
HAL Id: tel-00308796
https://theses.hal.science/tel-00308796

Submitted on 1 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cost-based query-adaptive clustering for
multidimensional objects with spatial extents

Cristian-Augustin Saita

To cite this version:
Cristian-Augustin Saita. Cost-based query-adaptive clustering for multidimensional objects with spa-
tial extents. Computer Science [cs]. Université de Versailles-Saint Quentin en Yvelines, 2006. English.
�NNT : �. �tel-00308796�

https://theses.hal.science/tel-00308796
https://hal.archives-ouvertes.fr

THÈSE / PhD THESIS

présentée à

L’UNIVERSITÉ DE VERSAILLES
SAINT-QUENTIN-EN-YVELINES

pour obtenir le titre de

DOCTEUR EN SCIENCES

Spécialité

Informatique

soutenue par

Cristian-Augustin SAITA

le 13 Janvier 2006

Titre

Groupement d’objets multidimensionnels étendus
avec un modèle de coût adaptatif aux requêtes

(Cost-based query-adaptive clustering
for multidimensional objects with spatial extents)

———
Directeur de thèse: Philippe Pucheral

Encadrant de thèse: François Llirbat
———

Jury

Michel Scholl Professeur des universités, CNAM-Paris rapporteur
Patrick Valduriez Directeur de recherche, INRIA-Rennes rapporteur
Jean-Marc Saglio Directeur d’études, ENST-Paris examinateur
Ioana Manolescu Chercheur, INRIA-Futurs Orsay examinateur
Philippe Pucheral Professeur, Université de Versailles directeur de thèse
François Llirbat Chercheur, INRIA-Rocquencourt encadrant de thèse

To my dear parents, and to my wonderful sister Eliza

Acknowledgements

I wish to express my most sincere gratitude and appreciation to many people who made
this PhD thesis possible.

I am highly indebted to Doctor François Llirbat, my supervisor, for accepting me to
carry out research in his area, for his guidance, thought-provoking ideas, encouragement
and support at all levels. Special thanks are due to Professor Philippe Pucheral, my PhD
director, who offered me much-appreciated advice and support throughout all my work.

I would like to thank the members of my PhD committee who took effort in reading
my dissertation and provided me with valuable comments and suggestions: Professor
Michel Scholl, Professor Patrick Valduriez, Professor Jean-Marc Saglio, Doctor Ioana
Manolescu, Professor Philippe Pucheral and Doctor François Llirbat.

Many thanks are due to the members of the Caravel Project at INRIA-Rocquencourt:
Eric Simon, François Llirbat, Françoise Fabret, Helena Galhardas, Ioana Manolescu, Joao
Pereira, and Daniela Florescu. They welcomed me in a friendly scientific environment;
they motivated and supported me to pursue my studies and to go on with my PhD
thesis. Special thanks to the senior members of the SMIS INRIA Project, where I had
the opportunity to finish my PhD work: Philippe Pucheral, Beatrice Finance, and Luc
Bouganim; and to Elisabeth Baque, our project assistant, who helped me with many
administrative issues and friendly thoughts.

I wish to express my appreciation to my colleagues at INRIA, dear and wonderful
friends: Sophie Giraud, François Dang-Ngoc, Nicolas Dieu, Cosmin Cremarenco, Adrian
Dragusanu, Lucian Precup, and Aurelian Lavric; and to my trustful and wonderful friends
from the University of Versailles: Tao Wan and Mathieu Decore, Xiaohui Xue and Sha
Fei, Veronika Peralta, and Clement Jamard. Thank you so much for your help and for
the great moments we had together.

I would like to thank all my teachers. More particularly, I express my sincere gratitude
to Professor Irina Athanasiu, from the Polytechnic University of Bucharest.

I dedicate this thesis to my family to whom I owe a lot: my parents, Petre and
Augustina Saita, my sister, Eliza, and his husband, Dragos Georgescu.

Last, I wish to mention the many people and dear friends I had the chance to meet
since I came in France: Lucian Precup and Celine Schawann, Adrian Dragusanu and
Magda Ciortan, Cosmin Cremarenco and Diana Radu, Lilan Wu and Raoul, Farida
Ibersiene, Liliana Cucu and Samuel, Minel Ferecatu and Ioana, Radu Pop, Florin Dra-
gan, Corina Ferdean, Nicoleta Preda, Daniel Calegari, Saida Medjdoub, Sonia Guehis,
Cristophe Schmitz, Cristophe Salperwyck, François Boisson, Adi Citu and Loredada, Dan
and Flori Olteanu, Gabriel Kaltman, Iulia Comsa, Iulian Mihai, Sorana Turcu, Khaled
Yagoub, Jean-Pierre Matsumoto, Mokrane Amzal, Dinial Bensallah, Didier Lemaire, and
Sebastien Combaz.

Cristian Saita

April 3rd, 2006

Versailles, France

Contents

1 Introduction 1

1.1 Motivating applications . 2

1.2 Challenge for the multidimensional indexing 4

1.3 Contributions . 8

1.4 Organization . 10

2 Problem specification and related work 11

2.1 Problem specification . 11

2.1.1 Data representation model . 11

2.1.2 Problem definition . 12

2.1.3 Requirements . 13

2.2 State-of-the-art . 14

2.2.1 Classification of multidimensional indexing methods 14

2.2.2 Space partitioning methods . 15

2.2.3 Region bounding methods . 19

2.2.4 Dynamic R-tree versions . 24

2.2.5 Static R-tree versions . 27

2.2.6 Cost-based R-tree extensions . 27

2.2.7 Limitations of region bounding methods 34

2.2.8 Conclusions . 38

2.3 Principles and characteristics of our clustering solution 40

2.4 Conclusions . 44

3 Cost-based query-adaptive clustering 46

3.1 Preliminary definitions . 46

3.2 Clustering strategy . 48

3.2.1 Outline of the clustering strategy 48

3.2.2 Application of the clustering strategy 49

i

3.3 Object grouping criterion . 51

3.3.1 Multidimensional space data representation model 51

3.3.2 Generic grouping model for multidimensional spatial objects . . . 52

3.3.3 Cluster signature and cluster subsignature 54

3.3.4 Object grouping methods . 56

3.3.5 Clustering function . 60

3.4 Cost model and benefit functions . 63

3.4.1 System performance parameters 63

3.4.2 Cluster performance indicators . 64

3.4.3 Cost model and database storage scenarios 65

3.4.4 Benefit functions supporting the clustering strategy 68

3.5 Conclusions . 70

4 Database clustering and manipulation algorithms 73

4.1 Notations . 73

4.2 Algorithms for database clustering operations 74

4.2.1 Cluster restructuring invocation 75

4.2.2 Cluster merge procedure . 78

4.2.3 Cluster split procedure . 80

4.3 Algorithms for database manipulation operations 83

4.3.1 Spatial query execution . 83

4.3.2 Data object insertion . 86

4.3.3 Data object deletion . 87

4.4 Conclusions . 88

5 Implementation and performance evaluation 91

5.1 Implementation considerations . 91

5.1.1 Database storage management . 91

5.1.2 Data structures supporting our clustering solution 93

5.2 Performance evaluation . 97

5.2.1 Experimental setup . 98

5.2.2 Search performance evaluation . 102

5.2.3 Behavior and adaptability study 112

5.3 Conclusions . 118

6 Conclusions and perspectives 120

6.1 Summary . 120

ii

6.2 Perspectives . 122

7 Resumé en Français – French Summary 124

7.1 Introduction . 124

7.1.1 Motivation du travail . 125

7.1.2 Exigences de performance . 126

7.1.3 Formulation du problème . 127

7.1.4 Contributions . 128

7.1.5 Organisation de la thèse . 129

7.2 Problème et état de l’art . 130

7.2.1 Spécification du problème . 130

7.2.2 Etat de l’art . 131

7.3 Groupement en clusters avec un modèle de coût adaptatif aux requêtes . . 134

7.3.1 Définition du cluster . 135

7.3.2 Processus de groupement en clusters 136

7.3.3 Fonctions supportant la stratégie de groupement 137

7.4 Algorithmes d’organisation et de manipulation de la base d’objets 138

7.4.1 Restructuration des clusters . 138

7.4.2 Exécution des requêtes spatiales 142

7.4.3 Opérations de mise à jour d’objets 144

7.5 Implémentation et évaluation expérimentale 146

7.5.1 Gestion de la mémoire et de l’espace de stockage 146

7.5.2 Evaluation expérimentale . 147

7.6 Conclusions et perspectives de recherche 147

iii

List of Figures

2.1 Representation of a range subscription as a multidimensional spatial object 12

2.2 An R-tree example . 21

2.3 The resulting R-tree after insertion of R10 21

2.4 MaxO threshold value with increasing disk page size 37

2.5 Overlap between MBRs of nodes resulting from directory node splits . . . 38

2.6 Spatial access methods: characteristics and limitations 39

2.7 Example illustrating the rationales of our clustering approach 43

3.1 Multidimensional data space representation model 52

3.2 Similar intervals . 53

3.3 Similar multidimensional spatial objects 54

3.4 An example to illustrate some possible clusters of spatial objects 55

3.5 Object grouping based on space division using all dimensions 57

3.6 Object grouping based on space division using one dimension 59

4.1 Cluster restructuring invocation . 75

4.2 Recursive cluster merges . 76

4.3 Recursive cluster splits . 77

4.4 Cluster merge procedure . 79

4.5 Cluster split procedure . 81

4.6 Spatial query execution algorithm . 84

4.7 Recursively determine the clusters to be explored 85

4.8 Object insertion procedure . 86

4.9 Object deletion procedure . 88

5.1 Data structures enabling the implementation of our clustering approach . 93

5.2 Possible representations for a cluster signature 94

5.3 Search performance in Memory for different query selectivities (uniform
data and query objects) . 103

iv

5.4 Search performance on Disk for different query selectivities (uniform data
and query objects) . 104

5.5 Search performance in Memory for different space dimensionalities (skewed
data) . 107

5.6 Search performance on Disk for different space dimensionalities (skewed
data) . 108

5.7 Search performance in Memory with regions of interest (spatial data and
query skewness) . 110

5.8 Search performance on Disk with regions of interest (spatial data and
query skewness) . 111

5.9 Performance evolution in Memory when dynamically changing query se-
lectivity . 113

5.10 Performance evolution on Disk when dynamically changing query selectivity114

5.11 Behavior of Adaptive Clustering in Memory when dynamically changing
data distribution . 116

5.12 Behavior of Adaptive Clustering on Disk when dynamically changing data
distribution . 117

7.1 Restructuration des clusters . 139

7.2 Fusion de cluster . 140

7.3 Eclatement de cluster . 141

7.4 Exécution des requêtes spatiales . 143

7.5 Insertion d’objet . 144

7.6 Suppression d’objet . 146

v

List of Tables

2.1 Average performance parameters of our execution platform 35

2.2 System parameters and MaxO with increasing disk page size 36

4.1 Notations . 75

5.1 Average I/O and CPU operations costs 99

5.2 Overlap degree between regions of interest 109

5.3 Cost comparison for different data organization methods 115

vi

Chapter 1

Introduction

The nowadays availability of high-speed, low-priced Internet access has globally led to an
explosion in the number of users and applications on-line. About 15 out of every 100 per-
sons around the world use the Internet today, and more than half a million people each
week are choosing broadband technology to gain permanent, high-speed Internet con-
nection [Int05]. With the Internet expansion, the number of on-line information sources
is permanently increasing. The World Wide Web (Web) has become a huge repository
of information in practically all domains of activity. In addition to enormous quantities
of static and long lasting data, larger and larger amounts of dynamic information are
nowadays deployed on the Web. Thanks to the large-scale high-speed connectivity, the
Web is now particularly well-suited for volatile, changing, and time-varying information.
With the accelerated penetration of the broadband technology, such information can be
instantly made available to millions of users and applications on-line. In this context,
monitoring the Web to track the new developments in a particular domain of interest
turns to be, for common users, an uneasy, time consuming task. The manifesting need
to facilitate user access to relevant information has become a critical concern. This con-
cern has triggered an accelerated development of a new class of applications focusing on
Selective Dissemination of Information (SDI applications) [AF00, FJL+01, Per02, LJ04].

Information dissemination applications involve timely delivery of relevant informa-
tion from and to large sets of registered clients such as users or applications. The entities
producing information are referred to as producers or publishers. The information is
delivered in packets called publications. The publications are emitted by publishers at
different time moments referred to as publication events. The entities interested in the
disseminated information are referred to as consumers or subscribers. The subscribers
express their interests in certain publications by means of subscriptions. The interaction
between publishers and subscribers is assured by the application system referred to as
“publish and subscribe system”. The role of the system is to manage the collection of
subscriptions, and to react to the incoming publication events by retrieving the match-
ing subscriptions and by delivering the relevant data to the concerned subscribers, in a
timely manner. Depending on the client needs and requirements, the data can be deliv-
ered either periodically, or according to some delivery schedules, as fast as possible, or
even instantly in critical and real-time applications. Common examples of SDI applica-
tions are related to digital libraries of publications, on-line stock trading and exchange,
auctions, news, forums, small ads and advertising. More complex SDI applications are

1

deployed in distributed network management systems, alerting, alarm, awareness and no-
tification systems, Enterprise Application Integration systems (EAI), financial security
and exchange systems, search engine marketing and service delivery systems.

Many of the new emerging information dissemination applications involve large quan-
tities of multidimensional data objects such as subscriptions and publications. The char-
acteristics of the data objects manipulated in these applications, and the performance
requirements that should be met, bring out new real challenges for the multidimensional
data indexing. These challenges have become the main motivation of our work.

1.1 Motivating applications

To illustrate the motivation of our work, we next present two application examples from
the SDI domain, showing some specific data characteristics and requirements that should
be met by our target applications.

Small ads notification system

The first application consists of a publish and subscribe notification system dealing with
small ads. For simplicity, we only consider demands and offers concerning apartments
for rent in the area of Newark. Here is an example of subscription corresponding to a
small ads demand: “Notify me of all new apartments within 30 miles from Newark, with
a rent price between 400$ and 700$, having between 3 and 5 rooms, and 2 bathrooms”.
In this subscription most attributes specify range intervals instead of single values: 0-30
as distance from Newark, 400-700 as rent price, 3-5 as number of rooms.

In general, range subscriptions are more suitable for publish and subscribe systems:
First, because it is neither always possible, nor appropriate, to provide exact matching
values for all the subscription attributes. Looking for an apartment with an exactly-
matching rent price would not make too much sense. Second, because the probability
of finding offers that match exactly and simultaneously all the attribute values is very
low. Rather than having no matching offer, the subscribers commonly prefer to consult
alternative offers, not exactly matching, but close enough to their wishes. By means of
range intervals, the subscribers can express much more flexible matching criteria, being
enabled to establish acceptable ranges of variation for the values of the subscription
attributes, according to their expectations. Therefore, range subscriptions are commonly
employed in many similar application cases [LJ04].

In the small ads application, potentially high rates of small ads offers, regarded as
incoming publication events emitted by publishers, need to be verified against the sub-
scription database. The publication objects can specify either single values, or range in-
tervals, for their attributes. An example of single-valued small ads publication is: “Rent
apartment, 10 miles from Newark, 3 rooms, 1 bathroom, 650$ a month”. An example of
range publication is: “Apartments for rent in Newark: 3 to 5 rooms, 1 or 2 bathrooms,
600-900 a month”. The system’s job is to retrieve the subscribers interested in the
incoming offers in order to notify them in a timely manner.

2

Data characteristics and performance requirements: Both subscription and publica-
tion objects can be represented as sets of <attribute, interval of values> associations.
The subscriptions matching an incoming publication are those whose intervals of val-
ues overlap the publication’s intervals for all the corresponding attributes. Retrieving
the qualifying subscriptions is equivalent to answering a multi-interval intersection query
between the incoming publication object and the subscription database.

Considering the number of potential clients such as Internet users or application
agents, this type of application could involve a large number of range subscriptions with
many attributes. Insertions of new subscriptions and removals of expired ones could
frequently occur. Therefore the application should be prepared to cope with frequent
subscription changes and updates. The number of publishers can be large, thus the rate
of emitted publication events can also be important. The application should be ready to
deal with medium to high rates of publication events. In such a context, the system’s
performance is an important consideration. In addition, in this type of application the
interests of the subscribers can vary in time, as well as the characteristics of the publi-
cations emitted by publishers. The application should take into account the distribution
of the subscription and publication objects to improve the system’s performance, and
to adapt it to important changes that might occur over time in the subscription and
publication patterns.

Image classification application

The second motivating example consists of an image classification application dealing
with large sets of image classes. Comparing and classifying images is a complex task: On
the one hand, relevant image similarity criteria have to be defined. On the other hand,
the high dimensionality involved in images requires high computation efforts. In practice,
different image features, such as distribution of colors, textures, and local shapes, are ex-
tracted and represented as multidimensional image descriptors. The image descriptors are
further used, instead of images, for comparison and classification purposes [AG01, GS04].
An example of a color-based image descriptor can be a three-dimensional histogram vec-
tor recording the amounts of red, green and blue from the corresponding image. In
general one expects that two similar images should have spatially-close image descrip-
tors. Choosing good image descriptors is an important consideration, often application
dependent. In practice, to better capture the human perception of image similarity, many
image features are considered, resulting in high dimensional image descriptors with tens
to hundreds of dimensions.

In the image classification domain, a possible image class definition consists of asso-
ciating an image class with a multidimensional range descriptor where each dimension
is represented by an interval of values. With respect to such a definition, a given image
belongs to a given class if the image descriptor has all its values falling in the intervals
of variation of the class descriptor. For instance, we could consider that all the images
having between 10% and 15% of red and between 35% and 45% of blue in their color
histograms belong to the same image class. An image classification application should
be able to manage large sets of image classes in order to quickly classify high rates of
incoming images represented by multidimensional image descriptors. For each occurring
image, all the qualifying image classes need to be retrieved. As part of the same applica-
tion, image class descriptors may also be compared to the image class collection in order

3

to answer queries like “Retrieve all the image classes overlapping, contained in, enclosing,
or having a similar shape with a given image class”.

Data characteristics and performance requirements: An image classification applica-
tion using multidimensional range descriptors has to answer multidimensional point and
spatial range queries (i.e., intersection, containment, enclosure queries) over a database
of multidimensional objects with spatial extents (hyper-intervals or hyper-rectangles)
representing image classes. In this case, the application objects involve many attributes
corresponding to different image descriptor dimensions. The collection of image classes
is rather static, but the rate of images submitted for classification can be important
(i.e., classification of images from image streams). The multidimensional aspect and the
system’s performance are two important considerations in such application cases.

1.2 Challenge for the multidimensional indexing

As shown in the two motivating examples, advanced publish and subscribe applications
use range intervals instead of single values for the subscription and publication attributes
[LJ04]. Such applications have to manage large collections of range subscriptions with
possibly many attributes (dimensions), to cope with high rates of incoming publication
events, to support frequent subscription updates (insertions and deletions), and to ac-
commodate data (subscriptions) and query (publication events) distribution changes. An
efficient multidimensional indexing solution is needed to meet the performance require-
ments of such applications.

Problem formulation

The subscription and the publication objects are commonly represented as sets of
<attribute, interval of values> associations. This format is widely used due to its sim-
plicity and flexibility in representing a large range of different types of information.
Considering each attribute as a different dimension, the subscription and the publication
objects can be represented in a multidimensional space where each dimension stands for
a different space axis. Under such a representation, range subscriptions and range pub-
lications can be regarded as multidimensional objects with axes-parallel spatial extents.
Such objects are known as hyper-intervals or hyper-rectangles, and also referred to as
multidimensional spatial objects or multidimensional extended objects.

Using this multidimensional space representation model, the collection of subscrip-
tions forms a database of multidimensional extended objects. Retrieving the subscrip-
tions matching the incoming publications is equivalent to answering spatial range queries
over the database of multidimensional extended objects representing the set of subscrip-
tions. In this context, the main problem we address is how to efficiently index a large and
dynamic collection of multidimensional extended objects in order to provide fast answers
to the spatial range queries corresponding to the publication events.

4

Requirements

The indexing solution should meet a number of requirements specific to information
dissemination applications:

• Scalability : Manage large collections of multidimensional extended objects with
possibly many dimensions and with possibly large extents over dimensions.

Data dissemination applications could involve large collections of subscriptions (up
to several millions) and significant numbers of subscription/publication attributes
(up to tens of dimensions). The subscriptions could involve attributes with large
acceptable ranges of values. Therefore the supporting multidimensional access
method should scale with the number of objects, cope with possibly high num-
bers of dimensions and also support the presence of spatial objects with possibly
large extents over dimensions.

• Search performance: Cope with high rates of spatial range queries.

In a number of applications the reactivity of the system is crucial (e.g., alerting,
alarm, awareness and notification systems). Some applications need to handle hun-
dreds to thousands of publication events per second (e.g, financial security and
exchange systems, stock trading, auctions). To support high rates of publication
events, the backing multidimensional indexing method should efficiently (quickly)
answer spatial range queries. Spatial range queries such as intersection, contain-
ment, or enclosure queries are particularly expensive because they need to explore
large portions of the data space.

• Update performance: Support frequent data object updates.

In many data dissemination applications, the collection of subscriptions is highly
dynamic, insertions of new subscriptions and removals of expired subscriptions fre-
quently occur. In such contexts, insertions of new objects and removals of existing
objects need to be fast, not to significantly affect the system availability.

• Adaptability : Take into consideration the spatial distribution of the data objects
(subscriptions) and of the query objects (publications) and dynamically accommo-
date important distribution changes that might occur over time.

In many publish and subscribe applications, the subscriptions tend to follow some
regions of interest, while the publications do not necessary listen to these interests.
In such contexts, taking into account the spatial distribution of the data objects
and of the query objects could considerably improve the search performance. The
interests of subscribers might vary in time, as well as the characteristics of the publi-
cations emitted by publishers. Important changes occurring in the data distribution
(i.e., subscription insertions or removals) or in the query distribution (i.e., changes
in publication patterns) could seriously degrade the search performance. Therefore,
dynamically accommodating changes in the data and in the query distribution is
an important consideration for our target applications.

At once meeting all these requirements represents a great challenge for the multidimen-
sional data indexing.

5

Limitations of existing solutions

Although the motivation of our work is introduced in a new setting (in the context of the
new emerging applications from the SDI domain), the problem of indexing multidimen-
sional objects with spatial extents is already known in literature. Numerous indexing
techniques have been proposed to improve the search performance over large collections
of multidimensional objects. For the special case of multidimensional objects with spatial
extents, an entire family of solutions originated and evolved from the R-tree technique.

The R-tree technique [Gut84] relies on minimum bounding to delimit space regions
that enclose completely and tightly spatial data objects or smaller bounding regions, in
a recursive manner. The space regions, commonly hyper-rectangles, are referred to as
minimum bounding regions or MBRs. The MBRs are hierarchically arranged in a height-
balanced tree. Each node of the tree corresponds to one page of secondary storage. The
data objects are stored or referenced in the leaf nodes of the tree. An entry in a leaf
node consists of an object identifier, and a MBR minimally enclosing the corresponding
data object. An entry in a non-leaf node consists of a pointer to a child node, and a
MBR minimally enclosing the MBRs from the lower levels of the corresponding child
node subtree. In order to enable a number of nice properties for the indexing structure,
such as tree height balance and minimal node/page storage utilization, the MBRs are
allowed to overlap, including at node level.

However, the overlap between MBRs is not a desirable feature because, during searches,
it determines exploration of multiple tree paths, with negative impact on the search per-
formance. All types of queries are affected, notably the spatial range queries that need to
explore larger portions of the data space. The presence of multidimensional spatial ob-
jects, with possibly large extents over dimensions, accentuates the global overlap between
MBRs. In addition, the overlap probability is increasing with the number of dimensions,
phenomenon known as “dimensional curse” [BKK96, BBK98b, BBK01]. As a result, dur-
ing spatial selections an important number of nodes/pages need to be accessed, notably
in a random manner. Random disk access requires disk head repositioning, inflicting
high I/O costs. This leads to serious degradation of the search performance, especially
in high dimensions. For these reasons, the usability of the R-tree method is limited to
applications involving only few dimensions and small volume spatial objects (e.g., close
to point objects).

Different tree construction strategies and node split heuristics have been proposed
to minimize the overlap between MBRs (e.g., Packed R-tree [RL85], R+-tree [SRF87],
R*-tree [BKSS90], Hilbert R-tree [FB93]). Despite many efforts, in high dimensions the
MBRs overlap remains too important, and the degradation of the search performance
can not be avoided. In spaces with more than 5-6 dimensions, too many nodes/pages are
accessed in a random manner and R-trees fail to beat the sequential scan which, in turn,
benefits of sustained data transfer between disk and memory [BBK98b, BK00]. Based on
this observation, structural changes have been proposed to R-trees as trade-off solutions
between random access and sequential scan: X-tree [BKK96], DABS-tree [BK00]. The
basic idea is to avoid splitting the nodes that induce high overlaps, and rather enlarge
their capacity, in order to replace several random accesses with sequential scan. Cost
models embedding the performance characteristics of the execution platform like I/O
and CPU parameters are used to decide whether nodes should be split or extended. In
general, the cost models take into account the data distribution and assume the query

6

distribution follows the data distribution. In practice, this assumption is in general not
true, especially in data dissemination applications.

Taking into account the query distribution and regarding the node access probability
when deciding node splits or extensions could help to improve the search performance.
Following this consideration, [TP02] proposes a general framework for converting tra-
ditional indexing structures to adaptive versions, exploiting the query distribution in
addition to the data distribution. The framework is employed to construct and maintain
Adaptive B-trees. A generalization is also proposed for Adaptive R-trees. According to
this method, optimal node size is determined based on statistical information associated
with the data space covered by the given node. Statistics concerning both data and query
distributions are maintained in a global histogram dividing the data space into bins/cells
of equal extent/volume. These statistics are used in a cost model, together with system
performance parameters, to estimate the node access cost. The suggested method is
impractical for high-dimensional R-trees and is not adapted for multidimensional objects
with spatial extents. First, because the number of histogram bins grows exponentially
with the number of dimensions and the maintenance cost becomes too important. Sec-
ond, because the deployed histogram is not suitable for spatial objects that could lay
over numerous bins.

Because SDI applications commonly involve frequent data object insertions and dele-
tions, another important aspect that needs to be considered in addition to the query
performance is the maintenance cost of the supporting indexing structure. It has been
noticed that the order in which the data objects are inserted in R-trees affects the search
performance [RL85, BKSS90]. Significant changes in the data distribution could also de-
grade the search performance. To alleviate these problems, different insertion strategies
have been proposed aiming to better adapt the tree structure to subsequent data inser-
tions: forced reinsertion of data objects or object redistribution between sibling nodes.
However, this is achieved at price of more complex and more expensive insertion and
node split procedures. Regarding the data deletion, when the occupancy level of a given
node decreases below a minimal usage threshold, the corresponding node is removed and
the remaining objects are reinserted in the tree structure or redistributed between sibling
nodes. The reinsertion of the remaining objects could trigger additional tree restructur-
ing operations. As a result, the deletion procedure can be quite expensive. In the context
of the target applications from the SDI domain, frequent object insertions and deletions
could trigger complex tree restructuring operations, resulting in high maintenance costs.

Considering the evolution and the limitations of the existing multidimensional access
methods, we can conclude that a new cost-based query-adaptive indexing method is
required to handle spatial objects with possibly many dimensions and with possibly large
extents over dimensions and to cope with spatial range queries. This indexing solution
should be able to gather suitable data and query statistics and to integrate them in a
cost model meant to decide optimal node page sizes with respect to the performance
characteristics of the execution platform and so to avoid the degradation of the search
performance below a naive solution such as sequential scan. The indexing method should
support fast data object insertions and deletions, and also adapt to important changes
in data and query patterns.

7

Considerations

As the main objective of our work was to develop a multidimensional indexing solution
suitable for applications from the SDI domain, we first investigated the characteristics of
this type of applications. We noticed that in practice some attributes are more selective
and more discriminatory than others in certain space regions. In such contexts, taking
into account the spatial distribution of the query objects could help to improve the object
grouping and thus the search performance. To emphasize this idea, we next consider an
example from the small ads application.

Example 1 It is reasonable to assume that the small ads database contains an important
number of subscriptions interested in low price apartments. Nevertheless, most of the
offers occurring in practice are likely to propose moderate and high price apartments.
Therefore the subscriptions interested in low price apartments will not be matched most
of the time. Based on this observation, we could extract and group in a separate cluster all
the subscriptions interested in cheap apartments. Such an action would help to improve
the system’s average performance by avoiding to check a large fraction of the subscription
database every time that moderate and high price offers are processed.

Following this rationale, an important goal of our work was to develop a multidimensional
indexing method able to exploit the spatial distribution of the query objects, notably the
difference in access probability among dimensions and space regions, as means to assist
the object grouping and thus to improve the average performance of spatial queries.

Another goal of our work was to have an indexing method assisted by a cost model
taking into account the actual performance characteristics of the execution platform.
Such a cost model is essential to monitor the query search performance and to ensure for
spatial range queries better average performance than sequential scan.

With the recent proliferation of large-memory systems, efficient indexing solutions
working in main memory are also of great interest to applications from the SDI domain,
notably in connection with critical and real-time systems. Therefore, a cost model is also
necessary in memory to decide optimal node page sizes with respect to the corresponding
performance parameters. For this reason, we wanted a cost model flexible and easy to
adapt to different storage scenarios such as disk-based storage and main memory storage.

1.3 Contributions

As an alternative to classical multidimensional indexing methods, we propose a cost-
based query-adaptive clustering solution meant to improve the average performance of
spatial range queries over large and dynamic collections of multidimensional objects with
spatial extents. Our clustering approach consists of dynamically grouping the spatial
objects in clusters with respect to both data and query distributions and taking into
account the performance characteristics of the execution platform.

Our clustering solution is based on the following principles:

• A grouping criterion suitable for multidimensional objects with spatial extents is
used to support the object clustering

8

A cluster regroups spatial objects with similar intervals (i.e., similar locations and
similar extents) in a reduced subset of dimensions, namely the most selective and
discriminatory dimensions and domain regions relative to the query objects. To
identify the best grouping dimensions and domain regions, the grouping criterion
is used to deterministically partition each cluster into a number of candidate sub-
clusters representing future cluster candidates. Data and query statistics are main-
tained for all the candidate subclusters and employed in a cost model to estimate
the search performance of the candidate subclusters. The candidate subclusters
promising the best profits with respect to the average search performance are cho-
sen to become new clusters.

• A cost model is used to support clustering decisions such as creation of new prof-
itable clusters and removal of older inefficient clusters

The cost model embeds a number of system parameters affecting the query exe-
cution such as disk access/seek time, disk transfer rate, memory access time, and
object check rate, and makes use of data and query statistics associated with clus-
ters and with candidate subclusters to evaluate the search performance of existing
clusters and to estimate it for candidate subclusters. The cost model is employed
to support decision for the following clustering operations:

1. Creation of new profitable clusters

New clusters are chosen from among the candidate subclusters and are only
created (materialized) if they are expected to improve the average performance
of spatial queries.

2. Removal of inefficient clusters

Clusters having lost their profitability as result of changes in the data or in
the query distribution are removed.

The cost model is flexible and can be adapted according to different storage sce-
narios such as disk-based storage and main memory storage.

Our clustering solution is meant to provide the following features:

• Ensure for spatial range queries better average performance than sequential scan
in virtually every case (i.e., in spaces with many dimensions, for large collections
of spatial objects, in the presence of data objects with possibly large extents over
dimensions)

• Take into account the spatial query distribution and dynamically adapt the object
clustering to important changes that might occur over time in the data or in the
query distribution

• Adapt the object clustering to the performance characteristics of the execution
platform according to the storage scenario

• Support fast database update operations (i.e., data object insertions and deletions)

9

1.4 Organization

The rest of this dissertation is organized in five chapters as follows.

Chapter 2 presents the problem that we address and reviews the related work. We
show that our problem belongs to the multidimensional data indexing domain. The char-
acteristics and the requirements of our target applications represent a great challenge for
this domain. In this context, we review the existing multidimensional indexing meth-
ods, presenting the evolution, the features and the limitations of the indexing techniques
applicable in our case. We finally present the driving principles and outline the main
characteristics of the clustering method that we propose as an alternative solution.

Chapter 3 presents the main elements of our clustering solution, namely the cluster-
ing strategy, the object grouping criterion, and the cost model supporting the clustering
decisions. We first explain the clustering strategy and describe the clustering process.
Then we present the object grouping criterion enabling the implementation of our clus-
tering strategy. Finally, we detail the cost model used to assist clustering decisions like
creation of new profitable clusters and removal of inefficient clusters.

Chapter 4 provides algorithms and execution procedures for object clustering oper-
ations and for standard database manipulation operations. Implementation, cost and
complexity aspects are addressed. We first consider the cluster restructuring operations
used to accomplish the database clustering: cluster restructuring invocation, cluster split,
and cluster merge. Then we provide and discuss algorithms for standard database ma-
nipulation operations: spatial query execution, data object insertion and data object
deletion.

Chapter 5 considers implementation related aspects and proceeds to an advanced per-
formance evaluation study. We first provide details on the database storage management
and on the memory management. Then we present a series of experiments meant to eval-
uate the performance and the efficiency of our clustering method, and to compare it to
alternative solutions. We experimentally show that our method is efficient and practical
for different datasets, workloads and storage scenarios.

Chapter 6 concludes this thesis with a summary of our contributions and some re-
marks about future work.

10

Chapter 2

Problem specification and related
work

In the context of the new emerging publish and subscribe applications, retrieving the
subscriptions matching the publication events is equivalent to answering spatial range
queries over a dynamic collection of multidimensional objects with spatial extents. The
problem of indexing multidimensional objects with spatial extents is already known in
literature. Numerous indexing techniques have been proposed to improve the search
performance over large collections of multidimensional objects. In this chapter we first
present the problem that we address. Then we review the existing multidimensional
indexing solutions, with emphasis on the features and the limitations of the indexing
solutions suitable for this problem. We finally present the driving principles and the
main characteristics of the clustering solution that we propose as an alternative to the
existing multidimensional indexing methods.

Chapter organization Section 2.1 presents the problem that we address. Section 2.2
reviews the state-of-the-art. Section 2.3 emphasizes the principles and the characteristics
of our clustering solution.

2.1 Problem specification

We first introduce the generic data model that we use to represent the data objects
manipulated in advanced information dissemination applications (Section 2.1.1). Then
we define the problem that we address and present the main characteristics (Section 2.1.2)
and requirements of this problem (Section 2.1.3).

2.1.1 Data representation model

As shown in the introduction, advanced publish and subscribe applications use range
intervals instead of single values for the subscription and publication attributes. The
subscription and the publication objects are commonly represented as sets of <attribute,
interval of values> associations. This format is widely used due to its simplicity and
flexibility in representing a large range of different types of information.

11

Number of Rooms

1

6

4

5

20

60

100

110

10

7

50

2

3

70
80

90

40
30

1 2 3 4 5 6 7 8 9 10 11 12

Rent Price (x100$)

Distance (miles)

3 − 5

0 − 30

400 − 700

Figure 2.1: Representation of a range subscription as a multidimensional spatial object

Considering each attribute as a different dimension, the subscription and the pub-
lication objects can be represented in a multidimensional space where each dimension
stands for a different space axis. Under such a representation, range subscriptions and
range publications can be regarded as multidimensional objects with axes-parallel spatial
extents. Multidimensional objects with axes-parallel spatial extents are also known as
hyper-intervals or hyper-rectangles. We also refer to them as multidimensional spatial
objects or multidimensional extended objects.

Example 2 The usage of a multidimensional space data representation model in a pub-
lish and subscribe application is illustrated in Figure 2.1. The figure depicts a three-
dimensional spatial object corresponding to the following small ads subscription: “Look-
ing for an apartment within 30 miles from Newark, with a rent price between 400$ and
700$, and having between 3 and 5 rooms”. The three axes from the figure correspond to
the three subscription attributes: the distance from Newark (where the given subscrip-
tion ranges between 0 and 30), the rent price (where the subscription ranges between 400
and 700), and the number of rooms (where the subscription ranges between 3 and 5).

Single values for subscription and publication attributes can be also represented in
the multidimensional space. They can be simply modeled as zero-length intervals. In
particular, multidimensional points, with single values in all dimensions, can be regarded
as multidimensional spatial objects with zero-length extents in all dimensions. Such
objects can be used to represent subscriptions or publications with exact values for all
the attributes. However, the main target of our applications are spatial objects with real
extents over dimensions such as range subscription and range publication objects.

2.1.2 Problem definition

Using the multidimensional space data representation model, the collection of subscrip-
tions forms a database of multidimensional extended objects. The publication objects
are also multidimensional objects with spatial extents. Thus retrieving the subscriptions

12

matching the incoming publication events is equivalent to answering spatial range queries
over the database of multidimensional extended objects representing the set of subscrip-
tions. Several types of spatial range queries are of special interest for data dissemination
applications:

• Intersection Queries

An intersection query aims to find all the data objects whose intervals intersect the
intervals of the query object in all the dimensions.

• Containment Queries

A containment query aims to find all the data objects whose intervals are enclosed
by the intervals of the query object in all the dimensions.

• Enclosure Queries

An enclosure query aims to find all the data objects whose intervals enclose the
intervals of the query object in all the dimensions.

• Similar-shape Queries

A similar-shape query aims to find all the data objects whose intervals are similar
to the intervals of the query object in all the dimensions. By similar intervals
we understand intervals with close spatial locations and extensions. Maximum
acceptable variation values with respect to the interval bounds of the query object
need to be provided as part of the selection criterion.

In this context, the main problem that we address is how to efficiently index a large and
dynamic collection of multidimensional extended objects in order to provide fast answers
to spatial range queries. This problem belongs to the multidimensional data indexing
domain. The needs to manage multidimensional objects with spatial extents and to cope
with spatial range queries are the main characteristics of our multidimensional indexing
problem.

2.1.3 Requirements

As shown in the introduction, the multidimensional indexing solution to our problem
should meet a number of general application requirements regarding the following aspects:

• Scalability

– Scale with the number of spatial objects, and also cope with many dimensions
and with spatial objects with possibly large extents over dimensions.

• Search performance

– Support high rates of spatial range queries such as intersection, containment,
enclosure and similar-shape queries.

• Update performance

– Support frequent data object insertions and deletions without significantly affect-
ing the system availability.

13

• Adaptability

– Take into consideration the spatial distribution of both data objects and query
objects and also dynamically accommodate important distribution changes that
might occur over time in data and query patterns.

At once meeting all these requirements represents a great challenge for the multidimen-
sional data indexing.

Because the problem that we address belongs to the multidimensional data indexing
domain, we need to refer to the related work from this domain. The state-of-the-art is
presented in the following section.

2.2 State-of-the-art

The problem of indexing multidimensional objects with spatial extents is already known
and has been widely addressed in literature. During the last three decades, numerous
indexing techniques have been proposed to improve the search performance over large
collections of multidimensional objects. Several surveys [GG98, BBK01, RSV01, Yu02,
MNPT03] review and compare most of the existing multidimensional access methods
with respect to different environments or applications.

In this section, we review the existing multidimensional indexing solutions, with em-
phasis on those relevant to our work, notably supporting multidimensional objects with
spatial extents. A classification of the existing multidimensional access methods is pro-
vided in Section 2.2.1. Following this classification, we first review the multidimensional
indexing solutions from the space partitioning family (Section 2.2.2). Then we focus on
the indexing approaches based on the R-tree technique, also referred to as region bound-
ing methods. The R-tree technique and the evolution of the region bounding family are
presented in Section 2.2.3. Following this evolution, we further detail the R-tree based
solutions relevant to our work: dynamic R-tree versions (Section 2.2.4), static R-tree
versions (Section 2.2.5), and cost-based R-tree extensions (Section 2.2.6). The limita-
tions of the region bounding indexing methods are revised and analyzed in Section 2.2.7.
Conclusions regarding the general requirements of an efficient indexing solution for our
problem are presented in Section 2.2.8.

2.2.1 Classification of multidimensional indexing methods

A first classification of the multidimensional access methods was made in [GG98] based
on the data types that they have been designed to support:

• Point Access Methods (PAMs)

• Spatial Access Methods (SAMs)

While the point access methods are designed to index collections on multidimensional
points, the spatial access methods are designed to work with multidimensional objects
with spatial extents. Since multidimensional points can be represented as spatial objects

14

with zero-length extents, all SAMs can function as PAMs. However, the data objects
manipulated in our target applications are multidimensional objects with spatial extents.
Therefore only the spatial access methods are of special interest for us.

Another classification of the multidimensional indexing techniques can be made based
on the way that they partition and organize the collection of data objects. According to
this criterion, two major families of solutions can be distinguished:

1. Space Partitioning Methods

The indexing solutions from the space partitioning family are derived from K-D-tree
[Ben75, BF79] and quad-tree [FB74, Sam84] and rely on recursive partitioning
of the multidimensional data space in mutually disjoint regions, so to obtain a
limited number of data objects in each space subregion. Most indexing solutions
based on space partitioning are PAMs. They primarily apply to collections of
multidimensional points, which are easily separable in non-overlapping regions.
Some approaches and extensions have been also proposed to support spatial objects.

2. Region Bounding Methods

The indexing methods from the region bounding family are based on the R-tree
technique [Gut84] which relies on minimum bounding to delimit space regions that
enclose completely and tightly spatial data objects or smaller bounding regions,
in a recursive manner. The indexing space regions are referred to as minimum
bounding regions or MBRs. They are hierarchically organized in a height-balanced
tree. The indexing solutions based on region bounding are primarily designed to
support multidimensional objects with spatial extents (SAMs). For this reason,
they are of special interest for us.

We next present the main characteristics and limitations of both families of solutions, and
also discuss several extensions and hybrid approaches, focusing on the indexing methods
relevant to our work.

2.2.2 Space partitioning methods

The multidimensional access methods from the space partitioning family originated and
evolved from K-D-tree [Ben75, BF79] and quad-tree [FB74, Sam84]. They are based on
recursive partitioning of the multidimensional data space in disjoint (non-overlapping) re-
gions. The space regions are separated by one (e.g., K-D-tree) or several (e.g., quad-tree)
iso-oriented hyperplanes. Each separating hyperplane is perpendicular to one dimension
referred to as “split dimension”. The split positions in the domains of the split dimen-
sions corresponding to the separating hyperplanes are chosen so that the data objects
are distributed evenly between the resulting space subregions. The purpose of the space
partitioning is to obtain a limited number of data objects in each space region. When
the number of data objects from a space region exceeds the maximum limit, one or sev-
eral split dimensions are chosen and split positions are established in order to obtain a
balanced distribution of the data objects between the resulting subregions.

A tree structure, further referred to as “division tree”, is used to record the space
partitioning information. The split dimensions and the split positions are stored in the

15

internal nodes (directory nodes) of the division tree. The data objects are referenced or
directly stored in the leaf nodes of the tree. During insertions of new data objects, as
well as when performing spatial searches, the split dimensions and the split positions are
used to indicate the tree paths that need to be followed. At each level of the division
tree, the space subregions that need to be visited are determined by comparing the split
positions corresponding to the split dimensions with the coordinates of the query objects.

An important property of space partitioning methods is that point queries follow only
one path, corresponding to only one space subregion at each level of the division tree. A
common drawback is that the division tree can be quite height-unbalanced, notably in
the presence of non-uniform data. This can affect the performance on disk, where special
paging techniques need to be used to alleviate this problem.

Space partitioning methods with disk paging capabilities. Several indexing solutions
with disk paging capabilities have been proposed: K-D-B-tree [Rob81], Grid file [NHS84],
LSD-tree [HSW89], hB-tree [LS90].

The K-D-B-tree [Rob81] combines the properties of the Adaptive K-D-tree [BF79]
and the B-tree [Com79] to handle multidimensional points. This results in a balanced
tree where each internal node corresponds to a hyper-rectangular region of the data space.
This region is partitioned into several mutually disjoint subregions in the manner of an
Adaptive K-D-tree. The partitioning information consisting of the split dimensions and
split positions is recorded at the node level. This structure adapts well to the distribution
of the data points, but no minimum space utilization can be guaranteed because splits of
internal nodes have to be propagated down the tree causing fragmentation of lower level
nodes.

LSD-tree [HSW89] is another point access method based on K-D-tree. The directory
of the LSD-tree is organized as an Adaptive K-D-tree[BF79], partitioning the data space
into disjoint cells of various sizes. LSD-tree uses a special paging algorithm which consists
of identifying subtrees that can be paged out such as to preserve external balancing.

hB-tree [LS90] is also a K-D-tree based indexing structure with disk paging capabil-
ities. This method proposes node splitting using multiple attributes (dimensions). This
way, it guarantees a worst-case data distribution of 1/3 : 2/3 between the two nodes
resulting from a split. Nodes no longer correspond to hyper-rectangular space regions,
but to hyper-rectangular space regions from which smaller subregions are excised. Such
regions with cavities are called “holey bricks”. By using “holey bricks”, node splits are
local and do not have to be propagated downwards.

The Grid file [NHS84] can be seen as generalization of the quad-tree [FB74]. It divides
the data space using a d-dimensional orthogonal grid. The grid is not necessarily regular,
thus the resulting cells may be of different sizes. A grid directory associates one or more
of these cells with data buckets, which are stored on one disk page each. The purpose of
this structure is to have a limited number of data points in each cell. The data points are
placed and can be retrieved based on the partitioning information from the grid directory.
A known problem of the grid file structure is that cell splitting is not a local operation.
All the cells need to be also split, which are intersected by the hyper-plane used to divide
one cell. This causes a superlinear directory growth.

16

Hybrid indexing methods based on space partitioning. Hybrid multidimensional index-
ing solutions have been also developed combining space partitioning with space transfor-
mation: Pyramid-tree [BBK98b], VA-file [WSB98] and iDistance method [JOT+05].

The Pyramid technique [BBK98b] transforms d-dimensional points into 1-dimensional
values. These last are stored and accessed using a conventional index such as the
B+-tree [Com79]. To achieve this, the Pyramid technique partitions the multidimen-
sional space into a number of 2d disjoint pyramids sharing the center point of the data
space. Each pyramid is divided into several disjoint partitions such as that each partition
fits into one page of the B+-tree.

The VA-file [WB97, WSB98] uses approximated data representation and takes ad-
vantage of sequential scan to perform faster searches over large collections of multidi-
mensional points. The VA-file method maps the coordinates of the data objects to some
approximated values that reduce the storage requirement, in order to lower the I/O cost
of range searching. For this purpose, the VA-file technique divides the data space into 2b

hyper-rectangular cells where b =
∑d−1

i=0 bi represents the number of bits used in the data
representation. A data point is approximated by the bit string of the cell that it falls
into. The object approximations are stored in a flat file on disk. The file is sequentially
scanned during spatial searches and the object approximations are used to filter and
discard an important number of data objects, with respect to the selection criterion.

In the iDistance method [JOT+05], high-dimensional points are transformed into
points in a single dimensional space, further indexed using a conventional B+-tree. To
achieve this, the data space is divided into a set of partitions, where each partition is
determined by a reference point. A data point is represented by an index key com-
puted based on the distance from the nearest reference point, and used to determine the
placement of the corresponding data object in the B+-tree.

Most of the multidimensional indexing methods based on space partitioning are PAMs.
They apply to collections of multidimensional points, which are easily separable in non-
overlapping regions. Such a separation is not possible for data objects with spatial
extents because such objects commonly overlap each others and balanced distribution
in mutually disjoint regions is often impossible. For this reason, the classical indexing
methods based on space partitioning can not be used directly to manage collections
of spatial objects. However, some compromise solutions have been developed in order
to enable space partitioning methods to support spatial objects. These solutions are
reviewed next.

Space partitioning methods supporting multidimensional spatial objects. To support
objects with spatial extents, several approaches have been proposed. The first approach
consists of clipping the spatial data objects that intersect the split hyperplanes and
insert the resulting object fragments in the corresponding subregions. The Extended
K-D-tree [MHN84] is one of the first indexing structures adopting the object fragmen-
tation approach. Another example is the cell tree [Gün89] designed to manage spatial
objects of arbitrary shapes. All the structures based on clipping have to cope with the
object fragmentation which is becoming increasingly problematic as more objects are
inserted into the tree. After some time, most new objects will be split into fragments
during insertion. Such a solution is not suitable for indexing large collections of spatial

17

objects, as the overhead of redundant storage can be very high, notably when having
data objects with large extents over dimensions.

The second approach relaxes the non-overlapping property and allows regions to
overlap. The SKD-tree (Spatial K-D-tree) [OSDM87] is one of the indexing solutions
that adopts this approach: It basically indexes the centroid points of the spatial objects,
in a classical K-D-tree based manner, but keeps additional information concerning the
maximal extents of the data objects in the two subregions resulting from a split along
the split dimension. This approach looses an important property of the classical space
partitioning methods: Multiple paths of the indexing tree can now be explored even
when performing point queries. According to the authors, the SKD-tree is competitive
to the R-tree (a region bounding indexing method) in both storage utilization and search
efficiency. However, this technique can only work for spatial objects of small volume.
Data objects with large spatial extents induce high overlaps between subregions along the
split dimensions. The spatial selections are highly probable to explore both subregions,
leading to poor query performance.

A third approach is based on space transformation methods. A first possible space
transformation method consists of representing a d-dimensional spatial object with n

vertexes as an nd-dimensional point, then using a point access method to index such
points. A structure that was designed explicitly to be used in connection with this trans-
formation technique is LSD-tree [HSW89], which appear to adapt well to non-uniform
distributions. However, there are major disadvantages of this scheme [GG98]. First, the
number of dimensions is much higher than in the original space. Second, objects close
in the original space can be far apart in the new space. Third, point and range query
formulation is much more complicated than in the original space. Forth, the point dis-
tribution in the new space can be highly non-uniform, even though the original data is
uniformly distributed.

A second possible space transformation method consists of partitioning the data space
with a grid, then using a space-filling curve to enumerate all the cells of the grid [Sam89].
The space-filling curves [Sag94] provide a total ordering of the space, allowing one to use
one-dimensional access methods, like B+-tree, to index the data. The spatial objects can
be represented by a list of grid cells, or, equivalently, a list of one-dimensional intervals
that define the positions of the grid cells concerned. Such an object decomposition can
become complicated, notably in high dimensions. An indexing method that combines
the two transformation techniques is proposed in [FR91]. The transformation techniques
are only practical for 2- or 3-dimensional spaces.

Conclusion on space partitioning indexing methods. The multidimensional indexing
solutions based on space partitioning are primarily designed for collections of multidi-
mensional points. They are not appropriate for data objects with spatial extents. Some
special extensions and space transformation methods have been proposed to support
spatial objects. However, these extensions complicate the query processing and are im-
practical notably when dealing with large spatial objects with many dimensions.

For the special case of multidimensional objects with spatial extents, another family of
solutions has been developed and used in practice, based on minimum bounding regions.

18

2.2.3 Region bounding methods

For multidimensional objects with spatial extents, an entire family of solutions originated
and evolved from the R-tree technique. The R-tree was introduced in [Gut84] as an access
method for extended objects, initially applied to 2d-rectangles. Its generalization to
higher dimensions is straightforward. The R-tree relies on minimum bounding regions,
commonly hyper-rectangles, to hierarchically organize the spatial objects in a height-
balanced tree. To illustrate the principles of this indexing method we next present the
original R-tree.

Original R-tree The R-tree [Gut84] was thought of as a multidimensional generaliza-
tion of B+-tree [BM72, Com79], designed to store multidimensional rectangles without
clipping or transforming them into higher dimensional points. The spatial objects are
stored or referenced in the leaf nodes of a height-balanced tree. The tree hierarchy is
based on minimum bounding rectangles that enclose spatial objects or smaller bounding
rectangles in a recursive manner. A minimum bounding rectangle (MBR) represents the
smallest (hyper-)rectangle that encloses completely and tightly one or several multidi-
mensional spatial objects.

The tree structure has two types of nodes: leaf nodes and non-leaf nodes. The non-leaf
nodes are also called directory nodes or internal nodes. An entry in a leaf node consists
of an object identifier and a minimum bounding rectangle enclosing or representing the
data object referenced by the corresponding object identifier. An entry in a directory
node consists of a pointer to a child node and a minimum bounding rectangle enclosing
the minimum bounding rectangles from the child node referenced by the corresponding
pointer.

Every node of the tree corresponds to one page of external support, with the size of
one or several I/O blocks. Let M be the maximum number of entries that will fit in
one node and let m ≤ M

2 be a parameter specifying the minimum number of entries in a
node. R-tree satisfies the following properties:

1. The root has at least two children unless it is a leaf

2. Every non-leaf node has between m and M entries unless it is the root

3. Every leaf node has between m and M entries unless it is the root

4. All leaves appear on the same level

These construction rules are meant to ensure height balance for the tree hierarchy and
minimal node page storage utilization.

An important characteristic of the R-tree method is that the minimum bounding
rectangles are allowed to overlap, including those belonging to the same node. The
overlap between minimum bounding rectangles is necessary to make possible the balanced
partitioning of a set of MBRs into two subsets, notably during node splits. This is
essential to enable the nice properties of the R-tree structure such as tree height balance
and minimal node storage utilization.

Nevertheless, the overlap between minimum bounding rectangles is not a desirable
feature because it induces the exploration of multiple tree paths during spatial selections,

19

with negative impact on the search performance. Therefore the overlap between minimum
bounding rectangles should be minimized. This is also the objective of the data insertion
and node split procedures presented next.

Data object insertion. An important aspect of the R-tree method is that redundant
storage is not allowed for data objects. A data object falling in a region covered by
multiple minimum bounding rectangles is stored or referenced only once in the indexing
tree. Insertions of new data objects start by the root and are directed to leaf nodes. To
insert a new data object, at each level of the tree, the node that will be least enlarged
to accommodate the new object is chosen. In case of a tie, the node with the smallest
area is selected. When the last level of tree is reached, the data object is inserted in the
leaf node that best fits the new inserted object. If all the entries in the selected node are
occupied (node overflow), a node split takes place. For each node that is traversed during
the object insertion, the minimum bounding rectangle in the corresponding parent node
needs to be readjusted (enlarged) in order to fit the new inserted object.

Node split. The driving criterion for the node split is the minimization of the sum of
the areas of the two resulting nodes. When performing a node split, the MBR entry from
the parent node corresponding to the split node is replaced with the minimum bounding
rectangle that encloses all the entries from one of the two resulting nodes. A new entry
with a minimum bounding rectangle enclosing all the entries from the second resulting
node is also inserted into the parent node. If the parent node overflows, then the parent
node is split. This process may propagate up to the root node. When the root node gets
split, a new root is created and the height of the tree increases by one level.

Example 3 Figures 2.2 and 2.3 illustrate two R-tree examples. The R-tree depicted in
Figure 2.2 stores nine 2-dimensional spatial objects represented by the minimum bound-
ing rectangles R1, R2, ..., R9. The data objects are grouped in three leaf nodes, direct
children of the root node. Ra,Rb and Rc represent the minimum bounding rectangles of
the three leaf nodes. The maximum number of entries per node is 3.

Figure 2.3 depicts the same R-tree after the insertion of an additional data object
represented by R10. According to the R-tree from the first figure, the best place to store
R10 is the leaf node pointed by Rc, which needs the least area enlargement to accom-
modate the new data object. However, this node is already full, and therefore it has to
be split. Its set of member rectangles {R7, R8, R9, R10} is partitioned into two subsets
chosen to minimize the sum of the areas of the resulting minimum bounding rectangles.
The minimum bounding rectangles of the new resulting leaf nodes, Rd and Re, take the
place of Rc in the parent node. The parent node is, in this example, the root node of the
tree. As the root node is full, it has to be also split. A new root is created storing the
minimum bounding rectangles RI and RII resulting from the partitioning of the set of
minimum bounding rectangles {Ra,Rb,Rd,Re}.

Node split algorithms. An essential element of the node split procedure is the algo-
rithm used to partition a set of MBR entries into two subsets aiming to minimize the
overlap between the MBRs of the two resulting subsets. [Gut84] proposes three alter-
native algorithms to handle node splits, which are of linear, quadratic and exponential

20

R2

R3

R1
R4

R6

R7

R8

R9

R5

Rc

Rb
Ra

R10

R1 R2 R3 R4 R5 R6 R7 R8 R9

Ra Rb Rc

R10

Insertion of R10

Figure 2.2: An R-tree example

R10

RII

R1 R2 R3 R4 R5 R6 R7 R8 R9

Ra Rb Rd Re

RI

RI

RII

R2

R3

R1
R4

R6

R7

R8

R9

R5

R10

Ra
Rb

Re

Rd

Figure 2.3: The resulting R-tree after insertion of R10

complexity. The linear algorithm chooses as seeds, for the two new nodes, the two rect-
angles that in one of all possible dimensions present the largest separation between the
highest low side of the first selected rectangle and the lowest high side of the second
selected rectangle. Then each remaining rectangle, in a random order, is assigned to one
of the two resulting nodes, namely to the one requiring the least MBR enlargement. The
quadratic algorithm considers all the possible pairs of rectangles and chooses as seeds the
pair of rectangles that create the largest dead space when put together. The remaining
rectangles are assigned to one of the two nodes, in the order that maximizes the difference
of dead space obtained if the selected rectangle is assigned to each of the two MBRs. The
exponential algorithm considers all possible groupings of rectangles and the best is chosen
with respect to the minimization of the MBR enlargement. [Gut84] suggested using the
quadratic algorithm as a good compromise to achieve reasonable retrieval performance.

Spatial range queries. In order to find all the data objects which intersect a given
query window (query rectangle), the search descends the tree, starting by the root, and
recursively traverses the subtrees whose minimum bounding rectangle intersects the query
rectangle. When a leaf node is reached, the minimum bounding rectangles corresponding

21

to the data objects are tested against the query window and the qualifying objects are
reported. Since the minimum bounding regions might overlap at node levels, multiple
paths could be followed, even for point queries.

Data object deletion. To remove a data object, the tree is traversed and the nodes
whose minimum bounding rectangle encloses the given object are explored in a recursive
manner. Once located in one of the leaf nodes, the data object is deleted. The object
deletion may cause the leaf node to underflow. In this case, the node is removed and the
remaining entries are reinserted from the root. The deletion of a leaf node may cause
further deletion of nodes in upper levels of the tree. The entries belonging to a node
removed from an upper level must be reinserted at the same level of the tree in order to
preserve the tree’s height balance. The reinsertion of the remaining entries may cause
additional node splits. The deletion of a data object may change the minimum bounding
rectangles of the nodes situated on the path from the root to the corresponding leaf node.
Hence, readjustments of the corresponding entries are necessary.

Performance considerations Although essential to ensure the nice properties of the
R-tree structure like tree height balance and minimal node storage utilization, the over-
lap between minimum bounding rectangles is not a desirable feature because it induces
exploration of multiple tree paths during spatial selections, with negative impact on the
search performance. When the overlap between minimum bounding rectangles is im-
portant, a significant number of nodes/pages need to be accessed, notably in a random
manner. Random disk accesses require disk head repositioning, inflicting high I/O costs.
This can cause serious degradation of the search performance. All types of queries are
affected, notably the spatial range queries which are particularly expensive because they
need to explore larger portions of the data space.

In this context, the presence of data objects with (possibly large) spatial extents also
contributes to the deterioration of the search performance because it accentuates the
global overlap between minimum bounding rectangles.

Another known problem is that the overlapping probability is increasing with the
number of dimensions. This phenomenon is referred to as “dimensional curse” [BKK96,
BBK98b]. Some insights of this phenomenon are provided in [BBK01], covering the
following effects specific to high-dimensional spaces:

• Geometric effects concerning the volume and surface of (hyper-)cubes:

– the volume of a cube grows exponentially with increasing dimension for con-
stant edge length

– most of the volume of a cube is very close to the (d − 1)-dimensional surface
of the cube

• Effects on the shape and location of the index space regions:

– a typical index space region in high-dimensional spaces will span the majority
of the data space in most dimensions and only be split in a few dimensions

– a typical index space region will not be cubic, rather it will look like a rectangle

22

– a typical index space region touches the boundary of the data space in most
dimensions

– the space partitioning gets coarser the higher the dimension

• Effects arising in a database environment:

– assuming uniformity, a reasonably selective range query corresponds to a
hyper-cube having a huge extension in each dimension

Because of the effects of the “dimensional curse”, the higher the number of dimensions,
the higher the overlap between minimum bounding rectangles at node level [BKK96].
This limits the R-tree applicability to only low-dimensional spaces.

A high overlap between minimum bounding rectangles can deteriorate the search per-
formance so much that a naive approach such as sequential scan can become more effi-
cient. To avoid such a behavior and to extend the applicability of the R-tree method,
different tree construction strategies, data insertion criteria and node split heuristics have
been proposed, aiming to minimize the overlap between minimum bounding regions and
trying to alleviate the effects of the “dimensional curse”. The evolution of the region
bounding methods is outlined next.

Evolution of region bounding methods Since 1984, when the original R-tree struc-
ture has been proposed in [Gut84], an impressive number of indexing methods have been
developed aiming to improve this technique. A recent survey on R-trees is provided
in [MNPT03].

Following the evolution of the R-tree based methods, we have identified the next
classes of solutions:

1. Dynamic R-tree versions

Like the original R-tree, these solutions are designed to support dynamic insertions
and deletions of data objects. They preserve the original tree construction approach
based on subsequent data insertions, but bring forward better data insertion cri-
teria and node split heuristics meant to minimize the overlap between minimum
bounding regions as means to improve the retrieval performance.

2. Static R-tree versions

These solutions are designed for static collections of data objects. They rely on
a priori knowledge of the complete data set to produce better structured trees.
The overlap between minimum bounding regions is globally minimized and the
general retrieval performance improves.

3. Point-oriented R-tree versions

Although designed as an indexing method for multidimensional objects with spatial
extents, R-tree technique showed good behavior for multidimensional points too,
notably in low dimensions. In fact, low-volume objects are preferable because the
overlap between data objects accentuates the overlap between minimum bounding

23

regions, with negative impact on the search performance. Since points can be han-
dled as zero-volume objects, they are well suited for R-trees. Motivated by a wide
range of applications (e.g., image retrieval, time series, document indexing), a new
class of R-tree-based methods evolved, aiming at working with collections of mul-
tidimensional points and focusing on improving performance of nearest neighbor
queries: SS-tree [KS97], SR-tree [WJ96], A-tree [SYUK00]. SS-tree [KS97] consid-
ers that spheres are more suitable than rectangles for distance-based queries and
uses minimum bounding hyper-spheres as support for the tree hierarchy instead of
minimum bounding hyper-rectangles. SR-tree [WJ96] uses both minimum bound-
ing hyper-spheres and minimum bounding hyper-rectangles, trying to take advan-
tage of both representations. To assist insertion of new data points, both SS-tree
and SR-tree rely on minimizing the distance to the centroids of the candidate sub-
trees. A-tree [SYUK00] also uses the distance to the centroids of the candidate
subtrees for data insertion. Such structural and technical changes helped the new
R-tree variants to outperform classical R-trees at nearest neighbor queries on large
collections of multidimensional points. However, these extensions do not support
multidimensional objects with spatial extents and do not apply in our case. We
will not further discuss these extensions.

4. Cost-based R-tree extensions

These extensions make use of cost models integrating the performance characteris-
tics of the execution platform such as I/O and CPU parameters in order to alleviate
the deterioration of the search performance. In general, the cost models take into
account the spatial distribution of the data objects and assume that the query dis-
tribution follows the data distribution. A new method has been recently proposed,
that, in addition to the data distribution, also exploits the query distribution to
further improve the average query performance.

We next present and discuss the following classes of region-based indexing solutions
relevant to our work: dynamic R-tree versions (Section 2.2.4), static R-tree versions
(Section 2.2.5), and cost-based R-tree extensions (Section 2.2.6).

2.2.4 Dynamic R-tree versions

The R-tree was originally designed as a completely dynamic structure: Insertions and
deletions of data objects can be intermixed with queries and no global reorganization is
required. The indexing tree is meant to grow in a gradual manner, by means of subsequent
data object insertions. Many R-tree based methods preserved this construction approach,
while focusing on reducing the overlap between minimum bounding regions in order to
obtain better structured trees. The following methods are representative for this class:
R+-tree [SRF87], R*-tree [BKSS90] and Hilbert R-tree [KF94]. We next overview these
methods.

R+-tree R+-tree [SRF87] uses the clipping technique to completely avoid overlap be-
tween minimum bounding rectangles situated at the same tree level. This approach aims
to improve the retrieval performance by ensuring single search paths for point queries. To
achieve this, inserted objects that overlap several MBR partitions are divided in two or

24

more fragments. The resulting fragments are inserted into the corresponding partitions,
carrying with them the original object identifier. Thus an object may be fragmented and
its reference redundantly stored in several leaf nodes.

When a node overflows, its minimum bounding rectangle is divided into two disjoint
MBRs at a suitable position. The entries overlapping both MBRs are clipped and the
resulting fragments are inserted into the qualifying partitions. Unlike in the original
R-tree, where splitting propagates only up the tree, here it can propagate down the tree,
causing further object fragmentation and low storage utilization.

The object deletions also become more expensive because all the fragments of a
deleted object need to be located in order to be removed from the corresponding leaf
nodes. When a node underflows, the reinsertion of the remaining entries may cause
additional fragmentation.

Overlap avoiding is achieved at the expense of space, increasing the height of the
tree and lowering the storage utilization. R+-tree claims better performance in low
dimensions, but it is impractical in high dimensions, where the increased overlap causes
significant object fragmentation and the overhead of redundant storage can be very high.

R*-tree R*-tree [BKSS90] preserves the original R-tree model, but brings forward
improved insertion and node split heuristics, intended to reduce the overlap between
minimum bounding rectangles. Several optimization criteria are combined to assist object
insertions and node splits as follows:

• Minimize the overlap between MBRs;

• Minimize the surface covered by MBRs, notably the dead space covered by bound-
ing rectangles and not covered by enclosed rectangles – This criterion was also used
in the original R-tree;

• Minimize the margins (the perimeters) of MBRs – Squarish MBRs are preferred
because they are more compact;

• Maximize the storage utilization – This is achieved by forced data object reinser-
tions.

Performance studies have demonstrated that R-trees can behave differently for the
same data set if the sequence of insertions is different. The search performance is sensitive
to the order of the insertion of data. Deletions and reinsertions of data objects can lead
to better structured trees with significantly improved search performance [BKSS90].

Aiming to better adapt the tree structure to subsequent data insertions, R*-tree
introduces the concept of “forced reinsert”: When a node overflows, a defined percentage
of entries with the highest distances from the center of the corresponding MBR are
extracted from the node and reinserted in the tree. The object reinsertion helps to
increase the storage utilization, obtaining better structured trees, but it can be expensive
when the trees are large.

Node splits need to be performed when the reinsertion ends up placing the objects in
the same nodes. The node split algorithm proposed by R*-tree is based on the optimiza-
tion criteria itemized before and leads to better partitioning than previous methods. The

25

node split algorithm has a complexity of the form C(2 ∗ d ∗ (n + 1) ∗ log(n + 1)) where
n represents the node capacity and d represents the number of dimensions.

Compared to previous methods, R*-tree demonstrated best search performance and
became a comparison reference for later multidimensional indexing solutions. The R*-tree
insertion and node split algorithms improve the original R-tree structure as far as retrieval
is concerned. Evidently, this is not for free: The complexity and the cost of the insertion
procedure increase.

Hilbert R-tree A special variant of R-tree is the Hilbert R-tree [FB93, KF94]. This
method makes use of a space-filling curve, namely the Hilbert curve [Sag94], to compute
the Hilbert values of the centroid points of the MBRs corresponding to data objects and
to child nodes. In each entry of a node, together with the minimum bounding rectangle,
the largest Hilbert value of the enclosed MBRs is stored.

The Hilbert values associated with MBRs are used as keys to assist data insertion
and node splits. At each level of the tree, a new data object is inserted in the node
with the smallest Hilbert value larger than the Hilbert value corresponding to the new
data object. In case of node overflow, Hilbert R-tree redistributes some entries to sibling
nodes, or splits the overflowing node when such a redistribution is not possible. In case
of node underflow, Hilbert R-tree borrows some entries from sibling nodes, or merges
the underflowing node with its siblings. As a result, Hilbert R-tree better controls and
improves the storage utilization.

According to the authors, Hilbert R-tree proved better performance than R*-tree for
2-dimensional data sets. However, this solution is vulnerable performance-wise to large
objects, notably in higher dimensions, where the generalization of the Hilbert curve is
also more complex.

Other data insertion and node split algorithms aiming to produce better structured
trees with less overlap between MBRs and with better storage utilization were proposed
in [AT97], [GLL98b], [SC00] and [HLL01].

Performance considerations Thanks to the new data insertion criteria and node
split heuristics the search performance of the new R-tree versions has improved compared
with the original R-tree. However, these techniques are only efficient in spaces with a few
dimensions and for collections of spatial objects whose size is small relative to the size of
the data space (i.e., objects with small extents over dimensions). In spaces with many
dimensions, due to the “dimensional curse”, the overlap between minimum bounding
regions may become large enough to render the indexing tree ineffective. One ends up
searching most of the index nodes in a random manner, which turns to be more expensive
than a simple sequential scan. Performance studies have demonstrated that advanced
R-tree variants such as R*-tree and Hilbert R-tree fail to beat the sequential scan in
spaces with more than 5-6 dimensions [BBK98b, BK00, BBK01].

26

2.2.5 Static R-tree versions

R-tree was originally thought as a completely dynamic indexing structure. Insertions and
deletions of data objects can be intermixed with queries and no global reorganization is
required. However, performance studies showed that R-trees are sensitive to the order
of insertion of data and can behave differently for the same data set if the sequence of
insertions is different [BKSS90]. Deletions and reinsertions of data objects can lead to
better structured trees with significantly improved retrieval performance.

Based on these facts and motivated by a significant number of applications involv-
ing static data (applications where data insertions and data deletions are very rare or
inexistent), special attention was paid to produce optimal tree structures for sets of data
objects known in advance. Several construction methods exploiting a priori knowledge of
the complete data set as means to improve the retrieval performance have been proposed.
They are known in literature as “packing” or “bulk-loading” methods.

Unlike in the original approach, where the indexing tree is growing in a top-down
manner by means of subsequent object insertions, the new construction methods are
building the indexing tree from bottom to up: First the data objects are grouped in leaf
nodes. Then the leaf nodes are grouped in internal nodes, and so on up to the root.

The first packing method was proposed soon after the publication of the original
R-tree: Packed R-tree [RL85]. This method suggests ordering the spatial objects ac-
cording to some spatial criterion (e.g., according to ascending x-coordinate), and then
grouping them in leaf nodes. [KF93] proposes a construction method to obtain Packed
Hilbert R-trees. It consists of sorting the spatial objects according to the Hilbert val-
ues of their centroids and then build the tree in a bottom-up manner. Other packing
algorithms were later proposed in [vSW97], [LEL97], [BBK98a], [GLL98a], [CCR98],
[AHVV02], [dMOG02].

An interesting study regarding the optimal clustering of a static collection of spatial
objects is presented in [PSW95]. The static clustering problem is solved as a classical
optimization problem, but the data and the query distributions need to be known in
advance.

Performance considerations The R-tree structures resulting from packing methods
show better retrieval performance compared with their dynamic relatives, notably in low
dimensions and for low-volume objects. However, in higher dimensions, they suffer as
well from the “dimensional curse”. In addition, these construction methods only work
for static collections of spatial objects, requiring all the data to be available in advance.
A major drawback is that when data objects change, the indexing structure has to be
rebuilt from scratch, otherwise the gains in retrieval performance are lost.

2.2.6 Cost-based R-tree extensions

As already shown, different tree construction strategies, data insertion criteria and node
split heuristics have been proposed to minimize the overlap between minimum bounding
regions. Despite these efforts, in high dimensions the overlap between MBRs remains
important, and the degradation of the search performance under sequential scan can
not be avoided. The bad performance compared to sequential scan is mostly due to the

27

fact that too many nodes/pages are accessed in a random manner, while the sequential
scan benefits of sustained data transfer between disk and memory. According to [BK00],
contiguous reading of a large file can be by a factor greater than 12 faster than reading
the same amount of data from random positions.

In this context, an obvious drawback of classical R-trees is that they neglect the per-
formance characteristics of the execution platform when building the indexing structure.
In order to mitigate this problem, structural changes have been proposed to R-trees
as trade-off solutions between random access and sequential scan: X-tree [BKK96],
DABS-tree [BK00], and Adaptive R-tree [TP02]. The basic idea is to avoid splitting the
nodes that induce high overlaps, and rather enlarge their capacity, in order to replace
several random accesses with sequential scan. Cost models embedding the performance
characteristics of the execution platform are used to decide whether nodes should be split
or extended.

X-tree [BKK96] and DABS-tree [BK00] rely on such cost models to adapt the indexing
structure to the spatial distribution of the data objects, while assuming that the query
distribution follows the data distribution. We further refer to these two methods as
cost-based data-adaptive extensions.

Adaptive R-tree [TP02] uses a cost model that, in addition to the data distribution,
also takes the query distribution into account. We further refer to this method as a
cost-based query-adaptive extension.

These cost-based R-tree extensions are relevant to our work and will be detailed next.

Cost-based data-adaptive R-tree extensions

X-tree X-tree [BKK96] was proposed as a cost-based extension of the R-tree structure
for data spaces with many dimensions. In such spaces, the overlap between MBRs is
important, notably in directory nodes. This causes numerous random accesses during
spatial searches, inflicting high I/O costs and resulting in worse performance than se-
quential scan. As a compromise solution between random access and sequential scan,
X-tree introduces the concept of “supernode”.

Supernodes are created during object insertions by assigning multiple subsequent disk
pages to overflowing directory nodes whose split would otherwise result in sibling nodes
with highly overlapping MBRs. This approach is based on the consideration that two
sibling nodes with highly overlapping MBRs are very probable to be accessed during the
same spatial selections. One random access followed by one sequential read of two disk
pages is expected to perform faster than two random accesses followed by two disk page
reads. Based on this consideration, the directory node is preserved unsplit, and, instead
of splitting, its storage capacity is extended by one additional disk page, obtaining a
supernode. The node extension solves the overflowing situation.

Storage management aspects. For this method to work, a special storage management
strategy is needed to ensure that pages associated with supernodes are contiguously
placed on the external support. When there is not enough contiguous space on disk to
sequentially store a supernode, the disk manager has to perform a local reorganization.
The storage management is more complex because it has to avoid storage fragmentation.

28

However, this is not considered an important problem.

Search and delete algorithms. The algorithms to search the X-tree (point, range
queries) are similar to the algorithms used in classical R-trees since only minor changes
are necessary in accessing supernodes. The delete and update operations are also sim-
ple modifications of the corresponding R-tree algorithms. In case of an underflow of a
supernode, when the supernode has two pages, it is converted into a normal directory
node. Otherwise, the size of the supernode is reduced by one page.

Cost model. The most important consideration of this approach is the cost model
used to decide the split or the extension of an overflowing directory node. The criterion
supporting this decision consists of using a maximal overlap threshold to which the
overlap occurring between the MBRs of the two nodes resulting from a directory node
split is compared. When the resulting overlap is below the threshold value, the split is
performed, otherwise the directory node is extended becoming a supernode.

The threshold value is fixed and determined based on the performance characteristics
of the execution platform. According to [BKK96], the maximum overlap value is given
by the following formula:

MaxO =
TTr + TCPU

TIO + TTr + TCPU
(2.1)

where

- TIO represents the time to perform a disk seek operation (disk access time)

- TTr represents the time to transfer a page from disk to memory

- TCPU represents the time necessary to process a page (i.e., verify the selection criterion
against the MBRs stored in the page)

This formula is determined by the balance between reading a supernode of two pages,
on the one side, and reading two normal nodes of one page each with a probability of
MaxO and one normal node with a probability of (1−MaxO), on the other side. This
estimation is only correct for the simplest case of initially creating a supernode. However,
the authors of X-tree consider it as a good estimation for practical purposes.

There are two extreme cases of the X-tree: (1) none of the directory nodes is a su-
pernode and (2) the directory consists of only one large supernode, the root. According
to the authors, the first case may occur for low dimensional and non-overlapping data,
while the second case is likely to occur for high-dimensional or highly overlapping data.
Between the two extremes, we have trees with hybrid directory hierarchies, consisting of
both normal nodes and supernodes, determined by the spatial distribution of the data
objects.

Performance considerations. An important observation is that the cost model of X-tree
only applies to directory nodes. The leaf nodes storing or referencing the data objects

29

have fixed sizes and continue to be accessed in a random manner. Because the search
performance is determined by both fractions of directory nodes and of leaf nodes accessed
during spatial selections, this cost model cannot always guarantee better average search
performance than sequential scan. According to [BBK01], for small dimensions, the
X-tree shows a behavior almost identical to R-trees. In medium-dimensional spaces,
the X-tree shows an important performance gain compared to R*-tree for all types of
queries. For higher dimensions, the X-tree has to access such a large number of nodes
that a sequential scan is less expensive.

Because most of the experimental evaluations were performed for collections of mul-
tidimensional points, we conducted a study to determine whether this cost model can
be used in practice to support indexing of collections of multidimensional objects with
spatial extents. This study is presented in Section 2.2.7. According to our experiments,
the average overlap occurring in practice between MBRs resulting from directory node
splits is much greater than the threshold value computed according to the formula (2.1)
when considering modern I/O and CPU system parameter values. As a result, the direc-
tory of X-tree reduces to only one large supernode. In this case, the search performance
is mostly determined by the percentage of leaf nodes accessed and can get worse than a
sequential scan.

DABS-tree In DABS-tree [BK00], a cost-based approach is also proposed for multi-
dimensional indexing, which consists of dynamically computing optimal node page sizes
adapted according to the spatial distribution of the data objects. This indexing method
is designed for collections of multidimensional points, but the cost model used to decide
node splits and merges is quite generic and could apply to other indexing structures.

Unlike X-tree where only directory nodes could be extended, the DABS-tree rather
adapts the page size of the leaf nodes used to store the data objects. The DABS-tree uses
a flat directory whose entries consist of an MBR, a pointer to a data page and the size of
the data page. Additionally to the linear directory, a K-D-tree is maintained in order to
guarantee overlap-free page regions. For this reason, this indexing structure only works
for multidimensional points. The K-D-tree is also used to facilitate insertion of new data
points, and to assist merging operations between leaf pages. Only two leaf pages with a
common parent node in the K-D-tree are eligible for merging.

Storage management aspects. The data pages are always full. This ensure 100% storage
utilization and reduces the amount of data read from external support. Whenever a
new entry is inserted into a data page, the page is stored at a new position. A garbage
collection strategy is applied to avoid storage fragmentation. Such a storage management
politics could be however expensive in highly dynamic environments.

Cost model. After a number of inserts or deletions, a cost estimate for the current data
page is determined. The data page is checked whether a split is likely to improve the
query performance. When this is the case, the data page is split. Otherwise, if a suitable
partner can be found, a merging operation is considered. The merging is only performed
if it is expected to improve the query performance.

When taking a split or a merge decision, the cost caused by one larger page is com-

30

pared with the cost caused by two pages with smaller capacities. The following balance
is used to support the split or the merge decision:

∆T = (TIO + C1 ∗ TTrP) ∗ p1 + (TIO + C2 ∗ TTrP) ∗ p2 − (TIO + C0 ∗ TTrP) ∗ p0 (2.2)

where

- TIO represents the time to perform a disk seek operation (disk access time)

- TTrP represents the time to transfer a point from disk to memory

- C0 and p0 represent the capacity and the access probability of the larger page

- C1 and C2, and respectively p1 and p2, represent the capacities and the access proba-
bilities of the two smaller pages

TIO and TTrP are hardware dependent. The page capacities, C0, C1 and C2, are known.
The access probabilities, p0, p1 and p2 are not known, but they can be estimated if a
suitable access probability model is available. The authors of DABS-tree suggest using
an access probability model suitable for nearest-neighbor queries. The access probability
associated with a page is estimated based on the volume of the MBR of the page and
on the number of data objects stored in the page. The analytical model uses the fractal
dimension of the data set [BF95] and the Minkowski sum [BBKK97], assuming that the
query distribution follows the data distribution.

According to (2.2), if the cost balance ∆T is negative, the larger page causes higher
cost than the two smaller pages. When a split decision is considered, the split operation
can be performed. If a merge decision is considered, the merge operation can be only
performed when ∆T is positive.

Performance Considerations. Experimental studies involving collections of multi-
dimensional points have demonstrated better performance for DABS-tree than both
X-tree and sequential scan, even in cases where the X-tree failed to outperform the
sequential scan. Thanks to its cost model, DABS-tree claims to outperform the se-
quential scan in virtually every case. However, this can be only true when the query
distribution follows the data distribution. When this is not the case, the cost model can
trigger inappropriate page split and merge decisions, causing deterioration of the search
performance.

Although DABS-tree is an indexing structure for multidimensional points, the cost
model used to support node split and merge decisions is quite generic and can apply to
other indexing structures with condition that the page access probability is known or can
be estimated. We used a similar cost model to support our clustering solution.

Cost-based query-adaptive R-tree extension

The cost models of both X-tree and DABS-tree rely on the spatial distribution of the
data objects to optimize the node page size, while assuming that the query distribution
follows the data distribution. In practice, the distribution of the query objects does

31

not always follow the distribution of the data objects. In such contexts, taking into
account the query distribution and the node access probability when deciding node splits
or extensions could help to significantly improve the average search performance.

Adaptive R-tree Maintaining histogram-based data and query distribution statistics
for effective query optimization received considerable research attention over years [HS92,
CR94, IP95, GM98, APR99, GLR00, BCG01, WAE01, WAE02]. Based on this con-
sideration, [TP02] proposes a general framework for converting traditional multidimen-
sional indexing structures to adaptive versions, exploiting the query distribution in ad-
dition to the data distribution. The framework is employed to construct and maintain
Adaptive B-trees. A generalization is also proposed to obtain Adaptive R-trees.

Like in X-tree, performance gain is obtained by allowing nodes to extend over a
variable number of subsequent disk pages. However, in X-tree only directory nodes could
be extended. In Adaptive R-tree the size of the leaf nodes can be also adapted. Size
of a node is decided when the node is created, and reconsidered when the node incurs
over/under-flows. The number of pages associated with a node is determined based on
a cost model that takes into account both data and query distributions, as well as the
system’s performance parameters.

Cost model. The optimal number of disk pages for a node is determined based on
statistical information associated with the data space covered by the given node. Statis-
tics concerning both data and query distributions are maintained in a global histogram
dividing the data space into bins/cells of equal extent/volume. These statistics are em-
ployed in an analytical model together with system performance parameters to estimate
the average query cost associated with each bin. The query cost associated with a bin
is further used to derive an optimal size for the nodes falling in that bin. This model
assumes that nodes have smaller extents than the bins’ extents, and that all the nodes
falling in the same bin have similar optimal sizes.

The optimal number of disk pages popt associated with a node falling in a bin i is
computed following the next three steps:

Step 1. The node average query time is expressed as a function of the number of disk
pages associated with the node and of other parameters as follows:

Tq(p) = f(p, ni, qi, sum qi, sum q2
i , numbin, b, ξ, TIO, TTr, TCPU)

where

- Tq represents the node average query time

- p represents the number of disk pages associated with the node

The other parameters used in the cost model are:

• data and query statistics associated with the bin i enclosing the node

- ni represents the number of data objects falling in the bin i

- qi represents the number of queries that intersect the extent of the bin i

32

- sum qi represents the range sum of queries that intersect the extent of the
bin i

- sum q2
i represents the area sum of queries that intersect the extent of the

bin i when having more than one dimension

• system and database parameters

- numbin represents the number of bins in the histogram

- b represents the number of entries contained in a page

- ξ represents the average node storage utilization

• I/O and CPU performance parameters

- TIO represents the time to perform a disk seek operation (disk access time)

- TTr represents the time to transfer one page from disk to memory

- TCPU represents the time to process one data object

The exact expression of Tq(p) is provided in [TP02].

Step 2. The derivative of Tq(p) with respect to p is calculated

T ′

q(p) = d
f(p)

dp

Step 3. The optimal p that minimizes Tq(p) is obtained by solving the equation

T ′

q(p) = 0⇒ popt

The solution of the above derivative is easy to compute in one dimension. However, in
multidimensional spaces, it requires numerical approaches that are too expensive to com-
pute in real-time. The authors propose to substitute this computation with an algorithm
that starts with an initial size p = pguess and then refines it iteratively by modifying p

towards minimizing the query time Tq(p).

Performance considerations. This technique seems to be effective for B-trees (in one
dimension), but it is highly impractical for high-dimensional R-trees for several reasons:
First, the number of histogram bins/cells grows exponentially with the number of di-
mensions and the maintenance cost increases too much. Considering, for instance, a
20-dimensional space and a space division factor of 4 bins per dimension, more than one
million cells need to be managed.

Second, the deployed histogram might be suitable for multidimensional points which
necessarily fit the bins, but it is inappropriate for multidimensional extended objects
which could expand over numerous bins. In addition, the cost model assumption accord-
ing to which node extents are smaller than bin extents limits the practical usage of this
technique.

Another observation is that the node sizes are only adjusted when over/under-flows
situations occur. This could cause performance degradation if changes in the query
distribution are not followed by changes in the data distribution.

33

Even though impractical in high dimensions and inappropriate for spatial objects, the
Adaptive R-tree represents the first multidimensional indexing method proposing to take
into account the real distribution of the query objects as means to improve the average
query performance. We also adopted a similar strategy because it proves to be of special
interest for our target applications from the SDI domain.

2.2.7 Limitations of region bounding methods

As shown in our motivation, we require an indexing method able to efficiently answer spa-
tial range queries over large collections of spatial objects with possibly many dimensions
and with possibly large extents over dimensions. Among the existing multidimensional
indexing solutions, the most likely to meet our application requirements are those be-
longing to the region bounding family, specifically designed to support multidimensional
object with spatial extents. With respect to the characteristics of our target applications,
the main causes limiting the practical usage of the region bounding methods are:

1. The need to manage high-dimensional data spaces with more than 5-6 dimensions

Due to the effects of the “dimensional curse”, the overlap between minimum bound-
ing rectangles increases with the number of dimensions, with negative impact on
the search performance.

2. The need to handle multidimensional spatial objects with possibly large extents
over dimensions

The presence of data objects with spatial extents accentuates the global overlap
between minimum bounding rectangles and contributes to the deterioration of the
search performance.

3. The need to cope with spatial range queries like intersection, containment, enclosure
and similar-shape queries

The spatial range queries are in general expensive because they need to explore
large portions of the data space. In such cases, an important overlap between
minimum bounding rectangles at node level can quickly lead to poor performance.

When the overlap between minimum bounding rectangles is important, the search per-
formance can get worse than a naive solution such as sequential scan due to the excessive
number of nodes accessed in a random manner and inflicting high I/O costs.

As explained in the previous section, the only way to alleviate the deterioration
of the search performance is to take into account the performance characteristics of
the execution platform and to adapt the size of the nodes to the spatial distribution
of the data objects (X-tree [BKK96], DABS-tree [BK00]) and of the query objects
(Adaptive R-tree [TP02]), as a compromise between random access and sequential scan.

Among the methods proposing cost-based indexing, the DABS-tree is only designed to
manage multidimensional points, while the Adaptive R-tree is impractical for more than
2-3 dimensions and inappropriate for spatial objects with large extents over dimensions.
The only method supporting multidimensional objects with spatial extents and claiming
to work in higher dimensions remains the X-tree. For this reason, we conducted a study
meant to determine to which extent the cost model of the X-tree is practical for indexing
collections of multidimensional spatial objects. This study is presented next.

34

Table 2.1: Average performance parameters of our execution platform
I/O Value

disk page access/seek time (TIO) 10 ms

disk transfer rate 90 MBytes/sec

disk transfer time per byte (TTr/byte) 1.06 · 10−2 µs/byte

CPU Value

processing rate 2300 MBytes/sec

processing time per byte (TCPU/byte) 4.15 · 10−4 µs/byte

A study of the X-tree cost model

The cost model of X-tree was presented in 2.2.6. Based on the formula (2.1), the authors
of X-tree compute and suggest using an overlap threshold MaxO = 20%. This value was
obtained using the following system parameters: disk page size = 4KBytes, TIO = 20ms,
TTr = 4ms, and TCPU = 1ms. Although these parameter values were considered as
realistic at the time of publication (1996), the performance parameters of nowadays
systems have significantly changed. While the disk page access time has only slightly
improved, the transfer time and the processing time have considerably decreased. In
Table 2.1, we present as reference the average values corresponding to the performance
parameters of our execution platform. Note that TIO is fixed, while TTr and TCPU depend
on the disk page size. With these new values and considering disk pages of 4KBytes we
now obtain an overlap threshold MaxO = 0.45%.

The difference between the two MaxO values is considerable, which raises some ques-
tions about the usability in practice of the new threshold value. In this context, an
important observation is that the overlap threshold value MaxO only depends of the
system performance characteristics, while the overlap between MBRs in the indexing
tree is rather determined by the spatial distribution of the data objects. For this method
to work, the overlap threshold value MaxO has to “agree” with the overlap values oc-
curring in practice between MBRs of nodes resulting from splits of directory nodes. Let
AvgO denote the average overlap between MBRs of nodes resulting from directory node
splits. The following situations can occur:

1. MaxO ≈ AvgO

In this case, some directory nodes will be extended and others split, resulting in
an indexing tree whose directory nodes are adapted to both the distribution of the
spatial objects and the system performance characteristics.

2. MaxO >> AvgO

In this case, most of the directory nodes will split, resulting in an indexing struc-
ture very close to a classical R-tree. This is a favorable situation because the
resulting structure is theoretically efficient with respect to the system performance
characteristics.

3. MaxO << AvgO

In this case, very few splits will occur in directory nodes, resulting in an indexing
structure with one or very few, but very large, supernodes. This only guarantees

35

Table 2.2: System parameters and MaxO with increasing disk page size
Page size [kBytes] TIO [ms] TTr [ms] TCPU [ms] MaxOValue [%]

4 10 0.043 0.0017 0.45

16 10 0.174 0.0068 1.77

64 10 0.694 0.0272 6.73

256 10 2.778 0.1087 22.40

1024 10 11.111 0.4348 53.59

4096 10 44.444 1.7391 82.20

16384 10 177.778 6.9575 94.86

that the resulting indexing structure is more efficient than a classical R-tree. The
search performance is mostly determined by the fraction of leaf nodes accessed
during spatial selections. The leaf nodes have fixed sizes, and continue to be ac-
cessed in a random manner. When too many leaf nodes are accessed, the search
performance gets worse than a sequential scan.

Based on this observation, two important questions need to be answered:

i. Can the MaxO value be controlled and adapted to produce efficient indexing struc-
tures with respect to the actual system performance parameters?

ii. Can this cost model be used in practice to index data sets of multidimensional objects
with spatial extents?

To answer these questions we studied the variation of the MaxO value with varying disk
page size (i.), and we measured the AvgO value for data sets of spatial objects uniformly
distributed in spaces with different dimensionality (ii.).

(i.) Controlling the MaxO value. The only parameter that can be adjusted to control
the MaxO value is the disk page size. Therefore, we studied the variation of the MaxO

value with increasing page size. For this purpose, we considered the performance param-
eters of our execution platform (see Table 2.1) and we computed the MaxO value for
different page sizes from 4kBytes to 16MBytes. The page size increases by a factor of 4
each time. Figure 2.4 illustrates the variation of the MaxO value with increasing page
size. Table 2.2 provides complementary numbers showing the variation of the system
performance parameters with varying page size.

We first notice that the MaxO value is very low for pages with sizes between 4kBytes
to 64kBytes (note the logarithmic scale on the vertical axis from Figure 2.4), it reaches
the value of 20% for a page size of around 256kBytes, and grows up to 95% for a page
size of 16MBytes. We have, at least in theory, the capacity to control the MaxO value,
by setting a suitable disk page size. However, this approach requires the AvgO value to
be known in advance. To obtain, for instance, a MaxO value of about 20% as suggested
by the authors of X-tree, we need to use a page size of 256kBytes. In practice, the AvgO

value can be only experimentally determined for static data sets available in advance.

We also notice that, according to the new performance parameters, we need to
use very large pages (256kBytes), for relatively small MaxO values (20%). A prob-
lem with using very large disk pages is that the insertion of new data objects becomes

36

 0.1

 1

 10

 100

16M4M1M256k64k16k4k

M
ax

O
 V

al
ue

 [%
]

Disk page size

MaxO value with increasing disk page size

Figure 2.4: MaxO threshold value with increasing disk page size

CPU-expensive. The cost of the insertion procedure increases in a significant manner
due to the following reasons:

• All the MBRs from a directory node on the insertion path need to be checked
in order to identify the one that requires the least enlargement. The cost of this
task is linear with the number of MBRs from the node and with the number of
dimensions. When the node capacity is large, an important number of MBRs need
to be checked at each level of the indexing tree.

• When a node overflow occurs, the best partitioning of the set of MBRs has to be
determined. The most efficient algorithm used to obtain a good partitioning is the
one proposed by R*-tree [BKSS90]. This algorithm has a complexity of the form
C(2∗d∗ (n+1)∗ log(n+1)) where n represents the node capacity and d represents
the number of dimensions. Therefore its cost increases significantly with the node
capacity.

(ii.) Measuring the AvgO value for spatial objects. The second question is whether
this cost model can be used in practice to index data sets of multidimensional objects
with spatial extents. To answer this question we conducted the following experiment: We
generated data sets of spatial objects uniformly distributed in multidimensional spaces of
increasing dimensionality, from 2 to 40 dimensions. For each dimensionality, we inserted
the objects in an R*-tree and we measured AvgO, the average overlap occurring between
the MBRs of the nodes resulting from splits of directory nodes. We used three different
disk page sizes: 4kBytes, 16kBytes, and 64kBytes.

Figure 2.5 illustrates the variation of the AvgO value with increasing dimensionality.
For 4kBytes pages, the AvgO value initially grows from 74% in 2 dimensions to 89%
in 12 dimensions, then gradually decreases to 46% in 40 dimensions. This behavior
is related to the fact that the page capacity decreases with increasing dimensionality,
from 204 objects per node in 2 dimensions to 12 objects per node in 40 dimensions.
Although the average overlap tends to increase with the number of dimensions, when
having fewer objects per node, the data objects are better grouped in leaf nodes. The
spatial variation is less important in leaf nodes, which also decreases the overlap in

37

 0

 20

 40

 60

 80

 100

40363228242016128642

Av
er

ag
e

ov
er

la
p

[%
]

Space dimensionality

AvgO value with increasing dimensionality

4k page
16k page
64k page

Figure 2.5: Overlap between MBRs of nodes resulting from directory node splits

directory nodes. In contrast, for pages of 16kBytes and 64kBytes, the number of objects
per node remains important (i.e., 818 and 3276 objects in 2 dimensions, and respectively
50 and 202 objects in 40 dimensions), and the AvgO value increases gradually from 65%
and 63% in 2 dimensions to 94%a and 95% in 40 dimensions. The AvgO value tends to
increase with both increasing dimensionality and the page capacity.

More important, when comparing the AvgO values from Figure 2.5 with the MaxO

values from Figure 2.4/Table 2.2, we notice that in all the cases MaxO << AvgO. This
implies that no splits will occur in directory nodes. The resulting indexing structure will
consist of only one very large supernode, the root node. Instead of a hierarchical directory,
we obtain a single-level linear directory which is sequentially scanned during searches.
Because all the leaf nodes are children of the root supernode, the query performance is
determined by the linear scan of the directory and by the percentage of leaf nodes that are
accessed. The leaf nodes are of fixed size and continue to be accessed in a random manner
inflicting high I/O costs. Therefore this indexing structure cannot always ensure better
average performance than sequential scan. This theoretical result was experimentally
confirmed for both uniform and skewed data object distributions.

Conclusion on the X-tree cost model. Although X-tree uses a cost model to reduce
the deterioration of the query performance caused by excessive random node accesses,
the cost model is not practical when dealing with multidimensional objects with spatial
extents because the average overlap resulting from directory node splits is much greater
than the overlap threshold corresponding to the performance parameters. This induces
the degeneration of the indexing structure to a single-level linear directory. The leaf
nodes continue to be accessed in a random manner inflicting high I/O costs. The cost
model of X-tree can ensure better performance than a classical R-tree, but it cannot
always guarantee better average performance than sequential scan.

2.2.8 Conclusions

After studying the limitations of the existing multidimensional indexing methods, we
can generally conclude that, in order to improve the object grouping and to globally

38

Space
Partitioning
based methods

− space−filling curve based object decomposition

Static

Space transformation + point access methods:

Object clipping: Extended K−D−tree, Cell Tree

Overlapping regions: SKD−tree

− object to point transformation

− poor storage utilization
− small volume objects
− 2/3 dimensions

− 2/3 dimensions
− small volume objects

− complex query decomposition and processing
− 2/3 dimensions

− few dimensions (< 6)
− small volume objects

− few dimensions (< 6)
− small volume objectsPacked R−tree

Packed Hilbert R−tree

Hilbert R−tree
R*−tree
R+−tree
R−tree

− better performance
than dynamic
relatives

Dynamic

− only for static datasets
− poor performance in higher dimensions (< sequential scan)

− cost model only based on the data distribution
− cost model

X−tree
− data−adaptive

embedding
I/O and CPU
parameters

Cost−based

− point access
methods
adapted to

spatial objects

Region
Bounding
methods

support
spatial objects

Clustering
Adaptive

− cost model not practical for spatial objects

Adaptive R−tree
− query−adaptive − not really adapted for spatial objects

− 2/3 dimensions (impractical in higher dimensions)

− better search performance than sequential scan in virtually every case
− dynamically adapt to changes in data and query distributions

− data−adaptive and query−adaptive
− cost model embedding I/O and CPU system parameters

Cost−based
− designed for spatial objects

− poor performance in high dimensions (< sequential scan)

− poor performance in higher dimensions (< sequential scan)

LimitationsSpatial Access Methods
− considering spatial objects and disk−based storage

− designed to

− our approach

Figure 2.6: Spatial access methods: characteristics and limitations

ensure better average search performance than sequential scan, it is very important for
the indexing solution to meet the following requirements:

• The object grouping should be assisted by a cost model taking into account the
performance characteristics of the execution platform and considering both data
and query distributions

• The indexing solution should be able to dynamically accommodate important changes
that might occur over time in data or query patterns

• The cost model should apply to both leaf nodes and directory nodes

The alternative clustering approach that we propose is meant to follow these require-
ments.

Figure 2.6 summarizes the limitations of most existing multidimensional indexing
methods supporting spatial objects, and outlines the main characteristics of the alterna-
tive clustering solution that we propose.

39

2.3 Principles and characteristics of our clustering solution

As an alternative to existing multidimensional indexing methods, we propose a cost-based
query-adaptive clustering solution suitable for multidimensional objects with spatial ex-
tents and meant to improve the average performance of spatial range queries.

Our object grouping in clusters drops many properties of classical tree-based indexing
structures (i.e., tree height balance, balanced node splits, and minimum bounding in all
dimensions) in favor of a cost-based object clustering meant to ensure better average
search performance than sequential scan in virtually every case.

The cost model supporting the object clustering takes into account the performance
characteristics of the execution platform and relies on both data and query distributions
to improve the object grouping and thus the average query performance.

The driving principles and the main characteristics of our clustering approach are:

• Cost-based clustering

– The cost model is used to evaluate the average search performance of existing
clusters and to estimate it for future cluster candidates in order to support, on
the one hand, creation of new profitable clusters, and removal of older inefficient
clusters, on the other hand.

– The cost model integrates different system parameters affecting the spatial query
execution. These parameters are determined by the performance characteristics of
the execution platform (i.e., microprocessor, main memory, and external support)
and depend on the storage scenario adopted for the spatial database (i.e., disk-
based storage or main memory storage). The main system parameters embedded
in the cost model are the disk access/seek time, the disk transfer rate, the memory
access time and the object check rate.

– With respect to the cost model, new clusters are only created when their presence
is expected to improve the average query performance, while inefficient clusters
whose profitability has decreased as result of changes in data or query distributions
become subjects for restructuring operations. The cost model is meant to ensure
for the set of clusters better average search performance than sequential scan in
virtually every case.

• Data-adaptive clustering

– The object clustering is based on a grouping criterion suitable for multidimen-
sional objects with spatial extents. Our grouping criterion abandons the minimum
bounding in all dimensions and groups spatial objects with similar intervals (loca-
tions and extents) in a reduced subset of dimensions, namely the most selective and
discriminatory dimensions and domain regions relative to the query distribution.

– The grouping dimensions and intervals are represented in the cluster signature.
The cluster signature is used to decide if an object can become member of the cluster
and if a spatial query needs to explore the cluster. When the cluster is explored
during a spatial query, all the data objects that are members of the cluster are
checked against the spatial selection criterion.

40

– To identify the best grouping dimensions and intervals, the grouping criterion
is employed to deterministically partition each cluster into a number of candidate
subclusters representing future cluster candidates. The number and the signatures
of the candidate subclusters are accordingly determined by the grouping criterion.
This enables maintenance of data and query statistics for the future cluster candi-
dates.

– To take into account the spatial data distribution, for each existing cluster we
maintain statistics regarding the number of data objects that are members of the
cluster. Similarly, for all the candidate subclusters associated with the existing
clusters we maintain statistics regarding the number of data objects qualifying for
the corresponding subclusters.

– Most of the existing indexing solutions can be considered as data-adaptive. How-
ever, our clustering method relies on the cost model to promote the clusters with
the best performance gains, and can dynamically adapt the object clustering to im-
portant changes that might occur over time in the distribution of the data objects
as result of insertions and deletions.

• Query-adaptive clustering

– Our object clustering is query-adaptive because the cost model takes into con-
sideration the query distribution in order to support clustering decisions such as
creation of new profitable clusters and removal of inefficient clusters. This is an
important contribution because most existing cost-based indexing solutions assume
that the query distribution follows the data distribution, which is not the case in
many practical applications.

– To take into account the spatial query distribution, for each existing cluster we
maintain statistics regarding the number of spatial queries exploring the cluster.
Similarly, for all the candidate subclusters associated with the existing clusters we
maintain statistics regarding the number of spatial queries likely to explore the
corresponding subclusters. The percentage of queries accessing a cluster over a
period of time relative to the total number of queries addressed to the database
system allows one to estimate the cluster access probability.

– Together with the system performance parameters (i.e., cluster access cost, clus-
ter read cost and object check cost), the cluster access probability enables the
cost model to estimate the average search performance corresponding to a given
cluster. Thanks to the cost model, our clustering method is able to dynamically
adapt the object clustering to important changes that might occur over time in the
distribution of the query objects.

The rationales of our cost-based data- and query-adaptive clustering strategy are
illustrated in the following example.

Example 4 This example is based on Figure 2.7. Given the collection of 2-dimensional
spatial objects {O1, O2, ..., O8} depicted in Figure 2.7-(A), we consider three alternative
storage/indexing methods aiming to improve the average performance of spatial range
queries as follows:

41

1. The first method consists of a sequential storage for the collection of data objects
as depicted in the right side of Figure 2.7-(A).

2. The second method consists of an object organization based on an R-tree with 4
entries per node as depicted in Figure 2.7-(B).

The R-tree has two leaf nodes, each of which storing four objects per node. The
minimum bounding rectangles R1 and R2 of the two leaf nodes are stored in the
root node. For the given set of spatial objects, inserted in the sequence indicated by
the numbering order, the R-tree configuration depicted in the figure represents the
best configuration that can result. We note that due to construction constraints,
data objects that are very dissimilar, such as O1 and O3 or O2 and O8, fall in the
same groups.

3. The third method consists of an object organization in clusters as depicted in
Figure 2.7-(C).

We have three clusters represented by the signatures C1, C2 and C3. These clusters
were obtained combining three grouping criteria:

(a) A data-adaptive criterion which consists of grouping objects that are spatially
similar with respect to their locations and extents in the data space

(b) A query-adaptive criterion which consists of grouping objects that have similar
access probabilities with respect to the distribution of the query objects

(c) A cost-based criterion which consists of maintaining clusters that are profitable
for the average query performance

The first cluster C1 regroups the data objects O3, O5 and O7 situated in the top left
region of the data space. The second cluster C2 regroups the data objects O4, O6

and O8 situated in the bottom right region of the data space. The third cluster C3

regroups the data objects O1 and O2 occupying large areas in the center of the data
space. To make our point, we assume that most of the spatial queries addressed
to the database are falling in the hashed region denoted by Q. With respect to
our query assumption, the top and the bottom regions of the data space are very
seldom accessed by spatial queries, while the center region is very often accessed.
As a result, the clusters C1 and C2 are seldom explored during spatial selections,
so they contribute to improve the average query performance by avoiding to check
a large fraction of data objects. The cluster C3 is frequently explored, but it also
contributes to improve the average query performance because only a small fraction
of data objects need to be checked.

In the right sides of the figures, we have colored in gray the objects that are checked when
answering a spatial query like the one represented by Q. The following observations can
be made:

• The first storage method verifies all the data objects in a sequential manner.

• The R-tree based method checks the two MBRs from the root node and explores
both leaf nodes because the query window overlaps both MBRs. As a result, all the
data objects are finally verified. In this case, the global query cost is higher than

42

O1 O3 O5 O7

Q

O1 O2 O3 O4 O5 O6 O7 O8

O1 O2O4 O8O6O3 O7O5

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

R2

R1

R1 R2

O7

O8O6

O2

O3

O1

O4

O5

Q

O2 O4 O6 O8

O3

O4

O7

O8O6

O5

O1

O2

Q

C1

(C). Data and query adaptive object organization

C3C2C1

Q

Q
Q

O7

O8O6

O2

O1

O3

O5

O4

Q

(A). Sequential object storage

(B). R−tree based object organization

O5 O7

C3

C2

Q

Q

Figure 2.7: Example illustrating the rationales of our clustering approach

43

the sequential scan because: (1) the MBRs from the higher levels of the R-tree are
also checked, and (2) the access to the leaf nodes is rather random, which inflicts
higher access costs. Therefore the R-tree based organization is not efficient in this
particular situation.

• The adaptive clustering method checks the three cluster signatures, and only the
two objects from the cluster C3 whose only signature match the query window. This
clustering configuration is only efficient if the overhead cost caused by checking the
cluster signatures and by randomly accessing the explored clusters does not exceed
the performance gain resulting thanks to the smaller fraction of objects verified in
the end.

As shown in our example, a clustering approach taking into account both data and
query distributions, corroborated by a suitable cost model to monitor the average search
performance, could lead to better object grouping with improved query performance
results.

The challenging objective of our clustering solution is how to group the spatial objects
into clusters guaranteed to improve the average performance of the spatial queries. A
deterministic grouping criterion suitable for multidimensional objects with spatial extents
is required to enable maintenance of data and query statistics, as well as a reliable cost
model embedding the performance characteristics of the execution platform and taking
into account both data and query distributions.

2.4 Conclusions

In this chapter we presented the problem that we address, we reviewed the related work
with emphasis on the existing solutions applicable to our problem, and we outlined the
driving principles and characteristics of our alternative solution.

The problem that we address belongs to the multidimensional data indexing domain.
It consists of indexing large and dynamic collections of spatial objects with many dimen-
sions and with possibly large extents over dimensions, to efficiently answer spatial range
queries like intersection, containment, enclosure and similar-shape queries. A number of
general application requirements have to be met such as scalability, search performance,
update performance and adaptability to data and query distribution and to the perfor-
mance characteristics of the execution platform. At once meeting all these requirements
represents a great challenge for the multidimensional data indexing domain.

We reviewed the related work from the multidimensional data indexing domain. We
presented the characteristics and the limitations of the existing indexing solutions, with
emphasis on those suitable for multidimensional objects with spatial extents. We focused
our attention on the evolution of the indexing methods based on the R-tree technique,
specifically designed to support spatial objects. We showed that a number of require-
ments specific to our target applications, like the need to manage high-dimensional data,
the need to handle data objects with possibly large extents over dimensions, and the need
to cope with spatial range queries, are highly impractical for classical R-tree methods.
The main reason is that, in such cases, the overlap between minimum bounding rectan-
gles is important at node level, and an excessive number of nodes need to be explored

44

during spatial selections. The nodes are accessed in a random manner, which inflicts
high I/O costs and deteriorates the search performance so much that a naive approach
like sequential scan can be more efficient. To alleviate the performance degradation,
some R-tree extensions were proposed as trade-off solutions between random access and
sequential scan. They rely on cost models embedding the performance characteristics of
the execution platform to adapt the node page sizes according to the data distribution
like in X-tree and DABS-tree, and to the query distribution like in Adaptive R-tree. We
analyzed the features and the cost models of these latter techniques and also emphasized
their limitations.

After studying the limitations of the existing multidimensional indexing solutions, we
concluded that an efficient access method should have its object grouping assisted by
a cost model embedding the performance characteristics of the execution platform and
considering both data and query distributions. As an alternative to existing indexing
methods, we propose a cost-based query-adaptive clustering solution suitable for mul-
tidimensional objects with spatial extents and designed to improve the average search
performance of spatial range queries. The driving principles and the characteristics of
our clustering method are outlined in the last section of this chapter, together with an ex-
ample meant to illustrate the rationales of our approach. Indeed, our clustering strategy
is based on a cost model embedding the performance parameters of the execution plat-
form and considering both data and query distributions as means to improve the object
grouping and to ensure for spatial range queries better average search performance than
sequential scan in virtually every case. The object clustering relies on a grouping criterion
suitable for multidimensional objects with spatial extents and used to deterministically
partition each existing cluster into a number of candidate subclusters representing future
cluster candidates. Data and query statistics are maintained for the existing clusters
and for the future cluster candidates in order to support clustering decisions such as
creation of new profitable clusters and detection and removal of older inefficient clusters.
The clustering strategy, the object grouping criterion, and the cost model supporting the
clustering decisions are the main elements of our clustering solution. They are presented
in the following chapter.

45

Chapter 3

Cost-based query-adaptive
clustering

The main contribution of our work consists of a cost-based query-adaptive clustering so-
lution for large and dynamic collections of multidimensional objects with spatial extents,
meant to improve the average performance of spatial range queries like intersection, con-
tainment, enclosure, and similar-shape queries. Our object clustering is assisted by a
cost model taking into account the performance characteristics of the execution platform
and the spatial distributions of the data objects and of the query objects. The clustering
solution aims to meet a number of general application requirements regarding the fol-
lowing aspects: scalability, search performance, update performance, and adaptability to
data and and query distribution changes. In this chapter we present the main elements
of our clustering approach: the clustering strategy, the object grouping criterion, and the
cost model supporting the clustering decisions.

Chapter organization The chapter is organized as follows: Some useful terms and
definitions are first introduced in Section 3.1. The clustering strategy and the clustering
process are presented in Section 3.2. The object grouping criterion enabling our clustering
method is described in Section 3.3. The cost model supporting the clustering decisions
is detailed in Section 3.4.

3.1 Preliminary definitions

We now introduce some useful terms and definitions to facilitate the rest of the reading.

Cluster The term cluster is used to denominate a group of spatial objects sharing in
common a number of properties or characteristics. Each cluster has a signature resuming
the grouping characteristics and a storage space where the data objects belonging to
the cluster are physically stored together. Depending on the storage scenario adopted
for the spatial database, the storage space of a cluster can be in main memory or on
secondary memory (disk). When a cluster is explored during the execution of a spatial
query, all the data objects that are members of the cluster are accessed and checked

46

against the spatial selection criterion. As part of our clustering strategy, for performance
reasons, the storage space of a cluster has to be contiguous. The contiguous storage is
required to ensure sequential access to the data objects belonging to the cluster, during
cluster explorations. Sequential data access can significantly improve the query execution
performance, notably when the storage support is on secondary memory.

Cluster signature The grouping characteristics shared in common by the spatial ob-
jects belonging to a cluster are represented in the cluster signature. Thus each cluster is
associated with a cluster signature. At this point, we only provide a semantical definition
for the cluster signature, namely an object resuming the cluster’s grouping characteris-
tics. The cluster signature can be viewed as a class, while the spatial objects belonging
to the cluster as class instances. The cluster signature is used to verify:

1. If a spatial object can become a member of the cluster – Only the spatial objects
matching the cluster’s signature can become members of the cluster;

2. If the cluster needs to be explored during the execution of a spatial query – Only
the clusters whose signatures satisfy the spatial selection criterion (intersection,
containment, enclosure, or similar shape) with respect to the query object are
subjects for individual member examination.

An exact definition for the cluster signature is provided in Section 3.3.3.

Cluster subsignature We also use the term of cluster subsignature to denote a cluster
signature that represents a specialization of another cluster signature. From a semantical
point of view, all the spatial objects satisfying the cluster subsignature also satisfy the
cluster signature, but only a subset of the spatial objects satisfying the cluster signa-
ture satisfy the cluster subsignature. In other words, the cluster signature represents a
generalization of the cluster subsignature. In our semantics, it is possible for a cluster
signature to have several different cluster subsignatures. In the same time, a cluster
signature can be the subsignature of several different cluster signatures.

Subcluster Based on the notion of cluster subsignature, a cluster whose signature rep-
resents a specialization (a subsignature) of another cluster’s signature can be referred to
as a subcluster of the second cluster. The only relation established between the signatures
of the two clusters enables the objects belonging to the subcluster to become members
of the cluster without no additional membership verification. The cluster/subcluster
relation imposes no constraint on the storage spaces of the two clusters, which remain
completely independent.

Candidate cluster The term of candidate cluster is used to denominate a virtual
cluster, namely an abstract group of spatial objects. A candidate cluster is represented
by a cluster signature resuming the grouping characteristics, but it has no associated
storage space. Hence, it can not be used to physically store data objects. In our case,
candidate clusters represent future cluster candidates and are used to gather statistics
regarding the number of data objects qualifying as their members, and regarding the

47

number of spatial queries whose selection criteria match their signatures. A candidate
cluster can become a normal cluster if a storage space is assigned to it for its future
member objects. The process of turning a candidate cluster into a normal cluster is
called materialization of a candidate cluster.

Clustering By clustering we understand a disjoint partitioning of a collection of spatial
data objects into a number of clusters. Each cluster is represented by a cluster signature.
A data object could at once satisfy the signatures of several clusters. However, the clusters
are disjoint in terms of storage spaces and a data object can not be physically placed in
more than one cluster. The clustering should allow insertion of new data objects. For
this purpose, at least one cluster should exist that accepts any spatial object.

3.2 Clustering strategy

Our clustering solution consists of dynamically grouping the data objects into clusters.
The data objects from a cluster are stored in a sequential manner in order to minimize
the cluster exploration cost. Sequential data access can significantly improve the query
performance, notably when the storage support is on secondary memory. The object
clustering is assisted by a cost model meant to improve the average performance of
spatial range queries and to ensure better search performance than sequential scan. The
object clustering relies on a grouping criterion suitable for multidimensional objects with
spatial extents. The grouping criterion is used to identify groups of spatial objects
with similar characteristics (similar interval locations and extents) in a reduced subset of
dimensions, namely the most selective and discriminatory dimensions and domain regions
relative to the query objects. The grouping dimensions and intervals are represented
in the cluster signature. To identify the best grouping dimensions and intervals, each
existing cluster is deterministically partitioned into a number of candidate subclusters
representing future cluster candidates. Each candidate subcluster has a signature that
represents a specialization of the cluster’s signature in one of the possible dimensions.
Data and query statistics are maintained for the existing clusters and for the future
cluster candidates. These statistics are embedded in the cost model together with a
number of system parameters affecting the query execution (disk seek/access time, disk
transfer rate, memory access time and object check rate). The cost model is used to
evaluate the search performance of existing clusters and to estimate it for future cluster
candidates. A cluster is considered profitable when its presence contributes to improve
the average query performance. The evaluation of the cluster search performance allows
one to identify the most profitable future candidate clusters, and to detect the older
clusters having lost their profitability as result of changes in the data or in the query
distribution. The cost model is accordingly used to support creation of new profitable
clusters and removal of inefficient clusters.

3.2.1 Outline of the clustering strategy

The clustering process is accomplished by recursively regrouping objects from existing
clusters into new clusters by means of cluster splits, and by restructuring inefficient
clusters through cluster merges. When performing a cluster split, subgroups of objects

48

from an existing cluster are extracted and relocated into new clusters. The different
ways in which the data objects from a cluster can be grouped in new (sub)clusters
are provided by the clustering function whose role is to implement the object grouping
criterion. With respect to the cost model, cluster splits are only performed when the
newly created clusters are expected to improve the average query performance. On the
other hand, older clusters that are no longer profitable due to changes in the data or
in the query distribution become subjects for merge operations: The inefficient clusters
are withdrawn from the database and their member objects are relocated to the clusters
representing their direct ancestors in the clustering hierarchy.

Our clustering strategy is assisted by three important operational functions:

1. Clustering function

The clustering function implements the object grouping criterion providing the
ways in which the data objects from an existing cluster are grouped into a number
of candidate subclusters. The candidate subclusters represent future cluster can-
didates and correspond to different dimensions and interval regions. This function
enables maintenance of data and query statistics for the future cluster candidates.

2. Materialization benefit function

The materialization benefit function is primarily used to support creation of new
profitable clusters. This function is based on the cost model and relies on data
and query statistics to evaluate the impact of a new cluster on the average query
performance. The materialization benefit function is employed to identify the can-
didate subclusters promising the best profits with respect to the average query
performance.

3. Merge benefit function

The merge benefit function is primarily used to support the detection and removal
of inefficient clusters. This function is also based on the cost model and relies on
data and query statistics to evaluate the impact of a cluster merge on the average
query performance.

3.2.2 Application of the clustering strategy

Initially, the collection of data objects is stored in a single cluster called root cluster.
The signature of the root cluster is set to the most general cluster signature, chosen to
accept any spatial object. Since the signature of the root cluster makes no discrimination
among spatial objects, all the spatial queries addressed to the system are exploring the
root cluster. Thus the access probability of the root cluster is always 1.

At root cluster creation we invoke the clustering function to establish the signatures
of the potential subclusters of the root cluster. The clustering function provides the ways
in which the objects from the root cluster can be grouped in different subclusters. The
candidate subclusters have no physical support (no storage space for data objects), but
they represent future cluster candidates. To support the creation of new (profitable)
clusters, performance indicators (data and query statistics) are attached to the root
cluster and to all its candidate subclusters. For the root cluster we record the number of
member objects and the number of visiting spatial queries. For a candidate subcluster we

49

record the number of data objects matching the signature of the candidate subcluster,
and the number of spatial queries virtually visiting the candidate subcluster (spatial
queries whose selection criteria match the signature of the candidate subcluster).

Cluster split The cluster split represents the first possible cluster restructuring oper-
ation. A cluster split is achieved by materializing a number of candidate subclusters of
the considered cluster (initially, the root cluster is considered). The candidate subclus-
ters selected for materialization are decided based on the materialization benefit function.
This function applies onto each candidate subcluster and makes use of the cost model
to evaluate the performance profit expected from the possible materialization of the
considered candidate. Thus the materialization benefit function is used to identify the
candidate subclusters with the best expected profits. These candidates become subjects
for materialization.

The materialization of a candidate subcluster consists of two actions: First, a new
cluster with the corresponding signature is created, and all the objects matching this
signature are relocated from the original cluster to the new cluster. Second, the clustering
function is applied on the signature of the new cluster to establish the subsignatures of
the candidate subclusters of the new cluster. Performance indicators are attached to the
new cluster and to all the candidate subclusters of the new cluster. They will be used to
gather statistics in order to support future cluster restructuring decisions.

During cluster splits, the candidate subclusters with the best expected profits are
materialized, so the original clusters get partitioned into a number of smaller clusters.
As result of recursive cluster splits, we obtain a hierarchy of clusters, where each cluster
is associated with a signature, a set of candidate subclusters, and the corresponding
performance indicators.

Cluster merge The cluster merge represents the second possible cluster restructuring
operation. When the separate management of an existing cluster becomes inefficient as
result of changes in the data or in the query distribution, the given cluster is withdrawn
from the database, and its objects are transferred back to the parent cluster. By parent
cluster we understand the cluster representing the direct ancestor in the hierarchy of
clusters. The merge between a cluster and its parent cluster is decided based on the
merge benefit function. This function makes use of the cost model to evaluate the impact
of the merge operation on the average query performance. Thus a merge operation is
only triggered when it is expected to bring a performance gain.

The cluster merge allows the object clustering to dynamically adapt to important
changes that might occur over time in the data or in the query distribution. To enable
merge operations, each cluster maintains a reference to the direct parent, and a list
of references to the child clusters. The root cluster has no parent and it can not be
withdrawn from the database. Its role is to host the data objects matching no other
cluster signatures.

Cluster restructuring invocation Decisions of cluster restructuring (cluster splits
and cluster merges) are made periodically for all the existing clusters. A cluster restruc-
turing operation is only considered when sufficient query statistics have been gathered

50

to properly support the restructuring decision.

The object grouping criterion and the clustering function implementing the grouping
criterion will be presented in the following Section 3.3. The cost model supporting the
clustering strategy, together with the two benefit functions will be presented in Sec-
tion 3.4.

3.3 Object grouping criterion

The data objects from our target applications are multidimensional objects with spatial
extents. Our clustering solution requires a grouping criterion suitable for this type of
objects. In particular, the object grouping should take into account the spatial locations
and the spatial extents of the data objects. This section presents the grouping crite-
rion chosen to support our object clustering. We first present the multidimensional space
model used to represent the data objects (Section 2.1.1). We then define a generic group-
ing model for multidimensional objects with spatial extents (Section 3.3.2). Based on this
model, we define the notions of cluster signature and cluster subsignature (Section 3.3.3).
We further discuss several possible grouping methods suitable for multidimensional spa-
tial objects (Section 3.3.4). We finally present the clustering function that implements
the grouping method chosen to support our clustering solution (Section 3.3.5).

3.3.1 Multidimensional space data representation model

As already shown, the data objects manipulated in our target applications are commonly
defined as sets of <attribute, interval of values> associations. They can be represented
as multidimensional objects with axes-parallel spatial extents in a multidimensional data
space where each dimension stands for a different space axis. Such objects are also
referred to as multidimensional spatial objects or multidimensional extended objects.

Example 5 The multidimensional space data representation model is illustrated in Fig-
ure 3.1. The figure depicts a three-dimensional spatial object corresponding to the fol-
lowing small ads subscription: “Looking for an apartment within 30 miles from Newark,
with a rent price between 400$ and 700$, and having between 3 and 5 rooms”. The
three axes from the figure correspond to the three subscription attributes: the distance
from Newark (where the given subscription ranges between 0 and 30), the rent price
(where the subscription ranges between 400 and 700), and the number of rooms (where
the subscription ranges between 3 and 5).

Let Nd be the number of dimensions of the multidimensional space used to represent
the data objects. According to our data representation model, a multidimensional spatial
object specifies an interval for each dimension and can be described as follows:

o = {d1[a1, b1], d2[a2, b2], . . . , dNd
[aNd

, bNd
]}

where the interval [ai, bi] represents the extent of the spatial object o in the dimen-
sion di,∀i ∈ {1, 2, . . . , Nd}.

51

Number of Rooms

1

6

4

5

20

60

100

110

10

7

50

2

3

70
80

90

40
30

1 2 3 4 5 6 7 8 9 10 11 12

Rent Price (x100$)

Distance (miles)

3 − 5

0 − 30

400 − 700

Figure 3.1: Multidimensional data space representation model

To simplify our definitions, we will assume that the data space is normalized, namely
each dimension takes values in the domain [0, 1]:

0 ≤ ai ≤ bi ≤ 1,∀i ∈ {1, 2, . . . , Nd}.

As we deal with multidimensional objects with spatial extents, our object clustering
requires a grouping criterion suitable for this type of objects. In particular, the object
grouping should take into account the spatial locations and extents of the data objects.

3.3.2 Generic grouping model for multidimensional spatial objects

To define a generic grouping model for spatial objects, we first introduce the notion of
similar intervals, which applies to intervals from the same dimension. We then rely on
the notion of similar intervals to support the definition of similar multidimensional spatial
objects.

Similar intervals By similar intervals we understand intervals of comparable sizes,
located in the same domain region. To precise the notion of interval similarity we define
two intervals of variation where the starts and the ends of the intervals considered as
similar can take values. So having two intervals of variation

[amin, amax] and [bmin, bmax]

with 0 ≤ amin ≤ bmax ≤ 1 and 0 ≤ bmin ≤ amax ≤ 1, all the intervals starting in
[amin, amax] and ending in [bmin, bmax] are considered similar with respect to these two
intervals of variation.

Example 6 The intervals I1, I2 and I3 from Figure 3.2 are similar with respect to the
intervals of variation [0, 0.25] and [0.5, 0.75]. In fact, all the intervals starting in the first
quarter of the domain, and ending in the third quarter of the domain are considered
similar with respect to the two domain quarters chosen as intervals of variation.

52

0 10.25 0.5 0.75

I1

I2

I3

interval endinterval start

Figure 3.2: Similar intervals

We next present two special cases:

1. The two intervals of variation are identical:

[amin, amax] = [bmin, bmax] = [a, b]

In this case, all the subintervals of the interval [a, b] are considered similar with
respect to this common interval of variation.

2. The two intervals of variation are both set to the full domain:

[amin, amax] = [bmin, bmax] = [0, 1]

In this case, according to our definition, all the intervals defined in the domain [0, 1]
are considered similar.

The notion of interval similarity applies to intervals from the same dimension. One
can rely on this notion to partition a collection of intervals into groups of similar intervals,
where each group is characterized by two intervals of variation. However, our data objects
are defined in a multidimensional space where an interval is provided for each dimension.
A grouping model for multidimensional spatial objects has to take into account the spatial
locations and the spatial extents of the data objects in all the dimensions. Based on the
notion of similar intervals, we next define the notion of similar multidimensional spatial
objects.

Similar multidimensional spatial objects Two or several multidimensional spatial
objects are considered similar if their corresponding intervals are similar in all the dimen-
sions. In each dimension the interval similarity is specified by two intervals of variation.
So having the set of intervals of variation

{[amin
i , amax

i] and [bmin
i , bmax

i]}

with 0 ≤ amin
i ≤ bmin

i ≤ 1 and 0 ≤ bmin
i ≤ bmax

i ≤ 1,∀i ∈ {1, 2, . . . , Nd}, where i stands
for the dimension di, all the spatial objects that in dimension di define intervals starting
in [amin

i , amax
i] and ending in [bmin

i , bmax
i], ∀i ∈ {1, 2, . . . , Nd}, are considered similar with

respect to the given set of intervals of variation.

Example 7 The 2-dimensional spatial objects O1, O2 and O3 from Figure 3.3 are similar
with respect to the intervals of variation [amin

1 , amax
1] and [bmin

1 , bmax
1] corresponding to

the dimension d1, and [amin
2 , amax

2] and [bmin
2 , bmax

2] corresponding to the dimension d2.
In fact, all the rectangles having their corners in the four regions colored in gray are
considered similar with respect to the given set of intervals of variation.

53

amin
1 amax

1

amin
2

b2
min

maxb1

amax
2

maxb2

b1
min

O1

O2
O3

0
0

d2

d1
1

1

Figure 3.3: Similar multidimensional spatial objects

Generic grouping model We can now rely on the notion of object similarity to
partition a collection of multidimensional spatial objects into different groups, where
a group is characterized by the set of intervals of variation used to define the interval
similarity in each dimension. In our terminology, a group of objects is referred to as a
cluster. For a cluster, the set of intervals of variation characterizing the object similarity
is represented in the cluster signature. Based on this generic grouping model, a definition
for the cluster signature is provided in the following section.

3.3.3 Cluster signature and cluster subsignature

Cluster signature The cluster signature is defined as follows:

σ = { d1[a
min
1 , amax

1] : [bmin
1 , bmax

1], d2[a
min
2 , amax

2] : [bmin
2 , bmax

2],

. . . , dNd
[amin

Nd
, amax

Nd
] : [bmin

Nd
, bmax

Nd
] }

where σ represents the signature of a cluster regrouping spatial objects whose intervals
in dimensions di start in [amin

i , amax
i] and end in [bmin

i , bmax
i], ∀i ∈ {1, 2, . . . , Nd}.

Example 8 In our clustering model, we have a special cluster called root cluster whose
role is to host the data objects matching no other clusters. The signature of the root
cluster must be defined so to accept any spatial object as a member of this special
cluster. This means that all the spatial objects have to be similar with respect to the set
of intervals of variation characterizing the signature of the root cluster. The only way
to fulfill this requirement is to set the intervals of variation corresponding to the root
cluster signature to full domains in all dimensions:

σroot = {d1[0, 1] : [0, 1], d2[0, 1] : [0, 1], . . . , dNd
[0, 1] : [0, 1]}

Indeed, according to our definition, any two intervals are similar in any of the Nd dimen-
sions, so all the spatial objects are similar with respect to the root cluster signature.

54

O1

O2

O4
O3

O6

O5

O7 O8

d2

0.75

0.50

1.00

0.25

0.25 0.50 0.75 1.00
d1

0.00

Figure 3.4: An example to illustrate some possible clusters of spatial objects

Example 9 Considering the data objects O1, O2, ..., O8 from the 2-dimensional space
depicted in Figure 3.4, here are some examples of possible clusters together with their
corresponding signatures:

σroot = {d1[0, 1] : [0, 1], d2[0, 1] : [0, 1]} regroups all the objects;

σ1 = {d1[0, 0.25) : [0, 0.25), d2[0, 0.25) : [0.75, 1]} regroups the objects O1 and O2;

σ2 = {d1[0.25, 0.50) : [0.75, 1], d2[0.50, 0.75) : [0.75, 1]} regroups the objects O3 and O4;

σ3 = {d1[0.50, 0.75) : [0.75, 1], d2[0, 1] : [0, 1]} regroups the objects O5, O6 and O8;

σ4 = {d1[0.50, 0.75) : [0.75, 1], d2[0.25, 0.5) : [0.75, 1]} regroups the objects O5, O6;

σ5 = {d1[0, 1] : [0, 1], d2[0, 0.25) : [0, 0.25)} regroups the objects O7 and O8.

Cluster subsignature Given two cluster signatures

σ = { (di[a
min
σi

, amax
σi

] : [bmin
σi

, bmax
σi

]) | i ∈ {1, 2, ..., Nd} }

and
ζ = { (di[a

min
ζi

, amax
ζi

] : [bmin
ζi

, bmax
ζi

]) | i ∈ {1, 2, ..., Nd} }

ζ is a cluster subsignature of σ if and only if ∀i ∈ 1, 2, ..., Nd

amin
σi
≤ amin

ζi
≤ amax

ζi
≤ amax

σi

and
bmin
σi
≤ bmin

ζi
≤ bmax

ζi
≤ bmax

σi
.

According to the definition, all the data objects matching ζ will also match σ, while the
converse is in general not true.

Example 10 Considering the cluster signatures σ3 and σ4 from the previous example,
σ4 is a subsignature of σ3.

55

3.3.4 Object grouping methods

The generic grouping model allows us to form clusters of spatial objects based on the
notion of object similarity. However, the object grouping itself is actually determined
by the choice of the intervals of variation supporting the notion of interval similarity
over dimensions. The choice of the intervals of variation represents the subject of a
grouping method. Two grouping methods suitable for multidimensional spatial objects
are considered next: The first grouping method is based on a space division in cells of
equal volume, using all the dimensions at once. The second grouping method is based
on a space division in slices of equal volume, using one dimension at a time.

i. Object grouping based on space division using all dimensions

This grouping method first divides the multidimensional data space into spatial cells of
equal volume, using all the dimensions at once. Then each possible pair of spatial cells
is considered as a grouping support for a cluster of similar objects.

The domain of values of each dimension is divided into a fixed number of equal length
regions. As a result, the multidimensional data space gets partitioned into a number of
spatial cells of equal volume. Each spatial cell is represented by an interval per dimension.
Considering a pair of spatial cells, we have two intervals per dimension. One can use
these pairs of intervals as intervals of variation to support a group of similar objects.
In such a case, the two spatial cells supporting the object grouping will determine the
cluster signature. According to the generic grouping model, all the spatial objects with
two diagonally opposite corners falling in the two grouping spatial cells are considered
similar. If the two spatial cells supporting the object grouping coincide, all the spatial
objects falling completely in the corresponding cell are considered similar.

Example 11 This grouping method is illustrated in Figure 3.5. We consider a 2-
dimensional data space containing 12 spatial objects as in Figure 3.5-A. In Figure 3.5-B
we superpose a 2-dimensional grid over the data space. The spatial grid divides the data
space using 4 equal length regions per dimension. The rest of the drawings show groups
of similar objects determined by different choices of spatial cell pairs. The pairs of spatial
cells supporting the object grouping are represented in dark gray. We notice the follow-
ing groups of objects: O1 and O2 in Figure 3.5-C; O7 and O8 in Figure 3.5-D; O5 and
O6 in Figure 3.5-E; O9 and O10 in Figure 3.5-F. Each pair of grouping cells corresponds
to a cluster signature. For instance, the cluster regrouping the objects O1 and O2 is
represented by the following signature:

σ(1,2) = {d1[0, 0.25) : [0.50, 0.75), d2[0.25, 0.50) : [0.75, 1]};

Similarly, the cluster regrouping the objects O9 and O10 has the following signature:

σ(9,10) = {d1[0, 0.25) : [0, 0.25), d2[0, 0.25) : [0, 0.25)}.

This grouping method can be used to support the partitioning of a collection of spatial
objects into clusters based on the notion of object similarity defined before. However,
the number of potential candidate clusters is very large, actually proportional with the

56

0.00 1.00

1.00

d1

O8

O4

O6

O5

O7

O9

O10 O11

0.00 0.50 0.75 1.00

d2

0.75

0.50

0.25

0.25

1.00

d1

O2

O1 O1

O2

O12

O3

d2 (A). (B). (C).

0.00 0.50 0.75 1.00

d2

0.75

0.50

0.25

0.25

1.00

d1

O7
O8

0.00 0.50 0.75 1.00

d2

0.75

0.50

0.25

0.25

1.00

d1

O9

O10

(E). (F).(D).
0.00 0.50 0.75 1.00

d2

0.75

0.50

0.25

0.25

1.00

d1

O8

O3

O4

O6

O5

O7

O9

O10 O11

O2

O1

O12

0.00 0.50 0.75 1.00

d2

0.75

0.50

0.25

0.25

1.00

d1

O6

O5

Figure 3.5: Object grouping based on space division using all dimensions

number of possible cell pair combinations. For a 2-dimensional space, the exact number
of potential candidate clusters is given by the formula

[
f · (f + 1)

2
]2

where f represents the number of divisions per dimension (also called domain division

factor). Indeed, a number of f ·(f+1)
2 interval pair combinations can be formed in each

dimension. Combining the intervals pairs between the 2 dimensions we obtain the formula
above. In a multidimensional space, the number of potential candidate clusters is given
by the formula

[
f · (f + 1)

2
]Nd

where Nd represents the number of dimensions. Indeed, in a multidimensional space we
have to consider all the combinations of interval pairs between the Nd dimensions.

The total number of potential candidate clusters generated by this grouping method is
exponential with the number of dimensions. Considering, for instance, a 10-dimensional
space, and using a domain division factor of 4 regions per dimension, we obtain 10
billion possible candidate clusters. To support cluster split decisions, our clustering
solution needs to maintain performance indicators (data and query statistics) for all the
candidate (sub)clusters. With this grouping method, maintaining performance indicators
for all the candidate clusters would be highly impractical in spaces with more than a few
dimensions. Moreover, in high dimensions the number of potential clusters would rapidly
exceed the number of data objects. As a result, most of the candidate clusters would be
either unoccupied or poorly populated. These are the main reasons for which we have
adopted the second grouping method presented next.

57

ii. Object grouping based on space division using one dimension

This grouping method first divides the multidimensional data space into spatial slices of
equal volume, using only one dimension at a time. Then each possible pair of spatial
slices (from the same dimension) is considered as a grouping support for a cluster of
similar objects.

We iteratively consider each dimension and divide its corresponding domain into a
fixed number of equal length regions. As a result, for each dimension, the multidimen-
sional space is partitioned into spatial slices of equal volume. A spatial slice is represented
by an interval in the slicing dimension and by full domains in the other dimensions. Con-
sidering a pair of spatial slices as similarity support, all the spatial objects with two
opposite (Nd − 1)-dimensional faces (or edges in 2 dimensions) falling in the two spatial
slices are considered similar. When the two spatial slices supporting the object grouping
coincide, all the spatial objects falling completely in the given slice are considered similar.

Example 12 This grouping method is illustrated in Figure 3.6 for a 2-dimensional space
containing the same 12 objects as in the previous example. Figure 3.6-A shows the spatial
slices obtained dividing the domain of the dimension d1 by a factor of 4. The drawings
from Figures 3.6-B to 3.6-D represent groups of similar objects determined by pairs of
spatial slices corresponding to the dimension d1: O9 and O10 in Figure 3.6-B; O1 and
O2 in Figure 3.6-C; and O5, O6, O7 and O8 in Figure 3.6-D. The pairs of spatial slices
supporting the object grouping are represented in dark gray. Figure 3.6-E shows the
spatial slices obtained dividing the domain of the dimension d2. The drawings from
Figures 3.6-F to 3.6-I represent groups of similar objects determined by pairs of spatial
slices corresponding to the dimension d2: O5 and O6 in Figure 3.6-F; O1 and O2 in
Figure 3.6-G; O3, O7 and O8 in Figure 3.6-H; O9, O10, O11 and O12 in Figure 3.6-I.
Using this grouping method, the spatial objects can be clustered in several ways. For
instance, O1 and O2 can be grouped into a cluster represented either by the signature

σ1
(1,2) = {d1[0.00, 0.25) : [0.50, 0.75), d2[0.00, 1.00] : [0.00, 1.00]}

with respect to a pair of spatial slices corresponding to the dimension d1, or by the
signature

σ2
(1,2) = {d1[0.00, 1.00] : [0.00, 1.00], d2[0.25, 0.50) : [0.75, 1.00]}

with respect to a pair of spatial slices corresponding to the dimension d2.

The number of the potential candidate clusters generated by this second grouping
method is given by the formula

f · (f + 1)

2
·Nd

where f represents the domain division factor, and Nd represents the number of dimen-
sions. Indeed, f ·(f+1)

2 pairs of spatial slices can be formed for each of the Nd dimensions,
which sums up to the formula above.

This time the total number of potential candidate subclusters keeps linear with the
number of dimensions. Considering, for instance, a 10-dimensional space, and using
a domain division factor of 4 regions per dimension, we obtain 100 possible candidate

58

(B).

0.00 0.50 0.75 1.00

d2

0.25

1.00

d1

O9

O10

(A).

0.00 0.50 0.75 1.00

d2

0.25

1.00

d1

O8

O3

O4

O6

O5

O7

O9

O11

O2

O1

O12
O10

(C).

0.00 0.50 0.75 1.00

d2

0.25

1.00

d1

O1

O2

1.00
(D).

0.00 0.50 0.75 1.00

d2

0.25
d1

O8

O6

O5

O7

(E).

0.00 1.00

d2

0.75

0.50

0.25

1.00

O8

O3

O4

O6

O5

O7

O9

O10 O11

O2

O1

O12

0.00

0.75

0.50

0.25

1.00
(F).

1.00

d2

O6

O5

(G).

0.00 1.00

d2

0.75

0.50

0.25

1.00

d1

O2

O1

(H).

0.00 1.00

d2

0.75

0.50

0.25

1.00

d1

O3

O7
O8

(I).

0.00 1.00

d2

0.75

0.50

0.25

1.00

d1

O7

O11
O12

O10

O9

d1

Figure 3.6: Object grouping based on space division using one dimension

clusters. Maintaining data and query statistics for all the potential candidate clusters
becomes now feasible.

The limited number of candidate subclusters is the main consideration for which we
have adopted this grouping method as support for our clustering approach. Another
reason for this choice is that the object grouping is made on a “per dimension” basis.
This is of practical interest because often in real applications some dimensions are more
selective and more discriminatory than others with respect to the query objects. For a
candidate subcluster, only one dimension actually determines the object grouping. So
when examining different candidate subclusters, we implicitly make a “per dimension”
object grouping analysis.

The grouping method based on space division using one dimension at a time is em-
bedded in the clustering function to determine the candidate subclusters of the existing
clusters. The clustering function is presented in the next section.

59

3.3.5 Clustering function

The role of the clustering function is to generate the set of signatures corresponding to
the candidate subclusters of a given cluster. The signatures of the candidate subclusters
are used to decide how many objects from the original cluster qualify for the corre-
sponding candidate subcluster and how many queries visiting the original cluster would
also visit the corresponding candidate subcluster. These two performance indicators are
maintained for all the candidate subclusters and will serve as decision support for future
splits of the original cluster.

In this context, a good clustering function should solve the following trade-off: On
the one hand, the number of candidate subclusters should be sufficiently large to ensure
good opportunities of clustering. On the other hand, if this number is too large, the cost
of maintaining data and query statistics increases too much (performance indicators are
maintained for each candidate subcluster). As a solution to this trade-off we adopted
for our clustering function the grouping method based on a space division using one
dimension at a time. We first provide a definition for the clustering function, then we
present the way that our clustering function is implemented, and finally we present the
properties of the clustering function.

Clustering function definition

Considering the signature σc of a cluster c, the clustering function γ produces the set of
signatures {σs} associated with the candidate subclusters {s} of the cluster c. Formally,

γ(σc)→ {σs}

where ∀σs ∈ γ(σc), any spatial object matching the signature σs (so qualifying as a
member of the subcluster s of the cluster c) also matches the signature σc of the cluster c.
This means that the signatures {σs} of the candidate subclusters {s} are subsignatures
of the signature σc. The clustering function ensures a backward object compatibility in
the hierarchy of clusters, which is necessary to enable merge operations between child
and parent clusters. It is possible for a spatial object matching the signature σc of the
cluster c to match the signatures σs of several subclusters s of the cluster c.

Clustering function implementation

Our clustering function works as follows: Given a cluster signature we iteratively consider
each dimension. For each dimension, we divide both intervals of variation into a fixed
number of equal length subintervals. We call division factor and note f the number of
subintervals per dimension. We then replace the pair of intervals of variation of the cluster
signature by each possible combination pair of subintervals. We have f 2 combination
pairs of subintervals per dimension and thus f 2 cluster subsignatures for each dimension.
In the case when the two intervals of variation of the selected dimension are identical,
only f ·(f+1)

2 subinterval combination pairs are distinct because of the symmetry.

Example 13 We consider the following cluster signature

σ = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.50, 0.75) : [0.75, 1.00]}

60

and apply the clustering function using a division factor f = 4:

• We first take the dimension d1 and generate the sets of equal length subintervals
corresponding to the two intervals of variation [0.00, 0.25), identical in this case:

Sd1

1 = Sd1

2 = {[0.0000, 0.0625), [0.0625, 0.1250), [0.1250, 0.1875), [0.1875, 0.2500)}

We then generate all the possible pairs of subintervals between the two sets S d1

1

and Sd1

2 and obtain the following cluster subsignatures:

σd1

1 = {d1[0.0000, 0.0625) : [0.0000, 0.0625), d2[0.50, 0.75) : [0.75, 1.00]};

σd1

2 = {d1[0.0000, 0.0625) : [0.0625, 0.1250), d2[0.50, 0.75) : [0.75, 1.00]};

σd1

3 = {d1[0.0000, 0.0625) : [0.1250, 0.1875), d2[0.50, 0.75) : [0.75, 1.00]};

σd1

4 = {d1[0.0000, 0.0625) : [0.1875, 0.2500), d2[0.50, 0.75) : [0.75, 1.00]};

σd1

5 = {d1[0.0625, 0.1250) : [0.0625, 0.1250), d2[0.50, 0.75) : [0.75, 1.00]};

σd1

6 = {d1[0.0625, 0.1250) : [0.1250, 0.1875), d2[0.50, 0.75) : [0.75, 1.00]};

σd1

7 = {d1[0.0625, 0.1250) : [0.1875, 0.2500), d2[0.50, 0.75) : [0.75, 1.00]};

σd1

8 = {d1[0.1250, 0.1875) : [0.1250, 0.1875), d2[0.50, 0.75) : [0.75, 1.00]};

σd1

9 = {d1[0.1250, 0.1875) : [0.1875, 0.2500), d2[0.50, 0.75) : [0.75, 1.00]};

σd1

10 = {d1[0.1875, 0.2500) : [0.1875, 0.2500), d2[0.50, 0.75) : [0.75, 1.00]};

There are 16 possible subinterval combination pairs, but only the 10 enumerated
before are distinct because of the symmetry.

• We next consider the second dimension d2. For the first interval of variation
[0.50, 0.75), we generate the corresponding set of equal length subintervals:

Sd2

1 = {[0.5000, 0.5625), [0.5625, 0.6250), [0.6250, 0.6875), [0.6875, 0.7500)};

For the second interval of variation [0.75, 1.00], we generate its corresponding set
of equal length subintervals:

Sd2

2 = {[0.7500, 0.8125), [0.8125, 0.8750), [0.8750, 0.9375), [0.9375, 1.0000]};

Generating all the pairs of subintervals between the two sets Sd2

1 and Sd2

2 , we obtain
16 more candidate subclusters represented by the following signatures:

σd2

1 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.5000, 0.5625) : [0.7500, 0.8125)};

σd2

2 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.5000, 0.5625) : [0.8125, 0.8750)};

σd2

3 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.5000, 0.5625) : [0.8750, 0.9375)};

σd2

4 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.5000, 0.5625) : [0.9375, 1.0000]};

σd2

5 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.5625, 0.6250) : [0.7500, 0.8125)};

σd2

6 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.5625, 0.6250) : [0.8125, 0.8750)};

61

σd2

7 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.5625, 0.6250) : [0.8750, 0.9375)};

σd2

8 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.5625, 0.6250) : [0.9375, 1.0000]};

σd2

9 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.6250, 0.6875) : [0.7500, 0.8125)};

σd2

10 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.6250, 0.6875) : [0.8125, 0.8750)};

σd2

11 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.6250, 0.6875) : [0.8750, 0.9375)};

σd2

12 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.6250, 0.6875) : [0.9375, 1.0000]};

σd2

13 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.6875, 0.7500) : [0.7500, 0.8125)};

σd2

14 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.6875, 0.7500) : [0.8125, 0.8750)};

σd2

15 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.6875, 0.7500) : [0.8750, 0.9375)};

σd2

16 = {d1[0.00, 0.25) : [0.00, 0.25), d2[0.6875, 0.7500) : [0.9375, 1.0000]}.

Properties of the clustering function

Number of subsignatures of a cluster signature. The clustering function applies on each
of the Nd dimensions of the cluster signature. As a result, we obtain a number Ns of
cluster subsignatures where

Nd ·
f · (f + 1)

2
≤ Ns ≤ Nd · f

2

In this inequality f represents the domain division factor. The last term of the inequality
corresponds to the case where the pairs of intervals of variation from the cluster signature
involve distinct intervals in all the dimensions. In this case, the number of distinct
subinterval combination pairs is f 2 per dimension. The first term of the inequality
corresponds to the case the pairs of intervals of variation from the cluster signature involve
identical intervals in all the dimensions. In this case, the number of distinct subinterval
combination pairs is f ·(f+1)

2 per dimension, smaller because of the symmetry. However,
in all the cases, the number of cluster subsignatures, thus the number of candidate
subclusters, keeps linear with the number of dimensions Nd.

Number of subsignatures matched by a spatial object satisfying a cluster signature. By
the choice of the clustering function, a spatial object matching a cluster signature will
also match a number of Nd cluster subsignatures of the original cluster signature, where
Nd represents the number of dimensions of the data space. Indeed, the spatial object
will match one and only one subsignature per dimension because, in each dimension, one
and only one of the possible subinterval pair combinations will embed the extent of the
spatial object in the given dimension. This property is important because it gives the
number of candidate subclusters whose data statistics need to be updated when a data
object is inserted, removed, or relocated to another cluster.

62

Object grouping based on a reduced subset of dimensions and domain regions. Ac-
cording to our clustering function, a cluster subsignature differs from its parent cluster
signature in only one dimension. In the corresponding dimension, the intervals of varia-
tion of the cluster subsignature represent subintervals of the intervals of variation of the
parent cluster signature. As a result, when descending in the clustering hierarchy, only
one dimension has the power to discriminate from one level to the next one. The other
dimensions are not discriminatory and cannot serve to decide data or query qualifica-
tion. The clustering strategy privileges the materialization of the candidate subclusters
promising the best performance profits with respect to the cost model. Therefore the
object grouping corresponding to a cluster is determined by a reduced subset of dimen-
sions and domain regions, namely the most selective and discriminatory ones relative to
the query cost.

Thanks to the clustering function, each existing cluster is associated with a known
number of candidate subclusters representing future cluster candidates. Statistics re-
garding data and query distributions are maintained for all the candidate subclusters
and employed in the cost model to support creation of new profitable clusters. The cost
model supporting clustering decisions such as creation of new clusters and removal of
inefficient clusters is presented in the following section.

3.4 Cost model and benefit functions

As part of our clustering strategy, we rely on a cost model to support cluster restructuring
operations like cluster splits and cluster merges. The cost model is used to evaluate
the average search performance of existing clusters and to estimate it for future cluster
candidates (candidate subclusters of existing clusters). The cost model embeds several
system performance parameters affecting the query execution time, and also considers
the spatial distribution of the data objects and of the query objects. The cost model and
the benefit functions supporting our clustering strategy are presented next.

We first present the system parameters embedded in the cost model (Section 3.4.1).
Then we define the performance indicators associated with all the clusters to gather
statistics about the spatial distribution of the data objects and of the query objects
(Section 3.4.2). We further provide a generic cost model that can be applied to different
storage scenarios (Section 3.4.3). We finally derivate the two benefit functions supporting
the clustering strategy (Section 3.4.4).

3.4.1 System performance parameters

The cost model takes into consideration a number of system parameters directly affecting
the query execution time. These parameters depend on the performance characteristics
of the microprocessor (CPU), of the main memory (RAM), and of the secondary mem-
ory (I/O). The system performance parameters considered in our cost model are:

• memory access time = the average time required to access a data object in main
memory. This represents the cost of a random memory access to a known memory
position.

63

• memory object check rate / memory object check time = the average number of
data objects checked against the spatial selection criterion (e.g., intersection, con-
tainment) per time unit, considering that the data objects are sequentially placed
in main memory / the average time required to check one data object against the
spatial selection criterion in main memory. The access cost to the first data object
is not counted.

• disk seek/access time = the average time spent to locate and access a data object
in secondary memory. This represents the cost of a random disk access to a known
disk position.

• disk object transfer rate / disk object transfer time = the average number of data
objects transferred from secondary storage to main memory per time unit, con-
sidering that the data objects are sequentially placed on disk / the average time
required to transfer one data object from secondary storage to main memory. The
seek/access cost to the first data object is not counted.

3.4.2 Cluster performance indicators

To evaluate the cluster search performance, we associate each cluster with two statistics
gathering useful information about the distribution of the data objects and of the query
objects. These two statistics, further referred to as cluster performance indicators, are:

1. Number of data objects (nc)

- For a normal cluster we consider the number of data objects that are members
of the cluster;

- For a candidate subcluster, we count the number of data objects from the original
cluster, matching the signature of the candidate subcluster.

Combined with the system’s performance parameters according to the storage sce-
nario (i.e., memory object check time, disk object transfer time), this statistics
allows one to estimate the cluster exploration cost. Indeed, cluster exploration im-
plies object transfer from disk to memory when the data objects are stored on disk,
and individual checking in memory of all the data objects that are members of the
cluster.

2. Number of visiting spatial queries (qc)

- For a normal cluster we consider the number of spatial queries visiting the cluster
over a period of time.

By queries visiting the cluster we understand spatial queries that require the
cluster exploration, namely spatial queries for which the cluster signature sat-
isfies the spatial selection criteria with respect to the query objects;

- For a candidate subcluster, we count the number of queries virtually visiting the
cluster over a period of time.

We consider that a query is virtually visiting a candidate cluster when the
signature of the candidate cluster satisfies the spatial selection criterion with
respect to the query object.

64

This statistics represents a good indicator for the cluster access probability. Indeed,
the access probability of a cluster can be estimated as the ratio between the number
of queries exploring the cluster and the total number of queries addressed to the
system over a period of time:

pc =
qc

qsystem

where

- qsystem represents the total number of spatial queries addressed to the system
over a period of time;

- qc represents the number of queries visiting the cluster c over the same period
of time.

The cluster exploration cost together with the cluster access probability combined with
the I/O and CPU performance parameters allows one to evaluate the search performance
of a given cluster. The cost model is detailed in the next section.

3.4.3 Cost model and database storage scenarios

Our cost model is meant to evaluate the average query execution time associated with
a cluster. The time cost induced by a spatial query at the exploration of a cluster is
composed of:

• The cost of verifying the cluster signature

The verification of the cluster signature is necessary to decide the cluster explo-
ration. All the cluster signatures are stored in main memory, so this cost implies
signature access and check in main memory.

• The cost of locating the storage space of the cluster in order to get access to the
data objects

This cost rises every time the cluster exploration is triggered. Depending on the
storage scenario, this cost might embed a memory access or a disk seek/access
operation.

• The cost of accessing and checking each data object against the spatial selection
criterion

This cost also rises every time the cluster exploration is triggered. This cost is
proportional with the number of data objects that are members of the cluster and
implies object transfer from disk to memory if the data objects are stored on disk,
and verification of the spatial selection criterion against all the data objects that
are members of the cluster.

• The cost of updating the query statistics associated with the cluster and with the
candidate subclusters of the cluster

Updating the query statistics is part of our clustering strategy. Its cost also rises
every time the cluster exploration is triggered. The query statistics are maintained
in memory for all the clusters and candidate subclusters.

65

The average spatial query execution time associated with a cluster c can be generally
expressed as:

Tc = A + pc · (B + nc · C) (3.1)

where

- nc is the number of data objects from the cluster c

nc represents the first performance indicator maintained for the cluster c;

- pc is the access probability associated with the cluster c

pc is estimated based on the number of visiting queries qc, the second performance
indicator maintained for the cluster c;

- A, B and C are three cost model parameters depending on the performance charac-
teristics of the execution platform with respect to the chosen storage scenario

For the cost model parameters A, B and C, we envisage two database storage
scenarios. The first storage scenario considers that the data objects are stored
in main memory. The second storage scenario considers that the data objects are
stored on external support (disk). The two storage scenarios are examined next, and
suitable definitions are provided for the three cost model parameters A, B and C.

i. Main memory storage scenario

With the recent proliferation of very large memory systems, motivated and sup-
ported by the decreasing price of RAM, a main memory database storage solution
can be now envisaged. A main memory storage would significantly improve the
query execution time because it enables the system to completely avoid expensive
I/O data seek, access and transfer operations. Even if the database is entirely man-
aged in main memory, when large quantities of data are involved, indexing methods
are still necessary to accelerate the retrieval of the relevant data and to further im-
prove the query execution. In particular, a main memory database indexing could
be of special interest for applications where the query response time is important
like in real-time information dissemination systems.

In our case, for this first storage scenario, we consider that the size of the main
memory is large enough to support the entire collection of spatial data objects,
together with the additional data structures necessary to implement our clustering
solution (i.e., the tree of cluster signatures and the performance indicators associ-
ated to clusters and to candidate subclusters). The data objects are arranged in
clusters which are stored in the main memory. The data objects that are members
of the same cluster are placed sequentially in order to maximize the data locality
and to benefit from memory cache lines and read ahead capabilities of the modern
processors, while performing cluster explorations.

With respect to this storage scenario, the three cost model parameters A, B and
C have the following signification:

- A represents the cluster signature verification time = the time spent to check a
cluster signature against the spatial selection criterion in order to decide the
cluster exploration;

66

- B represents the cluster access and query statistics time = the time required to
prepare the cluster exploration (call of the corresponding function, initializa-
tion of the object scan), plus the time spent to update the query statistics for
the current cluster and for the candidate subclusters of the current cluster;

- C represents the memory object check time = the time required to check one
object against the spatial selection criterion in order to decide the object
qualification for the query answer;

ii. Disk storage scenario

For this second storage scenario we adopt a more classical approach where the
data objects are stored in clusters on external support (on disk). The data objects
that are members of the same cluster are placed sequentially on disk in order to
minimize the disk head repositioning and to benefit from the the better performance
of the sequential data transfer between disk and memory, while performing cluster
explorations.

The additional data structures necessary to implement our clustering solution,
namely the tree of cluster signatures, together with the data and the query statistics
associated to clusters and to candidate subclusters, are still managed in main mem-
ory. Such a consideration can be afforded because on disk the number of clusters
is less important than in main memory due to specific performance characteristics:
expensive cluster seek/access and object transfer costs.

With respect to this storage scenario, the three cost model parameters A, B and
C have the following signification:

- A represents the cluster signature verification time = the same as in the first
scenario because all the cluster signatures are stored in main memory;

- B represents the cluster access and query statistics time = the time required
to position the disk head at the beginning of the cluster in order to prepare
the object read (disk seek/access time), plus, as in the main memory stor-
age scenario, the time required to prepare the cluster exploration (call of the
corresponding function, initialization of the object scan), and the time spent
to update the query statistics for the current cluster and for the candidate
subclusters of the current cluster;

- C represents the object transfer and verification time = the time required to
transfer one object from disk to memory (disk object transfer time), plus the
time required to check the data object against the spatial selection criterion in
order to decide the object’s qualification for the query answer (memory object
check time – this second component is the same as in the memory storage
scenario).

In the disk storage scenario, the cost components corresponding to I/O operations
(disk seek/access time in B, and disk object transfer time in C) are predominant
because they are much more expensive in terms of execution time.

67

3.4.4 Benefit functions supporting the clustering strategy

Equation (3.1) expresses the average spatial query execution time associated with a
cluster, as a function of the system parameters A, B and C, and of the cluster performance
indicators nc and pc. We derivate next cost-based expressions for the materialization
benefit function, and for the merge benefit function.

Materialization benefit function

Each cluster is associated with a set of candidate subclusters potentially qualifying for
materialization. The materialization benefit function β applies on each candidate sub-
cluster and evaluates the performance gain expected from its possible materialization.
For this purpose, β takes into consideration the performance indicators of the candidate
subcluster, the performance indicators of the original cluster, and the set system pa-
rameters A, B and C affecting the query response time. Formally, if σs ∈ γ(σc) (s is a
candidate subcluster of the cluster c) then

β(s, c)→

{

≥ min β if the materialization of s is profitable;
< min β otherwise.

min β represents a threshold value corresponding to the minimum profit expected from
the materialization of a candidate subcluster. This threshold value helps to avoid the
creation of new clusters expected to bring very low performance gains because such
clusters could rapidly turn into inefficient clusters.

To obtain the expression of the materialization benefit function β, we compare the
query execution times before and after the hypothetical materialization of the candidate
subcluster:

Tbef = Tc

Taft = Tc′ + Ts

- Tbef represents the execution time associated with the original cluster c;

- Taft represents the joint execution time associated with the clusters c′ and s resulted
after the materialization of the candidate s of c.

The materialization operation is considered profitable if the query execution time result-
ing after performing this operation is lower than the query execution time before. The
materialization benefit function is defined as

β(s, c) = Tbef − Taft = Tc − (Tc′ + Ts) (3.2)

and represents the profit in terms of execution time, expected from the materialization
of the candidate s of c.

Using Equation (3.1) to expand the three terms of Equation (3.2)

Tc = A + pc · (B + nc · C)

Tc′ = A + pc′ · (B + nc′ · C)

Ts = A + ps · (B + ns · C)

and considering

68

i. nc′ = nc − ns

The sum of the numbers of objects in the resulted clusters c′ and s is necessarily
equal to the total number of objects in the original cluster c.

ii. pc′ = pc

The access probability of c′ remains pc because c′ takes the place and inherits the
signature of c. The grouping characteristics of c, thus of c′, do not change, neither
the associated access probability.

then Equation (3.2) becomes:

β(s, c) = ((pc − ps) · ns · C)− (ps ·B)−A (3.3)

Equation (3.3) gives the expression of the materialization benefit function. According to
this equation, the interest in the materialization of a candidate subcluster is high when
the candidate subcluster has an access probability lower than the access probability of
the original cluster, and when enough objects from the original cluster qualify for the
considered candidate subcluster to compensate the additional cluster access cost.

The usage of the materialization benefit function as decision support for split op-
erations will be illustrated in the following chapter when presenting the cluster split
procedure (Section 4.2.3).

Merge benefit function

The role of the merge benefit function µ is to evaluate the suitability of a merge operation
between a cluster and his parent cluster. For this purpose, µ takes into consideration
the performance indicators of the considered cluster, of the parent cluster, and the set of
system parameters A, B and C affecting the query response time. Formally, if σc ∈ γ(σa)
(a is the parent cluster of the cluster c) then

µ(c, a)→

{

≥ min µ if the merge of c to a is profitable;
< min µ otherwise.

min µ represents a threshold value corresponding to the minimum profit expected from
the merge of a cluster to its parent cluster. This threshold value helps to avoid cluster
merges that bring very low performance gains because such clusters could rapidly turn
into profitable clusters.

To obtain the expression of the merge benefit function µ, we consider and compare
the query execution times before and after the hypothetical merge operation:

Tbef = Tc + Ta

Taft = Ta′

- Tbef represents the joint execution time associated with the original cluster c and to
the parent cluster a

- Taft represents the execution time associated with the cluster a′ resulted after the
merge of the clusters c and a.

69

The merge operation is considered profitable if the query execution time resulting after
performing this operation is lower than the query execution time before. The merge
benefit function is defined as

µ(c, a) = Tbef − Taft = (Tc + Ta)− Ta′ (3.4)

and represents the profit in terms of execution time, expected from the merge of the
clusters c and a.

Using Equation (3.1) to expand the three terms of Equation (3.4)

Tc = A + pc · (B + nc · C)

Ta = A + pa · (B + na · C)

Ta′ = A + pa′ · (B + na′ · C)

and considering

i. na′ = na + nc

The total number of objects in a′ represents the sum of the numbers of objects in a

and c.

ii. pa′ = pa

The access probability of a′ remains pa because a′ takes the place and inherits the
signature of a. The grouping characteristics of a, thus of a′, do not change, neither
the associated access probability.

then Equation (3.4) becomes:

µ(c, a) = A + (pc ·B)− ((pa − pc) · nc · C) (3.5)

Equation (3.5) gives the expression of the merge benefit function. According to this
equation, the interest in a merge operation is high when the access probability of the
child cluster gets close to the access probability of the parent cluster (due to changes in
the spatial distribution of the spatial queries), or when the number of objects in the child
cluster decreases too much (due to data object removals).

The usage of the merge benefit function as decision support for merge operations
will be illustrated in the following chapter when presenting the cluster merge invocation
procedure (Section 4.2.1).

3.5 Conclusions

The clustering strategy was the first topic of this chapter. Our clustering strategy relies
on a grouping criterion suitable for multidimensional objects with spatial extents and on
a cost model embedding the performance characteristics of the execution platform. The
grouping criterion is used to partition each cluster into a number of candidate subclusters
representing future cluster candidates. Data and query statistics are maintained for
the existing clusters and for the candidate subclusters. These statistics are used in

70

the cost model to evaluate the search performance of existing clusters and to estimate
it for the candidate subclusters. The evaluation of the cluster search performance is
required to support clustering decisions such as creation of new profitable clusters and
removal of older inefficient cluster. Two types of cluster restructuring operations are
used to accomplish the object clustering: cluster splits and cluster merges. A cluster
split is achieved by materializing a number of candidate subclusters of a given cluster.
New clusters are only created (materialized) if they are expected to improve the average
query performance. The cluster split decisions are assisted by the materialization benefit
function based on the cost model. A cluster merge is performed when the profitability
of the considered cluster has decreased as result of changes in the data or in the query
distribution. The inefficient cluster is withdrawn from the spatial database and its objects
are transferred to the direct ancestor from the clustering hierarchy. The cluster merge
decisions are assisted by the merge benefit function also based on the cost model.

The object grouping criterion was the second topic of this chapter. We first defined a
generic grouping model suitable for multidimensional objects with spatial extents. This
grouping model is based on the notion of similar objects denoting spatial objects with
intervals of comparable sizes and located in the same domain regions over dimensions.
The cluster signature was defined to precise the notion of object similarity. The clus-
ter signature consists of two intervals per dimension, called intervals of variation. The
intervals of variation represent domain regions where the starts and the ends of the in-
tervals of the qualifying spatial objects are allowed to fall in each dimension. According
to the clustering strategy, each existing cluster needs to be partitioned into a number of
candidate subclusters. The different ways in which a cluster is partitioned into several
candidate subclusters are determined by the clustering function. So the role of the clus-
tering function is to generate the signatures of the candidate subclusters. To implement
the clustering function, a grouping method is required, able to generate the possible sub-
signatures of a cluster signature. We examined two possible grouping methods. The first
method is based on a space division into cells of equal volume, using all the dimensions
at once. This grouping method proved to be impractical because the number of possible
subsignatures is exponential with the number of dimensions, which implies high mainte-
nance costs. The second method is based on a space division into slices of equal volume,
using one dimension at a time. The number of possible subsignatures generated by this
grouping method is linear with the number of dimensions, making possible the statistics
maintenance. For this reason, the second grouping method was retained and used to
implement the clustering function. We explained the implementation of the clustering
function and emphasized its properties: (1) Given a cluster signature, the clustering
function ensures a number of cluster subsignatures, which is linear with the number of
dimensions; (2) The number of subsignatures matched by a spatial object satisfying the
cluster signature is equal to the number of dimensions; and (3) The clustering function
enables an object grouping based on a reduced subset of dimensions and domain regions,
namely the most selective and discriminatory with respect to the cost model.

The cost model was the last topic of this chapter. We presented the system parame-
ters embedded in the cost model, as well as the performance indicators associated with
clusters and with candidate subclusters to maintain data and query statistics (number
of qualifying data objects and number of visiting queries). The average spatial query
time associated with a cluster was expressed as a function of the cluster performance
indicators and of three generic hardware-depended parameters A, B, and C. The three

71

parameters A, B, and C are defined according to the storage scenario adopted for the
spatial database (i.e., main memory storage or disk-based storage). Based on the generic
expression of the average query time associated with a cluster, we derived computing
formulas for the materialization benefit function and for the merge benefit function. To
obtain them we considered the balance between the average query time before and after
performing the corresponding operation. The cost model is intended to ensure that ma-
terializations of candidate subclusters and cluster merges are only performed if they are
expected to improve the average performance of spatial queries.

In this chapter we presented the main elements of our clustering method: the clus-
tering strategy, the object grouping criterion and the cost model supporting the clus-
tering strategy. In the next chapter, we provide algorithms and execution procedures
for database clustering operations and for standard database manipulation operations,
designed to ensure the implementation of the clustering strategy.

72

Chapter 4

Database clustering and
manipulation algorithms

Our clustering approach is designed to: (i.) partition the collection of multidimensional
spatial objects into clusters such as to improve the average performance of spatial queries;
(ii.) ensure fast data object update operations (insertions and deletions); (iii.) dynami-
cally adapt the object clustering to important changes that might occur in data or query
distributions in order to avoid significant performance degradation. In this chapter we
provide algorithms for database clustering operations such as cluster restructuring invoca-
tion, cluster split and cluster merge, and for standard database manipulation operations
like spatial query execution, data object insertion and data object deletion.

Chapter organization In Section 4.1 we introduce a number of notations used through-
out the presented algorithms. In Section 4.2 we discuss and present the execution proce-
dures corresponding to the object grouping operations used to accomplish the database
clustering: cluster restructuring invocation, cluster split, and cluster merge. In Sec-
tion 4.3 we provide the algorithms corresponding to standard database manipulation
operations: spatial query execution, data object insertion and data object deletion.

4.1 Notations

The following notations will be used throughout the algorithms presented next:

- C represents the set of (materialized) clusters from the spatial database;

- ∀c ∈ C

- σ(c) represents the signature of the cluster c;

- objects(c) represents the set of data objects that are members of the cluster c;

- parent(c) represents the parent cluster of the cluster c (direct ancestor in the
clustering hierarchy);

- children(c) represents the set of child clusters of the cluster c (clusters resulting
from splits of the cluster c);

73

- candidates(c) represents the set of candidate subclusters of the cluster c;

- n(c) represents the number of data objects belonging to the cluster c;

- q(c) represents the number of spatial queries visiting the cluster c since the
cluster’s creation or since the last initialization of this parameter;

- p(c) represents the access probability associated with the cluster c;

- ∀c ∈ C and ∀s ∈ candidates(c)

- σ(s) represents the signature of the candidate subcluster s of the cluster c;

- n(s) represents the number of data objects from the cluster c, qualifying for the
candidate subcluster s;

- q(s) represents the number of spatial queries virtually accessing the candidate
subcluster s since the creation of the cluster c or since the last initialization
of this parameter;

- p(s) represents the access probability associated with the candidate subcluster s;

- Operational functions

- γ() represents the clustering function;

- β() represents the materialization benefit function;

- µ() represents the merge benefit function;

- Other notations

- root ∈ C represents the root cluster;

- q(system) = q(root) represents the total number of spatial queries addressed to
the database system (all the spatial queries are visiting the root cluster);

- period q represents the period in number of spatial queries (addressed to the
database system) at which cluster restructuring operations are considered;

- min q represents the minimum number of spatial queries that should visit a
cluster before considering a cluster restructuring decision;

- min β represents the minimum profit expected from the materialization of a
candidate subcluster;

- min µ represents the minimum profit expected from a merge between a cluster
and its parent cluster;

Table 4.1 summarizes the main notations used throughout the presented algorithms.

4.2 Algorithms for database clustering operations

The data objects from the spatial database are initially stored in the root cluster. By
means of iterative cluster splits, groups of objects are gradually extracted from the ex-
isting clusters (initially from the root cluster) and relocated into new clusters. The cost
model is used to assist the cluster splits, ensuring that new clusters are only created (ma-
terialized) when they are expected to be profitable. On the other hand, older clusters

74

Table 4.1: Notations
C set of database clusters

σ(c) signature of cluster c

objects(c) set of data objects from cluster c

parent(c) parent cluster of cluster c

children(c) set of child clusters of cluster c

candidates(c) set of candidate subclusters of cluster c

n(c) number of objects in cluster c

q(c) number of queries visiting cluster c

p(c) access probability of the cluster c

γ() clustering function

β() materialization benefit function

µ() merge benefit function

having lost their profitability are withdrawn from the spatial database through merge
operations (the corresponding objects are transferred back to the parent clusters). The
order in which the cluster restructuring operations are invoked for the existing clusters is
important for the clustering process. We first present and discuss the invocation of the
cluster restructuring operations (4.2.1). Then we present and detail the cluster merge
procedure (4.2.2) and the cluster split procedure (4.2.3).

4.2.1 Cluster restructuring invocation

Cluster splits and cluster merges need to be periodically considered for all the clusters
in order to accomplish and refine the object clustering and to adapt it to data and query
distribution changes. In our case, the cluster restructuring operations are invoked on a
periodical basis determined by the occurrence of a fixed number of spatial queries. This
enables the system to gather sufficient statistics on the spatial distribution of the query
objects in order to properly support the cluster restructuring decisions.

Figure 4.1 illustrates the procedure used to invoke the cluster restructuring oper-
ations. Every period q spatial queries (condition from Step 1), two global cluster re-

RestructureClusters()

1. if (q(system) % period q = 0) then

2. RecursiveMergeClusters(root);

3. RecursiveSplitClusters(root);

End.

Figure 4.1: Cluster restructuring invocation

structuring actions are triggered: First, merge operations are considered for the existing
database clusters (Step 2). Then split operations are considered for the database clus-
ters (Step 3). In the condition from Step 1, period q denotes the period in number of

75

spatial queries at which the cluster restructuring operations are considered, q(system)
represents the total number of spatial queries addressed to the database system, while
% represents the “modulo” operator. The procedures corresponding to the two global
restructuring actions, RecursiveMergeClusters and RecursiveSplitClusters, apply re-
cursively to the clusters from the clustering hierarchy, starting with the root. The two
recursive procedures are presented next.

Recursive cluster merges According to the algorithm from Figure 4.2, the task of
the RecursiveMergeClusters-procedure is to consider and, when profitable, perform all
the merges between inefficient children of the current cluster and this cluster (Steps 1-5).
Then the RecursiveMergeClusters-procedure applies in a recursive manner to each child

RecursiveMergeClusters(c ∈ C)

1. if q(c) ≥ min q then

2. for each s in children(c) do

3. if q(s) ≥ min q then

4. if µ(s, c) ≥ min µ then

5. ClusterMerge(s, c);

6. for each s in children(c) do

7. RecursiveMergeClusters(s);

End.

Figure 4.2: Recursive cluster merges

cluster of the current cluster (Steps 6-7). Since the RecursiveMergeClusters-procedure
is initially invoked for the root cluster, the suitability of the merge operation is examined
for all parent/child pairs of clusters from the clustering hierarchy.

A merge decision can only be taken when enough query statistics are available for
both parent and child clusters. The query statistics are necessary to estimate the access
probabilities associated with the two clusters involved in the merge operation. The
cluster access probabilities are used in the cost model to evaluate the search performance
of the two clusters in order to determine the profitability of the merge operation. The
condition regarding the minimum number of query statistics is verified in Step 1 for the
parent cluster and in Step 3 for the child cluster: q(c) represents the number of spatial
queries that have visited the cluster c, q(s) represents the number of spatial queries that
have visited the child cluster s, and min q represents the minimum number of spatial
queries required to properly estimate the access probability of a cluster. If the minimum
number of spatial queries is not reached for both, parent and child, clusters, the merge
operation is not considered for the corresponding pair of clusters.

When enough query statistics are available to support the merge decision, the merge

76

benefit function µ(s, c) is invoked to compute the profit expected from merging the child
cluster s to the current cluster c (Step 4). If the expected profit is superior to min µ,
the merge operation can be performed and the cluster merge procedure, ClusterMerge,
is executed in Step 5. The threshold value min µ represents the minimum expected
profit required to perform a merge operation. When the expected merge profit does
not exceed the min µ value, the child cluster is considered still profitable and therefore
preserved. The expression of the merge benefit function can be found in Section 3.4.4.
The ClusterMerge-procedure invoked in Step 5 to perform the actual merge of a cluster
to its parent cluster is detailed in Section 4.2.2.

When a child cluster s is merged to the current cluster c, s is withdrawn from the
database and also from the set of children of c. Since the cluster s is removed from
the database, the current cluster c becomes the new parent of the children of s. So
the children of s are added to the set of children of c. As illustrated in Step 2, the
consideration of the merge operation applies to all the children of the current cluster.
This also includes the new children acquired as results of subsequent cluster merges. As
a result, all the clusters from the clustering hierarchy are tested for the merge operation.

Recursive cluster splits The RecursiveSplitClusters procedure is illustrated in Fig-
ure 4.3. The task of this procedure is to consider and, when profitable, perform the split of
the current cluster, c, given as argument (Steps 2-3). Then the RecursiveSplitClusters-

RecursiveSplitClusters(c ∈ C)

1. let S ← children(c);

2. if q(c) ≥ min q then

3. ClusterSplit(c);

4. for each s in S do

5. RecursiveSplitClusters(s);

End.

Figure 4.3: Recursive cluster splits

procedure applies in a recursive manner to all the clusters from S, where S represents
the initial set of children of the cluster c (Steps 4-5). The initial set of children of the
cluster c needs to be recorded (Step 1) because afterwards it grows when the cluster c

gets split. However, the new acquired children of the cluster c should not be consid-
ered for splits because they do not have any query statistics associated yet. Since the
RecursiveSplitClusters-procedure is initially invoked for the root cluster, all the clusters
from the clustering hierarchy are considered and tested for the split operation.

A split decision can only be taken when enough query statistics are associated with the
corresponding cluster. The query statistics are necessary to estimate the access probabil-
ities associated with the cluster considered for the split operation, and with the candidate
subclusters of this cluster. These access probabilities are further used to evaluate the

77

profits expected from the possible materializations of the candidate subclusters of this
cluster. The condition regarding the minimum number of query statistics is verified in
Step 2: q(c) represents the number of spatial queries that have visited the cluster c, and
min q represents the minimum number of spatial queries required to support the split
decision. If the minimum number of spatial queries is not reached, the split operation is
not considered for the current cluster.

When enough query statistics are available to support the split decision, the split
procedure called ClusterSplit is invoked for the current cluster in Step 3. This procedure
will attempt to split the current cluster by materializing some of its profitable candidate
subclusters. The ClusterSplit-procedure is presented in Section 4.2.3.

Some considerations As illustrated in Figure 4.1, we first consider all possible clus-
ter merges, then we consider all possible cluster splits. This invocation order is meant
to enable alternative splits for the clusters having acquired new data objects from un-
profitable children as result of merges. Splitting an inefficient cluster is not interesting
because the remaining cluster would continue to be unprofitable (its access probability
would not change). Rather than splitting an inefficient cluster, we first merge it to its
parent cluster, and later attempt to split the parent cluster. As the merge operations
are performed before the split operations, several child clusters could be merged to the
same parent before considering the split of this last one. This enables our restructuring
method to regroup several clusters before performing a split, which can lead to better
clustering configurations.

The merge and the split operations are considered for all the existing database clusters
every period q spatial queries. However, in practice only a few restructuring operations
are actually triggered, namely those involving clusters with enough query statistics, and
whose expected profitability exceeds the minimum profit threshold.

By the usage of the min q parameter, the clusters frequently accessed are more often
examined and considered for restructuring operations. This behavior is intended because
frequently accessed clusters contribute more to the average execution performance of the
spatial queries.

4.2.2 Cluster merge procedure

The cluster merge procedure is invoked when the merge between a cluster and its parent
cluster is considered as profitable for the average spatial query performance. The data
objects of the child cluster are first transferred back to the parent cluster, then the child
cluster is withdrawn from the spatial database.

Figure 4.4 illustrates the actions performed during the cluster merge: The data ob-
jects from the child cluster are relocated to the parent cluster in Step 1. This object
relocation requires the actualization of the data statistics associated with the parent
cluster: The number of objects in the parent cluster is updated in Step 2, as well as the
numbers of qualifying objects associated with the candidate subclusters of the parent
cluster (Steps 3-5). To preserve the clustering hierarchy, the parent cluster becomes the
parent of the children of the child cluster (Steps 6-7), and the list of children of the parent
cluster is accordingly updated in Steps 8-9. Finally, the child cluster is removed from the
spatial database (Step 10).

78

ClusterMerge (c ∈ C, a ∈ C | a← parent(c))

// Move data objects from child cluster c to parent cluster a:
1. let objects(a)← objects(a) ∪ objects(c);

// Update data statistics for parent cluster a:
2. let n(a)← n(a) + n(c);

// Update data statistics for candidate subclusters of parent cluster a:
3. for each s in candidates(a) do
4. letM(s, c)← {o ∈ objects(c) | o matches σ(s)};
5. let n(s)← n(s) + card(M(s, c));

// Set parent reference for child clusters of c:
6. for each s in children(c) do
7. let parent(s)← a;

// Update list of child references for parent cluster a:
8. let children(a)← children(a) ∪ children(c);
9. let children(a)← children(a) \ {c};

// Remove c from database:
10. let C ← C \ {c};

End.

Figure 4.4: Cluster merge procedure

Complexity of the cluster merge procedure The complexity of the merge proce-
dure is dominated by the cost of (i.) relocating the data objects from the child cluster
to the parent cluster (Step 1), and by the cost of (ii.) updating the data object statistics
for the candidate subclusters of the parent cluster (Step 3-5). The other actions involve
very simple operations whose costs are negligible compared to the first two actions. Next
we further detail the data object relocation and the data object statistics updating.

Data object relocation. For performance reasons, our clustering strategy requires that
the storage spaces of the clusters be contiguous. The data objects belonging to the same
cluster have to be placed together. When relocating the data objects from the child
cluster to the parent cluster, the storage space allocated for the parent cluster might
not be large enough to accommodate all the objects acquired from the child cluster. To
handle this problem in a simple manner, we systematically allocate a new storage space
for the parent cluster and transfer all the data objects from the child cluster and from the
parent cluster to the new storage location. The old storage space of the parent cluster is
then liberated, together with the storage space of the child cluster.

Accordingly, the data object relocation requires one read and one write for each object
from the two clusters involved (parent and child). Since the data objects are sequentially
placed, their transfer can be performed in an efficient manner by means of buffered reads
and writes. The buffered object transfer is very important for the execution performance,
notably in the case of a disk-based cluster storage, where it can help to avoid numerous
expensive I/O seek/access operations, saving a lot of execution time. Globally, the cost

79

of the data object relocation is determined by the sizes of the two involved clusters in
terms of number of buffered read/write operations. Depending on the clusters and buffer
sizes, this cost should not significantly exceed twice the cost of a buffered read of the two
clusters. Read of the two clusters together is very likely to occur during spatial selections
because a cluster that is subject for a merge has an access probability close to the access
probability of the parent cluster.

Data object statistics updating. The task of updating the data object statistics as-
sociated with the candidate subclusters of the parent cluster is accomplished when the
objects from the child cluster are transferred to the new storage location. This task
consists of incrementing the numbers of objects of the candidate subclusters that could
accommodate an object from the child cluster. The cost of this operation is propor-
tional to the number of objects in the child cluster multiplied by the number of relevant
candidate subclusters. The number of relevant candidate subclusters is given by the
clustering function and is equal to Nd, where Nd represents the number of dimensions
(see Section 3.3.5).

4.2.3 Cluster split procedure

The cluster split procedure attempts to split a database cluster by materializing some
of its candidate subclusters. Only the candidate subclusters whose materializations are
expected to be profitable are turned into real clusters. The cluster split procedure is
illustrated in Figure 4.5. The candidate subclusters promising the best materialization
profits are first selected in Step 1: B represents the set of the most profitable candidate
subclusters. To obtain the B-set, the materialization benefit function β computes the
materialization profits for all the candidate subclusters, and the most profitable candi-
dates are retained. In order to consider a candidate subcluster, the profit expected from
its materialization must exceed the minimum acceptable value min β. The expression of
the materialization benefit function can be found in Section 3.4.4.

If the B-set contains candidates subclusters (Step 2), then one of its members becomes
subject for materialization (Step 3). The materialization process consists of the following
actions: A new database cluster is created and added to the spatial database in Step 4.
The objects qualifying for the selected candidate are identified in Step 5 and moved from
the original cluster to the new cluster (Steps 6-7). The configuration of the new cluster
is set in Steps 8 (signature), 9 (parent cluster), and 10 (number of member data objects).
Steps 11-12 initialize the data object statistics associated with the candidate subclusters
of the new cluster. The number of objects remaining in the original cluster is accordingly
updated in Step 13. The numbers of qualifying objects are also updated for the candidate
subclusters of the original cluster in Steps 14-16. Steps 14-16 are necessary because the
data objects qualifying for the selected candidate subcluster also count for other candidate
subclusters. Object qualification for multiple candidate subclusters is enabled by the
clustering function because the candidate subclusters are just virtual clusters. However,
once relocated from the original cluster to the new materialized cluster, the corresponding
data objects can no more count for the candidate subclusters of the original cluster.

When the materialization of a candidate subclusters is finished, the split procedure
continues with the selection of the next best candidate subcluster. Thus the materializa-
tion process repeats from Step 1 until no profitable candidate subcluster is found. The

80

ClusterSplit (c ∈ C)

// Find best candidate subclusters for materialization:
1. let B ← {b ∈ candidates(c) | β(b, c) > min β ∧

β(b, c) ≥ β(d, c), ∀d 6= b ∈ candidates(c)};

2. if (B 6= ∅) then

// One of best candidate subclusters is materialized:
3. let b ∈ B;

// Create new database cluster d;
4. let C← C ∪ {d};

// Move qualifying data objects from cluster c to new cluster d;
5. letM(b, c)← {o ∈ objects(c) | o matches σ(b)};
6. let objects(d)←M(b, c);
7. let objects(c)← objects(c) \M(b, c);

// Set configuration for new cluster d:
8. let σ(d)← σ(b);
9. let parent(d)← c;
10. let n(d)← n(b);

// Set data object statistics for candidate subclusters of cluster d:
11. for each s in candidates(d) do
12. letM(s, d)← {o ∈ objects(d) | o matches σ(s)};

// Update data object statistics for cluster c:
13. let n(c)← n(c)− n(d);

// Update data object statistics for candidate subclusters of cluster c:
14. for each s in candidates(c) do
15. letM(s, d)← {o ∈ objects(d) | o matches σ(s)};
16. let n(s)← n(s)− card(M(s, d));
17. let n(s)← card(M(s, d));

// Consider next candidate subcluster for materialization:
18. go to 1.

// If the cluster c was split, then reset associated query statistics:
19. if c was split then
20. let q(c)← 0;
21. for each s in candidates(c) do
22. let q(s)← 0;

End.

Figure 4.5: Cluster split procedure

selection for materialization of the candidate subclusters is performed in a greedy manner
and the most profitable candidates are materialized first. In order to take into consider-

81

ation the data changes induced in the original cluster and in the candidate subclusters
by subsequent materializations, the B-set of the best candidates needs to be recomputed
each time (Step 1). At the end, the original cluster will only host the objects qualifying
for none of the new materialized subclusters. Of course, if no candidate subcluster is
expected to be profitable (B = ∅), the original cluster remains unchanged.

At the end of the split procedure, if at least one candidate subcluster of the original
cluster was materialized, we reset the query statistics associated with the original cluster
and with the candidate subclusters of the original cluster (Steps 19-22). The purpose of
this action is to enable the system to gather new query statistics at cluster level, further
used to dynamically adapt the object grouping to changes in the spatial distribution of
the query objects that might occur over time.

Complexity of the cluster split procedure A cluster split may consist of several
successive object relocations from the original cluster to different new materialized can-
didate subclusters. Each time a candidate subcluster is materialized, the qualifying data
objects need to be relocated from the original cluster to the new cluster. Thanks to the
data statistics associated with the candidate subclusters, we know exactly the number of
objects qualifying for the new materialized cluster. To perform the object relocation, we
allocate two new storage spaces: one to receive the data objects of the new materialized
candidate subcluster, and one to receive the data objects remaining in the original cluster.
During the object relocation, each data object from the original cluster is read, checked
against the signature of the candidate subcluster, and written either to the storage space
corresponding to the new materialized candidate subcluster, or to the new storage space
of the original cluster. As required, the objects are sequentially placed in the new storage
locations. At the end of the object relocation, the old storage space of the original cluster
is liberated and its place is taken by the new corresponding storage space.

Data object relocation. The cost of the data object transfer is proportional to the
number of objects from the original cluster, in terms of number of read/check/write oper-
ations. For efficiency reasons, the read/write operations are buffered, which is important
for the execution performance, notably when adopting a disk-based cluster storage.

Data object statistics updating. Together with the object transfer, we also need to
actualize the data statistics indicators: the numbers of data objects for the two clusters
(the original cluster and the new materialized cluster) and for the candidate subclusters
of the two clusters. The updating of the data statistics indicators is performed during the
object relocation: As soon as we find a data object qualifying for the new materialized
candidate subcluster, we decrement the numbers of objects associated with the relevant
candidate subclusters of the original cluster, and increment the corresponding statistics
associated with the relevant candidate subclusters of the new materialized cluster. The
cost of this task is proportional to the number of objects qualifying for the materialized
candidate subcluster multiplied by the number of relevant candidate subclusters. This
last is given by the clustering function and is equal to the number of dimensions Nd (see
Section 3.3.5).

82

4.3 Algorithms for database manipulation operations

In this section we introduce the execution algorithms corresponding to standard database
manipulation operations such as spatial query execution (4.3.1) and database update
operations like data object insertion (4.3.2) and data object deletion (4.3.3).

4.3.1 Spatial query execution

A spatial range query specifies a spatial object representing the query object, ρ, and a
spatial selection criterion, ∇, requested between the query object and the data objects
forming the query answer. We first define the spatial selection criteria corresponding to
different types of spatial range queries that we support, then we introduce the spatial
query execution procedure and discuss its complexity.

Spatial selection criteria The spatial selection criterion, denoted by ∇, depends on
the type of the spatial range query that we want to execute. Four types of queries are of
interest in our case: intersection, containment, enclosure and similar-shape queries. To
define the corresponding spatial selection criteria we will use the following notations:

ρ = { ([aρi
, bρi

]) | i ∈ {1, 2, ..., Nd} } – ρ represents a query object with its intervals
[aρi

, bρi
] in the Nd dimensions (i ∈ {1, 2, ..., Nd})

o = { ([aoi
, boi

]) | i ∈ {1, 2, ..., Nd} } – o represents a data object with its intervals
[aoi

, boi
] in the Nd dimensions (i ∈ {1, 2, ..., Nd})

σ = { ([amin
σi

, amax
σi

] : [bmin
σi

, bmax
σi

]) | i ∈ {1, 2, ..., Nd} } – σ represents a cluster signature
with its intervals of variation [amin

σi
, amax

σi
] : [bmin

σi
, bmax

σi
] in the Nd dimensions (i ∈

{1, 2, ..., Nd})

The notations (ρ ∇ o) and (ρ ∇ σ) are used in the following algorithms to decide if
the data object o, respectively the cluster signature σ, is satisfying the spatial selection
criterion ∇ with respect to the query object ρ. We define now the semantics of (ρ ∇ o)
and (ρ ∇ σ) for each type of spatial range query:

• Intersection Query: Find all the data objects intersecting the query object

(ρ ∇ o) ≡ {(aρi
≤ boi

) ∧ (aoi
≤ bρi

) | ∀i ∈ {1, 2, ..., Nd} }

(ρ ∇ σ) ≡ {(aρi
≤ bmax

σi
) ∧ (amin

σi
≤ bρi

) | ∀i ∈ {1, 2, ..., Nd} }

• Containment Query: Find all the data objects enclosed by the query object

(ρ ∇ o) ≡ {(aρi
≤ aoi

) ∧ (boi
≤ bρi

) | ∀i ∈ {1, 2, ..., Nd} }

(ρ ∇ σ) ≡ {(aρi
≤ amax

σi
) ∧ (bmin

σi
≤ bρi

) | ∀i ∈ {1, 2, ..., Nd} }

• Enclosure Query: Find all the data objects enclosing the query object

83

(ρ ∇ o) ≡ {(aoi
≤ aρi

) ∧ (bρi
≤ boi

) | ∀i ∈ {1, 2, ..., Nd} }

(ρ ∇ σ) ≡ {(amin
σi
≤ aρi

) ∧ (bρi
≤ bmax

σi
) | ∀i ∈ {1, 2, ..., Nd} }

• Similar-shape Query: Find all the data objects with similar locations and extensions
with those of the query object according to some maximum acceptable variation
values

(ρ ∇ o) ≡ {(aρi
−εi ≤ aoi

≤ aρi
+εi)∧(bρi

−εi ≤ boi
≤ bρi

+εi) | ∀i ∈ {1, 2, ..., Nd} }

(ρ ∇ σ) ≡ {(aρi
− εi ≤ amax

σi
) ∧ (amin

σi
≤ aρi

+ εi) ∧ (bρi
− εi ≤ bmax

σi
) ∧

(bmin
σi
≤ bρi

+ εi) | ∀i ∈ {1, 2, ..., Nd} }

where εi represents the maximum acceptable variation value with respect to the
interval bounds of the query object in dimension i (i ∈ {1, 2, ..., Nd}).

Spatial query execution procedure Answering a spatial query implies the explo-
ration of all the database clusters whose signatures satisfy the spatial selection criterion
with respect to the query object. The spatial query execution algorithm is illustrated in

SpatialQuery (query object ρ, spatial selection criterion ∇) : data object set

// Initialize the query answer set:
1. let R ← ∅;

// Determine the clusters to be explored:
2. let X ←ClustersToExplore(root, ρ, ∇);

// Exploration of qualifying clusters:
3. for each cluster c ∈ X do

// Check all data objects against the selection criterion:
4. for each object o in objects(c) do
5. if (ρ ∇ o) then
6. let R ← R ∪ {o};

// Update query statistics for cluster c:
7. let q(c)← q(c) + 1;

// Update query statistics for candidate subclusters of cluster c:
8. let S ← {s ∈ candidates(c) | ρ ∇ σ(s)};
9. for each s in S do
10. let q(s)← q(s) + 1;

// Return the query result:
11. return R;

End.

Figure 4.6: Spatial query execution algorithm

84

Figure 4.6. The set of clusters requiring exploration is computed in Step 2 by invoking the
recursive procedure ClustersToExplore on the root cluster (ClustersToExplore proce-
dure is presented in Figure 4.7). The data objects belonging to the clusters qualifying
for exploration are individually checked against the spatial selection criterion (Steps 4-6).
As indicator for the access probability, the number of exploring queries is incremented
for each explored cluster, as well as for the corresponding candidate subclusters virtually
explored (Steps 7-10).

The ClustersToExplore procedure from Figure 4.7 constructs the set of clusters
requiring exploration by verifying in a recursive manner the cluster signatures against
the spatial selection criterion. We note that the children of the clusters whose signatures
do not satisfy the spatial selection criterion ∇ are not considered for exploration.

ClustersToExplore(c ∈ C, query object ρ, spatial selection criterion ∇) : cluster set

// Check the cluster signature against the spatial selection criterion:
1. if (ρ ∇ σ(c)) then

// Recursively construct and return the set of clusters to be explored:
2. let X ← {c}

3. for each s in children(c) do
4. let X ← X ∪ ClustersToExplore(s, ρ, ∇);

5. return X ;

6. else

7. return ∅;

End.

Figure 4.7: Recursively determine the clusters to be explored

Complexity of the spatial query execution The complexity of the spatial query
execution is given by: (i.) checking the cluster signatures to determine the clusters requir-
ing exploration, (ii.) individually checking the data objects from the qualifying clusters,
and (iii.) updating the query statistics for the explored clusters/candidate subclusters.
The cost of the first task is in the worst case proportional to the total number of clusters
in terms of signature checks. However, in practice, the hierarchy of clusters helps to
avoid checking all the signatures. Indeed, the clusters descending from a cluster whose
signature does not require cluster exploration do not require exploration either. The
higher the query selectivity, the smaller the number of explored clusters, and thus the
cost of the first task. The cost of the second task is proportional to the number of ex-
plored clusters in terms of data access/seek operations, and to the number of member
objects in terms of data reads/verifications. When the clusters are stored on secondary
memory, expensive I/O operations are occurring like disk seek/access and object transfer
from disk to memory. The third task consists of incrementing the numbers of visiting
queries associated with the explored clusters and with their corresponding candidates

85

subclusters whose signatures satisfy the spatial selection criterion. The cost of this task
is proportional to the number of explored clusters multiplied by the number of candidate
subclusters per cluster. The number of candidate subclusters per cluster is is given by
the clustering function (see Section 3.3.5).

4.3.2 Data object insertion

When inserting a new data object in the spatial database, we need to find a cluster where
to place the given object. Beside the root cluster whose signature accepts any spatial
object, other database clusters might also be able to accommodate the new data object.
Figure 4.8 illustrates the insertion procedure. Among the clusters capable to receive the
new data object, identifiable based on their signatures, we choose to place the object in
the cluster with the lowest access probability (Steps 1-2). Although simple, our insertion
strategy aims at minimizing the probability of accessing the new data object, during
spatial selections that do not include it in the query answers. The insertion of the new
data object has to increment the number of data objects associated with the selected
cluster, and with the relevant candidate subclusters of the selected cluster (Steps 4-6).

ObjectInsertion (data object ρ)

// Determine and select best cluster accepting object ρ:
1. let B ← {b ∈ C | ρ matches σ(b) ∧ p(b) ≤ p(c), ∀c 6= b ∈ C};
2. let b ∈ B;

// Insert data object ρ into selected cluster b:
3. let objects(b)← objects(b) ∪ {ρ}

// Increment data statistics for cluster b:
4. let n(b)← n(b) + 1;

// Update data statistics for candidate subclusters of cluster b:
5. let S ← {s ∈ candidates(b) | ρ matches σ(s)};
6. for each s in S do
7. let n(s)← n(s) + 1;

End.

Figure 4.8: Object insertion procedure

Complexity of the data object insertion The complexity of the data object in-
sertion is given by: (i.) checking the cluster signatures to identify the clusters able to
accommodate the new data object, (ii.) determining the less accessed cluster among the
qualifying clusters, (iii.) inserting the object in the selected cluster, and (iv.) updating
the data object statistics for the selected cluster and for the candidate subclusters of the
selected cluster whose signatures match the new data object. The cost of the first task
is in the worst case proportional to the total number of clusters in terms of signature
checks. However, in practice, the hierarchy of clusters helps to avoid checking all the
cluster signatures. Indeed, the clusters descending from a cluster whose signature does

86

not accept the new data object do not accept this object either. The second task only re-
gards the clusters qualifying for object insertion. Their access probabilities are evaluated
and the cluster with the smallest access probability is retained. The cost of this opera-
tion is linear with the number of clusters able to host the new data object. The third
task usually requires one write operation to place the new data object at the end of the
selected cluster. When the clusters are stored on disk, this involves one disk seek/access
operation and one object write. This consideration assumes that free spaces for new data
objects are available in the selected cluster. To ensure fast data object insertions, a num-
ber of free spaces are by default reserved at the end of each cluster created or relocated.
However, rare situations can occur where the storage space of a cluster might have no
space left for new data objects. In such a case, another storage space, large enough, is
assigned to the given cluster and all the data objects are relocated to the new storage
space. The cost of the object relocation is proportional to the size of the cluster in terms
of buffered read/write operations. When such situation occurs, a number of free places
are reserved in the new storage space, proportional to the cluster size, so ensuring fast
future data object insertions. The cost of the forth task is proportional to the number
of candidate subclusters for which we need to increment the number of matching data
objects. The number of relevant candidate subclusters is given by the clustering function
and is equal to the number of dimensions Nd (see Section 3.3.5). Since only one data
object is involved, the cost of the last action is negligible, compared, for instance, to the
cost of the initial checking of the cluster signatures.

4.3.3 Data object deletion

To remove a data object from the spatial database, we first need to find the cluster
hosting the wanted object. For this purpose, all the clusters able to host the given object
need to be searched. Figure 4.9 illustrates the object deletion algorithm. The clusters
whose signatures enclose the wanted object are identified in Step 1. The data objects
from these clusters are individually compared to the wanted object, until the cluster
containing the wanted object is discovered (Steps 2-4). The data object is then removed
from the corresponding cluster (Step 5). The deletion of the given object requires to
decrement the data statistics of the corresponding cluster (Step 6), and of the relevant
candidate subclusters of the corresponding cluster (Steps 7-9). Once the wanted object
is found and removed, the deletion operation ends (Step 10).

When performing a data object deletion, the last object from the cluster takes the
place of the object removed. This way, free spaces are always located at the end of the
cluster, which simplifies the data object insertion.

Complexity of the data object deletion The cost of the data object deletion is in
the worst case given by the complexity of the spatial query execution, plus the cost of
removing the data object from the corresponding cluster. Indeed, the cluster containing
the wanted object is found by means of a spatial query whose selection criterion is the
exact signature matching. In practice, the object deletion operation is faster than a
common spatial query. On the one hand, the exact matching criterion is much more
selective than a common range query (i.e., intersection), and therefore fewer clusters
are explored. On the other hand, the cluster explorations end as soon as the cluster

87

ObjectDeletion (data object ρ)

// Determine the clusters to be explored:
1. let X ← {c ∈ C | ρ matches σ(c)};

// Cluster explorations:
2. for each cluster c ∈ X do

// Consider all data objects from cluster c:
3. for each object o in objects(c) do

// Look for the wanted object ρ:
4. if (ρ equals o) then

// Remove data object ρ from the cluster c:
5. let objects(c)← objects(c) \ {ρ}

// Decrement data statistics of cluster c:
6 let n(c)← n(c)− 1;

// Update data statistics of candidate clusters of cluster c:
7. let S ← {s ∈ candidates(c) | ρ matches σ(s)};
8. for each s in S do
9. let n(s)← n(s)− 1;

// End deletion procedure:
10. go to End;

End.

Figure 4.9: Object deletion procedure

containing the wanted object is found. Because the place of the object removed is taken
by the last object from the cluster, the deletion operation requires two data accesses: one
object read, and one object write. This adds the cost of a supplementary data seek/access
operation to the cost of the deletion procedure, but facilitates the management of free
spaces at cluster level.

4.4 Conclusions

In this chapter we provided algorithms and execution procedures for database clustering
operations (i.e., cluster restructuring invocation, cluster split and cluster merge) and for
standard database manipulation operations (i.e., spatial query execution, data object
insertion and data object deletion).

The database clustering operations were the first topic of this chapter. We first dis-
cussed the invocation of the cluster restructuring operations. Periodical restructuring of
the existing clusters is necessary in order to accomplish and refine the object clustering
and to adapt it to important changes that might occur over time in data or query distri-
butions. The restructuring operations are invoked on a periodical basis determined by

88

the occurrence of a fixed number of spatial queries. This allows the system to gather
sufficient query statistics such as to properly support clustering decisions. As a general
rule, we first consider cluster merges and then consider cluster splits. This restructuring
order is intended to enable alternative splits for clusters having acquired additional data
objects as result of cluster merges. The cluster merges and the cluster splits are invoked
in a recursive manner for all the clusters from the clustering hierarchy starting with
the root. However, restructuring operations are only performed when: (1) a sufficient
number of query statistics are available at the level of the clusters involved, such as to
properly support the clustering decisions; and when (2) the corresponding restructuring
operations are estimated as profitable for the average query performance with respect to
the cost model. The period in number of spatial queries at which the cluster restruc-
turing operations are invoked, and the minimum number of spatial queries required to
visit a cluster before considering a restructuring operation, are two parameters that help
the system to schedule and accomplish the restructuring operations in a gradual manner.
The clusters frequently explored are more often considered for restructuring, because
they contribute more to the average query cost.

We further analyzed the two cluster restructuring operations. We first presented and
discussed the cluster merge operation. A cluster merge involves a cluster and its parent,
and is performed when the merge benefit function considers this operation as profitable
for the average query performance with respect to the cost model. When performing a
cluster merge, all the data objects from the child cluster are transferred to the parent
cluster. The data statistics of the parent cluster and of the candidate subclusters of the
parent cluster need to be updated in order to take into account the new acquired objects.
As required by the clustering strategy, the data objects need to be contiguously stored in
the parent cluster in order to minimize the cluster exploration cost. For this purpose, the
physical implementation of the cluster merge consists of moving the data objects from
the two clusters to a new storage location large enough to fit all the objects. The object
relocation is done by means of buffered read and write operations in order to reduce the
I/O costs.

We also presented and discussed the cluster split operation. The split of a cluster
is achieved by materializing some of the candidate subclusters of the given cluster. To
identify the candidate subclusters whose materializations are expected to be profitable
for the average query performance, the materialization benefit function is evaluated for
all the subcluster candidates. The most profitable candidates are materialized first, in
a greedy manner. When a candidate cluster is materialized, the qualifying objects are
transfered from the initial cluster to a new created cluster. The data statistics need to
be accordingly updated for the initial cluster and for the candidate subclusters of the
initial cluster, as well as for the new cluster and for the candidate subclusters of the new
cluster. The data objects have to be contiguously stored in the two resulting clusters.
For this purpose, the physical implementation of a cluster split consists of moving the
data objects from the initial cluster to two new storage locations: the first corresponding
to the new cluster, and the second meant to acquire the objects remaining in the initial
cluster. The object relocation is done by means of buffered read and write operations in
order to reduce the I/O costs. The initial cluster might be split several times, if multiple
profitable candidate subclusters exist. Before attempting a new split, the materialization
benefit function has to be reevaluated for the remaining candidate subclusters, in order
to take into account the data changes induced at the cluster level by previous splits.

89

The standard database manipulation operations were the second topic of this chapter.
We first considered the algorithm for the spatial query execution. When executing a
spatial range query, the clusters whose signatures satisfy the spatial selection criterion
relative to the query object (i.e., intersection, containment, enclosure, or similar shape
test) are explored and the data objects belonging to them are individually checked. The
query statistics of the clusters explored during the execution of a spatial query need to be
incremented, as well as the query statistics of the candidate subclusters (of the explored
clusters) that match the selection criterion. The cost of the spatial query execution
depends on the query selectivity. We remind that the cost model supporting the object
clustering is meant to improve the average performance of spatial range queries and to
globally ensure better search performance than sequential scan.

The database update operations were also considered: data object insertions and data
object deletions. The data object insertion checks the query statistics associated with
the clusters whose signatures accept the new object and places the object in the cluster
with the lowest access probability. Although simple, our insertion strategy is intended
to minimize the object’s probability of being accessed during spatial queries. Physically,
the new data object is stored at the first free place of the selected cluster. Free places are
reserved for new data objects at the end of clusters in order to avoid cluster relocations
during object insertions. The data statistics of the cluster selected to host the new object
are incremented, as well as those of the candidate subclusters (of the selected cluster)
accepting the object. The object insertions are fast operations because the clusters are
not explored during object insertions. The cluster signatures and the cluster statistics
are maintained in memory. The signature verification and the computation of the access
probability are very simple operations. Only one I/O access is required to physically
write the new object at the storage position in the selected cluster.

The data object deletion has to explore all the clusters whose signatures accept the
query object until the wanted object is retrieved. However, the selection criterion (exact
signature matching) is much more selective than a common spatial query. Therefore, in
practice fewer clusters are explored and the object deletions perform faster than common
spatial queries. Physically, the place of the data object removed is taken by the last object
from the corresponding cluster. This requires an additional I/O access, but simplifies the
management of free spaces at cluster level and facilitates object insertions. The data
statistics have to be decremented for the cluster from which the object was removed, as
well as for the candidate subclusters (of the given cluster) whose signatures were matching
the object removed.

In this chapter we presented and analyzed from a theoretical point of view the
database clustering operations and the standard database manipulation operations. In
the next chapter, we provide more details on the physical implementation and proceed
to an extensive experimental evaluation of our clustering method.

90

Chapter 5

Implementation and performance
evaluation

To show the practical relevance of our clustering approach, we implemented it and per-
formed an extensive experimental evaluation. In the first part of this chapter, we address
some implementation related aspects such as database storage management and memory
management. In the second part, we present an advanced performance study of our clus-
tering solution. We experimentally evaluate the search performance, the adaptability and
the update performance of our clustering method, comparing it to alternative indexing
techniques like R*-tree, X-tree, and Sequential Scan.

Chapter organization Section 5.1 addresses implementation related aspects. Sec-
tion 5.2 presents a series of experiments. Conclusions are provided in Section 5.3.

5.1 Implementation considerations

The cost model supporting our clustering strategy requires that data objects from a
cluster be contiguously stored in order to minimize the cluster exploration cost during
spatial selections. The database storage space management has to ensure compliance
to this requirement without significantly affecting the system’s availability. Its imple-
mentation is explained in Section 5.1.1. In addition to the management of the database
storage space, the database system has to manage the hierarchy of cluster signatures
and to ensure data and query statistics maintenance for the existing clusters and for the
candidate subclusters associated with the existing clusters. The data structures enabling
the implementation of our clustering approach are presented in Section 5.1.2.

5.1.1 Database storage management

With the evolution of the computing equipments, the cost per byte of memory and of
hard-disk devices has significantly lowered. This has lead to an important increase in the
number of computing systems commonly equipped with very large amounts of main mem-
ory (several gigabytes) and with hard-disk devices of very high storage capacity (several
terabytes). In this context, for many applications the storage capacity is not representing

91

a limiting factor anymore. This consideration primarily applies to applications relying
on disk-based storage, but it can also apply to fast applications running on large memory
systems and using the memory as storage support to ensure high execution performance.
When the storage space does not represent a critical resource, extra storage space can
be used to improve the application’s execution performance.

Our clustering solution is intended to support either a main memory database storage,
or a disk-based database storage. In either cases, the database storage space is globally
managed as a large and continuous storage unit, where the storage spaces of the database
clusters are allocated in a controlled manner. Due to our clustering strategy, the database
system has to deal with a dynamic collection of clusters of various sizes. This might
raise two performance problems related to the storage space management: First, the
contiguous cluster storage requirement could trigger expensive cluster relocations during
data object insertions. Second, the dynamic creation and removal of the database clusters
could lead to an excessive fragmentation of the global database storage space. We next
present our approach to deal with these potential storage management problems.

How to avoid cluster relocations during new data object insertions: To avoid frequent
cluster relocations during data object insertions, we reserve a number of free places at the
end of each database cluster, created or relocated. This way, a cluster does not require
relocation during object insertions, unless all the free places are exhausted. When the
storage space of the cluster gets full, the cluster is relocated and a number of new free
spaces are reserved. For the number of reserved places, we consider 25% of the cluster
size, thus globally taking into account the data distribution. Indeed, larger clusters will
have more free places than smaller clusters. The free places from a cluster are always
located at the end of the cluster. When the cluster needs to be explored, only the first
part of the cluster is fetched, corresponding to the data objects actually stored at the
cluster level. By reserving free places, we only waste storage space, but not processing
time, since the empty parts of clusters are not subject to reading operations.

How to avoid situations of excessive fragmentation of the global storage space: The free
space from the global storage unit can get fragmented over time due to cluster relocations.
Cluster relocations are occurring during cluster splits, cluster merges, and rarely during
data object insertions. Excessive free space fragmentation can lead to situations where
no contiguous storage can be allocated for new clusters, even though the sum of the
total free space exceeds the required cluster sizes. In such cases, a global relocation
of the existing clusters has to be performed in order to obtain a contiguous free space
placement. Such an operation is called defragmentation. The defragmentation of the
storage space is an expensive operation which might involve many cluster relocations.
Therefore, it should be avoided. In practice, the probability of having a fragmentation
problem depends on the ratio between the total capacity of the global storage space and
the size of the set of data objects. The larger the free space size in the global storage
space, the lower the probability that a fragmentation problem will occur. In practice, to
avoid frequent storage space defragmentations, the capacity of the storage space should
be at least three times larger than the expected database size.

92

Main Memory or Disk StorageMain Memory Data Structures

Storage Space of Cluster A

Storage Space of Cluster C

Storage Space of Cluster B

(for Data Objects)

A

B

C

Cluster
Reference

Child

Parent
Cluster
Reference Performance Indicators

Storage Space Reference

Cluster Signature

Parent Cluster Reference

Performance Indicators

Storage Space Reference

Cluster Signature

Parent Cluster Reference

PositionSize

Free Space
Size

Position
Free Space

Child Cluster References

Performance Indicators

Storage Space Reference

Cluster Signature

Parent Cluster Reference

Cluster C

Child Cluster References

Child Cluster References

Free Space

Cluster
Storage
Space
Reference

Cluster

Cluster

Storage

Storage

Space

Space
Size

Position

Storage Space Manager
Global Database Storage Space

Cluster A

Cluster B

Size Position
Cluster Storage Space

Figure 5.1: Data structures enabling the implementation of our clustering approach

5.1.2 Data structures supporting our clustering solution

The data structures enabling the implementation of our clustering approach are outlined
in Figure 5.1. On the one hand, we distinguish the data structures handling in main
memory the information relative to the database clusters, to their hierarchical organi-
zation, and to the storage spaces allocated for them in the global storage space. On
the other hand, we have the Global Database Storage Space where the data objects be-
longing to clusters are physically stored. According to the chosen storage scenario, the
global database storage can be set either in main memory, or on disk. In Figure 5.1,
the data structures handling the information associated with clusters are represented by
Cluster A, Cluster B, and Cluster C. We have also depicted an additional data structure,
called Storage Space Manager, whose role is to handle the information associated with
cluster storage spaces (i.e., position in the global storage space and size) and regarding
the free space from the global storage space (i.e., free place position and size). Further
details on the data structures used to support our clustering method are provided next.

Cluster data structure

As depicted in Figure 5.1 (Cluster A, Cluster B, and Cluster C), the data structure
associated with a database cluster embeds the following elements:

93

amin amax bmin bmaxdimid

amin amax bmin bmaxdimid

Nd − 1
Nd

Nr

Nr

Nd − 1

1
2
3

(A) Complete Signature Representation

0.25 0.50

0.50 0.75 0.75 1.00

0 1 0 1

0 1 0 1

1
4

0.25 0.50 0.50 0.75
0.00 0.25 0.75 1.00

0.50 0.75 0.75 1.00

(B) Representation of Relevant Dimensions

0.00 0.25

0.50

0.75 1.00

0.75

0 1 0 1
4

1
2

Figure 5.2: Possible representations for a cluster signature

• cluster signature

• storage space reference

• performance indicators

• parent cluster reference

• list of references to the child clusters

We next detail each of these elements.

Cluster signature. The cluster signature follows the definition from Section 3.3.3. In
each dimension we have four real values: two values for each of the two intervals of
variation, defining the positions and the extents of the qualifying spatial objects in the
corresponding dimension. According to our grouping criterion, all the cluster signatures
are subsignatures of the root cluster signature. The intervals of variation of the root
cluster signature are set to full domains in all dimensions. The other clusters, obtained
by means of cluster splits, have their signatures derived from the root cluster signature, or,
in a recurrent manner, from subsignatures of the root cluster signature. As ensured by the
clustering function (see Section 3.3.5), a direct subsignature of a cluster signature differs
from the cluster signature in only one dimension. This means that a direct subsignature
of the root cluster signature has all the intervals of variation set to full domains, except
for one dimension. A subsignature of level k of the root cluster signature differs from
the root cluster signature in at most k dimensions. The rest of dimensions have their
intervals of variation set to full domains. When the number of dimensions Nd is high,
only a small fraction of dimensions are used for the data space division. In such a case,
a cluster signature has many dimensions with intervals of variation set to full domains.
The corresponding dimensions are not relevant for membership or spatial selection tests
because full domains make no discrimination between spatial objects. Therefore they
do not need to be represented in the cluster signature. An alternative representation
of the cluster signature consists of storing only the information corresponding to the
dimensions for which the intervals of variation are not full domains. Such a representation
can help to save memory space. However, the number and the identifiers of the relevant

94

dimensions need to be represented in the data structure too. Figure 5.2 illustrates the
two possible representations for the cluster signature. Figure 5.2-(A) shows the complete
signature representation which implies the storage of the min and max values for the two
intervals of variation corresponding to each of the Nd dimensions. Figure 5.2-(B) shows
the condensed signature representation which implies the storage of the min and max
values for the two intervals of variation corresponding to the relevant dimensions only.

Storage space reference. The storage space reference consists of a numerical identi-
fier indicating the entry from the Storage Space Manager, that handles the information
associated with the storage space allocated for the corresponding cluster.

Performance indicators. The performance indicators consist of data and query statis-
tics associated with the cluster and with the candidate subclusters of the cluster. For a
cluster c we need to handle the following information:

• n(c) – the number of data objects belonging to the cluster

• qlast(c) – the number of spatial queries addressed to the system before the cluster’s
creation, or before the last reinitialization of the query statistics

• q(c) – the number of spatial queries visiting the cluster since the cluster’s creation,
or since the last reinitialization of the query statistics

• plast(c) – the access probability before the last reinitialization of the query statistics

The query statistics q(c) and qlast(c) are used to compute the access probability associated
with the cluster c, according to the formula

p(c) =
q(c)

q(system)− qlast(c)

where q(system) represents the total number of spatial queries addressed to the system.
The value plast(c), representing the cluster’s access probability before the last reinitial-
ization of the query statistics, has to be recorded for usage that might be required before
new query statistics are gathered (e.g., to assist insertion of new data objects).

Besides the data and the query statistics associated with the cluster, we also have
to maintain data and query statistics for a number of candidate subclusters of the given
cluster. As ensured by the clustering function (see Section 3.3.5), in the general case,
the number of candidate subclusters of a cluster is equal to Nd · f

2, where Nd represents
the number of dimensions and f represents the space division factor. For each candidate
subcluster s of the cluster c, we have to maintain the following statistics:

• n(s) – the number of data objects from the cluster c matching the signature of the
corresponding candidate subcluster s

• q(s) – the number of spatial queries matching the signature of the candidate sub-
cluster s since the creation of the cluster c or since the last reinitialization of the
query statistics

95

The query statistics q(s) is used to compute the access probability of the candidate
subcluster s, according to the formula

p(s) =
q(s)

q(system)− qlast(c)

which also makes use of the query statistics qlast(c) of the cluster c.

Because in the general case the number of candidate subclusters of a cluster is equal
to Nd · f

2, the statistics n and q corresponding to the candidate subclusters are stored
in arrays of size Nd · f

2. The position in the two statistics arrays corresponding to a
candidate subcluster is determined by the dimension associated with the given subcluster,
and by the choice of the two subintervals of variation associated with the given subcluster
(see the clustering function).

When performing object insertions, deletions, relocations or selections, the signatures
of the candidate subclusters have to be checked against the selection criterion in order
to update the data and the query statistics associated with the candidate subclusters of
the involved clusters. However, the signatures of the candidate subclusters do not need
to be stored because they can be easily derived from the signature of the corresponding
cluster by using the clustering function: The signature of a candidate subcluster differs
from the signature of the corresponding cluster in only one dimension. Therefore the
matching criterion needs to be checked for the relevant dimension only.

Summing up, in order to manage the performance indicators of a cluster we require
3 + 2 · Nd · f

2 integer values for the data and the query statistics associated with the
cluster and with its candidate subclusters, and one real value to record the last access
probability computed for the cluster.

Parent cluster reference. The parent cluster reference consists of a pointer to the
cluster data structure representing the parent of the cluster in the clustering hierarchy.

List of child cluster references. This data structure consists of a list of pointers to
the cluster data structures associated with the children of the cluster in the clustering
hierarchy. The actual number of children depends on how many candidate subclusters
are materialized during the clustering process. The number of children of a cluster can
not exceed the total number of candidate subclusters, which, according to the clustering
function, is equal to Nd · f

2 (see Section 3.3.5).

Storage space manager structure

To facilitate the management of the global database storage space, we use a data structure
referred to as Storage Space Manager (see Figure 5.1). The role of the Storage Space
Manager is to handle the information regarding the storage spaces of clusters in the
global storage space, and regarding the free space distribution in the global storage
space.

The information concerning the storage space allocated for a database cluster consists
of size and position in the global database storage space. The position is used to provide
direct access to the corresponding storage location when the cluster needs to be accessed

96

during spatial queries or object update operations. The storage space size indicates the
total number of places available for data objects in the given cluster. Remember that the
number of data objects that are actually stored in the cluster is stored in the cluster data
structure. An entry is allocated for each database cluster in the Storage Space Manager.
This entry is referenced in the data structure corresponding to the database cluster.

The Storage Space Manager also handles the information concerning the free space
from the global database storage space. This information is needed to enable storage
space allocation for new database clusters, to recollect the space corresponding to with-
drawn clusters, and to handle situations of excessive storage fragmentation. For this
purpose, in the Storage Space Manager we keep an ordered list of free space positions,
together with their corresponding sizes. To allocate storage spaces for new database
clusters, we adopt a simple allocation politics: To each new cluster we allocate the first
free position where enough space is available to fit the required cluster size. If no suitable
position is found, the storage defragmentation operation is triggered. However, such a
situation is not likely to occur frequently if the amount of free space is large enough
compared to the actual size of the spatial database.

5.2 Performance evaluation

To show the practical relevance of our cost-based query-adaptive clustering solution, we
performed extensive experiments, executing spatial range queries over large collections
of spatial objects with many dimensions, using uniform and skewed data and query
distributions. We compared our technique to R*-tree, to X-tree, and to Sequential Scan,
evaluating the query execution time, the number of cluster/node accesses, and the amount
of data objects actually verified. We investigated the behavior of our clustering method
and its ability to adapt to query and data distribution changes. We also analyzed the
performance of database update operations like object insertions and object deletions.

Organization. Section 5.2.1 presents our experimental setup providing details on each
of the following elements: experimental platform, database storage scenarios, data rep-
resentation, competing indexing methods, definition of cost model and execution pa-
rameters (for our clustering method, as well as for the alternative indexing methods),
experimental procedure, workload parameters and performance indicator parameters.
Section 5.2.2 presents a number of experiments meant to evaluate the average search
performance of the four competing methods under various workloads consisting of static
datasets of spatial objects with uniform and skewed spatial distributions and of spatial
range queries with different selectivities and spatial distributions. Section 5.2.3 presents
additional experiments meant to examine the behavior and the ability of our clustering
method to adapt to dynamical changes in query and data distributions. Several aspects
are considered such as evolution of search performance, evolution of number of clus-
ters, time required to accomplish the database clustering, costs of cluster restructuring
operations, and costs of database update operations.

97

5.2.1 Experimental setup

Experimental platform We ran all experiments on a Pentium IV workstation with
an i686 CPU at 3 GHz and 1 GBytes RAM, operating under Linux. The execution
platform had a SCSI disk with a storage capacity of 36 GBytes and presenting the fol-
lowing performance characteristics: average disk access/seek time of 10 ms, and average
sustained transfer rate of 90 MBytes/sec.

Database storage scenarios In our tests we considered two database storage sce-
narios: a main memory database storage and a disk-based database storage. When
testing the disk-based storage scenario, we limited the capacity of the main memory
to 64 MBytes. We also deactivated the file caching system, and we used experimental
datasets at least twice larger than the available memory. This way we ensured data
transfer between disk and memory.

Data representation The representation of a spatial object consists of an object iden-
tifier and of Nd pairs of real values representing the interval limits of the corresponding
object in the Nd dimensions of the data space. The interval limits, as well as the object
identifier, are each represented on 4 bytes. Accordingly, the size in bytes of a data object
(in memory or on disk) is given by the following formula:

size in bytes(o) = (1 + 2 ∗Nd) ∗ 4

Competing methods Our cost-based query-adaptive clustering solution is further
referred to as Adaptive Clustering. We compared the performance of our Adaptive Clus-
tering to the following competing methods:

1. Sequential Scan

Sequential Scan is the simplest method to answer queries. It is based on a sequential
storage of the data objects and it consists of scanning the entire database and check-
ing all the objects against the selection criterion. Although quantitatively expen-
sive, Sequential Scan benefits of good data locality, and thus of fast (sustained) data
transfer between disk and memory. In high-dimensional spaces, Sequential Scan has
become a comparison reference because it often outperforms advanced tree-based
indexing methods like R*-tree, Hilbert R-tree, or X-tree [BBK98b, BK00].

2. R*-tree

R*-tree is the most famous variant of R-trees. It has been widely accepted in lit-
erature and is often used as reference for performance comparisons. The R*-tree
implementation used in our tests follows [BKSS90]. We used a node page size of
16 KBytes. Considering a storage utilization of 70%, a node accommodates, for
instance, 86 objects with 16 dimensions, or 35 objects with 40 dimensions. Using
smaller node page sizes would lead to creation of too many tree nodes resulting in
very high overheads due to numerous node accesses.

98

Table 5.1: Average I/O and CPU operations costs
I/O operation Cost

disk access/seek time 10 ms

disk transfer rate 90 MBytes/sec
disk transfer time (per byte) 1.06 · 10−2 µs/byte

CPU operation Cost

average cluster signature check time 0.5 µs

cluster access & statistics update time 2 µs

average object verification rate 2300 MBytes/sec
verification time (per byte) 4.15 · 10−4 µs/byte

3. X-tree

X-tree is a cost-based R-tree extension meant to alleviate the performance dete-
rioration of classical R-trees. The X-tree implementation follows [BKK96]. The
page size corresponding to a normal node was set to 16 KBytes, as for R*-tree.
The supernodes have sizes that are multiples of the elementary page size. For node
splits we used the split algorithm of R*-tree, as recommended by the authors of
X-tree. We do not record information regarding the split history at node level be-
cause the proposed method to determine an overlap-minimal split dimension does
not apply when dealing with data objects with spatial extents. Supernodes are
accessed through buffered I/O operations (reads and writes) such as to minimize
the I/O costs, as we do for clusters in our clustering approach.

Cost model and execution parameters for Adaptive Clustering

• Cost model parameters

Parameters A, B, and C are part of the cost model supporting the clustering
strategy. They are determined by the performance characteristics of the execu-
tion platform and depend on the storage scenario adopted for the database: main
memory storage or disk-based storage. The system-specific parameters, namely the
costs of I/O and CPU operations, are evaluated in advance and used to determine
the values of the cost model parameters A, B and C with respect to the storage
scenario, as described in Section 3.4.3. The average cost values for I/O and CPU
operations measured for our system and used to compute the cost model parameters
A, B and C are provided in Table 5.1.

• Domain division factor

For the domain division factor used to implement the clustering function (see Sec-
tion 3.3.5), we tested several different values: f ∈ {2, 3, 4, 5}. We found that a
domain division factor f = 3 ensures the best trade-off between the number of
candidate subclusters and the cost of statistics maintenance. Thus, in all the ex-
periments reported here, we used a domain division factor f = 3. Accordingly, the
number of candidate subclusters associated with a database cluster ranges between
6 ∗ Nd and 9 ∗ Nd, where Nd represents the space dimensionality. For example, in
a 16-dimensional space, each database cluster will have between 96 and 144 candi-

99

date subclusters. The candidate subclusters are virtual, so only their performance
indicators need to be maintained.

• Cluster restructuring invocation period

Cluster restructuring is periodically invoked to accomplish and refine the object
clustering and to adapt it to important changes that might occur over time in data
or query distributions (see Section 4.2.1). In our experiments, cluster restructur-
ing operations are globally invoked every 100 spatial queries (period q = 100). The
minimum number of spatial queries required to visit the clusters involved in restruc-
turing operations is of min q = 25. We tried several combinations period q/min q.
The 100/25 combination proved to be a good choice: on the one hand it allows
the system to gather sufficient statistics such as to properly support the clustering
decisions, and on the other hand it enables the system to schedule the cluster re-
structuring operations in a gradual manner, as such as to not affect its availability
significantly.

X-tree cost model and consequences As already shown in the related work (see
X-tree considerations in Sections 2.2.6 and 2.2.7), an overlap threshold value MaxO

is calculated with respect to the performance characteristics of the execution platform,
based on which the directory nodes are split or extended to supernodes. With respect to
our system’s parameters (see Table 5.1), depending on the storage scenario adopted for
the database, we obtained the following behaviors:

1. In memory the computed MaxO threshold is very high (≈ 94%). As a result,
directory nodes are always split and X-tree behaves like a classical R*-tree. This
is normal because random access in memory is not much more expensive than
sequential access, and the R*-tree remains globally effective.

2. On disk the computed MaxO threshold is very low (≈ 2%). As a result, the root
node is never split and the X-tree degenerates in a tree with a single supernode, the
root. All the leaf nodes are direct children of the root supernode. The advantage of
this configuration is that a new data object is always inserted in the leaf node which
best accommodates it (requiring least MBR enlargement). A drawback is that the
insertion time becomes very expensive since all the MBRs from the root supernode
have to be verified in order to identify the leaf nodes that best fit the new data
objects. In the best case, the insertion cost is proportional to the number of entries
from the root supernode. The number of entries increases when the supernode
is extended while more data objects are added to the indexing structure. When
the root supernode overflows (which corresponds to the worst case of the insertion
procedure), a node split should be attempted in order to measure the resulting
overlap and to decide the node’s split or further extension. The split algorithm is
highly expensive, almost quadratic with the number of node entries and linear with
the number of dimensions. However, this computation effort is worthless in practice
where splits of the root supernode never happen. Indeed, insertion of more data
objects is very unlikely to produce low-overlap split configurations. Based on this
observation, we decided not to consider root supernode splits at all. This allows
to accelerate the object insertion, thus the construction time of the X-tree on disk.
For example, in our case, the construction on disk of an R*-tree with 2000000 data

100

objects requires about one and a half hours. The construction of an X-tree requires
more than 17 hours when supernode splits are attempted and about 5 hours when
supernode splits are never considered.

Because in memory X-tree behaves like R*-tree, we only report performance of R*-tree.
In contrast, on disk we separately examine the performance of R*-tree and X-tree.

Experimental procedure We indicate now the general experimental procedure fol-
lowed to accomplish our tests:

- For Sequential Scan:

The data objects are loaded and sequentially stored in a single cluster. Spatial
queries are launched, and the average query execution time is raised.

- For R*-tree and X-tree:

The data objects are first inserted in the indexing structure, then the search per-
formance of spatial queries is evaluated in terms of average query execution time,
number and percentage of accessed nodes, and number and percentage of verified
objects.

- For Adaptive Clustering:

The data objects are first inserted in the root cluster, then a number of spatial
queries are launched to trigger the object clustering. Global cluster restructuring
operations are invoked every 100 spatial queries (period q = 100). If no significant
changes occur in the query distribution, the clustering process reaches a stable state
in less than 10 restructuring steps. Then we evaluate and report the average query
response time and other performance indicators such as number and percentage of
explored clusters, and number and percentage of data objects verified. The query
time reported includes the time spent to update the query statistics associated with
the accessed clusters/candidate subclusters since query statistics maintenance is an
essential element of our clustering strategy.

Workload parameters and query performance indicators The following work-
load parameters were varied in our experiments:

• Number of data objects: up to 2000000

• Number of dimensions: from 16 to 40

• Query selectivity: between 0.00005% and 50%

In each experiment, a large number of spatial range queries are addressed to the indexing
structure and average values are raised for the following query performance indicators:

• Query execution time – combining all the costs

• Number and percentage of clusters/nodes explored – relevant for the cost of random
access operations

• Number and percentage of data objects verified – relevant for data transfer and
object check costs

101

5.2.2 Search performance evaluation

In this section, we evaluate and compare the average search performance of the four
competing methods under various workloads consisting of static datasets of spatial objects
with uniform and skewed spatial distributions, and spatial range queries with different
selectivities and spatial distributions, both in memory and on disk.

1. Uniform data objects and uniform queries with different selectivities

The objective of the first experiment is to investigate the influence of the query selec-
tivity on the search performance. For this purpose, we launch uniform spatial queries
with different selectivities on a dataset of spatial objects uniformly distributed in the
multidimensional space. We analyze the general behavior of our Adaptive Clustering
and compare its performance to R*-tree, X-tree and Sequential Scan, both in memory
and on disk.

Experiment 1 We consider a dataset of 2000000 objects uniformly distributed in a
16-dimensional data space (251 MBytes of data). The intervals of the data objects are
generated with random sizes and arbitrary positions in all dimensions. We evaluate the
response time for intersection queries with different (decreasing) average selectivities:
0.00005%, 0.0005%, 0.005%, 0.05%, 0.5%, 5% and 50%. To ensure a given query se-
lectivity, minimal and maximal sizes are imposed to the intervals of the query objects,
which otherwise are uniformly distributed in each dimension.

Performance results are presented in Figure 5.3 for the memory storage scenario and
in Figure 5.4 for the disk storage scenario. The charts from the two figures depict the
evolution of the average query execution time with varying query selectivity, for the four
competing methods: Adaptive Clustering (A), R*-tree (R), X-tree (X), and Sequential
Scan (S). As already explained, in memory X-tree behaves like an R*-tree. Therefore,
for the memory storage scenario, we only report the performance indicators of R*-tree
under the notation R/X. Additional information helping to explain the resulting query
times is provided in the tables accompanying the charts, regarding the data organization
and the data access. The tables compare Adaptive Clustering, R*-tree, and X-tree in
terms of: (1) total number of clusters, and respectively total number of nodes (directory
nodes plus leaf nodes), (2) average ratio of explored clusters/nodes, and (3) average ratio
of verified objects. Relative to the total number of cluster/nodes, the ratio of explored
clusters/nodes is relevant for the random access cost, while the ratio of verified objects
is relevant for the data transfer and verification costs. For Sequential Scan we already
know that all the data objects are verified each time.

Experimental facts and remarks:

• Regarding Sequential Scan:

– Every spatial query verifies all the data objects, no matter the storage scenario.

– In memory, the query cost is dominated by the object verification. It slightly
increases for queries with lower selectivity because the average number of dimen-
sion/interval checks per object increases. Indeed, when the query selectivity is
lower, the data objects are more likely to be checked in several dimensions.

102

 0
 20
 40
 60
 80

 100
 120
 140

5e-15e-25e-35e-45e-55e-65e-7

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
[m

s]

Query Selectivity

Search Performance in Memory

16-dimensional space

Scan (S)
R*/X-tree (R/X)

Adaptive (A)

Memory Database Storage - Data Organization and Data Access

Query Clusters Nodes (dirs.+leaves) Explored % Verif. Objs. %

Select. Adaptive R*-tree/X-tree A R/X A R/X

5e-7 4839 273+23656 12 16 12 17

5e-6 5198 273+23656 14 21 14 22

5e-5 5062 273+23656 14 30 14 30

5e-4 5329 273+23656 17 41 18 41

5e-3 5145 273+23656 23 56 26 56

5e-2 4450 273+23656 34 80 39 80

5e-1 1493 273+23656 61 99 76 99

Figure 5.3: Search performance in Memory for different query selectivities (uniform data
and query objects)

– On disk, the query cost is dominated by the I/O cost, which is proportional to
the constant amount of data transfered from disk to memory.

• Regarding Adaptive Clustering:

– Adaptive Clustering organizes the data objects in clusters. The number of result-
ing clusters is different depending on the storage scenario, as well as on the query
selectivity.

– On disk, when the queries are more selective more clusters are formed since only
few of them are expected to be explored. When the queries are less selective fewer
clusters are produced. Indeed, the exploration of too many clusters would otherwise
trigger significant I/O access cost overhead. As shown in the table from Figure 5.4,
the number of clusters significantly drops with decreasing query selectivity, from
1068 clusters at 5e-5% query selectivity to 16 clusters at 50% selectivity. Although
a 50% query selectivity is highly unrealistic, when we forced such a selectivity only
16 clusters were formed, however succeeding to avoid a search performance degra-

103

 1000

 10000

 100000

5e-15e-25e-35e-45e-55e-65e-7

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
[m

s]

Query Selectivity

Search Performance on Disk

16-dimensional space
Scan (S)

R*-tree (R)
X-tree (X)

Adaptive (A)

Disk Database Storage - Data Organization and Data Access

Query Clusters Nodes (dirs.+leaves) Explored % Verif. Objs. %

Select. Adaptive R*-tree X-tree A R X A R X

5e-7 1068 273+23656 1+22535 12 16 8 17 17 9

5e-6 818 273+23656 1+22535 14 21 12 20 22 12

5e-5 633 273+23656 1+22535 16 30 18 23 30 18

5e-4 395 273+23656 1+22535 21 41 29 32 41 29

5e-3 203 273+23656 1+22535 34 56 44 44 56 45

5e-2 125 273+23656 1+22535 44 80 73 59 80 74

5e-1 16 273+23656 1+22535 52 99 99 96 99 99

Figure 5.4: Search performance on Disk for different query selectivities (uniform data
and query objects)

dation below Sequential Scan. The variation in the number of clusters with the
query selectivity demonstrates the ability of Adaptive Clustering to take into ac-
count the query characteristics and to adapt the object clustering to the system’s
performance parameters. Adaptive Clustering explores only a fraction of existing
clusters, succeeding to outperform Sequential Scan in most cases. Better perfor-
mance gains are obtained for queries with higher average selectivity.

– In memory, much more clusters are formed because cluster accesses and cluster
explorations are much less penalizing than on disk. As illustrated in the table from
Figure 5.3, the variation in the number of clusters is more substantial for queries
with lower selectivity. More than three times fewer clusters are produced in the
extreme case of 50% query selectivity. Adaptive Clustering explores only a fraction
of existing clusters, succeeding to outperform Sequential Scan in all the cases, even
for queries with very low selectivity. The best performance gains are obtained for
queries with higher average selectivity (up to 7 times faster than Sequential Scan).

104

– The number of clusters on disk is much smaller than the number of clusters
in memory due to high costs of I/O operations. On disk, Adaptive Clustering
produces fewer, larger clusters in order to reduce the number of expensive random
I/O accesses. This demonstrates that our cost model is flexible and able to adapt
to platform-specific performance parameters.

– We globally conclude that, thanks to the query-adaptive and hardware-oriented
cost model, Adaptive Clustering succeeds to ensure better search performance than
Sequential Scan both in memory and on disk.

• Regarding R*-tree:

– R*-tree organizes the data objects in an indexing tree with 23656 leaf nodes and
273 directory nodes. The indexing tree has 4 levels from the root to the leaves.
The average number of data objects per leaf node is of about 84.55. The indexing
tree is the same no matter the query selectivity or the storage scenario.

– In memory, R*-tree is less expensive than Sequential Scan in most cases, ex-
cept for the extreme case of 50% query selectivity. As reported in the table from
Figure 5.3, R*-tree explores/verifies only a fraction of nodes/objects. However,
compared to Adaptive Clustering, R*-tree is globally more expensive. Indeed, the
ratio of clusters explored with Adaptive Clustering is systematically smaller than
the ratio of nodes accessed with R*-tree. In addition, the number of clusters of
Adaptive Clustering is on average five times smaller than the number of R*-tree
nodes. Although the clusters produced by Adaptive Clustering are larger than the
R*-tree nodes, the object grouping is globally more efficient, because fewer ob-
jects are verified in the end, notably for queries with lower selectivity (compare
the ratios of verified objects). Even for queries with selectivity as low as 50%, for
which R*-tree practically checks the entire database (99%), only 76% of objects are
verified by Adaptive Clustering.

– On disk, R*-tree is much more expensive than Sequential Scan (note the logarith-
mic scale from the chart of Figure 5.4). The bad performance of R*-tree is due to
the large number of nodes accessed, notably in a random manner. The difference
in ratio of verified objects between R*-tree and Adaptive Clustering is lower on
disk than in memory, but the cost overhead generated by expensive I/O accesses is
significantly higher.

– We conclude that in memory R*-tree is more efficient than Sequential Scan, but
less efficient than our Adaptive Clustering. On disk, R*-tree is impractical showing
much worse performance than Sequential Scan.

• Regarding X-tree:

– X-tree is different from R*-tree only on disk, where it organizes the data objects in
an indexing tree with 22535 leaf nodes and only one supernode, the root node. The
size of the root supernode is equivalent to 182 elementary pages. All the leaf nodes
are direct children of the root supernode. The average number of data objects per
leaf node is of about 88.75.

– X-tree is more selective than R*-tree. The percentage of explored nodes/verified
objects is smaller. This is due to the fact that all the leaf nodes are children of
the root supernode, and the data objects are always placed in the leaf nodes that

105

fit them best (requiring least MBR enlargement). The object grouping is more
efficient, thus X-tree performs better than R*-tree. However, a high number of leaf
nodes are still accessed, notably in a random manner, which results in a search
performance worse than Sequential Scan.

– When the query selectivity is higher than 0.5%, X-tree verifies fewer data objects
than Adaptive Clustering. Even though more objects are verified in the end, glob-
ally Adaptive Clustering shows better search performance than X-tree because it
requires much fewer random I/O accesses. Indeed, the number of clusters of Adap-
tive Clustering is much smaller than the number of leaf nodes of X-tree, and so is
the average number of I/O accesses. Considering for instance the case of the high-
est query selectivity (0.00005%), X-tree verifies 9% of the data objects by means
of 1803 I/O accesses, while Adaptive Clustering verifies 17% of the data objects
through 128 I/O accesses. X-tree fails to outperform Sequential Scan due to the
high I/O cost overhead, while Adaptive Clustering succeeds.

– We conclude that X-tree performs better than R*-tree on disk, but is still less
efficient than Sequential Scan. Even though X-tree is more selective than Adaptive
Clustering for highly-selective queries, its performance suffers from numerous I/O
accesses and degrades below Sequential Scan.

2. Data objects with skewness at dimension level, uniform queries with con-
stant selectivity, data spaces with different dimensionalities

Data skewness at dimension level is closer to reality where different dimensions exhibit
different characteristics. For example, from object to object, some dimensions can be
more selective than others. With this experiment we intend to examine the search per-
formance for datasets of objects with skewness at dimension level, and to investigate the
evolution of the search performance with increasing dimensionality.

Experiment 2 We set up the following experimental scenario: 1000000 data objects
with different size constraints over dimensions, and uniformly distributed query objects
with no interval constraints. We enforced data skewness at dimension level as follows:
For each data object a quarter of dimensions, arbitrarily chosen, were set to be twice
more selective than the rest of dimensions. We still could control the global query selec-
tivity because the query objects were uniformly distributed. For our tests, we ensured
an average query selectivity of 0.05% (500 of 1000000 objects). We tested increasing
space dimensionalities: 16, 20, 24, 28, 32, 36, 40. Performance results are illustrated
in Figure 5.5 for the memory storage scenario, and in Figure 5.6 for the disk storage
scenario.

Experimental facts and remarks:

• The average query execution time globally increases with the space dimensionality
in both storage cases. This is normal because with increasing dimensionality the
size of the dataset increases too, from 126MBytes at 16 dimensions to 309MBytes
at 40 dimensions.

106

 0
 20
 40
 60
 80

 100
 120
 140

40363228242016

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
[m

s]

Space Dimensionality

Search Performance in Memory

5e-4 query selectivity

Scan (S)
R*/X-tree (R/X)

Adaptive (A)

Memory Database Storage - Data Organization and Data Access

Num. Clusters Nodes (dirs.+leaves) Explored % Verif. Objs. %

Dims. Adaptive R*-tree/X-tree A R/X A R/X

16 2753 138+11833 19 40 18 40

20 3498 217+15129 20 52 19 52

24 4220 331+18328 20 58 19 58

28 4894 448+21808 20 61 19 62

32 5368 586+25530 20 67 20 68

36 6001 731+28108 20 65 20 65

40 6868 907+31382 20 69 20 69

Figure 5.5: Search performance in Memory for different space dimensionalities (skewed
data)

• Compared to Sequential Scan, Adaptive Clustering exhibits better search perfor-
mance, scaling well with the number of dimensions, both in memory and on disk.

• In memory:

– R*-tree shows better performance than Sequential Scan, but worse performance
than Adaptive Clustering. Adaptive Clustering verifies between 18% and 20% of
objects, while R*-tree verifies between 40% and 69% of objects. The ratio of verified
objects is quite stable with increasing dimensionality for Adaptive Clustering, but
degrades for R*-tree. This demonstrates that Adaptive Clustering takes better
advantage of data skewness, succeeding to cluster the data objects according to their
most selective dimensions and intervals. R*-tree benefits less from the skewness at
dimension level and suffers more with increasing space dimensionality.

– In this experiment, Adaptive Clustering is 5 times faster than Sequential Scan,
and between 2 and 3 times faster than R*-tree.

107

 100

 1000

 10000

 100000

40363228242016

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
[m

s]

Space Dimensionality

Search Performance on Disk

5e-4 query selectivity

Scan (S)
R*-tree (R)
X-tree (X)

Adaptive (A)

Disk Database Storage - Data Organization and Data Access

Num. Clusters Nodes (dirs.+leaves) Explored % Verif. Objs. %

Dims. Adaptive R*-tree X-tree A R X A R X

16 304 138+11833 1+11496 34 40 24 43 40 25

20 318 217+15129 1+14700 41 52 27 48 52 27

24 368 331+18328 1+17853 40 58 24 45 58 25

28 380 448+21808 1+21242 38 61 22 44 62 23

32 408 586+25530 1+24743 38 67 20 44 68 20

36 429 731+28108 1+27526 36 65 19 44 65 19

40 440 907+31382 1+30723 36 69 17 44 69 17

Figure 5.6: Search performance on Disk for different space dimensionalities (skewed data)

• On disk:

– Both R*-tree and X-tree fail to outperform Sequential Scan due to the high
numbers of accessed nodes. Again, the ratio of verified objects of X-tree is smaller
than the one of Adaptive Clustering, but the overhead cost due to numerous random
I/O accesses is much superior.

– The selectivity of X-tree slightly improves with increasing dimensionality. This is
due to the fact that as the space dimensionality increases fewer objects fit in each
leaf node. Three times more leaf nodes are formed in 40 dimensions than in 16
dimensions. A data object is always placed in the leaf node that best accommodates
it. Therefore, the objects are globally better grouped and the overlap between leaf
nodes is minimized. This is not the case for R*-tree where object insertions are
directed by directory nodes and data objects often end up in other leaf nodes than
the most suitable ones. For X-tree, smaller page capacity (thus fewer objects per
node) leads to better object grouping, but this obviously increases the number
of I/O accesses. Indeed, while the number of nodes has tripled from 16 to 40

108

Table 5.2: Overlap degree between regions of interest
Overlap Average Number of Average Overlap

Probability [%] Overlapping Regions Volume Ratio [%]

0.16 1.79 0.000162

0.8 9.47 0.000861

4 41.82 0.003012

20 202.50 0.013622

100 998.90 1.258195

dimensions, the query selectivity has only improved by 30%.

– In this experiment, Adaptive Clustering is 2 times faster than Sequential Scan,
3.4 times faster than X-tree, and between 15 and 33 times faster than R*-tree.

3. Regions of interest for data and query objects

In the previous experiment, we analyzed the search performance for data objects with
skewness at dimension level. However, the data and the query objects were uniformly
distributed in the multidimensional space. In practice, the data space is in general
sparsely populated. Data and query objects tend to follow some regions of interest.
Within the next experiment, we investigate the search performance for data and query
objects with skewed spatial distributions, following a predefined set of regions of interest.
By region of interest we understand a hyper-rectangular region of the multidimensional
space, where objects and queries are constrained to fall.

Experiment 3 We randomly choose 1000 regions of interest in a 16-dimensional space.
By imposing minimal and maximal interval length constraints over dimensions, we control
the degree of overlap between the regions of interest. We consider 2000000 data objects
uniformly populating the regions of interests: 2000 data objects are generated into each
region of interest. The spatial queries are set to uniformly visit the regions of interest.
Inside regions, both data and query objects are uniformly distributed. An average query
selectivity of 0.05% is ensured at region level.

In this experiment, we vary the degree of overlap between regions of interest and
examine the behavior of the four competing access methods. Table 5.2 shows the overlap
degrees used in our tests. The first column indicates the probability that two arbitrary
regions overlap each other. The second column complementary indicates the average
number of regions that overlap with an arbitrary region. The third column shows the
average overlapping volume between two overlapping regions, namely the ratio between
the volume of the intersection zone and the total volume occupied by the two overlap-
ping regions in the data space. The overlap probability increases each time by a factor
of 5 from 0.16% to 100%. The average overlapping volume accordingly increases from
0.0002% and 1.2582%. Performance results are illustrated in Figure 5.7 for the memory
storage scenario and in Figure 5.8 for the disk storage scenario.

109

 0

 20

 40

 60

 80

 100

1002040.80.016

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
[m

s]

Overlap Probability between Regions of Interest [%]

Search Performance in Memory

16-dimensional space
5e-4 query selectivity

Scan (S)
R*/X-tree (R/X)

Adaptive (A)

Memory Database Storage - Data Organization and Data Access

Overlap Clusters Nodes (dirs.+leaves) Explored % Verif. Objs. %

Prob. Adaptive R*-tree/X-tree A R/X A R/X

0.016 3795 264+22985 6 5 4 5

0.8 3200 266+22904 7 8 5 8

4 3671 264+22853 9 12 7 12

20 4443 268+22845 11 21 9 21

100% 7485 267+23073 19 45 20 45

Figure 5.7: Search performance in Memory with regions of interest (spatial data and
query skewness)

Experimental facts and remarks:

• As expected, increasing overlap between regions of interest has negative impact
on the search performance: the average query time increases for both Adaptive
Clustering and R*-tree in memory and on disk, as well as for X-tree on disk.

• Adaptive Clustering significantly outperforms Sequential Scan: in memory by a
factor ranging between 4, at high overlap, and 28, at low overlap, and on disk by
a factor ranging between 2.5 and 8. This demonstrates that Adaptive Clustering
can handle skewed data/query distributions, succeeding to cluster the data objects
according to the most selective intervals/dimensions with respect to the regions of
interest.

• In memory:

– R*-tree also outperforms Sequential Scan. When the overlap probability is low,
the regions of interest are well separated and R*-tree succeeds to preserve the region
separation when grouping the data objects into nodes. As a result, the queries are
well directed to the corresponding nodes and the search performance is high. In

110

 100

 1000

 10000

 100000

1002040.80.016

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
[m

s]

Overlap Probability between Regions of Interest [%]

Search Performance on Disk

16-dimensional space
5e-4 query selectivity

Scan (S)
R*-tree (R)
X-tree (X)

Adaptive (A)

Disk Database Storage - Data Organization and Data Access

Overlap Clusters Nodes (Dirs.+Leaves) Explored % Verif. Objs. %

Prob. Adaptive R*-tree X-tree A R X A R X

0.016 598 264+22985 1+24085 6 5 0.4 9 5 0.4

0.8 542 266+22904 1+24164 7 8 0.7 11 8 0.7

4 474 264+22853 1+23970 9 12 2 13 12 2

20 403 268+22845 1+23727 12 21 4 17 21 4

100% 265 267+23073 1+22254 19 45 27 28 45 27

Figure 5.8: Search performance on Disk with regions of interest (spatial data and query
skewness)

contrast, when the overlap probability is elevated, the region separation is not well
captured, and a large number of nodes are explored, leading to the degradation of
the search performance.

– Adaptive Clustering creates fewer clusters than R*-tree nodes and explores/verifies
smaller ratios of clusters/objects. As a result, Adaptive Clustering shows better
performance than R*-tree in all the cases. Adaptive Clustering is visibly less af-
fected than R*-tree by the increasing overlap. The performance gap between the
two indexing methods increases for larger overlap degrees.

• On disk:

– Adaptive Clustering adapts the object grouping to the system’s performance char-
acteristics and shows a clear advantage compared to Sequential Scan. In contrast,
R*-tree fails to outperform Sequential Scan, suffering from numerous I/O accesses.

– Compared to R*-tree, X-tree manages to better arrange the data objects in
nodes, preserving the region separation and ensuring good search performance,
notably when the overlap between regions of interest is low. When the overlap

111

probability is less than 25%, the very low ratios of accessed nodes (see them in the
table from Figure 5.8) ensure for X-tree better performance than Sequential Scan.
When the overlap degree is very low (< 0.8%), X-tree also outperforms Adaptive
Clustering. However, in practice the regions of interests are not so well separated
(overlap probability < 0.8%). For more realistic overlap degrees (> 0.8%), Adaptive
Clustering demonstrates better search performance than X-tree.

5.2.3 Behavior and adaptability study

The objective of the next experiments is to study the behavior of our clustering method
and its ability to adapt to dynamical changes in query and data distributions. Several
aspects are considered such as evolution of search performance, evolution of number of
clusters, time required to accomplish the database clustering, costs of cluster restructur-
ing operations, and costs of database update operations.

4. Dynamically changing query selectivity

In this experiment, we employ uniform data and queries, as in the first experiment
from the previous section. We dynamically change the query selectivity and observe the
evolution of the search performance of Adaptive Clustering, comparing it to the three
other competing methods.

Experiment 4 We consider 2000000 objects uniformly distributed in 16-dimensional
space, and launch 100 samples of intersection queries with 100 queries per sample. The
queries are uniformly distributed in the data space, but we impose minimal and maximal
length constraints on the query intervals in order to control the average query selectivity.
The average query selectivity is changed every 25 query samples, taking the following
values: 5e-5, 5e-4, 5e-6, 5e-3. After each query sample, we trigger a global cluster restruc-
turing operation. Performance results, averaged per sample, are depicted in Figure 5.9
for the memory storage scenario, and in Figure 5.10 for the disk storage scenario. In
the upper charts from the two figures, we illustrate the evolution of: the average query
cost of Sequential Scan (S search), the average query costs of R*-tree and X-tree (R/X
search in memory, R search and X search on disk), the average query cost of Adaptive
Clustering (A search), and the average query cost of Adaptive Clustering combined with
the cost of cluster restructuring operations (A search + clustering). The cost of cluster
restructuring operations is averaged between the 100 queries of a query sample. All these
costs are expressed in terms of total execution time. In addition to the upper charts,
we provide two auxiliary charts showing for Adaptive Clustering the evolution of the
numbers of clusters in the storage cases. We accordingly represent the total number of
clusters, the number of new clusters, and the number of merged clusters, raised after
each global cluster restructuring operation.

Experimental facts and remarks:

• Adaptive Clustering reaches an efficient clustering configuration in less then 10
global cluster restructuring steps, corresponding to the first 10 query samples (1000

112

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 10 20 30 40 50 60 70 80 90 100

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Query Samples - Changing query selectivity every 25 query samples

Performance Evolution in Memory

5e-5 5e-4 5e-6 5e-3

100 queries per query sample S search
R/X search

A search
A search + clustering

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

Nu
m

be
r o

f C
lu

st
er

s

Query Samples

Evolution of Number of Clusters for Adaptive Clustering

5e-5 5e-4 5e-6 5e-3
Total Clusters
New Clusters

Merged Clusters

Figure 5.9: Performance evolution in Memory when dynamically changing query selec-
tivity

queries), both in memory and on disk. During the first two query samples, the com-
bined search and clustering cost exceeds the search cost of Sequential Scan. This
happens due to the fact that the first cluster restructuring operations involve large
sets of objects. Indeed, at the beginning, all the data objects are stored in a sin-
gle cluster, the root. Because many clusters are rapidly created (see the charts
showing the evolution of the number of clusters), the initial clustering cost cannot
be immediately counterbalanced by the gain in the search performance. However,
starting with the third query sample, the number and the cost of the clustering
operations decrease significantly. As a result, the combined search and clustering
cost of Adaptive Clustering drops and outperforms the search cost of Sequential
Scan. During few more query samples, the search performance continues to im-
prove, until it reaches a minimum, stable level. Similar behaviors can be noticed
in memory and on disk. In memory, where R*-tree is globally more efficient than
Sequential Scan, the combined search and clustering cost of Adaptive Clustering
outperforms the search cost of R*-tree starting with the forth query sample.

• During the query samples following an important change in the average query se-
lectivity (which in our experiment happens every 25 query samples), a higher than
usual number of cluster restructuring operations are automatically triggered in a
gradual manner (see the charts showing the evolution of the number of clusters).

113

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Query Samples - Changing query selectivity every 25 query samples

Performance Evolution on Disk

5e-5 5e-4 5e-6 5e-3

100 queries per query sample
S search
R search
X search
A search

A search + clustering

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

Nu
m

be
r o

f C
lu

st
er

s

Query Samples

Evolution of Number of Clusters for Adaptive Clustering

5e-5 5e-4 5e-6 5e-3

Total Clusters
New Clusters

Merged Clusters

Figure 5.10: Performance evolution on Disk when dynamically changing query selectivity

Indeed, our cost-based query-adaptive clustering method attempts to adapt the
clustering configuration to the new query characteristics. This induces a slight in-
crease in the combined search and clustering cost, but the search performance is not
significantly affected, continuing to preserve a clear advantage over the competing
methods. In time, the additional cost overhead induced by the cluster restructuring
operations tends to decrease, as well as the search cost, until a new stable clustering
configuration is reached.

• Regarding the evolution of the number of clusters, we notice that in memory the
total number of clusters globally increases, even though higher numbers of merges
and splits are triggered after each important change in the average query selectivity.
Indeed, the cost of accessing a cluster is quite low in memory, which explains why
the total number of clusters slightly increases, even when the query selectivity
decreases. In contrast, on disk, accessing a cluster is very expensive. For this
reason, the total number of clusters follows the query selectivity, increasing when
the query selectivity is higher (more cluster splits are triggered than cluster merges),
and decreasing when the query selectivity is lower (more cluster merges are triggered
than cluster splits).

By this behavior, Adaptive Clustering demonstrates good adaptability to changes in
query patterns, while properly taking into account the platform-specific performance

114

Table 5.3: Cost comparison for different data organization methods
Adaptive Clustering Construction Time

Time After 10 samples Total Sequential R*-tree X-tree

In Memory 18 sec 34 sec 3 sec 491 sec -

On Disk 4 min 18 min 1 min 93 min 303 min

characteristics.

We also remark that the time required to obtain an efficient clustering configura-
tion is small, and the cost of cluster restructuring operations (cluster splits and cluster
merges) is reduced, not significantly affecting the search performance. Table 5.3 shows
the clustering time cost of Adaptive Clustering after the first 10 global cluster restruc-
turing operations, as well as the total clustering time cost for all the 100 global cluster
restructuring operations triggered in our experiment, and compares them to the inser-
tion and construction times of Sequential Scan, R*-tree and X-tree, in memory and on
disk. Note that the time cost to obtain an optimal clustering (after 10 global cluster
restructuring operations) is much lower than the construction time of R*-tree or X-tree,
in both storage cases.

5. Dynamically changing data distribution

Within this experiment, we investigate the behavior of our clustering approach to im-
portant changes in the data distribution, and also examine the cost of database update
operations like object insertions and object deletions.

Experiment 5 We consider a number of 1000 regions of interest arbitrarily chosen in
a 16-dimensional space. Minimal and maximal interval size constraints are imposed to
the regions of interest in order to ensure 4% overlapping probability between any two
arbitrary regions. We start with an initial dataset of 2000000 spatial objects uniformly
populating only half of the regions of interest. So the first object distribution consists of
500 regions of interest, each one containing 4000 spatial objects. In this experiment, we
launch 140 samples of 100 queries, interleaved with database update operations. Each
database update operation deletes 20000 objects from the first distribution and inserts
20000 new objects falling in the other 500 regions and representing the second object dis-
tribution. The queries uniformly visit all the 1000 regions of interest. Each query sample
is followed by a global cluster restructuring operation. The experiment is performed as
follows: We first launch 20 query samples in order to produce a first clustering configu-
ration (the first 20 query samples are not interleaved with database update operations).
Starting with the 21th query sample, each query sample is followed by a database update
operation. The data objects from the first distribution are gradually replaced by data
objects from the second distribution. After 100 query samples, all the data objects from
the initial distribution are replaced, so the update operations stop. Finally, 20 more
query samples are launched to observe the search performance under the new object
configuration.

The search performance and the update performance are illustrated in Figure 5.11
for the memory storage scenario, and in Figure 5.12 for the disk storage scenario. In the
two upper charts we depict the average search time per query, the combined search and

115

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Query Samples

Search and Update Performance for Adaptive Clustering in Memory

Search Time
Search Time + Clustering Time

Delete Time
Insert Time

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140

Nu
m

be
r o

f C
lu

st
er

s

Query Samples

Evolution of Number of Clusters for Adaptive Clustering

Total Clusters
New Clusters

Merged Clusters

Figure 5.11: Behavior of Adaptive Clustering in Memory when dynamically changing
data distribution

clustering time per query, the deletion time per object, and the insertion time per object.
In the lower charts from the two figures we depict the evolution of the number of clusters
in the two storage cases. Note that we have logarithmic scales in all the charts.

Experimental facts and remarks:

• The search performance of Adaptive Clustering is not visibly affected by the changes
from the data distribution, succeeding to preserve its advantage over Sequential
Scan both in memory and on disk (16 times better in memory, and 7 times better
on disk). This good behavior is due to our insertion strategy which places every new
object in the cluster with the lowest access probability, thus taking advantage of the
clustering configuration already in place. It is also due to our clustering strategy
which gradually adapts the object clustering to the new data characteristics: Some
clusters are merged and others are split (see the evolution of the number of clusters).
The cost overhead caused by cluster restructuring operations keeps low and does
not penalize the search performance in a significant manner. Indeed, the combined
search and clustering cost is close to the search cost, in both storage scenarios.

• The database update operations are efficient because they do not involve complex

116

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Query Samples

Search and Update Performance for Adaptive Clustering on Disk

Search Time
Search Time + Clustering Time

Delete Time
Insert Time

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140

Nu
m

be
r o

f C
lu

st
er

s

Query Samples

Evolution of Number of Clusters for Adaptive Clustering

Total Clusters
New Clusters

Merged Clusters

Figure 5.12: Behavior of Adaptive Clustering on Disk when dynamically changing data
distribution

database restructuring operations:

– Object insertions are very fast. A new object is placed in the cluster with the
lowest access probability, whose signature accepts the given object. The target
cluster is selected based on cluster signatures and on query statistics maintained in
memory for all the database clusters. One data write is only required to place the
new object in the selected cluster, either in memory or on disk.

– Object deletions are faster than common spatial queries. An object deletion needs
to explore a number of clusters in order to retrieve the wanted object. However, the
object retrieval is faster than for common spatial queries because only the clusters
whose signatures match exactly the wanted object need to be explored. In addition,
the cluster explorations stop as soon as the cluster containing the wanted object is
found. In contrast, spatial queries have to explore all the clusters whose signatures
match the selection criterion, and also have to update the query statistics for all
the explored clusters and candidate subclusters.

117

5.3 Conclusions

The practical relevance of our cost-based query-adaptive clustering solution was demon-
strated in a series of experiments where we compared it to R*-tree, X-tree, and Sequential
Scan. We examined the search performance and the behavior of our clustering method
in main memory and on disk. We investigated the ability of our clustering approach
to adapt to query and data distribution changes, and also analyzed the performance of
object insertions and object deletions. The following experimental conclusions can be
made.

• Regarding Adaptive Clustering:

– Experimental results demonstrate that our cost-based query-adaptive clustering
solution properly takes into account the performance parameters of the execution
platform and succeeds to adapt the object clustering to the actual data and query
distributions, showing better average search performance than Sequential Scan in
all experiments, both in memory and on disk.

– Our clustering method applies to large collections of spatial objects with many
dimensions and has good behavior with increasing dimensionality. It efficiently
handles data with skewness at dimension level (spatial objects with different se-
lectivity characteristics over dimensions), and also data and queries with skewed
distributions in the multidimensional space (following regions of interests).

– The cost of maintaining query statistics for the explored clusters/candidate sub-
clusters was counted as part of the query execution cost. Since the search perfor-
mance of Adaptive Clustering is globally better than alternative solutions, we can
conclude that maintaining query statistics is low-cost in terms of execution time
and worth significant performance gains.

– The cost of periodical cluster restructuring operations (cluster merges and cluster
splits) is low, not significantly affecting the search performance.

– The time required to obtain an optimal clustering configuration is much lower
than the time required to build an R*-tree or an X-tree, both in memory and on
disk.

– Our clustering strategy proves to be efficient and able to adapt the object clus-
tering to important changes occurring over time in query and data distributions.

– The object insertions and the object deletions are fast because they do not involve
complex restructuring operations.

• Comparing to R*-tree and X-tree:

– Our object grouping is globally more efficient than the object grouping of R*-tree.
Thanks to the cost-based clustering, Adaptive Clustering creates and explores fewer
clusters than R*-tree, and verifies smaller amounts of data objects, resulting in
better search performance, both in memory and on disk. On disk, due to the cost
overhead of numerous I/O accesses, R*-tree fails to outperform Sequential Scan.

– X-tree behaves like R*-tree in memory, while on disk it degenerates into a tree
with only one supernode, the root. On disk, X-tree is more selective than R*-tree,

118

but considerably more expensive in terms of insertion time. The search perfor-
mance of X-tree still suffers from numerous I/O accesses, being often outperformed
by Sequential Scan. When X-tree shows better performance than Sequential Scan,
Adaptive Clustering usually requires fewer random accesses and succeeds to out-
perform it in most cases.

119

Chapter 6

Conclusions and perspectives

6.1 Summary

In this thesis, we addressed the problem of efficiently indexing large and dynamic col-
lections of multidimensional objects with spatial extents, to speed-up the execution of
spatial range queries. As illustrated in Chapter 1, addressing this problem was motivated
by the recent emergence of a wide range of applications from the SDI domain (Selective
Dissemination of Information), bringing out new challenges for the multidimensional in-
dexing schemes. In this context, an efficient multidimensional access method is needed
to meet a number of general application requirements such as: scalability – manage large
and dynamic collections of spatial objects with possibly many dimensions and with pos-
sibly large extents over dimensions, search performance – cope with high rates of spatial
range queries, update performance – support frequent data object insertions and dele-
tions, and adaptability – take into account the spatial distribution of data and query
objects, dynamically accommodate important distribution changes in data and query
patterns, and take into consideration the performance characteristics of the execution
platform. At once meeting all these requirements represents a great challenge for the
multidimensional indexing domain.

The state-of-the-art of the multidimensional indexing domain was reviewed in Chap-
ter 2 with emphasis on the indexing solutions suitable for multidimensional objects with
spatial extents. We focused on the evolution of the R-tree based methods, specifically
designed to support spatial objects. We showed that a number of requirements specific to
our target applications are highly impractical for classical R-trees (i.e., deal with many
dimensions, handle objects with spatial extents, and cope with spatial range queries).
Indeed, in high-dimensional spaces the overlap between minimum bounding rectangles is
important at node level, especially when having data objects with spatial extents over
dimensions. When answering spatial range queries an excessive number of nodes are
explored, notably in a random manner. This inflicts high I/O costs and deteriorates the
search performance so much that a naive approach like sequential scan becomes more
efficient. To alleviate the performance deterioration, some R-tree extensions were pro-
posed as trade-off solutions between random access and sequential scan. They use cost
models embedding the performance characteristics of the execution platform and aiming
to adapt the node page sizes to the data distribution (like in X-tree and DABS-tree) and
to the query distribution (like in Adaptive R-tree). We analyzed the features and the

120

cost models of these latter techniques and emphasized their limitations. After studying
the limitations of the existing multidimensional indexing solutions, we concluded that an
efficient access method should have its object grouping assisted by a cost model embed-
ding the performance parameters of the execution platform and taking into account both
data and query distributions.

As the main contribution of our work, we proposed a cost-based query-adaptive clus-
tering solution suitable for multidimensional objects with spatial extents and designed
to improve the average performance of spatial range queries. Our object clustering drops
many properties of classical tree-based indexing structures (i.e., tree height balance, bal-
anced node splits, and minimum bounding in all dimensions) in favor of a cost-based
clustering strategy meant to ensure for the set of clusters better average search per-
formance than sequential scan in virtually every case. The cost model supporting our
clustering strategy takes into account the platform’s performance parameters and relies
on both data and query distributions to assist the object clustering as means to improve
the average performance of spatial range queries. The object grouping criterion sup-
porting the object clustering consists of grouping spatial objects with similar intervals
(positions and extents) in a reduced subset of dimensions, namely the most selective
and discriminatory dimensions and domain regions relative to the query distribution. To
identify the best grouping dimensions and domain regions, the grouping criterion is used
to deterministically partition each cluster into a number of candidate subclusters repre-
senting future cluster candidates. Data and query statistics are maintained for all the
clusters and candidate subclusters and employed in the cost model to support creation of
new profitable clusters and removal of inefficient clusters. New clusters are created during
cluster splits by materializing candidate subclusters that are expected to be profitable for
the average search performance. Inefficient clusters are merged to the direct ancestors
from the clustering hierarchy. Cluster restructuring operations are periodically triggered
to accomplish and refine the object clustering and to adapt it to important changes that
might occur over time in data and query distributions. The clustering strategy, the object
grouping criterion and the cost model supporting the clustering decisions were detailed
in Chapter 3.

Algorithms and execution procedures for the cluster restructuring operations (cluster
restructuring invocation, cluster split, and cluster merge) and for standard database
manipulation operations (spatial query execution, data object insertion and data object
deletion) were presented and discussed in Chapter 4.

The practical relevance of our cost-based query-adaptive clustering solution was
demonstrated in Chapter 5 where we presented an advanced experimental evaluation.
Experimental results show that our clustering method properly takes into account the
system’s performance parameters and adapts the object clustering to the actual data and
query distributions, showing better average search performance than Sequential Scan in
memory and on disk. Our clustering method applies to large collections of spatial ob-
jects with many dimensions and has good behavior with increasing dimensionality. It
efficiently handles data objects with skewness at dimension level, as well as data ob-
jects and queries with skewed distributions in the multidimensional space. The cost of
maintaining query and data statistics is low and worth significant performance gains.
Our clustering strategy is able to adapt the object clustering to important changes in
query and data distributions. The cost of periodical cluster restructuring operations does

121

not significantly affect the system’s availability. The database update operations are fast.
Our object grouping is globally more efficient than the object grouping of R*-tree. Adap-
tive Clustering requires fewer random I/O accesses than X-tree on disk, outperforming
it in most cases. The ability to take into account the performance characteristics of the
execution platform and to adapt the object clustering to the real data and query distri-
butions are the main advantages of our clustering method.

Parts of the work presented in this thesis were published in [SL04]. We envisage several
interesting research issues related to this work:

6.2 Perspectives

• Advanced control mechanism to trigger cluster restructuring operations

To improve the adaptability of our clustering method to data and query distribu-
tion changes and to minimize the overhead cost of cluster restructuring operations,
we intend to integrate an advanced control mechanism able to monitor the average
search performance and to detect significant performance changes, in order to trig-
ger the cluster restructuring operations in a controlled manner, rather than on a
periodical basis. For instance, when high fluctuations are detected in the system’s
performance, the cluster restructuring operations could be put on stand-by until
the system’s performance stabilizes. The control mechanism could be also used to
reset the query statistics associated with clusters and with candidate subclusters
when important changes are detected in the query patterns. Such actions would
allow to avoid making wrong clustering decisions and to spare the corresponding
cluster restructuring costs.

• Alternative object grouping methods to support the clustering function

We plan to evaluate the interest and the maintenance cost of alternative grouping
methods as support for the clustering function to deterministically partition a clus-
ter into a known number of candidate subclusters. A possible alternative grouping
method could be based on a space division according to several dimensions at once.
Such a grouping method might be of interest if the number of possible subclusters
remains acceptable. We also envisage to examine a domain partitioning adaptive
to the data distribution at dimension level, with smaller size subregions in densely
populated areas and higher size subregions in low populated areas. Such a grouping
method might be beneficial if the cost of maintaining statistics for irregular space
subregions is not too elevated.

• Caching strategy to improve search performance for applications requiring disk-based
storage

Because the search performance in memory is much faster than on disk, when
dealing with applications requiring disk-based storage, a caching strategy could help
to significantly improve the average query execution time. The query statistics that
we maintain for clusters can serve to indicate the clusters more frequently accessed
in order to cache them in main memory. We plan to develop an advanced cost
model able to take into account both possible storage cases (memory and disk),

122

and thus to enable the implementation of an efficient caching strategy. An idea
worth considering is the possible implementation of a dual clustering organization
where several smaller clusters suitable for memory storage are grouped in larger
clusters more appropriate for disk storage.

• Approximation-based data representation model to accelerate spatial selections

Another research direction is related to the usage of an approximation-based data
representation model to accelerate spatial selections in the manner of VA-File
[WB97]. In [LS02] we presented an approximation-based filtering technique suit-
able for multidimensional objects with spatial extents. The domains of values of
all dimensions are divided in subregions (possibly in a recursive manner). The
interval limits of a spatial object are replaced by references to the qualifying do-
main subregions. When executing a spatial query, we first annotate the domain
subregions that satisfy the selection criterion. Then we filter and only retain the
objects pointing to qualifying subregions in all the dimensions. The real intervals
of the qualifying objects are finally checked against the spatial selection criterion in
order to eliminate the false positives. This approximation-based filtering approach
is compatible with our clustering method. The two techniques could be combined
to further accelerate the query execution, especially for main memory applications
requiring high performance.

123

Chapter 7

Resumé en Français – French
Summary

Groupement d’objets multidimensionnels étendus
avec un modèle de coût adaptatif aux requêtes

7.1 Introduction

Le World Wide Web est devenu un énorme entrepôt de données dans pratiquement
tous les domaines d’activité. Ces données sont de plus en plus facilement accessibles et
disponibles grâce à la démocratisation de l’Internet haut débit. La forte croissance de
l’Internet a entrâıné une explosion du nombre d’utilisateurs et d’applications en ligne. Le
volume important de données déployées sur le Web et le nombre élevé d’utilisateurs ont
contribué au développement rapide d’une nouvelle classe d’applications : les applications
de dissémination sélective d’informations (ou applications DSI). Le but de ces applications
est de distribuer de l’information à un grand nombre de clients. Les entités qui produisent
les informations sont appelées producteurs ou publieurs. Ces informations sont distribuées
sous forme de paquets de données appelés publications. Les publications sont émises à
des moments de temps appelés événements de publication. Les entités intéressées par ces
publications sont appelées consommateurs ou souscripteurs. Ces derniers expriment leurs
intérêts dans certaines publications au moyen de souscriptions. L’interaction entre les
publieurs et les souscripteurs est assurée par une application spécifique appelée système
publieur-souscripteur. Son objectif principal est de fournir rapidement les données ap-
propriées aux souscripteurs concernés. Parmi les applications DSI les plus courantes,
on notera celles liées aux bibliothèques électroniques de publications, à la bourse (suivie,
échange et vente d’actions), aux enchères, aux systèmes de petites annonces, de publicité,
et de forums. Des applications DSI plus complexes peuvent être déployées dans certains
systèmes de gestion de réseaux distribués, systèmes de réseaux de capteurs sensoriels,
systèmes d’alerte et de notification, systèmes d’intégration d’applications d’entreprise
(EAI), systèmes de transactions financières sécurisées, systèmes de services, de recherche,
de notification et de livraison de données.

124

7.1.1 Motivation du travail

Les applications émergentes liées à la dissémination sélective d’informations doivent sou-
vent gérer de larges collections de souscriptions et des taux importants de nouvelles publi-
cations portant sur de nombreux attributs. Le caractère multidimensionnel des données
manipulées dans ces applications, ainsi que les exigences de performance spécifiques,
soulèvent de nouveaux défis dans le domaine de l’indexation multidimensionnelle. Ces
défis représentent la principale motivation de notre travail.

Exemple d’application

Comme exemple d’application, nous allons considérer un système de notification de
type “publieur-souscripteur” gérant de petites annonces. Par exemple, une demande
de souscription peut être : “Notifiez-moi de toutes les offres d’appartements en loca-
tion dans un rayon de 30 Km autour de Versailles, avec un loyer mensuel entre 800 et
1200 euros, ayant entre 3 et 5 pièces, et 2 salles de bains”. La plupart des attributs
de cette souscription portent sur des intervalles de valeurs plutôt que sur des valeurs
exactes : 0-30 pour la distance de Versailles, 800-1200 pour le loyer, 3-5 pour le nom-
bre de pièces. En pratique, les souscriptions de type intervalle sont plus intéressantes
et mieux adaptées pour ce type d’applications. D’abord, parce que la probabilité est
très faible de trouver des offres qui satisfont simultanément les valeurs exactes de tous
les attributs. Ensuite, parce qu’il n’est pas toujours possible de spécifier des valeurs
exactes pour tous les attributs. Si chercher un appartement avec un loyer donné n’est
pas vraiment raisonnable, définir un intervalle de valeurs pour le loyer reste tout à fait
pertinent. De manière générale, lorsqu’il n’y a aucune offre qui satisfait les critères de
recherche exacts, les souscripteurs préfèrent consulter des offres alternatives, à condition
que celles-ci soient suffisamment proches des valeurs exactes envisagées au départ. Grâce
aux intervalles de valeurs, les souscripteurs peuvent définir des critères de recherche plus
flexibles, pouvant établir un degré de variation acceptable au niveau de chaque attribut.
De toute évidence, les souscriptions de type intervalle s’avèrent être très utiles pour
les applications de dissémination sélective d’informations [LJ04]. Dans un système de
notification de type “publieur-souscripteur”, des taux importants de nouvelles publica-
tions (ou offres) émises par les publieurs ont besoin d’être comparées avec l’ensemble des
souscriptions afin d’identifier celles visées pour notifier les souscripteurs concernés. De
manière générale, les publications peuvent spécifier pour leurs attributs soit des valeurs
exactes, soit des intervalles de valeurs. Par exemple, une publication avec des attributs
spécifiant des valeurs exactes peut être énoncé comme suit : “Particulier - Appartement
à louer, 10 Km de Versailles, 3 pièces, 1 salle de bains, 1100 euros par mois”. Un autre
exemple de publication avec des attributs portant sur des intervalles de valeurs peut être
: “Agence immobilière - Appartements à louer sur Versailles : 3-5 pièces, 1-2 salles de
bain, 1000-1300 euros par mois”.

Modèle de représentation des données

Comme montré dans l’exemple précédent, les souscriptions et les publications portent
souvent sur des attributs de type intervalle et peuvent être représentées comme des
ensembles d’associations <attribut, intervalle de valeurs>. Chaque attribut peut être

125

vu comme une dimension différente. Dans cette représentation, les souscriptions et les
publications deviennent des objets étendus dans un espace multidimensionnel défini par
l’ensemble d’attributs. Un objet multidimensionnel étendu, également appelé hyper-
intervalle ou hyper-rectangle, comporte un intervalle de valeurs pour chacune de ses
dimensions. La collection de souscriptions forme une base d’objets multidimensionnels
étendus sur laquelle les nouvelles publications agissent comme des requêtes spatiales
de type intervalle : Les souscriptions visées par les nouvelles publications sont iden-
tifiées aux moyens d’opérations d’intersection, d’inclusion, ou de couverture spatiale,
entre les objets-requêtes représentant les publications et les objets de la base de données
représentant les souscriptions. Avec ce modèle de représentation des données, retrouver
les souscriptions qui satisfont les nouvelles publications revient à répondre aux requêtes
spatiales de type intervalle sur la base d’objets multidimensionnels étendus.

7.1.2 Exigences de performance

Dans le contexte des applications DSI, il est nécessaire d’avoir une méthode d’accès
performante qui permet d’exécuter efficacement des requêtes spatiales de type intervalle
sur de larges collections d’objets multidimensionnels étendus ; ceci dans le but de pouvoir
trouver rapidement les souscriptions satisfaisant les nouvelles publications. Les exigences
de la solution d’indexation qui en découlent sont les suivantes :

• Scalabilité

Les applications DSI comportent souvent des collections larges et dynamiques
de souscriptions (millions de souscriptions) portant sur des nombreux attributs
(dizaines de dimensions). La méthode d’indexation adoptée doit pouvoir gérer un
grand nombre d’objets multidimensionnels étendus avec beaucoup de dimensions
et avec potentiellement de longues extensions dans les dimensions. De longues ex-
tensions peuvent être associées aux attributs pour lesquels les souscripteurs n’ont
pas de préférences particulières.

• Performance de recherche

Certaines applications de type DSI doivent traiter des centaines voire des milliers
de publications par seconde. La réactivité du système peut être cruciale dans par
exemple les systèmes d’alerte et de notification temps-réel. Afin de supporter des
taux très élevés de nouvelles publications, la méthode d’indexation utilisée doit
être efficace, c’est-à-dire capable d’exécuter rapidement des requêtes spatiales de
type intervalle sur l’ensemble des objets multidimensionnels étendus représentant
les souscriptions.

• Performance de mise à jour et adaptabilité

Généralement, les souscriptions sont très dynamiques, les intérêts de souscripteurs
varient beaucoup dans le temps, ainsi que les publications émises par les publieurs.
Les insertions de nouvelles souscriptions et suppressions de souscriptions expirées
peuvent intervenir fréquemment. Dans un tel contexte, la solution d’indexation
doit pouvoir gérer des mises à jour fréquentes de la base de souscriptions. En effet,
les souscripteurs ont souvent l’habitude de suivre certaines zones d’intérêt mais
celles-ci ne sont pas forcément suivies par les offres. La méthode d’indexation doit

126

pouvoir accommoder les variations dynamiques de distribution des objets (suite
aux insertions et aux suppressions de souscriptions) et des requêtes (suite aux
changements de la nature des publications). Les mises à jour des souscriptions et
les opérations de réorganisation de la base de souscriptions doivent être rapides,
afin de ne pas affecter de façon significative la disponibilité et la performance de
recherche du système.

7.1.3 Formulation du problème

Satisfaire les exigences de performance des applications DSI émergentes représente un
important défi pour le domaine de l’indexation multidimensionnelle. La plupart des
méthodes d’indexation multidimensionnelles supportant l’exécution de requêtes spatiales
de type intervalle sur des collections d’objets multidimensionnels étendus sont dérivées
du R-tree. R-tree est une technique d’indexation multidimensionnelle qui utilise des
rectangles englobants minimaux (REMs) pour organiser les objets spatiaux dans un ar-
bre hiérarchique afin de diriger les recherches vers les régions spatiales visées et ainsi
améliorer l’exécution des requêtes. Plusieurs contraintes de construction sont imposées
pour assurer l’équilibrage en hauteur de l’arbre et pour garantir un remplissage mini-
mal des pages associées aux noeuds. Ces contraintes de construction, combinées avec
l’aspect multidimensionnel, entrâınent une superposition spatiale importante des REMs
au niveau des noeuds. Cette superposition spatiale des REMs a pour conséquence de
dégrader les performances lors des recherches. En effet, plus de branches de l’arbre de-
vront être explorées, donc plus de noeuds devront être accédés, notamment dans le cas
des requêtes spatiales de type intervalle. De plus, la probabilité de superposition spatiale
des REMs augmente avec le nombre de dimensions [BKK96, BBK98b].

Au fil des années, plusieurs techniques ont été proposées pour diminuer les effets de
ce phénomène connu sous le nom de “la malédiction de la dimensionnalité”. Malgré ces
efforts, plusieurs évaluations expérimentales [BBK01] ont démontré qu’au delà de 5-6
dimensions une recherche séquentielle näıve de l’ensemble d’objets s’avère plus efficace
qu’une recherche basée sur des structures d’indexation complexes telles que les R*-tree,
Hilbert R-tree ou X-tree [BBK98b, BK00, BBK01]. Ces faits ont déjà été constatés pour
des requêtes de type intervalle sur des collections de points. La performance de recherche
s’empire lorsque l’on considère des collections d’objets multidimensionnels étendus, car
le degré de superposition spatiale des REMs augmente avec la superposition spatiale des
objets.

La mauvaise performance de recherche dans les espaces avec beaucoup de dimen-
sions est la principale limitation des méthodes basées sur la technique R-tree. Une autre
limitation importante de ces méthodes est liée au coût des opérations de restructura-
tion de la base d’objets lors des insertions et des suppressions d’objets. En effet, les
changements fréquents d’objets entrâınent des opérations de restructuration complexes
et coûteuses. Vu les exigences des nouvelles applications DSI, il est évident que les
méthodes d’indexation basées sur la technique R-tree ne sont pas appropriées. Dans ce
contexte, l’objectif de notre travail a été d’étudier leurs limitations et de proposer une
méthode d’accès efficace et adaptée pour les applications DSI émergentes.

127

7.1.4 Contributions

Dans cette thèse nous présentons une méthode de groupement en clusters des collections
dynamiques d’objets multidimensionnels étendus, avec un modèle de coût adaptatif aux
requêtes, dont l’objectif principal est d’améliorer la performance d’exécution des requêtes
d’intersection, d’inclusion et de couverture spatiale. L’intérêt de notre solution de groupe-
ment est qu’elle garantit une bonne performance de recherche, meilleure que la recherche
séquentielle dans tous les cas de figure, tout en tenant compte des exigences applica-
tives motivées auparavant : supporter de grandes ensembles d’objets multidimensionnels
étendus, avec beaucoup de dimensions et avec de longues extensions possibles dans les
dimensions, supporter des taux élevés de requêtes spatiales de type intervalle, des mises
à jour fréquentes d’objets, des variations de distribution spatiale des données, ainsi que
des requêtes. Les contributions les plus importantes de notre travail sont :

• Une stratégie de groupement basée sur un modèle de coût adaptatif aux requêtes

Notre groupement d’objets en clusters est basé sur un modèle de coût qui prend
en considération la distribution spatiale des objets et la distribution spatiale des
requêtes. Le modèle de coût tient compte d’un ensemble de paramètres système in-
fluant sur la performance d’exécution des requêtes, i.e., le temps d’accès mémoire et
disque, la vitesse de transfert des données entre le disque et la mémoire, la vitesse
de vérification du critère de sélection sur les objets en mémoire. Au niveau de
chaque cluster d’objets on maintient des statistiques concernant la distribution lo-
cale des objets et des requêtes. Ces statistiques sont combinées avec les paramètres
système afin de soutenir les décisions de création de nouveaux clusters, plus prof-
itables, et de suppression de clusters qui ne sont plus rentables. Le but de notre
stratégie de groupement est de minimiser les coûts d’accès et d’exploration des
clusters. Le modèle de coût employé est flexible et peut être facilement adapté
à différents scénarios de stockage, assurant une bonne performance de recherche,
toujours meilleure que la recherche séquentielle, sur disque ou en mémoire.

• Un critère original pour le groupement spatial d’objets

Notre groupement d’objets en clusters est basé sur une nouvelle approche de groupe-
ment spatial : Un cluster regroupe des objets qui présentent des intervalles “sim-
ilaires” dans un sous-ensemble de dimensions. Par intervalles “similaires” nous
entendons des intervalles de tailles comparables et localisés dans les mêmes régions
de l’espace. La notion de similarité est définie par rapport à un découpage régulier
et récursif de l’espace en sous-régions, au niveau de chaque dimension. Les dimen-
sions de regroupement et les sous-régions spatiales sont choisies en fonction de la
distribution des requêtes afin de minimiser la probabilité d’accès aux clusters au
cours des recherches. Pour les objets étendus, ce critère de groupement spatial avec
notre stratégie de groupement, s’avère plus efficace que les approches de groupe-
ment traditionnelles, la plupart basées sur un englobement minimal dans toutes les
dimensions - comme dans le cas des R-trees. Grâce à notre groupement spatial,
moins de clusters sont crées et explorés, et moins d’objets sont vérifiés lors des
recherches spatiales.

128

Evaluation expérimentale

Pour évaluer l’efficacité de notre méthode de groupement, nous avons conçu et exécuté
un large spectre d’expériences, comportant des objets et des requêtes uniformes et non
uniformes, en mémoire et sur disque. Notre solution de groupement a été testé pour
des objets et des requêtes uniformément reparties dans l’espace multidimensionnel, pour
des objets avec une partie de dimensions plus sélectives que d’autres, et aussi pour des
objets et des requêtes distribuées de façon non uniforme dans l’espace multidimensionnel
(objets et requêtes reparties dans des régions d’intérêt). Nous avons comparé notre
technique avec la recherche séquentielle, avec la technique d’indexation R*-tree, et avec la
méthode d’indexation X-tree, pour de larges ensembles d’objets avec un nombre variable
de dimensions et stockés en mémoire et sur disque. Notre approche de groupement, basée
sur un modèle de coût adaptatif aux requêtes, s’est avérée plus efficace, démontrant de
bonnes performances de recherche, de faibles coûts de mise à jours de la base d’objets,
et une bonne adaptabilité aux variations de distribution des objets et des requêtes dans
tous les cas de figure, notamment dans les cas où le R*-tree et le X-tree ont échoué face
à la recherche séquentielle.

7.1.5 Organisation de la thèse

La thèse est organisée en six chapitres de la façon suivante :

Chapitre 1 introduit cette thèse. Il expose d’abord la motivation de notre travail, le
type d’applications visées avec leurs caractéristiques et leurs exigences. Ensuite, il intro-
duit le problème adressé et les défis relevés. En conclusion, il mentionne les principales
contributions de notre thèse.

Chapitre 2 donne une définition formelle du problème adressé et présente l’état de
l’art. Nous montrons que le problème adressé s’inscrit dans le domaine de l’indexation
multidimensionnelle. Les caractéristiques et les exigences des applications visées re-
présentent un vrai défi dans ce domaine. Dans ce contexte, les techniques d’indexation
existantes, applicables au problème adressé sont présentées, étudiées et leurs limitations
révélées. Les principes et les idées directrices de notre solution alternative sont présentés
en conclusion de ce chapitre.

Chapitre 3 présente les principaux éléments de la solution de groupement en clus-
ters que nous proposons : la stratégie de groupement, le critère de groupement spatial
des objets, et le modèle de coût employé pour assister les décisions de partitionnement.
Premièrement, nous expliquons la stratégie de groupement et le processus de partition-
nement en clusters. Ensuite, nous présentons le critère de groupement spatial des objets
rendant possible l’implémentation de la stratégie de groupement. Enfin, nous détaillons
le modèle de coût supportant les décisions de création de nouveaux clusters profitables
et de suppression des clusters qui ne sont plus rentables.

Chapitre 4 présente l’implémentation et les algorithmes d’exécution des principales
opérations d’organisation et de manipulation de la base d’objets. Le coût et la com-
plexité de ces opérations sont adressés. Premièrement, nous considérons les opérations
d’organisation et de restructuration invoquées lors du partitionnement de l’ensemble
d’objets : les éclatements et les fusions des clusters. Ensuite, nous présentons et nous
étudions les algorithmes d’exécution des opérations de manipulation classiques : exécution

129

des requêtes spatiales (intersections, inclusions et couvertures spatiales) et opérations de
mise à jour (insertions et suppressions d’objets).

Chapitre 5 adresse un nombre d’aspects liés à l’implémentation de la solution proposée
et présente une étude expérimentale de performance. Premièrement, nous présentons
les structures de données utilisées pour implémenter notre technique de groupement,
la gestion de la mémoire centrale et la gestion de l’espace de stockage. Ensuite, nous
présentons une série d’expériences spécialement conçues pour évaluer la performance et
l’efficacité de notre méthode de groupement, en la comparant avec plusieurs solutions
alternatives. Nous démontrons expérimentalement que notre technique est plus efficace
que les autres solutions, pour différents jeux de données et de requêtes et pour différents
scenarios de stockage.

Chapitre 6 résume les principales contributions de notre travail de thèse, tire des
conclusions et introduit plusieurs perspectives de recherches futures.

7.2 Problème et état de l’art

Dans ce chapitre, nous définissons le problème adressé de façon formelle. Puis nous
présentons l’état de l’art. Nous nous sommes notamment intéressés aux solutions exis-
tantes applicables à ce problème. En conclusion de ce chapitre, nous introduisons les
principes et les idées directrices de notre solution alternative.

7.2.1 Spécification du problème

Le problème que nous adressons tient du domaine de l’indexation multidimensionnelle.
Le problème consiste à indexer des collections larges et dynamiques d’objets multidi-
mensionnels étendus, avec beaucoup de dimensions et avec potentiellement de longues
extensions dans les dimensions, afin d’exécuter efficacement des requêtes spatiales de type
intervalle : intersections, inclusions et couvertures spatiales. Un nombre d’exigences ap-
plicatives doivent être satisfaites : scalabilité, performance de recherche, performance de
mise à jour, adaptabilité aux variations des objets et des requêtes, et prise en compte
des paramètres système. Satisfaire simultanément toutes ces exigences représente un défi
important pour le domaine de l’indexation multidimensionnelle.

Nous passons en revue l’état de l’art du domaine de l’indexation multidimensionnelle.
Pour cela, nous présentons les principales caractéristiques et limitations des solutions
d’indexation existantes, insistant sur les techniques applicables aux objets multidimen-
sionnels avec des extensions spatiales. En particulier, nous nous intéressons à l’évolution
des méthodes d’indexation basées sur la technique R-tree, spécialement conçue pour gérer
des objets multidimensionnels étendus. Dans ce contexte, nous montrons qu’une partie
importante d’exigences imposées par les applications visées ne peuvent pas être assurées
par les méthodes de la famille R-tree, i.e., supporter un nombre élevé de dimensions, gérer
des objets avec potentiellement de longues extensions dans les dimensions, et répondre
efficacement aux requêtes spatiales de type intervalle.

En effet, ces exigences applicatives entrâınent une superposition spatiale trop im-
portante des rectangles englobants minimaux. Par conséquent, un nombre excessif de
noeuds sont explorés lors des sélections spatiales. Les noeuds étant explorés par des accès

130

aléatoires, les coûts d’entrée/sortie sont très élevés et induisent une forte dégradation de
la performance de recherche. Dans beaucoup de cas, la performance de recherche peut
s’avérer moins efficace qu’une recherche séquentielle. Pour palier à ce problème, des
améliorations des R-trees ont été proposées, elles offrent des compromis entre l’accès
aléatoire et l’accès séquentiel. Ces améliorations utilisent des modèles de coût qui pren-
nent en compte les caractéristiques de performance de la plateforme d’exécution. La
taille des pages associées aux noeuds peut dépendre, soit de la distribution spatiale des
objets (X-tree [BKK96] et DABS-tree [BK00]), ou soit de la distribution spatiale des
objets et des requêtes (Adaptive R-trees [TP02]).

7.2.2 Etat de l’art

Durant les trente dernières années, de nombreuses techniques d’indexation ont été pro-
posées pour améliorer la performance d’exécution des requêtes spatiales sur de larges
collections d’objets multidimensionnels. [GG98, BBK01, RSV01, Yu02, MNPT03] ex-
aminent et comparent la plupart des méthodes d’accès multidimensionnelles existantes.
Selon ces études, on peut distinguer deux familles de solutions : les solutions basées
sur le partitionnement disjoint de l’espace, et les solutions basées sur une organisation
hiérarchique des objets.

Les solutions d’indexation de la première famille s’appuient sur un partitionnement
récursif de l’espace dans des régions disjointes. Le partitionnement de l’espace est ef-
fectué selon une seule ou plusieurs dimensions à la fois. Quad-tree [FB74, Sam84], K-
D-tree [Ben75, BF79], K-D-B-tree [Rob81], Grid file [NHS84] et hB-tree [LS90] utilisent
ce partitionnement. Certaines solutions hybrides telles que Pyramid-tree [BBK98b], VA-
File [WSB98], et la méthode i-Distance [JOT+05], combinent le partitionnement disjoint
de l’espace avec des transformations spatiales de représentation. En général, les méthodes
basées sur un partitionnement disjoint de l’espace sont utilisées pour indexer des collec-
tions de points multidimensionnels. En effet, les points peuvent facilement être séparés
dans des régions disjointes. Par contre, ces méthodes ne sont pas adaptées pour les ob-
jets étendus car ces objets se superposent dans l’espace. Il n’est donc pas possible de les
séparer de manière équilibrée dans des régions bien disjointes.

La seconde famille permet d’indexer des collections d’objets multidimensionnels éten-
dus. Elle est basée sur la technique R-tree qui a été proposée dans [Gut84] comme une
méthode d’accès adaptée aux objets spatiaux étendus. Cette technique conçue comme
étant une généralisation multidimensionnelle de B-Tree a été initialement utilisée pour
indexer des rectangles 2-d. Elle emploie des rectangles englobants minimaux (REMs), en
général des hyper-rectangles pour hiérarchiser les objets spatiaux dans un arbre équilibré
en hauteur. Chaque noeud de l’arbre correspond à une page mémoire/disque ayant
une taille d’un ou de plusieurs blocs E/S. Une entrée dans un noeud-feuille contient
un identificateur d’objet et un rectangle minimal englobant l’objet correspondant. Une
entrée dans un noeud intermédiaire (noeud directeur) contient un pointeur vers un noeud
fils et un rectangle englobant minimal couvrant de façon minimale tous les REMs situés
plus bas dans le sous-arbre correspondant. Des contraintes de construction sont imposées
d’une part pour garantir et préserver l’équilibrage en hauteur de l’arbre, c’est-à-dire que
tous les noeuds feuilles apparaissent à la même hauteur dans l’arbre, et d’autre part
pour assurer un remplissage minimal des pages mémoire/disque associées aux noeuds,
c’est-à-dire un partitionnement équilibré des noeuds. Avec l’aspect multidimensionnel,

131

ces contraintes de construction entrâınent une superposition spatiale significative entre
les différents REMs au niveau des noeuds. Pour effectuer une recherche, il faut alors
explorer de nombreuses branches de l’arbre, ce qui entrâıne une sérieuse dégradation
de performance. Différentes stratégies ont été proposées pour réduire les effets de ce
phénomène : Packed R-tree [RL85], R+-tree [SRF87], et R*-tree [BKSS90].

Packed R-tree La méthode de construction utilisée par Packed R-tree [RL85] permet
l’obtention d’une hiérarchie arborescente plus efficace avec une meilleure performance
de recherche. Au lieu d’être agrandie graduellement au moyen d’insertions successives
d’objets, la structure Packed R-tree est construite de bas en haut en partant de l’ensemble
complet d’objets. Evidemment, cette méthode de construction ne fonctionne uniquement
que sur des collections statiques d’objets, connues et disponibles à l’avance.

R+-tree R+-tree [SRF87] évite complètement la superposition spatiale et permet aux
REMs de découper les objets étendus en plusieurs morceaux. Lorsque le partitionnement
d’un noeud nécessite le découpage d’un objet, l’objet correspondant est divisé en deux
morceaux. Chaque morceau préserve l’identificateur de l’objet original et est inséré dans
le REM qui lui correspond. La superposition spatiale des REMs est ainsi évitée mais
la hauteur de l’arbre est plus élevée. R+-tree est plus performant que R-tree dans les
espaces avec peu de dimensions. Cependant, dans les espaces de dimensions élevées,
R+-tree est peu efficace à cause du nombre important de découpages et réplications
d’objets.

R*-tree R*-tree [BKSS90] apporte de nouvelles stratégies et heuristiques de partition-
nement pour diminuer la superposition spatiale des REMs. Pour mieux adapter la struc-
ture arborescente aux insertions successives, R*-tree introduit le concept de réinsertions
forcées. Une partie des objets des noeuds surpeuplés sont extraits et réinsérées dans
la structure arborescente. Les réinsertions sont ainsi préférées aux partitionnements de
noeuds. Par rapport aux méthodes précédentes, R*-tree s’est révélé être plus perfor-
mant et s’est rapidement imposé comme une référence de comparaison pour les solutions
d’indexation multidimensionnelles.

Considérations de performance

Les R-trees classiques, supportant des objets multidimensionnels étendus, sont en général
plus efficaces que la recherche séquentielle dans les espaces avec peu de dimensions.
Cependant, ils le sont beaucoup moins dans des espaces à plus de 5-6 dimensions, en
raison de la superposition spatiale des rectangles englobants minimaux. Cette superpo-
sition augmente avec la dimensionnalité de l’espace, phénomène connu sous le nom de
“la malédiction de la dimensionnalité” [BKK96, BBK98b]. A cause des superpositions
spatiales des REMs, un grand nombre de noeuds/pages sont accédées lors des recherches
spatiales. Tous les types de requêtes sont affectés, notamment les requêtes de type inter-
valle qui, par définition, explorent des régions vastes de l’espace. Les accès disque sont
aléatoires et entrâınent des opérations d’entrée/sortie très coûteuses comme les reposi-
tionnements de la tête de lecture/écriture. Les accès aléatoires ne peuvent pas bénéficier

132

de vitesses de transfert élevées entre le disque et la mémoire comme c’est le cas des lec-
tures séquentielles. Les lectures séquentielles sont beaucoup plus rapides, et la recherche
séquentielle s’avère souvent plus efficace.

Dans ce contexte, VA-File [WSB98] s’est imposé comme une solution de recherche
alternative, plus efficace que les structures d’indexation arborescentes, notamment dans
les espaces avec beaucoup de dimensions. VA-File utilise une représentation approximée
des données et tire profit de la recherche séquentielle pour accélérer la performance
de recherche sur de larges collections de points multidimensionnels. Cependant, cette
méthode est conçue pour gérer uniquement des ensembles de points multidimensionnels.

Comme solutions de compromis entre les accès aléatoires et la recherche séquentielle,
des modifications structurelles ont été apportées aux méthodes d’indexation de la famille
R-tree : X-tree [BKK96], DABS-tree [BK00], et Adaptive Trees [TP02].

X-tree X-tree [BKK96] introduit le concept de super-noeuds : en échange d’un par-
titionnement qui entrâınerait une superposition spatiale trop importante des REMs
générés, les noeuds directeurs sont élargis et deviennent des super-noeuds. Plusieurs
pages disque consécutives sont assignées aux super-noeuds. Une valeur de seuil représentant
la superposition spatiale maximale admise est utilisée pour décider le partitionnement
des noeuds ou leur élargissement. Elle est fixée en tenant compte de paramètres de per-
formance du système : disque, processeur et mémoire. Le modèle prend en considération
la distribution spatiale des objets, mais assume que la distribution des requêtes suit la
distribution des objets.

DABS-tree Une approche basée sur un modèle de coût est aussi utilisée dans le DABS-
tree [BK00]. DABS-tree calcule dynamiquement les tailles de pages/noeuds en fonction
de la distribution spatiale des objets. Le modèle de coût utilisé prend en considération les
paramètres de performance du système et la distribution des objets, mais ne prend pas
en considération la distribution des requêtes. DABS-tree utilise des REMs, mais aussi
un partitionnement disjoint de l’espace. Pour cette raison, DABS-tree ne peut gérer que
des collections de points multidimensionnels.

Adaptive Trees Dans la pratique, la distribution des requêtes ne suit pas toujours
la distribution des objets. [TP02] propose une méthodologie pour convertir des struc-
tures d’indexation traditionnelles en des structures d’indexation adaptatives. L’objectif
principal est de tenir compte à la fois de la distribution des objets et à la fois de la distri-
bution de requêtes. Cette méthodologie est utilisée pour obtenir des B-trees Adaptatifs.
Une généralisation multidimensionnelle est aussi proposée pour construire des R-trees
Adaptatifs. Comme pour les X-trees, un gain de performance est obtenu en permettant
aux noeuds d’occuper un nombre variable de pages disque consécutives. La taille d’un
noeud, en nombre de pages, est décidée à sa création, et recalculée à chaque fois que la
capacité du noeud est dépassée ou sous-occupée. La taille optimale est déterminée grâce
aux statistiques associées à l’espace couvert par le noeud. Ces statistiques concernent la
distribution spatiale des objets et des requêtes. Les statistiques sont maintenues dans un
histogramme global divisant l’espace multidimensionnel dans des cellules de volume égal.
Les statistiques d’objets et de requêtes sont intégrées dans un modèle de coût analytique

133

avec les paramètres de performance du système (disque, processeur, mémoire) pour cal-
culer les tailles optimales des noeuds en fonction de leurs coûts d’accès. Cette approche
semble efficace pour les B-trees, mais elle ne l’est pas pour les R-trees, notamment dans
les espaces de dimensions élevés, pour trois raisons. Premièrement, le nombre des cellules
utilisées pour maintenir des statistiques dans l’histogramme global augmente de façon
exponentielle avec le nombre de dimensions. Deuxièmement, l’histogramme déployé est
inadapté pour des objets étendus dont les extensions peuvent s’étendre sur plusieurs cel-
lules. Enfin, les tailles des noeuds sont ajustées uniquement quand les noeuds deviennent
surpeuplés ou sous-peuplés. Cela entrâıne une dégradation de performance lorsque les
variations de distribution des requêtes ne sont pas suivies par des variations équivalentes
dans la distribution spatiale des objets.

Conclusion

Après l’étude approfondie des limitations des solutions d’indexation existantes, nous
avons tiré la conclusion qu’une méthode d’accès efficace doit être impérativement assistée
par un modèle de coût intégrant les caractéristiques de performance du système, et aussi
qui tient compte de la distribution réelle des objets et des requêtes. Nous avons donc
proposé une méthode de groupement des objets en clusters avec un modèle de coût
adaptatifs aux requêtes, spécialement conçu pour améliorer la performance moyenne
d’exécution des requêtes spatiales de type intervalle. Les idées directrices et les principales
caractéristiques de notre méthode de groupement sont exposées dans la dernière section
de ce chapitre.

Notre stratégie de groupement est basée sur un modèle de coût qui, d’une part,
intègre les paramètres de la plateforme d’exécution et, d’autre part tient compte de la
distribution des objets et aussi de la distribution des requêtes. Le but de notre stratégie
de groupement est d’optimiser le groupement des objets et d’assurer pour les requêtes
spatiales une performance de recherche moyenne meilleure que la recherche séquentielle,
et ceci dans tous les cas de figure.

Dans le chapitre suivant, nous décrirons la stratégie de partitionnement en clusters,
le critère de groupement spatial des objets, et le modèle de coût employé pour assister
les décisions de restructuration des clusters.

7.3 Groupement en clusters avec un modèle de coût adap-
tatif aux requêtes

Notre groupement en clusters est basé, d’une part, sur un critère de groupement spatial
adapté pour des objets multidimensionnels étendus, et d’autre part, sur un modèle de
coût tenant compte de la distribution spatiale des objets et des requêtes, et intégrant les
caractéristiques de performance de la plateforme d’exécution. Le critère de groupement
spatial est utilisé pour partitionner, de manière déterministe, chaque cluster dans un
nombre prédéfini de sous-clusters candidats représentant des futurs clusters possibles.
Des statistiques d’objets et de requêtes sont maintenues au niveau des clusters et des
sous-clusters candidats. Ces statistiques sont intégrées dans le modèle de coût avec les
paramètres système pour évaluer la performance de recherche des clusters existants, et

134

pour estimer la performance de recherche des sous-clusters candidats. L’évaluation de
la performance de recherche des clusters existants et des clusters candidats possibles est
nécessaire pour supporter les décisions de création de nouveaux clusters profitables et les
décisions de suppression des clusters qui ne sont plus rentables.

Deux types d’opérations de restructuration sont utilisés pour accomplir le processus
de partitionnement des objets en clusters : l’éclatement de clusters et la fusion de clusters.
L’éclatement d’un cluster est effectué en matérialisant une partie de ses sous-clusters can-
didats. De nouveaux clusters sont ainsi créés, mais uniquement si l’on estime que ceux-ci
vont contribuer à l’amélioration de la performance moyenne de recherche. Les décisions
d’éclatement des clusters sont assistées par la fonction de bénéfice de matérialisation
dérivée du modèle de coût. Quand la profitabilité d’un cluster diminue suite aux change-
ments de distribution des objets ou des requêtes, le cluster en question peut fusionner
avec son ancêtre direct dans la hiérarchie de clusters. Grace aux opérations de fusion, les
clusters non-rentables sont retirés de la base et leurs objets sont transférés aux ancêtres
directs dans la hiérarchie de clusters. Les décisions de fusion des clusters sont assistées
par la fonction de bénéfice de fusion également dérivée du modèle de coût.

7.3.1 Définition du cluster

Un cluster représente un groupe d’objets qui sont stockés, accédés et vérifiés ensembles
lors des recherches spatiales. Chaque cluster est représenté par sa signature résumant les
propriétés de groupement. La signature est utilisée pour vérifier :

• Si un objet peut être membre du cluster

Seuls les objets qui vérifient la signature du cluster peuvent être membres du cluster.

• Si le cluster doit être exploré lors d’une sélection spatiale

Seuls les clusters dont les signatures satisfont le critère spatial de sélection par rap-
port à l’objet-requête (intersection, inclusion, ou couverture spatiale) sont explorés.

Stockage du cluster

La création de nouveaux clusters profitables et la suppression de clusters non rentables
sont basées sur le modèle de coût qui assiste notre stratégie de groupement. Les clusters
n’ont pas de restrictions de taille. Le nombre d’objets membres d’un cluster est déterminé
par la distribution spatiale des objets. Le modèle de coût est utilisé pour assurer une
bonne performance de recherche pour le cluster. Pour des raisons de performance, les
objets appartenant au même cluster sont stockés de façon séquentielle. Le placement
séquentiel des objets est employé dans les deux cas de stockage envisagés : un stockage des
objets dans la mémoire centrale et un stockage des objets sur le disque dur. En mémoire,
ce placement assure une bonne performance de recherche parce qu’il augmente la localité
des données. L’accès séquentiel des objets bénéficie ainsi des technologies de cache et
de lecture prédictive disponibles sur les systèmes modernes. Sur disque, le placement
contigu augmente aussi la localité des données et permet d’éviter des opérations coûteuses
de repositionnement de la tête de lecture/écriture, et ainsi de bénéficier d’une vitesse de
transfert élevée entre le disque et la mémoire centrale. Au moment de la création ou du

135

déplacement de clusters, un nombre de places libres sont réservées à la fin des clusters
pour de nouveaux objets. Cela permet d’éviter des opérations coûteuses de replacement
de clusters lors d’insertions de nouveaux objets.

Indicateurs de performance

Afin d’évaluer la performance d’exécution des requêtes, au niveau des clusters et des
sous-clusters candidats, nous maintenons deux statistiques appelées indicateurs de per-
formance :

1. le nombre d’objets membres de chaque cluster

Avec les paramètres de performance du système (temps d’accès et de transfert des
objets, coûts de vérification), cette statistique permet d’estimer le coût d’exploration
du cluster. En effet, l’exploration d’un cluster comporte l’accès et la vérification
individuelle de chaque objet membre du cluster.

2. le nombre de requêtes explorant chaque cluster pendant une période de temps

Cette statistique permet d’estimer la probabilité d’accès du cluster. Celle-ci peut
être vue comme le rapport entre le nombre de requêtes qui explorent le cluster
durant une période de temps et le nombre total de requêtes adressées au système
pendant ce temps.

7.3.2 Processus de groupement en clusters

Le processus de groupement des objets en clusters est récursif. Périodiquement, les clus-
ters existants sont éclatés pour former de nouveaux clusters, plus profitables. Les clusters
qui ne sont plus rentables sont fusionnés avec leurs clusters parents. Les opérations de
regroupement d’objets, d’éclatements et de fusions de clusters, sont effectuées unique-
ment si elles sont considérées comme étant profitables pour la performance moyenne de
recherche.

Initialement, la collection d’objets forme un seul cluster, appelé le cluster racine. La
signature du cluster racine accepte tout objet spatial. Toutes les requêtes spatiales vont
explorer le cluster racine, donc la probabilité d’accès à ce cluster est toujours égale à 1.
A la création du cluster racine, nous utilisons la fonction de groupement, qui implémente
le critère de groupement spatial afin de partitionner ce cluster dans un nombre prédéfini
de sous-clusters candidats. Les signatures des sous-clusters candidats sont données par
la fonction de groupement en fonction de la signature du cluster d’origine (dans ce cas
le cluster racine). Des indicateurs de performances sont maintenus pour le cluster racine
et pour tous ses sous-clusters candidats.

Des opérations d’éclatement et de fusion de clusters sont effectuées périodiquement.
Elles sont prises en considération après avoir exécuté un nombre suffisant de requêtes
pour mettre à jour les indicateurs de performance.

La création de nouveaux clusters est décidée par la fonction de bénéfice de matérialisation.
Cette fonction s’applique aux sous-clusters candidats des clusters existants pour évaluer
les profits potentiels de leurs matérialisations. Les sous-clusters candidats avec les meilleurs

136

profits potentiels sont sélectionnés pour être matérialisés. La matérialisation d’un sous-
cluster candidat comporte deux actions. Premièrement, un nouveau cluster est créé,
reprenant la signature du sous-cluster candidat correspondant. Tous les objets du cluster
initial qui satisfont cette signature sont ainsi déplacés vers le nouveau cluster. Deuxième-
ment, la fonction de groupement est appliquée sur la signature du nouveau cluster pour
obtenir ses sous-clusters candidats. Des indicateurs de performance sont attachés aux
sous-clusters candidats du nouveau cluster afin de cumuler des statistiques d’objets et de
requêtes pour de futures opérations de restructuration.

Les opérations d’éclatement sont appliquées sur tous les clusters, de façon périodique.
Après un nombre d’opérations de regroupement d’objets, un arbre de clusters est obtenu.
Chaque cluster est représenté par sa signature, par ses indicateurs de performance, et
par un ensemble de sous-clusters candidats avec leurs indicateurs de performance. Quand
un cluster n’est plus rentable en raison des changements survenant dans la distribution
spatiale des objets ou des requêtes, il est retiré de la base et ses objets sont transférés
dans le cluster parent (ancêtre direct dans la hiérarchie de clusters). Cette opération
de restructuration, appelée fusion, permet au groupement des objets de s’adapter aux
variations de distribution des objets et des requêtes.

L’opération de fusion entre un cluster et son cluster parent est décidée par la fonction
de bénéfice de fusion qui évalue son impact sur la performance moyenne des requêtes
spatiales. Pour rendre possibles les opérations de fusion, chaque cluster matérialisé garde
une référence (un pointeur) vers son parent direct, ainsi qu’une liste de références vers
les clusters enfants. Le cluster racine n’a pas de parent et ne peut être jamais enlevé de
la base de données.

7.3.3 Fonctions supportant la stratégie de groupement

Par la suite nous allons présenter brièvement les rôles des trois fonctions supportant
notre stratégie de groupement : la fonction de groupement implémentant le critère de
groupement spatial des objets, la fonction de bénéfice de matérialisation, et la fonction
de bénéfice de fusion ; les deux dernières étant dérivées du modèle de coût.

• Fonction de groupement

La fonction de groupement implémente le critère de groupement spatial des objets.
A partir de la signature d’un cluster, la fonction de groupement produit un ensemble
prédéterminé de sous-signatures représentant les signatures des sous-clusters can-
didats du cluster initial. Formellement, les sous-signatures de la signature initiale
satisfont la propriété suivante : tout objet spatial qui satisfait une sous-signature
satisfait aussi la signature initiale. De plus, un objet spatial membre du cluster
initial pourra satisfaire les signatures de plusieurs de ses sous-clusters. La fonction
de groupement assure une compatibilité en arrière dans la hiérarchie de clusters.
Cette compatibilité permet d’effectuer des opérations de fusion entre les clusters
enfants et parents.

La fonction de groupement doit résoudre le compromis suivant : d’une part, le nom-
bre de sous-clusters candidats doit être assez élevé pour offrir un nombre significatif
d’alternatives de groupement des objets. D’autre part, le nombre de sous-clusters
candidats ne peut pas être trop élevé parce que le coût de maintenance de statis-

137

tiques devient trop important. Il faut tenir compte du fait que les indicateurs de
performance sont maintenus pour tous les sous-clusters candidats des clusters ex-
istants. La fonction de groupement donne le nombre de sous-clusters candidats de
chaque cluster et détermine aussi le nombre de sous-clusters candidats satisfaits
par un objet membre du cluster considéré.

• Fonction de bénéfice de matérialisation

La fonction de bénéfice de matérialisation est dérivée du modèle de coût. Chaque
cluster est associé avec un ensemble de sous-clusters candidats aux matérialisations.
Le rôle de la fonction de bénéfice de matérialisation est d’estimer pour chacun des
sous-clusters candidats l’impact de sa matérialisation sur la performance moyenne
des requêtes spatiales. A cet effet, la fonction de bénéfice de matérialisation prend
en compte les indicateurs de performance du sous-cluster candidat, ainsi que ceux
du cluster initial, et l’ensemble des paramètres système influant sur le temps de
réponse. Les clusters pour lesquels on attend les meilleures augmentations de per-
formance moyenne de recherche sont choisis pour être matérialisés. L’opération
de matérialisation présente un intérêt quand le sous-cluster candidat a une prob-
abilité d’accès inferieure à celle du cluster d’origine, et quand le nombre d’objets
à transférer vers le nouveau cluster est assez élevé pour que le coût d’un cluster
supplémentaire soit rentable.

• Fonction de bénéfice de fusion

La fonction de bénéfice de fusion est également dérivée du modèle de coût. Le rôle
de la fonction de bénéfice de fusion est d’évaluer l’impact d’une opération de fusion
entre un cluster et son cluster parent sur la performance moyenne de recherche.
A cet effet, la fonction de bénéfice de fusion prend en compte les indicateurs de
performance du cluster considéré, du cluster parent, et l’ensemble des paramètres
influant sur le temps de réponse des requêtes. Si l’impact de l’opération de fusion
est bénéfique pour la performance moyenne de recherche, alors la fusion peut être
effectuée. L’opération de fusion présente un intérêt quand la probabilité d’accès du
cluster enfant devient proche de la probabilité d’accès du cluster parent et quand
le nombre d’objets du cluster enfant diminue significativement.

7.4 Algorithmes d’organisation et de manipulation de la

base d’objets

7.4.1 Restructuration des clusters

Deux opérations de restructuration de base sont utilisées pour améliorer la performance
moyenne de recherche :

1. L’éclatement des clusters

L’éclatement d’un cluster est effectué par des matérialisations d’une partie de ses
sous-clusters candidats.

2. Les fusions des clusters avec leurs clusters parents

138

Lors d’une fusion, les objets du cluster initial sont transférés dans le cluster parent
et le cluster initial est supprimé de la base de données.

Les Figures 7.1, 7.2 et 7.3 illustrent les procédures invoquées lors de la restructuration
d’un cluster.

RestructureClusters()

1. if (q(system) % period q = 0) then

2. RecursiveMergeClusters(root);

3. RecursiveSplitClusters(root);

End.

Figure 7.1: Restructuration des clusters

La Figure 7.1 présente le processus général de restructuration des clusters.

Fusion de cluster

La procédure de fusion d’un cluster avec son cluster parent est détaillée dans la Figure 7.2.
Les objets du cluster enfant sont transférés dans le cluster parent. Cette opération
nécessite la mise à jour du nombre d’objets dans le cluster parent et dans ses sous-
clusters candidats. Pour préserver la hiérarchie de clusters, le cluster parent du cluster
à supprimer devient le nouveau parent des clusters enfants du dernier. Finalement, le
cluster à supprimer est enlevé de la base de données.

La complexité de l’opération de fusion est dominée par (1) le coût de transfert des
objets du cluster enfant au cluster parent, et par (2) le coût de mise à jour des indicateurs
de performance associés au cluster parent et à ses sous-clusters candidats. Le cluster
parent peut ne pas être assez large pour accueillir tous les objets réacquis du cluster
enfant. En pratique, nous créons un nouveau cluster et nous y transférons tous les objets
du cluster parent et du cluster enfant. L’ancien cluster parent sera enlevé de la base
de données en même temps que le cluster enfant. Sa place sera prise par le nouveau
cluster. Le transfert des objets nécessite une lecture et une écriture des objets des deux
clusters impliqués, parent et enfant. Comme les objets sont placés séquentiellement, leur
transfert est effectué de façon efficace par des opérations de lecture et d’écriture en bloc.
Le transfert des objets en bloc est important surtout dans le cas d’un stockage sur disque
où ce type de transfert évite de nombreuses opérations d’entrée/sortie très coûteuses.
En termes de nombre d’opérations de lecture/écriture en bloc, le coût de transfert des
objets dépend des tailles de deux clusters impliqués. La mise à jours des statistiques
d’objets associées au cluster parent et à ses sous-clusters candidats est effectuée quand
les objets du cluster enfant sont lus et écrits dans le cluster parent. Cette tâche comporte
l’incrémentation du nombre d’objets membres du cluster parent et l’incrémentation du
nombre d’objets pour chacun de ses sous-clusters candidats dont la signature accepte
un objet acquis du cluster enfant. Le coût de cette tâche est proportionnel au nombre
d’objets dans le cluster enfant, multiplié par le nombre de sous-clusters candidats capables

139

ClusterMerge (c ∈ C, a ∈ C | a← parent(c))

// Move data objects from child cluster c to parent cluster a:
1. let objects(a)← objects(a) ∪ objects(c);

// Update data statistics for parent cluster a:
2. let n(a)← n(a) + n(c);

// Update data statistics for candidate subclusters of parent cluster a:
3. for each s in candidates(a) do
4. letM(s, c)← {o ∈ objects(c) | o matches σ(s)};
5. let n(s)← n(s) + card(M(s, c));

// Set parent reference for child clusters of c:
6. for each s in children(c) do
7. let parent(s)← a;

// Update list of child references for parent cluster a:
8. let children(a)← children(a) ∪ children(c);
9. let children(a)← children(a) \ {c};

// Remove c from database:
10. let C ← C \ {c};

End.

Figure 7.2: Fusion de cluster

d’accueillir un objet membre du cluster. Le nombre de sous-clusters candidats pouvant
accueillir un objet membre du cluster est donné par la fonction de groupement.

Eclatement de cluster

Le processus d’éclatement d’un cluster est illustré dans la Figure 7.3. Les sous-clusters
candidats pour lesquels les matérialisations potentielles montrent les meilleurs profits
sont identifiés à la première étape : Beta désigne l’ensemble des sous-clusters candidats
promettant le meilleur profit positif. Si Beta n’est pas vide, un de ses membres devient le
sujet de la prochaine matérialisation : Un nouveau cluster est créé et rajouté à la base de
données. Les objets du cluster initial satisfaisant la signature du sous-cluster candidat
à matérialiser sont identifiés et transférés du cluster d’origine vers le nouveau cluster.
La configuration du nouveau cluster est établie : signature, nombre d’objets membres,
cluster parent. Le nombre d’objets du cluster initial est mis à jour (réduit), ainsi que les
nombres d’objets associés aux sous-clusters candidats du cluster initial. On sait qu’un
même objet satisfait la signature de plusieurs sous-clusters candidats. Cependant, une
fois enlevé du cluster initial et transféré dans un cluster matérialisé, l’objet ne peut plus
compter pour les sous-clusters candidats du cluster d’origine. L’étape suivante initialise
les statistiques d’objets associées aux sous-clusters candidats du nouveau cluster.

La procédure d’éclatement du cluster initial peut ensuite continuer avec la sélection
du prochain meilleur sous-cluster candidat en revenant à la première étape. Le processus

140

ClusterSplit (c ∈ C)

// Find best candidate subclusters for materialization:
1. let B ← {b ∈ candidates(c) | β(b, c) > min β ∧

β(b, c) ≥ β(d, c), ∀d 6= b ∈ candidates(c)};

2. if (B 6= ∅) then

// One of best candidate subclusters is materialized:
3. let b ∈ B;

// Create new database cluster d;
4. let C← C ∪ {d};

// Move qualifying data objects from cluster c to new cluster d;
5. letM(b, c)← {o ∈ objects(c) | o matches σ(b)};
6. let objects(d)←M(b, c);
7. let objects(c)← objects(c) \M(b, c);

// Set configuration for new cluster d:
8. let σ(d)← σ(b);
9. let parent(d)← c;
10. let n(d)← n(b);

// Set data object statistics for candidate subclusters of cluster d:
11. for each s in candidates(d) do
12. letM(s, d)← {o ∈ objects(d) | o matches σ(s)};

// Update data object statistics for cluster c:
13. let n(c)← n(c)− n(d);

// Update data object statistics for candidate subclusters of cluster c:
14. for each s in candidates(c) do
15. letM(s, d)← {o ∈ objects(d) | o matches σ(s)};
16. let n(s)← n(s)− card(M(s, d));
17. let n(s)← card(M(s, d));

// Consider next candidate subcluster for materialization:
18. go to 1.

// If the cluster c was split, then reset associated query statistics:
19. if c was split then
20. let q(c)← 0;
21. for each s in candidates(c) do
22. let q(s)← 0;

End.

Figure 7.3: Eclatement de cluster

de matérialisation est repris et répété jusqu’à ce qu’il n’y a plus de sous-clusters candidats
profitables. La sélection du prochain sous-cluster à matérialiser est faite d’une manière

141

“greedy” : le candidat le plus profitable est matérialisé en premier. Pour tenir compte
des changements d’objets entrâınés par les matérialisations successives, l’ensemble des
meilleurs sous-clusters candidats, Beta, doit être réévalué chaque fois. A la fin, le cluster
initial contient uniquement les objets qui ne satisfont les signatures d’aucun de nou-
veaux sous-clusters matérialisés. Evidemment, quand aucun sous-cluster candidat n’est
profitable pour la performance moyenne de recherche, le cluster initial reste inchangé.

L’éclatement d’un cluster comporte une ou plusieurs opérations de transfert d’objets
du cluster initial aux sous-clusters candidats matérialisés. Lorsqu’un sous-cluster can-
didat est matérialisé, les objets qui y qualifient sont déplacés. Grâce aux statistiques
d’objets associées aux sous-clusters candidats, le nombre exact d’objets qui satisfont la
signature du nouveau cluster est connu. Les objets dans les deux clusters, le nouveau
cluster et le cluster initial, doivent être stockés de façon séquentielle. En pratique, nous
créons deux nouveaux clusters : un pour matérialiser le sous-cluster candidat, et un autre
pour recevoir les objets restant dans le cluster initial. A la fin du transfert d’objets, le
deuxième cluster prend la place du cluster initial. Chaque objet du cluster initial est lu,
comparé avec la signature du sous-cluster à matérialiser, et écrit, soit dans le nouveau
cluster correspondant au sous-cluster candidat, soit dans le nouveau cluster censé rem-
placer le cluster d’origine. Comme exigé, les objets seront placés de façon séquentielle
dans les deux clusters. En termes d’opérations de lecture/vérification/écriture, le coût
de transfert des objets est proportionnel au nombre d’objets du cluster initial. Pour
des raisons de performance, les opérations de lecture/écriture sont effectuées en bloc.
Le transfert des objets en bloc est important surtout pour le stockage sur disque. Pen-
dant le transfert des objets, nous mettons aussi à jour les statistiques d’objets associées
aux clusters impliqués ainsi que leurs sous-clusters candidats. Chaque fois qu’un objet
convenant pour le sous-cluster à matérialiser est identifié, nous décrémentons le nombre
d’objets membres du cluster initial dans lequel il se trouvait, ainsi que celui associé à
ses sous-clusters candidats qui satisfont la signature de l’objet. En même temps, nous
incrémentons les statistiques d’objets du sous-cluster matérialisé dans lequel l’objet va
être ajouté ainsi que de ses sous-clusters candidats correspondants. Le coût de cette
tâche est proportionnel au nombre d’objets qui matchent la signature du sous-cluster à
matérialiser, multiplié par le nombre de sous-clusters candidats satisfaisant la signature
d’un objet. Ce dernier est donné par la fonction de groupement.

7.4.2 Exécution des requêtes spatiales

Une requête spatiale désigne un objet de référence (objet requête) et une relation spa-
tiale, d’intersection, d’inclusion, ou de couverture ; cette relation doit être vérifiée entre
l’objet requête et les objets de la base de données faisant partie du résultat. Répondre
à une requête spatiale consiste à explorer les clusters matérialisés dont les signatures
satisfont la relation spatiale avec l’objet requête. Tous les objets des clusters explorés
sont individuellement vérifiés par rapport au critère de sélection spatiale. L’algorithme
d’exécution d’une requête spatiale est illustré dans la Figure 7.4. Il est simple : les signa-
tures des clusters sont comparées avec l’objet requête, et les objets des clusters dont les
signatures satisfont la relation spatiale exigée, sont lus et vérifiés. Comme indicateur de
performance pour la probabilité d’accès, les statistiques sur le nombre de requêtes sont
incrémentées pour tous les clusters explorés, ainsi que pour les sous-clusters candidats
susceptibles d’être explorés s’ils étaient matérialisés.

142

SpatialQuery (query object ρ, spatial selection criterion ∇) : data object set

// Initialize the query answer set:
1. let R ← ∅;

// Determine the clusters to be explored:
2. let X ←ClustersToExplore(root, ρ, ∇);

// Exploration of qualifying clusters:
3. for each cluster c ∈ X do

// Check all data objects against the selection criterion:
4. for each object o in objects(c) do
5. if (ρ ∇ o) then
6. let R ← R ∪ {o};

// Update query statistics for cluster c:
7. let q(c)← q(c) + 1;

// Update query statistics for candidate subclusters of cluster c:
8. let S ← {s ∈ candidates(c) | ρ ∇ σ(s)};
9. for each s in S do
10. let q(s)← q(s) + 1;

// Return the query result:
11. return R;

End.

Figure 7.4: Exécution des requêtes spatiales

La complexité d’exécution d’une requête spatiale est donné par : (1) la vérification
des signatures de clusters pour déterminer les clusters à explorer; (2) la vérification in-
dividuelle des objets des clusters explorés pour déterminer les objets faisant partie du
résultat de la requête; et (3) la mise à jour des statistiques de requêtes associées aux clus-
ters explorés et à leurs sous-clusters candidats. En termes de vérifications de signatures,
le coût de la première tâche est, dans le pire des cas, proportionnel au nombre total de
clusters. Cependant, en pratique, l’organisation hiérarchique des clusters permet d’éviter
la vérification exhaustive des signatures. En effet, les clusters descendant d’un cluster
dont la signature ne demande pas son exploration n’ont pas besoin d’être explorés. Plus
la sélectivité d’une requête est élevée, moins le coût de la première tâche est important.
En termes de coûts d’accès aux objets, le coût de la deuxième opération est proportionnel
au nombre de clusters explorés. En termes de coûts de lecture/vérification, le coût de
la deuxième opération est proportionnel au nombre d’objets des clusters explorés. Si les
clusters sont stockés sur disque, des opérations d’entrée/sortie coûteuses sont nécessaires
: repositionnement de la tête de lecture/écriture du disque au bon endroit et transfert des
objets entre le disque et la mémoire centrale. Ces opérations sont effectuées en bloc, car
les objets sont stockés séquentiellement au niveau des clusters. La troisième tâche com-
porte l’incrémentation des statistiques de requêtes exploratoires associées aux clusters
explorés et à leurs sous-clusters candidats dont les signatures matchent l’objet requête.

143

Le coût de cette dernière tâche est proportionnel au nombre de clusters explorés, mul-
tiplié par le nombre de sous-clusters candidats satisfaisant la signature d’un objet. Ce
dernier est donné par la fonction de groupement.

7.4.3 Opérations de mise à jour d’objets

L’insertion et la suppression des objets dans la base de données sont les deux opérations
de mise à jour qui sont présentées ci-après.

Insertion d’objet

Quand un nouvel objet doit être inséré dans la base de données, à part le cluster racine
dont la signature, la plus générale, matche tout objet spatial, d’autres clusters peuvent
également accueillir le nouvel objet. Les clusters capables de recevoir le nouvel objet sont
identifiés grâce à leurs signatures. Parmi ces clusters, nous choisissons de placer le nouvel
objet dans le cluster qui a la plus petite probabilité d’accès. Notre stratégie d’insertion
vise directement à minimiser la probabilité d’accéder et de vérifier le nouvel objet quand
il ne fait pas partie du résultat d’une sélection spatiale. La Figure 7.5 illustre la procédure
d’insertion. L’insertion d’un nouvel objet doit mettre à jour les statistiques d’objet du
cluster choisi ainsi que de ses sous-clusters candidats pouvant accueillir le nouvel objet.

ObjectInsertion (data object ρ)

// Determine and select best cluster accepting object ρ:
1. let B ← {b ∈ C | ρ matches σ(b) ∧ p(b) ≤ p(c), ∀c 6= b ∈ C};
2. let b ∈ B;

// Insert data object ρ into selected cluster b:
3. let objects(b)← objects(b) ∪ {ρ}

// Increment data statistics for cluster b:
4. let n(b)← n(b) + 1;

// Update data statistics for candidate subclusters of cluster b:
5. let S ← {s ∈ candidates(b) | ρ matches σ(s)};
6. for each s in S do
7. let n(s)← n(s) + 1;

End.

Figure 7.5: Insertion d’objet

La complexité de l’opération d’insertion d’objet est donnée par : (1) la vérification de
signatures pour identifier les clusters capables d’accueillir le nouvel objet; (2) la sélection
du cluster le moins accédé parmi les clusters candidats; (3) l’insertion du nouvel objet
dans le cluster choisi; et (4) la mise à jour des statistiques d’objets des clusters/sous-
clusters affectés par l’opération d’insertion. Le coût de la première tâche est dans le pire
des cas proportionnel au nombre total de clusters, en termes de coûts de vérification
de signatures. Cependant, en pratique, l’organisation hiérarchique des clusters permet

144

d’éviter la vérification exhaustive des signatures. En effet, les clusters descendant d’un
cluster dont la signature n’accepte pas le nouvel objet ne peuvent pas non plus accueillir
cet objet. La seconde tâche concerne seulement les clusters capables de recevoir le nouvel
objet. Leurs probabilités d’accès sont évaluées et le cluster ayant la plus petite probabilité
d’accès est retenu. Le coût de cette évaluation est linéaire avec le nombre de clusters
capables d’accepter le nouvel objet. La troisième tâche demande une opération d’écriture
pour stocker le nouvel objet dans la première place libre à la fin du cluster choisi. Lorsque
les clusters sont stockés sur le disque, cette tâche comporte un repositionnement de la
tête de lecture/écriture du disque au bon endroit suivi par une écriture de l’objet. Enfin,
le coût de la quatrième tâche est proportionnel au nombre de sous-clusters candidats
pour lesquels il est nécessaire d’incrémenter les nombres d’objets membres. Le nombre
de sous-clusters candidats dont les statistiques doivent être mises à jour est fixe et dépend
de la fonction de groupement. Comme seulement un seul objet est inséré à chaque fois
lors de l’opération d’insertion, le coût de la dernière tâche est négligeable par rapport au
coût initial de vérification des signatures de clusters ou par rapport au coût d’écriture
du nouvel objet sur disque.

Suppression d’objet

Pour enlever un objet de la base de données, nous devons d’abord retrouver le cluster qui
contient l’objet recherché. Tous les clusters pouvant accueillir l’objet à enlever doivent
être explorés. Ces clusters sont identifiés grâce à leurs signatures. La Figure 7.6 illustre
l’algorithme de suppression d’objet. Les objets des clusters dont les signatures satisfont
celle de l’objet recherché sont tous comparés à ce dernier, jusqu’à ce que le cluster corre-
spondant soit trouvé. L’objet est ensuite enlevé du cluster correspondant. Evidemment,
la suppression d’un objet demande la mise à jour des statistiques d’objets associées au
cluster affecté ainsi qu’à ses sous-clusters candidats. Une fois que l’objet est retrouvé et
enlevé du cluster correspondant, l’opération de suppression prend fin.

Lors de la suppression d’un objet, le dernier objet du cluster prend la place de l’objet
enlevé. Ce choix de placement augmente la complexité de la procédure de suppression,
mais facilite la gestion des places libres au niveau des clusters. Les places libres sont
toujours à la fin des clusters, ce qui assure le placement séquentiel des objets au niveau
des clusters et simplifie également la lecture et l’insertion des objets.

La complexité de l’opération de suppression d’objet est déterminée par l’exécution
d’une requête spatiale simplifiée, auquelle il faut ajouter le coût de suppression d’un objet
du cluster correspondant. En effet, ce cluster est retrouvé en explorant uniquement les
clusters dont les signatures satisfont de façon exacte l’objet recherché. De ce fait, la
suppression d’un objet est plus rapide qu’une requête spatiale qui elle doit explorer tous
les clusters satisfaisant le critère spatial de sélection (insertion, inclusion ou couverture
spatiale). De plus, la recherche se termine dès que le cluster contenant l’objet à enlever est
découvert. La place de cet objet est prise par le dernier objet du cluster. Par conséquent,
la suppression d’un objet demande deux opérations d’accès : une lecture et ensuite une
écriture de l’objet.

145

ObjectDeletion (data object ρ)

// Determine the clusters to be explored:
1. let X ← {c ∈ C | ρ matches σ(c)};

// Cluster explorations:
2. for each cluster c ∈ X do

// Consider all data objects from cluster c:
3. for each object o in objects(c) do

// Look for the wanted object ρ:
4. if (ρ equals o) then

// Remove data object ρ from the cluster c:
5. let objects(c)← objects(c) \ {ρ}

// Decrement data statistics of cluster c:
6 let n(c)← n(c)− 1;

// Update data statistics of candidate clusters of cluster c:
7. let S ← {s ∈ candidates(c) | ρ matches σ(s)};
8. for each s in S do
9. let n(s)← n(s)− 1;

// End deletion procedure:
10. go to End;

End.

Figure 7.6: Suppression d’objet

7.5 Implémentation et évaluation expérimentale

7.5.1 Gestion de la mémoire et de l’espace de stockage

L’arbre de signatures des clusters et les indicateurs de performance associés aux clusters
matérialisés et aux sous-clusters candidats sont maintenus en mémoire centrale. Pour les
objets, nous considérons deux scénarios de stockage : un stockage en mémoire centrale
et un stockage sur le disque dur. Les objets du même cluster sont placés et stockés de
façon séquentielle. Pour éviter des replacements fréquents des clusters lors des insertions
de nouveaux objets, un certain nombre de places est réservé à la fin de chaque nouveau
cluster. Nous considérons que le nombre de places réservés représente 25% de la taille du
cluster. Ainsi, prenant en compte la distribution des objets, les grands clusters ont plus
de places libres que les petits clusters. Un facteur de remplissage de l’espace de stockage
d’au moins 75% est dans tous les cas assuré.

146

7.5.2 Evaluation expérimentale

Afin de vérifier l’efficacité de notre solution de groupement, nous avons premièrement
effectué un nombre important d’expériences. Puis nous avons évalué la performance de
recherche des requêtes spatiales sur de larges collections d’objets étendus avec beaucoup
de dimensions, suivant des distributions spatiales uniformes et non uniformes. Ensuite,
nous avons comparé notre solution de groupement avec la Recherche Séquentielle et
avec les structures d’indexation R*-tree et X-tree. Puis, nous avons mesuré le temps
d’exécution des requêtes, le nombre des clusters/noeuds explorés, et le taux d’objets
vérifiés en moyenne. Ensuite, nous avons aussi évalué le temps d’exécution des opérations
de mise à jour comme les insertions et suppression d’objets. Enfin nous avons analysé
le comportement de notre méthode de groupement et son adaptabilité aux variations
dynamiques des requêtes et des objets.

Conclusions Expérimentales

Notre solution de groupement démontre une meilleure performance de recherche que la
Recherche Séquentielle, le R*-tree, et le X-tree, dans la plupart des cas, pour les deux
scenarios de stockage considérés : en mémoire centrale et sur disque. Les évaluations
expérimentales valident les points suivants : Notre méthode de groupement suit la
distribution réelle des objets et de requêtes. Notre système est scalable en nombre
d’objets et présente un bon comportement dans les espaces avec beaucoup de dimensions
: jusqu’à 40 dimensions dans nos tests. Notre approche de groupement gère bien les
objets avec différentes caractéristiques au niveau des dimensions et les objets et requêtes
repartis dans des régions d’intérêt (sélectivités différentes selon les dimensions, ou des
objets et des requêtes avec des distributions non uniformes dans l’espace multidimen-
sionnel). Le surcoût des opérations de réorganisation et de restructuration des clusters
(matérialisations des sous-clusters candidats et fusions des clusters) reste faible. Les
opérations de mise à jour de la base d’objets (les insertions et les suppressions d’objets)
sont rapides. Notre méthode de groupement s’adapte bien à l’évolution dynamique des
requêtes et des objets. Elle démontre également une bonne flexibilité et une bonne prise
en compte des paramètres de performance de la plateforme d’exécution.

7.6 Conclusions et perspectives de recherche

Les nouvelles applications de dissémination sélective des informations ont fait apparaitre
de nouveaux défis et exigences pour le domaine de l’indexation multidimensionnelle. Une
application avancée doit supporter des taux élevés de requêtes spatiales sur de larges
collections d’objets multidimensionnels étendus avec beaucoup de dimensions et avec de
longues extensions dans les dimensions. Elle doit également pouvoir gérer des objets et
des requêtes dynamiques, évoluant dans le temps. Les insertions et les suppressions des
objets doivent être rapides afin de ne pas affecter de façon significative les performances
de recherche. Cependant, les structures d’indexation existantes ne sont pas adaptées pour
ce type d’applications. Dans notre thèse, nous avons présenté une solution de groupement
alternative, basée sur un modèle de coût. Le groupement des objets prend en compte la
distribution réelle des objets et des requêtes, ainsi que les paramètres de performance de la

147

plateforme d’exécution. Notre méthode de groupement utilise un critère de groupement
spatial original et s’avère plus efficace que les méthodes d’indexation traditionnelles.

Plusieurs perspectives de recherche sont exposées dans le dernier chapitre de la
thèse : un mécanisme de control avancé pour déclencher les opérations de restructura-
tion des clusters ; des méthodes de groupement d’objets alternatives pour supporter
l’implémentation de la fonction de groupement ; une stratégie de cache pour améliorer la
performance de recherche des applications basées sur un stockage disque ; et un modèle
de représentation approximée des objets multidimensionnels étendus pour accélérer les
sélections spatiales en mémoire.

148

Bibliography

[AF00] M. Altinel and M. J. Franklin. Efficient filtering of XML documents for se-
lective dissemination of information. In Proceedings of the 26th International
Conference on Very Large Data Bases (VLDB), Cairo, Egypt, 2000.

[AG01] L. Amsaleg and P. Gros. Content-based retrieval using local descriptors:
problems and issues from a database perspective. Pattern Analysis and Ap-
plications, 4(2/3):108–124, 2001.

[AHVV02] L. Arge, K. Hinrichs, J. Vahrenhold, and J. S. Vitter. Efficient bulk-
operations on dynamic r-trees. Algorithmica, 33(1):104–128, 2002.

[APR99] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in spatial
databases. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Philadelphia, PA, USA, 1999.

[AT97] C. H. Ang and T. C. Tan. New linear node splitting algorithm for R-trees.
In Proceedings of the 5th SSD Conference, pages 339-349, Berlin, Germany,
1997.

[BBK98a] S. Berchtold, C. Böhm, and H.-P. Kriegel. Improving the query performance
of high-dimensional index structures using bulk-load operations. In Proceed-
ings of the 6th International Conference on Extending Database Technology
(EDBT), Valencia, Spain, 1998.

[BBK98b] S. Berchtold, C. Böhm, and H.-P. Kriegel. The Pyramid-technique: Towards
breaking the curse of dimensionality. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Seattle, WA, USA, 1998.

[BBK01] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases. ACM Computing Surveys, 33(3):322–373, 2001.

[BBKK97] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel. A cost model for
nearest neighbor search in high-dimensional data space. In ACM PODS
Symposium, Tucson, AZ, USA, 1997.

[BCG01] N. Bruno, S. Chaudhuri, and L. Gravano. Stholes: A multidimensional
workload-aware histogram. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Santa Barbara, CA, USA, 2001.

149

[Ben75] J. L. Bently. Multidimensional binary search tree used for associative search-
ing. Communications of ACM, 18(9):509–517, 1975.

[BF79] J. L. Bently and J. H. Friedman. Data structures for range searching. ACM
Computing Surveys, 11(4):397–409, 1979.

[BF95] A. Belussi and C. Faloutsos. Estimating the selectivity of spatial queries
using the ‘correlation’ fractal dimension. In Proceedings of the 21th Interna-
tional Conference on Very Large Data Bases (VLDB), pages 299-310, Zurich,
Switzerland, 1995.

[BK00] C. Böhm and H.-P. Kriegel. Dynamically optimizing high-dimensional index
structures. In Proceedings of the 7th International Conference on Extending
Database Technology (EDBT), Konstanz, Germany, 2000.

[BKK96] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An index structure
for high-dimensional data. In Proceedings of the 22nd International Confer-
ence on Very Large Data Bases (VLDB), Bombay, India, 1996.

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An
efficient and robust access method for points and rectangles. In Proceedings
of the ACM SIGMOD International Conference on Management of Data,
Atlantic City, NJ, USA, 1990.

[BM72] R. Bayer and E. McCreight. Organization and maintenance of large ordered
indexes. Acta Informatica, 1(3):173–189, 1972.

[CCR98] L. Chen, R. Choubey, and E. A. Rundensteiner. Bulk-insertions into R-trees
using the Small-Tree-Large-Tree approach. In Proceedings of the ACM GIS
Conference, Washington, DC, USA, 1998.

[Com79] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137,
1979.

[CR94] C. Chen and N. Roussoupoulos. Adaptive selectivity estimation using query
feedback. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Minneapolis, MA, USA, 1994.

[dMOG02] M. deBerg, Hammar M, M. H. Overmars, and J. Gudmundsson. On r-trees
with low stabbing number. Computational Geometry - Theory and Applica-
tions, 24(3):179–195, 2002.

[FB74] R. Finkel and J. Bently. Quad-trees: A data structure for retrieval on com-
posite keys. ACTA Informatica, 4(1):1–9, 1974.

[FB93] C. Faloutsos and P. Bhagwat. Declustering using fractals. PDIS, Journal of
Parallel and Distributed Information Systems, pages 18–25, 1993.

[FJL+01] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithm and implementation for very fast publish/subscribe sys-
tems. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Santa Barbara, CA, USA, 2001.

150

[FR91] C. Faloutsos and Y. Rong. DOT: A spatial access method using fractals.
In Proceedings of the International Conference on Data Engineering (ICDE),
Kobe, Japan, 1991.

[GG98] V. Gaede and O. Günther. Multidimensional access methods. ACM Com-
puting Surveys, 30(2):170–231, 1998.

[GLL98a] Y. Garcia, M. Lopez, and S. Leutenegger. A greedy algorithm for bulk loading
R-trees. In Proceedings of the 6th ACM GIS Conference, Washington, DC,
USA, 1998.

[GLL98b] Y. Garcia, M. Lopez, and S. Leutenegger. On optimal node splitting for
R-trees. In Proceedings of the 24th International Conference on Very Large
Data Bases (VLDB), pages 334-344, New York, NY, USA, 1998.

[GLR00] V. Ganti, M. Lee, and R. Ramakrishnan. Icicles: self-turning samples for
approximate query answering. In Proceedings of the 26nd International Con-
ference on Very Large Data Bases (VLDB), Cairo, Egypt, 2000.

[GM98] P. Gibbons and Y. Matias. New sampling-based summary statistics for im-
proving approximate query answers. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Seattle, WA, USA, 1998.

[GS04] T. Gevers and A. W. M. Smeulders. Content-based image retrieval: An
overview. In G. Medioni and S. B. Kang, editors, Emerging Topics in Com-
puter Vision. Prentice Hall, 2004.

[Gün89] O. Günther. The cell tree: An object-oriented index structure for geomet-
ric databases. In Proceedings of the 5th International Conference on Data
Engineering (ICDE), pages 598-605, Los Angeles, CA, USA, 1989.

[Gut84] A. Guttman. R-trees: A dynamic index structure for spatial searching. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data, 47-57, 1984.

[HLL01] P. W. Huang, P. L. Lin, and H. Y. Lin. Optimizing storage utilization in
R-tree dynamic index structure for spatial databases. Journal of Systems
and Software, 55:292–299, 2001.

[HS92] P. Haas and A. Swami. Sequential sampling procedures for query size esti-
mation. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, San Diego, CA, USA, 1992.

[HSW89] A. Henrich, H.-W. Six, and P. Widmayer. The LSD-tree: Spatial access to
multidimensional point and non-point objects. In Proceedings of the 15th
International Conference on Very Large Data Bases (VLDB), pages 45-53,
Amsterdam, The Netherlands, 1989.

[Int05] Internet World Stats. World Internet usage and population statistics. On-line
source: http://www.internetworldstats.com, July 2005.

151

[IP95] Y. Ioannidis and V. Poosala. Balancing histogram optimality and practi-
cality for query result size estimation. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, San Jose, CA, USA, 1995.

[JOT+05] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDistance: An
adaptive B+-tree based indexing method for nearest neighbor search. ACM
Transactions on Database Systems (TODS), 30(2):364–397, 2005.

[KF93] I. Kamel and C. Faloutsos. On packing R-trees. In Proceedings of the 2nd
CIKM Conference, pages 490-499, Washington, DC, USA, 1993.

[KF94] I. Kamel and C. Faloutsos. Hilber R-tree: An improved R-tree using fractals.
In Proceedings of the 20th International Conference on Very Large Data Bases
(VLDB), Santiao, Chile, 1994.

[KS97] N. Katayama and S. Satoh. The SR-tree: An index structure for high-
dimensional nearest neighbor queries. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1997.

[LEL97] S. Leutenegger, J. M. Edgington, and M. A. Lopez. STR - a simple and effi-
cient algorithm for R-tree packing. In Proceedings of the 13th International
Conference on Data Engineering (ICDE), pages 497-506, Birmingham, Eng-
land, 1997.

[LJ04] H. Liu and H. A. Jacobsen. Modelling uncertainties in publish/subscribe
systems. In Proceedings of the 20th International Conference on Data Engi-
neering (ICDE), Boston, MA, USA, 2004.

[LS90] D. Lomet and B. Salzberg. The hB-tree: A multiattribute indexing method
with good guaranteed performance. ACM Transactions on Database Systems,
15(4):625–658, 1990.

[LS02] F. Llirbat and C.-A. Saita. RVA-clustering: An approximation-based index-
ing approach for multidimensional objects. In Technical Report, No. 4670,
INRIA-Rocquencourt, France, December 2002.

[MHN84] T. Matsuyama, L. V. Hao, and M. Nagao. A file organization for geographic
information systems based on spatial proximity. International Journal of
Computer Vision, Graphics and Image Processing, 26(3):303–318, 1984.

[MNPT03] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis.
R-trees have grown everywhere. Submitted to ACM Computing Surveys, 2003.

[NHS84] J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid file: An adaptable
symmetric multikey file structure. ACM Transactions on Database Systems,
9(1):38–71, 1984.

[OSDM87] B. C. Ooi, R. Sacks-Davis, and K. J. McDonell. Spatial k-d-tree: An index-
ing structure mechanism for spatial databases. In Proceedings of the IEEE
COMPSAC Conference, 1987.

152

[Per02] J. Pereira. Algorithmes de filtrage efficace pour les systèmes de diffusion
d’information à base de notifications. PhD thesis, Université de Versailles
Saint-Quentin-en-Yvelines, September 2002.

[PSW95] B.-U. Pagel, H.-W. Six, and M. Winter. Window query-optimal clustering
of spatial objects. In Proceedings of the ACM PODS Conference, San Jose,
CA, USA, 1995.

[RL85] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases
using Packed R-Trees. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 1985.

[Rob81] J. Robinson. The k-d-b-tree: A search structure for large multidimensional
dynamic indexes. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, 1981.

[RSV01] P. Rigaux, M. Scholl, and A. Voisard. Spatial databases with application to
GIS. Morgan Kaufmann, 2001.

[Sag94] H. Sagan. Space-filling curves. Springer-Verlag, New York, 1994.

[Sam84] H. Samet. The quadtree and related hierarchical data structure. ACM Com-
puting Surveys, 16(2):187–260, 1984.

[Sam89] H. Samet. The design and analysis of spatial data structures. Reading, MA:
Addison-Wesley, 1989.

[SC00] T. Schrek and Z. Chen. Branch grafting method for R-tree implementation.
Journal of Systems and Software, 53:83–93, 2000.

[SL04] C.-A. Saita and F. Llirbat. Clustering multidimensional extended objects to
speed up execution of spatial queries. In Proceedings of the 9th International
Conference on Extending Database Technology (EDBT), Heraklion, Crete,
Greece, 2004.

[SRF87] T. Sellis, N. Roussopoulos, and C. Faloustos. The R+-tree: A dynamic
index for multi-dimensional objects. In Proceedings of the 13th International
Conference on Very Large Data Bases (VLDB), Brighton, England, 1987.

[SYUK00] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The A-tree: An
index structure for high-dimensional spaces using relative approximation. In
Proceedings of the 26th International Conference on Very Large Data Bases
(VLDB), Cairo, Egypt, 2000.

[TP02] Y. Tao and D. Papadias. Adaptive index structures. In Proceedings of the 28th
International Conference on Very Large Data Bases (VLDB), Hong Kong,
China, 2002.

[vSW97] J. van den Bercken, B. Seeger, and P. Widmayer. A general approach to bulk
loading multidimensional index structures. In Proceedings of the 23th Inter-
national Conference on Data Engineering (ICDE), Athens, Greece, 1997.

153

[WAE01] Y. Wu, D. Agrawal, and A. El Abaddi. Applying the golden rule of sampling
for query estimation. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Santa Barbara, CA, USA, 2001.

[WAE02] Y. Wu, D. Agrawal, and A. El Abaddi. Query estimation by adaptive sam-
pling. In Proceedings of the International Conference on Data Engineering
(ICDE), San Jose, CA, USA, 2002.

[WB97] R. Weber and S. Blott. An approximation based data structure for similarity
search. In Technical Report 24, ESPRIT Project HERMES (No. 9141), 1997.

[WJ96] D. A. White and R. Jain. Similarity indexing with the SS-tree. In Proceed-
ings of the 12th International Conference on Data Engineering (ICDE), New
Orleans, LA, USA, 1996.

[WSB98] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and perfor-
mance study for similarity-search methods in high-dimensional spaces. In
Proceedings of the 24th International Conference on Very Large Data Bases
(VLDB), New York, NY, USA, 1998.

[Yu02] Cui Yu. High-dimensional indexing. Transformational approaches to high-
dimensional range and similarity searches. Lecture Notes in Computer Sci-
ence, LNCS 2341, Springer, 2002.

154

Abstract We propose a cost-based query-adaptive clustering solution for multidimen-
sional objects with spatial extents to speed-up execution of spatial range queries (e.g.,
intersection, containment). Our work was motivated by the emergence of many SDI
applications (Selective Dissemination of Information) bringing out new real challenges
for the multidimensional data indexing. Our clustering method aims to meet several
application requirements such as scalability (many objects with many dimensions and
with spatial extents), search performance (high rates of spatial range queries), update
performance (frequent object insertions and deletions), and adaptability (to object and
query distributions and to system parameters). In this context, the existing indexing so-
lutions (e.g., R-trees) do not efficiently cope with most of these requirements. Our object
clustering drops many properties of classical tree-based indexing structures (tree height
balance, balanced splits, minimum object bounding) in favor of a cost-based clustering
strategy. The cost model takes into account the performance characteristics of the exe-
cution platform and relies on both data and query distributions to improve the average
performance of spatial range queries. Our object clustering is based on grouping spatial
objects with similar intervals (positions and extents) in a reduced subset of dimensions,
namely the most selective and discriminatory ones relative to the query distribution. The
practical relevance of our clustering approach was demonstrated by a series of experi-
ments involving large collections of multidimensional spatial objects and spatial range
queries with uniform and skewed distributions.

Keywords: multidimensional indexing, multidimensional extended objects, clustering,
spatial range queries, query-adaptive cost model

Resumé Nous proposons une méthode de groupement en clusters d’objets multidi-
mensionnels étendus, basée sur un modèle de coût adaptatif aux requêtes, pour accélérer
l’exécution des requêtes spatiales de type intervalle (e.g., intersection, inclusion). Notre
travail a été motivé par l’émergence de nombreuses applications de dissémination sélective
d’informations posant de nouveaux défis au domaine de l’indexation multidimension-
nelle. Dans ce contexte, les approches d’indexation existantes (e.g., R-trees) ne sont
pas adaptées aux besoins applicatifs tels que scalabilité (beaucoup d’objets avec des di-
mensions élevées et des extensions spatiales), performance de recherche (taux élevés de
requêtes), performance de mise à jour (insertions et suppressions fréquentes d’objets) et
adaptabilité (à la distribution des objets et des requêtes, et aux paramètres systèmes).
Dans notre méthode, nous relâchons plusieurs propriétés spécifiques aux structures d’in-
dexation arborescentes classiques (i.e. équilibrage de l’arbre et du partitionnement, en-
globement minimal des objets) en faveur d’une stratégie de groupement basée sur un
modèle de coût adaptatif. Ce modèle de coût tient compte des caractéristiques de la
plateforme d’exécution, de la distribution spatiale des objets et surtout de la distribution
spatiale des requêtes. Plus précisément, la distribution des requêtes permet de déterminer
les dimensions les plus sélectives et discriminantes à utiliser dans le regroupement des
objets. Nous avons validé notre approche par des études expérimentales de performance
impliquant de grandes collections d’objets et des requêtes d’intervalles avec des distribu-
tions uniformes et non-uniformes.

Mots clé : indexation multidimensionnelle, objets multidimensionnels étendus, groupe-
ment, requêtes spatiales de type intervalle, modèle de coût adaptatif aux requêtes

