and where {f, g) = [3 /8.

In case (a), we use the orthogonality of I1

(1= T = (1 = L, (1 - TL)E,D.

In case (b) we use firstly that the function (1 — IT,)X, vanishes at the collocation
points _'rj‘, and secondly that the {'rj‘ } being the r + 1 Gauss points in 4A;, then
Ja,PILLI(s — 1) ds = O for all polynomials p of degree < r.

The superconvergence in case (a) is proved under the assumption that A is
quasi-uniform. In case (b), A is arbitrary but more smoothness properties are
required for k and /.

2. The setting of the problem
2.1. Piecewise continuous functions

Let be given A = {1,)3, a strict partition of [0, 1}, 0 = 1, < $, <.+ <t,=L
It is quasi-uniform if there exists o > 0: max(f;, — ,_,)/min(, — ¢,_,) < ¢ for
n=12.... Then nh<e. A =1{t_, 4, i=12,...,n We define
Cy = lIj.,Cn): f € C, consists of n components f; € C,), f is a piecewise
continuous function having (possibly) different left and right values at the
partition points . With the norm || - ||, defined by || fll = max,_; . .l fille
C, is a Banach space. C, ¢ L*(0, 1) by || flla < || fllc and if f is continuous on
[0, 1], then || fll.. = | flla- We define, more generally, C} for positive integer / by
C{ = II..,Cly, where f; € Cl,, iff its ith derivative f? is continuous on A,
Clearly S, c C, and the projection II, is defined C, — S, withf = (f}, ..., f)
= ILf = (I1f,, . . ., ILf)), where Il is the projection of f, € C,, on the poly-
nomials of degree < r on A,.
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. ‘2.2.. Spectral definitions

T is supposed to be compact in the complex Banach space X = Cy 2(X)is
the algebra of bounded operators on X. The resolvent set of T is p(T) = { z € C;
(T - z)™' € £(X)} where z stands for z1. For z in p(T), R(z) = (T — z)™ is the
resolvent of T and TR(z) = R(z)T. The unique solution of (1) is then x = R(2)f.

Let A # 0 be an isolated eigenvalue of T with algebraic (resp. geometric)
multiplicity m (resp. g), and ascent p, 1 < p < m, 1 < g < m. The associated
eigenspace is E = ker(T — A), the null space of T — A so dim E = g; the
invariant subspace is :

M =ker(T - A)", dimM=m, and ker(T — N)* = ker(T — \)™

Let I be a Jordan curve in p(T), around A, which contains neither 0 nor any
other eigenvalue of T. P := —1/2in[R(z) dz is the spectral projection associated
with A, M = PX. Let T, be a sequence of operators in £(X ) such that T,
converge to T pointwise. T, will be either TF =IL,T or TS = TII,. If T C
p(T,), we may define for 7, the resolvent R .(z) for z € T and the spectral
projection P, = —1/2im[rR,(z) dz. If T, is strongly stable inside I (Chatelin [8],
[9], there are, for n large enough, exactly m eigenvalues {A,,}7., of T, inside I’
(counting their algebraic multiplicities), )\ is their arithmetic mean, and A, is any
one of them. |

For the projections II, under consideration, both 77 and T are strongly
stable around any non-zero eigenvalue of T (Chatelin [7], [9]). The solution x, of
(3) is such that x, = RP()IL, f, and %, = R>(z2)f. Similarly ¢, is an eigenvector
of TF and ¢, of TS associated with the same eigenvalue A .

2.3. The errors x, — x, ¢, — Po,, %, — x, ‘1‘*,, - P&’n and A — Xn

C is a generic constant, which may depend on r and ¢, but is otherwise
independent of A.

2.3.1. The projection method

We recall the following equality:
X, = x = zZRf(z)(1 = IL)x, then |lx — x,|l, < C|I(1 — IL)x]||..

As for the resolvents,

(RE(2) = Ry = RENT = TR, = 5ok (1 = )Ty,

\




17
because R (2)¢, = ¢, /A, — z. To integrate on T, we distinguish whether A, =A
or not. If A, = A, then -1/2im[(R(z)/\ — 2)dz = § = lim,_,, R(z)(1 — P);
S is the reduced resolvent with respect to \. If A# N R(2) - RQA) =
(z — A)R(,)R(2), and | ‘

i o i = R(’w[ o s + 35 [ RG) dz] = RO)(1 - P).

A is the only pole of R(z) inside T, RA)(1 — P) is well defined and when
n— o0, A, A RAX1 - P)> 8. R(A,)(1 — P) is then uniformly bounded in
n, for n large enough. To have a unique formula for the cases A, =XAand ), #A,
we set RA)(1 — P) = &S.

By integration in z on T, we get ¢, — Pp, = R\ )1 — P)1 — I1,)T¢,, and

dist(¢,, M) = jgfu li$n — ¢l < 6, = Pyl < ClI(1 — IT,) T, ..

2.3.2, The Sloan method

D) %, = x=(R}2) = R2) = RE(T - THRY = R(H)T(l ~ L)%, =
TR(zX1 — I1)%,.
Then for any fixed ¢ in [0, 1], and any fixed z in p(T),

(%, =)0 = [ 'k(t, [ R(2)(1 — TL,)%,)(s) ds

= <kx! R(Z)(l - nn)£n> ‘
| = (R(2)*k, (1 = TLYE,> = {4, (1 = T,)%,D. |

Because R*(z) = (R(z))* = (T* — )7, l, = R*(2)k, is the solution of
(T* - 2)I, = k,; the solution /, (which depends on z) is unique since z € p(T) «
zZ € p(T*). '
2) Similarly

(RE(2) = R, = R - TR, = 2L 7~ )4,

By integration on T, we get for any fixed ¢ on [0, 1]
o e o [ 1 -1 f R(2) .
¢n(t) (P';’n)(t) -[T(ZIﬂ »I;"An -z dz)(l Hn)¢n}(‘)

=[TRM)( - P)(1 - 11,)8,](»).
We define J/ i= R*(\,)(1 — P*)k,, that is I is the unique solution of (T* - NI/
- = (1 — P*),. We define accordingly R*QA)(1 — P*) := $*. Then 5,,(1) -
(P, X9) = </, (1 = T1,)$,>. We have just proved that the error (x — )0
(resp. (&:,, - Pff:,,)(t)) atr €10, 1} can~be expressed in terms of the scalar product
<k (V= IL)%,> (resp. I/, (1 — IL)$,)).
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REMARK. Another way to bound
(. = P9,)(1) =[ T(-1/2im [(R(2)/N, = 2) d2)(1 = T1,)$,] (1)
is the followmg (Lebbar [10]). Let I'” be the circle centered at A,, with radius r,

containing A and contained in I' (for n large enough, there exists such a circle).
Wesetz =X, + re®,0< 0 < 27, forz € I".

-1 R(z) f R(z)
2ir Jp A, — " 2in A, — z
.[2w}“) 4~re”)

—re®

rie’ d9.

P
—

2im
Then

|(<§>,,v — P§,)(1)| = ".'2"17?‘ fo 2”[ TR(A, + re®)(1 — n,,):;;,,](z) d&,
< sup [[ TR(A, + re®)(1 - II,,)%,,](:)I

0<0<27n

= sup |[ TR(z)(1 — IL), ] (1)|.

zel”
For z € I", we define /(2) == R*(z)k,. Then
!(‘I’n - P‘E’n)(’)' < Sug KI,(Z), (1 - Hn)‘;’nN
zel”

As for the global bounds on [0, 1], they are easy to get:
r¥, — x = R(2)T(1 - I1,) %,
implies ]]x — xll, < C|T(A — II)X, ||, and

I7(1 = IL)X, ||, = sup Kkﬂ (1 - I,)%,5].
1[0, 1

¢, = P, = RA)1 ~ P)T(1 — I1,)$, implies |
dist(g,, M) = inf |6, = #lle < Iy = Pdylles < CIT( = TL) 1

and

IT(1 = TL),lle = sup |<k, (1= L), D).
tE[0, 1)

3) Now we set M, .= P _X. For n large enough, P, has a bounded inverse
and mA — ) = ,,_,(x"‘, (1 = I)T(P,, )% where' {x, )} (resp. {x*}T)is a
basis of M (resp. the adjoint basis of M "‘) (see de Boor-Swartz [2]) The error
A— )\,, is then of the same type as the errors (%, — x)(¢) and (q':,, - P¢,,)(t)

4) Let Q be the eigenprojection on E = ker(T — A), along a supplementary
subspace F.
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~ 0¢, =[(T =N - Q)T - N1 - 0),

and _ .
(T - A)(l - Q)&’n = (T - A)“i)n = T(l - Hn)‘i’n + ()‘n - }‘)‘i’n'
Therefore |
dis‘(q’m E) = ;lele "‘I’n - 4’"00 < "¢n - Qq’n"oo

< C(ITA = M)yl + Ay = Al).

Note that this method does not provide a pointwise estimate for <'1'>,, - Q«i,,. This
is due to the fact that, unlike the spectral projection P, the eigenprojection Q has
no expression in terms of the resolvent.

3. Two basic results

We shall be concerned wi%h two types of continuous kernels £ that we define
now.

i) k is smooth (of order I > 0) if k € C5([0, 1] X [0, 1]), that is k,, € Cia,xay
for 1 <i,j <n, and k is continuous on [0, 1] X [0, 1].
ii) k is a Green’s kernel (of order / > 1, and continuity 8, 0 < 8 < /) if

K(t, 5) = { l;,(t, s) fort >s,
,(6,8) fort <s,
is such that
ki€ C'({0<s <t< 1)),
ke C'({0<t<s< 1)),
k € C‘([O, 1] x[O, l])

An obvious example of case ii) is the Green’s function of an o.d.e. of order
8+ 2.

For any z in p(T), we consider the solution x = R(z)j of (1), along with X,
_ and ¢,,, solutions of (3) and (6). -

LEMMA 1. Let T be an mtegral operator with a kernel k of order I, of type i) or
- ii). If f € C} then, in both cases, x, %, and &, are in CJ.

Now with k() := k(¢, -) for ¢ fixed in [0, 1}, we consider the equation
(T* - 2)I, = k, for z € p(T).
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LEMMA 2. When k is a smooth kernel of order I, then I, € C;(0, 1) for any ¢t in

[0, 1]. When k is a Green’s kernel of order | and continuity 8, then l, € Ci(0, 1) for
LEAI=O0,...,nandl € C¥0, 1) for t & A.

It is left to the reader to check the two lemmas (see Lebbar [10]). Note that
when k is a Green’s kernel, /, is defined by the functions /;, € C'(0, ),
clit, 1.

Lemma 2 shows that / has the same smoothness properties as k,. The same is
true for //.

We define a := min(/, r + 1) and a* := min(/, r + 1, § + 2).

I, €

3.1. I1, is an orthogonal projection

THEOREM 3. Let A be quasi-uniform. With the above definitions, then for
f € CL and z in p(T):

1) if k is a smooth kernel of order 1, then for t € [0, 1}: |[<I, (1 — I1)f>| <
Ch**|| ||, and globally || T(1 — I1)f||,, < Ch?.

i) if k is a Green’s kernel of order | and continuity 8,0 < 8 <, then for t, € A,

<l (L = IL) )] < CR*|[ [Py,  i=0,...,n,
fort & A, | |
[<, (1 = TL)f D] < Cho max(1 {7 Pl s 157Vl ),
and globally, T — TL)f||,, < Ch***",

PROOF. It is adapted from Chandler [6]. Since II, is an orthogonal projection:
(1= 1IL)f) =<1 =1L, (1 - 11 )f> And

[ = L)~ T1,)(s) ds = 2 Ja-mi ,(s)(l — T)f(s) ds.
Given f; € C(A y» L1f; is the orthogonal projection of f; on the set of polynomials

of degree < ron A, When f, [, € C{(0, 1), f, }, € C|,, and

Il(l — Ifll; < CE*F N or 11 = Iplloo < CAHNIE
When /, € C%(0, 1), with 1,_, <t <t,thenon A, if § <r,

(1 = Tl < CRO*Y max(NE8* D)l 182* Vll0)-

The result follows by summing over i, and using nh < o.

3.2. II, is an interpolatory projection

Let f be a function of C’*'(a, b), such that f(w) = 0,j = 1,..., r + 1, where
the {w;};*! are r + 1 distinct points in (a, b). The (r + 1)th divided difference



2
- of fon the points wy, .. ., w,, | is denoted by 5[w,, Wy ..oy Wy, *1f. Then

& =(—w) - (s— W )8[wy, wy, ..o, Woero8]f, fors e {wj}:“.

* Weset, for s € [a, b),
f)/o(s)  ifs e (w)
g*(s) = ( A(s)

lim o(s)

) ift=wj,j=l,...,r+l,
f—w,
where o(s) = (s — w))- - - (s — W, 4 1)

LemMA 4. If f € C'*'(a, b), then g* € C(a, b).

There is only a need to prove that g* is C' in the neighborhood of any W,
J=1...,r+1 (see Lebbar [10)). If f € C'*Y(a, b), the divided difference
8[wy, . .., w,, ), -1f may therefore be prolongated by continuity on {a, b}, up to
the order /.

We shall apply this lemma on each A, with the {(whit! being the Gauss
points (7/)7Z}. For f € C{*}, IIf, is the polynomial of degree < r on A; which
interpolates f; at the Gauss points {7/);*}. Hence (1 — IDf(1/) =0 for j =
l,...,r+ 1. We consider the divided difference 6[1{,’, cees 'r,'+ p )1 — IDf,
and set g, = [, 8[r}, ..., 7/,,, -1 — IDJ. k, € C&' (resp. Ca,) implies that
Iy € Cisy' (resp. Cfy,) and g, € Cly, (resp. Cay for 8 < 1).

THEOREM 5. With the above definitions, then for fE C‘(“ and z in o(T)

i) if k is a smooth kernel of order I, then for t € [0, 1}, KI, (1 - IL)M| <
Ch™*'+2||g® ||, and globally || T(1 — TLYf||., < Mjh"*'*e,

ii) if k is a Green’s kernel, of order | and continuity 8, 0 < 8 </, then for 1, € A,

[Kh, (1 = TL)D| < Ch™* ' |ig@),,  i=0,...,n,
Jort & A, ,
K& (1= TL)/] < CA™'*** max(|qf8* V)|... 1482+ V)10,

- and globally || T(1 — T1)f||., < Mh"+1+e"
Iff € C{**), then M, < C.

PrOOF. It is adapted from de Boor-Swartz [1}.

[ U0 = )5 ds = 3 [ 16630 - Tf(s) s
Yo i=174; .

n

= 3 [ 08[rh. .t s]A ~ ) (5= rl)- - (s = nt,) ds.

9:(5) o(s)
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When ¢, € C(lA,.)’ gi(s) = qt;i_ ) + - - +((s — ti—l)l/ / !)qi(tl)(os)’ 4 <6, <s.
Making use of [ a,0(s)p(s) ds = O for all polynomial p of degree < r on A, we
get /5, 4ils)o(s) ds| < Ch™*2+%|| g, which gives, for /, € CL,

IKE, (1 = IL)fD| < Ch™ 1o g™,
When [, € C3,
,f I“(S)(l — H)_/;(S) ds < Chr+2+min(r+l,8+2)
4
and [</, (1 — II,)f>| < Ch"*'**°, by summing over i.

Theorems 3 and 5 play a central role to derive the convergence rates, as we
shall see in the next section. :

4. Convergence rates

We recall that @ = min(/, r + 1) and a* = min(/, r + 1, § + 2). In practice
0+2<r+1</lsothata=r+1and a* = § + 2. We assume throughout
this section that the kernel k is of order / for the Galerkin method (fEC,=> X,
€ C}, ¢, € C)) and of order I + r + 1 for the collocation method (f e Ccirr+!
= %, € C;*"*'and ¢, € C[**Y, |

4.1. Convergence rate for the eigenvalﬁ&s
The definitions are those of Section 2.2.

THEOREM 6. For both types of kernel k
A=k = 0(e), max\ = A,| = O(e’®), minfA = | = O(es/™)

where (a) &, = h>* for the Galerkin method, and (b) e, = h"*'* for the colloca-

* tion method.

ProOOF. It is adapted from de Boor-Swartz [2] where it is noticed that A (resp.
Ai») are the eigenvalues of two m X m matrices such that the (i, ))th coefficient
of the difference is (x*, (1 — II,‘,)T(PrM )"xj>. Theorem 3 applies where /, is
replaced by x* € C} and T(PrM”)"xj € é‘,{, if the kernel is of order /. Similarly,
Theorem 5 applies if k is of order / + r + 1. And the results follow from
classical theorems in matrix theory (see Wilkinson [18], pp. 80-81).
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- 4.2, Convergence rate for the solutions and the eigenvectors

(a) The Galerkin method. We suppose that f € CJ and k is of order /. Then %,,
é, € Cj. A is quasi-uniform.

THeEOREM 7. With a smooth kernel, ||x — %, ||, and dist(p,, M) are of the order
h*, dxst(q&,,, E) = O(h*/*). With a Green’s kernel, then: at 1, € A, |x(1) — % ()
and |6,(1) — (P(b,,)(t‘)l are of the order h*, i =0,...,n, whereas globally
Ix — %)l and dist(¢,, M) are of the order h***", dist($,, E) = O(h**/*), for
p> 1

Proor. We apply Theorem 3 to (%, — x)(1) = (I, (1 — I1)%,>, ($, — P, )1)
= I, (1 — I1,)¢,>, and Theorem 6 to '

dist(d,, £) < C(IT(1 = T) )l + P, = A)).

(b) The collocation method. We suppose that f € Ci*"*! and k is of order
I+ r+ 1.Then %, ¢, € Ci*"*'. We get, as Theorem 8, the analog of Theorem
7, where h** (resp. h®**") is replaced by h"*'** (resp. h"+*'**"). The conver-
gence rates in Theorems 7 and 8 are the best we could hope from the known
results. It should be noticed that the computation of %, (resp. ¢,) from x, (resp.
A ¢,) does not require much extra work: let dim X, = n (say), let {¢")] be a
basis of X,: if x, = Z7_ ", then Tx, = X7_ £ "Te"” where the {Te )} have
already been computed to get the coefficients of the matrix assocxated with the
projection method. |

5. Numerical Example

We end this paper with a numerical example illustrating the behavior of the
iterated collocation solution for the Fredholm equation

fol"(” 5)x(s) ds — ;l;x(t) - —cosh(1), 0<1< 1,

. with -
k(t, 5) = -1(1 — ) }fs >t
| | -s(1—1) ifs<u.
The exact solution is x(#) = cosh(27 — 1).

We choose the partition A = {i/5})3, h =4, and on each interval A, the
r + 1 = 4 Gauss points. We display in Table 1 the values of x — x, and x — %,
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type with § = 0.

3
2]
B3]
4]
51
{6]
(7]
(8]
]
{10]
[11]
[12]
(13]
[14]

[15]

TABLE 1
Error values at the partition points

i (x = x,)(%) (x = x,)%%) (x — x,)(1)

1 8.107! 7.1073 ~5.10712

2 6.107° 6.107° ~7.10712

3 6.107° 6.107 -7.10712

4 7.10° 8.10° | -s10™
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Abstract.

We consider a Fredholm integral equation of second
kind and the corresponding eigenvalue problem; The projection
method uses projections on piecewise'polynomials and amounts
either to an orthogonal-Galerkin method in L2 or to a collo-
cation method at gaussian points in C . The aim of the paper
is threefold :

- give a new proof of superconvergence results for the ortho-

- gonal-Galerkin method which does not assume‘that the parti-
tion is quasi-uniform, -~

- treat the eigenvectors in much the same manﬁer as the
solutions, '

- do a parallel study of the two projection methods cited
above, so that many proofs can be factorizea.




INTRODUCTION

We consider some projection methods for the solution of
second kind integral equations of the form :

(Tx) (s) - z x(s) = f(s) » 0 <s <1 (H
where T 1is the operator defined by :
x(s) » £ k(s,t)x(t)dt , O0<s<1 (2)

and where (1) is supposed to be well posed :"(T--zr)“1 exists
and is bounded on the whole space.
Along with (1), we consider the eigenvalue problem :

(To) (s) = rq(s) s 0<s <1, o (3)

where A is an isolated eigenvalue of T

(1) and (3) are regarded as equations in the complex Banach
space X (specialized to be L or L2 1later on).

T is supposed to be compact in X and z ¢ p(T) , the
resolvant set of T. Let Xn be a finite dimensional subspace

of X and let L be a projection onto Xn . Then the pro-
jection method consists in approximating (1) and (3) respecti-
vely by : )

(wn T - z)xn = wnf s X € Xn , . (4)

7 T ¢, = Ln P, s 0 # %, € Xn s fhhff= 1. (5)
X, (resp. ¢h) is the projection solution (resp. eigenvector),
corresponding to the approximation Tg = ﬂnT of T (P for
projection).

: . 1 3 = n = =
Given a partition A {ti}o of [0,11 , ty o, tn 1,
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let Xn be the set B’r A of piecewise polynomials of

degree < r on each subinterval [ti-I’ti[ , i=1,...,n ,

the value at 1 being defined by continuity.

We shall consider two types of projection methods :

(a) in case (a), X = L%?(0,1) and n; is the orthogonal
projection in L2(0,1) on P,

(b) in case (b), X = L(0,1) and ’u; is the interpolatory
projection defined for x in 9&0,1) c L(0,1) , so
that wﬁx interpolates x at the r+1 Gauss points
{T;};:: , on each subinterval , i=t,...,n .

Case (a) corresponds to an oathogonal-Galerkin : method,

(abbreviated i1-Galerkin ) » and case (b) to a
collocation method at the gaussian points {t}}. Let L
represent any one of the two projections n; or =?

n o
If z # 0 (resp. An # 0) we consider the iterated projec-
tion solution in (resp. eigenvector ¢h) introduced by

Sloan [14j, cf. also Brakhage [6])and given by the formulae
£ =L (mx - f) § = T

n z n > % A % -

Since T 1is compact , z in p(T) is non zero,and An 7 0 is

not a restriction either because the isolated eigenvalues of
T are non zero.

X, and &h are solutions of the equations :

(Twn - 2)X_=f ' (6)

(7)

corresponding to the approximation ,Tﬁ =T LI of T (S for

Slqan). T Xp = X , L &h = @, SO that in case (b) the

iterated solutions and the solutions themselves agree at the
collocation points. '
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If k¥ and f are smooth enough, it is known that

Ik, - xll, = 0(hr+1) while tﬁn - x!b = g(h2r+2 ) for
both cases (a) and (b). Similar resuits hold for &h .

Here, as in the rest of the text, || . l% is taken to be

l.1l, in case (a) and [|.l}]» in case (b).

Such fast convergence for X, and &, yoften called supen-
convergence, is still valid at the partition points {t, }0
when k is the Green's function of an ordinary dlfferentlal
equatlox% &?Sd .e.).

Thes‘vﬂf high order convergence have already been studied in
Chandler [7],de Boor-Swartz [2-4],and Chatelin-Lebbar [9].
{71 and [9] deal with the t-Galerkin method where the parti-
tion A is assumed to be guasi-uniform. A may be quite
arbitrary in the present paper.

For the i-Galerkin method, the problem is to find either
pointwise or global L”-estimate for x-X_ (resp. o-% ).

This is easily done if ‘hS;L < (cf. [71 for x»in and

9] for @«&n). There are two cases where }h;]&<<m:

A is quasi-uniform, or w; is a projection on TP A " C(0,1),cf
b

The analysis is then possible in L% or C , using

L”~and L'-norms (cf. [71,191). ‘

In this paper we wish to get a quite general result for case
(a), and the proof is in four steps

1. prove the convergence in Lz ,
2. bound x-%_ and ¢-§ in Lz

3. bound X“ﬁn and m~¢n pointwise ,

4. deduce global bounds in L% .

Note that in [5] the i1-Galerkin method is also treated with

a quite general A . But more smoothness assumptions are
required there on k and f than we do. We shall go back to
this question in section 5. Also in [z], the high order con-
vergence properties of w; are presented as special cases of

. 2
those of L



. 33 .

In this paper, we present an analysis of both projections
which goes the other way round. Properties of the collocation
method are deduced in section 6 from those of the i-Galerkin
method. By doing so, we stress the intimate relationship
between the two methods, and we factorize many of the proofs.
There is only a small amount of work which is left to carry
superconvergence results from (a) to (b). Namely there is
only to bound, uniformly in n , all the derivatives of in
(resp. &ﬁ) up to a certain order. This part uses the technique
for the collocation method developed in [2]. Moreover tliis
part is even not necessary when the kernel is smooth.

As mentioned in [9], the error on the eigenvector &n is
treated much likg the error x—in on the solution, and the
result is new in the most general case (ascent of the eigen-
value superior to one). |

2. DEFINITION OF THE PROBLEM

c will be a generic constant throughout the text.

2.1. PROPERTIES OF THE INTEGRAL OPERATOR T

a >0 and y > -1 are integers. We are concerned with the
following class of kernels '

DEFINITION : The kernel k is of cfass 5g(a,¢) i
with a >0 and a >y > -1, iff :

k](t,s) for 1>t >s >0,

k(t,s) = i (8)
k,(t,s) for 0 <t <s <1,

with  k; ¢ C*({0 < s <t <1}) , k, e C*({0 <t <s <1}

and k e CY([0,1] x [0,1])
y is the continuity of k and o 1is its oadexn.
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The obvious examples of such kernels are Green's functions of o.d.e.

and kernels of Volterra integral operators. Note that this definition
includes smooth kernels of order a , if y = a

We first state the following theorem proved by means of the
characterization of compact operators given in Graham-Sloan [12] .

THEOREM 1 :

Let the kennel of T be of class é}(a,y) . Then :

L) T 45 compact from 1+ into C ,
A4L) i vy > 1, the range of T A4 Ain cY ,
ALY fon any p, O<p<a~-1 , T4

bounded from CP .into cP*t |

2.2. ABTRACT SETTING AND CONVERGENCE RESULTS

T is supposed to be compact in the complex Banach space X ,
a£(X) is the algebra of bounded operators on X . The resol -
vent set of T is p(T) :={z ¢ € ; (T--z)"1 € Aﬁ(X)} where

z stands for z1 . For z in p(T) , R(z) := (T~z)—1 is the
resolvent of T and TR(z) = R(z)T . The unique solution
of (1) is then x = R(z)f .

Let » # O be an isolated eigenvalue of T with algebraic
(resp. geometric) multiplicity m (resp. g) , and ascent 2
1<g<m, 1<g<m. The associated eigenspace is

E := Ker(T-A) the null space of T-r , dim E'= g ; the inva-
riant subspace is M := Ker (T-A)m , dim M = m , and

Ker (T-A)* = Ker (T-0)" .

Let I be a Jordan curve in p(T) , around X , which con-
tains neither O nor any other eigenvalue of T .
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P := 7%1—IPR(z)dz is the 4pectral profection associated with x ,
w

M = PX. The operator Tz is invertible on (1~P)X for any :z

inside T and S(z) := (T—z)fI(I—P) is called the neduced

nesolvent of T with respect to A , at the point z.

Let Tn be a sequence of operators in Ji(X) such that T,, converge
. . . > P = S =
to T pointwise. 'l‘n will be either Tn T, T or Tn T“n , Wwhere

L. is a projection on.to Xn » a subspace of X.

I£fT cp(Tn), we may define for Tn the resolvént Rn(z) for

z eI’ , and the spectral projection Pn 1= Tf%l? {Rn(z)dz.

If Tn is strongly stable inside I' (Chatelin [81), there are

m

exactly m eigenvalues {A; 1} .

of Tn inside I' (counting their

algebraic multiplicities), X_ is their arithmetic mean, and An

n

is any one of them.

Let h :=12?§n (ti-ti_l) and Xn = Wr’A . If h f 0, then in case (

(resp. (b)) for any x in 1.2 (resp. in C), |[n;x-x||2 + 0 in L2

(resp. llnﬁx-x||m +0 in I ). T is compact in L% (resp. L*)

with range in C, then ||(n;—l)T||2 + 0, Ty ;'€$F’ T in L2

(resp.||(nﬁ-l)T||m+0 in L' and T nﬁ €;c‘ T iu'C).

It is then standard (cf (8] for example) to deduce the strong
stability of TnP‘and Tns and the following convergences :

Axex 150 L |x-X ] ,> 0, if f e C,

A=A 20, AR 0,

A=Y @ully »0  1HA-P) g f1, >0 .

We also deduce the uniform bounds in n, for n large enough :
R, <= LSOOI, < =

both for T P = T and T8 = Tu_
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n, ny

5 . v - - Y T -
2.3 THE ERRORS x -X, WP X X, ¥, =24, AND kn A

¢ is a generic constant which may depend on r but is otherwise
independant of A .

Mn s Pi X is the direct sum of the invariant subspaces of

Ti = KnT associated with all its distinct eigenvalues inside T.

p Sx corresponds to T $ a Tw_ . It is easy to
n n n

i

.. N
Similarly M

en

]

check that Mn TMn » we say that gn is the iterated invariant
subspace.

We recall the definition of the gap between two closed subspace
M and N '

©Mm,N) := max (sup dist(x,N), sup dist (x,M)

xeM xelN
x| ]=1 Haxf =1
where dist (x,M) = min||x-y||. dist, is the distance in the
yeM

LV-norm.
We cite the general resultproved in [81 .

PROPOSITION 2

1§ T, 4 a strongly stable approximation of T inside I,
then fon n Lange encugh

(}(M,Mn} < e [[(T-T 1P|},

The proof is based on the decomposition
(R(z) - -R,(z))P= R, (z)(T ~T)R(z)P= R, (z)(T ~-T)P R(z)

[}

For T T, e(MM)

i

1748

c][(1~wn)P[[ , whereas

(=IO R~ A v]

for T

i

i

- N
™o, o(MM)

Clearly for any ¥ in M ,|[(1-P)¥_[|s<||1-P||dist(¥ ,M)<c o(M,M

cl{T(1-v )P[].

.. LN ny 3
and similary, for any Wn in Mn,]}(1~P} Y n[{s c o(M,M)
The following bounds may then be derived (cf. [9]):
x=x 01y s 1] =n)x] [,
P
HO-P)g ||, =c {}(1*vn)P{{v , for @, e Ker(T - i) (9)
|1 (1-P) Wn{{vs c{!(?-wn)PQ;v , for ¥ ¢ M
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Let 1 (resp. 11) be the unique solution of

(T*- 2)1, = k, (vesp. (T*- X )(1-P*) 1) = (1-P*)k, ).

t
We proved in [9] the pointwise equalities for any t in [0,1] :
N Y
(xn.—x)(t) =< 1t )](]-“n)xl] > 4 } (]n)
n, N
CO-PYQ () =< 1., (1-7.) ¢ > ,
where < , >is the L2 - scalar product.

We shall also need the following global bounds

N
dbxxll, selfT-7 )xl, ,

=P, selITO-v )P[], , for § e Ker(T5-2 ) (11)
ny n n,
.Il(]-P)Wnllv S C"T(l'“n)Pllv for ¥ eM .
Let Pan : M, ~ M be the operator P restricted to Mn::= P,X . Then
-~ m
_ * _ -1 .
m(A—An) = iE]<xi » (1 ﬂn) T (PrMn) x; > (12)

where {x.}" (resp. {x}
i, i

of M*), as proved in [3] .

} ? ) is a basis of M (resp. the adjoint basis

For x ¢« M, (P )-1 x-x = (1-P)(P “1x . Therefore
MM

n
- . -1

.I(l—p)(PtMn) 1x||v < [P}, d1stv((P'M£X » M) = ¢ o (MM)
where @, is the gap in the LY-norm between M and M, -

We conclude that for any x in M .
-1 )
.'I(PFMH) x-x|], s ¢[{O-m)P| , (13)

The eigenspace E = Ker(T-1) is finite dimensional, énd has therefore
a supplementary subspace F : X = E® F. Let Q be the projection on-to
E along F. Then, as proved in (9] 5

. "\ . u ~
dlStv (?n , B) < ||tpn - Q Tnllv

Y
s c [[IT(I—Th)?nllv R PWEDY R P

3. SMOOTHNESS PROPERTIES OF THE SOLUTIONS

3.1 PIECEWISE CONTINUOUS FUNCTIONS




Let be given A {ti} E , a strict partition of [0,11 ,

0 = to < t](-no<tn = 15 We Set Ili = ti - ti-} » h :“‘1m2.1X hi Py
<i<n
Ai = [ti“"‘}’ti} > i = 1,...,}’1 -
n
We define C := g C f ¢ C consists of n components
AT ey (By) A |
fi € C(A )’ f is a piecewise continuous function having
i
(possibly) different left and right values at the partition
points t; . With the norm ||.]|, defined by HE, = mgx]]fiiL
- o N
CA is a Banach space and CA c L (0,1) sznxatjff}A={}f]tm for
f € CA .

We define more generally, Cz for a positive integer a by

CO(.

, O . . th s (o).
A fi e(J(Ai} iff its o derivative fi is

n

.= co

TSy

continuous on Ai’ For f ¢ Wr Al if the value at ti is
3>

defined by continuity, then @r,A c CA and the projection m,

on.to P with

b T,A
,fn):+ nnf = Gﬂf1,...,ﬁfn), where nfi is the

is defined from C

f = (f},...

projection of fi € C(A ) on the polynomials of degree <r on Ai
i .

< <

o

We denote llfili p

the LP-norm of f. on A, , 1
DA "i i

i

y
3.2 PROPERTIES OF x,9, X AND @

THEOREM 3

Let the kennel of T be of class g{a,Y). Than

i) if § e €% the sofution x of (1) (resp. X, of (8)) is suc

that x ¢ C* (resp. %n € Cz ).

ii) the edigenvectorn @ of (3) [(resp. $n of (7)) 48 such that

4
P < % (nesp. 9, « Cz }. Moneover M < C% .
" Proof
i)y x = %Tx - %f , and by induction
X = l—-Tax - [l— TOP1 £+ W%:T 'I'O‘“2 £f+... F % £3
2 2% z
where the two terms in x belong to C% .



. 39 .

v o
Now X, =37 T X, * £, X, € Pr,A c CA , then by theorem 1,
4
Txn € CA
ii) A = Ty = ¥ T ¢ = LI Q. implies e c® .
= a
Similarly Py € wr,A 1mp11es ?n Tfn € C .
We now consider M ={y eL7(0,1) ; (T~A) = o~} . By induction
it can be shown that M ¢ C* . Similarly M* cc®.n
[+ .
For x ¢ €% , we define ||x|| o T Eilx(l)ll , for 1 s p s= .
»P i=0 p

PROPOSITION 4

Let the kennel of T be of class gla,y}, and § betong to C% .
Then the {ollLowing bounds hofd for n Large enough

A e s el 1]y, e
i) 1Pyl s ellyll, fon any y in t'(0,1)

Proof

i) x = R(z)f proves ||x||_sc||f||, . From the proof of theorem 3,
we get "X(a)flm < c(llf]{a’m x|, )

Therefore ||x|| < Cllf'la

O ,%

ii) Let {xi}m (resp. {xi*}m ) be a basis of M:(resp. the adjoint
1 1 -

basis of M* ). P is a finite rank integral opeiator defined by

m
P= I <x: ,> x:; . Therefore
i=1 1! .
(Px)(s) = 2 [6 X, (t) x(t) dtl x, (s)
i=1
m
and P is defined by the degenerate kernel p(s,t) := 71 xi(s) x;(-

i=1
where p is a smooth kernelof continuity « -We deduce that for any

y in L! (0,1)
m
Pyl o sC igltlxilla,mt!x;lla,m} Hyll, . @

_— 1
3.3 PROPERTIES OF k , 1, AND 1.

LEMMA 5

Let the keanet of T be of ctass §la,yl. Then the functions
ky, £, and t betong %o C“ fon any % of the pantition A
and to ¢¥ Aon ¢ A,if 120 ‘



Proof

By (8), k, e Cy for t;e A and k, ¢ C¥ for t £ 4,y =0,
i _ _ .
The kernels of T*- z and (T*- An)(1—P*) have the same

smoothness properties as k. We may then apply theorem 3

. *x_ = - *_ T p*y11 = _p*
to the equations (T™- Z)lt = kt and (T An)(1 p )lt (1-P )kt

3.4 APPROXIMATION PROPERTIES OF IP

Tr,A
Let [a,b] be a given bounded interval of R For f.e C%(a, b), we

(1) |

define B := min (g, r+1) and ﬂg(f)] (t)- £°) (a)( )J R
j-o -

the Taylor Series expansion of order g-1 for f at the point

a, for t € [a,b] .

THEOREM 6 :
For § ¢ C*a,b), then for 1 < p <
gt U 1), s eto-a® 168, 0= < s
Proof
The proof is by induction on j : ||£(F) -6 B, =e B
For g-1,

e -8 ey (6 = oL e ®- 5B )y (s)as . then,
by the HOlder inequality we get :
”f(B 1) . %(8 1)(f)Hm (b- 3)1/01 Hf(B) G(B)(f)ﬂ with
1/p + 1/q = 1, and
Hf(B 1) \6(3 1)(f)H < (b_,a)T/P Hf(B 1) @(B 1)(f) “
< -y e8]
. We suppose that the inequality holds at the step j+1
11£0*D) -22é5+’)(f)1|p < (b-a)B~I-T ;1f(83;;p . Then

(£ - o

11697 -8B,
) _G3)

10D -B o,

S0 5l 61 (s)as

-y DGO
(b_a)1/}3 Hf(J) - Cé])(f)“m

In

A
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The last two inequalities imply

COROLLARY 7 :

Let m, be a projection from C, on-to P, A » duch that,
uniformly 4in n, ||nn|| <o forn il < p se ., Then for any
g 4An CZ P

B (B)
r-m 611, s e kB g8

Proof

On A by theorem 6,

i ?
HA-m 1y o =10 B (ED I, s cllgy -EQ(filllp,Ai

8 (8)
sond ey,

We first suppose that 1 < p<wo .

P_ 5 P
=m0, -k (II(]-n)fillp,Ai)' :

Therefore

n .
Il 0P sz n PR e p,apP
*7i

o

i=1 i

n .
< c(m?x hi)pBi£1(||f£B)J‘p;Ai)p .
For p = o, 1 Q-m )€l = max| [ (1-mE 11,
and 'l(1-")fi"w.Ai < C.hf ||f§8)'|m’A;;
prove that ||(1-w )f|], < ¢ hBHf(B)H00 . a
We define B] = min(8,y+1) =2 0 ,

COROLLARY 8

Let the keanel k be o0f class gla,y), Then
for t e b, [1U1-mdkyl], - 0(hP), for 1 < p <=,

Gon t £, [[U-aglkl], = 0(h"])
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Proof
For t ¢ A, ky e dz by lemma 5. And the proof of corollary 7

applies : we get for 1 < p <=

Q= ke dl = e WAL o e AP Pt/

,[0,t]
and ‘
Ha-mkel e s e b8 max (RPN, o oqe TIRSD 110 (o )
For t ¢ A , we suppose that t ¢ ]t1 1 ti[

For s < t or s » t, k has continuous derlvatlves at s up to the
order a , while for s = t, (kg )(Y) is continuous for y = 0. We
then write for 1 < p < , .

(HC-m)dke P = 2 (HC=m kg1, P+ A=m k)1, )
j#i J i
W

A

The sum Ai/p can easily be bounded in hf , as above.

On Ai , we have

CO-m ) 5 1P k-8, Gy 01 | PPk, - B

p’[ti-1 ot y+1 (th)i ‘p:[tsti])

Clearly (ke=G,q (& 0)(5) = rorpyr K47V (6,6 (=) for some 6 such

that tig < Gs < t . Together with the similar equality on [t,tiJ this

proves that }l(1~v)(kt]i[|p A. can be bounded in hz+1..zThe resulting global
254 .

order is B, =min (B,y*1). If y = -1, 81 = 0 and the result is clear.
For p = «» , the proof is similar. O

We remark that corollary 8 also applies to 1t and 12 . For this latter
function, which depends on n through An, we have to check that the derivative
can be bounded uniformly in n for n large enough. This is easily done,

using theorem 3, by noting that since Ap>A#0, lAnJ> A-e  for a given
e > 0 and n large enough.
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4, SUPERCONVERGENCE OF %n AND %n FOR THE A-GALERKIN METHOD

L2¢0,1), wl

min (B,y+2).

i

In this section X

is the orthogonal projection
N 4
on mr,& , and B8 :

L}

We begin by the
LEMMA 9 :
1§ k 44 0f class Q(u,y) and if§ x € c® , then f{on
t A< ke, (1= alxs |- onB*8T),
Probf | |
<kt; (l-u;)x> = <(l~n;)kt , (1-w;)x> by the érthogonality of

1

m, - We first notice that if we use corollary 8, we get only

the order g+ By by writing
» 1 1 1 5
f<ki, (1-w )x >ls|l(l~nn)ktl]2 HO-m)x[|, s ch

The optimal order B + B*is recovered by a careful use of the
following bound for x ¢ CA » 1= 1,...,n ¢

1/2 1/2
TIPS HA I E PPVIEE HER TSI P

n
|<kt,(1-u;)X>gsi§1g< (k) g, (-nl)xg> |

By*8

n 1 1y
< o= )(k,), (1-7)x, ]
E I t 11!2,Aitl ) 1liz,Ai

HO-wDxgl1g,, s e W, s e nf* 2B for det, ..
For t / A, let t ¢ 3t;_4,t; [, then (kt)j EC%AJ-) for j # i and
(kt)i € C\('Ai) for y 2 0 . Then :
1 g
A=W Gedjl1, 5 = c by maxl e [PV, 1G0T )
%5 > 13 2,A,
c hB;l/Z max (’!kltl'g,m *'lkztllﬁ,m ) -
1 By & 2, 1, (B1) 2.1/2
| (-n )(kt)iHZ,Ai schy (| {k hzi[ti..pd (| %o “2 [t t.]) 3t/
By1/2 2 2472
sch 14 [(”kif“81 m) +(”k2t“81 i} )241/2 ‘
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The remark min (28, B+ By * 1)= B+p* ends the proof. 0
We are now ready for the main

THEOREM 10 :

I§ the kennel of T 44 04 class gla v) and if § « c%, then
gon n Larnge enough :

[x=x, 11, = 0th®), [1(1-Pig, |1, = o(kf)

) X0, = oh®* By, | z-P;Q;i;Z - 0 (nB*E¥)
) =R = 0on®®y, ) co-m§ 1 e, - 0(a®f)
WX = ohB* 8% 1 -p g (], o(hB*B*)
where B = min{a, 2+1) and Bx= min (B,y +2).

Proof
i) Since x ¢ C* and M < C® , then by corollary 7
1
!!(T"Wn)xlfz

1A

chBI! X(B)IIZ and

1 aemPl, s e v maxd vy, (pepl, = 1)

€

\
The result follows by (9). In*%eneral&jGZ(M,MB}=O(hﬁ).
ii) q;T(1-w;)x{12 <! T(w—w;)xllm = sup |< ki, (1—w;)x > |

el 0,1

Application of lemma 9 proves that

[ITCr- mx] I, s nfEx By

[1T(1- wg)P{im can be bounded accordingly. The desired results
follow by (11).  And 0,0, ) = onf*EY)
To prove iii) and iv) we write for a fixed t in [0,1]

1 n
<1t,(1~ﬂ;)§n >= <(1-n;)1t,(1~vn) [(xn~x) + x ] >

s
<1l,(1—n;)?n> = <(t-rh1l , (-1)) {(1~P)¥n +p @n] >
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For t ¢ A 'I(]"";)1t|l2 andll(l—ng)lgllz are both of order B

by corollary 8, as well as the quantities

N 1 N | 1y 'V
H¥mxl 1y 5 HHO-sDx1 1, L1 G-R§ L, and [ O-n)EG 11,
which are of order § at least by i) and ii). This proves iii).
Now for t ¢ A, <1l (1-n;)x> and <11,(1—nl)P¢n> are of the
order 8 + B"by making use of lemma 9 and of the uniform bound

P )(B) < c||¢g < ¢ . As for the remaining scalar
fn o Pnlla
products, we deduce from corollary 8 that

1
max (|| (1-w)1.|], ,Il(l-ng)ll||2) sch!
Therefore, since B1 20,

1
| < (]-“n)l

X - x >|sc h lH')\c'n-tz < ¢

B+B=*
t > "n h

; |
1 .
l< G-nh, (1-p)§; >|sc h '||(1-p)§n||2 < ¢ nBtB*

5. CONNECTION BETWEEN THE 1-GALERKIN AND COLLOCATION METHODS

We introduce the following definitions and notation .

Let be given the r+1 Gauss points (Ti}§+] of the interval (a,bl,
for g ¢« C(a,b), let nzg be the Lagrange interpolation
polynomial of degree =sr at the r+1 points {Ti} . n‘g is the

least squares polynomial of degree =<r on [a,b].
r+l -
We define the polynomial v : s ¢ [a,b]le I (s-‘-ri)° Given
i= :
a function f vanishing at [Ti}, its (r+1)t'l1 divided difference

at the points(ri} is denoted X[rl,...,r .1 £, and is

r+1’
abbreviated 3(T*1)f. we have

- r+1
f(s) = v(s) X[Tl,...,Tr+] »s1 £ for s { {Ti}l , the value
for s ¢ {Ti} being defined by continuity.

LEMMA 11 :

Forn § and g in Cla,b), 2 ic,)
<, (1-1%)g = <(1-a') 43"

y Vo>
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Proof

By definition {Twwz)g vanishes at the {t.} , wzg e P_ and
S(r+1)vzg = 0. Then ! | '
(1-1)g = v 3D (a-ntyg) = v 30*N),

Therefore

<f,(1»ﬂ2)g>=<f§(r+1}g, v o>

Because the {Ti}¥+? are the #+] Gausspoinits on [a,b] , then

fg v(s) p(s)ds = 0 for any polynomial p of degree < r.

f

v is orthogonal to Wr , that is n‘v ¢ , or

<f,(1~n2)g> = <f§{r+})g, (1—ﬂ¥)v> = <(1~n})f-§TT*T)g,v> . 0

COROLLARY 12

Let n be a nonnegative integen. 1§ § ¢ C'{a,b) and
g e " a,b) then

‘< 5:“—‘&2)9 >‘$Q(b_a)fl*1+8'*1t;

Mar olallgronet o
where B':= mini{n, n+1).

Proof By lemma 11

[< £,0-nDg >f< [ O=shv]], [Ta-rhe 3T gy

Since v e P,

1 a=nhvll, s G-a) ™ v < -y T2y (D

Similarly ‘ E
-8 g < (b-a)®' | (£30 D gy By,

< (b*a)8‘+1/2l!f!!gt)m‘igllﬁt*r+1,m -0

Lemma 11 expresses the relationship between the 1-Galerkin metho
and the collocation method at Gaussian points. This may be
related to the fact that in the engineering literature, col-
location at Gaussian points is very adequately called

onthogonal collocation, cf. Prenter [13] .

Lemma 11 explains the asymmetry of the roles played by f and g,
by the presence of the divided difference S(r*})g,OHe consequenct

is expressed by corollary 12 where more smoothness is required
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from g. The asymmetry is stressed if we write the corresponding
bound for ! which is symmetric in f and g

1H+4
if f,g € C“(a.b),l<f,(%-n])g >|sc(b-a) llf(s}llml'gcs)[|m ,
where B= min(a, r+1) , (cf. corollary 7 and lemma 9).

As another consequence, higher order convergence results on x
and Q for collocation at Gaussian points will be obtained only
if o 2 r+1, in opposition with what happens in the l-Galerkin
method. It is fair to say that this fact has no practical
importance since r is chosen such that r+ls< o to take full

advantage of the accuracy of functions in P . Nevertheless

2r+2 ’A

the double accuracyh will be obtained only when
a 2 2r+2 in case (b), when it is obtained already for
a 2 r+l in case (a).

Our analysis of higher order convergence results obtained by
methods (a) and (b) can be compared to that given in [51 by

de Boor-Swartz in the following way. We start from (a) to explain
(b), when they start from (b) to study (a). As a result, we
would need more smoothness requirement on k and f to” deduce

the superconvergence results given in theorem 10, if we

applied results of [5] to an integral equation.

6. SUPERCONVERGENCE OF %n AND 31 FOR THE COLLOCATION METHOD
L4 -
AT GAUSSIAN POINTS

We consider now the collocation method (b) defined in C(O 1).

The collocation points le} are chosen such that the {T;}§=1

are the r+1 Gauss points on each A, » i= 1,...,n.
w, (resp. 2) is the orthogonal (resp interpolatory)

projection on Pr,A .

When we deal with the Lz-scalar product and adjoint operators,
the continuous functions under consideration are taken as
elements of L2.

The following result is standard.
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PROPOSITION 13

1§ the kennel of T is of class g(u,v) and if § « ¢* then
[ix-x, |1, » I}‘I“P}th!m and O (M, M ) are of the onden
o4 ﬁ= min{o, #+1),

If we suppose that a 2r+1, then B8 = r+1 and we can prove the
superconvergence results for Qn and ‘%n given in theorem 15, by
using corollary 12 on the Ai , 1= 1,...,n .

Before proving this main result we need some preparation.

We recall the Markov inequality (2] for polynomials of degree < ;
written on A, '

IIQIIr,m,Ai <c h;rllqllm,ﬁi for any q e P, (4;)

LEMMA 14 :

Undern the hypothesis of proposition 13, if a 2a+1 then

n )
!]xn-x}]n,w,Ai < clh/hy)™ h |[x[[&+}'m » fon £ = 1,...,n.

]l(I—P)?n]ln’m’Ai < elh/hy)™* RUPO g w o o 4= 1,0,

Since there is no ambiguity we have omitted the index i for the

functions defined on Ai

Proof

Since a 2r+1, x has a continuous rth derivative at least. We
define on by the Taylor expansion of x of order r,(‘;rﬂ(x) e P (¢

! lx_xn! !r,w,Ai = l ‘X.:GI"'“'I (X)l ‘I‘,"",Ai-“i !Z‘r"‘l (X)":Xn’ lr’m,Ai

By application of the Markov inequality to Z5r+1(x)-xn we get

B GOl = € 3B 0l g

l }EI'+1 (X)—Xn' 'W’AiS! '61“"1 (X)"XI im’Ai +I ‘X"an im’Ai

- _ r+]
By proposition 13, |]|x xn"w,Ai < ch lel‘r+1’w

By theorem 6,

G 0 by 0Oy = e 0 My

and the desired bound follows for !’X*an!r,w,Ai
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The proof for Cn” th is quite similar by writing

P P4y = tf:rn"&r*rl“)‘fn) *CONI(P%) - Pgy

and using ||Pq, || <c  since az2r+l .0

r+},
o« being > r+1, we write o = n+ r + 1 where n is a nonnegative
integer. And we define

gt := min(n,rﬂ))s'l i= min(B',y+1),8'”" := min(®"*, y+2).
THEOREM 15

Let the kenrnel of T be of class »Y) with oz a+?5 axy2-l. 1f
§ e C* then for n Lange enough '

*

A I, - (’”’*B b 1P L, = ot 1B

@ e = oI pen § e ) - oS
Proof .
i) By (11)

) 2 a 2
[x%, [y <l T2 1, o 11O-Pg 11 s <l Ta-DP], |

. 2 2
with ||T(1--1rn)x“°° = sup |<kt,(1—nn)x > .
E[ ’l.]

For t = tied, kt € Cg , therefore by corollary 12 on Aj » 3 =1,...,n
we get

T+1+R +]
l< kt,(1 1] )X >A 'S C h B ll(kt) “BI °°A || J”B'ﬂ'ﬂ, ’AJ

By summing over j

2 r+1+8!
| < ke, (1-m)x >|sc h | 1x]| BY 4741 o0

For t £ A, we suppose that t ¢ 1ty 9.t 0 - The above bounds are

valid on éj for all j # i

On %} (k ). e CY* 1 for s ¢ [t 1,t] and [t, t1+]]

reieph +1
<k, (1-1') x SR d Hxilge et

By summing over j

. '
l< k., (1-12) x > |< c hEHI*RIR(B,E+1)
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The order r + 1 + 8'* results from min(B',B% + 1) = g**

[]T(1—w§)Pl[m is treated in the same way. We deduce in general
1 . .
that o_(M,M ) = o(nPB"™).

ii) We first study x-yn. For t = tie A we write by (10)

(x-X ) (t) = <1, (-nl)% >

it

<L, (-nlxs + <, (1-12) X -x)>

<1

n W
o (=l 4 g <, (T—wz)(xn~x)>Aj

i=1
The first scalar product i§ of the same order as < kt,(1~n§)x >
that is r+1+8' . As for the second

! <(1t)j’(1_‘n 2) (S\cln“x)j>tsc h§+]+3'+]‘ ‘ (lt)j ' 'B';M;Aj i ‘(}’n"x)‘-}! lg‘-(-r-ﬂ ,%, Aj

It remains to bound "%n~xl‘8'+r+] o uniformly in n, with
b4
B'+r+1 < o .

First we note that %n—x = % T(xnwx), then

’!Xn'xt*8‘+r+1,m,Ajs C[lfx~xn][m +',Xn_xilsl*r’m’Aj :

[lx~xn]]m = 0(h™1y is bounded, and x_ on ¥ is a polynomial
of degree < r, therefore

HX-an ‘3'*1‘,‘”,13;;3‘ | x| IB"*T,‘”,AJ- + ]Xn—X‘ ,r’w’Aj‘-.
By application of lemma 14 we may write for j ='1,...,n

(h/hj)r h < (h/hj)r+1 and

25 MY ' ‘
< 1., (1-n )(xn-x)>Aj B HE (h/hj)r*‘!lxl!8.+r+1,m,aj

By summing over j

| < lt,(}~ﬂﬁ)(&n‘X)>is c pr*1+ s I X'l8’+r+1$

The analysis of (1-P)¥n is similar to that of xi§n :
LO-P)§,10t) =< 1), (1-ni)P§n> re 1) ,(1-ﬂ§)(1—P)?{>n ..

For the first scalar product, ]}P&ni]s,*r+1’mis uniformly bounded in n
by proposition 4, since B' + r + 1 < g .
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L

An

||((1-Pkfn)j|3.+r w A, Can be bounded by means of lemma 14, much
8 ® 2

For the second scalar product (l-P)q-;n = T(l-—P)q)n and

like this was done for the solution. This ends the proof. O

The only nontrivial part of the proof of theorem 15 is to

bound ||3‘c‘n - Xy w (resp,i|(l-P)% nlla,w )

uniformly in n. It uses the technique developed by de Boor-Swartz
in [21 . It should be noticed that in case of a smooth kernel,
when y=a ,||%n||a’m(resp.||%u|a - ) is bounded uniformly by

the lemma 16 given below. Then the proof of theorem 15 becomes
straight -forward. ‘

LEMMA 16 :
1§ the kennel of T is smooth of onden a,then the following
bounds hotd for n Lange enough
" n N
||xnl|a’oo Sc'l‘l'a‘w 4 I'(fn"a'oo s c'l‘?nllw °
Proof

%n =1 Tx_  + f , then

z n
¥l o e cUlxnllo * HEG o) 5 € HElg,m

.. R ‘
Similarly 9n = - T‘?n ’

Ly c - : - .
Hgnlly,w sTx;Tll?nllm and ||@ulle = 15 |2yl > 18] - ¢ for
n large enough. U '

7. BOUNDS ON A- A, , A= A, AND dist, (g,,E)

n

Fbr the eigenvalues and eigenvectors, the following order§of
convergence can be established (assuming that a >r+1 for (b)) :

. N - 1/ . = g/m
i) a- A, = 0(e,) » m?xlx-kinl = 0(en ), m;n[x-xinl = 0(e, )

n h?8 )

(b) eﬂ = hr+1+B| .

distm(§n.M) = {

where in case (a) ¢

0(hB+B*) for (a) )

ii) fort =1, dist (g ,F)
» 1585 Yn o™ 8"y for (b)



iii) for s > 1, dist_ (gn,E) = O(e;/z), where e is as defined
in 1).
Everything relies on the bound for

T m * -1
)\‘)\n = r_p: .E < Xi s (1’WH)T(P‘\M ) Xi> (12)
i=1 n
Let us set y, —:= (Pan)qxi € mr,A , 1= 1,...,m . The question

is to give the order of the scalar product
* * .
By (13), llyin - xillv sC 11(1'"H)P'lv,
which shows that ||y, - x;|| is of the order of B = min(a,r+1).

The order of <x;, (1-wn)T X; > is clear by application of corolls
7 with p = 2 for the case (a), and of theorem 15 for the case (b).

. . . *
It remains to deal with < X5 (1—ﬂn)T(yin - Xi)>

(a) The order 28 follows readily from

o, ()T x> Lsel [ A-mDxil, Ty, - % 11,

in
{(b) It remains to bound uniformly in n all the derivatives

of (1-P)yin = Yin - Xj up to the order B'+r. This can be

done by means of lemma 14, since ]lyin - xiHGo = O(hr+1)

when a zr+1. The proof of theorem 15 applies and the order
r+1+8' follows.

The bounds on distmﬁ¥n,E) are derived from the érder of Ik-xnf

i . , v ]
where An is the eigenvalue of Tn such that @ - T; T(f)n

CONCLUSION

The aim of this paper has been threefoid

- give a new proof of superconvergence results for the 1L -Galerkin

method which does not use the assumption that A is quasi-uniform
- treat the eigenvectors in much the same manner as the solutions.

- do a parallel study of the l-Galerkin method and collocation at
Gaussian points.

One may notice that in our treatment of the i-Galerkin method, it is mnot

. . Ny Y
necessary to bound uniformly in n some derivative of x, or ¢ even to prove
the double accuracy at the partition points. This is only required for the

collocation method.
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In a forthcoming paper [10] , the same analysis is

applied to the solution of an o.d.e. and to the generalized
(differential and integro-differential) eigenvalue problem.

Also in [111 , superconvergence at the partition points for

the iterated subspace TMn is established. This cannot be done

with the above analysis because the identity (10) depends

. N, .
crucially on the fact that 1S an eigenvector.
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Abstract

~ We conglder the simple and generalized differential eigenvalue
problem associated with a 2-point linear boundary value problem of
order p. The approximation method is the method of moments and the
collocation method at Gaussian points, defined on pieﬁewise polynomial
functions of degree <p+r, where the partition is quite arbitrary.

h is the mesh size, optimal orders of convergence are established,

h2r+2 r+i+p

at the partition points, h globally, p<r+! , which are

the same than for the solution. More smoothness 1is required on

the coefficients {g%p—l for the collocation method (aiec2r+2)‘ than

for the method of mogents (aiecr+1).




1. INTRODUCTION

We consider some projection methods of momentsw and collocation~ type

for the differential equation
Lu = f A (1)
and the eigenvalue problems

LY = AY , and (2)

L}
>
=2
a3

-

LY (3)

where L and N are respectively the linear differential forms :
p-1 (i
i)

Lu := u(p) -~ I a,;(.,) u u(p) Mu
pm1 i=0

Nu := ¥ Db,{.) u(l) -
i=0 *

The variable runs over [0,1] , and the coefficients {ai,bi}(}';m1 are
continuous real or complex functions.
u and ¥ are subjected to the p homogeneous boundary conditions :

p-1
8w = £ [a,, u'd)

% ©+ 8, vt (1)1 =0, k=1,...,p. (a)
i=0 »

Let T be the differential operator in X = L2(0,1) or Lm(O,l) defined

for ueD by Tu = Lu , where
= (p) - -
D := {uex ; u €X and Rk(u) =0, k=1,...,p. } .
The equations can be written respectively

Tu = £ , feC(0,1) (1)

Y = AV (2)
¢ = ANY (3')

We assume that (1') has a unique solution,then '3['“1 is bounded and

. A#0 for (2'). We also assume that X #0 for (3') . We will see later

that X is an isolated eigenvalue with finite multiplicity.

The principle of the projection method is to compute an approximate
solution u (resp. eigenvector Wn) in a subspace xn of dimension
N(say) by imposing N linear conditions on the residual Tun—f

(resp. TWn _‘An Wn or Twn - An N Wn y o=



(a) in the method of moments, the residual should be orthogonal to

some given subspace Yn of same dimension N,

(b) in the collocation method, the residual should v;nish at N
prescribed points of [0,1] .

Various methods are obtained from varlous choices of the subspaces
¥y 30d Y, )
(We describe now the choice we have made.

Let be given A = {ti}g a strict partition of [0,1] , ty, = o,

tn =1 7 Yn is the stet:.[Pr'A of piecewise polynomials of degree =r
[ ,i=1,...,n, the value at 1 being

be the set of functions in Cp—l(O,l)

on each subinterval [ti—l'ti
p-1
defined by continuity. Let wp+r,A

which are polynomials of degree <p+r on [ti~1'ti[ i =1,...,n,
We define X := C_the set of functions in wP'l which satisfy the

n n ptx A _ .
boundary conditions (4). xn and Yn have the same dimension N=n(r+1).
CA is the space of plecewise continuous functions on each subinterval,
¢, L (0,1). '

The approximate solution unecn‘is determined so that

(a) Lun—f is orthogonal to @ in L2(0,1) N

r,A
(b) Eunwf vanishes at the r+! Gauss points {13};:: defined in each
subinterval [ti—l'ti] , i=1,...,n .

Let “n represent any one of the two projections :

-l
=
[

L2(0,1).;,Pr A the orthogonal projection on Yﬁ p
¢

weo CA'* Wr'A : for xECA ‘ nﬁx is its piecewise Lgérange interpolati
of degree <r at the points {Ti} .
The condition to determine u may be written under the single form
v fLu ~£]1 =0 , u eC . (5)
Similarly An, Wn are determined by
L (L Yn - An Wn] =0 , ?necn ) (6)

LN [L Wn - An N Wn] =0 , ‘Pn€Cn . 7y .
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The aim of the paper is to prove that the same superconvergence
properties hold for the eigenvector Wn at the partition points,
than for the solution uo. The proof is based on the interpretation
of the projection method on the differential equation as a Galerkin
method on the integral formulation. The analysis given in Chatelin-
Lebbar [6] can then be applied here to prove very easily the
optimal orders. This paper should be seen as a companion paper for
el . ,

This approach differs slgnificantly from the one taken by de
Boor-8wartz [1,2,3,4] , We feel that the present alternative point
of view has its own interest, since once the integral problem is
treated, the result for the differential problem follows from the
same theory : the key is again to write the error forﬁulae as
appropriate inner products,

All the remarks given in [6] about the differences between our
approach and de BoorwSwartz's remain valid,

2, INTEGRAL FORMULATION

X is again Lz(O,l) or L”(O,l). We suppose throughout that the
ulp) =0

problem {(4) has u = 0 for unique solution. Then there

exists(a)unique Green's function g(t,s) such that the solution u
Pl= ‘

of ?4) X is given by u(t) = fé gl{t,s)x(s)ds :

this defines the integral operator G by u = Gx . G is the inverse

of the differential operator DY : uep » u(P) |

u=Gx

(1') 3 :
X = Kx + f (8)
Y=G¢

(2') & i
(1=K)¢ = AG) . (9)
¥=Gg ¢

(3') <& %
(1-K)¢ = ANGH = AL¢ (10)
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where the integral operator K ;= MG is defined by

1

Kx = Jf_ k{.,s)x(s)ds )

0
p-1 i
k(t,s) = © a, (t) 2-9(t,s) , O0st , s<i
j=0 1 ael

We remark that k has a first kind discontinuity on s = t . K is
compact as an operator from LP(O,I) into C(0,1) , 2<ps<= , by the
characterization of compact operators given in Graham-Sloan [8] .
K is also compact from LP to LP . The same property is true for

the integral operator L := NG whose kernel is

p-1 i
5 bi(t) 3 g(;,s)
i=0 at

By assumption (1'--1()'_1 is bounded, so that (8) has the unique solution

x = (HK)—lf , U = Gx .

(9) is a generalized eigenvalue problem. It has the fbllowing

equivalent form of a simple eigenvalue problem :

(9) @ ¢=1 (1-k) gy = AU (11)

1 -1 1 -1 T—l

with U := (1-K) "G = G~ G(1-K) 'G = G G.

Let ' be a closed Jordan curve around A # 0 which does not enclose

-1 1

SiT dz is the spectral projection for T, associated

0. P = fp (T-2)"

with A . z stands for zl1 , where 1 is the identity operator on X .

Then .
= -1 -1 _ -1 ~1 -1
Q = 377 /p1-K-26) " "Gdz = 717 r(1/q) (U-t) T4t = ¢ 'pg

i1s the spectral projection for U associated with 1/x . F(1/2) is

a Jordan curve around i1/\ .

Similarly

1

(10) <= ¢=1 (1-k) "'NG$ = A (1-k)?

Lé = Av¢ (12)

with L := NG , V := (1-K)"! 1 = ¢! (™!
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Now . the spectral projection for T, associated with X is

~1 ~1
317 Jp (T-2N) N dz ,

P =

and the spectral projection for V, associated with 1/x is

-1
2iq

Q = fr(1~K—z§G)"1 NG dz = ¢"lpg |

The main difference between (11) and (12) is that g = laG is
invertible, whereas L = NG is not invertible,

We .are then lead to introduce a second equivalent form to (10) ana
(12)

n
[
1
]
Lt

: ¢
(10) & (12)éﬁ>i (13)

3

i
>
2
+3
(st

1 . The corresponding spectral

~1 - -

with N 77 = L(1-x)"! = (1-k)v(1-k)
Projection is denoted R, and the following relationships hold
~1 -1

R = (1-K) Q(1-K) = TPT

Note that if N =1, L=G, £€=¢ and R=P since (13) <= ¢ = AT_1¢ .

The approximation equations (5),(6))(7) have now the respective

equivalent forms :

un = Gxn

(5) &= i
(1nnnK)xn = nnf ’ xnePr,A , | (14)
wn =6 ¢n

(6) &= ?
(1—ﬂnK) ¢n = ln L ¢n ’ ¢n € Er,A (15)
Wn =6 ¢n

(7)) <> {
(1-1rnK)4>n = inﬂnL ¢n ' ¢n € Pr’A (16)

The projection method on the differential bProblem is then equivalent
to a Galerkin method on the integral‘formulation, defined by the
subspace mr,A' We remark that , even though (2') is a simple eigenvalu:
problem, its approximation (6) leads to a generalized eigenvalue
problem (12). This fact will then force us to Some preparation before
being able to apply the results of [6] to (2'). This is the subject

of the next section.



3. CONVERGENCE

Since,u-un = G(x—xn) and Y - ?n = G(¢-¢n), the convergences u *u
and Wn¥* ¥ will follow easily from xn + x and ¢n + ¢ . Hence we

have to study the equations (14), (i5) and (16).

The reference space X is taken to be L2(0,1) in case (a) (resp. C(0,1)
in case (b)). The norm in L2 (resp. L” or C)) is denoted ||.|

(resp, [].Ilm ) . Throughout the text, I""u is taken to be II.Hz

in case (a) (resp, ||.||_ 1n case (b)).

It is well known that if h := max (ti—ti_l) + 0 then.{l(u;-l)x|t1+ 0

for any x in L2(0,1) (resp. ll(ui «-l)x“m + 0 for any x in €(0,1)).
We recall that ni defined from C(0,1) onto mr

A is not a projection,.
’ .
Now K 1s compact in L2 (resp. L” ), as well as G,L,U0 = (l—K)-IG and
-1
V = (1=K) ~ L . Then Il‘l"“h’x'lv + 0 and the convergence

||xnvx|L + 0 follows at once. For n large enough

1 1 i

(lvnnK)~ =(1-K)"~ [1+(1wnn)K(1~K)- 17! exists ana is uniformly

bounded. Hence we may define for n large enough :

1 1

U = (1-" K)7' 7 G and Vv := (1-n k)" 1w L,
n n n n n n
and we write
(15) &= ¢n = An Un ¢n P
(16) &> ¢n = An Vn ¢n .
We study the convergences Un + U and vn +- VvV .
- -1 ~1 -
u-u = (1-K) "6 -~ (l—nnx)u 7.6 =
B -1 -1 -1
= (l—nhx) (l—nn)G + [(1-K) -(l-nnx) 1l¢
B -1 -1
= (l—nnx) (l-un) C1+K(1-K) 1
N «1 -1 -1
= (1 ﬂnK) (l—nn)(l—K) G = (l—nnK) (l—nn)u
-1
Si.milarly-Vv-Vn = (l—nnK) (l—nn)v . Therefore ||u-un|2v+o and

l'V—anlv_y(), as n » o
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Let A # 0 be an eigenvalue of (11) or (12). From the compactness of
U and Vv, we deduce that ) is isolated with finite multiplicity m {(say)
It is standard (cf. [5] for example) to deduce the'strong stability

cf the approximations Un and Vn around A , and the convergences

|A-a_| +0 ana ||(1-0)¢ ||, >0 , as n » =.

‘'For n large enough, there are exactly m approximate eigenvalues

(counting their multiplicities) converging to X . Let An be their
arithmetic mean : !A—_An !* 0 . The convergence of the projection

method for any one of the equations (1') (2') or (3’) is then proved.

4, ERROR FORMULAE

As in [6] , the key point is to write the pointwisé error (u~un)(t)

and [(1-P)?3(t) for t € [0,1] under an appropriate form .

Lemma 1

The following identity holds
u~u = T“I(l-w ); . With ; = Kx # £ .
n n'n n n

Proof :

1 1

f - (1-7 K)“ T £
n

(1~K) "~ a

X~X

N

-1 -1 -1
(1-x) (l—ﬂn)K(lewn)K ﬂnf + (1-K) (1~wn)f 

-1 _ -1
(1-K) (1—nn)(Kxn + £) = {1~-K)

[}

N
(1~ﬂn) X, oo

Then

uru = 6(1-k)"! (1-n )% =1 (1-r)% . O
n n n n n

By definition T~z is invertible on (1-P)X for any z inside T and the
operator S{(z) :='(T—z)—1(1~P) is the reduced resolvent of T with

respect to A , at the point z.

Lemma 2

The follewing error formula holds

. , _ ny . v
(1np)wn = s(An)(wnn1)¢n with ¢, =K ¢ + A G .
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Proof

Let Q be the spectral projection for (1-K)¢ = AGoepd = X U ¢

Q = %%E Iy (1-x=z6) "} 6 dz, and P = G Q ¢ !,
Then
(I—P)?n = G(i—Q)¢n
-1 -1
= G(1~K—Ane) G(i-0)e6 (1»K~An G)¢n
= —1 3 -
=T, -8y = so0 @ -§).
The desired result follows from "n $n = ¢n . 0
Lemma 3
The following error formula holds
(1-p = (T N~ (1-r) g with § =K Ax
1= )Wn = A, N) —R)¢n ¢ W ¢n = ¢n A, L ¢n .
Proof

(1??)\&’“ = G(lﬁQ){bn ¢

3 - -
(ng)¢n = (An(lvx)° Le1) 1 (1-Q)(xn(1_x) 1 L-z)¢n
—— ) ..l — — - -1 - -
= 0 - (1-x)] (1 K)(x,f)(i K) o (1-x)é 1
-1 -1 - " ‘
= (1-K) (A, LO-K) © -1) (1-R) (¢ - ¢ ) .
And (An §-T‘1—1 )'-1 {1-R) = An S(N ‘1‘-'1 ' I/Xn) where. S is the reduced

i

resolvent of QT" with respect to 1/M at the point I/Xn .

Formally we write

sa-07h @A ™ o D mea-n T - et
= (A §~T)“1 .
We conc{ude that
(1~P)Wn = (T-An N )"1 (I~R)(¢n - 2"n)

o - l \ {\’ 3
= (T2, M7 (-R) (n -1) ¢
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where (T-A. M)™' (1-r) = A lsurtt 1/A_ ) is well defined as

the product of 'I"'l by the reduced resolvent S. The formula reduces
to that of lemma 2 if N =1 . QO

These lemmas are fundamental, which express the connection between

the error u~u (resp. (lnP)Wn) and the iterate

A a y
X, Kxn + f(resp. ¢n = K¢n + An G ¢n or ¢n = K¢n + An L ¢n )

il

relative to the Galerkin method applied on the integral formulation,

This will be used in section 5 to establish the optimal orders of

convergence,

Before,we need to establish some properties of the iterates §n and

¢n - %n is the solution of

(J_Knn)kn = f
The collectively compact convergence (abbreviated c¢.c.) Kwn f::: K
i$%§§§}lgmgggyed in L2 (resp. C)?i)
Cﬁénce [t;n - XTT§+ 0 as n ~» © , and (1—-1(1rn)"1 exists and is uniformly

. 4"
bounded for n large enough. Now for the eigenvalue problems, ¢n is

solution of

" -1 o n

b = A=xn ™ e F o= o,
or

a -1 " n

N /S I T S S W A T
We have
-0 = (1-x)"Y 6 = (1-k7 )"} ¢ &

n ) n n

1 1

H

=1 -
(J«Kwn) G(lnﬂn) + [(1-K)
1

~ (1—Kﬂn) 1 a

"

(1«Kﬂn)m [G(l-wn) + K(l—ﬂn)U 1,

and similarly

N : -1
V-V_ = (1~K7 )
n n

[L(1—wn)+ x(1~wn)v 1.

C.C. c.C

", o . ¥
Hence U -5 u, V. 2%, v and |](1-9) ¢ 11y » 0.
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5. ORDERS OF CONVERGENCE

5.1. Properties of the kernels of G,K and 'I‘—1

We recall the definition given in [6]1 of the class E;(a,y) of kernels,

where a20 and vy2-1 are integers.

Definition : The kernel k is of class é;(a,y) with 20, a2y2-1 iff

kl(t,S) for O<ss<ts<i ,
k{t,s) = i
k2(t,s) for 0<t<ss<i ,

with klec“({OSSStsl)) , kzec“({OSts.c,si}) and k € c¥([o,11 x {0,11)

discontinuity if y 2 0 . y = -1 allows k to have a first kind
on s=t

y 1s the continuity of k and a is its order.

Anotherxr notatjilon is

kt : S kt(s) = k(t,s) for any t,se[0,1]

Lemma 4
If the coefficients a, belong to g“, i=20,...,p-1 then
i) the kernel of K 28 of class é;(a, -1) ,

t%) the kernel of P i8 of class é;(a+1, p-2). =

Proof :

Let g,k,v be the respective kernels of G, K and T_1 « It is well

known that g is of class falw, P-2). The kernel k is such that
i p-1 ai ' '
k{t,s) = ¢ ai(t) - glt,s) ,
i=0 Bt

and i) follows easily.
As for the kernel v, it is related to g in the following way :

Trl(vi)f = Gf for any f in X implies

fé vit,s) [(1-K)f l(s)as = fé gl{t,s)f(s)ds for any t in [0,1] .
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Therefore, vt is solution of

*
{1-x )vt =9, -

(2)

Hence Ve € Cp~2 and the ch partial derivative (Vt) is such that

(2)

() _ * () .
(Vt) = (K vt) + (gt) , with
* 1 p-1 Bi —
(K vty = IO I a,(s) ——= gl(s,t) v _(s)ds , O0st<1 .
. i i t
i=0 ds
For £ =1 , !
-1 i
D % 1 POt R —
77 (K vt)EF’fo ‘Z a, (s) T 37 9(s,7) v _(s)ds
i=0 9s .
P~ 1
+ ap—l(T) ;;E:T Lg, (z,7) - g (t, )1 v (1) .

Similarly the second partial derivative will depend on aéi;(T),

(1) and a (T) . This proves by induction that the kernel v

®p-1 p-2

is of class é;(a+1, p-2). 00

To establish the orders of convergence, the partition A is fixed.

The reference space X is L2(0,1) for case (a) and Cy for case (b).

Then n2 H CA -+ wr A is a projection. In the error bounds to follow,
: 14

the constants will be independant of A, hence of n .

5.2. The equation (1')

Theorem 5

If aieca y i =0,...,p-1, i1f fec® and tf @ 2 r+1, then for n
large enough, the following rates of eonvergence hold for the

method of moments (resp. collocation method)

o fsup ] =0 2Dy (resp. TNy L g1, L.,
* *
ii)Vl[u-unI[m = o(n¥titE -, (resp. n¥t1*E'
where 8% = min(r+1,p)
B' = min(a-r-1,r+1), B'* = min(B',p).
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Proof :

-4
The kernel v of T . is of class §§(a+1,p—2). And for any t in [0,11] .

ueu ) (€)= (v

e ‘1‘"n)(§L'X))*(Vt‘(1’"n);)'

by lemma 1, where x denotes the function s+ x(s), for 0<s<1 , and

2

(.,,) denotes the inner product of L“.

We note that B := min(g,x+1) = rai by assumption,

2)

- - -

order r+2 by theorem 10 of [6] .

Then I((l—ni)vt . §n~x)' is of the order

v (r+1)+(r+2) for t ¢A,

. min (r+1,p-1)+xr+2 for t ¢ A , by corollary 8 of [6] .
And l((l—u;)vt ' (l—n;)i)l is of the order

. 2(r+1l) for t ¢4,

» min(rx+i,p)+r+l for t ¢/ A , by lemma 9 of [6] .

The desired orders follow,

Case_(b) : by application of corollary 12 and theorem 15 of [6] ‘

- . - -

I(Vtr(l‘"§)§)| is of the order

. r+1+g° for t eA,

v xk148F for ¢ ga,
As for the inner product I(vt,(l-nﬁ)(§1—x))| + the quantity

N
||§;~x|| B'4r+l,» £OF t €b(resp. llxn-x|| for

min(B',p-1)+xr+l,=
t ¢ A), can be bounded uniformly in n in the way it is done in the
proof of theorem 15 of [6] , where T has to be replaced by K, and
zZ2 by 1. And the kernel of K i1s of class f%(a,—l).lj

The orders of convergence are 2r+2 at the'partition points and
r+l1+p globally, for the method of moments if azr+1>p and for

the collocation method if a22r+2 and p<r+l. The optimal orders,

namely h2r+2 and hr+1+p + are obtained by the method of moments

1f the coefficients a, are in Cr+1 i but by the method of collocatio:

they are obtained if aieC2r+2 s, 1 =0,...,p-1 .
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De Boor-sSwartz [1] deal with the collocation method on a non linear
differentia; eéquation. Putting their work into our framework on (1'),

we can say that write the error u-u, under the form

u-u = T“lT(u—un) and  (u-u ) (t) = (vt,(l-n;)(E~Tﬁn)) ,

then bound uniformly the derivatives of Tﬁn .

It is worth noticing again that the Superconvergence results for

the method of moments are proved here for an arbitrary partition . ,
without the use ofbany kind of Markov inequality. This could not be

done by using results in de Boor-Swartz [4], cf. also Graham [7] for a
related result. :

5.3. The equation (2')

Lemma 6
If a; e c® + i=0,...,p~1 , P (resp. Q) has a aegenerate kernel

of continuity q+1 (resp. q).

Proof : Cf. the proof of proposition 4 in [6].

There is only to prove that N = QX c c® (resp. N* ¢ 0% x*c dq). We

recall that (l—K)th = N , where M = P¥X c Ca+1 {theorem 3 in f6]

applied on T_l} - For £ ¢e M, g ¢ N is the solution of {1-K)g = £

and g € c* . O

Lemma 7
For n Zarge'enough, the following bounds hold
llct-ove I, < ellci-n el .
er-re I, < clkr-r el + lect-myeollj1 .

Proof : It is standard (cf. [5]) that
lci-re 1l < e Hltu-uhell)
i ~
llca-ov¢ 1, < elicu-voll, -

" We recall that the spectral projection Q commute with U.
Then '

(U-0_)Q

IA

i

-1 _ _ -1 ~
(1~ﬂnK) (l—ﬂn)UQ = (1 wnK) (1 nn)QU .

i

(U—Un)Q (1~Kwn)"1[K(1—nn)QU + G(I~nn)Q] .0
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Theorem 8

If a, € c* « @& > r+l , then for n large enough, the orders

of convergence given in theorem 5 hold for
‘I[(I—P)‘l‘n](ti)', i=o,1,...,n, and “(1-19)'1'“][m respectively.

Proof

Let v1 be the kernel of the reduced resolvent S(An) = (T-An)-l(l-P).

Vl is, like v , of class q;(a+1;p—2).

it

1 =
[(1-P)¥ 1(¢) (veolm =1)¢ )

1 ~ 1 ~
(Vt,(nn-l)Q¢n)+(Vt.(ﬂn—l)(I-Q)¢n) .

(a) The method of moments. Q is of continuity q andnlk(l-ni)gnz

- e e e — e e e - e

is clearly of the order r+2 by lemma 9 in f{6]. We deduce from

r+2

lemma 7 that “(1—Q)$n"2 < ch And the proof of theorem 5

applies.

(b) ?ﬁg_gq}lgcg;{pg_ygpgog. The proof is adapted from the proof of

theorem 15 in {6]. We need that “(I-Q)¢H'L < c hr+1 which fol-

lows from lemma 7. []

Let ' be a Jordan curve which encloses )\ but not zero.

We define N:=QX the invariant subspace for U associated with 1/x .

Nn:=an is the direct sum of the invariant subspaces:for Un asso-

ciated with all the eigenvalues I/An , where An lies inside T .
Then for n large enough, Qhﬂ :=QtN is a bijection from Nn onto N
n 4

(cf. [5]). @

Lemma 9

-~

A—Xn 18 of the order of

I =13

max |

-1 *
max | I (10-0300)¢,, () i) (2))]

i

where ¢1n(z) (resp. ¢I(z)) belongs to N (resp. N* = Q* x*)

for i=1,...,m
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Proof : This is standard [5], and ¢in(z) is uniformly bounded in n. |

Theorem 10

If a, e c® + @ > r+l, then for n large enough

2(r+1) r+1+R"

{A—an = O{h } + (resp. h ) for the method of

moments (resp. collocation method).

Proof : By lemma 9, we have to find the order of

m
-1 *
max | I ((u-u_)gQ ¢, (z),¢, (z))
zel =1 nT(n)Tin * ‘
m -1 *,. -1 =%
= 2:; [ iil ((1~wn)(G+K Un)Q(n)¢in(z),(1~K ) ¢, (2)) } ’

where we have used the identity

1 1

U-U = (1-K) "G - (1-7 K) '@
n n

-1 -1 -1
(1-K) (l-ﬂn)G + [(1-K) *(1*vnK) }WnG

1

it

-1
(1-K) (1—nn)[G+KUn]
. . . -1
¢in(z) € N is uniformly bounded in n , Q(n)¢in(z) € Nn and
-1

., -1 =% o . .
U, Q(n)¢in(z) € Noi (1-K7) ¢ (z) ¢ ¢c”. Then the proof given

in [6], section 7, applies where T is replaced by K . 0

5.4. The equation (3')

To study the kernel of (Tuﬂng)—I(l-R)f we prové'the

Lemma 11
If ai,bi € Cu ¢ 1=0,...,p-1 , then
i) (1T-=z g)'ﬁ has a kernel of class éi(u+4,p~2) s for =z
such that (T-z N)~ ! ie bounded,
ii) L has a kernel of class fg(Q,-l) )

iii) R and Q have a degenerate kernel of continuity o .



Proof :
: p-1
i) (T-z N)u = Lu-z Nu = u(p) -z (ai~z bi)u(i) .
: i=0

If (T-z g)_l is bounded, its kexnel 1is then of the same class than

1

the kernel of T ° glven by lemma 4.

ii) L = NG and K = M G both have a kernel of class g;(a,-l).

iii) We first deal with R, the sepctral projection associated

1

with N T ° . For any integer q > 1 , let the space x{?) pe gefinea

by
X(q) i= {f € Cq-l(o,l) ; f(q—l) is absolutly continuous and

gla) X} , X being L2 orc .

-1

For q i a , T is an operator :vx‘q) + x(q+P) and

-1

nr~t o x (@) 4 ylarl)

for q < a4 . Therefore, any invariant function

1 m

£E = 0, belongs to c® .
1

£ for ET_I , which is solution of (NT -X)

Now an invariant function ¢ for V is such that ¢ = (1-K) = & : this

proves that ¢ ¢ c* . O

We conclude that (T—)\n E)—1(1~R) has a kernellof class
fg(a,p-Z) . In the previous two cases the kernels of T = and of
(T—An)_l(i—P) were of class é;(a+l,p~2) . This changé:does not
affect the resulting orders since with the assumption a > r+i ,

we get in all cases min (a,r+1) = min (a+l,r+l) = r+(:.

It is now strabhtforward to prove that, when ai,b e>Ca s O i r+l ,

1
1=0,...,p-1 , then

i) the orders of convergence for [(I-P)Wn](ti) and “(I-P)WnlL

respectively are those given in theorem 8,

ii} the orders of convergence of A—Xn are those given 1in theo-

rem 10 .
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CONCLUSION

We have proved that the error u-u_ for the solution and
2r+
(l—P)Wn for the eigenvector are of the order h r+2 at the parti-
THIYP g10bally if p < r + 1 , both for the method

of moments if the coefficients ai are in Cr+1, and for the colloca-
2r+2
tion method if the ai are in C .

tion points and h

From these orders, the derivation of the orders of

[A-1 | and dist_ (¥ ,Ker(T-1)) or dist (Y ,Ker(T-A_ N)) is standard

[6].

Superconvergence results for the gap betwéen the invariant
subspaces are given in Lebbar [9]. In Lebbar [10], it is proved that
the orders are preserved in presence of a finite number of weak
singularities for the coefficients and the second hand side, provided
the partition is of type "graded mesh", cf. also Graham [7].

Superconvergence results for another type of moment method,

the least squares method, are given in Locker-Prenter [11.
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SUPERCONVERGENCE OF THE GENERALIZED
EIGENVECTORS OF DIFFERENTIAL AND INTEGRAL
OPERATORS AT THE KNOTS

Rachid LEBBAR
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Abstract

Superconvergence at the partition points for the iterated
subspace ™, (resp invariant subspace Mn) associated to an integral
(resp differential) eigenvalue problem is established for the
orthogonal Galerkin-method and the collocation method at Gaussian

points.
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INTRODUCTION

Let X he acomplex Banach space and let T be a linear closed
operator defined in X. We are concerned with the numerical
solution of the problem
(1) T¢ = 29 , 0 #¢ X where A is an isolated eigenvalue of T .
Two main examples of operator T are considered
i} T will be the integral operator defined by =

(Tx) (t) = fg k(t,s)x(s)ds for 0s<t<]

with emphasis in particular when kis a Green's kernel.

i) T will be the differential operator with domainD

defined by :
p-1 .
M) = xPlry -1 a,e) 3 ey for o<tst
i=0
Throughout this paper X will be either L270,11 or L [0,1]

-1
and D will be the space of all functions f defined in Cf0,11 such

that £(P) belongsto X and f satisfies the p homégeneous
boundary conditions
(2) pi

1, (£) - Loy £89(0) + B £ =0 1skep

The coefficients {aj}g;g are continuous real or complex

functions, the constant coefficients Ay s Bikare real or complex.
The aim of this paper is to show that the superconvergence resulté
discribed in Chatelin-Lebbar [8-9] hold not only for the
eigenvectors but also for the generalized etgenvectors. For this)
new error formulae for generalized eigenvectors are given under
the very general hypothesis that the approximation T11of T is

strongly stable in a neighborhood of 2



. 81,

We recall that the superconvergence results shown in [3-9]

are based on the interpretation of the projection method on

the differential equation as a Galerkin method on the integral
formulation. However we take adventage of this péper

to give a rather different approach from the one taken in [9].
Thus in section 6 the projection method on the differential
equation will be interpreted as a Petrov method on the integral
formulation,

Another reason to introduce the Petrov method is that it seems
to be a real application of the integral theory‘FQrthermore

it allows us to give the superconvergence results for the gap
between the invariant subspaces which may not be given easily
from the Galerkin method. And at last it clarifies why we iterate
in the integral case to obtain the superconvergence and not in

the differential one,

2, PROJECTION METHOD

2.1. THE GALERKIN METHOD AND THE PETROV METHOD

Let X and Yn be finite dimensional subspaces of X such that
dim Xn = dim Yn ; and let LS be a projection on Yn, then the
projection method consists in approximating (1) by :

(3) wy C(T-2 )61 =0 , 0 # ¢ eX .
called

X, is¥the right subspace, and Yn is the left subspace.

If Xn =Y, (resp X, # Yn) the projection method is known as
- the Galerkin method (resp the Petrov method).

In the Galerkin method since L is a projection on Yn = Xn

(3) may be rewritten as

(4) LI A W

n 0 # ¢neXn .

n



Thus in the Galerkin method An(resp ¢n) is the

eigenvalue (resp eigenvector) corresponding to the approximation
LN T of T ; while in the Petrov method, since Ynann o # ¢neXn R
A (resp ¢n) it is not.

However if the following condition is satisfied

for n large enough ﬂnPX : Xn -+ Yn is invertible and

(5)

n
(v n ) is uniformly bounded.
nrx
\ n
Then the Petrov method (3) is equivalent to the Galerkin method

(6) L T ¢, = A, 0

nn’oié‘#’ e X

n n

where the projection ;n on X is defined by (cf Krasnosel'skii [14] ) :

= -1
LI (ﬁnrx ) LIS
n
Thus in the Petrov method‘ln(resp ¢n) is the eigenvalue.
(resp eigenvector) corresponding to the approximation

%nT of T when En exists,

Remark

Petrov method which will play an impoftant role in the differentia
case will be somewhat omited in the first part_bf this paper.

In fact,when condition (5) is satisfied the Petrov method is
theoretically equivalent to the Galerkin'method, SO our omission

is not actually relevant.

2.2. THE ITERATED GALERKIN METHOD

If A ¢, are the eigenelements ottained by the

n ’

Galerkin method (4), then we may defing)if Ao # q,the iterated

n

i tor ¢ f A by :
eigenvector ¢n rom n o’ ¢n y :

v
(7) ¢n = 3 T ¢ .
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%n can be regarded as the solution of the iterated Galerkin
method :

(8) (To - 2 )¢ =0 ,0#¢ X;

corresponding to the approximation Tn of T .

Remarks

1) Applying w, to each side of (7) and comparing with (4) it

o A :
follows that ¢, and ¢ are related by " ¢n = ¢n

2) The interesting case to define iterated eigenvectors is when
the linear operator T is compact (cf Chatelin-Lebbar (8] ).
Furthermore under this assumption the condition

"An is non zero" is not a restriction since any isolated
eigenvalue of T compact is non zero so that if Ay Aasn e

then A is non zero for n large enough.

3, SETTING OF THE PROBLEM

Let be given A = {ti}3 a strict partition of ([0,1] , t, = 0,

t, =1 Yn is the set Pr,A of piecewise polynomidls of degree < r
on each subinterval [ti-l’ti[ y 1= 1,.00,n, ﬁhe value at 1
being defined by continuity. The choice of the subspace X, will
then specify the method of projection.

In this paper we are concerned with :

Case (i) :
T is defined by (i) and Xn will be P A Thus the method of
’
projection applied in this first case is a Galerkin method with
Yn = Xn = Pr,A . The eigenvector compucted by the

Galerkin method (resp iterated Galerkin method) (4) (resp(8)) will

be denoted by ¢n(resp $n).



Case (ii

. . .. . pfl .=
T is defined by (ii) and Xn will be the set Pp+r,N (Pr+p,Aﬂ

Thus the method of projection consideredin this second case is

D).

3 p-1 = =
a Petrov method with Pp+r,A Xn # Yn Pr,A . The

eigenvector computed by = the Petrov method (3) will be denoted

by LI v
Note that in both cases X_ and Y, have the same dimension
N = n(r+1). |

m, Will,throughout the text,represent any one of the following

projections
1. (2 . .

T, 'L (0,11 » Pr,A the orthogonal projection on Yn
2 .

L CA > Pr,A the collocation method on Yn

i.e. for x e CA, 2 X is its piecewise Lagrange interpolation

n
of degree < r at the r+! Gauss points on each subinterval

v = . ) <£i<n .
Ay {t1_1,t1] 1<i<n .

We recall that C, denotes the space = C(Ai)'
' i=1

In other words f « CA consists on n components fg € C(Ai)ef is

a piecewise continuous function having (possibly) different left
and right values at the partition points ty.

With the norm II.IIA defined by :

lifl‘A = Ti?s%‘fill“ » C, is a Banach space
and C, < L”C0,11 since| [£]|, = ||£]], for f « c, -

Again we recall that for the two projections under consideration,
when the operator T is defined by (i) {(resp(ii))with smooth
/coefficients,it is known (cf. Chatelin-Lebbar 8] resp 791 ) that
the eigenvector gn(resp Wn) is superconvergent at the partition

points (t532=g ; and this ,without any assumption on the partition
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4. BASIC CONCEPTS AND ERROR FORMULAE

4.1. BASIC CONCEPTS -

Let X be a Banach space on € , and let T be a closed linear
operator in X, with domain D .

Let us denote by L(X) the algebra of bounded operators on X
and by p(T) := {z e € such that R(z) := (T~z)" e L(x)} the
resolvent set of T,

If » is an isolated eigenvalue of T, of finite algebraic
multiplicity m then there exists a closed Jordan curve 71 in
p(T) arround A and isolating A» , that is such that the domain Vv
enclosed by 1 contains no points of the spectrum"

a(t) := €\ e(T) other than » , And hence

() P = 7%%—— fr R(z)dz is the spectral projection associated

with A , P e L(x).

(10) M := P X is the invariant subspace
m=dim P X .
(1) S(z) := 535 s, B2 420 = R(z)(1-P) is the reduced

resolvent of T with respect to A at the point z in Vv ;
S(z) € L{x).

Let Tn n=1,2,... be a sequence of closed opefators with
domain D and assume furthermore that the sequence {Tn}N is a
strongly stable approximation of T in v (cf Chatelin [7] ) then
for n large enough r lies in p(Tn) and hence we may define

in L(x) for the approximation Tn



. 86 .

-1

(12) R (z) := (T, - z) for any zel', the resolvent of T

n
-1

(13) Pn :=m

%ﬂn(z)dz, the spectral projection of Tn

The reduced resolvent of Tn with respect to its eigenvalues

inside T at any point z in Vv :

(14) S (2) = j= r. 22 4 40 - p ) 01-p,)

Furthermore the invariant subspace Mﬂ 1= Pﬁ X is of dimension m.
In other words there are exactly m eigenvalues ) .}m Jof T
i= n

inside r (countlng thelr algebralc multiplicity m )
ni

so that m = ., where y is the number of different 2

ni

m_. u
ker(T—Ani) nl, we have Mﬁ =‘+1 Mai ; i.e. M
1:

is the direct sum of the invariant subspaces of.:Tn associated

ni-

oomtoh

[
I I e e o
=

Defining Mni n

with all its distinct eigenvalues inside T .

4.2, ERROR FORMULAE

Let us assume that n is large enough
LEMME 1
‘We have the identities
(1-P) = S(2)(T-2z) for any 2z inside T
T - = - t " 1"
(1 PIQ Sn(z)(Tn z) !
- Proof
. R(Z ) '
since S(z) = 7w~ r zZozT dz' we have 4
t '
§(2) (T-2) = j= s, REIA2722772) gp0 = (4- p)

r - z-=z!
For the 2nd identity the proof is similar

THEOREM 2
We have the two identities
(1-P )¢
(1"P)¢ni

it

Sn(h](2}~T)¢ for any ¢ in ker(T-x)

i}

-T : -2
S (Ani}(T TU)¢ni for any ¢ni in ker (i& ni)

Proof
We start from the identity

R(z)-R, (2) = Ry(2) (T-TIR(2) = R(2) (T,-TIR, (2)
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For the eigenvectors ¢ , R(z)¢ = 7%7 ¢ and

a-P)e = Gis /p 22 azyr-me = 5,00 (T4

Z

Similarly if ¢, ; e ker(T -1 ;) then R (2)¢,; = Tﬂ%:;
’ ' ni

and hence (I-P)¢ni = S, )(T-T D¢, ;

Theorem 2 and its proof were already given in Chatelin-Lebbar {83 .
This proof depends heavely on the equality R(z)¢ = T%? ¢ valid

for the eigenvectors. |

Since thereis no known equivalent equality for tﬁe generalized
eigenvectors it seems thgt there is no extgntion of theorem 2.
llowever an application of lemma (1) for z = ) (respz*Ani), shows
that (1-P)¢ = S (V) (T=1)¢ (vesp (1-Play; = SO ) (T-A ;) (byyp)
Then noting that ¢ = T¢ (resp ‘i *ni = Th ’Hi)’ we enda
second proof for theorem 2.

A more important application of lemma (1) is the following

theorem.

THEOREM 3

A) Let ‘i of index 1ni be one of the distinct etgenvalues

of T, tnside T . Moi i8 the assootated invariant subspace.

Then for any i in Mhi we have :

A-me, =3 sTo y@E-Ty@ I
ni j=1 ni TN Tnj. ni ’

B) If 1 28 the index of X\ , then for any ¢ in M we have :

1 -,,
(-2e =1 Sp() (T Ty (1-3)071 g,

-

Proof

The proof of A and B are similar. Let us give B's proof which

notation is simpler.
(-0t e
(Ty=2)¢

0 for any ¢ in M . And we write

(T-1)¢ + (T T)¢
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(1-P)¢ = S [(A)(T -2)¢

Sp(M(T-T)e + S (1) (T-1)¢

SpM(T=The  + S (A) (1-P ) (T-1)¢

SR (T -T)e  + 8 20 (T, -0) (T-2)¢

Sp)(T=T)e + S 200 (T, -T) (T-2)¢ + 5,200 (T-0) %

the recursion goes on until (T-A)1 ¢ = 0 1is reached.

L}

L]

We recall now the definition of the gap between two closed
subspaces M and N

o (M,N)

]

max ( 8(M,N), &6(N,M)) where
§ (M,N)

i

Sup dis(x,N) and
XeM
Hx||=1
dis (x,N):= min]||x~y|].
)’EN s
di56 is the distance in the L -~ norm,
We may hence cite the well - known result,

PROPOSITION 4

If Txxis strongly stable approximation of T inside T
then for n large enough : i

) eMMp < max([](1-P)P ||, (1-P P

i1) max(lI(l-P)PnH,H(1~Pn)Pil) s C oMM

i) o(M,M ) s C min(||(T-T pPI| , | (r-T P []).

Sketchy proof

For a detailed proof cf Kato [13] and Chatelin [7] .
i) Since s(M,M ) < H(Iv-Pn)P!l and  §(M_,M) < |[|(1-P)P ||
(i) is obvious from the definition of the gap O (M,M
ii)Letusconsider respectively HHQO-P)P || and tla-rJel) .
][(1:P)Pﬁ|,= sup || (1-P)x|| < ||1-P|| sup dis(x,M)<|{1-P|| s(M,
XM XeM
=1 x| f=1
|1 (1-PIP|| = |]1—PIJl §(M,M ) similarly,
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iii) From the identity : '
for z € op(T) : R(2) - Rn(z) = Rn(z)(T~TIQR(Z) = R(z)(tr-T)“l(z) 3
We deduce easily  that ||(I~Pn)P|| s Cl(r-T )P|| and
ll(l-P)Pnil s Cl](T-T P || . Then using the fact that

8§ (M,N) = %é%%%%n) when dim M = dim N <» we get the desired result.

Remark

Proposition (4) proves that there is no need to look for error
formulacof the type given in theorem (3) if we aie just interested
in global error bounds., However local error bounds may be
established from theorem (3) to prove the desifed'local

superconvergence of generalized eigenvectors.

5. SUPERCONVERGENCE RESULTS FOR THE INTEGRAL BIGENVALUE PROBLEM

5.1. PROPERTIES OF THE INTEGRAL OPERATOR T
C is a generic constant throughout the text az 0 and y2 -1 are

integers. We are concerned with the following class of kernels.

DEFINITION 5

The kernel k is of class g(a,y) with a 2 0 and

a zy 2z -1 2ff :
k(t,s) = kl(t,s) for 1 2t 2s 20

kz(t,s) for 1 2 s>t 20

m'thk]ec"(u)ssstsm,kzec“({Ostsssm

and k € CY([0,1] x [0,1]1 ).

Yy 8 the continuity of k and a ite order.

(when ¢ =-1 , k is allowed to, be discontinuous at t = s)
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A characterization of compact operators given in Graham-Sloan [12
applied to an integral operator T with kernel k of class €¥a,y)
proves that T is compact from L%o 11into C{0,11 . Thus T is

compact on L%Q,y}and on L{a,i}.

5.2. CONVERGENCE RESULTS

As said in section 3 the approximation method used in this firs

#

case is the Galerkin method with X Y = P_.. .

Let h := max (t.~t11 }. If h - 0 then for any x in L{0,1] (resp
1<1sn 5
Cre,11) (lﬁ X~ x!}z + 0 in LFQ]} (resp llw X~ x‘t + 0 in Lﬂ)l3\
2
T is compact in Lf0,11 (resp Lg)lj} wlth range in C[0,11then

jt(w, ~1)Tttz + 0 and T 1 €S 7 in L [oij(resp Il(u —I)THm >
and Tn 2C:C T in Cro,11)-

(C'ﬁ] is the notation of the collectively compact convergence).

P := 5. T and T*S = Tw_ inside T
n n n

The strong stability of Tn
follows then easily, as well as the convergence of the approximat
eigenelements. (cf Chatelin 771 ).

Let then P P (resp P'S) be the spectral projection associated to

the approximation T P (resp T S) of T. i

an 1= Php X (resp MBS = P SX) is the direct sum of the invarian
subspaces of T,nP (resp Tn ) associated with allAits distinct

eigenvalues inside r .

- PROPOSITION 6

Mhs and an are related as follows :

s_ ¥ .S K P P
A) M = + M. =+ TM.=TM

n j=p M i=1 ni n
ooy P Fop _F S _ S
B My” = i:1 Mai = izi "™ Mpi® "a My

We say that Mi i8 the iterated invariant subspace.
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Proof
follows
A (resp B) straightforward from the identity :
- Bpit = - M i

(Tay, = A3) MT = T(a, T - 2 ;)" 0

: - mni = - nlni
(resp (un T An) LI L (Tln Ani) ) )
where m . is the algebraic multiplicity of Aoi ® igl mpi= ™ 3§
: i p = i S =
and the fact that dim M, dim Mii = Mpi o oo
5.3, ERROR FORMULAE
A straightforward application of proposition (4) to Tnp and T“S

yields the bounds : ,
(15)  max ( 8 (M, M{ ) , |[(1-P P[], ) s C HHa-=pl

(16)  max (8,00, M3 ), |1O-BDPII ) s € [ITO-n)P]],

when : § = 2 (resp 8 = =) if L 'hl (resp L 1ﬁ2 ).

llowever an application of theorem (3) to Tns yields the pointwise
following equality ;

tor any t € {0,1) and any ?n € Mﬁi we have

(- Fpid (0 = B8 0 ITO-n ) e, 037 F o)

j= n nl
'ni g g i-1
(T § (Ani](""n) (T'n'xni) . 3',‘1] (t)

[
b e
ness
[ amd e

1y k(t,8) [83 00 ) (Te ) (Ta -2 )37 Y L 1(s)a

ni

I
e

1

- .

LA TS

ni

i . <) - -
jg] < kg S Q) (-v ) (Try - 2y

where <,> 1is the Lz-inner product and kt is defined by

kt Ps kt(s)s k(t,s) for s € £0,1] .
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Let 1t be the unique solution of (T* - X .)J(I—P*)l = (l-P*) k
nit o t t
where the adjoint operators are defined in L €0,13. The above

equalities may be rewritten :

1. .
(17) LA-P)F L 1(x) = j§: <y (=n)(Te, -2 371§
S

. \
(Note that since i belongs to Ml o

» . >
ni ni

(Tnn Xni) ¢ni also
does).

Remark

Let A, be the arithmetic mean of the n approximated eigenvalues

inside r , and P} p: an + M be the spectral projection P
M .
n :
restricted to an , then it is known (cf de Boor-Shwartz 31
that
(18) m(xr- ; ) = ? <x." (- ) T (P ).1 X. >
L n pmp !
n
where {xi}m (resp {x;}?z} ) is a basis of M (resp the adjoint
i=1 .
basis of M* ).
P thus T (P

-1 .
PM p ) x; is (by
n .

..] .
(PPMP ) x; is an elgment of Mn
n ,
proposition (6)) an element of le . Then,compqring (17) and (18)

we can say that the error formulae of - ;n and [(1-P)$’n 1 (v)

are of the same type.

5.4. SMOOTHNESS PROPERTIES OF THE INVARIANT SUBSPACES

Since the notation C, is already known we define more generally

c®(ai).

CAu for a positive integer a by CA“ =
i=1

1

Ao

We state the following theorems :
THEOREM 7
Let the kernel of T be of class ﬁ(a,y) then
i) T i8 compacet foom L2 into C

1) if y21 the range of T is in cY
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it2) for any p, 0 s p < a-1, T ie bounded from CP into CP+I
i) " " T ia " " cf into cP*!

Proof |

1) ii) and iii) are showr in Chandler {61 . The proof of iv)
is similar to that of (iti).

THEORTM 8

If the kernel of T is of class §(a,y)'then

i) McCa,M*cC(x

.. P S a
ii) Mn c PT,A » Mn c CA
Proof
i) Since M = (¢ eLz, (T—A)m $= 0 }, ¢ may be writfén as
m .
A" = L ay Tlo. Thus applying theorem 7 inductively we show
i=1

that ¢ ¢ ¢ . M* ( c® similarly.

S

ii) Mﬁ < P, , by definition of the Galerkin method and M) c €% by

application of theorem 7 and proposition 6.

5.5. SUPERCONVERGENCE RESULTS

We are ready now for the main theorem of this section,

THEOREM 9

If the kernel of T is of class g(m,y) (resp g(n+r+],y)) and tf

© = ‘ = 2
L un(resp L LI ) then for n large enough

i) max(8,00,M° ), 11 (1-P)PP 1], ) = o )
i1) max (e 00, 11O-P¥ 11, ) = anf*)

iii) max  (]a- 2 |,] O-PE 1(t)] ) = omh2® )y
Isis<n n n !

Fooem S, e 0 =
r
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respectively

i) maxe, 0,M "), [1a-pyp PI[ ) = o™

ii) max (0, (MM5), [|(1-P)PY[|) = o (nT* ¥+ )

iii - |, 1-P t:)]) = o(hTH1*8
D) max (-, |, [O-PE) ()| o )

S "
%n ¢ Mn :!’&n" =1

n

where B min(a, r+1) and

*

8 min(g,y+2).

i

Proof

Using the smoothness properties of the invariant subspaces given

i
n

(resp L nnz) is then similar to the proof of theorem{flO;

in theorem 8, the proof of " theorem 9 for L

(resp 19+ )given in Chatelin-Lebbar [81 . It may be remarked
however that more smoothness is assumed for the collocation

method than for the orthogonal projection method. The explanatio

2

of this phenomenon is based on the relation between n; and  w_

given in [81 .

CONCLUSION

In summary the most relevant point we remark iﬁ the integral cas:
is that in the superconvergence eigenvalue prob}em the most
important concept is not the iterated eigenvector\but the iterated
invariant subspace since the superconvergence phenomenon does
not give any priority to the approximated eigenvectors Versus,

the approximated generalized eigenvectors.
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6. SUPERCONVERGENCE RESULTS FOR DIFFERENTIAL EIGENVALUE PROBLEMS

6.1. THE APPROXIMATED DIFFERENTIAL EIGENVALUE PROBLEM

We are now concerned with the eigenvalue problem (19) Ty = ¥
0 # v en where T is the differential operator defined by (ii).
We assume glroughout that 0 ¢ p(T) and that the problem

(u(P) =0 , ue D) has u = 0 for unique solution. Then there
exists a Green's function g(t,s) of class ﬁ(m, p-2) such that
for any x ¢ X , the unique solution u of the problem

(u(P)= X , uwebD) is given by.u(t) = Ia g(t,s) x(s)ds . This

defines the integral operator G by u = Gx .

P P)

G is the inverse of the differential operator D' : u €D~ u(
Then the operator T may be written as (20) T := (I-l()G'l where
the integral operator K is defined by :

Kx = ;5 k(.,s)x(s)ds where

P-1 i |
k(t,s) = £ ai(t) S B(t,s) 0 <t,s s1
i.=0 5t1

We remark that if ap-l # 0 then k has a first kind discontinuity
on s = t ., However by the characterization of compéct operators
given in Graham- Sloan (12] - K is compact from LTO 11into €f0,1)
and hence on L a)l] and on L [Ol] |

As said in section 3 the approximation method which will be used

in this case is the Pétrov method with ‘1 = Pr A and
]

] _ ol . .
X" GYn Pp+r A The appro*lmated differential eigenvalue

problem is then

(21) T ¥, = ap Y, 0 # ¥, € Xn
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Applying (20), (21) may be written again as

(22) w, (K671 v = A wm v 0F v e X,

then noting that ¢! ¥, € Y, » (22) is equivalent to
-1 L ,

(23) (1~ %‘K)G o= oA, L & 0 # ¥, € )S‘.

Now since 0 ¢ p(T) and in view of the compactness of the operator K it is
clear that 1 ¢ p(K) n p(ﬂrlK) for the two projection under
cousidération (for the details cf. section 5.) and hence that
(23) is equivalent to

20 ¥ = A 6O, KT w v 0# ¥ eX .

We denote by P (resp P) the spectral projection associated with
the operator T (resp G(l-wnK)"] n,) and the eigehvaluex

(resp 1/2) . M and Mlldenote respectively the invariant subspaces

PX and an .

6.2, TWO LEMMAS

Before giving the integral formulation of problem (19) some .

lemmas are needed.

LEMMA 10 |
Let 2#0 be an isolated eigenvalue of T of fihite multiplicity.
If 0 ¢ p(T), V/\ <8 an eigenvalues of T“ =}A, tﬁe assoctated
etgenvectors and invariant subspaces are ideﬁtiaal.

Proof

"1/x is an isolated point of o(A). From the identity :

T-x = AT(% - A), » # 0, follows thaf 1/x is an isolated eigenvalue
of A and ker(T-2) = ker(A-1/1). |
Let T(X) be a Jordan curve enclosing x . Let P(T,A) be the spectra

projection :

-1 -1, . -1 1 ,,1 -1
7w Try (T72) 742 = 335 Jrg) 3 A - A7z
= iy f' AMA“U“1 %E = P(A,1/0)if the curve r(1/2) around 1/X
r{1/n |
1
Y 4
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does not enclose 0 . llence P(T,A)X = P(A,1/x )X .

LEMMA 11
X, and Yn are two finite dimensional subspaces on Y such that.
dim Xn = dim Y, -
Let K be a compaot operator on X and LIS pointwise convergent
projection on Yn (abrgviated un_ga.] on Yn). Assume furthermor
‘that 1 ¢ p(K) and that X = (1-K)Y_ .
: o = . - e -1
Then the projection L defined on any L .‘,( '“PX ) LI
exista, i8 uniformly bounded and 8atisfies the folloﬂing

properties

R
a) " » 1 ON Xn
b) % = (-K) (1w K"V o«

n
o) 1-% - = (1-un)(1-x:n)" ‘

Proof

a) To prove that ?;lll we apply the Galerkin method defined by Y,
to the equation (1-K)u = g for an arbitrary g in X .
It yields the equation un(lv-l()un =, 8

un € Yn

which has for n large enough, a unique solution u converging

n
tou = (1—K)"]g as n + =; since K is compact and un_B;,l .

Setting V_ := (1-K)u_ the equation can be rewritten

Vv =
'n n un g .

For any g in X, the equation has a unique solution Vh € Xn :

this proves that (= ) is invertible on X_:
nhy n

Now V -+ g can be rewritten ?; ¢ » g for any g in X .

By the Banach-Steinhauss theoreml|?;|| <C.
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b) The desired identity follows from
(-5, g = (-K) (=) = (-0 00,0 7 (-a) (1-0 T
(1~K)(1-unx)“‘ (1-1,K = v (1-K)) (1-K) "

(1-K) (1~ (1-n K)7! a, (1-K)) (1-K) 7
1 - (-0 -5 K7 g

"

and hence 1—?}

i

"

n °

(o]
R
w
[
oo
[g]
v/
=4

]

-1

(1~K](1~unK) T, we have

. -1 -1
O-K) L0-K7" - (-7

(1~K)(1-K)“‘(1-wn)(1«x nﬁ)“

(1= ) (1=K = )"

w—
1

=
i

i

#

6.3. THE INTEGRAL FORMULATION OF (19)

Since 0 ¢ o(T) , and A = ‘l"'1 » T¥ =A¥ s equivélent to

(0=12A0
(25)
¥ = AO

Let denote by R the spectral projection associated with the jptegral

operator A and its isolated eigenvalue 1/1 . Then by Lemma (10)

P and R are identical (ie P z R) .

i

Let apply now to (25) the I'etrov method defined byf

- p-‘t =
Xn T (Pp+r,A) and Yn P

L

T,A

‘ -1 T - -1 ‘ '
Since.Pg*r’A = G Pr,A and T = (1-K)G s Xn and tn are ieiatgd
by : '

(26) Xn = (1~K)Yn , and hence the approximated eigenvalue problem
L On = An 'ﬂn A ﬂn 0 # On € Xn

(27)
?n = A On

is by lemma (19) equivalent to the problem
0O = x_ 7. A 0, 0 # 0n € X,
(28)
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which corresponds to an application of a Galerkin method defined
by " and Xn o
We recall that ?; is the projection on X defined by
_ _‘l
L s ™ (unr )
(‘i--l()P]r’A

L] .

n n

l.Let us denote by R, the spectral projection associated to the

approximation ?; A of A , then

PROPOSITION 12

- -1
R =TFP T
Proof
Since A = G(1-K)~' and o (1-&)(1~anx)" .
we have for z ¢ p( ;; A)

(- (1-3,8) Ve 601-K) 7T -2) 7]
(1-x)6"! (G(l-unx)”‘ " -2}~V gr1-x) =t

7 Afz)"

T (G(l-.nx)“ un-z)*‘ A

Then by integration over r(i/») we obtain the desired result. ™

As in the integral case let consider now the iterated eigenvector
m . : .

0 solution of the equation

n n, e N N, . - N,
(29) (h = ln A U (h 0 # (h e X and let us denote by Rn

the spectral projection associated to the approximation A?; of A.
Then if An #0
PROPOSITION 13

N

i, _ 12
Pn = Rn and *n T; 05

Proof-
As in the proof of proposition (12), if z ¢ p(A?;)
then (An -2)7! = (G(I-K)-‘(I—K)(l-an%"lwn - 2)7}

= (-7, K)" " W - 2)”
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and hence the desired equality is obtained by integration over
the Jordan curve T(1/1).

Remark

Proposition (13) proves that the approximated invariant subspace

of the differential operator T is nothing - but the approximated
iterated invariant subspace of the integral operator A = 71 . This
explains why we iterate in the integral case and not in the
differential one.

6.4. CONVERGENCE RESULTS

MY
Since P = R and Pn =R, the convergence of the eigenelements of

the differential problem (21) is equivalent to the convergence of
the eigenelements of the integral problem (29) which fcllows

straight forward from the convergence results given in section 5.

6.5. ERROR FORMULAE

iY
Since P = R and Pn = R the following error formulae are just

obtained from those given in section 5.

(30) - max( (MM ), || (1-P)P | ],) < C!!A(l—'ﬂ;)PnHG

where 6§ = 2 (resp 6=«) if ?; is derived form nn1(resp nnz).

for any t € [0,1] and any ¥ € Mni we have.

1 . .
- - ni o —— _ s J,_‘]
31) L1 P)Wni} (t) j§1< 1, , (O wn)(A T 1/Ani) Y5>

“where the function 1t is the unique solution of the problem

* S * _ _p*
(A7 - 1/Ani )(1—P~)1t = (1-P )kt
We remark that,as in the integral case ,|i- 1n1 and

((1*P)Wn}(t) are of the same type since (by application of theorem 6.1

of [#1) A-A_ is of the order of :
m +.
(32) max 3 < q"(z) ; (-T)AC® )71 o0, (2) >
zel' i=1 ' n R, X !
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where (z)(resp oi*(z)) belongs to M(resp M*)

Oi'n

Again we note that (30),(31) and (32) may be - given ‘ in terms of

(1-%,) instead of (1-) since (1-7) = (1-n)(1-xnn)“

6.6. SMOOTHNESS PROPERTIES OF THE INVARIANT SUBSPACES

PROPOSITION 14

If the coefficients 8 belong to C% i = 0, ¢csp-1

of class 5(a,—1)
i -
t1) the kernel of A=T 18 of class §(a+13p~2)

/

then t©) the kernel of K s

Proof

cf. Chatelin-Lebbar (9] .

Thus by application of theorem 8 we show.

THEOREM 15

If the coefficients a; belong to C% i = 0,:-+5p-1

then : M ¢ C“+] » M*? CwH
p-1
and M, < Pp+r,A

6.7. SUPERCONVERGENCE RESULTS

We are ready now for the main theorem of this section,

THEOREM 16

If a; e € (resp €™y i = 0,..,p1 and iy

T, "n] (resp LI unz) then for n large enough :

i) max ()= ) PV, Sptca-ppn Py, ) = omd

forany ¥ e M ||¥ || = 1 and any ¥ ¢ M ||¥||= 1 .

n
i1) max (0, (M,M),[|(-P)P ||} = I (nf*E*)

ii1) max (|a- A_|, [((1-P)¥.) (t.)P) = ©(n2®
H l?isn l nl I n 1| )

Y,eM o, ||wnl| = 1

resgpectively
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i) max (|| ca-pyv ) P, Hca-ppn By = ow™™)

for any ¥ e M !lwnil =1 and any ¥ ¢ M ||¥]]= 1
*
i1) max (6, 0LM ), ||(1-P)P || ) = o™
iii) max ((O- 1) , [Q(-P)¥ )(t;)}) = oI I8,
1<is<n n n 1
| M =1
| voem L v ]l -
where B = min(a, r+1) and @ = min(g, y+2).

Proof -

To pecin let us consider the spectral projection

Q=6"1"pP6=(1-K)"! p(1-K) , N := QX
-1 oy
Q, = 6'P G , N = QX
d"! -1 n, n
and Q) = (1-Kn )7' P_(1-Kn ) ) Ny = QX

associated to the operators U, Un’ Un and the eigenvalues

1/x , 1/x 1/An ; where

n 3
U= (1-K)"'g
_ -1
Un = (1~ﬂnK) ﬂnG
v -1
U, = (1=Kx )" 'Gr_ .

It 'is obvious to see that U is compact since G is compact and (1-K)_1vis
bounded. We also know from [9] that u, and ﬁn are stfongly stable
approximations of U, thus applying proposition (A) we obtain, in
particular, that i
max (|| (1-Q)Q, |1, 11 (1=l D = clfw-v)all <c|(1-n ) vq
which may be rewritten in terms of P and Pn as
max (J1671(1-p)P 611,167 (- P Gl ) < ¢ || (1- ) (1-K) TP G| |
Thus the smoothness (resp Spline))properties of M (resp (wn))allows us
to show the first part (i).

To prove ii) and iii) it is sufficient to remark that in the error

formulae (30), (31) and (32), 1 ~F; was always applied to a functios



. 104

of the invariant subspace i and hence in writing
S _ _ -1 )
ten = (1-n ) (1-K nn) and remarking that
- N
(l—Knn) 1 Mn = Nn , khe desired results are obtained by
[8
(30), (31), (32) and following the proof of theorem (8) in [9]

CONCLUSTON

The eigenvectors and the generalized eigenvectors have the same
smoothness and convergence properties. This enables us to work

with the gap between the invariant subspaces and to give the
superconvergence results expected for the two examples under consideration.
As it may be seen more smoothness is requiered for the collocation
method than for the orthogonal projection : this is jﬁst

4 consequence of the relation (given in[ 8 1) between the two
projections “ni and nhz . Moreover tne use of = - the Fetrov

interpretation inproposition (13) exnlains why we iterate in the

Integral case and not in the differential one.
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BIBLIOGRAPHICAL COMMENTS

For a kernel which is the Green's function of an o.d.e. some
interesting references of superconvergence results for iterated
solution are Chandler {5] for the orthogonal Galerkin method,

de Boor-Swartz [2,3,4] for the collocation method at Gaussian
points, Chatelin-Lebbar [8,9] for both of them, and Telias-Ahues [19]
for a least-square formulation of the advection-diffusion equation.
For weakly singular kernels we refere to Graham [10;111 for the
orghogonal-Galerkin methog?Schneider [171 , Chandler [61 and
Bachlors [11 for the product integration method. Confere also
Lebbar {1¢] where for some singular equations, superconvergence
results are obtained for the orthogonal- Galerkin method and the

collocation method at Gaussian points.
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CHAPITRE 5

NUMERICAL TLLUSTRATIONS






N1

NUMERICAL ILLUSTRATIONS

. We are concerned with the numerical solution of Fredholm's integral
equation of the second kind
(1) 61 k(t,s) x(s)ds - z x(t) = £(t) 0<t<l

by some projection methods.

In fact two types of projection methods are treated in the following

examples

i) the orthogonal Galerkin method in Lz, and

ii) the collocation method at Gaussian points in C.

The approximating subspaces being Pr A
?

of degree <r on each subinterval Ai,:= [ti-I’tij , i=1,...,n .

of piecewise polynomials

. To obtain reliable estimates of the orders of convergence for
our numerical calculations, we choose to solve equations which
have known solutions, Thus in each of our examples k and f are

chosen so that x has a particularly simple closed form.

Example 1

-t(1-s) if 0 st < s <1
(2) k(t,s) = 4 -

-s(1-t) if 0 = s <t <1

the right side £ is chosen so that x(t) = cosh (2t-1).

We choose the uniform partition A = {%} 3 , and in each subinterval

Ai = i%l . % 1, the r+1 = 4 Gauss points.

We display in table (1) the values of X=X, and x-%n at the partition
points t. i=1,2,3,4. o (resp %n) being the collocation (resp
the iterated collocation) approximation of x.

We recall that since x_ € P ,y X

n r,A may possess a first kind

n
discontinuity at the partition points. Table (1) illustrates this

discontinuity.
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L]l Gex (e, (=x ) (¢.") (x=x_) (t,)
| 8.107° 7.107° -5.10712
2 6.107° 6.107° ~7.10712
3 6.107° 6.107° ~7.107"2
4 7.107° 8.107° -5.10"12

Table (1) : Error values at the partition points.

We display in figure (2), the graphs of the error functions
teh o (x-xn)(t) : the collocation error

teA3 (x-%n)(t) : the iterated collocation error

when As-rg,'gj.
We have only sketched the two graphs because of the great difference

in magnitude between the various values.

Example 2

We cdnsider the same kernel as in example (1), but this time we
choose f so that x(t) = (t- é')4 . The partition @sused in this
second example is uniform with mesh size h = % . |

In the tables below we list

i) the dimension, under the heading dim, of the space in which
the approximation of x is determined,

ii) the quantities : o =I[x~xn||w, B =Hx-xn{loo and

Y
Yn = maX I(xfxn)(ti)l -

iii) further, next to each column of errors {en} we list in rew n,

the number :
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A
3104 /v‘
8105
4107
14108
o 04 0.6 \ |08 >
12 4 T T T
710 1 2 3 4
108
.
7107
stsypsespemensey X - X
) X - ’)\("n
\‘ j U r:3 !
2 i
36104 .
Figure ,2 . Graphs of the errors on A3 =[0.4, 0.6].
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A, = log(®M/ezn ) / log 2 ;

. If the

Sl-

relating the decrease in e, to the decrease in h =

. X
decrease of e_ to zero is of exact order h

-5
n , then An Ao,

(the errors {en} being {an} R {Sn} or {Yn} ).

We recall that if the right side of belongs to Ca(resp C°+r+1)
and if the projection method used for calculating X, and %n is
the orthogonal Galerkin method (resp the collocation method at
Gaussian points) then, an application of theorem (4e) (resp
theorem (45)) of [ 1] to the Green's kernel (2) sﬁows that the

v
rates of convergence of X, and X, are

1) of exact order w (resp (r+1)) globally for X,

2) of an order greater or equal to u + u*(resp T+1+p ) globally

N
for x
n

3) of an order greater or equal to 2y (resp u+r+1) for %n at

the partition points,

[}

¢ and u* being the numbers : u-: min(a, r+1)

and p*:= min(u,2).
Theory predicts A=2 Theory predicts Az4 Theory predicts Az4
. o A 8 A Y A
n jdim n n n n n n
-1 -3 . -4
4 §7,52 x 10 3,96 x 10 2,39 x 10
-1 ~4 -5
8 3,04 x 10 1,30 4,26 x 10 3,21 1,05 x 10 4,50
-2 -5 -7
16 9,52 x 10 1,67 4,36 x 10 3,28 5,91 x 10 4,15
32 2,66 x 1072 | 1,85 3,13 x 1078 | 3,80 3,50 x 1078 | 4,04

Table (3) : The orthogonal Galerkin method with r = 1
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Theory predicts A=2 [} Theory predicts iz4 Theory predicts x4
n fdim %n An Bn An Yn An
-1 -3 -3
2] 4 || 8,8 x 10 4,40 x 10 3,41 x 10
418 [l 3,28x107' ) 1,43 [ 3.59x107%) 3,60 || 23 x107%] 4,00
-2 -5 =3
8 J16 || 9,86 x 10 1,73 2,42 x 10 3,89 1,33 x 10 4,00
16 |32 Hf 2,46 x 1072 | 2,00 1,55 x 1078 ) 3,96 || 8,33 x 1077} 4,00
Table (4) : The collocation Method at the r+1=2 Gauss points
Theory predicts A=3 Theory predicts A25 Theory predicts Az6
n | dim “a xn : Bn An Tn ln
216 §l 2,41 x 107! " 1,67 x 107% 1,28 x 1076
4 fr2 fls,68x107% | 2,53 faeax10®| 4, ff1,98x107 | 6,0
8 |24 | 5,23 x 1073 | 2,81 4,72 x 1077 | 4,35 || 3,08 x 107 | 6,00
-4 -8 -1
16 {48 6,93 x 10 2,91 1,65 x 10 4,83 4,81 x 10 6,00
Table (5) : The orthogonal Galerkin Method with r=2
" Theory predicts A=3 Theory predicts A25 Theory- predicts A26
. a A g A Y A
n Jdim n n n n n n
2 | s h 2,3 x 107} 2,22 x 107% 1,87 x 1077
-2 -6 -10
4 12 3,80 x 10 2,62 9,16 x 10 4,59 7,35 x 10 7,99
-3 -7 -12
8 {24 || 5,31 x 1077 2,83 3,20 x 10 4,83 2,88 x 10 7,99
-4 -8 -14
16 148 || 6,98 x 107 2,92 1,05 x 10 4,92 1,14 x 10 7,98
Table (6) : The collocation Method at the r+1=3 Gauss points
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The estimated rates of convergence in tables 3,4,5 and 6 are in

good agreement with those suggested by the theory.

Moreover, in comparing tables 5 and 6, it follows that the collocati
method at Gaussian points has a convergence rate in n which is
faster than for the orthogonal Galerkin method in the case of
problems with smooth solutions. However, since we have shwon in

{VQJ , that we need fewer smoothness properties in the solution,

for the orthogonal Galerkin method than‘for the collocation

method , we¢ may ask the question : what happens in the non-smooth
case ?

This is the scope of the following example.

Example3

We consider again the same kernel as in example (2) but this time f
~is chosen so that

x(t) = }t- »; ]“/2 , a =5o0r 7. |

" Then, if a = 5 (resp (a=7)) and r=1 (resp (r=2)),“thé solution x

is still smooth for the orthogonal Galerkin method, but it is not
for the collocation method. x

The following tables 7,8,9 and 10 illustrate the theory.

Theory predicts A=2 Theory predicts - AZ4 || Theory predicts A6
dim % 7‘n Bn ‘An Yo xn
1 3 =
21 4 ll6.65 x 10 4.50 x 10 2.79 x 10
*3 —-—
418 |11.94 x 10 1.77 3.59 x 107%| 3.64 1.48 x 107°]  4.23
_-2 -
8 |16 ”E.IS x 10 1.91 2.45 x 10°°] 3.87 8.75 x 10°7] 4.08
16 {32 l1.32 x 1072 | 1.96 1.59 x 1070} 3.94 5.36 x 10°8] 4.02

" Table (7) : The orthogonal Galerkin method with r=1 and a=5
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Theory predicts ) =2 ||Theory predicts 222,5|] Theory predicts 122.5
: A
n |dim % Ay Bn M 'n n
_ - -3
2l 4|l 7.06 x 107" 3,40 x 1073 1.66 x 10
- - -4
sl 8l rosx107'] 183 f 2.12x107% ]| 4.00 1.35 x 10 3.62
_ - -5
8 il s.20x107%] 1.92 f1.41 x1072 ] 3.91 1.07 x 10 3.65
- = =7
6 {32l 1.33x107%) 1.96 B 9.94x1077 ] 3.82 8.44 x 10 3.66
Table (8) : The collocation method with r=1 and a=5
Theory predicts )=3 Theory predicts A25 Theory predicts A6
n {dim % ’ An_ Bn xn ,‘Yn An
2 6 | 1.728 x 107} " .42 x 1072 1.14 x 1072
a 112 ll2.64 x1072 | 2.75 6.96 x 1070 4.35 §1.72x1077 | 6.05
8 {24 | 3.54x103 1] 2.80 2.74 x 1077 4.66 || 2.66 x 1072 | 6.01
16 |48 f4a.56 x 1074 { 2.96 9.22 x 1072 4.8 f| 4.14 x 107!} 6.00
Table (9) : The orthogonal Galerkin method with r=2 and a=7
Theory predicts A=3 Theory predicts 2A23.5 Theorifpredicts A23.5
n dim an An Bn ln Yﬁ xn
21 6 l' 1.87 x 107! 1.78 x 1074 " 1.80 x 107>
4§12 2.69 x 1072 ] 2.79 6.47 x 1070 4.78 7.36 x 1077 4,61
. -3 -7 -8 -
8124 || 3.55 x 10 2.92 2.74 x 10 4,56 |1 2.81 x 10 4.71
16 J48 || 4.56 x 1074 ] 2.96 109 x 108 | 452 fi.i0 x 1070 4.67
Table (10) : Collocation method with r=2 and a=7
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It may be remarked in comparing tables 3, 5 with tables 7, 97that
the estimated rates of convergence are the same. This implies that
the singularitie of the solution does not affect the sfthogona}
Galerkin method, while in comparing tables 4, 6 with tables 8, 10
it follows that it does for the collocation method.

We have shown in [1 1, that there is no need for the partition A
to be uniform to get the superconvergence results. The question

is then : what is the interest to choose a non uniform partitisn,
and when ? |

This is the scope of the following example.

Example 4
We consider the same equation than in example 4, but this time we
take o = 1 ., Then, the theoretical solution is : x(t) = {t#-% {1/2

which singularity at t = ; is too strong even for the orthogonal

Galerkin method as it may be remarked through tables 11 and 12.

Theory predicts 2=0,5)Theory predicts 322.5 }l Theory predicts i22.5
dim %n *a Ba Aa Tn _An

-1 -3 R

2| 4 || 7.08 x 10 1.80 x 10 1.27 x 10

4 8 || s.o0x107'f 050 [ 3.09x107 ] 2,40 fi.es xi0” | 2.0
-1 -5 | a6 | 4

glie || 3.53x 1077} o0.50 | 5.74 x 10 2.47 [1.85 x 10 3.18

1632 || 2.50 x 1071} 0.49 1.02 x 1072 | 2.49 J1.86 x 1077 3.31

Table (11) : The orthogonal Galerkin method with uniform mesh (r=1)
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Theory predicts A=0.5}§ Theory predicts X>2.5§ Theory predicts *>3.5
n  |jdim o An Bn An Y An
2| 6|l 4.54 x 107! 8.07 x 107> 8.10 x 1078
4 P2 1321 x 107! 0.50 {1 1.38 x 107> | 2.54 3.79 x 1077 4.41
-1 -6 8
g |24 | 2.27 x 10 0.50 || 2.42 x 10 2.51 1.72 x 10 4.46
16 |48 || 1.60 x T 0.50 || 4.27 x 1077 | 2.50 7.76 x 107100 4.47

Tablé.QIZ)-: The orthogonal Galerkin method with uniform mesh (r=2)

Tables 11 and 12 illustrate these poor rates of confergence which
arise partly as a result of our rather nafve approach of using
splines defined on uniforﬁ meshes.,

In fact, better results may be obtained using meshes specially chosen
to take into account the singularities in the solution x.

J.Rice in 1968 has introduced a classification of functions which
includes piecewise smooth functions with singularitiés of certain
type. He has also given the corresponding mesh whichiallows the

approximation error of such functions to be optimal.

In a forthcoming paper Cé ¥, using Rice’s idea, we give the fates
of convergence of some integral and differential equétions which
includes Rice's singularities. |

A direct application of [ 21, for the orthogonal Galerkin method,

on the example under consideration yields the following orders

of convergence :



A(an) = min(qa, r+1)
A(8,) = min(q(a+2),r+3)
A(yn) = min(q(a+r+2)-1 ; 21+2)

where the real q » T, is the number associated with the partition

A = (ti)i=0 by the relation
tg =0 L, t, =5 (DY
t; = % - ( % - )4 t, , 0 < i< %
I R T I

Note that q

[

1 corresponds to a uniform partition and q > 1 to

a non uniform mesh, which knots {ti} are " bunched up'" near the

point t = 1 . yhere x behaves badly, and "spread out" near the
2

end points 0 and 1 where x is well-behaved.

The following tables illustrate the predicted rates of convergence.

Theory prédiéts "?FO’.‘-“' Theory predlcts Az3.55 Theory predicts ‘ ASh
n ¢dim o . Bn An
2| 4 [[7.08 x 107! 1.80 x 1073 H 1.27 x 1074
41 8 f4.31 x 107} 0.71 1.50 x 107% 3.58 ﬂ 9.23 x 1070 3.78
8 |16 2,62 x 107" | 0.7 1.27 x 107° 3.56 H 6.39 x 107 3.85
16 {32 1.60x 107 {071 [ 1.08x1078 | 3,55 ﬂ 522 x 1078 | 3.02

Table (13) : The orthogonal Galerkin method with r=1 and g=1,428571
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I{Theory predicts *=0.80l Theory predicts Az4 Theory predicts 224
o ldim ap A Ba An n A
“ —l —3 "4

2} 4 ||7.08 x 10 1.80 x 10 1.27 x 10
4| 8 |l4.06 x 107! 0.80 J1.66 x 1074 3.43 |1 8.93 x.107® 1.83
8 |6 [|2.33 x 107! 0.80 Ji.07 x 10™° 3.95 H6.20 x 1077 3.84
16 §32 {11.33 x 107! 0.80 f6.82 x 1077 3.97 ll4.05 x 108 | 3.93
- AL
Table (14) : The orthogonal Galerkin method with r=1 and a=1.6
Theory predicts j=2 Theory predicts 324 Theory predicts A24
. A Y A A
n dim 0‘n r n Bn n Yh n
2 | 4 | 7.08 x 107" f' 1.80 x 107> 1.27 x 1077
4 |8 || 2.7 x 107V | 4.3 1.08 x 1073 | 0.73 6.41 x 1073 1.00
-2 -4' -6
s 16 §| 6.76 x 10 2.00 1.90 x 10 2.50 6.09 x 10 3.39
16 132 " .63 x 102 ) 2.05 1.60 x 1072 | 3.57 3.77 x 10! 4.01
Table (15) : The orthogonal Galerkin method with r=1 and g=4
Theory predicts A=0.77 || Theory predicts A23.88 || Theory predicts 126
n ldim % ,xn Bn An " An
-1 -5 - —6
2 6 “ 4.54 x 10 8.07 x 10 8.10 x 10
a2l 2.65 x 107t} 0.77 5.34 x 107 3.0 |1.59 x 1077 5.67
8 {24 1.55 x 107! 0.77 3.54 x 1077} 3.9 2.79 x 1070 5.83
16 | 48 || 9.02 x 1072 0.78 2.38 x 10°8] 3.89 4.61 x 10”1} 5.91

Table (16f : The orthogonal Galerkin method with r=2 and g=1,555
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Theory predicts A=1 Jl Theory predicts A25 Theory predicts  A26
n jdim OLn kn Bn Kn Yn An
2| 6l 4.54 x 107} 8.07 x 107 8.10 x 107

-
1 -6 -7

4 |12 || 2,27 x 10 1.00 | 2,71 x 10 4.89 |[3.11 x 10 4,70
8 {25l 1.13 x 107} 1.00 | 9.11 x108) 4.80 [ls.61x10° | 5.79
16 |48 || 5.68 x 1072 0.99 | 2.85 x 1072 ] 4,99 Jl9.05 x 10711} s5.95

Table (17) : The orthogonal Galerkin method with r=2 and q=2
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