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“....Ma tu dagli atomi freddi, cosa ti aspetti ?”

Fabiola, Roma 2008





Introduction

Multiple Scattering and wave localization

The propagation of waves, for example light waves, in a disordered media is an active
research area nowadays. The original scientific motivation came from an astrophysical
question about the properties of light radiated by interstellar atmospheres [1]. After that,
in general, wave propagation was studied in many fields of physics such as, for example,
acoustics, solid states (electrons in metal), geophysics (seismic waves in earth-crust), and
so on.

Generally, in a slab of thickness L, characterized by a mean free path ℓ, we define
the opacity (optical thickness) as b = L/ℓ. In multiple scattering regimes (b ≫ 1) wave
propagation is governed by the diffusion equation [2]. However, in the case of light, as well
as in the case of electrons, the quantum nature of the wave has to be considered. In fact,
in random media, interference can modify wave propagation (by reducing the diffusion
coefficient), and even lead to it vanishing completely, where the diffusion is suppressed
[3]. In this latter case, the wave function is localized in the media, and the phenomena is
known as Anderson’s localization.

A macroscopic criteria, in order to observe such localization, is expressed by the Ioffe-
Regel criteria [4]:

ℓ ∼ λ (1)

which gives a relation between the wavelength (λ) and the mean-free path (ℓ).

Particularly, such criteria requires a scattering medium with high spatial densities n,
and a high scattering cross-section σ (ℓ ∝ 1/σ n).

Photons traveling through strongly scattering media are an ideal model system with
which to study localization. This is because the photons are not charged and do not inter-
act with each other. In the optical domain, the experimental realization of such a dense
sample is very difficult but many ideas have been put forward and experiments carried out
to try to achieve this intriguing regime. In particular, we point to the experiment carried
out in 1997 [5], where the authors claim to have observed Anderson’s localization by using
semiconductor powder in 3D geometry. But the results were contested by proposing an
alternative interpretation which includes the absorption of the sample [6]. However, a
more recent experiment shows that close to the localized threshold, a modification of the
diffusion coefficient was observed by performing time-resolved photon transport [7] [8].
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Multiple Scattering and Cold Atoms

The effects of interference in wave transport can also be seen even in the diluted regime
(ℓ ≫ λ), called the weak localization regime, with the observation of coherent light
transport properties such as coherent back scattering (CBS), observable even with cold
atoms [9].

Nowadays, with more developed laser cooling techniques [10], we are able to trap
atoms, starting from a ”hot” vapour, in a Magneto-Optical Trap (MOT), realizing an
atomic sample which is controllable across a wide range of parameters.

The choice to use cold atoms to study multiple scattering, particularly for the ob-
servation of Anderson’s localization, is motived by the complete absence of absorption
and by the possibility of controlling the scattering properties of the sample including, for
example, the atomic cross-section.

In the case of cold atoms, with for example 85Rb, the Ioffe-Regel criteria impose a
spatial density of about 1013−1014 atms/cm3 in order to observe localization effects. This
means that one has to increase the atomic density by three or four orders of magnitude
compared to that obtainable in a standard MOT.

However, it is well known in the cold atom research community that multiple scatter-
ing has been a major limitation on the possibility of obtaining large phase space density,
and particularly high spatial density, in cold atomic traps. In fact, Bose-Einstein conden-
sation in diluted atomic vapors was only achieved after switching off all laser fields and
using evaporation techniques [11] [12]. Moreover, when the number of trapped atoms is
increased the light scattered by these atoms will modify the phenomena of light induced
forces. In this regime two competing effects have to be considered: an opacity effect,
which leads to a compression of the trap, and a repulsive radiation pressure, which tends
to increase the size of the atomic cloud. The model proposed by [13] predicts a constant
density n when more and more atoms are added into the MOT. This means that if we
want to increase the density, we need to ”control” the interaction induced by the scattered
light within the MOT.

Multiple Scattering and Gain

As we already mentioned, light can also be trapped in a disordered system due to multiple
scattering. In an active medium (with gain) the propagating light wave will travel along a
long random route before it leaves the medium, and will be amplified at every scattering
event. As we already observed, interference effects can survive random multiple scattering
(e.g. CBS or weak localization) and such an interference effect is still observable if we
introduce gain into the medium. Moreover, it is possible to observe that long, deeply
penetrating light paths become much more important with the introduction of gain. This
means that if we think of Anderson’s localization of light as closed loops made by the
light in an extremely strong scattering media, the introduction of gain can amplify such
a ”localized state”. Further, we can be confident that the presence of gain can allow us
to observe the pre-localized state. This justifies our interest in having an active sample,
with gain, to study new effects in the multiple scattering even though the localization
threshold is not reached. In order to do this we decided to use a pump-probe scheme with
our large cloud of cold atoms to pump energy into the atomic medium, and found a very
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large gain [14]. The investigation of unexplored regimes of cold atomic clouds, namely the
limit of very large numbers of atoms in the presence of quasi-resonant light, could also
be helpful in reaching the dense regime needed for the investigation of light localization.
This latter aspect is the main subject of this thesis.

Outline of the thesis

We will present the experimental set-up in Chapter 1. In Chapter 2 we will present a
detailed experimental investigation of size and density scaling laws for large magneto-
optical traps with up to 1010 atoms and identify a new mechanism which can limit the
density of the atoms in such a system. In Chapter 3 we will present the strategies used to
compress our atomic sample by up to two orders of magnitude with respect to a standard
MOT. This study was finalized to design new compression techniques to achieve high
spatial densities, in order to study localization effects of light in a dense cloud of cold
atoms.

However, before doing that, the pump-probe scheme provides us with the possibility
of investigating the Degenerate Four-Wave Mixing (DFWM) signal in a sample of cold
atoms. In Chapter 4, after a brief introduction of its theoretical aspect, we will present
the observation of a new effect, the red-blue asymmetry of the DFWM signal for high
intensities of the pump beams. This asymmetry can be explained as the spatial bunching
of the atoms in the nodes or antinodes of the strong standing wave of the pump beams.
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Chapter 1

Experimental Setup

In the following section, we will describe the Rb set-up used for the experiments performed
during this thesis.

The set-up has already been described in [9]. However, several items have been
changed. Therefore we will give more details of the present laser set-up, including the laser
cooling system, as well as the repumper laser, with a description of the MOT configura-
tion. In this part, we will also show all calibration curves used during all the experimental
measurements performed.
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Figure 1.1: Atomic levels of energy 85Rb, 87Rb. The transitions used for trapping and repumper
atoms of 85Rb are reported.
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1.1. THE LASER SYSTEM
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Figure 1.2: The diagram shows the typical double-pass arrangement for the acousto-optical
modulator (AOM). In such a configuration we shift the laser frequency by changing the frequency
of the RF field applied to the AOM without any displacement of the output laser beam.

1.1 The Laser System

The complex laser set-up, shown in Table (1.1) and described in the following sections,
was necessary to allow flexible time and frequency control of all lasers and to obtain the
relatively high power obtained for all beams. The high power is needed because of the
large beam waists used to trap a lot of atoms.

One additional advantage of this set-up is that intensity fluctuations are reduced by
the injection technique we use (the Master-Slave technique). In fact, the good spectral
quality of the Distributed Bragg Reflector (DBR) laser diodes, our Master frequency-
stabilized laser, is transferred into a more powerful laser diode (Slave), which follows the
frequency imposed by the Master. The typical Master-Slave arrangement is presented in
Fig. (1.1), and the frequency injection is checked by using a home-made confocal Fabry-
Perot (FP) Fig. (1.1). Frequency is controlled by double passing through an acousto-
optical modulator (AOM) as shown in Fig. (1.2).

After this brief presentation of the ideas behind the laser control we will present the
laser arrangement for both repumper and cooling lasers in greater detail.

1.1.1 Cooling laser

Cooling and trapping is performed on the D2 line of the Rubidium (5S1/2 → 5P3/2)
at wavelength λ = 780nm. To be precise we use the hyperfine cycling transition F =
3 → F

′

= 4. The laser light for this transition is obtained by a DBR diode (Yokogawa
YL78XN), with a nominal power of about 5mW and a line width of 2MHz. The laser is
frequency-stabilized on the cross-over transition of the saturated absorption, as we can see
in the Fig. (1.3). Then, it is frequency-shifted via a double pass acousto-optical modulator
(AOM1) roughly 80MHz on the blue side of the resonant transition F = 3 → F

′

= 4. As
we need more power for the trapping beams, we inject a slave diode (SDL5401-G1) which
provides us with more than 20mW . The injection is made by the geometric alignment
of a laser beam through the optical isolator of the slave. The operating range of such an
injection, monitored by a Fabry-Perot Fig. (1.1), depends on the slave temperature and
current. Even with the controlled temperature and stabilized current source we are using,
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1.1. THE LASER SYSTEM
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Figure 1.3: Signal of Saturated absorption used to obtain the derivative signal for laser sta-
bilization. We lock the MOT master-laser in the cross-over (CO24) between the F

′

= 2 and
F

′

= 4 transition, indicated by the arrow. This transition is about ∼ 90 MHz below the cycling
F = 3 → F

′

= 4 atomic transition. To calibrate the time scale, we used the difference between
the two cross-over (CO34and CO24), that we know are 31.7 MHz distant from each other, as
reported in the figure.

an injection might hold for only half an hour in the worst case, but might run all day
without readjustment under more stable conditions (e.g. less room temperature fluctua-
tions). The output of this slave is then passed through a tapered amplifier (SDL-8630-E)
Fig. (1.1). A second acousto-optical modulator (AOM2) Fig. (1.1), used in a single pass
configuration, is used to bring the frequency of the laser close to the resonant transition
F = 3 → F

′

= 4 of 85Rb and is also used as a switch (with a reduction of 10−4 in the
first diffraction order). A spatial filter (diameter of 100µm) Fig. (1.1), allows us to clean
up the transverse mode of the laser and we routinely obtain 180mW power after using
the spatial filter. Using polarizing cubes the laser is then split into 3 pairs of counter
propagating beams crossing into a 10 cm sized cubic vacuum chamber.

The 6 beams (not retro-reflected) have each been expanded by a telescope to a waist
of w = 2.4 cm before entering the vacuum chamber. We thus have intensities of about
1 mW/cm2 for each of the six beams.

The optimization of the number of trapped atoms had lead us to misalign the counter
propagating beams in some experiments. However, by very carefully adjusting the center
of the counter propagating beams we finally obtained an optimal trap with as many as
1010 atoms trapped.

As we use a time sequence where the second acousto-optical(AOM2) modulator is
periodically switched off (for the detection procedure), the polarization of the laser af-
ter this acousto-optical modulator can change depending on the applied time sequence.
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1.1. THE LASER SYSTEM

Therefore, the intensities of the 6 MOT beams have to be balanced very carefully. During
the period when we switch off the cooling and trapping beams (and the magnetic field
gradient as well), all the light passes without diffraction through AOM2 (Fig. (1.1)), and
is directed to a third acousto-optical modulator (AOM3) where we use the first diffraction
order as a probe beam. The single pass AOMs (AOM2 and AOM3) are used as switches,
and the frequency of the cooling and trapping beam as well as of the probe beam (dur-
ing the corresponding time period) is controlled via a double pass on the acousto-optical
modulator (AOM1). The frequency can be calibrated by looking at the displacement of
the transmission signal of the Fabry-Perot (Fig. (1.1)) as a function of the voltage applied
to the AOM1. Typically we found a calibration coefficient of 2.1 Γ/V olt.

1.1.2 Repumper

Lock

Scan Time (sec)

a.
u

0 0.002 0.004 0.006 0.008 0.01
0.9

1

Figure 1.4: The diagram shows the saturated-absorption signal for the repumper transition.
The repumper-laser is stabilized in a cross-over transition. Then we finely adjust its frequency
by looking at the maximum number of atoms trapped as we will see later on in Fig. (1.5).

As we perform the atomic cooling by using the F = 3 → F
′

= 4 slightly red-detuned
by ∼ 3Γ, as we already saw in the Sec. (1.1.1), we also have a probability different from
zero, to excite the F = 3 → F

′

= 3, which is an open transition. This latter transition is
responsible for the hyperfine ground changing state via a spontaneous Raman-Transition.
This transition happens for every 103 photons exchanged between the atom and the cool-
ing laser. Thus we need a repumper laser tuned, for example, to F = 2 → F

′

= 3′ to
’repump’ the atoms back into the F = 3 hyperfine ground state to be ready to be cooled
and trapped again.
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1.1. THE LASER SYSTEM
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Figure 1.5: The diagram shows the calibration of the repumper laser. The frequency shift
of the double-passing as a function of tension control, Fig. (b), is monitored by looking at the
Fabry-Perot transmission and we found a calibration coefficient of 1.39 Γ/V olt. The tension
necessary to be at resonance is found by looking at the atomic fluorescence obtained during a
’Dark-Phase’ of 2 ms with a large probe detuning of about δprobe ∼ −6 Γ, Fig. (a). By looking
at Fig. (a), we observe that the optimum repumper transition (F = 2 → F

′

= 3) corresponds to
a control tension in the AOM of about 8.71 V olt. A less favourable transition is also found for
a control tension of 1.12 V olt, which corresponds to F = 2 → F

′

= 2 atomic transition that is
about ∼ 60 MHz away from the F = 2 → F

′

= 3.

In the past we used several different lasers as repumpers. The present configuration
uses a master-slave configuration with a DBR master (Yokogawa YL78XNW/S) and a
SDL slave (SDL-5401-G1). The master laser is locked to a cross-over transition and
shifted, Fig. (1.4) by a double pass AOM (AOM4), before injecting the slave laser. The
output beam of the slave laser is passed through an AOM (AOM5) in single pass config-
uration allowing the possibility of switching the repumper laser on and off at will. We
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1.2. THE MOT

also inserted a half-wave plate and a polarizing cube (intensity control Fig. (1.1)), which
allowed us to change the intensity of the repumping laser, one of the techniques employed
to change the number of atoms in the MOT. The size of the repumping beam was also
increased by a telescope before entering the vacuum chamber and was limited by the size
of the lenses used to φ = 10 cm, providing a maximum intensity for the repumping beam
of Irep = 0.5 mW/cm2. We also placed a diaphragm at the conjugate position of the
MOT, allowing us to reduce the capture volume of the MOT without affecting the MOT
dynamics directly. We used a retro-reflection scheme for the repumper along one axis at
about 20 degree from the axis defined by the magnetic field coils.

1.1.3 Probe

The probe beam was obtained by using the first diffraction order of the acousto-optical
modulator AOM3 Fig. (1.1). As we periodically switched off the cooling and trapping
beams by the AOM2 Fig. (1.1), during the period when the MOT was off, all the light
passed through AOM2 without diffraction. Then, this light was sent into the AOM3. The
time duration of the probe could be set by controlling the duration of TTL applied to
AOM3, while its detuning was imposed by the double-passing AOM1 Fig. (1.1), which
could be changed independently of the MOT’s detuning, ranging between −4Γ and +4Γ.

1.2 The MOT

After we had realized laser stabilization for both the cooling and the repumper laser,
as described in the Sec. (1.1), and after the separation into three branches as shown in
Fig. (1.1), we again separated each branch into two others, to obtain the three counter
propagating pairs, for the σ− − σ+ configuration required for the Magneto-Optical Trap
(MOT), as shown Fig. (1.6).

The MOT was loaded from a room temperature vapor of Rubidium 85Rb atoms in a
cubic quartz cell sized 10 cm [15]. A system of vacuum valves connects the cell to an ionic
pump (25 l/sec) that allows a vacuum of 10−8 mbar inside the cell, and a reservoir of Rb.

The magnetic field gradient is obtained by two coils in configuration anti−Helmholtz.
We typically obtained a magnetic field gradient of about 10Gauss/cm with a current of
2 A with a relative tension of 6V olt. We were also able to switch off such a magnetic field
in about 50µsec.
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1.2. THE MOT

Figure 1.6: Photo of the Rb MOT (red spot) realized in the center of the vacuum cell .
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Table 1.1: In the figure we show the set-up arrangement used for cooling and trapping the atoms. Basically, the set-up is formed by three
main blocks. The block (a), shows the master-slave configuration used for the frequency stabilization of the laser MOT, we used the block (c)
as a power-amplifier that gave us sufficient power to produce six independent beams for trapping. First of all, the outgoing beam is split into
three beams (pair 1, pair 2, pair 3) and then each beam is split again into two more beams. Finally, the block (b) shows the master-slave
configuration for the repumper laser. More details for each block are given in the text.
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Chapter 2

Size Experiments

The first realization of a Magneto-Optical-Trap (MOT), where atoms are cooled and
trapped by using quasi resonant-light, was achieved at the end of the ’90s. We will briefly
review the physical process at the origin of such mechanisms. Several references on the
basic processes and physical mechanisms which govern atomic motion in laser-light were
studied [16],[17]. Here we will report only the main results and useful relations used
during this thesis. Starting from the simplest atomic model (a two-level atom) at rest,
we will review the light-induced forces, giving the expression for the radiation pressure
and dipole force. Then we will quickly pass through the description of the well-known
Doppler Cooling and end up with the role played by the structure of multi-level atoms.

2.1 Atom-light Interaction

In atom light interaction the laser field is assumed to be monochromatic with frequency ωL,
and can be described as a classical field dependent on time, after a unitary transformation
[18]:

~EL(~r, t) =
E0

L(~r)

2
(~ǫL(~r)e−iωLt−iφ(~r) + c.c) , (2.1)

where E0
L, ~ǫL and φ(~r) are respectively the amplitude, polarization and phase of the laser

field in the ~r position.
The atom-laser interaction is given in the dipole approximation, and is characterized by

Rabi frequency Ω, which is proportional to the scalar product of dipole moment matrix
(< e|~d|g >) and laser field ~EL(~r, t). The atom-vacuum field interaction is responsible
for the spontaneous emission of photons by excited atoms which is characterized by the
natural width Γ.

In the case where separation between internal and external degrees of freedom is
possible, we can adiabatically eliminate the fast internal variables and derive reduced
equations of motion for external variables. The evolution of the internal degrees of free-
dom is described by the Optical-Bloch-Equation (OBE). In a stationary regime, using
the Rotating-Wave-Approximation (RWA), which neglects the anti-resonant terms of the
interaction terms, and by solving the OBE, we can arrive at an expression of the force
acting on one atom at rest [16]. The total force can be resumed in the following way [16]
: an atom in a monochromatic light field with a frequency tuned close to an atomic reso-
nance ω0, experiences strong forces and large acceleration which can be used for slowing
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2.1. ATOM-LIGHT INTERACTION

down the atomic velocity. The force has two contributions: the conservative dipole force
arising from the energy shift of atomic states in a light field, and the dissipative radiation
pressure arising from momentum transfer and scattered photons.

In the following sections, we will review both forces, and give their expressions and
characteristics.

The radiation pressure

The expression of radiation pressure, for an atom at the position ~r and with a ~v = 0 is
given by [16] :

~Fpr =
~ Γ

2
~∇φ(~r)

s(~r)

1 + s(~r)
, (2.2)

where φ(~r) is the phase of electric field, δ = ωL−ω0 the laser detuning, s(~r) =
Ω2(~r)/2

δ2 + Γ2/4
is the saturation parameter and Ω(~r) the Rabi frequency where the atom is located.

In the simplest case, a plane running wave, the phase is φ(~r) = − ~kL · ~r, and Ω is
uniform and thus s. Then the Eq. (2.2) reads:

~Fpr =
~~kLΓ

2

s

1 + s
, s =

I/Is

(1 + 4 δ2

Γ2 )
(2.3)

where we observed that Ω2 is proportional to the intensity laser I and we usually express
I in units of saturation intensity Is. Also, it is useful to define the saturation parameters
for δ = 0 as s0 = I/Is = 2 Ω2/Γ2.

We observed that the force expressed by the Eq. (2.3), is proportional to photon
scattering rate Γ · σee, where σee = 1

2
· s

1+s
is the excited state population.

Finally, we concluded that the radiation force is simply related to the momentum
transfer ~~kL for each absorbed photon of the plane wave.

The dipole force

The second term of the total atomic force is given by:

~Fdip(~r) = −~ δ

2

~∇ s

1 + s
. (2.4)

This force is equal to zero for a plane wave because of Ω(~r) = const. It is related to
the intensity gradient and can be deduced from a potential in stationary regime [18]:

Udip =
~δ

2
log(1 + s) . (2.5)

In the limit of small saturation parameters ( s ≪ 1), and large detuning |δ| ≫ Γ, Ω,
Eq. (2.5) reads:

Udip =
~Ω2

4δ
. (2.6)
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2.1. ATOM-LIGHT INTERACTION

And for example, when δ < 0 the potential Udip has a minimum where the intensity is
maximal. This peculiarity can be used to trap atoms using Gaussian beams, with few
microns in waist, where we have the highest intensity, for a red-detuned laser.

2.1.1 The Magneto Optical Trap (MOT)

We will give a basic description of MOT by first introducing the Doppler-Cooling model,
used to slow down the atomic velocities, and indeed, we are neglecting dipole forces that
give rise to the well-known Sisyphus Effects [16]. Then we will explain how we obtained
the spatial confinement required for trapping the atoms.

Doppler Cooling

Doppler cooling was suggested in 1975 by Hänsch and Schawlow [19]. It is based on the

fact that the frequency laser is shifted for a moving atom by −~k · ~v. This fact should be
taken into account by replacing, in the Eq. (2.3), the detuning δ

′ → δ − ~kL · ~v. In a 1D
situation, we considered two counter propagating plane waves in Oz directions, and one
atom with a velocity vz. In the low saturation limit (s ≪ 1), the total force experienced
by the atom can be written:

Fz(vz) = ~ kL
Γ

2
(

I/Isat

1 + 4 · (δ−kLvz)2

Γ2

− I/Isat

1 + 4 · (δ + kLvz)2

Γ2

) . (2.7)

We can further simplify the expression (2.7) by taking the limit for small velocities
kLvz ≪ Γ, and writing it as a friction function:

Fz(vz) ∼= − γ vz , γ = −~ k2
L s

2 δ Γ

δ2 + Γ2

4

. (2.8)

The generalization in the third dimension is straightforward in the case s ≪ 1, where
the forces add independently to the three standing waves. But the result in Eq. (2.8),
and its generalization, is completely wrong in the case of large intensity.

Because of the important friction coefficient γ (for δ < 0), this type of cooling has been
called ”Optical Molasses”. If one changes the frequency of the laser to positive (δ > 0)
one will get a heating process (i.e. increasing of the atomic velocities).

In this approximation, the Doppler model leads to a zero velocity for all atoms. This is
because we are neglecting the fluctuations of the forces due to spontaneously emitted pho-
tons, which have random directions, and photon absorption processes, which depend on
the recoil velocity (~kL/M). These two effects both contribute to the diffusion coefficient
in momentum space Dp, responsible for the atomic heating.

The final temperature achievable in the optical molasses is a balance between the
heating and cooling mechanisms, and is related to Dp and γ via the following expression
[16]:

kB T =
Dp

Mγ
, (2.9)

where M is the atomic mass and kB the Boltzmann constant.
In the 3D generalization, we can show that [16] :
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2.1. ATOM-LIGHT INTERACTION

kB T =
~ Γ

4
(
2|δ|
Γ

+
Γ

2 |δ|) . (2.10)

The Eq. (2.10) has a lower limit in temperature. If we choose a δ = −Γ
2

the limit
temperature of the Doppler cooling TD can be written as:

kB TD =
~ Γ

2
. (2.11)

In the case of 85Rb the Doppler cooling limits give rise to TD = 140µK, with corre-
sponding mean velocity distribution v̄D = 0.1 m/sec.

This Doppler force can be useful for decelerating atoms but does not provide spatial
confinement and the atoms may quit the laser beams and be lost. The solution to this
problem is to generate a spatial restoring force, directed towards the trap center, by using
the Zeeman shift of the atomic frequency. Such an effect is achieved by applying an
external magnetic field gradient.

Spatial Confinement

The idea was proposed by J.Dalibard and then realized by S.Chu and is based on multi-
level atoms. In general, in the context of laser cooling, the term ”multi-level atoms” is
used to indicate the atoms with the degenerate Zeeman structure for both ground and
excited states. Let’s considerer the case of an atomic transition (J = 0 → J = 1 )
with the three times degenerate excited state. Then, the energy shift due to an external
magnetic field B is given by gJ mJ µB B, where µB = e~/2me is the Bohr magneton , mJ

is the projection of angular momentum along the direction of the magnetic field, and gJ

is the Landé-factor.
In the case of a standing wave with appropriate polarizations (σ+/σ−) and applying

the magnetic field gradient, with zero crossing in the trap center, we broke the symmetry
along the laser cooling beams. Thus, the atoms can distinguish between laser beam
directions. If the magnetic field can be written as B = (∇B)z, introducing magnetic
field gradient (∇B), in the direction of the standing wave as described above, we modified
the force acting on the atom adding the Zeeman effect. In fact, (in the case J = 0 → J = 1
transition with mJ = ±1, 0) the atomic detuning modifies in the following way:







δ
′ → δ ± gJµB (∇B) z

~
,mJ = ±1

δ
′ → δ ,mJ = 0

(2.12)

We note that the Zeeman shift plays a role in the Doppler effect on the optical molasses.
Thus, the expression of the total force is exactly analogous with Doppler cooling if we

make the substitution kLvz ↔
µ(∇B)z

~
, with µ = gJµB.

Due to the magnetic field gradient, we can introduce spatial dependence into the
expression of the force given by Eq. (2.7). With a limit of s ≪ 1 and considering a
linear approximation of around vz

∼= 0 and z ∼= 0, the force looks like that of a damped
harmonic oscillator:
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2.1. ATOM-LIGHT INTERACTION

Fz(vz, z) = − γ vz − κ0 z, κ0 = − 2 s kL µ b
′ δ Γ

δ2 + Γ2

4

(2.13)

that leads to a restoring force for a red detuning (δ < 0).
With such a description and in a low density limit, the mean extension of the MOT

can be deduced from its temperature by using the equipartition theorem in the following
way:

1

2
M v2

z =
1

2
kB TD =

1

2
κ 〈z2〉 . (2.14)

From the Eq. (2.14) in the Doppler limit with optimum detuning δ = − Γ

2
we found

that:

〈z2〉 =
~ Γ

κ

=
~ Γ

4 kL s µ b′
, (2.15)

and for the typical parameters of our MOT 85Rb, TD = 140µK, b
′

= 10 G/cm and
s = 0.5 we defined as standard deviation for the size σz =

√

〈z2〉 ∼= 15µm.
In this condition the MOT’s size is independent of the number of atoms and is only

limited by the temperature. Thus, in principle, if the temperature goes to zero, the density
can diverge. This means that we can set the density value as we prefer. Particularly, in
the case of 85Rb MOT, it is possible to obtain a temperature lower than TD, just by using
the Sisyphus cooling [20] to increase the density. This is because we are neglecting the
collective effects in the MOT.

The first manifestation of such effects in the MOT is the increase in its size when
more and more atoms are added. This is responsible for the transition between the
temperature-limited regime (TL), where the size is independent of numbers of atoms, and
the multiple-scattering regime (MS), where the atom-atom interactions are important,
and they start interacting with each other due to the scattering of the photons within
the atomic cloud. In the MS regime, the one-atom model is no longer valid. If we want
a reliable description for density behavior in a MOT we need to include such effects in a
possible model.

In the next sections, we’ll take an overview of the following effects: absorption and
re-radiation within an atomic cloud. We will also see how they can be combined together.

2.1.2 Re-radiation and Absorption: The Wieman model

When the number of trapped atoms is increased, the light scattered by atoms starts to
modify the light-induced forces. Two competing effects have to be taken into account: the
shadow effect [21], arising from the attenuation of the trapping beam, which compresses
the cloud; and the repulsive radiation pressure effect [22], which increases the size of the
cloud. The size of the atomic cloud is determined by the relative importance of these
effects. A standard MOT works in the MS scattering regime, where the re-scattering
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2.1. ATOM-LIGHT INTERACTION

process is more important than the attenuation. Consequently the size increases with the
numbers of atoms while the spatial density stays constant. In such a regime, the density
is limited to n ∼= 1010 − 1011cm−3.

Finally, to resume we can say that: the force acting on a trapped atom is made up
of three contributing forces. The first is the trapping force produced by laser beams and
the Zeeman shifts of the atomic energy. The second is the attenuation force, called the
shadow effect, due to atomic density. The last, the multiple scattering force, arises from
the atoms reradiating the absorbed photons which are subsequently scattered a second
time by other atoms. The physical origin of the two latter forces will be discussed in the
following paragraphs.

Shadow Effect

0−L/2 L/2

I

zz̃

σ+ σ−I+, ,I−

Figure 2.1: Shadow effects: The trapping beams are absorbed when travelling through the cloud
and this effect gives rise to a compressive force i.e directed towards the center of the MOT.

The intensity loss due to the scattering of light from a laser beam when it travels
through a sample of resonant atoms with atomic frequency ω0, and density n(z), in the
limit s ≪ 1 is given by:

dI

dz
= −~ ω0

Γ

2
s n(z) (2.16)

where for δ = 0 the Eq. (2.16) can be written as:

dI

dz
= −~ ω0 n(z)

Γ

2

I

Isat

= −σ0 n(z) I (2.17)

where we define the atomic resonant cross-section as σ0 = 3λ2

2 π
.

The general solution of the differential Eq. (2.17), for an incoming beam with δ 6= 0,
can be expressed by:

I(z) = I∞ e−σL

R z
−∞

n(z) dz , σL =
σ0

1 + 4( δ
Γ
)2

(2.18)
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2.1. ATOM-LIGHT INTERACTION

In the case of constant density n(z) = const = n0 for a slab with a thickness of L
(0 ≤ z ≤ L), with boundary condition I(z = 0) = I∞, we can write:

T (δ) = I(z = L)/I∞ = e−b(δ) (2.19)

where T (δ) is the transmission coefficient measured at the end of the sample. We define
the atomic optical thickness as the following quantity:

b(δ) = − ln(T (δ)) , b =

∫ +∞

−∞

σL n(z) dz . (2.20)

If the σL does not have spatial dependence, and for constant density in the slab, we
have b(δ) = n0σL(δ) L. The optical thickness can also be expressed as b = L/ℓ, where
ℓ = 1/σLn0 is the mean free path in the diffusing medium. In some sense, b measures the
number of diffusions made by the laser light before escaping from the medium.

Let us consider the 1D-model illustrated in Fig. (2.1), two plane waves respectively of
intensity I+ (I−) for the laser coming from the left (right) with respect to the atomic cloud.
Their intensities are attenuated by the optically thick atomic cloud. Such attenuation
leads to a local imbalance between the two counter propagating beams that produces the
so called attenuation force (shadow effects). The two unattenuated beams are assumed
to have the same incoming intensity I∞. The strength of the force associated with the
local intensity imbalance is found in the following way for δ = 0, and for atoms at rest:

Fshw(z) =
~kL Γ

2 Isat

(I+(z) − I−(z))

=
~kL Γ I∞

2 Isat

(e−
R z
−∞

σ0 n(z)dz − e−
R +∞

z σ0 n(z)dz) (2.21)

If we derivate the Eq. (2.21) with respect to z and then we make the limit of small
optical thickness b =

∫ +∞

−∞
σL n(x, y, z) dz ≪ 1 we obtain:

∂zFshw(z) = −2 · ~kLΓI∞n(x, y, z)σL

2 Isat

(1 − bz

2
) (2.22)

The generalization of the force in three dimensions is straightforward. By using the
same arguments, we find ∂yFshw(y), ∂xFshw(x), and the total force is given by the following
relation:

~∇ · ~Fshw = − 2
~kLΓI∞σL

2 Isat

n(x, y, z) (3 − bx + by + bz

2
) . (2.23)

Assuming spherical density distribution for the atomic cloud and small optical thick-
ness ( bx = by = bz ≪ 1) the Eq. (2.23) can be rewritten as:

~∇ · ~Fshw(r) = − 6
~kLΓI∞σL

2 Isat

n(r)

= − 6
σ2

L

c
I∞ n(r) , kL = ωL/c (2.24)

The negative sign of the divergence indicates that this attenuation force yields to a
compression of the atomic cloud.
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2.1. ATOM-LIGHT INTERACTION

Correction of the Spring Constant

As already mentioned in [13], when many atoms are added in the trap, the attenuation of
the trap beams can give rise to a slight reduction of the spring constant of the MOT. In
the following we will try to characterize this effect, and in order to simplify the discussion,
we will consider a 1D-model for a two-level atom.

As shown in Fig. (2.1), for small optical thickness (b =
L

ℓ
≪ 1), the force experienced

by one atom at rest, including the shadow effect, can be written:

Ftot(z) =
~ kL Γ I

2 · Isat

{1 − (z + L/2)/ℓ

1 + 4 · (δ−µz)2

Γ2

− 1 + (z − L/2)/ℓ

1 + 4 · (δ−µz)2

Γ2

} (2.25)

where we simplified the notation using µ =
µB(∇B)

~
. As usual, we linearized the force

around z ∼= 0 by taking the limit µ · z ≪ δ, and arriving at the expression for the force:

Ftot(z) ∼= −κ · z ,

κ = κ0{1 − b/2 − nσ0

8 δ µ/Γ2
} (2.26)

where κ0 is the spring constant for the ”one-atom” MOT, given by Eq. (2.13).

The correction to the spring constant, the
b

2
factor, can be neglected if

b/2 ≪ nσ0

8 |δ|µ/Γ2
. (2.27)

Eq. (2.27) with b = nσL L leads to a condition for the magnetic-field gradient (∇B):

b
′ ≪ [1 + 4(δ/Γ)2] Γ2

~

(4 |δ|µB) L
(2.28)

For our typical parameters of MOT, i.e L = 10−3 m, and δ = − 2Γ this condition is
completely verified.
At the end this correction to the spring constant has to be taken into account only when
we deal with magnetic field gradients of the order of 102 G/cm.

Multiple scattering

In a laser field of intensity I, an atom absorbs and subsequently re-radiates energy at a
rate of Pdiff = σL · I. Thus, the intensity of light radiated by one atom at the position
of a second atom located a distance d away is:

Idiff =
IσL

4πd2
. (2.29)

The multiple scattering force for two atoms is
Idiff

c
〈σR〉, where we indicate with 〈σR〉

the average absorption cross section for re-scattered photons. In general, the frequency of
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d

〈σR〉

σL

Fms

Figure 2.2: Multiple-Scattering Force: when a photon is ’scattered’ by an atom it can be
reabsorbed by another atom with a different cross-section 〈σR〉. These processes give rise to a
repulsive force between the atoms within the atomic cloud.

the reradiated light is different from the incident light because of frequency redistribution.
In the high intensity limit, 〈σR〉 is different from the absorption cross section σL because
the fluorescence spectrum for an atom is formed by three components called Mollow’s
Triplet [23]. The complete expression for 〈σR〉, in the high intensity limit, can be found
in the appendix A. Here we will give just an approximate expression in the limit of
|δ| ≫ Ω ≫ Γ for the difference between the two cross sections, and we get :

〈σR〉 − σL
∼= σ0

Ω2

8 · δ2
(2.30)

Using Eq. (2.29) the multiple scattering force for two atoms at a distance from each
other of d, can be written as:

Fms =
〈σR〉 σL I

4 π c d2
. (2.31)

To generalize to an arbitrary distribution of atoms, we consider that an incident pho-
ton is unlikely to be absorbed and emitted more than twice by atoms in the MOT (double
scattering approximation). In such an approximation we can write the following expres-
sion for Fms:

~Fms(r) =
〈σR〉 σL

4 π c

∫

I(r
′

)n(r
′

)
r − r′

|r − r′|3d3r
′

. (2.32)

Like in electrostatic, we can use Gauss’s law to obtain a differential equation for Fms(r),
with the assumption that absorption of the beams in the MOT is small.

Let us consider a surface S, with an element of surface area ~dS which contains the
atomic density distribution n(r). We define r as the point connecting the center of atomic
distribution and one point on the surface. Then, Fms(r) at that point r, can be rewritten
as: ∮

S

~Fms(r) · ~dS =
I 〈σR〉 σL

c

∫

V

n(r)d3r , (2.33)

where V is the volume enclosed by S.
Then, by using the divergence theorem, we obtain:
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∫

V

(~∇ · ~Fms(r) − I

c
〈σR〉 σL n(r)d3r) dV = 0 . (2.34)

and because Eq. (2.34) is independent of the particular choice of Volume (V), we arrive
at the differential form of Eq. (2.33):

~∇ · ~Fms(r) =
I

c
〈σR〉 σL n(r) (2.35)

The form of the divergence of Fms is similar to that found for Fshw but, in this case,
with the opposite sign. This means that the Fms force expands the atomic cloud. We
can note that the multiple scattering is a Coulomb-like force: proportional to r inside the
atomic cloud, and decreases like 1/r2 outside.

Steady state regime in the small optical thickness regime (b ≪ 1).

The three forces (and their divergences) discussed above, neglecting the correction to the
spring constant, will now be combined to form the total force acting on the atoms in the
MOT.

~∇ · ~Ftot(r) = ~∇ · (~Fms + ~Fshw + ~Ftrap) = 0 (2.36)

From that relation we can have an analytical expression for the upper limit of the
density achievable in a MOT.

If we get the total intensity as I = 6I∞, (because we have six independent beams),
we end up with an equation like this:

6
I∞
c

(σL)2 ncw(〈σR〉 /σL − 1) − 3κ0 = 0 (2.37)

In Eq. (2.37) the spring constant κ0 can be deduced from a trapping model Eq. (2.13),
that can be supposed to be described by a Doppler model that takes account of degenerate
atomic structure.
In Eq. (2.37), where the density (ncw) is constant, the only unknown parameter is η = 〈σR〉 /σL,
which depends on the properties of reradiated light that can have spectral distribution
different from that of the laser light.
In the situation where 〈σR〉 6= σL, the density can be written:

ncw =
κ c

2 I∞ σL(〈σR〉 − σL)
(2.38)

that can be rewritten as :

ncw =
κ0

G3

, G3 = 2
I∞
c

(η − 1) (2.39)

where we introduced an effective interaction term G3 between the trapped atoms, as a
function of the η parameter.

This is called the Wieman model [13]. The model gives us an upper limit for the
atomic density that does not depend on the number of atoms but only on the trapping
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Figure 2.3: Figure showing the size vs. number of atoms taken from the reference [13]. The
inset shows a discrepancy of experimental observation (dot points) with respect to the model

N
1/3
at , proposed [13], when the number of atoms became of the order of 5 107.

parameters. That is equivalent to saying that the cloud’s volume increases linearly with
the number of atoms (Nat) trapped in the MOT.

The Wieman model is well validated in the regime of Nat < 5 ·107. However, deviation
from that model has been observed experimentally in the limit of large atomic clouds (108)
Fig. (2.3).

The experimental results presented in Fig. (2.3) seem to indicate the existence of a

new regime, where the scaling law for the size(L) is L ∝ N
1/2
at . One possible explanation

has been proposed in reference [13]. The new regime occurs when the growing of the
atomic cloud is made a constant optical thickness b. In such a situation, the MOT adapts
itself to have a constant optical thickness.

With our set-up, we were able to observe the same behavior when the number of atoms
rises above 109. The measured evolution of the atomic size L is reported in FIG. (2.4).
Even though the two experiments are showing the same qualitative behavior, they cannot
be compared directly to each other. As we will describe more precisely in the experimental
set up sections, the experiments were made with different protocols.
Data shown in FIG. 2.3, are gathered by looking at the total fluorescence and the size
defined as the FWHM of the fluorescence recorded with a CCD. Also, during the probe
phase, the magnetic field gradient is always kept on. This can lead to a more involved
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Figure 2.4: Experimental data for the size as function of Nat is given. Indeed, an evident new
regime for the size is observed with our set-up. This might be in agreement with the observation
made in [13].

theoretical discussion, including the spatial dependence on the absorption cross section
(Zeeman shift). That is why, in order to simplify things, we decided to do more ”clean”
experiments where, during the probe phase, only the probe is present.

The confirmation of N
1/2
at regime in our MOT can be one possible limitation on achieve-

ment of high atomic density. In fact, if we suppose that the new regime appears when
the optical thickness of the MOT is constant,(b = nσLL = const) the consequence would
be a decrease in density. Therefore, its highest value is not reached at maximum Nat.

A complete understanding of N
1/2
at regime, and its behavior as a function of the con-

trol’s parameters, may help us towards the best, or at least, a correct starting point for
the following compression stage if we want to compress the atomic cloud.
In the following subsection we will list possible effects which can contribute to density
limitation.

Taking into account the correct spring constant

As we already saw we can include the corrections of spring constant as mentioned in
Sec.(2.1.2) in the complete model. We can show that, for one atom at rest, in 1-D
configuration, after the force presented in Eq. (2.25) Sec.(2.1.2), including the multiple-
scattering terms (MS-term) (in approximation of double-scattering) and with the same
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Figure 2.5: Typical MOT profiles are shown for the three spatial directions. The profiles are
obtained for standard MOT parameters with a total number of trapped atoms of about 1010.

notation, the multiple scattering force reads:

Fms(z) = η
b · z

(L/2) {1 + 4 · (δ/Γ)2} (2.40)

where, again, η = 〈σR〉 /σL and b = nσ(δ) L is optical-thickness. If we include such a
term for the linearized-force around the trap’s center and for b ≪ 1, we end up with the
following expression:

Ftot(z) = −κ0{1 − b/2 + (η − 1)
(Γ2 + 4δ2)

8δµL
b · z} . (2.41)

When we look for the steady-state, we find that the following condition has to be fulfilled:

1 − b/2 + (η − 1)
(Γ2 + 4δ2)

8δµL
· b = 0 (2.42)

But still, the model takes into account the correction to the spring constant which gives
rise to a constant density:

n0 =
8 |δ|µ

σ0 Γ2(η − 1)
, (2.43)

that corresponds exactly to the CW-model.
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Figure 2.6: Figure shows the typical loading time of the MOT with standard parameters. The
line fits the recorded fluorescence via Eq. (2.45). From the fit we extract a ∼ 3 sec life-time.

Cold Collisions limiting atomic density

In our set-up, the trap is loaded continuously from the background room-temperature
atomic vapor, with a loading rate L (atoms/sec). The evolution of the total number of
atoms trapped can be written as [24]:

dN

dt
= L − γ · N − β ·

∫

n2(r, t)d3r , (2.44)

where n(r, t) is the atomic density, and where we have taken into account two types of
loss process: collisions with room-temperature background atoms which occur at rate
γ (proportional to both Rb(PRb) and residual vacuum-pressure Pvac), and the collisions
between trapped atoms (cold collisions). They can impact each other and have enough
kinetic energy to allow them to escape from the trap.

The loss rate of the trapped atoms increases quadratically with the atom density n
and is characterized by a trap loss β term. In fact, β accounts for two-body losses, i.e
two atoms are lost in the trap for each collision. In the limit of low spatial density, where
we can neglect the cold collision, the general solution of Eq. (2.44), with the condition
N(t = 0) = 0 is given by:

N(t) = N∞(1 − e−γt) (2.45)

and the stationary solution N∞ =
L

γ
. If Pvac ≪ PRb the N∞ is independent of the pressure,

(L ∝ PRb and γ ∝ PRb + Rvax). However, the life-time τ = 1/γ, which is also the time
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2.1. ATOM-LIGHT INTERACTION

taken to fill the trap, does depend on pressure. The general expressions for the two
coefficients L and γ can be computed by using kinetic theory for a room-temperature
gas [25]. We assumed the loss-rate due to collisions between trapped atoms and room-
temperature atomic background to be γ = ρ0 · σrb−rb · vrms where σrb−rb ∼ 10−13 cm2,
and ρ0 is the density of background gas, and vrms ∼ 236 m/s is the root-mean-square of
the Maxwell Boltzmann velocity distribution.

The measured γ = 0.3 s−1 corresponds to an indicative pressure of PRb = 0.9 ·
10−9 mbar, in the science cell. This value is in complete agreement with another kind
of measurement: the transmission of a resonant atomic beam through the cell. If we
define Tcell as the transmission on the cell’s MOT over a distance Lcell, and Tref as the
transmission in a reference cell of length Lref , we can deduce the following relation be-
tween the two relative pressures:

Pcell

Pref

=
ln(Tcell)

ln(Tref )
· Lref

Lcell

. (2.46)

By computing the Eq. (2.46) with Lref = 35 mm, Tref = 22 %, for the reference
cell, Lcell = 463mm Tcell = 2.2% for the science cell, using the results of ref ()for Pref =
3.8·10−7 mbar, we end up with a ’hot’ pressure for Rb of about Pcell = PRb = 0.7 10−9 mbar.

Suppose now that we cannot neglect cold collisions. Thus, we need to solve the
complete Eq. (2.44) supposing a constant density n0. Hence, the evolution of total number
of atoms in the MOT is found to be :

N(t) = N∞(1 − e−(γ+β n0) t) . (2.47)

The only unknown parameter is then the cold collision coefficient β.
There are several ways to measure such a term. For example the easiest could be

done either by monitoring the time evolution of the number of trapped atoms [26] or
by illuminating the atomic cloud with the light from a ”catalysis” laser to increase the
collisions rate without affecting the operation trap [27].

In the case of Rb-atom, we can find in reference [28], for our parameters and the same
isotope (85Rb), the measured β = 2 · 10−12cm3 · s−1. In order to be limited by cold
collision, we need to fulfill the condition γ ∼ β n0. In our case, we measured a maximum
density’s value of n0 ∼ 1010cm−3 and γ = 0.3 s−1, thus we are in the regime β · n0 ≪ γ.

We can conclude that, in order to be limited by cold collisions, we need to reach a
density of about n0 ∼ 1012 cm−3.
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2.1. ATOM-LIGHT INTERACTION

Alignment of the Trapping Beams.

Figure 2.7: Spatial atomic distribution is shown in the case of misalignment of the trapping
beams. Even with few atoms in the trap, clumps of rotating atoms around a nucleus can be
produced, giving rise to a Saturn-like image. Approximate size of the atomic cloud is about
1 cm.

It is well known [22], that a misalignment of trapping beams can yield to an atomic
clump rotating around a central core. This effect can be easily seen, and can be another
possible limitation of the density. In fact, in such as situation, one more term acent r
(centripetal-like acceleration) has to be added. This force, directed out of the atomic
cloud and responsible for the stable orbit-generation, can be added to the total force
experienced by the trapped atom in the following way:

F (r) = −κ0 r + G3 n r + acent r . (2.48)

Eq. (2.48), in the equilibrium situation, gives a maximum density

n0 =
κ − acent

G3

< nCW (2.49)

where ncw is the density in the CW-model without accounting for this effect.
On the whole, as shown by Eq. (2.49), the misalignment of trapping beams could

decrease the atomic density and that is why particular attention has to be taken in order
to avoid such an effect.

During all the experiments presented in this thesis, the trapping beams were well
aligned.
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2.1.3 The Wieman-Pritchard Model
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Figure 2.8: Theoretical prediction given by the Wieman-Pritchard model. For p ∼ 0.01, we
observe a transition between the TL-regime and MS-regime for which the highest density is
obtained.

So far we have learned that the main limitation to obtaining high atomic density in the
cloud is due to multiple scattering. This is one evident limitation to obtaining degenerate
gases like Bose-Einstein Condensate (BEC) in standard MOT.

Over the years, many efforts have been made in order to circumvent such a limitation.
The most important attempt to overcome this problem was proposed in reference [29]
where for the first time a new type of MOT was proposed and obtained. It consists of
a confinement of atoms predominantly in a “dark” hyperfine level (for 85Rb F = 2) that
does not interact with the trapping light. This leads to much higher densities because
repulsive forces between atoms, due to multiple scattering, are reduced. As reported in
the original paper: “..in such a trap, more than 1010 atoms have been confined to densities
approaching 1012 atoms/cm−3” for the Sodium atom.

In reference [29], a generalization of the Wieman-model was presented including a
“dark” and “bright” hyperfine ground state. We will call such a generalization the
Wieman-Pritchard model. In this new model a new parameter p = N3

N3+N2
is introduced

where p gives the probability that an atom is in the bright hyperfine state. Thus, both
trapping and multiple scattering forces modify in the following way:

FT (r) = −κ p r ,

Fms(r) = G3 n p2 r (2.50)

In the steady-state regime, we have |FT | = |Fms|, and this gives the following expres-
sion for the density:
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n =
n0

p
, n0 =

κ

G3

. (2.51)

We note that for p = 1, we recover the Wieman model. If we are able to set a p ∼ 0.01,
the density can be enlarged by two orders of magnitude.

Technically speaking, we can get such a low “p” by realizing a spatial “dark-spot” in
the center of the repumper laser. Indeed, an atom trapped in the center of MOT doesn’t
see the repumper photons and spends most of its time in the Dark F = 2 hyperfine state.
It can only be repumped in the bright state and cooled again when it goes out of the
dark-zone. However, looking at the Eq. (2.50), as p is decreased, a second limit for the
density appears. In fact, we arrive in the Temperature-Limited regime where because
κ0 ∝ p the density adheres to n ∝ p3/2. This means that there is an optimum value of p
which optimizes the density as shown in FIG (2.8)

Our interest in the behavior of the Magneto-Optical Trap in general lost its fascination
after the realization of the first Bose-Einstein Condensate (BEC) with the evaporating-
cooling technique, and because of the difficulty of dealing with multiple scattering, which
is especially problematic in MOTs with a very large number of atoms.

In the following sections, we will present an experimental study of a MOT with the
possibility of trapping up to 1010 atoms. A complete investigation of this special MOT,
and an understanding of the main limitations of the density’s value, could be a step
towards answering the following question: “Why can’t we set as high density in the MOT
as we want?”.

In all the following experiments, we varied the total number of atoms (Nat) to investi-
gate a region that spanned from the multiple-scattering regime to the new regime where
we observed a

√
Nat scaling law for the size.

The most important results of this study are published in the paper titled: ”Scaling
laws for large magneto-optical traps.”, here attached.

In Sec. (2.2) we will comment on some parts of the paper by giving more details,
particularly focusing on atomic and spatial calibration discussed in Sec. (2.2.1).
Then, in Sec. (2.2.2) we will present the ’preliminary test’ part, which covers the descrip-
tion of all experiments performed before doing a systematic study of the MOT, to be sure
that the results obtained are independent of the way we probed the atomic cloud. This
section also includes a description of image analysis treatment and the different ways used
to change the numbers of atoms in the MOT.
The Sec. (2.3) concludes the experimental part, where the size experiments are shown and
qualitative differences are pointed out when the total number on the MOT is changed in
different ways.
Finally, in Sec. (2.3.2), one particular case of the generalized Wieman-Pritchard model
introduced in the attached paper is presented.
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2.2 Experimental set-up and detection techniques

MOT

x

z

y

CCD Camera

Chopper

Direction one, Id(z, y)

Direction two, Ig(x, y)

Figure 2.9: Detection system used to take an image of the MOT. In this configuration we are
able to have access to 3-D density profiles. The two orthogonal images are recorded into a CCD
by using a polarized cube. We define Ig as the image coming from the left-side of the cube, while
Id is for that coming straight as shown in the illustration.

In the following sections, we will report the detection scheme used to probe the cloud.
We will detail the calibration both for atom and CCD camera. We will also give the
preliminary tests carried out to ensure that the size of the cloud does not depend on the
laser parameters used to probe the cloud.

In order to perform the size measurements we recorded the cloud fluorescence in a
CCD camera.

In order to obtain a 3-D reconstruction of the density distribution we use two 2-D
images from orthogonal directions. We collect both by polarizing a cube into the CCD
camera using the set-up shown in Fig. (2.9).
Referring to Fig. (2.9), we will refer to the image taken in ”direction one” as Id, while
”direction two” will be referred to as Ig.
From the two images we can retrieve spatial information as well as the 2-D fluorescence
integrated in one direction. Ig measures the size in the Ox and Oy directions, while Id

measures the size in the Oy and Oz with respect to the laboratory frame.

The two images are taken in the simple-scattering regime. Such a regime is achieved
with a time sequence. We alternate a ”MOT phase” with the duration of 30ms where
the trapping beams, repumper and magnetic field are switched off, and the dark-phase of
5ms within which the trapping beams are switched on and far-red detuned (−7Γ).
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Figure 2.10: Typical MOT fluorescence signal recoded in Ig(x, y). In the upper-right position
a cut of the Y-direction is plotted, while in the lower-left there is a cut of the X-direction.

We will see later (in the ’preliminary test’ section) that with this detuning, the MOT
size isn’t going to be modified by the scattering light of the probe. The dark phase is
also sufficiently short so that all the atoms remain in the capture zone and are efficiently
recaptured when the MOT is switched back on.
With the duty cycle described above, the only problem we have is that the CCD camera
cannot be triggered. The minimum exposition time texp is 20 ms due to the opening of
the mechanical shutter. To overcome such a problem, the CCD remains in the acquisition
mode for all of the exposition time and is protected from the bright light scattered during
the MOT phase by a shutter as shown in Fig (2.9).

The trapping laser is turned on and off with an acusto-optical modulator. The same
TTL signal, generated by computer, drives the modulator and serves as a reference for
the controller of the shutter. Then its phase is adjusted so that we don’t detect the scat-
tering light during the MOT phase. In this way, we are able to perform acquisition during
up to several tens of seconds, or even more, depending on the signal to noise ratio that
we’re interesting in. However, one typical exposition time is of about 15 s. Further, a
background image (’dark’ for us), taken without cold atoms and with the same exposition
times, is obtained by turning off the repumper when the trapper laser is on. The dark
image is necessary to subtract stray light from the cold atoms.
The typical images, with relative MOT profiles along the three spatial directions (Ox,Oy,Oz)
are shown in FIG. (2.10) for the Ig(x, y) image and FIG. (2.11) for Id(z, y).

36



2.2. EXPERIMENTAL SET-UP AND DETECTION TECHNIQUES

y

z

Y (mm)

20-2

0

2000

6000

10000

-2 0 2

0

4000

8000

Z (mm)

Figure 2.11: Typical MOT fluorescence signal recoded in Id(x, y). In the upper-right position
a cut of the oy direction is plotted , while in the lower-left there is a cut of the oz direction.

2.2.1 Calibration

In this section we detail the calibration procedure used both for the atoms and the CCD
camera.
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Chopper Wheel

Repump Intensity

Magnetic Field Gradient

MOT intensity

t = 0 t = 5 msecτprobe

τdelay

Figure 2.12: The typical time sequence used for the size experiments is shown. We alternate
a 30 msec MOT-phase to a 2 msec for the ’dark’. We collect the signal only for a time τprobe,
and we average over many cycles.
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Spatial Calibration
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Figure 2.13: An illustration of the technique used for the spatial-calibration of the CCD. We
related the horizontal fluorescence of an on-resonance laser beam imaged directly into the CCD
and recorded its horizontal displacement using a graduate translation-stage as described in the
text. In the illustration on the left-side the angle β between the CCD and probe axis is defined .

5 6 7 98 10 11
200

240

280

320

360

∆Yprobe(mm)

∆
Y

cc
d
(p

ix
e
l)

slope = 22.92 pixel

mm

Figure 2.14: Linear fit used to determine the η(mm/pixel) factor for spatial calibration. Ex-
perimental points were obtained in the way described in the text, and using the method illustrated
by Fig. (2.13).
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The camera used for the following experiments is a cooled CCD (APOGEE AP1)
with a checked linearity curve, and square pixels (9µm · 9µm). The magnification
ζ (mm/pixels) of our detections system was found by using the experimental set-up shown
in Fig. (2.13). We used a probe tuned at resonance with the atomic hot vapor inside the
vacuum cell, and we moved it parallel to the probe direction where the MOT is formed
by using a translation stage. Thus, knowing the real vertical displacement in mm and
recording the position of the fluorescence of the hot atoms in pixel in one direction of the
CCD camera (for example Ig(x, y) Fig. (2.13)), we can precisely deduce ζ. In order to do
that, we account for the relative angles as defined in Fig. (2.13): the first made between
the probe and the angle of view α; the second one β, made with respect to the CCD.
By looking at the Fig. (2.13), we can easily be convinced that the magnification ζ can be
written in the following way:

ζ (mm/pixels) =
∆Y⊥

∆Yccd

=
∆Yprobe · cos(α) · cos(β)

∆Yccd

(2.52)

where β is defined as tan(β) = ∆Xccd

∆Yccd
, the angle between the CCD and the probe axis.

We also estimated that tan(α) = 6 cm
16.5 cm

and thus α = 0.35 rad.

From the measure shown in Fig. (2.15), we extracted
∆Yccd

∆Yprobe

= 22.92 pixel/mm; also

for a horizontal displacement of ∆Xccd = 30.96 pixels when a vertical is moved by
∆Yprobe = 5 mm, we calculated β = 0.263 rad and finally using Eq. (2.52), we found
a calibration value of:

ζ (mm/pixels) = 39.5 µm/pixel (2.53)
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Atomic Calibration
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Figure 2.15: Experimental Set-up used to measure the Coherent Transmission. We image the
MOT center with two lenses into a photodiode, and select the central part of it by diaphragm.
This arrangement, replacing the photodiode with a CCD camera, can be used for the absorption
image technique.

After the spatial calibration, the next important stage is to calibrate the fluorescence
signal of the CCD camera. In the low intensity limit s ≪ 1, we can write the scattering
rate as Γ/2 · s. In such a regime, the fluorescence recorded into the CCD with the Ig (Id)
image, integrated in the directions Oz (Ox), is proportional to the number of atoms, and
the signal obtained can be written, for the Ig image, as:

Ig(x, y) = β
σo

1 + 4( δ
Γ
)2

∫

n(x, y, z) dz (2.54)

as well as for Id:

Id(z, y) = β
′ σo

1 + 4( δ
Γ
)2

∫

n(x, y, z) dx . (2.55)

Indeed, β and β
′

depend on the solid angle of the detection system as well as on the
intensity of the laser beams and on the duration of the probe illumination.

In principle, as the total number of atoms in MOT does not depend on which direc-

tions we look at, we conclude that
β

β ′
(Nat) = const = 1. This could be checked in the

experimental images and for both directions, as a control that everything works as one
would expect.

We calibrate the fluorescence by measuring the optical thickness across the z direction
of the atomic cloud at the center (x = 0, y = 0), by looking at the coherent transmission
curve of the probe laser as a function of laser detuning δ (Fig. (2.16)).

Generally, a large optical thickness b0 is responsible for the flat transmission around
the resonance δ = 0, and is too small to be measured. The non zero transmission is
due to the finite linewidth of our probe laser estimated to be 2MHz and assumed to be
Lorentzian. In order to take this into account we convolute the monochromatic coherent
transmission with the probe laser spectrum L(δν):
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Figure 2.16: Experimental curve showing the absorption (coherent transmission) of the probe
beams with its frequency scanned across the atomic resonance (85Rb,F = 3 → F

′

= 4). From
its width, defined as FWHM (given in γ units), we extracted the on-resonance optical thickness
(b0) as described in the text. In this particular case we found FWHM = 6Γ that corresponds
to b0 = 30.

T (δ) =

∫ +∞

−∞

L(δν) e
b0

1+4( δ+δν
Γ

)2 d(δν) . (2.56)

By computing the FWHM in units of Γ, from Eq. (2.56) for different b0, we end up
with the curve shown in Fig. (2.17) that we use to characterize our atomic sample.

If we assume a monochromatic spectrum for the probe laser, we can easily give an
analytical expression for mapping the FWHM (in Γ units) of the coherent transmission
with the on-resonance optical thickness (b0) expressed by:

∆νFWHM = Γ

√

b0

ln(2)
− 1 (2.57)

The graph in Fig. (2.17) shows that if the spectral properties of the probe laser are
not taken into account, the calibration of the number of atoms can be wrong. We can
overestimate the total number of atoms in the MOT and consequently the atomic density.
Also, from the figure Fig. (2.17), we computed the FWHM of coherent transmission
Tc(δ) by numerically integrating Eq. (2.56), and the results can be fitted by the following
function:

∆νFWHM(b0) = Γ · A(
√

(G · b0 − 1)) (2.58)
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Figure 2.17: Theoretical model for FWHM of Coherent Transmission. The circle dots represent
a theoretical model for coherent transmission convoluted with a Lorentzian spectrum of 2 MHz;
the dashed line is the transmission without taking into account the spectral properties of the laser
probe (monochromatic case), while the solid line is a fit with the function given in Eq. (2.58).
Finally, the dotted line represents normal work conditions (standard parameters) for our MOT
(b0 = 30).

with two free fitting parameters A = 1.10 and G = 1.21.
In order to improve the experimental determination of b0, each value of the transmitted

intensity taken in presence of cold atoms is divided by the incident intensity without the
cold atoms. With this protocol, the coherent transmission curve shown in Fig. (2.16) is
obtained. From its FWHM, we extract the on-resonance optical thickness b0 (typically
found to be b0 = 30 in our MOT) which is independent of density profile as integrated
along one direction:

b(δ) = σL(δ)

∫ +∞

−∞

n(0, 0, z) dz . (2.59)

By comparing, for example, the center values for the image Ig(0, 0) Eq. (2.54) and the
Eq. (2.59) we are now able to calibrate our detection system.

Supposing a Gaussian density distribution for the atomic cloud, characterized by the
standard deviations σx , σy , σz, the total number of atoms in the cloud is found to be:

Nat = (2π)3/2 n0σx σy σz , (2.60)
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and equivalently using Eq. (2.59) for a Gaussian distribution:

Nat =
(2π) b0 σx σy

σ0

. (2.61)

We can further deduce the center density at the MOT’s center via a direct measurement
of b0 still using Eq. (2.59):

n0 =
b0

√

(2π) · σ0 · σz

(2.62)

In conclusion, the calibration of Nat can be done with only the images Ig while the density
needs the Id image, as we have to look at the Oz direction.

This apparently complicated protocol of measurement allows us to extract all the
quantities we are interested in from three experimental measurements, b0, Ig,Id.

During all calibrations, we assume that the atoms are equally distributed among all
the Zeeman sublevels of the ground state. This is accounted for by considering a g factor
equal to:

g =
1

3

2F
′

+ 1

2F + 1
(2.63)

This reduces the total cross section g · 3λ2

2π
. For the transition F = 3 → F

′

= 4 on the
85Rb, we have g = 3/7.

2.2.2 Preliminary test

In this part, we will detail all experiments done before the beginning of the systematic
scan of the MOT parameters. Such tests are useful in order to control all possible physical
effects that can be involved in the size measurements. Particularly, we want to be sure
that what we are measuring does not depend on the laser parameters we use to probe the
atomic cloud.

From the curves shown in Fig. (2.18), we see that the apparent MOT size does not
depend on the probe detuning when its value is set to be δprobe = −6Γ. For that detuning
value we also investigated the size for different values of probe duration for both large
and small MOT (Fig. (2.19)).

From the experiment observation Fig. (2.20) we conclude that size didn’t change dur-
ing different probe durations for either the large or the small MOT. However, we observed
dramatical drops in the total number of atoms due to optical pumping towards lower hy-
perfine ground state (F = 2) Fig. (2.19). This is because of the absence of a repumping
laser during the probe phase. This means that if we don’t want a loss of signal, the du-
ration of illumination, done with the six trapping beams red-detuned, has to be as small
as possible.

During all the experiments, we chose such a duration to be of the order τprobe = 10µs.
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Figure 2.18: Cloud size as a function of probe detuning. Keeping the number of atoms in
the trap constant, we varied the probe detuning of six trapping beams. From the experimental
observations, we deduced that a δprobe = −6 Γ doesn’t modify the MOT’s size and is independent
of it. We checked this in the two extreme cases that could be realized with our set-up: a ’large’
MOT, shown in Fig. (a) with 1010 atoms, and a relatively ’small’ MOT, Fig. (b) with 108. These
are the extremes of the ranges we looked at.

Atomic control

We are able to control, and measure, the total number of atoms in the MOT in different
ways illustrated below. As before, we can control the delay (τdelay) between the TTL’s
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Figure 2.19: Optical Pumping due to probe interactions with an MOT optical thickness at
resonance of b0 = 30 and δprobe = −6Γ for the probing-beams. The result shows that we need
to choose smaller probe durations in order to avoid optical pumping the F = 2 hyperfine ground
state.

signals of the repumper and trapping beams Fig. (2.22). Indeed, when we switch off the
trapping beams intensities as before and then the repumper (τdelay > 0), the light recorded
in the CCD (for example in image I1) is proportional to the total number of atoms Nat

(NF=3 +NF=2). On the other hand, when the repumper and trapping beams are switched
off at the same time (τdelay = 0)), the total fluorescence (image I2) is proportional to
Nat = NF=3. Thus the difference between the two images (I1 − I2) gives us information
about the total number of atoms present in the F = 2(Nat = N2) state. Finally, in the
case in which τdelay < 0 we have a loss of atoms due to optical pumping.

In the standard condition where the MOT works, we have a defined repartition between
the atomic population in the different hyperfine ground states (F = 3 , F = 2). Using the
delay method illustrated above we are able to measure such a repartition and monitor it
as a function of control parameters.

The delay-method could also be employed to change the total number of atoms in the
MOT without affecting any MOT parameters, once we have calibrated the ’delay’ curve
as we did in Fig. (2.21).

A second method is provided by putting a λ/2 wave plate and a polarized cube system
in the path of the repumper laser. We can thus change its total intensity before it enters
the vacuum chamber. However, by altering the repumper intensity we also change the
hyperfine ground-state repartition.

The last technique implemented in our set-up was to reduce the capture volume of our

46



2.2. EXPERIMENTAL SET-UP AND DETECTION TECHNIQUES

 0

(a)

(b)

τprobe(µs)

F
W

H
M

(m
m

)
F

W
H

M
(m

m
)

4020
0

0.2

0.4

0.6

0.8

1

1.2

1201008060

0 20 40 60 80

1

0

2

3

4

5

6

100 120

Figure 2.20: Size as a function of probe duration τprobe for our two extremes: ’large’ MOT
(b) and ’small’ MOT (a). In conclusion the probe used doesn’t depend on the τprobe; the only
dramatic consequence is the optical hyperfine pumping (Fig. (2.19)).

trap by limiting the repumper size (φ). The total number of atoms trapped in the MOT
varies in accordance with Nat ∝ φ4 [25]. This is realized by imaging a diaphragm, with
a controllable aperture, in the center of the MOT chamber using the telescope system of
the repumper laser.

In this way, changing the size of the diaphragm results in a variation of the total
number of atoms in the MOT without affecting the external control parameters at the
cloud location. We have also verified that the intensity at the center of the repumper
laser, at the level of the vacuum cell, is constant, as shown in Fig. (2.24).

47



2.2. EXPERIMENTAL SET-UP AND DETECTION TECHNIQUES

-50 0 50 100 150 200-100-150
τdelay(µsec)

10

14

6

2

(N
F

=
3
+

N
F

=
2
)
(1

09
)

Figure 2.21: Number of atoms in the ’bright’ state as a function of turn-off delay τdelay of the
repumper with respect to MOT beams. When τdelay > 0 all atoms are ’repumped’ in the bright
F = 3 state.
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Figure 2.22: Calibration of the delays for the TTL’s signals: the MOT and repumper intensity.
We can conclude that the two signals have the same delay.
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Figure 2.23: Standard deviation (sdv) of the size of the images when they are taken with either
N3 or N3 + N2 atoms. In both cases, the final sdv is independent of such a choice.

Image analysis

From the images we obtained we are able to extract plenty of information. First of all,
the total fluorescence (the integral made over all pixels’ values) is proportional to the
total number of atoms. Then, as we have already seen, from the central value of image
Ig(0, 0) ∝ b0, we can monitor the optical thickness as a function of Nat.

The only delicate point is the determination of the size of the atomic cloud. In the
case of a small MOT (with only 107), the profile of the fluorescence can be well fitted by
Gaussian function Fig. (2.25)-(a). While in the case of Nat = 1010 Fig. (2.25)-(c), such a
profile is dramatically different from a Gaussian.

This is why we decided to realize a computer routine to evaluate a standard deviation,
in pixels, extracted from the intensity distribution recorded in the images; this quantity
is well defined and independent of any assumption of density distribution.

The standard protocol used to analyze the date is resumed as follows:

• Each image is subtracted from a correspondent ’dark (background)’, taken in the
same experimental conditions and exposition time (texp), without the cold atoms to
eliminate the stray light [30].

• After the subtraction, we defined a region-of-interest (ROI) centered around the
atomic cloud. This is used to resize the scientific image in order obtain a better
signal to noise ratio, and to be less sensitive to background pixel fluctuation. Then,
for both directions of the CCD, xccd = x and yccd = y, we use the standard deviation
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Figure 2.24: The graphs show the experimental evidence that when we change the number of
atoms via diaphragm (a) the repumper intensity, at the center, remains constant, Fig. (b).

as a definition of size, defined by the following quantity:

σξ =

√∑

ij(ξi − ξc)2 · (IO)ij
∑

ij(IO)ij

, ξ = x, y, z (2.64)

with the ’center of mass’ ξc, defined as

ξc =

∑

ij ξi · (IO)ij
∑

ij(Ig)ij

, ξ = x, y, z (2.65)

where in Eqs. (2.64) (2.65) instead of IO the appropriate image has to be used: Id

for ξ = y, z and Ig for ξ = x, y. In this way, the scaling-law for the sdv as a function
of Nat is obtained without any assumption for the atomic density distribution.

• However, during all measurements, for the sake of simplicity, we compute the central
density value (n0) assuming a Gaussian density profile.

2.3 Qualitative Observations

In this section, we will give a resume of all qualitative observations that we have made
during the investigation of the new regime. A systematic study of the MOT is made
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Figure 2.25: Experimental data showing the density profile. The MOT with a moderate number
of atoms (107), profile (a), is well fitted by a Gaussian (dotted-line). In (b) we plot the same
data as (a) but in log-linear scale. For a maximum number of atoms in the trap (∼ 1010) the
Gaussian approximation is no longer valid (c). We found a more ’squared’ density profile and, in
a log-linear plot (d), we can see two different regimes. The dotted-line in (d) is used to illustrate
two such regimes.

by altering the standard parameters defined as IMOT = 7 mW/cm2, δMOT = −2.5 Γ and
~∇B = 10 G/cm. The results are presented in the following sub-sections.

2.3.1 Size Scaling Law: L(Nat)

In this particular sub-section we show the main experimental results we obtained from
the size experiments.
As in the first investigation, we varied the MOT parameters around the standard one.
In this way we want to be able to characterize the cross-over between the two regimes;
multiple-scattering and constant optical thickness. This kind of study has also been used
to optimize the MOT with our set-up. We further present two different ways to change
the number of atoms in the MOT in two separated sections, surprisingly giving different
results: atom number controlled by the intensity of the repumper and atom number con-
trolled by its size.
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Repumper Intensity controlled atom number: N(Irep)

In this paragraph, we will present the studies for the MOT when we change the total
number of atoms by altering the repumper intensity.
For each choice of set of parameters we took about 25 images with the relative dark image
and an average exposition time of 60 sec for both directions: Ig and Id.

Once we had performed the MOT optimization we carried out a series of 8 experiments
over the two full days that the set-up was kept running in order to maintain the same
experimental conditions and to allow us to compare the different series with each other.
Throughout the discussion we will present only the results for one size defined as:

L = 1/3(σx + (
σyId

+ σyIg

2
) + σz) (2.66)

where the size in the Y direction is already defined as an average of the Y-size coming
from Ig and Id images. The Eq. (2.66) is justified because the 3 dimensions follow ap-
proximately the same scaling law, as we can see from Fig. (2.26).

The results of the 8 experiments are reported in a separate section, in which they are
followed by the relative table giving a resume of the main information we can extract
from the analyzed images.

• Varying the MOT intensity, where the intensity of trapping beams are changed:
Imax, Imax/2, Imax/10 and the Tab. (2.1);

• Varying the MOT detuning: δ = −2Γ − 2.5Γ − 3Γ shown in Tab. (2.2);

• Varying the Magnetic field gradient: 4.8, 10, 16 G/cm shown in the Tab. (2.3).
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Figure 2.26: Graph shows the scaling laws for the three spatial directions obtained from one
experimental run. The scaling laws are the same for all directions which is why we chose to
only monitor an average L, defined by Eq. (2.66). The regimes discussed in the text are also
represented on the graph: temperature-limited (TL), multiple-scattering (MS) and maybe a new
one: constant optical thickness .
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Name of
Experiment

IMOPA(mW
cm2 ) δMOT

~∇B (G/cm) bmax
0 Navg

cr Lavg
cr (mm) Nmax

at Lmax(mm) nmax
0 (cm−3) α

1/3
cr α

1/2
cr

Manip1 7 −2.5 Γ 10 21 1.6· 109 0.96 9.8· 109 2.32 2.7· 1010 0.22 0.49
Manip2 3.5 −2.5 Γ 10 17 0.6· 109 0.86 3.8· 109 2.10 2.3· 1010 0.21 0.45
Manip3 1.75 −2.5 Γ 10 5 0.16· 109 1.15 0.38· 109 1.63 0.46· 1010 0.23 0.41

Table 2.1: The table shows all parameters concerning the experiments for different MOT intensities
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Name of
Experiment

IMOPA(mW
cm2 ) δMOT

~∇B (G/cm) bmax
0 Navg

cr Lavg
cr (mm) Nmax

at Lmax(mm) nmax
0 (cm−3) α

1/3
cr α

1/2
cr

Manip1 7 −2.5 Γ 10 21 1.6· 109 0.96 9.8· 109 2.32 2.7· 1010 0.22 0.49
Manip4 7 −2 Γ 10 17.0 1.0· 109 0.87 7.4· 109 2.30 2.3· 1010 0.21 0.48
Manip6 7 −3 Γ 10 21.4 1.60· 109 1.01 9.0· 109 2.16 2.5· 1010 0.24 0.45

Table 2.2: In this table we put together all parameters concerning the experiments for different detuning of MOT beams.
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Name of
Experiment

IMOPA(mW
cm2 ) δMOT

~∇B (G/cm) bmax
0 Navg

cr Lavg
cr (mm) Nmax

at Lmax(mm) nmax
0 (cm−3) α

1/3
cr α

1/2
cr

Manip8 7 −2.5 Γ 5 8 0.47· 108 0.96 1.92· 109 1.77 0.86· 1010 0.20 0.43
Manip1 7 −2.5 Γ 10 21 1.6· 109 0.96 9.8· 109 2.32 2.7· 1010 0.22 0.49
Manip7 7 −2.5 Γ 16 22.5 0.9· 109 0.81 7.1· 109 2.0 2.8· 1010 0.25 0.44

Table 2.3: In this table we put together all parameters concerning the experiments for different values of Magnetic field gradient.
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Figure 2.27: In the graph we give a resume of the main results obtained from the study:
in particular we look at Nmax

at , (a)-(c)-(e), and nmax
0 (b)-(d)-(f), obtainable in our MOT. The

standard parameters are defined as: IMOT = 7mW/cm2, ~∇B = 10G/cm,δMOT = −2.5 Γ. From
the experiments we found confirmation that for these values the atomic density is optimized while
the total number of atoms is not. In fact, as we can see from (c), with the highest power we
have, we are still in the linear regime.

From the data reported in table (2.1),(2.2) and (2.3) we can conclude that the threshold
(for example in numbers of atoms N cr

at ) of the new regime does not depend on the MOT
parameters. The only notable thing is the evolution of the maximum number of atoms
captured in the MOT, and the consequent decreasing of the optical thickness. In fact
it is evident that by changing the MOT parameters we only affect the capture volume
of our trap. To avoid this kind of problem, we could perform the same experiment by
keeping the capture volume fixed during the loading time (typically 2 sec), and only
changing the MOT parameters at the end of the sequence before probing the cloud. Such
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a time sequence was not possible in our set-up at that time for the following reasons:
slow acquisition image shutter synchronization, and realization of the time sequence up
to several seconds.

Therefore, we used this study to optimize the MOT as shown in the Fig. (2.27). In
this graph we give a resume of the results obtained from the experiments described in the
above sections. As usual, we moved from a starting point defined as: IMOT = 7 mW/cm2,
~∇B = 10 G/cm, δMOT = −2.5 Γ and then we altered the standard conditions by changing

only one parameter and leaving the other parameters fixed. The maximum number of
atoms (Nmax

at ), the maximum density (nmax
0 ) obtained as a function (vertical direction) of

the total intensity, detuning and magnetic field gradient are reported.
From the experimental observation, Fig. (2.27)-(c), we claim that the Nmax

at in our
trap is limited only by the total intensity of the laser beams provided by the MOPA. The
maximum output power from the amplifier is about 300 mWatt but we end up with only
150 mWatt due to spatial mode cleaning.
Never the less, we are not interested in trapping as many atoms as possible but we want
to optimize the achievable density value in the MOT. As we can see in the right column
in Fig. (2.27)-(b),(d),(f), for the standard parameters (where the MOT usually works) we
get the highest density. This means that if we want to increase the atomic density by
introducing a compression phase by for example suddenly changing either the magnetic
field gradient or the MOT detuning, it won’t work.
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Repumper Size controlled number of atoms: N(φ)
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Figure 2.28: In the Figure we show the evolution of the total number of atoms by changing
the size of the repumper. We can clearly see that we follow the 1/3 scaling law over the whole
atomic range. The experiments were carried out with the standard parameters for the MOT
(IMOT = 7mW/cm2, ~∇B = 10G/cm,δMOT = −2.5 Γ).

As we couldn’t come up with a convincing model for the description of the ”New
Regime” and also because of the observation that the threshold does not depend on the
MOT parameters, we decided to change the number of atoms in a different way. We
controlled the size of the repumper laser as described in ’Atomic Control’ sec.(2.2.2). In
this way all local parameters at the level of the trapped atoms were kept fixed. However,
this alternative method does not exclude the possibility that the average intensity of the
trapping and repumping laser can affect the populations in the different hyperfine ground
states (dark (N2) and bright (N3) states) for different numbers of atoms trapped. In fact, a
modification of the optical thickness in the atomic cloud may change the attenuation of the
incoming beams and thus the atoms in the bright state. Hence, in the new experiments,
the d = N2/N3 quantity was measured. From this we can easily extract the p-parameters
(p = 1/1 + d) introduced in the Ketterle model.

With the new protocol scheme, the ”1/2” regimes disappeared as we can clearly see
from the result shown in Fig. (2.28). In such a situation, where the total intensity of the
repumper remains constant, the role played by the repumper laser was investigated, both
in detuning and intensity.

The results of this alternative protocol are reported in the following sections, where
the evolution of the size, optical thickness and the p are shown as functions of the total
number of atoms (Nat = N2 + N3).
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All the results are reported in two different sections as before, organized in the following
manner:

• Varying ”δrep”, where the detuning of the repumper is changed: δrep = ±Γ and
δrep = ±2Γ are investigated;

• Varying Repumper Intensity, where the repumper intensity is spanned in the range
Irep/2, Irep/4 and Irep/10.
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Varying repumper detuning (“ δrep ”)
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Figure 2.29: We respectively show the density, ratio d = N2/N3 and the size of the cloud for
different values of the repumper intensity as a function of different detuning (δrep). We can
conclude that the density and the other relevant quantities are, more or less, independent of the
detuning.
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Figure 2.30: The optical thickness is not affected by the choice of the repumper detuning, and
its value is almost independent of the choice of the detuning.
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Varying Repumper Intensity (“Irep”)
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Figure 2.31: We report the density, the ratio d = N2/N3 and the optical thickness for different
values of repumper intensity.
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Figure 2.32: In the graph we show size behavior for different repumper intensity in the range
Irep/2, Irep/4, Irep/10. For the three parameters we always saw the Wieman regime. Therefore,
the maximum size follows the

√
Nat law, as one would expect for the intensity controlled numbers

of atoms. Such a regime is shown in the figure by the dotted-line.

Conclusions

Fig. (2.31),(2.30) shows that when the detuning is changed within the range ± 2Γ,±Γ, the
density is almost independent of the number of atoms, in accordance with the Wieman-
Pritchard model. Indeed, we recovered the ”1/3” regime over the whole atomic range.
We reached the same conclusion for the optical thickness, while the N2/N3 ratio is not
as one may expect, even though the repumper intensity does not change. In fact, we
couldn’t understand the sharp increase of the N2/N3 ratio (or an equivalent decrease in
p) when atoms approached 1·109. From a pure Wieman-model, we would expect a density
augmentation as p is lowered. But if we look at the density, Fig. (2.31) remains constant.

The density slightly increases as we reduce the repumper intensity. This observation
is consistent with those made in the intensity controlled atom number experiments. In
fact the p-value is modified due to the changing of repumping cycle efficiency. Indeed,
the largest atomic size (Lmax) moves into the ”1/2” regime when we lower the repumper
intensity. In Fig. (2.32) the point-dotted line shows the fit of the three Lmax obtained
from three different intensities. The exponent of the power-law is found to be α1/2 = 0.53
again. We found the same results obtained in the ’intensity controlled atom number’
experiments. The only parameter changing when the repumper intensity is changed is
the repartition of atomic population, measured by d Fig. (2.31). Plotting the central
density as a function of p for the three repumper intensities, Fig. (2.33), we found 1/p
power-law in accordance with the Wieman-Pritchard model. This means in our MOT we
can talk about ”Self-Adjusting Dark MOT” (SADM) created by the repumper laser as
its intensity is lowered .
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Figure 2.33: Density as a function of p-parameter. The solid line is a power-law with an
exponent of 1.05. This is in agreement with the WK-model and can be interpreted as a Self-
Adjusted Dark MOT (SADM).

We can conclude that changing the numbers of atoms in the MOT via the repumper
intensity or by controlling its size is not equivalent. In the case of intensity controlled
numbers of atoms, we found two regimes: one where the atomic size follows N

1/3
at above

threshold, and the new regime where the size grows in accordance with N
1/2
at . But this is

no longer valid in the case of repumper size controlled numbers of atoms. In this latter
case, we observed the 1/3 law over the whole atomic range, and we also observed an op-
tical thickness of the rempumper laser as shown in the Fig. (2.34) that yields to a SADM
effect.
In the Wieman model, the density limitation is due to the reabsorption of the trapping
photons. It therefore seems reasonable to conclude that the repumper photons, also scat-
tered within the clouds, can be reabsorbed and lead to an additional limitation on the total
density obtainable in the MOT. This kind of phenomena has to be taken into account as
one possible explanation of density decreasing observed in the situation of intensity con-
trolled numbers of atoms. In fact, by decreasing the repumper intensity, we decrease the
p-value by adding more and more atoms in the dark state (F = 2) arriving in the regime
where the repumper starts to be optically-thick (brep) and can no longer be neglected. In
contrast, when the repumper transition is satured the hole completely vanishes, as shown
in Fig. (2.34), due to the reduction of the repumper optical thickness.
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Figure 2.34: In the Figure we show the transmission of the repumper laser. We can observe
a black spot in the middle of the picture. A horizontal plot line passing through the center,
showing the relative intensity attenuation on the repumper laser of the atoms in dark-state, is
shown above.

Further investigation is needed, by monitoring the brep as a function of the number of
atoms in the traps, in order to understand the role of repumper induced interaction. In
general, the interactions of the repumper in MOT studies are neglected when the descrip-
tion is given.

In the paper attached in sec.(2.4), we will propose one possible generalization of the
Wieman-Pritchard model taking into account the additional effective repulsion of the
rescattering repumper photons. We do this by adding to the model a new term, G2,
as one more additional repulsion term. In the sec.(2.3.2) we will treat the extreme case
where the G2 is dependent on the repumper laser intensity (Irep), showing the density can
drop even for high values of p in contrast with a pure Wieman-Pritchard model, where
the density decreases only when the TL-regime is achieved.
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2.3.2 Beyond the Wieman-Pritchard model.

In order to introduce the new G2 parameters, the Wieman-Pritchard model can be mod-
ified in the following way:

F tr
WK = −p · κ · r

FMS
WK = +nG3 p2 r + nG2 (1 − p)2 r (2.67)

where we are neglecting the p · (1 − p) interaction.
In the steady-state regime, when the repulsion term completely compensates for the

trapping term, the system in the Eq. (2.67) can be easily solved and gives rise to an
expression for the upper limit of the density given by the following equation:

nwk =
κ

p + G2

G3
· (1−p)2

p

(2.68)

In the limit of small repumper interaction (G2 ≪ G3) the Eq. (2.68) corresponded to the
WK-model.

As soon as G2 can no longer be neglected with respect to the G3 term, and approx-
imating G2(Irep) = const, the density decreases as more atoms spend more time in the
’Dark’ state.

In the graph shown in Fig. (2.35), we plot the densities given by the model of Eq. (2.68)
as a function of p and for different values of the ratio G2/G3 = α.
Depending on α, we may have a sudden decrease of density even though p ∼ 0.9, in
contrast with the Wieman-Pritchard model.

From the Eq. (2.68) we can also extract the predicted maximum density, which is
obtained for a value pth

pth =
1

√

1 + G2

G3

. (2.69)

In the repumper intensity controlled atom number, the dependence of p as a function
of Irep can be deduced from a simple rate equation:

p = p∞
Irep

I0 + Irep

(2.70)

where p∞ is the p value for the power of an infinity repumper. This result, taking into
account the velocity capture of the trap, described in appendix B of the paper, leads to
the following dependence for the Nat(Irep):

N = Nmax(
Irep

I0 + Irep

)2 (2.71)

where Nmax is the maximum number of atoms trapped.
We equate Eqs. (2.70) (2.71), and we find that p ∝

√

N/Nmax, which can be used to
define a Ncr = Nmax (1 + G2

G3
): the critical value on Nat at which we have a cross-over
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between the MS-regime and the new one. In this way we can obtain an expression for the
interaction term α = G3/G2 given by:

G3

G2

=
Nmax

Nth

− 1 , (2.72)

and for standard parameters in our experiment we find
G3

G2

∼ 0.1 .

From the above consideration one can also understand that as the intensity of the
repumper is reduced, the optical thickness of the repumper at resonance brep(0) increases.
Indeed, even in the regime where the optical thickness b(δ) for the trapping and cooling
beams is constant, one has:

brep(0)

b(δ)
=

1 − p

p
(1 + 4(δ/Γ)2) . (2.73)

and as we measured a b(δMOT ) ∼ 1 and even for 2% of the total population in the
’dark’ state, using the Eq. (2.73), the repumper optical-thickness is of the order of 1. This
means that the ’repumper induced interaction’ has to be taken into account and cannot
be neglected .

In the model shown above we have made a rough approximation for the G2 term. In
reality G2 depends on the repumper intensity ( G2 = IrepG

0
2) modifying the interaction

parameters of Eq. (2.68) as α =
IrepG

0
2

G3

.

The expression of α can be very complicated depending on the repumper parameters as
well as the MOT and it is difficult to arrive at a general a priori expression .
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2.4 Scaling laws for large magneto-optical traps
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Abstract. Multiple scattering of light is known as the main limitation of the maximum atomic density

achievable in magneto-optical traps. We present a detailed experimental investigation of the size and

density scaling laws for large magneto-optical traps with up to N = 1010 atoms. A simple model gives

a qualitative account of most of our experimental results. However, several yet unexplained observations

lead us to propose a new additional mechanism, based on the repulsion of repumper photons, which limit

the atomic density of atoms when the optical thickness for the repumper light becomes important.

PACS. 32.80.Pj – 39.25.+k – 42.50.Vk

1 Introduction

Since the first realization of laser cooling and trapping of

dilute atomic vapors, one important goal has always been

the realization of a degenerate atomic gas, such as the

Bose-Einstein condensate (BEC). Beyond the realization

of BEC, large densities of cold atoms are also important

for a variety of fundamental studies such as cold collisions

and cold molecule formation, cold Rydberg atom experi-

ments, photon localization, local field corrections for the

Send offprint requests to: Robin.Kaiser@inln.cnrs.fr

index of refraction and coupled dipole-dipole experiments

with cold atoms, with its potential impact for quantum

computing.

Achieving high spatial density has, hence, been as im-

portant as designing subtle cooling mechanisms [1,2]. Very

soon, it has been realized that for a large numbers of atoms

rescattering of the trapping light results in an effective re-

pulsion force between the atoms [3,4]. The spatial densi-

ties achievable in standard magneto-optical traps (MOTs)

has thus been limited to about n ≈ 1010 − 1011cm−3 and
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2 G.L. Gattobigio et al.: Scaling laws for large magneto-optical traps

increasing the number of atoms N in such a MOT results

in a MOT size (L) scaling as L ∝ N1/3, which corresponds

to a constant density n ∼ N/L3. These density-limiting ef-

fects have been studied by many groups [4–11] and several

attempts have been made to circumvent this limitation,

notably the so-called dark spontaneous force trap (dark

SPOT)[12]. A number of systematic studies have investi-

gated the limits of such a dark SPOT, where the fraction

p of atoms in the ’bright’ hyperfine level ( coupled to the

cooling and trapping lasers) is an important parameter

[12,13]. Different mechanisms have been put forward to

explain the observed limitation of the density n(p), such

as finite temperature effects, multiple scattering forces and

cold collisions. For very large MOTs, the confining force

might also become nonlinear (anharmonicity of the trap),

which in extreme regimes is at the origin of self-sustained

oscillations of the MOT [14].

In our setup we realize a large number of atoms N ≈

1010, beyond the typical range used in most previous stud-

ies. In this paper we present a systematic study of the

sizes and densities in such a large MOT and observe dif-

ferent scaling laws depending on the atom number N and

the method used to change that number. In section 2, we

describe in detail our experimental setup and detection

techniques. In sections 3 and 4 we compare and analyze

the experimental data obtained using two different tech-

niques to vary the number of trapped atoms N : either

by varying the diameter of the repumper laser (section 3)

or its intensity (section 4). We finally discuss in section 5

results which cannot be explained by the standard models
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Fig. 1. Relevant atomic hyperfine level of 85Rb. The cooling

and trapping laser is detuned by δ from the F = 3 → F ′ = 4

transition. The repumper laser is tuned on resonance to the

F = 2 → F ′ = 3 transition.

used for describing the scaling laws of a MOT and propose

to include a new repulsion force, based on the rescattered

repumper photons to describe the MOT behavior in new

regimes.

2 Experimental setup and detection

techniques

We prepare our atomic sample by loading a magneto-

optical trap from a dilute vapor of Rubidium atoms. The

experimental setup used for the present studies has al-

ready been described in [15], and we thus only briefly re-

call some features of our experimental setup, including

calibration techniques.

A magnetic field gradient of typically 10G/cm is gen-

erated using a pair of coils along the Oz axis. We use

a master/slave configuration with subsequent amplifica-

tion in a tapered amplifier for the MOT beam close to
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the F = 3 → F ′ = 4 transition of the D2 line of 85Rb

(Fig. 1). We routinely obtain 180mW power after spatial

filtering, split into 6 beams with a waist of w = 2.4cm,

directed in pair wise counter propagation into a 10cm

sized cubic vacuum chamber. The repumper laser, close

to the F = 2 → F ′ = 3 transition of the D2 line of 85Rb,

is a master/slave configuration as well and is used in a

retroreflection geometry along one direction only. The re-

pumper beam diameter is expanded to Φ ≈ 5cm using

a telescope. A diaphragm placed at the conjugate posi-

tion of the MOT allows to vary the repumper diameter,

thus modifying the effective capture volume of the MOT

without directly affecting its dynamics. Indeed there is no

change of external MOT parameters (incident intensities,

detunings, magnetic field gradient) when the atom num-

ber is changed using the repumper size. Alternatively, we

can vary the intensity of the repumper laser (at fixed size),

which also allows to change the number of trapped atoms.

However, in this case, we expect the overall dynamics of

the MOT to be affected. We thus have two methods to

change the number of trapped atoms and as we will see,

these methods lead to different MOT scaling laws.

The time sequence implemented in this study is a se-

quence of a MOT period of 30ms followed by a ’dark’

period of 5ms. During the dark period, we switch off all

beams and the magnetic field, leaving the atoms in free

fall expansion for 2ms before applying one or more probe

beams. The ’dark’ period is sufficiently short, such that we

do not need to load new atoms to fill up the MOT. This

is an important point, allowing a fast duty cycle and effi-

cient data taking. As a probe we use either a single (weak)

beam or the 6 beams of the cooling and trapping laser,

with an adapted detuning. The single probe beam is used

to measure the optical thickness b(δ) of the cloud, which

depends on the detuning δ between the laser frequency

ωL and the atomic resonance frequency ωat. In a different

measurement, we use the 6 trap beams to illuminate the

whole cloud and take images of the density distribution.

A cooled CCD is used to record these fluorescence images.

As we are interested in the sizes along all three dimensions

of the MOT, we have directed two orthogonal images (la-

beled Id and Ig) of the cloud onto the same CCD. From

these images we can retrieve spatially-resolved informa-

tion as well as the total fluorescence. A chopper, closed

during the MOT period and opened during the dark pe-

riod, prevents the strong fluorescence of the MOT from

reaching the CCD. In this way, only the fluorescence in-

duced by the off-resonance beams (typically at δ = −6Γ )

is recorded on the CCD. The use of such a large detuning

to illuminate the cloud ensures that multiple scattering,

which can modify the intensity distribution in the images,

is negligible. Indeed, even the largest on-resonance opti-

cal thickness (bres ≈ 40) obtained in our experiments is

reduced to a very small value at the imaging detuning :

b(δ = −6Γ ) =
bres

1 + 4(δ/Γ )2
< 0.3, (1)

where Γ = 2π 6MHz is the inverse lifetime of the excited

state. We have verified (see 8.1) that the size extracted via

this procedure is independent of the detuning for |δ/Γ | >

5. Hence, the CCD images provide us with fluorescence

76



2.4. SCALING LAWS FOR LARGE MAGNETO-OPTICAL TRAPS

4 G.L. Gattobigio et al.: Scaling laws for large magneto-optical traps

integrated along one line of sight, e.g. Oz :

I(x, y) = η
σres

1 + 4δ2/Γ 2

∫

n(x, y, z) dz, (2)

where η takes into account the detection efficiency of our

imaging system, the intensity of the laser beams and the

duration of the illumination. The expression of the on-

resonance scattering cross-section σres will be given later.

In order to determine the total number of atoms, we

measure the optical thickness of our atomic cloud along

Oz by scanning a probe beam across the resonance and

looking at the transmission T (δ) of this probe. This mea-

surement is again done with the MOT switched off. For

large enough optical thicknesses bres ≫ 1, the full width

at half-maximum ∆ of the transmission curve T (δ) is con-

nected to bres by:

bres ≈ ln(2)[1 + (∆/Γ )2]. (3)

This technique allows to measure in a reliable fashion large

optical thicknesses, which is not possible by measuring

directly T (δ = 0) due to finite signal-to-noise ratio and

probe laser spectral width. The measured bres is propor-

tional to the atomic density n integrated along the line of

sight:

bres = σres

∫

n(x = 0, y = 0, z) dz. (4)

By comparing the value at the center of the image (2)

and (4), we calibrate the detection efficiency of our imag-

ing system. The total number of atoms N , assuming a

Gaussian density profile (with rms sizes σx , σy , σz along

each dimension) is:

N = (2π)3/2σx σy σz n0 (5)

where n0 is the peak atomic density. This can also be

written:

N =
(2π)σx σy bres

σres
. (6)

Thus, combining the data from fluorescence imaging

(σx, σy, see eq. 2) and the optical thickness measurement

(bres) we obtain the number of atoms N . This however

requires the knowledge of the scattering cross-section:

σres = g
3λ2

2π
(7)

where g is the effective coupling strength taking into ac-

count the Zeeman structure of the ground state [16]. We

assume that the atoms are equally distributed among all

the Zeeman sublevels of the ground state, which yields for

our F = 3 → F ′ = 4 transition g =
2F ′ + 1

3(2F + 1)
= 3/7.

Using the second fluorescence image to obtain σz , we then

have access to the maximum atomic density:

n0 =
bres√

2πσresσz

. (8)

As discussed before, we extract from the two orthog-

onal images the rms sizes σx, σy, σz of the atomic cloud

along the 3 spatial dimensions We have verified that the

size along each direction obeys the same scaling laws.

Thus, in the following, we will simplify the discussion by

considering only an averaged size L , defined as:

L =
1

3
(σx + σy + σz). (9)

It is also possible to monitor the fluorescence by col-

lecting the scattered light on a photodetector. This yields

a strong signal during the long (30ms) MOT sequence,
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with a complicated relation between scattered light and

total number of atoms. However, during the short probe

time, used to analyze our cold atomic sample when the

MOT is switched off, a large detuning of the laser beams

eliminates multiple scattering so that the fluorescence is

then directly proportional to the atom number. The re-

pumper laser can be switched off at the same time as the

main MOT lasers or with a small positive or negative delay

(see Appendix 8.2), which influences the hyperfine popu-

lations during probing. As we will see below, this allows us

to discriminate between the total number of atoms (sum

of both hyperfine populations) and the number of atoms

in the bright hyperfine level. When not otherwise men-

tioned, we switched off the repumper after the MOT laser

and thus measured the total number of atoms during the

short probe pulse.

After this detailed description of our experimental setup

and protocol, we will now describe first qualitative obser-

vations followed by detailed studies of our MOT.

3 Repumper Size controlled atom number:

N(Φ)

3.1 Wieman model and non linear effects

In the past, one of our major objectives has been to op-

timize the optical thickness of our cloud. Hence, it seems

reasonable to trap as many atoms as possible. It is also

known, since the pioneering work of [3], that when more

than 105 atoms are trapped the MOT size becomes de-

termined by an interplay between the confining forces of

the MOT beams and repulsive forces induced by multiple

scattering of light. In the limit of moderate optical thick-

ness (at the frequency used for trapping and cooling), the

model put forward in [3] predicts a uniform density n in

this regime. Denoting N the total number of atoms and L

(eq. 9) the size of the MOT, the uniform density regime

implies that the trap size L scales as:

L(N) ∝ N1/3. (10)

In the following we will call this the ’Wieman model’.

The density limitation predicted by the Wieman model

[3] can be understood in simple terms as a competition

between a confining force Ftr and an effective repulsion

force Fms due to multiple scattering. These forces can be

generally written as:

Ftr = −κr (11)

Fms = G3n(r) r , (12)

where κ is the spring constant of the trap and G3 accounts

for the competition between the shadow effect [17] and the

repulsion due to the reabsorption of the MOT photons. A

stationary density n(r), requires a vanishing total force at

any distance r, which yields a constant density of

n(r) = nW =
κ

G3
, (13)

and leads to the L(N) ∝ N1/3 scaling law found in [3].

The model proposed in [3] was verified up to a certain

number of trapped atoms N ≈ 5× 107, above which a de-

viation was reported by the authors. They invoked higher

order multiple scattering and trap nonlinearities as possi-

ble candidates to explain this behavior. Our goal has thus
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Fig. 2. Calculated MOT size vs atom number (circles) com-

pared to the N ∼ L1/3 power-law (solid line). The MOT pa-

rameters are those of table 1.

been to check the prediction of the Wieman model in the

limit of very large number of atoms N > 108.

In order to work out the influence of magnetic field gra-

dients and nonlinearities in the MOT forces we have de-

veloped a numerical treatment including such effects [18,

19]. In spirit, our model is similar to the Wieman model,

i.e. we seek a self-consistent solution of the force balance

equation

Ftr(ρ, r) + Fms(ρ, r) = 0 (14)

for the atomic density ρ, where Ftr and Fms denote, re-

spectively, the external trapping force and the interaction-

induced force. As in the Wieman model, we perform a

three dimensional calculation but simplify the considera-

tions by assuming a spherically symmetric intensity pat-

tern and restrict ourselves to Doppler cooling and trapping

mechanisms.

Due to attenuation of light inside the atomic cloud the

intensities vary with position, such that the trapping force

Ftr carries an implicit dependence on the density profile

ρ(r).

The Wieman model assumes a homogeneous (spatially

independent), i.e. Coulomb-like, interaction between the

atoms. As mentioned above, this model predicts a con-

stant density profile, with radius L ∝ N1/3. To obtain

this simple solution, additional simplifications, such as a

linear expansion of the external trapping force and a lin-

ear laser attenuation, are necessary. While these assump-

tions are well justified for small MOT sizes, they become

questionable for large MOTs, as produced in our exper-

iments. In general, the laser intensities and the absorp-

tion/reabsorption cross sections depend on position and

on the entire density profile due to the inhomogeneous

Zeeman shift and the attenuation of laser light, respec-

tively. We expect both of these effects as well as non-

linearities of the MOT potential to become increasingly

important for large atom clouds.

Due to the nonlinear and non local character of the full

set of equations, finding direct numerical solution for the

atomic density is very demanding. Instead we use an effi-

cient test-particle method, which yields fast convergence

to the physically relevant density profile and avoids diffi-

culties with unstable solutions. As discussed in [18], this

method also permits studies of the dynamical MOT be-

havior as described by the corresponding time-dependent

kinetic equation for the atomic cloud.

While our numerical results for the size scaling ap-

parently coincide with the prediction of the more simple

Wieman model (see Fig. 2), the obtained density profiles,

shown in Fig. 3, reveal dramatic differences. In contrast to

the Wieman model, which predicts a constant density pro-
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MOT Parameters

Detuning δMOT = −2.5Γ

Intensity per beam IMOT ≈ 1.2mW/cm2

Beam waist wMOT ≈ 2.4cm

Repumper Parameters

Detuning δrep = 0

Intensity per beam Irep ≈ 0.5mW/cm2

Beam diameter (FWHM) Lrep ≈ 5cm

Magnetic Field Gradient

∇B = 10G/cm

Table 1. Standard parameters as used in this paper for the

MOT, Repumper and Magnetic field gradient.

file, our simulations yield a series of truncated Gaussian

densities with changing atom number. While the width of

the Gaussian density remains constant the cut-off radius

increases with increasing atom number which results in

the observed size scaling.

Fig. 2 and Fig. 3 exemplify the results of our calcula-

tions for the parameters of table 1. As shown in Fig. 2 the

calculated atom number dependence of the MOT size re-

veals the observed power-law N ∼ L1/3, in accord with the

Wieman model prediction (see eq.(13)). At large N we find

slight deviations from the power-law behavior, heralding

the onset of self-sustained oscillations at N ∼ 1010, above

which the stationary solution disappears due to the onset

of a dynamical instability [14,18,19]. A precise compar-

ison with the experimental profiles is somehow difficult.

Indeed, one needs to take into account the three dimen-

sional character of the experiment and thus e.g. use an

Abel protocol [20] to extract a more reliable radial density
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e
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2σ2

2___-
∝

Fig. 3. Calculated density profiles (color online) for three

different atom numbers as indicated in the figure. The dashed

line shows that the densities follow truncated Gaussian distri-

bution, with σ = 3.5mm. The MOT parameters are those of

table 1.

profile. The experimental profile often have sharper edges

then a pure Gaussian but more systematic data analysis

would be required in order to compare the experiment to

the results shown in Fig. 3. Despite these finer details the

Wieman model apparently yields a surprisingly good de-

scription of the size scaling even at large atom numbers.

3.2 Experimental results on N(Φrep)

3.2.1 Atom Number vs Repumper size : N(Φrep)

The number of trapped atoms loaded from background

vapor is known to dramatically increase with size (Φ) of

the MOT beams [6]. Indeed, the capture velocity (vcapt)

of the MOT and the capture volume (Vtrap) influence the

number N of atoms as:

N ∝ v4
capt V

2/3
trap . (15)
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Fig. 4. Number of trapped atoms as a function of diameter

of the repumper laser. The solid line (red online) give a power

law fit N ∝ Φν with an exponent ν = 3.3

The capture volume (Vtrap) and the capture velocity

(vcapt) depend on the size of the trapping and cooling

lasers as well as on the size of the repumper laser. Chang-

ing the size Φ of any laser beam (cooling or repumper) is

thus a very efficient way to control the number of atoms.

In particular one has vcapt ∝
√

Φ and Vtrap ∝ Φ3 which,

using the eq.(15), yields N ∝ Φ4.

We thus choose to control the number of atoms by

changing the size of the repumping laser. As mentioned

above, this allows to change the number of atoms in the

MOT while leaving the parameters of the incident lasers

beams, at the location of the MOT, unaffected. Fig. 4

shows how the number of trapped atoms changes as we

increase the size of the repumping laser beam (at standard

MOT parameters). A slope of N ∝ Φ3.3 is indicated in the

solid line, close to the result obtained in [8].

108 109 1010

1  

 

L 
[m

m
]

N

Fig. 5. MOT size vs number of trapped atoms. The atom

number is changed using the diameter of the repumper laser.

The solid line (red online) shows that a single power law (ex-

ponent 0.29) fits the entire range of data.

3.2.2 MOT scaling law with N(Φrep)

Having validated our method to change the atom number

via the size of the repumper laser, we used this procedure

to study the scaling law of the MOT size. Obviously, a sys-

tematic scan of all MOT parameters is far too complex, as

there are too many parameters which have an impact on

e.g. the MOT size and density. Thus we choose to define

a ’standard’ set of parameters and investigate the MOT

as we change one of the parameters, keeping the others

fixed at the standard values as given in the table 1. As

shown in Fig. 5, we do observe a single scaling law up to

N = 1010. A power law fit yields an exponent of α = 0.3

scaling law close to L(N) ∝ N1/3. This is in agreement

with the standard Wieman model, but in contrast to the

results observed previously in [4], where a strong devia-

tion from L(N) ∝ N1/3 has been reported for an atom

number larger than N ≈ 5 × 107. As we will show in the
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Fig. 6. Optical thickness of the MOT vs number of trapped

atoms. The atoms number is changed using the diameter of the

repumper laser. The solid line (red online) shows a power law

fit with an exponent of 0.37 .

next section, this discrepancy has motivated us to perform

further experimental studies with different protocols. But

before turning to these different investigations, we want

to point out that it is also possible to exploit the same

experimental data to illustrate more efficiently the scal-

ing law of the MOT. We obtain not only the size of the

cloud, but also the resonant optical thickness bres of the

MOT (Fig. 6) and the behavior of the central density n0

(Fig. 7) versus the number of atoms N . As described in

section 2, the optical thickness bres is extracted by using

the signal at the center of the fluorescence image, which is

proportional to the integral of the atom along the line of

sight, rescaled to the resonance δ = 0. The peak density

(n0) extracted from the same data, assuming a Gaussian

density profile, clearly indicates that we have a constant

density of atoms up to N = 1010.

108 109 1010

1010

 

 

n 0 
[c

m
-3
]

N

Fig. 7. MOT peak density n0 vs number of trapped atoms.

The atoms number is changed using the diameter of the re-

pumper laser.

The first conclusion of this study is that the Wieman

model seems to apply even in our regime of a large MOT

(containing up to 1010 atoms) which contradicts the earlier

observation of [4]. We stress however that our conclusion

is reached on the basis of the careful experimental proce-

dure detailed in section 2, which differs from that used in

previous studies.

4 Repumper intensity controlled atom

number: N(Irep)

Intrigued by the discrepancy mentioned above between

the scaling we have obtained in the previous section and

that observed by [4], we have investigated the role of the

protocol used to modify the number of trapped atoms. In-

deed, the number of atoms in a MOT depends on many

control parameters as indicated in table 1. In order to ex-

tend our studies of the MOT scaling laws, we have chosen

another protocol to vary the number of trapped atoms in
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the experiment. The most convenient alternative method

in our setup has been to modify the intensity of the re-

pumping laser (Irep). In practice we change the power of

the repumper laser, but as we keep the beam size constant

in this run, this amounts to changing the repumper inten-

sity. We note that in contrast to the previous method,

using this protocol we also modify an external control pa-

rameter at the location of the MOT. As we will see, this

will have an important impact on the scaling law of the

MOT.

4.1 Experimental results on N(Irep)

4.1.1 Atom Number vs Repumper intensity : N(Irep)

Let us first discuss how the atom number is affected as we

change the intensity of the repumper laser. Fig. 8 illus-

trates how the number of atoms increases with the inten-

sity of the repumper. A previous model [5] predicts the

number of atoms growing as N ∝ v4
capt, where vcapt is

the capture velocity of the trap. The precise value of the

capture velocity depends on the parameters of the trap-

ping and repumper lasers as well as on the magnetic field

gradient. Within a simplified picture one can estimate the

capture velocity from the laser-deceleration a and stop-

ping distance of an atom, which needs to be smaller than

the size of the laser beams Llaser, according to

vcapt ≈
√

2apLlaser . (16)

Here we added a factor p as the trapping force is only

effective for atoms in the bright state (F = 3) and the

effective deceleration is roughly proportional to the bright-

state population p. To determine its dependence on the

repumper intensity Irep we use simple rate equations and

obtain

p = p∞
Irep

Ip + Irep
, (17)

where p∞ denotes the bright state population in the high

intensity limit. Eq.(17) yields an approximate description

for the population of trapped atoms, since both MOT and

repumper laser parameters varies in space due absorption

inside the high density atom cloud. Combining Eqs. (15)-

(17) the number of trapped atoms is thus expected to scale

as :

N = N∞

(
Irep

IN + Irep

)2

, (18)

where N∞ denotes the maximally trapped number of atoms.

Even though this model seems very convincing, one should

allow in principle that the parameters Ip and IN could be

different, as the hyperfine populations inside the MOT are

not necessarily the same as in the loading region for the

trap.

With these considerations the atom number depen-

dence of the repumper intensity and the bright state pop-

ulation directly follows from eqs.(17) and (18)

Irep = IN
N1/2

N
1/2
∞ − N1/2

, (19)

p = p∞
N1/2

βN
1/2
∞ + (1 − β)N1/2

, (20)

where β = Ip/IN . As demonstrated in Fig.8, the derived

atom number dependence on Irep yields a good descrip-

tion of our experiment, with N∞ = 8.9 109 and IN =

0.05mW/cm2. Note that the precise value for these fitting

parameters depends on various experimental conditions,
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Fig. 8. Experimental result for atom number as a function

of repumper intensity. All other parameters correspond to the

standard parameters, as defined in the text.

(such as power of the trapping and cooling laser) and

can be different for the various experiments performed to

extract the data shown in this paper. The loading effi-

ciency, and consequently the number of trapped atoms,

is determined by the population dynamics in a large vol-

ume around the trap, were we expect a good description

by the above model. However, the measured bright state

population p mainly contains contributions from atoms

confined in the MOT region, where level populations can

be strongly altered by absorption of MOT and repumper

lasers and by spontaneous Raman photons.

4.1.2 MOT Scaling law with N(Irep)

Having understood the dependence of the atom number

on the repumper intensity, we can now study the scaling

law of the MOT size L(N), with N(Irep) controlled via

the repumping intensity. The resulting curve is shown in

Fig. 9. Here again the repumper has been switched off af-

ter the MOT laser so that all atoms are pumped into the

F = 3 hyperfine level before probing with a detuned laser

(see Appendix8.1). One can clearly identify two regimes,

separated by a threshold Nth ≈ 1.5×109. For N < Nth we

observe a scaling law close to that predicted by the Wie-

man model, while for N > Nth the scaling law is nearly

L(N) ∝ N1/2 which is also reminiscent of what has been

observed previously [4]. However, these similarities are co-

incidental. First, the procedures to vary N are different :

in [4] N is tuned by acting on the loading of the trap

without modifying the MOT control parameters, while in

this part of our study we do vary one of the control pa-

rameters, namely the repumper intensity. Thus, it is the

results obtained with our first procedure in the previous

section 3.2.2 which should be compared to those of [4],

and there we observe a single N1/3 scaling law. Second,

the measurement procedures are also different : our care-

ful imaging procedure assures that we measure the actual

atomic density profile, while the faster procedure of [4]

(imaging of the MOT fluorescence) does not offer this

guarantee. A better understanding of the MOT behavior

might be obtained when looking differently at the same

data, by extracting as in section 3.2.2 the on-resonance

optical thickness bres (Fig. 10) and the peak density n0

(Fig. 11). These different ways of illustrating our exper-

imental results reveal different phenomena. Fig. 10, for

instance, clearly shows that for N > Nth the optical thick-

ness bres becomes roughly constant, which seems consis-

tent with a scaling law of L(N) ∝
√

N . We also see that

below the threshold value, the peak density of our cloud

is not constant (Fig. 11), in contrast to what one might
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Fig. 9. MOT size vs number of trapped atoms. The atoms

number is changed via the intensity of the repumper laser. The

solid lines (red online) indicate the results of a fit, illustrating

the different power laws below and above the threshold value

(Nth ≈ 1.5 × 109).

expect from the Wieman model. In this regime, L(N) thus

behaves differently from the scaling law L(N) ∝ N1/3. In

the density plot, this difference shows up more pronounced

than in the size plot.

In order to quantify these two regimes, we have per-

formed a systematic study of the scaling laws above and

below the threshold value, extracting the power law ex-

ponent α1/3 below the threshold and the exponent α1/2

above the threshold. The value of atom number Nth at the

threshold, and the size at threshold Lth are also given. All

these results are summarized in table 2. The size scaling

law for atom numbers below the threshold is different from

the Wieman prediction (α1/3 = 1/3) and has an exponent

closer to ≈ 0.22. For the scaling law above the threshold,

we find values close to α1/2 = 0.5. As we will see below, we

do not have a complete explanation for the observed scal-

ing law in all regimes. The data shown in this table might

108 109 1010
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Fig. 10. Optical thickness of the MOT vs number of trapped

atoms. The atoms number is changed via the intensity of the

repumper laser. The solid line (red online) give a power law

with an exponent of 0.55 in the low atom number regime.
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Fig. 11. MOT peak density n0 vs number of trapped atoms.

The atoms number is changed via the intensity of the repumper

laser. The solid line (red online) is a power law fit correspond-

ing to n0 ∝ N−0.54.

become useful once such a complete model will have been

developed.

One can note that the scaling law in the regime above

the threshold value seems to be consistent with the ob-

servation of [6] and with the conjecture b(δ) ≈ 1, arguing

that the MOT will self-adjust to this value, beyond which
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multiple scattering becomes important [6]. As we will see

in section 4.2, we derive this
√

N scaling law from com-

pletely different physical arguments, which are based on

the details of the trap loading as the repumping intensity

is changed, and on the repartition of atoms among both

hyperfine ground states. Also, as we have seen in section

3.2.2, when the atom number is controlled using a differ-

ent method, this
√

N scaling disappears, showing that the

√
N law is not a general feature for large traps.

In summary, the experimental results described in this

section show that:

i) we observe a scaling law L(N) ∝
√

N above a thresh-

old value Nth, when the atom number is changed via

the intensity of the repumper;

ii) below this threshold value, the density is not constant,

in contrast to the Wieman model.

The different behavior observed with the two different

methods used to control the number of atoms, indicates

the importance of the repumper laser. A model trying to

explain the scaling law of the MOT size in these regimes

thus requires to go beyond a two level model for the atoms,

including for instance the internal degrees of freedom of

the atoms.

4.2 Wieman-Pritchard model

The aforementioned Wieman model is based on a two level

model for the atom and, hence, neglects any effect of the

repumper laser, which we expect to be important in the

δMOT IMOT ∇B α1/3 α1/2 Nth Nmax Lth

[Γ ] [mW/cm2] [G/cm] [mm]

−2.5 7 10 0.22 0.49 1.6 109 9.8 109 0.96

−2 7 10 0.21 0.48 1.0 109 7.4 109 0.87

−3 7 10 0.24 0.45 1.6 109 9.0 109 1.01

−2.5 3.5 10 0.21 0.45 0.6 109 3.8 109 0.86

−2.5 1.75 10 0.23 0.41 0.16 109 0.38 109 1.15

−2.5 7 16 0.25 0.44 0.9 109 7.1 109 0.81

−2.5 7 5 0.20 0.43 0.47 109 1.9 109 0.96

Table 2. Systematic study of scaling law exponents and

threshold value. We denote α1/3 the exponent below and α1/2

the one above the threshold Nth. The values indicated in this

table have been extracted from a power law fit. The standard

parameters are given in the first line. The parameters, that are

changed are indicated in boldface. The repumper detuning is

δrep = 0 for all these experiments and the number of atoms

has been changed via the intensity of the repumper.

present case. Such multi-level effects have been previously

considered, to reduce MOT laser re-scattering and opti-

mize atomic densities. Based on this concepts Ketterle et

al. [12] have introduced the so-called dark SPOT. In such a

trap, only atoms in the upper (’bright’) hyperfine level are

interacting with the cooling and trapping lasers thereby

reducing the light-induced atom-atom interactions. Ac-

cording to the model of [12] the balance between trapping,

eq.(11), and repulsion forces, eq.(12) can be rewritten as:

Ftr = −κ p r (21)

Fms = G3p
2n r . (22)

Here p = N3/(N3 + N2) is the fraction of atoms in the

bright hyperfine level. As only this part of the atoms in-

teracts with the cooling and trapping lasers, the trapping
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force has to be multiplied by p. The repulsive interac-

tion between atoms requires a pair of atoms in the bright

state and one thus has to include a factor p2 in Fms.

Consequently, the stationary atom density resulting from

eqs.(21) and (22) has an additional p-dependence accord-

ing to:

nWP =
κ

p G3
=

nW

p
. (23)

As this model is an extension of the one discussed in sec-

tion 3.1, we call this the Wieman-Pritchard model.

In our experiments when we control the number of

atoms by changing the intensity of the repumping laser,

we clearly expect that the fraction p of atoms in the bright

state is altered. Even though we do not use a dark region

in our MOT, one can apply the Wieman-Pritchard model

and investigate which scaling law would be predicted with

the simplest ingredients. In Fig. 12 we plot the density at

the MOT center vs the parameter p, obtained by detecting

either only atoms in the F = 3 state (N3) or all atoms

(N2 + N3). The solid line is a power law fit and gives an

exponent of −1.05, in agreement with the 1/p prediction

of the Wieman-Pritchard model.

The Wieman-Pritchard model thus appears to explain

our experimental results for large MOTs as the L(N) ∝
√

N scaling law can be derived from this model. Indeed,

as discussed in 4.1.1, one expects both the atom number

N and p to decrease as the intensity of the repumper is

reduced. The bright state fraction p approaches a con-

stant value p∞ for large atom numbers but varies ∝
√

N

as the number of atoms is reduced (see eq. 20). Within

the Wieman-Pritchard model, such a scaling law for p ∝

√
N predicts a density nWP ∝ N−1/2 and thus a MOT

size which scales as L ∝ N1/2. The Wieman-Pritchard

model can thus explain our experimental observation in

the large atom number regime. In contrast to [6], where

the L(N) ∝
√

N scaling law has been reported and at-

tributed to higher-order MOT photon rescattering, the

L(N) ∝
√

N scaling law presented in this paper can be

explained without invoking higher scattering order, and

depends on the method employed to change the number

of atoms. Also we recall that this power-law disappears

when the atom number is changed by varying the size of

the repumping laser, keeping all other parameters con-

stant (see in Fig. 5), and this up to very large atom num-

bers (N ≈ 1010). However we observe a clear deviation

from this scaling law for an atom number below N ≈ 109

and we will argue in the next section that the missing key

point is the interaction force resulting from rescattering

of repumper photons.

5 Beyond the standard models for MOT

scaling laws

Despite the good agreement between the Wieman model

and our experimental results of section 3 on one side, the

Wieman-Pritchard model and our results of section 4 for

the large atom limit on the other side, there are a some

results which can not be explained by the standard models

used up to now for the MOT description. Indeed, one can

see in Fig. 9, that for an atom number below N = 109,

the density of atoms in the trap is neither constant (as
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Fig. 12. MOT peak density n0 vs p. The solid line (red on-

line) is a power law fit gives an exponent of −1.05, in agreement

with the 1/p prediction of the Wieman-Pritchard model. The

experimental data points correspond to the largest atom num-

ber obtained for Irep = Imax
rep /2, Imax

rep /4, and Imax
rep /10 (corre-

sponding to total atom number N = 9.9 109, 7.8 109, 4.7 109

and sizes L = 2.1mm, 1.8mm, 1.5mm resp.)

predicted by a simple Wieman model) nor following the

law deduced from the Wieman-Pritchard model (with L ∝
√

N). We thus speculate that a new physical effect has to

be added to explain the MOT behavior in this regime.

5.1 Optical thickness of repumper

A further observation shows another important aspect to

be considered. As described in the section 2, we use a re-

pumper only along one axis (which is not along any axis of

the MOT laser). It is thus possible to record the transmis-

sion of the repumping laser (even though without retro-

reflection for this measurement). A screen placed on the

repumper after it has passed the MOT allowed us to ob-

serve that the intensity of the repumper is considerably re-

duced by the MOT. This is a direct proof that the optical

thickness for the repumper light is not small! Fig. 13 shows

an image of the repumper beam transmitted through the

MOT. The dark region in the center indicates that many

photons of the repumper are scattered by the atoms of the

MOT.

This qualitative observation has an important impact

on the model we will use to describe the scaling law of the

MOT size. In that case, scattered repumping photons can

be reabsorbed in the MOT which will yield a repulsive

force, in the same way as the rescattered photons of the

trapping light produces a repulsive force. Furthermore, the

repulsive forces arising from rescattered repumping pho-

tons are not balanced by any trapping or cooling force.

In general one has to analyze the subtle compensation

between the repulsive forces due to rescattering and a

shadow effect (resulting in a net compression along the

axes of the laser) in order to know whether absorption

and rescattering results in compression or repulsion. In our

configuration, where the repumping laser is only present

along one axis, the situation is somewhat different as there

is no compression along the directions transverse to the

repumper propagation axis.

We note that when we control the atom number via

the size of the repumper laser, we can not exclude the pos-

sibility that the average intensity of the trapping and/or

repumping lasers are affected when the number of atoms

is changed. Indeed, a modification in the optical thick-

ness of the cloud may change the attenuation of the dif-

ferent incident laser beams as well as the importance of

spontaneous Raman photons (resulting in a change of the
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Fig. 13. Image of transmitted repumper laser: the dark region

in the center corresponds to the absorption of the repumper

by the MOT atoms in the dark state.

hyperfine level), and thus affect the fraction of atoms in

the bright state. To illustrate such effects, we have mea-

sured the number of atoms N3 in the bright state F = 3

(no delay at repumper switch-off) and the total number

of atoms N2 + N3 (100µs delay for repumper switch-off),

in an experiment where the number of atoms has again

been changed by varying the size of the repumping laser.

In Fig. 14 we plot the proportion of atoms in the bright

state p = N3/(N2 + N3) as a function of the total num-

ber of atoms N = N2 + N3. As one can see, this pro-

portion is roughly constant, except for low atom num-

bers where it drops. This decrease of p is not understood

and the situation is far from trivial. Indeed this decrease

of p depends in a complex way on the relative attenua-

tions of the MOT, repumper lasers and on the presence
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Fig. 14. Proportion p = N3/(N2 +N3) of atoms in the bright

(F = 3) state as a function of the total number N = N2 + N3.

N is varied by changing the repumper size.

of spontaneous Raman photons. A model to explain this

decrease goes beyond a simple description using low sat-

uration and/or homogeneous laser intensities. From our

experimental observation, we obtain a decrease of p for

smaller atom number, whereas the density is roughly con-

stant or slightly decreasing in this regime (see Fig. 7).

We have performed further experiments in order to

investigate the role of the various parameters of the re-

pumping laser. Changing the detuning of the repumper

or its intensity did not dramatically alter the maximum

density obtained in our trap. Even though we pass from a

regime where the saturation of the repumping transition

is larger than 1 to a regime where we do not saturate this

optical transition, the relevant effective saturation to be

considered being the efficiency of a repumping cycle versus

the optical pumping into the F = 2 hyperfine level. Thus,

one typically only needs 1 repumper photon for every 1000

photons exchanged on the main cooling and trapping tran-
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sition. We thus estimate that the optical repumping cycle

saturates 1000 times faster than the optical transition. We

have also verified that the size of the trap is the same if we

detect atoms in both hyperfine levels or only in the bright

state. This can be understood by the fact that atoms with

a typically velocity of v ≈ 0.1m/s would have to spend a

time of about t ≈ L/v ≈ 10ms in the dark state, in order

to undergo a larger spread than in the bright state [13].

This is not the case for our parameters.

5.2 Generalized Wieman-Pritchard model

In this section we will propose a new model which gen-

eralizes the existing theory by including the role of re-

pumper photons. We note that this model is not valid for

all MOT regimes. Indeed there are well known regimes,

which are not covered by the following discussion. The

first one to mention is the temperature limited regime,

where the MOT size is limited by the thermal atom mo-

tion and can be estimated from the equipartition theo-

rem for kinetic and potential energy of the atoms in a

damped harmonic trap. This regime is usually realized for

very low atom numbers or when multiple scattering forces

can be neglected, as e.g. in the case of narrow line cool-

ing and trapping [21]. Other regimes at low or moderate

atom number include the situations where the MOT size

is so small that sub-Doppler cooling features have to be

taken into account [22]. Further factors, such as free travel

during a period in a dark state [13] or dynamical effects

[18] (clearly becoming dominant when self-sustained oscil-

lations set in [14]) can also affect the scaling law and the

shape of MOTs with large number of atoms.

Despite the agreement between the Wieman-Pritchard

model and our experiments for the largest atom num-

bers, the density dependence observed in Fig. 11 for the

lower atom numbers cannot be explained by the Wieman-

Pritchard model. Indeed, trying to fit the behavior of

Fig. 11 by an unknown dependence of p(N) would require

extremely low bright state fraction (of the order of 1%)

which we find difficult to realize even in a standard dark

SPOT configuration [12] with Rubidium. We thus think

that a new effect, not previously reported in the literature,

needs to be included.

The results of section 5.1 suggest that many repumper

photons are absorbed by the atomic cloud, which may

have a dramatic effect on the MOT density. Similar to

scattered MOT photons, scattered repumper light can be

reabsorbed, which leads to an additional repulsive force

between the atoms. On the other hand, as we do not use

six counter propagating lasers beams for the repumper,

the corresponding shadow effect for the repumper is neg-

ligible such that the net repulsion is important even for

low values of the saturation parameter. As a rough esti-

mate we consider an optical thickness of bres = 40 for the

resonant F = 3 → F ′ = 4 transition, with the repump-

ing lasers being at resonance. The resulting repumper-

optical thickness of the cloud for that frequency is of or-

der bres(1 − p)/p. This means, that even a 2% fraction of

atoms in the ’dark’ state yields an optically thick cloud

for the repumping laser: bres(1 − p)/p ≈ 1. Taking into

90



2.4. SCALING LAWS FOR LARGE MAGNETO-OPTICAL TRAPS

18 G.L. Gattobigio et al.: Scaling laws for large magneto-optical traps

account an interaction between atoms in the dark ground

state (F = 2) will thus lead to add a term ∝ (1 − p)2 in

the repulsive forces.

Furthermore photons scattered on the F ′ = 3 → F =

3 transition during a repumping process will be efficiently

reabsorbed for a large optical thickness. Indeed, these pho-

tons, which are spontaneous Raman photons, are resonant

with the F = 3 → F ′ = 3 transition and the reabsorption

of these photons corresponds to adding a further interac-

tion term ∝ p(1 − p) depending now on the product of

the dark (1−p) and the bright (p) state populations. One

could consider spontaneous Raman photons responsible

for the optical pumping from the F = 3 into the F = 2

hyperfine level can become important. They will ad to an

interaction term ∝ p(1−p). However these photons do not

affect much atoms in the dark hyperfine level F = 2, as

they are detuned by ≈ 20Γ from the F = 2 → F ′ = 3

transition.

Accounting for these additional interactions, we thus

propose the following generalization of the Wieman-Pritchard

model by modifying the multiple scattering force as fol-

lows:

Fms = G3n p2r + G2n (1 − p)2r + G2,3n p(1 − p)r , (24)

where the parameter G2 describes the repumper induced

by rescattered repumper photons (in analogy to G3 for the

rescattered MOT photons), and G2,3 takes into account

the repulsion effect of Raman scattered photons. As for

the Wieman-Pritchard model, the stationary density is

obtained from total force balance, which yields :

nWP+ =
κ p

G3p2 + G2(1 − p)2 + G2,3p(1 − p)

=
nW

p + α (1−p)2

p + β(1 − p)
(25)

where α = G2/G3 describes the ratio between the inter-

action of atoms in the bright and the dark hyperfine level

and β = G2,3/G3 describes the strength of the interaction

of the Raman scattered photons. This equation predicts

new scaling laws and new limits for the density of cold

atomic clouds.

Although this expression looks very appealing to pre-

dict the density limit of MOTs, it is not straightforward

to compare this model in a quantitative way to the ex-

periments for several reasons. First of all, in order to use

this new model and compare it to our experiment where

we modify the number of atoms via the intensity of the

repumper, one would need to take into account how the

new interaction terms depend on the intensity of the re-

pumper (which is coupled to the bright state fraction p).

Second, for large optical thickness of the repumper and

MOT lasers, the total number of atoms N and p become

coupled parameters. Also the effective local intensity to

be considered for the interaction by the repumper laser

depends on the optical thickness of the cloud. A direct

and clean experimental study of these additional interac-

tion effects would thus require a large detuning for the re-

pumper (probably best done on the D1 line of Rb), so that

the optical thickness of the repumper can be neglected and

the new force can be eliminated. Such experiments go be-

yond the data we have gathered for this paper. However

91



2.4. SCALING LAWS FOR LARGE MAGNETO-OPTICAL TRAPS

G.L. Gattobigio et al.: Scaling laws for large magneto-optical traps 19

the new model will predict a limitation and a possible de-

crease of the atom density for smaller values of p and corre-

spondingly for smaller values of the repumper intensities.

But a quantitative description of our observations over the

full range of experimentally realized atom numbers thus

requires precise knowledge of the local repumper intensity

and its effect on the bright state population. As outlined

above, a corresponding theoretical description turns out

to be prohibitively complex, as attenuation and reabsorp-

tion leads to an intimate coupling between p and Irep gov-

erned by the incident as well as the diffusive background

of repumper photons, which all contribute to the repulsion

forces and determine the value of p. Clearly, further ex-

periments are required to uncover this complex interplay

between the various atom-light and atom-atom interaction

effects. Note that the attenuation of the repumper by the

cold atoms is not affecting the dependence of N(Irep) as

the attenuation by the cold atomic cloud is only present

at a small part of the capture volume for the MOT.

6 Conclusion

In summary we have presented a systematic study of the

various scaling laws appearing in large MOTs. In one type

of experiments, where the atom number was changed by

varying the diameter of the repumper laser, we recover the

prediction of the Wieman model L ∝ N1/3, and thus a

constant density, up to large atom numbers of N ∼ 1010,

which provides strong evidence that a N1/2 scaling law

does not solely arise from multiple photon scattering as

previously suggested in the literature. In another series

of experiments, where we change the atom number via

the intensity of the repumper laser, we found a cross-over

in atom number dependence of the MOT size changing

from L ∝ N1/3 to L ∝ N1/2 with increasing N . We

can explain the L ∝ N1/2 behavior using the Wieman-

Pritchard model developed to describe a dark SPOT. We

also point out unexplained behaviors which are observed

in our experiment and suggest that the mechanical inter-

action effect induced by repumper photons can become

important in large MOTs. Indeed, in certain regimes, in

particular when more atoms are in the dark hyperfine

state, repumper-induced interactions may impose an ad-

ditional − previously overlooked − density limitation, and

we speculate that a considerable density increase is possi-

ble when these effects are correctly understood and con-

trolled. Further experiments are required to unambigu-

ously prove the role played by the repumper photons on

the MOT density. A quantitative comparison between our

experimental result and the model including the mechani-

cal effects of the repumper photons goes beyond the scope

of this paper, but would be interesting to be developed

in order to overcome present limitations in MOT densi-

ties. Indeed, one promising possibility, suggested by the

experiments and by the model presented in this paper,

is to use six independent repumper laser beams. The re-

sulting shadow effect is expected to greatly compensate

the repumper-induced repulsion between the atoms and

consequently lead to significantly denser atomic samples.

Increasing rapidly the atomic densities could be very use-

ful for fast Bose-Einstein condensation of cold atoms and
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Fig. 16. Number of atoms in the bright state a function of

delayed repumper turn off: τdelay. The fit for τdelay < 0 (dashed

line, blue online) gives a time scale of 110µs, whereas the fit

for τdelay > 0 (solid line, red online) gives a time scale of 5.7µs.

the MOT laser and magnetic field gradient off. Obviously,

turning off the repumper much earlier than the MOT laser

will empty the ’bright’ (F = 3) state and put all atoms

into the ’dark’state (F = 2). On the other hand, leav-

ing on the repumper after turning off the MOT laser will

repump all atoms into the F = 3 state. Probing the flu-

orescence with only the MOT laser turned on gives us a

signal proportional to the number of atoms in F = 3. As

shown in Fig 16, the time scales for repumping from F = 2

into F = 3 (τdelay > 0) is different from the time scale to

pump the atoms into the ’dark’ state F = 2 (τdelay < 0).

The ratio N2/N3 of the number of atoms N2 in the dark

state and the number of atoms N3 in the bright state can

be extracted from the ratio of the pumping (Γ ′
pump) and

repumping rates (Γ ′
rep):

N2

N3
=

Γ ′
pump

Γ ′
rep

. (26)

From the fit of the experimental data we extract a

time scale for repumping of: τrep = 1/Γ ′
rep = 5.7µs and

time scale for pumping into the dark state of: τpump =

1/Γ ′
pump = 110µs, predicting a ratio N2/N3 ≈ 0.052. This

is in rough agreement with the value obtained at zero delay

(τdelay = 0): N2/(N3 + N2) ≈ 0.076. As expected this

shows that the repumping of atoms from F = 2 → F = 3

is much faster than the optical hyperfine pumping from

F = 3 → F = 2.
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Chapter 3

MOT Compression

In the previous section we presented our experimental results obtained in the compression
stage. Here we want to overview the ”standard techniques” used for MOT compression.
We want to stress that this is a very critical and important stage towards high density
regime, not only in our case to obtain a dense medium, but also for the cold collision field
and the Bose-Einstein-Condensate (BEC). For the latter the most important parameter
to be optimized is the phase-space density n0 ·λ3

DB(vrms) = 2.6 (the combination of atomic
density (n0) and mean sample velocity).
In general, the degenerate regime described above is reached with evaporative cooling
techniques, which produce lower atomic temperature in about 2 sec. The only side-effect
is a considerable loss of atoms during the process, with only a few atoms in the condensate
(103 − 106).

The inevitable choice of evaporative cooling relies on the fact that, up to now, the
physics behind density limitation are not well understood. Many experimental efforts
were carried out to compress standard MOTs but with only limited success. The density
limitation explanation is still an open question in atomic physics. An experimental answer
to such a question could provide the possibility of obtaining, for example, a degenerate
regime such as BEC in less than 1 sec with a relative rise in the experimental duty-cycle.

The steady-state of the density, as we saw, is determined by the balance between the
spring constant of the trap and the repulse force of the atom-atom interactions. Thus the
evident solution for increasing atomic density is to either increase the spring constant or
suppress the rescattering light within the atomic cloud.

The spring constant can easily be increased by, for example, applying a strong mag-
netic field gradient at the end of MOT-loading, in order to leave the loading conditions
unchanged.

The suppression of atom-atom interaction can be achieved by two methods. The first
is the realization of a ’Dark Spot’ technique, which consists of confining the atoms in the
lower hyperfine ground state. As this state does not interact with the trapping light, the
atoms cannot repel each other and thus the density is increased. The ’Dark-Spot’ can be
realized either by making a black spot on the intensity of the repumper, or dynamically,
where the intensity is lowered by, typically, a factor of 100 after the loading.
The second method is based on reducing trapping light combined with increasing its de-
tuning. Both are useful for decreasing the scattering rate of photons and consequently
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the multiple scattering in the MOT.

These techniques were both experimentally demonstrated with different atomic species.
We report, in Tab. (3.1), the most important results published in literature, without con-
sidering either the highest density, as much as 1014 atom · cm−3 [31], obtainable by using
crossed dipole traps generated by focusing high-powered (12W ) infrared (λ = 10.6µm)
beams, or the Far-OFF-Resonant Light trap (FORL) [32], where spontaneous emission is
also negligible and spatial densities of about 1013 atoms/cm3 are reached as well.
These particular traps require very powerful and expensive lasers, and in our case, the
implementation required a complete restyling of the experimental set-up.

Observed
Density
(cm−3)

Atom Techniques Reference

2.5 · 1011 Cs Static Parameters: Ω2 = 0.8Γ2, dB
dz

= 60 G/cm Nat = 5 · 105 [33]

∼ 1012 Cs Temporal dark-spot (20msec) (Irep/100,dB
dz

= 20G/cm) [34]

∼ 1012 Na Spatial Dark Spot [29]

3 · 1011 Cs Temporal Dark Spot [35]

∼ 5·1011 85Rb Changing the detuning and the gradient [36]

1.6 · 1011 85Rb On-resonance compression beams [37]

∼ 1012 85Rb Dark-Spot combined with a Dipole Trap This work

Table 3.1: Table resuming the main published experimental results dealing with the compression
of atomic clouds. We report the maximum of the density obtained, the atomic species used and
the relative techniques employed.

In accordance with the conclusions of the previous chapter, and the studies published
and reported in TAB. (3.1), the highest densities are achieved for low values of p. We
were able to obtain such a condition by implementing a spatial ’Dark-MOT’ (Dark-spot)
as well as a temporal ’Dark-MOT’. Therefore, we cannot set p as low as we want, because
of spatial confinement. In fact, as the spring constant proves to be proportional to p, it
became weak as well. Thus we came up with the idea of adding an external force, which
provided a spatial potential to keep the atoms in the trap even for small values of p.
This was achieved by using a dipole trap, combined with the ’Dark-MOT’. In our case,
the dipole trap was obtained from a simple amplified and red-detuned diode-laser. More
details are given in the following sections.
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3.1. EXPERIMENTAL SETUP

3.1 Experimental Setup

In this section we will describe the experimental set-up used to achieve our ’Dark-MOT’
(3.1.1) , followed by the description and implementation of a Dipole Trap obtained from
a laser diode λ = 780nm amplified by MOPA (3.1.2). Finally, we will analyze the perfor-
mance of the combined ’Dark’ and Dipole trap in Sec. (3.2), and conclude by reporting
the maximum density obtained.

3.1.1 The ’Dark-MOT’ (DMOT)

In the following section, the details of our ’Dark-MOT’ are given. We will describe the
realization of our ’dark spot’ in the repumper and the time sequence used. Also, during
the compression experiments, we used the absorption technique to probe the atomic sam-
ple, and we will detail this new procedure. We will conclude these sections with general
considerations on performance and optimization of a ’Dark-MOT’ like this.

Dark line in the repumper
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Repumper ’Dark’

Repumper ’Plus’
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Shutter
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Figure 3.1: The illustration shows the method used to realize the dark spot. The repumper
intensity is separated by the λ/2-cube system in two directions. One direction, called ’Repumper
Dark’, involved putting a thin wire line providing a dark line in the repumper intensity at the
level of the vacuum cell. The ’Repumper Plus’ direction is used to pump the atoms back into
the bright level before probing the cloud. In the ’Repumper Plus’ direction the shutter is used to
switch this additional beam on and off .
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3.1. EXPERIMENTAL SETUP

The repumper intensity, usually of about 16mW , is split in two directions by a λ/2-
cube system which provides us, FIG. (3.1), with a ’repumper dark’ and a ’repumper plus’
with controllable intensities. The ’dark repumper’ is obtained by placing a thin wire in
the path of the repumper. In this way we obtain a black line in the repumper intensity
profile, which gives rise to a dark plane at the atomic level, where the atoms are confined
in the F = 2 hyperfine-ground state.
The ’repumper plus’,FIG. (3.1) which is controlled in time by a mechanical shutter, is
used to repump all atoms in the F = 3 state before shining the probe beam. The shutter
is characterized by four time constants. The first is the delay time, which is the delay
between the TTL command and the shutter opening (ON). The second is the rising time
of the shutter opening (ON). The third is the shutter closing time (OFF). The fourth is
the relative falling time (OFF). These times can be measured by looking at the intensity
of the ’repumper plus’, and for the ’delay on’ we found: 5.5 msec with a rising time of
0.6 msec, and for ’delay off’: 16msec with a falling time of 1.25 msec. Throughout the
whole loading time the two ’repumpers’ were both present, while in the ’dark’ phase only
the ’dark’ one was kept on.

As we wanted to obtain a low value of p, particular attention had to be paid to the
geometrical alignment of the black line in the atomic cloud. The reflection on the surface
of the vacuum cell has to be controlled and any extra repumper photons have to be
blocked. The ’Dark-MOT’ is usually realized by using a dark-spot in the repumper laser
[29], and the problem lies in the geometry; we cannot control the reflections well as they
cannot be superimposed due to the cylindrical symmetry of the problem. This is why we
used the line.

Temporal ’Dark-MOT’

As already mentioned, the ’Dark-Spot’ can also be realized dynamically, which means
that the intensity of the repumper laser is lowered, typically by a factor of 100 at the
end of the loading time [34], which produces high spatial density (∼ 1012 cm−3) during a
transient time of about 20msec.
In our case this technique was tested to increase the density as well. Indeed, we removed
the black line in the ’repumper dark’ Fig. (3.1), and we altered only the respective inten-
sities of the two ’repumpers’. By doing this, the best condition was found for a measured
’repumper plus’ power of Pplus ∼ 13 mW and ’repumper dark’ power of Pdark = 3 mW .
This arrangement produces a p = 25%, and consequently an increase of central density
of only a factor of 4. Hence, after these considerations, we decided to choose the pure
’Dark-spot’ technique as the first stage for the MOT compression.
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3.1. EXPERIMENTAL SETUP

Time Sequence

(a)

(b)

Figure 3.2: In the illustration we report the time sequence used to realize the ’Dark-MOT’.
The full description is given in the text.
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3.1. EXPERIMENTAL SETUP

The time sequence was realized with a home-made card which gave us the possibility
of performing a sequence of up to several seconds, while for the shorter time we still used
a ’delay box’.

The typical time sequence is reported in the Fig. (3.2), where we are loading the MOT
during the first 5700msec followed by 25msec of ’Dark-MOT’ and 25msec of ’Ultra Dark-
MOT’. In this latter phase we tested the controller parameters, in order to obtain the
lowest possible p-values. The time sequence was realized with two home-made electronic
cards. With reference to Fig. (3.2), we call card number 1 (a) and card number 2 (b). In
total we used the two analog outputs and seven digital (TTLs-signal) outputs available.
These outputs are described as following:

For card 1 (a):

• 1.A-(a): the analog output which controls the MOT detuning δMOT . This is set
equal to −3Γ during the loading time, and suddenly changed during the ’Dark-
MOT’ ranging between −10Γ and resonance;

• 1.2-(a): controls the AOM on/off MOT intensity and the AOM on/off of the re-
pumper laser when we want to probe only the N3 atomic population, where a re-
pumper pulse is not present;

• 1.3-(a): controls the AOM on/off repumper when we want to probe the whole atomic
population Nat, where a repumper pulse is present, before probing the cloud.

For card 2 (b):

• 2.A-(b): the analog output that controls the repumper intensity (Irep);

• 2.1-(b): controls the magnetic field gradient (~∇B);

• 2.2-(b): is used as a trigger for the ’delay box’. Such a box is used to generate
shorter signals (less than 1µsec) which we cannot make with the cards. Particularly,
by using this box, we can control:

– the duration of the probe beam, used for the absorption images;

– the probe detuning (δprobe);

– the trigger of the CCD camera to record the absorption images;

– the AOM on/off of the ’dipole’ trap (Fig. (3.11)) when it is present;

• 2.3-(b): switches on/off the shutter in the ’repumper plus’(Fig. (3.1)) in which we
also added the relative delay times. As already mentioned, the shutter is character-
ized by four time periods: the ’delay on’ (the amount of time of delay from when
the TTL command is given) of about 5.5 msec with a rising time of 0.6 msec ; the
’delay off’ of about 16.6 msec with a falling time of 1.25 msec.

• 2.4-(b): controls the AOM on/off if we want to use a ’depumper’ laser which also
influences p.
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3.1. EXPERIMENTAL SETUP

Absorption Imaging
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Figure 3.3: The typical absorption image (a), obtained by the method described in the text,
is shown, and the projections with the relative Gaussian fit are reported (b). The typical size
is found to be σr ∼ 1.5 mm, with the assumption of an isotropic density distribution. The
on-resonance optical thickness in the ’Dark-MOT’ is b0 ∼ 100 with Nat ∼ 109 and density of
1011 cm−3. The experimental image is taken with δprobe = −4Γ.
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3.1. EXPERIMENTAL SETUP

We already saw in the Sec.(2.1.2) dealing with shadow effects that when the light passes
through a cloud of atoms with density distribution n(x, y, z), the intensity is reduced
according to Beer’s law:

I(x, y, z) = I∞e−σL

R z
−∞

n(x,y,z
′

) dz
′

, σL(δ) = gF
σ0

1 + 4(δ/Γ)2
(3.1)

where gF accounts for the degeneracy of the atomic levels, and as usual is equal to 3/7. It
is clear from the Eq. (3.1) that the intensity profile of the laser beam, after having passed
through the cloud, contains information about the integrated density distribution n(x, y).
For the ’dark’ image obtained without the atoms, Id(x, y) , and the image with the cloud
Is(x, y) , the density profile is given by the following equation:

n(x, y) = − 1

σL

ln(
Is(x, y)

Id(x, y)
) (3.2)

Also, the integration of Equation (3.2) gives the total number of atoms present in the
MOT. As we recorded the images into a CCD camera with discrete pixels, the integration
is turned into a summation made over all the pixels:

Nat = − D

σL

∑

ij

ln[
(Is)ij

(Id)ij

] (3.3)

where D is the area of the pixel in the object-space.
In contrast to fluorescence imaging, no camera or transmission calibration is necessary to
determine the number of atoms from an absorption image. We only need to calibrate the
magnification which can be done by taking an image of a ruler. By doing this we found,
for the square-pixels, a calibration of 61µm/pixel.

As well as the transverse mode quality of the absorption beam, which has been checked,
the spectral properties are important. The spectral width of the imaging light needs to
be much smaller than the atomic linewidth of the atomic transition so that the light
scattering cross-section σL is the same for all frequency components of the light. This
criteria is also fulfilled as we use a DBR of 2MHz width (FWHM).

The duration of the absorption imaging light pulse has to be short enough for the
atoms to maintain their original density distribution. In fact, the diffusion induced by
photons within the cloud leads to an increase in the size of the cloud as we have already
discussed.

To obtain the absorption images we used a non-saturating probe (Isat/10) with a di-
ameter of 4 cm, which is much larger than the atomic cloud.
The typical absorption images Fig. (3.3) are taken in only one shot without a time aver-
aging, and with a CCD camera exposition time of 0.55 msec.

In order to extract some physical information we assume a Gaussian density distri-
bution for the MOT. Fitting the image obtained according to Eq. (3.2) with a Gaussian
function, we directly extract the standard deviations σy, σz for the two spatial directions,
as shown in Fig.(3.3).
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All the relevant information we are interested in, Nat, n0 and the b0 were gathered
from the image by using a Matlab routine, which could also provide us with a real time
analysis of the images.
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Performance and Optimization of the ’Dark-MOT’
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Figure 3.4: The figure shows fluorescence as a function of time. The signal was directly
recorded from the experiment: it proves that the suppression of fluorescence (proportional to p)
during the ’Dark-phase’ is due to a change in hyperfine ground state. In fact, the atoms are not
lost and can be repumped back into the ’bright’ state even after 50 msec. From such a curve, we
can deduce a p ∼ 4% in an equilibrium situation reached after about τeq ∼ 10 msec, as shown
in inset (a). The measured p is in complete agreement with the results extracted from the image
technique.

Our ’Dark-MOT’ phase is obtained by switching off the ’repumper plus’ laser ,Fig. (3.1),
hence leaving the atoms to go into the lower Hyperfine ground state F = 2. By doing
this we arrive at an equilibrium situation after 10msec, as shown in Fig. (3.4)-(a), with a

p =
N3

N3 + N2

∼ 3%. As described in the sequence shown in Fig. (3.2), we measured the

p value by taking the difference between the two images with and without a repumper
pulse before probing the atoms. This value could also be checked by looking at the fluo-
rescence signal measured by a photo-diode Fig. (3.4). After the loading time we realized
the ’Dark-MOT’ phase during 50msec by switching off the ’rempumper plus’ which was
then switched on again to repumper the atom back into the ’bright’ transition. If we
say that the fluorescence is proportional to the number of atoms in the bright state (p),
comparing the bright and dark fluorescence in Fig. (3.4), we extract a value of p ∼ 4%
in complete agreement with that obtained from the images. Also, the curve in Fig. (3.4)
tells us that the atoms are still in the trap after 50msec of Dark MOT, and that they
have not fallen out of the center of the trap.

As we have already demonstrated that the ’fluorescence’ is a suitable signal, we looked
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Figure 3.5: Lifetime (τlife) of the atoms in the ’Dark-MOT’. From the exponential fit we
extracted (τlife ∼ 600 msec). We also noticed that our density was not limited by cold collision,
as we observed a purely exponential decay.

at it to optimize the repartition intensity of the repumper laser in order to have the lowest
p value to increase the density in accordance with the Wieman-Pritchard model. Indeed,
we wanted to have the lowest fluorescence signal during the ’Dark-Phase’ without losing
atoms while we were loading.

The isolation of the AOM on/off of the repumper laser was measured as 5 · 10−3. This
means that if we want to have an acceptable value of p we need to be aware of such light.
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Figure 3.6: The repumper pulse applied to the atomic cloud before probing is strong enough to
rempump atoms in the bright state. The fluorescence spike is due to the photons emitted by the
atoms in the F = 2.

Particularly, we closed the mechanical shutter of the ’repumper plus’ laser (Fig. (3.1)),
during all N3 measurements. After a careful shielding of the rempuper light a p ∼ 3%
was demonstrated. Such a value gives rise to an increase in the peak density by a factor
of 10, and a factor of 4 for the on-resonance optical thickness (b0).
In fact, the new density is n

′

0 = n0 · 10; this means that as we keep the total number
of atoms Nat trapped constant, the size is reduced by L

′

= L/(101/3). Thus, the new
on-resonance optical thickness, defined as b

′

0 = n
′

0σ0 L
′

, increases by a factor of about 4:

b
′

0 =
Nat

(L′)2
σ0 and consequently, b

′

0 ∼ b0 · 4. As we have, for the non-compressed MOT,

a b0 = 30 after compression, we expect to have b
′

0 ∼ 120; these results are in complete
agreement with the quantities measured. In fact, after the ’Dark-Phase’, without too
much effort, we ended up with a MOT with 5 · 109 atoms, σr = 1 mm, b0 = 100 and
with a peak density n0 = 3 · 1011 atoms/cm−3, as shown in the image of Fig. (3.3).

After the acceptable results obtained with the ’Dark-MOT’ stage for increasing the
density, we decided to investigate the influence of the MOT controller parameters. Indeed,
we changed such parameters only in the last 25msec of our sequence, in the phase which
we have called ’Ultra Dark-MOT’.

In the following we will report the main results obtained from such an experimental
study:
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Figure 3.7: The atomic density as a function of δMOT is shown. The detuning is only changed
during the ’ultra dark phase’ without affecting the loading characteristics of the trap. A maximum
was found for a δ = −2 Γ.

• The investigation of MOT detuning δMOT is reported in Fig. (3.7). The idea was
to set the detuning near resonance to compress the MOT (i.e. minimize the G3

interactions). We did not succeed because the cloud at resonance became unstable
[38]. The density decreases when δMOT is far from resonance because we reduced
the spatial confinement.
However, a local maximum was found for δMOT = − 2 Γ, and density
as n0 = 3 1011 cm−3 was obtained.

• We also tested the intensity of the MOT, during the ’Ultra-Dark’ phase, without
any noticeable effects.

• We also investigated the influence of the repumper by altering the intensity repar-
tition (Fig. 3.1) between the ’repumper dark’ and the ’repumper plus’. From this
study we can conclude that such repartition is not so important as it doesn’t influ-
ence the final density obtained.

• The density dependence on a delta repumper was explored and the results are re-
ported in Fig. (3.8). As the repumper detuning can only be changed statically
because of its construction, the number of atoms trapped are dependent on the re-
pumper detuning. Thus the linear variation of density with the number of atoms
strictly correlates with the MOT-trapping efficiency. We also verified that the re-
pumper pulse before shining the probe is strong enough to put all atoms in the
bright state Fig. (3.6). However, if we plot the ratio n0 as a function of Nat, we
find that the density is not limited and increases linearly with the number of atoms,
Fig. (3.9). Moreover, if we look for blue detuning in detail, inset of Fig. (3.9), we
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have a slight decrease in the MOT’s volume, meaning a compression of the MOT,
due to a reduction of repumper induced interactions.

• As a final test, we also tried to add a ’depumper’ laser, in order to lower the p value,
but we gained only an insignificant factor of two in Nat, without any effect on the
final density value.
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Figure 3.8: The influence of the repumping detuning δrep on the density is reported. Fig.(a)
shows the behavior of the total number of atoms Nat in the trap, while in Fig.(b) the relative
atomic density is reported. The detuning could only be changed statically and not dynamically,
influencing the trap efficiencies. This is demonstrated by the Lorentzian shaped behavior as a
function of detuning, both for density and number of atoms.

109



3.1. EXPERIMENTAL SETUP

-8 -6 -4 -2 0 2

4

3.6

3.2

2.8

2.4

δrep/Γ

V
ol

u
m

e
(1

02
cm

3
)

1.6

2

D
en

si
ty

n
0(

10
11

cm
−

3 )

Nat (109)

0.4

0.8

0.2

1.5 2 2.5 3 3.5 4 4.5 5

(a)

Figure 3.9: The density (n0) as a function of Nat in the ’Dark-MOT’ is reported. As specified in
the text, the repumper detuning could only be changed statically, influencing the trap efficiencies.
However, as shown by the linear fit, the density is increasing linearly with Nat. Therefore, for
detuning above − 4Γ we observe a compression of the MOT’s volume, as underlined by the inset
(a). The compression of the MOT could be due to a minimization of the repumper induced
interactions.

Conclusion

We can conclude that for a p ∼ 3% we obtained the maximum density and that the re-
sults were compatible with a Wieman-Pritchard model n0 ∝ 1/p as reported in Fig. (3.10).
However, we saw a slight decreasing of the density for p as low as 3%. In such a regime,
the density scales are as follows: n0 ∝ p0.3 as results from the fit. This power law is
not compatible with a density limited by the temperature (temperature-limited regime),
because in the temperature-limited regime the density scales as follows p3/2 [29].
In general, it is well known that in the standard MOT, the effect of scattering radiation
generated by a gas of cold atoms increases the temperature as predicted in [39]. In par-
ticular, it has been verified that the extra heating is proportional to the optical thickness
of the cloud [40]. If we generalize and say that extra heating is only generated by atoms
present in the bright state (proportional to f(p)), we can arrive at the following expression
for the temperature in the MOT:







T = T0 + ξ b(p)

b(p) = nσL L · f(p)
(3.4)
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Figure 3.10: The graph shows the density as a function of p. For the p greater than 3% we
found a growth of the density as predicted by the Wieman-Pritchard model. However, below
p = 3%, we found that density tended to decrease slightly, which is not well understood.

where f(p) is a priori an unknown function, T0 is the temperature in the MOT, L is the
size of the cloud and ξ is a proportional coefficient depending on the control parameters.
In the case where ξ b ≫ T0, the temperature expressed by Eq. (3.4) results T ∝ ξ b(p).
As we lower p we approach the Temperature-Limited regime where T ∝ L2 p as predicted
by the Wieman-Pritchard model [29] and consequently the density can by rewritten as
n ∝ (N/T 3/2)p3/2. In the case of constant temperature (T ∼ T0) we found the 3/2 power-
law as predicted by the Wieman-Pritchard model and experimentally verified with Cs
atoms in [35] .

In the case where the temperature is not constant, and considering that the optical
thickness can be written as b = n2/3σLN1/3 · f(p), we found the following expression for
the density as a function of p :

n(p) = (
N1/4

ξ3/4σ
1/2
L

) · p3/4

[f(p)]3/4
(3.5)

The Eq. (3.5) could explain our observed density measurement, in the case where
f(p) = pβ, with a β ∼ 1/2.
However, we are not sure if the approximation made for the temperature is valid or not
in our experiments, as ξ is not a trivial function of the control parameters, its estimation
could be difficult to calculate and we did not measure it directly.
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3.1.2 The Dipole Trap

A focused Gaussian laser (I(r, z)) beam tuned far below the atomic resonance frequency
represents the simplest way to create a dipole trap providing three dimensional confine-
ment, particularly a potential U(r, z) ∝ I(r, z).
In the following section we will describe how we realized and characterized our dipole trap
.

Realization and Characterization
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Figure 3.11: Experimental set up used for the realization of the dipole trap. We used a DFB
diode laser, amplified by a MOPA providing an output power of about 1 W .
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Figure 3.12: Figure (a) shows the image of the MOT after 30 msec of Time Of Flight (TOF).
We clearly see the atoms trapped in the dipole potential, while the rest of the atoms are falling
due to gravity. The Gaussian function fits the relative projections on the x and y directions as
shown in Figure (b). The typical parameters of the dipole trap are given in the text.
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Figure 3.13: The graph shows the loading of the atoms in the dipole trap with a δdip = 20GHz.
After 50 msec we reached a steady state.
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Figure 3.14: Number of atoms in the dipole trap as a function of the detuning; a maximum is
found around δdip = 20GHz, which gives 3 108 atoms trapped with a loading-time of 50 msec.

The dipole trap is realized with the set up shown in Fig. (3.11): a free-running laser
DFB (with a nominal power of 80mW ) is injected into a MOPA laser which provides the
DFB with a power amplification of 1Watt.
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Figure 3.15: Residual ”pushing”.

After a single pass in the AOM on/off and with spatial filtering we ended up with
a power of about 240mW suitable for the dipole trap (with 2A current in the MOPA
power supply).

We controlled the detuning of the DFB by altering its current (0.52 mA/GHz). We
can easily red-detune our laser (by increasing the current) by about 100GHz without
any mode-hop. We focused the laser beam, after the power amplification, with a lens of
500 mm. We measured a waist w0 = 350µm, with a beam-profile meter. The maximum
trap depth, for a pure Gaussian beam, is given by:

U(r = 0) =
2Pdip

πw2
0

3 π c2

2ω3
0

Γ

|δdip|
(3.6)

where Pdip and δdip are, respectively, the total power and detuning of the dipole laser.
The oscillation frequencies of trapped atoms are given by [41]:

ωr =

√

4 U(r = 0)

mRb w2
0

(3.7)

in the radial direction, while in the axial direction

ωz =

√

2 U(r = 0)

mRb z2
R

(3.8)

where zR =
π w2

0

λ
denotes the Rayleigh length, in our case zR = 50 cm, and mRb the

Rubidium mass. To conclude, as the absorption can be interpreted in terms of photon
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scattering cycles of absorption and subsequent spontaneous re-emission processes, we can
define a scattering rate as:

Γsp =
2 Pdip

πw2
0

3πc2

2~ω3
0

(
Γ

δdip

)2 (3.9)

Using the Eq. (3.6) Eq. (3.7), Eq. (3.8) we found, for our dipole trap, the following
quantities: U(r = 0, z = 0)/kB = 2 mK (∼ 1.2 Γ), ωr = 400Hz and ωz = 0.2 Hz.

After these brief technical details of the set-up, we will discuss the experimental results
obtained.

First of all, with the set-up presented in Fig. (3.11), we were able to trap atoms,
as shown in Fig.(3.12). We managed to trap Nat ∼ 108 with a typical detuning of
δdip = 20 GHz.

The loading process in the dipole trap is not well understood but we will try to give
one possible model.
We followed the same procedure as outlined in the previous section, dealing with the
loading of a standard MOT, but instead of considering a ’Hot’ vapor for the background,
we considered the ’Cold’ atoms present in the MOT, and as main loss-processes we con-
sidered the scattering rate Γsp given by the Eq. (3.9). By doing this the atomic time
evolution on the dipole trap can be expressed with the following equation:

∂

∂t
Ndip(t, I, δdip) = L(δ, I) − Γsp(δ, I) · Ndip . (3.10)

Eq. (3.10) depends on 3 parameters, but we wanted to work with the maximum in-
tensity, in order to minimize the scattering rate while maintaining a constant dipole trap
depth in accordance with Eqs.(3.6)(3.9). As we had limited power (Pmax) available for
the trap in the theoretical model, we eliminated the intensity as an independent variable.

The stationary solution of Eq. (3.10), as we already know, is as follows:

Ndip(t, δdip) = N∞
dip(δdip)(1 − e−Γsp(δdip)·t) , N∞

dip = Ldip/Γsp. (3.11)

As we have temporal control on the dipole trap, we investigated the loading time of
the atom in the dipole trap after the ’Dark-MOT’ phase. The results are reported in
Fig. (3.13), which fit Eq. (3.11), for a fixed trap detuning δdip = 20 GHz which provides
us with the maximum number of atoms trapped, as shown in Fig. (3.14). From the fit we
can extract 1/Γsp = 14 msec, and N∞

dip = 2 · 108. However, after 50msec we loaded the
maximum number of atoms into the dipole trap, and then we studied its behavior as a
function of the δdip. The loading can be written as L = β/δdip, while the ’loss’ term can
be written as Γsp = α/δ2

dip. After the above considerations, the Eq. (3.11) for a fixed time
τL = 50 msec could be written as :







Ndip(δdip, τL) = (
β

α
)|δ|dip(1 − e

−
α · τL

δ2
)

U0(δdip) & Umin

(3.12)
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where Umin is the minimum potential to trap the atoms. From the fit of the data shown in
Fig. (3.14) with Eq.(3.12), we can extract β/α = 2 ·107 (GHz)−1, and α = 9361 (GHz)2 ·
sec−1, and we find the maximum number of atoms trapped for a δdip = 20 GHz.

Using the model given by Eq. (3.12), if we wait for an infinite time τL, we only need
to raise the detuning δdip to increase the atoms trapped in the dipole trap. However, we
need to account for the residual ’heating’ effect which causes a pushing effect,Fig. (3.15).
This limits the lifetime of the atoms in the dipole trap. Such an effect was investigated
by leaving the dipole laser on for different periods of time while the background MOT
expanded freely . From the fit of Fig. (3.15), obtained for a δdip = 20 GHz, we measured
a residual acceleration of a = 30 m/s2, so that in 25msec the atoms in the dipole trap are
pushed away by about 1 cm. From the measured residual acceleration, we can extract an
effective saturation parameter seff :

a =
~ k Γ

2 mRb

seff , (3.13)

which yields a seff = 0.2 · 10−3.
In order to reduce the pushing effects, we have to increase the detuning of the dipole

trap, while maintaining the same height of the trapping potential.
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3.2 Combined Dark and Dipole Trap: Conclusion

x

y

370 380 390 400 410 420 430 440

220

225

230

235

240

245

250

255

260

265

270 −0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

k l

50

y (mm)

(b)

Figure 3.16: The dipole trap loaded from a ’Dark-Mot’. We found a peak-density equal to
n0 = 1012 at/cm3, with Nat = 2 108 atoms, and σy = 80µm and σx1.2 mm.

After these optimizations, the maximum density obtained in the combined ’Dark-
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MOT’ and dipole trap, shown in Fig. (3.16), corresponds to a peak density of n0 =
1012 at/cm3 with Nat = 2 108 atoms and a κ · ℓ ∼ 50, one order of magnitude below the
localization threshold.
Our dipole trap gives us the possibility of obtaining a very dense atomic sample, but
some problems are still evident. For the moment, the density is limited by the maximum
number of atoms which can be loaded into the trap. The steady state is reached when
an equilibrium between atom loading and atom loss is established. In order to increase
the trapping volume, and thus the number of atoms trapped, we need to implement a
crossed-dipole trap.
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Chapter 4

DFWM

In this chapter after a brief introduction given in Sec. (4.1) we will analyze the Degenerate
Four Wave Mixing (DFWM) phenomena in Sec. (4.2), a particular nonlinear process of
wave mixing which is made by using the cold atom as a nonlinear medium. In a first
model we considered our nonlinear medium to be made of a diluted ensemble of two level
atoms characterized by an atomic polarization, Sec. (4.3), which accurately describes the
observed signal in the scalar situation. Therefore, if we want a full description of such
phenomena, we need to account for the multi-level atomic structure which is introduced
in Sec. (4.5).

The set-up used for the experimental observation will be described in Sec .(4.3.1)
together with the main results obtained for both the symmetry and resonance shape of
the DFWM signal. These latter aspects are the subject of two publications which are also
attached.

4.1 Introduction

Nonlinear optics have been investigated for a very long time but the systematic study of
these phenomena started to become quantitative after the discovery of the first laser in
1960. Thanks to this increase in research the second-harmonic generation was demon-
strated in quartz with the use of a ruby laser [42].

The particular areas of nonlinear optics which will be explored in this section are the
phenomena arising from the interaction of four coherent optical fields through third order
nonlinear susceptibility. Particularly, this field of physics includes many diverse processes
such as, for example, degenerate four-wave mixing (DFWM) non-degenerate four-wave
mixing (NDFWM), stimulated Raman scattering etc.

These processes have proved to be of use in a great number of applications including
optical processing, phase conjugate optics, the measurement of atomic energy structures
and decay rates. In the case of NDFWM, where the two strong pumps have the same
frequency while the frequency of the probe is varied, the observed spectral profiles are
narrower than the natural linewidth of excited state [43]. This particular pump-probe
spectroscopy can also be used as a highly sensitive diagnostic tool for atoms in a working
MOT [44]. Particularly, the transient FWM signal can be used for temperature diagnostics
for cold atoms [45] where a population grating in the ground state of the hyperfine atomic
level is induced by the two strong pumps. Thus, the decay time of this grating is directly
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related to the temperature of the cold atoms. Also, light storage processes in an ensemble
of cold atoms using FWM are possible [46]. Indeed, a polarization grating is written
into the atomic system as a spatially dependent Zeeman coherence, and after a dark time
of about 4µsec can be read. This observation is proof that we can store information
locally in the cold atoms. Such studies can be important for the realization of quantum
memories, and are generally important in the quantum information field.

In our case we concentrated on Degenerate-Four Wave Mixing (DFWM), where the
two strong pumps and weak probe have the same frequency (ωL).

In general, two phase matching geometry is used in order to obtain the signal of
the DFWM [47]. The first is the backward four-wave mixing configuration, as shown in
Fig. (4.1), in which two pumps are counter propagating and a probe signal is coming at an
angle of θ with respect to the pump axis Fig. (4.1). The second is the forward four-wave
mixing configuration, where all beams (pumps and probe) are co-propagating.

For practical reasons, we used backward phase matching geometry in our experiments.
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4.2 Theory of DFWM

IP

θ

IF
IB

IC

d

IP

IF
IB

IC

d(b)(a)

θ

Figure 4.1: Illustration shows the conventional geometry of phase conjugation through DFWM
where we have two strong pumps (IF andIB) and a weak probe IP . In Fig-(a) a grating between
IF and IP is made in which the IB is Bragg-diffracted. In Fig-(b) the grating where the IB is
diffracted is created by IB and IP . The two processes interfere with each other generating the
phase-conjugate beam IC .

In the following section, we will focus on the basic theory of coherent third order
nonlinearity that gives rise to the DFWM phenomena. The four-wave mixing is called
degenerated because all the frequencies, two strong pumps and the weak probe, are the
same.

In general, the concept of three electromagnetic fields interacting to produce a fourth
field is central to the description of all four-wave mixing processes. In order to understand
this process we need to consider the individual interactions of the fields within a dielectric
medium. The first input field causes an oscillating polarization in the dielectric with the
same frequency as the driven field; this is just the Rayleigh scattering as described by
linear optics. The application of a second field will also drive the polarization of the
dielectric, and the interference of the two waves will cause harmonics in the polarization
at the sum and difference of the frequencies. Finally, the application of the third field will
also drive the polarization and this will beat with both the other input fields as well as with
the sum and difference frequencies. This beating with the sum and difference frequencies
is what gives rise to the fourth field in four-wave mixing. The DFWM process could
be interpreted in terms of the intensity dependent refractive index. Two input beams

interfere, generating a grating, which is characterized by a distance d =
λ

2sin(θ/2)
. From

this grating the third beam is Bragg-diffracted, and generates the phase-conjugate wave.
This is because the interferences result in a spatially periodic light intensity or distribution
of polarization, that induces a spatial modulation in the medium. In our case the different
situations are illustrated in Fig. (4.1), which gives an intuitive picture of the generated
backward field.

In the case where the probe beam has a polarization that is orthogonal to the polar-
ization of the pump beams, the intensity grating formed in the medium is a polarization
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grating. That is, the interference results in a spatially uniform intensity, but a periodic
variation of the polarization is realized in the direction of the optical electric field.

The traditional method of modeling the nonlinear response of an optical material is
to expand the induced polarization as a power series in the electric field strength [47] :

~P = χ(1) · ~E + χ(2) · ~E ~E + χ(3) · ~E ~E ~E + ... (4.1)

This method assumes that the higher order susceptibilities grow progressively smaller
so that the power series expansion converges to a finite polarization, which means that
the χ(3)E2 ≪ χ(1) and so on.

In the Eq. (4.1) the obtained third order nonlinear susceptibility χ(3) is responsible for
the four-wave mixing processes [47].

In general, χ(3) is a fourth rank tensor with 81 elements [47] and each of these elements
consists of a sum of 48 terms. This number of terms is drastically reduced through material
symmetries and resonance. Explicit expression for the terms have been published, and
each term has a typical form with three resonant factors in the denominator. Also,
we highlight that the tensor properties of the susceptibility are derived from the vector
properties of the dipole matrix elements. Indeed, by knowing the symmetry properties of
such a tensor we can further simplify the general expression of χ(3) .

In the following, we will introduce the input scalar fields defined in accordance with
the equations:

El(~r, t) =
Al(~r)

2
ei(~ki·~r−ωi·t) + c.c l = 1, 2, 3 (4.2)

specialized in the degenerate case, which means ω1 = ω2 = ω3 = ω. The nonlinear third
order polarization produced by the interaction of the three beams oscillates at the same
frequency as the input field:

Pl(ω) ∝ χ
(3)
ljkm Ej Ek E∗

m

∝ χ
(3)
ljkm Aj(~r) Ak(~r) A∗

m(~r)e[i( ~k1+ ~k2− ~k3)−i ω t)]

(4.3)

Since the physical quantity that is measured in the experiment is the conjugate field
intensity, the observed signal will be proportional to |χ(3)|2 multiplied by the three field
intensities and by a ”phase matching factor”. As the intensity of the phase-conjugate
signal is assumed to be IC , in the case where the pump intensities are the same IB =
IF = I0, and with a probe intensity IP , the conjugate signal should be proportional to :

IC = η IB IF IP

= η I2
0 IP (4.4)

but as the intensity of the probe can be expressed IP = α I0 the Eq. (4.4) becomes:

IC = β I3
0 , β = η · α (4.5)
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The functional dependence on intensity of Eq. (4.5) could be checked in an experiment
to test whether the signal measured is due to third order mixing effects. Indeed, such non-
linear susceptibility could be measured because it is proportional to the β value. We also

measured the reflection coefficient, defined as RDFWM =
IC

IP

. The functional dependence

of the reflection coefficient in this case became:

RDFWM =
IC

IP

= β I2
0 , (4.6)

and it scaled quadratically on the laser intensity.

In the following we recall some basic relations for the wave on a polarizable media.

Wave Propagation

We started from a definition of Maxwell’s equations, as is normal in cases where there is
no free charge and no free currents are present and the material is nonmagnetic; in such
a case it can be shown that Maxwell’s equations are expressed by the following equations
[48]:

~∇ · ~D = 0 ~∇× ~E = −∂ ~B

∂t
(4.7)

~∇ · ~B = 0 ~∇× ~B = µ0
∂ ~D

∂t

with the definition of vector ~D = ε0
~E + ~P .

In a homogeneous and isotropic medium the polarization is parallel to the electric
field, and the relation between the two fields can be written as ~P = ε0χ(E) ~E, where χ(E)
is a scalar quantity which gives rise to the total nonlinear susceptibility.

As we have already shown, χ(E) can be decomposed in two terms, the linear (χ0) and
nonlinear (χNL). In the same way, the polarizability vector can be decomposed as well.

After these considerations, we can solve the system of Eqs.(4.7) by following the stan-
dard procedures [48], and we end up with a general form for wave equations in nonlinear
optics:

~∇× ~∇× ~E = ~∇(~∇ · ~E) −∇2 ~E = −µ0
∂2 ~D

∂2t
. (4.8)

As in the afore-mentioned geometry the electric field of the pumps and the probe
lies on the plane defined by ~E · ~k, the quantity ~∇χ is always perpendicular to ~E with-
out any restriction on the χ(z). Consequently, from the relation ~∇ · ~D = 0, we obtain

ε0(1 + χ)~∇ · ~E + ε0( ~E · ~∇χ) = 0 and in this case we can conclude that ~∇ · ~E = 0 when
~E · ~∇χ = 0.

By using such an assumption, the wave equation reads:
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∇2 ~E − ε0µ0
∂2 ~E

∂t2
= µ0

∂2(~PL + ~PNL)

∂t2
(4.9)

where ~E is the total field.
As the definition of the fields is given by Eq.(4.2) we can separately calculate the

left-hand term of Eq.(4.9):

∇2 ~El
∼= −2ikle

iklz
∂Al

∂z
− k2

l Al(z)eiklz + c.c. l = 1, 2, 3, 4 (4.10)

where we have used the slowly varying envelope approximation (S.V.E.A) which consists
of: ∣

∣
∣
∣

∂2El

∂z2

∣
∣
∣
∣
≪

∣
∣
∣
∣
kl

∂El

∂z

∣
∣
∣
∣

l = 1, 2, 3, 4 (4.11)

We specialized in degenerate four wave mixing (DFWM) (ω1 = ω2 = ω3 = ω) and
considered the following phase-matching condition expressed by:

~k1 + ~k2 + ~k3 + ~k4 = 0 (4.12)

which, in the case of our backward geometry, ~k1 + ~k2 = 0, becomes:







~k1 + ~k2 = 0

~k3 + ~k4 = 0

(4.13)

After taking the phase-match condition into consideration, the wave propagation of
the conjugate field ~E4 is given by :

2 i k
∂A4

∂z
= −µ0ω

2P4(ω4, k4) (4.14)

where the notation P4(ω4) indicates the Fourier polarization component which is oscillat-
ing at the frequency ω4 with a k4 wave-vector.

In our case we used a cloud of cold Rb atoms as a strong non-linear medium. The main
difference with respect to the non-linear crystal is that the radiation used to pump the
medium, in order to obtain nonlinearities, is almost resonant and shows strong resonances
and consequent dispersion.

In the simplest case of a two-level atom, with an atomic susceptibility of χ(ω) it can be

shown that the resonance is Im(χ(ω)) ∝ 1

1 + δ2
in which we found the Lorentzian shape,

while the absorption is given by Re(χ(ω)) ∝ −δ

1 + δ2
, which is the normal dispersion signal.

Furthermore, wave propagation in the medium is characterized by a k-vector defined as

k = n
ω

c
where the diffraction index is given by n =

√

(1 + χ).

However, a full description of nonlinear susceptibility in our case is more involved due
to the real multilevel atomic structure, as we will see in Sec. (4.5).

After this brief introduction to Four-wave mixing in general dielectric media, we will
concentrate on Degenerate Four-Wave Mixing considering an ensemble of a number (N)
of two-level atoms.
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4.3 Two-Level Atoms

δ

F,B, P

ω0

Γ
|e>

|g>
Figure 4.2: The two level atoms scheme. In the case where all the beams have the same linear
parallel polarization, the DFWM signal originates from the contribution of a two level atom with
a lifetime Γ due to spontaneous emission.

For a two-level atom at rest in the steady state, we can write the susceptibility as :

χ(|E|) = −σ0 nat
(−i + δ)

(1 + δ2 + |(E/Es)|2)
(4.15)

where σ0 =
3λ2

2π
, and with nat we indicate the atomic density; δ = 2 (ω − ωat)/Γ is the

detuning in Γ unit (the atomic lifetime of a two level atom), and |E2
s | is proportional to

the saturation intensity defined as Is =
1

2
ε0c|Es|2.

The σ0 is the on-resonance cross-section with k the magnitude of the wave number at
the frequency ω.

Eq.(4.15) is compatible with a definition of the oscillating field E(t) = E0e
iωt; other-

wise if we use a E(t) = E0e
−iωt we have to replace i with −i in Eq.(4.15).

The polarization is then expressed by the equation:

~P = ε0χ( ~E) · ~E . (4.16)

Following the idea developed in Sec.(4.2) which gives rise to Eq. (4.1), we decided to

carry out a development series, by considering two strong pumps ( ~E1, ~E2) and a small

probe ~E3 ≪ ~E1, ~E2. Consequently the conjugate generate field is ~E4 ≪ ~E1, ~E2. After
such a consideration, we can define the total field as:
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~E = ~E0 + ∆ ~E , ∆ ~E ≪ ~E0

~E0 = ~E1 + ~E2

(4.17)

Now we can insert the Eq. (4.17) into the Eq. (4.16) and we expand the susceptibility

to the first order in ∆ ~E:

χ(|E|) · ~E = −2
nat σ0

k

(i + δ)(E0 + ∆E)

(1 + δ2 + |(E0 + ∆E)/Es|)2

= −2
nat σ0

k

(i + δ)(E0 + ∆E)

(1 + δ2 + |(E0/Es)|2|(1 + ∆E
E0

)|2)
(4.18)

If we make the following observation:
∣
∣
∣
∣
1 +

∆E

E0

∣
∣
∣
∣

2

= (1 +
∆E

E0

)(1 +
∆E∗

E∗
0

)

= (1 +
∆E∗

E∗
0

+
∆E

E0

+ O(|∆E|2)). (4.19)

By using such an observation, we can rewrite Eq. (4.18) in the following way:

χ(|E|) · E = −2
nat σ0

k

(i + δ)(E0 + ∆E)

(1 + δ2 + |(E0/Es)|2)
(1 − (E0∆E∗ + E∗

0∆E)

|Es|2
1

1 + δ2 + |(E0/Es)|2
)(4.20)

= −2
nat σ0

k

(i + δ)(E0 + ∆E)

(1 + δ2 + |(E0/Es)|2)
− 2

nat σ0

k · |Es|2
(i + δ)(E0 + ∆E)

(1 + δ2 + |(E0/Es)|2)
(E2

0∆E∗ + |E0|2 ∆E)

If we introduce linear atomic susceptibility as:

χ0(E0) = − 2 i nat σ0

k

(1 − iδ)

(1 + δ2 + |E0

Es
|2) , (4.21)

we are able to define the atomic polarization as :

~P (E) = ε0χ0( ~E0 + ∆ ~E) − ε0χ0

|Es|2
(E2

0∆E∗ + |E0|2∆E)

(1 + δ2 + |(E0/Es)|2)
︸ ︷︷ ︸

(4.22)

‖
PNL(E)

The second term of the right-hand part of Eq.(4.22), is the nonlinear polarization
which we call PNL(E). Such an expression contains all the high order susceptibilities
because of the presence of the saturation intensity.

The expression of the polarization given by Eq. (4.22) is the same found in the refer-
ence [49].
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Finally, if the nonlinear polarization is substituted into Maxwell’s equations, a set of
four coupled wave equations may be found for the fields. If we focus on the wave propa-
gation of the phase generated conjugate beam, after some calculation we can demonstrate
that the Fourier component of the polarization oscillating at the frequency ω4, is expressed
by:







P4 = ε0χ0A4 −
ε0χ0

Is(1 + |E0(z)|2

Is
)
(I1e

−2ikz + I2e
2ikz + 2

√

I1I2)A
∗
3

Is ∝ (1 + δ2)|Es|2
(4.23)

which can be inserted into Eq.(4.14), to obtain the following wave propagation equation
for the conjugate field:

∂A4

∂z
= α(z)A4 + iκ(z)A∗

3 . (4.24)

The spatial dependent coefficients are given by the following expression:







α(z) = σ0 nat
(1 − iδ)

(1 + δ2)

1

(1 + |E0|2

Is
)2

κ(z) = iσ0 nat
(1 − iδ)

Is(1 + δ2)

(I1e
−2ikz + I2e

2ikz + 2
√

I1I2)

(1 + |E0|2

Is
)2

(4.25)

where, as usual, σ0, nat, and δ are respectively the on resonance cross-section, the atomic
density and the laser detuning.

Following the same procedure described above, we can obtain a similar wave propa-
gation equation for the probe A3.

The intensity of the phase conjugate beams is then determined by the power reflection
coefficients, for a nonlinear medium L long, expressed by [49] :

R =
|κ sin(w L)|2

|w cos(w L) + αR sin(w L)|2 (4.26)

where w =
√

|κ|2 − α2
R is a measure by which the strength of the nonlinearity exceeds

the absorption in the medium, and |E0(z)|2 ∝ 4 I cos2(kz) is our definition of standing
waves.

In the case of a small amount of absorption, i.e small optical thickness (b0 = natσ0L ≪
1), we can consider the limit w L ≪ 1 of the reflection coefficient expressed by Eq.(4.26).
In such a regime we observed that a more suitable parameter to describe the phase
conjugate beam is the on-resonance optical thickness (b0), in fact:

R ∝ n2
at · L2 = const · b2

0 . (4.27)

Such a relationship has been demonstrated experimentally for moderate optical thick-
nesses ranging from 0 to 5 [50].

In the case where we have the same pump intensities (I1 = I2 = I), and performing a
spatial average of the intensity by setting cos2(kz) = 1/2, the expression of the coefficients
given in Eq. (4.25), became:
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Figure 4.3: Degenerate Four Wave Mixing theoretical signal when all fields have the same
polarization by considering an averaged intensity by setting cos2(kz) = 1/2. We observe a clear
splitting, as underlined by the inset, for high pump intensities (s = 10). The on-resonance
optical thickness for such curves was b0 = 0.6.







α(z) = σ0 nat
(1 − iδ)

(1 + δ2)

1

(1 + 2 s
(1+δ2)

)2

κ(z) = iσ0 nat
(1 − iδ)

(1 + δ2)

2 · s
(1 + 2 s

(1+δ2)
)2

(4.28)

where we introduced the saturation parameter s = I/Is. By using such coefficients, we
can compute the reflection coefficient for the conjugate beams for any optical thickness
and saturation parameter. As shown in Fig.(4.3), the conjugate signal (R) shows one
interesting feature; a clear splitting in the limit of high pump intensity (s = 10) even
considering a small optical thickness (b0 = 0.6).
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Figure 4.4: DFWM signal obtained by considering the average coefficients given by Eqs.(4.29)
versus the pump saturation parameters at resonance δ = 0, and considering different optical
thicknesses b0.

In the above considerations, the expression for the conjugate beam was obtained by
taking the average value of the total intensity. In fact, the coefficients presented in
Eq.(4.24) have spatial dependence, and as our atomic sample extended more than one
wave-length, a spatial average had to be considered by averaging the polarizability and
not the intensity in accordance with the reference [51]. We achieved this by integrating
these coefficients over a λ/2 by computing the following integrals:

〈α(z)〉 =

∫ λ/2

0

α(z) dz , 〈κ(z)〉 =

∫ λ/2

0

κ(z) dz . (4.29)

The expressions of Eqs.(4.29) can be found analytically, considering a constant atomic
density (nat(z) = const), and setting the pump values as the same (I1 = I2 = I0). After
some calculation, the averaged coefficients can be written as:







〈α(z)〉 = nat σ0
(1 − iδ)

(1 + δ2)

(1 + 2I/Is)

[1 + 4(I/Is)]3/2

〈κ(z)〉 = −nat σ0
(1 − iδ)

(1 + δ2)

(2I/Is)

[1 + 4(I/Is)]3/2

(4.30)

The Eqs. (4.30) are the same as that found in reference [51].
In the limit of small absorption (w L ≪ 1), as before we can arrive at an analytical

expression of the reflected coefficient (or DFWM signal). In such a limit, as we had
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Figure 4.5: DFWM signal obtained in the limit of small optical thickness (b0 = 0.6) and for
different saturation parameters. The double peak structure is no longer observed.

already noticed, the reflection coefficient is proportional to the R ∼= |〈κ〉|2L2, and precisely
expressed by the following equation:

R ∼= n2
at σ

2
0 L2

(1 + δ2)

4 (I/Is)
2

(1 + 4I/Is)3
. (4.31)

From Eq. (4.31) we observe that the signal has a Lorentzian-like shape symmetrical
in δ, and proportional to the square of the optical thickness. Moreover, in the limit of
high-pump intensity (I/Is ≫ 1) the signal R goes to zero as shown in Fig. (4.4).

To conclude, the main difference with respect to the reflected signal obtained without
the spatial average, is that there is no longer a double peak structure for larger intensity as
reported in Fig.(4.5). In fact, this feature has been eliminated by considering the spatial
averaging of the polarizability as discussed in references [49] [51]. But even in this case,
a more trivial center line splitting could be observed in the high optical thickness limit
(b0 ≫ 1) as shown in Fig. (4.6).

However, as we will see later on in the case where the polarization of the probe is
perpendicular to that of the pumps and in the limit of small absorption, we can experi-
mentally observe a splitting, but this time, if we want to understand its nature, we need
to use a more complicated model in which the multi-level atomic structure has to be
included, as discussed in Sec.(4.5).

132



4.3. TWO-LEVEL ATOMS

-10 -5 0 5 10

0.01

0.02

-5 0 5 10-10

0

0.002

0.004

0.006

0

0.02

0.04

0.06

0

0.1

0.2

0.3

0.4

b0 = 0.5

b0 = 3

b0 = 13

(a)

(c)

(e)

00

0.01

0.02

0

0.04

0.08

0.12

0.16

0.2

0

0.4

0.8

1.2 b0 = 29

b0 = 8

(b)

(d)

(f)

b0 = 1

δ/Γ δ/Γ

R
E

F
L

E
C

T
I
V

I
T

Y

Figure 4.6: DFWM signal for a fixed saturation parameter (s = 3) and different optical thick-
nesses. A clear splitting of the signal due to the central line absorption is obtained for a large
optical thickness (b0 = 29).

Non-Homogeneous atomic distribution

However, as shown in the attached paper, we observed a red-blue asymmetry of our
DFWM signal, in the rubidium-atomic sample, in the high pump intensity limits even
with a moderate optical thickness.

We explained this asymmetry by introducing a spatial bunching of the atoms in the
nodes or anti-nodes of the strong standing wave created by the pump beams, which created
a spatial dependence on the atomic density distribution at half of the wave-length (nat(z)).
In this particular case, we needed to introduce the bunching parameter (B) expressed by
the following quantity:

B =
k

2 π

∫ 2 π/k

0

nat(z) e2 i k z dz . (4.32)

This phenomena of atomic bunching has been presented and analyzed in the article
attached in Sec. (4.4), and titled: ”Bunching-induced asymmetry in Degenerate
Four-Wave Mixing with cold atoms.” As reported in the paper, the observed asym-
metry on the DFWM signal, is also is also confirmed by computer simulations, also
presented in the paper.
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4.3.1 Experiments

In the following section we will describe, in the first part, the experimental set-up used for
the observation of the DFWM signal, while in the second part the main results concerning
the linear shape of the DFWM signal are presented.

Setup
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Figure 4.7: The illustration shows the backward geometry realized in our set-up to obtain degen-
erate four wave mixing with cold 85Rb atoms. With the capital letters F and B, we indicate the
two strong pumps (not retro-reflected), and with P and C, respectively, the probe and conjugate
beam. The polarizations of these beams are adjusted by using polarized-cubes and wave-plates.

The experiment was performed in a sample of cold rubidium atoms obtained by a
MOT as described in Chapter. 1. As we have already seen, the atom number can be
adjusted in the experiment by varying the intensity of the repumper laser.

The DFWM beams are provided by the same laser at frequency ωL, and can be
time controlled to adjust the pulse duration. In all the experiments carried out for this
thesis we employed the backward DFWM configuration with two independent and not
retro-reflected beams as shown in Fig. (4.7). We usually use the names F and B for,
respectively, the forward beam and backward pump. The angle between the probe P and
the forward beam, is maintained as a constant during all experiments at θ = 0.2rad. The
waist of the laser beams is w ∼= 6 mm which is larger than the atomic size of our cloud
(σr = 1 mm). The polarization on the DFWM beams can be adjusted by appropriate
wave plates and polarizing cubes placed along the beam path, as shown in Fig. (4.7). The
conjugate beam, propagating in the opposite direction of the probe, is recuperated by
using a beam-splitter, and recorded into a Photo-Multiplier (PM).

The time sequence was as follows. The atoms were collected and cooled from the
background vapor for about 20ms. Then, the trapping beams as well as the quadrupole
magnetic field were switched off for about 1msec. During this ”dark time”, the DFWM
beams were switched on to generate the phase conjugated beam.
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The pulse duration of the DFWM beams, had been set as small as 20µsec in order to
avoid mechanical effects of the pumps on the atomic cloud.
However, the repumping laser was kept on all the time to avoid atomic losses of interacting
atoms by hyperfine optical pumping.

The final DFWM spectra was obtained by looking at the time resolved conjugate
beam analyzed in a fixed time window. However, it was also possible to perform contin-
uous frequency scans, but in such a case, we lost important atomic effects. Particularly,
the bunching-induced asymmetry on the frequency spectrum was washed out, and con-
sequently, a symmetric spectrum was expected. Such a prediction was experimentally
observed in the recorded signal, as shown Fig. (4.11)-(b) Sec.(4.5).
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Experimental Results
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Figure 4.8: Experimental results obtained on DFWM. In graph (a) the pump intensity param-
eters were set equal to s = 2, while in graph (b) they were s = 4. Both curves were obtained
within the limit of small optical thickness (b0 ≪ 1) in order to avoid center line absorption. No
splitting, but only a broadening of the central power peak was observed by increasing the pump
intensities by a factor of two .

Fig. (4.8), shows the typical experimental results on DFWM obtained, in the parallel
case (F‖B‖P ), with the set-up already described in the first part of this section.

The pulse duration of FWM beams was chosen to be approximately equal to 20µsec
during which a ”fast” frequency scan of the DFWM was performed. In such a situation,
the bunching has no time to appear, and thus the signal was symmetric with respect to
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the resonance δ = 0.
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Figure 4.9: Theoretical prediction for DFWM using the Abrams and Lind theory in the parallel
case. The spectra shown were obtained by using Eq. (4.31) given in the text. In order to reproduce
the experimental condition, in graph (a) the saturation parameter for the pumps was set to s = 2,
while in graph (b) the saturation parameter was set equal to s = 4.

The DFWM signal shown in Fig.(4.11)-(a) was obtained with a saturation parameter,
averaged on the Clebsch-Gordon coefficients, and was set equal to s = 2 for the pumps,
and s = 0.03 for the probe.

In Fig.(4.11)-(b), the saturation parameter was equal to s = 4 for the pumps, while
the probe intensity was kept constant (s = 0.03). The spectra were recorded as a function
of the common frequency detuning δ with respect to the atomic transition. For both
values of pump saturation parameters (s = 2,and s = 4), the DFWM spectrum consisted
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of a single symmetrical peak centered around the δ = 0.
In parallel polarization (F‖B‖P ), the rising by a factor of two of the pump intensity

had the single effect of broadening the resonance.
The line shape behavior is completely in agreement with the simple theory of DFWM

proposed by Abrams and Lind in [51] [49] and expressed by Eq.(4.31) in the limit of
small absorption. In such a limit, by using this equation, we can plot the theoretical
curves, corresponding to the two experimental situations observed: Fig. (4.9)-(a) shows
the DFWM signal for pump saturation parameter s = 2, while Fig. (4.9)-(b) shows the
situation where the saturation parameter was set to be s = 4.

The spectra reported in Fig. (4.9) were obtained by considering the spatial average of
the nonlinear susceptibility over half a wave-length, and they are completely in agreement
with the experimental observations.
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4.4 Bunching-induced asymmetry in degenerate four-

wave mixing with cold atoms

139



4.4. BUNCHING-INDUCED ASYMMETRY IN DEGENERATE FOUR-WAVE

MIXING WITH COLD ATOMS

Bunching-induced asymmetry in degenerate four-wave mixing with cold atoms
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We have investigated degenerate four-wave mixing in a sample of cold rubidium atoms. A red-blue asym-

metry is observed for high intensities of the pumping beams. This asymmetry is explained by the spatial

bunching of the atoms in the nodes or antinodes of the strong standing wave of the pump beams. This

explanation is confirmed by different experimental configurations and by numerical simulations.
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Four-wave mixing �FWM� has been extensively studied in
the past three decades and constitutes a very powerful spec-
troscopic technique both in frequency and time domain �1�.
From a practical perspective, the possibility of performing
wave-front reconstruction is one of the most fascinating ap-
plications of this nonlinear optical process. The use of cold
atoms to obtain FWM optical phase conjugation benefits
from the reduced atomic motion where broadening mecha-
nisms such as transit time broadening and second-order Dop-
pler effect can be completely eliminated. This allows us to
obtain wave-front reconstruction over a large angular aper-
ture between the pump and the probe beams �2,3�. In this
regime one can also directly compare theoretical predictions
with experiments without the need to perform any velocity
averaging. For instance, the polarization dependence of the
nondegenerate FWM spectrum has been measured in cold
cesium atoms which is in complete agreement with the the-
oretical predictions �4�. Another interesting application asso-
ciated with the FWM process is the possibility to investigate
the atomic dynamics either in room temperature vapors �5�
or in the domain of ultracold temperatures associated with
laser cooled atoms. In particular, degenerate and nondegen-
erate FWM were employed to probe the quantized atomic

motion of atoms in optical lattice �6,7�. The total FWM sig-

nal arises from the coherent superposition of the fields gen-

erated at different position along the nonlinear medium. Ac-

tually, for a spatially uniform atomic medium, this leads to

the well-known phase matching condition which determines

the propagation direction of the generated field in terms of

the wave vectors of the incident waves. However, this situa-

tion is rather changed when the medium presents some spa-

tial modulation where the generated field can pick up a

wave-vector component associated with the Fourier decom-

position of the spatial modulation of the medium, therefore

affecting the overall efficiency of the nonlinear process and

changing the propagation direction of the generated wave

�8�. In this work we experimentally investigate the degener-

ate four-wave mixing �DFWM� process �9� in a sample of

cold rubidium atoms both in the time and in the frequency

domain using different polarization configurations for the

DFWM beams. Note that we study DFWM where the fre-

quency of both pump beams and the probe beam are identi-

cal, in contrast to many pump-probe spectroscopy experi-

ments where the probe frequency has been scanned around
the pump frequency. In most of the experiments using cold
atoms, the pump beams have a fixed �red� detuning and the

observed subnatural linewidths in nearly degenerate FWM

have been explained by the dynamics of atoms in dissipative

optical lattices �10�. We have registered the DFWM spectra

for positive �blue� and negative �red� detuning of the pump

and probe beams and observed an unexpected red-blue

asymmetry for high intensity of the pumping beams. This

asymmetry in the FWM spectrum can be explained by the

presence of different spatial atomic distributions on the red

and on the blue side of the atomic resonance. We associate

this atom bunching to the dipole forces in strong fields with

modulated intensity.

The experiment was performed in a sample of cold ru-

bidium atoms obtained from magneto-optical trap �MOT�.
Our MOT scheme has been described elsewhere �11� and

allows a time controlled switching of the trapping and re-

pumping beams as well as the magnetic quadrupole field.

The atom number can be adjusted in this experiment by a

variable intensity of the repumping laser. Unless otherwise

specified, the results shown in this paper have been obtained

with a moderate number of atoms ��109� as more complex

collective effects appear for the maximum number of atoms,

of the order of 1010, we are able to trap. The DFWM beams

are provided by the same laser �frequency �L� and can be

controlled in time to adjust the pulse duration. We employ

the conventional backward DFWM configuration with two

independent �not retroreflected� counterpropagating pumping

beams �forward F and backward B�. Figure 1�a� shows a

simplified scheme of the experimental configuration. The

angle between the probe �P� and forward beam �F� has been

maintained constant at around 0.2 rad. The waist of the laser

beams �w=6 mm� is slightly larger than the size of our

cloud. The polarization of the DFWM beams can be adjusted

by appropriate wave plates and polarizing cubes placed

along the beam paths. Table I summarizes the different com-

binations of polarization we have used for this work. In Fig.

1�b� we show the timing sequence of the experiment. First

the atoms are collected and cooled for about 20 ms, then the

MOT trapping beams and the quadrupole magnetic field are

switched off for about 1 ms. During this time window, the
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DFWM beams are switched on and the generated phase con-

jugated beam, after being reflected off a beam splitter, is

detected by a fast photomultiplier. The duration �T of the

DFWM beam �in the range of 20 to 40 �s� has been ad-

justed to be short enough so that the strong pump beams do

not influence the atom number at the turn off of each MOT

sequence. The repumping laser of the MOT has been kept on

during the DFWM sequence, in order to avoid losses of in-

teracting atoms by optical hyperfine pumping. The DFWM

spectra shown in this paper correspond to an integration over

interaction times of several �s typically after 20 �s of inter-

action. The precise value of the DFWM depends on the

choice of these values, but the qualitative features discussed

in this work are robust against a decent variation of these

parameters.

We have first analyzed the case where the pump and

probe beams have orthogonal linear polarizations F �B� P,

as this choice of polarization is known to yield large DFWM

signals �4�. For this configuration, the signal originates from

a coherence grating induced in the Zeeman sublevels by the

orthogonal polarization components of the probe and pump

fields. We record the DFWM spectrum as a function of the

common frequency detuning �=�L−�at of DFWM beams in

relation to the resonance frequency 5S1/2, Fg=3–5P3/2,

Fe=4 of the D2 transition of rubidium 85Rb �wavelength

�=
2�
k

=
2�c

�at
=780 nm, width of the resonance line

�=5.89 MHz, saturation intensity Isat=1.6 mW/cm2�. As-

suming a uniform distribution of the atoms among the vari-

ous Zeeman sublevels, we define the on-resonance saturation

parameter s=
3

7

I

Isat
by including an average over the Clebsch-

Gordan coefficients.

The spectrum obtained for pump intensities corresponding

to a saturating parameter of about s=5 for the F and B pump

beams and sP=0.5 for the probe beam, is shown in Fig. 2 and

consists of a double peak centered around the detuning �
=0. Note that the precise values �including the shape� of

these DFWM spectra depend on the precise time window

used for the evaluation, as illustrated by time resolved results

shown below. The physical origin of this double peak struc-

ture for the F �B� P and 	+-	− configurations lies in a com-

bination of the saturation induced by the strong pump field

and line center absorption due to the larger optical thickness

around the resonance �12,13�. We have verified that with a

reduced atoms number ��108� the line center absorption

vanishes and there is no double peak structure for the F �B � P

and the 	+-	+ configuration for saturation values up to s

=30. As expected a double peak structure however remains

for the 	+-	− configuration �14�. Another possibility of

double peak structure can be obtained for large probe beam

intensities �15�, but can be excluded with our choice of probe

beam intensities. Note also that for DFWM in Doppler

broadened hot atomic vapors, the average over the various

velocity classes leads to a splitting even in the F �B � P con-

figuration. This can be understood by the fact that in the rest

frame for each velocity class, the laser frequency of the

pump beams are shifted by the Doppler effect and one has a

situation which is no longer DFWM but nondegenerate

FWM �14�.
A more surprising feature however is the clear red-blue

asymmetry: the DFWM signal is clearly larger for negative

�red� detuning than for positive �blue� detuning. A model

based on only the internal degrees of freedom of the indi-

vidual atoms, taking into account all Zeeman sublevels of the

relevant ground �5S1/2 ,Fg=3� and excited �5P3/2 ,Fe=4�
states cannot predict such a red-blue asymmetry �9,14,16�.
We neglect the influence of other hyperfine states in the ex-

cited level, separated by more than 20 linewidths, and the

ground state, even further detuned, even though subtle polar-

ization effects due to the neighboring excited state levels

(a)

(b)

FIG. 1. �Color online� �a� Schematic setup of the experiment:

two strong counterpropagating pump beams �F and B� and one

weak probe beam �P� yield the conjugate four-wave mixing signal

�C�; �b� timing of the experiment, the MOT beams and magnetic

fields are switched off during the short DFWM pulse.

TABLE I. Various polarization configurations used in this

paper.

F B P

F �B � P � � �
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FIG. 2. DFWM spectrum for orthogonal polarizations

�F �B� P� and strong saturation of the pump beams, s=5.
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have been reported �17�. As our red-blue asymmetry has
been robust against slight changes in alignment, intensity
imbalance and atom number, we do not think that a change
in the index of refraction of the effective medium �12� nor
self-focusing �13� plays an important role in our experimen-
tal observation. We have however observed that for longer
interaction times �up to 800 �s� the number of atoms after
each MOT period of 20 ms �as monitored by the fluores-
cence signal at the end of the MOT period� is reduced for
blue detuning of the pump beams. This loss of atoms is at-
tributed to classical Doppler heating of atoms. For long
enough interaction times �typically for DFWM pulses ex-
ceeding 100 �s�, atoms can be accelerated beyond the veloc-
ity capture range of the MOT and cannot be recaptured by
the next MOT period. This effect can also give rise to a more
trivial red-blue asymmetry and must be ruled out when
studying the bunching induced asymmetry.

As discussed below we attribute the asymmetry observed
for short interaction times to the bunching of atoms along the
standing wave pattern associated with the counterpropagat-
ing pumping beams. Dipole forces acting on atoms are
known to change sign with the atom-laser detuning as the
light shift induced by the laser depends on its detuning �18�.
For large Rabi frequencies atoms are high field seekers at red
detuning and low field seekers at blue detunings �as used,
e.g., in atom mirrors �19��. The red-blue asymmetry in the
DFWM signal presented in this paper appears when atoms
are moving in a intense modulated standing wave with a
light shift comparable to the kinetic energy of the atoms �20�.

In order to investigate the origin of this asymmetry ex-
perimentally and theoretically, we have performed a number
of control experiments which allow for clearer signatures
corresponding to this interpretation and an easier comparison
to theory. We have thus performed experiments with circular
polarized pump beams. The pump beams F and B have either
the same circular polarization �	+-	+� or opposite circular

polarizations �	+-	−�. As the probe beam for the �	+-	−�
configuration has been kept linear �see Table I�, the signal
originates from a coherence grating induced in the Zeeman
sublevels by the orthogonal polarization components of the
probe and pump fields. Note that a minimal description for
the �	+-	−� and the F�B � P configurations require a three-

level system, whereas the F �B� P is better described by a
four-level system. On the other side, the �	+-	+� and the

F �B � P configuration are well described by two-level sys-

tems. A quantitative comparison between the various polar-

ization configurations is hence not possible. The important

point however is the change in the intensity modulation for

these two configurations. In the 	+-	+ configuration, the po-

larization of the field is 	+ and constant in space but the

amplitude of the local electric field is strongly modulated,

and corresponding strong dipole forces will act onto the at-

oms. In the 	+-	− configuration however, for identical inten-

sities for the F and B beams, the local polarization is linear

�with a spatially rotating axis� but the amplitude of this field

is constant in space �neglecting at first order the influence of

the probe beam�. In this 	+-	− situation the light shift of the

atoms is not modulated in space and no dipole force is ex-

pected to occur. We thus predict a red-blue asymmetry for

the 	+-	+ configuration but we do not expect any asymmetry

for the 	+-	− configuration.

This is what we have observed in the experiment as
shown in Fig. 3. We have recorded the DFWM spectrum for
the two circular polarization configuration of the pumping
beams in the regime of strong pump saturation �s=3.3�. As

can be seen in Fig. 3, the red-blue asymmetry is strongly
reduced for the case where the pump beams have opposite
circular polarization and where no modulation of the light
shift due to the pump beams is expected. This result strongly

supports our explanation that mechanical effects based on

dipole forces, absent in the 	+-	− configuration, are at the

origin of the observed red-blue asymmetry.

One should however bear in mind the mechanism for

DFWM is different for these two polarization configurations.

Indeed, in the 	+-	− case, the strong pump beams F and B

directly induce a coupling between different Zeeman sublev-

els, which are then probed by the weaker beam P. Compar-

ing our 	+-	− case, with linear probe polarization with a

configuration using F�B � P would involve more closely re-

lated four-wave mixing mechanisms, as both configuration

should be well described with a four-level model. One can

thus compare the results of the 	+-	− shown in Fig. 3 to

those of Fig. 2. The important point is the change in the

intensity modulation for these two configurations. In the

F �B� P configuration, the polarization of the strong pump

field is linear and constant in space but the amplitude of the

local electric field is strongly modulated, with corresponding

strong dipole forces acting on the atoms. However even such

experiments would only allow for qualitative comparison, as

optical pumping and the relative polarization of the probe-

pump beams would not be the same. We have therefore cho-

sen to use a comparison using a minimal change in the ex-

periment �switching polarization of the B beam from 	+ to

	−�. The main result is that we have systematically observed

a strong red-blue asymmetry for strong enough pump beam

for all polarization configurations, except for our 	+-	− con-

figuration, where we expect no spatial modulation of the

light shift induced by the pump beams.

In order to further investigate the consequence of such

mechanical effects on the DFWM signal, we have performed

experiments, specifically designed for an easier comparison

with theoretical simulations. Indeed, when the spatial distri-
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FIG. 3. �Color online� DFWM spectrum for circular polariza-

tions of the pump beams, 	+-	+ �full squares� and 	+-	− �open

circles�; pump beam saturation, s=3.3.
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bution of the atoms is no longer uniform, one must take into

consideration not only the coherences �Zeeman or optical

coherences� but also the density modulation of the atoms.

Let us, e.g., consider the situation with a strong spatial in-

tensity modulation �e.g., F �B� P, F �B � P or 	+-	+�. As the

intensity of the pump beam is increased up to the point when

the induced light shifts are larger than the kinetic energy of

the atoms, dipole forces are important enough to induce a

bunching of the atoms. One now must evaluate whether

bunching at the antinodes of the standing wave �for red de-

tuning� will increase or decrease the DFWM signal in com-

parison with bunching at the nodes of the standing wave �for

blue detuning�. The theoretical description of DFWM includ-

ing these effects of the external degrees of freedom of the

atoms is somehow less complex if one considers all polar-

izations for both pump and probe field parallel, F �B � P. In

contrast to the previous configurations, the signal now origi-

nates from an optical coherence grating of two-level atoms

and Zeeman coherences in the ground state can be neglected.

This allows for an easier numerical simulation of the experi-

mental situation. In the low saturation limit, one thus expects

an increased DFWM when atoms are bunched around the

antinodes of the standing wave, increasing the average local

intensity the atoms experience. This argument is supported

by numerical simulations presented below. The experimental

result are shown in Fig. 4.

In contrast to the orthogonal and circular configurations,

where Zeeman coherences are responsible for the DFWM

signal, no splitting is observed for the parallel configuration,

as expected for two-level atoms at rest �9�. For low satura-

tion of the pump beams, the DFWM is symmetrically cen-

tered around �=0 �Fig. 4, open circles�. For larger saturation

however, the maximum of the DFWM signal is shifted to-

wards the blue ��
0� side of the spectrum �Fig. 4, full

squares�. However this blueshift does not correspond to the

asymmetry predicted above. By changing the saturation pa-

rameter of the probe beam and by carefully balancing the

intensities of the forward and backward pump beams, we

have verified in a series of experiments, that this blueshift is

not caused by a residual light pressure of the pump and probe

beam �21�. In fact, this blueshift for larger saturation param-
eter is due to the bleaching �saturation� of the nonlinearity of
the atoms �8�. Indeed, for a two level atom, a perturbative
description of the nonlinearity is only valid at low saturation
of the atomic transition. For too large saturation, the nonlin-
earity will decrease again with a total bleaching of the tran-
sition for infinite saturation. When the saturation parameter
of the pump beam exceeds a certain threshold, an increase of
the intensity of the pump beams will lead to a decrease of the
nonlinear DFWM signal. Correspondingly a bunching of at-
oms at the antinodes of the standing wave �high field seekers
for red detuning� will not increase but decrease the DFWM
in this regime. On the other hand, bunching of the atoms �by
dipole forces� at the nodes of the standing wave �low field
seekers for blue detuning� will lead to an increase of the
DFWM. This is what we observe in our experiment. Note
that for the experiments where a center line dip is present,
the asymmetry is more striking at larger values of detuning,

where this bleaching of the atomic response does not occur.

This is how we explain the larger DFWM for red detuning in

Figs. 2 and 3. A redshift of the DFWM around resonance

would be expected for lower saturation parameters. How-

ever, the bunching of atoms due to the dipole forces of the

pump field also depends on the saturation parameter and we

cannot produce significant bunching in the low intensity

limit where a redshift is expected. As detailed below we have

confirmed these effects by numerical simulations using a

two-level model for the atoms.

Before turning to the description of our numerical simu-

lations, let us present further experimental results for the

F �B � P configuration. As we can register not only the

DFWM signal at the end of the short pulse �all results pre-

sented above� but also the time resolved DFWM, the dynam-

ics of DFWM can be probed. This is illustrated in Fig. 5.

As one can see in these figures, the DFWM is almost

independent of time for low saturation. This is consistent

with the explanation that for these values of the saturation

parameter no bunching is obtained. Also the values for red

and blue detuning are similar, as already shown in Fig. 4. For

larger pump intensities however, one can see the red-blue

asymmetry already shown in Fig. 4, but one can also clearly

distinguish a strong time dependence �with initial oscilla-

tions� of the DFWM. This time dependence is another con-

firmation of the bunching induced DFWM as it is consistent

with the time scales of the spatial motion of the atoms expe-

riencing strong dipole forces in the modulated light field.

This time-dependent DFWM could be exploited to measure

the time-dependent bunching as explained below. Note that

due to this strong time dependence for large saturation val-

ues, a more precise comparison between the various polar-

ization configurations would require a time resolved com-

parison. This complexity will be illustrated in Fig. 6 for the

results of our numerical simulations. Furthermore for large

values of the saturation parameter there is not always a

steady state, as one can lose atoms by Doppler heating. This

makes a complete quantitative analysis almost impossible

and we have thus extracted the results shown in Figs. 2–4

from a time window ranging from 10 to 40 �s. In order to

further support our analysis of a bunching induced red-blue

asymmetry, we have performed numerical simulations to es-
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FIG. 4. DFWM spectrum for parallel polarizations of the pump

and probe beams, F �B � P. Weak pump intensity s=0.4 �rescaled

�100� �open circles� and strong pump intensity s=4 �full squares�.
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timate the spatial ordering induced by the strong standing

light wave. Following the method described in Ref. �22�, we

used the dressed state basis and solved the coupled Heisen-

berg equations for the position, momentum, optical coher-

ence, and populations for each atom. The reversible dynam-

ics for each particle is interrupted by stochastic events,

corresponding to stimulated emissions between dressed

states and thus to a reset of the atomic internal degree of

freedoms. In our numerical simulation, we have neglected

the retroactions of the atoms onto the pump fields which

could occur due to the stimulated or spontaneous radiation of

the atoms. Such interaction can give rise to interesting col-

lective features �23� which are however not in the scope of

this paper. Moreover, this approximation is justified by the

relatively modest number of atoms used in the experiment.

We expect the transition toward a collective regime to appear

only above a critical value of atom number. Indeed, in the

experiments we encountered more complex collective behav-

ior for larger atomic clouds, when Nat
1010.

In order to characterize the atomic ensemble, we defined

the bunching parameter within the cloud b as the harmonic

modulation of the atomic density distribution ��z� at half the

wavelength,

b =
k

2�
�

0

2�/k

��z�e2ikzdz . �1�

As expected, the bunching parameter b is an increasing func-

tion of the pump intensities. By an appropriate choice of the

origin z=0 and of the relative phase between the two pump

beams F and B, we impose the standing wave to be propor-

tional to sin�kz�. Accordingly, due to the mirror symmetry

�z ,F ,B�→ �−z ,B ,F� of the problem, the bunching b can be

considered as a real valued quantity, up to finite size scaling

fluctuations. The expected behavior consisting of bunching at

the nodes �field minima� for blue detuning ��
0� corre-

spond to b
0, while bunching at the antinodes �field

maxima� for red detuning ��0� correspond to b0. In Fig.

6 we show the resulting time evolution of b as a function of
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detuning for an initial temperature of the cloud of T

=100 �K, a saturation parameter s=4 and an atom number

N=4096. One can see that the bunching takes a non-

negligible value in a broad range of detuning values. How-

ever, it is vanishing in the vicinity of �=0 since in this case

the dipole forces are too weak to sustain the periodic modu-

lation against spontaneous emission recoils. Generalizing the

calculations by Ref. �9�, by explicitly including the density

profile, the conjugate DFWM field is given in the limit of

small optical thickness by the following expression:

� = 4s�1 − 2i���
0

2�/k ��z�sin2 kz

�1 + 4�2 + 4s sin2 kz�2
dz . �2�

The DFWM signal we measure is then given by ���2. As-

suming a harmonic ansatz for the spatial modulation of the

atomic density ��z�= �1+2b�−4b sin2 kz, we can write the

conjugate field � as

� = �0�I1�1 + 2b� − 4bI2� �3�

with �0=4s�1−2i�� / �1+4�2� and

I j = �
0

2�/k sin2j kz

�1 + a2 sin2 kz�2
dz . �4�

The two integrals I1 ,I2 can be evaluated numerically and

only depend on the pump beam detuning � and saturation s

through a2=4s / �1+�2�. Assuming that the modulation am-

plitude is small, we can express the relative modification r of

the DFWM signal as

r = 	��b�

��0�
	2

− 1 
 4�b + O�b2� �5�

with �= �1−2I2 /I1�. At this point, one can notice that ���2

and � depends on � only through �2. Thus the absolute

DFWM signal ���2 and its bunching induced modification r

would be symmetric. It can be seen from the expression of r

that this symmetry is broken only by the bunching since it is

an antisymmetric function of the detuning, i.e., b0 �respec-

tively, 
0� if �0 �respectively, 
0�. It is possible to invert

this problem and to evaluate the spatial modulation from the

modified FWM signal r. Using this approach one could es-

timate the bunching from experimental time resolved data.

However one must consider that � is negative for a�2.2 and

positive above this value. This means that either for very

small saturation or very large detuning, the DFWM signal is

enhanced on the red side and diminished on the blue side.

This is not however the case that we considered here and we

are in a regime where the Rabi frequency in the high inten-

sity region of the standing wave is sufficiently large not only

to saturate the nonlinearity but also to practically cancel its

magnitude.

We can now compare the numerical results to our experi-

mental data. First we confirm that for the parallel polariza-

tion F �B � P, there is no splitting in the DFWM spectrum.

Also we find that for the larger saturation parameters s=4 of

our experiment, the DFWM is larger for positive �blue� de-

tuning. Figure 7 illustrates this asymmetry for detuning of

�= ±0.5�. Transient bunching of several percent are pre-

dicted and the time dependence of the bunching resembles

the DFWM of Fig. 5. For saturation parameter of s=0.4 we

do not obtain noticeable bunching, and the corresponding

DFWM signal is again symmetric around �=0. We note that

the region of the inverted red-blue asymmetry DFWM is

larger in the experiment than in the simulation. Several ef-

fects might explain this difference, such as an oversimplified

two-level system or an inhomogeneous intensity distribution

of the DFWM beams. The purpose of this paper is to dem-

onstrate the importance of the spatial rearrangement of the

atoms for a DFWM signal, but we did not aim at a quanti-

tative description of our signals.

In conclusion, we reported observation of DFWM with

cold atoms, both for red and blue detuned light. We observe

a red-blue asymmetry when atoms are exposed to dipole

forces in the standing wave of the strong pump beams. The

origin for an asymmetry of FWM spectra have not been re-

ported so far and must be considered in particular when cold

atoms are used as the nonlinear medium. We expect that it

will be possible to increase by a considerable amount the

efficiency of FWM in our cloud of cold atoms and it might

then be interesting to study nonclassical features �squeezing�
of the FWM signal and also add a cavity around the atomic

cloud to yield self-oscillation �13,24�. Other possibilities

with our pump-probe geometry include the combination of

gain provided by the pump beams and multiple scattering if

the optical thickness of the cloud is large. This could lead to

the realization of a random laser �25� using cold atoms as a

scattering and gain medium.
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4.5. MULTI-LEVELS ATOMS

4.5 Multi-Levels Atoms

In order to model the case of DFWM for orthogonal linear polarization between the
pumps and probe beams (F‖B ⊥ P ) we need to introduce a four level scheme, as shown
in Fig. (4.10).

This model, and the relative results predicted from it, are presented in the following
sections.

4.5.1 Theory

F B

δ δ

ω0
P C

ω0

|a>

|c>

|b>

|d>

Figure 4.10: The atomic four level scheme used to model the case of DFWM for orthogonal
linear polarization, where the arrows represent the coupling between the fields and the different
atomic transitions.

This four level model for the atomic medium can be used to explain the characteristics
of the observed DFWM spectra.

Let us introduce the main ingredients of this four level model. Referring to Fig. (4.10),
we can consider two ground states |a〉 and |b〉 with zero energy and two excited states |c〉,
and |d〉 with energy of ~ω0, and spontaneous relaxation rate Γ. Indeed, the forward F
and the backward B pumping fields are coupled, respectively, to transition |a〉 → |c〉 and
transition |b〉 → |d〉 while the probe P couples |b〉 → |c〉.

To account for a finite interaction time of the atoms with the light, we assume an
escaping rate γ ≪ Γ from the interaction region. Under these assumptions, the temporal
evolution for the density matrix ρ could be written as [52]:

∂ρ

∂t
= − i

~
[H, ρ] − Γ

2
{Pe, ρ} + Γ Ξ − γ(ρ − ρ0) (4.33)

where the Hamiltonian, H = H0 + HInt is, as usual, given, in the rotating-wave approxi-
mation (RWA), by:
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H0 = ~ω0Pe

HInt = A~ΩF (z)eiω t|a〉〈c| + D~ΩB(z)eiω t|b〉〈d|+
+ B~ΩP (z)eiω t|b〉〈c|

(4.34)

and Pe = |c〉〈c|+|d〉〈d| is the projector onto the excited states, and ΩF (z),ΩB(z),and ΩP (z)
are the Raby frequency associated, respectively, with the two pumps (F,B) and probe (P).

Finally, the last operators introduced in Eq.(4.33) are defined as following:







Ξ =
∑

q=1,2
Qq

geρQq
eg

Q1
ge = A|a〉〈c| + B|b〉〈c|

Q2
ge = C|a〉〈d| + D|b〉〈d|

(4.35)

in which the coefficients A,B,C,D govern the relative transition amplitudes and satisfy
the relation:

{
A2 + B2 = 1
C2 + D2 = 1

(4.36)

In order to obtain the atomic response we can solve the density matrix equation by
looking for the steady state of Eq. (4.33), and finding the optical coherence responsible
for the NDFWM. This is the approach used for solving the four level model that, as
we will see later on, reproduces the measured spectra reported on Sec. (4.5.2). More
details on this particular model and its theoretical results are provided in the draft of
the paper attached in Sec. (4.7), which forms the subject of the future publication titled:
”Line-shape in Degenerate Four-Wave Mixing in cold atoms”.
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4.5.2 Experimental Results
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Figure 4.11: Experimental results on DFWM. A clear splitting of the central peak is observed
in the F‖B ⊥ P configuration at small optical thickness (b0) as shown in (a). This feature can
be explained by using a four level atomic system as reported in the text.

As described in the theory section and further detailed in the draft paper in Sec. (4.7),
we can obtain the DFWM signal for four level atoms. The theory describes the F‖B ⊥ P
configuration, and such a theory can predict, for high pump intensity limits, a clear split-
ting of the central peak ( around δ = 0 ).

This prediction was in accordance with the results obtained in the experiment as re-
ported in Fig.(4.11).
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Fig. (4.11)-(a) shows the experimental DFWM signal in the parallel configuration (F‖B‖P );
as we have already pointed out in Sec. (4.3), we did not observe any splitting. However,
under the same experimental conditions, in the perpendicular configuration (F‖B ⊥ P ),
we clearly observed a splitting in the high intensity limit.

Throughout the whole experiment we used a moderate number of atoms in order to
avoid central absorption of the pump intensity due to optical thickness. Such absorption
also gives rise to a more trivial splitting, as reported in Fig. (4.6).

The theoretical results presented in this section, which were in agreement with the
experimental observations, were obtained without realizing any spatial integration of the
coefficient responsible for the DFWM in the perpendicular case ( F‖B ⊥ P ).

This peculiar aspect is still under investigation, and will be clarified in the future
publication attached in Sec. (4.7).
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4.6 Conclusions
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Figure 4.12: Non-Degenerate Four-Wave Mixing (NDFWM) recorded as a function of δ =
ωP ′ −ωF,B, the relative detuning between the probe and pump frequencies. The figure was taken
from reference [14]. A width of about 100 kHz was observed and was consistent with the Doppler
width of our atomic sample.

By using the experimental set-up presented in Sec.(4.3.1), it is also possible to add
an independent probe P

′

with a different frequency with respect to the frequency of the
pumps. The recoded signal, obtained as a function of the relative detuning between the
new probe and the pumps (δ = ωP

′ − ωF,B), is called Non-Degenerate Four Wave Mixing
(NDFWM). For a fixed ∆ = ωF,B − ω0, we scanned the δ frequency during 100µsec,
and we observed a width of the NDFWM of about 100 kHz, consistent with the Doppler
width of our atomic sample.

The set-up described in Sec.(4.3.1), can be used to pump energy into the atomic sample
by using a pump probe technique to produce a sample with gain [53]. As the atoms are
sensitive to radiation pressure forces, we used counter-propagating pump beams to balance
such radiation forces.

Various gain mechanisms can be used with cold atoms; Mollow gain [54], Raman gain
[55] [56] [57] [44] or recoil-induced resonances [58] [59].

In the past, only moderate single-pass gain has been observed with cold atoms, mainly
limited by the reduced optical thickness obtainable in the sample.

In our case, using clouds with a large optical thickness and number of atoms, we
observed a large gain even without high-finesse cavity. In particular, a double-pass gain
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of 1800% was obtained due to interference between Raman gain and Four-wave mixing
[14].

The multiple scattering combined with gain can make the study of new interesting
interference effects in multiple scattering possible, even when the threshold for strong
localization in the passive system cannot be achieved.
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4.7 Lineshapes in degenerated four-wave mixing in

cold atoms
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Lineshapes in degenerated four-wave mixing in cold atoms
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(1) Institut Non Linéaire de Nice, UMR 6618 CNRS,
1361 route des Lucioles, F-06560 Valbonne, France and

(2)Dipartimento di Fisica dell’Universita’ di Ferrara and INFN-Sezione di Ferrara, 44100 Ferrara, Italy
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Av. Professor Luiz Freire, s/n Cidade Universitria, 50670-901, Recife-PE and
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We observe degenerate four-wave mixing in a sample of cold rubidium atoms for different polar-
izations configuration of the pump and probe beams, which correspond to different atomic levels
schemes. Contrary to the single peaked spectral lineshape predicted and observed for a simple
two-level system, a doubled peaked lineshape is observed for strong saturation of the incident pump
beams when a more complex level scheme is involved. A density matrix calculations reproduces
reasonably well the measured spectra.

PACS numbers: 32.80.Pj, 42.50.Gy, 03.67.-a

1- Introduction

Spectral lineshapes in degenerate and nearly-
degenerate four-wave mixing (DFWM and NDFWM)
in different saturation regimes have been extensively
studied in the past several years both theoretical and
experimentally [1–4, 6–10]. However, most of the these
investigation were experimentally realized employing
samples of Doppler broadened atomic or molecular gas
where the observed spectral line shape results from
the contribution of different classes of atomic velocity
[4–7, 9]. The facility provided by magneto-optical traps
(MOT) for producing dense cloud of cold atoms renewed
the interest to investigate FWM in a domain where
atomic motion has a reduced role, practically eliminating
broadening mechanisms such as transit time and first
and second order Doppler effect and allowing us to obtain
optical phase conjugation, or wave-front reconstruction,
for large angular aperture between the pump and the
probe beams [11]. In this regime one can also directly
compare calculated FWM spectra with experiments
without the need of performing any velocity averaging.
For instance, the NDFWM spectra using degenerate
two- and three- level schemes of cold cesium atoms
have been measured which are in reasonable agreement
with the theoretical predictions [12, 13]. NDFWM has
also been employed to probe very narrow resonances in
an operating MOT [14, 15]. In addition, some of the
DFWM and NDFWM schemes can be associated with
the creation of coherence between metastable ground
levels and have gained much recent interest owing to
possibility of the storage and processing of quantum
information as well as to the production of correlated
photons pairs [16].

In a recent experiment [17] we have used DFWM in
a sample of cold atoms to demonstrate the bunching of
atoms at the nodes and antinodes of a standing wave cre-

ated by the strong couterpropagating pump beams. In
this paper we investigate both theoretical and experimen-
tally the line shape of the DFWM process in a sample of
cold rubidium atoms for different polarization configura-
tion of the FWM beams. Opposite to the well known sin-
gle peaked spectrum observed for DFWM in a two-level
atomic system [3, 10], we predict and experimentally ob-
serve that for strong saturation of the pump beams the
DFWM spectrum presents a double peak structure which
is not evident from a simple dressed state model [12].

2- The experimental set-up and results

The experiment was performed in a sample of cold
rubidium atoms obtained from magneto-optical trap
(MOT). Our MOT scheme has been described elsewhere
[18] and allows a rapid and time controlled switching of
the trapping and repumping beams as well as the mag-
netic quadrupole field. The FWM beams are provided
by the same laser and also can be time controlled both
in relative delay and duration. We employ the conven-
tional backward FWM configuration with two indepen-
dent counterpropagating pumping beams, i.e. the for-
ward (F) and the backward (B) indicated in the Fig.
1-(a) which shows a simplified experimental configura-
tion scheme. In Fig. 1-(b) we show the timing sequence
of the experiment. First the atoms are collected and
cooled for about 20 ms, then the MOT beams and the
quadrupole magnetic field are switched off for about 1 ms.
During this time window, the FWM beams are switched
on and the generated phase conjugated beam after be-
ing reflected off a 50/50 beam splitter is detected by a
fast photomultiplier. The polarization and intensities of
the FWM beams can be controlled by appropriate wave
plates and polarizing cubes placed along the beams path.
We have essentially analyzed two different polarization
configuration for the pumps and probe beams: The case
where all the beams have the same linear parallel polar-
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FIG. 1: (a) simplified experiment setup: two strong coun-
terpropagating pump beams (F and B with parallel linear
polarization) and one weak probe beam (P , which linear po-
larization can be made either parallel or orthogonal to that of
F and B) are applied. The generated phase conjugate beam
(C) is reflected off the 50-50 beamsplit BS. b) the timing se-
quence of the experiment : the MOT beams and magnetic
fields are switched off during the short pump/probe pulse.
The frequency of all the beams are continuously scanned by
a voltage ramp

ization (‖) and the case where the forward and backward
pump beams have linear parallel polarization orthogonal
to the linear polarization of the probe beam (⊥). Al-
though our MOT can trap very large number of atoms,
up to 1010, we have choose to use a moderate number of
atoms in order to avoid propagation effects.

In Fig. 2 we show the DFWM spectra corresponding to
the polarization configuration ‖ and ⊥ respectively. The
FWM beams pulse duration is approximately equal to 20
µs. For these spectra the saturating parameter (averaged
on the Clebsch-Gordan coefficients) is about s = 2 for the
F and B pump beams and s = 0.03 for the probe beam
P. The FWM spectra are recorded as a function of the
common frequency detuning δ of the FWM beams in re-
lation to the atomic resonance frequency of the rubidium
5S1/2, Fg = 2 − 5P3/2, Fe = 3 D2 transition . For this
range of intensity, the spectrum corresponding to the po-
larization configuration ‖ consists essentially of a single
symmetric peak centered around the detuning δ = 0. On
the other hand, for the polarization configuration ⊥ the
spectrum presents an clear asymmetry evidencing a more
complex structure. This structure becomes more evident
as we increase the saturating parameter as shown in Fig.
3, where we recorded the spectra corresponding to the
polarization configuration ‖ and ⊥ for a saturation pa-
rameter of s = 4. A clear splitting is now observed in
the spectrum for the configuration ⊥. The reflectivity of
each four-wave mixing process, as measured in relation
to the probe beam intensity, are indicated in the vertical
axis of the Fig. 2 and Fig. 3.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-6 -4 -2 0 2 4 6

D
F

W
M

[%
]

δ/Γ

F ‖ B ‖ P

F ‖ B ⊥ P

FIG. 2: solid curve: DFWM spectrum observed when all the
beams have the same linear polarization (configuration ‖) ;
Dashed curve: DFWM spectrum for pumps and probe with
orthogonal linear polarization (configuration ⊥) . In both
case the pump saturation parameter is approximately s=2.
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FIG. 3: DFWM spectrum observed for a pump saturation
parameter of approximately s=4. solid curve: configuration
‖; Dashed curve:configuration ⊥

We should note that the physical mechanism respon-
sible to the generation of the conjugated signal C is
quite different in these two polarization configuration.
Although in both cases the signal can be interpreted as
being originated from Bragg diffraction into an induced
grating, in the first case a population grating is induced
in the medium while in the second case the signal origi-
nates from a Zeeman coherence grating.

As observed, although the spectra associated with
parallel polarization essentially show no splitting for
these values of saturation parameter, the spectrum
for orthogonal polarization of the pump and probe
beams, which should involve necessarily a more complex
atomic level scheme, clearly shows a intensity dependent
splitting. It is worth to mention that the double peak
spectrum shown in Fig. 3 for the configuration ⊥ is
approximately symmetric in contrast with the red-blue
asymmetry we have previously observed which is asso-
ciated with the bunching of atoms along the standing
wave induced by the strong pumps beam [17]. In the
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atomic level scheme, clearly shows a intensity dependent
splitting. It is worth to mention that the double peak
spectrum shown in Fig. 3 for the configuration ⊥ is
approximately symmetric in contrast with the red-blue
asymmetry we have previously observed which is asso-
ciated with the bunching of atoms along the standing
wave induced by the strong pumps beam [17]. In the
presented spectra the scanning time was made faster
than the time required to form any bunching. In the
next section we consider a simple theoretical model
which predicts the observed line shape splitting.

3-Theoretical model and discussions

a) Two-level model

For the particular transition used in the experiment,
the DFWM signal originates from the contributions of
several different Zeeman sublevels and a complete de-
scription of the process would need to consider the de-
generacy of both ground and excite levels. For the case
where all the beams have the same linear parallel po-
larization they will couple only with transitions between
Zemman sublevels with ∆m = 0. In this case, the gener-
ated signal originates from the contribution of several
pairs of open tow-level systems which are coupled by
spontaneous emission. Therefore, the simplest theory to
model this situation is the well established two-level the-
ory of DFWM of Abrams and Lind [3, 10]. In Fig. 4
we have plotted the predicted DFWM spectra for dif-
ferent values of the saturation parameter as defined by

s = I
Isat

= Ω2

Γ2 , where I is the individual pump intensity,
Ω is the corresponding Rabi frequency, Γ is the common
longitudinal and transversal relaxation rate, and Isat is
the transition saturation intensity.

As can be seen, according to this simple theory the
DFWM spectrum just presents a broadening for increas-
ing pump beam intensities, which accounts reasonably
well for the observed results. Although the Abrams
and Lind theory consider a spatial averaging of the
nonlinear susceptibility over a wavelength due to the
spatial variation of the pump intensity, we have verified
that a local theory for a two-level system, also do not
shows any line splitting .

b) Four-level model

For modelling the case of DFWM for orthogonal linear
polarization between the pumps and probe beams, it is
clear that a more complex level scheme is needed. As
we will see, modelling the atomic medium as a simple
four-level system can reveal the main characteristics of
the observed spectra. Therefore, we consider a homo-
geneously broadened four-level atomic system, labelled
by |i〉, i = a, b, c, d, coupled to the FWM laser fields as
shown in Fig.1. The states |a〉 and |b〉 belong to the non-
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FIG. 4: Calculated DFWM spectra for different saturation
parameter using the Abrams and Lind Theory.

|a〉 |b〉

|c〉 |d〉
δ δ

F B

P

C

FIG. 5: Atomic four-level scheme. The arrows represent
the coupling between the corresponding field with the atomic
transition.

relaxing ground level with zero energy. The states |c〉 and
|d〉 form the excited level with energy ~ω0 and sponta-
neous relaxation rate Γ. We therefore consider that the
forward F and backward B pumping fields couples to the
transitions |a〉 − |c〉 and |b〉 − |d〉 respectively while the
probe P field couple to the transition |b〉 − |c〉.

To account for the finite interaction time of the atoms
with the light we assume an escaping rate γ (γ ≪ Γ)
from the interaction region. Under these assumptions,
the temporal evolution for the density matrix ρ is deter-
mined by [19]:

∂ρ

∂t
= − i

~
[H, ρ]− Γ

2
{Pe, ρ}+ Γ

∑

q=1,2

Qq
geρQq

eg − γ(ρ− ρ0)

(1)
where, H = H0 + HAF , with H0 = ~ω0Pe and,

HAF = A~ΩF |a〉〈c|eiωt + D~ΩB|b〉〈d|eiωt

+ B~ΩP |b〉〈c|eiωt
(2)
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In the equation 2, the rotating wave approximation was
used. The operator Pe is the projector onto the excited
states and ΩF , ΩB and ΩP are the reduced Rabi frequen-
cies for the FWM beams respectively and the numbers
A2, B2, C2, D2 govern the relative transition amplitudes
(analog to the Clebsh-Gordan coefficients) and satisfy:

A2 + B2 = 1 (3)

C2 + D2 = 1 (4)

The operators Qq
ge are given by:

Q1
ge = A|a〉〈c| + B|b〉〈c| (5)

Q2
ge = C|a〉〈d| + D|b〉〈d| (6)

The first term on the right-hand side of Eq. 1 rep-
resents the free atomic evolution in the presence of the
three optical fields. The remaining terms correspond to
atomic relaxation. The second term on the right-hand
side accounts for the radiative relaxation of the excited
level. The third term describes the feeding of the ground
level by atoms decaying from the excited level. The last
term phenomenologically accounts for the finite interac-
tion time and ensures the relaxation of the system, in
the absence of the optical fields, to the thermal equilib-
rium state assumed to be described by the density matrix
ρ0 = 1

2 [|a〉〈a| + |b〉〈b|] corresponding to an isotropic dis-
tribution of the population in the ground level. The rate
γ (γ ≪ Γ) effectively plays the role of the ground-level
relaxation coefficient.

To obtain the response of the atomic system to the
incident fields, it is convenient to introduce the slowly
varying variables:

ρac = σac exp[iωt] (7a)

ρbd = σbd exp[iωt] (7b)

ρab = σab exp[iδt] (7c)

ρbc = σbc exp[iωt] (7d)

ρad = σad exp[iωt] (7e)

ρcd = σcd (7f)

ρii = σii i = 1, 2, 3, 4 (7g)

Substituting Eq. 7 into Eq. 1, we obtain the following

set of equations for the slowly varying variables:

∂σab

∂t
= − γσab − iΩF Aσcb + iΩ∗

BDσad + iΩ∗
PBσac(8a)

+ ΓADσcd

∂σac

∂t
=

[

i∆ − Γ

2
− γ

]

σac + iΩF A(σaa − σcc)(8b)

+ iΩP Bσab

∂σad

∂t
=

[

i∆ − Γ

2
− γ

]

σad − iΩF Aσcd (8c)

+ iΩBDσab

∂σbc

∂t
=

[

i∆ − Γ

2
− γ

]

σbc − iΩBDσdc (8d)

+ iΩF Aσba + iΩP B(σbb − σcc

∂σbd

∂t
=

[

i∆ − Γ

2
− γ

]

σbd + iΩBD(σbb − σdd)(8e)

− iΩP Bσcd

∂σcd

∂t
= − [Γ + γ]σcd − iΩ∗

F Aσad − iΩ∗
P Bσbd (8f)

+ iΩBDσcb

∂σaa

∂t
= − γσaa − iΩF Aσca + iΩ∗

F Aσac (8g)

+ Γ(C2σdd + A2σcc) +
γ

2
∂σbb

∂t
= − γσbb − iΩBDσdb + iΩ∗

BDσbd (8h)

− iΩP Bσcb + iΩ∗
P Bσbc

+ Γ(D2σdd + B2σcc) +
γ

2
∂σcc

∂t
= −(Γ + γ)σcc − iΩ∗

F Aσac + iΩF Aσca (8i)

− iΩ∗
P Bσbc + iΩP Bσcb

∂σdd

∂t
= − (Γ + γ)σdd − iΩ∗

BDσbd + iΩBDσdb (8j)

with ∆ = ω0 − ω
The term responsible for the generation of the DFWM

signal is the matrix element σad. We have solved through
perturbation theory and on steady state regime the

complete set of density matrix equations 8, to obtain σ
(1)
ad

in first order in ΩP and in all orders in ΩF and ΩB. The
DFWM signal is then proportional to |σ(1)

ad |2. In Fig.
6 we plot the calculated DFWM spectrum for different
values of the saturation parameter for equal pump Rabi

frequency, i.e., s =
Ω2

F

Γ2 =
Ω2

B

Γ2 . As can be seen, for small
Rabi frequency the spectrum presents just a single peak
which evolves to a double peak structure for higher
values of the Rabi frequency. This is in qualitative
agreement with the observed spectra shown in Fig. 2.

4-Summary

We have observed DFWM mixing in a degenerate two-
level system of cold rubidium atoms. Two different po-
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.

larization configuration of the incident beams were an-
alyzed. For the case of parallel linear polarization the
observed spectrum is well described by the theory of
Abrams and Lind. However, when the pump and probe
have orthogonal linear polarization a spectrum shown an
intensity dependent splitting is observed. We have de-
veloped a simple theoretical model based on four-level
scheme which accounts reasonably well for the measured
spectrum.
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Conclusion

In this thesis we presented a study of a Magneto-Optical Trap (MOT) of 85Rb in the
limit of a very large number of atoms (N=1010). We reported a detailed experimental
investigation of size and density scaling laws, and we introduced a new mechanism which
can limit the density of atoms in such a system.

In one type of experiment, where the atom number was changed by varying the in-
tensity of the repumper laser, our observations confirmed several previous measurements,
which had found a cross-over in atom number dependence on MOT size (L) changing from
L ∝ N1/3 to L ∝ N1/2 with an increasing N . However, this cross-over disappears when
we control the atom number by varying the diameter of the repumper laser. This latter
procedure gives rise to a scaling law L ∝ N1/3, and thus a constant density up to a large
atom number (N=1010), which provides experimental evidence that the N1/2 does not
arise from multiple photon scattering beyond double scattering, as previously suggested
in the literature[22] [60]. In order to have a better understanding of the MOT scaling laws,
we proposed a qualitative model for the density (and thus for the size) which introduces,
for the first time, the mechanical interactions induced by the repumper photons scattered
in the MOT. This effect becomes more and more evident as more atoms are added in the
dark hyperfine ground state, giving rise to a new limit for the density. We speculate that
a considerable increase of spatial density should be possible if we are able to control the
repumper effects. For example, we predict that spatial atomic density could be increased
by using six independent repumper beams instead of only one retro-reflected beam, as
realized in the experiment. In fact, the resulting shadow effect of the repumper should
compensate the repulsive interaction of light scattered by the repumper and lead to a
denser atomic medium.

But this is not the only way to increase the density by 3 orders of magnitude, as
required to reach the densities needed in order to observe strong localization of light. More
precisely, we need to eliminate the laser-induced interactions produced by the multiple
scattering, for both the MOT and for the repumper photons, in the atomic cloud. This
is why we realized a ’Dark MOT’, obtained by using the lower hyperfine ground state,
in which the preloaded atoms in the standard MOT were optically ’depumped’. Indeed,
the atoms in this state do not interact with the trapping light (i.e. they are dark for
such a light), thus the repulsions were considerably lowered and an increase of the density
was observed. On the other hand, the less confining characteristics of the ’Dark MOT’
required an additional external potential to confine the atoms. An optical potential was
obtained from a free-running DFB laser at 780nm amplified by a Tapered Amplifier. After
amplification, the laser beam was focused to a waist of about 350µm, and superimposed
onto the ’Dark MOT’. By following this protocol, we observed the highest density ever
obtained in our set-up (∼ 1012 atms/cm3).

159



4.7. LINESHAPES IN DEGENERATED FOUR-WAVE MIXING IN COLD ATOMS

A medium with high spatial density like this, even if it is one order of magnitude below
the localization threshold, could be used as a random medium to observe the effects of
light trapping due to interferences in multiple scattering. As we sometimes like to think
of localization as closed loops made by light in the medium, the introduction of gain in
such a medium could be used to amplify these closed loops. This analogy has motivated
us to start new research in an attempt to combine gain and multiple scattering, which -
if successful - will allow us to produce a random laser with cold atoms.

As a first step, we decided to set up the pump-probe technique which is suitable for
the production of gain in the atomic sample. A typical pump technique with cold atoms
makes use of two counterpropagating pump fields, in order to minimalize the mechanical
effects due to radiation pressure. The pump-probe set-up naturally lead to a well known
configuration: the four-wave mixing process. Indeed, we investigated the properties and
the characteristics of the Degenerate Four-Wave Mixing (DFWM) signal, where the two
pumps and the probe have the same frequencies. We measured the DFWM for different
configurations of polarizations of the pumps and probe beams which corresponded to dif-
ferent atomic level schemes. In the case in which the pumps have the same polarization
as the probe (parallel configuration), we can consider our atomic medium as being com-
posed of an ensemble of two-level atoms. In such a situation we observed a single peaked
spectral lineshape even within the limits of high pump intensity in accordance with the
theory of Abrams and Lind [49][51]. However, if we consider the situation where the probe
polarization is perpendicular to that of the pumps, a double peak structure was observed
even when the center line absorption, generated by large optical thickness of the atomic
cloud, was avoided. The physical origin of such a splitting of the center line has been
explained by taking into account a more complex atomic level scheme.

In addition to the effects predicted by standard atomic physics, we also observed a new
surprising feature: a clear red-blue asymmetry of the DFWM signal for high intensities
of the pumping beams. We explained this asymmetry as the spatial bunching of the
atoms in the nodes or antinodes of the strong standing wave of the pump beams. This
characteristic should always be considered, particularly when cold atoms are used as the
nonlinear medium. Mechanical effects related to this bunching might become important
when we want to approach the ”random laser” regime with cold atoms, where strong
pumping will be necessary.

The same set-up used for the DFWM was employed to create gain in the atomic cloud.
Indeed, large gain in single and double pass was observed in our set-up [14]. The surprising
large double pass gain was explained via DFWM mechanisms. This large gain allowed us
to build up a Fabry-Perot type laser with cold atoms as the gain medium. At present,
and for the future, the properties of such an intriguing laser can be used to investigate
the effect of coherent multiple scattering in the presence of gain while approaching the
threshold of Anderson’s localization.

In conclusion, the work presented in this manuscript has contributed to the possibility
of approaching Anderson’s localization threshold via a better understanding of the limi-
tations of the spatial densities in a MOT and by first pump-probe experiments opening
the way for a ”random laser” with cold atoms.
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Appendix A

Re-scattering cross section

In this appendix, we’ll present the details of the calculation of absorption cross section σL,
the re-absorption cross section 〈σR〉 for a two-level atom illuminated by laser light using
the dressed atom approach. In general scattered light from a single atoms at rest has
two distinct contribution: a coherent part Icoh, arising form the mean dipole oscillating
in phase with the driving field, and an incoherent part Icoh originating from fluctuations
of the atomic dipole [23].

The re-absorption cross section is obtained by the evaluation of absorption of the
emitted light by the neighboring atoms. If we define S(ω) the emission spectral density
and σA(ω) the absorption spectra of the atom illuminated by the laser light, then the
re-absorption cross section is equal to:

〈σR〉 =

∫
σA(ω

′

)S(ω
′

) dω
′

∫
S(ω′) dω′

(A.1)

As we can found in many references, the expression of absorption and the fluorescence
spectra can be done with the dressed atom approach, like in reference [18].

As done in reference [61], we indicate with Ω = Γ
√

I/2Isat the Rabi frequency, with

ΩG =
√

Ω2 + δ2 the generalized Rabi frequency, and c2 = cos2(θ), s2 = sin2(θ) and again
c4 = cos4(θ), s4 = sin4(θ), with the angle defined by tan(θ) = Ω/δ. Thus we indicated
as L(ω − ω

′

, Γ) the normalized Lorentzian function centered in ω = ω
′

of width equal to
2Γ, and with L(ω − ω

′

, 0) the limit of the Lorentzian when its width goes to zero; the
definition of delta function. Also we define Γp = Γ(c4 + s4) and Γc = Γ

2
(1 + 2c2s2). By

using such a definition, it is possible to demonstrate that the relative expressions for the
normalized emission and absorption spectra, in the limit of ΩG ≫ Γ are given by :

S(ω) =
(c2 − s2)

(c4 + s4)
L(ω−δ, 0)+

4c4s4

c4 + s4
L(ω−δ, Γp)·[c2s2{L(ω−δ−ΩG, Γc)+L(ω−δ+ΩG, Γc)}]

(A.2)
and

σA(ω) = σ0π
Γ

2

c2 − s2

c4 + s4
· {c4L(ω − δ − ΩG, Γc) − s4L(ω − δ + ΩG, Γc)}

(A.3)
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Is important to remind, the all those formula are valid in the limit of large generalized
Rabi frequency with respect to natural line width Γ, i.e ΩG =

√
Ω2 + δ2 ≫ Γ. This

condition can be fulfilled in the regime of high intensities and large detuning. After these
approximations, we are now able to evaluate the integral(A.1) and write the expression
for the re-absorption cross section [25]:

〈σR〉 = σ0
Γ

2

(c2 − s2)2

c4 + s4
{(c2 − s2)2

c4 + s4

Γc

Ω2 + δ2 + Γ2
c

+
4 c4s4

c4 + s4

(Γc + Γp)

Ω2 + δ2 + (Γc + Γp)2

+
c2s2

2
(

1

Γc

+
Γc

Ω2 + δ2 + Γ2
c

)} . (A.4)

We can give for the Eq. (A.4) asymptotic expression. In our case, we are interested at
expression in the limit of large laser detuning |δ| ≫ Ω ≫ Γ. In that limit we have also,
θ ∼= Ω/δ and the approximated expressions for the cross sections are :

σL
∼= σ0Γ

2

4δ2
, 〈σR〉 − σL

∼= σ0
Ω2

8δ2
(A.5)
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Abstract

In this thesis we present a detailed experimental investigation of size- and density-
scaling laws for large Magneto-Optical Traps (MOT) with up to 1010 atoms. It is well
known that laser-induced interactions, produced by multiple scattering, is the main limi-
tation to spatial densities in a MOT. We therefore realized a ’Dark MOT’ combined with
a Dipole-Trap. Thus, the repulsions were considerably lower and an increase by two fac-
tor of magnitude (up to 1012 atm/cm3) has been observed. We also propose a qualitative
model for the density (and thus for the size), which introduces the mechanical interactions
induced by the repumper photons when its optical thickness becomes important. This
work is part of the research project to observe Anderson localization of light in cold atoms,
where densities of the order of (1013 − 1014 atm/cm3) are required. For densities lower
than this critical value gain mechanisms could be useful to amplify prelocalized modes.
We thus implemented a pump-probe technique suitable for gain production in the atomic
sample. In our case, we have been naturally lead to a Four-Wave Mixing (FWM) configu-
ration. A detailed analysis of the properties and characteristics of FWM-signal has been
presented, with, in particularly, a clear red-blue asymmetry of FWM-spectrum for high
intensities of the pump beams. We explained this asymmetry by the spatial bunching of
the atoms in the nodes or antinodes of the strong standing wave of the pump beams.

Résumé

Dans cette thèse, nous présentons une recherche expérimentale détaillée des lois car-
actérisant la taille et la densité atomique de grands pièges magnéto-optiques contenant
typiquement 1010 atomes. Il est bien connu que les interactions induites par laser, pro-
duites par la diffusion multiple, y constituent la limitation principale à l’obtention de
densités atomiques élevées. Pour contourner cette limite, nous avons réalisé un piège
magnéto-optique “noir” combiné un piège dipolaire. Les forces de répulsion assistées par
la lumière ont ainsi pu être considérablement réduites et une augmentation de près de
deux ordres des grandeur sur le densité (jusqu’à 1012 atm/cm−3) a été corrélativement
observée. Nous avons proposé également un modèle qualitatif pour rendre compte de la
densité atomique (et également pour la taille) où nous avons introduit les interactions
mécaniques induites par les photons du laser repompeur quand son épaisseur optique
devient importante. Ce travail fait partie d’un projet de recherche qui vise à terme à
observer la localisation d’Anderson de la lumière dans des nuages d’atomes froids, mais
pour laquelle des densités de l’ordre (1013−1014 atm/cm3) sont requises. Pour des densités
inférieures, des mécanismes de gain peuvent toutefois être mis à profit pour amplifier des
modes pre-localisés. Nous avons, ainsi, mis en place une technique pompe-sonde pour la
création d’un gain dans l’échantillon atomique. La configuration des pompes a autorisé
l’observation du signal de mélange a quatre ondes. Une analyse détaillée de ses propriétés
et de ses caractéristiques a été présentée. En particulier, une asymétrie rouge-bleu dans
le spectre, pour des intensités élevées des faisceaux pompes, a été mise en évidence. Cette
asymétrie a pu tre expliquée en tenant compte du regroupement des atomes dans les
noeuds ou dans les ventres de l’onde stationnaire des faisceaux de pompe.

Keywords : Rubidium, Magneto-Optical Trap, Multiple Scattering, Mechanical Effects,
Compression Techniques, Four-Wave Mixing, Dipole Forces.


