

Realistic rendering of clouds in realtime Antoine Bouthors

Advisor: Fabrice Neyret

Co-advisor: Nelson Max, UC Davis

Motivation

Goals

- The rendering problem
 - Given an lit cloud
 - What is the **luminance** at every visible point?

Goals

Render clouds

- Realistically
- At high resolution (high detail)
- In real-time (30 frames per second)
- That can be animated

What is realism?

- Ambiguous question
- Same visual features as real clouds

Are these clouds realistic or not?

Overview

- Part I:
 - Identify visual features
 - Study previous works
- Part II:
 - Study of light transport in clouds
- Part III:
 - New rendering methods for clouds

What is a cloud?

- 1. The human point of view
- 1. The physics point of view
- 2. The CG point of view

Shape

Cumulonimbus

Cumulus

Cirrus

Altostratus

Types of clouds

Cirrostratus

Cirrostratus

Cirrus

Altocumulus

Altostratus

Nimbostratus

Cumulonimbus

Cumuliform

Stratiform

Cumuliform

Stratiform

Edges

Hard, puffy

Soft

Wispy

Close-up on a wisp

10/118

Sun + sky

Sun + sky + ground

11/118

Ground

Moon + sky + ground

Sky + ground

- Extreme cases: ice blink and water sky
 - Inter-reflections btw ground & clouds

Water sky

- Bright, crispy lit side
- Dark, soft unlit side

• Lit side:

- Bright creases (faults between lobes)
- Dark edges
- Detailed

• Unlit side:

- Silver lining (details!)
- Dark, softer core

- Unlit side:
 - Silver lining (details!)
 - Dark, softer core

- Stratiform clouds:
 - "Pseudo-specular" effect

What is a cloud?

- 1. The human spectator point of view
- 1. The physics point of view
- 1. The CG point of view

Atmospheric physics

- A cloud = collection of microscopic water droplets
 - Size of a cloud: up to 20 km
 - Concentration / density: ~1 million droplets / liter
 - Radius: 5 μm 15 μm

Scattering

- Droplets scatter light
 - No absorption

Scattering

Phase function

- Defined by Mie theory (validated reference)
- Strongly anisotropic
- Expensive to compute
- Depends on droplet size, temperature, wavelength...

Path of a photon through a cloud

Many photons come from many paths

 Rendering problem = how much light all these paths carry?

- Order of scattering
 - Number of bounces of a given path

What is a cloud?

- 1. The human spectator point of view
- 2. The physics point of view
- 1. The CG point of view

Computer graphics

- CG methods need:
 - A shape (i.e. droplet density field)
 - A phase function
 - A light transport model

Shape models

- Radar data, simulation
 - 3D grids
 - Current resolutions: 256³
 - Necessary resolution: >1000³
 - → Too coarse
 - → Blurry results

Shape models

- Procedural methods
 - No resolution problems
 - Details added with Perlin noise

Phase function

- Mie function [REHL03]
 - Precise
- Henyey-Greenstein or Gaussian [PAS03]
 - Less contrast, no glory, no fogbow
- Rayleigh or constant [MYND01,HBSL03]
 - No silver lining, less contrast 104

Light transport models

Solving the radiative transfer equation

$$-\frac{1}{\kappa_e(p)}(\vec{s}\cdot\nabla)L(p,\vec{s}) = L(p,\vec{s}) - \frac{1}{4\pi}\int\limits_{\|\vec{s}'\|=1}P(\vec{s},\vec{s}')L(p,\vec{s}')d\vec{s}'$$

Very costly

6D integro-differential system to solve

– = computing all paths through the cloud

→ Not realtime

Realtime light transport models

- Simplify the problem
 - Ignore sky and ground contributions
- Find an approximate solution
 - Do not consider all paths

Realtime light transport models

- Consider only multiple forward scattering
 - i.e. short, low-turning paths
 [DKY+00, HL01, REHL03, PAS03, KPHE02, HBSL03, SSEH03, REK+04]

- Consider only multiple forward scattering
 - Reproduces silver lining
 - Underestimates diffusion effects
 - → No bright lit side
 - → No dark soft unlit side
 - → No strong contrast

- Consider only diffusion
 - i.e. long, high-order paths[Sta95]

- Consider only diffusion
 - Reproduces diffusion effects
 - Ignores view-dependent effects
 - → No silver lining

- Summary
 - Existing models are either
 - Not reproducing all features
 - Too costly
 - Too blurry
 - Realism & realtime not reached yet

- We need a better light transport model that
 - Reproduces all visual features
 - Is efficient
 - Handles detailed complex shapes

Our approach

- Existing methods
 - Rely on microscopic models
 - Compute paths inside the cloud
- The eye does not see inside the cloud

- Existing methods
 - Rely on microscopic models
 - Need to compute paths inside the cloud
- The eye does not see inside the cloud

- → This is costly and redundant
- → We want to avoid computing paths inside the volume

- Our solution: consider surface to surface light transport
 - From lit surface to viewed surface
 - Do not walk through the volume
 - → Rely on a **mesoscopic** model

Overview

- Part I:
 - Identify visual features
 - Study previous works
- Part II:
 - Study of light transport in clouds
- Part III:
 - New rendering methods for clouds

Overview

- Study light transport in a simple shape: a slab
 - Homogeneous density
 - Phase function: modified-Mie

Phase function

- Our Modified-Mie model
 - Strong forward peak → transparency

Phase function

Modified-Mie model validation

Overview

- What we study:
 - For every possible
 - Slab thickness
 - Lighting angle
 - View angle
 - Viewpoint depth
 - Scattering order
 - Measure
 - Luminance
 - Where light came from
- $6D \rightarrow 5D$ function

Overview

- What we study:
 - For every possible
 - Slab thickness
 - Lighting angle
 - View angle
 - Viewpoint depth
 - Scattering order
 - Measure
 - Luminance
 - Where light came from
- 6D → 5D function

Experimentation

- Parallel Monte Carlo path tracing
- On supercomputers (clusters)
- Storing results in a database

- A few weeks of computations
- A few dozens of gigabytes of data

Results

- Mesoscopic model of light transport in a slab
 - For any lighting condition
 - Luminance at any point
 - No need for complex computations
 - The answer is immediate

+ A lot of interesting information

Analysis of results

- Tools for analysis
 - BSDF (Bidirectional Scattering Distribution Function)
 (Similar to a BRDF)

With order-dependence

Analysis of BSDF

In thin slabs

- Low orders
- Very anisotropic
- Strongly forward

top

100m thick

bottom

Analysis of BSDF

In thick slabs

- At bottom
 - High orders
 - Very diffusive
- On top
 - Low and high orders
 - Diffusive + anisotropic features

500m thick bottom

56/118

Analysis of entry points of light

For each order

- Limited area
- Disk-shaped
- Gaussian distribution

For real clouds

- Each order
 - Has a different behavior
 - Brings different features
- Low orders: short & anitrotropic
 - → Silver lining, dark edges
- High orders: diffusive, reflective
 - → Bright lit side, soft dark unlit side

Part II: A study of light transport → Analysis

Other analyses

0.8

- Many other observations
 - Asymptotic regimes
 - Common behaviors
 - Logarithmic behaviors [10] etc...
 - etc...

90°

105°

15°

120°

 $\theta = 0^{\circ}$

 $\pm 180^{\circ}$

0.2

 -15°

 -120°

 -30°

-60°

-75°

 -105°

Using the results

- Mesoscopic model of light transport in a slab
 - $-\Psi:5D\rightarrow6D$
 - In a huge table (20GB)
 - Does not fit on GPU
- Other representations are possible
 - Procedural function
 - Standard compression
 - Decomposition (Wavelet / Sph. harmonics / Fourier)
 - **–** ...

Using the results

- We found something
 - Procedural model
 - A few functions
 - Several 2D tables
 - $-20GB \rightarrow 2MB (10,000:1)$

Using the results

- We found something
 - Fits the data well

Monte-Carlo vs. Our compression

Summary

- Lots of information
- Complete mesoscopic model of light transport in a slab
- → How to make clouds with this?

Not published (yet), physics journal?

Overview

- Part I:
 - Identify visual features
 - Study previous works
- Part II:
 - Study of light transport in clouds
- Part III:
 - New rendering methods for clouds

Part III: New rendering models

Part III

Two new clouds rendering models

New clouds rendering models

- 1. Model for stratiform clouds [BNL06]
- 1. General model [BBNM07]

Part III: New rendering models → Stratiform clouds → Overview

Overview

- Shape model
- Light transport model

Shape

Height field

- Suitable
- Lot of detail
- Low memory
- Animatable

Light transport model

- Assumptions
 - Homogeneous
 - Stratiform
- → locally equivalent to a slab

- Treat separately different orders
 - Low orders → highly anisotropic features
 - Order 1 & 2
 - − High orders → diffusive features
 - Orders > 3
- Account for sky and ground illumination
- Account ground-clouds inter-reflections

Part III: New rendering models → Stratiform clouds → Light transport model

Order 1

Analytical solution

$$\frac{\kappa P(\theta_{vl})\mu_l}{\mu_v + \mu_l} \left(1 - \tau (H_l + H_v) \right)$$

Order 2

Approximation by convolution

$$\frac{\kappa^2 P^2(\theta_{vl})\mu_l}{\mu_v + \mu_l} (1 - \tau(H_l + H_v))$$

Orders >3

- The "doubling-adding" method
 - Simple method for slabs
 - A slab = a column of cells

Orders >3

- The "doubling-adding" method
 - Diffusion → simple interactions between cells
 - Know one cell → know the whole column

Orders >3

- The "doubling-adding" method
 - Analytic & efficient
 - But **limited** to simple phase functions
- → "Corrected" doubling-adding method
 - Accounts for anisotropy
 - Deduced from study

Part III: New rendering models → Stratiform clouds → Light transport model

Sky and ground sources

- Also use the doubling-adding method
- Use diffuse sources

Ground-clouds inter-reflections

- New radiosity method
 - Realtime
 - For parallel textured planes
 - On GPU

Validation

Corrected doubling-adding method

Validation

Light transport model

5m-thick slab

BRDFs

- Monte-Carlo
- Our model

100m-thick slab

Implementation

- Height field: advected textures
 - 16km-wide landscape
 - 2km-height, 500m-thick cloud layer
- Lighting & rendering on GPU
 - Efficient shaders (GLSL)
 - Clouds, ground, shadows: textures
 - Radiosity: 16x16 textures
- 20 40 FPS on current hardware

Part III: New rendering models → Stratiform clouds → Results

Results

Bottom view: contributions

Orders 1 & 2

Orders >3

Ground Ilumination

Sky illumination

Bottom view: summing it all

83/118

Top view: contributions

Orders 1 & 2

Orders >3

Ground Ilumination

Top view: summing it all

85/118

Features: glory and fogbow

Features: water sky

Features: pseudo-specular effect

Part III: New rendering models → Stratiform clouds → Discussion

Discussion

- Advantages
 - Realistic
 - Real-time
 - Animation-friendly
- Disadvantages
 - Accuracy can be improved
 - Limited to stratiform clouds
 - "Hard edges" aspect

Published at EGWNP'06

Antoine Bouthors, Fabrice Neyret, and Sylvain Lefebvre. *Real-time realistic illumination* and shading of stratiform clouds. In Eurographics Workshop on Natural Phenomena, sep 2006.

Implemented in upcoming commercial game

New clouds rendering models

- 1. Model for stratiform clouds [BNL06]
- 1. General model [BBNM07]

Shape model

- Inhomogeneous only on edges (optional)
- Homogeneous core

Light transport model: overview

- Assumptions:
 - Homogenous core
- Our approach:
 - Separate contributions of different orders
 - Use our study

Single scattering

GPU ray marching

- Split by groups of orders of scattering
- Compute luminance for each group

- Defining the collector area
 - Area through which 95% of the light enters
 - In slabs, collector = disk
 - Ψ gives it for a slab

- For an arbitrary cloud
 - Assume collector = disk

- Surface outside the collector is neglibible
 - → Fit a slab using the collector
 - \rightarrow Use Ψ to compute luminance

One issue left: where is the collector?

Finding the collector

Our solution: iterative algorithm

Light transport model: summary

- For each order of scattering
 - Find the collector
 - Compute luminance using Ψ

Part III: New rendering models → Arbitrary clouds → Light transport model

Sky and ground

Additional sources for sky and ground

Part III: New rendering models → Arbitrary clouds → Implementation

Implementation

On GPU

- Efficient shaders (GLSL)
- Render-to-texture, deferred shading, depth maps
- Mesoscopic model = functions + textures

Part III: New rendering models → Arbitrary clouds → Results

Results

3 fps

Discussion

- Iterative algorithm
 - May have periodic points
 - Use relaxation
 - (solver issue)

Discussion

Issues with:

Non-convex shapes (implementation issue)

- More than one collector (solver issue)
 - → multiple root finding

Part III: New rendering models \rightarrow Arbitrary clouds \rightarrow Discussion

Discussion

Advantages

- Realistic
- Detailed
- Interactive (tunable cost)
- Animation-friendly
- Works on any shape

Disadvantages

- Complex to implement
- Published at I3D'08

Antoine Bouthors, Fabrice Neyret, Nelson Max, Eric Bruneton, and Cyril Crassin. *Interactive multiple anisotropic scattering in clouds*. In *ACM SIGGRAPH Symposium on Interactive 3D graphics and games* (I3D), 2008.

Conclusions

- New way to compute radiative transfer
 - High quality
 - High speed
 - High detail
 - Animatable
 - Compatible with GPU

Conclusions

- Future research
 - More than one collectors
 - Non-convex shapes, full sceneries
 - Inhomogeneous clouds
- Other applications
 - Subsurface scattering

What about convergence?

- Bounded search space
 - → No divergence
- Periodic points
 - → Use relaxation
- Start with large collector
 - "Refine" cloud surface

