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Le bon déroulement de cette thèse doit beaucoup aux excellentes conditions de
travail que j’ai pu trouver au laboratoire de mathématiques de Créteil, ainsi qu’à la
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Résumé : Vorticité dans le modèle de Ginzburg-Landau de la supracon-
ductivité

Prenant ε = 1
κ avec κ > 0 est le paramètre de Ginzburg-Landau, ce mémoire

de thèse porte sur l’étude asymptotique dans la limite ε → 0 des minimiseurs
périodiques ainsi que des points critiques de l’énergie de Ginzburg-Landau.
En première partie, on prouve pour des certeins champs magnétiques appliqués hex
à la surface du supraconducteur de l’ordre du premier champ critique Hc1 = | log ε|

2
que pour les minimiseurs périodiques de Ginzburg-Landau, le nombre des vortex par
période est de l’ordre de hex et leur répartition est uniforme. En outre, en prenant
des champs hex proches de Hc1 de la forme hex = Hc1 + f(ε) où f(ε) → +∞ et
f(ε) = o(| log ε|), on montre que le nombre de vortex des minimiseurs périodiques
par période est de l’ordre de f(ε) et leur répartition est aussi uniforme.
Dans une deuxième partie, toujours dans le modèle périodique, on construit une
suite de points critiques ayant des vortex répartis sur un nombre fini de lignes hori-
zontales.
Dans une troisième partie, on construit dans le cas d’un disque une suite de points
critiques telle que les vortex sont répartis sur un nombre fini de cercles concentriques
de rayon strictement positif et de centre, le centre du disque. Dans le cas où il y a
un seul cercle de vorticité, le rayon est bien caractérisé.
Finalement, dans un modèle de Ginzburg-Landau avec “pinning”, on s’intéresse à
l’étude du signe des degrés des vortex et on donne des résultats partiels indiquant
que les degrés ne sont pas toujours positifs.

Mots clés : EDP non linéaire ; Équations de Ginzburg-Landau ; Supraconductivité
; Modèle périodique ; Vorticité ; Effets de concentration ; Convergence de mesure ;
Comportment asymptotique ; “pinning” de vortex.

Abstract: Vorticity in the Ginzburg-Landau model of superconductivity

Taking ε = 1
κ where κ > 0 is the Ginzburg-Landau parameter, this PhD thesis

is devoted to the study of the asymptotic behavior in the limit ε → 0 of periodic
minimizers and also of critical points of the Ginzburg-Landau energy.
In the first part, we prove for certain applied magnetic fields hex of the order of
the first critical field Hc1 = | log ε|

2 that periodic minimizers of the Ginzburg-Landau
energy have a uniform vortex-distribution where their number per period is of the
order of hex. Moreover, considering fields hex close enough to Hc1 in the form of
hex = Hc1 +f(ε) where f(ε) → +∞ and f(ε) = o(| log ε|), we check that the number
of vortices in the periodic minimizers per period is close to f(ε) and their repartition
is uniform too.
In the second part, still in the periodic model, we construct a sequence of critical
points such that the vortices are supported on a finite number of horizontal lines.
In the third part, we construct in the case of a disk domain a sequence of critical
points such that the vortices are concentrated on a finite number of concentric circles
of positive radii and of center, the center of the disk. Also, in the case where there
is one circle of vorticity, the radius is well characterized.
Finally, in a Ginzburg-Landau model with pinning, we are interested in the sign of
the degrees of the vortices and we give partial results indicating that the degrees
may not always be positive.
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Chapter 1

Introduction

Les équations de Ginzburg-Landau sont des équations aux dérivées partielles non
linéaires proposées dans les années 50 pour la modélisation de la supraconductivité.
Depuis, elles sont devenues un outil très courant dans de nombreux domaines de
la physique où des tourbillons et/ou des défauts topologiques interviennent, comme
par exemple les super-fluides. De nouveaux problèmes de cette nature apparaissent
constamment en physique (par exemple le ferromagnétisme, les condensats de Bose-
Einstein,...). Depuis les années 90, des avancées importantes ont eu lieu dans la
compréhension mathématique des équations de Ginzburg-Landau. Elles font inter-
venir des techniques issues de nombreux domaines des mathématiques: EDP non
linéaire, théorie géométrique de la mesure, effets de concentration, tourbillons, etc.

1 Sur un domaine borné

Dans le modèle de Ginzburg-Landau, l’énergie libre d’un supraconducteur soumis à
un champ magnétique extérieur hex appliqué à sa surface est donnée après renor-
malisations par

JΩ(u,A) =
1
2

∫
Ω
|∇u− i A u|2 +

1
2

∫
Ω
|h− hex|2 +

κ2

4

∫
Ω
(1− |u|2)2. (1.1)

Ici le supraconducteur est assimlié à un cylindre vertical de section Ω ⊂ R2, régulière
et simplement connexe. A est le potential-vecteur du champ magnétique induit
h = rotA et u est le “paramètre d’ordre” qui indique l’état local du matériau. Là
où |u| ' 0 c’est la phase normale, là où |u| ' 1 la phase supraconductrice. κ est le
“paramètre de Ginzburg-Landau”. Le comportement du supraconducteur varie en
fonction de hex et κ. En effet, si le champ appliqué hex est assez faible, on observe
que le champ magnétique ne pénètre pas dans le matériau (c’est l’effet Meissner).
Puis au delà d’un champ critique Hc1 , il se produit une transition de phase et on
observe des filaments de vorticité (ou des vortex) par lesquels le champ pénètre.
Plus le champ est grand et plus ils sont nombreux, et comme ils se repoussent, ils
tendent à s’organiser en réseau triangulaire dit “réseau d’Abrikosov”. Pour plus de
détails concernant l’aspect physique, on renvoit à [Ab], [GL], [SST], [Ti] et [TT].

La fonctionnelle JΩ, vue dans son aspect mathématique, a suscité beaucoup
d’interêt ces dernières années, après les travaux fondateurs de Béthuel, Brezis et
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Hélein dans [BBH]. Beaucoup d’auteurs se sont intéressés au cas κ grand, qui
correspond aux supraconducteurs de type II, la limite κ infini étant appelée “lim-
ite de London”. Le but était de comprendre mathématiquement les mécanismes
d’apparition des vortex, les valeurs des champs critiques et d’avoir des descriptions
des solutions, de leurs vortex et des estimations de leur énergie dans cette limite.
Parmi les résultats obtenus, Serfaty a pu caractériser le premier champ critique Hc1

et donner son expression qui est sous la forme C(Ω) log κ (voir [Se1], [Se2]). Il a
été prouvé que les minimiseurs de l’énergie sur H1(Ω,C) ×H1(Ω,R2) n’ont pas de
vortex en-dessous de Hc1 , puis en ont au-dessus, et qu’ils se répartissent d’abord
près du centre de domaine, en configurations régulières (polygones, etc), puis de
manière uniforme dans une sous partie du domaine que l’on peut caractériser par un
problème à frontière libre, pour cela voir [ASS], [Se3], [SS2] et [SS3]. Des résultats
ont également été prouvés sur la répartition de vortex de solutions non-minimisantes
(voir [SS5]).

2 Le modèle périodique

Le modèle périodique de Ginzburg-Landau permet d’éviter les effets du bord et de
mettre l’accent sur ce qui se passe au coeur du supraconducteur, le “bulk”. Ici on
prend κ > 1√

2
et Ω = R2, ceci correspond à un large supraconducteur infini de type

II.

2.1 Motivation

Soit (u,A) dans l’espace de Sobolev H1
loc(R2,C) ×H1

loc(R2,R2), alors la densité de
l’énergie de Ginzburg-Landau

1
2
|∇u− i A u|2 +

1
2
|h− hex|2 +

κ2

4
(1− |u|2)2

est dans L1
loc(R2). De plus, cette densité est invariante sous une transformation

de jauge sous la forme (v,B) = (u ei g, B + ∇g) avec g ∈ H2
loc(R2). Toutes les

quantités physiques à savoir |u|, h = rotA et (iu,∇Au) sont invariantes de jauge.
Les équations de Ginzburg-Landau associées sont−∇

2
Au = κ2 u (1− |u|2) R2

−∇⊥h = (i u,∇Au) R2.
(1.2)

En considérant le cas où le champ appliqué hex est légèrement inférieur à Hc2 =
κ2 avec κ > 1√

2
, Abrikosov a introduit dans [Ab], une modélisation spéciale et

a prédit une structure périodique des zéros de u avec (u,A) est une solution de
la première équation de Ginzburg-Landau linéarisée en u (en ignorant à droite le
terme u |u|2) qui . Un tel (u,A) dit solution d’Abrikosov existe si hex = Hc2 et
κ > 1√

2
. Récemment, dans le cas où κ > 1√

2
, Dutour [D] a montré qu’il existe une

fonction continue κ → Hc1(κ) telle que des solutions de l’équation originale (non
linéarisée) existent et correspondent aux solutions d’Abrikosov si hex est tel que
Hc1 < hex < Hc2 . Notons que Hc1 et Hc2 sont deux champs critiques et que Hc1 se

12



comporte comme log k
2 lorsque κ→ +∞. Les solutions d’Abrikosov sont périodiques

et leurs zéros forment un réseau et autour de chaque zéro, u a une charge topologique
non nulle. Ecrivant u = |u| ei ϕ, et dans les coordonnées polaires (r, θ) centrées en
un zéro de u, si r > 0 est petit, l’entier

1
2 π

∫ θ=2 π

θ=0

∂ϕ

∂θ
(r, θ) dθ,

est non nul. Les points où u s’annule sont appelés vortex et l’entier est le degré du
vortex.

On fixe κ > 0 et hex > 0, et on prend L un réseau de R2 dont le domaine
fondamental est Ω. Pour définir le modèle périodique, on utilise les conditions au
bord de t’ Hooft [Th] sous lesquelles le vecteur potentiel A et le paramètre d’ordre u
sont périodiques à une transformation de jauge près. Dans ce sens, on dit que (u,A)
est L -périodique si pour tout v ∈ L, il existe gv ∈ H2

loc(R2,R) tel queu(z + v) = u(z) ei g
v(z)

A(z + v) = A(z) +∇gv(z).
(1.3)

On note BL l’espace des configurations (u,A) qui sont L -périodiques.

Définition :

On dit qu’une fonction T définie sur R2 est périodique si pour tous z ∈ R2 et v ∈ Z2,
T (z + v) = T (z).

Les conditions (1.3) garantissent que les quantités invariantes de jauge sont
périodiques. Pour chercher les solutions périodiques des équations (1.2), l’idée na-
turelle est de trouver la configuration périodique qui minimise l’énergie de Ginzburg-
Landau par unité d’aire parmi tous les réseaux possibles de R2. Ceci revient à étudier

inf
L

inf
BL
{JΩ(u,A)

|Ω|
}. (1.4)

Mais, malheureusement l’étude complète du problème (1.4) est toujours ouverte,
donc une analyse rigoureuse des solutions périodiques des équations de Ginzburg-
Landau (1.2) reste limitée. Le problème se pose essentiellement au niveau de la
recherche de la géométrie du réseau associé à l’énergie minimale.

Le réseau étant fixé, l’analyse de la vorticité des minimiseurs périodiques de
l’énergie dans la limite κ → +∞ et pour des champs extérieurs de l’ordre de log κ
n’est pas encore étudiée. Pour cela, dans toute la suite de la thèse on fixe le réseau
dès le début et on se restreint à un réseau dont le domaine fondamental est un par-
allélogramme d’aire 1. Par commodité, on prend un réseau carré. Notons que nos
résultats décrivent des mesures de vorticité limites et ne semblent pas assez précis
pour être influencés par la géométrie du réseau. Ceci explique pourquoi nous nous
restreignons à un réseau carré de coté 1.
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En reprenant les idées de Sandier et Serfaty et pour des champs appliqués hex
en particulier de l’ordre de log κ avec κ → +∞, ce travail a pour but principal la
recherche de la vorticité des minimiseurs de l’énergie de Ginzburg-Landau parmi les
configurations périodiques ou parmi celles qui présentent certaines symétries.

2.2 Le modèle périodique sur le carré K de coté 1

Les chapitres 2 à 7 trâıtent du modèle périodique. Dans le chapitre 2, on introduit
le modèle périodique sur le carré K de coté 1. Pour cela, soit A l’espace des (u,A)
dans H1

loc(R2,C)×H1
loc(R2,R2) tels que pour tout v ∈ Z2, il existe gv ∈ H2

loc(R2,R)
tel que les conditions (1.3) soient vérifiées.

Connaissant que toutes les quantités physiques |u|, h = rotA et (iu,∇Au) sont
périodiques, il suffit de mesurer l’énergie de Ginzburg-Landau d’une configuration
(u,A) L -périodique sur la période K. Ici, on s’intéresse juste à l’étude de

inf
A
JK(u,A).

On démontre en particulier les propriétés bien connues de quantification du flux
(en chapitre 2) et d’existence de minimiseurs de l’énergie de Ginzburg-Landau ( en
chapitre 3).

2.3 Résultats sur la vorticité

Dans le chapitre 4, pour des champs appliqués qui sont tels que hex ≤ C | log ε| avec
ε = 1

k et pour des configurations périodiques (uε, Aε) d’énergie minimale, on définit
des vortex en s’inspirant d’une méthode de Jerrard [J]. De là, on peut associer à
(uε, Aε) une mesure de vorticité

µε =
2π

∑
i diδai

hex
, (1.5)

où (ai, di)i sont les positions et les degrés des vortex de (uε, Aε).

Dans le chapitre 5, on prend hex tel que limε→0
| log ε|
hex

= λ, avec la condition
additionnelle : si λ = 0, on impose que hex � 1

ε2
. Dans toute la suite de la thèse,

on gardera cette définition du paramètre λ. Alors, en prouvant que

lim
ε→0

JK(uε, Aε)
h2
ex

=

{
λ
2 (1− λ

4 ) si 0 < λ < 2
1
2 si λ ≥ 2,

(1.6)

qui est obtenue par une borne supérieure et puis une borne inférieure dans l’esprit
de la gamma-convergence (voir [DC]) de l’énergie minimale “normalisée” JK(uε,Aε)

hex
2 ,

on peut montrer que dans le cas λ > 0, on a si ε→ 0,

µε ⇀ max
(
0, 1− λ

2

)
dx,

où dx est la mesure de Lebesgue de R2. Donc, pour 0 < λ < 2, on en déduit que
la répartition de la vorticité des minimiseurs périodiques de l’énergie de Ginzburg-
Landau est uniforme et que le nombre des vortex surK est de l’ordre de hex, alors que
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pour λ ≥ 2, il est petit par rapport à hex. Plus précisement, à partir de l’estimation
de l’énergie minimale, ou plutôt de sa borne inférieure, on prouve qu’il n’ y a pas de
vortex si λ > 2. Ces derniers résultats sont légèrement différents à ceux de Sandier
et Serfaty [SS3]. En effet, ceci est dû à l’absence d’effets de bord dans le modèle
périodique.

Dans le chapitre 6, on s’interesse au cas λ = 2. Ceci correspond à des champs
appliqués hex proches du premier champ critique Hc1 = | log ε|

2 pour ε→ 0, qui sont
de la forme

hex = Hc1 + f(ε),

avec si ε → 0, f(ε) → +∞ et f(ε) = o(| log ε|). D’après (1.6), on remarque que si
ε→ 0, l’énergie minimale JK(uε, Aε) est équivalente à l’énergie sans vorticité sur K
égale à 1

2 h
2
ex. Plus clairement, on montre que

JK(uε, Aε)− 1
2 h

2
ex

(f(ε))2
(1.7)

est la quantité appropriée à considérer. Dans ce cas, en prouvant une borne inférieure
de l’énergie minimale plus fine, qui se base sur la construction des boules précédemment
mentionnée, on démontre que si ε→ 0,

2 π
∑

i di δai

f(ε)
⇀ dx,

où (ai, di)i sont les positions et les degrés des vortex de (uε, Aε) définis dans le
chapitre 4. Donc la répartition des vortex des minimiseurs périodiques est uniforme
et plus précisement leur nombre sur le carré K est de l’ordre de f(ε). Cela contraste
avec [SS1], où il faut un incrément de | log | log ε|| pour ajouter un vortex.

3 Ligne de vorticité

Toujours dans le cadre périodique, le septième chapitre est consacré à construire une
suite de solutions (uε, Aε) des équations de Ginzburg-Landau (1.2) telle que dans
la limite ε→ 0 et pour des champs appliqués bien précis, les vortex de (uε, Aε) sur
K se concentrent sur un nombre fini de lignes horizontales. La méthode consiste à
minimiser l’énergie de Ginzburg-Landau parmi les configurations périodiques (u,A)
( c’est à dire (u,A) ∈ A) ayant de plus une symétrie par des translations bien choisies
données comme suit u(x+ 1

pε
, y) = u(x, y) ei ξ(x,y)

A(x+ 1
pε
, y) = A(x, y) +∇ ξ(x, y),

avec ξ ∈ H2
loc(R2,R) et pε ∈ N est une fonction de ε telle que la limite suivante

existe et ne s’annule pas

α = 2 π lim
ε→0

pε
hex

.

Pour hex ≤ C | log ε|, on peut associer à un minimiseur (uε, Aε) de l’énergie de
Ginzburg-Landau une mesure de vorticité analogue à (1.5). On montre que sur K
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et dans la limite ε→ 0, elle est portée par un nombre fini de lignes horizontales. En
outre, elle attribue à chaque ligne une masse appartenant α Z. Ensuite, sous une
relation bien précise liant λ à α, on prouve que la mesure limite de vorticité n’est
pas nulle. Ceci implique plutôt qu’il y a au moins une ligne horizontale de vorticité.
Malheureusement, on ne connait pas explicitement la mesure de vorticité lorsqu’elle
est non nulle. Mais, dans le cas où la restriction de la mesure limite sur K est portée
par une seule ligne horizontale, on précise la valeur de sa masse.

4 Cercle de vorticité

Le huitième chapitre répond à une question posée par Sandier et Serfaty dans [SS5],
et consiste en la construction d’une suite de points critiques (uε, Aε) de JΩ où Ω
est un disque de rayon R telle que dans la limite ε → 0, la vorticité de (uε, Aε) se
concentre sur un nombre fini de cercles concentriques de rayon strictement positif
et de centre, le centre de disque. Pour cela, on minimise l’énergie JΩ parmi les
configurations (u,A) ∈ H1(Ω,C)×H1(Ω,R2) présentant certaines symétries données
par 

u
(
x e

i 2 π
qε

)
= u(x) ei ψ(x)

A
(
x e

i 2 π
qε

)
= e

i 2 π
qε A(x) + e

i 2 π
qε ∇ψ(x),

avec ψ ∈ H2
loc(R2,C) et qε ∈ N est une fonction de ε telle que la limite suivante

existe et ne s’annule pas

β = lim
ε→0

qε
hex

.

Pour hex ≤ C | log ε|, on peut construire, à partir d’un minimiseur (uε, Aε) de JΩ,
une mesure de vorticité notée µ̃ε. Puis, quite à extraire une sous-suite εn, on montre
que la limite faible de hεn

hex
dans H1(Ω) notée h∞ est radiale et que la limite de µ̃εn au

sens des mesures de Radon est égale à −∆h∞ + h∞. Cette mesure limite est portée
par un nombre fini de cercles concentriques de rayon strictement positif et de centre,
le centre du disque. De plus, elle attribue à chaque cercle une masse appartenant à
2 π β Z. Notons que le cas où −∆h∞ + h∞ = 0 n’est pas exclu. Cependant, sous
certaines hypothèses, la mesure −∆h∞ + h∞ n’est pas nulle. En effet, on prouve
que pour tout R > 0 et pour tout β > 0 petit, il existe une relation bien choisie liant
λ à β de façon à ce que

−∆h∞ + h∞ 6= 0.

Signalons que la preuve nécessite quelques propriétés sur les fonctions de Bessel
modifiées du premier ordre. Ceci montre qu’ il y a au moins un cercle de vorticité de
centre, le centre du disque. L’inconvinient est qu’ on ne connait pas explicitement la
mesure de vorticité lorsqu’elle est non nulle. Cependant, dans un cas très particulier,
si la mesure de vorticité est portée par un seul cercle avec une masse bien donnée
ègale à 2 π β, on peut caractériser ce cercle par la donnée de son rayon qui sera
l’unique solution d’un problème de minimisation.

16



5 “Pinning” des vortex

Enfin dans le neuvième et dernier chapitre, on s’intéresse à l’étude du signe des
degrés des vortex qui interviennent dans un modèle de Ginzburg-Landau avec un
problème de l’ancrage (“pinning”) des vortex, étudié par André, Bauman et Philips
dans [APB]. Dans ce cas, l’énergie est

Jε(u,A) =
1
2

∫
Ω
|∇u− i A u|2 +

1
2

∫
Ω
|h− hex|2 +

1
4 ε2

∫
Ω
(a− |u|2)2.

Le poids a(x) est positif et s’annule en un nombre fini de points notés {x1, ..., xn}.
Pour κ = 1

ε et un champ appliqué hex suffisamment grands, André, Bauman et
Philips ont montré que les minimiseurs (uε, Aε) de Jε sur H1(Ω,C)×H1(Ω,R2) ont
une structure non triviale de vortex près des zéros x1, ..., xn. Notons di le degré de
uε autour du point xi. Le n-uplet d’entiers d = (d1, ..., dn) est un minimum d’une
fonctionnelle bien déterminée sur Zn. On s’intéresse au signe des degrés di, et on
montre que, dans des cas très particuliers, les degrés sont positifs. On donne aussi
des indices qui laissent penser que, pour certains choix de poids a(x), ceci pourrait
être faux.
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Plan of the thesis

Our interest is to describe the repartition of the vortices in minimizers of the
Ginzburg-Landau energy J over appropriate spaces according to the value of the
applied field. The plan of the thesis is as follows:

In chapter 1, we have introduced some notations and given some known results
on vortices. In addition, we have stated the main results which will be proved in
the rest of this work.

In chapter 2, we introduce the periodic Ginzburg-Landau model, and in chapter
3, we give results concerning the minimization of the energy J over a space denoted
by A presenting some periodicities and we consider the Ginzburg-Landau equations,
these are a system of partial differential equations that are derived from the model.

In chapter 4, we construct a family of vortex balls in the periodic setting and we
give precise lower bound of the energy on these balls.

According to the value of the applied field hex, we give in the chapters 5 and 6,
some results concerning the repartition of the vortices and their number of global
minimizers of J over the space A as ε→ 0.
First, in chapter 5, we take the case of applied fields hex which are of the order of
O(| log ε|).
Second, in chapter 6, we take applied fields close enough to the first critical field
Hc1 ≈

| log ε|
2 defined by

hex = Hc1 + f(ε),

where f(ε) = o(| log ε|) and f(ε) tends to +∞ as ε→ 0.

Moreover, in chapter 7 we construct a sequence of periodic critical points of J
such that as ε→ 0, the repartition of the vortices on the square K is supported on
a finite number of horizontal lines.

In chapter 8, we show that the distribution of the vortices is scattered on a finite
number of concentric circles of positive radius and of center, the center of the disk.

Finally, for bounded applied fields hex, we are concerned in the chapter 9 with
the study of the sign of the degrees of the vortices intervening in a Ginzburg-Landau
model with pinning.
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Chapter 2

The periodic Ginzburg-Landau
model

In this chapter, we define the periodic Ginzburg-Landau model and we give the
space where we minimize the Ginzburg-Landau energy. Moreover, we state some
properties of this space. Finally, constructing a gauge transformation, we obtain an
equivalent minimization problem.

1 Definitions

First, we give some classical properties of Sobolev spaces that we will need later.
Letting n ∈ N∗, 1 ≤ p ≤ +∞ and m ∈ Z, we say that a distribution f on Rn

belongs to Wm,p(Rn) if

Dαf :=
∂α1+α2+...+αnf

∂xα1
1 ∂xα2

2 ...∂xαn
n
∈ Lp(Rn), ∀ αi ∈ N such that |α| = α1 + ...+αn ≤ m.

(2.1)
Let O be an open domain of Rn, then we define similarly as the above the spaces
Wm,p(O) (respectively Wm,p

loc (Rn)) by imposing that the derivatives until the order
m belong to Lp(O) (respectively Lploc(R

n)). Note that the above derivatives are
taken in the sense of distributions. We set

Hm
loc(Rn,R) = Wm,2

loc (Rn).

Now, let us give from [B] or [GT] or [Ad] some Sobolev’s injections which will be
useful for the rest. In particular, we state
Theorem: For p such that 1 < p < +∞, we have with q = np

n−p , the following
injections
(i) if n > p, then W 1,p

loc (Rn) ⊂ Lqloc(R
n).

(ii) if n = p, then ∀r such that n < r < +∞, we have W 1,p
loc ⊂ Lrloc(Rn).

(iii) if n < p, then W 1,p
loc (Rn) ⊂ C0(Rn).

Moreover, if 1 < r < q and if O is relatively compact of Rn, then W 1,p(O) ⊂ Lr(O)
and the injection is compact.
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Before all, let K be any square in R2. The free Ginzburg-Landau energy of a
superconductor given by (1.1) is

JK(u,A) =
1
2

∫
K
|∇u− i A u|2 +

1
2

∫
K
|h− hex|2 +

κ2

4

∫
K

(1− |u|2)2. (2.2)

The superconductor is assumed to be an infinite vertical cylinder of section K.
A : K → R2 is the vector potential, and the induced magnetic field in the material
is h = curlA. The complex-valued function u is called the “order parameter” and
κ > 0 is the Ginzburg-Landau parameter. κ is a dimensionless constant and from
now on we take κ = 1

ε , ε > 0. ε represents the scale of variation for the supercon-
ducting order parameters, and in some sense measures the radius of the core region
of an isolated vortex. hex = hex(ε) ≥ 0 is the applied magnetic field on the boundary
of the superconductor. One can refer for example to [Ab], [SS1], [SS2], and [SS3] for
a discussion of the functional J = JK .

Definition 2.1. A vortex is an isolated zero of u such that restricted to a small ball
C around it, the map u

|u| = ei ϕ : C → S1 has a nonzero winding number d, the degree
of the vortex, defined as follows ∫

C

∂ϕ

∂τ
= 2 π d,

where τ is the unit vector such that if ν is the inward pointing unit normal vector on
C, then (τ, ν) is at each point of C a direct orthonormal frame. Away from vortices,
it is expected that |u| ' 1.

Definition 2.2. We say that a function T is periodic if it is periodic with respect
to the lattice determined by the vectors ~i =

(
1
0

)
and ~j =

(
0
1

)
, meaning that

T (x+ 1, y) = T (x, y) = T (x, y + 1) ∀(x, y) ∈ R2. (2.3)

Here, T may be scalar or vector-valued and may be real or complex-valued. Note
that (2.3) implies, for differentiable T , that

∂T

∂x
(x+ 1, y) =

∂T

∂x
(x, y) =

∂T

∂x
(x, y + 1) ∀(x, y) ∈ R2,

and
∂T

∂y
(x+ 1, y) =

∂T

∂y
(x, y) =

∂T

∂y
(x, y + 1) ∀(x, y) ∈ R2.

The subtlety of the periodic Ginzburg-Landau problems is that periodic magnetic
fields and currents are generally represented by non-periodic potentials A and order
parameter u. One setting for such periodic problems is via the t’ Hooft boundary
conditions [Th], for which one demands that A and u be periodic up to a family of
gauge transformations from one period cell the next. This is given as follows

20



Definition 2.3. Let (u,A) be in H1
loc(R2,C) × H1

loc(R2,R2). (u,A) belongs to the
space A if there exists (f, g) ∈ H2

loc(R2,R)×H2
loc(R2,R) such that

u(x+ 1, y) = u(x, y) ei f(x,y)

u(x, y + 1) = u(x, y) ei g(x,y),
(2.4)

and 
A(x+ 1, y) = A(x, y) +∇f(x, y)

A(x, y + 1) = A(x, y) +∇g(x, y).
(2.5)

The conditions (2.4) and (2.5) are called in physics the t’Hooft’s boundary con-
ditions. We can refer to [ABB], [ABS], [DGP] to find configurations (u,A) which
are given analogously as in the definition 2.3.

2 Some properties

As was noted in definition 2.3, the order parameter u, or more precisely, the phase of
the order parameter, and the magnetic potential A are not periodic (in the sense of
definition 2.2). The first of the basic interpretations of the periodic Ginzburg-Landau
model for superconductivity concerns the periodic nature of the physical attributes
of the superconductor, meaning that the density of superconducting charge carriers
|u|2, the magnetic field h and the free energy J are periodic with respect to the
lattice vectors ~i =

(
1
0

)
and ~j =

(
0
1

)
. Indeed, taking the curl in (2.5), then since

curl∇f = curl∇g = 0, hence the induced field h defined by h = curlA satisfies

h(x+ 1, y) = h(x, y) = h(x, y + 1).

Let locally u = |u| ei ϕ = ρ ei ϕ where ϕ denoted the phase of the order parameter
u. We get from (2.4)

ρ(x+ 1, y) = ρ(x, y) = ρ(x, y + 1).

Now, again from (2.4)-(2.5), it is obvious that

(∇ϕ−A)(x+ 1, y) = (∇ϕ−A)(x, y) = (∇ϕ−A)(x, y + 1).

We replace u by ρ ei ϕ in (∇u− i A u) to write

∇Au :=∇u− i A u

=(∇ρ+ i ρ ∇ϕ) ei ϕ − i ρ A ei ϕ

=
(
∇ρ+ i ρ (∇ϕ−A)

)
ei ϕ.

It follows that
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|∇Au|2 = |∇ρ|2 + ρ2 |∇ϕ−A|2. (2.6)

Let (u,A) ∈ A. Thanks to the above, it is easy to remark that the fundamental do-
main of periodicity is any square K ⊂ R2 of sidelength 1. Without loss of generality,
we take

K = [0, 1[×[0, 1[.

Again from the above, it suffices to compute the energy J given by (2.2) over the
period K = [0, 1[×[0, 1[. Using (2.6), J can be written as follows

J(u,A) = JK(u,A) =
1
2

∫
K
|∇ρ|2+ρ2|∇ϕ−A|2+

1
2

∫
K
|h−hex|2+

1
4 ε2

∫
K

(1−ρ2)2.

(2.7)
For (u,A) ∈ A, we define the quantity

II(x, y) := f(x, y)− f(x, y + 1) + g(x+ 1, y)− g(x, y), ∀(x, y) ∈ R2. (2.8)

Moreover, we define

N :=
1

2 π

∫
K
h. (2.9)

Now, we give a classical property for (u,A) belonging to the space A.

Lemma 2.4. Let (u,A) ∈ A. Let h be the magnetic field defined by h = curlA,
then II(x, y) defined by (2.8) is independent of (x, y) and belongs to 2 π Z if u is
not identically zero. Moreover

N =
1

2 π
II(0, 0) ∈ Z. (2.10)

Proof : Decomposing the potential A(x + 1, y + 1) into two different ways, we
obtain the following equations

A(x+ 1, y + 1) =A(x, y) +∇f(x, y + 1) +∇g(x, y)

=A(x, y) +∇f(x, y) +∇g(x+ 1, y).

Then, by identification, we can write for all (x, y) ∈ R2

∇f(x, y)−∇f(x, y + 1) +∇g(x+ 1, y)−∇g(x, y) = 0.

Thanks to (2.8), this means

∇II(x, y) = 0 ∀ (x, y) ∈ R2.
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This implies that the function II is independent of (x, y). Also,

u(x+ 1, y + 1) =u(x, y) e
i

(
f(x,y+1)+g(x,y)

)

=u(x, y) e
i

(
f(x,y)+g(x+1,y)

)
.

Thus, if u is not identically zero then for some (x, y) ∈ R2(
f(x, y)− f(x, y + 1) + g(x+ 1, y)− g(x, y)

)
∈ 2 π Z.

Combining the two above properties of the function II, we can say that II is a
constant in 2 π Z. Now, integrating the magnetic field strength over the basic unit
period cell K and applying Stokes’ Theorem, we get

∫
K
h =

∫
K
curlA =

∫
∂K

A.τ

=

1∫
0

(A1(x, 1)−A1(x, 0)) dx−
1∫

0

(A2(1, y)−A2(0, y)) dy,
(2.11)

where A = (A1, A2) and τ = ν⊥, ν is the exterior unit normal on the boundary of
K, and A.τ is the component of A in the direction τ . Referring to the definition
2.3, we have A1(x+ 1, y)−A1(x, y) = ∂xg(x, y)

A2(x, y + 1)−A2(x, y) = ∂yf(x, y),

where ∇ = (∂x, ∂y). We insert these equations in (2.11) to get

∫
K
h =f(0, 0)− f(0, 1) + g(1, 0)− g(0, 0)

=II(0, 0).

(2.12)

Hence, by definition of N given by (2.9), we find

N =
1

2 π

∫
K
h =

1
2 π

II(0, 0).

Thus, N ∈ Z. Hence, the total flux per period cell is quantized for any element of
A. 2
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3 The minimization of the energy J

In this paragraph, our interest is to study the following minimization problem

inf
(u,A)∈A

J(u,A). (2.13)

First, we remark that the A given by definition 2.3 is neither a vectorial nor affine
space, because of the gauge invariance. Hence, we need to choose a gauge transfor-
mation that makes easy the study of (2.13).

3.1 Gauge transformation

For (x, y) ∈ R2, we introduce the potential vector ~C = 1
2

(−y
x

)
. Then, ~C verifies

div ~C = 0 and curl ~C = 1.

First, we need to state the following definition

Definition 2.5. Let (u1, Q1) and (u2, Q2) be in the space A. We say that (u1, Q1)
is gauge equivalent to (u2, Q2) if there exists Φ ∈ H2

loc(R2) such thatQ1 = Q2 +∇Φ in R2

u1 = u2 e
i Φ in R2.

Now, we give a gauge transformation in order to find an equivalent study to the
minimization problem (2.13).

Proposition 2.6. Let (u,A) be in A and N be defined by (2.9). Then, there ex-
ists (v, P ) ∈ H1

loc(R2,C) × H1
loc(R2,R2) such that (u,A) is gauge equivalent to the

configuration (v, 2 π N ~C + P ) where

v(x+ 1, y) = ei π N y v(x, y) ∀ (x, y) R2, (2.14)

v(x, y + 1) = e−i π N x v(x, y) ∀ (x, y) R2, (2.15)

P is periodic,

div P = 0 in R2.

If N 6= 0, then we can impose that
∫
K P = 0.

Proof : See [D], Theorem 2.3.2. We can also see [ABB] where there is a similar
result on fixing a gauge in the case of the Lawrence-Doniach model. 2

Remark 2.7. Thanks to the definition 2.5, the fact that (u,A) ∈ A is gauge equiv-
alent to the configuration (v, 2 π N ~C + P ) means that there exists a function
σ ∈ H2

loc(R2,R) such thatA = 2 π N ~C + P +∇σ in R2

u = v ei σ in R2.
(2.16)
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Let us fix d ∈ Z and let v ∈ H1
loc(R2,C) such that ∀ (x, y) ∈ R2v(x+ 1, y) = ei π d y v(x, y)

v(x, y + 1) = e−i π d x v(x, y),
(2.17)

then, we are in a situation to introduce the new space

Bd :=

{
(v, P ) ∈ H1

loc(R2)×H1
loc(R2,R2) such that (2.17) is verified,

P is periodic, div P = 0 in R2 and
∫
K P = 0 if d 6= 0

}
. (2.18)

Observe that Bd is a vector space. Let us define

B = ∪d∈ZBd. (2.19)

By definition of B, we can write

(v, P ) ∈ B ⇐⇒ ∃ d ∈ Z, (v, P ) ∈ Bd. (2.20)

Now, let (u,A) be in the space A. Then, going back to lemma 2.4, the N given in
proposition 2.6 which is such that ∫

K
h = 2 π N,

is in Z. Consequently, combining the properties of (v, P ) defined by proposition 2.6,
we can write referring to (2.18)

(v, P ) ∈ BN .

In particular, this yields (v, P ) ∈ B. In the next paragraph, we will give an equivalent
to the minimization problem (2.13).

3.2 The equivalent minimization problem

First, we take d to be fixed in Z and (v, P ) ∈ Bd. Taking

u = v and A = 2 π d ~C + P,

it is clear that (u,A) is in the space A and is gauge equivalent to the configuration
(v, 2 π d ~C + P ). Moreover, in particular for h = curlA, we find∫

K
h = 2 π d,

since curl ~C = 1 and
∫
K curlP = 0 which follows from the fact that P is periodic.

Second, reciprocally let (u,A) ∈ A and N be such that N = 1
2 π

∫
K h. We know

that N ∈ Z, and then the proposition 2.6 implies that there exists (v, P ) in BN such
that (u,A) is in addition gauge equivalent to the configuration (v, 2 π N ~C + P ).
Obviously, the energy J is invariant under the gauge transformation (2.16), hence
we have for (u,A) ∈ A,
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J(u,A) = J(v, 2 π N ~C + P ).

For d ∈ Z, let us take the function G defined over Bd given as follows

G(v, P ) =J(v, 2 π d ~C + P )

=
1
2

∫
K
|∇v − i (2 π d ~C + P ) v|2 +

1
2

∫
K
|2 π d+ curl P − hex|2

+
1

4 ε2

∫
K

(1− |v|2)2.

(2.21)

As a consequence of all the above, we can deduce that the minimization problem
(2.13) of the energy J over the space A is equivalent to the minimization of G over
the space B, i.e.

inf
A
J(u,A) = inf

∪d∈ZBd

G(v, P ) = inf
B
G(v, P ). (2.22)

Now, we calculate the quantity

1
2

∫
K
|2 π d+ curl P − hex|2. (2.23)

Thanks to the periodicity of P , we find∫
K

(2 π d− hex) curl P = 0. (2.24)

Then, we use (2.24) in the decomposition of (2.23) to get

1
2

∫
K
|2 π d+ curl P − hex|2 =

1
2

∫
K
|2 π d− hex|2 +

1
2

∫
K
|curl P |2. (2.25)

Consequently, inserting (2.25) in (2.21), we obtain for (v, P ) ∈ Bd

G(v, P ) =
1
2

∫
K
|∇v − i (2 π d ~C + P ) v|2 +

1
4 ε2

∫
K

(1− |v|2)2 +
1
2

∫
K
|2 π d− hex|2

+
1
2

∫
K
|curl P |2.

(2.26)

The next chapter is devoted to study

inf
B
G(v, P ), (2.27)

where G is the functional given by (2.26) and B is defined by (2.19).
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Chapter 3

Minimizers and critical points of
the Ginzburg-Landau energy in
the periodic model

This chapter describes the periodic model introduced at the end of the chapter 2.
In the first part, we are concerned with the minimization of the functional G over
the space B. In the second part, we give the critical points of G and we give their
regularity.

1 Existence of minimizing solution for the functional G

over the space B
Here, we are concerned with the study of the minimization of the energy G over the
space B. More precisely, we will prove that the functional G has a minimizer over
the space B. We define the space Bd by (2.18) and we take K to be any square of
sidelength 1.

Proposition 3.1. The minimum of G over the space B is achieved.

Proof : Let
Gmin = inf

(v,P )∈B
G(v, P ). (3.1)

Because the functional G is positive, this infimum exists. We consider a minimizing
sequence (vn, Pn) in B. Then, Pn is periodic, divergence free and with zero mean in
K. There exists dn ∈ Z such that

(vn, Pn) ∈ Bdn .

First, (1, 0) ∈ B because (1, 0) ∈ B0. Then, testing the energy G by the configuration
(1, 0), we get

G(vn, Pn) ≤ G(1, 0) =
1
2
h2
ex.
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If dn = 0, then necessarily G(vn, Pn) = 1
2 h

2
ex, and then the infimum of the functional

G is obtained for the so-called pure state vn = 1 and Pn = 0. The interesting case
corresponds to dn 6= 0. From (2.26), since (G(vn, Pn))n is bounded, then (dn)n also.
Taking a subsequence, we may assume (dn)n to be constant and equal to some d ∈ Z.
Still from (2.26), (curlPn)n is bounded in L2(K). Since Pn is divergence free and has
zero mean in K, this implies that (Pn)n is bounded in H1(K) and by periodicity in
H1(U) for any bounded open subset U of R2. In particular, by Sobolev embedding,
(Pn)n is locally bounded in Lp for any 1 < p < +∞.
As for (vn)n, the potential term in (2.26) guaranties that it is locally bounded in
L4. Moreover,

(
∇vn− i (2 π d ~C +Pn) vn

)
is bounded in L2(K) and by periodicity

is locally bounded in L2. Using the L4 bound on vn and the Lp bound on Pn, we
get that ∇vn is locally bounded in L2, hence (vn)n is locally bounded in H1. Then,
passing to a subsequence and using a diagonal argument if necessary, (vn)n and
(Pn)n weakly converge in H1 on every bounded open set in R2. Reasoning as in
[BR], the limit minimizes G. 2

Remark 3.2. We remark that a minimizer (v, P ) of the functional G over the space
B depends on the parameter ε, so we will take (vε, Pε). But, when it is not necessary
to take the ε and to keep the subscripts, we write (v, P ) instead of (vε, Pε). Thanks
to (2.22), we remark in addition that the minimum of the energy J over the space
A is achieved.

2 Properties of Critical points

Let (v, P ) be a minimizer of G over the space B. By definition of B, there exists
d ∈ Z such that (v, P ) ∈ Bd. If d = 0, G(v, P ) = G(1, 0) = 1

2 (the superconducting
phase). The interesting case is when d 6= 0. In this paragraph, letting d 6= 0, we will
prove that (v, P ) has the regularity C∞ and verifies a system of partial differential
equations. Let ∇⊥ and < ., . > denote respectively (−∂x, ∂y) and the scalar-product
in C identified with R2, where ∇ = (∂x, ∂y). First, referring to [D], we can have

Proposition 3.3. For d ∈ Z, let (v, P ) ∈ Bd be a critical point of G. Then,
(v, P ) ∈ C∞loc(R2,C)× C∞loc(R2,R2) and−∇

2
Bv = 1

ε2
v (1− |v|2) in R2

−∇⊥curlB =< i v,∇Bv > in R2,
(3.2)

where B = 2 π d ~C + P .

Now, let (v, P ) be a minimizer of G over the space B. By definition of B, there
exists d ∈ Z such that (v, P ) ∈ Bd. Then, in particular (v, 2 π d ~C + P ) is a
minimizer of the energy J over the space A. Consequently, any minimizer of J over
A has the form (v ei ν , 2 π d ~C +P +∇ν) where ν ∈ H2

loc(R2,R). Now, let (u,A) be
a minimizer of the energy J over the space A, so there exists k ∈ H2

loc(R2,R) such
that

(u,A) = (v ei k, 2 π d ~C + P +∇k), (3.3)
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where (v, P ) is a minimizer of G over the space B and (v, P ) ∈ Bd. Since it is
easy that (3.2) is invariant under the above gauge transformation, we can state the
following corollary

Corollary 3.4. Any minimizer (u,A) of the energy J over the space A satisfies−∇
2
Au = 1

ε2
u (1− |u|2) in R2

−∇⊥curlA =< i u,∇Au > in R2.
(3.4)

Theses equations are termed the Ginzburg-Landau equations.

3 Remarks on the Ginzburg-Landau equations

In this section, we prove a few elementary results concerning solutions of the Ginzburg-
Landau equations (3.4), that are going to be useful for the rest and that help un-
derstand the idea of the proofs.
First, let (u,A) ∈ A be a critical point of J and let N be the corresponding degree.
Then, thanks to proposition 2.6, (u,A) is gauge equivalent to (v,B), where

B = 2 π N ~C + P, (3.5)

and it follows from the preceding section that (v,B) is smooth. In particular |u|2 =
|v|2 is smooth and similarly are all the gauge-invariant quantities.

Now, we give a standard property for the Ginzburg-Landau equations (3.4).

Lemma 3.5. Any solution (u,A) of the Ginzburg-Landau equations (3.4) satisfies

‖u‖L∞(R2) ≤ 1. (3.6)

Proof : Let (u,A) be a solution of the Ginzburg-Landau equations (3.4). Let us
adapt the same notations as the above on the configuration (v,B). First, we have
|u| = |v|, so to prove (3.6), it suffices to show that |v| ≤ 1, which follows from the
maximum principle. Indeed, we will check that at the points where the density of
the superconducting electrons which is |v|2 is maximum, the inequality |v| ≤ 1 holds.
From (3.2), we can write under the gauge divB = divP = 0 which is known as the
Coulomb gauge.

∆v =
v

ε2
(|v|2 − 1) + |B|2 v + 2 i B .∇v in R2. (3.7)

Let us calculate the laplacian of |v|2

∆|v|2 =v ∆v + v ∆v + 2 |∇v|2

=2 Re(v ∆v) + 2 |∇v|2.

We replace ∆v with the right-hand side of (3.7) in the above to get
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∆|v|2 =
2
ε2
|v|2 (|v|2 − 1) + 2 |B|2 |v|2 + 4 Re(i v B .∇v) + 2 |i ∇v|2

=
2
ε2
|v|2 (|v|2 − 1) + 2 |∇v − i B v|2.

(3.8)

Let z ∈ R2 where the maximum of the function |v|2 is achieved, then
(
∆|v|2

)
(z) ≤ 0.

We obtain from (3.8) that necessarily |v|(z) ≤ 1. z is a maximum hence by continuity
of v the inequality |v| ≤ 1 is true everywhere. 2

The following two inequalities, in particular the last assertion, will be very useful
in the sequel.

Lemma 3.6. Let (u,A) be a solution of the Ginzburg-Landau equations (3.4) and
h = curl A. Then

|∇Au|2 ≥ |∇h|2, (3.9)

and
JK(u,A) ≥ 1

2
‖h− hex‖2H1(K). (3.10)

Proof : We have noted locally, u = ρ ei ϕ. First, (2.6) is

|∇Au|2 = |∇ρ|2 + ρ2 |∇ϕ−A|2.

Moreover, the second Ginzburg-Landau (3.4) gives us

|∇h| = | < i u, ∇Au > | = ρ2 |∇ϕ−A|.

Hence

|∇ϕ−A|2 =
|∇h|2

ρ4
.

This implies that

|∇Au|2 = |∇ρ|2 +
|∇h|2

ρ2
≥ |∇h|2

ρ2
.

Using ρ ≤ 1, we get (3.9). Returning now to the energy given by (2.7), we can write
using (3.9)

JK(u,A) =
1
2

∫
K
|∇Au|2 +

1
2

∫
K
|h− hex|2 +

1
4 ε2

∫
K

(1− ρ2)2

≥1
2

∫
K
|∇h|2 +

1
2

∫
K
|h− hex|2 +

1
4 ε2

∫
K

(1− ρ2)2

≥1
2

∫
K
|∇h|2 +

1
2

∫
K
|h− hex|2

=
1
2
‖h− hex‖2H1(K).

(3.11)
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2

We state the following a priori estimates of (u,A) solution of the Ginzburg-
Landau equations (3.4). Set locally ρ = |u|.

Lemma 3.7. Let (u,A) be a solution of the Ginzburg-Landau equations (3.4) and
h = curlA. Then

‖∇ρ‖L∞(R2) ≤
C

ε
, (3.12)

‖∇Au‖L∞(R2) ≤
C

ε
, (3.13)

‖h− hex‖C2
loc(R2) ≤

C

ε2
, (3.14)

‖h− hex‖C1
loc(R2) ≤

C

ε
. (3.15)

Proof : These estimates are proved in [HP], proposition 4.2, see also [P] lemma
7.1. They rely on a blow-up at scale ε, which leads to equations at scale 1, for which
all the quantities are uniformly bounded. 2

Remark 3.8. Let (u,A) be a minimizer of the energy J over the space A. In
particular, it is a solution of the Ginzburg-Landau equations (3.4), and then the
results of lemmas 3.5, 3.6 and 3.7 remain true.
From now on, we will only consider the energy J and take the configurations (u,A)
which are in A.
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Chapter 4

Construction of vortex balls

In this chapter, keeping the same notations as in chapter 2, we define the vortices
of (u,A) ∈ A with their degrees, by defining balls

(
Bi

)
i∈I

, such that |u| ≥ 3
4 on

K\ ∪i∈I Bi. We also give a suitable lower bound of the energy J on the balls Bi
which will be very useful for the rest.

1 The main result

In this chapter, we take applied fields hex satisfying the a priori bound

hex ≤ C | log ε|.

We take K to be any square of sidelength 1. Now, we define some quantities that
will be useful in the sequel. For (uε, Aε) ∈ A —where A is given by definition 2.3
— we set for any compact O ⊂ R2

Fε(uε, Aε, O) :=
1
2

∫
O
|∇uε − i Aε uε|2 +

1
4 ε2

∫
O
(1− |uε|2)2. (4.1)

We know that the quantities |∇uε − i Aε uε|2, (1− |uε|2)2 and hε are periodic, thus
there exists C > 0 depending on O such that

Fε(uε, Aε, O) ≤ C Fε(uε, Aε,K), ‖hε‖L2(O) ≤ C ‖hε‖L2(K). (4.2)

Let us define

γε := ‖hε‖L2(K). (4.3)

Now, we construct a family of disjoint balls (Bi)i containing the set {|u| < 3
4}. The

main result is

Proposition 4.1. Let K be any square of sidelength 1. If hex ≤ C | log ε|, there
exists ε0 such that if ε < ε0 and (uε, Aε) ∈ A satisfies |∇uε − i Aε uε| < C

ε ,
γε = ‖hε‖L2(K) ≤ C hex, and

Fε(uε, Aε,K) ≤ C αε hex,
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where 1 � αε ≤ C | log ε| and mε = o(1) satisfy

logαε
αε

� mε, (4.4)

then there exist a square of sidelength 1 still denoted K and a family of disjoint balls(
Bi = Bi(ai, ri)

)
i∈Iε

of center ai and of radii ri satisfying

{x ∈ K, |uε(x)| <
3
4
} ⊂ ∪i∈IεBi, (4.5)

∪i∈IεBi(ai, ri) ⊂ K, (4.6)∑
i∈Iε

ri ≤ C αε e
−mε αε , (4.7)

card(Iε) ≤ C αε hex, (4.8)

Fε(uε, Aε, Bi) ≥ π |di|
(
| log ε| − log γε −mε αε

)
, (4.9)

where di is the degree of the map uε
|uε| restricted to ∂Bi.

Remark 4.2. Thanks to the construction of the vortex balls that we recall in the
above proposition, the fundamental domain of periodicity of (uε, Aε) in A will be
from now on the square K = [0, 1[×[0, 1[. We will refer to (ai, di)i∈Iε as the family
of the vortices defined on K associated to (uε, Aε) and to (Bi)i∈Iε as the family of
the vortex balls. In particular, the balls (Bi)i∈Iε can be extended by periodicity to
R2. For this, for any i ∈ Iε, denote by Bi = Bi,0,0, then we let Bi,n,m be the ball
image of Bi = Bi,0,0 by translation of vector (n~i+m ~j) where n and m are in Z .
Going back to (4.5)-(4.6), then by periodicity of |uε|, we can write

|uε| ≥
3
4

on R2\
(
∪(i∈Iε, n,m∈Z) Bi,n,m

)
.

Let us give the meaning of the different inequalities given in the proposition 4.1.
First, (4.5) locates the set where |uε| is less than 3

4 , which is contained in a union
of the disjoint balls (Bi)i∈Iε . Second, from (4.6), there is no intersection between
the balls and the boundary of K. Finally, (4.7) gives us a control on the size of the
balls and (4.9) states a lower bound of the energy. Note that di be the degree of uε

|uε|
restricted to ∂Bi = ∂Bi(ai, ri). Writing locally uε

|uε| = ei ϕε , then by definition of di,
we have

di = deg(
uε
|uε|

, ∂Bi) =
1

2 π

∫
∂Bi

∇ϕε .τ.

Now, taking Bi,1,0 which is the ball image of Bi,0,0 by translation of vector ~i, we
have

deg(
uε
|uε|

, ∂Bi,1,0) =
1

2 π

∫
∂Bi,1,0

∇ϕε .τ. (4.10)
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Thanks to (2.4), there exist l ∈ Z and f ∈ H2
loc(R2) such that ∀ (x, y) ∈ R2

ϕε(x, y) = ϕε(x− 1, y) + f(x− 1, y) + 2 π l.

We take the gradient

∇ϕε(x, y) = ∇ϕε(x− 1, y) +∇f(x− 1, y).

Obviously,

1
2 π

∫
∂Bi,1,0

∂ϕε
∂τ

=
1

2 π

∫
∂Bi,0,0

∂ϕε
∂τ

+
∂f

∂τ
.

f ∈ H2
loc(R2), hence it is continuous on R2. Then, in view of curl∇f = 0, we obtain∫

∂Bi,0,0

∂f

∂τ
=

∫
Bi,0,0

curl∇f = 0.

Thus, for any i ∈ Iε

deg(
uε
|uε|

, ∂Bi,1,0) =
1

2 π

∫
∂Bi,1,0

∂ϕε
∂τ

=
1

2 π

∫
∂Bi,0,0

∂ϕε
∂τ

= di = deg(
uε
|uε|

, ∂Bi,0,0).

(4.11)
Similar to (7.51), we can prove for any i ∈ Iε and n,m ∈ Z

di = deg(
uε
|uε|

, ∂Bi,0,0) = deg(
uε
|uε|

, ∂Bi,n,m). (4.12)

This means that the degree is invariant under periodicity.

2 Corollaries from Proposition 4.1

Corollary 4.3. Under the hypotheses of proposition 4.1 and using the notations
there, we have

Fε(uε, Aε, Bi) ≥ π |di| | log ε|
(
1− o(1)

)
, (4.13)

and if γε = O(αε),

Fε(uε, Aε, Bi) ≥ π |di|
(
| log ε| − C mε αε

)
. (4.14)

Proof. Combining the assumption αε ≤ C | log ε| together with γε ≤ C | log ε| in
(4.9), the lower bound (4.9) rewrites as

Fε(uε, Aε, Bi) ≥ π |di| | log ε|
(
1− o(1)

)
.

In the case where γε = O(αε), we have from (4.4)

log γε +mε αε ≤ logC + logαε +mε αε ≤ C mε αε.

Inserting this in (4.9), the proof of (4.14) is completed.
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The second corollary is

Corollary 4.4. Let (uε, Aε) ∈ A satisfying the hypotheses of proposition 4.1 and
hε = curlAε be the induced magnetic field, then

Nε =
∑
i∈Iε

di, (4.15)

where the family (di)i∈Iε is given by the proposition 4.1 and Nε = 1
2 π

∫
K hε.

Proof. Let
wε =

uε
|uε|

= ei ϕε . (4.16)

Then
(i wε,∇wε) = Re(i wε ∇w̄ε) = ∇ϕε. (4.17)

It follows that curl(i wε,∇wε) = 0 in K\ ∪i∈Iε Bi. In particular,∫
K\∪i∈IεBi

curl(i wε,∇wε) = 0. (4.18)

Thanks to (4.6), which is ∪i∈IεBi(ai, ri) ⊂ K, (4.18) implies∫
∂K

(i wε,
∂wε
∂τ

) =
∑
i∈Iε

∫
∂Bi

(i wε,
∂wε
∂τ

). (4.19)

Hence from (4.17), (4.19) reads∫
∂K

∂ϕε
∂τ

=
∑
i∈Iε

∫
∂Bi

∂ϕε
∂τ

. (4.20)

On the one hand, by definition of the degree di of uε
|uε| restricted to ∂Bi, we have

∑
i∈Iε

∫
∂Bi

∂ϕε
∂τ

= 2 π
∑
i∈Iε

di. (4.21)

On the other hand, using definition 2.3, a simple calculation gives

∫
∂K

∂ϕε
∂τ

=

1∫
0

(A1(x, 1)−A1(x, 0))dx−
1∫

0

(A2(1, y)−A2(0, y))dy

=fε(0, 0)− fε(0, 1) + gε(1, 0)− gε(0, 0)

=IIε(0, 0) = 2 π Nε.

(4.22)

Combining now (4.21) together with (4.22) in (4.20) proves (4.15).
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3 Proof of Proposition 4.1

Here, let Ω ⊂ R2 be the smooth, bounded and connected section of the supercon-
ductor. We consider (u,A) ∈ H1(Ω,C) × H1(Ω,R2) and h = curlA the induced
magnetic field. We use the method of R. Jerrard introduced in [J] in order to con-
struct balls containing all the zeroes of u, on which we have a suitable lower bound
of the energy (see [Sa] for a similar construction). The size of the balls has to be
large enough, so that most of the energy is concentrated in these balls.
We follow closely the proofs of [J] and we adopt the presentation of [SS1].
First, we include the set

{
x, |u(x)| < 3

4

}
in well-chosen disjoint small balls Bi of

radii ri > ε such that

Fε(u,A,Bi) ≥
C ri
ε
,

where Fε(u,A,Bi) is defined in (4.1). This is possible according to the following.

Lemma 4.5. Let u : Ω → C, A : Ω → R2 be such that |∇u − i A u| < C
ε . Then,

there exist disjoint balls B1, ..., Bk of radii ri such that

(1) ∀ 1 ≤ i ≤ k, ri > ε,

(2) {x ∈ Ω, |u(x)| < 3
4
} ⊂ ∪1≤i≤kBi,

(3) ∀ 1 ≤ i ≤ k, Fε(u,A,Bi ∩ Ω) ≥ C ri
ε
.

3.1 Proof of lemma 4.5

We use the notation S(x, r) for the circle in R2 of center x and radius r. Let
(u,A) ∈ H1(Ω,C)×H1(Ω,R2) and h = curl A. Let us take

γ = ‖h‖L2(Ω),

then we will take γ to be fixed and establish lower bounds for Fε on circles in which
γ appears as a parameter. For y ∈ R, set y+ = max{y, 0}.
We have

Lemma 4.6. If u : Ω → C and A : Ω → R2, there exist r(Ω), C(Ω) such that
∀ x ∈ Ω, ∀ ε < r < r(Ω), letting m = minSr∩Ω |u|,

Fε(u,A, Sr) ≥
(1−m)C

C ε
. (4.23)
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Proof : We write locally u = ρ ei ϕ. For y = (y1, y2) ∈ Sr, let τ(y) := 1
|y| (−y2, y1)

denote the oriented tangent at y. We start by

Fε(u,A, Sr) =
∫
Sr

1
2
|∇ρ|2 +

1
2
ρ2 |∇ϕ−A|2 +

1
4 ε2

∫
K

(1− |ρ|2)2

≥
∫
Sr

1
2
|∇τρ|2 +

1
4 ε2

∫
K

(1− |ρ|2)2,

then, using lemma 2.5 of [J] completes the proof of lemma 4.6. 2

Using (4.23) and replacing in the proof of lemma 3.1 of [SS1] the quantity∫
Sr
|∇u|2 + 1

2 ε2

∫
Sr

(1− |u|2)2 with Fε(u,A, Sr), the lemma 4.5 is proved.

3.2 Estimation on circle

From [J], lemma 6.1, we have the following

Lemma 4.7. There exist constants C, p > 0 such that if u : St → C and A : St →
R2, where St is a circle of radius t in R2 such that t > ε, then

Fε(u,A, St) ≥ λε(t, |d|),

where

λε(r, d) = min
m∈[0,1]

{
m2

r

(
(
√
π d− r γ

2
)+

)2
+

1
C ε

|1−m|p
}
. (4.24)

Moreover

λε(r, d) ≥
π

r

[(
d− r γ

2
√
π

)+
]2 [

1− C
εq

rq

]
, (4.25)

where q = 1
p−1 > 0.

Let us define a function Λε, which provides a convenient way of keeping track
of lower bounds on balls, and we record several properties of Λε. First, denote by
a ∧ b = min(a, b) for any a, b ∈ R, and then we set for r > 0

Λε(r) :=
∫ r

0
λε(s, 1) ∧ c0

ε
ds, (4.26)

where c0 is a constant to be selected below.

Remark 4.8. In [J], proposition 6.1, Jerrard has assumed that γ is bounded inde-
pendently of ε and has found that

Λε(r) ≥ π log
1
ε

+ log(r ∧ γ−1)− C, ∀ r > 0.

However, this assertion remains true under the weaker assumption

γ ε ≤ C.

For the reader ’s convenience, we will give a proof of this in the next paragraph.
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3.3 Properties of Λε

The function Λε satisfies the following properties.

Lemma 4.9. The function Λε is increasing. Moreover

(1) Λε(r + s) ≤ Λε(r) + Λε(s) ∀ r, s ≥ 0.

(2)
Λε(s)
s

is nonincreasing on R+.

Assume that γ ≤ c
ε , then ∀ r > 0

(3) Λε(r) ≥ π log
(r ∧ 1

γ

ε

)
− C.

Proof : From the definition (4.24) of λε, it is clear that λε > 0 and that r → λε(r, 1)
is nonincreasing. The first of these facts implies that Λε is increasing; from the two
facts together it is easy to see that the assertion (1) holds.
Next, the assertion (2) is clear, since 1

s Λε(s) is just the average over the interval
[0, s] of the nonincreasing function r 7−→ λε(r, 1) ∧ c0

ε .
Now, we provide a proof of the assertion (3). Recall from (4.25) that

λε(r, 1) ≥ π
(
(1− r γ

2
√
π

)+
)2 (1

r
− C

εq

rq+1

)
. (4.27)

We need to find a condition on r in order to obtain

π
(
(1− r γ

2
√
π

)+
)2 (1

r
− C

εq

rq+1

)
≤ c0

ε
. (4.28)

First,
(

1
r − C εq

rq+1

)
≤ c1

ε whenever r ≥ c2 ε for some c2 > 0. Second, the quantity(
(1 − r γ

2
√
π
)+

)2
≤ 1 even when γ is unbounded. Then, there exists c0 > 0, which

is c0 = π c2, such that for c2 ε ≤ r, the inequality (4.28) holds. As a result from
(4.27)-(4.28), we can write for c2 ε ≤ r

λε(r, 1) ∧ c0
ε
≥ π

(
(1− r γ

2
√
π

)+
)2 (1

r
− C

εq

rq+1

)
. (4.29)

Now, we assume that γ ε ≤ c0. We distinguish the two following cases.
Case 1: r ≤ 2

√
π

γ
Here, we can write

(1− r γ

2
√
π

)+ = 1− r γ

2
√
π
.

For c2 ε ≤ s ≤ r, we get s ≤ 2
√
π

γ , so
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(1− s γ

2
√
π

)+ = 1− s γ

2
√
π
.

Consequently, we insert (4.29) in (4.26) to get

Λε(r) ≥
∫ r

c2 ε
π

(
(1− s γ

2
√
π

)+
)2 (1

s
− C

εq

sq+1

)
≥

∫ r

c2 ε
π

(
1− s γ√

π

) (1
s
− C

εq

sq+1

)
.

Using the assumption γ ε ≤ c0 and thanks to r ≤ 2
√
π

γ , we obtain

Λε(r) ≥π
∫ r

c2 ε

(1
s
− C

εq

sq+1

)
− π

∫ r

c2 ε

γ√
π

≥π
∫ r

c2 ε

(1
s
− C

εq

sq+1

)
− π

∫ 2
√

π
γ

c2 ε

γ√
π
.

A simple calculation gives us

Λε(r) ≥ π log(
r

ε
)− C εα

∫ 2
√

π
γ

c2 ε
s−1−qds− (

2
√
π

γ
− c2 ε)

γ√
π

≥ π log(
r

ε
) + C (ε γ)q − C.

We find

Λε(r) ≥ π log(
r

ε
)− C. (4.30)

Case 2: r > 2
√
π

γ

Here, we can write (1 − r γ
2
√
π
)+ = 0. First, using the assumption γ ε ≤ c0, we can

state

Λε(r) ≥
∫ r

c2 ε
π

(
(1− s γ

2
√
π

)+
)2 (1

s
− C

εq

sq+1

)

≥
∫ 2

√
π

γ

c2 ε
π

(
(1− s γ

2
√
π

)+
)2 (1

s
− C

εq

sq+1

)

Since c2 ε ≤ s ≤ 2
√
π

γ ,

(1− s γ

2
√
π

)+ = 1− s γ

2
√
π
.
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Obviously as in the case 1,

Λε(r) ≥
∫ 2

√
π

γ

c2 ε
π

(
1− s γ

2
√
π

)2 (1
s
− C

εq

sq+1

)

≥ π log
(2

√
π γ−1

ε

)
+ C (ε γ)q − C.

We obtain

Λε(r) ≥ π log(
γ−1

ε
)− C. (4.31)

From (4.30)-(4.31), we can deduce

Λε(r) ≥ π log
(r ∧ 1

γ

ε

)
− C.

This completes the proof of lemma 4.9. 2

3.4 Estimation on an annulus

The proof of proposition 4.1 involves dilating the balls Bi ( which are defined by
lemma 4.5) into balls B′

i. A lower bound for Fε(u,A,B′
i) is obtained by combining

the lower bound for Fε(u,A,Bi) and a lower bound of the energy on the annulus
B′
i\Bi. In particular, referring to proposition 6.2 of [J], we have the following

Lemma 4.10. ∀r > s > ε, if Br and Bs are two concentric balls of respective
radii r and s, and if u : Br\Bs → C is such that |u| > 3

4 , d = deg(u, ∂Br), and
A : Br\Bs → R2, then

Fε(u,A,Br\Bs) ≥ |d|
(
Λε(

r

|d|
)− Λε (

s

|d|
)
)
. (4.32)

Also,
Fε(u,A,Br\Bs) ≥ Λε(r)− Λε (s). (4.33)

3.5 Growing and merging

The method consists in starting from {|u| < 3
4}, and when this set is not too big,

including it the balls Bi, 1 ≤ i ≤ k that shall grow progressively. The energy on
each ball is controlled during the growth process thanks to lemma 4.10. Then, it
may happen that some balls intersect. We then merge them into a larger ball of a
radius equal to the sum of the merged balls, and check that we still have a suitable
lower bound on the energy over the new ball. We proceed with the growing and
merging until the balls have the desired size. For more details of this phenomena,
we can refer to [Sa]. The following lemma sums up the whole growth process.

41



Lemma 4.11. Let u : Ω → C, A : Ω → R2 be such that |∇u− iA u| < C
ε and {Bi}i

be a family of balls of radii satisfying the results of lemma 4.5.
Let

s0 = min
{di 6=0}

(
ri
|di|

),

where di = deg(uε, ∂Bi) if Bi ⊂ Ω and 0 otherwise. Then, for every s ≥ s0, there
exists a family B(s) of disjoint balls B1(s), ..., Bk(s)(s) of radii ri(s) such that

(1) the family of balls is monotone,

(2) for every i, Fε(u,A,Bi(s)) ≥ ri(s) Λε(s)
s , where Λε is defined by lemma 4.10,

(3) if di(s) = deg(u, ∂Bi(s)) with Bi(s) ⊂ Ω, then ri(s) ≥ s |di(s)|.

Proof : The proof is as in [SS1], proposition 3.1, replacing the quantity 1
2

∫
Bi(s)

|∇u|2+
1

4 ε2

∫
Bi(s)

(1− |u|2)2 with Fε(u,A,Bi(s)). 2

3.6 The final balls

Now, we get as a consequence of the above, the following proposition which gives us
the final balls that we need.

Proposition 4.12. Let u : Ω → C, A : Ω → R2 be such that |∇u− i A u| < C
ε and

Fε(u,A,Ω) ≤ C αε | log ε| where 1 � αε ≤ C | log ε| and γε ≤ C | log ε|, then letting
mε = o(1) be any sequence verifying

logαε
αε

� mε,

there is an ε0 such that ∀ ε < ε0, there exists a finite family of disjoint balls(
Bi = B(ai, ri)

)
i∈k

of center ai and of radii ri such that

(1) {x ∈ Ω, |u(x)| < 3
4
} ⊂ ∪i∈kBi,

(2)
∑
i∈k

ri ≤ C αε e
−mε αε ,

(3) card k ≤ C αε | log ε|.

In addition

Fε(u,A,Bi ∩ Ω) ≥ π |di|
(
| log ε|+ log

(
e−mε αε ∧ γ−1

ε

))
, (4.34)

where di is the degree of the map u
|u| restricted to ∂Bi if Bi ⊂ Ω and is equal to 0

otherwise.

42



Proof of proposition 4.12

First, consider the balls given by lemma 4.5, then apply the lemma 4.11 to get bigger
balls. If s0 = min{di 6=0}(

ri
|di|), we must then check that s0 is small enough to be able

to apply the lemma 4.11 for s large enough. By the assertion (3) of lemma 4.5,

C ri < ε Fε(u,A,Bi ∩ Ω) ≤ C ε | log ε| αε, (4.35)

so that s0 ≤ C ε | log ε| αε. We can apply the lemma 4.11 for all s ≥ C ε | log ε| αε.
We take mε = o(1) any sequence verifying

logαε
αε

� mε.

Note that mε is positive. Now, we choose in particular

s1 = e−mε αε .

In other words, the lemma 4.11 yields the final balls B(s1) such that

∀ i if Bi(s1) ⊂ Ω, Fε(u,A,Bi) ≥
ri(s1)
s1

Λε(s1),

with
ri(s1) ≥ s1 |di(s1)|.

Furthermore

Fε(u,A,Bi) ≥ |di(s1)| Λε(s1).

Then, from the assertion (3) of the lemma 4.10, we have under γε ε ≤ c

Fε(u,A,Bi) ≥ |di(s1)|
(
π log

s1 ∧ γ−1
ε

ε
− C

)
, (4.36)

which holds in our case because we have assumed that γε ≤ C | log ε|, so for ε a
small enough, γε ε ≤ c. We thus get the lower bound (4.34) on Fε. Now, we will
prove the assertion (2). From the assertion (2) of the lemma 4.11,∑

i∈k
ri

Λε(s1)
s1

≤
∑
i∈k

Fε(u,A,Bi(s1)).

Since the balls
(
Bi(s1)

)
i∈k

are disjoint,

∑
i∈k

Fε(u,A,Bi(s1)) = Fε(u,A,∪i∈kBi(s1)) ≤ Fε(u,A,Ω) ≤ C | log ε| αε.

It follows that ∑
i∈k

ri(s1) ≤ C
s1

Λε(s1)
| log ε| αε. (4.37)

Moreover, thanks to fact that γε and αε are less than C hex, together with the fact
that mε � logαε

αε
, we have for ε sufficiently small
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Λε(s1) ≥ π
(
| log ε|+ log(e−mε αε ∧ γ−1

ε )
)

≥ π
(
| log ε| −mε αε − log γε

)
≥ C | log ε|.

(4.38)

We insert (4.38) in (4.37) to get

∑
i∈k

ri(s1) ≤C
s1

Λε(s1)
| log ε| αε

≤C s1 αε ' C αε e
−mε αε .

(4.39)

Thanks to mε � logαε

αε
, we remark for a sufficiently small ε∑

i∈k
ri(s1) = o(1).

There only remains to show that the assertion (3) holds. This is easy, since in lemma
4.5 each ball satisfies Fε(u,A,Bi ∩ Ω) ≥ C ri

ε , with ri > ε, hence carries an energy
that is bounded from below by a constant independent from ε. As Fε ≤ C αε | log ε|,
we see that the number of these balls has to be bounded by C αε | log ε|. Then, the
procedure of lemma 4.11 does not increase the number of balls, so that property (3)
is true. This completes the proof of proposition 4.12.

3.7 Completing the proof of proposition 4.1

Here, we apply proposition 4.12 in Ω = [0, 2[×[0, 2[, taking u = uε and A = Aε such
that |∇uε − i Aε uε| ≤ C

ε and Fε(uε, Aε,Ω) ≤ C αε | log ε| with

1 � αε ≤ C | log ε|, γε ≤ C | log ε| and
logαε
αε

� mε = o(1).

The conclusion is that there exist balls (keeping the same notations)
(
Bi(ai, ri)

)
i∈kε

such that the assertions (1), (2), (3) and the lower bound (4.34) hold.

Lemma 4.13. If ε is sufficiently small, there exist 0 < x0 < 1 and 0 < y0 < 1
such that there is no intersection between the boundary of the square K0 = [x0, x0 +
1[×[y0, y0 + 1[ and any ball of the family

(
Bi(ai, ri)

)
i∈kε

.

Proof : We project the balls
(
Bi(ai, ri)

)
i∈kε

on the horizontal line of equation

y = 1 contained in Ω = [0, 2[×[0, 2[. Then, since logαε

αε
� mε = o(1), the assertion

(2) in proposition 4.12 gives us∑
i∈kε

ri ≤ C αε e
−mε αε = o(1).
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From the above identity and if ε is sufficiently small, there must exist 0 < x0 < 1
such that the two lines contained in Ω of equations x = x0 and x = x0 + 1 don’t
intersect any ball of the family

(
Bi(ai, ri)

)
i∈kε

. Similarly, using the same argument,

then if ε is sufficiently small there exists 0 < y0 < 1 such that there is no intersection
between the two lines contained in Ω of equations y = y0 and y = y0 + 1, and the
balls

(
Bi(ai, ri)

)
i∈kε

.

Consequently, for an ε small enough, it is clear that the boundary of the square
K0 = [x0, x0+1[×[y0, y0+1[ does not intersect any ball of the family

(
Bi(ai, ri)

)
i∈kε

.
2

Now, let card(Iε) be the number of the balls from
(
Bi(ai, ri)

)
i∈kε

which are

contained in the square K0. It is obvious from the lemma 4.13 that
(
Bi(ai, ri)

)
i∈Iε

is the new family of balls verifying, thanks to lemma 4.13,

∪i∈IεBi(ai, ri) ⊂ K0. (4.40)

Remark that K0 can be considered as the fundamental domain of periodicity for
(uε, Aε) ∈ A.
The balls

(
Bi(ai, ri)

)
i∈kε

are disjoint, then by definition of Iε, the balls
(
Bi(ai, ri)

)
i∈Iε

are disjoint too. Moreover, it is immediate that the assertions (1), (2), (3) and the
lower bound (4.34) in proposition 4.12 hold.

Finally, let (uε, Aε) verify the hypotheses of proposition 4.1, then referring to
(4.2), we can find that the hypotheses of proposition 4.12 remain true. Hence, using
the above completes the proof of the proposition 4.1 ( Here K0 is the square of
sidelength 1 where the family of balls

(
Bi(ai, ri)

)
i∈Iε

is defined). Proposition 4.1 is

then proved with K = K0.

Remark 4.14. Without loss of generality, we will assume that the square K above
is simply [0, 1[×[0, 1[.
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Chapter 5

Applied magnetic fields of the
order of Hc1

In this chapter, we assume that hex is of the order of Hc1 where Hc1 behaves for
ε→ 0 as | log ε|

2 . We will study in the limit ε→ 0 the asymptotic behavior of global
minimizers (uε, Aε) of the Ginzburg-Landau energy JK over the space A and we
will explore the vortex-structure of (uε, Aε). In particular, our interest is to describe
the repartition and the number of the vortices. Our work will be based on the
construction of the vortex balls summarized in proposition 4.1.

1 Statement of results

Consider hex a function of ε and assume

λ = lim
ε→0

| log ε|
hex

, (5.1)

exists and is finite. If λ = 0, we require in addition that hex � 1
ε2

. We take K to
be any square of sidelength 1. Let (uε, Aε) be a minimizer of the energy JK over
the space A and hε = curlAε be the induced magnetic field. From now on, we will
write J instead of JK .

In the case λ = 0, we have the following.

Proposition 5.1. Assume | log ε| � hex � 1
ε2

. Let hε be the induced magnetic field
of a minimizing configuration (uε, Aε). Then, hε

hex
tends strongly to 1 locally in H1

and
lim
ε→0

J(uε, Aε)
h2
ex

= 0. (5.2)

Now, we restrict to the case λ > 0, i.e. hex ≤ C | log ε|. We define the space V

V :=
{
f ∈ H1

loc(R2,R) such that f is periodic and µ = −∆f+f is a Radon measure
}
.

(5.3)
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We define for f ∈ V

E(f) =
λ

2

∫
K
| −∆f + f |+ 1

2

∫
K
|∇f |2 +

1
2

∫
K
|f − 1|2, (5.4)

and
P (f) =

1
2

∫
K
|∇f |2 +

1
2

∫
K
|f |2.

We have

Proposition 5.2. There exists a unique h∗ such that

E(h∗) = min
f∈V

E(f) =
1
2
− min
f∈W0

P (f) =
1
2
− P (h∗),

where

W0 =:
{
f ∈ H1

loc(R2,R), f is periodic, and ‖f − 1‖L∞(R2) ≤
λ

2

}
. (5.5)

1.1 Notations

We recall some facts about the weak convergence of general Radon measures.
Theorem 1([EG])
Let ν, νk (k = 1, 2, ...) be Radon measures defined on R2. The following three state-
ments are equivalent:
(i) limk→∞

∫
R2 f dνk =

∫
R2 f dν for all f ∈ Cc(R2).

(ii) lim supk→∞ νk(O) ≤ ν(O) for each compact setO ⊂ R2 and ν(U) ≤ lim infk→∞ νk(U)
for each open set U ⊂ R2.
(iii) limk→∞ νk(B) = ν(B) for each bounded Borel set B ⊂ R2 with ν(∂B) = 0.

Definition 5.3. If (i) through (iii) hold, then we say that the measures νk converge
weakly to the measure ν, it is written

νk ⇀ ν. (5.6)

We also have
Theorem 2 ([EG])
Let {νk}∞k=1 be a sequence of Radon measures on R2 satisfying

sup
k
νk(O) <∞ for each compact set O ⊂ R2.

Then, there exists a subsequence {νkj
}∞j=1 and a Radon measure ν on R2 such that

(in the sense of (5.6))
νkj

⇀ ν.

48



1.2 Main Theorem

Let J0 be the energy of the test configuration (u ≡ 1, A ≡ 0), also called the vortex-
less energy. Then

J0 = J(u ≡ 1, A ≡ 0) =
1
2
h2
ex.

Once we restrict to the case λ > 0, we use the construction of the vortex balls that
we recalled in proposition 4.1. Indeed, letting (uε, Aε) be a minimizer of J over
the space A, we will prove after (precisely, in the section of the lower bound of the
energy J) that the hypotheses of the proposition 4.1 remain true, so we take the
“vortices” (ai, di)i∈Iε defined by that proposition on the square K = [0, 1[×[0, 1[.
The main result is the following

Theorem 5.4. Assume λ > 0. Let (uε, Aε) be a minimizer of J over A and hε =
curlAε be the associated magnetic field. Then, as ε→ 0

hε
hex

⇀ h∗ = max
(
0, 1− λ

2

)
weakly locally in H1.

In addition,

lim
ε→0

J(uε, Aε)
h2
ex

=

{ λ
2 (1− λ

4 ) if 0 < λ < 2

1
2 if λ ≥ 2.

(5.7)

Moreover, letting µε be the extended measure by periodicity to R2 of the measureP
i∈Iε

2 π di δai

hex
, we have as ε→ 0

µε ⇀ max
(
0, 1− λ

2

)
dx (5.8)

where dx is the Lebesgue measure on R2.

Let (uε, Aε) be a minimizer of J over A and hε = curlAε. Recall that, if Nε is
defined by

Nε :=
1

2 π

∫
K
hε, (5.9)

then from corollary 4.4, we have Nε =
∑

i∈Iε di, and then Nε represents the number
of the vortices per period. In particular, Theorem 5.4 gives us the order of Nε when
ε tends to 0.

Corollary 5.5. Let λ ≥ 0, then

lim
ε→0

Nε

hex
= max

(
0,

1
2 π

(1− λ

2
)
)
. (5.10)

Proof. Since Nε = 1
2 π

∫
K hε, we have

lim
ε→0

Nε

hex
=

1
2 π

lim
ε→0

hε
hex

. (5.11)

49



If λ > 0, Theorem 5.4 implies that hε
hex

tends weakly in H1(K) to h∗, where h∗ =
max(0, 1− λ

2 ), and modulo a subsequence, the convergence is strong in L1. Therefore

2 π lim
n→+∞

Nεn

hex
=

∫
K
h∗ = max

(
0, 1− λ

2

)
. (5.12)

If λ = 0, then hε
hex

tends to 1 strongly in H1 from corollary 5.1, and therefore

2 π lim
n→+∞

Nεn

hex
= 1. (5.13)

This completes the proof.

Proposition 5.6. If λ > 2, there exists ε0 > 0 such that for any ε < ε0∑
i∈Iε

|di| = 0,

where (ai, di)i∈Iε is the family of vortices defined on K and associated to minimizers
of J over the space A.

1.3 Interpretations and commentaries

The results of Theorem 5.4 first indicate that (hex max
(
0, 1− λ

2

)
) can be seen as

a good approximation of hε as ε→ 0, and provide the asymptotic expansion of the
energy. Also, the convergence (5.8) gives us an idea on the limit measure of vortices,
so it describes the repartition of the vortices for global minimizers (uε, Aε) of the
energy J over the space A. While, (5.10) gives us an estimate on the number of the
vortices per period. In particular, we have with respect to λ (and then the applied
field hex) the following

• If 0 < λ < 2, (5.8) implies that there is a uniform-vortex distribution, and
from corollary 5.5, we remark that the number of the vortices per period is
expected to be proportional to the applied magnetic field hex.

• If λ ≥ 2, the number of vortices in the material is negligible compared to hex,
but the Theorem 6.1 does not give us an affirmative answer on the number and
the repartition of the vortices. However, from proposition 5.6, the minimizers
of J have no vortices when λ > 2. While, the case λ = 2 will be addressed in
chapter 6.

The above gives us a meaning to the value of the first critical field Hc1 which behaves
for ε → 0 as | log ε|

2 . Our results are slightly different to [SS3]. Indeed, in [SS3] the
vortices of minimizers of the Ginzburg-Landau energy JΩ over H1(Ω,C)×H1(Ω,R2)
are scattered uniformly in an inner region denoted ωλ with a vortex-density equal to
hex − | log ε|

2 (note that Ω is the section of the superconductor) . In the outer region
Ω\ωλ, there are no vortices. Moreover, taking ψ solution to
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−∆ψ + ψ = −1 in Ω

ψ = 0 on ∂Ω,

then as λ decreases, the vortex-region first appears at the minimum of ψ. More
clearly, a necessary and sufficient condition for ωλ to be nonempty is

ωλ 6= ∅ ⇐⇒ lim
ε→0

hex
| log ε|

≥ 1
2 max |ψ|

⇐⇒ λ ≤ 2 max |ψ|.

In addition, there exists C > 0 such that

dist(ωλ, ∂Ω) ≥ C λ.

Note that the difference between our results and those of [SS3] is due to the fact
that the periodic model removes the boundary effects.

The proof of Theorem 5.4 will be obtained by getting first an upper bound on the
energy by construction of approximate solutions, and then a lower bound based on
energy estimates and convergence of measures, in the spirit of gamma-convergence
(see [DC]) of the “normalized” energy J

hex
2 defined on A to the functional E over

the space V .

2 Upper bound of the energy

In this section, we bound from above J(uε,Aε)
h2

ex
where (uε, Aε) is a minimizer of J over

the space A.

2.1 Preliminaries

We take a ∈ R+. Let f ∈ V — where V is defined by (5.3) — satisfy

µ = a = −∆f + f in R2, (5.14)

where dµ = a dx. The fact that f is bounded in (5.14) leads to

f(x) = a ∀ x ∈ R2. (5.15)

Inserting (5.15) in (5.4), we obtain

E(f) =
λ a

2
+

(a− 1)2

2
. (5.16)

We define G to be the solution to

−∆xG(x, y) +G(x, y) = δy in R2. (5.17)

Remark that G exists and it is unique. We state some well known properties of G
(see [Ti] for instance).

51



Lemma 5.7. The function G(x, y), solution of (5.17), has the following properties

(1) G(x, y) is symmetric and positive.

(2) G(x, y) + 1
2 π log |x− y| has a C1 extension on R2.

(3) As |x− y| → +∞ we have that G(x, y), ∇xG(x, y) are O(e−|x−y|).

Finally ∫
R2

G(x, y) dx = 1. (5.18)

Proof : The first property is well known, and so is the third. The second property
follows by noting that U(x) = G(x, y) + 1

2 π log |x− y| satisfies the equation

−∆U + U =
1

2 π
log |x− y|.

The right hand side is in Lq locally for any q, hence locally by elliptic regularity, the
function U is locally in W 2,q , and therefore C1.
Finally, letting B(y,R) (resp. B(y, r)) be the ball of center y and of radius R > 0
(resp. r > 0), (5.18) follows by integrating the equation −∆xG(x, y) +G(x, y) = 0
in B(y,R) \B(y, r), letting R→ +∞ and r → 0, and using the asymptotics of G to
estimate the boundary terms. 2

2.2 Main result

The upper bound of the energy J we prove is

Proposition 5.8. Let hex be such that limε→0
| log ε|
hex

= λ, with the additional condi-
tion; if λ = 0, that hex � 1

ε2
. Let (uε, Aε) be a minimizer of the energy J over the

space A, then for any a ≥ 0

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ λ a

2
+

(a− 1)2

2
. (5.19)

Minimizing the right-hand side with respect to a ∈ R+ yields

Corollary 5.9. Under the same assumptions of proposition 5.8, we have

• If 0 < λ < 2, we have

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ λ

2
(1− λ

4
). (5.20)

• If λ = 0, we have

lim sup
ε→0

J(uε, Aε)
h2
ex

= 0. (5.21)
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Remark 5.10. Let hε be the induced magnetic field of a minimizing configuration
(uε, Aε). If λ = 0, (5.21) holds, then going back to (3.11) to write

J(uε, Aε)
h2
ex

≥ 1
2

∥∥∥ hε
hex

− 1
∥∥∥2

H1(K)
. (5.22)

Using (5.2) in (5.22) implies that hε
hex

tends to 1 strongly in H1(K). Now, thanks
to the periodicity of hε, there exists C > 0 such that for each compact O ⊂ R2

∥∥∥ hε
hex

− 1
∥∥∥
H1(O)

≤ C
∥∥∥ hε
hex

− 1
∥∥∥
H1(K)

.

It follows that hε
hex

tends to 1 strongly in H1(O) for each compact O ⊂ R2. The
proposition 5.1 is then proved.

2.3 Proof of proposition 5.8

Proposition 5.8 is proved by constructing a test configuration having approximately
a hex
2 π vortices of degree one regularly spread in K = [0, 1[×[0, 1[. We follow closely

[SS3], proposition 2.2.
Step 1
Let

p =

[ √
a hex
2 π

]
, (5.23)

where [x] denotes the greatest integer less than or equal to x. We place a point at
the center of each square [kp ,

k+1
p [×[ lp ,

l+1
p [, where 0 ≤ k, l < p. We call (aεi )1≤i≤n(ε)

the resulting family of points in the square K. The total number of points n(ε) is

n(ε) = p2 ' a hex
2 π

.

Letting µiε be the uniform measure on ∂(Bi(aεi , ε)) of mass 2 π, we define µKε to be
P

1≤i≤n(ε) µ
i
ε

hex
and µε to be the extension of µKε to R2 by periodicity. In other words,

µε =
∑

K µ
K
ε where the sum runs over a tiling of R2 by squares of sidelength 1. It

is clear from the above
µε ⇀ a dx. (5.24)

Step 2
Let β > 0 and set ∆β to be a β neighborhood of the diagonal in K ×K. Namely,

∆β = {(x, y) ∈ K ×K, |x− y| < β}.

Since µε ⇀ a dx, we have

µε ⊗ µε ⇀ a2 dx⊗ dx as ε→ 0.

In view of the continuity of G on
(
K ×K

)
\∆β, we are led to

lim sup
ε→0

1
2

∫ ∫
(K×K)\∆β

G dµε dµε =
a2

2

∫
(K×K)\∆β

G dx dy. (5.25)
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Moreover, since G(., .) is continuous on K × (R2\K), it follows that

lim
ε→0

∫
K×(R2\K)

G dµε dµε = a2

∫
K×(R2\K)

G dx dy. (5.26)

Now, we treat the integral on ∆β . Referring to [SS3], proposition 2.2, there exists a
constant c(β) → 0 as β → 0 such that

1
2
h2
ex

∫ ∫
∆β

G(x, y) dµε(x) dµε(y) ≤ C β π n(ε)
(
| log ε|+ 1

)
+ n(ε)

(
π | log ε|+ c(β)

)
+ C a2 h2

ex |∆2 β|.
(5.27)

We divide by h2
ex and we replace n(ε) with a hex

2 π to have for a small enough ε

1
2

∫ ∫
∆β

G(x, y) dµε(x) dµε(y) ≤
a | log ε|
2 hex

+ C β
1
hex

(
| log ε|+ 1

)

+
c(β)
hex

+ C |∆2β|.

We use λ ' | log ε|
hex

as ε→ 0 to get

lim sup
ε→0

1
2

∫ ∫
∆β

G(x, y) dµε(x) dµε(y) ≤
λ

2
a+ C |∆2β|+M(β),

where M(β) is a constant of β tending to 0 as β → 0. Thanks to (5.25) and to the
fact that limβ→0 |∆2β| = 0, we get

lim sup
ε→0

1
2

∫
K×K

G(x, y)dµε(x) dµε(y) ≤
λ

2
a+

a2

2

∫
K×K

G(x, y) dx dy. (5.28)

Now, combining (5.26) together with (5.28), we can deduce

lim sup
ε→0

1
2

∫
K×R2

G(x, y)dµε(y) dµε(x)

≤ lim sup
ε→0

1
2

∫
K×K

G(x, y)dµε(y) dµε(x) +
1
2

lim
ε→0

∫
K×(R2\K)

G dµε dµε

≤ λ

2
a+

1
2

∫
K×K

G(x, y) dx dy +
a2

2

∫
K×(R2\K)

G dx dy

≤ λ

2
a +

a2

2

∫
K ×R2

G(x, y) dx dy

=
λ

2
a+

a2

2
.
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Consequently, we find

lim sup
ε→0

1
2

∫
K ×R2

G(x, y) d(νε − 1)(x) d(νε − 1)(y) ≤ λ

2
a+

1
2

(a− 1)2. (5.29)

Step 3
Now, our interest is to prove (5.19), so for this we construct an appropriate test
configuration (vε, Bε) in A. First, we define hε to be the periodic solution of

−∆hε + hε = hex µε in R2, (5.30)

where µε was defined in step 1. Alternatively, hε(x) = hex
∫

R2 G(x, y) dµε(y). Now,
let Bε be a solution of

curl Bε = hε.

Bε is taken to be the magnetic potential.
We then need to define vε on R2. Writing vε = ρεe

iφε , we define ρε to be periodic
and in the square K

ρε(x) =


0 in ∪1≤i≤n(ε)

(
Bi(aεi , ε)

)
1 in K\∪1≤i≤n(ε)

(
Bi(aεi , 2ε)

) (5.31)

and such that 0 ≤ ρε ≤ 1, and for each 1 ≤ i ≤ n(ε),∫
Bi(aε

i ,ε)
|∇ρε|2 +

1
2 ε2

(1− ρ2
ε)

2 ≤ C. (5.32)

To define φε, let first

Bi = Bi(aεi , ε) for 1 ≤ i ≤ n(ε).

For any 1 ≤ i ≤ n(ε), let Bi,n,m be the image of Bi by translation of vector n~i+m~j
where n and m are in Z. We need only to define the function φε only modulo 2 π,
and where ρε 6= 0. The fact that φε is not defined on ∪(1≤i≤n(ε), n,m∈Z)Bi,n,m is not
important, since ρε = 0 there. Choosing a point x0 ∈ R2\ ∪(1≤i≤n(ε), n,m∈Z) Bi,n,m,
we define for any x ∈ R2\ ∪(1≤i≤n(ε), n,m∈Z) Bi,n,m, the function

φε(x) =
∮

(x0,x)
Bε.τ −∇hε.ν, (5.33)

where (x0, x) is any curve joining x0 to x in R2\ ∪(1≤i≤n(ε), n,m∈Z) Bi,n,m and (τ, ν)
is the Frenet frame on the curve. Note that the function φε is well defined modulo
2 π. Indeed, if ω ⊂ R2 is such that ∂ω ⊂ R2\∪(1≤i≤n(ε), n,m∈Z)Bi,n,m, then by (5.33)∫

∂ω
Bε.τ −∇hε.ν =

∫
ω
−∆hε + hε = hex µε(ω).

This quantity is in turn equal to 2 π k, where k is the number of points aεi in ω.
Thus, ei φε defined by (5.33) does not depend on the choice of the particular curve
(x0, x). Now, let us take vε = ρε e

i φε .
Step 4
We begin with
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Lemma 5.11. The test configuration (vε, Bε) belongs to the space A where A is
given by the definition 2.3.

Proof : The periodicity of the magnetic field hε yields for (x, y) ∈ R2 that

hε(x+ 1, y) = hε(x, y) = hε(x, y + 1).

The magnetic potential Bε is taken to solve curl Bε = hε, hence there exist R1 and
R2 in H1

loc(R2) such thatBε(x+ 1, y) = Bε(x, y) +R1(x, y)

Bε(x, y + 1) = Bε(x, y) +R2(x, y),
(5.34)

where {
curl R1(x, y) = 0
curl R2(x, y) = 0.

For 1 ≤ i ≤ 2, curlRi = 0 implies the existence of (f0, g0) ∈ H2
loc(R2) × H2

loc(R2)
such that {

R1(x, y) = ∇f0(x, y)
R2(x, y) = ∇g0(x, y).

(5.35)

We insert (5.35) in (5.34) to get
Bε(x+ 1, y) = Bε(x, y) +∇f0(x, y)

Bε(x, y + 1) = Bε(x, y) +∇g0(x, y).
(5.36)

Now, from the construction of φε, we have in R2\ ∪(1≤i≤n(ε), n,m∈Z) Bi,n,m

∇φε = Bε −∇⊥hε. (5.37)

On the one hand, we use again the periodicity of hε with (5.36) in (5.37) to write

∇φε(x+ 1, y) =Bε(x+ 1, y)−∇⊥hε(x+ 1, y)

=Bε(x, y) +∇f0(x, y)−∇⊥hε(x, y)

=∇φε(x, y) +∇f0(x, y).

(5.38)

By integration, there exists c ∈ R such that

φε(x+ 1, y) = φε(x, y) + f0(x, y) + c.

Let us set fε(x, y) = f0(x, y) + c, hence

φε(x+ 1, y) = φε(x, y) + fε(x, y). (5.39)
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On the other hand, proceeding similarly as (5.39), there exists gε ∈ H2
loc(R2) such

that we have in R2\ ∪(1≤i≤n(ε), n,m∈Z) Bi,n,m

φε(x, y + 1) = φε(x, y) + gε(x, y). (5.40)

Recall that vε = ρε e
i φε , then combining (5.39)- (5.40) together with the periodicity

of ρε, we get the two following equations in R2


vε(x+ 1, y) = vε(x, y) ei fε(x,y)

vε(x, y + 1) = vε(x, y) ei gε(x,y),
(5.41)

since ρε is equal to 0 in ∪(1≤i≤n(ε), n,m∈Z)Bi,n,m. We replace f0 and g0 respectively
with (fε − c) and (gε − c′) in (5.36)

Bε(x+ 1, y) = Bε(x, y) +∇fε(x, y)

Bε(x, y + 1) = Bε(x, y) +∇gε(x, y).
(5.42)

A Combination of (5.41) together with (5.42) gives us that the configuration (vε, Bε) ∈
A. This completes the proof of lemma 5.11. 2

Step 5: Completing the proof of proposition 5.8
From the equation (5.30), the induced magnetic field hε satisfies

−∆hε + hε − hex = hex (µε − 1) in R2. (5.43)

Hence, from (5.18) we can write

hε(y) = hex

∫
R2

G(y, x) dµε(x), ∀ y ∈ K. (5.44)

Now, multiplying (5.43) by (hε − hex), integrating on K, and using (5.44) with the
periodicity of hε, it follows that

∫
K
|∇hε|2 +

∫
K
|hε − hex|2 =

∫
K

(−∆hε + hε − hex) (hε − hex)

=
∫
K
hex (hε − hex)(y) d(µε − 1)(y)

=h2
ex

∫
K

∫
R2

G(y, x) d(µε − 1)(x) d(µε − 1)(y),

where (µε − 1) denotes the difference between of the measure µε and the Lebesgue
measure on R2. We divide by 2 h2

ex to get

lim sup
ε→0

1
2

∫
K |∇hε|

2 + 1
2

∫
K |hε − hex|2

h2
ex

= lim sup
ε→0

1
2

∫
K×R2

G(x, y) d(µε−1)(y) d(µε−1)(x).
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We use (5.29) to have

lim sup
ε→0

1
2

∫
K |∇hε|

2 + 1
2

∫
K |hε − hex|2

h2
ex

≤ λ a

2
+

(a− 1)2

2
. (5.45)

In addition, by definition of ρε and the fact that n(ε) = O(hex), it is clear

lim sup
ε→0

1
2

∫
K |∇ρε|

2 + 1
4 ε2

∫
K(1− ρ2

ε)
2

h2
ex

= 0. (5.46)

Moreover, from (5.37)

ρ2
ε |∇φε −Bε|2 ≤ |∇hε|2. (5.47)

In particular, (5.47) leads to

lim sup
ε→0

JK(vε, Bε)
h2
ex

≤ lim sup
ε→0

( 1
2

∫
K |∇hε|

2 + 1
2

∫
K |hε − hex|2

h2
ex

)

+ lim sup
ε→0

( 1
2

∫
K |∇ρε|

2 + 1
4 ε2

∫
K(1− ρ2

ε)
2

h2
ex

)
.

(5.48)

A combination of (5.45) together with (5.46) in (5.48) allows to write

lim sup
ε→0

JK(vε, Bε)
h2
ex

≤ λ a

2
+

(a− 1)2

2
, ∀ a ≥ 0. (5.49)

This inequality is true for the test configuration (vε, Bε), so it is true in particular
for any minimizer of J over A. This completes the proof of proposition 5.8.

3 Lower bound

Let (uε, Aε) be a minimizer of the energy J over the space A and hε = curlAε be the
induced magnetic magnetic field. We take K to be any square of sidelength 1. From
now on, we assume that λ > 0, i.e. the applied field satisfies hex ≤ C | log ε|. First,
it is clear by testing J with the configuration (u ≡ 1, A ≡ 0), that the minimum of
J is less than J0 = 1

2 h2
ex. Then, from the expression of J , and by the definition

(4.3), we have

γε = ‖hε‖L2(K) ≤ C hex.

On the other hand, from the expressions of the energy J and the functional Fε, we
have

Fε(uε, Aε,K) ≤ J(uε, Aε). (5.50)

Knowing J(uε, Aε) ≤ C h2
ex, hence Fε(uε, Aε,K) ≤ C h2

ex. Let

58



αε = hex,

then αε → +∞ as ε→ 0 and αε ≤ c hex (c > 1). Moreover, we can write

Fε(uε, Aε,K) ≤ C αε hex.

We define mε = o(1) to be any sequence verifying

log hex
hex

� mε. (5.51)

Note that mε is positive. Combining all the above, we can say that the hypotheses
of proposition 4.1 hold. Hence, there exist a square of sidelength 1, (without loss
of generality the square is K = [0, 1[×[0, 1[), and a family of disjoint balls

(
Bi =

Bi(ai, ri)
)
i∈Iε

such that

∪i∈IεBi(ai, ri) ⊂ K, (5.52)

where the sum of radii ri verifies∑
i∈Iε

ri ≤ C hex e−mε hex . (5.53)

Note that thanks to (5.51), we have as ε→ 0∑
i∈Iε

ri = o(1). (5.54)

For any such set of balls, we can associate to uε the vorticity measure
2 π
P

i∈Iε
di δai

hex
,

where di is the degree of uε
|uε| restricted to ∂Bi(ai, ri). Now, let µε be the periodic

measure on R2 whose restriction to K is
P

i∈Iε
2 π di δai

hex
. We begin with the following

proposition.

Proposition 5.12. For all εn → 0, we can extract a subsequence such that there
exist a periodic h0 in H1

loc(R2) and a Radon measure µ0 on R2 satisfying

hεn

hex
⇀ h0 weakly in H1

loc(R2), (5.55)

and
µεn ⇀ µ0. (5.56)

Also, we have

−∆h0 + h0 = µ0 in R2. (5.57)

Hence, µ0 ∈ H−1 and h0 ∈ V where V is defined by (5.3).
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3.1 Proof of proposition 5.12

We split the proof into five steps
Step 1
We start with the inequality (3.10) which is

1
2
‖hε − hex‖2H1(K) ≤ J(uε, Aε).

Using then J(uε, Aε) ≤ 1
2 h

2
ex allows to say that hε

hex
is bounded in H1(K). Then, by

periodicity of hε, we can say that hε
hex

is bounded in H1(O) for any compact O ⊂ R2,
so in particular it is bounded in H1

loc(R2). Hence, for a subsequence εn, there exists
h0 in H1

loc(R2) such that hεn
hex

tends to h0 weakly in H1
loc(R2) as n → +∞. Again,

the periodicity of hε implies that the weak limit h0 is periodic.
Step 2
The lower bound of the energy on the vortex balls

(
Bi(ai, ri)

)
i∈Iε

defined by (4.13)

is

Fε(uε, Aε, Bi) ≥ π |di| | log ε|
(
1− o(1)

)
. (5.58)

The balls are disjoint, then a summation yields

Fε(uε, Aε,K) ≥ Fε(uε, Aε,∪i∈IεBi) ≥ π
∑
i∈Iε

|di| | log ε|
(
1− o(1)

)
.

We use (5.50) to get

JK(uε, Aε) ≥ π
∑
i∈Iε

|di| | log ε|
(
1− o(1)

)
. (5.59)

Inserting hex ≤ C | log ε| in the fact that JK(uε, Aε) ≤ 1
2 h

2
ex, we have

JK(uε, Aε) ≤ C hex | log ε|.

We divide (5.59) by hex | log ε| and we use the above to deduce from the definition
of the measure µε

1
2

∫
K
|µε| − o(1) =

π
∑

i∈Iε |di|
hex

− o(1) ≤ JK(uε, Aε)
hex | log ε|

≤ C. (5.60)

Thus, by periodicity

sup
ε
µε(O) <∞ for each compact set O ⊂ R2.

Thus, thanks to the Theorem 2 [EG] given in the beginning of the chapter, there
exists a Radon measure µ0 on R2 such that

µεn ⇀ µ0 as n→ +∞.

Now, we pass to the proof of the third assertion giving us the relation between µ0

and h0.
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Step 3
Let (uε, Aε) be a minimizer of J over A. Recall that

Nε =
1

2 π

∫
K
hε ∈ Z.

Thanks to the proposition 2.6 given in chapter 2, there exists (vε, Pε) ∈ H1
loc(R2, C)×

H1
loc(R2,R2) such that (uε, Aε) is gauge equivalent to (vε, 2 π Nε

~C + Pε) where
(vε, Pε) ∈ BNε and

~C =
1
2

(
−y
x

)
in R2.

As mentioned in (3.5), we take

Bε = Pε + 2 π Nε
~C.

Having curl ~C = 0, hence the induced field hε defined by hε = curl Aε necessarily
satisfies

hε = curl Bε.

Clearly, (vε, Bε) is again a minimizer of the energy J over the space A. In particular,
it is a solution of the two Ginzburg-Landau equations defined by (3.4). Recall that
the second Ginzburg-Landau equation holds

−∇⊥hε = −∇⊥curlBε =< i vε,∇Bεvε > in R2,

where by definition ∇Bεvε = ∇vε− i Bε vε. Taking the curl and dividing by hex, we
find

−∆
hε
hex

+
hε
hex

=
curl

(
(1− |vε|2) Bε

)
hex

+
curl(i vε,∇ vε)

hex
in R2. (5.61)

Now, since Nε ≤ C hex and reasoning as in the proof of proposition 3.1, we get that
Bε and vε are locally bounded in H1 by C hex.
For q ∈ N∗, we let

Kq = [−q, q[×[−q, q[. (5.62)

Let us fix q in N∗. For any ξ ∈W 1,r
0,r>2(K

q), we have∫
Kq

ξ curl
(
(1− |vε|2) Bε

)
=

∫
Kq

Bε (1− |vε|2) ∇⊥ ξ.

Then, using the Cauchy-Schwartz and the a priori bound on Bε,∣∣∣ ∫
Kq

ξ curl
(
(1− |vε|2) Bε

)∣∣∣ ≤C ‖∇ξ‖Lr(Kq) ‖Bε‖Lp(Kq) ‖1− |vε|2‖L2(Kq)

≤C h2
ex ε ‖∇ξ‖L2(Kq),
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for some p < 2. The right-hand side tends to 0 as ε→ 0, therefore

curl
(
(1− |vε|2) Bε

)
→ 0 (5.63)

inW−1,p(Kq). The family of the vortex balls contained in the squareKq is {Bi,m,m′ , i ∈
Iε,m,m

′ ∈ [−q, q − 1]}, where Bi,m,m′ is the image of Bi by translation of vector
m~i+m′ ~j with m,m′ ∈ Z. Thanks to (5.52), this family satisfies

∪(i∈Iε, m,m′∈[−q,q−1])Bi,m,m′ ⊂ Kq.

Referring to (5.51) and (5.53), we get as ε→ 0

(4 q2) | log ε|
∑
i∈Iε

ri = o(1), (5.64)

and therefore the sum of the radii of the vortex balls {Bi,m,m′} tends to zero as
ε→ 0.
Step 4
Using the above we can deduce thanks to [ASS], lemma 2.2,∣∣∣curl(i vε,∇ vε)

hex
− µε

∣∣∣
W−1,p

p<2 (Kq)
→ 0, (5.65)

where µε is the extended measure by periodicity to the square Kq of the measureP
i∈Iε

2 π di δai

hex
.

Step 5
Combining (5.63) together with (5.65) in the identity (5.61), we obtain∣∣∣−∆

hε
hex

+
hε
hex

− µε

∣∣∣
W−1,p

p<2 (Kq)
→ 0. (5.66)

Finally, having (5.66), then using the same procedure as in [SS3], lemma 3.1, one
can check ∣∣∣−∆

hε
hex

+
hε
hex

− µ0

∣∣∣
W−1,p

p<2 (Kq)
→ 0. (5.67)

The convergence (5.67) holds independently of q in N∗, then (−∆ hε
hex

+ hε
hex

− µ0)

converges to 0 locally in W−1,p
p<2 . We know that hεn

hex
⇀ h0 weakly in H1

loc(R2), hence
again up to subsequence

hεn

hex
→ h0 strongly in W 1,p

p<2,loc(R
2).

Thus, passing to the limit in (−∆ hε
hex

+ hε
hex

), h0 satisfies

µ0 = −∆h0 + h0 in R2.

The properties which we have found on h0 are h0 ∈ H1
loc(R2) and h0 is periodic such

that (−∆h0 + h0) is a Radon measure on R2. Then, by definition of the space V
defined by (5.3), h0 ∈ V . Finally, the fact that h0 ∈ H1

loc(R2) in µ0 = −∆h0 + h0

gives us
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µ0 ∈ H−1.

This completes the proof of the proposition 5.12. We also have the following result,
proved in [SS3], lemma 3.2.

Lemma 5.13. We have for the (h0, µ0) defined by proposition 5.12 that

lim inf
n→∞

J(uεn , Aεn)
h2
ex

≥ λ

2

∫
K
| −∆h0 + h0|+

1
2

∫
K
|∇h0|2 +

1
2

∫
K
|h0 − 1|2 = E(h0).

(5.68)

3.2 Minimization of E over V

Let us minimize the functional E defined by (5.4) over the space V . Having that V
is convex, closed, not empty and E is strictly convex, hence inff∈V E(f) is uniquely
achieved. We denote by h∗ the minimum. First, let us split E

E(u) =
λ

2

∫
K
| −∆u+ u|+ 1

2

∫
K
|∇u|2 +

1
2

∫
K
|u− 1|2

=
1
2

+
1
2
‖u‖2H1(K) +

λ

2

∫
K
| −∆u+ u| −

∫
K
u.

For u ∈ V , let

Φ(u) =
λ

2

∫
K
| −∆u+ u| −

∫
K
u,

and Φ(u) = +∞ if u /∈ V . It follows that

∀ u ∈ V, E(u) =
1
2

+
1
2
‖u‖2H1(K) + Φ(u). (5.69)

Now, we use the following Lemma (see [BS]).

Lemma 5.14. Let Φ be convex lower semi-continuous from a Hilbert space H to
(−∞,+∞], then

min
h∈H

(1
2
‖h‖2H + Φ(h)

)
= −min

f∈H

(1
2
‖f‖2H + Φ∗(−f)

)
, (5.70)

and minimizers coincide, where Φ∗ is the convex conjugate of Φ defined by

Φ∗(f) = sup
u∈Dom(Φ)

(
< f, u > −Φ(u)

)
, (5.71)

where Dom(Φ) is the domain of Φ and < ., . > is the scalar product in H.

63



For duality problem, we can refer to [ET]. Let us take H to be

H :=
{
f ∈ H1

loc(R2,R) such that f is periodic
}
.

Observe that H is Hilbert and the Φ defined above from H to (−∞,+∞] is convex
and lower semi- continuous. Let us calculate its conjugate. By the definition (5.71),
the conjugate of G for all f ∈ H is the following

Φ∗(f) = sup
u∈Dom(G)

( ∫
K
∇f ∇u+

∫
K
f u− λ

2

∫
K
| −∆u+ u|+

∫
K
u
)
.

Using Dom(G) = V and the fact that f is periodic, we can write

Φ∗(f) = sup
u∈V

(
− λ

2

∫
K
| −∆u+ u|+

∫
K

(−∆u+ u)f +
∫
K

(−∆u+ u)
)

= sup
{µ∈H−1 and µ is a Radon measure}

(
− λ

2

∫
K
|µ|+

∫
K
µ (f + 1)

)

= sup
t∈R+

[
sup

{µ is a Radon measure, ‖µ‖=t}

(
− λ

2
||µ||(K) +

∫
K
µ (f + 1)

)]
.

On the one hand, for f ∈ L∞(R2,R), we have

Φ∗(f) = sup
t∈R+

(
− λ

2
t+ t ||f + 1||L∞

)

= sup
t∈R+

(
(||f + 1||L∞ −

λ

2
) t

)

=


+∞ if ‖f + 1‖L∞(R2) >

λ
2

0 if ‖f + 1‖L∞(R2) ≤ λ
2 .

(5.72)

On the other hand, if we take f /∈ L∞(R2,R), we get Φ∗(f) = +∞. From
lemma 5.14, equation (5.69), we then deduce

E(h∗) = min
f∈W0

(1
2
‖f‖2H1(K)

)
+

1
2
, (5.73)

where

W0 = {f ∈ H1
loc(R2) such that f is periodic and ‖f − 1‖L∞(R2) ≤

λ

2
}.

Moreover h∗ is the unique minimizer of this problem. It immediately follows that

Lemma 5.15. We have
h∗ = max(1− λ

2
, 0). (5.74)

Combining all the above shows us that the proposition 5.2 is proved.
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4 Completing the proof of Theorem 5.4

We can now complete the convergence results. From lemmas 5.13 and 5.15, we
deduce

lim inf
n→∞

J(uεn , Aεn)
h2
ex

≥ E(h0) ≥ E(h∗). (5.75)

We distinguish the two following cases:
Case 1: If 0 < λ < 2. In this case, from lemma 5.15, we have h∗ = 1 − λ

2 .
Therefore,

E(h∗) =
λ

2
(1− λ

4
).

We insert this in (5.75) to get

lim inf
n→∞

J(uεn , Aεn)
h2
ex

≥ E(h0) ≥
λ

2
(1− λ

4
).

On the other hand, proposition (5.8) gives us

lim sup
n→+∞

J(uεn , Aεn)
h2
ex

≤ λ

2
(1− λ

4
).

We compare the two above inequalities to get

lim
n→∞

J(uεn , Aεn)
h2
ex

= E(h0) =
λ

2
(1− λ

4
) = E(h∗).

Now, thanks to the fact that h∗ = 1 − λ
2 is the unique minimizer of E over V , we

conclude

h0 = h∗ = 1− λ

2
in R2.

Hence, hεn
hex

→ h0 = h∗ = 1 − λ
2 weakly in H1

loc(R2). In addition, knowing that
µ0 = −∆h0 + h0, hence in view of lemma 5.12

µεn ⇀ µ0 = (1− λ

2
) dx, (5.76)

where dx is the Lebesgue measure on R2. This explains the uniform-vortex distrib-
ution.

Case 2: If λ ≥ 2. In this case, from lemma 5.15, we have h∗ = 0, thus
E(h∗) = 1

2 . We insert this in (5.75) to have

lim inf
n→∞

J(uεn , Aεn)
h2
ex

≥ E(h0) ≥
1
2
.

Second, since J(uε, Aε) ≤ 1
2 h

2
ex, we find

lim sup
n→+∞

J(uεn , Aεn)
h2
ex

≤ 1
2
.

Comparing the two above inequalities, we get
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lim
n→+∞

J(uεn , Aεn)
h2
ex

= E(h0) =
1
2

= E(h∗).

Since h∗ = 0 is the unique minimizer of E over V , we conclude that h0 = h∗ = 0. It
follows from lemma 5.12 that hεn

hex
→ 0 weakly in H1

loc(R2). Consequently, thanks to
lemma 5.12,

µεn ⇀ µ0 = 0. (5.77)

Now, the limits in the above two cases are independent of the chosen subsequence,
therefore the whole sequence converges. This completes the proof of Theorem 5.4.

Remark 5.16. In the case λ ≥ 2, the convergence (5.77) does not give us an idea
on the number of the vortices and their repartition. Indeed, taking λ ≥ 2 in the
corollary 5.5, we can deduce

Nε =
∑
i∈Iε

di � hex,

so we just find that the number of vortices is negligible to hex. We start with the
study of the case λ > 2 in the next paragraph.

5 The case λ > 2

From the definition of the parameter λ, we can write in the limit ε→ 0,

hex =
1
λ
| log ε|. (5.78)

Here, assume that λ > 2. Splitting the energy JK of a minimizer (uε, Aε) between
the contribution inside the vortex-balls and the contribution outside, we get using
(5.59)

π
∑
i∈Iε

|di| | log ε| (1− o(1)) +
1
2

∫
K
|hε − hex|2 ≤ J(uε, Aε). (5.79)

But, since
∫
K |hε − hex|2 =

∫
K |hε|

2 + h2
ex − 4 π Nε hex and J(uε, Aε) ≤ 1

2 h
2
ex, we

find

π
∑
i∈Iε

|di| | log ε| (1− o(1))− 2 π Nε hex ≤ 0. (5.80)

Thanks to (5.78) and Nε ≤
∑

i∈Iε |di|,

π
∑
i∈Iε

|di|
(
(1− 2

λ
) | log ε| − o(1) | log ε|

)
≤ 0. (5.81)
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The fact that λ > 2 yields (1− 2
λ) > 0, and therefore there exists ε0 > 0 such that

for any ε < ε0 ∑
i∈Iε

|di| = 0.

Thus, the minimizers of the energy J have no vortices when λ > 2. This proves the
proposition 5.6. The above gives a meaning to the value of the first critical field Hc1

which behaves for ε→ 0 as | log ε|
2 .

Remark 5.17. Thanks to Theorem 5.4 and proposition 5.6, the study of the vortex
structure of minimizers of J over A is well known for applied field hex which are
such that λ > 0 with λ 6= 2. The case λ = 2 will be treated separately in the next
chapter (chapter 6).
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Chapter 6

The case of applied fields close
to Hc1

In this chapter, we will be concerned with the case of applied fields hex which are
close to the first critical field Hc1 . More precisely, we assume

hex = Hc1 + f(ε), (6.1)

where Hc1 behaves for ε→ 0 as | log ε|
2 and f(ε) is any sequence tending to +∞ such

that
f(ε) = o(| log ε|).

We will study, in the limit ε→ 0, the vortex-structure of global minimizers (uε, Aε)
of the Ginzburg-Landau energy J over the space A, in a more precise way than in
the preceding chapter.

1 Statement of the result

We take K to be any square of sidelengeth 1. The first critical field Hc1 behaves for
ε→ 0 as | log ε|

2 , i.e. Hc1 ≈ | log ε|
2 . Since, the parameter ε is taken usually to tend to 0,

we will write from now on Hc1 = | log ε|
2 instead of Hc1 ≈ | log ε|

2 . We consider applied
fields defined by hex = Hc1 +f(ε) where f(ε) → +∞ as ε→ 0 and f(ε) = o(| log ε|),
and then λ = limε→0

| log ε|
hex

= 2. Thus, letting λ = 2 in (5.7) gives us

lim
ε→0

J(uε, Aε)
h2
ex

=
1
2
,

where (uε, Aε) is a minimizer of the energy J over the space A. The above limit
implies that J(uε, Aε) is equivalent to J0 as ε→ 0, where J0 = h2

ex
2 . From now on,

we will be concerned with the estimate of the energy

J(uε, Aε)− J0

(f(ε))2

as ε→ 0 and we show that it is the appropriately normalized quantity to consider.
From the chapter 5, we know that for (uε, Aε) a minimizer of J over A, the hypothe-
ses of the proposition 4.1 hold, and applying it yields vortices (ai, di)i∈Iε . The main
result we prove in this chapter is
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Theorem 6.1. We take applied magnetic fields defined by hex = Hc1 + f(ε) such
that f(ε) tends to +∞ and f(ε) = o(| log ε|) when ε → 0. Consider, for every ε,
(uε, Aε) minimizing the energy J over A, and hε = curlAε. Then, as ε→ 0,

hε
f(ε)

→ 1 strongly in W 1,p
loc,p<2(R

2). (6.2)

In addition,

lim
ε→0

J(uε, Aε)− J0

f(ε)2
= −1

2
. (6.3)

Finally, letting νε be the extended measure by periodicity to R2 of
2 π
P

i∈Iε
di δai

f(ε) , we
have as ε→ 0,

νε ⇀ dx, (6.4)

where dx is the Lebesgue measure on R2.

Remark 6.2. The Theorem 6.1 gives us an idea on the repartition of the vortices
and their number par period. Indeed, we obtain from (6.4) that the minimizers of J
over the space A have a uniform scattering of vortices. Moreover, the number of the
vortices per period is close to f(ε). This contrasts the result of [SS1]. Indeed, Sandier
and Serfaty have found for minimizers of the energy JΩ over H1(Ω,C)×H1(Ω,R2)
that we need to have an increment of | log | log ε|| to add a vortex (where Ω is the sec-
tion of the domain occupied by the superconductor). Note that the difference between
our results and those of [SS1] is due to the fact that the periodic model removes the
boundary effects.

In order to prove the Theorem 6.1, we give first an upper bound on the energy,
through the proposition 6.3, and then a lower bound in proposition 6.12. Note that
the upper bound will be obtained by construction of a test configuration in the space
A, while the lower bound of the energy will follow essentially from a combination
of the suitable lower bound of the energy J on the vortex balls that we recalled in
proposition 4.1 and the property

Nε =
∑
i∈Iε

di.

2 Upper bound of the energy

The main result we prove here is

Proposition 6.3. Set hex = | log ε|
2 + f(ε) with f(ε) tends to +∞ and f(ε) =

o(| log ε|). Let (uε, Aε) be a minimizer of the energy J over A, then

lim sup
ε→0

J(uε, Aε)− J0

f(ε)2
≤ −1

2
. (6.5)
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We split the proof into four steps:
Step 1
Let hex = | log ε|

2 + f(ε) where f(ε) = o(| log ε|) and tends to +∞. Arguing as in the
proof of proposition 5.8, step 1, we construct points (aεi )i, 1 ≤ i ≤ p(ε)2 in K and
equally spaced, with

n(ε) = p(ε)2, p(ε) =

[√
f(ε)
2 π

]
.

Then, 2 π n(ε) ≈ f(ε) as ε → 0 and 2 π n(ε) ≤ f(ε). Letting µε be the extended

measure by periodicity to R2 of
P

1≤i≤n(ε) µ
i
ε

2 π n(ε) , where µiε is the uniform measure on
∂(Bi(aεi , ε)) of mass 2 π, we also have

µε ⇀ dx as ε→ 0, (6.6)

where dx is the Lebesgue measure on R2.
Step 2
We define G to be the Green function solution of −∆xG(x, y) +G(x, y) = δy in R2.
We prove

Lemma 6.4.

lim sup
ε→0

(1
2

∫
K×R2

G(x, y) dµε(y) dµε(x)−
| log ε|

4 π n(ε)

)
≤ 1

2
. (6.7)

Proof : Let β > 0 and take

∆β = {(x, y) ∈ K ×K, |x− y| < β}.

From (6.6), recall that µε ⇀ dx. Hence, it follows that

µε ⊗ µε ⇀ dx⊗ dx as ε→ 0.

In view of the continuity of G in (K ×K)\∆β, we are led to

lim
ε→0

1
2

∫ ∫
(K×K)\∆β

G dµε dµε =
1
2

∫
(K×K)\∆β

G dx dy. (6.8)

Now, we treat the integral on ∆β. From the definition of µε,

∫∫
∆β

G(x, y) dµε(x) dµε(y) ≤
1

f(ε)2
( ∑

1≤i6=j≤n(ε)
|aε

i−aε
j |<2β

∫∫
G dµjε dµ

i
ε+

n(ε)∑
i=1

∫∫
G dµiε dµ

i
ε

)
.

(6.9)
The analogous of (5.27) is

1
2

n(ε)∑
i=1

∫ ∫
G dµiε dµ

i
ε ≤ n(ε)(π | log ε|+ C). (6.10)
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Moreover,
1
2

∑
1≤i6=j≤n(ε)
|aε

i−aε
j |<2β

∫∫
G dµjε dµ

i
ε ≤ C n(ε)2 |∆2 β|. (6.11)

A combination of (6.10) together with (6.11) in (6.9) leads to

4 π2 n(ε)2

2

∫∫
∆β

G(x, y) dµε(x) dµε(y) ≤ n(ε) (π | log ε|+ C) + C n(ε)2 |∆2β |.

Then

1
2

∫
K×K

G dµε dµε ≤
| log ε|

4 π n(ε)
+

∫
(K×K)\∆β

G dµε dµε + oε(1) + C|∆2β|,

where oε(1) denotes a function of ε which goes to zero as ε→ 0. Passing to the limit
as ε→ 0 and using (6.8) imply

lim sup
ε→0

(1
2

∫
K×K

G dµε dµε −
| log ε|

4 π n(ε)

)
≤ 1

2

∫
(K×K)\∆β

G dx dy. (6.12)

Letting (β → 0) in (6.12) yields

lim sup
ε→0

(1
2

∫
K×K

G dµε dµε −
| log ε|

4 π n(ε)

)
≤ 1

2

∫
K×K

G dx dy. (6.13)

We go back to (5.26) to write

lim
ε→0

∫
K×(R2\K)

G dµε dµε =
∫
K×(R2\K)

G dx dy.

Combining this together with (6.13) gives us

lim sup
ε→0

(1
2

∫
K×R2

G dµε dµε −
| log ε|

4 π n(ε)

)
≤1

2

∫
K×K

G dx dy +
1
2

∫
K×(R2\K)

G dx dy

=
1
2

∫
K×R2

G dx dy =
1
2
.

This completes the proof of (6.7). 2

Step 3
The proof of (6.5) needs a construction of an appropriate test configuration (vε, Bε)
in A. First, we define hε by

hε(x) = 2 π n(ε)
∫

R2

G(x, y) dµε(y).

Then, hε is periodic, continuous and in H1
loc(R2). It satisfies

−∆hε + hε = 2 π n(ε) µε in R2. (6.14)
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We let Bε be a solution of curl Bε = hε. Then, we define vε as in the proof of
proposition 5.8 in a way such that (vε, Bε) ∈ A and

JK(vε, Bε) ≤
1
2

∫
K
|∇hε|2 +

1
2

∫
K
|hε − hex|2 + C n(ε). (6.15)

Step 4: Proof of proposition 6.3, completed
From (6.14),

−∆hε + hε − hex =
(
2 π n(ε) µε − hex

)
in R2. (6.16)

Now, we multiply (6.16) by (hε−hex), we integrate on K, and we use the periodicity
of hε to obtain

∫
K
|∇hε|2 +

∫
K
|hε − hex|2 =

∫
K

(hε − hex)(x)
(
2 π n(ε) µε − hex

)
(x). (6.17)

It follows that∫
K
|∇hε|2+

∫
K
|hε−hex|2 =

∫
K

(2 π n(ε))2
( ∫

R2

G(x, y) dµε(y)
)
dµε(x)−4 π n(ε) hex

∫
K
µε+h2

ex.

(6.18)
Thus∫
K
|∇hε|2+

∫
K
|hε−hex|2−h2

ex = (2 π n(ε))2
∫
K×R2

G(x, y) dµε(y) dµε(x)−4 π n(ε) hex.

Now, we divide by (2 π n(ε))2 to get

∫
K |∇hε|

2 +
∫
K |hε − hex|2 − h2

ex

(2 π n(ε))2
=

∫
K×R2

G(x, y) dµε(y) dµε(y)−
2 hex

2 π n(ε)
.

Then, replacing the applied field hex with
(
| log ε|

2 +f(ε)
)

and recalling that 2 π n(ε) ≤
f(ε), we find

∫
K |∇hε|

2 +
∫
K |hε − hex|2 − h2

ex

(f(ε))2
≤

∫
K×R2

G(x, y) dµε(y) dµε(x)−
| log ε|+ 2 f(ε)

2 π n(ε)
.

(6.19)
We refer to (6.7) and the fact that 2 π n(ε) ≈ f(ε) as ε→ 0 to deduce

lim sup
ε→0

1
2 (f(ε))2

( ∫
K
|∇hε|2 +

∫
K
|hε − hex|2 − h2

ex

)
≤ −1

2
. (6.20)

Going back to (6.15), we obtain from (6.20)

lim sup
ε→0

J(vε, Bε)− J0

f(ε)2
≤ −1

2
.

This inequality is true for the test configuration (vε, Bε), so it is true in particular
for any minimizer of J over the space A. This completes the proof of (6.5). The
proposition 6.3 is then proved.
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3 Lower bound

We start with

3.1 Preliminary estimates

We consider (uε, Aε) a family of minimizers of the energy J over A and hε = curl Aε
the associated induced magnetic field. Let K be any square of sidelengeth 1.
First, in the following lemma, we give for an ε small enough a preliminary idea on
the estimate of the order of the quantities γε = ‖hε‖L2(K), Nε = 1

2 π

∫
K hε and

Fε(uε, Aε,K).

Lemma 6.5. Set hex = | log ε|
2 + f(ε) with f(ε) = o(| log ε|) and tends to +∞ when

ε→ 0. Then, for ε sufficiently small

Nε = o (| log ε|), (6.21)

γε ≤ C
√
Nε | log ε|, (6.22)

Fε(uε, Aε,K) ≤ C Nε | log ε|. (6.23)

Proof : First, hex = | log ε|
2 + f(ε), hence letting λ = limε→0

| log ε|
hex

= 2 in the
convergence (5.10),

lim
ε→0

Nε

hex
= max

(
0,

1
2 π

(1− λ

2
)
)

= 0.

It means that Nε = o (hex), so in particular Nε = o (| log ε|) as ε → 0. Second, by
definition of the functional Fε,

J(uε, Aε) = Fε(uε, Aε,K) +
1
2

∫
K
|hε − hex|2.

We split 1
2

∫
K |hε − hex|2 to get

1
2

∫
K
|hε − hex|2 =

1
2

∫
K
|hε|2 +

1
2
h2
ex − hex

∫
K
hε

=
1
2

∫
K
|hε|2 +

1
2
h2
ex − 2 π Nε hex.

Replacing
∫
K |hε|

2 with γ2
ε leads to

J(uε, Aε) = Fε(uε, Aε,K) +
1
2
γ2
ε +

1
2
h2
ex − 2 π Nε hex. (6.24)

Since (uε, Aε) is a minimizer, in particular

J(uε, Aε) ≤ J(1, 0) = J0 =
1
2
h2
ex.

Using this in (6.24),
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Fε(uε, Aε,K) +
1
2
γ2
ε ≤ 2 π Nε hex ≤ C Nε | log ε|. (6.25)

For any ε > 0, we obtain

γε ≤ C
√
Nε | log ε|,

and
Fε(uε, Aε,K) ≤ 2 π Nε hex ≤ C Nε | log ε|.

2

3.2 Vortices have mostly positive degrees

Lemma 6.6. Let (uε, Aε) be a minimizer and hε = curlAε. For a sufficiently small
ε,

Nε 6= 0. (6.26)

Proof : We argue by contradiction. Assume that Nε = 0. On the one hand, from
(6.22), it is immediate that γε = 0, consequently hε = 0. Letting Nε = 0 in (6.23),
we get

Fε(uε, Aε,K) = 0.

By definition of Fε, this implies that |uε| = 1. This means that the material is in its
superconducting phase, so the energy of (uε, Aε) is

J(uε, Aε) = J0 =
1
2
h2
ex.

In particular,

lim
ε→0

J(uε, Aε)− J0

f(ε)2
= 0. (6.27)

On the other hand, proposition 6.3 gives us

lim sup
ε→0

J(uε, Aε)− J0

f(ε)2
≤ −1

2
. (6.28)

Comparing (6.27) to (6.28), we get a contradiction. This means that Nε 6= 0, and
thanks again to (6.23), Nε is necessarily positive.

2
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3.3 The vortex balls

Let (uε, Aε) be a minimizer of J over A. Now, let

αε = max(Nε, f(ε)). (6.29)

Having hex = | log ε|
2 + f(ε) with 1 � f(ε) = o(| log ε|), hence in particular from

(6.29) and lemma 6.5, 1 � αε � hex. Using the fact that Nε ≤ αε in (6.23), we get

Fε(uε, Aε,K) ≤ C αε | log ε|.

Thanks to (6.21) and (6.22), we have γε ≤ C | log ε|. Moreover, let mε be any
sequence verifying

logαε
αε

� mε = o(1). (6.30)

Of course, mε is positive. A combination of all the above yields that the hypotheses
of proposition 4.1 hold, so there exists ε0 such that if ε < ε0, there exist a square of
sidelength 1, (without loss of generality the square K = [0, 1[×[0, 1[), and a family
of disjoint balls still denoted

(
Bi = Bi(ai, ri)

)
i∈Iε

verifying

∪i∈IεBi ⊂ K,

such that

Fε(uε, Aε, Bi) ≥ π |di|
(
| log ε| − log γε −mε αε

)
, (6.31)

where di is the degree of uε
|uε| on ∂(Bi). Let us define for ε < ε0,

Dε =
∑
i∈Iε

|di|. (6.32)

Recall that, (4.15) holds

Nε =
∑
i∈Iε

di.

We compare this to (6.32) to get

Nε ≤ Dε ∀ ε < ε0. (6.33)

Lemma 6.7. Let (uε, Aε) be a minimizer of J over A and hε = curlAε be the
induced magnetic field. Then, for αε and mε defined respectively by (6.29) and
(6.30), there exists ε0 > 0 such that if ε < ε0

π Dε

(
| log ε| − log γε −mε αε

)
+

1
2

∫
K\
S

i∈Iε
Bi

|∇hε|2 +
1
2

∫
K
|hε|2 ≤ 2 π Nε hex.

(6.34)
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Proof : We split the energy J between the contribution inside the vortex-balls and
the contribution outside as follows

J(uε, Aε) ≥
∫
∪i∈IεBi

|∇uε − i Aε uε|2 +
∫
K\∪i∈IεBi

|∇uε − i Aε uε|2 +
1

4 ε2

∫
∪i∈IεBi

(1− |uε|2)2

+
1
2

∫
K
|hε − hex|2.

From the expression of Fε,

J(uε, Aε) ≥ Fε(u,A,∪i∈IεBi) +
∫
K\∪i∈IεBi

|∇uε − i Aε uε|2 +
1
2

∫
K
|hε − hex|2.

Using |∇hε|2 ≤ |∇uε − i Aε uε|2, we get

J(uε, Aε) ≥ Fε(uε, Aε,∪i∈IεBi) +
∫
K\∪i∈IεBi

|∇hε|2 +
1
2

∫
K
|hε − hex|2. (6.35)

We know

1
2

∫
K
|hε − hex|2 =

1
2

∫
K
|hε|2 +

1
2
h2
ex − 2 π Nε hex.

The lower bound of the energy on the balls
(
Bi(ai, ri)

)
i∈Iε

defined by the (6.31) is

Fε(uε, Aε, Bi) ≥ π |di|
(
| log ε| −mε αε − log γε

)
.

Now, thanks to the fact that the balls (Bi)i∈Iε are disjoint, then using the above
inequality and the identity Dε =

∑
i∈Iε |di|, it is clear

Fε(uε, Aε,∪i∈IεBi) =
∑
i∈Iε

Fε(uε, Aε, Bi)

≥ π Dε

(
| log ε| −mε αε − log γε

)
.

Combining all the above in (6.35), we find

π Dε

(
| log ε|−log γε− mε αε

)
−2 π Nε hex+

1
2

∫
K\
S

i∈Iε
Bi

|∇hε|2+
1
2

∫
K
|hε|2+

1
2
h2
ex ≤ J(uε, Aε).

(6.36)
Using again the inequality J(uε, Aε) ≤ J0 = 1

2 h2
ex in (6.36) gives us (6.34). The

lemma is then proved. 2

From (6.33), we know that Nε ≤ Dε, hence thanks to lemma 6.6, we have for ε
small enough (ε < ε0)
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Dε 6= 0. (6.37)

Then, (6.37) explains the presence of vortices in the superconductor. The rest is
devoted to find the exact order of Nε ≥ 1. We start with

Corollary 6.8. For an applied field hex = Hc1 + f(ε) where f(ε) = o(| log ε|) and
tends to +∞, we have

Nε

Dε
tends to 1 as ε tends to 0. (6.38)

Proof : From (6.34),

π Dε

(
| log ε| − log γε −mε αε

)
≤ 2 π Nε hex. (6.39)

We insert now the applied field hex = | log ε|
2 + f(ε) in (6.39) to get

π
(
Dε −Nε

)
| log ε| − π Dε log γε + 2 π Nε f(ε) ≤ π Dε mε αε. (6.40)

Dividing now (6.40) by π Dε | log ε|,
(
Dε 6= 0

)
,

(1− Nε

Dε
) ≤ 2

Nε

Dε

f(ε)
| log ε|

+mε
αε

| log ε|
+

log γε
| log ε|

.

Then, using Nε ≤ Dε, one finds

0 ≤ (1− Nε

Dε
) ≤ 2

f(ε)
| log ε|

+mε
αε

| log ε|
+

log γε
| log ε|

.

Thanks to (6.22)-(6.29) together with the fact that mε → 0 and f(ε) = o (| log ε|),
the right-hand side of the above inequality tends to 0 as ε → 0. This implies for
ε→ 0,

Nε

Dε
→ 1.

2

3.4 Estimate of Nε and γε

Now, using (6.38), we prove the optimal bound on γε and Nε.

Proposition 6.9. For any ε < ε0, there exists C > 0 such that

γε ≤ C f(ε), Nε ≤ C f(ε).
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Proof : Step 1: γ2
ε ≤ C αε max

(
f(ε), αε

)
First, by Cauchy-Schwartz inequality( ∫

K
hε

)2
≤

∫
K
|hε|2.

Then, we replace
∫
K hε with 2 π Nε and ‖hε‖L2(K) with γε to obtain

4 π2 N2
ε ≤ γ2

ε . (6.41)

From (6.34),

1
2

∫
K
|hε|2 ≤ 2 π Nε hex − π Dε

(
| log ε| − log γε −mε αε

)
.

Replacing hex with ( | log ε|
2 + f(ε)) and 1

2

∫
K |hε|

2 with 1
2 γ

2
ε , we get

1
2
γ2
ε ≤ π (Nε −Dε) | log ε|+ 2 π Nε f(ε) + π Dε log γε + π Dε mε αε.

limε→0
Dε
Nε

= 1, hence for ε small enough, Dε ≤ C Nε. We use this with the fact
that Nε ≤ Dε to find

1
2
γ2
ε ≤ 2 π Nε f(ε) + C Nε log γε + C mε Nε αε.

Then, by definition of αε, we have Nε ≤ αε, so using this and mε → 0 together with
the fact that log γε ≤ γε,

γ2
ε ≤ C αε γε + C αε f(ε) + C α2

ε.

Thus, we are led to

γ2
ε − C αε γε − C αε

(
f(ε) + αε

)
≤ 0.

It is obvious that

γ2
ε ≤ C αε max

(
f(ε), αε

)
. (6.42)

By definition of αε, we get γε ≤ C αε.
Step 2: Nε ≤ C f(ε)
Now, we argue by contradiction. Assume that Nε � f(ε).
In particular αε = Nε, and then γε ≤ C Nε. Thanks again to (6.34),

π Dε

(
| log ε| − log γε −mε Nε

)
− π Nε | log ε|+ 1

2

∫
K
|hε|2 ≤ 2 π Nε f(ε).

Rearranging the terms, we get

1
2
γε

2 ≤ π (Nε −Dε) | log ε|+ 2 π Nεf(ε) + π Dε (log γε +mε Nε).
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Using the fact Dε ≥ Nε and that Dε is equivalent to Nε as ε → 0 together with
γε ≥ Nε, we rewrite the above as

Nε
2 ≤ C Nε

(
f(ε) + log γε +mε Nε

)
.

Now we use γε ≤ C Nε and mε = o(1) to deduce from the above that Nε ≤ C f(ε).
The proposition follows inserting this in the inequality proved in step 1. 2

3.5 Improved lower bound on the vortex balls

Let (uε, Aε) be a minimizer of the energy J over the space A and hε be the induced
magnetic field. The fact that Nε ≤ C f(ε) and (6.23) yield

Fε(uε, Aε,K) ≤ C f(ε) | log ε|. (6.43)

Thus, we may choose

αε = f(ε) (6.44)

in the vortex-ball construction. Indeed, since 1 � f(ε) � | log ε|, the same holds
for αε, and Fε(uε, Aε,K) ≤ C αε | log ε|. Then, we choose mε satisfying

log f(ε)
f(ε)

=
logαε
αε

� mε = o(1).

Therefore, the results of proposition 4.1 become the following. First, the sum of the
radii of the balls (Bi)i∈Iε satisfies

∑
i∈Iε ri ≤ C f(ε) e−mε f(ε) and thanks to the

above ∑
i∈Iε

ri = o(1) as ε→ 0.

In addition
card(Iε) ≤ C f(ε) | log ε|.

Second, combining αε = f(ε) and γε ≤ C f(ε) together with log f(ε)
f(ε) � mε in (6.31),

the lower bound of J on the ball Bi becomes

Fε(uε, Aε, Bi) ≥ π |di|
(
| log ε| −mε f(ε)

)
. (6.45)

Thanks to the boundedness of Nε
f(ε) and the positivity of Nε, then up to extraction

of εn from ε, the following limit exists and it is finite

0 ≤ L = lim
εn→0

Nεn

f(εn)
= lim

εn→0

Dεn

f(εn)
< +∞. (6.46)

Now, to get a better suited normalization of the induced magnetic field hε and the
vorticity-measure associated to minimizers, we define

Tε =
hε
f(ε)

, (6.47)

and νε to be the extended measure by periodicity to R2 of
2 π
P

i∈Iε
di δai

f(ε) .
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3.6 Convergence of Tε and νε

From Proposition 6.9 and the periodicity of hε and νε, we immediately deduce

Lemma 6.10. From any sequence εn → 0, we can extract a subsequence such that
there exist a periodic T0 ∈ L2

loc(R2) and a Radon measure ν0 on R2 such that

Tεn ⇀ T0 weakly in L2
loc(R2), (6.48)

and
νεn ⇀ ν0. (6.49)

3.7 Relation between of T0 and ν0

In this paragraph, our interest is to find a relation between the two limits T0 and
ν0. Let (uε, Aε) be a minimizer of the energy J over A. Recall that

Nε =
1

2 π

∫
K
hε ∈ Z.

From (6.43)
Fε(uε, Aε,K) ≤ C f(ε) | log ε|. (6.50)

Working in a Coulomb gauge, from the fact that hε is bounded locally in L2 by
C f(ε), we find that Aε is bounded locally in H1 by C f(ε). The second Ginzburg-
Landau equation yields

−∆
hε
f(ε)

+
hε
f(ε)

=
curl

(
(1− |uε|2) Aε

)
f(ε)

+
curl(i uε,∇ uε)

f(ε)
in R2. (6.51)

It is clear that
curl

(
(1− |uε|2) Aε

)
f(ε)

→ 0 (6.52)

at least in the sense of distributions, since Aε
f(ε) is bounded in H1 and (1−|uε|2) goes

to zero in L2, then the product goes to 0 in the sense of distributions and so does
the curl. However, the second term is more difficult to treat and the reason is that(

| log ε|
∑
i∈Iε

ri

)
= o(1),

does not need be true because that the balls
(
Bi = Bi(ai, ri)

)
i∈Iε

we work with are

too large. Consequently, examining the proof of proposition 5.12, step 4, then as
a consequence of the fact that

(
| log ε|

∑
i∈Iε ri

)
= o(1) does not hold, we are not

able to obtain locally the convergence∣∣∣curl(i uε,∇ uε)
f(ε)

− νε

∣∣∣
W−1,p

p<2

→ 0. (6.53)
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The solution to this, following [SS6] is to go back to the proof of proposition 4.12
and to choose a parameter s̃ between the two reals s0 and s1, in order to obtain
new balls denoted by B(s̃) smaller than the balls

(
Bi(ai, ri)

)
i∈Iε

= B(s1) and of

course greater than the balls of the family B(s0). The next proposition explains the
method.

Proposition 6.11. The limit configuration (T0, ν0) defined by lemma 6.10 satisfies

−∆T0 + T0 = ν0 in R2, (6.54)

Tεn → T0 strongly in W 1,p
loc,p<2(R

2). (6.55)

Moreover,

L =
1

2 π

∫
K
ν0 =

1
2 π

∫
K
T0, (6.56)

where L is defined by (6.46).

Proof : We split the proof into four steps.
Step1
We go back to the proof of proposition 4.12 and we choose un parameter s̃ between
s0 and s1 given there, then using the same arguments taken as for the construction
of the balls B(s1) =

(
Bi(ai, ri)

)
i∈Iε

, there exists a family of disjoint balls denoted

by B(s̃) =
(
B̃i(ãj , r̃j)

)
j∈Ĩε

, that covers the region {x ∈ K, |uε| ≤ 3
4}. In particular,

let us take

s̃ =
1

f(ε) | log ε|6
.

Note that s0 < s̃ < s1 where s0 and s1 are given in the proof of proposition 4.12.
Let d̃j be the degree of uε

|uε| restricted on ∂(B̃j). For i ∈ Iε, let mi be the number of

balls of the family (B̃j)j∈Ĩε contained in the ball Bi. Then, we can write

∪mi
j=1B̃i(ãj , d̃j) ⊂ Bi, ∀ i ∈ Iε.

Therefore, it is obvious that the degree of uε restricted to ∂Bi is written as

di =
mi∑
j=1

d̃j ∀ i ∈ Iε. (6.57)

Consequently, since γε and αε are less than C f(ε), we get from (4.39)∑
j∈Ĩε

r̃j ≤ C s̃ f(ε) ≤ C
1

| log ε|6
.

Moreover, referring to (4.36), the lower bound of J on B̃j is

Fε(uε, Aε, B̃j) ≥ π |d̃j |
(
| log ε| − C | log | log ε|| − C log f(ε)

)
.
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Since f(ε) = o(| log ε|), it follows that∑
j∈Ĩε

Fε(uε, Aε, B̃j) ≥ π
∑
j∈Ĩε

|d̃j | | log ε| (1− o(1)). (6.58)

In other terms, recall that (6.23) holds

Fε(uε, Aε,K) ≤ C Nε | log ε|.

We need to give an upper bound of the energy on the balls (Bi)i∈Iε , so using the
fact that Nε ≤ C f(ε) in the above inequality, we obtain

∑
i∈Iε

Fε(uε, Aε, Bi) ≤ Fε(uε, Aε,K)

≤ C f(ε) | log ε|.

(6.59)

Now, since the mi balls of the family (B̃j)j∈Ĩε contained in the ball Bi are disjoint,

mi∑
j=1

Fε(uε, Aε, B̃j) ≤ Fε(uε, Aε, Bi).

We compare the energy J on the families (Bi)i∈Iε and (B̃j)j∈Ĩε to get using the
above inequality

∑
j∈Ĩε

Fε(uε, Aε, B̃i) =
∑
i∈Iε

mi∑
j=1

Fε(uε, Aε, B̃j) ≤
∑
i∈Iε

Fε(uε, Aε, Bi).

Inserting (6.58) and (6.59) in the above, we find

C π
∑
j∈Ĩε

|d̃j | | log ε| (1− o(1)) ≤ C f(ε) | log ε|.

We deduce ∑
j∈Ĩε |d̃j |
f(ε)

≤ C. (6.60)

Let ν̃ε be the extended measure by periodicity to R2 of the measure
2 π
P

j∈Ĩε
d̃j δãj

f(ε) .
Thanks to (6.60), we can say that (ν̃εn) is a bounded sequence of measures, and
extracting again if necessary, we can assume that there exists a measure ν̃0 on R2

such that

ν̃εn ⇀ ν̃0. (6.61)

Step 2: −∆T0 + T0 = ν̃0

The balls
(
B̃i(ãj , r̃j)

)
j∈Ĩε

are so much small as that we have
∑

j∈Ĩε r̃j ≤
1

| log ε|6 ,

hence
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| log ε|
∑
j∈Ĩε

r̃j = o(1) as ε→ 0. (6.62)

Using (6.62) and referring to the proof of proposition 5.12, steps 3,4, we find similarly
as (5.66),

−∆Tε + Tε − ν̃ε → 0 (6.63)

locally in W−1,p
p<2 . Now, having (6.63) and using the same procedure as in [SS4],

lemma 3.1, one can check
−∆Tε + Tε − ν̃0 → 0 (6.64)

locally in W−1,p
p<2 . T0 is the weak limit of Tεn locally in L2, hence by uniqueness of

the limit, Tεn → T0 locally in W 1,p
p<2 and

−∆T0 + T0 = ν̃0 in R2. (6.65)

Step 3: ν0 = ν̃0

Now, having
∑

i∈Iε ri = o(1), we can claim

ν̃εn − νεn ⇀ 0. (6.66)

Indeed, first for any f ∈ C∞c (K)∫
K
f (νε − ν̃ε) =

2 π
f(ε)

( ∑
i∈Iε

dif(ai)−
∑
i∈Ĩε

d̃i f(ãi)
)
. (6.67)

Referring to (6.57),

∫
K
f (νε − ν̃ε) =

2 π
f(ε)

( ∑
i∈Iε

mi∑
j=1

d̃j f(ai)−
∑
i∈Iε

mi∑
j=1

d̃j f(ãj)
)

=
2 π
f(ε)

∑
i∈Iε

( mi∑
j=1

d̃j [f(ai)− f(ãj)]
)
.

(6.68)

Therefore, the function f satisfies

|f(ai)− f(ãj)| ≤ C |ai − ãj |.

We know that ai is the center of Bi and ãj ∈ Bi(ai, ri), hence |ai − ãj | ≤ ri. Using
this in (6.68), we get

∣∣∣ ∫
K
f (νε − ν̃ε)

∣∣∣ ≤ 2 π
f(ε)

∑
i∈Iε

( mi∑
j=1

C |d̃j | ri
)

≤ C

f(ε)

∑
i∈Iε

ri

mi∑
j=1

|d̃j |.
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Obviously, it is immediate that

∣∣∣ ∫
K
f (νε − ν̃ε)

∣∣∣ ≤ C

f(ε)
max
i∈Iε

ri
∑
i∈Iε

mi∑
j=1

|d̃j |

≤ C

f(ε)

( ∑
i∈Iε

ri

) ( ∑
i∈Ĩε

|d̃i|
)
.

We go back to (6.60) to get∣∣∣ ∫
K
f (νε − ν̃ε)

∣∣∣ ≤ C
∑
i∈Iε

ri.

Then, thanks to
∑

i∈Iε ri = o(1), we deduce∫
K
f (νε − ν̃ε) → 0 as ε→ 0.

This means that the measure
(

2 π
P

j∈Ĩε
d̃j δãj

f(ε) − 2 π
P

i∈Iε
di δai

f(ε)

)
converges to 0 in the

sense of distributions, i.e. in
(
C∞c (K)

)′
. But, due to the fact that

(
2 π
P

j∈Ĩε
d̃j δãj

f(ε) −
2 π
P

i∈Iε
di δai

f(ε)

)
is a bounded sequence of measures, and extracting again if necessary,

hence by uniqueness of the limit,
(2 π

P
j∈Ĩεn

d̃j δãj

f(εn) −
2 π
P

i∈Iεn
di δai

f(εn)

)
converges to 0

in the sense of measures.
Now, let q be fixed in N∗ and f ∈ C∞c (Kq). Proceeding similar to the above, we can
prove ∫

Kq

f (νε − ν̃ε) → 0 as ε→ 0,

where νε and ν̃ε are respectively the extended measure to Kq of
2 π
P

i∈Iε
di δai

f(ε) and
2 π
P

j∈Ĩε
d̃j δãj

f(ε) . This means that (νε− ν̃ε) converges to 0 in the sense of distributions
and therefore ν0 = ν̃0, from which it follows that −∆T0 + T0 = ν0.
Step 4
The fact that

L =
1

2 π

∫
K
ν0 =

1
2 π

∫
K
T0

follows from the above and the strong convergence of Tεn to T0 in L1. 2

3.8 The lower bound

In this paragraph, we give the lower bound of the minimal energy J(uε,Aε)−J0

(f(ε))2
which

complements the upper bound given by (6.5).
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Proposition 6.12. Let f(ε) tend to +∞ such that f(ε) = o(| log ε|). Then, for T0

defined by lemma 6.10, we have

lim inf
n→∞

J(uεn , Aεn)− J0

(f(εn))2
≥ 1

2
‖T0 − 1‖2H1(K) −

1
2
. (6.69)

Proof : First, (6.36) gives us

JK(uε, Aε)−J0 ≥ π Dε

(
| log ε|−mε f(ε)

)
−2 π Nε hex+

1
2

∫
K\
S

i∈Iε
Bi(ai,ri)

|∇hε|2+
1
2

∫
K
|hε|2.

We multiply the above by 1
(f(ε))2

, we replace hex with ( | log ε|2 + f(ε)) and we pass to
the limit to get

lim inf
n→∞

JK(uεn , Aεn)− J0

(f(εn))2
≥1

2
lim inf
n→∞

∫
K\∪i∈Iεn

Bi(ai,ri)

|∇hεn |2

(f(εn))2
+

1
2

lim inf
n→∞

∫
K

|hεn |2

(f(εn))2

+ lim
n→∞

(
π (Dεn −Nεn)

| log εn|
(f(εn))2

− π
mεn Dεn

f(εn)
− 2 π

Nεn

f(εn)

)
.

(6.70)

A combination of mε → 0 and Nε ≤ Dε together with the fact that Nε
f(ε) tends to L

in (6.70) yield

lim inf
n→∞

JK(uεn , Aεn)− J0

(f(εn))2
≥ 1

2
lim inf
n→∞

∫
K\∪i∈Iεn

Bi(ai,ri)

|∇hεn |2

(f(εn))2
+

1
2

lim
n→∞

∫
K

|hεn |2

(f(εn))2
−2 π L.

(6.71)
By definition of the function Tε which is hε

f(ε) ,

lim inf
n→∞

JK(uεn , Aεn)− J0

(f(εn))2
≥ 1

2
lim inf
n→∞

∫
K\∪i∈Iεn

Bi(ai,ri)
|∇Tεn |2+

1
2

lim
n→∞

∫
K
|Tεn |2−2 π L.

(6.72)
From proposition 6.11,Tεn → T0 strongly in W 1,p

p<2(K)

∇Tεn → ∇T0 a.e.

Let Xε = ∇Tε in K\ ∪i∈Iεn
Bi(ai, ri) and 0 otherwise, so thanks to [SS6]

Xεn → ∇T0 a.e.

In particular, using Fatou lemma, we have

lim inf
n→∞

∫
K\∪i∈Iεn

Bi(ai,ri)
|Xεn |2 ≥

∫
K
|∇T0|2.
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Consequently, by definition of the function Xε, this implies

lim inf
n→∞

∫
K\∪i∈Iεn

Bi(ai,ri)
|∇Tεn |2 ≥

∫
K
|∇T0|2. (6.73)

Again, since Tεn → T0 weakly in L2(K),

lim inf
n→∞

∫
K
|Tεn |2 ≥

∫
K
|T0|2. (6.74)

Inserting (6.73) and (6.74) in (6.72),

lim inf
n→∞

JK(uεn , Aεn)− J0

(f(εn))2
≥ 1

2

∫
K
|T0|2 +

1
2

∫
K
|∇T0|2 − 2 π L. (6.75)

Referring to (6.56), we know ∫
K
T0 = 2 π L.

Consequently,

lim inf
n→∞

JK(uεn , Aεn)− J0

(f(εn))2
≥ 1

2

∫
K
|T0|2 +

1
2

∫
K
|∇T0|2 −

∫
K
T0. (6.76)

More precisely, this means

lim inf
n→∞

JK(uεn , Aεn)− J0

(f(εn))2
≥ 1

2
‖T0 − 1‖2H1(K) −

1
2
. (6.77)

2

4 Proof of Theorem 6.1, completed

First, combining the properties of the limit configuration T0, we can say that T0 ∈ V .
From a comparison of the upper and the lower bound of the quantity J−J0

(f(ε))2
, we

present the values taken by the limiting configuration of vortices (T0, ν0) in the
following lemma.

Lemma 6.13. The (T0, ν0) defined by lemma 6.10 satisfiesT0 = 1

ν0 = dx
(6.78)

where dx is the Lebesgue measure on R2. Moreover,

lim
n→+∞

Dεn

f(εn)
=

1
2 π

.
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Proof : Let (uε, Aε) be a minimizer of J , then propositions 6.3 and 6.12 both give
us

1
2
‖T0−1‖2H1(K)−

1
2
≤ lim inf

n→∞

JK(uεn , Aεn)− J0

(f(εn))2
≤ lim sup

n→∞

JK(uεn , Aεn)− J0

(f(εn))2
≤ −1

2
.

Examining the left and right-side of the above, we find

lim
n→∞

JK(uεn , Aεn)− J0(
f(εn)

)2 = −1
2
, (6.79)

and
T0 = 1.

Thanks to proposition 6.11,

Tεn → T0 = 1 strongly in W 1,p
loc,p<2(R

2).

Moreover, the limit measure, which is ν0 = −∆T0 + T0, is written as

ν0 = dx in R2, (6.80)

where dx is the Lebesgue measure on R2. Consequently, thanks to (6.49)

νεn ⇀ ν0 = dx,

where νε is the extended measure by periodicity to R2 whose restriction on K is
2 π
P

i∈Iε
di δai

f(ε) . This means that the vortex-repartition is uniform. In addition, from
(6.80), ∫

K
ν0 = 1,

and in view of (6.56), ∫
K
ν0 = 2 π L,

then by identification, we get thanks to the fact that limε→0
Nε
Dε

= 1

L = lim
n→+∞

Nεn

f(εn)
= lim

n→+∞

Dεn

f(εn)
=

1
2 π

. (6.81)

This allows to ensure that the number of vortices per period is of the order of f(ε).
The above limits do’nt depend on the chosen of the subsequence and since it is true
for any εn → 0, the whole sequence converges. Combining all the above completes
the proof of Theorem 6.1. 2

Remark 6.14. In the chapters 5 and 6, we have studied in the limit ε → 0 the
vortex-structure of minimizers of the Ginzburg-Landau energy over the space A with
respect to the all possible values of λ > 0. In particular, we have given the value
of λ for which the vortices appear, and when there are vortices we have successfully
stated their repartition in the superconductor and their number per period.
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Chapter 7

Vortices’s concentration along
one line

In this chapter, we construct a periodic critical point of the energy J , i.e. a solution
of the Ginzburg-Landau equations (3.4), such that as ε→ 0, the vortices contained
in the square K of (uε, Aε) minimizer of the energy J over an appropriate space, are
concentrated along a finite number of horizontal lines.

1 Introduction

Here, we deal with applied fields hex given by the following limit

λ = lim
ε→0

| log ε|
hex

. (7.1)

We assume that the limit exists. From now on, we consider fields such that

0 < λ < 2. (7.2)

Note that λ > 0, i.e. hex ≤ C | log ε|. We take K any square of sidelength 1.
Our goal is to find a sequence of solutions of the Ginzburg-Landau equations (3.4)
such that as ε → 0, the vortices contained in K concentrate on a finite number of
horizontal lines. The sequence is constructed by minimizing the energy J over an
appropriate space. First, let pε ∈ N be a function of ε such that the following limit
exists and does not vanish

α = 2 π lim
ε→0

pε
hex

. (7.3)

Now, we define the space where we perform the minimization of the Ginzburg-
Landau energy J .

Definition 7.1. Let (u,A) ∈ H1
loc(R2,C)×H1

loc(R2,R2). Then, (u,A) belongs to Gε
if there exists (k1, k2) ∈ H2

loc(R2,R)×H2
loc(R2,R) such that ∀(x, y) ∈ R2
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u
(
x+ 1

pε
, y

)
= u(x, y) ei k1(x,y)

u(x, y + 1) = u(x, y) ei k2(x,y)
(7.4)

and A
(
x+ 1

pε
, y

)
= A(x, y) +∇ k1(x, y)

A(x, y + 1) = A(x, y) +∇ k2(x, y).
(7.5)

Proceeding similarly as in the chapter 3, the infimum of J over Gε is achieved.
We denote by (uε, Aε) a sequence of minimizers and hε = curlAε its associated
magnetic field. Then, it is a solution of the Ginzburg-Landau equations, namely

∇2
Aε
uε = 1

ε2
uε (1− |uε|2) in R2

−∇⊥hε =< i uε,∇Aεuε > in R2.

We restrict our attention to the asymptotic behavior of the minimizers (uε, Aε) over
Gε when ε tends to 0 and their vortices. From now ow, let K = [0, 1[×[0, 1[. First,
we state some notations and definitions.

Notations

Let f be a function on R2.
i) We mean by the K -periodicity of f that there is a periodicity with respect to the
square K, i.e. ∀ (x, y) ∈ R2

f(x+ 1, y) = f(x, y) = f(x, y + 1).

ii) We say that f is R -periodic if

f(x+
1
pε
, y) = f(x, y) ∀ (x, y) ∈ R2.

iii) We say that f is KR -periodic if for any (x, y) ∈ R2,

f(x+
1
pε
, y) = f(x, y) = f(x, y + 1).

Now, let (u,A) be in the space Gε and h = curlA. Then, in particular from (7.4)
and (7.5), a simple calculation gives us that the physical quantities like h, |u| and
< i u, ∇Au > are KR -periodic (in the sense of (iii)).

2 An upper bound of the energy

Recall that α is defined by (7.3). First, we give the space
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U :=


f ∈ H1

loc(R2,R) such that f is K − periodic, x→ f(x, y) is constant and the

restriction of the measure ν = −∆f + f on K is supported on a finite number

of horizontal lines such that the mass of ν on each one belongs to α Z

 .

(7.6)
We take for any f ∈ U the measure

ν = −∆f + f in R2. (7.7)

For y ∈ K, we define G to be the Green function solution of

−∆xG(x, y) +G(x, y) = δy in R2. (7.8)

Remark that G exists, is unique and symmetric, i.e. G(x, y) = G(y, x). Let I be the
functional

I(ν) =
λ

2

∫
K
|ν|+ 1

2

∫
K×R2

G(x, y) d(ν − 1)(y) d(ν − 1)(x). (7.9)

Lemma 7.2. We have for any f ∈ U ,

E(f) =
λ

2

∫
K
|−∆f + f |+ 1

2

∫
K
|∇f |2 +

1
2

∫
K
|f − 1|2 = I(ν) ∀ ν = −∆f + f.

(7.10)

Proof : First, we multiply the equation (7.8) by x → f(x) and we integrate over
R2 to get for y ∈ K

∫
R2

(
−∆xG(x, y) +G(x, y)

)
f(x) dx =

∫
R2

δy(x) f(x) dx = f(y). (7.11)

Second, thanks to lemma 5.7, it is easy to find∫
R2

−∆xG(x, y) f(x) dx =
∫

R2

−∆xf(x) G(x, y) dx.

We insert this in (7.11) to have∫
R2

(
−∆xf(x) + f(x)

)
G(x, y) dx = f(y). (7.12)

Going back to (7.7) and the symmetry of G, we obtain

f(y) =
∫

R2

G(y, x) dν(x), y ∈ K. (7.13)

Now, set for f ∈ U
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F (f) =
∫
K
|∇f |2 +

∫
K
|f − 1|2.

It follows that

E(f) =
λ

2

∫
K
| −∆f + f |+ 1

2
F (f).

We need to give the explicit form of the functional F only in function of the measure
ν. Using the K -periodicity of f∫

K
∆f = 0 and

∫
K
−f ∆f =

∫
K
|∇f |2.

We insert this in the functional F to obtain

F (f) =
∫
K

(f − 1)
(
−∆f + f − 1

)
=

∫
K

(f − 1)(y) d(ν − 1)(y).

(7.14)

The equation (5.18) gives us ∫
R2

G(y, x) dx = 1.

Using this in (7.13),

(f − 1)(y) =
∫

R2

G(y, x) d(ν − 1)(x). (7.15)

The measure (ν − 1) denotes the difference between of the measure ν and the
Lebesgue measure on R2. Inserting (7.15) in (7.14) leads to

F (f) =
∫
K

( ∫
R2

G(y, x) d(ν − 1)(x)
)
d(µ− 1)(y).

We obtain for ν = −∆f + f ,

E(f) =
λ

2

∫
K
| −∆f + f |+ 1

2
F (f)

=
λ

2

∫
K
|ν|+ 1

2

∫
K×R2

G(x, y) d(ν − 1)(y) d(ν − 1)(x)

=I(ν).

2
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2.1 Main result

The upper bound on the minimal energy is stated in the following

Proposition 7.3. Set hex be such that limε→0
| log ε|
hex

= λ exists, is finite and does
not vanish. Let ν be any K -periodic Radon measure on R2 constant on horizontal
lines such that the restriction of ν on K is supported on a finite number of horizontal
lines and its mass on each line belongs to α N, and (uε, Aε) be a minimizer of the
energy J over the space Gε, then

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ I(ν). (7.16)

Thanks to lemma 7.2, the proposition 7.3 can be stated differently

Corollary 7.4. If λ > 0, then for any f ∈ U with (−∆f + f) is positive, we have
for a minimizer (uε, Aε) of the energy J over Gε

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ E(f).

Proof. Let f ∈ U , then by definition of the space U , f is K -periodic, so the measure
ν = −∆f+f is in particularK -periodic. Again, ν is constant on horizontal lines and
its restriction on K is concentrated on a finite number of horizontal lines. Moreover,
ν is taken to be positive, so the mass of ν on each line belongs to α N. Combining
all the above, the proposition 7.3 implies

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ I(ν).

Therefore, for ν = −∆f + f , the lemma 7.2 leads to

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ E(f).

2.2 The proof of proposition 7.3

Suppose that the assumptions of proposition 7.3 hold, then without loss of generality,
we assume that the restriction of the measure ν on K is supported on m horizontal
lines denoted by {Σi, 1 ≤ i ≤ m}. Since the mass of ν on each horizontal line belongs
to α N, there exist (yi)1≤i≤m with 0 < y1 < y2 < ... < ym < 1 and (ni)1≤i≤m with
ni ∈ N such that the restriction of ν on K is equal to α

∑m
i=1 ni δΣi where δΣi is

the measure of arclength along Σi and the equation of Σi is y = yi.
The upper bound (7.16) is obtained by a construction of a test configuration (vε, Bε)
in the space Gε. For this, we need to describe the vortices of (vε, Bε). We split the
proof into three steps.
Step1
We consider the sequence pε defined by (7.3). Let Rj be the rectangle
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Rj = [
j − 1
pε

,
j

pε
[×[0, 1[, 1 ≤ j ≤ pε.

We place in the rectangle Rj the points

(akj )1≤k≤m =
(j − 1/2

pε
, yk

)
1≤k≤m

. (7.17)

The extended points on K are
(
akj

)
1≤k≤m, 1≤j≤pε

. We deduce that there are (m pε)

points in the square K. Now, we define νε to be the extended measure to R2 by K
-periodicity of 2 π

hex

∑m
k=1

(
nk

∑pε

i=1 δak
i

)
. Let 1 ≤ k ≤ m be fixed, then as ε→ 0∑pε

i=1 δak
i

pε
→ δΣk

in the sense of measures,

where Σk is the horizontal line of equation y = yk. Consequently, using the fact that
α hex ' 2 π pε as ε→ 0, we find

νε ⇀ ν as ε→ 0.

Step2
We refer to the proof of proposition 5.8 to have

lim sup
ε→0

1
2

∫
K ×R2

G(x, y) d(νε−1)(x) d(νε−1)(y) ≤ λ

2
ν(K)+

∫
K×R2

G(x, y) d(ν−1)(x) d(ν−1)(y).

(7.18)
Step3
Now, we construct a test configuration (vε, Bε) to be in the space Gε. First, we
construct a function hε KR -periodic by letting

hε(x) = hex

∫
R2

G(x, y) dνε(y),

so that
−∆hε + hε = hex νε in R2. (7.19)

hε is taken as the magnetic field. Then, vε and Bε are defined as in the proof of
proposition 5.8 in a way such that hε = curlBε and (vε, Bε) ∈ Gε with

J(vε, Bε)
h2
ex

≤
1
2

∫
K |∇hε|

2 + 1
2

∫
K |hε − hex|2

h2
ex

+ oε(1), (7.20)

where oε(1) → 0 as ε → 0. Then, following again the proof of proposition 5.8 and
using (7.18) yield

lim sup
ε→0

1
2

∫
K |∇hε|

2 + 1
2

∫
K |hε − hex|2

h2
ex

≤ I(ν).

Combining with (7.20) allows to conclude
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lim sup
ε→0

J(vε, Bε)
h2
ex

≤ I(ν). (7.21)

This inequality is true for the test configuration (vε, Bε), so it is true in particular
for any minimizer of the energy J over the space Gε and (7.16) is proved.

Assumption

Let f ∈ U , then without loss of generality we assume from now on that the restriction
of the measure ν = −∆f + f on the square K is supported on m horizontal lines.
We take (yi)1≤i≤m such that 0 < y1 < y2 < ... < ym < 1 and we define Σi be the
horizontal line contained in K and of equation y = yi. As a consequence of the
above,

{Σi, 1 ≤ i ≤ m}

is the family of the m disjoint horizontal lines where the restriction of the measure
ν on K concentrates. Since the mass of ν on each line belongs to α Z, there exists
ni ∈ Z such that the mass of the measure ν on Σi is equal to α ni. It means that
the restriction of the measure ν on K can be written as

ν =
m∑
i=1

α ni δΣi . (7.22)

Now, for f ∈ U and under the above assumptions, our interest is to rewrite the
energy E, which is given by lemma 7.2, only in function of the family (yi, ni)1≤i≤m.
This will be the subject of the next paragraph.

3 New formulation of the energy E

Here, we take K = [0, 1[×[0, 1[. Let f ∈ U , then in particular, the restriction of
the measure (−∆f + f) on K is concentrated on a finite number of horizontal lines.
We start with the case where the measure (−∆f + f) is not concentrated on any
horizontal line.

3.1 Energy without horizontal lines of concentration

Let f ∈ U . In the case of absence of concentration’s horizontal lines, f verifies in
particular

−∆f + f = 0 in R2. (7.23)

Since f is bounded, it is easy that

f = 0 in R2.

Consequently, letting f = 0 in the energy without line of concentration, we deduce
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E(f) =
1
2
.

3.2 The energy in the presence of horizontal line (or lines) of con-
centration

In this case, let m ≥ 1 and (yi, ni)1≤i≤m such that 0 < y1 < ... < ym < 1 and ni ∈ Z
for 1 ≤ i ≤ m. Let f ∈ U , then taking the assumption given in the above paragraph
and thanks to (7.22), the restriction of the measure (−∆f + f) on K is

−∆f + f =
m∑
i=1

α ni δΣi , (7.24)

where Σi is the horizontal line contained in K and of equation y = yi. Due to the
parameter m, then for the family (yi, ni)1≤i≤m defined in the above, let us set the
space

Um :=


f ∈ H1

loc(R2,R) such that f is K − periodic, x→ f(x, y) is constant and the

restriction of the measure (−∆f + f) on K is of the form
∑m

i=1 α ni δΣi

where ni ∈ Z for 1 ≤ i ≤ m

 .

Let f ∈ Um, then there exist (ni)1≤i≤m with ni ∈ Z for any 1 ≤ i ≤ m such that the
restriction of the measure (−∆f + f) on K can be written as

∑m
i=1 α ni δΣi . Again

by definition of the space Um, x → f(x, y) is constant in [0, 1], hence to drop the
subscripts, we set for y ∈ [0, 1], g(y) = f(x, y). In particular, we deduce

∫
K
| −∆f + f | = α

m∑
i=1

ni and
∫
K

(−∆f + f)(f − 1) = α

m∑
i=1

ni (g − 1)(yi).

Using g(y) = f(x, y) together with these two identities and the fact that f is K
-periodic, the energy E corresponding to m horizontal lines can be written as

E(f) =
λ

2
α

m∑
i=1

ni +
1
2

∫
K

(−∆f + f − 1)(f − 1)

=
λ

2
α

m∑
i=1

ni +
α

2

m∑
i=1

ni (g − 1)(yi)−
1
2

∫
K

(f − 1).

We can write

E(f) =
1
2

+
m∑
i=1

α ni

(g(yi)
2

− (
1
2
− λ

2
)
)
− 1

2

∫
K
f. (7.25)

We need to calculate
∫
K f . For this, denote by g′l (resp. g′r) the left (resp. right)

derivative of g, so it is clear
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α ni = g′l(yi)− g′r(yi) ∀ 1 ≤ i ≤ m. (7.26)

By definition of the function g,

∫
K
f =

∫ 1

0
g(y) dy =

∫ y1

0
g(y) +

∫ 1

ym

g(y) dy +
m−1∑
i=1

∫ yi+1

yi

g(y)

=
∫ y1

0
g′′(y) dy +

∫ 1

ym

g′′(y) dy +
m−1∑
i=1

∫ yi+1

yi

g′′(y) dy.

(7.27)

Using (7.26) and g′(0) = g′(1) (which follows from f ∈ Um),∫
K
f =

m∑
i=1

α ni. (7.28)

Inserting (7.28) in (7.25),

E(f) =
1
2

+
m∑
i=1

α ni

(g(yi)
2

− (1− λ

2
)
)
. (7.29)

From now on, we restrict to the case m = 1. In particular, we have

Lemma 7.5. If f ∈ U is such that −∆f+f is equal on K to α n1 δΣ1 where n1 ∈ Z,
then

E(f) = E1(n1, y1) =
1
2

+ (1− λ

2
) α n1 +

e+ 1
4 (e− 1)

α2 n2
1, (7.30)

where Σ1 is the horizontal line contained in K and of equation y = y1.

Proof : The restriction of the measure (−∆f + f) on K is

−∆f + f = α n1 δΣ1 .

Taking g(y) = f(x, y), we have thanks to (7.26),

α n1 = g′l(y1)− g′r(y1).

By definition of g, g(0) = g(1) and g′(0) = g′(1). Now, combining the above together
with the continuity of g at y1, a simple calculation gives us

g(y1) =
e+ 1

2 (e− 1)
α n1. (7.31)

However, letting m = 1 in (7.29),

E(f) = E1(n1, y1) =
1
2

+ α n1

(g(y1)
2

− (1− λ

2
)
)
. (7.32)
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We insert (7.31) in (7.32) to deduce

E(f) = E1(n1, y1) =
1
2

+ (1− λ

2
) α n1 +

e+ 1
4 (e− 1)

α2 n2
1.

This completes the proof of the lemma 7.5. 2

The expression given by (7.32) does not depend on y1, hence for simplification,
we take for n1 ∈ Z

F (n1) = E1(n1, y1) =
1
2

+ (1− λ

2
) α n1 +

e+ 1
4 (e− 1)

α2 n2
1. (7.33)

Now, let (uε, Aε) be a minimizer of J over the space Gε, then going back to the
upper bound given by corollary 7.4 and using the definition of F , we can deduce for
any n1 ∈ N

lim sup
ε→0

JK(uε, Aε)
h2
ex

≤ F (n1). (7.34)

3.3 The finer upper bound of the minimal energy

The fundamental result of this section which will be very useful for the rest is stated
in the following lemma

Lemma 7.6. Let (uε, Aε) be a minimizer of J over the space Gε. Then, if

1− λ

2
> α

e+ 1
4 (e− 1)

, (7.35)

we have
lim sup
ε→0

J(uε, Aε)
h2
ex

<
1
2
. (7.36)

Remark 7.7. Thanks to the assumption (7.2), we remark that the left-hand side of
(7.35) is positive. Then, for a sufficiently small α > 0, the condition (7.35) has a
sense. Note that the right-hand side of (7.36) which is 1

2 corresponds to the energy
without horizontal line (or lines). Moreover, the inequality given by (7.36) will be
very essential at the end of the chapter.

Proof : We take particularly n1 = 1 in (7.34) to get

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ F (1).

By definition of the functional F given by (7.33),

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ 1
2
− (1− λ

2
) α+

e+ 1
4 (e− 1)

α2.

Now, we choose
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1− λ

2
> α

e+ 1
4 (e− 1)

,

to conclude from the above

lim sup
ε→0

J(uε, Aε)
h2
ex

<
1
2
.

The proof of lemma 7.6 is then completed. 2

4 Lower bound

Here, we assume that the applied field hex is such that

0 < λ < 2.

Consider (uε, Aε) a family of minimizers of the energy J over the space Gε, thus a
family of critical points of J and let hε = curlAε be the induced field. Similar to
the proposition 4.1, we can state

Proposition 7.8. For hex ≤ C | log ε|, there exists ε0 such that if ε < ε0 and (uε, Aε)
a minimizer of J over Gε, then there exist a rectangle R1 of the form [x, x+ 1

pε
[×[y, y+

1[ x, y ∈ R, (without loss of generality the rectangle is R1 = [0, 1
pε

[×[0, 1[), and a

family of disjoint balls
(
Bi = Bi(ai, ri)

)
i∈Lε

of center ai and of radii ri satisfying

{x ∈ R1, |uε(x)| <
3
4
} ⊂ ∪i∈LεBi, (7.37)

∪i∈LεBi(ai, ri) ⊂ R1, (7.38)∑
i∈Lε

ri ≤ C | log ε| e−
√
| log ε|, (7.39)

card(Lε) ≤ C | log ε| hex, (7.40)

Fε(uε, Aε, Bi) =
1
2

∫
Bi

|∇uε−i Aε uε|2+
1

4 ε2

∫
Bi

(1−|uε|2)2 ≥ π |di| | log ε| (1−o(1)),

(7.41)
where di is the degree of the map uε

|uε| restricted to ∂Bi.

4.1 Proof of proposition 7.8

First, letting Ω = [0, 1[×[0, 2[, mε = 1√
| log ε|

and αε = | log ε| in the proposition 4.12,

we have
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Lemma 7.9. For hex ≤ C | log ε|, there exists ε0 such that if ε < ε0 and (uε, Aε)
satisfies |∇uε − i Aε uε| < C

ε and Fε(uε, Aε,Ω) ≤ C | log ε|2, then there exists a

family of disjoint balls
(
Bi = Bi(ai, ri)

)
i∈Iε

of center ai and of radii ri such that

{x ∈ Ω, |uε(x)| <
3
4
} ⊂ ∪i∈IεBi, (7.42)

∑
i∈Iε

ri ≤ C | log ε| e−
√
| log ε|, (7.43)

card(Iε) ≤ C | log ε| hex, (7.44)

Fε(uε, Aε, Bi) ≥ π |di| | log ε| (1− o(1)), (7.45)

where di is the degree of the map uε
|uε| restricted to ∂Bi if Bi ⊂ Ω and di = 0

otherwise.

Let (uε, Aε) be a minimizer of J over Gε, then it is a critical point, so going back
to (3.13), we have

|∇uε − i Aε uε| ≤
C

ε
. (7.46)

We test the energy J by the configuration (1, 0), since it belongs to Gε. The minimum
of the energy JΩ is then less than JΩ(1, 0) ≤ C h2

ex ≤ C | log ε| hex. Hence

Fε(uε, Aε,Ω) ≤ JΩ(uε, Aε) ≤ C | log ε| hex.

So, the hypotheses of lemma 7.9 are verified. Then, applying it, there exists a family
of balls in Ω depending on ε denoted by (Bi)i∈Iε =

(
Bi(ai, ri)

)
i∈Iε

such that the three

assertions (7.43)-(7.44) and (7.45) hold.
We start by the proof of the assertion (7.38). Thanks to (7.43), we have∑

i∈Iε

ri ≤ C | log ε| e−
√
| log ε|.

Then, since pε = O(| log ε|), ∑
i∈Iε

ri = o(
1
pε

).

Consequently, projecting the balls
(
Bi(ai, ri)

)
i∈Iε

on the horizontal line of equation

y = 1
2 , then if ε is sufficiently small there exists 0 < x1 < 1 such that the two

lines of equations x = x1 and x = x1 + 1
pε

don’t intersect any ball of the family(
Bi(ai, ri)

)
i∈Iε

. Using the same argument, then if ε is sufficiently small there exists

0 < y1 < 1 such that there is no intersection between the two lines of equation
y = y1 and y = y1 + 1, and the balls

(
Bi(ai, ri)

)
i∈Iε

. We define

Lε =
{
i ∈ Iε, Bi(ai, ri) ⊂ R1 = [x1, x1 +

1
pε

[×[y, y1 + 1[
}
.
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Note that the balls
(
Bi(ai, ri)

)
i∈Lε

defined on R1 are disjoint, since the initial balls(
Bi = B(ai, ri)

)
i∈Iε

are disjoint. In addition, the lemma 7.9 implies in particular

that the other assertions of proposition 7.8 hold. Without loss of generality, the
rectangle R1 is [0, 1

pε
[×[0, 1[.

Combining all the above completes the proof of proposition 7.8.

Notation

In the above proposition, the rectangle R1 is [0, 1
pε

[×[0, 1[, then from now on we will

take K = [0, 1[×[0, 1[. Now, let us extend the balls
(
Bi(ai, ri)

)
i∈Lε

by R -periodicity

to K. For simplification, the ball Bi(ai, ri) defined on R1 will be denoted

Bi(ai, ri) = B1
i (a

1
i , ri), ∀ i ∈ Lε.

Note that the rectangle R1 can be taken as the fundamental domain of periodicity
for (uε, Aε) ∈ Gε. Then, for i ∈ Lε, we let Bj

i (a
j
i , ri), 1 ≤ j ≤ qε be the extended ball

of B1
i (a

1
i , ri) by R -periodicity to the rectangle Rj = [j − 1, j[×[0, 1[. Consequently,(

Bj
i (a

j
i , ri)

)
(1≤j≤pε, i∈Lε)

is the family of the vortex balls defined on the square K.

4.2 Preliminaries

Let (uε, Aε) be a minimizer of J over Gε. Then, proposition 7.8 gives us the existence
of the balls

(
B1
i (a

j
i , ri)

)
i∈Lε

defined on R1. Let us take

Dε :=
∑
i∈Lε

|di|. (7.47)

Our interest now is to estimate, for an ε small enough, the order of Dε. In particular,
we give an upper bound for Dε.

Lemma 7.10. For a sufficiently small ε, there exists C > 0 independently of ε such
that

Dε ≤ C. (7.48)

Proof : First, knowing ∪i∈LεB
1
i ⊂ R1, we have

JR1(uε, Aε) ≥ J∪i∈LεB
1
i
(uε, Aε). (7.49)

It is immediate by R -periodicity that

JR1(uε, Aε) =
JK(uε, Aε)

pε
.

Then, inserting this together with (7.41) in (7.49), we obtain thanks to the fact
2 π pε ' α hex as ε→ 0

π Dε | log ε| (1− o(1)) ≤ h2
ex

2 pε
≤ C hex. (7.50)
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Since hex ≤ C | log ε|, (7.50) leads to

Dε ≤ C.

2

The inequality (7.48) gives us a bounded vorticity in each rectangle Rj , 1 ≤ j ≤
pε. Now, knowing that Bj+1

i is the ball image of Bj
i by translation of vector 1

pε
~i,

then we can easily prove for any i ∈ Lε

deg(
uε
|uε|

, ∂Bj
i ) = deg(

uε
|uε|

, ∂Bj+1
i ). (7.51)

It is then clear that the degree of uε
|uε| restricted to ∂B1

i where i ∈ Lε, is invariant
under the KR -periodicity to R2. In particular, (7.51) implies that the number of
the vortices of uε in K is a multiple of pε.

Remark 7.11. Let (uε, Aε) ∈ Gε, then by definition of the spaces Gε and A, it is
clear that (uε, Aε) belongs to the space A. If (uε, Aε) is in addition a minimizer of
the energy J over Gε, then using (7.51) together with the fact that

∪(
i∈Lε, 1≤j≤pε

)Bj
i (a

j
i , ri) ⊂ K,

and proceeding similar to the corollary 4.4, we can deduce for a sufficiently small ε∫
K
hε = 2 π pε

∑
i∈Lε

di.

4.3 Convergence of minimizing sequence

Consider hex satisfying (7.1) and (7.2). Let (uε, Aε) be a sequence of minimizers of
the Ginzburg-Landau energy J over Gε and hε = curlAε be the induced magnetic
field. For any such set of the balls

(
Bj
i (a

j
i , ri)

)
(i∈Lε, 1≤j≤pε)

defined on K by propo-

sition 7.8, we can associate to uε the extended measure by K -periodicity to R2 of
2 π
P

i∈Lε
di

(
Ppε

j=1 δaj
i

)
hex

, denoted by νε. Using the fact that JK(uε, Aε) ≤ C h2
ex in

(3.10), we have

1
2
‖hε − hex‖2H1(K) ≤ JK(uε, Aε) ≤ C h2

ex.

Then, hε
hex

is bounded inH1(K), so thanks to theK -periodicity of hε, hε
hex

is bounded
in H1(O) for each compact O ⊂ R2. In particular, it is bounded in H1

loc(R2). So,
up an extraction we can find a subsequence εn → 0 and there exists f0 ∈ H1

loc(R2)
such that

hεn

hex
⇀ f0 weakly in H1

loc(R2). (7.52)

Moreover, using again the K -periodicity of hε
hex

implies that
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f0 is K − periodic.

Now, by definition of the restriction of the Radon measure νε on K, it is clear∫
K
|νεn | = 2 π pεn

Dεn

hex
.

Thanks to (7.48),
(pεn Dεn

hex

)
n

is bounded, hence by K -periodicity to R2, we can
write for any compact O ⊂ R2 ∫

O
|νεn | ≤ C.

Thus, (νεn)n is a bounded sequence of measures, and extracting again if necessary,
we can assume that there exists a Radon measure ν0 on R2 such that

νεn ⇀ ν0.

Finally, proceeding similarly as in the proof of proposition 5.12, the relation between
ν0 and f0 is

ν0 = −∆f0 + f0 in R2. (7.53)

Now, let (uε, Aε) be a minimizer of JK over the space Gε. Knowing that Gε belongs
to the space A, hence in particular the lemma 5.13 yields

lim inf
n→∞

JK(uεn , Aεn)
h2
ex

≥ λ

2

∫
K
| −∆f0 + f0|+

1
2

∫
K
|∇f0|2 +

1
2

∫
K
|f0 − 1|2 = E(f0).

(7.54)

4.4 Properties of f0 and ν0

Let us start with

Lemma 7.12. f0 is continuous on R2.

Proof : First, referring to [SS5], lemma 4.1, we have

|∇f0| ∈W 1,p
loc (R2), 1 ≤ p < +∞.

Thus, in particular

f0 ∈W 1,p
loc (R2), 1 ≤ p < +∞.

By Sobolev injection, we conclude

f0 ∈ C0,α
loc (R2), 0 ≤ α < 1,

which completes the proof of lemma. 2

Proposition 7.13. The limit configuration (f0, ν0) verifies
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• x→ f0(x, y) is constant.

• The restriction of ν0 on K is concentrated on a finite number of horizontal
lines .

• The mass of ν0 on each horizontal line belongs to α Z.

Remark 7.14. The case where ν0 = 0 is included in the result of the above propo-
sition; it corresponds to the case where the measure ν0 is not concentrated on any
horizontal line. Moreover, combining the fact that ν0 = −∆f0 + f0 in R2 together
with the above proposition, it is clear from the definition of the space U defined by
(7.6),

f0 ∈ U .

Proof : Step1: x→ f0(x, y) is constant
We know that fε(x+ k

pε
, y) = fε(x) for any integer k. Now, taking any real number a,

there exists a sequence of integers kε such that kε
pε
→ a. We denote tε the translation

(x, y) → (x + kε
pε
, y) and ta the translation (x, y) → (x + a, y). Then, taking g any

smooth compactly supported function and using change of variables∫
fε g =

∫
(fε ◦ tε) g =

∫
fε (g ◦ tε−1).

f0 is the limit of fε, hence passing to the limit we find∫
f0 g =

∫
f0 (g ◦ ta−1) =

∫
(f0 ◦ ta) g,

and therefore f0 = f0 ◦ ta. Step 1 is then proved.
Step2: The restriction of ν0 on K is concentrated on a finite number

of horizontal lines such that the mass of ν0 on each line belongs to α Z
The vortex balls

(
Bj
i (a

j
i , ri)

)
(i∈Lε, 1≤j≤pε)

defined on K depends on ε, hence from

now on, we write

di(ε) = di and aji (ε) = aji for i ∈ Lε and 1 ≤ j ≤ pε,

where di = deg
(
uε
|uε| , ∂B

j
i (a

j
i , ri)

)
. First, for a sufficiently small ε, lemma 7.10 gives

us Dε =
∑

i∈Lε
|di(ε)| ≤ C. Thus, the cardinal of {i ∈ Lε, di(ε) 6= 0} is bounded

independently of ε. First, if for any ε < ε0, di(ε) = 0, ∀ i ∈ Lε. This means that for
any ε < ε0, Dε = 0 , so by definition of the measure νε, we have νε = 0. Then, the
limit measure

ν0 = 0. (7.55)

Second, if for a sufficiently small ε, there exist points with non zero degrees, then
without loss of generality, there exists m ∈ N∗ such that these points are denoted
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{aji (ε), 1 ≤ i ≤ m, 1 ≤ j ≤ pε}. Now, up to extraction from ε → 0, we can get
from the above that ∀ 1 ≤ i ≤ m there exist qi ∈ Z and b1i ∈ R1 such that

di(εn) → qi, and a1
i (εn) → b1i .

For simplification, let

∀ 1 ≤ i ≤ m, b1i = (xi, yi) where 0 < y1 < ... < ym < 1.

Note that yi is constant and does not depend on ε. The extended points of (b1i )1≤i≤m
by R -periodicity to K are {bji = (xi + (j−1)

pε
, yi), 1 ≤ i ≤ m, 1 ≤ j ≤ pε}. It is

easy that ∀ 1 ≤ i ≤ m, as n→ +∞∑pεn
j=1 δaj

i (εn)

pεn

→ δ([0,1]×{yi)} in the sense of measures. (7.56)

Consequently, using di(εn) → qi together with α hex ' 2 π pεn as n→ +∞ in (7.56),
we find for any 1 ≤ i ≤ m

2 π di(εn)

∑pεn
j=1 δaj

i

hex
→ α qi δ([0,1]×{yi}) in the sense of measures. (7.57)

Finally, as n→ +∞

2 π
m∑
i=1

di(εn)

∑pεn
j=1 δaj

i
(εn)

hex
→ α

m∑
i=1

qi δ([0,1]×{yi}) in the sense of measures.

(7.58)
We define Σi to be the horizontal line contained in K and of equation y = yi.
Hence, {Σi, 1 ≤ i ≤ m, } is the family of the m horizontal disjoint lines where the
restriction of the limit measure ν0 on K concentrates. The left hand-side of (7.58)
is the restriction of the measure νε on K, hence we can conclude that the restriction
of the measure ν0 on K is equal to

∑m
i=1 α qi δΣi . The mass of the limit measure

ν0 on the line Σi is equal to (α qi). The conclusion from this and (7.55) is that the
mass of ν0 on the horizontal lines which are contained on K belongs to α Z. This
completes the proof of proposition 7.13. 2

Now, under some condition relaying λ ( and then the applied field) to the para-
meter α, we state a fundamental property for the limit measure ν0.

Lemma 7.15. If 1− λ
2 > α e+1

4 (e−1) , we have ν0 6= 0.

Proof : We argue by contradiction and we suppose that ν0 = 0. First, let (uε, Aε)
be a minimizer of J over the space Gε, then going back to (7.54) and using the fact
that ν0 = −∆f0 + f0, we have

lim inf
n→∞

JK(uεn , Aεn)
h2
ex

≥ 1
2

∫
K
|∇f0|2 +

1
2

∫
K
|f0 − 1|2, (7.59)

where ∆f0 + f0 = 0 in R2. In this case, we have f0 = 0. Inserting this in (7.59), we
get

lim inf
n→∞

JK(uεn , Aεn)
h2
ex

≥ 1
2
. (7.60)
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However, if we choose 1− λ
2 > α e+1

4 (e−1) , then the lemma 7.6 gives us

lim sup
ε→0

J(uε, Aε)
h2
ex

<
1
2
.

Comparing this to (7.60), we get a contradiction. Consequently, ν0 6= 0. 2

Now, under the hypotheses of lemma 7.15, we have obtained that the limit
measure of vorticity ν0 verifies ν0 6= 0, which allows to say that the restriction of ν0

on K concentrates on at least one horizontal line. From now on, we restrict to the
case where the restriction of the limit measure ν0 on K is supported exactly on one
horizontal line.

5 Vortices’s concentration on one horizontal line

In this paragraph, we assume that 1 − λ
2 > α e+1

4 (e−1) . If the restriction of the limit
measure ν0 on K is supported exactly on one horizontal line, then ν0 is written on
K as

ν0 = α d δΣ, (7.61)

where d ∈ Z∗ and y = y1 ∈]0, 1[ is the equation of the horizontal line Σ. Note that
the mass of ν0 on Σ is α d. My interest is then to give for certain applied fields, the
value of d.

Lemma 7.16. If in addition

1− λ

2
≤ α

e+ 1
2 (e− 1)

, (7.62)

then the d defined by (7.61) is equal to 1. Moreover, letting (uε, Aε) be a minimizer
of J over the space Gε, we get

lim
n→∞

J(uεn , Aεn)
h2
ex

=
1
2
− (1− λ

2
) α+

e+ 1
4 (e− 1)

α2.

Proof : From remark 7.14, f0 ∈ U , then from (7.61) which is

ν0 = −∆f0 + f0 = α d δΣ on K,

it is clear, f0 ∈ U1. In particular, from lemma 7.5, we have by definition of the
functional F given by (7.33)

E(f0) = F (d) =
1
2
− α (1− λ

2
) d+ α2 1 + e

4 (e− 1)
d2. (7.63)

Let (uε, Aε) be a minimizer of the energy J over the space Gε. Going back to (7.54),

lim inf
n→∞

J(uεn , Aεn)
h2
ex

≥ E(f0) = F (d). (7.64)

Now, let us take in particular n1 = 1 in (7.34) to find

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ F (n1) = F (1). (7.65)
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Combining (7.64) together with (7.65), we have for d ∈ Z∗

F (d) ≤ lim inf
n→∞

J(uεn , Aεn)
h2
ex

≤ lim sup
n→∞

J(uεn , Aεn)
h2
ex

≤ F (1). (7.66)

Let d∗ be the minimum of F over Z. Since x→ F (x) is convex in R, the minimum
of F over R is achieved at

xmin =
e− 1
e+ 1

2− λ

α
. (7.67)

Having 1− λ
2 > α e+1

4 (e−1) , hence xmin > 1
2 . Now, let us take in addition

1− λ

2
≤ α

e+ 1
2 (e− 1)

.

Inserting this in (7.67), we get xmin ≤ 1. Consequently, under the assumptions
(7.35) and (7.62), 1

2 < xmin ≤ 1. This implies that the unique minimum of F over
Z is d∗ = 1. Inserting this in (7.66) to find

F (1) = F (d∗) ≤ F (d) ≤ lim inf
n→∞

J(uεn , Aεn)
h2
ex

≤ lim sup
n→∞

J(uεn , Aεn)
h2
ex

≤ F (1) = F (d∗).

In particular, we get F (d) = F (1) = F (d∗). In view of the uniqueness of the
minimum d∗ = 1 of the functional F over Z, we obtain d = 1. We deduce using
(7.63),

lim
n→∞

J(uεn , Aεn)
h2
ex

= F (1) =
1
2
− (1− λ

2
) α+

e+ 1
4 (e− 1)

α2.

Finally, inserting d = 1 in (7.61), the restriction of the limit measure ν0 = −∆f0+f0

on K is written as α δΣ where Σ is an arbitrary horizontal line. Note that the mass
of the measure ν0 on Σ is equal to α. 2

As a consequence, combining all the above, the main result that we have proved
along the chapter is stated in the following.

Theorem 7.17. A- Convergence:
Let (uε, Aε) be a minimizer of the energy J over the space Gε and hε = curlAε be the
associated magnetic field. Then, letting νε be the extended measure by K -periodicity

to R2 of
2 π
P

i∈Lε
di

(
Ppε

j=1 δaj
i

)
hex

, there exist a K -periodic f0 ∈ H1
loc(R2) and a Radon

measure ν0 on R2 such that up an extraction of εn from ε

hεn

hex
→ f0 weakly in H1

loc(R2). (7.68)

νεn ⇀ ν0 = −∆f0 + f0. (7.69)

B-Properties of (f0, ν0):
We have fo ∈ U . Moreover, if

1− λ

2
> α

e+ 1
4 (e− 1)
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we have ν0 6= 0. In addition, when the restriction of ν0 on K concentrates on one
horizontal line, then if

1− λ

2
≤ α

e+ 1
2 (e− 1)

we have
lim
ε→0

J(uε, Aε)
h2
ex

=
1
2
− (1− λ

2
) α+

e+ 1
4 (e− 1)

α2,

and the restriction of ν0 on K is equal to (α δΣ) where Σ is any arbitrary horizontal
line.

Remark 7.18. In the above Theorem, we don’t study the case where the vortices
contained in K are concentrated on more than one horizontal line. It is rather
difficult to obtain a concentration of vortices on m ≥ 2 horizontal lines. The first
step is to determine the expression of the functional defined by (7.29) only in function
of the family (ni, yi)1≤i≤m where ni ∈ Z for any 1 ≤ i ≤ m and 0 < y1 < ... < ym <
1. The second step consists in the minimization of this expression among all the
configurations (ni, yi)1≤i≤m defined above. Unfortunately, this minimization is not
easy to study, so we can not give explicitly the limit measure of vorticity. This
explains the fact that we only consider the case m = 1, which corresponds to one
horizontal line of vortices in K.
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Chapter 8

Vortices’s concentration along
one circle

In this chapter, the domain is taken to be the disk BR of center O and of radius
R > 0. We then construct a sequence (uε, Aε)ε>0 of critical points of the energy JBR

,
such that in the limit ε→ 0 and under some condition on the applied magnetic field
hex, the vortices of (uε, Aε) are supported on a finite number of concentric circles of
center O and of strict positive radii (at least, there is concentration on one circle).
In particular, if the limit measure of vorticity is concentrated exactly on one circle
such that its mass is known, we will characterize this circle of vorticity by giving its
radius which will be the solution of a minimization problem.

1 Statement of the problem

1.1 Purpose of the chapter

Let Ω be a bounded, regular and simply connected domain in R2. Let (u,A) denote
a critical point of the energy JΩ and h the magnetic field will denote curlA. Then
from [SS5], (u,A) is a solution of the Ginzburg-Landau equations, namely∇

2
Au = 1

ε2
u(1− |u|2) in Ω

−∇⊥h =< i u,∇Au > in Ω
(8.1)

with the boundary conditions on ∂Ωh = hex

∇Au.ν = 0,
(8.2)

where ν is the unit outward normal to the boundary ∂Ω. We take H1
1 (Ω) to be

the space of functions f in H1(Ω) such that f = 1 on the boundary ∂Ω. Let again
BV (Ω) be the space of functions with bounded variations on Ω. In the sequel, M(Ω)
will be the set of Radon measures on Ω.
Now, we give a result of Sandier and Serfaty that describes the asymptotic behavior
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of critical points of J when ε→ 0.
Theorem [SS5]: Let εn → 0 and (un, An) be critical points of JΩ with JΩ(un, An) ≤
C h2

ex and hex ≤ C | log ε|. Then, up to extraction of a subsequence, there exist
h∞ ∈ H1

1 (Ω) and µ∞ ∈M(Ω) such that

hn
hex

→ h∞ weakly in H1
1 (Ω),

and

µn =
2 π

∑
i∈I di δai

hex
→ µ∞ = −∆h∞ + h∞ in the sense of measures,

where {(ai, di)i∈I} is the family of vortices defined by proposition 4.12. Moreover,
h∞ is stationary with respect to inner variations for the functional

L(f) =
1
2

∫
Ω
|∇f |2 + |f |2,

defined over H1
1 (Ω). If ∇h∞ is continuous on Ω and |∇h∞| ∈ BV (Ω), then

h∞ ∈ C1,α(Ω,R)
h∞ = 1 on ∂Ω
0 ≤ h∞ ≤ 1
µ∞ = h∞ 1|∇h∞|=0.

(8.3)

Thus, µ∞ is a nonnegative L∞ function and µ∞ � dx holds.

In the above Theorem, there is unfortunately no way that ensures µ∞ � dx is
true, unless we know that ∇h∞ is continuous and |∇h∞| ∈ BV (Ω). µ∞ could be a
measure that concentrates on lines (since it has to belong to H−1). Yet, the above
Theorem only asserts that |∇h∞| is continuous, but not necessarily ∇h∞. There are
counter-examples of (h∞, µ∞) satisfying these conclusions with ∇h∞ discontinuous,
thus without µ∞ � dx.

We state now a counter example. We restrict ourselves to the case of the disk
domain Ω = B(O, R) such that R > 0 is the radius and O is the center. Taking
R1 < R, let us solve −∆h1 + h1 = 0 in B(O, R1)

h1 = 1 on ∂B(O, R1),
(8.4)

and −∆h2 + h2 = 0 in B(O, R)\B(O, R1)

h2 = 1 on ∂B(O, R) ∪ ∂B(O, R1).
(8.5)

The two functions h1 and h2 are radial, and we can adjust R1 and R (see remark
8.9) in such a way that
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∂h1

∂r
(R1) = −∂h2

∂r
(R1). (8.6)

We define h as h1 inB(O, R1) and h2 inB(O, R)\B(O, R1), then h is inH1(B(O, R)).
Moreover, ∇h is discontinuous on ∂B(O, R1), while |∇h| remains continuous. The
measure µ = −∆h + h is positive and it is supported on ∂B(O, R1), thus µ � dx
does not hold. Nothing allows us to exclude that there are sequences of critical
points converging to such limiting configurations. They would correspond to so-
lutions with vortices of positive degrees concentrated along the circle ∂B(O, R1).
These sequences of critical points are constructed by minimizing the energy J over
an appropriate space.

1.2 Definitions

In this chapter, the domain is taken to be the disk BR = B(O, R) where R > 0 is
its radius and O is its center. Assume that λ = limε→0

| log ε|
hex

exists, is finite and
does not vanish. We define qε ∈ N to be a function of ε such that the following limit
exists, is finite and does not vanish too

β = lim
ε→0

qε
hex

. (8.7)

Note that when it is not necessary, we will write J instead of JBR
. The natural

space where we perform the minimization of the energy JBR
is denoted by Gε and

it is defined as follows.

Definition 8.1. Let (u,A) ∈ H1(BR,C) × H1(BR,R2), then (u,A) belongs to the
space Gε if there exists f ∈ H2(BR,C) such that for any x ∈ BR

u
(
x e

i 2 π
qε

)
= u(x) ei f(x), (8.8)

and
A

(
x e

i 2 π
qε

)
= e

i 2 π
qε A(x) + e

i 2 π
qε ∇f(x). (8.9)

Now, let us choose the following gauge named the Coulomb gaugedivA = 0 in BR

A.ν = 0 on ∂BR.
(8.10)

In the presence of this gauge, we can check that the infimum of J over the space
Gε is achieved. Without loss of generality, we denote by (uε, Aε)ε>0 a sequence of
minimizers. Then, it is a critical point, hence a solution of the Ginzburg-Landau
equations (8.1) and (8.2). Let hε = curlAε be the induced field. We restrict our
attention to the asymptotic behavior of minimizers (uε, Aε) as ε→ 0 and we explore
the vortex-structure of minimizers which will be obtained by getting first an upper
bound on the minimal energy J(uε, Aε), and then a lower bound.
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2 Construction of an upper bound

In this section, letting (uε, Aε) be a minimizer of J over the space Gε, we are
interested in giving an upper bound for the “renormalized” energy J(uε,Aε)

h2
ex

.

2.1 Preliminaries

Recall that the parameter β is defined by (8.7). Then, we start by giving the space

Y :=


f ∈ H1

1 (BR,R) such that f is radial and µ = −∆f + f is supported on

a finite number of concentric circles of center O and the mass of µ on each

one belongs to 2 π β Z


(8.11)

Remark 8.2. we have for any f ∈ Y , f ∈ H1
1 (BR,R). Then, the measure µ =

−∆f + f belongs to H−1, so it does not concentrate on isolated points (in particular
the point O, the center of the disk BR). Hence, the finite number of concentric
circles where µ concentrates have strict positive radii. In addition, for f ∈ Y , we
remark that f is continuous, but ∇f is not continuous.

First, any f ∈ Y is solution of−∆f + f = µ in BR

f = 1 on ∂BR.
(8.12)

Then, ∀ x ∈ BR

(f − 1)(x) =
∫
BR

G(x, y) d(µ− 1)(y),

where G is the Green solution of−∆xG(x, y) +G(x, y) = δy in BR

G(x, y) = 0 x ∈ ∂BR.
(8.13)

Recall that the functional E, defined over Y , is

E(f) =
λ

2

∫
BR

| −∆f + f |+ 1
2

∫
BR

|∇f |2 +
1
2

∫
BR

|f − 1|2. (8.14)

We refer to [SS3], proposition 2.1 to get for any f ∈ Y

E(f) = I(µ) =
λ

2

∫
BR

|µ|+1
2

∫
BR×BR

G(x, y) d(µ−1)(x) d(µ−1)(y), µ = −∆f+f.

(8.15)
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2.2 The upper bound

Proposition 8.3. Consider hex ≤ C | log ε|. Let µ be any Radon measure invariant
by rotation and concentrated on a finite number of concentric circles of center O and
of strict positive radii such that the mass of µ on each one belongs to 2 π β N. Let
(uε, Aε) be a minimizer of the energy J over the space Gε, then

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ I(µ) =
λ

2

∫
BR

|µ|+ 1
2

∫
BR×BR

G(x, y) d(µ− 1)(x) d(µ− 1)(y).

(8.16)

Thanks to (8.15), proposition 8.3 can be stated differently

Corollary 8.4. If λ > 0, then for any f ∈ Y with (−∆f + f) is positive, we have

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ E(f). (8.17)

Proof. First, the fact that λ > 0 means that hex ≤ C | log ε|. Let f ∈ Y , then by
definition of the space Y , the measure µ = −∆f+f is invariant by rotation and it is
concentrated on a finite number of concentric circles of center O. Now, thanks to the
remark 8.2, these concentric circles have strict positive radii. Moreover, µ = −∆f+f
is taken to be positive, so the mass of µ on each concentric circle belongs to 2 π β N.
Combining all the above, the proposition 8.3 implies

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ I(µ).

Therefore, (8.15) leads to

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ E(f).

2.3 Proof of proposition 8.3

Suppose that the assumptions of proposition 8.3 hold, then without loss of generality,
we assume that the measure µ is supported on m concentric circles denoted by
(Γi)1≤i≤m, of center O and of strict positive radii. The mass of µ on each circle
belongs to 2 π β N, hence there exist (ri)1≤i≤m with 0 < r1 < r2 < ... < rm < R
and (mi)1≤i≤m with mi ∈ N for 1 ≤ i ≤ m such that∫

Γi

µ = 2 π β mi.

Note that ri is taken to be the radius of the circle Γi. From the concentration of the
measure µ on the m concentric circles

(
Γi

)
1≤i≤m

,
∫
BR

µ can be written as
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∫
BR

µ =
∫
∪m

i=1Γi

µ =
m∑
i=1

∫
Γi

µ.

It follows that ∫
BR

µ = 2 π β
m∑
i=1

mi.

Then, it is clear that the measure µ is given as

µ = β
m∑
i=1

mi

ri
δΓi , (8.18)

where δΓi is the measure of arclength along Γi.
The upper bound (8.16) is obtained by a construction of a test configuration (vε, Bε)
in the the space Gε. For this, we need to describe the vortices of (vε, Bε). We
decompose the proof of the proposition 8.3 into five steps.
Step1
We consider the sequence qε defined by (8.7). Let Sj be the sector

Sj = {r ei θ, 0 ≤ r < R, θ ∈ [
2 π (j − 1)

qε
,
2 π j
qε

[, 1 ≤ j ≤ qε}.

First, we place in the sector S1 the points

(ak1)1≤k≤m =
(
rk e

i π
qε

)
1≤k≤m

,

where {rk, 1 ≤ k ≤ m} are the radii of the circles where the measure µ concentrates.
Then, by rotation of center O and of angle 2 π

qε
, we extend these points to the ball

BR. In particular, the extended points of (ak1)1≤k≤m to the sector Sj , 1 ≤ j ≤ qε,
are denoted

(akj )1≤k≤m =
(
rk e

i 2 π
j− 1

2
qε

)
1≤k≤m

.

We deduce that there are (m qε) points in the ball BR which are(
akj

)
1≤k≤m, 1≤j≤qε

=
(
rk e

i 2 π
j− 1

2
qε

)
1≤k≤m, 1≤j≤qε

. (8.19)

We define for any 0 ≤ j ≤ qε

Σj = {r ei
2 π j

qε , 0 ≤ r < R}.

Remark that the boundary of Sj is

∂Sj = (∂BR ∩ Sj) ∪ Σj−1 ∪ Σj , 1 ≤ j ≤ qε.

From now on, we say that a function T is S -periodic means

T (x ei
2 π
qε ) = T (x), x ∈ BR.
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Note that we pass from the sector Sj to Sj+1 by a rotation of center O and of angle
2 π
qε

. Now, we define the measure µε

µε =
2 π
hex

m∑
k=1

(
mk

qε∑
i=1

δak
i

)
, (8.20)

where mk and aki are defined respectively by (8.18) and (8.19). Now, let 1 ≤ k ≤ m
be fixed, then it is clear that as ε→ 0,∑qε

i=1 δak
i

qε
→ 1

2 π rk
δΓk

in the sense of measures,

where Γk is the circle of center O and of radius rk. Consequently, using the fact that
β hex ' qε as ε→ 0,

2 π mk

∑qε
p=1 δak

i

hex
→ β

mk

rk
δΓk

. (8.21)

It follows that as ε→ 0,

m∑
k=1

2 π mk

(∑qε
p=1 δak

i

hex

)
→ β

m∑
k=1

mk

rk
δΓk

in the sense of measures. (8.22)

Then, by definition of the measures µε and µ, we deduce from (8.22), as ε→ 0,

µε → µ in the sense of measures.

Step2
Here, thanks to [SS3], proposition 2.2, we can state

lim sup
ε→0

1
2

∫ ∫
BR ×BR

G(x, y) d(µε−1)(x) d(µε−1)(y) ≤ λ

2
µ(BR)+

∫
BR

∫
BR

G(x, y) d(µ−1)(x) d(µ−1)(y).

(8.23)
Step3
Now, we construct a test configuration (vε, Bε) to be in Gε. First, we construct a
function hε S -periodic. Indeed, let hε be the unique solution of

−∆hε + hε =
∑m

k=1 2 π mk δak
1

in S1

hε = hex on S1 ∩ ∂BR

∂hε
∂ν = 0 on Σ0 ∪ Σ1,

where the points
(
ak1

)
1≤k≤m

are defined by (8.19). Because, we have set ∂hε
∂ν = 0

on Σ0 ∪ Σ1, and thanks to the fact that hε has the symmetry of the sector S1, the
extended hε by S -periodicity to the ball BR necessarily verifies−∆hε + hε = hex µε in BR

hε = hex on ∂BR,
(8.24)
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where µε is defined by (8.20). In particular, we obtain

hε

(
x e

i 2 π
qε

)
= hε(x), x ∈ BR.

hε is taken as the magnetic field. Having defined hε on BR, we let Bε be a solution
of curlBε = hε. Bε is taken to be the magnetic potential. Furthermore, we define the
function φε only modulo 2 π where ρε 6= 0. Set x0 ∈ BR\

[ ⋃
(1≤k≤m, 1≤j≤qε)

(
B(akj , ε)

)]
and the function

φε(x) =
∮

(x0,x)
e
−i 4 π

qε Bε.τ −∇hε.ν, (8.25)

where (x0, x) is any curve joining x0 to x in BR\
[ ⋃

(1≤k≤m, 1≤j≤qε)

(
B(akj , ε)

)]
. Let

us then choose ρε such that 0 ≤ ρε ≤ 1, ρε = 0 in
⋃

1≤k≤m

(
B(ak1, ε)

)
, ρε = 1 in

S1\
(
∪1≤k≤m B(ak1, 2 ε)

)
, and ρε = |x−ak

1 |
ε − 1 otherwise. We may extend ρε by S

-periodicity to BR, hence

ρε

(
x e

i 2 π
qε

)
= ρε(x) ∀ x ∈ BR.

Similar to the proof of proposition 5.8, step 3, ei φ is well defined, so let us take

vε = ρε e
i φε .

Step4
Here, we prove

Lemma 8.5. The test configuration
(
vε, Bε

)
belongs to the space Gε.

Proof : First, thanks to (8.24)

hε

(
x e

i 2 π
qε

)
= hε(x) ∀ x ∈ BR. (8.26)

The magnetic potential Bε ∈ H1(BR,R2) is taken to solve curlBε = hε. For simpli-
fication, set

bε = e
i 2 π

qε .

Then, (8.26) becomes hε(bε x) = hε(x). We replace hε with curlBε in (8.26) to
obtain

(curlBε)(bε x) = (curlBε)(x).

But,

(curlBε)(bε x) =
1
bε
curl

(
Bε(bε x)

)
,

then by identification, we get
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curl
( 1
bε
Bε(bε x)−Bε(x)

)
= 0.

In view of this and to the fact that the quantity
(

1
bε
Bε(bε x)−Bε(x)

)
is a complex-

vector potential, there exists a function gε ∈ H2(BR,C) such that

1
bε
Bε(bε x)−Bε(x) = ∇gε(x).

It follows that

Bε(bε x) = bε Bε(x) + bε ∇gε(x) ∀ x ∈ BR.

Consequently, the potential vector Bε satisfies for any x ∈ BR

Bε

(
x e

i 2 π
qε

)
= e

2 i π
qε Bε(x) + e

2 i π
qε ∇gε(x). (8.27)

Now, from the construction of the function φε, it is obvious that onBR\
⋃

(1≤k≤m, 1≤j≤qε)

(
B(akj , ε)

)
∇φε = e

−i 4 π
qε Bε −∇⊥hε.

It means, using bε = e
i 2 π

qε

∇φε =
1
b2ε
Bε −∇⊥hε.

In particular, ∀x ∈ BR\
⋃

(1≤k≤m, 1≤j≤qε)

(
B(akj , ε)

)
(∇φε)(bε x) =

1
b2ε
Bε(bε x)− (∇⊥hε)(bε x). (8.28)

On the one hand, the left-hand side of (8.28) is

(∇φε)(bε x) =
1
bε
∇

(
φε(bε x)

)
. (8.29)

On the other hand, using (8.26)-(8.27) in the right-hand side of (8.28), we have for
x ∈ BR\

⋃
(1≤k≤m, 1≤j≤qε)

(
B(akj , ε)

)
1
b2ε
Bε(bε x)− (∇⊥hε)(bε x) =

1
bε
Bε(x) +

1
bε
∇gε(x)−

1
bε
∇⊥hε(x)

=
1
bε
∇φε(x) +

1
bε
∇gε(x).

(8.30)

Comparing (8.28)-(8.29) to (8.30), we get by identification

∇
(
φε(bε x)

)
=

1
bε
Bε(bε x)− bε (∇⊥hε)(bε x) = ∇φε(x) +∇gε(x). (8.31)

By integration of (8.31), there exists a constant c ∈ C such that
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φε(bε x) = φε(x) + gε(x) + c.

Set fε(x) = gε(x) + c and replace bε with ei
2 π
qε to get

φε

(
x e

i 2 π
qε

)
= φε(x) + fε(x). (8.32)

Using (8.32) together with the fact that ρε
(
x e

i 2 π
qε

)
= ρε(x) in vε = ρε e

i φε , we

obtain in BR\
⋃

(1≤k≤m, 1≤j≤qε)

(
B(akj , ε)

)
,

vε

(
x e

i 2 π
qε

)
= ρε

(
x e

i 2 π
qε

)
e
i φε

(
x e

i 2 π
qε

)
= ρε(x) ei φε(x) ei fε(x)

= vε(x) ei fε(x).

(8.33)

Thanks to the fact that ρε is equal to 0 in
⋃

(1≤k≤m, 1≤j≤qε)

(
B(akj , ε)

)
, we find for

any x ∈ BR

vε

(
x e

i 2 π
qε

)
= vε(x) ei fε(x). (8.34)

Finally, we replace gε with (fε − c) in (8.27) to have

Bε

(
x e

i 2 π
qε

)
= e

2 i π
qε Bε(x) + e

2 i π
qε ∇fε(x). (8.35)

Combining (8.34) together with (8.35) completes the proof of the lemma 8.5. 2

Step5
From the equation (8.24), the induced magnetic field hε satisfies−∆hε + hε − hex = hex (µε − 1) in BR

hε = hex on ∂BR.

Hence, in particular

(hε − hex)(y) = hex

∫
BR

G(y, x) d(µε − 1)(x), ∀ y ∈ BR. (8.36)

Now, multiplying −∆hε + hε − hex = hex (µε − 1) by (hε − hex), integrating on BR,
and using (8.36), it follows that

∫
BR

|∇hε|2 +
∫
BR

|hε − hex|2 =
∫
BR

(−∆hε + hε − hex) (hε − hex)

=
∫
BR

hex (hε − hex)(y) d(µε − 1)(y)

=h2
ex

∫
BR

∫
BR

G(y, x) d(µε − 1)(x) d(µε − 1)(y),

118



where (µε − 1) denotes the difference between of the measure µε and the Lebesgue
measure on BR. We divide by 2 h2

ex to get

lim sup
ε→0

1
2

∫
BR
|∇hε|2 + 1

2

∫
BR
|hε − hex|2

h2
ex

= lim sup
ε→0

1
2

∫
BR×BR

G(x, y) d(µε−1)(y) d(µε−1)(x).

Using (8.23),

lim sup
ε→0

1
2

∫
BR
|∇hε|2 + 1

2

∫
BR
|hε − hex|2

h2
ex

≤ λ

2

∫
BR

|µ|+1
2

∫
BR×BR

G(x, y) d(µ−1)(y) d(µ−1)(x).

We remark that the right-hand side is the functional I defined by (8.15), so that

lim sup
ε→0

1
2

∫
BR
|∇hε|2 + 1

2

∫
BR
|hε − hex|2

h2
ex

≤ I(µ). (8.37)

In addition, thanks to the fact that there are (m qε) points (aki )(1≤i≤qε, 1≤k≤m) in
BR, hence by definition of ρε, it is clear

lim sup
ε→0

1
2

∫
BR
|∇ρε|2 + 1

4 ε2

∫
BR

(1− ρ2
ε)

2

h2
ex

= 0. (8.38)

Here, it is easy that (5.47) holds, so in particular

lim sup
ε→0

JBR
(vε, Bε)
h2
ex

≤ lim sup
ε→0

( 1
2

∫
BR
|∇hε|2 + 1

2

∫
BR
|hε − hex|2

h2
ex

)

+ lim sup
ε→0

( 1
2

∫
BR
|∇ρε|2 + 1

4 ε2

∫
K(1− ρ2

ε)
2

h2
ex

)
.

(8.39)

A combination of (8.37) together with (8.38) in (8.39) allows to write

lim sup
ε→0

JBR
(vε, Bε)
h2
ex

≤ I(µ). (8.40)

This inequality is true for the test configuration (vε, Bε) ∈ Gε, so it is true in
particular for any minimizer of J over the space Gε. This completes the result of
the proposition 8.3.

3 New formulation of the energy E

Let f ∈ Y . In particular, the measure (−∆f +f) is concentrated on a finite number
of concentric circles of center O and of strict positive radii. Recall that

E(f) =
λ

2

∫
BR

| −∆f + f |+ 1
2

∫
BR

|∇f |2 +
1
2

∫
BR

|f − 1|2.

Let us start with the case where the measure (−∆f + f) is not concentrated on any
circle.
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3.1 Energy without circle of concentration

In the case where the measure (−∆f + f) is not concentrated on any circle, each
f ∈ Y is solution of −∆f + f = 0 in BR

f = 1 on ∂BR.
(8.41)

Consequently, for the f unique solution of (8.41), E(f) is the energy which cor-
responds to the case of the absence of circle of concentration. Using (8.41), we
deduce

E(f) =
1
2

∫
BR

|∇f |2 +
1
2

∫
BR

|f − 1|2

=
1
2

∫
BR

(−∆f + f − 1) (f − 1)

=− 1
2

∫
BR

(f − 1)

=
π R2

2
− 1

2

∫
BR

f.

(8.42)

Now, our interest is to calculate
∫
BR

f . In polar coordinates, remember that the
Laplacian reads

∆ = ∂rr +
1
r
∂r +

1
r2
∂2
θ .

Let us take f(r ei θ) = f(r, θ). The scalar function f ∈ Y is radial, hence using the
above in (8.41), it solves

−∂rrf(r, θ)− ∂rf(r, θ)
r

+ f(r, θ) = 0 in [0, R]× [0, 2 π] and f(R, θ) = 1. (8.43)

Again f is radial, hence there exists g : [0, R] → R such that

f(r ei θ) = g(r) for any θ ∈ [0, 2 π].

In particular, (8.43) becomes

−g′′ − g′

r
+ g = 0 in [0, R] and g(R) = 1. (8.44)

Note that the continuity of f yields that g is continuous on [0, R] too.
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Modified Bessel functions

Now, let us resolve the following ordinary differential equation

−y′′ − y′

x
+ y = 0 in [a, b], 0 ≤ a < b ≤ +∞ (8.45)

such that y is continuous on [a, b]. We define I0 and K0 to be respectively the
modified Bessel function of the first kind and of the second kind. We need to give
some properties of the Bessel functions I0 and K0. For this, we can refer to the
literature [W]. First,

I0(x) =
∞∑
n=0

x2n

(n!)2 22 n
. (8.46)

Note that I0 increases and I0(0) = 1. We define I1 to be the derivative of I0, so it
is positive. Second, K0 is given as follows

K0(x) = −
(

log(
x

2
) + γ

)
I0(x) +

∞∑
n=0

x2n

(n!)2 22 n
Φ(n), (8.47)

where Φ(n) = 1 + 1
2 + ...+ 1

n for n 6= 0, Φ(0) = 0, and γ = (limn→+∞ Φ(n)− log n).
We note that K0 is positive, decreases and tends to +∞ as x → 0. Let K1 be the
derivative of the function (−K0), then it is positive and thanks to (8.47), K1 tends
to +∞ as x→ 0.

Let y be a solution of (8.45). We distinguish two cases:
Case 1: If a > 0
Here, there exist C1, C2 ∈ R such that for any x ∈ [a, b], y(x) can be written as

y(x) = C1 I0(x) + C2 K0(x).

Case 2: If a = 0
In this case, knowing that y is continuous on [0, b] (especially at 0), hence necessarily
the constant C2 = 0 (given in the case 1) because K0 is not well defined at 0, so
there exists only C1 ∈ R such that

y(x) = C1 I0(x).

Lemma 8.6. Let f be the solution of (8.41), then

E(f) = π

(
R2

2
−R

I1(R)
I0(R)

)
.

Proof : First, we go back to resolve (8.44). Using the fact that g is continuous in
[0, R] implies that there exists C1 ∈ R such that g(r) = C1 I0(r) in [0, R]. Knowing
g(R) = 1, then in particular C1 = 1

I0(R) . It follows that

g(r) =
I0(r)
I0(R)

in [0, R]. (8.48)
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Using (8.48),

g′(R) =
I1(R)
I0(R)

.

Let again f(r, θ) = g(r), then having f = ∆f in BR gives us∫
BR

f =
∫
BR

∆f =
∫
∂BR

∂f

∂ν
= 2 π R g′(R) = 2 π R

I1(R)
I0(R)

,

where ν is the outward normal at the boundary of BR. Inserting the above in (8.42),
we have

E(f) =
π R2

2
− π R

I1(R)
I0(R)

.

For simplification, we take

Ĵ0 = E(f) = π

(
R2

2
−R

I1(R)
I0(R)

)
. (8.49)

2

3.2 The energy in the presence of circle (or circles) of concentration

In this section, we take f ∈ Y such that (−∆f + f) is positive. Let us consider the
measure

µ = −∆f + f.

We take the assumption on the measure µ given by the proposition 8.3, so that µ
is supported on m ≥ 1 concentric circles of center O. Of course, it is known that
these circles have positive radii. For (ri)1≤i≤m with 0 < r1 < r2 < ... < rm < R,
we take Γi(ri) to be the circle of center O and of radius ri. As a consequence,
{Γi(ri), 1 ≤ i ≤ m} is taken to be the family of the m disjoint concentric circles
where the measure µ concentrates. Again, by definition of the space Y and using
the fact that the measure µ is taken to be positive, so the mass of µ on each circle
belongs to 2 π β N. Hence, there exist (mi)1≤i≤m with mi ∈ N for any 1 ≤ i ≤ m
such that the mass of the measure µ on the circle Γi(ri) is equal to 2 π β mi.
From now on, when we write (ri,mi)1≤i≤m, it means that this family verifies the
above assumptions.
Thanks to the concentration of the measure µ on the m disjoint concentric circles(
Γi(ri)

)
1≤i≤m

, we get as (8.18)

µ = −∆f + f =
m∑
i=1

β mi

ri
δΓi(ri) in BR.

Letting f(r, θ) = g(r), then proceeding as (8.44), we can write

−g′′(r)− g′(r)
r

+ g(r) =
m∑
i=1

β mi

ri
δri in [0, R], g(R) = 1. (8.50)

122



Let us denote g′l (resp. g′r) the left (resp. right) derivative of g. We have for
1 ≤ i ≤ m

β
mi

ri
= g′l(ri)− g′r(ri) (ri,mi) ∈]0, R[×N. (8.51)

The g solution of (8.50) on the intervals [0, r1[, ]ri, ri+1[ for 1 ≤ i ≤ m−1 and ]rm, R]
is in particular solution of the following ordinary differential equation

−g′′(r)− g′(r)
r

+ g(r) = 0. (8.52)

Due to the parameter of m and under the above, let us take the space

Ym :=


f ∈ H1

1 (BR,R) such that f is radial and (−∆f + f) is of the form∑m
i=1

β mi

ri
δΓi(ri) in BR where 0 < r1 < ... < rm < R and mi ∈ N

for 1 ≤ i ≤ m

 .

(8.53)
Taking f ∈ Ym, our interest now is to determine the energy E defined by (8.14) only
in function of the family (ri,mi)1≤i≤m. The following lemma presents a preliminary
expression of E.

Lemma 8.7. Let m ≥ 1. If f ∈ Y is such that −∆f + f = β
∑m

i=1
mi
ri

δΓi(ri)

where (ri,mi)1≤i≤m are such that 0 < r1 < ... < rm < R and mi ∈ N for 1 ≤ i ≤ m,
then letting g(r) = f(r, θ), we have

E(f)
π

=
R2

2
−R g′(R) +

m∑
i=1

β mi

(
g(ri)− (2− λ)

)
. (8.54)

Proof : Letting f ∈ Y ,

E(f) =
λ

2

∫
BR

| −∆f + f |+ 1
2

∫
BR

(
−∆f + f − 1

)
(f − 1), (8.55)

since f = 1 on ∂BR. We use the fact that f is radial and verifies

−∆f + f = β

m∑
i=1

mi

ri
δΓi(ri),

to obtain ∫
BR

| −∆f + f | = 2 π β

m∑
i=1

mi, (8.56)

and by definition of the function g which is g(r) = f(r, θ),∫
BR

(−∆f + f) (f − 1) = 2 π β
m∑
i=1

mi (g − 1)(ri). (8.57)

123



We insert (8.56)-(8.57) in (8.55) to have

E(f) = λ π β
m∑
i=1

mi + π β
m∑
i=1

mi (g − 1)(ri) +
π R2

2
− 1

2

∫
BR

f. (8.58)

Now, we need to calculate
∫
BR

f . First, the fact that f is radial leads to∫
BR

f(r, θ) r dr dθ = 2 π
∫ R

0
g(r) r dr. (8.59)

Second, we decompose the interval [0, R] and we use (8.50) to deduce

∫ R

0
g(r) r dr =

m∑
i=1

( ∫ ri

0
g(r) r dr +

∫ R

ri

g(r) r dr
)

=
m∑
i=1

( ∫ ri

0
(g′′(r) r + g′(r)) dr +

∫ r

ri

(g′′(r) r + g′(r)) dr
)

=
m∑
i=1

[
r g′(r)

]ri
0

+
m∑
i=1

[
r g′(r)

]R
ri
,

(8.60)

where [S(x)]ba = S(b) − S(a) for any a, b ∈ R and S any function defined on R.
Referring to the fact that β mi

ri
= g′l(ri)− g′r(ri) for 1 ≤ i ≤ m,

∫ R

0
g(r) r dr = R g′(R) +

m∑
i=1

ri

(
g′l(ri)− g′r(ri)

)
= R g′(R) +

m∑
i=1

β mi.

Inserting this (8.59), we find∫
BR

f = 2 π
(
R g′(R) +

m∑
i=1

β mi

)
.

We insert again this in (8.58) to complete the proof of the lemma. 2

In the next paragraph, we will be interested in giving the expression of the
energy E defined by (8.54) only in function of (ri,mi)1≤i≤m. For this, it suffices to
determine the quantities g′(R) and g(ri), 1 ≤ i ≤ m. First, let us define the function
X on ]0, R] as follows

∀ x ∈]0, R], X(x) := I0(R) K0(x)−K0(R) I0(x).

We mention that X(R) = 0. Moreover, since I1 = I ′0 ≥ 0 and K1 = −K ′
0 ≥ 0, it is

clear that the function X is decreasing in ]0, R]. Using I0(0) = 1 and the fact that
K0 tends to +∞ as x → 0, then X tends to +∞ as x → 0. As a consequence, the
function X is positive on ]0, R[. In addition, by definition of the Bessel functions I0
and K0 as solutions of (8.45), the function X satisfies for 0 < x ≤ R

X ′′ +
X ′

x
= X.
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Remark 8.8. Let f ∈ Y be such that −∆f + f = β
∑m

i=1
mi
ri

δΓi(ri) where
(ri,mi)1≤i≤m are such that 0 < r1 < ... < rm < R and mi ∈ N for 1 ≤ i ≤ m. Let
us take

E(f) = Em(r1, ..., rm,m1, ...,mm). (8.61)

In this case, (8.17) can be rewritten to be

lim sup
n→∞

J(uεn , Aεn)
h2
ex

≤ Em(r1, ..., rm,m1, ...,mm). (8.62)

It seems be not easy to give the expression of the energy Em for large m, even for
m ≥ 2. From now on, we just restrict to the case m = 1.

Remark 8.9. Here, we show how R1 and R, which are given in (8.4) and (8.5),
are adjusted in order to prove (8.6). The solutions h1 and h2 respectively of (8.4)
and (8.5) are radial. Using the Bessel functions, we can find

h1(r) =
I0(r)
I0(R)

∀ 0 ≤ r ≤ R1, (8.63)

and

h2(r) =
K0(R1)−K0(R)

X(R1)
I0(r) +

I0(R)− I0(R1)
X(R1)

K0(r) ∀ R1 ≤ r ≤ R. (8.64)

In particular

h′1(R1) =
I1(R1)
I0(R)

, (8.65)

and

h′2(R1) =
K0(R1)−K0(R)

X(R1)
I1(R1) +

I0(R1)− I0(R)
X(R1)

K1(R1). (8.66)

Now, we adjust R1 and R in order to get

I1(R1)
( 1
I0(R)

+
K0(R1)−K0(R)

X(R1)

)
=
I0(R)− I0(R1)

X(R1)
K1(R1). (8.67)

Thus, h′1(R1) = −h′2(R1). (8.6) is then proved.

3.3 The case m = 1

Lemma 8.10. If f ∈ Y is such that −∆f + f = β m1
r1

δΓ1(r1) where 0 < r1 < R
and m1 ∈ N, then letting g(r) = f(r, θ), we have

g(r1) =
I0(r1)
I0(R)

(
1 +

β m1 X(r1)

R
(
I0(R) K1(R) + I1(R) K0(R)

))
, (8.68)

and
g′(R) =

I1(R)
I0(R)

− β

R I0(R)
I0(r1) m1. (8.69)
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Proof : Under the assumption on f , then by definition of the function g, it is clear

−g′′(r)− g′(r)
r

+ g(r) = β
m1

r1
δr1 in [0, R] and g(R) = 1.

Using the continuity of g at 0, there exist real constants σ0, σ1, and ω1 such that
g(r) is written as

g(r) =


σ0 I0(r) in [0, r1]

σ1 I0(r) + ω1 K0(r) in [r1, R].

Our aim is to find g(r1) and g′(R), so we need to find the parameters σ0, σ1 and ω1.
First, the boundary condition g(R) = 1 yields

g(R) = σ1 I0(R) + ω1 K0(R) = 1. (8.70)

The continuity of g at r1 reads gg(r1) = gd(r2), so that

σ0 I0(r1) = σ1 I0(r1) + ω1 K0(r1). (8.71)

(8.71) gives us

σ0 − σ1 = ω1
K0(r1)
I0(r1)

. (8.72)

Now, we use (8.51) to get

β
m1

r1
= g′l(r1)− g′r(r1).

In particular, we have

β
m1

r1
= σ0 I1(r1)− σ1 I1(r1) + ω1 K1(r1). (8.73)

Therefore,

σ0 − σ1 = β
m1

r1 I1(r1)
− ω1

K1(r1)
I1(r1)

. (8.74)

We compare (8.72) to (8.74) to have

ω1 =
β m1 I0(r1)

r1

1
I0(r1) K1(r1) + I1(r1) K0(r1)

. (8.75)

Let us define the function

b(x) = I0(x) K1(x) + I1(x) K0(x), x ∈]0, R]. (8.76)

The derivative of the function b is b′(x) = − b(x)
x2 , so by integration there exists a ∈ R

such that

b(x) =
a

x
∀x ∈]0, R].
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In particular, we have for x = R, b(R) = a
R = I0(R) K1(R) + I1(R) K0(R). It is

then clear that b(x) = a
x for any x ∈]0, R], where

a = R
(
I0(R) K1(R) + I1(R) K0(R)

)
. (8.77)

Inserting b(r1) = a
r1

in (8.75),

ω1 =
β m1 I0(r1)
r1 b(r1)

=
β

a
m1 I0(r1). (8.78)

Replacing ω1 with (8.78) in (8.70), we have

σ1 =
1

I0(R)
− β

a
m1

I0(r1) K0(R)
I0(R)

. (8.79)

Consequently, inserting the two quantities (8.78) and (8.79) in g(r1) = σ1 I0(r1) +
ω1 K0(r1) and referring to the function X,

g(r1) =
I0(r1)
I0(R)

(
1 +

β

a
m1 X(r1)

)
.

Moreover, we have

g′(R) =σ1 I1(R)− w1 K1(R)

=
I1(R)
I0(R)

− β m1

a
I0(r1) K0(R)

I1(R)
I0(R)

− β

a
m1 I0(r1) K1(R)

=
I1(R)
I0(R)

− β

a
m1

I0(r1) b(R)
I0(R)

=
I1(R)
I0(R)

− I0(r1)
R I0(R)

β m1.

(8.80)

The lemma 8.10 is then proved.
2

Corollary 8.11. If f ∈ Y is such that −∆f + f = β m1
r1

δΓ1(r1) where 0 < r1 < R
and m1 ∈ N, then we have

E(f)
π

=
E1(r1,m1)

π
=
Ĵ0

π
+

(
λ−(2−2

I0(r1)
I0(R)

)
)
β m1 +

β2 m2
1

a

I0(r1) X(r1)
I0(R)

, (8.81)

where a is defined by (8.77).

Proof. Let g(r) = f(r, θ). Inserting (8.68)-(8.80) in (8.54), we get

E1(r1,m1)
π

=
R2

2
−R g′(R) + β m1

(
g(r1)− (2− λ)

)
=
R2

2
−R

I1(R)
I0(R)

+
I0(r1)
I0(R)

β m1 − (2− λ) β m1 + β
I0(r1)
I0(R)

(β
a
m1 X(r1) + 1

)
m1.
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From (8.49), we have
(
R2

2 −R I1(R)
I0(R)

)
= Ĵ0

π . It follows that

E1(r1,m1)
π

=
Ĵ0

π
+ β m1 (λ− 2) +

2 β m1 I0(r1)
I0(R)

+
β2

a

m2
1 I0(r1) X(r1)

I0(R)
.

Remark 8.12. Now, let us take m1 = 1. We show at the end of the chapter the
reason which allows me to choose m1 = 1. In particular, thanks to (8.81),

E1(r1, 1)
π

=
Ĵ0

π
+

(
λ− (2− 2

I0(r1)
I0(R)

)
)
β +

I0(r1) X(r1)
a I0(R)

β2. (8.82)

To simplify, we set

F (x) =
E1(x, 1)

π
x ∈]0, R[. (8.83)

Let (uε, Aε) be a minimizer of JBR
over the space Gε. In particular, letting m = 1

with r1 = x ∈]0, R[ and m1 = 1 in (8.62),

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ E1(x, 1) ∀ x ∈]0, R[. (8.84)

The next paragraph is devoted to minimize the right-hand side of (8.84), which is the
functional x → E1(x, 1), over the interval ]0, R[. By (8.83), we will be interested in
minimizing the functional F over ]0, R[.

4 Minimization of F over ]0, R[

First, we state some properties of the Bessel functions Ii and Ki, 0 ≤ i ≤ 1 which
will be very useful for the rest.

4.1 Some properties of the modified Bessel functions

Lemma 8.13. I1 is increasing in [0,+∞[ and K1 is decreasing in ]0,+∞[. Moreover
for any x > 0

I0 −
2
x
I1 ≥ 0 and K0 +

2
x
K1 ≥ 0. (8.85)

In addition, for any 0 ≤ i ≤ 1 and x > 0

Ii(x) '
ex√
2 π x

when x is large enough, (8.86)

Ki(x) '
e−x√
2 π x

when x is large enough. (8.87)

Finally,
I0 ≥ I1 and K0 < K1. (8.88)
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Proof : First, referring to the expressions of I0 and K0 given respectively by (8.46)
and (8.47), it is obvious that the assertion (8.85) is immediate. Second, we can refer
to [W] to find the assertions (8.86) and (8.87). Now, we will prove (8.88). Let us
take for x ≥ 0

N1(x) = (I0(x))2 − (I1(x))2.

We have

I ′1 = I0 −
I1
x
,

since I ′′0 + I′0
x = I0 and I1 = I ′0. Using the fact that I0 ≥ 2 I1

x yields that I ′1 ≥ 0, so
I1 is increasing. A derivation of N1 gives us

N ′
1(x) = 2 I0 I1 − 2 I1 (I0 −

I1
x

) = 2
(I1)2

x
> 0.

In particular, we deduce that N1(x) ≥ N1(0) = 1, which proves I0 ≥ I1 in [0,+∞[.
Now, let us take for x > 0

N2(x) = (K1(x))2 − (K0(x))2.

From K ′′
0 + K′0

x = K0 and the definition of KI , we have

K ′
1 = −K0 −

K1

x
.

Using the fact that K0 + 2 K1
x ≥ 0 yields that K1 is decreasing. The derivative of

N2 is

N ′
2(x) = −2

(K1)2

x
< 0.

Thanks to lemma 8.13, N2 tends to 0 as x → +∞, hence with the fact that N2 is
decreasing, we get N2(x) > 0 for any x ∈]0,+∞[. 2

4.2 Critical point (or points) of the functional F

Recall that for a = R
(
I0(R) K1(R) + I1(R) K0(R)

)
and for any r ∈]0, R[

F (r) =
Ĵ0

π
+ β (λ− 2) + 2 β

I0(r)
I0(R)

+
β2

a

I0(r) X(r)
I0(R)

.

Now, my interest is to determine the critical points of the functional F . First, let B
be the derivative of (−X), so that

B(x) = I0(R) K1(x) +K0(R) I1(x), ∀ x ∈]0, R].

Note that B(x) > 0 for any x ∈]0, R] and in particular from (8.76), we have B(R) =
b(R) = a

R . The derivative of F is
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F ′(r) = 2 β
I1(r)
I0(R)

+
β2

a I0(R)

(
I1(r) X(r)− I0(r) B(r)

)
∀ r ∈]0, R[.

Let us define

T (x) = I0(x) B(x)− I1(x) X(x) ∀ x ∈]0, R]. (8.89)

We know from lemma 8.13 that K1 ≥ K0, then it is immediate that B ≥ X in ]0, R].
Moreover, since I0 ≥ I1, it is clear from (8.89)

T (x) ≥ 0 for any x ∈]0, R].

We replace (I0 B − I1 X) with T in F ′(r) to get for any r ∈]0, R[

F ′(r) =
β

I0(R)

(
2 I1(r)−

β

a
T (r)

)
. (8.90)

Letting F ′(r) = 0, we get β
a = 2 I1(r)

T (r) . Hence, if we take the function

G(x) = 2
I1(x)
T (x)

, x ∈]0, R], (8.91)

it follows that any critical point r in ]0, R[ of the functional F satisfies the following
identity

β

a
= G(r).

Consequently, the critical points of x→ F (x) in the plane (x, y) are the intersection
between the graph of x→ G(x) and the horizontal line of equation y = β

a . Thus, to
determine this intersection, we need to know the sense of variation of the function
G.

Proposition 8.14. If

β <
2 R I1(R)
I0(R)

,

then the functional F has one critical point in ]0, R[. Precisely, this critical point is
the minimizer of F over ]0, R[ and it is in ]0, R[.

Remark 8.15. Note that T (R) = a I0(R)
R , since X(R) = 0 and B(R) = a

R . Thus,
(8.91) gives us

G(R) =
2 R I1(R)
a I0(R)

.

In particular, the assumption on the parameter β given by the above proposition
becomes

β

a
< G(R).
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4.3 Proof of proposition 8.14

To prove the proposition 8.14, we are concerned firstly with the determination of
the sense of variation of the function G in the interval ]0, R]. To drop the subscripts,
when it is not necessary, we omit the variable x. Let us give the derivatives of the
functions B and T . We have for x ∈]0, R],

B′ = −X − B

x
, T ′ = 2 I1 B − 2 I0 X − T

x
.

The functions B and X are respectively positive and nonnegative on ]0, R], hence
B′ < 0, meaning that B is decreasing in ]0, R]. Using the above derivatives, we have
for x ∈]0, R]

G′(x) =
2
T 2

(
I0 T + 2 I1 (I0 X − I1 B)

)
. (8.92)

We replace T by the right-hand side of (8.89) in (8.92) to find

T 2

2
G′ = (I2

0 − 2 I2
1 ) B + I0 I1 X. (8.93)

In view of the fact that X(R) = 0, B(R) = a
R and T (R) = a I0(R)

R , hence again from
(8.93),

a I0(R)2

2 R
G′(R) =

(
I0(R)

)2
− 2

(
I1(R)

)2
.

We remark that the sign of G′(R) depends on the sign of the quantity(
I0(R)

)2
− 2

(
I1(R)

)2
,

consequently it depends on
(
I0(R)−

√
2 I1(R)

)
.

Now, let us take for x ∈ [0,+∞[

M(x) =
(
I0(x)

)2
− 2

(
I1(x)

)2
.

For x > 0, the derivative of M is

M ′(x) = 2 I1 (−I0 +
2
x
I1).

Thanks to lemma 8.13, we have (−I0 + 2
x I1) < 0. Then, M ′(x) < 0, so the

function M is decreasing in [0,+∞[. Again, from lemma 8.13, M(x) tends to −∞
as x → +∞, which with the fact that M decreases and M(0) = 1 > 0 imply that
there exists a unique 0 < R∗ < +∞ such that M(R∗) = 0, meaning that

I0(R∗) =
√

2 I1(R∗).

Note that R∗ ' 2, and from (8.93) G′(R∗) > 0.
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Step 1: The sense of variation of G

To determine the cardinal of the set {r ∈]0, R[, β
a = G(r)}, we need to know the

sense of variation of the function G. For this, we distinguish with respect to R the
radius of the disk BR the two following cases. We start with

Case1: I0(R) ≥
√

2 I1(R)
(
⇐⇒ R ≤ R∗

)
In this case, we have G′(R) ≥ 0. The function M is decreasing in [0,+∞[, hence in
particular ∀ x ∈]0, R],

(I0(x))2 − 2 (I1(x))2 ≥ (I0(R))2 − 2 (I1(R))2.

We insert this in (8.93) to have

T 2(x)
2

G′(x) ≥
(
(I0(R))2 − 2 (I1(R))2

)
B(x). (8.94)

Thanks to the fact that I0(R) ≥
√

2 I1(R), we get

∀ 0 < x < R, G′(x) > 0.

This implies that G is increasing in ]0, R[, so

∀ x ∈]0, R[, G(x) < G(R).

Remember that any critical point r of F satisfies β
a = G(r), so the intersection be-

tween the graph of x→ G(x) and the horizontal line of equation y = β
a is restricted

to one point ( even without a condition on β). Consequently, there is a unique
critical point of F in ]0, R[.

Case2: I0(R) <
√

2 I1(R)
(
⇐⇒ R > R∗

)
First, it is clear that G′(r) > 0 for any r ∈]0, R∗]. But, unfortunately we have no idea
on the sign of G′ on the interval [R∗, R]. Then, from now on we will be concerned
with the study of the behavior of G on the interval [R∗, R]. Knowing R > R∗, we
have G′(R) < 0, then combining this with the fact that G′(R∗) > 0, there exists at
least r+, R∗ < r+ < R such that

G′(r+) = 0.

We will prove that r+ is the unique point in [R∗, R] where the function G′ vanishes.
Firstly, after a simple calculation, the second derivative of the function G for r in
[R∗, R] is

T 4 G′′(r)
2

=I1 T 3 + I0 T
2 (2 I1 B − 2 I0 X − T

r
) + 2 (I0 −

I1
r

) (I0 X − I1 B) T 2 + 2 I1 T 2 (I1 X − I0 B)

−2 I1 T 2 B (I0 −
I1
r

) + 2 I2
1 T

2 (X +
B

r
)− 2 T T ′

(
I0 T + 2 I1 (I0 X − I1 B)

)
.

(8.95)
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Because we know that G′(r+) = 0 and r+ ∈ [R∗, R], so the set of the critical points
of G in [R∗, R] is not empty. Let r be an arbitrary critical point of G in [R∗, R],
then in particular thanks to (8.92),

I1(r) B(r)− I0(r) X(r) =
I0 T (r)
2 I1(r)

. (8.96)

Replacing T with (I0 B − I1 X) in (8.96), we can write

X(r) =

(
2 (I1(r))2 − (I0(r))2

)
B(r)

I0(r) I1(r)
. (8.97)

Now, replacing (I0 B− I1 X) with T and Inserting (8.96) in (8.95), it is easy to find

T 2 G′′(r)
2 I1

= 4 I1
B

r
− 3 T = (

I1
r
− 3 I0) B − 3 I1 X. (8.98)

Let us replace the X given in (8.98) with the right-hand side of (8.97), then any
critical point r of G in [R∗, R] satisfies

r I0 T
2 G′′(r)

4 I1 B
= 2 I1 I0 + 3 r (I1)2 − 3 r (I0)2. (8.99)

Let us study the right-hand side of (8.99). Its derivative is equal to the quantity(
− (I0)2 − (I1)2 − 2 I1 I0

r

)
, which is negative. Then, the right-hand side of (8.99)

is decreasing in the interval [R∗, R], so by the definition of R∗ which is such that
I0(R∗) =

√
2 I1(R∗) and then R∗ ' 2, we have for any x ∈ [R∗, R]

2 I1(x) I0(x) + 3 x (I1(x))2 − 3 x (I0(x))2 ≤ 2 I1(R∗) I0(R∗) + 3 R∗ (I1(R∗))2 − 3 R∗ (I0(R∗))2

= (2
√

2 − 3 R∗) (I1(R∗))2 ≤ 0.

Thus, going back to (8.99), we conclude that any critical point r of the function G
in [R∗, R] satisfies

G′′(r) ≤ 0. (8.100)

Thus, r is necessarily a maximum of G in [R∗, R], so that by continuity of G, there is
a unique critical point of G in [R∗, R]. But, knowing that G′(r+) = 0, hence r+ = r
is the unique critical point of G, and it is then the maximum of G. So, in particular
G′(r) > 0 for any r ∈ [R∗, r+[. We know that G′(r) > 0 for any r ∈]0, R∗], then as
a consequence of the above, we have G′(r+) = 0 and G′(r) > 0 for r ∈]0, r+[ with
G′(r) < 0 for r ∈]r+, R]. It means that G is increasing in ]0, r+[ and is decreasing
in ]r+, R]. Thus, we must have G(r+) > G(R). Now, assume that the parameter β
satisfies

β <
2 R I1(R)
I0(R)

.

Then, we can write
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β

a
<

2 R I1(R)
a I0(R)

.

Note that the right-hand side of the above inequality is G(R), so this means that
β
a < G(R). The set {r ∈]0, R[, G(r) = β

a} is then restricted to one point, so there
is a unique critical point of F in ]0, R[.

Step 2: The nature of the critical point of F

Finally, let us determine the nature of the critical point of F in each case. On the
one hand, going back to (8.90) and using the fact that T (R) = a I0(R)

R , we get

F ′(R) =
β

I0(R)

(
2 I1(R)− β

a
T (R)

)
=

β

I0(R)

(
2 I1(R)− β

I0(R)
R

)
.

Then, under the fact that β < 2 R I1(R)
I0(R) , we get F ′(R) > 0. On the other hand, by

definition of the functions Ii and Ki where 0 ≤ i ≤ 1, we can deduce T (x) → +∞
as x→ 0. Inserting this in (8.90),

F ′(x) → −∞ as x→ 0.

Consequently, combining this together with F ′(R) > 0 implies that the unique crit-
ical point of the functional F in the interval ]0, R[ is necessarily a minimizer and in
particular, it is in ]0, R[. The proposition 8.14 is then proved.

4.4 The finer upper bound of the minimal energy

From now on, the applied magnetic field is taken to satisfy

λ < 2− 2
I0(R)

. (8.101)

Moreover, assume that

β <
2 R I1(R)
I0(R)

,

then, let us define R0 by

F (R0) = inf
r∈]0,R[

F (r). (8.102)

From the proposition 8.14, the minimum R0 exists, is unique and it is in ]0, R[. In
addition, it satisfies

G(R0) =
2 I1(R0)
T (R0)

=
β

a
, (8.103)

where a = R
(
I0(R) K1(R)+I1(R) K0(R)

)
. We finish the section with the following

fundamental result which will be essential for the rest.
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Lemma 8.16. Let (uε, Aε) a minimizer of J over Gε and a = R
(
I0(R) K1(R) +

I1(R) K0(R)
)
. Assume that

β <
2 R I1(R)
I0(R)

,

then if the applied field is such that

2 I0(R)− 2
I0(R)

− λ >
2 I0(R0)− 2

I0(R)
+ β

I0(R0) X(R0)
a I0(R)

, (8.104)

we have
lim sup
ε→0

J(uε, Aε)
h2
ex

< Ĵ0. (8.105)

Remark 8.17. Thanks to the assumption (8.101), we remark that the left-hand side
of (8.104) is positive. Then, for a small enough β > 0, the condition (8.104) has a
sense. Moreover thanks to the inequality (8.105), we obtain in the limit ε → 0 the
presence of concentric circles of vortices (at least one circle) of center O, the center
of the disk.

Proof : Let us evaluate the energy F (R0)

F (R0) =
Ĵ0

π
+ β λ− β

(
2− 2 I0(R0)

I0(R)

)
+ β2 I0(R0) X(R0)

a I0(R)
. (8.106)

If the applied field is such that

2 I0(R)− 2
I0(R)

− λ >
2 I0(R0)− 2

I0(R)
+ β

I0(R0) X(R0)
a I0(R)

,

we obtain from (8.106)

F (R0) <
Ĵ0

π
.

Referring to the definition of F given by (8.83), we deduce

E1(R0, 1) < Ĵ0. (8.107)

Now, going back to (8.84), we can write

lim sup
ε→0

J(uε, Aε)
h2
ex

≤ E1(R0, 1). (8.108)

Thanks to (8.107), we conclude

lim sup
ε→0

J(uε, Aε)
h2
ex

< Ĵ0.

The lemma is then proved. 2
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5 Lower bound

Let (uε, Aε) be a minimizer of the energy J over the space Gε and hε = curlAε.
Here, the applied field is taken to verify

0 < λ < 2
(
1− 1

I0(R)

)
.

5.1 The vortex balls

Similar to the proposition 4.1, we can state

Proposition 8.18. For hex ≤ C | log ε|, there exists ε0 such that if ε < ε0 and
(uε, Aε) a minimizer of J over Gε, then there exist rε ∈] 1

| log ε| ,
2

| log ε| [, θ1 ∈ [0, 2 π]

and a family of disjoint balls
(
Bi = B(ai, ri)

)
i∈Lε∪Tε

of center ai and of radii ri
such that

∪i∈LεBi(ai, ri) ⊂ B(0, rε), (8.109)

∪i∈TεBi(ai, ri) ⊂ {r ei θ, rε < r ≤ R, θ1 < θ < θ1 +
2 π
qε
}, (8.110)∑

i∈Lε∪Tε

ri ≤ C | log ε| e−
√
| log ε|, (8.111)

card(Lε ∪ Tε) ≤ C | log ε| hex, (8.112)

Fε(uε, Aε, Bi) ≥ π |di| | log ε| (1− o(1)), (8.113)

where di is the degree of the map uε
|uε| restricted to ∂Bi if Bi ⊂ BR and di = 0

otherwise.

Notation

Taking the radius rε and the parameter θ1 given by the above proposition, we take
Srε,θ1 the sector

Srε,θ1 = {r ei θ, rε < r ≤ R, θ1 < θ < θ1 +
2 π
qε
}. (8.114)

Note that the angle of Srε,θ1 is 2 π
qε

.

5.2 Proof of proposition 8.18

Before all, letting Ω = BR, mε = 1√
| log ε|

, and αε = | log ε| in the proposition 4.12,

we have

Lemma 8.19. If hex ≤ C | log ε|, there exists ε0 such that if ε < ε0 and (uε, Aε)
satisfies |∇uε − i Aε uε| < C

ε and Fε(uε, Aε, BR) ≤ C | log ε| hex, then there exists a

family of disjoint balls
(
Bi = B(ai, ri)

)
i∈kε

of center ai and of radii ri such that

{x ∈ BR, |uε| <
3
4
} ⊂ ∪i∈kε , Bi, (8.115)
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∑
i∈kε

ri ≤ C | log ε| e−
√
| log ε|, (8.116)

card(kε) ≤ C | log ε| hex, (8.117)

Fε(uε, Aε, Bi) ≥ π |di| | log ε| (1− o(1)), (8.118)

where di is the degree of the map uε
|uε| restricted to ∂Bi if Bi ⊂ BR and di = 0

otherwise.

Let (uε, Aε) be a minimizer of J over Gε, then it is solution of the Ginzburg-
Landau equations (8.1)-(8.2), so going back to (3.13),

|∇uε − i Aε uε| ≤
C

ε
. (8.119)

(1, 0) ∈ Gε, then testing the energy J by the configuration (1, 0), the minimum of
the energy JBR

is less than JBR
(1, 0) = π R2

2 hex ≤ C | log ε| hex. By definition of
the functional Fε, it follows that

Fε(uε, Aε, BR) ≤ JBR
(uε, Aε) ≤ C | log ε| hex.

So combining all the above, the hypotheses of lemma 8.19 are verified. Then ap-
plying it there exists a family of balls in BR depending on ε denoted by (Bi)i∈kε =(
B(ai, ri)

)
i∈kε

such that the assertions (8.115)-(8.116)-(8.117) and (8.118) hold.

We start by the proof of the assertions (8.109)-(8.110). First,∑
i∈kε

ri ≤ C | log ε| e−
√
| log ε|.

Therefore, ∑
i∈kε

2 ri = o(
1

| log ε|
).

Hence, if ε is small enough, there exists c, 1 < c < 2 such that when we take
rε = c

| log ε| , the boundary of the ball of center O and of radius rε does not intersect

any ball of the family
(
Bi(ai, ri)

)
i∈kε

. We define

Lε = {i ∈ kε, Bi(ai, ri) ⊂ B(0, rε)},

then (8.109) is satisfied. Now, in view of the fact that qε ' β | log ε| as ε → 0 and
rε = c

| log ε| , we can write ∑
i∈kε

2 ri
rε

= o(
2 π
qε

). (8.120)

Consequently, projecting the balls
(
Bi(ai, ri)

)
i∈kε

on the curve

{r ei θ, r = rε, θ belongs to an intervall of length
2 π
qε
},
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then thanks to (8.120) which gives us a comparison of the angles, and if ε is small
enough, there exists necessarily 0 ≤ θ1 ≤ 2 π such that the two lines {r eiθ, r ∈
[rε, R] and θ = θ1} and {r eiθ, r ∈ [rε, R] and θ = θ1 + 2 π

qε
} don’t intersect any

ball of the family {
(
Bi(ai, ri)

)
i∈kε\Lε

}. These two lines together with {(r, θ), r =

rε and θ1 < θ < θ1 + 2 π
qε
} form in the disk BR the boundary of the sector Srε,θ1

which is defined by (8.114). Now, let us define

Tε =
{
i ∈ kε, Bi(ai, ri) ⊂ {r ei θ, rε < r ≤ R, θ1 < θ < θ1 +

2 π
qε
} = Srε,θ1

}
.

Thanks to the fact that the balls
(
Bi(ai, ri)

)
i∈kε

are disjoint, hence in particular by

definition of Lε and Tε, the balls
(
Bi = B(ai, ri)

)
i∈Lε∪Tε

are disjoint too. Moreover,

it is clear that the three assertions (8.111)-(8.112) and (8.113) hold. Combining all
the above completes the proof of the proposition 8.18.

Notation

Let (uε, Aε) be a minimizer of J over the space Gε. As defined by proposition 8.18,
note that {(ai, di)i∈Lε} is the associated family of vortices in the ball Brε = B(0, rε),
while {(ai, di)i∈Tε} is the associated family of vortices in the sector Srε,θ1 . Now, let
us extend the family {Bi(ai, ri)i∈Tε} by S -periodicity to BR\Brε . For simplification,
let

S1
rε,θ1 = Srε,θ1 .

For any i ∈ Tε, the ball Bi(ai, ri) defined on S1
rε,θ1

will be denoted

Bi(ai, ri) = B1
i (a

1
i , ri), ∀ i ∈ Tε.

Then, for i ∈ Tε, we let Bj
i (a

j
i , ri), 1 ≤ j ≤ qε be the extended of the ball B1

i (a
1
i , ri)

by S -periodicity to Sjrε,θj
, 1 ≤ j ≤ qε where θj = θ1 + 2 π (j−1)

qε
. So that the

extended balls defined on Sjrε,θj
are

(
Bj
i (a

j
i , ri)

)
i∈Tε

. Consequently, we get in the

annulus BR\Brε (
Bj
i (a

j
i , ri)

)
(1≤j≤qε, i∈Tε)

.

Note that the sector S1
rε,θ1

can be taken as the fundamental domain of periodicity for
(uε, Aε) ∈ Gε in the annulus BR\Brε . Moreover, thanks to (8.115) and by definition
of Tε and Lε, it is easy to get from the fact that |uε|(x ei

2 π
qε ) = |uε|, the following

property for the vortex balls

{x ∈ BR, |uε| <
3
4
} ⊂

(
[∪(1≤j≤qε, i∈Tε)B

j
i ] ∪ [∪ i∈LεBi]

)
. (8.121)
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5.3 Preliminaries

Recall that for 1 ≤ j ≤ qε, we have θj = θ1 + 2 π (j−1)
qε

. Then

Sjrε,θj
= {r ei θ, rε < r ≤ R, θj < θ < θj +

2 π
qε
}.

For i ∈ Tε, let Bj
i (a

j
i , ri) be contained strictly in the sector Sjrε,θj

, then writing locally
uε
|uε| = ei ϕε and taking Bj+1

i which is the image of Bj
i by rotation of angle 2 π

qε
and

center O, we have

deg(
uε
|uε|

, ∂Bj
i ) =

1
2 π

∫
∂Bj

i

∇ϕε .τ. (8.122)

Using (8.8), there exists l ∈ Z such that ∀ x ∈ BR

ϕε(x) = ϕε(x e
−i 2 π

qε ) + f(x e−i
2 π
qε ) + 2 π l.

We take the gradient

∇ϕε(x) = e
−i 2 π

qε

(
∇ϕε

)
(x e−i

2 π
qε ) + e

−i 2 π
qε

(
∇f

)
(x e−i

2 π
qε ).

We insert this in (8.122)

deg(
uε
|uε|

, ∂Bj+1
i ) =

1
2 π

∫
∂Bj

i

∂ϕε
∂τ

+
∂f

∂τ

=
1

2 π

∫
∂Bj

i

∂ϕε
∂τ

= deg(
uε
|uε|

, ∂Bj
i ).

(8.123)

Set
Dε :=

∑
i∈Tε

|di|.

Now, our interest is to give the order of Dε. hex ≤ C | log ε|, hence thanks to (8.113)
and (8.123),

π
(
qε Dε +

∑
i∈Lε

|di|
)
| log ε| (1− o(1)) ≤ JBR

(uε, Aε) ≤ C h2
ex ≤ C | log ε| hex.

(8.124)
We deduce from (8.124) that ∑

i∈Lε

|di| ≤ C hex, (8.125)

and

qε Dε ≤ C hex. (8.126)

Inserting hex
qε

tends to 1
β as ε tends to 0 in (8.126), we conclude

Dε ≤ C. (8.127)
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5.4 Expansion of the energy

Let (uε, Aε) be a minimizer of J over Gε. We have noted that the resulting family
of vortices in BR is{

(ai, di), i ∈ Lε
}
∪

{
(aji , di), i ∈ Tε, 1 ≤ j ≤ qε

}
. (8.128)

For any such of the family of vortices defined by (8.128), we take the measure

µε =
2 π

( ∑
i∈Lε

di δai +
∑

i∈Tε
di (

∑qε
j=1 δaj

i
)
)

hex
. (8.129)

In such the Coulomb gauge (8.10), the H1 norms of uε and Aε are controlled by√
JBR

(uε, Aε), consequently by C hex. Then, applying the Theorem [SS5] for a
minimizer (uε, Aε) over Gε (because it is a critical point of J), there exist h∞ ∈
H1

1 (BR,R) and a Radon measure µ∞ such that up an extraction of εn from ε

hεn

hex
→ h∞ weakly in H1

1 (BR), (8.130)

and

µεn → µ∞ in the sense of measures. (8.131)

Moreover, we have

µ∞ = −∆h∞ + h∞. (8.132)

Lemma 8.20. Let (uε, Aε) be a minimizer of J over Gε, then

lim inf
n→+∞

JBR
(uεn , Aεn)
h2
ex

≥ E(h∞) =
λ

2

∫
BR

|−∆h∞+h∞|+
1
2

∫
BR

|∇h∞|2+
1
2

∫
BR

|h∞−1|2.

(8.133)

Proof : Splitting the energy JBR
between the contribution inside the vortex-balls(

[∪(1≤j≤qε, i∈Tε)B
j
i ] ∪ [∪ i∈LεBi]

)
and the contribution outside, we get

JBR
(uε, Aε) ≥ π

(
qε Dε +

∑
i∈Lε

|di|
)
| log ε| (1− o(1)) +

1
2

∫
BR\

(
(∪i∈LεBi)∪(∪(i∈Tε, 1≤j≤qε)B

j
i )

) |∇hε|2
+

1
2

∫
BR\

(
(∪i∈LεBi)∪(∪(i∈Tε, 1≤j≤qε)B

j
i )

) |hε − hex|2 − o(1).

(8.134)

Now, we divide (8.134) by h2
ex and we proceed similarly as in [SS3], lemma 2.2 to

obtain

lim inf
n→+∞

JBR
(uεn , Aεn)
h2
ex

≥ λ

2

∫
BR

| −∆h∞ + h∞|+
1
2

∫
BR

|∇h∞|2 +
1
2

∫
BR

|h∞ − 1|2.
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2

From (8.130) and (8.131), we can mention that µ∞ ∈ H−1, so in particular no
concentration of the vorticity on isolated points. From now on, our interest is to
determine the support of the limit measure of vorticity.

5.5 Properties of h∞ and µ∞

First, we begin with

Lemma 8.21. h∞ is continuous on BR.

Proof : Referring to [SS5], lemma 4.1, we have

|∇h∞| ∈W 1,p(BR), 1 ≤ p < +∞.

In particular

h∞ ∈W 1,p(BR), 1 ≤ p < +∞.

By Sobolev injection, we conclude

h∞ ∈ C0,α(BR), 0 ≤ α < 1,

which completes the proof of lemma. 2

The following proposition gives us other properties of the limiting configuration
of vortices (h∞, µ∞).

Proposition 8.22. We have
h∞ ∈ Y,

where Y is defined by (8.11).

We split the proof of proposition 8.22 into two steps.
Step 1: h∞ is radial
First, we take for any x ∈ BR

x = r ei θ, 0 ≤ r < R, 0 ≤ θ ≤ 2 π.

For θ ∈ [0, 2 π], let εn → 0 and kn an integer such that

2 π kn
qεn

→ θ as n→ +∞.

We take Rn to be the rotation of center O and of angle 2 π kn
qεn

. Taking the curl in
(8.9), we get for any n ∈ N

hεn ◦Rn = hεn . (8.135)

Since, {hεn
hex
}n is bounded in H1(Ω), there exists a subsequence still denoted n such

that {hεn
hex
}n and {hεn◦Rn

hex
}n converge weakly in H1 to the same limit which thanks

to (8.130) is h∞. In addition, for any Φ ∈ C∞0 (BR), and by change of variables we
obtain
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∫
BR

hεn ◦Rn
hex

Φ =
∫
BR

hεn

hex
(Φ ◦R−1

n ), (8.136)

where R−1
n is the rotation of center O and of angle −2 π kn

qεn
. Inserting (8.135) in

(8.136) to have ∫
BR

hεn

hex
Φ =

∫
BR

hεn

hex
(Φ ◦R−1

n ), (8.137)

But, as n→ +∞

Φ ◦R−1
n → Φ ◦R−θ in Ck(BR) ∀ k, (8.138)

where R−θ is the rotation of center O and of angle −θ. Thus, we pass to the limit
in (8.137) and we use (8.138) to find∫

BR

h∞ Φ =
∫
BR

h∞ (Φ ◦R−θ), (8.139)

Now, again by change of variables, it is easy that∫
BR

h∞ (Φ ◦R−θ) =
∫
BR

(h∞ ◦Rθ) Φ. (8.140)

Comparing (8.139) to (8.142), we get for any Φ ∈ C∞0 (BR)∫
BR

h∞ Φ =
∫
BR

(h∞ ◦Rθ) Φ. (8.141)

We deduce for any θ ∈ [0, 2 π]

h∞ = h∞ ◦Rθ. (8.142)

It means that h∞ is radial. The step 1 is then proved.

Step2: µ∞ is supported on a finite number of concentric circles of cen-
ter O and of strict positive radii such that the mass of µ∞ on each one
belongs to 2 π β Z

The balls
(
Bj
i (a

j
i , ri)

)
(i∈Tε, 1≤j≤qε)

defined in BR\Brε by proposition 8.18 de-

pends on ε, hence from now on we write

di(ε) = di and aji (ε) = aji for i ∈ Lε, 1 ≤ j ≤ qε,

where di = deg
(
uε
|uε| , ∂B

j
i (a

j
i , ri)

)
. First, for any ε < ε0, (8.127) gives us

Dε =
∑
i∈Tε

|di| ≤ C.

Thus, the cardinal of {i ∈ Tε, di(ε) 6= 0} is bounded independently of ε. First, if
for any ε < ε0, di(ε) = 0, ∀ i ∈ Lε. This means that for any ε < ε0, Dε = 0, so the
measure µε defined by (8.129) is written as
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µε =
2 π

∑
i∈Lε

di δai

hex
.

The points (ai)i∈Lε are in the ball Brε , then using rε → 0 together with the fact
that the limit measure µ∞ is not concentrated on isolated points ( in particular on
the center of the disk BR), we find

µ∞ = 0. (8.143)

Second, if for sufficiently small ε, there exist points with non zero degrees, then
without loss of generality there exists m ∈ N∗ such that these points are denoted

{aji (ε), 1 ≤ i ≤ m, 1 ≤ j ≤ qε}.

Then, up to extraction from ε→ 0, we can get for any 1 ≤ i ≤ m

di(εn) → pi, and a1
i (εn) → b1i as n→ +∞, (8.144)

where pi ∈ Z and b1i is contained strictly in the sector S1
rε,θ1

. To simplify, we take

∀ 1 ≤ k ≤ m, b1k = rk e
i θk where 0 < r1 < ... < rm < R.

Note that rk is constant and does not depend on ε. The extended points of (b1k)1≤k≤m
by S -periodicity to BR\Brε are

{bjk = (rk e
i
2 π (j−1)

qε ei θk), 1 ≤ k ≤ m, 1 ≤ j ≤ qε}.

Let Γk(rk) be the circle of center 0 and of radius rk. It is clear for 1 ≤ k ≤ m and
n→∞, ∑qεn

j=1 δaj
k(εn)

qεn

→ 1
2 π rk

δΓk(rk) in the sense of measures. (8.145)

Consequently, using dk(εn) → pk together with β hex ' qεn as n→ +∞ in (8.145),

2 π dk(εn)

∑qεn
j=1 δaj

k(εn)

hex
→ β

pk
rk

δΓk(rk) ∀ 1 ≤ k ≤ m. (8.146)

Finally,

2 π
m∑
k=1

dk(εn)

∑qεn
j=1 δaj

k(εn)

hex
→

m∑
k=1

β
pk
rk

δΓk(rk) in the sense of measures. (8.147)

However, for any i ∈ Lε, ai ∈ Brε and rε → 0 as ε → 0, then using the fact that
µ∞ ∈ H−1, we can find∑

i∈Lε
2 π di δai

hex
→ 0 in the sense of measures.

Combining this together with (8.147) in the definition of the measure µε, which is
given by (8.129), implies
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µεn → β

m∑
k=1

pk
rk

δΓk(rk) in the sense of measures. (8.148)

Note that {Γk(rk), 1 ≤ k ≤ m, 0 < r1 < ... < rm < R} is the family of the m
concentric circles of strict positive radii where the limit measure µ∞ concentrates.
We can conclude

µ∞ =
m∑
k=1

β
pk
rk

δΓk(rk). (8.149)

The mass of µ∞ on the circle Γk(rk) is (2 π β pk). The conclusion from this and
(8.143) is that the mass of the measure µ∞ on each circle of vorticity belongs to
2 π β Z. We combine the properties of (h∞, µ∞) given in the two above steps to
conclude from the definition of the space Y

h∞ ∈ Y.

This completes the proof of proposition 8.22.
Now, under some conditions on the parameters β and λ, we will give the fundamental
property on the limit measure of vorticity µ∞.

Lemma 8.23. We assume that β < 2 R I1(R)
I0(R) . Let R0 be given by (8.102) and

a = R
(
I0(R) K1(R) + I1(R) K0(R)

)
, then if

2 I0(R)− 2
I0(R)

− λ >
2 I0(R0)− 2

I0(R)
+ β

I0(R0) X(R0)
a I0(R)

,

we have µ∞ 6= 0.

Proof : We argue by contradiction. Suppose that µ∞ = −∆h∞ + h∞ = 0, then in
particular (8.133) gives us

lim inf
n→+∞

JBR
(uεn , Aεn)
h2
ex

≥ 1
2

∫
BR

|∇h∞|2 +
1
2

∫
BR

|h∞ − 1|2, (8.150)

where (uε, Aε) is a minimizer of the energy J over the space Gε. Note that h∞
satisfies −∆h∞ + h∞ = 0 in BR

h∞ = 1 on ∂BR.
(8.151)

h∞ is radial, then referring to (8.49), we have

1
2

∫
BR

|∇h∞|2 +
1
2

∫
BR

|h∞ − 1|2 = Ĵ0 = π

(
R2

2
−R

I1(R)
I0(R)

)
.

Replacing this in the right-hand side of (8.150), we find

lim inf
ε→0

JBR
(uε, Aε)
h2
ex

≥ Ĵ0. (8.152)
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Now, going back to lemma 8.16, then under the hypotheses of this proposition we
have

lim sup
ε→0

JBR
(uε, Aε)
h2
ex

< Ĵ0.

A comparison of this to (8.152) yields a contradiction. 2

Now, under the hypotheses of lemma 8.23, we have obtained that the limit
measure of vorticity verifies µ∞ 6= 0, which allows to say that µ∞ concentrates on
at least one circle of center O, the center of the disk BR. From now on, we restrict
to the case where µ∞ is supported exactly on one circle of center O.

5.6 Vortices’s concentration along one circle

In this paragraph, we assume that

β <
2 R I1(R)
I0(R)

, (8.153)

and

2 I0(R)− 2
I0(R)

− λ >
2 I0(R0)− 2

I0(R)
+ β

I0(R0) X(R0)
a I0(R)

, (8.154)

where a = R
(
I0(R) K1(R) + I1(R) K0(R)

)
. In the case where the vortices’s

concentration is exactly along one circle, the limit measure µ∞ can be written as

µ∞ = β
d

r
δΓ, (8.155)

where d ∈ Z∗ and Γ is the circle of center O and of radius r such that 0 < r < R.
The mass of µ∞ on Γ is then 2 π β d.

Lemma 8.24. The d defined by (8.155) is in N∗.

Proof : Let h0 be the solution of−∆h0 + h0 = 0 in BR

h0 = 1 on ∂BR.
(8.156)

By definition of the measure µε and thanks to the convergence of µεn to µ∞,

∫
BR

(h0 − 1) µ∞ = lim
n→+∞

∫
BR

(h0 − 1) µεn

= lim
n→+∞

(2 π
∑

i∈Lεn
di (h0 − 1)(ai)

hex
+

2 π qεn

∑
i∈Tεn

di(εn) (h0 − 1)(a1
i (εn))

hex

)
.

(8.157)
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Now, referring to [SS4], proposition 2, we can find an expansion of the energy JBR

of a minimizer (uε, Aε) over the space Gε in terms of the positions and degrees of
its vortices. It is slightly different to (8.134) and it is given as follows

JBR
(uε, Aε) ≥ h2

ex Ĵ0 + π
( ∑
i∈Lε

|di|+ qε Dε

)
| log ε| (1− o(1)) + 2 π hex

∑
i∈Lε

di (h0 − 1)(ai)

+ 2 π hex qε
∑
i∈Tε

di (h0 − 1)(a1
i (ε)) +

1
2

∫
BR\

(
(∪i∈LεBi)∪(∪(i∈Tε, 1≤j≤qε)B

j
i )

) |∇(hε − hex h0)|2

+
1
2

∫
BR

|hε − hex h0|2 − o(1).

(8.158)

From (8.158), we can write

π
( ∑
i∈Lε

|di|+ qε
∑
i∈Tε

|di|
)
| log ε| (1− o(1))

+ 2 π hex
( ∑
i∈Lε

di (h0 − 1)(ai) + qε
∑
i∈Tε

di(ε) (h0 − 1)(a1
i (ε))

)
≤ o(1).

(8.159)

Using (8.125) and (8.126),

lim
n→+∞

(
∑

i∈Lεn
|di|+ qεn

∑
i∈Tεn

|di|) | log εn| o(1)

h2
ex

= 0.

We divide (8.159) by h2
ex and we use the above convergence to obtain

lim
n→+∞

π | log εn|
( ∑

i∈Lεn
|di|+ qεn

∑
i∈Tεn

|di|
)

h2
ex

≤− 2 π lim
n→∞

( ∑
i∈Lεn

di (h0 − 1)(ai) + qεn

∑
i∈Tεn

di(εn) (h0 − 1)(a1
i (εn))

)
hex

.

Inserting this in (8.157),

∫
BR

(h0− 1) µ∞ ≤ − lim
n→+∞

π | log εn|
( ∑

i∈Lεn
|di|+ qεn

∑
i∈Tεn

|di(εn)|
)

h2
ex

. (8.160)

By definition of the measure µε,∫
BR

(h0 − 1) µ∞ ≤ − lim inf
n→+∞

| log εn|
2 hex

∫
BR

|µεn |. (8.161)

146



We know that λ = limε→0
| log ε|
hex

> 0 as ε → 0. Moreover, using the fact that∫
BR
|µ∞| ≤ lim infn→+∞

∫
BR
|µεn | together with µ∞ 6= 0, the inequality (8.161)

becomes as ∫
BR

(h0 − 1) µ∞ ≤ −λ
2

∫
BR

|µ∞| < 0. (8.162)

Now, using (8.155) and the fact that h0 is radial leads to∫
BR

(h0 − 1) µ∞ = 2 π d β (h0 − 1)(r). (8.163)

Comparing (8.162) to (8.163) gives us

d (h0 − 1)(r) ≤ 0.

From (8.156), we can check that 0 < h0 < 1 in BR, then in particular we get
(h0 − 1)(r) < 0, since 0 < r < R . Thus, it is clear that d ≥ 0 which with d 6= 0
yield d ∈ N∗. 2

The above lemma implies that the mass of µ∞ on the circle Γ belongs to 2 π β N∗.
Now, assuming that the mass of µ∞ on Γ is equal to 2 π β, we have

Lemma 8.25. Let (uε, Aε) be a minimizer of J over the space Gε. If µ∞ = β
r δΓ,

then r = R0. Moreover,

lim
n→+∞

J(uεn , Aεn)
h2
ex

= E1(R0, 1) = Ĵ0+β π λ−β π
(
2−2 I0(R0

I0(R)

)
+β2 π

I0(R0) X(R0)
a I0(R)

.

Proof : The mass of µ∞ on the circle Γ is equal to 2 π β, then µ∞ is written as

µ∞ = −∆h∞ + h∞ =
β

r
δΓ, (8.164)

where 0 < r < R is the radius of Γ. Consequently, it is clear that h∞ ∈ Y1 where
Y1 is the space defined by (8.53). In particular, in the sense of the definition (8.61),
we have thanks to (8.164),

E(h∞) = E1(r, 1). (8.165)

Let (uε, Aε) be a minimizer of J over the space Gε. Going back to (8.133), we can
write using (8.165)

lim inf
n→∞

J(uεn , Aεn)
h2
ex

≥ E1(r, 1). (8.166)

Now, returning to (8.84) we have for any 0 < x < R

lim sup
n→∞

J(uεn , Aεn)
h2
ex

≤ E1(x, 1). (8.167)

Combining (8.166) together with (8.167), we get for r ∈]0, R[ (the radius r is defined
by (8.164))
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E1(r, 1) ≤ lim inf
n→∞

J(uεn , Aεn)
h2
ex

≤ lim sup
n→∞

J(uεn , Aεn)
h2
ex

≤ E1(x, 1) ∀ x ∈]0, R[.

(8.168)
By definition of the functional F given by (8.83) as F (x) = E1(x,1)

π for x in ]0, R[.
Then, (8.168) gives us

π F (r) ≤ lim inf
n→∞

J(uεn , Aεn)
h2
ex

≤ lim sup
n→∞

J(uεn , Aεn)
h2
ex

≤ π F (x) ∀ x ∈]0, R[.

(8.169)
We know from (8.102)

inf
x∈]0,R[

F (x) = F (R0).

We can then write for r ∈]0, R[, thanks to (8.169),

π F (R0) ≤ π F (r) ≤ lim inf
n→∞

J(uεn , Aεn)
h2
ex

≤ lim sup
n→∞

J(uεn , Aεn)
h2
ex

≤ π F (R0). (8.170)

The uniqueness of R0 (0 < R0 < R) minimum of the functional x→ F (x) over ]0, R[
in (8.170) implies

r = R0.

Consequently, the radius of the circle of vortices is R0 where 0 < R0 < R. So that,
the limit measure of vorticity is

µ∞ = −∆h∞ + h∞ =
β

R0
δΓ,

where Γ is the circle of radius R0 and of center O. Finally, using the expression of
E1(R0, 1) = π F (R0) given by corollary 8.11, it follows from (8.170)

lim
n→+∞

J(uεn , Aεn)
h2
ex

= E1(R0, 1) = π F (R0) = Ĵ0+β π λ−β π
(
2−2 I0(R0

I0(R)

)
+β2 π

I0(R0) X(R0)
a I0(R)

.

2

As a consequence of all the above, the main Theorem that we have proved is the
following

Theorem 8.26. Let (uε, Aε) be a minimizer of the energy J over the space Gε and
hε = curlAε be the induced magnetic field. Then, up to extraction of εn from ε,
there exist h∞ ∈ H1

1 (BR) and µ∞ ∈M(BR) such that

hεn

hex
→ h∞ weakly in H1

1 (BR),

and
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µεn → µ∞ = −∆h∞ + h∞ in the sense of measures,

where µε is defined by (8.129). Again, h∞ is radial and µ∞ is supported on a
finite number of concentric circles with strict positive radii such that the mass of
µ∞ on each circle belongs to 2 π β Z. In addition, taking a = R

(
I0(R) K1(R) +

I1(R) K0(R)
)
, then if

β <
2 R I1(R)
I0(R)

,

there exists a unique 0 < R0 < R defined by (8.107) such that if

2 I0(R)− 2
I0(R)

− λ >
2 I0(R0)− 2

I0(R)
+ β

I0(R0) X(R0)
a I0(R)

,

we have µ∞ 6= 0. Moreover, if µ∞ concentrates on one circle with a mass equal to
2 π β, the radius of this circle of vortices is R0. Finally

lim
n→+∞

J(uεn , Aεn)
h2
ex

=π
(
R2

2
−R

I1(R)
I0(R)

)
+ β π λ− β π

(
2− 2 I0(R0

I0(R)

)
+β2 π

I0(R0) X(R0)
a I0(R)

.

Remark 8.27. Analogously to the remark 7.18, we don’t give explicitly the limit
measure of vorticity.
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Chapter 9

Vortex pinning with bounded
fields

In [APB], N. André, P. Bauman and D. Philips investigate vortex “pinning” in
solutions to the Ginzburg-Landau energy. The coefficient a(x) in the free Ginzburg-
Landau energy modelling non-uniform superconductivity is nonnegative and is al-
lowed to vanish at a finite number of points. For a sufficiently large applied field
hex and for all sufficiently large values of the Ginzburg-Landau parameter κ = 1

ε ,
they show that the minimizers (uε, Aε) have nontrivial vortex structures around the
zeroes of a(x). Denote di be the degree of uε around the zero xi of the function a,
and then d = (d1, ..., dn) minimizes a precise functional defined on Zn. In this chap-
ter, we are interested in the sign of the degrees (di)1≤i≤n. We give partial results
indicating that the degrees may not always be positive.

1 Notations

In this chapter, we consider the Ginzburg-Landau energy of superconductivity with
a pinning coefficient a(x) given by

Jε(u,A) =
1
2

∫
Ω
|∇u− i A u|2 +

1
2

∫
Ω
|h− hex|2 +

1
4 ε2

∫
Ω
(a− |u|2)2. (9.1)

Ω ⊂ R2 is a bounded regular simply connected domain and a : Ω → R. We require
that the function a(x) satisfies the following:
Assume that a ∈ C1(Ω\{x1, x2, ..., xn}) ∩ Cβ(Ω) for some β > 0,

√
a ∈ H1(Ω),

a(x) ≥ 0 for all x in Ω, and a(x) = 0 if and only if x ∈ {x1, x2, ..., xn} where
x1, .., xn are distinct points in Ω and n ∈ N∗. Moreover, assume that there are
positive constants mi, Mi and αi such that

mi |x− xi|αi ≤ a(x) ≤Mi |x− xi|αi for 1 ≤ i ≤ n

in some neighborhood of xi. Let ε > 0, say that (uε, Aε) ∈ H1(Ω,C)×H1(Ω,R2) is
a critical point of Jε if it is solution of the Ginzburg-Landau equations, namely∇

2
Aε
uε = 1

ε2
uε(a− |uε|2) in Ω

−∇⊥hε =< i uε,∇Aεuε > in Ω,
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with the following boundary conditionshε = hex on ∂Ω

< ∇Aεuε, ν >= 0 on ∂Ω.

In this chapter, we take the Coulomb gauge (8.10). Let (uε, Aε) be a minimizer of the
energy Jε over the space H1(Ω,C) ×H1(Ω,R2) and hε = curlAε be the associated
induced magnetic field.

1.1 Absence of vortices

Here, we prove

Lemma 9.1. Let (uε, Aε) be a minimizer of the energy Jε over the space H1(Ω,C)×
H1(Ω,R2). Then, if ∀ x ∈ Ω, |uε(x)| > 0, we have

hε ≥ 0 in Ω.

Proof : First, writing locally uε = ρε e
i ϕ, the second Ginzburg-Landau equation

holds

−∇⊥hε =< i uε,∇Aεuε >= ρ2
ε (∇ϕ−Aε) in Ω. (9.2)

We take the curl to have

−∆hε + ρ2
ε hε = 2 ρε ∇ρε (A⊥ε −∇⊥ϕε). (9.3)

But, in view of (9.2),

ρ2
ε ∇ρε (A⊥ε −∇⊥ϕε) = −∇ρε. ∇hε.

Multiplying (9.3) by ρε and using the above identity, we find

−ρε ∆hε + 2 ρε ∇ρε ∇hε + ρ3
ε hε = 0 in Ω. (9.4)

Let z0 be a minimizer of the function hε, so in particular ∇hε(z0) = 0. It follows
from (9.4)

−ρε(z0) ∆hε(z0) + ρ3
ε(z0) hε(z0) = 0. (9.5)

Knowing that ∀ x ∈ Ω |uε(x)| > 0, hence ρε(z0) > 0. Then, thanks to ∆hε(z0) ≥ 0,
(9.5) leads to hε(z0) ≥ 0, which gives us the nonnegativity of hε in Ω since z0 is a
minimizer of hε.

2

When hex = 0, every minimizer (uε, Aε) of Jε in H1(Ω,C)×H1(Ω,R2) satisfies
Aε = 0 and α uε > 0 for some α ∈ C with |α| = 1, so in particular hε = 0. In
this chapter, let hex ≥ 0 be bounded independently of ε and take the function a(x)
vanish at a finite number of points denoted {x1, ..., xn}, hence unfortunately nothing
allows us to say that the result of the above lemma remains true.
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1.2 Presence of vortices

Before all, we set the space

U =
{
g ∈ H1(Ω),

∫
Ω
a−1 |∇g|2 <∞

}
.

Then, U is a Hilbert space with the norm

||g||U =
( ∫

Ω
a−1 |∇g|2 + |g|2

) 1
2
.

Let us consider the (n+ 1) functions in U, {η0, ..., ηn} solving that−div(a
−1 ∇η0) + η0 = −1 in Ω

η0 = 0 on ∂Ω,
(9.6)

and for 1 ≤ i ≤ n −div
(
a−1 ∇ηi

)
+ ηi = 2 π δxi in Ω

ηi = 0 on ∂Ω.
(9.7)

Note that thanks to [APB], lemma 2.1, we have δxi ∈ U′, the dual space of U,
and clearly 1 ∈ U′. Thus, the Lax-Milgram lemma gives us the existence and the
uniqueness of η0 and ηi, 1 ≤ i ≤ n, solutions respectively of (9.6) and (9.7). Now,
we define the quantities aij for 1 ≤ i, j ≤ n and Xi for 0 ≤ i ≤ n to be given as
follows

aij =
∫

Ω
(a−1 ∇ηi ∇ηj + ηi ηj) for 1 ≤ i, j ≤ n, (9.8)

and

X0 =
∫

Ω
a−1 |∇η0|2 + |η0|2 and Xi = −

∫
Ω
(a−1 ∇η0 ∇ηi + η0 ηi) for 1 ≤ i ≤ n.

(9.9)
Fix hex ≥ 0. Let (uεk

, Aεk
) be a sequence of minimizers of Jεk

in H1 × H1 with
εk → 0 as k → +∞. Then, thanks to [APB], Theorem 3, there exists a subsequence
εkl

such that as l→ +∞

(uεkl
, Aεkl

) → (u,A) weakly in H1 ×H1 as l→ +∞, (9.10)

where |u| =
√
a. Moreover,

Jεkl
(uεkl

, Aεkl
) → 1

2
X0 h

2
ex +

1
2

∫
Ω
|∇
√
a|2 +

1
2
S(d), (9.11)

where
S(d) = inf

c∈Zn
S(c) = inf

c∈Zn

(
(A c, c)− 2 hex (X, c)

)
, (9.12)
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such that X is the vector (X1, ..., Xn) and A is the matrix defined by

A = [aij ]1≤i,j≤n.

Note that, for c = (c1, ..., cn) ∈ Zn

S(c) =
n∑

i,j=1

aij ci cj − 2 hex
n∑
i=1

Xi ci. (9.13)

If r > 0 and Br(xi) are disjoint balls of Ω for i = 1, ..., n, then in addition from
[APB], for all l sufficiently large, |uεkl

| is uniformly positive outside ∪ni=1Br(xi) and
the degree of uεkl

in Br(xi) is di where d = (d1, ..., dn) minimizes the functional S
over Zn. Thus, for ε sufficiently small, we remark that minimizers (uε, Aε) of Jε over
the space H1(Ω,C)×H1(Ω,R2) have “pinned” vortices near the zeroes x1, ..., xn of
the function a(x).

2 Goal of the chapter

In this chapter, our interest is to study the minimization problem (9.12), and then
to give some properties of d = (d1, ..., dn) minimum of S over Zn. Recall that di
is the degree of uεkl

around the zero xi of the function a. In particular, we will be
concerned with the sign of the degrees di for 1 ≤ i ≤ n.

3 Some properties of the functions ηi

In this paragraph, we give some properties of the functions ηi for 0 ≤ i ≤ n. Before
all, we note that the functions ηi for 0 ≤ i ≤ n are continuous in Ω. We can state
in addition the following

Lemma 9.2. We have

−1 < η0 < 0 and ηi > 0 ∀ 1 ≤ i ≤ n. (9.14)

Moreover,

X0 > 0 and ∀ 1 ≤ i ≤ n, Xi = −2 π η0(xi) =
∫

Ω
ηi > 0. (9.15)

In addition, the matrix A = [aij ]1≤i,j≤n is positive definite and

aji = aij = 2 π ηi(xj) = 2 π ηj(xi) > 0 for 1 ≤ i, j ≤ n. (9.16)

Proof : First, using the maximum principle in (9.6), it is immediate to show

−1 < η0 < 0 in Ω.

Second, η−i = min(ηi, 0) ∈ U∩H1
0 (Ω), hence we use it as a test function in (9.7) to

find
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∫
{ηi≤0}

a−1 |∇ηi|2 + |ηi|2 = 2 π η−i (xi) ≤ 0.

We deduce

∀ 1 ≤ i ≤ n, ηi > 0 in Ω.

(9.14) is then proved. Now, we restrict to prove (9.15) and (9.16). Recall that

X0 =
∫

Ω
a−1 |∇η0|2 + |η0|2. (9.17)

Then, X0 > 0 because that η0 6= 0. Multiplying (9.6) by ηi for 1 ≤ i ≤ n and
integrating over Ω, we have∫

Ω
a−1 ∇η0 ηi + η0 ηi = −

∫
Ω
ηi for 1 ≤ i ≤ n.

Again, we multiply (9.7) by η0 and we integrate over Ω to get∫
Ω
a−1 ∇η0 ηi + η0 ηi = 2 π η0(xi) for 1 ≤ i ≤ n.

Comparing the two above identities to the definition (9.9) of Xi for 1 ≤ i ≤ n, we
deduce

Xi = −2 π η0(xi) =
∫

Ω
ηi.

The fact that ηi > 0 for 1 ≤ i ≤ n implies that Xi > 0 for 1 ≤ i ≤ n. By definition
of aij , we remark that aji = aij . Moreover, we multiply (9.7) by ηj and we integrate
over Ω to have ∫

Ω
a−1 ∇ηi ηj + ηi ηj = 2 π ηi(xj) for 1 ≤ i, j ≤ n.

By (9.8), we find

aji = aij = 2 π ηi(xj) = 2 π ηj(xi) > 0 for 1 ≤ i, j ≤ n.

Finally, thanks to [APB], lemma 3.3, the matrix A is positive definite. The lemma
is then proved. 2

Proposition 9.3. We have

ηi(xi) > ηi(xj) ∀ 1 ≤ i 6= j ≤ n. (9.18)

Proof : To prove (9.18), it suffices to show that xi is the global maximum of ηi,
1 ≤ i ≤ n. Let us split the demonstration into two steps.
Step 1
We define on the space U ∩H1

0 (Ω) the functional
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T (f) =
1
2

∫
Ω
a−1 |∇f |2 +

1
2

∫
Ω
|f |2 − 2 π f(xi).

Obviously, note that each critical point f of the functional T on the space U∩H1
0 (Ω)

is solution of −div
(
a−1 ∇f

)
+ f = 2 π δxi in Ω

f = 0 on ∂Ω.

But, by uniqueness of solution of the above system and referring to (9.7), then
we can say that ηi is the unique critical point of the functional T on the space
U ∩ H1

0 (Ω). Let us determine the nature of the above critical point. For this, it
suffices to compare T (ηi) to a test configuration in the space U ∩ H1

0 (Ω). From
(9.16), ∫

Ω
a−1 |∇ηi|2 +

∫
Ω
|ηi|2 = 2 π ηi(xi).

Then, we find

T (ηi) =
1
2

∫
Ω
a−1 |∇ηi|2 +

1
2

∫
Ω
|ηi|2 − 2 π ηi(xi)

=− π ηi(xi).

Since ηi(xi) > 0, we get T (ηi) < T (0) = 0 ( note that 0 ∈ U ∩ H1
0 (Ω)). As a

consequence of the above, we can say that ηi is necessarily the unique minimum of
the functional T over the space U ∩H1

0 (Ω).
Step 2
Here, let us take the function

v(x) =


ηi(x) if ηi(x) ≤ ηi(xi)

ηi(xi) if ηi(x) ≥ ηi(xi).
(9.19)

By definition, it is clear that v belongs to the space U∩H1
0 (Ω). Let us evaluate the

quantity T (v). Indeed,

T (v) =
1
2

∫
Ω
a−1 |∇v|2 +

1
2

∫
Ω
|v|2 − 2 π v(xi)

=
1
2

∫
{ηi≤ηi(xi)}

a−1 |∇ηi|2 +
1
2

∫
{ηi≤ηi(xi)}

|ηi|2 +
1
2

∫
{ηi>ηi(xi)}

|ηi(xi)|2 − 2 π ηi(xi).

(9.20)

Remark that
∫
{ηi>ηi(xi)} |ηi(xi)|

2 ≤
∫
{ηi>ηi(xi)} |ηi|

2. Then, inserting it in (9.21), it
follows that
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T (v) ≤1
2

∫
Ω
a−1 |∇ηi|2 +

1
2

∫
{ηi≤ηi(xi)}

|ηi|2 +
1
2

∫
{ηi>ηi(xi)}

|ηi|2 − 2 π ηi(xi)

≤1
2

∫
Ω
a−1 |∇ηi|2 +

1
2

∫
Ω
|ηi|2 − 2 π ηi(xi)

=T (ηi).
(9.21)

Using the fact that ηi is the unique minimum of T over the space U∩H1
0 (Ω) allows

to deduce

v(x) = ηi(x) ∀ x ∈ Ω. (9.22)

By definition of the function v, (9.22) implies for 1 ≤ i ≤ n

ηi(x) ≤ ηi(xi) ∀ x ∈ Ω. (9.23)

This means that xi is the global maximum of the function ηi. The proposition 9.3
is then proved. 2

We summarize the previous information in the following

Proposition 9.4. The function S defined in (9.12) satisfies

aij > 0, Xi > 0, aii ≥ aij ∀ 1 ≤ i, j ≤ n.

Moreover, the matrix (aij) is positive definite.

Then, let us give

Definition 9.5. We say a function S : Zn → R is admissible if it is of the form

S(d) = (A d, d)− 2 hex
n∑
i=1

di Xi,

where hex, Xi are positive, and A = (aij) is a symmetric positive definite matrix
such that aii ≥ aij for every 1 ≤ i, j ≤ n.

4 Some properties of d

Remember that Xi > 0 for 1 ≤ i ≤ n. We start with

Lemma 9.6. Set

hex = min{ aii
2 Xi

, i = 1, 2, ..., n}.

If hex > hex, then d 6= 0 where d minimizes S over Zn.
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Proof : Set j ∈ {1, ..., n} satisfy hex = ajj

2 Xj
. Let ~ej be the vector in Zn whose ith

component is δij for i = 1, ..., n (δij = 1 if i = j and 0 if not). When hex > hex, then
from (9.13),

S(~ej) =ajj − 2 hex Xj

=2 Xj (hex − hex) < 0 = S(0).

By definition of d minimum of S over Zn, we must have d 6= 0. 2

From now on, hex is taken to satisfy the fact that hex > hex. Now, we give a
preliminary idea on the sign of the degrees (di)1≤i≤n.

Lemma 9.7. Let d = (d1, ..., dn) minimize S over Zn, then there exists i0 where
1 ≤ i0 ≤ n such that di0 ≥ 0.

Proof : We argue by contradiction by assuming that di < 0, ∀ 1 ≤ i ≤ n. We
know that ∀ 1 ≤ i ≤ n, Xi > 0, hence

n∑
i=1

Xi di < 0.

Recall that the matrix A is positive definite, so in particular we have (A d, d) > 0,
since d 6= 0. Combining the above in S(d) to get

S(d) = (A d, d)− 2 hex
n∑
i=1

Xi di > 0 = S(0).

This contradicts the fact that d minimizes S over Zn. 2

Notation

Recall that d = (d1, ..., dn) minimizes S over Zn. Without loss of generality, we
mean by the fact that d is positive if di is nonnegative for each 1 ≤ i ≤ n, and by d
is not positive if there exists 1 ≤ j ≤ n such that dj < 0.
The study of the degrees (di)1≤i≤n seems be not easy. Then, when it is necessary to
make our study easier we need to make extra hypotheses on the domain Ω, on the
function a(x) and on the location of its zeroes x1,...,xn.
In this case, assume that the domain is the disk BR of center O and of radius R > 0.
The zeroes {x1, x2, ..., xn} of the function a are such that x1 x2...xn is a polygon with
the same sidelength and of center O, the center of the disk BR. Moreover, letting ∆i

be the mediatrix of the line [xi, xi+1] and S∆i be the axial symmetry with respect
to ∆i, the function a(x) is taken to be invariant under each S∆i , 1 ≤ i ≤ n, meaning
that the weight a(x) verifies

a(x) = a(S∆1(x)) = ... = a(S∆n(x)) ∀ x ∈ BR. (9.24)

Note that the above is called symmetric hypotheses. It is clear in this case that
ηi(xj) depends only on the value modulo n of |i − j|. Therefore, in this case, from
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the definition of the coefficients (aij), we see that aij depends only on the value of
|i− j| modulo n and that Xi = Xj for any i, j. Motivated by this example, we give
the following.

Definition 9.8. We will say an admissible function

S(d) = (A d, d)− 2 hex
n∑
i=1

di Xi,

is symmetric if A = (aij), and aij depends only on the value of |i− j| modulo n and
if Xi = Xj for all i, j.

5 The main result

5.1 Setting of the Theorem

The main result here is

Theorem 9.9. For hex > hex, then
A)The non symmetric case

1) If n = 1, and d is the minimum of an admissible S, then d ≥ 1.
2) If n = 2, there exists an admissible S such that every minimum of S is not

positive.
B) The symmetric case
1) If S is admissible and symmetric, then for n = 2 or n = 3 any minimum of

S is positive.
2) If n = 4, there exist an admissible symmetric S such that every minimum of

S is not positive.

5.2 Remark

In the cases (A-2) and (B-2), it is open whether there exists a pinning coefficient
giving rise to the function S we have found.

6 The case A: The non symmetric case

6.1 The case n = 1

Here, A = a11 > 0 and X = X1 > 0. Then, for c ∈ Z the functional S is
S(c) = a11 c

2−2 hex X c. Remark that the minimum of c→ S(c) over R is achieved
at c0 = 2 hex X1

a11
. Now, if hex is such that hex > a11

2 X1
, we have c0 > 1. Then, the

minimum d of S over Z does not vanish and verifies d ≥ 1.

6.2 The case n = 2

Here, we have
a11 > a12 = a21, a22 > a12, X1, X2 > 0.

Let d = (d1, d2) be a minimum of S over Z2. Our aim is to determine the sign of
the two degrees d1 and d2. From the lemma 9.7, either d1 ≥ 0 or d2 ≥ 0. We start
with
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Lemma 9.10. Let hex > hex. If X1 = X2, then d1 and d2 are nonnegative (and at
least one of them is positive).

Proof : We argue by contradiction. First, suppose that d1 d2 = 0 and d1 or d2 is
negative. Without loss of generality, we assume that d1 = 0 and d2 ≤ −1, then

S(d1, d2) = S(0, d2) = a22 d
2
2 − 2 hex X1 d2 > 0 = S(0, 0),

which contradicts the fact that (d1, d2) is a minimum of S.
Second, we suppose that d1 d2 < 0. On the one hand, comparing S(d) to S(d1+d2, 0)
and using X1 = X2,

S(d1, d2)− S(d1 + d2, 0) =(a22 − a11) d2
1 + 2 (a12 − a11) d1 d2 − 2 hex (X2 −X1) d2

=(a22 − a11) d2
1 + 2 (a12 − a11) d1 d2.

(9.25)

Since a12 < a11 and d1 d2 < 0, it follows that

(a12 − a11) d1 d2 > 0,

Now, if (a22 − a11) ≥ 0, then combining the two above inequalities in (9.25),

S(d1, d2) > S(d1 + d2, 0). (9.26)

On the other hand,

S(d1, d2)− S(0, d1 + d2) =(a11 − a22) d2
2 + 2 (a12 − a22) d1 d2 − 2 hex (X1 −X2) d1

=(a11 − a22) d2
2 + 2 (a12 − a22) d1 d2.

Using a12 < a22, (a12 − a22) d1 d2 > 0. In addition, if (a11 − a22) ≥ 0, we get

S(d1, d2) > S(0, d1 + d2). (9.27)

A combination of (9.26) together with (9.27) contradicts the fact that d is a minimum
of S over Z2. This leads to d1 d2 ≥ 0 independently of the sign of (a11 − a22). But,
going back to lemma 9.7, there exists 1 ≤ i0 ≤ 2 such that di0 ≥ 0. Then, necessarily
the two components are nonnegative, meaning that d is positive. Moreover, when
hex > hex, we note that if one component is equal to 0, then thanks to lemma 9.6,
the other component must be positive. 2

Lemma 9.11. If X2 < X1, then d1 is nonnegative.

Proof : We do the proof by contradiction. Assume that d1 is strictly negative, i.
e. d1 ≤ −1. From lemma 9.7, we have necessarily i0 = 2, meaning that d2 ≥ 0. We
exclude the case of d2 = 0 because
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S(d1, 0) = a11 d
2
1 − 2 hex d1 > 0 = S(0, 0).

Then, d2 ≥ 1 which with d1 < 0 yield that d1 d2 < 0. On the one hand

S(d1, d2)− S(d1 + d2, 0) = (a22 − a11) d2
1 + 2 (a12 − a11) d1 d2 − 2 hex (X2 −X1) d2.

We insert X2 < X1, d2 ≥ 1, d1 d2 ≤ −1 < 0 and a12 < a11 in the above identity to
find

S(d1, d2) > S(d1 + d2, 0) if a22 ≥ a11.

Proceeding similarly as in the above, we can get

S(d1, d2) > S(0, d1 + d2) if a11 ≥ a22.

The two above inequalities contradict the fact that (d1, d2) is a minimum. We must
have d1 ≥ 0, i.e. i0 = 1. 2

We know prove assertion A) 2) of the Theorem. More precisely

Proposition 9.12. If X1 > X2 and if

a11X2 < (a22 + 2a12)X1 < 3a11X2, (9.28)

a22(2X2 −X1) + 3a11X2 − 2a12(X1 +X2) < 0, (9.29)

max
(

min(
a11

2 X1
,
a22

2 X2
),

3a11 + a22 − 4a12

2(X1 −X2)

)
< hex <

a22 + 2a12

2 X2
, (9.30)

then d2 < 0.

Remark 9.13. Remark that the first two assumptions ensure that the set of hex
satisfying the third assumption is not empty.

6.3 Proof of proposition 9.12

First, thanks to the lemma 9.6, each minimum d of S over Z2 does not vanish if the
applied magnetic field satisfies

hex > hex = min(
a11

2 X1
,
a22

2 X2
). (9.31)

Since X1 > X2, we have from lemma 9.11 d1 ≥ 0. First, let us start by minimizing
the functional S over N2.
Step1
We define (n1, n2) to be a minimum of S over N2. If a11 X2 < (a22 + 2 a12) X1 and

hex <
a22 + 2 a12

2 X2
, (9.32)

and n1, n2 ≥ 1, then
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S(n1, n2) =a11 n
2
1 − 2 hex X1 n1 + a22 n

2
2 + 2 a12 n1 n2 − 2 hex X2 n2

≥a11 n
2
1 − 2 hex X1 n1 + n2 (a22 + 2 a12 − 2 hex X2)

>S(n1, 0),

which contradicts the fact that (n1, n2) is a minimum of S over N2. Moreover,
(n1, n2) 6= (0, 0) because hex > a11

2 X1
, hence the two only possibilities for (n1, n2) are

the following

(n1, n2) = (n1, 0) with n1 ≥ 1 or (n1, n2) = (0, n2) with n2 ≥ 1.

In the first case, n1 ≥ 2 and

S(n1, 0)− S(1, 0) = (n1 − 1)
(
a11 (n1 + 1)− 2 hex X1

)
. (9.33)

Then, using n1 ≥ 2, we get

a11 (n1 + 1)− 2 hex X1 ≥ 3 a11 − 2 hex X1.

Moreover, assume that

a22 + 2 a12

2 X2
<

3 a11

2 X1
. (9.34)

Inserting this in (9.32), we have (3 a11 − 2 hex X1) > 0. This yields that the
quantity (n1 − 1)

(
a11 (n1 + 1) − 2 hex X1

)
is strictly positive for n2 ≥ 2. Hence,

(9.33) gives us

S(n1, 0) > S(1, 0).

So that if (n1, 0) is a minimum of S over N2, then necessarily n1 = 1. Now, we study
the second possibility which is (n1, n2) = (0, n2) with n2 ≥ 1. For this, assume that
n2 ≥ 2, hence using the same argument as for the first possibility,

S(0, n2)− S(0, 1) ≥ 3 a22 − 2 hex X2.

Knowing a12 < a22, then from (9.32, (3 a22 − 2 hex X2) > 0, so that S(0, n2) >
S(0, 1). Then, we must have n2 = 1. Consequently, if (n1, n2) is a minimum of S
over N2, then necessarily we get

(n1, n2) = (1, 0) or (n1, n2) = (0, 1).

Let us compare S(1, 0) to S(0, 1). In fact,

S(1, 0)− S(0, 1) = a11 − 2 hex X1 − a22 + 2 hex X2 = a11 − a22 − 2 hex (X1 −X2).
(9.35)

We assume that
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a22 (2 X2 − X1) + 3 a11 X2 − 2 a12 (X1 +X2) < 0. (9.36)

Using the fact that 2 a12 < a22 + a11 with X1 > X2, we can write

3 a11 + a22 − 4 a12

2 X1 − 2 X2
>

a11 − a22

2 X1 − 2 X2
.

Hence, if hex is such that

hex >
3 a11 + a22 − 4 a12

2 X1 − 2 X2
, (9.37)

we obtain
hex >

a11 − a22

2 X1 − 2 X2
. (9.38)

Note that the assumption (9.36) gives a sense to the inequalities (9.32)-(9.37). Then,
inserting (9.38) in (9.35) implies that S(1, 0) < S(0, 1). Finally, the minimum of S
over N2 is achieved at (1, 0).

Our interest now is to find a point in the region Z2 ∩ (x ≥ 0, y < 0) such that
its image by S is less than S(1, 0).
Step 2
Let us take the point (2,−1), then comparing S(2,−1) to S(1, 0), we obtain

S(2,−1)− S(1, 0) = 3 a11 + a22 − 4 a12 − 2 hex X1 + 2 hex X2.

Note that (9.37) gives us
S(2,−1) < S(1, 0).

This implies that (1, 0) is not a minimum of S over Z2, and there exists a non
positive minimum of S over Z2. The proposition 9.12 is then proved.

7 The case B: the symmetric case

7.1 The case n = 2

In this case we deduce from S(d1, d2) = S(d2, d1) that X1 = X2. In particular,
going back to lemma 9.10, we can say that any minimum d of S over Z2 is positive.
Moreover, if hex > hex, the lemma 9.6 leads to d 6= 0. Thus, if one component is
equal to 0, then the second component must be positive.

7.2 The case n = 3

In this case,

a11 = a22 = a33, a12 = a23 = a31, X1 = X2 = X3.

Let d = (d1, d2, d3) be a minimum of the functional S over Z3. We start with a
preliminary result on the sign of the degrees (di)1≤i≤3.
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Lemma 9.14. For any 1 ≤ i, j ≤ 3,

di dj ≥ 0.

Proof : We compare S(d) to S(d1 + d2, d3, 0) to get

S(d1, d2, d3)− S(d1 + d2, d3, 0) = 2 (a12 − a11) d1 d2.

Since, a12 < a11, we can write by definition of (d1, d2, d3) minimum of S over Z3,

d1 d2 ≥ 0.

Similarly as in the above, we find again d3 d2 ≥ 0 and d1 d3 ≥ 0. The lemma 9.14
is then proved. 2

Our result is the following

Lemma 9.15. Let hex > hex, then for the functions η0 and ηi, 1 ≤ i ≤ 3, solutions
respectively of (9.6) and (9.7), the three degrees d1, d2 and d3 are nonnegative and
at least one of them is positive.

Proof : We argue by contradiction. Without loss of generality, we assume for
example that d1 ≤ −1. We refer to the fact that d1 d2 ≥ 0 and d1 d3 ≥ 0 to find
necessarily d2 ≤ 0 and d3 ≤ 0. We insert these in the expression of S(d) to get

S(d1, d3, d2) > 0 = S(0).

It is the contradiction. Thus, the three degrees d1, d2 and d3 are nonnegative. In
addition, if hex > hex, the lemma 9.6 gives us that d 6= 0, so in particular there is
at least one positive degree from (di)1≤i≤3. 2

7.3 The case n = 4

In this case, we define

γ1 = a11 = a22 = a33 = a44, γ2 = a12 = a23 = a34 = a14, γ3 = a31 = a24.

Let d = (d1, d2, d3, d4) be a minimum of S over Z4. We start by giving a preliminary
idea on the sign of the components (di)1≤i≤4.

Lemma 9.16. We have,

d1 d3 ≥ 0 and d2 d4 ≥ 0.
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Proof : Testing the minimal functional S(d1, d2, d3, d4) by the configuration (d1 +
d3, d2, 0, d4), we have

S(d1, d2, d3, d4) ≤ S(d1 + d3, d2, 0, d4).

A simple calculation gives us

(γ3 − γ1) d1 d3 ≤ 0.

d1 d3 ≥ 0, since γ3 < γ1. Moreover, writing

S(d1, d2, d3, d4)− S(d1, d2 + d4, 0, d3) = 2 (γ3 − γ1) d2 d4 ≤ 0,

and using again γ3 < γ1, we obtain d2 d4 ≥ 0. 2

By symmetry, remark that

S(d1, d2, d3, d4) = S(d1, d4, d3, d2) = S(d3, d2, d1, d4) = S(d3, d4, d1, d2). (9.39)

Then, if (d1, d2, d3, d4) is a minimum, the above identities give us three other mini-
mums. Here, nothing allows us that all the degrees di, 1 ≤ i ≤ 4, are nonnegative.
For this, we state a condition on the applied magnetic field hex and on the functions
ηi, 0 ≤ i ≤ 4, giving us different signs on the degrees di, 1 ≤ i ≤ 4. This will finish
the proof of the Theorem.

Proposition 9.17. If γ1, γ2 and γ3 are such that

γ1 < 2 γ3, (9.40)

γ1 − 2 γ2 + γ3 < 0, (9.41)

then if in addition hex is such that

max
(
γ1, 9 γ1 − 16 γ2 + 10 γ3

)
< 2 hex X1 < γ1 + 2 γ3, (9.42)

there exists a non positive minimum of S over Z4.

Remark 9.18. We note that the assumptions (9.40) and (9.41) are taken in order
to ensure that the condition (9.42) is not empty. Indeed, under those assumptions,
we have

9 γ1 − 16 γ2 + 10 γ3 − (γ1 + 2 γ3) =8 γ1 − 16 γ2 + 8 γ3

=8 (γ1 − 2 γ2 + γ3) < 0,

which is the condition (9.41).
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7.4 Proof of proposition 9.17

We begin with the minimization of the functional S over N4. In particular, we have

Lemma 9.19. Assume that γ1 < 2 γ3, then if hex is such that

γ1 < 2 hex X1 < γ1 + 2 γ3,

the minimum of S over N4 is achieved at (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and
(0, 0, 0, 1).

Proof : Let n = (n1, n2, n3, n4) be a minimum of S over N4. First, we suppose that
ni ≥ 1, ∀ 1 ≤ i ≤ 4, then

S(n1, n2, n3, n4) =
(
A (n1, n2, n3, n4), (n1, n2, n3, n4)

)
− 2 hex X1 (n1 + n2 + n3 + n4)

=γ1 (n2
1 + n2

2 + n2
3 + n2

4) + 2 γ2 (n1 n2 + n2 n3 + n3 n4 + n4 n1) + 2 γ3 (n1 n3 + n2 n4)

−2 hex X1 (n1 + n2 + n3 + n4)

=S(n1, n2, n3, 0) + γ1 n
4
4 + 2 γ2 (n3 n4 + n4 n1) + 2 γ3 n2 n4 − 2 hex X1 n4

≥S(n1, n2, n3, 0) + n4 (γ1 + 2 γ3 − 2 hex X1).
(9.43)

If the applied field is such that

hex <
γ1 + 2 γ3

2 X1
, (9.44)

then (9.43) gives us

S(n1, n2, n3, n4) > S(n1, n2, n3, 0),

which contradicts the fact that (n1, n2, n3, n4) is a minimum. This implies that there
exists 1 ≤ i0 ≤ 4 such that ni0 = 0. Without loss of generality, we suppose that
n1 = 0 and ni ≥ 1 for 2 ≤ i ≤ 4. From now on, hex is taken to verify (9.44). The
case n2 ≥ 1 is excluded, indeed if it is true, we have

S(0, n2, n3, n4) =S(0, 0, n3, n4) + γ1 n
4
2 + 2 γ2 n2 n3 + 2 γ3 n2 n4 − 2 hex X1 n2

≥S(0, 0, n3, n4) + n2 (γ1 + 2 γ2 − 2 hex X1).
(9.45)

γ1 + 2 γ3 < γ1 + 2 γ2, since γ3 < γ2. Then, using this together with (9.44), we find

γ1 + 2 γ2 − 2 hex X1 > 0.

We insert this in (9.45) to deduce for n2 ≥ 1
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S(0, n2, n3, n4) > S(0, 0, n3, n4),

which contradicts the fact that (0, n2, n3, n4) is a minimum. Consequently, we can
obtain n2 = 0. Third, we suppose that n3 ≥ 1 and n4 ≥ 1, then

S(0, 0, n3, n4) =S(0, 0, 0, n4) + γ1 n
4
3 + 2 γ2 n3 n4 − 2 hex X1 n3

≥S(0, 0, 0, n4) + n3 (γ1 + 2 γ2 − 2 hex X1)

>S(0, 0, 0, n4).

(9.46)

The same argument implies that n3 = 0. Now, combining all the above, we have
under (9.44) that at this stage the only possibility of n minimum of S over N4 is
n = (0, 0, 0, n4) with n4 ≥ 0. But, since

hex >
γ1

2 X1
,

we have n4 ≥ 1. Moreover,

S(0, 0, 0, n4)− S(0, 0, 0, 1) = γ1 (n2
4 − 1)− 2 hex X1 (n4 − 1)

= (n4 − 1)
(
γ1 (n4 + 1)− 2 hex X1

)
.

(9.47)

Suppose that n4 ≥ 2, then using the fact that γ3 < γ1, we have from (9.44)

γ1 (n4 + 1)− 2 hex X1 > 3 γ1 − 2 hex X1 > γ1 + 2 γ3 − 2 hex X1 > 0.

Thanks to this, (9.47) implies for n4 ≥ 2

S(0, 0, 0, n4) > S(0, 0, 0, 1).

Finally, we must have n4 = 1, so (0, 0, 0, 0, 1) minimizes S over N4. Referring to
(9.39), the proof of lemma 9.19 is completed. 2

Completing the proof of proposition 9.17

Here, our interest is to find a minimum of S over Z4 such that it does not belong to
N4. For this, it suffices to find a point in the part Z4∩(x ≥ 0, y < 0, z ≥ 0, t < 0) such
that its image by S is strictly less than S(1, 0, 0, 0), since (1, 0, 0, 0) is a minimum of
S over N4. Now, we assume in addition to (9.40) that

γ1 − 2 γ2 + γ3 < 0,

then we can find an applied field hex satisfying (9.42). In particular,

9 γ1 − 16 γ2 + 10 γ3 < 2 hex X1. (9.48)
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Note that

S(2,−1, 2,−1) = 10 γ1 − 16 γ2 + 10 γ3 − 4 hex X1.

Comparing S(2,−1, 2,−1) to S(1, 0, 0, 0), we get

S(2,−1, 2,−1)− S(1, 0, 0, 0) = 9 γ1 − 16 γ2 + 10 γ3 − 2 hex X1. (9.49)

We deduce thanks to (9.48),

S(2,−1, 2,−1) < S(1, 0, 0, 0).

Consequently, there exists a minimum d of S over Z4 in the region (x ≥ 0, y < 0, z ≥
0, t < 0), meaning that there exists a non positive minimum of S over Z4. This
completes the proof of proposition 9.17.
Finally, combining all the above, the Theorem 9.9 is then proved.
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