Contributions à la simulation, à la modélisation et au contrôle des écoulements fluides

QUANG HUY TRAN

Parcours

Thèse sous la direction d'Alain Bamberger sur la *propagation d'ondes acoustiques* et l'*inversion tomographique*

0	91 92	93	. 94	95	96				. 06	07 08
<i>P6</i> DE	Min A Doc	<i>es</i> torat			· · · · · · · · · · · · · · · · · · ·	-				<i>P6</i>
IFF Géo Sch Opt	ophysiqu iémas DI iimisatio	: e F, EF lin n	néaire	I S S	FP Aécanio Schéma Systèmo	que de s VF n es hypo	s fluide 1011-lin erboliq	es éaires jues		
		Ric VS	e N	E I	ENSPM DEA			IA M	/STN aster	2

Parcours

Ingénieur de recherche à l'IFP, département *Mathématiques Appliquées*. Enseignements à l'ENSPM et l'INSTN

90	91	. 92	. 93	94	95	96				06	07	. 08
P D	°6 DEA	Mine Doct	es torat		•						F	26
II G S C					s S	FP Aécani Schéma Systèm	que d ıs VF es hyj	es flu non-l	ides inéair liques	es		
			Ric VS	e N	H I	ENSPM DEA	[INSTN Master	2	

Encadrements

« Promoteur » de 5 thèses, 1 post-doctorat. 18 stagiaires

. 96	. 91	7 9	8 99	. 00 .	01	02 . 03	. 04	. 05	. 06	. 07 .	08
								1			<u> </u>
-	E G				T	D					
	E. 2	Lakari	an		E.	Duret		-			
1	<i>P. C</i>	Chossa	lt l		<i>P</i> .	Rouchon		-			
: 📕								1			
:					:		÷	÷	·	: :	1
-								-			
1		1	— G. G	autier			1	1			
:		1				:	1	1		: :	
			B. 30	neurer			+	•	•		
								-			
2				1			1	1			
					D 1.					. т	
				M. 1	Baudin	N.			L. 1	Nguye	n
2			1	E C		T				7	
				г. с	oquei	Γ.			<i>г</i> . с	Joquei	
						M			М	Postal	
1			:	- i - i	:				<i>IV1</i> .	rosiei	
:					:						
-				-i -i				-			
									•		

= 990

Encadrements

« Promoteur » de 5 thèses, 1 post-doctorat. 18 stagiaires

E. Zakarian P. Chossat G. Gautier B. Scheurer M. Baudin F. Coquel M. Postel M. Postel	. 96	. 97	7 98	8 99	. 00 .	01	02 .	03	04 05	. 06	. 07 .	08
G. Gautier B. Scheurer M. Baudin F. Coquel M. Postel M. Postel	-	E. Z P. C	Zakaria Thossa	an at		E P.	. Dure Rouci	t hon			· · · · · · · · · · · · · · · · · · ·	
M. Baudin F. Coquel M. Postel M. Postel M. Postel	-	-		G. Ga B. Sci	utier heurer		-					- - - - - - - - - - - - - - - - - - -
	- - - - - - - - - - -		-	-	M. I F. C	Baudin <i>oquel</i>		N. An F. Coo M. Po	drianov quel stel	т L. <i>F.</i> <i>М</i> .	Nguye Coquel Postel	n

ъ.

Publications

14 articles dans revues, 10 actes de colloques,18 rapports internes, 2 brevets

-

Travaux présentés

Publications du mémoire

14 articles dans revues, 10 actes de colloques, 18 rapports, 2 brevets

Écoulements fluides

TACITE

- 1-D, « grand » domaine
- polyphasique compositionnel
- plusieurs vitesses
- lois de fermeture non-standard
- maillage fixe ou adaptatif

Trans-Alaska (1300 km)

IFP-C3D

- 3-D, « petit » domaine
- multi-espèces réactifs
- une seule vitesse
- lois de fermeture standard
- maillage mobile et déformé

KIVA 3 © LANL

Travaux présentés

Simulation, modélisation, contrôle

Sommaire

1 Simulation des écoulements en conduites par relaxation

- Plus sûr, plus vite
- Relaxations en explicite
- Relaxations en implicite sélectif
- Adaptations dynamiques

2 Modélisations alternatives et applications au contrôle

3 Phase convective pour la simulation des moteurs

Contexte et enjeux

- Transport polyphasique
 - choix économique important dans le monde pétrolier
 - thème de recherche permanent en Mécanique Appliquée

TACITE (1990–)

- assistance aux pilotes dans les unités de contrôle
- prédiction des obstacles à la production, tels le slugging ou les hydrates
- conception et dimensionnement des équipements

Tina (IFP), Olga (IFE)

- Impératifs
 - robuste
 - rapide
 - précis

Difficiles à atteindre, en partie pour des raisons de modèle

Champ offshore

Modèle à flux de dérive (DFM)

Lois de conservation

$$\partial_t(\rho) + \partial_x(\rho v) = 0$$
 (1a)

$$\partial_t(\rho v) + \partial_x(\rho v^2 + \mathbf{P}) = \rho S$$
 (1b)

$$\partial_t(\rho Y) + \partial_x(\rho Y v + \sigma) = 0$$
 (1c)

Lois de fermeture thermodynamique et hydrodynamique exprimant

$$P(\mathbf{u}) = \rho Y(1-Y)\phi^2(\mathbf{u}) + p(\mathbf{u})$$
(2a)

$$\sigma(\mathbf{u}) = \rho Y (1 - Y) \phi(\mathbf{u}) \tag{2b}$$

en fonction de $\mathbf{u} = (\rho, \rho v, \rho Y)$, avec $\phi(\mathbf{u}) = v_g - v_\ell$ Forme abstraite

 $\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = \boldsymbol{\rho} \mathbf{s}(\mathbf{u}) \tag{3}$

Propriétés de DFM

Agréable

Forme conservative, à l'inverse des modèles à 2 bilans d'impulsion

Moins agréable

- $P(\mathbf{u})$ et $\sigma(\mathbf{u})$ sont fortement non-linéaires et extrêmement coûteuses
- L'hyperbolicité n'est pas garantie, même si ∇f(u) admet dans la plupart des cas 3 valeurs propres réelles distinctes λ₁(u), λ₂(u) et λ₃(u) à évaluer numériquement
- Encore moins agréable

Deux échelles de vitesses représentent deux types d'ondes différents

 $|\lambda_2(\mathbf{u})| \ll |\lambda_1(\mathbf{u})| \approx |\lambda_3(\mathbf{u})|$

cinématique (matière) acoustiques (pression)

ce qui pénalise le temps de calcul en explicite

Pas d'*entropie*, donc pas d'analyse de stabilité non-linéaire

Propriétés de DFM

Agréable

Forme conservative, à l'inverse des modèles à 2 bilans d'impulsion

- Moins agréable
 - $P(\mathbf{u})$ et $\sigma(\mathbf{u})$ sont fortement non-linéaires et extrêmement coûteuses
 - L'hyperbolicité n'est pas garantie, même si ∇f(u) admet dans la plupart des cas 3 valeurs propres réelles distinctes λ₁(u), λ₂(u) et λ₃(u) à évaluer numériquement
- Encore moins agréable

Deux échelles de vitesses représentent deux types d'ondes différents

 $|\lambda_2(\mathbf{u})| \ll |\lambda_1(\mathbf{u})| \approx |\lambda_3(\mathbf{u})|$

cinématique (matière) acoustiques (pression)

ce qui pénalise le temps de calcul en explicite

Pas d'*entropie*, donc pas d'analyse de stabilité non-linéaire

Propriétés de DFM

Agréable

Forme conservative, à l'inverse des modèles à 2 bilans d'impulsion

- Moins agréable
 - $P(\mathbf{u})$ et $\sigma(\mathbf{u})$ sont fortement non-linéaires et extrêmement coûteuses
 - L'hyperbolicité n'est pas garantie, même si ∇f(u) admet dans la plupart des cas 3 valeurs propres réelles distinctes λ₁(u), λ₂(u) et λ₃(u) à évaluer numériquement
- Encore moins agréable

Deux échelles de vitesses représentent deux types d'ondes différents

 $|\lambda_2(\mathbf{u})| \ll |\lambda_1(\mathbf{u})| \approx |\lambda_3(\mathbf{u})|$

cinématique (matière) acoustiques (pression)

ce qui pénalise le temps de calcul en explicite

Pas d'entropie, donc pas d'analyse de stabilité non-linéaire

Schéma actuel

Volume fini décentré

- VFRoe depuis 1996 (Masella, Faille et Gallouët [137])
- Intégration temporelle mixte : implicite par rapport aux ondes acoustiques, explicite par rapport à l'onde cinématique (Faille et Heintzé [123])
- Cette implicitation sélective est une/la réponse adéquate à la co-existence de deux types d'ondes

Fonctionnement

- Résultats très satisfaisants dans la majorité des cas courants
- Apparition de valeurs propres complexes provoquant l'arrêt d'exécution sur certains cas raides
- Relativement gourmand en temps calcul, à cause des procédures pour les éléments propres des matrices jacobiennes locales

À la poursuite d'un schéma idéal

- Assurer la positivité
 - En explicite

Relaxation à deux paramètres $\langle 10, 15 \rangle$

Relaxation à un seul paramètre $\langle 14 \rangle$

En implicite sélectif Implicitation par l'approche Euler direct (11)

Implicitation via le formalisme Lagrange-projection $\langle 16, 18 \rangle$

- Accélérer le temps de calcul
 - Multi-résolution

Adaptation en espace pour glissement nul $\langle 12 \rangle$

Glissement quelconque $\langle 13 \rangle$

 Pas de temps local Adaptation espace/temps (17)

Collaboration Laboratoire J. L. Lions

Équipe de Recherche Technologique

F. Coquel, M. Postel

N. Andrianov, M. Baudin, C. Berthon,

Q. L. Nguyen, N. Poussineau

V. Martin, F. Daude, A. Fornel, L. Linise

∃ ► ▲ ∃ ► ∃ = ● ○ ○ ○

À la poursuite d'un schéma idéal

- Assurer la positivité
 - En explicite

Relaxation à deux paramètres $\langle 10, 15 \rangle$

Relaxation à un seul paramètre $\langle 14 \rangle$

En implicite sélectif Implicitation par l'approche Euler direct (11)

Implicitation via le formalisme Lagrange-projection $\langle 16, 18 \rangle$

- Accélérer le temps de calcul
 - Multi-résolution

Adaptation en espace pour glissement nul $\langle 12 \rangle$

Glissement quelconque $\langle 13 \rangle$

 Pas de temps local Adaptation espace/temps (17)

Collaboration Laboratoire J. L. Lions

Équipe de Recherche Technologique

F. Coquel, M. Postel

N. Andrianov, M. Baudin, C. Berthon,

Q. L. Nguyen, N. Poussineau

V. Martin, F. Daude, A. Fornel, L. Linise

∃ ► ▲ ∃ ► ∃ = ● ○ ○ ○

Relaxation à deux paramètres

Système de départ

$$\partial_t(\rho) + \partial_x(\rho v) = 0$$
 (4a)

$$\partial_t(\rho v) + \partial_x(\rho v^2 + \mathbf{P}) = \rho S$$
 (4b)

$$\partial_t(\rho Y) + \partial_x(\rho Y v + \boldsymbol{\sigma}) = 0 \tag{4c}$$

Système relaxé, pour $\lambda \ge 0$,

$$\partial_t(\rho)^{\lambda} + \partial_x(\rho v)^{\lambda} = 0$$
 (5a)

$$\partial_t (\rho v)^{\lambda} + \partial_x (\rho v^2 + \Pi)^{\lambda} = \rho^{\lambda} S(\mathbf{u}^{\lambda})$$
 (5b)

$$\partial_t (\rho \Pi)^{\lambda} + \partial_x (\rho \Pi v + a^2 v)^{\lambda} = \lambda \rho^{\lambda} [\mathbf{P}(\mathbf{u}^{\lambda}) - \Pi^{\lambda}]$$
 (5c)

$$\partial_t (\rho Y)^{\lambda} + \partial_x (\rho Y v + \Sigma)^{\lambda} = 0$$
 (5d)

$$\partial_t (\rho \Sigma)^{\lambda} + \partial_x (\rho \Sigma v + \mathbf{b}^2 Y)^{\lambda} = \lambda \rho^{\lambda} [\boldsymbol{\sigma}(\mathbf{u}^{\lambda}) - \Sigma^{\lambda}]$$
 (5e)

Forme abstraite : $\partial_t \mathbb{U}^{\lambda} + \partial_x \mathbb{F}(\mathbb{U}^{\lambda}) = \rho \mathbb{S}(\mathbb{U}^{\lambda}) + \lambda [\mathbb{E}\mathbf{u}^{\lambda} - \mathbb{U}^{\lambda}]$

> = = ~ ~ ~

Propriétés du système relaxé

Proposition (Baudin-Berthon-Coquel-Masson-T $\langle 10 \rangle$)

Le système relaxé (5a)–(5e) est toujours hyperbolique. Ses champs de valeurs propres, tous linéairement dégénérés, sont

$$v - a\tau, v - b\tau, v, v + b\tau, v + a\tau,$$
 (6)

avec $\tau = \rho^{-1}$.

Théorème

Le système relaxé constitue une « bonne » approximation du système de départ au voisinage de $\lambda \rightarrow +\infty$ sous les conditions sous-caractéristiques

$$a > \sqrt{-P_{\tau}(\mathbf{u}) + P_{\nu}^{2}(\mathbf{u})}$$
 et $b > |\sigma_{Y}(\mathbf{u})|$ (7)

Analyse asymptotique linéaire par Chapman-Enskog

Schéma explicite in fine

Flux de Godunov du système relaxé homogène ($\lambda = 0$) sur l'arête i + 1/2

$$\mathbb{H}(\mathbb{U}_{i}^{n},\mathbb{U}_{i+1}^{n};(a,b)_{i+1/2}^{n})$$
(8)

Flux numérique du système de départ

$$\mathbf{u}_i^{n+1} = \mathbf{u}_i^n - \frac{\Delta t}{\Delta x} [\mathbf{h}_{i+1/2}(\mathbf{u}_i^n, \mathbf{u}_{i+1}^n) - \mathbf{h}_{i-1/2}(\mathbf{u}_{i-1}^n, \mathbf{u}_i^n)] + \Delta t \boldsymbol{\rho}_i^n \mathbf{s}_i^n \qquad (9)$$

avec

$$\mathbf{h}_{i+1/2}(\mathbf{u}_i^n, \mathbf{u}_{i+1}^n) = \mathbb{p}\mathbb{H}(\mathbb{E}\mathbf{u}_i^n, \mathbb{E}\mathbf{u}_{i+1}^n; (a, b)_{i+1/2}^n)$$
(10)

où

$$\mathbf{E}\mathbf{u} = (\rho, \rho v, \rho P(\mathbf{u}), \rho Y, \rho \sigma(\mathbf{u}))$$
(11)

Positivité au niveau discret

Théorème (Baudin-Berthon-Coquel-Masson-T $\langle 10 \rangle$)

Si, pour tout $i \in \mathbb{Z}$,

$$a_{i+1/2}^{n} > \frac{v_{i}^{n} - v_{i+1}^{n} + \sqrt{(v_{i}^{n} - v_{i+1}^{n})^{2} + 8\min(\tau_{i}^{n}, \tau_{i+1}^{n})|P_{i}^{n} - P_{i+1}^{n}|}{4\min(\tau_{i}^{n}, \tau_{i+1}^{n})}$$
(12a)
$$b_{i+1/2}^{n} > \max\{|(\rho\phi)_{i}^{n}|, |(\rho\phi)_{i+1}^{n}|\}$$
(12b)

alors le schéma explicite de relaxation respecte la positivité globale

$$\rho_i^{n+1} > 0 \quad et \quad Y_i^{n+1} \in [0,1]$$
(13)

sous une valeur inférieure à 1/2 pour la condition CFL.

Toute la démarche peut être transposée au cas du modèle compositionnel, avec des résultats de positivité analogues et des gains CPU notables $\langle 15 \rangle$

Positivité au niveau discret

Théorème (Baudin-Berthon-Coquel-Masson-T $\langle 10 \rangle$)

Si, pour tout $i \in \mathbb{Z}$,

$$a_{i+1/2}^{n} > \frac{v_{i}^{n} - v_{i+1}^{n} + \sqrt{(v_{i}^{n} - v_{i+1}^{n})^{2} + 8\min(\tau_{i}^{n}, \tau_{i+1}^{n})|P_{i}^{n} - P_{i+1}^{n}|}{4\min(\tau_{i}^{n}, \tau_{i+1}^{n})}$$
(12a)
$$b_{i+1/2}^{n} > \max\{|(\rho\phi)_{i}^{n}|, |(\rho\phi)_{i+1}^{n}|\}$$
(12b)

alors le schéma explicite de relaxation respecte la positivité globale

$$\rho_i^{n+1} > 0 \quad et \quad Y_i^{n+1} \in [0,1]$$
(13)

sous une valeur inférieure à 1/2 pour la condition CFL.

Toute la démarche peut être transposée au cas du modèle compositionnel, avec des résultats de positivité analogues et des gains CPU notables $\langle 15 \rangle$

Relaxation à un seul paramètre (Born-Infeld)

Système de départ, en posant $q(\mathbf{u}) = \rho \phi(\mathbf{u})$,

$$\partial_t(\rho) + \partial_x(\rho v) = 0$$
 (14a)

$$\partial_t(\rho v) + \partial_x(\rho v^2 + \mathbf{P}) = \rho S$$
 (14b)

$$\partial_t(\rho Y) + \partial_x(\rho Y v + Y(1 - Y)\boldsymbol{q}(\mathbf{u})) = 0$$
(14c)

Système relaxé

$$\partial_t(\rho)^{\lambda} + \partial_x(\rho v)^{\lambda} = 0$$
 (15a)

$$\partial_t (\rho v)^{\lambda} + \partial_x (\rho v^2 + \Pi)^{\lambda} = \rho^{\lambda} S(\mathbf{u}^{\lambda})$$
 (15b)

$$\partial_t (\rho \Pi)^{\lambda} + \partial_x (\rho \Pi v + a^2 v)^{\lambda} = \lambda \rho^{\lambda} [\mathbf{P}(\mathbf{u}^{\lambda}) - \Pi^{\lambda}]$$
(15c)

$$\partial_t (\rho Y)^{\lambda} + \partial_x (\rho Y v + Y(1-Y) Q)^{\lambda} = 0$$
(15d)

$$\partial_t (\rho Q)^{\lambda} + \partial_x (\rho Q v)^{\lambda} + (Q^{\lambda})^2 \partial_x Y^{\lambda} = \lambda \rho^{\lambda} [q(\mathbf{u}^{\lambda}) - Q^{\lambda}]$$
(15e)

Propriétés du système relaxé

Proposition (Baudin-Coquel-T $\langle 14 \rangle$)

Le système relaxé (15a)–(15e) est toujours hyperbolique. Ses champs de valeurs propres, tous linéairement dégénérés, sont

 $v - a\tau$, $v + \min(w, z)\tau$, v, $v + \max(w, z)\tau$, $v + a\tau$, (16)

avec w = (1 - Y)q et z = -Yq.

Théorème

Le système relaxé constitue une « bonne » approximation du système de départ au voisinage de $\lambda \to +\infty$ sous les conditions sous-caractéristiques

$$a > \sqrt{-P_{\tau}(\mathbf{u}) + P_{\nu}^{2}(\mathbf{u})}$$
 $et \quad \sigma_{Y}(\mathbf{u}) \in \lfloor w(\mathbf{u}), z(\mathbf{u}) \rceil$ (17)

Ainsi qu'un résultat de positivité au niveau discret

Implicite, un « mal » nécessaire

Implicite

Un schéma explicite

$$\mathbf{u}_i^{n+1} = \mathbf{u}_i^n - \frac{\Delta t}{\Delta x} [\mathbf{h}(\mathbf{u}_i^n, \mathbf{u}_{i+1}^n) - \mathbf{h}(\mathbf{u}_{i-1}^n, \mathbf{u}_i^n)]$$
(18)

est soumis à la condition de stabilité

$$\frac{\Delta t}{\Delta x} \max_{i \in \mathbb{Z}} \max_{k} |\lambda_k(\mathbf{u}_i^n)| < \text{CFL}.$$
(19)

Tout petits pas de temps, régis par la vitesse des ondes acoustiques Un schéma *implicite*

$$\mathbf{u}_{i}^{n+1} = \mathbf{u}_{i}^{n} - \frac{\Delta t}{\Delta x} [\mathbf{h}(\mathbf{u}_{i}^{n+1}, \mathbf{u}_{i+1}^{n+1}) - \mathbf{h}(\mathbf{u}_{i-1}^{n+1}, \mathbf{u}_{i}^{n+1})]$$
(20)

n'est soumis à aucune condition CFL, mais recouple tous les points du domaine, conduit à un système coûteux, et diffuse bien plus !

= 200

Implicite, un « mal » nécessaire

Implicite linéarisé

On utilise un développement de Taylor

$$\mathbf{h}(\mathbf{u}_{i}^{n+1},\mathbf{u}_{i+1}^{n+1}) = \mathbf{h}(\mathbf{u}_{i}^{n},\mathbf{u}_{i+1}^{n}) + \partial_{L}\mathbf{h}(\mathbf{u}_{i}^{n},\mathbf{u}_{i+1}^{n})\delta\mathbf{u}_{i} + \partial_{R}\mathbf{h}(\mathbf{u}_{i}^{n},\mathbf{u}_{i+1}^{n})\delta\mathbf{u}_{i+1}$$
(21)

ce qui revient à faire une itération de Newton

Implicite linéarisé partiel

- On modifie « astucieusement » les matrices $\partial_L \mathbf{h}$ et $\partial_R \mathbf{h}$ (Gallouët [FVCA 1996], Faille et Heintzé [123]) pour rendre certaines composantes explicites et plus précises
- Condition CFL basée sur la vitesse des ondes lentes dignes d'intérêt

Risque de non-positivité

Implicite sélectif 1.0

Pour mettre en œuvre l'implicite linéarisé partiel, il suffit de savoir dériver le flux numérique par rapport à ses arguments. Possible grâce au

Théorème (Baudin-Coquel-T $\langle 11\rangle$)

Si a > b > 0 et si a est « suffisamment grand », alors le flux de Godunov correspondant au problème relaxé homogène peut s'interpréter comme un flux de Roe. En d'autres termes, il existe une matrice de Roe $\mathscr{A}(\mathbb{U}_L, \mathbb{U}_R)$, de taille 5 × 5 et explicitement calculable, telle que

$$\mathbb{H}(\mathbb{U}_L, \mathbb{U}_R) = \frac{1}{2} [\mathbb{F}(\mathbb{U}_L) + \mathbb{F}(\mathbb{U}_R)] - \frac{1}{2} |\mathscr{A}(\mathbb{U}_L, \mathbb{U}_R)| (\mathbb{U}_R - \mathbb{U}_L)$$
(22)

Implicite sélectif 2.0

Techniques existantes

Le formalisme ALE (Arbitrary Lagrange-Euler), initialement introduit pour traiter les maillages mobiles, décompose chaque pas de temps en deux étapes

 $n \xrightarrow{\text{Lagrange}} n \ddagger \xrightarrow{\text{projection}} n+1$

Cette décomposition d'opérateurs constitue un moyen « naturel » pour séparer les ondes

Comment s'en servir?

- Implicitation du bloc acoustique de l'étape Lagrange, explicitation du bloc cinématique de Lagrange et de l'étape projection
- Estimation du plus grand Δt autorisé pour garantir la positivité, calée sur une vitesse cinématique et faisant intervenir les conditions aux limites

Implicite sélectif 2.0

- Techniques existantes
 - Le formalisme ALE (Arbitrary Lagrange-Euler), initialement introduit pour traiter les maillages mobiles, décompose chaque pas de temps en deux étapes

 $n \xrightarrow{\text{Lagrange}} n \ddagger \xrightarrow{\text{projection}} n+1$

- Cette décomposition d'opérateurs constitue un moyen « naturel » pour séparer les ondes
- Comment s'en servir?
 - Implicitation du bloc acoustique de l'étape Lagrange, explicitation du bloc cinématique de Lagrange et de l'étape projection
 - Estimation du plus grand Δt autorisé pour garantir la positivité, calée sur une vitesse cinématique et faisant intervenir les conditions aux limites

Décomposition ALE avec les équations

Dans le référentiel mobile χ se déplaçant à la vitesse v - w, le modèle relaxé s'écrit

$$\partial_t(J) + \partial_{\chi}(w) - \partial_{\chi}(v) = 0$$
 (23a)

$$\partial_t(\rho J) + \partial_{\chi}(\rho w) = 0$$
 (23b)

$$\partial_t(\rho v J) + \partial_{\chi}(\rho v w) + \partial_{\chi}(\Pi) = \rho J S(\mathbf{u})$$
 (23c)

$$\partial_t(\rho\Pi J) + \partial_{\chi}(\rho\Pi w) + \partial_{\chi}(a^2 u) = \lambda \rho J[P(\mathbf{u}) - \Pi]$$
(23d)

$$\partial_t(\rho YJ) + \partial_{\chi}(\rho Yw) + \partial_{\chi}(\Sigma) = 0$$
 (23e)

$$\partial_t(\rho\Sigma J) + \underbrace{\partial_{\chi}(\rho\Sigma w)}_{\partial_t(\rho\Sigma w)} + \underbrace{\partial_{\chi}(b^2 Y)}_{\partial_{\chi}(b^2 Y)} = \lambda \rho J[\sigma(\mathbf{u}) - \Sigma]$$
(23f)

Euler Lagrange

où J est le taux de déformation

Décomposition ALE avec les... mains

Voyage au bout des calculs

Théorème (Coquel-Nguyen-Postel-T $\langle 16 \rangle$)

Le schéma résultant de l'enchaînement des deux étapes Lagrange-projection se présente sous forme conservative. Il est consistant et positif au sens

$$\rho_i^{n+1} > 0 \quad et \quad Y_i^{n+1} \in [0,1]$$
(24)

dès que

$$\frac{\Delta t}{\Delta x} < \frac{1}{\mathscr{M}(\mathbf{u}^n, CL^n, d_t CL^n)}$$
(25)

où la borne $\mathscr{M}(\mathbf{u}^n, CL^n, d_t CL^n)$ est explicitement calculable à l'instant n et correspond à une vitesse « lente ».

Simulation typique

Adapter le maillage à la solution

Ne raffiner que *là où il faut* et appeler *le moins possible* les modules correspondant aux lois de fermeture

- En espace
 - Technique de Multi-Résolution (Cohen-Kaber-Müller-Postel [115]) : hiérarchie dyadique de niveaux de grille et une analyse multi-échelle de la régularité
 - Prédiction de l'évolution de la grille basée sur vitesse lente dans le cas du schéma implicite sélectif (12,13)
- En espace et en temps
 - Technique de Pas de Temps Local (Müller et Stiriba [140], Osher et Sanders [141]) : synchronisation à la fin de chaque macro-pas de temps
 - Semi-implicitation $\langle 17 \rangle$

Adapter le maillage à la solution

Ne raffiner que *là où il faut* et appeler *le moins possible* les modules correspondant aux lois de fermeture

- En espace
 - Technique de Multi-Résolution (Cohen-Kaber-Müller-Postel [115]) : hiérarchie dyadique de niveaux de grille et une analyse multi-échelle de la régularité
 - Prédiction de l'évolution de la grille basée sur vitesse lente dans le cas du schéma implicite sélectif (12, 13)
- En espace et en temps
 - Technique de Pas de Temps Local (Müller et Stiriba [140], Osher et Sanders [141]) : synchronisation à la fin de chaque macro-pas de temps
 - Semi-implicitation (17)

∃ ↓ ↓ ∃ ↓ ∃ | = √Q ∩
Conduite en W

三日 のへの

Performances

	Loi Zuber-Findlay		Loi synthétique	
$N\left(K ight)$	rCPU	rNbLoi	rCPU	rNbLoi
256 (5)	2.98	2.90	3.17	3.07
512 (6)	4.19	4.64	5.02	4.85
1024 (7)	5.47	6.99	7.48	7.13

Rapport Uniforme/Multi-Résolution

Rapport Multi-Résolution/Pas de Temps Local

	Loi Zuber-Findlay		Loi synthétique	
$N\left(K ight)$	rCPU	rNbLoi	rCPU	rNbLoi
256 (5)	6.61	11.67	10.41	10.82
512 (6)	7.77	18.79	16.13	17.06
1024 (7)	8.39	29.20	24.58	25.88

= 990

Sommaire

1 Simulation des écoulements en conduites par relaxation

2 Modélisations alternatives et applications au contrôle

- Moins riche, moins encombrant
- Modèles généralistes
- Modèles dédiés

3 Phase convective pour la simulation des moteurs

Configuration pipe-riser

Sous certaines conditions sur les débits d'entrée, il apparaît une solution *périodique*, appelée severe slugging, au lieu d'une solution stationnaire

Exemple numérique

Simulation du severe-slugging par la méthode de relaxation

© Équipe de Recherches Technologiques LJLL-IFP

Actions contre le severe-slugging

Prédiction

- Techniques de simulation numérique, d'expérimentation sur boucles d'essai pour la confection des *cartes d'écoulement* dans le plan des débits d'entrée
- Analyse du phénomène en tant que système dynamique ⇒ DFM ne s'y prête pas bien
- Élimination
 - Dispositifs ingénieux mais empiriques pour éviter la surpression au point-bas
 - Techniques de contrôle automatique ⇒ la synthèse des *lois de commande* est difficile avec DFM
- Alter-modèles
 - Systèmes EDP plus « sobres » qui ignorent les ondes de pression
 - Systèmes algébro-différentiels avec petit nombre de variables

Actions contre le severe-slugging

Prédiction

- Techniques de simulation numérique, d'expérimentation sur boucles d'essai pour la confection des *cartes d'écoulement* dans le plan des débits d'entrée
- Analyse du phénomène en tant que système dynamique ⇒ DFM ne s'y prête pas bien
- Élimination
 - Dispositifs ingénieux mais empiriques pour éviter la surpression au point-bas
 - Techniques de contrôle automatique ⇒ la synthèse des *lois de commande* est difficile avec DFM
- Alter-modèles
 - Systèmes EDP plus « sobres » qui ignorent les ondes de pression
 - Systèmes algébro-différentiels avec petit nombre de variables

À la recherche de modèles imparfaits

(6) J. M. Masella, D. Ferré, C. Pauchon,
 A. Bamberger, H. Viviand, S. Patault, I. Faille, F. Willien

À la recherche de modèles imparfaits

(20,25) E. Zakarian, E. Duret, P. Rouchon, Y. Peysson, P. Chossat, L. Domingos, C. Lorret

DFM (Drift-Flux Model)

3 lois de conservation

$$\partial_t(\rho_g R_g) + \partial_x(\rho_g R_g v_g) = 0$$
 (26a)

$$\partial_t(\rho_\ell R_\ell) + \partial_x(\rho_\ell R_\ell v_\ell) = 0$$
 (26b)

$$\partial_t (\rho_g R_g v_g + \rho_\ell R_\ell v_\ell) + \partial_x (\rho_g R_g v_g^2 + \rho_\ell R_\ell v_\ell^2 + p) = \rho S$$
(26c)

■ 3 lois de fermeture thermodynamiques

$$R_{\ell} + R_g = 1 \tag{27a}$$

$$\rho_g = \rho_g(p) \tag{27b}$$

$$\rho_{\ell} = \rho_{\ell}(p) \tag{27c}$$

1 loi de fermeture hydrodynamique

$$v_g - v_\ell = \phi(\rho_g R_g, \rho_\ell R_\ell, \rho_g R_g v_g + \rho_\ell R_\ell v_\ell)$$
(28)

NPW (No Pressure Wave)

2 lois de conservation, 1 bilan hydrostatique

$$\partial_t(\rho_g R_g) + \partial_x(\rho_g U_g) = 0$$
 (29a)

$$\partial_t(\rho_\ell R_\ell) + \partial_x(\rho_\ell U_\ell) = 0 \tag{29b}$$

$$\partial_x(p) = \rho S$$
 (29c)

3 lois de fermeture thermodynamiques

$$R_{\ell} + R_g = 1 \tag{30a}$$

$$\rho_g = \rho_g(p) \tag{30b}$$

$$\rho_{\ell} = \rho_{\ell}(p) \tag{30c}$$

1 loi de fermeture hydrodynamique

$$U_g = \Psi(R_g, p, U_s) \tag{31}$$

Propriétés de NPW

Théorème (Masella-T-Ferré-Pauchon $\langle 6 \rangle$)

Le modèle NPW est de type hyperbolique-parabolique, *au sens où il admet une valeur caractéristique* finie

$$\lambda = \left(\frac{\partial \Psi}{\partial R_g}\right)_{|p,U_s} \tag{32}$$

vis-à-vis de laquelle il est hyperbolique en temps;

une valeur caractéristique infinie, double algébriquement, pour laquelle il n'y a en général qu'une seule relation de compatibilité géométrique $\partial_x p = \rho S$.

La valeur propre (32) correspond précisément à l'onde cinématique lente.

Modèle BYP

 p^H $\downarrow \uparrow q_g^{\rm s}$ Η $q_g^{\rm b}$ réinjection h u` $q_g^{\rm e}$ x_g 0 langue

$$\begin{split} \mathbf{d}_{t} \mathbf{P}(t) &= \alpha [q_{g}^{\mathbf{e}} - q_{g}^{\mathbf{b}}(t)] & \Leftarrow \int_{-L^{(29a)}}^{x_{g}} \\ \mathbf{d}_{t} \Pi(t) &= \beta [q_{g}^{\mathbf{b}}(t) - q_{g}^{\mathbf{s}}(t)] & \Leftarrow \int_{h}^{H} {}_{^{(29a)}} \\ 0 &= q_{g}^{\mathbf{s}}(t) - q_{g}^{\mathbf{b}}(t - T(h)) & \Diamond \\ 0 &= \Pi(t) - P(t) + x_{g}(t)\rho_{\ell}^{0}\mathfrak{g}\sin\theta & \Leftarrow \int_{x_{g}}^{0} {}_{^{(29c)}} \\ 0 &= P_{h}(t) - \Pi(t) + h\rho_{\ell}^{0}\mathfrak{g} & \Leftarrow \int_{0}^{h} {}_{^{(29c)}} \\ q_{g}^{\mathbf{b}}(t) &= \gamma u(t)\sqrt{P_{h}(t)[P(t) - P_{h}(t)]^{+}} \\ u(t) &\in [0, 1] \\ \alpha &= \frac{a_{g}^{2}}{L}, \ \beta &= \mathfrak{g}\left(1 - \frac{a_{g}^{2}\rho_{\ell}^{0}}{p^{H}}\right), \ T(h) = \frac{H - h}{v_{\infty}} \end{split}$$

ъ.

Stratégie de contrôle

• Observation de deux dynamiques : Π est plus rapide que *P*

$$\beta \approx 20\alpha \gg \alpha$$
 (34)

A partir des mesures de (P,Π) , commande à double échelle

$$q_g^{\rm b}(t) = \frac{K_P}{\alpha} [P(t) - P^{\bullet}(t)] \qquad \text{proportionnel} \qquad (35a)$$
$$d_t P^{\bullet}(t) = K_I [\Delta(t) - \Delta^{\bullet}] \qquad \text{intégral} \qquad (35b)$$

avec

$$\Delta(t) = \Pi(t) - P(t) = x_g(t) \rho_\ell^0 \mathfrak{g} \sin \theta, \qquad \Delta^\bullet = x_g^\bullet \rho_\ell^0 \mathfrak{g} \sin \theta \tag{36}$$

La commande proportionnelle *rapide* sert à stabiliser tout de suite l'écoulement, tandis que la commande intégrale *lente* sert à faire converger la position $x_g(t)$ vers x_g^{\bullet}

Stabilité en boucle fermée

Théorème (Duret-T-Peysson-Rouchon $\langle 25 \rangle$)

Une condition suffisante pour que la commande proposée soit stable est que

$$K_I < \frac{\alpha}{\beta T(h)} \tag{37}$$

Ce résultat repose sur l'étude d'un système différentiel à retard de la forme

$$\frac{d}{dt} \begin{bmatrix} \xi(t) \\ \eta(t) \end{bmatrix} = \begin{bmatrix} -K_P & -K_I \\ K_P(1 - \frac{\beta}{\alpha}) & 0 \end{bmatrix} \begin{bmatrix} \xi(t) \\ \eta(t) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \frac{\beta}{\alpha}K_P & 0 \end{bmatrix} \begin{bmatrix} \xi(t - T(h)) \\ \eta(t - T(h)) \end{bmatrix}$$
(38)

pour lequel on peut exhiber une fonction de Lyapunov sous la condition indiquée

Maquette S4L, sans contrôleur

Apparition du severe-slugging en boucle ouverte

© Département Mécanique des Fluides

Maquette S4L, avec contrôleur

Disparition du severe-slugging en boucle fermée

© Département Mécanique des Fluides

Sommaire

1 Simulation des écoulements en conduites par relaxation

2 Modélisations alternatives et applications au contrôle

3 Phase convective pour la simulation des moteurs

- Pour un schéma multidimensionnel
- Advection par Iserles-Roe modifié
- Intégration dans ALE

De KIVA à IFP-C3D

Maillage

- Non-structuré (hexaèdres et tétraèdres) pour s'adapter à la géométrie du moteur
- Mobile et très déformé à cause du déplacement imposé par le piston

Schéma

- Formalisme ALE pour prendre en compte la mobilité
- Dissipation numérique trop importante de DONOR dans la phase advective

© Département Modélisation et Simulation Véhicules

Aux confins du multi-dimensionnel

- Améliorer la précision sous la seule contrainte de la monotonie
 - Comparaison des schémas existant pour l'advection comme fin en soi
 - Conception du schéma d'Iserles-Roe modifié en 2-D (8)
- Intégrer dans IFP-C3D pour les variables aux nœuds
 - Passage en 3-D et réparation de masse (19)

- Advection simultanée de plusieurs scalaires
 - Limiteurs de pentes pour assurer principe du min-max sur variables principales et variables de contrôle (18)

Collaboration CEA-IFP

- B. Scheurer
- A. Torres, M. Zolver, A. Benkenida,
- J. Bohbot, N. Gillet, A. Michel

Aux confins du multi-dimensionnel

- Améliorer la précision sous la seule contrainte de la monotonie
 - Comparaison des schémas existant pour l'advection comme fin en soi
 - Conception du schéma d'Iserles-Roe modifié en 2-D (8)
- Intégrer dans IFP-C3D pour les variables aux nœuds
 - Passage en 3-D et réparation de masse (19)

- Advection simultanée de plusieurs scalaires
 - Limiteurs de pentes pour assurer principe du min-max sur variables principales et variables de contrôle (18)

Collaboration CEA-IFP

- B. Scheurer
- A. Torres, M. Zolver, A. Benkenida,
- J. Bohbot, N. Gillet, A. Michel

Schéma d'Iserles-Roe en 1-D

Pour discrétiser

$$\partial_t \Psi + u \partial_x \Psi = 0, \qquad u > 0, \tag{39}$$

on considère les schémas

I1 (Iserles [130])

$$\Psi_i^{n+1} = \Psi_i^{n-1} + (1 - 2\lambda)(\Psi_i^n - \Psi_{i-1}^n)$$
(40)

I2 (Roe [146])

$$\Psi_{i}^{n+1} = \Psi_{i}^{n-2} + 2(1-3\lambda)(\Psi_{i}^{n} - \Psi_{i-1}^{n-1}) + \frac{(1-3\lambda)(1-2\lambda)}{1+\lambda}(\Psi_{i-1}^{n} - \Psi_{i}^{n-1})$$
(41)

qui sont non-dissipatifs, avec $\lambda = \frac{u\Delta t}{\Delta x} \in [0, 1]$

Précis au départ

Interpolation *quartique*, équivalente à

$$\partial_t \Psi + u \partial_x \Psi$$

= $\frac{u \Delta x^4}{720} \lambda (1 - \lambda^2) (1 - 2\lambda) (1 - 3\lambda) \partial_{xxxxx} \Psi$

Conservatifs en passant

I2

Bilan intégral au sens des volumes-finis sur

$$[i-\tfrac{1}{2},i+\tfrac{1}{2}]\times[n-1,n+1]$$

Bilan intégral au sens des volumes-finis sur

$$[i - \frac{1}{2}, i + \frac{1}{2}] \times [n - \frac{1}{2} - \kappa, n - \frac{1}{2} + \kappa]$$

avec $\kappa = \frac{6\lambda}{1 + \lambda}$.

Monotones à l'arrivée

Multi-D = 1-D!

Le long d'une ligne de courant, l'équation d'advection multi-D

$$\partial_t \Psi + \mathbf{u} \cdot \nabla \Psi = 0$$

prend la forme 1-D

$$\partial_t \Psi + \|\mathbf{u}\| \partial_s \Psi = 0.$$

La compacité spatiale des *stencils* de I1 et I2 permet une transposition « facile ».

Transport avec DONOR reconstruit

Q. H. Tran (IFP)

Transport avec Iserles-Roe modifié

Développements ultérieurs

On continue à « jouer »

- Généraliser le schéma Iserles-Roe modifié au cas d'un champ de vitesse variable en espace et en temps
- Étendre la méthode au cas 3-D, les points auxiliaires étant toujours placés au milieu des arêtes
- On ne « joue » plus
 - Transporter la variable vitesse v, qui est localisée aux nœuds du maillage, par la forme advective

$$\partial_t \mathbf{v} + (\mathbb{J}^{-1} \mathbf{w}) \cdot \mathbf{grad}_{\boldsymbol{\chi}} \mathbf{v} = 0 \tag{42}$$

 Appliquer éventuellement la procédure de réparation de la masse (Shashkov et Wendroff [148]) pour conserver le produit ρv

Conclusion

Relaxation et adaptation dynamique pour TACITE

- Contrôle de la positivité pour un schéma à grand pas de temps, à l'ordre 1 ou 2 en espace, en présence de conditions aux limites
- Maîtrise des outils d'adaptation dynamique
- Modélisation TACITE et contrôle du severe-slugging
 - NPW cohabite mieux avec la fermeture hydrodynamique que DFM et donne naissance à des modèles dédiés plus opérationnels
 - Il n'est point besoin d'un modèle précis pour concevoir une commande efficace
- Advection multi-dimensionnelle dans IFP-C3D
 - Transposition d'un schéma 1-D performant pour les variables aux nœuds, en maillage quelconque
 - Il est des situations où la conservativité n'est plus un « dogme »

Sommaire

4 Relaxation

5 Modélisation

6 Advection

7 Private jokes

En coordonnées lagrangiennes

Système de départ

$$\partial_t \tau - \partial_m v = 0 \tag{43a}$$

$$\partial_t v + \partial_m \mathbf{P} = S \tag{43b}$$

$$\partial_t Y + \partial_m \boldsymbol{\sigma} = 0 \tag{43c}$$

avec
$$\tau = \rho^{-1}$$
 et $dm = \rho dx - \rho v dt$
Suctème relevé

Système relaxé

$$\partial_t \tau^{\lambda} - \partial_m v^{\lambda} = 0 \tag{44a}$$

$$\partial_t v^{\lambda} + \partial_m \Pi^{\lambda} = S(\mathbf{v}^{\lambda})$$
 (44b)

$$\partial_t \Pi^{\lambda} + \partial_m a^2 v^{\lambda} = \lambda [\mathbf{P}(\mathbf{v}^{\lambda}) - \Pi^{\lambda}]$$
(44c)

$$\partial_t Y^{\lambda} + \partial_m \Sigma^{\lambda} = 0 \tag{44d}$$

$$\partial_t \Sigma^{\lambda} + \partial_m \boldsymbol{b}^2 Y^{\lambda} = \lambda [\boldsymbol{\sigma}(\mathbf{v}^{\lambda}) - \Sigma^{\lambda}]$$
(44e)

où
$$\mathbf{v} = (\tau, v, Y)$$

Schéma explicite

De l'instant n à l'instant n+1

avec

$$\mathbf{u}^n = \boldsymbol{\rho}^n(1, \boldsymbol{v}^n, \boldsymbol{Y}^n) \tag{45a}$$

$$\mathbb{U}^{n} = \rho^{n}(1, v^{n}, \boldsymbol{P}(\mathbf{u}^{n}), Y^{n}, \boldsymbol{\sigma}(\mathbf{u}^{n}))$$
(45b)

$$\mathbb{U}^{n^{\dagger}} = \rho^{n+1}(1, v^{n+1}, \Pi^{n^{\dagger}}, Y^{n+1}, \Sigma^{n^{\dagger}})$$
(45c)

$$\mathbf{u}^{n+1} = \boldsymbol{\rho}^{n+1}(1, v^{n+1}, Y^{n+1})$$
(45d)

Relaxation

Généralisation au modèle compositionnel

Système de départ,
$$k \in \{1, 2, ..., K-1\}$$

 $\partial_t(\rho) + \partial_x(\rho v) = 0$ (46a)
 $\partial_t(\rho v) + \partial_x(\rho v^2 + P) = \rho S$ (46b)
 $\partial_t(\rho c_k) + \partial_x(\rho c_k v + \sigma_k) = 0$ (46c)

avec
$$\sigma_k = (\xi_k - \eta_k) \rho Y(1 - Y) \phi$$

Système relaxé

$$\partial_t(\rho) + \partial_x(\rho v) = 0$$
 (47a)

$$\partial_t(\rho v) + \partial_x(\rho v^2 + \Pi) = \rho S$$
 (47b)

$$\partial_t(\rho\Pi) + \partial_x(\rho\Pi v + a^2 v) = \lambda \rho[\mathbf{P}(\mathbf{u}) - \Pi]$$
 (47c)

$$\partial_t(\rho c_k) + \partial_x(\rho c_k v + \Sigma_k) = 0,$$
 (47d)

$$\partial_t (\rho \Sigma_k) + \partial_x (\rho \Sigma_k v + \boldsymbol{b}^2 c_k) = \lambda \rho [\boldsymbol{\sigma}_k (\mathbf{u}) - \Sigma_k]$$
(47e)

On utilise le même *b* pour tous les constituants $k \in \{1, 2, \dots, K-1\}$.

Relaxation

Généralisation au modèle compositionnel

Système de départ,
$$k \in \{1, 2, ..., K-1\}$$

 $\partial_t(\rho) + \partial_x(\rho v) = 0$ (46a)
 $\partial_t(\rho v) + \partial_x(\rho v^2 + P) = \rho S$ (46b)
 $\partial_t(\rho c_k) + \partial_x(\rho c_k v + \sigma_k) = 0$ (46c)

avec
$$\sigma_k = (\xi_k - \eta_k) \rho Y (1 - Y) \phi$$

Système relaxé

$$\partial_t(\rho) + \partial_x(\rho v) = 0$$
 (47a)

$$\partial_t(\rho v) + \partial_x(\rho v^2 + \Pi) = \rho S$$
 (47b)

$$\partial_t(\rho\Pi) + \partial_x(\rho\Pi v + a^2 v) = \lambda \rho[P(\mathbf{u}) - \Pi]$$
 (47c)

$$\partial_t(\rho c_k) + \partial_x(\rho c_k v + \Sigma_k) = 0,$$
 (47d)

$$\partial_t(\rho\Sigma_k) + \partial_x(\rho\Sigma_k v + \mathbf{b}^2 c_k) = \lambda \rho[\mathbf{\sigma}_k(\mathbf{u}) - \Sigma_k]$$
(47e)

On utilise le même *b* pour tous les constituants $k \in \{1, 2, ..., K-1\}$.

59

Relaxation

Réglage des paramètres en compositionnel

Condition sous-caractéristique de Whitham

$$a > \sqrt{-P_{\tau}(\mathbf{u}) + P_{\nu}^{2}(\mathbf{u})}$$
 et $b > \max_{1 \le k \le K-1} |(\boldsymbol{\sigma}_{k})_{c_{k}}|(\mathbf{u})$ (48)

pour la stabilité linéaire asymptotique

Fréorème (Baudin-Coquel-T (15)) garantissant la positivité globale

$$\rho_i^{n+1} > 0 \quad \text{et} \quad (c_k)_i^{n+1} \in [0,1]$$
(49)

pour $k \in \{1, 2, \dots, K-1, K\}$ si CFL $\leq 1/2$ en explicite et

$$a_{i+1/2}^{n} > \frac{v_{i}^{n} - v_{i+1}^{n} + \sqrt{(v_{i}^{n} - v_{i+1}^{n})^{2} + 8\min(\tau_{i}^{n}, \tau_{i+1}^{n})|P_{i}^{n} - P_{i+1}^{n}|}{4\min(\tau_{i}^{n}, \tau_{i+1}^{n})}$$
(50a)
$$b_{i+1/2}^{n} > \max\{|(\rho\phi)_{i}^{n}|, |(\rho\phi)_{i+1}^{n}|\}$$
(50b)
Relaxation

Réglage des paramètres en compositionnel

Condition sous-caractéristique de Whitham

$$a > \sqrt{-P_{\tau}(\mathbf{u}) + P_{\nu}^{2}(\mathbf{u})}$$
 et $b > \max_{1 \le k \le K-1} |(\boldsymbol{\sigma}_{k})_{c_{k}}|(\mathbf{u})$ (48)

pour la stabilité linéaire asymptotique

Théorème (Baudin-Coquel-T (15)) garantissant la positivité globale

$$\rho_i^{n+1} > 0 \quad \text{et} \quad (c_k)_i^{n+1} \in [0,1]$$
(49)

pour $k \in \{1, 2, \dots, K-1, K\}$ si CFL $\leq 1/2$ en explicite et

$$a_{i+1/2}^{n} > \frac{v_{i}^{n} - v_{i+1}^{n} + \sqrt{(v_{i}^{n} - v_{i+1}^{n})^{2} + 8\min(\tau_{i}^{n}, \tau_{i+1}^{n})|P_{i}^{n} - P_{i+1}^{n}|}{4\min(\tau_{i}^{n}, \tau_{i+1}^{n})}$$
(50a)
$$b_{i+1/2}^{n} > \max\{|(\rho\phi)_{i}^{n}|, |(\rho\phi)_{i+1}^{n}|\}$$
(50b)

En coordonnées lagrangiennes

Équation de départ

$$\partial_t Y + \partial_m \,\boldsymbol{\sigma} = \partial_t Y + \partial_m \, Y (1 - Y) \boldsymbol{q} = 0 \tag{51}$$

Relaxation avec paramètre (Jin-Xin [131])

$$\partial_t Y^{\lambda} + \partial_m \Sigma^{\lambda} = 0 \tag{52a}$$

$$\partial_t \Sigma^{\lambda} + \partial_m \boldsymbol{b}^2 Y^{\lambda} = \boldsymbol{\lambda} [\boldsymbol{\sigma} - \Sigma^{\lambda}]$$
 (52b)

Relaxation sans paramètre (Baudin-Coquel-T $\langle 14 \rangle$)

$$\partial_t Y^{\lambda} + \qquad \partial_m Y^{\lambda} (1 - Y^{\lambda}) Q^{\lambda} = 0$$
 (53a)

$$\partial_t Q^{\lambda} + (Q^{\lambda})^2 \partial_m Y^{\lambda} \qquad \qquad = \lambda [\boldsymbol{q} - Q^{\lambda}] \qquad (53b)$$

Variables caractéristiques

Jin-Xin

$$\partial_t (\Sigma + bY)^{\lambda} + b\partial_m (\Sigma + bY)^{\lambda} = \lambda [\sigma - \Sigma^{\lambda}]$$
(54a)

$$\partial_t (\Sigma - bY)^{\lambda} - b\partial_m (\Sigma - bY)^{\lambda} = \lambda [\sigma - \Sigma^{\lambda}]$$
 (54b)

Born-Infeld

$$\partial_t W^{\lambda} + Z^{\lambda} \partial_m W^{\lambda} = \lambda [\mathbf{w} - W^{\lambda}]$$
(55a)

$$\partial_t Z^{\lambda} + W^{\lambda} \partial_m Z^{\lambda} = \lambda [z - Z^{\lambda}]$$
(55b)

où les variables

$$W = (1 - Y)Q$$
 $w = (1 - Y)q$ (56a)

$$Z = -YQ \qquad \qquad z = -Yq \tag{56b}$$

représentent des vitesses de phase, car

$$\partial_t Y + \partial_m (Y w) = \partial_t (1 - Y) + \partial_m ((1 - Y)z) = 0$$
(57)

Stabilité et positivité

Condition sous-caractéristique de Whitham

$$a > \sqrt{-P_{\tau}(\mathbf{u}) + P_{\nu}^{2}(\mathbf{u})}$$
 et $\sigma_{Y}(\mathbf{u}) \in \lfloor w(\mathbf{u}), z(\mathbf{u}) \rceil$ (58)

à comparer avec $\sigma_Y(\mathbf{u}) \in [-b, b]$. Seule une classe de lois de fermeture hydro est éligible pour la relaxation de Born-Infeld.

Théorème (Baudin-Coquel-T $\langle 14 \rangle$) garantissant la *positivité globale*

$$\rho_i^{n+1} > 0 \quad \text{et} \quad Y_i^{n+1} \in [0,1]$$
(59)

pour toute loi de fermeture hydro si CFL $\leq 1/2$ en explicite et

$$a_{i+1/2}^{n} > \frac{v_{i}^{n} - v_{i+1}^{n} + \sqrt{(v_{i}^{n} - v_{i+1}^{n})^{2} + 8\min(\tau_{i}^{n}, \tau_{i+1}^{n})|P_{i}^{n} - P_{i+1}^{n}|}{4\min(\tau_{i}^{n}, \tau_{i+1}^{n})}$$
(60)

Stabilité et positivité

Condition sous-caractéristique de Whitham

$$a > \sqrt{-P_{\tau}(\mathbf{u}) + P_{\nu}^{2}(\mathbf{u})}$$
 et $\sigma_{Y}(\mathbf{u}) \in \lfloor w(\mathbf{u}), z(\mathbf{u}) \rceil$ (58)

à comparer avec $\sigma_Y(\mathbf{u}) \in [-b, b]$. Seule une classe de lois de fermeture hydro est éligible pour la relaxation de Born-Infeld.

Théorème (Baudin-Coquel-T $\langle 14 \rangle$) garantissant la *positivité globale*

$$\rho_i^{n+1} > 0 \quad \text{et} \quad Y_i^{n+1} \in [0,1]$$
(59)

pour toute loi de fermeture hydro si CFL $\leq 1/2$ en explicite et

$$a_{i+1/2}^{n} > \frac{v_{i}^{n} - v_{i+1}^{n} + \sqrt{(v_{i}^{n} - v_{i+1}^{n})^{2} + 8\min(\tau_{i}^{n}, \tau_{i+1}^{n})|P_{i}^{n} - P_{i+1}^{n}|}{4\min(\tau_{i}^{n}, \tau_{i+1}^{n})}$$
(60)

Schéma implicite

Le schéma explicite

$$\mathbf{u}_{i}^{n+1} = \mathbf{u}_{i}^{n} - \frac{\Delta t}{\Delta x} [p\mathbb{H}(\mathbb{E}\mathbf{u}_{i}^{n}, \mathbb{E}\mathbf{u}_{i+1}^{n}) - p\mathbb{H}(\mathbb{E}\mathbf{u}_{i-1}^{n}, \mathbb{E}\mathbf{u}_{i}^{n})] + \Delta t \rho_{i}^{n} \mathbf{s}_{i}^{n}$$
(61)

s'implicite en

$$\mathbf{u}_{i}^{n+1} = \mathbf{u}_{i}^{n} - \frac{\Delta t}{\Delta \mathbf{x}} [p\mathbb{H}(\mathbb{E}\mathbf{u}_{i}^{n+1}, \mathbb{E}\mathbf{u}_{i+1}^{n+1}) - p\mathbb{H}(\mathbb{E}\mathbf{u}_{i-1}^{n+1}, \mathbb{E}\mathbf{u}_{i}^{n+1})] + \Delta t \rho_{i}^{n+1} \mathbf{s}_{i}^{n+1}$$
(62)

c'est-à-dire, en posant $\mathbb{U} = \mathbb{E}\mathbf{u}$,

$$\begin{split} p \mathbb{U}_{i}^{n+1} &= p \left\{ \mathbb{U}_{i}^{n} - \frac{\Delta t}{\Delta x} [\mathbb{H}(\mathbb{U}_{i}^{n+1}, \mathbb{U}_{i+1}^{n+1}) - \mathbb{H}(\mathbb{U}_{i-1}^{n+1}, \mathbb{U}_{i}^{n+1})] + \Delta t \rho_{i}^{n+1} \mathbb{S}_{i}^{n+1} \right\} \\ \Pi_{i}^{n+1} &= P(p \mathbb{U}_{i}^{n+1}) \\ \Sigma_{i}^{n+1} &= \sigma(p \mathbb{U}_{i}^{n+1}) \end{split}$$

Interprétation comme flux de Roe

Théorème (Baudin-Coquel-T $\langle 11 \rangle$)

Si a > b > 0 et si a est « suffisamment grand », alors il existe une matrice de Roe $\mathscr{A}(\mathbb{U}_L, \mathbb{U}_R)$, de taille 5×5 et explicitement calculable, telle que le flux de Godunov correspondant au problème relaxé homogène s'écrive

$$\mathbb{H}(\mathbb{U}_L, \mathbb{U}_R) = \frac{1}{2} [\mathbb{F}(\mathbb{U}_L) + \mathbb{F}(\mathbb{U}_R)] - \frac{1}{2} |\mathscr{A}(\mathbb{U}_L, \mathbb{U}_R)| (\mathbb{U}_R - \mathbb{U}_L)$$
(63)

Conséquence pratique

$$\partial_{L}\mathbb{H}(\mathbb{U}_{L},\mathbb{U}_{R}) \approx \frac{1}{2}[\nabla \mathbb{F}(\mathbb{U}_{L}) + |\mathscr{A}(\mathbb{U}_{L},\mathbb{U}_{R})|]$$
(64a)

$$\partial_{R}\mathbb{H}(\mathbb{U}_{L},\mathbb{U}_{R}) \approx \frac{1}{2}[\nabla \mathbb{F}(\mathbb{U}_{R}) - |\mathscr{A}(\mathbb{U}_{L},\mathbb{U}_{R})|]$$
(64b)

Modification semi-implicite

Schéma linéairement implicite $\mathbb{H}(\mathbb{U}_{i}^{n+1},\mathbb{U}_{i+1}^{n+1}) = \mathbb{H}(\mathbb{U}_{i}^{n},\mathbb{U}_{i+1}^{n}) + \partial_{L}\mathbb{H}(\mathbb{U}_{i}^{n},\mathbb{U}_{i+1}^{n})\delta\mathbb{U}_{i} + \partial_{R}\mathbb{H}(\mathbb{U}_{i}^{n},\mathbb{U}_{i+1}^{n})\delta\mathbb{U}_{i+1})$

Au lieu de

$$\partial_{L}\mathbb{H}(\mathbb{U}_{L}^{n},\mathbb{U}_{R}^{n}) \approx \frac{1}{2} [\nabla \mathbb{F}(\mathbb{U}_{L}^{n}) + |\mathscr{A}(\mathbb{U}_{L}^{n},\mathbb{U}_{R}^{n})|]$$
(65a)

$$\partial_{R}\mathbb{H}(\mathbb{U}_{L}^{n},\mathbb{U}_{R}^{n})\approx\frac{1}{2}[\nabla\mathbb{F}(\mathbb{U}_{R}^{n})-|\mathscr{A}(\mathbb{U}_{L}^{n},\mathbb{U}_{R}^{n})|]$$
(65b)

on utilise

$$\begin{aligned} \partial_{L} \mathbb{H}(\mathbb{U}_{L}^{n}, \mathbb{U}_{R}^{n}) &\approx \frac{1}{2} [\widetilde{\nabla} \mathbb{F}(\mathbb{U}_{L}^{n}) + |\widetilde{\mathscr{A}}(\mathbb{U}_{L}^{n}, \mathbb{U}_{R}^{n})|] \\ \partial_{R} \mathbb{H}(\mathbb{U}_{L}^{n}, \mathbb{U}_{R}^{n}) &\approx \frac{1}{2} [\widetilde{\nabla} \mathbb{F}(\mathbb{U}_{R}^{n}) - |\widetilde{\mathscr{A}}(\mathbb{U}_{L}^{n}, \mathbb{U}_{R}^{n})|] \end{aligned} \tag{66b}$$

L'opération ~ consiste à annuler les composantes *lentes* d'une matrice $M = L \operatorname{Diag}(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) R \Rightarrow \widetilde{M} = L \operatorname{Diag}(\lambda_1, 0, 0, 0, \lambda_5) R$

Phase Lagrange

$$\partial_t(J) - \partial_{\chi}(v) = 0$$
 (67a)

$$\partial_t(\rho J) = 0$$
 (67b)

$$\partial_t(\rho v J) + \partial_{\chi}(\Pi) = \rho J S$$
 (67c)

$$\partial_t(\rho\Pi J) + \partial_{\chi}(a^2 u) = \lambda \rho J[P - \Pi]$$
 (67d)

$$\partial_t(\rho YJ) + \partial_{\chi}(\Sigma) = 0$$
 (67e)

$$\partial_t(\rho\Sigma J) + \partial_\chi(b^2 Y) = \lambda \rho J[\sigma - \Sigma]$$
 (67f)

$$\rho_{i}^{n} \frac{\tau_{i}^{n\sharp} - \tau_{i}^{n}}{\Delta t} - \frac{\nu_{i+1/2}^{n\sharp} - \nu_{i-1/2}^{n\sharp}}{\Delta x} = 0$$
(68a)

$$\rho_i^n \frac{v_i^{n\sharp} - v_i^n}{\Delta t} + \frac{\prod_{i+1/2}^{n\sharp} - \prod_{i-1/2}^{n\sharp}}{\Delta x} = \rho_i^n S_i^{n\sharp}$$
(68b)

$$\rho_i^n \frac{Y_i^{n\sharp} - Y_i^n}{\Delta t} + \frac{\sum_{i+1/2}^n - \sum_{i-1/2}^n}{\Delta x} = 0$$
 (68c)

discrétisation

Phase Euler (projection)

Forme conservative, avec w = v,

$$\partial_t(J) + \partial_\chi(\mathbf{v}) = 0$$
 (69a)

$$\partial_t(\mathbb{U}J) + \partial_\chi(\mathbb{U}\nu) = 0 \tag{69b}$$

$$\underbrace{ \begin{array}{c} \underbrace{J_{i}^{n+1} - J_{i}^{n\sharp}}{\Delta t} + \underbrace{v_{i+1/2}^{n\sharp} - v_{i-1/2}^{n\sharp}}{\Delta x} = 0 \quad (70a) \\ \underbrace{(\mathbf{u}J)_{i}^{n+1} - (\mathbf{u}J)_{i}^{n\sharp}}{\Delta t} + \underbrace{(\mathbf{u}v)_{i+1/2}^{n\sharp} - (\mathbf{u}v)_{i-1/2}^{n\sharp}}{\Delta x} = 0 \quad (70b) \end{array}$$

avec
$$(\mathbf{u}v)_{i+1/2}^{n\sharp} = \mathbf{u}_i^{n\sharp}(v_{i+1/2}^{n\sharp})^+ + \mathbf{u}_{i+1}^{n\sharp}(v_{i+1/2}^{n\sharp})^-$$

Forme advective

$$\partial_t \mathbb{U} + \frac{\mathbf{v}}{J} \partial_\chi \mathbb{U} = 0 \tag{71}$$

Le secret de la positivité

Dans l'étape Lagrange, pour que $\tau_i^{n\sharp} > 0$,

$$1 + \frac{\Delta t}{\Delta x} [v_{i+1/2}^{n\sharp} - v_{i-1/2}^{n\sharp}] > 0$$
(72)

Dans l'étape projection, pour que \mathbf{u}_i^{n+1} soit combinaison convexe de $\mathbf{u}_{i-1}^{n\sharp}$, $\mathbf{u}_i^{n\sharp}$ et $\mathbf{u}_{i+1}^{n\sharp}$,

$$1 + \frac{\Delta t}{\Delta x} [(v_{i+1/2}^{n\sharp})^{-} - (v_{i-1/2}^{n\sharp})^{+}] \ge 0$$
(73)

Condition suffisante

$$\frac{\Delta t}{\Delta x} |v_{i+1/2}^{n\sharp}| < \frac{1}{2} \tag{74}$$

où la difficulté vient de ce que $v_{i+1/2}^{n\sharp}$ dépend de Δt

Relaxation

Fraction massique de gaz et pression

Laboratoire Jacques-Louis Lions (UPMC)

Relaxation

Densité totale et vitesse moyenne

Laboratoire Jacques-Louis Lions (UPMC)

ъ

Exemple typique

Simulation avec relaxation et multi-résolution

© Équipe de Recherches Technologiques LJLL-IFP

Conclusion de la partie 1

Acquis

- Contrôle de la positivité pour un schéma à grand pas de temps, à l'ordre 1 ou 2 en espace, en présence de conditions aux limites
- Maîtrise et généralisation au cas implicite des outils d'adaptation dynamique
- À approfondir
 - Schémas d'équilibre traitant simultanément termes sources et changements de section
 - Reconstruction d'ordre 2 espace-temps préservant la positivité pour le schéma implicite sélectif via Lagrange-projection
 - Conditions aux limites d'ordre 2 pour mieux prendre en compte le *scénario* des simulations

Sommaire

4 Relaxation

5 Modélisation

6 Advection

7 Private jokes

-

TFM (Two-Fluid Model)

4 lois de conservation

$$\partial_t(\rho_g R_g) + \partial_x(\rho_g R_g v_g) = 0$$
 (75a)

$$\partial_t(\rho_\ell R_\ell) + \partial_x(\rho_\ell R_\ell v_\ell) = 0$$
 (75b)

$$\partial_t (\rho_g R_g v_g) + \partial_x (\rho_g R_g v_g^2 + R_g \Delta p_g) + R_g \partial_x p_i = \rho_g S_g$$
(75c)

$$\partial_t (\rho_\ell R_g v_\ell) + \partial_x (\rho_\ell R_\ell v_\ell^2 + R_\ell \Delta p_\ell) + R_\ell \partial_x p_i = \rho_\ell S_\ell$$
(75d)

3 lois de fermeture thermodynamiques

$$R_\ell + R_g = 1 \tag{76a}$$

$$\rho_g = \rho_g(p_i) \tag{76b}$$

$$\boldsymbol{\rho}_{\ell} = \boldsymbol{\rho}_{\ell}(p_i) \tag{76c}$$

2 lois de fermeture hydrodynamiques donnant Δp_{ℓ} et Δp_g

Genèse de NPW

Observation numérique dans DFM

$$\partial_t (\rho_g R_g v_g + \rho_\ell R_\ell v_\ell) + \partial_x (\rho_g R_g v_g^2 + \rho_\ell R_\ell v_\ell^2 + p) = \rho S$$

-

Genèse de NPW

Observation numérique dans DFM

$$\partial_t (\rho_g R_g v_g + \rho_\ell R_\ell v_\ell) + \partial_x (\rho_g R_g v_g^2 + \rho_\ell R_\ell v_\ell^2 + p) = \rho S$$

= 9QC

Genèse de NPW

Observation numérique dans DFM

$$\partial_t (\rho_g R_g v_g + \rho_\ell R_\ell v_\ell) + \partial_x (\rho_g R_g v_g^2 + \rho_\ell R_\ell v_\ell^2 + p) = \rho S$$

Établissement théorique

- sous l'hypothèse de très faible nombre de Mach, par développement asymptotique
- sous l'hypothèse d'un écoulement transitoire à « basse » fréquence, par passage à la limite

Propriétés de NPW

Théorème (Viviand [82])

La relation de compatibilité associée à la valeur propre finie λ de NPW peut s'interpréter comme le transport d'un invariant de Riemann

$$\partial_t \mathfrak{I}(R_g, p) + \lambda \,\partial_x \mathfrak{I}(R_g, p) = \mu S \tag{77}$$

si et seulement si la loi de fermeture est de type Zuber-Findlay, à savoir

$$\Psi(R_g, p, U_s) = \Psi_0(R_g, p)U_s + \Psi_1(R_g, p).$$
(78)

On peut même préciser les conditions sous les quelles ce transport est exact $(\mu = 0)$.

Cette propriété est exploitée dans la conception d'un modèle de contrôle du severe-slugging par *gas-lift*.

CINE (Cinématique)

- Hypothèses supplémentaires
 - les deux phases sont incompressibles, i.e.,

$$\rho_g(p) = \rho_g^0 \quad \text{et} \quad \rho_\ell(p) = \rho_\ell^0$$
(79)

la fermeture hydrodynamique ne dépend pas de *p*, c'est-à-dire

$$U_g = \Psi(R_g, U_s) \tag{80}$$

 Alors, le modèle NPW se réduit à 1 loi de conservation et 2 bilans hydrostatiques

$$\partial_t R_g + \partial_x \Psi(R_g, U_s) = 0 \tag{81a}$$

$$\partial_x U_s = 0$$
 (81b)

$$\partial_x p = \rho S$$
 (81c)

Modélisation

Comparaison NPW et DFM

-

Maquette S4L

Small Size Severe Slugging Loop

©IFP

= 200

Modélisation

Modèle SSL

Formes abstraites de SSL

Première version

$$\mathbf{d}_t \mathbf{X}(t) = \mathbf{F}(\mathbf{X}(t), \mathbf{Y}(t); \boldsymbol{\wp})$$
(83a)

$$0 = \mathbf{G}(\mathbf{X}(t), \mathbf{Y}(t); \boldsymbol{\wp})$$
(83b)

avec

$$\mathbf{X} = (m_g, m_\ell, p^0) \qquad \in \mathbb{R}^3$$
(84a)

$$\mathbf{Y} = (R_g^0, U_g^0, U_\ell^0, R_g^H, U_g^H, U_\ell^H) \in \mathbb{R}^6$$
(84b)

$$\wp = (q_g^{\rm e}, q_\ell^{\rm e}, p^H, L, H, R_g^P, a_g^2 \dots) \in \text{paramètres}$$
(84c)

La frontière des régions d'occurence peut être déterminée très rapidement comme l'ensemble des paramètres \wp pour lesquels

$$\begin{vmatrix} \nabla_{\mathbf{X}} \mathbf{F} - z \mathbf{I} & \nabla_{\mathbf{Y}} \mathbf{F} \\ \nabla_{\mathbf{X}} \mathbf{G} & \nabla_{\mathbf{Y}} \mathbf{G} \end{vmatrix} = 0 \Rightarrow \operatorname{Re} z = 0$$

Formes abstraites de SSL

Seconde version, après réduction d'index par élimination de p^0 ,

$$d_t \mathbf{x}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{y}(t); \boldsymbol{\wp})$$

$$0 = \mathbf{g}(\mathbf{x}(t), \mathbf{y}(t); \boldsymbol{\wp})$$
(85a)
(85b)

où $\nabla_{\mathbf{y}} \mathbf{g}$ est inversible, avec

$$\mathbf{x} = (m_g, m_\ell) \in \mathbb{R}^2$$

$$\mathbf{y} = (R_a^0, U_a^0, U_\ell^0, R_a^H, U_a^H, U_\ell^H) \in \mathbb{R}^6$$
(86a)
(86b)

Théorème (Zakarian-T $\langle 20 \rangle$)

Dans la modélisation considérée, le severe-slugging correspond à une bifurcation de Hopf supercritique (cycle limite stable) par rapport à chacun des débits d'entrée q_g^e et q_ℓ^e .

Conclusion de la partie 2

Sur la modélisation

- NPW cohabite mieux avec la fermeture hydrodynamique que DFM, au sens où il possède de meilleures propriétés
- L'abondance de modèles ne nuit pas, mais à chaque modèle son usage

Sur le contrôle

Il n'est point besoin d'un modèle précis pour concevoir une commande efficace

Sommaire

4 Relaxation

5 Modélisation

6 Advection

7 Private jokes

ALE multidimensionnel

Dans le référentiel mobile χ se déplaçant à la vitesse v - w, le modèle relaxé s'écrit

$$\partial_t(\mathbb{J}) + \nabla_{\boldsymbol{\chi}}(\mathbf{w}) - \nabla_{\boldsymbol{\chi}}(\mathbf{v}) = \mathbb{O}$$
 (87a)

$$\partial_t(J) + \operatorname{div}_{\boldsymbol{\chi}}(J\mathbb{J}^{-1}\mathbf{w}) - \operatorname{div}_{\boldsymbol{\chi}}(J\mathbb{J}^{-1}\mathbf{v}) = 0$$
 (87b)

$$\partial_t(\rho J) + \operatorname{div}_{\boldsymbol{\chi}}(\rho J \mathbb{J}^{-1} \mathbf{w}) = 0$$
 (87c)

$$\partial_t(\rho \mathbf{v}J) + \mathbf{div}_{\boldsymbol{\chi}}(\rho \mathbf{v} \otimes J \mathbb{J}^{-1} \mathbf{w}) + \mathbf{div}_{\boldsymbol{\chi}}(pJ \mathbb{J}^{-T}) = \rho J \mathbf{S}$$
(87d)
$$\partial_t(\rho YJ) + \mathbf{div}_{\boldsymbol{\chi}}(\rho YJ \mathbb{J}^{-1} \mathbf{w}) = 0$$
(87e)

phase C phase B

où $\mathbb{J} = \nabla_{\boldsymbol{\chi}} \mathbf{x}$ et $J = \det \mathbb{J}$

Phase C

Notation

$$\Psi = (\rho, \rho \mathbf{v}, \rho Y, \ldots) \tag{88}$$

Forme conservative

$$\partial_t(\mathbb{J}) + \nabla_{\boldsymbol{\chi}}(\mathbf{w}) = \mathbb{O}$$
 (89a)

$$\partial_t(J) + \operatorname{div}_{\boldsymbol{\chi}}(J\mathbb{J}^{-1}\mathbf{w}) = 0$$
 (89b)

$$\partial_t(\Psi J) + \operatorname{div}_{\boldsymbol{\chi}}(\Psi J \mathbb{J}^{-1} \mathbf{w}) = 0$$
(89c)

Forme advective

$$\partial_t \Psi + (\mathbb{J}^{-1} \mathbf{w}) \cdot \mathbf{grad}_{\chi} \Psi = 0$$
⁽⁹⁰⁾

三日 のへの

Conclusion de la partie 3

Acquis

- Le schéma « multi-dimensionnel » est en réalité un schéma 1-D appliqué le long d'une ligne de courant
- Transposition réussie pour les variables aux nœuds, en maillage quelconque, à la différence de Kim [132]

En cours

- Schéma d'advection multi-dimensionnelle pour les variables aux mailles, mutation de VOFIRE (Després et Lagoutière [120])
- Préservation d'un principe min-max de nature 1-D non seulement sur chacune des variables transportés, mais aussi sur certaines des combinaisons des variables

Sommaire

4 Relaxation

5 Modélisation

6 Advection

7 Private jokes

-

Private jokes

Cabinet du Professeur Whitham

- La relaxation me rend nerveux, Docteur...
- Restez positif et méditez sur le sens de la condition sous-caractéristique !

Private jokes

Les bijoux de la Compressibilité

- Je suis enfin convaincu de l'intérêt de NPW, Milou !

Téléportation

Le meilleur schéma d'advection :

- conservativité
- ordre élevé
- principe du min-max et inégalité d'entropie
- le tout en maillage 4-D déformé quelconque