
HAL Id: tel-00310923
https://theses.hal.science/tel-00310923

Submitted on 11 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static Analysis of an Actor-based Process Calculus by
Abstract Interpretation

Pierre-Loïc Garoche

To cite this version:
Pierre-Loïc Garoche. Static Analysis of an Actor-based Process Calculus by Abstract Interpretation.
Software Engineering [cs.SE]. Institut National Polytechnique de Toulouse - INPT, 2008. English.
�NNT : 2008INPT006H�. �tel-00310923�

https://theses.hal.science/tel-00310923
https://hal.archives-ouvertes.fr

année : 2008
n° d’ordre : 2620

THÈSE
soutenue en vue de l’obtention du titre de

DOCTEUR EN INFORMATIQUE
DE L’UNIVERSITÉ DE TOULOUSE

délivré par

l’INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE

ÉCOLE DOCTORALE MATHÉMATIQUES, INFORMATIQUE ET
TÉLÉCOMMUNICATIONS DE TOULOUSE

Pierre-Loïc Garoche
10 juin 2008

Analyse statique d’un calcul d’acteurs par
interprétation abstraite

Static Analysis of an Actor-based Process Calculus by Abstract Interpretation

Directeur de thèse : Patrick SALLÉ

Professeur, INPT

Rapporteurs : Thomas JENSEN

Directeur de recherches au CNRS, IRISA

Flemming NIELSON

Professor, Technical University of Denmark

Examinateurs : Jean-Jacques LEVY

Directeur de recherches à l’INRIA

Marc PANTEL

Maître de conférence, INPT

Xavier THIRIOUX

Maître de conférence, INPT

Virginie WIELS

HDR, Ingénieur de recherches à l’ONERA

REMERCIEMENTS

Formuler ses remerciements est une étape obligée dans la rédaction d’une
thèse. Je n’y couperai donc pas. Ces remerciements s’adressent à l’ensemble
des personnes qui ont participé, de près ou de loin, à l’aboutissement de cette
thèse. Je tiens par avance à m’excuser de mes oublis éventuels.

Mes remerciements vont tout d’abord à Flemming NIELSON et Thomas JEN-
SEN qui ont bien voulu accepter de relire mon manuscrit. Leur point de vue
éclairé ainsi que leur compétence donnent, à mes yeux, du crédit à mon travail,
et je les en remercie. I want to particularly thank Flemming NIELSON and the
members of his group in Copenhagen, for their great welcome during my very
short stay at DTU. They showed a deep interest in my work during the not-so-
funny time of writing the manuscript. It gave me a second breath and help me
to continue and regain self-confidence.

Je tiens également à remercier les autres membres du jury qui ont accepté
d’évaluer mon travail. Virginie WIELS a un lien spécial avec ce calcul d’acteurs
que j’analyse et Jean-Jacques LEVY a été l’un des enseignants de mon master et
a beaucoup contribué à la définition et l’analyse de calculs de processus. J’ap-
précie beaucoup qu’ils aient accepté de participer à mon jury.

Je veux adresser un remerciement particulier à Patrick COUSOT, qui m’a ini-
tié durant mon master aux arcanes de son Interprétation Abstraite et m’a pas-
sionné pour sa méthode. C’est également à lui que je dois mon arrivée à Tou-
louse. Pour cela, merci.

Merci à Patrick SALLÉ et Marc PANTEL qui m’ont ensuite accueilli à Toulouse
dans leur équipe. Ils m’ont laissé toute liberté dans mes recherches tout en me
donnant la possibilité de participer à des congrès . Merci de m’avoir également
permis d’effectuer des enseignements passionnants au sein du département in-
formatique de l’ENSEEIHT. Je tiens tout particulièrement à remercier Xavier
THIRIOUX pour son aide précieuse apportée lors de la définition des analyses,
de leur preuve et de leur implantation.

Lors de la réalisation de cette thèse, j’ai pu profiter du cadre agréable de
l’IRIT-N7. Je tiens à remercier dans le désordre, les membres de l’équipe, en
particulier Philippe QUEINNEC et Gérard PADIOU, pour le stock monstreux de
chocolat qu’ils ont apporté ; les amis du 4ième étage ; mes co-bureaux, le pro-
fesseur Ibrahim LOKPO, Aurélie HURAULT et Ahmed TOUHAMI pour les bons
moments partagés ; Benoît COMBEMALE et Xavier CRÉGUT, pour m’avoir ini-
tié et fait découvrir un domaine dont j’ignorais tout : l’ingéniérie dirigée par
les modèles, et pour les collaborations partagées ; et bien sûr, le grand chef Mi-
chel et les secrétaires exceptionnelles du laboratoire, Sylvie E., Joyce, Sabyne et
Sylvie A., merci pour votre soutien et votre bonne humeur.

iii

Je ne serais pas arrivé là non plus sans un long parcours informatique. Je
tiens d’abord à remercier mon père pour m’avoir initié très tôt aux joies de
la programmation et m’avoir donné le goût de la compréhension des choses.
Mes premiers balbutiements informatiques avec Matthieu SOZEAU, mes études
à Orsay avec les excellents cours d’Alain DENISE, Nicole BIDOIT, Jean-Pierre
JOUANNAUD ou de Christine PAULIN-MOHRING, le stage effectué auprès de
Marie-Claude GAUDEL, ou les momérables moments passés à BlueBird : toutes
ces rencontres m’ont donné le goût de la recherche en informatique et des mé-
thodes formelles, merci à tous.

Un immense merci à mes collègues de Cachan, Malo, Nicolas et Sylvain qui
m’ont très bien accueilli à l’ENS et avec qui l’année de master a été passion-
nante. Hubert COMON et Catherine FORESTIER, du département informatique
de l’ENS Cachan, ont été d’un grand secours, toujours efficaces et accessibles.
Merci ! Cette année 2005 fut très riche en rencontres et en connaissances ac-
quises qui seraient trop longues à énumérer. J’adresse tout de même un grand
merci à Jérôme FERET pour les échanges fructueux pendant mon master et à
Xavier ALLAMIGEON pour son amitié.

Je vais arrêter cette énumération qui ne saurait être exhaustive. Laissez moi
seulement remercier le professeur HONIDEN du NII et Cyrille ARTHO pour leur
accueil de 3 mois à Tokyo ainsi que Christian SOMMER pour les jours et les nuits
de travail acharné et de discussions enflammées partagés.

Enfin comment terminer sans remercier ma famille, mes parents, mon frère
et ma belle-famille qui ont su m’apporter leur soutien ou me permettre de faire
des pauses et bien sûr, Pascaline qui a su toujours m’aider et m’a donné mon
plus beau cadeau pendant cette période de thèse : mon fils, Samuel. Merci !

iv

ABSTRACT

The Actor model, introduced by HEWITT and AGHA in the late 80s, describes
a concurrent communicating system as a set of autonomous agents, with non
uniform interfaces and communicating by the use of labeled messages. The
CAP process calculus, proposed by COLAÇO, is based on this model and allows
to describe non trivial realistic systems, without the need of complex encodings.
CAP is a higher-order calculus: messages can carry actor behaviors. Multiple
works address the analysis of CAP properties, mainly by the use of inference-
based type systems using behavioral types and sub-typing.

Otherwise, more recent works, by VENET and later FERET, propose the use
of abstract interpretation to analyze process calculi. These approaches allow to
compute non-uniform properties. For example, they are able to differentiate
recursive instances of the same thread.

This thesis is at the crossroad of these two approaches, applying abstract in-
terpretation to the analysis of CAP. Following the framework of FERET, CAP is
firstly expressed in a non standard form, easing its analysis. The set of reach-
able states is then over-approximated via a sound by construction representa-
tion within existing abstract domains.

New general abstract domains are then introduced in order to improve the
accuracy of existing analyses or to represent local properties.

CAP specific properties such as the linearity of terms or the absence of orphan
messages, are then considered in this framework. Specific abstract domains are
defined and used to check these properties. The proposed framework is able
to relax any existing restriction of previous analyses such as constraints on the
shape of terms or limitation in the use of CAP behavior passing.

The whole analyses have been implemented in a prototype.

KEYWORDS Actors, Higher-order process calculus, Abstract Interpretation,
Linearity, Orphan messages, Message counting.

v

vi

RÉSUMÉ

Le modèle des Acteurs, introduit par HEWITT et AGHA à la fin des années
80, décrit un système concurrent comme un ensemble d’agents autonomes au
comportement non uniforme et communiquant de façon point-à-point par l’en-
voi de messages étiquetés. Le calcul CAP, proposé par COLAÇO, est un calcul
de processus basé sur ce modèle qui permet de décrire sans encodage complexe
des systèmes réalistes non triviaux. Ce calcul permet, entre autre, la communi-
cation de comportements via les messages et est, en ce sens, un calcul d’ordre
supérieur. L’analyse de propriétés sur ce calcul a déjà fait l’objet de plusieurs
travaux, essentiellement par inférence de type en utilisant des types comporte-
mentaux et du sous-typage.

Par ailleurs, des travaux plus récents, effectués par VENET puis FERET, pro-
posent une utilisation de l’interprétation abstraite pour l’analyse de calculs
de processus. Ces approches permettent de calculer des propriétés non uni-
formes : elles permettent, par exemple, de différencier les instances récursives
d’un même processus.

Cette thèse s’inscrit donc dans la suite de ces deux approches, en appliquant
l’interprétation abstraite à l’analyse de CAP. Suivant le cadre proposé par FE-
RET, CAP est, tout d’abord, exprimé dans une forme non standard facilitant les
analyses. L’ensemble des configurations atteignables est ensuite sur-approximé
via une représentation, correcte par construction, dans des domaines abstraits.

Des domaines abstraits généraux sont ensuite introduits afin d’améliorer les
analyses existantes ou de représenter des propriétés locales à un sous-terme.

Des propriétés spécifiques à CAP, la linéarité des termes et l’absence de mes-
sages orphelins, sont alors étudiées dans ce cadre. Des domaines spécifiques
sont définis et utilisés pour vérifier ces propriétés. Le cadre présenté permet de
lever toutes les restrictions existantes des analyses précédentes quant à la forme
des termes ou l’utilisation du passage de comportement.

L’intégralité des analyses présentées a été implantée dans un prototype.

MOTS CLÉS Acteurs, Calcul de processus d’ordre supérieur, Interprétation
abstraite, Linéarité, Messages orphelins, Dénombremement de messages.

vii

CONTENTS

I ÉPITOMÉ 1
1 ANALYSE STATIQUE D’UN CALCUL D’ACTEURS PAR INTERPRÉTATION

ABSTRAITE 3
1.1 Introduction & contexte 3
1.2 CAP : un calcul d’acteurs primitif 5
1.3 Analyse statique de CAP par interprétation abstraite 6
1.4 Sémantique non standard 6
1.5 Sémantique abstraite 7
1.6 Analyse partitionnée 10
1.7 Amélioration des analyses de dénombrement 11
1.8 La propriété de linéarité 12
1.9 Garantir l’absence de messages orphelins 13
1.10 Réalisation logicielle 13
1.11 Conclusion 14

II MAIN CONTENT 17
2 INTRODUCTION & BACKGROUND 19

2.1 CAP: a primitive actor calculus 20
2.1.1 A bit of history 20
2.1.2 Syntax 22
2.1.3 Semantics 24
2.1.4 Examples 24

2.2 Static analysis methods 28
2.2.1 Type system-based 28
2.2.2 Model checking 30
2.2.3 Abstract interpretation 31
2.2.4 Flow logic 35

2.3 Concurrency analysis related works 35
2.3.1 Typing process calculi 35
2.3.2 Flow logic analysis of concurrency 36
2.3.3 Model checking and concurrency 36
2.3.4 Abstract interpretation-based analysis of process calculi 37

2.4 Overview of contributions 37
2.4.1 CAP non standard semantics 38
2.4.2 Abstracting collecting semantics and abstract domains 38
2.4.3 Linearity 38
2.4.4 Orphan freeness checking 39

ix

x CONTENTS

2.4.5 Implementation issues 39
3 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION 41

3.1 The intuition 41
3.1.1 FERET’s framework 41
3.1.2 Instantiating the framework to model CAP semantics 43

3.2 Instantiating the generic framework 44
3.2.1 Generic framework semantics 44
3.2.2 Partial interactions 44
3.2.3 Formal rules 46
3.2.4 Syntax extraction 47
3.2.5 Operational semantics 50
3.2.6 Resulting transition system 52
3.2.7 Soundness 53

3.3 Abstracting non standard semantics 54
3.3.1 Abstracting collecting semantics 55
3.3.2 Approximating control flow 56
3.3.3 Occurrence counting 61

3.4 Discussion 66
4 PARTITIONED ABSTRACT DOMAIN 71

4.1 Partitioning properties by address 72
4.1.1 Concrete address partitioning 72
4.1.2 Abstract address partitioning 77

4.2 Parametric Abstract Partitioning 80
4.2.1 Intuition 80
4.2.2 Abstract Domain 81
4.2.3 Semantics primitives 82
4.2.4 Operational semantics 87

4.3 Example analysis 90
4.4 Enhancement 92

4.4.1 Extending primitives 92
4.4.2 Soundness 95
4.4.3 Application 95

4.5 Related work and discussion 96
4.5.1 Comparison with Feret’s thread partitioning 96
4.5.2 Summary 97

5 ENHANCING OCCURRENCE COUNTING 99
5.1 The initial occurrence counting abstraction 99

5.1.1 Numerical abstractions 100
5.1.2 Example analysis 107

5.2 Enhancing the abstraction reduction 109
5.2.1 Motivation 109
5.2.2 The reduction revisited 111
5.2.3 The example reconsidered 112

CONTENTS xi

5.3 Considering computed transitions 112
5.3.1 Motivation 112
5.3.2 Abstract domain 114
5.3.3 The example reconsidered 116

5.4 Reduction in the partitioned domain 117
5.4.1 Combining abstract domains 118
5.4.2 Reduction 118

5.5 Summary 119
5.5.1 Contributions 119
5.5.2 General overview 120

6 THE LINEARITY PROPERTY 123
6.1 Problematics 123

6.1.1 Definition 124
6.1.2 Examples 124
6.1.3 A first attempt of linearity checking in our framework 124

6.2 Abstracting linearity 127
6.2.1 Intuition 127
6.2.2 A first abstraction 128
6.2.3 A second abstraction 134

6.3 Example analysis 138
6.4 Related works 138
6.5 Discussion 140

7 ENSURING ORPHAN FREENESS 143
7.1 Problematics 143

7.1.1 Definitions 144
7.1.2 Examples 147

7.2 Roadmap to orphan freeness checking 149
7.2.1 Observation 149
7.2.2 Vector Addition System with States and their properties 150
7.2.3 Effective checking 151

7.3 Abstracting mailboxes and interfaces 152
7.3.1 Intuition 152
7.3.2 Abstract domain 154
7.3.3 Improvements preserving soundness 162

7.4 Ensuring orphan-freeness 164
7.4.1 On effective mailbox computation 164
7.4.2 Where over-approximations comes from 166
7.4.3 Checking orphan-freeness: under-approximating interfaces 168
7.4.4 Checking non stuck actors 168

7.5 Example analysis 169
7.5.1 Example 169
7.5.2 Resulting abstract properties 169
7.5.3 Computing mailboxes 170

xii CONTENTS

7.5.4 Checking orphan-freeness 170
7.6 Related works and discussion 171

7.6.1 Analyzing CAP by type inference 171
7.6.2 Behavioral types for the π-calculus 172
7.6.3 Encoding properties into VASS-like structures 172
7.6.4 Discussion 173

8 IMPLEMENTATION ISSUES 175
8.1 PACSA: a Primitive Actor Calculus Static Analyzer 175

8.1.1 Wide use of Caml modules and functors 176
8.1.2 Implementation choices 179
8.1.3 Domains 181

8.2 Results 183
8.3 Usage 184

8.3.1 Command line 185
8.3.2 Web interface 187

9 CONCLUSION 191
9.1 Contributions 192
9.2 Future Works 194

9.2.1 Implementing mailboxes over-approximation 194
9.2.2 Introducing relational abstraction in the linearity abstract

domain 195
9.2.3 Applying the proposed domains to the analysis of π-calculus 195
9.2.4 Analyzing other kinds of concurrent communicating mod-

els 195
9.2.5 Weaving abstract interpretations 196

INDEX OF NOTATIONS 199

BIBLIOGRAPHY 203

III APPENDICES 213
A PROOFS 215

A.1 Bisimulation between CAP semantics and its non standard en-
coding 215

A.2 Partitioned abstract domain 221
A.3 Occurrence counting with transitions 227
A.4 Linearity 229
A.5 Orphan messages 231

B REPLICATING EXAMPLE ANALYSIS 237
B.1 Replication server example 237
B.2 Analysis 237

B.2.1 Control flow abstraction 237
B.2.2 Global occurence counting abstraction 241

CONTENTS xiii

B.2.3 Linearity abstraction 242
B.2.4 Partitioned abstraction 243

LIST OF FIGURES

Figure 2.1 CAP syntax. 23
Figure 2.2 CAP transition relation. 25
Figure 2.3 CAP structural context rules. 25
Figure 2.4 CAP congruence relation. 25
Figure 2.5 A simple toy example. 26
Figure 2.6 A simple behavior passing. 27
Figure 2.7 Non trivial non linearity. 27
Figure 2.8 Linear cell. 28
Figure 2.9 Replicating server. 29
Figure 2.10 Replicated server use. 29
Figure 2.11 Framework overview. 39
Figure 2.12 Hierarchy of abstract domains. 40
Figure 3.1 Communication with a syntactically defined actor. 47
Figure 3.2 Communication with a dynamic actor. 48
Figure 3.3 Non standard operational semantics. 51
Figure 3.4 Abstract operational semantics for control flow approxi-

mation. 58
Figure 3.5 Transition computation for the abstract domain of equali-

ties and disequalities among variables. 59
Figure 3.6 Transition computation for the abstract domain of regular

approximation of shape. 62
Figure 3.7 Abstract operational semantics for occurrence counting

abstraction. 65
Figure 4.1 CAP non standard partitioned semantics. 75
Figure 4.2 CAP example concrete address partitioning. 78
Figure 4.3 Partitioned abstract domain operational semantics. 89
Figure 4.4 Partitioned occurrence counting. 91
Figure 4.5 Partitioned control flow. 93
Figure 5.1 The lattice of intervals in N

2. 100
Figure 5.2 KARR’s union algorithm cases. 103
Figure 5.3 Linear cell: an intermediate occurrence counting abstract

element. 108
Figure 5.4 Linear cell: another intermediate occurrence counting ab-

stract element. 110
Figure 5.5 Linear cell: an intermediate occurrence counting abstract

element computing a spurious transition. 113
Figure 5.6 Abstract operational primitive for the occurrence count-

ing domain with transitions. 117

xiv

List of Figures xv

Figure 5.7 Overview of the global occurrence counting abstraction. 121
Figure 6.1 Non linearity example trace. 125
Figure 6.2 Abstract operational semantics for first abstraction. 133
Figure 6.3 Abstract operational semantics for second abstraction. 138
Figure 6.4 Linearity: abstract properties computation. 139
Figure 7.1 Example traces with mailboxes. 148
Figure 7.2 System S2: an (infinite) ideal case. 150
Figure 7.3 Message sending over-approximation outside partition unit. 155
Figure 7.4 Resulting abstract mailboxes and interfaces for the linear

cell-based systems. 156
Figure 7.5 Behavior passing example: resulting abstract element. 170
Figure 8.1 Overview of our analysis process. 175
Figure 8.2 Main abstract domain module type. 176
Figure 8.3 Control flow abstract domain module types: atoms and

molecules. 177
Figure 8.4 Numerical abstract domain module type for the occur-

rence counting abstraction. 178
Figure 8.5 Generic module type for defining a calculus. 178
Figure 8.6 Hierarchy of modules and functors. 180
Figure 8.7 Command line usage. 185
Figure 8.8 Results of CAP term analysis on command line. 186
Figure 8.9 Home page of the web interface of PACSA. 187
Figure 8.10 Examples descriptions given in the web site. 188
Figure 8.11 A first computation showing a log of the analysis. 189
Figure 8.12 A second computation showing resulting abstract elements

for the interfaces and mailboxes approximation. 190
Figure B.1 Interface and mailbox abstraction for the binder 1. 243
Figure B.2 Interface and mailbox abstraction for the binder 2. 244
Figure B.3 Interface and mailbox abstraction for the binder 3. 245
Figure B.4 Interface and mailbox abstraction for the binder 4. 246
Figure B.5 Interface and mailbox abstraction for the binder 13. 247
Figure B.6 Interface and mailbox abstraction for the binder 14. 248
Figure B.7 Interface and mailbox abstraction for the binder 19. 249

Part I

ÉPITOMÉ

1
ANALYSE STATIQUE D’UN CALCUL D’ACTEURS PAR INTERPRÉTATION
ABSTRAITE

1.1 INTRODUCTION & CONTEXTE

Les systèmes informatiques sont maintenant de plus en plus présents et glo-
baux. Ils forment de grands systèmes, exécutés sur de multiples machines en
parallèle et sont conçus pour fonctionner sans limite de durée. Il doivent four-
nir leur service de façon permanente. Ils sont également construits de façon
incrémentale, en réutilisant et en étendant d’anciens systèmes par de nouveaux
composants. Le développement de ces systèmes globaux requiert des années de
développement et fait appel à de multiples programmeurs. Parmi ces grands
systèmes, la suite de logiciels en ligne fournie par l’entreprise Google® est ca-
ractéristique : toutes les données sont stockées dans leurs serveurs distribués
et répliqués, présents sur toute la planète. Le logiciel client envoie une requête
pour une vue locale des données et est capable d’interagir avec le système à
partir de n’importe quel périphérique connecté au réseau.

Ces systèmes que l’on peut qualifier d’orientés services se profilent comme la
prochaine génération de logiciels, nous donnant un accès persistant à nos don-
nées. Cependant la complexité de ces systèmes est inhérente : ils sont grands,
ils s’exécutent de façon concurrente, ils sont communicants et s’exécutent théo-
riquement pour un laps de temps infini. Un enjeu majeur actuel concerne donc
la définition de techniques et de méthodes formelles permettant de vérifier ces
logiciels, c’est à dire de garantir qu’ils aient un comportement cohérent et une
qualité de service permanente.

Les méthodes d’analyses statiques s’intéressent au calcul de propriétés des
systèmes en considérant leur description, leur code source par exemple, et en
sur-approximant tous leurs comportements possibles. Elles permettent d’effec-
tuer, de façon plus ou moins précise, des analyses qui déterminent le compor-
tement d’un système avant son exécution. Parmi ces techniques, l’interpréta-
tion abstraite définie par Patrick COUSOT [34] est un cadre général dans lequel
chaque analyse statique peut être exprimée. Cette approche a montré sa matu-
rité et est de plus en plus utilisée dans des contextes industriels.

Concernant les systèmes concurrents et communicants, les analyses existantes
sont plus simples. Elles considèrent des descriptions de très bas niveau des com-
munications d’un système. En pratique, le non déterminisme, induit par la na-
ture concurrente de ces systèmes, rend leurs analyses plus complexes que celles
de programmes uniquement séquentiels. De la même façon, la communication
et l’évolution de la topologie des échanges introduit elle aussi des difficultés

3

4 ANALYSE STATIQUE D’UN CALCUL D’ACTEURS PAR INTERPRÉTATION ABSTRAITE

dans l’obtention de propriétés précises. Finalement, nous avons mentionné le
caractère permanent de ces systèmes qui amène donc à considérer des traces in-
finies. Tous ces ingrédients contribuent à définir un espace d’état difficilement
analysable par des techniques de vérification de modèle (model-checking) qui
requièrent une représentation explicite de cet espace.

Cette thèse propose l’utilisation de l’interprétation abstraite à l’analyse d’un
calcul concurrent. De telles analyses appliquées à des algèbres de processus de
bas niveau, comme le π-calcul, existent, mais n’existent pas pour des calculs
de plus haut niveau, permettant d’exprimer sans encodage complexe des sys-
tèmes réalistes. Dans ce document, nous considérons l’analyse d’un calcul de
processus asynchrone, basé sur le modèle des Acteurs. Nous proposons des
analyses à base d’interprétations abstraites afin de calculer automatiquement
les propriétés des systèmes décrits dans ce calcul.

Dans ce chapitre introductif en français, nous introduisons le plan du ma-
nuscrit ainsi que les différents développements proposés. L’intégralité des ana-
lyses : définitions de domaines abstraits, résultats, théorèmes de correction, etc.

est référencée et peut être trouvée dans la partie rédigée en anglais.
Le second chapitre, le chapitre 2, page 19 introduit l’objet de l’étude, le calcul

d’acteurs CAP et présente brièvement les méthodes d’analyses statiques ainsi
que leur application à l’étude de la concurrence dans les systèmes communi-
cants.

Ensuite, le chapitre 3, page 41 présente l’utilisation du cadre proposé par
FERET dans [49] pour exprimer puis analyser CAP.

Les chapitres 4, 6 et 7, respectivement pages 71, 123 et 143 présentent les
différentes analyses proposées pour CAP dans un tel cadre, à savoir :

– les problématiques de dénombrement, c.-à-d.le nombre d’acteurs ou de
messages dans les états accessibles du système analysé ;

– la vérification de la propriété de linéarité, qui voit chaque adresse du sys-
tème comme une ressource non partageable et qui garantit qu’au plus un
acteur est associé à une adresse donnée ;

– la vérification d’absence de messages orphelins. Un message orphelin est,
dans CAP, un message qui est envoyé à une adresse qui ne peut et ne
pourra jamais le réceptionner.

Enfin, le chapitre 8 illustre ces résultats théoriques : il présente PACSA, un
analyseur statique par interprétation abstraite qui implante ces analyses. Ce
chapitre présente également l’utilisation de PACSA sur un système décrit par
un terme CAP.

L’ensemble des contributions de cette thèse est résumée dans les figures 2.11,
page 39 et 2.12, page 40 qui présentent l’approche générale d’analyse des termes
CAP et la hiérarchie de domaines abstraits utilisés ou introduits.

1.2 CAP : UN CALCUL D’ACTEURS PRIMITIF 5

1.2 CAP : UN CALCUL D’ACTEURS PRIMITIF

Le calcul CAP a été introduit dans [24] afin de pouvoir définir des analyses
statiques sur un calcul formel modélisant le modèle de la programmation par
acteurs. Les termes de ce calcul décrivent des systèmes asynchrones composés
d’acteurs et de messages étiquetés. Un acteur (a ⊲ P) peut être vu comme un lien
entre une adresse et un comportement. Le comportement est la capacité à com-
prendre un certain nombre de messages ainsi que la réaction effectuée lors de la
prise en compte de ces messages. L’opérateur ζ, inclus dans les sous-termes de
comportement, permet de désigner dans la continuation l’adresse et le compor-
tement total de l’acteur recevant le message. CAP permet donc de décrire des
comportements dans les variables et d’envoyer celles-ci. C’est donc un calcul de
processus de second ordre. La syntaxe et la sémantique de CAP sont décrites
dans la figure 1. Un exemple illustrant le calcul est donné dans la figure 2.

C ::= 0 | νaα C | C || C | a ⊲l P | a ⊳l m(P̃)

P ::= x | [m
li

i (ỹ) = ζ(e, s)Ci

i=1...n
]

T = [m
li

i (x̃i) = ζ(ei, si)Ci

i=1,...,n
]






m = mk,

|ỹl| = |x̃k|,

k ∈ [1, . . . , n]

a ⊲ T || a ⊳l m(ỹl)
(l,li,lk)
−−−−−→ Ck[ek ← a, sk ← T, x̃k ← ỹl]

Figure 1: Syntaxe et sémantique de CAP

Nous nous intéressons à la vérification par analyse statique de systèmes dis-
tribués décrit dans CAP. Les propriétés strictement liées à l’aspect concurrent
et distribué de ces systèmes, que nous voulons ici vérifier, sont par exemple la
propriété de linéarité ou la détection de messages orphelins. La première consi-
dère chaque adresse comme une ressource et consiste à vérifier qu’au plus un
acteur est associé à une même adresse dans tous les termes atteignables à partir
du terme initial. Les orphelins sont les messages qui sont envoyés à une adresse
qui ne pourra pas les traiter.

Des travaux précédents [23, 30, 39] utilisaient de l’inférence de types afin de
vérifier ces propriétés ; mais elles rencontraient des difficultés dans l’analyse de
ces propriétés complexes sur CAP, un calcul d’ordre supérieur puisque qu’il
permet d’envoyer des comportements (des fonctions) via des messages. L’ob-
jectif premier de ces travaux a donc été d’analyser ces propriétés en changeant
de méthode d’analyse et en utilisant le cadre de l’interprétation abstraite.

6 ANALYSE STATIQUE D’UN CALCUL D’ACTEURS PAR INTERPRÉTATION ABSTRAITE

νaα, bβ, a ⊲1 [m2() = ζ(e, s)(a ⊲3 s),

send4(x) = ζ(e, s)(x ⊳5 beh(s))]

|| b ⊲6 [beh7(x) = ζ(e, s)(e ⊲8 x)]

|| a ⊳9 send(b) || b ⊳10 m()

Deux acteurs et deux messages sont présents dans le système. Initialement, seul
le message send envoyé à a peut être compris. La transition s’effectue. Il n’y a
plus qu’un acteur sur b et deux messages adressés à cette adresse. Le message
m ne peut toujours pas être compris, mais le nouveau message beh peut l’être.
Il est alors reçu. La variable s, argument du message, dénote tout le comporte-
ment de l’acteur initial sur a. Ce comportement est utilisé pour être associé à
l’adresse décrite par e au point de programme 7, c’est à dire b. L’acteur sur b
peut maintenant comprendre en compte les messages m et send. Il peut alors
recevoir le premier messagem.

Figure 2: Exemple d’un système décrit par un terme CAP

1.3 ANALYSE STATIQUE DE CAP PAR INTERPRÉTATION ABSTRAITE

Afin de proposer un calcul commun pour définir des analyses génériques
sur plusieurs calcul de processus, FERET exploite dans [49] un métalangage qui
explicite l’historique des transitions conduisant à la création des valeurs et des
agents. Une telle approche permet d’éviter les ambiguïtés liées à l’α-conversion
dans l’analyse des termes. Le chapitre 3 décrit comment donner à CAP une telle
sémantique puis explicite les analyses existantes d’un tel système.

1.4 SÉMANTIQUE NON STANDARD

Une configuration est maintenant un ensemble de processus. Les processus
permettent de désigner les messages, les acteurs et enfin les comportements ato-
miques (chaque branche d’un ensemble de comportements associé à un acteur).
Un processus est défini par un triplet (p, id, E) où p est le point de programme
permettant d’associer le processus à un sous-terme du terme initial, id est le
mot désignant la suite de transition ayant conduit à la création du processus.
Enfin E, l’environnement, est une fonction partielle des variables du terme vers
leur valeur. La valeur associée à une variable est un couple (α, idα) où α est le
point de programme de l’opérateur de restriction (ν ou ζ) ayant défini le nom
et idα le mot qui représente la série de transitions ayant conduit à la création
de cette valeur.

1.5 SÉMANTIQUE ABSTRAITE 7

Nous décrivons maintenant les étapes nécessaires au calcul d’une transition.
Il faut tout d’abord choisir un ensemble de processus participant à la transition
dans l’ensemble des processus qui constituent la configuration courante.

Il faut ensuite vérifier des conditions de synchronisation. En particulier, nous
vérifions que le processus représentant le message est bien envoyé à l’adresse
associée au processus qui dénote l’acteur. La vérification de ces conditions dé-
pend du domaine utilisé pour représenter le flot de contrôle.

Si le n-uplet de processus sélectionné satisfait aux conditions, la transition
peut s’effectuer, il faut retirer l’ensemble des processus qui a interagi et calculer
les nouveaux processus à insérer dans la configuration. Pour cela, la continuation
associée au comportement qui a été activé par le message est mise à jour à la
fois par les valeurs contenues dans le message mais aussi par l’opérateur ζ,
c’est à dire, par les valeurs décrivant l’adresse de l’acteur inter-agissant et son
comportement.

Afin d’exprimer CAP dans le cadre générique proposé par FERET [49], nous
avons défini une certain nombre de primitives :

– un ensemble d’interactions partielles décrivant les différentes sortes de pro-
cessus, les messages, les acteurs et les comportements ;

– une fonction d’extraction β construit la configuration non standard asso-
ciée à un terme CAP et est utilisée notamment lors du calcul de continua-
tion pour déterminer les processus nouveaux à insérer dans le système ;

– enfin deux règles formelles ou règles de réduction permettant de modéliser
dans la sémantique non standard les transitions. La première relation de
transition permet de représenter une transition faisant intervenir un acteur
défini syntaxiquement (a ⊲ [. . .]) tandis que la seconde nécessite trois pro-
cessus et représente un acteur dont le comportement est défini par une
variable (a ⊲ b).

La sémantique non standard est décrite dans la figure 3.3, page 51.

Théorème 1.1 (correspondance) La sémantique standard et non standard de CAP

sont en bisimulation forte.

Ce résultat permet de garantir un correspondance, une congruence structu-
relle entre les deux modèles : un terme CAP d’une part et son encodage dans la
forme non standard d’autre part.

La preuve est présentée dans l’annexe A.1, page 215.

1.5 SÉMANTIQUE ABSTRAITE

L’expression d’un terme CAP dans cette syntaxe et cette sémantique non stan-
dard a permis d’expliciter certaines ambiguïtés dues, entre autre, à la règle d’α-
conversion de la relation de congruence définissant la sémantique du langage.
Le même chapitre 3 introduit comment sur-approximer la sémantique collec-
trice des termes exprimés dans cette sémantique non standard. Nous utilisons

8 ANALYSE STATIQUE D’UN CALCUL D’ACTEURS PAR INTERPRÉTATION ABSTRAITE

pour cela le cadre de l’interprétation abstraite, afin de définir une approxima-
tion correcte et décidable, c’est à dire ici, calculable en un temps fini, de la sé-
mantique collectrice du terme analysé.

Interprétation abstraite

L’interprétation abstraite [34, 35] est une théorie de l’approximation discrète
de sémantique. La description des propriétés d’une sémantique, dans un treillis
complet munis d’opérateurs monotones, permet de définir une correspondance
de Galois (c’est à dire, un couple de morphisme (α, γ)) entre deux descrip-
tions de sémantiques. La première étant la sémantique concrète (C,⊆), que
nous voulons analyser, et la seconde une sémantique abstraite (C#,⊑), dans
laquelle nous observons les propriétés. La correspondance de Galois (α, γ), ex-
hibée entre ces deux sémantiques, permet de garantir la correction de l’abs-
traction : c’est une sur-approximation de la sémantique concrète. Ainsi, ∀x ∈
C,∀y ∈ C#, α(x) ⊑ y =⇒ x ⊆ γ(y). L’utilisation d’opérateurs monotones
sur ces treillis permet de conserver cette propriété. Enfin, les points fixes pour
ces opérateurs monotones existent (TARSKI) et peuvent être obtenus de façon
constructive en itérant à partir d’un élément du treillis (KLEENE, COUSOT). Les
propriétés étant approchées, représentées dans des domaines abstraits, nous ne
pouvons répondre de façon automatique à toutes les questions, mais si la pro-
priété étudiée peut être observée dans l’abstrait, elle est valide dans le concret.
Le cadre de l’interprétation abstraite permet donc de sur-approximer de façon
correcte, mais généralement pas complète, les propriétés d’une sémantique.

Nous voulons ici vérifier des propriétés sur l’ensemble des termes atteignables,
c’est à dire constructibles à partir du terme initial. C’est la sémantique collec-
trice du terme. Elle peut être définie plus formellement comme le plus petit
point fixe du morphisme complet pour l’union F :

F(X) =






({ǫ}×C0)
⋃

{

(u.λ,C ′) ∃C ∈ S , (u,C) ∈ X et C λ
−→ C ′

}

où C0 désigne la configuration initiale et S l’ensemble des configurations.
Nous voulons vérifier des propriétés sur l’ensemble des ces configurations

atteignables. Mais cet ensemble n’est, en général, pas calculable. Nous devons
donc recourir à des méthodes permettant de vérifier ces propriétés, tout en as-
surant d’obtenir une réponse au bout d’un temps fini raisonnable.

L’interprétation abstraite de systèmes mobiles, définie par FERET [49], consiste
à définir une sémantique opérationnelle abstraite des termes. L’isomorphisme
F

sur C# permettant d’approximer F est défini par :

F
#(c#) =

⊔#
(

{C#
0; c#}⊔

{
c ′# | ∃λ ∈ Σ, c# λ c ′#

}

)

1.5 SÉMANTIQUE ABSTRAITE 9

où C#
0 est l’abstraction de l’état initial et représente la fonction de tran-

sition abstraite. Nous calculons donc l’ensemble des propriétés représentées
dans le domaine abstrait C# qui sont vraies dans un sur-ensemble de toutes les
configurations atteignables. La précision de ce domaine abstrait permet donc
de calculer à la fois un sur-ensemble le plus précis possible (le plus petit) et en
même temps les propriétés d’intérêt.

La section suivante adresse ce problème et décrit quelle sémantique abstraite
donner aux termes de la sémantique non standard et comment y représenter
les propriétés qui nous intéressent.

Domaines abstraits

La sémantique opérationnelle non standard permet de guider les transitions
et donc de décrire l’évolution du terme. Nous voulons ici représenter dans
les domaines abstraits, à la fois l’information utile aux calculs des transitions
ainsi que l’information nécessaire à la vérification des propriétés qui nous inté-
ressent.

Un élément abstrait, représentant un ensemble de configurations concrètes,
est donc constitué de deux éléments, formant un couple (CF, P) où CF repré-
sente une approximation des valeurs des variables permettant d’effectuer les
transitions, tandis que P représente un ensemble de propriétés réalisées par
l’ensemble des configurations que cet élément abstrait représente.

La précision de ces deux éléments, ou plutôt des domaines auxquels ils appar-
tiennent, ainsi que des sémantiques associées, permettent de définir d’une part,
le flot de contrôle, c’est à dire l’ensemble des transitions effectuées, et d’autre
part la ou les propriétés à vérifier. L’utilisation de domaines simples pour re-
présenter le flot de contrôle permet de calculer plus rapidement le point fixe de
l’analyse, mais l’élément abstrait obtenu va potentiellement représenter plus de
configurations concrètes que possible ; certaines de ces fausses configurations
concrètes représentées ne vont pas satisfaire la propriété étudiée et donc empê-
cher de la vérifier dans l’abstrait.

De la même façon pour l’élément abstrait qui représente les propriétés, un do-
maine simple va permettre de converger rapidement, mais ne permettra peut-
être pas d’observer une propriété plus complexe.

ABSTRACTION DU FLOT DE CONTRÔLE Le flot de contrôle permet de calculer
les transitions dans l’abstrait. Nous utilisons ici un domaine abstrait paramé-
trique dont la sémantique est très proche de la sémantique non standard. Lors
du calcul d’une transition dans l’abstrait, nous vérifions d’abord que les condi-
tions de synchronisation, telles qu’elles sont représentables dans le domaine
abstrait peuvent être satisfaites. Ensuite, le passage de valeur est calculé afin
de créer les nouveaux processus. Nous déterminons alors l’union de l’élément
abstrait obtenu avec l’élément initial afin d’obtenir les propriétés, représentées

10 ANALYSE STATIQUE D’UN CALCUL D’ACTEURS PAR INTERPRÉTATION ABSTRAITE

dans le domaine, qui sont réalisées à la fois avant et après la transition. La sup-
pression des processus inter-agissants n’est pas représentée ici puisqu’elle ne
modifie pas la valeur des marqueurs des processus ni leurs variables. Une re-
présentation plus formelle de cette sémantique est définie dans la figure 3.4.

Le domaine utilisé pour représenter le flot de contrôle peut être ensuite choisi
afin d’avoir une analyse plus ou moins précise. Un domaine très simple per-
met, par exemple, d’avoir une sur-approximation similaire à celle que nous
obtenions en utilisant des techniques de typage : il s’agit d’abstraire complè-
tement le marqueur des processus et des variables. Une configuration est alors
un n-uplet d’environnements indicés par les points de programme du terme.
Chaque environnement associe à chaque variable l’ensemble des restrictions
qui ont crée la valeur. Ainsi, nous vérifions, comme dans nos systèmes de type,
que le message envoyé au nom a est bien reçu par l’acteur associé au même
nom a, sans tenir compte des instances récursives du même nom.

Par contre, le domaine utilisé peut être plus complexe, par exemple le pro-
duit réduit de plusieurs autres domaines [53]. Il permet alors d’avoir une ana-
lyse précise et contenant des informations relationnelles entre les valeurs des
variables. Par exemple, nous pouvons obtenir que le marqueur associé à une
certaine variable est le même que celui associé à une autre, lorsqu’elle partage
la même valeur. Plus le domaine sera précis, plus l’abstraction sera fine et la sur-
approximation petite. Il y aura donc moins de fausses configurations concrètes
représentées par l’élément abstrait.

ABSTRACTION DES PROPRIÉTÉS La partie de l’élément abstrait associée aux
propriétés à analyser doit être munie d’une sémantique permettant de repré-
senter dans le domaine l’évolution de cette propriété lors de l’exécution d’une
transition dans le concret. L’idée générale consiste à dire que cet élément repré-
sente les propriétés réalisées par un ensemble de configurations concrètes. Le
calcul, dans l’abstrait, d’une transition, doit refléter l’évolution de la propriété
par la transition. Ensuite, afin de conserver les propriétés de monotonie sur les
primitives du domaine abstrait, on calcule l’union des propriétés avant et après
la transition, c’est à dire l’ensemble des propriétés qui sont vraies dans les deux
cas.

Les chapitres suivants décrivent la définition de domaines abstraits spéci-
fiques pour analyser différentes propriétés.

1.6 ANALYSE PARTITIONNÉE

Un premier besoin dans l’analyse de propriétés sur les systèmes décrits dans
le calcul CAP est la possibilité de représenter ces propriétés par adresse. En
effet, la notion d’adresse est centrale dans CAP puisque les adresses sont le lieu
de rencontre entre acteurs et messages.

1.7 AMÉLIORATION DES ANALYSES DE DÉNOMBREMENT 11

Les domaines abstraits existants considèrent uniquement une abstraction glo-
bale des états atteignables mais ne permettent pas de représenter les invariants,
les propriétés locales de ces états.

Le chapitre 4 introduit une telle analyse en proposant un domaine dit parti-
tionné. Ce domaine, lui même paramétré par un domaine sous-jacent permet
d’exploiter ce sous domaine en représentant ses propriétés par adresses.

Un première abstraction exacte, présentée dans la section 4.1.1, permet de
partitionner les termes CAP sous la forme non standard en représentant les
processus, messages et acteurs associés à chaque adresse, les processus associés
aux branches de comportements étant accumulés dans une partition séparée.

Ensuite, une approximation, en utilisant le domaine abstrait sous-jacent, per-
met d’une part, de représenter l’ensemble des processus associés à une adresse
dans un élément de ce domaine, et d’autre part, de représenter dans le même
élément abstrait les propriétés associées aux instances récursives d’une même
adresse. En d’autre termes, si deux adresses (α, id1) et (α, id2) sont associées
à des processus, l’élément abstrait associé au lieur α représente les propriétés
vérifiées pour les deux adresses.

Le domaine abstrait de partitionnement proposé est générique et paramétré
par le domaine abstrait sous-jacent et également par un domaine abstrait de flot
de contrôle. Ce domaine de flot de contrôle est utilisé pour sur-approximer de
façon correcte l’ensemble des partitions qui peuvent associées à une processus.

1.7 AMÉLIORATION DES ANALYSES DE DÉNOMBREMENT

Le chapitre suivant, le chapitre 5, introduit l’analyse de dénombrement telle
que définie par FERET dans [49] et propose plusieurs améliorations. Ces ex-
tensions, qui sont génériques et ne dépendent pas du cas d’analyse de CAP
en particulier, permettent d’une part, d’obtenir dans l’élément abstrait résultat
des informations plus précises en terme de dénombrement, mais d’autre part,
améliorent également la qualité du résultat pour les autres domaines. En effet,
l’analyse de dénombrement comptabilise les processus présents et peut inter-
dire le calcul d’une transition si les processus inter-agissants ne peuvent pas
être présents en même temps dans la même configuration.

L’analyse initiale proposée par FERET repose sur deux domaines abstraits
numériques : un domaine non relationnel, celui des intervalles sur N et un do-
maine relationnel, les égalités affines de KARR. Ces deux domaines forment un
produit cartésien sur lequel est construite une réduction permettant d’exploi-
ter les informations relationnelles afin de raffiner les intervalles associés aux
processus. Un tel domaine permet par exemple d’observer des contraintes d’ex-
clusion mutuelle ou de garantir que le système est borné.

La première proposition consiste à définir un étape supplémentaire dans l’al-
gorithme de réduction entre ces deux domaines numériques. En effet, la réduc-
tion proposée n’est pas exacte, mais a un coût algorithmique cubique. En parti-

12 ANALYSE STATIQUE D’UN CALCUL D’ACTEURS PAR INTERPRÉTATION ABSTRAITE

culier, toutes les informations du domaine de KARR ne sont pas utilisables dans
la réduction. L’étape ajoutée, tout en restant dans la même classe de complexité,
exploite plus de contraintes et permet donc d’obtenir un élément abstrait plus
précis.

Une seconde proposition, tout aussi générique, permet de prendre en compte
les transitions passées nécessaires à la création de processus. Ainsi dans le
terme CAP suivant, l’acteur au point de programme 1 ne peut pas recevoir le
message au point de programme 4.

a ⊲1 [m2() = ζ(e, s)(e ⊲3 s || e ⊳4 m())] || a ⊳5 m()

Ce message est produit par la consommation de l’acteur sur 1. L’analyse de
flot de contrôle détecte que la transition est calculable : les adresses sont bien
compatibles ainsi que les étiquettes de messages, tandis que l’analyse de dé-
nombrement vérifie que l’acteur et le message ont bien été déjà produits. Cette
seconde proposition permet d’interdire de telles transitions entre un message
et un acteur qui est son ancêtre.

Finalement, la dernière proposition d’amélioration du dénombrement exploite
l’analyse partitionnée sur le dénombrement et introduit une réduction entre les
informations de dénombrement partitionnées et une information plus globale.

Ces différentes propositions ont été indispensable dans l’analyse des termes
CAP menée dans le cadre de ce travail. Ces deux domaines de flot de contrôle
et de dénombrement, bien que n’adressant pas directement les propriétés de
haut niveau qui nous intéressent pour CAP, sont essentiels dans le calcul de
l’approximation de la sémantique collectrice. Un dénombrement plus précis
permet donc d’interdire certaines transitions et conduit, pour lui et pour les
autres domaines, à des informations plus pertinentes dans l’élément abstrait
résultat de l’analyse.

1.8 LA PROPRIÉTÉ DE LINÉARITÉ

La propriété de linéarité exprime le fait que dans chaque configuration, chaque
adresse est associée à, au plus, un acteur. Afin de vérifier cette propriété, nous
avons défini un domaine abstrait s’inspirant d’une de nos analyses par typage
afin de représenter, de façon opérationnelle, le calcul de la propriété. Les détails
sont présentés dans le chapitre 6.

Le domaine proposé repose sur l’association d’un mode d’utilisation à chaque
variable qui sur-approxime le nombre d’utilisations de cette valeur pour instal-
ler un acteur. Une adresse utilisée strictement plus d’une fois sera associée à
la valeur ⊤ du treillis du domaine abstrait et ne permettra pas de vérifier la
propriété de linéarité. Par contre, un terme dont l’élément abstrait, obtenu par
l’analyse, est tel que chaque adresse et chaque variable sont associées à un mode
décrivant zéro ou une utilisation, est linéaire : la sur-approximation de toutes
les configurations atteignables du système satisfait la propriété de linéarité.

1.9 GARANTIR L’ABSENCE DE MESSAGES ORPHELINS 13

La sémantique de ce domaine abstrait, représentant dans l’abstrait une tran-
sition, c.-à-d. la réception d’un message par un acteur, est constitué du calcul de
deux flots. Le premier flot représente le passage naturel de valeurs : la prise en
compte des paramètres du message ainsi que le lancement des nouveaux pro-
cessus. Le second, qui est au cœur de la vérification de la propriété de linéarité,
propage en arrière les informations d’utilisation des valeurs, les adresses, aux
processus inter-agissants.

1.9 GARANTIR L’ABSENCE DE MESSAGES ORPHELINS

Une seconde propriété, spécifique aux systèmes asynchrones et plus parti-
culièrement à CAP, avec sa notion d’interfaces non uniformes, c.-à-d. pouvant
évoluer avec les transitions calculées, est la détection, ou la preuve d’absence,
de messages orphelins. Un message orphelin est ici un message qui est envoyé
à une adresse qui ne peut ni ne pourra le prendre en compte.

Garantir l’absence de tels messages revient à considérer l’ensemble des che-
mins maximaux (des traces finies et infinies) du système et à vérifier que pour
chacun de ces chemins, chaque message peut être consommé.

La vérification de cette propriété est effectuée en deux phases. La première
consiste à sur-approximer l’ensemble de ces chemins maximaux ainsi que les
messages qui peuvent être accessibles aux différentes nœuds de ces chemins.
Cette phase est réalisée via un domaine abstrait spécifique, présenté dans la sec-
tion 7.3, qui représente, sous la forme d’un multigraphe orienté et étiqueté, la
causalité, c.-à-d. les séquences d’interfaces, ainsi que les productions et consom-
mations de messages. Ce domaine est utilisé sous l’analyse partitionnée pré-
sentée dans le chapitre 4. Nous obtenons donc, pour chaque lieur d’adresse
(chaque opérateur ν), un tel graphe.

La seconde phase considère successivement chaque partition et vérifie que
chaque message potentiellement présent dans une configuration peut bien être
consommé dans tous les chemins maximaux à partir de cette configuration.

1.10 RÉALISATION LOGICIELLE

L’ensemble des travaux présenté à été implanté dans un interprète abstrait
PACSA. Cet analyseur est codé en OCAML et utilise massivement son archi-
tecture de modules et de foncteurs. Le chapitre 8 présente l’outil ainsi que son
architecture modulaire.

Le schéma général de l’analyse, décrit dans la figure 8.1 est le suivant. Le
terme CAP est parsé et exprimé sous sa forme non-standard. Ensuite, le plus pe-
tit point fixe de sa sémantique collectrice est approximé par le plus petit point
fixe de la sémantique collectrice abstraite, définie par la combinaison de do-
maines abstraits.

14 ANALYSE STATIQUE D’UN CALCUL D’ACTEURS PAR INTERPRÉTATION ABSTRAITE

Dans le cadre de l’analyse des messages orphelins, une étape, supplémentaire
et non implantée à ce jour, considère la représentation effective des boîtes aux
lettres ainsi que la vérification de la consommation des messages en exploitant
l’élément abstrait calculé.

Le chapitre 8 présente également l’utilisation de l’outil sur un exemple ainsi
que son manuel d’utilisation et des captures d’écrans.

1.11 CONCLUSION

Dans cette thèse, nous avons proposé un cadre d’analyse d’un calcul d’acteur,
CAP, basé sur l’interprétation abstraite.

CAP a été introduit en 1996 dans [24]. Dans cet article de premières analyses
ont été définies par inférences de types. Les travaux suivants, [23, 30, 39], s’in-
téressent à des propriétés de plus haut niveau sur CAP comme la linéarité ou
la vérification d’absence des messages orphelins. Ces travaux reposent sur une
inférence de types à la HM(X). Cependant, ils rencontrent plusieurs limites in-
hérentes à l’approche par typage : la difficulté pour traiter l’ordre supérieur,
c.-à-d. le passage de comportement dans le cadre de CAP, ainsi que le dénom-
brement des processus ou des utilisations des adresses. Enfin, d’un point de vue
plus méthodologique, l’analyse d’une nouvelle propriété requiert de reprouver
la correction depuis le début.

Une autre approche de l’analyse de systèmes concurrents et communicants
a été introduite par VENET [107] puis généralisée par FERET [49]. Ces tech-
niques utilisent l’interprétation abstraite pour sur-approximer de façon correcte
et dans un cadre modulaire l’ensemble des états atteignables d’un système, sa
sémantique collectrice.

Les travaux présentés dans cette thèse permettent d’exploiter la seconde ap-
proche sur le calcul CAP en résolvant toutes les difficultés méthodologiques
ou de précisions rencontrées par l’inférence de types. Les contributions sont les
suivantes :

– Nous exprimons CAP dans une forme non standard facilitant les analyses.
Nous prouvons la correction de l’encodage en exhibant une bisimulation
forte entre la sémantique standard de CAP et son encodage non standard.

– Nous adaptons des domaines existants et en introduisons de nouveaux
pour représenter et analyser des propriétés spécifiques à CAP. En particu-
lier, nous améliorons l’analyse de dénombrement et proposons une analyse
partitionnée pour représenter des propriétés locales, par adresse.

– Nous introduisons un domaine abstrait spécifique à la propriété de linéa-
rité. Cette propriété exprime qu’aucune adresse n’est utilisée dans le même
terme pour lier un acteur. Le domaine proposé repose sur un calcul de flot
arrière pour propager l’utilisation des valeurs aux lieurs d’adresse. Ce do-
maine se focalise sur l’utilisation des valeurs d’adresse et exploite les pro-
priétés des autres domaines abstraits pour sur-approximer les transitions

1.11 CONCLUSION 15

calculables. Ainsi, il ne fait aucune hypothèse sur la forme des termes ana-
lysés et permet de traiter le passage de comportement de CAP.

– Enfin nous proposons une analyse permettant de garantir l’absence de mes-
sages orphelins. Dans ce contexte, les orphelins sont des messages qui sont
envoyés à une adresse qui ne pourra jamais les prendre en compte. Les
analyses précédentes pâtissaient d’un calcul de flot de contrôle imprécis
et ne permettaient pas de prendre en compte le passage de comportement.
Le proposition d’analyse adresse le problème sans contrainte sur la forme
des termes. Le processus de vérification de la propriété est effectué en deux
phases.
La première exploite le cadre de l’interprétation abstraite, défini au des-
sus, pour associer à chaque adresse un Vector Addition System with States

(VASS). Ce graphe représente la causalité entre les interfaces successives
associés aux acteurs de cette adresse ainsi que l’évolution des messages
accessibles à chaque instant. La propriété d’absence d’orphelins est alors
exprimée comme un problème de couverture sur les VASS calculés.
La seconde phase utilise l’élément calculé pour vérifier effectivement que
chaque message produit peut bien être consommé dans tous les futurs pos-
sibles.

L’ensemble des ces contributions a été implanté dans l’outil PACSA présenté
au chapitre 8.

Les travaux présentés sont un nouvelle contribution au développement pra-
tique de l’interprétation abstraite sur les calculs de processus. L’auteur soutient
que cette approche à l’analyse statique des systèmes concurrents et communi-
cants est prometteuse et présente des nombreux avantages sur les autres mé-
thodes d’analyse. En effet, du point vue de la méthodologie, la correction par
construction des domaines abstraits, ainsi que les outils de l’interprétation abs-
traite pour combiner les domaines permettent de définir des analyses de fa-
çon modulaire et avec précision. Du point de vue des résultats des analyses,
le cadre de l’interprétation abstraite permet, en utilisant les domaines abstraits
adéquats, comme les domaines relationnels, de paramétrer le coût et la préci-
sion, en particulier concernant les analyses de flot de contrôle.

Part II

MAIN CONTENT

2
INTRODUCTION & BACKGROUND

Nowadays computer systems are more than ever omnipresent and global. They
are huge systems that are executed on multiple computers and do not run for
a finite duration. We expect them to provide their service permanently. Some
of their parts are old ones and some components are new ones, plugged in as
extensions. Global systems development involves multiple developers in dif-
ferent companies and runs for years. One example of these systems is provided
by the Google® company: all the data is stored in their distributed and repli-
cated thousand of servers all over the world. The user client software requests
a local view of the data and is able to send queries from any device connected
to the global network.

These service-oriented systems promise to be the next generation of software
providing a persistent access to our data. However these systems are inherently
complex: they are big, concurrent, communicating and theoretically run forever.
So an actual concern is to define formal methods and techniques to guarantee
that they live up to the expectation of their designers.

Static analysis techniques consider system descriptions, i.e. their source code
for example, and over-approximate all the possible behaviors. They allow to
perform more or less precise and efficient analyses that predict before the ex-
ecution how they will behave when executed. Among these techniques, the
abstract interpretation methodology defined by Patrick COUSOT in [34] is a
general framework in which every static analysis could be expressed. This
technique has proved to be mature and is more and more used in the indus-
try, proving the absence of run-time error in critical embedded software such
as the 300.000 lines of code of the Airbus A380 flight control system.

Considering concurrent communicating systems, existing analyses are sim-
pler. They consider coarse and often low level descriptions of the concurrent
communications in a system. They can be compared to the early typing sys-
tems of programming languages. Actually, concurrent systems are inherently
more complex than sequential ones. Non determinism plays a major role and
produces a large set of possible program traces. Furthermore, as mentioned
above, this kind of systems usually run forever. Building the whole state space
of these systems as required by model checking techniques is hardly feasible.

This thesis targets to apply abstract interpretation-based analyses to a concur-
rent calculus. Analyses on low level process algebra like the π-calculus already
exist. But the author advocates that there is a need for analyses devoted to more
high level descriptions of concurrent systems, such as the process calculus con-

19

20 INTRODUCTION & BACKGROUND

sidered here. Analyses for low level languages are interesting as they address
the essential problematics of the concurrent paradigm.

In this thesis we consider an asynchronous process calculus based on the ac-
tor model. This calculus eases the definition of realistic systems without a com-
plex encoding. We then propose static analyses based on the abstract interpre-
tation framework to automatically compute properties of the system described
in the calculus.

This preliminary chapter is organized as follows. The first section, Section 2.1,
introduces the object of the current study: the CAP process calculus. It is an
asynchronous calculus with non uniform interfaces. This first section presents
the calculus and illustrates its use through several examples. These examples
are then be referenced all along this manuscript.

The following section, Section 2.2, presents an overview of the different ap-
proaches to the static analysis of systems. It outlines their pros and cons but
also gives an insight of their specific requirements or properties.

The Section 2.3 considers related works; mainly applications of static analysis
techniques to verification of the concurrent calculi properties.

Finally the last section, Section 2.4, outlines our contributions.

2.1 CAP: A PRIMITIVE ACTOR CALCULUS

This section introduces CAP, an actor-based process algebra. It first motivates
its creation, giving an insight to the origin of concurrent process calculi. Then
CAP is formally described. We first define its syntax in a π-calculus-like way,
then we state its semantics introducing its transition rule. Finally we give some
examples to illustrate its use.

2.1.1 A bit of history

Among the first models proposed to describe concurrent systems, the Actor
model was introduced by HEWITT in 1973 in [60]. Then, in the 80s, process
calculi, also called process algebra, were introduced like CCS [82] by MILNER

and CSP [62] by HOARE. These calculi describe algebras of terms where syn-
chronous communications are expressed as calculus computations, rewriting
matching sub-terms. In the 80s, AGHA further developed the actor model
in [3, 4]. The 90s have seen a lot of developments for process algebras. MIL-
NER proposed the π-calculus which is now the principal reference for process
calculi. In parallel, multiple calculi were defined, each with its own specificity:
asynchronicity, specific primitives to model cryptographic protocols, or mobil-
ity to allow modeling of distributed systems, etc.

Among the calculi proposed, we focus here on CAP [24], a process calculi
which is based on the actor model.

2.1 CAP: A PRIMITIVE ACTOR CALCULUS 21

This model of actors sees a system as a set of autonomous entities cooperat-
ing over a network. These are called actors. They contain data and programs
and communicate through an asynchronous point-to-point protocol. Each actor
is associated to a queue, often called mailbox, in which asynchronous commu-
nication, i.e. messages, are accumulated until their consumption by their target
actor. An actor is fully defined by two elements: on the one hand its address and
on the other hand its behavior. This behavior specifies which message can be
handled and how it is done so. When an actor handles a message it processes
the following actions:

• sending a finite number of messages to actors bound on addresses it knows;

• creating a finite number of new fresh addresses and a finite number of
actors;

• changing its own behavior.

Therefore, during a system evolution, an actor can handle more or less mes-
sages depending on its associated behaviors. The sequence of behaviors de-
pends on the ordering in which it takes messages in its mailbox, no hypothesis
is made on such ordering. In this model, the communication media is supposed
to be safe, loss-free. We impose a fairness assumption that can be stated as fol-
lows: “a message that can be infinitely often handled, will be handled”.

In such a model, the change of behavior may update the capability of an
actor, widening the set of understandable messages, but it can also completely
change its behavior. In order to illustrate this mechanism, AGHA uses in [2]
the example of an actor modeling a bank account that becomes a pizza delivery
service after the receiving of a message. It will then not be able anymore to
answer any bank-related query.

This model is also known under the name of concurrent objects with non-uniform

interfaces. It gives a natural framework to describe and implement concurrent
and distributed systems.

The calculus studied here, CAP, was introduced by COLAÇO in [24]. It is a
process calculus, in the sense of the π-calculus, that formalizes the ideas of the
actor model, as a process algebra. As a more formal description, it is more pre-
cisely defined than its original model by AGHA. In particular, its syntax is more
permissive as it allows to build ill-formed terms or to send behaviors within
messages. The objective of the analyses is then to ensure the good behavior of
such systems.

Concerning asynchronous process calculi, similar mechanisms to describe
message queuing are also present in the literature, for example in the HACL
concurrent object language of KOBAYASHI and YONEZAWA [75], in the blue cal-
culus proposed by BOUDOL [19] or in the Join calculus of FOURNET et al. [52].
We can also mentioned the predecessor of CAP, the Plasma-II language as intro-
duced by SALLÉ [79].

22 INTRODUCTION & BACKGROUND

2.1.2 Syntax

CAP is a formal process calculus. It is therefore defined as a process algebra
that describes concurrent systems based on the notions presented above. It is
a calculus in the sense that terms of this algebra can be reduced, similarly to
usual mathematical terms. In this concurrency context, process calculi reduc-
tion denotes communications. A reduction computation produces a new term
which can again be reduced. Process calculi are inherently non deterministic as
they model concurrent systems in which multiple agents, actors and messages
in CAP case, can communicate in parallel.

In CAP, processes are called actors. They communicate together using labeled
messages. An actor that sends a message does not wait for its receiving; it can
continue its execution independently of the future of the sent message. The
receiver is waiting for messages and evolves once it receives something. CAP
is thus an asynchronous calculus. It is opposed to the synchronous approach
of concurrency where agent communication is defined as a rendez-vous mecha-
nism.

As an actor-based calculus, the processes and their reductions are specified
using the notion of behavior. An actor in a given state is associated to a given
behavior, also called interface. This behavior defines the finite set of message
labels that can be handled by the actor in its current state. It also describes
how the reduction is computed when receiving such messages. We call behavior

branch the specification in a behavior of one particular message label and the
associated reduction. Behaviors are then sets of behavior branches.

The actor model introduced above imposes that actors specify their next be-
havior when communicating. This mechanism may associate successively dif-
ferent behaviors to the same address.

The usual replication operator of process algebra is here replaced by the ζ
operator in each behavior branch. This ζ(e, s) allows to bind variables e (ego)
and s (self), respectively, the address and the behavior of the interacting actor.
These variables can then be used in the associated continuation C of the be-
havior branch used (e. g. m(x̃) = ζ(e, s)C). In that sense, the only available
replication is a guarded one that necessitates a transition to be enacted. It can
be encoded using behavior branches of the form

m(x̃) = ζ(e, s)(e ⊲ s || . . .).

Let N be a finite set of actor names, i.e. addresses. Let V be a finite set of
variables and Ml be a finite set of message labels.

In order to easily reason about CAP terms, we automatically annotate them
with program points. Program points are associated to sub-terms, describing
name binders (νl), actor definitions (⊲l), messages (⊳l) and behavior branches
(ml(ỹ = . . .)).

2.1 CAP: A PRIMITIVE ACTOR CALCULUS 23

Let Lp be the finite set of program point labels and Lν be the finite set of
binder program point labels. Later, in order to ease describing terms and their
possible interactions, we denote by La, Lm and Lb the program point labels of
actor sub-terms, message sub-terms and behavior branches sub-terms, respec-
tively. Similarly we denote by L the set of program point labels: L = Lp ∪Lν.

In the following, we denote by x̃ the vector (x1, . . . , xn). The ν operators
bind new addresses in the configuration. Similarly the ζ operator and the mes-
sage variables in each behavior branches act as name binders for the associated
behavior description. For example, in the configuration (νaα)C and in the be-

havior [m
li

i (x̃i) = ζ(ei, si)Ci

i=1...n
] , occurrences of a in C, variables of x̃i in

ζ(ei, si)Ci and ei and si in Ci are bound. α and li are automatically associated
to sub-terms and allow to describe binders and interacting sub-terms, respec-
tively.

Let FN(C) be the set of free names in the configuration C. In this document
we consider only closed terms C: FN(C) = ∅

The syntax of CAP terms is defined in Figure 2.1.

Figure 2.1 CAP syntax.

a ∈ N

ei, si, x, e, s ∈ V

x̃i ∈ V ∗

m,mi ∈ Ml

l, li ∈ Lp

α,αi ∈ Lν

C ::= ∅

| νaα C

| C || C

| a ⊲l B

| a ⊳l m(P̃)

| e ⊲l B

| e ⊳l m(P̃)

B ::= s | [m
li

i (x̃) = ζ(ei, si)Ci

i=1...n
]

P ::= a | e | B

24 INTRODUCTION & BACKGROUND

2.1.3 Semantics

The operational semantics of CAP which defines term evolutions is defined “à

la Milner”, as usually in process calculi:

• by a transition relation, given in Figure 2.2, that describes a single actor
receiving a message,

• some context rules, given in Figure 2.3, that allow a reduction to occur
in a sub-part of a term, leaving the non communicating part of the term
untouched,

• a congruence relation, allowing to rearrange a term to match the pattern
described by the transition relation. It is given in Figure 2.4.

The transition relation expresses an actor receiving a message. It specifies the
behavior change of the actor as well as some potential messages sendings or
actors launching. In the following, we label such transitions by triples denoting
the matching part of the term. This label is not used in the transition computa-
tion but allows us to easily describe the transition. A transition label describes
the actor receiving the message, its behavior branch used and the message re-
ceived.

The transition can occur iff both the actor and the message are associated
to the same address, described here by the formal parameter a. The message
label must be part of the finite set of message labels handleable by the actor.
Lastly, the number of message arguments must match the number of formal
parameters associated to the behavior branch.

The reduced term is obtained by removing both the matched actor and mes-
sage from the considered term and by introducing new agents (actors and mes-
sages) described in the matched behavior branch continuation sub-term (Ck).
The formal parameters used in these agents that were not previously defined,
i.e. the variable bound by the ζ operator and the parameters of the message, are
defined by value passing.

In order to ease the readability of the transition rule of Figure 2.2, we asso-
ciate the variable B to the behavior bound by the ζ operator, denoting the whole
behavior definition of the matching actor. In the latter, we rather describes be-
havior sets using the program point label of the actor that syntactically defined
them.

2.1.4 Examples

We now illustrate CAP use considering some examples. These examples show
some specific CAP mechanisms and the possible uses of non uniform behav-
iors.

2.1 CAP: A PRIMITIVE ACTOR CALCULUS 25

Figure 2.2 CAP transition relation.

B = [m
li

i (x̃i) = ζ(ei, si)Ci

i=1,...,n
]






m = mk,

length(ỹ) = length(x̃k),

k ∈ [1, . . . , n]

a ⊲l B || a ⊳l ′
m(ỹ)

(l,lk,l ′)
−−−−−→ Ck[ek ← a, sk ← B, x̃k ← ỹ]

COMM

Figure 2.3 CAP structural context rules.

D ≡ C C −→ C ′ C ′ ≡ D ′

D −→ D ′ STRUCT
C −→ C ′

C || D −→ C ′ || D
PAR

C −→ C ′

νxC −→ νxC ′ RES

Figure 2.4 CAP congruence relation.

C ≡ D C α-conv. with D (α-conversion)

C || ∅ ≡ C (empty term)

C || D ≡ D || C (commutativity)

(C || D) || E ≡ C || (D || E) (associativity)

T ⊲ T1 ≡ T ⊲ T2 if T1 ≡B T2 (behavior equivalence)

(νa)∅ ≡ ∅ (simplification)

(νa)(νb)C ≡ (νb)(νa)C when a 6= b (permutation)

(νa)C || D ≡ (νa)(C || D) when a /∈ FN(D) (scope extrusion)

[mi(x̃i) = ζ(ei, si)Ci
i=1,...,n

] ≡B [mπ(i)(x̃π(i)) = ζ(eπ(i), sπ(i))C
′
π(i)

i=1...n
]

with π a permutation and Ci ≡ C
′
π(i)

(behavior branch permutation)

26 INTRODUCTION & BACKGROUND

Figure 2.5 A simple toy example.

νaα, bβ,

a ⊲1 [m2(x) = ζ(e, s)(x ⊲3 [n4(y) = ζ(e ′, s ′)(y ⊲5 s)] || x ⊳6 n(e))]

|| a ⊳7 m(b)

|| a ⊳8 m(b)

Example 1 In the example described in Figure 2.5, we consider an initial configura-

tion containing an actor, associated to the address a that can receive a message labeled

m. In the initial configuration, we can find at program points 7 and 8, two messages

of this kind, i.e. sent to the address a and with message label m. When the actor re-

ceive one of these two messages, it introduces in the resulting system an actor bound to

address b with, as associated behavior, the set of behavior branches defined at program

point 3. It also sends in parallel a message labeled n to the address of this new actor.

This sent message contains as an argument the address of the initial actor (a). The ini-

tial actor on a as well as the matched message m are then removed from the resulting

configuration.

After this first transition, we are in a configuration containing a unique actor on

address b, as well as two messages: a first one sent to address a and the second one sent

to address b. The actor on b can then handle the message n(a) and launch an actor on

address a with, as behavior, the initial behavior (defined at program point 1) of the first

actor, bound by the initial ζ operator.

We found again the initial state with one message a ⊳ m(b) less. In that simple

example, variables other than s only contain address values. But the initial actor on

program point 1 with a particular behavior disappears and reappears two transitions

later with its initial behavior.

Example 2 The system described in Figure 2.6 contains two actors. The first one,

bound on a, is able to handle two kinds of messages: m and send. The second, bound

to b, is only able to handle a single kind of messages, those labeled beh. The initial

configuration also contains two messages. A first one is labeled send and targets the

address a. The second one is labeledm and targets b.

In the initial configuration, there is only a single computable transition. The actor

on a is able to receive the message send. The message m is in the configuration but

cannot be handled yet. It is temporarily stuck.

After a first transition between the actor a and the message send, a message labeled

beh is sent to the address b; it contains as argument the set of behaviors of the initial

actor on a. The actor on b is able to receive it. In the associated continuation, i.e. in

the behavior branch associated to messages labeled beh in this actor, a new actor is

installed on address b with as behavior the one received in the message, i.e. in that case

the one of the initial actor on a.

2.1 CAP: A PRIMITIVE ACTOR CALCULUS 27

Figure 2.6 A simple behavior passing.

νaα, bβ, a ⊲1 [m2() = ζ(e, s)(a ⊲3 s),

send4(x) = ζ(e, s)(x ⊳5 beh(s))]

|| a ⊳6 send(b)

|| b ⊲7 [beh8(x) = ζ(e, s)(e ⊲9 x)]

|| b ⊳10 m()

Figure 2.7 Non trivial non linearity.

νaα, bβ, a ⊲1 [m2(y) = ζ(e, s)(e ⊲3 s || y ⊳4 actor(s, e))]

|| b ⊲5 [actor6(self, ego) = ζ(e, s)(e ⊲7 s || ego ⊲8 self)]

|| a ⊳9 m(b)

This new actor on b is now able to receive the initial message labeled m. This last

transition consumes both the interacting actor and the message and re-introduces in

the resulting configuration an actor on a similar to the initial one.

This example illustrates the behavior passing mechanism between two actors.

Example 3 The system given in Figure 2.7 is non linear (cf. Chapter 6), but this prop-

erty is broken here in a non trivial way. Linearity considers addresses as resources and

do not accept terms where an address is used twice to install an actor. Even if the initial

term is linear, its possible evolutions could break the property.

The actor bound to address a receives the message labeled m. When doing so, it

replicates (e ⊲ s) and sends its set of behavior branches as well as its name to the

address argument of the messagem.

The second actor, bound to b, when receiving this new message, replicates and pro-

duces a new actor using the parameter of the message.

In that example, after two transitions, there is, in the resulting configurations, two

actors bound to a with the same set of behaviors as defined at program point 1.

We recall that the behavior associated to the actor on a with the shape ζ(e, s) = (e ⊲

s || C) acts as a guarded replication. The actor replicates while C is inserted in the

resulting configuration.

Example 4 The linear cell can be modeled in CAP as presented in Figure 2.8. The

actor bound to a has two states, i.e. two behavior sets. A first one denotes the empty

cell waiting for a put message to receive its value. The second one represents the filled

cell waiting for a get message to empty itself and send back the rep message to the get

28 INTRODUCTION & BACKGROUND

Figure 2.8 Linear cell.

νaα,

a ⊲1 [put2(v) = ζ(e, sempty)(

e ⊲3 [get4(c) = ζ(e ′, sfull)(c ⊳
5 rep(v) || e ′ ⊲6 sempty)]

)]

message argument. Initially it is associated to the empty state. Such a term has to be

put in a context to be reduced.

A static analysis must be able to represent such cyclic behaviors while catching the

dependency relation between the value introduced in the cell and the one sent back to

the argument of the get message.

Example 5 Finally the last example proposed here is our more high level one, the repli-

cating server example described in Figure 2.9.

Initially the system contains a server on address a and a replicating server on address

b. When the server receives the message reify, it sends its address and behavior to the

replicating server and dies.

The replicating server introduces two new addresses and associates them to the be-

havior of the preceding server on a. It also introduces a new actor on a. For each

message received, this Aux behavior propagates the message to the replicated servers

and produces a new actor on address f to receive their response. The first response is

transmitted to the initial target and the second one destroyed.

In such a system, we are interested in statically determining which actor is able to

receive the different messages sent as well as checking that no message remains forever

pending in the configuration.

2.2 STATIC ANALYSIS METHODS

We now present the different methodologies of static analysis. We give their
pros and cons as well as the necessary steps in their sound definition.

2.2.1 Type system-based

The typing of programming languages has been the subject of many works. It
has been particularly applied with success in the context of functional or object-
oriented programming. The principal idea is to associate to each sub-term a
type denoting a collection of potential values. A type system is defined by a
type definition or a set of type definitions as well as typing rules. These rules
express the condition that sub-terms of a given term must fulfill in order to

2.2 STATIC ANALYSIS METHODS 29

Figure 2.9 Replicating server.

Serv = [m5(x̃, c) = ζ(e, s)(e ⊲6 s || . . . || c ⊳7 reply(x̃)),

reify8(c) = ζ(e, s)(c ⊳9 state_Serv(s, e))

]

DupServ = [state_Serv10(self, ego) = ζ(e, s), νgδ, hθ

(g ⊲11 self || h ⊲12 self || ego ⊲13 Aux(g, h) || e ⊲14 s)

]

Aux(g, h) = [m15(x̃, c) = ζ(e, s), νfι

(g ⊳16 m(x̃, f) || h ⊳17 m(x̃, f) || f ⊲18 Join(c) || e ⊲19 s),

reify20(c) = ζ(e, s)

(c ⊳21 state_Serv(s, e) || a ⊳22 reify(c) || b ⊳23 reify(c))

]

Join(c) = [reply24(ỹ) = ζ(e, s)(c ⊳25 reply(ỹ) || e ⊲26 [reply27(ỹ) = ∅])]

νaα, bβ, cγ, a ⊲1 Serv || a ⊳2 reify(b) || a ⊳3 m(x̃, c) || b ⊲4 DupServ

Figure 2.10 Replicated server use.

(a) Server use before replication

Serv ?

a
c

reply(v)m(x c)

(b) Replicated server

Aux ?

Serv

Join(c)

Serv

m(x f)

m(x f)

g

h

a
cf

Message sending

Actor creationreply(v)

reply(v)

reply(v)m(x c)

30 INTRODUCTION & BACKGROUND

allow its typing. Types usually contain behavioral information and well-typed
terms, depending upon the nature of type information, prevent bad behavior
from occurring during execution.

A type definition involves a precise characterization of type values and the
proof of two properties: subject reduction and type validity. The first one states
that each computation preserves the type computed. It is called continuity.
Types associated to a sub-term must be invariant with respect to the seman-
tics of the analyzed system. The second one ensures that a typed program does
not produce semantic errors.

A type system can then be used in two flavors. The first one is the type in-

ference approach. An analyzed system is given as is, without any annotation.
The typing algorithm then takes the system description and associates a type
to each sub-term, until obtaining a type for the whole system. The second ap-
proach is type checking. In that case, the system description is provided with
type values associated to some or all sub-terms. The typing algorithm ensures
that the provided types are consistent with respect to the typing rules.

This approach to static analysis has many advantages. It is syntax-directed,
associating types to sub-terms. In that sense it can be natural to define a type
system for a program. Depending on the approach chosen: inference vs. check-
ing, the type information could be more or less complex. In the first case type
systems usually infer weaker properties than the one that are provided in the
second case. But this first approach does not necessitate annotation and can be
applied to already developed programs.

Another good point of type-based analysis is the capability to compose terms.
As the type algorithm is applied locally on the term, assigning or checking a
type to each sub-term, defining a new system by composing terms does not
complicate the analysis. A new type is just computed considering the already
available types of each sub-system.

However type system are hardly able to represent very high level properties.
They lack a precise handling of control flow and often fail to differentiate non
uniform properties depending on recursive instances. Furthermore their ex-
tension to analyze another related concern often requires to prove both subject
reduction and type validity from scratch, discarding previous efforts.

2.2.2 Model checking

Another famous static analysis technique which is widely used is model check-
ing. Model checking is the process of checking whether a given structure is a
model of a given logical formula.

Model checking is also a natural approach to the static analysis. It requires to
represent in a structure, usually a graph representation, all the possible behav-
iors of a system. The logical formula, either a safety property, expressed as an

2.2 STATIC ANALYSIS METHODS 31

invariant, or a liveness one, relying on more complex paths along the graph, is
then checked within the representation of the considered system.

The principal problem of this approach is the representation of a system in
the structure. Big systems or infinite ones can hardly be representable as finite
computer-data graph structures. However the exhaustive representation of a
program possible behaviors gives access to very powerful analysis. For exam-
ple, it is one of the only techniques able to handle well in practice these liveness
properties.

2.2.3 Abstract interpretation

The idea behind the framework of Abstract Interpretation [34] is to rely on
well-known results of discrete mathematics to describe and compute proper-
ties of programs, derived from their execution semantics. The mathematical
bases come, on the one hand, from structural properties of complete lattices
or complete-partial orders, and their preservation by monotonic mappings or
semi-dual Galois connections, and, on the other hand, from fixed point theo-
rems, like those by TARSKI [103], and their constructive versions by KLEENE.

A software system under analysis has first to be expressed within this frame-
work. A famous dogma of abstract interpretation is that any semantics can be
formalized as fixed points of monotonic operators on a complete lattice. Once
the original concrete system is expressed in this way, it is related to an abstract
lattice, via a pair of functions known as the Galois connection. The semantics
can then be computed in the abstract lattice using the original concrete seman-
tics and the Galois connection. This approach allows to construct an abstract
over-approximation of the properties satisfied by the concrete system.

Many interesting problems in computer science and in software are, in gen-
eral, undecidable; this means that they cannot be answered in all cases by any
computer program devised for that purpose. The Abstract Interpretation builds
sound and decidable but necessarily incomplete analyses. Decidability means
that we obtain a result in finite time. Soundness means that the result actually
denotes an over-approximation. The drawback lies in incompleteness which ex-
presses that, while absence of errors can be fully trusted, there may be reported
errors that are “false positives”. This is often the case when the abstract lattice
does not allow a sufficiently precise model of the considered property.

Relating abstract and concrete properties

A concrete semantics is then defined on a lattice (S,⊆,⊥,∪,⊤,∩) using a fixed
point definition relying on a monotonic map F : S → S. We often call concrete

properties the elements of this concrete lattice.
A second lattice, denoting the abstract representation of concrete properties

is introduced (S#,⊑#,⊥#,⊔#,⊤#,⊓#).

32 INTRODUCTION & BACKGROUND

The general idea is to compute an over-approximation of the concrete seman-
tics using the abstract lattice. For example we can consider a least fixed point
formulation of the semantics lfp⊥F or a greatest fixed point one gfp⊤F.

In fact, relying on TARSKI fixed point theorem, the least fixed point exists and
is defined as the least upper bound of the iterates. However this computation
is generally transfinite.

Therefore we relate elements of S to elements of S#. The fixed point is then
computed in the abstract lattice and projected back into the concrete one.

The construction of abstract interpretation imposes

1. to express semantics using monotonic operators, in order to be able to
apply TARSKI fixed point theorem or its constructive version;

2. to relate elements from the concrete and abstract lattices in a sound man-
ner.

GALOIS CONNECTION BASED ABSTRACT INTERPRETATIONS The initial pro-
posal and the most well-known is the semi-dual Galois connection-based ab-
stract interpretation as presented in [34, 35]. A Galois connection between two
lattices is defined as a pair of monotonic functions (α, γ), preserving the pre-
order properties as follows:

Definition 2.1 (Galois connection) Let (S,⊆S) and (S ′,⊑S ′
) be two partially or-

der sets (posets). We introduce a Galois connection between these two posets as a pair

of functions (α, γ) such that:

• α : S→ S ′ (abstraction);

• γ : S ′ → S (concretization);

• ∀x ∈ S, x ′ ∈ S ′, α(x) ⊑S ′
x ′ ⇔ x ⊆S γ(x ′).

Therefore, we can deduce as in [32] that x ⊆ γ(α(x)). And using a monotonic
operator F: F(x) ⊆S F(γ(α(x))). We obtain:

lfp⊥F(x) ⊆ lfp⊥F(γ(α(x))) gfp⊤F(x) ⊆ gfp⊤F(γ(α(x)))

This allows to consider Galois connection-based abstract interpretation as
sound-by-construction: the monotonic properties of both the concrete seman-
tics operators and the Galois connection functions allow to transfer the fixed
point computation from the abstract to the concrete lattice defining sound post-
fixed point values in the concrete lattice.

2.2 STATIC ANALYSIS METHODS 33

CONCRETIZATION-BASED ABSTRACT INTERPRETATIONS However this kind
of Galois connection-based abstractions is not always easy to define as it im-
poses strong requirements on the existence of the pair of functions. In the pre-
ceding case, both functions, abstraction and concretization, were used at each
step of the fixed point computation. But it may happen that at least one of them
is not computer representable.

The relaxed framework of [36] solves this problem. It introduces abstractions
that are either concretization-based or abstraction-based. In this current thesis,
we rely on the concretization-based abstraction of the semantics.

In that view, an abstract semantics is defined by a pre-ordered set (S#,⊑), an
abstract iteration basis ⊥#, a monotonic concretization function γ : S# → S and
a monotonic abstract semantics function F

#.
The abstract semantics functions must be proved sound with respect to their

associated concrete functions. Let f# be an abstract operator and f its related
concrete function. They must satisfy the following property:

∀x# ∈ S#, (f ◦ γ)(x#) ⊑# (γ ◦ f#)(x#)

WIDENING AND NARROWING TECHNIQUES An important feature of the ab-
stract interpretation methodology is to provide widening and narrowing oper-
ators that allow to accelerate the convergence of the post-fixed point computa-
tion. These operators are sound in the sense that they over-approximate the
real concrete properties but they may be too wide and weaken the precision of
obtained results.

In practice, we use such widening operators when computing fixed points in
lattices that admit infinite chains with respect to their partial order. In that case,
a finite iteration is not able to reach a post-fixed point in general. Using widen-
ing operators solves the problem, guaranteeing to reach a post-fixed point in a
finite number of iterations.

Abstracting properties: abstract domains

We denote by abstract domains, lattices or posets associated to a set of abstract op-
erators. These domains can be combined to produce new ones, preserving the
necessary soundness properties. We first present some domain combinations
and mention existing abstract domains.

CARTESIAN PRODUCT Building Cartesian products of abstractions is a widely
used technique. Let A and B be two abstract domains build on the sets C#

1 and
C#

2 respectively. The obtained domain is build on pairs in C#
1 × C

#
2. Pre-order

function, union, and widening are defined pair-wise. The γ function is defined
as the meet of respective concretization functions:

γ((c1, c2)) = γA(c1)∩S γB(c2)

34 INTRODUCTION & BACKGROUND

DOMAIN REDUCTION Another great technique is the domain reduction. A
reduced domain is produced by exhibiting a reduction operator ρ applied on
all elements of the domain. Each abstract computation relies on it to obtain the
final abstraction. It must satisfies the soundness assumption:

∀a ∈ C
#, γ(a) ⊆S γ(ρ(a))

Existing domains

Since the beginning of abstract interpretation in 1977, many abstract domains
have been introduced in the literature. Furthermore existing analyses have
been rephrased as abstract interpretation domains, allowing them to be com-
bined or used in other contexts.

Among existing domains, we can mention the great number of domains ad-
dressing the abstraction of numerical properties: intervals [33], affine relation-
ships between variables [68], polyhedra [37], octagons [83], and abstract do-
mains devoted to the sound over-approximation of floating point number arith-
metic [59].

Another set of domains were introduced to define shape analysis. They allow
to represent alias properties [45], pointers and strings manipulations [7] or heap
properties using separation logic [102].

Composition of abstract interpretations

In this very general framework of abstract interpretation, every semantics could
be potentially expressed as a least fixed point or a greatest fixed point and ab-
stracted. However, its practical use often rely on a least fixed point formulation
of the collecting semantics of the system or its trace semantics.

Compared to the type system approach, the composition of these abstractions
is not directly obtained in this framework, as it requires to compute a fixed
point considering the already computed local abstract fixed points.

The practical approach of [80] for the development of abstraction for analyz-
ing Java program addresses this problem. It targets to provide an abstraction
for classes that can be used whatever their call context.

In that view, the semantics of class specific abstraction composition is defined
as a greatest fixed point built over the collecting trace semantics of each class,
itself expressed in a usual way, as a least fixed point.

This approach allows to provide abstractions that could be directly composed
without a great number of iterations to be computed.

This methodology of Abstract Interpretation is, in the author opinion, the most
promising. It provides a powerful approach that relies on strong existing re-
sults of discrete mathematics. It copes well with the undecidability results of

2.3 CONCURRENCY ANALYSIS RELATED WORKS 35

most computer-related problems using its incomplete approach to static anal-
ysis, i.e. over-approximating fixed point of a concrete semantics. These over-
approximation techniques give also the soundness guarantees that allows to
deal with big or even infinite systems, providing decidable abstractions.

2.2.4 Flow logic

Finally a last approach is the Flow logic methodology [92]. It considers an ab-
stract representation of control flow information and is a technique in-between
type system approach and abstract interpretation.

A Flow logic analysis is defined either in a syntax directed way, using in-
ductive methods or in a more abstract way, based on co-inductive methods.
Abstract properties are then combined to obtain sound wider ones.

This approach to static analysis based on a control flow or constraint-based
view of a system has to be related with HM(X) type systems [94]. Such type
systems are built over a set of constraints X. When typing a term, the typing
algorithm produces a set of constraints. The term is well-typed iff the produced
constraints are satisfiable. Solving constraints may require complex algorithm
like [5, 6] and even widening techniques.

2.3 CONCURRENCY ANALYSIS RELATED WORKS

2.3.1 Typing process calculi

Initial types for concurrency

Type systems have been largely applied on process algebras. A first sort disci-

pline was proposed for the polyadic π-calculus. It associates to each channel its
arity as well as the arity of the communicated channels. An inference algorithm
was proposed by Gay in [57]. PIERCE and SANGIORGI have then extended these
sorts in [96] to describe the usage of channels, allowing to characterize names
used to read, to write or both.

More complex typing: type checking based

In the context of concurrent objects, NIERSTRASZ introduced in [93] a type
checking algorithm to specify the communication protocol. NAJM and NIMOUR

[46, 85, 86, 87] apply this technique to objects changing dynamically of interface.
Other works involving complex type expressions like session types were de-

veloped. They rely on a checking approach to typing. The user provides a
specification of the protocol to be checked or he helps the checking algorithm
with partial type information.

36 INTRODUCTION & BACKGROUND

Among these works, we can cite BOUDOL and AMADIO [10, 18] for π exten-
sions, RAVARA, TOKORO and VASCONCELOS [99, 104] for a concurrent object
calculus named TyCo, PUNTIGAM [97] for another concurrent objects frame-
work, DAL ZILIO [42] for the blue calculus, and KOBAYASHI and YONEZAWA [71,
75, 76] concerning lock-freedom or deadlock-properties for the π calculus.

Inference based approaches for high level properties

Concerning CAP, the identified properties of interest, among traditional usage
properties or control flow analysis, are the linearity property and the orphan-
freeness property. The first one sees addresses as resources and ensures that
no address is used twice to bound an actor in a reachable configuration. The
second one targets to ensure that all sent messages will be handled in the future
and are not stuck waiting for an actor to handle them. These two properties are
complex to be checked due to both their description, the non-uniform interfaces
of CAP and its behavior passing ability.

The analyses proposed in [25, 26, 27, 28, 29] address these problems using a
HM(X) based type inference algorithm. In that context, constraints generated
when typing a term describe the causality dependencies among the different
actor interfaces. They rely on sub-typing constraints to express such relations.
Similarly to the previously mentioned type systems, their type information de-
notes the behavior of the system, but they are automatically inferred.

Another interesting work concerning the analysis of high-level properties in
a type inference flavor is the recent work of KOBAYASHI [70] that expresses
deadlock properties using complex extensions of its previous type systems but
providing an inference algorithm.

2.3.2 Flow logic analysis of concurrency

The Flow logic framework introduced by NIELSON and NIELSON in [92] has
been applied to different process algebras like the π-calculus in [15, 16], Ambi-
ents [90] or spi with applications to security in [17, 88].

However, similarly to the type system approach it hardly deals with non-
uniform properties.

2.3.3 Model checking and concurrency

Few works address the use of model checking in order to validate concurrent
communicating systems. One can cite two different approaches. A first one
as used by CRIDLIG [38], HUTCH [63], REHOF [12] or MONTANARI and PIS-
TORE [84] aims at expressing a process algebra or a concurrent language into a
finite representation in a target model such as Petri nets, LOTOS or any inher-
ently concurrent model fitted with model checking tools.

2.4 OVERVIEW OF CONTRIBUTIONS 37

A second one, addressed by DELZANNO [44], AMADIO [8] or BRUNI [20],
do not target an effective verification of system but rather to define theoreti-
cal result on the decidability of strong properties like the representation of the
reachability set. They usually consider more general structures than just pro-
cess algebras, called nominal calculi.

2.3.4 Abstract interpretation-based analysis of process calculi

Early works address the use of abstract interpretation in a concurrent context.
In [65], JAGANNATHAN and WEEKS rely on it to analyze a parallel language
using shared variables. In [11], ANDREOLI, CASTAGNETTI and PARESCHI com-
pute linear logic formulas describing evolutions of resources for a concurrent
language.

SCHMIDT introduces in [101] the first abstract interpretation-based analysis,
describing communication, for the π-calculus. In [105, 107] VENET gives a very
powerful approach to the analysis of the π-calculus. It relies on ideas of [66]
to make explicit the control flow and using an alias-like analysis as in [106]
provides an abstraction allowing to distinguish between recursive instances of
threads. However his analyses necessitates the π term to a be in a special form
allowing it to be analyzed, in particular they were not able to deal with nested
guarded replications.

Later, FERET has extended this framework and applied it to the usual polyadic
π with guarded replications [50]. He also handles other paradigms of concur-
rency such as Ambient in [51] or spi calculus. In [49], he generalizes this ap-
proach and proposes a generic framework for the analysis of mobile systems.
Calculi are first expressed in a non standard form, like the one of Venet, allow-
ing to distinguish recursive instances of threads and values. Then relational
abstractions allow to over-approximate non-uniform properties of control-flow
and to count occurrences of threads in reachable configurations.

The current thesis follows this line of thoughts.

2.4 OVERVIEW OF CONTRIBUTIONS

In this thesis we introduce an abstract interpretation-based static analysis of
CAP. The analyses presented are devoted to CAP but this general approach can
be easily generalized to any other calculus or more high level description. As
presented in the conclusion chapter, Chapter 9, the studied properties could be
applied to other calculi, like the π-calculus in order to verify strong properties.
Similarly this framework of abstract interpretation of concurrent process alge-
bra eases the extension of the analyses and could be extended to handle other
properties as well.

This document is structured as follows.

38 INTRODUCTION & BACKGROUND

2.4.1 CAP non standard semantics

The Chapter 3 introduces the abstract interpretation framework for the analysis
of concurrent systems. It gives the encoding of CAP in its non standard form
that facilitates its latter abstraction and analysis. Such non standard encoding
expresses configuration as set of threads, making explicit the history of transi-
tions that leads to the creation of both values and threads. Each thread is then
defined by a program point in the considered term, a identity marker and an
environment assigning values to variables.

The non standard encoding of CAP is proved strongly bisimilar to the stan-
dard CAP semantics presented in this chapter.

2.4.2 Abstracting collecting semantics and abstract domains

The same Chapter 3 gives an insight to the generic abstract domains presented
in [49] for abstracting the collecting semantics of terms. It presents the two prin-
cipal existing generic abstract domains: the control flow abstract domain, asso-
ciating an abstract environment to each thread program point, and the occur-
rence counting abstract domain, that represents numerical properties of thread
occurrences in reachable configurations.

The Chapter 4 introduces a new abstraction which is central in our CAP spe-
cific analysis: the partitioned abstract domain. This domain, which is paramet-
ric, allows to represent properties verified by the subset of threads associated
to each address. For a given address a, it gives the properties of actors installed
on this address and messages sent to it using the underlying abstract domain.

The Chapter 5 proposes three enhancements concerning the original occur-
rence counting abstraction. These extensions avoid some spurious transitions
that were previously computed and give a much better precision in the overall
abstract element obtained.

2.4.3 Linearity

The Chapter 6 proposes a static analysis in this framework for the linearity prop-
erty. This property expresses that each address is associated to at most one actor.
It sees address as exclusive resources that cannot be shared among multiple ac-
tors at the same time.

This analysis is performed using a specific abstract domain that computes a
usage value for each binder and thread variables.

2.4 OVERVIEW OF CONTRIBUTIONS 39

Figure 2.11 Framework overview.

CAP term

ANALYZER

Parsing

Translation to non

standard form

Lfp of the abstract

collecting

semantics

computation

Initial term

Formal rules

Term extraction

Safety Properties

 - boundedness

 - occurrence counting

 - mailbox and interfaces

 - linearity

Abstract

Domain

choice

- Control Flow

- Occurrence

 counting

- Partitioned

- Linearity

- Mailboxes &

Interfaces

....

Resulting

abstract

term

2.4.4 Orphan freeness checking

The Chapter 7 presents an analysis ensuring the orphan freeness property. In
such an asynchronous context, orphans are defined as messages that are sent to
an address where no actor is and will ever be able to handle them.

The analysis is performed in two steps. The first one relies on our abstract
interpretation framework and computes an over-approximation of the possible
sequences of actor behaviors associated to each address. It also gives an approx-
imation of messages available at each of these steps. This abstraction is com-
puted relying on the above partitioned abstract domain to obtain an address-
partitioned representation. Then the second one verifies the property in each
abstract element obtained.

2.4.5 Implementation issues

Finally the last contribution is presented in the Chapter 8. It is a tool imple-
menting all the abstract domains presented. It performs all the steps mentioned
above and presented in Figure 2.11. It takes a CAP term, transform it in its non
standard encoding and computes the least fixed point of its collecting semantics
using a reduced product of the abstract domains presented here.

The Chapter 9 concludes and presents the perspectives opened by this work.
The Figure 2.11 gives an overview of the proposed analysis framework and

the Figure 2.12 illustrates the abstract domains used and the chapters where
they are introduced.

40 INTRODUCTION & BACKGROUND

Figure 2.12 Hierarchy of abstract domains.

Chapter 7

Chapter 4

Chapter 3

Chapter 5

Abstract
Domains

Control Flow

Graph

O(n^2)

Shape

O(n^2)

Occurrence
Counting

Intervals

O(n)

Relationnal

Karr

O(n^3)

Partitioned

Interfaces &

Mailboxes

O(n^2)

Chapter 6

Linearity

3
STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

This chapter addresses the first essential step of our analysis: it defines the
expression of CAP into FERET’s framework [49].

The initial breakthrough of the static analysis of mobile systems using ab-
stract interpretation in the line of works of VENET and FERET, is the explicit
representation of history of transitions that led to the creation of values and
processes. These history markers allow to disambiguate recursive instances of
the same binder or of the same syntactic process definition.

A first step in this approach is therefore the expression of our calculus, CAP,
in this system, explicitly representing such history markers. We call this en-
coded semantics the non standard semantics.

Later, the analyzed term is encoded in its non standard form and its collect-
ing semantics abstracted. Approximating markers gives relevant information
on threads and overpasses 0-CFA analysis which does not consider such infor-
mation and is not able to differentiate such processes or values.

The chapter describes the encoding of CAP into the non standard seman-
tics as presented by FERET in [49]. The first Section 3.1 gives the intuition be-
hind both FERET’s framework and CAP encoding in it. The Section 3.2 details
the framework instantiation to model CAP and its specific features. Then the
Section 3.3 presents the principal abstract domains defined by FERET in [49]:
the control flow abstract domain and the occurrence counting abstract domain.
They are presented here as a basis of our own framework of abstract interpreta-
tion for CAP terms. Finally we conclude the chapter in Section 3.4.

This work has been firstly defined in [53] but in an incomplete version. This
chapter rather extends the later approach of the encoding as presented in [55]
and developed in [56].

3.1 THE INTUITION

3.1.1 FERET’s framework

We now briefly present the main ideas behind the current approach of concur-
rent systems analysis. We first give the intuition that motivates the proposal
of FERET’s generic non standard semantics and then explain how to express
specifics of CAP in it.

41

42 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

Non standard semantics encoding

PRINCIPAL IDEAS Usual semantics of concurrent calculi are defined using the
now traditional MILNER approach. The semantics is then described using tran-
sition rules, a congruence relation and some compatibility conditions. A draw-
back of static analyses that directly rely on this kind of semantic description is
the ambiguity that comes from α-conversion. In the congruence relation, the
standard α-conversion rule allows to rename recursive instances of the same
binder with fresh names in order to differentiate them. However existing static
analyses, like 0-CFA, merge the information associated to these recursive in-
stances leading to imprecise results.

The approach proposed by VENET and later FERET, that relies on abstract in-
terpretation to over-approximate the collecting semantics of terms, necessitates
to make the control flow information of terms explicit. Therefore they intro-
duced a notion of non standard semantics, bisimilar to the usual standard one,
that is enriched with control flow data.

Each value is then described by a pair: the binder and a history marker. The
history marker is a tree denoting the sequence of transitions that led to the
creation of this particular value. In the following, we denote by M such set of
markers.

In order, to differentiate recursive instances of the same process, as well, each
process is also tagged by a history marker denoting the sequence of transitions
that led to its creation.

STATE In the non standard encoding, a state of the system is represented as
a set of threads. Each thread is a triple (p, id, E) composed of a program point
p, a history marker id of the process and an environment E associated to the
thread.

The environment associates a pair composed of a program point and a history
marker to variable names.

Program points are automatically attributed to the interesting parts of the
analyzed term. They denote sub-terms that become threads as well as binders
creating values.

SEMANTICS The current operational semantics is not based on a labeled tran-
sition relation and a congruence relation but rather on a set of reduction rules.
The operational semantics is guided by a set of formal rules.

When a transition is computed on a given state according to one of the de-
fined formal rules, it considers one or more interacting threads. The formal
rule describes the number of interacting threads, the necessary conditions for
the transition to occur, and the value passing induced by the transition. These
conditions as well as the value passing rely on environment data.

3.1 THE INTUITION 43

Then the resulting state is computed by removing some of the interacting
threads as well as launching new ones. The threads to be launched are identi-
fied according to the interacting thread program points.

SOUNDNESS In practice, we do not represent markers as trees built over tran-
sition labels. Abstracting them to words of program points is enough to differ-
entiate recursive instances of both values and processes. In that case we only
record program points associated to the sub-term that denotes recursivity. We
have then M , L ∗

p .
An encoding is sound when created markers respect this condition of fresh-

ness: two recursive instances cannot be bound to the same marker. If the formal
rules respect some conditions in their definition, this is obtained by construc-
tion.

Another necessary condition is the bisimulation proof between the standard
semantics and its non standard encoding.

3.1.2 Instantiating the framework to model CAP semantics

In [49], FERET introduces a set of encodings into the non standard semantics.
He gives an encoding for the π calculus, the spi, the ambient and bio-ambients.
All these calculi have their own specific features but are synchronous and first
order. We now give the details of CAP encoding.

CAP features

ASYNCHRONICITY CAP is an asynchronous calculus. A way to encode this
is to associate program points, and therefore threads, to communications, i.e.

message sendings. These program points are not associated to any continua-
tion. A transition describes an actor handling a message. In that view, only
actors define continuations, i.e. threads to be launched.

HIGH-ORDERNESS One of the main difficulties is to model high-orderness in
the non standard semantics. We choose to model it using persistent definitions.
Some threads then denote behaviors. This choice pollutes states with threads
that may not be used anymore but it eases the representation of high-order and
its later abstraction.

Like in the Join calculus, computing transitions sometimes produces behav-
ior threads. When launching an actor with a statically defined behavior, we
produce one behavior thread for each behavior branch of its behavior set. The
ζ operator in behavior branches allows then to bind the behavior thread to a
variable that may be used later or be sent inside messages.

44 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

NON UNIFORM INTERFACES Non uniform interfaces is the notion for actors
to accept at a moment some set of message labels and later another one. In
our encoding, actors on the same address are represented by different threads
depending on the sub-terms that defined them. We identify the address of an
actor using the thread environment. The interface is characterized by either the
program point of the thread in case of a syntactically defined actor or the thread
environment in case of an actor which behavior is defined by a variable, i.e. a
dynamic actor.

3.2 INSTANTIATING THE GENERIC FRAMEWORK

3.2.1 Generic framework semantics

The generic non standard semantics is very parametric. We now present the
different parts that have to be defined in order to encode a new calculus.

Partial interactions

Partial interactions are associated to active sub-terms of the analyzed term.
Each sub-term labeled by a program point is able to exhibit a set of partial
interactions. These partial interactions define the variables of the matched sub-
terms that are parameters of the threads and the ones that are bound by value
passing. It also defines the continuation associated to the program point.

The partial interaction specifies whether the thread is consumed or not when
interacting.

Formal rules

Formals rules are tuples that drive transitions. They describe the number of in-
teracting threads, the partial interactions that each interacting thread program
point must be able to exhibit, the constraints between thread parameters that
allow the transition computation, and the value passing produced by the tran-
sition computation.

Syntax extraction

The term is automatically labeled with program points. The syntax extraction
associates a partial interaction to each labeled sub-term. It also defines the ini-
tial term.

3.2.2 Partial interactions

Here, in CAP, partial interactions can represent a syntactically defined actor,
one of its particular behavior branch, a dynamic actor (an actor whose behavior

3.2 INSTANTIATING THE GENERIC FRAMEWORK 45

is defined by a variable) or a sent message. This encoding, differentiating syn-
tactic actors from dynamic ones, allows us to deal with behavior passing. Once
a behavior has been declared, it is present in the configuration as a behavior
thread, while a reference to it is used in messages. Dynamic actors could then
use such a behavior if they are associated to the corresponding reference.

We thus define the set of partial interaction names

A =
{static_actorn, behaviorn,messagen | n ∈N}

∪ {dynamic_actor}

and their arities as follows:

Ari =






static_actorn 7→ (2, n+ 2),

behaviorn 7→ (1, n+ 2),

dynamic_actor 7→ (2, 0),

messagen 7→ (n+ 2, 0)






Partial interaction arities define the number of parameters and the number of
bound variables.

Both partial interactions static_actorn and behaviorn denote a particular
behavior of an actor. The first one denotes the set of behavior branches syntac-
tically defined at that point in the term when the second characterizes one of
the behavior branch of a behavior set definition. The first one is associated to
an address when the second one is alone and can be used with a dynamic actor.
The second one acts as a definition and stays in the configuration when used,
whereas the first one is deleted. They are parametrized by their message label
and bind n+ 2 variables, the two variables under the ζ operator expressing re-
flexivity as well as the parameters of the message they can handle. The first one
is also parametrized by its actor address.

The partial interaction dynamic_actor denotes a thread representing an ac-
tor. It is consumed when interacting. It only has two parameters: its name and
set of behaviors. It binds no variables.

Finally the partial interactionmessagen represents the message that is sent to
a particular address (actor). So it has n+ 2 parameters: one for the address, one
for the message name and n for the variables of this message. It is consumed
when interacting.

In the framework, we also have to define a type associated to each partial
interaction. The behaviorn partial interaction receives the type replication
that means that it will not be removed from configurations when interacting.
All other partial interactions are associated to the type computation, which
denotes their consumption when interacting.

46 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

3.2.3 Formal rules

We now define the formal rules that drive the interaction between threads. A
transition computation relies on one of the defined rules. Each rule is defined
as a tuple that denotes

1. the number of interacting threads;

2. the partial interaction that interacting threads must exhibit;

3. the compatibility constraints among interacting thread environments;

4. finally the value passing induced by the transition computation.

We recall that the partial interaction associated to each interacting thread de-
fines the number of parameters and binds variables respectively used by com-
patibility constraints and value passing.

In the case of CAP, we have two rules that describe an actor handling a mes-
sage, depending on the kind of actor we have, a static or a dynamic one.

In the following, the i-th parameter, the j-th bound variable, and the identity
of the k-th partial interaction are respectively denoted by Xk

i , Yk
j and Ik.

Both rules mimic the same schema: compatibility ensures that the message
can be received by a behavior of the actor and value passing binds variables of
the message in the actor behavior to the message parameters. The value passing
also computes the binding for the zeta (ζ) operator variables.

Communication with a static actor

The first rule needs two threads, the first one must denote a partial interaction
static_actorwhen the second one must denote a partial interactionmessagen.
We both check that the actor address (X1

1) is equal to the message receiver (X2
1)

and that the actor behavior name (X1
2) is equal to the message name (X2

2).
We then define v_passing that describes the value passing due to both the ζ

operator and message handling.
The Figure 3.1 defines the static_transn formal rule.

Communication with a dynamic actor

The second rule needs three threads: the first one must denote a partial inter-
action behaviorn, the second one a partial interaction dynamic_actor and the
third one a message messagen. We check the equality between actor address
(X2

1) and receiver (X3
1), behavior name (X1

1) and message name (X3
2).

3.2 INSTANTIATING THE GENERIC FRAMEWORK 47

Figure 3.1 Communication with a syntactically defined actor.

static_transn = (2, components, compatibility, v_passing)

where

1. components =

{
1 7→ static_actorn,

2 7→ messagen

;

2. compatibility =

{
X1

1 = X2
1;

X1
2 = X2

2;
;

3. v_passing =






Y1
1 ← X1

1;

Y1
2 ← I1;

Y1
i+2 ← X2

i+2,∀i ∈ J1;nK;

.

BEHAVIOR SET FUNCTION We define the endomorphism behavior_set on the
set Lp ×M as follows: (p,m) 7→ (p ′,m) where p is a behavior program point
and p ′ is the program point where p has been syntactically defined.

As an example, in the term ναa, a ⊲1 [foo2() = ζ(e, s)C], we have

behavior_set(2,marker) = (1,marker).

This function is statically defined while parsing the term.

With this behavior_set function we check that the behavior value associated
to the actor denotes the matched behavior partial interaction.

The value passing is defined in the same way as in the first rule. The Fig-
ure 3.2 defines the dyn_transn formal rule.

3.2.4 Syntax extraction

We now define the syntax extraction function that takes a CAP term describ-
ing the initial state of a system in the standard syntax and extracts its abstract
syntax. We first define the mapping interaction from term program points to
partial interactions. We then define the β function that is used to build non
standard threads from a CAP term.

ASSOCIATING PARTIAL INTERACTIONS TO PROGRAM POINTS We map each
program point labeled l ∈ Lp to a set of partial interactions it can exhibit and
to an interface, denoting its associated thread environment domain.

48 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

Figure 3.2 Communication with a dynamic actor.

dyn_transn = (3, components, compatibility, v_passing)

where

1. components =






1 7→ behaviorn,

2 7→ dynamic_actor,

3 7→ messagen

;

2. compatibility =






X2
1 = X3

1;

behavior_set(I1) = X2
2;

X1
1 = X3

2;

;

3. v_passing =






Y1
1 ← X2

1;

Y1
2 ← X2

2;

Y1
i+2 ← X3

i+2,∀i ∈ J1;nK;

.

A partial interaction pi is given by a tuple

pi = (s, (parameteri), (boundi), continuation)

where s ∈ A is a partial interaction name, (m,n) = Ari(s) its arity, (para-
meteri) ∈ V m its finite sequence of variables (used as Xi variables in formal
rules), (boundi) ∈ V n its finite sequence of distinct variables (used as Yi in
formal rules), and finally continuation ∈ ℘(Lp × (V → L)) its syntactic con-
tinuation. Such a continuation is called syntactic because it has to be updated
with value passing to be a valid term of the process calculus. We use both se-
quences (parameteri) and (boundi) to compute value passing, finally we deal
with the set continuation to determine which threads have to be inserted in
the system.

• The label of a program point a ⊲l [m
li

i (x̃i) = ζ(ei, si)Ci

16i6m
] is asso-

ciated to the interface {a} ∪
⋃

i FN(Ci) and to the following set of partial
interactions:






{

(static_actorn, [a,m1], [e1, s1, x̃1], β(C1, ∅))
}

{

(static_actorn, [a,m2], [e2, s2, x̃2], β(C2, ∅))
}

. . .
{

(static_actorn, [a,mm], [em, sm, x̃m], β(Cm, ∅))
}






.

3.2 INSTANTIATING THE GENERIC FRAMEWORK 49

Each of the partial interaction in the set denoting one particular behavior
branch and therefore a handleable message.

• The label of a program point a ⊲l x is associated to the interface {a, x}

and to the following set of partial interactions:
{

(dynamic_actor, [a, x], [], ∅)
}

.

• The label of a program point a ⊳l m(P̃) is associated to the interface
{a}∪FN(P̃) and to the following set of partial interactions:

{

(messagen, [a;m; P̃], ∅, ∅)
}

.

• The label of a program point li corresponding to a particular behavior of
an actor i.e. mli

i (x̃) = ζ(ei, si)Ci is associated to the interface FN(Ci) \

{ei, si} and to the following set of partial interactions:
{

(behaviorn, [mi], [ei, si, x̃], β(Ci, ∅))
}

.

EXTRACTION FUNCTION β Finally, the syntax extraction function β is induc-
tively defined over the standard syntax of the syntactic continuation, as follows:

β((νaα)C, Es) = β(C, Es[a 7→ α])

β(∅, Es) = {∅}

β(C1||C2, Es) = β(C1, Es)∪β(C2, Es)

β(a ⊲l [m
li

i (x̃i) = ζ(ei, si)Ci
i=1,...,n

], Es) = {(l, Es)}∪
⋃

i=1,...,n {(li, Es)}

β(a ⊲l B, Es) = {{(l, Es)}}

β(a ⊳l m(P̃), Es) = {{(l, Es)}}

Remark 1 (Behavior threads) One could notice that the syntax extraction of a syn-

tactically defined actor generates not only the thread associated to the actor but also all

behavior threads defining all behavior branches of the actor. The extraction of a message

in which at least one of the variables is a syntactically defined behavior would generate

a similar set of behavior threads.

This mechanism allows to launch behavior threads that may later play their role of

available behavior definitions.

Remark 2 (Static environment) We denote by Es the environment associated to threads.

Threads created by the β function are here pairs of a program point and a static envi-

ronment. At this point, no marker is present in the thread representation. And the only

variables that appears in static environments are addresses created by a ν operator in

the local continuation.

The initial term creation and the transition computation, which relies on the use of

formal rules, take these static threads and enriche them with markers:

50 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

• a marker denoting thread creation, transforming the thread definition into a triple

(pp, id, Env);

• a marker denoting value creation (by the ν) is associated to created value.

The initial state for a term S is described by inits, a set of potential continu-
ations in ℘(℘(Lp × (V → L))) defined as β(S , ∅).

3.2.5 Operational semantics

We now briefly describe how to use the preceding definitions to express in the
non standard syntax both an initial term and the computation of a transition
according to one of the aforementioned rules.

Initial configurations are obtained by launching the continuation inits with
an empty marker and an empty environment. That means inserting in an empty
configuration one thread for each pair (p, Es) in β(inits) where each value in
Es is associated to an empty marker.

We focus now on the interaction computation according to one of the two
rules defined in Section 3.2.3. First of all, we have to find a correct interaction.
It means that we have to find some threads in the current configuration that can
be associated to the right partial interactions according to the matching formal
rule. Then, we check that their interfaces satisfy the synchronization constraints.
Thus we can compute the interaction. All these steps are performed using the
generic primitives which are mentioned in parentheses. Their formal definition
is given in [49, Chap.4]:

• we remove interacting threads according to the type of their exhibited
partial interactions (exhibits, components);

• we choose a syntactic continuation for each thread;

• we compute dynamic data for each of these continuations (sync):

– we compute the marker (marker);

– we take into account name passing (vpassing);

– we create fresh variables and associate them to the correct values
(launch);

– we restrict the environment according to the interface associated to
the program point (launch);

• we remove interacting threads depending on their types (remove).

An explicit definition is given in Figure 3.3.

3.2 INSTANTIATING THE GENERIC FRAMEWORK 51

Figure 3.3 Non standard operational semantics.

LetC be a configuration. Let R = (n, components, compatibility, v_passing)
be a formal rule. Let us be given a tuple (tk)16k6n = (pk, idk, Ek)16k6n

of distinct threads and a tuple (pik)16k6n = (sk, (parameterl)
k, (bdl)

k,

continuationk)16k6n of partial interactions, such that:

1. ∀k ∈ J1;nK, exhibits(tk, pik);

2. ∀k ∈ J1;nK, components(k) = sk;

3. sync((tk), ((parameterl)
k), compatibility) 6= ⊥.

Then

C
(αi)n

−−−→ns (C \ removed)∪new_threads

with:

• removed = remove
(
(tk), (sk)

)
;

• new_threads =
⋃

16k6n launch
(
Ctk, id, E

k
)

,
where ∀k ∈ J1; 3K:

– Ctk ∈ continuationk;

– id = marker
(
(pk ′

, idk ′
, Ek ′

)16k ′6n

)
;

– E
k

= vpassing
(
k, (tk

′
)16k ′6n, ((bdl)

k)k, ((parameterl)
k)k,

v_passing
)

.

• ∀k ∈ J1;nK, αk = (R, (tk), (pik)).

52 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

3.2.6 Resulting transition system

To illustrate the use of the non standard semantics, we compute the first tran-
sition of the Example 2.6, page 27. In order to keep the presentation simple,
we do not represent variables denoting message label in thread environments.
We admit in the following that the correspondence between message label and
behavior branch label is statically determined.

The initial configuration1 is:

(1, ǫ,
[
a 7→ α, ǫ

]
) (2, ǫ,

[
a 7→ α, ǫ

]
) (4, ǫ, [])

(6, ǫ,

[
a 7→ α, ǫ

b 7→ β, ǫ

]
) (7, ǫ,

[
b 7→ β, ǫ

]
) (8, ǫ, [])

(10, ǫ,
[
b 7→ β, ǫ

]
)

At this point, the only possible transition involves threads on program points
1 and 6 and corresponds to the static_transn rule. Program point 1 is able to
exhibit the two following partial interactions:






{

(static_actorn, [a,m], [e, s], β(a ⊲3 s, ∅))
}

,
{

(static_actorn, [a, send], [e, s, x], β(x ⊳5 beh(s), ∅))
}






when the program point 6 exhibits the only partial interaction:

{

(messagen, [a, send, b], ∅, ∅)
}

We choose the second partial interaction for 1. We first check synchronization
constraints. We need that X1

1 = X2
1 and X1

2 = X2
2. So (α, ǫ) = (α, ǫ) and both

threads share the same label send. We can now compute value passing, thread
launching and removing. We have to remove interacting threads and to add
threads in β({x ⊳5 beh(s)}, ∅) = (5, []) with their environment updated by
value passing. Value passing gives the value of e, s and x, we have respectively

(α, ǫ), (1, ǫ) and (β, ǫ). Thus the launched thread is

(
5, ǫ,

[
x 7→ β, ǫ

s 7→ 1, ǫ

])
.

We obtain the new configuration:

(2, ǫ,
[
a 7→ α, ǫ

]
) (4, ǫ, []) (5, ǫ,

[
x 7→ β, ǫ

s 7→ 1, ǫ

]
)

(7, ǫ,
[
b 7→ β, ǫ

]
) (8, ǫ, []) (10, ǫ,

[
b 7→ β, ǫ

]
)

1 We can notice the absence of threads at program points 3, 5 and 9which correspond to sub-terms.
These are not present in the initial configuration.

3.2 INSTANTIATING THE GENERIC FRAMEWORK 53

Then the only possible computable transition is (7, 5), the actor on address b
receiving the new launched behmessage. We obtain

(2, ǫ,
[
a 7→ α, ǫ

]
) (4, ǫ, []) (8, ǫ, [])

(9, ǫ,

[
e 7→ β, ǫ

x 7→ 1, ǫ

]
) (10, ǫ,

[
b 7→ β, ǫ

]
)

In this configuration, a new actor is launched, associated to program point
9. This actor is associated to the address (β, ǫ) and its behavior is defined
by the variable x bounded to the behavior set (1, ǫ), i.e. [m2() = ζ(e, s)(a ⊲3

s), send4(x) = ζ(e, s)(x ⊳5 beh(s))].
Until now all computed transitions involved statically defined actors and the

launched thread markers were the one of the interacting actor.
Finally the last transition computable is 9, 2, 10. We obtain

(2, ǫ,
[
a 7→ α, ǫ

]
) (4, ǫ, []) (8, ǫ, [])

(3, 9.ǫ,

[
a 7→ α, ǫ

s 7→ 1, ǫ

]
)

In this last transition, involving a dynamic actor, we have the creation of a
new marker: 9.ǫ.

3.2.7 Soundness

We need to prove the correspondence between CAP semantics and its expres-
sion in the meta language. We first state the soundness by construction of
marker creation. Then we give the bisimulation result.

Well-formedness conditions

The soundness of marker computation is given by construction of our formal
rules. The definition of the generic non standard semantics states (cf. [49,
Sect. 4.1.3]) that formal rules involve at most one partial interaction of type
replication. Moreover if they involve one partial interaction of type replication
they must also involve one partial interaction of type computation. It allows to
ensure a thread be consumed when creating a new marker and to represent its
identity in the generated marker.

Such well-formedness condition ensures that a thread (p, id, E) can be fully
defined by the pair (p, id).

In other words: let (p, id, E) and (p ′, id ′, E ′) be two threads. Then

(p, id) = (p ′, id ′) =⇒ E = E ′

54 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

Correspondence

The following theorem states that CAP standard semantics and its non stan-
dard semantics are in strong bisimulation. They share equivalent initial states
and each possible set of transitions any state in the non standard semantics (re-
spectively in the standard one) is computable in the standard one (respectively
in the non standard one).

In the following we denote by Π the function that maps a non standard con-
figuration to its standard flavor. Its definition is given in Section A.1, page 215.

Theorem 3.1 Let S be a CAP term and C0 its associated non standard initial config-

uration. We have S ≡ Π(C0), and for each non standard configuration C and for each

word u ∈ (L 2 ∪L 3)∗ such that C0
u
−→

∗

nsC:

1. ∀λ ∈ (L 2 ∪L 3), C
λ
−→nsC

′
=⇒ Π(C)

λ
−→Π(C ′);

2. ∀λ ∈ (L 2 ∪L 3), Π(C)
λ
−→P =⇒ ∃D,

{
C

λ
−→nsD

Π(D) ≡ P
.

Proof 3.2 The proof is presented in the appendix, Section A.1, page 215.

3.3 ABSTRACTING NON STANDARD SEMANTICS

Once the non standard flavor of our calculus has been defined, we now rely on
abstract interpretation to over-approximate the semantics of terms.

We now consider abstract domains used to over-approximate the collecting
semantics of terms. Elements of such domains are abstract representations of
sets of non standard configurations.

In a first part, we give the abstract domain requirements in order to soundly
over-approximate the collecting semantics of terms. These definitions are later
used when we define our own CAP specific abstract domains.

The next two parts give an insight on generic abstract domains proposed by
FERET in [49]2 These domains are not CAP specific and can be applied to any
encoded calculus. When building an analysis, we construct abstract domains
using standard domain operators such as the coalescent product of domains.
The presented abstract domains are then a basis of our final main abstract do-
main construction. The first one addresses control flow properties while the
second one counts occurrences of threads in configurations.

2 We only present the minimal subset required for our work. We redirect the reader to FERET Ph.D.
thesis for an extensive description.

3.3 ABSTRACTING NON STANDARD SEMANTICS 55

3.3.1 Abstracting collecting semantics

Concrete collecting semantics

We aim to automatically check properties on mobile terms described as non
standard encodings.

Let Lp be a set of program points. Let Σ be a set of transition labels built
over Lp. We denote by C the set of non standard configurations with program
points in Lp.

We over-approximate the collecting semantics of an initial configurationC0 ∈

C as the least fixed point of the ∪-complete endomorphism on the complete
lattice ℘(Σ∗ ×C):

F(X) = ({ǫ}×C0)∪
{

(u.λ,C ′) ∃C ∈ C , (u,C) ∈ X and C λ
−→ C ′

}

Abstract domain requirements

We introduce the definition of an abstraction for sets of non standard terms. It
is presented as a concretization-based abstract interpretation as mentioned in
Section 2.2.3.

Definition 3.3 An abstraction is a tuple

A =
(
C

#,⊑#,⊔#,⊥#, γ#, C#
0, ,∇

)

that satisfies the following assumption:

1. (C #,⊑#) is a pre-order;

2. ⊔# is such that ∀a, b ∈ C #, a# ⊑# a⊔# b and b# ⊑# a⊔# b;

3. ⊥# ∈ C # satisfies ∀a ∈ C #,⊥# ⊑# a;

4. γ : C # → ℘(Σ∗ ×C) is a monotonic map;

5. C#
0 ∈ C # is such that {ǫ}×C0 ⊆ γ(C#

0);

6. ∈ ℘(C # × Σ× C #) is an abstract counterpart of the non standard transition

relation. It satisfies

∀C# ∈ C #,∀(u,C) ∈ γ(C#),∀λ ∈ Σ,∀C ′ ∈ C ,

C
λ
−→ C ′

=⇒ ∃C ′# ∈ C
#, (C# λ

 C ′#) and (u.λ,C ′) ∈ γ(C ′#).

7. ∇ is a widening operator. It must satisfy the property of the union operator,

⊔#, as well as provide a guaranty to converge in a finite number of iterations:

∀(e#
n)n∈N ∈

(
C #
)N

, the sequence (e∇n)n∈N defined as:
{
e∇0 = e#

0

e∇n+1 = e∇n∇e
#
n+1

is ultimately stationary.

56 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

The set C # is the abstract domain. It denotes the set of properties satisfied
by a set of reachable terms. The pre-order allows us to compare elements. The
greater an element is in the pre-order, the less precise information it contains.
The union operator ⊔# allows to build new elements, merging the data of two
abstract elements to denote the properties satisfied by both. The abstract basis
⊥# is the bottom element of our pre-order, it is used as the basis of our itera-
tion computations. The concretization function γ associates a set of concrete
elements to abstract elements modeling properties. It is used to guarantee the
soundness of the abstraction. Then the element C#

0 and the transition relation
 are abstract counterparts of the initial element and the non standard transi-
tion relation, respectively. Finally the∇ operator is used to ensure convergence
of the fixed point computation in case of abstract domains that contain infinite
sequences of totally ordered elements.

Abstract collecting semantics

Given an abstraction as defined in Definition 3.3, the abstract counterpart F
of

the concrete collecting semantics F can then be defined:

F
#(C#) =

⊔# ({
C ′# | ∃λ ∈ Σ,C# λ C ′#}⊔ {C#

0}
)

Following the above assumptions, we have

∀C# ∈ C
#,F ◦ γ(C#) ⊆ γ ◦F

#(C#)

Furthermore, as F is a ∪-complete morphism, the KLEENE constructive ver-
sion of TARSKI fixed point theorem gives us that the least fixed point of F

can
be computed as lfp∅ F =

⋃
{Fn(∅), n ∈N}.

As a consequence, we obtain the soundness of our analysis:

Theorem 3.4 lfp∅ F ⊆
⋃

{γ ◦F
#n

(⊥#), n ∈N}

The use of the ∇ operator does not break the result but rather ensure to com-
pute lfp F

in a finite number of iterations.

3.3.2 Approximating control flow

A first kind of abstraction that is crucial in this framework is the definition of ab-
stract domains to represent control flow information in threads. These abstract
domains allow to soundly over-approximate transitions. They contain the (ab-
stract) information about thread markers and their environment data. Their
use under a usual product of abstract domains allows to rely on these domains
to drive transitions. The chapter [49, Chap. 8] addresses such domains. We
implemented them and use them as basic abstract domains in our framework.
The operational semantics for control flow approximation is also generic and
can be instantiated with many domains. We sketch here its semantics and then
describe two of its instantiations.

3.3 ABSTRACTING NON STANDARD SEMANTICS 57

Abstract operational semantics

The abstract domain for control flow approximation approximates information
by program point. It associates to a given program point p ∈ Lp an abstract
representation of all threads (p, id, E) that have been present in reachable states
from the initial term.

This abstract domain approximates variable values of thread environments
as well as their marker for a given set of configurations. It is parametrized by an
abstract domain called an Atom Domain. We associate to each program point
an atom which describes the values of variables and markers of the threads that
can be associated to this program point.

When computing an interaction, we merge the interacting atoms associated
to the interacting threads (primitive reagents#), computing a molecule, and add
synchronization constraints (primitive sync#).

If they are satisfiable, i.e. the molecule is different from ⊥, the interaction is
possible. We then compute the value passing and the marker computation
(function marker_value) on the molecule. New launched threads (primitive
launch#) are created by building an atom for each of them, projecting the molecule

information on the environment associated to each launched thread. Finally we
update the atom of each program point by computing its union with the appro-
priate resulting atom.

In this generic domain, we only focus on values, so we completely abstract
away occurrences of threads and thus deletion of interacting threads.

The main atom domain we use is a product of three domains. The first two
represent equalities and disequalities among values and markers using graphs,
the third one approximates the shape of markers and values with an automa-
ton.

The operational semantics is given in Figure 3.4. It relies on several primitives
defined in the atom abstract domain.

Theorem 3.5 The control flow abstraction satisfies the soundness assumption of Defi-

nition 3.3.

Proof 3.6 The proof can be found [49, App. D].

Equality and disequality relations among variables and markers

A first kind of abstract domain is the domain of equalities and disequalities. In
this domain, elements are graphs built over non empty sets of variable names
of program point thread environment. The set of variable names is partitioned
among nodes. A node denotes variables sharing the same value. An edge be-
tween two nodes denotes a disequality relation between variables associated to
the different nodes.

The ⊥ element is the graph containing a single node with all variable names
in it and an edge from the node to itself. The abstract union may split partitions

58 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

Figure 3.4 Abstract operational semantics for control flow approximation.

Let C# ∈ C env be an abstract configuration. Let R = (n, components, com-
patibility, v_passing) be a formal rule. Let (pk)16k6n ∈ Lp be a tuple of
program point labels and (pik)16k6n = (sk, (park), (bdk), contk) be a tuple
of partial interactions. We denote by I(pk) the interface of program point pk,
i.e. the set of variable names its environment must define. We define mol by
reagents#((pk)k, (par

k)k, compatibility, C
#).

When

1. ∀k ∈ J1;nK, pik ∈ interaction(pk) ;

2. andmol 6= ⊥(I(pk))k
.

Then

C
R,(pk)k,(pik)k
−−−−−−−−−−→env

⊔
{C;new_threads}

Where

1. mol ′ = marker_value((pk)k,mol, (bd
k)k, (par

k)k, v_passing);

2. new_threads = launch#((pk, contk)k,mol
′).

into smaller ones and remove edges. The less precise element being the graph
with one singleton node for each variable and no edges.

When computing a transition, the nodes are labeled by an index in order
to differentiate their origin. The graphs associated to the different interacting
thread program points are gathered in a single molecule graph. Synchronization
constraints are represented in it, merging nodes sharing equal variable values.
If the resulting molecule is valid, i.e. no edge from a node to itself, the transition
can occur.

The value passing introduces new variables in the graph. Their value is also
modeled with equality constraints, adding new variable names in nodes that
carry their value. Finally each thread is launched by projecting the molecule

graph onto the variables of the thread environment, removing added index.
This domain can be instantiated to abstract relations either between variable

values in thread environments or marker values in threads. In the latter case,
an additional I variable is considered that represents the thread marker.

The Figure 3.5 illustrates the domain use on the first transition of the Exam-
ple 2.6 presented above in its non standard encoding.

3.3 ABSTRACTING NON STANDARD SEMANTICS 59

Figure 3.5 Transition computation for the abstract domain of equalities and dis-
equalities among variables.
The initial abstract element is the following, associating a graph element to pro-
gram points 1 and 6.

a a b1: 6:

The atom gathering gives:

a,1 a,2 b,2

=

The synchronization introduces equalities between nodes.

a,1

a,2
b,2

Then the value passing is computed for new variables: {(e, 1), (s, 1), (x, 1)}.

a,1

a,2
b,2

x,1s,1e,1

= =

a,1

a,2

e,1

b,2

x,1

s,1

Finally the molecule is projected onto each launched thread interface. In our
case, a thread at program point 5:

s x5:

60 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

Regular approximation

The preceding domains allow to carry relations between variables but they are
not able to give any information about the actual values of variables, i.e. at least
their binder. The domain of regular approximation solves this problem. It is a
simple automaton over program points denoting words over Lp.

We recall that environment values are pairs (p, id) ∈ Lp ×M where M =

L ∗
p denotes history marker letter. The regular approximation over-approximates

the possible values by abstracting words p.id ∈ L ∗
p .

Initial letters denote possible binders and the words from these initial letters
to final ones are abstractions of possible history markers.

As in the above domain on equalities and disequalities among markers, we
introduce a special variable I that denotes the thread marker. In that case, the
word over-approximates directly the value id, i.e. without any binder as a pre-
fix.

We now give the formal definitions of this abstraction since we use its infor-
mation in our later analyses. We do not detail the transitions but rather the
main domain primitives and the concretization.

ABSTRACT DOMAIN OF REGULAR APPROXIMATION We introduce the domain
RegΣm

of regular approximation of words on Σm. An automaton on the al-
phabet Σm is defined by a tuple (i, f, t, b) where i, f ∈ ℘(Σm) denote respec-
tively the set of first and last letter of words recognized by the automaton.
t ∈ (Σm → ℘(Σm)) is a map that associates to each letter of Σm its succes-
sors. Finally the boolean b ∈ {0, 1} describes whether the automaton recognizes
the empty word.

The concretization function γReg
Σm

associates to each automaton (i, f, t, b) ∈

RegΣm
, the set of words u built on Σm such that:






|u| > 0⇒ u1 ∈ i

|u| > 0⇒ u|u| ∈ f

∀i ∈ J1; |u|J, ui+1 ∈ t(ui)

|u| = 0⇒ b = 1

As is, two elements RegΣm
can recognize the same language while having

different sets i, f and different maps t. In fact, a letter could be present in i, not
in f and without any successor by t. This letter is useless in the representation.
The reduction operator ρReg allows to obtain a canonical and minimal represen-
tation of the automaton. It combines a forward reachability computation with
a backward one in order to reduce i, f and t.

The domain RegΣm
is fitted with a complete lattice structure (RegΣm

,⊑Reg
Σm

,⊓Reg
Σm

,⊔Reg
Σm

,⊥Reg
Σm

,⊤Reg
Σm

)

3.3 ABSTRACTING NON STANDARD SEMANTICS 61

• ⊑Reg
Σm

,⊓Σm
Reg and ⊔Σm

Reg are defined component-wise from usual set
operations. The intersection is reduced with the ρRef operator.

• ⊥Reg
Σm

= (∅, ∅, [λ 7→ ∅], 0);

• ⊤Reg
Σm

= (Σm, Σm, [λ 7→ Σm], 1).

In order to manipulate elements of the domain, the primitive PREFIXReg
Σm

is
defined, adding a letter as a prefix of the language recognized by the automa-
ton.

ATOM The domain Shape that relies on RegL is introduced to abstract val-
ues and markers. Each interface V is associated to elements of the domain
Atom

Shape
V = (V ∪ {I} → RegL). The automaton associated to the variable

I abstracts the shape of thread markers while the automaton associated to inter-
face variables recognize languages {l.m} where (l,m) is a value of a variable.

More formally, each element env of the domain is mapped to the set:

γ
Shape
V (env) = γ

Reg
L

(env(I))×Πv∈V {(l, id) | l.id ∈ γReg
L

(f(v))}

Operators⊑Shape
V , ⊔Shape

V are defined component-wise using⊑Reg
L

and⊔Reg
L

.
Similarly, ⊥Shape

V is defined by ⊥Reg
L

.
The Figure 3.6 illustrates the domain use on the first transition of the Exam-

ple 2.6 presented above in its non standard encoding.

3.3.3 Occurrence counting

The previous part addressed the over-approximation of control flow property
but did not address any property related to occurrences of threads in configura-
tion. The interacting thread consumption was not even modeled. We can now
rely on the control flow information to drive feasible transitions and to compute
value passing. Now we can focus on specific occurrence counting properties.

We now over-approximate the occurrences of threads in configurations as
well as the possible occurrences of transition labels in the words of transitions
since the initial configuration.

In this generic domain, we count both threads associated to a particular pro-
gram point and transition labels, the set of which is denoted by Vc. As in the
marker approximation, we abstract transition labels by only one program point.
In our case, we take the program point denoting the behavior of the actor, either
a behavior thread program point or a statically defined actor program point. In
order to differentiate program points denoting threads from program points
denoting transitions, we tag them with a boolean: Vc = Lp ×B.

We first approximate the non standard semantics by the domain N
Vc , asso-

ciating to each program point its thread occurrence in the configuration and

62 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

Figure 3.6 Transition computation for the abstract domain of regular approxi-
mation of shape.
The initial abstract element is

1

{
I (∅, ∅, ∅, T)

a (α,α, ∅, F)
6






I (∅, ∅, ∅, T)

a (α,α, ∅, F)

b (β,β, ∅, F)

The atom gathering gives

I, 1 (∅, ∅, ∅, T) a, 1 (α,α, ∅, F)

I, 2 (∅, ∅, ∅, T) a, 2 (α,α, ∅, F)

b, 2 (β,β, ∅, F)

The synchronization ensures that

a, 1⊓Reg
Σm

a, 2 = (α,α, ∅, F) 6= ⊥Reg
Σm

Then the value passing is computed for new variables: {(e, 1), (s, 1), (x, 1)}. The
marker is left untouched: the transition does not involve a replication partial
interaction.

e, 1 = a, 1⊓Reg
Σm

a2 = (α,α, ∅, F)

s, 1 = PREFIX
Reg
Σm

(1, (I, 1)) = (1, 1, ∅, F)

x, 1 = b, 2 = (β,β, ∅, F)

Finally the molecule is projected on each launched thread interface. In our case:

5






I (∅, ∅, ∅, T)

x (β,β, ∅, F)

s (1, 1, ∅, F)

3.3 ABSTRACTING NON STANDARD SEMANTICS 63

to each transition label its occurrence in the trace that leads to the configura-
tion. At the level of the collecting semantics, we obtain an element in ℘(NVc).
We then abstract such a domain by a domain NVc

which is a reduced product
between the domain of intervals indexed by Vc and the domain of affine equal-
ities [68] built over Vc.

When computing a transition, we check that the occurrences of interacting
threads are sufficient to allow it (primitive SYNCNVc

). If we do not obtain the
bottom element of our abstract domain, i.e. the synchronization constraint is
satisfiable, we add (primitive +#) the new transition label, the launched threads
(primitives β# and Σ#) and remove (primitive −#) consumed threads.

This domain formal definition can be found in [47] in a π calculus context
and in [49] in a more generic view.

Abstract domain N
Vc

A first approximation of a reachable configuration is given using the abstraction
ΠNVc which maps each pair (u,C) ∈ Σ∗ × C , to the family of natural numbers
indexed by Vc, defined as:

(ΠNVc (u,C))v =
{
Card({(p, id, E) ∈ C | p = v}) when (v, T) ∈ Vc

|ψ(u)|v when (v, F) ∈ Vc

where ψ(u) denotes the projection of the transition labels onto L ∗
p .

Each thread program point is then associated to its occurrence number in the
configuration C and each transition label to its occurrence number in u.

The concretization of a set A# of natural numbers indexed by a set Vc is then
defined:

γNVc =
{

(u,C) ∈ Σ∗ ×C ΠNVc (u,C) ∈ A#
}

Abstract domain NVc

The set of natural numbers indexed by Vc is now abstracted using the domain
NVc

. This domain is generic and must defined the primitives used to specify its
semantics. These primitives must satisfy the following constraints in order to
keep the domain sound:

Definition 3.7 (Soundness requirements for semantic primitives of NVc
)

1. it must be fitted with a pre-order relation;

2. the bottom element ⊥NVc
must verify γNVc

(⊥NVc
) = ∅ and ∀a ∈ NVc

,⊥NVc

⊑#
NVc

a. The concretization is then strict;

64 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

3. the union must be sound: ∀A ∈ ℘finite(NVc
),∪#

NVc
(A) ∈ NVc

and ∀a ∈

A,a ⊑#
NVc
∪#

NVc
(A);

4. a widening operator ∇NVc
must be defined when needed to ensure convergence

in a finite number of iteration. It must satisfy the assumption of Definition 3.3;

5. the addition +# of two families of natural numbers satisfies ∀a#, b# ∈ NVc
, a# +#

b# ∈ NVc
and {(av + bv)v∈Vc

| a ∈ γNVc
(a#), b ∈ γNVc

(b#)} ⊆ γNVc
(a# +#

b#). It is the abstract counterpart of the natural number binary addition;

6. abstract subtraction −# is similarly defined:

∀a#, b# ∈ NVc
, (a# −# b#) ∈ NVc

and

{

(av − bv)v∈V

a ∈ γNVc
(a#), b ∈ γNVc

(b#),

∀v ∈ Vc, av > bv

}

⊆ γNVc
(a# −# b#)

.

7. the synchronization condition enforces the presence of interacting threads: ∀a# ∈

NVc
, t ∈N

NVc , SYNCNVc
(t, a#) ∈ NVc

and

{a | a ∈ γNVc
(a#), av > tv,∀v ∈ Vc} ⊆ γNVc

(SYNCNVc
(t, a#));

8. the primitives 0NVc
and 1NVc(v) represent families of natural numbers indexed

by Vc that are respectively all equal to 0 in 0NVc
, and all equal to 0 except v equal

to 1 in 1NVc
(v).

Three other primitives are automatically defined using these basic primitives.
Σ# computes the abstract summation of abstract elements using the abstract
binary addition; χ#(V) associates 1 to each element of V and 0 to other variables;
finally β# is used to build abstract continuations; it maps continuations, sets
of static threads obtained using the extraction function, to abstract elements
associating occurrence 1 to variables (p, 0) ∈ Vc associated to launched threads.

Operational semantics

The operational semantics relies on the above primitives.
The initial state is obtained by calling β# on the set of initial static threads

inits.

C
NVc

0 = β#(inits)

An abstract transition is computed in four steps:

• find interacting threads;

• ensure their presence in the current abstract element;

3.3 ABSTRACTING NON STANDARD SEMANTICS 65

Figure 3.7 Abstract operational semantics for occurrence counting abstraction.

Let C# be an abstract configuration, let (pk)16k6n ∈ Lp be a tuple of program
points label and (pik)16k6n = (sk, (park), (bdk), contk) be a tuple of partial
interactions. We define the tuple t ∈ N

Vc so that tv be the occurrence of v in
(pk)16k6n.
When

1. ∀k ∈ J1;nK, pik ∈ interaction(pk) ;

2. and SYNCNVc
(t, C#) 6= ⊥NVc

.

Then

C
R,(pk)k,(pik)k
−−−−−−−−−−→#SYNCNVc

(t, C#)+# Transition+# Launched−#Consumed

Where

1. Transition = 1NVc
(ψ((pk)k) where ψ projects L 2

p ∪L 3
p to Lp;

2. Launched = Σ#
(
(β#(contk))k

)
;

3. Consumed = Σ#(1NVc
(pk))k∈J1;nK∧type(sk ′)6=replication.

• compute possible continuations;

• launch new threads, remove interacting ones of type computation, and
add the program point extracted from the transition label.

The Figure 3.7 gives a more detailed definition of the abstract transition com-
putation.

Theorem 3.8 The abstraction defined by (NVc
,⊑#

NVc
,∪#

NVc
,⊥#

NVc
, γNVc ◦ γNVc

,

C
NVc

0 , NVc
,∇NVc

) is a sound abstraction with respect to Definition 3.3.

Proof 3.9 The proof can be found [49, App. D].

Non relational abstraction

A first abstract domain to represent occurrences is the interval abstract domain.
It associates to each thread program point and to each transition label its over-
approximation as an interval of positive integers.

The synchronization primitive ensures that at least one of each interacting
thread is present. More precisely, that the over-approximation of yet computed
transitions has led to the creation of at least one of each interacting thread.

66 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

Abstract transition computation increases by one the interval associated to
the program point of every launched thread and decreases by one the inter-
val associated to the program point of each non replicating interacting thread.
When computing the union of the abstract elements before and after the ab-
stract transition computation, we obtain the over-approximation of the occur-
rence number of threads in reachable configurations.

The abstract transition also increases the transition label by one.

Relational abstraction

A second domain, a relational one, carries information of relational properties
between occurrences of threads and transition labels. We use the domain of
affine equalities as defined by KARR in [68].

Elements of this domain are mapped to elements of ℘(NVc) by the monotonic
morphism γK that associates to each affine system its set of solutions.

The union a ∪K b computes the least affine space containing the two affine
spaces a and b. This lattice does not allow infinite ascending chains, it is
bounded by the number of dimensions, i.e. the size of Vc. Therefore the ∇
operator is not necessary and is mapped to the union operator.

The abstract addition and abstract subtraction are the natural addition and
subtraction of matrices.

Finally a specific point of this domain is the absence of constraints for the
synchronization phase of the abstract semantics. It relies on the one computed
by the non relational abstraction.

Approximated reduction

Finally the main occurrence counting abstract domain proposed is a reduction
between the relational abstract domain and the non relational abstract domain.
It is a reduced product of these two domains. We do not detail precisely the
reduction operator as its enhancement is the topic of a next chapter (cf. Chap-
ter 5).

The idea is to constrain intervals associated to both transition labels and
thread program points by the relational information we have between them.
The reduction operator algorithm is in two steps. The first one tries to bound
infinite intervals. The second one tries to narrow interval bounds using rela-
tional information and interval propagation.

3.4 DISCUSSION

In this chapter, we introduced the generic framework of FERET [49] and its in-
stantiation for CAP. Analyzing the collecting semantics of a CAP term is now
done in two steps.

3.4 DISCUSSION 67

ENCODING CAP IN NON STANDARD SEMANTICS We first automatically anno-
tate the term with program points and construct the different sets and functions
describing its encoding in the non standard semantics.

The non standard representation of the term is based on an explicit represen-
tation of transitions history that led to the creation of the different values and
processes. In the CAP instantiation of the framework, values can either denote
addresses created by a ν binder or denote behaviors associated to an existing
actor in the past of the configuration. This behavior can also be a recursive in-
stance of this past actor. We choose to model behaviors as definition threads in
order to allow the modeling of the high-order feature of CAP.

The presented encoding deals with the full version of CAP without any re-
striction on the shape of terms. In particular, it handles properties specific to
CAP which were not tackled in FERET encodings of other calculi: asynchronous
communications, high-orderness, and non uniform interfaces.

OVER-APPROXIMATING THE COLLECTING SEMANTICS The second step of the
analysis is now the over-approximation of the collecting semantics of the en-
coded term relying on abstract interpretation by means of abstract domains.
The generic abstractions proposed by FERET and presented above can already
be applied on CAP encoding.

❈♦♥tr♦❧ ✢♦✇ ♣r♦♣❡rt✐❡s For example, the control flow abstract domain can
give precise information on the binders associated to the different address vari-
ables. We can also identify which are the variables that denote addresses and
which ones denote behaviors. In the later case, we have an over-approximation
of the associated behaviors as well as their internal variable assignments.

An interesting feature of this kind of approach is the precision in the use of
continuations. In other approaches like type systems, we cannot differentiate
the different behavior branches with a small complexity cost. Removing dead
branches from the result requires an incremental typing or the use of dependent
types which may be costly and complex.

In this approach, each transition matches a particular branch and the analysis
gives precise results on the subset of the behaviors used.

❖❝❝✉rr❡♥❝❡ ❝♦✉♥t✐♥❣ ♣r♦♣❡rt✐❡s The result of the occurrence counting ab-
stract domain is also very interesting. Usual type system-based approaches
have a lot of difficulties to count. The use of numerical abstract domains as
presented here is of great help for such matter. Using the result of occurrence
counting abstract domain, we can bound the number of messages, of actors, of
transitions computed using a given actor, even the number of defined behav-
iors.

The relational part can also give us mutual exclusion properties between
threads or between threads and transitions. For example, one can obtain that a

68 STATIC ANALYSIS OF CAP BY ABSTRACT INTERPRETATION

thread is present until a transition of a particular label is computed. In case of
non-terminating systems, we can obtain that the number of computation tran-
sitions for a given label is equal to the number of messages produced. In that
case, the system grows infinitely but any produced message can be handled
under fairness assumption.

OBSERVABLE PROPERTIES We now present some properties that one can ob-
serve in the analysis of terms.

❇♦✉♥❞❡❞ r❡s♦✉r❝❡s In the following example, our analysis is able to find that
at most one message is present in the system: program points 3, 7 and 9 are
associated to interval J0; 1K. The system described by this term is bounded.
Furthermore, we have the constraint p1 + p4 + p8 = 1.

νaα, νbβ, a ⊳1:J0;1K ping()

|| a ⊲2:J0;1K [ping3:J1;1K() = ζ(e, s)(b ⊳4:J0;1K pong() || e ⊲5:J0;1K s)]

|| b ⊲6:J0;1K [pong7:J1;1K() = ζ(e, s)(a ⊳8:J0;1K ping() || e ⊲9:J0;1K s)]

In addition, we can also detect whether a system does not generate an un-
bounded number of actors present at the same time in a given configuration.

νaα, a ⊲1:J0;1K [m2:J1;1K() = ζ(e, s)(νbβb ⊲3:J0;1K s || b ⊳4:J0;1K m())]

|| a ⊳5:J0;1K m()

In the preceding example, we automatically detect that the number of threads
associated to program point 3 lies in J0; 1K.

❯♥r❡❛❝❤❛❜❧❡ ❇❡❤❛✈✐♦rs We are interested in determining the subset of behav-
iors that are never used for each set of behaviors. Due to its higher-order ca-
pability, CAP allows to send the set of behaviors syntactically associated to an
actor to other actors. Therefore the use of the behavior set highly depends on
the exchanged messages.

In the following example, all the branches of the behavior syntactically de-
fined at program point 1 are used in the over-approximation. We obtain such
a property by checking that each label of transition is present at least once or
its continuation has been launched. i.e. ∀t ∈ Vc, Inter(t) 6= J0; 0K where Inter
is the function that maps each element of Vc to its image in interval part of the
analysis post fixed point.

3.4 DISCUSSION 69

νaα, bβ, cγ, a ⊲1 [m2
0() = ζ(e, s)(b ⊳3 n1(s) || b ⊳4 m1(c)),

m5
1(dest) = ζ(e, s)(dest ⊳6 m2()),

m7
2() = ζ(e, s)(∅)]

|| b ⊲8 [n9
1(self) = ζ(e, s)(e ⊲10 self || c ⊳11 n2(self))]

|| c ⊲12 [n13
2 (self) = ζ(e, s)(e ⊲14 self)]

|| a ⊳15 m0()

We can use such an analysis to clean the term with garbage collecting-like
mechanisms.

The presented abstract domains are highly generic and could be applied to
any encoded calculus. However, in order to check more high level properties,
we need to define abstractions that rely on CAP specifics to compute properties.

One of the necessary kind of properties we want to compute is the proper-
ties that are valid for a given address and not system wide. The next chapter,
Chapter 4, proposes such an analysis by defining a partitioned abstract domain.

Another drawback of the presented abstractions is the precision of the occur-
rence counting one. It gives very good results but some spurious transitions
are computed that should be avoided. Chapter 5 addresses such enhancements
that are necessary to obtain precise properties.

4
PARTITIONED ABSTRACT DOMAIN

The latter chapter introduces the encoding of CAP into its non standard form
and proposes two analyses that can be directly applied on this encoding.

The first analysis catches dynamic properties about environment values and
thread markers. It allows to distinguish recursive instances of both threads and
values and to forbid some unfeasible transitions. This domain, which is also
parametric and can be instantiated with different underlying domains, is essen-
tial to the global analysis of a term, as it literally drives the abstract transition
computations, over-approximating, with precision, threads that could or could
not interact. A drawback of it is that this domain is thread specific and does
not give any information about concurrency properties, i.e. existence of threads
that interact or are mutually exclusive, etc.

The second analysis palliates this weakness, relying on a numerical abstrac-
tion to describe occurrences of threads in configurations as well as occurrences
of transition labels in traces of reachable configurations. It takes advantage of
the wide set of numerical abstract domains that exist in the literature. But again,
a drawback is that any occurrence counting property inferred by the analysis is
global to the whole term.

Global properties are of interest when we consider the boundedness of a
system, or when considering control flow properties, for example the binder
that could be associated to the address of a given actor. However more precise
properties are often expressed locally. An analysis such as the two preceding
ones may compute locally precise data, but the collecting semantics expression
merges the obtained property with the previously computed one and weakens
the result. Local properties also arise when we are interested to obtain informa-
tion specific to a sub-term.

In CAP, a notion that already emerges when describing the calculus, is the
centering of any interaction around the targeted address. In fact, any commu-
nication involves a single address. Furthermore the main properties that we
are interested in are the linearity property or the orphan freeness property, as
briefly presented in Section 2.4. Both of these are inherently address centric.
The first one considers the usage of addresses to install actors. The second one
aims at ensuring that the sequence of behaviors associated to a given address
is always able to handle sent messages. In both cases, the property has to be
checked per address.

In this chapter, we propose another abstract domain that aims at partition-
ing computed properties by address. The first section, Section 4.1, illustrates
the partitioning on CAP terms both in the concrete and in the abstract. Then

71

72 PARTITIONED ABSTRACT DOMAIN

we propose in Section 4.2 a parametric partitioned abstract domain. Section 4.3
gives examples of this domain use, relying on the previously defined abstract
domains. In order to support more domains, and in particular to prepare the
work for the analyses presented in the next chapters, we introduce in Section 4.4
enhancements that modify the abstraction, enhancing accuracy. Finally the last
section, Section 4.5 compares this abstraction to another partitioning frame-
work proposed by FERET in [49, Chap. 10] and concludes.

4.1 PARTITIONING PROPERTIES BY ADDRESS

We now propose to partition threads given their address and later, in the ab-
stract, given their address binder. We first propose a partitioned flavor of the
CAP non standard semantics. Then we introduce the key ideas behind its ab-
straction.

4.1.1 Concrete address partitioning

Going back to the early definition of actors, messages sent to the same address
constitute the mailbox of the actor associated to this address. A communication
is then an actor that handles a message from its own mailbox.

We now redefine parts of the non standard semantics in order to make these
mailboxes explicit. The primitives that are non presented in the current chapter
are left untouched.

Address partitioning

A configuration is now a set of partition units indexed by a value in Lν ×M .
We recall that Lν denotes the set of program points of address binders and M

denotes the set of identity markers built over transition labels or their abstrac-
tions.

We consider a special partition unit which contains the behavior threads. In
fact, these threads are our behavior definitions and are not specific to a given
address.

Each partition unit is a set of threads in C = Cunit:

Cunit = ℘(Lp ×M × (V → L ×M)).

We introduce the set Cpart:

Cpart = Cunit × ((Lν ×M)→ Cunit).

In the following, we denote by C|x the subset of C threads associated to the
address x ∈ Lν×M . Similarly C|beh denotes the subset of threads of C associ-
ated to behavior program points Lb.

4.1 PARTITIONING PROPERTIES BY ADDRESS 73

(
C|beh, λx.C|x

)
∈ Cpart

We now detail the different parts of the non standard semantics that are mod-
ified in this partitioned version. Used primitives that are not defined here can
be found in the previous chapter.

EXTRACTING ADDRESS In order to easily obtain the address value associated
to a given thread, we introduce the primitive address : Lp ×M × (V → L ×

M)→ L ×M . It is only defined on actor and message threads.

Definition 4.1 (address extraction) Let t = (p, id, E) be a thread. Let pi = (s, (pa-

rameterl), (bdl), continuation) be a partial interaction. We define the primitive

address as follows:

address(t) , E[parameter1]

when s ∈






static_actorn,

dynamic_actor,

messagen

iff exhibits(t, pi).

SYNCHRONIZATION The synchronization primitive sync is modified to ex-
plicitly restrict interacting actor and message to be part of the same partition
unit.

Definition 4.2 (synchronization) Let n ∈ N be an integer. Let (tk)16k6n = (pk,

idk, Ek) be a n-tuple of interacting threads. We denote by pa and pm the actor thread

and message thread in (tk), respectively. Let (parameterl)
k be a n-tuple of parame-

ters and compatibility be a set of synchronization constraints. We denote by sync

the original synchronization primitive as defined in the non standard semantics. The

relation syncpart is defined as follows:

syncpart((t
k), ((parameterl)

k), compatibility) ,

address(ta) = address(tm) ∧

sync((tk), ((parameterl)
k), compatibility)

The introduced constraint is redundant since each of our two formal rules
contains a synchronization constraint that expresses that both actor and mes-
sage must be bound to the same address. However, we make it more explicit
using the address primitive.

74 PARTITIONED ABSTRACT DOMAIN

REMOVING INTERACTING THREADS Removed threads are interacting threads
that are not behavior definitions. Again they are all part of the same interacting
partition unit. We build the partitioned set of threads to be removed, using the
primitive removepart.

Definition 4.3 (removing interacting threads) Let n ∈ N be an integer. Let (tk)

16k6n be a n-tuple of threads. Let (typek)16k6n be a n-tuple of partial interaction

types. We denote by ta the actor thread in (tk)k , i.e. typea ∈ {static_actorn,

dynamic_actorn}. The primitive removepart is defined as follows:

removepart

(
(tk)16k6n, (type

k)16k6n

)
,

address(ta) 7→ {tk | 1 6 k 6 n∧ typek 6= replication}

LAUNCHING NEW THREADS Launching new threads follows the same line:
the set of static threads associated to each continuation is updated using value
passing and marker computation. Then the obtained set of threads is split
among partition units depending on the associated address. New behavior
threads are put apart outside partition units to be easily added to the set of
behavior definitions C|beh.

It relies on the primitive update that associates the new computed marker to
variables defined in each continuation static thread environment.

Definition 4.4 (continuation launching) Let Ct ∈ ℘(Lp × (V → L)) be a set of

continuations. Let id ∈ M be a history marker and let E ∈ ℘(V → L ×M) be an

environment. We define the launchpart primitive as:

launchpart(Ct, id, E) , (beh, part)

where

• launched =
{

(p, id, E)
I(p) the interface of program point p,

(p, Es) ∈ Ct

}

;

• E = (update(id, E, Es))|I(p);

• beh = {(p, id, E) ∈ launched | p ∈ Lb};

• part = λx.{t ∈ launched | x = address(t)}.

In the launched set of threads, some threads may be associated to an address
which has just been created by the update primitive. In that case, a new parti-
tion unit is created.

Operational semantics

The operational semantics is detailed in Figure 4.1. The initial configuration is
obtained as before, by launching the initial static thread with an empty marker.
This launching associates to each initial thread its adequate partition unit. Ini-
tial behavior threads have to be kept separate.

4.1 PARTITIONING PROPERTIES BY ADDRESS 75

Figure 4.1 CAP non standard partitioned semantics.

Let (cb, part) be a partitioned configuration. Let R = (n, components, com-
patibility, v_passing) be a formal rule. Let us be given a tuple (tk)16k6n =

(pk, idk, Ek)16k6n ∈ Cn of distinct threads and a tuple (pik)16k6n =

(sk, (parameterkl), (bdk
l), continuationk)16k6n of partial interactions, such

that:

1. ∀k ∈ J1;nK, exhibits(tk, pik);

2. ∀k ∈ J1;nK, components(k) = sk;

3. syncpart((t
k), (parameterkl), compatibility) 6= ⊥.

Then

(cb, part)
(αi)n

−−−→

(cb ∪new_behaviors, part \part removed∪part news_threads)

with:

• removed = removepart

(
(tk), (sk)

)
;

• (new_behaviors, new_threads_part) =⋃
16k6n launchpart

(
Ctk, id, E

k
)

,
where ∀k ∈ J1; 3K:

– Ctk ∈ continuationk;

– id = marker
(
(pk ′

, idk ′
, Ek ′

)16k ′6n

)
;

– E
k

= vpassing
(
k, (tk

′
)16k ′6n, ((bdl)

k)k, ((parameterl)
k)k,

communications
)

.

• ∀k ∈ J1;nK, αk = (R, (tk), (pik)).

where ∪part and \part denote the usual sets join and sets minus operators re-
spectively point-wise extended to the set Cpart indexed by address values.

76 PARTITIONED ABSTRACT DOMAIN

Soundness

We now state the soundness of this partitioned version of the non standard
semantics for CAP.

Theorem 4.5 (Equivalence) The partitioned collecting non standard semantics and

the collecting non standard semantics are in strong bisimulation.

Proof 4.6 One can exhibit a Galois bijection between the C and Cpart. A Galois

bijection is a Galois connection (α, γ) where both α and γ functions are bijection. Such

connection does not introduce any abstraction. It is also called an exact abstraction.

The α function maps a partitioned non standard configuration to a non standard

configuration:

α(u, (cbeh, part)) = (u, cbeh ∪ {part(address) |part(address) is defined })

The γ function is more complex, it partitions the set of threads of given non standard

configuration into a set of partition units.

γ(C) = (cbeh, part)

where C = cbeh

⋃
{part(x) | part(x) is defined} is a partition of C.

Furthermore

∀t = (p, id, E),

{
t ∈ cbeh =⇒ st = {behaviorn}

t ∈ part(x) =⇒ address(t) = x

where st =

{

s

∣∣∣∣∣
∃(s, param, bounded, cont) ∈ partial_interactions,

exhibits(p, pi)

}

.

This Galois bijection is compatible with both semantics. Therefore they are in strong

bisimulation. This relation also applies for the collecting semantics lifting of both the

non standard semantics and partitioned non standard semantics.

Example

Let us now illustrate this partitioning on an example that we follow all along
this chapter. The example term given in Example 4.1 describes a simple system.
Initially a single actor is associated to address a. It is able to handle messages la-
beled install. Two messages with such labels are sent to this address a. When
the actor receives such a message, it dies but associates its behavior to the argu-
ment variable x of the received message. It also produces a new install labeled
message containing a new value b.

There is therefore two different initial traces. On the one hand, the actor
can receive the two initial messages, one after the other, replicating on address
a. Then it handles one of the two produced install messages. It is, at that

4.1 PARTITIONING PROPERTIES BY ADDRESS 77

stage, in a state where it can handle the last produced install message and
be installed on this last address, recursively. The other first produced install
message remains in the configuration forever.

On the other hand, the initial trace is the handling of only one of the two
initial message, followed by an infinite sequence handling produced messages
on addresses b. In that case, the remaining initial message sent on address a
remains in reachable configurations.

Example 4.1 CAP example for the thread partitioning.

νaα, a ⊲1
[
install2(x) = ζ(e, s)

(
x ⊲3 s || νbβ, x ⊳4 install(b)

)]

|| a ⊳5 install(a) || a ⊳6 install(a)

The Figure 4.2 illustrates one of these initial transitions in the partitioned
flavor of the non standard semantics.

4.1.2 Abstract address partitioning

We now consider the abstraction of the partitioned concrete semantics.

Merging recursive instance

A first need when defining an abstraction is to obtain a decidable one. A draw-
back of current formalization of the partitioned concrete non standard seman-
tics lies in the possibly unbounded number of partition units.

The solution proposed is to merge abstract properties specific to a given
binder. The abstract element of a partitioned abstract domain is then a pair
(b, X#) where b denotes the binder and X# the properties specific to this binder,
expressed in an underlying abstract domain.

The abstract continuation launching takes care of safely merging partition
elements associated to recursive instances of the same binder. When launching
actor or message threads that are bound to a new address, they are launched in
a new abstract element of the underlying domain. The union computation in
the fixed point iteration merges both abstract elements to obtain properties that
are valid for both the previously seen instances of the binder and the new one.

The choice of partitioning abstract threads, i.e. properties, by binders instead
of addresses gives a decidable abstraction and allows to represent properties
valid for all addresses on this binder.

In fact the partitioning could be defined with any abstraction of the address
value. For example, one could imagine to partition abstract threads by both
the binder and an abstract representation of its marker. This could give more
precise information while still lying in a decidable framework.

78 PARTITIONED ABSTRACT DOMAIN

Figure 4.2 CAP example concrete address partitioning.

(1,5)
−−−→

beh (2, ǫ, [])

α, ǫ

(
1, ǫ,

[
a 7→ α, ǫ

])
(
5, ǫ,

[
a 7→ α, ǫ

])
(
6, ǫ,

[
a 7→ α, ǫ

])

beh (2, ǫ, [])

α, ǫ

(
3, ǫ,

[
x 7→ α, ǫ

s 7→ 2, ǫ

])

(
4, ǫ,

[
x 7→ α, ǫ

b 7→ β, ǫ

])

(
6, ǫ,

[
a 7→ α, ǫ

])

(2,3,4)
−−−−→

(2,3,4)
−−−−→

beh (2, ǫ, [])

α, ǫ
(
6, ǫ,

[
a 7→ α, ǫ

])

β, ǫ

(
3, 3,

[
x 7→ β, ǫ

s 7→ 2, ǫ

])

(
4, 3,

[
x 7→ β, ǫ

b 7→ β, 3

])

beh (2, ǫ, [])

α, ǫ
(
6, ǫ,

[
a 7→ α, ǫ

])

β, ǫ ∅

β, 3

(
3, 33,

[
x 7→ β, 3

s 7→ 2, ǫ

])

(
4, 33,

[
x 7→ β, 3

b 7→ β, 33

])

(2,3,4)
−−−−→

(2,3,4)
−−−−→

beh (2, ǫ, [])

α, ǫ
(
6, ǫ,

[
a 7→ α, ǫ

])

β, ǫ ∅

β, 3 ∅

β, 33

(
3, 333,

[
x 7→ β, 33

s 7→ 2, ǫ

])

(
4, 333,

[
x 7→ β, 33

b 7→ β, 333

])

beh (2, ǫ, [])

α, ǫ
(
6, ǫ,

[
a 7→ α, ǫ

])

β, ǫ ∅

β, 3 ∅

β, 33 ∅

β, 333

(
3, 3333,

[
x 7→ β, 333

s 7→ 2, ǫ

])

(
4, 3333,

[
x 7→ β, 333

b 7→ β, 3333

])

In this example trace, the threads are partitioned depending on their associated
address. The single behavior definition ever produced is kept in a special parti-
tion unit beh. This system is non-terminating and contains a bounded number
of threads. However it creates infinitely many partition units, as it associates a
new actor and a new message on a new address at each message reception.

4.1 PARTITIONING PROPERTIES BY ADDRESS 79

Parametric underlying domain

A partitioned abstract domain has to rely on two abstractions. A first one is a
control flow abstraction. It allows to over-approximate the address and there-
fore the binder of each launched thread.

The second abstraction is associated to each partition unit, approximating the
set of actors and messages associated to the given binder.

We now impose a set of primitives and their soundness requirements that
underlying domains must define and satisfy. They are then used in the parti-
tioned abstract operational semantics to compute abstract transitions on the set
of partition units.

Definition 4.7 (Underlying abstract domain) Let (C base,⊑base,⊔base,⊥base,

γbase, C
base
0 ,∇base) be a sound abstract domain with respect to the condition (1-5,7)

of Definition 3.3. This domain must also specify the following primitives:

• A synchronization primitive syncbase such that:

for all x ∈ C base and transition involving the rule R on the program points

(pk)k and the parameters (parametersk)k:





(u,C) ∈ γbase(x)

∣∣∣∣∣∣
∀k, (pk, idk, Ek) ∈ C and

∃C ′ s.t. C
R,(pk)
−−−−→ C ′






⊆ γbase(syncbase(R, (pk), (parameterk), x))

.

• A primitive computing the transition on the current interacting partition unit:

update. It must satisfy:






(u ′, C ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(u,C)s.t.






∃id ∈M , (u,C|(a,id)) ⊆ γbase(unita)

{(pa, ida, Ea); (pm, idm, Em)} ⊆ C|(a,id) ∩ γbase(synced)

C
R,(pk),(pik)
−−−−−−−−−→ C ′

C ′
|(a,id)

= C|(a,id) \

{
(pa, ida, Ea);

(pm, idm, Em)

}

∪ launch(contsa)






⊆ γbase(updatebase(R, (pk), (pik), synced, a, unita, contsa))

where C|x denotes the subset of threads in C associated to the address x and

launch denotes the concrete computation of threads launching. R denotes a for-

mal rule, on the program points (pk)k and partial interactions (pik)k, consider-

ing the abstract synchronized element synced ∈ C base, the current partition

unit binder a ∈ Lν and its associated interacting abstract element unita ∈

C base, and the set of static threads to be launched contsa ∈ ℘(Lp × (V →

L)).

80 PARTITIONED ABSTRACT DOMAIN

• A launch primitive launch that launches continuations considering the given

synchronized abstract element synced. It must satisfy:






(u ′, C ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(u,C)s.t.






∃x ∈ Lν ×M , s.t.

{(pa, ida, Ea); (pm, idm, Em)} ⊆ C|x ∩ γbase(synced)

∀id ∈M , (u,C|(b,id)) ⊆ γbase(unitb)

C
R,(pk),(pik)
−−−−−−−−−→ C ′

∃id ′ ∈M , C ′
|(b,id ′)

= C|(b,id ′) ∪ launch(contsb)






⊆ γbase(launchbase(R, (pk), (pik), synced, b, unitb, contsb)),

where C|x denotes the subset of threads in C associated to the address x and

launch denotes the concrete computation of threads launching. R denotes a for-

mal rule, on the program points (pk)k and partial interactions (pik)k, consider-

ing the abstract synchronized element synced ∈ C base, the current partition

unit binder b ∈ Lν and its associated abstract element unitb ∈ C base and the

set of static threads to launch conts ∈ ℘(Lp × (V → L)).

• A primitive to launch behavior threads, launch_beh, such that:






(u ′, C ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(u,C)s.t.






∃x ∈ Lν ×M , s.t.

{(pa, ida, Ea); (pm, idm, Em)} ⊆ C|x ∩ γbase(synced)

C|beh ⊆ γbase(beh)

C
R,(pk),(pik)
−−−−−−−−−→ C ′

C ′
|beh

= C|beh ∪ launch(contbeh)






⊆ γbase(launch_behbase(R, (pk), (pik), synced, beh, contbeh),)

using similar arguments as above.

4.2 PARAMETRIC ABSTRACT PARTITIONING

4.2.1 Intuition

As mentioned above, the partitioned abstract domain we propose relies on two
underlying domains.

The first domain approximates control flow. As before, it drives the abstract
transitions, forbidding some spurious ones.

Then, relying on the abstract element associated to each interacting actor and
message program point, we compute the set of partition units, where both actor
and message exist.

Once the transition is computable, we rely again on the computed control
flow information to project the launched threads among the different partition
units. It is not a partition sensu stricto of the continuation, as each thread can be
associated to different partitions depending on the precision of the control flow
approximation.

4.2 PARAMETRIC ABSTRACT PARTITIONING 81

For each possible interacting actor and message unit that can compute the
transition, each unit is then updated, launching new threads associated to it,
with the synchronization element obtained at the previous step for the consid-
ered unit.

We first introduce the parametric abstract domain. Then we define its ab-
stract operational semantics.

4.2.2 Abstract Domain

Lattices

We first consider the control flow abstract domain (C env,⊑env,⊔env,⊥env,

γenv, C
env
0 ,→env,∇

env) as presented in Chapter 3. This domain drives the
abstract transitions and provides an over-approximation of binders associated
to threads in order to soundly represent them in the different partition units.

Then we consider the abstract domain (C base,⊑base,⊔base,⊥base, γbase,

Cbase
0 ,∇base) as a partitioned domain satisfying the Definition 4.7. Elements

of C base are associated to each partition unit labels.
We introduce Units as such a finite set of partition unit labels. We define

Units as the set of binder program points: Units = Lν.
The partitioned part of our domain can then be defined as:

Part(Units,C base) = C
base × (Units×C

base).

We extend the pre-order relation point-wise, the bottom element and the union
operator of C base to pairs (u, c#) ∈ Part(Units, C base). Then the pre-order
⊑part, the union operator ⊔part, the bottom element ⊥part and the widening
operator ∇part are defined component-wise using either their equivalent in
C base or their point-wise extension to (Units×C base).

The main domain is now a product of the control flow abstraction and the
partitioned one.

C
, C

env × Part(Units,C base)

All operators of the considered principal domain are defined pair-wisely. It
defines the following lattice:

(C #,⊑#,⊔#,⊥#, γ#, C#
0,→

#,∇#)

Concretization

Let us consider the concretization operators associated to the different abstract
domains embedded in our partitioned abstraction.

The main concretization γ# is defined as in Cartesian products:

γ#(cf_flow, part) , γenv(cf_flow)∩ γpart(part)

82 PARTITIONED ABSTRACT DOMAIN

The concretization γpart of the partitioned part ensures that any thread in
any reachable configuration is included in the concretization γbase of the ab-
stract element associated to its address, or the behavior abstract element when
considering behavior threads.






(u,C)

∀(p, id, E) ∈ C,

either p ∈ Lb and (p, id, E) ∈ γbase(beh)

either






p ∈ La ∪Lm,

∃id ′ ∈M , E[address_var(p)] = (a, id ′),

∃(a, unita) ∈ cu, (p, id, E) ∈ γbase(unita)






⊆ γpart(beh, cu)

4.2.3 Semantics primitives

In order to define the initial abstraction C#
0 of our principal domain as well as

its associated abstract transition→#, we first introduce some primitives.

Unit label over-approximation

An essential part of this partitioned abstraction is the sound over-approximation
of the addresses associated to threads. The primitive address# computes such
approximation, relying on an abstract control flow element.

ADDRESS BINDER APPROXIMATION The primitive address# : Lp × C env →

Lp is the abstract counterpart of the address primitive presented above in Sec-
tion 4.1.1. It maps a thread program point to its possible binders considering
an abstract control flow element.

Definition 4.8 (thread address binder) Let p ∈ Lp be a program point and cenv ∈

C env an abstract element for the control flow approximation. We define the primitive

address#(p, cenv) as:

address#(p, cenv) ,

{

b

∣∣∣∣∣
(p, id, E) ∈ γenv(cenv)

∃b ∈ Lν,m ∈M , s.t. (b,m) = address((p, id, E))

}

In practice, abstract domains used in the control flow part can be extended to
construct such information. For example, the shape approximation, presented
in Section 3.3.2, could be easily extended in such a way, returning initial nodes
of the program point address variable.

THREAD ADDRESS VARIABLE Another simple but helpful primitive address_var
associates to each valid program point its environment variable that describes
its address.

4.2 PARAMETRIC ABSTRACT PARTITIONING 83

Definition 4.9 (thread address variable) Let p ∈ Lp be an actor or message pro-

gram point. Let pi = (s, (parameterl), (bdl), continuation) be a partial interac-

tion such that exhibits(p, pi).

We define the function address_var(p). It relies on term extraction to identify the

address variable of a given thread.

address_var(p) , parameter1 when s ∈






static_actorn,

dynamic_actor,

messagen






.

Local synchronization

The local synchronization is computed in multiple steps and necessitates some
specific primitives. We first sketch the synchronization, introducing new prim-
itives. Their definition follows.

1. Relying on the control flow abstract element, the synchronization is en-
forced using the reagents# primitive of the underlying control flow ab-
stract domain.

2. Using this control flow abstract element, binders that can be associated
to both address of interacting actor and message threads are extracted
(primitive addressenv).

3. The synchronization constraints are enforced in the underlying partitioned
abstract element associated to partition units associated to these extracted
possible binders (primitive syncpart).

4. The abstract transition is computable if the synchronized control flow ab-
stract element is not bottom and if at least one synchronized partitioned
abstract element is not bottom.

SYNCHRONIZING PARTITIONED ABSTRACT ELEMENT The synchronization com-
putation in the partitioned C base domain has two purposes. The first one is to
restrict the transition. The second one is to keep this modified abstraction and
rely on it when launching new threads in an existing unit or in a new one.

Definition 4.10 (partitioned synchronization) Let R be a formal rule. Let (pk)k ∈

L k
p be a set of interacting thread program points. Let (parameterk)k be a k-tuple

of parameter variables. Let units ∈ Units be a set of partition unit labels and

part ∈ Part(Units,C base)# be an abstract partitioned element, a set of pairs, as-

sociating abstract elements in C base to partition unit labels in Unit. We introduce

the primitive syncpart that ensures synchronization constraints in the partitioned

part of the abstract domain element (beh, cu):

84 PARTITIONED ABSTRACT DOMAIN

syncpart(R, (pk)k, units, (parameter
k), units, (beh, cu)) ,





(u, c ′′part)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u ∈ units,

(u, cpart) ∈ cu

c ′part =

{
cpart when R = static_transk

beh⊔base cpart otherwise

c ′′part = syncbase(R, (pk), (parameterk), c ′part),

c ′′part 6= ⊥base






.

Launching continuations

We now update the current abstract element to the continuation launching. The
control flow abstract element is independent and does not depend on the par-
titioned part. The resulting control flow element is then computed using the
abstract transition of the underlying control flow abstract domain.

The thread launching in the partitioned part is more complex. Let us first
enumerate the important points and then introduce the primitives that support
this continuation launching.

• The abstract synchronization stage has computed an over-approximation
of possible units containing interacting threads. The continuation launch-
ing has then to be computed for each of these units.

• Considering a set of static threads to be launched, a similar approach ap-
plies. Each possible partition unit label is mapped to the subset of the
continuations that may be associated to this unit label. Then the result-
ing partition unit is updated considering (1) a synchronization unit (2) its
associated subset of continuations.

• A special care is given to the continuation threads which denote actors or
messages associated to a newly created address. In that case, we rely on a
specific launching primitive, that allows to safely deal with the merge of
recursive instances.

CONTINUATION THREADS BY UNIT As presented above, it is necessary to
project continuation threads among the different unit labels. We introduce two
primitives: conts_of_units and new_units that construct the set of threads
potentially associated to a unit label, within an old abstraction or in a new one,
respectively. We also define a simple primitive that extracts behavior threads
from a continuation.

❙♣❧✐tt✐♥❣ ❝♦♥t✐♥✉❛t✐♦♥s ❛ss♦❝✐❛t❡❞ t♦ ❛❧r❡❛❞② ❝r❡❛t❡❞ ✈❛❧✉❡s Static threads
in continuations have to be split according to their associated address. The

4.2 PARAMETRIC ABSTRACT PARTITIONING 85

control flow part gives us valuable information concerning the value associated
to these static threads when they are launched.

The continuation splitting is done in two parts. The first one identifies the
static threads that could be associated to a given binder. Each of these binder
specific continuations has again to be split according to equality and inequality
relations of the control flow abstract element.

Definition 4.11 (continuation splitting by binder) Let (contk)k be a k-tuple of

continuations and cf ∈ C env be an abstract control flow element. We introduce the

primitive conts_of_units_by_binder that builds the set of possible attributions of

subset of continuations to a partition unit label. It does not consider continuation static

thread where the address variable (let say v), contains a new value (Es[v] is defined).

conts_of_units_by_binder((contk)k, cf) ,




(u, contu)

∣∣∣∣∣∣∣∣

(p, Es) ∈ (contk)k

∧u ∈ address#(p, cf)

∧address_var(p) /∈ Es

=⇒ (p, Es) ∈ contu






We now build the set of possible partitions of continuation identifying pos-
sible different markers. We introduce an equivalence relation built on static
threads. We first define equalities among thread address variables and then
use them to combine possibly equal equivalence classes.

Definition 4.12 (Equality transitive closure) We define the ∼mol as the equiva-

lence relation between static threads (p1, Es1) and (p2, Es2) considering a control

flow element moleculemol ∈Mol# such that

(p1, Es1) ∼mol (p2, Es2) iff {(address_var(p1) = address_var(p2)) ∈ mol}

We denote by conts
∼mol

the set of equivalence classes [(p, Es)]∼mol
of conts.

Definition 4.13 (continuation splitting by address values) We define the set of

possible continuations conts_by_marker built on the continuation conts ∈ ℘(Lp×

(V → L)) considering the abstract control flow moleculemol ∈Mol# such that:

conts_by_marker(conts,mol) ,




cont

∣∣∣∣∣∣∣∣

∃c1, . . . , cn ∈ conts∼mol
s.t cont = c1 ∪ . . .∪ cn

and ∀ci 6= cj ∈ cont,

¬((address_var(ci) 6= address_var(cj)) ∈ mol)






Definition 4.14 (continuation splitting) Let (contk)k be a k-tuple of continua-

tions and cf ∈ C env be an abstract control flow element. Let mol be the abstract

molecule obtained when computing the synchronization on the abstract control flow

86 PARTITIONED ABSTRACT DOMAIN

element. We introduce the primitive conts_of_units that builds the set of possible

attributions of subset of continuations to a partition unit label. It does not consider

continuation static threads where the address variable (let say v), contains a new value

(Es[v] is defined).

conts_of_units((contk)k, cf,mol) ,{

(u, conts)

∣∣∣∣∣
(u, cont) ∈ conts_of_units_by_binder((contk)k, cf)

and conts = conts_by_marker(cont,mol)

}

❙♣❧✐tt✐♥❣ ❝♦♥t✐♥✉❛t✐♦♥s ❛ss♦❝✐❛t❡❞ t♦ ♥❡✇❧② ❝r❡❛t❡❞ ✈❛❧✉❡s Newly created
values are more easily identified. A single new value is created for each ν
binder. There is no possible way to unsafely identify a newly created value
with other – old or new – ones.

Definition 4.15 (new address in continuations) Let (continuationk)k be a k-

tuple of continuations and cf ∈ C env be an abstract control flow element. We now

introduce the primitive new_units. Similarly to the conts_of_units primitives, it

extracts the continuation static thread that is associated to new addresses during the

current transition computation. The continuations are associated to a single address

binder in the new_units primitives, and are therefore continuations, i.e. in ℘(Lp ×

(V → L)), instead of non deterministic continuations, i.e. ℘℘(Lp× (V → L)), like

in the preceding primitive.

new_units((continuationk)k, cf) ,




(u, conts)

∣∣∣∣∣∣∣∣

(p, Es) ∈ (continuationk)k

∧u ∈ address(p, cf)

∧address_var(p) ∈ Es

=⇒ (p, Es) ∈ conts






❇❡❤❛✈✐♦r t❤r❡❛❞s ✐♥ ❝♦♥t✐♥✉❛t✐♦♥s

Definition 4.16 (Extracting behaviors) Let conts ∈ ℘(Lp × (V → L)) be a set

of static threads. We define the primitive beh_conts that extracts behavior static

threads from this continuation:

beh_conts(conts) , {(p, Es) ∈ conts | p ∈ Lb}

LAUNCHING THREADS Again the launching is split in three primitives. A
first updates the interacting unit, removing consumed threads and launching
new ones. A second considers the update of an existing partitioned abstract
element, when the third rather builds a new partition unit, which is merged
with existing ones later during the union computation at the end of the abstract
transition.

4.2 PARAMETRIC ABSTRACT PARTITIONING 87

Definition 4.17 (updating interacting unit) Let R be a formal rule. Let (pk)k ∈

L k
p be a set of interacting thread program points and (pik)k their associated partial

interactions. Let unitu ∈ C base be an abstract element denoting the interacting

thread unit and let synced ∈ C base be its synchronization. Let contsu ∈ ℘℘(Lp ×

(V → Lν)) be a set of non deterministic continuations to be launched.

We introduce the primitive updatepart as:

updatepart(R, (pk), (pik), synced, unitu, contsu) ,
⊔̇base

cont∈contsu

updatebase(R, (pk), (pik), synced, unitu, cont)

Definition 4.18 (launching continuations) Let R be a formal rule. Let (pk)k ∈

L k
p be a set of interacting thread program points and (pik)k their associated partial in-

teractions. Let synced ∈ C base be an abstract element denoting the synchronization

of the interacting thread abstractions. Let cu ∈ Units× C base be the set of abstract

partition units. Finally, let conts ∈ Units× ℘℘(Lp × (V → Lν)) be a set of non

deterministic continuations to be launched, separated into subsets associated to their

possible partition unit label.

We introduce the primitive launchpart as:

launchpart(R, (pk), (pik), synced, cu, conts) ,
⊔̇base

cont∈contsu

(u, launchbase(R, (pk), (pik), synced, u, unitu, conts))

such that

{
(u, contsu) ∈ conts

(u, unitu) ∈ cu
.

Definition 4.19 (launching fresh unit) Let R be a formal rule. Let (pk)k ∈ L k
p be a

set of interacting thread program points and (pik)k their associated partial interactions.

Let synced be an abstract element denoting the synchronization of the interacting

threads abstractions. And let conts ∈ Units × ℘(Lp × (V → Lν)) be a set of

continuations to be launched on fresh addresses, separated into subsets associated to

their possible partition unit label.

We introduce the primitive new_launch which carefully deal with recursive in-

stances of a value:

new_launchpart(R, (pk), (pik), synced, conts) =
{

(u, launchbase(R, (pk), (pik), synced, u,⊥base, contsu)) |

(u, contsu) ∈ conts

}

4.2.4 Operational semantics

Now we rely on the above primitives as well as the underlying abstract domain
primitives given in Definition 4.7 to describe the initial abstract element and the
abstract transition rule.

88 PARTITIONED ABSTRACT DOMAIN

The initial state C#
0 is obtained from the set of initial static threads inits and

is defined as

(Cenv
0 , (Cbase

0 (init_beh), C
part
0))

where

• Cenv
0 is the initial abstract element of the underlying control flow abstrac-

tion considering the initial set inits of static threads;

• Cbase
0 (S) denotes the initial abstract element of the underlying partitioned

abstract domain considering the initial set S of static threads;

• init_beh ⊂ inits is the subset of initial threads that denote behavior
threads;

• C
part
0 is defined as

{

(u,Cbase
0 (conts))

∣∣∣∣∣
∀(p, Es) ∈ inits,

Es[address_var(p)] = u =⇒ (p, Es) ∈ conts

}

.

The partitioned abstract domain semantics relies on the abstract primitives
defined above and is described in Figure 4.3. We recall informally the different
steps of the abstract transition computation:

• find a transition rule and a tuple of interacting threads, exhibiting the
appropriate partial interactions with respect to the rule;

• compute the set of units that can be associated to both the actor and the
message threads, using the control flow part of the abstract element;

• restrict the set of considered units to the ones where the abstract element
associated to these units satisfy the synchronization constraints defined
by both the actor and the message threads;

• for each of these valid interacting units, launch threads in continuation, if
the transition is computable:

– compute, using the control flow part, the set of static threads, subset
of the continuations, that can be launched in the different partition
units;

– Apply the launch primitive of the underlying partitioned domain to
each unit considering the subset of launched threads for the unit.

Theorem 4.20 The abstraction (C #,⊑#,⊔#,⊥#, γ#, C#
0,→

#,∇#) is a sound abstrac-

tion with respect to the Definition 3.3 considering a sound underlying control flow

abstraction and an abstract domain C base satisfying the soundness assumption of

Definition 4.7.

Proof 4.21 The proof can be found in A.2.

4.2 PARAMETRIC ABSTRACT PARTITIONING 89

Figure 4.3 Partitioned abstract domain operational semantics.

Let C# = (cf, (beh, cu) ∈ C # be an abstract configuration where cf ∈ C env

denotes the control flow abstract element and (beh, cu) ∈ Part(Units,C base)

the partitioned element: beh ∈ C base denotes the abstract element specific
to behavior threads and cu, the computation units, is a set of pairs (unit, X#)

where unit ∈ Lν is a partition unit identifier and X# ∈ C base is an abstract
element of the underlying partitioned abstract domain.
Let R = (n, components, compatibility, v_passing) be a formal rule.
Let (pk)16k6n ∈ Lp be a tuple of program points and (pik)16k6n =

(sk, (paramsk), (bdk), contsk) be the tuple of exhibited partial interactions.
Let pa and pm in (pk) be the actor and message program points respectively.
We introduce

unitspk = addressenv(pk, cf) units = unitspa ∩ unitspm

mol = syncenv((pk), (paramsk), contsk, cf)

synced_part = syncpart(R, (pk), (paramsk), units, (beh, cu))

When






∀k ∈ J1, nK, pik ∈ interaction(pk)

mol 6= ⊥

synced_part 6= ∅

Then (cf, (beh, cu))
R,(pk)k,(pik)k
−−−−−−−−−−→#(cf

′, (beh ′, cu ′))

Where

1. cf
R,(pk)k,(pik)k
−−−−−−−−−−→env cf

′;

2. conts_of_units = conts_of_units((contsk)k, cf
′,mol);

3. new_units = new_units((contsk)k, cf
′);

4. interacting_conts(u) =
{
conts

∣∣(u, conts) ∈ conts_of_units
}

;

5. beh ′ =
(⊔̇base

(u,synced)∈synced_part{
launch_behbase(R, (pk), (pik), synced, beh, beh_conts(conts))

})
;

6. unitu = {unit|(u, unit) ∈ cu};

7. launched_units =
⊔̇base

(u,synced)∈synced_part




updatepart(R, (pk), (pik), synced, unitu, interacting_conts(u)),

launchpart(R, (pk), (pik), synced, cu, conts_of_units),

new_launchpart(R, (pk), (pik), synced, new_units)






;

8. cu ′ = cu ⊔̇baselaunched_units.

90 PARTITIONED ABSTRACT DOMAIN

4.3 EXAMPLE ANALYSIS

We consider again the example presented above in Example 4.1. We present the
abstract properties computed for a partitioned flavor of the occurrence count-
ing abstraction and the control flow abstraction.

We briefly explain the modification necessary to express such domains as
underlying domains for our partitioned analysis. Then we state some abstract
properties obtained.

Partitioning occurrence counting

The main occurrence counting abstract domain is extended to define the follow-
ing primitives:

• The syncbase primitive is defined using the SYNCNVc
primitive. The

(pk) argument of the syncbase function defining the constraint t of SYNCNVc
:

syncbase(R, (pk), (parameterk), elem) , SYNCNVc
(t, elem)

where t = λx.

{
1 when x ∈ (pk)k

0 otherwise
.

• The updatebase primitive exactly corresponds to the initial abstract tran-
sition computation:

updatebase(R, (pk)k, (pi
k), synced, u, unitu, contsu) ,

synced+# Transition+# Σ#β#(contsu) −# Consumed

where

– Transition = 1NVc
(ψ((pk)k));

– Consumed = Σ#(1NVc
(pk))k∈J1;nK∧type(sk ′) 6=replication

• The launchbase primitive considers only thread launching:

launchbase(R, (pk)k, (pi
k), synced, u, unitu, contsu) ,

unitu +# Transition+# Σ#β#(contsu)
.

where Transition = 1NVc
(ψ((pk)k));

• Cbase
0 (conts) is defined easily from the initial element abstraction CNVc

0 :

Cbase
0 (conts) , β

#(contS).

The Figure 4.4 illustrates the use of the partitioned occurrence counting do-
main on the Example 4.1.

4.3 EXAMPLE ANALYSIS 91

Figure 4.4 Partitioned occurrence counting.

The partitioned occurrence counting domain gives the following constraints:

Unit Abstract element (Karr)

α {H1+ R1 = 1;H3− R1 = 0}

β {H3− R1 = 0;H4− R1 = 0}

When the non partitioned use of this domain gives:
{
H5+ R1 = 1 H3− R1 = 0

H1+ R1 = 1 H6+H5+H4 = 2

}

In that example, both partitioned and non partitioned are meaningful. The use
of the partitioning allows to represent properties specific to an address binder
but it loses any relation between occurrences of threads in different units.
In the first case, we observe that considering threads on addresses bound by β,
there is at most one message on 4 (H4 = R1 and R1 is not recursive).
In the second, we can get more global properties considering the total number
of messages in reachable configurations: here 2.

Partitioning control flow data

Similarly, we extend the main control flow abstract domain to define the follow-
ing primitives:

• The syncbase primitive is defined using the reagents# primitive:

syncbase(R, (pk), (parameterk), elem) ,

reagents#((pk), (parameterk), compatibility, elem)

where R = (n, components, compatibility, v_passing).

• The launchbase primitive contains all the steps following the synchro-
nization that are needed to launch threads:

– compute value passing;

– create a new marker if needed;

– effectively launch continuation threads.

launchbase(R, (pk)k, (pi
k), synced, u, unitu, contsu) ,

unitu ⊔
base launch#((pk), contsu,mol

′))

where

92 PARTITIONED ABSTRACT DOMAIN

– R = (n, components, compatibility, v_passing);

– (pik)k = (sk, (park), (bdk), contk)k;

– mol ′ = marker_value((pk), synced, (bdk), (park), v_passing).

• In control flow abstract domains, underlying atom domains are not re-
lational between program point threads. Furthermore thread removing
when computing abstract transition is not represented. Therefore the
primitive updatebase can be mapped to the launchbase function. In the
first case, all abstract information is thread specific.

updatebase(R, (pk), (pik), synced, u, unitu, contsu) ,

launchbase(R, (pk), (pik), synced, u, unitu, contsu)
.

• Cbase
0 (conts) is defined easily from the initial element abstraction Cenv

0 :

Cbase
0 (conts) , launch

#(conts, ǫ
#
∅).

The Figure 4.5 illustrates the use of the partitioned control flow domain on
the Example 4.1.

4.4 ENHANCEMENT

The presented partitioned abstract domain is very parametric and allows to
represent properties specific to a given address binder. It is able to safely deal
with recursive creations of addresses, merging into the same abstraction the
properties verified by all instances of an address.

We now present an extension of the previous partitioned abstraction that al-
lows more precise properties to be computed. We first present the extension.
Then we argue the soundness of the modified partitioned abstract domain. Fi-
nally we give an idea of the necessity for such an extension.

4.4.1 Extending primitives

This extension intends to provide more control flow information about interact-
ing threads, or any thread in the reachable configurations, when computing a
transition locally in a unit within the underlying partitioned abstract domain.

This idea is to provide an excerpt of the control flow abstraction computed to
the underlying partitioned abstract semantic primitives.

This extension is defined in two steps:

1. We first modify the partitioned abstraction and some of its operational
primitives to introduce control flow information available for the Base
domain operational semantics primitives. Calls to these primitives use

4.4 ENHANCEMENT 93

Figure 4.5 Partitioned control flow.

The partitioned control flow gives:

unit
Abstract element

p RegL Marker Value

α

1
I 7→ ǫ

I,a a

a 7→ α.ǫ

3
I 7→ ǫ

I,x,s x s

x 7→ α.ǫ

s 7→ 2.ǫ

4
I 7→ ǫ

I,x,b x b

x 7→ α.ǫ

b 7→ β.ǫ

5
I 7→ ǫ

I,a a

a 7→ α.ǫ

6
I 7→ ǫ

I,a a

a 7→ α.ǫ

β

3
I 7→ 3+

x s

I
x s

x 7→ β.3∗

s 7→ 2.ǫ

4
I 7→ 3+

x I,b x b

x 7→ β.3∗

b 7→ β.3∗

We obtain that, considering addresses bound by α, the thread on program point
3 share the same marker value for the identity marker of the threads, their vari-
able x and their variable s.
Considering threads associated to addresses bound by β, we have the disequal-
ity relation between the identity marker of threads and their variable xmarker.
When the global control flow abstraction gives for program point 3:

3
I 7→ 3∗

x s

I
x s

x 7→ α.ǫ+β.3∗

s 7→ 2.ǫ

Both graph abstractions denote ⊤ value and do not give any valuable informa-
tion.

94 PARTITIONED ABSTRACT DOMAIN

the ⊤CF value of the control flow domain considered, contingent upon
the Base domain needs, for the time being.

2. Then, each call to these modified primitives is preceded by a reduction
computation between the local control flow element used and the global
one existing in the control flow part of the partitioned abstract domain.

Enriching primitives

The idea is to instantiate the parametric part not only by Unit and C base but
with a third domain control flow abstraction CF ∈ Lp → Atoms#

V . This CF
domain is not fitted with an abstract transition relation, but it must be a base
domain in our C Env abstraction. For example, the shape approximation pre-
sented in the previous chapter can be used.

The partitioned part is now defined as Part(Units,C base, CF). We now con-
sider a modified version the C base domain where the primitives syncbase,
updatebase, and launchbase have the following signatures:

• syncbase(R, (pk), (parameterk), elem, cf_elem);

• updatebase(R, (pk)k, (pi
k), synced, u, unitu, contsu, cf_elem);

• launchbase(R, (pk)k, (pi
k), synced, u, unitu, contsu, cf_elem);

where cf_elem denotes an element of CF.

Modifying calls

Now we modify the abstract transition in order to use these new primitives.
Let us first introduce the control flow element cf⊤ as the abstract element

that associates to each program point its top value in the considered control
flow abstraction.

cf⊤ = λp.⊤Atom
I(p)

We recall that the control flow abstraction is non relational and approximates
all possible pairs (id, E) such that it exists a thread (p, id, E) in reachable config-
urations.

For example, in the Shape case, the cf⊤ element associates to each program
point the element that gives for its marker and for each of its environment vari-
ables all the possibles words in L ∗, denoted by the abstract value ⊤Reg

L
.

We can then replace any call to the syncbase or launchbase with this cf⊤

value for the variable cf_elem.

4.4 ENHANCEMENT 95

Computing reduction

The previous step allows to provide control flow information to underlying
partitioned abstract domains but it gives a⊤ value, i.e. no valuable information.

We state that the control flow approximation used here in CF is also present
in the global control flow approximation C env, as a base abstraction.

We define a simple reduction ρ : C env × CF on the pair (cf, (beh, cu)) ∈

Part(Units,C base, CF). This reduction takes the element of the domain CF in
cf and returns the intersection of both CF elements.

It is used in each of the primitives syncbase or launchbase restricting the
cf_elem value to sound smaller abstraction.

For example, when computing the abstract transition

(cf, (beh, cu))
R,(pk)k,(pik)k
−−−−−−−−−−→#(cf

′, (beh ′, cu ′))

any launchedbase call is replaced by

launchbase(R, (pk)k, (pi
k), contsu, synced, initial, ρ(cf, cf

⊤)).

4.4.2 Soundness

Theorem 4.22 The extended version of the partitioned abstract domain is a sound

abstraction with respect to Definition 3.3.

Proof 4.23 The initial partitioned abstract is a sound abstraction with respect to Def-

inition 3.3. Modifying the primitives to add a new parameter and calling them with a

⊤ value for this parameter does not break the soundness of the domain.

Then the reduction computation also preserves soundness, it restricts the value with

the sound over-approximation computed in the global control flow part.

4.4.3 Application

The extended version of our partitioned domain can now be used on a wide
variety of underlying abstract domains. These domains are intended to be used
to abstract properties per address. But any more global abstraction such as the
control flow one or the occurrence counting one could also be expressed as
underlying domains of the partitioned abstraction.

We extend the primitives to provide control flow information to underlying
abstractions in order to support thread launching. In fact, depending on the
need of the underlying domain abstract semantics, one can need control flow
information to launch threads more precisely.

This kind of use is exploited in the Chapter 7 where abstract properties repre-
sent causality, i.e. sequences of actor behaviors associated to an address. In that
case, launching threads in the current unit is already precise: we know the last

96 PARTITIONED ABSTRACT DOMAIN

actor installed, it is the interacting one. But when launching outside the inter-
acting unit, a lot of imprecision arise that could be attenuated using the control
flow abstract property already available.

One could also imagine underlying abstract domains which necessitate con-
trol flow information about interacting thread environments when computing
the synchronization constraints.

4.5 RELATED WORK AND DISCUSSION

The presented domain partition abstracts properties per address binder. In that
sense, it allows to represent properties in way similar to the properties usually
expressed using type systems. In this other approach of static analysis, the term
is analyzed once, associating a type to each sub-term. It only considers one
instance of each name binder and could not easily differentiate their recursive
instances.

In the presented abstraction, we are able to represent such properties while
relying on the powerful framework of abstract interpretation. For example, our
control flow approximation allows us to only consider a sound subset of possi-
bly matched behavior branches while type system analysis faces more difficul-
ties with respect to precision.

4.5.1 Comparison with Feret’s thread partitioning

In [48] and in [49, Chap. 10], FERET proposed a thread partitioning analysis.
This analysis is related to the one we presented here but differs in multiple
points. It is first motivated by the analysis of Ambient calculi. In such calculi,
communications are local to a place containing threads. All thread environ-
ments contain a variable loc expressing their container identity. A first differ-
ence is that such partitioning does not allow communications between multiple
partition units. Any calculus that needs such a mechanism could not take ben-
efit of this abstraction. In calculi that rely on a notion of definition threads
available to every other thread these definitions have to be accumulated out-
side partition units and cannot be used in communications. CAP encoding or
the Join calculus encoding face such a difficulty.

In its current definition, FERET’s partitioning provides only a numerical ab-
straction for each partition unit. It is defined as a parametric domain instanti-
ated with an occurrence counting abstraction and it relies directly on numerical
primitives. Our proposal is, in that sense, more general, as it can be instantiated
with any domain defining the appropriate primitives. In our context, this is
also essential since we need more powerful abstractions than only occurrence
counting ones when verifying CAP specific properties. The Chapter 7 intro-
duces an abstract domain for analyzing the sequences of messages available to

4.5 RELATED WORK AND DISCUSSION 97

an address. This domain is intended to be used under the partitioned abstract
domain as it focuses on one address at a time. It carries causality constraints
that could not be expressed only as numerical ones.

Finally, FERET’s proposal is quite complex. It considers all the specificities of
the non standard semantics that we do not mention in this thesis. For example,
the full non standard semantics allows to express broadcasting mechanisms
globally modifying thread environments. It is used to model a cell opening in
Ambient. This leads to a complex abstraction which would be hardly provable
in its generic formalization.

4.5.2 Summary

In this chapter, we proposed a parametric abstract domain that represents prop-
erties per address binder. All communications in the actor paradigm are address-
centric. Such a partitioned domain is then essential to CAP specific proper-
ties analysis. It necessitates two domains. The first one approximates control
flow information. It drives transitions and allows to soundly compute possi-
ble binders associated to interacting threads or launched ones. The second one
carries the information associated to each binder.

This domain is a first step towards the analysis of high-level properties for
CAP.

5
ENHANCING OCCURRENCE COUNTING

The goal of this chapter is to illustrate the use of the occurrence counting ab-
stract domains in practice on examples. Then according to the expected results
and the ones we obtain using these abstraction, we introduce three enhance-
ments allowing to over-approximate more precisely the possible computations
as well as the resulting abstract properties.

This chapter is sectioned in four parts. We first give, in Section 5.1, a de-
scription of the initial occurrence counting underlying abstract domains as pre-
sented by FERET in [49, Chap. 9]. We introduce the different domains and give
the reduction algorithm between the relational and non relational abstract ele-
ments. We describe the reduction in an implementable way and give practical
use of it on an example. The Section 5.2 proposes to extend the approximated
reduction in order to handle more constraints and therefore obtain more precise
results. The Section 5.3 introduces a domain that keeps track of the dependen-
cies among computed transitions and threads needed for such transitions. It
allows to forbid certain kinds of non computable transitions that were allowed
in the preceding abstractions. Finally the last section, Section 5.4, gives a way
to synchronize information between occurrence domains used under the parti-
tioned abstract domain presented in the previous chapter, Chapter 4.

5.1 THE INITIAL OCCURRENCE COUNTING ABSTRACTION

We now give a description of the numerical abstract domains used to approx-
imate occurrences of threads in reachable configurations as well as the over-
approximation of computed transition labels.

As introduced in the previous chapter, in Section 3.3.3, each reachable con-
figuration (u,C) ∈ Σ∗ × C is first abstracted by a family of natural numbers
indexed by Vc = Lp ×B denoting the occurrence of threads in C indexed by
program p ((p, T) ∈ Vc) and the occurrence of computed transitions in u con-
suming the actor program point p ((p, F) ∈ Vc). Each reachable configuration is
then mapped to an element of N

Vc 1.
The set of reachable configurations {(u,C)} ∈ ℘(Σ∗ × C) is then abstracted

by another domain that represents sets of possible families of natural integers
indexed by Vc. Such elements can then over-approximate set of configurations
using the combination of γNVc by γNVc

.

1 We recall, that following the notation of FERET, N
Vc denotes families of naturals number in-

dexed by Vc

99

100 ENHANCING OCCURRENCE COUNTING

A numerical abstract domain used to represent sets of natural numbers fam-
ilies indexed by Vc must satisfies the soundness assumptions of the Defini-
tion 3.7, page 63.

5.1.1 Numerical abstractions

We now give the details of the two domains proposed in [49] as well as the way
their primitives can be defined. We first introduce the non relational numerical
abstraction based on the interval abstract domain. Then we describe the rela-
tional abstraction based on the domain proposed by KARR in [68], an abstract
domain to model affine relationships between variables in Vc. Finally we detail
the reduction between these two domains.

Intervals

This first domain carries the essential information. It associates to each element
of Vc an interval denoting the over-approximation of thread occurrence or label
occurrence in the transition words.

The principal primitives are defined component-wise. We recall that the in-
tervals used are intervals of natural numbers in N.

Figure 5.1 The lattice of intervals in N
2.

J0,+∞J

J1,+∞J

eeLLLLLLLLLL

J0, 2K

::v
v

v
v

v
v

v
v

v
v

v
v

J0, 1K

;;wwwwwwwww

J1, 2K

ccGGGGGGGGG

99s
s

s
s

s
s

s
s

s
s

s
s

s

J0, 0K

;;wwwwwwwww

J1, 1K

ccGGGGGGGGG

;;wwwwwwwww

J2, 2K

ddJJJJJJJJJ

. . .

⊥

iiTTTTTTTTTTTTTTTTTTT

OO

44jjjjjjjjjjjjjjjjjjjj

22fffffffffffffffffffffffffffffffffff

The abstract domain I is associated to ℘(NVc) by the monotonic map γI

defined as

γI (f) = {u ∈N
Vc | ∀i ∈ Vc, ui ∈ f(i)}

5.1 THE INITIAL OCCURRENCE COUNTING ABSTRACTION 101

• the union operator ∪I is defined point-wisely using the union of natural
integers:

f∪I g = [x 7→ f(x)∪ g(x)]

with Ja;bK∪ Jc;dK = Jmin(a, c);max(b, d)K;

• the abstract domain of natural numbers intervals does not satisfy the as-
cending chain condition and allows infinite ascending chains. We intro-
duce the widening operator∇n

I
:

[f∇n
I g](x) = f(x)∇ng(x)

where Ja;bK∇n
I

Jc;dK =

{
Jmin(a, c); +∞J when d > max(b, n)

Jmin(a, c);max(b, d)K otherwise
.

The integer n is a parameter of the analysis. In our case, we can take n = 0

since our main occurrence counting abstraction is a reduction between
a non relational and a relational abstract domains. Then the reduction
improves the precision of the value.

• the operator +I is defined as the addition of the intervals associated to
each element of Vc :

(f+I g) = [x 7→ f(x) + g(x)];

• similarly the subtraction −I is defined as:

(f−I g) = [x 7→ f(x) − g(x)∩ J0; +∞J];

• the synchronization SYNCI (f, t) ensures that the abstract element f de-
scribes at least a configuration containing the threads defined by t:

SYNCI (t, f) = [x 7→ f(x)∪ Jt(x); +∞J];

• 0I = [x 7→ J0; 0K] ;

• 1I (v) =

[{
x 7→ J1; 1K when x = v

x 7→ J0; 0K otherwise

]
.

102 ENHANCING OCCURRENCE COUNTING

Relational abstraction

The relational abstract domain is used to carry information between occurrence
of threads or occurrence of transition labels. In contrary to the non relational
abstraction, it does not constrain the computations. The synchronization prim-
itive does not modify the abstract element.

We build a numerical abstract domain based on the ideas of KARR, proposed
in [68]. An element of this domain denotes an affine subspace built on the
variables Vc. These elements are linked to the elements of the domain ℘(NVc)

by the monotonic map γK that associates to each system its set of solutions.

COMPUTING THE UNION OF TWO AFFINE SPACES The abstract union is the
most expensive and complex primitive of this domain. The principal content
of [68] is the description of this operator. First of all, one can take two dual ways
of representing affine subspaces. The first one, the one we choose, represents a
subspace by a basis of its linear components, plus an offset vector. The second
way is to represent the space as the kernel of an affine transformation from
Fn to Fm for an appropriate m. Depending on the different manipulations we
need and the size of the representation, the adequate method must be chosen.
We take the first as the number of relationships is quite small in our context
and therefore the representation is also small. Furthermore, the more union we
compute, the bigger the space is and the smaller its representation.

A first step in the union computation is the definition of a canonical form for
an affine subspace. As a canonical form, KARR chooses the normalized reduced

row-echelon form.

Definition 5.1 (Normalized reduced row-echelon form) In such representation,

the matrix is in triangular form. Each first non-zero entry is equal to 1. Finally, using

row operations, each first non zero entry, in our case now equal to 1, of a row is the only

non zero entry of its own column.

Once the two matrices, with their associated affine vector, denoting affine
subspaces of N

|Vc|, are in normalized reduced row-echelon form, the union
algorithm can be applied. The first idea is that affine subspaces of N

n can be
seen as vector subspaces of N

n+1. Then the least affine subspace containing the
two arguments of a join is computed considering the affine part of the matrices
as their |Vc| + 1 dimension.

Then the algorithm builds the resulting matrix beginning with the upper-
leftmost part of the matrices. Each step considers a new column of the argu-
ment matrices. There are three cases when computing the disjunction of A and
B. We denote by Ars the element of A at the s-th column and on the r-th row.
We consider the s-th step of computation, starting from the column 0. The three
cases are depicted in Figure 5.2, page 103.

5.1 THE INITIAL OCCURRENCE COUNTING ABSTRACTION 103

Figure 5.2 KARR’s union algorithm cases.

(a) Ars = Brs = 1

A(s−1)=B(s−1)=




Cs−1

...

0

1
X

(s)

0




C(s),




Cs−1

0
...

0

0 . . . 0 1




(b) Ars = 1;Brs = 0

A(s−1) =




Cs−1

...

0

1
A

(s)

0




B(s−1) =


 Cs−1 β

B
(s)

0




C(s) , (Cs−1|β)

(c) Ars = Brs = 0

A(s−1) =


 Cs−1 α

B
(s)

0


 B(s−1) =


 Cs−1 β

B
(s)

0




C(s) , (Cs−1|α) iff α = β

Ars = Brs = 1 In the first case, the next column and row to consider in both
arguments of the linear disjunction are the same. They are filled with 0
except in one place: the 1 value of the first non zero entry of the new row.
We adjoin the row and the column to the resulting matrix. In this case, the
local iterate of the union computation preserves the exact set of solutions.

Ars = 1;Brs = 0 In the second case, one argument has the almost empty row
and column (except in one entry as above) when the other has a zero entry
at (r, s). In that case, all the entry above Brs are not necessary zero. Using
row operations with the r-th row of A, we modify the A matrix in order
to obtain the same column as in Bs. The r-th row of A is then removed.
And the column, which is now the same in both matrices, adjoined to the
resulting matrix.

Ars = Brs = 0 Finally the third step occurs when both columns considered are
not necessary empty. If they are equal the step is immediate. But if not, we
have to sacrifice a row in each matrix in order to make the two columns
identical. Once the columns are the same, the rows used to perform the
transformation are deleted and the new column added to the resulting
matrix.

104 ENHANCING OCCURRENCE COUNTING

This step looses information and allows to obtain the affine subspace con-
taining the two others.

This algorithm has an overall complexity of O(|Vc|3). Expressing matrices
in the canonical form costs O(|Vc|3) and the disjunction algorithm costs also
O(|Vc|3).

OTHER PRIMITIVES The other primitives are quite straightforward:

• Computing the union of two matrices removes at least one row if they
are different. As our representation considers a finite number of rows, we
do not need any widening operator: we cannot compute infinitely many
disjunctions without reaching a fixed point: ∇K = ∪K .

• The addition +K is defined as:

(O1 +H1) +K (O2 +H2) = (01 +v 02) + (H1 ∪K H2)

where 01 +v 02 is the vector addition. In practice, we increment the right
hand-side of rows containing launched threads program point.

• The subtraction −K is similarly defined:

(O1 +H1) −K (O2 +H2) = (01 −v 02) + (H1 ∪K H2)

with 01 −v 02 the vector subtraction.

• We do not constrain the synchronization in this domain. We then have:

SYNCK (t, k) = k.

• The element 0K is defined as the affine subspace with the following con-
straints:

0K = {x = 0,∀x ∈ Vc} .

• The primitive 1K (v) associates the value 1 to v and 0 to the other variables
of Vc:

1K (v) =

{
x = 1 when x = v

x = 0 otherwise
.

5.1 THE INITIAL OCCURRENCE COUNTING ABSTRACTION 105

Approximated reduced product

We now give the original reduction as proposed by FERET in [49]. The basic
idea is to use, in one hand, the non relational abstraction to obtain occurrences
of threads and transition labels, as well as constraining transitions if there is no
sufficient enough interacting threads. But this information, associating an inter-
val to each program point or transition label would quickly lead to unbounded
occurrence numbers when computing the fixed point of the abstract collecting
semantics. In the other hand, the relational abstraction can relate occurrences
between each other and obtain more accurate results. The reduction of the un-
derlying Cartesian product of the non relational domain with the relational one
solves the problem. The algorithm proposed as a reduction is approximated in
the sense that it does not compute the best reduction between the two elements,
which could be exponential in time.

The numerical domain NVc
considered is the product (I ×K). As a product

of two abstract domains, it is also a sound abstraction. It is partially ordered by
the pairwise ordering. And it is related to element of ℘(NVc) by the concretiza-
tion map γNVc

(i, k) = γI (i) ∩ γK (k). The primitives ⊥NVc
, ⊔NVc

, ∇NVc
, +#,

−#, 0#NVc
and 1#

NVc
are defined pair-wisely.

The synchronization is defined as:

SYNCNVc
(t, (i, k)) = ρ(i ′, k)

where i ′ = SYNCI (t, i).
The ρ function is the reduction operator. It is used to simplify the constraints

without loosing any solution. As usual when building reduction of an abstract
domain, the reduction is applied before and after each abstract transition com-
putation.

The ρ function maps pair (i1, k) to pair (i2, k) leaving the KARR part un-
touched but relying on it to narrow intervals of i1.

THE INITIAL REDUCTION The reduction goal is to rely on the relational part
information to narrow the effective interval associated to each program point.
In that sense, it does not modify the relational abstract but only the interval part.
The algorithm is in two steps. The first one aims at bounding infinite intervals.
The second takes the resulting system and try to infer more precise boundaries,
propagating intervals in affine equalities as in [22].

❇♦✉♥❞✐♥❣ ✐♥✜♥✐t❡ ✐♥t❡r✈❛❧s Let us consider an abstract element (i, k) ∈ I ×

K to be reduced by the algorithm. We denote by V ∞
c ⊆ Vc the subset of vari-

ables that are associated to an unbounded interval in i.
Let us first introduce the definition of a positive form.

Definition 5.2 (positive form) Such form is obtained by combining rows in order to

obtain, for each variable in V ∞
c , coefficients of the same sign in all constraints.

106 ENHANCING OCCURRENCE COUNTING

Since we only consider positive intervals, when, in a constraint of k, all vari-
ables of V ∞

c occur with the same sign, they can be bounded using right hand-
side of the affine system and the intervals associated to the variables of Vc \V ∞

c .
The positive form aims at obtaining such valid constraints, where all infinite

variables are of the same sign. Invalid constraints are thrown away and are not
used, in this approximated reduction, to improve abstract values.

The narrowing of infinite intervals is performed as follows:

1. The system is transformed by Gaussian elimination into a positive form.
(O(|Vc|3)).

2. Once in positive form, variables of V ∞
c in all valid rows are narrowed.

For a given row, when the sign of such variables is positive, we iterate
through the bounded variables to compute an upper bound for these un-
bounded variables. Then depending on their coefficient and depending
on the affine part of the constraint, a new finite upper bound is com-
puted for each of these unbounded variables. Similarly if the sign is nega-
tive, we iterate in the considered constraints to compute the lower bound.
(O(|Vc|2)).

◆❛rr♦✇✐♥❣ ✜♥✐t❡ ✐♥t❡r✈❛❧s Once the previous step is computed, we are inter-
ested in narrowing intervals. Intervals can be imprecise both because of the
union computed and because of the raw infinite interval narrowing defined
above.

We now focus only on constraints involving finite intervals. This second step
performs an interval propagation in order to compute the approximated reduc-
tion.

1. The matrix is put in triangular form by Gaussian elimination;

2. Each affine part is replaced by its equivalent interval representation;

3. Perform as a recursive call the following steps, considering a system of
constraints with an interval right hand side and a family of intervals in-
dexed by Vc.

a) if the system is empty, return the family of intervals as is.

b) else, narrow each first non zero entry of the system rows, replacing
the boundaries of the associated interval using the affine part inter-
val and the boundaries of the others variable intervals;

c) remove the first non zero entry, subtracting the affine interval with
the one of the removed variable;

d) call the current algorithm on the obtained system with the narrowed
interval family (each constraint has one column less);

5.1 THE INITIAL OCCURRENCE COUNTING ABSTRACTION 107

e) narrow again each first non zero entry of the system rows, replacing
the boundaries of the associated interval using the affine part inter-
val and the boundaries of the others variable intervals obtained at
the previous step;

f) return the narrowed interval family.

This second step can be computed with a O(|Vc|3) worst-case complexity. It
propagates forward and then backward lower bounds of variable intervals.

5.1.2 Example analysis

Example 6 (Linear cell variant with infinite behavior) Let us consider the linear

cell variant defined in Example 5.1. The original linear cell example is defined in Exam-

ple 2.8, page 28. In this variant, the receiving of a get message sends the reply rep to

the address bound by y, but also produces another put and get messages with the pre-

ceding values. Then this system handles infinitely many put and get messages while

producing rep messages.

Example 5.1 Linear cell variant with an infinite behavior.

νx1, νa2, νb3,

a ⊲4 [put5(x) = ζ(e, s)(

e ⊲6 [get7(y) = ζ(f, t)(

y ⊳8 rep(x) || e ⊲9 s || e ⊳10 put(x) || e ⊳11 get(y)

)]

)]

|| a ⊳12 put(x) || a ⊳13 get(b)

|| b ⊲14 [rep15(val) = ζ(e, s)(e ⊲16 s)]

We illustrate the reduction of one of the intermediate abstract element ob-
tained during the fixed point computation of the abstract collecting semantics.
This element occurs during a synchronization.

The Figure 5.3 details the abstract element obtained for the occurrence count-
ing abstract domain.

We compute the first step of the reduction: narrowing infinite intervals into fi-
nite ones. The matrix is transformed into a positive form (step 1), for the sake of
simplicity we only keep constraints involving variables of V ∞

c = {H6,H7, R4}:

H12+ R4 = 1 H7+H4 = 1 H6+H4 = 0 H4+ R4 = 1

108 ENHANCING OCCURRENCE COUNTING

Figure 5.3 Linear cell: an intermediate occurrence counting abstract element.

H4 : J0, 1K H5 : J1, 1K H6 : J0,+∞J H7 : J0,+∞J H8 : J1, 1K

H9 : J1, 1K H10 : J1, 1K H11 : J1, 1K H12 : J0, 1K H13 : J0, 0K

H14 : J1, 1K H15 : J1, 1K H16 : J0, 0K

R4 : J0,+∞J R5 : J0, 0K R6 : J1, 1K R7 : J0, 0K R8 : J0, 0K

R9 : J0, 0K R10 : J0, 0K R11 : J0, 0K R12 : J0, 0K R13 : J0, 0K

R14 : J0, 0K R15 : J0, 0K R16 : J0, 0K






H15 = 1 H14 = 1 H12+ R4 = 1 H11 = 1

H10 = 1 H9 = 1 H8 = 1 H7− R4 = 0

H6− R4 = −1 H5 = 1 H4+ R4 = 1 R6 = 1

H16,H13, R5, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16 = 0

In the following, to keep the presentation simple, we denote by Hx the variable
(x, T) ∈ Vc and by Rx the variable (x, F) ∈ Vc. H stands for threads and R for
transitions.

We then focus on constraints involving only variables of V ∞
c and associated

to coefficients of the same sign. The other constraints are either constraints
involving only finite intervals or in undefined form, i.e. involving variables of
V ∞

c but with coefficients of different signs.
In this example, all constraints involve either a single variable of V ∞

c or either
two variables of V ∞

c but sharing the same sign.
Each non infinite part is then summarized and subtracted to the affine part

(step 2). We obtain the following finite boundaries:

H6 : J0, 0K H7 : J0, 1K R4 : J0, 1K

The 0 values for H6 appears because of the associated thread consumption in
the current transition computation.

Finally we compute the second step: narrowing finite intervals by intervals
propagation. We first have to identify the constraints involving only finite in-
tervals. The previous step has inferred finite boundaries for every variables of
V ∞

c . All constraints are considered.
In order to keep the presentation simple, we only focus on a subset of the

constraints:
{
H6− R4 = −1

H7− R4 = 0

5.2 ENHANCING THE ABSTRACTION REDUCTION 109

The system is already in triangular form (step 1). The affine part is replaced
by its interval representation2 (step 2).

{
H6− R4 = J−1,−1K

H7− R4 = J0, 0K

We try to narrow both H6 and H7 intervals with these constraints (step 3.b).
The intervals associated are not yet modified. Then we remove these variables
and propagate their interval (step 3.c). We obtain the following values:

R4 = J1, 1K∩ J0, 1K = J1, 1K

The system obtained (step 3.d) gives us the value J1, 1K for R4 (step 3.b). This
value is propagated back to the preceding system (step 3.e). We obtain the more
precise information (step 3.a):

H7 = J1, 1K

5.2 ENHANCING THE ABSTRACTION REDUCTION

The approximated reduction proposed above is essential to the use of the occur-
rence counting abstract domain. Used separately, the two underlying domains,
the interval domain and the affine relationships domain gives few valuable in-
formation about occurrence properties in the analyzed term.

However the first step of the reduction algorithm may fail in reducing infinite
intervals. In fact, the undefined forms obtained by the positive form transfor-
mation are thrown away and are not used anymore in the algorithm.

We first motivate this lack of precision and the necessity for a more precise
narrowing of infinite intervals into finite ones. Then we describe the extension
of the first step to handle more constraints.

5.2.1 Motivation

Let us continue with the example introduced above. When computing the least
fixed point of the collecting semantics of the term 5.1, we obtain this other in-
termediate abstract element, given in Figure 5.4

In that case, the unbounded intervals are V ∞
c = {H7,H8,H10,H16, R5, R6, R15}.

H16,H10,H8,H7, R15 appear in only one constraint each and are therefore
already in positive form.

2 The intervals used in this part of the algorithm could denote negative values.

110 ENHANCING OCCURRENCE COUNTING

Figure 5.4 Linear cell: another intermediate occurrence counting abstract ele-
ment.

H4 : J0, 1K H5 : J1, 1K H6 : J0, 1K H7 : J0,+∞J H8 : J0,+∞J

H9 : J0, 1K H10 : J0,+∞J H11 : J0, 1K H12 : J0, 1K H13 : J0, 1K

H14 : J0, 1K H15 : J1, 1K H16 : J0,+∞J

R4 : J0, 1K R5 : J0,+∞J R6 : J0,+∞J R7 : J0, 0K R8 : J0, 0K

R9 : J0, 0K R10 : J0, 0K R11 : J0, 0K R12 : J0, 0K R13 : J0, 0K

R14 : J0, 1K R15 : J0,+∞J R16 : J0, 0K






H16− R14 = 0 H15 = 1

H14+ R14 = 1 H13+H11 = 1

H12+H10+ R4+ R5− R6 = 1 H9+ R5− R6 = 0

H8− R6+ R14+ R15 = 0 H7− R4− R5 = 0

H6− R4− R5+ R6 = 0 H5 = 1

H4+ R4 = 1

R7, R8, R9, R10, R11, R12, R13, R16 = 0

Computing a positive form for the matrix gives:





H16− R14 = 0

H12+H10+ R4+ R5− R6 = 1

H9+ R5− R6 = 0

H8− R6+ R14+ R15 = 0

H9+H7− R4− R6 = 0

H9+H6− R4 = 0

When computing such positive form, the combinations leading to only posi-
tive coefficients for R5 consume the constraint with positive coefficients for R6.
We are not able to obtain a positive form with positive coefficients for both R5
and R6.

Let us now find out which constraint can be used to bound infinite intervals.
Only the first one contains variables of V ∞

c with the same sign. In that example,
four of the five constraints of interest are undefined forms with respect to the
positive form definition.

However these affine constraints could be used together and allow us to pro-
duce new ones satisfying both the positive form and the constraint of having
only variables of V ∞

c associated to coefficients of the same sign.
The new section addresses such improvement.

5.2 ENHANCING THE ABSTRACTION REDUCTION 111

5.2.2 The reduction revisited

The reduction algorithm is modified in order to deal with more constraints. Par-
ticularly with some undefined forms generated by the positive form transfor-
mation.

We only modify the first step of the algorithm which try to narrow infinite
intervals into finite ones. As in the original presentation, we target an approx-
imated reduction which does not capture all possible reduction but handle as
much as possible while keeping a reasonable complexity. The enhancement we
propose does not change the overall complexity of the reduction while produc-
ing more good constraints for the reduction of infinite intervals.

The first step is reformulated as:

❇♦✉♥❞✐♥❣ ✐♥✜♥✐t❡ ✐♥t❡r✈❛❧s r❡✈✐s✐t❡❞

• We repeat until reaching an empty system:

1. The system is transformed by Gaussian elimination into a positive
form. Such form is obtained by combining rows in order to obtain,
for each variable in V ∞

c , coefficients of the same sign in all constraint.
(O(|Vc|3)).

2. Solve valid rows as previously, i.e. involving only variables of V ∞
c

sharing the same coefficients sign. And remove solved rows from
the system, keeping only undefined constraints. (O(|Vc|2)).

3. Variables of V ∞
c are identified using the current interval abstract ele-

ment. The columns associated to these variables are put at the begin-
ning of the matrix. (O(|V ∞

c |)).

4. Put the system in canonical form 3. (O(|Vc|3)).

5. Eliminate the first variable of the last constraint, by Gaussian combi-
nation, removing this last constraint from the resulting matrix.

The last step that eliminates the last row allows to solve the undefined forms.
The last row involves at least two variables in V ∞

c with coefficients of different
signs. Otherwise the constraint must be solved before and therefore removed.
The elimination of this first variable of the last constraint in other constraints
produces new constraints with possibly coefficients of the same sign for vari-
ables remaining in V ∞

c .
The first step of the reduction as presented here has a worst case complexity

ofO(m× |Vc|3) wherem is the number of constraints of the initial system. How-
ever the algorithm can be reformulated in order to be still in O(|Vc|3). The un-
bounded interval variables are initially identified, the column exchanged, the
canonical form computed as well as the initial positive form. Then the same

3 The canonical form is the normalized reduced row-echelon form as presented in Section 5.1.1.

112 ENHANCING OCCURRENCE COUNTING

schemata is applied, the positive form as well as the canonical matrix being
kept and locally modified when solving rows or removing the last row.

5.2.3 The example reconsidered

We now apply our modified flavor of the algorithm first step on our previous
example. We recall that initially V ∞

c = {H7,H8,H10,H16, R5, R6, R15}.
We first solve valid constraints. Let us now consider the remaining system.

The set of unbounded variables is now V ∞
c = {H7,H8,H10, R5, R6, R15}. We

permute columns in order to get variables of V ∞
c first:






H10+ R5− R6+H12+ R4 = 1

R5− R6+H9 = 0

H8− R6+ R15+ R14 = 0

H7− R5− R4 = 0

−R5+ R6+H6− R4 = 0

Then the last one is removed from the system and eliminated from the other
constraints:






H10+H12+H6 = 1

H9+H6− R4 = 0

H8− R6+ R15+ R14 = 0

H7− R6−H6 = 0

Then we transform the resulting system into positive form and try to bound
valid constraints. The system is already in positive form and the first constraint
satisfies the same signs predicate.
H10 is now bounded by J0, 2K.
The algorithm continues to run on the non empty system but does not gives

more boundary information.

5.3 CONSIDERING COMPUTED TRANSITIONS

We propose in this section a modification of the first occurrence abstraction N
Vc .

We first motivate this modification. Then we state the new abstract domain and
associated semantics. Finally we illustrate its use on our example.

5.3.1 Motivation

The main occurrence counting abstraction presented here allows to represent
with care the effect of computing transitions on occurrences of threads in reach-
able configurations.

5.3 CONSIDERING COMPUTED TRANSITIONS 113

Figure 5.5 Linear cell: an intermediate occurrence counting abstract element
computing a spurious transition.

H4 : J0, 1K H5 : J1, 1K H6 : J0, 0K H7 : J0,+∞J H8 : J0,+∞J

H9 : J0, 0K H10 : J0, 1K H11 : J0, 1K H12 : J1, 1K H13 : J0, 1K

H14 : J0, 1K H15 : J1, 1K H16 : J0, 1K

R4 : J0, 0K R5 : J0,+∞J R6 : J0,+∞J R7 : J0, 0K R8 : J0, 0K

R9 : J0, 0K R10 : J0, 0K R11 : J0, 0K R12 : J0, 0K R13 : J0, 0K

R14 : J0, 1K R15 : J0,+∞J R16 : J0, 0K

Let us focus on the synchronization step that allows or not a transition to be
computed. The abstract semantics mimics the concrete transition: the transition
is computable if the abstract element contains interacting threads.

However this abstract semantics could lead to spurious transition that can
easily be identified as unfeasible when looking at the term. We recall that a
transition occurs if all abstract elements in Cartesian product allow it. Let us
consider the case where the values (or their abstraction) associated to some
threads environments allow the computation, and when these threads were
produced at least once during the preceding abstract transitions. The union
computation may have lost causality expressed by the relational part of the
occurrence counting abstraction.

In the example above, the transition between the thread at program point
4 (the initial linear cell in its put state) and the threads at program point 10,
denoting put messages generated after the get message receiving must never
occurs. Trivially the generation of any thread at program point 10 necessitates
the consumption of the initial thread at program point 4.

Using the preceding occurrence counting abstraction, we obtain the follow-
ing abstract element for intervals, given in Figure 5.5. In particular,

H4 : J0, 1K H10 : J0, 1K

After both the synchronization and the reduction computation, the only modi-
fied intervals are

H4 : J1, 1K H10 : J1, 1K

No interval is associated to the ⊥I value: the abstract transition can occur
where it should not. The abstraction, even reduced, is imprecise and allows a
spurious communication.

114 ENHANCING OCCURRENCE COUNTING

5.3.2 Abstract domain

We propose to enrich the abstract element with direct dependencies between
transitions and launched threads. We only focus on the first launching of threads
and do not carry information about the recursive launching of threads.

The new abstraction of occurrence counting is built upon the previous ab-
straction. We first build an abstract domain carrying abstract dependencies.
This domain is parametrized by another abstract domain. It constrains the syn-
chronization of the underlying domain.

The abstract semantics is modified in order to:

• consider dependencies when computing synchronization;

• update dependencies when launching threads.

A generic abstract domain

We introduce the set Dep = ℘(La ×Lp) of dependencies among threads pro-
gram points. This domain is fitted with a pre-order relation ⊑Dep defined pair-
wise using usual set inclusion. Similarly the abstract union ⊔Dep is the union of
sets and the empty set denotes the bottom element⊥Dep. A widening operator
is not necessary since the set Dep only admits finite ascending sequences. The
initial element CDep

0 is defined as the empty set.
We relate elements of Dep to set of concrete configurations using the mono-

tonic map γDep:

{ǫ,C0} ∪






(u,C)

∣∣∣∣∣∣∣∣∣∣∣∣∣

∀u ′, u ′.λ prefixes of u such that

(u ′, C ′)
λ
−→ (u ′.λ,C ′ ∪new \ removed)

and λ is a static transition

=⇒ ∀(p, id, E) ∈ new, (pa, p) ∈ dep#

where pa the actor program point in λ






⊆ γDep(dep#)

The pair (n,n ′) ∈ dep# denotes that the transition labeled by program point
n launches the thread associated to the program point n ′.

Let us consider an occurrence counting abstract domain (N,⊑N,⊔N,⊥N, γ,

CN
0 , →N,∇N). The main abstract domain pre-order ⊑, union operator ⊔, bot-

tom element⊥, and initial abstract C#
0 are then defined pairwise. The widening

∇ is defined as follows:

(d, o)∇(d ′, o ′) = (d⊔Dep d
′, o∇No

′)

The concretization γ(d, o) is defined as in Cartesian product as γDep(d) ∩

γN(o).
We define our generic main occurrence counting abstraction as

(Dep×N,⊑,⊔,⊥, γ, C#
0,→#,∇)

5.3 CONSIDERING COMPUTED TRANSITIONS 115

Abstract operational primitives

In order to define the abstract transition→#, let us first introduce abstract prim-
itives.

ABSTRACT SYNCHRONIZATION The synchronization step ensures that not only
interacting threads are present in the over-approximation of reachable configu-
rations but also that the approximation has computed the necessary transitions.
We first introduce the equivalence class computation based on the dependency
relations of the abstract element. Then the synchronization primitive is defined,
relying on the synchronization of the underlying numerical abstract domain. It
modifies the constraints using the associated equivalence class.

Definition 5.3 (Dependencies transitive closure) We define the dependencies set

dep(p, d#) ⊆ Lp for a given program point p ∈ Lp and an abstract dependency

d# ∈ Dep as the transitive closure of the following relation :

p1 p2 iff (p1, p2) ∈ d#

The dependencies closure allows to constrain the computed transitions needed for the

existence of the considered interacting threads

Definition 5.4 (Synchronization) The abstract synchronization relies on the depen-

dencies in order to consider computed transitions when ensuring that the numerical

abstraction contains sufficient threads. Let (d, o) be an abstract element of Dep×N

and t ∈ Lp be a set of program points. The primitive SYNC is defined as follows:

We denote by t ′ the family of natural numbers indexed by Vc such that tv is the

equal to one if v =

{
(p, T) p ∈ t;

(p, F) ∃p ′ ∈ t, p + p ′.

SYNC(t, (d, o)) , (d, SYNCN(t ′, o))

where SYNCN denotes the synchronization primitive of the occurrence counting do-

main.

LAUNCHING THREADS The abstract transition is computable, i.e. the other
domains allow it and the current underlying numerical abstraction with the
modified synchronization constraints enforced is not equal to ⊥. Then we have
to reflect the thread launching on the current abstract element. We only focus
on the first launching of threads.

In the CAP case, continuation threads can be launched either by the syntactic
actor defining them or by the use if its behavior branch with a dynamic actor.
Therefore, we only store information concerning transition that do not involve
replication threads.

116 ENHANCING OCCURRENCE COUNTING

Definition 5.5 (Thread launching) The abstract launch builds a new dependence

between the transition label and the launched thread when involving only consumed

threads. Let (pk)k be a tuple of interacting program points, (sk)k the partial interac-

tion type associated to each interacting thread and (contk)k the continuation of each

associated partial interaction.

We denote by pi_type(s) ∈ {computation, replication} the type of the partial

interaction type s. We define the launch_dep primitive as:

launch_dep((pk), (sk), (contk)) ,
{

{p1}× cont_pp1 when pi_type(s1) 6= replication

∅ otherwise

where cont_pp1 denotes the set of program points associated to static threads of cont1.

Abstract operational semantics

The initial state is defined as the empty set of dependencies and the initial ele-
ment for the underlying numerical abstraction.

We now detail the computation of
(pk)k
−−−→#. The abstract transition mimics the

concrete transition. The synchronization relies on the synchronization of the
underlying domain. Launching continuations updates both the dependencies
and the numerical element.

The operational semantics is given in Figure 5.6.

Theorem 5.6 The abstraction defined by (Dep×N,⊑,⊔,⊥, γ, C#
0,→#,∇) is a sound

abstraction with respect to Definition 3.3.

Proof 5.7 The proof can be found in Annexe A.3.

5.3.3 The example reconsidered

Let us consider again the above example with the modified occurrence count-
ing. The abstract element considered also contains the following dependencies:

R14 : {H16} R6 : {H11,H10,H9,H8} R4 : {H7,H6}

The synchronization enforces the presence not only of H4 and H10 but also
ensures the past computation of transitions labeled by R4 and R6.

After computing both the synchronization and the reduction with the rela-
tional part, we obtain:

5.4 REDUCTION IN THE PARTITIONED DOMAIN 117

Figure 5.6 Abstract operational primitive for the occurrence counting domain
with transitions.
Let (d, o)# ∈ Dep ×N be an abstract configuration, let R be a formal rules,
let (pk)16k6n ∈ Lp be a tuple of program points label and (pik)16k6n =

(sk, (park), (bdk), contk) be a tuple of partial interactions. We define by t the
set of interacting program points {(pk)16k6n}.
When

1. ∀k ∈ J1;nK, pik ∈ interaction(pk) ;

2. and SYNC(t, (d, o)#) 6= ⊥.

Then

(d, o)# R,(pk),(pi)k

−−−−−−−−→#(d∪Dep new_dep, o ′)#

Where

1. new_dep = launch_dep((pk), (sk), (contk));

2. o ′ is defined as o
R,(pk),(pi)k

−−−−−−−−→No
′.

H4 : ⊥I H5 : J1, 1K H6 : ⊥I H7 : J0,+∞J H8 : J0,+∞J

H9 : ⊥I H10 : J1, 1K H11 : J0, 1K H12 : ⊥I H13 : J0, 1K

H14 : J0, 1K H15 : J1, 1K H16 : J0, 1K

R4 : ⊥I R5 : J0,+∞J R6 : J0,+∞J R7 : J0, 0K R8 : J0, 0K

R9 : J0, 0K R10 : J0, 0K R11 : J0, 0K R12 : J0, 0K R13 : J0, 0K

R14 : J0, 1K R15 : J0,+∞J R16 : J0, 0K

The ⊥I appears in the resulting abstract element: the transition is not com-
putable. In the considered example, both transitions (4, 10) and (5, 9, 12) are
never computed. The resulting element is therefore more precise, involving
less spurious transitions when computed.

5.4 REDUCING TRANSITION OCCURRENCES BETWEEN PARTITION UNITS

Finally the last enhancement concerning occurrence counting is specific to the
use of these domains under the partitioned abstract domain presented in Chap-
ter 4.

The partitioned abstract domain presented in the previous chapter associates
to each name binder the properties specific to threads bound to this address,

118 ENHANCING OCCURRENCE COUNTING

merging recursive instances of addresses in the same partition unit abstract
element.

Using occurrence counting domains under the partitioned abstraction pro-
duces new constraints, specific to a given binder, that could not be observed
globally. In fact the union computation of abstract element weaken the proper-
ties and could miss some key information. For example the numerical proper-
ties concerning a thread x ⊲ s where x can be bound to different binders are
merged when computing the disjunction. Using occurrence counting in a parti-
tioned view could separate the numerical properties specific to each binder and
allow to prove the properties of interest.

In this section, rather then introducing a new domain, we propose a global
organization of abstract domains in order to obtain both precise information
locally for a given binder and globally for all threads and transition labels.

5.4.1 Combining abstract domains

The main abstract domain proposal is a product of an occurrence counting ab-
straction with a partitioned abstract domain.

The occurrence counting domain carries numerical properties globally for all
threads and transition labels.

The partitioned domain contains both the control flow domain and the do-
main which elements are associated to each partition units. We recall that, in
this context, the control flow abstract domain drives the abstract transitions and
allows to over-approximate partition units. The underlying partitioned domain
is here the occurrence counting domain. Each address binder is associated to
the numerical properties of its threads occurrences.

5.4.2 Reduction

The abstract semantics of the partitioned domain splits the threads to be launch-
ed into the possible units they target. Each unit is then updated considering the
possibly empty set of continuation threads. In this view, each unit is updated
considering the thread launched and the computed transition.

Then this semantics updates units with the incremented transition label even
if they do not contain new launched threads. All transition label intervals are
therefore equal among local elements and the global one.

We propose the following reduction in order to rely on both the global and
local properties computed.

Definition 5.8 (Two-ways Reduction)

5.5 SUMMARY 119

• We reduce global intervals associated to transition labels with their associate local

intervals:

∀iloc ∈ IntervalsUnits, ∀x ∈ Vc, iglob(x,F) , iglob(x,F)⊓I iloc(x,F)

where IntervalsUnits denotes the set of intervals associated to the different

partition units and iglob denotes the intervals of the global occurrence counting

abstract element.

• We reduce back intervals of numerical transitions in partition units with the

global information obtained:

∀iloc ∈ IntervalsUnits, ∀x ∈ Vc, iloc(x,F) , iglob(x,F)⊓I iloc(x,F).

5.5 SUMMARY

In this chapter, we proposed three enhancements concerning the use of occur-
rence counting abstraction within this framework of abstract interpretation of
mobile system. All these enhancements are not CAP specific and can be applied
to any process calculus encoded in the framework.

5.5.1 Contributions

The contributions are the following:

REDUCTION BETWEEN AFFINE RELATIONSHIPS AND INTERVALS We extend
the approximated reduction between KARR’s abstract domain of affine rela-
tionship and the intervals to handle more cases. In particular we modify the
first step that reduces infinite intervals into finite ones. The modified algorithm
relies on the original version and combines undefined forms by Gaussian elimi-
nation to produce good ones. These new constraints can then be used using the
original algorithm and more intervals narrowed.

One can notice that the refined algorithm can also be easily applied to narrow
intervals of Z. In that case, the infinite reduction is computed in two times,
dealing with the right hand-side boundary first then the left hand-side. The
narrowing of finite intervals is keep untouched.

CONSIDERING COMPUTED TRANSITIONS We modified the global occurrence
counting in order to consider computed transition and avoid spurious transi-
tions. This new occurrence counting domain forbids the transition between
threads when one depends on the other thread consumption to be created. The
dependencies among recursive threads were already expressed using the rela-
tional abstraction but these direct relations between the initial thread and the
thread produced the first time were not considered in the previous domain.

120 ENHANCING OCCURRENCE COUNTING

This enhancement avoids a lot of spurious abstract transitions that would then
weaken the result abstract properties.

REDUCTION WHEN USED IN THE PARTITIONED ABSTRACT DOMAIN Based on
the partitioned abstract domain presented previously, we exploit this partition-
ing of properties by name binder. Using the occurrence counting domain under
the partitioning produces constraints that could not be obtain globally other-
wise. However the fixed point computation, with its widening, locally pro-
duces unbounded intervals that could not always be narrowed into finite ones
by the local relational properties. The reduction we introduced globally con-
strains the intervals counting transition label occurrences. Then the reduced
intervals constrain the other thread intervals using the local relational proper-
ties.

5.5.2 General overview

All the enhancements proposed do not change the complexity class of basic
operators of the occurrence counting abstractions. All operators, including re-
duction computations, stay in the worst-case time complexity of O(|Vc|3).

The Figure 5.7 gives an overview of the abstraction used to over-approximate
occurrence counting properties.

The use of the occurrence counting abstraction gives great information on
the numerical properties of reachable configurations. In general, other verifi-
cation techniques such as type systems or model checking do not handle well
such properties, either because they are not precise enough to model them, or
either because they do not scale well. The proposed domains as well as the en-
hancements introduced give a very parametric way to use existing numerical
domains in such framework. Both non relational and relational numerical do-
mains can then be used as basis domains. The reduction algorithms as well as
the associated abstract operational semantics presented here guaranty to obtain
precise results. One can then observe boundedness properties of the system or
even mutual exclusion between threads.

5.5 SUMMARY 121

Figure 5.7 Overview of the global occurrence counting abstraction.

Partitioned

Abstract Domain

Control Flow

X

Occurrence

Counting

Domain

Units

Occurrence

Counting

Domain

Affine

relationships
Intervals

X

Occurrence

Counting

Domain

Affine

relationships
Intervals

X

Affine

relationships
Intervals

X

one way reduction

between karr dom-

ain and intervals

two ways reduction

between intervals of

transition labels in

different units and

the global element

X

 Cartesian product

6
THE LINEARITY PROPERTY

This chapter addresses the analysis of the linearity property for CAP terms. Lin-
ear terms consider addresses as resources and do not allow multiple actors as-
sociated to the same address at a given time.

CAP syntax and semantics would allow such terms to be written but we con-
sider them as invalid. The objective of this chapter is to propose an analysis
that could guarantee a term and its evolutions to be linear.

This property analysis is essential in CAP since we always want to consider
linear systems. A CAP term with at least two actors bound on the same address
does not model anything meaningful and should not be considered. Further-
more the analysis of any other property specific to CAP relies on this linearity
assumption.

Among the difficulties of such an analysis, the behavior passing mechanism
makes the analyses complex as it becomes difficult to precisely track the dy-
namic topology of communications in such a high-order paradigm.

The first section states the problematics, gives the property definition and il-
lustrates it. The Section 6.2 proposes an abstract domain to track the use of each
variable value in order to ensure linearity. An example is given and the detail of
resulting abstract elements computation is presented in Section 6.3. Finally, the
last two Sections 6.4 and 6.5 compare our analysis to related approaches and
conclude.

An initial version of this work was presented in [54], targeting the compari-
son of type system-based and abstract interpretation-based linearity checking.

6.1 PROBLEMATICS

Linearity in concurrent calculi and more generally in programming languages
is a very important concern. Depending on the context, linear systems can be
optimized or implemented in a memory-efficient way.

Linearity in CAP is essential as it allows to consider addresses as exclusive
resources like IP addresses in networks. Its main purpose is to ensure that at
any time only one behavior is reading messages from an actor mailbox. Such an
analysis is not trivial in CAP since an address may be dynamically associated
to many behaviors in its lifetime.

In this section we first state the definition of linear terms and then propose
a first approach to the linearity checking, considering already existing informa-
tion in the abstract elements of previously presented analyses.

123

124 THE LINEARITY PROPERTY

6.1.1 Definition

Depending on the considered term, linearity can be observed more or less easily.
In the Example 2.7 page 27, we can easily observe that when the term cannot
be reduced anymore, there is two actors bound on address a. In contrary, the
configuration given page 29 in Example 2.9 is more complex and necessitates a
precise analysis to ensure that any reachable configuration satisfies the linearity
property for all existing actors.

LINEAR TERMS

Definition 6.1 (Linear terms) Let C ∈ C be a CAP configuration, we denote by

LinearFailure(C, a) the property of the term to be non linear for address a:

LinearFailure(C, a) , C ≡ νa, a ⊲ [. . .] || a ⊲ [. . .] || . . .

Then we define the linearity property: a term is said to be linear if every reachable

state does not break the linearity for each possible actor address.

Linear(C) , ∀C ′ ∈ C ,∀a ∈ N : C→∗ C ′
=⇒ ¬LinearFailure(C ′, a)

6.1.2 Examples

Example 7 The example trace given in Figure 6.1 illustrates a non linear system.

Initially, in this system, two actors are bound to addresses a and b and two messages

labeled m with the same argument c are sent to the address b. All the maximal traces

of this example lead to a non linear configuration.

The non linearity arises because the actor on a freely installs actors on the argument

value of received messages, and replicates. The two initial messages are sent to the actor

on b which forwards them to the actor on a. Once the second one is transmitted, the

configuration has two actors bound to the same address c.

6.1.3 A first attempt of linearity checking in our framework

An immediate solution is to rely on the existing information computed by the
abstract interpretation framework in both control flow approximation, in par-
ticular the shape abstract domain, and occurrence counting abstraction.

Relying on control flow and occurrence counting properties

We first over-approximate the set of actor thread program points that can be
associated to the same address. The result of the shape analysis presented in
Section 3.3.2 gives us this information.

6.1 PROBLEMATICS 125

Figure 6.1 Non linearity example trace.

νaα, νbβ, νcγ, a ⊲1 [n2(x) = ζ(e, s)(e ⊲3 s || x ⊲4 s)]

|| b ⊲5 [m6(x) = ζ(e, s)(e ⊲7 s||a ⊳8 n(x))]

|| b ⊳9 m(c) || b ⊳10 m(c)

(5,9)
−−−→

νaα, νbβ, νcγ, a ⊲1 [n2(x) = ζ(e, s)(e ⊲3 s || x ⊲4 s)]

|| b ⊲7 [m6(x) = ζ(e, s)(e ⊲7 s||a ⊳8 n(x))]

|| a ⊳8 n(c) || b ⊳10 m(c)

(1,8)
−−−→

νaα, νbβ, νcγ, a ⊲3 [n2(x) = ζ(e, s)(e ⊲3 s || x ⊲4 s)]

|| b ⊲7 [m6(x) = ζ(e, s)(e ⊲7 s||a ⊳8 n(x))]

|| b ⊳10 m(c)

|| c ⊲4 [n2(x) = ζ(e, s)(e ⊲3 s || x ⊲4 s)]

(7,10)
−−−−→

νaα, νbβ, νcγ, a ⊲3 [n2(x) = ζ(e, s)(e ⊲3 s || x ⊲4 s)]

|| b ⊲7 [m6(x) = ζ(e, s)(e ⊲7 s||a ⊳8 n(x))]

|| a ⊳8 n(c)

|| c ⊲4 [n2(x) = ζ(e, s)(e ⊲3 s || x ⊲4 s)]

(3,8)
−−−→

νaα, νbβ, νcγ, a ⊲3 [n2(x) = ζ(e, s)(e ⊲3 s || x ⊲4 s)]

|| b ⊲7 [m6(x) = ζ(e, s)(e ⊲7 s||a ⊳8 n(x))]

|| c ⊲4 [n2(x) = ζ(e, s)(e ⊲3 s || x ⊲4 s)]

|| c ⊲4 [n2(x) = ζ(e, s)(e ⊲3 s || x ⊲4 s)]

126 THE LINEARITY PROPERTY

In order to compute these sets of actors that potentially share a same address,
we define the equivalence relation ∼ as the strongest equivalence relation that
relates actors on the same address. We first define a relation ∼ ′∈ L 2

p between
two program points of a term considering the abstract element resulting of the
over-approximation of the term collecting semantics.

Definition 6.2 (Actor sharing their address) ∀p, q ∈ Lp, p ∼ ′ q iff

• there exists (sp, (parameters
p
i), (bounded

p
i), continuationp) ∈ interact-

ion(p) such that sp ∈ {static_actorn, dynamic_actor};

• similarly, there exists (sq, (parameters
q
i), (bounded

q
i), continuationq) ∈

interaction(q) such that sq ∈ {static_actorn, dynamic_actor};

• shape(p, parametersp1)⊓Reg
Lp

shape(q, parameters
q
1) 6= ⊥Reg

Lp
;

where shape(p, x) denotes the element of RegLp
associated to the variable x in the

shape approximation of the program point p.

The equivalence relation ∼ can be defined as the strongest equivalence rela-
tion that is compatible with ∼ ′.

Definition 6.3 (Address sharing equivalence relation) We define ∼∈ L 2
p as the

reflexive, symmetric and transitive closure of the relation ∼ ′∈ L 2
p . Thus the relation

is an equivalence relation. For any program point p ∈ Lp, we denote by [p]
∼

its

equivalence class (i.e. [p]
∼

= {q ∈ Lp|p ∼ q}). We denote by C
∼

the set of all

equivalence classes.

Each equivalence class of C
∼

is then checked to ensure linearity. Actors of
the same equivalence class must be present at most once and must be in mutual
exclusion.

Definition 6.4 (Linearity checking using occurrence properties) The term is lin-

ear iff

• each actor is present at most once in each reachable configuration:

Intervals(p, T) ⊑I J0, 1K

where Intervals : Vc → N
2 is the non relational part of the resulting occur-

rence counting abstract element that maps threads program points, i.e. (p, T),

and transition labels, i.e. (p, F), to intervals;

• all actors in the same equivalence class [p]
∼

are in mutual exclusion. This prop-

erty can be observed in the Karr resulting abstract element of the occurrence

counting abstraction.

6.2 ABSTRACTING LINEARITY 127

We look for constraints expressing mutual exclusion between actors, such as:

∑

pi∈[p]
∼

pi = 1

Other constraints involving other positive occurrences of threads or transition

can also denote mutual exclusion:

X+
∑

pi∈[p]
∼

pi = 1

where X only contains positive multiplicities.

Relying on address partitioning

The proposed approach can be enhanced using the partitioned abstract domain.
The set of actors associated to a given name binder can be here easily computed.
But it can be less precise than the equivalence classes obtained using the shape
marker analysis.

However the occurrence counting abstract domain used under the partitioned
abstract domain gives more relevant properties about occurrences of actor threads
for a given name binder.

The linearity checking is then modified:

1. Using control flow abstract element, we compute equivalence classes.

2. Each equivalence class is associated to the set of name binders it can be
associated to.

3. Then the occurrence constraints (one thread at most, and mutual exclu-
sion) are checked for each equivalence class and each possible binder,
considering the occurrence counting abstract element of the partition unit
associated to the binder.

6.2 ABSTRACTING LINEARITY

The previous analysis do not give often accurate results. We now present an
abstract domain to be used, in our abstract interpretation-based framework for
CAP, in order to check that a term satisfies the linearity requirement.

6.2.1 Intuition

This domain allows us to express linearity in the sense of the type system de-
fined in [26] and presented at the end of the chapter.

Our semantics is defined by an abstract transition relation. In fact, the cur-
rent relation has two ways of data-flow, expressing both the launching of new

128 THE LINEARITY PROPERTY

threads and the updating of interacting threads. The first one computes vari-
able values for new launched threads. But the use of a name in next instants
may affect its current usage mode and constitutes a backward flow. Therefore
the second part of our transition relation updates interacting thread values.

The abstract elements used give, for each thread environment variable and
for each binder, a usage mode. These usage modes count the number of times
each variable can be used to install an actor. These abstract values denote a
range of possible installations: the value ◦ means J0, 0K and the value • means
J0; 1K. The⊤ value denotes any other bigger range and invalidates the property.
A binder associated to such ⊤ value could potentially be used to bind an actor
more than once in the same future configuration.

We define our linearity abstract semantics as follows: we first launch new
threads associating to each of their variable a usage mode. If an internal ν
binder is defined in the continuation, its value is updated according to its lo-
cal use. Then the main computation occurs: the backward flow is evaluated,
propagating the mode summarizing a variable use back to its origin, i.e. the
interacting thread variable that defined it.

The abstract domain is presented in two flavors. The first one is the simpler
definition, it relies on the definition of the ν binder value computation and of
the backward flow. But the soundness of this domain has not proved as is by
the author.

Therefore we introduce a second domain, as an extension of the first, that
facilitates the soundness proof. However this second formulation necessitates
to compute least fixed points inside operational semantics primitives. We con-
clude with a conjecture linking fixed points of the first domain to fixed points
of the second one.

6.2.2 A first abstraction

As before, we first introduce the abstract domain lattice. Then the abstract op-
erational semantics primitives and the operational semantics itself are defined.
A last part addresses the difficulties encountered and motivates the second do-
main definition.

Abstract domain

We introduce the poset N♭ denoting ranges of natural numbers, our usage
modes. In this context of linearity checking for CAP, we use the following set:

N♭ , {⊥, ◦, •,⊤}

6.2 ABSTRACTING LINEARITY 129

where ◦ denotes the range of natural numbers J0; 0K and • denotes the range
J0; 1K. The value ⊤ denotes any other bigger range. In this particular case,N♭ is
fitted with a total order ⊑♭.

⊥♭ ⊑♭ ◦ ⊑♭ • ⊑♭ ⊤♭

We also define the union ⊔♭ as the least upper bound of its arguments and
the sum +♭ as the symmetric operator such that






∀x ∈ N♭,⊥♭ +♭ x = ⊥♭,

◦+♭ ◦ = ◦,

◦+♭ • = •,

•+♭ • = ⊤♭,

∀x ∈ {◦, •},⊤♭ +♭ x = ⊤♭

The
∑

♭ operator is defined as usual using the +♭ operator.
We introduce the lattice Nulin and Envlin build upon N♭. The first one as-

sociates elements of N♭ to CAP address binders in Lν. The second is similar
to the non relational abstraction of thread environments in the control flow ab-
straction: it associates to each variable of each thread program point an abstract
value in N♭.

Nulin , Lν → N♭ Envlin , Lp →
(
V → N♭

)

Their associated operators, pre-order⊑Nu, union ⊔Nu, bottom element⊥Nu

and ⊑Env,⊔Env,⊥Env respectively, are defined as the point-wise extensions of
their associated operators in N♭ to discrete maps from Lν or from Lp × V .

The main domain C lin is pair-wisely defined as the product of Nulin and
Envlin:

C
lin , Nulin × Envlin

The associated operators, pre-order ⊑lin, union ⊔lin, bottom element ⊥lin

are pair-wisely defined using ⊑Nu, ⊔Nu, ⊥Nu and ⊑Env, ⊔Env, ⊥Env, respec-
tively.

We do not need to introduce a specific widening operator since our under-
lying mode domain N♭ satisfies the ascending chain condition (ACC): ∇lin =

⊔lin.

Abstract semantics primitives

COMPUTING BINDER MODE The primitive binder computes for each binder
defined in a static continuation the sum of its use in the continuation.

It returns an element of type Nulin with the new usage modes computed.

130 THE LINEARITY PROPERTY

Definition 6.5 (binder mode computation) Let pps# ∈ Envlin be an abstract en-

vironment. Let cont ∈ ℘(Lp × ℘(V ×L)) be a static continuation, associating to

each thread to be launched a static environment defining the newly created values. We

define the primitive binder as:

binder(cont, pps#) , λx.
♭∑

(p,v)∈cont(x)

pps#(p)(v)

with cont(x) =






(p, v) s.t.






(p, Es) ∈ cont,

v ∈ Dom(Es)

and Es(v) = x






.

The call of the primitive, on a continuation giving an empty set cont(x) for all

possible x, returns the default value ◦.

FORWARD FLOW The forward flow computation is fairly simple. It just asso-
ciates a default value to each launched thread. Unreachable threads are then
associated to a bottom value when reachable ones have either a default value
or a bigger one computed by the backward flow.

The default usage mode is ◦ for all thread environment variables except actor
addresses which are associated to •.

This simple forward flow does not depend on the already computed value.

Definition 6.6 (static forward flow) Let cont ∈ ℘(Lp × ℘(V ×L)) be a static

continuation. We define the primitive static_flow such that:

static_flow(cont) , λp.λv ∈ I(p).

{
• when p is an actor and v its address

◦ otherwise

The forward flow computation step can then be defined. It updates the ab-
stract element with the simple forward flow computed and summarizes the use
of internal binders launched.

Definition 6.7 (forward flow computation) Let (b#, pps#) ∈ C lin be an abstract

configuration and cont ∈ ℘(Lp×℘(V ×L)) be a static continuation. We introduce

the primitive fflow:

fflow(cont, (b#, pps#)) , (b ′#, pps ′#)

where

• pps ′# = static_flow(cont)⊔Env pps#;

• b ′# = binder(cont, pps ′#)⊔Nu b#.

6.2 ABSTRACTING LINEARITY 131

DEPENDENCIES In order to facilitate the latter binding between variables of
interacting threads and variables in launched thread environments, we intro-
duce the primitive dependencies. It extracts links between variables using the
non standard semantics elements: the formal rule and the partial interactions
associated to interacting threads. These links come either from the value pass-
ing computed during the transition, i.e. message argument and ζ variable, or
it binds variables of launched threads to the same variables of the static actor
or behavior branch thread. This second flow denotes the natural binding of
variables.

Definition 6.8 (dependencies) Let R be a CAP formal rule of the non standard se-

mantics. Let (pk)k be a sequence of interacting thread program points and (pik)k be

their associated partial interactions. We recall that in the CAP non standard encoding

the continuation is only defined in the first partial interaction denoting either a static

actor or a behavior branch, depending on the matched rule.

dependencies(R, (pk)k, (pi
k)k) , {(p, v), (p ′, v ′)}

s.t ∃Es ∈ ℘(V ×Lν), (p, Es) ∈ continuation
1, v ∈ I(p) \Dom(Es),{

either p ′ = pi, v = param1
j , and v ′ = boundi

l when (Y1
j ← Xi

l) ∈ v_passing

either p ′ = p1 and v = v ′ otherwise

where

• R = (n, components, compatibility, v_passing),

• (pik)k = (sk, (paramk
i), (boundk

i), continuationk)k.

BACKWARD FLOW The backward flow computation takes the dependencies
computed between interacting thread environment variables and launched thread
environment variables. For each variable, it computes the sum of its use in the
continuation and updates the value associated to the source variable in the in-
teracting thread abstract environment.

Definition 6.9 (backward flow computation) Let dep ∈ ℘((Lp × V)× (Lp ×

V)) be a set of dependencies between interacting thread variables and launched thread

ones. Let (b#, pps#) ∈ C lin be an abstract element. We define the primitive bflow as

follows.

bflow(dep, (b#, pps#)) ,

b#, λp.λv ∈ I(p).


pps#(p)(v)⊔♭

♭∑

(p ′,v ′)∈succ(p,v)

pps#(p ′)(v ′)




where succ(p, v) = {(p ′, v ′) s.t. ((p ′, v ′), (p, v)) ∈ dep}.

132 THE LINEARITY PROPERTY

UPDATE INITIAL THREADS ABSTRACTION Finally the last primitive allows to
update the value of initial threads. In the original framework, the property ob-
tained in the initial configuration is defined by the C#

0 abstract value but does
not evolve with transitions. For instance, in the control flow abstraction, the ini-
tial threads are initially fully defined and no future thread will ever be launched
with these initial program points.

In our abstract domain, the backward flow could update the abstract values
associated to initial threads. We need to ensure that the initial term inits, as
defined by our CAP extraction function satisfies the linearity property consid-
ering the computed abstract element.

Definition 6.10 (initial binder updating) Let (pk)k be a set of interacting thread

program points and (b#, pps#) ∈ C lin be an abstract element. We define the primitive

init as follows.

init((pk), (b#, pps#)) ,




b# ⊔Nu binder(inits, pps
#), pps# when ∃p ∈ P,

∃Es ∈ ℘(V ×L) s.t (p, Es) ∈ inits

b#, pps# otherwise

Abstract operational semantics

We are now able to define the abstract operational semantics.

INITIAL STATE The initial state is defined using the fflow primitive: it asso-
ciates default values to initial threads and their sum to the initial binders.

Definition 6.11 (initial abstract state) Let inits be the initial static configuration.

We define the initial abstract element Clin
0 as follows:

Clin
0 , fflow(inits,⊥

lin)

ABSTRACT TRANSITION The abstract transition can then be defined. Its for-
mal definition is given in Figure 6.2.

Let us just recall the principal steps:

• in this domain, the transition is only constrained by syntactic conditions
such as the message label or arity. It does not consider the compatibility
constraints of the considered formal rule;

• launched threads are initialized with a default value, • for actor addresses
and ◦ for other variables;

• newly defined binders are associated to the sum of their use in the launched
continuation;

6.2 ABSTRACTING LINEARITY 133

Figure 6.2 Abstract operational semantics for first abstraction.

Let C# ∈ C lin be an abstract configuration. Let R = (n, components, com-
patibility, v_passing) be a formal rule. Let (pk)16k6n ∈ Lp be a tuple of
program point labels and (pik)16k6n = (sk, (park), (bdk), contk) be a tuple of
partial interactions.
We define the abstract transition involving the rule R, the program points (pk)k

and their associated partial interactions (pik)k as:

C# (R,(pk)k,(pik)k)
−−−−−−−−−−−→

lin

fd∪ bd∪ init

where

• fd = fflow(cont1, C#);

• dep = dependencies(R, (pk)k, (pi
k)k);

• bd = bflow(dep, fd);

• init = init((pk)k, bd).

• a backward flow is computed, updating each interacting thread environ-
ment depending on the use of their variable in the launched continuation;

• finally the initial threads and binders are updated in order to detect lin-
earity failure on initial binder addresses.

Concretization and soundness

The difficulty in the presented domain is to characterize a useable concretiza-
tion map. In practice, the concretization is used to guarantee the soundness of
the domain by construction but is not used when computing transitions. It is
also useful to extract information from the abstract element obtained at the end
of the fixed point computation.

In this particular case of linearity checking, the motivation was to compute
an usage mode for each binder and variable use. The idea behind was to be able,
considering an abstract element over-approximating sets of configurations, to
affirm that all the related concrete configurations were linear or not, depending
on the binder usage mode. If a binder usage mode is ⊥♭, the binder is never
used in reached threads; if the binder is ◦, no actor is ever installed on this
binder addresses; if the binder is •, at most one actor is installed in reachable
configurations; and finally if the binder mode is ⊤♭ we cannot ascertain that
related configurations are linear ones.

134 THE LINEARITY PROPERTY

Such a concretization is monotonic and would satisfy the soundness assump-
tion required by our framework. However it is not applicable here. In fact
when computing a transition that breaks the linearity, the linearity failure will
be detected, associating a ⊤♭ to the associated binder, only latter in the fixed
point computation. It requires to propagate the mode through the backward
flow computations until the continuation launching where linearity is broken
in practice (two threads containing the same variable xwith both a value • in a
continuation). And again it propagates the ⊤♭ mode back to the binder defini-
tion.

Conjecture 6.12 Considering an adequate monotonic concretization γlin relating post

fixed point abstract elements to sets of configurations, the abstraction (C lin,⊑lin

,⊔lin, ⊥lin, γlin, Clin
0 ,→lin,∇lin) is a sound abstraction with respect to the Defi-

nition 3.3.

6.2.3 A second abstraction

In order to address this soundness requirement, we introduce a modification of
the first domain in which each computation of an abstract transition reduces to
a fixed point computation propagating uses of variables back to their defining
binder.

We extend the abstract domain with dependency relations between thread
variables and modify the backward computation in order to introduce the fixed
point computation.

Then each abstract element can now be related to concrete configurations
through a monotonic concretization map.

Abstract domain

We introduce the set Dep that allows us to store each dependency relation that
arises between interacting thread environment variables and launched thread
ones. These dependencies were the ones used in the backward flow primitive
and produced by the dependencies primitive.

Deplin , ℘ ((Lp × V)× (Lp × V))

This set is associated to usual set operators: the pre-order ⊑Dep defined as the
set inclusion ⊆, the union operator ⊔Dep as the set union ∪ and the bottom
element ⊥Dep as the empty set ∅.

The main domain C lin ′
is now defined as follows:

C
lin ′

,
(
Nulin × Envlin

)
×Deplin

Operators are extended on this product.

6.2 ABSTRACTING LINEARITY 135

Concretization

The concretization γlin ′
is the one that was defined informally above on fixed

points of the first abstract domain.
It is quite complex since each part of the abstract element addresses specific

properties:

• the binder part specifies the usage of each address, linear or not;

• the abstract environment gives the over-approximation of variable values
usage;

• the dependency part reflects all the links between environment variables
induced by the value passing of computed transitions.






(u,C)

∀(b, id) ∈ Lν ×M , C|(b,id) :




is empty when b#(b) = ⊥♭;

contains only messages when b#(b) = ◦;

contains at most one actor when b#(b) = •.






⊆ γbinder(b#)

The concretization devoted to the binder approximation restricts the use of
each address in over-approximated configurations. Each represented configura-
tion is restricted for each address depending on the usage mode of the address
binder. A ⊥♭ value forbids the use of the address to bind threads. A ◦ value
or a • one denotes a linear configuration with respectively no messages or at
most one actor. Finally, the ⊤♭ value does not constrain at all the associated
sub-configuration.






(u,C)

∀(p, id, E) ∈ C,∀v ∈ I(p), pps#(p)(v) 6= ⊥♭

∀λ s.t. u = v.λ.v ′, C0
v
−→ Ci

λ
−→ Ci ∪newt \ removed

v ′

−→ C

∀(p ′, id ′, E ′) ∈ newt,∀x ′ ∈ I(p),

∃((po, xo), (p ′, x ′)) ∈ dep# s.t.(po, id, E) ∈ λ∧ E ′(x ′) = E(x)

∀(p, id, E) actor thread ∈ C,

∀(p ′, x ′) s.t. (p, address_var(p)) + (p ′, x ′), pps#(p ′)(x ′) ⊒ •






⊆ γmodes(pps#, dep#)

where (p1, v1) (p2, v2) ≡ ((p1, v1), (p2, v2)) ∈ dep#.

136 THE LINEARITY PROPERTY

This concretization is more complex as it expresses the relationships between
variable values that were implicit in the first abstraction, due to value passing.

The first part expresses that no bottom thread can be present within C.
The second part makes explicit the sequences of transitions that occurred:

each created thread variable in the past of the configuration C has values that
came from interacting threads that created it.

Finally the third part constrains all thread environment variables that can be
used to bind an actor. Any variable that can later be used that way has an usage
mode greater than •.

Both last parts are essential in the latter proof to guarantee that non linearity
is detected through abstract transition computation.

Then the main concretization is defined as follows:

γlin ′

((b#, pps#), dep#) , γbinder(b#)∩ γmodes(pps#, dep#)

Abstract semantics primitives

The abstract primitives are modified to make the fixed point computation ex-
plicit and to update the value passing dependencies between variables.

BACKWARD FLOW REVISITED: PROPAGATING MODES The backward flow is
modified in order to propagate the backward mode updating to the binder
defining values.

In the following, we denote by cont(p) the static continuation where the
thread at program point p is defined. It can be syntactically determined. Ini-
tial threads are associated to inits, by this function.

We first define the single step of backward computation. It takes all the de-
pendencies in dep# and propagates back the modes along these dependencies.
All internal ν binders are also updated using the binder primitive.

Definition 6.13 (one step backward) Let ((b#, pps#), dep#) ∈ C lin ′
be an abstract

element. The single step of backward computation is defined as follows:

Step((b#, pps#), dep#) ,
(
b ′′#, pps ′#

)

where

• (b ′#, pps ′#) = bflow(dep#, (b#, pps#));

• b ′′# = b ′# ⊔Nu

Nu⊔

cont(p) s.t. p∈Lp

binder(cont(p), pps#).

Now the propagation can be expressed as the fixed point of this single step
primitive.

6.2 ABSTRACTING LINEARITY 137

Definition 6.14 (modes propagation) Let (C#, dep#) ∈ C lin ′
be an abstract ele-

ment. We define the backward flow computation using the primitive propagate ex-

pressed as the least fixed point of the Step primitive:

propagate(C#, dep#) , lfp⊥lin

(
λX.C# ⊔ Step(X, dep#)

)

UPDATE INITIAL THREADS The previous function init is no longer necessary
since the computation of binder modes is done within the Step function. Pro-
gram points of initial threads are associated to the set inits of static threads by
the function cont and the binder modes of these initial threads updated.

Abstract operational semantics

The abstract operational primitive is defined as before.

INITIAL STATE The initial state Clin ′

0 considers an initial empty set of depen-
dencies.

Definition 6.15 (initial abstract state)

Clin ′

0 = (Clin
0 , ∅)

OPERATIONAL SEMANTICS The operational semantics is described in Figure 6.3.
As in the previous abstraction, first a forward flow is computed, launching new
threads. Then the backward flow computation propagates back the mode to the
possible original binder, computing the sum of the usages at each intermediate
computation step.

Soundness

We now state the soundness of this second domain and conjecture the sound-
ness of the first abstraction.

Theorem 6.16 The abstraction (C lin ′
,⊑lin ′

,⊔lin ′
,⊥lin ′

, γlin ′
, Clin ′

0 ,→lin ′
,∇lin ′

)

is a sound abstraction with respect to the Definition 3.3.

Proof 6.17 The proof can be found in A.4.

We now state the conjecture relating fixed points of both abstractions.

Conjecture 6.18 Considering a non standard initial term C0, and an associated finite

set of transition labels, the fixed points of the collecting semantics expressed in the

domains C lin and C lin ′
are identical.

Proof 6.19 (proof sketch) The dependencies accumulated in the C lin ′
domain that

drive the backward fixed point computation are the ones that are used in each single

abstract transition in the domain C lin.

138 THE LINEARITY PROPERTY

Figure 6.3 Abstract operational semantics for second abstraction.

Let (C#, dep#) ∈ C lin be an abstract configuration. Let R = (n, compo-
nents, compatibility, v_passing) be a formal rule. Let (pk)16k6n ∈ Lp be
a tuple of program point labels and (pik)16k6n = (sk, (park), (bdk), contk) be
a tuple of partial interactions.
We define the abstract transition involving the rule R, the program points (pk)k

and their associated partial interactions (pik)k:

(C#, dep#)
(pk)k
−−−→

lin ′

(fd∪ bd, dep ′#)

where

• fd = fflow(cont1, C#);

• dep ′# = dep# ⊔dep dependencies((pk)k, cont);

• bd = propagate((fd, dep ′#)).

6.3 EXAMPLE ANALYSIS

The Figure 6.4 gives a possible sequence of abstract transition computations
leading to a ⊤♭ value for the binder at program point γ in a minimal number of
steps.

The first two steps launch the reached threads and accumulate created de-
pendencies between thread variables. In particular, they express the relation
between the variables c of threads at program points 9 and 10 and the vari-
able x of threads at program point 8. Until then, there is no valuable backward
flow computation. The last transition presented, (1, 8), launches the thread at
program point 4 using the variable x to bind an actor. The backward flow com-
putation with its fixed point definition propagates this value to the variable x
at program point 8 and then at the variables c at program points 9 and 10.

The updating of the associated binder detects that the variable c is used twice
with a •mode and goes to ⊤♭.

The first abstract domain without the local least fixed point definition neces-
sitates the computation of the abstract transitions (5, 9) and (5, 10) to propagate
the • value back to the threads at 9 and 10 and detects then the linearity failure.

6.4 RELATED WORKS

Linearity has been studied using different approaches in the context of concur-
rency.

6.4 RELATED WORKS 139

Figure 6.4 Linearity: abstract properties computation.

1 [a 7→ •] 2 ∅ 3

[
e 7→ ⊥♭

s 7→ ⊥♭

]
4

[
x 7→ ⊥♭

s 7→ ⊥♭

]

5

[
a 7→ ◦

b 7→ •

]
6 [a 7→ ◦] 7

[
e 7→ ⊥♭

s 7→ ⊥♭

]
8

[
a 7→ ⊥♭

x 7→ ⊥♭

]

9

[
b 7→ ◦

c 7→ ◦

]
10

[
b 7→ ◦

c 7→ ◦

]
α : • β : • γ : ◦

Dependencies = ∅

(5,9)
−−−→

Lin ′

1 [a 7→ •] 2 ∅ 3

[
e 7→ ⊥♭

s 7→ ⊥♭

]
4

[
x 7→ ⊥♭

s 7→ ⊥♭

]

5

[
a 7→ ◦

b 7→ •

]
6 [a 7→ ◦] 7

[
e 7→ •

s 7→ ◦

]
8

[
a 7→ ◦

x 7→ ◦

]

9

[
b 7→ ◦

c 7→ ◦

]
10

[
b 7→ ◦

c 7→ ◦

]
α : • β : • γ : ◦

Dependencies = {((7, e), (5, b)), ((8, a), (5, a)), ((8, x), (9, c))}

(5,10)
−−−−→

Lin ′

1 [a 7→ •] 2 ∅ 3

[
e 7→ ⊥♭

s 7→ ⊥♭

]
4

[
x 7→ ⊥♭

s 7→ ⊥♭

]

5

[
a 7→ ◦

b 7→ •

]
6 [a 7→ ◦] 7

[
e 7→ •

s 7→ ◦

]
8

[
a 7→ ◦

x 7→ ◦

]

9

[
b 7→ ◦

c 7→ ◦

]
10

[
b 7→ ◦

c 7→ ◦

]
α : • β : • γ : ◦

Dependencies =

{
((7, e), (5, b)), ((8, a), (5, a)),

((8, x), (9, c)), ((8, x), (10, c))

}

(1,8)
−−−→

Lin ′

1 [a 7→ •] 2 ∅ 3

[
e 7→ •

s 7→ ◦

]
4

[
x 7→ •

s 7→ ◦

]

5

[
a 7→ ◦

b 7→ •

]
6 [a 7→ ◦] 7

[
e 7→ •

s 7→ ◦

]
8

[
a 7→ ◦

x 7→ ◦ ⊔♭ •

]

9

[
b 7→ ◦

c 7→ ◦ ⊔♭ •

]
10

[
b 7→ ◦

c 7→ ◦ ⊔♭ •

]
α : • β : • γ : ◦ ⊔♭ (•+♭ •) = ⊤♭

Dependencies =

{
((7, e), (5, b)), ((8, a), (5, a)), ((8, x), (9, c)),

((8, x), (10, c)), ((3, e), (1, a)), ((4, x), (8, x))

}

140 THE LINEARITY PROPERTY

The first works related to the current analysis are the ones of COLAÇO et

al. in [26] where the property was checked in a type inference based approach
using a HM(X) type system. This type system deals with behavior passing
computing a usage mode for each variable. The constraints accumulated when
typing a term denote causality relations between sub-processes.

This type system was the only one proposed by COLAÇO that handles CAP
behavior passing capability, but constraining the information contained in ac-
cumulated constraints. Our approach seems more promising considering the
precision of our control flow analysis, driving abstract transitions, and consid-
ering the way we propagate usage mode. In our approach to handle behavior
passing, we do need to restrict the number of modes and could express more
complex abstractions such as intervals to count numbers of actors bound to the
same address. Furthermore, the internal free variables in a behavior are not
automatically associated to a ⊤♭ value as in COLAÇO type system.

Other works address a similar property in a more or less different contexts.
In [89], the authors proposed a method for inferring the maximum usage of
channels, both for input and output, by applying an effect system designed for
Concurrent ML [91]. This analysis handles higher-order functional terms but
only first order ones for the concurrent part. Furthermore it widens recursive
receptions which often lead to ∞ usages.

The work [77] addresses the problem of linear channels in π-calculus. A chan-
nel is linear when there is at most one reader and one sender. However the pro-
posed type system is not fitted with an inference algorithm. The multiplicity
part of this type system was inspired by the analysis presented in [76] which
has been later continued in [64]. It is devoted to counting receptions and does
not deal with channels as first class values. Their types carry information about
the sequences of actions with a multiplicity, but this could lead to an explosion
of the size of types. Another problem is that their type system cannot express
properties that deal with the dynamic creation of channel names.

All these approaches are mainly type system based and follow a denotational
approach of static analysis. They lack the precision we obtained in a more op-
erational approach using the powerfulness of abstract interpretation to reach
an over-approximation in reasonable time. Furthermore no one of them, except
the work of COLAÇO, analyzes such properties in a high-order context.

In a more theoretical view, linearity has been studied in [95] comparing the
relative expressivity of the semi-persistent flavors of the π-calculus, considering
replicated input or output, or in contrary the flavor with no replications.

6.5 DISCUSSION

The proposed domains are precise enough to ensure the linearity as defined in
CAP. However we advocate that the different proposed approaches, the one
based on computed properties from the control flow approximation and the

6.5 DISCUSSION 141

occurrence counting one with the abstract domain devoted to the usage of each
channel could be combined to obtain better results.

Considering the proposed abstract domain as well as the difficulties encoun-
tered when expressing such a backward flow in a sound manner and in the
original approach of a least fixed point computation, we target to express such
a property as a greatest fixed point. The least fixed point of the control flow ab-
straction could be used to over-approximate reachable program points with the
set of possibly associated binders. Such reachable threads should be associated
to ⊤♭ values and backward flow should be computed as intersection of the old
value and the one inferred by an abstract transition computation. We believe
that this formulation could lead to a direct soundness proof, without the need
for a local least fixed point.

Finally the domains proposed here in a CAP context could easily be adapted
in order to apply them to more widespread calculi, such as the π-calculus. The
simpleN♭ domain is used to approximate ranges of usage, it could be replaced
with intervals or even relational abstractions between different channel usages.
The abstract semantics could also be adapted to count the number of emissions
on a channel as well.

7
ENSURING ORPHAN FREENESS

We now focus on our second property: the orphan-freeness checking. As briefly
presented above in the introduction chapter, orphan messages can appear in
asynchronous calculi especially in the so-called calculi with non uniform inter-

faces, where the capacity to handle messages may vary depending on previ-
ously computed transitions. In CAP, orphans are messages that are sent to an
address that will not be able to ever handle them.

This property is inherently complex since it necessitates to build a represen-
tation of the different sequences of interfaces associated to each address value
as well as the set of messages available to them at any time. By essence, process
calculi do not facilitate such a representation due to the huge number of differ-
ent possible computation traces. Furthermore, in our case, the CAP behavior
passing mechanism is also a gap to bridge in order to be able to get accurate
results.

In this chapter, we propose an analysis allowing to check orphan-freeness.
The Section 7.1 details the problematics, gives the property formalization and
illustrates it on an example. The Section 7.2 gives then an overview of the pro-
posed property checking, reducing it to a reachability problem over Vector Ad-

dition Systems with States (VASS). In Section 7.3, we propose an abstract domain
representing sequences of interfaces as a VASS. In Section 7.4 we rely on the
computed abstract element in order to effectively check the property. We also
discuss soundness arguments of our approach. Finally the Section 7.5 describes
the analysis of an example while Section 7.6 gives a final discussion and consid-
ers related works.

7.1 PROBLEMATICS

We are interested in detecting orphan messages in our actor process calculus,
CAP. In the actor model, as in most asynchronous process calculi, characteriz-
ing and detecting messages that are sent in some execution but won’t be han-
dled ever after is a pregnant concern. In this context, an orphan message is
intuitively such a sent message that will not have a chance of ever being con-
sumed. In fact, the real property we are interested in is the absence of orphans:
the orphan freeness property.

Such property only make sense in valid CAP terms, i.e. in linear ones. In
all this chapter, we consider linear terms. The previous chapter, Chapter 6,
addressed this linearity property analysis.

143

144 ENSURING ORPHAN FREENESS

SAFETY ORPHANS VS. LIVENESS ORPHANS However several flavors of or-
phan messages can be characterized. A first one may consider messages that
will never be consumed, because they do not appear in the future behavior
branches of the target actor, we call them safety orphans. A second characteriza-
tion, more difficult to deal with, is the notion of liveness orphans. It restricts the
preceding definition, considering actor stuck. A message which is not a safety
orphan, because the future of its target actor contains a behavior branch with its
own label, could be a liveness orphan if its target actor is stuck and is waiting
for another message to get the appropriate behavior.

In the following we address the freeness checking of both kind of orphans.
The absence of safety orphans is first ensured. Then we verify that a system
with non empty mailboxes is not stuck.

GUARANTEEING A HIGH-LEVEL PROPERTY Orphan freeness checking is in-
deed a high level property which necessitates non trivial analyses. As it is more
detailed in the next sections, orphan freeness is a temporal property that is ex-
pressed on maximal traces. In practice, it is checked in any reachable state. All
maximal traces computable from such states must exhibit the capability to han-
dle all messages present herein. In order to provide an analysis able to deal with
orphan freeness, one has to deal with sequences of available interfaces for each
address, or at least find a way to model it. Moreover, CAP behavior passing
ability renders the framework complex.

7.1.1 Definitions

As said above, ensuring the property requires to represent interfaces associated
to an address. We also need to represent the messages available at each step of
the computation. We now introduce the necessary definitions.

MAILBOXES All messages available in a given configuration can be partitioned
among their target address. We denote by mailbox the element of such partition
associated to a given address. In fact we only count the number of messages
associated to the same label.

Definition 7.1 (Mailbox) For an actor name a in a given configuration C, we denote

byMailbox(a,C) the finite multiset of message labels sent to a in C.

FUTURE INTERFACES As the property has to be checked in any reachable state,
we can flatten the sequence of future interfaces available in a given configura-
tion while representing future behaviors associated to an address.

Definition 7.2 (Future interface) For an actor name a in a given configuration C,

we define Future(a,C), the future interface of a, as the finite set of message labels it

7.1 PROBLEMATICS 145

can handle in some behavior that it may assume in some execution path drawn from C,

including the current behavior if any. Formally:

Future(a,C) ,

{m | ∃C ′ : νa,C→⋆ νa,C ′ ∧ C ′ ≡ a ⊲ [m(. . .) = . . .]‖ . . .}.

This previous definition could be further refined, as two slightly different no-
tions of what it means for an interface to be able to handle some message could
be adopted. First, we may stick to the definition and consider the static set of
branches that are attached to some behavior, or second we may only include
branches that may take part in a transition of some execution, that is we may
rule out some dead behavior code.

Here, we take the second option, as the abstract interpretation phase aims at
computing an approximation of the set of reachable configurations, striving to
avoid exploring dead code whenever possible.

ORPHAN MESSAGES We can then define what orphan messages are. We recall
that we consider here the first flavor presented above: safety orphans. Orphans
can then be defined locally, on a configuration, considering the flattened se-
quence of future interfaces.

Definition 7.3 (Orphan message) For a given actor name a and message a ⊳ m(. . .)

in its mailbox in a given configuration C, m is declared orphan if not present in the

future interfaces of a in C.

Orphan(m,a,C) , m 6∈ Future(a,C) ∧ C ≡ νa, a ⊳ m(x̃) ||

ORPHAN–FREE CONFIGURATIONS Finally the main definition ensures that all
reachable configurations are orphan free. A faulty message can then validate the
property for initial states but then invalidates it when reaching a configuration
where not future handles it.

Definition 7.4 (Orphan-free configuration) A configuration C is orphan-free if it

does not contain orphan messages, and its possible successor configurations are all

orphan-free. Formally:

OrphanFree(C) , ∀a,m,C ′ : C→⋆ C ′ ⇒ ¬Orphan(m,a,C ′).

This property can also be expressed as a CTL-like formula:

OrphanFree(C) ,

∀�C ≡ νa, a ⊳ m(x̃) || . . . =⇒ ∃♦C ≡ νa, a ⊲ [m(ỹ) = . . .] || . . .

Here we state an interesting property of orphan-free configurations, under
a particular fairness assumption. This assumption, which is usual in the actor
model, can be easily enforced using a queue-based implementation of pending
messages for instance. Note that this property does not prevent waiting queues
from arbitrarily growing.

146 ENSURING ORPHAN FREENESS

Property 7.5 (Finite pending time) Provided old messages will eventually be han-

dled (if possible) before newer ones, then messages cannot remain pending forever in a

mailbox.

This property guarantees us a fair receiving in case of infinite behaviors.
However as our verification methodology is static analysis, we build all pos-
sible interleavings and do not lose cases.

A second fairness property forbids bad infinite behaviors.

Property 7.6 (Finite firing time) Provided necessary messages exist (old ones or new

ones), behavior branches that could be infinitely often be used will eventually be.

A last property to introduce allows to define liveness orphan free systems.

Property 7.7 (Non stuck actors) An actor, associated to a non empty mailbox, is non

stuck provided it will be able to compute a transition. We rely on the non standard

semantics in order to express the actor consumption.

NonStuck(C) ,

∀(p, id, E) such that p ∈ La and add = E[address_var(p)],

∀�(p, id, E) ∈ C∧Mailbox(add,C) 6= ∅ =⇒ ∀♦(p, id, E) /∈ C

We can now express a strong property expressing message consumptions us-
ing both the liveness orphan freeness and the finite pending time property. We
rely on the non standard encoding of CAP as it allows to differentiate recur-
sive instance of the same program point. A similar definition in the standard
semantics would require a time stamp on messages to differentiate them.

Property 7.8 (Message consumption) Let C0 be an orphan-free non standard con-

figuration. We have the following property, considering the finite pending time prop-

erty, the finite firing time property and non stuck actors:

∀(p, id, E) such that p ∈ Lm,∀�(p, id, E) ∈ C =⇒ ∀♦(p, id, E) /∈ C

Finally, it turns out that we need to compute, for a given actor a, the set of
configurations C in which it may occur (with its associated mailboxes) and the
set of its future interfaces Future(a,C) for each such configuration C ∈ C . We
need then to compute, for all message label m, an over-approximation of its
reachable states where the occurrence of messages labeledm is strictly positive;
and an under-approximation of the reachable states that consume such kind of
messages. Lastly, they are compared by inclusion to ensure their consumption.
This step ensures the safety orphan freeness.

Then we ensure that each actor is able to compute a transition when its mail-
box is non empty.

7.1 PROBLEMATICS 147

7.1.2 Examples

Let us illustrate these definitions on some simple examples.

Example 8 (Linear cell) The linear cell presented in Example 7.1a is the basis of these

examples. It is composed of a single actor on address z. This actor is able to receive a

put message with one argument. When receiving such a message, it assumes another

behavior allowing it to receive a get message with one argument. Handling such a

get message produces a reply message labeled rep addressed to the argument of the

get message with argument the one of the put message. When receiving the second

message, the one labeled get, it comes back to its initial behavior. It is able to receive a

put message and has no information about past transitions (i.e. values of past handled

put and get messages).

Example 9 (S1: Linear cell with a single request Put-Get) The first system, pre-

sented in Example 7.1b, is composed of a single linear cell on address a and two initial

messages put and get sent to address a. It has a single finite possible execution. It

first handles the put labeled message, then the get labeled one and produces the reply

message, labeled rep, while assuming its initial behavior.

The Figure 7.1a gives a representation of its finite single trace. Each node represents

a configuration with its associated set of messages. A transition denotes a message

consumption building a new configuration.

One can then characterize Future for each of the three reachable configurations.

Future(a,C0) = {put, get}

Future(a,C1) = {put, get}

Future(a,C2) = {put, get}

All messages in C0 and in C1 are included in the associated future interface but

the last message labeled rep is not included in C2.

rep /∈ Future(a,C2)

It is orphan and therefore the system is not orphan free.

Example 10 (S2: Linear cell with a Put-Get requests server) The second system,

presented in Example 7.1c, is composed of two actors on two separate addresses. On

address a, the linear cell receives messages sent by the actor on address b. This second

actor produces one message put and one message get both sent to a when receiving

a message rep. This system can loop forever once the second actor is initialized. An

initial message labeled rep is then sent to b in order to initiate the computation.

The Figure 7.1b gives a representation of its infinite single trace. One can then

characterize Future for each reachable configurations.

∀C ′, s.t. C→⋆ C ′,

{
Future(a,C ′) = {put, get}

Future(b,C ′) = {rep}

148 ENSURING ORPHAN FREENESS

Example 7.1 Systems based on linear cell.

(a) Linear cell

LC(z) ,

z ⊲1 [put2(x) = ζ(e, s)(

e ⊲3 [get4(y) = ζ(e ′, s ′)(e ′ ⊲5 s

|| y ⊳6 rep(x)

)])]

(b) A first system

S2 , νa, νx, LC(a) || a ⊳ put(x)||a ⊳ get(a)

(c) A second system

S1 , νa, νb,






LC

|| b ⊲ [rep(v) = ζ(e, s)(e ⊲ s || νx, a ⊳ put(x)||a ⊳ get(e))]

|| b ⊳ rep(b)

Figure 7.1 Example traces with mailboxes.

(a) S1 trace

a:

1 get

1 put

a: 1 get

a: 1 rep

C0

C1

C2

put

get

(b) S2 trace

b: 1 rep

a:

1 put

1 get

b: 1 rep
C0

C1
b: rep

a: put

C3

a: get

a: 1 get

C2

a:

1 put

1 get

C4

b: rep

a: put

a: 1 get

C5

C ...

At every step of the computation, all mailboxes for address a contain at most one

message labeled put and one message labeled get when mailboxes for address b con-

tain at most one message labeled rep. The condition is satisfied: ∀x ∈ N ,∀C ∈

C , {m|(m,occ) ∈Mailbox(x,C)} ⊆ Future(x,C). The system S2 is orphan-free.

Furthermore, at each step, when the mailbox of an actor is non empty, the actor will

be able to handle a message in the future. An actor on address a with a non empty

mailbox is always able to handle a message (in configurations C1+3k and C2+3k). An

actor on address b with a non empty mailbox has a similar property (in configurations

C3k).

7.2 ROADMAP TO ORPHAN FREENESS CHECKING 149

7.2 ROADMAP TO ORPHAN FREENESS CHECKING

7.2.1 Observation

If we have a look on our orphan-free S2 system, we can observe particularities
of such system and try to derive a systematic way to check orphan freeness.

Example 11 (System S2 (continued)) As presented above and clearly visible in its

trace (see 7.1b), this infinite system behave in a cyclic way. We can observe sub-traces

similar to the one of S1. The only difference is a computation allowing to reenter the

initial state.

So even if the system is infinite, we can detect three CAP terms 1 defining three

interfaces associated to addresses.

The first two interfaces define the linear cell behavior. Let us denote by interface A

and B the two interfaces receiving put and get respectively. The third one, C, is the

only interface of the PutGet server, with the capability to handle rep messages.

All messages in the initial term and in the reachable ones only contain messages

labeled in the set {put, get, rep}.

Then this system, either its mailboxes and interfaces, can be represented as a vector

system as in Figure 7.2. A vector denotes the multiset of labeled messages associated

to each address. Here we have two addresses and three possible messages, hence a 6-

dimensional vector. An automaton denotes the possible transitions. Each state of the

automaton associates an interface to each address. Finally transitions model mailboxes

evolutions through a vector computation. For example, the transition from the state

(a : B, b : C) to the state (a : A, b : C) consumes one message get on a and produces

one message rep on b.

Such a representation, when it exists, gives us a way to represent all reachable
states with their associated mailboxes.

ORPHAN FREENESS AS A COVERABILITY PROBLEM Orphan freeness checking
can then be expressed as a reachability problem. One has to ensure that for
each non empty mailbox there exists a transition consuming each message in
the reachability set of this state (cf. Definition 7.4).

STUCK ACTOR FREENESS AS A COVERABILITY PROBLEM In a similar way, the
freeness of stuck actor can be expressed on this model. One has to ensure that
for each state with an actor associated to a non empty mailbox, there exists a
transition that consumes the actor. (cf. Definition 7.7).

1 Note that this is not true anymore when considering its encoding into the non standard form.
Identity markers of threads grow at each computation.

150 ENSURING ORPHAN FREENESS

Figure 7.2 System S2: an (infinite) ideal case.

a: A

b: C

a: A

b: C

a: B

b: C
1 0

1 0

0 -1

-1 0

0 0

0 0

0 0

-1 0

0 1

Initial state:

a b

put 0 0

get 0 0

rep 0 1

The objective of the encoding is to check that each existing message label in
a configuration can be consumed in the future of the term and that each actor
is non stuck. However this encoding of our property has to be relativized as is.
First the ideal case presented above as a finite set of name binders (only two)
which are syntactically known. In case of internal ν operator and recursion,
the number of dimensions will grow and would forbid such a finite represen-
tation. Another big problem is the finiteness of our system. In our ideal case,
the infinite system has a finite representation. But if every interface is new,
parametrized by a new value for example, then we will not be able to represent
it as a finite automaton.

7.2.2 Vector Addition System with States and their properties

The previous encoding into vector systems is indeed a quite famous target
model. In [67], KARP and MILLER analyze this mathematical structure. They
argue that such systems arise in many independent area such as the world
problem for communication semigroups, the theory of bounded context-free
languages and the theory of uniform recurrence equations. They call it vector

addition system (VAS). A VAS state is a positive vector of fixed dimension. A
VAS specification allows to build new states from the initial one, considering
only positive vectors.

As we try to count occurrences of message labels, VAS is a natural formal-
ism. In [67], the authors also analyze some decidability properties and propose
encodings of several problem. We now recall some of these definitions and
properties that allow us to ensure orphan freeness.

Definition 7.9 (VAS and reachability set) A r-dimensional VAS is a pair W =

(d,W) in which d is an r-dimensional vector of nonnegative integers, and W is a

finite set of r-dimensional integer vectors. The reachability set R(W) of W is the set

7.2 ROADMAP TO ORPHAN FREENESS CHECKING 151

of vectors of the form d+w1 +w2 + . . .+ws such that ∀i ∈ 1 . . . s,wi ∈ W and

d+w1 +w2 + . . .+wi > 0.

Property 7.10 (Coverability) It is decidable of a VAS W and a point xwhether R(W)

contains a point y > x.

Definition 7.11 (VASS) A VASS is the product of an automaton and a VAS.

The Figure 7.2 describes such a VASS.

7.2.3 Effective checking

The practical checking of the property is now the following. We want to rely
on the good properties of VASS, in particular decidability of the coverability
property. Orphan freeness being expressed as such a problem, we now face the
difficulty of computing a VASS for our CAP system.

Therefore, we rely on our abstract interpretation framework to build such
representation. In the next section, we propose an abstract domain to be used
in our framework that computes a VASS for each address. It represents in an ab-
stract way both sequences of interfaces and associated mailboxes. Our abstract
domain models interfaces by the program point defining them. It merges re-
cursive instances of the same behavior, independently of internal values. This
allow us to obtain a finite automaton for each address.

The partitioned abstract domain presented in Chapter 4 solves the dimen-
sional problem, fixing the number of address values by the number of binders
and merging VASSs associated to recursive instances of the same binder.

The solving protocol is then the following:

1. we rely on our abstract interpretation framework to build a VASS for each
binder;

2. using the resulting abstract element, we compute for each VASS state an
over-approximation of possible message labels. This computation relies
on VASS decidability properties;

3. we check the property for each message label in each binder VASS au-
tomaton: each message label available at each node must be consumed in
every possible path considering weak fairness among the different behav-
ior branches of the same behavior set;

4. in order to guaranty the absence of liveness orphans, each node is the
VASS automaton must be able to compute a transition: it necessitates an
over-approximation of mailboxes at each step.

152 ENSURING ORPHAN FREENESS

In the case where only the first three steps can be done, the system is guaran-
teed to be orphan free considering the safety orphan definition.

In the case where all steps can be done, all messages are guaranteed to be
consumed.

7.3 ABSTRACTING MAILBOXES AND INTERFACES

The current section defines an abstract domain that represents mailboxes and
sequences of interfaces (behaviors) associated to actors. It has to be used un-
der the partitioned abstract domain presented in Chapter 4. We first give the
intuitions behind the domain definitions and its primitives. We then formalize
a first version of the domain. A third part addresses some domain enhance-
ments, allowing to obtain a sufficient precision while keeping soundness and
simplicity of presentation.

7.3.1 Intuition

The aim of the current abstract domain is to carry information to abstract be-
haviors associated to actors but also to represent mailboxes. Its use under the
partitioned analysis allows us to only focus on representing data for a given
address. Then, the internal machinery of the partitioned analysis merges recur-
sive instances of the same name binder.

The main idea is to build a graph where nodes represent actors installed on
an address. A link between two nodes denotes a transition consuming the first
actor and producing the second, both on the same address (we recall that we
work under the partitioned abstract domain, focusing on a single address at
once). When an actor is consumed without creating another actor on the cur-
rent address, we use a dead node with the same label to denote a configuration
without an installed actor.

Such a graph is therefore sufficient to over-approximate sequences of behav-
iors. All possible traces can be built from initial nodes in the graph.

Labeling transitions with the matched behavior gives us information on con-
sumed and produced messages, but we may miss messages that are produced
by other actors on other addresses. Therefore, in order to keep track of ad-
ditional messages or initial ones, we associate to each node an abstract local
mailbox.

Initial abstract element

The initial element is composed of a graph with one single node if there is an
actor on the address in the initial configuration and with the empty graph if
there is not. Similarly if there are, initially, some messages sent to the address,

7.3 ABSTRACTING MAILBOXES AND INTERFACES 153

the appropriate abstract local mailbox is associated to initial elements of the
graph.

Abstract transitions computation

An abstract transition should mimic a concrete one. It might compare inter-
acting threads, allow the transition to be computed, compute value passing,
launch continuations and remove interacting threads if necessary. In our cur-
rent case, one can easily project such protocol on our structure. We first check
whether there is enough messages for the transition to be computed. We forget
about value passing and update both the graph and local abstract mailboxes
depending on the computed continuation.

In practice, we do not constrain the transition. The synchronization step
would require to have an abstract representation of all messages available at
each node. What we have not. It can be however computed as it will be later in
the checking phase of our orphan freeness checking. But the mailbox compu-
tation, relying on both abstract local mailboxes and graph transition, is costly.
Therefore we choose to rely on other abstract domains such as the control flow
one (cf. Section 3.3.2), or the occurrence counting one (cf. Chapter 5). In case of
a need of great precision, it is always possible to activate such synchronization.
But each abstract transition will then necessitate the mailbox computation and
will drastically slow down the analysis.

A drawback of partitioning properties depending on address values if the
precision we obtain when launching continuations outside unit. We first give an
insight of the inside unit continuation launching then we present the problem-
atic behind the outside unit continuation launching. We recall that the launch-
ing in the current interacting unit corresponds to the launching of threads bound
to the interacting threads address, in opposition to the launching outside the in-
teracting unit that corresponds to threads launched on other addresses.

LAUNCHING CONTINUATION INSIDE THE PARTITION UNIT When launching
continuation in the current active partition unit, we build a new node and add
a transition between the current active actor and this target node. If no actor is
launched, then the new node is a dead one. Else it is labeled by the program
point of the launched actor.

This new edge is labeled by the behavior branch used and the set of messages
launched on the address.

LAUNCHING CONTINUATION OUTSIDE THE PARTITION UNIT Threads launch-
ing outside the current active unit is much more complex. In the above case, we
have the information about the active actor that is consumed by the transition.
Therefore we exactly knew who was the last previous actor in the graph that
launches the continuation. Launching a message or an actor on another address

154 ENSURING ORPHAN FREENESS

requires to over-approximate the best last ancestor. Then for each ancestor, we
add an edge as in the preceding case. If no actor is launched but only messages
sent, we have to add such messages to the local abstract mailbox of the ancestor
successors.

The linearity hypothesis allows us to only consider dead node as valid ances-
tors when launching actor outside unit (in order to avoid multiple actor on the
same address).

OVER-APPROXIMATING ANCESTORS Over-approximating ancestors has to be
handle with care. A wide over-approximation would saturate the graph with
edges and would not allow to observe anything. The over-approximation pre-
sented in the following relies on a sound but loose version: we consider all
nodes as potential ancestors. In fact, the identity marker associated to each
thread in the non standard encoding is sufficient to identify the exact best an-
cestor. It describes possible sequences of transition that led to its creation. A
second approach, the one we implemented, relies on the control flow approxi-
mation of such markers as presented in Section 3.3.2 page 60 in order to restrict
the set of potential ancestors.

Example 12 (Linear cell based systems (continued)) Let us illustrate the contin-

uation launching outside active unit on our previous examples. The Figure 7.3 de-

scribes an abstract transition computation in the S2 system. Dotted edges represent the

ancestor over-approximation. In the current unit, the new node (5,T)2 is added and

linked by a transition producing no message. In the other partition unit, the message

labeled rep has to be added. Since we have not so much information yet, it is added

to the local mailboxes of each nodes. The abstract local mailboxes have an unbounded

number of messages since we rely on a non relational analysis in order to count oc-

currences of message labels. The use of widening gets the fixed point while widely

over-approximating the upper bound of such mailboxes.

The Figure 7.4 gives the final abstract element obtained in both S1 and S2 systems.

7.3.2 Abstract domain

We now formally introduce our new abstract domains allowing to represent
the possible sequences of behaviors associated to actors as well as the set of
messages available at each step of these sequences. These domains are used
under the partitioned abstract domain defined in the Chapter 4. Each partition
represents the interfaces and mailboxes of actors associated to the same name
binder.

We first define the domains. Then we state the principal proof.

2 We denote by (p,T) normal nodes and by (p,F) their associated dead nodes.

7.3 ABSTRACTING MAILBOXES AND INTERFACES 155

Figure 7.3 Message sending over-approximation outside partition unit.

rep

rep: [0,+∞[

b:

rep: [1,+∞[

(8,∅)

9,T

7,T

a:

put: [0,+∞[

get: [0,+∞[

(4,∅)

(2,∅)

5,T
3,T

1,T

b:

rep: [1,1]

(8,∅)

9,T

7,T

a:

put: [0,+∞[

get: [0,+∞[

(2,∅)

3,T

1,T

put, get
3 receives get

put, get

Mailbox lattice

We first introduce a generic abstract domainMX# defined over the lattice (MX#,

⊑MX,⊔MX,⊥MX, γMX) where MX# = ℘(Ml ×N
#) denotes multisets of mes-

sage labels in Ml with abstract occurrences in N
#.

We introduce a pre-order (MX#,⊑MX) between abstract multisets.
Concrete mailboxes as multisets of labels are defined as the setMS. Abstract

elements of MX# are mapped to MS, families of natural numbers indexed by
Ml by the monotonic concretization γMX. We recall that Ml denotes the finite
set of message and behavior branch labels.

We introduce several usual primitives: a representation ⊥MX of the bottom
element, an abstract union ⊔MX, a widening operator ∇MX, an abstract coun-
terpart +#

MX to the binary addition and an abstract counterpart −#
MX to the

binary subtraction. We also require the abstraction of some elementary fami-
lies: an abstract element 0MX to represent the empty multiset and ∀m ∈Ml, an
abstract element 1MX(m) to represent the singleton containing the family δm

which associates 1 to the element m and 0 to any other element. These prim-
itives must satisfy the soundness properties of families of natural numbers in-
dexed by Ml as defined in Definition 3.7, page 63. This domain is comparable
to the domain NVc

built on Ml.
We instantiate this generic domain by the interval domain presented in Sec-

tion 5.1.1, page 100.

Behavior graph lattice

Then, we define a second lattice (G#,⊑G,⊔G,⊥G) representing the sequences
of behaviors. The lattice G#, abstracting causality between actors, is a finite
directed multigraph built over the set N# , Lp × B of nodes. A node (p, b)

156 ENSURING ORPHAN FREENESS

Figure 7.4 Resulting abstract mailboxes and interfaces for the linear cell-based
systems.

(a) S1

1,T

3,T
5,T

(2,∅)

(4,{rep})

put: 1#

get: 1#

rep: 0#

a:

(b) S2

1,T

3,T
5,T

(2,∅)

(4,∅)

put: [0,+∞[

get: [0,+∞[

a:

7,T

9,T

(8,∅) (4,∅)

rep: [1,+∞[

b:

(2,∅)

rep: [0,+∞[

rep

put: [0,+∞[

get: [1,+∞[

put: [0,+∞[

get: [0,+∞[

put, get

7.3 ABSTRACTING MAILBOXES AND INTERFACES 157

could be initial or not and denotes an actor on program point p ∈ Lp still in the
configuration or consumed, depending on the value of the boolean argument.

Edges denote causality and are labeled by a pair (pb,ms) ∈ ({�} ∪Lb) ×

MS where pb denotes the matched behavior branch and ms the multiset of
launched message labels. The � program point is used in edges from F nodes to
T ones. These edges do not represent a transition on the partition unit address
and should not carry any behavior branch used to produce the threads since
they did not consume any thread on the unit addresses.

We define a pre-order on such graphs using the usual graph inclusion of
edges extended using multiset inclusion for edges. We also define the other
usual operators. The bottom element⊥G denotes the empty graph; the abstract
union ⊔G merges nodes with the same label as well as edges sharing the same
source, target and label; the widening operator ∇G is defined as the abstract
union since there is a finite number of both nodes and possible edges. We pro-
vide some primitives allowing to build elementary elements: creating a new
node node((p, b), init), initial or not, for a given label (p, b) ∈ N# or adding an
edge edge(n1, label, n2) between two nodes. The primitives nodes and edges
return, respectively, the set of nodes and the set of edges of a graph.

Main domain

The principal abstract domain is parametrized by the abstract domain MX#.
with a function associating abstract multisets to nodes

(
{ǫ}∪N#

)
→MX#. The

ǫ value allows to define messages available to initial nodes.

I# , G# ×
((

{ǫ}∪N#)→MX#)

The abstract multiset associated to a node denotes its local abstract mailbox.
It approximates the set of messages that could be sent to the immediate succes-
sor of the actor after its launching and before its consumption.

The pre-order⊑I, the bottom element⊥I, the join operator ⊔I and the widen-
ing ∇I are defined component-wise and using the point-wise extension of op-
erators onMX# to functions on N# →MX#.

Abstract elements over-approximate both emissions, i.e. the different mail-
boxes available at each step of an actor behavior evolution, and receptions, i.e.

the future behavior sequences that an actor may assume. The abstract mailbox
available at each node can be computed using the interface graph and local ab-
stract mailboxes. We denote by mailbox(n, i) such mailbox for the node n in
the abstract element i. It can be expressed as a least fixed point of the incom-
ing paths of the considered node. It is used to state soundness but its effective
computation is defined in the next section.

We relate abstract elements to sets of concrete configurations (u,C) in Σ∗×C

(we recall that C is the set of all non standard configurations) by the monotonic
concretization function γI:

158 ENSURING ORPHAN FREENESS

Concretization

The monotonic γI function relates elements of I# to reachable concrete config-
urations (u,C) where u denotes the sequence of transitions that leads to the
configuration C.

We recall that we consider only linear systems, i.e. with at most one actor per

address and that we intend to use this domain under the partitioned abstrac-
tion.






(u,C)

∀a ∈ Lν ×M ,
{

(pa,T) node of g

mailbox ∈ γMX(mailbox#((pa,T), (g,mx)))

when

{
∃(pa, ida, Ea) ∈ C|a ∧ pa ∈ La

∧mailbox = C|a \ {(pa, ida, Ea)}




either C|a ∈ γMX(mx(ǫ))

either

{
∃p ∈ Lp, s. t.(p,F) node of g

and C|a ∈ γMX(mailbox#((p,F), (g,mx)))

otherwise






⊆ γI((g,mx))

Let us describe the different parts of this concretization. As it is used under
the partitioned analysis, we focus on each address one by one.

An abstract graph containing a node (p, T) is able to describe any possible
configuration containing an actor on this address with an associated set of mes-
sages, its mailbox, contained in the concretization of the abstract mailbox asso-
ciated to the node (p, T).

A configuration that does not contain an actor can also be represented as soon
as it exists a dead node (p, F) which has an associated abstract mailbox that over-
approximates the configuration. The case ǫ handles initial abstractions without
any actor.

Semantics primitives

We now introduce a set of primitives that allow us to manipulate abstract ele-
ments. We introduce the abstract synchronization in order to fully define the
domain. But as explained before, we do not rely on this primitive in our im-
plementation. The main definition is the abstract launching. Such primitives
must update both abstract mailboxes and the abstract representation of future
interfaces.

ABSTRACT SYNCHRONIZATION The synchronization primitive uses the ab-
stract information to allow or forbid an abstract transition. It relies on the mail-

7.3 ABSTRACTING MAILBOXES AND INTERFACES 159

box approximation that is presented in the next section. It necessitates a fixed
point computation and is therefore costly.

Definition 7.12 (Abstract synchronisation) Let (g,mx) ∈ I# be a directed multi-

graph g = (nodes, edges) associated to a map mx from nodes to abstract multisets,

denoting an abstract interface and its abstract local mailboxes. Let R be a formal rule.

Let pa, pm ∈ Lp be the program points in (pk) associated to the interacting actor and

message thread, respectively. Let (parameterk) be the formal variables associated to

interacting threads.

Let m be the message label associated to the message program point pm. We denote

bymx ∈MX# the mailbox defined as

mx , mailbox((pa,T)) −MX 1MX({m}).

We define the primitive sync as:

sync(R, (pk), (parameterk), (g,mx) ,

{
(g,mx) ifmx 6= ⊥MX

⊥I else

LAUNCHING PRIMITIVES The ancestor_launch primitive modifies the ab-
stract element to reflect the continuation launching when computing a transi-
tion.

Definition 7.13 (Abstract continuation launching with ancestor) Let p ∈ Lp∪

{�}, pk ∈ Lp be program points respectively denoting the ancestor program point and

the tuple of interacting threads, conts be the static continuations extracted from the

160 ENSURING ORPHAN FREENESS

term and i ∈ I# be an abstract element. We denote by pa the actor program point of

(pk). We define the primitive ancestor_launch(p, (pk), conts, i):

ancestor_launch(p, (pk), conts, (g,mx)) ,

if p = pa then

if ∃(p ′, Es) ∈ conts, p
′ ∈ La then

g⊔G edge((p, T), (p
1,messages), (p ′, T)),mx

else

g⊔G edge((p, T), (p
1,messages), (p, F)),mx

else if ∃(p ′, Es) ∈ conts, p
′ ∈ La then

if p = � then

g⊔G node((p
′, T), true),mx

else

g⊔G edge((p, F), (�,messages), (p
′, T)),mx

else

g, λ(p ′, T).






mx(p ′, T) +MX

∑

p∈conts

1MX(label(p))

when (p ′, T) ∈ succ((p, T), g)

mx(p ′, T) otherwise

wheremessages = {p|(p, Es) ∈ conts∧ p 6= p ′}

The function label denotes the message label associated to a message thread. It is

extracted from the associated partial interaction.

The ancestors primitive allows to over-approximate the last actor associated
to a name in order to represent causality dependencies.

Definition 7.14 (Abstract ancestors) Let (Id#)k be a tuple of regular approximation

of interacting thread marker trees built over actor program points. Let i ∈ I# be an

abstract element. We define the primitive ancestors((Id#)k, i), which computes the

set of possible ancestor program points, as follows:

ancestors((Id#)k, (g,mx)) , {�}∪

(
nodes(g)∩

(
⋃

k

pp(Idk)

))

where pp : Shape → ℘(Lp) denotes the function that maps regular approximations

to the sets of letters contained in the approximated words.

In other words:

• for each k-th interacting threads, we consider the node of g build on pro-
gram points present in the marker approximations (Id#)k;

7.3 ABSTRACTING MAILBOXES AND INTERFACES 161

• the possible ancestors of the launched threads can be any of the actor
program point present in these restrictions as well as the special program
point � which denotes no dependency.

Finally, the main launch primitives are now defined. The following primi-
tives must be defined in order to fulfill the requirements of Definition 4.7 of the
partitioned abstract domain.

Definition 7.15 (Abstract launching) Let pk ∈ Lp be program points denoting

interacting threads, (Id#)k be a tuple of regular approximation of interacting thread

marker trees built over actor program points, b be a boolean stating whether we are

launching threads in the current unit or not, conts be the static continuations ex-

tracted from the term and unita be an abstract element of I#. We denote by pa the

actor program point of (pk). We define the launch primitives:

• The update_interacting primitive relies on the ancestor_launch primi-

tives. It is used in the interacting unit of the partitioned abstraction and represent

threads launched in the current active unit. It calls the ancestor_launch prim-

itive with the best ancestor: the interacting actor. Each possible continuation is

launched and the union of the element obtained computed.

update_interacting(R, (pk), (pik), synced, a, unita, contsa) ,
⊔

cont∈contsa

ancestor_launch(pa, (pk), conts, unita);

• The launch primitive is defined in a similar manner. In the partitioned abstrac-

tion, it is used to launch thread in non interacting unit. In our case, we need to

over-approximate the best ancestor.

launch(R, (pk), (pik), synced, b, unitb, contsb) ,

⊔

p∈ancestors((Id#),unitb)

(
⊔

cont∈contsb

ancestor_launch(p, (pk), cont, unitb)

)

where (Id#) = (⊤#)k;

• Finally the last primitive launch_beh represents behavior threads launching.

In the concretization, no behavior thread is constrained. We have:

launch_beh(R, (pk), (pik), synced, beh, contbeh) = beh.

Operational semantics

INITIAL ELEMENT

Definition 7.16 (Initial abstract configuration) The initial element is obtained by

• building the graph with one initial node for each actor in the initial term;

• and associating the abstract mailbox built with the initial sent messages associ-

ated to the ǫ value (which denotes in this case the initial abstract mailbox).

162 ENSURING ORPHAN FREENESS

ABSTRACT TRANSITIONS We use the above primitives to describe the initial
abstract element and the abstract transition rule. The initial elements abstrac-
tion C#

0 is computed using the ancestor_launch primitive with the threads
present in the initial configuration inits and the � ancestor. We do not provide
any interacting threads and call it with the argument () instead of (p

)

k:

C#
0 = ancestor_launch(�, (), inits,⊥I).

The partitioned abstract domain semantics, used to manipulate our abstract
mailbox and interface domain, relies on the abstract primitives. We informally
recall the different steps of the abstract transition computation:

• find a transition rule and a tuple of interacting threads;

• choose a unit that can be associated to both the actor and the message
threads, using the control flow part of the abstract element;

• check that the abstract element associated to this unit satisfies the synchro-
nization constraints defined by both the actor and the message threads;

• launch threads in continuation, when the transition is fireable:

– compute, using the control flow part, the possible units updated by
the launched threads with their subset of the continuation;

– for each of these units, identify the possible ancestors of the launched
threads and update the abstract element.

Soundness

The following theorem states the soundness of our domains.

Theorem 7.17 (I#,⊑,⊔,⊥, γI, C
#
0,∇) is a sound abstraction when used under the

partitioned abstract domain and considering linear systems. It satisfies the sound as-

sumption of Definition 4.7.

Proof 7.18 The proof can be found in A.5.

7.3.3 Improvements preserving soundness

Reduction with control flow information to enhance causality research.

A necessary step in the previous domain operational semantics is the use of
information about the identity marker of interacting threads in case of threads
launched outside the interacting unit. These marker approximations are used
in order to over-approximate the last actor on the address to represent causality.

This information is present in the control flow part of our partitioned abstract
element during the abstract computation. A first and immediate solution is to

7.3 ABSTRACTING MAILBOXES AND INTERFACES 163

compute a reduction between both parts of the element during the transition
computation using a simple intersection.

This is why we use the enhanced flavor of the partitioned abstraction, as pre-
sented in Section 4.4, built on the shape approximation of values and markers.
In the following, the new shape value is only used when approximating ances-
tors. The only primitive which change is then the launch primitive. All other
are left as is, with a new argument in the call, the shape value. Our primitives
become:

• update_interacting(R, (pk), (pik), synced, a, unita, contsa, shape) ,

⊔

cont∈contsa

ancestor_launch(pa, (pk), conts, unita);

• launch(R, (pk), (pik), synced, b, unitb, contsb, shape) ,

⊔

p∈ancestors((Id#)k,unitb)

(
⊔

cont∈contsb

ancestor_launch(p, (pk), cont, unitb)

)

where (Id#)k = (shape(pk)(I))k
3;

• launch_beh(R, (pk), (pik), synced, beh, contbeh, shape) = beh.

A second more accurate approach to enhance marker approximation, which
has not yet been implemented in our analyzer, is to compute a partitioned
marker tree regular approximation in order to separate the markers associated
to different addresses but on the same actor program point. This solution seems
more interesting for the causality approximation as it would allow to consider
only the root of such marker tree approximation denoting the last transition on
the current address.

In the current analysis, using a non partitioned control flow, the transitions
involving actors on a given address are scattered among markers.

Reducing occurrences in mailboxes using a relational abstraction.

Finally, an efficient yet simple improvement is to constrain occurrences in mul-
tisets of mailboxes by a relational abstract domain such as linear equalities be-
tween occurrences of message labels and computed transitions. Occurrences in
multisets are then replaced by a product of abstract domains, a non relational
one with a relational one, both of them under a reduction as presented in Chap-
ter 5.

3 We recall that the variable I denotes the identity marker of threads in the control flow approxi-
mations, in particular in this regular approximation of thread environment shape.

164 ENSURING ORPHAN FREENESS

7.4 ENSURING ORPHAN-FREENESS

Once the abstract interpretation machinery is launched, fed with the appropri-
ate domains, we obtain an abstract element least fixed point of the abstract com-
putation that over-approximates set of reachable non standard configurations
(u,C) in Σ∗ ×C .

We now rely on such an abstract element, denoting properties satisfied by
the collecting semantics, in order to ensure orphan freeness. The above abstract
domain, used under the partitioned abstract domain, yields for each actor name
a, an over-approximation of sequences of behaviors associated to it as well as
its mailboxes evolutions, as a VASS.

Initially we defined orphans and orphan freeness as a temporal property ex-
pressed on configurations using the notion of mailboxes and sets of future in-
terfaces. Then we proposed an expression as a coverability test over VASS. We
now face a difficulty: how the over-approximation of terms could soundly ap-
proximate the notion of future interfaces associated to addresses ?

A first point is the mailbox representation. Our abstract element does not
provide an abstract mailbox associated to each node, but rather a local view of
it. Computing these mailboxes could necessitate another step of abstraction, in
order to preserve efficiency.

A second point considers the construction of a sound under-approximation
of the future interfaces available, considering the graph computed.

We now opine on these different points. We first address the mailbox com-
putation. A second part considers the different sources of over-approximation
and discusses the quality of the resulting element depending on the cause of
approximations. Then we give the algorithm ensuring the property. Finally we
present the actor stuck freeness checking.

7.4.1 On effective mailbox computation

When we need to check orphan freeness, we have to compare mailboxes with
future interfaces. We have to check for each state that a reachable state involves
a computation consuming present messages. Therefore, we need a character-
ization of what the mailbox may contain at each step. The results presented
in [67] give us that the reachability set is not always computer representable.
Therefore we cannot find a concrete mailbox representation for each node.

Due to the inherent abstraction of our abstract interpretation framework, we
may have already merged different states, either actors on different recursive
addresses or actors on recursive instances of the same definition, i.e. on the
same program point. The approximated mailbox that we compute for a given
graph node represents the mailbox associated to any actor the node abstracts.

We now present two different approaches to compute such abstract mailbox
at each node. The first one relies on a fixed point computation using widen-

7.4 ENSURING ORPHAN-FREENESS 165

ing to converge in a finite time. The second one which seems more precise
but also more costly involves a graph search algorithm and relies on HIGMAN

lemma [61] to widen growing mailboxes in an exact manner though.

Explicit abstract computation as a fixed point

A first approach expresses the mailbox associated to a node as a fixed point. A
node mailbox is defined as the union of the node mailboxes targeting it, con-
sidering consumed message and produced ones, augmented with the abstract
local mailbox.

Definition 7.19 (Mailbox computation step) Let n,n ′ be two nodes of an abstract

element i ∈ I# and e ∈ i be an edge from n to n ′ in i. Let mx and local_mx be two

functions mapping nodes of i to element ofMX#. We define the primitiveMxUpdate:

MxUpdate(e,mx, local_mx) ,
(
mx(n ′) −#

MX 1
#
MX({m})

)
+#

MX local_mx(n) +#
MX 1

#
MX(l)

where e is labeled by the behavior branch of label m launching the multiset of message

labels l.

Definition 7.20 (Fixed point definition) Mailboxes of an abstract element ((nodes,

edges), local_mx) ∈ I# × ((Lp ×B) → MX) are defined as the least fixed point of

the following ∪-complete endomorphism M over the point wise extension of abstract

mailboxes over graph nodes ((L ×B)→MX#):

M(mx) , (λx.local_mx(x))

⊔̇
MX





mx ′ s.t. mx ′(n) = mx(n)⊔MX

⊔

e∈edges

MxUpdate(e,mx, local_mx ′)






where local_mx ′ is defined as the extension of local_mx where initial nodes are asso-

ciated to the abstract mailbox local_mx(ǫ) and ⊔̇MX the point-wise extension ofMX

to maps in N# →MX.

mailbox# = lfp⊥M

The use of a widening operator to ensure convergence in a reasonable finite
number of iterations gives an over-approximation of messages available at each
step of the actor life.

Testing message occurrence using HIGMAN lemma

Another approach relies on a graph search algorithm, for example a depth-first
search. Initial nodes are associated to the initial local abstract mailbox. When

166 ENSURING ORPHAN FREENESS

reaching a visited node in the depth-first search, we have to compute the effect
of the cyclic paths in the VASS on the node mailbox. The HIGMAN lemma states
that the property of a binary relation S to be unavoidable is also a property of
the binary relation S∗. In our VASS, with as a binary relation S the usual order6
of natural numbers extended point-wise to natural vectors, we obtain that there
exists a reachable state for the node with a bigger mailbox than the current one.

Let us first give some definitions and then explain their use.

Definition 7.21 (Unavoidable binary relation) The relation S is unavoidable if

for all infinite sequence a0, . . . , an . . ., there are two elements ai and aj such that ai

precedes aj and ai is S-related to aj.

The relation 6 on natural numbers is unavoidable.

Lemma 7.22 (HIGMAN’s lemma) Given a binary relation S, if S is unavoidable then

S∗ is unavoidable as well.

In practice, when detecting cyclic paths while searching the VASS, we may
obtain another vector associating different abstract occurrences to the different
message labels. The HIGMAN lemma allow us to widen to infinity the occur-
rences of message labels that would grow during a computation of the cyclic
path. This gives us a sound over-approximation of mailboxes while iterating
only once for each cyclic path. This approximation, very coarse, is only used
to test for the possible occurrence of a message label. It is not intended for
numerical purposes, for instance.

7.4.2 Where over-approximations comes from

In the above presentation, approximations are numerous, the control flow ab-
stract domain over-approximates interactions between threads and may allow
transitions that will not occur in practice, especially in our high order calcu-
lus, where values carry behaviors; the occurrence counting abstract domain
keeps track of the threads presence but may also allow transitions with threads
already consumed; finally the partitioned abstract domain merges recursive in-
stances of the same name binder and the outside active partition unit launching
may cause a great loss of precision when abstracting causality. Last but not the
least, the effective mailbox representation at each node in the graph necessitates
another step of approximation.

All these sources of approximation allows us to reach the property compu-
tation in an acceptable time and to bridge the gap of undecidability for certain
kinds of properties. These approximations are also sound in the sense of the
abstract interpretation. Concretizing resulting abstract element does not forget

possible reachable CAP non standard states.

7.4 ENSURING ORPHAN-FREENESS 167

However one can reasonably ask whether the orphan freeness checking is
still meaningful in presence of such abstractions. Checking the property basi-
cally requires a representation of mailboxes and of future interfaces and then
checking that the first is included in the second. A quick look at this, gives us
that if we over-approximate the first (mailboxes) and under-approximate the
second (future interface) then it is sound to check the property. But in our case,
we over-approximate both.

The over-approximation of mailboxes is not a problem. The more wide the
abstraction is, the more difficult it is to ensure orphan freeness. One the other
hand, the over-approximation of future interfaces may look like an unsound
idea. Spurious edges would allow to consumed messages and therefore would
allow to give a false (and unsound) answer.

Let us now enumerate all sources of abstraction and relate them to the or-
phan freeness checking. We consider the different kinds of node and their edges.
We recall that a node (p,T) denotes an actor installed on the current address, it
can either denote a static installation (i.e. with a syntactic behavior set) or a
dynamic one (i.e. depending on a variable value).

• In the first case, there is no possible spurious edge. If such node is ac-
cessible then it has the capacity to handle any message label of its behav-
ior set. When checking such node, all paths from this node have to be
checked, considering weak fairness among them in case of infinite paths
in the graph.

• In the second case, our abstraction guarantees us, if the node is accessible,
that an actor is installed with a behavior. All edges from this node can be
partitioned in their different defining behavior sets, i.e. the different val-
ues defining its behavior. A control flow over-approximation may have
introduced a spurious behavior value but at least one of them is true. The
node has to be checked as before but considering each behavior set one by
one. A spurious behavior value may break the property. But if all values
satisfy it, we did not miss any orphan.

• Finally, let us consider dead nodes, nodes (p,F). Nothing guarantees us,
by construction, that the successors of such nodes are not spurious, since
no actor is launched. Furthermore, edges from dead nodes are added
from other units and are subject to wide over-approximations (see Sec-
tion 7.3.2). When checking such nodes, they have to be identified as ter-
minal nodes when building maximal traces. In practice, the use of dead
nodes, i.e. the re-installation of an actor after its death, would often fail
the property checking.

168 ENSURING ORPHAN FREENESS

7.4.3 Checking orphan-freeness: under-approximating interfaces

Once the fixed point of the abstract collecting semantics computed, the mail-
boxes over-approximated at each node, relying on either the fixed point expres-
sion or the HIGMAN lemma-based approach, we have to check that, at each
node, the mailbox is included in the future interfaces. We now give the algo-
rithm that performs such a check. It relies on the above remark concerning
soundness of the interface over-approximation.

Definition 7.23 (Checking orphan-freeness) For each installation program point

(p,T) of a given partition unit and for each message label m present in its associated

mailbox:

• we check for the existence of some execution path without dead nodes from (p, b)

leading to a m branch, in the set of over-approximated configurations, ensuring

orphan-freeness;

• if such a path contains a node denoting a dynamic installation with some asso-

ciated behavior values, we check the existence of such paths, still without dead

nodes, for each of these behavior values;

For each node of a given partition unit denoting an actor free configuration (dead

nodes), we check that the associated mailbox is empty.

Property 7.24 (Monotonicity) Given an abstraction of reachable configurations and

future interfaces, and following the description above, if this abstraction is declared

orphan-free, then any real configuration it represents is also orphan-free.

Proof 7.25 The two possible approximations are in dynamic behavior nodes and dead

ones. In the first, considering every possible dynamic behavior (even spurious ones)

over constrains the set of configurations.

In the second, systematically considering dead nodes as terminal ones allows to

soundly deal with spurious edges added by launching actors outside the current unit.

7.4.4 Checking non stuck actors

A last step to guarantee message consumption is to ensure that actors with non
empty mailboxes do not remain stuck. It needs an explicit representation of the
mailboxes at each node, using the least fixed point characterization. Each node
denoting a static actor must contain at least one message label of its associated
behavior.

Definition 7.26 (Non stuck static actor) Let i ∈ I# be an abstract element. We de-

note by B : N# ∈ ℘(Ml) the function that maps nodes to the set of behavior branch

labels of their immediate successors.

7.5 EXAMPLE ANALYSIS 169

We have:

∀n, ∀mx ∈ γMX(mailbox(n, i)),∃m ∈ mx,m ∈ B(n)

Concerning dynamic actors, a similar reasoning as for orphan freeness check-
ing, applies: each behavior set must be checked one by one.

7.5 EXAMPLE ANALYSIS

7.5.1 Example

We now illustrate orphan freeness checking on a simple CAP example. The fol-
lowing example illustrates both replication and behavior passing mechanisms
in CAP.

Example 13 (A behavior passing example) The Figure 7.2 gives the CAP term.

The ν operator defines a single address a. Initially one actor (⊲) is associated to this

address ([..]) and four messages (⊳) are sent to it. Two of them contain values denoting

behaviors. At this point the actor on a can handle beh messages. After a first transi-

tion, there is an actor on address a associated to the behavior carried by the matched

beh message. In both cases, the three remaining messages are handled one by one.

Depending on the first beh message used, there is or not a final actor on a.

Example 7.2 A behavior passing example.

νaα, a ⊲1 [beh2(x) = ζ(e, s)(e ⊲3 x)] || a ⊳4 m() || a ⊳5 n()

|| a ⊳6 beh






m7() = ζ(e, s)(e ⊲8 s);

n9() = ζ(e, s)(e ⊲10 s);

beh11(x) = ζ(e, s)(e ⊲12 s)







|| a ⊳13 beh([n14() = ζ(e, s)(e ⊲15 [

m16() = ζ(e ′, s ′)(e ′ ⊲17 [beh18(x) = 0])

])])

7.5.2 Resulting abstract properties

The Figure 7.5 gives the abstract element computed using our abstract domain.
We can notice that the only non empty abstract local mailboxes is the one at-
tached to the initial element. Another specificity of this simple example is that
no message is launched during transitions.

170 ENSURING ORPHAN FREENESS

Figure 7.5 Behavior passing example: resulting abstract element.

3,T

15,T

12,T

10,T

8,T

17,T

2, ø

14, ø

11, ø

16, ø

7, ø

9, ø

9, ø
7, ø

11, ø

18, ø

9, ø

11, ø

7, ø

17,F

2 beh

1 m

1 n

1,T

1 beh

1 m

1 n

1 m

1 n

1 beh

1 n

1 beh

1 m

1 m

1 n
ø1 n

Abstract mailboxes

7.5.3 Computing mailboxes

The Figure 7.5 also gives the abstract mailboxes computed using the definitions
of Section 7.4.1.

7.5.4 Checking orphan-freeness

We can now verify that the mailboxes associated to each node do not contain
orphan messages.

The last three mailboxes presented on Figure 7.5 can be easily checked. There
is only one path with statically installed actors. The last one is a dead node
associated to an empty abstract mailbox.

Nodes (8,T), (10,T) and (12,T) denote actors with a dynamic behavior. How-
ever the edges from these nodes denote behavior branches of the same single
behavior definition 6. The checking is then similar to the one of statically in-
stalled actors.

The node (3,T) denotes a dynamically installed actor. Its edges denoting
behavior branches 7, 9, 11 and 14 can be partitioned in two syntactically defined

7.6 RELATED WORKS AND DISCUSSION 171

behavior sets, respectively in program points 6 and 13. One needs to verify that
each message label, among beh,m and n, can be received in both behavior sets,
which can be easily done.

Finally, the mailbox associated to the initial node, i.e. its local abstract mail-
box, follows the same algorithm. The beh message label is immediately con-
sumable. The checking for the m and n message labels must follow the above
rule, checking among the two behavior sets defined for the dynamic actor on
program point 3.

Concerning stuck actor, all abstract mailboxes contain strictly positive occur-
rences of message labels and are therefore non stuck. The only node associated
to an abstract mailbox, that does not satisfy this property, is the node (17, F),
but it does not describe an installed actor.

7.6 RELATED WORKS AND DISCUSSION

Few analyses are devoted to the checking of such kind of high level properties
in such a context. We first present the previous analyses for orphan freeness
developed on CAP and based on type inference. Then we compare our work to
the behavioral type systems for π calculus, especially the works by KOBAYASHI.
Finally we mention works addressing the encoding of properties into VASS-like
structures.

7.6.1 Analyzing CAP by type inference

Preliminary works on orphan freeness checking based on type inference where
defined in [25, 27, 28, 29, 31, 41]. Based on HM(X) type systems, their typing
rules produce constraints denoting both causality between sequences of inter-
faces and message occurrences counting. Finding a solution for the accumu-
lated set of constraints guarantees the property. They face multiple difficulties
and are defined on a rather restrictive subset of CAP.

A first one is the high-order flavor of CAP. These type systems forbid sending
behaviors in messages.

A second one is the inherent difficulty to compute occurrence counting in
type systems. The use of abstract domain is of great use in this case.

A third one is the actor installation on an arbitrary name. In these approaches,
terms are also constrained. For example, one cannot write the following term.

a ⊲ [m() = ζ(e, s)(b ⊲ s)]

However the last constraint has to be relativized. Our general abstract interpre-
tation framework does not constrain terms in such a way, but considering the
particular orphan freeness property checking, our approach does not give accu-
rate results. In fact, when one allows such kind of terms, it necessitates that a

172 ENSURING ORPHAN FREENESS

previous actor on b died in order to keep the linearity hypothesis valid. And
dead nodes gives often bad results when checking orphan freeness. They are
considered as terminal ones, as we cannot ascertain the existence of successor
nodes, due to over-approximation of partitioned analysis. Obviously, terminal
nodes can handle naturally no message at all.

In [31], the authors rely on complex techniques in order to have a precise rep-
resentation of interfaces and mailboxes. They use a CTL-based logic to model
interfaces and Presburger formulas for mailbox content. Model checking of
their formula with respect to their set of typing constraints is then shown de-
cidable. However the complexity of the presburger formula induced by the
term typing may be exponential.

Finally all these works consider only safety orphans and their precision did
not allow to handle liveness ones, as it requires to represent the minimal occur-
rence of message labels in configurations.

7.6.2 Behavioral types for the π-calculus

Another very powerful use of type systems for concurrent process is the work
by KOBAYASHI [64, 72, 73, 74]. The authors of these works define behavioral
type systems for the π-calculus. They mainly associate CCS-like processes to
names in order to represent the behavior (emission, reception) of such. They
also embedded obligations and capabilities associated to each CCS sub-term in
order to represent inter-channel dependencies. Constraining such obligation
values can then be used to force a process to compute a certain communica-
tion after a number of computed transition. This leads to a lock-freedom type
system.

Nevertheless most of the type systems proposed do not allow recursion and
were only type checking based for lock-free checking which is the more related
to our orphan freeness. In the last work [74], the authors proposed a type
inference-based system for deadlock-free processes. In this inference frame-
work, their constraints are less expressive but allow to check without any type
annotations. Another problem is that channel creation order is syntactically
derived from the term and this could fail checking the property.

7.6.3 Encoding properties into VASS-like structures

A last kind of similar analyses considers the verification of properties by encod-
ing into VASS-like structures, Petri nets for example. They more or less ignore
implantation issues and most of them suffer anyway from the state explosion
inherent to concurrency.

The work by BALL [14] addresses the verification of multi-threaded software.
He model-checks the specification and uses a Karp-Miller covering tree algo-

7.6 RELATED WORKS AND DISCUSSION 173

rithm directly on the model. Without any abstraction, the complexity class of
such an analysis is EXPSPACE. The more theoretical work by [58] considers the
temporal property verification of concurrent systems communicating through
CCS actions. It also relies on a Karp-Miller covering tree algorithm applied on
a VASS.

In [9], the authors consider some class of properties for fragments of the asyn-
chronous π calculus and show their decidability by reduction to Petri nets with
transfer arcs. A similar approach is presented in [21] by DELZANNO, with de-
cidability results, but it relies on a semi-decision procedure. It is applied to a
generic class of process calculi: nominal calculi.

7.6.4 Discussion

We have presented here a method to detect orphan messages in CAP through
an abstract representation of mailboxes and future interfaces , as well as ab-
stract domains to over-approximate these properties. Our proposal is able to
deal with the full CAP language without any restriction, in particular it han-
dles well the behavior passing. Our proposed analysis takes benefit of all other
abstract domains used during the least fixed point computation in order to get
accurate abstraction of actor behaviors. Nowadays there was no response to
this problem in such a context.

Three drawbacks of the proposed approach can be shown.

• The first one is the bad results obtained when installing an actor outside
of the active address. The analysis is able to deal with this case but the re-
sults are coarse in case of complex systems. This is easily understandable
since one cannot guarantee that the future actor is effectively launched
and handles messages. Nevertheless, such a kind of programming habit
is often forbidden in practice, only resource owners have usually the right
to allocate them.

• Another current weakness is the cost of the second step: the checking
phase inside the abstract VASS. As mentioned in related works, the cover-
ability tree algorithm is EXPSPACE in the size of the VASS. The current ap-
proach divides the size of VASS drastically. It builds one VASS per name
binder and merges VASS of the same recursive address instances. This
gives us a relative small abstract element for each address and therefore
eases its checking.

• Finally the considered properties seem too strong. The finite firing time
property could be removed. The checking algorithm has then to be ex-
tended in order to ensure infinite paths among behaviors to consume all
message labels.

8
IMPLEMENTATION ISSUES

8.1 PACSA: A PRIMITIVE ACTOR CALCULUS STATIC ANALYZER

We implemented all the presented analyses in the PACSA analyzer using the
OCAML language.

The general schema of our analysis is presented in Figure 8.1. A CAP term
analyzed with PACSA, is firstly parsed and translated into its non standard
form. Then the least fixed point of the abstract collecting semantics is computed
using a combination of the abstract domains presented in this thesis.

The PACSA analyzer is about 15 kloc and relies on the OCamlGraph library.
The OCaml code can be split in three parts:

• A generic part defining basic types and constructions and allowing to
compute the least fixed point of the abstract semantics (1,7 kloc).

• A set of CAP specific files defining the lexer and parser of the CAP term
but also its encoding into the non standard form: formal rules, partial in-
teractions, automatic program point assignation and extraction function.
It also defines functions that rely on the computed abstract element to ex-
press CAP specific properties. An encoding of another calculus should
require a similar size of code (1,3 kloc).

• A set of abstract domains defining the abstract semantics of non standard
terms. They are described later (11 kloc).

Figure 8.1 Overview of our analysis process.

CAP term

ANALYZER

Parsing

Translation to non

standard form

Lfp of the abstract

collecting

semantics

computation

Initial term

Formal rules

Term extraction

Safety Properties

 - boundedness

 - occurrence counting

 - mailbox and interfaces

 - linearity

Abstract

Domain

choice

- Control Flow

- Occurrence

 counting

- Partitioned

- Linearity

- Mailboxes &

Interfaces

....

Resulting

abstract

term

175

176 IMPLEMENTATION ISSUES

Figure 8.2 Main abstract domain module type.

♠♦❞✉❧❡ t②♣❡ ❉❖▼ ❂

s✐❣

t②♣❡ t

t②♣❡ t❴❡❧❡♠

✈❛❧ ❜♦t✿ ✉♥✐t ✲❃ t

✈❛❧ ✉♥✐♦♥✿ t ✲❃ t ✲❃ t

✈❛❧ ✇✐❞❡♥✿ t ✲❃ t ✲❃ t

✈❛❧ ❧❡q✿ t ✲❃ t ✲❃ ❜♦♦❧

✈❛❧ ✐t❡r❴❝♦♠♣✉t❡✿ ✭r✉❧❡❴t ✯ ✭▲❛❜❡❧✳t ✯ ♣❛✮ ❧✐st✮ ✲❃ t ✲❃

t❴❡❧❡♠ ✯ ❜♦♦❧

✈❛❧ ✐t❡r❴❧❛✉♥❝❤✿ r✉❧❡❴t ✲❃ ▲❛❜❡❧✳t ❧✐st ✲❃ st❛t✐❝❴❝♦♥ts ✲❃

t❴❡❧❡♠ ✲❃ t ✲❃ t

✈❛❧ ✐♥✐t✿ st❛t✐❝❴❝♦♥ts ✲❃ t ✲❃ t

❡♥❞

8.1.1 Wide use of Caml modules and functors

CAML FUNCTORS The methodology of abstract interpretation from its theo-
retical formalization to its effective implementation really fits a functional ap-
proach. Therefore the use of the module and functor features of ML languages
gives an elegant and sound approach to the development of abstract domains.

A set of module types are defined for each kind of abstract domain: from
the more general one, as presented in Figure 8.2, to the specific one like control
flow, as in Figure 8.3, or numerical abstraction, as in Figure 8.4.

The use of functors, building modules from argument modules, allows to
design complex abstractions in a very generic manner while preserving type
information. For example, we defined the Cartesian product functor or the re-
duction functor building new sound domains in terms of abstract interpretation
in an easy manner.

The genericity available with functors allows us to define a prototype which
is as much as possible independent of the analyzed calculus. Later extensions
could be to handle calculi with an existing non standard form like π,Ambients,
spi, etc, or to define a new calculus inside the framework, while already having
a set of abstract domains available. The Figure 8.5 describes the module type of
a calculus. Any implementation of a new calculus must define such a module.

Therefore the prototype PACSA was developed while keeping in mind this
notion of genericity. It gives us approximately one hundred of functors and
modules definitions.

HIERARCHY OF MODULES AND FUNCTORS The most advanced abstraction
used is built using all the preceding mentioned abstract domains. It is mainly a
reduced product of an occurrence counting domain and a linearity abstraction

8.1 PACSA: A PRIMITIVE ACTOR CALCULUS STATIC ANALYZER 177

Figure 8.3 Control flow abstract domain module types: atoms and molecules.

♠♦❞✉❧❡ t②♣❡ ❆❚❖▼❴❱ ❂

s✐❣

t②♣❡ t

✈❛❧ ❧❡q✿ t ✲❃ t ✲❃ ❜♦♦❧

✈❛❧ ❜♦t✿ ▲❛❜❡❧✳t ✲❃ t

✈❛❧ ❡♣s✐❧♦♥✿ ▲❛❜❡❧✳t ✲❃ t

✈❛❧ r❡str✐❝t✿ ❱❛r✐❛❜❧❡❙❡t✳❡❧t ✲❃ ▲❛❜❡❧✳t ✲❃ t ✲❃ t

✈❛❧ ❣❝✿ ❱❛r✐❛❜❧❡❙❡t✳t ✲❃ t ✲❃ t

✈❛❧ ❣❡t❴❱✿ t ✲❃ ❱❛r✐❛❜❧❡❙❡t✳t

✈❛❧ ✉♥✐♦♥✿ t ✲❃ t ✲❃ t

✈❛❧ ✐s❴❜♦tt♦♠✿ t ✲❃ ❜♦♦❧

❡♥❞

♠♦❞✉❧❡ t②♣❡ ▼❖▲ ❂

s✐❣

♠♦❞✉❧❡ ❆ ✿ ❆❚❖▼❴❱

t②♣❡ t

t②♣❡ ❛t♦♠ ❂ ❆✳t

✈❛❧ ✐♥❥❡❝t✿ ❛t♦♠ ✲❃ t

✈❛❧ ❝♦♥❝❛t✿ t ✲❃ t ✲❃ t

✈❛❧ ♣r♦❥✿ ✐♥t ✲❃ t ✲❃ ❛t♦♠

✈❛❧ ♥❡✇❚✿ ❱❛r▼♦❧❙❡t✳t ✲❃ t ✲❃ t

✈❛❧ ❢❡t❝❤✿ ▲❛❜❡❧✳t ❧✐st ✲❃ t ✲❃ t

✈❛❧ ✐s❴❜♦tt♦♠✿ t ✲❃ ❜♦♦❧

✈❛❧ s②♥❝✿ ✭❝♦♥str❛✐♥t❴♣❛r❛♠ ✯ ✐♥t ✯ ❝♦♥str❛✐♥t❴♣❛r❛♠ ✯ ✐♥t

✯ ❜♦♦❧✮ ❧✐st ✲❃ ▲❛❜❡❧❙❡t✳❡❧t ❧✐st ✲❃ t ✲❃ t

❡♥❞

The abstract domain ❛t♦♠ is used to associate an abstract representation of each
thread environment. It gives for each program point a value of type t denoting
the properties verified by all threads on this program point.
The ♠♦❧❡❝✉❧❡ abstraction is only used to compute atom interactions. It is never
used as a final element and therefore does not necessitate the union and leq
primitive definitions.

178 IMPLEMENTATION ISSUES

Figure 8.4 Numerical abstract domain module type for the occurrence counting
abstraction.

♠♦❞✉❧❡ t②♣❡ ◆❯▼❴❉❖▼ ❂ s✐❣

t②♣❡ t

t②♣❡ ✐❧❛❜❡❧

✈❛❧ ❧❡q✿ t ✲❃ t ✲❃ ❜♦♦❧

✈❛❧ ❜♦t✿ ✉♥✐t ✲❃ t

✈❛❧ ✉♥✐♦♥✿ t ✲❃ t ✲❃ t

✈❛❧ ✐♥t❡r✿ t ✲❃ t ✲❃ t

✈❛❧ ✇✐❞❡♥✿ t ✲❃ t ✲❃ t

✈❛❧ ♣❧✉s✿ t ✲❃ t ✲❃ t

✈❛❧ ♠✐♥✉s✿ t ✲❃ t ✲❃ t

✈❛❧ s②♥❝✿ ✐❧❛❜❡❧ ❧✐st ✲❃ t ✲❃ t

✈❛❧ ③❡r♦✿ ✉♥✐t ✲❃ t

✈❛❧ ♦♥❡✿ ✐❧❛❜❡❧ ✲❃ t

✈❛❧ ✐s❴❜♦tt♦♠✿ t ✲❃ ❜♦♦❧

✈❛❧ t♦❴str✐♥❣✿ t ✲❃ str✐♥❣

❡♥❞

Figure 8.5 Generic module type for defining a calculus.

t②♣❡ ♣✐❴t②♣❡ ❂ ❘❡♣❧✐❝❛t✐♦♥ ⑤ ❈♦♠♣✉t❛t✐♦♥

♠♦❞✉❧❡ t②♣❡ P■ ❂ s✐❣

t②♣❡ t

✈❛❧ ❣❡t❴t②♣❡✿ t ✲❃ ♣✐❴t②♣❡

❡♥❞

♠♦❞✉❧❡ t②♣❡ ❈❆▲❈❯▲❯❙ ❂ s✐❣

♠♦❞✉❧❡ P✐ ✿ P■

t②♣❡ ❝♦♥❢✐❣

♠♦❞✉❧❡ ▲❛❜❡❧ ✿ ▲❆❇❊▲ ✇✐t❤ t②♣❡ ♣✐ ❂ P✐✳t

♠♦❞✉❧❡ ▲❛❜❡❧❙❡t ✿ ❙❡t✳❙ ✇✐t❤ t②♣❡ ❡❧t ❂ ▲❛❜❡❧✳t

t②♣❡ ♣❛

t②♣❡ r✉❧❡❴t

t②♣❡ tr❛♥s✐t✐♦♥

✈❛❧ r✉❧❡s ✿ r✉❧❡❴t ❧✐st r❡❢

✈❛❧ ❣❡t❴❝♦♠♣❛t✐❜✐❧✐t② ✿ r✉❧❡❴t ✲❃

✭✭ ❝♦♥str❛✐♥t❴♣❛r❛♠ ✯ ✐♥t✮ ✯ ✭❝♦♥str❛✐♥t❴♣❛r❛♠ ✯ ✐♥t✮✮ ❧✐st

✈❛❧ ❣❡t❴✈♣❛ss✐♥❣ ✿ r✉❧❡❴t ✲❃

✭✭ ❝♦♥str❛✐♥t❴♣❛r❛♠ ✯ ✐♥t✮ ✯ ✭❝♦♥str❛✐♥t❴♣❛r❛♠ ✯ ✐♥t✮✮ ❧✐st

✈❛❧ ❣❡t❴❝♦♠♣♦♥❡♥ts ✿ r✉❧❡❴t ✲❃ P✐✳t ❧✐st

❡♥❞

8.1 PACSA: A PRIMITIVE ACTOR CALCULUS STATIC ANALYZER 179

with a partitioned abstraction built over an occurrence counting domain and
our interface abstraction. The partitioned domain is also parametrized by a
control flow approximation built using the domains presented in Chapter 3.
The essential control flow approximation that drives the abstract transitions is
used inside this partitioned abstraction.

The overall construction is presented in Figure 8.6.

8.1.2 Implementation choices

In the PACSA development we made some implementation choices. We just
mention two of them here.

GENERIC APPROACH TO LFP COMPUTATION A first difficulty was to define
a fixed point algorithm in a generic way. Generic means here that we should
be able to handle more calculi in the future and do not want to redesign this
algorithm.

Another thing, more CAP specific, was to soundly deal with message labels.
In CAP standard semantics, message labels must coincide when communicat-
ing. The non standard encoding of CAP introduced them in environments.
However they are syntactically known and we do not to differentiate their re-
cursive instances.

We choose then to build at parsing time a list of possible interactions. This list
is based on the set of formal rules defined by the non standard encoding as well
as the type of partial interactions exhibited by program points. A first list is then
built using, for example in CAP, pairs of statically defined actor program point
with message program point and triples of behavior branch program point, dy-
namic actor definition program point and message program point. In the CAP
case, we refine this list by removing pairs or triples involving behavior branch
(or static actor partial interactions) associated to different message labels.

When computing fixed points, we update our work list considering updated
program points and therefore the set of transitions in which they (could) occur.

Another concern in this fixed point computation is to deal with our backward
flow in the linearity abstract domain. In the original framework, the accessible
program points at the top-level of the analyzed term are launched once: they
cannot be sub-terms of a higher level thread. But our backward flow imposes
to update their value. Therefore we add to our list of possible transitions the
initial launching. Each time we modify the abstract element associated to an
initial program point, we have to re-launch the initial element using the current
abstraction.

DEALING WITH REDUCTIONS The attentive reader may have remarked that
in the module type of top-level domains, the abstract transition is not specified

180 IMPLEMENTATION ISSUES

Figure 8.6 Hierarchy of modules and functors.

Karr

RelationalIntervals

Occurrence

counting
LinearityPartitioned

X σ

Mailboxes &

interfaces

Control

flow

σ

Channel

Equalities &

disequalities

graph

Marker

Regular

approximation

Shape

X

Abstract

domain

Calculus

Analysis

Prog

Karr

RelationalIntervals

Occurrence

counting

X

σ

X

σ X

σ X

X nodes denote Cartesian products and ρ ones denote reductions.

8.1 PACSA: A PRIMITIVE ACTOR CALCULUS STATIC ANALYZER 181

as a unique primitive but with two. A first one denotes the synchronization
step when the second one is the launching step.

This split of abstract transitions in two primitives has two motivations. The
first one is to reduce useless computations: when considering costly domains
or complex combinations of domains, we do not want to compute the abstract
transition in all underlying domains and throw away the results because one
domain forbids the transition computation. Separating abstract transitions in
two steps allows to rely on intermediate results to effectively launch threads in
all abstract domains when needed.

Another use of this separation is to ease reductions. In order to keep the
domain definition simple, we provide reduction functions that are available
between synchronization and continuation launching.

8.1.3 Domains

We now detail the different files involved in the abstract domain definitions. We
briefly mention their content and size. We first present the control flow related
abstractions. Then we introduce the occurrence counting related ones. A third
part addresses the CAP specific domains. Finally we give an insight on more
global abstractions or generic ones.

CONTROL FLOW DOMAINS

• domains/eq_diseq_graph_domain.ml [.5 kloc]: This file specifies a mod-
ule describing the lattice of equalities and inequalities on a given set of
variables V . It uses a graph representation, based on the OCamlGraph
library to represent these relations. Nodes are associated to subsets of V
denoting equality classes. Edges between nodes denote disequalities be-
tween associated equal variables. Union computation splits incompatible
node equality classes and remove incompatible edges.

• domains/channel_graph.ml [.2 kloc]: This channel domain implements
the control flow underlying abstraction, i.e. an atom and a molecule do-
main allowing to abstract equalities and inequalities among (p,m) ∈ L ×

M values between each thread environment variables. It relies on the
graph representation introduced in the preceding module built over the
set of variables I(p).

• domains/marker_graph.ml [.2 kloc]: Similarly the marker domain pro-
vides atom and molecule abstractions with their associated sound primi-
tives to represent equalities and inequalities among marker identities in
a thread. It is build over the set I(p) ∪ {I} where I denotes the identity
marker of the abstracted threads.

182 IMPLEMENTATION ISSUES

• domains/automata.ml [.3 kloc]: This file defines the regular approxima-
tion RegL as presented in Chapter 3. It specifies basic constructions to
build these simple automatons. It also gives the join operator computing
the union of two languages.

• domains/shape_domain.ml [.5 kloc]: The shape domain is atom and
molecule abstractions based on the regular approximation RegL. It as-
sociates to each variable v of a thread environment abstraction a regular
expression of the word p.idwhere (p, id) is its value. The extra variable I
is associated to the abstraction of its thread history marker.

• domains/control_flow_domain.ml [.2 kloc]: This file specifies the prin-
cipal domain for approximating control flow. It relies on an abstract rep-
resentation of environments as a pair of domains atom and molecule. It
then computes the abstract semantics as presented in Chapter 3.

OCCURRENCE COUNTING DOMAINS

• domains/interval.ml [.3 kloc]: This file implements the famous interval
abstract domain. However we recall that we consider here only positive
intervals, for example in the leq or union functions. Negative ones are
only valid when computing interval arithmetic.

• domains/karr.ml [2.2 kloc]: This domain is the bigger one. It gives an
implementation of the union operator on affine sub-spaces as presented
by KARR in [68]. This domain is based on a sparse matrices representation
using lists of non empty elements. Column manipulations are eased by a
representation of a matrix as a list of sparse blocks. Extracting a column
from a block to build a new one is then facilitated in the computation of
the different algorithms presented in Chapter 5. The bigger part of this
module addresses the traditional triangulation by Gaussian elimination
in this sparse structure as well as the different steps of KARR’s algorithm.

• domains/linear_eq_domain.ml [.3 kloc]: The linear equalities domain is
then built upon the KARR’s domain implementation. It provides the prim-
itives and operators needed for the main occurrence counting abstraction,
such as arithmetic operators or a synchronization primitive.

• domains/numerical_reduction.ml [.6 kloc]: The numerical reduction
module gives a reduction between intervals and linear equalities built
on KARR’s domain. It implements the following steps: reducing infinite
intervals into finite ones and narrowing finite intervals. It contains the
proposed enhancement allowing to reduce more infinite intervals.

• domains/num_transition.ml [.2 kloc]: This file instantiates the extension
proposed in Chapter 5 providing a more precise synchronization step.

8.2 RESULTS 183

• domains/occurrence_domain.ml [.1 kloc]: Finally the main occurrence
counting domain is defined here. It is parametrized by a numerical ab-
stract domain and provides the necessary primitives.

CAP SPECIFIC DOMAINS The following domains are CAP specific. The inter-
nal representation relies on the fact that the domains are used only for CAP.
Therefore they are less generic than the other ones and are relatively simpler to
code or read.

• domains/linearity.ml [.3 kloc]: The linearity abstract domain is given
here. It is based on a backward flow and associates a usage mode to vari-
ables and binders.

• domains/mailboxes.ml [1 kloc]: This module defines the abstract do-
main of mailboxes and interfaces used in the orphan-freeness property
checking. It is quite complex since it necessitates to be used under the
partitioned abstraction and has specific functions for launching threads
in or outside the current interacting partition unit.

• domains/partitioned_domain.ml [.6 kloc]: The last CAP specific module
is the one that implements the partitioned abstract domain. It is parametri-
zed by a control flow abstraction and an abstract domain to be used under
the partitioning.

MAIN ABSTRACTIONS

• domains/abstract_domains.ml [.2 kloc]: This file is very generic and
provides multiple domain constructors such as Cartesian product or re-
duction for top-level domains (occurrence counting, control flow or parti-
tioned) or for low-level ones, e. g. Cartesian product of numerical abstrac-
tions.

• domains/domains.ml [.2 kloc]: This file builds several main abstractions
using all the preceding available domains. These domains are then called
from the main program depending on the tool arguments.

8.2 RESULTS

The Chapter B gives the result of the PACSA analyzer applied on a complex
system. The term analyzed is an extension of the replicating server presented
in Figure 2.9. It is composed of four actors:

• the server actor; it answers to messages labeled m and is able to send its
behavior and address to the duplicating server;

184 IMPLEMENTATION ISSUES

• the duplicating server; it takes an address and a behavior and replicates
the behavior on two new addresses; it binds a behavior that forwards mes-
sages to replicated servers and creates a new actor to merge their reply;

• the receptor actor, recept, target of the server actor answer messages;

• the client actor that initiates the system: it sends a message to replicate
the server actor and then launches a messagem.

The system is analyzed on a 2GHz Intel Core 2 Duo with 1 Go of RAM under
Mac OSX 10.5. It takes 52 seconds to compute the least fixed point in 32 itera-
tions. All the details of computed properties can be found in Chapter B. Let us
just highlight some properties that can be observed.

Control flow The control is very precise and does not introduce any over-approximation.
No computed transition is spurious.

Boundedness The concrete system is finite as it consider the receiving of a single mes-
sage m. In that particular case, our analyzer is able to infer the best
bounds. All the reductions used allow to rely on the occurrences proper-
ties both globally and locally to obtain the precise occurrence of message
labels in interface and mailbox approximation. Furthermore this preci-
sion participate to the accuracy of computed transitions since it forbids
some spurious ones.

Linearity The linearity abstraction gives here a • value to all address binder. Each
address created is then used in safe way, allocating at most one actor on
it.

Orphan freeness Finally the orphan freeness can be observed in almost all actors. Except
the actor bound on binder 2, all other actors satisfy the orphan freeness
property: all their message label can be consumed in their future; fur-
thermore they satisfy the liveness orphan definition since no actor is ever
stuck. The only weakness of the result is, as foreseeable, the case of the
actors on program point 2. The main mechanism of this system imposes
that the server actor dies and send its arguments before being replicated.
This step of computation introduces a state where there is no actor bound
on the address (a dead node in the interface and mailbox abstraction). The
produced message m is then associated to the dead node itself or to one
of its ancestor. In that case, we cannot guarantee its consumption.

8.3 USAGE

The PACSA prototype is freely available and will be soon released. Analyses
can be currently computed using two front-end interfaces. The first one is a
command line query and the second one is a web interface to the tool.

8.3 USAGE 185

Figure 8.7 Command line usage.
★✿⑦✩ ✳✴♣❛❝s❛ ✲✲❤❡❧♣

❯s❛❣❡✿ ♣❛❝s❛ ❬❖P❚■❖◆❪✳✳✳ ❬❋■▲❊❪✳✳✳

❈♦♠♣✉t❡ t❤❡ s❡t ♦❢ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ t❡r♠ s♣❡❝✐❢✐❡❞ ✐♥ ❋■▲❊ ✭✐❢ ❋■▲❊

✐s ♥♦t ❣✐✈❡♥ t❤❡ st❛♥❞❛r❞ ✐♥♣✉t ✐s ✉s❡❞✮

✲✈ ✈❡r❜♦s❡ ❧❡✈❡❧✿ ✵✱✶ ♦r ✷ ✭❞❡❢❛✉❧t ✐s ✵✮

✲❞ ❞❡❜✉❣ ❧❡✈❡❧✿ ✵✱✶ ♦r ✷ ✭❞❡❢❛✉❧t ✐s ✵✮

✲♦✉t♣✉t✲❢♦r♠❛t ♦✉t♣✉t ❢♦r♠❛t✿ ①♠❧ ♦r str✐♥❣ ✭❞❡❢❛✉❧t ✐s str✐♥❣✮

✲❞♦♠❛✐♥s ❛❜str❛❝t ❞♦♠❛✐♥s ✉s❡❞ t♦ r❡♣r❡s❡♥t ♣r♦♣❡rt✐❡s ❞✉r✐♥❣ t❤❡

❛♥❛❧②s✐s✿ ♦❝❝✱ ♣❛rt✱ ♠❛✐❧❜♦①✱ ♦r ♠①✰♦❝❝

✲♣❛rs❡✲♦♥❧② ♣❛rs❡✲♦♥❧②

✲t❡♠♣✲❞✐r ❉✐r❡❝t♦r② ✇❤❡r❡ t♦ st♦r❡ t❡♠♣♦r❛r② ❢✐❧❡s ❢♦r ✉s❡ ✇✐t❤ ✇❡❜

✐♥t❡r❢❛❝❡

✲❜❛s❡✲✉r❧ ❇❛s❡ ✉r❧ ❢♦r ✇❡❜❞♦t ❝❛❧❧ ❢♦r ✉s❡ ✇✐t❤ ✇❡❜ ✐♥t❡r❢❛❝❡ ♠✉st

♣♦✐♥t t♦ t❤❡ t❡♠♣✲❞✐r ♣❧❛❝❡

✲❤❡❧♣ ❉✐s♣❧❛② t❤✐s ❧✐st ♦❢ ♦♣t✐♦♥s

✲✲❤❡❧♣ ❉✐s♣❧❛② t❤✐s ❧✐st ♦❢ ♦♣t✐♦♥s

The web interface is available on the author website and the tool source will
be soon available here also.

8.3.1 Command line

The command line client is the core analyzer. It takes a CAP term either into
a file or on the standard input. Among possible arguments, ❞♦♠❛✐♥s allows to
choose the abstraction used in the computations. It goes from the simple con-
trol flow to complex combinations of domains with reductions between them at
different levels. The parameter ✈ specifies the level of verbose of the analysis re-
sult. Choosing higher values gives details of all computed transitions: whether
they were effectively computable, whether the fixed point algorithm reached a
local fixed point, etc. However, smaller values give only the resulting abstract
elements or a set of high level properties that can be inferred from the abstract
element, such as boundedness, linearity, or actors and messages sharing the
same address.

The principal drawback of such command line interface is the readability of
abstract element values. For example, the channel and marker approximation,
the shape analysis or the sequence of interfaces abstraction are graphs or au-
tomatons and are not easily readable.

The Figure 8.7 gives the usage of the tool while Figure 8.8 shows an example
of results obtained by the analyzer.

186 IMPLEMENTATION ISSUES

Figure 8.8 Results of CAP term analysis on command line.
★✿⑦✩ ✳✴♣❛❝s❛ ❡①❛♠♣❧❡s✴♣✐♥❣❴♣♦♥❣✳❝❛♣ ✲✈ ✶

❆♥❛❧②③❡❞ t❡r♠✿

✈❛❫✶✱ ✈❜❫✷✱

❛ ❃❫✸ ❬ ♣✐♥❣❫✹✭✮ ❂ ✩✭❡✱ s✮ ✭④ ❜ ❁❫✺ ♣♦♥❣✭ ✮ ⑤⑤ ❡ ❃❫✻ s ⑥✮ ❪

⑤⑤ ❜ ❃❫✼ ❬ ♣♦♥❣❫✽✭✮ ❂ ✩✭❡✱ s✮ ✭④ ❛ ❁❫✾ ♣✐♥❣✭ ✮ ⑤⑤ ❡ ❃❫✶✵ s ⑥✮ ❪

⑤⑤ ❛ ❁❫✶✶ ♣✐♥❣✭ ✮

■♥✐t✐❛❧ st❛t❡ ❡①tr❛❝t❡❞✳ ❈♦♠♣✉t✐♥❣ ❢✐①♣♦✐♥t✿

✳✳✳

▲❡❛st ❢✐①♣♦✐♥t r❡❛❝❤❡❞ ❛❢t❡r ✶✷ ✐t❡r❛t✐♦♥s✳

❚❤❡ ❛❜str❛❝t ❡❧❡♠❡♥t✱ ❧❡❛st ❢✐①♣♦✐♥t ♦❢ t❤❡ ❝♦❧❧❡❝t✐♥❣ s❡♠❛♥t✐❝s

♦❢ t❤❡ t❡r♠✱ ✐s✿

✶✶✿

▼❛r❦❡r✿ ❣r❛♣❤ ● ④ ✻✹✼❀ ⑥ ♦✈❡r t❤❡ ✈❛r✐❛❜❧❡ s❡t✿ ■✱ ❛

♠❛♣♣✐♥❣ ❢r♦♠ ♥♦❞❡ t♦ ♣❛rt✐t✐♦♥✿ ✱ ✻✹✼ ✲❃ ■✱ ❛✱

❈❤❛♥♥❡❧✿ ❣r❛♣❤ ● ④ ✻✽✻❀ ⑥♦✈❡r t❤❡ ✈❛r✐❛❜❧❡ s❡t✿ ❛

♠❛♣♣✐♥❣ ❢r♦♠ ♥♦❞❡ t♦ ♣❛rt✐t✐♦♥✿ ✱ ✻✽✻ ✲❃ ❛✱

❆✉t♦♠❛t❛ ♦♥ t❤❡ s❡t ■✱ ❛

■✿ ■♥✐t✐❛❧ ❙t❛t❡s✿ ④❡♥s ✈✐❞❡⑥✱ ❋✐♥❛❧ ❙t❛t❡s✿ ④❡♥s ✈✐❞❡⑥✱

❚r❛♥s✐t✐♦♥s ✿ ❝♦♥t❛✐♥s t❤❡ ❡♠♣t② ✇♦r❞

❛✿ ■♥✐t✐❛❧ ❙t❛t❡s✿ ④✶⑥✱ ❋✐♥❛❧ ❙t❛t❡s✿ ④✶⑥✱ ❚r❛♥s✐t✐♦♥s ✿

✶✵✿

▼❛r❦❡r✿ ❣r❛♣❤ ● ④ ✻✹✺❀ ✻✹✻❀ ⑥ ♦✈❡r t❤❡ ✈❛r✐❛❜❧❡ s❡t✿ ■✱ ❡✱ s

♠❛♣♣✐♥❣ ❢r♦♠ ♥♦❞❡ t♦ ♣❛rt✐t✐♦♥✿ ✱ ✻✹✺ ✲❃ ■✱ ✻✹✻ ✲❃ ❡✱ s✱

❈❤❛♥♥❡❧✿ ❣r❛♣❤ ● ④ ✻✽✹❀ ✻✽✺❀ ⑥ ♦✈❡r t❤❡ ✈❛r✐❛❜❧❡ s❡t✿ ❡✱ s

♠❛♣♣✐♥❣ ❢r♦♠ ♥♦❞❡ t♦ ♣❛rt✐t✐♦♥✿ ✱ ✻✽✹ ✲❃ ❡✱ ✻✽✺ ✲❃ s✱

❆✉t♦♠❛t❛ ♦♥ t❤❡ s❡t ■✱ ❡✱ s

■✿ ■♥✐t✐❛❧ ❙t❛t❡s✿ ④✶✵⑥✱ ❋✐♥❛❧ ❙t❛t❡s✿ ④✶✵⑥✱

❚r❛♥s✐t✐♦♥s ✿ ✱ ✶✵ ✲❃ ④✶✵⑥ ❝♦♥t❛✐♥s t❤❡ ❡♠♣t② ✇♦r❞

❡✿ ■♥✐t✐❛❧ ❙t❛t❡s✿ ④✷⑥✱ ❋✐♥❛❧ ❙t❛t❡s✿ ④✷⑥✱ ❚r❛♥s✐t✐♦♥s ✿

s✿ ■♥✐t✐❛❧ ❙t❛t❡s✿ ④✼⑥✱ ❋✐♥❛❧ ❙t❛t❡s✿ ④✼⑥✱ ❚r❛♥s✐t✐♦♥s ✿

✾✿

▼❛r❦❡r✿ ❣r❛♣❤ ● ④ ✻✹✸❀ ✻✹✹❀ ⑥ ♦✈❡r t❤❡ ✈❛r✐❛❜❧❡ s❡t✿ ■✱ ❛

♠❛♣♣✐♥❣ ❢r♦♠ ♥♦❞❡ t♦ ♣❛rt✐t✐♦♥✿ ✱ ✻✹✸ ✲❃ ■✱ ✻✹✹ ✲❃ ❛✱

❈❤❛♥♥❡❧✿ ❣r❛♣❤ ● ④ ✻✽✸❀ ⑥♦✈❡r t❤❡ ✈❛r✐❛❜❧❡ s❡t✿ ❛

♠❛♣♣✐♥❣ ❢r♦♠ ♥♦❞❡ t♦ ♣❛rt✐t✐♦♥✿ ✱ ✻✽✸ ✲❃ ❛✱

❆✉t♦♠❛t❛ ♦♥ t❤❡ s❡t ■✱ ❛

■✿ ■♥✐t✐❛❧ ❙t❛t❡s✿ ④✶✵⑥✱ ❋✐♥❛❧ ❙t❛t❡s✿ ④✶✵⑥✱

❚r❛♥s✐t✐♦♥s ✿ ✱ ✶✵ ✲❃ ④✶✵⑥ ❝♦♥t❛✐♥s t❤❡ ❡♠♣t② ✇♦r❞

❛✿ ■♥✐t✐❛❧ ❙t❛t❡s✿ ④✶⑥✱ ❋✐♥❛❧ ❙t❛t❡s✿ ④✶⑥✱ ❚r❛♥s✐t✐♦♥s ✿

8.3 USAGE 187

Figure 8.9 Home page of the web interface of PACSA.

8.3.2 Web interface

The web interface is a much more friendly approach to the static analysis of
CAP. The website aims at presenting the problematics of analyzing CAP terms.
It presents both CAP syntax and semantics and provides examples. Example
terms are given and explained. Finally the last part of the website provides the
interface to the tool. One can then copy and paste an example term into the
analyzer form and choose the domain that is used to compute the fixed point
approximation of the term collecting semantics.

The following Figures illustrate the different pages of this site. The Figure 8.9
gives the home page, describing problematics and presenting the framework
overall mechanism. The Figure 8.10 shows the first visible example on the ex-
amples section. Figure 8.11 and Figure 8.12 give the result of the analysis of a
CAP term. The first one shows the beginning of the analysis log, detailing the
different computed abstract transitions. The second one gives the result of the
abstract interfaces and mailboxes, computed using the partitioned analysis.

188 IMPLEMENTATION ISSUES

Figure 8.10 Examples descriptions given in the web site.

8.3 USAGE 189

Figure 8.11 A first computation showing a log of the analysis.

190 IMPLEMENTATION ISSUES

Figure 8.12 A second computation showing resulting abstract elements for the
interfaces and mailboxes approximation.

9
CONCLUSION

In this thesis, we proposed to apply abstract interpretation-based techniques
to verify properties on an actor based process calculus, CAP. This final chap-
ter summarizes the contributions and describes some the generalization of this
work to other calculi or properties.

CAP was first defined in 1996 in [24] and some properties of interest of
the calculus were defined, in particular the linearity property and the orphan-
freeness property. Since then, multiple works [23, 30, 39] have addressed the
development of static analyses for these properties usingHM(X) based type in-
ference approaches. Each of these analyses faced difficulties when checking the
aforementioned properties. Let us enumerate the principal problems encoun-
tered.

First, the CAP behavior passing capability makes it difficult to analyze. The-
oretical results [100] state that it is not more expressive than first order calculi,
but defining meaningful types for a higher-order calculus is intricate and we
are not aware of any proposal yet.

Second, it is not easy to represent numerical values within types. Properties
that rely on a numerical representation, such as the number of available mes-
sages in the orphan message detection analysis, are not easily representable.
Computing a sound type requires a widening step. And the use of the higher-
order feature of CAP renders the analysis inapplicable: the only type system
that dealt with this behavior passing mechanism uses a finite domain for ab-
stract variable values (the usage mode).

Third, typing rules usually do not handle dead code well. The full term is
typed and sub-parts that will never be used may break the desired property.
Solutions to this particular problem involve costly fixed point typing of a term
or the use of dependent types which resolution is exponential in time, when
an algorithm exists. Furthermore, even if the decidability of the constraints
checking is provided, the existence of a principal type is an important concern
to address.

Finally type systems are not easily defined. The typing rules and the gen-
erated constraints mix the information related to the control flow of terms, ex-
pressing which parts can interact together, and the information specific to the
considered property. Furthermore a small modification of the property defini-
tion requires a full proof of the typing soundness from the beginning. It is not
usually extensible in a smooth way.

191

192 CONCLUSION

Another more recent approach for the static analysis of concurrent models
was first defined by VENET [107] and later generalized by FERET [49]. These
works address the over-approximation of the collecting semantics of process
calculi terms, allowing to observe properties of concurrent systems.

In order to precisely approximate terms, analyzed calculi have first to be en-
coded in a non standard semantics that allows to make explicit the history of
transitions leading to creation of threads and values. This encoding avoids the
use of α-conversion when manipulating terms and gives more available infor-
mation to the applied abstractions.

Once the term is expressed in the non standard form, its collecting seman-
tics can be over-approximated within the framework of abstract interpretation.
Abstract domains are then used to approximate the control flow information
or occurrence counting properties of reachable configurations. These abstract
domain elements represent properties verified by a set of non standard config-
urations related by a concretization function. The associated abstract transition
allows to represent on the abstract elements the effect of computing transitions
on the set of related configurations.

The methodology of abstract interpretation gives the necessary condition in
the domain definitions in order to obtain sound and decidable abstractions of
reachable terms. It also allows to combine abstractions, facilitating the improve-
ment of analyses accuracy.

9.1 CONTRIBUTIONS

This current work is at the crossroad between the two preceding concerns. In
order to solve the difficulties encountered by the typing-based static analysis
of CAP, we have switched to the abstract interpretation approach, targeting the
same properties.

The contributions of this thesis can be summarized as follows:

• We express CAP in a non standard form, making explicit the creation of
threads and values. We proved the soundness of the encoding by exhibit-
ing a strong bisimulation result between the standard CAP semantics and
its non standard encoding.

• We adapt existing abstract domains and introduce new ones to verify
properties specific to CAP. In particular, we enhance the occurrence count-
ing abstraction in order to avoid some spurious transitions. We introduce
a new partitioned analysis devoted to the representation of properties spe-
cific to a given CAP address. This abstraction is essential when analyzing
CAP, since the notion of address is central in CAP and in its peculiar prop-
erties.

9.1 CONTRIBUTIONS 193

• We introduce an abstract domain that allows to check the linearity prop-
erty of a term. This property expresses that no address is used twice or
more in the same configuration to bind an actor. The proposed abstract
domain relies on a backward flow computation to infer the usage of vari-
ables in messages depending on the value already inferred in the future
threads. It represents information specific to the linearity property and
relies on other abstract domains to over-approximate feasible transitions.
It has therefore no constraints on the form of analyzed terms and fully
handle the CAP behavior passing ability.

• Finally we propose an analysis allowing to guarantee the absence of or-
phan messages. In that context, orphans are messages that are sent to an
address that will never be able to handle them. Preceding analyses lacked
a precise control flow computation and did not allow behavior passing.
The proposal is to check the property in two phases.

Using the abstraction framework for CAP, presented above, a Vector Ad-
dition System with States (VASS) is computed for each address. It repre-
sents the sequences of actors associated to a given address value as well
as the evolution of its available messages. The orphan-freeness property
is then expressed as a coverability problem on obtained VASSs.

The second phase aims at approximating the mailbox, i.e. the set of mes-
sages available for an actor, at each step of its computation using HIGMAN

lemma or a fixed point expression. We then ensure that each message la-
bel can be received in a sound over-approximation of all its future maxi-
mal paths.

All the different contributions have been experimented in the PACSA tool
presented in Chapter 8.

The works presented here are another contribution to the practical deploy-
ment of abstract interpretation to concurrent calculi. The application of this
approach of static analysis by abstract interpretation to CAP allows to solve all
difficulties encountered in previous type inference based analyses [25, 26, 27, 28,
29], in particular concerning the precision of the analysis, the capability to han-
dle behavior passing, and finally the methodology of designing new analyses
provided old ones.

The author advocates that, in general, this approach to the static analysis of
concurrency has many advantages compared to the other methodologies.

Its soundness-by-construction and its capability to construct new abstrac-
tions by computing products or reductions of existing domains allows to easily
define analyses of new properties without proving everything from scratch and
taking benefit from other domains properties and accuracy.

194 CONCLUSION

A second main advantage is the precision obtained when abstracting control
flow of the non standard encoding. All other approaches lack a fine representa-
tion of it and lead to the analysis of dead branches.

Finally the use of relational abstraction is easily applicable in this general
context of abstract interpretation and allows to represent non trivial properties
between different values or thread instances. It is essential when one needs to
differentiate recursive instances of values or threads and opens the road to the
analysis of higher level properties.

9.2 FUTURE WORKS

Many perspectives are opened by the current work. We now present five of
them at short or middle term:

• at short term, we target to

– extend the implementation of PACSA to implement the HIGMAN

lemma and allow the full analysis of the orphan message absence;

– enhance the linearity abstraction to deal more precisely with internal
free variables;

• at middle term, we would like to

– apply the abstraction of causality, based on a VASS representation,
to the π-calculus;

– analyze other paradigms of concurrency, low level ones like process
calculi to more high level ones such as the Erlang language;

– combine abstract interpreters using a weaving mechanism, allowing
to define and analyze more realistic concurrent systems, developed
with different programming paradigms.

9.2.1 Implementing mailboxes over-approximation

The current implementation of the orphan-freeness checking only handles the
first phase, providing a VASS representation of actor behavior sequences for
each address.

A short term perspective would be to integrate the over-approximation of
mailboxes within the PACSA prototype. An implementation relying on the
HIGMAN lemma would consist of a depth-first search algorithm, widening
growing occurrences of message labels in mailboxes. The full orphan-freeness
checking could then be computed by the tool.

9.2 FUTURE WORKS 195

9.2.2 Introducing relational abstraction in the linearity abstract domain

The current linearity abstract domain associates an abstract representation of
the number of possible actors installed on a value at each thread environment
variable. However, in case of internal free variable, nothing guarantees us that
the free variable associated to the installation of an actor is not used recursively
more than once. Introducing relational information or a reduction between the
occurrence counting abstraction and the linearity one could straighten the re-
sulting properties, and avoid possible false alarms.

9.2.3 Applying the proposed domains to the analysis of π-calculus

For many years, KOBAYASHI has been developing type based analyses devoted
to complex properties checking for the π-calculus. Recently he proposed in [74]
a type inference-based approach of his past works. This type system intends to
assign to each channel a usage denoting the read and write behavior associated
to it. This allows him to verify properties, such as deadlock-freeness.

These works are very interesting as they consider raw terms without any
annotation and allow to automatically infer high level properties. However it
undergoes usual type systems difficulties. For example, it does not deal well
with recursive instances of a thread associated to different usages, since it does
not use polymorphic or dependent types.

A very challenging perspective would be to compare the results we obtain
with our abstraction of interfaces, defined for the orphan-freeness checking,
with these works on the π-calculus. The π-calculus is already expressed within
this framework of abstract interpretation for process calculi. So the challenge
would be to adapt the interface approximation under the partitioned abstract
domain to represent meaningful properties for π-calculus terms.

The extension could be defined in two steps. We first need to adapt the linear-
ity abstraction to count not only possible reads (an actor installed to an address
being understood as a reading thread for this address) but also possible writes.
It would necessitate a more complex underlying numerical abstraction than the
one presented in the linearity property checking, such as the interval one for ex-
ample.

Then a second phase would be to combine our abstraction of causality, as-
sociating a VASS to each channel, with the occurrence counting abstraction of
reads and writes as given by the linearity domain extension.

9.2.4 Analyzing other kinds of concurrent communicating models

We advocate that the current approach of the static analysis of concurrency,
based on an abstract interpretation of an encoded version of concurrent cal-

196 CONCLUSION

culi or languages, is very promising to analyze other formal calculi but also
more high level and realistic languages. We outline here two possible ways of
extensions. The first one is another application to process calculi devoted to the
modeling of service-oriented systems and the second one is the application to
more high level descriptions, such as the Erlang language.

Concurrent calculi for service-oriented systems

Nowadays new process calculi are still defined to model specific systems. An
active branch is the community that considers modern service-oriented systems
or their future evolutions. In the current EU-project Sensoria [1], multiple pro-
cess algebras are being developed in order to understand the right notions of
services in a global net. This includes process algebras like COWS [78], focus-
ing on various forms of session-based interactions or more general correlation-
based interactions.

Session-based analyses [98, 99] are often based on type checking systems
where the program or the term is annotated by the end-user with a type describ-
ing the targeted specification. The approach proposed in this thesis could also
be applied in such a context, providing precise results. However it would be
necessary to express unusual high level mechanisms that can be found in these
calculi, like specific scope definitions or global mechanisms to kill threads.

More realistic languages like ERLANG

An interesting high level language target for applying this framework of con-
currency analysis is the Erlang language. Erlang is an industrial functional
language developed by Ericsson for its communication software. It has built-
in support for concurrency, distribution and fault tolerance. Its concurrency
model is very similar to the actor one. Processes are associated to an address
and to a mailbox containing their pending messages. Static analyses for CAP
have already been applied to Erlang in [39, 40] but as for CAP, relying on our
abstract interpretation framework could give even more precise results.

Currently, existing available tools only consider low level properties. Apply-
ing the proposed approach to the Erlang language could provide useful tools
to this telecommunication community.

9.2.5 Weaving abstract interpretations

This last perspective considers the combination of abstract interpretations. It
comes from the idea of the Aspect-oriented programming (AOP) community
where programs or systems are specified in separate descriptions weaved to-
gether using a weaving mechanism [69].

The main idea is the following: a program is composed of two or more de-
scriptions with a formal model to weave them together. The AOP à la AspectJ

9.2 FUTURE WORKS 197

is one of such formal models based on Java descriptions where one of the de-
scription is special and denotes the base program which is executable, then
others descriptions denote aspects and are tangled using the AspectJ weaver.
The elements of the base program and of the aspects are woven by matching ex-
pressions on their program points or internal values in a more or less dynamic
manner using a weaving algorithm.

Working on a calculus describing an abstraction of a system while only rep-
resenting the communication between processes, we consider that a concurrent
system could be fully defined using two descriptions: a first one describing its
concurrent or even distributed behavior, and a second one specifying its func-
tional behavior.

Such a description could then be analyzed by taking profit of existing analy-
ses devoted to each description paradigm. This framework of combining ab-
stractions could then be extended in order to be applied to existing Aspect
frameworks like AspectJ.

Once the global semantics of the woven system has been defined using un-
derlying aspects semantics, it can be over-approximated using specific abstract
interpretations. Approximating the collecting semantics of the woven program
happens at different steps of the abstract computation.

First, when computing an abstract transition of a semantics in the woven pro-
gram analysis, we check whether the information in the current abstraction of
the concrete state representation allows such a transition. The approximation
of such information in the abstract part of the abstract state related to this se-
mantics leads to an over-approximation of all really applicable transitions.

A second level of approximation occurs during the abstract weaving. The
first step of the abstract transition computation is satisfied and the transition
can be computed. But the matched transition may call another semantics dur-
ing its computation. We therefore have to compute an over-approximation of
all matchable joinpoints in the current abstract transition.

Finally, both kinds of approximations accumulate when the control-flow is
modified and passes back and forth from one semantics to another.

These different issues have to be addressed to provide a framework for ap-
proximating aspect oriented programs. Depending on the underlying paradigms
and on the description of the weaving, more or less complex abstractions would
have to be combined.

This perspective is, in our opinion, very promising, since it allows to rely on
existing abstractions to define very high level properties on complex systems.
Furthermore, it provides a powerful and extensible approach to the analysis
of aspects on which there is, nowadays and in our knowledge, no practical
answer.

INDEX OF NOTATIONS

(p, id, E) A thread denoting an active part of an encoded
CAP term; defined by the program point p and the
identity marker id, and associated with the envi-
ronment E.

28

(pa, ida, Ea) Interacting actor thread in a tuple of interacting
threads (pk, idk, Ek)k.

59

(pm, idm, Em) Interacting message thread in a tuple of interacting
threads (pk, idk, Ek)k.

59

Π Translation function mapping CAP non standard
configurations to standard ones.

40, 200

Σ The set of transition labels built over Lp. 41

⊲ Actor definition. 8

β Extraction function building sets of static threads
from CAP subterms.

33, 35

V ∞
c The subset of Vc denoting variables associated to

an unbounded number of thread or transition oc-
currences.

91

⊳ Message definition. 8

ν Binder definition. 8

ψ(u) The abstraction of a transition label to one of its pro-
gram point label.

49

� This special program point is used in the abstrac-
tion of interface sequences used to ensure orphan
messages absence. It is associated to edges from F
nodes to T ones and denotes no message consump-
tion. It is also used in the ancestor computation
where it denotes no dependencies.

143, 145,
146

A The set of partial interaction names. 31

behaviorn Partial interaction type denoting a behavior branch
binding n variables.

31

C The set of non standard configurations, i.e. sets of
(p, id, E) triples.

41

Cbeh The subset of a CAP non standard configuration
containing only behavior definition threads.

58

199

200 INDEX OF NOTATIONS

C|x The subset of a CAP non standard configuration
considering only actor and message associated
with the address x.

58

dynamic_actor Partial interaction type denoting an actor whose be-
havior is defined by a variable.

31

I The interface function I maps program points in
Lp to their associated set of variables, the domain
of their threads environment.

44

Ik Variable denoting the identity marker of the k-th in-
teracting thread in CAP non standard formal rules.

32

K The abstract domain of affine equality, the Karr do-
main.

52

L The set of program points. 8

La The set of actor program points. 8

Lb The set of behavior branch program points. 8

Lm The set of message program points. 8

Lν The set of binder program points. 8

Lp The set of CAP active parts (actors, messages and
behavior branches).

8

M The set of identity markers. 28, 29

messagen Partial interaction type denoting a message with n
arguments.

31

mi(x̃i) = ζ(ei, si)Ci Behavior branch definition. 8

Ml The set of message labels. 8

N The set of actor names, ie address. 8

NVc
The abstraction mapping sets of occurrences as
built by N

Vc to numerical abstraction of vector of
nonnegative integers indexed by Vc.

47

N
Vc The abstraction mapping a configuration to the oc-

currence of each thread and transition label as in-
dexed by Vc.

47

pi Partial interaction definition pi =

(s, (parameter), (bound), continuation) with a
type, a set of parameter variables, a set of bound
variables and a continuation, a set of static threads.

33

INDEX OF NOTATIONS 201

R Formal rule definition used in (ab-
stract) transition definitions R =

(n, components, compatibility, v_passing)
with n the number of required partial interactions,
components their associated type, compatibility
the equality requirements among interacting
threads variables, and v_passing the value
passing induced by the transition.

32, 37

static_actorn Partial interaction type denoting a behavior branch
binding n variables of a syntactically defined actor.

31

V The set of variables. 8

VASS Vector Addition System with States. 137

Vc The set of variables denoting occurrences of
threads and transition labels, Vc = L ×B.

47

Xk
i Variable denoting the i-th parameter of the k-th in-

teracting thread in CAP non standard formal rules.
32

Yk
j Variable denoting the j-th bounded variable of the

k-th interacting thread in CAP non standard formal
rules.

32

BIBLIOGRAPHY

[1] Sensoria project. URL ❤tt♣✿✴✴✇✇✇✳s❡♥s♦r✐❛✲✐st✳❡✉✴. (Cited on
page 196.)

[2] Gul Agha. Hal: A high-level actor language and its distributed implemen-
tation. In the 21st International Conference on Parallel Processing (ICPP’92),
volume 2, pages 158–165, August 1992. (Cited on page 21.)

[3] Gul Agha and Carl Hewitt. Actors: a conceptual foundation for con-
current object-oriented programming. Research directions in object-oriented

programming, pages 49–74, 1987. (Cited on page 20.)

[4] Gul Agha, I. Mason, Scott F. Smith, and Carolyn Talcott. Towards a theory
of actor computation. In CONCUR, volume 630 of LNCS. Springer, 1992.
(Cited on page 20.)

[5] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints
and type inference. In Functional Programming Languages and Computer

Architecture, pages 31–41, 1993. (Cited on page 35.)

[6] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing
with conditional types. In POPL, pages 163–173, New York, NY, 1994.
(Cited on page 35.)

[7] Xavier Allamigeon, Wenceslas Godard, and Charles Hymans. Static anal-
ysis of string manipulations in critical embedded c programs. In K. Yi,
editor, SAS, volume 4134 of LNCS, pages 35–51. Springer, 2006. (Cited on
page 34.)

[8] Roberto M. Amadio and Ch. Meyssonnier. On the decidability of frag-
ments of the asynchronous pi-calculus. Electr. Notes Theor. Comput. Sci.,
52(1), 2001. (Cited on page 37.)

[9] Roberto M. Amadio and Charles Meyssonnier. On decidability of the con-
trol reachability problem in the asynchronous pi-calculus. Nordic Journal

of Computing, 9(2):70–101, 2002. (Cited on page 173.)

[10] Roberto M. Amadio, Gérard Boudol, and Cédric Lhoussaine. On message
deliverability and non-uniform receptivity. Fundam. Inform., 53(2):105–
129, 2002. (Cited on page 36.)

[11] Jean-Marc Andreoli, Tiziana Castagnetti, and Remo Pareschi. Abstract
interpretation of linear logic programming. In ILPS, pages 295–314, 1993.
(Cited on page 37.)

203

http://www.sensoria-ist.eu/

204 BIBLIOGRAPHY

[12] Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, Jakob Rehof, and
Yichen Xie. Zing: A model checker for concurrent software. In
R. Alur and D. Peled, editors, CAV, volume 3114 of LNCS, pages 484–487.
Springer, 2004. (Cited on page 36.)

[13] C. Baier and H. Hermanns, editors. CONCUR 2006 - Concurrency Theory,

17th International Conference, CONCUR 2006, Bonn, Germany, August 27-

30, 2006, Proceedings, volume 4137 of LNCS, 2006. Springer. (Cited on
pages 204, 208, and 209.)

[14] Thomas Ball, Sagar Chaki, and Sriram K. Rajamani. Parameterized verifi-
cation of multithreaded software libraries. In Margaria and Yi [81], pages
158–173. (Cited on page 172.)

[15] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis
Nielson. Control flow analysis for the pi-calculus. In D. Sangiorgi and
R. de Simone, editors, CONCUR, volume 1466 of LNCS, pages 84–98.
Springer, 1998. (Cited on page 36.)

[16] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis
Nielson. Static analysis for the pi-calculus with applications to security.
Inf. Comput., 168(1):68–92, 2001. (Cited on page 36.)

[17] Chiara Bodei, Pierpaolo Degano, Hanne Riis Nielson, and Flemming
Nielson. Flow logic for Dolev-Yao secrecy in cryptographic processes. Fu-

ture Generation Computer Systems, 18(6):747–756, 2002. (Cited on page 36.)

[18] Gérard Boudol. Typing the use of resources in a concurrent calculus (ex-
tended abstract). In R. K. Shyamasundar and K. Ueda, editors, ASIAN,
volume 1345 of LNCS, pages 239–253. Springer, 1997. (Cited on page 36.)

[19] Gérard Boudol. The pi-calculus in direct style. In POPL. ACM, 1997.
(Cited on page 21.)

[20] Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. Event structure
semantics for nominal calculi. In Baier and Hermanns [13], pages 295–309.
(Cited on page 37.)

[21] Rubén Carvajal-Schiaffino, Giorgio Delzanno, and Giovanni Chiola.
Combining structural and enumerative techniques for the validation of
bounded petri nets. In Margaria and Yi [81], pages 435–449. (Cited on
page 173.)

[22] C. K. Chiu and J. H. M. Lee. Interval linear constraint solving using the
preconditioned interval gauss-seidel method. In ICLP, pages 17–31, 1995.
(Cited on page 105.)

BIBLIOGRAPHY 205

[23] Jean-Louis Colaço. Analyses Statiques de Langages d’Acteurs par inférence de

types. Thèse de doctorat, ENSEIHT, Toulouse, 1997. (Cited on pages 5, 14,
and 191.)

[24] Jean-Louis Colaço, Marc Pantel, and Patrick Sallé. An actor dedicated
process calculus. In the ECOOP’96 Workshop on Proof Theory of Concurrent

Object-Oriented Programming (PTCOOP’96), 1996. (Cited on pages 5, 14,
20, 21, and 191.)

[25] Jean-Louis Colaço, Marc Pantel, and Patrick Sallé. A set-constraint-based
analysis of actors. In FMOODS, pages 107–122. Chapman & Hall, 1997.
(Cited on pages 36, 171, and 193.)

[26] Jean-Louis Colaço, Marc Pantel, and Patrick Sallé. Analyse de linéarité
par typage dans un calcul d’acteurs. In Actes des Journées Francophones des

Langages Applicatifs, 1997. (Cited on pages 36, 127, 140, and 193.)

[27] Jean-Louis Colaço, Marc Pantel, and Patrick Sallé. From set based to
multiset based analysis: A practical approach. In Workshop on Set Con-

straints and Constraints Based Program Analysis (CP’98), pages 1–10. Pise
Univ., 1998. (Cited on pages 36, 171, and 193.)

[28] Jean-Louis Colaço, Marc Pantel, Fabien Dagnat, and Patrick Sallé.
Static safety analysis for non-uniform service availability in actors. In
FMOODS, volume 139, pages 371–386. Kluwer, 1999. (Cited on pages 36,
171, and 193.)

[29] Jean-Louis Colaço, Marc Pantel, and Patrick Sallé. Static analysis of be-
havior changes in actor languages. In J.-P. Bahsoun, T. Baba, J.-P. Briot,
and A. Yonezawa, editors, Object-Oriented Parallel and Distributed Program-

ming, pages 53–72. Hermès, 8, quai du Marché-Neuf, 75004 Paris, France,
2000. (Cited on pages 36, 171, and 193.)

[30] Matthias Colin. Analyse statique de la communication dans un langage

d’acteurs fonctionnel. Thèse de doctorat, Institut National Polytechnique,
Toulouse, France, 2002. (Cited on pages 5, 14, and 191.)

[31] Matthias Colin, Xavier Thirioux, and Marc Pantel. Temporal logic based
static analysis for non uniform behaviors. In FMOODS, number 2884 in
LNCS, pages 94–108. Springer, 2003. (Cited on pages 171 and 172.)

[32] Patrick Cousot. The calculational design of a generic abstract interpreter.
In M. Broy and R. Steinbrüggen, editors, Calculational System Design.
NATO ASI Series F. IOS Press, Amsterdam, 1999. (Cited on page 32.)

[33] Patrick Cousot and Radhia Cousot. Static determination of dynamic prop-
erties of programs. In Symposium on Programming, pages 106–130, Paris,
France, 1976. Dunod. (Cited on page 34.)

206 BIBLIOGRAPHY

[34] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approxima-
tion of fixpoints. In POPL, pages 238–252. ACM, 1977. (Cited on pages 3,
8, 19, 31, and 32.)

[35] Patrick Cousot and Radhia Cousot. Systematic design of program analy-
sis frameworks. In POPL, pages 269–282. ACM, 1979. (Cited on pages 8
and 32.)

[36] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511–547, 1992. (Cited on page 33.)

[37] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In POPL, pages 84–97. ACM,
1978. (Cited on page 34.)

[38] Régis Cridlig. Semantic analysis of concurrent ml by abstract model-
checking. Electr. Notes Theor. Comput. Sci., 5, 1996. (Cited on page 36.)

[39] Fabien Dagnat. Vérification statique de programmes répartis. Thése de doc-
torat, Institut National Polytechnique de Toulouse, Toulouse, 2001. (Cited
on pages 5, 14, 191, and 196.)

[40] Fabien Dagnat and Marc Pantel. Static analysis of communications for er-
lang. In the 8th International Erlang/OTP User Conference. Ericsson Telecom-
munication, 2002. (Cited on page 196.)

[41] Fabien Dagnat, Marc Pantel, Matthias Colin, and Patrick Sallé. Typing
concurrent objects and actors. In L’Objet - Méthodes formelles pour les objets,
volume 6,1, pages 83–106. Hermès, 2000. (Cited on page 171.)

[42] Silvano Dal Zilio. Le calcul bleu: types et objets. PhD thesis, Université de
Nice - Sophia-Antipolis, 1999. (Cited on page 36.)

[43] M. Dam, editor. Analysis and Verification of Multiple-Agent Languages, 5th

LOMAPS Workshop, Stockholm, Sweden, June 24-26, 1996, Selected Papers,
volume 1192 of LNCS, 1997. Springer. (Cited on page 211.)

[44] Giorgio Delzanno. On model checking for a nominal process calculus,
2003. (Cited on page 37.)

[45] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond
-limiting. In PLDI, pages 230–241, 1994. (Cited on page 34.)

[46] Joubine Dustzadeh and Elie Najm. Consistent semantics for odp informa-
tion and computational models. In A. Togashi, T. Mizuno, N. Shiratori,
and T. Higashino, editors, FORTE, volume 107 of IFIP Conference Proceed-

ings, pages 107–126. Chapman & Hall, 1997. (Cited on page 35.)

BIBLIOGRAPHY 207

[47] Jérôme Feret. Occurrence counting analysis for the pi-calculus. In GE-

ometry and Topology in COncurrency Theory (GETCO’01), volume 39.2 of
ENTCS. Elsevier, 2001. (Cited on page 63.)

[48] Jérôme Feret. Mobile system thread partitioning. (personnal communica-
tion), 2007. (Cited on page 96.)

[49] Jérôme Feret. Analysis of Mobile Systems by Abstract Interpretation. PhD
thesis, École polytechnique, Paris, France, 2005. (Cited on pages 4, 6, 7,
8, 11, 14, 37, 38, 41, 43, 50, 53, 54, 56, 57, 63, 65, 66, 72, 96, 99, 100, 105,
and 192.)

[50] Jérôme Feret. Confidentiality analysis of mobile systems. In SAS, number
1824 in LNCS. Springer, 2000. (Cited on page 37.)

[51] Jérôme Feret. Abstract interpretation-based static analysis of mobile am-
bients. In SAS, number 2126 in LNCS. Springer, 2001. (Cited on page 37.)

[52] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and
Didier Rémy. A calculus of mobile agents. In CONCUR, LNCS. Springer,
1996. (Cited on page 21.)

[53] Pierre-Loïc Garoche. Static analysis of actors by abstract interpretation.
Master’s thesis, École Normale Supérieure de Cachan, 2005. (Cited on
pages 10 and 41.)

[54] Pierre-Loïc Garoche, Marc Pantel, and Xavier Thirioux. Static analysis of
actors: From type systems to abstract interpretation. In F. Ranzato, editor,
1st International Workshop on Emerging Applications of Abstract Interpretation

(EAAI’06), ETAPS’06 satellite event, Vienna, Austria, 26 mars 2006. (Cited
on page 123.)

[55] Pierre-Loïc Garoche, Marc Pantel, and Xavier Thirioux. Static safety for
an actor dedicated process calculus by abstract interpretation. In R. Gor-
rieri and H. Wehrheim, editors, FMOODS, volume 4037 of LNCS, pages
78–92. Springer, 14-16 june 2006. (Cited on page 41.)

[56] Pierre-Loïc Garoche, Marc Pantel, and Xavier Thirioux. Abstract
interpretation-based static safety for actors. Journal of Software (JSW), 2
(3):87–98, September 2007. ISSN 1796-217X. (Cited on page 41.)

[57] Simon J. Gay. A sort inference algorithm for the polyadic pi-calculus. In
POPL, pages 429–438, 1993. (Cited on page 35.)

[58] Steven M. German and A. Prasad Sistla. Reasoning about systems with
many processes. J. ACM, 39(3):675–735, 1992. (Cited on page 173.)

208 BIBLIOGRAPHY

[59] Eric Goubault. Static analyses of the precision of floating-point opera-
tions. In P. Cousot, editor, SAS, volume 2126 of LNCS, pages 234–259.
Springer, 2001. (Cited on page 34.)

[60] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular
actor formalism for artificial intelligence. In the 3rd International Joint Con-

ference on Artificial Intelligence (IJCAI’73), 1973. (Cited on page 20.)

[61] Graham Higman. Ordering by divisibility in abstract algebras. London

Mathematical Society, 3(2(7)):326–336, 1952. (Cited on page 165.)

[62] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
(Cited on page 20.)

[63] Frank Huch. Verification of erlang programs using abstract interpreta-
tion and model checking. SIGPLAN Not., 34(9):261–272, 1999. (Cited on
page 36.)

[64] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-
calculus. Theor. Comput. Sci., 311(1-3):121–163, 2004. (Cited on pages 140
and 172.)

[65] Suresh Jagannathan and Stephen Weeks. Analyzing stores and references
in a parallel symbolic language. In LISP and Functional Programming,
pages 294–305, 1994. (Cited on page 37.)

[66] H. B. M. Jonkers. Abstract storage structures. In de Bakker and van Vliet,
editors, Algorithmic Languages,, pages 321–343, 1981. (Cited on page 37.)

[67] Richard M. Karp and Raymond E. Miller. Parallel program schemata. J.

Comput. Syst. Sci., 3(2):147–195, 1969. (Cited on pages 150 and 164.)

[68] Michael Karr. Affine relationships among variables of a program. Acta

Informatica, 6:133 – 151, 1976. (Cited on pages 34, 63, 66, 100, 102, and 182.)

[69] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In ECOOP, pages 220–242, 1997. (Cited on
page 196.)

[70] Naoki Kobayashi. A new type system for deadlock-free processes. In
Baier and Hermanns [13], pages 233–247. (Cited on page 36.)

[71] Naoki Kobayashi. A partially deadlock-free typed process calculus. In
LICS, pages 128–139, 1997. (Cited on page 36.)

[72] Naoki Kobayashi. Type-based information flow analysis for the pi-
calculus. Acta Inf., 42(4-5):291–347, 2005. (Cited on page 172.)

BIBLIOGRAPHY 209

[73] Naoki Kobayashi. A type system for lock-free processes. Inf. Comput., 177
(2):122–159, 2002. (Cited on page 172.)

[74] Naoki Kobayashi. A new type system for deadlock-free processes. In
Baier and Hermanns [13], pages 233–247. (Cited on pages 172 and 195.)

[75] Naoki Kobayashi and Akinori Yonezawa. Type-theoretic foundations for
concurrent object-oriented programming. In OOPSLA, pages 31–45, 1994.
(Cited on pages 21 and 36.)

[76] Naoki Kobayashi, Motoki Nakade, and Akinori Yonezawa. Static anal-
ysis of communication for asynchronous concurrent programming lan-
guages. In A. Mycroft, editor, SAS, volume 983 of LNCS, pages 225–242.
Springer, 1995. (Cited on pages 36 and 140.)

[77] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity
and the Pi-Calculus. ACM Trans. Program. Lang. Syst., 21(5):914–947, 1999.
(Cited on page 140.)

[78] Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A calculus
for orchestration of web services. In R. de Nicola, editor, ESOP, volume
4421 of LNCS, pages 33–47. Springer, 2007. (Cited on page 196.)

[79] Guy Lapaime and Patrick Sallé. Plasma-ii: an actor approach to concur-
rent programming. SIGPLAN Not., 24(4):81–83, 1989. (Cited on page 21.)

[80] Francesco Logozzo. Modular Static Analysis of Object Oriented Languages.
PhD thesis, École polytechnique, Paris, France, june 2004. (Cited on
page 34.)

[81] T. Margaria and W. Yi, editors. Tools and Algorithms for the Construction and

Analysis of Systems, 7th International Conference, TACAS 2001 Held as Part

of the Joint European Conferences on Theory and Practice of Software, ETAPS

2001 Genova, Italy, April 2-6, 2001, Proceedings, volume 2031 of LNCS, 2001.
Springer. (Cited on page 204.)

[82] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989. (Cited
on page 20.)

[83] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic

Computation, 19(1):31–100, 2006. (Cited on page 34.)

[84] Ugo Montanari and Marco Pistore. Concurrent semantics for the pi-
calculus. Electr. Notes Theor. Comput. Sci., 1, 1995. (Cited on page 36.)

[85] Elie Najm and Abdelkrim Nimour. Explicit behavioral typing for object
interfaces. In A. M. D. Moreira and S. Demeyer, editors, ECOOP Work-

shops, volume 1743 of LNCS, page 321. Springer, 1999. (Cited on page 35.)

210 BIBLIOGRAPHY

[86] Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. Infinite types
for distributed object interfaces. In FMOODS, volume 139. Kluwer, 1999.
(Cited on page 35.)

[87] Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. Guaranteeing
liveness in an object calculus through behavioural typing. In J. Wu, S. T.
Chanson, and Q. Gao, editors, FORTE, volume 156 of IFIP Conference Pro-

ceedings, pages 203–221. Kluwer, 1999. (Cited on page 35.)

[88] Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. Crypto-
graphic analysis in cubic time. Electr. Notes Theor. Comput. Sci., 62(1):7–23,
2002. (Cited on page 36.)

[89] Hanne Riis Nielson and Flemming Nielson. Static and dynamic proces-
sor allocation for higher-order concurrent languages. In P. D. Mosses,
M. Nielsen, and M. I. Schwartzbach, editors, TAPSOFT, volume 915 of
LNCS, pages 590–604. Springer, 1995. (Cited on page 140.)

[90] Hanne Riis Nielson and Flemming Nielson. Shape analysis for mobile
ambients. Nordic Journal of Computing, 8:233–275, 2001. (Cited on page 36.)

[91] Hanne Riis Nielson and Flemming Nielson. Higher-order concurrent pro-
grams with finite communication topology. In POPL, pages 84–97, 1994.
(Cited on page 140.)

[92] Hanne Riis Nielson and Flemming Nielson. Flow logic: A multi-
paradigmatic approach to static analysis. In T. Æ. Mogensen, D. A.
Schmidt, and I. H. Sudborough, editors, The Essence of Computation, vol-
ume 2566 of LNCS, pages 223–244. Springer, 2002. (Cited on pages 35
and 36.)

[93] Oscar Nierstrasz. Regular types for active objects. In OOPSLA, pages
1–15, 1993. (Cited on page 35.)

[94] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with
constrained types. Theory and Practice of Object Systems, 5(1):35–55, 1999.
(Cited on page 35.)

[95] Catuscia Palamidessi, Vijay A. Saraswat, Frank D. Valencia, and Björn Vic-
tor. On the expressiveness of linearity vs persistence in the asychronous
pi-calculus. In LICS, pages 59–68. IEEE Computer Society, 2006. (Cited
on page 140.)

[96] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mo-
bile processes. Mathematical Structures in Computer Science, 6(5):409–453,
1996. (Cited on page 35.)

BIBLIOGRAPHY 211

[97] Franz Puntigam. Concurrent Object-Oriented Programming with Process

Types. Habilitationsschrift, Osnabrück, Germany, 2000. (Cited on
page 36.)

[98] Franz Puntigam. Types for active objects based on trace semantics. In
E. Najm, editor, FMOODS, Paris, France, 1996. Chapman & Hall. (Cited
on page 196.)

[99] Antonio Ravara and Vasco Thudichum Vasconcelos. Behavioral types in
a calculus of concurrent objects. In the 4th European Conference on Parallel

Processing (Euro-Par’97), volume 1300 of LNCS. Springer, 1997. (Cited on
pages 36 and 196.)

[100] Davide Sangiorgi. From pi-calculus to higher-order pi-calculus - and
back. In M.-C. Gaudel and J.-P. Jouannaud, editors, TAPSOFT, volume
668 of LNCS, pages 151–166. Springer, 1993. (Cited on page 191.)

[101] David A. Schmidt. Abstract interpretation of small-step semantics. In
Dam [43], pages 76–99. (Cited on page 37.)

[102] Élodie-Jane Sims. Extending separation logic with fixpoints and post-
poned substitution. Theor. Comput. Sci., 351(2):258–275, 2006. (Cited on
page 34.)

[103] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5(2):285–309, 1955. (Cited on page 31.)

[104] Vasco Thudichum Vasconcelos and M. Tokoro. A typing system for a
calculus of objects. In the 1st International Symposium on Object Technologies

for Advanced Software (ISOTAS’93), volume 742 of LNCS. Springer, 1993.
(Cited on page 36.)

[105] Arnaud Venet. Abstract interpretation of the pi-calculus. In Dam [43],
pages 51–75. (Cited on page 37.)

[106] Arnaud Venet. Abstract cofibered domains: Application to the alias anal-
ysis of untyped programs. In R. Cousot and D. A. Schmidt, editors, SAS,
volume 1145 of LNCS, pages 366–382. Springer, 1996. (Cited on page 37.)

[107] Arnaud Venet. Static Analysis of Dynamic Graph Strutures in Untyped Lan-

guages. PhD thesis, École polytechnique, Paris, France, december 1998.
(Cited on pages 14, 37, and 192.)

Part III

APPENDICES

A
PROOFS

A.1 BISIMULATION BETWEEN CAP SEMANTICS AND ITS NON STANDARD EN-
CODING

We need to prove the correspondence between CAP semantics and its expres-
sion in the meta language.

We first formally define the mapping from CAP non configurations to CAP
standard configurations. A first step introduces a lemma of well-formedness of
CAP non standard terms. Then the main theorem is proved. It is a usual strong
bisimulation proof.

Translation

In the following, pi denotes a partial interaction.

Lemma A.1 (non standard term well-formedness) Let C be a non standard term.

C is a set of triples {(p, id, E)} where p ∈ Lp denotes a program point, id ∈ M a

marker and E ∈ ℘(V → (L ×M)) its environment. Let interaction be the partial

map from program points to partial interactions. Let behavior_set be the partial map

defined upon the term defined as in 3.2.3 which maps a value denoting a syntactically

defined actor program point to its set of behavior program points.

Every term C is well formed, that is

1. ∀(p, id, E) ∈ C, interaction(p) 6= ∅ and ∀(name, var, param, cont) ∈

interaction(p), ∀v ∈ var, E(v) is defined.

2. ∀(p, id, E) ∈ C, such that ∀pi ∈ interaction(p), pi is a static_actor partial

interaction, then |varpi| = 2 and there is, in the system, exactly one thread

(pi, id, Ei) for each associated behavior program point pi.

Each of those threads must exhibit a behaviorn pi.

3. ∀(p, id, E) ∈ C, such that ∃!pi ∈ interaction(p) and pi is a dynamic_actor

partial interaction, then |varpi| = 2 and let s be the 2nd variable of varpi.

There is, in the system, exactly one thread (pi, snd(E(s)), Ei) for each pi ∈

behavior_set(E(s)).

Each of those partial interactions must exhibit a behaviorn pi.

4. ∀(p, id, E), such that interaction(p) is a behaviorn pi, then |varpi| = 1.

5. For each variable denoting a behavior, threads associated to this value must be

present in the system and share the same marker as the one of the variable.

215

216 PROOFS

Proof A.2 The proof can be made by induction on created terms issued from the initial

state β(S , ∅). We give here only proof sketches of the different cases:

1. Initial threads as well as every created threads are computed using the β function

and correspond to either static actors, dynamic ones, or messages. Therefore they

are able to exhibit partial interactions as defined in 3.2.4. We recall that we only

consider closed term. Then, the initial threads are defined after a sequence of ν

operators that bind their variables. By induction on the number of computed

transitions, we can show that each transition using one of the two formal rules

preserves the property: each variable used in one thread partial interaction is

defined and is bound either by an internal ν operator, a ζ operator, a message

argument or previously in the matching actor.

2. By definition of the abstract syntax extraction in 3.2.4. Each actor on program

point l associated to a syntactic behavior ({li}) is mapped, by the β function, to

one thread (l, E) and a set of threads (li, E). Each of those static threads is then

be launched by the launch primitive. By definition, all the behavior branches

are associated to threads that exhibit behavior partial interactions.

3. Similar to the previous case. Using the result of 1, the variable s is defined and

denotes the program point of the static actor defining the behavior.

4. By definition of the syntax extraction.

5. All threads representing the different branches of a behavior are launched together.

Therefore they are all present and share the same marker.

To simplify the translation and allow us to differentiate between recursive in-
stances of the same variable declaration (i.e. name binder), we define an auxil-
iary function fwhich maps each pair (p,m) ∈ L×M to the name pm iff p is the

label corresponding to a term νap and the term [m
li

i (x̃i) = ζ(ei, si)Ci

i=1,...,n
]

iff p is a term a ⊲p [m
li

i (x̃i) = ζ(ei, si)Ci

i=1,...,n
].

Such a function also allows us to replace dynamically defined actors by their
static equivalent ones. The α-conversion rule of the CAP congruence relation
allows us to rearrange the term.

Let {ci | i ∈ J1;kK} defined as





f(E(x))

(p, id, E) ∈ C,

E(x) defined, and

fst(E(x)) a name






be the set of actors’ names used in the term.
We define a translation function Π which maps a set of threads denoting a

well formed non standard configuration C to the corresponding CAP configu-
ration. The Π function is defined by:

Π(C) = (νc1) . . . (νck)(M1 || . . . ||Mp || A1 || . . . || Aq)

217

We define C as the disjoint union ofM, A and B:

C = M∪As ∪Ad ∪B

where M is the set of threads associated to messagen partial interactions, As

the set of threads associated to static_actorn partial interactions, Ad the set of
threads associated to dynamic_actor partial interactions, and, finally, B the set
of threads associated to behaviorn partial interactions.

The Π function can be recursively applied on the set of threads in C, each
iteration computing a message or an actor of the resulting CAP term.

We construct {Mi} and {Aj} as follows:

• i ∈ J1;Card(M)K.

• Mi is the message a ⊳l (x̃) corresponding to the translation of the thread
(l, id, E) ∈M.

• j ∈ J1;Card (As ∪Ad)K.

• Aj is the actor a ⊲l [m
li

i (x̃i) = ζ(ei, si)Ci

i=1,...,n
] associated to the thread

(l, id, E) ∈ As ∪Ad.

– when (l, id, E) ∈ As, the actor is obtained from the sub-term associ-
ated to the program point l;

– when (l, id, E) ∈ Ad, the actor is composed of all behaviors repre-
sented by its associated threads (li, id, E) ∈ B; i.e. behavior threads
that program points are associated by behavior_set function to the
second variable value of the actor thread and that markers are equal
to the one of this same variable. More formally, the second variable
of the actor thread is associated to the pair (l ′, id ′), id = id ′ and all
li are associated to l ′ by the behavior_set function.

As the C term is well formed, when a dynamic actor is in the system, all
the behaviors of its behavior set must be in the system too.

Finally, in bothMi and Aj, we update E. We replace a and each free variable
of x̃, respectively a and each free variable in all Ci, with their image by function
f: x 7→ f(E(x)).

The translation system is well defined thanks to the congruence rules: asso-
ciativity, commutativity and swapping.

Correspondence

The following theorem states that CAP standard semantics and its non stan-
dard semantics are in strong bisimulation. They share equivalent initial states
and each possible set of transitions from the initial state in the non standard
semantics (respectively in the standard one) is computable in the standard one
(respectively in the non standard one).

218 PROOFS

Theorem A.3 We have S ≡ Π(C0), and for each non standard configuration C and

for each word u ∈ (L 2 ∪L 3)∗ such that C0
u
−→

∗
C:

1. ∀λ ∈ (L 2 ∪L 3), C
λ
−→C ′

=⇒ Π(C)
λ
−→Π(C ′);

2. ∀λ ∈ (L 2 ∪L 3), Π(C)
λ
−→P =⇒ ∃D,

{
C

λ
−→D

Π(D) ≡ P

Proof A.4 Let C be a non standard configuration and let u be a word in (L 2 ∪L 3)∗

such that C0
u
−→

∗
C,

1. Let C ′ be a non standard configuration such that C
λ
−→C ′. Suppose that C con-

tains only interacting threads. Our coding contains two transition rules, we

check the property for each. In order to simplify the proof, we denote by E and S

the address and behavior set of the interacting actor and by M the environment

of the interacting message.

a) Static-trans rule. Such a rule defines the interaction between two threads.

Necessarily, C must contain:

(p1, id1, E1) (p2, id2, E2)

where partial interactions associated to program points are:

• p1: (static_actorn, [ego, label], [ei, si, ỹk],

β(Ci, ∅))

• p2: (messagen, [dest, label, x̃l], ∅)

with |ỹk| = |x̃l| = n. Then, we have the following relations E1(ego) =

E2(dest) and E1(label) = E2(label). The C ′ term obtained after transi-

tion λ = (p1, p2) is:






(pj, id1, Ej) s.t. (pj, Esj) ∈ β(Ci, ∅) and

Ej = Esj




ei 7→ E2(ego)

si 7→ I1 = (p1, id1)

∀k ∈ J1;nK,

yk 7→ E2(xk)









Standard configuration Π(C ′) is the closed term composed of the set of mes-

sages and actors with their appropriate behaviors, as defined by the C ′ term.

Let us study each Ci case by induction on CAP syntax. We have here

E = E1(ego), S = I1 and M = E2.

• when Ci = a ⊲pa [m
pml

l (z̃l) = ζ(el, sl)Cl], then, by definition of β,

β(Ci, ∅) = (pa, [self 7→ pa])∪
⋃

(pml
, []).

219

The exhibits function maps each program point pml
to a partial in-

teraction:

(behaviorn, [ml], [el, sl, z̃l], β(Cl, ∅))

After value passing, we obtain for C ′:









pa, new_id, Ea




ei 7→ E

si 7→ S

∀k ∈ J1;nK,

yk 7→M(xk)

x 7→ E1(x)

such that Ea(x)

is defined iff

x ∈ interface(pa)












∪
⋃

l









pl, new_id, El




ei 7→ E

si 7→ S

∀k ∈ J1;nK,

yk 7→M(xk)

x 7→ E1(x)

such that El(x)

is defined iff

x ∈ interface(pl)







l






The term translation by Π function gives

νc̃, a ⊲pa [m
pl

l (z̃l) = ζ(el, sl)Cl]

where c̃ = {x | Ea(x) where El(x) is defined and denotes a ν program

point }.

• when Ci = a ⊲pa b, then necessarily, the set of behaviors denoted by

the b variables has already been defined and is in the current config-

uration. We recall that we only consider closed terms. Therefore b is

defined and denotes a set of behaviors of the past. The resulting term is

similar to the preceding case without introducing behavior threads on

program points pi.

• when Ci = a ⊳pa m(z̃), then by definition of β, β(Ci, ∅) = (pa, ∅).

The exhibits function gives:

(messagen, [a,m, z̃], [], ∅)

The pa interface is {a} ∪ FN(z̃)}. The only thread we obtain, in the

resulting term C ′, once the value passing is computed, is:








pa, new_id, E




ei 7→ E

si 7→ S

∀k ∈ J1;nK,

yk 7→M(xk)

such that E(x)

is defined iff

x ∈ interface(pa)












220 PROOFS

Its translation by Π is:

νc̃, a ⊳pa m(z̃)

where c̃ = {x | E(x) is defined and denotes a ν program point }.

b) Dynamic-trans rule. Such a rule defines the interaction between three

threads. Necessarily C must contain:

(p1, id1, E1) (p2, id2, E2) (p3, id3, E3)

where partial interactions associated to program points are:

• p1: (behaviorn, [label], [ei, si, ỹk], β(Ci, ∅))

• p2: (actor, [ego, self], [], ∅)

• p3: (messagen, [dest, label, x̃l], ∅)

with |ỹk| = |x̃l| = n. Then, we have the following relations





E2(ego) = E3(dest),

E1(label) = E3(label) and

behavior_set((p1, id1)) = E2(self).

The C ′ term obtained after transition λ = (p1, p2, p3) is:

{(p1, id1, E1)}∪




(pj, new_id, Ej)

(pj, Esj) ∈ β(Ci, ∅)

Ej = Esj




ei 7→ E2(ego)

si 7→ E2(self)

∀k ∈ J1;nK,

yk 7→ E3(xk)









where new_id = id2.p2.

Standard configuration Π(C ′) is, as preceding, the closed term composed of

the set of messages and actors with their appropriate behaviors, as defined

by the C ′ term. We have now to study each Ci case by induction on CAP

syntax. We obtain the same results as in the static_rule case with E =

E2(ego), S = E2(self) and M = E3.

c) Finally, the last cases are managed by an induction over the shape of Ci

terms, independently of the matching rule.

• when Ci = νaα, Ca, then β(Ci, ∅) = β(Ca, [a 7→ α]). By induction

hypothesis, the resulting term of the update of the static environment

of program points β(Ca, ∅) is Ca. The variable a may be free in the

Ca term.

The resulting term of the environment update with the relation a 7→

α,new_id, is translated by Π to νaαCa;

221

• when Ci = C1 || C2 then β(Ci, ∅) = β(C1, ∅)∪ β(C2, ∅). By induc-

tion, we have β(C1, ∅) which is translated in C1 by Π and β(C2, ∅)

which is translated in C2. The term β(Ci, ∅) translation with updated

environment by value passing is the closed term of CAP composed of

both actors and messages of C1 and C2;

• when Ci = ∅ then β(Ci, ∅) = ∅. It’s a trivial implication.

We have shown that the implication is valid if term C contains only matching

threads. Compatibility rules as well as congruence relations allow us to compute

a transition step when the actor can handle more behaviors and when interacting

threads are under a variable restriction or in parallel with other threads. So, the

implication is true in the general case for well formed configurations.

We have the implication ∀λ ∈ (L 2 ∪L 3), C
λ
−→C ′

=⇒ Π(C)
λ
−→Π(C ′);

2. Let P be a standard configuration such that Π(C)
λ
−→P. Let (pi)i = λ the transi-

tion label. Configuration Π(C) contains at least the interacting threads {pi}. By

definition of translation function Π, non standard term C must contain at least

some threads (p1, id1, E1), (p2, id2, E2) and (p3, id3, E3) or (p1, id1, E1) and

(p2, id2, E2), depending on the matching rule, with the appropriate constraints

on markers and environments to allow transition λ. Therefore, there exists a non

standard configuration D image of C by transition λ. Let Π(D) be its image

in the CAP standard syntax by the translation function Π. By reusing preced-

ing property, and the fact that term C ′ is well formed, we obtain Π(D) ≡ P by

α-conversion and extrusion.

Therefore we have Π(C)
λ
−→P =⇒ ∃D,C

λ
−→D and Π(D) ∼= P.

3. Let us show that S ≡ Π(C0). By induction, we show that ∀Ci closed, β(Ci, ∅)

is closed. Furthermore, Π(β(Ci, ∅)) ≡ Ci is closed. Let C0 = C0 be the initial

configuration. As C0 = β(S , ∅) by definition, we have Π(C0) ≡ S .

A.2 PARTITIONED ABSTRACT DOMAIN

Lemma A.5 (monotonicity of continuation over-approximation) The function

conts_of_unit is a sound over-approximation of the partitioning of a continuation

among its different target address. Furthermore this function is monotonic.

Proof A.6 Let us consider a continuation cont. Let (a, id)Lν ×M be an address.

Let us consider the concrete partitioning of the launched continuation launch(cont).

We denote by cont|(a,id) the subset of cont that is used to create threads on address

(a, id).

We prove that the concrete subset cont|(a,id) is computed by the function conts-

_of_unit and associated to the binder a.

According to the definition of conts_of_units(cont, cf,mol), then necessarily

222 PROOFS

• ∃(a, conta) ∈ conts_of_unit_by_binder(cont, cf) and

• cont|(a,id) ∈ conts_by_marker(conta,mol).

The continuation subset cont|(a,id) is composed of threads which addresses are

equal to (a, id). Let X ∈ ℘(V) be the set of variables in cont that are bound to value

(a, id). Necessarily, all threads (p, ES) ∈ cont|(a,id) are such that address_var(p) ∈

X.

By soundness of the control flow abstraction, these variables in X are associated to a

sound over-approximation of there binder. Then conts_of_unit_by_binder(cont, cf)

returns a pair (a, conta) such that cont ⊆ conta.

We now have to prove the cont|(a,id) ∈ conts_by_marker(conta,mol). Let us

partitioned the set cont by the address variables in X. We have cont = c1 ∪ c2 ∪

. . . cn.

Again by soundness of the control flow abstraction, we have a sound over-approximation

of equality and disequality relations inmol between variables in X.

By definition of conts_by_marker, we can build cont using equivalence classes

in conta∼mol
.

We have (a, cont|(a,id)) ∈ conts_of_units(cont, cf,mol).

Concerning the monotonicity of conts_of_unit, the first part returns greater con-

tinuations with a greater control flow abstraction. Then the greater the abstract element

is in the second part, the less information is available and the more possible combi-

nation of variables computed. Existing continuations are preserved. The function is

monotonic.

Theorem A.7 (4.20) The abstraction (C #,⊑#,⊔#,⊥#, γ#, C#
0,→

#,∇#) is a sound ab-

straction with respect to the definition 3.3 considering a sound underlying control flow

abstraction and an abstract domain C base satisfying the soundness assumption of def-

inition 4.7.

Proof A.8 (4.21)

1. Properties (1)(2)(3) requiring a pre-order, a join operator, a bottom element are

satisfied by our definitions:

• the pre-order ⊏# is defined as

(cf1, (beh1, cu1)) ⊑# (cf2, (beh2, cu2))⇔






cf1 ⊑
env cf2∧

beh1 ⊑
base beh2∧

cu1⊑̇
base

cu2

where ⊑̇
base

is the point-wise extension of ⊑base on Unit→ C base.

• then the component-wise defined join ⊔# and bottom ⊥# satisfy prop. (2)

and prop. (3), respectively.

223

2. Prop. (4) holds. The widening operator is defined component-wise. Each component-

wise widening satisfies the property on its associated lattice element. Similarly to

the join operator, the property applies on the component-wise defined widening.

3. Both concretization functions γenv and γbase of underlying abstract domains

satisfy the prop. (5) on their associated domain.

We recall the γ# definition:

γ#(cf_flow, part) , γenv(cf_flow)∩ γpart(part)

It is then monotonic iff the γpart function is monotonic. We recall its definition:






(u,C)

∀(p, id, E) ∈ C,

either p ∈ Lb and (p, id, E) ∈ γbase(beh)

either






p ∈ La ∪Lm,

∃id ′ ∈M , E[address_var(p)] = (a, id ′),

∃(a, unita) ∈ cu, (p, id, E) ∈ γbase(unita)






⊆ γpart(beh, cu)

This concretization function for the partitioned part of the abstract element can

be seen as the union of the concretization, using γbase of the partition unit. It is

therefore also monotonic.

4. We now prove that the prop. (6) is satisfied. We have to show that considering:

• two concrete configurations (u,C), (u ′, C ′) ∈ Σ∗ ×C ;

• a abstract element C# ∈ C #;

• such that (u,C) ∈ γ#(C#) and

• ∃λ ∈ L
{2}∪{3}
p such that u ′ = λ.u and (u,C)

λ
−→ (u ′, C ′)

then

∃C ′# ∈ C
such that C# λ

−→
#
C ′# and (u ′, C ′) ∈ γ#(C ′#).

We know that (u,C) ∈ γ#(C#) and (u,C)
λ
−→ (u ′, C ′). Let C# = (cf, part).

Then following the definition of γ#, we have (u,C) ∈ γenv(cf). Furthermore,

using the hypothesis of C env as a sound control flow abstraction, we have ∃cf ∈

C #, cf
λ(pk)k
−−−−→env cf

′ and (u ′, C ′) ∈ γenv(cf ′).

We now have to prove that the partitioned part allows the abstract transition

computation and that (u ′, C ′) in in the concretization of the resulting abstract

partitioned element.

224 PROOFS

Let (a, id) ∈ Lν ×M be the address on which the transition λ occurs in C.

The concrete configuration C contains at least two threads (pa, ida, Ea) and

(pm, idm, Em) associated to this address (a, id) and interacting by λ.

Then according to the definition of γpart, it exists (a, unita) ∈ cu where

part = (beh, cu) such that

{(pa, ida, Ea), (pm, idm, Em)} ⊆ γbase(unita)

Let us consider the two different cases depending on the matched rule: involving

a syntactically defined actor or a dynamic one.

• Static-trans rule. In that case, according to the soundness assumption of

the syncbase primitive:




(u,C) ∈ γbase(x)

∣∣∣∣∣∣
∀k, (pk, idk, Ek) ∈ C and

∃C ′ s.t. C
R,(pk)
−−−−→ C ′






⊆ γbase(syncbase(R, (pk), (parameterk), x))

We have at least

{(u, {(pa, ida, Ea), (pm, idm, Em)})}

∈ γbase(syncbase(static_trans, λ, (parameterk), unita))

Then since γbase is strict, we have

syncbase(static_trans, λ, (parameterk), unita) 6= ⊥base.

• Dynamic-trans rule. A similar reasoning occurs here. The only differ-

ence is that we consider unita ⊔
base beh instead of unita. We have

(pb, idb, Eb) the behavior thread which is present in the concretization of

the partitioned part, furthermore in γbase(beh). The result is identical:

using the soundness assumption of syncbase and by strictness of γbase,

syncbase(static_trans, λ, (parameterk), unita ⊔
base beh) 6= ⊥base.

In both case, we have at least a partition unit associated to the address a which

has a non bottom image by syncbase. Let syncedbase be such value. The

syncpart primitive gives then a non empty set of synchronized units. The ab-

stract transition can occur.

Let us now build such abstract image (beh ′, cu ′) ∈ Part(Units,C base) and

show that (u ′, C ′) ∈ γpart((beh ′, cu ′)).

Let us partition the resulting concrete configuration C ′ according to thread ad-

dress. Let us prove that for each partition C ′
|(b,id ′)

denoting the threads associ-

ated to the address (b, id ′) ∈ Lν×M we have (u ′, C ′
|(b,id ′)

) ⊆ γbase(unit ′b)

225

where unitb and unit ′b denote the elements of C base, when they exist, associ-

ated to the binder b in cu and cu ′, respectively.

We also have to prove that the behavior threads of C ′ are in γbase(beh ′).

There are four cases for partitions:

a) C ′
|(b,id ′)

denotes the interacting unit, (b, id ′) = (a, id);

b) C ′
|(b,id ′)

results from the launching of new threads in C|(b,id ′);

c) C ′
|(b,id ′)

denotes the creation of a new unit since C|(b,id ′) = ∅;

d) C ′
|(b,id ′)

= C|(b,id ′) is an untouched partition by the computed transition.

a) In the first case, C ′
|(a,id)

is defined as

C|(a,id) \ {(pa, ida, Ea), (pm, idm, Em)}∪ launched_threads

where launched_threads is defined as the threads built from the sub-set

cont of static threads continuation associated to address (a, id).

Let (a, contsa) ∈ conts_of_units. Relying on the lemma A.5, we have

cont ∈ contsa. Then by monotonicity of γbase and by definition of

launched_units, we need to prove that

(u,C ′
|(a,id)) ∈ γ

base(updatebase(R, (pk), (pik), syncedbase, a, unita, cont))

Using the soundness assumption of updatebase primitive, we have:






(u ′, C ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(u,C)s.t.






∃id ∈M , (u,C|(a,id)) ⊆ γbase(unita)

{(pa, ida, Ea); (pm, idm, Em)} ⊆ C|(a,id) ∩ γbase(syncedbase)

C
R,(pk),(pik)
−−−−−−−−−→ C ′

C ′
|(a,id)

= C|(a,id) \

{
(pa, ida, Ea);

(pm, idm, Em)

}

∪ launch(cont)






⊆ γbase(updatebase(R, (pk), (pik), syncedbase, a, unita, cont))

Then (u ′, C ′
|(a,id)

) ∈ γbase(unit ′a).

b) In the second case, C ′
|(b,id ′)

is defined as C|(b,id ′) ∪ launched_threads

where launched_threads is defined as the threads built from the sub-set

cont of static threads continuation associated to address (b, id ′).

Similarly to the preceding case, using the lemma A.5, ∃(b, contsb) ∈

conts_of_unit and cont ∈ contsb.

Then by monotonicity of γbase and by definition of launched_units, we

need to prove that

(u,C ′
|(b,id ′)) ∈ γ

base(launchbase(R, (pk), (pik), syncedbase, b, unitb, cont).

226 PROOFS

The soundness assumption of launchbase gives:





(u ′, C ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(u,C)s.t.






∃x ∈ Lν ×M , s.t.

{(pa, ida, Ea); (pm, idm, Em)} ⊆ C|x ∩ γbase(syncedbase)

∀id ∈M , (u,C|(b,id)) ⊆ γbase(unitb)

C
R,(pk),(pik)
−−−−−−−−−→ C ′

∃id ′ ∈M , C ′
|(b,id ′)

= C|(b,id ′) ∪ launch(cont)






⊆ γbase(launchbase(R, (pk), (pik), syncedbase, b, unitb, cont)).

Then (u ′, C ′
|(b,id ′)

) ∈ γbase(unit ′b).

c) In the third case, C ′
|(b,id ′)

is defined as launched_threads, the threads

built from the sub-set cont of static threads continuation associated to

newly created address (b, id ′). The set cont can be exactly identified in

(pik) since there is a unique occurrence of a ν operator on program point b

in the associated continuations.

Again, by monotonicity of γbase and by definition of launched_units,

we need to prove that

(u,C ′
|(b,id ′)) ∈ γ

base(launchbase(R, (pk), (pik), b, syncedbase, cont).

The soundness assumption of launchbase is recalled above. In case, of

a ⊥Base value for unitb, we have, for all id ∈ M , the configurations

C|(b,id) = ∅ and C ′
|(b,id ′)

= launch(cont).

Then (u ′, C ′
|(b,id ′)

) ∈ γbase(unit ′b).

d) In case of untouched partition unit, the property is satisfied since cu ′ is

defined as cu ⊔̇ launched_units then cu ⊑base cu ′. By monotonicity

of γbase we have the property.

A similar mechanism apply for beh ′, it is built using launch_behbase and

by soundness assumption we have:





(u ′, C ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(u,C)s.t.






∃x ∈ Lν ×M , s.t.

{(pa, ida, Ea); (pm, idm, Em)} ⊆ C|x ∩ γbase(synced)

C|beh ⊆ γbase(beh)

C
R,(pk),(pik)
−−−−−−−−−→ C ′

C ′
|beh

= C|beh ∪ launch(contbeh)






⊆ γbase(launch_behbase(R, (pk), (pik), synced, beh, contbeh))

Then we have the set of behavior threads in C ′ included in γbase(beh ′).

Finally all units are sound, and by construction of γpart,

(u ′, C ′) ∈ γpart((beh ′, cu ′)).

227

5. Finally the last property (7) to be proved is the initial element abstraction: C0 ⊆

γ#(C#
0).

Let inits be the initial set of static threads. inits can be partitioned according

to threads address. We obtain init_beh the set of initial thread associated to

program points in Lb and initu the set of initial thread associated to the address

binder on program point u.

By soundness of the underlying control flow abstraction,C0 ⊆ γ
env(Cenv

0 (inits)),

with C#
0 = (Cenv

0 (inits), (C
base
0 (init_beh), C

part
0)). Similarly by sound-

ness of the underlying abstract domain C base and by definition of γpart,C0|(u,ǫ) ∈

γbase(Cbase
0 (initu)). The same applies for init_beh.

A.3 OCCURRENCE COUNTING WITH TRANSITIONS

Theorem A.9 (5.6) The abstraction defined by (Dep×N,⊑,⊔,⊥, γ, C#
0,→#,∇) is

a sound abstraction with respect to definition 3.3.

Proof A.10 (5.7)

1. Properties (1)(2)(3) requiring a pre-order, a join operator, a bottom element are

satisfied by our definitions;

2. Prop. (4) holds. The widening operator relies on the widening operator defined

in the underlying numerical abstract domain. The dependency part is built on

finite set and do not necessitate widening;

3. Our gamma function is monotonic and satisfy prop. (5). It is build on the gamma

function of the numerical abstraction as well as the dependency abstraction. The

first one satisfies the property by construction. In the second, adding elements to

the set of dependencies allows more configurations to be represented as well as all

their prefixes;

4. The prop. (6) is satisfied. We consider a concrete configuration (u,C) ∈ Σ∗×C

and an abstract element C# ∈ Dep×N such that

• (u,C) ∈ γ(C#);

• ∃λ ∈ L {2}∪{3}, C ′ ∈ C , such that C
λ
−→ C ′.

We have now to show that C ′# exists such that C
λ
−→ C ′# then that (u.λ,C ′) ∈

γ(C ′#).

According to the operational semantics definition, C ′# exists iff the SYNC prim-

itive returns a non bottom value. The occurrence counting part of C# soundly

approximates the occurrence of threads and transition labels in C.

The modified synchronization ensures that not only interacting threads (p, T) are

present but also that dependent transitions (p, F) occur.

228 PROOFS

In the first case, using the soundness property of the underlying occurrence

counting abstraction, all interacting program point variables (p, T) are present

in concretizations of the occurrence counting part of C#.

We now show that since (u,C) ∈ γ(C#) then each dependent transition labeled

by p is in u and therefore the variable (p, F) ∈ Vc is associated to a positive

occurrence in C#.

For each interacting thread (pk, idk, Ek) in the λ labeled transition, let uk be

the scattered sub-word of u such that it describes the transitions leading to the

creation of the thread.

Then, since each of these threads is in C and (u,C) ∈ γ(C#), we have, for each

of these uk, an associated set of dependencies in dep# that describes static transi-

tions in uk.

Let pk
1 pk

2 . . . pk
n pk be the longest right factor of uk in dep# to the

interacting thread (pk, idk, Ek) ∈ C.

Then according to γ definition, ∀i ∈ [1 . . . n], pk
i ∈ u

k and therefore pk
i ∈ u.

Since (u,C) ∈ γ(C#), (u,C) is also present in the concretization of the occur-

rence counting part and ∀k∀i, pk
i ∈ u and each variable (pk

i) ∈ Vc has a strictly

positive occurrence in the abstract element.

The synchronization gives a non bottom value since (u,C) ∈ γ (SYNC(t, (d, o))).

We now show that (u ′, C ′) ∈ γ(C ′#). C ′ is defined as C ∪ new_threads \

consumed in the concrete semantics.

DYNAMIC TRANSITION In the case where λ denotes a dynamic transition,

i.e. with a type replication associated to the behavior branch thread, then the

launch_dep primitive leaves the dependencies abstract element untouched.

Let us consider each new launched thread, we have two cases, either there is

already an existing dependence for this new thread or not.

In the first case, the dependence (p, p ′) expresses via the γ function that there is

a past transition involving an static actor on program point p. This past actor

is necessary an ancestor of the current thread since one of its behavior branch

is used to launch the thread on program point p ′. So, even if this dependence

was built by another transition, it is still valid. Since the new launched thread is

produced within a dynamic transition, it needs a transition using this past actor

on p in u. And we have (u ′, C ′) ∈ γ(C ′#) = γ(C#).

In the second case, the γ function does not restrict reachable configurations and

(u ′, C ′) ∈ γ(C ′#) = γ(C#).

STATIC TRANSITION In the case where λ denotes a static transition, the primi-

tive launch_dep introduces a new constraint (λ, p) for each thread on p launched.

229

Old previous threads in C ′ were present in γ(C#) and are present in γ(C ′#) by

monotonicity. New launched ones also exist since (λ, p) ∈ dep ′# and C
λ
−→ C ′.

We have (u.λ,C ′) ∈ γ(C ′#).

5. Finally the last property (7) to be proved is the initial element abstraction: the

initial abstract element C#
0 ∈ Dep×Nmust be such that (ǫ,C0) ⊆ γ(C#

0). The

concretization of the empty dependency abstraction element gives only the single

element (ǫ,C0), no transitions are yet possibly computed. The concretization of

the numerical part is already sound and satisfies this property. Their intersection

also satisfies it.

A.4 LINEARITY

Theorem A.11 (6.16) The abstraction defined by (C lin ′
,⊑lin ′

,⊔lin ′
,⊥lin ′

, γlin ′
,

Clin ′

0 ,→lin ′ ,∇lin ′
) is a sound abstraction with respect to definition 3.3.

Proof A.12 (6.17) 1. Properties (1)(2)(3) requiring a pre-order, a join operator, a

bottom element are satisfied by our definitions;

2. Prop. (4) holds. The widening operator is defined as the union one, considering

our Nflat usage mode domain of finite depth;

3. Our gamma function is monotonic and satisfy prop. (5). It is defined as the

intersection of monotonic maps;

4. The prop. (6) is satisfied.

Let (u,C) be a concrete configuration and let C# be an abstract configuration,

such that (u,C) is in the concretization γLin(C#).

Let λ be a transition label and C ′ be another configuration such that C
λ
−→ C ′,

we must construct C ′# such that (u.λ,C ′) ∈ γ(C ′#) and C# λ
−→Lin C

′#.

The abstract transition can occur since nothing constrains it in the abstract oper-

ational semantics. Let us show now that (u.λ,C ′) ∈ γ(C ′#).

Let us prove the property for a given address; let say the address (b, id) ∈ Lb ×

M . We now consider the different cases: depending whether C is linear for

(b, id) and whether the resulting C ′ is linear for the same address.

1. When C is non linear (at least two actors on (b, id)) then as (u,C) ∈

γ(C#), we have C# = (binder, pps, dep) where binder(b) = ⊤♭.

By construction of C ′#, in particular the forward flow computation, the

launched threads are associated to a non bottom value and their environ-

ment variables are linked to their possible binders through the update de-

pendencies relation.

By definition of γ, the concretization part devoted to binders does not con-

strain at all the configurations and the threads in C ′ are included in the

230 PROOFS

concretization of the other part devoted to abstract thread environment and

dependencies.

2. When C is linear for (b, id) with one actor on it. Let (p, id ′, E) be such an

actor thread with add ∈ I(p) its address variable and E(add) = (b, id).

a. either C ′ is non linear (two actors on (b, id) after the transition)

a.1) if a single actor is launched. Then the transition did not involve the

existing actor on (b, id). When computing the element C ′#, the

computed forward flow contains a • mode associated to a variable

linked to the binder b through dependencies.

Since the transition did not involve the existing actor, the transi-

tions path necessary to create this previous actor is not a prefix

of the path necessary to create this new one. Similarly, consider-

ing not anymore transition labels but variable dependencies dep

along these paths give two paths in dependencies from the binder

definition to its use in actor definitions.

The backward computation, with its fixed point definition, propa-

gates the new • mode along the path until reaching the first node

that is in the two paths. Such a node is associated to a continua-

tion where two different threads are associated to the same variable

and the same mode •. The mode computation gives the ⊤♭ value

and propagates it to the binder.

Like in preceding cases, the ⊤♭ value in C ′# allows any kind of

concrete configuration and (u ′, C ′) ∈ γ(C ′#).

a.2) if more than one actor is launched on the same address. The for-

ward flow computation detects it if more than one actor are associ-

ated to the same variable. In that case, the ⊤♭ value is propagated

to the binder mode and (u ′, C ′) ∈ γ(C ′#).

If all launched actors for the address (b, id) are associated to differ-

ent variables, a same reasoning as in (a.1) applies: there exists two

paths in the dependencies such that a common continuation con-

tains the equality relation between these different variables. We

also have (u ′, C ′) ∈ γ(C ′#).

b. either C ′ is linear

b.1) C ′# is such that there is a⊤♭ value computed for the binder b. Sim-

ilarly to the non linear case (case 1), any reachable thread (with

non bottom value in environment) can be in the concretized con-

figurations.

We have (u ′, C ′) ∈ γ(C ′#).

b.2) In the other case, the backward flow with its least fixed point com-

putation did not reach the ⊤♭ value. Any linear configuration for

addresses associated to binder b are in the concretization if they

231

contain only threads with non bottom environment, which is the

case for threads in C ′.

We have (u ′, C ′) ∈ γ(C ′#).

3. When C is linear for the address (b, id) but with no actor on this ad-

dress.

a. either C ′ is non linear for (b, id). Therefore there has been a

launching during the λ transition of two actors on this same ad-

dress (b, id). This case is covered by the case (2.a.2) when these

two actors are bound to the same variable address or to different

ones but linked to the same possible value.

b. either C ′ is linear for (b, id). We have exactly the same cases as

(b.1) and (b.2)

5. The initial abstraction is defined as the empty set of dependencies, only initial

threads are each associated to a non bottom environment and each initial binder

is associated to the abstract sum (+♭) of its use in inits (defining the initial

concrete element C0).

By definition of γ, γ(Clin ′

0) contains all possible finite sets of threads with non

bottom environments that satisfy the linearity constraints of their associated

binder.

Therefore the concrete element C0 is in the concretization of Clin ′

0 .

If C0 is linear for an address (b, id) then the abstract mode associated to b in

Clin ′

0 is ◦ or • and only linear configurations for addresses defined on b are

allowed. (ǫ,C0) ∈ γ(Clin ′

0).

If C0 is non linear for an address, the abstract mode associated to its binder is ⊤♭

and its concretization is not constrained for this address and (ǫ,C0) ∈ γ(Clin ′

0).

A.5 ORPHAN MESSAGES

Lemma A.13 (linearity hypothesis) Let C and C ′ be two concrete configurations

such that C → C ′ with C ′ containing a new actor on program point p associated to

another address a than the one used during the transition from C to C ′. Let pa be the

program point of the ancestor of p for the address a. LetC# be an abstract configuration

such that C ∈ γ(C#). Under the linearity hypothesis, the mailbox of the launched actor

on p is the one of its ancestor augmented with messages launched during the transition.

Proof A.14 Under the linearity hypothesis, there is at most one actor per address in

configurations. Associating an actor to a non interacting address (non interacting

unit), let say a, requires, for the actor launching the new actor on a, that there is no

other actor on this other address. This guaranty can only be obtained by a non empty

sequence of transitions initiated by a message sent by an actor on a consumed without

re-associating its address to another actor. This last actor on a is the concrete ancestor

232 PROOFS

of the new actor on a. Therefore, all messages available to the new actor on a are in the

abstract mailbox associated to the node (pa, False) or in the messages launched during

the last transition.

Lemma A.15 (ancestor soundness) We define by ancestor, the last actor on a given

address that has been consumed to generate, may be later, the current launched threads

on the same address (unit).

The monotonic primitive ancestors soundly over-approximates the ancestor of threads.

Proof A.16 Let us show that the ancestor of the launched threads in the unit is con-

tained in the set of ancestors computed in the abstract.

The interface abstraction combined with control flow information both allow to soundly

over-approximate this relation. A sound set of possible ancestors is considered using

the ⊤ automaton approximating the marker of the interacting threads. All program

points occurring in such markers are potential ancestors of the current threads in the

current unit.

By monotonicity of the construction of the interface and of the marker tree approxi-

mation, the ancestor computation is also monotonic. The only best concrete ancestor of

one thread is in the set of abstract ancestors computed by the ancestor primitive.

Theorem A.17 (7.17) (C ,⊑,⊔,⊥, γ, C0,∇) is an abstraction with respect to the def-

inition of 4.7.

Proof A.18 (7.18) 1. Properties (1)(2)(3) requiring a pre-order, a join operator, a

bottom element are satisfied by our definitions;

2. Prop. (4) holds. The widening operator relies on the widening operator defined

in the underlying numerical abstract domain. The directed multigraph part of

the lattice only admits finite ascending chains;

3. Our gamma function is monotonic and satisfy prop. (5). Adding a node and/or

an edge between nodes describes more possible mailboxes for more possible actors.

4. Prop (7) concerning the initial element abstraction holds: the initial abstract

element C#
0 ∈ C # must be such that {ǫ}× C0 ⊆ γ(C#

0). For a given unit, the

abstract element is then such that if an actor on program point p is present in the

unit:

• there is an initial node (p, True) if an actor on this program point is present

in the initial configuration;

• an abstract mailbox is associated to the value ǫ which denotes initial ab-

stract mailboxes. This mailbox is computed using initial messages on the

address denoted by the unit.

The concretization of such an initial abstract element contains the initial concrete

non standard configuration for this address binder.

233

5. We now have to prove the soundness assumption for our abstract operational

primitives:

• Let us prove that




(u,C) ∈ γ(x)

∣∣∣∣∣∣
∀k, (pk, idk, Ek) ∈ C and

∃C ′ s.t. C
R,(pk)
−−−−→ C ′






⊆ γ(sync(R, (pk), (parameterk), x))

Let us consider the set of configurations (u,C) ∈ gamma(x). Let us

restrict these transitions to the ones containing the threads {(pk, idk, Ek)}.

Let pa ∈ (pk) be the actor thread program point.

According to the definition of γ, (pa, T) is a node of x. Let mailbox# be

its associated mailbox as defined in γ.

Let us again restrict such a set of configurations to the ones that can com-

pute the transition C
R,(pk)
−−−−→ C ′. We denote by Csync this set of con-

figurations that could compute the transition. Then the concrete mailbox

associated to the actor in these C contains the message labelm.

We have {m} ⊆ mailbox ⊆ γ(mailbox#). By soundness assumption

of the underlying numerical abstraction for message label occurrences in

mailbox, we have

(mailbox \ {m}) ∈ γ(mailbox# −MX 1#({m}))

By strictness of the γMX, we have mailbox# −MX 1#({m}) 6= ⊥MX and

{(u,C) ∈ Csync} ⊆ γ(sync(R, (pk), (parameterk), x))

The sync primitive satisfies its soundness assumption.

• Let us prove that





(u ′, C ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(u,C)s.t.






∃id ∈M , (u,C|(a,id)) ⊆ γ(synced#) ⊆ γ(unita)

{(pa, ida, Ea); (pm, idm, Em)} ⊆ C|(a,id)

C
R,(pk),(pik)
−−−−−−−−−→ C ′

C ′
|(a,id)

= C|(a,id) \

{
(pa, ida, Ea);

(pm, idm, Em)

}

∪launch(contsa)






⊆ γ(updatebase(R, (pk), (pik), synced#, a, unita, conta))

We know that ∃id ∈M , (u,C|(a,id)) ⊆ γ(synced#) ⊆ γ(unita). In the

particular case of this domain synced# = unita. Furthermore {(pa, ida,

Ea); (pm, idm, Em)} ⊆ C|(a,id) and C
R,(pk),(pik)
−−−−−−−−→ C ′.

Then according to the definition of γ, the node (pa, T) exists in unita and

the concretization by γMX of its associated abstract mailbox mailbox#,

contains the concrete mailboxmailbox defined asC|(a,id) \ {(pa, ida, Ea)}.

234 PROOFS

Let us define the resulting mailbox C ′
|(a,id)

. It is defined as C|(a,id) \

{(pa, ida, Ea)} \ {(pm, idm, Em)} ∪ launched where launched corre-

spond to the launching of contsa.

Computing update on the element unita with the associated parameters

adds a link between either (pa, T) and (p ′, T) when a new actor (p ′, id ′, E ′)

is launched in conta or between (pa, T) and (pa, F) else.

In both case the concretization of the resulting abstract element contains the

resulting configuration for this address C ′
|(a,id)

.

In the case when conta contains an actor, γ gives the configurations that

contain this new actor associated to the over-approximation of its mail-

boxes. This mailbox over-approximation consider the new link added in the

graph, consuming the label associated to (pm, idm, Em) and producing

new_messages = conta \ (p ′, id ′, E ′). Let new_messages_labels

be their associated multiset of labels.

We have mailbox ′ = mailbox \ {(pm, idm, Em)} ∪ new_messages

and

mailbox ′# ⊒MX mailbox# −#
MX 1

#
MX({m})+#

MX 1
#
MX(new_messages_labels).

The concretization of this abstract mailbox contains the concrete resulting

mailbox C ′
|(a,id)

\ (p ′, id ′, E ′).

A similar reasoning applies when conta does not contain any actor. the

update primitive adds a link between (pa, T) and (pa, F). The concrete

resulting mailbox is included in the concretization of the resulting abstract

element.

• Let us prove that





(u ′, C ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(u,C)s.t.






∃x ∈ Lν ×M , s.t. C|x ⊆ {(pa, ida, Ea); (pm, idm, Em)}

(u,C|x) ⊆ γ(synced#)

∀id ∈M , C|(b,id) ⊆ γ(unitb)

C
R,(pk),(pik)
−−−−−−−−−→ C ′

∃id ′ ∈M , C ′
|(b,id ′)

= C|(b,id ′) ∪ launch(contsb)






⊆ γ(launch(R, (pk), (pik), synced#, b, unitb, contsb)).

Like in the previous case, there exists a configurationC allowing to compute

a transition on an address x. This transition computation adds the threads

defined in contsb to an address (b, id ′).

Let us show that the mailbox associated to this address (b, id ′) in the result-

ing configuration is included in the concretization of launch(R, (pk), (pik),

synced#, b, unitb, contsb). We know that C|(b,id) ⊆ γ(unitb). Let us

detail the launch primitive computation.

According to the lemma A.15, the best ancestor is soundly over-approximated

by the primitive ancestors.

235

The nest step in the proof is similar to the proof steps considered in the inter-

acting unit: one has to prove that considering the exact ancestor, the result-

ing abstract interface and mailbox of the unit are sound over-approximations

of the concrete resulting configuration.

We now prove that launched threads in the unit are in the concretization

of the resulting abstract element. The reasoning for the interface abstract

domain is straightforward: the real ancestor is over approximated by the an-

cestor set, each previously present actor remains untouched by monotonic-

ity of our primitives, while new launched actors are added by the launch

primitive.

Steps similar to the interacting threads case also occur. We identify the

concrete mailbox associated to the newly launched actor on program point

p: it is composed of the ancestor mailbox, the multiset of messages sent to

the address since the ancestor consumption, as well as the new messages

launched during the current transition.

The lemma A.13 ensures that, under the linearity hypothesis, all messages

sent to the address are stored at the ancestor level, either in its mailbox or

in the abstract mailbox associated to its removal (with a False argument).

It also allows to only consider dead nodes when adding a new actor.

The definition of the mailbox computation used before only considered the

previous actor, its mailbox and the launched messages. In this kind of “out-

side interacting unit” launching, the abstract mailbox associated to the node

(pa, False), where pa is the ancestor program point, gathers all messages

sent to the name without an actor instantiation, considering the local ab-

stract mailbox.

Once again we havemx ′p ⊆ γMX(mx ′
#
p) for a launched actor on p in C ′#.

• Similarly the soundness assumption for the new_launch primitive has to

be proved:






(u ′, C ′)

∣∣∣∣∣∣∣∣∣∣∣

∃(u,C)s.t.






∃x ∈ Lν ×M , s.t. C|x ⊆ {(pa, ida, Ea); (pm, idm, Em)}

(u,C|x) ⊆ γ(synced#)

C
R,(pk),(pik)
−−−−−−−−−→ C ′

∃id ∈M s.t. C ′
|(b,id)

= launch(contb)






⊆ γ(new_launch(R, (pk), (pik), synced#, b, contb))

The proof steps are identical to the ones of the launch primitive. A launched

actor is a new initial node associated to launched messages. In case of

launched messages without an actor, they are associated to messages ini-

tially available to all initial actors. The concretization of this element con-

tains the concrete configuration case.

• The launch_beh primitive is defined as the identity. In this abstract

domain the concretization function does not constrain at all the behavior

236 PROOFS

threads contained in the configurations. Therefore we directly have the fol-

lowing property:






(u ′, C ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(u,C)s.t.






∃x ∈ Lν ×M , s.t. C|x ⊆ {(pa, ida, Ea); (pm, idm, Em)}

(u,C|x) ⊆ γ(synced#)

C|beh ⊆ γ(beh)

C
R,(pk),(pik)
−−−−−−−−−→ C ′

C ′
|beh

= C|beh ∪ launchcontbeh






⊆ γ(launch_beh(R, (pk), (pik), synced#, beh, contbeh))

B
REPLICATING EXAMPLE ANALYSIS

B.1 REPLICATION SERVER EXAMPLE

The following example in Example B.1 is an extension of the replicating server
presented in Figure 2.9.

While being quite complex, the system is finite and has no complex interleav-
ings. Let us describe the communication protocol before giving the results of
the analyzer.

The transitions begin with the actor client receiving the message init. It
initiates then the replication of the server: it sends to it a message reify and
waits for an acknowledgment to launch the initial query labeledm.

The message reify is received by the actor serv. It suicides and send its own
address and behavior to the duplicating server. The duplicating server installs
all the machinery that we described in the first chapter in Figure 2.10, page 29,
while replicating and sending the acknowledgment to the client actor.

The message m is sent by the client actor to the frontend installed during
the replication. This frontend actor duplicates the query, sends it to the two
replicated server actors and creates a fresh actor to handle their response. Each
of them handles its message and ansnwers to the fresh actor.

This fresh actor considers the first answer and deletes the second. Finally the
receptor actor receives its message and dies.

B.2 ANALYSIS

The system is analyzed on a 2GHz Intel Core 2 Duo with 1 Go of RAM. It takes
52 seconds to compute the least fixed point in 32 iterations.

We give here the detail of computed properties. In these properties, we can
observe no remaining messages will be pending in the receptor actor mailbox
or in the fresh actor mailbox.

We present the abstract element as given by the analyzer. The only modifica-
tion was to render the abstract elements more readable.

B.2.1 Control flow abstraction

The following table describes the control flow properties obtained. Each pro-
gram point is associated to the properties satisfied by all threads on this pro-
gram point.

237

238 REPLICATING EXAMPLE ANALYSIS

Example B.1 The replicating server.

νrecept1, νserv2, νdupserv3, νclient4,

serv ⊲5 [m6(c) = ζ(e, s)(e ⊲7 s||c ⊳8 reply());

reify9(c, ack) = ζ(e, s)(c ⊳10 state_serv(e, s, ack))]

||dupserv ⊲11 [state_serv12(ego, self, ack) = ζ(e, s)(

νa13, νb14, a ⊲15 self||b ⊲16 self

||ego ⊲17 [m18(c) = ζ(e, s)(

νf19, a ⊳20 m(f)||b ⊳21 m(f)

||f ⊲22 [reply23() = ζ(e, s)(

c ⊳24 reply()||e ⊲25 [reply26() = ζ(e, s)(0)])]

||e ⊲27 s)]

||ack ⊳28 available()

||e ⊲29 s)]

||client ⊲30 [init31() = ζ(e, s)(

serv ⊳32 reify(dupserv, e)

||e ⊲33 [available34() = ζ(e, s ′)(serv ⊳35 m(recept))])]

||recept ⊲36 [reply37() = ζ(e, s)(0)]

||client ⊳38 init()

239

In that example, the graphs of equality and inequality among values or marker
do not give supplementary information and are not represented. The last col-
umn gives a regular approximation of values.

Pp Interface Shape

5 {serv}
I : ǫ

serv : (2, ǫ)

6 ∅ I : ǫ

7 {e, s}

I : 15+ 16

e : (13, ǫ) + (14, ǫ)

s : (5, ǫ)

8 {c}
I : 15+ 16

c : (19, ǫ)

9 ∅ I : ǫ

10 {e, s, ack, c}

I : ǫ

e : (2, ǫ)

s : (5, ǫ)

ack : (4, ǫ)

c : (3; ǫ)

11 {dupserv}
I : ǫ

dupserv : (3, ǫ)

12 ∅ I : ǫ

15 {self, a}

I : ǫ

self : (5, ǫ)

a : (13, ǫ)

16 {self, b}

I : ǫ

self : (5, ǫ)

b : (14, ǫ)

17 {ego, a, b}

I : ǫ

ego : (2, ǫ)

a : (13, ǫ)

b : (14, ǫ)

18 {a, b}

I : ǫ

a : (13, ǫ)

b : (14, ǫ)

240 REPLICATING EXAMPLE ANALYSIS

Pp Interface Shape

20 {a, f}

I : ǫ

a : (13, ǫ)

f : (19, ǫ)

21 {b, f}

I : ǫ

b : (14, ǫ)

f : (19, ǫ)

22 {f, c}

I : ǫ

c : (1, ǫ)

f : (19, ǫ)

23 {c}
I : ǫ

c : (1, ǫ)

24 {c}
I : ǫ

c : (1, ǫ)

25 {e}
I : ǫ

e : (19, ǫ)

26 ∅ I : ǫ

27 {e, s}

I : ǫ

e : (2, ǫ)

s : (17, ǫ)

28 {ack}
I : ǫ

ack : (4, ǫ)

29 {e, s}

I : ǫ

e : (3, ǫ)

s : (11, ǫ)

30 {recept, serv, dupserv, client}

I : ǫ

recept : (1, ǫ)

serv : (2, ǫ)

dupserv : (3, ǫ)

client : (4, ǫ)

31 {recept, serv, dupserv}

I : ǫ

recept : (1, ǫ)

serv : (2, ǫ)

dupserv : (3, ǫ)

241

Pp Interface Shape

32 {serv, dupserv, e}

I : ǫ

serv : (2, ǫ)

dupserv : (3, ǫ)

e : (4, ǫ)

33 {recept, serv, e}

I : ǫ

recept : (1, ǫ)

serv : (2, ǫ)

e : (4, ǫ)

34 {recept, serv}

I : ǫ

recept : (1, ǫ)

serv : (2, ǫ)

35 {recept, serv}

I : ǫ

recept : (1, ǫ)

serv : (2, ǫ)

36 {recept}
I : ǫ

recept : (1, ǫ)

37 {recept}∅
I : ǫ

recept : (1, ǫ)

38 {client}
I : ǫ

client : (4, ǫ)

B.2.2 Global occurence counting abstraction

The global numerical properties are the following.

H38 : J0, 1K H37 : J1, 1K H36 : J0, 1K H35 : J0, 1K H34 : J0, 1K H33 : J0, 1K H32 : J0, 1K

H31 : J1, 1K H30 : J0, 1K H29 : J0, 1K H28 : J0, 1K H27 : J0, 1K H26 : J0, 1K H25 : J0, 1K

H24 : J0, 1K H23 : J0, 1K H22 : J0, 1K H21 : J0, 2K H20 : J0, 2K H18 : J0, 1K H17 : J0, 1K

H16 : J0, 2K H15 : J0, 2K H12 : J1, 1K H11 : J0, 1K H10 : J0, 1K H9 : J1, 1K H8 : J0, 2K

H7 : J0, 2K H6 : J1, 1K H5 : J0, 1K R5 : J0, 1K R6 : J0, 2K R11 : J0, 1K R17 : J0, 1K

R22 : J0, 1K R25 : J0, 1K R30 : J0, 1K R33 : J0, 1K R36 : J0, 1K

H38+ R30 = 1 H37 = 1

H36+ R36 = 1 H35+ R17− R33 = 0

H34− R30 = 0 H33− R30+ R33 = 0

242 REPLICATING EXAMPLE ANALYSIS

H32+ R5− R30 = 0 H31 = 1

H30+ R30 = 1 H29− R11 = 0

H28− R11+ R33 = 0 H27− R17 = 0

H26− R22 = 0 H25− R22+ R25 = 0

H24− R22+ R36 = 0 H23− R17 = 0

H22− R17+ R22 = 0 H21+H15+ R6− R11− R17 = 0

H20−H15+ R11− R17 = 0 H18− R11 = 0

H17− R11+ R17 = 0 H16+H15+ R6− 2 ∗ R11 = 0

H12 = 1 H11+ R11 = 1

H10− R5+ R11 = 0 H9 = 1

H8− R6+ R22+ R25 = 0 H7− R6 = 0

H6 = 1 H5+ R5 = 1

R7, R8, R9, R10, R12, R15, R16, R18, R20, R21, R23, R24, R26, R27, R28, R29, R31,

R32, R34, R35, R37, R38 = 0

B.2.3 Linearity abstraction

Binder modes

(1, •), (2, •), (3, •), (4, •), (13, •), (14, •), (19, •)

Abstract environments

5 : (serv, •) 7 : (e, •), (s, ◦)

8 : (c, ◦) 10 : (e, •), (s, ◦), (ack, ◦), (c, ◦)

11 : (dupserv, •) 15 : (self, ◦), (a, •)

16 : (self, ◦), (b, •) 17 : (ego, •), (a, ◦), (b, ◦)

18 : (a, ◦), (b, ◦) 20 : (a, ◦), (f, ◦)

21 : (b, ◦), (f, ◦) 22 : (c, ◦), (f, •)

23 : (c, ◦) 24 : (c, ◦)

25 : (e, •) 27 : (e, •), (s, ◦)

28 : (ack, ◦) 29 : (e, •), (s, ◦)

36 : (recept, •) 31 : (recept, ◦), (serv, ◦), (dupserv, ◦)

32 : (serv, ◦), (dupserv, ◦), (e, ◦) 33 : (recept, ◦), (serv, ◦), (e, •)

34 : (recept, ◦), (serv, ◦) 35 : (recept, ◦), (serv, ◦)

30 : (recept, ◦), (serv, ◦), (dupserv, ◦), (client, •) 38 : (client, ◦)

243

B.2.4 Partitioned abstraction

The next table presents the results given by the partitioned abstract domain.
Each binder is associated to an occurrence abstraction and to the interface and
mailboxes approximation.

Binder 1 νrecept

Figure B.1 Interface and mailbox abstraction for the binder 1.

MAILBOX The abstract element obtained for the interface and mailbox ab-
straction is given in Figure B.1.

OCCURRENCE The local occurrence counting element describes only occur-
rences of threads specific to the binder 1.

H36 : J0, 1K H24 : J0, 1K R5 : J0, 1K R6 : J0, 2K R11 : J0, 1K

R17 : J0, 1K R22 : J0, 1K R25 : J0, 1K R30 : J0, 1K R33 : J0, 1K

R36 : J0, 1K

H36+ R36 = 1

H24− R22+ R36 = 0

H38,H37,H35,H34,H33,H32,H31,H30,H29,H28,H27,H26,H25,H23,H22,H21,

H20,H18,H17,H16,H15,H12,H11,H10,H9,H8,H7,H6,H5, R7, R8, R9,

R10, R12, R15, R16, R18, R20, R21, R23, R24, R26, R27, R28, R29, R31, R32, R34,

R35, R37, R38 = 0

244 REPLICATING EXAMPLE ANALYSIS

Binder 2 νserv

Figure B.2 Interface and mailbox abstraction for the binder 2.

MAILBOX The abstract element obtained for the interface and mailbox ab-
straction is given in Figure B.2. In that case, as explained in the Chapters 7
and 8, we fail at proving that there is no orphan messages. The production of
the message labeled m outside of its interacting unit – on address (2, ǫ) – with-
out the launching of an actor, gives us this over-approximation. The checking
algorithm will not be able to prove the absence of orphans since a message m
can be (is) present at the dead node (5,D).

To handle such cases, we will need to rely on other unit approximation in
order to guarantee the actor (17,A) to be produced. This look like feasible with
the already computed properies but has not been investigated yet.

OCCURRENCE This local occurrence counting element describes only occur-
rences of threads specific to the binder 2.

H35 : J0, 1K H32 : J0, 1K H27 : J0, 1K H17 : J0, 1K H5 : J0, 1K

R5 : J0, 1K R6 : J0, 2K R11 : J0, 1K R17 : J0, 1K R22 : J0, 1K

R25 : J0, 1K R30 : J0, 1K R33 : J0, 1K R36 : J0, 1K

H35+ R17− R33 = 0

H32+ R5− R30 = 0

H27− R17 = 0

H17− R11+ R17 = 0

245

H5+ R5 = 1

H38,H37,H36,H34,H33,H31,H30,H29,H28,H26,H25,H24,H23,H22,H21,H20,

H18,H16,H15,H12,H11,H10,H9,H8,H7,H6, R7, R8, R9, R10, R12, R15,

R16, R18, R20, R21, R23, R24, R26, R27, R28, R29, R31, R32, R34, R35, R37, R38 = 0

Binder 3 νdupserv

Figure B.3 Interface and mailbox abstraction for the binder 3.

MAILBOX The abstract element obtained for the interface and mailbox ab-
straction is given in Figure B.3.

OCCURRENCE This local occurrence counting element describes only occur-
rences of threads specific to the binder 3.

H29 : J0, 1K H11 : J0, 1K H10 : J0, 1K R5 : J0, 1K R6 : J0, 2K

R11 : J0, 1K R17 : J0, 1K R22 : J0, 1K R25 : J0, 1K R30 : J0, 1K

R33 : J0, 1K R36 : J0, 1K

H29− R11 = 0

H11+ R11 = 1

H10− R5+ R11 = 0

H38,H37,H36,H35,H34,H33,H32,H31,H30,H28,H27,H26,H25,H24,H23,H22,

H21,H20,H18,H17,H16,H15,H12,H9,H8,H7,H6,H5, R7, R8, R9, R10,

R12, R15, R16, R18, R20, R21, R23, R24, R26, R27, R28, R29, R31, R32, R34, R35,

R37, R38 = 0

246 REPLICATING EXAMPLE ANALYSIS

Binder 4 νclient

Figure B.4 Interface and mailbox abstraction for the binder 4.

MAILBOX The abstract element obtained for the interface and mailbox ab-
straction is given in Figure B.4.

OCCURRENCE This local occurrence counting element describes only occur-
rences of threads specific to the binder 4.

H38 : J0, 1K H33 : J0, 1K H30 : J0, 1K H28 : J0, 1K R5 : J0, 1K

R6 : J0, 2K R11 : J0, 1K R17 : J0, 1K R22 : J0, 1K R25 : J0, 1K

R30 : J0, 1K R33 : J0, 1K R36 : J0, 1K

H38+ R30 = 1

H33− R30+ R33 = 0

H30+ R30 = 1

H28− R11+ R33 = 0

H37,H36,H35,H34,H32,H31,H29,H27,H26,H25,H24,H23,H22,H21,H20,H18,

H17,H16,H15,H12,H11,H10,H9,H8,H7,H6,H5, R7, R8, R9, R10, R12,

R15, R16, R18, R20, R21, R23, R24, R26, R27, R28, R29, R31, R32, R34, R35, R37,

R38 = 0

247

Binder 13 νa

Figure B.5 Interface and mailbox abstraction for the binder 13.

MAILBOX The abstract element obtained for the interface and mailbox ab-
straction is given in Figure B.5.

OCCURRENCE This local occurrence counting element describes only occur-
rences of threads specific to the binder 13.

H20 : J0, 1K H15 : J0, 1K H7 : J0, 1K R5 : J0, 1K R6 : J0, 2K

R11 : J0, 1K R17 : J0, 1K R22 : J0, 1K R25 : J0, 1K R30 : J0, 1K

R33 : J0, 1K R36 : J0, 1K

H20+H7− R17 = 0

H38,H37,H36,H35,H34,H33,H32,H31,H30,H29,H28,H27,H26,H25,H24,H23,

H22,H21,H18,H17,H16,H12,H11,H10,H9,H8,H6,H5, R7, R8, R9, R10,

R12, R15, R16, R18, R20, R21, R23, R24, R26, R27, R28, R29, R31, R32, R34, R35,

R37, R38 = 0

Binder 14 νb

MAILBOX The abstract element obtained for the interface and mailbox ab-
straction is given in Figure B.6.

OCCURRENCE This local occurrence counting element describes only occur-
rences of threads specific to the binder 14.

248 REPLICATING EXAMPLE ANALYSIS

Figure B.6 Interface and mailbox abstraction for the binder 14.

H21 : J0, 1K H16 : J0, 1K H7 : J0, 1K R5 : J0, 1K R6 : J0, 2K

R11 : J0, 1K R17 : J0, 1K R22 : J0, 1K R25 : J0, 1K R30 : J0, 1K

R33 : J0, 1K R36 : J0, 1K

H21+H7− R17 = 0

H38,H37,H36,H35,H34,H33,H32,H31,H30,H29,H28,H27,H26,H25,H24,H23,

H22,H20,H18,H17,H15,H12,H11,H10,H9,H8,H6,H5, R7, R8, R9, R10,

R12, R15, R16, R18, R20, R21, R23, R24, R26, R27, R28, R29, R31, R32, R34, R35,

R37, R38 = 0

Binder 19 νf

MAILBOX The abstract element obtained for the interface and mailbox ab-
straction is given in Figure B.7.

OCCURRENCE This local occurrence counting element describes only occur-
rences of threads specific to the binder 19.

H25 : J0, 1K H22 : J0, 1K H8 : J0, 2K R5 : J0, 1K R6 : J0, 2K

R11 : J0, 1K R17 : J0, 1K R22 : J0, 1K R25 : J0, 1K R30 : J0, 1K

R33 : J0, 1K R36 : J0, 1K

H25− R22+ R25 = 0

H8− R6+ R22+ R25 = 0

H38,H37,H36,H35,H34,H33,H32,H31,H30,H29,H28,H27,H26,H24,H23,H21,

H20,H18,H17,H16,H15,H12,H11,H10,H9,H7,H6,H5, R7, R8, R9, R10,

R12, R15, R16, R18, R20, R21, R23, R24, R26, R27, R28, R29, R31, R32, R34, R35,

R37, R38 = 0

249

Figure B.7 Interface and mailbox abstraction for the binder 19.

	Remerciements
	Abstract
	Résumé
	Contents
	List of Figures
	Épitomé
	1 Analyse statique d’un calcul d’acteurs par interprétation abstraite
	1.1 Introduction & contexte
	1.2 CAP: un calcul d'acteurs primitif
	1.3 Analyse statique de CAP par interprétation abstraite
	1.4 Sémantique non standard
	1.5 Sémantique abstraite
	1.6 Analyse partitionnée
	1.7 Amélioration des analyses de dénombrement
	1.8 La propriété de linéarité
	1.9 Garantir l'absence de messages orphelins
	1.10 Réalisation logicielle
	1.11 Conclusion

	Main content
	2 Introduction & background
	2.1 CAP: a primitive actor calculus
	2.1.1 A bit of history
	2.1.2 Syntax
	2.1.3 Semantics
	2.1.4 Examples

	2.2 Static analysis methods
	2.2.1 Type system-based
	2.2.2 Model checking
	2.2.3 Abstract interpretation
	2.2.4 Flow logic

	2.3 Concurrency analysis related works
	2.3.1 Typing process calculi
	2.3.2 Flow logic analysis of concurrency
	2.3.3 Model checking and concurrency
	2.3.4 Abstract interpretation-based analysis of process calculi

	2.4 Overview of contributions
	2.4.1 CAP non standard semantics
	2.4.2 Abstracting collecting semantics and abstract domains
	2.4.3 Linearity
	2.4.4 Orphan freeness checking
	2.4.5 Implementation issues

	3 Static Analysis of CAP by Abstract Interpretation
	3.1 The intuition
	3.1.1 Feret's framework
	3.1.2 Instantiating the framework to model CAP semantics

	3.2 Instantiating the generic framework
	3.2.1 Generic framework semantics
	3.2.2 Partial interactions
	3.2.3 Formal rules
	3.2.4 Syntax extraction
	3.2.5 Operational semantics
	3.2.6 Resulting transition system
	3.2.7 Soundness

	3.3 Abstracting non standard semantics
	3.3.1 Abstracting collecting semantics
	3.3.2 Approximating control flow
	3.3.3 Occurrence counting

	3.4 Discussion

	4 Partitioned Abstract Domain
	4.1 Partitioning properties by address
	4.1.1 Concrete address partitioning
	4.1.2 Abstract address partitioning

	4.2 Parametric Abstract Partitioning
	4.2.1 Intuition
	4.2.2 Abstract Domain
	4.2.3 Semantics primitives
	4.2.4 Operational semantics

	4.3 Example analysis
	4.4 Enhancement
	4.4.1 Extending primitives
	4.4.2 Soundness
	4.4.3 Application

	4.5 Related work and discussion
	4.5.1 Comparison with Feret's thread partitioning
	4.5.2 Summary

	5 Enhancing occurrence counting
	5.1 The initial occurrence counting abstraction
	5.1.1 Numerical abstractions
	5.1.2 Example analysis

	5.2 Enhancing the abstraction reduction
	5.2.1 Motivation
	5.2.2 The reduction revisited
	5.2.3 The example reconsidered

	5.3 Considering computed transitions
	5.3.1 Motivation
	5.3.2 Abstract domain
	5.3.3 The example reconsidered

	5.4 Reduction in the partitioned domain
	5.4.1 Combining abstract domains
	5.4.2 Reduction

	5.5 Summary
	5.5.1 Contributions
	5.5.2 General overview

	6 The Linearity Property
	6.1 Problematics
	6.1.1 Definition
	6.1.2 Examples
	6.1.3 A first attempt of linearity checking in our framework

	6.2 Abstracting linearity
	6.2.1 Intuition
	6.2.2 A first abstraction
	6.2.3 A second abstraction

	6.3 Example analysis
	6.4 Related works
	6.5 Discussion

	7 Ensuring Orphan freeness
	7.1 Problematics
	7.1.1 Definitions
	7.1.2 Examples

	7.2 Roadmap to orphan freeness checking
	7.2.1 Observation
	7.2.2 Vector Addition System with States and their properties
	7.2.3 Effective checking

	7.3 Abstracting mailboxes and interfaces
	7.3.1 Intuition
	7.3.2 Abstract domain
	7.3.3 Improvements preserving soundness

	7.4 Ensuring orphan-freeness
	7.4.1 On effective mailbox computation
	7.4.2 Where over-approximations comes from
	7.4.3 Checking orphan-freeness: under-approximating interfaces
	7.4.4 Checking non stuck actors

	7.5 Example analysis
	7.5.1 Example
	7.5.2 Resulting abstract properties
	7.5.3 Computing mailboxes
	7.5.4 Checking orphan-freeness

	7.6 Related works and discussion
	7.6.1 Analyzing CAP by type inference
	7.6.2 Behavioral types for the -calculus
	7.6.3 Encoding properties into VASS-like structures
	7.6.4 Discussion

	8 Implementation issues
	8.1 PACSA: a Primitive Actor Calculus Static Analyzer
	8.1.1 Wide use of Caml modules and functors
	8.1.2 Implementation choices
	8.1.3 Domains

	8.2 Results
	8.3 Usage
	8.3.1 Command line
	8.3.2 Web interface

	9 Conclusion
	9.1 Contributions
	9.2 Future Works
	9.2.1 Implementing mailboxes over-approximation
	9.2.2 Introducing relational abstraction in the linearity abstract domain
	9.2.3 Applying the proposed domains to the analysis of -calculus
	9.2.4 Analyzing other kinds of concurrent communicating models
	9.2.5 Weaving abstract interpretations

	Index of notations
	Bibliography

	Appendices
	A Proofs
	A.1 Bisimulation between CAP semantics and its non standard encoding
	A.2 Partitioned abstract domain
	A.3 Occurrence counting with transitions
	A.4 Linearity
	A.5 Orphan messages

	B Replicating example analysis
	B.1 Replication server example
	B.2 Analysis
	B.2.1 Control flow abstraction
	B.2.2 Global occurence counting abstraction
	B.2.3 Linearity abstraction
	B.2.4 Partitioned abstraction

