Sur quelques paramètres et classes de graphes reconstructibles

Oscar Meza

To cite this version:

Oscar Meza. Sur quelques paramètres et classes de graphes reconstructibles. Modélisation et simulation. Université Joseph-Fourier - Grenoble I, 1983. Français. NNT: . tel-00308110

HAL Id: tel-00308110
https://theses.hal.science/tel-00308110
Submitted on 29 Jul 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THERE

prèsentée à

I' Université Scientifique et Médicale de Grenoble

pour obtenir le grade de DOCTEUR DE 3ème CYCLE
«Recherche opérationnelle»

par

Oscar MEZA

$$
\theta \Phi \otimes
$$

SUR QUEL QUES PARAMETRES ET CLASSES DE GRAPHES

RECONSTRUCTIBLES.

$$
\nabla_{\oplus}
$$

Thèse soutenua le 8 décembre 1983 devant la commission d'examen.
C. BENZAKEN

Président
F. JAEGER
C. PAYAN

Examinateurs
N.H. XUONG

UNIVERSITE SCIENTIFIQUE ET MEDICALE DE GRENOBLE

Année universitaire 1982-1983

Président de l'Université : M. TANCHE

MEMBRES DU CORPS ENSEIGNANT DE L'U.S.M.G.
 (AANG A)
 SAUF ENSEIGMANTS EN MEDECINE ET PHARMACIE

PROFESSEURS DE 1ère CLASSE

ARNAUD Paul	Chimie organique
ARVIEU Robart	Physique nucléaire I.S.N.
AUBERT Guy	Physique C.N.R.S.
AYANT Yvos	Physique approfondie
BARBIER Mario-Jeanne	Electrochimie
BARBIER Joan-Claude	Plysique expérimentale C.N.R.S. (labo de maynétisme)
BARJON Robert	Physique nucléaire I.S.N.
BARNOULO Fernand	Biosynthèse de la cellulose-Bialogie
BARRA Jean-René	Statistiques - Mathématiques appliquêes
BELORISKY Elie	Physique
BENZAKEN Claude (M.)	Mathématiques pures
BERNAHD Alain	Mathématiques pures
BERTRANDIAS Françise	Mathématiques pures
BERTRANOIAS Jean Paul	Mathématiques pures
BILLET Jean	Gêographie
BONNIER Jean-Marie	Chimie générale
BOUCHEZ Rubert	Physique nucléaire I.S.N.
BRAVARO Yves	Géographie
CARLIER Georges	Biologia végétale
CAUQUIS Georges	Chimie organique
CHIBON Piurre	Biologie animale
COLIN DE VERDIERE Yvas	Mathématiques pures
CRABBE Pierre (détachá)	C.E.R.M.O.
CYROT Michel	Physique du solide
DAUMAS Max	Géographie
DEBELMAS Jacques	Géologia générale
DEGRANGE Charles	Zoologie
DELOBEL Claude (M.)	M.I.A.G. Mathérnatiques appliquées
DEPORTES Charles	Climie minérale
DESRE Pierre	Electrochimia
DOLIOUE Jean-Michel	Pliysique des plasmas
DUCROS Pierre	Cristallographiu
FONTAINE Jean-Marc	Mathématiques pures
GAGNAIRE Didier	Chimia pliysique

gastinel Noël	Analyse numérique - Mathématiques appliquées
GERBER Robert	Mathématiques pures
GERMAIN Jean-Pierre	Mécanique
GIRAUD Pierre	Géologie
IDELMAN Simon	Physiologie animale
JANIN Bernard	Géographie
JOLY Jean-René	Mathématiques pures
JULLIEN Pierre	Mathématiques appliquées
KAHANE André (détaché DAFCO)	Physique
KAHANE Josette	Physique
KOSZUL Jean-Louis	Mathématiques pures
KRAKOWIAK Sacha	Mathématiques appliquées
KUPTA Yvon	Mathématiques pures
LACAZE Albert	Thermodynamique
LAJZEROWICZ Jeannine	Physique
LAJZEROWICZ Joseph	Physique
LAURENT Pierre	Mathématiques appliquées
DE LEIRIS Joël	Biologie
LLIBOUTRY Louis	Géophysique
LOISEAUX Jean-Marie	Sciences nucléaires I.S.N.
LOUP Jean	Géographie
MACHE Régis	Physiologie végétale
MAYNARD Roger	Physique du solide
MICHEL Robert	Minéralogie et pétrographie (géologie)
MOZIERES Philippe	Spectrométrie - Physique
OMONT Alain	Astrophysique
OZENDA Paul	Botanique (biologie végétale)
PAYAN Jean-Jacques (détaché)	Mathématiques pures
PEBAY PEYROULA Jean-Claude	Physique
PERRIAUX Jacques	-Géologie
PERRIER Guy	Géophysique
PIERRARD Jean-Marie	Mécanique
RASSAT André	Chimie systématique
RENARD Michel	Thermodynamique
RICHARD Lucien	Biologie végétale
RINAUDO Marguerite	Chimie CERMAV
SENGEL Philippe	Biologie animale
SERGERAERT Francis	Mathématiques pures
SOUTIF Michel	Physique
VAILLANT François	Zoologie
VALENTIN Jacques	Physique nucléaire I.S.N.
VAN CUTSEN Bernard	Mathématiques appliquées
VAUQUOIS Bernard	Mathématiques appliquées
VIALON Pierre	Géologie
PROFESSEURS DE 2ème CLASSE	
ADIBA Michel	Mathématiques pures
ARMAND Gilbert	Géographie

AURIAULT Jean-Louis	Mécanique
BEGUIN Claude (M.)	Chimie organique
BOEHLER Jean Paul	Mécanique
BOITET Christian	Mathématiques appliquées
BORNAREL Jean	Physique
BhUN Gilbert	Biologie
CASTAING Bernard	Physique
CHARDON Michel	Géographie
COHENADDAD Jean-Pierre	Pliysique
DENEUVILLE Alain	Physique
DEPASSEL Hoger	Mécanique des fluides
DOUCE Roland	Physiologie végétale
DUFRESNOY Alain	Mathématiquas pures
GASPARD François	Physique
gautron fené	Chimie
GIDON Maurice	Géologie
GIGNOUX Claude (M.)	Sciences nucteaires I.S.N.
GUITTON Jacques	Chimie
HACQUES Gérard	Mathématiques appliquées
HERBIN Jacky	Géographie
HICTER Pierre	Chimia
JOSELEAU Jean Paul	Biochimie
KERCKOVE Claude (M.)	Géolagie
LE BRETON Alain	Mathérnatiques appliquées
LONGEQUEUE Nicole	Sciences nucléaires I.S.N.
LUCAS Robert	Physiques
LUNA Domingo	Mathématiques pures
MASCLE Gearges	Géclogie
NEMOZ Alain	Thermodynamique (CNRS - CATBT)
OUDET Bruno	Mathématiques appliquées
PELMONT Jtan	Biochimie
PERRIN Claudo (M.)	Sciences nucléaires I.S.N.
PFISTER Jean-Claude (détaché)	Physique du solide
PIBOULE Michal	Géologie
PIERRE Jean-Louis	Chimie organique
RAYNAUD Hervé	Mathématiques appliquées
ROBERT Gillos	Mathématiques pures
ROBERT Jean-Bernard	Chimie physique
ROSSI André	Physiologie végétale
SAKAROVITCH Michal	Mathématiques appliquées
SARROT REYNAUD Jean	Géologia
SAXOD Raymond	Biologie animale
SOUTIF Jeanne	Plysique
SCHOOL Pierre-Claude	Mathématiques appliquées
STUTZ Pierre	Mécanique
SUBRA Robert	Chimie
VIDAL Michel	Chimie arganique
VIVIAN Robert	Géographis

-

REMERCIEMENTS

Je remercie Monsieur C. BENZAKEN qui me fait 1 'honneur de présider le jury de cette thèse.

Je voudrais exprimer ma reconnaissance à Messieurs F. JAEGER et C. PAYAN d'avoir accepté de participer à ce jury.

Je remercie tout particulièrement Messieurs N.II. XUONG et C. PAYAN pour le soutien constant qu'ils m'ont prodigué tout au long de ce travail.

Je remercie tous les membres du service de reprographie pour l'efficacité avec laquelle ils ont effectué le tirage de cette thèse.

Je ne voudrais pas terminer sans remercier la Fondation "Gran Mariscal de Ayacucho" sans l'aide financière de laquelle ce travail s'aurait pu être accompli.
0. MEZA

TABLE DES MAITERES

Pages
INTRODUCTION1
CIIAPITRE I : RAPPELS SUR LA RECONSTRUCTION DE GRAPHES
I.1. - Définitions et notations 5
I.2. - Le problème de la reconstruction de graphes 9
I.2.1. - Introduction 9
1.2.2. - Conjecture de la reconstruction des 10 graphes simples ou Conjecture d'Ulam
I.2.3. - Conjecture de l'arête-reconstruction 23 des graphes simples
I.2.4. - Conjecture de Kelly 28
I.2.5. - Conjecture de l'ensemble-reconstruction 28
des graphes simples ou Conjecture d'Harary
1.2.6. - Le cas des graphes orientés et multigraphes 29
CHAPTRRE II : APPLTCATTON DE TECHNIQUES DE DENOMBREMENT
A LA RECONSTRUCTION DE CERTATNS PARAMETRES
II.1. - Introduction 33
II.2. - Reconstruction des multigraphes partiels 36 non-connexes d'un multigraphe
II.3. - Reconstruction du nombre d'arbres et du nombre 39
de multigraphes partiels connexes unicycliques et le cycle de longueur p
II.4. - Les paramètres $n^{*}(F, G)$ et $m^{*}(F, G)$ 43
1T.4.1. - Reconstruction de $n *(F, G)$ 43
II.4.2. - Arête-reconstruction de $\mathrm{m}^{*}(F, G)$ 48
II.5. - Application à la reconstruction de certains 49 paramètres
IT.5.1. - Reconstruction de γ, β, i et du nombre 49 de couplages de cardinalité maximum
II.5.2. - Arête-reconstruction de qet § 51
11.6. - Une généralisation des propositions 1, 2 et 3 53

CHAPITRE III : UNE CLASSE DE GRAPHES ARETERECONSTRUCTIBLE ET PROBLEMES OUVERTS

III.1. - Les graphes adjoints des graphes simples 59
avec $\Delta(G) \geqslant 4$ sont arête-reconstructibles
III.2. - Quelques problèmes ouverts en 70 reconstruction de graphes
BIBLIOGRAPHIE 75

INTRODUCTION

INTRODUCTTON

L'objet du travail présenté dans cette thèse est l'étude du problème de la reconstruction d'un graphe à partir d'une famille de ses sous-graphes. Autrement dit, on s'intéresse à la question de savoir'si une liste bien définie de sous-graphes propres d'un graphe, caractérise le graphe à un isomorphisme près.

La Conjecture d'Ulam (ou Conjecture de la reconstruction de graphes) est un des problèmes célèbres de la théorie de graphes. Cette conjecture affirme que tout graphe simple d'ordre $\geqslant 3$ est uniquement déterminé, à un isomorphisme près, par la famille de ses sous-graphes induits propres maximaux. Malgré l'effort considérable qui a été consacré à son étude depuis sa formulation, les progrès vers sa résolution restent faibles.

Un autre probleme sur la reconstruction de graphes, et qui semble plus abordable que celui d'Ulam, est celui appelé "Conjecture de 1'arête-reconstruction", énoncée par Harary en 1964 : Tout graphe simple avec au moins quatre aretes peut être reconstruit à partir de ses sous-graphes partiels propres maximaux. Dans le même article, Harary énonce une autre conjecture plus forte que celle d'Ulam : Tout graphe simple d'ordre $\geqslant 4$, est uniquement déterminé, à un isomorphisme près, par l'ensemble de ses sous-graphes induits propres maximaux.

Uné autre conjecture qui généralise celle d'Ulam a été proposée par P.J. Kelly en 1957 : Pour tout entier k>0, il existe un entier $v(k)$ tel que tout graphe simple avec au moins $v(k)$ sommets est uniquement déterminé, à un isomorphisme près, par la famille des sous-graphes obtenus en enlevant k sommets du graphe.

Dans le chapitre I nous faisons un résumé des résultats relatifs aux conjectures présentées ci-dessus. On remarque tout spécialement le rôle important qu'ont joué les techniques de dénombrement dans ces résultats. C'est précisément en nous servant de ces techniques que, dans le chapitre II, nous arrivons à reconstruire $l \dot{e}$ nombre de graphes partiels appartenant à certaines classes de graphes et deux paramètres relatifs au dénombrement de
partitions de l'ensemble des sommets et de l'ensemble des arêtes en des ensembles qui. induisent des sous-graphes isomorphes aux graphes d'une liste donnée d'avance. Ces résultats permettent de reconstruire de manière directe le nombre chromatique, le nombred^{\prime} absorption, l^{\prime} arête-connexité, le nombre de couplages de cardinalité maximum, ''indice chromatique et $^{\text {la }}$ déficience de Betti.

Le chapitre III présente deux paragraphes indépendants. Le premier porte sur 1^{\prime} arête-reconstruction des graphes adjoints des graphes simples de degré maximum $\geqslant 4$. Le deuxième paragraphe propose une liste de problèmes ouverts sur la reconstruction de graphes.

CHAPITREI

T.1. - DEFTNTTIONS ET NOTATIONS :

Pour toute autre définition ou notation se référer à Berge (3)
I.1.1. - Le concept de graphe :

Un graphe (ou graphe non-orienté) $G=(V, E)$ est un couple constitué :
1° par un ensemble $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ fini
2° par une famille $E=\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ de paires d'éléments de V.
$v_{1}, v_{2}, \ldots, v_{n}$ sont appelés les sommets du graphe G et $e_{1}, e_{2}, \ldots, e_{m}$ sont les arêtes de G.

Le nombre de sommets de G est appelé l'ordre de G.
Un graphe est dit simple si l'on a les deux conditions : 1° Il $n^{\prime} y$ a pas de boucles, 2° entre deux sommets il y a au plus une arête. Dans la suite, par graphe nous entendrons un graphe simple, lorsqu'on considère des arêtes multiples on parlera de multigraphe.

Sous-graphe induit de G (par USV):

C'est le graphe $G[U]$ dont les sommets sont les points de U et dont les arêtes sont les arêtes de G ayant leurs deux extrémités dans U.

Graphe partiel de G induit par FGE:

C'est le graphe (V, F) dont les sommets sont les points de V et dont les arêtes sont celles de F. Autrement dit, on élimine de G les arêtes dans E-F.

Sous-graphe partiel de G (ou sous-graphe de G) :
C'est le graphe (U, F) avec $U \subseteq V, F \subseteq E$ et $\neq|e| x_{1}, x_{2} \mid \in F$: $x_{1} \in U$ et $x_{2} \in U$.

Sous-graphe partiel de a induit par F¢E:

C'est le graphe dont les sommets sont les extrémités des arêtes dans F et dont les arêtes sont celles de F, noté $G[F]$.

Graphes distincts, graphes identiques :
Deux graphes $G=(V, E)$ et $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ sont distincts si $V \neq V^{\prime}$ ou $E \neq E^{\prime}$. On écrit $G \neq G^{\prime}$. On dira que G et G^{\prime} sont identiques $s^{\prime} i l s$ ne sont pas distincts, on écrit $G=G^{\prime}$.

Graphes isomorphes :

Deux graphes $G=(V, E)$ et $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ sont isomorphes s'il existe deux applications bijectives φ et $\psi, \varphi: V \rightarrow V^{\prime}$ et $\psi: E \rightarrow E^{\prime}$, telles que :

$$
\forall e=[x, y] \in E: \psi(e)=[\varphi(x), \varphi(y)]
$$

Lorsque G et G^{\prime} sont des graphes simples, dire que G et G^{\prime} sont isomorphes revient à dire qu'il existe une application bijective $\varphi: V \rightarrow V^{\prime}$ qui induit une bijection de E dans E^{\prime}. L'isomorphismı entre graphes est une relation d'équivalence sur l'ensemble des graphes étiquetés (c'est-à-dire, à chaque sommet et à chaque arête, on affecte une étiquette). Les classes d'équivalence, induites par cette relation sont appelées classes d'isomorphisme. Dans toute la suite, par graphe nous entendrons un représentant d'une classe d'isomorphisme sauf mention explicite du contraire. Lorsqu'on parlera de liste, famille ou collection de graphes, deux graphes dans la liste (famille ou collection) peuvent être isomorphes.

Graphes disjoints :
Deux graphes $G=(V, E)$ et $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ sont disjoints si $V \cap V^{\prime}=\phi$.

Graphe adjoint d'un graphe G sans boucles :
C'est le graphe $L(G)$ dont les sommets sont les arêtes de G, deux sommets étant reliés dans $L(G)$ si et seulement si les arêtes correspondantes dans G ont une extrémité commune.

Un paramètre ou invariant d'un graphe G :
$C^{\prime} e s t$ une application $\Phi: g \rightarrow K$ d'une classe g de graphes dans un ensemble K (généralement un anneau ou un corps) telle que quelque soient G et H deux graphes isomorphes de g, on a $\Phi(G)=\Phi(H)$

Graphe non-séparable :

C'est un graphe connexe qui n'adnet pas de point d'articulation. On convient que les graphes non-séparables d'ordre $\geqslant 2$ n'ont pas de boucles et une boucle est un graphe non-séparable.

Complément d'un graphe simple $G=\left(V_{2} E\right)$:

C'est le graphe simple \bar{G} dont les sommets sont les points de V et dont les arêtes sont les paires $\lfloor x, y\rceil$, $x \in V, y \in V, x \neq y$ et $\lceil x, y] \notin E$.
$\mathbf{G}_{\mathbf{X}}$ ou $\mathbf{G}_{\mathbf{v}}$:

Soit G un graphe et X un sous-ensemble de l'ensemble des sommets de G. G_{X} est le sous-graphe de G obtenu à partir de G en enlevant les sommets appartenant à X et toutes les arêtes incidentes aux sommets de X. Lorsque $X=\{v\}$, on écrit G_{v} au lieu de $G_{\{v\} *}$. On remarque que la liste des $G_{v}, v \in V(G)$, est la liste des sousgraphes induits propres maximaux de G.

$$
\mathbf{G}_{\mathrm{F}} \text { ou } \mathrm{G}_{\mathrm{e}}:
$$

Soit G un graphe et F un sous-ensemble de l'ensemble des arêtes de G. G_{F} est le sous-graphe de G obtenu à partir de G en enlevant les arêtes appartenant à F. Lorsque $F=\{e\}$, on écrit G_{e} au lieu de $G\{e\}$. On remarque que la liste des G_{e}, ece(G), est 1a liste des sous-graphes propres maximaux de G.

I.1.2. - Symboles et notations :

$\begin{gathered} \mathrm{n}(\mathrm{~F}, \mathrm{G}) \\ \mathrm{s}(\mathrm{~F}, \mathrm{G}) \\ \quad \equiv \end{gathered}$: nombre de sous-graphes partiels de G isomorphes à F. : nombre de sous-graphes induits de G isomorphes à F. : égal par définition.
$\mathrm{G} \sim \mathrm{H}$: le graphe G est isomorphe au graphe H.
$\mathbf{c}_{\underset{\mathcal{q}}{\mathbf{p}}}^{(\mathrm{G})}$: coefficient binomial en pet q. : nombre chromatique de G.
$\xi(\mathrm{G})$	déficience de Betti de G (nombre minimum de composantes connexes avec un nombre impair d'arêtes dans un coarbre de G).
β (G)	: nombre d'absorption de G.
i (G)	: areête-connexité de G.
K_{n}	: graphe complet simple à n sommets.
$\begin{aligned} & K_{n, m} \\ & \psi(G) \end{aligned}$: graphe biparti simple (X, Y, E) avec $\|X\|=n,\|Y\|=m$ et $E=X x Y$. : nombre achromatique de G (le cardinal d'une partition maximum de $V(G)$ en stables tels que deux stables quelconques sont reliés par au moins une arête de G).
h (G)	: nombre de Hadwiger de G (le nombre maximum q pour lequel G est contractible en K_{q}. Une contraction de G étant l'identification dans G de deux sommets adjacents).
q(G)	: indice chromatique de G.
$\|\mathrm{A}\|$: cardinalité de l'ensemble A.
$\mathrm{G} \neq \mathrm{H}$: G et II sont deux graphes distincts.
$\mathrm{G}=\mathrm{H}$: G et Il sont deux graphes identiques.
$\overline{\mathrm{G}}$: complément du graphe simple G.
L (G)	: graphe adjoint de G.
$G \subseteq G ~ 1 ~$: G est un sous-graphe de G'.
GCG ${ }^{\prime}$: G est un sous-graphe propre de G'.
$\Delta(\mathrm{G})$: degré maximum de G.
$\delta(\mathrm{G})$: degré minimum de G.
$\Gamma_{\mathrm{G}}(\mathrm{x})$: ensemble des voisins du sommet x dans G.

I. 2. - LE PROBLEME DE LA RECONSTRUCTTON DE GRAPIES :

I.2.1. - Introduction :

Le problème le plus ancien que l'on trouve dans la littérature concernant la caractérisation d'un graphe par une famille de ses sous-graphes, est considéré de nos jours comme l'un des problèmes ouverts les plus connus de la théorie des graphes : Un graphe simple est-il caractérisé, à un isomorphisme près, par la liste de ses sous-graphes induits propres maximaux, c'est-à-dire, la liste des sous-graphes obtenus en enlevant un sommet et toutes les arêtes qui lui sont incidentes ?. Ce problème a été formulé sous la forme d'une conjecture dûe à S.M. Ulam (1941):

Conjecture d'Ulam ou Conjecture de la reconstruction :

Si Get II sont deux graphes simples avec au moins trois sommets et s'il existe une application bijective $\sigma: V(G) \rightarrow V(H)$ telle que $G_{v} \sim_{V(v)}$, pour tout sommet $v \in V(G)$, alors G~H.

Après la parution de cette conjecture, d'autres conjectures analogues à celle-ci ont été proposées. En 1964, Harary (32) formule une conjecture concernant la caractérisation d'un graphe simple par la liste de ses sous-graphes propres maximaux, c'est-àdire, ceux qu'on obtient en enlevant une arete :

Conjecture de 1'arête-reconstruction :

Si Get II sont deux graphes simples avec au moins 4 arêtes et s'il existe une application bijective $\sigma: E(G) \rightarrow E(H)$ telle que $G_{e} \operatorname{ll}_{u(e)}$, pour toute arete $e \in E(G)$, alors $G \sim H$.

On voit intuitivement que cette conjecture semble plus facile à vérifier que celle d'Ulam car chaque G_{e} est plus proche du graphe original que les G_{v}. Nous verrons dans le paragraphe I.2.3. qu'effectivement la conjecture d'Ulam entraine celle de l'arêtereconstruction.

Deux autres conjectures, moins étudiées, concernant toujours la caractérisation d'un graphe par une famille de ses sous-graphes, ont été proposées par P.J. Kelly (46) et par Marary (32).

La Conjecture de Kelly généralise celle d'Ulam en affirmant qu'un graphe simple G d'ordre suffisamment grand est caractérisé par la famille de ses sous-graphes $G_{B},|B|=$ constante dépendante de l'ordre de G. Ainsi, la conjecture affirme que non seulement G est caractérisé par la famille des sous-graphes obtenus en enlevant un sommet, mais aussi par la famille des sous-graphes obtenus en enlevant deux, trois, ..., k sommets, où k dépend de l'ordre de G. Plus formellement :

Conjecture de Kelly :

Pour tout entier $k>0$, il existe un entier $v(k)$, tel que tout graphe simple $G d^{\prime} o r d r e ~ n \geqslant v(k)$ est caractérisé, à un isomorphisme près, par la famille des sous-graphes $G_{B},|B|=k$.

D'après Harary (32), I'ensemble des sous-graphes induits propres maximaux suffit à caractériser un graphé simple. Cette affirmation est plus forte que la Conjecture d'Ulam.

Conjecture d'IIarary ou Conjecture de 1^{\prime} ensemble-reconstruction

Si G et H sont deux graphes simples avec au moins 4 sommets et si l'ensemble des graphes G_{v}, pour $v \in V(G)$, est égal à l'ensemble des graphes H_{w}, pour $w \in V(H)$, alors $G \sim H$.

Dans les paragraphes qui suivent nous donnerons les méthodes les plus couramment employées dans l'étude de ces conjectures, ainsi que les résultats les plus importants.

I.2.2. - Conjecture d'Ulam :

Pour des raisons de nomenclature, nous allons reformuler la conjecture d'Ulam. On dira qu'un graphe H est une reconstruction d^{\prime} un graphe G si $V(H)=V(G)$ et $H \sim G_{v}$, pour tout $v \in V(G)$. G sera dit reconstructible si toute reconstruction de G est isomorphe à G. Tous les graphes ne sont pas reconstructibles ; par exemple, K_{2} et $2 K_{1}$ sont des reconstructions $1^{\prime} u n$ de 1^{\prime} autre. La Conjecture d'Ulam affirme que ce sont les seuls graphes simples nonreconstructibles :

Conjecture d'U1am : Tous les graphes simples avec au moins 3 sommets sont reconstructibles.

Le premier travail qui a été publié, concernant la Conjecture d'Ulam, parait en 1957. Dans cet article, P.J. Kelly (46) montre que les arbres satisfont à la conjecture.

Harary (32) a suggéré une formulation informelle de la Conjecture d'ulam mais très utile de par son caractère intuitif. Soit G un graphe simple dont l'ensemble des sommets est $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Supposons quion nous présente n cartes $C_{1}, C_{2}, \ldots, C_{n}$, telles qu'un graphe non-étiqueté isomorphe à $G_{v_{i}}$ est dessiné sur La carte $C_{i}, i=1,2, \ldots, n(f i g u r e 1$ et 2). Il est clair quif existe des procédés permettant d'obtenir des graphes qui réalisent le paquet des cartes $C_{1}, C_{2}, \ldots, C_{n}$. Harary remarque que 1 a Conjecture d'Ulam équivaut à dire que quelque soit le procédé utilisé pour obtenir un tel graphe à partir des cartes $C_{1}, C_{2}, \ldots, C_{n}$, on aboutit toujours à un graphe isomorphe à G. Cette formulation va nous permettre de donner des démonstrations plus courtes, bien que moins rigoureuses, des résultats présentés ci-après.

figure 1

Par exemple, on peut déterminer le nombre de stabilité de $G, \alpha(G)$, à partir des cartes $C_{1}, C_{2}, \ldots, C_{n}$: Si aucune carte ne possède d'arêtes alors G ne possède pas d'arêtes et $\alpha(G)=n$, où n est le nombre de sommets de G. Si G possède au moins une arête alors $\alpha(G)=\max _{i} \alpha\left(\right.$ graphe sur 1 a carte $\left.C_{i}\right)$.

Par la suite, tous les graphes que nous considèrerons seront des graphes simples d'ordre $\geqslant 3$.

Tous les graphes d'ordre entre 3 et 9 sont reconstructibles (Kelly (46), Harary et Palmer (33), Mc Kay (67), Nijenhuis (73)). Si un graphe est reconstructible alors son complément est lui aussi reconstructible (Harary (32)).

Faute de savoir montrer la conjecture directement, les résultats partiels qui ont été obtenus se placent dans deux catégories
(i) Des résultats qui montrent que certaines classes de graphes sont reconstructibles. (Nous dirons qu'une classegest reconstructible si chaque graphe dans g est reconstructible). Exemple : les graphes réguliers sont reconstructibles.
(ii) Des résultats qui montrent la reconstruction de paramètres (Un paramètre ou n'importe quelle fonction définie sur une classe g de graphes est reconstructible si pour chaque graphe G de g, ce paramètre ou fonction prend la même valeur quelque soit la reconstruction de G). Exemple : la connectivité, $k(G)$, d'un graphe G est reconstructible. G est connexe si et seulement si il existe au moins deux cartes parmi $C_{1}, C_{2}, \ldots, C_{n}$, contenant des sur la carte C_{i}).

Kelly (46) donne un lemme très simple qui a été l'outil le plus utilisé dans les méthodes de reconstruction comme on le remarquera tout au long de ce paragraphe.

Lemme de Kelly (Kelly (46)) :
Soient G et F deux graphes tels que $|V(F)|<|V(G)|$. Le nombre $n(F, G)$ de sous-graphes partiels de G isomorphes à F est reconstructible.

Démonstration :

Chaque sous-graphe partiel de G isomorphe à F apparaft dans exactement $|V(G)|-|V(F)|$ sous-graphes $G_{v}(v \in V(G))$. Donc,

$$
n(F, G)=\sum_{V \in V(G)} n\left(F, G_{V}\right) /(|V(G)|-|V(F)|)
$$

Il est clair que le côté droit de cette égalité est reconstructible. $n(F, G)$ est donc reconstructible.
C.Q.F.D.

Corollaire :
Soient G et F deux graphes tels que $|V(F)|<|V(G)|$. Le nombre de sous-graphes partiels de G isonorphes à F et qui possè̀dent un sommet donné v, est reconstructible.

Démonstration :

Ce nombre est $n(F, G)-n(F, G)$
C.Q.F.D.

Si l'on prend $F=K_{2}$ dans le lemme de Kelly, on obtient que le nombre d'arêtes est reconstructible. En prenant $F=K_{2}$ dans le corollaire, on obtient la reconstruction de la séquence des degrés.

Plus encore, la séquence des degrés des voisins d'un sommet donné est reconstructible :

Soit G un graphe d'ordre n et v un sommet de G. Soit $d_{1} \leqslant d_{2} \leqslant \ldots \leqslant d_{n-1}$ la séquence des degrés des sommets de G différents de v. Soit $d_{1}^{\prime} \leqslant d_{2}^{\prime} \leqslant \ldots \leqslant d_{n-1}^{\prime}$ la séquence des degrés de G_{v}. On sait que la liste $d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n-1}^{\prime} s^{\prime} o b t i e n t ~ a ̀ ~ p a r t i r ~ d e ~ l a ~ l i s t e ~$ $d_{1}, d_{2}, \ldots, d_{n-1}$ en retranchant d'une unité certains d_{i}. La liste des valeurs d_{i} modifiées de cette manière n'est autre que la liste des degrés des voisins de v dans G. Etant donné deux suites croissantes d^{\prime} entiers $d_{1}, d_{2}, \ldots, d_{k}$ et $d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{k}^{\prime}$ définies comme précédent, nous nous proposons de former la liste des valeurs d_{i} qui ont été modifiées, en raisonnant par récurrence sur k :

1) Pour $k=1$: Les listes sont de longueur 1 : d_{1} et d_{1}^{\prime}.

- Si $d_{1}^{\prime}=d_{1}$ alors $d_{1} n^{\prime}$ a pas été modifiée.
- Sinon, d_{1} a été modifiée.

2) Supposons que pour $k=j$, on peut former la liste des valeurs modifiées, à partir de $\left(d_{i}\right)_{1 \leqslant i \leqslant j}$ et $\left(d_{i^{\prime}}\right){ }_{1 \leqslant i \leqslant j}$.
3) Pour $k=j+1$:
3.1.) - Si $d_{1}^{\prime}=d_{1}$ alors $d_{1} n^{\prime}$ a pas été modifiée.

- Sinon, d_{1} a été modifiée.
3.2.) $-d_{2}^{\prime}, d_{3}^{\prime}, \ldots, d_{j+1}^{\prime}$ est la liste obtenue à partir de $d_{2}, d_{3}, \ldots, d_{j+1}$ en modifiant les d_{i} autres que d_{1}. Par hypothèse de récurrence, on peut former la liste des valeurs modifiées dans $d_{2}, d_{3}, \ldots, d_{j+1}$.
D^{\prime} après (3.1) et (3.2), on a la liste des valeurs modifiées dans $d_{1}, d_{2}, \ldots, d_{j+1}$.

Ainsi, la séquence des degrés des voisins de v est reconstructible car la séquence des degrés des sommets de G différents de v et la séquence des degrés de G_{v} sont reconstructibles.
C.Q.F.D.

La reconstruction de la séquence des degrés de G nous permet de montrer que les graphes réguliers sont reconstructibles. Soit G un graphe k-régulier. Comme la séquence des degrés est reconstructible, toutes les reconstructions de G sont k-régulières. En plus, toutes les reconstructions de G sont isomorphes car elles peuvent être obtenues, à un isomorphisme près, à partir de n'importe quel G_{v} en ajoutant un sommet et en le joignant à tous les sommets de G_{v} de degré $k-1$.

Ce type de démonstration concernant la reconstruction des classes de graphes est très courant. Elle se divise en deux parties : tout d'abord on vérifie que toute reconstruction appartient à la classe (reconnaissance) et ensuite, on reconstruit en supposant que toutes les reconstructions sont dans la classe (faible reconstruction). Ainsi, une classe g de graphes est
reconnaissable si pour tout G de g, toute reconstruction de G est dans g. Elle est faiblement reconstructible si pour tout G de g, toutes les reconstructions de G qui sont dans g sont isomorphes à G. $I l s^{\prime}$ en suit que g est reconstructible si et seulement si g est reconnaissable et faiblement reconstructible.

Une autre classe de graphes qui a été reconstruite est la classe des graphes non-comexes (Harary (32)). Plusieurs démonstrations ont été faites qui montrent comment reconstruire les composantes connexes du graphe. Nous allons énoncer un théorème dû à Bondy et llemminger (6) qui permet d'obtenir des démonstrations plus simples de quelques uns des principaux résultats en reconstruction, en particulier, la reconstruction des graphes non-connexes. Ce théorème de dénombrement a permis aussi d'unifier les méthodes de reconstruction de certaines classes de graphes.

Soit fune classe de graphes et F et G deux graphes tels que $F \in f$ et $n(F, G)>0$. Un sous-graphe partiel de G qui appartient à f sera appelé un f-sous-graphe de G; un f-sous-graphe maximal de G est un f-sous-graphe de G qui n'est pas un sous-graphe d'aucun autre f-sous-graphe de G. Par exemple, si fest la classe des graphes connexes, les f-sous-graphes maximaux de G sont les composantes connexes de G. Une (F, G)-chaine de longueur n est une suite $\left(F_{0}, F_{1}, \ldots, F_{n}\right)$ de f-sous-graphes de G telle que $F \sim F_{0} C F_{1} C \ldots C F_{n} C G$. Deux (F, G)-chaines sont isomorphes si elles ont la même longueur et les termes correspondants sont des graphes isomorphes. Le rang de F dans G est la longueur de la plus longue (F, G)-chaîne, noté rang (F).

Théorème de dénombrement (Bondy et Hemminger (6)) :

Soit g une classe reconnaissable de graphes et soit f une classe quelconque de graphes, telle que pour tout G dans g, chaque f-sous-graphe de G est : (i) sommet propre, (ii) contenu dans un seul f-sous-graphe maximal de G. Alors, pour tout F dans f et tout G dans g, le nombre $m(F, G)$ de f-sous-graphes maximaux de G isomorphes à F est reconstructible.

Démonstration :

D'après (i) aucun f-sous-graphe maximal n'aura|V(G)| sommets. Donc, $|V(F)|<|V(G)|$ pour tout $F \epsilon f$.

Nous montrons par récurrence sur rang (F) l'égalité suivante

$$
\begin{equation*}
m(F, G)=\underset{n=0}{\operatorname{rang}(F)} \Sigma(-1)^{n} n\left(F, F_{1}\right) n\left(F_{1}, F_{2}\right) \ldots n\left(F_{n-1}, F_{n}\right) n\left(F_{n}, G\right) \tag{1}
\end{equation*}
$$

où la somme interne est prise sur les (F,G)-chaînes non-isomorphes $\left(F_{0}, F_{1}, \ldots, F_{n}\right)$ de G.

Supposons que le rang de F soit zéro, alors toute (F, G)-chaîn a une longueur égale à zéro, c'est-à-dire, tout sous-graphe de G isomorphe à F est un f-sous-graphe maximal de G et donc $m(F, G)=n(F, G)$.

Supposons maintenant que rang (F) $=\mathbf{r}$:
Soit ($F_{1}, F_{2}, \ldots, F_{p}$) la liste des f-sous-graphes maximaux de G. D'après la condition (ii), tout sous-graphe de G isomorphe à F appartient à un seul F_{i}. De plus, tout f-sous-graphe de G isomorphe à F est contenu dans un f-sous-graphe maximal de G (à la limite, il serait un f-sous-graphe maximal de G). Donc,

$$
n(F, G)=\sum_{i=1}^{p} n\left(F, F_{i}\right)
$$

Si on regroupe les termes $n\left(F, F_{i}\right)$ en mettant ensemble les F_{i} isomorphes, on a :

$$
\begin{equation*}
\mathrm{n}(\mathrm{~F}, \mathrm{G})=\sum_{\mathrm{X}} \mathrm{n}(\mathrm{~F}, \mathrm{X}) \mathrm{m}(\mathrm{X}, \mathrm{G}) \tag{2}
\end{equation*}
$$

où la somme est prise sur l'ensemble des graphes X isomorphes aux f-sous-graphes maximaux de G.

On peut négliger la condition de maximalité de X dans 1'égalité (2) car $m(X, G)$ est égal à zéro s'il n'existe pas de f-sous-graphe maximal isomorphe à X. L'égalité (2) peut s'écrire :

$$
\begin{equation*}
m(F, G)=n(F, G)-\sum_{X} n(F, X) m(X, G) \tag{3}
\end{equation*}
$$

où la somme est prise sur l'ensemble des graphes X isomorphes aux f-sous-graphes de G non isomorphes à F.

On peut considérer dans (3) uniquement les X tels que $n(F, X) \neq 0$. Dans ce cas, le rang de X est inférieur à r (sinon F aurait un rang supérieur à r). Donc, on peut appliquer l'hypothèse de récurrence à $n(X, G)$ dans (3), on obtient ainsi l'égalité (1).

Alors, soit ill une reconstruction de G. Etant donné que g est reconnaissable, satisfait aux conditions (i) et (ii), et ainsi l'égalité (1) s'applique au graphe H. Pour toute (F,G)-chaîne il existe une (F, H)-châine isomorphe à celle-là et vice versa. Cette observation avec le lemme de Kelly implique que le côté droit de l'égalité (1) est égal pour G et H et donc m(F,G) est reconstructible.
C.Q.F.D.

Comme on l'a indiqué avant d'énoncer ce théorème, nous le proposons pour montrer une technique de dénombrement, autre que le lemme de Kelly, qui sera utilisée pour avoir des démonstrations plus courtes des résultats connus.

Corollaire 1 (Bondy et Hemminger (7)):

Les graphes non-cornexes sont reconstructibles.

Démonstration :

Un graphe G est non-connexe si et seulement si au plus un G_{v} est connexe. Par conséquent, les graphes non-cormexes sont reconnaissables. En prenant fomune la classe des graphes connexes et 9 la classe des graphes non-connexes, le théorème de dénombrement établit la faible reconstruction de g.
C.Q.F.D.

On remarquera que tout graphe dont le complément est non-connexe, est reconstructible. l.es graphes "joints" sont donc reconstructibles (un graphe G est le graphe "joint" de deux graphes G_{1}, G_{2} disjoints si $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ et $\left.E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{(x, y) / x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}\right)$. En particulier, les graphes n-parti complets sont reconstructibles.

Les arbres ont été reconstruits par P.J. Kelly (46). La preuve donnée par Kelly est basée essentiellement sur la propriété des arbres qui sont centrés (un seul centre) ou bicentrés (deux centres). Ainsi, son but a été de chercher lisomorphisme entre les branches de deux reconstructions quelconques. Sa démonstration est trop longue car il doit considérer plusieurs cas séparément. A l'aide du théorème de dénombrement on peut donner une démonstration plus courte de la reconstruction des arbres. Harary et Palmer (35) ont renforcé le résultat de Kelly en reconstruisant les arbres à partir de leurs sous-arbres propres maximaux (on remarque en passant que le théorème 4 dans (35) n'est pas toujours vrai, un contrexemple est donné par la fig. (3.a). Ce qui conduit à restreindre les hypothèses aux arbres avec au moins 4 sommets pendants au lieu de 3. Lovász (55), dans un résumé de la démonstration d'Harary et P almer, fait une remarque qui n^{\prime} est pas vraie en général (page 522, cas (2b)). Un contrexemple en est donné par la fig. (3.b)). Bondy (4) est allé plus loin en montrant que les arbres sont reconstructibles à partir des sous-arbres obtenus en enlevant
 d'une plus longue chaîne de l'arbre).

figure 3

Les arbres sont reconstructibles.

Démonstration :

Les arbres sont reconnaissables car un graphe G est un arbre si et seulement si G est connexe et $|E(G)|=|V(G)|-1$.

Un arbre est une chaine si et seulement si $\Delta(G) \leqslant 2$. Ainsi, les chaînes sont reconstructibles.

Pour un arbre qui n'est pas une chaíne, toute plus longue chaine est un sous-graphe propre au sens des sonmets. Il résulte du lemme de Kelly que le diamètre et le rayon d'un arbre sont reconstructibles, ce qui signifie que les arbres centrés (diamètre pair) ou bicentrés (diamètre impair) sont reconnaissables.

Sachant qu'un sommet v est périphérique si et seulement si $d(v)=1$ et v est sur une plus longue chaîne, on en déduit que $1 e$ nombre de sonmets périphériques est reconstructible.

Une branche d'un arbre centré (bicentré) est un sous-arbre de G admettant le centre (1'arête-centrale) comme sommet (arête) pendant et maximal pour cette propriété. Une branche est appelée rayonnante si elle comporte un sommet périphérique de l'arbre. Un arbre bicentré comporte exactement deux branches, toutes deux rayonnantes. Un arbre est dit fondamental siil possède exactement deux branches, $l^{\prime \prime}$ une est une chaine appelée tige, 1'autre branche est appelée feuillage.

Un arbre (différent d'une chaîne) de rayon r est fondamental si et seulement si il ne contient pas de sous-graphe isomorphe à un des graphes de la figure 4 (où les centres sont identifiés par la lettre c et les distances α et β varient entre 1 et $r-1$) Les graphes de la figure 4 sont reconnaissables. Par exemple un arbre G est du type 1 si et seulement si il contient une chaine de longueur $2 r=|V(G)|-2$ et $r+2$ chaines de longueur $r+1$. Donc, diaprès le lemme de Kelly, les arbres fondamentaux sont reconnaissables.

figure 4

Les arbres fondamentaux sont faiblement reconstructibles. Soit G un arbre fondamental centré (bicentré). Alors toutes les reconstructions de G sont isomorphes à G car elles peuvent s'obteni à un isomorphisme près, à partir du sous-arbre bicentré (centré) G_{v} ayant le sommet de degré plus grand que 2 le plus près de l'arête centrale (sommet central), en allongeant d'un sommet une de ses chaines rayonnantes.

II reste à prouver que les arbres non-fondamentaux sont reconstructibles. Soit G un arbre non-fondamental et F un graphe fondamental de même diamètre que G. D'après le théorème de dénombrement, le nombre de sous-arbres fondamentaux maximaux de G isomorphes à F est reconstructible. Nous pouvons utiliser cette information pour trouver les branches rayonnantes de G. Toute branche rayonnante, qui $n^{\prime} e s t$ pas une chaîne, comportant k sommets périphériques de G est le feuillage de ($p(G)-k$) sous-arbres fondamentaux de G, où $p(G)$ est le nombre de sommets périphériques de G. Ceci nous donne les branches rayonnantes de G qui ne sont pas de chaînes. Le nombre de branches rayonnantes qui sont des chaînes est égal à $p(G)$ moins le nombre total de sommets périphériques dans les branches rayonnantes qui ne sont pas de chaînes.

Si G est centré, il reste à reconstruire les branches nonrayonnantes. Mais, ce sont les branches non rayonnantes d'un G_{v} obtenu en enlevant soit un sommet périphérique d'une branche
rayonnante qui comporte au moins deux tels sommets, si une telle branche existe, soit un sommet pendant non-périphérique d'une branche rayonnante, si une telle branche existe. Autrement, toutes les branches rayonnantes sont des chaínes et les branches non rayonnantes peuvent être obtenues facilement à partir d'un G_{v} où v est un somnet périphérique.
C.Q.F.D.

Bondy (5) a montré que les graphes séparables sans sommets pendants sont reconstructibles. Concernant les graphes avec des sommets pendants, peu de résultats ont été obtenus (Bondy (5), Greenwell et Hemminger (29)).

Geller et Manvel (24) ont reconstruit les cactus (c'est-àdire les graphes connexes dont chaque bloc est soit une arête soit un cycle). Manvel et Weinstein (65) et 0 'Neil (76) ont reconstruit les graphes dont au moins un des sous-graphes G est une forêt. Ces deux résultąts, plus la reconstruction des graphes non-connexes impliquent que tous les graphes G avec $|E(G)| \leqslant|V(G)|+1$ sont reconstructibles.

D'autres classes de graphes ont été reconstruites ; ainsi, les 2-arbres (G est un 2-arbre si G~K 2 ou s'il existe un sommet v de G de degré 2 , adjacent à x et à y, (x adjacent à y) et G_{v} est un 2-arbre), les graphes non-séparables critiques, les graphes non-séparables arete-critiques, les C-graphes (un C-graphe est un graphe comportant une clique telle que toute arete du graphe est incidente à cette clique), les graphes planaires maximaux sont des classes de graphes reconstructibles (Fiorini (21), Lauri (52)). Greenwell et llemminger (31) ont généralisé la reconstruction des composantes connexes des graphes non-connexes et la reconstruction des blocs des graphes séparables. Ce résultat, nous le proposons comme un corollaire du théorème de dénombrement.

Corollaire 2 :

Si F est k-connexe et G ne 1 'est pas, alors le nombre de graphes k-connexes maximaux de G isomorphes à F est reconstructible.

Démonstration :

Soit f la classe des graphes k-connexes et g la classe des graphes qui ne le sont pas. g est reconnaissable car la connectivité d'un graphe G connexe est $k(G)=1 \operatorname{tinin}_{V \in V\left(G_{v}\right)} k\left(G_{v}\right)$. On obtient le résultat en appliquant le théorème de dénombrement.
C.Q.F.D.

La reconstruction des paramètres d'un graphe a un rapport très étroit avec la reconstruction des classes de graphes. En effet, étant donné un paramètre reconstructible, chaque valeur du paramètre détermine de manière naturelle une classe de graphes reconnaissable. La plupart de paramètres les plus classiques sont reconstructibles ; par exemple, le nombre de stabilité, le nombre de couplages maximum (chapitre II), le nombre chromatique (chapitre II), etc. La reconstruction du polynôme dichromatique (Tutte (91), (92), (93)) permet de reconstruire le polynôme chromatique, et donc le nombre chromatique, ainsi que les trois paramètres suivants : le nombre de graphes partiels non-connexes isomorphes à un graphe non-connexe donné, le nombre de graphes partiels séparables dont les blocs sont isomorphes à une liste donnée de graphes (en particulier, le nombre d'arbres est reconstructible) et le nombre de graphes partiels non-séparables avec un nombre d'arêtes fixé d'avance (en particulier, le nombre de cycles hamiltoniens). Dans le même ordre d'idée, le polynôme caractéristique est reconstructible (Tutte (92), Pouzet (77)).

Ces résultats sont un complément au lemme de Kelly qui donne des renseignements uniquement sur les sous-graphes sommets propres.

Parmi les paramètres qui n'ont pas été reconstruits jusqu'à présent, citons le genre, le genre maximum et lindice chromatique. Pour le genre, un premier pas pourrait être celui de montrer que les graphes planaires sont reconnaissables ; mais même cela n'a pas été établi. Cependant les graphes planaires maximaux (52) et les graphes extérieurement planaires (26) sont reconstructibles.

I.2.3. - La Conjecture de 1'arête-reconstruction des graphes simples :

Malgré beaucoup d'efforts, peu de progrès a été réalisé dans 1^{8} étude de la Conjecture d'Ulam. Ainsi, les classes de graphes reconstructibles sont peu nombreuses et de structure assez simple. Même des classes de graphes suffisamment connues comme les graphes bipartis, les eraphes planaires, etc... n'ont pas été encore reconstruites.

De manière naturelle, Harary (32) a formulé la conjecture de l'arete-reconstruction, analogue à celle d'Ulam: Tout graphe G est caractérisé par la liste des G_{e}, $e_{6} E(G)$, dès que $|E(G)| \geqslant 4$.

Une arête-reconstruction d'un graphe G est un graphe H tel qu'il existe une bijection $v: E(G) \rightarrow E(H)$ telle que $G \mathcal{E}^{\sim} \|^{\prime} \quad \sigma(e)$, pour tout efE(G). Les définitions de graphes et paramètres arêtereconstructibles, classe de graphes arête-reconraissable et (faiblement) arête-reconstructible, sont analogues à celles du paragraphe précédent. Tous les graphes ne sont pas arête-reconstructibles (figure 5). Par la suite, tous les graphes considérés satisfont aux hypothèses de la conjecture de l'arete-reconstruction.

(Deux paires de graphes non-arête-reconstructibles)

Figure 5

La conjecture de 1^{\prime} arete-reconstruction semble plus abordable que celle d'Ulam car les graphes G_{e}, $e \in E(G)$, sont plus proches du graphe G que les G_{V}, éV(G). De fait, la conjecture de l'arêtereconstruction est plus faible que celle d'Ulam car Hemminger (44) montra qu'un graphe est arête-reconstructible si et seulement si le graphe adjoint de ce graphe est reconstructible.

De façon analogue, nous avons le lemme de Kelly et le théorème de dénombrement pour 1'arête-reconstruction de graphes :

Lemme de Kelly (cas des arêtes) (Bondy (6)) :
Soient F et G deux graphes tels que $|E(F)|<|E(G)|$. Le nombr ϵ $n(F, G)$ de sous-graphes partiels de G isomorphes à F est arêtereconstructible.

Théorème de dénombrement (cas des arêtes) (Bondy (6)) :
Soit g une classe de graphes arête-reconnaissable et f une classe de graphes quelconque telle que pour tout G dans g, chaque f-sous-graphe de G est : (i) arête propre ; (ii) contenu dans un unique f-sous-graphe maximal de G. Alors, pour tout F dans f et tout G dans g, le nombre de f-sous-graphes maximaux de G isomorphes à F est arête-reconstructible.

Greenwell (30) montra que tout graphe sans sommets isolés est arête-reconstructible s'il est reconstructible. Ce résultat se démontre simplement en se servant du théorème de dénombrement ci-dessus.

Lemme 1 :
Le nombre de sommets isolés est arête-reconstructible.

Démonstration :

D'après le lemme de Kelly nous pouvons savoir si la plus longue chaîne de G est de longueur un, deux ou plus. Alors le nombre de sommets isolés de Gera $m-2, m-1$ ou m, respectivement, où m est le nombre minimum de sommets isolés parmi les G_{e}.
C.Q.F.D.

Théorème:
Soit G un graphe sans sommets isolés. Si G est reconstructible alors G est arête-reconstructible.

Démonstration :

Soit g la classe de toutes les arête-reconstructions de G et f la classe de tous les graphes d'ordre $|V(G)|-1$. Etant donné que toutes les arêtes-reconstructions de G n'ont pas de sommet isolé (lemme ci-dessus), alors tous lesf-sous-graphes sont arête propres et on peut appliquer le théorème de dénombrenent. Les f-sous-graphes maximaux de G sont précisément les sous-graphes induits propres maximaux de G (les G_{V}, $V \in V(G)$). Comme toute arêtereconstruction de G a les mêmes G_{V} et comme G est reconstructible il $s^{\prime} e n$ suit que G est arête-reconstructible.
C.Q.F.D.

Le théorème ci-dessus permet d'obtenir tout de suite des classes de graphes arête-reconstructibles aussi bien que des paramètres arête-reconstructibles. Les graphes réguliers, les graphes non-connexes avec au moins deux composantes d'ordre $\geqslant 2$, les arbres, etc.., sont arête-reconstructibles; il suffit de regarder la liste des graphes et paramètres reconstructibles donnés dans le paragraphe précédent. Mais il y a des paramètres qui n'ont pas été reconstruits mais qui ont été "arête-reconstruits", comme par exemple la déficience de Betti et l'indice chromatique.

Muller (69), en utilisant une idée de Lovász (54), a démontré que presque tous les graphes sont arête-reconstructibles. A ce propos, on peut remarquer que la technique utilisée par Lovász et Muller concernant 1^{\prime} arête-reconstruction et celle utilisée par Tutte (91), (92), (93)) concernant la reconstruction sont purement "formelles", en ce sens qu'elles ne donnent pas un moyen de reconstruire un graphe à partir de la liste des G_{e} ou celle des G_{v}.

Nash-Williams (70) a généralisé les résultats de Lovász et Muller ; c'est sous cette forme que nous allons présenter ces résultats. Précisons quelques notations. Si H et G sont deux graphes et F est un graphe partiel de G, on note par $(G \rightarrow H)_{F}$ l'ensemble des applications injectives $\pi: V(G) \rightarrow V(H)$ telles que pour chaque arête $[u, v]$ de $G,[\pi(u), \pi(v)]$ est une arête de II si et seulement si $[u, v]$ est une arête de F. Par définition $G \rightarrow H \equiv(G \rightarrow I I)_{G}$ et $|G \rightarrow H|_{F} \equiv\left|(G \rightarrow H)_{F}\right|$.

Théorème de Nash-Williams (70):

Un graphe G est arête-reconstructible si 1'on a une des conditions suivantes.
(i) il existe un graphe partiel F de G tel que $|G \rightarrow H|_{F}=|G \rightarrow G|_{F}$ pour toute arete-reconstruction H de G.
(ii) il existe un graphe partiel F de G tel que $|E(G)|-|E(F)|$ est pair et $|G \rightarrow G| F=0$.

Démonstration :

Soient G et H deux graphes. Alors, pour tout graphe partiel F. de G :

$$
\begin{equation*}
|G \rightarrow H|_{F}=\sum_{G^{\prime}}(-1)^{\left|E\left(G^{\prime}\right)\right|-|E(F)|}\left|G^{\prime} \rightarrow H\right| \tag{1}
\end{equation*}
$$

où G^{\prime} parcours les graphes partiels de G qui contiennent F
Montrons l'égalité (1), qui résulte de l'application du principe d'inclusion-exclusion :

Soient $e_{1}, e_{2}, \ldots, e_{k}$ les éléments de $E(G)-E(F)$ et $A_{i} \equiv\left(F+e_{i}\right) \rightarrow H \quad\left(\right.$ où $F+e_{i}$ est le graphe partiel de G formé par les arêtes de F plus e_{i}).

$$
\text { Ainsi, } \quad(G \rightarrow H)_{F}=(F \rightarrow H)-\underset{i=1_{i}}{\cup}=\underset{\left.I \subseteq\{1, \ldots, k\}^{(-1}\right)^{|I|}\left|A_{I}\right|}{(F \mid}
$$

$$
\text { où } \quad A_{\phi}=(F \rightarrow H) \text { et } A_{I}=\cap_{i \in I} A_{i}=\left(\left(F+\left\{e_{i / i \in I}\right\}\right) \rightarrow H\right)
$$

$=\sum_{1}(-1)\left|E\left(G^{\prime}\right)\right|-|E(F)| \quad\left|G^{\prime} \rightarrow H\right| \quad$ où G^{\prime} parcours les graphes partiels $d e^{G^{\prime}}{ }_{G}$ qui contiennent F. Donc, on a l'égalité (1).

Si H est une arête-reconstruction de G, on a, d'après le lemme de Kelly :

$$
\begin{aligned}
& |G \rightarrow G|_{F}-|G \rightarrow H|_{F}=\sum_{G^{\prime}}(-1)\left|E\left(G^{\prime}\right)\right|-|E(F)|\left(\left|G^{\prime} \rightarrow G\right|-\left|G^{\prime} \rightarrow H\right|\right) \\
& =(-1)|E(G)|-|E(F)|(|G \rightarrow G|-|G \rightarrow H|)
\end{aligned}
$$

D'où :

$$
\begin{equation*}
|G \rightarrow H|=|G \rightarrow G|+(-1)|E(G)|-|E(F)|\left(|G \rightarrow H|_{F}-|G \rightarrow G|_{F}\right) \tag{2}
\end{equation*}
$$

Etant donné que le premier terme du côté droit de l'égalité (2) est positif et que le deuxième terme est non-négatif si F satisfait à l'une des conditions (i) ou (ii), on a $|G \rightarrow I|>0$. Mais cela signifie que G et H sont isomorphes car ils ont le même nombre d'arêtes.
C.Q.F.D.

Corollajre (Lovász (54)):

G est arête-reconstructible si $|E(G)|>\frac{1}{2} C_{|V(G)|}^{2}$

Démonstration :

Si F est le graphe partiel nul de $G,|G \rightarrow H|_{F}=|G \rightarrow \bar{H}|$ 。 Si $|E(G)|>\frac{1}{2} C|V(G)|,|G \rightarrow \bar{H}| e s t$ égal à zéro quelque soit H, une arête-reconstruction de G, et donc F satisfait à la condition (i) du théorème de Nash-Willians. (nul \equiv sans arêtes).

Corollaire (Muller (69)) :
C.Q.F.D.

G est arête-reconstructible si $2^{|E(G)|-1}>|V(G)|$!

Démonstration :

II existe $2^{|E(G)|-1}$ graphes partiels F de G tels que $|E(G)|-|E(F)|$ est pair et il existe $|V(G)|$! permutations de V(G). Alors il doit exister un F qui satisfait à la condition (ii) du théorème car chaque injection de $(G \rightarrow G)_{F}$ est une permutation de $V(G)$ et si pour chaque F avec $|E(G)|-|E(F)|$ pair on avait $|G \rightarrow G|_{F} \neq 0$, alors il y aurait au moins $2|E(G)|-1$ permutations de $V(G)$, ce qui est contradictoire.
C.Q.F.D.

Corollaire :
Un graphe G d'ordre n et de m arêtes est arête-reconstructible si m>(n $\log n) / \log 2$.

Démonstration :

$m>(n \log n / \log 2) i m p l i q u e q u e 2^{m}>n^{n}$ 。 D'autre part $n^{n} \geqslant 2(n)!(\operatorname{car} n \geqslant 2)$. Donc, G est arête-reconstructible d'après le résultat de Müller ci-dessus.
C.Q.F.D.

I.2.4. - Conjecture de Kelly:

Un problème beaucoup moins étudié a été mentionné par Kelly (46) : Un graphe simple peut-il être caractérisé par la famille de ses sous-graphes obtenus en enlevant k>1 sommets ?. En général, la réponse est négative. Cependant, il semble qu'à partir d'un certain ordre, tous les graphes simples sont caractérisés ainsi et Manvel (57) a formulé la conjecture suivante :

Pour tout entier $k>0$, il existe un entier $v(k)$, tel que tout graphe simple G d'ordre $n \geqslant v(k)$ est caractérisé, à un isomorphisme près, par la famille des sous-graphes $G_{B},|B|=k$.

On remarque que, dans le cas $k=2$, si l'on connaít les étiquettes des sommets de B alors G est reconstructible (Lovász (55), page 81, problème 14). W. Giles (28) a vérifié que les arbres satisfont à la conjecture pour $k=2$. Toujours dans le cas k=2, Manvel (63) montra que les graphes non-connexes satisfont à la conjecture et qu'on peut reconnaître à partir de la famille des sous-graphes, les classes suivantes : les arbres d'ordre $\geqslant 6$, les groaphes unicycliques d'ordre $\geqslant 5$, les graphes réguliers d'ordre $\geqslant 5$ et les graphes bipartis d'ordre $\geqslant 6$. Il donne aussi un nombre infini d'exemples non-triviaux de paires de graphes non-isomorphes ayant la meme liste de sous-graphes G_{B}.

I.2.5. - Conjecture d'Harary ou Conjecture de l'ensemble- $^{\prime}$ reconstruction des graphes simples :

Harary (32) suggère une autre conjecture plus forte que celle d'Ulam : L'ensemble des sous-graphes induits propres maximaux suffisent à caractériser les graphes simples d'ordre $\geqslant 4$. Plus précisément, on appelle une ensemble-reconstruction d'un graphe G, tout graphe H tel que l'ensemble des sous-graphes induits propres maximaux de H soit égal à celui de G. Harary a conjecturé
que tous les graphes simples avec au moins 4 somnets sont ensemble-reconstructibles.

Manvel ($(57),(60)$, (64)) a montré que certains paramètres (le degré minionum $\delta(G)$, le nombre d'arêtes, l^{\prime} ensemble des degrés, la connectivité, le nombre de points d'articulation) et certaines classes de graphes (les graphes non-connexes, les arbres, les graphes séparables sans sommets pendants) sont ensemble-reconstructibles; de même, les graphes unicycliques (1) et les graphes extérieurement planaires (27) sont ensemble-reconstructibles.

I.2.6. - Le cas des graphes orientés et multigraphes :

Tout naturellement, on se pose le problème de l'étude des conjectures d'Ulan et de l^{\prime} arête-reconstruction concernant les graphes orientes et les multigraphes.

Cas des graphes orientés :

La Conjecture d'Ulam n'est pas vraie en général pour tous Les graphes orientés d'ordre $\geqslant 3$ (figure 6). llarary et Palmer (36) ont confirmé la conjecture pour les tournois non-fortement connexes d'ordre $\geqslant 5$. 11 s avaient conjecturé que les tournois fortement connexes sont aussi reconstructibles, mais Stockmeyer ((88), (89)) trouva une classe infinie de tournois fortement connexes nonreconstructibles. Harary et Palmer (35) ont observé que leur démonstration concernant la reconstruction des arbres à partir des sous-arbres maximaux s'applique directement aux arbres orientés ayant au moins trois sommets pendants. Ramachandran (81) reprend la même démonstration de Bondy (5) pour démontrer que les graplies orientés séparables d'ordre $\geqslant 3$ sans sommets pendants sont reconstructibles.

figure 6

En ce qui concerne l'arc-reconstruction, les techniques employées dans l^{\prime} arête-reconstruction peuvent $s^{\prime} \operatorname{appliquer}$ à l'arc-reconstruction (par exemple, le principe d'inclusion- $^{\prime}$ (pation exclusion utilisé dans la démonstration du lemme de Nash-Williams (page 26)). C'est ainsi qu'on démontre que les tournois sont arc-reconstructibles (Bondy et Hemminger (6)).

Cas des multigraphes :

Ce cas a été très peu étudié. En fait, c'est un problème beaucoup plus compliqué car même si l'on arrive à reconstruire le graphe simple sous-jacent, on ne sait pas comment placer les arêtes multiples. En effet, on peut voir que la Conjecture d'Ulam pour les multigraphes est équivalente à la Conjecture d'Ulam pour les graphes simples avec arêtes colorées (Weinstein (95)) : Etant donné la liste des sous-graphes induits propres maximaux d'un multigraphe on construit une autre liste en remplaçant les arêtes multiples par une seule arête colorée, de sorte que deux arêtes sont de couleurs différentes si le nombre d'arêtes multiples qui correspond à chacune de ces deux arêtes dans le graphe original sont différents. De cette façon, la nouvelle liste est la liste des sous-graphes induits propres maximaux des graphes simples colorés correspondant aux reconstructions du multigraphe. Ainsi, on voit que même si le graphe simple associé est reconstructible, la coloration des arêtes est un problème qui reste à résoudre.

Les multigraphes non-connexes sont reconstructibles. La démarche suivie par Harary et Palmer (35) pour reconstruire les arbres est employée pour reconstruire les multigraphes connexes dont les cycles sont de longueur ≤ 2 (Bondy (5)). Les multigraphes séparables sans sommets pendants sont reconstructibles (Bondy (5)) Tous les paramètres reconstructibles présentés dans le paragraphe (I.2.2.) sont reconstructibles pour les multigraphes.

CHAPITREXI

APPLICATION DE IECCHNTQUES DE DENOMBREMENT

A LA RECONSTRUCTION DE CERTAINS PARAMETRES

II.1. - INTRODUCTION :

Le lemme de Kelly tel quion a exposé dans le chapitre I a été l'outil le plus couramment utilisé dans le problème de reconstruction. En général, ce sont des lechniques de dénombrement combinées avec des raisonnements purement graphiques qui ont permis la reconstruction d'importantes classes de graphes (les graphes non-connexes, les arbres, les graphes séparables sans sommets pendants, etc.).

Le lemme de Kelly permet de reconstruire le nombre de sousgraphes d'un graphe G qui sont isomorphes à un graphe donné, d'ordre inférieur à celui de G. Il en découle tout naturellement le problème de savoir si 1 'on peut reconstruire le nombre de graphes partiels d'un graphe, isomorphes à un graphe donné. Dans (92), Tutte a montré que le nombre de multigraphes partiels isomorphes a un multigraphe non-connexe donné, le nombre de multigraphes partiels séparables dont les blocs sont isomorphes à une liste spécifiée d'avance, le nombre de multigraphes partiels non-séparables avec un nombre spécifié d'arêtes sont des paramètres reconstructibles. De ces résultats, il découle directement que le nombre de couplages maximum, le nombre d'arbres et le nombre de cycles hamiltoniens sont reconstructibles. Les techniques employées par Tutte pour obtenir ces résultats font appel aux séries génératrices à plusieurs variables. Notre but dans ce chapitre est de montrer que l'on peut obtenir les résultats de Tutte en utilisant des techniques de dénombrement purement graphiques. Ces techniques sont basées sur deux identités établies par Kocay (4%). Ces identités vont nous permettre
 de deux paramètres, $n^{*}(F, G)(p a g e 44)$ et $m *(F, G)$ (page 48), qui nous donnent directement la reconstruction du nombre chromatique, du nombre d'absorption et de l'arete-connexité, ainsi que l'arête-reconstruction de l'indice chromatique et de la déficience de Betti.

Nous commençons par donner deux identités fondamentales dûes à Kocay.

Lemme 1 (Kocay, (47)) :
Soit $g=\left\{g_{1}, g_{2}, \ldots\right\}$ la classe des multigraphes sans sommets isolés. Soit (h_{i}) $1 \leqslant i \leqslant k$ une famille de k éléments de 9 . Si G est un multigraphe alors :
n (h_{1},
G) $\mathrm{n}\left(\mathrm{h}_{2}\right.$,
G) $\ldots n\left(h_{k}\right.$,
G) $=$
$\sum_{i \geqslant 1} b_{i} n\left(g_{i}, G\right)$
où -n (h,G) est le nombre de sous-graphes de G isomorphes à h.

- b_{i} est le nombre de recouvrements de $E\left(g_{i}\right)$ à k éléments tels que $: E\left(g_{i}\right)=E_{1} U E_{2} \ldots E_{k}$ et $g_{i}\left[E_{j}\right] \sim h_{j}$, $j=1,2, \ldots, k$.

Démonstration :

1) $\nleftarrow g \epsilon$, un sous-graphe de G isomorphe à g est uniquement déterminé par la donnée de l'ensemble de ses arêtes car gest sans sommets isolés. Par conséquent les deux écritures : $G\left[E_{i}\right] \sim h$ et $E_{i} \sim h$ sont équivalentes.
2) On considère deux ensembles construits à partir de $E(G)$.

Premier ensemble :

$$
\begin{gathered}
A=U A_{i} \\
i \geqslant 1
\end{gathered}
$$

Pour $\underset{i}{ }$ fixé, soit $F_{i}{ }^{1}, F_{i}{ }^{2}, \ldots, F_{i}{ }^{n i}$ les $n_{i}=n\left(g_{i}, G\right)$ sous-graphes de G isomorphes à $g_{i}\left(F_{i}{ }^{\mathbf{j}} \subseteq E\right.$ (G)).
A chaque $F_{i}{ }^{j}\left(j=1,2, \ldots, n_{i}\right)$ on associe l^{\prime} ensemble de k-uplets $\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ satisfaisant \grave{a} :

$$
-F_{i}^{j}=\underset{1=1}{\stackrel{k}{U} c_{1}}
$$

$$
-c_{1} \sim h_{1}(1=1,2, \ldots, k)
$$

Comme $F_{i}{ }^{j}$ est isonorphe à g_{i} pour tout j, à chaque $F_{i}{ }^{j}$ correspond b_{i} recouvrements vérifiant les deux conditions précédentes. Autrement dit, le nombre de k-uplets associés à $F_{i}{ }^{j}$ est b_{i}. L'ensemble de tous ces k-uplets, pour $j=1,2, \ldots, n_{i}$, constitue l'ensemble A_{i} :

On a, $\quad\left|A_{i}\right|=\mathbf{b}_{\mathbf{i}} \mathbf{r}_{\mathbf{i}}$
D'où, $\quad|A|=\sum_{i \geqslant 1} b_{i} \mathbf{n}_{i}$

Deuxième ensemble :

$$
\mathbf{B}=\prod_{\mathbf{i}=1}^{\mathbf{k}} \mathbf{B}_{\mathbf{i}}
$$

où pour $1 \leqslant i \leqslant k$:

$$
\begin{aligned}
-B_{i} & =\left\{E_{i}^{1}, E_{i}^{2}, \ldots, E_{i}^{p} i\right. \\
-p_{i} & =n\left(h_{i}, G\right) \\
-E_{i}^{j} & \subseteq E(G), j=1,2, \ldots, p_{i} \\
-E_{i}^{j} & \sim h_{i}, j=1,2, \ldots, p_{i} \\
\text { On a }|B| & =n\left(h_{1}, G\right) n\left(h_{2}, G\right) \ldots n\left(h_{k}, G\right)
\end{aligned}
$$

B est un sous-ensemble de A car pour chaque k-uplet $\left(D_{1}, D_{2}, \ldots, D_{k}\right) \in B$, il existe un i unique tel que $D_{1} U D_{2} \ldots U D_{k} \sim g_{i}\left(g_{i} \in g\right)$, comme D_{i} est isomorphe à $h_{i}, i=1,2, \ldots, k, D_{1} U D_{2} \ldots D_{k}$ est un recouvrement d'un certain F_{i}^{j}. II reste à montrer que $A \subseteq B$, ce qui est évident car soit $F_{i}^{\mathbf{j}}=C_{1} \mathbf{U C} \mathbf{2}_{2} \ldots \mathrm{UC}_{k}$ un recouvrement, comme $C_{1} \subseteq E(G)$ et $C_{1} \sim h_{1}(1 \leqslant 1<k)$ alors il existe p tel que C_{1} est 1 e p-ième éément de B_{1}, domc $\left(C_{1}, C_{2}, \ldots, C_{k}\right) \in \mathbb{O}$ 。

Lemme 2 (Kocay, (47)) :

Soit $g=\left\{g_{1}, g_{2}, \ldots\right\}$ la classe de tous les multigraphes. Soit $\left(h_{i}\right)_{1 \leqslant i \leqslant k}$ une famille de k éléments de g. Si G est un multigraphe, alors :

$$
s\left(h_{1}, G\right) s\left(h_{2}, G\right) \ldots s\left(h_{k}, G\right)=\sum_{i \geqslant 1} a_{i} s\left(g_{i}, G\right)
$$

où $\quad-s(h, G)$ est le nombre de sous-graphes induits de G isomorphes à h.

- a_{i} est le nombre de recouvrements de $V\left(g_{i}\right)$ à k éléments tels que : $V\left(g_{i}\right)=V_{1} U V_{2} \ldots V_{k}$ et $g_{i}\left[V_{j}\right] \sim h_{j}(1 \leqslant j \leqslant k)$.
Démonstration :

La démonstration est similaire à celle du lemme 1 , il suffit de remarquer que tout sous-graphe induit de G isomorphe à un élément g de g est uniquement déterminé par son ensemble des sommets.

C.Q.F.D.

II.2. - RECONSTRUCTION DES MULTIGRAPHES PARTIELS NON-CONNEXES D'UN MULTIGRAPHE :

En nous servant du lemme 1 nous obtenons une extension du lemme de Kelly aux multigraphes partiels non-connexes d'un multigraphe. Avant de donner cette extension, nous présentons un résultat concernant le dénombrement des sous-graphes d'un multigraphe.

Lemme 3:

Soit G un multigraphe d'ordre n. Soit F un multigraphe d'ordre $k(k \leqslant n)$. Soit q le nombre de sommets isolés de F. Soit H le graphe obtenu à partir de F en enlevant p sommets isolés $(p<q)$. Alors,

$$
n(F, G)=n(H, G) \times C_{n-k+p}^{p} / C_{q}^{p}
$$

Démonstration :

Formons la liste des sous-graphes de G isomorphes à F à partir de celle des sous-graphes de G isomorphes à II de la manière suivante. A chaque sous-graphe H_{G} de G isomorphe à $\|$ on ajoute p sommets isolés pris parmi les ($n-k+p$) sommets dans $V(G)-V\left(H_{G}\right)$. De cette façon à chaque élément de la première liste correspond C_{n-k+p}^{p} éléments de la deuxième liste (c'est-à-dire, celle que nous construisons). On a les propriétés suivantes dans la deuxième liste :

1) Tout sous-graphe de G isomorphe à F apparait dans cette liste.
2) Chaque sous-graphe de G isomorphe à F apparait exactement C_{q}^{P} fois dans la liste.
n'où le résultat.
C.Q.F.D.

Proposition 1 :

(Extension du lemme de Kelly aux multigraphes partiels non-connexes)

Soit G un multigraghe d'ordre $n \geqslant 3$ et F un unutigraphe non-connexe d'ordre no Alors,

$$
n(F, G) \text { est reconstructible. }
$$

Démonstration :

a) Supposons que F comporte q sommets isolés, $q>0$: Soit II le graphe obtenu à partir de F en enlevant les sommets isolés. En appliquant le lemene 3 avec $k=n, q=p$, on a $n(F, G)=n(H, G)$ et d'après le lemme de Kelly, $n(H, G)$ est reconstructible.
b) F ne comporte pas de sommets isolés : Soient $h_{1}, h_{2}, \ldots, h_{k}$
$(k>2)$ les composantes connexes de F. On a d'après le lemme 1 :

$$
\begin{align*}
& n\left(h_{1}, G\right) n\left(h_{2}, G\right) \ldots n\left(h_{k}, G\right)=\sum_{i \geqslant 1} b_{i} n\left(g_{i}, G\right)= \\
& \mid V\left(g_{i}\right) \sum_{k n} b_{i} n\left(g_{i}, G\right)+\sum_{\left|V\left(g_{i}\right)\right|=n} \sum_{i} b^{n}\left(g_{i}, G\right) \tag{1}
\end{align*}
$$

Interprétons $\left|V\left(g_{i}\right)\right|=n=b_{i} n\left(g_{i}, G\right):$
Pour $g_{i} \epsilon g$ tel que $\left|V\left(g_{i}\right)\right|=n$, tout recouvrement de $E\left(g_{i}\right)$ en $E_{1} \mathrm{UE}_{2} \ldots \mathrm{Cl}_{k}$ avec $g_{i}\left[E_{j}\right] \sim h_{j}, 1 \leqslant j \leqslant k$, constitue une partition de $V\left(g_{i}\right)$ car sinon on aurait $\left|V\left(g_{i}\right)\right|<\sum\left|V\left(h_{j}\right)\right|=n$.
Donc, $\left|E\left(g_{i}\right)\right|=\sum_{j=1}^{k}\left|E_{j}\right|=|E(F)|$ et cela entraîne $g_{i} \sim F$.
Ainsi le seul $g_{i} \in \operatorname{d}$ dordre n, pour lequel $b_{i} \neq 0$, est $g_{i} \sim F$:

$$
\begin{equation*}
\left|V\left(g_{i}\right)\right| \sum_{=n} b_{i} n\left(g_{i}, G\right)=b^{*_{n}(F, G)} \tag{2}
\end{equation*}
$$

En posant $k=k_{1}+k_{2}+\ldots+k_{p}$, où k_{1} représente le nombre de multigraphes h_{1} dans chaque classe disomorphisme de la famille $\left(h_{i}\right) 1<i<k$. Il est facile de voir que $b *=k_{1}!k_{2}!\ldots k_{p}!$ D'après (1) et (2) :
$n(F, G)=\left(n\left(h_{1}, G\right) n\left(h_{2}, G\right) \ldots n\left(h_{k}, G\right)-\sum_{\left|V\left(g_{i}\right)\right|<n_{i}} b_{i_{i}} n\left(g_{i}, G\right)\right) / b^{*}$
le second membre est reconstructible d'après le lemme de Kelly. D'où le résultat.
C.Q.F.D.

TI.3. - KECONSTRUCTION DU NOMBRE D'ARBRES ET DU NOMBRE DE MULTTGRAPIIES PARTTEIS CONNEXES UNICYCLIQUES ET IE

 CYCIE DE LONGUEUR P :Naturellement, la première étape d'une généralisation de la proposition 1 consiste à reconstruire le nombre d'arbres d'un multigraphe, isomorphes à un arbre donné. Ce problème a été abordé par Kucay (48) mais il reste irrésolu. Néamoins, Tutte (92), par une méthode longue et difficile a montré que le nombre de chaînes hamiltoniennes et le nombre d'arbres d'un multigraphe sont reconstructibles. Nous en donnons ici une démonstration simple de la reconstruction de ce dernier paramètre.

Proposition 2 :

Le nombre d'arbres d'un multigraphe G d'ordre $n \geqslant 3$ est reconstiuctible.

Démonstration :

Le nombre de multigraphes partiels de G comportant $n-1$ arêtes est reconstructible car il est égal à $\mathcal{G}_{\mathcal{E}(\mathrm{G}(\mathrm{G}) \mid}^{\mathrm{E}}$. Ce nombre est égal au nombre d'arbres de G, $a(G)$, plus le nombre de multigraphes partiels non-connexes de G ayant ($n-1$) arêtes.

Soitela classe des multigraphes non-connexes d'ordre n et de (n-1) aretes. On a :

$$
a(G)=G_{|G(G)|}^{n-1} \quad \underset{G \in \Theta}{\sum n(E, G)}
$$

D'après la proposition $1, n(G, G)$ est reconstructible quelque soit g appartenant à Θ.
C.Q.F.D.

Dans la suite, nous montrons la reconstruction du nombre de multigraphes partiels connexes unicycliques et le cycle de longueur p.

Lemme 4 :

Soit G un multigraphe d'ordre $n>3$, avec m arêtes. Soit L_{p}^{i} la classe des multigraphes d'ordre n, avec n arêtes et comportant exactement i cycles élémentaires de longueur p, $i>1$ et $p<n-1$. Soit O_{p} un cycle de longueur p. Alors :

$$
n\left(O_{p}, G\right) C_{m-p}^{n-p}=\sum_{i \geqslant 1} i \times\left(\sum_{g \in L_{p}} n(g, G)\right)
$$

Démonstration :

Soit C_{p} un cycle de longueur p de G. Le nombre de multigraphes partiels de G avec n arêtes et contenant C_{p} est C_{m-p}^{n-p}.

Notons par $J_{i}\left(C_{p}\right)$ la liste des multigraphes partiels de G avec n arêtes, comportant exactement i cycles de longueur p parmi lesquels se trouve C_{p}. On a :

$$
\sum_{i \geqslant 1}\left|J_{i}\left(c_{p}\right)\right|=c_{m-p}^{n-p}
$$

D^{\prime} où :

$$
n\left(O_{p}, G\right) x C_{m-p}^{n-p}=\sum_{C_{p}}\left(\sum_{i \geqslant 1}\left|J_{i}\left(C_{p}\right)\right|\right)=\sum_{i \geqslant 1}\left(\sum_{C_{p}}\left|J_{i}\left(C_{p}\right)\right|\right)
$$

Chaque multigraphe partiel de G avec n arêtes et comportant exactement i cycles de longueur p est contenu dans exactement i des listes :
$J_{i}\left(C_{p}^{1}\right), J_{i}\left(C_{p}^{2}\right), \ldots$, où les C_{p}^{j} sont les cycles de longueur p de G.

Donc, $\sum_{C_{p}}\left|J_{i}\left(C_{p}\right)\right|=i x$ (nombre de multigraphes partiels de G avec n arêtes et exactement i cycles de longueur p) $=$ i $x\left(\sum_{G \in L_{p}} i^{n}(g, G)\right)$

Et on a donc l'égalité annoncée.
C.Q.F.D.

Proposition 3 :

Soit G un multigraphe d'ordre $n \geqslant 3$ et de arêtes. Le nombre de multigraphes partiels de G, connexes, ayant n aretes et exactement un cycle de longueur $D \leqslant n-1, a_{p}(G)$, est reconstructible.

Démonstration :

Soit $d_{p}(G)$ le nombre de multigraphes partiels de G ayant n arêtes et exactement un cycle de longueur p. Soit $b_{p}(G)$ le nombre de multigraphes partiels de G, non-connexes, de n arêtes et avec exactement un cycle de longueur p. On a :

$$
a_{p}(G)=d_{p}(G)-b_{p}(G)
$$

1) $b_{p}(\dot{G})$ est reconstructible d'après la proposition 1
2) $d_{p}(G)$ est reconstructible. En effet, on a :

$$
d_{p}(G)=\sum_{g \in L_{p}^{1}} n(g, G)
$$

D'où, d'après le lemme 4 :

$$
d_{p}(G)=n\left(O_{p}, G\right) C_{m-p}^{n-p}-\sum_{i \geqslant 2} i x\left(\sum_{G \in L_{p}} n(g, G)\right)
$$

Pour $p \leqslant n-1, n\left(O_{p}, G\right)$ est reconstructible. $n(g, G)$ est reconstructible quelque soit $g \in L_{p}^{i}, i \geqslant 2$, car g est non-connexe (proposition 1). Donc, $d_{p}(G)$ est reconstructible.
(1) et (2) entraînent la reconstruction de ap(G).
C.Q.F.D.

I1 reste à reconstruire le nombre de multigraphes partiels de G, connexes, avec n arêtes et un cycle de longueur n, c'est-àdire le nombre de cycles haniltoniens de G.

Proposition 4:

Soit G un multigraphe d'ordre $n \geqslant 3$, avec m arêtes. Alors, le nombre de cycles hamiltoniens de G est reconstructible.

Démonstration :

Soit F_{n} la liste des multigraphes partiels de G avec n arêtes. C_{n} la liste des cycles hamiltoniens de G, D_{n} la liste des multigraphes partiels de G, connexes, avec n arêtes et un cycle de longueur inférieure ou égale à $(n-1), I_{n}$ la liste des multigraphes partiels de G, non-connexes, avec n arêtes.

On a les propriétés suivantes :

1) $\left|F_{n}\right|=\left|C_{n}\right|+\left|D_{n}\right|+\left|I_{n}\right|$
2) $\left|F_{n}\right|=c_{m}^{n}$
3) $\left|D_{n}\right|=\sum_{p=1}^{n-1} a_{p}(G) \quad$ (voir proposition 3)
4) $\left|I_{n}\right|=\sum_{g \in \Theta} n(g, G)$ où Θ est la classe des multigraphes nonconnexes d'ordre n et de n arêtes. Les égalités (2), (3) et (4) impliquent que $\left|F_{n}\right|,\left|D_{n}\right|$ et $\left|I_{n}\right|$ sont reconstructibles (d'après la proposition 3 et la proposition 1). Ainsi,
$\left|C_{n}\right|$ est reconstructible d'après l'égalité (1).
C.Q.F.D.

Proposition 5 :

Soit G un multigraphe d'ordre $n>3$. On a :

1) Le nombre de multigraphes partiels de G ayant exactement un cycle
2) Le nombre de multigraphes partiels connexes de G ayant exactement un cycle.
3) Le nombre de multigraphes partiels connexes de G avec n arêtes et comportant exactement un cycle de longueur $p \leqslant n$.
sont des paramètres reconstructibles.

Démonstration :
 des multigraphes non-connexes d'ordre n et avec exactement un cycle. Les deux termes de cette somme sont reconstructibles d^{\prime} après la proposition 1 et les propositions 3 et 4 respectivement.
2) Ce nombré est égal à $\sum_{p=1}^{n} a_{p}(G)$, qui est reconstructible d'après les propositions 3 et 4.
3) Ce n'est rien d'autre que les propositions 3 et 4 .

> C.Q.F.D.
II.4. - LES PARAMETRES $n^{*}\left(F_{2} G\right)$ et $m^{*}\left(F_{2} G\right)$:

On considère la reconstruction de deux paramètres relatifs au dénombrement des partitions de l'ensemble des sommets et de l'ensemble des arêtes respectivement, en des ensembles qui induisent des sous-graphes isomorphes aux multigraphes d'une liste donnée d'avance.

TI.4.1. - Reconstruction de $n^{*}\left(F_{2} G\right)$:
A l'aide du lemme 2 nous obtenons la reconstruction d'un paramètre, $n^{*}(F, G)$, qui a un rapport très étroit avec le nombre de multigraphes partiels non-connexes dont les composantes connexes sont isomorphes aux éléments d'une famille spécifiée d'avance.

Proposition 6 :

Soit G un multigraphe d'ordre $n \geqslant 3$.
Soit $\left(h_{i}\right)_{1<i \leqslant k}$ une famille de $k \geqslant 2$ multigraphes disjoints tel
que $\sum_{i=1}^{k}\left|V\left(h_{i}\right)\right|=n$. Soit $F \underset{i=1}{\underset{U}{\mathrm{U}} \mathrm{h}_{\mathrm{i}}}$. Alors,
$n *(F, G) \equiv$ le nombre de partitions de $V(G)$ en k sous-ensembles $V_{1}, V_{2}, \ldots, V_{k}$, telles qu'il existe une permutation φ de $\{1,2, \ldots, k\}$ pour laquelle: $G\left[V_{\varphi(i)}\right] \sim h_{i}, i=1,2, \ldots, k$, est reconstructible.

Démonstration :

D'après le lemme 2 :

$$
\begin{aligned}
& s\left(h_{1}, G\right) s\left(h_{2}, G\right) \ldots s\left(h_{k}, G\right)=\sum_{i \geqslant 1} a_{i} s\left(g_{i}, G\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \text { Interprétons } \\
& \underset{\left|\underset{i}{i}\left(g_{i}\right)\right|=n}{\sum_{i}} \quad s\left(g_{i}, G\right):
\end{aligned}
$$

Pour g_{i} tel que $\left|V\left(g_{i}\right)\right|=n$, on a $s\left(g_{i}, G\right)=1$ si $g_{i} \sim G$ et 0 sinon. Donc, $\underset{\substack{i>1 \\\left|V\left(g_{i}\right)\right|=n}}{a_{i}} s\left(g_{i}, G\right)=a_{G}$ où a_{G} est le nombre de k-uplets $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ tels que $V_{1} U V_{2} \ldots U V_{k}$ est une partition de $V(G)$ et $G\left[V_{i}\right] \sim h_{i}, \quad i=1,2, \ldots, k$.

Soit $k=k_{1}+k_{2}+\ldots+k_{p}$, où k_{1} représente le nombre de multigraphes h_{1} dans chaque classe d'isomorphisme de la famille ($\left.h_{i}\right)_{1 \leqslant i \leqslant k}$. On a $n^{*}(F, G)=a_{G} /\left(k_{1}!k_{2}!\ldots k_{p}!\right)$

D'où le résultat.

$$
C . Q . F . D .
$$

Applications de 1a proposition 6 :

Corollaire 1: Soit $G=(V, E)$ un graphe simple, connexe, d'ordre $n>3$. Alors :
(a) La liste des $G\{x, y\}$ avec $\{x, y] \in E(G)$ est reconstructible. (b) La liste des $G\{x, y\}$ avec $[x, y] f E(G)$ est reconstructible.

Démonstration :

(a) Soit fla classe des graphes simples F d'ordre n, $F=h_{1}$ Uh h_{2}, où h_{1}, h_{2} sont deux graphes disjoints, $h_{1} \sim K_{2}$ et h_{2} un graphe simple quelconque d'ordre ($n-2$). Dans ce cas, $n *(F, G)$ est égal au nombre de graphes partiels de G qui sont l'union de deux sous-graphes induits disjoints de G isomorphes à h_{1} et h_{2} respectivement. Alors on peut former la liste décrite en (a) de la manière suivante : pour chaque $F \in f$ tel que $n *(F, G)>0$, on ajoute à la liste $n^{*}(F, G)$ graphes isomorphes au graphe h_{2}.
(b) On peut reconstruire d'après le lenue de Kelly, la liste de tous les $G\{x, y\}$ de $G, x \neq y$. Alors la liste décrite en (b) n'est autre que celle qu'on obtient en supprimant de la liste de tous les $G\{x, y\}$, les $G\{x, y\}$ trouvés en (a).
C.Q.F.D.

$$
\text { Soient } \underset{i=1}{\substack{k \\ i=1}} \text { it } G \text { comme dans la proposition 6. Soit } n^{\prime}(F, G)
$$

le nombre de multigraphes partiels de G union disjointe de k>2 sous-graphes induits de $G, h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{k}^{\prime}$, tels que $h_{i}^{\prime} \sim h_{i}$,

Le multigraphe partiel dont les arêtes sont $e_{2}, e_{10}, e_{8}, e_{9}$, e_{7}, e_{12} est isomorphe à F mais il ne peut pas s'exprimer comme étant l'union de sous-graphes induits disjoints de G isomorphes à h_{1}, h_{2}, h_{3}, car $7 e$ sousgraphe $G\left[\left\{e_{8}, e_{9}\right\}\right] n^{\prime}$ est pas un sous-graphe induit de G.

Le multigraphe partiel dont les arêtes sont e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6} est isomorphe à F et il peut se décomposer en 1'union de sous-graphes induits isomorphes à h_{1}, h_{2}, h_{3}.

Corollaire 2 : La propriété $: n^{\prime}(F, G)>0$, est reconstructible. Démonstration $: n^{\prime}(F, G)>0$ si et seulement si $n^{*}(F, G)>0$.
C.Q.F.D.

On remarque que $n^{\prime}(F, G) \leqslant n^{*}(F, G)$. En effet, soient $L_{1}=1_{1}^{1}$ U $1_{2}^{1} \ldots U 1_{k}^{1}$ et $L_{2}=1_{1}^{2} U 1_{2}^{2} \ldots U 1_{k}^{2}$ deux multigraphes partiels de G vérifiant les propriétés énoncées plus haut. Soit $V_{i}^{j} l^{\prime}$ ensemble des sommets du graphe 1_{i}^{j}; Comme $V\left(L_{1}\right)=V\left(L_{2}\right)$, on doit avoir $E\left(L_{1}\right) \neq E\left(L_{2}\right)$, donc ill existe $x, y \in V(G)$ tels que $[x, y] \epsilon E\left(L_{1}\right)$ et $[x, y] \notin E\left(L_{2}\right)$. Par conséquent, il existe i tel que $x \in V_{i}^{1}$ et $y \in V_{i}^{1}$, tandis que x et $y n^{\prime}$ appartiennent pas à un même V_{j}^{2}, quelque soit j, car sinon on aurait $[x, y] \in E\left(L_{2}\right)$ (car les 1_{j}^{2} sont des sous-graphes induits de G). Donc, à chaque multigraphe partiel de G vérifiant les propriétés, on peut associer une partition de $V(G)$ différente, satisfaisant aux propriétés énoncées dans la définition de $n *(F, G)$. D'où 1e résultat.

L'inégalité peut être stricte, comme le montre l'exemple suivant :

II y a trois multigraphes partiels de G union disjointe de trois sous-graphes induits isomorphes à h_{1}, h_{2} et h_{3}, à savoir $F_{1}=\left(V(G),\left\{e_{1}, e_{3}, e_{6}, e_{8}\right\}\right), F_{2}=\left(V(G),\left\{e_{1}, e_{3}, e_{5}, e_{7}\right\}\right\}$ et $F_{3}=\left(V(G),\left\{e_{2}, e_{4}, e_{6}, e_{8}\right\}\right)$. Par contre, il y a quatre partitions de $V(G)$ en V_{1}, V_{2}, V_{3} telles que les sous-graphes induits par V_{1}, V_{2}, V_{3} soient isomorphes à h_{1}, h_{2}, h_{3}, à savoir : $\left.\left\{\begin{array}{l}1 \\ \{ \end{array}\right\},\{4,3,6,7\},\{1,2,8,9\}\right\},\{\{5\},\{3,4,8,9\},\{1,2,6,7\}\{$,
$\{1\},\{4,5,8,9\},\{2,3,6,7\}\}$ et $\{\{9\},\{1,2,5,6\},\{3,4,7,8\}\}$.

Mais lorsque les h_{i} sont connexes on a l'égalité :

Corollaire 3: Si (h_{i}) $1 \leqslant_{k} \leqslant k$ est une famille de k multigraphes connexes disjoints et $F \equiv \underset{i=1}{ } \mathbf{h}_{i}$, alors:

$$
n^{\prime}(F, G)=n^{*}(F, G)
$$

Démonstration :

11 suffit de montrer que $n^{*}(F, G) \leqslant n^{\prime}(F, G)$. Soit $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ une partition de $V(G)$ telle que $G\left|V_{i}\right| \sim h_{i}$, $1 \leqslant i \leqslant k$. Le multigraphe partie]. de $G, F^{\prime}=\underset{i=1}{\mathbf{U}} G_{i}\left\{V_{i} \mid\right.$, vérifie les propriétés énoncées dans la définition de $n^{\prime}(F, G)$. Considérons la relation d'équivalence de connexité du multigraphe F^{\prime}. L'ensemble quotient de cette relation n'est autre que $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$. Donc, on peut faire correspondre à chaque partition de $V(G)$ vérifiant les propriétés énoncées ci-dessus, un multigraphe partiel de G différent vérifiant les propriétés énoncées dans la définition de $n^{\prime}(F, G)$, d'où le résultat.

II.4.2. - Arête - Reconstruction de $m^{*}(F, G)$:

Le résultat donné dans ce paragraphe va nous permettre d^{\prime} étudier l'arête-reconstruction de certains paramètres. En particulier, nous montrons directement que lindice-chromatique est reconstructible et cela sans passer par le graphe adjoint (on remarque que l'indice-chromatique d'un multigraphe G est égal au nombre chromatique du graphe adjoint de G, $L(G)$).

Proposition 7 :

Soient $G, h_{1}, h_{2}, \ldots, h_{k}{\underset{k}{d e s} \text { multigraphes sans sommets isolés. }}_{\text {den }}$ $G=(V, E),|V|=n,|E|=m \geqslant 4, \sum_{i=1}^{k}\left|E\left(h_{i}\right)\right|=m, k \geqslant 2, F \equiv\left(h_{1}, h_{2}, \ldots, h_{k}\right)$. Alors le nombre $m^{*}(F, G)$ de partitions de $E(G)$ en k ensembles $E_{1}, E_{2}, \ldots, E_{k}$, tel qu'il existe une permutation φ de $\{1,2, \ldots, k\}$ pour laquelle $G\left[E_{(i)}\right] \sim h_{i}, i=1,2, \ldots, k$, est arête-reconstructible。

Démonstration :

Cette proposition est une conséquence directe de l'égalité donnée dans le lemme 1 :

$$
n\left(h_{1}, G\right) n\left(h_{2}, G\right) \ldots n\left(h_{k}, G\right)=\sum_{i \geqslant 1} b_{i} n\left(g_{i}, G\right)
$$

Nous allons décomposer la somme du côté droit de cette égalité :

$$
\begin{aligned}
& \sum_{i \geqslant 1} b_{i} n\left(g_{i}, G\right)=\sum_{i \geqslant 1} \quad b_{i} n\left(g_{i}, G\right)+\sum_{i \geqslant 1} \quad b_{i} n\left(g_{i}, G\right) \\
& \left|E\left(g_{i}\right)\right|<m \quad\left|E\left(g_{i}\right)\right|=m \\
& \text { Interprétons } \quad \underset{i \geqslant 1}{\Sigma} \quad b_{i} n\left(g_{i}, G\right) \text { : } \\
& \left|E\left(g_{i}\right)\right|=m
\end{aligned}
$$

Si $\left|V\left(g_{i}\right)\right|<n$ et $\left|E\left(g_{i}\right)\right|=m$ alors $n\left(g_{i}, G\right)=0$ car G ne comporte pas de sommets isolés.

Si $\left|V\left(g_{i}\right)\right|=n$ et $\left|E\left(g_{i}\right)\right|=m$ alors $n\left(g_{i}, G\right)=1$ si $g_{i} \sim G$ et 0 sinon.
Donc, $\sum_{i \geqslant 1} b_{i} n\left(g_{i}, G\right)=b_{G}=$ nombre de recouvrements de $E(G)$ en $\left|E\left(g_{i}\right)\right|=m$
$E_{1} \mathrm{UE}_{2} \ldots \mathrm{UE}_{k}$, tels que $G\left[E_{i}\right] \sim h_{i} i=1,2, \ldots, k$.

Soit $k=k_{1}+k_{2}+\ldots+k_{p}$, où k_{i} représente 1 e nombre de multigraphes h_{i} dans chaque classe dijsomorphisme de la famille $\left(h_{i}\right)_{1 \leqslant i \leqslant k}$.
$m^{*}(F, G)=b_{G} /\left(k_{1}!k_{2}!\ldots k_{p}!\right)$
D'après l'égalité (1), b_{G} est arête-reconstructible si $m \geqslant 4$ et ainsi $m^{*}(F, G)$ est arête-reconstructible.
C.Q.F.D.

```
1I.5. - APPLICATION A LA RECONSTRUCTION DE CER'TAINS PARAMETRES :
II.5.1. - Reconstruction de }V(G), \beta(G), i(G) et le nombr
de couplages de cardinalité maximum :
```

Tutte a montré (92) que le polynôme chromatique est reconstructible. Par conséquent, le nombre chromatique est reconstructible. Nous donnons une démonstration directe de ce résultat.

Proposition 8 :

Si G est un graphe simple d'ordre $n \geqslant 3$ alors $\gamma(G)$ est reconstructible.

Démonstration :

Soient $h_{1}, h_{2}, \ldots, h_{k}, k \geqslant 2$ stables disjoints et $\sum_{i=1}^{k}\left|V\left(h_{i}\right)\right|=n$ Posons $F_{k} \equiv \underset{i=1}{k} h_{i}$. Sachant que $|E(G)|$ est reconstructible, on a :

1) $\mathrm{Si}|\mathrm{E}(\mathrm{G})|=0$ alors $\mathrm{P}(\mathrm{G})=1$
2) Si $|E(G)|>0$ alors $\gamma(G)=\min \left(k / n *\left(F_{k}, G\right)>0\right)$

Donc, $\gamma(G)$ est reconstructible d'après la proposition 6.
C.Q.F.D.

Proposition 9:

Soit $G=(V, E)$ un graphe simple, connexe, d'ordre $n \geqslant 3$. Le nombre d'absorption de $G, \beta(G)$, est reconstructible.

Démonstration :

Sachant que $\Delta(G)$ est reconstructible, on a :
(1) Si $\Delta(G)=n-1$ alors $\beta(G)=1$
(2) Si $\Delta(G) \leqslant n-2$: on considère 1^{\prime} ensemble $f=\left\{F / F=\left(X, Y, E_{F}\right)\right.$, biparti, non-connexe, $|X| \geqslant 2, \forall x \in X: d(x) \geqslant 1, \forall y \in Y: d(y)=1$, $|X|+|Y|=n\}$.

Dans ce cas, $\beta(G)=\min _{F \in f}|X|$. Donc, $\beta(G)$ est reconstructible $n(F, G)>0$
d'après la proposition 1.
C.Q.F.D.

Proposition 10 :
Soit G un multigraphe d'ordre $n \geqslant 3$. L'arête-connexité de $G, i(G)$, est reconstructible.

Démonstration :

$i(G) \equiv$ nombre minimum d'arêtes dont l'enlèvement déconnecte G.
Soit fla classe des multigraphes non-connexes d'ordre n. Montrons que :

$$
i(G)=\min _{\mathrm{F} \in f}(|E(G)|-|E(F)|)
$$

a) $|E(G)|-\left|E\left(F^{*}\right)\right| \geqslant i(G)$, pour tout multigraphe partiel non-connexe F^{*} de G.
b) Soit F^{*} un multigraphe partiel non-connexe de G obtenu à partir de G en enlevant $i(G)$ arêtes : $F^{*} \in f$ et $n\left(F^{*}, G\right)>0$, donc $\min \quad|E(G)|-|E(F)| \leqslant|E(G)|-\left|E\left(F^{*}\right)\right|=i(G)$ $\mathrm{F} \boldsymbol{\epsilon} \mathrm{f}$
$n(F, G)>0$
Comme $n(F, G)$ est reconstructible pour tout $F \in f$ (proposition 1) alors $i(G)$ est reconstructible.

Proposition 11:

Soit G un multigraphe d'ordre $n \geqslant 3$. Le nombre de couplages de cardinalité maximum de $G, \mathcal{C}(G)$, et la cardinalité du couplage maximum sont reconstructibles.

Démonstration :

Soitfla classe des multigraphes diordre n et degré maximum inférieur ou égal à 1 . Sachant que $|E(G)|$ est reconstructible, on a :

1) $\mathrm{Si}|\mathrm{E}(\mathrm{G})|=0$ alors $\mathrm{C}(\mathrm{G})=0$
2) Si $|E(G)| \neq 0$ alors $C(G)=n\left(F^{*}, G\right)$, où F^{*} est le graphe det ayant le plus grand nombre de composantes connexes isomorphes à K_{2} et dont $n\left(F^{*}, G\right)>0$. Comme $n(F, G)$ est reconstructible pour tout $F \in f$, alors $n\left(F^{*}, G\right)$ est reconstructible et par suite, $C(G)$ est reconstructible.

La cardinalité du couplage maximum est égale au nombre de composantes isomorphes à K_{2} dans F^{*}.
C.Q.F.D.
11.5.2. - Arête-reconstruction de $q(G)$ et $\$(G)$:

Une application directe de la proposition 7 est l'arêtereconstruction de l^{\prime} indice chromatique $q(G)$.

Proposition 12 :

Si G est un multigraphe sans boucles d'ordre n et de $m \geqslant 4$ arêtes. Alors $q(G)$ est arête-reconstructible.

Démonstration :

Soit $h_{1}, h_{2}, \ldots, h_{k}$ une liste de $k \geqslant 2$ multigraphes ${ }_{k}$ sans boucles dont chaque composante connexe est isomorphe à K_{2} et $\underset{i=1}{\sum}\left|E\left(h_{i}\right)\right|=m$. Sachant que 1 a séquence des degrés est arête-reconstructible, si. $m \geqslant 4$, on a:

1) Si $f x \in V(G), d_{G}(x)=1$ alors $q(G)=1$
2) Si $\exists x \in V(G)$ tel que $d_{G}(x) \geqslant 2$ alors $q(G) \geqslant 2$ et $q(G)=\min k$ $m^{*}(F, G)>0$ où F est défini à partir de $h_{1}, h_{2}, \ldots, h_{k}$, comme dans la proposition 7.
$m^{*}(F, G)$ est positif s'il existe une partition de $E(G)$ en k couplages isomorphes à $h_{1}, h_{2}, \ldots, h_{k}$ et $q(G)$ est le cardinal minimun d'une partition de $E(G)$ en couplages.

Comme m* (F,G) est arête-reconstructible pour F d'après la proposition 7 , donc $q(G)$ est arête-reconstructible.
C.Q.F.D.

Soit G un multigraphe connexe d'ordre n et de $m \geqslant 4$ arêtes. Soit F un multigraphe d'ordre n et de ($m-n+1$) arêtes. Soit T un arbre d'ordre n.

Lemme 5:

La propriété A : G admet un coarbre isomorphe à F dont 1^{\prime} arbre correspondant est isomorphe à T, est arête-reconstructible.

Démonstration :

Sachant que $|E(G)|=m$ est arête-reconstructible, on a :

1) Si m=n-1 alors le seul coarbre de G est un stable d'ordre n.
2) Si m>n-1 : Soit F^{\prime} le multigraphe obtenu à partir de F en enlevant tous les sommets isolés. D'après la proposition $7, \mathrm{~m}$ ($(\mathrm{F}, \mathrm{T}) ; \mathrm{G})$ est arête-reconstructible (car $m \geqslant 4$) et la propriété A est vraie si et seulement si m* (F, T); $G)>0$.
C.Q.F.D.

Proposition 13 :

La déficience de Betti, $\zeta(G)$, est arête-reconstructible.

Démonstration :

D'après le lemme 5, on sait arête-reconstruire l'ensemble des coarbres de G et donc on peut déterminer $\xi(G)$ car c'est le nombre minimum de composantes connexes avec un nombre impair d'arêtes dans un coarbre de G.
C.Q.F.D.

TI.6. - UNE GENERALISATION DES PROPOSITIONS 12 2 et 3 :

Les propositions 1, 2 et 3 se généralisent facilement comme suit.

Proposition 14 :
Soient n, p, q trois entiers avec $n \geqslant 3, p<n, q$ classes $g_{1}, g_{2}, \ldots, g_{q}$ de multigraphes ayant moins de n sommets. Pour tout multigraphe G d'ordre n, le nombre de suites ($G_{1}, G_{2}, \ldots, G_{q}$) telles que $G_{i} \in g_{i}, G_{i}$ est un sous-graphe partiel de G et $\left|\underset{i=1}{\mathbf{U}_{i=1}^{2}} v\left(G_{i}\right)\right|=p$, est reconstructible.

Lemme 6 :
Soit $\underset{i=1}{G=h_{i}} h_{i}$ un recouvrement d'un multigraphe G par $k \geqslant 1$ sous-graphes partiels non-séparables distincts. On a :
$|V(G)|-q<\sum_{i=1}^{k}\left(\left|V\left(h_{i}\right)\right|-1\right)$, où q est le nombre de composantes connexes de G .

Avec égalité si et seulement si chaque h_{i} est un bloc de G (par correction une boucle est un graphe non-séparable). Démonstration :

Evidemment, il suffit de démontrer le lenme pour les multigraphes connexes. Dans ce cas, on procède par récurrence sur k.

- Pour $k=1$, la propriété est évidente.
- Supposons la propriété vraie pour $k=j$. Nous allons montrer
 perte de généralité on peut supposer que $G_{j}=\mathbf{j}_{i=1}^{j} h_{i}$ est connexe. II. y a deux cas à envisager :

1) $\left|v\left(G_{j}\right) \cap v\left(h_{j+1}\right)\right|=1$. Dans ce cas h_{j+1} est un bloc de G_{j+1} et on a :

$$
\left|V\left(G_{j+1}\right)\right|-1=\left(\left|V\left(G_{j}\right)\right|-1\right)+\left|V\left(h_{j+1}\right)\right|-1
$$

Donc, si h_{1}, \ldots, h_{j} sont des blocs de G_{j} alors $h_{1}, h_{2}, \ldots, h_{j+1}$ sont les blocs de G_{j+1} et par hypothèse de récurrence : $\left|V\left(G_{j+1}\right)\right|-1=\sum_{i=1}^{j+1}\left(\left|V\left(h_{i}\right)\right|-1\right)$. Sinon, $h_{1}, h_{2}, \ldots, h_{j+1}$ ne sont pas les blocs de G_{j+1} et par hypothèse de récurrence : $\left|V\left(G_{j+1}\right)\right|-1<\sum_{i=1}^{j+1}\left(\left|V\left(h_{i}\right)\right|-1\right)$.
2) $\left|V\left(G_{j}\right) \cap V\left(h_{j+1}\right)\right|=p \geqslant 2$. Dans ce cas h_{j+1} n'est pas un bloc de G_{j+1} et on a :

$$
\left|V\left(G_{j+1}\right)\right|-1=\left(\left|V\left(G_{j}\right)\right|-1\right)+\left|V\left(h_{j+1}\right)\right|-p<\sum_{i=1}^{j+1}\left(\left|V\left(h_{i}\right)\right|-1\right)
$$

C.Q.F.D.

Proposition 15 :

Soit G un multigraphe connexe d'ordre $n \geqslant 3$ et ($\left.h_{i}\right)_{1 \leqslant i \leqslant k}$, une famille de $k \geqslant 2$ multigraphes non-séparables d'ordre $\geqslant 2$ et $<n$. Alors le nombre $1\left(h_{1}, h_{2}, \ldots, h_{k} ; G\right)$ de multigraphes partiels séparables de G dont les blocs sont isomorphes à $h_{1}, h_{2}, \ldots, h_{k}$, est reconstructible.

Démonstration :

1) $\mathrm{Si} \sum_{i=1}^{k}\left(\left|V\left(h_{i}\right)\right|-1\right) \neq n-1$ alors d'après le lemme 6 il $n^{\prime} e x i s t e r a ~ p a s ~ d e ~ m u l t i g r a p h e ~ p a r t i e l ~ s e ́ p a r a b l e ~ d e ~ G ~ d o n t ~ l e s ~$ blocs soient isomorphes à $h_{1}, h_{2}, \ldots, h_{k}$, donc $1\left(h_{1}, h_{2}, \ldots, h_{k} ; G\right)=0$.
2) On considère 1 e cas où $\sum_{i=1}^{k}\left(\left|v\left(h_{i}\right)\right|-1\right)=n-1$.

D'après le lemme 1 , on a :
$n\left(h_{1}, G\right) n\left(h_{2}, G\right) \ldots n\left(h_{k}, G\right)=\sum_{i \geqslant 1} b_{i} n\left(g_{i}, G\right)=$

Interprétons $\underset{\substack{i \geqslant 1 \\\left|v\left(g_{i}\right)\right|=n \\ g_{i} \text { connexe }}}{b_{i} n\left(g_{i}, G\right):}$
2.1) J'affirme que b_{i} est non-nul si et seulement si les blocs de g_{i} sont i somorphes à $h_{1}, h_{2}, \ldots, h_{k}$:

En effet, si $b_{i} \neq 0$ alors il existe un recouvrement $E_{1} U E_{2} \ldots E_{k}$ de $E\left(g_{i}\right)$ tel que $\left.g_{i} \mid E_{j}\right] \sim h_{j}, 1 \leqslant j \leqslant k$. Pour ce recouvrement on $a:\left|V\left(g_{i}\right)\right|-1=n-1=\sum_{j=1}\left(\left|V\left(g_{i}\left|E_{j}\right|\right)\right|-1\right)$.
En plus, les $E_{i}\left[E_{j}\right], \underset{j}{j=1}, \ldots, k$, sont tous distincts (car sinon on n^{\prime} aurait pas l'égalité ci-avant). Donc, on peut appliquer le lemme 6 , obtenant ainsi que 1 es $\mathrm{E}_{\mathrm{i}}\left[\mathrm{E}_{j}\right], j=1,2, \ldots, k$, sont les blocs de g_{i}. La condition suffisante est évidente.
2.2) b_{i} ne dépend pas de g_{i} : En effet, en posant $k=k_{1}+k_{2}+\ldots+k_{p}$, où k_{1} représente le nombre de multigraphes h_{1} $(1 \leqslant 1 \leqslant k)$ dans chaque classe d'isomorphisme de la famille ($\left.h_{i}\right)_{1 \leqslant i \leqslant k}$. On a $b_{i}=k_{1}!k_{2}!\ldots k_{p}$!

> D'après (2.1) et (2.2) :

$$
\begin{equation*}
=\prod_{i=1}^{k}\left(k_{i}!\right) 1\left(h_{1}, h_{2}, \ldots, h_{k} ; G\right) \tag{2}
\end{equation*}
$$

D'après le lemme de Kelly, la proposition 1 et l'égalité (1), c est reconstructible. Donc, d'après l'égalité (2), $1\left(h_{1}, h_{2}, \ldots, h_{k} ; G\right)$ est reconstructible.
C.Q.F.D.

CHAPITRE ITI

UNE CLASSE DE GRAPLIES ARETE-RECONSTRUCTIBLE

ER PROBLEMES OUVERTS

III. 1 - LES GRAPHES ADJOINTS DES GRAPIIES SIMPLES AVEC $\Delta(G) \geqslant 4$ SONT ARETE-RECONSTRUCTIBLES :

Dans ce paragraphe tous les graphes considérés seront des graphes simples. Nous montrons que les graphes adjoints des graphes simples avec $\Delta(G) \geqslant 4$ sont arête-reconstructibles.
(I) Les propriétés suivantes sont équivalentes (Berge (3), page 388) :
a) G est un graphe adjoint
b) Il existe une partition de $E(G)$ telle que chaque élément de la partition induit une clique de G et chaque sommet de G appartient au plus à deux de ces cliques.
c) G ne contient pas $K_{1,3}$ comme sous-graphe induit et si deux triangles impairs ont une arête commune, alors le sous \mathfrak{i} graphe induit par leurs sommets est K_{4} (un triangle de G est appelé impair s'il existe un sommet de G adjacent à un nombre impair de ses sommets).
d) Aucun graphe de la liste (1) n'est un sous-graphe induit de G :

?

,

,

liste 1

,

,

,

Soitg la classe des graphes adjoints des graphes de degré maximum $\geqslant 5$. Si $G \in g$ alors G contient une 5-clique.

Lemme 1:
gest arête-reconnaissable.

Démonstration :

Soit $G \in G^{\text {. Il }}$ faut montrer que toute arête-reconstruction H de G est un graphe adjoint comportant une 5-clique :

1) Si G est isomorphe à K_{5} alors K_{5} est la seule arêtereconstruction de G car K_{5} est arête-reconstructible (Harary (33)).
2) Si G n'est pas isomorphe à K_{5} alors :

- G comporte un sous-graphe sommet propre isomorphe à $K_{5}{ }^{\text {- }}$ Donc, d'après le lemme de Kelly (cas des arêtes), H contient une 5-clique.
- Pour montrer que H est un graphe adjoint, il suffit de montrer qu'il ne comporte pas de sous-graphe induit isomorphe à un des graphes de la liste 1 donnée plus haut: H ne peut pas être isomorphe à un élément déla liste 1 car H comporte une 5-clique; par conséquent, si H contenait un des graphes de la liste 1 , alors ce graphe serait un sous-graphe propre de H. Donc, d'après le lemme de Kelly (cas des arêtes), il serait aussi sous-graphe de G ce qui est impossible car $G \in \mathbf{g}$.

C.Q.F.D.

Proposition 1 :

gest arête-reqonstructible.

Démonstration :

Soit $G \in G^{\prime}$ et ($G_{e \in E(G)}$ la liste des sous-graphes propres maximaux de G. Comme G comporte une 5-clique alors il existe $G_{e^{*}}$ comportant un sous-graphe induit isomorphe à :

figure 1

Montrons que toute arête-reconstruction de G est isomorphe au graphe obtenu à partir de $G_{e}{ }^{*}$ en reliant les sommets x et y. En effet, s'il n'était pas ainsí, alors il existerait une arêtereconstruction de G avec un sous-graphe induit isomorphe au graphe de lafig. 1 qui fait partie de la liste 1 , ce qui est impossible d'après le lemme 1.
C.Q.F.D.

Soit g' la classe des graphes adjoints des graphes de degré maximum égal à 4. Si G \& g^{\prime} alors une clique d'ordre maximum de G est une 4-clique.

Lemme 2 :
g' est arête-reconnaissable.
Démonstration :
Soit Ge g' et H une arête-reconstruction de G. Il faut montrer que H est un graphe adjoint dont la clique maximum est d'ordre 4 :

1) Si G est isomorphe à K_{4}, alors K_{4} est la seule arêtereconstruction de G car K_{4} est arête-reconstructible (Harary (33)).
2) Si G n'est pas isomorphe à K_{4} alors :

- G comporte un sous-graphe sommet propre isomorphe à K_{4}, D'après le lemme de Kelly (cas des arêtes), H comporte une 4-clique. Alors, cette 4-clique est maximum car sinon H serait isomorphe à K_{5} et donc G serait isomorphe à K_{5} ce qui est impossible, ou H contiendrait proprement une 5-clique et donc G contiendrait une 5-clique d'après le lemme de Kelly (cas des arêtes), ce qui est impossible.
- Pour montrer que $\|$ est un graphe adjoint, il suffit de montrer qu'il ne comporte pas de sous-graphe induit isomorphe à un des graphes de la liste 1 : ll ne peut pasêtre isomorphe à un élément de cette liste car les graphes de cette liste comportant une 4-clique sont tous arête-reconstructibles (Harary et Palmer (33)); de plus, aucun élément de la liste 1 ne peut pas être isomorphe à un sous-graphe induit propre de H car dans ce cas G contiendrait aussi un tel sous-graphe d'après le lemme de Kelly (cas des arêtes), ce qui est impossible. Donc, H est un graphe adjoint.

Proposition 2 :

g' est arête-reconstructible.

Démonstration :

Soit $G \in \operatorname{gr}$ et $\left(G_{e}\right)_{e} \in(G)$ la liste des sous-graphes propres maximaux de G. Soit F un graphe sans sommets isolés avec $L(F) \sim G$. On sait que $\Delta(F)=4$. Considérons un sommet de F de degré 4 :

1) Supposons que F contient un sous-graphe partiel isomorphe à :

Alors, G contient le sous-graphe induit :

avec cette arête pour F_{1} sans cette arête pour \mathbf{F}_{2}

Donc, il existe un $G_{e *}$ avec un sous-graphe induit isomorphe à :

Etant donné que toute arête-reconstruction de G contient un sousgraphe partiel isomorphe à g_{1} alors tout graphe g^{\prime} dont le graphe adjoint est une arête-reconstruction de G, contient le sous-graphe partiel :

Dans g_{1}, e_{6} est adjacent à e_{2}. Il ne peut pas être adjacent à α dans $g^{\prime} \operatorname{car} \Delta\left(g^{\prime}\right)=4$. Par conséquent, e_{6} est adjacent à \mathbf{e}_{5} dans g_{1}.

Ainsi, toute arête-reconstruction de G s'obtient à partir de $G_{e^{*}}$ en joignant e_{5} et e_{6}, deux sommets bien précis de $G^{*}{ }^{*}$
2) Supposons que F ne contient pas de sous-graphe isomorphe à F_{1} ou F_{2} mais il contient un sous-graphe partiel isomorphe à :

G contient alors le sous-graphe induit :

Donc, il existe $G_{e *}$ contenant le sous-graphe induit:

tel que e^{*} appartient à une 4-clique pour toute arête-reconstruction de G. (D'après le lemme de Kelly (cas des arêtes), le nombre de 4-cliques contenant une arête spécifique est arête-reconstructible. Donc, on choisit un $G_{e^{*}}$ dont ce nombre est positif).

Toute arête-reconstruction de G est un graphe adjoint. Par conséquent, d'après (I.d), e* doit relier deux sommets du graphe précédent :

$$
e^{*}=\left[e_{5}, e_{3}\right],\left[e_{5}, e_{4}\right],\left[e_{5}, e_{6}\right],\left\lfloor e_{6}, e_{1}\right],\left[e_{6}, e_{2}\right] \text { ou }\left[e_{1}, e_{4}\right]
$$

2.1.) Supposons que $e^{k}=\left[e_{5}, e_{3}\right]$:

On aurait une arête-reconstruction de G comportant le sous-graphe induit :

Cette arête-reconstruction ne peut pas être isomorphe au graphe ci-dessus car ce graphe est arête-reconstructible (Harary, (33)) et G serait aussi isomorphe à lui, ce qui est faux. Donc, le sous-graphe ci-dessus est un sous-graphe arête propre de cette arête-reconstruction de G. D'après le lemme de Kelly (cas des arêtes), toute arête-reconstruction de G contient un sous-graphe induit isomorphe au graphe ci-dessus et cela implique que tout graphe dont le graphe adjoint est une arête-reconstruction de G contient un sous-graphe isomorphe à :

en particulier F, ce qui est impossible d'après les hypothèses. Donc, $e^{*} \neq\left[e_{3}, e_{5}\right]$.
2.2.) Supposons que $e^{*}=\left[\mathrm{e}_{5}, \mathrm{e}_{4}\right]$:

On aurait une arête-reconstruction H de G avec le sous-graphe induit :

Comme on a supposé que e* appartient à une 4-clique quelle que soit I^{\prime} arête-reconstruction de G, cette 4-clique ne peut être induite que par $\left\{e_{5}, e_{4}, e_{2}, x\right\}$ ou $\left\{e_{5}, e_{4}, x, y\right\}$, où x, y sont deux sommets différents de $e_{1}, e_{2}, \ldots, e_{6}$.

H doit contenir donc un des sous-graphes partiels :

Si. on a le cas (2.2.1.), d'après le lemme de Kelly (cas des arêtes) tout graphe dont le graphe adjoint est une arête-reconstruction de G contient le sous-graphe:

en particulier F_{1} serait contenu dans F, ce qui est impossible d'après les hypothèses.

Si on a le cas (2.2.2.), tout graphe dont le graphe adjoint est une arete-reconstruction de G contient un sous-graphe partiel. isomorphe à: .

(Si ef n'est adjacent ni à x ni à y)

(Si x est adjacent à e_{3})

(Si y est adjacent à e_{3})
en particulier F contiendrait F_{1} on F_{2}, ce qui est impassible d'après les hypothèses. Donc, $e^{*} \neq\left[e_{5}, e_{4}\right]^{\text {. }}$
2.3.) Supposons que $e^{*=}=\left[e_{5}, e_{6}\right]$:

On aurait une arête-reconstruction de G contenant le sous-graphe induit :

Donc, on aurait une arête-reconstruction de G contenant le sous-graphe induit :

ce qui est impossible car ce graphe est dans 1a liste 1. Donc, $e^{*} \neq\left[e_{5}, e_{6}\right]$.
2.4.) Les cas $e^{*}=\left[e_{6}, e_{2}\right]$ et $e^{*}=\left[e_{6}, e_{1}\right]$ sont similaires aux cas (2.1) et (2.2) respectivement et on arrive à ce que $e^{*} \neq\left[e_{6}, e_{2}\right]$ et $e^{*} \neq\left[e_{6}, e_{1}\right]$.

Finalement, seul le cas où $e^{*}=\left[e_{1}, e_{4}\right]$ convient. Ainsi, toute arête-reconstruction de G est isomorphe au graphe obtenu à partir de $G_{e^{*}}$ en reliant e_{1} et e_{4}, deux sommets bien précis dans $\mathrm{G}_{\mathrm{e}}{ }^{\text {• }}$
3) Supposons que F ne contient pas de sous-graphe partiel isomorphe à F_{1}, F_{2} ou F_{3} mais il contient un sous-graphe partiel isomorphe à :

Dans ce cas, il existe $G_{e *}$ contenant le sous-graphe induit :

tel que e^{*} appartient à une 4-clique. (D'après le lemme de Kelly (cas des arêtes), Le nombre de 4-cliques contenant une arête spécifique est arête-reconstructible. Donc, on choisit un G_{e} dont ce nombre est positif).

Comme les sommets $e_{1}, e_{2}, e_{4}, e_{5}$ induisent K_{13}, on doit avoir $e^{*}=\left\{e_{2}, e_{5}\right],\left[e_{4}, e_{5}\right]$ on $\left[e_{2}, e_{4}\right]$.
3.1) Supposons que $e^{*}=\left\{e_{2}, e_{5}\right]$ (1e cas $e^{*}=\left[e_{4}, e_{5}\right]$ est similaire) :

On aurait une arête-reconstruction de G contenant le sousgraphe induit

Comme e^{*} appartient à une 4 -clique de cette arêtereconstruction, cette 4 -clique serait induite par $\left\{e_{1}, e_{2}, e_{5}, x\right\}$ ou $\left\{e_{2}, e_{5}, x, y\right\}$, où x, y sont deux sommets différents de $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}{ }^{\circ}$

On a donc une arête-reconstruction II de G contenant un sous-graphe partiel isomorphe à :

(3.1.1.)

(3.1.2.)

Dans le cas (3.1.1), ou bien H est isomorphe au graphe de la fig. (3.1.1) ou H contient un sous-graphe partiel arête propre isomorphe au graphe de la figure (3.1.1). Dans le premier cas G serait isomorphe à H car Hest arête-reconstructible (Harary (33)) Dans le deuxième cas, d'après le lemme de Kelly (cas des arêtes), G contiendrait un sous-graphe partiel isomorphe à celui de la fig. (3.1.1). Quoi qu'il en soit, le graphe F contiendrait un sous-graphe partiel isomorphe à :

(Si e_{4} est adjacent à x)

(Si $e_{4} n^{\prime}$ est pas adjacent à x)
ce qui est impossible d'après les hypothèses.

Dans 1e cas (3.1.2), H contient un sous-graphe induit isomorphe à :

(Si $e_{4} n^{\prime}$ est adjacent
ni à x ni à y)

(Si e_{4} est adjacent à x (ou y))

D'après le lemme 2 et (I.d), ceci est impossible.

Finalement on a $e^{*}=\left[e_{2}, e_{4}\right]$ et toute arête-reconstruction de G est isomorphe au graphe obtenu à partir de $G_{e^{*}}$ en reliant e_{2} et e_{4}, deux sommets bien précis de $G_{e^{*}}$
4) Supposons que F ne tombe pas dans les cas (1), (2) ou (3). Donc, F ne contient pas de sous-graphe isomorphe aux graphes :

Donc, pour tout somnet x de degré $4: F\{\{x\} U I(x)]$ induit une composante connexe isomorphe à :

0 OL

On sait que si F est non-connexe, alors G est non-connexe (car F ne possède pas de sommet isolé) et donc G est arêtereconstructible. Si F est connexe, alors il est isomorphe à F_{5} ou F_{6} et on sait d'après Harary (33) que $L\left(F_{5}\right)$ et $L\left(F_{6}\right)$ sont arêtereconstructibles.

Finalement (1), (2), (3) et (4) impliquent que gi est arete-reconstructible.
C.Q.F.D.

Théorème 1 :

La classe des graphes adjoints des graphes de degré maximum $\geqslant 4$ est areete-reconstructible.
III.2) - QUELQUES PROBLEMES OUVERTS EN RECONSTRUCTION DE GRAPHES :

On constate que la reconstruction de graphes à partir d'une famille de sous-graphes constitue un problème où il reste beaucoup de choses à faire. On pourrait même établir une longue liste de problèmes concernant ce sujet ; par exemple, beaucoup de classes intéressantes de graphes restent à reconstruire.

La liste des problèmes ouverts que nous proposons ci-dessous est inspirée par les résultats connus et on peut espérer que les mêmes méthodes permettraient d'en venir à bout.

Nous exposons tout d'abord un problème qui est aussi fondamental que la conjecture d'Ulam :

Prob1ème 1 :

Supposons qu'on a une liste de n graphes simples nonétiquetés d'ordre $n-1, G_{1}, G_{2}, \ldots, G_{n}$, et on se demande s'il existe un graphe simple dont la liste de ses sous-graphes induits propres maximaux non-étiquetés est $G_{1}, G_{2}, \ldots, G_{n}$. Dans I^{\prime} affirmative, une telle liste sera appelée graphique. Le problème consiste à caractériser les listes graphiques.

Du point de vue algorithmique, on constate que la caractérisation des listes graphiques est un problème aussi compliqué que la vérification de l'isomorphisme de deux graphes :

En effet, soient G et H deux graphes simples connexes
 ramener au problème de savoir si une liste de graphes est graphique. Soit \widetilde{G} (respectivement \widetilde{H}) un graphe ayant exactement deux composantes connexes isomorphes à G (resp. H) et K_{2} respectivement. Soit $\widetilde{H}_{1}, \widetilde{H}_{2}, \ldots, \widetilde{H}_{n+2}$ la liste des sous-graphes induits propres maximaux non-étiquetés de \widetilde{H}. Soit (., \widetilde{H}_{i}), $1 \leqslant i \leqslant n+2$, le graphe obtenu à partir de \widetilde{H}_{i} en ajoutant un sommet isolé.

Exemple:

II:

$\left(., \tilde{\mathrm{H}}_{1}\right): \quad \ll$

$\left(., \widetilde{\mathrm{H}}_{4}\right): \cdot \bullet \cdot \quad$
$\left(., \tilde{H}_{5}\right): \cdot<$
$\left(0, \tilde{H}_{6}\right):$.

J^{\prime} affirme que G est isomorphe à H si et seulement si la liste $L=\left(\widetilde{G},\left(\ldots, \tilde{H}_{1}\right),\left(\ldots, \widetilde{H}_{2}\right), \ldots,\left(\ldots, \tilde{H}_{n+2}\right)\right)$ est graphique :

- Si L est graphique alors tout graphe qui réalise L comporte un sommet isolé (sinon, étant donné qu'il existe une composante connexe d'ordre $\geqslant 3$ alor's il existerait deux graphes sans sommets isolés dans la liste, ce qui est impossible). Comme \widetilde{G} est le seul graphe sans sommets isolés de la liste l, tout graphe qui réalise Ia liste L est isomorphe au graphe obtenu à partir de \widetilde{G} en ajoutant un sommet isolé. Ainsi, la liste (., \widetilde{G}_{1}), (., \widetilde{G}_{2}), .., (., \widetilde{G}_{n+2}) est la même que la liste (., $\left.\tilde{H}_{1}\right),\left(\ldots, \tilde{H}_{2}\right), \ldots,\left(\ldots, \tilde{H}_{n+2}\right)$ et donc la liste $\widetilde{G}_{1}, \widetilde{G}_{2}, \ldots, \widetilde{G}_{n+2}$ est la même que la liste $\widetilde{H}_{1}, \widetilde{\Pi}_{2}, \ldots, \widetilde{H}_{n+2}$, ce qui implique que $\widetilde{\mathbf{G}} \sim \tilde{I I}$ (car ce sont des graphes non-connexes).
 vérifie si une liste est graphique, rendrait polynômial la vérification de l'isomorphisme de deux graphes.

Smadici (82) propose un algorithme pour déterminer si une liste de graphes simples est graphique et dans le cas affirmatif, il construit un graphe qui réalise la liste. Malheureusement la justification est erronée. Nous donnons ici un contre-exemple qui montre que le procédé employé par Smadici n'est pas correct.

Soit G un graphe simple d'ordre n et v un sommet de G. Soit t_{i}^{v} le nombre de sommets de degré i dans G adjacents à $v, 1 \leqslant i \leqslant n-1$, et $s(G)=\left\{\left(t_{1}^{v}, t_{2}^{v}, \ldots, t_{n-1}^{v}\right) / v \epsilon V(G)\right\} . s(G)$ est reconstructible, c'est-à-dire, on peut l^{\prime} obtenir à partir des G_{v}. Soient $G_{1}, G_{2}, \ldots, G_{n}$, n graphes simples d'ordre $n-1$ non-étiquetés dont $q=\sum_{i=1}\left|E\left(G_{i}\right)\right| /(n-2$ est un entier non-négatif et $q \geqslant E\left(G_{i}\right)$, $1 \leqslant i \leqslant n$. L'algorithme de Smadici consiste à trouver un graphe H pour lequel $|E(H)|=q$, $s\left(H_{v_{i}}\right)=s\left(G_{i}\right), 1 \leqslant i \leqslant n, H_{v} \sim G_{1}$ (pour un $v \in V(H)$)et $s(H)$ soit égal à l'ensemble s obtenu à partir des G_{i}. Il affirme que si l'on arrive à trouver un tel graphe, alors la liste de ses sous-graphes induits propres maximaux non-étiquetés est $G_{1}, G_{2}, \ldots, G_{n}$. Je donne un contre-exemple à cette affirmation :

$$
\begin{array}{rlrl}
\text { On } a & :-|E(H)|=|E(G)| & & -H_{18:} \sim G_{18} \\
& -s\left(H_{i},\right)=s\left(G_{i}\right), 1 \leqslant i \leqslant 18 \quad & -s(G)=s(H)
\end{array}
$$

Mais la liste des H_{i}, non-étiquetés, $1 \leqslant i \leqslant 18$, est différente de celle des G_{i} non-étiquetés, $1 \leqslant i \leqslant 18$.

Problème 2 :

On sait que les graphes simples réguliers sont reconstructibles. Est-ce que les graphes simples bi-degrés, c'est-à-dire, dont le degré des sommets vaut p ou q (p, q deux entiers différents) sont reconstructibles ?

Problème 3 (Bondy (6)):

Est-ce que les graphes bipartis sont reconstructibles ?
Problème 4 (Bondy (6), Greenwell (29)) :

Est-ce que les graphes simples séparables avec des sommets pendants sont reconstructibles ?

Problème 5 (Bondy (6), Fiorini (20)):

Est-ce que les graphes planaires simples sont reconnaissables ?

Problème 6 (Bondy (6), Fiorini (20)):
Est-ce que les graphes planaires simples sont reconstructibles ?

```
Problème 7 (Kocay (48)):
```

Est-ce que le nombre de graphes partiels isomorphes à un arbre donné est reconstructible ?

Problème 8 (Bondy (6)):
Soit f un paramètre. Est-ce que la classe des graphes simples dont f vaut une valeur donnée est faiblement reconstructible ?

Problème 9 :
Montrer que le genre, lindice chromatique, la déficience de Betti, le nombre de Hadwiger, le diamètre, le nombre achromatique, sont des paramètres reconstructibles.

Problème 10 (Bondy (6), Weinstein (95)):
Montrer que les multigraphes d'ordre $\geqslant 3$ sont reconstructibles si les graphes simples d'ordre $\geqslant 3$ sont reconstructibles.

Les problèmes 2 à 10 restent ouverts pour 1'arêtereconstruction (sauf le problème 5 et 7 et les paramètres $\xi(G)$ et $q(G)$ qui sont arête-reconstructibles) et l'ensemble-reconstruction. Problème 11 (Bondy (6)) :

Trouver des méthodes constructives des résultats de Lovasz et Müller (voir chapitre , I) concernant l'arête-reconstruction de graphes.

BIBLIOGRAPHIE

(0) Arjomandi, E. :
"Some results on Ulam's conjecture".
M. Sc. thesis, University of Toronto, 1972.
(1) Arjomandi, E. ; Corneil, D.G.: "Unicyclic graphs satisfy Marary's conjecture". Canad Math Bull. 17 (1974), 593-596.
(2) Beineke, L.W. ; Parker, E.T. : "On non-reconstructible tournaments".
J. Combin. Theory 9 (1970), 324-326.
*(3) Berge, C. :
"Graphes et hypergraphes". Dunod, 1973.
*(4) Bondy, J.A. :
"On Kelly's congruence theorem for trees". Proc. Camb. Phila Soc. 65 (1969), 387-397.
*(5) Bondy, J.A. :
"On Ulam's conjecture for separable graphs". Pacific J. Math. 31 (1969), 281-288.

* (6) Bondy, J.A. ; Hemuinger, R.L. :
"Graph Reconstruction - A Survey".
Journal of Graph Theory, vol. 1 (1977), 227-268.
*(7) Bondy, J.A. ; Hemminger, R.L. :
"Reconstruction by enumeration - some applications of a counting theorem to the graph reconstruction problem" Problèmes Combinatoires et théorie des Graphes (Proceedings of the conference held in Paris, 1976) édité par J.C. Bermond, J.C. Fournier, M. Las Vergnas et D. Sotteau, 1978, pp 51-55.
* (8) Bondy, J.A. :
"Reflections on the legitimate deck problem".
Lecture notes in math., n° 686, Springer-Verlag, Berlin, 1978.
* (9) Bryant, R.M. :
"On a conjecture concerning the reconstruction of graphs".
J. Combin. Theory 11 (1971), 139-141.
* (10) Chartrand, G. ; Kronk, H.V. :
"On reconstructing disconnected graphs".
Ann. N.Y. Acad. Sci. 175 (1970), 85-86.
* (11) Chartrand, G. ; Kronk, H.V. ; Schuster, S. :
"A technique for reconstructing disconnected graphs". Colloq. Math. 27 (1973), 31-34.
*(12) Chinn, P.Z. :
"A graph with p points and enough distinct (p-2) - order subgraphs is reconstructible". Lecture Notes in math., vol. 186, Springer-Verlag, N.York, 1971, pp. 71-73.
(13) Cvetkovic, D.M. ; Gutman, I. :
"The reconstruction problem for characteristic polynomials of graphs". Univ. Beagrad. Publ. Elektrotehn. Fak., Ser. Mat. Fiz. 498-541, 45-48 (1975).
(14) Dedo, Ernesto :
"The reconstructibility of the characteristic polynomial of the line-graph of a graph". Boll. Un. Mat. Ital. A(5) 18(1981), n° 3, 423-429.
(15) Dörfler, W. : "Some results on the reconstruction of graphs". Infinite and Finite Sets, vol. I (Proceedings of the colloquium held in honor of Paul Erdös on his 60 th birthday, Keszthely, 1973), édité par A. Hajnal, R. Rado, V.T. Sós. Colloq. Math. Soc. János Bolyai, vol. 10, North-Holland, Amsterdam, 1975, pp. 361-383.
* (16) Dörfler, W. :
"On the edge-reconstruction of graphs".
Bull. Austral. Math. Soc., vol. 10 (1974), 79-84.
(17) Dutton, Ronald:
"C-graplis are recognisables and edge-reconstructibles". (Proceedings of the Eleven Southeastern Conference on Combinatorics, Graph theory and Computing. Florida Atlantic Univ., Boca Raton, Fla., 1980) Vol. I. Congr. Numer. $28(1980)$, 377-387.
(18) Fiorini, S. : "On the edge-reconstruction of planar graphs". Math. Proc. Cambridge Phil. Soc. 83 (1978), no 1, 31-35.
(19) Fiorini, S. :
"A theorem on planar graphs with an application to the reconstruction problem. I.".
Quart.J. Math. Oxford Ser. (2) 29 (1978), $n^{0} 115$, 353-361.
(20) Fiorini, S. ; Manvel, B. :
"A theorem on planar graphs with an application to the reconstruction problem. II.".
J. Combin. Inform. System Sci. 3 (1978), no 4, 200-216.
(21) Fiorini, S. ; Lauri, J.: "The reconstruction of maximal planar graphs, I. Recognition". J. Combin. theory Ser. B 30 (1981), n° 2, 188-195.
(22) Fiorini, S. ; Lauri, J.:
"On the edge-reconstruction of graphs which triangulate surfaces". Quart. J. Math. Oxford Ser. (2)33 (1982) no 130, 191-214.
(23) Fleischner, II. : "Ihe reconstiuction of the line-critical blocks". Ars Combinatorica vol. VII (1979), 223.
(24) Geller, D. ; Manvel, B. : "Reconstruction of cacti". Canad. J. Math. 21 (1969), 1354-1360.
(25) Giles, W. :
"On reconstructing maximal outerplanar graphs".
Discrete Math. 8 (1974), 169-172.
(26) Giles, W. :
"The reconstruction of outerplanar graphs".
J. Combin. Theory (B) 16 (1974), 215-226.
(27) Giles, W. :
"Point delections of outerplanar blocks".
J. Combin. theory (B) 20 (1976), 103-116.
(28) Giles, W. :
"Reconstructing trees from two-point delected subtrees". Discrete Math. 15 (1976), 325-332.
*(29) Greenwe11, D.L. ; Hemminger, R.L. : "Reconstructing graphs". Lecture notes in math., vol. 110, Springer-Verlag, New-York, pp. 91-114.
*(30) Greenwell, D.L. :
"Reconstructing graphs". Proc. Amer. Math. Soc. 30 (1971), 431-433.
*(31) Greenwe11, D.L. ; Hemminger, R.L. :
"Reconstructing the n-connected components of a graph". Aequationes Math. 9 (1973), 19-22.
*(32) Harary, Frank : "On the reconstruction of a graph from a collection of subgraphs". Theory of graphs and its applications. (Proceedings of the Symposium held in Prague, 1964) édité par M. Fiedler. Czechoslovak Academy of Science. Prague. pp. 47-52.
*(33) Harary, F. ; Palmer, E. : "A note on similar points and similar lines of a graph". Rev. Roumaine Math. Pures et Appli. 10 (1965), 1489-1492.
*(34) Harary, F. :
"On similar points of a graph". J. Math. Mech. 15 (1966), 623-630.
*(35) Harary, F.; Palmer, E. : "The reconstruction of a tree from its maximal subtrees". Canad. J. Math. 18 (1966), 803-810.
(36) Harary, F. ; Palmer, E. : "On the problem of reconstructing a tournament from subtournements". Monasth Math. 71 (1967), 14-23.
(37) Harary, F. :
"Graphical reconstruction". A seminar on graph theory, édité par F. Harary. Holt, Rinehart and Winston, New York, 1967, pp. 18-20.
(38) Harary, F. :
"The four color conjecture and other graphical diseases". Proof techiniques in Graph theory. (Proceedings of the Second Ann Arbor graph theory conference, Ann Arbor, Mich., 1968), édité par F. Harary, Academic Press, New York, 1969, pp 1-9.
*(39) Harary, F. ; Manvel, B. :
"The reconstruction conjecture for labeled graphs". Combinatorial structures and their applications. (Proceedings of the Calgary International Conference on Combinatorial structures and their applications, Calgary, Alberta, 1969), édité par R.K. Guy, H. Hanani. Gordon and Breach, New York, 1970, pp 131-146.
(40) Harary, F. :
"A survey of the reconstruction conjecture". lecture Notes in Math., vol. 406, Springer-Verlag, New York, 1974, pp 1-9.
(41) Harary, F. :
"Four difficult unsolved problems in graph theory". Recent Advances in Graph theory (Proceedings of the Symposium held in Prague, 1974), édité par M. Fiedier. Academia Prague, 1975, pp 249-256.
(42) Harary, F. :
"An exposition of the reconstruction conjecture for graphs". Bull. Malaysian Math. Soc. 7 (1976), 1-7.
(43) Harary, F. ; Plantholt, M. ; Statman, R. :
"The graph isomorphism problem is polynomially equivalent to the legitimate deck problem for regular graphs". Caribbean J. Math. 1 (1982), no 1, 15-23.
*(44) Hemminger, R.L. :
"On reconstructing a graph". Proc. Amer. Math. Soc. 20 (1969), 185-187.
(45) Huang, Qing Xiang ; Sheng Xian : "The reconstruction of a graph of points with six vertices unlabelled". J. Huazhong Inst. Tech. 9 (1981), no 6, 19-26.
* (46) Kelly, P. :
"A congruence theorem for trees". Pacific. J. Math. 7 (1957), 961-968.
* (47) Kocay, W.L. :
"An extension of Kelly's lemma to spanning subgraphs". Cong. Numer. 31 (1981), 109-1 20.
*(48) Kocay, W.L. : "On reconstructing spanning subgraphs".
Ars Combin. 11 (1981).
(49) Krishnamoorthy, V. : "The reconstruction conjecture and some related problems". PhD thesis, Karnatak University, 1976.
(50) Krishnamoorthy, V. :
"The reconstruction of critical blocks".
J. Math. Phys. Sci. 13 (1979), n® 3, 219-239.
(51) Lauri, J. :
"Edge-reconstruction of planar graphs with minimum valency 5".
J. Graph freory 3 (1979), $n^{\circ} 3$, 269-286.
(52) Lauri, J. :
"The reconstruction of maximal planar graphs. II. Reconstruction". J. Combin. theory Ser. B 30 (1981), n° 2, 196-214.
(53) Le Fever, J. ; Ray-Chaudhuri, D.K. :
"Reconstruction of 2-trees".
Notes Amer. Math. Soc. 23 (1976), A-611.
* (54) Lovász, L. :
"A note on the line reconstruction problem".
J. Combin. Theory (B) 13 (1972), 309-310.
* (55) Lovász, L. :

Combinatorial problems and exercises.
North-Holland Publishing Company, 1979.
(56) Manoley, J.P. : "A non-graph approach to Ulam's conjecture". Portugal Math. 36 (1977), n° 1, 1-6.

* (57) Manvel, B. :
"On reconstruction of graphs". Lecture Notes in Math., vol. 110, Springer-Verlag, New York, 1969, pp 207-214.
* (58) Manvel, B. : "Reconstruction of unicyclic graphs". (Proceedings of the Second Ann Arbor graph theory conference, Ann Arbor, Mich., 1968), édité par F. Harary, Acad. Press, New York, 1969, pp 103-107.
(59) Manvel, B. :
"On reconstruction of graphs".
PhD thesis, University of Michigan, 1970.
(60) Manvel, B. :
"Reconstruction of trees".
Canad. J. Math. 22 (1970), 55-60.
(61) Manvel, B. :
"Reconstruction of maximal outerplanar graphs".
Discrete Math. 2 (1972), 269-278.
(62) Manvel, B. :
"Reconstructing the degree-pair sequence of a digraph".
J. Combin. theory (B) 15 (1973), 18-31.
*(63) Manvel, B. :
"Some basic observations on kelly's conjecture for graphs".
Discrete Math. 8 (1974), 181-186.
(64) Manvel, B. :
"On reconstructing graphs from their sets of subgraphs".
J. Combin. theory (B) 21 (1976), 156-165.
(65) Manvel, B. ; Weinstein, J.M. :
"Nearly acyclic graphs are reconstructible".
J. Graph. Theory 2 (1978), $n^{\circ} 1,25-39$.
(66) Mc Avaney, K.L. :
"A conjecture on two-point-deleted subgraphs of cartesian products". Lecture Notes in Math., vol. 829, Springer-Verlag, Berlin, 1980, pp 172-185.
(67) Mc Kay, B.D. :
"Computer reconstruction of small graphs".
J. Graph Theory 1 (1977), 281-283.

```
*(68) Mulla, F.S. :
    "A class of graphs for which the Ulam's conjecture holds".
    Discrete Math. 22 (1978), no 2, 197-198.
*(69) Müller, V. :
    "The edge-reconstruction hypothesis is true for graphs
        with more than n log}\mp@subsup{2}{}{n}\mathrm{ edges".
    J. Combin. Theory (B) 22 (1977), 281-283.
*(70) Nash-Williams, C. St. J.A. :
    "The reconstruction problem".
    Selected Topics in graph theory. Academic Press,
    London, 1978, édité par Lowell et Wilson, pp 205-236.
    (71) Nebesky, L. :
    "Reconstruction of a tree from certain maximal proper
        subtrees".
    Čaśopi.s Pěst. Mat. 99 (1974), 44-48.
    (72) Nešetřil, J.:
    "On approximative isomorphisms and the Ulan-Kelly conjecture".
    Theorie der graphen und Netwerke. (Proceedings of the
    Eighteenth International Scientific Colloquium, Ilmenau.
    2, 1973) Technishe Hochschule, Ilmenau, pp 17-18.
    (73) Nijenhuis, A. :
        "Note on the unique determination of graphs by proprer
        subgraphs". Notices Amer. Math. Soc. 24, A-290.
            *(74) O'Neil, P.V. :
    "Ulam's conjecture and graph reconstructions".
    Amer. Math. Monthly 77 (1970), 35-43.
    (75) O'Neil, P.V.:
    "Nearly planar graphs and the reconstruction problem".
    Notices Amer. Math. Soc. 20 (1973), A-647.
```

* (76) O'Neil, P.V. :
"Reconstruction of a class of blocks".
Notices Amer. Math. Soc. 21 (1974), A-39.
*(77) Pouzet, M. :
"Quelques remarques sur les résultats de Tutte concernant le problème d'Ulam".
Publications du département de Math. de Lyon, 1977.
(78) Ramachandran, S. :
"On the reconstruction conjecture".
(Proceedings of the Symposium on graph theory. Indian Statis
Inst. Calcuta 1976). ISI Lecture Notes, 4, Macmillam of India, New De1hi, 1979, pp 246-250.
(79) Ramachandran, S. :
"A test for legitimate decks".
Discrete Math. 25 (1979), n° 2, 165-173.
(80) Ramachandran, S. :
"Nearly line regular graphs and their reconstruction".
Lecture Notes in Math., vol. 885, 1980, pp 391.
*(81) Ramachandran, S.:
"On reconstructing separables digraphs".
Lecture Notes in Math. édité par Dold et Eckmann, 1980, pp 406-409.
(82) Ramachandran, S. :
"On a new digraph reconstruction conjecture".
J. Combin. theory (B) 31 (1981), $\mathrm{n}^{\circ} 2$, 143-149.
(83) Schmeiche1, E.F.:
"A note on the edge reconstruction conjecture". Bu11. Austral. Math. Soc. 12 (1975), 27-30.
(84) Sheehan, J. :
"Fixing subgraphs and Ulam's conjecture".
J. Combin. theory (B) 14 (1973), 125-131.
*(85) Smadici, C. ; Smadici, L. :
"On a problem of Frank Harary".
An. St. Univ. "Al. I. Cuzal Iasi Sect I a math.
no $^{0} 18$ (1972), 299-304.
(86) Statman, R. :
"Reductions of the graph reconstruction conjecture".
Discrete Math. 36 (1981), n° 1, 103-107.
(87) Stockmeyer, P.K. :
"The reconstruction conjecture for tournaments".
Congressus Numer. vol. 14 (1975), 561-566.
(88) Stockmeyer, P.K. :
"New counterexemples to the digraph reconstruction conjecture".
Notices Amer. Math. Soc. 23 (1976), A-654.
(89) Stockmeyer, P.K. :
"The falsity of the reconstruction conjecture for tournaments". J. Graph Theory 1 (1977), 19-25.
(90) Stockmeyer, P.K. :
"Which reconstruction results are significant ?". The theory and applications of graphs. (Kalamazoo, Mich., 1980), Wiley, New York, 1981, pp 543-555.
*(91) Tutte, W.T. :
"On dichromatic polynomials".
J. Combin. Theory 2 (1967), 301-320.
*(92) Tutte, W.T. :
"All the king's horses (a guide to reconstruction)". Graph theory and related topics. (Proceedings of the conference held in honor of W.T. Tutte on the occasion of the 60th birthday), édité par J.A. Bondy and S.K. Murty, Academic Press, New York, 1976.
* 93) Tutte, W.T. :
"The reconstruction problem in graph theory". The British Polymer Journal, Sept. 1977, 180-183.
(94) Ulam, S.M. :
"A collection of mathematical problems". Wiley (Interscience), New York, 1960, pp 29.
(95) Weinstein, J. :
"Reconstructing colored graphs". Pacif. J. Math. 57 (1975), 307-314.
(*) : articles consultés.

DEPNIERE PAGE D'UNE THESE
3E CYCLE DOCTEUR INGENIEUR OU UNIVERSITE

Vu les dispositions de l'arrêté du 16 avril 1974.
Vu les rapports de M. ... NGV.YEN HUY XUONG....
M. ...CHARLES PAYAN
M. O... MEZZA.. est autorisé
à présenter une thèse en vue de l'obtẹntion du grade de DOCTEUR .DE..3E.CYFIE..

Moin favor abl
Grenoble, le 22 NOV. 1983
Le Président de l'Université Scientifique et Médicale

M. TANCHE
ค

