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Chapter 1

Introduction

"Lorsque tu ne sais pas où tu vas, regarde d’où tu viens."

—Proverbe africain

For most of us, thirty years ago, computer graphics was not about realism and details, it was
only about having something else than letters and numbers on a screen and being able to interact
graphically with the computer. We could not become bored playing one of the first video games:
Pong (cf image 1.1), and it consisted only in two lines moving up and down and a point traveling
across the screen. Nowadays, computer power has evolved so much that highly realistic tennis
games featuring nicely animated players are now possible (see image 1.1). Most importantly, we
now expect such high degree of realism in the games we play, and also always would like more.

Figure 1.1 Left: The first "tennis" video game: Pong. Right: One of the latest tennis video game
(Image from TopSpin [Stu]).

This high demand for realism does not concern only the games market but also all the sectors
where computer graphics techniques are being increasingly used such as cinema or scientific visu-
alization. People are more and more accustomed to seeing virtual 3D worlds and are thus very crit-
ical regarding the visual quality of these worlds. They want them to be as realistic, or believable, as
possible. Researchers are thus always investigating new algorithms to make computer-generated
images almost indistinguishable from real photographs. For some type of scenes1, this goal has
been achieved. However, for others, many artefacts remain. Most of the time, the simplicity of
the models, the lack of details and the repetition of structures, patterns, characters, colors, are the
defects of synthetic scenes which bother us.

1Some terms are defined in the glossary in appendix A. Their first appearance in the text is underlined.
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We consider details to be anything that adds to the realism of a scene. It can be color, fine
geometry, reflectance properties of surfaces, silhouettes, variability of information, etc. All the
complexity which characterizes the real-world. In this thesis, we want to provide solutions to
increase the realism of a scene by providing some of this detail complexity using real-world ex-
amples, while sacrificing as little as possible memory space or processing time.

1.1 Motivation

In order to respond to the ever-increasing demand of realism, a lot of effort is put into improving
hardware and software components of the computer graphics pipeline (modeling, animation and
rendering). With the recent technological advances in processing units and computer graphics
cards, amazing speed increases have been attained for the rendering phase. However, the tools for
modeling and animation have yet to follow. Indeed, as most computer generated (CG) scenes are
hand-made, the final results depend on the skills of the artists involved and the tools they are using.
Depending on the time and budget available, they take shortcuts when building these scenes:
Copy-pasting models and textures to repeat them, giving the illusion of details using textures
over coarse models, pre-computing lighting information as additional textures, etc. Furthermore,
the target usage and the limitations of the available hardware can also place a restriction on the
size of the scene (i.e., number of polygons, number of lights, number of textures, number of
reflectance properties, amount of computation involved to create each image) and thus on the
details it can contain. For example, a game scene has to be much "lighter" (in terms of demand
in processing time) than a movie scene to be able to be displayed at an acceptable frame rate. A
major bottleneck thus resides in the time to produce and edit detailed scenes.

To simulate missing geometric details, artists use a plethora of methods. The usual workflow
they adopt consists in applying to a geometric model a series of appearance layers2 whose com-
bination defines the final aspect of the object. Each layer describes some surface (or material)
properties of the object, such as color, reflectivity, displacement, translucency, etc. It can have
various parameters which can be adjusted independently of the other layers. This notion of inde-
pendence is very important in standard modeling workflow since it permits individual fine-tuning
of each layer, avoiding possible impact on other layers. However, creating these appearance layers
is not always an easy task. We describe next three problems we have identified in this process,
which have guided the work in this thesis.

Problem #1: Structured Textures Synthesis

The first and most common layer added on top of a model is the color texture. An immense variety
of texture models exists, ranging from procedurally-generated to image-based photo-realistic
textures. Textures are typically used to add rich visual detail to a much simpler underlying mesh.
However, they suffer from a number of problems due to their fixed-size (for non-procedural
textures) and thus limited resolution, in addition to parametrization issues.

Two main classes of textures are particularly of interest: stochastic and structured textures.
Stochastic textures are viewed as a realization of a 2D stochastic process whereas structured
textures correspond to an arrangement of primitives according to a certain placement rule. Ex-
periments have shown that human eyes are very sensitive to high-level features (especially their
discontinuity) [Mar82], and tolerant to small deformations. Thus artefacts in structured textures

2In production, this stack of layers is called a shader due to historical reasons, but it no longer is exclusively related
to shading.
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are more easily detectable than in stochastic textures. Structured textures are often used for envi-
ronment (background) objects, nonetheless the viewer still immediately notices repetition due to
a tiling of a base texture, border problems at the junction of texture parts, parametrization issues,
etc. Image 1.2 illustrates some of these common problems.

Figure 1.2 Texture mapping structured textures often exhibits annoying artefacts: parametrization
problems, structure repetitions, limited resolution. (Images from [tom])

Ideally, we would like to be able to generate such structured textures without their inherent
problems of junction and resolution (which will be detailed later). These can also be called
"cellular textures" since they are typically a set of closed regions, such as a rock wall or a snake
skin. We will use the term "structure" or "structured textures" for the most part in this text,
with the exception of cases when the term "cellular texture" eases comprehension. To reproduce
such kinds of textures, they can be drawn and tiled manually by a modeler but this rapidly
becomes a lengthy and tedious process. Some structure generators exist but their results are
often not predictable and their lack of control makes them not attractive for artists, who need
to fine-tune their work at will. A practical solution would take an example of the expected
result as input and provide a parameterizable procedural method to achieve a similar result.
Indeed, textures extracted from the real-world are excellent sources of inspiration for designing
virtual textures and the quality of their details should be taken advantage of as much as possible.
The texture of the Pickering Castle walls (image 1.3) is an example of a structured texture we
might want to reproduce in order to obtain a faithful virtual reconstitution of the completed
castle. To synthesize a similar texture, an option would be to use texture synthesis algorithms
which aim to replicate a texture starting by the analysis of a sample. However, even though
the results on stochastic textures are satisfying, there is yet no good solution for structured textures.

The first problem we address in this thesis is thus the following: How can we analyze a given
structured texture (typically coming from a real-world example), in order to be able to propagate it
on various surfaces without getting the problems intrinsic to texture mapping? How can we define
such a structure generator? Furthermore, we believe that completely automatic solutions take the
artistic work off the hands of the artists. We need to relieve them of the tedious part of the work,
while allowing them to influence the structured texture generation both globally and locally. Local
modifications techniques avoid the need to regeneration of the entire structure, and facilitate rapid,
iterative design.
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Figure 1.3 The Pickering castle. How can we virtually complete it and replicate the existing wall
texture, in a convincing, non repetitive manner?

Problem #2: Coupling of Structure and Appearance

Consider the village of figure 1.4 (right) composed of several instances of the same house shown
to its left. Using the same texture for every house will give a fake aspect to the whole scene.
However, if we manage to synthesize a different stone wall structured texture to apply to each
individual house using texture synthesis approaches such as [EF01] or [WL00], texture memory
consumption will be very high since we can no longer share textures between objects. Procedural
methods would be an alternative, but are notoriously hard to control and predict.

One important observation is that for structured textures such as these stone walls, structure,
i.e., the form of the stones and their placement, and appearance, i.e., the texture and 3D details
(e.g., relief) of each stone and of the mortar between them can (and should) be treated indepen-
dently. We believe one of the reasons texture synthesis methods fail for such textures is because
they attempt to handle them together, as a whole, without distinguishing them from other classes
of textures.

Problem #3: 3D Detail Synthesis

To enhance the visual richness of these scenes, more advanced appearance layers must be used to
map, for instance, surface normal, height or even lighting information onto the surface, avoiding
the "flatness" and straight-silhouettes problems illustrated in figure 1.5. They allow the addition of
subtle 3D information to the underlying color and geometry data. However, building appearance
layers for similar patterns but arranged in a variety of locations and orientations can rapidly become
very tedious for the artist, as he cannot rely on copy-pasting. There is no existing automatic method
to relieve him from this task.

More generally, detail creation is a tedious process. Using traditional modeling tools to
construct fine geometric details represents an enormous quantity of repetitive work. One solution
can be to take a detail sample (for example, in the form of a picture or a measurement) and use
it to enhance the hand-made coarse models by adding, generating or propagating this detail.
However, each kind of detail has its characteristics and particularities that one has to understand
in order to be able to regenerate it. In addition, the related data has to be editable and manipulable
by artists for such a solution to be usable in practice.
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Figure 1.4 Left: Computer-Generated house yet to texture. Right: A village of similar houses with
structured textures on their walls.

Figure 1.5 Left: Scene where the flatness of the structured textures is evident. Right: Additional
appearance layers have been applied and realism has increased. (Images from Oliveira [dON00])

The third problem we address is thus how to ease the work of the user for the generation
of small, but nonetheless crucial for realism details, either by generating appearance layers
corresponding to synthesized structured textures, or more generally, by creating 3D information
generators from example.

In summary, in this thesis, we investigate three themes revolving around the idea of exploiting
real-world information to increase realism in 3D scenes:

1. How to synthesize structure from the analysis of a sample to avoid annoying repetitions.

2. How to generate realistic structure appearance using a compact description to be able to
achieve real-time rendering, while avoiding repetitive textures.

3. How to propagate 3D information from example to relieve the artists from tedious detail
creation tasks.

In the next section, we will state our diverse objectives to tackle the problems just described
and the approaches we propose in order to reach them.
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1.2 Objectives and proposed approaches

In this work, we address the main goal of improving realism in computer-generated scenes by
providing solutions to analyze information from the real world (structure, appearance, 3D infor-
mation) and using it to create user-tunable procedural "generators" of appearance layers which
efficiently enrich the scene models. This constitutes a long-term goal of which this thesis sets the
first elements.

The two first parts of this thesis focus on the synthesis of structured textures based on the
analysis of real-world examples which are hard to reproduce using current techniques. We chose
to address this particular problem by decoupling the structure and the appearance, which will give
us a lot more flexibility. The third part exposes a framework for the recovery of 3D information
from example and proposes an application of this approach to structured textures. The techniques
exposed are applied to height information and generalized to other types of details.

1. Generating structure from example

Synthesizing a structure from an example is hard. We create structure generators to solve this
problem, enabling us to propagate a given structured texture in a procedural manner, while
allowing the user to influence the results. This is inherently a geometric problem, which we will
treat as such. We try to analytically reproduce a given geometric structure represented as a 2D
mesh of edges and vertices. Our objective is to extract a compact representation of the structure
from the analysis of the sample. This representation allows us to replicate the structure on a target
domain of varying shape and topology. The user is able to influence the synthesis and modify the
result without having to regenerate everything.

The approach we propose consists in evaluating the anisotropy of each of the regions com-
posing the structure by approximating them with a simple shape. This permits to build simple
statistics to which we add some data related to the topology of the structure. This statistical data is
exploited during the synthesis phase to generate new similarly-shaped regions in a two-step pro-
cess. In a first step, the regions are sampled from the statistics and will progressively populate a
target domain using a tiling method. Various types of constraints, input as maps for instance, can
be taken into account during this stage. In a second step, the shape of the regions are optimized
to resemble the original shapes as much as possible. The generated structure is editable, regions
can be locally modified and the structure updates globally without the need for re-synthesis. The
process is flexible; many extensions are possible and are described in chapters 3 and 6.

2. Generating 2D appearance from example

As stated earlier, when analyzing a given structured texture, we decouple the structure analysis
from the appearance analysis as they are independent entities. Our main goal when analyzing the
appearance of a structured texture is to create an appearance generator which is lightweight, i.e.,
which requires a small number of base/reference images and will render the result efficiently. It
should be noted that we address only the 2D color texture at this stage which corresponds to the
"2D appearance", the first appearance layer usually added to a model.

Since we want to produce a lightweight generator, we have to create reusable texture compo-
nents which can be accessed many times, so as to use as little space as possible in texture memory.
To achieve the same appearance as the example, these components have to be extracted from the
original texture information, while taking care not to degrade the small details that are central to
the richness of the texture. In order to achieve fast rendering, no new texture information can be
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created during rendering, even though the target geometry can be different from the original. Our
choice is to do as much processing as possible off-line, as a preprocess. Similarly to the structure
generation, the user should be able to influence the process up to a certain point.

The approach we propose is inspired by the principle of instancing which consists in "recy-
cling" textures by indexing many times in the same image to texture several models. We have as
input an example of a structured texture with the corresponding geometric structure, composed
of a set of closed regions. During the analysis phase, we extract texture elements from the region
interiors and use them to build a set of unified textures. Note that contrary to traditional texture
instancing, each region (e.g., a stone in a wall) indexes into a different part of this unified texture,
thus avoiding repetition. We handle the region contours (e.g., mortar in a stone wall) differently
by extracting texture parts around the edges and vertices and gathering them in texture atlases.
We also store the structure geometric data and associate it with the extracted texture information.

The geometric structures resulting from the synthesis process previously described are com-
posed of vertices and edges around which we create additional polygons. During the synthesis
phase, we associate to each of them a texture from the atlases and sample the unified textures to
generate the color information for the region interiors. Special care has to be taken to seamlessly
blend all the texture portions. We decided to establish a tradeoff between the number of polygons
and the number of textures utilized in order to achieve the space and speed requirements. We can
afford polygons much more than texture space, especially if the textures are of high-quality. The
user is allowed to modify the shared textures to create new appearance results. Structure genera-
tors can also be combined with appearance generators coming from different samples to synthesize
brand new structured textures.

3. Generating 3D details from example

The last part of this thesis aims at recovering 3D information from images. Fine geometric details,
reflectance properties etc., are imprinted into the textures and we should take advantage of this
information, guided by the expert eyes of a user. This data can allow us to construct additional
appearance layers to add more realism to our objects. Our goal is to generate plausible details,
not necessarily exact details, using the available texture and model information and the guidance
of the user with the aim of making our scenes more believable. We aspire to relieve the user from
repetitive, tedious tasks such as creating appearance maps for structured textures, while leaving
him the intentional, creative work.

We thus propose a generic detail recovery framework where information about desired details
(geometry, reflectance, etc.) can be provided by the user. The system employs this extra infor-
mation by analyzing the model to improve and generates the corresponding details appropriately.
Specific results on displacement map recovery are described, and we can take advantage of any
structure or texture information recovered in a previous step to improve the results. Insights for the
recovery of other kinds of appearance layers are exposed. In a way, we are creating user-assisted
detail generators. The main advantages of such generators is that they are procedural, and thus
lightweight. They only contain a description of the missing information and how it should be
reconstructed according to the underlying models/textures. Interactivity and user-input is a key
feature in our approach as we are convinced that only a human user can provide the information
required for a robust detail recovery, as current automatic methods are not mature enough and only
the user knows what he really wants to recover.
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1.3 Contributions

We summarize in this section the principal contributions of our work. These contributions, and
additional ones, are described in more details in the conclusions.

• Synthesis of detailed cellular textures from the analysis of examples

No method exists to generate detailed structured textures, notably cellular textures with
cells of varying-shape, from the analysis of an example. We propose methods to recover
their geometry as well as their appearance aspect, in 2D and 3D.

• Decoupling structure and appearance

Structure and appearance are often independent entities and should be treated as such when
analyzing structured textures in order to create generators which allow their reproduction.
We explore this novel idea by describing our techniques to create structure generators in
parallel with the creation of appearance generators.

• Creation of structure generators

We present a new procedural technique to generate geometrical structures using statistics
extracted from the analysis of a geometric input structure.

• Creation of appearance generators

We designed techniques to extract reusable appearance components from a structured tex-
ture image, thus achieving significant memory gains. The texture of the structure regions
interiors is decoupled from the texture of their contours (or separating material) in order
not to mix unrelated materials. This offers the additional possibility to combine them with
others coming from another structured texture.

• Framework for detail generation

We expose a framework to alleviate the work of creating repetitive details by using the user
and the available structure, model and texture information.

• Leaving control to the user

In all the solutions presented, we left some control to the user over parameters and important
parts of the process.

• Texture synthesis

Our approach contributes to the texture synthesis research area as most current methods fail
on structured textures. We also open avenues of thinking into how to add control to texture
synthesis techniques, as this control is key to satisfactory results.
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1.4 Thesis overview

This document is organized as follows.

Chapter 2: Related work This chapter describes the techniques to enrich geometric models with
detail information, either real or simulated, using appearance layers. It presents state-of-the-
art techniques to generate structured textures, ranging from geometric approaches up to
cellular approaches. Various methods to propagate details from example, such as texture
synthesis techniques, are reviewed before giving an overview of previous work focussing on
integrating the user into the process of creating details.

Chapter 3 This chapter presents our new approach to analyze a geometric structure in order to
extract a set of simple statistics, which are used in a two-stage synthesis phase to gener-
ate similar structures. We describe the tiling technique we use, showing its advantages in
allowing control of the synthesis process through the use of constraint maps or interactive
manipulation.

Chapter 4 This chapter describes our solution to extract appearance data from a structured texture
in order to rapidly generate and display the appearance of another given structure. The cre-
ation of reusable unified textures and texture atlases are explained along with the mechanism
to seamlessly blend all the texture extracts being used.

Chapter 5 This chapter presents our framework for semi-automatically propagating user-given
detail information using available texture, structure and geometry information. It demon-
strates results for the synthesis of displacement maps and describes additional layers which
would allow to recover other kind of 3D information.

Conclusion We conclude the thesis by summarizing our contributions and discussing open av-
enues related to structure, appearance and detail synthesis.

Appendix A: Glossary Terms whose definition can lead to confusion are explained.

Appendix B: Sweeping approach Succinct description of a geometric approach for structure
synthesis which was explored but did not meet our requirements of interactivity. Never-
theless, the concept is interesting.

Appendix C The French version of the introduction (chapter 1).

Appendix D The French version of the conclustion (chapter 6).
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Chapter 2

Related Work

"If you have an apple and I have an apple and we exchange
apples then you and I will still each have one apple. But if
you have an idea and I have an idea and we exchange these
ideas, then each of us will have two ideas."

—George Bernard Shaw

As we saw in the introduction, we have come to demand a very high level of realism in
computer generated images. To achieve this realism, computer artists have to build 3D scenes
containing a lot of lifelike details such as complex geometric models, advanced illumination
effects or photo-realistic textures. The set of diverse details added to a model defines its final
appearance.

The approaches we propose build up upon a great deal of previous work in disparate areas. In
this chapter, we start by describing work related to enhancing 3D scenes with geometric details,
either by truly modeling, or by simulating them. We then expose various methods designed to
relieve the user from tedious recurring work by helping him propagate details in his scenes. In
this thesis, we are particularly interested in the case of details arranged in a structured way. We
thus devote an entire section to the different approaches taken to generate such structured details.
Finally, since being able to control the results is essential for the end-users, we finish by presenting
techniques developed to this end.

2.1 Enriching computer-generated 3D worlds with details

2.1.1 Adding geometrical details

The first stage when building a 3D scene for any computer graphics production (whether it be a
movie, a video-game or a visualization of any sort) is modeling. The computer artist constructs
models composed of polygons, curves or any other surface representation primitives. The com-
plexity of the resulting scene, typically measured in polygon count for modeling, will be highly
dependant on the skills and patience of the artists and the quality of tools used. Furthermore,
the complexity he can afford depends on the target application. For interactive applications, the
polygon count cannot be on the same order as that used for production movies for example, where
rendering can be done off-line.
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Geometry costs a lot even if graphic cards power is rising more each year. As a lot of
the geometry used in a scene is not crucial (background, distant or out-of-focus objects), it is
common to use simplification methods to avoid having to render all the polygons, especially the
unimportant ones. Some authors (e.g., [Cla76] [FS93] [Hop96]) have developed simplification
heuristics to automatically discard polygons according to their importance. For example, objects
moving away from the viewer will progressively decay and it should not be noticeable. Computer
artists use the same trick by building the same model at various resolutions and exchange one
model for another appropriately. These techniques are part of the vast research area on the level of
detail problem, whose associated literature is extensive.

Artists can also take advantage of the geometry instancing possibilities of the soft-
ware/hardware they are using. This feature allows the reuse of existing geometry (for example,
a character in a crowd scene) while allowing small geometry or texture modifications to avoid
getting an exact clone of the original model. Modeling time is greatly reduced as only one model
has to be constructed in detail.

Another common approach used to reduce the geometry complexity (and thus modeling time)
is to use billboards (or impostors) [MS95] [DDSD03] instead of real geometry for distant or small
complex objects. A billboard is a flat, usually square, polygon on which an image of the object
is mapped to simulate this object. Billboards are used extensively in video games. However, it
is impossible to interact with these objects and the simplification becomes quite evident from a
close viewpoint.

Some image-based methods [DTM96] [POF98], using photographs as input, have been
developed to be able to recover geometry using computer vision techniques and user input. The
integration of the user is indispensable as techniques relying only on computer vision to recover
a scene geometry are not robust enough and their results have to be post-processed in order to
be usable for CG purposes. The final quality of the image-based modeling process depends on
the time spent on the task, but generally results in medium-resolution models whose details are
simulated by texture maps as depth information recovery is limited to the image resolution. The
quality of image-based extracted textures used to complete the models is also dependent on the
resolution, viewpoint and availability of the input images. Another way to get precise geometrical
details is to use scanning techniques (range scanning, laser scanning, optical scanning). However,
they suffer from the same problems as computer vision techniques: a lot of manual processing has
to be done on the output data in order to clean it, sometimes simplify it and make it usable. Most
of the time, the huge amount of data to process requires a lot of (man) time, effort and memory
storage.

The techniques mentioned in this section all aim at reducing the modeling time and effort.
However, it would be very tedious to model all the subtle details of a real-world surface like a
rock wall but it could be possible to generate a realistic impression by allowing to perceive this
complexity. This has always been an issue in graphics and the next section presents common
techniques used to add detail at a cheaper cost by simulating it.

2.1.2 Simulating details

For a lot of applications we cannot afford the number of polygons required to be able to model
real-life complexity. However, a few interesting techniques exists to increase visual detail without
increasing geometric resolution. The process called texture mapping [Cat74] [BN76] [Bli78a]
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[Hec86] [Hec89] [HS93] allows the addition of non-geometric details to geometric models. The
appearance of an object surface can be stored in a discrete, two-dimensional array, which we call a
texture. Data elements in the texture are referred to as texels, indexed by their texture coordinates.
In order to reconstruct a texture, given an image and a geometric description for the surface of
an object, each texel is projected onto the image according to a given parametrization. Texture
mapping operations are being optimized on current graphic boards to speed up the process [HL90]
[DWS+88]. The values in the image are sampled at the projection locations. The data in a texture
can be interpreted in various ways, some of which we give an overview of in the following.

Color Textures

The first and foremost purpose of a texture is to model the color attributes of a surface. In this
case, the values it contains are RGB color values obtained from a drawing created with a painting
software or a photograph of a real-world pattern on the surface of an object (photo-realistic
textures). This kind of texture is widely used and has the advantage of being simple to acquire.
However, as a texture is a 2D map of values bounded in space, it has the main disadvantage
of being resolution-dependent. When texturing a surface larger than the available map with
a fixed-size image, this image has to be repeated in a way that must appear indistinguishable
to the viewer as simply scaling (up or down) the texture lowers its resolution and its visual
quality degrades. Simple tiling often fails and artists have to deploy all their talent (and time)
to seamlessly cover the surface with the given texture as the human eye is very sensitive to
repetitive patterns [Mar82]. Such texture maps also face problems intrinsic to the texture mapping
process (i.e., parametrization problems) if the surface to texture is complex and getting a correct
non-distorted result can be very difficult.

Using a real-world photograph directly as a texture can give a stunning impression of
detail. However, there are some drawbacks to using this approach. The details are imprinted
into the texture and there is no possibility of having geometry-dependent effects like shadows,
self-illumination, self-occlusion or surface properties effects like differences in reflectance. In
addition, if the lighting in the 3D environment is different from the lighting used to capture the
texture map, the final rendering will appear incorrect and thus unrealistic. When the texture image
colors are blended with the computed lighting for the surface it is applied onto, the result can look
inconsistent and flat to the viewer.

Procedural textures [Per85] [Wor96] [EMP+94] offer a solution to this problem as they do
not consist of images but rather in a procedure which generates a texture to infinity, and is thus
resolution-independent. The texture colors are computed using the given function and a variety of
interesting patterns can be obtained by tweaking the procedure parameters. Their main problem
is the lack of control which is something very important for artists as they often do not like to be
stuck with the result of a process without being able to modify it. Examples of procedural textures
are shown in figure 2.1.

Solid texturing [Per85] [Pea85] [KK89] can be seen as a form of procedural texture mapping.
The idea behind solid texturing is instead of mapping a texture to the surface of the object, the color
at a point in texture space is given by a function F (x, y, z). The texture is defined in a reference
frame given by the texture space. The object can be placed anywhere in this 3D texture space and
two mathematical transformations are required in order to compute the color at each surface point.
See image upper-right image in figure 2.1.
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Classification Looking at the diversity of possible textures, we can extract three main groups:

Stochastic textures A stochastic texture can be viewed as a sample of a two-dimensional stochas-
tic process, which can be described in term of its statistical parameters. Stochastic textures
thus have and irregular but visually homogeneous structure. Natural textures, such as im-
ages of grass, can sometimes be represented by stochastic textures. Perlin [Per85] generates
stochastic textures (amongst others). See lower-left image of figure 2.1 for some examples.

Structured textures A structured texture is composed of a set of primitives, whose spatial or-
ganization (local and global) is determined by a set of placement rules. Examples of such
textures include tilings of the plane, cellular structures such as tissue samples, pictures of
brick and stone walls, etc. Worley [Wor96] generates structured textures procedurally. See
bottom row of figure 2.1.

Others Any other that does not fall in any of the two above classes. For example, the textures that
are a photograph of an object, mapped on a flat polygon. See upper-left image of figure 2.1.

a b c

d e f

Figure 2.1 Top row: Left, texture based on a photograph; center: a procedural texture; right: a solid
texture. Bottom row: Left, some stochastic textures; center, a structured texture; right, a procedurally
generated structured texture.

If the model underneath a texture is pretty simple (i.e., not a lot of polygons), the flatness of
the surface will be immediately noticeable when the surface is viewed closely or from a grazing
angle. Many techniques have been proposed to overcome these limitations. Amongst the most
widely known and used to simulate surface variations are bump mapping and displacement map-
ping which we describe next.

Bump and Displacement Textures

Two main techniques to simulate fine geometric detail on a simpler base surface, based on the no-
tion of textures, are widely used in computer graphics: bump mapping and displacement mapping.
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The principle of bump mapping [Bli78b] [Bli78a] is simple: a texture (the bump map)
contains modifications which are applied to the normal vector during illumination computations,
simulating lighting changes. As a result, highlights on the surface appear when lights are
moved around due to the use of the modified normal in the lighting equation. However the
geometry is left untouched and the flatness of its surface and silhouettes is easily noticed
when the surface is viewed from very close, or from a grazing angle. Moreover, surface shadows
originating from self-shadowing and highlights due to surface interreflections cannot be simulated.

Displacement mapping [Coo84] [CCC87] goes one step further by actually displacing the ge-
ometry according to height values contained in a displacement map. Each texel thus stores a dis-
tance instead of a color. This is typically a grayscale texture where black and white corresponds to
maximal displacement values in the direction (and opposite direction) of the interpolated surface
normal. The modifications of the geometry according to these values happen at rendering time,
when the surface is tesselated in thousands (even millions) of micropolygons whose vertices are
subsequently displaced according to the values in the map at that location. The lighting compu-
tations thus give a much more realistic look than bump mapping and silhouettes appear correctly.
However, the process used to take so much space and time that it was not generally used in pro-
duction. Recently, displacement mapping has been integrated in the graphics hardware [DKS01]
and can thus become a viable alternative to bump mapping.

Figure 2.2 shows the difference between bump and displacement mapping. True relief is pos-
sible with displacement mapping. Notice especially the differences on the object silhouette.

Figure 2.2 Bump mapping vs displacement mapping.

Bump and displacement maps can be either modelled by hand or generated procedurally.
As there is no new geometry created but only a 2D map of values, the size of the new data is
lightweight. However, creating such a map for a real world texture captured by a photograph is
a difficult task. Some methods attempt to automatically generate these maps from a set of input
images taken with various known light directions [RTG97] but they can only handle objects with
small surface variations.
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Augmented textures

Many interesting methods have been developed to augment basic texture objects with additional
information to produce more realistic details. Without going into details and for the interested
reader, we can enumerate the following techniques:

• Hypertextures [PH89]

• Reaction-Diffusion textures [WK91] [Tur91]

• Cellular textures [FLCB95] [Wor96] (described in section 2.3.2)

• Relief texture maps [dON00]

• Polynomial texture maps [MGW01]

• View-dependent texture mapping [DYB98]

All the techniques described in this section aim at simulating details by applying more or
less complex textures to the scene models. However, to avoid having to repeat the process, some
research has been done to generate detail automatically or imitate and propagate detail samples at
will. We give an overview of these techniques in the next section.

2.2 Propagating details

Details are often considered as the high-frequency parts of images or geometric models. Creating
these details can thus be a tedious process. Therefore, a natural demand is to be able to analyze
examples of detail in order to seamlessly resynthesize similar details at will. In this section, we
separate the techniques which aim at synthesizing textures from example, from the approaches
which try to recover other kinds of details from example.

2.2.1 Detail recovery

Some authors have addressed the problems of enriching scenes with details by exploiting details
already present in the scene or examples provided. We describe here some of these papers although
the notion of detail is so vast that we cannot possibly cover all aspects of it. We will not describe
approaches which build a specific model for a particular detail (for example, synthesis of bark
[LN02]) but rather approaches that are more generic or which can be easily generalized.

Height A lot of research has been done to recover height information (e.g., bump maps) from
example, either using a single image and some simplifying assumptions [DMG02] [LP00b] up to
methods using sophisticated measurements techniques, multiple images or varying illumination
[DvGNK99]. The main challenge faced by all these methods is the fact that the illumination
is included in the images and decoupling the real color from the lighting color is still a critical
research problem. In computer vision, a large literature is devoted to the "shape from shading"
problem (e.g., [Bro89] [ZTCS99]) which is a vast research area.



17

Geometry Dischler and Ghazanfarpour [DG99] present an interesting analytical approach for
the synthesis of macro-structured textures (i.e., textures with small oriented shapes on their sur-
face). They recover the shape and appearance of these small geometric structures through the
analysis of two orthogonal views and use this information to deform appropriately a series of gen-
eralized cylinders. The distributions, sizes and orientations of the macro-structures on the surface
can be controlled interactively, which represents an improvement over automatic texture synthe-
sis techniques which often distribute the features uniformly, without any possible user-interaction
(such as the technique of Fleischer et al. [FLCB95] described in the next section). A result from
their technique can be observed in figure 2.3.

Figure 2.3 Interactive Image-Based modeling of macro-structured textures: The image in the top-
left is analyzed to extract the shape, color and bump information of the macro-structure (seen below).
The two models on the right were textured and rendered with the resulting macrostructured texture
information. (Image from Dischler et al. [DG99])

Bhat et al. [BIT04] build on the image analogy approach [HJO+01] (and thus texture
synthesis) to learn a 3D geometric pattern from one example and copy this pattern to another
model. The pixel neighborhood searching is transferred to a voxel search using user-defined
vector fields on the input and output models. The geometry is directly transferred on the resulting
model. Figure 2.4 shows a seahorse model whose geometry has been modified using the analogy
from the cylinder pair above (with and without grooves).

Wang et al. [WWL+03] present an appearance-based method to model the complex visual
aspect of tree bark surfaces from a single image. From an input bark image and some user inter-
action they output a plausible height field and texture which allows the generation of similar bark.
They perform a user-assisted texton analysis to segment the bark image into regions corresponding
to different features. An interactive editing tool is then used to build a height field for each feature
using similarity-based editing [BD02], which is adequate for a realistic rendering. A texture is
generated using the height field, the input image and an heuristic to decouple the color from the
illumination and map a color pixel to a height pixel. We think their approach fits the artists work
methods and could be generalized to other kinds of detail.

Resolution Ismert and Bala [IBG03] aim to reintroduce high-frequency details in textures com-
ing from image-based modeling techniques. These details have been lost due to the resampling
process when applying the photograph to the virtual models, or because the original point of view
of the camera was not optimal. They build on a texture synthesis technique [EL99] to synthesize
missing detail (and not an entire texture) using a sampling-based metric to evaluate the location
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Figure 2.4 Geometric synthesis by example: The seahorse geometry is modified according to the
analogy represented by the cylinder models pair, seen above. (Image from Bhat et al. [BIT04])

of regions of low-frequency data in the images. Their main contribution is the introduction of this
metric, which is based on the Jacobian of the imaging transform. A result of their technique can
be observed in figure 2.5, where they increased the resolution of image-based textures taken from
a far viewpoint.

Figure 2.5 Detail Synthesis for Image-Based Texturing: Resolution lost in the farthest textures is
reintroduced by using the more detailed texture of the front column. (Images from Ismert and Bala
[IBG03])
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Other authors have addresses this "super-resolution" problem using image analogies [HJO+01]
to paste high-frequency details over their low-resolution version or more advanced learning mod-
els [FJP02].

2.2.2 Texture synthesis

Since humans are very sensitive to repetition in patterns, simple tiling of the texture is not always
a good solution. Texture synthesis techniques aim at recovering the characteristics of an infinite
texture by the analysis of an input sample, in order to generate output textures which have the
appearance of the sources (see figure 2.6). Texture synthesis approaches have received a lot of
attention in the recent years. Since they aim to synthesize and propagate details on arbitrarily
large surfaces without too much effort, they fulfill a real need for the artists who usually build
these textures by hand.

Figure 2.6 The texture synthesis approach. (Image from Efros et al. [EF01])

Texture synthesis approaches can be classified into three main categories: statistical, pixel-
based and block-based.

Statistical approaches [Bon97] [HB95] try to recover the underlying statistical process at the
origin of the (generally stochastic) texture in order to generate new images having the same kind
of features. These techniques are efficient but do not preserve the local or global structure.

Pixel-based approaches [EL99] synthesize a new texture so that it is locally similar (pixel
neighborhood comparisons) to an example texture patch. The new texture is generated pixel by
pixel, and each pixel is determined so that local similarity (computed using the pixel neighbor-
hood) is preserved between the example texture and the result image. This process is slow because
of the large search space but optimizations have been developed [Ash01] [WL00]. They also do
not preserve global structure.

Block or patch-based approaches [GSX00] [EF01] [LLX+01] [KSE+03] limit the search
space by considering blocks of pixels instead of single pixels and apply special techniques to
reduce overlap artefacts between the chosen patches. Depending on the patch size (fixed or not)
and shape, they can preserve the local structure, to a certain extent, as well as some individual
details. Some [KSE+03] are better than others in preserving global structure; overall these
approaches tend to introduce unwanted visual artefacts at patch boundaries. In this work, we use
the Efros et al. [EF01] approach and describe it in more detail in section 5.3.
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Hybrid methods [NA03] combining the advantages of pixel based and patch based produce
even better results for global structure conservation. Some approaches use multiple passes at
increasingly finer resolution to improve the quality of their results.

Some results of these various approaches are presented in figure 2.7 and 2.9.

Figure 2.7 Results for the three-types of texture synthesis algorithms.

Some of these algorithms perform "constrained" texture synthesis [Ash01] [EF01] [HJO+01]
(also called "texture transfer" by some authors) using, in addition to the input texture sample, a
guiding image of the same size as the desired output texture. This image will influence the choice
of the pixels (resp. blocks of pixels) during the synthesis. The candidate pixel (resp. block) has
to respect synthesis constraints (such as ensuring local similarity with the already chosen pixels
(resp. blocks)) but also has to match the color of pixels (resp. blocks) of the guiding image. This
technique gives results such as the one in image 2.8 where the black and white photograph was
used to control a texture synthesis using the small fabric sample texture, to give the results shown
to the right.

These approaches first addressed 2D texture samples, producing 2D texture outputs that
could then be applied to 3D models. However, the parametrization problems inherent to texture
mapping imply that it is more efficient to directly generate the texture onto the models, taking the
geometry into account during the process. Interesting techniques have been presented using this
idea [PFH00] [SCA02] [NC99] [YHBZ01] [ZG04a].

One of the main problems of texture synthesis is that a lot of new information (pixels or
blocks of pixels) is generated out of a small sample. However, all this synthesized data is already
present in the sample image so a lot of memory is wasted. Soler et al. [SCA02] avoid this problem
by only generating, for every mesh vertex of their models, texture coordinates indexing into the
sample rather than rearranging existing color data and mapping a new, much larger, texture. Large
models can be textured out of a small texture sample thus achieving important memory gains over
traditional texture synthesis techniques and an increase in rendering efficiency.

Texture synthesis techniques look really promising by their results. However, to our knowl-
edge, none of the existing published techniques are available in commercial packages and one
might wonder why as the exposed results seem to solve the problem pretty well. One plausible
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Figure 2.8 Using a guiding texture (middle) to influence the result (right) of the texture synthesis
process using a sample (left). (Images from Freeman [EF01])

explanation is their lack of usability. The results of these approaches are still highly unpredictable
and uncontrollable. After experimenting and investigating some of them, we summarize here the
main problems that we encountered when using the current methods:

• The algorithms we tested are really sensitive to the choice of input parameters (e.g., size of
block for block-based techniques, size of neighborhood for Markov field type of approaches,
thresholds and non-intuitive parameters of all types, algorithm starting point) and they re-
quire an often tedious tweaking of these parameters for each different input texture they
have to handle.

• Markov random fields models are known for their lack of stability. If the chosen pixels start
to deviate too far from those present in the input texture, the algorithm can get stuck in a
space where only garbage is produced and it is not until the end of the algorithm, when the
result is displayed, that damage can be evaluated. Thus, a great deal of time can be lost
especially if the problems have started appearing at the beginning of the algorithm, where it
could have been corrected (or the execution cancelled) in time.

• Most current techniques fail on textures which display a high degree of structure. They often
excessively blur or mismatch the objects boundaries. Figure 2.9 shows various examples of
synthesis failures, where global structure is lost, boundaries are not preserved, etc.

• Statistical techniques assume some probability distributions of the texture pixels and aim to
recover the underlying distributions so as to synthesize a texture having the same stochastic
properties. However, this assumption cannot be true for structured textures.
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Figure 2.9 Some failures of current texture synthesis algorithms on patterns and structured details.
Pattern coherence is lost, structure regions are merged, cut or invalid, boundaries are blurred or mis-
matched, algorithm becomes disoriented and produces garbage.
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As we can see, the methods illustrated here fail on patterned and structured textures (for
example, rock walls) and, to our knowledge, there is no texture synthesis algorithm which
performs well on structured textures composed of irregular shapes. We believe this is mainly
because a higher-order process has generated the structure and methods that operate at the pixel
color level cannot capture back this process. The structure boundaries are often lost/ignored
and the overall structure is destroyed. Two very recent works seem to address this problem in
particular and get better results on structured textures than any other methods. They are described
in more details in section 2.3.3.

Amongst all different types of textures and because of the current difficulties to propagate
them, we focus in this thesis on textures composed by a series of variously-sized primitives, orga-
nizing the details with an underlying structure. There are plenty of such structured textures around
us (see images 2.12 and 3.1 for some examples). The following sections give some background
and insight on how structure and structured textures have been considered in research up to now.

2.3 Structuring detail

The word "structure" is very generic and can have a variety of meanings. In this work, we mainly
adopt the following simple meaning: A structure is an arrangement of parts. It is a manner of
organization.

Visually, the structures we are interested in are composed of two main elements: the primitives
and their spatial organization. These two components are independent and we will treat them as
such.

In the computer graphics field, structure is present, either in the geometry itself (2D or 3D) or
in the patterns used to enhance it. A structure can be considered to be a semantic property of a
texture. A brick is an object, a structure composed of bricks is a wall. In what follows, we describe
some geometrical notions of structure and some elements from Computational Geometry. We then
explore various ways that have been used to create structured textures in computer graphics and
finally describe the methods that have attempted to build structured textures from the analysis of
examples.

2.3.1 Geometrical aspect

Computational geometry mainly addresses problems in discrete geometry, where points, lines and
segments are used to approximate continuous elements like curves. Discrete geometry is a basic
tool for computer graphics, which also uses the same discrete structures to display discrete images
in the form of pixel arrays.

The geometric properties of various types of structures have been studied extensively in
computational geometry [OBSC00]). Geometrically speaking, a structure can be defined as a
partition of the Euclidean space into disjoint space filling cells which we call regions. Depending
on the domain considered, this partitioning can take various names. It can be a tesselation, a
subdivision, a partition, an arrangement, a CW-complex, etc. In this work, we use the following
definition: "A 2D cellular subdivision defines a partition of the plane into regions whose shape
can be governed by some measure". More formally, a cellular subdivision can be defined as
follows:



24

Let B0 denote the interior of a set, B, in d-dimensional Euclidean space <d . A subdivision,
S , in <d is a countable set of regions Xi ⊂ <d such that:

1. Xi
0 ∩Xj

0 = ∅ for i 6= j.

2. ∪iXi = <d

3. #{Xi ∩B 6= ∅} <∞ for all bounded B ⊂ <d

The first two conditions specify that the regions partition the space, and have disjoint interiors.
The third guarantees that the number of regions is countable. Indeed, we only consider finite
subdivisions consisting of a fixed number of regions on a compact subset of the plane.

One of the most well-known and studied cellular subdivisions is the Voronoi Diagram, which
we describe below. It is of particular interest to us, as we use a variant of a Voronoi Diagram to
model our structures (chapter 3).

Voronoi Diagrams

A Voronoi diagram of a vertex set, called generators, is a subdivision of the plane into polygonal
regions (some of which may be infinite), where each region (the Voronoi region) contains the set
of points in the plane that are closer to its generator than to any other generator. Voronoi diagrams
have a wide range of practical applications, and there are efficient well-known techniques for
computing the Voronoi of a set of points. The ordinary Voronoi diagram uses a simple Euclidean
distance metric and leads to convex regions of valency 3 (i.e., adjacent to three other regions). A
typical Voronoi diagram is shown in figure 2.10, left.

Figure 2.10 Left: A traditional Voronoi Diagram. Right: A Voronoi Diagram of line segments.

If the generators are line segments, instead of points, we can still compute a corresponding
Voronoi diagram. We simply need to provide an appropriate distance function to compute the
regions whose points are closer to their line segment generator than to any other. A Voronoi
Diagram of line segments is shown on the right image of figure 2.10. This can be further
generalized by letting the generators be any higher-order geometry, such as a polygon for instance.
In this case, we need to provide a way to measure the distance between a point and the generator.
When the generators are points, the Voronoi regions boundaries are straight lines. More complex
generators can result in curved boundaries, and more interesting region shapes. These diagrams
are referred to as generalized Voronoi diagrams.
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In addition to the location and shape of the diagram generators, the shape of the Voronoi re-
gions can be controlled through the distance metric used. Instead of the usual Euclidean distance
one can consider the more general concept of convex distance functions, which leads to not nec-
essarily convex Voronoi regions with valency 6= 3. For any convex shape, there is a corresponding
convex distance function. If the convex shape is symmetric, then the resulting distance function
is a metric. If not, the result can still be used to define a Voronoi diagram. The convex distance
is useful to solve the problems that cannot be solved using the Euclidean metric. Ma [Ma00] de-
scribes how to compute a Voronoi diagram using a convex shape as a distance metric (see figure
2.11).

Figure 2.11 Voronoi diagram (left) computed using a convex distance defined by a convex polygon
(right). (Images obtained using the applet of the GeometryLab [geo] of the University of Bonn)

2.3.2 Structured texture generation

If a graphic designer wants to create a texture of a stone wall or a pavement such as those illustrated
in figure 2.12 (or any kind of structured texture such as the ones of image 3.1) in order to enhance
a CG model, he has a few options, which we discuss.

Figure 2.12 Some real-world patterns which could be used to texture a virtual 3D model. (Top left
image from Miyata et al. [MIS01])
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Geometric approaches

An artist can draw the structure by hand and then fill the regions with a texture, e.g., a rock texture
such as the one in figure 2.13. However, drawing the structure by hand can be very tedious if the
surface to cover is large. Moreover, using only one texture for the appearance is not really realistic
as its repetition will be noticeable, especially if the texture is small. The best thing would be to
have a few similar textures with various colors and features to avoid the repetition artefacts. This,
as well as further modifications, are very time-consuming tasks, any a posteriori modification of
the structure incurring similar additional work.

Figure 2.13 A rock texture.

Another option could be to draw a set of different desired region shapes and try to pack them
(by hand or using an algorithm) into the available space. However, if the shapes are not sim-
ple shapes such as constant-size circles or squares, this problem (known as the polygon-packing
problem of which we can see an example in figure 2.14) is known to be NP-hard [FPT81].

Figure 2.14 A polygon-packing problem example.

Finally, an artist can take a photograph of an existing structure or draw an example structure
and use this sample to tile it on the target surface. However, repetition may still be an issue, there
can be visible seams in the final texture and the border matching process can be a lot of work.
Finally this sample can be used as input to the various texture synthesis algorithms proposed in
the recent years (see section 2.2 for the description of such methods) but most of them fail on
structured textures or are very difficult to tweak to get a good result.

Voronoi-based approaches

Voronoi diagrams constitute a very powerful tool for partitioning space into a set of regions. Many
different kinds of Voronoi diagrams exist and the book by Okabe et al. [OBSC00] is an excellent
reference on various types of Voronoi diagrams. As we saw in the previous section, a Voronoi
Diagram can be built out of a set of generators associated with a distance metric. Variations can be
obtained by modifying the shape of the generators or the distance metric used. Figure 2.15 shows
two examples of Generalized Voronoi: the left one is a Weighted Voronoi, while the right one is
also a Weighted Voronoi with variously shaped generators.
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Figure 2.15 Two generalized Voronoi: variations on the distance metric and the shape of generators.
(Image from Hoff [KEHKL+99])

The main problems of using Voronoi Generators of varied shapes in order to obtain a structure
is that Generalized Voronoi Diagrams are very hard to compute analytically. Moreover, the more
complex they are, the less predictable the resulting diagram aspect will be so they cannot really
constitute a useful tool for artists to get a structure as they need to have control on the result of a
tool.

However, some authors have used Voronoi Diagrams for specific tasks. Secord [Sec02b] uses
Voronoi Diagrams to determine the position of stipples for the generation of stipple drawings from
CG models. See figure 2.16, left. Hausner [Hau01] simulates decorative mosaics (figure 2.16,
right) by computing a Centroidal Voronoi Diagrams (described in more detail in section 3.2.1)
using a Manhattan distance metric. This metric causes the Voronoi Regions to have a square
shape. The tiles are aligned along user-drawn direction fields by the Voronoi computation process
and their color is sampled from an original image. His method gives nice results and is appropriate
to its target application. However, it is not really generalizable to other shapes.

Figure 2.16 Left: Stipples are placed on a model using a Voronoi approach. (Image from Secord
[Sec02b]). Right: Hausner uses a Centroidal Voronoi Diagram with a Manhattan metric to arrange
square tiles on the edges of drawings to simulate mosaics (Images from Hausner [Hau01]).

Another interesting work using Voronoi Diagrams to generate structured textures is the one
of Walter [WFM01] [WFR98]. He simulates the creation and growth of mammalian patterns
(especially reticulated giraffes and tigers) using a biologically-plausible generation model. This
procedural "Clonal Mosaic" model [WFR98] is based on cell-to-cell interactions and divisions
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rules. Cells are modeled by points, whose Voronoi diagram is computed to generate the tesselation
of the surface. Results visually similar to real-world patterns can be obtained, as can be seen on
image 2.17. They state their approach could be easily generalizable to simulation over arbitrary
surfaces.

Figure 2.17 Generation of giraffe skin patterns using Voronoi diagrams (Image from Walter
[WFM01]).

Procedural approaches

Several papers have addressed the problem of generating structures automatically, using a set of
parameters to allow some variety in the results. This procedural approach seems like a natural one
to take when thinking of the way the artists work to create their scenes.

Yessios [Yes79] presents methods to draft stone walls and wood patterns and output the corre-
sponding two-dimensional line patterns. A first approach generates a structure stone-by-stone by
generating rectangles one after the other using the available space. The structure is constructed in
this way layer by layer, as we can observe in figure 2.18.

Figure 2.18 Yessios’ technique to generate a wall stone-by-stone. Each layer is generated stone-by-
stone (left and right, a) to build the final structure, whose interstice size can be varied (b,c) (Images
from Yessios [Yes79]).

A second technique builds the structure by first building the layers, then adding the interstices
and perturbed using noise functions. By varying the algorithm parameters, he can obtain a variety
of wall-like line patterns as can be seen in figure 2.19. However, due to their construction process,
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the structures are limited to layered structures and there is no possible individual control on the
region placements and their shape.

Figure 2.19 Yessios’ technique to generate a wall line-by-line. Layers are generated first using 2D
lines (a), then stones are added in each layer (b). Lines patterns are perturbed (c) and interstices are
created (d) to lead to a final wall image. (Images from Yessios [Yes79]).

Miyata [Miy90] went further in this direction by adding a third dimension to the generated 2D
structure and output 3D stone wall patterns that could then be applied to 3D models as seen in the
right image of figure 2.20. The average size of stone, the roughness of its surface, the variance of
its size are input parameters that can be used to vary the aspects of the results. Notice, however,
the "gift wrap" aspect of the textured model.

Legakis et al. [LDG01] present an interesting procedural modeling approach to apply cellular
textures to 3D models. In this work, the placement of the cells (bricks) is coupled with the under-
lying geometry onto which they are applied. By placing first the most constrained cells (corners,
edges), they avoid problems that can happen at the model boundaries. However, the user some-
times has to guide the choice of the bricks and each new model to texture requires a new pattern
generator to be written which is more of a programmer task than an artist’s. See result images in
figure 2.21.

Cellular approaches

In follow-up work of [Miy90], Miyata et al. [MIS01] adopted another approach to synthesize
other kinds of structures. Pavements are generated according to some contour constraints and
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Figure 2.20 Left: The structure is built line by line by generating rectangles fitting in the available
space. Middle: The edges are randomly perturbed to generate the stones. Right: The appearance
(2D and 3D) is randomly generated and the final texture can be applied to a 3D model. (images from
Miyata et al. [Miy90])

Figure 2.21 Models textured with two different pattern generators (Images from Legakis [LDG01]).

cell-packing techniques are used to make the 3D stones fit into the given contour, as seen in image
2.22. Cell-packing is a cellular approach which consists in applying particle system techniques to
entities which constitute the final structure regions. Each particle has an energy potential which is
computed from particle-to-particle distance and direction. The total energy potential is minimized
iteratively until some convergence is reached. This technique has the advantage of being able
to respect contour constraints for the target surface. However, it can only be applied to simple,
similar shapes like circles or squares, whose contour can be disturbed afterwards to create more
disparity.
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Figure 2.22 Cell-packing techniques used to generate pavements on a target domain. The stone
aspect is generated randomly. (Images from Miyata et al. [MIS01])

Later, Itoh et al. [IMS03] applied and enhanced the cell-packing technique for the generation
of organic textures such as animal skins (figure 2.23) by allowing the control of the anisotropy
and directionality of the generated cells. The fine details of each generated 3D cell were created
using fractal noise, generated according to a set of predefined rules. A big disadvantage of this
technique is that a lot of geometry is created for a small texture sample, on the order of millions
of triangle for a small texture patch.

Figure 2.23 Generation of organic textures using cell-packing with anisotropy and directionality
constraints. (Images from Itoh et al. [IMS03])

Fleischer et al. [FLCB95] also describe a cellular texture method to model surface details such
as scales, feathers or thorns. Their method creates cellular particles constrained to lie on a 3D
surface and whose arrangement (location, orientation) is computed using an energy-optimization
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technique. The cells are then converted to 3D geometry using user-defined appearance parameters.
Some results are shown in image 2.24. Particle systems work well for natural structured textures
such as animal skins. However, the authors state that the programs ruling the interactions between
cells are difficult to write and the results are hard to predict or control. Moreover, no global
structure can be imposed on the cells arrangement.

Figure 2.24 Fleischer generates parameterized 3D thorns using a cellular approach. (Image from
Fleischer [FLCB95])

Worley [Wor96] introduced a cellular texture basis function to extend Perlin’s turbulence
functions [Per85]. This function takes as input a set of seed points and defines Fn(P ) as the
distance from P to the nth closest point. Many interesting results can be achieved by linearly
combining the Fn. In particular, the form F2 − F1 implicitly defines a Voronoi diagram of the
seed points. These functions can lead to nice-looking structured textures (see bottom-right image
of figure 2.1) using implicit cells for rendering. However, these types of cells are not actual
geometry and are thus strictly two-dimensional. We believe the inverse problem of retrieving the
right combination of the basis functions to achieve a particular cellular texture to be an interesting
research problem.

All the approaches described in this section are principally based on generative models, some-
times including a simulation step to place individual cells. However, to get a particular desired
result - corresponding to a real-world sample for example - the models parameters have to be
tuned precisely, and the simulations run again and again, in order to perhaps get a result approx-
imatively similar to the sample. Some of these authors have mentioned as extensions the fact of
trying to obtain the correct parameters by the analysis of an example. Only a few others have
addressed this problem, as described in the next section.

2.3.3 Structure synthesis from example

The problem of generating a structure from the analysis of a sample given as an example of
the desired overall look is not trivial. It is called an "inverse problem", where one tries to
compute the parameters to give to a certain model to achieve a certain output result, as opposed to
a "direct problem" where the result of a model is computed from the input of a given parameter set.

As we have seen in section 2.3.1, a wide range of visually different structures can be generated
by computing the Voronoi diagrams of a set of generators, by varying the generator shapes
(points, lines or other shapes), their density or the distance metric used in the algorithm. However,
deducing these parameters from observation is not an easy task. Okabe et al. [OBSC00] explain
a method to fit a Voronoi diagram to a simple polygonal tesselation. They associate a point
generator to each region of the polygonal tesselation to approximate and model the problem as
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a function to optimize. They compute the corresponding Voronoi diagram and the generator
locations are progressively adjusted in order to maximize the common area between the obtained
Voronoi regions and the original regions. The intersection area is modeled as an objective function
and the best solution is found using the steepest descent method. This method applies to simple
region shapes whose area can be easily computed. For regions whose boundaries are more
complex, the objective function, if it exists, might be very intricate to define and solve. However,
trying to fit Voronoi parameters (generator shape, density and metric) to a given complex structure
is a very interesting, but very hard topic which could be investigated.

Lefebvre [LP00a] has addressed the problem of automatically extracting simple parameters
from a photograph of a structured texture (brick wall (figure 2.25, left) or wood) in order to
generate similar structures (figure 2.25, right). However, his technique recovers a few well
defined parameters (height and width of bricks, size of gap between bricks, etc.) and is thus only
applicable to regular brick walls.

Figure 2.25 Lefebvre recovers simple parameters from the observation of a brick wall (left) in order
to synthesize new versions of it (right).

In early visual perception, the basic visual elements are referred to as textons and their study is
important for a variety of problems (image coding, image modeling, etc.). Zhu et al. [ZeGWW02]
define a texton as a small template patch consisting in a number of bases at some geometric and
photometric configurations. They use these textons to analyse an image and build a generative
model [eGZW01] by progressively adjusting the textons on the detected image features. The
spatial relations of the bases serve to build a probabilistic model which can be learned and used
to reconstruct the image and synthesize new images. The image on the left of figure 2.26 shows
the result of the texton analysis phase of a brick wall, whereas the image on the right shows the
synthesis step. The textons used are also shown. The approach is interesting and the concepts
should be explored in order to be applied to computer graphics applications as the current results
are not exploitable "as is".

In the same line of thought, Dischler et al. [JMKBD02] manually segment a texture image in
various texture particles whose spatial arrangement is analyzed by computing the co-occurrences
between neighboring particles. The texture can then be re-synthesized using this information and
the individual particles by a "seeding procedure" which propagates the particles from one starting
particle. The user can control the distributions of particles on the surface. However, their technique
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Figure 2.26 Texton learning. Left: Analysis step, discriminating the bricks from the mortar and
building a probabilistic model. Right: Synthesis step, the templates are sampled to generate a similar
image. (Images from Zhu et al. [eGZW01])

does not work for textures characterized by complex correlated spatial arrangements such as rock
walls. One of their result is presented in image 2.27.

Figure 2.27 A sample texture (e.g., a photo) is used as input (left). It is manually decomposed into
texture particles (center) in order to synthesize a new similar texture (right). (Image from Dischler et
al. [JMKBD02])

Texture synthesis with structured textures

As described in the preceding section, texture synthesis techniques try to replicate a given sample
but do not perform analysis other that of color or frequency, and thus will easily destroy any
original existing visual structure (cf image 2.9). Some recent texture synthesis approaches have
specifically addressed the problem of structured textures.

Wu and Yu [WY04] propose a method to correct the artefacts at the patch boundaries by
using a feature map to store structural information of the high-level features and guide the texture
synthesis. Curvilinear features are matched and aligned by measuring structural similarity. The
feature map is extracted from the sample texture and synthesized at the same time as the new color
texture, which it guides. However, the results shown are not much larger than the input texture
used and the computation times are much longer than previous methods.

Kwatra et al. [KSE+03]’s graphcut texture synthesis approach is in our opinion one of the
most interesting techniques to robustly generate a structured texture from a sample. They do not
require a fixed block size but rather use varying-sized patches that they disperse and overlap on
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the output texture domain, at various offsets. They represent the texture to be synthesized as a
graph and reformulate the problem of choosing and blending the optimal patches as a min-cut
problem, for which robust solutions already exist (e.g., the max-flow algorithm, which they use).
However, for irregular textures, the problem is only displaced as there is no guarantee that the
shape of the original regions will be preserved. In addition, for periodic textures, an incorrect
choice of the overlap offset will destroy the periodicity of the texture.

Liu et al. describe a new class of texture which they call "near-regular textures" and define as
textures which "deviate geometrically and photometrically from a regular congruent tiling". Image
2.28 presents their corresponding texture classification. Their method requires a user to manually
initialize a texture synthesis process by indicating on a given sample of a near-regular texture the
underlying deformed lattice that he supposes to be at its origin. He also has to indicate some
information for a light-map extraction process and set the levels of geometry and color regularity.
This information allows the recovery of deformation fields for both geometry and lighting so as
to synthesize them jointly or separately. These recovered fields also permit some manipulation
operations such as modifying the deformation undergone by the texture, varying the geometry and
color parameters or deforming another near-regular texture in the same way (see figure 2.29 for
some examples). Their approach is different and quite interesting. The integration of the user
in the process enables a robust recovery of the deformation fields. The exposure of the analysis
statistical parameters of their analysis permits the synthesis of other flavors of texture from the
same input sample. However, their technique does not work for irregular textures such as stone
walls, where the individual regions can greatly vary in size.

Figure 2.28 Texture classification according to Liu [LLH04].

Texture synthesis techniques have improved related to synthesizing regular patterns. However,
anisotropic structure such as natural stone walls are still very hard to handle and we believe that
no existing solution is currently satisfactory. Recovering patterns from example is a hard problem.
Some authors have fairly good results because they choose to integrate the user in the process,
either to influence, guide or correct the results. This aspect of user-integration is fundamental in
computer graphics and we review in the next section some approaches which have included the
user at some point.
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Figure 2.29 Some results of Liu’s near-regular texture analysis and synthesis (Image from Liu
[LLH04]).

2.4 Controlling detail

In a typical computer graphics pipeline, an artist produces 3D images with the tools he is given
access to. Thus, it is really of prime importance that the artist has as much control as possible over
the output of any tool he is using. If everything is automatic, it is like telling a painter to push a
button and its painting will appear automatically on its canvas: he will not use the tool. However
we believe that a technique which alleviates its work when this work is far from creative (e.g.,
tedious, repetitive tasks) will be more than welcome.

Some authors have considered this aspect of control by creating techniques which integrate
the user to give control on the output result, either by setting predictable parameters, influencing
the process or being allowed to edit the result. We review here such works, directly related to the
issues we address in this thesis. Some approaches previously described in this chapter also allowed
some control (e.g., [WWL+03] [DG99]), we will not repeat them here.

Controlling texture synthesis

The lack of control in current texture synthesis algorithms makes them less attractive for usage in
real-world productions. The guiding texture used in some texture synthesis algorithms [Ash01]
[EF01] (as described in section 2.2.2) is an attempt at inserting control into an otherwise automatic
process.

The approach of Hertzmann et al. [HJO+01] goes one step further by providing a training
data analogy, consisting of a pair of images, to "learn" an image processing operation to apply
to other images. The input to the algorithm is the training pair formed by a source image A
with its filtered version A’, and a target image B to which the algorithm should apply the same
transformation as the one from A to A’ to give a result image B’. The analogy is computed using
existing pixel-based texture synthesis techniques, by building a search space of feature vectors.
The feature vector for a pixel of A is composed of its pixel-neighborhood and the neighborhood
of its corresponding pixel in A’. When synthesizing B’, each pixel of B is replaced by the pixel
from A’ having the most similar feature vector. The authors display several results with operations
such as embossing, artistic filters, image colorization, etc.
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To simulate local variations in size of the texture elements in a large generated texture (such
as a leopard skin, see image 2.30), Tonietto et al. [TW02] present a texture synthesis method,
inspired from Wei and Levoy [WL00], which synthesizes its output by interpolating between
versions of the same sample at different resolutions. Transition areas are defined between output
regions which use the same input sample. Some results are shown in image 2.31. The idea of
being able to control the output of a texture synthesis algorithm is crucial in order to make these
techniques more usable. This is a first simple step in this direction as it is only limited to variations
of the element size over fixed domains. Being able to control the placement, size, orientation and
shape of the texture elements would be a big step forward.

Figure 2.30 A leopard skin has spatially varying texture features. (Image from Tonietto et al.
[TW02])

Figure 2.31 Some results of locally controlling the output element size in a synthesized texture.
(Image from Tonietto et al. [TW02])

Taponecco et al. [TA04] take a similar approach by allowing the output of the texture synthesis
to be influenced by a set of input filters. The output texture is synthesized with a pixel-based
approach and the best matching pixels are selected from a set of input samples, whose properties
(orientation, size) can be modified by an underlying filter. Some results are shown in image 2.32.
Their work has ideas similar to our work on example-based detail propagation (chapter 5).
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Figure 2.32 Results of the steerable texture synthesis approach. From left to right: The input sample
is modified through a superimposed field: phase information is used to change the direction of the
pattern, magnitude information is considered in addition to scale the original pattern. In the rightmost
image, a critical point is visualized: the pattern is modified by rotation and color changes along several
directions. (Image and caption from Taponecco et al. [TA04])

Procedural textures do not have the resolution problem of image-based textures. However,
their output is not controllable and getting an exact desired result is often very difficult, even
impossible in some cases. An interesting exception is the commercial software package [all] that
permits local control and modification of procedural textures while maintaining the benefits of the
generative approach.

Controlling appearance

Controlling the content of appearance layers is crucial for artists. Some authors have considered
this requirement and provide techniques to fulfill this need, either by influencing the detail
synthesis process, propagating changes or allowing interactive modifications.

Haeberli’s paint-by-numbers approach [Hae90] has inspired a quantity of subsequent research
works. In this pioneer paper, he presents an interactive paint system. In particular, he describes
how to add a layer of control by using an image colors to parameterize the strokes of a paint brush.
The "texture-by-numbers" technique of Hertzmann et al. [HJO+01] is inspired by their work.
They label by hand various parts of an input image according to its texture components. When
given a new labeling, the algorithm synthesizes a new image using the image original pixels and a
texture synthesis technique getting its samples from the appropriate original labeled regions.

Hanrahan and Haeberli [HH90] introduced a new paradigm for direct WYSIWYG painting
on 3D surfaces. Their tools let the artist design the texture maps directly onto 3D models by
projecting screen-space paint strokes onto the 3D surface and then into texture space. This
technique allowed for an instantaneous visualization of the result of the appearance layer and
allowed the artists to concentrate more on the result than on the creation of the texture map itself,
thus reducing the parametrization problems.

Brooks et al. [BD02] [BCD03] present an interesting approach to propagating local mod-
ifications. Their approach employs the same paradigms as texture synthesis for determining
similarity of pixel neighborhoods. However, they use this similarity to replicate interactive editing
operations (painting, cloning or warping pixels or regions of pixels) in order to create a new,
different looking version of an original texture. Figure 2.33 shows some results.
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Figure 2.33 Similarity based editing. The original textures are in the middle row. The two other
rows show the modified textures with the white circle indicating the origin of the modification. (Image
from Brooks and Dogson [BD02])

This paper instigated Zelinka and Garland [ZG04b] [ZG03] to transfer this approach in 3D.
Instead of determining similarities between pixel neighborhoods, they have to perform local sur-
face comparisons, which is a much harder problem. We believe there is a lot of interesting future
work in this direction.

2.5 Summary

In this chapter we identified previous work related to some of the problems we address in this
thesis (as described in section 1.1), such as the synthesis of irregular structured textures and the
recovery of details from example. There are also some interesting techniques which we build on or
from which we transfer principles in order to build some solutions to these problems. In particular,
as Ismert et al. [IBG03], we want to use photo-extracted textures as a guide for the reintroduction
of details. We will see that we generalize this approach to using the underlying model as well.
The image analogies framework [HJO+01] principles also go along the same lines of thoughts.
For the recovery of appearance information we aim to decrease memory usage when synthesizing
information, in the same manner as Soler et al. [SCA02], and more generally, use instancing
principles where possible.
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Chapter 3

Generating 2D Structure from Example

"Reality is merely an illusion, albeit a very persistent one."

—Albert Einstein

Real-world structured textures can be found all around us, in masonry, tiling, biological tissues
and many more, as we can see in the images of figure 3.1 and figure 2.12. Their geometric nature
brings about many interesting challenges as we saw in chapter 2. In this section, we address the
problem of analyzing such structures in order to get a compact description which will allow us to
generate a similar version of them without it being a simple copy of the example. This can be seen
as a 2D geometric problem (as seen in figure 3.2) which we will address as such. After stating the
problem, we will explain the approach we chose, describe its avantages and limitations and show
some of the results we obtained.

3.1 Motivation

In section 2.3, we gave the following definition for a geometric cellular structure: "A 2D cellular
subdivision defines a partition of the plane into regions whose shape can be governed by some
measure". For example, a Voronoi diagram is a partition where the points of any region are closer
to the region generator than to any other generator. Thus the measure used is a distance metric.

Given a structured texture sample, for example a photograph of a stone wall, we can extract a
geometric subdivision which allows us to separate the texture sample into its various primitives,
i.e., the subdivision regions1. In the following, a region is composed of a number of vertices, linked
by edges. Some subdivisions can exhibit a certain amount of meta-structure, i.e., the regions
are not randomly dispersed but their arrangement seems to follow a simple underlying pattern
(e.g., brick or stone walls). Some examples of the structures we want to handle can be seen in
figure 3.3. The one on the right side has a layered meta-structure, as can be found in many man-
made structures, like walls, and is inherent to the way they are constructed.

3.1.1 Problem statement

If we are given an example of a structured texture and we want to reproduce the corresponding
geometric subdivision to create a visually similar texture to apply at will on any 3D model, we can
think of a few approaches to try out. With a minimum amount of artistic skills, it is possible to

1In our examples, we drew this subdivision by hand on the photograph. It might be possible to implement image
analysis techniques to obtain it automatically although our initial attempts were not successful.



42

Figure 3.1 Some structured textures found around us.

draw the subdivision by hand. But if the area to cover is large, it can rapidly become a very tedious
task. To speed up the process, one can thus think of drawing a small part of the structure and tile
it by hand or automatically (in the same way texture synthesis techniques aim to do). However,
the human eye is very sensitive to patterns and repetition in drawings thus the final quality of
the structure is proportional to the time spent to build a seamless tiling with a minimum of
redundancy, matching the edges, patterns, etc. In addition, automatic texture synthesis techniques
are not yet usable with irregular structured textures and there is no generic method available for
synthesizing structured textures from examples, as we have seen in chapter 2.

Hence, we define the following problem:

Given a 2D subdivision of any type, how can we analyze its properties in order
to generate a similar subdivision (i.e., having the same properties) ?
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Figure 3.2 Structured textures and their geometric counterparts.

Figure 3.3 Two subdivision samples: the "INRIA wall" (top) and the "Levens wall" (bottom). The
Levens wall exhibits a layered meta-structure.

In other words, how can we create a generator that will synthesize similar subdivisions from
the analysis of a sample structure of finite size?

Having such a structure generator has undeniable advantages. A generator is a light, control-
lable, procedural method to generate indefinitely large samples of structures. If we are able to
parameterize or influence this generator, we would have even more control on the generated sub-
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divisions. These subdivisions can be used as a first step in the texturing process where the global
structure is initially generated, followed by the creation of the details inside the structure regions,
as we explain in the two next chapters.

3.1.2 Proposed approach

Our goal is to be able to analyze and re-synthesize structured textures ranging from completely
randomly placed regions to subdivisions organized by some simple meta-structure.

We first analyze the given subdivision sample in order to extract meaningful information that
will allow us to generate similar-looking subdivisions. Once we have collected this information,
we would like to create a generator able to reproduce the same kind of subdivision. By "same
kind", we mean a subdivision having the same statistical properties and whose aspect is similar
to the original one (but not being its replica, nor a copy-paste of its subparts). This is clearly a
subjective goal, but we believe that it is reasonable. In order to validate our results, we rely both
on visual inspection and computation of some evaluation metrics.

The problem of generating a similar subdivision can be seen as a sweeping problem where one
wants to synthesize the new subdivision in a certain direction so as to reproduce the subdivision
sequentially. It can also be seen as a tiling problem as it really is generating a partition of
space using regions whose statistical properties are partially known. After having evaluated
a greedy, sweeping paradigm, we decided that a more global, tiling method would be more
appropriate to solve our problem and especially address the particular need for interactivity
and control in computer graphics applications. This is the method we are describing in this
chapter. The sweeping approach we tried was not adequate as it did not allow us to make any
modification a-posteriori (except local shape changes) or respect constraints during the process.
Some backtracking was also necessary in order to correct synthesis problems, as is often the case
with such greedy techniques. We designed another approach (described in appendix B) but did
not implement it.

In the following, we start by presenting some information about the widely-known method of
tiling a plane: Voronoi Diagrams, and the variant we are exploiting in this thesis. We then give
an overview of our analysis-synthesis method, before describing each step in more details. Our
solution must be able to reproduce the input structure on an infinite plane, possibly respecting some
constraints. We also have to provide a way to measure the validity of the generated subdivisions.

3.2 Tiling the plane using Voronoi diagrams

By observing the subdivisions we want to handle, we can be tempted to categorize them into a
class of Voronoi Diagrams as they respect the necessary conditions to fit into these classes: They
effectively represent a complete partition (tiling) of the plane using disjoint regions. If we can cast
our input into a certain class of Voronoi diagram, it should be possible to deduce some rules to
replicate this class of Voronoi diagram at will.

After exposing some more theoretical aspects of Voronoi Diagrams (VDs) and the class of
VDs that are of interest to us, we give an overview of our analysis-synthesis process. The next
two sections detail these two main steps and are followed by sections showing some results and
discussing the technique.
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3.2.1 Discrete Voronoi diagrams

As we saw in section 2.3, the final aspect of a Voronoi diagram depends entirely on its input param-
eters: The density, location and shape of its generators and the distance metric used. The variety of
possible results is immense and thus we think that we should be able to approximate a subdivision
defined as in section 2.3.1 by using a Voronoi diagram and varying these parameters. However,
deducing these parameters from analysis/observation is far from trivial and would constitute an
entire research topic.

Computing a discrete Voronoi diagram

Computing the Voronoi diagram of a set of point generators with an Euclidean distance metric
can be performed analytically. Indeed, we consider the plane as having an infinite number of
points and we can find an exact solution for the region boundaries edges, which are in this case,
line segments. However, computing a more complex kind of Voronoi can be very hard to do
analytically [OBSC00]. In order to compute an exact representation of the Voronoi boundaries,
high-degree curves have to be manipulated and intersected. The corresponding algorithms are
often complex and hard to implement, and they suffer from robustness and precision problems.
Nevertheless, it is possible to use approximate algorithms to compute a discrete approximation to
a Voronoi Diagram (as described in [OBSC00]) which allows more flexibility to try out various
distance metrics and generator shapes.

If we consider a portion of the plane as containing a finite number of points, where each
point has integer coordinates (x, y) (i.e., corresponding to image pixels), we can compute
such a discrete Voronoi Diagram using a technique inspired by the watershed transformation
in mathematical morphology. Each generator is placed at a pixel position on the plane and is
associated with a unique color. It constitutes a source for flooding the pixels around it using
a square-shaped structuring element consisting of its 3 × 3 pixels neighborhood. The flooding
direction and speed is determined by the distance metric used. Figure 3.4 shows the computation
of an ordinary discrete Voronoi Diagram using this technique. The pixels around the generators
are flooded equally in all directions, forming regions of pixels associated to their source generator
and having the same color. When the pixels of two adjacent regions meet, a border is formed. In
the end, we obtain a complete Voronoi diagram where each pixel is closer to its generator than to
any other. Okabe et al. [OBSC00] state a set of assumptions corresponding to the above-described
process, which collectively define what they call a Voronoi Growth Model. They describe many
domains in which this model can be applied.

Trefftz et al. [TS03] propose a method to implement the computation of discrete Voronoi
diagrams on parallel processors. We simulate such parallel processing by using a priority queue
[All04] to store and process the pixels to handle. In the beginning, we are given a set of generators.
The neighbors (eight pixels) of all the generators are inserted into the queue, along with the
color of their generator, with a priority depending on the distance metric used: the pixels closer
(according to the metric) to their generator are given a higher priority and will be treated before
more distant pixels. The pixels are popped one by one from the queue and their neighbors are
collected and inserted in the queue wit the same color assigned, until no more pixels are left and
the priority queue is empty. This method is a flexible way to experiment with various types of
generators and different metrics.

We implemented such a method and figure 3.5, right, shows our discrete result of the analytical
Voronoi of segments shown to the left. The distance metric used is the distance from a point to the
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Figure 3.4 The discrete computation of an ordinary Euclidean Voronoi diagram: The generators
are initially placed at discrete positions. Each is a source for flooding the pixels around it. Their
neighborhood is progressively flooded in parallel (attributing the corresponding colors to each flooded
pixel) until the formed regions meet.

closest point on the segment. We can observe that the regions formed are similar to those obtained
with the continuous method. It should be noted that this technique will not necessarily lead to
closed regions since, depending on the metric used, some regions will flood very fast and could
potentially enclose other regions or generators. Some generators can thus stay outside of their own
regions, and they are called orphans. In this case, additional rules have to be added to the process
in order to get a satisfactory result.

Figure 3.5 A Voronoi Diagram of line segments computed analytically (left) and discretely using our
implementation (right).

It should be noted that Hoff et al. [KEHKL+99] proposed a method to compute discrete
Voronoi Diagrams by taking advantage of the graphics hardware to rapidly compute the intersec-
tion ot a set of cones (one per generator) with a plane. We think it should be possible to generalize
this method to fit our purposes and rapidly compute a discrete Generalized Voronoi Diagram.

Centroidal Voronoi diagrams

Let us define the energy function for a region as the sum of all the distances squared from sampling
points to their corresponding generators. The centroid (or center of mass) of a region is the site
which minimizes the energy function of that region. It can be influenced by an additional density
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function. A Centroidal Voronoi Diagram (CVD) is a specific class of Voronoi tesselations where
the generators of each region are also their centroids, thus it corresponds to a minimum-energy
configuration of the diagram generators. Du et al. [DFG99] describe the usefulness of such
diagrams for data compression, mesh generations, optimal distributions of resources, cellular
biology, territorial behaviors of animals and many more.

The iterative minimizing method known as Lloyd’s algorithm [Llo82] can be used to compute
a centroidal Voronoi tesselation given a density function, a distance metric and an initial number n
of generators (which is also the number of desired centroids), placed in any given initial locations.
The algorithm finds a locally optimal position for the n generators so that they are also the cen-
troids of the corresponding regions, with respect to the given density function. Lloyd’s algorithm
alternates two phases until a satisfactory convergence is achieved:

1. Compute the Voronoi Diagram corresponding to the n points.

2. Compute the centroids of the n Voronoi regions issued from step 1. Move the generators to
the computed centroids.

3. Repeat step 1 and 2 if convergence is not satisfactory.

See figure 3.6 for an illustration of one iteration of the algorithm.

Figure 3.6 Illustration of the Lloyd’s algorithm.

The Lloyd’s algorithm is a clustering technique, similar to the k-means clustering algorithm,
which leads to a local minimum solution and whose convergence can be proven in the one-
dimensional case, under certain conditions, although higher-dimensions seem to act similarly
[DFG99]2. The convergence criteria we are using is the average distance moved by all the gener-
ators. When it is less than a given threshold, the Centroidal Voronoi regions area (and shape) no
longer changes significantly, and the algorithm can terminate. Figure 3.7 illustrates the difference
between an ordinary Voronoi Diagram and a CVD. The set of generators are placed in the initial

2Very recent work of Du et al. [QDJ04] establishes new convergence theorems for the Lloyd’s algorithm applied to
the computations of CVDs.
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configuration shown to the left, leading to the ordinary Voronoi Diagram drawn. After some itera-
tions of the Lloyds’ algorithm, the generators progressively moved to give the configuration of the
right image.

Figure 3.7 Left: an ordinary Voronoi Diagram. The generators are indicated by large dots, whereas
region centroids are marked by small dots. Right: The CVD obtained out of the same set of generators.
(Image from Secord [Sec02a])

In order to compute a CVD discretely, on a fixed-size grid of pixels, we need to alternate
between computing the Voronoi discretely using the method described above, assigning a unique
color to each region flooded, and reading back the grid of pixels in order to scan-fill the obtained
results and determine the shape of the obtained regions so as to be able to compute their centroid.

Computing the CVD of a set of points discretely has a big disadvantage, though: the
computation of the centroids of each region (represented by a set of pixels of the same color)
is highly dependent on the diagram resolution. The error on the computation of the centroid
of a Voronoi region will increase relatively to the decrease of the number of pixels in this
region. If the resolution is very low, two generators can merge and a region will disap-
pear. Hoff et al. [KEHKL+99] present a solution to this problem by separating the diagram
into sub-diagrams computed at full resolution and stitched back together. In order to speed-up
our computations in our implementation, we allow the CVDs to be computed at a lower resolution.

Some properties of the Lloyd’s heuristic make it a very interesting tool for our purposes. As
described in section 3.7, it allows interactive modifications and supports constraints, and the algo-
rithm will globally update the diagram to adapt to the new configuration. It was first introduced
into computer graphics by McCool and Fiume [MF92] for the generation of sampling point sets.

3.3 Generating structures using a tiling approach: Overview

Recall that our input is a subdivision described in terms of its vertices and edges. We want as
output a subdivision having similar visual properties and subject to a set of constraints, such as
the topology of the output which can be significantly different from the input, etc. This notion of
similarity can be both objective and subjective, we thus have to characterize the input subdivision
in some way.
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We first start with an analysis step in order to extract meaningful structure information. This
information is a mixture of region information (local information) and structure information
(global information), mainly under the form of histograms which allow us to derive statistics on
the input structure. We chose to characterize each input region with an ellipse, which is a simple
structuring primitive (in the number of parameters necessary for its description).

Once we have collected the data needed to characterize our input sample well enough, we can
synthesize similar subdivisions. For this, we proceed in two stages. The first stage aims to generate
and distribute regions on the target plane having properties similar to those of the input sample.
Special care has to be taken for subdivisions having some regularity or meta-structure. The second
stage applies a correction, modifying the borders of the generated regions so that they resemble
the input regions more closely.

In the end, we get a subdivision which constitutes a partition of the plane, where the regions
are disjoint and whose shapes visually correspond to the shape of the input regions. The
meta-structure, if any, should also be preserved as much as possible. This subdivision can then be
used in a texturing module for example, or any module demanding a structure as input.

Figure 3.8 and figure 3.9 respectively illustrates our analysis and synthesis process. The next
two sections describe them in more details.

Figure 3.8 Structure Analysis Process: The input structure is analyzed in order to extract statistical
properties characterizing its geometry.

3.4 Analysis phase

Our input subdivisions are constituted of edges and vertices with no information about its regions.
Analyzing such a subdivision to collect this information can be done in many ways. We chose
to use a traditional computational geometry sweep-line method to collect the data we need. A
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Figure 3.9 Structure Synthesis Process.

sweep-line algorithm simulates the "sweeping" of a line over the plane while maintaining a data
structure along the process. The line stops at discrete events where some processing occurs and
the data structure is updated [O’R98]. In our case, the discrete events are the subdivision vertices
where three different kinds of event can occur (see figure 3.10) for the case of convex regions:

1. Region Closing: two edges end at this vertex.

2. Region Opening: two edges begin at this vertex.

3. Region Continuation: one edge ends and one edges start and the above two conditions are
not satisfied.

Figure 3.10 The three types of events in a subdivision.

By sorting all our input points by their y-coordinates (using an optimized tree such as a
priority-queue), we can traverse the entire subdivision in O(n log n) and build a mesh of regions
that we can exploit in the next stages.

Algorithm 1 describes our method for analyzing a given 2D subdivision and constructing its
regions. Single variables are denoted by a lowercase letter, while sets of variables use uppercase.
An edge e is an oriented structure containing its two endpoints. It also references the region
to its left (Edge.LeftRegion) and to its right (Edge.RightRegion). An edge on the sweep-line is
considered to be below a vertex if it is to the left of the vertex and above if it is on its right.
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We allow ourselves to treat concave regions as input. This gives rise to more complex events to
handle as two regions in construction might have to be merged in the process if they are effectively
the same region. For the sake of clarity, the details are not given here.

Approximating region shape

We chose to approximate each region by an ellipse which is a simple way to characterize the
eccentricity, or anisotropy3, of a polygonal region. An ellipse is characterized by three parameters
(see figure 3.11)

1. A major axis (a)

2. A minor axis (b)

3. A rotation angle (θ)

Figure 3.11 Left: The parameters of an ellipse. Right: An ellipse fitted to a set of data points.

In statistics, an ellipse can be fitted to a set of data points using principal component analysis
(PCA) [PTVF92], by computing the covariance matrix of the set of points. This ellipse can serve
as a simpler way to summarize/visualize the data (figure 3.11, right). In our (discrete) case, the
data points consist in all the pixels pi = (xi, yi) contained in the region we want to approximate,
which we can accumulate by scanfilling this region. A covariance matrix describes how a certain
mass is distributed around its center. The center of mass, or centroid, C of a region is the (possibly
weighted) mean of all the points contributing to the mass, in our case all the pixels,

C =
1∑
wi

∑
(wi ∗ pi),

where wi is the weight associated to pixel pi. If p′i = pi − C is the position of a region pixel
relative to its centroid, the covariance matrix is the outer product∑

(p′ip
′
i
T ),

which, if we expand it, gives the 2× 2 symmetric matrix:∑ [
x′i

2 x′iy
′
i

x′iy
′
i y′i

2

]
,

where p′i = (x′i, y
′
i), with coordinates in pixel units.

3Eccentricity/anisotropy implies that the region can be stretched, i.e., have a principal direction that significantly
differs from the other one.
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Algorithm 1 Analysis of a 2D subdivision

procedure SUBDIVANALYSIS(S) . S(E, V ): input subdivision
StatModule.Reset() . Reset the statistics module

ReadSubdivision(S) . Fill the data structures (order the vertices) and the StatModule

for each vertex v in S do . "Sweep" the subdivision with a virtual sweep-line L
Separate edges incident to v into two sets: A (edges above L) and B (edges below L).

// Region Closing
if #B > 1 then

for each Pair of edges (el, er) in B do . el = Left edge, er = Right edge
r ← el.RightRegion
r.Close() . Compute region statistics

end for
end if

// Region Opening
if #A > 1 then

for each Pair of edges (el, er) in A do
r ← CreateRegion()
r.AddEdge(el)
r.AddEdge(er)
el.RightRegion← r
er.LeftRegion← r

end for
end if

// Region Continuation
if #A > 0 and #B > 0 then

rl ← B.LeftmostEdge.GetLeftRegion()
A.LeftmostEdge.LeftRegion← rl

rl.AddEdge(A.LeftmostEdge)

rr ← B.RightmostEdge.GetRightRegion()
A.RightmostEdge.RightRegion← rr

rr.AddEdge(A.RightmostEdge)
end if

end for
end procedure
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To find the ellipse parameters corresponding to this covariance matrix, we solve for its eigen-
values and eigenvectors. The eigenvalues are used to compute the length of the ellipse axes, while
the eigenvectors define the direction of each eigenvalue, and thus provide the ellipse orientation.
We center the resulting ellipse on the computed centroid. Figure 3.13 (top row, middle image)
shows the ellipses resulting from the analysis of the subdivision shown to the left.

Statistics

The sweeping step allows us to build our network (mesh) of regions with all the connectivity
information we need and also to collect the associated data, which compose our statistics. More
specifically we collect some topology information:

• valency of a vertex (i.e., the number of edges meeting at this vertex),

• angles of edge pairs around a vertex,

• length of edges,

and region information:

• number of edges,

• interior angles between each pair of consecutive edges,

• fitted ellipse: center position, axis lengths, angle, as described above.

We store the samples for each variable in an histogram (1D or 2D depending on the variable)
as a way to compute its distribution. Histogram-based methods are the most practical for us as the
other methods (chi square, hypothesis tests, etc.) involve too much computational overhead to be
useful for our particular problem. Determining the number of histogram bins which should be used
to estimate each distribution the best is a problem in non-parametric statistics [Ize91]. We chose
to use a robust result from Diaconis and Freedman [DF81] who showed that the optimal histogram
bin size, which provides the most efficient, unbiased estimation of the probability density function,
is achieved when

W = 2 ∗ IQR ∗N− 1
3 ,

where W is the optimal bin width, N is the number of samples and IQR is the interquartile range
(the 75th percentile minus the 25th percentile).

The histograms are used in the generation step to sample values from the computed distri-
butions. This is done through the inverse transform method which is straightforward when one
uses histograms. We can thus easily obtain samples with the desired probability distribution. The
statistical operations are performed with the Gnu Scientific Library [Bee01]. Once we have col-
lected the data, we aim to generate a similar subdivision. The next section presents our generation
approach.

3.5 Synthesis phase

We aim to generate a Voronoi subdivision with properties derived from the analysis of the original
subdivision. We extracted a set of ellipses fitted to the original regions and we can use these
ellipses as an anisotropic metric to describe the eccentricity of the corresponding Voronoi regions.
We will thus first describe how an ellipse can be used as a metric to compute a kind of Voronoi
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Diagram and how a centroidal (discrete) version of this diagram can also be derived. Computing
a discrete Voronoi allows us to obtain a tiling of the plane into a set of regions which we can
segment in order to get a geometric 2D mesh of regions. This mesh constitutes our generated
mesh and we can evaluate its similarity to our original mesh. It is a modifiable structure which we
can potentially transform to increase the similarity.

3.5.1 Computation of Voronoi diagrams using an elliptic metric

Given an ellipse e, we define the following metric d to evaluate the distance4 of any point p to a
particular punctual generator c, according to an elliptic metric centered on this generator:

d(p, c) =
‖p− c‖
‖pr − c‖

,

where ‖ · ‖ is the Euclidean distance operator and pr is the projection of p on the ellipse (see figure
3.12).

The denominator ‖pr − c‖ corresponds to the ellipse radius rp at point pr. To compute this
radius, we use the ellipse polar coordinates and apply the following formula:

r2 =
b2

1− e2(cos α)2

where e2 is the ellipse squared eccentricity, defined as

e2 = 1− b2

a2
,

a and b are respectively the ellipse major and minor axes, and α is the angle between the line
passing through c and p and the horizontal.

Figure 3.12 Illustration of the metric used to compute the distance of a point to any generator (center
of ellipse).

Given this function, any point on the ellipse contour has a distance of 1 from the center of
the ellipse (d(c, Pr) = 1), while all points inside the ellipse have a distance between 0 and 1,
and points outside the ellipse have a distance of more than 1. Given a set of ellipses (whose
centers correspond to generators) and using each ellipse as an anisotropic metric for the associated
generator, we can compute an associated Voronoi diagram. Due to the nature of the metric and
the way we construct them, all regions have the same importance. There is one generator per

4Our metric does not respect all the conditions (identity, symmetry, triangular inequality) of a distance metric but,
for our purposes, this is not important as we are more interested in the properties of the resulting Diagram.
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region/ellipse and it is always contained in its own region. In summary, our diagrams can be
computed out of a set of punctual generators, where each generator carries its own metric (given
by the ellipse).

The top row of figure 3.13 shows the Anisotropic diagram (right) resulting from computing
the Voronoi of the ellipses fitted to the regions shown in the center image, corresponding to the
structured texture of the left image. This Voronoi is computed using the discrete method described
in section 3.2.1. Each region has a unique color and every pixel inside a region is closer to its
generator (the ellipse center) than to any other generator, according to the distance function we
just defined. We can observe that the resulting regions (bottom right) correspond fairly well to
the original ones (bottom left). Regions on the contour have a different shape since they are not
bounded by other regions and thus take all the space available.

Figure 3.13 Top row: Left, structured texture with associated geometric subdivision. Center, fitted
Ellipses. Right, re-synthesized with anisotropic metric. Bottom row. Left, the original subdivision
(drawn by hand). Right, the subdivision generated by using the ellipses fitted on the original subdivi-
sion. Visually, the regions correspond quite well.

3.5.2 Anisotropic Centroidal Voronoi diagram

We can call the Diagram obtained using the metric defined in the preceding section an Anisotropic
Voronoi Diagram5. We can compute an approximation to an Anisotropic Centroidal Voronoi
diagram using the discrete version of the Lloyd’s algorithm described in section 3.2.1: Given
an initial set of generators with their associated ellipses, we alternate between computing the
anisotropic discrete Voronoi diagram of these generators as described in the preceding subsection,
computing the centroid of the generated Voronoi regions and moving the generators (i.e., ellipse
centers) to these computed centroids. The computation of the centroid is done in the same manner
as for an ordinary discrete Centroidal Voronoi Diagram. After a few iterations, we end up with an
Anisotropic Centroidal Voronoi Diagram composed of anisotropic regions. Like for its isotropic

5Labelle and Shewchuk [LS03] and Du and Wang [QD05] have recently proposed other definitions of continuous
anisotropic Voronoi Diagrams.
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version, the regions reach a minimum-energy configuration after a few iterations.

It is possible, as an option to the algorithm, to let each ellipse rotate around its center in addition
to aligning its center to the computed centroid. For this, once we have computed a new region, we
can compute the ellipse that would fit inside it and rotate the original ellipse by the angle of this
new ellipse. Step 2 of the Lloyd’s (section 3.2.1) thus becomes:

2 Compute the centroids and the fitting ellipses of the n Voronoi regions issued from step 1.
Move the generators to the computed centroids. Rotate the original ellipses to match the
computed ellipse angle.

We do not modify the original ellipse axis lengths so as to preserve the region eccentricity.

The two rows of figure 3.14 show two examples of the computation of an anisotropic Voronoi
diagram of a set of ellipses. On the left, we can see the original subdivision, superimposed on the
corresponding anisotropic discrete Voronoi diagram, computed by using the ellipses fitted to the
original regions. We can observe that the Voronoi regions approximate the original subdivision
regions well, except that no T-junctions seems to be reproduced, and there are no more (or less)
than three regions meeting at a same point. In the second column, we can see the resulting diagram
(and ellipses) after a few iterations of the anisotropic Lloyd. The ellipses have moved in order
to evenly occupy all the space available in the plane. This is particularly noticeable in the top
example, as two thirds of the space was initially covered by the subdivision regions, leading to a
larger displacement of the ellipses and a growth of each corresponding region. The third column
shows the same diagram as the second but by visualizing the distance function for all the regions.
The image is colored with respect to the distance to the closest Voronoi generator. The closer a
pixel is to its generator, the darker it is. The rightmost column is the result of using the anisotropic
Lloyd on the original subdivision and letting the original ellipses rotate.

Figure 3.14 Left column: Original subdivisions superimposed on top of the corresponding
anisotropic Voronoi Diagram. Second column: Resulting Voronoi Diagrams and elliptic generators
after a few iterations of the Lloyd’s algorithm. Third column: Same as second, visualized with the
distance function. Right column: Result after the Lloyd’s algorithm, but allowing the ellipses to rotate.
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3.5.3 Trivial synthesis

Now that we know how to generate a Voronoi diagram using an anisotropic metric defined by an
ellipse, we can synthesize some subdivisions using the information extracted from the analysis of
the original subdivision. A trivial way to do this is to modify the input data and run the Lloyd
again to re-stabilize the subdivision. This can be done by adding some noise to the original
ellipse data, slightly modifying the center locations or angles of the ellipses. It can also be done
by moving regions around, exchanging regions randomly. Figure 3.15 shows two examples
of original subdivisions (left column) and some similar subdivisions generated by exchanging
regions in this manner. We can observe that indeed the synthesized diagrams look similar to the
original.

Figure 3.15 Trivial synthesis: exchanging original regions randomly, followed by some iterations of
the Lloyd’s heuristic.

However, this kind of synthesis is limited. We are only moving around the original regions
and thus cannot apply it to a differently sized target area. Tiling the original sample would also
be easily noticed. Moreover, if there is some kind of meta-structure, it could be damaged by these
blind operations. In order to synthesize a subdivision inspired by an original, we use statistics
gathered during the analysis, as described next.

3.5.4 Statistical synthesis

During the analysis phase, we collected information about the region shapes and the topology of
the subdivision in the form of histograms. We can now sample these histograms to draw values in
order to generate similar regions. This statistical synthesis is a two-stage process: We first sample
a number of regions and distribute them on the plane using the Lloyd’s algorithm (global, macro-
positioning) while in a second stage, we correct the region shapes locally (micro-positioning)
according to a shape criterion.
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First stage: Sampling regions and populating the plane

To synthesize a new subdivision, we first start by uniformly sampling data from the ellipse pa-
rameters distributions. Our data is stored in the form of histograms, where each of the histogram
bins counts the number of events falling into a given range of a continuous variable. Assuming
that the distribution of events in a bin is uniform, we can convert an histogram into a probability
distribution function and obtain a cumulative probability distribution function. This allows us to
generate samples with the desired probability distribution via the inverse transform and using a
random number generator (for details, refer to the GSL manual [Bee01], which is the library we
are using for statistical operations).

The density of ellipses to generate should approximately correspond to the initial ellipse den-
sity. For this, we use the following rule: we compute the mean region area value

r̄ =
1
N

∑
N

ri,

where N is the total number of regions and ri is the area of region i. Given a new area A′ to fill,
the number of ellipses N ′ to generate is

N ′ =
A′

r̄
.

In addition, we offer the possibility for the user to input a scaling parameter. This parameter
will directly influence the number of regions to generate and thus their final size. A smaller
scaling value implies a larger number of regions to generate, and thus a smaller average region
size as more regions will compete for populating the same area.

The initial ellipse center positions and the two axis lengths are stored in 2D histograms. The
ellipse angles are stored in a 1D histogram. We assume for now that these data are uncorrelated.
We sample the values necessary to generate the N ′ ellipses needed to fill the new area A′ from
these histograms. We obtain a set of ellipses as can be seen in figure 3.16, left. These ellipses
overlap so we need to spread them out on the plane. A few iterations of the anisotropic Lloyd’s
allow us to obtain the result shown on the right, where each ellipse has found its place and the
target plane (subset of <2) is entirely tiled (by construction of the discrete anisotropic Voronoi).

Figure 3.16 Left: Sampled ellipses. Centers have been sampled from their distribution. However,
this is not a requirement. Right: Same ellipses, distributed on the plane with Lloyd’s algorithm.

Using this technique, we are able to generate subdivisions where the regions eccentricity and
orientation average to those of the original regions. Figure 3.17 shows some of these results. In
the left column, we have an original subdivision from which similar subdivisions were generated
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(right-hand side columns). In the lower right corner, we show a result where we have augmented
the region density. As we sample the eccentricity, the ratio of region sizes in the entire subdivision
is respected.

Figure 3.17 Results of statistically generating subdivisions.

Using density maps The technique we just described works well for subdivisions where the
original regions are randomly placed on the plane. However, some original subdivisions exhibit
some meta-structure, as can be seen in figure 3.19 left (in this case, a layered meta-structure),
which is not preserved by the basic Lloyd’s algorithm. To take this type of meta-structure into
account, we use density maps, such as the one pictured in figure 3.18 left, which corresponds to
the structured texture shown to its right. We use the map to constrain the generated ellipses to stay
as close as possible to the areas of higher density (darker areas). This is done by influencing the
computation of the centroid during the Lloyd’s iterations. Pixels whose corresponding value in the
density map are dark have a bigger weight than brighter pixels. This has the effect of making the
regions "slide" towards the darker areas, until convergence of the algorithm. Figure 3.19 (right)
shows the effect of using a density map to control the placement of the regions during the Lloyd’s
iterations whereas the regions shown in the center image were unconstrained. We can clearly see
that the layered structure is preserved.

To obtain a density map from a given original subdivision, one could draw or compute it
according to the subdivision regions center position (the highest density will pass near the centers).
It could also be generated automatically using a combination of image analysis techniques. To
generate subdivisions on areas of larger sizes, the corresponding density maps will have to be
drawn again, or extended using texture synthesis techniques. It also has to be scaled according to
the scaling parameter used.
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Figure 3.18 A density map used to control meta-structure.

Figure 3.19 Left: Original subdivision. Center: Synthesis without density map. Right: Synthesis
with density map; the layered structure is preserved. Some annoying regions are indicated in red.

At the end of this first "populating" stage, we end up with a series of regions partitioning the
planes and whose global arrangement and eccentricity should correspond to the input subdivision.
However, if we look at results (many of which can be observed in section 3.6), we clearly see that
in some cases the obtained subdivisions are too "cellular-like" because of the Voronoi process:
many regions look like elongated hexagons and no more than three regions meet at the same point
(3-valency). This is restrictive as many of our subdivisions do not follow this local pattern. In
order to correct this, we apply a corrective stage whose purpose is to locally correct the region
shapes.

Second stage: Correcting region shapes

The region shapes we obtain from the first stage have an eccentricity consistent with those of
the original regions but the shape of their contours may not totally correspond (i.e., they are not
visually similar), and thus the parameters considered in our representation do not completely
encode the shape. We thus have to perform some local corrections in order to optimize the
generated shape and make them resemble more the originals. For this, we use a shape criterion to
characterize the similarity between two polygonal shapes.

In order to rectify the region shapes, we must convert the colored regions which compose the
discrete anisotropic Voronoi Diagram computed by the last iteration of the discrete Lloyd’s into
a modifiable geometric mesh where all the regions are connected. For this, we use a traditional
image analysis segmentation algorithm to detect the region contours followed by a custom
polygonization technique of the segmented regions, along with a snapping heuristic to connect the
polygons together and get the required mesh.

To evaluate if a given shape is geometrically "close" to another shape, we use the comparison
metric described by Arkin et al. [ACH+91] to compare polygonal shapes. This metric evaluates
the turning functions of the polygons to compare. A turning function maps a fraction of arc length
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in a polygon to the angle of the polygon at that point. A turning function is thus translation and
scale independent (the polygon perimeters being normalized to 1). If we translate the function
itself, it corresponds to rotating the polygon and moving the point where the measurement of the
arc length begins. To evaluate the distance of a polygon to another, they compute the minimal L2

distance between all translations of the two polygons turning functions. This number constitutes
the similarity measure of the two polygons. If it is less than 1, the polygons are very similar. Their
algorithm is efficient, running in O(n2 log n), where n is the total number of vertices of the two
polygons and the measure corresponds well to how we would subjectively evaluate the similarity
of two shapes.

To improve the similarity of the generated subdivision to the original one, we want to optimize
the region shapes in order to make generated shapes closer to the original, analyzed, shapes. For
this, we associate to each generated shape the original shape that is the most similar according to
the shape measure described above. This closest shape must also not be more than 20% larger or
smaller than the shape it is being associated to. We do not want to scale the regions as size might
be an important feature of the original subdivision. Figure 3.20 left, shows a generated subdivision
(in black) with, for each generated region, the superimposed closest original region (in red). We
can see that the shape criteria works well. If region orientation is an important characteristic of the
original subdivision, we provide the option to prevent the rotation of the associated closest region
as can be seen in figure 3.20, right. The process is summarized in algorithm 2.

Figure 3.20 Generated subdivision (in black, after first phase) with closest original regions (in red).
Rotation of similar regions has been forbidden in right image, whereas it was allowed in left image.
This subdivision comes from the Valbonne Wall example, cf figure 3.26.

Algorithm 2 Association of closest shapes

procedure ASSOCIATESHAPES(S) . S(E, V, R): generated subdivision
for each generated region Rg do

Compute similarity measure with all original regions Roi

Keep the region Rl having the lowest measure
Align the centroid of Rl with the centroid of Rg

for each vertex v of Rg do
Compute closest vertex vl in Rl

Associate v to vl . Put v in a list of vertices associated to vl

end for
end for

end procedure
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Once we have associated an original shape to each generated shape (aligned on their centroid),
we are able to compute a similarity measure for the entire subdivision and a mean shape deviation
error. To lower this error, we improve the shapes using the process described in algorithm 3. For
each vertex, we compute the direction vectors to the closest vertices in each of the original shapes
associated to the vertex adjacent regions. We then calculate the mean vector of these vectors to get
the "optimal" direction to improve the shapes of all the vertex adjacent regions. We displace the
vertex 20% (user-defined value) in this direction. The new subdivision error can be recomputed
and the process iterates until the error falls under a certain threshold. From time to time, updating
the associated most similar shapes can improve the results. We also optimize on the topology and
region information by verifying the edge lengths or angles are part of the original distribution and
correcting them if necessary.

Figure 3.21 summarizes this shape optimization process. On the left, we can see the regions
as they were output from the first stage. In the center, we can observe the result of applying the
second stage. The regions shrunk as the hand-drawn original regions did not cover the entire plane,
thus the generated regions grew larger to fill-up the available space during the repartition stage. On
the right, we recomputed the closest shapes and performed more shape optimization. The results
of both stages can be compared with the original subdivision in figure 3.24.

Algorithm 3 Optimization of the generated region shapes

procedure OPTIMIZESHAPES(S) . S(E, V, R): generated subdivision
for each generated vertex vg do

Get its list of associated vertices Va

for each vertex v in Va do
Compute the vector

−→
D from Vg to v

Compute the mean vector
−−→
Dm of these vectors

Displace Vg along
−−→
Dm by 20%

end for
end for

end procedure

Figure 3.21 Illustration of second synthesis stage. Left: Closest regions before optimization. Center:
After optimization. Right: After recomputing closest regions and some optimization.
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Image 3.22 summarizes our two-stage synthesis process. We applied it to a variety of input
subdivisions and the next section presents the results obtained.

Figure 3.22 Structure Synthesis Process.

3.6 Results

We tested our algorithm on various structured textures such as stone walls, snake skins and cellular
structures. The geometric subdivision corresponding to each input image is drawn by hand since
the image analysis techniques we tried are not yet robust enough to automatically extract such a
graph from an image. In this section, we present the results we obtained and analyze them.

3.6.1 Wall 1: INRIA wall

The first subdivision we handle comes from an image of a wall (figure 3.23, top left) with no
particular meta-structure. It is constituted of a mixture of large and small rocks. The corresponding
geometric version can be seen in figure 3.23, top right. The results obtained after the first and
second stage can be observed in the bottom row images. We can see that the ratio of small regions
has been preserved and that the eccentricity of the regions looks correct.

3.6.2 Wall 2: Levens wall

The second subdivision is also a wall which exhibits a layered meta-structure, as can be seen in
the original image and drawn subdivision (figure 3.24, top row). Since there is an underlying
meta-structure, we use a corresponding hand-drawn density image (figure 3.18) in the first stage
of the Lloyd’s algorithm. This results in the subdivision of figure 3.24, bottom left. The image
on the right shows the result after the shape optimization stage. We can see that the similarity of
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Figure 3.23 Inria wall example. Top row: Input image and corresponding subdivision. Bottom row:
Left, the generated subdivision after the first stage. Right, the generated subdivision after the second
stage.

Figure 3.24 Levens wall example. Top row: Input image and corresponding subdivision. Bottom
row: Left, the generated subdivision after the first stage (density map used). Right, the generated
subdivision after the second stage.
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the shapes has improved but there are still some artefacts. The density map is not used during
the second stage as the regions do not usually move too much. It is mainly their contour which
is affected. However, in some cases, it might be interesting to consider the density map by, for
example, penalizing vertex displacements which move them away from the higher density zones.

3.6.3 Wall 3: Valbonne wall

The third example (figure 3.26) is again a wall which exhibits an even more pronounced layered
meta-structure. Another particularity is that the shapes of the regions are quite regular. The density
map used is very simple, as shown in figure 3.25.

Figure 3.25 The density map used for the Valbonne wall example.

The results of the two stages are shown in figure 3.26. As the first stage does not include any
constraint on the shape of the regions, the generated regions are not very similar to the input ones.
The second stage helps to correct the shapes, which become less hexagonal. The association of
closest shapes does not allow the rotations of the associated regions as the original orientation
information is important in this example (as shown in the right-hand side of figure 3.20).

Some problems can be observed in this result. The main issue (meta-structure not preserved)
is mainly due to the fact that, in our statistics, we supposed that the angle and the axes data are
not correlated. For regular structures such as this one (or traditional brick walls), angle and axes
lengths are heavily correlated. Generated regions such as the ones circled in red, correspond to
small input bricks and should have been placed upward. We propose some solutions in the last
section of this chapter.

It should be noted that if the result of the first stage is not satisfying, like in this case, there
is not much that can be done to correct the problems in the second stage if it relates to the global
positioning of regions. The second stage only performs shape optimization but the region locations
will not change much. Some suggestions for improvements are given in the conclusion of this
chapter.

3.6.4 Biological tissues: Meristem

The fourth example is an image of a meristem (figure 3.27, top row), a plant tissue from which
new biological cells are formed. It does not have any particular meta-structure. The results after
each one of the stages are shown in the bottom row of image 3.27. As the structure to imitate is
already cellular, the second stage does not perform significant changes but still allows to recover
triangle-shaped cells for example.
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Figure 3.26 Valbonne wall example. Top row: Input image and corresponding subdivision. Bottom
row: Left, the generated subdivision after the first stage (density map used). Right, the generated
subdivision after the second stage.

Figure 3.27 Meristem example. Top row: Input image and corresponding subdivision. Bottom row:
Left, the generated subdivision after the first stage. Right, the generated subdivision after the second
stage.
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3.6.5 Organic structure: Snake skin

The fifth example (figure 3.28) is a natural structured texture: a snake skin. It is similar to the
Valbonne wall example since it has an underlying meta-structure and regularly-shaped regions,
but it also has small little regions, like the INRIA wall. Results are shown in the bottom row of
image 3.28. We can note the presence of the small triangles as in the original subdivision. We
updated the closest shape association a few times during the second stage to achieve the best fit
possible between the regions.

Figure 3.28 Snake skin example. Top row: Input image and corresponding subdivision. Bottom row:
Left, the generated subdivision after the first stage. Right, the generated subdivision after the second
stage.

3.7 Structure manipulations

The Lloyd’s heuristic possesses some nice properties that we can take advantage of. As a global
positioning process, it allows a variety of modification operations such as moving, adding or delet-
ing a region. It can also handle some constraints, as we discuss in this section.

3.7.1 Structure modifications

Our generated structures can nicely handle modifications. The following operations are automat-
ically taken into account by running the Lloyd’s after performing them. This has the effect of
re-arranging the regions globally and stabilizing the mesh again.

Deleting a region We can choose to remove any region from the set of generated regions, for
example if we are not satisfied with a certain region shape and/or position. In this case, one
ellipse disappears and running the Lloyd’s algorithm on the remaining ellipses progressively
fills the gap. However, we must be aware that since we have the same amount of space to
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cover with fewer ellipses, the size of the generated regions will increase and their shape
will be slightly modified (especially in the neighboring regions). The sizes increase not
only for the neigboring regions but globally throughout the whole structure. Szakas et al.
[ST04] recently suggested an algorithm to rapidly update a discrete Voronoi diagram when
one of the generators is removed. We could adapt his technique to our particular anisotropic
diagrams to make these changes interactive.

Inserting a region We can insert a region anywhere and the regions around are progressively
"pushed away" from it. As above, the density relationship described in 3.5.4 implies that
the overall region sizes shrink to make space for the new one. Figure 3.29 shows the results
of inserting a region in the middle of the subdivision. It can be useful if we want to insert a
particular region shape in the set of generated regions at a desired position. It is also possible
to freeze a region at a certain position. The other regions will then move around it.

Figure 3.29 Insertion of a region. Top row: The Anisotropic regions before (left) and after (right)
the insertion. The inserted region is indicated by a red circle. Bottom row: The corresponding subdi-
visions.

Moving a region We can displace a region from one place to another. It basically corresponds
to removing it from one place and inserting it elsewhere. The region sizes are thus not
modified, as can be seen in the examples shown in section 3.5.3 on trivial synthesis.

Changing the size and/or orientation of a region More local region operations can also be per-
formed and the structure updated along the same lines as the other operations.

After the graph has stabilized, we must run the optimization stage to correct the contours. In-
teractive refinement operations on the borders themselves are also possible as the obtained mesh is
fully editable. All these changes would be very difficult to handle with another kind of generation
method, such as a particle system or the systems described in section 2.3.2. The Lloyd’s algorithm
allows us local control on our result. It should be noted that the changes are local but the effect
is global, being distributed on the whole mesh. However, regions far away from the changed area
will be much less affected than closer regions, which is a desired property for predictable results.
Even more control can be achieved by the insertion of constraints, as we show in the next section.
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3.7.2 Controlling the synthesis

The Lloyd’s heuristic alternates two steps to cluster the pixels of our images into separate regions:

1. Computation of the Voronoi diagram using the given metric.

2. Computation of the region centroids. Displacement of the generators to the computed
centroids.

In this work, we have modified the first step to take into account an elliptic metric and pro-
duce anisotropic regions covering the plane. We have also shown that it is possible to influence
the computation of the centroids, and thus the position of the ellipse centers, through the use of
density maps, giving more importance (weight) to some pixels. If required, the displacement of
the generators (i.e., the ellipses) can also include a rotation of the ellipse so that it fits the latest
Voronoi regions computed.

Other parameters of this process can be influenced or directly controlled (such as the ones in
bold above), mainly through the use of constraint maps. We describe in this section some of the
maps which can be used to offer some control on the results.

Occupancy map

One of the most important types of control is the ability to define the shape of the area to populate,
i.e., the areas of the 2D plane where the ellipses are allowed (or conversely forbidden) to evolve.
We call such a constraint an occupancy constraint.

We have experimented with two ways to define this constraint: Either by considering interac-
tive, user-drawn constraints or by using an occupancy mask such as the ones in figure 3.30 whose
black pixels define forbidden regions.

Figure 3.30 Three occupancy constraint maps: there should not be any regions in the black areas.

To take such a constraint into account, we must proceed to the following operations:

1. Remove the ellipses intersecting the forbidden areas (black) of the input occupancy map.

2. Define all the pixels in the constraint areas as invalid pixels: they will not be inserted into
the priority queue used to simulate the flooding process. Thus the generators do not enter
the constraint areas.

3. The constraint area pixels will not count as region pixels for any surrounding ellipses (i.e.,
they will not be accounted for in the centroid computation).

4. Fix the mesh vertices on the border of the constraint areas to avoid their displacement during
the optimization stage.
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Some results can be observed in figure 3.31 while the original subdivision is shown in image
3.32 for comparison purposes.

Figure 3.31 Occupancy constraint results

Figure 3.32 The geometric subdivision of the Levens wall structured texture.

The configuration of the ellipses before and after the constraint has been applied can be ob-
served in figure 3.33. For now, the occupancy constraint is only defined on a 2D plane but we

Figure 3.33 Configuration of the ellipses before and after the constraint.

discuss in the last section the applications to a 3D domain. Other types of constraint maps can also
be considered and the next section presents some of them.



71

Other maps

Some other parameters of the Lloyd’s can be affected by the usage of control maps. Some possible
constraint maps include:

Size map This (grayscale) map controls the size of the ellipses. The more an ellipse is within
a dark area, the more it reduces its size (up to a minimum value). Alternatively, we can
directly impose a fixed size to ellipses within the defined areas. This can prove useful for
architectural applications where smaller stones are required around features like windows
or doors. More advanced rules could control the size of the regions.

Orientation map This map influences the ellipse angles. Each pixel in the map contains a direc-
tion vector (issued from a direction field or from another source) which can be converted
into an angle to assign to the ellipse containing this pixel. As an example, we can imagine
the stones around a door to be forced to be aligned perpendicularly to the door frame.

Metric map This map could influence the computation of the metric locally to control the shape
of the resulting regions. The metric could vary gradually or change instantaneously in cer-
tain regions. For example, exchanging our anisotropic metric for a Manhattan metric will
generate square tiles, as done by Hausner [Hau01].

To reproduce the architectural design around the door shown in image 3.34, one would need
an occupancy map to avoid having any stone within the window area, a metric map to influence
the shape of the stones around the window, a size map to constrain the sizes of the stones (two
sizes) and an orientation map to force the stones to be perpendicular to the window frame.

Figure 3.34 A window of Seton Castle, Scotland illustrating the need for controlling stone arrange-
ments.

The procedural generators of Legakis [LDG01] can also control the size and orientation of its
blocks (e.g., bricks). However, he has to program the generator for each specific model and he
cannot edit anything after the system has placed the blocks. Our approach is more generic and fits
the artists way of working as they are used to draw and lay several maps (appearance layers) on
top of their models to define their final appearance. We can imagine several other kinds of maps,
up to complex maps containing rules or procedures to apply.
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3.8 Conclusion

3.8.1 Improvements

Looking at our result structures, we can detect some artefacts for which we present here possible
solutions and improvements that we plan to integrate in the future.

Region placement problems

Depending on the original sampling, some regions can "get stuck" in an incorrect location (such
as those circled in red in the right result image of figure 3.19) and not be able to move to a better
position with the Lloyd’s algorithm having attained a local minimum. The resulting arrangement
is thus not completely satisfactory. In the same manner as Bossen and Heckbert [BH96] or
Cohen et al. [CSAD04], we can use an operation Cohen et al. name a region teleportation to
recover from such a configuration. This operation allows a region to be "transported" from its
current location to a "better" location by removing it and inserting it somewhere else. In order
to determine which region should be teleported, we propose to use an heuristic attributing a
score to each region according to various critera. The score for each region would be a function
of its number of edges, its area or angles (verifying if it is part of the corresponding statistical
distributions), its distance to the closest high-density region, its deviation from the original shapes,
etc. The region with the lowest score would be removed, and it could be reinserted in a location
where the scores are high, running a Lloyd to restablize the configuration.

We are confident that this operation would improve the results on the Levens wall, as well on
the Valbonne wall. For this last example, the regularity of the shapes and the fact that we did not
correlate the axis lengths and the ellipse angles led to the observable defects. Performing an auto-
correlation analysis on the input data would permit the detection of the correlation and appropriate
statistics could be generated. Generating the region centers along the higher density lines would
also be an efficient way to improve the results and should be offered as an option when handling a
regular structure such as this one. Region centered in the low density areas should be forbidden.

Occupancy map constraint problems

From the observation of the occupancy map constraint results, we can infer the following improve-
ments:

• The teleport operation would be also very useful. For instance, if we detect a big ellipse in
a small allowed area, the shape of the resulting region might be wrong as it is mostly de-
termined by the constraint shape. This ellipse should be removed and replaced by a smaller
one, more coherent with the available space.

• If an ellipse covers too many pixels of a constraint area (its center is not allowed into it, but
its axes are not constrained), split the ellipse or teleport it.

• The possibility to modify the region sizes during the process (while trying to stay coherent
with the statistics) according to the available space.

In summary, there is still a lot we can do and experiment to improve our results. However, the
appearance layers will help reduce (or hide) any small artefact.
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3.8.2 Summary

We have described a technique to synthesize subdivisions from the analysis of a given subdivision
sample. The analysis phase extracts statistical properties of the input mesh and characterizes the
regions by computing a set of fitting ellipses. The synthesis is then performed by statistically
sampling new ellipse parameters to generate similar regions. The generated ellipses are distributed
onto the target surface (2D plane) using the Lloyd’s heuristic, which can be influenced by the use
of a density map if the original subdivision possesses an underlying meta-structure or other kinds
of constraint maps. In a second stage, the region contours are adjusted using a shape optimization
algorithm to better match the original input regions.

This two-stage process is necessary as it is a hard problem to generate the correct similar
shapes first and try to pack them on the target plane. Moreover, there would not be any control or
edition possible.

User control is allowed at various stages, going from controlling the overall sizes of regions
through the scaling parameters up to using complex maps during the population phases to
influence the regions locations, sizes, orientation and shapes. Local editing operations such as
adding, removing or modifying a region are also possible. Most of this flexibility is due to the
Lloyd’s algorithm used in the first phase. The second phase is still necessary to adjust the region
shapes after the modifications, and the final mesh is editable (as it consists in a real 2D mesh of
polygons, edge and vertices).

In the end, we obtain a 2D editable mesh to which we can add appearance details to match the
original textured structure or create a new one. This is done by filling the regions and contours
with some detail information. The next chapter describes how we can add such 2D details to a
generated subdivision, while the subsequent addresses the 3D detail aspect.
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Chapter 4

Generating 2D Appearance From
Example

"Realism demands complexity, or at least the appearance
of complexity"

— Paul Heckbert, Survey of texture mapping

As discussed previously, our goal is to generate cellular textures based on examples. For all
the reasons developed earlier (see chapter 1), we have chosen a "divide-and-conquer" strategy,
thus separating the analysis and synthesis of the geometry (structure) from the appearance of these
textures. In the previous chapter, we presented our method which produces a "bare" 2D structure,
built of regions whose shapes are similar to those of the input examples. In this chapter, we will
present our approach to analyze and generate the 2D appearance (or texture) associated with these
regions. The untextured mesh defines the shape, orientation and location of the generated regions
and is thus of prime importance in the final visual aspect of our structured texture. It constitutes
the "backbone" of the final result. However, this geometric mesh is not usable "as is" in our target
applications; we need to dress it with 2D textures. Its 3D visual appearance will be addressed in
the next chapter.

In this chapter, we follow a similar strategy as that adopted for the separate analysis/synthesis
of geometry and appearance. In particular, we will separate the problem of appearance analysis
and generation into that of the interior of the regions and the materials separating them. This
choice has a natural justification, since, in the real (textured) world, the structured textures
we are interested in (rock walls, animal skins, etc.) are often composed of two different
materials: one for the interior of the regions and another surrounding these regions. For
example, a rock wall is made of rocks which have been excavated from some quarry and which
hold together thanks to mortar or clever alignment. In the latter case, the outside material is
simply empty space, but it still makes a visible separation between the regions. Thus, it makes
sense to decouple the texturing of these two components as they are different, independent entities.

There is a great amount of detail information in textures, especially photo-realistic textures
like the ones we can extract from our photographs. It thus makes sense to take advantage as much
as possible of the richness of this available information. Texture gives us the geometric, color and
reflection details we need to make our scene look realistic.
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In order to texture our generated structures, we set the following goals and requirements:

Rendering speed Since our target applications can be interactive such as video games or interac-
tive visualization of environments, preprocessing should be done off-line as much as pos-
sible, allowing real-time display of the end result.

Memory For some applications, memory can also be an issue (for examples, for game consoles).
Ideally, we would like our solution to use as little memory as possible, especially since our
structure synthesis model already does not require a lot of space.

Information reuse Our original image contains a lot of detail information and we should capital-
ize on this as much as possible to enrich our results.

User input The user is important and should be kept in the loop for controlling and editing of
results.

Future reuse Detail information extracted from the original image should be put in a form that
could make it usable later, for other different or similar operations.

As we have seen, a structure is the union of a finite set of closed regions. Each region is
formed by a sequence of straight edges. An edge separates at most two regions and, in the
following, we thus refer to it as an interstice between two regions to illustrate the fact that its
width is mainly non-uniform. Similarly, a set of regions (and edges) meet at a structure vertex
and we use the term junction in this case. The complexity of these contour elements can be used
to simulate the 2D silhouette complexity of the individual regions. For instance, if our regions are
rocks, the subtle geometric details from the rock contours can be visually approximated by the
complex mortar silhouette instead of the rock contour itself. We aim to simulate these geometric
details using the information contained in the images of the detailed contours.

In this chapter, we first describe how we separately address the texturing of these three
elements: the region interiors, interstices and junctions. We then explain how we ultimately
combine them to give a resulting, entirely generated textured structure exhibiting realistic details
which are similar to the example input. We finish by showing some results and discussing the
method. In this chapter, we speak of "structure" instead of "subdivision" since our focus is on
the graphics aspect and the word "appearance" will be used to describe the 2D appearance (i.e.,
2D colored textures) of our geometric structures. This final appearance will result from the
combination of the extracted region details with the recovered contour details.

Figure 4.1 summarizes the analysis phase of our appearance recovery method. We have
as input an original structured texture image and its corresponding 2D mesh. The appearance
analysis phase produces appearance data which is used to synthesize the appearance of any given
structure. This data is composed of unified textures and atlases. We create such textures for the
material of the region interiors (see for example figure 4.9) and also for their contours (see figure
4.13 and figure 4.17). These unified textures allow us to generate similar, unrepetitive cellular
textures over large amounts of geometry, with negligeable texture memory consumption, avoiding
the pitfalls of texture generation techniques (see section 2.2.2 for a more detailed discussion).

Figure 4.2 summarizes the synthesis step. We have as input a 2D mesh and the appearance
data of a previously analyzed textured structure. The synthesis phase will create one polygon for
each region, edge and vertex present in the input mesh. It will also output textures coordinates
which index the textures contained in the appearance data for all theses polygon vertices.
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Figure 4.1 Analysis of the appearance of a structured texture.

Figure 4.2 Synthesis of the appearance of a structured texture.
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4.1 Generating region details

The details which compose a region can be due to geometry (silhouette of the primitive or 3D relief
information), color and/or lighting. This information can be partly recovered from the original
image, processed and used to synthesize similar details. In this section, we describe the method
we adopt to collect the regions 2D appearance information from the input image and how we reuse
it to texture the interior of any set of generated regions. The recovery of other types of details is
addressed in the chapter 5.

4.1.1 Method description

We want to transfer 2D appearance details present in the original image to texture the generated
polygonal geometric structure. We first concentrate on the details inside the regions (which con-
stitutes the primitives of the structured texture analyzed), the contour details being handled by
the recovery method described in section 4.2. We want to extract the color information from the
original image using the corresponding user drawn 2D mesh indicating the location of the regions.
Figure 4.3 shows an original structured texture photograph with its regions highlighted in white.
The image to its right is a structure synthesis result (as described in chapter 3), based on this input,
which remains to be textured. This information, along with the region correspondence information
of the previous step, constitutes our input data, the output data being a fully textured structure.

Figure 4.3 Left: The regions from an original image highlighted by the white geometric structure
drawn onto the image by a user. Right: The generated structure (2D mesh of connected regions).

In order to transfer the color information from the original image to the result structure, var-
ious methods could be employed. We describe briefly here some possible approaches and their
drawbacks.

• For each generated region, we could have cut the color information from inside a similar
region and pasted it onto the target generated region (texture transfer). However, this ap-
proach implies some additional processing if the original region is smaller than the target,
e.g., some pixel-based texture synthesis to fill the extra target pixels with some color infor-
mation. The search for a larger region (where the generated region entirely fits in) is also
not guaranteed to be successful.

• We could also have employed texture synthesis techniques to completely texture all the
generated regions interiors. This approach poses a number of problems. First, a pixel-based
synthesis technique (as described in section 2.2.2) might alter or even remove the small
details that are important in the texture, such as marble veins for example. On the other
side, a patch-based approach is complicated to implement as blocks (or patches) have to
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be extracted from all the original regions. Special care has to be taken regarding their size
as each block should originate from only one region at a time to avoid falsely including
an interstice texture in the process. Another drawback is that texturing a large number of
regions using texture synthesis techniques would not be interactive and, most of all, the
memory consumption would be far too high to be usable in practice. In addition, texture
synthesis has to be finely tuned to each example and can easily produce garbage, as seen in
the images of figure 2.9.

• An interesting approach could be to compute the parametrization between a generated region
and its closest original region (closest in the same sense as defined in subsection 3.5.4) and
directly transfer the texture from the input region to the target one. A way to do this could
be to map from the original textured region onto a square (using the closest vertex on the
contour for instance) and then map again from the square to the generated region. However,
if the shape difference between the regions is too important, the resulting texture would be
deformed, resulting in distorted features.

Approach chosen We have as input a photograph and the corresponding geometrical structure
indicating the approximate placement of the regions in this image. We have to texture a syn-
thesized structure, which can be of any size, with the color information coming from the input
photograph. In order to meet our speed and space requirements, we cannot realistically use texture
transfer or texture synthesis at rendering time. Ideally, to achieve a fast texture mapping pass
during rendering, we should already have texture coordinates on our mesh vertices indexing in a
small number of texture images loaded in the graphics card and not handle any additional image
operations. Considering this, we decided to synthesize texture coordinates in a preprocessing
step. These coordinates could index in the original image but this would pose the problems
described earlier regarding deformations due to re-parametrization, or computation incurred by
the verification of region sizes.

We thus chose to collect and put together the original texture information in order to build a
minimal set of unified textures into which we can index randomly in order to fill each generated
region with color information. Intuitively, we can think of this as trying to recover the raw material
that was originally used to construct the structure regions, e.g., the rock in the quarry used to carve
out the wall stones. Figure refimg:RegionAppearanceAnalysisPhaseillustratesthisprocess.

The main advantages of this kind of approach are the following:

• All the costly computation can be done as a preprocess.

• We create a small set of relatively small textures per analyzed structure, thus limiting mem-
ory requirements.

• Using solely a small texture set, only texture coordinates for each of the generated structure
vertices have to be computed.

• Since they represent the underlying material (e.g., the original stone used to create the wall,
etc.), these textures are potentially reusable in other contexts.

We must however try not to alter or loose precious detail information while building these
textures. In the following subsections, we describe how we build this unified sharable texture
information and use it to rapidly texture generated structures of any size.
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4.1.2 Region data collection

We want to construct unified common textures using texture information coming from the original
image. To this end, we divide the set of original colored regions into clusters of similarly-tinted
regions which are used to create the desired unified textures using texture synthesis techniques. In
order to achieve this goal, we go through the main steps pictured in figure 4.4.

Figure 4.4 Analysis of the regions appearance.

Original texture extraction Using the structure drawn by the user on the original image, we
extract a set of textured regions from this image. This is done by taking each original polygon
in turn, shrinking it slightly to make sure it only covers the material we want to extract and not
the interstice, and scan-filling it to gather all its pixels. Figures 4.5 and 4.6 left column shows the
result of extracting all the original colored regions from the Levens wall, the Valbonne wall and
the SnakeSkin sample images.

Clustering To build a small set of clusters of similarly colored regions, we compute a color
metric to be used in the clustering process for each extracted colored region. Various color metrics
can be used. We chose a metric that categorizes a region according to its perceptual tint in order
to unite together colors that are perceived alike.

For this, we convert the original image from the RGB color space to the non-linear three-
dimensional CIELAB colorspace. For this, we have to first convert to the XYZ colorspace and
then to the CIELAB space [WS82]. We chose this color space since it is considered approxima-
tively perceptually uniform, meaning that the Euclidean distance between two colors in this space
corresponds to their perceptual difference. We thus define the color metric for a region to be the
average of all the three-dimensional points in the 3D CIELab color space which corresponds to
the region pixel colors. Figure 4.7 shows an individual region (left) for which a color metric in the
CIELAB color space (right) is computed.

In order to cluster the regions using their respective computed metrics, we chose to use an
adaptive k-means clustering algorithm [KP99]. This method determines the optimal number of
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Figure 4.5 Left column: Original extracted colored regions from (top to bottom) the Levens wall
and the Valbonne wall examples. Right column: The same regions, perceptually clustered according
to their colors.

Figure 4.6 Left column: Original extracted colored regions from the SnakeSkin example. Right
column: The same regions, perceptually clustered according to their colors.
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Figure 4.7 A color metric in the CIELAB color space (right) is computed for each individual region
(left).

clusters for a certain data set and groups together the "closest" colors. Using the CIELAB col-
orspace in which Euclidean distances are meaningful allows the use of such a clustering technique
and obtain clusters of perceptually similar colors. Typically, in our examples, we found less than
10 clusters. Figure 4.5, right column, shows the clusters of regions obtained for the Levens and
Valbonne wall and the SnakeSkin examples. We can see that the groups formed effectively contain
regions of similar tints.

Preservation of material detail In order to avoid damaging small material/texture features
present in the original colored regions (e.g., small rock veins), we build a set of guiding textures to
be used by the texture synthesis algorithm employed (recall the description of constrained texture
synthesis in section 2.2.2). For this, we populate an empty image with the - possibly repeated -
images of the original colored regions pertaining to the same cluster. These regions are "aero-
graphed"1 on their contour to avoid detecting their shape in the final resulting image output by the
texture synthesis algorithm. This is an automatic Photoshop script which does not add any manual
overhead. We end up with one guiding texture per colored region cluster. Figure 4.8 shows one of
the guiding images built with the regions contained in one of the Levens colored region clusters
and a guiding image from the SnakeSkin example.

Synthesis of unified texture One final unified texture is created per region cluster. It is
constructed by running a texture synthesis algorithm guided by the guiding textures created in the
previous stage. In our case, we use the Efros-Freeman quilting method [EF01], described in more
detail in section 5.3. Small texture blocks are extracted from each colored region in each cluster
to compose the "block pallet" which the synthesis algorithm uses to create the result image by
placing one little block after the other, each block being chosen according to some measure, as
described in more details in section 5.3. The guiding texture is employed to influence the choice
of the blocks in the parts where there is some color information (i.e., other than blue background
pixels). This guiding texture is necessary as most texture synthesis algorithms may alter the small
features of original regions when the choice of blocks is "blind".

Figure 4.9 shows two of the result textures for the Levens wall examples. The first one (a) has
been created with the aid of the guiding texture seen in figure 4.8. The second one (b) exhibits
some interesting features such as leaves, allowing them to be reproduced in the generated outputs.
Image (c) is the unified texture resulting from the the SnakeSkin guiding texture of figure 4.8,
bottom.

1Photoshop filter simulating the painting technique known as "aerograph" which consists in spraying finely pulver-
ized paint onto a surface.
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Figure 4.8 Two examples of guiding textures containing multiple samples of the regions composing
a cluster. Top: Levens wall example. Bottom: SnakeSkin example.

We end up with a small set of texture images representing the material constituting the original
regions, one for each cluster of regions. These images can then be used to texture the generated
regions as described in the next section. One important condition to respect, though, is that the
interior of each extracted region must be composed of an approximatively uniform material (with-
out any noticeable macrostructure). If this is not the case, the resulting unified texture might be of
poor quality, depending on the texture synthesis algorithm employed to create it.

4.1.3 Region data Synthesis

At the end of the structure synthesis process, we obtain a 2D mesh of polygonal regions. To texture
each individual generated region, we find its closest original region (as described in section 3.5.4)
and its corresponding cluster. We retrieve the unified texture associated to this cluster and project
the generated polygon at a random position onto the texture. We scale the generated polygon ap-
propriately to avoid stretching or compressing the texture which would lead to resolution artefacts
in our results. To do this, we must ensure that the number of pixels in the generated region is the
same as the number of pixels covered by the projection of the generated polygon. Figure 4.10
shows the projection of a generated polygon into a unified texture. If we normalize the projected
coordinates of the generated polygon to be between 0 and 1, we directly obtain texture coordinates
that we store along with the generated mesh. At rendering time, these coordinates (UVs) are used
to index directly into the unified texture which is loaded into the graphics card, thus achieving
real-time rendering of the generated structured textures. Some final renderings can be seen in the
results section (4.3).
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Figure 4.9 (rom top to bottom: two of the Levens wall unified textures. Note the leaves present in
the second image. One of the SnakeSkin unified textures.

4.2 Generating contour details

The process described in the previous section allows the synthesis of some detail for the interior
of the generated regions. However, we still have regions whose shape is a straight-edged polygon
whereas our original regions usually exhibit a much more geometrically complex contour (see
figure 4.11 for an example of texturing only the region interiors). We could try to find a method to
reproduce this complexity and add the geometric contour edges required to achieve it. However,
this would add a lot of unnecessary geometry. Instead, we decided to simulate this complexity
by using the interstice and junction textures (which together we call "separators") which separate
two regions and whose own intricate contours are determined by the complexity of their adjacent
regions. These separators can be empty space, mortar, roads, skin,... depending on the structured
texture analyzed.
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Figure 4.10 A generated polygon projected into one of the unified textures

Figure 4.11 Result after texturing the interior of the regions of the Levens wall original structure.

In this section we present the method we developed in order to extract these separators from
the original image and use them to enrich the generated regions contour. A region contour geome-
try is constituted of vertices and edges, corresponding to junctions and interstices in their textured
counterpart. Each edge separates at most two regions whereas a vertex is the intersection of sev-
eral edges, and thus regions. Due to this difference, we will decouple the texturing of these two
elements in a first pass, in order to combine them in the final rendering.

4.2.1 Texturing interstices

We want to recover information about the interstices present in the original image in order to syn-
thesize similar interstices. We considered various ways to address this problem, which are briefly
discussed later in the section. As for the region interiors, we want to do as much preprocessing as
possible beforehand to speed-up the rendering. The main idea of the approach we chose is to build
a texture atlas with the original interstices and use it to texture the generated edges.
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Interstice Data collection

We extract texture bands containing only interstice pixels from the original image. Segmenting
the original image to retrieve these pixels automatically is difficult. There is often too much noise,
too many similar colors and the image analysis algorithms have to be fine-tuned to each particular
example, incurring too much manual tuning in practice. In our case, we have an important clue
on the approximate location of these interstices as we have a hand-drawn 2D mesh on the original
image. Automating this interstice extraction could also benefit from this information, as we
briefly see at the end of this section.

Here are the main steps of our method to extract the interstice pixels from the original image:

1. Collect all the edges from the 2D mesh drawn by the user.

2. Create a 2D polygon by "expanding" each edge in the original image space as shown in
figure 4.12, left. This polygon is slightly longer than the edge.

Figure 4.12 Left: 2D polygons created around the edges of the original image to extract the interstice
textures. Right: 2D polygons created around every edge and vertex of the generated subdivision; they
will be textured with texture extracted from the original image.

3. Scan-fill this polygon to copy the original image pixels.

4. Paste these pixels into a result image (the same for all interstices) which constitutes our
interstice atlas. See figure 4.13, top, for an example of a section of interstice atlas.

5. Associate the location of the interstice texture extract in the atlas with the original edge
length and store this information.

6. When all edges have been processed, remove any region interior pixels from the interstice
images and replace them by a transparent alpha value. For now, this stage is done by hand
using Photoshop but we discuss later how this process can be automated. Figure 4.13,
bottom, shows the interstice atlas after editing.

In the end, we obtain one texture containing all the interstices from the original images, and a
data structure to quickly reference them according to the corresponding edge length. We can use
this atlas to synthesize new interstices for generated structures.
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Figure 4.13 Top: The interstices extracted around all the original edges. Bottom: Same interstices,
edited by hand to remove the rock pixels, replaced by transparent alpha values.

Interstice Data synthesis

A generated structured mesh is composed of a series of straight edges of various lengths. We will
"garnish" them with the interstice textures coming from a previously created interstice atlas. This
atlas does not necessarily have to originate from the same structured texture as the generated 2D
mesh.

We use the following technique: For each of the generated edges, we find the original edge
having the closest length. This original edge is linked to an interstice texture in the interstice atlas,
which we associate to the generated edge. This association is performed by creating an additional
2D polygon around the generated edge (as can be seen in the right image of figure 4.12), and
assigning to each of its vertices the textures coordinates corresponding to the chosen interstice in
the atlas. Figure 4.14, left, illustrates this association process. When the length of the generated
edge is different than its closest original length - which is often the case - the mapped texture will
be either stretched or compressed. However, this does not cause important visual artefacts as the
interstices are often small compared to the rest of the structured texture. Moreover, for structures
generated out of the same image from which the interstices have been extracted, the edge lengths
are similar.

Once again this approach has the advantage of allowing to texture a generated structure of any
size using only one texture, which can thus totally fit in memory. Only textures coordinates have
to be computed and this is a very fast process.
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Figure 4.14 Left: Original interstice chosen to texture the indicated generated edge. Right: Same
but for a junction.

Figure 4.15 left shows an image of a generated structure where the interiors have been textured
using the method described in the preceding section and the edges have been textured using the
approach we just described. The close-up on the right shows that there is an evident need for
treating what happens at the meeting point of the interstice bands, which we address in the next
subsection.

Figure 4.15 Left: Generated structure with interiors and interstices synthesized. Right: Close-up on
a few regions, interstices are overlapping.

4.2.2 Texturing junctions

A junction is defined as the intersection of several interstices. This corresponds to the mesh vertices
in the 2D structure. To extract information on these junctions from the original image, we use a
similar technique as for the interstices: we create an atlas of junctions which is then directly
referenced during rendering. The main difference lies in the way the generated junctions are
selected during synthesis.

Junction Data collection

As for the two previous steps, we have as input the original image and the 2D mesh structure which
the user has drawn. The junctions are extracted in the following steps:

1. Create a 2D polygon centered at each of the mesh vertices. This polygon is star-shaped
and has one branch per edge joining at this vertex. See image 4.16 for an illustration of the
junction extration process.
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Figure 4.16 Junction polygons created on the original image to extract junction textures.

2. Scan-fill this polygon to copy the original image pixels.

3. Paste these pixels into a result image (the same for all junctions). See figure 4.17 for an
example of a section of a junction atlas.

Figure 4.17 Top: The junctions extracted around all the original vertices. Bottom: The same junc-
tions, edited to remove the rock pixels, replaced by transparent alpha values.

4. Associate the location of the texture extract in the result image with some information which
allows us to characterize a given junction. We chose this information to be the distribution
of angles around each vertex. We thus construct one search tree per valency present in
the structure. For each vertex with valency v, we insert in the tree corresponding to v, a
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multidimensional data point composed of the ordered list of angles around it, along with
the location of the corresponding junction polygon in the junction texture. To make sure
we cover all the possible combinations of angles possible, we also insert rotated and sym-
metrized versions of each initial data point. For example, if we collect for one vertex the ini-
tial set of angles {175o , 85o , 100o}, we will also insert the following sets: {100o ,85o ,175o},
{85o ,100o ,175o}, {175o ,100o ,85o}, {100o ,175o ,85o} and {85o ,175o ,100o}. We store the
angle data in a data structure that is designed for fast search: approximate-nearest neighbor
search (ANN) [AMN+98].

5. Edit the result image to remove the rock pixels in the same way as for the interstices, leaving
only the junction pixels. Replace them with a transparent alpha value. See figure 4.17,
bottom, for an image of some extracted edited junctions.

In the end, we have one texture where all the junctions in the original image have been placed
side-by-side, along with a search structure which we will exploit during the junction data synthesis.

Junction Data synthesis

Our generated 2D mesh structure is composed of vertices around which additional junction
textured polygons will be placed (see figure 4.12, right, for an image of some of the created for
the Levens wall generated structure.). Each generated vertex has valency v′ corresponding to the
number of generated edges around it. To find the most appropriate junction to attach to this vertex,
we collect the angles around it, creating a v′-dimensional data point that we use to query the
corresponding tree for its nearest neighbor. The metric used for this standard tree-ordered search
is Euclidean distance. This search leads us to the closest junction in terms of its angle distribution.
The point found can be a rotated/symmetrized version of an original angle set. We thus need to
mirror and/or rotate appropriately the corresponding junction texture in order to align it correctly
on the generated junction polygon. Figure 4.14, right, illustrates this association process.

In order to also consider the similarity of the junction color with the colors of its surrounding
interstices, we use the following heuristic:

1. Instead of returning the closest data point, we return the k closest ones (where k < 10 in
practice). ANN [AMN+98] allows us to efficiently return the k closest neighbors.

2. Compute a color metric for each junction. We use the same color metric in CIELAB space
as for the colored region clustering process described in section 4.1.2.

3. Compute a color metric for each surrounding interstice. Compute the mean of these color
metrics.

4. Keep the junction whose color metric is closest to this mean.

More advanced heuristics such as precisely matching the colors of the corresponding texture
endings could be designed. We could also consider touching up the original junction colors (or
only the luminance) in order to get a better color fit.

The search for the most appropriate junction is done for every vertex in the generated
2D mesh. The selected junction polygon coordinates in the junction atlas are taken as tex-
ture coordinates for the associated generated junction polygon. An example rendering can
be observed in figure 4.18. Looking at the close-up on the right, we can notice the visual
artefacts where the junction and interstice polygons meet. The junction and interstice polygons
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are not facing each other and there is thus a visible continuity break. We must now address
this problem and devise a method to achieve a seamless blend between the different parts extracted.

Figure 4.18 Left: Generated structure with synthetic interiors, interstices and junctions. Right:
Close-up on a few regions, interstice and junction textures do not match..

4.2.3 Combining interstices and junctions

The region, interstice and junction synthesis steps result in the creation of an equivalent number of
textured polygons which completely cover the target surface. The junction and interstice polygons
are placed slightly in front of the region polygons. This has the effect of hiding the region straight
edges, thereby providing a complex silhouette to the region, due to the contour (interstices and
junctions) texture silhouette complexity. However, the junction and interstice polygons overlap
as a result of their construction process. In addition, the textures they support often do not match
properly at the polygon borders, as can be seen in image 4.20 (a). This is due to the fact that the
textures are not necessarily centered on their supporting polygon and their width can be different.

To correct this problem and correctly match the texture endings of the junctions and the as-
sociated interstices by modifying the supporting polygon vertices position, we use the following
method:

1. For each branch Ji of the junction polygon, find its intersection with the corresponding
interstice polygon. This gives a 2D segment (object space) for each junction branch. Figure
4.20 (e) and (d) show a junction polygon and its interstices polygons.

2. Find the corresponding segments in the junction and interstice texture spaces. Traverse
these segments to determine the extent of the texture colors. Figure 4.21 shows the resulting
texture limits for a junction and its surrounding interstices, indicated by green and red lines.

3. Compute the scaling and translation values to apply to Ji endpoint vertices to align the
texture endings of the junction branch and its facing interstice. This corresponds to match
the green and red lines together. If the scaling is too important, transform the interstice
polygon instead.

4. Apply these values and cut the polygons at their intersection to remove unwanted texture
parts. Figure 4.20 (b) and (e) show the result after transforming the polygons.
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5. Since only the branch endpoints have moved, some unwanted distortions can appear in the
junction texture. To correct this problem, we compute the translation to apply to the interme-
diate vertices (highlighted in red in the images) in order to place them in the same position
relative to their two adjacent vertices as they were before the matching process as illustrated
in figure 4.19.

Figure 4.19 Translation of the intermediate points (between two junction branches) in order to reduce
the texture stretching artefact. The junction branch endpoints M1 and M2 have moved to position M ′

1

and M ′
2. Junction vertex M must keep the same position relative to its adjacent vertices and is thus

moved to position M ′.

The final result is shown in figure 4.20 (c) and (g).

We apply this process to correct all the generated junctions. A comparison of a generated
structure before and after the match can be observed in figure 4.22. The structure has been gener-
ated (after the repartition stage), and the appearance is completely generated from the information
extracted from the original photograph (shown below). Figure 4.23 shows the interstices generated
using the original structure of the Levens wall.

4.2.4 Automation of interstice and junction extraction

It should be possible to automatically extract the pixels composing the interstice and the junctions,
i.e. to automatically separate the contour pixels from the region interior pixels. Three additional
sources of information could be used for this purpose:

1. The image color histogram could serve to get the range of colors of the interstice in the case
it is easily recognizable from the range of colors of the rocks. In figure 4.24, the histogram
corresponding to the image (INRIA wall) on the left is shown on the right. It is composed
of two peaks. Selecting one of them has the effect of selecting all the interstices pixels.

2. The gradient image of the original image, telling us where the highest contrast changes are
situated. This could be a clue to where the regions borders are.

3. A user-given patch (similar to the ones used in chapter 5) discriminating the interstice colors
from the rock colors.

To discriminate the interstice pixels, we could start from the drawn 2D edge and collect the
pixels around it that could potentially be interstice pixels. To accept or not a pixel as an interstice
pixel, we could attribute a score to each pixel, computed from the available information sources
(is its color inside the interstice color range? Is the contrast change very high, in which case we
might have attained the border and we should penalize the pixel score?) and accept the pixel if its
score is above a given threshold.
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a b c

d e

f g

Figure 4.20 Modification of the junction vertices to match the facing interstice pixels. (a) Junction
and Interstices before the matching phase. (b) After the matching phase with no correction of the
intermediate points. (c) Correction of the intermediate points position. (d) The junction and interstices
of underlying polygons. The junction polygon, (e) before the matching, (f) before the correction of the
intermediate points and (g) at the end of the process. Notice the reduction of the stretching artefact.

Figure 4.21 A junction and the three interstices connected around it (texture space). The intersection
of the supporting polygons and their corresponding texture elements are indicated by green and red
lines.
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Figure 4.22 Left: A generated structure before the junction correction process. Right: The same
structure after the correction process.

Figure 4.23 Result after texturing the contours of the Levens wall original structure.

Figure 4.24 The INRIA wall histogram with the interstice color peak selected.
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4.3 Results

We present in this section some of the results obtained. We can directly transfer the polygons
created in 3D. Texture coordinates have been assigned to all of their vertices and index directly in
the small set of textures loaded (unified textures, interstice and junction atlas).

Structure and appearance data from the same source

Levens wall Image 4.25 shows a synthetic view of the Levens wall, obtained by overlaying the
contour texturing results (image 4.23) and the region texturing results (image 4.11). The structure
is the original one, whereas the appearance is completely generated from the information extracted
from the original photograph (shown below). The generated polygons index in the unified texture
associated to the closest original shape. In this case, we use the original structure and we can
observe that we effectively recover the original colored region tints.
Figure 4.26 shows a generated version of the Levens wall. The structure is the result of the shape
optimization stage and the appearance is synthetic.

INRIA wall Figure 4.27 shows two of the unified textures created out of the INRIA wall struc-
tured texture (which can be seen in image 4.28, left). We effectively get the impression of a
uniform rock material, where the small important original details have been preserved.
Image 4.28, right, shows the recovery of the appearance of the INRIA wall.

Snake Skin One of the Snake skin unified textures is displayed in figure 4.29 and the result of
the appearance recovery is shown in image 4.30. The poor quality of the textures is due to the
small dimensions (400×270) of the original input photograph.

Modifying the underlying structure

Image 4.31 shows the result of the appearance synthesis before and after the insertion of the ellipse
from figure 3.29. We can observe that the textures changes are local, only the regions around the
modified area are affected2.

Modifying the appearance

Since we have a series of unified texture, we can perform some changes on the textures and these
modifications will be automatically reflected in the textured models. In image 4.32, we show on
the top row two unified textures from the INRIA wall which have been modified to add some moss
and crack information using Photoshop. Two examples results are shown on the bottom row.

Mixing structure and appearance data

Image 4.33 shows the result of mixing texture sources. The region interiors are textured with the
INRIA wall while the interstices and junctions come from the Levens Wall example.
Another example can be observed in image 4.34 where the Valbonne wall structure has been tex-
tured with the appearance from the Levens wall. Some wrong color matches on the region contours
show the need to improve our contour synthesis method. Possible options could be to give more
weight to the color difference evaluation during the interstice/junction choice or even to modify

2Since the shape of the regions changed, their corresponding original region might have changed as well and this
explains the change in appearance. This can be corrected by removing the constraint to take the same appearance as to
closest original region.
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Figure 4.25 Top: A final result using the original structure of the Levens wall with a completely
synthetic appearance. Bottom: The original photograph from which the textures were extracted for
comparison purposes.
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Figure 4.26 Generated structure and appearance for the Levens wall.

Figure 4.27 Two unified textures built with the regions extracted from the INRIA wall example.
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Figure 4.28 Appearance recovered for the INRIA wall example. Left: Original structured texture.
Right: Synthetic appearance of the original structure.

Figure 4.29 A unified texture extracted from the Snake skin photograph.

Figure 4.30 Appearance recovered (right) from the original image (left) of a snake skin.

slightly the colors to blend in more seamlessly between interstices and junctions. For some cases,
the lighting can be imprinted into the texture and thus a correlation with the interstice/junction
orientation should be added during the synthesis process to take this into account.

Applying to a different topology

Figure 4.35 shows two results of using structure and appearance data to texture a target shape of
a different topology. The problems which may be seen on the region contours are mainly due to
the fact that a lot of small edges have been generated by the polygonization used to transform the
Voronoi regions into a connected mesh, and these edges cause problems to our matching algorithm.
This is a current shortcoming of our method and its improvement is part of the future work planned
(see section 6.2).
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Figure 4.31 Appearance synthesis before and after the insertion of a region.

Figure 4.32 Modification of appearance analysis data (top) is reflected in the textured structures
(bottom).
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Figure 4.33 The Levens wall structure has been textured with the region appearance data of the
INRIA wall.

Figure 4.34 The Valbonne wall structure is textured with the appearance of the Levens wall.
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Figure 4.35 Two views of constrained structure and appearance synthesis.

Some more examples can be observed in figure 4.36, along with their corresponding constraint
maps. On the first row, the house facade structure has been synthesized from the Levens wall
structure, the left one using the appearance information from the Levens wall while the right one
uses the appearance information from the INRIA wall example. On the second row, the castle
facade structure and appearance comes from the Levens wall example, while the house facade
structure and appearance comes from the INRIA wall example.

Figure 4.36 Results of constrained structure and appearance synthesis, with the constraint maps
shown in the left column. On the last line,

Building a village

Due to time limits, the results concerning the texturing of a village using a limited set of unified
textures and other results could not be published in time. They will be posted on a web site related
to this thesis: http://www-sop.inria.fr/reves/Marie-Claude.Frasson/ThesisResults/.
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4.4 Conclusion

One of the goals of this thesis is to synthesize structured textures from the analysis of one or
more samples. To this aim, we chose to decouple the structure generation from the appearance
generation. In the preceding chapter, we presented our approach to generate geometric structures
(subdivisions) from the analysis of an input subdivision. At the end of the structure synthesis
process, we obtain 2D cellular meshes composed of connected regions. In this chapter, we exposed
our approach to texture these meshes with the detail information found in the original images. This
2D texture information allows the simulation of the geometric complexity which we cannot afford
to create.

Our approach had to fulfill the following requirements (described in the introduction of this
chapter):

1. Real-time rendering speed.

2. Low texture memory usage.

3. Exploitation of detail information contained in the original image.

4. Ability for a user to influence or edit the results.

5. Potential to reuse extracted information.

In order to texture our generated meshes, we decided to decouple the region detail information
from that of its contour. Often, in real-world structured textures, these two elements are composed
of two very different materials. They are two distinct objects, it thus makes sense to analyze and
synthesize them separately and this is exactly what we did.

To synthesize the appearance of the region interiors, we construct a small set of unified
textures. Each texture is built out of a number of original regions, which have been perceptually
grouped together according to their color in the LAB space, using a 3D clustering technique.
These textures are randomly sampled to texture the generated region polygons (created for that
purpose) according to, but not necessarily, their shape similarity to the regions composing each
unified texture.

The generated regions are straight-edges polygons, filled with texture information. The geo-
metric complexity of their contours is simulated by the recovery of the contour detail information,
namely the texture parts around the interstices between two regions and around the junctions at
the intersection of several regions. These two kinds of texture elements are extracted from the
original image using the original mesh information. They are united in texture atlases along with
some information (edge length, angle distribution) which is used to associate a texture element to
each of the generated edges and vertices. One polygon is created for every generated edge and
vertex and textures coordinates indexing into the atlases are assigned to its vertices according
to the association established. Junctions and interstices are matched at their borders using only
vertex movements and they can be rendered on top of the generated textured regions using alpha
values.

Our approach complies with the requirements enumerated above:

Rendering speed Our rendering can be totally interactive as there is no synthesis of texture infor-
mation during rendering. All the computation is done off-line and rendering uses the gen-
erated texture coordinates which index directly in the small set of unified textures/atlases



103

created beforehand. These textures should totally fit in the graphics card memory, thus
avoiding any texture swapping delays. The interstice and junctions are combined through
polygon deformations whose computation is also done in real-time.

Memory usage Texture memory usage is limited. In the examples shown we only use less than
ten unified textures in addition to two texture atlases (interstices and junctions). Their res-
olution depends on the original image resolution and their size is, of course, smaller than
the original image as they are extracted from it. Only these textures are used, no additional
texture information is created.

On the other side, one polygon is created for every region, vertex and edge of the generated
mesh which adds a lot of polygons to our scene. We made this compromise in order to
achieve the memory gains just described and knowing that the actual graphics card can
render in real-time millions of polygons.

Exploitation of detail information We take advantage of most of the detail information present
in the original image. The region interiors are used to recover material textures. The extrac-
tion of the separators and their silhouettes allow to simulate the complexity of the region
contours at a low cost. No additional detail is created and the original texture details are
preserved.

User control Since the user has access to the unified material texture and junctions/interstices
atlases, he is free to modify this texture information at will, adding or removing details (for
example, moss on a wall), modifying some contours, replacing some material textures by
others,... These changes will immediately impact the resulting structured texture.

The decoupling of structure from appearance also enables the user to perform local changes
on the underlying structure with little impact on the appearance synthesis: it has to be regen-
erated only locally. In the same manner, the decoupling of the region interior and contours
allows the modification of one without affecting the other, for example, enlarging all the
contours or attributing different rendering parameters. Annoying shadows or highlights can
also be removed by hand or using the kind of techniques described in the next chapter.

In addition, the user can create various results out of the analysis of more samples. Material
textures coming from one structured texture can be used with junction/interstice atlases
originating from another.

The possibilities for experimentations are thus very interesting and constitute an additional
strength of our approach.

Reusability The region and contour information are computed once for every structured texture
analyzed. It can be used for as many structure generations as we want, not necessarily linked
to the original structured texture they were extracted from. The material textures can even
be used for other purposes as they constitute entire images of a real-world material.

We now have the possibility to generate endless versions of structured textures examples.
However, they are still inherently flat which limits the amount of realism. In the next chapter,
we address how we could recover additional 3D detail information to make our structured textures
more believable.
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Chapter 5

Generating 3D Details from Example

"Les détails font la perfection, et la perfection n’est pas un
détail."

—Leonard de Vinci

The techniques we described up to now allow the synthesis of new textured structures at will
and without any size restriction, by analyzing an example input photograph of a real-world struc-
tured texture. However, even though the textures which are used to synthesize their 2D appearance
have been extracted from photographs of the 3D world, the resulting objects are inherently flat.
They lack the richness of 3D details that can make them look realistic (figure 5.1). As an example,
the rock material typically has a complex surface geometry that we completely lose. We define 3D
detail as being any information which enhances the 3D impression given by a viewed scene. It can
be geometry, silhouette, color, reflectance (highlights, shadows,etc.) or any additional information
given to the scene models.

Figure 5.1 The Levens wall is not flat in real life!
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5.1 Motivation

3D detail is a very important cue to realism. It gives the viewer extra information about the scene
being viewed, and enhances realism. Unfortunately, as we have seen in section 2, detail modelling
is tedious, detail recovery from real images is hard and detail rendering is long. Real-world details
(in contrast to artistically created details) are the most realistic we can get. Artists try to use them
by applying textures from real-world photographs onto their models, a process often referred to as
"Image-based texturing" [POF98] [BMR01] [IBG03]. These photo-realistic textures contain the
result of projecting the details onto a plane at a fixed instant: geometry information is flattened,
lighting information is "printed" into the texture and perceived surface color is not necessarily the
real one. As a result, the texture-mapped object looks very realistic if seen from the same position
as the camera which took the photograph and under the same illumination conditions. However, if
one of these parameters changes, the object suddenly appears strange. Moreover, if the photograph
was taken from a far viewpoint, with a direction very different from a direction orthogonal to the
surface or with a low-resolution lens, the texture can appear blurry, stretched and the visual quality
degrades drastically. These models are thus not ideal for interactive visualization. Representing
details more precisely than with a simple texture becomes crucial when viewing a surface from a
close or different viewpoint. This is illustrated in figure 5.2 where a simple 3D model (top right
and bottom row) has been reconstructed out of some photographs (top left) of a complex rock
block and textured using these photographs. The model looks fine when viewed from a similar
angle as the original photograph (top right) but its simplicity (and flatness) is evident when we
look at it from a grazing angle as we do not see any relief information (bottom right).

Figure 5.2 Block Example. Top left: A picture from a real-world complex rock block. Top right:
A view of a virtual reconstruction of the block, obtained using photographs. Bottom Left: Wireframe
view of the reconstructed model. Bottom right: Reconstructed block seen at a grazing angle: Silhou-
ettes are straight, there are no bumps on the supposedly-rocky surface.
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Another example can be seen in the images of figure 5.3. Here we can see an image-based
modeled scene whose geometry is very coarse (top right). The photorealistic textures add a lot of
realism to the entire scene (left column). However, it is not suited for interactive visualization as
approaching the wall reveals its flatness (bottom right). In addition, the repetition of structured
textures on the wall is noticeable.

a b

c d

Figure 5.3 Biot wall Example. We simulate a lot of detail on a coarse model (b), using photo-realistic
textures (a,c). However, it is much less realistic when seen from a close viewpoint (d).

To overcome this common problem, we propose to exploit available texture detail and
user-provided information in order to recover and reintroduce details that were lost because of
the imaging process (i.e., photography) performed. It should be noted that we do not aim to
exactly reproduce the details as they were in their original state, but rather to produce plausible,
similar-looking details. Including the user in the detail recovery process is crucial as there are
currently no techniques robust enough to recover satisfying details automatically and the user can
make use of his high-level understanding of the visual information to guide the process or provide
additional information. In addition, artists are not fond of automatic tools over which they do not
have control. Therefore, offering a workflow in which they can take an active part is an important
goal.

To achieve these goals, we propose a generic interactive system designed to improve the visual
quality of simple models - whose 2D appearance is created with image-based texturing techniques
- by enhancing, generating and propagating details using user-provided information. The detail
synthesis process results in additional appearance layers and/or enhanced models which increase
the realism of the scene. We want the resulting scenes to be as believable as possible. By adding
details here and there, realism improves drastically. Moreover, we do not have to generate details
everywhere, only in places where the viewer inevitably notices the coarse approximations to the
real scene in geometry and/or texture.
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In the case of structured textures, we decoupled the 2D appearance from the underlying
structure as well as the region interiors from their contours as they were clearly separate entities.
The structure organizes the overall appearance but does not have any influence on the appearance
of each of its individual primitives. Similarly, the primitive appearance is distinct from the
appearance of what holds the primitives together. These observations also applies to 3D detail.
It is being organized by the structure but does not depend on it, thus it makes sense to decouple
structure and 3D detail as well. We will therefore take advantage of the structure information to
enhance structured textures with 3D detail. The memory gains obtained for the 2D appearance
part using shared data can also benefit the 3D detail synthesis phase. This final step results in a
complete pipeline, allowing the generation of visually rich cellular textures, based on the analysis
of examples. The generated structures are compact geometric representations, with associated
2D and 3D texture/detail information which produce results which are visually similar to the
user-provided examples.

In this chapter, we will first present our framework for detail recovery. An application for the
synthesis of displacement maps is described and some results will be shown. We will see that the
structure information is required to improve these results for structured textures, which applies to
details other than height information. Some possible additional layers are finally described before
concluding.

5.2 User-assisted example-based detail generation: System overview

The framework we propose is interactive. Given a model, the user has to indicate which kind of
details he wants to recover, where and, partly, how. The user needs to supply missing detail infor-
mation as a set of small multi-layered objects (called patches) that the system uses to enrich a given
scene, either at the geometry level, at the texture level or a combination of both. Depending on
the type of detail considered, the synthesis is guided by the available underlying texture or model,
which we also call the guiding texture and guiding model in the following text. The synthesis pro-
cess itself also depends on the type of detail considered. In its current state and for our particular
needs, it presently consists in extensions of an existing recent texture synthesis techniques [EF01].
In the future, this synthesis will also be tailored to the details and associated patches considered.
In summary, the user supplies detail examples that the system analyzes, along with the available
data to enhance (model, texture), in order to resynthesize this detail (or a satisfying approximation
of it) where it was lost (cf figure 5.19 for a result of enhancing the flat wall of image 5.3).

The patch object

We define a patch P as a description of a certain kind of detail to be identified on a texture or
model. It is a flexible structure composed of various layers (L1, L2, ..., Ln), whose role is to
provide a correlation between scene features (e.g., color and depth) in order to exploit available
scene information and provide additional user knowledge. The patch is associated with a method
to recreate/transfer/propagate the identified detail by exploiting the scene data and the given infor-
mation.

For now, layers are small 2D images (typically on the order of a 100x100 pixels) where one
pixel in a layer corresponds to the same pixel in the other layers. One objective is to extend this
structure to be able to contain 3D information or any other kind of information, as described in
section 5.5.1. As they provide additional data needed to recover details of any (imaginable) type,
there can be numerous layers designed. They are most often edited by hand as a preprocess. For
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example, 2D layers can be created by an artist using an image-editing program like Photoshop.
This concept completely fits in the way artists usually work.

Detail recovery generic algorithm

Here is a brief description of the generic algorithm at the core of our proposed framework for
detail recovery. A more detailed description of its use with a specific patch type can be found in
the next section.

Input:

• Coarse model with its image-based guiding textures.

• User-provided patches containing missing detail information (potentially containing differ-
ent types of layers).

Output:

• Enhanced model (geometry and/or texture), which can be rendered.

For a model to enhance:

1. Initialization phase: Assign one or more patches to each polygon or to the entire model.

2. Detail synthesis phase: For each polygon (or the entire model), apply the detail recovery
process corresponding to the supplied patch.

3. Rendering phase: Apply the rendering technique corresponding to the generated details
(e.g., displacement mapping to render generated displacement maps).

We have designed and implemented a flexible system to put our proposed framework into
practice (figure 5.4 presents a screenshot of our system). We first present one specific type of
patch, which allows the addition of some height information to our generated structured textures.
However, it can be generalized to other types of textures as we will show in our results. The next
section describes how our system handles this patch.

5.3 First application: Displacement map synthesis

Amongst the various types of details we might want to recover, depth is one of the most important
as it is the main thing lost when one photographs a scene, due to the projection from 3D to 2D.
Recovering depth from images is a well-studied problem and there is no easy robust solution
available. As seen in section 2.1.2, artists use hand-made displacement maps to provide depth
information for a given color texture. Considering this, we present a first patch in our detail
synthesis framework with the goal of easing the creation of displacement maps.

Displacement mapping is a commonly used technique to add geometric details to CG scenes.
A displacement map, where height differences are indicated by differences in grayscale color
values, is first created, usually by hand, and applied to the geometry. When an artist uses a large
texture and wants to displace the associated model to create some relief, he typically has to draw
a large corresponding displacement map. This is a tedious and long task since all the details
must be sketched by hand on the entire map. This is true even if similar details were already
drawn in another part of the texture but in another position/orientation/shape or are only slightly
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Figure 5.4 A screenshot of our system.

different (see images 5.16 or 5.21 for such examples). Often, directly using a grayscale version
of the texture present on the surface as a shortcut to drawing the map does not give good results
as, in most cases, the grayscale values of the colors cannot be directly linked to the surface depth
variations. In figure 5.5 top, we can see a texture coming from a photograph of a real-world wall.
Transforming this texture to grayscale values and applying it as a displacement map leads to the
result of figure 5.5 bottom. The interstice between bricks looks correct as it was darker than the
rest but the surface of the bricks is too noisy and the foliage is completely incorrect. To correct
this, the artist needs to draw the complete displacement map by hand (possibly using the grayscale
version as a base pattern to edit) and this can take a lot of time. Thus, a method to help generate
these maps would be more than welcome.

For our method to allow the recovery of such detail, we introduce three types of layers:

• Color layer: This is a small color image. It can be drawn, extracted from one of the orig-
inal image-based textures or from another instance of an original texture (e.g., with better
resolution, photographed from closer).

• Height layer: This is a 2D map containing height information, in the form of grayscale
values, for the corresponding pixels in the color layer.

• Mask layer (optional): This is a layer which specifies pixels to ignore from another layer.
For example, pixels whose color is the result of an illumination effect (shadows, highlights)
and whose value should be ignored.

The user must supply patches containing at least the two first layers. Figure 5.6 contains
two example patches used for the wall example where the depth layer was edited by hand using
Photoshop. We made sure to capture two main different details of the wall: the bricks and the
foliage, where the correlation between color and depth is clearly different. For the bricks, the
interstice is darker and its depth should be negative, whereas the foliage is dark as well (in tint)
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Figure 5.5 Top: Texture map coming from a real photograph. Bottom: Unsatisfactory displacement
resulting from using a grayscale version of the texture as a displacement map. There are too many
high-frequency details which are not plausible. Only the front polygon has been displaced, to be able
to compare with the undisplaced wall in the back/front. Some gap problems are circled in yellow.

but it is rather protruding. With only one patch, there would inevitably be depth mistakes as the
dark tint would be correlated with only one depth information. Since the synthesis algorithm uses
color distances (as described below), if one color in the guiding texture is not part of any patch, it
chooses the closest color and thus potentially the wrong depth.

Figure 5.6 Two patches used for the wall example, containing a color and a depth layer.

Once the system has been initialized by assigning one or more such patches to the polygons
where depth is requested, the detail synthesis process can start. It will generate one result color
image and one result depth image per designated polygon by using our extended version of Efros
and Freeman’s image quilting technique [EF01] which we describe in the following.
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Image quilting technique This texture synthesis method (depicted in figure 5.7) creates a final
result texture by choosing a set of blocks of pixels from an input texture (image 5.7, left). The
block size is fixed and user-defined. The final texture is generated block by block in raster-scan
order. Each block overlaps the block at its left and/or above it by a certain percentage (user-
defined). For each new block to place on the result texture, a list of randomly chosen candidate
blocks coming from the input sample texture is created. Each candidate block is evaluated in turn
by computing an error metric on the pixel colors in the overlapping region(s). The one with the
lowest error is chosen as the next block in the texture being synthesized. Once all the blocks have
been selected, the color error between adjacent blocks (top,left) is minimized using a minimum
boundary cut (in color space) in their overlap region (image 5.7, right).

Figure 5.7 The Image Quilting technique. From an input texture (left), the algorithm extracts blocks
which are constrained to overlap (b) (rather than placed randomly (a)). The visible seams in the overlap
regions can be reduced using a minimum boundary cut algorithm computed on the color errors. (Image
from Efros and Freeman [EF01])

The technique can also use a guiding image (whose size is the same as the result texture) to
influence its choice of blocks during the synthesis (as described in section 2.2.2 and illustrated in
figure 2.8). This adds the requirement that each candidate block be also as close as possible (in
color) to the corresponding block in the guiding image, by adding a term to the computation of the
error metric. This metric can thus contain one or two terms (depending if a guiding image is used
or not):

• Overlap term O: This is the error in the overlap regions (left and/or top) of the candidate
block and the already chosen blocks in the resulting color image.

We define Bc as the candidate block (B2 in figure 5.7) and Bovh and Bovv as the horizontal
and vertical overlap regions of a block Bi with its adjacent top (Btop) and left (Bleft) block.
If there is no such block, the corresponding term is null. Refer to image 5.8 for an illustration
of these various terms.

Using this notation, the overlap error can be written as

O(Bc) = (Bovh
top −Bovh

c )2 + (Bovv
left −Bovv

c )2. (5.1)

• Guiding term G: This is the error between the candidate block pixel values and the pixel
values of the block at the current guiding image position Bguide (which is equal to the
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position in the result texture being synthesized). The guiding error term can be written as:

G(Bc) = (Bc −Bguide)2. (5.2)

Each error term is computed as the distance in the RGB color space of the pixel values using a L2

Norm (sum of squared Euclidean distance between pixel intensity values)1. The final error term
E(Bc) can be written as:

E(Bc) = αO(Bc) + (1− α)G(Bc). (5.3)

where α is a tuning parameter indicating the tradeoff between the color coherence for the texture
synthesis and the fidelity to the guiding image.

Figure 5.8 The candidate block (Bc) overlaps with the blocks to its left and/or above it. Its color
error with the corresponding block Bguide in the guiding texture can also be integrated in the error
metric.

5.3.1 Multi-patch depth synthesis

Our approach can use multiple input patches at the same time. This multi-patch synthesis algo-
rithm, pictured in figure 5.9, proceeds as follows:

1. The texture already mapped onto the polygon serves as a guiding image to influence the
synthesis process.

2. For each input patch, we compute a color metric for the color layer. This metric is a simple
color average in the CIELAB colorspace but could be replaced by any other more advanced
similarity metric.

3. We synthesize the result color image block by block, following the guiding image in a raster-
scan order. For each block to synthesize, we compute a color metric based on the guiding
image corresponding block and compare it to the pre-computed metrics of each of the input
patches. This permits us to choose an input patch from which random candidate blocks are
extracted 2. In order to rapidly build the final result images at the end, an index to each input
patch is kept along with the chosen blocks during synthesis.

1We use the same colorspace as in Efros’ algorithm. However, we feel the CIELAB space would be more appropriate
for such distance computations.

2Using this metric for choosing the input patch is a speed-up technique for the texture synthesis process to limit its
search space for candidate blocks, but we could evaluate candidates from all the patches simultaneously.
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Figure 5.9 Multi-patch texture synthesis.

4. Once an input patch has been selected, we use a technique similar to image quilting to pick
a block amongst the candidate blocks: An error metric is computed for each candidate block
and the block with the smallest error is selected as the next block in the result color image
being synthesized.

We added a term to the quilting method error metric to consider the depth layer when choos-
ing a block. This is the depth term D. It represents the error in the overlap regions (left
and/or top) of the depth block corresponding to the candidate color block and the already
chosen depth blocks in the result depth image. This term is important in order to maintain
the spatial coherence as much as possible in the generated depth map and can be written as:

D(Bc) = (Bovh
topd
−Bovh

cd
)2 + (Bovv

leftd
−Bovv

cd
)2, (5.4)

where Bid is the depth block in the depth image corresponding (same position) to the block
Bi in the original image. See image 5.10 for an illustration of these terms.

Therefore, the error metric E is now the sum of the three terms G (Guiding error), O (Over-
lap error) and D (Depth error) (equations 5.2, 5.1 and 5.4):

Enew(Bc) = α1O(Bc) + α2G(Bc) + α3D(Bc),

where α1 + α2 + α3 = 1.

We can tune the influence of each term through the parameters α1, α2 and α3.

5. The result color image is built by copying each chosen block from the appropriate patch
color layer using the index stored during synthesis. The depth result image is built by copy-
ing the corresponding depth blocks from the associated depth layer. The chosen blocks
overlap at a certain percentage, as defined.

6. Stitch all the blocks together to reduce the seams visibility as is done in Image Quilting.
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Figure 5.10 The coherence in depth space is preserved by adding an overlap term similar to the one
in color space.

We thus obtain one depth map per designated polygon which we can use as its displacement
map. We can blur the maps, if needed, so the changes in height are not too sharp. To render the
scene with this new information, we apply a typical displacement mapping technique, subdividing
the polygon to an appropriate resolution and using the generated depth map to displace the polygon
subdivision vertices. To correct blurriness resulting from the stretching of the color texture by the
displacement, we can re-synthesize colors in areas where we detect a large displacement. However,
while producing renders of our scenes, we faced a problem that has been known for years in the
film production industry but which has not been addressed in research. We describe it and propose
a possible solution in the next section.

5.3.2 Rendering issues

We chose to apply the displacement maps separately on each face as the subdivision vertices are
not shared across edges. This is important when a different polygon subdivision level is needed
on each face. We call a seam the limit between two adjacent coarse (non-subdivided) polygons
which form a sharp edge. Initially, this space is null since the polygons are joined together. Once
they have been displaced, this space can become non-null and we call it a seam gap. This is a
typical problem with displacement mapping, faced by CG production people [DKS01]. We thus
preprocess the scene and construct one seam structure per pair of adjacent polygons, containing
information on these neighboring polygons (which will consist in several polygons, once subdi-
vided). These seam gaps pose a problem both for the geometry and the texture.

Seam gap stitching

At the geometry level, since we apply the displacement map separately on each face, two adjacent
faces can become disconnected once their vertices have been displaced. We use a simple zipping
algorithm to reconnect the two edges:
Let E1 and E2 be the edges of the seam gap we wish to repair and N1 and N2 their number of
vertices (N1 is not necessarily equal to N2). We want to stitch E1 and E2. For this, we use a
two-pass process:

1. We follow each edge in parallel and for every vertex of E1, we find the closest vertex in E2
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so that no other vertex further along in E2 is already connected to a vertex in E1. This is to
avoid overlapping new edges.

2. We join the unconnected vertices together and build new triangles where needed.

The result is a strip of triangles joining the two separated faces (see figure 5.11). We fill the
seam structure with the newly created triangles since it is a separate, editable structure, it is easier
and faster to process a seam separately after displacement mapping.

Figure 5.11 Two-pass stitching process (left) and result on an exaggerated seam gap.

Seam texturing

The texture should be consistent across faces, even in the presence of sharp edges. We need to
build a texture image for the strip of triangles resulting from the above-described stitching. We
developed a simple efficient technique: we extract a sufficiently large strip of texture from each
of the faces adjacent to the seam. We reverse (unfold) them so as to preserve continuity from
the faces into the seam. We make them overlap and we blend them together using a minimum
boundary-cut method so as to minimize the color error in the region they overlap. This method is
described in more details in the following algorithm:

Let P1 and P2 be the coarse polygons around the seam. They each have a texture (original or
generated) and thus some texture coordinates defined for their vertices. See figure 5.12 for an
illustration of the process. The following steps are performed:

1. Compute d, the maximum distance between the seam extremal vertices (AB and CD if
ABCD are the vertices of the seam between P1 and P2).

2. Let d′ = 0.75 × d (0.75 = user-specified parameter). For P1 and P2, we can find four 3D
points at this distance from the seam: P1, P2, P3,P4.

3. Find their equivalent 2D points in the texture space of each polygon: P ′
1, P ′

2, P ′
3, P ′

4.

4. Extract the texture sample in the 2D polygons. A′P ′
4P

′
3D

′ and B′P ′
1C

′P ′
2 in each of the two

textures.

5. Build a texture image where these two texture extracts overlap at a user-defined percentage
(50% in practice).
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6. Use the minimum boundary cut algorithm to minimize the color blend error in the overlap
region.

7. Apply this generated texture to the seam geometry (the stitch). To get the seam 3D vertex
texture coordinates, we simply interpolate in texture space according to the 3D position of
the stitch vertices relative to ABCD 3.

Figure 5.12 Texturing a seam by blending textures coming from two adjacent polygons. Two texture
portions are extracted from the adjacent polygons, then merged seamlessly using a minimum boundary
cut.

For very small seams (a few pixels), we simply blend the colors coming from the two thin
strips of extracted texture. A seam texturing result for the wall can be seen in figure 5.13: we can
see the two adjacent polygon texture extracts and the blended result. Figure 5.14 shows another
example of a successful seam reconstruction.

Figure 5.13 Texture extracts from adjacent polygons (top and bottom) merged into one single texture
(result). A close-up of the result is also shown.

The results obtained on various models are presented in the next section.

3Since the seam is typically small, errors due to the fact that the seam geometry is not entirely flat (as our texture
reconstruction process implies) are generally not noticeable.
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Figure 5.14 Solving the texture gap problem. Top: The stitch used to texture the recreated seam.
Bottom: Exaggerating a seam gap (left) to appreciate the stitching and texturing results (right). Only
the two righthand polygons have been stitched.

5.3.3 Results

We obtain satisfying results for displacement map recovery and seam stitching on a variety of input
models, presented in figures 5.15 to 5.20.

Rock Figure 5.15 presents results obtained for an image-based reconstructed model of an old
stone. In the left column, we show one of the patches used and the displacement map
obtained for the front polygon. The right column contains two renderings obtained after
displacement mapping. Note that only the front facing and the top polygons were treated.
The displacement map leads to a consistent stone displacement but not necessarily that of the
original stone. Notice particularly the results on the stitch where the two adjacent polygon
textures have been merged seamlessly across the new strip of triangles.

Door Figure 5.16 shows results obtained for a wood door. The result using a grayscale ver-
sion of the texture is shown in the top left, next to the two patches used to get the results
displayed in the bottom row. We can clearly see the improvement in realism, obtained semi-
automatically, since only two small patches were required.

Chip Same for the results on a chip (Figure 5.17). Building the displacement map automatically
is not possible due to the many variations in color.

Brick Wall Figures 5.18 to 5.20 present the results for the brick wall model. The generated
displacement map is of satisfactory quality. Only one big polygon has been displaced to
show the increase in realism in comparison to the flat polygon on the right. Notice that the
foliage is correctly displaced. However, some borders have not been correctly handled as
indicated by the yellow square. This is due to clearer mortar parts in the input texture (image
5.5 top) whose color has been mismatched with a similar brick color.
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Figure 5.15 Results for an old stone. Left column: One of the patches used (top) and one of the
displacement maps obtained (bottom). Right column: Two views of the displaced model.

Figure 5.16 Door example.
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Figure 5.17 Chip example.

Figure 5.18 Wall Example: The generated displacement map.

Figure 5.19 Wall Example: Two views of the displaced textured wall.

The rendering is quite coarse as we use a custom basic renderer. For the same reason, the
wall has not been subdivided enough, resulting in the smooth aspect of the surface, as seen in
image 5.20. This aspect is also due to the fact that no difference has been made between the
mortar and the stones. These problems are evidently overcome when using the approaches
described in the two previous chapters, decoupling structure and appearance, as we shall
discuss in the next section.

5.4 Enriching generated structured textures with 3D detail infor-
mation

As seen above, a direct application of the displacement map generation achieves satisfactory
results for unstructured textures, such as that of the stone (figure 5.15). However, for cellular
structures, such as that of the wall in figure 5.19, the technique suffers from all the problems
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Figure 5.20 A wireframe rendering of the Biot wall example, showing the smooth subdivision.

faced by texture synthesis techniques as discussed earlier (section 2.2.2). The obvious solution
to this problem is the combination of our techniques for structure and 2D appearance synthesis,
developed in the two previous chapters.

To see the problem in more detail, consider the case of the wall example of figures 5.18
and 5.19. Since the notion of structure is not taken into account during the displacement map
synthesis, no distinction is made between a pixel from a region interior and a pixel from the
contour. Therefore, the synthesis will blindly pass through borders, potentially damaging them.
This can be seen in image 5.18 where the part of the texture inside the yellow square clearly has
border problems. The height pixels in the border area are clearer than the ones of the surrounding
regions, which is not what we want. In addition, if we observe the close-up in image 5.19, right,
we can see that the interstices are not as clearly marked as we might want them to. The transitions
from region to region is quite smooth when it should not as rocks and interstices are two different
objects and should be clearly seen as such.

Two main approaches can be employed to add 3D information to structured textures generated
with the techniques described in the two preceding chapters.

Creating one displacement map per unified material textures As described in section 4.1,
texturing of the generated region interiors is performed by first building a set of unified material
textures and then sampling them to texture the generated regions. This texture instancing allows
a fast and memory efficient rendering of a structure of (almost) any size. To continue to take
advantage of this instancing, we can build one displacement map per unified texture using the
techniques described in this section. At least one patch per unified texture has to be drawn,
more if the texture contains some features, like moss growth, for instance. Since the color range
spanned by one unified texture is narrow, due to its construction process, there are fewer risks of
mismatches between color values when attributing a depth value.

By building unified displacement maps, we can also take advantage of instancing for the depth
channel. When a texture for a region is sampled from a unified texture, the corresponding area
from the associated displacement map is used as the depth information for this region interior. The
depth synthesis is also a preprocessing step and thus does not incur a penalty in computation time.
The same approach can be used for interstices and junctions, with a specific patch for each. This
patch will be used to treat the interstice atlas and the junction atlas, creating corresponding depth
atlases.

One advantage of this technique is that additional rendering parameters can be applied sepa-
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rately to the region interiors and their contours, by building additional common reflectance textures
to enhance the unified color and depth textures. Setting different reflectivity factors for the contour
and the regions material will increase the contrast between the two and consequently enhance the
realism of the whole structure.

Using the structure information during synthesis The structure information can be directly
used during synthesis or for editing purposes. Once the structure and appearance have been
generated for a target surface, each pixel can be straightforwardly categorized as pertaining
to a region or a contour. Thus, they can be handled separately and a variety of patches and
effects (filters) can be applied to them in a post-process step. It is possible to modify at will and
independently the two parts of the generated appearance: the interior or the contours, without risk
of affecting the other element. For example, expanding all the contours by a certain amount by
specifying a filter that would increase the contour pixel span, modifying the reflectance properties
of the region interiors, etc. Some example of possible patches are described in the last section of
this chapter.

In summary, it is possible to use the structure information as a pre- or post-appearance
process. In the first case, it allows the generation of depth information beforehand for interactive
rendering. In the second case, it allows the independent modification of the region interiors or
their contours.

The integration of the detail recovery module with the structure and appearance recovery mod-
ules is not yet completed. In the future, we will experiment to determine which parts of this pro-
cess work well, and develop solutions for the case where further algorithmic enhancements are
required.

5.5 Conclusion

Displacement is one type of detail we can recover using our system with simple patches; semi-
automatically producing displacement maps is a valuable tool for artists. However, one can argue
that this technique does not work on all examples, especially on textures where there is no corre-
lation whatsoever between the color values and the height values. We discuss next some proposals
on how to inject more knowledge (in the form of additional patch layers) in order to recover other
types of detail. These extensions are described in the following section.

5.5.1 Extensions: Recovering other type of details

As we have seen, adding details to a scene can have various significations. In our approach, we
mostly target detail recovery whose manual specification constitutes a repetitive, time-consuming
task, as we have seen with the creation of displacement maps. In the following, we propose
additional patch layers to fulfill this objective. We describe the considered layers, how the user
has to specify them, how they have to or can be combined with others, etc. They should allow to
recover various 3D information attributes.

Shape layer The displacement map synthesis technique fails on example such as the metal plate
in figure 5.21 (left). Here, color and depth clearly cannot be associated because the almond-shaped
extrusion is of the same color as the metal base. Indeed, using the color and height layers shown in
the middle image leads to the wrong resulting depth, as can be seen in the right image. However,
simply adding a criterion of shape to constrain the depth recovery would avoid this problem. By
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defining a shape criterion, we could test if the pixels (or blocks) we are currently synthesizing are
inside or outside the shape defined in the shape layer and constrain the search-space for candidate
pixels (or blocks) to the corresponding part of the color, and thus depth, layers.

Figure 5.21 Example where displacement map synthesis fails. Left: The guiding texture. Center:
The color and depth layer of the patch used. Right: The generated depth.

The shape criterion we must identify should have the following properties: it should be invari-
ant to translation, rotation and possibly, for some cases, scaling. The criterion used in chapter 3.5.4
would be a good choice. It should be associated with a robust segmentation technique, keeping in
mind that the shapes we want to handle should be simple and thus not pose any problem to these
algorithms. The identification process should also be flexible enough to allow the specification of
an approximate shape and a tolerance criterion (deviation parameter from the specified shape) for
its identification. This criterion could also improve the results obtained on the door example of the
previous section.

With this approach, we are in fact separating the search space for candidates into two regions.
Multiple shape layers can be defined for the same patch, dividing the search space into as many
regions. One can argue that this resembles the Texture-by-Number application of Hertzmann et
al. [HJO+01] (see section 2.4). Our criterion is different as we consider the shape of objects as
the constraint and the regions are automatically formed by localizing these shapes into the guiding
texture, even if they have been scaled, translated or rotated, we do not have to draw them in
advance.

Geometry edition layer Building on ideas from Brooks and Dogson [BD02] (see section 2.4),
we propose to extend this approach to 3D. In the original 2D approach, interactive specification
of texture-editing operations performed on a small part of a texture are replicated throughout the
entire image using a measure of similarity exploiting the pixel neighborhoods. We propose similar
3D model operations and additional ones (edge erosion, surface deformations, etc.) on a small part
of a model and replicate them on the entire model or on other models. Similarity measures in 3D to
estimate a "3D local neighborhood" have to be defined using, for example, surface local curvature,
along with texture similarity, if needed. In addition, we must define a simple way to specify the 3D
editing operations, for example by storing the displacements between the original and the modified
surfaces. In short, this layer uses 3D geometric attributes of the underlying guiding shape to control
modifications to apply to the geometry (a sort of "model analogies" approach). Recently, a similar
idea was presented by Zelinka and Garland [ZG04b] using "geodesic fans", a new framework for
local surface comparison, and Bhat et al. [BIT04] who extended the image analogies framework
in 3D.

Geometry template layer This layer aims to fit simple 3D template models to detected projec-
tion of these models in the guiding texture. Rather than having 2.5D information in the layer like
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in the depth layer, we could have true 3D (for example, models of small rocks, facade features like
protruding balconies, windows, ornaments). Using a combination of a color and a shape layer,
we could detect these objects in the guiding texture and enhance the underlying coarser model
with the 3D template information contained in the layer (see figure 5.22). This template will have
to be transformed (scaled, rotated, morphed) to fit as much as possible to its detected projection.
Efficient results from the shape recognition research area will have to be used here to recognize
the potential projections of the given template models in the image.

Figure 5.22 The geometry template layer. Left: a guiding texture. Center: two layers of the patch.
Right: Augmented texture with 3D information.

Models such as the ones pictured in figure 5.23 would greatly benefit from the use of this layer.
Remember that we only aim to add plausible details so an exact solution is not required. It should
be noted that techniques aiming to add geometry to existing models will have to address problems
of texture seams and texture stretch.

Figure 5.23 Adding 3D template models for the rocks in the left image or for the windows and other
facade attributes in the right image should increase the realism of these models.

Reflectance (shading) layer When a texture coming from a photograph is applied on a surface
with some reflectance properties, all the objects "printed" in the texture get these properties, after
having lost their own properties due to the imaging process (i.e., photography). This constitutes a
big loss of detail as intrinsic reflectance properties constitute important cues on the objects surface
geometry and adds a lot of richness and realism.

In figure 5.24, we can see two images of a scratch with different reflectance behavior depending
on the viewpoint. Using either of these images on a coarse model of the box produces a very
different effect. We will not get the impression of a scratch in the surface but rather a drawn line
of fixed color on the surface of the wooden box. For such a small effect, it is not computationally
efficient to affect the geometry of the surface. Merillou et al. [MDG01] offer a solution to simulate
this geometry. However, a scratch map has to be drawn by hand and our framework could help
automate them from this task.
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Figure 5.24 Different light behaviors for a scratch. (Image from Merillou et al. [MDG01])

We thus propose to augment the original color texture with reflectance information. This
reflectance information can either be an additional texture containing reflectance parameters to be
applied on top of the base color texture, or some lighting model parameters or approximations
used during the lighting computation for the considered surface/part of surface (e.g., shading
information like BRDFs [War92] or BTFs [DvNK99]). We offer the user the ability to design
a patch reflectance layer (corresponding to a given patch color layer) with specific lighting
information for various parts of the color layer. The synthesis process would propagate this
reflectance information, along with the other layer informations, to produce a reflectance texture.
This additional appearance layer would then be used at rendering time to produce different effects
for each material. In addition, having knowledge of the structure is very useful for this kind of
layer since the structure region interiors often have reflectivity parameters which are different
from those of their contours, and we can independently modify them as described earlier.

We can imagine various other types of layers. We can even think of layers containing rules to
apply to the sample depending on the guiding texture or underlying model. For example, varying
the shape of texture elements depending on the variation in shape of the object (e.g., to vary the
spot sizes on a leopard skin, which are different on the tail and on the back). Basically, if we can
identify a correlation between variations in the guiding texture and/or model and some changes
we want to apply, we could design a layer to specify it. Additional layers containing parameters
to modulate the information found in other layers should also be easily definable. In order for all
these layers to be easily described, used and combined, the layer structure needs to be extended,
especially related to the layers involving 3D.

5.5.2 Discussion

We propose a novel framework to allow an artist to semi-automatically enhance a scene by
identifying correlations between scene features which can be exploited by a synthesis algorithm.
By letting him provide a description of the kind of details he wants to recover using the available
coarse geometry and textures and by introducing an automation in the repetitive "intelligent"
recovery of this detail, we aim to relieve him from tediously creating all these details by hand.
Indeed, the underlying image-based textures and geometry already contain a lot of information on
the original scene, and a human user is much more reliable to evaluate its relevance than an auto-
matic analysis method. Exploiting this information in combination with user-provided knowledge
thus constitutes a new, promising approach to the problem of detail recovery. Moreover, using a
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set of layers to supply the additional information fits the artists usual way of working (i.e., using
Photoshop to add layered rendering information on top of their base textures).

We implemented the depth recovery part of the system as it was the natural step to take to
enrich the structures generated with the techniques previously described. We are able to synthesize
a depth image using multiple input patches containing a color and a depth layer. We extended
the image quilting technique (which is mono-patch) in order to consider the depth factor when
choosing the blocks to paste into the result, so that both color and depth are coherent in the results.
In addition, our technique uses multiple patches and the best color patch is chosen for each block
using a pre-computed color metric. This allows us to avoid wrong color matches and to handle
textures with various different features contrarily to current existing methods.

When rendering, geometric seams appear in the model due to the displacement of adjacent
surfaces. This is a well-known problem in production. We developed a solution to this problem
by stitching the two polygons and introducing a novel texturing technique to seamlessly cover the
resulting stitch.

The generic system proposed is flexible as the patch-supplied information can be extended
at will. The detail augmented representations obtained can be directly rendered using various
existing/extended techniques and the resulting scenes have a more realistic look.

Our framework resembles the Image Analogies framework [HJO+01] described in section 2.4
as we use training data to propagate a global change, however our approach is more general for
various reasons. First, we do not aim at handling only images but also geometric models. In their
approach, a training image pair (A,A’) is provided for the system to "learn" the transformation be-
tween A and A’. A new image B is submitted and the system computes a new image B’, according
to the analogy found in the training pair. To compute the new image and the analogies between
pixels, they use a combination of two existing texture synthesis algorithms [WL00] [Ash01] and
a perceptual similarity metric computing the sum of squared differences between two "feature
vectors", as described in section 2.4.

Their training pairs corresponds to our patch object. However, in our approach, a patch object
can have many different layers (while in theirs, there are only two in order to build the analogy).
We also allow more than one training pair per example. In addition, their "learning" is done by
searching for similar pixel neighborhoods in the various images using an L2 distance. The learning
we propose is much more involved as it is a procedure taking into account the various kinds
of information present in the patch layers. For example, using the shape layer to constrain the
depth synthesis implies using a shape detection algorithm to locate the given shape. We thus have
extended the feature vectors to much more complex elements. In summary, our approach offers
a generalization which allows to apply the detail recovery techniques to a wider class of images
(and also models) using a generic training set rather than operating on images that are very simi-
lar to the training images. We plan to integrate more advanced detail analysis/synthesis algorithms.

In parallel to this work, Bhat et al. [BIT04] have developed an extension to the Image Analo-
gies approach for 3D geometry (described in the "geometry" paragraph of section 2.2.1). The
interest in extending Hertzmann et al. work is an indication of the promising potential of this
approach. In addition, the combination of this framework for detail recovery with the techniques
for cellular structure and appearance recovery presented in the first two chapters will allow the
creation of 3D detailed cellular structures from the analysis of a sample photographs and some
user-interaction. The generated models are suitable for interactive visualization as they only re-
quire a small set of appearance layers. The use of our patch-based approach is thus even more
appropriate in this context.
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Conclusion

"Science never solves a problem without creating ten
more."

—George Bernard Shaw

In this thesis, we have investigated how to define and create structure and detail (2D/3D)
generators from the analysis of examples. Our work was motivated by the fact that there is
no existing working solution to the problem of generating structured textures from example.
Furthermore, by taking advantage of all the information contained in real-world photographs, we
can increase the realism of computer-generated images by adding details at a reduced cost, while
avoiding unpleasant repetitions.

In order to generate structured textures (mostly cellular textures with anisotropic cells), we
have decoupled the geometric structure from the appearance (2D/3D) in the analysis/synthesis
process. This novel idea offers a lot of flexibility for the generation and modifications of the
results. Following this key principle, we have proposed three different procedural generators for
three different purposes, which can be used separately or in combination.

We first proposed a method to analyze a given geometric structure (subdivision) in order to
extract a compact representation that allows us to statistically synthesize similar subdivisions.
This geometric structure generator is controllable through the use of constraints maps or by way
of interactive edition. Our results show that we correctly recover the shape and region statistics of
the input samples.

In order to texture the resulting 2D meshes, we presented a method to extract from the original
image some appearance data, associated with the original mesh data. This appearance data
includes the creation of unified textures which can be seen as a representation of the original
material composing the cellular regions (e.g., the quarry for the stones of a wall) and contour
texture atlases. The synthesis process creates polygons around the mesh elements (regions and
their contours), and assign to their vertices texture coordinates indexing into the small set of
unified textures contained in the appearance data. Our results show the flexibility to modify the
appearance without affecting the structure and vice-versa.

Finally, to give even more realism to the generated structures, we also proposed solutions
for the 3D detail recovery. We presented a framework to exploit information available in the
models and textures in order to recover and propagate details on the whole scene, aided by user
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intervention. Procedural generators have to be defined for each kind of detail and we presented
our implementation of displacement map synthesis.

We next discuss the contributions of this thesis.

6.1 Contributions

Some possible applications for the generators we propose include, but are not limited to, the virtual
reconstitution of edifices (such as the Castle in image 1.3), the synthesis of existing walls and
pavements, the recovery of cellular animal skins (such as snake or giraffe skins), the design of
new textures from the analysis of more than one sample, etc. In short, our novel method allows
the recovery of realistic detailed cellular textures with shape-varying cells from the analysis of a
real-world sample.

A lot of different texture kinds enter in the class of textures that we can handle. The
requirements for these textures being that the individual regions are formed of a material which
is almost uniform so that the texture extraction process leads to unified textures of good quality.
The regions must also be closed and surrounded by a clearly-defined separating element so that
we can robustly extract the contour information to build our contour atlases.

This core contribution can be decomposed into the following contributions, which can sepa-
rately be used in other contexts.

• Decoupling structure and appearance We believe that one of the main causes of poor
performance of textures synthesis algorithms on the structured textures we address is that
they treat geometric structure and texture appearance together. We decoupled these two
entities and presented our approaches to create structure generators and appearance gener-
ators from the analysis of real-world photographs. Their results can be combined to produce
similar structured textures, or totally new ones, by mixing generators coming from differ-
ent sources. Another advantage is the possibility to perform local changes independently
without the need to recompute everything from scratch.

• Creation of structure generators

We proposed a method to synthesize geometric subdivisions from the statistical analysis of
an input subdivision. Our solution builds on and extends computational geometry techniques
to handle anisotropic primitives and user-defined constraints. The generated textures are
resolution independent and can adapt to a variety of target domains. The results show that
the synthesized subdivisions exhibits the same shape statistics as the original.

• Creation of appearance generators

We presented our techniques to generate a 2D appearance for a geometric subdivision using
a small set of reusable texture components extracted from a structured texture, where each
region contains approximately uniform material. We decoupled the texturing of the structure
cells from that of their contour (or separating element) which allows us to combine region
and contour materials coming from two different sources. Our approach offers a significant
gain of texture space and interactive rendering speeds as there is no new information created
during rendering, only textures coordinates indexing into the small set of common unified
appearance textures created in a preprocess. These unified textures are reusable in other
contexts as they are plain material textures and the separation of the texturing of the region
interiors from their contours allows not to mix unrelated textures during synthesis.
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• Leaving control to the user

Our goal is not a totally automatic approach, since we want to permit some control by the
artist at various stages. Our structure generation techniques allows the user to influence the
synthesis process through the use of constraint maps and permits local modifications of the
results. This lets the artist concentrate on the artistic aspect of the work, rather than on the
more tedious shape creation and placement. In addition, modifications of the appearance
data allow to vary the final visual results.

• Texture synthesis

Current texture synthesis methods fail on structured textures, especially irregular structured
textures such as the ones we are handling. Our method provides a solution in this area using
our two-step synthesis process described previously. We plan to test our approach on the
specific examples where texture synthesis methods currently fail.

• Creation of unified textures

We proposed a pipeline for constructing uniform material textures out of the collection of a
set of colored regions. Their color in the CIELAB space serves as a metric for a clustering
into tint groups which allows to build a corresponding set of textures. See image 4.4.

• Framework for detail generation

With the goal of increasing the realism of a scene, we present a detail recovery framework
which should alleviate the tedious work of generating similar details throughout a scene.
It mainly consists in defining a procedural method to exploit given texture or model infor-
mation in order to recover and reintroduce a particular kind of detail, most often by creating
an additional appearance layer. We show results for the synthesis of displacement maps. We
also propose other possible appearance layer generators.

• Displacement map synthesis

Our results on displacement map synthesis are satisfying, demonstrating that putting more
advanced control metrics (or constraints) into texture synthesis algorithms can be a promis-
ing avenue of research in order to bring a solution to their common pitfalls.

Figure 6.1 shows an input textured structure along with a generated similar geometric subdivi-
sion and the final result after the appearance recovery process.

Figure 6.1 From an original structured texture photograph to a synthetic similar structured texture.

Some secondary contributions of our work which are worth mentioning include:

• A solution to the common problem of "cracks" in a model on which displacement mapping
is applied. After stitching back the separated polygons, a new idea to seamlessly cover the
seam has been presented.
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• The computation of discrete Anisotropic Voronoi Diagrams and VDs of line segments,
which, to our knowledge, has not been previously presented.

• The extension of Efros’ [EF01] texture synthesis technique to use multiple input patches. A
work parallel to ours presented a similar idea recently [TA04].

6.2 Improvements and future work

Our thesis opens a number of interesting avenues for improvements and future work. We first
describe more immediate future work related to each of the generators we proposed and then
expose some more global future research directions.

Structure generation from example

We could have devoted our entire thesis to the problem of generating geometric structures from
example since the problem is far from trivial. We exposed a possible solution but there is a lot of
potential for improvements and experimentations, the first ones being treating more examples to
validate the generality of the method (such as those illustrated in figure 3.1).

Synthesis improvements Some improvements related to the synthesis process have been de-
scribed at the end of chapter 3 such as the teleport operation. They should definitely be given a
try.

Analysis data It would be interesting to explore the possibilities provided by the results of our
analysis step.

Our distributions could be used for classification purposes. Using the analysis results of an
input structure (e.g., a stone wall), we could compare them with the distributions issued from
previous analysis, which have been classified, and determine if it pertains to a certain class of
structures (e.g., walls/animal skins/others) or even subclasses (e.g., medieval walls, Provencal
walls, etc.). This could prove useful for automatic texture database indexation and retrieval.

Another attractive idea we would like to try out is to allow the user to interact with the analysis
statistical parameters (ellipse data histograms, mesh topology information) which would allow
further experimentation. By restricting the samples to a certain distribution range or by modifying
directly the parameters (e.g., forcing the almost vertical edges to become vertical), the user could
generate a totally new set of structures, inspired more or less from the original. Mixing/blending
distributions could also lead to interesting results. In the same line of thoughts, interpolating
between distributions could allow to morph from one structure style to another.

The parameters for region contour texturing can also be exposed to allow for interactive tuning.
The width of the created polygons along with the location of the intersection between interstice
and junction polygons can make a visible difference on the result.

Constraints Our model allows constraints to be defined either in the form of maps, or inter-
actively input by the user. We have tried a few constraints and already suggested other ones in
section 3.7.2 such as size, orientation or metric map which could directly influence the two main
steps of the Lloyd’s algorithm: Either the computation of the Anisotropic Voronoi Diagram, either
the modification of the generators.
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Interactive system We wish we would have time to implement an interactive system to allow
for modification and edition of results. This would require the optimization of our current region
population/shape optimization stages. Many papers [KEHKL+99] [ST04] mention optimization
possibilities for discrete Voronoi computations, even taking advantage of the hardware program-
ming possibilities of current graphics cards. An user-friendly interface would have to be designed,
and preferably integrated into a modeling system (e.g., XSI [Sof]). We discuss a more general
proposal in the general future work section below.

Meta-structure We did not have the time to consider more advanced structured patterns, i.e.,
containing significant or artistic placement rules between the primitives. We focussed more on
their shape and distributions than their placement relative to each other. However, in many struc-
tured textures, these local rules are an important feature which, if not considered, will not permit
the generation of similar subdivisions (for an example of a structured texture with a meta-structure,
see figure 6.2 (also called, in this case, a bi-modal texture)). Solving this would require a higher-
level analysis of the meta-structure of our input subdivisions, for example analyzing correlations
between similarly-shaped regions, in the spirit of Dischler’s computation of co-occurences be-
tween his texture particles [JMKBD02].

Figure 6.2 Structured texture with an underlying meta-structure.

Appearance generation from example

To generate the appearance of our structured textures, we decoupled the treatment of the region
interiors and their borders. The interstices and junctions edition is a manual process for which
we have suggested some automation procedures in 4.2.4. Removing all the region color pixels
by hand can be a tedious process, thus automatizing this part would ease the appearance analysis
part.

We faced problems when generating appearance for geometric structures containing a lot of
small edges (due to the polygonization process of the Discrete Voronoi Diagram regions obtained
at the end of the region repartition step). In the case of a very small edge, the adjacent junction
polygons might intersect and completely cover the edge associated interstice polygon and thus
lead to problems during the matching phase (illustrated in figure 4.20). In addition, the same
original interstice is always associated to the small edges, thus leading to annoying repetitions in
case it is visible. Some more work should be done to correct this, potentially by directly matching
two adjacent junctions and ignore the middle interstice.
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More generally, we think there is room for improvement regarding the texturing of the region
contours. We plan to investigate other ways to recover the contour appearance. A clear advantage
of our method is that since we decoupled the texturing of the region interiors with that of their
contours, we can easily try out new methods for one without affecting the other.

3D detail generation from example

We believe that extending our proposed framework for detail recovery using the layers proposed
in section 5.5.1 can be very promising. We think it could alleviate the sometimes tedious process
of detail creation and propagation.

An interesting approach to try out could be to connect the detail recovery to a learning pro-
cess, giving examples of detail recovery until the process is acquired and repeated by the system.
In general, we think introducing learning techniques in computer graphics approaches can offer
many interesting directions for further research. The position paper of Hertzmann [Her03] gives
interesting insights on the subject.

Future Research Directions

Each of the generators we presented in this thesis (structure, appearance, detail) can be used as
a stand-alone or combined together to lead to the synthesis of detailed structured textures from
example. For example, our structure generation techniques can be used as input for Miyata’s
[Miy90] [IMS03] [MIS01] or Legakis’ [LDG01] 3D relief synthesis techniques where they
randomly generate 3D displacements using noise functions to displace a fine mesh representing
each generated cell. The structure would then come from the analysis of an example but the
appearance would be completely synthetic. Conversely, we could plug our appearance synthesis
process into the output of their structure generation techniques, or any other structure synthesis
techniques (see section 2.3.2 for a review).

In the case generators are used in combination, we would like to experiment with other types
of cellular structures such as aerial city views, where regions are blocks of buildings separated
by roads (see image 6.3 for an example). This case is special as the underlying constraints (such
as the macro-structure) are more complex than those previously seen. Indeed, the road network
contains higher-level constraints, such as the continuity of roads and the coherence of the network,
that should be preserved in order to generate plausible new versions of the city. A solution for this
would be to input a constraint map containing the major roads and let the system fill in the rest of
the space with regions from the input. Some authors [PM01] tried to generate cities procedurally
and we can investigate the constraint maps they propose (population density map, elevation map,
road map).

Application to 3D models

Our resulting structured textures (with or without 3D details) are, for the moment, generated in 2D
planes. In order to apply them on 3D models, we either have to define a suitable parametrization
so that the regions do not look distorted when mapped to an object or generate them directly onto
the 3D models. In this last case, a good starting point would be the approaches used in texture
synthesis or by Kunze et al. [RK97] who constructs geodesic Voronoi diagrams on parametric
surfaces.

Another aspect to consider is that, for certain types of structures such as stone walls, the
individual cells are inherently 3D. Thus, special care has to be taken when applying them to
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Figure 6.3 Aerial city view of Paris.

3D models, especially around sharp corners. We need to avoid the "gift wrap" aspect most CG
walls exhibit. Legakis et al. [LDG01] offer such possibilities, however for each model to texture,
special pattern generators have to be written. We could extend our detail recovery technique by
adding a layer specifying how to apply our generated cells to corner or edges, which could prove
to be more flexible than Legakis et al. ’s.

On the rendering side, in the same paper [LDG01], they propose an optimization method
for rendering large volumes of data such as the ones we are faced with if we synthesize additional
geometry for each individual cell. The approach takes advantage of geometric similarities between
generated cells to use geometry instancing. Since we already have shape correspondences between
generated and original regions, we could employ a similar approach.

Interactive framework

We would like to integrate the techniques presented in this thesis in an interactive structured tex-
ture analysis and synthesis framework. Since our goals are to relieve the artists from tedious work
while providing as much control as possible on the artistic side of the work, we have to provide
interactive tools incorporating our techniques. An artist should be able to interactively scale, ro-
tate, delete, move the structure regions around in real-time, input constraints and get an interactive
feedback, etc. This would require optimizing the discrete Lloyd’s algorithm or try to implement
an analytical solution. Most importantly, the system should facilitate any experimentation and
correction. Ultimately, the development of the appropriate interaction paradigms and toolboxes,
incorporating the techniques introduced in this thesis, will fully exploit the novel capabilities of-
fered, and demonstrate the true extent of their utility.
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Appendix A

Glossary

This glossary contains the words which are used throughout this thesis and whose definition can
help understand the concepts exposed. It is not meant to be a precise dictionary but is rather meant
to provide an intuitive explanation to avoid any possible confusion.

Alpha An extra Color channel to hold transparency information. An alpha value for a pixel rep-
resent the percent of the pixel covered by a given structure.

Appearance Manifestation of the nature of objects and materials through visual attributes such
as size, shape, color, texture, glossiness, transparency, opacity, etc.

Artifacts/Artefact A classifiable visual error. This term does not originally have this meaning
but it has been appropriated by computer graphics researchers.

Atlas See Texture atlas.

CG Computer generated.

CIElab A color space which uses three values to describe the precise three-dimensional location
of a color inside a visible, almost perceptually uniform color space. In this space, Euclidean
distances can be measured between color points. CIELAB color is a color space which
encompasses RGB, CMYK, and describes generally the visible spectrum that the human
eye can see.

CPU Central Processing Unit.

Generative models A generative model is a model for randomly generating observed data. It can
be used to model observed draws from a probability density function.

GPU Graphics Processing Unit, more commonly called the graphics card where most of the com-
putations related to graphics are made.

Mathematical morphology Mathematical Morphology is a tool for extracting image components
that are useful for representation and description. Morphology can provide boundaries of
objects, their skeletons, and their convex hulls. It is also useful for many pre- and post-
processing techniques, especially in edge thinning and pruning. Generally speaking most
morphological operations are based on simple expanding and shrinking operations. The pri-
mary application of morphology occurs in binary images, though it is also used on grey level
images. (notes from Bob Fisher’s CVOnline (http://homepages.inf.ed.ac.uk/rbf/CVonline/))

Mesh Net of interconnected polygons.
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Parametrization Mapping of a texture texels onto a 3D model. The parametrization type (cylin-
drical, front, ...) specifies how texture coordinates will be derived. Texture coordinates
determine how a texture is mapped onto a primitive.

Scan-fill An algorithm that handles an image one row at a time, e.g. performs its computation for
pixels left-to-right as it scans across the image. After one row is generated, the algorithm
proceeds to the next row.

Scene We call a scene, any computer-generated 3D scene, containing 3D virtual objects (also
called models) represented using one of the various existing surface representation (poly-
gons, points, implicit functions, image-based representations, ...).

T-junction A junction where three edges meet and form a "T".

Texture atlas A Texture Atlas is an efficient color representation for 3D Paint Systems. The
model textures are packed onto one single textures and the rendering system indexes into
this one texture at rendering.

Valency The number of edges meeting at a vertex.



Appendix B

Sweeping approach: Topological front

The tiling approach seen in chapter 3 to analyze and synthesize a structure from an example may
not work well for structures exhibiting a layered organization of regular shapes, such as the one
in image 3.26. For such structures, a sweeping technique may be more appropriate. It consists in
sweeping the original plane to collect information on the subdivision (such as events happening)
and sweeping the target plane to regenerate similar events.

We first examine the topology of a subdivision and the regions it is made of in order to
extract characteristics which will allow us to characterize a given subdivision. Then, we address
the geometrical aspects of the subdivision and particularly of its regions in order to define
important variables to sample statistically. This collected topological and geometrical information
constitutes analysis data which should allow us to generate a similar-looking subdivision during a
synthesis phase.

The work described here reports on an exploratory study which we undertook during the thesis.
Even though such an approach could be beneficial in some cases, we believe that the methodology
we actually adopted (chapter 3), is better for several reasons, such as ease of implementation and
robustness, ease of adaptation to different geometric forms, etc.

B.1 Topological aspects

B.1.1 On the topology of a region

A region R is a simple closed polygon composed of a certain number of edges E and vertices V .
Given a unit vector ~u, a vertex vi is called a critical point along the direction ~u if the topology of
the intersection between a sweep-line orthogonal to ~u (and R) changes. If the topology changes
from the empty set to the vertex vi and then to one or more line segments, the vertex vi is said to
be a minimum. It the topology changes from one or more line segments to the vertex vi and then
the empty set, the point is a maximum.

A vertex which is not a critical point is called a regular point. A regular point is always situated
between a minimum and a maximum and can be encountered in two configurations that we term
left regular and right regular. A regular point is left regular if the segment following the point
is situated to the left of the line passing through the segment preceding the point (in the sweep
direction). A point is right regular in the opposite case (see figure B.1 for an illustration of these
cases).

It is known from Morse theory that any region bounded by a simple curve has at least two
critical points, namely one maximum and one minimum whatever the direction ~u. If it has more,
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then the polygon is not convex (i.e., it is concave).

Figure B.1 shows the three types of points.

Figure B.1 Critical and regular points.

In the following, we analyze the topology of a region in terms of critical points for selected
directions, namely horizontal and vertical directions.

We can decompose a region into a lower envelope and an upper envelope (see figure B.2). For
convex polygons, the lower envelope is bounded by the minimum in the vertical direction vminv,
and the minimum and maximum in the horizontal direction vminh and vmaxh, i.e., it contains
all the edges between vminh and vmaxh and passing through vminv. The upper envelope is its
complement. For concave polygons, we can use a similar definition but instead arbitrarily use
the first minimum encountered in the vertical direction along with the first minimum and the last
maximum in the horizontal direction.

The following relation holds: u + l = n, where n is the number of edges in a region, u is the
number of edges of its upper envelope and l is the number of edges of its lower envelope.

Figure B.2 A region decomposed into its upper and lower envelope.

B.1.2 On the topology of a subdivision

A subdivision is composed of three different types of elements: regions, vertices and edges. As
for any planar complex, the Euler relation holds: NR + NV = NE + 1, where NR is the number
of regions, NV the number of vertices and NE the number of edges. If some regions are not
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closed (as can happen on the boundaries), NR + NV <= NE + 1.

For a large number of subdivisions and especially for those we want to handle, we can traverse
them along a particular direction by following a polyline. A polyline can be defined as a list of
control points pi connected by straight line segments (edges). Two successive polylines (going
in the same direction) of a subdivision define a layer composed of a number of regions. The
sequence of all successive layers in a subdivision defines the entire subdivision.

We can traverse a polyline by sweeping across the plane and collecting its edges and vertices.
Without loss of generality, a polyline can be defined as running from left to right. It is x-monotone,
meaning that any vertical line cross the polyline only once. When determining a polyline, we
define the following rule: Starting from an edge to the left, follow the edges encountered at a
vertex by always choosing as a next edge the one which is the farthest from the vertical direction
(and oriented to the right) and does not cross or touch the previous polyline. Some backtracking
rules must be established when walking along a polyline. A polyline main direction can be
defined to be the general (or average) direction followed by the polyline edges.

As our subdivisions can be composed of irregular regions, we distinguish the three cases shown
in figure B.3:

1. A region "protrudes" from the layer. We tag it as being a cavity. It pertains to the layer but
the polyline circumvents the cavity. The cavity can be above or below the polyline main
direction. See figure B.3 (a). To detect such a "cusp", we can follow each edge originating
from a vertex along the polyline, tracing "paths" from this vertex. If the path reaches the
preceding polyline, we abandon it. If the path reaches below the polyline we are building,
we have a cusp. Moreover, defined in term of right turns R and left turns L, a cusp has the
form RL∗R or LR∗L, where ∗ denotes a finite number of turns.

2. A region spans two layers. We consider it is part of both layers and can tag it as being a
double region. Such a region can be identified by comparing the size of each new region en-
countered. This also happens when tracing the edge path and directly reaching a neighboring
polyline (i.e., the neighboring layer). See figure B.3 (c).

3. The polyline has a sharp, step-like change. In this case, we tag the point as being a junction
point. If the change makes the polyline go below its main direction, the next layer will start
at this point. If it makes the polyline go above its main direction, the next layer will end at
this point. See figure B.3(b).

Following these guidelines, we can separate a subdivision into its composing layers (and pos-
sibly cavities, double regions and junction points). Removing a layer reveals the layer below it and
adding a layer is possible above the "interface" (i.e., the upper polyline) of the preceding one.

B.2 Geometrical aspects

B.2.1 On the geometry of a region

A region is defined by its topology but also by its geometry. Some important variables for a region
are:

• Its number of vertices NV .

• Its number of edges (NV − 1).
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Figure B.3 Various polyline events.

Figure B.4 Some polyline events on subdivisions extracted from a real-life examples.

• The length of its edges.

• The angle between its edges.

• The number of edges in each of its envelopes.

B.2.2 On the geometry of a subdivision

The subdivision itself also has a number of geometrical properties. The valency of each vertex
(i.e., the number of edges incident to the vertex) is a very important property of the subdivision.
For example, the valency of all Voronoi diagram vertices is always 3.

Along a polyline, the number of critical and regular points along with their frequency and
regularity can be sampled. A concavity is defined by a right regular point whose valency is 2.
Concavities along a polyline can also be counted.
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B.3 Subdivision analysis

In order to analyze a subdivision, we have to cut the subdivision into polylines, and thus
layers. As a first step, to create these polylines, we can identify them by hand. We can also
manually initialize the process at the beginning of each identified polyline and let the system
determine the rest of the polyline. As a rule, we can set the first layer to contain all the low-
est opened regions (in the case there are opened regions) and then stack the other layers on top of it.

Two consecutive polylines frame a layer of regions. A polyline goes through parts of lower
envelopes (for regions above) or parts of upper envelopes (for regions below). We call these parts
the upper (resp. lower) sectors. Each are contained in the corresponding upper (resp. lower)
envelope of the considered region. We call the edges that remain between two polylines the edges
of the middle sectors. The sum of the edges of the three sectors is the number of edges in this
region. While traversing the polylines, we detect the various cases enumerated in section B.1.2.

We collect the following variable statistics while traversing the subdivision (and thus the poly-
lines):

• The length of edges on the polyline.

• The angle between edges. 1

• The number of edges for the upper envelopes (and sectors) and their orientations.

• The number of edges for the lower envelopes (and sectors) and their orientations.

• The valency of points along a polyline.

• The number of cavities, concavities, double regions, along a polyline and their regularity.

• The number of edges per middle sector and their orientations.

• The orientation of the middle sectors relative to each other. This corresponds to the contin-
uation event as described earlier.

• The diameter (or length) of the sectors, i.e., the distances between their two endpoints. This
measure can be more complex, such as a shape criteria for sectors.

The shape criteria (such as the one used in section 3.5.4) for each region of the subdivision is
also computed and stored in a distribution.

Analysis of a polyline A more thorough analysis of a polyline can be made to try to determine a
regularity (if any) in the succession of vertices along the polyline (local minima, local maxima and
regular points). This regularity can be exploited when generating a new polyline. By analyzing
and reproducing the sequence of polyline events, we hope to get similar polylines. This analysis
can help us determine a set of rules that the polylines should follow (for example, the fact that
there should not be two concavities in a row in the same sector).

We can also imagine building a grammar with the different events which can occur along a
polyline. Each token being a sector of the polyline, and a polyline constituting a phrase. Once
we have determined a grammar, we hope to build new phrases with it. This idea has to be further
explored.

1This might not be sufficient and we might have to consider the neighborhood of an edge to generate the following
edges. See Curve Analogies [HOCS02]
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B.4 Subdivision synthesis

The synthesis of a subdivision could be initialized by generating a polyline according to the
polyline variables and event distributions: A sequence of edges whose relative angles follow the
angle distributions. The rules determined during the analysis of the polyline (sequence of minima,
maxima and regular points) should also be used. This polyline is then cut into sectors which
correspond to lower sectors: we walk along the polyline, collecting edges until an acceptable
lower sector is created (acceptable according to the lower sector distribution and/or the rules
determined during the polyline analysis). This constitutes the beginning of a new region. We
continue until the end of the polyline, thus leading to a cutting of the polyline into a certain
numbers of regions to be completed. Figure B.5 shows such a generated first polyline. A cavity
has been generated according to the cavity distribution.

Figure B.5 First generated polyline: lower sector generation. A cavity has been generated in the
process.

Then a series of phases alternate until the generation algorithm ends. We traverse the newly
generated sectors:

1. For each sector endpoint, we draw a valency from the valency distribution.

2. We generate middle sectors starting from this endpoint. Each middle sector is generated by
taking into account the generated middle sector to its left and the lower sectors it separates.
The angle constraints between successive middle sectors must be respected. Most of the
time, there will be 0 or 1 middle sector generated. See figure B.6.

3. We now have a front of opened regions that we must close. For each opened region, we gen-
erate an upper sector according to already generated sectors. The region must be coherent
with those of the original subdivision. We use the region shape criteria and the distribution
of upper sectors in order to complete the region. See figure B.7.

4. When all regions are closed, we have a new polyline. We can iterate again to generate
another stripe of regions using this polyline or stop here.

Figure B.6 Middle sector generation.
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Figure B.7 Upper sector generation.

Cavities, double regions and junction points must be also generated in the process according
to their distribution.

This method has not been implemented and further study should be made but we hope it could
give an interesting research direction for the analysis and synthesis of layered structures.
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Appendix C

Introduction (Version française)

"Lorsque tu ne sais pas où tu vas, regarde d’où tu viens."

—Proverbe africain

Pour la plupart d’entre nous, il y a 30 ans de cela, l’informatique graphique (infographie)
n’avait pas grand chose à voir avec le réalisme et les détails. C’était plutôt la possibilité d’avoir
autre chose que des lettres et des chiffres sur un écran et la faculté de pouvoir interagir graphique-
ment avec l’ordinateur. Nous ne nous lassions pas de jouer avec un des tout premiers jeux vidéo:
Pong (cf. image C.1), alors qu’il ne consistait simplement qu’en deux barres se déplaçant de haut
en bas et d’un disque traversant l’écran. De nos jours, la puissance informatique a tellement évolué
que des jeux de tennis hautement réalistes mettant en scène des joueurs aux mouvements crédibles
sont maintenant disponibles (voir image C.1). Plus important encore, nous nous attendons à de
tels degrés de réalisme dans les jeux que nous utilisons, et voudrions toujours en avoir plus.

Figure C.1 Gauche: Le premier jeu vidéo de "tennis": Pong. Droite: Un des plus récents jeu vidéo
de tennis (Image de TopSpin [Stu]).

Cette demande incessante de réalisme ne concerne pas seulement le marché des jeux vidéos
mais aussi tous les secteurs dans lesquels les techniques d’infographie sont de plus en plus
utilisées, tels que le cinéma ou la visualisation scientifique. Nous sommes de plus en plus habitués
à visualiser des mondes 3D virtuels et sommes donc devenus très critiques par rapport à la
qualité visuelle de ces mondes. Nous les voulons aussi réalistes, ou crédibles, que possible. Les
chercheurs en infographie sont donc constamment en train d’investiguer de nouveaux algorithmes
pour rendre les images générées par ordinateur presque indiscernables de photographies réelles.
Pour certains types de scènes, cet objectif a été atteint. Par contre, pour d’autres, plusieurs
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artefacts sont encore présents. La plupart du temps, la simplicité des modèles, le manque de
détails et la répétition des structures, motifs, personnages et couleurs sont les défauts des scènes
synthétiques qui nous dérangent le plus.

Nous considérons les details comme étant tout ce qui ajoute au réalisme d’une scène. Cela
peut être de la couleur, de la géométrie complexe, des propriétés de réflectance des surfaces, des
silhouettes, de l’information diversifiée, etc. Toute la complexité qui caractérise le monde réel.
Dans cette thèse, nous voulons offrir des solutions pour augmenter le réalisme d’une scène en
procurant certains aspects de cette complexité de détail par l’utilisation d’exemples provenant du
monde réel, tout en sacrifiant aussi peu que possible l’espace mémoire disponible ou le temps
d’exécution.

C.1 Motivation

Afin de répondre à l’augmentation permanente de besoins en réalisme, beaucoup d’efforts
visent à l’amélioration des composants matériels et logiciels de la pipeline traditionnelle utilisée
en infographie (modélisation, animation et rendu). Dû aux récentes avancées technologiques
dans le domaine des unités centrales et des cartes graphiques, des augmentations de vitesse
impressionnantes ont pu être atteintes pour la phase de rendu. Par contre, ce n’est pas le cas des
outils de modélisation et d’animation. En effet, étant donné que la plupart des scènes graphiques
sont faites à la main, les résultats finaux dépendent des habilités des artistes impliqués et des
outils qu’ils utilisent. Selon le temps et le budget disponibles, ils utilisent des raccourcis lors
de la création de ces scènes: Copiant et collant de modèles et de textures afin de les répéter,
donnant l’illusion de détails en utilisant des textures sur des modèles simples, calculant à l’avance
l’information d’ombrage dans des textures additionnelles, etc. En outre, l’utilisation escomptée
de la scène ainsi que les limitations du matériel disponible peuvent aussi placer une restriction
sur la taille de la scène (i.e., nombre de polygones, nombre de lumières, rendu des textures,
nombre de propriétés de réflectance, quantité de calcul impliquée dans la création de chaque
image) et ainsi sur les détails qu’elle peut contenir. Par exemple, une scène de jeu vidéo doit être
beaucoup plus "légère" (en terme de demande en temps de calcul) qu’une scène de production
cinématographique afin de pouvoir être affichée en un délai acceptable. Le temps de production
et d’édition de scènes détaillées reste donc un goulot d’étranglement majeur.

Afin de simuler des détails géométriques manquants, les artistes utilisent une pléthore de méth-
odes. La manière traditionnelle adoptée consiste à appliquer à un modèle géométrique une série de
couches d’apparence1 dont la combinaison définit l’aspect final de l’objet. Chaque couche décrit
des propriétés de surface (matériel) de l’objet, telles que la couleur, la réflectivité, le déplacement,
la translucence, etc. Elle peut contenir des paramètres variés qui peuvent être ajustés indépen-
damment des autres couches. Cette notion d’indépendance est très importante pour les techniques
traditionnelles de modélisation car elle permet l’ajustement individuel de chaque couche, évitant
ainsi un possible impact sur les autres couches. Cependant, la création de ces couches n’est pas
toujours tâche facile. Dans ce qui suit, nous décrivons trois problèmes relatifs à ces processus, que
nous avons identifié et qui ont guidé le travail réalisé lors de cette thèse.

1En production, cette pile de couches est appelée un "shader" pour des raisons historiques, mais elle ne s’apparente
maintenant plus exclusivement à l’ombrage.
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Problème#1: Synthèse de texture structurée

La première couche et la plus commune ajoutée sur un modèle est la texture couleur. Une immense
variété de modèles de texture existe, allant des texture générées de manière procédurale à celles
provenant de photographies, que l’on appelle photoréalistes. Les textures sont la plupart du temps
utilisées pour ajouter de la richesse visuelle sur un maillage géométrique plus simple. Cependant,
elles souffrent de plusieurs problèmes en raison de leur taille fixe (pour les textures non procédu-
rales) qui entraîne une résolution limitée, en plus des problèmes possibles de paramétrisation.

Deux grandes classes de textures sont particulièrement d’intérêt: les textures stochastiques et
les textures structurées. Les textures stochastiques sont vues comme une réalisation d’un processus
stochastique 2D tandis que les textures structurées correspondent à un arrangement de primitives
respectant une règle de placement donnée. Des expériences ont montré[Mar82] que la vision hu-
maine est très sensible aux caractéristiques de haut niveau (en particulier, leurs discontinuités) et
plus tolérante à de petites déformations. Ainsi, des artefacts sur des textures structurées seront plus
facilement discernables que sur des textures stochastiques. Les textures structurées sont souvent
utilisées pour des objets d’arrière-plan (environnement) mais, malgré cela, l’observateur remar-
quera immédiatement d’éventuelles répétitions d’une texture de base, des problèmes de frontière
à la jonction des morceaux de textures, des défauts de paramétrisation, etc. L’image C.2 illustre
quelques-uns de ces problèmes communs.

Figure C.2 L’apposition de texture structurées provoque souvent des artefacts gênants: texture mal
appliquée, répétitions de structure, résolution limitée. (Image de [tom])

Idéalement, nous voudrions pouvoir générer de telles textures structurées sans leurs problèmes
inhérents de jonction et de résolution. Ces textures peuvent aussi être appelées des "textures cel-
lulaires" puisqu’elles sont composées de régions fermées, telles que les roches d’un mur de pierre
ou les cellules d’une peau de serpent. Nous utiliserons le terme "structure" ou "texture structurée"
dans la majeure partie de ce mémoire, à l’exception des cas pour lesquels l’appellation "texture
cellulaire" facilite la compréhension. Pour reproduire de telles textures, un artiste modélisateur
peut les dessiner et les agencer de manière répétitive mais ce processus peut rapidement devenir
long et fastidieux. Il existe des générateurs de structures mais leurs résultats sont souvent im-
prévisibles et leur manque de contrôle les rends peu attractifs pour les artistes, qui ont besoin de
pouvoir ajuster leur travail à volonté.

Une solution pratique serait de pouvoir prendre en entrée un exemple du résultat désiré et
obtenir une procédure paramétrable capable de produire un résultat similaire. En effet, les tex-
tures extraites du monde réel constituent une excellente source d’inspiration pour la conception
de textures virtuelles et nous devrions prendre avantage le plus possible de la qualité de leurs
détails. La texture des murs du château de Pickering (image C.3) est un exemple d’une texture
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structurée que nous pourrions vouloir reproduire afin d’obtenir une reconstitution virtuelle fidèle
du château complété. Afin de synthétiser une texture similaire, une possibilité serait d’utiliser des
algorithmes de synthèse de texture dont le but est de répliquer une texture à partir de l’analyse d’un
échantillon. Par contre, même si les résultats de ces algorithmes sur des textures stochastiques sont
satisfaisants, il n’existe pas encore de bonne solution pour les textures structurées.

Figure C.3 Le château Pickering. Comment pouvons-nous le compléter virtuellement et répliquer la
texture de mur existante de manière convaincante et non répétitive?

Ainsi, le premier problème que nous considérons dans cette thèse est le suivant: Comment
pouvons-nous analyser une structure donnée (provenant dans la plupart des cas d’un exemple du
monde réel) dans le but d’être capable de la propager sur diverses surfaces sans se confronter aux
problèmes intrinsèques aux techniques de placage de textures? Comment pouvons-nous définir un
tel "générateur de structure"? De plus, nous croyons fermement que les solutions complètement
automatiques ôtent le travail artistique des mains des artistes. Nous devons les soulager de la
partie fastidieuse de leur travail tout en les laissant influencer la génération de texture structurée
de manière à la fois globale et locale. Les techniques de modifications locales permettent d’éviter
d’avoir à régénérer une structure entière du début et facilitent la conception rapide et itérative.

Problème #2: Couplage de la Structure et de l’Apparence

Observez le village de la figure C.4 (droite), composé de plusieurs instances de la même mai-
son, que l’on peut voir à gauche. L’utilisation de la même texture pour chaque maison donnera un
aspect artificiel à la scène entière. Par contre, si nous arrivons à synthétiser pour chaque maison in-
divididuelle une texture structurée de murs de pierre différente des autres, à l’aide de techniques de
synthèse de texture telles que [EF01] ou [WL00] par exemple, la consommation de mémoire tex-
ture sera très élevée puisque nous ne pourrons pas dans ce cas partager des textures entre plusieurs
objets. Les approches procédurales pourraient être une alternative à considérer mais elle sont
réputées pour être difficiles à contrôler et à prédire.

Une observation importante est que pour des texture structurées telles que ces murs de pierre, la
structure, c’est-à-dire la forme des pierres et leur placement, et l’apparence, c’est-à-dire la texture
et les détails 3D (par exemple le relief) de chaque pierre et du mortier qui les unit entre elles
peuvent (et doivent) être traitées indépendamment. Nous croyons qu’une des raisons pour laquelle
les méthodes de synthèse de texture échouent sur de telles textures est parce qu’elles tentent de les
traiter ensemble.
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Figure C.4 Gauche: Une maison générée par ordinateur qu’il reste à texturer. Droite: Une village
de maisons similaires dont les murs sont recouverts de textures structurées.

Problème #3: Synthèse de Détail 3D

Afin d’accroître la richesse visuelle des scènes 3D, des couches d’apparence plus avancées doivent
être utilisées afin d’appliquer sur la surface de l’information concernant, par exemple, les normales
de surface, la hauteur ou même l’éclairage, ceci afin d’éviter les problèmes de planarité de surface
et de silhouettes rectilignes illustrés à la figure C.5. Ils permettent l’ajout d’information 3D discrète
aux données de couleur et de géométrie sous-jacentes. Par contre, la construction de couches
d’apparence comprenant des motifs similaires mais arrangés en divers endroits et orientations
peut rapidement devenir très fastidieuse pour l’artiste, qui ne peut alors s’aider du traditionnel
copier-coller. Il n’existe actuellement aucune méthode (semi) automatique pour le soulager de
cette tâche.

Figure C.5 Gauche: Scène dans laquelle la planarité des textures structurées est évidente. Droite:
Des couches d’apparence additionnelles ont été appliquées et le réalisme a augmenté.(Images de
Oliveira [dON00])

Plus génériquement, la création de détail est un processus fastidieux. L’utilisation d’outils
de modélisation traditionnels pour la construction de détails géométriques fins représente une
quantité énorme de travail répétitif. Une solution peut être de prendre un échantillon de détail (par
exemple, sous la forme d’une photo ou d’une mesure) et de l’utiliser pour améliorer un modèle
approximatif bâti à la main en y ajoutant, générant ou propageant ce détail. Par contre, chaque
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type de détail possède ses caractéristiques et ses particularités qu’il est nécessaire de comprendre
si l’on veut pouvoir le régénérer De plus, l’information reliée au détail doit pouvoir être éditable
et manipulable pour qu’une telle solution soit utilisable en pratique.

Ainsi, le troisième problème auquel nous nous attaquons consiste à déterminer des manières
d’alléger le travail de l’usager pour la génération de détails petits mais néanmoins cruciaux pour
le réalisme, soit en générant des couches d’apparence correspondant aux textures structurées
synthétisées, soit, plus génériquement, en créant des générateurs d’information 3D par l’exemple.

En résumé, dans cette thèse, nous investiguons trois thèmes autour de l’idée d’exploiter
l’information du monde réel afin d’accroître le réalisme dans les scènes 3D.

1. Comment synthétiser une structure à partir de l’analyse d’un échantillon de sorte à éviter les
répétitions gênantes.

2. Comment générer une apparence réaliste pour cette structure en utilisant une description
compacte de manière à pouvoir permettre un rendu temps-réel, tout en évitant l’utilisation
de textures répétitives.

3. Comment propager l’information 3D à partir d’exemple pour soulager les artistes des tâches
fastidieuses de création de détail.

Dans la section suivante, nous énoncerons les objectifs que nous nous sommes fixés pour
attaquer les problèmes que nous venons de décrire et les approches que nous proposons pour les
atteindre.

C.2 Objectifs et Approches Proposés

Dans ce travail, nous nous fixons le but principal d’améliorer le réalisme des scènes générées
par ordinateur en procurant des solutions pour analyser l’information provenant du monde réel
(structure, apparence, information 3D) et l’utiliser pour créer des "générateurs" procéduraux
de couches d’apparence, ajustables par l’utilisateur, qui permettront d’enrichir efficacement
les modèles des scènes. Ceci constitue un but à long terme pour lequel cette thèse apporte les
premiers éléments.

Les deux premières parties de cette thèse se concentrent sur la synthèse de textures structurées
basée sur l’analyse d’exemples du monde réel qui sont difficiles à reproduire en utilisant les tech-
niques actuelles. Nous avons choisi de traiter ce problème particulier en découplant la structure
de l’apparence, ce qui nous donnera beaucoup plus de flexibilité. La troisième partie décrit un
système pour la récupération de l’information 3D par l’exemple et propose une application de
cette approche aux textures structurées. Les techniques exposées sont appliquées à l’information
de hauteur et généralisées à d’autres types de détails.

1. Génération de structure par l’exemple

La synthèse de structure à partir d’exemple est un problème difficile. Nous créons des générateurs
de structure qui apportent une solution à ce problème, nous permettant de propager une texture
structurée donnée de manière procédurale tout en permettant à l’usager d’influencer les résultats.
Ce problème est géométrique de manière inhérente et nous le traiterons comme tel. Nous essayons
de reproduire analytiquement une structure géométrique donnée représentée par un maillage 2D
composé d’arêtes et de sommets. Notre objectif consiste à extraire une représentation compacte
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de la structure à partir de l’analyse d’un exemple (échantillon de la structure). Cette représentation
nous permet de répliquer la structure sur un domaine cible de forme et topologie diverses.
L’usager est capable d’influencer la synthèse et de modifier le résultat sans avoir à tout régénérer.

L’approche que nous proposons consiste à évaluer l’anisotropie de chacune des régions com-
posant la structure en l’approximant à l’aide d’une forme géométrique simple. Ceci nous permet
de bâtir des statistiques simples auxquelles nous ajoutons de l’information reliée à la topologie de
la structure. Ces données statistiques sont exploitées lors de la phase de synthèse afin de générer
des nouvelles régions de formes similaires aux originales lors d’un processus en deux étapes. Dans
un premier temps, les régions sont échantillonnées à partir des statistiques et vont progressivement
peupler un domaine cible en utilisant une méthode de pavage. Plusieurs sortes de contraintes, en-
trées à l’aide de cartes de données par exemple, peuvent être prises en compte au cours de cette
étape. Dans un second temps, la forme des régions est optimisée de façon à ressembler le plus
possible aux formes originales. La structure générée est éditable, les régions peuvent être modi-
fiées localement et la structure se met à jour globalement sans nécessiter une re-synthèse totale.
Le processus est flexible; plusieurs extensions sont possibles et décrites dans les chapitres 3 et 6.

2. Génération d’apparence 2D par l’exemple

Comme énoncé plus tôt, lorsque nous analysons une texture structurée donnée, nous découplons
l’analyse de la structure et celle de l’analyse de l’apparence étant donné que nous les considérons
comme des entités indépendantes. Notre but principal lorsque nous analysons l’apparence d’une
texture structurée est de créer un générateur d’apparence qui soit léger, c’est-à-dire qui requiert
un petit nombre de textures et qui calculera le rendu du résultat de manière efficace. Il est à noter
que nous nous occupons en premier lieu seulement de la texture couleur 2D, qui correspond à
"l’apparence 2D", la première couche d’apparence qui est habituellement apposée sur un modèle
3D.

Puisque nous voulons produire un générateur léger, nous devons créer des composants de
texture réutilisables qui peuvent être accédés plusieurs fois, de manière à utiliser aussi peu
d’espace que possible en mémoire texture. Afin d’obtenir une apparence similaire à celle de
l’exemple fourni, ces composants doivent être extraits de l’information de texture originale dans
l’image, tout en faisant attention à ne pas dégrader les petits détails qui sont essentiels à la richesse
d’une texture. Dans le but d’obtenir un rendu rapide, aucune nouvelle information de texture ne
peut être créée au cours du rendu, même si la géométrie cible peut être différente de l’originale.
Notre choix est donc de faire autant de pré-calculs que possible hors-ligne. De manière similaire
à la génération de structure, l’utilisateur devrait être capable d’influencer le processus jusqu’à un
certain point.

L’approche que nous proposons est inspirée par le principe de l’instanciation qui consiste
à "recycler" les textures en indexant à plusieurs reprises dans la même image afin de texturer
plusieurs modèles. Nous avons en entrée une image d’une texture structurée ainsi que la structure
géométrique 2D correspondante, composée d’un ensemble de régions fermées. Au cours de
la phase d’analyse, nous extrayons des éléments de texture de l’intérieur des régions et les
utilisons afin de construire un ensemble de textures unifiées. Il est à noter que contrairement
à l’instanciation traditionnelle de texture, chaque région (par exemple une pierre dans un mur)
indexe dans une partie différente de cette texture unifiée, évitant ainsi les répétitions. Nous
traitons différemment les contours des régions (par exemple le mortier dans un mur) en découpant
des bouts de textures autour des sommets et des arêtes de la structure géométrique 2D et en
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les rassemblant dans un atlas de textures. Nous conservons également les données de structure
géométrique et les associons à l’information de texture extraite.

Les structures géométriques résultant du processus de synthèse précédemment décrit sont com-
posées de sommets et d’arêtes autour desquels nous créons des polygones additionnels. Au cours
de la phase de synthèse, nous associons à chacun d’eux une texture provenant d’un des atlas
et échantillonons les textures unifiées pour attribuer une information de couleur pour texturer
l’intérieur des régions. Une attention spéciale doit être portée à la jonction entre les morceaux
de texture de contours qui doit être le plus indétectable possible. Nous avons décidé d’établir un
compromis entre le nombre de polygones et le nombre de textures utilisées afin d’atteindre les
requis d’espace et de rapidité que nous nous sommes fixés. Nous pouvons beaucoup plus nous
permettre un nombre élevé de polygones qu’un nombre important de textures, particulièrement si
ces textures sont de haute qualité. L’utilisateur est autorisé à modifier les textures partagées afin de
créer de nouveaux résultats d’apparence. Les générateurs de structure peuvent aussi être combinés
avec des générateurs d’apparence provenant d’exemples différents afin de synthétiser de toutes
nouvelles textures structurées.

3. Génération de détails 3D par l’exemple

La dernière partie de cette thèse vise à récupérer de l’information 3D à partir d’images. Les détails
géométriques fins, les propriétés de réflectance, etc... sont imprimés dans les textures et nous
devrions profiter de cette information, guidés par les yeux experts d’un utilisateur. Ces données
peuvent nous permettre de construire des couches d’apparence additionnelles afin d’ajouter plus
de réalisme à nos objets. Notre but est de générer des détails plausibles, pas nécessairement des
détails exacts, en utilisant l’information de texture et de modèle disponible ainsi que le guidage
de l’utilisateur, dans le but ultime de rendre nos scènes plus crédibles. Nous aspirons à soulager
l’utilisateur de tâches répétitives et fastidieuses telles que la création de couches d’apparence pour
les texture structurées, tout en lui laissant le travail intentionnel, créatif.

Nous proposons donc un système générique de récupération de détail dans lequel l’information
sur un détail désiré (géométrie, réflectance, etc.) peut être fourni par l’usager. Le système utilise
cette information additionnelle en analysant le modèle à améliorer et génère les détails correspon-
dants de manière appropriée. Des résultats spécifiques sur la récupération de cartes de déplace-
ment sont décrits, et nous pouvons prendre avantage de toute information de structure ou de texture
récupérée dans une étape précédente pour améliorer les résultats. Des idées et suggestions pour
la récupération d’autres sortes de couches d’apparence sont exposés. En un sens, nous créons des
générateurs de détails assistés par l’utilisateur. L’avantage principal de tels générateurs est qu’ils
sont procéduraux, et donc peu coûteux en mémoire. Ils contiennent seulement une description de
l’information manquante et la manière de la reconstruire selon les modèles/textures sous-jacents.
L’interactivité et les entrées utilisateurs sont des fonctionnalités clefs de notre approche et nous
sommes convaincus que seul un utilisateur humain peut procurer l’information requise pour une
récupération de détail robuste, puisque les méthodes automatiques actuelles ne sont pas encore
assez matures, et seul un utilisateur sait vraiment l’information qu’il désire récupérer.
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C.3 Contributions

Nous résumons dans cette section les contributions principales de notre travail. Ces contributions,
ainsi que quelques autres, sont décrites plus en détail dans les conclusions.

• Synthèse de textures cellulaires détaillées à partir de l’analyse d’exemples

Il n’existe aucune méthode pour générer des textures structurées détaillées à partir de
l’analyse d’exemples, notamment les textures cellulaires contenant des cellules de formes
variées. Nous proposons des méthodes pour récupérer leur géométrie ainsi que leur ap-
parence, en 2D et en 3D.

• Découplage de la structure et de l’apparence

La structure et l’apparence sont souvent des entités indépendantes et devraient être traitées
comme tel lors de l’analyse de textures structurées en vue de la création de générateurs qui
permettent leur reproduction. Nous explorons cette nouvelle idée en décrivant nos tech-
niques pour créer des générateurs de structure en parallèle à la création de générateurs
d’apparence.

• Création de générateurs de structure

Nous présentons une nouvelle technique procédurale pour générer des structures
géométriques en utilisant des statistiques extraites de l’analyse d’une structure géométrique
donnée en entrée.

• Création de générateurs d’apparence

Nous avons conçu des techniques pour extraire des composants d’apparence réutilisables
à partir d’une image de texture structurée, réalisant ainsi des gains mémoire significatifs.
La texture composant l’intérieur des régions de la structure est découplée de la texture de
leurs contours (ou matériau séparateur) de façon à ne pas mélanger des matériaux non reliés.
Ceci offre la possibilité additionnelle de pouvoir les combiner avec d’autres provenant d’une
texture structurée différente.

• Système pour la génération de détail

Nous présentons un système conçu pour alléger le travail de création répétitive de détails en
utilisant l’utilisateur et les informations de structure, modèle et texture disponibles.

• Contrôle de l’utilisateur

Dans toutes les solutions présentées, nous avons laissé à l’utilisateur du contrôle sur les
paramètres et les parties importantes du processus.

• Synthèse de texture

Notre approche apporte une contribution à la recherche sur la synthèse de texture puisque
les méthodes actuelles échouent sur les textures structurées. Nous ouvrons également des
voies de réflexion sur les manières d’ajouter du contrôle utilisateur dans les techniques de
synthèse de texture, car ce contrôle est primordial à l’obtention de résultats satisfaisants.
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C.4 Organisation de la thèse

Ce document (en anglais, sauf pour l’introduction et la conclusion) est organisé comme suit:

Chapitre 2: Travaux reliés Ce chapitre décrit les techniques utilisées pour enrichir des mod-
èles géométriques avec de l’information de détail, soit réelle, soit simulée, en utilisant des
couches d’apparence. Il présente des techniques de l’état de l’art sur la synthèse de textures
structurées, allant des approches géométriques aux approches cellulaires. Plusieurs méth-
odes pour propager des détails à partir d’exemple, telle que les techniques de synthèse de
texture, sont passées en revue avant de donner un survol de travaux antérieurs se concentrant
sur l’intégration de l’utilisateur dans le processus de création de détails.

Chapitre 3 Ce chapitre présente notre nouvelle approche pour l’analyse d’une structure
géométrique 2D de façon à en extraire un ensemble de statistiques simples qui sont en-
suite utilisées lors d’une phase de synthèse en deux étapes afin de générer des structures
similaires. Nous décrivons la technique de pavage que nous utilisons, montrant ses avan-
tages quant au contrôle qu’elle alloue durant le processus de synthèse, à travers l’utilisation
de cartes de contraintes ou par manipulation interactive.

Chapitre 4 Ce chapitre décrit notre solution pour extraire des informations sur l’apparence d’une
texture structurée de manière à générer et afficher rapidement l’apparence d’une autre struc-
ture donnée. La création de textures unifiées réutilisables ainsi que celle d’atlas de textures
est expliquée en détail, ainsi que le mécanisme pour mélanger de manière uniforme tous les
extraits de textures utilisés.

Chapitre 5 Ce chapitre présente notre système pour la propagation semi-automatique
d’information de détail donnée par l’usager, à l’aide de l’information de structure, géométrie
et texture disponible. Il montre des résultats pour la synthèse de cartes de déplacements et
décrit des couches d’apparence additionnelles qui nous permettraient de récupérer d’autres
sortes d’information 3D.

Conclusion Nous concluons la thèse en résumant nos contributions et discutons d’avenues de
recherche possibles reliées à la synthèse de structure, d’apparence et de détail.

Annexe A: Glossaire (anglais) Les termes dont la définition est à préciser sont expliqués.

Annexe B: Approche par balayage Description succincte d’une approche géométrique pour la
synthèse de structure ayant été explorée mais ne satisfaisant pas nos requis d’interactivité
utilisateur. Néanmoins, le concept est intéressant.

Annexe C Ce chapitre.

Annexe D Version française du chapitre 6 (conclusion).



Appendix D

Conclusion (Version française)

"Science never solves a problem without creating ten
more."

—George Bernard Shaw

Dans cette thèse, nous avons investigué la manière de définir et de créer des générateurs de
structure et de détail (2D/3D) à partir de l’analyse d’exemples. Notre travail était motivé par le
fait qu’il n’existe aujourd’hui aucune solution satisfaisante au problème de génération de textures
structurées à partir d’exemple. De plus, en prenant avantage de toute l’information contenue dans
des photographies du monde réel, nous pouvons augmenter le réalisme des images générées par
ordinateur en ajoutant des détails à un coût réduit, tout en évitant les répétitions déplaisantes.

Afin de générer des textures structurées (pour la plupart des textures cellulaires comportant
des cellules anisotropes), nous avons découplé la structure géométrique de l’apparence (2D/3D)
lors du processus d’analyse/synthèse. Cette idée novatrice offre beaucoup de flexibilité pour la
génération et la modification subséquente des résultats. Tout en suivant ce principe-clef, nous
avons proposé trois générateurs procéduraux ayant trois finalités différentes et qui peuvent être
utilisés séparément ou de manière combinée.

Nous avons tout d’abord proposé une méthode pour analyser une structure géométrique
donnée (subdivision) de manière à en extraire une représentation compacte nous permettant
de générer de manière statistique des subdivisions similaires. Ce générateur de structures
géométriques est contrôlable à travers l’utilisation de cartes de contraintes ou par modifications
interactives. Nos résultats montrent que nous récupérons correctement la forme et les statistiques
des régions provenant des échantillons d’entrée.

Afin de texturer les maillages 2D résultants, nous avons présenté une méthode pour extraire de
l’image originale de l’information d’apparence associée avec l’information du maillage original.
Cette information d’apparence est constituée de textures unifiées que l’on peut voir comme une
représentation du matériau original qui compose les régions cellulaire (par exemple, la carrière
de laquelle ont été extraites les pierres d’un mur) ainsi que des atlas de texture pour les contours
des régions. Le processus de synthèse crée des polygones autour des éléments du maillage (les
régions et leurs contours) et leur assigne des coordonnées de textures indexant dans le petit
ensemble de textures unifiées contenue dans l’information d’apparence. Nos résultats montrent le
flexibilité de modifier l’apparence sans affecter la structure et vice-versa.
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Enfin, afin d’ajouter encore plus de réalisme aux structures générées, nous avons aussi
proposé des solutions pour la récupération de détail 3D. Nous avons présenté un système dont
le but est d’exploiter l’information disponible dans les modèles et les textures d’une scène afin
de récupérer et de propager des détails dans la scène entière, à l’aide d’information procurée par
l’utilisateur. Des générateurs procéduraux doivent être définis pour chaque type de détail et nous
avons présenté notre implémentation pour la synthèse de cartes de hauteurs.

Dans ce qui suit, nous discutons des contributions de notre thèse.

D.1 Contributions

Les applications possibles pour les générateurs que nous proposons incluent, mais ne sont pas
limitées à, la reconstitution virtuelle d’édifices (tels que le château de l’image C.3), la synthèse de
murs et pavages existants, le récupération de textures biologiques (telle que des peaux d’animaux
ou des ensembles de cellules), la conception de nouvelles textures à partir de l’analyse de plusieurs
échantillons, etc. En bref, notre nouvelle méthode permet la récupération de textures cellulaire
détaillées réalistes avec des cellules de formes variées à partir de l’analyse d’exemples du monde
réel.

Cette contribution principale peut être décomposée en plusieurs contributions que nous détail-
lons ici et qui peuvent être exploitées séparément dans d’autres contextes.

• Découplage de la structure et de l’apparence Nous croyons que l’une des causes majeures
des piètres performances des algorithmes de synthèse de textures sur les textures structurées
est dûe au fait qu’ils traitent la structure et la texture conjointement. Nous avons découplé
ces deux entités et présenté notre approche pour créer des générateurs de structure et des
générateurs d’apparence à partir de l’analyse de photographies du monde réel. Leurs ré-
sultats peuvent être combinés afin de produire des textures structurées similaires, ou bien
des textures totalement nouvelles en mélangeant les générateurs provenant de l’analyse de
sources différentes. Un autre avantage est la possibilité d’effectuer des changements locaux
indépendamment sans avoir besoin de tout recalculer depuis le début.

• Création de générateurs de structure

Nous avons proposé une méthode pour synthétiser des subdivisions géométriques à par-
tir de l’analyse statistique d’une subdivision d’entrée. Notre solution se base et étend des
techniques de géométrie algorithmique afin de traiter des primitives anisotropes et des con-
traintes utilisateur. Les textures générées sont indépendantes de la résolution et peuvent
s’adapter à une variété de domaines cibles. Les résultats montrent que les subdivisions syn-
thétisées exhibent les même statistiques de forme que les originales.

• Création de générateurs d’apparence

Nous avons présenté nos techniques pour générer une apparence 2D pour une subdivision
géométrique en utilisant un petit ensemble de composants de texture réutilisables extraits
d’une texture structurée. Nous avons découplé la génération de texture pour les cellules de
la structure de celle de leurs contours (ou élément séparateur) ce qui nous permet de com-
biner des matériaux de régions et de contours provenant de deux sources différentes. Notre
approche offre un gain significatif en espace texture et permet des vitesses de rendu interac-
tives puisqu’il n’y a pas de nouvelle information calculée au cours du rendu, seulement des
coordonnées de texture indexant dans le petit ensemble de textures d’apparence partagées
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qui ont été créées en précalcul. Ces textures unifiées sont réutilisables dans d’autres con-
textes puisqu’elles constituent des images de matériau uniforme et la séparation de la tex-
turation des intérieurs de région de celle de leurs contours permet de ne pas mélanger des
textures non reliées au cours de la synthèse.

• Laisser du contrôle à l’utilisateur
Notre but n’est pas de créer une méthode complètement automatique puisque nous voulons
permettre à l’artiste d’avoir du contrôle à plusieurs étapes du processus. Nos techniques de
génération de structure permettent à l’usager d’influencer le processus de synthèse à travers
l’utilisation de cartes de contraintes et d’effectuer des modifications locales sur les résultats
obtenus. Ceci permet à l’usager de se concentrer sur l’aspect artistique de son travail plutôt
que sur la tâche plus fastidieuse de création et de placement de formes. De plus, toute
modification de l’information d’apparence permet de varier les résultats visuels finaux.

• Synthèse de texture
Les méthodes de synthèse de texture actuelles échouent sur les textures structurées, en parti-
culier les textures structurées irrégulières telles que celles que nous traitons. Notre méthode
amène une solution dans ce domaine en utilisant notre processus de synthèse en deux étapes,
décrit précédemment. Nous planifions tester notre approche sur les exemples pour lesquels
les méthodes de synthèse de texture ont actuellement des difficultés.

• Création de textures unifiées
Nous avons proposé une pipeline pour la construction de textures de matériau uniforme à
partir d’une collection de régions colorées. La couleur moyenne de chaque région dans
l’espace de couleur CIELAB sert de métrique pour un regroupement des régions par classes
de teintes, ce qui nous permet ensuite de construire un ensemble correspondant d’images de
textures. Voir l’image 4.4 pour un résumé du processus.

• Système pour la génération de détail
Dans le but d’augmenter le réalisme d’une scène, nous présentons un système de récupéra-
tion de détails qui permettrait d’alléger le travail fastidieux de génération de détails simi-
laires à travers une scène. Cela consiste principalement à définir une méthode procédurale
afin d’exploiter une texture ou un modèle donné de manière à récupérer et réintroduire un
type de détail particulier, le plus souvent en créant une couche d’apparence additionnelle.
Nous montrons des résultats pour la synthèse de cartes de hauteurs. Nous proposons égale-
ment d’autres générateurs de couches d’apparence potentiels.

• Synthèse de cartes de hauteurs
Nos résultats sur la synthèse de carte de hauteurs sont satisfaisants et démontrent qu’injecter
des métriques de contrôle plus avancées (ou des contraintes) dans les algorithmes de syn-
thèse de texture peut être une avenue de recherche prometteuse à l’apport d’une solution à
leurs problèmes habituels.

La figure D.1 montre une texture structurée d’entrée avec une subdivision géométrique
générée et le résultat final après la récupération de l’apparence.

Quelques contributions secondaires de notre travail qu’il est utile de mentionner incluent :

• Une solution au problème connu des "fissures" dans un modèle sur lequel une carte de
déplacement est appliquée. Après avoir raccommodé ensemble les deux polygones séparés,
une nouvelle idée pour texturer le raccord de manière invisible a été présentée.
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Figure D.1 D’une photographie de texture structurée à une texture structurée synthétique similaire.

• Le calcul des diagrammes de Voronoi Anisotropes et de DVs de segments qui, à notre con-
naissance, n’avait pas été précédemment présenté.

• Une extension à la technique de synthèse de texture d’Efros [EF01] afin d’utiliser plusieurs
échantillons en entrée. Un travail parallèle au nôtre a présenté une idée similaire récemment
[TA04].

D.2 Améliorations et Travaux Futurs

Notre thèse ouvre des perspectives intéressantes pour des améliorations ou des travaux futurs.
Nous décrivons tout d’abord des travaux futurs à court terme par rapport à chacun des générateurs
que nous avons proposé et exposons ensuite des directions de recherches futures plus globales.

Génération de structure à partir d’exemple

Nous aurions pu dédier notre thèse en entier au problème de générer des structures géométriques
à partir d’exemple car le problème est loin d’être trivial. Nous avons exposé une solution possible
mais il y a beaucoup de possibilités d’améliorations et d’expérimentations, les premières étant de
traiter plus d’exemples afin de valider la généricité de notre approche (tels que ceux illustrés à la
figure 3.1).

Amélioration de la synthèse Quelques améliorations possibles relatives au processus de syn-
thèse ont été décrites à la fin du chapitre 3 tel que l’opération de téléportation par exemple. Il
faudrait certainement les essayer.

Utilisation des données de l’analyse Il serait intéressant d’explorer les possibilités procurées
par les résultats de notre étape d’analyse.

Nos distributions pourraient être utilisées dans des buts de classification. À l’aide des résultats
de l’analyse d’une structure d’entrée (par exemple un mur de pierre), nous pourrions les comparer
avec les distributions provenant d’analyses antérieures, ayant été classifiées, et déterminer si elle
appartient à une certaine classes de structures (par exemple des murs/tissus biologiques/autres)
ou encore à des sous-classes (par exemple des murs médiévaux, provençaux, etc.). Ceci pourrait
s’avérer utile pour l’indexation et le recherche automatique dans une base de données de textures.

Une autre idée séduisante serait de permettre à l’utilisateur d’interagir avec les paramètres de
l’analyse statistique (histogramme des données des ellipses, information de topologie du maillage)
ce qui permettrait plus de possibilités d’expérimentations. En restreignant les échantillonnages
à un certain intervalle dans les distributions ou en modifiant directement les paramètres (par
exemple, en forçant les arêtes presque verticales à devenir complètement verticales), l’utilisateur
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pourrait générer un tout nouvel ensemble de résultats de structures, plus ou moins inspirées de
l’original. Effectuer un mélange/transition au niveau des distributions pourrait aussi mener à des
résultats intéressants. Dans la même ligne d’idées, interpoler entre des distributions pourrait nous
permettre de transformer progressivement (morphing) une structure en une autre.

Les paramètres pour la texturation des contours de régions pourraient également être exposés
pour permettre un ajustement interactif. La modification de la largeur des polygones addition-
nels créés de même que l’emplacement de l’intersection entre les polygones des interstices et des
jonctions peut produire une différence visible sur le résultat final.

Contraintes Notre modèle permet de définir des contraintes soit sous la formes de cartes, soit
entrées directement par l’utilisateur. Nous avons essayé quelques contraintes et déjà suggéré
d’autres types dans la section 3.7.2 telles que des cartes de contraintes sur la taille, l’orientation ou
la métrique qui pourraient directement influencer les deux étapes principales de l’algorithme de
Lloyd : Soit le calcul du Diagramme de Voronoi Anisotrope, soit la modification des générateurs.

Système interactif Nous aurions aimé avoir le temps d’implémenter un système interactif pour
permettre la modification et l’édition des résultats. Ceci nécessiterait l’optimisation des étapes
actuelles de répartition de région et d’optimisation de formes. Plusieurs articles [KEHKL+99]
[ST04] mentionnent des possibilités d’optimisation pour les calculs de Voronoi discrets, qui peu-
vent même parfois profiter des possibilités des cartes graphiques actuelles. Une interface utilisa-
teur efficace serait à concevoir, et de préférence intégrée dans un système de modélisation existant
(par exemple XSI [Sof]). Nous exposons une proposition plus générale à ce sujet dans la section
de travaux futurs plus globaux plus bas.

Méta-structure Nous n’avons pas eu le temps de considérer des motifs de structures plus com-
plexes, i.e. qui contiennent des règles de placement entre les primitives plus établies ou plus
artistiques. Nous nous sommes plutôt concentrés sur leur forme et leurs distributions que sur leur
placement les unes par rapport aux autres. Néanmoins, dans beaucoup de textures structurées,
ces règles locales peuvent être un attribut important qui, s’il n’est pas considéré, ne pourra per-
mettre de générer des subdivisions similaires (pour un exemple de texture structurée avec une
méta-structure, voir la figure D.2 (aussi appelée, dans ce cas particulier, une texture bi-modale)).
La résolution de ce problème impliquerait une analyse de plus haut niveau de la méta-structure de
nos subdivisions d’entrée, par exemple en analysant les corrélations entre des régions de formes
similaires, dans le même esprit que le calcul des co-occurrences de Dischler entre ses particules
de textures [JMKBD02].

Figure D.2 Texture structure avec une méta-structure sous-jacente.
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Génération d’apparence à partir d’exemple

Afin de générer l’apparence de nos textures structurées, nous avons découplé le traitement des
intérieurs des régions de celui de leurs contours. L’édition des interstices et des jonctions est un
processus manuel pour lequel nous avons suggéré des méthodes d’automatisation dans la section
4.2.4. L’enlèvement à la main de tous les pixels de couleur appartenant à l’intérieur des régions
peut être un processus très fastidieux, ainsi automatiser cette partie devrait faciliter le processus
d’analyse d’apparence.

Nous avons rencontré des problèmes lors de la génération de structures géométriques con-
tenant beaucoup de petites arêtes (dues au processus de polygonisation des régions du Diagramme
de Voronoi Discret provenant de la phase de répartition de régions). Dans le cas d’une arête très
courte, les polygones des jonctions adjacentes peuvent s’intersecter et recouvrir complètement le
polygone associé à l’arête en question et ainsi mener à des problèmes au cours de la phase de mise
en correspondance des polygones (telle qu’illustrée à la figure 4.20). De plus, le même interstice
original est toujours associé aux petites arêtes, menant ainsi à d’ennuyeuses répétitions. Du
travail additionnel devrait être effectué afin de corriger ce problème, éventuellement en mettant
directement en correspondance deux jonctions adjacentes et en ignorant l’interstice entre les deux.

Plus généralement, nous pensons qu’il y a place à l’amélioration en ce qui concerne la tex-
turation des contours de région. Nous prévoyons investiguer d’autres méthodes pour récupérer
l’apparence des contours. Un avantage certain de notre méthode est que puisque nous avons dé-
couplé la texturation des intérieurs de région de celle de leurs contours, nous pouvons aisément
essayer de nouvelles méthodes sans affecter les résultats de l’autre.

Génération de détails 3D par l’exemple

Nous pensons que l’extension de notre système de récupération de détail en utilisant les couches
proposées dans la section 5.5.1 peut être une avenue très prometteuse. Nous considérons que cela
pourrait alléger le processus souvent fastidieux de création et de propagation de détail.

Une approche intéressante à essayer pourrait être de relier la récupération de détail à un proces-
sus d’apprentissage en donnant des exemples de récupération de détail jusqu’à ce que le processus
soit acquis et répété par le système. En général, nous pensons que l’introduction de techniques
d’apprentissage dans des approches de synthèse d’images peut offrir beaucoup de directions de
recherche futures intéressantes. Le papier sur le sujet de Hertzmann [Her03] contient des réflex-
ions intéressantes sur le sujet.

Futures directions de recherche

Chacun des générateurs présentés dans cette thèse (structure, apparence, détail) peut être utilisé
de manière autonome ou combiné avec un autre pour mener à la synthèse de textures structurées
détaillées à partir d’exemple. Par exemple, nos techniques de génération de structure peuvent
être utilisées comme donnée d’entrée pour les méthodes de synthèse de relief 3D de Miyata
[Miy90] [IMS03] [MIS01] ou de Legakis [LDG01] dans lesquelles ils génèrent aléatoirement des
hauteurs 3D en utilisant des fonctions de bruit afin de déplacer un maillage très fin représentant
chaque cellule. La structure proviendrait donc de l’analyse d’un exemple mais l’apparence serait
complètement synthétique. Inversement, nous pourrions connecter notre processus de synthèse
d’apparence à la sortie de leurs techniques de génération de structure, ou d’autres techniques de
synthèse de structure (voir la section 2.3.2 pour une revue de ces techniques).
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Dans le cas où les générateurs sont combinés, nous aimerions expérimenter avec d’autres types
de structures cellulaires comme des vues aériennes de villes par exemple, dans lesquelles les ré-
gions sont les blocs de bâtimens séparés par des routes (voir l’image D.3 pour un exemple). Ce cas
est spécial puisque les contraintes sous-jacentes (telle que la macro-structure) sont plus complexes
que dans les exemples traités précédemment. En effet, le réseau routier contient des contraintes de
haut niveau, telles que la continuité des routes et la cohérence du réseau, qui se doit d’être préservé
si l’on veut pouvoir générer de nouvelles versions plausibles de la ville. Une solution à ceci pour-
rait être de fournir une carte de contraintes contenant les routes principales et laisser le système
remplir le reste de l’espace avec des régions de l’entrée. Certains auteurs [PM01] ont essayé de
générer des villes de manière procédurale et nous pourrions investiguer les cartes de contraintes
qu’ils proposent (carte de densité de population, carte d’élévation, carte de routes).

Figure D.3 Vue aérienne de la ville de Paris.

Application à des modèles 3D

Nos textures structurées résultantes (avec ou sans détails 3D) sont, pour le moment, générées
sur des plans 2D. De façon à pouvoir les apposer sur des modèles 3D, nous devons soit définir
une paramétrisation appropriée de manière à ce que les régions n’aient pas l’air trop distordues
lorsque appliquées sur un objet, soit les générer directement sur des modèles 3D. Dans ce dernier
cas de figure, un bon point de départ serait les approches utilisées en synthèse de texture ou par
Kunze et al. [RK97] qui construisent des diagrammes de Voronoi géodésiques sur des surfaces
paramétriques.

Un autre aspect à considérer est que, pour certains types de structures telles que des murs
de pierre, les cellules individuelles sont 3D de manière inhérentes. Ainsi, une attention spéciale
doit être portée lorsqu’on les applique sur des modèles 3D, particulièrement autour des arêtes
vives du modèle. Nous devons éviter l’aspect "emballage cadeau" que la plupart des murs en
image de synthèse exhibent. Legakis et al. [LDG01] offrent de telles possibilités mais il faut
écrire un générateur de motifs distinct pour chaque modèle à texturer. Nous pourrions étendre
notre méthode de récupération de détail en ajoutant une couche spécifiant la manière d’appliquer
nos cellules générées aux coins et arêtes du modèles, ce qui permettrait d’être plus flexible que
Legakis et al. .
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Au niveau du rendu, dans ce même article [LDG01], les auteurs proposent une idée
d’optimisation pour le rendu de grandes quantités de données telles que celles que nous aurions
à considérer si nous synthétisions une géométrie additionnelle pour chaque cellule individuelle.
L’approche profite de similarités géométriques entre les cellules générées afin de pouvoir utiliser
de l’instanciation géométrique. Puisque nous connaissons déjà les correspondances de forme entre
les régions générées et les originales, nous pourrions employer une approche similaire.

Système interactif

Nous aimerions intégrer les techniques présentées dans cette thèse au sein d’un système interactif
d’analyse et de synthèse de textures structurées. Puisque nos buts sont de soulager les artistes
des tâches fastidieuses tout en leur laissant autant de contrôle que possible sur l’aspect artistique
de leur travail, nous devons leur procurer des outils interactifs incorporant nos techniques. Un
artiste devrait être capable de tourner, changer d’échelle, supprimer, déplacer les régions de la
structure en temps réel, entrer des contraintes et obtenir un retour interactif, etc. Ceci impli-
querait l’optimisation de l’algorithme de Lloyd discret ou la conception d’une solution analytique.
Encore plus important, le système devrait faciliter toute expérimentation et correction désirée.
Ultimement, le développement des paradigmes d’interactions et boîtes à outils appropriés, incor-
porant les techniques introduites dans cette thèse, devraient permettre d’exploiter pleinement les
capacités novatrices offertes et de démontrer l’étendue de leur utilité.
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