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ABSTRACT :
Nowadays, observation of slow rotators (3-8 days period) in star forming regions is still

puzzling for accepted theoretical models, since efficient physical processes have to be considered
to extract angular momentum brought by circumstellar matter accreting onto these stars, which
moreover are still in a contraction phase. The interaction of the stellar magnetic field with its
surrounding accretion disc is often presented as a possible explanation for this issue. In this
thesis, we first present the state of the art of the star-disc interaction problem highlighting
both the observations, theory and previous simulations which support it. Then, we model
this interaction between a dipolar stellar magnetic field and a consistent accretion disc model
including dissipative effects and we carry out simulations using the Versatile Advection Code
(VAC) which solves the equations of magnetohydrodynamics.

The first goal of this thesis is to re-examine the conditions required to steadily deviate an
accretion flow from a circumstellar disc into a magnetospheric accretion column onto a slow
rotating young forming star. A new analytical and predictive criterion on the truncation of
discs by the dipolar stellar field is derived stressing the importance of the disc thermal pressure.
The physics of accretion columns is explained in detail. We confirm the numerical results of
Romanova et al. (2002, ApJ, 578, 420) and find accretion funnels for stellar dipole fields as low
as 140 G in the low accretion rate limit of 10−9M�yr−1. With our present numerical setup with
no proper disc magnetic field, we found no evidence of winds, neither disc driven nor X-winds,
and the star is only spun up by its interaction with the disc in this slow rotation range.

The second goal of this thesis is to test the robustness of magnetospheric accretion by doing
a parameter space study varying the stellar magnetic field and rotation rate, and the amount
of dissipation within the disc. Accretion columns are always present when the inner parts of
the disc rotates quicker than the star, with oscillations of the truncation radius in presence of
disc viscosity. The stellar accretion rate diminishes when the stellar magnetic field strength or
rotation rate increases, which reduces the angular momentum brought onto the star. However, a
disc-locking state is not clearly found, but stellar winds can be another possibility to efficiently
extract angular momentum. This is already seen in our simulations even though we do not
control here the mass loading into the stellar corona.

RESUME :
L’observation de rotateurs lents dans les régions de formation d’étoiles reste encore

aujourd’hui une énigme puisque les mécanismes physiques sous-jacents permettant d’expliquer
une extraction efficace du moment cinétique apporté par l’accrétion de matière autour de ces
étoiles, qui sont de plus toujours en phase de contraction, ne sont pas clairement identifiés.
L’interaction du champ magnétique de ces étoiles avec le disque d’accrétion en rotation autour
d’elles est souvent présentée comme la solution pour ce problème. Dans cette thèse, je
dresse d’abord le panorama d’ensemble qui justifie ce paradigme d’interaction étoile/disque
tant du point de vue observationnel que théorique. Ensuite, je modélise cette interaction en
prenant en compte le champ magnétique stellaire considéré ici comme dipolaire et un disque
d’accrétion en incluant les effets dissipatifs dans ce dernier. J’effectue alors des simulations
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numériques en utilisant le code VAC (Versatile Advection Code) qui résout les équations de
la magnétohydrodynamique.

Le premier objectif de cette thèse est de ré-examiner les conditions nécessaires pour
détourner de manière permanente l’écoulement d’accrétion du disque dans une colonne
d’accrétion, dans le cas d’une étoile jeune tournant lentement. Un nouveau critère analytique
et prédictif est obtenu pour trouver la position de troncation du disque par la magnétosphère de
l’étoile considérée dipolaire et je montre l’importance du gradient de pression thermique dans le
disque. La physique des colonnes d’accrétion est expliquée en détail. On confirme les résultats
numériques de Romanova et al. (2002, ApJ, 578, 420) en trouvant des colonnes d’accrétion pour
des champs magnétiques stellaires ayant une composante dipolaire aussi faible que 140 G dans
le cas limite de faible taux d’accrétion sur l’étoile autour de 10−9M� par an. Avec le choix de
notre configuration initiale sans champ magnétique propre dans le disque, je ne trouve pas
véritablement de vent de matière, qu’il soit étendu dans le disque ou concentré autour de la
troncation du disque comme décrit par le modèle de vent X, et l’étoile est toujours accélérée par
l’interaction avec son disque dans le cas où on a un rotateur lent.

Le deuxième but de cette thèse est de tester la robustesse de l’accrétion magnétosphérique en
faisant une étude de l’espace des paramètres où on fait varier le champ magnétique et la vitesse
de rotation de l’étoile ainsi que l’importance des effets dissipatifs dans le disque. Les colonnes
d’accrétion sont toujours présentes quand les parties internes du disque tournent plus vite que
l’étoile avec des oscillations du rayon de troncation du disque en présence de viscosité. Le taux
d’accrétion sur l’étoile diminue quand le champ magnétique stellaire ou sa vitesse de rotation
augmente, ce qui réduit l’apport de moment cinétique à la surface de l’étoile. Pourtant, je ne
trouve pas clairement une configuration où la rotation de l’étoile est fixée à une faible valeur par
la présence du disque et la présence de vents stellaires semble être une autre possibilité d’extraire
efficacement du moment cinétique comme c’est déjà entrevu dans mes simulations même si je
ne contrôle pas ici le taux de perte de masse dans le vent.
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of CTTS in Taurus obtained with the IR spatial telescope Spitzer and corresponds to the
following stellar parameters : M∗ = 0.5M�, R∗ = 2R� and a mean accretion rate of
10−8M�.yr−1. One can distinguish the stellar component below 2 µm and the silicate
band at 10 µm. One clearly sees that spectra favour a settlement of dust in the disc
midplane (from d’Alessio et al.2003). 7

3 Gaseous inner disc radii for TTS from CO fundamental emission (filled squares)
compared with corotation radii for the same sources. Also shown are dust inner radii
from near-infrared interferometry (filled circles; Akeson et al., 2005a,b) or spectral energy
distributions (open circles; Muzerolle et al., 2003). The solid and dashed lines indicate an
inner radius equal to, twice, and 1/2 the corotation radius. The points for the three stars
with measured inner radii for both the gas and dust are connected by dotted lines (from
Najita et al. 2005). 9

4 Different Hα and HeI lines for DR tau ordered by the magnitude of the veiling in the R
band rR (from Beristain et al. 1998). For high veiling, we can see P Cygni profiles for Hα

lines indicative of an ejection process and Inverse P Cygni profile for HeI lines for low
veiling which probe accretion phenomena. Negative velocities measured in the stellar
rest frame correspond to blueshifted motions. 10

5 Evolution of an Hα line profile on a stellar period timescale with a modification of the
blueshifted part. Julian time is given for each line (from Alencar et al. 2000). 12

6 Correlation between the blueshifted and redshifted absorption components of the Hα

line in AA Tau (from Bouvier et al. 2003). This can be explained by the expansion of the
magnetosphere which increases the blueshifted velocities along the line of sight while
the accretion is reduced. 13

7 Infrared excess emission measured by I-K as function of the stellar angular velocity ω (or
periods). One clearly observes a concentration of slow rotators with significant infrared
excess for not too low mass stars (M>0.25 M�) (from Herbst & al. 2002). 13
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8 Rotation periods distribution function in NGC 2261 (a) and the Orion Nebula Cluster (b)
for the stellar mass range M∗ ∼ 0.25 − 1.2M� (from Herbst et al. 2007). 14

9 Spectrum of BP Tau (histogram) with a fitted magnetic model (double line) taking into
account a distribution of magnetic field strength reaching 6 kG with different filling
factors and with a mean field of 2kG covering half of the stellar surface (from Valenti
& Johns-Krull 2004). One can notice that a non magnetic model (single line) does not
explain the broadening of Ti I lines but agrees for CO lines. 16

10 Magnetic field lines extrapolation for a CTTS that resembles LQ Hya (a) or AB Dor (b)
(from Gregory et al. 2006). 17

11 Schematic picture of the Ghosh & Lamb model (adapted from Ghosh & Lamb 1978). 19
12 Equipotential lines (black lines) in the (r,z) plane for the effective gravity in the case of a

rigid rotation of the magnetosphere. The values represent the opposite of the effective
potential. We identify the corotation at 1.6. The red lines corresponds to magnetic field
lines for a pure dipolar field and the brown lines represents circles. Along a given field
line, accretion is possible if the opposite of the effective gravity keeps increasing from
the equatorial plane towards the star. We find that polar accretion is possible only for
r ≤ 1.4 corresponding to rt < 0.875rco . 23

13 Equipotential lines (black lines) for the effective gravity Ve f f in the case of differentially
rotating magnetic field lines with the same legend as in Fig. 12. The polar accretion is
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15 Contour of the Bernoulli integral for a disc with an aspect ratio 0.054 (A = 1.5 × 10−3)
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17 Equilibrium rotation period as a function of Ṁa,B∗,M∗ and R∗ (from Matt &
Pudritz 2005). The solid line corresponds to a global closed magnetosphere (with
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M∗,0 = 0.4M�,Ṁa,0 = 10−5M�yr−1, T∗ = 3000K and different initial stellar magnetic
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field index n=1 (solid),n=3.41 (dashed), n= 3.87 (dotted), n=4.4 (dash-dotted) and n=5
(long-dashed) with no stellar dynamo (from Ferreira et al. 2000) 33

20 General solution of the Riemann problem in the (x,t) plane. At the cell interface located
at x=0, we represent the propagation of the different wave characteristics of the system
considered. The information transported by the fastest waves reaches distances equal to
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21 Spatial reconstruction of variables with slope limiters. 42

22 Typical grid used in simulations including the ghost cells layer. The resolution is
174 × 104 in the radial and orthoradial directions respectively. The intersections in this
plot correspond to the cell centers. We can notice the symmetry of the rows at each side
of the axis and the equator. 50

23 Series of snapshots at t=0,10,20,80,160 Ω
−1
K (r = 1) showing the density distribution and

the poloidal magnetic field lines (above) and the contours of the toroidal magnetic field
(below) for a stellar outflow rate twice lower than the disc one (from Fendt & Elsner
2000). The accretion disc midplane is the vertical axis and the normalized spatial unit
corresponds to 2 R∗. From an initially distorted dipolar field, the magnetic field for
the stationary state corresponds to a nearly spherical topology. One can remark the
formation of several plasmoids in the current sheet oriented at 45◦ with respect to the
disc midplane and also knots within the axial jet. 52

24 Two types of simulation with different magnetic initial configuration with the resulting
accretion process used in Miller & Stone (1997). Above : A pure dipolar field (even
strong) gives direct equatorial accretion due to efficient angular momentum extraction
within the disc by the MRI well visible with the kink on the magnetic field lines in
the disc. Below : A disc magnetic field is added with the same polarity as the stellar
magnetic moment which gives rise to an X point allowing polar accretion. Time unit
corresponds to the Keplerian period at the stellar surface. 54

25 a- Time evolution of an ideal MHD simulation with the setup defined in Romanova et
al. (2002) including a viscous disc (αν = 0.02) and Rco = 1.7 (from Long et al. 2005).
b-Angular momentum fluxes brought by matter fm and by the magnetic field fB. The
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propeller regime (from Romanova et al. (2005)). 57

27 Topology of the funnel flow accretion as function of misalignment angle θ and the
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(2004b). 59
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angle θ = 45◦. Bottom : the energy flux distribution in the hot spots are shown at the
stellar surface for different phases of a rotation period. Simulation from Romanova et al.
(2004b). 60
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29 Fraction of the star f covered by hot spots as function of accretion rate Ṁ and density
levels ρ in the hot spots. The reference values are Ṁ0 = 1.9 × 10−7M�yr−1 and
ρ0 = 4.9 × 10−12gcm−3. Simulation from Romanova et al. (2004b). 60

30 (a) Density distribution in the equatorial plane showing penetration of tongues of matter
through magnetosphere in the presence of disc viscosity with αm = 0.1. (b) Contours of
the velocity profile within the funnel flows and tongues for a constant density surface
(from Kulkarni & Romanova 2007). 61

31 Density distribution in normalized units corresponding to the initial condition defined
in Romanova et al. 2002 with a truncation radius at r=1. 69

32 Vertical profile of the radial velocity for α = 0.01 at r=2 from Eq. (31.73). One has
strong inflow throughout the disc. The sonic Mach number is really big reaching
ms = 0.02 in the disc midplane with respect to standard disc model where one expects
ms = αε ∼ 0.001. 70

33 Accretion rate deduced from Fig. 32 using the initial condition of Romanova et al. (2002)
in normalized units for α = 0.01. 70

34 Viscous simulation with αν = 0.4 and taking into account only τrφ. Left panels shows
the density distribution in log scale for different times given in periods at r=1 and right
panels shows the distribution of sonic Mach numbers within the disc. We see outflow in
the disc midplane. 72

35 Top- Evolution in time of the accretion rate for αv = 0.4 and taking into account only τrφ.
Bottom- Evolution in time of the vertically averaged sonic Mach number. 73

36 Viscous simulation with αν = 0.4 and taking into account the complete viscous stress.
Left panels shows the density distribution in log scale and right panels shows the
distribution of sonic Mach numbers within the disc. We have no longer back flow in the
disc midplane. 74

37 Different vertical diffusivity profiles as defined in the text : f1(x) (dashed), f2(x) (solid)
and f3(x) (dashed-dotted). 75

38 Main characteristics of some CTTS such as their mass M∗, radius R∗, accretion rate Ṁ,
period Prot, corotation radius rco, mean magnetic strength B̄obs which includes small-scale
field often very different from the large scale field Bdip,obs and the resulting theoretical
truncation radius rt,th calculated from Eq. (35.104) assuming ms ∼ 1 and B∗,dip = 140G
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Valenti & Johns-Krull 2004, Daou et al. 2006, Donati & al. 2007, Yang et al. 2007) in
comparison with truncation radius rd

t derived from Najita & al. (2003) (values into
brackets are calculated for the stellar mass given in this table). 84

39 Angular velocity of the magnetic surfaces at the stellar surface after 10 stellar periods.
The normalized angular velocity of the star is 0.35. We observe a slightly discrepancy
(lower than 4%) localized within the accretion column between 55◦ and 70◦. 86

40 Resistive MHD simulation for a 5 days period CTTS with B∗ = 141G and αm = 0.1 after
t=0,5.1,10.2,15.3,20.4,25.5 Keplerian periods at the disk inner edge corresponding to a
physical time of 1.5 months. We show the density distribution in the computational
domain using a log scale. The black lines draw the magnetic field lines and the black
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arrows represent the velocity field. The white line on the first snapshot represents
an initial magnetic field line anchored at rco. We also superimpose a part of the
computational grid to show the good resolution we have near the truncation radius. An
accretion column is formed between rt and rbf (see definitions in text) and one observes
the expansion of the poloidal magnetic field and transient disc ejecta. The accretion
rate at the stellar surface is equal to 1.9.10−9M�.yr−1 for P=5 and stabilizes towards
0.91.10−9M�.yr−1 at P=15. No X-winds are formed and the star is being spun up. 88

41 Projection of the forces in normalized units along a magnetic field line in the middle of
the accretion column, for run (s1) at t = 10. We represent the gravity FG, the centrifugal
force FC, the thermal pressure gradient FP, the poloidal magnetic force FM and the total
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50 Radial distributions of density ρ, angular velocities Ω (real) and ΩK (Keplerian) and
sonic Mach number ms = ur/Cs at the disc midplane, for run (s1) after 17 keplerian
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Introduction

In this thesis, I am interested in studying one of the main steps in the stellar formation
process within the low mass range (M∗ < 1.5M�) corresponding to T-Tauri stars (TTS). Classical
T-Tauri stars (CTTS) are magnetically active, show evidence for circumstellar accretion discs,
and can have mean photospheric magnetic field magnitudes around 2kG (e.g. Johns-Krull et
al. 1999). Such a strong stellar field is enough to disrupt the inner accretion disc, provided
that one really measures the large scale magnetic field and not only local strong multipolar
components from starspots. However, this does not seem to be the case since recent polarimetric
measurements (Valenti & Johns-Krull 2004) indicate a weak dipolar component lower than 200
G. Moreover, observations show evidence for non direct accretion. Inverse P-Cygni profiles with
strong redshift absorption wings are indicative of polar accretion near free-fall velocities along
magnetospheric field lines from the inner disc edge (Edwards et al. 1994; Bouvier et al. 1999,
2003). The main goal of this thesis is to give the best physical understanding of the formation
and properties of this magnetospheric accretion, starting from a consistent modelling of the
accretion flow, by including the magnetic interaction within the Magnetohydrodynamics (MHD)
framework.

Although the magnetic field structure of these stars is probably complex (Gregory et al. 2006),
dynamical models of star-disc interaction usually assume an aligned dipole field, to simplify the
analytical work. Under this assumption, stellar field lines threading the Keplerian disc below
the co-rotation radius rco = (GM∗/Ω

2
∗)

1/3, where Ω∗ is the stellar angular velocity, would lead
to a spin up of the star, whereas those beyond rco to a spin down. The radial extent of angular
momentum exchange between the star and the disc is then determined by (1) the disc truncation
radius rt, where the magnetic dipole diverts the radially accreting flow to funnel flows; and (2)
an outer radius rout beyond which no more stellar field lines are connected to the disc. In this
framework, a star-disc interaction occurring on a large radial extension (as proposed by Ghosh
& Lamb 1979; Cameron & Campbell 1993; Armitage & Clarke 1996), may lead to a disc-locking
situation where the star remains at a slow rotation rate, despite accretion. On the other hand, it
has been argued that this scenario is unlikely, since the stellar field lines would be opened up by
differential rotation until severing this causal link (Aly & Kuijpers 1990; Lovelace et al. 1995; Matt
& Pudritz 2005,for a recent discussion on that issue). The outcome of this latter scenario would
be a star-disc interaction limited to a small radial extension around the disc truncation radius.
Many theoretical models then assume that the disc inner edge should be close to the co-rotation
radius (Königl 1991; Shu et al. 1994) for the sake of angular momentum equilibrium.

In Chapter 1, we present the astrophysical context by drawing an overview of the
observational constraints underlying the star-disc paradigm. Next, we explain the different
theoretical ideas which try to understand the magnetospheric accretion and the efficient
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extraction of angular momentum via this large scale magnetic interaction, but also linked
ejections phenomena.

In Chapter 2, we present the numerical techniques based on finite volume schemes we used
in the next chapters to carry out MHD simulations of this star-disc system with the VAC code
and then discuss previous numerical works.

In Chapter 3, we detail our numerical modelling of the system including a disc both viscous
and resistive, a splitting strategy for the magnetic field to accurately calculate the magnetic
stresses and relevant boundary conditions to correctly treat the stellar surface.

In Chapter 4, we revisit the physical conditions to form accretion funnels in the slow stellar
rotation range and derive a new analytical criterion to find the disc truncation radius based on
our accretion physics understanding. We verify this prediction by performing simulations with a
weak dipole field and find accretion columns with accretion rate compatible with weak accretors.

In Chapter 5, we carry out a parameter space study of the star-disc system by varying
different star/disc characteristics such as the stellar magnetic field strenght B∗, the stellar rotation
rate Ω∗ and the dissipative properties of the disc described by both diffusivity η and viscosity ν.
We particularly study their influence on the formation of funnel flows and the resulting stellar
accretion rate. We also try to find configurations with extended magnetosphere in order to really
test the possibility of a disc-locking state.
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Introduction

Pendant cette thèse, je me suis intéressé à étudier une des étapes importantes de la formation
stellaire correspondant à la phase des étoiles T Tauri pour les étoiles de faible masse (M∗ < 2M�).
Les étoiles T-Tauri classiques (CTTS) présentent une activité magnétique avec des champs à
leur surface atteignant en moyenne 2 kG (voir par exemple les travaux de Johns-Krull et al.
1999) ainsi que des preuves de l’existence de disques d’accretion autour d’elles. Cet intense
champ magnétique est suffisant pour détruire le disque d’accrétion dans ses régions internes, à
condition que le champ mesuré soit un champ à grande échelle et pas uniquement le champ local
avec des composantes multipolaires concentrées dans les taches sombres magnétiques qu’on
observe comme sur notre soleil. Cependant, cela ne semble pas être le cas puisque de récentes
observations en polarimétrie (Valenti & Johns-Krull 2004) indique une composante dipolaire plus
faible que 200 G. En outre, les observations montrent des preuves d’accrétion non directe sur
l’étoile. Les profils P-Cygni inverses avec une forte absorption décalée vers le rouge sont des
indices montrant que l’accrétion est détournée vers les pôles magnétiques de l’étoile à partir
du bord interne du disque le long des lignes de champ magnétique et que les vitesses atteintes
à la surface de l’étoile sont proches de la vitesse de chute libre (Edwards et al. 1994; Bouvier
et al. 1999, 2003). L’objectif principal de ce travail est de fournir une compréhension la plus
détaillée possible de la formation et des propriétés de cette accrétion magnétosphèrique à partir
d’une modélisation cohérente de l’écoulement d’accrétion en incluant l’effet de l’interaction
magnétique dans le cadre de la théorie de la Magnéto-HydroDynamique (MHD).

Bien que la topologie du champ magnétique de ces étoiles soit probablement complexe
(Gregory et al. 2006), les modèles théoriques décrivant la dynamique de l’interaction entre
l’étoile et son disque considèrent généralement un champ magnétique dipolaire aligné avec l’axe
de rotation de l’étoile permettant de simplifier les calculs analytiques. Avec cette hypothèse,
les lignes de champ magnétique stellaires traversant le disque Képlérien en deçà du rayon de
corotation défini comme rco = (GM∗/Ω

2
∗)

1/3, où Ω∗ est la vitesse angulaire de l’étoile, tendent à
accélérer l’étoile tandis que celles connectées au delà de rco participent à son freinage. L’extension
radiale de la région où il y a un échange de moment cinétique entre l’étoile et le disque est ainsi
déterminée par : (1) la position du rayon de troncation du disque rt, où le champ magnétique
dipolaire dévie l’écoulement radial d’accrétion et donne une nappe d’accrétion convergeant vers
les pôles de l’étoile ; et (2) le rayon extérieur rout à partir duquel les lignes de champ magnétique
de l’étoile ne sont plus connectées au disque. Dans ce cadre, une interaction entre l’étoile et le
disque sur une large extension radiale, (comme proposée dans les modèles de Ghosh & Lamb
1979; Cameron & Campbell 1993; Armitage & Clarke 1996), peut amener à une configuration
de "disc-locking" où l’étoile maintient une vitesse de rotation constante malgré l’accrétion de
masse en continu. Cependant, ce scénario est improbable puisque les lignes de champ stellaires
seront plus ou moins rapidement ouvertes par la rotation différentielle jusqu’à limiter très
significativement le lien causal entre l’étoile et son disque (Aly & Kuijpers 1990; Lovelace et al.
1995; Matt & Pudritz 2005,pour une discussion récente de cet aspect). Le résultat de ce dernier
scénario serait alors une interaction entre l’étoile et son disque limitée à proximité du rayon de
troncation du disque. Beaucoup de modèles théoriques supposent alors que le rayon interne du
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disque devrait être proche du rayon de corotation (Königl 1991; Shu et al. 1994) pour satisfaire
une situation d’équilibre en ce qui concerne le moment cinétique de l’étoile.

Dans le chapitre 1, je présente le contexte astrophysique en dressant un tour d’horizon des
contraintes observationnelles mettant en évidence le paradigme de l’interaction disque/étoile.
Ensuite, je discute les différentes idées théoriques qui essayent d’expliquer l’accrétion
magnétosphérique et l’efficacité de l’extraction du moment cinétique associée à une interaction
magnétique à grande échelle entre l’étoile et son disque, mais aussi par l’intermédiaire des
phénomènes d’éjection.

Au chapitre 2, je présente tout d’abord les techniques numériques basées sur les schémas à
volumes finis que nous utilisons par la suite pour effectuer des simulations MHD de l’interaction
disque/étoile avec le code VAC, et dans une deuxième partie, je discute des travaux numériques
antérieurs réalisés à ce sujet.

Au chapitre 3, je détaille notre modélisation numérique du système incluant un disque à la
fois visqueux et résistif, le traitement spécifique du champ magnétique où on ne calcule que les
écarts à la configuration dipolaire initiale ce qui permet une meilleure évaluation numérique
des forces magnétiques en jeu, ainsi que les conditions aux limites adéquates pour traiter
correctement la surface de l’étoile.

Au chapitre 4, je revisite les conditions physiques conduisant à la formation de colonnes
d’accrétion pour une étoile tournant lentement et je dérive un nouveau critère analytique pour
déterminer la position du rayon de troncation du disque basé sur la compréhension de la
physique de l’accrétion. Je vérifie cette prédiction en effectuant des simulations avec un champ
magnétique dipolaire faible et je trouve des colonnes d’accrétion compatibles avec des taux
d’accrétion plutôt faibles pour les CTTS.

Au chapitre 5, j’effectue une étude de l’espace des paramètres du système composé par
le disque et l’étoile en variant plusieurs de ses caractéristiques comme le champ magnétique
stellaire B∗, la vitesse de rotation de l’étoile Ω∗ et les propriétés dissipatives du disque décrites
à la fois par sa diffusivité η et sa viscosité ν. J’étudie en particulier leur influence sur la
formation des colonnes d’accrétion et le taux d’accrétion résultant à la surface de l’étoile. Nous
essayons aussi d’obtenir des configurations avec une magnétosphère de l’étoile étendue pour
tester vraiment la possibilité d’avoir un état où la rotation de l’étoile est maintenue à une valeur
constante par la présence du disque par l’intermédiaire de l’interaction magnétique, ce qui
pourrait expliquer comment ces étoiles jeunes âgées de quelques millions d’années peuvent se
débarrasser de leur moment cinétique pour tendre ensuite vers des rotateurs très lents comme
notre soleil.
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1. Observational overview for T-Tauri stars

In this part, we will sum up the main properties of T Tauri stars obtained from half a century of
ever more accurate observations underlying the star-disc interaction paradigm. We particularly
concentrate on knowledge of large rotation periods, magnetic field constraints and evidences of
truncated discs and the spectral features indicating magnetospheric accretion.

§ 1. Basic properties

T Tauri stars are low-mass stars (M ∼ 0.3 − 1.5M�) with an age of a few million years which
are still in gravitational contraction, describing an Hayashi (1966) nearly vertical track towards
the main sequence in the Hertzsprung-Russel diagram. This corresponds to a step where
the protostellar core has reached a nearly hydrostatic equilibrium and maintains an effective
temperature around 4000 K as long as convective transport is dominant (negligible radiative
core). Their radius goes from 4 R� for the youngest stars of one million years old till solar radii
for the most old ones near the ZAMS. The presence of a strong lithium absorption line (EW 1 >

1Equivalent Width
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Figure 1. Optical spectra for late spectral type K T-Tauri stars with an increasing level of emission lines and veiling

from the bottom to the top. The star TAP57 is classified as a WTTS (from Bertout 1989). One clearly distinguishes

the Hα line at 6563 Å and also the UV excess below 4000 Å.

0.25 Å) stresses their youth and shows that the hydrogen fusion has still not begun. Actually,
they shine thanks to their gravitational contraction.

T Tauri stars are primarily irregular variable stars with an amplitude in the visible band up
to 3 magnitudes (Bertout 1989). They are linked to nebulae which are more or less dark (Jones &
Herbig 1979), which entails strong absorption AV ∼ 1 − 50 in magnitudes of the visible range.
The nearest star formation regions are the Taurus-Auriga (with the prototype star T Tau) and
Ophiucus clouds at 150 pc, and then the Lupus one at 190 pc. The first systematic study and
classification of these stars was done in 1945 by Joy who noticed strong emission lines which
dominate the classical stellar absorption spectrum (see Fig. 1) and particularly the Balmer lines
such as Hα, and CaII H and K lines like in the solar chromosphere even if T Tauri stars are
cold stars. Actually, the emission line intensity is often 10 times larger than the continuum.
One distinguishes two kinds of T Tauri stars, viewed with respect to the importance of the Hα

emission line : Classical T Tauri star (CTTS) with EW > 10 Å and Weak T Tauri stars (WTTS) with
EW < 10 Å. In CTTS, the photospheric lines are shallow (and in extreme cases nearly absent), with
respect to other stars with the same effective temperature (Basri 1990, Hartigan et al. 1990). This
veiling continuum is often understood as emission coming from the inner parts of the accretion
flow reaching the stellar surface as accretion shocks which hide the photospheric spectrum. The
resulting hot spots have effective temperature around 6000K (see e.g. MN Lupi in Strassmeier
et al. 2005). The variability of the line profiles is a characteristic of CTTS and the timescales go
from few hours till years (Johns & Basri 1995, Alencar & Basri 2000).

Star formation is the result of gravitational collapse of molecular clouds. Since these clouds
have some angular momentum initially, one expects that the collapse has not a spherical
symmetry but gives birth to a disc perpendicular to the rotation axis. In the star formation
process, TTS are considered as class II sources (Adams et al. 1987, Andre et al. 1993) since a
lot of circumstellar matter has already condensed into such a disc, enabling us to observe these
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Figure 2. SED of disc models for different properties of the dust component (the size distribution follows n(r) ∝ r−3.5) :

well-mixed ISM dust (dotted line), well mixed grains with rmax = 1 mm (dashed line) and dust settling from rmax = 1 µm

at the disc surface to rmax = 1 mm at the disc midplane (solid line). Data points represent the median observed SED

of CTTS in Taurus obtained with the IR spatial telescope Spitzer and corresponds to the following stellar parameters

: M∗ = 0.5M�, R∗ = 2R� and a mean accretion rate of 10−8M�.yr−1. One can distinguish the stellar component

below 2 µm and the silicate band at 10 µm. One clearly sees that spectra favour a settlement of dust in the disc

midplane (from d’Alessio et al.2003).

sources not only in radio and IR wavelengths like class I sources but also in the optical range.
The mid IR excess observed in Spectral Energy Distribution (SED) (at wavelengths λ < 10µm)
is often fitted by a circumstellar thin Keplerian disc, assumed optically thick including both
viscosity and passive effects (reprocessing of the stellar radiation field) whereas the optical-near
IR part corresponds to the stellar blackbody corrected for absorption effects (Bertout et al. 1988).
Many T-Tauri stars present also flat spectra in the far IR range which can be understood by a
flaring of the disc in the outer parts enhancing reprocessing (Kenyon & Hartmann 1987) or by a
flatter temperature distribution due to extra heating sources at larger scales (Adams, Lada & Shu
1988). Recently, self-consistent models by Chiang & Goldreich (1997), Dullemond et al. (2002)
and D’Alessio (2003) have been developed to predict SED with greater details including both
gas and dust with a radiative transfer using relevant dust opacities crucial for the temperature
range around T Tauri stars. They particularly obtain the silicate band at 10 µm. A settling of dust
in the disc midplane is also taken into account which reproduces well the mid-IR spectra (see
Fig. 2).
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An UV excess is also present (see Fig. 1). Explained in first models by an optically thick
isothermal boundary layer 2 radiating half of the accretion power (Bouvier et al. 1986, Bertout
et al. 1988), this is interpreted nowadays as accretion shocks onto the star (see the example of
DF Tau in Bertout et al. (1988) with modulation in the U band modeled by a hot spot with
temperature around 6500-9100 K).

§ 2. Disc accretion rates and clues for inner disc holes

Until recently, only indirect evidences for such discs were known. For instance, to explain the
IR excess with the emission of dust, one can not assume a spherical envelope, otherwise the
absorption would be too strong compared to the observations (Myers et al. 1987). The lack of
redshifted forbidden lines is another clue of the presence of a screen around the star hiding a part
of a wind (Appenzeller et al. 1984, Edwards et al. 1987). Detection of polarization in IR is also
indicative of light scattering on non isotropic dust grains structures (Menard & Bastien 1992).
Thanks to the development of high angular resolution techniques (for instance in millimetric
interferometry with IRAM and VLA; see e.g. Sargent & Beckwith 1987, Dutrey et al. 1996) and
the HST in the last decade, we can now resolve the accretion disc at the a.u. scale in the edge-on
objects such as HH30 (Burrows et al. 1996), HK Tau B (O’Dell & Wen 1994) or proplyds in the
Orion nebula (McCaughrean & O’Dell 1996, Smith et al. 2005).

Otherwise, the strongest indirect evidence for accretion in CTTS is the detection of redshifted
absorption in upper Balmer and permitted metallic lines at velocities of up to several hundred
km.s−1, with large optical and UV excesses (Edwards et al. 1994, and references therein). These
large infall velocities are compatible with free fall material coming from several stellar radii away
supporting the idea of truncated discs. Analysis of IR excess and colors from models including
such a hole between the star and the disc compared to full extended discs reaching the stellar
surface gives a truncation radius rt ∼ 2 − 6R∗ = 0.4 − 0.8rco (Kenyon, Yi & Hartmann 1996,
Meyer et al. 1997) where rco denotes the corotation radius. The difficulty in such studies is the
correct dereddening of broadband photometry measurements. This truncation radius is well
below the dust sublimation radius (Eisner et al. 2005, Akeson et al. 2005) probed in near-IR
interferometry which is rsub ∼ 8 − 20R∗ and which corresponds to a temperature around 1400 K
where one can no longer have solid dust grains. Recently, CO fundamental ro-vibrational lines at
4.6 µm are used to probe the inner gas (Najita, Carr & Mathieu (2003) and see also the review of
Protostars and Planets V by Najita et al. (2007)) with temperature between 2000 and 4000 K and
densities greater than 1010cm−3. By interpreting the wings of these symmetric double peaked
lines as the maximum Keplerian speed of the disc, they derived r t ∼ 2− 5R∗ ∼ 0.5− 1rco (see Fig.
3) similar to previous estimates from IR excess. However, the assumption of Keplerian motion is
questionable since we expect the disc rotation to be modified by the stellar magnetosphere.

Energy balance calculations and measurements of line emission give typical accretion rates
for TTS of 10−7 to 10−9M�.yr−1 (Gullbring et al 1998, Lamzin et al. 2001 and see table 38 in
Chap. 4). Estimates of accretion rates are done mainly from the veiling hot UV-optical continuum
emission because the IR part of the spectrum is often modified by reprocessing. It is necessary
to differentiate accretion shock emission from the intrinsic photospheric one above all in the

2Boundary layer models can not explain for instance inverse P Cygni profiles, the presence of hot spots deduced
from photometry studies and the low rotation rate of CTTS.
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Figure 3. Gaseous inner disc radii for TTS from CO fundamental emission (filled squares) compared with corotation

radii for the same sources. Also shown are dust inner radii from near-infrared interferometry (filled circles; Akeson et

al., 2005a,b) or spectral energy distributions (open circles; Muzerolle et al., 2003). The solid and dashed lines indicate

an inner radius equal to, twice, and 1/2 the corotation radius. The points for the three stars with measured inner radii

for both the gas and dust are connected by dotted lines (from Najita et al. 2005).

case of low accretion rate, which gives discrepancies often of one order of magnitude between
different studies because of different chosen interstellar absorption coefficients. Actually, WTTS
were often chosen as template stars to assess the veiling (e.g. in Hartigan et al. 1995) but
they can undergo also reddening which gives different AV estimates for different color excess
such as E(V-R) 3 and E(B-V) due to for instance the presence of cool spots. That is why recent
studies (Gullbring et al. 1998) use dwarfs of same spectral type and gravity surface for deducing
veiling. The accretion luminosity is derived from the energy equation assuming magnetospheric
accretion with a free-fall speed profile starting from the disc inner edge and finally producing
shocks close to the stellar surface (Calvet & Gullbring 1998) :

Lacc '
GM∗Ṁ

R∗
(1 − R∗

rt
) (2.1)

The sources of uncertainties in calculating Lacc are the bolometric correction (since Lacc is deduced
from a flux excess in a limited range of wavelengths), the orientation of accretion columns with
respect to the line of sight which modify the filling factor, the stellar mass and radius deduced
from the stellar luminosity and effective temperature, and the disc truncation radius position.
Gullbring et al. (1998) deduced also a direct calibration law between the U band magnitude and

3By definition, E(V-R)= (V −R)object− (V −R)template = AV
RV−R

+ log( 1+rV
1+rR

) where RV−R is given by the interstellar
extinction law and rV is the veiling in band V.
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Figure 4. Different Hα and HeI lines for DR tau ordered by the magnitude of the veiling in the R band rR (from

Beristain et al. 1998). For high veiling, we can see P Cygni profiles for Hα lines indicative of an ejection process and

Inverse P Cygni profile for HeI lines for low veiling which probe accretion phenomena. Negative velocities measured

in the stellar rest frame correspond to blueshifted motions.

the accretion rates making it possible to derive accretion rates for a larger sample of T Tauri stars
where there are no good spectroscopy data.

§ 3. Spectral features

Let us now have a look to the specific spectrum of TTS in order to better understand the physical
conditions encountered around these stars. At low spectral resolution, strong emission lines are
visible such as the Balmer lines Hα,Hβ,Hγ, NaD, HeI, CaII and FeII (Alencar & Basri 2000). We
focus on this emission part of the spectrum. The presence of strong Balmer emission lines is
particularly noteworthy 4 since it is usually linked to higher mass stars of class Be,Ae.

4T Tauri stars have F-M spectral class where one expects neutral or ionized metal lines which dominate.
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Using high spectral resolution, most of the lines have complex structure with more than one
component and present high time variability. The broad component (FWHM ∼ 200km.s−1)
of the lines are almost symmetric and centrally peaked (with respect to the stellar rest frame),
and asymmetric narrow absorption components are present in Balmer and NaD lines. These
different parts of a line have a different origin. The broad part is characteristic of an ionized
medium with high orbital velocities around the star because of Doppler broadening. Edwards et
al. (1994) show blueward asymmetric 5 emission lines due to disc shadowing effects and inverse
P Cygni profiles (see Fig. 4), where the redshift absorption reaches several hundreds of km.s−1.
This strong infall is explained by accretion of material diverted from the disc midplane along the
stellar magnetosphere acting as a nozzle which falls at free-fall speed and forms what is called an
accretion column (or funnel flow). This redshift absorption is above all prominent in Hβ and Hγ

lines since Hα lines are quickly thermalized with increasing accretion rates and thus the emission
is almost produced in the continuum. There is also an inclination effect with edge-on objects
which show stronger redshift absorption than small inclination ones. The trend to see centrally
peaked lines comes also from the fact that the main emitting volume in an accretion funnel flow
has low velocity since it is perpendicular to the line of sight. Models of free-fall inflow through a
dipolar field by Hartmann & Calvet (1994) and Muzerolle et al. (1998) reproduce such behaviour.
Absorption with very little velocity with respect to the peak can be interpreted as material being
loaded onto the magnetospheric field lines at the base of the accretion column. Modelization of
the funnel flow emission including the treatment of the shock (Calvet & Gullbring 1998) permits
also to put a constraint on the filling factor covered by the accretion columns which is always
around or less than a few percent, in agreement with constraints from amplitude of variability
and color changes seen in photometric studies (see e.g. Bouvier et al. 1999).

P Cygni profiles observed are directly interpreted as wind components. Blueshifted
absorption seen in Balmer and NaD lines and generally narrow are coming from an ejected flow
at 50 − 100km.s−1 absorbing cold photons from the star. A strong correlation between CaII,
MgII and Hα lines is observed supporting an accretion flow origin for these lines and not a
wind (Calvet et al. 1985, Bouvier 1987). Forbidden lines ([NII] 6584 Å, [SII] 6716,6731 Å) are
also observed (Hartigan, Edwards & Ghandour 1995) which probe directly outflows. [OI] 6300
Å is present in all CTTS which have also important veiling and this line is absent in WTTS.
This clearly indicates a correlation between accretion and ejection processes in CTTS (Cabrit et
al. 1990, Corcoran & Ray 1998). A closer view to these forbidden lines shows also different
components. A high velocity component is understood as a stellar jet whereas a low velocity
component is linked to denser regions often spatially extended and is interpreted as a disc wind.
For high accretors, a hot helium wind is observed with the HeI 10830 Å in near IR (Edwards et
al. 2006, Kwan & Edwards 2007). In this case, blueshifted absorption extends up to 400km.s−1

and is a good indication of stellar winds.
Synoptic studies of some CTTS such as AA Tau (Bouvier et al. 1999, 2003, 2007) seen nearly

edge-on or TW Hya (Alencar & Batalha 2002) instead pole-on, show periodic changes in the lines
shape over a rotation timescale (see Fig. 5) and even quicker on timescales of few hours like in RU
Lup (Stempels & Piskunov 2002). Time delay of about 1 day between flux variations of different

5To avoid confusion with lines only shifted, the symmetry of the two wings of the line is checked (see fig10 in
Alencar & Basri 2000).
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Figure 5. Evolution of an Hα line profile on a stellar period timescale with a modification of the blueshifted part. Julian

time is given for each line (from Alencar et al. 2000).

lines forming at different altitudes from Hα till HeI are observed in AA Tau and compatible with
a free fall motion of a bullet of matter along the magnetospheric field lines. Correlation between
blueshifted and redshifted absorption components of the Hα line is also observed in AA Tau (see
Fig. 6) which can be explained by a cycle of accretion and ejection due to the inflation of the
magnetosphere.

§ 4. The issue of the slow rotation

One of the striking facts in low mass star formation regions is the observation of slow rotators
(P∗ ∼ 3 − 8 days, Vogel & Kuhi 1981, Bouvier et al. 1995) like Classical T-Tauri Stars (CTTS)
although they are pre-main sequence stars still in a contracting stage and while they are accreting
rotating mass from their environment. This dynamic evolution seems to be controlled by the
presence of a disc (see fig. 7) for most of these stars with M∗ > 0.3M� since similar young stars
without disc signature such as Weak-line T Tauri Stars are fast rotators (periods shorter by a
factor 2-4, see e.g. Bouvier et al. 1993,1995, Kundurthy et al. 2006).

In the last two decades, a lot of wide field optical surveys were done making it possible to
measure rotation periods of TTS in many open clusters such as the Orion one (ONC), NGC2264
and IC348 (e.g. Bouvier et al. 1995, Herbst et al. 2002, Lamm et al. 2005, Littlefair et al. 2005,
Cieza & Baliber 2007). CTTS are generally slow rotators with periods longer that 2 days (for
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Figure 6. Correlation between the blueshifted and redshifted absorption components of the Hα line in AA Tau (from

Bouvier et al. 2003). This can be explained by the expansion of the magnetosphere which increases the blueshifted

velocities along the line of sight while the accretion is reduced.

Figure 7. Infrared excess emission measured by I-K as function of the stellar angular velocity ω (or periods). One

clearly observes a concentration of slow rotators with significant infrared excess for not too low mass stars (M>0.25

M�) (from Herbst & al. 2002).

0.3M� < M < 1.25M�) corresponding to equatorial velocities around 15km.s−1 (Edwards et
al. 1993). The period range is between 2 days (maximum for G2 stars) and inferior to 12 days
(maximum for K7-M0 stars). Thus, we do not have very slow rotators like the Sun. For stellar
mass range greater than 0.3 M�, the period distribution is clearly bimodal with peaks near 2
days for WTTS and 8 days for CTTS in the ONC and near 1 and 4 days in the two times older
NGC2264 (see Fig. 8). This spinning-up in the older cluster can be explained by the stellar
contraction. However, Stassun et al. (1999,2001) or Rebull (2001) did not find clear clues for this
bimodal distribution and correlation between slow rotators and evidences for the presence of
accretion discs, contrary to observations from Bouvier et al. (1993) and more recently Cieza &
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Figure 8. Rotation periods distribution function in NGC 2261 (a) and the Orion Nebula Cluster (b) for the stellar mass

range M∗ ∼ 0.25 − 1.2M� (from Herbst et al. 2007).

Baliber (2007). Herbst et al. (2002) explain the discrepancy about the rotation period distribution
by the fact that the sample in the Orion nebula taken in Stassun et al. (1999,2001) has a large
mass range including very low mass stars (M < 0.25M�) which are always fast rotators with a
peaked period distribution around 2 days, perhaps because of the shorter disc lifetime around
these stars. However, a systematic link between slow rotators and the presence of discs is still
debating in the literature mainly due to difficulties to find enough reliable proxies for detecting
correctly such discs via global criteria such as IR excess.

There are different techniques to deduce projected rotational velocities on the line of sight
vrot.sin(i) as discussed in Bouvier et al. (1986). The classical one is to use cross correlation of
rotational broadened lines from the absorption photospheric spectrum 6. The rotation value
is obtained by dividing the Fourier Transform (FT) of a mean broadened line by the FT of a
line from a stellar template with the same spectral type and a very low rotation. The sources of
uncertainties in a decreasing order of importance are : the amount of veiling, differential rotation
effects, magnetic effects ... A more indirect technique is to use the light curves obtained in broad
band photometry (Bouvier et al. 1993,1995, Stassun et al. 1999). In this case, one avoids the
uncertainties on the inclination effect and the stellar radius estimate, but it is not 100 % reliable
because the modulation of the flux depends on the source position producing this variability
with respect to the stellar surface. This can be caused by stellar activity (spots remaining during
several periods) but also by the warped inner edge of the accretion disc where accreted matter
is lifted up. In the latter case, we have to hope it is localized near corotation otherwise we do
not correctly assess the rotation. To assess the reliability of this method, the correlation between
the rotational velocity measured and the FWHM of a photospheric line such as Li(6700 Å) can be
checked.

6The quicker the star rotation is, the larger the FWHM of the line is and the lower the intensity of its maximum
is for energy conservation reasons.
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To give some order of magnitude, we calculate the period of a T Tauri star of 0.8 M� and 2
R� at 10% of the breakup speed (k = Ω∗

ΩK
= 0.1) with Ω∗ for the stellar angular velocity :

P∗ = 3.7
( k

0.1

)−1 ( M∗
0.8M�

)− 1
2
( R∗

2R�

) 3
2

days (4.2)

To have a 8 or 10 days period corresponding to the distribution peak of CTTS, the same star has
to rotate respectively at 4.6% or 3.7 % of the breakup speed 7. Thus, efficient physical processes
are needed to provide enough angular momentum losses. This is what is called the angular
momentum problem since the specific angular momentum of molecular cloud cores is 5 orders
of magnitude higher than low mass stars on the ZAMS (e.g. Bodenheimer 1995). Theoretical
models try to include disc and stellar winds but also a large scale interaction between the star and
the disc to solve this issue. But to do a long term evolution study from pre-main sequence stars
till main sequence stars, it is really important also to take into account the changes of internal
structure of these stars during their contraction (e.g. the appearance of a radiative core which
modifies the stellar moment of inertia) as demonstrated in Keppens, Mac Gregor & Charbonneau
(1995) who study the effects on the stellar period distribution function of different dynamo laws
(B∗ proportional to Ω∗ or saturated) and different core/convective coupling time in the case
of stellar wind bringing away angular momentum from the star. They particularly found the
necessity of including a fraction of ’disc-locking’ systems lasting ∼ 10Myr in the initial period
distribution to explain further evolution towards solar type ages with a majority of very slow
rotators. Bouvier et al. (1997) also found this necessity by assuming solid rotation at a constant
rate for a disc lifetime distribution initially, next purely stellar contraction and then a classical
solar type wind braking from the ZAMS. Star-disc interaction needs to extract around a third of
the stellar angular momentum per Myr to explain the further evolution along the main sequence
(Bouvier 2007). Chapter 5 of this thesis will tackle this issue by looking at the possibility to have
such a disc-locking state.

§ 5. Stellar Magnetic field constraints

Magnetic field measurements on stars are really difficult. They are done using the Zeeman effect
which gives a splitting of a spectral line λ0 (in Å) into several components shifted in wavelength
by ∆λ due to the presence of a magnetic field of strength B (in G) : ∆λ = 4.67 × 10−13λ2

0gBB
where gB is the Landé factor providing the sensitivity of the considered line with respect to
the magnetic field. The shifted components σ are circularly polarized with opposite directions
and the central one is linearly polarized. Zeeman broadening measurements are done above
all in the IR to overpass Doppler broadening effects because it grows with λ2. The most
common line used is the Ti I at 2.2 µm. It is necessary to well assess temperature and rotation
to disentangle magnetic effects from classical ones using insensitive lines such as CO at 2.35
µm. This technique is sensitive to the distribution of the magnetic field strength but not to
its topology. To probe the magnetic topology, we need to measure circular polarization for
individual spectral lines and thus use very high resolution spectra ( λ

∆λ > 50000) obtained by
spectropolarimeters such as ESPADON at CFHT or Narval at the Pic du Midi. In this high

7Note the strong dependence on the stellar radius. If we have a younger star with R∗ = 3R�, an 8 day period
star corresponds to 8.5 % of the breakup speed.
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resolution technique, circular polarization signatures from different regions of the photosphere
seen in absorption do not cancel (because they have different Doppler shifts resolved in spectrum
due to the stellar rotation) and can be detected by accumulating signal of different magnetically
sensitive lines with a least squares deconvolution. By following the evolution of polarization
over a stellar period, it is possible to reconstruct the topology of the magnetic field at the stellar
surface (Donati et al. 2007).

There are direct proofs of kG fields (Basri, Marcy & Valenti 1992, Guenther et al. 1999, Johns-
Krull & Valenti 2000) with mean photospheric field between 1 and 3 kG (see Fig. 9). Thus, TTS are
strongly magnetized much more that the Sun since they have lower surface gravity by typically
an order of magnitude.

Figure 9. Spectrum of BP Tau (histogram) with a fitted magnetic model (double line) taking into account a distribution

of magnetic field strength reaching 6 kG with different filling factors and with a mean field of 2kG covering half of the

stellar surface (from Valenti & Johns-Krull 2004). One can notice that a non magnetic model (single line) does not

explain the broadening of Ti I lines but agrees for CO lines.

However, polarization from photospheric lines in these stars is really weak since we still
have almost an upper limit around 200G (Johns-Krull & Valenti 2001, Smirnov et al. 2003,2004,
Valenti & Johns-Krull 2004). Actually, we measure magnetic field around 1-3 kG in the spots
at the Sun surface but these regions correspond to closed field lines with no net longitudinal
component with respect to the line of sight, which thus do not contribute to net polarization for
spatially unresolved observations of other stars. The large scale solar magnetic field is as low
as 4 G ! In CTTS, significant net circular polarization is detected only in emission lines near the
accretion shock in HeI and CaII IR triplet lines since magnetic field lines with the same polarity
are isolated in an accretion column. Magnetic field strength for the longitudinal component
within the funnel flow is found to be similar to the mean magnetic field strength (Valenti &
Johns-Krull 2004). However, elsewhere on the stellar photosphere, circular polarization due to
large scale magnetic field measured in photospheric absorption lines such as FeI are very low
giving a magnetic field often lower than 200 G (see Fig. 38 in Chap. 4). This contradiction
could be explained in different ways. First, the magnetic stellar surface is really complex and not
dipolar with some strong unipolar field tubes going from the stellar surface and connecting to the
disc inner edge. Otherwise, one could have amplification of magnetic field in the shock where
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the HeI line is formed (all current studies consider shocks in the hydrodynamic case within the
funnel flow) or we could have an high obliquity between the magnetic field axis and the rotation
axis which would be in favour of intrinsic dipolar kG fields since many stars are seen rather
pole-on (Smirnov et al. 2005).

Thus, the current trend is to consider only weak large scale structure magnetic field and
a much more complex structure including multipolar components at smaller scales as the
extrapolations of magnetograms done by Gregory et al. (2006) using force-free approximation
suggest (see Fig. 10). For instance, Safier (1998) already criticized magnetospheric accretion
models for not including the effects of a realistic stellar corona such as a stellar wind which would
blow open most of the closed field beyond ∼ 3R∗. Very recently using spectro-polarimetric
data from ESPADONS, Donati et al. (2007a,b) tune down this trend by finding a strong dipolar
component of 1.2 kG around BP Tau still fully convected and a lower dipolar component of 350
G around V2129 Oph which is more evolved with the presence of a radiative core. But a larger
sample of stars is needed to draw a firm conclusion on the magnetic field topology around CTTS.

Figure 10. Magnetic field lines extrapolation for a CTTS that resembles LQ Hya (a) or AB Dor (b) (from Gregory et al.

2006).

X-ray flux levels about thousand times the solar one (Montmerle et al. 1993, Feigelson &
Montmerle 1999) indicate very intense coronal activity. Correlation with the stellar angular
velocity of this activity (Damiani & Micela 1995, Stelzer & Neuhäuser 2001) stresses also a
highly time dependent magnetosphere and supports a dynamo origin, although these stars are
fully convective. Particularly, accreting T Tauri stars have lower X-ray emission. Recently, high
resolution X ray spectra obtained with the space telescopes Chandra and XMM-Newton show
that the accretion shocks produce soft X rays (Günther et al. 2007).

2. Theoretical background of the star-disc interaction

Previously, we have emphasized the observational constraints characterizing the accretion
process around T Tauri stars. Now, we present the theoretical framework to take them into
account by firstly explicit the basic components of the magnetic interaction theory between
a central object and a surrounding accretion flow considering a large scale interaction zone.
Then, we describe constraints allowing steady-state funnel flows corresponding to solutions
to the Bernoulli equation. Next, we tackle the influence of disc conductivity on the star/disc
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connectivity and the resulting angular momentum balance achieved. Finally, we present
alternative ways to solve the angular momentum issue by having powerful stellar jets or
Reconnection X winds (ReX).

§ 6. The global picture of an extended star-disc interaction

The magnetic interaction between an accretion flow and a central object was first studied in
the context of accreting neutron stars (Ghosh & Lamb 1978, Scharlemann 1978). Actually, some
accreting X-ray sources such as Her X-1 or Cen X-3 show spinning-down episodes, in addition
to their secular spin-up that one can not explain without taking into account the stellar magnetic
field.

First, one can wonder which topology for the magnetic field to take into account in models.
This ultimately relates to the fundamental origin of the magnetic field in astrophysical objects.
Nearly all the analytical studies assume a dipolar stellar magnetic field aligned with the stellar
rotation axis (perpendicular to the disc midplane). The main reason is the simplification in the
calculations but we can argue that we are interested in large scale magnetic interaction and
that all the multipolar components decrease quicker than the dipolar one. Ghosh & Lamb
(1979), Goodson et al. (1999), Matt & Pudritz (2004) consider such a magnetic topology with
no proper disc magnetic field. The initial penetration of the stellar field inside the disc is also not
tackled in models. Ghosh & Lamb claim it can be the result of diffusive instabilities but without
further quantification, the resulting magnetic field is prescribed to remain dipolar. Otherwise,
Rekowski & Brandenburg (2004) consider a dynamo origin for the disc magnetic field but a fossil
origin can also be argued coming from the advection of the magnetic flux from the primordial
molecular cloud (Hirose et al. 1997, Miller & Stone 1997) or from the opening of the stellar
magnetosphere as claimed by Shu et al. (1994). Safier (1998) points out the need for an inherent
time dependent magnetosphere coupled with a complex topology and concludes that consistent
models explaining the low rotation periods are far from achieved.

Let us now have a look to the magnetic star-disc connection itself. Analytical models consider
a force-free atmosphere above the disc corotating with the star. The differential rotation along
a field line connecting the star to the disc then builds a toroidal magnetic field Bφ within
the disc which can not increase too much because of the ever growing current sheet built
up in the equatorial plane causing eventually reconnection. The physics of reconnection is
still partially understood since the Sweet-Parker and Petshek models are not able to quantify
correctly important quantities such as the dissipation of energy or the reconnection rate which
vanish when the resistivity tends towards zero. Recent progress considering sub MHD scale
processes imply decoupling between electrons and ions described by the Whistler dynamics and
show that efficient and fast reconnection is possible (Shay et al. 2001). Analytical estimates
consider a critical pitch angle γc =

Bφ

Bz
close to unity beyond which reconnection appears above

the disc (see the numerical work of Udzensky et al. (2002) and references therein). In the outer
parts of the disc in the case of no proper disc magnetic field and thus no possible ejection, one
can consider an unmagnetized standard accretion disc since the stellar magnetic field decreases
very quickly with the radial distance and becomes negligible beyond rS. When one approaches
the central object, the magnetic stresses become more important and finish by dominating the
accretion flow.
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Figure 11. Schematic picture of the Ghosh & Lamb model (adapted from Ghosh & Lamb 1978).

Usually, one defines the Alfvén radius rA in case of spherical accretion as the radius where
the total (ram+thermal) matter pressure is balanced by the magnetic pressure of the central object
(Elsner & Lamb 1977). This balance derives from the Bernoulli invariant where we suppose a
force-free magnetic field with Bφ � Bp and vφ � vp.

B2

8π
=

1
2 ρv2

R , (6.3)

where 4πR2ρvR = Ṁ. Thus, B2 = Ṁ
R2 vR . The minimum Alfvén radius is obtained for free-fall

speeds vR =
√

2GM
R . By assuming a dipole field B = B∗(

R∗
R )3, we finally have :
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In physical units, one obtains :
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But in accretion discs, the ram pressure is much greater for the same accretion rate because of the
concentration of mass within a small solid angle around the star except if one really considers
accretion at sonic speed (since an accretion disc is rotationally supported). We will discuss that
point in chapter 4 of this thesis.

Ghosh & Lamb (1978,1979) study this transition region by assuming the slippage of the
magnetic field lines through reconnection with γc = 1. Thus, one has a large scale interaction
between rA and rS (see Fig. 11). The vertical mass loading onto magnetospheric field lines
is prescribed and scaled by the local sound speed and follows an ad-hoc parabolic function
which cancels outside r0 and is equal to unity at rt. They assume an hydrostatic vertical
equilibrium neglecting magnetic pressure effects and the mass outflow. They consider that the
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disc temperature at the transition is dominated by the ohmic heating. By solving numerically
the radial momentum equation with the above constraints and neglecting viscosity, they found
a boundary layer at rt = 0.41rA with a width δ ∼ 0.03rA . This corresponds to a change from
Keplerian motion to corotation with the star. Inside the magnetosphere, the magnetic field is
weakly distorted since the magnetic energy increases towards the star as r−6 much quicker that
the matter energy as r− 5

2 .
Finally, one can calculate the resulting magnetic torques acting on the star due to this

large star-disc connection between rt and rS. An important radius is the co-rotation radius
rco = (GM∗/Ω

2
∗)

1/3 where Ω∗ is the stellar angular velocity, which corresponds to a position
where the disc material rotates at the same speed as the star. The stellar field lines threading the
Keplerian disc below the co-rotation radius would lead to a spin up of the star, whereas those
beyond rco to a spin down. For slow rotators (rt << rco), we will have a global spin up. For
sufficiently fast rotators (Ω∗ > 0.4ΩA from Ghosh & Lamb 1979) corresponding to a truncation
radius close to the corotation one (rt/rco > 0.54), one can obtain a global spin down. For a
given stellar rotation rate, one can have alternative periods of spinning-up and spinning-down
due to the accretion rate variation. Beyond rco, one needs a dominant turbulent torque to have
a consistent accretion flow till the disc inner edge since the magnetic torque tends to accelerate
disc material in that case but Bardou & Heyvaerts (1996) argue that this leads to diffusion of the
magnetic flux outwards. Otherwise, Aly & Kuipers (1990) propose that the excess of angular
momentum coming from the star could be transported outwards by extended shock waves
which are formed by the acceleration of matter by the magnetic torque beyond and not too near
rco, in the case of negligible viscous stress.

§ 7. Variability of the disc truncation radius

Many authors argue that the disc truncation happens when the magnetic field overpasses the
gravitational energy which demands a strong field to stop the accretion playing the role of
a physical wall, typically greater than kilo Gauss as already deduced above from the Ghosh
& Lamb model. We will focus on this topic in chapter 4 of this thesis and will demonstrate
that equipartition between the thermal pressure and the magnetic one is sufficient and can
be achieved for relevant stellar magnetic field strength B∗ ∼ 140G and accretion rate Ṁ ∼
10−9 M�yr−1 in the context of CTTS.

But, generally these analytical considerations are not sufficient to identify precisely the
truncation radius at any time because it undergoes some variations owing to the accretion flow
(see the effect of viscosity in Chap. 5) or some instability which can develop at this transition
between the magnetosphere and the accretion disc. We will focus here on some possible
instabilities. There is the interchange (also known as Kruskal Schwarzschild) instability which
is the magnetic equivalent of the hydrodynamic Rayleigh Taylor one (Baan 1977,1979). Actually
the denser accretion disc tends to diffuse due to gravity through the lighter magnetosphere but
there are the stabilizing magnetic tension and buoyancy which counteract. Accumulation of
mass happens in the disc midplane till the instability is triggered and a large blob of matter
accretes directly onto the star. This instability is efficient only well below corotation. Recent 3D
simulations by Kulkarni & Romanova (2007) show such a kind of instability at the disc inner
edge (see chapter 2). When the effective gravity becomes weaker near the corotation, there
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are possible ballooning mode interchange driven for instance by an inward pressure gradient
(Spruit & Taam 1993). There is also Kelvin-Helmholtz instability since material inside the
magnetosphere corotates with the star contrary to accretion flow at sub-Keplerian speeds. Most
of these instabilities can only be studied in extremely high resolution 3D simulations and this is
beyond the scope of this thesis. Hence, we will mostly assume rather stationary conditions for
the truncation radius in the following.

§ 8. The physics of stationary funnel flows

One of the most striking points of the star-disc interaction is the formation of accretion
columns or accretion curtains in the axisymmetry framework. A necessary condition to have
such a non equatorial accretion is to disrupt the accretion disc beyond the stellar radius as
discussed previously. Then, one can understand magnetospheric accretion in ideal MHD as an
accumulation of matter at this disc inner edge since matter can not cross the magnetic surface
which finishes by pouring along magnetic field lines when the effective gravity points inwards.

Without taking into account the process of the mass loading onto the closed magnetic field
lines (the accretion physics is considered as a boundary condition), Ostriker & Shu (1995), Li &
Wilson (1999) and Koldoba & al (2002) study the constraints given by the Bernoulli equation to
have a steady state solution of a funnel flow in ideal MHD conditions. The equations for the
funnel flows are :

∇ · (ρv) = 0 , (8.6)
∇ · (ρvv − BB + PtotI) = 0 , (8.7)

∇× (vB − Bv) = 0 . (8.8)

One assumes a barotropic equation of state P = P(ρ). By splitting the poloidal and toroidal
components, we write :

v = vp + Ωreφ , (8.9)
B = Bp + Bφeφ , (8.10)

(8.11)

By integrating equations 8.6-8.8 along a magnetic field line as it is done in MHD wind theory,
one obtains vp × Bp = 0 and one has the 4 classical MHD invariants :

κ =
ρVp
Bp

, (8.12)

Ω∗ = Ω − κ

ρr Bφ , (8.13)

λ = Ωr2 − r
Bφ

κ
, (8.14)

E =
1
2 (v2

p + r2(Ω − Ω∗)
2) +

∫ dP
ρ

− GM
r − 1

2Ω∗r2 , (8.15)

(8.16)
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κ is the mass loading rate per magnetic flux unit, Ω∗ can be interpreted as the rotation rate of
a magnetic surface and corresponds to a frame where the electric field is cancelled. It usually
corresponds to the stellar rotation rate. λ is the specific angular momentum in the funnel per
magnetic flux unit and E is the Bernoulli equation corresponding to the fluid energy per unit of
mass which is calculated in the frame which corotates with the curtain.

The magnetic shear within the funnel flow is thus given by combining the invariants κ and
Ω∗ :

Bφ

Bp
=

Ωr
vp

(Ω − Ω∗)
Ω

(8.17)

It depends on both the ratio of toroidal to poloidal velocities and the relative angular velocity
shear. Thus, large poloidal velocities tend to reduce the magnetic torque on the star but the
flow velocity is imposed by the disc accretion physics. The same trend is achieved if the
accreted matter within the funnel flow tends to corotate with the star which depends on the
stellar boundary conditions. Contrary to classical models such as the Ghosh & Lamb (1978)
or Matt & Pudritz (2005) ones where a force-free corotating magnetosphere with the star is
considered, the magnetic torque is not localized at the disc/corona interface but is distributed
along the magnetic field line allowing a differential rotation between the disc surface and
stellar boundary conditions. Thus, one has a strong relation between the disc accretion rate,
the magnetospheric accretion and magnetic torques due to ideal MHD equations and finally
a possible different angular momentum balance from classical models considering separately
accretion and magnetic torques.

By combining the invariants Ω∗ and λ, one deduces the expressions for Ω and Bφ for a steady
state depending only on boundary conditions via the chosen values for λ, κ and Ω∗ :

Ω =
Ω∗ + λr2 vp

Bp

1 − M2
a,p

, (8.18)

λκ = Ωr2κ − rBφ , (8.19)

Bφ =
1
r

λ + 4πκΩ∗r2

1 − M2a,p
, (8.20)

E =
1
2 (v2

p + r2(Ω − Ω∗)2) +
∫ dP

ρ
− GM

R − 1
2Ω

2
∗r2 , (8.21)

where M2
a,p = 4πκ2

ρ is the square of the poloidal Alfvén Mach number.
Next, one can express the Bernoulli equation as function of ρ and R along a field line from

8.21 :
E =

1
2ρ2 κ2(B2

p + B2
φ) +

∫ dP
ρ

− GM
R − 1

2Ω
2
∗r2. (8.22)

With this expression, one clearly sees the magnetic energy term. Along a pure dipolar magnetic
field, one has R = R0sin2θ and Bp = µ

R3

√
4 − 3sin2θ thus :

E =
1

2ρ2R6 κ2µ2(4 − 3 R
R0

) +
1

2ρ2 κ2B2
φ +

∫ dP
ρ

− GM
R − 1

2 Ω
2
∗

R3

R0
. (8.23)

One can first have a look to the effective potential Ve f f = −GM
R − 1

2 Ω
2
∗r2 to find which dipolar

field lines allow direct magnetospheric accretion by considering two cases : (1) a rigid rotating
funnel flow corotating at the stellar speed and (2) a differentially rotating funnel flow going
smoothly from Keplerian rotation for the footpoint anchored into the disc to the stellar rotation
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Figure 12. Equipotential lines (black lines) in the (r,z) plane for the effective gravity in the case of a rigid rotation of the

magnetosphere. The values represent the opposite of the effective potential. We identify the corotation at 1.6. The

red lines corresponds to magnetic field lines for a pure dipolar field and the brown lines represents circles. Along a

given field line, accretion is possible if the opposite of the effective gravity keeps increasing from the equatorial plane

towards the star. We find that polar accretion is possible only for r ≤ 1.4 corresponding to rt < 0.875rco.

due to a non negligible magnetic torque within the funnel (Bφ 6= 0). In this study, one obtains
an upper constraint on the truncation radius defined as the position where polar accretion is
allowed till the stellar surface by the effective potential. In case (1), we find that magnetospheric
accretion is allowed for rt < 0.875rco (see Fig. 12). In case (2), for a disc Keplerian velocity
two times greater than the stellar one (considering a smooth rotational function linking these
boundary conditions along a dipolar field line), we find rt < 0.69rco (see Fig. 13).

Now, one considers the complete Bernoulli invariant. Li & Wilson (1999) assume that the
funnel is isothermal such that

∫ dP
ρ = c2

s ln ρ
ρd

. They looked for solutions where disc material
can reach the star through accretion curtains and which satisfy the Bernoulli equation. They
assume a non zero Bφ such that the magnetic torque extracts the total angular momentum of the
disc matter as in Ostriker & Shu (1995) corresponding to λ = 0 i.e. Bφ = 4πκΩ∗r

1−M2a,p
. The Bernoulli

equation written in adimensional units is thus :

E′ = A(u2 − 2 ln(u) + 2ln(
Bp

Bp,d
) + 2 ln(Ms,d)) +

1
2C2r′2

2M2
a,p − 1

(1 − M2a,p)2 − 1
R′ , (8.24)
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Figure 13. Equipotential lines (black lines) for the effective gravity Ve f f in the case of differentially rotating magnetic

field lines with the same legend as in Fig. 12. The polar accretion is possible here only for r ≤ 1.1 corresponding to

rt < 0.69rco.

where E′ = E
v2

K,d
, r′ = r

rd
, R′ = R

rd
, u =

vp
cs

, A = 1
2 ( cs

vK,d
)2, C = ( Ω∗

ΩK,d
)2 = ( rt

rco
)3. If one considers

a very sub-Alfvénic flow (Ma,p ∼ 0), the Bernoulli equation is equivalent to the case of a rigid
rotating curtain at the stellar rate. We study again the topology of the Bernoulli equation like in
their paper by drawing isocontours of E’ in the (u,sd) plane where sd = 1 − R′ is the complement
to the spherical radius along a dipolar field line as function of the disc temperature characterized
by A and the position of the field line footpoint rt with respect to the corotation caracterized by
C.

Solutions with pure poloidal dipole field are possible only well below the corotation radius
(rt < 0.84rco or Ω∗ < 0.77ΩK,d i.e. C ≤ 0.6 ; see Fig. 14) and with a sufficient thermal pressure at
the disc boundary condition characterized by the disc aspect ratio cs/vKd > 0.04 i.e. A > 10−3

in order to have sufficient negative effective gravity to reach the sonic critical point in the funnel
before the stellar surface.

Actually, solutions with magnetospheric accretion nearer to the corotation implies initial
velocities at the funnel base highly supersonic (see Fig. 15) which is in contradiction with
rotationally supported accretion flows. However, one can tune down a bit the constraint on C
since one considers here ideal MHD conditions till the disc midplane while accretion within the
disc is described by resistive MHD where accretion is not constrained to be parallel to the field.
Thus, the transition is at several disc scale height. Besides, the scale height at the truncation of
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Figure 14. Contour of the normalized Bernoulli integral E’ for a disc with an aspect ratio 0.054 (A = 1.5 × 10−3) and

a magnetic field line anchored below the corotation (C = 0.6) as function of the Mach sonic number and the distance

along the funnel flow in units of sd = 1 − R′. The disc midplane corresponds to sd = 0 and the stellar surface is on the

right side. The sonic point corresponds to the saddle point which is localized at the disc midplane. We find solutions

for initial sonic speeds.

the disc is expected to be bigger than the one chosen for the initial unmodified disc due to the
compression of matter at this inner edge. One draws again the isocontours of E’ by modifying
the horizontal scale now in units of the disc scale height h which corresponds to do a zoom in
previous plots such as Fig. 14. One can find transonic solutions with initial speeds near sonic
but subsonic speeds till C ∼ 0.7 which reach the sonic point localized at 2h (see Fig. 16).

However, in any case, this condition on C entails a distorted poloidal dipolar field by
accretion at the base of the funnel which prevents the mass loading even for small distortion
as low as Br

Bz
∼ 0.01 due to magnetic compression. Actually, from the energetics requirements,

this produces a potential sink in the Bernoulli equation. We observed such a poloidal field
deformation in our simulations shown in Chapter 4 but one has the compression of the disc
matter at the truncation radius which enhances the thermal pressure and makes it possible to
form accretion funnels. This effect is not considered in the Li & Wilson paper. Thus, to find
steady-state accretion columns, they consider another levitation force to have magnetospheric
accretion such as the gradient of Bφ. This is relevant in the case of near-Alfvénic flow (M2

a,p ≤ 1)
and they found solutions for initial Mach number within the disc around 0.1 and 0.22 < M2

a,p <

0.7 by considering the case rt = rco to still use a pure poloidal dipolar field. Thus, the Bernoulli
equation gives a constraint on the possible Ma,p. But they do not consider the effect of large Bφ

on the accretion process which particularly has the trend to produce non stationary solutions
due to opening of the magnetic field.
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Figure 15. Contour of the Bernoulli integral for a disc with an aspect ratio 0.054 (A = 1.5 × 10−3) and a magnetic

field line anchored at corotation (C = 1). We now find solutions only for initial supersonic speeds with a sonic Mach

number higher than 5.

Koldoba & al. (2002) consider a polytropic equation of state with a constant entropy within
the funnel flow. They analyse the critical sonic point in the Bernoulli invariant. They also
consider a sub-Alfvénic flow such that Bφ

Bp
� 1 and find conditions to have transonic flows. They

obtain this is possible only for a limited radial range around the corotation radius. For instance,
for a thin disc with a disc aspect ratio ε = 0.1 and γ = 5

3 , they find 0.873 rco < r < 0.971rco . The
lower limit is due to the constraint on the sonic point to be outside the disc. The upper limit is
caused by the necessity to have enough disc thermal pressure to accelerate matter at the funnel
base in order to reach the sonic point before the stellar surface. The hotter the disc is, the further
this latter limit is. It is even possible to have transonic funnel flows a bit beyond corotation for
csd > 0.08vK(rco). But for r > 1.25rco , only transient accretion flows are possible.

One can remark that the energy reservoir in the isothermal regime is lower than the adiabatic

regime
∫ dP

ρ =
c2

s,d
γ−1

(

ρ
ρd

)γ−1
and that is why it is necessary to have truncation radius well below

corotation to have possible funnel flow in this case. The simulations done in chapter 4 are done in
the adiabatic regime but without neglecting the toroidal field and we found in this case transonic
funnel flows.

For observers, it is important to know the velocity field within an accretion column to
deduce spectral line shapes which then can be compared with high resolution spectra showing
complex emission lines structure. Hartmann et al. (1994) and Muzerolle et al. (1998) made
such calculations to reproduce spectral features for force-free dipole field but they always use a
free-fall velocity law and a constant mass loading invariant κ within the funnel without taking
into account critical points. The temperature distribution is empirical taking into account a
volumetric heating term and nearly constant in the main part of the funnel flow. The seminal
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(A)

(B)

Figure 16. Isocontours of E’ with the same disc aspect ratio (A = 1.5 × 10−3) as previously zooming in near the sonic

saddle point for (A) C=0.6 (same case as Fig. 14) and (B) C=0.7 using a different scale in units of h for the position

along a magnetic field line.

work of Martin (1996) studied the stationary temperature distribution along purely dipolar
magnetic lines by solving the equation of internal energy including heating and cooling terms
and prescribing the dynamics (density and velocity field like previously). He considers coolants
such as Bremstralhung, MgII and CaII lines and heating processes such as photoionization and
ambipolar diffusion. He found that the dominant term is the adiabatic heating term in the first
part of the accretion column whereas MgII and CaII lines play an important role of thermal
regulation near the star limiting the temperature up to 6500 K for Ṁ = 10−7M�.yr−1 and up
to 8000 K for Ṁ = 10−8 M�.yr−1. However, Muzerolle et al. (1998) do not reproduce correctly
observed lines profiles using this temperature distribution and probably inclusion of magnetic
field effect is necessary to have consistent calculations.
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§ 9. The importance of the disc diffusivity for the stellar rotational evolution

The dissipative disc properties are central to correctly estimate global torques depending on the
toroidal field magnitude and magnetic flux distribution. van Ballegooijen (1994), Udzensky et al.
(2002) study the existence of stationary large scale magnetic interaction between the central object
and the disc. They study the effect of diffusivity and initial magnetic topology on the effective
connectivity by calculating force-free fields for different pitch angles. van Ballegooijen (1994)
assume small disc resistivity such that periodic reconnection events appear in the magnetosphere
due to the expansion of the poloidal field like in Aly & Kuipers (1990) but here with a large scale
magnetic field. Lovelace et al. (1995) consider also a very highly conductive disc (diffusivity
comparable or less than the viscosity) but still neglect the possible radial diffusion of the
magnetic field and show that the build up of toroidal magnetic field entails the expansion of the
poloidal magnetic field into the corona if the plasma is sufficiently light and cold. This leads to
the opening of the magnetic field lines similar to the coronal mass ejection process in the context
of solar physics (Aly 1981,1984, Low 2001). The expansion of a loop connecting the star to the disc
drives material which finally gives a convergent flow near the rotation axis and a divergent one
outwards. One can then reach a state with three different regions : an open stellar field, a closed
magnetosphere and an open disc field if the reconnection rate is absent or sufficiently slow (for
instance because of a high velocity wind along the opened field lines, greater than the contraction
Alfvén speed linked to reconnection as proposed by Uzdensky 2004). Numerical calculations
done by Uzdensky show a critical pitch angle γc ∼ 1 from which the poloidal magnetic field is
opening.

Haeyvaerts & Bardou (1996) consider also the inflation of the poloidal magnetic field but
with disc diffusivity sufficiently high (Rm ∼ 1) to make the radial diffusion of the magnetic field
important. One can obtain in this case an expansion of the magnetic field radially within the
disc. This is due to the build of toroidal field by differential rotation, leading to a change in the
distribution of the disc magnetic flux which increases outwards and can finally be expelled from
the disc except if there is a proper disc magnetic field to stop this diffusion.

Matt & Pudritz (2004,2005) formulate a general steady-state model to calculate the global
torque on the accreting star by including this opening effect of the magnetic field topology
characterized by the critical pitch angle γc and giving rise to a restricted star-disc connection
from rt till rout contrary to the Armitage & Clarke (1996) calculations and previous models therein
(where rout ∼ ∞). They consider a steady thin accretion disc with a constant accretion rate Ṁa
in time and space (neglecting a possible disc wind). This disc is resistive (ηm), truncated at rt
and with β >> 1. The corona above the disc is assumed force-free (β << 1) and similar to a
perfect conductor. In order to have a long term star-disc connection for a given magnetic field
line, the toroidal diffusion velocity vd must be equal to the drift velocity between the Keplerian
speed and the equatorial stellar speed vK(r) − v∗ at the footpoint anchored in the disc. One can
estimate vd by writing the induction equation for Bz (neglecting the radial diffusion of it). One
has vd = γc pvK where p = Br |h

Bz
. The stationary state gives γc p = ( r

rco
)

3
2 − 1 from which one

deduces rout = (1 + γc p)
2
3 rco. If one considers a viscous disc using an α prescription for it (see

Chap. 3 for more details), one has p = α
Prm

h
r << 1 where Prm = ν

ηm
is the turbulent magnetic

Prandtl number. One expects typically p ∼ 10−2 for reasonable parameters such as α ∼ 0.1 and
ε ∼ 0.1.



2. THEORETICAL BACKGROUND OF THE STAR-DISC INTERACTION 29

Figure 17. Equilibrium rotation period as a function of Ṁa,B∗,M∗ and R∗ (from Matt & Pudritz 2005). The

solid line corresponds to a global closed magnetosphere (with γc ∼ ∞ and p = 1) whereas the other cases

consider a partial opening of the magnetic field taking γc = 1 and different values for the diffusion parameter

p = 0.01(dotted lines), 0.1(dashed lines) and 1 (dash − dotted lines).

The global magnetic torque on the star due to the large scale connection between the star and
the disc is then given by :

τm =
∫ rout

rt
r2BφBzdr =

∫ rout(γc,p)

rt
γc

µ2

r4 dr, (9.25)

where one neglects the deformation of the dipolar field by the accretion flow (Bz = µ
r3 ) and

possible reconnection re-establishing some connection during short periods. One can notice that
the more twisted the magnetic field line is, the stronger the torque is and that the accretion will
increase the magnetic flux distribution near the disc inner edge. The global accretion torque
is expressed as τa = Ṁa

√
GM∗rt. Matt & Pudritz (2004) neglect here the effect of the stellar

magnetic field on the disc which tends to corotate with the star at the truncation radius. The
star equilibrium state called usually “disc-locking state” is obtained when τm + τa = 0. They
found that the truncation radius needs to be at corotation for relevant values pγc < 1 unlike
extended magnetosphere models like Cameron & Campbell (1993) which gives r t/rco ∼ 0.915.
They conclude that no efficient disc-locking state compatible with observations is possible when
the partial opening of the magnetosphere is included (see Fig. 17) even though considering kG
fields. Moreover, if we use observational constraints on large scale magnetic field around 200 G
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(Johns-Krull et al. 1999), one finds an equilibrium period as low as 1 day even without taking
into account the opening of the stellar magnetic field. This is not compatible with observations
of slow rotators whose period is rather one order of magnitude greater. Thus, one can conclude
from these analytical models that the star disc interaction is not sufficient to explain slow stellar
rotation rates and one needs other efficient physical mechanisms to extract the stellar angular
momentum. However, one also has to tune down these conclusions since the accretion torque
is crudely assessed and probably reduced in reality. Recently, Dai & Li (2006) and Kluzniak &
Rappaport (2007) obtain a more realistic accretion torque with a disc rotation profile reaching
corotation within the magnetosphere cavity using a 1D steady state viscous disc model but
prescribing different toroidal field laws.

§ 10. Ejection processes to solve the angular momentum issue?

Figure 18. Magnetic configuration of the star-disc system including a proper disc magnetic field (from Ferreira,

Dougados & Cabrit 2006). Left : Parallel configuration with an MHD X point. Right : Anti-parallel configuration.

To extract efficiently the angular momentum within the disc before it reaches the star, one
can consider an extra disc magnetic field. The evolution of the stellar rotation rate can be given
by this general expression neglecting the star-disc global magnetic torque :

I∗
d
dt (Ω∗) = −Ω∗

d
dt (I∗) − 2ṀeΩ∗λr2

in + Ṁa
(

√

GM∗rt − k2
Ω∗R2

∗
)

(10.26)

where I∗ = k2 M∗R2
∗ is the stellar moment of inertia considered as a spherical solid body with

k2 = 1
5 for a fully convective star and λ = rA

rin
is the magnetic lever arm of a possible outflow

whose inner footpoint is localized at rin.
The different terms on the right hand side are torques respectively due to the contraction of

the star, the ejection term due to a disc or stellar wind with a characteristic ejection rate Ṁe, and
the third term is the advection of the angular momentum brought by matter from a Keplerian
accretion disc. R∗ and M∗ time evolution are deduced by assuming the contraction of the star
along an Hayashi track starting from the break-up speed :

4πR2
∗T4

∗σ =
d
dt (

3GM2
∗

7R∗
). (10.27)
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The expression (10.26) is a generalization of the works of Matt & Pudritz (2005) which neglects
the contraction term, and Ferreira & al. (2000) which constrains the accretion rate to maintain the
X point at corotation.

One can rewrite Eq. (10.26) as

1
Ω∗

d
dt (Ω∗) = − 1

I∗
d
dt (I∗) − 2 Ṁe

I∗
λr2

in +
Ṁa
I∗

R2
∗((

rt
R∗

)
1
2 − k2), (10.28)

by dividing expression (10.26) by the stellar angular momentum to assess the different timescales
of each process. One has the Kelvin-Helmholtz contraction timescale :

τKH =
3GM2

∗
27πR3∗T4∗σ

= 1.2 × 106(
M∗

0.4M�
)2(

R∗
2R�

)−3(
T∗

4000K )−4years, (10.29)

the magnetic braking timescale due to ejection :

τm =
k2

λ

M∗
Ṁe

(
R∗
rin

)2 = 8 × 105(
k2

0.2 )(
λ

100 )−1(
M∗

0.4M�
)(

Ṁe
10−9M�yr−1 )−1(

R∗
rin

)2years (10.30)

and the accretion timescale :

τa = k2 M∗
Ṁa

(
rt
R∗

)−
1
2 = 8 × 106(

k2

0.2 )(
M∗

0.4M�
)(

Ṁa
10−8 M�yr−1 )−1(

rt
R∗

)−
1
2 years. (10.31)

One obtains for relevant parameters of CTTS chosen above τm < τKH < τa showing that ejection
can be efficient enough to maintain a slow rotation rate.

There are two main magnetic configurations depending on the orientation of the disc
magnetic field with respect to the stellar magnetic moment (see Fig. 18). In the anti-parallel
configuration, one will have a closed dipolar magnetosphere near the star where polar accretion
along the magnetic field lines can happen. This magnetosphere is stretched outwards when one
enters the disc region and a disc wind topology exists in the outer parts of the disc. This disc
wind can have a stellar origin from the opening of the magnetosphere like in the Shu (1994)
model (see below). The disc field makes it possible to extract angular momentum from the disc
by a MHD non relativistic magnetocentrifugal jet if physical conditions are met (equipartition
field, high disc diffusivity, see Ferreira & Pelletier 1995). But to extract angular momentum from
the star as the latter section stresses, it seems to be necessary to have a proper stellar wind in this
configuration. Matt & Pudritz (2005) propose such a powerfull stellar wind ( Ṁe

Ṁa
∼ 0.1) which

needs to have a wide opening angle with magnetic lever arm around 200 i.e. r A ∼ 14R∗ to have
sufficient angular momentum loss in the aim to have an equilibrium state and counteract the low
stellar rotation rate and low magnetic field strength. However, the large mass loss rate of about 10
% of the accretion rate can not be explained by magneto-centrifugal effects due to the weak field
and low rotation rate. Already, disc wind theory for Keplerian discs give an upper limit around
1 % for cold winds (Ferreira 1997) and at best 10-20 % by including heating at the disc surface
(Casse & Ferreira 2000, Ferreira et al. 2006). Thus, it demands an efficient heating at the base
of the wind which can not be explained by thermal pressure because too high temperatures are
needed (T > 106K) and this is in contradiction with constraints on HeI emission lines formation
around T ∼ 104K (Edwards et al. 2006). Recent simulations in ideal MHD of hot coronal winds
by Matt & Pudritz (2007) confirm this by producing too high X ray emission. Models (see e.g.
Strafella et al. 1998 for Herbig winds) thus assume less dissipative acceleration processes such
as turbulent Alfvén wave pressure (DeCampli 1981). Actually, the large scale magnetic field
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anchored in the convective zone of the star can be easily pinched and thus generate such Alfvén
waves.

Shu et al. (1994) propose a specific kind of disc wind, the so-called "X-wind" to brake the
star. They consider a viscous and low resistive accretion disc truncated near corotation rco with
a small penetration of the stellar magnetic field inside the disc. This small disc diffusivity is
sufficient to avoid the expansion of the magnetic field as the magnetic flux is trapped near the
corotation radius and thus the differential rotation is reduced. They impose a high mass ejection
efficiency in the X wind ( ṀX

Ṁa
∼ 1

3 ) which is concentrated at the disc inner edge slightly beyond
rco and has a spherical Alfvén surface but this strong assumption is not self consistently verified
as they do not treat the underlying disc. Particularly, they consider force-free field enforcing
matter entering the magnetosphere to corotate with the star but the great bending of magnetic
field lines near the X point can restrict the high mass loading assumed. Moreover, we already
mention that disc wind theory limits drastically the mass loading with an upper limit around
10-20 % (Casse & Ferreira 2000) for warm solutions from sub-Keplerian discs even if magnetic
flux is spatially extended in that case. Angular momentum extraction from the star is possible
in this model because the X wind has the property to extract all the disc angular momentum by
assumption as they impose λ = 0. Thus, stellar angular momentum can be transferred from the
funnel to the disc inner edge near the X point. Consistent MHD simulations including this disc
structure still need to test this configuration.

In the parallel configuration, the disc magnetic field is parallel to the stellar magnetic
moment8, and one has a real MHD X point where the magnetic field cancels in the disc midplane.
At this reconnection point, the accreted matter is lifted upwards by the Lorentz force. Some
matter is accreted inside the closed magnetosphere whereas the other is ejected. Contrary to
disc wind models, the ejection efficiency could be much higher since the Lorentz force actually
lifts up matter in this configuration but this ejection is really time dependent depending on
the reconnection rate. Matter is then dragged outwards and accelerated away along the newly
reconnected field lines. Since these lines are now anchored to the star, this can lead to an efficient
braking as shown in Ferreira et al. (2000). But the whole ReX wind model depends on the physics
of reconnection which is still not fully understood. Particularly, to carry out simulations of this
configuration, it seems to be necessary to include the Hall term in the MHD equations and to use
AMR techniques to catch the relevant physics well below the MHD scale as already discussed
before.

By focusing on the angular momentum evolution of a protostar on long timescales, one
can take an average state in time with a mean ejection rate ṀX = f Ṁa linked to the inner
disc accretion rate Ṁa and Ferreira et al. (2000) solves Eq. (10.28) with the accretion term
constrained to maintain the X point at the corotation radius. The initial stellar magnetic field
has the following expression B∗ = B∗,0(

R∗
r )n to take into account deviations from pure dipole

fields. This field is equal to the opened disc wind at the X point and needs to be in equipartition
with thermal pressure to have ejection and thus its strength is directly linked to the inner disc
accretion rate. As soon as the magnetospheric field undergoes some reconnection with the disc
field, and if there is no dynamo creating new stellar closed magnetic field, the disc accretion

8The stellar magnetic field could be originated in this case from the trapping of some flux in the protostellar
core from the collapse of the molecular cloud. However, this fossil origin is not supported by the fully convective
behaviour of a young star.
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Figure 19. Stellar period evolution for an initial condition with f=0.1, λ = 3, R∗,0 = 4R�, M∗,0 = 0.4M�,Ṁa,0 =

10−5M�yr−1, T∗ = 3000K and different initial stellar magnetic field index n=1 (solid),n=3.41 (dashed), n= 3.87

(dotted), n=4.4 (dash-dotted) and n=5 (long-dashed) with no stellar dynamo (from Ferreira et al. 2000)

has to adapt to remain the X point near the corotation on long timescales. By prescribing the
decrease law of the magnetospheric flux, Ferreira et al. (2000) finds that the ReX wind model is
able to explain efficient braking towards a tenth of the breakup for a timescale around 105 years
(see Fig. 19) and n=3-4 (see Fig. 19). But this model is more reliable for class 0 objects since one
considers initially high accretion rate Ma,0 = 10−5 M�yr−1 and thus powerful ejection events.
It is also questionable to assume a steady ejection whereas reconnection events are really time
dependent. Moreover, the final stellar field due to the stellar contraction reaches high values of
several kG starting from 200 G. Finally, the high efficiency of stellar braking is probably a bias
of not imposing a minimum accretion torque consistent with observations since in this model,
the accretion rate steeply drops below 10−8 M�yr−1 after 1 Myr. Further investigations including
explicitly this accretion term is necessary to conclude for class II objects such as T Tauri stars.
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In this chapter, we focus on presenting the methodology used in the numerical tool to study
the star-disc interaction. This is the only way to take into account the coupling between the
stellar magnetic field and the accretion disc because of a complex geometry and strong gradients
of magnetic field, density and dissipative effects such as diffusivity and viscosity between disc
and magnetosphere. Then, we sum up the previous numerical work done in this field in the last
decades.

1. Numerical methods

Equations in physics are usually written as a set of Partial Differential Equations (PDE) such as
the Maxwell equations to describe the electromagnetic field or the hydrodynamic equations to
describe the flow of a fluid. There are few analytical solutions for these systems, usually making
crude simplifications. Numerical methods translate this continuous description into a finite set
of discrete values by discretizing the PDE onto a grid of points which can be evolved in time by
a relevant algorithm. In this part, we will present how finite volume methods work since we will
use them to carry out simulations of star-disc interaction. To have more information, we advice
the books of Toro (1999) and LeVeque (2003). We finally present the VAC code with the main
numerical scheme used in this thesis, and specify the computational grid chosen and the typical
computational time used for our simulations.

§ 11. Finite volume discretization

The physical problem is expressed in terms of conservation laws, which are equivalent (for
continuous and differentiable quantities) to the integral form of the PDE. Contrary to finite
difference methods where one directly discretizes the differential operators of the PDE, integral
approximation is used. This integral form has the advantage to take into account both continuous
and discontinuous solutions and ensure the conservation of physical properties such as mass,
momentum or energy, which are called conservative variables. For instance, the conservation of
mass which is written ∂tρ + ∇ · (ρv) = 0 is integrated over a control volume V : ∂t

∫

V ρdV =
∫

V ∇ · (ρv)dV. Then, the right hand side of this equation is transformed by using the Green-
Ostrogradsky theorem :

∂t

∫

V
ρdV =

∫

S
ρv.dS (11.32)

Thus, the variation in time of the averaged density over a control volume is equal to the
balance between flux of matter entering the volume across the closed surface dS and flux of
matter escaping from it. One assumes here that there is no source and sink terms which could
respectively create mass or make it disappear. Because the flux entering a given volume is
identical to that leaving the adjacent volume, these methods are conservative by construction.
To solve numerically this kind of equation, the conservative variables are discretized onto a
structured static grid (eulerian approach) and the cell centers quantities are interpreted like the
averaged values of these variables over each cell. For sake of simplicity, the 1D version of (11.32)
integrated between two adjacent time steps n and n+1 separated by ∆t for a grid point i can be
written as :

ρn+1
i − ρn

i =
1

∆x

∫ tn+1

tn

∫ xi+ 1
2

xi− 1
2

∂ρv
∂x dxdt =

∆t
∆x (F(xi+ 1

2
) − F(xi− 1

2
)) (11.33)
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where ρn
i = 1

∆x
∫ xi+ 1

2

xi− 1
2

ρ(x, tn)dx,

Fi+ 1
2

= F(xi+ 1
2
) = 1

∆t
∫ tn+1

tn f (ρ(xi+ 1
2
, t))dt where f is the flux of density i.e. ρv.

The fluxes are computed at each cell interface but one only follows the variable values at the
centers of each cell and thus some interpolations are necessary as we will see further. The key to
have good numerical schemes is to give accurate values for the numerical fluxes Fi+ 1

2
and Fi− 1

2
at

the cell edges xi− 1
2

and xi+ 1
2

(which are averaged in time) of the chosen grid in order to advance
in time the values of the conservative variables averaged over the control volume, while having
a stable and consistent numerical scheme.

Let me define these two latter terms. A scheme is consistent when the local errors with
respect to the exact solutions vanish when the spatial and temporal resolution goes towards
infinity. We also define the order of a scheme to quantify its accuracy. This can be found by
replacing the discrete values in the scheme by a Taylor expansion of a sufficient smooth solution
in ∆x and ∆t. For instance, ρn+1

i+1 = ρ((i + 1)∆x, (n + 1)∆t) = ρ(i∆x, n∆t) + (∆x)∂xρ|x=i∆x +

(∆t)∂tρ|t=i∆t + O(∆x2) + O(∆t2). A scheme is stable if truncation errors introduced by the
discretization and errors due to round-off noise at machine precision remain bounded during
the time evolution. The Lax theorem ensures that a consistent and stable numerical scheme
converges. This is proved only for linear systems. In practice, we can compute the numerical
solution for different grid resolution and check for instance that the global error Σ i(ui − uC

i )

computed over all the grid points ui (for a given resolution with respect to the coarse resolution
uC

i ) converges when the grid is refined (see e.g. Stone et al. 1992).
The discretization of the integral form of the other differential operators is given by

∫

V
∇PdV = ΣiP̃dSi, (11.34)

∫

V
∇× BdV = ΣidSi × B̃i, (11.35)

where dSi represents the normal surface value at each interface of a cell and P̃ and B̃ the average
values at the cell interfaces, as computed from the neighbouring cell center values.

§ 12. The CFL condition

The aim is to compute the solution for the largest local time step possible in order to save
computational time and make a study for long term evolution. The physical restriction is to
control the propagation of information brought by waves or advected with the fluid. If one
considers the maximum speed of propagation cmax and a typical width ∆x of a cell, we can
only take ∆t <

∆x
cmax

in an explicit scheme otherwise we will have a situation corresponding to
unphysical speeds and numerical instabilities will develop. This is called the Courant-Friedrich-
Lewy condition. One can make a von-Neumann analysis to find the stability domain of a linear
scheme by taking a solution written as ρn

i = Anexp(jBi∆x) where j2 = −1. When the ratio | An+1

An |
is greater than one, we get an unconditionally unstable scheme. For instance, the conservation
of mass discretized using an upwind formula for the time derivative ∂ t|iρ = (ρn+1

i − ρn
i )/∆t

and a centered formula for the spatial derivative ∂x |iρ = (ρn
i+1 − ρn

i−1)/(2∆x) gives an unstable
scheme since An+1

An = 1 − v ∆t
∆x sin(i∆x) such that || An+1

An || > 1. A way of ensuring a second order
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accurate scheme in space while obtaining stability for it is to replace in the time derivative ρn by
(ρn

i−1 + ρn
i+1)/2. This is called the Lax scheme.

In our simulations, this restriction on the time step is a main difficulty because the limiting
time step is located near the star due to the overwhelming stellar magnetic field which increases
as r−3 for a dipole. However, one needs to have the maximum resolution at this location since for
instance we want to compute correctly the magnetic stresses. Thus, we have typical simulations
with several millions of time steps, which is not ideal because of the accumulation of truncation
errors. An idea would be to use implicit schemes but we need to have enough accuracy in
the calculations of magnetic stress such that we can not choose an arbitrary larger time step as
stability theory claims. Besides, an implicit scheme is time consuming since at each time step one
has to solve a non linear system of equations whose number is proportional to the number of grid
points. A possibility would be to use an hybrid explicit/implicit technique linked to Adaptive
Mesh Refinement like in the BATSRUS code (e.g. Tóth et al. 2003) for space weather simulations
but we can only meaningfully use an implicit scheme in the region where the disc and star are
not connected. For instance, the time step in our simulations is limited by the magnetosphere
cavity and we could use implicit treatment in this region but not within the funnel flow.

In the case of resistive (or viscous) MHD, there is an additional constraint coming from
the diffusion timescale ∆t <

(∆x)2

η where η is the resistivity (or dynamic viscosity). The grid
resolution and the magnitude of the resistivity (or dynamic viscosity) determine whether this
constraint or the CFL condition is more restrictive.

§ 13. The choice of the numerical flux

§ 13.1. Methodology

There are two main approaches to choose the expression of the numerical fluxes :

• upwind methods using explicitly the wave propagation information, based on
(approximate) Riemann solvers.

• centered or symmetric methods without using the characteristics of the equations.

The upwind methods are more accurate since they take into account some mathematical
properties of the equations. One of the famous upwind methods is the Godunov method. The
numerical flux is computed from solutions of classical Riemann problems 9 at each cell interface
assuming that the solution is piecewise-constant within each cell. One should use the exact
solution of the self-similar Riemann Problem in x/t and then simply evaluate the flux at centre
assuming it is constant during ∆t : Fi+ 1

2
= f (ρ(xi , 0)) where f is the flux of the conservative

variable ρ.

9The Riemann problem is a particular initial value problem where we have a discontinuity with two constant
states at each side of a cell.



1. NUMERICAL METHODS 39

§ 13.2. The case of the scalar advection equation

For instance, one can look for the solution of the Riemann problem for the scalar advection
equation ∂tρ + v∂xρ = 0 where v is a constant. The initial condition is

ρ0 =

{

ρL i f x < 0,
ρR i f x > 0.

(13.36)

By using the change of variables u = x − vt, one has ∂uρ = 0. Thus, one deduces

ρ(x, t) = ρ0(x − vt) =

{

ρL i f x/t < v,
ρR i f x/t > v.

(13.37)

One has the propagation of the initial discontinuity at the speed v. The propagation of
information is along the characteristic curve dx

dt = v which is a straight line in this simplest
case. The numerical flux in this case is :

Fi+ 1
2

= Fi+ 1
2
(ρxi) =

{

ρLv i f v > 0,
ρRv i f v < 0.

(13.38)

§ 13.3. Riemann solvers for linear hyperbolic systems

In general, a system of conservation laws for a set of conservative variables U i will be described
by a set of hyperbolic equations characterized by a flux function F such that

∂tUi + ∂xj Fj(Ui) = 0. (13.39)

One can rewrite this system in a similar form as the advection equation :

∂tUi + A(U)∂xjUi = 0, (13.40)
where A(U) = ∂Uj Fj(Ui) is the Jacobian matrix of F.

Let us assume that A is constant, so that F=AU is linear in the unknowns. If A can be put in a
diagonal form namely Λ = (λi) = R−1 AR in a specific vector basis R (the system is then called
strictly hyperbolic), one will have

∂tWi + λi∂xjWi = 0, (13.41)
where Wi = R−1Ui are called characteristic variables, since for a constant matrix A one will have
propagation of the initial value of Wi at speed λi along the characteristics dxi/dt = λi. One
has a system of decoupled scalar advection equations with speeds λ i which can be understood
as propagation of different waves (see Fig. 20). The general solution is then obtained by
decomposing the initial values onto the right eigenvectors R :

Ui = ΣiW0,i(x − λit)Ri. (13.42)

Finally, the numerical flux is given by :

Fi+ 1
2

= AUi+ 1
2
(0). (13.43)

In other words, each discontinuity in the initial data travels at its characteristic speed given
by the eigenvalues of A while the jump values for the variables across the discontinuities are
proportional to the right eigenvectors of A.
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Figure 20. General solution of the Riemann problem in the (x,t) plane. At the cell interface located at x=0, we represent

the propagation of the different wave characteristics of the system considered. The information transported by the

fastest waves reaches distances equal to sRT and sLT at the end of the time step T which is lower than the cell width

[xL, xR] due to the CFL condition.

In general and already for the Euler equations, one has non linear equations with complex
characteristic curves which can cross each other since the different possible waves depend on the
sound speed and the fluid speed which are local quantities depending on the solution, which
is equivalent to non constant λi. Thus one can have development of discontinuities from a
continuous initial condition and one needs to check that the propagation speed of each new
discontinuity is consistent with the possible set of waves described by the equations and not a
numerical effect due to a bad discretization of the equations. This relates to the Lax condition
λ(UR) < s < λ(UL) where s is the speed of a possible discontinuity. Conservative schemes can
handle this important fact.

The general solution of the Riemann Problem for the 1-D Euler equation consists in one wave
(shock or rarefaction) travelling to the right, a second wave (shock or rarefaction) moving to the
left and a contact discontinuity 10 between them. The respective characteristics speeds are v+c,
v and v-c where v is the fluid speed and c is the sound speed. In MHD, the general solution
for this 1D Riemann Problem includes an entropy wave with velocity v, a pair of Alfvén waves
v ± vA where vA = B/√ρ and four magnetosonic waves with characteristic speeds v ± vSM and
v ± vFM where vFM,SM = 1

2(cs2 + vA2 ±
√

(cs2 + vA2)2 − 4cs2vA2).

§ 13.4. Approximate Riemann solvers for non linear equations

We discuss here the simplest and most common approximate Riemann solver namely the Roe
(1981) solver initially designed for the Euler equation and then extended in MHD (Brio & Wu
1988, Ryu et al. 1995, Cargo & Gallice 1997). The idea is to linearize the flux function and then
evaluate it in an average state Ũ between left and right values. In practice, we take an arithmetic
average of the primitive variables ULR = (UR + UL)/2 for the MHD equations and then evaluate
the Jacobian matrix of the flux function at this point : A = Ã(UR, UL) and deduce the average

10jump in density and temperature with continuity for pressure and normal component of velocity
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eigenvalues λ̃i(UR, UL) and eigenvectors R̃i. The matrix has to be consistent with the exact
Jacobian of the system and obey the Rankine-Hugoniot relation F(UR) − F(UL) = Ã(UR − UL).
Finally, one projects the initial condition value onto R̃i to find Ũi+ 1

2
(0).

Ũi+ 1
2
(0) = UL + Σλ̃i<0αiR̃i = UR − Σλ̃i>0αiR̃i (13.44)

where αi = L̃i · (UR − UL) are jump values for the variables across the discontinuities and L̃i is
the left eigenvectors of Ã. The numerical flux can not be deduced from the obvious relation
Fi+ 1

2
= ÃŨi+ 1

2
(0) since for instance if one has supersonic flows going from the left in the

hydrodynamic case, using expression from Eq. 13.44 gives contribution from UR in the intercell
flux due to the average state depending on both UR and UL. This is wrong as it does not respect
the upwind property which stresses that the intercell flux can only depend on the left value in
this case. The correct numerical flux is :

Fi+ 1
2

= FL + Σλ̃i<0αiλ̃iR̃i, (13.45)
where FL = AUL or more generally by doing an arithmetic average :

Fi+ 1
2

=
1
2 (FR + FL)−

1
2Σiαi|λ̃i|R̃i. (13.46)

There are also other approximate Riemann solvers which do not take into account the full set
of waves present in the exact solution of the Riemann problem :

• The HLL solver (Harten Lax van Leer 1983) which takes into account only the lowest
and largest wave speed.

• The HLLC solver (Toro, Spruce & Spears 1994) which includes also the contact
discontinuity with respect to the HLL one.

• The Lax-Friedrichs solver (Rusanov 1961) which considers only the fastest wave.
These latter incomplete Riemann solvers are often used in practice because they are robust

for complex physical problems and efficient from the computational time point of view since
one does not need a decomposition of the numerical solution onto the eigenvectors at each cell
interface.

Let us show now how to find the expression for the intercell flux in the HLL scheme. In
this case, one considers only an intermediate state U∗ between the initial values (UR, UL) at each
side of the considered interface separated by two waves propagating respectively leftwards and
rightwards with the maximum speeds sL and sR allowed by the equations of the considered
system. The initial condition is :

U =











UL i f sL > 0,
U∗ i f sL ≤ 0 ≤ sR,
UR i f sR < 0.

(13.47)

The Rankine-Hugoniot relations across the two possible discontinuities give : F∗ − FL = sL(U∗−
UL) and FR − F∗ = sR(UR − U∗) where FL = F(UL). By solving this system of two equations
with the two unknowns (U∗, F∗), the intercell flux is given by

Fi+ 1
2

=











FL i f sL > 0,
F∗ i f sL ≤ 0 ≤ sR,
FR i f sR < 0,

(13.48)
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where F∗ = sRFL−sLFR+sRsL(UR−UL)
sR−sL

.

§ 14. Variables reconstruction, slope limiters and high resolution schemes

To increase the spatial resolution of a scheme, it is necessary to do extrapolation of the variables
over the width of a cell. However, it is crucial not to introduce spurious oscillations due to
extrapolations from the two sides of a cell edge in a region of sharp gradients. Thus, the slope
of the extrapolated variable at a cell interface is chosen by comparing values of the two adjacent
slopes a1 and a2 computed from the neighbouring cells in a given direction and is set to zero
when one has opposite slopes and to a limited slope defined for each type of limiter otherwise.
This is called the reconstruction process. This allows the solution to keep monotonicity and
thus ensures the Total Variation Diminishing property of a scheme, i.e. that the numerical total
variation TV = Σi|Ui+1 − Ui| keeps decreasing with time. One can also remark that for a linear
extrapolation, the average of a variable over the cell size is still consistent with its definition in
the finite volume meaning. One can consider a higher order extrapolation of variables like a
parabolic reconstruction of variables used in the PPM (Piece-wise Parabolic Method) method of
Collela & Woodward which is third order accurate.

x_i

x_{i−1/2} x_{i+1/2}

linear extrapolation
minmod limited extrapolation

Figure 21. Spatial reconstruction of variables with slope limiters.

One describes now the most common slope limiters in decreasing order of numerical
diffusion :
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• minmod=sign(a1) max(0,min(|a1 |,sign(a1).a2))
• woodward=minmod(2∆Uj− 1

2
, 2∆Uj+ 1

2
, 1

2(Uj− 1
2
+ Uj+ 1

2
))

• van leer=2 max(a1×a2,0)
a1+a2+10−12

where ∆Uj− 1
2

= Uj − Uj−1. Fig. 21 shows an example of reconstruction in 1D using a
minmod limiter. Actually, the limitation on slopes is equivalent to have some artificial viscosity
introduced in classical finite difference schemes to avoid spurious oscillations (known as the
Gibbs phenomenon) in presence of steep gradients.

The monotonous property of such schemes impose at most first order accuracy (Godunov
theorem) when discontinuities like shocks are present. Finally, the reconstruction on
conservative variables or even better on primitive variables (to better control thermal pressure
like in our problem) before applying the Riemann solver on the edge values uR and uL gives
higher accuracy in the evaluation of the intercell fluxes.

§ 15. The issue of positivity

Most of the MHD numerical schemes such as the Roe one do not generally ensure the positivity
property which corresponds to the physical characteristic of variables such as pressure and
density (Einfeldt et al. 1991) to be positive. This is particularly critical for highly magnetized
media which can lead to negative pressure since the total density energy is dominated by the
magnetic energy. Thus one generally imposes a lower limit for pressure when its computation
from the total density energy give such unphysical values due to truncation errors. The HLL
scheme, and even better less diffusive HLLC, can handle such a positivity property by a correct
choice of the fastest speeds.

§ 16. Methods for multidimensional systems

All numerical schemes discussed so far are developed in one dimension since the Riemann
problem is solved in 1D for the propagation of waves normal to the grid interface in each
direction. To generalize them for multidimensional purposes, one can use the Strang operator
splitting which uses one dimensional methods for each coordinate direction. For a 2-D problem,
the general system is separated into 1-D problems with a source term S :

∂tU + ∂xFx = S/2, (16.49)

∂tU + ∂yFy = S/2. (16.50)
By defining solution operators for each direction Lx and Ly, one has Un+1 = LxLyUn or
Un+1 = LyLxUn but these splitting schemes are first order accurate in time. To have second
order accuracy, one has to interchange the order of operators such that U n+2 = LxLyLyLxUn.
However, this splitting method favours some directions for the propagation of waves and can
lead to numerical instabilities (Quirk 1994) when shockwaves are formed obliquely across the
grid. For instance, quantities such as ∂By

∂y involved in the induction equation in MHD are ignored
in 1D numerical schemes.

Another approach is the unsplit finite volume technique where all the flux contributions are
taken into account in a single step, but this is an area of ongoing research in the context of shock-
capturing numerical algorithms for MHD (Mignone et al. 2005, Gardiner & Stone 2005).
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§ 17. Discretization in axisymmetry

When a physical system owns a cylindrical symmetry like for a simplified model of an accretion
disc (neglecting possible non axisymmetric perturbations), all the variables with respect to the φ

direction are invariants and the equations simplify.
However, one has to be careful to the discretization of the integral terms in finite volume

methods, particularly the radial component of gradient operators and toroidal components of
tensors since surface edges normal to the phi component are misaligned by ∆φ and thus give
a radial contribution. Actually, the fluxes in the toroidal direction are null by definition of
axisymmetry but one has to consider projection of these toroidal fluxes components in the mean
radial direction er of a cell. For instance, let us consider the integral of the radial gradient of
pressure P over the control volume of a cell Vj :
∫

Vj
∇rPdV =

∫

S
PdS · er =

1
2 (Pi+1 + Pi)dSr,i+1 −

1
2 (Pi−1 + Pi)dSr,i−1 − Pj+1dSΦ,j+1∆

Φ

2

−PjdSΦ,j−1∆
Φ

2 .
(17.51)

Finally, as Vj = r∆ΦdSΦ and Pj = Pj+1 one has :
∫

Vj
∇rPdV = ΣiP̃dSr,i − V

Pj
r , (17.52)

and similarly, one finds that
∫

Vj
(∇× B)φdV = Σi(dSi × B̃i)φ − V Bz

r , (17.53)

where P̃, B̃i are averaged values obtained from the neighbouring cells and Pj, Bz are cell-centered
values. Thus, these geometrical terms introduce source terms in the equations.

§ 18. The ideal MHD equations

The usual ideal MHD equations written in conservative form are :

∂ρ

∂t +∇ · (ρv) = 0, (18.54)

∂ρv
∂t + ∇ · (ρvv − BB) + ∇(

B2

2 + P) = 0, (18.55)

∂B
∂t +∇ · (vB − Bv) = 0, (18.56)

∂E
∂t +∇ · ((E +

B2

2 + P)v − B(B · v)) = 0, (18.57)

where ρ is the plasma density, v the total velocity, B the magnetic field, P the thermal pressure
and

E =
P

γ − 1 + ρ
v2

2 +
B2

2 , (18.58)
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is the total density energy of the fluid. One can introduce Ptot for the total pressure, the sum of
the thermal pressure P and the magnetic pressure:

Ptot = P +
B · B

2 . (18.59)

To close the system, one considers here that the equation of state is that of a perfect gas, in
which case P = (γ − 1)ε where ε is the internal energy of the fluid.

The flux function for the first component is written in cylindrical coordinates as :

Fr =































ρvr
ρv2

r + Ptot − B2
r

ρvrvφ − BrBφ

ρvrvz − BrBz
0

vrBφ − Brvφ

vr Bz − Brvz
(E + Ptot)vr − Br(Brvr + Bφvφ + Bzvz)































. (18.60)

One also has contribution to the flux from geometrical source terms due to axisymmetry as
demonstrated in the last paragraph which is written as :

S =































0
(ρv2

φ + Ptot − B2
φ)/r

(−ρvφvr + BφBr)/r
0
0

(vrBφ − Brvφ)/r
0
0































. (18.61)

One can remark for instance the contribution due to the centrifugal force.
In general, one has to take into account physical dissipation terms which are not always

expressed like a conservative term such as resistivity. They are typically treated like source
terms. One also has to consider the divergence free constraint of the magnetic field ∇ · B = 0
which means that there are no magnetic monopoles.

§ 19. Numerical techniques to ensure the divergence-free property of the magnetic
field

The standard shock-capturing discretization methods do not ensure ∇ · B = 0 in multi-
dimensional MHD because the discrete divergence of the discrete curl operator is not exactly
zero in general. There are three main methods to deal with this problem, well discussed in Tóth
(2000) and presented below. One also finds codes which evolve directly the vector potential
defined as B = ∇× A which requires to write special numerical schemes where second order
derivatives are computed and thus the order of accuracy is reduced by one.
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§ 19.1. Powell source terms and diffusion

This method keeps the terms involving ∇ ·B in the equation since they are not numerically equal
to zero and appear like source terms :

∂ρv
∂t + ∇ · (ρvv − BB) +∇(

B2

2 + P) = −(∇ · B)B, (19.62)

∂B
∂t + ∇ · (vB − Bv) = −(∇ · B)v, (19.63)

∂E
∂t + ∇ · ((E +

B2

2 + P)v − B(B · v)) = −(∇ · B)B · v, (19.64)
The term in the momentum equation implies a magnetic force parallel to the magnetic field,

the term in the induction equation describes the advection of monopoles with the flow.
The MHD equations written like this are no longer conservative but these source terms

remain of the order of the truncation errors and Powell et al. (1999) have shown that these
terms can stabilize TVD numerical schemes. Moreover, these terms help to increase robustness
of methods with simplified Riemann solvers like TVDLF (Tóth & Odstril 1996). The drawback is
that the jump conditions across shocks can be incorrect.

This method is sufficient if |∇ · B| remains small with respect to other dynamical terms
during the time evolution, typically inferior to one percent. An improvement is to add a diffusion
term in the induction equation to avoid accumulation of monopoles at the boundaries of the
computational domain because of accretion for instance.

§ 19.2. Projection scheme

This method is a cleaning technique after each time step when the numerical scheme is
completed. It was initially proposed by Brackbill & Barnes (1980) and consists in projecting the
magnetic field B onto a vectorial subspace where the magnetic field B ′ is divergence free. We can
find a scalar potential Φ such that B = B′ + ∇Φ which physically does not modify the Lorentz
force. This is equivalent to solve the Poisson equation : ∆

2
Φ = ∇ · B. One can prove that this

new magnetic field corresponds to the smallest correction which removes the unphysical part of
the numerical solution. This elliptic equation can be solved by using an iterative solver and by
calculating the laplacian using the same discretized differential operators as calculating ∇ · B.
This calculation is a bit CPU time consuming till 30 % of the total computational time. One also
have to choose correctly the boundary conditions for Φ in accord with the boundary conditions
for B.

This correction will imply a modification of the magnetic energy and as the total energy
density is conserved since it is generally a conservative variable of a scheme, it will entail a
modification of the thermal pressure. For magnetically dominated region, one often prefers to
ensure thermal pressure conservation to avoid appearance of negative pressure. Thus, we will
modify the total energy density as en+1 = en + (∇Φ)2/2 −∇Φ · B.

§ 19.3. Constrained transport method

This method is based on a physical interpretation of the induction equation. By taking the
divergence of this latter equation, we obtain that the divergence of the magnetic field remains
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constant during the time evolution. Thus, it is sufficient to have initially a solution with a
divergence free field to ensure this property at further times. The common technique is to use
a staggered grid where the magnetic field is not calculated at the cell centers but at the cell
edges. The induction equation translates the circulation of the electromotive force along a cell
interface. Numerically, one estimates v × B at the cell corners and then using a finite difference
discretization for a cartesian grid, one has :

Bn+1
x i+ 1

2 ,j = Bn
x i+ 1

2 ,j + ∆t
(v × B)i+ 1

2 ,j+ 1
2
− (v × B)i+ 1

2 ,j− 1
2

∆y , (19.65)

and similar updates for the other components. Then, the divergence at time n+1 is :

(∇ · Bn+1)i,j =
Bn

x i+ 1
2 ,j − Bn

x i− 1
2 ,j

∆x +
Bn

y i,j+ 1
2
− Bn

y i,j− 1
2

∆y , (19.66)

and from Eq. 19.65, we can remark the perfect cancellation of the electromotive force terms and
thus that the divergence of B does not change. Thus, the accuracy reached by this method is
the round off errors of computers. It is useful to realize that numerically the divergence free
property will be satisfied for a particular discretization and consistent boundary conditions. In
finite volume methods, we have to use interpolation in time and space to calculate v × B terms
at the cell corners from the cell centers values.

§ 20. Boundary conditions

The resolution of equations in physics is always equivalent to solve what one calls an initial
value and boundary value problem i.e. besides having modelized the physical system by some
equations and choosing an initial condition for it, one has to specify conditions on variables at
the boundaries in time or/and space. There are different kind of boundary conditions : Dirichlet
boundary conditions when one puts values on variables themselves, Neumann boundary
conditions when one specifies values for the derivatives of these variables. In numerical work,
this is translated by imposing boundary conditions at the edges of the simulation box on
conservative variables or primitive ones to better control for instance the thermal pressure. To
prescribe boundary conditions, an extra layer of cells around the computational domain called
ghost cells is added where the variable values are updated at each time step. The width of this
ghost cell layer depends on the stencil of the scheme directly linked to the order of accuracy of
the discretized differential operators. It is usually equal to two cells as many numerical schemes
are second order accurate. It is very important to correctly define these boundary conditions
in order not to have bias in the numerical results. For instance, one often chooses what is
called outflow boundary conditions which corresponds to Dirichlet boundary conditions where
values in the ghost cells are just a copy of values at the edges of the computational domain for
easiness purposes. Although such a choice can be justified for supersonic flows in hydrodynamic
simulations since characteristics are directed out of the computational domain, in other cases, it
could destroy the initial equilibrium since it cancels the pressure force for instance. The general
way of implementing consistent boundary conditions is to control that only those waves whose
characteristics are directed outwards.



48 CHAPTER 2 – NUMERICAL MHD

2. The VAC code

For simulations presented in this thesis, we use the Versatile Advection Code (VAC). This code
was initiated by Gábor Tóth at the Astronomical Institute at Utrecht from November 8 1994. The
project was done in a collaboration with the FOM Institute for Plasma Physics, the Mathematics
department at Utrecht and the CWI at Amsterdam. In particular, Rony Keppens (FOM), Mikhail
Botchev (Mathematics Dept.), and Auke van der Ploeg (CWI) contributed significantly to the
development since 1996. The code has been extensively tested (Tóth & Odstril 1996) on standard
numerical tests for hydrodynamics and MHD modules. Now, a MPI version of this code exists
and very recently an hybrid block-AMR (Adaptive Mesh Refinement) version (van der Holst &
Keppens 2007), also in spherical coordinates is released allowing in the near future to carry out
very high resolution simulation of the star-disc interaction problem presented in this thesis.

§ 21. Description of the code

For a detailed presentation of the code, we advice the reader to see an introductory level
course given by Tóth called “Computational magnetohydrodynamics” in Porto in 1998. This
code is written using finite volume methods making it possible to treat correctly discontinuous
solutions of a physical problem like propagation of shocks. Flux limiters are used to avoid
spurious oscillations that would otherwise occur near shocks which represent discontinuities
in the solution domain. They ensure the Total Variation Diminishing (TVD) characteristic of a
scheme.

There are different equation modules implemented in VAC : the simple transport equation,
the Euler equations for compressible hydrodynamics with adiabatic or full energy equation
and the resistive MHD equations with isothermal or full energy equation. We can add extra
source terms by writing a subroutine in the vacusr module. The code is written in Fortran90
using the Loop Annotation SYntax (LASY) developed by Tóth (1997) making it possible to write
subroutines using a dimension independent notation. A perl script preprocessor is executed to
choose the physics module, the dimension of the problem, the numerical methods to compile,
the grid size and the name of the vacusr file where the initial, extra source terms and boundary
conditions are set up for the problem considered.

There are a series of predefined boundary conditions such as ’fixed’ (where we impose
the variable value), ’cont’ (copy of the variable value just inside the computational box
corresponding to Neumann condition), ’grad1’ (extrapolation of variables using the initial
gradient), ’symm’ and ’asymm’ for taking into account the symmetry or asymmetry of the
variables when one has an axis of symmetry such as the stellar rotation axis or the disc equatorial
plane. For instance, the toroidal magnetic field cancels within the disc midplane for a simulation
done in axisymmetry and thus one uses the ’asymm’ boundary condition for this component
whereas the radial and vertical components of the magnetic field are symmetric at this same
location. For our purpose, we use complex boundary conditions specially to treat the stellar
surface which we code up in the subroutine ’specialboundary’. We will describe our boundary
conditions in chapter 3.
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§ 22. TVD Lax Friedrichs scheme

In this thesis, we will present results of star-disc interaction simulations using the TVDLF scheme
which is second order accurate in time and space.

We explicit the different steps of the scheme as implemented in VAC. From the centered cell
values wCT of the grid, one calculates the values at the edges, both for a left value wLC and a right
one wRC using the upwind subroutine. This routine makes a linear extrapolation from cell center
to cell edge, using a slope estimate from the two adjacent cells. This is done with different slopes
limiters defined in the subroutine dwlimiter, in order to ensure the TVD property of the scheme.
Thus, the scheme has a stencil of 5 cells.

We solve the equations using cylindrical coordinates. However, the geometry of our problem
including the star is spherical. Thus, we use a generalized grid where the grid centers (r, z)
follow circles.

Thus, we need to do a change of coordinate frame to be in the local frame linked to the
cell normal directions using the rotatew subroutine in vacgrid.gencoord.t in order to calculate
correctly the flux balance for each cell. Next, we calculate the velocity components at each
cell edge for each side vLC and vRC (using getv in vacphys0.t) to estimate the transport fluxes
vLC ∗ wLC and vRC ∗ wRC. Then, the flux components fLC and fRC excluding the transport terms
are added using the subroutine getflux in vacphys.mhd0.t. We go back to the cylindrical frame
with the subroutine addflux rotate. The Lax-Friedrich scheme corresponds to an approximate
Riemann solver taking into account only the fastest characteristic speed. Thus, we add to the
calculated flux the following term − 1

2 cmax(wRC − wLC) which corresponds to a dissipative term
stabilizing the scheme. The update of the conservative variables is done using the subroutine
addflux which is written in the case of cartesian coordinates :

wi,new = wi,new − qdt
( fi+ 1

2
− fi− 1

2
)

dxidim
(22.67)

One finally adds the source terms such as gravity, viscosity or resistivity using the subroutine
addsource2 and the geometrical corrections due to curvature terms for non-cartesian grids using
the addgeometry subroutine. These latter terms are added in an unsplit way, i.e. we do not
separate them according to the direction considered.

We use a Hancock predictor during the half time step to make the spatial reconstruction
on variables at each cell edge using time centered values at ∆t

2 for the variables. This makes
it possible to better control numerical diffusion and makes the overall scheme second order
accurate in space and time for smooth solutions.

§ 23. Practical details of our simulations

§ 23.1. Resolution and grid

In order to correctly treat the physics of accretion within the disc and near the stellar surface, it
is necessary to have the best spatial resolution. Actually, it is really important to have enough
resolution within the disc to well assess the different torques or to have a good approximation
of the pressure gradient which play a main role to establish accretion columns as we will see
in chapter 4. The best option would be to use an AMR strategy but the code in the spherical
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coordinates was not avalaible at the beginning of this work. That is why we use a static radial
stretched spherical grid to enhance the resolution at the inner edge of the simulation box (see
Fig. 22). The stretch ratio is around 30 i.e. that the cell width at the inner edge is thirty times
smaller than the cell width at the outer edge. Thus, we have a better resolution than Romanova
et al. (2002) within the disc and funnel flow by a factor 2 since we used a smaller radial range
for the physical domain focusing on the disc inner parts and we double the resolution in θ. We
define a grid with near isotropic cells to avoid local anisotropic numerical diffusion such that we
have 100 uniform cells in the orthoradial direction and 180 points in the radial direction. We can
also notice that the radial numerical diffusion is really reduced in the inner parts of such a grid.

Figure 22. Typical grid used in simulations including the ghost cells layer. The resolution is 174 × 104 in the radial

and orthoradial directions respectively. The intersections in this plot correspond to the cell centers. We can notice the

symmetry of the rows at each side of the axis and the equator.

§ 23.2. Computational time considerations

To carry out simulations presented in the next chapters, we use local computational resources
from the Grenoble observatory (SCCI) with the Icare cluster and from the Leuven cluster (VIC).
Typically, we have nodes of quadri-processors Opteron at 2.4 GHz. Simulations done for this
thesis are mainly jobs launching on one node and lasting between one week and one month. For
instance, simulations in the propeller regime (B∗ = 476G) take 6 days using autoparallelization
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onto 4 processors to do 16 rotation periods at the disc inner edge. Simulations with weaker
stellar fields (B∗ = 141G) last one week to do 63 rotation periods at the disc inner edge using also
4 processors. This corresponds to nearly four months of physical time.

3. Review of previous numerical simulations of star-disc
interaction

Before presenting in the next chapter our own modelling of the star-disc interaction problem,
we now present an overview of the numerical work done in the last decade, highlighting the
different approaches and results found. First, we briefly present long term evolution of the star-
disc interaction by including the disc only as a boundary condition and then discuss 2.5 D and
3D simulation results of the full system solving the disc physics.

§ 24. Long term evolution without resolving the disc structure

These simulations are focused on the outflow formation. Fendt & Camenzind (1996) study
the collimation of an initially dipolar field into a jet due to the differential rotation using a
finite element code to calculate initially a force-free configuration. They consider a dipolar
magnetosphere with two initial conditions for the magnetic flux within the disc localized at the
edge of the simulation box : a disc wind type mainly focused at the disc inner edge or a constant
flux corresponding to a stellar field expelled from the disc. The simulations done in axisymmetry
with the ZEUS-3D code (Stone & Norman 1992) last several thousands of keplerian periods at
the disc inner edge. The resolution is typically 250 × 250 for a computational box till 40 R∗.
They consider the disc as a boundary condition by prescribing the mass inflow into the corona
in hydrostatic equilibrium. They solve the ideal MHD equations considering a polytropic law
with γ = 5/3. They choose an initially numerically force-free distorted dipole field in order
to be consistent with the inflow boundary condition in the disc which requires inclined enough
magnetic field line to support the launching of a disc wind as described by the Blandford & Payne
(1982) criterion. The stellar magnetic field is in equipartition with the disc thermal pressure at
the disc truncation radius. They find that the initial magnetic field topology is destroyed by
an expanding bubble of hot and low density gas towards the axis. This is due to the winding
up of the poloidal magnetic field by the differential rotation with a positive toroidal field for the
magnetic field lines anchored within the disc and a negative toroidal field for the stellar magnetic
field lines.

A disc wind is formed in the inner parts of the disc with injection velocity around 0.001vK,i
and terminal velocities reaching around half of the Keplerian speed. Actually, poloidal magnetic
acceleration has no effect since the flow is initially super-Alfvénic and this is a centrifugal
acceleration. For a rotating star, they find a transient high speed collimated flow towards the
axis similar to Goodson et al. (1997). But the feed-back from the disc is not considered here.
Fendt & Elstner (2000) go further with this work by prescribing a stellar wind with a constant
velocity initially sub-Alfvénic. The disc truncation radius is now located at the corotation radius.
The resulting opening angle of the stellar wind is between 30◦ and 55◦ depending on the mass
loading ratio between the disc and the stellar wind. These two regions are separated by a
neutral line with low density where numerical reconnection happens several times during the
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Figure 23. Series of snapshots at t=0,10,20,80,160 Ω
−1
K (r = 1) showing the density distribution and the poloidal

magnetic field lines (above) and the contours of the toroidal magnetic field (below) for a stellar outflow rate twice lower

than the disc one (from Fendt & Elsner 2000). The accretion disc midplane is the vertical axis and the normalized

spatial unit corresponds to 2 R∗. From an initially distorted dipolar field, the magnetic field for the stationary state

corresponds to a nearly spherical topology. One can remark the formation of several plasmoids in the current sheet

oriented at 45◦ with respect to the disc midplane and also knots within the axial jet.

simulation. Second, a transient axial jet is formed corresponding to the acceleration of the initial
coronal material by the expansion of the poloidal field with high velocity around 0.2-0.3 vK,i. The
opening of the magnetosphere here do not lead to the formation of an X wind as claimed by Shu
et al. (1994).

A stationary state is reached after 400 keplerian rotations at the disc inner edge with a
spherical outflow topology with two components and no collimation (see Fig. 23). The non
collimation of the stellar flow could be due to the lack of a sufficient poloidal current which
usually collimates a jet by the hoop stress because one has two opposite electric systems
separated by the neutral line. A proper disc magnetic field could support this collimation. No
dipolar accretion is observed for different reasons : the initial topology of the distorted magnetic
field lines and the position of the truncation radius located at the corotation radius. But the main
reason is due to the non treatment of the disc accretion physics as we will explain in chapter 4.

Yelenina et al (2006) study the magnetic field topology dependence as function of the disc
diffusivity treating also the disc as a boundary condition in the case of the propeller regime
(rt > rco). They consider a radial stretched spherical grid and implement a special boundary
condition to take into account consistently the surface disc resistivity by imposing the magnetic
flux time evolution and the velocity field using the Ohm’s law. They start from a pure dipole
magnetic field with B∗ = 300G and a differentially rotating magnetosphere and find periodical
ejections of plasmoids (corresponding to 10 Keplerian rotations at the disc inner edge) because
of the opening of the poloidal magnetic field. The periodicity increases with the disc resistivity
since the build up of the toroidal field is less efficient. Moreover, the plasmoid ejection occurs
further out from the star in this latter case as the poloidal field is no longer frozen and one has a
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magnetic flux diffusion outwards as described by Heyvaerts & Bardou (1996) but disc accretion
is not incorporated here.

§ 25. 2.5 D simulations with the dynamical evolution of the disc

Although treating the disc as a boundary condition is interesting in order to reach quickly a
stationary state for ejection, it is unavoidable to include the disc structure in the computational
domain to correctly describe this complex system. Actually, the accretion physics needs to be
resolved to understand the mechanism of disc truncation and polar accretion, and to understand
the transfer of angular momentum between the disc and the star via the magnetic field. The
drawback of simulations which resolve the disc is to overpass the first numerical transients due
to the chosen initial condition in order to be able to draw firm conclusions.

§ 25.1. Truncation of discs and formation of accretion columns

Miller & Stone (1997) carried out resistive MHD simulations with the Zeus code using a uniform
spherical grid with (NR, Nθ) = (100, 50) extended up to 4 stellar radii for a few Keplerian stellar
periods. They consider a thin cold and resistive disc embedded in a low density isothermal
magnetosphere with a contrast of density of 100. The magnitude of the resistivity is too small
(αm ≈ 0.001− 0.1 and uniform within the disc) to avoid strong advection of the poloidal magnetic
field with the accretion. Then, this unfavored field topology prevents matter from being lifted
up along the magnetospheric field. This effect is increased for a rotating star. Thus matter
accumulates at the inner edge and the ram pressure dominates at a certain moment because
of efficient angular momentum extraction within the disc due to the channel flow solution of
the Magneto Rotational Instability (MRI). As a result, even for strong stellar field (B∗ = 1kG) at
equipartition initially with the disc thermal pressure, they find equatorial accretion (see Fig. 24).
They also consider configurations where a parallel disc magnetic field is in equipartition with
the stellar field at the disc inner edge giving rise to an X point in the disc midplane. In those
cases as also in Hirose et al. (1997), they found polar accretion, since there is no more magnetic
tension effects preventing matter from being lifted up.

Kuker et al. (2003) study the star-disc interaction including an α type viscosity ( Ṁ ∼
10−7M�.yr−1) and diffusivity within the disc. They also take into account radiative energy
transport by a flux-limited diffusion approximation in order to have a stable accretion disc
for long term evolution. Their domain starts at 1.7 R∗. They consider a solar mass star with
R∗ = 3R� and P∗ = 5.6 days. They find a disruption of the disc only for strong stellar magnetic
field B∗ > 1 − 10kG. Actually, for B∗ = 100G, the truncation radius defined by equipartition
between thermal pressure and magnetic pressure is below the inner edge of the computational
domain as shown in chapter 4. Thus, they have too weak field ( B2

ρv2
Φ

≈ 10−4) with respect to the
accretion rate to avoid direct accretion from happening. For B∗ = 10kG, one has a truncated
disc at R = 10R∗ beyond the corotation radius with no accretion columns observed. With the
radiation transport switched on, the truncated radius is closer to the star at 8R∗ and one has a
cooler corona with T ∼ 5000K.

Contrary to the previous studies, Romanova et al. (2002) start from an equilibrium solution
with a differentially rotating corona at the same speed as the disc using a larger scale domain.
This is extended up to 1.47 a.u. but with the same resolution at the stellar surface as Miller
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Figure 24. Two types of simulation with different magnetic initial configuration with the resulting accretion process

used in Miller & Stone (1997). Above : A pure dipolar field (even strong) gives direct equatorial accretion due to

efficient angular momentum extraction within the disc by the MRI well visible with the kink on the magnetic field lines

in the disc. Below : A disc magnetic field is added with the same polarity as the stellar magnetic moment which gives

rise to an X point allowing polar accretion. Time unit corresponds to the Keplerian period at the stellar surface.

& Stone (1997) thanks to a radial stretched spherical grid ((NR , Nθ) = (150, 51)). Moreover,
they use a Roe type solver written directly with the vector potential field A (B = ∇ × A).
For the first time, one observes the formation of accretion columns for purely stellar dipolar
field without additional disc field. The initial condition includes a disc with an α type viscosity,
but it is not initially a standard accretion disc since density increases outwards with a pressure
gradient directed inwards, slightly super-keplerian as we can see on hydrodynamic simulations
with α = 0. The accretion is larger at the disc surface with respect to the disc midplane like we
will show in chapter 3. This explains the evolution of the magnetic topology, since because of
lack of disc diffusivity, all the magnetic flux is driven inwards, particularly in the case where
the disc inner edge starts initially from the corotation and r t << rco. Thus, the initial solution
is really disturbed since we have finally radial magnetic field lines (with a star-disc connection
focused on the disc inner edge) within the disc (see Fig. 25a) and the accretion rate is always
increasing because of the accumulation of the magnetic flux. The simulation is thus stopped
since the truncation radius goes inwards and lasts 50 rotation periods at the disc inner edge.
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The truncation radius is determined initially by the equipartition between the magnetic pressure
and the disc kinetic pressure and is well below the corotation. It disappears for B∗ < 200G
and typical accretion rate onto the star around 8.10−8 M�.yr−1, and one has direct equatorial
accretion. The stellar period is 9 days. The structure of the funnel flow itself is studied. Within
the accretion column, they found sub-Alfvénic but supersonic flows (v p/vA < 0.1 and ms ∼ 4)
and sub-keplerian rotation with small twisting of the poloidal magnetic field (Bφ/Bp < 0.3).
The force responsible for the lifting-up of matter is the thermal pressure and then gravity causes
acceleration of matter till near free-fall speed. The magnetic force has no dynamic effect contrary
to the Li & Wilson (1999) predictions.

§ 25.2. Time evolution of the magnetic topology and angular momentum balance

Romanova et al. (2002) observe an opening of the magnetic field lines because of differential
rotation at large distance but not near the star because of relatively high coronal density which
prevents the opening to occur. The spinning-down of the star is mainly due to the twist of
the opened field lines connected to the star, similar to a magnetic tower effect. Thus, there is a
numerical bias since the corona has a heavy density which amplifies the braking torque. Since the
disc structure is highly perturbed and fairly thick, one can wonder if the funnel flow formation
and its evolution in time in relation with the global angular momentum balance is influenced by
this specific initial disc structure and resulting magnetic flux distribution. We will discuss this
point in chapters 4 and 5.

Long et al. (2005) use the same initial condition as Romanova et al. (2002) to study the
existence of a disc-locking state i.e. a given configuration with B∗, Ω∗, Ṁ where the angular
momentum brought by accretion and the magnetic torque within the funnel is exactly balanced
by magnetic braking torques in order to have a star which is locked at a constant rotation rate.
The angular momentum due to accretion is always negligible with respect to one stored by the
magnetic field. Thus, they find a solution where the global magnetic torque is nul on average at
the stellar surface over 200 rotation periods at the disc inner edge. This corresponds to rco ∼ 5R∗
i.e. P∗ ∼ 4.5 days for B∗ = 2kG and Ṁ ∼ 2.2 × 10−8 M�.yr−1. The truncation radius is then
rt ∼ 3.6 − 3.9R∗. For a stronger field B∗ = 10kG and a coarser grid (NR, Nθ) = (91, 31),
they find a different locked state with Rco ∼ 9.2R∗ i.e. P∗ ∼ 10.4 days and rt ∼ 6.2R∗ for
Ṁ ∼ 3.6 × 10−8 M�.yr−1. In all cases, they find rt/rco ∼ 0.67 − 0.78. Outside this locked
state when rt/rco < 0.67, the spin-up of the star is reduced when the stellar magnetic field
increases or viscosity decreases. But there is still the same bias than previously with a perturbed
magnetic structure due to ideal MHD conditions with a closed magnetosphere just at the disc
inner edge (see Fig. 25a). With this restricted closed magnetosphere, the braking of the star,
which counteracts the accelerating magnetic torque within the funnel, comes from the opened
field lines anchored within the star and is not properly a “disc-locking” state in the Ghosh &
Lamb (1979) sense but instead a kind of stellar wind as proposed by Matt & Pudritz (2005). The
significant braking obtained here is due to the choice of the initial condition with a corona not
magnetically dominated and the result is model dependent. The case with stronger stellar field
B∗ = 10kG and lower coronal density shows that the braking by the magnetic tower is really
reduced and negligible and the dominant braking torque comes from the stretched radial field
lines connected to the star which are partly embedded within the disc. A striking fact is that
the change of sign for the angular momentum transport is below rco as if the star spins quicker
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Figure 25. a- Time evolution of an ideal MHD simulation with the setup defined in Romanova et al. (2002) including

a viscous disc (αν = 0.02) and Rco = 1.7 (from Long et al. 2005). b-Angular momentum fluxes brought by matter fm
and by the magnetic field fB. The reversal of sign of the angular momentum flux transported by the magnetic field is

well below the corotation at r ∼ 1.2.

than initially prescribed in the boundary conditions (see Fig. 25b). This probably underlines the
difficulty to correctly compute the magnetic stresses using a simple outflow boundary condition
for Bφ.

Another more general remark is that even though simulations found a star with a locked
rotation rate, extrapolation of simulations results on longer timescales have to include the spin
up of the star due to contraction (see Chapter 1 and e.g. Bouvier et al. 2007) and thus it is
still necessary to find a more efficient way to extract angular momentum, for instance by X
winds or reconnection X-winds as discussed in Chapter 1. In other words, to really have a
disc-locking state, it is necessary to have a global magnetic braking in simulations to balance
the contraction process on longer timescales and not only a global torque nul on average on
dynamical timescales.

The initial condition of Kuker et al. (2003) entails the opening of the magnetic field in the
outer parts (R > 8R∗) with ejection at 45◦ at an efficiency around 10 %. Actually, the outflow
boundary conditions near the star causes a Bondi type accretion with accumulation of matter
around the star and vertical compression of the magnetosphere. The disc resistivity is not
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Figure 26. Angular momentum fluxes brought by matter Nm and by the magnetic field N f in the propeller regime (from

Romanova et al. (2005)).

sufficient to prevent the poloidal field from opening and finally, the disc and the star are no
longer connected. Thus, stellar braking can only come from the opened field lines connected to
the star, but the accretion torque still dominates and the star is therefore spun up.

§ 25.3. Ejection processes resulting from the star-disc interaction

Romanova et al. (2004a,2005), Ustyugova et al. (2006) investigate the case of the propeller regime
where the corotation radius is smaller than the truncation radius (rco < rt). The star rotates
between 58 % and 82% of the breakup speed. The simulations last 2000 stellar rotation periods
but the resolution is lower than previously (only 30 points for the angular direction). Now, a sub-
Keplerian accretion disc with both viscosity and resistivity is used with typically αm = αv = 0.2
prescription as defined in chapter 3. The simulation lasts 2500 stellar rotation periods which is
really huge and lets us see many oscillations of the disc truncation radius with periodic opening
of the magnetosphere and linked ejections. The period of oscillations increases with the stellar
magnetic moment and rotation rate. There are both a vertical expansion of the magnetosphere
with a magnetic tower configuration and a radial expansion of it. Then, there are two kinds of
configurations according to the amount of disc dissipation at the disc inner edge. In the case
of weak disc dissipation (αv = αm ∼ 0.02) like in Romanova et al. (2004), the magnetosphere
does not rotate rigidly and tends to the disc Keplerian speed at r t. Thus, there is no strong
centrifugal outflow as we can expect for a solid rotation of the magnetosphere . An elongated
transient funnel flow can therefore be formed by accumulation of mass at the disc inner edge
due to viscosity and matter is stacked near the magnetic tower till the ram pressure is sufficient
to produce reconnection and entails episodic accretion onto the closed magnetosphere. In the
case of higher disc dissipation (αm = αv = 0.2), disc material diffuses in an easier way through
the magnetosphere and can acquire angular momentum from the super-Keplerian rigid rotation
and then is expelled in outflows by the centrifugal force.

Angular momentum is extracted from the star both by the magnetic tower wind and by the
ejection along the neutral line (see Fig. 26). The rate of spin down increases as the accretion
rate increases, which is really different from the non propeller regime. A parameter space
study shows that strong outflows reaching escape velocities are only found for sufficiently high
viscous disc with αv > 0.1. Ejection happens mainly along the magnetic neutral line and thus is
centrifugally and thermally driven. As the viscous heating seems to be permitted contrary to our
simulations in chapter 5, it could enhance thermal pressure at the disc surface. Besides, higher
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viscosity provides a further penetration into the magnetosphere and thus a greater centrifugal
support for outflows. The ejection efficiency also increases with the stellar magnetic strength
and rotation rate. But too high disc diffusivity restricts it since the angular momentum transfer
between the disc material and the magnetospheric field is reduced in that case.

Hayashi et al. (1996) start from an unstable initial condition with a non rotating star and
corona which maximizes the magnetic torques. They have a non viscous and non resistive
Keplerian disc but include an anomalous resistivity when the current exceeds a fixed initial
threshold (they impose the reconnection rate by this way). They only study (because of too
short computational time, lower than a keplerian period) the expansion of the poloidal magnetic
field predicted by Lovelace et al. (1995) and the ejection of a first low density plasmoid at small
scale (< 0.1 au) but with high resolution (NR, Nθ) = (300X360).

Goodson et al. (1999) go on with this study on a larger scale (till 26 a.u. to study the outflow
formation) with high resolution (0.1R�) near the star and longer term evolution (130 days). They
take into account a rotating (P∗ = 1.8days) solar mass star with R∗ = 1.5R� and B∗ = 500G.
They consider a viscous (αν ∼ 0.2(r/1a.u.)−1.5 or Ṁ = 10−7M�.yr−1 close to the star) and highly
conductive disc truncated at 8.5R� (uniform conductivity) beyond the corotation rco = 6.3R�
corresponding to a propeller regime. The disc is rather thick (h/r ∼ 0.3). They observe
periodic cycles of accretion-ejection lasting 25 days linked to reconnection events because of
huge viscosities within the disc (ν ∼ 5.1016cm2s−1 at 10R� ten times greater than resistivity) and
diffusivity in the corona enhancing reconnection events. A two-component outflow is formed
from the inflation of the magnetic field and is sustained through reconnection events and the
condition that there is accretion between reconnections to feed the jet i.e. one needs to be below
corotation. The plasmoids separate the internal collimated jet from the disc wind component.
Contrary to a steady state model like Ghosh & Lamb (1979), angular momentum is extracted
from the disc beyond the corotation thanks to the disc wind. There is a global braking torque on
the star due to the stellar jet with an average spinning down time of 2.5.105 yr consistent with
observations of jets lifetime (Reipurth, Bally & Devine 1997). This torque is well reduced at each
reconnection event. Increasing the resistivity gives shorter cycles and smaller truncation radius.
Hayashi et al. (1996) and Goodson et al. (1999) use a thin corona with a rapid drop in density
as R−4 which enhances the opening of the magnetic field lines because of high Alfvén speeds
decreasing slowly as r−1 as discussed in Romanova et al. (2002).

von Rekowski & Brandenburg (2004) consider also a proper disc magnetic field including
dynamo effects within the disc in the anti-parallel direction with respect to the stellar field. They
found that MHD outflows can be formed in this configuration and accretion is really unsteady
but periodic as in Goodson et al. (1999). Angular momentum exchange is really complex
with some part of the star which can be spun up whereas other parts can undergo braking.
von Rekowski & Brandenburg (2006) including also a stellar dynamo with complex multipolar
components show that high stellar magnetic fields can be reached till 750G. In this case, accretion
occurs mainly at low latitudes and is no longer quasi periodic. But the main drawback of their
simulation is that they do not ensure the mass conservation (a density threshold is fixed) in the
disc and thus accretion processes are not correctly controlled.
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Figure 27. Topology of the funnel flow accretion as function of misalignment angle θ and the corresponding hot spot

position at the stellar surface. Simulation from Romanova et al. (2004b).

§ 26. 3D simulations

3D simulations have been recently performed by the group of Romanova (Romanova et al. 2003,
2004b, Romanova et al. 2006) for a tilted dipole and more complex stellar field with multipolar
components (Long et al. 2007). These simulations open the possibility to really compare theory
versus observations thanks to the introduction of inclined magnetic field with respect to the
stellar rotation axis which makes it possible to introduce some variability as one really observes
(Bouvier et al. 2003,2006). Synthetic spectra from these simulations can be extracted (Kurosawa
et al. 2006, 2008) which provides a theoretical background to interpret complex features in high
resolution spectra.

§ 26.1. Accretion columns and hot spots

3D simulations by the Romanova group use a special ideal MHD code solving the equations
in the stellar rotating frame and a splitting strategy for the magnetic field. A specific “cubed-
sphere” grid developed by Koldoba et al. (2002b) is defined corresponding to nearly the same
spatial extension as in 2D (extended up to 45R∗) with a resolution of (NR, Nθ , Nφ) = (70, 58, 119).
Disc viscosity initially ignored in these simulations has been incorporated in Romanova et al.
(2004b) and Long et al. (2007) but no mass feeding at the outer edge is allowed which is not
crucial for the timescales around ten rotation periods at the disc inner edge reached till now.

For small misalignment angles of the magnetic axis with respect to the rotation one (θ < 30◦),
Romanova et al. (2003) observes two streams of accretion reaching the stellar surface at high
latitude. At higher misalignment angles (30◦ < θ < 60◦), the accretion splits into four streams
(see Fig. 27). At even larger ones, one has mainly direct accretion onto the magnetic poles. One
obtains similar accretion truncation radii as in 2D for small misalignment (θ < 30◦) but the disc
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is warped, specially in the direction of the remote magnetic pole. The magnetospheric accretion
shape depends on the density since large densities give narrow streams while lower ones give
much wider accretion flows.

Figure 28. Light curves as function of the inclination angle for a configuration with a misalignment angle θ = 45◦.

Bottom : the energy flux distribution in the hot spots are shown at the stellar surface for different phases of a rotation

period. Simulation from Romanova et al. (2004b).

Figure 29. Fraction of the star f covered by hot spots as function of accretion rate Ṁ and density levels ρ in the hot

spots. The reference values are Ṁ0 = 1.9 × 10−7M�yr−1 and ρ0 = 4.9 × 10−12gcm−3. Simulation from Romanova

et al. (2004b).
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The different position and shapes of the hot spots due to these different geometries (see Fig.
28) give rise to a wide range of variabilities for instance in the deduced light curves. Finally, the
filling factor due to hot spots is found to increase with the disc accretion rate and the disc density
(see Fig. 29). These filling factors are consistent with observations (see chapter 1).

In the case of pure quadrupolar field inclined with respect to the rotation axis, the accretion
flow arrives at the magnetic equator belt but is not axisymmetric. In the case of a mixed
and similar magnitude dipole/quadrupole magnetic components inclined with respect to the
rotation axis, the accretion flow is more complex with still accretion within the magnetic belt but
this latter has moved towards the lower magnetized pole due to the quadrupolar component.
In high inclined configurations, matter can also accrete towards the magnetic poles. Otherwise,
the hot spots are more brighter with a dominant dipole field since matter is accreted further out
along the magnetosphere.

§ 26.2. Other sources of variability such as the Rayleigh-Taylor instability

For small inclination angle (θ < 30◦) and including some disc viscosity in 3D simulations,
Kulkarni & Romanova (2007) observe direct accretion onto the stellar equator with thin tongues
of matter which cross the closed magnetosphere in dynamical timescale (see Fig. 30). Near the
star, matter follows the magnetic field lines forming “miniature funnel-like flows”. Accretion of
matter within a tongue conserves its angular momentum contrary to material within the funnel
flow. The number of tongues varies between 2 and 7 and is highly time dependent introducing
high variability with no clear periodicity in the light curves. This instability is triggered for
sufficient amount of viscosity (α > 0.04) which brings much matter at the disc inner edge and
thus enhances its accumulation. This behaviour is a characteristic of magnetic Rayleigh-Taylor
instability.

For higher inclination, the instability is no longer present because funnel flow formation is
energetically more favorable.

Figure 30. (a) Density distribution in the equatorial plane showing penetration of tongues of matter through

magnetosphere in the presence of disc viscosity with αm = 0.1. (b) Contours of the velocity profile within the funnel

flows and tongues for a constant density surface (from Kulkarni & Romanova 2007).
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In this chapter, after having checked the relevance of using MHD for describing our problem,
we explicit how we modelize the accretion disc including both viscosity and diffusivity. Next,
we present how we treat the star-disc interaction by imposing specific boundary conditions at
the inner edge of the simulation box to mimic the stellar magnetosphere. We further assume
axisymmetry and use a splitting strategy for the magnetic field to ensure accurate magnetic force
calculations.

1. The validity of MHD in this context

The MHD formalism treats the global interplay between a conductive fluid and the embedded
electromagnetic field. The validity of the fluid approach needs enough particle density at the
Debye scale and a negligible velocity drift between the species (e.g. ions and their orbiting
electrons) which constitute the plasma, making it possible to consider the plasma as a single
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fluid. It is also necessary to have a sufficient ionization rate to have a coupling with magnetic
fields.

In a thin Keplerian accretion disc, vertical hydrostatic equilibrium gives a thermal pressure
equal to P = ρΩ

2
Kh2 from which one can deduce the midplane temperature distribution T ∼

mi
kB

Ω
2
Kh2 = 106 M∗

M�
r

0.1a.u. ε
2K where ε = h

r . For ε = 0.05, one has T=2500 K at r=0.1 a.u. which is
well above the dust sublimation temperature and this indicates that the inner parts of discs are
dominated by gas. Then, one can deduce the mean plasma density n by assuming a constant
accretion rate and typical radial velocities around the sound speed since the inner part of the
disc is controlled by the magnetic field (see chapter 4) hence : Ṁ = 4πrnm+

Hcsh where cs = ΩKh
and thus :
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The ratio between the Debye length λD =
√

ε0kBT
ne2 characterizing the range of the Coulomb

electrostatic interaction in the plasma and the scale height of the disc h at r=0.1 a.u. is then
equal to λD

h = 9.8 × 10−7/hm = 1.3 × 10−15. Thus, the plasma is globally neutral. Moreover, one
has nλ3

D � 1 which validates the fluid approach.
One can now estimate the drift velocity |ue − ui| between ions and electrons from the typical

current density J0 throughout the plasma and compare it with the typical Alfvén velocity v A :
|ue − ui|

vA
=

J0
neqevA

=
B0

neqeµ0hvA
=

r0
h , (26.69)

where r0 = c
ωP

is the ion Larmor radius and ωP =
√

ne2
meε0

is the plasma frequency. Typically,
r0 = 1.6× 10−3m and thus, the drift is totally negligible and the MHD model which is a one fluid
treatment is sufficient.

If one now considers the physical property of a stellar magnetosphere, for a mean density
of ne = 107m−3 and T ∼ 106K, one finds λD ∼ 20m which is still small with respect to the
stellar radius. Hence, the use of a continuous fluid model even in this dilute medium is still
appropriate.

2. The accretion disc model

Accretion discs around YSO have typically a broad radial range extended from a few stellar radii
till several hundreds a.u. (see millimetric observations of CO molecular lines e.g. by Dutrey at
al. 1996). The stellar magnetic field decreases quickly with distance and since we want to study
the magnetic influence of the star onto the circumstellar disc, we focus on the inner parts of the
disc below 1 au, which also allows us not to waste computational time.

§ 27. Design of an equilibrium initial condition

The atmosphere around the accretion disc is called here ’corona’. In reality, there is a sharp
transition between the accretion disc and the surrounding medium, but it is necessary not to
have too low density for computational reasons. Thus, we define a low density corona with
enough density contrast with respect to the disc (typically > 100) which is in pressure equilibrium
with the disc. This implies for an isothermal equation of state a hot corona (T ∼ 106K). We can
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argue that this corona is heated by the radiation field of the interstellar medium and(or) the star,
or by reconnection events in the magnetosphere. But it is a mere bias imposed by simulations
forbidding direct use of them for computing radiative transfer.

The idea is to find a solution for a disc in equilibrium with the atmosphere. In order to limit
the numerical transient because of the strong stellar field near the stellar surface, one needs to
truncate the disc before it reaches the stellar surface. To ensure pressure equilibrium with the
corona at the disc inner edge, there are different strategies. One can adjust the corona pressure
while ensuring enough density contrast between disc and corona. One always choose a disc
pressure decreasing like r −5

2 compatible with stationary Keplerian accretion disc models and
temperature law decreasing outwards like r−1 which gives a constant opening angle for the disc.
The first initial condition we construct takes into account an isothermal corona. In that case, one
can always find a truncation radius but the density towards the star increases too quickly and it
becomes difficult to follow correctly the accreting material onto the star (see e.g. Bessolaz et al.
2006). The advantage of high densities at the stellar surface is to limit the drop of the time step
in computations. Thus, we finally choose an adiabatic corona with the same polytropic index as
the disc but in this case, we can not ensure pressure equilibrium at the inner edge since disc and
corona pressures have the same dependency on r. However, the deformation of the dipolar field
quickly balances the jump in pressure due to truncation. In these solutions, one imposes a non
rotating corona which implies an initial shear at the disc-corona transition. We detail this initial
condition in chapter 4 and use it for the simulations presented in chapters 4 and 5.

The interesting method of Romanova et al. (2002) is to find a corona which rotates at the
same speed as the disc in order to avoid transients and at the star speed below the truncation
radius by balancing the centrifugal force, pressure and gravity assuming an isothermal equation
of state. However, this gives a disc structure where the density increases outwards, a pressure
gradient directed inwards which demands a slightly super-Keplerian rotation and a constant
sound speed within it. This results in large accretion rate considering α type viscosity even in
the disc midplane as shown in this chapter. Moreover, the disc is pretty thick which could be a
bias making easier polar accretion and we will discuss this in chapters 4 and 5.

We find it is possible to construct a solution where one can prescribe a differential rotation
along magnetic field lines to avoid the initial shear while conserving a standard model for the
accretion disc. We impose that a magnetic field line rooted inside the disc rotates with the same
Keplerian speed as the footpoint. Initially, we consider a purely dipole field. Each dipolar
magnetic field line is described by R = R0sin2θ in spherical coordinates and hence r = r0sin3θ

in cylindrical coordinates where r0 identifies the magnetic field line whose footpoint is at r0 in
the disc midplane. The rotation law within the disc at r0 is then prescribed to be vd =

√

GM∗
r3

0
.

By replacing r0 by the equation of a dipolar magnetic field line, one obtains the rotation law
throughout the domain : vd =

√

GM∗r8

R9 using sinθ = r
R . We then make a correction on density

in order to balance gravitational and centrifugal forces perpendicular to the magnetic surfaces.
Below the disc truncation radius, the corona turns either with the stellar angular velocity or with
a smoother profile till the stellar rotation profile. We do not present simulations using this last
setup in this thesis.
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§ 28. Temperature in simulations

In our work, we do not solve radiative transfer equilibrium to find the temperature distribution.
We just assume that any heating source term within the disc like viscous or ohmic ones are
directly radiated by removing the appropriate terms in the equations as discussed further in
this chapter. Thus, we treat our disc as an optically thin medium by assuming a cooling term
function exactly balancing the heating. This is the crudest but simplest way to avoid disc thermal
instabilities to develop in long term simulations because of accumulation of heating. Actually,
one expects that for the temperature and density distributions considered, one has an optically
thick medium where it is crucial to choose the correct opacity regime. The weak point is that we
hope that the dynamical behaviour is not too dependent on the radiative processes which is not
obvious but commonly accepted as a first step towards more realistic simulations.

To interpret observations, models assume an optically thick medium which radiates the
viscous energy release like a blackbody at each distance and gives a typical effective temperature
distribution T(r) ∝ r− 3

4 . To reproduce the flat SED in mid-IR observed in T Tauri disc, one needs
to take into account the stellar radiation field which heats a flared disc surface and dominates
in the outer parts of the disc. All the observational data refers to surface temperature because
of the medium opacity. The vertical hydrostatic equilibrium and the disc thickness imposes the
midplane temperature which is the only quantity we control in our model. For computational
reasons, we can not choose a too small aspect ratio. We fix ε = 0.1 which gives an equatorial
temperature at the disc inner edge a bit hot, namely 104K.

§ 29. The issue of the viscous torque

It is really important to have a correct description of an accretion flow within the disc far from
the magnetized central object in order to treat in a next step the interaction with it. Besides,
it is necessary to have accretion in the propeller configuration where the magnetic field has a
dynamical effect beyond the corotation radius, accelerating matter.

Astrophysical accretion discs are powered by the release of gravitational potential energy as
gas spirals down onto the central object. The dynamics and evolution of accretion discs depend
upon how angular momentum is transported outwards from one fluid element to another. In
astrophysical fluids orbiting around objects such as stars or compact objects, we indirectly detect
accretion flow from continuum emitting spectra in IR for YSO, in X rays for X-ray binaries.
We deduce from this radiation estimates for accretion rates which are enormous with respect
to what is expected from classical molecular viscosity calculated from local properties of the
plasma. The Reynolds number inferred from observations reaches Re ∼ 1015 which shows
an unavoidable turbulent origin for this efficient transport. However, many theoretical studies
have tried to understand which physical processes can trigger this turbulence with not yet a
complete understanding. We sum up here the main results. Firstly, people have tried to use
local hydrodynamic processes. The main point is that Keplerian flows are linearly stable with
respect to rotation (Rayleigh criterion : d

dr ((Ωr2)2) > 0). Convection instability triggered by the
energy release in the midplane gives transport of the angular momentum in the wrong direction
(inwards) with too small efficiency (α ≈ 10−4, Stone & Balbus 1996). Recently, Lesur & Longaretti
(2005) using shearing box simulations have shown that non linear hydrodynamic instability can
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only reach at best α ≈ 10−5. In the case the plasma is sufficiently conducting, the presence of a
weak magnetic field (β ≥ 1) rapidly generates magnetohydrodynamical turbulence via a linear
instability (Velikhov 1959, Balbus & Hawley 1991). Different α values were obtained for this MRI
instability from 10−3 till 0.2 depending on the field topology. The largest values are obtained with
a net flux of the poloidal magnetic field whereas the lowest are found with purely toroidal field
(King et al. 2007). Although the MRI instability seems to saturate near equipartition, stability
studies in the cylindrical limit (variable profiles depending only on radial coordinates) also
show overstability in this parameter range when there is a dominating toroidal field ( Bφ

Bp
= 10,

see Blokland et al. 2005). Recently, Lesur & Longaretti (2007) shows a correlation between
the transport efficiency and the magnetic Prandtl number Pm (defined from the microscopic
viscosity and resistivity values explicitly introduced in their simulations) and reach α ∼ 1 for
Prm ∼ 10.

In any case, all these numerical studies locally calculate the α parameter from second order
perturbations of the velocity flow < δvp.δvφ > and the magnetic field < δBp.δBφ > but it still
lacks consistent parametric models to include the turbulence behaviour into global simulations.
That is why global simulations of astrophysical objects still need to use a pragmatic approach
to take into account dissipative physical processes like viscosity or resistivity by including
ad hoc macroscopic parameters while ensuring to diminish the erratic influence of numerical
dissipation. For instance, to include astrophysical magnitude of viscosity, one assumes that
the hydrodynamic stress tensor description is still valid and one prescribes an eddy viscosity
ν = αcsh (Shakura & Sunyaev 1973) where α gives the magnitude of viscosity, cs is the local disc
sound speed and h is the disc scale height. This eddy viscosity scales the size of the turbulent
motion with respect to its maximum extent within the disc and to its non supersonic velocity
(otherwise, there is strong dissipation through shocks). This definition is equivalent to the initial
Shakura-Sunyaev (1973) prescription τrφ = −αP in the case of negligible radiative pressure
compared to the thermal one which is always the case for YSO.

§ 30. On the α disc prescription in cylindrical coordinates

The hydrodynamic viscous stress tensor for a newtonian fluid (i.e. the shear stress is proportional
to the velocity gradients) with no bulk viscosity is written (cf Landau & Lifchitz 1971) :

τij = ρν(∂iVj + ∂jVi −
2
3δij∂kVk) (30.70)

where ∂i = ∂
∂Xi

is the covariant derivative with respect to the Xi coordinate. One considers
a cylindrical coordinate system (r,φ,z) and axisymmetry around the rotation axis z. One
particularly has ∂vi

∂φ = 0 but the covariant derivative ∂φvr = −vφ is not zero since the vector
basis in cylindrical coordinates has not fixed coordinates. The dominant part of the viscous
tensor in thin accretion discs ( h

r << 1) is τrφ which corresponds to the transfer of radial angular
momentum due to the angular velocity shear. We have : τrφ = ρν( 1

r
∂vr
∂φ − vφ

r +
∂vφ

∂r ) = ρνr ∂
∂r Ω.

Stationary accretion imposes the radial stratification of density : ρ = ρ0(
r
r0

)−
3
2 for a constant

aspect ratio ε = h
r . Thus, for stationary Keplerian accretion discs assuming Shakura-Sunyaev α

prescription, one deduces : div(τrφ) = −3
2r2

d
dr (ρνr2

Ω) > 0 since ρν ∝ r−1. Therefore, one obtains
an accelerating torque in the disc midplane in contradiction with the viscous dissipative nature
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of this torque. Different disc scale height h ∝ rδ with δ > 0 leads to the same conclusion. But if
one integrates vertically the equations to have characteristics of the mean flow, one recovers
coherency like in the works of Shakura & Sunyaev (1973) or Lynden-Bell & Pringle (1974) :
∫ h

0 div(τrφ)dz = −3
2r2

∂
∂r (

Ṁa
4πRe r2

Ω) = −3
4r

Ṁa
πRe Ω < 0 because Ṁa ≈ 4πrhρur ≈ 4πρhνRe. The reason

for this discrepancy comes from the constraint of assuming constant accretion rate in 1D models.
From a general point of view, one can write the conservation equation of angular momentum

to deduce the radial velocity in the equatorial plane by using the general α prescription τrφ =

−αP :

ρ
ur
r

d(Ωr2)

dr =
1
r2

d(r2αP)

dr . (30.71)

One then deduces :

ur = − 2αP
ρΩKr

(

∂lnP
∂lnr + 2

)

= −2αεcs

(

∂lnP
∂lnr + 2

)

, (30.72)

by considering an isothermal disc P = ρc2
s . Thus, for standard accretion discs with ∂lnP

∂lnr = − 5
2 ,

one always has outflow in the midplane but for 1D models, this constraint becomes ur =

−2αεcs
(

∂lnP
∂lnr + 3

)

obtaining inflow in the midplane with ms = − ur
cs

= αε.
One can notice that in spherical coordinates, one always has a viscous negative viscous

torque div(τrφ) = −1
2R3

∂
∂R (ρνR3

Ωsin(θ)) < 0 due to the different expression of the divergence
operator. Thus, this caveat shows that one has to be cautious when combining the standard disc
profiles with the partial viscous torque expression using the α prescription. However, we will
see that one can recover coherency to describe 2D accretion flow in cylindrical coordinates by
considering other components in the stress tensor.

Some numerical works show this phenomenon of backflow in the equatorial plane (Urpin
1984, Rosczyska & al. 1994, Kley & Lin 1992). An interesting point is that for high viscosity values
and taking into account other components of the viscous stress tensor, one can obtain a global
accretion flow throughout the disc because this enables a sufficient coupling between the radial
and vertical transfer of angular momentum via the τzφ components thanks to vertical angular
velocity shear and sufficiently steep vertical viscosity profiles. For instance, Kley & Lin (1992)
find such a possibility by using α > 0.1 for an isothermal equation of state but they also take into
account radiation energy transport with power-law Kramers opacities which slightly modifies
the critical viscosity value. Otherwise, Kluzniak & Kita (2000) find α > 0.7 for a polytropic
equation of state.

§ 31. The viscous accretion disc in Romanova et al. (2002)

As an example, we revisit the initial condition used in Romanova et al. (2002), from the point
of view of the α prescription chosen and its implied accretion rate. We do the same analysis
as the latter paragraph with the alpha prescription for the kinematic viscosity ν = αTd/ΩK
where Td = Td0vK0 and Td0 = 0.01. One finds the following expression for the radial velocity
within the disc considering the initial density (see Fig. 31), pressure and toroidal velocity profiles
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Figure 31. Density distribution in normalized units corresponding to the initial condition defined in Romanova et al.

2002 with a truncation radius at r=1.

(Ω = kc
GM
r3 where kc = 1.01) used in Romanova et al. (2002) :

ur = −6ν

r +
3ν

rTd0

(

r3

(r2 + z2)
3
2
− kc

)

(31.73)

Thus, one has a great inflow velocity in the disc midplane ur = − 9ν
r coherent with a disc pressure

gradient directed inwards for this initial condition. Moreover, the radial velocity increases in the
upper parts of the disc (see Fig. 32).

Although this disc solution is not self-similar, one can have an idea of the disc accretion
rate by using the classical expression Ṁ = −4πr

∫

ρurdz. One obtains in this case a huge
accretion rate when one goes outwards (see Fig. 33). Note that this shows that our simple
analytical estimate does not give a stationary model. In simulations, there is a reconstruction
of the disc structure from the initial condition towards a much common viscous accretion disc.
It is necessary to take into account the vertical component of the stress tensor to construct
such an analytical model. However, one already recovers the order of magnitude given by
Romanova et al. (2002) with Ṁa ∼ 0.05 for α = 0.01 at the disc inner edge corresponding to
Ṁa ∼ 1.4 × 10−8 M�yr−1 which is really high for such an α value.
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Figure 32. Vertical profile of the radial velocity for α = 0.01 at r=2 from Eq. (31.73). One has strong inflow throughout

the disc. The sonic Mach number is really big reaching ms = 0.02 in the disc midplane with respect to standard disc

model where one expects ms = αε ∼ 0.001.

Figure 33. Accretion rate deduced from Fig. 32 using the initial condition of Romanova et al. (2002) in normalized

units for α = 0.01.

§ 32. Viscous hydrodynamic simulations

One presents now simulations incorporating viscosity within a purely hydrodynamic disc in
order to illustrate our previous statements after having explained how viscosity is treated in the
VAC code.
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§ 32.1. Implementation of α type viscosity in VAC

The viscous hydrodynamics equations in conservative form are :

∂ρ

∂t +∇ · (ρvp) = 0, (32.74)

∂ρv
∂t + ∇ · (ρvv) = ∇ · (τ), (32.75)

∂E
∂t + ∇ · ((E + P)v) = ∇ · (v · τ). (32.76)

where the expressions for the viscous stress is given by Eq. 30.70. The two terms involving τ are
treated in VAC as source terms.

The goal is to maintain a mean accretion motion throughout the disc. To avoid convective
instability, it is necessary to cancel the viscous heating which dominates in the disc midplane
where density is maximum. The energy equation written above in conservative form involving
τ contains both transport terms of viscous energy and local dissipation of viscous energy which
increases the disc temperature. In order to cancel the viscous heating, we can either substract the
heating term which writes ρνvτi,j∂j(τi,j) or replace the conservative term by only the transport
part written v · ∇ · (τ). We choose this latter approach in our simulations.

§ 32.2. The backflow mechanism

The simulations are done here for an isothermal disc model, αν = 0.4 and ε = 0.15 to have a
good resolution within the disc (between 40 and 80 points in the vertical direction). The density
and pressure distributions for the disc assuming vertical hydrostatic equilibrium are given by :

ρ = ρ0

(

r
R0

)− 3
2

exp
(

− z2

2h2

)

, (32.77)

P = ρ0
GM∗

R0
ε2
(

r
R0

)− 5
2

exp
(

− z2

2h2

)

. (32.78)

The disc is in sub-Keplerian rotation :

Ω = ΩK

(

1 − 5
4 ε2 − 1

4
z2

r2

)

. (32.79)

The atmosphere of the disc is in hydrostatic equilibrium (non rotating) and in pressure
equilibrium (for all r) at the disc surface :

ρ = ρc0

( R
R0

)− 3
2

, (32.80)

P = ρc0
2
5

GM∗
R0

(

R
R0

)− 5
2

. (32.81)

The density contrast between corona and disc is : ρc0
ρd0

≈ ε2 exp(− 1
2) ∼ 100. The prescription

for the dynamic viscosity is written as ηv = ρνv = ραv
c2

s |z=0
ΩK

exp(−8x4). Thus, the viscosity
drops on a vertical disc scale height. We use a vertical profile to extrapolate the sound speed
from the disc midplane since we have a hot corona over it, which otherwise would give rise to
viscosity. One initially considers no poloidal velocity and let viscosity build the accretion flow.
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Figure 34. Viscous simulation with αν = 0.4 and taking into account only τrφ. Left panels shows the density distribution

in log scale for different times given in periods at r=1 and right panels shows the distribution of sonic Mach numbers

within the disc. We see outflow in the disc midplane.

We first include only the a priori dominant τrφ viscous component. One makes a simulation
with αν = 0.4. One takes outflow conditions for the poloidal velocity components and fix the
other variables at the inner and outer disc edge to retain the initial vertical equilibrium similar
to Kley & Lin (1992). Otherwise, symmetric and asymmetric boundary conditions are used
for the disc midplane in order to simulate only the upper part of the accretion disc. We use a
uniform cylindrical grid with (Nr, Nz) = (200, 100) corresponding to a radial range [0,10] and a
vertical one [0,2] including the whole upper disc. We used the TVD MUSCL scheme to solve the
viscous hydrodynamics equations. This scheme is a Roe type Riemann solver and uses limiters
on characteristic variables.

The simulation (see Fig. 34) shows the development of flow within the disc due to viscous
torques. The viscous timescale is given by τv = r2/νv = 1

αvε2 Ω
−1
K and the simulations presented

here last 10 τv at the disc inner edge. One can see strong accretion in the upper parts of the
disc (reaching ms = 0.1) but outflow (ms = −0.03 − 0.05) near the disc midplane as discussed
in the last paragraph with a value consistent with Eq. (30.72). However, we have globally an
accretion rate within the disc (see Fig. 35). We integrate vertically the sonic Mach number and
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Figure 35. Top- Evolution in time of the accretion rate for αv = 0.4 and taking into account only τrφ. Bottom- Evolution

in time of the vertically averaged sonic Mach number.

find m̃s = 0.025 (see Fig. 35) which is smaller than the expected ms = 0.06 for the vertically
averaged accretion disc model. Otherwise, one observes some disturbance at the disc surface
due to the non rotating corona which disturbs also the disc inner parts at longer timescales.

§ 32.3. Towards a coherent picture of an accretion disc

We include here all the components of the viscous stress tensor. In this case, we observe accretion
throughout the disc even in the disc midplane (see Fig. 36) with the same accretion rate as
previously and the same mean sonic Mach number. Thus, one has a consistent inflow of matter
within the disc but the accretion speed remains smaller than the 1D accretion models which will
give smaller accretion rates.

§ 33. The diffusivity within magnetized accretion discs

In order to enable accretion of matter throughout a magnetized disc, it is necessary to take into
account a diffusion effect. Actually, ideal MHD conditions will give advection of the poloidal
magnetic field due to viscous accretion which causes accumulation of magnetic flux towards
the star and also maximize the build of toroidal magnetic field within the disc, giving rise
to unsteady configurations. The diffusion is done by introducing in the induction equation
a decrease of the electric field due to dissipation of currents, characterized by a resistivity
parameter νm, and in the energy equation the ohmic dissipation η J2 where η = νm

µ0
is the disc

diffusivity.
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Figure 36. Viscous simulation with αν = 0.4 and taking into account the complete viscous stress. Left panels shows

the density distribution in log scale and right panels shows the distribution of sonic Mach numbers within the disc. We

have no longer back flow in the disc midplane.

∂B
∂t + ∇ · (vB − Bv) = ∇× (η(∇× B)). (33.82)

One can notice that for a uniform resistivity and no macroscopic motion, we find a standard
diffusion equation for the magnetic field. Otherwise, the magnitude of radial diffusion of matter
through purely vertical magnetic field in steady-state is directly controlled by η as ur = − η

B2
dPmag

dr .
For the same reason as viscosity, we use an α prescription to quantify this resistivity. It is a zero
order approximation for describing turbulence at smaller scales (unresolved by the numerics)
which gives birth at macroscopic scale to a diffusion of plasma across the magnetic field lines.
The relevant speed here is the Alfvén speed and thus one could write : νm = αmvAh. There are
different drawbacks with this expression. First, contrary to viscosity, density does not appear
explicitly here to cancel resistivity outside the disc. Besides, it is worse, since the Alfvén speed
which is proportional to the inverse of density, increases above it. Thus, it is necessary to impose
a vertical decreasing profile of resistivity after calculating the speed at the disc midplane. One
takes different profiles in this thesis. One chooses a profile with a steep decrease over a vertical
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Figure 37. Different vertical diffusivity profiles as defined in the text : f1(x) (dashed), f2(x) (solid) and f3(x) (dashed-

dotted).

scale height f1(x) = exp(−x4) where x = z
h which gives a weak resistive upper disc layer which

can be explained by the high ionization rate caused by the stellar radiation field. Otherwise,
one chooses a profile which follows the disc pressure and density vertical distributions namely
f2(x) = exp(− x2

2 ) for an isothermal disc and f3(x) = 2
5ε2

(

R0√
r2+z2 −

(

1 − 5
2 ε2) R0

r

)

for an adiabatic
disc (see Fig. 37) consistent with a vertical hydrostatic equilibrium. f1(x) will be used in chapter
4 and f3(x) in chapter 5.

Besides, we are interested in studying the interaction of the disc with a stellar field. Thus, the
Alfvén speed decreases very quickly radially outwards and will give significant resistivity only
at the disc inner edge. Theory of full-developed turbulence claim that the origin of turbulence
within discs does not distinguish between viscosity and resistivity (corresponding to effective
magnetic Prandtl number equal to unity) and thus one expects that MRI is the main trigger for
it. As MRI saturates for β ∼ 1 where we expect to have the truncation of the disc, we decide to
take the sound speed for the characteristic speed and cut off the resistivity profile when β ∼ 1.
Finally, we assume :

νm = αmcs|z=0h f (x). (33.83)

One still needs a vertical prescription f(x) since we always have a hot corona. Finally, the heating
coming from the compression of matter near the truncation radius enhances resistivity with
the expression above which is not physically relevant for the same reason of quenching the
MRI. Thus, we extrapolate the resistivity in this inner parts, when it becomes to increase going
inwards, by using a standard profile proportional to the square root of the radial distance. The
same extrapolation is done for kinematic viscosity since in this region, the Keplerian profile is
well modified by the magnetic field (see chapter 4) reaching a maximum and then diminishing
which corresponds then to a wrong transport of angular momentum by viscosity, also unrealistic
since turbulence in this region has to be quenched.
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In the VAC code, the resistive module treats the disc diffusivity as source terms. However,
in the high diffusivity range (αm ∼ 1), we noticed the development of an unphysical negative
constant toroidal field at each radius within the disc which increases with time and finishes
to destroy the radial disc equilibrium. Thus, we decided to write a new implementation of
the diffusivity by adding a new term directly in the flux function to increase the accuracy.
Actually, with this method, the resistive part is computed at the cell edge like the advection
part in the induction equation and at the same time contrary to the treatment with source terms.
Axisymmetry allows us to find a second order tensor whose the divergence corresponds exactly
to the resistive terms in the induction equation : τi,j = εi,j,kη Jk where Jk is the component of the
current density. This new implementation solves the previous issue and simulations with this
high disc dissipation effect are presented in the next chapters.

3. The stellar magnetosphere

§ 34. Design of boundary conditions

One needs for our problem to put some relevant boundary conditions to mimic the presence of
a central object. However, we do not plan to simulate the star itself because it is a real complex
job and it is not reliable for global simulations because of too large computational CPU time
for instance to resolve the merging of matter and the linked shocks created by the accretion
flow. We also neglect the backreaction of the transfer of mass and angular momentum onto the
stellar rotation rate. This is because the timescales probed in simulations are always inferior to
decades, which is really small with respect to the stellar braking timescale around 105 yr. Thus,
we are interested in studying the magnetic coupling between the star and the disc so we have to
prescribe the magnetic field near the star surface. For sake of simplicity, one considers that the
stellar magnetic field is constant in time and one uses a classical dipolar expression parametrized
by the stellar magnetic moment µ which is written in cylindrical coordinates (r,z) as :











Br(r, z) = 3µrz
(r2+z2)

5
2

,

Bz(r, z) = 3µz2

(r2+z2)
5
2
− µ

(r2+z2)
3
2

.
(34.84)

Obviously, the first effect of the presence of the star is its gravity which attracts the
surrounding matter and gives an accretion disc after the preliminary collapse in the early stages
of stellar formation. This term is added in the VAC code as a source term. We study here only
the inner parts of the accretion disc (below 1 a.u.) and as we consider initially a thin one, we can
neglect disc selfgravity.

Then, we assume that the stellar corona is a perfect conductor medium i.e. without resistivity.
Using also the axisymmetry and stationarity, the Ohm’s law E + v×B = 0 gives that the poloidal
velocity field is parallel to the poloidal magnetic field. Romanova et al. (2002) uses also this
boundary condition. Then, we assume that the magnetic field lines rotate at the stellar rotation
rate Ω∗ i.e. they are frozen at the stellar surface. In the rotating frame of the star, the poloidal
electric field is cancelled and we obtain a relation between the angular velocity of the matter and
the magnetic surfaces rotation rate from the induction equation in the poloidal plane :

∇× (vΦ × Bp + vp × BΦ) = 0. (34.85)
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The discrepancy between these two toroidal velocities is due to the generation of toroidal
magnetic field and depends on the mass loading κ =

ρVp
Bp

along the magnetic field lines. Finally,
we have :
vp × Bp = 0 i.e. vp = κ

ρ Bp using conservation of mass and magnetic flux, and
Ωr = Ω∗r + κ

ρ Bφ.

Numerically, to impose correctly boundary conditions on the poloidal velocity, after having
copied the components in the ghost cells, we can not use directly the proportionality coefficient
κ
ρ because of the change of sign of Bz in cylindrical coordinates. We use the scalar product which
gives the poloidal velocity component directly parallel to the magnetic field and then project it
along the coordinate axis :







vr = (vrBr+vzBz)Br√
B2r +B2z

,

vz = (vrBr+vzBz)Bz√
B2r +B2z

.
(34.86)

As far as the density and pressure variables are concerned, we use linear extrapolation of
their profiles in order to conserve the coronal hydrostatic equilibrium. For instance, we calculate
the density slopes inside the domain from the last 3 cells and deduce the density into the ghost
cells by linear extrapolation using a minmod TVD limiter for the slopes whereas crude copy of
density will destroy the equilibrium. It lacks an important boundary condition on Bφ which gives
the magnetic torque crucial for our study. In previous works on this topic, we often find zero
gradient condition on Bφ (Miller & Stone 1997, Romanova et al. 2002, Kuker et al. 2003), which
imposes a radial current entering near the star surface thus an artificial force since a dipolar
magnetic field line is not radial. Besides, we observe that this kind of boundary condition does
not seem to permit to control the star rotation rate which rapidly increases (Long & Romanova
2005). However, we will see in chapter 4 that this boundary condition plays no role in the
truncation of discs and in the formation of funnel flows.

Our first simulation attempts with basic boundary condition like Bφ = 0 (only valid for a
steady state) did not give good results because it gives a vanishing magnetic torque towards the
star. Thus, the stellar magnetic field lines anchored within the disc tends to rotate at this velocity
and it is very difficult to connect the star to the disc in order to have a braking of the star.

We take another approach by imposing that the magnetic field lines anchored inside the star
tend to match the stellar rotation rate but without forcing it. That is why we prescribe the local
azimuthal acceleration to be the discrepancy between the magnetic surfaces rotation rate and
the stellar one divided by the propagation time ∆t of an Alfvén wave with speed Va to cross the
width between two adjacent rows of cells at the inner edge of the simulation box. This gives in
formulae :

ρ
∂

∂t (Ωr) = ρ
(Ω∗r − ΩBr)

∆t , (34.87)

where ΩB = Ω − κ
ρr Bφ and ∆t = ∆R

Va
.

Then, we compute at this location the angular momentum equation to deduce the Bφ component.
One has to solve a system of two equations with two unknowns Bφ and Ω :
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{

Ωr = Ω∗r + κ
ρ Bφ,

ρ ∂
∂t (Ωr) + ρur

∂
∂r (Ωr) + ρuz

∂
∂r (Ωr) − Br

r
∂
∂r (rBφ) − Bz

r
∂
∂z (rBφ) = 0,

(34.88)

from the third component of the momentum equation using ∇ ·B = 0. In the latter equation,
we replace the first term by the expression 34.87. To discretize this equation at the inner edge,
we have to express the derivatives in terms of ∂

∂R and ∂
∂α as our grid is spherical with α = π

2 − θ

where θ is the classical angle of the spherical coordinates. The subscript i corresponds to a cell in
the first row of ghost cells and the subscript i+1 is the right cell into the computational domain.
We thus write in practice :

(

∂Bφ

∂R

)

i+1
=

Bφ,i+2 − Bφ,i+1
∆R =

∆Bφ

∆R , (34.89)

Bφ,i = Bφ,i+1 − ∆Bφ, (34.90)

(

∂Bφ

∂α

)

i+1
=

Bφ,i+1,j+1 − Bφ,i+1,j−1
∆α

, (34.91)

(

∂vφ

∂α

)

i+1
=

vφ,i+1,j+1 − vφ,i+1,j−1
∆α

, (34.92)

(

∂vφ

∂R

)

i+1
=

vφ,i+1 − vφ,i
∆R =

vφ,i+1 − riΩ∗
∆R − vp,i

Bp,i∆R Bφ,i+1 +
vp,i

Bp,i∆R ∆Bφ. (34.93)

For each derivatives estimate, we use a minmod limiter using two adjacent cells in order to
avoid spurious oscillations.

After some calculations, we obtain for the discretized form :

∆Bφ =

[

ρvA
∆R

(

ri+1Ω∗ +
vp,i+1
Bp,i+1

Bφ,i+1 − vφ,i+1

)

− Br,i+1

(Bφ,i+1
ri+1

−
( z

R2

)

i+1

(

∂Bφ

∂α

)

i+1

)

− Bz,i+1
( r

R2

)

i+1

(

∂Bφ

∂α

)

i+1

+ ρi+1ur,i+1

(

( r
R
)

i+1

(vφ,i+1 − riΩ∗
∆R − vp,i

Bp,i∆R Bφ,i+1

)

−
( z

R2

)

i+1

(

∂vφ

∂α

)

i+1

)

+ ρi+1uz,i+1

(

( z
R
)

i+1

(vφ,i+1 − riΩ∗
∆R − vp,i

Bp,i∆R Bφ,i+1

)

+
( r

R2

)

i+1

(

∂vφ

∂α

)

i+1

)

+ ρi+1
ur,i+1
ri+1

vφ,i+1

/
[

Bz,i+1
z

R∆R + Br,i+1
r

R∆R − ρi+1ur,i+1
vp,i
Bp,i

r
R∆R − ρi+1uz,i+1

vp,i
Bp,i

z
R∆R

]

(34.94)

At each time step, we use this expression to update the Bφ value in the ghost cells.
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§ 35. Implementation of the splitting method for the magnetic field

The dipolar magnetic field has a particular topology because the magnetic pressure is exactly
balanced by the magnetic tension i.e. one has a current-free field i.e. a potential field.
Numerically, if we project directly the magnetic field expression onto the grid, we do not
generally ensure this characteristic at the machine accuracy because of the discretization of the
differential operators and one has numerical forces which would disturb the initial condition
because of the strong gradient of the dipole field (B ∼ r−3). The idea coming from Tanaka (1994)
and applied by Powell et al. (1999) in the BATSRUS code is to write the MHD equations by
splitting the Lorentz force into dipolar components and deviations from it. By putting 0 subscript
for quantities relative to the dipole field and 1 subscript for the deviations, one obtains :

J × B = J0 × B0 + J0 × B1 + J1 × (B0 + B1). (35.95)

The first term is analytically equal to zero for the dipole field, the second one is also equal
to zero because J0 = 0 and the third one represents the Lorentz force due to the induced
current by the plasma motion. Another assumption is that the dipole field is assumed to be
stationary. Thus, we can cancel all the terms including J0 and ∂tB0 in the MHD equations.
Thus, the numerical error on magnetic stresses initially proportional to O(B2

0) is reduced to
O(B0) which is important for strong background fields like in our case near the star with low
beta regions (β ∼ 10−2). Besides, we introduce a new set of conservative variables in the code
(ρ, m1, m2, m3, e1, B11, B12, B13) related to the former one by B = B0 + B1 and e = e0 + e1 with
e1 = p

γ−1 + 1
2

m2

ρ + 1
2 B2

1.
Excluding the magnetic energy of the dipole field from the computations diminishes the

truncation errors when calculating the thermal energy from the total energy within low beta
regions (β ∼ 10−2).

Thus, one can split the flux function into two parts, the first one containing the same flux
function F1 for B1, e1 as the classical conservative variables and the second one F2 all the terms
including B0 :

F1 =













ρv
ρvv + (P + B2

1
2 )I − B1B1

vB1 − B1v
(e1 + P + B2

1
2 )v − B1(B1 · v)













. (35.96)

F2 =











0
(B0 · B1)I − (B0B1 + B1B0)

vB0 − B0v
(B0 · B1)v − B0(B1 · v)











. (35.97)

We implement this technique for the Lax Friedrich scheme in VAC. The new conservative
variables of the code are (ρ, m1, m2, m3, e1, B11, B12, B13). Instead of reconstructing the background
field at the cell edges from the cell centers, we directly calculate in the code these values at the
cell edges. Besides, as the fluxes are computed in the local frame linked to the spherical grid, one
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uses the analytical expressions in these coordinates to compute the flux F2:
{

BR = 2µcosθ
R3 = 2µz

(r2+z2)2 ,
Bα = −Bθ = µsinθ

R3 = 2µr
(r2+z2)2 .

(35.98)

Next, one has to add source terms including the background field in the geometrical source
terms due to axisymmetry, resistivity ones and also the Powell ones by well considering the total
magnetic field B0 + B1.

We test our implementation of the splitting method by computing a dipole field within a
uniform density and pressure medium. We check that the solution remains force-free during the
simulation.
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Since a decade, many numerical works have investigated the star-disc interaction issue
(Hayashi et al. 1996; Kuker et al. 2003; Long et al. 2005). However, the formation of accretion
curtains seems to be difficult to reproduce. Although Miller & Stone (1997) found such polar
accretion in the case of kG dipolar stellar field associated with a disc field in the same direction
to this latter, Romanova et al. (2002) were the first to demonstrate magnetospheric accretion along
stellar field lines for kG pure dipolar field in axisymmetric simulations and next by performing
3D simulations (Romanova et al. 2003).

In this chapter, we address the issue of the disc truncation radius and its localization as
function of the disc (accretion rate) and stellar (dipole field) parameters. In Section 1 we provide
analytical constraints for driving steady accretion funnels and derive an estimate of the position
of the truncation radius. We then use numerical MHD simulations in Section 2 to verify this
prediction. We confirm magnetospheric accretion for a slowly rotating star with an inner disc
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hole and weak stellar magnetic field compatible with observations of weak accretors, and study
the physical properties of the accretion curtain.

1. The disc truncation radius

For a given accretion disc model, predicting where the truncation by the stellar magnetosphere
will occur is an important issue. Different estimates were given in the literature. One considers
here a pure dipolar field with a strength at the stellar surface in the equatorial plane equal to B∗.

A first dimensional estimate expresses the truncation radius rt in the form rt = krA where the
Alfvén radius

rA =

(

B4
∗R12

∗
2GM∗Ṁa

2

)1/7

(35.99)

is a characteristic length which can be derived by equating the ram pressure of a free-falling
spherical envelope with the magnetic pressure of a dipolar field (Elsner & Lamb 1977). Different
estimates of the adimensional coefficient k have been given in literature, ranging from 0.5 (Ghosh
& Lamb 1979; Königl 1991; Long et al. 2005) to ∼ 1 (Arons 1993; Ostriker & Shu 1995; Wang 1996).

A second criterion (Cameron & Campbell 1993; Armitage & Clarke 1996; Matt & Pudritz
2005,and references therein) states that accretion funnels will take place when the magnetic
torque due to the stellar field matches the “viscous” or turbulent torque, namely

−JrBz '
B+

φ Bz

µoh =
1
r2

∂

∂r ηvr3 ∂Ω

∂r ' −αv
P
r

(35.100)

where B+
φ is the toroidal field at the disc surface, h the disc scale height, P the disc pressure

and αv the Shakura & Sunyaev (1973) parameter. This criterion (hereafter A) gives an upper
limit for the truncation radius, as it only defines a radius where the star-disc interaction starts to
affect accretion. This maximal truncation radius rt,max occurs when the plasma beta, defined as
β = 2µoP/B2

z , becomes β = 2q/(αvε) where q = |B+
φ /Bz| is a measure of the magnetic shear and

ε = h/r is the disc aspect ratio. In a thin Keplerian accretion disc, one gets β � 1 at r t,max since q
is close to unity to avoid opening of the magnetosphere (e.g. Matt & Pudritz 2005).

A third criterion represents a more conservative approach, and gives only a lower limit r t,min.
It states that accretion funnels take place when accretion is no longer possible because of the
overwhelming field strength. It is usually written (Koldoba et al. 2002; Romanova et al. 2002)

B2

µo
= ρv2 + P (35.101)

where v is the total speed. However, this criterion is not predictive since the azimuthal velocity
vφ is itself an outcome of the star-disc interaction. If one wishes to provide an estimate of the
truncation radius, then this criterion becomes B2

z /µo = ρGM/r, where we used vφ = vK =√
GM∗/r and a negligible thermal pressure (both approximations valid in a thin disc). This will

be our criterion B. In a thin accretion disc, one has P = ρΩ
2
Kh2 and the stationary accretion rate is

Ṁa =
∫ h

0 4πρrurdz ∼ 4πρu0rh where u0 = −u(z=0), h = εr, ε � 1. Thus, B2
z

µo
= Ṁa

4πr2msε2 ΩKr. This
condition translates into β = 2ε2 � 1 at rt,min.
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From the previous discussion, it appears quite obviously that β ∼ 1 should be a better
approximation for rt. This is what we argue next.

The stellar magnetic field, which is bound to become dominant in the magnetosphere, must
first favor accretion, i.e. the magnetic torque must be negative. If this is not the case, namely
if r > rt,max > rco , the disc material is radially expelled. This is the “propeller" regime as
studied e.g. by Ustyugova et al. (2006) and references therein. Accretion thus implies r t < rco,
with stellar magnetic field lines as leading spirals. Below co-rotation, accretion will proceed
quite naturally thanks to both the viscous and the stellar torques. There are then two more
independent constraints that must be fulfilled in order to produce steady funnel flows. First, the
accretion flow must be prevented by the presence of the magnetosphere. The simplest way to
express this is to require that the magnetic poloidal pressure balances the accretion ram pressure
ρu2

r . This defines a radius rb f where
β ' m−2

s (35.102)
where ms = ur/Cs is the sonic Mach number measured at the disc midplane. Now, at radii
r < rt,max, accretion is mainly due to the stellar torque and ms = 4q/β � αε: material is
accreting to the star much faster than in the outer accretion disc. Second, material at the disc
midplane must be lifted and loaded onto the stellar field lines. With a dipole field configuration,
such a vertical motion can only be due to a vertical thermal plasma pressure gradient. It
therefore requires that the magnetic field compression is not too strong. This leads naturally
to an equipartition, β ∼ 1 (as already proposed by Pringle & Rees 1972; Aly 1980).

One important point to remark is that once a large scale magnetic field is close to
equipartition in an accretion disc, it is able to deviate a large fraction of the disc plasma from
its radial motion to a vertical one. This has been shown with the calculations of Magnetized
Accretion-Ejection Structures by Ferreira & Pelletier (1995) and confirmed by numerical MHD
simulations (Casse & Keppens 2002; Zanni et al. 2007). In some sense, making funnel flows
involves the same physics as loading mass in magnetized jets. In fact, almost all of the disc mass
can be lifted and loaded onto the field lines when β ∼ 1, it depends mostly on the field bending
(see Fig. 3 in Ferreira & Pelletier 1995). This is the reason why we will assume, for finding a
simple analytical criterion, that the disc truncation radius r t is close to the radius where β ∼ 1,
namely rt ∼ rb f . Using the above estimates, we derive the following two constraints:

β ∼ 1 and ms ∼ 1. (35.103)

that must be fulfilled in order to provide steady state funnel flows. For a dipole field, this right
away translates into a theoretical truncation radius

rt,th
R∗

' 2 m2/7
s B4/7

∗ Ṁ−2/7
a M−1/7

∗ R5/7
∗ (35.104)

where the stellar field B∗ has been normalized to 140 G, disc accretion rate Ṁa to 10−8 M� yr−1,
stellar mass to 0.8 M� and stellar radius to 2R�. Note that these are all typical values for CTTS
while the chosen value of the magnetic stellar field B∗ is consistent with observations of dipole
fields in such objects (see Valenti & Johns-Krull 2004; Bouvier et al. 2007,and references therein).

It is clear that the conditions given by Eq. (35.103) state that the accretion speed close to
the base of the accretion funnel is of the order of the Alfvén speed. As a matter of fact Eq.
(35.104) can be rewritten as rt,th ∼ m2/7

s rA, where the Alfvén radius for spherical accretion
rA was defined in Eq. (35.99). Thus, this criterion is really close to the Alfvén radius but
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M∗ R∗ Ṁ × 108 Prot rco rtd B̄obs Bdip,obs rt,th
Star (M�) (R�) (M�yr−1) (days) (R∗) (R∗) (kG) (G) (R∗)

AA Tau 0.53 1.74 0.33 8.20 8.0 2.57 < 200 2.6(3.2)
BP Tau 0.49 1.99 2.88 7.60 6.4 3.4(1.3) 2.17 < 250 1.6(2.2)
CY Tau 0.42 1.63 0.75 7.90 7.7 4.2(3.2) 2.0
DE Tau 0.26 2.45 2.64 7.60 4.2 1.35 2.0
DF Tau 0.27 3.37 17.7 8.50 3.4 2.98 1.5
DK Tau 0.43 2.49 3.79 8.40 5.3 2.58 1.7
DN Tau 0.38 2.09 0.35 6.00 4.8 2.14 3.1

GG Tau A 0.44 2.31 1.75 10.30 6.6 1.8(1.) 1.57 2.0
GI Tau 0.67 1.74 0.96 7.20 7.9 2.69 1.9
GK Tau 0.46 2.15 0.64 4.65 4.2 3.8(2.3) 2.13 2.6
GM Aur 0.52 1.78 0.96 12.00 10.0 2.0
IP Tau 0.52 1.44 0.08 3.25 5.2 3.4

TW Hya 0.70 1.00 0.20 2.20 6.3 2.61 150 2.0(2.0)
T Tau 2.11 3.31 4.40 2.80 3.2 2.39 < 120 1.6(1.5)

V2129 Oph 1.35 2.4 1. 6.53 6.8 2.0 350 2.1(3.5)

Figure 38. Main characteristics of some CTTS such as their mass M∗, radius R∗, accretion rate Ṁ, period Prot,

corotation radius rco, mean magnetic strength B̄obs which includes small-scale field often very different from the large

scale field Bdip,obs and the resulting theoretical truncation radius rt,th calculated from Eq. (35.104) assuming ms ∼ 1
and B∗,dip = 140G (values into brackets are calculated using maximal observational constraints based on Valenti &

Johns-Krull 2004, Daou et al. 2006, Donati & al. 2007, Yang et al. 2007) in comparison with truncation radius rd
t

derived from Najita & al. (2003) (values into brackets are calculated for the stellar mass given in this table).

is derived here on very different physical basis considering magnetically controlled accretion
from a rotationally supported Keplerian disc. On the other hand, the co-rotation radius writes
rco/R∗ = 7.8 M1/3

∗ R−1
∗ P2/3

∗ for a typical 8 days stellar period P∗, which provides

rt,th
rco

' 0.25 m2/7
s B4/7

∗ Ṁ−2/7
a M−10/21

∗ R12/7
∗ P−2/3

∗ (35.105)

Remarkably, taking typical values for CTTS with a low magnetic dipole field gives a theoretical
truncation radius not only smaller than the co-rotation radius but also consistent with
observations of inner disc holes (Najita, Carr & Mathieu 2003) (see Fig. 38) . This is in strong
contrast with unobserved large scale kG fields usually taken in the literature. This implies
right away that the formation of funnel flows should always spin up the star unless (i) enough
stellar field lines remain connected to the disc beyond rco and/or (ii) ejection of stellar angular
momentum is taking place somehow. In the following section, 2.5D numerical MHD simulations
are used to show that conditions (35.103) are indeed those prevailing at the disc inner edge. If
this is true, then we should recover a truncation radius located at our theoretical estimate (35.104)
for a low dipole field of 140 G.
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2. Numerical experiments

§ 36. Equations and numerical setup

We use the VAC 11 code (Tóth (1996)) to solve the full set of axisymmetric dimensionless resistive
MHD equations (with the magnetic permeability µ0 = 1) in cylindrical coordinates (r,z):

∂ρ

∂t +∇ · (ρvp) = 0, (36.106)

∂ρv
∂t +∇ · (ρvv − BB) + ∇(

B2

2 + P) = −ρ∇ΦG , (36.107)

∂B
∂t +∇ · (vB − Bv) = ∇× (η(∇× B)), (36.108)

∂E
∂t + ∇ · ((E +

B2

2 + P)v− B(B · v)) = η J2 − B · (∇× ηJ), (36.109)
where ρ is the plasma density, vp the poloïdal velocity, v the total velocity, B the magnetic

field, P the thermal pressure, η the magnetic resistivity, J = ∇ × B the current density, ΦG =

− GM∗
(r2+z2)1/2 the gravity potential created by the central star and E = P

γ−1 + ρv2

2 + B2

2 + ρΦG
the total density energy. The gravity is treated as a source term in the momentum and energy
equations of VAC.

Time evolution is done with a conservative second order accurate Total Variation
Diminishing Lax Friedrichs scheme with minmod limiters applied on primitive variables, except
for density where a van Leer limiter is used instead to better resolve contact discontinuities.
Powell source terms are used to ensure the divergence free property of the magnetic field and
the code has been modified so as to compute only the deviations from the dipolar component
(Tanaka 1994; Powell et al. 1999). The splitting technique has three main advantages. First it
is crucial to properly represent an initial force-free configuration numerically. Second, since the
total conserved energy contains only the energy associated with the deviation from the dipolar
field, this method improves the computation of the thermal energy in low β regions. Third, when
used in association with the Powell method, it helps in controlling the divergence of the magnetic
field, since only the deviation from the background field is used to calculate the divergence
and the Powell source terms. The divergence method used here gives |∇ · B|∆R ≤ 0.01|B| but
simulations done with PLUTO 12 and a constrained-transport scheme show that our results are
not strongly modified by this method (Zanni et al, in prep).

§ 37. Boundary conditions

Boundary conditions take symmetric and asymmetric conditions for the axis and the disc
midplane, while continuous (outflow) conditions are used at the outer edge. At the inner edge
corresponding to the stellar surface, a linear extrapolation of density and pressure is done. After
using free extrapolation for the poloidal velocity, this latter is forced to be parallel to the total
poloidal magnetic field. The poloidal field is fixed, contrary to Romanova et al. (2002). We use a

11http://www.phys.uu.nl/∼toth/
12A description of this code can be found in Mignone et al. (2007).
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Figure 39. Angular velocity of the magnetic surfaces at the stellar surface after 10 stellar periods. The normalized

angular velocity of the star is 0.35. We observe a slightly discrepancy (lower than 4%) localized within the accretion

column between 55◦ and 70◦.

boundary condition on the toroidal magnetic field as described in chapter 3. It allows to derive
Bφ by forcing the magnetic surfaces to locally rotate at the stellar velocity. In practice, the radial
derivative of the toroidal field is computed from the angular momentum conservation equation
where the temporal derivative giving the local acceleration is replaced by

ρ
∂

∂t (Ωr) = ρ
(Ω∗r + vpBφ/Bp − Ωr)

∆t (37.110)

where the timescale ∆t = ∆R/VA is the Alfvén crossing time of one cell ∆R at the inner edge
of the simulation box. This allows us to let the system evolve without imposing any arbitrary
conditions on Bφ, hence on the torques. We check a posteriori that the magnetic surfaces rotate
at the stellar velocity with a very good accuracy (see Fig. 39).

§ 38. Initial condition

In the initial conditions we take a Keplerian disc surrounded by an adiabatic corona in
hydrostatic (non rotating) equilibrium. The disc is adiabatic with an index γ = 5/3 and an
aspect ratio ε = h/r = Cs/VK = 0.1. The surface of the disc is determined by the pressure
equilibrium between the disc and the corona, while the initial truncation radius has been chosen
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arbitrarily. The density and pressure expressions for both the disc and the corona are

ρd = ρd0

[

2
5ε2

(

R0√
r2 + z2

−
(

1 − 5
2 ε2
)

R0
r

)] 1
γ−1

,

Pd = ε2V2
K0ρ

1−γ
d0 ρ

γ
d ,

ρc = ρc0

(

R0√
r2 + z2

) 1
γ−1

,

Pc =
2
5V2

K0ρ
1−γ
c0 ρ

γ
c . (38.111)

The density contrast between the disc and the corona is ρc0/ρd0 = 0.01.
One can for instance establish the expression for the coronal density. One writes the

hydrostatic equilibrium radially :
1
ρc

∂Pc
∂R = −GM∗

R2 . (38.112)

Using the polytropic equation of state P = Kργ, we obtain :

d(
γ

γ − 1Kρ
γ−1
c ) = d(

GM∗
R ) (38.113)

Thus, we deduce by integrating this equation :

ρc = ρ0[
γ − 1

γK
GM∗

R ]
1

γ−1 = ρc0[
GM∗

R ]
1

γ−1 (38.114)

A pure dipolar magnetic field is set up in the computational domain in equipartition with
the thermal pressure of the disk at r = R0. The rotation period of the star is set in order to place
the corotation radius at r = 2R0. The disc has no viscosity but is resistive with an alpha-like
magnetic resistivity decreasing on a disc scale height, namely νm = αmΩkh2exp(−( z

h )4). In this
chapter, we fix αm = 0.1. The initial poloidal flow within the disc is zero and the disc is slightly
sub-keplerian with vφ =

√

1 − 5
2 ε2
√

GM∗
r .

The grid and stellar rotation period were chosen so as to allow a good resolution at the
truncation radius R0 while maintaining the co-rotation radius at r = 2R0 well inside the domain.
Our polar grid of NR × Nθ = 170 × 100 is stretched in the spherical R direction (see Fig.40 and
Fig. 22 in chapter 2) and goes from Rmin = 0.35R0 at the stellar surface to Rmax = 10.35R0.

The results will be presented in adimensional units: lengths will be given in units of R0,
which corresponds to the truncation radius of the reference simulation (see Section § 40); speeds
will be expressed in units of the Keplerian speed VK0 =

√
GM∗/R0 and densities in units of ρd0,

which is the initial disc density at (r = R0, z = 0). Time will be given in units of the Keplerian
period at R0, i.e. t0 = 2πR0/VK0. Mass accretion rates will be given in units of Ṁ0 = ρ0VK0R2

0
while we will express the torques in units of L̇0 = ρ0V2

K0R3
0.

§ 39. Reference values

We consider a M∗ = 0.8M� young star with a radius of R∗ = 2R� and a pure stellar
dipole field with B∗ = 141G. With these assumptions the normalization units will be R0 =

2.86R∗ = 4 × 109m, VK0 =
√

GM∗/R0 ' 1.63 × 105m s−1 and ρd0 =
(

B2
∗R6

∗
)

/
(

2µ0ε2V2
K0R6

0
)

'
5.51 × 10−10kg m−3. Since we place the corotation radius at 2R0, the rotation period of the star is
P∗ = 2π

√

8R3
0/GM∗ ' 5.1 days while the time will be scaled in units of t0 = 2πR0/VK0 =
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Figure 40. Resistive MHD simulation for a 5 days period CTTS with B∗ = 141G and αm = 0.1 after

t=0,5.1,10.2,15.3,20.4,25.5 Keplerian periods at the disk inner edge corresponding to a physical time of 1.5 months.

We show the density distribution in the computational domain using a log scale. The black lines draw the magnetic

field lines and the black arrows represent the velocity field. The white line on the first snapshot represents an initial

magnetic field line anchored at rco. We also superimpose a part of the computational grid to show the good resolution

we have near the truncation radius. An accretion column is formed between rt and rbf (see definitions in text) and

one observes the expansion of the poloidal magnetic field and transient disc ejecta. The accretion rate at the stellar

surface is equal to 1.9.10−9M�.yr−1 for P=5 and stabilizes towards 0.91.10−9M�.yr−1 at P=15. No X-winds are

formed and the star is being spun up.

1.54 × 105s ' 1.78 days. The computational domain extends up to 0.3 a.u. Finally the
normalization for the accretion rates is given by Ṁ0 = ρ0VK0R2

0 ' 2.27 × 10−8M� yr−1.
From these reference values, simulations done here can be scaled for another range of

parameters (R∗,M∗,B∗) in the following way:
R0 = 4 × 109

(

R∗
2R�

)

m,

VK0 = 1.63 × 105
(

M∗
0.8M�

)1/2 ( R∗
2R�

)−1/2
m s−1,

ρ0 = 5.51 × 10−10
(

R∗
2R�

) (

B∗
141G

)2 ( M∗
0.8M�

)−1
kg m−3,

P∗ = 5.1
(

R∗
2R�

)3/2 ( M∗
0.8M�

)−1/2
days,
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t0 = 1.54 × 105
(

R∗
2R�

)3/2 ( M∗
0.8M�

)−1/2
s,

Ṁ0 = 2.27 × 10−8
(

R∗
2R�

)5/2 ( B∗
141G

)2 ( M∗
0.8M�

)−1/2
M� yr−1.

§ 40. Methodology

For these fixed stellar and accretion disc parameters, we make three simulations with different
initial truncation radius rto. Our reference simulation (s1) corresponds to an initial truncation
radius fulfilling Eq. (35.104), namely rto = 1 with β(rto) = 1. Simulation (s2) is done for rto = 1.5
with β(rto) = 10 and simulation (s3) for rto = 0.5 with β(rto) = 0.1.

We then let the system evolve and observe whether or not the real disc truncation radius
rt converges towards the theoretical radius rt,th as given by Eq. (35.104). With our normalized
quantities, the truncation radii in simulations (s2) and (s3) are thus expected to converge towards
1, with β(rt) ∼ 1. To check this, we identify this radius and then compute the plasma beta. It is
however not straightforward to define this radius since the magnetic field is not a solid wall : the
radial to vertical deviation of the flow is quite smooth. In practice, we get the truncation radius
rt by detecting a steep decrease in density at the disc midplane (see Fig. 50).

Figure 41. Projection of the forces in normalized units along a magnetic field line in the middle of the accretion column,

for run (s1) at t = 10. We represent the gravity FG, the centrifugal force FC, the thermal pressure gradient FP, the

poloidal magnetic force FM and the total force Ftot as function of the curvilinear coordinate s. The disc midplane is

located at s = 0 and the disc surface corresponds to s ∼ 0.2. Gravity begins to dominate the dynamics only at some

distance between the disc and the star (s ∼ 1.2 at the stellar surface).
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§ 41. Results

§ 41.1. The physics of funnel flow

Figure 40 shows a series of snapshots of our reference simulation (s1). The upper left panel
shows the initial condition. We have superimposed a part of the computational grid to show
the resolution achieved. We have a resolution of 8 points in the vertical direction within the disc
at each radius while the resolution within the accretion column reaches 20 points at the stellar
surface. Magnetic field lines are in black while the white line traces an initial magnetic field
line connecting the star to the co-rotation radius rco = 2. After a rapid transient phase with the
opening of stellar field lines, a quasi-steady situation is achieved where quasi-steady accretion
columns are formed, even with a low stellar dipole field. The final (equilibrium) truncation
radius is rt ∼ 1.1 − 1.2, thus well below the co-rotation radius.

Figure 42. Angle between the poloidal velocity vector and the magnetic field one as function of the curvilinear distance

s along a magnetic field line in the middle of the accretion column. One clearly sees the transition between the resistive

disc and the ideal MHD funnel flow at s ∼ 0.2.

Figure 41 shows the projection F = ~Bp · ~F/|~Bp| of the various forces along a magnetic field
line located at the centre of the accretion column at t = 10. Since the stellar magnetic moment is
directed northwards, a negative force is actually pulling material upwards. Accretion is achieved
because of the negative magnetic torque (not shown here) but against the poloidal magnetic
force FM which tends to prevent it. Note however that it remains always negligible with respect
to the other forces. What drives the poloidal motion in the accretion column is actually the
plasma pressure gradient FP. It is built in by the accumulation of accreting mass and allows
to lift it up and load it onto closed stellar field lines as shown in Fig. 43 corresponding to
the zoomed snapshots near the funnel flow drawn in Fig. 44. It acts exactly as in accretion-
ejection structures, enabling the necessary transition from the resistive MHD disc to the ideal
MHD columns (Ferreira & Pelletier 1995). The plasma pressure gradient remains dominant well
above the disc surface, located around the curvilinear coordinate s = 0.2. To give a sense to
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t=0.3 t=0.8

t=1.4 t=3.0

Figure 43. Same caption as Fig. 41 for the series of snapshots presented in Fig. 44. We can remark the build up of

the vertical thermal pressure force between t=0.8 and t=1.4 and also the less increase of the gravitation force due to

the dipole deformation caused by accretion.

the disc surface at the funnel flow basis, we plot the angle between the poloidal velocity and
magnetic field vectors along the central line of the funnel flow and thus one clearly identifies
the disc resistive flow with an angle around 90◦ from the nearly ideal flow constrained to follow
the stellar magnetic field lines (see Fig. 42). Given the dipole topology, this is not surprising
as material must first be lifted against gravity (FG is initially positive) by FP. Then, at some
point (that depends mostly on the dipole geometry) gravity overcomes and becomes the leading
agent. Again, this is only possible because the centrifugal term FC plays almost no role due to
the efficient azimuthal magnetic braking. Matter then reaches the star in a dynamical time scale
with approximately free-fall velocities (vpol ≈ 310kms−1).

One can take a closer look at some physical quantities across the funnel flow near the stellar
surface by plotting these variables versus the angle α defined from the equatorial plane. The
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Figure 44. Same caption as in Fig. 40 with a series of snapshots focused on the development of a funnel flow

corresponding to the force balance presented in Fig. 43

density plot (see Fig. 45) localizes well the accretion column centered at high latitudes (α ∼ 60◦

with a FWHM ∼ 15◦) initially with a high density contrast of 10 with respect to the corona. The
evolution in time shows a shift of the accretion column towards higher latitudes (α ∼ 70◦) with
a drop in density contrast till 3 because of not sufficient mass feeding at the disc inner edge. The
shift towards higher latitude comes from the fact that the truncation radius is larger when the
accretion rate diminishes and thus mass loading is achieved along field lines reaching the star
nearer to the pole.

By looking at the magnetic torque via the toroidal component of the magnetic field, one
clearly has a braking torque within the funnel flow (see Fig. 46). One confirms it by showing the
matter angular velocity (see Fig. 47) which is well lower than the stellar rotation causing matter
to collapse onto the stellar surface near free-fall speeds. One also has a negative toroidal field at
the polar region where magnetic field lines were opened due to the initial condition (see Fig. 46).
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Figure 45. Density distribution at the stellar surface versus the angular distance from the equatorial plane (on the left

hand side) as a function of time.

Figure 46. Toroidal magnetic field distribution at the stellar surface versus the angular distance from the equatorial

plane.
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Figure 47. Angular velocity distribution at the stellar surface versus the angular distance from the equatorial plane,

for consecutive times during the evolution.

§ 41.2. Evolution of the magnetic topology

The strong differential rotation beyond rt, in a region where β � 1, leads to an expansion of the
poloidal magnetic field lines. Such an expansion starts at the inner regions and enforces the outer
field lines to inflate as well (but the cause there is not the differential rotation). Once these loops
(inflated lines) reach the outer boundary of the computational domain, they open mimicking
a reconnection. This opening is actually an effect of the boundary conditions used but, for all
practical means, we see no strong bias on the evolution of the system. Anyway, on quite short
time scales (t ∼ 3), most of the stellar magnetic flux not related to the accretion funnels around
rt has been opened (Fig. 40). One might think that a disc wind is driven in this region of the disc
as the Blandford & Payne (1982) criterion is fulfilled. Moreover, some mass is indeed leaving
the disc along these open field lines. But this is only a breeze and not a proper jet : the ejected
material does not reach super-Alfvénic speeds. We note also that no X-winds (Shu et al. 1994)
are obtained despite the favorable magnetic configuration 13. The reason why no disc wind is
obtained, neither extended nor X-wind, is that the field threading the disc in these regions is far
below equipartition.

The radial distribution of the vertical magnetic field (see Fig. 48) shows that the initial
dipole distribution (dashed line) is well modified by the accretion process given the low

13This is a direct simulation of the scenario invoked by these authors since the disc magnetic field comes from
the opening of the magnetosphere.
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Figure 48. Radial distribution of Bz (solid line) with respect to the initial dipole distribution (dashed line).

resistivity chosen (αm = 0.1). One particularly remarks the strong compression of the dipolar
magnetosphere near the disc truncation.

§ 41.3. Truncation radius in simulations

The results of varying the initial truncation radius (simulations s2 and s3) are summarized in
Fig. 49. In both cases, we observe a rapid convergence to rt ≈ 1.1 − 1.2 on a dynamical time
scale. Although some fluctuations in time can be seen in rt, it remains strikingly close to unity.
Besides, it is really close to the radius of equipartition where β = 1, r1, with a relative position
lower than 4%. This is another indication of the importance of the plasma pressure gradient in
defining the truncation radius and justifies the approximation β(r t) ∼ 1.

The discrepancies from the mean curves we can see for (s2) and (s3) respectively at t=11
and t=7 is due to some diffusion of matter coming from the accretion column at the stellar
surface which next is ejected along opened field lines disturbing a bit the magnetosphere. This
is due to the fact that initial conditions for these two simulations depart from equilibrium with
equipartition conditions. However, later on, the accreted material reaching the stellar surface is
well absorbed by the boundary conditions.

The accretion rate onto the star is the one that is actually observationally determined through,
e.g. veiling measurements. It is obtained here by computing the mass flux in the accretion



96 CHAPTER 4 – THE TRUNCATION OF THE DISC AND FUNNEL FLOW FORMATION

Figure 49. Top - Evolution in time of the position of the truncation radius rt (solid lines) for a set of resistive MHD

simulations with B∗ = 141G, P∗ = 5.1days and αm = 0.1 and a different initial truncation radius. The time unit is the

Keplerian period at r=1. All runs converge towards a truncation radius rt ∼ 1.2 (solid lines). Dash-dot lines represent,

for each simulation, the radius r1 where β = 1. We report also the radius rbf (dashed line) which indicates the base of

the funnel flow, rt,max (dashed line) and rt,min for our reference run (s1). Bottom - Evolution in time of the sonic Mach

number at the base of the funnel, ms(rbf), for run (s1).

column, namely Ṁa =
∫

S ρvp · dS = −4πR2
∗
∫

S ρvR sin θdθ. Surprisingly, it is found to converge
towards 0.91 10−9M�.yr−1 (see Fig. 52), hence a factor 10 smaller than the mean accretion rate in
CTTS. We will come back to this issue later. Now, if we insert this value in Eq. 35.104, we find
a theoretical truncation radius rt,th = 1.38, using ms = 1. This is off by 20%, which is not bad
considering our crude approximations of such a complicated problem.

Since β(rt) ∼ 1 is well verified, the main source of discrepancy in Eq. 35.104 is due to the
assumption of ms(rt) ∼ 1. This is too crude for an obvious reason. Indeed, the disc truncation
radius, as measured by the steep drop in density at the equatorial plane, is actually the point
where ur = 0, hence ms = 0. Figure 49 shows the evolution of the sonic Mach number ms
computed for run (s1) at rbf, which corresponds to the base of the funnel flow where the poloidal
magnetic pressure matches the poloidal ram pressure. It can be seen that rb f is larger than rt by
almost 30%. This is not surprising as it is necessary to first brake down efficiently material (rbf)
before being able to lift it up (rt). This is also illustrated in Fig. 50 where we plot the radial profile
of several quantities at the disc midplane: density ρ, angular velocities (real Ω and Keplerian
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Figure 50. Radial distributions of density ρ, angular velocities Ω (real) and ΩK (Keplerian) and sonic Mach number

ms = ur/Cs at the disc midplane, for run (s1) after 17 keplerian rotations. Notice the large accretion velocity in the

region of opened stellar field lines.

ΩK) and ms. Clearly, taking ms = 1 to derive rt,th is too crude. We find that using a value of
ms ' 0.45, namely close to the real value ms(rb f ) (see Fig. 49), provides a much better estimate
with rr,th close to rt with an accuracy better than 10%.

Although the simulations here do not take into account viscosity, we plotted for completeness
in Fig. 49 the evolution of the radius rt,max for run (s1). To do so, we assumed αv = 1 (thus
overestimating the viscous torque) and measured numerically q (see Sect. 2). As expected, r t,max
remains always significantly larger than the real truncation radius rt, which implies that criterion
A is not good enough. On the other hand, criterion B would give a truncation radius located
at rt = 0.3: no accretion column should have been observed at all in our simulations. Our
results clearly show that criterion B is not relevant. What about the criterion as expressed in
Equation (35.101)? We plotted in Fig. 49 the evolution of the radius rt,min given by this equation
and computed for run (s1). It turns out that it gives indeed a nice (though under-) estimate of
the real truncation radius rt as already pointed out by Romanova et al. (2002). This is because
the star disc interaction introduces a sharp decrease in both the disc midplane density ρ and
azimuthal velocity vφ = Ωr (see Fig. 50). However, as stressed in Sect. 1, while basically correct
such a criterion is useless as a predictive tool.

As far as the formation of funnel flows is concerned, we fully confirm the results of
Romanova et al. (2002) : these flows are indeed robust features of axisymmetric MHD
simulations. Their different boundary conditions on the magnetic field at the stellar surface,
namely a fixed normal component and free conditions for Bθ and Bφ, do not finally play any
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Figure 51. Simulation with the boundary conditions of Romanova et al. (2002) for the inner boundary, i.e. free

boundary conditions for Bθ and Bφ and fixed Br component.

significant role for the truncation of the disc and the formation of accretion columns (see Fig.
51). We have also done simulations with other values of the magnetic resistivity parameter αm
with no change in the truncation radius. Note also that Romanova et al. (2002) have included
viscosity in their simulations while we did not, with no significant difference in the location of
the truncation radius. To be more specific, using Eq. (35.104) with the higher accretion rate of
Ṁa = 9 × 10−8M�.yr−1 as measured by Romanova et al. (2002) at t=10, we find rt,th = 0.9 for
B∗ = 1.1kG using ms = 0.45, which is consistent with the truncation radius shown Fig. 16 in
Romanova et al. (2002) with a good accuracy. The initial condition in Romanova et al. (2002)
gives a very high accretion rate around Ṁa = 1.5 × 10−8 M�.yr−1 for αv = 0.02 and thus the
accretion rate with weaker magnetic field will give an accretion rate a bit greater. By assuming
a mean accretion rate of Ṁa = 6 × 10−8 M�.yr−1, we would find rt,th = 0.8 for B∗ = 630G,
rt,th = 0.6 for B∗ = 420G and rt,th = 0.4 for B∗ = 210G still using ms = 0.45 in good agreement
with their Fig. 16.

Furthermore, using Eq. (35.104) with the values provided by Kuker et al. (2003) one gets
truncation radii smaller than the inner radial boundary, which explains why these authors did
not find accretion columns. We are therefore confident on our main conclusion, that is the
validity of our criterion (35.104).
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Figure 52. Top - Evolution in time of the accretion rate Ṁa (dash dotted line), angular momentum flux transported by

matter L̇m (solid line) and by the magnetic field, computed for the closed L̇ f c (dash line) and open L̇ f o (dotted lines)

field lines. The units are normalized and the two hemispheres are taken into account.

§ 41.4. Angular momentum at the stellar surface

Let us now have a look at the fluxes of angular momentum, namely L̇m carried in by the infalling
material and L̇ f by the magnetic field

L̇m =
∫

S
ρΩr2vp · dS = −4πR2

∗

∫

S
ρΩr2vR sin θdθ

L̇ f = −
∫

S
rBφBp · dS = 4πR2

∗

∫

S
rBφBR sin θdθ (41.115)

To explicitly write these expressions we assumed that the surface element is directed inwards
with respect to the surface of the star. The flux carried by the magnetic field is the sum of that
carried by closed field lines and open field lines, namely L̇ f = L̇ f c + L̇ f o. It actually corresponds
to two possible electric circuits related each to two different electromotive forces. A positive flux
describes a positive torque acting on the star and leading to a spin up while a negative flux leads
to a spin down. The time evolution of these fluxes is shown in Fig. 52 for our reference run
(s1). Without surprise, the incoming angular momentum flux L̇m due to the accreting material is
positive but totally negligible with respect to that carried by the closed magnetic field lines L̇ f c,
which is positive as well: the accreting star is only being spun up.

When looking closer at L̇ f , it turns out that there is a negative magnetic contribution to the
torque due to the open field lines L̇ f o. This has been also previously reported in simulations and
is a natural outcome of the star-disc interaction (Long et al. 2005). We stress however that the
actual torque is not controlled and one should not take it at face value. Indeed, this region of the
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(A)

(B)

Figure 53. (A)-Sonic (dotted line), Slow-Magnetosonic (dashed line) and Alfvénic (dash-dotted line) Mach numbers

within the funnel flow along the same magnetic field line at t=10 as in Fig. 41. (B)-We represent the free-fall velocity

profile v f f , the transverse velocity to the funnel-flow vn, the Slow-Magnetosonic speed vSM, the poloidal velocity

parallel to the magnetic field vp and the Alfvénic speed vA.
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Figure 54. MHD invariants as defined in chapter 1 along a central magnetic field line in the funnel flow at t=17.

magnetosphere should be the locus of a stellar wind but the physics of its launching has never
been addressed so far.

§ 41.5. Relation between accretion rate and magnetic field topology ?

Finally, let us turn back to our result that the accretion rate Ṁa measured onto the star is about
10 times smaller than expected. In fact, B∗ and Ṁa were considered in Eq. 35.104 as independent
parameters. However, the mass inflow at the inner edge of the accretion disc is constrained by
the magnetic topology. Basically, the magnetosphere acts as a nozzle and the mass flow cannot
be arbitrary. In a strict steady-state analysis it would be imposed by the regularity condition
at the slow magnetosonic point. In our simulations, the flow reaches the slow point MSM = 1
above the disc at s ∼ 0.3 (see Fig. 53). Then, it remains supersonic with a maximum for the sonic
Mach number around Ms ∼ 3.5 but the funnel flow is always sub-Alfvénic with a maximum
Alfvénic Mach number MA ∼ 0.3 near the middle path between the stellar surface and the disc
inner edge. We show the location of the slow magnetosonic critical surface in Fig. 55 and remark
that this point is reached well above the disc and sometimes only in the inner parts of the funnel
when the magnetic field lines are too distorted by both the opening of the field and accretion.

In our simulations, we do not observe within the funnel flow an increase of density at the
stellar surface with respect to the density at the disc surface (see Fig. 56) and at best a similar
density for weak field but this field is really distorted. That is why the slow point is reached well
above the disk contrary to predictions of Koldoba et al. 2002. For stronger field (B∗ = 322G),
one has an increase in density by a factor 6 at the stellar surface as shown in Chapter 5. In
Romanova et al. (2002), they do not observe such an increase of density even for strong field
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Figure 55. Location of the slow magnetosonic surface within the funnel (blue dashed-dotted line) at t=9.4. We also plot

some magnetic field lines (black solid lines) and specially those at the edges of the accretion column (black dashed

lines) showing the distorted field. One can remark that the flow within the disc is super-slow and becomes sub-slow at

r<1.2 near the truncation radius at r=0.8. Material launching along the opened field lines becomes super-slow above

the disc near z ∼ 0.5.

of kG. In stationary models, ideal MHD conditions imposes conservation of mass and magnetic
flux within the accretion column and thus a constant κ = ρ

vp
Bp

for each field line which gives
ρ ∝ r− 5

2 by assuming a free-fall speed near the star. For typically rt = 3R∗, we expect an increase
of density around 14. We have in our simulations already constant mass load per magnetic
flux unit κ (see fig. 54 with also the other MHD invariants) but the velocity field is far from
a free-fall distribution (see fig. 53). This is really important to notice since one would have
specific constraints on observations by calculating resulting emission lines for instance. One can
also remark the temperature distribution within the funnel flow (Fig. 56) which shows a global
increase towards the stellar surface but a small decrease of it just above the disc corresponding
to an adiabatic cooling due to the local increase of the cross-section of the deformed funnel-flow.
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Figure 56. Evolution of density, temperature and angular velocity within the funnel flow along a central magnetic field

line

§ 41.6. Influence of resistivity on the truncation of the disc

We carried out other simulations with αm = 1 and αm = 0.. We finally obtain the same truncation
radius as shown in Fig. 57. This result is not a priori trivial since we can expect that lower disc
resistivity will magnify the magnetic torque, braking the accretion flow below the corotation.
However, matter has much difficulty to diffuse through the magnetosphere in this case and the
truncation radius position results from a fine balance between the toroidal force balance and the
less permeability of the magnetosphere.

The magnetic field in the funnel flow in the case αm = 1 is less disturbed by the accretion
within the disc with respect to the case αm = 0.1(see Fig. 58) since matter can better diffuse
across the magnetic field lines. We compute in this case the force balance along a central magnetic
field line inside the accretion column. Both gravity and pressure forces enable matter to reach
the stellar surface (Fig. 59) whereas one had a contribution of gravity opposite to the thermal
pressure at the funnel flow basis in the lower disc resistivity case. However, this configuration
with very high disc diffusivity and no viscosity causes quickly disruption of the disc due to
the accelerating magnetic torque which produced excretion of matter within the disc beyond
corotation till magnetic reconnection when poloidal field is too radially stretched. Actually, the
opening mechanism of the poloidal magnetic field line is reduced in this parameter regime and
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Figure 57. Same caption as in Fig. 49 with B∗ = 141G, P∗ = 5.1days and two different disc diffusivities characterized

by αm = 0.1 (green curve) and αm = 0. (red curve). The two runs converge towards the same truncation radius

rt ∼ 1.1.

thus there is no counterpart to the excretion like previously with low resistivity. Thus, we do not
develop a deep analysis of this configuration.

3. Conclusion

We have confirmed that the formation of accretion funnel flows is a robust feature of
axisymmetric star-disc interactions. We investigated the physical conditions required to produce
steady-state funnel flows onto a dipole and provided an analytic expression of the disc truncation
radius. We then used MHD simulations with VAC to show its validity.

Our theoretical expression rt,th relates the disc truncation radius with astrophysical
parameters such as stellar dipole field B∗, mass M∗, radius R∗ and accretion rate Ṁa. Although
it resembles the Alfvén radius (Elsner & Lamb 1977) sometimes invoked in similar situations
(Bouvier et al. 2007), it has been physically motivated on very different ground. It is shown
that it gives an accurate prediction of the real truncation radius as obtained in current 2D MHD
simulations of a star-disc interaction.

We report MHD simulations displaying accretion funnels with a weak stellar dipole field
B∗ ∼ 140 G from a resistive non viscous disc. In this case, the disc inner edge is found closer to
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Figure 58. Resistive MHD simulation for a 5 days period CTTS with B∗ = 141G and αm = 1 after t=10. One shows

the density distribution in the computational domain using a log scale as well as flow vectors and magnetic field lines.

Figure 59. Forces in normalized units within the accretion column near the disc surface in the case αm = 1. We can

remark that the gravity in this case is always negative since the dipole is less distorted by accretion.
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the star, below the co-rotation radius, in agreement with the size of inner disc holes. However,
the accretion rate onto the star which is imposed by the physics of magnetic accretion is measured
to be Ṁ ∼ 10−9 M�.yr−1. Even though this magnitude of accretion rate is found for some
T Tauri stars (see Gullbring et al. 1998), this result shows that it is necessary to have stronger
fields (by a factor of around 7) to have magnetospheric accretion for typical mean accretion
rates of Ṁ ∼ 10−8 M�.yr−1. On the other hand, the few circular polarization measurements
available provide an upper limit of 100-200 G for the dipolar component. However, recent
spectro-polarimetric observations coupled with magnetic field reconstruction conducted on 2
CTTS V2129 Oph and BP Tau provide higher dipole field component of 350 G and 1.2 kG
respectively (Donati et al. 2007,Donati et al. 2008). In any case, if the presence of kG dipole
fields around CTTS are indeed ruled out, the requirement of forming quasi-steady accretion
funnels imposes that the magnetic topology must be different. This is a firm result based on our
dynamical calculations. One then needs to consider other stellar magnetic field topologies such
as multipolar components and/or an inclined dipole configuration (Romanova et al. 2003; Long
et al. 2007). We can also remark that for FU-Or stars which have huge accretion outbursts with
Ṁa ∼ 10−4 − 10−6 M� yr−1 and assuming similar stellar field strength (Donati et al. 2005), we
expect from equation (35.104) direct accretion onto the star.

In this chapter, since there is no viscosity in our resistive accretion disc, we privileged a
situation where rt � rco in order to reach an open magnetic topology within the main part of the
disc. This made possible to have a braking torque feeding the disc even without viscosity. Apart
from the localized magnetic flux channeling the accretion funnel, the other stellar magnetic field
lines become causally disconnected from the disc. This forbids any disc-locking mechanism and
the star is being spun up as a consequence of accretion. We also report the non development of
X-winds despite the favorable topology. Both of these aspects deserve however a more detailed
analysis as they may depend on the disc resistivity. While the disc truncation radius remained
close to its predicted position for about 30 Keplerian periods at the disc inner edge, some
variability is obviously taking place. This is a very promising topic as veiling measurements
probing accretion onto the star do show variability on different time scales (Alencar & Basri
2000). But making longer simulations requires to assess the role of the turbulent viscosity in order
to allow for accretion within the disc beyond corotation for a more extended magnetosphere
configuration. Actually, an interesting next step will be to study the possibility of braking a
young star by this extended magnetospheric interaction or to find a disc-locking state as Long &
al. (2005) claim. We tackle this point in the next chapter, where we mainly concentrate on doing
a parameter space study of the star disc interaction by modifying the stellar rotation rate or the
stellar magnetic field including in these studies α type viscosity within the disc.
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In this chapter, we carry out a series of simulations to study the influence of the different
parameters of the star-disc system. The results of the previous chapter showed that for typical
T Tauri star parameters, we end up with rt < rco and a global spin-up of the star with a
quasi-stationary magnetospheric accretion. Here, we vary in particular the stellar magnetic field
strength B∗, the stellar rotation rate Ω∗ and the dissipative properties of the disc described by
both diffusivity η and viscosity ν, and determine their influence on the formation of funnel flows
and the resulting stellar accretion rate. One includes here the effect of viscosity within the disc,
an effect which was omitted in the previous chapter.

We first look at the accretor regime, where the truncation radius is smaller than the corotation
one, and show that the inclusion of viscosity introduces an oscillatory shift of the truncation
radius position for our accretion disc model. We also run a simulation with the initial condition
of Romanova et al. (2002) for sake of comparison with this reference work. Then, we try to find
an extended magnetosphere configuration where part of the stellar field remains connected to
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the disc beyond rco by increasing the disc resistivity. This would be required in order to obtain
a stellar spin-down. We also look closely to the relation between the stellar accretion rate and
the magnetic field strength and investigate the influence of other parameters such as the stellar
rotation rate which we did not take into account in our analytical criteria for the truncation
radius in the last chapter. Finally, we consider the propeller regime where the truncation radius
lies beyond the corotation one, and we found transient accretion columns as in Ustyugova et
al. (2006) and a global magnetic braking acting onto the star at least for the short timescales
explored.

1. Accretor regime (rt < rco)

§ 42. Role of viscosity

§ 42.1. Simulation with our accretion disc model

As soon as viscosity is taken into account, it is physically more consistent to alter the initial disc
used in chapter 4 in a way which already incorporates a consistent accretion flow. Therefore,
one includes in the initial condition the accretion flow due to our chosen viscosity parameter as
calculated analytically by Kluzniak & Kita (2000) for an adiabatic disc.

Besides, we use a different internal viscosity and diffusivity profile with a vertical cut-off
which follows the adiabatic sound speed of the disc called f3(x) in Chap. 3 in order to be able to
have a wider magnetic connection between the star and the disc. Actually, higher diffusivity at
the disc surface diminishes a bit the magnetic torques and we want to keep a magnetic Prandtl
number equal to one.

Under these slightly different initial and physical conditions, we perform various runs
with varying magnetic field strength. We discuss here a simulation with a 17 day period star,
B∗ = 141G and compare it with another magnetic field strength case B∗ = 703G, and always
with αm = αv = 0.1.

Contrary to the last chapter, we do not reach a stationary state for the magnetic field topology.
While we previously found a closed deformed magnetosphere restricted to the disc inner edge
and both opened field lines connected either within the star or within the disc, this time one
obtains a variable magnetosphere. First, it is compressed by the accretion but then extends
again because of the opening of the magnetic field corresponding to the ejection of a plasmoid
(see Fig. 60) along the 30◦ diagonal with respect to the disc midplane at t=15 as already seen
in Hayashi et al. (1996). This leads to a cycle of accretion/ejection phenomena on a longer
timescale. This phenomenon was already observed in Goodson et al. (1999) also in the case of
low disc diffusivity where the radial velocity is greater than the cross-field diffusion velocity of
magnetic field lines but here, we are in the accretor regime.

For the weak field case (B∗ = 141G) and with the timescale of our simulation, one observes
two complete cycles which each lasts 7 rotation periods with respect to the disc inner edge (see
Fig. 61). Our simulation ends when we see the beginning of a third one, with each time the
ejection of a plasmoid. One has only one complete cycle with a longer time of 10 periods for
the stronger field case (B∗ = 703G). We did not continue these simulations because of too big
rarefaction of matter within the corona which limits the time step. One can follow the variability
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Figure 60. Resistive MHD simulation with B∗ = 703G and αm = αv = 0.1. The density distribution is drawn, the black

lines show the magnetic field lines and the black arrows the velocity field. The white line in the initial condition indicates

the magnetic field line corotating with the star which has a period of 17 days. After the first dynamical accretion, we

observe the formation of a current sheet due to the expansion of the poloidal magnetic field with a strong ejection

linked to a strong deformation of the closed magnetosphere and then a new accretion phase with a powerful accretion

column. Finally, the magnetosphere is again deformed by both accretion and expansion of the magnetic field due to

the differential rotation.

of the disc inner edge by showing the evolution of the truncation position (see Fig. 62) and also
the variation of the stellar accretion rate (see Fig. 61).

Let us have a closer view to the evolution of the accretion rate in the inner parts of the disc
for the strong field case (see Fig. 63). On the one hand, one has accumulation of matter by a
factor 10 with respect to the initial disc density at the disc inner edge caused by accretion which
continuously deformed the magnetosphere till the opening of the magnetic field happens in a
region where β � 1. On the other hand, magnetospheric accretion happens with a different
accretion rate, thanks to the build up of the upward thermal pressure gradient. The opening
of the magnetosphere also entails some transient excretion in the disc. We conclude that these
cycles can occur periodically, even if one can notice that for the weaker case the period increases,
as on the simulated time interval we find decrease of the accretion rate, due to the decrease of
the magnetic braking in the outer parts of the disc with time.
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a

b

Figure 61. Variation of the stellar accretion rate with time for a weak field case (a: B∗ = 141G) and a strong one (b:

B∗ = 703G). First, one can remark the long term decrease corresponding to the relaxation of the strong magnetic

braking for the weak case, whereas one can see a reversed trend for the stronger case because the magnetic braking

timescale is longer as the initial truncation radius is further. Then, the period of the magnetospheric cycle is shorter

for the weak field case, namely it is around 7 periods with respect to the stronger case, where it is around 10 periods.

§ 42.2. Simulation with the initial condition of Romanova et al. 2002

For comparison with the previous and further parametric studies, we reproduce the initial setup
of Romanova et al. (2002) done in ideal MHD (αm = 0) and with a viscosity parameter equal
to αv = 0.02 for a stellar magnetic field strength equal to B∗ = 141G, a 10 days period star
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Figure 62. Oscillation of the truncation radius in presence of viscosity for B∗ = 703G. We clearly see a complete cycle

of the magnetosphere after the first dynamical accretion. One also sees a trend to a decreasing of the truncation

radius due to the effect of the magnetic braking which increases with the opening of the magnetic field in the disc

outer parts.

(Ω∗ = 0.19) which puts the corotation radius at R=3. The difference with the original work of
Romanova is that we use a weaker field and our boundary conditions.

As already remarked in Chap. 3, the accretion rate obtained with this disc structure is higher
than our own disc. The viscous disc has varying accretion rate with distance reaching Ṁ ∼ 0.1
at the stellar surface and even higher values at the outer edge with Ṁ ∼ 1. The normalization
for the accretion rate is the same as in chapter 3 i.e. 2.27 × 10−8M�yr−1. One obtains an accretion
column after one period at the disc inner edge and this accretion column remains during the
simulation (see Fig. 64) as in the original work of Romanova et al. (2002). One can remark the
greater accretion rate in the upper parts of the disc which causes advection of the magnetic lines
at this location as one has no diffusivity within the disc. As a result, one has a differential rotation
along a given field line between the footpoint anchored within the disc which rotates at a slower
rate than the part of the field lines advected inwards at the disc surface. Thus, a negative toroidal
magnetic field is built near the disc midplane which causes locally an excretion of matter. Then,
this leads to magnetic reconnection in the inner parts of the disc, disrupting it into two parts as
far as the magnetic field is concerned. The accretion column is feeding in mass by the upper
parts of the disc at later times. This phenomenon is well visible in Fig. 5 of the Romanova paper
that one shows here for sake of comparison (see Fig. 65) although it is seen at longer timescale
for the stronger field case presented there. For the same reason, the opening of the magnetic field
with the formation of a plasmoid is well visible at t=10 in our simulation. One can expect that
at longer times, the disc structure is rebuilt thanks to the dissipation of magnetic islands seen
at t=22.1. Our disc structure seen at the same timescales in chapter 4 or further in this chapter
shows a smoother evolution with a much ordered magnetic field within it.
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Figure 63. Radial profile of the accretion rate in the disc midplane for three different times showing the time-dependent

magnetospheric accretion for the strong field case. t=10 corresponds to the maximum of the first accretion phase,

t=15 show the end of this first accretion with accumulation of matter at the disc inner edge and finally one sees the

second accretion, which is more powerful due to the greater accumulation of mass.

By looking at the force balance along the central line within the funnel flow when it is well
established (Fig. 66), one clearly sees that the thermal pressure force lifts up matter as also found
in the results of chapter 4. One can notice the stronger effect with respect to our simulations
shown in chapter 4 of both the magnetic and centrifugal forces which prevent matter from being
loaded onto magnetospheric lines. This effect is caused by the excretion of matter in the disc
midplane which avoids the deformation of the magnetosphere by the accretion, an effect which
we clearly observe in our simulations. Besides these important differences, we find the same
trend one obtains in our simulation in Chap. 4 with opposite disc properties i.e. a high diffusivity
but no viscosity.

§ 43. Influence of resistivity on star-disc connectivity

One of the main trends in observations of YSO is the presence of slow rotators while there are
still accretion disc evidences (see Chap. 1). Theoretical models try to understand which physical
processes can extract the specific angular momentum to maintain a low rotation rate. In this
part, we focus on one possible mechanism which is the magnetic connection between the star
and the disc. In previous works, the dipolar magnetosphere connected to the disc was restricted
to the inner edge of the disc (Romanova et al. 2002, Long et al. 2005, Bessolaz et al. 2008)
and no extended magnetosphere is simulated yet. The goal of this part is to try to find such a
configuration.
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Figure 64. Ideal MHD simulation with the initial condition of Romanova et al. (2002) for a 10 days period CTTS

with B∗ = 124G and αv = 0.02. The density distribution is drawn and the black lines show the magnetic field lines.

The white line in the initial condition indicates the magnetic field line corotating with the star. One clearly obtains

an accretion column after 5 periods. Notice however the excretion in the disc midplane caused by the bending of

the magnetic field lines due to greater accretion at the disc surface. This finally produces reconnection in the disc

midplane when the field lines are too stretched radially which disrupts the disc into two parts.

Figure 65. We reproduce here a snapshot from Romanova et al. (2002) with the same parameters as in our simulation

except a stronger field strength with B∗ = 1100G. One can see the excretion in the equatorial plane and accretion in

the upper parts which distorts the magnetic field lines in the same way as in our simulation but less quickly as in our

weaker field case.
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Figure 66. Projection of the forces in normalized units along a magnetic field line in the middle of the accretion

column, at t = 10 for the simulation shown in Fig. 64. We represent the gravity FG, the centrifugal force FC, the

thermal pressure gradient FP, the poloidal magnetic force FM and the total force Ftot as function of the curvilinear

coordinate s. The disc midplane is located at s = 0.

In the previous chapter, we remark that one really has a restricted star-disc connection for
the resistivity parameter αm = 0.1 which always gives a spin up of the star in the accretor regime
(rt < rco). In order to connect the star to the disc on a significant spatial range, it is necessary to
reduce the differential rotation to avoid the opening of the poloidal magnetic field on dynamical
timescales. This can be obtained by considering a greater disc resistivity. Our ultimate goal is to
vary the disc resistivity such that a significant part of the stellar field remains connected beyond
rco. Test simulations show that this also demands a restricted spatial distance between the disc
truncation radius and the corotation one contrary to the case used in the last chapter to study the
formation of accretion columns. To illustrate that point, we show the changes from our reference
simulation done in Chap 4. by using larger dissipative effects within the disc (αm = αv = 1). Now
the accretion rate is greater (Ṁ ∼ 0.25) due to higher viscosity and the truncation radius is closer
to the star (rt ∼ 0.6) consistent with our analytical criteria found in Chap. 4. However, one still
quickly opens the magnetic field lines just outside the accretion column well below the corotation
radius (see Fig. 67). By fine tuning the ratio between the truncation radius and the corotation
radius, we find that a connection beyond the corotation radius is possible when r t/rco ≥ 0.75 in
addition to a high disc resistivity . One presents here a simulation with the same parameters as
above but with a stronger magnetic field (B∗ = 224G) which corresponds to a truncation radius
at rt = 1.3 with respect to the corotation radius at rco = 1.6. In this case, we achieve a transient
star-disc connection beyond the corotation radius till r=2.5 and a disc wind configuration further
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Figure 67. Resistive MHD simulation for a 4 days period CTTS with B∗ = 141G and αm = αv = 1. We achieve a

restricted star-disc connection limited to the funnel flow as in our reference simulation in Chap. 4 even though we

increase the disc dissipative effects by an order of magnitude. The visco-resistive parameters now reach their upper

limit of physically possible values for turbulence.

out (see Fig. 68). However, the disc is quickly expelled by the negative magnetic torque which
diffuses inwards till r=1.1, well below the initial corotation radius at r=1.6 (Fig. 69). This might
be a numerical artefact already seen in Long et al. (2005) and discussed in chapter 2. It probably
comes from the fact that at the stellar surface, field lines anchored at each side of the corotation
are really close and numerical diffusion of the toroidal field at this location can easily produce
this phenomenon. Future work is needed to convincingly prove the possibility to obtain a global
spin down of the star along field lines connected beyond the corotation radius by using greater
disc resistivity.

§ 44. Relation between the stellar accretion rate and the star-disc system parameters

§ 44.1. Effect of the stellar magnetic field strength

In this part, we want to explore in more detail the relation which links the accretion rate onto the
star with the stellar magnetic field strength in the accretor regime as we show in the last chapter
that these two parameters are not independent. To do this, we perform different simulations
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Figure 68. Resistive MHD simulation for a 4 days period CTTS with B∗ = 224G and αm = αv = 1. We achieve a

transient star-disc connection beyond the corotation radius till r=2.5 and a disc wind configuration further. On longer

times though, the disc is expelled by the negative magnetic torque which diffuses inwards till r=1.1 well below the

initial corotation radius at r=1.6.

by varying the magnetic field strength over a decade typically between 100 G and 1000 G, and
fixing all the other parameters and particularly keeping low dissipative properties for the disc
and a magnetic Prandtl number equal to one (αv = αm = 0.1). Each magnetic field strength fixes
a truncation radius given our initial accretion rate (Ṁ ∼ 0.01 i.e. Ṁ ∼ 3 × 10−10M�yr−1) and
taking into account that the dominating magnetic torque gives a higher accretion rate guessed
to be around 10−9M�yr−1 from Chap. 4. In order to maintain an accretor regime even for the
stronger field strength, we choose a 17.7 day period star (Ω = 0.1) corresponding to a corotation
radius fixed at 4.6. The best choice to study this relation should be with higher disc resistivity
where we expect a less dynamical evolution of the star-disc system. In such cases, one could
obtain a situation where the disc and stellar accretion rates are similar on a longer timescale
without oscillation of the system. However, we do not find such configurations and we rather
use more realistic low values for the visco-resistive parameters. Thus, we focus on the first
dynamical accretion by measuring the maximum stellar accretion rate. One expects basically that
the accretion rate onto the star will increase with the magnetic field strength since the magnetic
torque is increased without changing the other parameters considering the same position within
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Figure 69. Radial distribution of the toroidal field near the disc surface at t=2. We see the first reversal of sign for the

toroidal field at r=1.2 instead of its expected position at the corotation (r=1.6). Then, we have a negative field till the

magnetosphere is opening at r=2.2.

the disc. Besides, the normalization between the reference values of the system naturally gives
Ṁ∗ ∝ B2

∗.
To calculate accurately the accretion rate onto the star, one includes only the accretion within

the funnel flow by detecting the closed field line anchored at the truncation radius and the first
field line which is opened. The latter then locates the adjacent upper closed field line of the
accretion column for this weak resistivity parameter range, so that we thereby determine the
effective width of the accretion funnel. Actually, we realize that material in the magnetosphere
cavity and in the corona above the star can cause a discrepancy for the instantaneous global
accretion rate till 50 % when the mass flux is basically computed using the whole stellar surface,
as compared to the funnel mass flux only.

We report in Fig. 70 the maximum accretion rate measured for each run. One clearly sees
that there is a decrease of the stellar accretion rate when the magnetic field increases. Actually,
the stronger the field is, the further the truncation radius is and thus one has a lower magnetic
torque which is dominating for this low values of viscosity. Besides, by looking at the force
balance along a central field line in the funnel flow, one clearly sees that the thermal pressure
is really reduced in the stronger field case since the disc is colder at this position for the same
reason. Otherwise, the compression is similar in both cases.

We also measure the position of the truncation radius at this maximum accretion phase for
each run and compare it with our analytical criteria. To do that, we use our measurement of the
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B∗ Ṁ∗,max rt,min rt,th Cycle Ṁj,max Ṁd,min
(G) (2.27 × 10−8 period (2.27 × 10−8 (2.27 × 10−8

M�yr−1) 3R∗ 3R∗ 1.78 days M�yr−1) M�yr−1)

141 0.23 ± 0.02 0.5 0.6 7 0.09 0.07
286 0.15 ± 0.02 1.0 1.1 8 0.01 0.05
703 0.12 ± 0.02 1.6 1.8 10 < 3 × 10−3 0.05

Figure 70. A series of simulations with Ω = 0.1 corresponding to rco = 4.6, αv = αm = 0.1 and varying the magnetic

field strength B∗. One reports the maximum stellar accretion rate Ṁ∗,max, the disc truncation radius measured at

this time rt,min with comparison to the theoretical one rt,th, the magnetosphere cycle period observed , the maximum

ejection rate Ṁj,max and the disc accretion rate at the same time in the inner parts Ṁd,min.

stellar accretion rate. We find agreement with our analytical criteria better than 20 % (see Fig.
70).

We finally calculate the maximum ejection rate Ṁj,max above the disc due to the expansion
of the poloidal magnetic field line by computing the mass outflow through the outer edge of the
simulation box excluding 20◦ from the rotation axis. One founds a decrease of the ejection rate
when the stellar magnetic field increases. We explain this behaviour by the differential rotation
along a magnetic field line connected between the star and the disc which decreases when the
distance between the disc inner edge and the corotation decreases. Actually, a stronger field
gives a further out truncation radius from the star. Thus, ejection of plasmoids is less efficient
for strong magnetic fields going from 40 % for B∗ = 141G to lower than 3 % for B∗ = 703G. To
give a scale of comparison, one reports also the minimum accretion rate measured in the inner
parts of the disc at the outer edge of the funnel when ejection happens. The plasmoid ejection is
also more collimated towards the rotation axis for the weaker field case with a angle of 45◦ with
respect to the equatorial plane whereas the stronger case has an angle of 31◦.

Let us now have a look to the ejection happening in the outer region of the disc where the
stellar magnetic field has opened (see Fig. 71). In this region, the magnetic field lines are really
bent towards the disc verifying the Blandford & Payne criteria (1982). By looking at the velocities
along a magnetic field line anchored at r=2 for t=12, the flow reaches the slow and Alfvén point
but not the fast point because the field is below equipartition in this region.

§ 44.2. Effect of the stellar rotation rate

One can also test if the expression giving the truncation radius found in Chap. 4 depends on
the stellar rotation rate. Therefore, we make another simulation with a shorter 5 day period star
(Ω∗ = 0.35) keeping B∗ = 141G and (αv = αm = 0.1).

Fig. 72 shows a decrease of the stellar accretion rate by a factor 2 for a 3.5 times faster rotating
star. As the truncation radius is nearly the same for these two cases mainly imposed by the
magnetic field strength, this can be understood by the fact that the differential rotation between
the star and the disc inner edge is reduced for the faster rotating star. Actually, one can write the
generation of toroidal field using the Ohm’s law at the disc surface as :

B+
φ =

hrBz
η

(Ω − Ω∗). (44.116)
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Figure 71. Evolution along an opened magnetic field line anchored within the disc at r=2 (s=0 corresponding to

the disc midplane) of the Slow-Magnetosonic speed vSM, the poloidal velocity parallel to the magnetic field vp, the

Alfvénic speed vA, the Fast-Magnetosonic speed vFM and the transverse speed vn across the field line. One reaches

the Alfvénic point but not the fast one having a breeze-like ejection. The significant transverse velocity shows that one

does not have a steady state and that the weak field is distorted by the inner ejection of plasmoids.

Ω∗ Ṁ∗,max(2.27 × 10−8M�yr−1)) rt,min rt,th Ṁj,max(2.27 × 10−8M�yr−1))
0.1 0.23 0.55 0.64 0.10

0.35 0.12 0.60 0.77 0.05

Figure 72. A series of simulations with B∗ = 141G, αv = αm = 0.1 and varying the stellar rotation rate Ω∗.

This is confirmed by the ejection rate which is also reduced in that case in the same ratio.
By looking at the discrepancy between the measured truncation radius and our analytical

criteria, one can see that the stellar rotation rate has a clear contribution, which we did not remark
in the last chapter. The main reason is because here we are interested in the first accretion phase
with great accretion rate which enhances the differences. However, our analytical criteria still
predicts the disc truncation radius at better than 30 % in this critical transient which is acceptable.

§ 44.3. Effect of the magnetic Prandtl number

We finally carry out a simulation with a magnetic Prandtl number equal to 10 corresponding
to αv = 1 and αm = 0.1 and all other parameters fixed as previously (B∗ = 141G, Ω∗ = 0.1)
to see the influence of a highly viscous disc. This is clearly the configuration favoured for the
formation of an X wind with small disc diffusivity (Shu et al. 2007) allowing the concentration of
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Figure 73. Evolution of the stellar accretion rate with time for the case Pm=10. One obtains a greater accretion rate

at the stellar surface than for the Pm=1 case with higher dynamical disturbances in the evolution.

the magnetic flux within the disc at the disc inner edge. One obtains a higher accretion rate onto
the star (see Fig. 73) since higher disc viscosity brings more matter at the disc inner edge to feed
the accretion column and the stellar accretion rate reaches 0.28 with a truncation radius closer to
the star rt = 0.4. Otherwise, the ejection rate is reduced to 0.06 with respect to cases with Pm=1
and we do not have an X wind.

2. Propeller regime ( rt > rco)

The propeller regime corresponds to a state where the truncation radius is located beyond the
corotation radius rco such that we expect to have only magnetic braking torques acting onto the
star. In this situation, we expect not to have accretion columns since the magnetic field lines
connected beyond rco rotate quicker than the disc material and thus tend to accelerate matter
outwards. However, if the viscosity is sufficient to overpass the magnetic torque, we can wonder
if transient accretion is possible as it seems the case in Ustyugova et al. (2006). There are two main
ways to have such a situation. Firstly, we can consider a higher rate of rotation for the star nearer
the breakup speed which thus corresponds to a younger stage of formation. This is the way
explored by Ustyugova et al. (2006) and references therein. Otherwise, one can have a stronger
stellar magnetic field which disrupts the disc beyond rco because of the initial conditions of the
stellar formation for the system considered. One can also imagine transitions in time between
accretors and propellors depending on the variation of the accretion rate. An evolution scenario
could be that as the accretion rate tends to diminish during the star formation process, we can
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Figure 74. Resistive MHD simulation for a 4 days period CTTS (rco = 1.6) with B∗ = 476G and αm = αv = 0.1. We

are now in the case where the corotation localized by the white magnetic field line in the initial condition is below the

truncation radius (rt > rco) and the disc is initially pushed outwards by the accelerating magnetic torque. Ejection of

a plasmoid is seen at t=19.

go from a magnetospheric accretion system like in CTTS to a propeller system where accretion
is nearly absent like in WTTS.

§ 45. Dynamical evolution

We choose a star with a 4 day period which corresponds to a corotation at r=1.6 and a magnetic
field strength B∗ = 476G giving a truncation radius at r=2 assuming an accretion rate around
10−9M�yr−1. We choose an initial condition where the disc is initially truncated well beyond
the corotation radius in order to limit the transients in a region where β � 1 (see Fig. 74).
Actually, the magnetic torque accelerates disc matter in this regime and thus if we start with
a truncation disc too near the corotation radius, the disc is expelled further and we have to
compute for longer time to let the disc go back near the region where β ∼ 1. Thus, one has
an initial inflation of the magnetosphere. Then, the disc stabilizes close to r=2. The truncation
radius is always located at the equipartition between thermal pressure and magnetic pressure.
The transient funnel observed at the end of the simulation beyond the corotation radius does not
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reach the slow point and the poloidal velocity of the material at the stellar surface is around 40
% of the free-fall speed. The resulting stellar accretion rate is around 0.005.

§ 46. Ejection properties

Figure 75. Evolution in the propeller regime along an opened magnetic field line anchored within the disc at r=2.5

(s=0 corresponding to the disc midplane) of the Slow-Magnetosonic speed vSM, the poloidal velocity parallel to the

magnetic field vp, the Alfvénic speed vA, the Fast-Magnetosonic speed vFM and the transverse speed vn across the

field line. One reaches the Alfvénic point but not the fast one having a breeze-like ejection.

The ejection of material along the opened field lines reaches super-Alfvénic velocities (see
Fig. 75) and near keplerian velocities with respect to the footpoint of the considered opened field
line. The maximum ejection rate reaches 0.04 similar to the disc accretion rate showing that one
can have efficient ejection in this configuration. The ejection is produced with an angle of 30◦

with respect to the disc midplane.

§ 47. Angular momentum balance

As for the accretor regime in chapter 4, we compute the angular momentum fluxes transported
by both matter L̇m and closed L̇ f c or opened L̇ f o magnetic field through the stellar surface (see
Fig. 76). One obtains a global braking of the star for the timescale reached by the simulation
even considering only the closed field lines but one also clearly sees a decreasing of it near the
end of the simulation. Particularly, one expects that the accumulation of matter at the disc inner
edge brought by viscosity can lead to a shift of the truncation radius below the corotation one
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Figure 76. Angular momentum balance at the stellar surface for the simulation shown in Fig. 74. The angular

momentum brought by the accretion is always negligible. One observes a global braking of the star by the magnetic

torque, even if one excludes the effect of the opened field lines anchored into the star.

producing an accretor phase as discussed previously. However, when the inner part of the disc
below the corotation radius will be finished to accrete onto the star, one will have a new phase of
propeller with a global braking of the star. To maintain a propeller regime on long timescale, the
magnetic torque has to overpass the viscous torque beyond the corotation (r t,max > rco).

3. Conclusion

One has shown that viscosity introduces much variability in the star-disc system creating cycles
where the magnetosphere can periodically open, reducing the stellar accretion rate while the
ejection along a current sheet is enhanced. The increase of the magnetic field strength or the
stellar rotation rate lead finally to both reduced stellar accretion rates and ejection rates in the
accretor regime, due to a decrease of the differential rotation between the disc and the star.
However, we are not able to correctly compute a disc-locking state. Longer term evolution is
necessary to have a firm conclusion about the efficiency of the propeller configuration to brake
the star.





Conclusion

After having presented the observational context of accreting magnetized protostars such as
CTTS belonging to the low mass range, we have discussed some of the main theoretical ideas to
understand magnetospheric accretion. We showed to which extent it is possible to have a global
braking of a star from an extended magnetosphere anchored within the disc as function of the
truncation radius position with respect to the corotation one and the amount of disc dissipative
effects. Based on the inefficiency of this magnetic connection found in previous analytical mod-
els, one wondered if special configurations including ejection such as X wind (Shu et al. 1994)
or ReX wind (Ferreira et al. 2000) can solve this angular momentum issue. Next, we presented
an efficient way to compute the star-disc interaction using finite volume methods by explaining
their basics and introducing the VAC code used here to carry out simulations. We then went
back to previous numerical work to emphasize the recent knowledge acquired from simulations
but also their limitations. From this state of the art of the star-disc interaction, we presented the
MHD model we used in our simulations. We gave all details of a more realistic accretion disc in-
cluding both viscosity and resistivity and then which boundary conditions we choose for having
a correct description of the stellar magnetosphere, taking into account a splitting strategy for the
magnetic field to compute accurately the magnetic stress. The two following chapters presented
our results I now emphasize.

The first part of this conclusion focuses on the physical understanding of the truncation
of discs and the resulting funnel flows formation. An analytical and predictive criterion for
localizing this truncation radius in the accretor regime (r t < rco) was derived by assuming
equipartition between magnetic and disc thermal pressure at the disc inner edge and disc sonic
Mach number near unity. This criterion is predictive since the knowledge of the stellar accretion
rate and dipolar stellar magnetic strength is sufficient to constrain it with a high accuracy level
of better than 10 %. This was validated by MHD simulations with the VAC code and indeed in
analyzing again previous MHD simulations of the star-disc interaction (Romanova et al. 2002,
Kuker et al. 2003). The propeller case shows also the truncation of discs at equipartition. We
also observe oscillation of the magnetosphere due to the presence of viscosity in chapter 5 in the
accretor regime similar to those described in Goodson et al. (1999). Actually, the stellar accretion
rate is controlled by the dominant magnetic field which gives ms ∼ 1, whereas viscosity within
the disc gives smaller accretion rate with ms = αε. This triggers a time dependent magnetosphere
which can explain some of the variability observed in CTTS (Alencar & Basri 2000).

Accretion funnels are a robust feature of our simulations. Chapter 5 confirms the formation
of accretion columns for a variety of stellar magnetic field strengths, stellar rotation rates and
magnitude of disc dissipation effects. Only transient funnel flows are obtained in the propeller
regime. The formation of such funnel flows is also not too dependent on both boundary
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conditions at the stellar surface and the choice of the initial condition defining the disc structure
provided that the stellar magnetic field pressure can support the poloidal disc ram pressure.
However, an initial disc structure including a suitable accretion flow and diffusivity is essential to
have a smooth evolution with no long term transients to study on long timescales the properties
of the star-disc interaction. The disc thermal pressure gets enhanced at the disc inner edge by the
compression of the magnetic dipole, which lifts up matter into the closed stellar magnetosphere
whereas the poloidal magnetic force is always negligible and even pinches the disc material at
its basis and opposes the flow within the funnel. The material within the funnel is continuously
braked by the magnetic torque. This magnetospheric flow first reaches the sonic point with
Ms ∼ 3.5 and then attains a free-fall speed closer to the stellar surface thanks to gravity. However,
the accreted material is always sub-Alfvénic and thus boundary conditions on the stellar surface
can influence the accretion flow via magnetic torques. Particularly, in our simulations, we
always considered a perfect frozen-in magnetic field at the stellar surface but one can expect
that the convective motions can perturb the magnetic field lines. In turn, this can induce
Alfvén waves allowing extra heating within the funnel in addition to the dominant adiabatic
compression, which is necessary to explain in a consistent way the emission line properties in
spectra (Muzerolle et al. 1998).

In our simulations, we found truncation radii consistent with observational constraints
from large scale weak dipolar magnetic field (B∗ = 141G) and disc inner hole measurements
(rt ∼ 3R∗), but considered only the case of weak accretors (Ṁ ∼ 10−9 M�.yr−1). The bulk
of CCTS have accretion rates an order of magnitude greater, which leads to very small, unob-
served disc inner holes (Najita et al. 2007). Thus, this probably points to the necessity to have
stronger magnetic fields, implying more complex topology for these higher accretors. Anyway,
observations of periodic variability favour an inclined magnetosphere already simulated in 3D
by e.g. Romanova et al. (2003) and Long et al. (2007). Moreover, reconstruction from recent
spectro-polarimetric observations by Donati et al. (2007) show such multipolar components for
the stellar magnetosphere with possibly a strong dipole component.

As far as the stellar angular momentum balance is concerned, we found an anticorrelation
between the stellar accretion rate and both stellar magnetic strength and stellar rotation rate in
the accretor regime. Actually, for a given rotation rate which fixes the position of the corotation
radius, increasing the stellar magnetic field strength gives a truncation radius further out. This
latter is thus nearer to the corotation, which limits the differential rotation between the star and
the disc and the generation of toroidal magnetic field. Since the magnetic torque controls the
accretion at this location, the stellar accretion rate thus diminishes. In the near future, we have
to extend the timescale reached by our simulations to confirm these latter trends. Particularly,
finding a disc locking state as in Ghosh & Lamb (1978) is still challenging since numerically it
is difficult to correctly control the magnetic stress near the stellar surface in the case where the
truncation radius is close to the corotation one (0.77 < rt/rco < 1). The use of a lower diffusive
scheme as a Roe type one or the AMR version of VAC recently developed in spherical coordi-
nates offer possibilities to investigate this issue and obtain a firm conclusion. The work reported
in chapter 4 has lead to the conclusion that the star continuously spins up in the slow rotation
range as already shown in Romanova et al. (2002). However, chapter 5 shows that when we con-
sider higher stellar rotation rate for the same magnetic field, the stellar accretion rate is reduced
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and one seems to tend towards a disc locking state but with finally a faster rotating star with 1.8
day period. Actually, the closed magnetosphere is restricted at the disc inner edge and thus one
can not remove the stellar angular momentum via the magnetic field connected within the disc
beyond the corotation as in the Gosh & Lamb (1979) model of an extended magnetosphere. The
stellar rotation locking state obtained by Long et al. (2005) with the same restricted magneto-
sphere is caused by a kind of stellar wind as proposed by Matt & Pudritz (2005) since the stellar
braking is caused by the opened field lines connected to the star. Thus powerful stellar winds
seem to be the most promising way to explain the braking of young stars as recent observations
show evidences for them (Dupree et al. 2005, Kwan et al. 2007), but consistent MHD simulations
have to be done, controlling the mass loss rate at the stellar surface. We want to remark that even
thought we find powerful ejection events in the propeller regime with a global stellar braking,
the accretion phase is only a transient in this regime and can not explain the evolution of CTTS
which always present evidences of accretion. Finally, we found that a part of the initial specific
angular momentum within the disc is transported by the magnetic field but not totally as argued
by Ostriker & Shu (1995) or Li & Wilson (1999). Thus, this acts to increase the stellar angular
momentum although with a lower rate with respect to assumptions of Keplerian rotation con-
sidered in steady-state analytical models of e.g. Matt & Pudritz (2005).

As far as the ejection is concerned, we obtain breeze-like winds in our simulations and
powerful ejection events in the propeller regime. However, all the ejections obtained till now
from a pure stellar magnetosphere do not lead to collimated flows (see e.g. Elsner & Fendt
2000, Ustyugova et al. 2006 and the different simulations presented in this thesis) except in
Goodson et al. (1999). This is in contradiction with observations of narrow opening angles of
a few degrees beyond 50 AU (Burrows et al. 1996, Dougados et al. 2000). Actually, recent
observational data measuring both specific angular momentum and poloidal velocities reached
within jets are consistent with collimated jets from disc wind configurations (Ferreira et al. 2006).
That is why we recently add a disc magnetic field antiparallel to the stellar magnetic moment
and in equipartition with the disc thermal pressure to feed continuously the accretion column
and have a disc wind. Futhermore, the consistent simulation of such a configuration is really
interesting since until now launching of jets from Keplerian discs has always been obtained
without taking into account really the inner boundary due to the central object. In that case,
our preliminary results show a greater stability of accretion columns with reduced oscillations
since now the presence of ejection from the disc imposes higher accretion rate throughout it.
Moreover, the expansion of the magnetosphere with the ejection of plasmoids can be collimated
by the disc wind in this configuration. Finally, in all the star-disc configurations tested here
without including a proper disc magnetic field, we do not find formation of X winds, although
the ejection along the current sheet due to the opening of the magnetosphere can sometimes
mimic such a wind. This is particularly the case for the most promising scenario according to
Shu et al. (2007), namely a small disc diffusivity and high viscosity such that Prm ∼ r/h = 10
which allows the concentration of the magnetic flux at the disc inner edge to be efficient. The
inclusion of this extra disc magnetic field in the case of a low disc diffusivity can increase the
concentration of magnetic flux at the disc inner edge and could eventually be the support of an
X wind. This work is in progress.
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Conclusion

Après avoir présenté le contexte observationnel des proto-étoiles magnétisées et accrétantes
telles que les CTTS appartenant aux étoiles de faibles masse, j’ai discuté des principaux concepts
théoriques permettant de comprendre l’accrétion magnétosphérique. J’ai montré dans quelle
mesure il est possible d’obtenir au final un freinage de l’étoile à partir d’une configuration de
magnétosphère étendue ancrée dans le disque en fonction de la position relative du rayon de
troncation par rapport au rayon de corotation et de l’importance des effets dissipatifs dans le
disque. Compte tenu de l’inefficacité de cette connexion magnétique trouvée dans les modèles
analytiques antérieurs, on s’est demandé si des configurations particulières prenant en compte
les phénomènes d’éjection comme le vent X (Shu et al. 1994) ou le vent ReX (Ferreira et al. 2000)
pouvaient résoudre ce problème d’évacuation du moment cinétique. Ensuite, j’ai présenté une
manière efficace de calculer numériquement l’interaction entre l’étoile et son disque en utilisant
les méthodes de volumes finis en exposant leur fondement théoriques, et en introduisant le code
VAC utilisé dans cette thèse pour effectuer des simulations. Je suis revenu enfin sur les travaux
numériques antérieurs pour souligner les connaissances récentes apportées par les simulations
dans ce domaine mais aussi leurs limitations. A partir de cet état de l’art de l’interaction
étoile/disque, j’ai présenté le modèle MHD utilisé dans nos simulations pour traiter à la fois
un disque d’accrétion plus réaliste incluant viscosité et resistivité, et des conditions aux limites
choisies pour avoir une description correcte de la magnétosphère stellaire, en prenant en compte
également une stratégie de séparation du champ magnétique pour mieux calculer les forces
magnétiques. Les deux chapitres suivants présentent nos résultats.

La première partie de cette conclusion se concentre sur la compréhension physique de la
troncation des disques et de la formation des nappes d’accrétion associées. Un critère analytique
et prédictif pour localiser ce rayon de troncation dans le régime accrétant (r t < rco) a été dérivé
en supposant une équipartition entre pression magnétique et thermique dans le disque au bord
interne de ce dernier ainsi que d’un nombre de Mach sonique dans le disque proche de l’unité.
Ce critère est prédictif puisque la connaissance du taux d’accrétion sur l’étoile et de l’intensité
de la composante dipolaire du champ magnétique stellaire est suffisante pour le contraindre
à une précision meilleure que 10 %. Ceci a été validé par des simulations MHD effectuées
avec le code VAC mais aussi en examinant les simulations MHD antérieures de l’interaction
étoile/disque (Romanova et al. 2002, Kuker et al. 2003). Le cas du régime "‘propeller" (r t > rco)
montre aussi la troncation des disques à l’équipartition. On observe aussi une oscillation de la
magnétosphère en présence de viscosité dans le chapitre 5 dans le régime accrétant similaire au
mécanisme décrit par Goodson et al. (1999). En effet, le taux d’accrétion sur l’étoile est contrôlé
par le champ magnétique dominant dans les parties internes du disque qui donne m s ∼ 1 alors
que la viscosité dans le disque donne des taux d’accrétion beaucoup plus faibles avec m s = αε.
Ceci implique une magnétosphère dépendante du temps qui peut expliquer une partie de la
variabilité observée dans les CTTS (Alencar & Basri 2000). La formation de colonnes d’accrétion
est une caractéristique robuste de nos simulations. Le chapitre 5 confirme leur apparition pour
une variété d’intensité du champ magnétique de l’étoile, de sa vitesse de rotation et des effets
dissipatifs du disque. Par contre, dans le domaine "propeller", la formation de ces colonnes n’est
qu’un transitoire durant les périodes d’accrétion. La formation de telles colonnes n’est pas aussi
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très dépendante des conditions aux limites à la surface de l’étoile ou du choix de la condition
initiale définissant la structure du disque à condition que la pression du champ magnétique
de l’étoile puisse supporter la pression poloidale dynamique du disque. Pourtant, un modèle
de disque incluant initialement un écoulement d’accrétion et de la diffusivité est essentiel pour
avoir une évolution continue sans transitoire majeur pour étudier à long terme les propriétés
de l’interaction entre l’étoile et son disque. C’est le gradient de pression thermique amplifié au
bord interne du disque par la compression du dipôle magnétique qui soulève la matière hors du
plan du disque et la charge le long des lignes de champ de la magnétosphère fermée alors que la
force magnétique poloïdale est toujours négligeable et même compresse la matière à la base de la
colonne et s’oppose à son écoulement. La matière à l’intérieur de la colonne est continuellement
freinée par le couple magnétique. Cet écoulement magnétosphérique atteint tout d’abord le
point sonique avec au maximum Ms ∼ 3.5 et puis la vitesse de chute libre à proximité de la
surface de l’étoile grâce à la gravité. Cependant, la matière accrétée l’est toujours à une vitesse
sub-Alfvénique et ainsi les conditions aux limites à la surface de l’étoile peuvent influencer
l’écoulement d’accrétion en amont par l’intermédiaire des couples magnétiques. En particulier,
dans nos simulations, on a toujours considéré un champ magnétique parfaitement gelé à la
surface de l’étoile mais on peut s’attendre que les mouvements de convection perturbent les
lignes de champ magnétique ce qui peut induire des ondes d’Alfvén pouvant fournir une source
de chaleur supplémentaire dans les colonnes d’accrétion en plus de la compression adiabatique.
Ceci est nécessaire pour expliquer de façon consistante les propriétés des raies d’émission dans
les spectres (Muzerolle et al. 1998).

Dans nos simulations, on trouve des rayons de troncation consistants avec les contraintes
observationnelles qui sont les faibles valeurs pour la composante dipolaire du champ magné-
tique (B∗ = 141G) et les mesures de rayons internes des disques (rt ∼ 3R∗), mais en considérant
seulement le cas d’étoiles faiblement accrétantes (Ṁ ∼ 10−9M�.yr−1). La majorité des CTTS ont
des taux d’accrétion un ordre de grandeur supérieur ce qui conduirait à de très faibles rayons
internes de disques non observés (Najita et al. 2007). Ainsi, cela montre probablement la né-
cessité d’avoir des champs magnétiques plus forts impliquant une topologie du champ plus
complexe pour ces étoiles accrétant davantage de masse. De toute façon, l’observation de vari-
abilité régulière favorise les configurations avec magnétosphère inclinée comme simulée déjà en
3D par exemple par Romanova et al. (2003) et Long et al. (2007). De plus, la reconstruction du
champ magnétique à partir d’observations en spectro-polarimétrie par Donati et al. (2007) mon-
tre de telles composantes multipolaires pour la magnétosphère avec la possibilité d’avoir aussi
une forte composante dipolaire.

En ce qui concerne le bilan de moment cinétique pour l’étoile, on a trouvé une anticorréla-
tion entre le taux d’accrétion sur l’étoile et à la fois l’intensité du champ magnétique stellaire ou
sa vitesse de rotation dans le régime accrétant. En effet, pour une vitesse de rotation donnée
qui fixe la position du rayon de corotation, augmenter le champ magnétique stellaire éloigne le
rayon de troncation du disque. Ce dernier est donc plus proche de la corotation ce qui limite la
rotation différentielle entre l’étoile et le disque et donc la génération de champ magnétique toroï-
dal. Puisque le couple magnétique contrôle l’accrétion dans cette région, le taux d’accrétion à la
surface de l’étoile diminue. Très prochainement, on doit étendre les échelles de temps atteintes
par nos simulations pour confirmer les tendances précédentes. En particulier, trouver un état
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de "disc locking" comme décrit par Ghosh & Lamb (1978) est toujours un défi du point de vue
numérique puisque il est difficile de contrôler correctement les couples magnétiques à la surface
de l’étoile dans le cas où le rayon de troncation est proche de la corotation (0.77 < r t/rco < 1).
L’utilisation d’un schéma numérique moins diffusif comme celui de Roe ou de la version AMR
de VAC récemment développée en coordonnées sphériques sont différentes possibilités pour
étudier ce problème et obtenir une conclusion définitive. Le travail présenté dans le chapitre 4 a
mené à la conclusion que l’étoile est continûment accélérée dans le cas d’un rotateur lent comme
déjà montré dans Romanova et al. (2002). Pourtant, le chapitre 5 montre que quand on consid-
ère une plus grande vitesse de rotation pour le même champ magnétique, le taux d’accrétion
sur l’étoile est réduit et on semble tendre vers un état de “disc-locking” mais au final avec une
grande vitesse de rotation pour l’étoile avec une période de rotation autour de 1,8 jours. En effet,
la magnétosphère fermée est restreinte à proximité du rayon interne du disque et ainsi on ne
peut pas retirer du moment cinétique de l’étoile par l’intermédiaire des lignes de champ con-
nectées au disque au delà de la corotation comme dans le modèle de Ghosh & Lamb (1979) de
magnétosphère étendue. Le maintien d’une vitesse de rotation de l’étoile constante obtenue par
Long et al. (2005) avec le même type de magnétosphère restreinte est permis par un genre de
vent stellaire comme proposé par Matt & Pudritz (2005) puisque le freinage de l’étoile est provo-
qué par les lignes de champ magnétique ouvertes connectées à l’étoile. Ce mécanisme de vent
stellaire puissant semble la manière la plus prometteuse pour expliquer le freinage des étoiles
jeunes puisque de récentes observations montrent des preuves de leur existence (Dupree et al.
2005, Kwan et al. 2007), mais des simulations MHD consistantes doivent être effectuées en con-
trôlant le taux de perte de masse à la surface de l’étoile. Je veux faire remarquer que même si on
trouve dans nos simulations des épisodes d’éjection puissants dans le régime “propeller” avec
un freinage global de l’étoile, la phase d’accrétion n’est pas permanente dans ce régime et ne peut
pas expliquer l’évolution des CTTS qui présentent toujours des preuves d’accrétion sur l’étoile.
Par contre, ce régime peut expliquer l’évolution des étoiles plus jeunes de classe I. Finalement,
nous avons trouvé qu’une partie du moment cinétique spécifique initial à l’intérieur du disque
est stocké dans le champ magnétique mais pas totalement comme supposé par Ostriker & Shu
(1995) ou Li & Wilson (1999). Ainsi, cela participe à augmenter le moment cinétique de l’étoile
bien qu’à de plus faibles taux en comparaison des hypothèses de rotations Képlériennes faites
dans la plupart des modèles analytiques stationnaires comme par exemple celui de Matt & Pu-
dritz (2005).

En ce qui concerne maintenant les mécanismes d’éjection, nous n’avons obtenu que des vents
non permanents qualifiés de brises par opposition aux vents de disque, et des épisodes d’éjection
massives dans le cas du regime “propeller”. Pourtant, tous les phénomènes d’éjection obtenus
jusqu’à présent en considérant seulement une magnétosphère stellaire ne conduisent pas à des
écoulements collimatés (voir par exemple Elsner & Fendt 2000, Ustyugova et al. 2006 et les
différentes simulations présentées dans cette thèse) à l’exception de Goodson et al. (1999), ce qui
est en contradiction avec les observations de jets de matière avec des faibles angles d’ouverture
de quelques degrés au delà de 50 u.a. (Burrows et al. 1996, Dougados et al. 2000). En effet, de
récentes données d’observation mesurant à la fois le moment cinétique spécifique de la matière
et les vitesses poloïdales atteintes à l’intérieur des jets sont consistantes avec des jets collimatés
provenant de configurations de vents de disques étendue (Ferreira et al. 2006). C’est pourquoi
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récemment nous avons inclu un champ magnétique propre dans le disque dont la direction
est antiparallèle au moment magnétique de l’étoile et qui est en équipartition avec la pression
thermique du disque dans le but d’avoir une alimentation en masse continue pour la colonne
d’accrétion et de former un vent de disque. En outre, la simulation consistante d’une telle
configuration est très intéressante puisque jusqu’à présent le lancement de jets à partir de disques
d’accrétion Képlériens a toujours été obtenu sans prendre en compte les conditions aux limites
imposées par l’objet central. Dans ce cas là, nos résultats préliminaires montrent une plus grande
stabilité des colonnes d’accrétion avec des oscillations réduites puisque maintenant la présence
d’éjection provenant du disque implique de plus grand taux d’accrétion dans le disque. De plus,
l’expansion de la magnétosphère avec l’éjection de plasmoïdes peut être collimatée par le vent de
disque dans cette configuration. Finalement, dans toutes les configurations étoile/disque testées
ici, on ne trouve pas de formation de vents X (Shu et al. 1994) bien que l’éjection le long de la
nappe de courant causée par l’expansion de la magnétosphère peut dans certains cas évoquer un
tel vent. Cette absence de vent X est particulièrement frappante dans le scénario le plus favorable
d’après Shu et al. (2007) où une faible diffusivité dans le disque associée à une forte viscosité telle
que Prm ∼ r/h = 10 permet une concentration efficace du flux magnétique au bord interne du
disque. L’inclusion d’un champ magnétique propre au disque dans le cas d’une faible diffusivité
présente dans ce dernier peut accroître encore davantage le flux magnétique au bord interne du
disque et finalement pourrait être le moyen d’avoir un vent X puisqu’on n’en a pas trouvé la
trace dans les modèles prenant en compte uniquement la magnétosphère stellaire. Ce travail est
en cours.
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