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A language that doesn’t affect the way you think about programming, is not worth knowing.

Alan J. Perlis

(in Epigrams In Programming, ACM SIGPLAN, Sept. 1982.)

We may most aptly say that the Analytical Engine weaves algebraical patterns just as the
Jacquard-loom weaves flowers and leaves.

Augusta Ada Byron, Countess of Lovelace

(Comparing Babbage’s Analytical Engine with the Jacquard-loom.)

[. . . ]: while it was perhaps natural and inevitable that languages like FORTRAN and its successors
should have developed out of the concept of the von Neumann computer as they did, the fact that
such languages have dominated our thinking for over twenty years is unfortunate. It is unfortunate

because their long-standing familiarity will make it hard for us to understand and adopt new
programming styles which one day will offer far greater intellectual and computational power.

John Backus

(in The history of FORTRAN I, II, and III. ACM SIGPLAN Notices, 13(8):165–180, August 1978.)

[. . . ] un peu moins de systèmes, un peu plus de systématique [. . . ]

Paul Ricœur

(in La critique et la conviction, Hachette, 2002.)
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I.1 Introduction

This dissertation, as every habilitation manuscript, tells a story. And this story, as usual, can be
told from different standpoints1.

I.1.1 Chronologically

The most obvious way is to present the work achieved these last ten years chronologically (see
figure II.1 page 12).

My research has first taken place in the 81/2 project and then in the MGS project. The former is
devoted to the simulation of dynamical systems through the explicit specification of their trajectory
using declarative streams. The latter investigates the simulation of dynamical systems with a
dynamical structure through sophisticated data structures used to represent dynamic spaces and
to manipulate them by rules.

Both projects gave rise to an experimental language, materialized by the development of an
experimentation platform (interpreter, fragments of compiler, some static analysis tools, visualizing
tools, numerous examples, etc.), to 40 papers2 with about 10 coauthors and to the supervision
of many students: among them, I supervised more than 10 Master’s Theses and two Ph.D.’s
theses [Coh04b, Spi06b] during the MGS project.

1 It is not limited to the description of ten years of scientific activities that a story can be told from multiple points
of view. I have been deeply moved by A. Kurosawa’s movie “Rashōmon”, which describes the very same “physical
event” as seen by four different people corresponding to four different levels of reality. I believe that contemplating
things from different standpoints is particularly important for someone who pretends to model and simulate.

2Including 13 international journals, 4 book chapters and 23 international conferences.

1



2 Chapter I - Introduction

The 81/2 Project

The 81/2 project has grown in the 1990’s in a computer architecture team developing new parallel
architectures. As a matter of fact, stream representing trajectories are also sequential threads of
control and multiple streams mean parallel threads of computation. In addition, the instantaneous
state of a dynamical system is often a massive object (e.g., in finite elements methods) that can be
computed using data-parallel operations. My contributions in this project arise at a moment where
the static core (i.e., the features of the language that can be statically analyzed with respect to the
parallel implementation) was well understood and where new dynamic data and control structures
had to be designed and developed to face more sophisticated applications.

The MGS Project

These new sophisticated applications are simulations of dynamical systems with a dynamical struc-
ture. Paradigmatic examples, in the context of Évry3 are given by developmental processes in
biology. The modelling and the simulation of these processes are one of the goals of the systemic
biology program. They have motivated the start of the MGS project [GM01b] soon after the in-
volvement of the LaMI into bio-informatics.

MGS is a rule-based language. A rule is similar to a rewriting rule but acts on almost any kind
of data structure. This is possible through a unifying point of view where each data structure is
equipped with its neighborhood relationship. The neighborhood relationship enables the definition
of a suitable notion of part and a rule specifies the replacement of a part by another part. A set
of rules is called a transformation. The definition of a transformation is similar to the specification
of a function by case and transformations can be smoothly integrated into any functional language
like ML.

I.1.2 Concepts and Tools

Chronology can be anecdotic. A scientific domain is often described through its objects of interests
and through the tools used to investigate them. So, another way to present my work is to charac-
terize the notions investigated and the tools developed for their study. Looking back on the loom of
my work, it clearly appears that the concept of space constitutes its main weft and is summarized
with the slogan a data structure is a topological space.

Data fields

The 81/2 project has focused on the handling of time. It is customary to articulate the concept
of time on the three notions of instant, duration and succession. There is no duration in 81/2: an
event takes place in an atomic instant and all events are strictly and totally ordered in a temporal
succession whose beat is given by a global clock. At a given instant, the events are described by
a set of values. Because all these values are logically accessible at the same time instant, they
correspond to the notion of physical field [Boa83].

3I joined the University of Évry after my Ph.D. thesis at the University of Orsay. The University of Évry is
strongly linked with the Genopole R© institute whose mission is to create and foster a research cluster dedicated to
genomics, post-genomics and related sciences. As a result, the computer science research laboratory LaMI from 2000
(and IBISC from 2006) develops strong interactions with biologists for the development of computer methods to
support the modelling, the simulation, the analysis and the engineering of complex bio-systems.
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Many physical quantities have different values at different points in space. For example, the
temperature in a room is different at different points: higher near the heater, lower near the window.
The velocity of a flow of water in a stream is larger in narrow channels and smaller where the stream
is wide. In these two examples, there is a particular region of space which is of interest for the
problem at hand and at every point of this region some physical quantities has a value.

The notion of physical field can be extended to include the idea of data structure. In this
point of view, a data structure is a set of places filled by some value. The set of places exhibits
some structure: a spatial organization. The neighborhood relationship in a data structure comes
from the moves supported in that data structure: which element (place) is accessible from another
element (place). For example, in a simply linked list, the elements are accessed linearly (the second
after the first, the third after the second. . . ). We call such a data structure a topological collection.

The notion of data field is an old one in computer science: it already appears in the development
of recurrence equations and goes back at least to [KMW67]. The term “data field” seems to appear
for the first time in [CiCL91, YC92] around the Crystal project [Che86]. As a matter of fact,
the notion of data field is familiar to the systolic programming community [Qui86], especially in
high-level approaches as in Alpha [GMQS89, QRW95]. B. Lisper has explicitly brought together
the notions of data fields and of data parallelism [HL93] (the tutorial [Lis96] is a good introduction
to these problems). This approach is also close to the notion of pvar or xapping [SH86] in the
context of the Connection Machine [Hil85]. However, in these works, the set of places is simply an
integer lattice (places are elements of Z

n).

In the MGS project we have proposed to use topological notions to formalize and unify the
presentation of a data structure. The motivation is that we are interested only in the connections
between the elements of a data structure, we do not need in a first stage to handle quantitative
notions like a distance between elements for instance. Topology is usually presented through the
notion of open and closed sets and focus on a point-set point of view, but, in the MGS project
we rely on notions developed in combinatorial topology [Hen94] to formalize the neighborhood
relationships of a topological collection. A topological collection is a field (more precisely a chain)
on a topological space defined by a cellular complex. These notions are developed later in [GM02c]
and Section III.3 and rely on algebra (which is especially attractive for computer science because
algebraic objects are usually implementable on a computer, which is not obvious when dealing
directly with point-set notions).

Group-Based Data Field

In my Ph.D. thesis, I have used a group presentation to define the set of places and their neigh-
borhood relationships. The spatial structure can be depicted by the Cayley graph of the group
presentation. This approach goes beyond integer lattice and makes possible the representation of
trees (free groups), integer lattices (free Abelian groups), plane tessellation (Archimedian groups)
and many kind of twisted and circular grids [Mic96d, Del02, Lar02]. The corresponding data
structure is called a GBF for Group-Based data Field. GBF based on Abelian groups have been
implemented in the 81/2 project and the corresponding library reused in MGS.

At the same time, Z. Róka considered Cayley graphs to extend the space and the communication
links between the cells of a cellular automata [Rók94, Rók95]. However, the use of a group structure
to describe a space structure has already been proposed in 1971 in [MP71]. The work is restricted
to the study of the dimension of a space described by an Abelian group: “[. . . ] We will show that
for such groups the dimension equals the number of generators [. . . ] Thus there seems to be a
correspondence between Euclidean spaces and free Abelian groups.”.
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Newtonian and Leibnizian Spaces

At a first look, it may appear that a data field requires the a priori definition of its underlying space
(its set of places). Indeed, this is the case for the GBF: the set of places are the group elements and
has a meaning which is freed from any connection with a particular value attached to a place. This
kind of space is called Newtonian space and corresponds to a container defined prior any contents.

Traditionally4 there is another kind of space: if something has a position, that position can be
defined only with respect to the other things. For example, the second element of a list can be the
second one only because there is a first one. In this point of view, space is nothing apart the things
it holds; it is only a consequence of the relationships between things; space is not a stage, which
might be either empty or full, onto which things come and go.

Such kind of space is qualified as Leibnizian. Lists, but also sets and multi-sets are examples
of fields on Leibnizian spaces. Leibnizian spaces are necessary because it is not always possible to
foresee the shape of a data structure. For example, if we know for sure that a list will hold only 4
elements, we can use advantageously a quadruple or a vector of size 4 which provides a constant
access time.

A Leibnizian approach is also necessary when the structure of a system cannot be statically
known.

Declarative programming and Moving Values in a Graph

Not only the data structures of a program have a spatial structure: this also holds for control
structures. One may think of the flow chart of a program which exposes the organization of
the computations as a graph; but other spatial representations are possible, including higher-
dimensional representations like “progress graph” [CES71] used to study the possible deadlocks
of a set of concurrent processes (see [Gou00] for the use of homotopy to classify the behaviour of
concurrent programs).

Here we focus on declarative programs and we assume that declarative programs are sets of
equations. This statement is developed in Section III.4. The 81/2 programming language belongs
to the declarative paradigm: the temporal succession of events are defined by a set of fixed-point
equations (i.e., recursive definitions). MGS programs are also sets of recursive definitions but
between functions (however, imperative features exist in MGS).

These equations can be represented by a graph, the data-flow graph: a node represents an
operator in the equations and edges route the data values between the computations. The concept
of data-flow is an old notion, which goes back to at least to [Con63]. Since then, many kind of
data-flow computation models have been developed; [KM66, TE68, Ada68, Kah74, AG77, Arn81]
are amongst the first works. A data-flow graphs comes with its own computation process. We
focus here on a network where every node is an autonomous calculator working asynchronously
with respect to the other nodes. A node is a black box consuming data on its input links and
producing data on its output links. A link is a FIFO with an unbounded capacity. The links are
the only interactions between the nodes. The functional data-flow, or “pure data-flow” model, is
a model where, in addition, the computations made by a node satisfy a functional relationship
between the sequence of the input and the sequence of the output.

G. Kahn was the first to study a functional data-flow model and its relationships with the
corresponding set of equations. What is now known under the name “Kahn Principle” says that in

4We refer here to the debate between I. Newton and G. W. Leibniz on the concept of space [Jam93].



I.1 - Introduction 5

functional data-flow, the sequence of values passing trough an edge is solution of the corresponding
set of equations [Kah74]. The formal proof that the execution of the network of processes effectively
solves the associated system of equations was done in [Wie80, Fau82].

This is a very important principle since it shows how a computation procedure allows us to solve
some systems of equations. The compilation of 81/2 is based on this principle and this includes the
computation of GBF specified by recursive definitions [GM01a].

Amalgams

The seminal article [Con63] introducing the concept of data-flow sketches the structuring of a
program in computation modules, autonomous and independent, communicating by sending data
(discrete items) among half-duplex links. The structure is given by a static graph, that is, a graph
which is independent of the values carried through its edges.

This situation is reminiscent of the Newtonian vision and, as one may expect, there is a Leib-
nizian point of view on data-flow graphs, where the graph is built as the computation proceeds.
For example, the computation of the value returned by the application of a recursive function on
some argument, is achieved by a data-flow graph that unfolds with each function application (the
added part corresponding to a recursive call)5.

Amalgams have been introduced to enable the construction of data-flow graphs by “gluing”
together “open” or “incomplete” graphs. In term of set of equations, amalgams enable the spec-
ification of a set of definitions, the merging of two sets of definitions and the evaluation of an
expression using a set of definitions. The underlying idea was to model the free references6 that
enable the gluing of graphs on the border of some abstract object, because it is through the border
that objects can be assembled and pasted together. As the computation proceeds, some parts of the
data-flow graph become “complete” (i.e., there is no pending edge left) which triggers the execution
of the data-flow graph and the substitution of the completed part by the computed value.

Dynamical Systems with a Dynamical Structure

A data-flow graph is an example of a dynamical system that computes the solution of a set of
recursive definitions: the state corresponds to the values on the edges and the evolution is given by
the processing of the values by the nodes.

Amalgams are very good examples of dynamical systems with an evolving structure. In amal-
gams, both the structure of the state (i.e., the set of edges) and the evolution function (the set
of nodes) is changing over time (new nodes are added to the data-flow graph when incomplete
graphs are completed). We have introduced the term “dynamical system with a dynamical
structure” to qualify such processes.

This situation contrasts with (the simulation of) a “real” dynamical system “found” in nature
where the evolution function usually does not change: this evolution function corresponds to the
application of the physical laws and such laws remain the same every time and everywhere. However,

5To be complete, one must say that the returned value can also be computed by a static, acyclic but infinite
data-flow graph corresponding to the unbounded iteration of the unfolding. It can also be computed by a static finite
but cyclic data-flow graph.

6A free reference is a name that does not refer to a definition at the time of its use. The concept of name is a
central notion in the incremental construction of programs, at a practical level (after all, a linker is a tool that resolves
free references amongst a set of compiled files) as well as at a theoretical level [BC90, LF93, HO96, LF96, DS96].
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natural dynamical system can have a dynamical structure, especially in biology: it is sufficient that
the structure of the state evolves.

This is indeed the case, e.g., during embryogenesis: the generation of form is mediated by
cellular processes such as the direction and number of cell divisions, changes in cell shapes, cell
movement, cell growth, and changes in the composition of the cell membrane and extracellular
matrix. So the differential expression of developmental genes is not sufficient to explain the advent
of a given shape which is a collective process implying supra-cellular (tissue) events. In other words,
there is a feed-back loop between the form and its evolution via the processes inhabiting this form.
The acknowledgement of this feed-back loop in a dynamical system with a dynamical structure
is compatible with any methodological reductionist view: indeed, the situation is similar in the
“classical” dynamical systems where the definition of the evolution function implies a feed-back
loop between the output and the input of the system.

The idea to simulate this kind of systems is to describe the evolution function through local
interactions. We will show in Chapter III that these interactions naturally exhibit a topological
structure and that the notions used to describe the space of a data-structure can also be used to
describe the structure of the interactions. This makes MGS particularly suitable for the modelling
and the simulation of such systems.

Modelling and Simulation of Morphogenesis

The project to model and to simulate a complex morphogenesis process goes back to the end of
the 81/2 project [Seg97] and the failure to achieve it in 81/2 was one of the motivations for starting
the MGS project. At this time, my focus was on the C. elegans, an organism whose complete cell
lineage [SSWT83], neural circuitry, and various genes and their functions have been identified. So,
a complete synthetic model of C. elegans cellular structure and function appears possible [KHL98].
This project has attracted the attention of computer scientists but, so far, only some parts of the
development process have been formalized, see for example [KHK+03].

I have not pursued this project in the context of Évry. In 2000, a group of plant biologists
have called for a major scientific effort to understand the biological machinery of a plant, Ara-
bidopsis thaliana, with enough details to construct a virtual plant that can be used to examine
every aspect of a plant’s development [CEB+00] (Arabidopsis was the first flowering plant to be
completely sequenced at that time). Towards the end of this extremely ambitious 10-years project,
the researchers propose to integrate the knowledge gained through studies of single genes into a
broader understanding of how these gene networks interact with one another to build cells and
tissues. Finally by 2010, plant researchers hope to construct a complete “wiring diagram” of all the
biological pathways of Arabidopsis and to build a numerical avatar integrating the cellular level up
to the entire organism, making able to see a four-dimensional view of a plant that covers all the
details from when the seed germinates to when the next generation seeds fall off the mother plant.

Now, at the end of 2007, we are still very far from reaching this goal, but some specific de-
velopmental processes have been modeled at a cellular level. In France7, a CIRAD-INRA-INRIA
project has chosen MGS as the language for the modelling and the simulation of the cell-cell signal-
ing network during the growth of the shoot apical meristem in Arabidopsis [BdR05, BdRBCL+06].
This project is certainly one of the three or four most advanced apex modelling project at the
international level (see also in the same PNAS issue the papers by P. Prusinkiewicz [SGM+06] and
E. Mjolsness [JHS+06]).

7Independently of the above mentioned 2010 Grand Project.
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I want to stress that our contribution, as computer scientists, relies on the provided tools
(the MGS interpreter) and at a methodological level: people working in the MGS project have no
competence in the involved biological processes. However, the notion of dynamical systems with a
dynamical structure, the expressive linguistic support offered by MGS and the rapid prototyping
abilities of the environment, have made it possible for us to sketch in two days with P. Barbier de
Reuille the very skeleton of the model in less than two pages of code. Obviously it has taken then
three years of hard work to collect and analyze the relevant data, to fill the details, to formalize
the transport and the mechanical models, to display the results of the simulations, to debug it and,
finally, to validate the resulting model by new “real” laboratory experiments.

I.1.3 The Next Step: Synthetic Biology

Even if we are very far from the holy Grail of systemic biology, integrated models of biological pro-
cesses from the molecular level up to the entire organism, a new frontier is envisioned by dreaming
biologists and computer scientists.

Since early 2000, researchers in various fields (physics, chemistry, computer science and biology)
address biology from an engineering point of view: by creating standards (definition of functions,
libraries. . . ), abstractions (organizing functions by levels) and decoupling (separating conception
and realization), biology has undergone a similar shift to that of electronics when in 1957 the
planar technology for producing transistors was “discovered”. Synthetic biology [SS78, End05]
focuses on the redesign of biological systems for specific purposes. It is not any more the analysis
of living organisms for its sole understanding but for the systematic design of artificial biological
entities. As a matter of fact, synthetic biology goes way further than genetic engineering by its aims
and tools: it proposes to rewire genetic networks from existing organisms to detect8 or produce9

chemicals but also to shape new organisms by building them in a bottom-up fashion (from DNA
to physiology through metabolic pathways).

But synthetic biology is only at its first steps. Generic tools for developing complex applications
from a high-level specification down to the design of genetic networks are still lacking. It is our
thesis that unconventional languages have a key role to play to offer new computing models crossing
all the levels of systemic biology.

I.2 Organization of the document

The next chapter details my curriculum vitae: my research activities since 1992 are given, then my
teaching activities and student supervision, my scientific collaborations are reviewed, my admini-
strative tasks are roughly sketched and this chapter is closed by the list of all my publications so
far.

Chapter III motivates the work that I have done in the field of declarative languages for
unconventional computing. We recall the motivations for designing new programming languages
and the key role of spatial relations in existing languages and applications. The generalization of
the spatial relationships has led to the unified viewpoint of data structures as topological spaces; a
general form of rewriting on those spaces is also presented. The chapter ends by the presentation
of papers that are essential to understand the concepts sketched.

8For example TNT [Gib04], genetically modified Arabidopsis seeds that change their color while being grown over
land mines [Are06], etc.

9For example, a precursor of a malaria healing drug, the artemisinic acid [RPO+06], the production of hydrogen
with starch and water [ZEM+07], etc.



8 Chapter I - Introduction

Designing programming languages is only one third of the work: there is still the necessity to
use these languages against real problems to see whether they are well suited. Chapter IV shows
that the domain of applications of my research, namely dynamical systems with a focus in biology,
can be efficiently handled using the concepts of topological spaces and local rewriting by recovering
the topology of interactions of the system. Again, the chapter is closed by two sets of essential
papers, dealing with biological and non-biological applications.

The last third of work a programming-language designer has to provide is briefly given in Chap-
ter V: developing a language generally requires to develop additional tools (for visualisations, for
facilitating the writing of redundant code, etc.) that will help the user. Some of the implemen-
tations that I have done or participated to are given and the chapter ends by the presentation of
papers focusing on implementation details and issues.

Propositions for further research are made in Chapter VI.

Chapters III–V end with a section presenting a selection of papers related to them. In the
electronic form of this document, clicking on the provided link enables to retrieve the corresponding
paper. A booklet gathering these works is also available and a page reference to this booklet is
provided for each reference.

I.3 Multiple Reading Pathways

In this section we give some reading dependencies between the articles, on a thematic basis, not
chronogically. These are various pathways to traverse the work evocated here. On the electronic
version of this document, the references are clickable and forward to the corresponding electronic
version of the denoted work.

I.3.1 Topological Notions in a Programming Language

[GM02a]

ttiiiiiiiiiiiiiiiiiiiiiiii

yyssssssssssssss

�� %%KKKKKKKKKKKKKK

**UUUUUUUUUUUUUUUUUUUUUUUUUU

[GMCS05] [GMS95]

yyssssssssssssss

��

[GM02c]

�� %%KKKKKKKKKKKKKK
[SM07] [SM04]

[GM01a] [GMC02a] [SMG04] [GSM07]

I.3.2 Dynamical Systems with a Dynamical Structure

[GM01b]

tthhhhhhhhhhhhhhhhhhhhhhhhhhhh

xxrrrrrrrrrrrrrrr

�� &&LLLLLLLLLLLLLLL

**VVVVVVVVVVVVVVVVVVVVVVVVVVVVV

[GMD03] [GMCS05] [GMM04] [GGMP02b] [Gia03]
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I.3.3 Unconventional Languages

[MBFG06]

xxrrrrrrrrrrrrrrr

&&MMMMMMMMMMMMMMM

[GM02a]

�� &&LLLLLLLLLLLLLLL
[Mic96a]

�� &&LLLLLLLLLLLLLLL

[GM01c] //

xxrrrrrrrrrrrrrrr

�� &&LLLLLLLLLLLLLLL
[GM01d] [Mic96b] [Mic96e]

[SMG04] [GGMP02b] [GM04]

I.3.4 Simulations And Applications

Biology [GMD03] [GM04]

[GM03] [SM06] Physics

[SMG06] [SM05]

[SMC+07]

[GGMP02b] [GMM04] [SMG05]

Algorithmics [SM04] [MJ05] [SMG04]

I.3.5 Declarative Languages

[Mic95]

�� %%JJJJJJJJJJJJJJ
[GMM04]

��

[GM01c]

%%JJJJJJJJJJJJJJ
[GM01a]

��

[Mic96b] [Mic96e] [GMC02a]
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I.3.6 Implementation Techniques

[Mic96a]

�� %%JJJJJJJJJJJJJJ
[GM01b]

yytttttttttttttt

�� %%JJJJJJJJJJJJJJ

**UUUUUUUUUUUUUUUUUUUUUUUUU

[Mic96d]

��

[Gia99] [GMC02a] [Coh04b] [SM04] // [MG07]

��

[Out98] [Spi06b]
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II.1 Research Activities

My research activities are focused on declarative languages and are centered on the following two
directions:

1. dynamicity and time-representation (1992-2000),

2. the development of topological data-structures for the simulation of dynamical systems with
a dynamic structure (2000-).

II.1.1 1992-2000: Introducing Dynamicity in the 81/2 Programming Language

The principal aim of the 81/2 project2 was the definition of a high-level parallel declarative com-
putation model for the simulation of large dynamical systems. This computation model has been
materialized by the development of a programming language also called 81/2, and has been vali-
dated by a set of experimentation platforms (interpreter, compiler, visualizing tool, workbench for
the data distribution strategies, etc.) My work has focused on the definition, the study and the
development of dynamical representations of space within a declarative framework.

I have introduced in 81/2 two new data structures, GBF and amalgams, by proposing a formal-
ization and studying their implementation. GBF (group-based data-fields) allow the definition of
regular and homogeneous spaces, while the amalgams allow the construction, through some com-
putations, of heterogeneous and ad-hoc spaces. These two new notions have direct applications
in the domain of simulation of highly dynamical systems (as for example growing processes in bi-
ology). They also find a direct application in computer science by defining a new framework for
(1) the definition, analysis and implementation of recursive data (the GBF define for example a
unified framework encompassing the notion of array and tree); (2) the definition and formaliza-
tion of new incremental programming mechanisms that were arising then in languages like Java

(amalgams allow the formalization of an instantiation mechanism by implicit name capture, and
program extension) and (3) allow a declarative construction of data-flow graphs. I first studied
GBF and amalgams on their own and they have been afterwards introduced and integrated into
the declarative framework of the language 81/2 to define the language 81/2D

.

In that work, I have shown, through numerous and significant examples, the pertinence of the
choices made. They put into evidence the gain of expressiveness brought by the improvement of
the notion of space, and by the primitives allowing the definition of objects onto those spaces.
The notions of GBF and Amalgam allow the definition, in a very concise manner, of regular and
irregular data structures, within a declarative framework, and open some new perspectives for the
parameterization and the incremental construction of declarative programs.

II.1.2 2000- : The MGS Project

The Context of the Project

My current research activities take place in the MGS project3. This project evolves following two
complementary directions:

1. to study and develop the integration of topological notions and tools in programming lan-
guages;

2The web site of the project is: http://www.ibisc.univ-evry.fr/pub/Otto/
3The home page of the project, where the language interpreters are available is http://mgs.ibisc.univ-evry.fr

http://www.ibisc.univ-evry.fr/pub/Otto/
http://mgs.ibisc.univ-evry.fr
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2. to apply those notions and tools to the conception and development of new data- and control-
structures that are expressive and efficient for the modeling and simulation of dynamical
systems with a dynamic structure.

This research is concretized by the development of an eponymous experimental programming lan-
guage and its application to the modeling and simulation of dynamical systems. We have a partic-
ular focus in the field of biology and morphogenesis.

High-level Domain Specific Programming Languages

My research work in that domain focuses on the definition of new data- and control- structures
allowing the representation of spatial and temporal data for the modeling and simulation of dyna-
mical systems in a rigorous framework, close to the end-user and the mathematical tools used in
that domain (dynamical systems in biology, chemistry and physics).

The two main applications domains that have motivated the development of these new mecha-
nisms are the analysis and representation of complex relations (for example spatial ones) and the
simulation of dynamical systems where the structure has to be computed jointly with the evolu-
tion of the system (as it is the case in developmental biology, at any level from the cells to the
individuals).

A privileged application domain was the modeling and simulation in systemic biology (more
specifically in post-genomic and in integrative simulation of developmental processes). We are now
(since 2007) considering the modeling, simulation and conception of new computational resources
brought by nanosciences and molecular biology.

This research is based on the development of a new computation paradigm (by generalizing the
approaches of the chemical computing, membrane computing, Lindenmayer systems and cellular
automatons) and new tools for the interpretation, typing and efficient compilation of declarative
languages. This research meets the fields of the “self-*” (self-sustaining, self-healing, self-organizing)
systems that are emerging in the software community and whose long-term goal is to identify
and develop in today’s computers the fundamental requirements to ensure properties of flexibility,
adaptivity, robustness, self-healing that are common to the complex systems of living matter.

II.2 Teaching Activities and Student Supervision

II.2.1 Teaching Activities

Since 1997, I have taught each year between 192h and 240h (for a total for the last 8 years of over
1600 hours), but for 2006 and 2007, since I was on sabbatical4. My teaching covers the following
domains and levels:

• 2nd year at University (“DEUG SDM”): the C language,

• 2nd year at University (“DEUG MIAS”): Unix, operating system, network, development tools,

• 3rd year at University (“IUP-Miage”): logics, human-computer interaction,

• 3rd year at University (“Licence de Mathématiques”): data structure and algorithms,

4The sabbatical took the form of a “delegation CNRS” for 2005-2006 and 2006-2007.
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• 3rd year at University (“Licence Informatique”): logics, functional programming, compilation,

• 4th year at University (“Maitrise Informatique”): λ-calculus, combinatory logics,

• 5th year at University (“DEA Informatique”): basic mathematics for the computer scientist,
advanced programming, data-parallelism, unconventional languages, dynamical systems,

• 5th year at Engineer School ENSIIE (“Mastere Bio-Informatique”): modeling and simulation.

I also took part in 2003 in a mission of teaching at Bobo-Dioulasso (Burkina Faso, Africa) where
I gave two lectures: one for 21 hours of mathematics and functional programming; one for 10.5
hours of logics.

II.2.2 Supervision of MsC Theses

I supervised the work of many Masters (DEA) trainees or 3rd year of engineer school:

Masters Theses with a Specific Computer Science Focus

1. S. Outerbah, 1998, “Introduction d’une notion de référence distante dans un formalisme de
capture de noms et implémentation d’une plate-forme d’expérimentation”, D.E.A. Informa-
tique, 100% supervision.

2. E. Delsinne, 2002, ”Structures de données indexées par un groupe, isomorphismes de GBF
abéliens et extensions aux structures automatiques”, E.N.S. Cachan and University of Rennes-
I, 50% supervision.

3. V. Larue, 2002, “Structures de données indexées par un groupe : représentation graphique
et extension au cas non abélien”, D.E.A. INFO, 100% supervision.

4. A. Spicher, 2003, “Typage et compilation de filtrage de chemins dans des collections topologiques”,
D.E.A. AMIB, 100% supervision.

5. F. Thonnérieux, 2003, “Réalisation d’une interface graphique pour le traitement des sorties
du programme MGS”, IIE, 100% supervision.

6. L. Perret, 2005, “Intégration des types de données algébriques dans MGS”, École Centrale
Paris, 100% supervision.

7. Y. Jullian, 2005, “Conception et développement d’un éditeur graphique de filtre pour MGS”,
IIE, 100% supervision.

Masters Theses with a Specific Bio-Computing Focus

1. J.-V. Segard, 1997, “Modèles de morphogénèse biologique dans un langage déclaratif de sim-
ulation”, D.E.A. of Cognitive Science of L.I.M.S.I, U.P.R. 3251 du C.N.R.S, 50% supervision.

2. N. Mann, 2004, “Hyperstructures et modélisation de chimie artificielle dans le langage MGS”,
D.E.A. AMIB, 100% supervision.

3. D. Boussié, 2004, “Simulation en MGS du déplacement du spermatozöıde du nématode Ascaris
Suum”, D.E.A. AMIB, 100% supervision.
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4. F. Gaubert, 2005, “Simulation stochastique et modélisation de chimie artificielle dans le
langage MGS”, D.E.A. AMIB, 100% supervision.

5. C. Kaleta, 2007, “Outils de visualisation pour la simulation de systèmes dynamiques à struc-
ture dynamique”, Erasmus M1 student in Computer Science, Universität Jena & Université
d’Évry.

II.2.3 Supervision of Ph.D.

I supervised for 100% the scientific work of 2 Ph.D. students5. These students are:

• J. Cohen, 2004, “Intégration des collections topologiques et des transformations dans un
langage fonctionnel”. J. Cohen is now assistant professor at the University of Nantes.

J. Cohen has participated in the development of an interpreter for the MGS language using
a higher-order abstract syntax scheme and in the definition of a generic pattern matching
algorithm for the topological collections. He also developed a typing strategy for a sub-part
of the language.

• A. Spicher, 2006, “Transformation de collections topologiques de dimension arbitraires. Ap-
plication à la modélisation de systèmes dynamiques”. A. Spicher is now a post-doc at INRIA
Lorraine.

A. Spicher has developed a large number of applications of MGS in the biological domain. He
has also done a great deal of theoretical work in the definition of a general formalization of the
notion of topological collection based on abstract combinatorial topology and a probabilistic
semantics for MGS.

II.2.4 Ph.D. Committee

I was one of the examiners of the Ph.D. thesis jury of A. Merlin with H. Thuillier (chairman), R.
Di Cosmo & E. Violard (referees), Q. Miller (examiner), G. Hains (supervisor). The defense
took place in 2004, december the 7th at the LIFO, University of Orléans.

II.3 Scientific Collaborations

The French scientific community in computer science is structured around national working groups
in various research fields. The exact administrative structure varies in time and has been called
AS, GDR, PRC, etc.

II.3.1 Past Collaborations and Scientific Involvement

My past scientific activities included:

• The members of the 81/2 project participated to the “PRC GDR C3” and then to “PRS” and
more precisely to the working group “ParaDe” directed by L. Bougé.

• The 81/2 project took part in the new “GDR de Programmation”, parallelism working group.

5 under the administrative responsibility of Jean-Louis Giavitto, Research Director at CNRS.
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• In 1997-2000, we set up with F. Delaplace from the LaMI, and with J.-L. Giavitto,
F. Cappello and C. Germain from the LRI, a working group on “Meta-Computing and
Distributed High-Performance Computation”.

• I am a former member of the “GDR ALP” with the proposition of the working group
“LODEC” (Languages and Tools for Deduction under Constraints) in the action “parallel
and concurrent programming using logical and functional languages and debugging tools”.

• I was a member of the editorial board of the French computer-science journal TSI, from 1998
to 2002.

• I served as PC in the following conferences: CC’99, CC’00, JFLA’04, RULE’04.

• I was a member of the CNRS AS “Topologie et Calcul” lead by E. Goubault (CEA),

• I was a member of the CNRS AS “Nouveaux Modèles et algorithmes de graphes pour la
biologie” lead by M. Habib (LIRMM).

• I was a member of the CELLIA working group at IBISC; I take part to the working group
“Simulation en génomique : vers l’épigénèse” and “Synthetic Biology” hosted by genopole R©.

• I was the head of the PC for the sixteenth edition of the JFLA (in 2005), the only French
conference on applicative languages.

II.3.2 Involvement in ACI and ANR Programs

I am currently involved in the following ACI and ANR programs:

• I am the member of the ACI IMPBIO project “VICANNE” headed by J.-P. Mazat.

• I co-organized with J.-P. Banâtre, P. Fradet and J.-L. Giavitto, the conference UPP’04
(Unconventionnal Programming Paradigms). This conference received some support by the
EEC (IST program) and the NSF. Its goal was to gather for three days researchers in the
field of unconventional programming (bio-inspired computing, chemical computing, amorphous
computing, generative programming and autonomic computing).

• I co-organized in July, 18th, with F. Gruau (LRI) and H. Berry (INRIA FUTURS) a one day
workshop on Amorphous Computing, with D. Coore, one of the founder of that computation
model. The web page of the workshop is is http://amorphous.ibisc.univ-evry.fr/

• I am the head of an ACI “Jeune Chercheur” since 2004, “NANOPROG : une approche langage
pour le nanocalcul et la simulation des nanosystèmes biologiques”; other participants include
J. Cohen, and A. Spicher of the IBISC Lab, and F. Gruau of the LRI Lab.

• I am part of the “ANR blanche AUTOCHEM” headed by T. Priol (IRISA) with J.-P.
Banâtre (IRISA), P. Fradet (INRIA Grenoble), J.-L. Giavitto (IBISC - U. of Évry),
H. Klaudel (IBISC - U. of Évry), A. Spicher (LORIA), T. Collette (CEA LIST), C.
Gamrat (CEA) and V. David (CEA).

• I am an advisor (with A. Spicher) in the French (Paris) team for the iGEM’07 international
competition on Synthetic Biology. The website of iGEM’07 is http://parts.mit.edu/r/

parts/igem/index.cgi

http://amorphous.ibisc.univ-evry.fr/
http://parts.mit.edu/r/parts/igem/index.cgi
http://parts.mit.edu/r/parts/igem/index.cgi
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• I am maintaining with S. Bottani (MSC - University Paris 7) two web sites on Synthetic Biol-
ogy for the French community: http://sb.ibisc.fr/ and http://www.ibisc.univ-evry.

fr/pub/pmwiki/pmwiki.php

II.3.3 “Delegation CNRS”

In 2005–2006 and 2006–2007 I was the recipient of a “Delegation CNRS”. During those two years,
I have visited many of my collaborators using my grant “ACI NANOPROG”.

During the first year of the delegation, I was still in charge of the administrative responsibility
of the first Masters year (“M1”) at the University of Évry.

II.3.4 International Collaborations

I have international collaborations with:

• P. Prusinkiewicz, University of Calgary, Canada, Dpt of Computer Science. Since 2000,
we have met a couple of times and are working on the problem of spatial representations in
programming language and the specification of dynamical systems with a dynamical structure.

• G. Malcolm, University of Liverpool, U.K, Dpt of Computer Science. We are collaborating
on the study of the rewriting systems for the modeling of biological systems.

• M. Gheorghe, University of Sheffield, U.K, Dpt of Computer Science. We are working on
formal aspects of languages for bio-computing (P systems, molecular X machines, ...).

• P. Dittrich, Universität Friedrich-Schiller, Jena, Germany, Bio Systems Analysis Group. We
have started a collaboration in the use of MGS for the representation in artificial chemistry
of his notion of organizations. I have visited the U. of Jena for 2 weeks.

• D. Coore, University of the West Indies, Jamaica, Dept of Computer Science. We have
initiated in 2007 a collaboration on the definition of a new programming languages based on
the notions developed in amorphous computing and aimed at defining the behaviour of large
population of asynchronous, unreliable, local communicating living matter. D. Coore has
come for one month as a visiting Professor in Évry in July 2007.

II.3.5 National Collaborations

I have national collaborations with:

• C. Godin, AMAP team, Modeling Plants unit, CIRAD-INRA-INRIA on problems of com-
puter multi-scale representations in languages. MGS has been used in the Ph.D. thesis of C.
Godin’s student P. Barbier and lead to a publication in the PNAS.

• I took part in the “Plan Pluri Formation (PPF)” between the University of Évry and the
University of Poitiers on “Méthode et outils formels pour l’animation de modèles topologiques
et géométriques. Application à la simulation en post-génomique”, 2002-2005. I participated
to the study of the use of G-maps for simulation in biology.

• H. Berry of the ALCHEMY team, INRIA/PCRI of L.R.I, University Paris XI on the com-
putational properties of a programmable material in the field of synthetic biology.

http://sb.ibisc.fr/
http://www.ibisc.univ-evry.fr/pub/pmwiki/pmwiki.php
http://www.ibisc.univ-evry.fr/pub/pmwiki/pmwiki.php
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• P.-E. Moreau, INRIA Lorraine. We have been working together during J. Cohen’s Ph.D.’s
work on associative-commutative matching developed in the ELAN project.

• F. Jacquemard of L.S.V./INRIA on the exploration of large state space in the field of
cryptographic protocols and the use of topological tools for the representation and composition
of musical scores.

II.4 Administrative Tasks

In our growing University, administrative tasks are required at two levels: for the research lab and
for the teaching department. I take part in both as described below.

II.4.1 Research Lab

At the level of the research lab, I am very involved in all regular tasks. Among them, I take part
in:

• I am a former member of the “CARI” (Center for Administration of Computer Resources) of
the University of Évry where I represented the laboratory from 1997 to 2002.

• I am a member of the “Laboratory Council” since 2000 where I represent the assistant/associate
professors.

• Since 1997 I am a member of the hardware and software commission of the lab where we
define and manage the computer resources of the lab.

II.4.2 Teaching Department

Since the beginning of our teaching department, we are lacking administrative help. For that
reason, we have to manage the department by ourselves. Among the various activities in which I
took part, I can cite:

• I am a member, since 2000, of the “commission de spécialistes” (this commission reviews
and hires the faculty members in computer science) where I represent the assistant/associate
professors.

This year, I am he “vice-president” of the commission for the assistant/assiociate professors
(“collège B“).

• During 3 years, I was in charge of the 4th-year courses in computer science at the University
(“Mâıtrise Informatique”).

• I am this year in charge of the 3rd-year courses in computer science at the University (“L3
Informatique”)

Each time, it involves various tasks like finding teaching assistants for the courses, making the
course schedules, interact with the administrative staff for setting-up the jurys, reviewing the
student applicants files, updating the “règlements du contrôle des connaissances”, ...

I also took part to the LMD-committee which produced the new teaching structure based on
the LMD structure: “Master Sciences et Ingénierie, mention Informatique et Systèmes”. This team



20 Chapter II - Curriculum Vitae

effort required a great deal of work since we had to re-think the whole structure of the teaching
activities, from scratch.

II.4.3 Administration of Computer and Network resources: 1998-2002

From the end of 1998 to the beginning of 2002, I have managed all alone all the computer resources
and network of the research lab (computers, X terminals, printers, active network resources, ...)
and the common services (home account savings, e-mail, DNS, ftp, web server, ...). In 2000, the
lab has moved from it previous location to its current one: I had to define all the new system
architecture from network organization to the distribution/update of computer operating systems
and software (Linux and Windows). After 2002, I have supervised the activity of E. Faure, our
system engineer.

II.5 Software Developments, Publications and Communications

My research has always been organized in two parts: theoretical work embedded into concrete
development of software tools, models and languages.

II.5.1 Software Developments

I took part in the following software developments, which are all open-sources projects:

• the 81/2 programming language, available at http://www.ibisc.univ-evry.fr/pub/Otto/

and consists in over 36k lines of ML and C source code,

• a distributed version of the amalgam formalism, available at http://www.ibisc.fr/∼michel/
amalgame.tar.gz and consists in about 3k lines of ML and C source code,

• the MGS programming language, available by request at http://mgs.ibisc.univ-evry.

fr and consists in over 50k lines of ML, C++ and C source code; it includes many external
libraries (qhull for the computation of Delaunay and Voronöı tessellations, GNU gsl for
various random numbers generators, nauty for the computation of graph isomorphisms, ...)

II.5.2 International Journals

In each section, publications are sorted by alphabetic order using the first author as the key, then
in chronological order. All publications are available at the url http://www.ibisc.univ-evry.
fr/∼michel/WWW/bib.html

[J1] Olivier Michel. Design and implementation of 81/2, a declarative data-parallel language.
Computer Languages, 22(2/3):165–179, 1996. special issue on Parallel Logic Programming.

[J2] Jean-Louis Giavitto and Olivier Michel. The topological structures of membrane com-
puting. Fundamenta Informaticæ, 49:107–129, 2002.

[J3] Patrick Amar, Pascal Ballet, Georgia Barlovatz-Meimon, Arndt Benecke, Gilles Bernot,
Yves Bouligand, Paul Bourguine, Franck Delaplace, Jean-Marc Delosme, Maurice De-
marty, Itzhak Fishov, Jean Fourmentin-Guilbert, Joe Fralick, Jean-Louis Giavitto, Bernard

http://www.ibisc.univ-evry.fr/pub/Otto/
http://www.ibisc.fr/~michel/amalgame.tar.gz
http://www.ibisc.fr/~michel/amalgame.tar.gz
http://mgs.ibisc.univ-evry.fr
http://mgs.ibisc.univ-evry.fr
http://www.ibisc.univ-evry.fr/~michel/WWW/bib.html
http://www.ibisc.univ-evry.fr/~michel/WWW/bib.html
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Gleyse, Christophe Godin, Roberto Incitti, François Képès, Catherine Lange, Lois Le
Sceller, Corinne Loutellier, Olivier Michel, Franck Molina, Chantal Monnier, René Na-
towicz, Vic Norris, Nicole Orange, Helene Pollard, Derek Raine, Camille Ripoll, Josette
Rouviere-Yaniv, Milton Saier, Paul Soler, Pierre Tambourin, Michel Thellier, Philippe
Tracqui, Dave Ussery, Jean-Claude Vincent, Jean-Pierre Vannier, Philippa Wiggins, and
Abdallah Zemirline. Hyperstructures, genome analysis and I-cells. Acta Biotheoretica, 50,
2002.

[J4] Jean-Louis Giavitto, Olivier Michel, and Julien Cohen. Pattern-matching and rewriting
rules for group indexed data structures. ACM SIGPLAN Notices, 37(12):76–87, December
2002.

[J5] Jean-Louis Giavitto, Olivier Michel, and Franck Delaplace. Declarative simulation of
dynamicals systems: the 81/2 programming language and its application to the simulation
of genetic networks. BioSystems, 68(2–3):155–170, feb/march 2003.

[J6] Jean-Louis Giavitto and Olivier Michel. Modeling the topological organization of cellular
processes. BioSystems, 70(2):149–163, 2003.

[J7] Jean-Louis Giavitto and Olivier Michel. Modeling the topological organization of cellular
processes. Physics of Life, August(3), 2003. See http://www.physicsoflife.com/index.
html. (“Physics of Life” is an Elsevier electronic Journal selecting articles that have been
published in 22 contributing journals from Elsevier Science, covering Physics, Biology,
Chemistry and Medicine with a focus on biological physics research).

[J8] Jean-Louis Giavitto, Grant Malcolm, and Olivier Michel. Rewriting systems and the
modelling of biological systems. Comparative and Functional Genomics, 5:95–99, February
2004.

[J9] Antoine Spicher and Olivier Michel. Declarative modeling of a neurulation-like process.
BioSystems, 87:281–288, February 2006.

[J10] Olivier Michel, Jean-Pierre Banâtre, Pascal Fradet, and Jean-Louis Giavitto. Challenging
questions for the rationales of non-classical programming languages. International Journal
of Unconventional Computing, 2006.

[J11] Antoine Spicher, Olivier Michel, Mikolaj Cieslak, Jean-Louis Giavitto, and Przemyslaw
Prusinkiewicz. Stochastic P systems and the simulation of biochemical processes with
dynamic compartments. BioSystems, In press, 2007.

The two following publications are in a French journal, Technique et Science Informatique
(Computer Science and Technique).

[J12] Jean-Louis Giavitto, Olivier Michel, Jean-Pierre Banâtre, and Pascal Fradet. Modèles de
programmation non-conventionnels. Technique et Science Informatique, 23:177–186, 2004.
Compte-rendu de l’atelier international UPP’04. (not reviewed)

[J13] Antoine Spicher and Olivier Michel. Représentation et manipulation de structures
topologiques dans un langage fonctionnel. Technique et Science Informatique, 2007.

http://www.physicsoflife.com/index.html
http://www.physicsoflife.com/index.html
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II.5.3 Edition

I have been the (co-)editor of two conference proceedings and one special issue in a journal:

[E1] Jean-Pierre Banâtre, Pascal Fradet, Jean-Louis Giavitto, and Olivier Michel, editors.
Unconventional Programming Paradigms (UPP’04), volume 3566 of LNCS, Le Mont
Saint-Michel, France, September 2005. ERCIM – NFS, Springer Verlag. Revised, se-
lected and invited papers. 367 p. ISBN: 3-540-27884-2. http://www.springeronline.com/
3-540-27884-2.

[E2] Olivier Michel and Pierre Weis, editors. Seizièmes Journées Francophones des Langages
Applicatifs (JFLA’05), number 16. INRIA, 2005. http://jfla.inria.fr/2005/actes/

actes-jfla-2005.tgz.

[E3] Langages applicatifs, théorie et applications. Technique et Science Informatique, Hermes
Science, In press. 2007.

II.5.4 Book Chapters

[B1] A. Zemirline, P. Ballet, L. Marcé, P. Amar, P. Ballet, G. Bernot, F. Delaplace, Jean-Louis
Giavitto, Olivier Michel, J.-M. Delosme, R. Incitti, P. Bourgine, C. Godin, F. Képès,
P. Tracqui, V. Noris, J. Guespin, M. Demarty, and C. Ripoll. Modelling and Simulation
of biological processes in the context of genomics, chapter “Cellular-automata, Reaction-
Diffusion and Multiagents Systems for Artificial Cell Modelling”. Hermes, July 2002. Also
published as a tutorial chapter of the proceedings of the workshop “Modélisation et simula-
tion de processus biologiques dans le contexte de la génomique”, 17-21 mars 2002, Autran,
France.

[B2] Jean-Louis Giavitto, Christophe Godin, Olivier Michel, and Przemyslaw Prusinkiewicz.
Modelling and Simulation of biological processes in the context of genomics, chapter “Com-
putational Models for Integrative and Developmental Biology”. Hermes, July 2002. Also
republished as an high-level course in the proceedings of the Dieppe spring school on “Mod-
elling and simulation of biological processes in the context of genomics”, 12-17 may 2003,
Dieppes, France.

[B3] Jean-Louis Giavitto and Olivier Michel. Molecular Computational Models: Unconven-
tional Approaches, chapter Modeling Developmental Processes in MGS, pages 1–46. Idea
Group, 2004.

[B4] Olivier Michel and Florent Jacquemard. An Analysis of a Public-Key Protocol with
Membranes, pages 281–300. Natural Computing Series. Springer Verlag, 2005.

II.5.5 Publications in International Conferences (with review)

[IC1] Olivier Michel and Jean-Louis Giavitto. Design and implementation of a declarative data-
parallel language. In post-ICLP’94 workshop W6 on Parallel and Data Parallel Execution of
Logic Programs, S. Margherita Liguria, Italy, 17June 1994. Uppsala University, Computing
Science Department.

http://www.springeronline.com/3-540-27884-2
http://www.springeronline.com/3-540-27884-2
http://jfla.inria.fr/2005/actes/actes-jfla-2005.tgz
http://jfla.inria.fr/2005/actes/actes-jfla-2005.tgz
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[IC2] Olivier Michel, Jean-Louis Giavitto, and Jean-Paul Sansonnet. A data-parallel declara-
tive language for the simulation of large dynamical systems and its compilation. In Institute
for System Programming of the Russian Ac. of Sci., editor, SMS-TPE’94: Software for Mul-
tiprocessors and Supercomputers, Moscow, 21–23 September 1994. Office of Naval Research
USA & Russian Basic Research Foundation.

[IC3] Jean-Louis Giavitto, Olivier Michel, and Jean-Paul Sansonnet. Group based fields. In
I. Takayasu, R. H. Jr. Halstead, and C. Queinnec, editors, Parallel Symbolic Languages and
Systems (International Workshop PSLS’95), volume 1068 of Lecture Notes in Computer
Sciences, pages 209–215, Beaune (France), 2–4 October 1995. Springer-Verlag.

[IC4] Olivier Michel, Dominique De Vito, and Jean-Paul Sansonnet. 81/2: data-parallelism
and data-flow. In E. Ashcroft, editor, Intensional Programming II: Proc. of the 9th Int.
Symp. on Lucid and Intensional Programming. World Scientific, May 1996.

[IC5] Olivier Michel. Introducing dynamicity in the data-parallel language 81/2. In Luc Bougé,
Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors, EuroPar’96 Parallel Process-
ing, volume 1123 of Lecture Notes in Computer Sciences, pages 678–686. Springer-Verlag,
August 1996.

[IC6] Olivier Michel. A straightforward translation of D0L Systems in the declarative data-
parallel language 81/2. In Luc Bougé, Pierre Fraigniaud, Anne Mignotte, and Yves Robert,
editors, EuroPar’96 Parallel Processing, volume 1123 of Lecture Notes in Computer Sci-
ences, pages 714–718. Springer-Verlag, August 1996.

[IC7] Dominique De Vito and Olivier Michel. Effective SIMD code generation for the high-level
declarative data-parallel language 81/2. In Euro Micro ’96, pages 114–119. IEEE Computer
Society, 2–5 September 1996.

[IC8] Jean-Louis Giavitto, Dominique De Vito, and Olivier Michel. Semantics and compilation
of recursive sequential streams in 81/2. In H. Glaser and H. Kuchen, editors, Ninth Inter-
national Symposium on Programming Languages, Implementations, Logics, and Programs
(PLILP’97), volume 1292, pages 207–223, Southampton, 3-5 September 1997.

[IC9] Jean-Louis Giavitto, Olivier Michel, and Franck Delaplace. Declarative simulation of
dynamical systems : the 81/2 programming language and its application to the simulation
of genetic networks. In Proceedings of IPCAT 2001 (Workshop on Information Processing
in Cells and Tissues), August 2001.

[IC10] Jean-Louis Giavitto and Olivier Michel. MGS: Implementing a unified view on four biolo-
gically inspired computational models. In Pre-proceedings of WMC-CdeA 2001 (Workshop
on Membrane Computing, Curtea de Arges). Research Report 17/01 of the Universitat
Rivira I Virgili, Tarragona, Spain, August 2001.

[IC11] Jean-Louis Giavitto and Olivier Michel. MGS: a rule-based programming language for
complex objects and collections. In Mark van den Brand and Rakesh Verma, editors,
Electronic Notes in Theoretical Computer Science, volume 59. Elsevier Science Publishers,
2001.

[IC12] Jean-Louis Giavitto and Olivier Michel. Declarative definition of group indexed data
structures and approximation of their domains. In Proceedings of the 3nd Interna-
tional ACM SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP-01). ACM Press, September 2001.
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[IC13] Jean-Louis Giavitto and Olivier Michel. Accretive rules in Cayley P systems. In Pre-
proceedings of WMC-CdeA 2002 (Workshop on Membrane Computing, Curtea de Arges).
MolCoNet european network 2002-1, August 2002.

[IC14] Jean-Louis Giavitto and Olivier Michel. Pattern-matching and Rewriting Rules for Group
Indexed Data Structures In ACM - Rule’02, Pittsburgh (USA), October 2002.

[IC15] Jean-Louis Giavitto and Olivier Michel. Data Structure as Topological Spaces. In Pro-
ceedings of the 3nd International Conference on Unconventional Models of Computation
UMC02. October 2002, Himeji, Japan. LNCS 2509.

[IC16] Jean-Louis Giavitto, Olivier Michel, and Julien Cohen. Accretive rules in cayley P
systems. In Gh. Paun, G. Rozenberg, A. Salomaa, and C. Zandron, editors, Membrane
Computing 2002, pages 319–338. Springer, 2003. LNCS 2597.

[IC17] Olivier Michel and Florent Jacquemard. An analysis of the needham-schroeder public-
key protocol with MGS. In G. Mauri, G. Paun, and C Zandron, editors, Preproceedings of
the Fifth workshop on Membrane Computing (WMC5), pages 295–315. EC MolConNet -
Universita di Milano-Bicocca, June 2004.

[IC18] Antoine Spicher, Olivier Michel, and Jean-Louis Giavitto. A topological framework for
the specification and the simulation of discrete dynamical systems. In Sixth International
conference on Cellular Automata for Research and Industry (ACRI’04), volume 3305 of
Lecture Notes in Computer Sciences, pages 238–247, LNCS, Amsterdam, October 2004.

[IC19] Antoine Spicher and Olivier Michel. Declarative modeling of a neurulation-like process.
In Sixth International Workshop on Information Processing in Cells and Tissues, 2005.

[IC20] Antoine Spicher and Olivier Michel. Using rewriting techniques in the simulation of
dynamical systems: Application to the modeling of sperm crawling. In Fifth International
Conference on Computational Science (ICCS’05), volume I, pages 820–827, 2005.

[IC21] Jean-Louis Giavitto, Olivier Michel, and Antoine Spicher. Computation in space and
space in computation. In J.-P Banâtre, P. Fradet, Jean-Louis Giavitto, and Olivier
Michel, editors, Unconventional Programming Paradigms (UPP’04), number LNCS 3566,
pages 137–152. ERCIM– NSF, Springer Verlag, 2005.

[IC22] Antoine Spicher, Olivier Michel, and Jean-Louis Giavitto. Algorithmic self-assembly by
accretion and by carving in MGS. In 7th International Conference on Artificial Evolution,
2005.

II.5.6 Publications in National Conferences (with review)

[C1] Jean-Louis Giavitto, Jean-Paul Sansonnet, and Olivier Michel. Inférer rapidement la
géometrie des collections. In Workshop on Static Analysis, Bordeaux, 1992.

[C2] Jean-Louis Giavitto and Olivier Michel. Calcul distribué de champs de données. In
P. Weis, editor, Journées Francophones des Langages Applicatifs (JFLA99), Avoriaz,
February 1999. INRIA.

[C3] Jean-Louis Giavitto and Olivier Michel. Un cadre pour la définition récursive de données.
In C. Dubois, editor, Journées Francophones des Langages Applicatifs (JFLA00), Mont
Saint-Michel, February 2000. INRIA.
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[C4] Olivier Michel, Jean-Louis Giavitto, and Julien Cohen. MGS : transformer des collections
complexes pour la simulation en biologie. In L. Rideau, editor, Journées Francophones des
Langages Applicatifs (JFLA02), Anglet (France), January 2002. INRIA.

[C5] Antoine Spicher and Olivier Michel. Stratégie d’application stochastique de règles de
réécritures dans le langage MGS. In Journées Francophones des Langages Applicatifs.
INRIA, 2006.

[C6] Antoine Spicher and Olivier Michel. Manipulations de structures topologiques dans un
langage déclaratif pour la simulation. In 11ème Journées du GT ”Animation et Simulation”
(GTAS’2004), Reims, juin 2004. AFIG et LERI, Université de Reims.

II.5.7 Research Reports and Contracts Reports

[R1] Olivier Michel. Design and implementation of 81/2, a declarative data-parallel language.
Technical Report 1012, Laboratoire de Recherche en Informatique, December 1995.

[R2] Olivier Michel and Jean-Louis Giavitto. Amalgams: Names and name capture in a
declarative framework. Technical Report 32, LaMI – Université d’Évry Val d’Essonne,
January 1998. also avalaible as LRI Research-Report RR-1159.

[R3] Jean-Louis Giavitto and Olivier Michel. MGS: a programming language for the transfor-
mations of topological collections. Technical Report 61-2001, LaMI – Université d’Évry
Val d’Essonne, May 2001.

[R4] Jean-Louis Giavitto and Olivier Michel. The topological structures of membrane com-
puting. Technical Report 70-2001, LaMI – Université d’Évry Val d’Essonne, November
2001.

[R5] Jean-Louis Giavitto, Christophe Godin, Olivier Michel, and Przemyslaw Prusinkiewicz.
Computational models for integrative and developmental biology. Technical Report 72-
2002, LaMI – Université d’Évry Val d’Essonne, March 2002. draft version of [GGMP02b].

[R6] Jean-Louis Giavitto, Olivier Michel, and Julien Cohen. Pattern-matching and rewriting
rules for group indexed data structures. Technical Report 76-2002, LaMI – Université
d’Évry Val d’Essonne, June 2002.

[R7] Olivier Michel, Florent Jacquemard, and Jean-Louis Giavitto. Three variations on the
analysis of the needham-schroeder public-key protocol with MGS. Technical Report LaMI-
98-2004, LaMI – Université d’Évry - CNRS, May 2004. 25 p.

[R8] Antoine Spicher, Olivier Michel, and Jean-Louis Giavitto. A topological framework for
the specification and the simulation of discrete dynamical systems. Technical Report LaMI-
99-2004, LaMI, May 2004.

[R9] Jean-Louis Giavitto, Antoine Spicher and Olivier Michel. Topological Rewriting and the
Geometrization of Programming. Technical Report IBISC-XX-2007, IBISC, September
2007.
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II.5.8 Other Publications

[O1] Olivier Michel. Une plateforme logicielle pour l’expérimentation d’algorithmes de sim-
ulation parallèle. application à Time-Warp, September 1992. Rapport de stage du DEA
MISI de l’UPMC Paris VI.

[O2] Olivier Michel and Dominique De Vito. 8,5 un environnement de développement pour
le langage 81/2. In Journées du GDR Programmation, Lille, 22–23 September 1994. GDR
Programmation du CNRS.

[O3] Olivier Michel and Jean-Louis Giavitto. Typer une collection par la présentation d’un
groupe. In Journées du GDR Programmation, Grenoble, 23–24 November 1995. GDR
Programmation du CNRS.

[O4] Olivier Michel. The 81/2 reference manual. December 1995.

[O5] Jean-Paul Sansonnet, Jean-Louis Giavitto, Olivier Michel, Abderhamane Mahiout, and
Dominique De Vito. Rapport d’activité du thème 81/2. rapport final d’activité à destination
du G.D.R. de Programmation, (10p.), January 1996.

[O6] Jean-Paul Sansonnet, Jean-Louis Giavitto, Olivier Michel, Abderhamne Mahiout, and
Dominique De Vito. Rapport d’activité du thème 81/2– 81/2: Modèles et outils pour les
grandes simulations. rapport interne (45p.), January 1996.

[O7] Olivier Michel. Les amalgames : un mécanisme pour la structuration et la construction
incrémentielle de programmes déclaratifs. In Journées du GDR Programmation, Orléans,
20–22 September 1996. GDR Programmation du CNRS.

[O8] Jean-Louis Giavitto, Olivier Michel, and Julien Cohen. Une présentation du langage
MGS. LaMI, université d’Évry, May 2002. (tutoriel).

[O9] Olivier Michel, Jean-Pierre Banâtre, Pascal Fradet, and Jean-Louis Giavitto. The Uncon-
ventional Programming Paradigms home page (UPP04). http://upp.lami.univ-evry.

fr, 2004. International workshop for ”Challenges, Visions and Research Issues for New
Programming Paradigms”, 15 - 17 September 2004, Mont Saint-Michel, France.

[O10] Antoine Spicher and Olivier Michel. Integration and pattern-matching of topological
structures in a functional language. In International Workshop on Implementation and
Application of Functional Languages (IFL04), Lübeck, September 2004.

[O11] Olivier Michel and Jean-Louis Giavitto. Incremental extension of a domain specific
language interpreter. In International Workshop on Implementation and Application of
Functional Languages (IFL07), Freiburg, Germany, September 2007. The draft proceedings
will appear as a technical report of the Computing Laboratory of the University of Kent.

II.5.9 Theses

[T1] Olivier Michel. Représentations dynamiques de l’espace dans un langage déclaratif de
simulation. Ph.D. thesis, Université de Paris-Sud, centre d’Orsay, December 1996. N◦4596,
(in French).

http://upp.lami.univ-evry.fr
http://upp.lami.univ-evry.fr
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II.5.10 Masters and Ph.D. Theses under my Supervision

[MT1] Jean-Vincent Segard. Modèles de morphogénèse biologique dans un langage déclaratif de
simulation. Masters thesis, D.E.A. de Sciences Cognitives du L.I.M.S.I, 1997.

[MT2] Sami Outerbah. Introduction d’une notion de référence distante dans un formalisme de
capture de noms et implémentation d’une plate-forme d’expérimentation. Masters thesis,
DEA Informatique d’Évry, 1998.

[MT3] Emmanuel Delsinne. Structures de données indexées par un groupe, isomorphismes de
gbf abéliens et extensions aux structures automatiques. Masters thesis, E.N.S. Cachan et
Université de Rennes-I, 2002.

[MT4] Valérie Larue. Structures de données indexées par un groupe : représentation graphique
et extension au cas non abélien. Masters thesis, DEA Informatique d’Évry, 2002.

[MT5] Antoine Spicher. Typage et compilation de filtrage de chemins dans des collections
topologiques. Masters thesis, DEA AMIB Université d’Évry, 2003.

[MT6] Fabien Thonnérieux. Réalisation d’une interface graphique pour le traitement des sorties
du programme MGS. Masters thesis, IIE, 2003.

[MT7] Julien Cohen. Intégration des collections topologiques et des transformations dans un lan-
gage fonctionnel. Ph.D. thesis, Université d’Évry, 2004.

[MT8] Nicolas Mann. Hyperstructures et modélisation de chimie artificielle dans le langage MGS.
Masters thesis, DEA AMIB Université d’Évry, 2004.

[MT9] Damien Boussié. Simulation en MGS du déplacement du spermatozöıde du nématode Ascaris
Suum. Masters thesis, DEA AMIB Université d’Évry, 2004.

[MT10] Lionel Perret. Intégration des types de données algébriques dans MGS. Masters thesis,
École Centrale Paris, 2005.

[MT11] Yann Jullian. Conception et développement d’un éditeur graphique de filtre pour MGS.
Masters thesis, IIE, 2005.

[MT12] Fabien Gaubert. Simulation stochastique et modélisation de chimie artificielle dans le
langage MGS. Masters thesis, DEA AMIB Université d’Évry, 2005.

[MT13] Antoine Spicher. Transformation de collections topologiques de dimension arbitraires. Ap-
plication à la modélisation de systèmes dynamiques. Ph.D. thesis, Université d’Évry, 2006.

[MT14] Christoph Kaleta. Outils de visualisation pour la simulation de systèmes dynamiques à
structure dynamique. Masters thesis, Master Informatique, Universität Jena & Université
d’Évry, 2007.
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III.1 Introduction: Why Designing New Programming Languages

Every now and then we hear the funeral oration of the programming languages: everything has been
said on the subject, the only evolutions being either at a cosmetic level or at the implementation
level. Every new proposition (and there are a lot of them, see [Leo] for example) is in one of the main
family (imperative, functional, logic) which have been thoroughly studied. It might appear that all
these propositions only differ by the syntactic sugar wrapping well-known fundamental mechanisms
already described in [Lan66, Str67, Bac78] and in some few other old landmark papers.

This situation can be founded on the historical analysis lead by P. Landin in [Lan66]. P. Landin
splits a programming language into two independent parts:

• the part devoted to the data and their primitive operations supported by the language, and

• the part devoted to the expression of the functional relations amongst them and the way
of expressing things in terms of other things (independently of the precise nature of these
things).

An example of the latter is the notion of identifier and the rule about the contexts in which a name
is defined, declared or used. Another example are the control structures used to organize the set of
computations that must be performed to achieve a given task. A good choice of these features can
make a language flexible, concise, expressive, adaptable, reusable, general. The appropriate choice

29
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of data and primitive yields an “API”1, a “problem-oriented”, a “domain-specific” or a “dedicated”
language.

If we follow this point of view, research in programming languages would be reduced to the
development of specialized libraries or to the refinement of techniques allowing only more efficient
implementation of mechanisms already described by our visionary ancestors.

Since my scientific work was mainly concerned with the design and the development of new data
and control structures (even if it is with the goal to provide a programming language well suited
to some application domain), nobody should be surprised that I do not share this closed point of
view. Indeed, if I agree with L. Wittgenstein when he says that “[. . . limits of my language mean
the limits of my world [. . . ]” [Wit21, 5.6]2 I strongly disagree with “Whereof one cannot speak,
thereof one must be silent [...]” [Wit21, 85]3. On the contrary, I believe that facing new needs, and
there are plenty of new needs!, we have to invent new means of expression, new unconventional
programming languages. We should not twist over and over already existing languages that have
proved to fail in that purpose. From the confrontation of many alternative proposals will come the
next programming languages.

III.1.1 Unconventional Programming Languages

Unconventional approaches of programming have long been developed in various niches and consti-
tute a reservoir of alternative avenues to face the needs of present and future computation-intensive
applications and the new computing media (see Section VI.3). The field is experiencing a renewed
period of growth with the creation of journals like the International Journal of Unconventional Com-
puting [IJU05] or Natural Computation [Nat02] and series of general conferences and workshops
like [UMC98, Com04, BFGM05, Uni05].

Unconventional programming languages provide new abstractions and new notations or develop
new ways of interacting with programs. They are implemented by embedding new and sophisticated
data structures in a classical programing model (API), by extending an existing language with
new constructs (to handle concurrency, exceptions, open environments. . . ), by conceiving new
software life cycles and program execution (aspect weaving, dynamic linking, run-time compilation,
staged compilation, organic computing [ORG04]) or by relying on an entire new paradigm to
specify computations. They are inspired by theoretical considerations (e.g., topological, algebraic
or logical foundations), driven by the domain at hand (domain-specific languages like PostScript,
LATEX, HTML, XML, musical notation, animation, signal processing, embedded systems, etc.) or
by metaphors taken from various area: quantum theory4, molecular biology5, cell biology and
physiology6, ethology and social science7, and more generally, problem solving from nature8.

1An “Application Programming Interface” is a library making available in a language an abstraction of some
objects and functions operating on these objects.

2The original quote being “[...] Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt [...]”. The
common English translation is somehow misleading since the notion of “limit” does not account for something that
would be after that limit, while the German word “Grenzen” means literally “border” (as between two countries)
which accounts for some (unknown?) land after the considered border.

3The original quote being “[...] Wovon man nicht sprechen kann, darüber muß man schweigen [...]”.
4See the list of numerous conferences of the domain at http://qserver.usc.edu/confs/
5See the DNA Computing conference series [DNA95] and for other approaches [BFL01, Ghe05].
6See the Information Processing In Cells and Tissues (IPCAT) conference series [IPC95] and the WMC workshop

on membrane computing series [PSY02].
7See the Simulation of Adaptive Behaviour (SAAB) conference series [SAB90].
8See the Parallel Problems Solving from Nature (PPSN) conference series [PPS90] and the journal “Natural

Computing” [Nat02].

http://qserver.usc.edu/confs/


III.1 - Introduction: Why Designing New Programming Languages 31

III.1.2 81/2 as an Unconventional Programming Language

The 81/2 project has been initially motivated by the programming and the exploitation of data-
parallel architectures for the simulation of massive dynamical systems. The concepts and notations
offered by the language try to mimic as closely as possible the basic objects of dynamical system
theory: state, trajectory, definition by equations.

The representation of a state structured by a uniform spatial organization has led to the develop-
ment of the notion of Group Based data Field (GBF), a notion investigated in the papers [GMS95,
GM01a, GM02b, GMC02a].

The notion of a trajectory, that is, an infinite temporal sequence of values, has been captured by
the notion of streams. The implementation of stream is sketched in the papers [GDVM97, Mic96d,
Gia99] but we do not elaborate too much, as this domain is not central in my work.

Programming by solving equations, not really any kind of equations but recursive definitions,
leads to a declarative programming style and is developed in the papers [Gia92, Mic96d, GDVM97,
MG98, GM01a, Coh04b, Spi06b].

III.1.3 MGS as an Unconventional Programming Language

Initiated in the 81/2 project, the idea to use spatial relationships to structure the computer rep-
resentation of a state, has been considerably deepened in the MGS project up to the point where
a data structure is understood as a field on a topological space. This approach is investigated in
papers [GMS95, GMC02b, GM02b, GMC02a, GM01a].

The resulting language is based on basic objects introduced in combinatorial topology: cellular
complexes and chains. These objects are embedded in a functional language and a new construction
for the rule-based specification of functions, called transformation, is introduced to facilitate their
management.

Transformations together with the unified topological view on data structure, enable the unifi-
cation of several bio-inspired programming models. This point is developed in Section III.2.

Transformations are a kind of non-standard rewriting systems [DJ90]: they are non-standard
because they apply beyond tree-shaped structures (terms) to more general data organizations. We
want to stress that we are not particularly interested in theoretical properties usually investigated
in rewriting systems like confluence or normal forms. We are mainly interested by the rewriting ap-
proach in biological simulations, see [GMM04] and Section IV.7.1. Lindenmayer systems [PLH+90]
give a beautiful example of the use of rewriting systems in modelling and simulation.

As in the 81/2 project, the application domain motivating MGS is still the modelling and simu-
lation of dynamical systems, but with a focus on dynamical systems encountered in biology. This
kind of system often presents a dynamical structure, especially in morphogenesis. The related
notions are exposed in Chapter IV.

III.1.4 Plan of the Chapter

In the next section, we sketch four bio-inspired paradigms that have been influential in the design of
MGS. These paradigm can be unified for programming purposes, using a topological point of view:
a data structure is a field on a topological space. This viewpoint is sketched in Section III.3. Both
81/2 and MGS language enjoy a declarative flavour. This notion is presented in Section III.4. The
last section of this chapter, Section III.5, gives a short introduction to each papers of this chapter.
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III.2 Bio-Inspired Programming Languages: the Roots of MGS

One of the initial motivations of the MGS project is to unify different computation models9 initially
inspired by biological processes. From the topological point of view taken in the MGS project,
these languages are all based upon a substitution mechanism on a data structure for a specific
space structure. These different computation models are described in the next paragraphs.

Gamma. Gamma proposes a formalism with no notion of sequentiality. Using multi-set
rewriting as the sole control structure, a program can be described following a chemical metaphor
where the reactions correspond to rewriting rules and where the chemical solution is a multi-
set. The chemical metaphor allows a simple and direct description of parallel processes and non-
determinism. Extensions have been added to the initial formalism: among them, we can name
some structuration that was missing in the original formalism, a notion of neighborhood rela-
tion between the data. Nevertheless, the multi-set structure remains essential (it is actually a
structured multi-sets), the neighborhood being encoded using an addressing mechanism and type
definitions [BLM86, BFL01]. Recently, the handling of higher-order chemical solutions where pro-
grams can now be molecules [BFR06a] has been investigated and such features have been proved
very useful to specify autonomic systems [BRF04, BFR06b].

P systems. The P systems are based on the metaphor of the behaviour of biological cells to
organize a set of chemical computations. P systems correspond to nested multi-sets, or compart-
ments, hosting various elementary objects. Each compartment is characterized by a set of localized
rewriting rules specifying how the objects are interacting. Various additional operators allow the
transport of objects between compartments and the creation and destruction of compartments.
Such systems are parallel and non deterministic. P systems are powerful mechanisms to define
new classes of formal languages and the study of P systems was initially focused on calculabil-
ity problems. Their use has recently shifted to the modelling and simulation of real biological
processes [Pău00, Pău01a].

L-systems. Lindenmayer’s systems have been initially proposed in 1968 by the biologist A.
Lindenmayer to give a formal description of the cellular development of filamentous plants [Lin68].
The formalism developed is very powerful: the system is represented by a list of strings, each
string meaning a (sub-)part of the organism and contiguity in the string means neighborhood in
the (sub-)parts. The evolution of the system is captured by the parallel rewriting rules selecting
a sub-string to be replaced by a new string. This framework has been developed following two
different directions. First, the L-systems give a mean to produce words and have been used to
define a formal language hierarchy (in a similar way to Chomsky’s hierarchy). The generative
approach of L-systems has also met a huge success in the modelling and simulation of growth and
developmental processes, especially in botany [PLH+90, RS92, PRL06, SGM+06, PEL+07].

Cellular Automata. Cellular automata have been introduced by S. Ulam [Ula62] and J.
Von Neumann [VN66] to compare the notion of living organism with the notion of machine with a
focus on self-reproduction. A cellular automaton can be described as a predefined network of sites

9We are interested in following the programming language point of view: to each of these computation model
corresponds a class of programming languages and we are not interested in the study of the complexity of the
algorithms written in these computation models but to the expressiveness brought by the constructions only found
in the languages related to that computation model.



III.3 - Data Structures as Topological Spaces 33

(for example a NEWS neighborhood), each site having a state taken from a finite set. At a given
instant t+1, the state of each site is updated following a predefined evolution rule that combines its
state together with the state of the neighboring sites at instant t. The behaviour of the automaton
corresponds to the update, in discrete steps, of the state of the sites.

A Unifying Point of View

One Observation. All four examples of computation models that we have briefly sketched
have been inspired by chemical or biological processes. They lead to fruitful formal developments
but have also been used as foundations for unconventional programming languages that have been
then widely used in the modelling and simulation of natural and artificial processes.

Despite their differences (they have been created on a 50 years time scale with very different
motivations), we can observe that those four paradigms have the common feature of expressing
control as evolution rules that can be described as specific kind of rewriting. By rewriting, we mean
here the mechanism consisting in the substitution of a part of an object by another in that same
object.

Multi-sets and lists (strings) are monöıdal data structures [Man01, GM01b] and their associated
rewriting techniques are well-known: it is rewriting modulo associativity (for the lists) and modulo
associativity and commutativity (for the multi-sets).

It is not so common to consider cellular automata as a form of array rewriting, essentially
because there is no free inductive definition of the notion of array (an array is not a term). Moreover,
rewriting only concerns one site (even if the right-hand side of the rule refers to the neighbors of that
site). Nevertheless, some variations on that model, like lattice-gas automata [TN87], are indeed
specifying the rewriting of a set of neighboring sites.

The Topological Approach. It is quite tempting to embrace all these computation models
in the same framework allowing to define them as specific cases of a more general substitution
mechanism on parts of a data structure. For that, we need to have a general notion of object and
part, to be able to generalize multi-sets, words, arrays. . .

The MGS project proposes to rely on notions from algebraic topology to define that framework.
The idea is to see a chemical solution, a set of nested membranes, a list or a lattice as an abstract
space where computation takes place. We call that space a topological collection. The substitution
mechanisms and the rules appearing in Gamma, the P systems, the L-systems or the cellular
automata will be seen as transformations of that space.

It is still too early to claim that the theoretical framework that we are defining in our work
to formalize the notions of topological collections and of transformations are well suited to the
formal study of these different computation mechanisms. Nevertheless, the examples developed
throughout our work show that these notions offer, at least at the syntactic level and as far as
programming is concerned, a uniform and expressive framework that allows the simple integration
of these various paradigms in the same language.

III.3 Data Structures as Topological Spaces

Our starting point is the following intuitive meaning of a data structure: a data structure s is an
organization o performed on a data set D. It is customary to consider the pair s = (o,D) and to say
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that s is a structure o of D (for instance a list of int, an array of float, etc.) and to use set theoretic
constructions to specify o. However, here, we want to stress the structure o as a set of places or
positions, independently of their occupation by elements of D [BLL97, Chap. 1]. Following this
perspective, a data structure in [Gia00b] is a function from a set of positions to a set of values: this
is the point of view promoted by the data fields approach. Data fields have been mainly focused on
arrays and therefore on Z

n as the set of positions [HL93]. One of our motivations was to define in
the same framework the set of positions representing a tree, an array or a multi-set independently
of the set of values.

III.3.1 Data Structure and Neighborhood

One interest of the data field approach is to give the set of places a structure. To define a data
organization, we adopt a topological point of view: a data structure can be seen as a field over
a space, the set of positions between which the computation moves. This topological approach
relies on the notion of neighborhood to specify a move from one position to one of its neighbor.
Although speaking of neighborhood in a data structure is not usual, the relative accessibility from
one element to another is a key point considered in a data structure definition: in a simply linked
list, the elements are accessed linearly (the second after the first, the third after the second, etc.),
from a node in a tree, we can access the sons, two usual neighborhood are considered for arrays,
“Von Neumann” or “Moore” neighborhoods, etc.

III.3.2 Elementary Shifts and Paths

This accessibility relation defines a logical neighborhood. The concept of logical neighborhood in
a data structure is not only an abstraction perceived by the programmer and vanishing at the
execution, but it does have an actual meaning for the computation. Very often the computation
indeed complies with the logical neighborhood of the data elements. For example, the recursive
definition of the fold function on lists propagates an action to be performed along the list. More
generally, recursive computations on data structures respect so often the logical neighborhood that
standard higher-order functions (e.g., primitive recursion) can be automatically defined from the
data structure organization (think about catamorphisms and others polytypic functions on inductive
types [MFP91]).

These considerations lead to the idea of path: in a sequential computation, elements of the data
structure are visited one after the other. We assume that if element e′ is visited just after element
e in a data structure s, then e′ must be a neighbor of e. The succession of visited elements makes a
path in s. The idea of sequential path can be extended to include parallel modes of computations:
multi-dimensional paths must be used instead of one-dimensional paths [GJ92].

III.3.3 Paths and Computations

We can summarize our topological approach: we assume that a computation induces a path in a
space defined by the neighborhood relationship between the elements of a data structure. At each
shift, some elementary computation is done. Each topological operation used to build a path can
then be turned into a new control structure that composes program fragments.

This schema is presented in an imperative setting but can be easily rephrased into the declarative
programming paradigm (see the next section) by just specifying the linking of computational actions
with path specifications. When a path specification matches an actual path in a data structure,
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then the corresponding action is triggered. It is very natural to require that the results of the
computational actions be local : the corresponding data structure transformation is restricted to
the value of the elements involved in the path and eventually to the organization of the path
elements and their neighborhood relationships. Such transformation is qualified as local.

This declarative schema induces a rule-oriented style of programming: a rule defines a local
transformation by specifying the path to be matched and the corresponding action. A program
run consists in the transformation of a whole data structure by the simultaneous application of
local transformations to non-intersecting paths. Obviously, such global transformation can then be
iterated.

III.4 The Declarative Framework

Whatever application domain and programming paradigm is considered, the work of the last 40
years demonstrate the requirement to have a clear (and the simplest possible) mathematical view-
point on a program to allow reasoning, validation, proofs and tests of properties on those programs.
This statement has been advocated again and again, see for example [TE68, Bac78].

Declarative programming focuses on what should be computed instead of how it must be done.
Thus, a declarative program is an executable specification not burdened by the implementation
details. Its objects and constructions are close to the mathematical standards which enable an
easier mathematical reasoning on programs. Generally, declarative programming languages offer,
through appropriate notations and abstractions, expressive power focused on, and usually restricted
to, a particular problem domain.

This statement can be made more specific, in parallel with the statement of [Eng90] on the
importance of algebra in programming: in the declarative paradigm, programs have always the
form “find an object (a value) which has this or that property”. In this approach, algebra is central.
The algebraic tools enter in two ways: first in the specification of what an admissible program is,
and second in specifying the search space for the solution. Admissible programs take the form of
equations (for the unknown object to be computed), using an adequate supply of operations to write
out the equations. The search space of the solution(s) is chosen as an algebraic structure, typically
an extension of the structure in which the parameters that enter the program (the equations) are
elements.

A classical example is functional programming [Hug89] where the programs are recursive def-
initions of functions (a definition is an equation of form f = ϕ(. . . ) where f is the unknown10)
and where the solution space is an extension of the fundamental domain Λ characterized by
Λ = Λ → Λ [GS90] (or, using an alternative formalism, a Cartesian closed category [AL91]).

III.4.1 The Declarative Handling of Time

81/2 is a declarative language where a program is a static set of equations on the stream data
type thus allowing the handling of time. Streams are infinite sequences of values and are found in
LUCID [AW77], one of the first programming language defining equations between streams. 81/2

streams are very different from those of LUCID: 81/2 streams are (timed) sequences of values that
change instantaneously at some given instant and whose value is, between any two instants, the
value taken by the stream at the previous change.

10In a recursive definition, the unknown may appear in the right hand side, like in f = ϕ(. . . , f, . . . ).



36 Chapter III - Declarative Unconventional Languages

Time in 81/2 corresponds to a logical time related to the semantics of the application as in any
discrete-event simulation. The set of equations in 81/2 states what each stream is equal to: the
definition C = A + B means the (current) value of stream C is always equal to the sum of the
values of stream A and B. Here, always means “at any time instant”. The changes of values is
assumed to be propagated instantaneously: when A (or B) changes, so does C at the same logical
instant.

III.4.2 The Declarative Incremental Construction of Programs

The set of equations in an 81/2 program has a static structure. To lift this restriction, amalgams
have been defined as a formalism allowing to define open sets of equations involving free references.
Such sets are called systems and two operators (merge and restriction) allow to close the systems
with additional definitions. The data-flow point of view on amalgams is a higher-order dynamic
completion of incomplete graphs (with pending edges) with operators similar to the regular parallel
and sequential operators.

In addition to the papers [Mic96b, Mic96c, MG98], amalgams have also been presented in [Mic96c].
A pure calculus of amalgams (i.e., an algebra considering only systems, merge and restriction) has
been investigated in [MG98] using an operational semantics. A distributed implementation (on a
network of workstations) embedded in the Ocaml language has been implemented [Out98].

III.4.3 The Intensional Handling of Topological Collections

In the MGS project, the objects are topological collections (they are formalized in [GM02c, Spi06b]),
but we do not define them by recursive equations. Nevertheless, we define functions to manipulate
those objects, the simplest possible way, by local rules that are iterated over the data structure.

Application Strategies. The way the rules are iterated is called the rule application strategy.
Several application strategies have been developed in MGS, ranging from the maximal parallel appli-
cation strategy (similar to the application strategy used in L-systems) to the stochastic application
strategy. When a topological collection represents the state of a dynamical system, the evolution
function can be specified by a transformation and the application strategy captures the handling
of time (synchronous or asynchronous).

Executing an MGS program corresponds most of the time to iterate a transformation starting
from an initial topological collection. Iterating forever computes an object that can be expressed as
the solution of a fixed-point equation but considering the elementary steps of the iteration allows
us to have a finer control on the evolution of this object.

Intensional vs. Extensional Expressions. For the programmer, the application strategy turns
transparently a set of local rules into a global computation over the entire data structure. Moreover,
the local rules do not explicitly denote the elements involved: these elements are selected through
pattern-matching. So, for the programmer, a transformation handles a topological collection as
a whole. Operations that handle the data as a whole are intensional expressions, see [OA95,
AFJW95]. On the opposite, operations that explicitly enumerate the elements of a data structure
are qualified as extensional.

An example will clarify this idea: iterating a computation over a collection of values can be done
using a for loop. The body of the for construct must explicitly denotes the current element using
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a pointer or an index that gives access to it. A for-loop is an extensional control structure. The
iteration can also be done using a higher-order function, a map parameterized by the computation to
be applied in the form of a function. Accessing the element is completely hidden in the map which
is an intensional operation. Moreover, map can be a first-class object (in a functional language),
which is definitively not the case of a control structure.

The intensional style is important because it is more concise and makes possible to formalize
the data computations as an algebra. Indeed, there is an algebra of intensional operations on lists,
Bird-Mertens algebra [Bir87, Bac89, Gib94], which is not the case for imperative loops.

For the programmer, handling a data structure as a whole presents several advantages:

• global operations on the data structures may hide optimized implementation (this is for
example the key of the abstract expression of the data parallelism, see [HL93]);

• managing a data structure without referring to the data elements leads to the concise expres-
sion of the computation;

• the automatic analysis of the programs are simplified because the compiler is not required to
“reconstruct” the semantic meaning of the computations from the description of the low-level
operations;

• the expression of the algorithms is more abstract and the algebraic style favors an abstract
reasoning unifying the various computation patterns appearing in different programs.

Algebraic Topology. The declarative style of transformation is well illustrated by a recent
achievement done in A. Spicher’s Ph.D. thesis [Spi06b]. Transformations are used to manipulate
topological collections, that is chains in the language of algebraic topology11. Amongst the math-
ematical functions that operates on a chain to return a chain, some are of special interest: those
that preserve the chain structure. These chains homomorphisms are called topological cochains.
And topological cochains can be linked to some notions developed in the differential calculus.

Operators like the boundary operator or the exterior derivative, but also coboundary, gradient,
divergence, curl and Laplacian can be specified as transformations. These transformations give a
discrete counterpart of the differential operators [Hir03, DKT06] that appear in the handling of
continuous fields. This analogy reinforces the understanding of data structures (here represented
by topological collections) as “physical” fields defined on exotic spaces.

For the programmer these differential operators represent fundamental ways of iterating over
topological collections and we want to develop an algebra analogous to the Bird-Merteens algebra
encompassing the different kind of data structure that can be represented as a topological collection.

III.5 Presentation of the Papers

III.5.1 Directions for Future Developments in Unconventional Programming
Languages

[MBFG06] Olivier Michel, Jean-Pierre Banâtre, Pascal Fradet, and Jean-Louis Giavitto.
Challenging questions for the rationales of non-classical programming languages.

11Combinatorial topology is the part of algebraic topology concerned only by combinatorial properties. The notion
of abstract simplicial complex (in combinatorial topology) used to formalize the notion of topological collection is a
specialization of the more general notion of cellular complex developed in algebraic topology.
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International Journal of Unconventional Computing, 2006.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2006/ijuc.pdf
Booklet page: 3

In this paper, we try to draw some lines along wich we detail questions articulating the current
developments in the domain of unconventional programming languages. This paper was written
after the numerous discussions that we had in the organization of the Unconventional Programming
Paradigm (Mont St Michel - 2004) and The Grand Challenge in Non-Classical Computation (York
- 2005). We do not give solutions but sketch a landscape by describing the motivations as a list of
questions that can be spread into 4 classes:

1. Metaphors for Computations,

2. Programming in the Small and Programming in the Large,

3. The Future of Syntax, Semantics, etc.,

4. New applications, New Opportunities.

III.5.2 The 81/2 Language

[Mic96b] Olivier Michel. Introducing dynamicity in the data-parallel language 81/2. In Luc
Bougé, Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors, EuroPar’96
Parallel Processing, volume 1123 of Lecture Notes in Computer Science, pages 678–
686. Springer Verlag, August 1996.
URL: http://www.ibisc.fr/∼michel/PUBLIS/1996/w21.pdf
Booklet page: 17

Chronologically, my work has started with the 81/2 project. The work in this project can be
understood as the introduction of data parallelism in a data-flow computation model. This paper
sketches the resulting language. Traditionally (that is in the data-flow architecture developed in
the 70’s), a data-flow program exhibits a static structure as a graph of computation tasks defined
a priori (the graph can introduce the notion of iteration and as a consequence, the model becomes
Turing-complete). One of the issue that I have adressed is how to have a dynamic data-flow graph,
that is, as the result of some computation. This lead to consider “abstract” data-flow graphs that
can be later instanciated into “concrete” data-flow graphs in a way similar to a function that is
applied to an argument to “trigger” an effective computation. This mechanism is briefly described
in that paper.

[GDVM97] Jean-Louis Giavitto, Dominique De Vito, and Olivier Michel. Semantics and
compilation of recursive sequential streams in 81/2. In H. Glaser and H. Kuchen,
editors, Ninth International Symposium on Programming Languages, Implementa-
tions, Logics, and Programs (PLILP’97), volume 1292 of Lecture Notes in Computer
Science, pages 207–223, Southampton, 3–5 September 1997. Springer Verlag.
URL: http://www.ibisc.fr/∼michel/PUBLIS/1997/plilp97.pdf
Booklet page: 29

http://www.ibisc.fr/~michel/PUBLIS/2006/ijuc.pdf
http://www.ibisc.fr/~michel/PUBLIS/1996/w21.pdf
http://www.ibisc.fr/~michel/PUBLIS/1997/plilp97.pdf
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This paper defines the semantics and compilation of 81/2 streams. These streams differ from
classical data-flows in the sense that they are synchronous and also differ from Lustre/Signal streams
by a different model of time: in Lustre/Signal, observations and events must be simultaneous while
observations are decorrelated in 81/2. This paper illustrates also the use of fixed-points techniques
as an evaluation engine for declarative languages.

III.5.3 Data Structures as Topological Spaces

[GM02a] Jean-Louis Giavitto and Olivier Michel. Data structure as topological spaces.
In Proceedings of the 3nd International Conference on Unconventional Models of
Computation UMC02, volume 2509 of Lecture Notes in Computer Science, pages
137–150, Himeji, Japan, October 2002.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2002/umc02.pdf
Booklet page: 49

All the papers in this section develop the motto “data structures as topological spaces”. This
idea is introduced in the paper [GM02a]. We introduce also the distinction between Leibnizian and
Newtonian space: in the former, the space is a consequence of its elements while in the latter the
space exists a priori and elements are just filling the available positions. Examples of Leibnizian
collections are (multi-)sets, Delaunay graphs; examples of Newtonian collections are arrays.

[GMS95] Jean-Louis Giavitto, Olivier Michel, and J.-P. Sansonnet. Group based fields.
In I. Takayasu, R. H. Jr. Halstead, and C. Queinnec, editors, Parallel Symbolic
Languages and Systems (International Workshop PSLS’95), volume 1068 of Lecture
Notes in Computer Science, pages 209–215, Beaune (France), 2–4 October 1995.
Springer Verlag.
URL: http://www.ibisc.fr/∼michel/PUBLIS/1995/psls.pdf
Booklet page: 65

The paper [GMS95] concretizes the motto by using uniform spaces to define regular structures
like trees and arrays, called GBF. We advocate that having in the same theoretical framework
structures as different as trees and arrays is a major theoretical (and practical) achievement.

[GM01a] Jean-Louis Giavitto and Olivier Michel. Declarative definition of group indexed
data structures and approximation of their domains. In PPDP ’01: Proceedings
of the 3rd ACM SIGPLAN international conference on Principles and practice of
declarative programming, pages 150–161, New York, NY, USA, 2001. ACM Press.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2001/ppdp01.pdf
Booklet page: 73

Paper [GM01a] develops the declarative definition of such data structures and the problems
that are raised: has a GBF equation a well defined solution and is this solution total or partial
(that is, is each element of the aggregate well defined or are we facing “arrays” with “holes”)?

http://www.ibisc.fr/~michel/PUBLIS/2002/umc02.pdf
http://www.ibisc.fr/~michel/PUBLIS/1995/psls.pdf
http://www.ibisc.fr/~michel/PUBLIS/2001/ppdp01.pdf
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[GM02c] Jean-Louis Giavitto and Olivier Michel. The topological structures of membrane
computing. Fundamenta Informaticae, 49:107–129, 2002.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2002/FI.pdf
Booklet page: 87

The last paper in this section formalizes arbitrary data structure with cellular complexes. These
developments take place in the domain of membrane computing where it is shown that structures
with dimensions higher than 1 are useful for example to model interactions between non-hierarchical
organisations. Even if quite focused to the domain of P systems, this paper presents ideas of broader
interest.

http://www.ibisc.fr/~michel/PUBLIS/2002/FI.pdf
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IV.1 Introduction

It is not only important to shape and develop new programming languages, it is also of major
importance to effectively use the language against real problems. Claiming that expressiveness is
central in programming languages is vacuous without large developments supporting that claim.

The interaction between the language and its applications must be a real two-ways interplay:
the issue is not to fine-tune ad-hoc libraries to fit a given problem more and more precisely (and
to make a biologist or physicist happy), but to extract from an application domain some specific
mechanisms that can be generalized, applied and in fine proved fruitful in other domains. A good
example is the ML language, developed initially to define proof search strategies in an automatic
theorem proving system (LCF). Features like the specification of functions by cases have then been
used in other areas and have proved their general utility.

In my work, I have focused on designing languages for the modelling and simulation of dy-
namical systems, and more specifically, a general class of dynamical systems: dynamical systems
with a dynamical structure, or (DS)2. A (DS)2 is a dynamical system whose structure evolves in
time [GM01d, GM01b, GM02b, GGMP02a]. This includes morphogenesis processes and lead to
fruitful collaborations with C. Godin and P. Prusinkiewicz [GGMP02b, GGMP02a, SMC+07]. In
this area, one of the key ideas is that such a complex system can be described by its generative
process described by a set of local rules (like for example in L-systems).

41
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We detail in the rest of the chapter the problems raised by the modelling of (DS)2. This kind of
dynamical system is quite general1 even if we often focused our attention on applications in biology.

IV.2 Simulation Needs in Integrative Biology

Biology is both a growing application domain (for example with all the computing tools required
for sequencing in the Human Genome Project and the analysis of all post-genomic available data)
and a source of metaphors for computer science [Pat94]: neuronal networks [MP43], cellular
automaton [Ula62, VN66], genetic algorithms [Hol73], evolutionary algorithms [Hol75], artificial
life [Gar70], DNA computing [Adl94], chemical computing [DZB01, BLM96, Ada01], membrane
computing [Pău01b, Car04]. . .

Among all these domains where the interaction between biology and computer science is fertile,
modelling and simulation have a key position. In the domain of system biology2 or integrative biol-
ogy3, computer simulation is an extraordinarily efficient tool to analyze and verify the correctness
of a formal model against hypotheses made from experimental data, to seek for specific properties
of certain sets of interactions, to study the decomposition into integrated sub-systems, to predict
the result of small perturbations or new situations (mutants, modification of the environment,
perturbation of the metabolism, etc.), and to discover new regulation pathways.

Simulation is not the only tool that computers can produce to help progress in system biology:
logical modelling [TK01], rewriting systems [GMM04, EKL+02], model-checking [Ric06], test and
validation techniques of systems [FMP00], concurrent systems specification [Car04], optimization,
etc. are examples of fruitful approaches bringing important contributions. In the MGS project, we
only consider simulation.

These new simulation applications are raising very difficult problems to computer science and
require new concepts for the representation, the modular and incremental construction of simulation
programs, their validation and the interpretation of the results. A possible strategy to face all these
problems is to develop a new domain-specific language.

The development of a domain-specific language is justified by readily available features that will
enable better reuse and capitalization of programs to face the new problems raised by the targeted
application domain. We can hope for more productivity, safety, maintainability, upgradability and
flexibility than for a general-purpose programming language.

A domain-specific language dedicated to the requirements of simulation in the domain of inte-
grative biology has to allow the analysis of the huge amount of data produced by the methods of
large-scale biology to model, relate and integrate the many interaction networks at the intra-cellular

1In [BL06, pp 125-127], the authors recognize the importance of this class of dynamical systems and call it
“dynamicité auto-constituante” (which could be translated to “self-producing dynamicity”), a distinctive feature of
living organisms.

2System biology is the “iterative and integrative study of biological systems as systems, in answer to perturba-
tions” [AIRRH03]. This domain relies on mathematics and computer methods to build a biochemical and physiological
integrated model from incomplete and heterogeneous knowledge on the functions and interactions involved, generally
produced by functional genomics.

3The word integrative refers to the wish to synthesize all available biological knowledge to understand the inter-
actions taking place between an organism and its environment. Following this standpoint, integrative biology is part
of system biology. More specifically, the “integrative” term refers to the “horizontal” integration of a large amount
of data or knowledge produced by functional genomics. The organization level that is investigated can be one of
the “ome” domain (transcriptome – that is the set of all messenger RNA –, proteome – the set of proteins – or
metabolome – the set of all metabolites: hormones, signalling molecules. . . ). In addition, it is possible to integrate
different levels of organizations, which in that case would be a “vertical” integration.
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level with the cellular and super-cellular structures (tissues, blood compartments, organs. . . ) in or-
der to give a better account and to understand and manage the various biological and physiological
functions. We can list more precisely the problems arising in this domain:

• There is a combinatorial explosion of the entities to be specified, where each of them exhibits
many possible different attributes and behaviours.

• The specification of a biological entity implies heterogeneous aspects that nevertheless may
interact: physical structure, chemical and electrical state, specification of its own evolution
and interaction with the other entities, geometry (localization and neighborhood). . . Moreover,
these aspects dynamically depend on the whole state of the biological entity itself.

• The system cannot be globally described in a simple way (for example by a unique numerical
model), but only in terms of dynamic local interactions of more elementary entities.

• The description of the system cannot be structured in simple hierarchical terms. Moreover,
this structure is usually dynamic and has to be computed together with the evolution of the
system.

The first two items require us to develop new programming concepts and techniques that allow the
representation of dynamically structured and spatially distributed processes. The notion of (DS)2

lies at the heart of the MGS project and has been presented in [GM01b, GGMP02a, GM02c, GM03,
Gia03]. A paradigmatic example of a (DS)2 is the development of an embryo, or more generally,
all the models of morphogenesis that have the slightest bit of realism (one can find a description of
these applications in [GS06a]).

IV.3 (DS)2: Dynamical Systems with a Dynamical Structure

Intuitively, a dynamical system (DS) is a formal way to describe how a point (the state of the
system) moves in the phase space (the space of all possible states of the system). It gives a
rule telling us where the point should go next according to its current location (the evolution
function). Many different existing formalisms are used to describe a DS: ordinary differential
equations (ODE), partial differential equations (PDE), discrete coupling of differential equations,
iterations of functions, cellular automaton, etc. depending on the discrete or continuous nature of
space and time and of the values used in the modelling. Examples of formalisms, sorted according
to the nature of time and of the state variables, are given in table IV.1 below.

C: continuous,

D : discrete
ODE

Iterations
of functions

Finite state
automaton

Time C D D

State C C D

Table IV.1: Some formalisms used to specify DS according to the nature (discrete or continuous)
of time and of the state variables (taken from [GGMP02b]).

Many DS have a structure, that is, they can be decomposed into multiple parts. Furthermore,
the full state s of the system can be expressed as the simple composition of the state of each part.
Then, the evolution of the state of the system is seen as the result of the changes occurring in the
states of each part. In that case, the evolution function hi of the state of part oi depends only on a
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subset {oij} of the state variable of the whole system. In that context, we say that the DS exhibits
a static structure if:

1. the state of the system is statically described by the state of a finite set of its parts and this
set does not change over time;

2. the relations between the states of the parts, specified by the definition of the function hi

between the oi and arguments oij , are also predefined and do not change over time.

Furthermore, we say that the oij are the logical neighbors of the oi (and very often, two parts of
a system interact when they are neighbors in the physical space). This situation is very common
and appears often in elementary physics. For example, the fall of a stone is statically described by
a position and a speed, and this set of variables remains the same over time (even if the value of
the position and the value of the speed are changing over time). The computation of speed does
not depend of the position while the computation of position depends on the position and speed.
These dependencies do not change over time (the evolution function of the system is always the
same one).

On the contrary, following the analysis carried in [GGMP02b], we can remark that many bio-
logical systems can be seen as dynamical systems where not only the state variable, but also the set
of these state variables and/or the evolution function, change over time. These are (DS)2 following
the terminology introduced in [GM01b, GM01c].

A straightforward example of (DS)2 in biology is given by developmental processes. In the
field of developmental biology, one current theoretical framework views the developmental process
as changes within a dynamical system (DS). This point of view can be traced back at least to
W. D’Arcy Thompson, A. Turing, L. von Bertalanffy, C. Waddington, and contrasts with pure
genetically programmed and pre-existing plans that await revelation during the developmental
process. In the past two decades or so, the concepts and models of nonlinear dynamical systems
have been coupled with models of genetic regulations to overcome the genetic/epigenetic debate
on the nature of the ontogenetic processes. These models can be seen in the pioneering work of
researchers such as F. J. Varela [Var99], H. Meinhardt [Mei82], J. L. Harper, B. R. Rosen and J.
White [HRW86], P. Prusinkiewicz [PLH+90], S. Kaufman [Kau95], J. Maynard-Smith [MS99], L.
Wolpert [WBL+02].

A developmental process viewed as a dynamical system often presents the distinctive feature
of having a dynamic phase space. Consider the example given by the development of an embryo.
Initially, the state of the system is described by the egg’s sole chemical state o0 (whatever the
complexity of the chemical state is). After many cell divisions, the state of the embryo is no
longer specified by the only chemical state oi of the cells, but also by their spatial arrangements4.
The number of cells, its spatial organization and their interactions constantly evolve during the
development stages and are not the result of a unique static structure O. On the contrary, the
phase space O(t) used to characterize the structure of the state of the system at time t has to be
computed jointly with the current state of the system. In other words, the phase space has to be
defined as an observable of the system.

4The neighborhood of each cell is very important in the evolution of the system because of the dependency between
the global shape of the system and the state of the cells. The shape of the system has an impact on the diffusion of
the physico-chemical signals and consequently on the state of the cells. Conversely, the state of each cell determines,
for example by initiating a division, the evolution of the shape of the whole system. A very nice example of the
retroaction between the cellular and tissue level of organization is given by the formation of the mesoderm which
creates a pressure on the anterior region of the gastrula when the twist gene is expressed. Without this mechanical
pressure, which is a result of the global structure (the tissue), there is no expression of the gene at the level of each
cell and the further development of the embryo is compromised [Far03].



IV.4 - The Topological Structure of the Interactions of a System 45

The coupling between the global shape and its parts is called downward causation by P.-A.
Miquel and A. Soto [Sot06] (following D. Campbell original definition [Cam74] on “the higher
level system or whole constrains its parts”). We can see in this feedback between a global level
and a local level, the shape acting as a regulator of the parts, a modern version of organicism, a
theory developed by embryologists following I. Kant for whom the parts of an organism “[. . . ] bind
themselves mutually into the unity of a whole in such a way that they are mutually cause and effect
of one another.” [GS00].

The notion of (DS)2 is quite obvious in developmental biology but this is also a key notion in all
biology and has received various names: hyper-cycle in the study of auto-catalytic networks by M.
Eigen and P. Schuster [ES79], autopoiesis in the work by F. Varela on autonomous systems [Var99],
variable structure system in control theory [Itk76, HGH93], developmental grammar in the work of
E. Mjolsness [MSR91] or organisation in the work of W. Fontana and L. Buss on the emergence of
stable structures in chemical open systems [FB94].

However, this kind of system is not only found in biology: modelling of dynamic networks (Inter-
net, mobile networks, etc.), morphogenesis phenomena in physics (growth in a dynamic medium),
mechanics of elastic medium or deformable systems, urban development of a system of cities and
social networks are full of examples of (DS)2.

IV.4 The Topological Structure of the Interactions of a System

From a computer science point of view, the specification and simulation of (DS)2 raises a problem:
what is the language suited to the definition of an evolution function h having a state as argument,
state whose structure cannot be defined a priori?

The system cannot be simply described in global terms but only by a set of local interactions
between more elementary entities composing the system. Our problem is to define those entities to-
gether with their interactions. We show below that these interactions exhibit a topological structure
that can be used to specify them.

The starting point of this analysis5 is the decomposition of a system from its evolution. At a
given time t, we decompose a system S into disjoints S1, . . . , Sn sub-systems such that the next
state si(t + 1) of sub-system Si only depends on the previous state si(t). In other words, each
sub-system Si evolves independently between time t and t + 1. Si is sometimes called a box. A box
encapsulates the set of elements in interactions in a local evolution step [Rau03]. This notion of
box gives account for a notion of modularity: when the evolution takes place, only what is in the
box has to be known.

The decomposition of S into the Si is a functional partition that can correspond, but not
necessarily, to a structural decomposition of the system into components. We should remark that
we are taking here the opposite view of an “object oriented approach” that starts by defining the
structural components of a system before defining their interactions; here, our starting point are
the activities of the system, and we try to deduce a decomposition.

The functional decomposition of S into Si has to be a function of time. Indeed, if the partition Si

were not a function of time, we would face a collection of parallel systems, totally autonomous with
no interaction. Then, it would not be required to consider them simultaneously into an integrated
system. Consequently, we write St

1, S
t
2, . . . , S

t
nt

for the decomposition of system S at time t and we
have: si(t+1) = ht

i(si(t)) where the ht
i are the “local evolution functions” of the St

i . It is convenient

5 This analysis has been presented in [GMCS05], a shortened version has appeared in [Gia04] and a reformulation,
from which we base most of our present developments, has been developed in [Coh04a] and more recently in [Spi06a].
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to suppose that at a given time t, one of the St
i represents the part of the system that “does not

evolve” (and consequently whose evolution function is the identity).

The “global” state of system s(t) can be recovered from the “local” states of the sub-systems:
there is a function ϕt such that s(t) = ϕt(s1(t), . . . , snt

(t)) which induces a relation between the
“global” evolution function h and the local evolution functions:

s(t + 1) = h(s(t)) = ϕt(ht
1(s1(t)), . . . , h

t
nt

(snt
(t)))

If we follow this analysis, the specification of a (DS)2 requires the definition of three entities:

1. the dynamic partition of S into St
i ,

2. the functions ht
i,

3. the function ϕt.

The description of the successive decompositions St
1, S

t
2, . . . , S

t
nt

can be based on the notion of
elementary part of the system: an arbitrary sub-system St

i will be a union of elementary parts. Many
different partitions of S into elementary parts are possible; here, we focus on the decomposition
naturally induced by the set of the St

i .

Any two subs-systems S′ and S′′ of S are interacting (at time t) if there exists St
j such that

S′, S′′ ∈ St
j . Two sub-systems S′ and S′′ are separable if there is some St

j such that S′ ∈ St
j and

S′′ 6∈ St
j or conversely. This leads to consider the set S, called the interaction structure of S, defined

as the smallest set closed by intersection that contains the St
j (see figure IV.1). The elements of S

are sets. The elements of S that do not include other elements of S besides themselves correspond
to the elementary parts.

...

S

s(0)

S1
1

s(1)

S0
1

S1
i

s(t)

S ′ ∈ V (S)

Figure IV.1: The interaction structure of a system S resulting from the subsystems of elements in
interaction at a given time step.

Set S has a natural topological structure: S corresponds to an abstract simplicial complex. This
notion is a specialization of the notion of cellular complex. An abstract simplicial complex [Hen94]
is a collection C of finite non-empty set such that if A is an element of C, then it is also the case
for any non-empty sub-set of A. Element A of C is called a simplex of C; its dimension is equal to
the number of its elements minus one. The dimension of C is the largest dimension of its simplices.
Any non-empty sub-set of A is called a face. We also define the set of vertices V (C), as the union
of the sets with one element of C.

The correspondence between the functional decomposition S and a complex C is the following:
an element of S is a simplex and the elementary parts of S correspond to the vertices of C. So, we
identify S with an abstract complex. The elements of S that are not a face of another element,
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called maximal simplices, correspond to the St
i . The dimension of a maximal simplex corresponds

to the number (minus one) of the elementary parts involved in an interaction.

Topology is the study of connexity: two objects are isomorphic from a topological point of view
(and we speak of homeomorphism) if there exists a bijection between their parts while maintaining
the connectivity relations between these parts. Here, two parts are connected if they interact during
(at least) one evolution step of the system: this very abstract notion of neighborhood is captured
by the topological structure of S. By definition, only “functionally near” entities are interacting.
However, very often, the abstract space of interactions corresponds to the concrete physical space:
there are no distant interactions. It is therefore not very surprising that the logical neighborhood
exhibited by S is the same as the spatial neighborhood of the physical parts of the system, as we
will see in many examples in the papers.

IV.5 Data and Control Structures for (DS)2

The previous analysis shows that it is possible to specify a (DS)2 S by specifying

• the St
i as a composition of simplices of S,

• by associating to each St
i a function ht

i,

• by combining the applications of each ht
i through a function ϕt.

This approach might appear as being unnecessarily abstract but it can be easily interpreted in
programming terms:

• The key idea is to directly define the set S as a data structure. A data structure must therefore
be characterized by the neighborhood relationship organizing its elements (the elementary
parts of S).

• Then, a function ht
i allows one to define the evolution of a sub-part of a data structure. The

association of a St
i and a local evolution function ht

i can naturally be written by a rule:

St
i ⇒ ht

i(S
t
i )

• To be generic, the left hand side of the rule must not correspond to a fixed part of the system,
but must specify the elementary parts in interactions (a box) to evolve following ht

i.

• The different applications of rules at a given time have to be controlled and the different
results have to be recombined to build the new state of the system. From this point of view,
the function ϕt corresponds to both the rule application strategy and to the substitution
notion used to apply the rules.

We recover the notions of topological collections and transformation previously introduced: a
topological collection corresponds to a structure S and a topological transformation is the definition
of the ht

i, their domain of application and the substitution function ϕt.

We should note that in a transformation, the specification of the patterns and the functions ht
i

do not change over time. However, the matched parts St
i may change. Furthermore, the evolution

of one elementary time step corresponds to the application of one transformation and it is possible
to use another transformation for the next evolution.
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IV.6 The MGS Approach for the Simulation of (DS)2

We can now summarize the MGS approach for the simulation of (DS)2. A topological collection
represents the state of a dynamical system at a given time. The elements of the collection can
represent entities (a sub-system or an atomic part of a dynamical system) or messages (signals,
commands, informations, actions. . . ) addressed to other entities. A sub-collection represents a
sub-set of interacting entities together with the messages of the system.

The evolution of the system is specified by a transformation, where the left-hand side of a rule
matches an entity together with its message and where the right-hand side specifies the change of
the state of an entity, and possible additional messages for other entities.

The neighborhood relationship allows one to take into account many different kind of inter-
actions. For example, if a multi-set organization is taken for the collection, the entities are in a
non-structured way of interactions: any element of the collection is able to interact with any other
element. Therefore, a multi-set realizes a sort of “chemical soup”. More structured topological
collections are used to represent spatial organizations and more sophisticated interactions (see the
examples in the presented papers below).

More generally, many mathematical models of objects and processes are based on the notion of
state that specifies the object or the process by setting data to each point of a physical or abstract
space. The MGS programming language facilitates this approach by having many mechanisms
allowing one to construct complex evolving spaces and to handle the relations between these spaces
and these data.

IV.7 Presentation of the Papers

[GMD03] Jean-Louis Giavitto, Olivier Michel, and Franck Delaplace. Declarative simula-
tion of dynamicals systems : the 81/2 programming language and its application to
the simulation of genetic networks. BioSystems, 68(2–3):155–170, Feb/March 2003.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2003/biosystem02bis.pdf
Booklet page: 115

The paper that starts this section describes the modelling of a simple dynamical system in
81/2. The notion of stream in 81/2 allows the direct representation of the trajectory of a dynamical
system. Here, the dynamical system described is a regulation network abstracted as a Boolean
automata following R. Thomas’s approach [Tho78].

[GMCS05] Jean-Louis Giavitto, Olivier Michel, Julien Cohen, and Antoine Spicher. Com-
putation in space and space in computation. In Jean-Pierre Banâtre, Pascal
Fradet, Jean-Louis Giavitto, and Olivier Michel, editors, Unconventional Program-
ming Paradigms (UPP’04), volume 3566 of LNCS, pages 137–152. ERCIM– NSF,
Springer Verlag, 2005.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2005/upp04.pdf
Booklet page: 133

Most programming languages are weak at taking into account the modelling problems raised
by dynamical systems whose main feature is to have a dynamical structure. The paper [GMCS05]
presents the analysis of those systems through the explicit exposure of the interactions between the

http://www.ibisc.fr/~michel/PUBLIS/2003/biosystem02bis.pdf
http://www.ibisc.fr/~michel/PUBLIS/2005/upp04.pdf
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parts, as presented in Section IV.4 above. This paper also proposes the idea that many unconven-
tional languages rely on the approach that identifies computation with the simulation of a virtual
world abstracted from a physical/biological model (neuronal networks, cellular automata, chemical
computing. . . ) and shows how MGS allows the modelling of these physical/biological dynamical
models using topological collections and transformations:

Modelling Unconventional Computing The MGS Approach

description of the world’s laws ↔ program ↔ transformation
state of the world ↔ data of the program ↔ topological collection

parameters of the description ↔ input of the program ↔ input
simulation ↔ the computation ↔ iterative application

The correspondence above must be understood as being wrapped on a cylinder, so that the “de-
scription of the world’s laws” are related to “transformation”, etc.

IV.7.1 Biological Applications

[GMM04] Jean-Louis Giavitto, Grant Malcolm, and Olivier Michel. Rewriting systems and
the modelling of biological systems. Comparative and Functional Genomics, 5:95–
99, February 2004.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2004/CFG04.pdf
Booklet page: 151

The declarative approach to modelling and simulation of biological systems is presented in
the paper [GMM04]. Here, the declarative approach considered consists in “classical” rewriting
systems. We show that, even restricted to terms (or trees), rewriting systems are poweful enough
to model complex objects, from biochemical interaction networks to plant growth, if the structure
of the system is restricted to a complete graph, a linear or a tree-like organization (the MGS project
is partly motivated by going further than those algebraic data types).

[GM03] Jean-Louis Giavitto and Olivier Michel. Modeling the topological organization
of cellular processes. BioSystems, (70):149–163, 2003.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2003/biosystem02.pdf
Booklet page: 159

The paper [GM03] illustrates the application of these ideas in the MGS project on biological
processes at the cellular level. This paper also presents a first informal introduction to MGS and
details various examples.

[SM05] Antoine Spicher and Olivier Michel. Using rewriting techniques in the simulation
of dynamical systems: Application to the modeling of sperm crawling. In Fifth
International Conference on Computational Science (ICCS’05), volume I, pages
820–827, 2005.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2005/iccs.pdf
Booklet page: 177

http://www.ibisc.fr/~michel/PUBLIS/2004/CFG04.pdf
http://www.ibisc.fr/~michel/PUBLIS/2003/biosystem02.pdf
http://www.ibisc.fr/~michel/PUBLIS/2005/iccs.pdf
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One of the questions that naturally arises with this approach is: (1) how to deal with non
tree-like structures and (2) is it possible to go beyond discrete structures. Paper [SM05] shows that
the MGS approach can address non tree-like structures like planar graphs that are changing (with
non-local update rules) over time. It also shows how a discrete formalism can deal with a continuous
object by “labelling”a discrete organization with continuous values (floating point values). This
idea originates from the L-systems with the notion of module. As a matter of fact, we are no longer
dealing with simple discrete structures theoretically studied by formal languages theoricians or in
the rewriting community. We show that the mechanisms described allow to solve partial differential
equations by an explicit method.

[SMC+07] Antoine Spicher, Olivier Michel, Mikolaj Cieslak, Jean-Louis Giavitto, and Prze-
myslaw Prusinkiewicz. Stochastic P systems and the simulation of biochemical
processes with dynamic compartments. BioSystems, 2007.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2007/biosystem07.pdf
Booklet page: 187

The previous paper is an example of how a “complex” state can be handled but the dynamics
itself can also be more complex than the iteration of a maximal parallel rule application strategy (as
exemplified in L-systems). The MGS idea is to handle sophisticated dynamics as various rule appli-
cation strategies. The problem described in this paper [SMC+07] is how to take into account the
exact kinetics of chemical reactions (in nested compartments). The work presents how Gillespie’s
algorithm [Gil77] used for the simulation in chemistry can be expressed as a stochastic rewriting
strategy.

IV.7.2 Non-Biological Applications

If biology is an obvious domain for the applications of our language concepts, it is important not
to ignore the adequacy of these concepts to more classical computer science domains. We have, for
example, described how to implement in MGS classical examples (graph algorithms: Hamiltonian
path, maximum flow); optimization (à la Gamma: knapsack, maximal segment sum. . . ); algorith-
mics (computation of prime numbers. . . ); and less classical examples (bead sorting, CAD surface
subdivision algorithms. . . ).

[MJ05] Olivier Michel and Florent Jacquemard. An Analysis of a Public-Key Protocol
with Membranes, pages 283–302. Natural Computing Series. Springer Verlag, 2005.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2005/nspk-05.pdf
Booklet page: 205

The paper [MJ05] relies on the topological collections and the transformations to analyse the
Needham-Schroder public key protocol following three different strategies. The underlying general
problem is the generation and the exploration of a large state space. This work is done in the
framework of the P systems but keeps all its generality.

[SMG05] Antoine Spicher, Olivier Michel, and Jean-Louis Giavitto. Algorithmic self-
assembly by accretion and by carving in MGS. In 7th International Conference
on Artificial Evolution, 2005.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2005/ea05.pdf
Booklet page: 227

http://www.ibisc.fr/~michel/PUBLIS/2007/biosystem07.pdf
http://www.ibisc.fr/~michel/PUBLIS/2005/nspk-05.pdf
http://www.ibisc.fr/~michel/PUBLIS/2005/ea05.pdf


IV.7 - Presentation of the Papers 51

The last paper [SMG05] in this section concerns the construction of several fractal objects using
some advanced operations of “topological surgery”. The fractal objects are usually built by iterative
addition, ad libitum (following a self-assembly process). Here, we construct some of the objects by
removing parts in excess (following a carving mechanism) starting by a larger envelope of the final
surface or volume. This example is important since it shows the capacity of MGS to express, using
rules, how to shape complex multi-dimensionnal structures.





Chapter V

Elements of Implementation

V.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

V.2 Presentation of the Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

V.1 Introduction

A huge implementation effort was required so that the concepts introduced in Chapter III could
be validated by the examples of Chapter IV. We give in this chapter some elements on that imple-
mentation work. The reader can figure out the amount of this implementation through the tools
and coding volume that it represents. All code is written under the GPL licence and all sources
are freely available.

The implementation effort has been done by J.-L. Giavitto, J. Cohen (Ph.D. student), A. Spicher
(Ph.D. student) and myself.

V.1.1 The 81/2 Language

The language was written in Ocaml with a data-parallel virtual machine written in C; about 36k
lines of total code. Available here http://www.ibisc.univ-evry.fr/pub/Otto/

V.1.2 The Amalgams Formalism Interpreter

The interpreter was written in Ocaml and C; about 10k lines of total code. The distributed version
allowed to run a nameserver on client/server interpreters running on various machines; the source
code is available at http://www.ibisc.univ-evry.fr/∼michel/amal d.tar.bz2

V.1.3 The MGS Programming Language

Two versions of the interpreter have been written:
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MGSv1 written in Ocaml with a virtual machine based on Landin’s SECD machine; about 9k
lines of total code. Available as a Debian package here http://www.ibisc.univ-evry.fr/
∼michel/1 MGS/

MGSv2 written in Ocaml, C and C++ with many external libraries (gsl, qhull, nauty. . . ) and a
virtual machine based on higher-order abstract syntax; about 50k lines of total code. Available
here http://www.ibisc.univ-evry.fr/∼michel/2 MGS.tar.bz2

V.1.4 The Imoview Vizualizing Tool

All the pictures shown on the MGS website, presentations and papers correspond to output pro-
duced by the language and further interpreted by the Imoview vizualizing tool. Imoview has been
developed in two versions:

Imoviewv1 written in Ocaml and C code; about 11k lines of total code [Tho03]. Available here
http://mgs.ibisc.univ-evry.fr/ImoView05/index.html

Imoviewv2 written in Ocaml and C code; about 15k lines of total code [Kal07]. Available here
http://www.ibisc.univ-evry.fr/∼michel/Imoview2.tar.bz2

V.1.5 The PatchGen Patch Pattern Editor

The writing of patch patterns for complex topological modifications requires to be very precise since
it is easy to produce a wrong pattern by mismatching the variables names between the left hand
side and the right hand side of a rule. To ease the writing of highly symmetrical patterns as in the
example of surface subdivision [SM07], a pattern editor [Jul05] has been developed. It is available
here http://www.ibisc.univ-evry.fr/∼michel/PatchGen.tbz2

V.2 Presentation of the Papers

[Mic96a] Olivier Michel. Design and implementation of 81/2, a declarative data-parallel
language. Computer Languages, 22(2/3):165–179, 1996. special issue on Parallel
Logic Programming.
URL: http://www.ibisc.fr/∼michel/PUBLIS/1996/ComputerLanguages.pdf
Booklet page: 243

The first paper [Mic96a] in this section presents the design and implementation of the first
language I have been working on: the 81/2 language. The notions of streams and collections are
presented, together with a new data structure combining those two: the fabric. A fabric allows
the representation of space-time phenomena. Examples of 81/2 programs are given, involving the
dynamical creation of spatial structures and some elements of implementation are sketched at the
end of the paper.

[GM01c] Jean-Louis Giavitto and Olivier Michel. MGS: a rule-based programming lan-
guage for complex objects and collections. In Mark van den Brand and Rakesh
Verma, editors, Electronic Notes in Theoretical Computer Science, volume 59. El-
sevier Science Publishers, 2001.

http://www.ibisc.univ-evry.fr/~michel/1_MGS/
http://www.ibisc.univ-evry.fr/~michel/1_MGS/
http://www.ibisc.univ-evry.fr/~michel/2_MGS.tar.bz2
http://mgs.ibisc.univ-evry.fr/ImoView05/index.html
http://www.ibisc.univ-evry.fr/~michel/Imoview2.tar.bz2
http://www.ibisc.univ-evry.fr/~michel/PatchGen.tbz2
http://www.ibisc.fr/~michel/PUBLIS/1996/ComputerLanguages.pdf


V.2 - Presentation of the Papers 55

URL: http://www.ibisc.fr/∼michel/PUBLIS/2001/entcs01.pdf
Booklet page: 261

The second paper [GM01c] gives a general view of the first elaboration of the second language
that I have been working on: the MGS language. The motivations for a new programming language
are recalled, asking for the development of a new data structure and its associate control structure:
topological collections allow the uniform representation of spatial phenomena and transformations
their modifications as the system evolves. Many examples are given and a comparison with sim-
ilar formalisms and languages (Gamma and the CHAM, P systems and L-systems, and cellular
automata) are detailed.

[GMC02] Jean-Louis Giavitto, Olivier Michel, and Julien Cohen. Pattern-matching and
rewriting rules for group-indexed data structures. ACM SIGPLAN Notices,
37(12):76–87, December 2002.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2003/sigplan03.pdf
Booklet page: 283

MGS transformations are sets of rules. The paper [GMC02a] presents the pattern matching
language and a generic algorithm applied to the specific case of group-indexed data structures
(GBFs). One of the main achievements of the MGS project is to have defined a generic matching
procedure that is used for all topological collections (we currently have 12 different topological
collections types in MGS).

[MG07] Olivier Michel and Jean-Louis Giavitto. Incremental extension of a domain spe-
cific language interpreter. In International Workshop on Implementation and Ap-
plication of Functional Languages (IFL07), Freiburg, Germany, September 2007.
URL: http://www.ibisc.fr/∼michel/PUBLIS/2007/ifl07.pdf
Booklet page: 297

The last paper [MG07] in this section is not a major result but nevertheless it had a great
impact on the development of the MGS language. Indeed, when the project started in 2000, a first
version of the language based on the SECD virtual machine was quickly developed: it involved 3
collection types and consisted in 9k lines of Ocaml, C and C++ source code. Seven years later,
the language now has 12 different topological collections types and 12 scalar types, consists in 50k
lines of Ocaml source code and many libraries, is scattered over 75 files and has 225 user functions.
To keep such a growing project maintainable, we had to define some strategies for allowing easy
and fast incremental construction, the revision and the fast prototyping of the interpreter. The
resulting software architecture is presented in that paper.

We do not detail further our implementation work, but additional elements can be found
in [Seg97, Out98, Del02, Lar02, Spi03, Man04, Bou04, Coh04b, Per05, Jul05, Gau05, Spi06b, Kal07].

http://www.ibisc.fr/~michel/PUBLIS/2001/entcs01.pdf
http://www.ibisc.fr/~michel/PUBLIS/2003/sigplan03.pdf
http://www.ibisc.fr/~michel/PUBLIS/2007/ifl07.pdf




Chapter VI

Programming the Small and
Programming the Large

VI.1 Facing the Software Crisis . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

VI.2 New Massive Software-Intensive Systems . . . . . . . . . . . . . . . . . . 59

VI.3 New Computing Media: Computing at the Nanoscale Level . . . . . . 59

VI.4 A New Playground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

VI.5 An Plea for Further Interdisciplinary Dialogues . . . . . . . . . . . . . . 62

The unconventional languages 81/2 and MGS have been motivated by the modelling and sim-
ulation of dynamical systems. More generally, unconventional languages can be motivated by a
dissatisfaction in conventional programming languages, new demanding application domains or
new opportunities brought by new computing media. To conclude this document, we want to
convince the reader that nowadays these three driving forces converge to the same problem: the
engineering of a population of entities.

The following three sections will sketch the current dissatisfaction in conventional software
developments, some of the new problems that arise with ubiquitous large-scale applications1 and
the new computing opportunities offered by the advances in molecular biology.

We postulate that these three domains lead to the same problem: how to design and control a
large dynamical population of unreliable entities to obtain a global coherent and stable behaviour.
This observation meets the vision brought by H. Abelson and G. Sussman on the programming of
amorphous media [AAC+00].

Unconventional programming languages are vehicles to investigate this field and offer funda-
mental tools for the simulation and analysis of such systems as well as for their design or their
exploitation.

1We do not want to enter into the debate of the differences between “ubiquitous”, “pervasive” and “ambient”
computing. Here we refer to the shift from regular desktop computing running monolithic programs to distributed
computing resources available everywhere at anytime.
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VI.1 Facing the Software Crisis

The imperative, functional, object and logical paradigms still do not have met the high expectations
of the 80’s and the 90’s in terms of programmability (ease of programming, modularity, expressive-
ness, encapsulation. . . ), quality of service (correctness, validation, security, trustability. . . ), and
evolution (deployment, reusability, adaptation, portability. . . ). For example, there is still no clear
agreement on a model for parallel programming or on a programming model best suited to develop
provably correct code2.

G. Sussman, in 1999, has illustrated the problem as follows [Sus99]

Computer Science is in deep trouble. Structured design is a failure. Systems, as cur-
rently engineered, are brittle and fragile. They cannot be easily adapted to new situa-
tions. Small changes in requirements entail large changes in the structure and config-
uration. Small errors in the programs that prescribe the behaviour of the system can
lead to large errors in the desired behaviour. Indeed, current computational systems
are unreasonably dependent on the correctness of the implementation, and they cannot
be easily modified to account for errors in the design, errors in the specifications, or the
inevitable evolution of the requirements for which the design was commissioned. (Just
imagine what happens if you cut a random wire in your computer!) This problem is
structural. This is not a complexity problem. It will not be solved by some form of
modularity. We need new ideas. We need a new set of engineering principles that can
be applied to effectively build flexible, robust, evolvable, and efficient systems.

See also the notes of the debate “Object have failed” organised by R. Gabriel at OOPSLA 2002 [Gab02].

At the same time, developers have to face a new situation: the proliferation of the hardware and
software environments, the increasing demands of the users, the multiplication of the programs, the
integration of the functions within the same interfaces and the sharing of information, competences
and services thanks to the generalisation of data-bases and communication networks.

Furthermore, a program is no longer a monolithic entity conceived, produced and finalised
by a tightly coupled development team before being used [Fis01]. A program is now developed
by hundreds of programmers distributed around the world, connected through repositories like
SourceForge3. Open source software asks for new concepts and tools to solve the problems asso-
ciated with its distributed development, management and distribution4.

The current situation is not adequately supported by the traditional life-cycle of programs like
the waterfall or the iterative software development processes.

2This section has been written initially in the preparation of the UPP Workshop [GMCS05]; some elements come
also from the file prepared for the Dagstuhl Workshop [DHGG06] and from the technical report [GSM07].

3http://sourceforge.net/
4Cf. for instance the European research project EDOS http://www.edos-project.org. To give a quantitative

idea of the problems, the full Debian Linux distribution represents around 19000 packages that must work together.
The various versions of these packages represent 40000 software units. Expressing the dependencies as a logical
formula, a package like KDE implies more than 30000 variables [BCD+06].

http://sourceforge.net/
http://www.edos-project.org
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VI.2 New Massive Software-Intensive Systems

Ubiquitous large-scale applications, managing several thousands of processing elements, are already
common: think of grid systems like SETI@home5, peer-to-peer systems like the Mule [Ora01], popular
Internet applications like Google [BP98] or the management of the mobile phones in an urban area.
Computing with thousands of distributed entities provides challenges asking for the development
of new paradigms. One important challenge is to ensure, under changing environments, global
properties of the network as a whole: “how do we obtain coherent behaviour from the cooperation
of large numbers of unreliable parts that are interconnected in unknown, irregular, and time varying
ways?” [Mac03].

If the new applications can rely on, or must cope with, an unbounded number of computing re-
sources, they become also unbounded in time: a program is no more a monolithic function designed,
produced and finalised before being used, run on an input to give, after some time, an output. The
Google portal cannot stop, the mule network must ensure its functionality despite the constant
connections and disconnections and despite the evolution of communication protocols (e.g., the
current MLdonkey program manages more than a dozen of successive versions for more than five di-
fferent P2P protocols [FP07]). In the context of highly decentralised and incremental development
and deployment practices, a program is now seen as an open and adaptive frame, implementing
an extremely long-lived reactive system which, for example, can dynamically incorporate services
not foreseen by the initial designer. Such systems are required to be future-proof, able to preserve
and update their original functionality in a machine-independent way, and ultimately by being
self-sustaining and evolving.

To engineer such systems, the autonomic computing initiative [Hor01] proposes to relies on
properties like

• self-organisation (autonomous configuration of the components into a dynamic architecture
dedicated to the satisfaction of the specified requirements),

• self-healing (autonomous detection and correction of hardware and software faults),

• and self-optimisation (autonomous monitoring, control of resources and reconfiguration to
ensure an optimal functioning),

to achieve self-managing computers and software. Systems powered by this model would offer the
ability to adapt themselves to the surrounding environment in a totally unsupervised but consistent
way, ensuring robustness, fault-tolerance and scalability, while responding to increasing expectation
for trustworthy, dependable and long-lasting systems.

The autonomic approach is seducing and can be summarised by “let the system take care of
itself” but this does not give any clue to ensure some global properties from the local changes: how
to engineer self-* properties?

VI.3 New Computing Media: Computing at the Nanoscale Level

The failure of the traditional approaches of software life cycle and the emergence of new applications
are not the only motivations to look for new programming paradigms. Our computing machines
may change drastically in a near future.

5SETI@home, http://setiathome.berkeley.edu/, is currently the largest distributed computing effort with over
3 millions CPUs.

http://setiathome.berkeley.edu/
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Research for building and manipulating objects at the nanoscale level in physics, chemistry and
molecular biology reveals promising resources almost available for unconventional computing [MS03,
SBC+06], as foreseen by R. Feynman [Fey60] and later popularised by E. Drexler [Dre81]. In the
field of molecular biology, harnessing molecules to compute can be traced back at least to [Hea87]
and research in this field explodes with the landmark experiment of L. Adleman [Adl94]. Molecules
can be used for their physical interactions or their chemical reactions [HH98, Mac02, RPW03]
or, in a biological context, using the gene regulation machinery of a cell to achieve some com-
putations [BHS04, KKA+04, SSZW06]. These computations can be designed and implemented
directly “by hand” or using directed evolution [YWA02, FH04]. At last but not least, synthetic
biology [WK00, WBH+03, Gib04] emerges as a new engineering discipline at the convergence of
genetic engineering and computer science, for the design and the implementation of complex arti-
ficial biological systems for a variety of applications6. In this domain, the pace of the technological
changes recalls the glorified Moore’s law [Car03].

All these new possible carriers for computation have in common a large number of unreliable
elementary entities that interact and cooperate dynamically and randomly. It is nevertheless nec-
essary to ensure a global emergent7 behaviour, robust and persistent in time, that can serve as a
foundation for computing.

VI.4 A New Playground

I really want to stress that the challenge raised by computing at the nanoscale (the small) meets
the challenge raised by the programming of the new massive and software intensive applications
(the large), even if in one case entities are molecules and in the other case entities are software
units and running processes spawned around the world. In both cases, the medium to inform or to
program is amorphous in the sense introduced by H. Abelson and G. Sussman: a highly redundant,
massively parallel, asynchronous system, without assumptions about the precise interconnection
or the precise geometrical arrangement of its parts, exhibiting a dynamic topology and a varying
logical organisation, constrained to local interactions between its parts and by the short relative
lifetime of the basic components. The structure is dynamic because elements can join or leave the
medium and they can fail, their interactions are variable in time following the available resources,
the current goal of the system and the evolution of each of its part.

The Programming Language Strategy

Obviously, an amorphous medium can be seen as a (DS)2 (see Section IV.3). In other words,
the design of self-managed amorphous systems requires the development of a constructive theory
of distributed (DS)2 without a global time or a global state. And I advocate that unconventional
programming languages have a key role to play in this program.

6The web site http://syntheticbiology.org/ is a good introduction. A French resource (under construction) is
http://www.ibisc.univ-evry.fr/pub/pmwiki/pmwiki.php. The web site of iGEM, the international Genetically
Engineered Machine competition, gives an outline of the envisioned applications: http://parts.mit.edu/wiki.

7I am quite reluctant to use a word that has, over the years, received so much attention with the only result of
confusing things to a point where no clear definition emerges. I stick with the characterisation given by S. Stepney
at the “Grand Challenge in Non-Classical Computation International Workshop” that took place in 2005 in York
(quoting from memory – the focus on the word “language” is mine): “[. . . ] emergence is when a phenomenon taking
place at a given level cannot be described with the language used for the entities at the origin of the phenomenon
[. . . ]”.

http://syntheticbiology.org/
http://www.ibisc.univ-evry.fr/pub/pmwiki/pmwiki.php
http://parts.mit.edu/wiki
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In the following, I will outline some thoughts that have emerged inside the MGS project in
front of the problems of synthetic biology. They are very preliminary and speculative, but they
suggest a new and attractive playground that prompts research into the expressiveness, semantics
and implementation of alternative programming languages and systems architectures, as well as
into the algorithmic complexity and optimisation of unconventional programs.

Simulation. More than 90% of the parts designed for the iGEM competition are non functional.
One of the main reason advocated is the lack of time: testing and tuning the design in vivo takes
too much time. Simulation may shorten the validation of the design of new biological parts. That
is not to say the in silico approach will magically solve the problem: biological processes are
largely undetermined by the available biological data, these processes are highly dynamic and their
simulation can be very difficult. But it is easier to change the parameters of a simulation and to
restart it than to redo a wet lab experiment.

The MGS project is an attempt to provide some solutions for the simulation of (DS)2 like those
arising in a cell. Other approaches are certainly possible, e.g., in the field of multi-agent systems.
In any case, additional efforts are needed, e.g., to face the amount of entities to be represented. For
example, a quorum sensing between few bacteria takes minutes in MGS and the simulation of the
growth of the meristem takes a few hours for the evolution of a few thousands cells. In contrast,
the migration of a population of E. Coli in a Petri dish in response to a chemical gradient is out of
reach. Such a simulation requires new concepts to represent efficiently (e.g., symbolically) gradients
and population mixing discrete and continuous approaches. This problem was the subject of the
work started during the visit of D. Coore [Coo99], this summer in Évry.

Algorithmics. Self-* behaviours can been seen as the stabilisation of the system on a fixed point
after a transient perturbation. Such idea is already investigated in domain like self-stabilising
algorithms [Tix06] or parallel asynchronous associative computations [Duc99].

To infer that the asynchronous parallel application of local rules leads to stable points exhibit-
ing some required properties is a difficult problem, but some theoretical tools already exists like
induction principles on multi-sets and other topological collections [DM79], asynchronous itera-
tions [Ber83], or termination techniques developed in rewriting systems [Cha90].

One of the lessons of MGS is the importance of the topological structure induced by the in-
teractions in the system. The direct interactions of arbitrary elements in a system are not always
allowed nor desirable. The corresponding neighborhood relationship is a constraint that can be
used to control the global behaviour of the system. For instance, parallel computing deals with
both logical and physical constraints: computations are distributed on physical distinct computing
resources but the distribution of the computation is a parameter of the execution, a choice done at
a logical level to minimise the computation time.

In addition, the evolution of the system creates by itself new constraints that shape the further
possible element’s future (downward causality as described Section IV.3). We are still missing a
useful theory of the feedback between a form and the processes that take place within this form.
Such theory will be central in the design of self-organising processes. However, some “design
patterns” can be gathered in the literature on developmental biology [Mei82, WSJ+98, Pru00].

Compilation. The previous remarks aim at identifying tools that can be used to validate a
system. On the contrary, we can imagine that the properties required for an amorphous system are
not proved a posteriori on a design coming “out of the blue” but preserved through an iterative
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compilation chain going from the high-level global specification of the system down to the definition
of the local behaviour of each of its elements.

Low-level “assembly” languages are depending of the final target. In synthetic biology, this role
can be played by the BioBricks [KRC+07] currently developed.

At a global level, the programming languages allowing the observation, the organisation, the
control and the use of a collection of elementary spatially located entities whose behaviour and
structure are changing in time are still to be imagined. We believe that, to be successful, a can-
didate will have the ability to express (1) interaction (local influence of an entity over another),
(2) cooperation (necessary interactions required to meet a global goal), (3) regulation (global con-
straints on the behaviour of the entities) and (4) development (evolution of the structure of the
system).

Such mechanisms link a global object (e.g., a gradient, a wave) or a global behaviour (a stabili-
sation, a cyclic trajectory) to some local objects and behaviours. This problematics is encountered
for instance in differential geometry: a differential form mixes local objects (the derivatives of a
function) with global ones (the function itself). Existence theorems for a differential equation or a
partial differential equation ensure the existence of a global object from the local properties. The
“wave equation” and the “diffusion equation” can be seen as abstract programs and “integration”
is the principle used to build (compute) the global object from the local constraints. This parallel
has motivated the investigation of a notion of discrete differential form in MGS [Spi06b] and we
want to pursue the work undertaken.

VI.5 An Plea for Further Interdisciplinary Dialogues

To conclude this document we want to acknowledge the necessity of interdisciplinary dialogues
between computer science and other scientific fields.

Computation is the notion studied by computer scientists and unconventional languages are
different viewpoints used to capture this subtle notion. This notion has revealed a conceptual
importance in other sciences, as acknowledged by W. Fontana [Fon06]

Over the past half-century, the idea has taken hold that physical processes, particularly
in biological systems, can be understood as computation. A back-and-forth between
transparent experimental models of molecular computation and the development of for-
mal tools for reasoning about concurrent behaviour might lead to a better appreciation
of what it means for cells to “compute”, “organise”, or “process” information and,
perhaps, evolve.

At the same time, the travelling of concepts between sciences is not one way and computer sci-
ence is fertilised by notions developed in other fields. In the landscape sketched in this chapter,
statistical physics, dynamical system theory, developmental biology, evolution theory, etc. will
certainly change profoundly the way we evaluate and compile our programs and will expand our
understanding of what a computation is. And we believe that synthetic biology will be a place for
these dialogues.



Appendix A

Graphic Gallery

In this appendix are given a set of graphical illustrations that do not appear in cited papers. We hope
that these elements will help the reader to appreciate the scope of this work. For further elements,
the interested reader can refer to the MGS home page at http://mgs.ibisc.univ-evry.fr

63

http://mgs.ibisc.univ-evry.fr


64 Appendix A - Graphic Gallery

A.1 Illustrations related to the 81/2 project
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(a) A first evaluation
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(b) An evaluation starting with different intial values

Figure A.1: Hybrid dynamical systems in 81/2. A wlumf is an “animat” whose behavior (eating)
is triggered by the level of some internal state [Mae91]. More precisely, a wlumf is hungry when
its glycaemia is under some level. It is able to eat when food is available in its environment. Its
metabolism is such that when it eats, the glycaemia goes up to some maximum value and then
decreases to zero at a rate of one unit per time step. Essentially, the wlumf is an hybrid dynamical
system made of counters and flip-flop triggered and reset at different rates. Two chronograms of
a wlumf behavior are given. They correspond to different initial states and different food in the
environment. The corresponding 81/2 program is less than 10 lines of code.
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(a) State of the system after 100 steps of simulation
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(b) State of the system after 1000 steps of simulation

Figure A.2: Numerical resolution of a diffusion/reaction in a torus, following A. Turing [Tur52].
The result of the simulation is represented after 100 time steps (sub-figure (a)) and after 1000 time
step, once that the phenomenon described by the dynamical system has stabilized. The variations
correspond to the quantity of morphogenes and can be interpreted as periodically located spots on
the torus.
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(a) A “real” ammonite shell.

1re étape

2e étape

4e étape

3e étape

(b) Sketch of the four first steps of the development of
the ammonite shell..

Figure A.3: Modelling of the growth process of an ammonite shell. An ammonite grows by building
a new shell leaned to the previous one. This process corresponds to the construction of a gnomon
which indicates in geometry a shape that can be added to another shape to produce a larger shape
similar to the original [Mic96c].

Croissance de l’ammonite (statique)

Collection support
(éléments égaux à 0)

Figure A.4: Simulation in 81/2 of the growth process of the ammonite. Cells corresponding to the
same generation in the shell are located at the same height.
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Figure A.5: Resolution of a recursive equation on vectors: iota = 0#(1 + iota : [4]) by an
iterative method (# denotes vector concatenation, : [4] truncation to 4 elements, scalar constant
are overloaded and represents constant vectors). Static analysis [Gia92] is used to infer that
iota has 5 elements. In the diagram, the index corresponds to the time generation of the value
of the collection iota. At the initialization, only the value of the first element is known; then,
the computation propagates to the right and the set of values of the collection is computed. This
method [Gia00, GM01] is implemented in the 81/2 interpreter [Mic96a].
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Figure A.6: Plots of Henon and Lorentz attractors [PJS92]. A 81/2 stream is used to represent the
dynamical system trajectory.



A.1 - Illustrations related to the 81/2 project 67

1 1

1 1

1

1 1

0

1

1 1

0 1

1 1

0

0 1

1 1

0

1

1 1

0 1

1 1

0

0

1

1 1

0

1

1 1

0 1

1 1

0

0

1

1 1

0

1

1 1

0 1

1 1

0

0

0

(a) Recursive construction of Pascal’s triangle modulo 2. Points correspond to the vertices where
the triangle is repeated. The initial triangle is the construction in grey. We have sketched four
successive steps of the construction.
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(b) Result of the 7 first steps of the computation of Pascal’s triangle modulo 2. The dump is made
using an interface to Gnuplot.

Figure A.7: Recursive construction of Pascal’s triangle modulo 2 [Ste95]. Method and results of
the execution of the 81/2D program.
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Figure A.8: Four presentations of abelian groups and their associated Cayley graph [GMS95,
Mic96c, GM01]. Such presentation can be used to define a GBF type. Abelian GBF have been
implemented in 81/2 and MGS.
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Figure A.9: Three examples of shapes with three neighbours; these are non-abelian shapes.
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Figure A.10: A free non-abelian group with two generators. The bold lines correspond to vertices
that can be reached from vertex w by following elementary moves x and y.
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Figure A.11: Two examples of the evolution, with the same set of rules, but starting from two
different initial situations, of a lattice-gas simulation [TN87] performed on an hexagonal lattice
(using a GBF topological collection) in 81/2. At instant 0, the particles are concentrated in a
small domain. The pressure leads to the expansion of the gas ball. The numbers in the cells
correspond to the number of particles on each site. The vectors correspond to the speed vector of
the particles [Mic96c].
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Figure A.12: Example of amalgam computation. Amalgams are higher-order data-flow
graphs [Mic96b, MG98, Out98]: the values moving on the edges are systems, that is, data-flow
graphs. The edges have been “widened” so that the structure of the manipulated values can bee
seen. The object represented here is a graph of graphs. System U represents the evaluation of
system A in the context of the definition provided by B. System U and C are then joined and their
free references completed to give the resulting system V .
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A.2 Illustrations related to the MGS project

Figure A.13: Loop and Butterfly surface subdivision. Surface subdivision algorithms [SZ98] are
algorithms used to refine a mesh. They are used to generate a smooth surface (at the limit)
starting from a few points of control (the initial mesh). These algorithms are very intuitively
described by local rules. However, their implantation in an imperative settings is diffcult due to
sensible management of the indexed points. In [PSSK03] the authors ask if a declarative framework,
comparable to the L-systems used for curve subdivision, can be developped for surfaces and higher-
dimensionnal objects. MGS gives a positive answer to this question.

Figure A.14: Catmull-Clark and Kobbelt surface subdivision. There are a lot of surface subdivision
algorithms [SZ98]. In this figure, the result of the first iterations of two other algorithms are
presented.
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Figure A.15: Doo-Sabin surface subdivision [SZ98]. This surface subdivision can also be seen as
the production of tapers [Led02] on the edges of a volume.

Figure A.16: Growth of the Sierpinski triangle on a GBF. The process mimics the self-assembly of
DNA sierpinski triangles [RPW03]. The left figure is the initial state while the figure at the right
is the final state. The top figure represents and intermediary step of a computation with a parallel
maximal rule application strategy while the figure at the bottom is the result of a computation
using a stochastic rule application strategy. On each figure, white boxes correspond to the <undef>
value while the light (resp. dark) grey boxes are the values 0 (resp. 1).
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Figure A.17: Construction of the Sierpinski’s triangle by a carving process. The iteration of the
carving process leads to the final result [GS06].
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Figure A.18: Carving of a triangle: the first transformation adds a vertex in the middle of each
edge; the second refines the hexagon obtained into 3 triangles leaving a triangular hole in the center
of the structure [Spi06].

CRV attendue
transformation

Figure A.19: The left figure sketches the resul of the application of the previous rules. Because
occurences of a pattern are disjoint, the result obtained (CRV) is incorrect. The right figure sketches
the awaited result. Using a generation number, it is easy to iterate the application CRV to refine
only one time each surface triangle [Spi06].
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Figure A.20: Construction of the Sierpinski’s sponge by carving: initial state and steps 1, 2, 3 and
4.

Figure A.21: Construction of the Menger’s sponge by carving: initial state and steps 1 and 2.
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Figure A.22: The left figure describes diagrammatically the neurulation process (from a drawing
by Patricia Phelps – http://www.physci.ucla.edu/research/phelps/index.php – with permis-
sion). The right figure details the three steps of our simplified model [SM06]. Initially, the system
is composed of a sheet of cells describing the neural plate. Then it invaginates under the “pressure”
of the deformation of the cells. Finally, during the last step, the sheet of cells “closes” to become
a true continuous topological cylinder.

Figure A.23: Simulation of the neurulation process in MGS [SM06]: from the left to the right, a
sheet of epithelial cells invaginates until its boundaries are close enough to join and form a tube.
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Figure A.24: Screen dump of the Imoview vizualization software (iterations of the construction of
the Menger’s sponge) [Tho03].

Figure A.25: Screen dump of the PatchGen software [Jul05]. Patchgen is a graphical patch editor
for MGS’s. The figure illustrates a step in the construction of the rules for carving the Menger’s
sponge.
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Figure A.26: Heat diffusion on a uniform rod (represented by a multi-set topological collection)
with moving quanta of heat [GM04]. Ends are reflexive.

Figure A.27: Result of the simulation of the heat diffusion in a uniform rod by solving numerically
the partial differential equation of the diffusion [GM04]. Both ends of the rod are held to a tem-
perature of 0◦C. At initialization, only the middle third is heated. The time axis goes from the
back to the front.
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Figure A.28: Description on a NEWS grid (using a GBF topological collection) of a maze: the
entrance is coded with the numerical value 1 and the exit with the numerical value 3; possible
paths are coded with numerical values 2. A valid path from the entrance to the exit is coded in
a one MGS rule. The pattern used (1, 2*, 3) describes a succesful path starting at the maze
entrance and ending at the exit.

Figure A.29: Ants foraging on an hexagonal lattice (defined by a GBF topological collec-
tion) [Coh04a].

Figure A.30: Movements of a flock of birds represented in a Delaunay topological collection and
vizualised using the Imoview software.
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Figure A.31: Four steps in the growth of a sheet of cells. The color of a cell is related to the
concentration of the chemicals triggering the cell division (the darkest cells are about to divide).
The mechanics of this model is a spring-mass system.

Figure A.32: Screen dump of a type inference tool for a subset of MGS programs [Coh03, Coh04a,
Coh04b].







Bibliography

[AAC+00] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy, Thomas
F. Knight Jr., Radhika Nagpal, Erik Rauch, Gerald J. Sussman, and Ron Weiss.
Amorphous computing. Commun. ACM, 43(5):74–82, 2000.

[Ada68] Duane Albert Adams. A computation model with dataflow sequencing. PhD thesis,
Stanford University, California, 1968.

[Ada01] Andrew Adamatzky. Reaction-diffusion and excitable processors: A sense of the
unconventional. Parallel and Distributed Computing Practices, 3(2):113–132, 2001.

[Adl94] Len Adleman. Molecular computation of solutions to combinatorial problems. Sci-
ence, 266(5187):1021–4, November 1994.

[AFJW95] Edward A. Ashcroft, Antony Faustini, Rangaswamy Jagannathan, and William
Wadge. Multidimensional Programming. Oxford University Press, February 1995.
ISBN 0-19-507597-8.

[AG77] Arvind and Kim P. Gostelow. Some relationships between asynchronous interpreters
of a dataflow language, chapter in: Formal description of programming concepts,
E. J. Neuhold editor, pages 95–119. Noth Holland, 1977.

[AIRRH03] Charles Auffray, Sandrine Imbeaud, Magali Roux-Rouquié, and Leroy Hood. From
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pages 39–54. Schröder, P, ACM Press, 2006. SIGGRAPH’06 course notes.

[DM79] Nachum Dershowitz and Zohar Manna. Proving termination with multiset order-
ings. Communications of the Association for Computing Machinery, 22:465–476,
1979.

[DNA95] International Meeting on DNA Computing, from 1995. Proceedings published from
1995 to 2000 as AMS DIMACS volume and then published as LNCS volume. http:
//hagi.is.s.u-tokyo.ac.jp/dna/.

[Dre81] Kim E. Drexler. Molecular engineering: An approach to the development of general
capabilities for molecular manipulation. Proc. Nat. Acad. Sci. USA, 78(9):5275–
5278, 1981.

[DS96] Dominic Duggan and Constantinos Sourelis. Mixin modules. In Proceedings of the
1996 ACM SIGPLAN International Conference on Functional Programming, pages
262–273, Philadelphia, Pennsylvania, 24–26 May 1996.

http://www.ibisc.univ-evry.fr/~jcohen/THESE/these.officiel.pdf
http://www.computingfrontiers.org/
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=2006361
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=2006361
http://hagi.is.s.u-tokyo.ac.jp/dna/
http://hagi.is.s.u-tokyo.ac.jp/dna/


Bibliography 87
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[Leo] Mark Leone. Programming language research. http://www.cs.cmu.edu/∼mleone/
language-research.html.

[LF93] Shinn-Der Lee and Daniel P. Friedman. Quasi-static scoping: Sharing variable bind-
ings across multiple lexical scopes. In Conference Record of the Twentieth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 479–492, Charleston, South Carolina, January 1993.

[LF96] Shinn-Der Lee and Daniel P. Friedman. Enriching the lambda calculus with con-
texts: toward a theory of incremental program construction. In International Con-
ference on Functional Programming. ACM, May 1996.

[Lin68] A. Lindenmayer. Mathematical models for cellular interaction in development, Parts
I and II. Journal of Theoretical Biology, 18:280–315, 1968.

[Lis96] Björn Lisper. Data parallelism and functional programming. In Proc. ParaDigme
Spring School on Data Parallelism. Springer-Verlag, March 1996. Les Ménuires,
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